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Preface
The idea to write this book was born long ago, when the joint monograph [99] of Pro-
danov, Stoyanov and the second named author was out of print, yet it cannot be con-
sidered as a second edition of [99] as originally planned. Indeed, the overlap with [99]
is contained only in Chapters 11–13 and part of Chapter 14, whereas the intersection of
the rest of [99] (namely, minimal groups and their properties) with this book is limited
only to the final page of §8.4 and a few exercises in §8.8. As a matter of fact, [99] was
largely used as a base for various courses on topological groups held by the second
named author: “Topologia 2” at Udine University (started in 1998/99), as well as four
courses in the framework of the PhD programs at the Department of Mathematics at
Naples University and Milan University, the Department of Geometry and Topology at
the Complutense University of Madrid, and the Department of Mathematics at Nan-
jing Normal University in 1994, 2006, 2007, and 2016, respectively. As a result, the lec-
ture notes of these courses gradually arose, including necessarily an introductory part
(Chapters 2–10 in this book) that was not present in [99], and grew to the necessary
critical level to become an independent source available online over the years. In 2019
came the generous offer to publish these notes in the series Studies in Mathematics of
de Gruyter Editors that we gladly accepted.

Our sincere thanks go in the first place to de Gruyter who made this publica-
tion possible and to Dr. Nadja Schedensack and Dr. Apostolos Damialis for their valu-
able advice and assistance. It is a pleasure to thank Luchezar Stoyanov for his kind
concession to use some results from [99] in this book. We thank also our colleagues
F. De Giovanni, E. Martín Peinador, M. J. Chasco, M. G. Bianchi,Wei He, X. Domíngues,
M. Bruguera, S. Ardanza Trevijano, and E. Pacifici, who made the above mentioned
courses possible. We thank also G. Bergman, P. Spiga, and G. Lukács for their useful
advice.

The first and third named authors wish to thank their respective husbands Horst
Förster and Alberto Urli for their versatile support, patience, and permanent assis-
tance during the genesis of this book.

Lydia Außenhofer
Dikran Dikranjan

Anna Giordano Bruno
Udine, Passau, July 4, 2021
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1 Introduction

Topological groups provide a natural environment where algebra (more specifically,
group theory) and topology interact in a very fruitful way. Topological groups arise
in several ways: as transformation groups (in a typical nonabelian context), or as
function spaces (in the framework of functional analysis), or as objects related to
p-adic analysis (in number theory), etc. Given the many faces of the main object of
study (a pair of a group structure and a topology on the same set, with a simple com-
patibility condition), there are two opposite tendencies in this field. One is mainly
focused on the topological properties of the underlying topological space, by using
the favorable circumstance to have homogeneity and other merely superficial ingre-
dients due to the algebraic structure; this can be roughly called the topological the-
ory of topological groups. The alternative approach, that is usually referred to as topo-
logical algebra, studies mainly algebraic properties of groups equipped with certain
(group) topologies that frequently have a strong impact on the algebraic structure of
the group.

This book is somewhat closer to the second tendency: although the topological
aspect has a relevant place in the exposition (so, for example, it is more topology ori-
ented than [169, 198]), it has a stronger focus on topological abelian groups (e. g.,more
than [270]). This explains our choice to enhance the role of the functorial topologies
on abelian groups, and of the Pontryagin-van Kampen duality and its applications.
Of those, the latter notably prevails and can be pointed out as the main topic of the
book. We provide a completely self-contained exposition of this remarkable duality,
following the line first adopted by Iv. Prodanov in [235, 237] and in [99] (see also the
recent paper [109] and the much earlier monograph [214]).

Let ℒ denote the category of locally compact abelian groups and continuous ho-
momorphisms, and let𝕋 = ℝ/ℤ be the unit circle group written additively. For G ∈ ℒ,
denote by Ĝ the group of continuous homomorphisms G → 𝕋 (shortly, continuous
characters ofG) equippedwith the compact-open topology. The assignmentG → Ĝ in-
duces a contravariant endofunctor̂:ℒ→ ℒ, and the celebrated Pontryagin-van Kam-
pen duality theorem (see [228] and Theorem 13.4.17) says that this functor is an involu-
tive duality: ifG is a locally compact abelian group, then ̂̂G is topologically isomorphic
toG in a canonical way. Moreover, the Pontryagin-van Kampen duality functor̂:ℒ→
ℒ sends compact abeliangroups todiscrete abeliangroupsandvice versa, that is, it de-
fines a duality between the subcategory 𝒞 ofℒ of compact abelian groups and the sub-
category 𝒟 of ℒ of discrete abelian groups. This is a very efficient and fruitful tool for
the study of compact abelian groups, reducing many problems related to topological
properties in 𝒞 to the corresponding problems concerning algebraic properties in𝒟.

The reader is advised to give a look at Mackey’s beautiful survey [205] for the con-
nection of characters and the Pontryagin-van Kampen duality with number theory,
physics, and elsewhere. This duality inspired a huge amount of related research also

https://doi.org/10.1515/9783110654936-001
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2 | 1 Introduction

in category theory; a brief comment on a specific categorical aspect (uniqueness and
representability) can be found in §16.2.1.

As mentioned above, we provide a self-contained proof of the Pontryagin-van
Kampen duality theorem, with all necessary steps, including the basic background
on topological groups and the structure theory of locally compact abelian groups.
The abelian case of the Peter–Weyl theorem, asserting that the continuous characters
of compact abelian groups separate the points (see Corollary 11.5.1), is certainly the
most important nonelementary tool in proving the Pontryagin-van Kampen duality
theorem. The Peter–Weyl theorem is valid for arbitrary compact groups, but then
continuous characters must be replaced by finite-dimensional irreducible unitary
representations, and the usual proof of the theorem in this general case involves Haar
integration. Since in the abelian case the finite-dimensional irreducible unitary rep-
resentations turn out to be one-dimensional, that is, continuous characters, we prefer
here a different approach. Namely, in the abelian case the Peter–Weyl theorem can be
obtained as an immediate corollary of the Følner theorem (see Theorem 11.3.5), whose
(relatively) elementary proof uses nothing beyond elementary properties of finite
abelian groups, a local version of the Stone–Weierstraß theorem (see Corollary B.5.22),
and the Čech–Stone compactification of discrete spaces. As another application of the
Følner theorem, one can characterize precompact abelian groups (i. e., the subgroups
of compact abelian groups) as those having a topology generated by continuous char-
acters. As a third application of the Følner theorem, we obtain the existence of the
Haar integral on locally compact abelian groups for free (see Theorem 12.2.9, whose
proof follows [99, § 2.4, Theorem 2.4.5]).

There are several topics we regretfully could not include in the book for the lack
of space, themost important one being free topological groups (the reader can find an
excellent presentation in [7]).

Another one is the existence of convergent sequences in topological groups; the
interest in this phenomenon is triggered by the fact that compact groups have lots
of nontrivial convergent sequences, yet many classes of compact-like nonmetrizable
groups fail to have them (see the survey [102] for more details). Only very recently
Hrušák, van Mill, Ramos-García, and Shelah [179] resolved a long standing problem
byproducing the first example in ZFC of a countably compact groupwithout nontrivial
convergent sequences.

Another topic, namely, topological generators of topological groups, was only su-
perficially touched by monothetic groups and compactly generated groups in Theo-
rem 8.3.5, Theorem 8.3.7, and Corollary 8.3.5. We refer the reader to the last 2021 edi-
tion of the monograph [177] for a recent progress in the field of suitable sets.

For dualities of non-locally compact abelian groups and the Mackey topology
problem (see §13.8) the reader may consult the survey [14].

Although we pay some attention to the categorical aspects of topological groups
(via pointing out a wealth of functorial topologies and functorial dualities, reflections
and coreflections in the category TopGrp of topological groups, etc.), there is at least
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1 Introduction | 3

one important topic that remained uncovered by the book, namely, categorically com-
pact groups introduced in [115]. The early stages of the development of this topic are
nicely covered in Lukács’ monograph [200]. The reader may be interested to find a re-
markable Tichonov theorem obtained by Clementino and Tholen for products of cat-
egorically compact objects in a quite general context in [52]. Its value, as far as the
category TopGrp is concerned, was recently increased by the impressive examples
of noncompact categorically compact groups obtained by Klyachko, Ol′shankii, and
Osin in [185] (these examples are strongly related also to nontopologizable groups, see
§4.3).

The book is organized as follows. Chapter 2 contains background on topological
groups, starting from scratch. Various ways of introducing a group topology are con-
sidered (see §2.2), of which the most prominent one is by means of functorial topolo-
gies, and in particular by means of characters (see §2.2.2).

Chapter 3 contains general properties of topological groups. In particular, in §3.1
we discuss subgroups and separation axioms. In §3.1.3 we briefly introduce the princi-
ple of the extension of identities in Hausdorff groups, which, roughly speaking, says
that a Hausdorff group inherits nice algebraic properties (commutativity, nilpotency,
etc.) from its dense subgroups. Quotients are dealt with in §3.2. Both §§3.3 and 3.4 have
a more categorical flavor; more specifically, §3.3 is focused on initial and final topolo-
gies, while §3.4 explains how the general case can be reduced to that of Hausdorff
groups.

In Chapter 4 Markov’s problems on the existence of nondiscrete Hausdorff group
topologies are discussed. In §4.1 we introduce the Markov and Zariski topologies that
allow for an easier understanding of Markov’s problems. These two topologies coin-
cide on abelian and permutation groups; for the latter case, see §4.2. The first two
examples of nontopologizable groups, given by Shelah and Ol′shanskii, respectively,
are discussed in §4.3. The problems arising in the extension of group topologies are
the topic of §4.4.

Chapter 5 is dedicated to cardinal invariants and metrizability of topological
groups. In §5.1 we discuss several cardinal invariants (weight, character, pseudochar-
acter, density character) and their interrelations. The next section provides a proof of
the Birkhoff–Kakutani metrization theorem and some corollaries. In §5.3 we recall the
construction of Protasov and Zelenyuk from [241] of group topologies making a given
sequence in an abelian group convergent to 0.

Connectedness and related properties in topological groups are discussed in
Chapter 6. To this end, four components measuring the degree of connectedness
are introduced and discussed. Special attention is paid to hereditarily disconnected
groups.

Chapter 7 is dedicated to completeness. We use the Cauchy nets to define com-
pleteness for topological groups, and then to build the Raĭkov completion of a Haus-
dorff group. We discuss also Weil completeness and the Weil completion. Finally, we
describe the completion equivalently using filters.
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4 | 1 Introduction

Chapter 8 contains specific properties of (locally) compact groupsused essentially
in this book. Of those, we mention here only the most relevant ones. The open map-
ping theorem is discussed in §8.4, where we very briefly mention also minimal and
totally minimal groups, which need not be locally compact, yet the open mapping
theorem holds. Section 8.5 is focused on the impact of (local) compactness on con-
nectedness in topological groups. In §8.6 we give the first (external) construction of
the Bohr compactification bG of a topological groupG as the compact group that “best
approximates” G.

In Chapter 9 we describe the structure of all closed subgroups of ℝn (giving two
different proofs), as well as the closure of an arbitrary subgroup of ℝn. These groups
play an important role in the whole theory of locally compact abelian groups. As an
application, we show that the group 𝕋c is monothetic.

Chapter 10 starts with §10.1, in which big and small subsets of abstract groups are
introduced. Section 10.2 is dedicated to precompact groups. In particular, in §10.2.1 we
give an internal description of precompact groups using the notion of big subsets, and
we show that the precompact groups are precisely the subgroups of compact groups.
The precompact group G+ that “best approximates” a topological group G is intro-
duced in §10.2.2. This allows us to obtain a second, internal, construction of the Bohr
compactification bG of G, since the completion of G+ coincides with bG. In §10.2.3
we establish the precompactness of the topologies generated by characters. In §10.3 a
third characterization of the Bohr compactification is given, using unitary representa-
tions.

Chapter 11 deals with the Følner theorem and its applications, following the line
of [99]. Sections 11.1 and 11.2 prepare some of the ingredients for the proof of this theo-
rem.An important feature of the proof is the crucial idea, due toProdanov, to eliminate
all discontinuous characters in the uniform approximation of continuous functions
via linear combinations of characters obtained by means of the Stone–Weierstraß ap-
proximation theorem. This step is ensured in §11.3 by the Prodanov lemma, which has
many other relevant applications towards independence of characters and the con-
struction of the Haar integral for locally compact abelian groups. Then, we give vari-
ous applications of the Følner theorem. The first one is a description of the precompact
group topologies on abelian groups in §11.4. The main application of the Følner the-
orem is an immediate proof of the abelian case of the Peter–Weyl theorem in §11.5. In
§11.6 compactly generated locally compact abelian groups are described explicitly and
useful information on the dual group of a locally compact abelian group is gathered.

Chapter 12 is dedicated to almost periodic functions and the Haar integral. Here
we introduce almost periodic functions and briefly comment their connection to the
Bohr compactification. As another application of the Følner theorem, we give a proof
of the Bohr–von Neumann theorem describing almost periodic functions on abelian
groups as uniform limits of linear combinations of characters. Among other things,
in §12.2, as a by-product of Prodanov’s approach, we obtain an easy construction of
the Haar integral for almost periodic functions on abelian groups, in particular for all
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continuous functions on a compact abelian group. In §12.2.2 we build a Haar integral
on arbitrary locally compact abelian groups, using the construction from §12.2.1 in the
compact case.

Chapter 13 is dedicated to the Pontryagin-van Kampen duality. In §§13.1, 13.2,
and 13.3 we construct all tools for proving the Pontryagin-van Kampen duality the-
orem. More specifically, §§13.1 and 13.2 contain various properties of the dual group
that allow for an easier computation in many cases. Using further the properties of
the dual group, we see in §13.3 that many specific locally compact abelian groups G
satisfy G ≅ ̂̂G. In §13.4 we stress the fact that the topological isomorphism G ≅ ̂̂G is
natural by studying in detail the natural transformation ω between the functors 1ℒ
and ̂̂, induced by the map ωG:G →

̂̂G connecting the locally compact abelian group
G with its bidual ̂̂G. It is shown in several steps that ωG is a topological isomorphism,
considering larger and larger classes of locally compact abelian groups where the
Pontryagin-van Kampen duality theorem holds (compact abelian groups, discrete
abelian groups, elementary locally compact abelian groups, compactly generated
locally compact abelian groups). The last step uses the fact that the Pontryagin-van
Kampen duality functor is exact, and this permits us to use all previous steps in the
general case.

In Chapter 14 we give various applications of the Pontryagin-van Kampen du-
ality theorem. As an immediate application, we obtain the main structure theorem
for locally compact abelian groups, a complete description of the monothetic com-
pact groups, the torsion compact abelian groups, and the connected compact abelian
groups with a dense torsion subgroup. In §14.3.1 we focus on a topic of a more topo-
logical flavor, namely, the dimension of locally compact groups. Section 14.3.2 is ded-
icated to a characterization of the algebraic structure of abelian groups admitting a
compact group topology (known as Halmos problem), and the following §14.3.3 to the
Bohr topology of a discrete abelian group. In §14.4 we consider a precompact version
of the construction from §5.3 of group topologies making a fixed sequence converge in
an abelian group to 0.

In Chapter 15 we describe some relevant facts concerning countably compact and
pseudocompact groups. Among them we mention the criterion for pseudocompact-
ness due to Comfort and Ross (see Theorem 15.2.1).

Chapter 16 is dedicated to topological rings and fields (see §16.1), and to topolog-
ical modules and vector spaces (see §16.2). While §16.2.1 concerns uniqueness of the
Pontryagin-van Kampen duality, §16.2.4 is focused on locally linearly compact vector
spaces and to the Lefschetz duality, a duality from [195] inspiredby thePontryagin-van
Kampen duality. There we discuss also the more general duality for linearly compact
modules due to Kaplansky, MacDonald, and Áhn.

Exercises are given at the end of each chapter to ease the understanding of the
arguments treated in that chapter. At the end of most of the chapters, a brief section
of notes and comments is provided.
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The reader who is interestedmainly in abelian groups can skip §§4.2–4.4 and take
all groups abelian in Chapters 3 and 5–8. Conversely, the reader interested in the non-
abelian context may dedicate more time to Chapters 4–10. Minimal groups appear in
§§8.4, 8.7, 8.8, 10.5, 11.8 and minimal rings in §16.4.

For those interested in getting as soon as possible to the proof of the Pontryagin-
van Kampen duality theorem, and having sufficient knowledge of topological groups,
a possible route can be to read Chapters 10–13, and then Chapter 14 for the applica-
tions.

The reader of this book is not supposed to have a solid background either in group
theory or in topology. In the Appendix we provide the necessary background in three
directions, recalling in Appendix A, B, and C basic results and notions on group the-
ory, general topology, and category theory, respectively, used in the book. For general
notation and terminology, see the initial part of Appendix A or the Index and the In-
dex of Symbols. Further general information on topological groups can be found in
the monographs or surveys [8, 81, 82, 99, 177, 200, 223, 228].
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2 Definition and examples

2.1 Basic definitions and properties

2.1.1 Definition

We start with the fundamental concept of this book.

Definition 2.1.1. A topology τ on a group (G, ⋅) is a group topology if themapG×G → G,
(x, y) → xy−1, is continuous. A topological group is a pair (G, τ)of a groupG anda group
topology τ on G.

We simply write that G is a topological group, when there is no need to explicitly
write the group topology on G.

Remark 2.1.2. A topology τ on a group G is a group topology if and only if

μ:G × G → G, (x, y) → xy, and 𝚤:G → G, x → x−1,

are continuous when G × G carries the product topology. Clearly, 𝚤:G → G is a homeo-
morphism. For a subsetM of G, we denote 𝚤(M) byM−1.

If τ is a group topology on a groupG and τ is Hausdorff (respectively, compact, lo-
cally compact, connected, etc.), then the topological group (G, τ) is called Hausdorff
(respectively, compact, locally compact, connected, etc.). Analogously, if G is cyclic
(respectively, abelian, nilpotent, etc.), the topological group (G, τ) is called cyclic (re-
spectively, abelian, nilpotent, etc.).

Here we propose some examples, starting with two trivial ones.

Example 2.1.3. For every groupG, thediscrete topology δG and the indiscrete topology
ιG on G are group topologies.

A nontrivial example of a topological group is the additive group ℝ of the reals,
equipped with its usual Euclidean topology. Clearly, ℝ is a noncompact locally com-
pact abelian group. This extends to all finite powers ℝn, endowed with the product
topology.

Example 2.1.4. For every n ∈ ℕ+, the general linear group GLn(ℝ) equipped with the
topology induced by ℝn

2
is a locally compact group and for n ≥ 2 it is not abelian.

Analogously, GLn(ℂ) equipped with the topology induced from ℂn
2
is a locally com-

pact group.

Example 2.1.5. For every prime p, the group 𝕁p of p-adic integers (see §A.4.2), consid-
ered as the ring of all endomorphisms of the Prüfer group ℤ(p∞), embeds into the
product ℤ(p∞)ℤ(p

∞). Then 𝕁p is a topological group with the topology induced by the
product topology of the discrete topology of ℤ(p∞).

https://doi.org/10.1515/9783110654936-002
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8 | 2 Definition and examples

The same topology on 𝕁p is inducedby the product topology of∏n∈ℕℤ/p
nℤ, when

we consider 𝕁p as the inverse limit lim
←n∈ℕ
ℤ/pnℤ (for more details, see Example 3.3.8).

Other examples of group topologies are given in §2.2.

Lemma 2.1.6. Let G be a topological group. For every a ∈ G, the left translation at:G →
G, x → ax, the right translation ta:G → G, x → xa, and the inner automorphism
ϕa:G → G, x →axa−1, are homeomorphisms.

Proof. Since μ:G × G → G, (x, y) → xy is continuous by Remark 2.1.2, both at = μ(a,−)
and its inverse a−1 t, are continuous, for every a ∈ G. Hence, at is a homeomorphism
for every a ∈ G. A similar proof works for ta. Since, for every a ∈ G, ϕa = at ∘ ta−1 , it
follows that ϕa is a homeomorphism.

Making use of Lemma 2.1.6, one can prove that a topological group is homoge-
neous as a topological space (see Exercise 2.4.1). Consequently, a topological group G
is discrete if and only if eG is isolated, namely, the singleton {eG} is open.

For example, this permits showing the following property.

Lemma 2.1.7. Let G be a countable topological group. If G is of second category, then G
is discrete. Consequently, if G is a Baire space then G is discrete.

Proof. The second assertion follows from the first, since every Baire space is of sec-
ond category, by Lemma B.5.19. Assume that G is of second category. As the union
G = ⋃g∈G{g} is countable, there exists g ∈ G with Int {g} ̸= 0, so {g} is open. By the
homogeneity of G as a topological space, we deduce that G is discrete.

Notation 2.1.8. For a group G, a subsetM of G, and a ∈ G, we denote by

aM := at(M) = {am:m ∈ M}

the image ofM under the left translation at. This is extended also to families of subsets
of G, in particular, for every filter ℱ on G, we denote aℱ := {aF: F ∈ ℱ}. Analogously
we defineMa and ℱa.

2.1.2 The neighborhood filter of the neutral element

For a topological group (G, τ) and g ∈ G, the filter 𝒱G,τ(g) of all neighborhoods of g
in G is also denoted by 𝒱G(g), 𝒱τ(g), or 𝒱(g), when no confusion is possible. As an
immediate consequence of Lemma 2.1.6, we have the following property.

Lemma 2.1.9. For a topological group G and a ∈ G, 𝒱(a) = a𝒱(eG) = 𝒱(eG)a.

This property determines the central role played by the filter 𝒱(eG). The next the-
orem collects its properties, which completely describe the situation. Of those (gt3) is
vacuously satisfied for abelian groups.
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Theorem 2.1.10. Let G be a group. If τ is a group topology on G, then:
(gt1) for every U ∈ 𝒱τ(eG), there exists V ∈ 𝒱τ(eG) with VV ⊆ U;
(gt2) for every U ∈ 𝒱τ(eG), there exists V ∈ 𝒱τ(eG) with V−1 ⊆ U;
(gt3) for every U ∈ 𝒱τ(eG) and a ∈ G, there exists V ∈ 𝒱τ(eG) with aVa−1 ⊆ U.

Conversely, if 𝒱 is a filter on G satisfying (gt1), (gt2), and (gt3), then there exists a unique
group topology τ on G such that 𝒱 = 𝒱τ(eG).

Proof. Let τ be a group topology on G. Then (gt1) and (gt2) hold by the continuity of
μ:G ×G → G, (x, y) → xy, at (eG, eG) and the continuity of 𝚤:G → G, x → x−1, at eG (see
Remark 2.1.2), while (gt3) follows from the continuity of the inner automorphism ϕa
at eG for every a ∈ G proved in Lemma 2.1.6.

Now let 𝒱 be a filter on G satisfying the conditions (gt1) and (gt2).
First, we verify that every U ∈ 𝒱 contains eG. Indeed, by (gt1) there existsW ∈ 𝒱

withWW ⊆ U . By (gt2), there exists O ∈ 𝒱 with O−1 ⊆ W . Then, for V = O ∩ O−1 ⊆ W ,
eG ∈ VV−1 ⊆ U . This shows that

for every U ∈ 𝒱 there exists V ∈ 𝒱 such that VV−1 ⊆ U . (2.1)

Let τ = {O ⊆ G:∀x ∈ O, ∃V ∈ 𝒱 , xV ⊆ O}. Obviously, 0,G ∈ τ and τ is stable under
taking arbitrary unions. If O1,O2 ∈ τ and O1 ∩ O2 ̸= 0, let x ∈ O1 ∩ O2; by definition of
τ, there exist V1,V2 ∈ 𝒱 such that xV1 ⊆ O1 and xV2 ⊆ O2; then V = V1 ∩ V2 ∈ 𝒱 and
xV ⊆ O1 ∩ O2, therefore O1 ∩ O2 ∈ τ. We conclude that τ is a topology on G.

Now we verify that

g𝒱 = 𝒱τ(g) for every g ∈ G. (2.2)

The inclusion 𝒱τ(g) ⊆ g𝒱 follows from the definition of τ. To prove the converse in-
clusion, let U ∈ 𝒱 and let O = {h ∈ gU :∃W ∈ 𝒱 , hW ⊆ gU}. Obviously, g ∈ O ⊆ gU . It
remains to check that O ∈ τ. In fact, for every x ∈ O, by definition, there existsW ∈ 𝒱
with xW ⊆ gU, and by (gt1) there exists V ∈ 𝒱 with VV ⊆ W ; then xV ⊆ O, since for
every v ∈ V , xv ∈ xV ⊆ xW ⊆ gU and xvV ⊆ xVV ⊆ xW ⊆ gU .

To verify that τ is a group topology, we assume that 𝒱 satisfies also (gt3). We have
to check the continuity of f :G × G → G, (x, y) → xy−1, at a fixed pair (x, y) ∈ G × G.
By (2.2), a τ-neighborhood of xy−1 has the form xy−1U, where U ∈ 𝒱. By (gt3), there
existsW ∈ 𝒱 withWy−1 ⊆ y−1U, and by (2.1) there exists V ∈ 𝒱 with VV−1 ⊆ W . Then
O = xV × yV is a neighborhood of (x, y) in G × G and f (O)⊆ xVV−1y−1⊆ xWy−1⊆ xy−1U .
Hence, f is continuous at (x, y).

Definition 2.1.11. For a topological group G, a base ℬ of the filter 𝒱(eG) is called base
of the neighborhoods of eG (or briefly, local base at eG) in G and the elements of ℬ are
called basic neighborhoods. A neighborhood U of eG in G is symmetric if U = U−1.

For everyU ∈ 𝒱(eG) in a topological group G,U ∩U−1 ∈ 𝒱(eG) is symmetric, hence
the symmetric neighborhoods of eG form a base of 𝒱(eG).
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10 | 2 Definition and examples

Remark 2.1.12. Similarly to the reduction to symmetric neighborhoods, in a topolog-
ical group G one may achieve further nice properties of the elements of a base ℬ of
𝒱(eG), including global properties of ℬ, as having small size |ℬ|. Of those the best in-
stances are the topological groups G admitting a countable base ℬ = {Un: n ∈ ℕ} of
𝒱(eG). Indeed, under this assumption, by further applying (gt1) and (gt2), one can as-
sume without loss of generality that

Un+1Un+1 ⊆ Un and Un = U
−1
n for every n ∈ ℕ. (2.3)

Example 2.1.13. Consider the group ℝ with the Euclidean topology. Then

𝒱(0) = {U ⊆ ℝ:∃ε ∈ ℝ>0, (−ε, ε) ⊆ U}.

The base ℬ = {(−ε, ε): ε ∈ ℝ>0} of 𝒱(0) consisting of symmetric open neighborhoods
of 0 has size c. One may choose also the countable base ℬ1 = {(−1/n, 1/n): n ∈ ℕ+} of
𝒱(0), or even the smaller one ℬ2 = {Un: n ∈ ℕ}, where Un = (2−n, 2n) for n ∈ ℕ+; note
that ℬ2 has the additional property (2.3).

The following observation is of fundamental relevance for our treatment of topo-
logical groups in the sequel, when we use mainly filter bases instead of filters.

Remark 2.1.14. In Theorem 2.1.10, for a topological group (G, τ), instead of the filter
𝒱τ(eG) one can characterize a base of 𝒱τ(eG). To this end, take a filter base ℬ on G
satisfying (gt1), (gt2), and (gt3). In this case, for the unique group topology τ on G
ensured by the conclusion of Theorem 2.1.10, the filter 𝒱τ(eG) coincides with the filter
generated by ℬ.

To characterize the local base ℬ at eG formed by the open neighborhoods of eG in
τ, one has to add to (gt1), (gt2), and (gt3) also the following property:

(gt4) for every U ∈ ℬ and every x ∈ U, there exists V ∈ ℬ such that Vx ⊆ U .

It guarantees that ℬ is a filter base of open sets of 𝒱τ(eG), where τ is again the
group topology on G given by the conclusion of Theorem 2.1.10.

Definition 2.1.15. The core of a topological group (G, τ) is core(G, τ) := ⋂𝒱τ(eG); we
denote it simply by core(G) when the topology is clear.

Lemma 2.1.16. For a topological group G, core(G) is a normal subgroup of G.

Proof. Let N = core(G). Clearly, eG ∈ N . If x, y ∈ N, then xy ∈ N by (gt1), while x−1 ∈ N
for x ∈ N can be deduced from (gt2). Finally, for g ∈ G, the inclusion gNg−1 ⊆ N follows
from (gt3).

Remark 2.1.17. Let (G, τ) be a topological group and let N = core(G, τ).
(a) Then N = {eG}

τ
. In fact, for x ∈ G, x ̸∈ {eG}

τ
if and only if there exists a symmetric

U ∈ 𝒱τ(eG) with eG ̸∈ xU (i. e., x ̸∈ U).
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(b) In case N ∈ 𝒱τ(eG), we have N ∈ τ (if U ∈ τ with eG ∈ U ⊆ N, then for every y ∈ N,
y ∈ yU ⊆ N, asN is a subgroup of G; soN ∈ τ). In this case 𝒱τ(eG) has the smallest
possible base, namely, ℬ = {N}. The τ-open sets are unions of cosets of N, hence
τ is an Alexandrov topology (see Example B.1.16).

Definition 2.1.18. An Alexandrov group topology τ on a group G is a group topology
that is an Alexandrov topology, and (G, τ) is called Alexandrov group.

The Alexandrov group topologies are the simplest examples of group topologies
that are neither discrete nor indiscrete.

The morphisms in the category TopGrp of topological groups are the continuous
group homomorphisms.

Definition 2.1.19. Let G,H be topological groups and let f :G → H be a homomor-
phism. If f is simultaneously an isomorphism and a homeomorphism, then f is called
topological isomorphism; in this case, we say thatG andH are topologically isomorphic
andwriteG ≅ H. In caseG = H, a topological isomorphismG → G is called topological
automorphism.

The topological isomorphisms are the isomorphisms in the category TopGrp.
The continuity of a group homomorphism can be characterized in terms of the

neighborhoodfilters of theneutral element, or filter bases generating them, as follows.
We often use this characterization without giving reference to it.

Lemma 2.1.20. Let G,H be topological groups and f :G → H a homomorphism. Then
the following conditions are equivalent:
(a) f is continuous;
(b) f is continuous at eG;
(c) for every U ∈ 𝒱H (eH ) there exists V ∈ 𝒱G(eG) such that f (V) ⊆ U;
(d) for ℬG,ℬH local bases at eG, eH in G,H, respectively, for every U ∈ ℬH there exists

V ∈ ℬG such that f (V) ⊆ U.

Moreover, f is open if and only if f (U) ∈ 𝒱H (eH ) for every U ∈ 𝒱G(eG).

Proof. (a)⇔(b) immediately follows from the homogeneity of topological groups (see
Exercise 2.4.1), while (c) and (d) are clearly equivalent forms of (b).

Example 2.1.21. If G,H are Alexandrov groups, a homomorphism f :G → H is con-
tinuous precisely when f (core(G)) ⊆ core(H). Therefore, the category of Alexandrov
groups is isomorphic to the categoryof pairs (G,N)of a groupG andanormal subgroup
N of G, where the morphisms (G,N) → (H , L) are group homomorphisms f :G → H
with f (N) ⊆ L.
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2.1.3 Comparing group topologies

For a groupG, denotebyL(G) the set of all group topologies onG. Clearly,L(G) ⊆ 𝒯 (G),
where 𝒯 (G) is the complete lattice of topologies on G with the partial order given by
inclusion (see Definition B.1.13 and Remark B.1.14).

Consider L(G)with the partial order inherited from 𝒯 (G), and note that if τ, τ′ are
group topologies on G, then the identity map (G, τ)→ (G, τ′) is continuous if and only
if τ′ ⊆ τ. We say that τ′ is coarser than τ or that τ is finer than τ′, and we denote this
partial order also by τ′ ≤ τ.

Both posets (𝒯 (G),≤) and (L(G),≤) share the same top and bottom element (i. e.,
the discrete and the indiscrete topology, respectively) and L(G) is likewise a complete
lattice, but there is a subtle difference between these two cases: the lattice operations
inL(G) are not the same as in 𝒯 (G), as pointed out below.We consider separately both
underlying semilattice structures.

Remark 2.1.22. For a groupG,L(G) is a complete join-semilattice considered as a sub-
poset of 𝒯 (G). Take a family {τi: i ∈ I} ⊆ L(G). To check that the join supi∈I τi taken in
the larger lattice 𝒯 (G) is also a group topology on G, it suffices to consider the filter
base ℬ formed by the family of all finite intersections U1 ∩ ⋅ ⋅ ⋅∩Un, where Uk ∈ 𝒱τik (eG)
for k ∈ {1, . . . , n}, {i1, . . . , in} runs over all finite subsets of I and n ∈ ℕ+. Sinceℬ satisfies
(gt1), (gt2), and (gt3) from Theorem 2.1.10, it gives a group topology τ on G having ℬ
as a local base at eG. Since all topologies τi are group topologies, τ = supi∈I τi. This
completely describes the semilattice structure of (L(G), sup).

Since the poset L(G) has a bottom element, this suffices to conclude that L(G) is
a complete lattice (see [30]):

Proposition 2.1.23. If G is a group, then L(G) is a complete lattice.

The simple argument leading to Proposition 2.1.23 gives no idea about how the
meets look like in this complete lattice. In fact, the meet in L(G) fails to coincide with
the meet in the lattice 𝒯 (G), since the intersection of group topologies need not be a
group topology (see Exercise 2.4.5). In case G is abelian, the meet of two topologies in
L(G) is described as follows (see Exercise 2.4.2 for the general case).

Example 2.1.24. IfG is an abelian group and τ1, τ2 ∈ L(G), then it is easy to check that
the family {U1 +U2:Ui ∈ 𝒱τi (0), i = 1, 2} is a base of the filter 𝒱inf{τ1 ,τ2}(0) ((gt1) and (gt2)
from Theorem 2.1.10 are satisfied).

Remark 2.1.25. Due to Theorem 2.1.10, for a group G, one can conveniently describe
the poset L(G) by the poset F(G) of all filters ℱ on G satisfying conditions (gt1), (gt2),
and (gt3). The poset F(G) is ordered again by inclusion (of filters).
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2.2 Examples of group topologies

Here we give several series of examples of group topologies, introducing them by
means of the filter of neighborhoods of the neutral element, as explained above. Fur-
thermore, in all cases we avoid to treat the whole filter and we prefer to deal with a
conveniently described filter base (see Remark 2.1.14).

2.2.1 Linear topologies and functorial topologies

Let G be a group and let ℬ = {Ni: i ∈ I} be a filter base consisting of normal subgroups
of G. Then ℬ satisfies (gt1), (gt2), (gt3), and also (gt4), hence by Remark 2.1.14, ℬ gen-
erates a group topology τ on G with ℬ ⊆ τ a base of the filter 𝒱τ(eG). For every g ∈ G,
the family of cosets {gNi: i ∈ I} is a base of the filter 𝒱τ(g). The group topologies of this
type are called linear topologies, and a group endowedwith a linear topology is called
linearly topologized.

The simplest example of linear topologies are the Alexandrov group topologies. It
is easy to see that every linear group topology on a group G is a supremum, in L(G),
of Alexandrov group topologies on G.

Example 2.2.1. Let G be a group and let p be a prime. We list examples of filter bases
ℬ ∋ G consisting of normal subgroups of G giving rise to group topologies:
(a) theprofinite topologyϖG,withℬ the family of all normal subgroups ofGwithfinite

index;
(b) the pro-p-finite topology ϖp

G, with ℬ the family of all normal subgroups of G with
finite index that is a power of p;

(c) the pro-countable topology ϱG, with ℬ the family all normal subgroups of G with
at most countable index;

(d) the p-adic topology νpG, with ℬp = {Nn: n ∈ ℕ} and, for n ∈ ℕ, Nn the subgroup
(necessarily normal) of G generated by {gp

n
: g ∈ G};

(e) the natural topology (or ℤ-topology) νG, with ℬν = {Mn: n ∈ ℕ+} and, for n ∈ ℕ+,
Mn the subgroup (necessarily normal) of G generated by {gn: g ∈ G}.

Clearly, ϖp
G ≤ ϖG and ν

p
G ≤ νG for every prime p.

When G is an abelian group, for every n ∈ ℕ the basic subgroup Nn defining the
p-adic topology of G has the form Nn = pnG, and analogously for every n ∈ ℕ+ the
basic subgroupMn defining the natural topology of G has the formMn = nG.

Example 2.2.2. Let p be a prime. The basic open neighborhoods of 0 in the topology
of 𝕁p described in Example 2.1.5 are the subgroups pn𝕁p of (𝕁p,+) for n ∈ ℕ, that is, the
topology of 𝕁p is its p-adic topology ν

p
𝕁p
. Actually, each pn𝕁p is an ideal of the ring 𝕁p

(see Claim A.4.16).
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Moreover, the p-adic topology of 𝕁p coincides with its natural topology, that is,
νp𝕁p = ν𝕁p ; in fact, form ∈ ℕ+,m𝕁p = p

s𝕁p, where s ∈ ℕ is such thatm = m1ps for some
m1 ∈ ℕ+ with (m1, p) = 1. Moreover, for 𝕁p the p-adic topology coincides also with the
profinite topology, as well as with the pro-p-finite topology (see Exercise 2.4.11), but it
differs from the pro-countable topology (see Exercise 3.5.15).

The usual topology τ on the field ℚp of p-adic numbers is given by declaring 𝕁p
open inℚp, that is, {pn𝕁p: n ∈ ℕ} is a filter base of 𝒱τ(0) inℚp.

Remark 2.2.3. Furstenberg [144] used the natural topology νℤ ofℤ to find a new proof
of the infinitude of prime numbers (see Exercise 2.4.12).

In the next lemma one can appreciate the special behavior of the above topologies
with respect to the continuity of group homomorphisms.

Lemma 2.2.4. Let G,H be groups and let f :G → H be a homomorphism. Then f
is continuous when both groups G,H are equipped with their profinite (respectively,
pro-p-finite, pro-countable, p-adic, natural) topology.

Proof. If N is a subgroup of H of finite index, then f −1(N) is a subgroup of finite index
of G. The other cases are similar.

This lemma suggests that the topologies from Example 2.2.1 have a “natural” ori-
gin, that is made more precise by the following notion.

Definition 2.2.5. Assume that every abelian group G is equipped with a group topol-
ogy τG such that for every group homomorphism f :G → H between abelian groups,
f : (G, τG) → (H , τH ) is continuous. Then we say that the class of group topologies
τ = {τG:G abelian group} is a functorial topology.

Clearly, every functorial topology gives rise to a functor AbGrp → TopGrp
through the assignments G → (G, τG) and f → f for G ∈ AbGrp and f ∈ Hom(AbGrp).

All five topologies in Example 2.2.1 are functorial, other examples of functorial
topologies are given below.

Remark 2.2.6. In view of Lemma 2.2.4, one could extend the above definition to non-
abelian groups. Nevertheless,we prefer to limit our field of interest in the abelian case,
where these topologieswere originally introduced (see [40, 43, 206, 207] and also [138,
p. 33]).

2.2.2 Topologies generated by characters

Here we introduce a functorial topology that is not linear, and which is of vital im-
portance for our exposition. The argument Arg(z) of a complex number z is taken in
(−π,π].
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Definition 2.2.7. A character of an abelian group G is a homomorphism χ:G → 𝕊,
where 𝕊 is the unitary circle in ℂ. Let G∗ := Hom(G,𝕊).

For an abelian group G, χ ∈ G∗, and δ > 0, let

UG(χ; δ) := {x ∈ G: |Arg(χ(x))| < δ}.

For characters χ1, . . . , χn of G and δ > 0, let

UG(χ1, . . . , χn; δ) := {x ∈ G: |Arg(χi(x))| < δ, ∀i ∈ {1, . . . , n}}, (2.4)

namely,

UG(χ1, . . . , χn; δ) =
n
⋂
i=1

UG(χi; δ). (2.5)

Remark 2.2.8. One can describe (2.4) alternatively, using as target group the abelian
group 𝕋 = ℝ/ℤ instead of 𝕊 (clearly, 𝕋 ≅ 𝕊). For z = r + ℤ ∈ 𝕋, let ‖z‖ = ‖r +
ℤ‖ := d(r,ℤ) = min{(d(r,m)):m ∈ ℤ} where d denotes the Euclidean metric on ℝ. In
such a case, characters χ:G → 𝕋 of an abelian group G must be used and, for x ∈ G
and δ > 0, the inequality |Arg(χ(x))| < δ must be replaced by ‖χ(x)‖ < δ/2π. We use
the multiplicative version with 𝕊 mainly when some more subtle computations are
involved.

For an abelian group G and a subset H of G∗, the family

ℬH := {UG(χ1, . . . , χn; δ): δ > 0, n ∈ ℕ+, χi ∈ H , i ∈ {1, . . . , n}}

is a filter base satisfying the conditions (gt1), (gt2), and (gt3). Moreover, ℬH satisfies
also (gt4): considerUG(χ1, . . . , χn; δ) ∈ ℬH , x ∈ UG(χ1, . . . , χn; δ)and letη > 0be such that
|Arg(χi(x))| + η < δ for every i ∈ {1, . . . , n}; then x + UG(χ1, . . . , χn; η) ⊆ UG(χ1, . . . , χn; δ).
Therefore, ℬH is a filter base of open neighborhoods of eG in a group topology 𝒯H on
G by Remark 2.1.14.

Definition 2.2.9. Let G be an abelian group. For a subset H of G∗, the group topology
𝒯H is the topology generated by the characters ofH. The topologyBG := 𝒯G∗ generated
by all characters of G is the Bohr topology of G and we use the abbreviation G# :=
(G, 𝒯G∗ ).
Example 2.2.10. Let G be an abelian group, fix χ ∈ G∗, and denote 𝒯χ = 𝒯{χ}.
(a) Then χ: (G, 𝒯χ)→ 𝕊 is continuous, so ker χ is a closed subgroupof (G, 𝒯χ) contained

in UG(χ; δ) for every δ > 0. On the other hand, every subgroup of G contained in
UG(χ;π/2) is contained in ker χ as well, since 𝕊+ = {z ∈ 𝕊:Re(z) ≥ 0} contains no
nontrivial subgroups.
For a subset H of G∗, one has 𝒯H = sup{𝒯χ : χ ∈ H}, by (2.5).
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(b) For n ∈ ℤ \ {0}, consider the character χn:G → 𝕊 defined by (χn)(x) = (χ(x))n for
every x ∈ G. Then 𝒯χn ⊆ 𝒯χ as UG(χ; δ/|n|) ⊆ UG(χn; δ) for every δ > 0.

(c) Obviously, 𝒯χ−1 = 𝒯χ . Moreover, for G = ℤ and χ, ξ ∈ ℤ∗ with ker χ = ker ξ = 0 the
equality 𝒯χ = 𝒯ξ holds true if and only if ξ ∈ {χ, χ−1} (see Exercise 13.7.1).

Lemma 2.2.11. Let G be an abelian group and H a subset of G∗. The assignment
𝒫(G∗)→ L(G), H → 𝒯H , is monotone increasing and 𝒯⟨H⟩ = 𝒯H .

Proof. IfH ⊆ H′ ⊆ G∗, then 𝒯H ≤ 𝒯H′ ; this proves the first assertion and that 𝒯H ≤ 𝒯⟨H⟩.
The converse inclusion 𝒯⟨H⟩ ≤ 𝒯H follows from Example 2.2.10(b) and the fact that, for
χ1, χ2 ∈ H and δ > 0, UG(χ1χ2; δ) ⊇ UG(χ1, χ2; δ/2), and thus 𝒯χ1χ2 ≤ 𝒯H .

Due to Lemma 2.2.11, it is worth studying the topologies 𝒯H only when H is a sub-
group of G∗.

Next we verify that the Bohr topology is functorial.

Lemma 2.2.12. Let G,H be abelian groups and let f :G → H be a homomorphism. Then
f :G# → H# is continuous.

Proof. Let χ1, . . . , χn ∈ H∗ and δ > 0. Then

f −1(UH (χ1, . . . , χn; δ)) = UG(χ1 ∘ f , . . . , χn ∘ f ; δ).

To conclude apply Lemma 2.1.20.

This lemma shows that for an abelian group G, among all topologies of the form
𝒯H , with H a subgroup of G∗, the Bohr topology 𝒯G∗ plays a special role, being a func-
torial topology. This is why we introduced the special notationBG for 𝒯G∗ .

As we shall see below, for an abelian group some of the linear topologies intro-
duced above are also generated by appropriate families of characters.

2.2.3 Interrelations among functorial topologies

In the next proof we make use of the simple observation:

Remark 2.2.13. If τ, τ′ are two linear topologies on a group G and ℬτ,ℬτ′ are local
bases at eG of τ, τ′, respectively, formed by normal subgroups, then a local base at
eG of inf{τ, τ′} is given by the family of normal subgroups {NN ′:N ∈ ℬτ,N ′ ∈ ℬτ′ }.
Proposition 2.2.14. For every group G and every prime p,

ϖp
G ≤ ϖG ≤ νG ≥ ν

p
G and ϖp

G = inf{ϖG, ν
p
G}.

Proof. The first and the last inequality are obvious. To prove the inequality ϖG ≤ νG,
it suffices to note that if N is a finite-index normal subgroup of G, with [G : N] = m,
then N contains the subgroupMm = ⟨gm: g ∈ G⟩.
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To prove the equalityϖp
G = inf{ϖG, ν

p
G}, take into account thatϖ

p
G ≤ ν

p
G, by an argu-

ment similar to that above. So, it only remains to check the inequalityϖp
G ≥ inf{ϖG, ν

p
G}.

In view of Remark 2.2.13, a basic neighborhood of eG in inf{ϖG, ν
p
G} has the form

NNn, where N is a finite-index normal subgroup of G, while Nn is the normal sub-
group ⟨gp

n
: g ∈ G⟩ of G for some fixed n ∈ ℕ. Then G/NNn is a finite p-group, hence

NNn ∈ ϖ
p
G.

The profinite topology of an abelian group is contained in its Bohr topology:

Proposition 2.2.15 ([86]). For every abelian group G, ϖG ≤ inf{BG, νG}.

Proof. In view of the inequalityϖG ≤ νG established in Proposition 2.2.14, it is enough
to prove that ϖG ≤ BG.

Let H be a subgroup of G of finite index; we show that H is open in G#. Being a
finite abelian group,G/H has the form C1× ⋅ ⋅ ⋅×Cn, where each Ci is a finite cyclic group
for i ∈ {1, . . . , n}. Let q:G → G/H be the canonical projection. For every i ∈ {1, . . . , n},
let pi:C1 × ⋅ ⋅ ⋅ × Cn → Ci be the ith projection and qi = pi ∘ q:G → Ci; then G/Hi ≅ Ci
with Hi = ker qi. Identifying Ci with ℤ(mi) ≤ 𝕋, we can consider qi:G → Ci → 𝕋 as a
character of G. Then, Hi = UG(qi; 1/2mi) ∈ BG. Hence, H = ⋂

n
i=1 Hi ∈ BG.

For an abelian group G, a character χ:G → 𝕋 is torsion if there exists n ∈ ℕ+ such
that nχ is trivial; equivalently, the character χ is a torsion element of the group G∗.
In other words, χ vanishes on the subgroup nG = {nx: x ∈ G} of G, and this means
that the subgroup χ(G) of 𝕋 is finite cyclic. Therefore, G∗ is torsion-free when G is
divisible.

Lemma 2.2.16. Let G be an abelian group and H a subset of G∗. Then 𝒯H ≤ ϖG if and
only if every χ ∈ H is torsion (i. e., H ⊆ t(G∗)).

Proof. Let χ ∈ H be torsion and δ > 0. Then UG(χ; δ) contains ker χ. Since χ(G) ≅
G/ ker χ is finite, ker χ is an open neighborhood of eG inϖG, and so UG(χ; δ) ∈ 𝒱ϖG

(eG).
Hence, 𝒯H ≤ ϖG. Now assume that 𝒯H ≤ ϖG and let χ ∈ H. Then UG(χ;π/2) must
contain a finite-index subgroup N of G, and so N ⊆ ker χ by Example 2.2.10(a). Thus,
ker χ has finite index in G, and consequently χ is torsion.

The inequalityϖG ≤ inf{BG, νG}proved inProposition 2.2.15 is actually an equality
that we prove in the sequel. Nowwe establish it when the abelian group G is bounded
(νG is discrete for such a group G by Exercise 2.4.8).

Theorem 2.2.17. For an abelian group G,BG = ϖG if and only if G is bounded.

Proof. By Proposition 2.2.15, ϖG ≤ BG. If G is bounded, then every character of G is
torsion, so Lemma 2.2.16 givesBG ≤ ϖG.
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Now assume that BG = ϖG. According to Lemma 2.2.16, the group G∗ is torsion.
This immediately implies thatG is torsion, since otherwiseG has an infinite cyclic sub-
group C and by TheoremA.2.4 any embedding j:C → 𝕊 can be extended to a character
of G, that results to be nontorsion. It remains to prove that G is bounded.

Assume that G is not bounded. If rpn (G) ̸= 0 for infinitely many pairwise distinct
primes pn, n ∈ ℕ+, then we find a subgroup G1 of G isomorphic to⨁n∈ℕ+ ℤ(pn). Take
an embedding j:G1 → 𝕊 and extend j to a character of the whole group G (using The-
orem A.2.4). It cannot be torsion, a contradiction. Then rp(G) ̸= 0 for finitely many
primes p. Since G is infinite, this yields that at least one of the primary components
tp(G) is not bounded. If rp(G) < ∞, then tp(G) contains a copy of the group ℤ(p∞) by
Example A.4.12(b). Now take an embedding j:ℤ(p∞) → 𝕊 and extend j to a charac-
ter of the whole group G (using Theorem A.2.4). It cannot be torsion, a contradiction.
Hence, rp(G) is infinite and tp(G) contains no copies of the group ℤ(p∞); then there
exists a subgroup of tp(G) isomorphic to L = ⨁n∈ℕℤ(p

n). In the latter case it is easy
to build a surjective homomorphism h: L → ℤ(p∞) ⊆ 𝕊. Now extend h to a character
of G, that cannot be torsion, a contradiction.

We introduce a partial order between functorial topologies by letting 𝒯 ≤ 𝒮 when-
ever 𝒯G ≤ 𝒮G for every abelian groupG. Thismakes the classFt of all functorial topolo-
gies a large complete lattice with top element δ and bottom element ι.

We enrich here our supply of examples of functorial topologies.

Example 2.2.18. LetG be anabelian groupandp aprime. Thep-Bohr topology isBp
G :=

𝒯Hom(G,ℤ(p∞)) where we consider ℤ(p∞) ≤ 𝕋, and so Hom(G,ℤ(p∞)) ≤ G∗.
Remark 2.2.19. It can be proved that:
(a) ϖ = inf{B, ν} (see Exercise 3.5.17);
(b) analogously, ϖp = inf{νp,Bp} = inf{νp,ϖ} = inf{Bp,ϖ}.

In the large complete lattice Ft of functorial topologies one has the following dia-
gram:

ϱ

B ν

ϖ

Bp νp

ϖp
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2.2.4 The pointwise convergence topology

The topology thatwe consider in this sectionmainly appears in transformation groups
and in function spaces. The function spaces were the first instances of topological
spaces.

Definition 2.2.20. LetX be a nonempty set and letY be a topological space. The point-
wise convergence topology on the set YX of all maps X → Y has as a base the family
{f ∈ YX :∀x ∈ F, f (x) ∈ Ux}, where F is a finite subset of X and all Ux, x ∈ F, are
nonempty open sets of Y .

Remark 2.2.21. Let X be a nonempty set and let Y be a topological space. If we iden-
tify the function space YX with the Cartesian power, then the pointwise convergence
topology coincides with the product topology of YX .

The name pointwise convergence topology comes from the fact that {fα}α∈A is a
net in YX that converges to f ∈ YX with respect to the pointwise convergence topology
precisely when for every x ∈ X the net {fα(x)}α∈A converges to f (x) in Y . In particular, if
Y is discrete this means that for every x ∈ X there exists α0 ∈ A such that, for all α ≥ α0
in A, fα(x) = f (x).

Since inYX the targetY of the functions (e. g., the reals, the complex number field,
etc.) usually has a topological group structure itself, the function spaces YX have a
very rich structure fromboth points of view – topological and algebraic. Indeed, when
Y is a topological group, thepointwise convergence topologyonYX is a group topology.

Example 2.2.22. For a nonempty set X, let S(X) denote the group of all permutations
of X. The stabilizer Sx = {f ∈ S(X): f (x) = x} of x ∈ X in S(X) is a subgroup of S(X).
Consider on S(X) the filter base

ℬX := {SF : F ⊆ X finite}, where SF := ⋂
x∈F

Sx = {f ∈ S(X):∀x ∈ F, f (x) = x}.

Since the subgroups Sx are pairwise conjugated, one can easily check that ℬX satisfies
all conditions (gt1), (gt2), (gt3), and (gt4), so by Remark 2.1.14, ℬX induces a group
topology TX on S(X) for which all subgroups SF are open.

Remark 2.2.23. The topology-minded reader has already observed that for an infinite
set X, the topology TX introduced in Example 2.2.22 on S(X) can be described also as
the topology induced by the natural embedding of S(X) into the Cartesian power XX

equippedwith theproduct topology,whereX has thediscrete topology. In otherwords,
TX coincides with the pointwise convergence topology on S(X) inherited from XX (see
Remark 2.2.21).

Here comes a further specialization of the pointwise convergence topology from
linear algebra and module theory.
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Example 2.2.24. Fix U ,V vector spaces over a field K and consider on the space
Hom(V ,U) of all linear maps V → U the so-called finite topology τfin. This is the topol-
ogy generated (in the sense of Theorem 2.1.10 and Remark 2.1.14) by the filter base
ℬ = {W(F): F ⊆ V , F finite}, whereW(F) = {f ∈ Hom(V ,U):∀x ∈ F, f (x) = 0}. It is easy
to see that eachW(F) is a linear subspace of Hom(V ,U), and so ℬ satisfies conditions
(gt1), (gt2), (gt3), and (gt4).

The finite topology τfin on Hom(V ,U) coincides with the pointwise convergence
topology when Hom(V ,U) is considered as a subset of UV and U carries the discrete
topology (see Exercise 2.4.19(a)).

Remark 2.2.25. The finite topology τfin is especially useful when imposed on the dual
V⋆ := Hom(V ,K) of the vector space V over the discrete field K. In this case (V⋆, τfin)
is a linearly compact vector space (see [195] and §16.2.3).

The finite topology can be introduced in the same way for modules over an arbi-
trary ring, so in particular for abelian groups.

2.3 Semitopological, paratopological, and quasitopological
groups

The group topology τ built in Theorem 2.1.10 starting from a filter 𝒱 on a group G with
the properties (gt1), (gt2), and (gt3) was defined by letting the neighborhood filter at
g ∈ G to be the filter g𝒱 = 𝒱g. The coincidence of these two filters is ensured by
(actually, equivalent to) property (gt3). In case (gt3) fails, one obtains two topologies
τr and τl onG, having as local bases at g ∈ G the filters𝒱g and g𝒱, respectively. For the
pair (G, τr), all right translations x → xg are continuous (actually, homeomorphisms);
respectively, all left translations x → gx are continuous for the pair (G, τl). Pairs of
a group and a topology on it with this property are called right topological groups,
respectively left topological groups.

Definition 2.3.1. A pair (G, τ), of a group G and a topology τ on G, is a semitopological
group if it is simultaneously a left and a right topological group.

The filter 𝒱 of neighborhoods of the neutral element of a semitopological group
satisfies (gt3).

The right topological groups were introduced by Namioka [218] and largely used
since then. Ellis, in his two fundamental papers [131, 132], proved that locally compact
semitopological groups are topological. Later this was generalized by Bouziad [39] to
Čech-complete groups.

Along with right topological groups, left topological groups and semitopological
groups, one can find in the literature also the following weak versions of the notion of
topological group.
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Definition 2.3.2. A pair (G, τ), of a group G and a topology τ on G, is called:
(i) a quasitopological group when the multiplication map is separately continuous

in both variables and the inverse map is continuous (i. e., it is a semitopological
group such that the inverse is continuous);

(ii) a paratopological groupwhen themultiplicationmap is jointly continuous in both
variables.

The filter of neighborhoods of the neutral element of a quasitopological group has
the properties (gt2) and (gt3), while that of a paratopological group has the properties
(gt1) and (gt3).

For paratopological groups, having somenice compact-like properties (as pseudo-
compactness, etc.), one has analogues of Ellis’ result. More details on this issue can
be found in the survey [274] and the monograph [7].

Now we provide an example of a paratopological group that is not topological:

Example 2.3.3. Consider the filter base ℬ = {[x, x + 1/n): n ∈ ℕ+, x ∈ ℝ} on ℝ. Since
𝒱(0) = {[0, 1/n): n ∈ ℕ+} satisfies (gt1) and (gt3), it gives rise to a topology τℓ on ℝ,
known as the Sorgenfrey topology, whileℝℓ = (ℝ, τℓ) is known as Sorgenfrey line. Then
ℝℓ is a paratopological group, but it is not a topological group since (gt2) fails.

In Chapter 4 we introduce two topologies ZG andMG (called Zariski topology and
Markov topology, respectively) for every groupG. Then (G,ZG) and (G,MG) are always
quasitopological groups, but quite rarely topological groups.

2.4 Exercises

Exercise 2.4.1. Prove that every topological group is a homogeneous topological
space.

Exercise 2.4.2. IfG is an abelian group, describe infi∈I τi for a family {τi: i ∈ I} inL(G).

Exercise 2.4.3. Let G be a group and {τi: i ∈ I} a family in L(G). Prove that if {an}n∈ℕ is
a sequence in G with an → eG in τi for every i ∈ I, then an → eG also in supi∈I τi.

Exercise 2.4.4. Prove that the join (supremum) of all p-adic topologies on ℤ, when
p runs over the set of all primes, coincides with the natural topology on ℤ, that is,
supp∈ℙ ν

p
ℤ = νℤ.

Exercise 2.4.5. Let p ̸= q be prime numbers. Show that the intersection νpℤ ∩ ν
q
ℤ of the

p-adic topology νpℤ and the q-adic topology ν
q
ℤ is not a group topology on ℤ.

Hint. Using the fact that pnℤ + qmℤ = ℤ for all n,m ∈ ℕ, deduce that inf{νpℤ, ν
q
ℤ} is the indiscrete

topology. On the other hand, the set ℤ \ {0} is open in both topologies, so the intersection νpℤ ∩ ν
q
ℤ of

these topologies is not the indiscrete topology, hence cannot be a group topology.
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Exercise 2.4.6. Let G be a group. An atom (respectively, coatom) in the lattice L(G)
is an element τ ∈ L(G) \ {ιG} (respectively, τ ∈ L(G) \ {δG}) such that there exists no
element η ∈ L(G) with ιG < η < τ (respectively, τ < η < δG).

Let N be a normal subgroup of G and denote by τN the Alexandrov topology on G
with core(G, τN ) = N .
(a) Prove that if the index [G : N] is a prime number, then τN is an atom in L(G); if N

is a finite minimal nontrivial normal subgroup of G, then τN is a coatom of L(G).
(b) Prove that if τ ∈ L(G) is an atom, then G/core(G, τ) is a simple group.
(c) Prove that all atoms in L(G) have the form described in (a), when G is abelian.
(d) Describe the supremum of all atoms in L(ℤ).
(e) For which abelian groups G the lattice L(G) has no atoms?

Exercise 2.4.7. For a prime p, prove that ∑∞n=1 p
n converges inℚp (see Example 2.2.2)

and compute the sum.

Exercise 2.4.8. Let G be a group. Prove that:
(a) the profinite topology of G is discrete (respectively, indiscrete) if and only if G is

finite (respectively, G has no subgroups of finite index); in case G is abelian, the
profinite topology of G is indiscrete if and only if G is divisible;

(b) the pro-p-finite topology of G is discrete (respectively, indiscrete) if and only if G
is a finite p-group (respectively, G has no normal subgroups of index power of p);

(c) the p-adic topology of G is discrete if and only if G is a p-group of finite exponent;
moreover, if G is abelian, then the p-adic topology of G is indiscrete if and only if
G is p-divisible;

(d) the natural topology of G is discrete if and only if G is a group of finite exponent;
moreover, if G is abelian, the natural topology of G is indiscrete if and only if G is
divisible;

(e) the pro-countable topology of G is discrete (respectively, indiscrete) if and only if
G is countable (respectively, G has no normal subgroups of countable index); in
case G is abelian, the pro-countable topology of G is indiscrete if and only if G is
trivial; give an example of a nonabelian group where the pro-countable topology
is indiscrete;

(f) if G is abelian and m, k ∈ ℕ+ are coprime, then mG ∩ kG = mkG; hence νG =
sup{νpG: p ∈ ℙ}.

Hint. (a)Note that every finite-index subgroupH ofG contains afinite-indexnormal subgroup (namely,
its normal core HG := ⋂x∈G x

−1Hx).
(e) Prove that in every abelian group G the intersection of all subgroups of G with countable

index is trivial. Deduce from this fact that every uncountable abelian group has (plenty of) countable-
index subgroups. On the other hand, under the assumption c = ω2 = 2ω1 , for a set X with |X| = ω1
every proper subgroup G of S(X) with [S(X) : G] < 2ω1 must have index precisely ω1 in view of [125,
Observation 3], so S(X) has no proper subgroups of countable index.
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Exercise 2.4.9. Prove that the Euclidean topology τ on ℝ is not functorial, and that
the same holds for 𝕋.
Hint. If τ were functorial, then every automorphism ℝ → ℝ would be τ-continuous. But while the
continuous automorphisms of ℝ are of the form ϕ(x) = ax for some a ∈ ℝ \ {0}, i. e., c-many, the au-
tomorphisms ofℝ are 2c-many. The same argument works for𝕋 (the only continuous automorphisms
of 𝕋 are id𝕋 and −id𝕋).

Exercise 2.4.10. Let p be a prime, n ∈ ℕ+, and G = ℤn.
(a) Show that ϖG = νG.
(b) Show that ϖp

G = ν
p
G.

(c) Show that (a) and (b) remain true for every subgroup G ofℚn.
(d) Describe the abelian groups G for which (a) holds true.

Exercise 2.4.11. Let p be a prime. Show that the p-adic topology of 𝕁p coincides with
its profinite topology as well as with the pro-p-finite topology.
Hint. It suffices to note that if H is a subgroup of 𝕁p containing m𝕁p for some m ̸= 0, then H has finite
index.

Exercise 2.4.12. Prove that there are infinitely many primes in ℤ using the natural
topology νℤ of ℤ.
Hint. If p1, p2, . . . , pn were the only primes, then consider the union of the open (hence, closed) sub-
groups p1ℤ, . . . , pnℤ of (ℤ, νℤ) and use the fact that every n ∈ ℤ\{0,±1} has a prime divisor, so belongs
to the closed set F = ⋃ni=1 piℤ. Therefore, the set {0,±1} = ℤ \ F is an open neighborhood of 0, so must
contain a nonzero subgroupmℤ, a contradiction.

Exercise 2.4.13. (a) Give an example of a group G where the profinite topology of G
and the Bohr topology of G differ.

(b) Let G be an abelian group and H = t(G∗). Prove that 𝒯H = ϖG.
(c) LetH be the family of all characters χ of an abelian groupG such that χ(G) is finite

and contained in the subgroupℤ(p∞) of 𝕋. Prove that 𝒯H = ϖ
p
G.

Hint. (b) Lemma 2.2.16 implies that 𝒯H ≤ ϖG. For the proof of the other inclusion it remains to argue
as in the proof of Proposition 2.2.15 and to observe that the characters appearing there are torsion.

Exercise 2.4.14. Prove that, for an abelian group G and a prime p, ϖp
G = BG if and

only if G is a bounded p-group.

Exercise 2.4.15. For an abelian group G, let 𝒮G be the group topology on G with the
family {nG + Soc(G): n ∈ ℕ} as a local base at 0. Prove that:
(a) 𝒮G is a functorial topology and 𝒮G = ιG when G is divisible;
(b) ([234]) every nondiscrete group topology on G is contained in a coatom of L(G);
(c) ∗([234]) the infimumℳG of allHausdorff coatomsofL(G) coincideswith sup{𝒮G,BG}.
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Exercise 2.4.16. Let G be a group. Prove that:
(a) (Taĭmanov [271]) the family of centralizers {cG(F): F ⊆ G finite} is a local base at eG

in a group topology TG, called Taĭmanov topology, that is not necessarily linear;
(b) TG is discrete if and only if there exists a finite subset of G with trivial centralizer;
(c) TG is indiscrete if and only if G is abelian;
(d) if f :G → H is a surjective homomorphism, then f : (G,TG) → (H ,TH ) is continu-

ous;
(e) is (d) true if f is not surjective?

Exercise 2.4.17. Let X be an infinite set. Prove that Sω(X) is a dense normal subgroup
of (S(X), TX).

Exercise 2.4.18. Let X be a nonempty set. Prove that (S(X), TX) has a local base at idX
formed by open subgroups, yet its topology is not linear.

Exercise 2.4.19. Let U ,V be vector spaces over a field K. Prove that:
(a) the finite topology τfin of Hom(V ,U) coincides with the pointwise convergence

topology when Hom(V ,U) is considered as a subset of UV and U carries the dis-
crete topology;

(b) the finite topology of Hom(V ,U) is discrete if and only if dimV is finite;
(c) if dimU is finite, then for every finite subset F of V , the linear subspaceW(F) has

finite codimension in Hom(V ,U) (i. e., dimHom(V ,U)/W(F) <∞).

Exercise 2.4.20. Equip a group G with the cofinite topology γG (see Example B.1.5).
Then (G, γG) is a quasitopological group. Prove that (G, γG) is a topological group if
and only if G is finite; in this case γG is discrete.

2.5 Further readings, notes, and comments

For an infinite abelian group G, L(G) has the maximum possible cardinality |L(G)| =
22
|G|
, but this size may collapse in the nonabelian case. The group G built in Exam-

ple 4.3.5 has size |G| = c, while G is simple (see Remark 4.3.6(a)) and so |L(G)| = 2, the
minimum possible size when G is a nontrivial group. Atoms and coatoms (i. e., max-
imal nondiscrete topologies) in the lattice of group topologies were studied by many
authors (see [27, 50, 243]); these authors describe, among other things, also the atoms
in L(ℤ), although this was done much earlier by Mutylin [215].

The functorial topologyℳG fromExercise 2.4.15was introducedbyProdanov [234]
under the name submaximal topology.

The lattice 𝒯 (X), for a topological space X, is complemented. The situation com-
pletely changes in the lattice L(G) for a group G. Therefore, one can split the notion
of complementation into two natural components, of those we consider only one. Fol-
lowing [112], call a pair τ, σ ∈ L(G) \ {δG} transversal if τ ∨ σ = δG. The submaximal
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topology is related to complementation in L(G) as follows: a Hausdorff τ ∈ L(G) has
a transversal topology if and only if τ ̸≤ ℳG (see [112]). This implies that every infi-
nite abelian group admits a pair of transversal group topologies, since ℳG is never
maximal for an infinite abelian group G (i. e., G admits at least two distinct maximal
topologies which are, of course, transversal).

Separation axioms for topological groups will be discussed in Chapters 3 and 5.
More precisely, we show that for topological groups all separations axioms T0–T3.5 are
equivalent (Proposition 3.1.15 and Theorem 5.2.14).

For paratopological groups the situation changes dramatically: all T0–T3 are dis-
tinct [274]. The question of whether T3 and T3.5 coincide as well remained open for
about 60years andwasaffirmatively resolvedonly recently byBanakhandRavsky [17].
The Ellis theoremmentioned in §2.3 requires the Hausdorff axiom, for paratopological
groups it was improved in Ravsky’s PhD thesis in 2003 (see also the survey [274]) as
follows: every locally compact (not necessarily Hausdorff) paratopological group is a
topological group. There is a wealth of results in the spirit of the Ellis-Ravsky theo-
rem ensuring that paratopological groups with some compactness type condition are
topological groups. The reader can find more in this direction in [274, § 3], in particu-
lar [274, § 3.4] is focused on the case of semitopological and quasitopological groups
(e. g., a pseudocompact quasitopological group need not be a topological group, in
contrast with the case of paratopological groups mentioned in §2.3).

Finally, we briefly mention a useful tool in the study of paratopological groups.
Namely, for a paratopological group (G, τ)with neighborhood filter 𝒱τ(e) at e, one can
easily observe that the family {U−1:U ∈ 𝒱τ(e)} is a neighborhood base of a paratopo-
logical group topology, named the conjugate topology of τ anddenoted by τ−1. The join
τ∗ = τ∨τ−1 is a group topology, with neighborhood base {U ∩U−1:U ∈ 𝒱τ(e)}. It is easy
to see that this is the coarsest group topology on G finer than τ. Therefore, the assign-
ment (G, τ) → (G, τ∗) is a coreflection from the category of paratopological groups to
its subcategory of topological groups. For the nice properties of this coreflection, the
reader may consult [274, § 4.1].
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3 General properties of topological groups

3.1 Subgroups and separation

We start computing the closure H of a subset H of a topological group G.

Lemma 3.1.1. Let G be a topological group. Then:
(a) for a subset A of G,

A = ⋂
U∈𝒱(eG)

UAU = ⋂
U∈𝒱(eG)

UA = ⋂
U∈𝒱(eG)

AU = ⋂
U ,V∈𝒱(eG)

UAV ;

(b) if H is a (normal) subgroup of G, then H is a (normal) subgroup of G.

Proof. Let 𝒱 = 𝒱(eG).
(a) For x ∈ G, one has x ∉ A if and only if there exists a neighborhoodW of x such

thatW ∩A = 0. Since G×G → G, (a, b) → axb, is continuous, we can find a symmetric
open U ∈ 𝒱 such that UxU ⊆ W . The latter implies UxU ∩ A = 0, and hence x ∉ UAU .
The other inclusions can be shown similarly.

(b) Let x, y ∈ H. According to (a), to verify that xy ∈ H, it suffices to see that xy ∈
UHU for every U ∈ 𝒱, and this follows from x ∈ UH and y ∈ HU for every U ∈ 𝒱. Since
the inversion is a homeomorphism, we obtain 𝚤(H) = ⋂U∈𝒱 H−1U−1 = H, hence H is a
subgroup.

AssumeH is normal. To prove that its closureH is normal, take an inner automor-
phism f of G. Then f (H) = H. Since f is a homeomorphism by Lemma 2.1.6, f takes H
to itself, and this gives that H is normal.

From Lemma 3.1.1(b) we deduce that, in every topological groupG, {eG} is a closed
normal subgroup of G, as observed in Remark 2.1.17(a) and Lemma 2.1.16. Moreover,
we get the next useful description of the closure of singletons in a topological group.

Corollary 3.1.2. Let G be a topological group and N = {eG}. For every x ∈ G, {x} = xN =
Nx.

Corollary 3.1.3. If A,B are nonempty subsets of a topological group G, then AB ⊆ AB.
If one of the sets A,B is a singleton, then AB = AB.

Proof. The inclusion follows from Lemma 3.1.1(a), as AB ⊆ UABU for every U ∈ 𝒱(eG).
In case B = {b} is a singleton, AB = Ab = tb(A). Since tb is a homeomorphism by
Lemma 2.1.6, AB = Ab = tb(A) = tb(A) = Ab ⊆ AB.

Clearly, AB is dense in AB, as it contains the dense subset AB of AB. Therefore,
the equality AB = AB holds true precisely when AB is closed. Later we show that this
often fails even in the group ℝ (see Example 3.1.12). On the other hand, we show in
Lemma 8.2.1(a) that equality holds when B is compact.

https://doi.org/10.1515/9783110654936-003
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Remark 3.1.4. For a subset A of a topological groupG and x ∈ G, x ∈ A precisely when
there is anet {xα}α∈A inA converging to x.We canassumewithout loss of generality that
all converging nets {xα}α∈A in G have the same directed set A as domain, namely, the
filter 𝒱(eG) ordered by inverse inclusion, or a fixed base ℬ of 𝒱(eG). Indeed, if {xα}α∈A
is a net in G that converges to x ∈ G, then for every U ∈ ℬ there exists αU ∈ A with
xβ ∈ U for all β ≥ αU in A. This gives a net {xαU }U∈ℬ that converges to x. If necessary,
we specify this fixed ℬ and call {xαU }U∈ℬ a ℬ-net, otherwise we write generic nets of G
as {xα}α∈A, {yα}α∈A, etc., knowing that we can choose the same domain A.

3.1.1 Closed and dense subgroups

A subgroup H of a topological group G becomes a topological group when endowed
with the subspace topology τ ↾H induced by the topology τ of G. Sometimes we refer
to this situation by saying that H is a topological subgroup of G.

Example 3.1.5. The circle group 𝕊 is a closed subgroup of the multiplicative group
ℂ \ {0}, equipped with its usual topology. So, 𝕊 itself is a topological group. Moreover,
𝕊 is a compact and connected abelian group.

For a subgroup H of a topological group (G, τ), the filter

𝒱 ↾H := {H ∩ V :V ∈ 𝒱τ(eG)} = 𝒱τ↾H (eH )

on H satisfies (gt1), (gt2), and (gt3).

Definition 3.1.6. Let G be a topological group andH a subgroup of G. If f :H → f (H) ⊆
G is a topological isomorphism, where f (H) is a topological subgroup of G, then f is
called a topological group embedding, or shortly embedding.

We start with properties of the open subgroups.

Proposition 3.1.7. Let G be a topological group and H a subgroup of G. Then:
(a) H is open in G if and only if H has nonempty interior;
(b) if H is open, then H is also closed;
(c) if [G : H] <∞, then H is closed if and only if H is open.

Proof. (a) Let 0 ̸= V ⊆ H be an open set of G, and let h0 ∈ V . Then eG ∈ h−10 V ⊆ H =
h−10 H. Now U := h−10 V ⊆ H is open, contains eG, and h ∈ hU ⊆ H for every h ∈ H.
Therefore, H is open.

(b) IfH is open, then every coset gH, with g ∈ G, is open and consequentlyG \H =
⋃g∈G\H gH is open. So, H is closed.

(c) In view of (b), it remains to add that when H is closed, G \ H is closed as well,
being a finite union of cosets of H.
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Definition 3.1.8. A subgroup H of a topological abelian group G is called:
(i) dually embedded if every continuous character of H can be extended to a contin-

uous character of G;
(ii) dually closed if every point x ∈ G \ H can be separated from H by a continuous

character of G; more precisely, there exists a continuous character χ of G such
that χ(x) ̸= 0 and χ ↾H= 0.

If H is a dually closed subgroup of a topological abelian group G, then for every
x ∈ G\H there exists a continuous character χx ofGwith χx ∈ AĜ(H) such that χx(x) ̸= 0,
so H = ⋂{ker χx : x ∈ G \ H}. Since each ker χx is closed, we conclude that H is closed.
Hence, dually closed subgroups are closed.

Next we see that every subgroup is dually embedded and dually closed, hence
closed, in the Bohr topology.

Proposition 3.1.9. Let G be an abelian group and H a subgroup of G. Then H is (dually)
closed in (G,BG) andBG ↾H= BH .

Proof. To see that H is dually closed, pick x ∈ G \ H. Now it suffices to apply Corol-
lary A.2.6 to the quotient G/H and deduce that for the nonzero element x + H of G/H
there exists a character ξ :G/H → 𝕋with ξ (x+H) ̸= 0.Now ξ composedwith the canon-
ical projection G → G/H gives a character χ of G that vanishes on H and χ(x) ̸= 0.

The inclusion j:H# → G# is continuous, by Lemma 2.2.12. To see that j:H# →
j(H) is open, take a basic neighborhood UH (χ1, . . . , χn; δ) of 0 in H#, where χ1, . . . , χn ∈
H∗. By Theorem A.2.4, each χi can be extended to some character ξi ∈ G∗, hence
UH (χ1, . . . , χn; δ) = H ∩ UG(ξ1, . . . , ξn; δ) is open in j(H). This proves that the subgroup
topologyBG ↾H of H coincides withBH .

Remark 3.1.10. In Lemma 2.2.4 we have seen that if f :G → H is a homomorphism
of abelian groups, then f is continuous when both groups are equipped with their
profinite (respectively, pro-p-finite, p-adic, natural, pro-countable) topology. Proposi-
tion 3.1.9 shows that f is actually a topological embedding if f is simply the embedding
of a subgroup and one takes the Bohr topology on both groups. One can show that this
fails for the profinite, pro-p-finite, p-adic or the natural topology (take, for example,
G = ℤ and H = ℚ).

The next example shows that the closed subgroups of ℝ have a very simple de-
scription. The closed subgroups of ℝn are completely described in Chapter 9.

Proposition 3.1.11. For a proper subgroup H of ℝ, the following are equivalent:
(a) H is cyclic;
(b) H is discrete;
(c) H is closed;
(d) H is not dense in ℝ.
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Proof. (a)⇒(b) It is easy to see that a cyclic subgroup of ℝ is discrete.
(b)⇒(c) Let ε > 0 and let the neighborhood U = (−ε, ε) of 0 witness the discrete-

ness of H, that is, U ∩ H = {0}. Then obviously |h − h′| ≥ ε whenever h, h′ are distinct
elements of H. To see that H is closed, pick x ∈ ℝ \H and note that the neighborhood
V = (x − ε/2, x + ε/2)meets at most one element ofH in view of the above observation.
Hence, we can pick 0 < η < ε/2 such that the smaller neighborhood V ′ = (x − η, x + η)
of x misses H.

(c)⇒(d) This is obvious.
(d)⇒(a) Since subgroups of cyclic groups are cyclic, and since the closure of a

nondense subgroup is still nondense, we can replaceH byH and assumewithout loss
of generality that H is a closed proper subgroup of ℝ.

Let h0 = inf{h ∈ H : h > 0}. If h0 = 0, then for every ε > 0 there exists h ∈ (0, ε) ∩H,
and this yields that H hits every open interval of ℝ of length ε. This implies that H is
dense inℝ, a contradiction. Therefore, h0 > 0 and h0 ∈ H asH is closed.We prove now
thatH = ⟨h0⟩. Indeed, for h ∈ H, pick the greatestm ∈ ℤ such thatmh0 ≤ h < (m+1)h0;
then 0 ≤ h −mh0 < h0 and h −mh0 ∈ H, hence h −mh0 = 0, that is, h ∈ ⟨h0⟩.

It is not hard to see that every subgroup G ofℝ has the same property, namely, for
every subgroup H of G all properties (a)–(d) of Proposition 3.1.11 are equivalent (with
(d) replaced by “H is not dense in G”). Obviously, the equivalence between (c) and (d)
holds for subgroups H of finite prime index of every topological group.

Example 3.1.12. According to Proposition 3.1.11, a proper subgroup of ℝ is dense if
and only if it is not cyclic. In other words, the topological property of being dense is
completely described by the purely algebraic one of being not cyclic.

This gives easy examples of closed subgroups H1,H2 of ℝ such that H1 + H2 is not
closed in ℝ. Since such H1,H2 are necessarily cyclic, we can take H1 = ℤ and H2 any
cyclic subgroup generated by an irrational number. ThenH1 +H2 is a proper noncyclic
subgroup of ℝ, so by Proposition 3.1.11 it is dense in ℝ.

It is natural to expect that a cyclic subgroup need not be closed in general.

Definition 3.1.13. For a topological group G, letMG := {x ∈ G: ⟨x⟩ = G}. We say that G
is:
(i) monothetic ifMG ̸= 0;
(ii) strongly monothetic if every nontrivial subgroup of G is dense.

As shown in the next example, 𝕋 is monothetic; moreover, the groups 𝕋n, with
n ∈ ℕ+, as well as𝕋ℕ, are monothetic (see Exercise 3.5.19). Actually, even𝕋c is mono-
thetic and contains a dense homomorphic image of ℝ, as we shall see later (see The-
orem 9.4.8).

Example 3.1.14. Let q0:ℝ→ 𝕋 be the canonical projection.
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(a) A proper subgroup H of 𝕋 is either closed (precisely when H is finite and cyclic),
or dense (when H is infinite). Indeed, L = q−10 (H) is a proper subgroup of ℝ con-
tainingℤ. So, ifH is closed then L is closed, hence cyclic by Proposition 3.1.11 and
generated by a rational sinceℤ ⊆ L; therefore,H is a finite cyclic subgroup of𝕋. If
H is infinite, then L is dense in ℝ by Proposition 3.1.11, and so H = q0(L) is dense
in 𝕋 as well.

(b) The group 𝕋 is monothetic. Indeed, pick an irrational a ∈ ℝ. Then the subgroup
N = ℤ+⟨a⟩ofℝ is noncyclic, hence it is densebyProposition 3.1.11. So, ⟨q0(a)⟩ = 𝕋
and q0(a) ∈ M𝕋. This proves thatM𝕋 = 𝕋 \ t(𝕋).

We see in Corollary 3.1.23 that a Hausdorff monothetic group is necessarily
abelian.

Clearly, strongly monothetic groups aremonothetic, and Example 3.1.14(b) shows
that this implication cannot be inverted.

Easier examples are offered by the cyclic group ℤ, which is monothetic even
when equipped with the discrete topology, whereas a Hausdorff group topology τ on
ℤ makes it a strongly monothetic group precisely when (ℤ, τ) has no proper open
subgroups. For more properties of these groups see Corollary 3.1.23, Exercises 3.5.21
and 3.5.22 (see also Corollary 9.4.7 as well as Theorems 9.4.8 and 10.2.9).

3.1.2 Separation axioms

Here we discuss separation axioms in topological groups. Making use of Lemma 3.1.1,
nowwe show that for a topological group all separation axioms T0–T3 are equivalent.
Here, T3 stands for “regular and T1” (see Appendix B).

Proposition 3.1.15. Let G be a topological group. Then G is a regular topological space
and the following conditions are equivalent:
(a) G is T0;
(b) G is T1 (i. e., {eG} = {eG});
(c) G is Hausdorff;
(d) G is T3.

Proof. Since G is a homogeneous topological space, to prove regularity of G it suffices
to check that for every U ∈ 𝒱(eG) there exists V ∈ 𝒱(eG) such that V ⊆ U . According to
Lemma 3.1.1, it suffices to pick a V ∈ 𝒱(eG) such that VV ⊆ U . Then V ⊆ VV ⊆ U . This
property proves also the implication (b)⇒(d). Indeed, beyond being regular, G is a T1
space. The latter property follows from the fact that all singletons {g} of G are closed,
as {eG} is closed.

On the other hand, clearly (d)⇒(c)⇒(b). Therefore, the properties (b), (c), and (d)
are equivalent, and obviously imply (a). It remains to prove the implication (a)⇒(b).
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Let N = {eG} and assume for a contradiction that there exists x ∈ N \ {eG}. Then
{x} = xN = N according to Corollary 3.1.2, and hence eG ∈ {x}. This contradicts our
assumption that G is T0.

The following is a consequence of Proposition 3.1.15 and Remark 2.1.17(a).

Corollary 3.1.16. A topological group G is Hausdorff if and only if⋂𝒱(eG) = {eG}.

It is not hard to check that a topological subgroup of a Hausdorff group is Haus-
dorff. Next we see that a discrete subgroup of a Hausdorff group is always closed.

Proposition 3.1.17. Let G be a topological group and H a subgroup of G. If H is discrete
and G is Hausdorff, then H is closed.

Proof. Since H is discrete there exists U ∈ 𝒱(eG) with U ∩ H = {eG}. Choose V ∈ 𝒱(eG)
with V−1V ⊆ U . Then |xV ∩ H| ≤ 1 for every x ∈ G, as h1 = xv1 ∈ xV ∩ H and h2 = xv2 ∈
xV ∩ H give h−11 h2 ∈ (V−1V) ∩ H = {eG}, hence h1 = h2. Therefore, if x ∈ G \ H, one can
find a neighborhoodW of x such thatW ⊆ xV andW ∩ H = 0 (i. e., x ̸∈ H). Indeed, if
xV ∩ H = 0, just takeW = xV . In case xV ∩ H = {h} for some h ∈ H, one has h ̸= x as
x ̸∈ H. SinceG is Hausdorff,W = xV \{h} is open, so the desired neighborhood of x.

One cannot relax T2 in Proposition 3.1.17, as shown in Exercise 3.5.4(a).
We discuss below stronger separation axioms and we shall see that every Haus-

dorff group is also a Tichonov space (see Theorem 5.2.14).

Remark 3.1.18. (a) Countable Hausdorff groups are normal, since they are regular by
Proposition 3.1.15 and they are obviously Lindelöff: moreover, every regular Lin-
delöff space is normal (see Theorem B.5.10(b)).

(b) As far as normality is concerned, the situation is not so clear for uncountable topo-
logical groups. In fact, uncountableHausdorff groups neednot be normal as topo-
logical spaces (see Exercise 3.5.8). A nice “uniform” counterexample to this was
givenbyTrigos [275]: for everyuncountable abeliangroupG, the topological group
G# is not normal as a topological space.

Here we briefly discuss the question of when some functorial topologies are Haus-
dorff, other instances can be found in §3.5.

Definition 3.1.19. Let G be an abelian group and H a subset of G∗. We say that the
characters of H separate the points of G (or that H separates the points of G) if for
every x ∈ G \ {0} there exists χ ∈ H with χ(x) ̸= 1.

According to Corollary A.2.6, G∗ separates the points of G.

Proposition 3.1.20. For an infinite abelian group G and a subgroup H of G∗:
(a) 𝒯H is Hausdorff if and only if the characters of H separate the points of G;
(b) 𝒯H is nondiscrete.
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Proof. (a) Assume that H separates the points of G and pick a nonzero a ∈ G. Then
there exists χ ∈ H such that χ(a) ̸= 1. Let δ = 1

2 |Arg(χ(a))|. Then U(χ; δ) is a neighbor-
hood of 0 in Gmissing a. This shows that 𝒯H is Hausdorff.

Now assume that 𝒯H is Hausdorff. To show that H separates the points of G pick
a ∈ G \ {0}. Then there exists a basic 𝒯H -neighborhoodW of 0 that misses a. We can
take W = UG(χ1, . . . , χn; δ), with n ∈ ℕ+, χ1, . . . , χn ∈ H and δ > 0. Then a ̸∈ W gives
Arg(χi(a)) ≥ δ for some i ∈ {1, . . . , n}. Hence, χi(a) ̸= 1.

(b) Suppose, for a contradiction, that 𝒯H is discrete. Then there exist χ1, . . . , χn ∈ H
and δ > 0 such that U(χ1, . . . , χn; δ) = {0}. In particular,⋂

n
i=1 ker χi = {0}, hence the di-

agonal homomorphism f = χ1 × ⋅ ⋅ ⋅ × χn:G → 𝕊n, g → (χ1(g), . . . , χn(g)), is injective and
f (G) ≅ G is an infinite discrete subgroup of 𝕊n, by our hypothesis. According to Propo-
sition 3.1.7, f (G) is closed in 𝕊n, and consequently compact. This is a contradiction,
since compact discrete spaces are finite.

Proposition 3.1.21. For a group G the following conditions are equivalent:
(a) the profinite topology ϖG of G is Hausdorff;
(b) G is residually finite.

If G is abelian, then they are equivalent also to:
(c) the natural topology νG of G is Hausdorff;
(d) G1 = {0}.

Proof. (a)⇔(b) and (c)⇔(d) are obvious, in view of Corollary 3.1.16. Since ϖG ≤ νG,
the first pair of conditions imply those of the second one. (d)⇒(a) follows from the
fact that G1 coincides with the intersection of all subgroups of G of finite index (see
Proposition A.4.6(d)).

By the above proposition, one obtains a purely topological proof of the fact that
a reduced abelian group G has no nontrivial divisible subgroups: if D is a divisible
subgroup of G, equip G and D with their profinite topologies; this makes the inclu-
sion j:D → G continuous. Since D is indiscrete, j(D) is an indiscrete subgroup of the
Hausdorff group G. Therefore, D = j(D) is trivial.

3.1.3 Extension of identities in Hausdorff groups

Hausdorff groups have a remarkable property that we shall briefly refer to as extension
of identities, where identity is meant in the sense of Remark C.1.9. The following theo-
rem treats the specific identity xy = yx (written also in the form [x, y] = 1) that defines
the variety of all abelian groups:

Theorem 3.1.22. If G is a Hausdorff group containing a dense abelian subgroup H, then
G is abelian.
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Proof. Take x, y ∈ G. Then by Remark 3.1.4, there exist nets {hα}α∈A, {gα}α∈A in H such
that x = limα∈A hα and y = limα∈A gα, where it is easy to see that [x, y] = limα∈A[hα, gα] =
eG as H is abelian. Then [x, y] = eG by the uniqueness of the limit in Hausdorff groups
(see Lemma B.2.6(d)).

An immediate application of Theorem 3.1.22 gives:

Corollary 3.1.23. A Hausdorff monothetic group is necessarily abelian.

Theorem 3.1.22 has the following counterpart for nilpotent groups.

Theorem 3.1.24. If G is a Hausdorff group containing a dense nilpotent subgroup H of
class s, then G is nilpotent of class s.

Proof. For g0, g1, . . . , gs ∈ G, by the density of H in G and Remark 3.1.4, we can write,
for every n ∈ {0, 1, . . . , s}, gn = limα∈A hn,α where {hn,α}α∈A is a net in H. Then, as H is
nilpotent of class ≤ s,

[[. . . [[g0, g1], g2], . . .], gs] = limα∈A[[. . . [[h0,α, h1,α], h2,α] . . .], hs,α] = eG.

Therefore, [[. . . [[g0, g1], g2], . . .], gs] = eG by the uniqueness of the limit in Hausdorff
groups (see Lemma B.2.6(b)).

One can prove similarly that if G is a Hausdorff group containing a dense solvable
group, thenG is solvable (see Exercise 3.5.3). More generally, ifV is a variety of groups
(see Definition C.1.8 and Remark C.1.9), then one can prove that, if G is a Hausdorff
group containing a dense subgroup H that belongs toV, then G ∈ V.

Example 3.1.25. For a Hausdorff group G, the centralizer cG(g) of each g ∈ G and so
the center Z(G) are closed subgroups of G. Indeed, for every g ∈ G, by Exercise B.7.12
we conclude that cG(g) is closed in G. Then also Z(G) = ⋂g∈G cG(g) is closed in G.

3.2 Quotients of topological groups

LetG be a topological group,H a normal subgroup ofG, and q:G → G/H the canonical
projection. The quotient G/H can be equipped with a topology, named quotient topol-
ogy, in two equivalent ways. First, as {q(U):U ∈ 𝒱G(eG)} is a filter on G/H satisfying
(gt1), (gt2), and (gt3), it gives rise to a group topology on G (by Theorem 2.1.10) that
makes q continuous and open (see Lemma 3.2.1). The second alternative is to just take
the finest topology on G/H that makes the canonical projection q:G → G/H continu-
ous, that is, the quotient topology defined in the category of topological spaces. Since
we have a group topology on G, the quotient topology consists of all sets q(U), where
U runs over the family of all open sets of G (as q−1(q(U)) is open in G in such a case).
So, both approaches give the same topology on G/H, that we refer to as the quotient
topology of G/H.
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Lemma 3.2.1. Let G be a topological group, H a normal subgroup of G, and let G/H be
equipped with the quotient topology. Then:
(a) the canonical projection q:G → G/H is open;
(b) if f :G/H → G1 is a homomorphism to a topological group G1, then f is continuous if

and only if f ∘ q is continuous.

G
f ∘q ??

q ?? ??

G1

G/H
f

??

Proof. (a) Let U ̸= 0 be an open set of G. Then q−1(q(U)) = HU = ⋃h∈H hU is open,
since each hU is open. Therefore, q(U) is open in G/H.

(b) If f is continuous, then the composition f ∘ q is obviously continuous. If f ∘ q is
continuous andW in an open set of G1, then (f ∘ q)−1(W) = q−1(f −1(W)) is open in G,
so f −1(W) is open in G/H. This proves that f is continuous.

Remark 3.2.2. If G is a topological group and H simply a subgroup of G, the quotient
set G/H consisting of left cosets of G need not be a group, yet it carries the quotient
topology that makes it a homogeneous topological space, and the continuous map
q:G → G/H is open.

Theorem 3.2.3 (Frobenius theorem). Let G,H be topological groups, f :G → H a con-
tinuous surjective homomorphism, and q:G → G/ ker f the canonical projection, and let
f1:G/ ker f → H be the unique homomorphism with f = f1 ∘ q:

G
f ??

q ?? ??

H

G/ ker f
f1

??

Then f1 is a continuous isomorphism. Moreover, f1 is a topological isomorphism if and
only if f is open.

Proof. It follows immediately from the definitions of quotient topology and openmap,
and from Lemma 3.2.1.

As a first application of Frobenius theorem 3.2.3, we show that the quotient topol-
ogy is invariant under topological isomorphism in the following sense.

Corollary 3.2.4. Let G,H be topological groups and f :G → H a topological isomor-
phism. Then for every normal subgroup N of G the quotient H/f (N) is topologically iso-
morphic to G/N.

Proof. Obviously, f (N) is a normal subgroup ofH and the canonical projection q:H →
H/f (N) is continuous and open by Lemma 3.2.1. Therefore, h = q ∘ f :G → H/f (N) is an
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open continuous surjective homomorphism with ker h = N .

G
f ??

h

??????

H
q
????

G/N ?? H/f (N)

We conclude that H/f (N) is topologically isomorphic to G/N by Frobenius theo-
rem 3.2.3.

One can order the continuous surjective homomorphisms with common domain
the topological group G calling a continuous surjective homomorphism f :G → H pro-
jectively larger than another continuous surjective homomorphism f ′:G → H′ when
there exists a continuous homomorphism η:H → H′ such that f ′ = η ∘ f :

G
f ?? ??

f ′ ?? ??
H

η??
H′

In the next proposition we show that, roughly speaking, the projective order
between open continuous surjective homomorphisms with the same domain corre-
sponds to the order by inclusion of their kernels.

Proposition 3.2.5. Let G,H1,H2 be topological abelian groups and fi:G → Hi, i = 1, 2,
open continuous surjective homomorphisms. Then there exists a continuous homomor-
phism η:H1 → H2 such that f2 = η ∘ f1 if and only if ker f1 ⊆ ker f2. Moreover, η is a
topological isomorphism if and only if ker f1 = ker f2.

Proof. The necessity is obvious. So, assume that ker f1 ⊆ ker f2. By Frobenius theo-
rem 3.2.3 applied to fi, for i = 1, 2, there exists a topological isomorphism ji:G/ ker fi →
Hi such that fi = ji ∘ qi, where qi:G → G/ ker fi is the canonical projection. As ker f1 ⊆
ker f2, we get a homomorphism t:G/ ker f1 → G/ ker f2 that makes the diagram

G

q1????

f1

????
q2 ?? ??

f2

?? ??H1

η

??G/ ker f1
j1?? t ?? G/ ker f2

j2 ?? H2

commute. Moreover, t is continuous by Lemma 3.2.1(b). Obviously, η = j2 ∘ t ∘ j−11 works.
If ker f1 = ker f2, then t is a topological isomorphism, hence η is a topological

isomorphism as well.
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Regardless of its simplicity, Frobenius theorem 3.2.3 is very useful since it pro-
duces topological isomorphisms as in the above proof. The openness of f is its main
ingredient, so fromnowonweare interested inproviding conditions that ensure open-
ness.

Lemma 3.2.6. Let X,Y be topological spaces and let f :X → Y be an open continuous
map. Then for every subspace P of Y with P ∩ f (X) ̸= 0, the restriction f ′ = f ↾H1

:H1 → P
to the subspace H1 = f −1(P) is open.

Proof. To see that f ′ is open, choose a point x ∈ H1 and a neighborhood U of x in H1.
Then there exists a neighborhoodW of x in X such that U = H1 ∩W . To see that f ′(U)
is a neighborhood of f ′(x) in P, note that if f (w) ∈ P for w ∈ W , then w ∈ H1, hence
w ∈ H1 ∩W = U . Thus, f (W) ∩ P ⊆ f (U) = f ′(U).

We shall apply Lemma 3.2.6 when X = G and Y = G1 are topological groups and
f = q:G → G1 is an open continuous homomorphism. Then the restriction q−1(P)→ P
of q is open for every subgroup P of G1.

Nevertheless, even in the particular case when q is surjective, the restrictionH →
q(H) of q to an arbitrary closed subgroup H of G need not be open:

Example 3.2.7. For G = 𝕋 the continuous homomorphism μ2:G → G, x → 2x, is
surjective and open. Let now H = ℤ(3∞) ≤ 𝕋. The restriction μ′2:H → 2H = H of μ2 is
a continuous isomorphism.

To see that μ′2 is not open, it suffices to notice that the sequence {xn}n∈ℕ+ in H,
defined by xn = ∑

n
k=1 1/3

k for every n ∈ ℕ+, is not convergent in H (as it converges to
the point 1/2 ∈ 𝕋 \ H). On the other hand, obviously μ′2(xn) = 2xn → 0 in H.

Next we see some relevant isomorphisms related to the quotient groups.

Theorem 3.2.8. Let G be a topological group, N a normal subgroup of G, and q:G →
G/N the canonical projection.
(a) If H is a subgroup of G, then the homomorphism q1:HN/N → q(H), defined by

q1(xN) = q(x) for every x ∈ H, is a topological isomorphism.
(b) If H is a normal subgroup of G with N ⊆ H, then q(H) = H/N is a normal subgroup

of G/N and themap j:G/H → (G/N)/(H/N), defined by j(xH) = (xN)(H/N) for every
x ∈ G, is a topological isomorphism. If H is closed, then also q(H) is closed.

(c) If H is a subgroup of G, then themap s:H/H∩N → (HN)/N, defined by s(x(H∩N)) =
xN for every x ∈ H, is a continuous isomorphism. It is a topological isomorphism if
and only if the restriction q↾H :H → (HN)/N is open.

(The quotient groups are always equipped with the quotient topology.)

Proof. (a) As HN = q−1(q(H)), we can apply Lemma 3.2.6 and conclude that the re-
striction q′:HN → q(H) of q is open. Now Frobenius theorem 3.2.3 applies to q′ and
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implies that the unique homomorphism q1:HN/N → q(H) satisfying q1 ∘p = q′, where
p:HN → HN/N is the canonical projection, is a topological isomorphism.

HN
q′ ?? ??

p ?? ??

q(H)

HN/N
q1

??

(b) Since H = HN, item (a) implies that the induced topology of q(H) coincides
with the quotient topology of H/N . Hence, we can identify H/N with the topological
subgroup q(H) of G/N . The composition f :G → (G/N)/(H/N) of q with the canonical
projectionπ:G/N → (G/N)/(H/N) is open, the latter being open. Let s:G → G/H be the
canonical projection. Applying Frobenius theorem 3.2.3 to the open homomorphism f
with ker f = H, we find a topological isomorphism j′ making the diagram

G
f ? ? ??

s ?? ??

(G/N)/(H/N)

G/H
j′
??

commute. Since also jmakes the diagram commutative and s is surjective, we deduce
that j = j′ is a topological isomorphism.

If H = HN is closed, then G \HN is open, so (G/N) \ q(HN) = q(G \HN) is open as
well. Therefore, q(H) is closed.

(c) To the continuous surjective homomorphism q ↾H :H → (HN)/N we apply
Frobenius theorem 3.2.3 to find a continuous isomorphism s:H/H ∩N → (HN)/N, that
is necessarily defined by s(x(H ∩ N)) = xN for every x ∈ H, as it makes the diagram

H
q↾H ??

q′ ??

(HN)/N

H/H ∩ N
s

??

commute, where q′ is surjective. By the same theorem, s is a topological isomorphism
if and only if q↾H :H → (HN)/N is open.

Example 3.2.7 shows that the continuous isomorphism s:H/H∩N → (HN)/N need
not be open: take G = 𝕋, H = ℤ(3∞), and N = ⟨1/2⟩, so that H ∩ N = {0} and s:H →
(H + N)/N = q(H) is not open.

The next theorem gives a precise description when this occurs:

Theorem 3.2.9. Let G be a topological group, N a closed normal subgroup of G, and
q:G → G/N the canonical projection. If H is a dense subgroup of G, then q1 := q ↾H :
H → q(H) is open if and only if N ∩ H is dense in N.
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Proof. Let N1 = H ∩ N .
Assume that q1 is open and consider first the case when N1 = {eG}. This assump-

tion implies that G is Hausdorff, and hence the limits of nets are unique. Assume for
a contradiction that N ̸= N1 and pick x ∈ N \ {eG}. By the density of H in G, there ex-
ists a net {gα}α∈A in H converging to x. Then q(gα) → eG/N in q(H) equipped with the
topology induced by G/N . Therefore, the isomorphism (in this case) q1:H → q(H) is
not open, as gα ↛ eG in G, a contradiction.

In thegeneral case, consider the canonical projectionsπ:G → G/N1 andq′:G/N1 →
G/N, and their restrictions π1 = π ↾H :H → π(H) and q′1 = q

′ ↾π(H):π(H) → q(H) =
q′(π(H)):

G
q ??

π ??

G/N

G/N1

q′
??

The openness of q1 = q′1 ∘ π1 and the surjectivity of π1 imply that q′1 is open. Hence, the
above argument applied to G/N1, its closed subgroup N/N1, and its dense subgroup
π(H) implies N = N1. In fact, π(H) ∩ N/N1 = {eG/N1

}, and so also π(H) ∩ N/N1 = {eG/N1
}

sinceG/N1 is Hausdorff; by the above argument,N/N1 = {eG/N1
} aswell, that is,N = N1.

Vice versa, assume that N = N1 and pick U ,V ∈ 𝒱H (eG) with VV ⊆ U . Then V ∈
𝒱G(eG), so q(V) ∈ 𝒱G/N (eG/N ). Hence, it suffices to check that q(V) ∩ q(H) ⊆ q(U). Pick
h ∈ H such that q(h) ∈ q(V) so that h = v′xwith v′ ∈ V , x ∈ N = H ∩ N . Then there exist
nets {hα}α∈A and {vα}α∈A in H ∩ N and V , respectively, such that hα → x and vα → v′.
This implies vαhα → v′x = h, and so hh−1α v−1α → eG in H. Therefore, there exists β ∈ A
such that hh−1β v−1β ∈ V , hence h ∈ Vvβhβ ⊆ VVN . This implies that q(h) ⊆ q(VV) ⊆ q(U),
and we can conclude that q(U) ∈ 𝒱q(H)(eG/N ).

Now, for a normal subgroupH of a topological groupG, we relate properties of the
quotient G/H to those of H.

Lemma 3.2.10. For a topological group G and a normal subgroup H of G:
(a) G/H is discrete if and only if H is open;
(b) G/H is Hausdorff if and only if H is closed.

Proof. Let q:G → G/H be the canonical projection.
(a) IfG/H is discrete, thenH = q−1(eG/H ) is open since the singleton {eG/H } is open.

If H is open, then {eG/H } = q(H) is open since the map q is open.
(b) If G/H is Hausdorff, then H = q−1(eG/H ) is closed since {eG/H } is closed. If H is

closed, then {eG/H } = q(H) is closed, by Theorem 3.2.8(b).

Example 3.2.11. AnAlexandrov groupG is simply an extension of an indiscrete group
N = {eG}

τ
by the discrete one G/N .
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Here we consider the counterpart of Remark 3.1.10 for quotient groups.

Proposition 3.2.12. Let G,H be abelian groups and f :G → H a surjective homomor-
phism. Then f is (continuous and) open when both G,H are equipped with their profinite
(respectively, pro-p-finite, p-adic, natural, pro-countable) topology.

Proof. For the profinite and for the pro-countable topology use that fact that for a sub-
group N of G the homomorphism f1:G/N → H/f (N) induced by f is surjective. The
remaining cases are trivial.

We shall see in the sequel (see Corollary 11.2.8) that if G is an abelian group
equipped with its Bohr topology andH is a subgroup of G, then the quotient topology
of G/H coincides with the Bohr topology of G/H.

3.3 Initial and final topologies: products of topological groups

Proposition 3.3.1. Let {Gi: i ∈ I} be a family of topological groups. The direct product
G = ∏i∈I Gi, equipped with the product topology, is a topological group.

Proof. The filter 𝒱(eG) in the product topology of G has as a base the family of neigh-
borhoods

n
⋂
k=1

p−1jk (Ujk ) = Uj1 × ⋅ ⋅ ⋅ × Ujn × ∏
i∈I\J

Gi,

where J = {j1, . . . , jn} varies among all finite subsets of I and Uj ∈ 𝒱(eGj
) for all j ∈ J. It

is easy to check that the filter 𝒱(eG) satisfies the conditions (gt1), (gt2), and (gt3) from
Theorem 2.1.10. Due to (gt3), for an arbitrary element a ∈ G, one can easily check that
𝒱(a) = a𝒱(eG) = 𝒱(eG)a. Hence, G is a topological group.

Definition 3.3.2. For a group G, a family {Ki: i ∈ I} of topological groups, and a family
ℱ = {fi: i ∈ I} of group homomorphisms fi:G → Ki, the initial topology of ℱ is the
coarsest group topology on G that makes continuous all fi ∈ ℱ .

Namely, the initial topology ofℱ is obtained by taking as local base at eG the fam-
ily {⋂i∈J f

−1
i (Ui): J ⊆ I finite, ∀i ∈ J,Ui ∈ 𝒱Ki (eKi )}.

The initial topology is introduced in the sameway for topological spaces and con-
tinuous maps (see Exercise B.7.6). For a group G, a family {Ki: i ∈ I} of topological
groups, and a family ℱ = {fi: i ∈ I} of group homomorphisms fi:G → Ki, the ini-
tial topology ofℱ introduced above coincides with the initial topology for topological
spaces.

Example 3.3.3. (a) For a topological group G and a subgroup H of G, the subgroup
topology of H is the initial topology of the inclusion map H → G.
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(b) For a family {Gi: i ∈ I} of topological groups, the product topology of G = ∏i∈I Gi
is the initial topology of the family {pi: i ∈ I} of the projections pi:G → Gi.

(c) Let G be a group, let {Ki: i ∈ I} be the family of all finite quotient groups Ki = G/Ni
of G equipped with the discrete topology and, for every i ∈ I, let fi:G → Ki be
the canonical projection. Then the profinite topology ϖG of G coincides with the
initial topology of the family {fi: i ∈ I}.

(d) For a fixed prime p, the pro-p-topology of a group G can be described in a simi-
lar manner as the profinite topology, using the finite quotients G/Ni of G that are
p-groups. The p-adic topology of G is obtained if one takes all quotients of G of
finite exponent that is a power of p.

(e) To obtain the natural topology of a group G as an initial topology in the above
sense, one has to make recourse to all quotients of G of finite exponent.

(f) The cocountable topology of a group G can be obtained as the initial topology in
the above sense, if one takes all countable quotients of G.

(g) For G an abelian group and a set H = {fi: i ∈ I} of characters fi:G → 𝕋 of G, the
initial topology ofH coincideswith the topology 𝒯H defined in §2.2.2. In particular,
the Bohr topologyBG of G is the initial topology of G∗.

Remark 3.3.4. Let G be a group, {Ki: i ∈ I} a family of topological groups, and ℱ =
{fi: i ∈ I} a family of group homomorphisms fi:G → Ki. The initial topology of ℱ on G
coincides with the initial topology of the single diagonal map

Δℱ :G →∏
i∈I

Ki, x → (fi(x)).

The map Δℱ :G → ∏i∈I Ki is injective if and only if ℱ separates the points of G. In this
case the initial topology of ℱ coincides with the subgroup topology of G induced by
the product topology of∏i∈I Ki, when G is identified with Δℱ (G).

Now we define an inverse system of topological groups and its inverse limit.

Definition 3.3.5. Let (I ,≤) be a directed set.
(i) An inverse system of topological groups, indexed by a directed poset (I ,≤), is a

family {Gi: i ∈ I} of topological groups and continuous homomorphisms νij:Gj →
Gi for every pair i ≤ j in I, such that νii = idGi

for every i ∈ I and, for every triple
i ≤ j ≤ k in I, νij ∘ νjk = νik:

Gk
νik ??

νjk ??

Gi

Gj

νij

??

We briefly denote by [Gi, (νjk), I] this inverse system.
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(ii) An inverse limit of an inverse system [Gi, (νjk), I] is a topological group G and a
family {pi: i ∈ I} of continuous homomorphisms pi:G → Gi satisfying pi = νij ∘ pj
for every pair i ≤ j in I,

G
pi ??

pj ??

Gi

Gj

νij

??

such that, for every topological group H and every family of continuous homo-
morphisms qi:H → Gi satisfying qi = νij ∘ qj for every pair i ≤ j in I, there exists a
unique continuous homomorphism t:H → G such that qi = pi ∘ t for every i ∈ I.

As the inverse limit of the inverse system [Gi, (νjk), I] determined in item (b) exists
and it is unique up to isomorphism, we denote it by lim←i∈I Gi:

Proposition 3.3.6. Let [Gi, (νij), I] be an inverse system of topological groups.
(a) In the product H = ∏i∈I Gi, consider the subgroup

G = {x = (xi)i∈I ∈ H : νij(xj) = xi whenever i ≤ j}

and, for every i ∈ I, denote by pi:G → Gi the restriction to G of the canonical pro-
jection H → Gi. Then:
(a1) G along with the family {pi: i ∈ I} is an inverse limit of [Gi, (νij), I];
(a2) G has the initial topology of {pi: i ∈ I}.

(b) The inverse limit lim←i∈I Gi is unique up to isomorphism.

Proof. (a) This is straightforward, since pi:G → Gi is continuous for every i ∈ I.
(b) Suppose that G with {pi: i ∈ I} and L with {qi: i ∈ I} are inverse limits of

[Gi, (νij), I]. Then N = ⋂i∈I ker qi = {0}, since there must be a unique t:N → L such
that qi ∘ t = 0 for all i ∈ I and both the inclusion map j:N → L and the zero morphism
z:N → L satisfy this condition, so j = z yields N = {0}.

There exists a unique continuous homomorphism f : L→ G such that qi = pi ∘ f for
every i ∈ I, and there exists a unique continuous homomorphism f ′:G → L such that
pi = qi ∘ f ′ for every i ∈ I. For every i ∈ I, pi ∘ (f ∘ f ′) = pi:

G

pi ??

f ∘f ′
??

idG

?? G

pi??
Gi

hence f ∘ f ′ = idG. Analogously, for every i ∈ I, qi ∘ (f ′ ∘ f ) = qi, hence f ′ ∘ f = idL (using,
in both cases, the equalities ⋂i∈I ker pi = {0} and ⋂i∈I ker qi = {0}). We conclude that
f is a topological isomorphism.
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Remark 3.3.7. Proposition 3.3.6 yields that, for an inverse system [Gi, (νij), I] of topo-
logical groups, lim←i∈I Gi (identified with G) is a closed subgroup of∏i∈I Gi.

Very often the inverse systems have a more simple form as follows.

Example 3.3.8. Let {Gn: n ∈ ℕ} be a family of topological groups and let {ϕn: n ∈ ℕ} be
a family of continuous homomorphisms ϕn:Gn+1 → Gn. Putting, for every pair m, n ∈
ℕ withm > n, φnm = ϕn ∘ ⋅ ⋅ ⋅ ∘ ϕm−1:Gm → Gn,

Gm
ϕm−1 ?? Gm−1

ϕm−2 ?? ⋅ ⋅ ⋅ ϕn+1 ?? Gn+1
ϕn ?? Gnf

we obtain an inverse system [G, (φnm),ℕ] that we simply write as [Gn, (ϕn),ℕ].
In these terms, if p is a prime and ϕn:ℤ(pn+1)→ ℤ(pn) is the canonical projection

for n ∈ ℕ, the inverse limit of the inverse system [ℤ(pn), (ϕn),ℕ] is 𝕁p.

Definition 3.3.9. Let G be a group and {Ki: i ∈ I} a family of topological groups. For a
given familyℱ = {fi: i ∈ I} of grouphomomorphisms fi:Ki → G, the final topology of the
familyℱ is the finest group topology onG that makes continuous all homomorphisms
fi ∈ ℱ .

Analogously to the initial topology, the final topology is introduced in the same
way for topological spaces and continuous maps (see Exercise B.7.7).

The main example in this direction is the quotient topology of a quotient group
G = K/N of a topological group K. It is the final topology of the canonical projection
q:K → G. This is a simple example, since the map q is surjective.

When surjectivity ismissing, the final topology is less transparent even in the case
of a single injective homomorphism, say a subgroup embedding i:K → G. In this spe-
cific case, denote by τ the topology onK; the final topology τ̄ of {i} onG exists, it is sim-
ply the supremum of all group topologies σ on G with σ ↾K≤ τ. This yields, of course,
τ̄ ↾K≤ τ. Nevertheless, although somewhat surprising, this final topology τ̄ need not
satisfy τ̄↾K= τ, i. e., need not be an “extension” of τ. More details on this subtle issue
are given in Chapter 4.

3.4 The Hausdorff reflection of a topological group

This subsection is motivated by the simple fact reported in Lemma 3.4.1. According to
Lemma 2.1.16 andRemark 2.1.17(a), the core of a topological groupG is a closed normal
subgroup of G and coincides with the closure of {eG}.

Lemma 3.4.1. Let (G, τ) be a topological group, N := core(G) = {eG}, and q:G → G/N
the canonical projection. Then:
(a) N is an indiscrete closed normal subgroup of G and G/N is Hausdorff;
(b) τ coincides with the initial topology of q;

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



44 | 3 General properties of topological groups

(c) every continuous homomorphism f :G → H,whereH is aHausdorff group, factorizes
through q:

G

q ?? ??

f ?? H

G/N

??

Proof. (a) Since N ⊆ U for every U ∈ 𝒱τ(eG), N is indiscrete. The last assertion follows
from Lemma 3.2.10(b).

(b) Let V ∈ 𝒱τ(eG) be open. Then N ⊆ V . Fix arbitrarily x ∈ V . Then there exists
U ∈ 𝒱τ(eG) such that xU ⊆ V . Since N ⊆ U ⊆ V , we conclude that xN ⊆ V . This proves
that VN ⊆ V . On the other hand, V ⊆ VN, hence V = VN = q−1(q(N)). Therefore, τ
coincides with the initial topology of q:G → G/N .

(c) Let L = ker f . Then L is a closed normal subgroup of G, so N ⊆ L. By Frobenius
theorem 3.2.3, there exists a continuous injective homomorphism f1:G/L → H such
that f = f1 ∘ π, where π:G → G/L is the canonical projection. Since N ⊆ L, there exists
a homomorphism h:G/N → G/L such that π = h ∘ q. Moreover, h is continuous by the
continuity of π = h ∘ q. Now the composition η = f1 ∘ h:G/N → H provides the desired
factorization f = η ∘ q:

G

π

??

q
????

f ?? H

G/N

h????

η

??

G/L
??

f1

??

This lemma shows that the properties of a topological group G are easily deter-
mined from the corresponding properties of the Hausdorff quotient G/core(G). This is
why it is not restrictive to work mainly with Hausdorff groups. Therefore, most often
the topological groups in the sequel are assumed to be Hausdorff.

Now we put this observation in a more categorical framework.

Proposition 3.4.2. Let (G, τ) be a topological group.
(a) The quotient topology of the group hG := G/core(G, τ) is Hausdorff.
(b) If f : (G, τ) → H is a continuous homomorphism to a Hausdorff group H, then there

exists a unique continuous homomorphism f1: hG → H such that f1 ∘ q = f , where
q:G → hG is the canonical projection:

G

q ?? ??

f ?? H

hG
f1=hf

??
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Proposition 3.4.2(b) shows that the Hausdorff quotient group hG associated to a
topological group G is its best approximation by Hausdorff groups.

Let us see that the assignment G → hG induces a functor from the category of all
topological groups to its subcategory TopGrp2 of Hausdorff groups, so that f1 = hf in
the above proposition (while H = hH, as H is Hausdorff).

Proposition 3.4.3. Let G,H be topological groups and f :G → H a continuous homo-
morphism. Then hf : hG → hH, defined by hf (x core(G)) = f (x) core(H) for every x ∈ G,
is a continuous homomorphism commuting with the canonical projections qG:G → hG
and qH :H → hH. If f is an embedding, then so is hf .

Proof. Since f (eG) = eH , Proposition 3.4.2(a) implies that f (core(G)) ⊆ core(H). This
proves the correctness of the definition of hf and the commutativity of the following
diagram:

G
f ??

qG
??

H
qH
??

hG
hf
?? hH

The continuity of hf easily follows from the continuity of f and qH , and the properties
of the quotient topology of hG and qG.

Now assume that f is an embedding. For simplicity we assume thatG is a topolog-
ical subgroup of H and f :G → H is the inclusion. Furthermore, we let q = qH for the
sake of brevity.

Obviously, core(G) = core(H) ∩ G, so that hf is injective, as ker qG = core(G) and
ker q = core(H). It remains to prove that hf : hG → q(G) = hf (hG) is open, when q(G) =
hG carries the topology induced by hH. According to Theorem 3.2.8(c), it suffices to
see that q ↾G:G → q(G) is open. To this end, take U ∈ 𝒱G(eG); we have to prove that
q(U) ∈ 𝒱q(G)(ehH ). PickW ,W1 ∈ 𝒱H (eH ) such thatU = G∩W andW1 is symmetric with
W1W1 ⊆ W . We prove that

q(W1) ∩ q(G) ⊆ q(W ∩ G). (3.1)

This equality implies that q(W ∩ G) is a neighborhood of ehH in q(G) equipped with
the topology induced by hH.

To prove (3.1), pick w ∈ W1 such that q(w) ∈ q(W1) ∩ q(G), namely, q(w) ∈ q(G).
Then there exists g ∈ G such that w = gy, where y ∈ ker q = core(H). As core(H) ⊆ W1,
this implies that g = wy−1 ∈ W1W1 ⊆ W , so g ∈ W∩G. Therefore, q(w) = q(g) ∈ q(W∩G)
and (3.1) is proved.

This shows that h:TopGrp→ TopGrp2 is a reflection, since hG = G in case G is a
Hausdorff group (in fact, core(G) = {eG}).We collect further properties of the reflection
functor h and the map qG:
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Remark 3.4.4. We shall often use in the sequel the following facts making use of the
notation above:
(a) If H is a topological group and G is a closed (respectively, open) subgroup of H,

then G contains core(H), and qH (G) is a closed (respectively, open) subgroup of
hH.

(b) If a continuous homomorphism f :G → H of topological groups is closed (respec-
tively, open), then also hf : hG → hH is closed (respectively, open). This follows
from Theorem 3.2.8(b) and the fact that G contains core(H).

(c) If {Gi: i ∈ I} is a family of topological groups, then h(∏i∈I Gi) ≅ ∏i∈I hGi.
(d) hG is discrete for a topological group G precisely when G is an Alexandrov group.

3.5 Exercises

Exercises on separation axioms and products

Exercise 3.5.1. Let H be a discrete subgroup of a topological group G. Prove that H is
topologically isomorphic to the semidirect product ofH and {eG}, carrying the product
topology, where H is discrete and {eG} is indiscrete.

Exercise 3.5.2. Consider a group G endowed with the Taĭmanov topology TG (see Ex-
ercise 2.4.16).
(a) Prove that TG is Hausdorff if and only if the center Z(G) of G is trivial.
(b) If Z(G) is trivial, consider G as a subgroup of Aut(G) (making use of the inner au-

tomorphisms). Identify Aut(G) with a subgroup of the power GG and show that
TG coincides with the topology induced by Aut(G) equipped with the pointwise
convergence topology τ (when G carries the discrete topology).

(c) Under the standing hypothesis that Z(G) is trivial, consider Aut(G) as a subgroup
of S(G) in the natural way and show that τ coincides with the topology induced
on Aut(G) by TG.

Exercise 3.5.3. Prove that a Hausdorff group containing a dense solvable group is
solvable.

Exercise 3.5.4. (a) Let H be a nontrivial discrete group and let G = H × N, where N
is an indiscrete nontrivial group. Prove that H × {eG} is a discrete dense (hence,
nonclosed) subgroup of G.

(b) If H is a normal Hausdorff subgroup of a topological group G and N = {eG}, prove
thatH containsHN and the subgroupHN is topologically isomorphic to the direct
product H × N equipped with the product topology.
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Hint. (a) follows from themore general item (b). The first assertion of (b) is obvious. Since {eG} is dense
in the Hausdorff subgroup H ∩ N, it follows that H ∩ N = {eG}. The set-wise product HN is a subgroup
of G (as N is normal subgroup of G) and the map f :H ×N → HN , (h, n) → hn is an isomorphism, since
H ∩ N = {eG}. Since f ↾H×{e} and f ↾{e}×N are continuous, f is continuous as well. On the other hand,
the compositions of f −1 with the canonical projections of the product H × N are continuous, so f −1 is
continuous.

Exercise 3.5.5. Prove that 𝕋/ℤ(m) ≅ 𝕋 for everym ∈ ℕ+.
Hint. The subgroup H = ⟨1/m⟩ of ℝ containing ℤ satisfies H/ℤ ≅ ℤ(m), so 𝕋/ℤ(m) = (ℝ/ℤ)/(H/ℤ) ≅
ℝ/H. It remains to note that ℝ/H ≅ ℝ/ℤ = 𝕋, as the automorphism ϕ:ℝ → ℝ defined by ϕ(x) = x/m
takes ℤ to H.

Exercise 3.5.6. LetH be a group,G = H×H and τ, τ′ ∈ L(H). EndowGwith theproduct
topology τ × τ′ and consider the diagonal map ΔH :H → G, defined by ΔH (h) = (h, h)
for h ∈ H. Show that ΔH becomes an embedding when H is equipped with sup{τ, τ′}.
Formulate and prove the corresponding property with respect to the diagonal map
ΔH :H → HI in the case of arbitrary Cartesian powers.

Exercise 3.5.7. Let G1,G2 be groups and G = G1 × G2. Identify G1 and G2 with the sub-
groups G1 × {eG2

} and {eG1
} ×G2 of G, respectively. For a group topology τ on G, denote

by τi the topology induced on Gi by τ, with i = 1, 2.
(a) Prove that τ is coarser than the product topology τ1 × τ2 of G.
(b) In case G1 and G2 are abelian, conclude that (G, τ1 × τ2) is the coproduct of (G1, τ1)

and (G2, τ2) in the category of topological abelian groups.

Hint. LetW be a neighborhood of eG in τ and V be a τ-open neighborhood of eG with VV ⊆ W . Now
V ∩ Gi is a τi-open neighborhood of eGi in (Gi, τi) for i = 1, 2, and

τ1 × τ2 ∋ U = (V ∩ G1) × (V ∩ G2) = ((V ∩ G1) × {e2})({e1} × (V ∩ G2)) ⊆ VV ⊆ W ,

therefore,W is a neighborhood of eG also in τ1 × τ2.

Exercise 3.5.8 ([174]).∗ Prove that the group ℤℵ1 equipped with the product topology
of the discrete topology of ℤ is not a normal space.

Exercises on initial and final topologies

Exercise 3.5.9. For a group G, a family {Ki: i ∈ I} of topological groups, and a family
ℱ = {fi: i ∈ I} of group homomorphisms fi:G → Ki, prove that:
(a) the initial topology of the family ℱ coincides with supi∈I τi, where τi denotes the

initial topology of the single homomorphism fi ∈ ℱ ;
(b) a homomorphism h:H → G is continuous with respect to the initial topology of

the family ℱ on G if and only if all compositions fi ∘ h:H → Ki are continuous.
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Exercise 3.5.10. Let G be a group and 𝒯 = {τi: i ∈ I} a family of group topologies
onG. Prove that supi∈I τi coincides with the initial topology of the familyℱ of all maps
idG:G → (G, τi) and also with the topology induced on G by the diagonal map ΔG:G →
∏i∈I G = G

I , in other words, (G, supi∈I τi) is topologically isomorphic to the diagonal
subgroup Δ = {x = (xi)i∈I ∈ GI : xi = xj for all i, j ∈ I} of∏i∈I (G, τi).

Exercise 3.5.11. Let G be a group, {Ki: i ∈ I} a family of topological groups, and ℱ =
{fi: i ∈ I} a family of group homomorphisms fi:Ki → G. Prove that a homomorphism
h:G → H is continuous with respect to the final topology of the family ℱ on G if and
only if all compositions h ∘ fi:Ki → H are continuous.

Exercise 3.5.12. Prove that:
(a) if V ,U are vector spaces over a field K, then the finite topology of Hom(V ,U)

is the initial topology of the family {fv : v ∈ V} of all linear transformations
fv :Hom(V ,U)→ U, of the form ϕ → ϕ(v) for ϕ ∈ Hom(V ,U), when U is equipped
with the discrete topology;

(b) ifU = K = ℤ(p) is a prime finite field, then the finite topology ofV⋆ coincides with
the profinite topology of V⋆.

Exercises on functorial topologies

Exercise 3.5.13. Let 𝒯 be a functorial topology. Prove that:
(a) 𝒯G1×G2

= 𝒯G1
× 𝒯G2

for every pair G1,G2 of abelian groups;
(b) 𝒯G ≥ ∏i∈I 𝒯Gi

for every family {Gi: i ∈ I} of abelian groups with G = ∏i∈I Gi;
(c) 𝒯H ≥ 𝒯G ↾H for every abelian group G and every subgroup H of G;
(d) (𝒯G)q ≥ 𝒯G/H for every abelian group G and every subgroup H of G where (𝒯G)q

denotes the quotient topology of (G, 𝒯G).

Hint. (a) Consider the projections pj : (G,𝒯G1×G2 ) → (Gj ,𝒯j) for j = 1, 2, which are continuous by the
definition of functorial topology. Then, for every neighborhood U1 ×U2 of 0 in (G1 × G2,𝒯1 × 𝒯2), there
exists a neighborhoodW of 0 in (G1 ×G2,𝒯G1×G2 ) such that pj(W) ⊆ Uj for j = 1, 2, that is,W ⊆ U1 ×U2.
Hence, 𝒯G1×G2 ≥ 𝒯G1 × 𝒯G2 . To prove the converse inequality, note that the inclusions ij : (Gi,𝒯Gi ) →
(G1×G2,𝒯G1×G2 ), j = 1, 2, are continuousby thedefinitionof functorial topology. Then𝒯G1×G2 ≤ inf{𝒯G1×
δG2 , δG1 × 𝒯G2 } = 𝒯G1 × 𝒯G2 .

To prove (b), proceed as in the first part of the proof of item (a). For (c) and (d), it suffices to
note that by definition the inclusion (H ,𝒯H ) → (G,𝒯G) and the projection (G,𝒯G) → (G/H ,𝒯G/H ) are
continuous.

Exercise 3.5.14. Let G be an abelian group. Show that every countable subgroup is
discrete in the pro-countable topology of G.
Hint. LetA be a countable subgroup ofG. It is enough to find an open subgroupH in the pro-countable
topology of G with H ∩ A = {0}. To this end find (using the Zorn lemma) a subgroup H of G with
H∩A = {0} andmaximal with this property. Then the quotient projection q:G → G/H has the property
to be injective when restricted to A. Let us see that q(A) is an essential subgroup of G/H. Indeed, if
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C ∩ q(A) = {0̄} in G/H, then q−1(C) ∩ A = H ∩ A = {0}. Since H ⊆ q−1(C), the maximality of H implies
H = q−1(C) and hence C = q(q−1(C)) = {0}. Now the essentiality of q(A) in G/H implies that G/H is
countable, so H is open in the pro-countable topology of G.

Exercise 3.5.15. Let p be a prime. Show that the p-adic topology of 𝕁p differs from the
pro-countable topology.

Hint.Whileℤ is not discrete in the p-adic topology, it is discrete in the pro-countable topology, due to
Exercise 3.5.14.

Exercise 3.5.16. Let G be a group, N a normal subgroup of G, p a prime, and q:G →
G/N the canonical projection. Prove that:
(a) q is open whenever both groups carry the profinite, pro-p-finite, natural, p-adic,

or pro-countable topology;
(b) if G is abelian, then q is open whenever both groups carry their Bohr topology.

Hint. (a) The openness of q: (G,ϖG)→ (G,ϖG/N ) follows from the fact that wheneverH is a finite-index
subgroup of G, then q(H) is a finite-index subgroup of G/N . A similar proof goes for the other four
functorial topologies.

(b) The fact that the Bohr topology of G/N coincides with the quotient of the Bohr topology of G
is proved in Corollary 11.2.8.

Exercise 3.5.17. Prove that ϖG = inf{𝒯G∗ , νG} for an abelian group G.
Hint. The inequality ϖG ≤ inf{𝒯G∗ , νG} was already proved in Proposition 2.2.15 and the equality was
proved in case G is bounded in Theorem 2.2.17.

To prove the inequalityϖG ≥ inf{𝒯G∗ , νG}, suppose that G is not bounded and take a basic neigh-
borhood of 0 in the latter topology of the formmG + U, where U ∈ 𝒱𝒯G∗ (0). It is enough to check that
mG + U ∈ ϖG. Let q:G → G/mG be the canonical projection. If we use item (b) of the previous exer-
cise, then it suffices to use the fact that q(U) is a neighborhood of 0 in the Bohr topology of G/mG, so
q(U) contains a finite-index subgroupH of G/mG in view of the equalityϖG/mG = inf{𝒯(G/mG)∗ , νG/mG}.
Hence, U +mG = q−1(q(U)) contains a finite-index subgroup of G and we are done.

Here we give a proof, without any recourse to Corollary 11.2.6, of the weaker inequality

ϖG ≥ sup
χ∈G∗{inf{𝒯χ , νG}}.

To this end, fix χ ∈ G∗ and H = χ(G) ≅ G/ ker χ. Pick U ∈ 𝒱𝒯χ (0). So, U = χ−1(V), where V is
a neighborhood of 1 in 𝕊. Working with U + U (still a basic neighborhood of 𝒱𝒯χ (0)) in place of U,
we have to prove that U + U + mG ∈ ϖG. If H is finite, then ker χ is a finite-index subgroup of G, so
U ⊇ ker χ contains a finite-index subgroup andwe are done. Suppose thatH is infinite, thenH is dense
in 𝕊. Now consider the subgroup mH = χ(mG) of H. Then mH + χ(U) = mH + (Δδ ∩ H). Since H is an
infinite subgroup of 𝕊, it is not bounded, somH is infinite as well, andmH is dense in 𝕊. In particular,
mH is dense in H, hencemH + (V ∩ H) = H. This proves that

mG + U + U ⊇ mG + U + ker χ ⊇ χ−1(mH + χ(U)) = χ−1(mH + V ∩ H) = χ−1(H) = G.

Clearly, this is a neighborhood of 0 in any topology, in particular U +mG ∈ ϖG.
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Miscellanea

Exercise 3.5.18. Prove that if a compact abelian group G has a dense divisible sub-
group, then G is divisible as well.

Exercise 3.5.19. Is 𝕋2 monothetic? What about 𝕋ℕ?
Hint. The questions have positive answer, see Chapter 9.

Exercise 3.5.20. For a continuous surjective homomorphism f :G → H of topological
groups, prove that f (MG) ⊆ MH . In particular,MH is dense in H wheneverMG is dense
in G.

Exercise 3.5.21. Prove that:
(a) every infinite strongly monothetic Hausdorff group is torsion-free;
(b) every torsion-free subgroup of 𝕋 is strongly monothetic.

Exercise 3.5.22. Let τ be a Hausdorff group topology onℤ. Prove that either τ admits
a coarser Hausdorff linear topology or there exists a τ-open subgroup H of ℤ that is
strongly monothetic.

Exercise 3.5.23. Let G be a linearly topologized abelian group and let H be a topolog-
ical subgroup of G. Prove that H is linearly topologized and for every open subgroup
U of H there exists an open subgroup V of G with V ∩ H = U .

Exercise 3.5.24. Prove that a Hausdorff group topology on ℤ which is coarser than a
nondiscrete linear group topology is linear itself.
Hint. Fix U ∈ 𝒱ℤ(0). By hypothesis there exists n ∈ ℕ+ such that nℤ ⊆ U and hence nℤ ⊆ U, the
closure taken in τ. By Lemma 3.1.1, nℤ is a τ-closed subgroup ofℤ containing nℤ, so nℤ is also τ-open
by Proposition 3.1.7(c). This, combined with the regularity of (ℤ, τ), shows that τ is a linear group
topology.

Exercise 3.5.25. Let τ be a Hausdorff group topology on ℤ coarser than νpℤ for a
prime p. Prove that τ = νpℤ.
Hint. By Exercise 3.5.24, τ is linear. Ifmℤ is a τ-open subgroup ofℤ, then it must be also νpℤ-open. So,
mℤ contains pnℤ for some n ∈ ℕ+, i. e., m | pn. Hence, m = pk for some k ∈ ℕ. Since all τ-open
subgroups have this form and since τ is Hausdorff, τ = νpℤ.
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4.1 The Zariski and Markov topologies

Let G be a Hausdorff group, a ∈ G, and n ∈ ℕ. Then the set {x ∈ G: xn = a} is obviously
closed in G. This simple fact motivates the following:

Definition 4.1.1. A subset S of a group G is called:
(i) elementary algebraic if there exist n ∈ ℕ+, a1, . . . , an ∈ G and ε1, . . . , εn ∈ {−1, 1}

such that S = {x ∈ G : xε1a1xε2a2 ⋅ ⋅ ⋅ an−1xεn = an};
(ii) algebraic if S is an intersection of finite unions of elementary algebraic subsets;
(iii) unconditionally closed if S is closed in every Hausdorff group topology on G.

We denote by EG the family of all elementary algebraic subsets of G, by E∪G the
family of all finite unions of elementary algebraic sets of G, and byAG the family of all
algebraic subsets of G. Clearly,

EG ⊆ E
∪
G ⊆ AG.

In the sequel we assume that G is nontrivial, this allows us to obtain 0 ∈ EG. Since
AG is closed under intersections and finite unions and contains all finite subsets of G,
it is the family of all closed sets of some T1 topology ZG on G, called Zariski topology.
In other words, the ZG-closed sets in G are precisely the algebraic subsets of G.

Example 4.1.2. (a) ForG = ℤ,Eℤ = {ℤ, 0}∪ {{n}: n ∈ ℤ}, and consequentlyAℤ = E∪ℤ =
{ℤ} ∪ [ℤ]<ω. Hence, Zℤ is the cofinite topology γℤ of ℤ.

(b) Analogously, if G is a torsion-free abelian group and g ∈ G, then the set S = {x ∈
G: nx + g = 0} ∈ EG either coincides with G or |S| ≤ 1, so ZG is the cofinite topology
γG of G.

More generally, ZG is non-Hausdorff for all infinite abelian groups G (see Exer-
cise 4.5.9).

Example 4.1.3. (a) Let G be a group. Clearly, each centralizer cG(a) of some a ∈ G is
an elementary algebraic subset of G. Consequently, Z(G) is an algebraic set.

(b) We saw in Example 4.1.2(b) that for a torsion-free abelian group G, ZG = γG. This
property fails if we replace “abelian” with its closest approximation “nilpotent
of class 2”. (Indeed, if G is the Heisenberg group ℋℤ, then Z(G) ≅ ℤ is a proper
infinite ZG-closed subgroup of G.)

The family of all unconditionally closed sets of G is closed under arbitrary inter-
sections and finite unions and contains all finite subsets of G, hence it coincides with
the family of all closed sets of a T1 topologyMG on G, namely, the infimum in 𝒯 (G) of
all Hausdorff group topologies on G. We callMG theMarkov topology of G.

https://doi.org/10.1515/9783110654936-004
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Since an elementary algebraic subset of a group G must be closed in every Haus-
dorff group topology on G, one always has

ZG ≤MG.

Remark 4.1.4. In 1944 Markov [209] asked if the equality ZG = MG holds for every
group G. He showed that the answer is positive in case G is countable. Moreover, in
the same manuscript Markov attributes to Perel′man the fact that ZG = MG for every
abelian group G (a proof has never appeared in print until [103]). An example of a
group G with ZG ̸=MG was given by Hesse [173].

Remark 4.1.5. For any group G, (G,ZG) and (G,MG) are quasitopological groups,
i. e., the inversion and the translations are continuous (see Exercise 4.5.2). On the
other hand, when G is infinite abelian, (G,ZG) and (G,MG) are not group topologies
since they are T1, but non-Hausdorff (for the fact that ZG is not T2 for every infinite
abelian group see Exercise 4.5.9, for infinite torsion-free abelian groups see also Ex-
ample 4.1.3(b)).

4.2 The Markov topology of the symmetric group

Let X be an infinite set. In the sequel we consider the pointwise convergence topology
TX of the infinite symmetric group S(X) introduced in Example 2.2.22. It turns out that
the Markov topology of S(X) coincides with TX .

Theorem 4.2.1. Let X be an infinite set. ThenMS(X) = TX .

This theorem follows immediately from an old result due to Gaughan:

Theorem 4.2.2 (Gaughan theorem). Let X be an infinite set. Every Hausdorff group
topology on S(X) is finer than TX .

The proof of this theorem that we give below follows more or less the line of the
proof exposed in [99, § 7.1] with several simplifications. The final stage of the proof
is preceded by a number of claims (and their corollaries) and two facts about purely
algebraic properties of the group S(X) (namely, Lemmas 4.2.4 and 4.2.7).

Definition 4.2.3. Let X be an infinite set. A subset A of S(X) is m-transitive for some
m ∈ ℕ+ if for every subset Y of X of size at mostm and every injection f :Y → X, there
exists a ∈ A that extends f .

We briefly say transitive in place of 1-transitive. A countable subset H of S(X) can-
not be transitive unless X itself is countable.

The leading idea is that a transitive subset A of S(X) is placed “generically” in
S(X), whereas a nontransitive one is a subset of some subgroup of S(X) that is a direct
product S(Y) × S(X \ Y) where 0 ̸= Y ⊂ X. (Here and in the sequel, for a nonempty
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subset Y of X, we tacitly identify the group S(Y) with the subgroup of S(X) consisting
of all permutations of S(X) that are identical on X \ Y .)

The first fact concerns the stabilizers Sx = {f ∈ S(X): f (x) = x} of points x ∈ X,
which constitute a prebase of the filter of TX -neighborhoods of idX .

Lemma 4.2.4. For an infinite set X and x ∈ X, the subgroup Sx of S(X) is maximal.

Proof. Assume that H is a subgroup of S(X) properly containing Sx. To show that H =
S(X), take any f ∈ S(X). If f (x) = x, then f ∈ Sx ⊆ H, and we are done. Assume that
y := f (x) ̸= x and let h ∈ H \ Sx. Then z = h(x) ̸= x, so x ̸∈ {y, z}. There exists g ∈ S(X)
such that g(x) = x, g(y) = z and g(z) = y. Then g ∈ Sx ⊆ H and f (x) = g(h(x)) = y, that
is, h−1(g−1(f (x))) = x. Therefore, h−1g−1f ∈ Sx ⊆ H, and so f ∈ ghH = H.

Claim 4.2.5. Let X be an infinite set, T a Hausdorff group topology on S(X), and x ∈ X.
If Sx is T-closed, then Sx is also T-open.

Proof. As Sx is T-closed, for every fixed y ∈ X, y ̸= x, letting σx,y = (xy) be the transpo-
sition with support {x, y}, the set

Vy := {f ∈ S(X): f (x) ̸= y} = S(X) \ σx,ySx

is T-open and contains idX . So, there exists a symmetric neighborhoodW of idX in T
such thatWW ⊆ Vy. DefineWx = {f (x): f ∈ W} and similarlyWy. ThenWx∩Wy = 0, by
the definition of Vy. Since X = (X \Wx)∪ (X \Wy), either |X \Wx| = |X| or |X \Wy| = |X|.
Suppose that |X \Wx| = |X|. Then one can find f ∈ S(X)with f (Wx \ {x}) ⊆ X \Wx and
f (x) = x. Such an f satisfies f −1Wf ∩W ⊆ Sx, as f −1(Wf (x)) ∩Wx = {x} by the choice
of f . In view of Proposition 3.1.7(a), this proves that Sx is T-open.

An analogous argument works for Sy when |X \ Wy| = |X|. Since Sx and Sy are
conjugated, this will prove that Sx is T-open.

Corollary 4.2.6. If X is an infinite set and T is a Hausdorff group topology on S(X) such
that Sx is T-closed in S(X) for some x ∈ X, then TX ≤ T.

Proof. Since all Sx are conjugated, the hypothesis implies that Sx is T-closed for every
x ∈ X. By Claim 4.2.5, Sx is T-open for every x ∈ X. As the subgroups Sx of S(X) form a
prebase of the filter of neighborhoods of idX in (S(X), TX), this implies that TX ≤ T.

This was the first step in the proof. The next step consists in establishing that all
Sx,y := S{x,y}, with distinct x, y ∈ X, are never dense in any Hausdorff group topology
on S(X) (see Corollary 4.2.10). We need the subgroup

S̃x,y := {f ∈ S(X): f ({x, y}) = {x, y}} = Sx,y⟨(xy)⟩ ⊆ S(X)

that contains Sx,y as a subgroup of index 2. Note that S̃x,y is precisely the subgroup of
all permutations in S(X) that leave the doubleton {x, y} setwise invariant.

Lemma 4.2.7. For an infinite set X and any doubleton {x, y} in X:
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(a) the subgroup S̃x,y of S(X) is maximal;
(b) every proper subgroup of S(X) properly containing Sx,y coincides with one of the

subgroups Sx , Sy, or S̃x,y.

Proof. (a) Let H be a subgroup of S(X) that properly contains S̃x,y. Our goal is to prove
that Sx ⊆ H. Then, analogously, Sy ⊆ H, and an application of Lemma 4.2.4 yields
H = S(X).

Fix g ∈ Sx. If g(y) = y, then g ∈ Sx,y ⊆ S̃x,y ⊆ H. We may assume that z := g(y) ∉
{x, y}. By assumption, S̃x,y is a proper subgroup of H. So, we can choose h0 ∈ H \ S̃x,y.
Hence, either h0(x) ∉ {x, y} or h0(y) ∉ {x, y}. Since (xy) ∈ S̃x,y ⊆ H, we may assume
that z′ := h0(y) ∉ {x, y}. If z′ = z, let h = h0, otherwise h = (zz′)h0; so h ∈ H in both
cases. Choose t ∈ X \ {x, y, h−1(x), h−1(y)}; then let v = h(t) ∈ X \ {x, y, z}, and hence
(zt), (zv) ∈ Sx,y ⊆ H. Then (yt) = h−1(zv)h ∈ H, and it is straightforward to check that
h1 := (yt)(zt)g ∈ Sx,y ⊆ H. This implies that g ∈ H, as desired.

(b) Assume that H is a proper subgroup of S(X) properly containing Sx,y such that
H ̸= Sx and H ̸= Sy. We aim to show that H = S̃x,y, i. e., (xy) ∈ H.

By Lemma 4.2.4 applied to Sx = S(X \ {x}) and its subgroup Sx,y (the stabilizer of y
in Sx), we conclude that Sx,y is a maximal subgroup of Sx. It follows that H ∩ Sx = Sx,y.
Analogously, H ∩ Sy = Sx,y. Take f ∈ H \ Sx,y. Then f ̸∈ Sx and f ̸∈ Sy. Let z = f (x) and
t = f (y); then z ̸= x, t ̸= y and z ̸= t. Consider the following cases.

Case 1: {z, t} = {x, y}. This is possible precisely when z = y and t = x. Then (xy)f ∈
Sx,y ⊆ H, and thus (xy) ∈ H.

Case 2: {z, t} ∩ {x, y} = 0. Then (zt) ∈ Sx,y ⊆ H, so (xy) = f −1(zt)f ∈ H.

Case 3: {z, t} ∩ {x, y} = {z} = {y}. So, x ̸= t. Since (tyx)f ∈ Sx,y ⊆ H, we deduce that
(xyt) = (tyx)−1 ∈ H. Choose v ∈ X \ {x, y, t}; then (tv) ∈ Sx,y, and so f1 = (xt)(yv) =
(xyt)(tv)(xyt)(tv) ∈ H. Since f1(x) = t ̸∈ {x, y} and f1(y) = v ̸∈ {x, y}, we can apply the
argument from Case 2 with f1 ∈ H to get (xy) ∈ H.

Claim 4.2.8. Let X be an infinite set and T a Hausdorff group topology on S(X). Then
there exists a T-neighborhood of idX that is not 2-transitive.

Proof. Assume for a contradiction that all T-neighborhoods of idX are 2-transitive. Fix
arbitrarily distinct u, v,w ∈ X. We show that the 3-cycle (uvw) ∈ V for every arbitrarily
fixedT-neighborhoodV of idX ; this contradicts theHausdorffness ofT. Indeed, choose
a symmetric T-neighborhoodW of idX such thatWW ⊆ V . For f the transposition (uv),
U := fWf∩W is a symmetricT-neighborhoodof idX and fUf = U . SinceU is 2-transitive,
there exists g ∈ U such that g(u) = u and g(v) = w. Then (uvw) = (uw)(uv) = gfg−1f ∈
W(fUf ) ⊆ WW ⊆ V .

Claim 4.2.9. Let X be an infinite set, m ∈ ℕ+, and T a group topology on S(X). Then
every T-neighborhood V of idX in S(X) is m-transitive if and only if every stabilizer SF
with |F| = m is T-dense.
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Proof. Assume that SF is T-dense for every finite subset F of X with |F| = m. Let V be
a T-neighborhood of idX . Let F = {x1, . . . , xm} and {y1, . . . , ym} be two subsets of X of
sizem. We have to show that there exists f ∈ V such that f (xi) = yi for all i ∈ {1, . . . ,m}.
Take an arbitrary g ∈ S(X) such that g(xi) = yi for all i ∈ {1, . . . ,m}. Since SF is dense
in S(X) by assumption, S(X) = VSF holds. So, there exist f ∈ V and h ∈ SF such that
g = fh. Then yi = g(xi) = f (h(xi)) = f (xi) for every i ∈ {1, . . . ,m}. This shows that V is
m-transitive.

Conversely, assume that all T-neighborhoods V of idX are m-transitive. Let F be
a finite subset of X of cardinality m. We have to check that SF is T-dense in S(X). So,
fix a T-neighborhood V of idX and g ∈ S(X). By assumption, V is m-transitive, hence
there exists f ∈ V such that f (x) = g(x) for all x ∈ F. This means that f −1g ∈ SF , and
therefore g ∈ fSF ⊆ VSF , that is, S(X) = VSF .

What we really need further on is that the density of the stabilizers Sx,y implies
that every T-neighborhood V of idX in S(X) is 2-transitive.

Corollary 4.2.10. Let X be an infinite set and T a Hausdorff group topology on S(X).
Then for every pair x, y ∈ X with x ̸= y, the stabilizer Sx,y is not T-dense in S(X).

Proof. By Claims 4.2.8 and 4.2.9, there exist distinct x′, y′ ∈ X such that Sx′ ,y′ is not
T-dense. The assertion follows from the fact that all stabilizers of the form Sx,y with
distinct x, y are conjugated.

Proof of Theorem 4.2.2. Assume for a contradiction that T is a Hausdorff group topol-
ogy on S(X) that does not contain TX . By Corollaries 4.2.6 and 4.2.10, all subgroups of
the form Sx are T-dense and no subgroup of the form Sx,y is T-dense.

Fix a pair x, y ∈ X with x ≠ y, and let Gx,y denote the T-closure of Sx,y. Then Gx,y
is a proper subgroup of S(X) containing Sx,y. Since Sx is T-dense, Gx,y cannot contain
Sx, so Sx ∩ Gx,y is a proper subgroup of Sx containing Sx,y. By Lemma 4.2.4, Sx,y is a
maximal subgroup of Sx. Therefore, Sx ∩ Gx,y = Sx,y. This shows that Sx,y is a T-closed
subgroup of Sx. By Claim 4.2.5 applied to Sx = S(X \ {x}) and its subgroup Sx,y, we
conclude that Sx,y is a T-open subgroup of Sx. Since Sx is T-dense in S(X), the closure
Gx,y of Sx,y is T-open in S(X). Since Sx is a proper T-dense subgroup of S(X), Sx cannot
contain Gx,y. Analogously, Sy cannot contain Gx,y either. So, Gx,y ̸= Sx,y, that is, Gx,y is
a proper subgroup of S(X) containing Sx,y and Sx ̸= Gx,y ̸= Sy. Therefore, Gx,y = S̃x,y by
Lemma 4.2.7(b). This proves that S̃x,y is T-open. Since all subgroups of the form S̃x,y
are pairwise conjugated, all subgroups S̃x,y are T-open.

Now we can see that the stabilizers SF with |F| > 2 are T-open, as

SF =⋂{S̃x,y : x, y ∈ F, x ̸= y}.

This proves that all basic neighborhoods SF of idX in TX are T-open. In particular, also
the subgroups Sx are T-open, contrary to our hypothesis.
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A generalization of Theorem 4.2.2 was obtained by Banakh, Guran, and Pro-
tasov [16]. Indeed, for an infinite set X, denote by Sω(X) the subset of all permutations
of finite support in S(X). In [69] Dierolf and Schwanengel proved that for each infinite
set X and each subgroup G of S(X) containing Sω(X), the topology TX ↾G is a minimal
Hausdorff group topology on G (see Definition 8.4.3), and it was conjectured in [99,
p. 220] (see also [201]) that for an infinite set X and a subgroup G of S(X) containing
Sω(X), the topology TX ↾G is the coarsest Hausdorff group topology on G. In [16] this
conjecture was proved:

Theorem 4.2.11. For an infinite set X and a subgroup G of S(X) containing Sω(X), the
topology TX ↾G is the coarsest Hausdorff group topology on G, i. e.,MG = TX ↾G.

This result is based on another fact, which is interesting on its own:

Theorem 4.2.12 ([16]). Let X be an infinite set and G a subgroup of S(X) containing
Sω(X). Then ZG coincides with the topology induced by TX on G.

The following consequence of the above theorem answered [102, Question 38]
about the coincidence of ZS(X) andMS(X) (see Remark 4.1.4).

Corollary 4.2.13. Let X be an infinite set and G a subgroup of S(X) containing Sω(X).
Then ZG =MG.

We conclude with a relevant property of the groups (S(X), TX).
Call a topological group G topologically simple if G has no proper closed normal

subgroups.

Corollary 4.2.14. If G is a nontrivial Hausdorff group, X is an infinite set, and
f : (S(X), TX) → G is a continuous surjective homomorphism, then f is a topological
isomorphism.

Proof. Since (S(X), TX) is topologically simple (see Exercise 8.7.7) and f is surjective
and nontrivial, we deduce that f is a continuous isomorphism. Theorem 4.2.2 implies
that f is open.

4.3 Existence of Hausdorff group topologies

According to Proposition 3.1.20, every infinite abelian group admits a nondiscrete
Hausdorff group topology, for example, the Bohr topology. This gives:

Proposition 4.3.1. Every group with infinite center admits a nondiscrete Hausdorff
group topology.

Proof. The centerH = Z(G) of the groupG has a nondiscreteHausdorff group topology
τ, by Proposition 3.1.20. Obviously,𝒱(H ,τ)(eH ) is a filter base satisfying conditions (gt1),
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(gt2), and (gt3), so it forms a local base at eG of a nondiscreteHausdorff group topology
on G.

In 1946 Markov set the problem of the existence of a (countably) infinite group G
that admits no Hausdorff group topology beyond the discrete one. Let us call such a
group aMarkov group, or nontopologizable. Obviously, G is a Markov group precisely
whenMG is discrete, and aMarkov groupmust have finite center, by Proposition 4.3.1.

Remark 4.3.2. According to Remark 2.1.17(a) and Lemma 2.1.16, the closure of the neu-
tral element of every topological group G is always a normal subgroup of G. There-
fore, a simple topological group is either Hausdorff or indiscrete. Therefore, a simple
Markov group G admits only two group topologies, the discrete and the indiscrete.

The equality ZG = MG established by Markov for countable groups G was in-
tended to help in finding a countably infinite Markov group G. Indeed, a countable
group G is Markov precisely when ZG is discrete. Nevertheless, Markov failed in build-
ing a countable group G with discrete Zariski topology. This was done much later, in
1980, by Ol′shanskii [222] making use of the so-called Adian groups A = 𝒜(m, n) (con-
structed by Adian to negatively resolve the famous 1902 Burnside problem on finitely
generated groups of finite exponent).

In order to sketch here Ol′shanskii’s elegant short proof, we need to give first a
description of𝒜(m, n).

Example 4.3.3 ([222]). Letm andnbe odd integers≥ 665. TheAdian groupA = 𝒜(m, n)
has the following properties:
(a) A is generated by n elements;
(b) A is torsion-free;
(c) the center C of A is infinite cyclic;
(d) the quotient A/C is infinite, of exponentm (i. e., ym ∈ C for every y ∈ A).

The finitely generated infinite quotient A/C of exponentm negatively resolves the
Burnside problem.

Ol′shanskii used the group A = 𝒜(m, n), which is countable by (a), and its sub-
group Cm := {cm: c ∈ C} as follows:

Theorem 4.3.4. Let m and n be odd integers ≥ 665 and A = 𝒜(m, n). The group G =
A/Cm has discrete Zariski topology.

Proof. Let us see that (b), (c), and (d) jointly imply that the Zariski topology of the
infinite quotient G = A/Cm is discrete (so G is a countable Markov group). Let d be a
generator of C. Then xm ∈ C \Cm for every x ∈ A \C. Indeed, if xm = dms for s ∈ ℤ, then
(xd−s)m = eA, as d is central; by (b), xd−s = eA, so x ∈ C, a contradiction. Hence,

∀u ∈ G \ {eG},∃a ∈ C/Cm \ {eG}, such that either u = a or um = a. (4.1)
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As |C/Cm| = m, this means that every u ∈ G \ {eG} is a solution of some of the 2(m − 1)
equations in (4.1). Thus, G \ {eG} is closed in the Zariski topology ZG of G. Therefore,
ZG is discrete.

Now we recall an example, due to Shelah, of an uncountable nontopologizable
group. It appeared somewhat earlier than the above ZFC-example of Ol′shanskii.

Example 4.3.5 ([260]). Under CH, there exists a group G of size ω1 satisfying the fol-
lowing conditions (a) (withm = 10000) and (b) (with n = 2):
(a) there existsm ∈ ℕ such that Am = G for every subset A of G with |A| = |G|;
(b) for every subgroupH ofGwith |H| < |G|, there exist n ∈ ℕ+ and x1, . . . , xn ∈ G such

that the intersection⋂ni=1 x
−1
i Hxi is finite.

To see that G is a Markov group (i. e., MG is discrete), assume that T is a Hausdorff
group topology on G. There exists a T-neighborhood V of eG with V ̸= G. Choose a
W ∈ 𝒱T (eG) withW ⋅ ⋅ ⋅W⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

m
⊆ V . Now V ̸= G and (a) yield |W | < |G|. Let H = ⟨W⟩. Then

|H| ≤ |W | ⋅ω < |G|. By (b), the intersectionO = ⋂ni=1 x
−1
i Hxi is finite for some n ∈ ℕ+ and

x1, . . . , xn ∈ G. Since each x−1i Hxi is a T-neighborhood of eG, this proves that eG ∈ O ∈ T.
Since T is Hausdorff and O is finite, it follows that {eG} is T-open, and therefore T is
discrete.

Hesse showed in [173] that the use of CH in Shelah’s construction of a Markov
group of size ω1 can be avoided.

One can see that even the weaker form of (a) with m depending on a subset A of
G with |A| = |G| yields that every proper subgroup of G has size < |G|. In the case
|G| = ω1, the groups with this property are known as Kurosh groups. By the time when
Shelah’s paper appeared, the existence of Kurosh groups was an open problem. The
group G built by Shelah (see Example 4.3.5) is a Kurosh group. Actually, it is a Jónsson
semigroup of size ω1, i. e., an uncountable semigroup whose proper subsemigroups
are countable (the existence of Jónsson semigroupswas an open problemaswell). The
group G by Shelah furnished also the first consistent example to a third open problem
that we discuss in item (c) of the next remark.

Remark 4.3.6. We list someproperties of Shelah’s groupG described inExample 4.3.5.
(a) The group G is simple. Indeed, assume that N is a proper normal subgroup of G.

Since G is a Kurosh group, |N | < |G|. Then Example 4.3.5(b) implies that N is fi-
nite. Hence, every proper normal subgroup of G is finite. Since G is torsion-free
(see [260]), we deduce that N is trivial.

(b) Clearly, G has no maximal subgroups, as for every proper subgroup H of G one
has |H| < |G|, so any x ∈ G \H gives rise to a larger subgroup H1 = ⟨H , x⟩ of size at
most max{|H|,ω}, hence |H1| < |G|. Therefore, Fratt(G) = G.
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(c) Since the diagonal subgroup ΔG of G × G is a maximal subgroup (see Exer-
cise 4.5.15), this shows that taking the Frattini subgroup “does not commute”with
taking finite direct products, in the sense that Fratt(G × G) ̸= Fratt(G) × Fratt(G) =
G × G.

In conclusion, it is good to mention the following nice result of Zelenyuk [291].

Theorem 4.3.7. Every infinite group admits a nondiscrete Hausdorff topology τ such
that (G, τ) is a quasitopological group.

The Markov and Zariski topologies cannot provide an alternative solution to this
issue, since they need not beHausdorff (in fact, they are never Hausdorff ifG is infinite
and abelian).

Sipacheva showed in [261] that an appropriate version of Shelah’s example can
produce, under the assumption of CH, a group G withMG ̸= ZG.

4.4 Extension of group topologies

The problem of the existence of Hausdorff nondiscrete group topologies can be con-
sidered also as a problem of extension of Hausdorff nondiscrete group topologies.

Remark 4.4.1. The theory of extensions of topological spaces is well understood. If a
subset Y of a set X carries a topology τ, then it is easy to extend τ to a topology τ∗ on
X such that (Y , τ) is a subspace of (X, τ∗).

The easiest way to do it is to considerX = Y ∪(X \Y) as a partition of the new space
(X, τ∗) into clopen sets and define the topology of X \Y arbitrarily. Usually, one prefers
to define the extension topology τ∗ on X in such a way to have Y dense in X. In such a
case the extensions of a given space (Y , τ) can be described by means of appropriate
families of open filters of Y (i. e., filters on Y having a base of τ-open sets).

The counterpart of this problem for groups and group topologies is more compli-
cated because of the presence of the group structure. Indeed, let H be a subgroup of
a group G and assume that τ is a group topology of H. Now one has to build a group
topology τ∗ on G such that (H , τ) is a topological subgroup of (G, τ∗).

The first idea to extend τ is to imitate the first case of extension considered above
by declaring the subgroup H a τ∗-open topological subgroup of the new topological
group (G, τ∗). Let us note that this would immediately determine the topology τ∗ in
a unique way. Indeed, every coset gH of H in G must carry the topology transported
fromH to gH by the translation gt:G → G, x → gx; this means that the τ∗-open sets of
gH must have the form gU, where U is an open set of (H , τ) and g ∈ G. In other words,
the family {gU : 0 ̸= U ∈ τ, g ∈ G} is a base of τ∗.

This idea has worked in the proof of Corollary 4.3.1 where H is the center of G.
Indeed, this idea works in the following more general case.
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Lemma 4.4.2 ([103]). Let H be a subgroup of a group G such that G = HcG(H). Then for
every group topology τ on H, the above described topology τ∗ is a group topology on G
such that (H , τ) is an open topological subgroup of (G, τ∗).

Proof. The first two axioms, (gt1) and (gt2), on the neighborhood base are easy to
check. For (gt3), pick a basic τ∗-neighborhood U of eG in G. Since H is τ∗-open, we
can assume without loss of generality that U ⊆ H, so U is a τ-neighborhood of eG. Let
x ∈ G. We have to produce a τ∗-neighborhood V of eG in G such that x−1Vx ⊆ U . By
our hypothesis, there exist h ∈ H and z ∈ cG(H) such that x = hz. Since τ is a group
topology on H, there exists V ∈ 𝒱H ,τ(eG) such that h−1Vh ⊆ U . Then, as z ∈ cG(H),
x−1Vx = z−1h−1Vhz ⊆ z−1Uz = U . This proves that τ∗ is a group topology on G.

Clearly, the condition G = HcG(H) is satisfied when H is a central subgroup of G.
It is satisfied also when H is a direct summand of G. On the other hand, subgroups H
satisfying G = HcG(H) are normal. The condition G = HcG(H) imposed in the above
lemma for the extension problem is only sufficient, it need not be necessary. In Ex-
ample 4.4.8 we show that the extension problemmay have negative outcome even for
subgroups H of index 2.

Our next theorem shows that the difficulties of the extension problem are not hid-
den in the special features of the extension τ∗.

Theorem 4.4.3 ([103]). Let H be a normal subgroup of the group G and let τ be a group
topology on H. Then the following conditions are equivalent:
(a) the extension τ∗ is a group topology on G;
(b) τ can be extended to a group topology of G;
(c) for every x ∈ G, the automorphism ϕx ↾H of H induced by the inner automorphism

ϕx of G is τ-continuous.

Proof. (a)⇒(b) is obvious, while (b)⇒(c) follows from the fact that the conjugations
are continuous in any topological group (see Lemma 2.1.6).

(c)⇒(a) Assume that all automorphisms of H induced by the conjugation by ele-
ments of G are τ-continuous. Take the filter of all neighborhoods of eG in (H , τ) as a
base of neighborhoods of eG in the group topology τ∗ of G. This works since we only
have to check the axiom (gt3), i. e., to find for every x ∈ G and every τ∗-neighborhood
U of eG a τ∗-neighborhood V of eG such that x−1Vx ⊆ U . Since we can choose U ,V
contained in H, this immediately follows from our assumption of τ-continuity of
the restrictions to H of the conjugations in G and property (gt3) for the topological
group H.

Now we see that, under the hypotheses of the above theorem, one can always
extend τ if it makes all automorphisms of the group H continuous:
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Corollary 4.4.4. If H is a normal subgroup of a group G and τ is a group topology on H
such that every automorphism of H is τ-continuous, then τ can be extended to a group
topology on G.

Corollary 4.4.5. For a Hausdorff group (H , τ), the following conditions are equivalent:
(a) every automorphism of H is τ-continuous;
(b) for every group G containing H as a normal subgroup, τ can be extended to a group

topology on G;
(c) τ can be extended to a group topology on G = H ⋊ Aut(H).

Proof. (a)⇒(b) follows from Corollary 4.4.4 and (b)⇒(c) is trivial.
(c)⇒(a) Extend τ to a group topology τ′ on G and note that the automorphisms of

H act as restrictions of inner automorphisms of G on H. As the inner automorphisms
of G are τ′-continuous in G, their restrictions to H are obviously τ-continuous.

Corollary 4.4.4 gives a series of examples when the extension problem has always
a positive solution.

Example 4.4.6. Let p be a prime number. If the group of p-adic integers N = 𝕁p is a
normal subgroup of some group G, then the p-adic topology of N can be extended to
a group topology on G. Indeed, it suffices to note that if ξ :N → N is an automorphism
ofN, then obviously ξ (pnN) = pnN . Since the subgroups pnN define the topology ofN,
this proves that every automorphism of N is continuous. Now Theorem 4.4.3 applies.

Clearly, the p-adic integers can be replaced by any topological group N such that
every automorphismofN is continuous (e. g., products of the form∏p∈ℙ 𝕁

kp
p ×Fp, where

kp < ω and Fp is a finite abelian p-group).

It remains to see that the extension problem cannot be resolved for certain triples
G,H , τ of a group G, its normal subgroup H, and a group topology τ on H. By Corol-
lary 4.4.4, to produce an example when the extension is not possible, we need to pro-
duce a triple G,H , τ such that at least some conjugation by an element of G is not
τ-continuous when considered as an automorphism of H. Inspired by Corollary 4.4.5,
we are going to use semidirect products. So, to produce the required example of such
a tripleG,H , τ, it suffices to find a group K and a group homomorphism θ:K → Aut(H)
such that at least one of the automorphisms θ(k) ofH is τ-discontinuous. One can sim-
plify the construction by taking the cyclic groupK1 = ⟨k⟩ instead of thewhole groupK,
by choosing k ∈ K such that the automorphism θ(k) ofH is not τ-continuous. A further
simplification can be possibly arranged by taking k in such a way that the automor-
phism f = θ(k) ofH is also an involution, i. e., f ∘f = idH . ThenH is an index 2 subgroup
of G.

The following lemma is needed to build an example as above. Its proof exploits
the fact that the arcs are the only connected subsets of 𝕋. Hence, χ ∈ �̂� sends any arc
to an arc, and end points to end points.
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Lemma 4.4.7. The only topological automorphisms χ:𝕋→ 𝕋 are ±id𝕋.

Proof. For n ∈ ℕ+, let cn = q0(1/2n) be the generators of ℤ(2∞) ≤ 𝕋. Then c1 = q0(1/2)
is the only element of𝕋 of order 2, hence χ(c1) = c1. Therefore, the arc A1 = q0([0, 1/2])
either goes onto itself, or goes onto its symmetric image −A1. Assume that χ(A1) = A1.
Then χ(c2) = c2 as o(g(c2)) = 4 and ±c2 are the only elements of order 4 of 𝕋. Now the
arc A2 = [0, c2] is sent to itself by χ, hence for c3 we must have χ(c3) = c3 as c3 is the
only element of order 8 on the arc A2. We see in the same way that χ(cn) = cn for every
n ∈ ℕ+, hence χ is identical on the whole subgroup ℤ(2∞). As this subgroup is dense
in 𝕋, we conclude that χ = id𝕋. In the case χ(A1) = −A1, we replace χ by −χ and the
previous proof gives −χ = id𝕋, that is, χ = −id𝕋.

Example 4.4.8 ([103]). Here is an example of a topological abelian group (H , τ) admit-
ting an involution f that is not τ-continuous. Then the triple G,H , τ such that τ cannot
be extended to G is obtained by simply taking G = H ⋊ ⟨f ⟩, where the involution f acts
onH. Take as (H , τ) the circle group𝕋with the usual topology. Then𝕋 is algebraically
isomorphic to (ℚ/ℤ) ⊕ ℚ(c), so 𝕋 has 2c involutions. Of these, only the involutions
±id𝕋 of 𝕋 are continuous, by Lemma 4.4.7. A more general example will be given in
Chapter 13.

4.5 Exercises

Exercise 4.5.1. Prove that for every infinite set X and every group topology on S(X) the
stabilizers Sx with x ∈ X are either closed or dense.
Hint. Use the fact that Sx is a maximal subgroup of S(X) by Lemma 4.2.4.

Exercise 4.5.2. Show that (G,ZG) and (G,MG) are quasitopological groups.

Exercise 4.5.3. Show that if (G, ⋅) is an abelian group, then every elementary algebraic
set of G has the form {x ∈ G: xn = a} for a ∈ G and n ∈ ℕ.

Exercise 4.5.4. Show that in an abelian group G every nonempty set in EG has the
form a + G[n], for some a ∈ G and n ∈ ℕ+. Deduce from this that every descending
chain in EG stabilizes, and that EG is stable under finite, and consequently arbitrary,
intersections.
Hint. For the first assertion, use Exercise 4.5.3. To prove the second assertion, it suffices to note that
every descending chain of subgroups of G of the form G[n] stabilizes. Furthermore, to prove that EG
is stable under finite intersections, show that if I = (a + G[n]) ∩ (b + G[m]) ̸= 0, then I = c + G[d] for
an appropriate c ∈ G and d = (n,m), the greatest common divisor of n andm.

Exercise 4.5.5 ([103]).∗ Show that ZG =MG for an abelian group G.

Exercise 4.5.6. Let G be an abelian group.
(a) Prove that ZG coincides with the cofinite topology γG in case G is torsion-free.
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(b) Show that the conclusion of item (a) remains true alsowhen rp(G) is finite for every
prime p or when the group G has exponent p for some prime p.

(c) Prove that if ZG = γG, then rp(G) is finite for every prime p or the group G has
exponent p for some prime p.

Hint. (b) In case G has prime exponent p, deduce with Exercise 4.5.4 that G and the singletons are the
only elementary algebraic sets ofG. In the second case show that for every prime p the subgroupG[pn]
is finite for every n ∈ ℕ and deduce that every subgroup of the form G[m] is finite.

(c) Assume thatZG = γG and thatG is not of prime exponent. Then for everyprimep, the subgroup
G[p]must be finite, so rp(G) is finite.

Exercise 4.5.7. Show that in an abelian group G every descending chain of ZG-closed
sets of G stabilizes and deduce that AG = E

∪
G.

Hint.Obviously,E∪G is stable under taking finite intersections. We need to show that every descending
chain inE∪G stabilizes. Assume for a contradiction that there exists a descending chain

F1 ⊃ F2 ⊃ ⋅ ⋅ ⋅ ⊃ Fn ⊃ ⋅ ⋅ ⋅ (4.2)

inE∪G.We canassumewithout loss of generality thatF1 = E ∈ EG. (IfF1 = E1∪⋅ ⋅ ⋅∪Ek withEi ∈ EG, then
at least one of the descending chains {Ei ∩ Fn: n ∈ ℕ+} does not stabilize, and so we can replace (4.2)
by the chain E := Ei ⊃ Ei ∩ F2 ⊃ ⋅ ⋅ ⋅ ⊃ Ei ∩ Fn ⊃ ⋅ ⋅ ⋅.) SinceEG satisfies the descending chain condition,
we can assume additionally that E = F1 is minimal with this property. Nowwrite F2 = E′1 ∪ ⋅ ⋅ ⋅∪E

′
l with

E′i ∈ EG and consider for each i ∈ {1, . . . , l} the chain E ⊃ E′i ⊃ E
′
i ∩ F3 ⊃ ⋅ ⋅ ⋅ ⊃ ⋅ ⋅ ⋅. Since the inclusion

E ⊃ E′i is proper, the chain E′i ⊃ E
′
i ∩ F3 ⊃ ⋅ ⋅ ⋅ ⊃ ⋅ ⋅ ⋅ stabilizes by our assumption of minimality of E.

Since all these l-many chains stabilize, also (4.2) stabilizes.

Exercise 4.5.8. Show that for an abelian groupG the space (G,ZG) is Noetherian (i. e.,
every ascending chain of ZG-open sets of G stabilizes) and hereditarily compact (i. e.,
every subspace of (G,ZG) is compact).
Hint. According to Exercise 4.5.7, descending chains of ZG-closed sets of G stabilize. This means that
the space (G,ZG) is Noetherian. Since this property is stable under taking arbitrary subspaces, this
proves that (G,ZG) is hereditarily compact.

Exercise 4.5.9. Prove that ZG is Hausdorff for an abelian group G if and only if G is
finite.
Hint. Assume that (G,ZG) is Hausdorff. Then, in view of Exercise 4.5.8, every subset of G is compact,
so closed. This means that (G,ZG) is discrete. Since (G,ZG) is also compact, we deduce that G is finite.

Exercise 4.5.10. Prove that the Zariski topology is not functorial, in the sense that
group homomorphisms need not be continuous when both the domain and the
codomain carry their Zariski topology.
Hint.Notefirst that if f :X → Y is amapbetween two topological spaces carrying their cofinite topology,
then f is continuous if and only if it is finitely-many-to-one.

Consider the canonical projection q:ℚ → ℚ/ℤ. By Exercise 4.5.6, the Zariski topology of both
ℚ andℚ/ℤ is the cofinite topology. According to the general fact we mentioned above, ker q must be
finite. But ker q = ℤ is infinite.

Another easy example can be obtained by taking any infinite group G of prime exponent and an
infinite proper subgroup H of G. Then the canonical projection q:G → G/H is not continuous by the
above argument.
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Exercise 4.5.11. LetG be an abelian group andm ∈ ℕ+. Prove that the endomorphism
μm:G → G, x → mx, is ZG-continuous.
Hint. By Exercise 4.5.3, every E ∈ EG has the form E = {x ∈ G: nx = a} for appropriate a ∈ G and n ∈ ℕ.
Deduce that μ−1m (E) ∈ EG.

Exercise 4.5.12. For an abelian group G and a subgroup H of G, prove that ZH coin-
cides with ZG ↾H .
Hint. Check that E ∩ H ∈ EH for all E ∈ EG, by applying Exercise 4.5.3.

Exercise 4.5.13.∗ Prove that for an abelian group G, ZG is completely determined by
its subsets that carry the cofinite topology in the following sense: an infinite subset A
of G is a ZG-atom if its induced topology is the cofinite one (see [104]).
(a) Prove that, for an infinite subset M of G, g ∈ MZG if and only if either g ∈ M or

there exists a ZG-atom A ⊆ M such that {g} ∪ A is still a ZG-atom.
(b) Deduce from (a) that every infinite abelian group G contains a ZG-atom.

Hint. A proof of (a) can be found in [104].

Exercise 4.5.14. LetG = ∏p∈ℙ 𝕁
kp
p ×Fp, where kp ∈ ℕ and Fp is a finite abelian p-group.

Endow G with the product topology and show that all endomorphisms of G are con-
tinuous.
Hint. Use the fact that the product topology of G coincides with νG.

Exercise 4.5.15. Show that for the group G from Example 4.3.5 the diagonal subgroup
ΔG of G × G is a maximal subgroup.
Hint. Assume that H is a subgroup of G × G properly containing ΔG. Then H0 = {h ∈ G: (h, eG) ∈ H} is
a nontrivial subgroup of G. Let us see that H0 is a normal subgroup of G, so H0 = G, since G is simple.
This would imply G × {eG} ⊆ H which, along with ΔG ⊆ H, would entail H = G × G.

Pick g ∈ G and h ∈ H0, so that (h, eG) ∈ H. Then (g, g), (g−1, g−1) ∈ H. Hence,

(g, g)(h, eG)(g
−1, g−1) = (ghg−1, eG) ∈ H ,

so ghg−1 ∈ H0.

Exercise 4.5.16.∗ Let X be an infinite set. Prove that:
(a) if H is a subgroup of S(X) containing SF for some finite F of X and F is not

H-invariant, then there is a proper subset F′ of F such that H ⊇ SF′ ;
(b) Aω(X) := ⋃{A(F): F ∈ [X]<ω} is dense in (S(X), TX).

Hint. (a) Argue by induction on n = |F| (for n = 1 use Lemma 4.2.4). See [99, Proposition 7.1.1] for more
detail.

(b) We prove that SFAω(X) = S(X) for every F ∈ [X]<ω. Since Aω(X) is a normal subgroup of S(X),
each SFAω(X) is a subgroup of S(X).

We proceed by induction on n = |F|. The case n = 1 follows from Lemma 4.2.4. Assume that |F| =
n > 1 and let H = SFAω(X). Clearly, F is not Aω(X)-invariant and so not H-invariant. By item (a), there
exists a proper subset F′ of F such that H ⊇ SF′ . So, by inductive hypothesis, H = SF′Aω(X) = S(X).
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4.6 Further readings, notes, and comments

Definition 4.1.1 is due to Markov [209], but the Zariski topology was explicitly defined
only in [42] under the name verbal topology. Our preference goes for the term Zariski
topology coined by most authors as in [26]. The Markov topology was introduced
in [102, 103]. Various applications of these topologies are given in [105, 107], more
details can be found in the survey papers [113, 114].

The property from Exercise 4.5.13 shows the analogy between the Zariski topology
of an abelian group and metric (or, more generally, Fréchet–Urysohn) spaces, where
the converging sequences completely describe closures, hence the topology (see [104]
for further details).

Following Markov [209], call a subset A of a group G potentially dense in G if there
exists a Hausdorff group topology τ on G such that A is τ-dense in G. Markov proved
that every infinite subset of ℤ is potentially dense in ℤ and asked which subsets of a
groupG are potentially dense inG. The Zariski topologywas applied in [105] for a com-
plete answer in the case of countable subsets as follows. First, one can easily see that
a potentially dense subsetA of a groupG is also ZG-dense;moreover, ifA is countable,
then necessarily |G| ≤ 2c, in view of Lemma 5.1.5. It was proved in [105] that these nec-
essary conditions turn out to be also sufficient in caseG is abelian: a countable subset
A of an abelian group G is potentially dense if and only if A is ZG-dense and |G| ≤ 2c.

Further applications of the Zariski topology will be given in Chapter 10.
The following questions, inspired by Theorem 4.3.7, seem to be open.

Question 4.6.1. Does every infinite group G admit a nondiscrete Hausdorff topology
τ such that (G, τ) is a paratopological group? In particular, do the groups from Theo-
rem 4.3.4 and Example 4.3.5 admit such topologies?

More information on extension of group topologies can be found in [48, 49].

Note added in proofs September 20, 2021: Recently Shakhmatov and Yañez proved
that ZF = MF for every free non-abelian group F, obtaining in this way a positive
answer, for free non-abelian groups, to the Markov problem on coincidence of these
two topologies (seeRemark4.1.4). Theproof is heavily basedon the reflectionprinciple
characterizing the groups G with ZG =MG in [103].
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5 Cardinal invariants and metrizability

5.1 Cardinal invariants of topological groups

The cardinal invariants of topological groups are cardinal numbers, say ρ(G), associ-
ated to every topological group G such that ρ(G) = ρ(H) for topologically isomorphic
groups G and H. For example, the cardinality |G| is the simplest cardinal invariant.
The cardinal invariants that we study here for topological groups G are the weight
w(G), the character χ(G), the pseudocharacter ψ(G), and the density character d(G)
(see §B.3). Due to the homogeneity of topological groups, the character χ(G) coincides
with the character χ(G, eG) at eG.

Remark 5.1.1. Let G be a topological group. Here we pay special attention to the case
when the cardinal invariants w(G), χ(G), and d(G) are finite.
(a) Assume that d(G) is finite. If X is a finite dense subset of G and G is Hausdorff

(i. e., hG = G), then X = G (as X is closed), so G is finite discrete. Otherwise, if G
is not Hausdorff, G need not have a finite dense subgroup (of size d(G)). Indeed,
take G = ℤwith the topology given by taking 2ℤwith the indiscrete topology and
declaring 2ℤ open in ℤ; in particular, hG = ℤ/2ℤ is discrete. Now d(G) = 2 and G
has no finite dense subgroups.

(b) In particular, d(G) = 1 if and only if G is indiscrete, if and only if w(G) = 1. More-
over, both w(G) and d(G) may attain all possible finite values m ∈ ℕ+: take, for
example, the discrete groupℤ(m) with w(ℤ(m)) = d(ℤ(m)) = m.

(c) On the other hand, either χ(G) = 1 or χ(G) is infinite, and the same applies toψ(G).
Moreover, χ(G) = 1 if and only if hG is discrete (i. e., there exists a local base at eG
in G consisting of a single element N, and so N = {eG}). This occurs, in particular,
when G is discrete or when G is indiscrete.

(d) More generally, χ(G) = χ(hG), d(G) = d(hG), and w(G) = w(hG). Combining with
(a), we conclude that hG is finite if and only if d(G) is finite, in such case d(G) =
w(G) = |hG| ≥ χ(G) = 1. If hG is infinite, then d(G) is infinite as well, and so G has
a dense subgroup of size d(G).

We start relating the local bases at eG in G to those of a subgroup H of G:

Lemma 5.1.2. If H is a subgroup of a topological group G and ℬ is a base (respectively,
local base at eG) of G, then {U ∩H :U ∈ ℬ} is a base (respectively, local base at eG) of H.

Now we consider the case when H is a dense subgroup of G.

Lemma 5.1.3. If H is a dense subgroup of a Hausdorff group G and ℬ is an open local
base at eG in H, then {U

G
:U ∈ ℬ} is a local base at eG in G.

Proof. Since G is a regular space by Proposition 3.1.15, the closed neighborhoods of eG
in G form a local base at eG in G. Hence, for V ∈ 𝒱G(eG), one can find V0 ∈ 𝒱G(eG) such

https://doi.org/10.1515/9783110654936-005
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that V0 ⊆ V . Since V0 ∩ H is a neighborhood of eG in H, there exists U ∈ ℬ such that
U ⊆ V0∩H. By Lemma 5.1.2, and sinceU is open inH, there exists an openW ∈ 𝒱G(eG)
such that U = W ∩H andW ⊆ V0. Hence, by Lemma B.1.19, UG

= WG as H is dense in
G andW is open in G. Thus, UG

= WG
⊆ VG

0 ⊆ V ∈ 𝒱G(eG).

Proposition 5.1.4. Let H be a dense subset of a topological group G and let ℬ be a local
base at eG in G consisting of symmetric neighborhoods. Then {hU :U ∈ ℬ, h ∈ H} is a
base of the topology of G.

Proof. Let x ∈ G and let O be an open set of G containing x. Then there exists a sym-
metric U ∈ ℬ with xUU ⊆ O. Pick h ∈ H ∩ xU . Then x−1h ∈ U, so h−1x ∈ U−1 = U .
Therefore, x ∈ hU = xx−1hU ⊆ xUU ⊆ O.

Lemma 5.1.5. Let G be a topological group. Then:
(a) d(G) ≤ w(G) ≤ 2d(G);
(b) in case G is Hausdorff, ψ(G) ≤ |G| ≤ 2w(G).

Proof. (a) To see that d(G) ≤ w(G), choose a base ℬ of the topology on G with |ℬ| =
w(G), and for every 0 ̸= U ∈ ℬ pick a point dU ∈ U . Then the set D = {dU :U ∈ ℬ} is
dense in G and |D| ≤ w(G).

To prove thatw(G) ≤ 2d(G), note that in case hG is finite this obviously follows from
Remark 5.1.1(d), hence we can assume in the sequel that hG is infinite. Consequently,
G has a dense subgroup D of size d(G). According to Proposition 3.1.15, G is a regular
space, hence everybaseℬ of the topologyonG consistingof open subsets ofG contains
a base ℬr of the same size consisting of regular open subsets of G. Fix such a base ℬr
of size w(G). If U ,V ∈ ℬr and U ∩ D = V ∩ D, then U = U ∩ D = V ∩ D = V . With U and
V being regular open, the equality U = V implies U = V . Hence, the map ℬr → 𝒫(D),
U → U ∩ D, is injective, so w(G) ≤ 2d(G).

(b) Since G is T1, the complement of every singleton {x}, where x ∈ G \ {eG}, is an
open neighborhood of eG in G. The intersection of these neighborhoods is {eG}, and
this witnesses the inequality ψ(G) ≤ |G|.

Let ℬ a base of the topology on G with |ℬ| = w(G). To every point x ∈ G assign
the set Ox = {U ∈ ℬ: x ∈ U}. Then the axiom T2 guarantees that the map G → 𝒫(ℬ),
x → Ox, is injective. Therefore, |G| ≤ 2w(G).

Remark 5.1.6. Three observations related to Lemma 5.1.5(b) are in order here.
(a) Let G be a dense cyclic subgroup of 𝕋c (see Theorem 9.4.8). Then w(G) = w(𝕋c) =

c = 2|G|, in view of Lemma 5.1.8(b) and Theorem 5.1.15.
(b) Although χ(G) does not appear in Lemma 5.1.5(b), one can say at least thatψ(G) ≤

χ(G) ≤ w(G) for a Hausdorff group G, but one cannot prove that χ(G) ≤ |G|. Ac-
tually, we shall see that χ(G#) = 2|G| > |G| for every infinite abelian group G (see
Exercise 13.7.2).
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(c) Without the assumption that G is Hausdorff, one can only prove that |hG| ≤ 2w(G)

in view of Remark 5.1.1(d), while |G| = |core(G)| ⋅ |hG| ≤ |core(G)| ⋅ 2w(G). So, the
inequality |G| ≤ 2w(G) fails for every indiscrete G with |G| > 2.

Now we see another precise relation among the weight, character, and density
character.

Lemma 5.1.7. Let G be a topological group. Then w(G) = χ(G) ⋅ d(G).

Proof. The inequality w(G) ≥ χ(G) is obvious. The inequality w(G) ≥ d(G) was proved
in Lemma 5.1.5(a). This gives w(G) ≥ χ(G) ⋅ d(G).

To prove the inequality w(G) ≤ χ(G) ⋅ d(G), pick a dense subset D of G of size d(G)
and a base ℬ of symmetric open sets of 𝒱(eG) with |ℬ| = χ(G), and apply Proposi-
tion 5.1.4.

The next lemma concerns the behavior of the cardinal invariants with respect to
taking subgroups.

Lemma 5.1.8. Let H be a subgroup of a topological group G. Then:
(a) w(H) ≤ w(G) and χ(H) ≤ χ(G); moreover, ψ(H) ≤ ψ(G) if G is T2;
(b) if H is dense in G, then χ(G) = χ(H), w(G) = w(H) and d(G) ≤ d(H).

Proof. (a) This follows from Lemma 5.1.2, as |{U ∩ G:U ∈ ℬ}| ≤ |ℬ| for every base
(respectively, local base at eG)ℬ of the topology onG. A similar argument applies forψ.

(b) We prove first χ(G) = χ(H). The inequality χ(G) ≥ χ(H) follows from item (a).
To prove the opposite inequality, fix an open local base ℬ of 𝒱H (eG) with |ℬ| = χ(H).
By Lemma 5.1.3, ℬ∗ = {UH

:U ∈ ℬ} is a base of 𝒱G(eG). Since |ℬ∗| ≤ |ℬ| = χ(H), this
proves χ(G) ≤ χ(H).

The inequality d(G) ≤ d(H) follows from the fact that the dense subsets of H are
dense in G as well.

The inequality w(G) ≥ w(H) follows from item (a). By the above argument,
χ(G) = χ(H). Now w(G) = χ(G) ⋅ d(G) ≤ χ(H) ⋅ d(H) = w(H), where the first and
the last equality follow from Lemma 5.1.7 and the inequality from d(G) ≤ d(H).

The strict inequality d(G) < d(H) in item (b) of Lemma 5.1.8 is possible. For ex-
ample, G = 𝕋c has d(𝕋c) = ω, by Remark 5.1.6(a). On the other hand, the Σ-product
H = Σ𝕋c is a dense subgroup of G with d(H) > ω.

Concerning the pseudocharacter, the equality ψ(H) = ψ(G) may fail in general
(see Exercise 5.4.5).

Next we see that these cardinal invariants behave well with respect to continuous
images.

Lemma 5.1.9. Let G,H be topological groups. If f :G → H is a continuous surjective
homomorphism, then d(H) ≤ d(G). If f is open, then also w(H) ≤ w(G) and χ(H) ≤ χ(G).
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Proof. IfD is a dense subset ofG, then f (D) is a dense subset ofH with |f (D)| ≤ |D|. This
proves the first assertion. The second assertion follows from the fact that if ℬ is a base
(respectively, a local base at eG) of the topology on G, then ℬ0 = {f (B):B ∈ ℬ} is a base
(respectively, local base at eH ) of the topology on H, if f is open, and |ℬ0| ≤ |ℬ|.

The inequality w(H) ≤ w(G)may fail if f is not open:

Example 5.1.10. Since in Lemma 5.1.9 H is a continuous image of G by means of
the continuous surjective homomorphism f :G → H, the canonical projection G →
G/ ker f is open, and there exists a continuous isomorphism G/ ker f → H (which is
open if and only if f is open), we have to find a group G with two group topologies
τ1 < τ2 and w(G, τ1) < w(G, τ2).
(a) Let G be an infinite abelian group and τ2 = δG, so thatw(G, τ2) = |G|. Moreover, let

τ1 = BG. Then w(G, τ1) = w(G#) = 2|G| > |G| = w(G, τ2), by Corollary 13.3.12.
(b) Let G be a countably infinite abelian group and consider τ2 = δG, so w(G, τ2) =

ω. In view of Remark 5.3.10(a), there exists a T-sequence A = {an}n∈ℕ of G (see
Definition 5.3.1). Then the topology τ1 = τ{an} (defined right after Definition 5.3.1)
is not metrizable in view of Remark 5.3.10(b), and so χ(G, τ2) = 1 < ω = w(G, τ2) <
χ(G, τ1) ≤ w(G, τ1) by Birkhoff–Kakutani theorem 5.2.17.

Now we discuss the behavior of the cardinal invariants d(−),w(−), and χ(−) with
respect to taking direct products of topological groups.

Theorem 5.1.11. If {Gi: i ∈ I} is a family of topological groups and G = ∏i∈I Gi, then
sup{d(Gi): i ∈ I} ≤ d(G) ≤ |I| ⋅ sup{d(Gi): i ∈ I}.

Proof. Applying Lemma 5.1.9 to the projection pi:G → Gi, we deduce d(Gi) ≤ d(G).
Hence, sup{d(Gi): i ∈ I} ≤ d(G).

For each i ∈ I, let Di be a dense subset of Gi containing eGi
and such that

d(Gi) = |Di|. Then D =⨁i∈I Di is a dense subset of G with
|D| ≤ |I| ⋅ sup{|Di|: i ∈ I} = |I| ⋅ sup{d(Gi): i ∈ I}.

So, d(G) ≤ |I| ⋅ sup{d(Gi): i ∈ I}.

Example 5.1.12. The topological groups G with d(G) ≤ ω are precisely the separable
groups. If {Gi: i ∈ I} is a family of separable groups, then d(∏i∈I Gi) ≤ max{ω, |I|}, by
Theorem 5.1.11.

A stronger, yet nontrivial, inequality holds for this type of products in view of
Hewitt–Marczewski–Pondiczery theoremB.3.15: for an infinite cardinal κ, the inequal-
ity d(∏i∈I Gi) ≤ κ holds, whenever |I| ≤ 2κ and all groups Gi are separable; in partic-
ular,∏i∈I Gi is separable whenever |I| ≤ c. We give a proof of this result for compact
abelian groups in Exercise 14.5.2 by means of the Pontryagin-van Kampen duality.

Remark 5.1.13. (a) If {Gi: i ∈ I} is a family of topological groups, then G = ∏i∈I Gi is
indiscrete if and only if each Gi is indiscrete; in view of Remark 5.1.1(b), this can
be equivalently stated as w(G) = 1 if and only if w(Gi) = 1 for every i ∈ I.
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(b) If G1,G2 are topological groups, G = G1 × G2 and G2 is indiscrete, then hG ≅ hG1,
and hence d(G) = d(G1), χ(G) = χ(G1), and w(G) = w(G1).

(c) More generally, consider a family {Gi: i ∈ I} of topological groups and G = ∏i∈I Gi.
Let J = {j ∈ I :Gj nonindiscrete}, let GJ = ∏i∈J Gi and G0 = ∏i∈I\J Gi (we put G0 =
{eG} if J = I, and similarly GJ = {eG} if J = 0). Then G = GJ ×G0 and G0 is indiscrete
according to item (a). Therefore, χ(G) = χ(GJ), d(G) = d(GJ) and w(G) = w(GJ) by
item (b).

By Remark 5.1.13(c), it is safe to assume in the sequel that all topological groups
appearing in the following products are nonindiscrete.

Lemma 5.1.14. Let n ∈ ℕ+, let G1, . . . ,Gn be topological groups and G = G1 × ⋅ ⋅ ⋅ × Gn.
Then

χ(G) = χ(G1) ⋅ ⋅ ⋅ χ(Gn) and w(G) = w(G1) ⋅ ⋅ ⋅w(Gn).

If the groups Gi are Hausdorff, then ψ(G) = ψ(G1) ⋅ ⋅ ⋅ψ(Gn).

Proof. Weprove the assertions for n = 2. Then one can proceed by induction. Letℬ1,ℬ2
be local bases at eG1

, eG2
, respectively in G1,G2. Then

ℬ = {U × V :U ∈ ℬ1,V ∈ ℬ2}

is a local base at eG in G with |ℬ| = |ℬ1| ⋅ |ℬ2|. This shows that χ(G) ≤ χ(G1) ⋅ χ(G2). The
missing inequality χ(G1) ⋅ χ(G2) ≤ χ(G) follows from Lemma 5.1.8(a).

According to Remark 5.1.1, w(G) = w(hG), w(G1) = w(hG1), and w(G2) = w(hG2).
Since hG = hG1 × hG2, this allows us to assume from this point till the very end of the
proof that G1 and G2 are Hausdorff. If both groups are finite, then w(Gi) = |Gi|, so the
desired equality obviously holds. Assume now that at least one of the groups, say Gi,
is infinite. Then both w(Gi) and d(Gi) (hence also w(G) and d(G)) are infinite as well,
so Theorem 5.1.11 yields d(G) = d(G1) ⋅d(G2), while χ(G) = χ(G1) ⋅ χ(G2), by the first part
of the proof.

By Lemma 5.1.7, w(G) = d(G) ⋅ χ(G), so

w(G) = (d(G1) ⋅ d(G2)) ⋅ (χ(G1) ⋅ χ(G2)) =

= (d(G1) ⋅ χ(G1)) ⋅ (d(G2) ⋅ χ(G2)) = w(G1) ⋅ w(G2).

A proof, similar to the case of χ(G), applies for ψ(G).

An alternative proof of the last assertion of the above lemma can be obtained also
from Exercise 5.4.6.

In view of Lemma 5.1.14, in the sequel we can consider infinite products.

Theorem 5.1.15. Let {Gi: i ∈ I} be an infinite family of nonindiscrete topological groups
and G = ∏i∈I Gi. Then

χ(G) = |I| ⋅ sup{χ(Gi): i ∈ I} and w(G) = |I| ⋅ sup{w(Gi): i ∈ I}. (5.1)
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Moreover, if all Gi are Hausdorff, then ψ(G) = |I| ⋅ sup{ψ(Gi): i ∈ I}.

Proof. For every i ∈ I, let ℬi be a base of 𝒱Gi
(eGi
)with |ℬi| = χ(Gi). For any finite subset

J ⊆ I and for Ui ∈ ℬi when i ∈ J, let

WJ,(Ui)i∈J =∏
i∈J

Ui × ∏
i∈I\J

Gi,

which is a basic neighborhood of eG in the product topology of G. Then the family
ℬ = {WJ,(Ui)i∈J : J ⊆ I finite, Ui ∈ ℬi for i ∈ J} is a base of 𝒱G(eG) and

|ℬ| ≤ |I| ⋅ sup{|ℬi|: i ∈ I} = |I| ⋅ sup{χ(Gi): i ∈ I}.

Hence, χ(G) ≤ |ℬ| ≤ |I| ⋅ sup{χ(Gi): i ∈ I}.
Clearly, χ(Gi) ≤ χ(G) for every i ∈ I by Lemma 5.1.8(a). Hence, to prove the first

equality in (5.1), it remains to show that |I| ≤ χ(G). Let ℬ be a base of 𝒱G(eG) with
|ℬ| = χ(G). By assumption, Gi is not indiscrete for every i ∈ I. Hence, for every i ∈ I,
there exists Bi ∈ ℬ such that pi(Bi) ̸= Gi, where pi denotes the canonical projection.
To see that the mapping ϕ: I → ℬ, defined by ϕ(i) = Bi, is finitely-many-to-one (so,
|I| ≤ |ℬ|), note that by the definition of open sets in the product topology, for B ∈ ℬ the
set FB = {i ∈ I : pi(B) ̸= Gi} is finite. Since ϕ−1(B) ⊆ FB for every B ∈ ℬ, we are done.

To prove the remaining inequality in (5.1), put κ = sup{w(Gi): i ∈ I}. Clearly,w(G) ≥
w(Gi) for every i ∈ I, by Lemma 5.1.8(a). Hence, w(G) ≥ κ. Moreover, w(G) ≥ χ(G) ≥ |I|,
by the above proof. This proves the “≥” part of the second equality in (5.1). It remains
to check that w(G) ≤ |I| ⋅ κ. By Lemma 5.1.7, w(G) = d(G) ⋅ χ(G). Since d(Gi) ≤ w(Gi) ≤ κ
for every i ∈ I, Theorem 5.1.11 implies d(G) ≤ |I|⋅κ. Similarly, χ(Gi) ≤ w(Gi) ≤ κ for every
i ∈ I, so the first equality in (5.1) implies χ(G) ≤ |I| ⋅ κ. Therefore, w(G) = d(G) ⋅ χ(G) ≤
|I| ⋅ κ.

When allGi areHausdorff, a proof, similar to the case of χ(G), applies forψ(G).

The equalities in (5.1) may fail when 1 < |I| <∞.

5.2 Metrizability of topological groups
5.2.1 Pseudonorms and invariant pseudometrics in a group

Following Markov [211], we recall the following definition.

Definition 5.2.1. A pseudonorm on a group G is a function v:G → ℝ such that:
(i) v(eG) = 0;
(ii) v(x−1) = v(x) for every x ∈ G;
(iii) v(xy) ≤ v(x) + v(y) for every x, y ∈ G.

A pseudonorm v on G is a norm if it has the additional property:
(i∗) v(x) = 0 if and only if x = eG.
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If (iii) is replaced by the stronger property:
(iii∗) v(xy) ≤ max{v(x), v(y)} for every x, y ∈ G,

the (pseudo)norm is called non-Archimedean.

Remark 5.2.2. The values of a pseudonorm on a group G are necessarily nonnegative
reals, since for every x ∈ G,

0 = v(eG) = v(x
−1x) ≤ v(x−1) + v(x) = v(x) + v(x) = 2v(x).

Example 5.2.3. The simplest example of a norm is the usual norm onℝ defined by the
absolute value |a| for every a ∈ ℝ.

Remark 5.2.4. The norms defined on a real or complex vector space V are obviously
norms of the underlying abelian group, although they have a property stronger than
(ii), namely, v(λx) = |λ|v(x) for all λ ∈ K ∈ {ℝ,ℂ} and x ∈ V .

Sometimes a norm on a real vector space V can be induced by an inner product
(or, scalar product) defined as a symmetric bilinear function ⟨− | −⟩:V × V → ℝ such
that ⟨x | x⟩ > 0 for every x ∈ V \ {0}. Then, letting ‖x‖ = √⟨x | x⟩ for every x ∈ V , one
obtains a norm on V .

In ℝn the standard scalar product is defined by letting (x | y) := ∑ni=1 xiyi for every
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ ℝn.

Keeping the idea from pseudometrics (see §B.3.2), for a pseudonorm v on a group
G, we still denote by Bvr (eG) := {x ∈ G: v(x) < r} the open ball with center eG and radius
r ∈ ℝ>0. Every pseudonorm v on an abelian group G generates a group topology τv on
G by way of the filter base ℬv := {Bvr (eG): r ∈ ℝ>0} (see Exercise 5.4.11). It is a relevant
fact that 𝒱τv (eG) has a countable base given by {B

v
1/n(eG): n ∈ ℕ+}.

Remark 5.2.5. Let G be a group. Every pseudonorm v on G generates a pseudometric
dv on G defined by letting

dv(x, y) = v(x
−1y) for every x, y ∈ G.

This pseudometric is left invariant, i. e., dv(ax, ay) = dv(x, y) for every a, x, y ∈ G. In
particular, for every r ∈ ℝ>0, Bvr (eG) = B

dv
r (eG).

Conversely, every left invariant pseudometric d on G gives rise to a pseudonorm
on G defined by

vd(x) = d(x, eG) for every x ∈ G.

The assignment v → dv defines a bijective correspondence between pseudonorms
on G and left invariant pseudometrics on G, as d = dvd for a left invariant pseudomet-
ric d.

Clearly, dv is a metric if and only if v is a norm. The above bijective correspon-
dence between norms and left invariant metrics takes non-Archimedean norms to left
invariant ultrametrics.
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Similarly, right invariant pseudometricsaredefined,whichare in a similar bijective
correspondence with pseudonorms.

Example 5.2.6. Let ℓ2 denote the set of all sequences x = {xn}n∈ℕ of real numbers
such that the series∑n∈ℕ x

2
n converges. Then ℓ2 has a natural structure of vector space

(induced by the Cartesian product ℝℕ ⊇ ℓ2) usually called Hilbert space. Let ‖x‖ =
√∑n∈ℕ x2n for every x = {xn}n∈ℕ ∈ ℓ2. This defines a norm on the abelian group (ℓ2,+),
that provides an invariant metric on ℓ2 making it a metric space and a topological
group.

Example 5.2.7. For n ∈ ℕ+, q ∈ [1,∞) and x = (x1, . . . , xn) ∈ ℝn, let

‖x‖q = (
n
∑
i=1
|xi|

q)

1
q

.

(i) For q = 2, the norm ‖x‖2 = √∑
n
i=1 x2i provides the Euclidean metric.

(ii) For q = 1, the norm ‖x‖1 = ∑
n
i=1 |xi| provides the taxi driver metric.

(iii) For q =∞, the norm ‖x‖∞ = supi∈{1,...,n} |xi| (called also sup-norm) gives the chess-
board metric.

See Example B.3.6.

Example 5.2.8. For a prime p, the p-adic norm | − |p:ℚ→ ℝ>0 (see Example B.3.12) is
a non-Archimedean norm on the abelian group (ℚ,+). It gives rise to the p-adic ultra-
metric onℚ.

Now we provide an example of a norm on a typically nonabelian group.

Example 5.2.9. For S(ℕ), the permutation group of ℕ, let ν(idℕ) = 0, and for g ∈
S(ℕ) \ {idℕ}, let s(g) = min{n ∈ ℕ: g(n) ̸= n} and ν(g) = 2−s(g). Then ν is a non-
Archimedean norm on S(ℕ), which induces an ultrametric on S(ℕ).

The next example comes from geometric group theory.

Example 5.2.10. Let G be a finitely generated group and let S = S−1 be a finite set of
generators of G. Given g ∈ G \ {eG}, itsword norm ℓS(g)with respect to S is the shortest
length of a word in the alphabet S whose evaluation is equal to g:

ℓS(g) = min{n ∈ ℕ+: g = s1 ⋅ ⋅ ⋅ sn, s1, . . . , sn ∈ S}.

Moreover, let ℓS(eG) = 0. It is easy to check that the function ℓS satisfies the conditions
that determine a word norm:
– ℓS(g−1) = ℓS(g) for every g ∈ G;
– ℓS(gh) ≤ ℓS(g) + ℓS(h) for every g, h ∈ G.

The word metric dS on G with respect to S is the left invariant metric associated to ℓS.
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The growth of the size of the balls BdSn (eG) = {g ∈ G: ℓS(g) ≤ n} is one of the main
topics in geometric group theory, starting from the Milnor problem (see [212]) and the
Gromov theorem (see [161]). More precisely, for every n ∈ ℕ, let γS(n) = |B

dS
n (eG)|. The

function

γS :ℕ→ ℕ, n → |B
dS
n (eG)|,

is called the growth function of G with respect to S. If G is infinite, the function γS is
strictly monotone increasing, i. e., γS(n) < γS(n + 1) for every n ∈ ℕ.

Depending on the type of growth of γS, the group G = ⟨S⟩ is said to be of poly-
nomial, exponential, or intermediate growth rate. It can be shown that this type of
growth does not depend on S. See [208] for a further reading on this topic.

5.2.2 Continuous pseudonorms and pseudometrics

Definition 5.2.11. Let G be a topological group. A pseudonorm v on G is continuous if
v:G → ℝ≥0 is continuous. Similarly, a pseudometric d on G is continuous if d:G ×G →
ℝ≥0 is continuous.

If (G, τ) is a topological group and d is a pseudometric on G, then d is continuous
precisely when the topology τd induced by d is coarser than the topology τ (i. e., every
open set with respect to the metric d is τ-open).

Remark 5.2.12. Clearly, a left invariant pseudometric d is continuous precisely when
the related pseudonorm vd is continuous.

Our next aim is to build a continuous pseudometric on a topological groupG start-
ing with a decreasing chain U0 ⊇ U1 ⊇ ⋅ ⋅ ⋅ ⊇ Un ⊇ ⋅ ⋅ ⋅ of symmetric neighborhoods of
eG in G with

Un+1Un+1 ⊆ Un for every n ∈ ℕ. (5.2)

To this end, we need the following lemma providing a continuous pseudonorm that
we use further to produce the desired continuous pseudometric.

Lemma 5.2.13. Let (G, τ) be a topological group and {Un: n ∈ ℕ} a decreasing chain
of symmetric neighborhoods of eG in G as in (5.2). Then there exists a continuous
pseudonorm v:G → [0, 1] such that, for every n ∈ ℕ+,

Bv2−n (eG) ⊆ Un ⊆ B
v
2−n+2 (eG) (5.3)

and H = ⋂n∈ℕ Un is a closed subgroup of G with H = {x ∈ G: v(x) = 0}. So, v is a norm if
and only if H = {eG}.

Proof. Denote by D = {m2n :m ∈ ℕ+, n ∈ ℕ} the set of positive dyadic rational numbers.
We are going to construct a collection {Vr : r ∈ D} of neighborhoods of eG as follows. If
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r > 1, we put Vr = G and for l ∈ ℕ, let V2−l = Ul, in particular V1 = U0. For r ∈ D of the
form

r = 1
2l1
+

1
2l2
+ ⋅ ⋅ ⋅ +

1
2ln

(5.4)

with l1, . . . , ln ∈ ℕ+, l1 < l2 < ⋅ ⋅ ⋅ < ln, n ∈ ℕ+, we define Vr as follows:

Vr = V2−l1V2−l2 ⋅ ⋅ ⋅V2−ln = Ul1Ul2 ⋅ ⋅ ⋅Uln . (5.5)

Let us prove that

Vr ⊆ Vs when r ≤ s in D. (5.6)

We may assume that s < 1 and write s ∈ D as

s = 1
2m1
+

1
2m2
+ ⋅ ⋅ ⋅ +

1
2mN

(5.7)

withm1, . . . ,mN ∈ ℕ+,m1 < m2 < ⋅ ⋅ ⋅ < mN . Clearly, l1 ≥ m1, otherwise l1 ≤ m1 − 1, and
this would imply

s < 1
2m1−1
≤

1
2l1
≤ r,

a contradiction. Assume thatm1 = l1, . . . ,mk−1 = lk−1, butmk < lk . Taking into account
the definition in (5.5) of Vr and Vs, it is not restrictive to assume that k = 1. Now, from
m1 < l1 we deduce thatm1 ≤ l1 − 1, so

r < 1
2l1−1
≤

1
2m1
≤ s,

as above. From (5.2), (5.5), and these inequalities, we deduce Vr ⊆ V2l1−1 ⊆ V2m1 ⊆ Vs.
Further, we have:

VrV2−l ⊆ Vr+ 1
2l

for r ≥ 1 or r =
n
∑
k=1

2−lk ∈ D and l > ln. (5.8)

The first assertion is trivial as Vr+ 1
2l
= G if r ≥ 1. The second assertion follows directly

from the definition of Vr+ 1
2l
= VrUl = VrV2−l , since l > ln.

Now, for x ∈ G, let

f (x) = inf{r ∈ D: x ∈ Vr} and v(x) = sup{|f (zx) − f (z)|: z ∈ G}.

Observe that f (eG) = 0 and hence v ≥ f , so that x ∈ Vr implies f (x) ≤ r, and that
f (x) ≤ 1 for all x ∈ G. This implies ν(G) ⊆ [0, 1]. Conversely, if f (z) < r ∈ D, then z ∈ Vr .
Indeed, by the definition of f , there exists s ∈ D, s < r, such that x ∈ Vs and (5.6) yields
x ∈ Vr . Further,

v(x−1) = sup{|f (zx−1) − f (z)|: z ∈ G} = sup{|f (zxx−1) − f (zx)|: z ∈ G} = v(x)
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holds for all x ∈ G. Next, for x, y ∈ G,

v(xy) = sup{|f (zxy) − f (z)|: z ∈ G}
≤ sup{|f (zxy) − f (zx)| + |f (zx) − f (z)|: z ∈ G}
≤ sup{|f (zxy) − f (zx)|: zx ∈ G} + sup{|f (zx) − f (z)|: z ∈ G}
= v(y) + v(x).

This proves that v is a pseudonorm and implies that H is a subgroup.
Let n ∈ ℕ+. If u ∈ G \ Un, then u ̸∈ V2−n = Un, therefore v(u) ≥ f (u) ≥ 2−n, that is,

u ̸∈ Bv2−n (eG). This shows that Bv2−n (eG) ⊆ Un, that is, the first inclusion in (5.3).
Nowassume that n ∈ ℕ+ and u ∈ Un, so u, u−1 ∈ V2−n . Pick an arbitrary z ∈ G. There

exists k ∈ ℕ such that k
2n−1 ≤ f (z) < k+1

2n−1 =: r. This implies z ∈ Vr . As a consequence
of (5.8), we obtain zu, zu−1 ∈ VrV2−n ⊆ Vr+ 1

2n
andhence f (zu) ≤ r+ 1

2n and f (zu
−1) ≤ r+ 1

2n .

Since f (z) ≥ k
2n−1 , we conclude that

f (zu) − f (z) ≤ r + 1
2n
−

k
2n−1
=
k + 1
2n−1
−

k
2n−1
+

1
2n
=

3
2n
, (5.9)

and analogously

f (zu−1) − f (z) < 3
2n
. (5.10)

These inequalities hold for all z ∈ G. So, replacing z by zu in (5.10) gives f (z) − f (zu) ≤
3
2n . Combining this with (5.9) yields v(u) ≤ 3

2n <
1

2n−2 . Now we have shown that Un ⊆
Bv2−n+2 (eG), namely, the second inclusion in (5.3).

It remains to check that v: (G, τ) → ℝ≥0 is continuous. For x, y ∈ G, v(x) =
v(x(y−1y)) = v((xy−1)y) ≤ v(xy−1) + v(y) and this proves that v(x) − v(y) ≤ v(xy−1).
Exchanging the roles of x, y, we get v(y) − v(x) ≤ v(yx−1) = v(xy−1). Therefore, the de-
sired inequality |v(x)−v(y)| ≤ v(xy−1) follows, and so the continuity of v: (G, τv)→ ℝ≥0.
Since τv = τ in view of (5.3), the continuity of v: (G, τ)→ ℝ is proved.

Finally, the continuity of v implies that H is closed.

The following result improves Proposition 3.1.15 as promised.

Theorem 5.2.14. Every Hausdorff group G is a Tichonov space.

Proof. Let 0 ̸= F be a closed set of G with a ̸∈ F. By the homogeneity of G, we may
assume that a = eG. Then we can find a chain {Un: n ∈ ℕ} as in (5.2) of symmetric open
neighborhoods of eG with Un+1Un+1 ⊆ Un for every n ∈ ℕ, and such that F ∩U0 = 0. Let
v be the continuous pseudonorm v:G → [0, 1] given by Lemma 5.2.13. Then v(F) = {1}
and v(eG) = 0.

The following result can be easily deduced from Lemma 5.2.13.
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Corollary 5.2.15. Let G be a topological group and let {Un: n ∈ ℕ} be as in (5.2) a de-
creasing chain of symmetric neighborhoods of eG in G with Un+1Un+1 ⊆ Un for every
n ∈ ℕ. Then there exists a continuous left invariant pseudometric d on G such that, for
every n ∈ ℕ+, Bd2−n (eG) ⊆ Un ⊆ Bd2−n+2 (eG) and H = ⋂n∈ℕ Un is a closed subgroup of G
with the property H = {x ∈ G: d(x, eG) = 0}. So, d is a metric if and only if H = {eG}.

Remark 5.2.16. Let G be a topological group.
(a) If the chain {Un: n ∈ ℕ} as in (5.2) and in Corollary 5.2.15 has also the property

xUn+1x−1 ⊆ Un for every x ∈ G and for every n ∈ ℕ, then the subgroupH = ⋂n∈ℕ Un
is also normal. Moreover, the pseudometric d produced by Corollary 5.2.15 de-
fines a metric d̃ on the quotient group G/H by letting d̃(xH , yH) = d(x, y) for every
x, y ∈ G. The metric d̃ induces the quotient topology on G/H.

(b) Assume that U0 is a subgroup of G and that Un = U0 in (5.2) for every n ∈ ℕ. Then
this stationary chain satisfies the hypothesis of Corollary 5.2.15. The pseudometric
d is defined as follows: d(x, y) = 0 if xU0 = yU0, otherwise d(x, y) = 1.

5.2.3 The Birkhoff–Kakutani theorem

The metrizability problem for topological groups has a relatively simple solution:

Theorem 5.2.17 (Birkhoff–Kakutani theorem). AHausdorff groupG ismetrizable if and
only if χ(G) ≤ ω.

Proof. The necessity is obvious as every metrizable space is first countable.
Suppose now that 𝒱(eG) has a countable base. Then one can build a chain {Un: n ∈

ℕ} as in (5.2) of symmetric neighborhoods of eG in G with Un+1Un+1 ⊆ Un for every
n ∈ ℕ, that is a base of 𝒱(eG). In particular,⋂n∈ℕ Un = {eG} since G is Hausdorff. Then
the pseudometric produced by Corollary 5.2.15 is a metric that induces the topology of
the group G.

Example 5.2.18. Let {Gi: i ∈ I} be an infinite family of nontrivial metrizable Hausdorff
groups. Then G = ∏i∈I Gi satisfies χ(G) = |I| by Birkhoff–Kakutani theorem 5.2.17 and
by Theorem 5.1.15.

If Gi is separable for every i ∈ I, in view of the equality w(G) = χ(G) ⋅ d(G) from
Lemma5.1.7 and the inequalityd(G) ≤ |I| fromExample 5.1.12,we conclude thatw(G) =
χ(G) = |I|.

The following are consequences of Birkhoff–Kakutani theorem.

Corollary 5.2.19. Every Hausdorff abelian group G embeds into a product of metrizable
abelian groups.

Proof. Denote by τ the topology of G and let ℬ = {U ∈ 𝒱G(0):U open}. For every
U ∈ ℬ, build a decreasing chain {Un: n ∈ ℕ} of symmetric open neighborhoods of
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0 with U0 ⊆ U and Un+1 +Un+1 ⊆ Un for every n ∈ ℕ. By Corollary 5.2.15, the countable
family {Un: n ∈ ℕ} is a local base at 0 of a pseudometrizable group topology τU on G.
Moreover, HU = ⋂n∈ℕ Un is a τU -closed subgroup of G, by Corollary 5.2.15. Denote by
πU :G → G/HU the canonical projection and let τ̄U be the quotient topology of G/HU .
Then (G/HU , τ̄U ) is Hausdorff, hence metrizable.

Let P = ∏U∈ℬ(G/HU , τ̄U ) and let j: (G, τ) → P be the diagonal map of the family
{πU :U ∈ ℬ}. Then ker j = ⋂U∈ℬ HU is trivial since τ is Hausdorff, so j is a continuous
injection. To check that j:G → j(G) is open, take U ∈ ℬ. To prove that j(U) ∈ 𝒱j(G)(0),
it suffices to show that j(U) ⊇ j(G) ∩W , whereW = πU (U1) ×∏V∈ℬ\{U} G/HV ∈ 𝒱P(0).
Indeed, if j(x) ∈ W for some x ∈ G, then πU (x) ∈ πU (U1), so x ∈ U1 + HU ⊆ U1 + U1 ⊆ U,
so j(x) ∈ j(U). This proves that j is an embedding.

This theorem fails for nonabelian groups. Indeed, for an uncountable set X, the
permutation group S(X), equipped with the topology TX described in Example 2.2.22,
admits no nontrivial continuous homomorphism to a metrizable abelian group G. In-
deed, such a homomorphism S(X)→ Gmust be a topological isomorphism, by Corol-
lary 4.2.14. This contradicts the fact that (S(X), TX) is notmetrizablewhenX is uncount-
able.

Call a topological group submetrizable if it admits a coarser metrizable group
topology.

Corollary 5.2.20. Every Hausdorff abelian group (G, τ) of countable pseudocharacter is
submetrizable. In particular, every countable Hausdorff abelian group is submetrizable.

Proof. Let {Un: n ∈ ℕ} be open neighborhoods of 0 in τ with ⋂n∈ℕ Un = {0}. It is not
restrictive to assume that they form a decreasing chain as in (5.2) and Corollary 5.2.15.
Call τm the group topology on G having as a local base at 0 the countable family
{Un: n ∈ ℕ}. By Corollary 5.2.19, τm is metrizable and τm ≤ τ.

By Lemma 5.1.5, G has countable pseudocharacter when G is countable.

5.2.4 Function spaces as topological groups

We already introduced in §2.2.4 a topology on function spaces, namely, the pointwise
convergence topology on the set YX of all maps X → Y from a nonempty set X to a
topological space Y . This topology was nothing else but the product topology on YX .

Now we define two more topologies for function spaces (i. e., subsets of YX) in
case Y is a metric space. We start by an example where the target space is just ℂ.

Example 5.2.21. Following the counterpart of Example 5.2.7(iii) forℂn in place ofℝn,
here we extend the definition of the sup-norm from ℂn to the ℂ-algebra C∗(X) of all
bounded complex-valued functions of an arbitrary nonempty set X, by simply letting

‖f ‖ := sup{|f (x)|: x ∈ X} for every f ∈ C∗(X).
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This norm gives rise to the invariant metric d = d‖−‖ described by

d(f , g) = ‖f − g‖ = sup{|f (x) − g(x)|: x ∈ X} for every f , g ∈ C∗(X).

The metric topology related to this metric takes the name uniform convergence topol-
ogy. It is a group topology finer than the pointwise convergence topology.

The above example can be generalized as follows:

Definition 5.2.22. Let X be a nonempty set, (Y , d) a metric space and let C∗(X,Y) be
the set of all maps f :X → Y with bounded range (i. e., diam(f (X)) <∞). Define

d(f , g) = sup{d(f (x), g(x)): x ∈ X} for every f , g ∈ C∗(X,Y).

Themetric topology related tod is called theuniformconvergence topology onC∗(X,Y).

There is a third topology that is coarser than the uniform convergence topology:

Definition 5.2.23. Let X be a topological space, (Y , d) a metric space, and let C(X,Y)
be the set of all continuous maps X → Y . The compact-open topology is defined on
C(X,Y) by taking as a base of the filter of the neighborhoods of f ∈ C(X,Y) the family

W(K, ε, f ) := {g ∈ C(X,Y):∀x ∈ K, d(f (x), g(x)) < ε},

where K is a compact subset of X and ε > 0.

The compact-open topology need not be metrizable in general; indeed, when X is
an uncountable discrete space and Y a metric space, the compact-open topology on
C(X,Y) = YX coincides with the pointwise convergence topology, which is nonmetriz-
able (see Theorem 5.1.15 in case Y is a metrizable topological group).

In case X is a compact topological space and (Y , d) a metric space, C(X,Y) ⊆
C∗(X,Y), so one can consider the uniform convergence topology on C(X,Y), which
coincides with the compact-open topology in this case.

Remark 5.2.24. (a) The compact-open topology can be introducedmore generally on
the set C(X,Y) of all continuous maps X → Y between two topological spaces,
with prebase the family

W(K,U) := {f ∈ C(X,Y): f (K) ⊆ U},

where K ⊆ X and U ⊆ Y vary among all compact (respectively, open) sets of X
(respectively, Y).

(b) In case X is a topological space and Y is a metrizable topological abelian group
with an invariant metric d, the compact-open topology makes C(X,Y) a topologi-
cal group (see Exercise 5.4.12), and a local base at the constant function f ≡ eY is
given by the subsets

W(K, ε) := W(K, ε, f ) = {g ∈ C(X,Y):∀x ∈ K, d(g(x), eY ) < ε},

where K ⊆ X is compact and ε > 0.
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(c) Since finite sets are compact, the compact-open topology on C(X,Y), where X,Y
are topological spaces, is finer than the restriction of the pointwise convergence
topology to C(X,Y) ⊆ YX . Clearly, the pointwise convergence topology may be ob-
tained as a compact-open topologywhenX is equippedwith the discrete topology
(and so C(X,Y) = YX).

These topologies have many applications in analysis and topological algebra. In
particular, for X = G a topological abelian group, the compact-open topology is used
to define the Pontryagin dual Ĝ ofG, taking as target the group Y = 𝕋 (see Chapter 13).

We conclude with a further example of a group topology on a function space, by
taking Y = X.

Example 5.2.25. Let (X, d) be a compact metric space and consider on X the metric
topology induced by d. Then the groupHomeo(X) of all homeomorphisms of X admits
a norm v defined by

v(f ) = sup{d(x, f (x)) + d(x, f −1(x)): x ∈ X} for every f ∈ Homeo(X).

This norm induces an invariant metric dv on Homeo(X), and the metric topology rela-
tive to dv is a group topology on Homeo(X) known as Birkhoff topology.

Since surjective isometries X → X of a compact metric space X are homeomor-
phisms with respect to the metric topology on X, it makes sense to consider the sub-
group Iso(X) of all surjective isometriesX → X. The restriction of the Birkhoff topology
on Iso(X) coincides with the uniform convergence topology on Iso(X).

5.3 Topologies and subgroups determined by sequences

5.3.1 T -sequences

Let G be an abelian group and let A = {an}n∈ℕ be a sequence in G. The question of the
existence of a Hausdorff group topology on G that makes A converge to 0 is not only
a mere curiosity. Indeed, assume that some Hausdorff group topology τ on ℤ makes
the sequence {pn}n∈ℕ of all primes converge to zero. Then pn → 0 in τ would yield
pn − pn+1 → 0 in τ, so this sequence cannot contain infinitely many entries equal
to 2. This would provide a very easy negative solution to the celebrated problem of
the infinitude of twin primes (actually this argument would show that the shortest
distance between two consecutive primes converges to∞).

Definition 5.3.1 ([240]). A one-to-one sequence A = {an}n∈ℕ in an abelian group G is
a T-sequence if there exists a Hausdorff group topology τ on G such that an → 0 in τ.

Since we consider only sequences without repetitions, the convergence to zero of
the sequence {an}n∈ℕ depends only on the set {an: n ∈ ℕ} and does not depend on the
enumeration of the sequence.
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Example 5.3.2. We shall see below that the sequence {pn}n∈ℕ of all primes is not a
T-sequence in ℤ (see Exercise 10.4.12). So, the above mentioned possibility to resolve
the problem of the infinitude of twin primes does not work.

We consider a couple of examples and nonexamples in ℤ.

Example 5.3.3. (a) The sequences {n2}n∈ℕ and {n3}n∈ℕ are not T-sequences in ℤ.
Indeed, suppose for a contradiction that some Hausdorff group topology τ on ℤ
makes {n2}n∈ℕ converge to 0. Then {(n + 1)2}n∈ℕ converges to 0 as well. Taking the
difference of {(n+ 1)2}n∈ℕ and {n2}n∈ℕ, we conclude that {2n+ 1}n∈ℕ converges to 0
as well, and so also its subsequence {2n + 3}n∈ℕ converges to 0. After subtraction
of the latter two sequences, we conclude that the constant sequence 2 converges
to 0. This is a contradiction, since τ is Hausdorff.
We leave the case of {n3}n∈ℕ as an exercise to the reader.

(b) A similar argument proves that the sequence {P(n)}n∈ℕ, where P(x) ∈ ℤ[x] is a
fixed polynomial with degP = d > 0, is not a T-sequence in ℤ.

(c) The celebratedFibonacci sequence {fn}n∈ℕ, definedby f0 = f1 = 1 and fn+2 = fn+1+fn
for all n ∈ ℕ, is a T-sequence, witnessed by the Hausdorff group topology τ on ℤ
induced by the embedding ℤ → 𝕋 defined by 1 → α + ℤ ∈ 𝕋, where α = 1+√5

2 is
the golden ratio (see Exercise 5.4.18 for a more general statement).

(d) For a prime p, the sequence {pn}n∈ℕ is a T-sequence inℤ (witnessed by the p-adic
topology); this remains true for any geometric progression {an}n∈ℕ, where a > 1 is
an integer (this is witnessed by the p-adic topology for any prime p dividing a).

(e) The natural topology (or the p-adic topology for any prime p) witnesses that the
sequence {n!}n∈ℕ is a T-sequence.

5.3.2 Topologically torsion elements and subgroups

Braconnier [41] and Vilenkin [281] gave the following related notion.

Definition 5.3.4. Let G be a Hausdorff group and p a prime. An element x ∈ G satisfy-
ing xp

n
→ eG (respectively, xn! → eG) is topologically p-torsion (respectively, topologi-

cally torsion). The sets

Gp := {x ∈ G: x topologically p-torsion} and G! := {x ∈ G: x topologically torsion}

are the topological p-component and the topological torsion part of G, respectively.
Moreover, G is topologically p-torsion (respectively, topologically torsion) if G = Gp (re-
spectively, G = G!).

When G is abelian, Gp and G! are subgroups of G. If G is discrete, then G is topo-
logically p-torsion (respectively, topologically torsion) precisely when G is p-torsion
(respectively, torsion).
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Remark 5.3.5. Let G be a residually finite group. Since (G, νG) is Hausdorff, every el-
ement of G is topologically torsion and for every non-torsion element x, {n!x}n∈ℕ is a
T-sequence. If (G, νpG) is Hausdorff, then for every nontorsion element x of G, the se-
quence {pnx}n∈ℕ+ is a T-sequence of G.

For other equivalent forms with respect to the following notions, see Exercise
5.4.13.

Definition 5.3.6. Let G be a Hausdorff group and p be a prime. Call x ∈ G:
(i) quasi-p-torsion if ⟨x⟩ is either a finite p-group or isomorphic to (ℤ, νpℤ);
(ii) quasitorsion if ⟨x⟩ is either finite or nondiscrete and has a linear topology.

Let tdp(G) := {x ∈ G: x quasi-p-torsion} and td(G) := {x ∈ G: x quasitorsion}.

Remark 5.3.7. Let G be a topological abelian group. Then tdp(G) and td(G) are sub-
groups of G (see Exercise 5.4.13(e)), and obviously tp(G) ⊆ tdp(G) ⊆ Gp and t(G) ⊆
td(G) ⊆ G!

We shall see in Corollary 11.6.9 that tdp(G) = Gp when G is a locally compact
abelian group. In this case Gp carries a natural structure of a 𝕁p-module, since for x ∈
Gp\tp(G) the subgroup ⟨x⟩ isomorphic to 𝕁p;moreover, themultiplication 𝕁p×Gp → Gp
is continuous (see [99, 3.5.8]). In particular, Gp is q-divisible for every prime q ̸= p. In
case G is p-divisible, Gp is obviously p-divisible as well, so Gp is divisible.

5.3.3 Characterization of T -sequences

The existence of a finest group topology τA on an abelian group G that makes an arbi-
trary given sequence A = {an}n∈ℕ in G converge to 0 is easy to prove as far as we are
not interested in imposing the Hausdorff axiom. Indeed, as an → 0 in the indiscrete
topology, τA is simply the supremum of all group topologies τ on G such that an → 0
in τ (see Exercise 2.4.3). Clearly, τA is Hausdorff if and only if A is a T-sequence.

In [241] Protasov and Zelenyuk established a number of nice properties of this
topology. One can easily describe τA as follows.

Remark 5.3.8. For an abelian group G and a family {An: n ∈ ℕ+} of subsets of G, let

∑
n∈ℕ+ An = A1 + ⋅ ⋅ ⋅ + An + ⋅ ⋅ ⋅ = ⋃n∈ℕ+(A1 + ⋅ ⋅ ⋅ + An).

If A = {an}n∈ℕ is a sequence in G, form ∈ ℕ+, let

A∗m := {am, am+1, . . .} and Am := {0} ∪ A
∗
m ∪ −A

∗
m,

calling A∗m the “m-tail” of A. For k ∈ ℕ+, let A(k,m) := Am + ⋅ ⋅ ⋅ + Am⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
k times

.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



84 | 5 Cardinal invariants and metrizability

For n ∈ ℕ+ and a sequence {mk}k∈ℕ+ inℕ, let
A(m1, . . . ,mn) := Am1

+ ⋅ ⋅ ⋅ + Amn
so A(m) = Am

and A(m1, . . . ,mn) = {0} when n = 0 (i. e., the sum is empty).
Furthermore,

A(m1, . . . ,mn, . . .) := ∑
n∈ℕ+ Amn

= ⋃
n∈ℕ+ A(m1, . . . ,mn),

Then the family

ℬA := {A(m1, . . . ,mn, . . .): {mn}n∈ℕ+ sequence of natural numbers}

is a filter base, satisfying the axioms of group topology (gt1), (gt2), and (gt3). Let τ be
the group topology given by Remark 2.1.14. Then τ = τA. Indeed, obviously an → 0 in
(G, τ) and τ contains any other group topology with this property.

Next, by using the topology τA, we characterize the T-sequences A = {an}n∈ℕ in
an abelian group G. In the above notation, for every k ∈ ℕ+, we have

A(k,m) ⊆ A(m1, . . . ,mn, . . .), (5.11)

wherem = max{m1, . . . ,mk}. The sets A(k,m), for k,m ∈ ℕ+, form a filter base, but the
filter they generate need not be the filter of neighborhoods of 0 in a group topology.
The utility of this family becomes clear now.

Theorem 5.3.9. A sequence A = {an}n∈ℕ in an abelian group G is a T-sequence if and
only if

⋂
m∈ℕ+ A(k,m) = {0} for every k ∈ ℕ+. (5.12)

Proof. Obviously, A = {an}n∈ℕ is a T-sequence if and only if τA is Hausdorff. If τA is
Hausdorff, then (5.12) obviously holds by (5.11).

Clearly, τA is Hausdorff if and only if

⋂
{mn}n∈ℕ+⊆ℕℕ+ A(m1, . . . ,mn, . . .) = {0}. (5.13)

So, it remains to see that (5.12) implies (5.13).
We prove first that, for every l ∈ ℕ and every l-tuple (m1, . . . ,ml),

⋂
i∈ℕ+(A(m1, . . . ,ml) + Ai) = A(m1, . . . ,ml). (5.14)

The inclusion⋂i∈ℕ+ (A(m1, . . . ,ml) + Ai) ⊇ A(m1, . . . ,ml) is obvious since 0 ∈ Ai.
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We argue by induction on l ∈ ℕ. The case l = 0 follows directly from (5.12) with
k = 1.

Nowassume that l > 0and that (5.14) is true for l−1 andall (l−1)-tuplesm1, . . . ,ml−1.
Take g ∈ ⋂i∈ℕ(A(m1, . . . ,ml)+Ai). Then for every j ∈ {1, . . . , l} and every i ∈ ℕ+ one can
find bj(i) ∈ Amj

and a(i) ∈ Ai such that

g = b1(i) + ⋅ ⋅ ⋅ + bl(i) + a(i).

If there exists some j ∈ {1, . . . , l}, such that bj(i) = 0 for infinitelymany i ∈ ℕ+, then
g ∈ ∑ν∈{1,...,l}\{j} Amν

+ Ai for infinitely many i ∈ ℕ+. Since {Ai: i ∈ ℕ+} is a decreasing
chain, the inductive hypothesis gives

g ∈ ⋂
i∈ℕ+( ∑ν∈{1,...,l}\{j}

Amν
+ Ai) = ∑

ν∈{1,...,l}\{j}
Amν
⊆ A(m1, . . . ,ml).

Hence, we may assume that there exists i0 ∈ ℕ+ such that bj(i) ̸= 0 for all i > i0
and for all j ∈ {1, . . . , l}. Then for all i > i0 and for all j ∈ {1, . . . , l} there existsmj(i) ≥ mj
so that bj(i) = amj(i) ∈ Amj

.
If mj(i) → ∞ for all j ∈ {1, . . . , l}, then g ∈ A(l + 1, i) for infinitely many i ∈ ℕ+, so

g ∈ ⋂i∈ℕ+ A(l + 1, i) = {0} by (5.12). Hence, g = 0 ∈ A(m1, . . . ,mn).
Otherwise there exist some j ∈ {1, . . . , l} and h ∈ ℕ+ such that mj(i) = h ≥ mj

for infinitely many i ∈ ℕ+. Let Nh = {i ∈ ℕ+:mj(i) = h}. Then g∗ = g − ah ∈
⋂i∈Nh
(∑ν∈{1,...,l}\{j} Amν

+ Ai) = ⋂i∈ℕ (∑ν∈{1,...,l}\{j} Amν
+ Ai), since (∑ν∈{1,...,l}\{j} Amν

+ Ai)
is decreasing. By inductive hypothesis,

g∗ ∈ ⋂
i∈ℕ+( ∑ν∈{1,...,l}\{j}

Amν
+ Ai) = ∑

ν∈{1,...,l}\{j}
Amν
.

Therefore, since ah ∈ Amj
,

g = ah + g
∗ ∈ ah + ∑

ν∈{1,...,l}\{j}
Amν
⊆ A(m1, . . . ,mn).

This proves (5.14).
Toprove (5.13), assume that g ∈ G\{0}. Thenusingour assumption (5.12) and (5.14),

it is easy to build inductively a sequence {mn}n∈ℕ+ such that g ̸∈ A(m1, . . . ,mn) for every
n ∈ ℕ+, i. e., g ̸∈ A(m1, . . . ,mn, . . .), namely, for g ∈ G\{0}, there existsm1 ∈ ℕ such that
g ∉ A(1,m1) = Am1

. Suppose that n ≥ 2 andm1, . . . ,mn−1 have already been constructed
such that g ∉ A(m1, . . . ,mn−1). According to (5.14), g ∉ ⋂i∈ℕ+ (A(m1, . . . ,mn−1) + Ai). So,
there existsmn ∈ ℕ+ such that g ∉ A(m1, . . . ,mn−1) + Amn

= A(m1, . . . ,mn).

Remark 5.3.10. (a) According to Exercise 5.4.9, every infinite abelian group G admits
a nondiscretemetrizable group topology. This gives rise to a plenty ofT-sequences
A = {an}n∈ℕ of G.
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(b) The topology τ{an} is nevermetrizable (see Exercise 7.3.2), but it is always complete
(see Example 7.1.6(b)). More precisely, τ{an} is sequential, but not Fréchet–Urysohn
(see [240]).

The topology τ{an} can be studied essentially on countable abelian groups:

Lemma 5.3.11. Let G be an abelian group and {an}n∈ℕ a T-sequence of G. Then the sub-
group H of G generated by the countable set {an: n ∈ ℕ} is τ{an}-open.

Proof. Denote by τ∗ the supremum of τ{an} and the Alexandrov group topology on G
withH as the smallest neighborhood of 0. Then τ∗ ≥ τ{an} and obviously an → 0 in τ∗.
Since τ{an} is the finest group topology with this property, we deduce that τ∗ = τ{an},
and consequently H is τ{an}-open.

This lemma helps us understand better the properties of τ{an}, since the fact that
the countable subgroup H = ⟨an: n ∈ ℕ⟩ is τ{an}-open and carries its own topology
generatedby theT-sequence {an}n∈ℕ ofH reduces completely the studyof the topology
τ{an} only to countable abelian groups.

A notion similar to that of T-sequence, but defined only with respect to topologies
induced by characters, is given in §14.4. From many points of view, it turns out to be
easier to deal with that notion than with the notion of a T-sequence. In particular, we
shall see easy sufficient conditions for a sequence of integers to be a T-sequence.

We give without proof the following technical lemma that is useful in §14.4.

Lemma 5.3.12 ([240]). For every T-sequence A = {an}n∈ℕ in ℤ, there exists a sequence
{bn}n∈ℕ in ℤ such that for every choice of the sequence {en}n∈ℕ, where en ∈ {0, 1} for
every n ∈ ℕ, the sequence {qn}n∈ℕ defined by q2n = bn + en and q2n−1 = an for n ∈ ℕ is a
T-sequence.

5.4 Exercises

Exercises on cardinal invariants

Exercise 5.4.1. Let G be a Hausdorff group. Prove that:
(a) w(G) = w(hG), χ(G) = χ(hG), and d(G) = d(hG);
(b) d(U) = d(G) for every nonempty open set U of G, if G is nondiscrete Lindelöff;
(c) if G is Hausdorff, then χ(G) is finite if and only if G is discrete, and in such a case

χ(G) = 1;
(d) if G is Hausdorff, then w(G) is finite if and only if G is finite, if and only if d(G) is

finite.

Hint. (b) Show first that d(U) ≤ d(G) using the fact that U is open. There exists a countable subset X
of G such that G = XU, since G is Lindelöff. If D is a dense subset of U with |D| = d(U), then |D| ≥ ω
and XD is a dense subset of G with |XD| = |D| = d(U). This proves the equality d(U) = d(G).
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Exercise 5.4.2. Let G be an abelian group and H an infinite subset of G∗. Prove that
w(G, 𝒯H ) ≤ |H|.
Hint. Since (G,𝒯H ) is a topological subgroup of 𝕊H , one has w(G,𝒯H ) ≤ w(𝕊H ) = |H| by Theorem 5.1.15
(see also Example 5.2.18).

Exercise 5.4.3. Show that w(−), χ(−), and d(−) are cardinal invariants in the sense
explained above: if the topological groups G,H are topologically isomorphic, then
w(G) = w(H), χ(G) = χ(H) and d(G) = d(H).

Exercise 5.4.4. Making use of Lemma 5.1.5, prove that w(G) ≤ c for a monothetic
group G.

Exercise 5.4.5. Show that ψ(H) < ψ(G)may occur for a dense subgroup H of a Haus-
dorff group G.
Hint. Take G = ℤ(2)c with ψ(G) = c > ω = ψ(H) for every dense countable subgroup H of G. By
Hewitt–Marczewski–Pondiczery theorem B.3.15, G is a separable Hausdorff group with ψ(G) > ω.

Exercise 5.4.6. Prove that if N is a closed normal subgroup of a Hausdorff group G,
then ψ(G) ≤ max{ψ(N),ψ(G/N)}.
Hint. Let {Ui: i ∈ I} ⊆ 𝒱G(eG) be a family with |I| ≤ max{ψ(N),ψ(G/N)} such thatN ∩⋂i∈I Ui = {eG} and
⋂i∈I UiN = {eG/N } in G/N . If x ∈ G \ {eG}, then x ̸∈ ⋂i∈I Ui in case x ∈ N . If x ∈ G \ N, then xN ̸= eG/N
in G/N, so there exists i ∈ I such that xN ̸∈ UiN, hence x ̸∈ Ui. This proves that ⋂i∈I Ui = {eG}, so
ψ(G) ≤ max{ψ(N),ψ(G/N)}.

Exercises on metrizable topological groups

Exercise 5.4.7. Prove that subgroups, countable products, andHausdorff quotients of
metrizable groups are metrizable. Prove that a product of metrizable groups is metriz-
able if and only if all but countably many of these groups are trivial.

Exercise 5.4.8. Let G be an abelian group and H a countable set of characters of G
separating the points of G. Prove that 𝒯H is metrizable.

Exercise 5.4.9. Show that every infinite abelian group admits a nondiscrete metriz-
able group topology.
Hint. Let G1 be a countably infinite subgroup of G. Then there exists a countable set H of characters of
G1 separating the points ofG1. By Exercise 5.4.8, this gives a nondiscretemetrizable topology 𝒯H onG1.
Now extend 𝒯H to a group topology τ on Gwith 𝒱G1 (0) as a local base at 0. Clearly, τ is metrizable and
nondiscrete.

Exercise 5.4.10. Prove that the profinite topology of an infinite bounded abelian
group is not metrizable.
Hint. Sincemetrizability is preserved under taking subgroups, it suffices to assume thatG is a p-group.
For the same reason, and since G is bounded, we can assume that G = G[p], that is, G has exponent p.
Let {Un: n ∈ ℕ}beadecreasing chainof neighborhoodsof 0 in theprofinite topologyϖG. To show that it

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



88 | 5 Cardinal invariants and metrizability

cannot be a base, we find a finite-index subgroup ofG that contains none of these neighborhoods. One
can inductively choose a sequence {xn}n∈ℕ of elements ofG such that x0 = 0 and xn ∈ Un \⟨x1, . . . , xn−1⟩
for all n ∈ ℕ+, because Un is a subgroup of finite index while ⟨x1, . . . , xn−1⟩ is a finite subgroup. Then
the family {xn: n ∈ ℕ+} is independent and we can define a homomorphism f :G → ℤ(p) by letting
f (xn) = a ∈ ℤ(p) for all n ∈ ℕ, where a ̸= 0 is a fixed element of ℤ(p); this homomorphism can be
extended then to the whole group G. The finite-index subgroup V = ker f does not contain any Un,
since xn ∈ Un, while xn ̸∈ V for every n ∈ ℕ+.

Exercise 5.4.11. Let v be a pseudonorm on an abelian group G. Show that the filter
base ℬ = {Bvr (eG): r ∈ ℝ>0} satisfies (gt1) and (gt2), as well as, vacuously, (gt3). Hence,
ℬ generates a pseudometrizable group topology τv on G.

Exercise 5.4.12. Establish that the compact-open topologydefined inRemark 5.2.24(b)
in case X is a topological space and Y is a metrizable topological abelian group with
an invariant metric d is a group topology.
Hint. Fix compact subsets K,K1,K2 of X and ε, ε1, ε2 > 0. Since W(K1, ε1) ∩ W(K2, ε2) ⊇ W(K1 ∪
K2,min{ε1, ε2}), −W(K, ε) = W(K, ε) and W(K, ϵ) + W(K, ϵ) ⊆ W(K, 2ϵ), the family of sets ℬ =
{W(K, ε):K ⊆ G compact, ε > 0} forms a base of open neighborhoods of the constant function
f ≡ eY . (For g ∈ W(K, ε), the compactness of g(K) ⊆ Bε(eY ) implies that Bδ(g(K)) ⊆ Bε(eY ) for some
δ > 0, hence g +W(K, δ) ⊆ W(K, ε), soW(K, ε) is open.) Finally, observe thatW(K, ε, f ) = f +W(K, ε)
for f ∈ C(X,Y) and ε > 0, so the topology generated by ℬ coincides with the compact-open one.

Exercises on T -sequences

Exercise 5.4.13. Let p be a prime. Show that:
(a) if τ is a Hausdorff group topology on ℤ such that knpn → 0 for every sequence
{kn}n∈ℕ in ℤ, then τ = ν

p
ℤ;

(b) if τ is a Hausdorff group topology on ℤ such that knn! → 0 for every sequence
{kn}n∈ℕ in ℤ, then τ is a nondiscrete linear topology on ℤ;

(c) if G is a Hausdorff abelian group, then x ∈ G is:
(c1) quasi-p-torsion if and only if knpnx → 0 for every sequence {kn}n∈ℕ in ℤ;
(c2) quasitorsion if and only if knn!x → 0 for every sequence {kn}n∈ℕ in ℤ;

(d) x ∈ tdp(G) (respectively, x ∈ td(G)) if and only if there exists a continuous homo-
morphism f : (ℤ, νpℤ)→ G (respectively, f : (ℤ, νℤ)→ G) with f (1) = x;

(e) tdp(G) and td(G) are subgroups of G.

Hint. (a) If U ∈ 𝒱τ(0), pick a sequence {kn}n∈ℕ in ℤ in which every integer appears infinitely many
times. Then knpn → 0 yields knpn ∈ U for all sufficiently large n, so pnℤ ⊆ U for some n ∈ ℕ. This
proves τ ≤ νpℤ. Now apply Exercise 3.5.25. For (b), apply the argument from the hint of (a) to deduce
that for every U ∈ 𝒱τ(0) there exists n ∈ ℕ+ such that n!ℤ ⊆ U . Now apply Exercise 3.5.24 to conclude
that τ is linear.

For (c1) and (c2), use items (a) and (b). Deduce (d) from (c1) and (c2) (or from (a) and (b)). Finally,
(e) can be deduced from (c).

Exercise 5.4.14. For a Hausdorff abelian group G and a prime p, show that:
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(a) ifH is a subgroupofG, then td(H) = td(G)∩H,Hp = Gp∩H, and tdp(H) = tdp(G)∩H;
(b) if f :G → H is a continuous homomorphism into a Hausdorff abelian group H,

then f (td(G)) ⊆ td(H), f (Gp) ⊆ Hp, and f (tdp(G)) ⊆ tdp(H);
(c) td(∏i∈I Gi) = ∏i∈I td(Gi), (∏i∈I Gi)p = ∏i∈I (Gi)p, and tdp(∏i∈I Gi) = ∏i∈I tdp(Gi)

for every family {Gi: i ∈ I} of Hausdorff abelian groups;
(d) the sum wtd(G) := ∑p∈ℙ tdp(G) is direct.

Hint. (a)–(c) Use (c1) or (d) of the previous exercise.
(d) To see that the sum∑p∈ℙ tdp(G) is direct, assume that 0 ≠ g ∈ tdp(G) ∩∑

r
i=1 tdqi (G), where all

primes p, q1, . . . , qr are distinct. For everym ∈ ℕ+, the numbers am = (q1 ⋅ ⋅ ⋅ qr)m and pm are coprime,
so 1 = umpm+vmam for someum, vm ∈ ℤ. Since g ∈ ∑

r
i=1 tdqi (G) implies that vmamg → 0, and g ∈ tdp(G)

implies that umpmg → 0, we deduce that g = umpmg + vmamg → 0, a contradiction.

Exercise 5.4.15.∗ Show that 𝕋p = tdp(𝕋) = ℤ(p∞) and wtd(𝕋) = td(𝕋) = ℚ/ℤ.
Hint. The proof of the equality 𝕋p = ℤ(p∞) can be found in [8] and it implies the remaining ones,
except for td(𝕋) = ℚ/ℤ. To check that, it suffices to verify that for every x ∈ 𝕋 \ℚ/ℤ the subgroup ⟨x⟩
is strongly monothetic, so x ̸∈ td(𝕋).

Exercise 5.4.16. Show that, for some topological groupG and a prime p, the inclusion
tdp(G) ⊆ Gp may be proper.
Hint. By Exercise 7.3.2, G = (ℤ, τ{pn}) is not metrizable, so tdp(G) = {0} ⊊ ℤ = Gp.

Exercise 5.4.17. Let G = H × N, where H and N are abelian groups. Prove that if an =
(a, bn) ∈ G withmbn = 0 for all n ∈ ℕ, whilema ̸= 0, then {an}n∈ℕ is not a T-sequence
of G.
Hint.Use the fact that if {an}n∈ℕ is aT-sequence ofG, then so is the sequence {man}n∈ℕ for everym ∈ ℕ.

Exercise 5.4.18. Let α ∈ ℝ be an irrational number and let pn
qn

be the convergents of
the continued fraction representing α. Prove that {qn}n∈ℕ is a T-sequence.
Hint. From the known inequality |α − pn

qn
| ≤ 1

qnqn+1 deduce that ‖qnα‖ < 1
qn+1 for the norm in 𝕋 and

conclude that {qnα + ℤ}n∈ℕ is a null sequence in 𝕋.

Exercise 5.4.19. (a)∗Prove that there exists a T-sequence {an}n∈ℕ in ℤ with
limn→∞ an+1/an = 1 (see [240] and also Example 14.4.17).

(b)∗Every sequence {an}n∈ℕ inℤwith limn→∞
an+1
an
= +∞ is a T-sequence (see [21, 240]

and Theorem 14.4.6).
(c)∗ Every sequence {an}n∈ℕ in ℤ such that limn→∞

an+1
an
∈ ℝ is transcendental is a

T-sequence (see [240]).

Exercise 5.4.20. Show that td(𝕋) = ℚ/ℤ is a proper subgroup of 𝕋! and that 𝕋! is a
proper subgroup of 𝕋.
Hint. If z ∈ 𝕋 \ℚ/ℤ, then no nonproper subgroup of ⟨z⟩ can be open, so z ̸∈ td(𝕋).

The elements x̄, ȳ of𝕋 determined by x = e−2 = ∑∞n=2
1
n! ∈ ℝ and y =

x+1
2 ∈ ℝ satisfy x̄ ∈ 𝕋! \ℚ/ℤ

and ȳ ∈ 𝕋 \ 𝕋!.
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6 Connectedness in topological groups

This chapter is dedicated to the notions of connectedness and hereditary disconnect-
edness for topological groups, and moreover, we consider the connected component,
arc component, quasicomponent, and the fourth component given by the intersection
of all open subgroups.

6.1 Connected and hereditarily disconnected groups

We start with an elementary property of connected sets in a topological group.

Lemma 6.1.1. Let G be a topological group.
(a) If C1, . . . ,Cn are connected subsets of G, then also C1 ⋅ ⋅ ⋅Cn is connected.
(b) If C is a connected subset of G, then C−1, as well as the subgroup ⟨C⟩ generated by

C, is connected.

Proof. (a) Consider the case n = 2, the general case easily follows by induction. The
subset C1 × C2 of G ×G is connected. Now the multiplication μ:G ×G → G, (x, y) → xy,
is continuous and μ(C1 × C2) = C1C2. So, by Lemma B.6.4(a), also C1C2 is connected.

(b) Since C is connected and C−1 is the continuous image of C under the inversion
map 𝚤:G → G, x → x−1, we conclude that C−1 is connected as well, by Lemma B.6.4(a).
To prove the second assertion, consider the set C1 = CC−1, which is connected by item
(a). Obviously, eG ∈ C1, soC∪C−1 ⊆ C1C1 = C21 . Since ⟨C⟩ = ⟨C1⟩ = ⋃n∈ℕ C

n
1 , and each set

Cn1 is connected by item (a), we conclude that ⟨C⟩ is connected, by Lemma B.6.5.

We see that connectedness and hereditary disconnectedness are properties stable
under extension:

Proposition 6.1.2. Let G be a topological group and N a closed normal subgroup of G.
If N and G/N are connected (respectively, hereditarily disconnected), then also G is con-
nected (respectively, hereditarily disconnected).

Proof. Let q:G → G/N be the canonical projection.
Assume thatN andG/N are connected and letA be a nonempty clopen set ofG. As

every cosetaN witha ∈ G is connected in viewof LemmaB.6.4(a) andLemma2.1.6, one
has either aN ⊆ A or aN ∩ A = 0. Hence, aN ⊆ A for every a ∈ A, and so A = q−1(q(A)).
This implies that q(A) is a nonempty clopen set of the connected group G/N . Thus,
q(A) = G/N, and consequently, A = G.

Now suppose that N and G/N are hereditarily disconnected. Assume that C is a
connected subset of G. Then q(C) is a connected subset of G/N by Lemma B.6.4(a), so
q(C) is a singleton by our hypothesis. Thismeans that C is contained in some coset xN .
Since xN is hereditarily disconnected as well, we conclude that C is a singleton. This
proves that G is hereditarily disconnected.

https://doi.org/10.1515/9783110654936-006
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Corollary 6.1.3. A topological group G is connected if and only if hG is connected.

Proof. Since hG = G/core(G) and core(G) is connected (being indiscrete), Proposi-
tion 6.1.2 and Lemma B.6.4(a) apply.

Corollary 6.1.4. If a connected group G is not indiscrete, then |hG| ≥ c.

Proof. In view of Corollary 6.1.3, we can assumewithout loss of generality thatG = hG
is Hausdorff. ThenG is also a Tichonov space by Theorem 5.2.14, so we can arrange for
a nonconstant continuous function f :G → [0, 1]. Since G is connected, the image f (G)
is connected by LemmaB.6.4(a), so a subinterval of [0, 1]. Since f (G) is not a singleton,
we deduce that |f (G)| = c. Hence, |G| ≥ c.

This corollary shows that certain groups cannot carry a connected Hausdorff
group topology. Obviously, these are all nontrivial groups of size < c. But one can get
also less trivial examples like those pointed out below.

Example 6.1.5. (a) Let G = ℤ(2) × ℤ(3)ω; clearly, |G| = c. Assume that τ is a con-
nected Hausdorff group topology on G. Then the multiplication by 3 defines a
continuous endomorphism μ3:G → G, and so μ3(G) = 3G must be connected by
Lemma B.6.4(a). But |3G| = 2, so 3G cannot carry any connected Hausdorff group
topology in view of Corollary 6.1.4, a contradiction.

(b) Obviously, the argument from item (a) produces similar examples of abelian
groups that admit no connected Hausdorff group topology, that is, when the
starting abelian group G has the property that, for some m ∈ ℕ+, mG is nontriv-
ial and |mG| < c (e. g., G = H × ℤ(m)ω with 1 < |mH| < c), G cannot carry any
connected Hausdorff group topology.

(c) Surprisingly, the necessary condition for having a connected Hausdorff group
topology from item (b) turns out to be also sufficient: every abelian group G
such that for every m ∈ ℕ+ the subgroup mG is either trivial or has size ≥ c ad-
mits a connected Hausdorff group topology (see also Chapter 4). The proof given
in [107] makes substantial use of a construction by Hartman and Mycielcki [168]
of a group HM(G) defined for every abelian group G that carries a connected
group topology and is algebraically isomorphic to G(c) (see also [70]). In particu-
lar, the group ℤ(m)(c) carries a connected group topology for every m ∈ ℕ with
m > 1.

In the next remark we discuss zero-dimensionality. We recall that in general, un-
der the axiom T0, zero-dimensionality implies total disconnectedness, which yields,
in turn, hereditary disconnectedness (see §B.6).

Remark 6.1.6. (a) A topological groupG is zero-dimensional if and only if hG is zero-
dimensional. On the other hand, a zero-dimensional group G is totally discon-
nected if and only if G is Hausdorff.
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(b) Proposition 3.1.7(b) yields that every linearly topologized group G is zero-dimen-
sional; in particular, when G is Hausdorff, it is totally disconnected and so also
hereditarily disconnected.

The next statement is true for regular spaces as well, but not for countable Haus-
dorff ones.

Proposition 6.1.7. Every countable Hausdorff group G is zero-dimensional.

Proof. Using the Tichonov separation axiom, for every U ∈ 𝒱(eG), there exists a con-
tinuous function f :G → [0, 1] such that f (eG) = 1 and f (G \ U) = {0}. The subset
X = f (G) of [0, 1] is countable, hence there exists a ∈ [0, 1]\ f (G). ThenW = (a, 1]∩ f (G)
is a clopen set of f (G). Therefore, f −1(W) ⊆ U is a clopen set of G containing eG. This
shows that G has a base of clopen sets.

Example 6.1.8. (a) The countable Hausdorff group G = ℚ/ℤ is zero-dimensional yet
has no proper open subgroups (see Exercise 6.3.1), so its topology is not linear.

(b) Every proper subgroup H of 𝕋 is zero-dimensional. Indeed, H is either finite
or dense, in view of Example 3.1.14(a). If H is finite, then it is clearly zero-
dimensional. If H is dense, then for any fixed a ∈ 𝕋 \ H also a + H is dense
and disjoint with H. Hence, {Γb,c ∩ H : b, c ∈ a + H}, where Γb,c is an open arc with
ends b, c is a base of the induced topology on H consisting of clopen sets of H.

Van Dantzig theorem 8.5.1 will show that every zero-dimensional locally compact
group G has a local base at eG consisting of open subgroups. Example 6.1.8(a) shows
that local compactness is essential.

6.2 The four components

The first of the four components that we recall in this section is the connected compo-
nent, that we will use also in the sequel.

Definition 6.2.1. For a topological group G, denote by c(G) the connected component
CeG of eG and call it briefly the connected component of G.

Proposition 6.2.2. The connected component c(G) of a topological group G is a closed
normal subgroup of G. The connected component of an element x ∈ G is simply the coset
xc(G) = c(G)x.

Proof. Toprove that c(G) is stable undermultiplication, it suffices to note that c(G)c(G)
is still connected by Lemma 6.1.1(a) and contains eG, so must be contained in the con-
nected component c(G). Similarly, an application of Lemma 6.1.1(b) implies that c(G)
is stable with respect to the inversion map 𝚤:G → G, x → x−1, so c(G) is a subgroup
of G. Moreover, for every a ∈ G, the image ac(G)a−1 under the conjugation ϕa by a is
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connected by Lemmas 2.1.6 and B.6.4(a), and contains eG, so must be contained in the
connected component c(G). Therefore, c(G) is a normal subgroup of G.

The fact that c(G) is closed follows from the fact that the closure of c(G) is a con-
nected subgroup of G, by Lemmas 3.1.1(b) and B.6.4(b).

To prove the last assertion, it suffices to recall that, for all x ∈ G, the translations
xt: y → xy and tx : y → yx are homeomorphisms, by Lemma 2.1.6.

Our next aim is to see that the quotient G/c(G) is hereditarily disconnected.

Lemma 6.2.3. For every topological group G, the quotient G/c(G) is hereditarily discon-
nected.

Proof. Let q:G → G/c(G) be the canonical projection and H = q−1(c(G/c(G))). Apply
Proposition 6.1.2 to H and its connected quotient H/c(G) ≅ c(G/c(G)) to conclude that
H is connected. SinceH contains c(G), we haveH = c(G). Hence,G/c(G) is hereditarily
disconnected.

Next comes the second component that we introduce for every topological group.

Definition 6.2.4. For a topological group G, denote by a(G) the set of points x ∈ G
connected to eG by an arc, i. e., there exists a continuous map f : [0, 1] → G such that
f (0) = eG and f (1) = x. We call arc the image f ([0, 1]) in G and arc component the
subset a(G). The group G is called arcwise connected if a(G) = G.

Obviously, all points of f ([0, 1]) belong to a(G).
The following result can be proved in analogy to Proposition 6.2.2.

Proposition 6.2.5. For a topological group G, the arc component a(G) of G is a normal
subgroup of G.

Proof. By Exercise 6.3.3(a) and the continuity of the multiplication μ:G × G → G,
(x, y) → xy, we get a(G)a(G) ⊆ a(G). Analogously, using the continuity of the inversion
map 𝚤:G → G, x → x−1, we get that a(G)−1 ⊆ a(G). Then a(G) is a subgroup of G. To
show that a(G) is stable under conjugation, use Exercise 6.3.3(b) and the continuity of
the conjugation from Lemma 2.1.6.

Clearly, a(G) = a(c(G)) ⊆ c(G) for any topological group G, so it makes sense to
study the subgroup a(G) for connected groups G. In general, a(G) need not be closed
in G. Actually, the subgroup a(K) is dense in c(K) for every compact abelian group K
(see Exercise 13.7.13).

The third component in our list is the quasicomponent, which always contains
the connected component.

Definition 6.2.6. For a topological group G, denote by Q(G) the quasicomponent of
the neutral element eG of G (i. e., Q(G) is the intersection of all clopen sets of G con-
taining eG) and call it the quasicomponent of G.
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Proposition 6.2.7. For a topological group G, the quasicomponent Q(G) is a closed nor-
mal subgroup of G. The quasicomponent Qx of x ∈ G coincides with the coset xQ(G) =
Q(G)x.

Proof. Let x, y ∈ Q(G). To prove that xy ∈ Q(G), we need to verify that xy ∈ O for every
clopen set O of G containing eG. Let O be such a set, then x, y ∈ O. Obviously, Oy−1 is
a clopen set containing eG, hence x ∈ Oy−1. This implies xy ∈ O, and so that Q(G) is
stable under multiplication. For every clopen set O of G containing eG, the set O−1 has
the same propriety, hence Q(G) is stable also with respect to the inversion 𝚤:G → G,
x → x−1. This implies that Q(G) is a subgroup of G. Moreover, for every a ∈ G and
for every clopen set O of G containing eG its image aOa−1 under the conjugation by
a ∈ G is a clopen set containing eG, by Lemma 2.1.6. So, Q(G) is stable also under
conjugation, hence Q(G) is a normal subgroup of G. As an intersection of clopen sets,
Q(G) is closed.

Clearly, for a topological group G,

a(G) ⊆ c(G) ⊆ Q(G).

According to the general Lemma B.6.11, c(K) = Q(K) for every compact group K. Actu-
ally, this remains true also in the case of locally compact groupsG (see Corollary 8.5.4),
as well as for countably compact groups (see [75]).

The fourth component that we consider is the following.

Definition 6.2.8. For a topological groupG, denote by o(G) the intersection of all open
subgroups of G.

Clearly, core(G) ⊆ o(G) for every topological group G.
Since the conjugate of an open subgroup is still open, o(G) is a closed normal

subgroup of G and
Q(G) ⊆ o(G).

This inclusion may be proper as G = ℚ/ℤ shows: here Q(G) = {0}, while o(G) = G (see
also Example 6.1.8(a), where the weaker property that G is not linearly topologized
was pointed out).

For a Hausdorff group G, always o(G) = {eG}whenever G has a linear topology, or
more generally, when 𝒱(eG) has a base of open subgroups.

6.3 Exercises
Exercise 6.3.1. Show that the groupℚ/ℤ is zero-dimensional but has no proper open
subgroups.

Exercise 6.3.2. For G a connected group and H a Hausdorff group, prove that:
(a) if h:G → H is a continuous homomorphism, then h is trivial whenever ker h has

nonempty interior;
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(b) if f1, f2:G → H are continuous homomorphisms that coincide on some neighbor-
hood of eG in G, then f1 = f2.

Hint. (a) Use that ker f is an open subgroup of G, so must coincide with G.
(b) In case G,H are abelian, apply (a) to the homomorphism h = f1 − f2:G → H. Otherwise, use

that the subgroup A = {a ∈ G: f1(a) = f2(a)} is open, so H = G.

Exercise 6.3.3. (a) If G,H are topological groups, prove that c(G × H) = c(G) × c(H),
a(G × H) = a(G) × a(H), Q(G × H) = Q(G) × Q(H), and o(G × H) = o(G) × o(H).

(b) If f :G → H is a continuous map of topological groups with f (eG) = eH , then
f (c(G)) ⊆ c(H), f (a(G)) ⊆ a(H), and f (Q(G)) ⊆ Q(H). Moreover, if f is also a homo-
morphism, prove that f induces continuous homomorphisms ̄f :G/c(G)→ H/c(H)
and ̃f :G/Q(G)→ H/Q(H) commuting with the respective projections G → G/c(G),
H → H/c(H), and G → G/Q(G), H → H/Q(H).

(c)∗ Let G be a topological abelian group and l(G) the set of elements x ∈ G such that
there exists a continuous homomorphism f :ℝ → G with f (1) = x. Check that l(G)
is a subgroup of G contained in a(G). If G is also locally compact, a(G) = l(G).

(d) Can (a) be extended to arbitrary products?

Hint. (c) The last assertion is not trivial, a proof can be found in [123].

Exercise 6.3.4. Prove that the group SO3(ℝ) of all rotations of ℝ3 is connected. Is
GL3(ℝ) connected? What about GL2(ℝ)?

Exercise 6.3.5.∗ Prove that for an abelian group G the following are equivalent:
(a) (G,ZG) is connected;
(b) for everym ∈ ℕ, the subgroupmG is either trivial or infinite;
(c) for everym ∈ ℕ+, G[m] either coincides with G or has infinite index.

Hint. (a)⇒(b) If (G,ZG) is connected, then mG is connected, by Exercise 4.5.11. Hence, mG must be a
singleton (necessarily {0}), if it is finite.

(b)⇔(c) For everym ∈ ℕ+, G[m] = ker μm, so G/G[m] ≅ mG.
For a proof of the implication (c)⇒(a), see [104].

Exercise 6.3.6.∗ Deduce from Exercise 6.3.3(b) that:
(a) the assignment G → c(G) (respectively, G → a(G)), along with the inclusion

c(G) → G (respectively, a(G) → G), defines a monocoreflection from the category
TopGrp to its full subcategory of all connected (respectively, arcwise connected)
topological groups;

(b) the assignment G → G/c(G) (respectively, G → G/Q(G)), along with the canonical
projection G → G/c(G) (respectively, G → G/Q(G)), defines an epireflection from
the categoryTopGrp to its full subcategory of all hereditarily (respectively, totally)
disconnected groups.

Does the assignment G → Q(G) define a coreflection?

Hint. To negatively answer the question, note that Q(G) = G precisely when G is connected. Next use
the fact that there exist topological groups G such that Q(G) is not connected (see [74]).
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7 Completeness and completion

In this chapter we explicitly construct the Raĭkov completion using Cauchy nets, we
discuss it also by means of filters, and compare it with the Weil completion.

7.1 Completeness and completion via Cauchy nets

7.1.1 Cauchy nets and completeness

Definition 7.1.1. A net {gα}α∈A in a topological group G is a Cauchy net if for any U ∈
𝒱G(eG) there exists α0 ∈ A such that g−1α gβ ∈ U ∋ gβg−1α for every α, β > α0.

Clearly, every convergent net is a Cauchy net, but the converse does not hold true:

Example 7.1.2. Consider ℚ with the subgroup topology induced by the Euclidean
topology of ℝ. Then {(1 + 1/n)n}n∈ℕ+ is a Cauchy net inℚ not converging inℚ.
Remark 7.1.3. It is easy to see that if H is a subgroup of a topological group G, then a
net {hα}α∈A in H is Cauchy if and only if it is a Cauchy net of G. In other words, this is
an intrinsic property of the net and it does not depend on the topological groupwhere
the net is considered.

Consequently, a net {hα}α∈A is Cauchy in H if and only if it is a Cauchy net of the
subgroup ⟨hα: α ∈ A⟩ of H.

By Exercise 7.3.1(a), a net {gα}α∈A in a topological group G is a Cauchy net when-
ever it converges in some larger topological groupH containingG as a topological sub-
group. Our aim in this subsection is to see that all Cauchy nets of G arise in this way
(see Theorem 7.1.10); moreover, there is a topological group H, in which G is dense,
witnessing this simultaneously for all Cauchy nets of G.

Lemma 7.1.4. Let G be a topological group.
(a) A Cauchy net {gα}α∈A of G is convergent if and only if it has a convergent subnet.
(b) If {gα}α∈A is a Cauchy net of G, then also {g−1α }α∈A is a Cauchy net of G.
(c) If x′ = {xα}α∈A and y′ = {yα}α∈A are Cauchy nets of G, then also {xαyα}α∈A is a Cauchy

net of G.

Proof. (a) Let {gαγ }γ∈Γ be a subnet of {gα}α∈A with gαγ → x ∈ G. We prove that gα → x.
Let U ∈ 𝒱G(eG) and let V ∈ 𝒱(eG) be symmetric and such that VV ⊆ U . Since gαγ → x,
there exists γ0 ∈ Γ such that gαγ ∈ Vx for every γ ≥ γ0. Moreover, there exists α0 ∈ A
such that α0 ≥ αγ0 and gαg

−1
β ∈ V for every α, β ≥ α0 in A. Let β = αγ0 . Then gα ∈ VVx ⊆

Ux for every α ≥ α0, that is, gα → x.
(b) is clear from the definition.

https://doi.org/10.1515/9783110654936-007
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(c) Let U0 ∈ 𝒱G(eG) and let U ∈ 𝒱G(eG) with UU ⊆ U0. Moreover, let V ∈ 𝒱G(eG) be
symmetric and such that VVV ⊆ U . There exists α0 ∈ A such that xβx−1α ∈ V for every
α, β ≥ α0. LetW ∈ 𝒱G(eG) with xα0Wx−1α0 ⊆ V andW ⊆ U . Then, for every α ≥ α0,

xαWx−1α = (xαx
−1
α0 )(xα0Wx−1α0 )(xα0x

−1
α ) ⊆ VVV ⊆ U .

By hypothesis, there exists α1 ∈ A such that α1 ≥ α0 and xαx−1β ∈ W and yαy−1β ∈ W
for every α, β ≥ α1. Therefore, for every α, β ≥ α1,

xαyαy
−1
β x−1β ∈ xαWx−1α xαx

−1
β ⊆ Uxαx

−1
β ⊆ UW ⊆ UU ⊆ U0.

Analogously, there exists α′ ∈ A such that, for all α, β ≥ α′, y−1β x−1β xαyα ∈ U0.

Definition 7.1.5. A topological group G is complete (in the sense of Raĭkov) (or, Raĭkov
complete) if every Cauchy net of G converges in G.

Example 7.1.6. (a) A discrete group G is complete, since every Cauchy net of G is
eventually constant and so convergent.

(b) IfG is an abelian group and {an}n∈ℕ is aT-sequence ofG, then (G, τ{an}) is complete
(see [240]) and nonmetrizable (see Exercise 7.3.2).

Of course, one can define Cauchy nets and completeness also in non-Hausdorff
groups. In such a case the Hausdorff reflection provides a nice connection between
Cauchy and convergent nets of G and its Hausdorff reflection hG:

Proposition 7.1.7. Let G be a topological group and q:G → hG its Hausdorff reflection.
Then:
(a) a net {xα}α∈A in G is convergent (respectively, Cauchy) if and only if {q(xα)}α∈A is

convergent (respectively, Cauchy) in hG;
(b) G is complete if and only if hG is complete.

Proof. (a) follows from Exercise 7.3.1(b) and Lemma B.3.2; (b) follows from (a).

The class of complete Hausdorff groups is closed under taking closed subgroups
and products:

Proposition 7.1.8. Let G be a complete Hausdorff group and H a subgroup of G. Then
H is complete if and only if H is closed.

Proof. Assume that H is a closed subgroup of the complete Hausdorff group G and let
{hα}α∈A be a Cauchy net of H. Since G is complete, {hα}α∈A converges to some g ∈ G.
SinceH is closed, g ∈ H. This proves thatH is complete. Conversely, suppose thatH is
complete and let {hα}α∈A be a net in H that is convergent to some x ∈ G. Since {hα}α∈A
is a Cauchy net of H, necessarily there exists h = limα∈A hα ∈ H. As G is Hausdorff,
x = h ∈ H. Hence, H is closed.
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Proposition 7.1.9. Let {Gi: i ∈ I} be a family of topological groups. Then G = ∏i∈I Gi is
complete if and only if Gi is complete for every i ∈ I.

Proof. Assume that Gi is complete for every i ∈ I and let {xα}α∈A be a Cauchy net of G =
∏i∈I Gi. Since for every i ∈ I the projection pi:G → Gi is continuous, the net {pi(xα)}α∈A
is a Cauchy net ofGi by Exercise 7.3.1(b), and hence pi(xα)→ yi ∈ Gi. Therefore, {xα}α∈A
converges to (yi)i∈I ∈ G.

Now suppose that G is complete. Let {xα}α∈A be a Cauchy net in Gi and denote by
ιi:Gi→G the canonical embedding. Then {ιi(xα)}α∈A is a Cauchy net in G, which con-
verges by assumption. Hence, {pi(ιi(xα))}α∈A= {xα}α∈A converges, soGi is complete.

Combining Propositions 7.1.8 and 7.1.9, one can prove that for every topological
group G there exist a complete Hausdorff group cG and a continuous homomorphism
f :G → cG such that f (G) is dense in cG, and that the assignment G → cG induces
a functor (a reflection) from the category TopGr to its full subcategory of complete
Hausdorff groups. But at this point we cannot say much about the map f :G → cG. It is
proved in the next section that it is an embedding when G is Hausdorff, and then cG
will be given the name completion of G.

7.1.2 Completion via Cauchy nets

The proof of the next general theorem is deferred to the end of this section. In order
to make that proof easily accessible to the reader, we precede it with the much easier
proofs in the metrizable and abelian cases.

Theorem 7.1.10. For every Hausdorff group G, there exist a complete Hausdorff group
G̃ and a topological embedding ι:G → G̃ such that ι(G) is dense in G̃.

For a Hausdorff group G, the pair (G̃, ι) given by Theorem 7.1.10 is called (Raĭkov)
completion of G. We see below that it is unique up to topological isomorphisms.

We use Lemma 7.1.12, based on the next notion, which makes sense since a local
baseℬ at eG in a topological groupG is a directed set when endowedwith the contain-
ment order (ℬ,⊇) (see also Remark 3.1.4).

Definition 7.1.11. Let G be a topological group and ℬ a local base at eG. A ℬ-net in G is
a net {xU }U∈ℬ in G.

Lemma 7.1.12. Let G be a topological group andℬ a local base at eG. ThenG is complete
if and only if every Cauchy ℬ-net of G converges in G.

Proof. Let {xα}α∈A be a Cauchy net of G. For every U ∈ ℬ, there exists αU ∈ A such
that, for every α, β ≥ αU , x−1α xβ ∈ U and xβx−1α ∈ U . We prove that {xαU }U∈ℬ is a Cauchy
net of G. In fact, letW ∈ ℬ and letW0 ∈ ℬ be such thatW0W0 ⊆ W . Let U ,V ∈ ℬ be
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contained inW0; for every α ∈ A with α ≥ αU , α ≥ αV ,

xαU x
−1
αV = xαU x

−1
α xαx
−1
αV ∈ UV ⊆ W0W0 ⊆ W ,

x−1αV xαU = x
−1
αV xαx
−1
α xαU ∈ VU ⊆ W0W0 ⊆ W .

Since the ℬ-net {xαU }U∈ℬ is a Cauchy net of G, it is convergent by hypothesis, so let
x ∈ G be a limit of {xαU }U∈ℬ. Now, according to Lemma 7.1.4(a), xα → x, too.

The use of ℬ-nets allows us to use only sequences in metrizable groups:

Lemma 7.1.13. A metrizable group is complete if and only if every Cauchy sequence of
G converges in G.

Proof. By Birkhoff–Kakutani theorem 5.2.17, there exists a countable baseℬ = {Un: n ∈
ℕ} of𝒱G(eG). For every n ∈ ℕ letVn = U0∩ ⋅ ⋅ ⋅∩Un. Thenℬ′ = {Vn: n ∈ ℕ} is a countable
base of 𝒱G(eG) and Vn+1 ⊆ Vn for every n ∈ ℕ. By Lemma 7.1.12, it suffices to consider
ℬ′-nets of G, and these are sequences.

In the next theorem we offer a proof of Theorem 7.1.10 for metrizable groups; as a
consequence, we obtain a proof also for abelian groups.

Theorem 7.1.14. The completion G̃ exists for every metrizable group G.

Proof. Fix a countable base ℬ = {Un: n ∈ ℕ} of 𝒱G(eG) (see Birkhoff–Kakutani theo-
rem 5.2.17). Let Gℕ be the group of all sequences of elements of G. Consider the sub-
groupG0 ofGℕ consistingof all null sequences inG (i. e., all sequences inG converging
to eG) and letGC be the larger subgroup ofGℕ consisting of all Cauchy sequences ofG.
There exists an injective homomorphism ζ :G → GC, g → {g, g, . . . , g, . . .}. For every
k ∈ ℕ, let

U∼k = {{xn}n∈ℕ ∈ GC :∃n0 ∈ ℕ,∀n ≥ n0, xn ∈ Uk}.

Then the filter base ℬ∼ = {U∼n : n ∈ ℕ} on GC satisfies (gt1), (gt2), and (gt3), so it can be
taken as a base of 𝒱GC

(ζ (eG)) in a group topology τ on GC. Clearly:
(i) ζ (G) is dense in (GC , τ) (for x∼ = {xn}n∈ℕ ∈ GC andUk ∈ ℬ, there exists n0 ∈ ℕ such

that xn0x
−1
n ∈ Uk for all n ≥ n0; then ζ (xn0 ) ∈ U

∼
k x
∼);

(ii) core(GC , τ) = G0;
(iii) for n ∈ ℕ, ζ (Un) = U∼n ∩ ζ (G), so ζ :G → ζ (G) is a topological isomorphism;
(iv) a sequence {xn}n∈ℕ in G is a Cauchy sequence of G if and only if {ζ (xn)}n∈ℕ is a

Cauchy sequence of GC;
(v) ζ (G) ∩ G0 = {ζ (eG)}.

We show thatGC/G0 is the desired completion G̃. To see thatGC is complete, let {x∼n }n∈ℕ
be a Cauchy sequence of GC. By the density of ζ (G) in GC, for every n ∈ ℕ there exists
gn ∈ G such that ζ (gn) ∈ x∼nU

∼
n . Then, for every n ∈ ℕ, y

∼
n = x

∼−1
n ζ (gn) ∈ U∼n , and
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hence {y∼n }n∈ℕ is a null sequence of GC. Since ζ (gn) = x∼ny
∼
n for every n ∈ ℕ, being a

product of Cauchy sequences of GC, {ζ (gn)}n∈ℕ is in its own turn a Cauchy sequence
of GC. This implies that {gn}n∈ℕ is a Cauchy sequence of G in view of (iv), namely,
{gn}n∈ℕ ∈ GC. We verify that x∼ := {gn}n∈ℕ ∈ limn∈ℕ ζ (gn): fix U∼k ∈ ℬ

∼; since {gn}n∈ℕ
is a Cauchy sequence of G, there exists n0 ∈ ℕ such that, for every n,m ≥ n0, gm ∈
gnUk; thus, for every m ≥ n0, ζ (gm) ∈ {gn}n∈ℕU∼k = x

∼U∼k , namely, ζ (gn) → x∼. Hence
limn∈ℕ ζ (gn)y∼n

−1 = limn∈ℕ x∼n , so GC is complete, by Lemma 7.1.13.
Letq:GC → GC/G0 = hGC be theHausdorff reflectionofGC. Then G̃ := GC/G0 = hGC

is Hausdorff, and G̃ is complete by Proposition 7.1.7. Let ι = q ∘ ζ :

G

ζ ??

ι ?? GC/G0 = G̃

GC

q

? ?

Since G0 is indiscrete, G0 ∩ ζ (G) = {ζ (eG)} is dense in G0, so q ↾ζ (G): ζ (G) → q(ζ (G)) is
open by Theorem 3.2.9, hence ι:G → G̃ is a topological embedding.

An easy example shows that the sets U∼k in the above proof need not be open.

Example 7.1.15. Letℚ be endowed with the usual topology. For every k ∈ ℕ+, let Uk =
(−π/k,π/k)∩ℚ; clearly, {Uk : k ∈ ℕ+} is a base of 𝒱ℚ(0). Let {xn}n∈ℕ be a sequence ofℚ
such that xn ∈ U1 for every n ∈ ℕ+ and xn → π in ℝ; so {xn}n∈ℕ is a Cauchy sequence
ofℚ that does not converge inℚ.

Now {xn}n∈ℕ ∈ U∼1 , but there exists nom ∈ ℕ+ such that {xn}n∈ℕ + U
∼
m ⊆ U

∼
1 .

Proposition 7.1.16. If a topological group G is metrizable, then its completion G̃ is
metrizable as well.

Proof. Since G̃ is Hausdorff, by Birkhoff–Kakutani theorem 5.2.17 it suffices to prove
that in case there exists a countable base {Un: n ∈ ℕ}of𝒱G(eG), there exists a countable

base of 𝒱G̃(eG̃). This countable base is {U
G̃
n : n ∈ ℕ}, by Lemma 5.1.3.

This can be deduced also from the proof of Theorem 7.1.14, where we furnish a
countable local base at eGC

, which gives a countable local base at eG̃.

Corollary 7.1.17. The completion G̃ exists for every Hausdorff abelian group G.

Proof. According to Corollary 5.2.19, G is isomorphic to a subgroup of a product
∏i∈I Mi, where each abelian group Mi is metrizable. By Theorem 7.1.14, every Mi has
a completion M̃i. Then P = ∏i∈I M̃i is complete by Proposition 7.1.9. The closure GP is
complete by Proposition 7.1.8, so GP is the completion of G.

As promised at the beginning of this section, now we are in position to prove the
general theorem showing the existence of the completion.
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Proof of Theorem 7.1.10. Fix a base ℬ of 𝒱G(eG) and let G∼ be the family of all Cauchy
ℬ-nets of G. For x∼ = {xU }U∈ℬ, y∼ = {yU }U∈ℬ ∈ G∼, let x∼y∼ = {xUyU }U∈ℬ. According to
Lemma 7.1.4, x∼y∼ ∈ G∼. For x∼ = {xU }U∈ℬ ∈ G∼, also {x−1U }U∈ℬ ∈ G

∼ by Lemma 7.1.4, so
it is the inverse of x∼. Then G∼ is a group with identity the constant net {eG}U∈ℬ. Let
ζ :G → G∼ be the injective homomorphism sending each g ∈ G to the constant Cauchy
net ζ (g).

For every U ∈ ℬ, let

U∼ = {{xU }U∈ℬ ∈ G̃:∃V0 ∈ ℬ,∀V ⊆ V0, xV ∈ U} ⊆ G
∼.

One can check that the filter base ℬ∼ = {U∼:U ∈ ℬ} satisfies (gt1), (gt2), and (gt3),
so it can be taken as a base of the filter of the neighborhoods of the neutral element
ζ (eG) of G∼ in a group topology on G∼. Since ζ (U) = U∼ ∩ ζ (G) for every U ∈ ℬ, the
homomorphism ζ :G → ζ (G) is a topological isomorphism. Moreover, ζ (G) is dense
in G∼. To check it, pick x∼ = {xW }W∈ℬ ∈ G∼ and a neighborhood U∼ ∈ ℬ∼ of eG∼ . There
exists V0 ∈ ℬ such that xVx−1O ∈ U for all O,V ∈ ℬ, with O,V ⊆ V0. Let g = xV0

. Then
gx−1O ∈ U for all O ∈ ℬ with O ⊆ V0. This proves that ζ (g) ∈ U∼x∼.

Since (ℬ,⊇) → (ℬ∼,⊇), U → U∼, is a monotone bijection, we can consider ℬ-nets
of G∼ instead of ℬ∼-nets. We use below that a ℬ-net {xU }U∈ℬ of G is a Cauchy ℬ-net of
G if and only if {ζ (xU )}U∈ℬ is a Cauchy ℬ-net of G∼.

To see that G∼ is complete, it is enough to see that every Cauchy ℬ-net {x∼U }U∈ℬ of
G∼ converges (see Lemma 7.1.12). By the density of ζ (G) in G∼, for every U ∈ ℬ there
exists gU ∈ G with ζ (gU ) ∈ U∼x∼U . Then y∼U = ζ (gU )x

∼−1
U ∈ U

∼, hence {y∼U }U∈ℬ is a null
ℬ-net of G∼, and therefore a Cauchy ℬ-net of G∼. We conclude that since {ζ (gU )}U∈ℬ =
{y∼U x
∼
U }U∈ℬ is a product of Cauchy ℬ-nets of G∼, {ζ (gU )}U∈ℬ is in its own turn a Cauchy

ℬ-net of G∼.
This implies that {gU }U∈ℬ is a Cauchy ℬ-net of G. We verify that x∼ := {gU }U∈ℬ ∈

limU∈ℬ ζ (gU ): fix W∼ ∈ ℬ∼; since {gU }U∈ℬ is a Cauchy ℬ-net of G, there exists U0 ∈
ℬ such that gU1

∈ gU2
W for all U1,U2 ∈ ℬ contained in U0; thus, for every U1 ∈ ℬ

contained in U0, ζ (gU1
) ∈ {gU }U∈ℬW∼ = x∼W∼. This yields ζ (gU ) → x∼. Hence x∼ ∈

limU∈ℬ y∼U
−1ζ (gU ) = limU∈ℬ x∼U , so G

∼ is complete.
Let q:G∼ → hG∼ = G∼/core(G∼) be the Hausdorff reflection ofG∼. Then G̃ := hG∼ is

Hausdorff and G̃ is complete by Proposition 7.1.7. Since core(G∼) = ⋂U∈ℬ U∼ coincides
with the subgroup of G∼ of all null ℬ-nets of G, core(G∼) ∩ ζ (G) = {ζ (eG)}. Let ι = q ∘ ζ :

G

ζ ??

ι ?? G∼/core(G∼) = G̃

G∼
q

??

Since core(G∼) is indiscrete, core(G∼) ∩ ζ (G) = {ζ (eG)} is dense in core(G∼), so
q ↾ζ (G): ζ (G) → q(ζ (G)) is open by Theorem 3.2.9, hence ι:G → G̃ is a topological
embedding.
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The complete group G̃ has an important universal property.

Theorem 7.1.18. Let G be a Hausdorff group and let G̃ be a complete Hausdorff group
together with a topological embedding ι:G → G̃ such that ι(G) is dense in G̃. If f :G → H
is a continuous homomorphism, where H is a complete Hausdorff group, then there is a
unique continuous homomorphism f̃ : G̃ → H with f = f̃ ∘ ι:

G
f ??

ι ??

H

G̃
f̃

??

Proof. Let g ∈ G̃. There exists a net {gα}α∈A in G such that g = limα∈A gα. Then {gα}α∈A
is a Cauchy net, hence {f (gα)}α∈A is a Cauchy net of H by Exercise 7.3.1(b). By the com-
pleteness of H, it must be convergent.

Put f̃ (g) = limα∈A f (gα). To see that this limit does not depend on the choice of the
net {gα}α∈A with g = limα∈A gα, pick another net {xα}α∈A in G such that g = limα∈A xα.
Then again {f (xα)}α∈A is a Cauchy net of H, so there exists h ∈ H such that f (xα) → h.
On the other hand, {x−1α gα}α∈A converges to eG̃ in G̃, hence in G as well. Therefore,
f (x−1α gα) → eH , by the continuity of f . Since f (x−1α ) = f (xα)

−1 → h−1 in H, we deduce
that f (x−1α gα)→ h−1 limα∈A f (gα). By the uniqueness of the limit, h−1 limα∈A f (gα) = eH ,
so h = limα∈A f (gα).

To see that f̃ is continuous, pickW ,V ∈ 𝒱H (eH ) with VV ⊆ W . By the continuity
of f , there existsU ∈ 𝒱G(eG)with f (U) ⊆ V . It is enough to check that f̃ (U) ⊆ W , where
the closure is taken in G̃. If u ∈ U, then u = limβ∈B uβ with {uβ}β∈B a net in U . Then

f̃ (u) = lim
β∈B

f (uβ) ∈ f (U) ⊆ f (U)V ⊆ VV ⊆ W .

This proves that f̃ (U) ⊆ W .
To verify the uniqueness of the extension f̃ , suppose that f ′: G̃ → H is another

continuous homomorphism with f = f ′ ∘ ι. This means that f ′ and f̃ coincide on the
dense subgroup ι(G), so f̃ = f ′.

From the two theorems above, one can deduce that every Hausdorff group has a
unique, up to topological isomorphisms, (Raĭkov) completion (G̃, ι), and we can as-
sume that G is simply a dense subgroup of G̃.

Corollary 7.1.19. Let {Gi: i ∈ I} be a family of Hausdorff groups and G = ∏i∈I Gi. Then
G̃ ≅ ∏i∈I G̃i.

Proof. By Proposition 7.1.9, the product ∏i∈I G̃i is complete. Since G is a dense sub-
group of∏i∈I G̃i, Theorem 7.1.18 applies.

The following is a direct consequence of Theorem 7.1.18.
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Corollary 7.1.20. For Hausdorff groups G,H and a continuous homomorphism f :G →
H, there exists a continuous homomorphism f̃ : G̃ → H̃ extending f .

This corollary shows that the assignments G → G̃ and f → f̃ define a reflector
from the category TopGr2 to its full subcategory of complete Hausdorff groups.

Remark 7.1.21. Obviously, composing the completion functor with the functor G →
hG of the Hausdorff reflection, one obtains a reflector from the category TopGr to the
full subcategory of complete Hausdorff groups, but now the maps G → h̃G are not
injective any more.

The next proposition gives a useful characterization of completeness in terms of
“absolute closedness”. (Recall that H-closed spaces were introduced by Alexandrov
and Urysohn as those Hausdorff spaces which are always closed whenever embedded
in some Hausdorff space.)

Proposition 7.1.22. A Hausdorff group G is complete if and only if for every embedding
j:G → H into a Hausdorff group H the subgroup j(G) of H is closed.

Proof. Assume that there exists an embedding j:G → H into aHausdorff groupH such
that j(G) is not a closed subgroupofH. Then there exists anet {yα}α∈A in j(G) converging
to some element h ∈ H that does not belong to j(G). By Remark 7.1.3, {yα}α∈A is a Cauchy
net of j(G). Since it converges to h ∈ H \ j(G), and H is a Hausdorff group, we conclude
that this net does not converge in j(G). Since j:G → j(G) is a topological isomorphism,
this provides a nonconvergent Cauchy net of G. Hence, G is not complete.

Now assume that G is not complete and consider the dense inclusion ι:G → G̃.
Since G = ι(G) is a proper dense subgroup of G̃, we conclude that ι(G) is not closed
in G̃.

Some compactness-like properties (like local compactness) imply completeness
(see Remark 7.1.28 and Proposition 8.2.6). Here is another obviously stronger property:

Definition 7.1.23 ([115]). A Hausdorff groupG is h-complete if every continuous homo-
morphic image of G is complete.

For example, discrete groups are complete but not h-complete, so this complete-
ness property is strictly stronger. One can prove that abelian (actually, nilpotent)
h-complete groups are compact (see [115]).

On the other hand, other relatively strong compactness-like properties (as count-
able compactness) do not imply completeness. To face this phenomenon, a weaker
form of completeness was proposed in [110, 111]:

Definition 7.1.24. A topological group G is sequentially complete if every Cauchy se-
quence {gn}n∈ℕ of G is convergent.

A topological group G is sequentially complete if and only if G is sequentially
closed in its completion. We shall see in the sequel that countably compact groups
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are sequentially complete, although they need not be complete in general (see Re-
mark 15.2.6).

Groups without nontrivial convergent sequences are sequentially complete (see
Exercise 7.3.7), so for every abelian group G the group G# is sequentially complete
(since it has no nontrivial convergent sequences, in view of Glicksberg theorem 11.6.11
– see Theorem 13.4.9 for a proof in the present case), yet it is quite far from being com-
plete, as we shall see in the sequel.

Plenty of results on the remarkable class of sequentially complete groups can be
found in [80, 93, 102, 110, 111].

7.1.3 Weil completion

Historically the following concepts (see also Definition 7.1.27) appeared before that in
§7.1.1.

Definition 7.1.25. A net {gα}α∈A in a topological group G is a left (respectively, right)
Cauchy net if for every neighborhoodU of eG in G there exists α0 ∈ A such that g−1α gβ ∈
U (respectively, gβg−1α ∈ U) for every α, β > α0.

Clearly, a net is Cauchy if and only if it is both a left and a right Cauchy net.

Lemma 7.1.26. Let G be a Hausdorff group. Every left (respectively, right) Cauchy net of
G with a convergent subnet is convergent.

Proof. Let {gα}α∈A be a left Cauchy net of G and let {gβ}β∈B be a subnet convergent to
x ∈ G, where B is a cofinal subset of A. Let U be a neighborhood of eG in G and V
a symmetric neighborhood of eG in G such that VV ⊆ U . Since gβ → x, there exists
β0 ∈ B such that gβ ∈ xV for every β > β0. On the other hand, there exists α0 ∈ A
such that α0 ≥ β0 and, for every α, γ > α0, g−1γ gα ∈ V , that is, gα ∈ gγV ⊆ xVV ⊆ xU .
Therefore, for every α > α0, gα ∈ xU, namely, gα → x.

Definition 7.1.27. A topological group G is complete in the sense of Weil (orWeil com-
plete) if every left Cauchy net of G converges in G.

Remark 7.1.28. (a) For every left Cauchy net {gα}α∈A of a topological group G, the net
{g−1α }α∈A is right Cauchy. Therefore, if every left Cauchy net of G converges in G,
then the same applies to all right Cauchy nets of G. Hence, a topological group G
is Weil complete if and only if every right Cauchy net of G converges in G.

(b) We shall see in the sequel that locally compact groups are Weil complete (see
Proposition 8.2.6).

Obviously, every Weil complete group is also Raĭkov complete, but the converse
does not hold in general (see Proposition 7.1.29). Clearly, these two concepts coincide
for abelian groups.
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It is possible to define theWeil completion of aHausdorff group in analogywith the
Raĭkov completion. If a Hausdorff group G admits a Weil completion H, then H = G̃
is the Raĭkov completion of G, in view of Exercise 7.3.3. The converse does not hold
true:

Proposition 7.1.29. For an infinite set X, let S(X) be equipped with TX:
(a) S(X) is Raĭkov complete;
(b) S(X) admits no Weil completion (and S(X) is not Weil complete).

Proof. (a) Let {fα}α∈A be a Cauchy net of S(X). For every finite subset E of X, there exists
α0 ∈ A such that for every α, β ≥ α0, f −1β fα ∈ SE and fαf −1β ∈ SE; in particular, fα ↾E= fβ ↾E
and f −1α ↾E= f

−1
β ↾E . Taking E = {x} for x ∈ X, this means that {fα(x)}α∈A and {f −1α (x)}α∈A

are convergent in the discrete space X; so, let

f (x) = lim
α∈A

fα(x) and g(x) = lim
α∈A

f −1α (x).

Hence, we have defined two maps f , g:X → X such that f ∘ g = g ∘ f = idX , so f ∈ S(X),
and fα → f in TX . This proves that S(X) is complete.

(b) To see that S(X) is not Weil complete, we produce a left Cauchy net that does
not converge. Let Y = {xn: n ∈ ℕ+} be a subset of X (with pairwise distinct elements).
For n ∈ ℕ+, define fn:X → X by

{{{
{{{
{

fn(xi) = xi+1 for i ∈ {1, . . . , n − 1},
fn(xn) = x1,
fn(x) = x for x ∈ X \ {x1, . . . , xn}.

Then {fn}n∈ℕ+ is a left Cauchy net of S(X): for a finite subset E of X, let k ∈ ℕ+ with
E ∩Y ⊆ {x1, . . . , xk}; so, form, n > k, fn ↾E= fm ↾E, that is, f −1m fn ∈ SE . We see that {fn}n∈ℕ+
does not converge in S(X). Let f :X → X be defined by

{
f (xi) = xi+1 for every i ∈ ℕ+,
f (x) = x for every x ∈ X \ Y .

Then fn → f in XX endowed with the pointwise convergence topology, but f (X) =
X \ {x1}, so f ̸∈ S(X). It follows that {fn}n∈ℕ+ does not converge in S(X). Thus, S(X) is
not Weil complete.

By Exercise 7.3.3, S(X) cannot admit a Weil completion, otherwise the above left
Cauchy sequence {fn}n∈ℕ would be also a right Cauchy sequence, and so it would
converge by item (a).
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7.2 Completeness via filters

7.2.1 Cauchy filters

The proof of Theorem 7.1.10 becomes particularly involved when G is not metrizable.
This is why many authors prefer to avoid the Cauchy nets for the construction of the
completion. This can be done by means of the following notion.

Definition 7.2.1. A filter ℱ on a Hausdorff group G is Cauchy if for every U ∈ 𝒱G(eG)
there exists F ∈ ℱ such that FF−1 ∪ F−1F ⊆ U .

One can define a Cauchy filter base in the same way, or, equivalently, by asking
that the filter generated by this filter base is Cauchy. Ifℱ ,ℋ are filters on G, we denote
by ℱ ⋅ℋ the filter on G generated by the filter base {FH : F ∈ ℱ ,H ∈ ℋ}.

Lemma 7.2.2. Let G be a Hausdorff group.
(a) For a filter ℱ on G, the following conditions are equivalent:

(a1) the filter ℱ is Cauchy;
(a2) the filter ℱ−1 := {F−1: F ∈ ℱ} is Cauchy;
(a3) the filters ℱ−1 ⋅ ℱ and ℱ ⋅ ℱ−1 converge to eG;
(a4) for every U ∈ 𝒱G(eG), there exists g ∈ G such that Ug ∈ ℱ and gU ∈ ℱ .
(a5) for every U ∈ 𝒱G(eG), there exist g, h ∈ G such that Ug ∈ ℱ and Uh ∈ ℱ .

(b) If ℱ is a Cauchy filter on G and xF ∈ F for every F ∈ ℱ , then the net {xF}F∈ℱ is a
Cauchy net (here ℱ is considered as a directed partially ordered set with respect to
inclusion).

(c) If {xα}α∈A is a Cauchy net of G and Fα = {xβ: β ∈ A, β ≥ α}, then the family {Fα: α ∈ A}
is a Cauchy filter base on G.

(d) If ℱ ,ℋ are Cauchy filters on G, then the filter ℱ ⋅ℋ is Cauchy.

Proof. The verification of (a)–(c) is a straightforward application of the definitions.
(d) Pick U ∈ 𝒱G(eG) and V ∈ 𝒱G(eG) with VV ⊆ U . According to (a4), there exist

H ∈ ℋ and h ∈ G such thatH ⊆ hV . Since hVh−1 ∈ 𝒱G(eG), according to (a4) there exist
F ∈ ℱ and g ∈ G such that F ⊆ ghVh−1. Now

FH ⊆ ghVh−1hV ⊆ ghVV ⊆ ghU .

Similarly, one can prove that there exist g′, h′ ∈ G, F′ ∈ ℱ and H′ ∈ ℋ, such that
F′H′ ⊆ Uh′g′. We conclude that ℱ ⋅ℋ is a Cauchy filter.

We immediately deduce from Lemma 7.2.2 the following characterization of com-
plete Hausdorff groups by means of filters.

Proposition 7.2.3. A Hausdorff group G is complete if and only if every Cauchy filter on
G converges.

The proof of Theorem 7.1.10 uses essentially Cauchy nets, whereas the construc-
tion of the completion in Theorem 7.2.10 is based on Cauchy filters. Nevertheless, it is
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important at this stage to realize that the use of filters does not lead to a new notion
of completeness, since the completion is unique up to topological isomorphisms,
by Theorem 7.1.18 (see also Lemma 7.2.9). Our motivation to rigorously carry out the
Raĭkov completion procedure also in terms of Cauchy filters is due to its simplicity
with respect to its counterpart based on the use of Cauchy nets. For example, the com-
pletion procedure with Cauchy filters in Theorem 7.2.10 does not require the “second
step”, i. e., taking a quotient of the group of minimal Cauchy filters, in order to obtain
a Hausdorff group.

One can define left and right Cauchy filters on a Hausdorff group in analogy with
left and right Cauchy nets and Definition 7.2.1, so that the Cauchy filters are those fil-
ters that are simultaneously left and right Cauchy. As observed above for the Raĭkov
completeness and the Raĭkov completion, developing the Weil completeness and the
Weil completion in terms of left (or right) Cauchy filters in full details gives nothing
new with respect to what we already did in terms of left (or right) Cauchy nets. This is
why we are not going to do that.

7.2.2 Minimal Cauchy filters

Let us see that one can relax the criterion for completeness by imposing convergence
only on a much smaller family of Cauchy filters introduced as follows.

Definition 7.2.4. ACauchy filterℱ on aHausdorff groupG isminimal if for every F ∈ ℱ
there exist F′ ∈ ℱ and U ∈ 𝒱G(eG) such that UF′U ⊆ F.

A leading example of a minimal Cauchy filter are the neighborhood filters 𝒱G(x)
(see Proposition 7.2.6). Clearly, the minimal Cauchy filters are open (i. e., have a base
of open sets). Nevertheless, an open Cauchy filter need not be minimal even if it is
convergent.

Example 7.2.5. Let ℝ be equipped with the usual Euclidean topology, and let ℬ =
{(0, 1/n): n ∈ ℕ+}, which is a filter base consisting of open sets ofℝ. Since ℬ converges
to 0, it generates an open Cauchy filter ℱ . But ℱ is not minimal, as F = (0, 1) ∈ ℱ does
not contain any set of the form F′ + U, where F′ ∈ ℱ and U = (−1/m, 1/m) for some
m ∈ ℕ+. This shows also that a convergent open filter need not be minimal.

As the next proposition shows, the minimal Cauchy filters on a topological group
G are precisely the minimal elements in the poset of all Cauchy filters on G ordered by
inclusion; in particular, if ℱ ̸= 𝒢 are minimal Cauchy filters on G they are not com-
parable, that is, neither ℱ ⊆ 𝒢 nor ℱ ⊇ 𝒢. This explains the use of the term minimal,
introduced by Bourbaki [38] in the framework of uniform spaces.

Proposition 7.2.6. Let G be aHausdorff group andℱ a Cauchy filter on G. The following
conditions are equivalent:
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(a) ℱ is minimal;
(b) if ℱ1 is a Cauchy filter on G such that ℱ1 ⊆ ℱ , then ℱ1 = ℱ;
(c) ℱ = ℱ ⋅ 𝒱G(eG) = 𝒱G(eG) ⋅ ℱ .

In particular, 𝒱G(x) is a minimal Cauchy filter for every x ∈ G.

Proof. (a)⇒(b) Let F ∈ ℱ . By the minimality of ℱ , there exist F′ ∈ ℱ and U ∈ 𝒱(eG)
such that UF′U ⊆ F. Moreover, there exists F1 ∈ ℱ1 such that F1F−11 ∪ F

−1
1 F1 ⊆ U . Since

F1 ∈ ℱ1 ⊆ ℱ ∋ F′, clearly F1 ∩ F′ ̸= 0; pick x ∈ F1 ∩ F′. Then x−1F1 ⊆ F−11 F1 ⊆ U, and so
F1 ⊆ xU ⊆ F′U ⊆ UF′U ⊆ F. We can conclude that F ∈ ℱ1.

(b)⇒(c) By Lemma 7.2.2(d), ℱ ⋅ 𝒱G(eG) and 𝒱G(eG) ⋅ ℱ are Cauchy filters on G con-
tained in ℱ .

(c)⇒(a) Our hypothesis implies ℱ = 𝒱G(eG) ⋅ ℱ ⋅ 𝒱G(eG). To prove that ℱ is min-
imal, pick an F ∈ ℱ and using this equality find U ∈ 𝒱G(eG) and E ∈ ℱ such that
UEU ⊆ F.

Lemma 7.2.7. Let G be a topological subgroup of a Hausdorff group H. Let ℱ be a
Cauchy filter on H such that the restriction ℱ ↾G:= {G ∩ U :U ∈ ℱ} is a filter base on G.
Then ℱ ↾G is a Cauchy filter on G.
(a) If ℱ is minimal, then ℱ ↾G is minimal.
(b) If G is dense in H and ℱ is open, then ℱ ↾G is open.

Proof. To verify thatℱ ↾G is Cauchy, let V ∈ 𝒱G(eG); so V = U ∩G for someU ∈ 𝒱H (eH ).
Let B ∈ ℱ such that BB−1 ∪ B−1B ⊆ U . Then C = B ∩ G ∈ ℱ ↾G and CC−1 ∪ C−1C ⊆ V .

(a) This is straightforward as above.
(b) Clearly, if ℬ is a base of ℱ consisting of open sets of H, then {B ∩ G:B ∈ ℬ} is a

base of ℱ ↾G consisting of open sets of G.

Lemma 7.2.8. Let G be a topological group. Ifℱ ,ℋ areminimal Cauchy filters onG, then
also ℱ ⋅ℋ and ℱ−1 are minimal Cauchy filters on G.

Proof. We already noticed that ℱ ⋅ ℋ and ℱ−1 are Cauchy filters in Lemma 7.2.2. The
proof that they are minimal is straightforward.

Lemma 7.2.9. If G is a topological subgroup of a Hausdorff group H and h ∈ GH , then
ℱ = 𝒱H (h) ↾G is a minimal Cauchy filter on G. Consequently, a Hausdorff group G is
complete if and only if every minimal Cauchy filter on G converges.

Proof. The first assertion follows from Lemma 7.2.7 applied to ℱ = 𝒱H (h).
To prove the second assertion, in view of Proposition 7.2.3 we only need to check

that if every minimal Cauchy filter on G converges then G is complete. To this end,
argue by contradiction and let G be a proper (dense) subgroup of its completion G̃. By
the first assertion, any element h ∈ G̃ \ G gives rise to a minimal Cauchy filter 𝒱G̃(h)↾G
on G, which is not convergent in G.
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It follows from Lemma 7.2.9 that the Raĭkov completion G̃ of a Hausdorff group G
can be built also by using the minimal Cauchy filters on G. More precisely, one im-
poses on the extension G̃ ofG these two conditions:G is dense in G̃ and everyminimal
Cauchy filter on G̃ converges in G̃ (i. e., G̃ is complete, according to Lemma 7.2.9).

Theorem 7.2.10. Let (G, τ) be a Hausdorff group, let

G = {ℱ :ℱ minimal Cauchy filter on G} and ι:G → G, x → 𝒱G(x).

ThenGwith the binary operation (ℱ ,ℋ) → ℱ ⋅ℋ is a group that admits a completeHaus-
dorff group topology τ such that ι(G) is a dense subgroup of G topologically isomorphic
to G. Therefore, (G, ι) is (topologically isomorphic to) the Raĭkov completion of G.

Proof. Due to Lemma 7.2.8, G is a group with binary operation (ℱ ,ℋ) → ℱ ⋅ℋ. More-
over, ι(G) is a subgroup of G and ι is injective.

For every open set V of G, let Ṽ = {ℱ ∈ G:V ∈ ℱ}. Then

ℬ = {Ṽ :V ∈ 𝒱G(eG), V open}

satisfies (gt1), (gt2), and (gt3), so it is a filter of neighborhoods of eG in a group topology
τ on G. Let us see that ℬ satisfies also (gt4). To this end, let Ũ ∈ ℬ and ℱ ∈ Ũ . Since
U ∈ ℱ andℱ isminimal, there exist an openV ∈ 𝒱G(eG) and F ∈ ℱ such thatVFV ⊆ U .
If 𝒢 ∈ Ṽ , then 𝒢 ⋅ ℱ ∈ G, in view of Lemma 7.2.8. Moreover, 𝒢 ⋅ ℱ ∈ Ũ, since VF ∈ 𝒢 ⋅ ℱ
and VF ⊆ VFV ⊆ U . This means that Ṽ ⋅ ℱ ⊆ Ũ . Then ℬ satisfies (gt4), so ℬ ⊆ τ by
Remark 2.1.14. In other words, {Ṽ :V ∈ τ} is a base of τ. (Observe that for x ∈ G and
V ∈ 𝒱G(eG) open, x̃V = 𝒱G(x) ⋅ Ṽ holds.)

To see that τ induces on ι(G) the topology ι(τ), let V be an open set of G; we verify
that

Ṽ ∩ ι(G) = ι(V). (7.1)

If x ∈ V , then V ∈ 𝒱G(x), so 𝒱G(x) ∈ Ṽ , namely, ι(x) ∈ Ṽ ∩ ι(G). Vice versa, let ι(x) =
𝒱G(x) ∈ Ṽ ; then x ∈ V .

By the definition of τ and (7.1), every nonempty τ-open set of G hits ι(G), therefore
ι(G) is dense in G.

To see that (G, τ) is Hausdorff, letℱ ∈ Gwithℱ ̸= eG = 𝒱G(eG). Sinceℱ and 𝒱G(eG)
are minimal Cauchy filters, this implies that 𝒱G(eG) ̸⊆ ℱ by Proposition 7.2.6(b). Then
there exists an openW ∈ 𝒱G(eG) such thatW ̸∈ ℱ . Therefore, ℱ ̸∈ W̃ ∈ 𝒱G(eG). This
proves that G is Hausdorff.

Let us see that for a minimal Cauchy filter ℱ on G, the filter G generated by the
filter base ι(ℱ) on G converges to ℱ ∈ G. We have to verify that

𝒱G(ℱ) ⊆ G. (7.2)

A basic member of 𝒱G(ℱ) is a τ-open set of the form Ṽ ∋ ℱ , where V is an open set
of G. This means that V ∈ ℱ . Since Ṽ ⊇ ι(V) by (7.1), and ι(V) ∈ ι(ℱ) as V ∈ ℱ , we
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conclude that Ṽ ∈ G. This proves the inclusion (7.2), which means that G converges
to ℱ .

To show that (G, τ) is complete, take a minimal Cauchy filter F on G. By Lem-
ma 7.2.7, F↾ι(G) is a minimal Cauchy filter on ι(G), hence of the form ι(ℱ) for a suitable
minimal Cauchy filter ℱ on G. Since F is a minimal Cauchy filter, it has a base 𝒞 con-
sisting of open sets. So, the filterG generated by ι(ℱ) is the filter generated by the sets
{U∩ ι(G):U ∈ 𝒞}. Denote byG the filter generated by the closures of the elements ofG.
Thenwe obtain thatG is the filter generated by the sets {U ∩ ι(G):U ∈ 𝒞} = {U:U ∈ 𝒞} ⊆
F (where we apply Lemma B.1.19, since ι(G) is dense in G). This impliesG ⊆ F.

By (7.2),G contains𝒱G(ℱ). Since τ is regular, the filter𝒱G(ℱ)has a base of τ-closed
sets of G; hence, also the filter 𝒱G(ℱ), generated by the closures of the members of
𝒱G(ℱ), equals 𝒱G(ℱ). Combining the results, we obtain 𝒱G(ℱ) = 𝒱G(ℱ) ⊆ G ⊆ F. This
shows that F converges to ℱ .

In view of Lemma 7.2.9, we conclude that (G, τ) is complete. Hence, G (with ι) is
the completion of G, by Theorem 7.1.18.

7.2.3 Completeness of the linearly topologized groups

Proposition 7.2.11. Let G be a Hausdorff linearly topologized group and let {Ni: i ∈ I}
be a base of 𝒱G(eG) consisting of open normal subgroups of G. Then the completion G̃ of
G is isomorphic to the inverse limit lim

←i∈I
G/Ni of the discrete quotients G/Ni. Moreover,

G̃ ≅ lim
←i∈I

G/Ni is compact if and only if all Ni have finite index in G.

Proof. Since ⋂i∈I Ni is trivial, there is a natural embedding of G in the product
P = ∏i∈I G/Ni of the discrete quotients G/Ni. Clearly, P is complete, by Proposi-
tion 7.1.9. Hence, the closure GP is complete. It is easy to realize that GP coincides with
lim
←i∈I

G/Ni, in view of Remark 3.3.7. The last assertions is obvious.

Now we discuss a property stronger than completeness in the class of Hausdorff
linearly topologized abelian groups.

Definition 7.2.12. A Hausdorff linearly topologized abelian group G is linearly com-
pact if every collection of closed cosets of subgroups of G with the finite intersection
property has nonempty intersection.

Lemma 7.2.13. Closed subgroups and continuous homomorphic images (provided they
are Hausdorff and linearly topologized) of a linearly compact abelian group G are lin-
early compact.

Proof. Obviously, closed subgroups of linearly compact groups are linearly compact.
Assume that H is a Hausdorff linearly topologized abelian group and that f :G →

H is a continuous surjective homomorphism. If ℱ is a filter base of closed cosets of
subgroups ofH, thenℱ∗ = {f −1(F): F ∈ ℱ} is a filter base of closed cosets of subgroups
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of G. Since G is linearly compact, ℱ∗ has nonempty intersection. Therefore, ℱ has a
nonempty intersection as well.

Theorem 7.2.14. A linearly compact abelian group G is complete.

Proof. To see that G is complete, it suffices to check that every minimal Cauchy filter
ℱ on G converges. From the definition of minimal Cauchy filter and the fact that G is
linearly topologized, we deduce that ℱ has a base consisting of cosets of open sub-
groups. Now the linear compactness of G implies that ℱ is fixed; let x ∈ ⋂ℱ . Since ℱ
has a base of open sets, this means that ℱ ⊆ 𝒱G(x). Since 𝒱G(x) is a minimal Cauchy
filter, this yields 𝒱G(x) = ℱ , and so ℱ → x.

In Exercises 7.3.12 and 7.3.13 we describe the linearly compact abelian groups.

7.3 Exercises

Exercise 7.3.1. Let G be a topological group. Prove that:
(a) if G is a subgroup of a topological group L, and {gα}α∈A is a net in G that converges

to some element l ∈ L, then {gα}α∈A is a Cauchy net;
(b) if H is another topological group, f :G → H is a continuous homomorphism, and
{gα}α∈A is a (respectively, left, right) Cauchy net of G, then {f (gα)}α∈A is a (respec-
tively, left, right) Cauchy net of H.

Exercise 7.3.2. Let G be an abelian group and {an}n∈ℕ a T-sequence of G. Prove that
(G, τ{an}) is not metrizable.
Hint. According to Lemma 5.3.11, the subgroup H of G generated by the countable set {an: n ∈ ℕ} is
τ{an}-open. Therefore, it suffices to prove that (H , τ{an}) is notmetrizable. Since (G, τ{an}) is complete by
Example 7.1.6(b), (H , τ{an}) is complete as well. Since complete metrizable groups are Baire spaces by
the Baire category theorem B.5.17, and since a countable topological group that is a Baire space must
be discrete (see Corollary 2.1.7), we deduce that (H , τ{an}) is not metrizable (as it is not discrete).

Exercise 7.3.3. Prove that if a Hausdorff group G admits a Weil completion, then in G
the left and right Cauchy nets coincide, so they are simply the Cauchy nets.

Exercise 7.3.4. Let X be an infinite set and let G = (S(X), TX). Prove that:
(a) anet {fα}α∈A inG is left Cauchy if andonly if there exists a (not necessarily bijective)

map f :X → X such that fα → f in XX , and such an f must necessarily be injective;
(b) a net {fα}α∈A in G is right Cauchy if and only if there exists a (not necessarily bi-

jective) map g:X → X such that f −1α → g in XX , and such a g must necessarily be
injective.

Exercise 7.3.5. Prove that:
(a) if G is a Weil complete group and H is a subgroup of G, then H is Weil complete if

and only if H is closed;
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(b) for a family {Gi: i ∈ I}, the product∏i∈I Gi is Weil complete if and only if Gi is Weil
complete for every i ∈ I.

Exercise 7.3.6. Prove that a filterℱ on a Hausdorff group G is Cauchy if and only if for
any U ∈ 𝒱G(eG) there exists g ∈ G such that gU ∈ ℱ ∋ Ug.

Exercise 7.3.7. Prove that if G is a Hausdorff group without nontrivial convergent se-
quences, then G is sequentially complete.

Exercise 7.3.8. LetG be a discrete group. Prove that C∗(G) equippedwith the topology
of uniform convergence is complete.

Exercise 7.3.9. Let U ,V be vector spaces over a field K. Prove that the group
Hom(V ,U), equipped with the finite topology τfin, is complete.

Exercise 7.3.10. (a) Let p be a prime number. Prove that the completion of (ℤ, νpℤ) is
the compact group 𝕁p of p-adic integers.

(b) Prove that the completion of (ℤ, νℤ) is isomorphic to∏p∈ℙ 𝕁p.

Exercise 7.3.11. Let p be a prime number. Prove that:
(a) ℤ admits a finest group topology τ such that pn → 0 in τ (this is τ{pn} in the nota-

tion of §5.3);
(b)∗([240, 241]) (ℤ, τ) is complete;
(c) conclude that τ is not metrizable.

Exercise 7.3.12. Let G be a linearly compact abelian group. Prove that:
(a) if G is discrete, then G is torsion and contains no infinite direct sums;
(b) conclude, from (a), that when G is discrete, G is isomorphic to a subgroup of
∏ni=1ℤ(p

∞
i ), where the primes p1, . . . , pn are not necessarily distinct;

(c)∗ for every linearly topologized abelian groupH, the projection p:G ×H → H sends
closed subgroups of G × H to closed subgroups of H.

Exercise 7.3.13. Prove that:
(a) the groupsG of the formdescribed in Exercise 7.3.12(b) are precisely those inwhich

every descending chain of subgroups stabilizes (briefly called DCC groups);
(b) every DCC group G is linearly compact in the discrete topology;
(c) products and inverse limits of linearly compact groups are linearly compact;
(d) a linearly topologized abelian group G is linearly compact if and only if G is com-

plete and G/U is a DCC group for every open subgroup U of G;
(e) for a linearly topologized abelian group G the completion G̃ is linearly compact if

and only if G/U is a DCC group for every open subgroup U of G.

Exercise 7.3.14. Prove that a dense subgroup H of a topological abelian group G is
dually embedded.
Hint. Since 𝕋 is complete, the continuous characters of H can be extended to continuous characters
of G, by Theorem 7.1.18.
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8 Compactness and local compactness – a first
encounter

A topological group G is locally compact if there exists a compact neighborhood of
eG in G (compare with Definition B.5.5(v)). Since a group G is (locally) compact if and
only if its Hausdorff reflection hG is (locally) compact, we assume without explicitly
mentioning it that all locally compact groups are Hausdorff.

8.1 Examples

Obviously, 𝕋 ≅ 𝕊 is compact, so as an immediate consequence of the Tichonov theo-
rem, we obtain the following generic example of a compact abelian group:

Example 8.1.1. Every power 𝕋I of 𝕋, as well as every closed subgroup of 𝕋I , is com-
pact. It becomes clear in the sequel that this is the most general instance of a compact
abelian group: every compact abelian group is topologically isomorphic to a closed sub-
group of a power of 𝕋 (see Corollary 11.5.2).

The above example helps us to produce another important one.

Example 8.1.2. For every abelian groupG, the groupG∗ = Hom(G,𝕋) of all characters
of G is closed in the product 𝕋G. In fact, considering the projections πx :𝕋G → 𝕋 for
every x ∈ G,

G∗ = ⋂
h,g∈G
{f ∈ 𝕋G: f (h + g) = f (h) + f (g)}

= ⋂
h,g∈G
{f ∈ 𝕋G:πh+g(f ) = πh(f ) + πg(f )}

= ⋂
h,g∈G
{f ∈ 𝕋G: (πh + πg − πh+g)(f ) = 0} = ⋂

h,g∈G
ker(πh + πg − πh+g).

Since πx is continuous for every x ∈ G and {0} is closed in 𝕋, all kernels ker(πh + πg −
πh+g) are closed; so,G∗ is closed, too. As𝕋G is compact by Example 8.1.1,G∗ (endowed
with the topology inherited from 𝕋G) is compact, too.

It becomes clear with Theorem 13.4.7 that this example is the most general one:
every compact abelian group is topologically isomorphic to some compact abelian group
of the form G∗.

The next lemma, based on the previous two examples, contains a useful fact: the
existence of a “diagonal” convergent subnet of any given net of characters.

Lemma 8.1.3. Let G be an abelian group and N = {χα}α∈A a net in G∗. Then there exist
χ ∈ G∗ and a subnet S = {χαβ }β∈B of N such that χαβ (x) → χ(x) for every x ∈ G. If G is
countable, then every sequence in G has a convergent subsequence.

https://doi.org/10.1515/9783110654936-008
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Proof. By Example 8.1.1, the group𝕋G endowedwith the product topology is compact.
Since G∗ is a topological subgroup of 𝕋G, there exist χ ∈ 𝕋G and a subnet S = {χαβ }β∈B
of N that converges to χ (see Lemma B.5.7(c)). Therefore, χαβ (x)→ χ(x) for every x ∈ G
and χ ∈ G∗, becauseG∗ is closed in𝕋G byExample 8.1.2. Toprove the secondassertion,
it suffices to note that 𝕋G is also metrizable when G is countable.

An example of a nonabelian compact group can be obtained as a topological sub-
group of the full linear group GLn(ℂ) considered in Example 2.1.4:

Example 8.1.4. For n ∈ ℕ+ the set U(n) of all n×n unitary matrices overℂ (a matrix is
unitary if its inverse coincides with its conjugate transposed) is a subgroup of GLn(ℂ).
As a subset ofℂn

2
,U(n) is closed and bounded. So,U(n) is compact, by Example B.5.6.

It is easy to see that U(1) ≅ 𝕊.
Clearly,𝕌 := ∏n∈ℕ+ U(n) is compact, as well as all powers𝕌I and all closed sub-

groups of𝕌I . It is a remarkable fact that every compact group is isomorphic to a closed
subgroup of a power of𝕌 (see Corollary 10.3.4).

Here we collect examples of locally compact groups.
Example 8.1.5. (a) Obviously, every discrete group is locally compact. Vice versa, ev-

ery countable locally compact group G is discrete; indeed, G is of second category
by Theorem B.5.20, and since G is countable, G is discrete by Corollary 2.1.7.

(b) For every n ∈ ℕ, the group ℝn is locally compact (and not compact).
(c) A topological group with a compact open subgroup is locally compact.
(d) Since finite products preserve local compactness (see Theorem B.5.15(b)), it fol-

lows from (a) and (b) that every group of the formℝn × G, where G has a compact
open subgroup, is necessarily locally compact. According to Theorem 14.2.18, ev-
ery locally compact abelian group has this form.

(e) Let {Gi: i ∈ I} be a family of topological groups and let Ki be a compact open sub-
group of Gi for every i ∈ I (so each Gi is locally compact). The local direct product
of {Gi: i ∈ I}modulo {Ki: i ∈ I} is the subgroup

loc
∏
i∈I
(Gi,Ki) := {(xi)i∈I ∈∏

i∈I
Gi: xi ∈ Ki for all but finitely many i ∈ I}

of ∏i∈I Gi endowed with the topology with respect to which K = ∏i∈I Ki is open

and equipped with the (compact) product topology. This makes
loc
∏i∈I (Gi,Ki) a lo-

cally compact group. If all groups Gi are abelian,
loc
∏i∈I (Gi,Ki) = K +⨁i∈I Gi.

Example 8.1.6. The Hilbert space (ℓ2, ‖ − ‖) of square summable real sequences is not
locally compact. Indeed, the closed unit disk is not compact: since ℓ2 is metrizable,
it is enough to observe that the sequence {en}n∈ℕ of the vectors of the canonical base
has no Cauchy subsequences (so no convergent subsequences), as ‖en − em‖ = √2 for
all n ̸= m inℕ. A similar argument shows that no neighborhood of 0 is compact. More
generally, every locally compact real or complex normed space is finite-dimensional.
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8.2 Specific properties of compactness and local compactness

Lemma 8.2.1. Let G be a topological group and C,K closed sets of G.
(a) If K is compact, then both CK and KC are closed.
(b) If both C and K are compact, then CK and KC are compact.
(c) If K is compact and K ⊆ U for an open set U of G, then there exists an open neigh-

borhood V of eG such that KV ⊆ U.

Proof. (a) Let {xα}α∈A be a net in CK such that xα → x0 ∈ G. One has to show that
x0 ∈ CK. For every α ∈ A, there exist yα ∈ C and zα ∈ K such that xα = yαzα.
Since K is compact, there exist z0 ∈ K and a subnet {zαβ }β∈B such that zαβ → z0
(see Lemma B.5.7(c)). Thus, {(xαβ , zαβ )}β∈B is a net in G × G which converges to (x0, z0).
For every β ∈ B, let yαβ = xαβz

−1
αβ ; then yαβ → x0z−10 , because the map G × G → G,

(x, y) → xy−1, is continuous. Since yαβ ∈ C for every β ∈ B and C is closed, x0z−10 ∈ C,
and so x0 = (x0z−10 )z0 ∈ CK. Analogously, KC is closed.

(b) The product C × K is compact by the Tichonov theorem and the continuous
map μ:G × G → G, (x, y) → xy, sends C × K onto CK. Thus, CK is compact.

(c) Let C = G \U . Then C is a closed set ofGwith C∩K = 0. Since themap 𝚤:G → G,
x → x−1, is continuous, K−1 is compact. Moreover, eG ̸∈ K−1C as C ∩K = 0. By (a), K−1C
is closed, so there exists a symmetric neighborhood V of eG that misses K−1C. Then
KV ∩ C = 0, and consequently KV ⊆ U .

Compactness of K cannot be omitted in Lemma 8.2.1(a). Indeed, K = ℤ and C =
⟨√2⟩ are closed subgroups of ℝ, but the subgroup K + C of ℝ is dense (see Proposi-
tion 3.1.11 or Proposition 9.4.6).

Now we see that the open canonical projection q:G → G/K from a topological
group G onto its quotient G/K over a closed normal subgroup K of G is also closed in
case K is compact.

Lemma 8.2.2. Let G be a topological group and K a compact normal subgroup of G.
Then the canonical projection q:G → G/K is closed.

Proof. Let C be a closed set of G. As q−1(q(C)) = CK is closed by Lemma 8.2.1(a), we
may conclude that q(C) is closed.

This lemma says that the canonical projection q:G → G/K is a perfect map when
K is a compact normal subgroup ofG. (Recall that amap f :X → Y between topological
spaces is perfect if f is closed and f −1(y) is compact for all y ∈ Y .)

Lemma 8.2.3. Let H be a closed normal subgroup of a topological group G.
(a) If G is compact, then G/H is compact.
(b) If H and G/H are compact, then G is compact.

Proof. (a) is obvious, since the canonical projection q:G → G/H is continuous.
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(b) Let ℱ = {Fα: α ∈ A} be a family of closed sets of G with the finite intersection
property. Then q(ℱ) is a family of closed sets of G/H with the finite intersection prop-
erty, by Lemma8.2.2. By the compactness ofG/H,⋂α∈A q(Fα) ̸= 0 (see LemmaB.5.7(a)),
so there exists x ∈ G such that q(x) ∈ q(Fα) for every α ∈ A. Then F∗α = Fα ∩ xH ̸= 0 for
every α ∈ A. It follows that the family {F∗α : α ∈ A} of closed sets of the compact set xH
has the finite intersection property (again by Lemma B.5.7(a)). Thus,⋂α∈A F

∗
α ̸= 0, and

so also⋂α∈A Fα ̸= 0.

Another proof of Lemma 8.2.3(b) is provided by Lemma 8.2.2, as inverse images
of compact sets under a perfect map are compact, hence G = q−1(G/H) is compact
whenever H and G/H are compact.

Remark 8.2.4. Every closed subgroup of a locally compact group is locally compact.
The counterpart regarding products is more delicate.
(a) Finite products of locally compact groups are locally compact.
(b) An infinite product of locally compact groups is locally compact if and only if all

but finitely many of them are compact. In particular, Gℕ is locally compact if and
only if G is compact (so ℝℕ is not locally compact).

Lemma 8.2.5. Let G be a locally compact group, H a closed normal subgroup of G, and
q:G → G/H the canonical projection. Then:
(a) G/H is locally compact, too;
(b) if C ⊆ G/H is compact, there exists K ⊆ G compact with q(K) = C.

Proof. Let U be an open neighborhood of eG in G with compact closure.
(a) Consider the open neighborhood q(U) of eG/H in G/H. By the continuity of q,

q(U) ⊆ q(U) and q(U) is compact in G/H. Since G/H is Hausdorff by Lemma 3.2.10(b),
q(U) is closed and contains q(U). So, q(U) = q(U) is compact.

(b) Since q is open, {q(sU): s ∈ G} is an open cover of G/H. Since C is compact,
there exists a finite subcover {q(siU): i ∈ {1, . . . ,m}} of C. The compact set K = (s1U ∪
⋅ ⋅ ⋅ ∪ smU) ∩ q−1(C) ⊆ G obviously satisfies q(K) = C.

Proposition 8.2.6. A locally compact group G is Weil complete.

Proof. Let U be a neighborhood of eG in G with compact closure and let {gα}α∈A be a
left Cauchy net of G. Then there exists α0 ∈ A such that g−1α gβ ∈ U for every α, β ≥ α0.
In particular, gβ ∈ gα0U for every β ≥ α0. By the compactness of gα0U, there exists a
convergent subnet {gαβ }β∈B (for some cofinal B ⊆ A) such that gαβ → g ∈ G. Then also
gα → g, by Lemma 7.1.26.

Consequently, every locally compact abelian group is (Raĭkov) complete.

Proposition 8.2.7. The character and the pseudocharacter of a locally compact group
G coincide.
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Proof. Clearly, ψ(G) ≤ χ(G).
LetU be an open neighborhood of eG such thatU is compact. To prove that χ(G) ≤

ψ(G), pick a family ℬ = {Vi: i ∈ I} of neighborhoods of eG with ⋂i∈I Vi = {eG} and
|I| = ψ(G) (in case G is discrete |I| = 1, otherwise I is infinite). Since G is a regular
space, we can assume that V i ⊆ U for every i ∈ I and actually ⋂i∈I V i = {eG}. Now
pick an arbitrary open neighborhoodW of eG contained inU . Then⋂i∈I V i = {eG} ⊆ W
and Y := U \W is compact. According to Lemma B.5.9, there exists a finite subset J of
I such that ⋂i∈J V i ∩ Y = 0, that is, ⋂i∈J V i ⊆ W . This shows that the family ℬ1 of all
finite intersections of members of ℬ forms a local base at eG in G. Since |ℬ1| = |ℬ|, we
conclude that χ(G) ≤ |ℬ1| = |ℬ| = |I| = ψ(G).

For compact groups we can say even more.

Corollary 8.2.8. Any infinite compact group G satisfies ψ(G) = χ(G) = w(G).

Proof. We are going to prove that d(G) ≤ χ(G). Let ℬ be a local base at eG of cardinality
χ(G) consisting of symmetric sets. For every U ∈ ℬ, choose a finite subset FU of G such
that G = FUU . Then ⟨FU :U ∈ ℬ⟩ is dense in G. Indeed, let O be a nonempty open set
of G and let x ∈ O. Choose U ∈ ℬ such that U ⊆ x−1O and yU ∈ FU such that x ∈ yUU .
Then yU ∈ xU ⊆ O. Since |⟨FU : U ∈ ℬ⟩| = |ℬ| = χ(G), we have shown that d(G) ≤ χ(G).

Combining Proposition 8.2.7 with Lemma 5.1.7 and Remark 5.1.6(b) yields

ψ(G) = χ(G) ≤ w(G) = χ(G) ⋅ d(G) ≤ χ(G).

This implies ψ(G) = χ(G) = w(G).

8.3 Compactly generated locally compact groups

Now we introduce a special class of σ-compact groups that plays an essential role in
determining the structure of locally compact abelian groups.

Definition 8.3.1. A topological group G is compactly generated if there exists a com-
pact subset K of G which generates G, that is, G = ⟨K⟩ = ⋃n∈ℕ+ (K ∪ K

−1)n.

Lemma 8.3.2. If G is a compactly generated group, then G is σ-compact.

Proof. There exists a compact subset K of G such that G = ⋃n∈ℕ+ (K ∪K
−1)n. Since K is

compact, (K ∪ K−1)n is compact for every n ∈ ℕ+.

While σ-compactness is a purely topological property, being compactly generated
involves essentially the algebraic structure of the group. For example, the discrete
σ-compact groups are simply the countable discrete groups, while the discrete com-
pactly generated groups are the finitely generated discrete groups.

Corollary 8.3.3. A locally compact group is a normal space.
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Proof. By hypothesis and Lemma 8.3.2, G contains a σ-compact open subgroup N .
Then N is Lindelöff by Lemma B.5.18, so a normal space by Theorem B.5.10(b). Now
G = ⨆g∈G gN is a normal space as well.

Lemma 8.3.4. Let G be a locally compact group.
(a) If K is a compact subset of G and U is an open set of G such that K ⊆ U, then there

exists an open neighborhoodV of eG in G such that (KV)∪(VK) ⊆ U and (KV) ∪ (VK)
is compact.

(b) If G is compactly generated, then there exists an open neighborhood V of eG in G
such that V is compact and V generates G.

Proof. (a) By Lemma8.2.1(c), there exists an open neighborhoodV of eG inG such that
(KV) ∪ (VK) ⊆ U . Since G is locally compact, one can choose V with compact closure.
Thus, KV is compact by Lemma 8.2.1(b). Since KV ⊆ KV , one obtains KV ⊆ KV , and
so KV is compact. Analogously, VK is compact, so (KV) ∪ (VK) = KV ∪VK is compact.

(b) Let K be a compact subset ofG such that K generatesG. So, K ∪ {eG} is compact
and, by (a) applied with U = G, there exists an open neighborhood V of eG in G such
that K ∪ {eG} ⊆ V , V is compact, and V generates G since K ⊆ V .

For first countable topological groups Fujita and Shakmatov [143] described the
precise relationship between σ-compactness and the stronger property of being com-
pactly generated:

Theorem 8.3.5 ([143]). A metrizable group G is compactly generated if and only if G is
σ-compact and, for every open subgroup H of G, there exists a finite subset F of G such
that F ∪ H algebraically generates G.

Corollary 8.3.6. A σ-compact metrizable group G is compactly generated in each of the
following cases:
(a) G has no proper open subgroups;
(b) G̃ is connected;
(c) G is totally bounded (see Definition 10.2.1).

Theorem 8.3.7 ([143]). Acountablemetrizable group is compactly generated if and only
if it is algebraically generated by a null sequence (possibly eventually constant).

Examples showing that the various conditions above cannot be omitted can be
found in [143]. The question of when a topological group contains a compactly gener-
ated dense subgroup is considered in [142].
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8.4 The open mapping theorem

Theorem 8.4.1 (Open mapping theorem). Let G,H be locally compact groups and
f :G → H a continuous homomorphism. If G is σ-compact and f is surjective, then f
is open.

Proof. Let U be a neighborhood of eG in G. There exists a symmetric open neighbor-
hood V of eG in G such that V V ⊆ U and V is compact. Since G = ⋃x∈G xV and G
is Lindelöff by Lemma B.5.18, there exists {xn: n ∈ ℕ} ⊆ G such that G = ⋃n∈ℕ xnV .
Therefore, H = ⋃n∈ℕ f (xnV), because f is surjective. Put yn = f (xn) for every n ∈ ℕ;
hence H = ⋃n∈ℕ ynf (V), where f (V) is compact and so closed in H. Since H is locally
compact, Theorem B.5.20 yields that there exists n ∈ ℕ such that Int (ynf (V)) is not
empty, so there exists a nonempty open setW ofH such thatW ⊆ f (V). Ifw ∈ W , then
w ∈ f (V), and so w = f (v) for some v ∈ V = (V)−1. Hence,

eG ∈ w
−1W ⊆ w−1f (V) = f (v−1)f (V) ⊆ f (V V) ⊆ f (U),

and this implies that f (U) is a neighborhood of eG in H. By Lemma 2.1.20, this proves
that f is open.

The following immediate corollary is frequently used.

Corollary 8.4.2. If G,H are Hausdorff groups, f :G → H is a continuous surjective ho-
momorphism, and G is compact, then f is open.

The topological groups for which the open mapping theorem holds are known
also under the name totally minimal. Compact groups are totally minimal, by Corol-
lary 8.4.2. More precisely, one has the following pair of concepts.

Definition 8.4.3. A Hausdorff group G is:
(i) totally minimal if every continuous surjective homomorphism of G onto a Haus-

dorff group H is open;
(ii) minimal if every continuous isomorphism of G to a Hausdorff group H is open.

Remark 8.4.4. Clearly, totally minimal groups are minimal, and a Hausdorff group is
totally minimal if and only if all its Hausdorff quotients are minimal.

Here we provide only a couple of examples (comparewith Exercise 8.7.9 and §8.8).

Example 8.4.5 ([93]). The questionwhen an infinite abelian groupGmay carry amin-
imal group topology has been studied thoroughly. It is known that none of the groups
ℚn, ℤ(p∞), ℤ(p∞)n, ℤ(p∞1 ) ⊕ ⋅ ⋅ ⋅ ⊕ ℤ(p

∞
n ), where n ∈ ℕ+ and p, p1, . . . , pn are primes,

carries a minimal group topology, while the group ℚ(p) := {a/b ∈ ℚ: (b, p) = 1} (i. e.,
the additive group of the localization of the ring ℤ at the prime ideal (p)) admits a
unique minimal group topology.
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Example 8.4.6. In view of Corollary 4.2.14 and Exercise 8.7.7, the groups (S(X), TX),
where X is an infinite set, are totally minimal.

8.5 Compactness vs connectedness

As already observed in Remark 6.1.6(b), a linear Hausdorff group is zero-dimensional,
so hereditarily disconnected. Linearity and hereditary disconnectedness coincide for
compact groups and for locally compact abelian groups:

Theorem 8.5.1 (van Dantzig theorem [276]). Every hereditarily disconnected locally
compact group G has a local base at eG consisting of compact open subgroups. More-
over, a hereditarily disconnected locally compact group that is either abelian or compact
has a linear topology.

This can be derived from the following more precise result.

Theorem 8.5.2. Let G be a locally compact group. Then:
(a) if G is hereditarily disconnected, every neighborhood of eG contains a compact open

subgroup of G;
(b) c(G) coincides with the intersection of all open subgroups of G.

If G is compact, then the open subgroups in items (a) and (b) can be chosen normal.

Proof. (a) By Vedenissov theorem B.6.10, there is a neighborhood base 𝒪 at eG con-
sisting of compact symmetric clopen sets. Let U ∈ 𝒪. Then, by Lemma 3.1.1(a),

U = U =⋂{UV :V ∈ 𝒪,V ⊆ U},

where every set UV is compact by Lemma 8.2.1(b), hence closed. Since U is open,
{UV \ U : V ∈ 𝒪, V ⊆ U} is a family of closed compact subsets with empty inter-
section contained in the compact set UU . So Lemma B.5.9 implies that there exist
V1, . . . ,Vn ∈ 𝒪 such that⋂nk=1 UVk ⊆ U, so U = ⋂

n
k=1 UVk . Then, for

V = U ∩ (
n
⋂
k=1

Vk) ⊆ U ,

one has UV = U . In particular, Vn ⊆ U for every n ∈ ℕ+. So, since V is symmetric,
the subgroup H = ⟨V⟩ is contained in U as well. From V ⊆ H, one can deduce that
H is open, so closed by Proposition 3.1.7(b), and hence compact as H ⊆ U and U is
compact.

In caseG is compact, thenormal coreHG := ⋂x∈G x
−1Hx ofH inG is a closednormal

subgroup of G. As the number of distinct conjugates x−1Hx of H in G is finite (being
equal to [G:NG(H)] ≤ [G:H] < ∞), HG is an open normal subgroup of G contained in
H, so also in U .
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(b) LettingC = c(G), the quotientG/C is hereditarily disconnectedbyLemma6.2.3,
hence {eG/C} is the intersection of all open (respectively, open normal, in case G is
compact) subgroups ofG/C by item (a). The intersection of the inverse images of these
subgroups with respect to the canonical projection G → G/C coincides with C.

According to Example 6.3.1, none of the items (a) and (b) of Theorem 8.5.2 remains
true without the hypothesis “locally compact”. The next example shows that the last
assertion of Theorem 8.5.2 (as well as that of van Dantzig theorem 8.5.1) fails too, if the
group is not compact or abelian.

Example 8.5.3. Letpbe aprime andG = ℚp⋊ℤ such thatℤ ≅ {pn: n ∈ ℤ} acts onℚp by
multiplication by p, and the subgroupO = ℚp⋊ {1} ofG is taken to be open carrying its
natural p-adic topology. Then G is a hereditarily disconnected locally compact group.
It has as a local base of neighborhoods at eG the family of compact open subgroups
Un = pn𝕁p ⋊ {1}, with n ∈ ℕ.

Nevertheless, the only compact open normal subgroups of G are those containing
O = ℚp ⋊ {1}. Indeed, if V is a compact open subgroup of G, there exists n ∈ ℕ such
that Un ⊆ V . Since the normal closure of Un (i. e., the smallest normal subgroup of G
containing Un) is O, we deduce that V = O. This contradicts the fact that ℚp is not
compact.

Corollary 8.5.4. Let G be a locally compact group. Then o(G) = Q(G) = c(G). So, G is
hereditarily disconnected if and only if it is totally disconnected.

Proof. It is always true that c(G) ⊆ Q(G) ⊆ o(G). By Theorem 8.5.2(b), c(G) is the inter-
section of open subgroups, so c(G) ⊇ o(G).

Remark 8.5.5. If G is a hereditarily disconnected compact group, then G has a local
base {Ni: i ∈ I} at eG consisting of open normal subgroups, by Theorem 8.5.2(a). Then
G ≅ lim
←

G/Ni, by Proposition 7.2.11 (with the inverse system (G/Ni, νji, I) defined as
there).

Definition 8.5.6. The topological groups that are inverse limits of finite groups (re-
spectively, finite p-groups for a prime p) are named profinite groups (respectively,
pro-p-groups or pro-p-finite groups).

The next equivalence follows from Remarks 8.5.5 and 3.3.7.

Corollary 8.5.7. Acompact group is hereditarily disconnected if andonly if it is profinite.

Remark 8.5.8. The (compact) topology of a profinite group is coarser than its profinite
topology, and in general they need not coincide (see Exercise 8.7.10).

For every residually finite group G (i. e., the profinite topology ϖG on G is Haus-
dorff), the completion of (G,ϖG) is a profinite group, by Proposition 7.2.11.

In general, total disconnectedness is not preserved under taking quotients. The
first example to this effect can be found in [7, Chapter 3, p. 21, Exercise 211], whereℝ is
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presented as a quotient of a totally disconnected group. Later Kaplan [181] showed that
ℝ is also a quotient of a zero-dimensional metrizable group. Arhangel′skii [6] pushed
this further by proving that every second countable topological group is a quotient of
a second countable zero-dimensional group (see also [79]).

Corollary 8.5.9. A quotient of a hereditarily disconnected locally compact group G is
hereditarily disconnected.

Proof. LetN be a closed normal subgroup ofG. It follows from Theorem 8.5.2(a) thatG
has a local base at eG formedby compact open subgroups. This yields that the quotient
G/N has the same property. In particular, G/N is hereditarily disconnected, too.

Corollary 8.5.10. Let G,H be locally compact groups and f :G → H a continuous surjec-
tive homomorphism. If G is σ-compact, then:
(a) f (c(G)) = c(H), provided c(G) is compact;
(b) if G is hereditary disconnected, H is hereditary disconnected, too.

Proof. (a) Since c(G) is a compact normal subgroup of G, f (c(G)) is a compact (so,
closed) normal subgroup of H, as f is surjective. The group G/c(G) is hereditarily dis-
connected by Corollary 8.5.9 and f induces a continuous surjective homomorphism
̄f :G/c(G) → H/f (c(G)). Since G/c(G) is σ-compact, the open mapping theorem (The-
orem 8.4.1) implies that ̄f is open. Hence, by Corollary 8.5.9, H/f (c(G)) is hereditarily
disconnected. Since f (c(G)) ⊆ c(H) and c(H)/f (c(G)) is a connected subgroup of the
hereditarily disconnected group H/f (c(G)), this implies c(H) = f (c(G)).

Item (b) follows from (a).

Remark 8.5.11. (a) Item (a) of the above corollary failswhen c(G) is not compact, even
when H = c(H) is compact (see Example 14.3.12).

(b) If G,H are locally compact abelian groups and f :G → H a continuous surjective
homomorphism, then f (a(G)) = a(H) (see [177, Theorem 8.30(iv)]).

8.6 The Bohr compactification

Theorem 8.6.1. For every topological group G, there exist a compact group bG and a
continuous homomorphism bG:G → bG with bG(G) = bG such that for every continu-
ous homomorphism f :G → K, where K is a compact group, there exists a (necessarily
unique) continuous homomorphism f ′: bG → K with f ′ ∘ bG = f :

G

f ??

bG ?? bG

f ′??
K

Moreover, bG:G → bG is unique (up to isomorphism) with this property, i. e., if K is a
compact group and h:G → K is a continuous homomorphism with h(G) = K and such

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.6 The Bohr compactification | 125

that for every continuous homomorphism f :G → C, where C is a compact group, there
exists a unique continuous homomorphism f ′:K → C with f ′ ∘ h = f , then there exists a
topological isomorphism j: bG → K such that j ∘ bG = h.

Proof. Let {Nj: j ∈ J} be the family of all kernels of continuous homomorphisms G → C
whereC is a compact group. For every j ∈ J, letqj:G → G/Nj be the canonical projection
and letℱj = {τ(j,a): a ∈ Aj}be the family of all group topologies onG/Nj coarser than the
quotient topology of the topology on G such that the completion K(j,a) of (G/Nj, τ(j,a))
is compact. Let I = {(j, a): j ∈ J, a ∈ Aj} and, for every i = (j, a) ∈ I, let hi:G → Ki be the
composition of qj:G → G/Nj with the inclusion G/Nj → K(j,a) = Ki.

Let h:G → ∏i∈I Ki be the diagonal homomorphism of the family {hi: i ∈ I} and
bG := h(G). For every i ∈ I, denote by pi:∏s∈I Ks → Ki the canonical projection. Then
the corestriction bG:G → bG of h has the desired property.

In fact, let f :G → C be a continuous homomorphism where C is a compact group.
Then ker f = Nj for some j ∈ J and f = ̄f ∘qj, where ̄f :G/Nj → C is a continuous injective
homomorphism when G/Nj carries the quotient topology τ. Let τ′ denote the initial
topology induced by ̄f . Then τ′ ≤ τ holds. Since the completion of (G/Nj, τ′) is compact
(isomorphic to ̄f (G/Nj)), one obtains τ′ = τ(j,a) for some a ∈ Aj. So, ̄f : (G/Nj, τ(j,a)) → C
is a topological embedding, andbyCorollary 7.1.20 there exists a continuous extension
fi0 :Ki0 → C for i0 = (j, a) such that fi0 ∘ hi0 = f . Let f

′ = fi0 ∘ pi0 ↾bG: bG → C. Now it is
clear that, for every x ∈ G,

f ′(bG(x)) = fi0 (pi0 (bG(x))) = fi0 (pi0 ((hi(x))i∈I )) = fi0 (hi0 (x)) = f (x).

Hence, f ′ ∘ bG = f , as required. The uniqueness of f ′ is a consequence of the density
of bG(G) in bG.

To show the uniqueness of bG, assume that h:G → K is a continuous homomor-
phism with h(G) = K and such that for every continuous homomorphism f :G → C,
where C is a compact group, there exists a unique continuous homomorphism f ′:K →
C with f ′ ∘ h = f . In particular, there exists a continuous homomorphism f ∗:K → bG
such that f ∗ ∘ h = bG. Analogously, by the properties of bG and bG, there exists a con-
tinuous homomorphism h′: bG → K such that h′ ∘ bG = h.

To prove that f ∗ and h′ are topological isomorphisms, note that idK ∘ h = h′ ∘ bG =
h′ ∘ f ∗ ∘ h. So, the homomorphisms idK and h′ ∘ f ∗ coincide on the dense subgroup
h(G) of K, and hence idK = h′ ∘ f ∗. Similarly, idbG = f ∗ ∘ h′. So, both f ∗ and h′ are
topological isomorphisms witnessing that h:G → K coincides, up to isomorphism,
with bG:G → bG.

Definition 8.6.2. For a topological groupG, the compact groupbG and the continuous
homomorphism bG:G → bG from Theorem 8.6.1 are called Bohr compactification of G.
The von Neumann kernel of G is n(G) := ker bG.

A relevant property of the Bohr compactification (directly following from Theo-
rem 8.6.1 and Definition 8.6.2) is that every χ ∈ Ĝ factorizes through bG:G → bG:
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Corollary 8.6.3. For a topological abelian groupG, the groupbG is abelian and for every
character χ ∈ Ĝ there exists a character ξ ∈ b̂G such that χ = ξ ∘ bG.

The term compactification used here substantially differs from the notion of com-
pactificationused in general topology todescribe compact spacesK containingagiven
Tichonov space X as a dense subspace. Nevertheless, the Bohr compactification can
be seen as an appropriate counterpart of the Čech–Stone compactification βX of a Ti-
chonov space X, due to the property described in the above theorem, which says that
the assignment G → bG induces a functor (reflector) from the category TopGrp to
its subcategory of all compact groups (exactly as the Čech–Stone compactification βX
provides a functor from Top3,5 to CompTop; the analogy becomes complete if one
defines the compact space βX also for non-Tichonov spaces X as the Čech–Stone com-
pactification of the Tichonov reflection T3.5X of X – see Remark C.2.11). From this point
of view, the Bohr compactification bG of a topological group G is the compact group
that best approximates G in the sense of Theorem 10.2.15.

According to J. von Neumann, we adopt the following terminology concerning the
injectivity of the map bG:

Definition 8.6.4. A topological group G is:
(i) maximally almost periodic (briefly, MAP) if bG is injective (i. e., n(G) = {eG});
(ii) minimally almost periodic if bG is a singleton (i. e., n(G) = G).

Clearly, every compact group G is MAP as bG = G.

Example 8.6.5. According to Corollary A.2.6, every discrete abelian group G is MAP.
Further examples will be given below, we prove in particular that bG coincides with
the completion of G# (see Theorem 10.2.15).

The terms maximally/minimally almost periodic are justified by the notion of al-
most periodic function (see Definition 12.1.1) and its connection with the Bohr com-
pactification.

8.7 Exercises

Exercise 8.7.1. Prove that the group topology on 𝕁p described in Example 2.1.5 is com-
pact.

Exercise 8.7.2. (a) Prove item (c) of Lemma 8.2.1 directly, without making any re-
course to item (a).

(b) Deduce item (a) of Lemma 8.2.1 from item (c).

Hint. (a) IfU is an open set of G containing the compact set K, then for each x ∈ K there exists an open
Vx ∈ 𝒱(eG) such that xVxVx ⊆ U, and moreover K ⊆ ⋃x∈K xVx . Hence, there exist x1, . . . , xn ∈ K such
that K ⊆ ⋃nk=1 xkVxk . For V = ⋂

n
k=1 Vk , show that KV ⊆ U .
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(b) Argue as in the proof of Lemma 8.2.1(c): if x ∈ G \ KC, then for the compact subset K−1 of
G one has K−1x ∩ C = 0, so the compact set K−1x is contained in the open set U = G \ C of G. By
Lemma8.2.1(c), there exists an openneighborhoodV of eG such thatK−1xV ⊆ U . Hence,K−1xV∩C = 0,
and consequently xV ∩ KC = 0. This proves that KC is closed.

Exercise 8.7.3. (a) Prove that if K is a compact abelian group and m ∈ ℕ, then the
subgroupmK of K is closed.

(b) Show that (a) may fail if K is only locally compact.

Hint. (a) The image of the continuous endomorphism μm:K → K, x → mx, ismK.
(b) Consider the compact group G = ℤ(m2)ℕ, its subgroups H = ℤ(m)ℕ and H1 = ℤ(m2)(ℕ),

and the local direct product K = ∏locn∈ℕ(ℤ(m
2),ℤ(m)), i. e., K = H + H1. Then K is locally compact.

Nevertheless,mK = ℤ(m)(ℕ) is a proper dense subgroup of H, so not closed in K.

Exercise 8.7.4. Let K be a compact torsion-free divisible abelian group. Prove that for
every r ∈ ℚ\ {0}, themultiplication μr :K → K, x → rx, is a topological automorphism.
Hint.Write r = n/m. The multiplication μm:K → K, x → mx, is a continuous automorphism. By the
compactness of K and the openmapping theorem (Theorem 8.4.1), μm is a topological automorphism.
In particular, its inverse μ−1m :K → K, x → 1

m x, is a topological automorphism, too. Since n ̸= 0, the
multiplication μn:K → K, x → nx, is a topological isomorphism as well. Being the composition of the
two topological automorphisms μ−1m and μn, also μr is a topological automorphism.

Exercise 8.7.5. (a) Give examples of σ-compact groups that are not compactly gener-
ated.

(b) Show that every connected locally compact group is compactly generated.

Exercise 8.7.6. A dense subgroup G of a Hausdorff group K is essential in K if every
closed normal subgroup of K that trivially meets G is trivial. Prove that:
(a) if G is minimal, then G is essential;
(b) if K is compact and G is essential, then G is minimal.

Hint. Denote by τ the topology of G.
(a) Assume that G is minimal and N is a closed normal subgroup of K with N ∩ G = {eG}. Let

q:K → K/N be the canonical projection. Since N ∩ G = {eG}, the restriction q↾G :G → K/N is injective
(and continuous). By the minimality of G, q↾G is open. By Theorem 3.2.9, N ∩ G = N, hence N = {eG}.

(b) Assume that G is essential and τ′ ≤ τ is a Hausdorff group topology on G. Then the identity
map idG : (G, τ) → (G, τ′) is a continuous isomorphism. Consider its extension f̃ :K → ?(G, τ′) and let
N = ker f̃ . Since G ∩N = {eG}, we conclude by essentiality of G that N = {eG}. Hence, f̃ is a continuous
injective homomorphism into G̃. Since K is compact, we deduce that f̃ :K → f̃ (K) is a topological
isomorphism and so is its restriction idG. This proves that τ′ = τ.

Exercise 8.7.7. Prove that (S(X), TX) is topologically simple for an infinite set X.
Hint.We verify that a nontrivial closed normal subgroup N of S(X) necessarily coincides with S(X). By
Exercise 8.7.6,N1 = Sω(X)∩N is a nontrivial normal subgroup of Sω(X), since Sω(X) is a denseminimal
subgroup of S(X) in view of Theorem 4.2.11. Since Sω(X) = ⋃F∈[X]<ω S(F), there exists a finite subset F0
of X, with |F0| ≥ 5, such that N1 ∩ S(F0) is nontrivial. For all finite subsets F of X with F ⊇ F0, N1 ∩ S(F)
is a nontrivial normal subgroup of S(F), so N1 contains the alternating group A(F). This proves that
N1 ⊇ Aω(X). By Exercise 4.5.16(b), Aω(X) is dense and so N1 = S(X).

(For an alternative proof, see [99, Proposition 7.1.2(b)].)
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Exercise 8.7.8. Makinguse of Theorem3.2.9, prove that ifG is a totally dense subgroup
of a compact group K (i. e., N ∩ G = N for every closed normal subgroup N of K), then
G is totally minimal.

Exercise 8.7.9. Let p be a prime. Show that:
(a) (ℤ, νpℤ) is totally minimal, yet not compact;
(b) for G = (ℤ, νpℤ), the square G × G is not minimal, and conclude that minimality is

not preserved by products;
(c) the subgroup G = ℚ/ℤ of 𝕋 is totally minimal and its subgroup Soc(G) is mini-

mal, but not totally minimal; deduce that minimality is not preserved by taking
quotients.

Hint. Apply Exercise 8.7.6. For (b), find a closed subgroup N of 𝕁p × 𝕁p with N ∩ (ℤ × ℤ) = {0}.

Exercise 8.7.10. Let G = ℤ(2)ℕ. Show that:
(a) G equipped with its product topology is profinite;
(b) ϖG of G is strictly finer than the product topology;
(c) no proper dense subgroup of G is minimal.

Hint. Apply Exercise 8.7.6.

Exercise 8.7.11. Prove that td(K) = K! = K for a hereditarily disconnected compact
abelian group K.
Hint. According to van Dantzig theorem 8.5.1, the topology of K is linear, hence for every x ∈ K the
group ⟨x⟩ is either finite or nondiscrete and carries a linear topology.

Exercise 8.7.12. If G = td(G) for some topological abelian group G, then tdp(G) = Gp.
In particular, tdp(K) = Kp = K for a pro-p-finite group K.
Hint. Since the inclusion tdp(G) ⊆ Gp is known, we have to prove Gp ⊆ tdp(G). Pick an element x ∈ Gp
andputC = ⟨x⟩. IfC is finite, then it is discrete, so x ∈ Gp yields that x is p-torsion, therefore x ∈ tdp(G).
Assumenow thatC is infinite. Then our hypothesisG = td(G) implies thatC ≅ (ℤ, τ), where τ is a linear
topology on ℤ. If {mnℤ:mn ∈ ℕ+, n ∈ ℕ} is a local base at 0 of τ, then x ∈ Gp implies that pn → 0
in (ℤ, τ). Hence, for every fixed k ∈ ℕ there exists n0 such that pn0 ∈ mkℤ, i. e., mk | pn0 , so mk is a
power of p. This implies that τ ≤ νpℤ. By Exercise 3.5.25, τ = ν

p
ℤ. Therefore, x ∈ tdp(G).

8.8 Further readings, notes, and comments
Corollary 8.2.8 is also a consequence of the fact that a compact group G of infinite
weight κ is a continuous image of {0, 1}κ (so compact groups are dyadic compacta)
in view of a theorem by Kuz’minov [192]. Moreover, d({0, 1}κ) = log κ by Hewitt–
Marczewski–Pondiczery theorem B.3.15, so by Lemma 5.1.9,

d(G) ≤ log κ ≤ κ = χ(G),

and thus w(G) = d(G) ⋅ χ(G) = χ(G) = ψ(G), by Lemma 5.1.7 and Proposition 8.2.7.
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Minimal groups were introduced simultaneously and independently by Stephen-
son in [264] and by Doïtchinov in [126], where the first examples of noncompact
minimal groups can be found (see also Exercise 8.7.9(a)). The first examples of mini-
mal non-totally minimal groups can be found in [97] (see Exercise 8.7.9(c)), where the
notion of a totally minimal group was explicitly given (it was introduced somewhat
later also by Schwanengel [253]). Answering a question of Choquet, Doïtchinov [126]
showed thatminimality (unlike compactness) is not preserved even under finite direct
products (see Exercise 8.7.9(b)). A complete description of the cases when minimality
is preserved under (arbitrary) direct products can be found in [73]. The surveys [77]
and [80] contain various information on minimal groups. The recent progress in this
field is outlined in [93]. A crucial role in obtaining the results pointed out in Exam-
ple 8.4.5 is played by the criterion for minimality of dense subgroups of compact
groups due to Prodanov [231] and Stephenson [264] (see Exercise 8.7.6).

In the nonabelian case, complete (in particular, locally compact) minimal groups
need not be compact (see [245] and §10.5 for a wealth of results in this direction). Stoy-
anov proved in [269] that the unitary group of an infinite-dimensional Hilbert space is
totally minimal, complete, and noncompact.

Recall that a topological space is locally (arcwise) connected if every point ad-
mits a neighborhood base consisting entirely of (arcwise) connected open sets. Since
c(G) is open for a locally connected topological group G, it makes sense to study these
properties of topological groups only for connected ones. Connected and locally ar-
cwise connected spaces are obviously arcwise connected. In the opposite direction,
Rickert [247] proved that locally compact arcwise connected groups are locally arcwise
connected. This is why in the sequel we pay attention only to local connectedness and
arcwise connectedness of the connected locally compact groups.
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We denote by e1, . . . , en the vectors of the canonical base of ℝn.

9.1 Lifting homomorphisms with domainℝn

Every continuous homomorphism f :ℝn → H, where H is a Hausdorff group, is
uniquely determined by its restriction to any neighborhood of 0 in ℝn (see Exer-
cise 6.3.2(b)). Now we prove that every continuous map f :Bε(0) → H defined only on
some ball Bε(0) in ℝn can be extended to a continuous homomorphism f ′:ℝn → H
under a minor (necessary) additivity restraint.

Lemma 9.1.1. Let n ∈ ℕ+, H a topological abelian group, and ε > 0. Then every map
f :Bε(0) → H such that f (x + y) = f (x) + f (y) whenever x, y ∈ Bε/2(0) can be uniquely
extended to a homomorphism f ′:ℝn → H. Moreover, f ′ is continuous if and only if f is
continuous.

Proof. Put U = Bε/2(0). For x ∈ ℝn, there existsm ∈ ℕ+ such that 1
mx ∈ U, and we put

f ′(x) = mf ( 1
m
x) .

To see that this definition is correct, assume that 1
k x ∈ U aswell and put y = 1

kmx. Then
iy ∈ U for all i ≤ max{k,m}, and a simple inductive argument shows that f (my) = mf (y)
and f (ky) = kf (y). So,

kf ( 1
k
x) = kf (my) = kmf (y) = mf (ky) = mf ( 1

m
x) .

To verify that f ′ is a homomorphism, take x, y ∈ ℝn. There existsm ∈ ℕ+ such that
1
mx,

1
my,

1
m (x + y) ∈ U . By our hypothesis,

f ′(x + y) = mf ( 1
m
(x + y)) = mf ( 1

m
x) +mf ( 1

m
y) = f ′(x) + f ′(y).

The uniqueness of f ′ follows fromExercise 6.3.2(b). For a direct proof, assume that
f ′′:ℝn → H is another homomorphism extending f . Then for every x ∈ ℝn, there exists
m ∈ ℕ+ such that y := 1

mx ∈ U . So, f
′′(x) = f ′′(my) = mf ′′(y) = mf (y) = f ′(x).

Since f ′ is ahomomorphism, it suffices to check its continuity at 0, and this follows
from the continuity of f :U → H.

The global structure ofℝn, and in particular the fact that it is torsion-free, played
a prominent role in the above proof. The next example shows that the counterpart of
the theorem with 𝕋 in place of ℝn fails.

https://doi.org/10.1515/9783110654936-009
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Example 9.1.2. Let U = (− 14 ,
1
4 ) + ℤ, that is, U = B1/4(0) in 𝕋. Moreover, let f :U →

(− 14 ,
1
4 ) ⊆ ℝ be the inclusionmap,more precisely, f is the unique section of the canon-

ical projection q0:ℝ → 𝕋 restricted to U and with values in (− 14 ,
1
4 ). Then f satisfies

the additivity restraint from Lemma 9.1.1, but f cannot be extended to 𝕋.

The next lemma is used frequently in the sequel. Again the above example shows
that 𝕋 does not have the “lifting” property established for ℝn (e. g., for the identity
map f = id𝕋:𝕋 → 𝕋, the discrete subgroup D = ℤ of ℝ and the canonical projection
q0:ℝ→ 𝕋).

Lemma 9.1.3 (Lifting lemma). Let H be a topological abelian group, D a discrete sub-
group of H, and p:H → H/D the canonical projection. For every continuous homomor-
phism f :ℝn → H/D, with n ∈ ℕ+, there exists a unique continuous homomorphism
f ′:ℝn → H such that p ∘ f ′ = f :

H
p
??

ℝn

f ′ ??

f
?? H/D

If f is open, then f ′ is open.
Proof. LetW be a symmetric open neighborhood of 0 inH such that (W +W)∩D = {0}.
(If f is open, then f (ℝn) is open in H/D, so we pickW such that p(W) ⊆ f (ℝn).) Then
the restriction p ↾W :W → p(W) is a bijection; moreover, both p ↾W and its inverse
ξ : p(W) → W are homeomorphisms. Pick a symmetric open neighborhoodW1 of 0 in
H such thatW1 +W1 ⊆ W . Then

ξ (x + y) = ξ (x) + ξ (y) for every x, y ∈ p(W1). (9.1)

For U0 = f −1(p(W1)), pick an ε > 0 with Bε(0) ⊆ U0 and put

f ∗ = ξ ∘ f ↾Bε(0):Bε(0)→ H ,

so that f ∗:Bε(0) → H is continuous, as a composition of the continuous mappings
f and ξ . Moreover, (9.1) yields f ∗(x + y) = f ∗(x) + f ∗(y) whenever x, y ∈ Bε/2(0). By
Lemma 9.1.1, the continuous map f ∗:Bε(0) → H can be uniquely extended to a con-
tinuous homomorphism f ′:ℝn → H. Since (p ∘ f ′)(u) = (p ∘ f ∗)(u) = f (u) for every
u ∈ Bε(0), the homomorphisms p ∘ f ′ and f coincide on Bε(0), hence p ∘ f ′ = f , by
Exercise 6.3.2(b).

Let f ′′:ℝn → H be a continuous homomorphism such that p ∘ f ′′ = p ∘ f ′ holds.
Then g = f ′ − f ′′ is a continuous homomorphism ℝn → H which satisfies p ∘ g = 0, so
g(ℝn) ⊆ D. SinceD is discrete, g−1({0}) is an open subgroup ofℝn, hence g−1({0}) = ℝn.
This shows that g = 0, or equivalently f ′′ = f ′.

Assume that f is open. Then f (U0) = f (f −1(p(W1))) = p(W1) ∩ f (ℝn) = p(W1), since
W1 ⊆ W and p(W) ⊆ f (ℝn). In order to prove that f ′ is open, it suffices to show that
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f ′(V) = f ∗(V) is open for every open neighborhood V of 0 contained in U0. But this is
clear, since f ∗(V) = ξ ∘ f (V) is open, as ξ : p(W) → W is a homeomorphism and f was
assumed to be open.

9.2 The closed subgroups ofℝn

Our main goal here is to describe the closed subgroups ofℝn. In the next example we
outline two important instances of such subgroups.

Example 9.2.1. Let n,m ∈ ℕ+ and let v1, . . . , vm be linearly independent in ℝn.
(a) The linear subspace V = ℝv1 + ⋅ ⋅ ⋅ + ℝvm ≅ ℝm spanned by v1, . . . , vm is a closed

subgroup of ℝn.
(b) The subgroup D = ⟨v1⟩ + ⋅ ⋅ ⋅ + ⟨vm⟩ = ⟨v1, . . . , vm⟩ ≅ ℤm generated by v1, . . . , vm is a

discrete (hence, closed) subgroup of ℝn.

Weprove that every closed subgroupofℝn is topologically isomorphic to aproduct
V × D of a linear subspace V ≅ ℝs and a discrete subgroup D ≅ ℤm, with s,m ∈ ℕ and
s +m ≤ n. More precisely:

Theorem 9.2.2. Let n ∈ ℕ+ and let H be a closed subgroup of ℝn. Then there exist
s,m ∈ ℕ, with s + m ≤ n, and linearly independent vectors v1, . . . , vs, . . . , vs+m such that
H = V × D, where V ≅ ℝs is the linear subspace of ℝn spanned by v1, . . . , vs and D =
⟨vs+1, . . . , vs+m⟩ ≅ ℤm, so D is discrete and V is open in H.

We give two proofs of this theorem. The first is relatively short and proceeds by in-
duction. The second proof splits into several steps. Before starting the proofs, we note
that the dichotomy imposed by Example 9.2.1 is reflected in the following topological
dichotomy resulting from the theorem:
(i) the closed connected subgroups of ℝn are always linear subspaces of ℝn, so iso-

morphic to ℝs for some s ≤ n;
(ii) the closed hereditarily disconnected subgroupsD ofℝn are free and have free-rank

r0(D) ≤ n; in particular, they are discrete.

Remark 9.2.3. It follows from Theorem 9.2.2 that, for every closed subgroup H of ℝn,
H ≅ V × D, where c(H) ≅ V ≅ ℝs is open in H with s ≤ n, and D ≅ ℤm is discrete with
m ≤ n − s; in particular, H contains a discrete subgroup D1 × D of free-rank s +m.

The next lemma prepares the inductive step in the first proof of Theorem 9.2.2.

Lemma 9.2.4. If H is a closed subgroup of ℝn, L ≅ ℝ is a one-dimensional subspace of
ℝn, and H ∩ L ̸= {0}, then denoting by p:ℝn → ℝn/L the canonical projection, p(H) is a
closed subgroup of ℝn/L.

Proof. If n = 1, then ℝn/L is trivial, so we are done.
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Assume that n > 1 and consider the nonzero closed subgroupH1 = H ∩ L of L ≅ ℝ.
If H1 = L (i. e., L ⊆ H), then the assertion follows from Theorem 3.2.8(b). Now assume
that H1 ̸= L ≅ ℝ. Then H1 = ⟨a⟩ is cyclic, by Proposition 3.1.11. Making use of an
appropriate linear automorphism α of ℝn and replacing H by α(H), we may assume
without loss of generality that

L = ℝ × {0}n−1 and a = e1 (i. e., H1 = ℤ × {0}
n−1).

Consider the canonical projection π:ℝn → ℝn/H1. Since H is a closed subgroup of
ℝn containing H1, its image π(H) is a closed subgroup of ℝn/H1 ≅ 𝕋 × ℝ

n−1, by The-
orem 3.2.8(b). Next observe that the projection p:ℝn → ℝn−1 is the composition of π
and the canonical projection q:ℝn/H1 → ℝ

n−1:
ℝn

p ??

π ??

ℝn−1
ℝn/H1 ≅ 𝕋 × ℝ

n−1 q
??

Since ker q = L/H1 ≅ 𝕋 is compact and π(H) is closed in ℝn/H1, we conclude that
p(H) = q(π(H)) is a closed subgroup of ℝn−1, by Lemma 8.2.2.

We shall see in §9.3 that “closed” can be replaced by “discrete” in the conclusion
of this lemma. Let us see that the hypothesis H ∩ L ̸= {0} is relevant.

Example 9.2.5. Take the discrete (hence, closed) subgroup H = ℤ2 of ℝ2 and the line
L = ℝv inℝ2, where v = (1,√2). Then L∩H = {0}, whileℝ2/L ≅ ℝ, so Proposition 3.1.11
yields that, denoting by p:ℝ2 → ℝ2/L ≅ ℝ the canonical projection, the noncyclic
image p(H) ≅ ℤ2 of H in ℝ is dense, so fails to be closed.

First proof of Theorem 9.2.2. We proceed by induction on n ∈ ℕ+, and the case n = 1
is Proposition 3.1.11.

Assume that n > 1. If H is a linear subspace of ℝn, then H = V , and we are done.
So, assume thatH is not a linear subspace. Then there exists a nonzero h ∈ H such that
the line L = ℝh is not contained inH. Thus, the closed nonzero subgroupH1 = H ∩L of
L ≅ ℝ is proper, hence cyclic, by Proposition 3.1.11; so, letH1 = ⟨a⟩ for some a ∈ H1\{0}.
By Lemma 9.2.4, the canonical projection p:ℝn → ℝn/L ≅ ℝn−1 sends H to a closed
subgroup p(H) of ℝn−1.

By the inductive hypothesis, there exist s,m ∈ ℕ, with s+m < n, and s+m linearly
independent vectors v′1, . . . , v′s, v′s+1, . . . , v′s+m in ℝn/L ≅ ℝn−1 such that
p(H) = V ′ × D′, with V ′ = ℝv′1 + ⋅ ⋅ ⋅ + ℝv′s ≅ ℝs and D′ = ⟨v′s+1, . . . , v′s+m⟩ ≅ ℤm.

Since both H and p(H) are locally compact abelian groups by Remark 8.2.4 and H is
also σ-compact (as a closed subgroup of ℝn), it follows from the open mapping theo-
rem (Theorem 8.4.1) that the continuous surjective homomorphism p↾H :H → p(H) is

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.3 The second proof of Theorem 9.2.2 | 135

open, that is,p(H) ≅ H/H1 topologically. SinceH1 is discrete,we canapply Lemma9.1.3
to obtain an open continuous homomorphism f :V ′ → H such that p ∘ f = j is the in-
clusion of V ′ ≅ ℝs in p(H). Since j = p ∘ f is injective, so is f . Hence, letting V = f (V ′),
we get that f :V ′ → V is a topological isomorphism.

Let vi = f (v′i ) for every i ∈ {1, . . . , s}. For every j ∈ {1, . . . ,m}, find vs+j ∈ H such that
p(vs+j) = v′s+j. Let v0 = a. Since the canonical projection p:ℝn → ℝn/L is ℝ-linear, the
vectors v0, v1, . . . , vs, vs+1, . . . , vs+m are linearly independent, soD = ⟨v0, vs+1, . . . , vs+m⟩ ≅
ℤm+1 is discrete (see Example 9.2.1(b)). From

p(H) = V ′ × D′ and ker p↾H= H ∩ L = H1 = ⟨a⟩,

we deduce that H = V × D ≅ ℝs ×ℤm+1.
Corollary 9.2.6. For every n ∈ ℕ+, the only compact subgroup of ℝn is {0}.
Proof. Let K be a compact subgroup of ℝn. By Theorem 9.2.2, K = V × D, where, for
some s,m ∈ ℕ, V ≅ ℝs is a linear subspace of ℝn and D ≅ ℤm is a discrete subgroup
ofℝn. The compactness of K yields that both V and D are compact, andℝs is compact
only for s = 0 while ℤm is compact only form = 0.

9.3 The second proof of Theorem 9.2.2

The second proof of Theorem 9.2.2 makes no recourse to induction, so from a certain
point of view gives a better insight in the argument.

By Proposition 3.1.11, every discrete subgroup of ℝ is cyclic. The first part of this
proof consists in appropriately extending this property to discrete subgroups ofℝn for
every n ∈ ℕ+ (see Proposition 9.3.2). The first step, namely, Lemma 9.3.1, is to prove di-
rectly that the free-rank r0(H) of a discrete subgroupH ofℝn coincideswith the dimen-
sion of the linear subspace ofℝn generated byH. Note that the elements x1, . . . , xk ∈ ℝn

are independent if and only if they areℚ-linearly independent.

Lemma 9.3.1. Let H be a discrete subgroup of ℝn. If the elements v1, . . . , vm of H are
independent, then they are also ℝ-linearly independent.

Proof. Let D = ⟨v1, . . . , vm⟩ ≅ ℤm, and let V ≅ ℝk be the linear subspace of ℝn gener-
ated byH. We need to prove that k ≥ m. We can assumewithout loss of generality that
V = ℝn (i. e., k = n).

Assume for a contradiction that m > n. Since v1, . . . , vm generate the vector
space ℝn, after possibly changing their enumeration, we can assume that the vectors
v1, . . . , vn are ℝ-linearly independent, so form a base of ℝn. Moreover, we can assume
without loss of generality that v1 = e1, . . . , vn = en. Indeed, as v1, . . . , vn are ℝ-linearly
independent, there exists an ℝ-linear isomorphism α:ℝn → ℝn with α(vi) = ei for
every i ∈ {1, . . . , n}. Clearly, α(H) is still a discrete subgroup of ℝn and α(D) ≅ D ≅ ℤm.
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Let h = α(vn+1); so,
⟨e1, . . . , en, h⟩ ≅ ℤ

n+1. (9.2)

As H is discrete, there exists ε > 0 with max{|xi|: i ∈ {1, . . . , n}} ≥ ε for every x =
(x1, . . . , xn) ∈ H \ {0}. Pick an integerM > 1/ε and let

Ci = [
i
M
,
i + 1
M
] for all i ∈ F := {0, 1, . . . ,M − 1}.

Further, let

C ̄ι = n
∏
k=1 Cik for ̄ι = (i1, . . . , in) ∈ F

n.

These “small cubes” C ̄ι represent the standard cube C = [0, 1]n in ℝn as a finite union
⋃ ̄ι∈Fn C ̄ι such that each one of the small cubes has edges of length < ε.

As usual, for r ∈ ℝ let {r} = r − ⌊r⌋ and for j ∈ ℤ let

C ∋ aj = ({jh1}, . . . , {jhn}) = jh − (⌊jh1⌋, . . . , ⌊jhn⌋) ∈ jh +ℤ
n ⊆ H .

Then ak ̸= al for every pair k ̸= l in ℤ, since otherwise (k − l)h ∈ ℤn = ⟨e1, . . . , en⟩ with
k−l ̸= 0 in contradictionwith (9.2). Among the infinitelymanypointsaj ∈ C, there exist
two elements ak ̸= al ofH belonging to the same small cube C ̄ι. Hence, |{khj}−{lhj}| < ε
for every j ∈ {1, . . . , n}. So, ak − al ∈ H ∩ (−ε, ε)n = {0}, and this contradicts ak ̸= al.

Observe that it is essential to assume H to be closed: e. g., the elements 1,√2 of
the subgroup H = ⟨1,√2⟩ of ℝ are ℚ-linearly independent, but not ℝ-linearly inde-
pendent.

The aim of the next step is to see that the discrete subgroups of ℝn are free.

Proposition 9.3.2. For a discrete subgroup H of ℝn, H is free and r0(H) ≤ n.

Proof. Since by Lemma 9.3.1 there are at most n independent vectors in H, we have
m := r0(H) ≤ n. Then there existm independent vectors v1, . . . , vm ofH. By Lemma9.3.1,
the vectors v1, . . . , vm are also ℝ-linearly independent.

LetV ≅ ℝm be the linear subspace ofℝn generated by v1, . . . , vm. Obviously,H ⊆ V ,
since H is contained in the ℚ-linear subspace of ℝn generated by the free subgroup
F = ⟨v1, . . . , vm⟩ ofH. AsH is a discrete subgroup ofV too, we can arguewithV in place
of ℝn, so we can assume without loss of generality that r0(H) = m = n and V = ℝn.
Next we verify that H/F is finite; from this we obtain that H is finitely generated and
torsion-free, so H must be free, by Theorem A.1.1.

Since the vectors v1, . . . , vn are ℝ-linearly independent, we can assume without
loss of generality that F = ℤn ⊆ H. Indeed, let α:ℝn → ℝn be the linear isomorphism
with α(vi) = ei for every i ∈ {1, . . . , n}. Then α(H) is still a discrete subgroup of ℝn,
ℤn = α(F) ⊆ α(H) and H/F is finite if and only if α(H)/α(F) ≅ H/F is finite.
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To check thatH/F is finite, consider the canonical projectionq:ℝn → ℝn/ℤn ≅ 𝕋n.
According to Theorem 3.2.8(c), q sends the closed subgroup H onto a closed (hence,
compact) subgroup q(H) of𝕋n; moreover,H = q−1(q(H)), therefore the restriction of q
to H is open and q(H) is discrete. We conclude that q(H) ≅ H/F is both compact and
discrete, so finite.

The next lemma sharpens Lemma 9.2.4 to the case of discrete subgroups of ℝn.

Lemma 9.3.3. Let H be a discrete subgroup of ℝn and L ≅ ℝ a one-dimensional lin-
ear subspace of ℝn with H ∩ L ̸= {0}. Then, denoting by p:ℝn → ℝn/L the canonical
projection, p(H) is a discrete subgroup of ℝn/L.

Proof. If n = 1, then L = ℝ, so this case is trivial. Assume n > 1 in the sequel. Since
{0} ̸= H1 = H ∩ L is a discrete subgroup of L ≅ ℝ, we conclude that H1 = ⟨a⟩ is cyclic,
by Proposition 3.1.11. Making use of an appropriate linear automorphism α:ℝn → ℝn

and replacing H by α(H), we assume without loss of generality that

L = ℝ × {0}n−1 and a = e1,

where we consider L as a subgroup of ℝn = ℝ × ℝn−1. Thus,
H1 = ℤ × {0}

n−1. (9.3)

For ε > 0, let Bε(0) = (−ε, ε)n and Uε = Bε(0) + L. Let us prove that for some ε > 0 also

Uε ∩ H = ℤ × {0}
n−1 (9.4)

holds true. Assume for a contradiction that U1/k ∩ H ̸⊆ L for every k ∈ ℕ+, and pick
hk := (xk , yk) ∈ U1/k ∩ H ⊆ ℝ × ℝn−1 with yk ̸= 0. Since ℤ × {0}n−1 ⊆ H by (9.3), we
can assume without loss of generality that 0 ≤ xk < 1 for every k ∈ ℕ+. Then there
exists a converging subsequence xkl → z, and so hkl → (z,0) ∈ H. Since H is discrete,
this sequence is eventually constant, so ykl = 0 for all sufficiently large k ∈ ℕ+, a
contradiction. This proves that Uε ∩ H ⊆ L ∩ H = H1 and hence (9.4) holds for some
ε > 0. Let p:ℝn → ℝn−1 be the canonical projection along L. Then Uε = p−1(p(Bε(0))),
so (9.4) implies that p(Bε(0)) ∩ p(H) = {0} in ℝn−1. Thus, p(H) is discrete.

Exercise 9.5.1 provides a shorter alternative description of the discrete subgroups
of ℝn, so of the first part of Theorem 9.2.2 carried out in Proposition 9.3.2.

Now we pass to the case of nondiscrete closed subgroups of ℝn.

Lemma 9.3.4. If H is a nondiscrete closed subgroup of ℝn, then H contains a line
through the origin (i. e., there exists u0 ∈ H such that ℝu0 ⊆ H).

Proof. It is enough to prove that if H is a closed subgroup containing no line then H
is discrete. In order to do so, we consider S = {x ∈ ℝn: ‖x‖2 = 1} and the function
φ: S → ℝ>0 ∪ {∞} defined as follows: for all u ∈ S withℝu∩H = {0}, we put φ(u) =∞.
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If ℝu ∩ H = ⟨au⟩ for some a > 0, we define φ(u) = a. We are going to show that
Fb := φ−1((0, b]) is closed in S for every b ∈ ℝ>0. So, fix b ∈ ℝ>0 and let {uk}k∈ℕ
be a sequence in Fb which converges to ũ ∈ S. We have to show that φ(ũ) ≤ b. By
assumption, bk := φ(uk) ∈ (0, b]. So, the bounded sequence {bk}k∈ℕ has a convergent
subsequence. Wemay assume without loss of generality that {bk}k∈ℕ converges to b̃ ∈
[0, b]. If b̃ > 0, since b̃ũ = limk→∞ bkuk ∈ H (with H being closed by assumption), we
obtain that φ(ũ) ≤ b̃ ≤ b.

Let us assume now that b̃ = 0, and fix ε > 0. We can assume without loss of
generality that, for all k ∈ ℕ, bk ∈ (0, ε), and so we can choose mk ∈ ℕ such that
mkbk ∈ [ε, 2ε]. Since {mkbk}k∈ℕ is bounded, we may assume that it converges to an
element ε̃ ∈ [ε, 2ε]. So, {mkbkuk}k∈ℕ converges to ε̃ũ ∈ H, hence 0 < φ(ũ) = ε̃ ≤ 2ε.
Since ε > 0 was arbitrary, we deduce that φ(ũ) = 0, a contradiction. So, the second
case cannot occur. This shows that, for all b ∈ ℝ>0, Fb is closed, hence its complement
Vb := φ−1((b,∞]) is open. Since S = ⋃b∈ℝ>0 Vb, the compactness of S implies that there
exists b0 > 0with S = Vb0 . By the definition ofφ, ‖x‖2 ≥ b0 for every x ∈ H \{0}. Hence,
H is discrete.

Second proof of Theorem 9.2.2. If H is a closed subgroup of ℝn and V1,V2 are linear
subspaces of ℝn contained in H, then also the linear subspace V1 + V2 of ℝn is con-
tained inH. Therefore,H contains a largest linear subspace λ(H) ofℝn. Since λ(H) is a
closed subgroup ofℝn contained inH, the canonical projection p:ℝn → ℝn/λ(H) ≅ ℝk

(where k = n − dim λ(H)) sends H to a closed subgroup p(H) topologically isomorphic
to H/λ(H) of ℝk, by Theorem 3.2.8(b). Moreover, p(H) contains no lines L, since such
a line L would produce a linear subspace p−1(L) of ℝn contained in H and properly
containing λ(H). By Lemma 9.3.4, p(H) is discrete, and this means that λ(H) is an open
subgroup of H. Since λ(H) is divisible, by Corollary A.2.7 it splits, so H = λ(H) × H′,
where H′ is a discrete subgroup of H (and of ℝn). By Proposition 9.3.2, H′ ≅ ℤm.
9.4 Elementary LCA groups and the Kronecker theorem

9.4.1 Quotients ofℝn and closed subgroups of𝕋k

The next corollary of Theorem 9.2.2 describes the quotients of ℝn.

Corollary 9.4.1. Aquotient ofℝn is isomorphic toℝk×𝕋m, where k+m ≤ n. In particular,
a compact quotient of ℝn is isomorphic to 𝕋m for some m ≤ n.

Proof. Let H be a closed subgroup of ℝn. By Theorem 9.2.2, H = V × D, with V ≅ ℝs,
D ≅ ℤm discrete and s + m ≤ n. Let V1 be the linear subspace of ℝn spanned by D.
Pick a complementing linear subspace V2 of ℝn for V + V1; then dimV2 = k, where
k = n − (s + m), and ℝn ≅ V × V1 × V2. Therefore, ℝn/H ≅ (V1/D) × V2. Moreover,
V1/D ≅ 𝕋m, and hence ℝn/H ≅ 𝕋m × ℝk .
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This corollary implies, of course, that for k,m ∈ ℕ, a quotient of the groupℝk×𝕋m

is isomorphic to ℝl × 𝕋s for some l, s ∈ ℕ with l ≤ k and l + s ≤ k +m.
We introduce two classes of topological abelian groups that completely describe

the closed subgroups of 𝕋k and ℝn × 𝕋k, respectively.

Definition 9.4.2. A topological abelian group is:
(i) elementary compact if it is topologically isomorphic to𝕋n × F, where n ∈ ℕ and F

is a finite abelian group;
(ii) elementary locally compact if it is topologically isomorphic to ℝn × ℤm × 𝕋s × F,

where n,m, s ∈ ℕ and F is a finite abelian group.

The class of elementary locally compact abelian groups is closed under taking
quotients, closed subgroups, and finite products (see Exercise 9.5.2). The following
result shows that the elementary (locally) compact abelian groups are very natural.

Corollary 9.4.3. Every closed subgroup C ofℝn×𝕋k is elementary locally compact. Con-
sequently, every closed subgroup of 𝕋s is elementary compact.

Proof. Let q:ℝn+k → ℝn ×𝕋k be the canonical projection. Then H = q−1(C) is a closed
subgroup of ℝn+k . By Theorem 9.2.2, H is a direct product H = V × D with V ≅ ℝs

and D ≅ ℤm for some s,m ∈ ℕ. Since the restriction q ↾H :H → q(H) = C is open
by Theorem 3.2.8(c), q(V) is an open subgroup of C. Moreover, q(V) is also divisible
(being a quotient of the divisible abelian group V), so C ≅ q(V) × B by Corollary A.2.7,
where the subgroup B of C is discrete by Lemma 3.2.10(a).

As a quotient of V ≅ ℝs, q(V) ≅ ℝl ×𝕋h for some l, h ∈ ℕ by Corollary 9.4.1. On the
other hand, the chain of standard isomorphisms

B ≅ C
q(V)
≅

H/ ker q
(V + ker q)/ ker q

≅
H

V + ker q
≅

H/V
(V + ker q)/V

≅
D
D1
,

where D1 = (V + ker q)/V , shows that B is isomorphic to a quotient of D ≅ ℤm, so
B ≅ ℤg × F for some g ∈ ℕ and some finite abelian group F. Therefore, C ≅ ℝl × 𝕋h ×
ℤg × F.

Also the converse implication is true, namely, every elementary locally compact
abelian group can be embedded as a closed subgroup of ℝn × 𝕋k for some n, k ∈ ℕ
(see Exercise 9.5.4).

9.4.2 Closure inℝn

Our next aim is the description of the closure of an arbitrary subgroup of ℝn.
Every base (v1, . . . , vn) ofℝn admits a dual base (v′1, . . . , v′n) defined by the relations:

for every i, j ∈ {1, . . . , n}, (vi | v′j ) = δij. For a subset X of ℝn, its orthogonal subspace is

Xo := {u ∈ ℝn:∀x ∈ X, (x | u) = 0}.
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If X = {v} ̸= {0} is a singleton, then Xo is the hyperspace of ℝn orthogonal to v. So, Xo

is always a linear subspace ofℝn, being an intersection of hyperspaces. If V is a linear
subspace of ℝn, then Vo is the orthogonal complement of V , so ℝn ≅ V × Vo.

For a subgroup H of ℝn, its associated subgroup is

H† := {u ∈ ℝn:∀x ∈ H , (x | u) ∈ ℤ}.
Clearly, Ho ⊆ H†, (ℤn)† = ℤn, and {0}† = ℝn, while H† = ℝn implies H = {0}. We
describe H† for every subgroup H of ℝn:

Lemma 9.4.4. Let H ,H1 be subgroups of ℝn. Then:
(a) H† is closed subgroup ofℝn and the correspondence H → H† is monotone decreas-

ing;
(b) (H)† = H†;
(c) if H is a linear subspace of ℝn, Ho = H†;
(d) (H + H1)

† = H† ∩ H†1 .
Proof. The map ℝn × ℝn → ℝ defined by (x, y) → (x | y) is continuous.

(a) Let q0:ℝ→ 𝕋 = ℝ/ℤ be the canonical projection. For every a ∈ ℝn,

χa = q0 ∘ (a | −):ℝ
n → 𝕋, x → q0((a | x)),

is a continuous homomorphism, so χ−1a (0) = {u ∈ ℝn: (a | u) ∈ ℤ} is closed in ℝn.
Therefore, H† = ⋂h∈H χ−1h (0) is closed in ℝn, too. The same equality proves that the
correspondence H → H† is monotone decreasing.

(b) From the second part of (a) one has (H)† ⊆ H†. Suppose that u ∈ H†. For every
x ∈ H, by the continuity of the map ℝn → 𝕋, x → χx(u) = χu(x), one can deduce that
χu(x) = 0, since χu(h) = 0 for every h ∈ H. Hence, u ∈ (H)†.

(c) Let y ∈ H†. To prove that y ∈ Ho, take any x ∈ H and assume thatm := (x | y) ̸=
0. Then z := 1

2mx ∈ H and (z | y) = 1
2 ̸∈ ℤ, a contradiction.

(d) The inclusion (H +H1)
† ⊆ H† ∩H†1 follows from item (a). On the other hand, if

x ∈ H† ∩ H†1 , then obviously x ∈ (H + H1)
†.

We study in the sequel the subgroup H† associated to a closed subgroup H ofℝn.

Proposition 9.4.5. For every subgroup H of ℝn, H = (H†)†. In particular, H is dense in
ℝn if and only if H† = {0}.
Proof. By Lemma 9.4.4(b), (H)† = H†, sowe can assumewithout loss of generality that
H = H is closed. According to Theorem 9.2.2, there exist a base (v1, . . . , vn) of ℝn and
k ≤ n such that H = V + L, where V is the linear subspace generated by v1, . . . , vs for
some s ∈ {0, . . . , k} and L = ⟨vs+1, . . . , vk⟩. Let (v′1, . . . , v′n) be the dual base of (v1, . . . , vn).

Let V ′ = ℝv′1 + . . . + ℝv′s, L′ = ⟨v′s+1, . . . , v′k⟩ and W ′ = ℝv′k+1 + . . . + ℝv′n. Then
V† = Vo = (ℝv′s+1+ . . .+ℝv′k)⊕W ′ and L† = V ′⊕L′⊕W ′ since (v′1, . . . , v′n) is the dual base
of (v1, . . . , vn). By Lemma 9.4.4(d), H† = V† ∩ L† = L′ ⊕W ′. Similarly, (H†)† = V + L = H
since (v1, . . . , vn) is the dual base of (v′1, . . . , v′n).
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The next proposition is a particular case of the well-known Kronecker theorem.

Proposition 9.4.6. Let v1, . . . , vn ∈ ℝ. Then, for v = (v1, . . . , vn) ∈ ℝn, the subgroup
⟨v⟩ + ℤn of ℝn is dense if and only if v0 = 1, v1, . . . , vn ∈ ℝ are linearly independent as
elements of the vector space ℝ overℚ.

Proof. Assume that v0 = 1, v1, . . . , vn ∈ ℝ are linearly independent and letH = ⟨v⟩+ℤn.
Then H† ⊆ ℤn = (ℤn)†. Therefore, some z ∈ ℤn belongs to (⟨v⟩)† if and only if z = 0.
Thus, H† = {0}. Consequently, H is dense in ℝn by Proposition 9.4.5. Conversely, if
∑ni=0 kivi = 0 is a nontrivial linear combination with ki ∈ ℤ, then k = (k1, . . . , kn) ∈ ℤn

is nonzero and k ∈ H†. Thus, H† ̸= {0}, so H is not dense.

Now we prove that 𝕋n is monothetic for every n ∈ ℕ+.
Corollary 9.4.7. Let q0:ℝ→ 𝕋 be the canonical projection. For n ∈ ℕ+ and v1, . . . , vn ∈
ℝ such that 1, v1, . . . , vn ∈ ℝ are ℚ-linearly independent in ℝ, ⟨(q0(v1), . . . , q0(vn))⟩ is
dense in 𝕋n.

Proof. By Proposition 9.4.6, with v = (v1, . . . , vn) ∈ ℝn, the subgroup H = ⟨v⟩ + ℤn of
ℝn is dense. Consider the canonical projection π:ℝn → 𝕋n ≅ ℝn/ℤn. Then π(H) =
⟨(q0(v1), . . . , q0(vn))⟩ is a dense subgroup of 𝕋n.

We can finally verify with Proposition 9.4.6 that 𝕋c has a dense cyclic subgroup:

Theorem 9.4.8. The group 𝕋c is monothetic.

Proof. LetB be aHamel base ofℝ onℚ that contains 1 and letB0 = B\{1}; in particular,
|B0| = |B| = c. To see that the element x = (xb)b∈B0 ∈ 𝕋B0 , defined by xb = b+ℤ ∈ ℝ/ℤ =
𝕋 for every b ∈ B0, is a topological generator of the group𝕋B0 , it suffices to check that
for every finite subset B1 of B0 the projection p:𝕋B0 → 𝕋B1 sends H = ⟨x⟩ to a dense
subgroup of 𝕋B1 . This follows from Corollary 9.4.7.

Clearly,𝕋κ is notmonothetic in case κ > c, since a separable group hasweight ≤ c.

9.5 Exercises

Exercise 9.5.1. Prove by induction on n ∈ ℕ+ that for every discrete (so closed) sub-
group H of ℝn there exist m ≤ n and m linearly independent vectors v1, . . . , vm ∈ H
such that H = ⟨v1, . . . , vm⟩ ≅ ℤm.
Hint. The case n = 1 is Proposition 3.1.11. Assume n > 1. Pick any h ∈ H \ {0} and let L be the line ℝh
in ℝn. Since H1 = H ∩ L ̸= {0} is a discrete subgroup of L ≅ ℝ, we conclude that H = ⟨a⟩ is cyclic,
by Proposition 3.1.11. We can apply Lemma 9.3.3 to claim that the image p(H) ofH along the canonical
projection p:ℝn → ℝn/L ≅ ℝn−1 is a discrete subgroup of ℝn−1. Then our inductive hypothesis yields
p(H) = ⟨v′2, . . . , v′m⟩ for some linearly independent vectors v′2, . . . , v′m in ℝn/L. Pick vi ∈ H such that
p(vi) = v′i for i ∈ {2, . . . , n}. Then, with v1 = a, we have the desired presentation

H = ⟨v1, . . . , vm⟩ = ⟨v1⟩ ⊕ ⟨v2, . . . , vm⟩ ≅ ℤ ⊕ ℤm−1 ≅ ℤm.
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Exercise 9.5.2. Prove that the class ℰC of elementary compact abelian groups is stable
under taking closed subgroups, quotients and finite direct products.
Hint. Use Corollary 9.4.3.

Exercise 9.5.3. Prove that every elementary locally compact abelian group is a quo-
tient of an elementary locally compact abelian group of the form ℝn ×ℤm.

Exercise 9.5.4. Prove that every elementary locally compact abelian group can be em-
bedded as a closed subgroup of ℝn × 𝕋k for some n, k ∈ ℕ.

Exercise 9.5.5. Determine for which of the following six possible choices of the vector
v ∈ ℝ4 the subgroup ⟨v⟩ +ℤ4 of ℝ4 is dense:

(√2,√3,√5,√6), (√2,√3,√5,√7), (log 2, log 3, log 5, log 6), (log 2, log 3, log 5, log 7)
(log 3, log 5, log 7, log 9), and (log 5, log 7, log 9, log 11).

Exercise 9.5.6. LetV beahyperplane inℝn determinedby∑ni=1 aixi = 0, fora1, . . . , an ∈
ℝ, such that there exists at least one coefficient ai = 1. Prove that the subgroup
H = V +ℤn of ℝn is not dense if and only if all the coefficients ai are rational.
Hint. Clearly, V = (ℝα)o = (ℝα)†, where α = (a1, . . . , an). Hence, H† = (ℝα)†† ∩ (ℤn)† = ℝα ∩ ℤn, by
Lemma 9.4.4(d). Clearly,ℝα ∩ℤn ̸= {0} if and only if all coefficients ai are rational. On the other hand,
H† = ℝα ∩ ℤn ̸= {0} if and only if H is not dense in ℝn, by Proposition 9.4.5.

Exercise 9.5.7. (a) Prove that a subgroup H of 𝕋 is dense if and only if H is infinite.
(b) Determine the minimal (with respect to inclusion) dense subgroups of 𝕋.
(c)∗Determine the minimal (with respect to inclusion) dense subgroups of 𝕋2.

Exercise 9.5.8. Prove that if ϕ:ℝn → ℝn is a continuous endomorphism, then ϕ is
also an ℝ-linear transformation.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



10 Subgroups of compact groups

10.1 Big subsets of groups

Definition 10.1.1. A subset B of a group G is left (respectively, right) big if there exists
a finite subset F of G such that FB = G (respectively, BF = G). Moreover, B is big if it is
simultaneously left and right big.

The notions of left and right big subsets coincide for abelian groups, but this need
not be true in general.

Example 10.1.2. Let G be the free product of a cyclic group A = ⟨a⟩ of order 2 and
an infinite cyclic group C = ⟨b⟩. Every element of G \ C can be uniquely written as a
product

w = bn0 ⋅ a ⋅ bn1 ⋅ a ⋅ bn2 ⋅ ⋅ ⋅ a ⋅ bnk−1 ⋅ a ⋅ bnk , (10.1)

where k ∈ ℕ+, and n0, . . . , nk are integers such that if k > 1 then n1, . . . , nk−1 are
nonzero, while n0 and nk may also have value 0. Obviously, the elements w ∈ C can
be obtained in the form (10.1) with k = 0 (and consequently, w = bn0 ). One refers
to (10.1) as the reduced form of the element w ∈ G. The product w1 ⋅ w2 of two words
w1 andw2 can be brought to a reduced form after a finite number of cancelations, i. e.,
either w1 ⋅ w2 is already in reduced form, or there exist factorizations w1 = w̃1 ⋅ u and
w2 = u−1 ⋅ w̃2 such that w1 ⋅ w2 = w̃1 ⋅ w̃2 is in reduced form.

Set

Y = {w ∈ G: k ∈ ℕ+ and nk = 0 in (10.1)} and X = G \ Y .

Note that Y = Xa, so that X = Ya, too. Thus, both X and Y are right big, since G =
X ∪Xa = Y ∪Ya. Let us see now that neither X nor Y is left big. Since Y = Xa, it suffices
to see that X is not left big.

Let us first note that the inverse of an element w as in (10.1) is given by

w−1 = b−nk ⋅ a ⋅ b−nk−1 ⋅ a ⋅ b−nk−2 ⋅ a ⋅ ⋅ ⋅ a ⋅ b−n1 ⋅ a ⋅ b−n0 .

Assume that G = ⋃li=1 giX for some g1, . . . , gl ∈ G. There exist n ̸= m in ℕ+ such that
bna ∈ giX and bma ∈ giX for some i ∈ {1, . . . , l}. Then, for some x ∈ X, one has bna = gix,
and so gi = bnax−1. Now x = bn0abn1abn2a ⋅ ⋅ ⋅ abnk−1abnk with either x = 1 or nk ̸= 0. In
both cases the leading term of the reduced form of the word gi is bna. An analogous
argument shows that the leading term of the reduced form of the word gi is bma, a
contradiction.

On the other hand, a subset B of a group G is left big if and only if B−1 is right big;
so, in case B is symmetric, B is left big precisely when B is right big.

Moreover, every nonempty subset of a finite group is big, while every big subset
of an infinite group is necessarily infinite.

https://doi.org/10.1515/9783110654936-010
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Example 10.1.3. An infinite subset B of ℤ is big if and only if:
(a) B is unbounded from above and from below; and
(b) if B = {bn: n ∈ ℤ} is a one-to-one monotone enumeration of B, then the set {bn+1 −

bn: n ∈ ℤ} is bounded.

We list some basic properties of big subsets.

Lemma 10.1.4. (a) Assume that Bj is a left big subset of the group Gj, for j ∈ {1, . . . , n}.
Then B1 × ⋅ ⋅ ⋅ × Bn is a left big subset of G1 × ⋅ ⋅ ⋅ × Gn.

(b) Let G,H be groups and f :G → H a surjective homomorphism. Then:
(b1) if B is a left big subset of H, then f −1(B) is a left big subset of G;
(b2) if B′ is a left big subset of G, then f (B′) is a left big subset of H.

Proof. (a) and (b2) follow directly from the definition.
(b1) Assume that there exists a finite subset F of H such that FB = H. Let E be a

finite subset of G such that f (E) = F. Then we see that G = Ef −1(B), and so f −1(B) is left
big in G. In fact, for x ∈ G, there exists a ∈ F such that f (x) ∈ aB; for c ∈ E such that
f (c) = a, we get f (x) ∈ aB = f (c)B, so that f (c−1x) ∈ B, and hence c−1x ∈ f −1(B), that is,
x ∈ Ef −1(B).

If the group homomorphism f :G → H in Lemma 10.1.4(b) is not surjective, then
the property may fail (e. g., taking the inclusion f :G = 2ℤ → ℤ = H, then B = 1 + 2ℤ
is big in H, yet f −1(B) is empty). The next proposition gives an easy remedy.

Proposition 10.1.5. Let G be a group and B a left big subset of G. Then:
(a) for every subgroup H of G, B−1B ∩ H is a big subset of H;
(b) for every a ∈ G, there exists n ∈ ℕ+ such that an ∈ B−1B.

Proof. (a) Let F be a finite subset of G such that FB = G. For f ∈ F, if fB∩H ̸= 0, choose
af ∈ fB ∩ H and let E = {af : f ∈ F, fB ∩ H ̸= 0}. For every h ∈ H, there exists f ∈ F such
that h ∈ fB; since af ∈ fB, a−1f h ∈ B−1B. So, H ⊆ E(B−1B ∩H), that is, B−1B ∩H is left big
in H. Since B−1B ∩ H is symmetric, it is also right big.

(b) Take H = ⟨a⟩. If H is finite, there is nothing to prove as an = eG ∈ B−1B, where
n ∈ ℕ+ is the order of a. Otherwise, H ≅ ℤ and, since B−1B ∩H is big in H by (a), there
exists n ∈ ℕ+ such that an ∈ B−1B, by Example 10.1.3(a).

Combining Proposition 10.1.5(a) with Lemma 10.1.4(b1), we get

Corollary 10.1.6. Let G,H be groups and f :G → H a group homomorphism. If B is a left
big subset of H, then f −1(B−1B) is a left big subset of G.

Now we introduce a concept in the opposite direction of being big.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.2 Precompact groups | 145

Definition 10.1.7. Call a nonempty subset S of an infinite group G left (respectively,
right) small if there exist elements {gn: n ∈ ℕ} ofG such that gnS∩gmS = 0 (respectively,
Sgn ∩ Sgm = 0) wheneverm ̸= n inℕ.

Clearly, a nonempty subset S of an infinite group G is left small if and only if S−1

is right small.

Lemma 10.1.8. Let G be an infinite group and S a subset of G.
(a) If S is finite, then S is left and right small.
(b) If S is left big, then S is not right small.
(c) If S is left small, then S is not right big.
(d) If S is symmetric and small, then S is not big.
(e) If SS−1 is not big, then S is left small.

Proof. (a) obviously follows from (e).
(b) Let F be a finite set inG such thatG = FS. To show that S−1 is not left small, pick

an arbitrary faithfully indexed sequence {gn}n∈ℕ in G. Then there exist f ∈ F and two
distinct n,m ∈ ℕ such that gn ∈ fS ∋ gm, so that gn = fs1 and gm = fs2 for some s1, s1 ∈ S.
Hence, g−1m gn = s−12 s1 and consequently, gns−11 = gms

−1
2 . Therefore, gnS−1 ∩ gmS−1 ̸= 0.

Hence, S−1 is not left small, i. e., S is not right small.
(c) follows from (b), while (d) follows from (c).
(e) Build the required infinite subset {gn: n ∈ ℕ} of G by induction, using the fact

that FSS−1 ̸= G for every finite subset F of G, by hypothesis. Put g0 = eG and assume
that F = {g0, . . . , gn} is already found. Then there exists gn+1 ∈ G \ FSS−1, and it is
straightforward to prove that gn+1S ∩ giS = 0 for every i ∈ {0, . . . , n}.

10.2 Precompact groups

10.2.1 Totally bounded and precompact groups

Using big subsets, we give the following fundamental definition.

Definition 10.2.1. A topological groupG is totally bounded if every nonempty open set
U of G is left big, and G is precompact if it is Hausdorff and totally bounded.

Clearly, compact groups are precompact.

Remark 10.2.2. The notions of total boundedness and precompactness defined by us-
ing left big subsets are only apparently asymmetric. Indeed, a topological group G is
totally bounded if and only if every nonempty open set U of G is right big (see Exer-
cise 10.4.1).

Lemma 10.2.3. If f :G → H is a continuous surjective homomorphism of topological
groups, then H is totally bounded whenever G is totally bounded. If G carries the initial
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topology of f and H is totally bounded, then also G is totally bounded. In particular, G is
totally bounded if and only if hG is precompact.

Proof. To prove the first assertion, it suffices to recall that the homomorphic image of
a left big subset under a surjective homomorphism is left big, by Lemma 10.1.4(b2).
The second assertion follows from the fact that the open sets of G are preimages of the
open sets of H. So, Lemma 10.1.4(b1) applies.

The last assertion follows from the first and second since hG = G/core(G) carries
the initial topology with respect to the canonical projection G → G/core(G).

The simple connection between total boundedness and precompactness from
Lemma 10.2.3 is frequently used in the sequel. Most often we deal with precompact
groups, leaving the obvious counterpart for totally bounded groups to the reader, or
vice versa.

Proposition 10.2.4. If {Gi: i ∈ I} is a family of topological groups, then G = ∏i∈I Gi is
totally bounded if and only if each Gi is totally bounded.

Proof. If G is totally bounded, then each Gi is totally bounded by Lemma 10.2.3.
Assume that each Gi is totally bounded and let U be a nonempty open set of G.

Then there exist a finite subset J of I and a nonempty open set V of GJ = ∏i∈J Gi such
that p−1J (V) ⊆ U, where pJ :G → GJ is the canonical projection. Since pJ is surjective
and V is left big in GJ by Lemma 10.1.4(a), it follows from Lemma 10.1.4(b1) that U is
left big as well.

Now we see that total boundedness is preserved under taking subgroups.

Proposition 10.2.5. All subgroups of totally bounded groups are totally bounded. In
particular, all subgroups of compact groups are precompact.

Proof. Let H be a subgroup of G. If U ∈ 𝒱H (eG), there exists W ∈ 𝒱G(eG) such that
U = W ∩ H. Pick V ∈ 𝒱G(eG) such that V−1V ⊆ W . Since V is left big in G, (V−1V) ∩ H
is left big in H, by Proposition 10.1.5(a). Since (V−1V) ∩ H ⊆ W ∩ H = U, we conclude
that U is left big in H.

One can show that the precompact groups are precisely the subgroups of the com-
pact groups. This requires two steps as the next theorem shows.

Theorem 10.2.6. (a) A Hausdorff group G having a dense precompact subgroup H is
necessarily precompact.

(b) The compact groups are precisely the complete precompact groups.

Proof. (a) For every U ∈ 𝒱G(eG), choose an open V ∈ 𝒱G(eG) with VV ⊆ U . By the
precompactness of H, there exists a finite subset F of H such that H = F(V ∩H). Then
G = HV = F(V ∩ H)V ⊆ FVV ⊆ FU .

(b) Compact groups are complete by Proposition 8.2.6 and precompact.
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To prove the other implication, take a complete precompact group G. To prove
that G is compact, it suffices to verify that every ultrafilter 𝒰 on G converges (see
Lemma B.5.7(b)). First, we show that 𝒰 is a Cauchy filter. Indeed, if U ∈ 𝒱G(eG), then
U is a big subset of G and so there exist g1, . . . , gn ∈ G such that G = ⋃ni=1 giU . Since 𝒰
is an ultrafilter, giU ∈ 𝒰 for some i ∈ {1, . . . , n}. Analogously, one can prove that there
exists g ∈ G such that Ug ∈ 𝒰 . By Lemma 7.2.2(a), 𝒰 is a Cauchy filter. According to
Proposition 7.2.3, we conclude that 𝒰 converges.

We have described the precompact groups internally (as the Hausdorff groups
having big nonempty open sets), or externally (as the subgroups of the compact
groups). Now we describe total boundedness in terms of small subsets.

Lemma 10.2.7. For a topological group G, the following are equivalent:
(a) G is not totally bounded;
(b) G has a left small nonempty open set;
(c) G has a right small nonempty open set.

Proof. (b)⇔(c) since a subset S of G is left small if and only if S−1 is right small, while
(b)⇒(a) is a consequence of Lemma 10.1.8(c).

(a)⇒(b) If U ∈ 𝒱G(eG) is not left big, choose V ∈ 𝒱G(eG) such that VV−1 ⊆ U . Then
V is left small by Lemma 10.1.8(e).

The following result shows that totally bounded groups satisfy a much stronger
version of the axiom (gt3).

Lemma 10.2.8. If G is a totally bounded group, then for every U ∈ 𝒱(eG), there exists
V ∈ 𝒱(eG) such that g−1Vg ⊆ U for all g ∈ G.

Proof. LetW ∈ 𝒱(eG) be symmetric and such thatWWW ⊆ U . By hypothesis, G = FW
for some finite subset F of G. For every a ∈ F, pick Va ∈ 𝒱(eG) such that a−1Vaa ⊆ W ,
and let V = ⋂a∈F Va. Then g

−1Vg ⊆ U for every g ∈ G: if g ∈ aW for some a ∈ F, then
g = aw for some w ∈ W , and so

g−1Vg = w−1a−1Vaw ⊆ w−1a−1Vaaw ⊆ w
−1Ww ⊆ U .

The next theorem reveals a remarkable dichotomy concerning monothetic locally
compact groups.

Theorem 10.2.9 (Weil lemma). Let G be a locally compact monothetic group. Then G is
either compact or discrete (in the latter case, G is cyclic).

Proof. By Corollary 3.1.23, the group G is abelian, so we denote it additively.
Let x ∈ G be such that ⟨x⟩ = G. If G is finite, then G is both compact and discrete.

We can suppose without loss of generality that ⟨x⟩ ≅ ℤ is infinite, and so also that ℤ
is a subgroup of G (thus, G = ℤ).
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If the induced topology τ on ℤ is discrete, then ℤ is closed by Proposition 3.1.17,
and so G = ℤ is discrete. Suppose now that τ is not discrete. Our aim is to show that
τ is precompact. Then, as G is locally compact and so complete by Proposition 8.2.6,
the density of ℤ in G yields that G = ℤ̃ = ℤ is compact, by Theorem 10.2.6.

To verify that τ is totally bounded, we need the following property of (ℤ, τ):

(P) every open set ofℤ has nomaximal element, and so in particular every nonempty
open set of ℤ contains positive elements.

Indeed, let U be an open set of ℤ. Since the assertion is true for U = 0, assume that
U ̸= 0 and 0 ∈ U . IfU has amaximal element, then−U is an open set ofℤ that contains
0 and it has aminimal element, soU∩−U is a finite open neighborhood of 0 inℤ; thus,
τ is discrete against the assumption.

Pick a compact neighborhood U of 0 in G and a symmetric open neighborhood V
of 0 in G with V + V ⊆ U . Since U is compact and V is open, there exist g1, . . . , gm ∈ G
such thatU ⊆ ⋃mi=1(gi+V). By (P), there exist positive n1, . . . , nm ∈ ℤ such that ni ∈ gi+V
for every i ∈ {1, . . . ,m}; equivalently, gi ∈ ni − V = ni + V . Thus,

U ⊆
m
⋃
i=1
(gi + V) ⊆

m
⋃
i=1
(ni + V + V) ⊆

m
⋃
i=1
(ni + U),

and this implies

U ∩ℤ ⊆
m
⋃
i=1
(ni + U ∩ℤ). (10.2)

We show that U ∩ ℤ is a big subset of ℤ; more precisely, (U ∩ ℤ) + F = ℤ, where
F = {1, . . . ,N} and N = max{n1, . . . , nm}. Let t ∈ ℤ; since U ∩ℤ has nomaximal element
by (P), there exists s ∈ U ∩ℤ such that s ≥ t. Define

st = min{s ∈ U ∩ℤ: s ≥ t}.

By (10.2), st = ni + ut for some i ∈ {1, . . . ,m} and ut ∈ U ∩ ℤ. Since ni > 0 for every
i ∈ {1, . . . ,m}, we conclude that ut < st, and so ut < t by the choice of st . Hence,
ut < t ≤ st . Then t − ut ≤ st − ut = ni ∈ F. Thus, t = ut + (t − ut) ∈ (U ∩ ℤ) + F and
consequently, (U ∩ℤ) + F = ℤ. Therefore, the topology τ is totally bounded.

Corollary 10.2.10. Let G be a locally compact group and x ∈ G. Then ⟨x⟩ is either com-
pact or discrete.

Corollary 10.2.11. Let G be a locally compact group such that MG is dense in G. Then G
is compact, connected and w(G) ≤ c.

Proof. The compactness of G and w(G) ≤ c follow, respectively, from Theorem 10.2.9
and Exercise 5.4.4 (the weaker hypothesis MG ̸= 0 is sufficient). Now assume that G
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is not connected. Then G has a nontrivial proper open subgroup U, by Theorem 8.5.2
(note that G cannot be discrete by the density of the proper subset MG of G). By the
density of MG, the open set U \ {0} meets MG. Pick 0 ̸= x ∈ U ∩ MG. Then ⟨x⟩ ⊆ U
cannot be dense in G, a contradiction.

Remark 10.2.12. Let α be an infinite cardinal. A topological group G is α-totally
bounded (shortly, α-bounded) if for every nonempty open set U of G there exists a
subset F of G of size < α such that FU = G. Clearly, the ω-totally bounded groups
are precisely the totally bounded groups. As in the case of totally bounded groups,
the counterpart of this notion using the equality UF = G does not lead to a different
notion.

The ω1-bounded groups are also known under the name ω-narrow groups; they
were introduced by Guran [162] under the name ℵ0-bounded groups. It is known that
everyω-narrowgroup is topologically isomorphic to a subgroupof a product of second
countable groups (see [162]).

10.2.2 A second (internal) approach to the Bohr compactification

Proposition 10.2.13. For every topological group (G, τ), there exists the finest totally
bounded group topology τ+ on G coarser than τ.

Proof. Let {τi: i ∈ I} be the family of all totally bounded group topologies on G coarser
than τ, and let τ+ = sup{τi: i ∈ I}. Then (G, τ+) is topologically isomorphic to the di-
agonal subgroup ΔG = {x = (xi)i∈I ∈ GI : xi = xj for every i, j ∈ I} of ∏i∈I (G, τi) (see
Exercise 3.5.10), which is totally bounded, by Propositions 10.2.4 and 10.2.5. Hence, τ+

is still totally bounded, and it is the finest totally bounded group topology onG coarser
than τ.

For a discrete group (G, δG), we denote δ+G by 𝒫G. In case G is abelian, 𝒫G is a
precompact functorial topology, by Proposition 10.2.14.

Proposition 10.2.13 produces, for every topological groupG, a “universal” precom-
pact continuous surjective homomorphic image q:G → G+:

Proposition 10.2.14. For every topological group (G, τ), the quotient group

G+ := G/{eG}
τ+
= h(G, τ+)

equipped with the quotient topology of τ+ is precompact, and every continuous homo-
morphism f : (G, τ) → P, where P is a precompact group, factors through the canonical
projection q:G → G+.

Proof. The precompactness of the quotient G+ with the quotient topology of τ+ fol-
lows from Lemma 10.2.3. Let τ1 be the initial topology of G with respect to f :G → P.
According to Proposition 10.2.5, we may assume that f is surjective. Then τ1 ≤ τ and
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τ1 is totally bounded by Lemma 10.2.3, so Proposition 10.2.13 implies that τ1 ≤ τ+.
Therefore, f : (G, τ+) → P is continuous as well. Now we can factorize f through the
canonical projection q:G → G+ according to Lemma 3.4.1.

According to Proposition 10.2.14, the assignment G → G+ induces a functor from
the category of all topological groups to the subcategory of all precompact groups.
Nowwe see that G̃+ ≅ bG. To this end, let jG:G → G̃+ be the composition of the canon-
ical homomorphism q:G → G+ and the inclusion of G+ → G̃+.

Theorem 10.2.15. For every topological group G, there exists a topological isomorphism
i: bG → G̃+ such that i ∘ bG = jG.

Proof. In view of Theorem 8.6.1, it suffices to prove that jG:G → G̃+ has the universal
property of bG:G → bG.

Let f :G → K be a continuous homomorphism, where K is a compact group. By
Proposition 10.2.14, f factorizes through q:G → G+, i. e., there exists a continuous
homomorphism h:G+ → K such that f = h ∘ q:

G+??

??
h

??

G

f
?? ??

q
??

jG ?? G̃+

f ′

??
K

By Proposition 8.2.6, the group K is complete, being compact. In view of Corol-
lary 7.1.20, we can extend h to a continuous homomorphism f ′: G̃+ → K with f ′ ∘ jG = f .
The uniqueness of f ′ follows from the fact that jG(G) is dense in G̃+.

The above theorem implies that for (G, τ) one has n(G) = core(G, τ+) = {eG}
τ+
, so

(G, τ) is MAP (respectively, minimally almost periodic) precisely when τ+ is Hausdorff
(respectively, τ+ is indiscrete). In particular, precompact groups are MAP.

10.2.3 Precompactness of the topologies induced by characters

For a subset E of an abelian group G, we set E(2) = E − E, E(4) = E − E + E − E, E(6) =
E − E + E − E + E − E, and so on.

Now we adopt a different approach to describe the precompact abelian groups,
based on the use of characters. Our first aim is to see that the group topologies induced
by characters are always totally bounded.

Proposition 10.2.16. If G is an abelian group, δ > 0, and χ1, . . . , χs ∈ G∗ with s ∈ ℕ+,
then U(χ1, . . . , χs; δ) is a big subset of G. Moreover, for every a ∈ G, there exists n ∈ ℕ+
such that na ∈ U(χ1, . . . , χs; δ).
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Proof. Let h:G → 𝕊s, x → (χ1(x), . . . , χs(x)), and let

B = {(z1, . . . , zs) ∈ 𝕊
s: |Arg(zi)| <

δ
2
for i ∈ {1, . . . , s}}

= {z ∈ 𝕊: |Arg(z)| < δ
2
}
s
.

Then B is big in 𝕊s, as {z ∈ 𝕊: |Arg(z)| < δ
2 } is big in 𝕊 and

B−1B ⊆ C := {(z1, . . . , zs) ∈ 𝕊
s: |Arg(zi)| < δ for i ∈ {1, . . . , s}}.

Therefore, U(χ1, . . . , χs; δ) = h−1(C) is big in G, by Corollary 10.1.6.
The second statement follows from Proposition 10.1.5(b), since

U (χ1, . . . , χs;
δ
2
) − U (χ1, . . . , χs;

δ
2
) ⊆ U(χ1, . . . , χs; δ).

Corollary 10.2.17. Let G be an abelian group and H a subgroup of G∗. Then 𝒯H is to-
tally bounded. Moreover, 𝒯H is precompact if and only if H separates the points of G. In
particular,BG is precompact.

It requires a considerable effort to prove that, conversely, every totally bounded
group topology on an abelian group G has the form 𝒯H for some subgroup H of G (see
Theorem 11.4.2).

Remark 10.2.18. (a) At this stage, since every abelian group G admits the finest to-
tally bounded group topology 𝒫G by Proposition 10.2.14, Corollary 10.2.17 gives so
far only the inequality 𝒫G ≥ BG, which implies that also 𝒫G is precompact.

(b) It follows easily from Corollary 10.2.17 and Proposition 10.2.16 that for an abelian
groupG and every neighborhood E of 0 in the Bohr topologyBG (namely, a subset
E of G containing a subset of the form U(χ1, . . . , χn; ε)with characters χi:G → 𝕊 for
i ∈ {1, . . . , n} and ε > 0) there exists a big subset B of G such that B(8) ⊆ E: just take
B = U(χ1, . . . , χn; ε/8).
Surprisingly, the converse is also true. Namely, we shall obtain as a corollary of
the Følner lemma that every subset E of G satisfying B(8) ⊆ E for some big subset
B of G must be a neighborhood of 0 inBG (see Corollary 11.2.6). This means that
𝒫G = BG (see Corollary 11.2.7).

(c) According to a classical result of E. Følner, a topological abelian group G is MAP
if and only if for every a ∈ G \ {0} there exists a big subset B of G such that a does
not belong to the closure of B(4). A weaker form of this theorem is proved in Følner
theorem 11.3.5 (with the bigger set B(10) in place of B(4)).

10.3 Unitary representations of locally compact groups

The nice structure theory of locally compact groups (see §11.6 for the abelian case)
is due to the Haar integral and the Haar measure of locally compact groups. Every
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locally compact groupG admits a rightHaar integral (see §12.2). TheHaar integral gives
the possibility to obtain unitary representations of locally compact groups (one can
see in §12.1.2 how these unitary representations arise in the case of compact abelian
groups).

For a complex Hilbert spaceℋ, denote by U(ℋ) the group of its unitary operators
(briefly, unitary group of ℋ) equipped with the strong operator topology (this is, the
coarsest topology onU(ℋ) such that, for eachfixed x ∈ ℋ, the evaluationmapU(ℋ)→
ℋ, T → T(x), is continuous with respect to the norm topology ofℋ).

Definition 10.3.1. A unitary representation of a locally compact group G is a contin-
uous homomorphism V :G → U(ℋ), where ℋ is a complex Hilbert space. A unitary
representationV :G → U(ℋ) ofG is said to be irreducible if the onlyV -invariant closed
subspaces ofℋ are {0} andℋ.

Associated with any unitary representation V of G one has a cardinal number
d(V), called the degree of V , which is by definition the cardinality of an orthonormal
base (briefly, the dimension) of the complex Hilbert spaceℋ. If d(V) is finite, then the
unitary group U(ℋ) = U(d(V)) is compact (see Example 8.1.4).

Theorem 10.3.2 (Gel′fand–Raĭkov theorem). For every locally compact group G and
a ∈ G \ {eG}, there exists an irreducible unitary representation V :G → U(ℋ) of G by
unitary operators of some Hilbert spaceℋ such that V(a) ̸= eU(ℋ).

The proof of this theorem can be found in [174, 22.12].
If G is compact, all irreducible unitary representations of G have finite degree;

this case is further discussed in Theorem 10.3.3. In particular, a topological group G is
MAP if and only if the finite-degree irreducible unitary representations of G separate
the points (see Corollary 10.3.6).

The smaller class of locally compact groups G with the property d(V) < ∞ for
every irreducible unitary representation V of G was introduced and characterized by
Moore [213] (later these locally compact groups were named Moore groups in [246,
248]). In the same paper, Moore characterized also the locally compact groups G such
that all degrees d(V), when V varies among all irreducible unitary representations of
G, are bounded by some natural number.

The compact case of the Gel′fand–Raĭkov theorem is known as Peter–Weyl–van
Kampen theorem, which shows that the compact groups are Moore groups:

Theorem 10.3.3 (Peter–Weyl–van Kampen theorem). LetG bea compact group. For ev-
ery a ∈ G \ {eG}, there exist n ∈ ℕ+ and a continuous homomorphism f :G → U(n) such
that f (a) ̸= eG.

The proof of the Peter–Weyl–van Kampen theorem can be found in [174, 22.13]. We
give now several relevant consequences.
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Corollary 10.3.4. If G is a compact group, then G is isomorphic to a (closed) subgroup
of some power𝕌I of the group𝕌.

Proof. In view of Theorem 10.3.3, there exist a nonempty set I and a family {fi:G →
𝕌: i ∈ I} of continuous homomorphisms that separate the points of G. Then the diag-
onal map determined by {fi:G → 𝕌: i ∈ I} is a continuous injective homomorphism
G → 𝕌I , x → (fi(x))i∈I . By the compactness of G and the open mapping theorem
(Theorem 8.4.1), this is the required embedding.

Nowwe provide an alternative way to describe the Bohr compactification bG:G →
bG of a topological group G. By Theorem 10.2.15, bG:G → bG has the property:

(Bc) every continuous homomorphism f :G → U(n) with n ∈ ℕ factorizes through bG
bymeans of a unique continuous homomorphism f ′: bG → U(n)with f ′ ∘bG = f :

G

f ??

bG ?? bG

f ′??
U(n)

Our aim now is to show (without any recourse to Theorem 10.2.15) that a continu-
ous homomorphism h:G → K, with K = h(G) compact and satisfying (Bc), exists and
coincides, up to isomorphism, with bG:G → bG.

Proposition 10.3.5. The Bohr compactification of a topological group G can be equiva-
lently defined by the property (Bc).

Proof. First,we verify that if a continuoushomomorphism h:G → K, whereK is a com-
pact group, has the property (Bc) (i. e., every continuous homomorphism f :G → U(n)
for some n ∈ ℕ factorizes through h bymeans of a unique continuous homomorphism
f ′:K → U(n)with f ′ ∘h = f ), then h:G → K has also the (stronger) universal property of
the Bohr compactification bG, somust coincide, up to isomorphism, with bG:G → bG,
by Theorem 8.6.1.

Pick a continuous homomorphism f :G → C with C compact. By Corollary 10.3.4,
we can assume that C is a subgroup of a product P = ∏i∈I U(ni). Let i ∈ I and let
pi:P → U(ni) be the canonical projection. Then our hypothesis applied to pi ∘ f :G →
U(ni) provides a continuous homomorphism f ′i :K → U(ni) with f ′i ∘ h = pi ∘ f . The
diagonal homomorphism f ′:K → P of the family {f ′i : i ∈ I} satisfies f

′ ∘ h = f (compose
with pi and use the fact that f ′i ∘ h = pi ∘ f ).

The proof of the existence of a continuous homomorphism h:G → K, with a com-
pact group K, satisfying (Bc) is similar to the proof of Theorem C.2.10, so we only give
a brief sketch. There exists a set of continuous homomorphisms hi:G → U(ni) with
i ∈ I so that every continuous homomorphism f :G → U(n) is isomorphic to some hi.
Take the diagonal homomorphism d:G → ∏i∈I U(ni), let K = d(G), and let h:G → K
be the corestriction of d to K. This h does the job.
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Corollary 10.3.6. A topological group G is MAP if and only if the continuous homo-
morphisms G → U(n) (with n varying in ℕ) separate the points of G, while G is mini-
mally almost periodic if and only if for every n ∈ ℕ the only continuous homomorphism
G → U(n) is the trivial one.

In the case of an abelian group G, the irreducible unitary representations have
degree 1, so they simply are the continuous characters G → 𝕋. Hence:

Corollary 10.3.7 ([174, 22.17]). A topological abelian group G is MAP if and only if the
continuous characters G → 𝕋 separate the points of G, while G is minimally almost
periodic if and only if Ĝ is trivial.

Using Peter–Weyl–van Kampen theorem 10.3.3, in the abelian case one can prove
that every locally compact abelian group is MAP. The proof of this fact (see Theo-
rem 11.6.3) requires several ingredients that we develop in Chapter 11.

Examples of minimally almost periodic groups are less easy to come by. The first
known ones came from functional analysis, namely, the topological real vector spaces
V having no nontrivial continuous linear functionals V → ℝ, e. g., Lp with 0 < p < 1.
This is the space of equivalence classes of measurable functions [0, 1] → ℝ with
∫
1
0 |f (x)|

pdx < ∞, endowed with the topology induced by the metric dp: Lp × Lp →
[0,∞), ([f ], [g]) → ∫10 |f (x) − g(x)|

pdx. Day [64] showed that the null-function is the
only continuous linear form of Lp and hence the trivial character is the only continu-
ous character of Lp.

Minimally almost periodic group topologies on ℤ were built by Nienhuys [221].
Prodanov [230], unaware of the already existing examples, produced an elemen-
tary example of a minimally almost periodic abelian group (his idea was further
developed in [55, 108, 257, 258]). Further examples were produced in [3, 240]. Re-
mus [244] noticed that the connected group topologies on the bounded abelian
groups produced by Markov [210] are necessarily minimally almost periodic (see
Exercise 10.4.14). Comfort [54] raised the problem of the description of all abelian
groups admitting a minimally almost periodic group topology. Gabriyelyan gave a
solution in the countable case in [148, 149], the solution in the general case can be
found in [106].

It is easier to encounter minimally almost periodic groups in the nonabelian case,
e. g., S(ℕ) or SL2(ℝ).

10.4 Exercises

Exercise 10.4.1. Prove that a topological groupG is totally bounded if and only if every
nonempty open set U of G is right big.
Hint. We can assume without loss of generality that eG ∈ U . Take any open V ∈ 𝒱(eG) such that
V−1 ⊆ U . Since V must be left big in case G is totally bounded, V−1 is right big, soU is right big as well.
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Exercise 10.4.2. Prove that for no infinite set X the group S(X) admits a precompact
group topology.
Hint. According to Theorem 4.2.2, if S(X) admits a precompact group topology, then also TX is pre-
compact. Since the subgroups Sx of S(X) are open in TX , this would imply that Sx has finite index, a
contradiction.

Exercise 10.4.3. Prove that, for an infinite group G and a subgroupH of G, the follow-
ing conditions are equivalent:
(a) H has infinite index;
(b) H is not left big;
(c) H is not right big;
(d) H is left small;
(e) H is right small.

Exercise 10.4.4.∗ Show that no infinite abelian group G is a finite union of small sub-
sets.
Hint.SinceG is abelian, it admits afinitely additive invariant (Banach)measureμdefinedon thepower-
set of G and μ(G) = 1. Clearly, every small subset of G has measure 0, while μ(G) = 1. So, G cannot be
a union of finitely many sets of measure 0.

For an elementary proof, due to U. Zannier, see [283] or [99, Exercise 1.6.20].

Exercise 10.4.5 ([100]).∗ Prove that every infinite abelian group has a small set of gen-
erators.

Exercise 10.4.6.∗ Describe the abelian groups G such that νG is precompact; the same
with νpG.

Exercise 10.4.7.∗ Let α be an infinite cardinal.
(a) Show that the class Bα of α-totally bounded groups is stable under taking sub-

groups, continuous homomorphic images and products.
(b) Deduce from (a) that every group G admits the finest α-totally bounded group

topology which is finer than the pro-α topology on G (having as basic open neigh-
borhoods of eG all subgroups of G of index < α).

Exercise 10.4.8. Describe the abelian groupsG such that νG isω1-totally bounded; the
same with νpG.

Exercise 10.4.9. Show that every separable group is ω1-totally bounded.

Exercise 10.4.10. Show that for a metrizable group G the following conditions are
equivalent:
(a) G is second countable;
(b) G is Lindelöff;
(c) G is separable;
(d) G is ω1-totally bounded.
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Hint. The implications (a)⇒(b)⇒(c) are well known and are actually equivalences. The implication
(c)⇒(d) is Exercise 10.4.9. To prove themissing implication (d)⇒(c), fix a countable local base {Un: n ∈
ℕ} at eG. For every n ∈ ℕ, there exists a countable set Fn such that FnUn = G. Then the countable set
F = ⋃n∈ℕ Fn satisfies FUn = G for every n ∈ ℕ. This means that F is dense in G, so G is separable.

Exercise 10.4.11. If G is a countably infinite Hausdorff abelian group, show that for
every compact subset K of G the set K(2n) is big for no n ∈ ℕ+.

Hint. By Lemma 8.2.1, every set K(2n) is compact. So, if K(2n) were big for some n ∈ ℕ+, then G itself
would be compact. Now Lemma 8.1.5(a) applies.

Exercise 10.4.12. Prove that:
(a) if S = {an}n∈ℕ is a one-to-one T-sequence of an abelian group G, then for every

n ∈ ℕ the set S(2n) is small in G;
(b)∗ the sequence {pn}n∈ℕ of all prime numbers in ℤ is not a T-sequence.

Hint. (a) Consider the (countable) subgroup generated by S. If an → 0 in some Hausdorff group topol-
ogy τ on G, then S ∪ {0} is compact in τ, so Exercise 10.4.11 applies.

(b) Use (a) and the fact that there exists a constantm ∈ ℕ+ such that every integer number is the
sum of at most m primes. More precisely, according to the positive solution of the ternary Goldbach
conjecture, there exists a constant C ∈ ℕ+ such that every odd integer ≥ C is the sum of three primes
(see [286] for further details on the Goldbach conjecture).

Exercise 10.4.13. Prove that, for a direct product (G, τ) = (G1, τ1) × (G2, τ2) of topolog-
ical groups, one has n(G) = n(G1) × n(G2) and G+ ≅ G+1 × G

+
2 . Hence, bG ≅ bG1 × bG2.

Hint. The group (G1 × G2, τ+1 × τ
+
2 ) is totally bounded and for every totally bounded group topology

σ ≤ τ on G, one has σ ↾Gi≤ τ↾Gi= τi, so σ ↾Gi≤ τ
+
i for i = 1, 2. By the properties of the product topology

on finite products, σ ≤ τ+1 × τ
+
2 . This proves that τ

+
1 × τ
+
2 = τ
+, and consequently, n(G) = n(G1) × n(G2).

Therefore,G+ = G/n(G) ≅ G1/n(G1)×G2/n(G2) and this is a topological isomorphismwheneverG+ and
G+i = Gi/n(Gi), for i = 1, 2, carry the quotient topology. Therefore, G

+ ≅ G+1 × G
+
2 and bG ≅ bG1 × bG2.

Exercise 10.4.14. Show that every infinite bounded connected abelian group is mini-
mally almost periodic. Deduce that for a connected abelian group G and everym ∈ N+
the quotient G/mG is MinAP.
Hint. Prove that for such a group G every continuous character G → 𝕋 is trivial and apply Corol-
lary 10.3.7. The second assertion immediately follows from the first one.

10.5 Further readings, notes, and comments

The fact that every infinite abelian group has a small set of generators (see Exer-
cise 10.4.5) was extended to arbitrary infinite groups in [100]. One can find in the
literature also different (weaker) forms of smallness in [10, 29].

Next, we discuss a remarkable connection, established by Prodanov and Stoy-
anov, between two compactness-like properties that partially inverts the implication
“compact⇒minimal” due to the open mapping theorem (see Corollary 8.4.2):

Theorem 10.5.1 ([239]). Minimal abelian groups are precompact.
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A simplified proof of this theorem can be found in [99, Theorem 2.7.7]. Combining
it with Exercise 8.7.6, one can deduce that minimal abelian groups are precisely the
dense essential subgroups of compact abelian groups. A significant generalization of
Theorem 10.5.1 was recently obtained by Banakh [15].

Theorem 10.5.1 was conjectured by Prodanov in 1971 and partial results for some
classes of minimal abelian groups were obtained in the consequent twelve years; we
list here some of them. He showed in [232] that countable minimal abelian groups
are precompact. Stoyanov [267] pushed further this result to abelian groups G satis-
fying |G/(div(G) + t(G))| < c. The totally minimal abelian groups were proved to be
precompact in [233]. Motivated by this result, Dierolf and Schwanengel [69] found the
first example of a nonprecompact totally minimal group: the symmetric group S(X) of
any infinite set X (see §4.2), which is also complete, by Proposition 7.1.29. (Actually,
S(X) admits no precompact topologies whatsoever – see Exercise 10.4.2.) Answering
[77, Question 3.5(a)], it was shown by Megrelishvili and the second named author in
[92, Corollary 5.5] that precompactness of minimal topologies fails even in nilpotent
groups of class 2.

An original method to approach Theorem 10.5.1 for some abelian groups was pro-
posed by Prodanov [234]. He observed that for every abelian group G the submaximal
topology ℳG is finer than any minimal topology on G. Hence, if ℳG = BG, then ev-
ery minimal topology on this group G is precompact. (Divisible abelian groups and
finite-rank torsion-free abelian groups have this property, as ℳG = BG occurs pre-
cisely when 𝒮G ≤ BG, i. e., [G : (nG + Soc(G))] < ∞ for every n ∈ ℕ+ – see Exer-
cise 2.4.15.) This technique enabled him to prove that a relevant subgroup of every
minimal abelian group must be precompact.

As far as complementation in the lattice of group topologies is concerned (see
§2.5), a precompact group topology τ on a group G admits no transversal topologies,
since obviously τ ≤ BG ≤ℳG, so the criterion from §2.5 applies.

It was proved by Freudenthal and Weil that a connected MAP locally compact
group has the form ℝn × G, where G is compact (and necessarily connected).

The termsBohr topology andBohr compactification have been chosen as a reward
to Harald Bohr for his work [18] on almost periodic functions closely related to the
Bohr compactification (see Theorems 12.1.9 and 12.1.12). Otherwise, the Bohr compact-
ification is due to Weil [288]. More general results were obtained later by Holm [178]
and Prodanov [238] concerning the Bohr compactification of rings and other universal
algebras.

The standard exposition of the Pontryagin-van Kampen duality exploits the Haar
measure for the proof of the Peter–Weyl–van Kampen theorem. Our aim here is to ob-
tain a proof of the Peter–Weyl–van Kampen theorem in the abelian case without any
recourse to the Haar integration and tools of functional analysis. This elementary ap-
proach, based on the Følner theoremmentioned above and ideas of Prodanov, can be
found in [99, Chapter 1]. It makes no recourse to the Haar measure at all; on the con-
trary, after giving a self-contained elementary proof of the Peter–Weyl–van Kampen
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theorem in the abelian case, one obtains as an easy consequence the existence of the
Haar measure on locally compact abelian groups (see Theorem 12.2.5 for the compact
case and Theorem 12.2.9 for the locally compact one).

Now we reveal the subtle (virtual) connection between the Zariski topology, the
von Neumann radical andminimal almost periodicity. Why are we using “virtual” be-
comes clear immediately from the first connection. Namely, it is proved in [106] that
an abelian group admits aminimally almost periodic group topology if and only if it is
connected in its Zariski topology. (For example G = ℤ(2) ×ℤ(3)ℕ does not admit min-
imally almost periodic group topologies, since G[3] = 2G is a proper open subgroup
of (G,ZG), so (G,ZG) is not connected.) In particular, every unbounded abelian group
admits a minimally almost periodic group topology (see [104, Theorem 4.6(ii)]). This
answers positively a question set by Comfort [54].

The second connection involves the “realization as the von Neumann kernel” in
the following sense. Following [106], we shall say that a subgroup H of an abelian
groupG can be realized as the vonNeumann kernel ofGwhen there exists a Hausdorff
group topology τ onG such that n(G, τ) = H. Clearly, thewhole groupG can be realized
as the von Neumann kernel of G precisely when G admits a minimally almost periodic
group topology. Hence, the problem of realization as the von Neumann kernel in the
above sense ismore general than the previous one. It is proved in [106] that a subgroup
H of an abelian group G can be realized as the von Neumann kernel of G if and only
if H is contained in the connected component of zero of G with respect to the Zariski
topology of G.

In the above exampleG = ℤ(2)×ℤ(3)ℕ, the connected component C of 0 in (G,ZG)
coincides with the subgroup G[3] = 2G = {0} × ℤ(3)ℕ of G. Indeed, 2G is an open
subgroup of G, so it contains C. On the other hand, (2G,Z2G) is connected since Z2G =
γ2G, by Exercise 4.5.6(b). By Exercise 4.5.12, Z2G coincides with ZG ↾2G, hence 2G is
connected in (G,ZG) as well. This proves that C = 2G. Therefore, the above mentioned
general result implies that the subgroup H = ℤ(2) × {0} of G cannot be realized as the
von Neumann kernel of G. More precisely, the subgroups of G that can be realized as
the von Neumann kernel of G are precisely the subgroups of 2G.
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11 The Følner theorem

The first half of this chapter is entirely dedicated to the Følner theorem. In the second
half we prove the Peter–Weyl theorem in the abelian case by applying the Følner the-
orem. Moreover, we use the Prodanov lemma to describe the precompact topologies
on abelian groups.

Recall that, for an abelian group G, we denote by G∗ = Hom(G,𝕊) the group of
all characters of G. In case G is endowed with a group topology, we denote by Ĝ the
subgroup of G∗ consisting of all continuous characters of G.

11.1 Fourier theory for finite abelian groups

In the sequel G is a finite abelian group, so G∗ ≅ G (see Exercise 11.7.1), hence in par-
ticular |G∗| = |G|.

Here we recall some well-known properties of the scalar product1 (− | −) in finite-
dimensional complex vector spaces V = ℂn. We normalize the scalar product in such
a way to let the vector (1, 1, . . . , 1) (i. e., the constant function 1) have norm 1, i. e., for
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V , we let

(u | v) := 1
n

n
∑
i=1

uivi.

By taking a finite groupG of size n, we can consider V = ℂG ≅ ℂn, so that we have also
an action of G on V . In these terms, for every f , g ∈ ℂG,

(f | g) = 1
|G|
∑
x∈G

f (x)g(x).

Let us see that the elements of the subset G∗ = Hom(G,𝕊) of V = ℂG are pairwise
orthogonal and have norm 1:

Proposition 11.1.1. Let G be a finite abelian group and φ, χ ∈ G∗, x, y ∈ G. Then:

(a) (φ | χ) = {
1 if φ = χ,
0 if φ ̸= χ;

(b) 1
|G∗| ∑χ∈G∗ χ(x)χ(y) = {1 if x = y,

0 if x ̸= y.

1 Frequently (− | −) is called also Hermitian product. We keep the same notation that we use for the
standard scalar product of ℝn.

https://doi.org/10.1515/9783110654936-011
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Proof. (a) If φ = χ, then χ(x)χ(x) = χ(x)χ(x)−1 = 1. If φ ̸= χ, there exists z ∈ G such that
φ(z) ̸= χ(z). Therefore, the equalities

∑
x∈G

φ(x)χ(x) = φ(z)
χ(z)
∑
x∈G

φ(x − z)χ(x − z) = φ(z)
χ(z)
∑
x∈G

φ(x)χ(x)

imply that∑x∈G φ(x)χ(x) = 0.
(b) By Exercise 11.7.1, G∗ is a finite group. For every x ∈ G, the evaluation map

G∗ → 𝕊, χ → χ(x), is a homomorphism, so belongs to G∗∗. Now the assertion follows
from (a).

Definition 11.1.2. Let G be a finite abelian group and f ∈ ℂG. For every χ ∈ G∗, the
Fourier coefficient of f corresponding to χ is

cχ := (f | χ) =
1
|G|
∑
x∈G

f (x)χ(x).

For f , g ∈ ℂG, define the function f ∗ g by letting, for every x ∈ G,

(f ∗ g)(x) := 1
|G|
∑
y∈G

g(x + y)f (y) = (gx | f ),

where gx(y) = g(x + y) for all y ∈ G.

Observe that if f and g are real-valued (nonnegative) functions, so is f ∗ g. Propo-
sition 11.1.1(a) shows that G∗ is an orthonormal subset of ℂG.

Proposition 11.1.3. Let G be a finite abelian group and f ∈ ℂG with Fourier coefficients
{cχ : χ ∈ G∗}. Then:
(a) G∗ is an orthonormal base of ℂG;
(b) f (x) = ∑χ∈G∗ cχχ(x) for every x ∈ G;
(c) if g is another complex-valued function on G with Fourier coefficients {dχ : χ ∈ G∗},

then f ∗ g has Fourier coefficients {cχdχ : χ ∈ G∗};
(d) (f ∗ f )(x) = ∑χ∈G∗ |cχ |2χ(x) and 1

|G| ∑x∈G |f (x)|
2 = ∑χ∈G∗ |cχ |2.

Proof. (a) According to Proposition 11.1.1(a), G∗ is an orthonormal set of cardinality
|G| in ℂG, hence an orthonormal base.

(b) Since G∗ is an orthonormal base of ℂG by item (a), we obtain for f ∈ ℂG that
f = ∑χ∈G∗ (f | χ)χ = ∑χ∈G∗ cχχ.

(c) The Fourier coefficient of f ∗ g corresponding to χ ∈ G∗ is

(f ∗ g | χ) = 1
|G|
∑
x∈G
(f ∗ g)(x)χ(x) = 1

|G|2
∑
x∈G
∑
y∈G

g(x + y)f (y) χ(x)

=
1
|G|2
∑
z∈G
∑
y∈G

g(z)f (y) χ(z − y)
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= (
1
|G|
∑
y∈G

f (y)χ(y))( 1
|G|
∑
z∈G

g(z)χ(z)) = cχdχ .

(d) The first equality follows from item (c) with g = f .
For x = 0, it becomes (f ∗ f )(0) = ∑χ∈G∗ |cχ |2, while the definition gives (f ∗ f )(0) =

1
|G| ∑y∈G |f (y)|

2, so we obtain the second equality of item (d).

Corollary 11.1.4. Let G be a finite abelian group, f :G → ℝ≥0 a function, and E = {x ∈
G: f (x) > 0}. Then, for g := f ∗ f and x ∈ G:
(a) g(x) > 0 if and only if x ∈ E(2);
(b) g(x) = ∑χ∈G∗ |cχ |2χ(x), where the cχ are the Fourier coefficients of f .
Proof. (a) For x ∈ G, by definition g(x) > 0 if and only if there exists y ∈ Ewith x+y ∈ E,
that is, x ∈ E − E = E(2).

(b) follows from Proposition 11.1.3(d).

11.2 The Bogoliouboff and Følner lemmas

Lemma 11.2.1 (Bogoliouboff lemma). If F is a finite abelian group and E is a nonempty
subset of F, then there exist χ1, . . . , χm ∈ F∗, where m = ⌊( |F||E| )

2
⌋, such that

U(χ1, . . . , χm;
π
2 ) ⊆ E(4).

Proof. Let f : F → {0, 1} ⊆ ℂ be the characteristic function ofE. By Proposition 11.1.3(b),
for every x ∈ F,

f (x) = ∑
χ∈F∗ cχχ(x), with cχ =

1
|F|
∑
x∈F

f (x)χ(x). (11.1)

Denote g = f ∗ f and h = g ∗ g. By definition, f and g have real values, and by Corol-
lary 11.1.4(b), for every x ∈ F,

g(x) = ∑
χ∈F∗ |cχ |2χ(x) and h(x) = ∑

χ∈F∗ |cχ |4χ(x); (11.2)

by Corollary 11.1.4(a), g(x) > 0 if and only if x ∈ E(2), and analogously

h(x) > 0 if and only if x ∈ E(4). (11.3)

By Proposition 11.1.3(d),

∑
χ∈F∗ |cχ |2 =

1
|F|
∑
x∈F
|f (x)|2 = |E|

|F|
. (11.4)

Set a = |E||F| and order the Fourier coefficients {cχ0 , cχ1 , . . . , cχk } of f so that

|cχ0 | ≥ |cχ1 | ≥ ⋅ ⋅ ⋅ ≥ |cχk |.
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Taking into account the fact that f is the characteristic function of E, it easily follows
from (11.1) that the maximum value of |cχi | is attained for the trivial character χ0 ≡ 1,
namely, cχ0 = a. For every j ∈ {0, . . . , k}, by (11.4),

(j + 1)|cχj |
2 ≤

j
∑
i=0
|cχi |

2 ≤ ∑
χ∈F∗ |cχ |2 = a,

and so

|cχj |
4 ≤

a2

(j + 1)2
. (11.5)

Now let m = min{k − 1, ⌊ 1a2 ⌋}. We are going to show that with χ1, . . . , χm ∈ F∗, for
x ∈ G we get

h(x) > 0 for every x ∈ U (χ1, . . . , χm;
π
2
) . (11.6)

Let x ∈ U(χ1 . . . , χm;
π
2 ). Clearly, Re(χj(x)) ≥ 0 for j ∈ {1, . . . ,m}, and thus,


a4 +

m
∑
j=1
|cχj |

4χj(x)

≥ Re(a4 +

m
∑
j=1
|cχj |

4χj(x)) ≥ a
4. (11.7)

On the other hand, using also the equality

k
∑

j=m+1

1
j(j + 1)
=

k
∑

j=m+1
(
1
j
−

1
j + 1
) =

1
m + 1
−

1
k + 1
,

(11.5) yields

k
∑

j=m+1
|cχj |

4 ≤
k
∑

j=m+1

a2

(j + 1)2
< a2

k
∑

j=m+1

1
j(j + 1)
≤

a2

m + 1
. (11.8)

Since h has nonnegative real values, (11.2), (11.7), and (11.8) give

h(x) = |h(x)| =

a4 +

k
∑
j=1
|cχj |

4χj(x)

≥

a4 +

m
∑
j=1
|cχj |

4χj(x)

−

k
∑

j=m+1
|cχj |

4

≥ a4 − a2

m + 1
≥ a2 (a2 − 1

m + 1
) > 0.

This proves (11.6). Therefore, by (11.3), U(χ1 . . . , χm;
π
2 ) ⊆ E(4).

Remark 11.2.2. Let us note that the estimate in Lemma 11.2.1 for the numberm of char-
acters is certainly not optimal when E is too small compared to k = |F|. For example,
when E is the singleton {0}, the upper bound given by the lemma is just |F|2, while
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one can certainly find at most m = k − 1 characters χ1, . . . , χm (namely, all nontrivial
characters χ1, . . . , χk−1 ∈ F∗) such that U(χ1, . . . , χm;

π
2 ) = {0}. (For certain groups, e. g.,

F = ℤ(2)k, one can find even a much smaller number, say m = log2 |F|.) Therefore,
one can always assume (as implicitly done in the proof) thatm ≤ k − 1, since the k − 1
nontrivial characters χ1, . . . , χk−1 of F give U(χ1, . . . , χk−1;

π
2 ) = {0} ⊆ E(2), for arbitrary

0 ̸= E ⊆ F.
Nevertheless, in the cases relevant for the proof of the Følner theorem, namely,

when the subset E is relatively large with respect to F, this estimate seems more rea-
sonable.

The next technical lemma is needed in the following proofs.

Lemma 11.2.3. Let A be an abelian group and {An}n∈ℕ+ a sequence of finite subsets of
A such that, for every a ∈ A,

lim
n→∞
|(An − a) ∩ An|
|An|

= 1.

If k ∈ ℕ+ and V is a subset of A such that k translates of V cover A, then for every ε > 0
there exists N > 0 such that, for every n ≥ N,

|V ∩ An| > (
1
k
− ε) |An|. (11.9)

Proof. Let a1, . . . , ak ∈ A be such that A = ⋃ki=1(ai + V). Let ε > 0. By hypothesis, there
exists N > 0 such that, for every n ≥ N and every i ∈ {1, . . . , k},

|(An − ai) ∩ An| > (1 − ε)|An|,

and consequently,

|(An − ai) \ An| < ε|An|. (11.10)

Since, for every n ∈ ℕ, An = ⋃
k
i=1(ai + V) ∩ An, there exists in ∈ {1, . . . , k} such that

1
k
|An| ≤ |(ain + V) ∩ An| = |V ∩ (An − ain )|. (11.11)

Since V ∩ (An − ain ) ⊆ (V ∩ An) ∪ ((An − ain ) \ An), (11.10) and (11.11) yield that for every
n ≥ N,

1
k
|An| ≤ |V ∩ (An − ain )| ≤ |V ∩ An| + |(An − ain ) \ An| < |V ∩ An| + ε|An|.

Lemma 11.2.4 (Bogoliouboff–Følner lemma). Let A be a finitely generated abelian
group and let r = r0(A). If k ∈ ℕ+ and V is a subset of A such that k translates of V cover
A, then there exist ρ1, . . . , ρs ∈ A∗, where s = 32rk2, such that UA(ρ1, . . . , ρs;

π
2 ) ⊆ V(4).
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Proof. By Theorem A.1.1, we can identify A with the group ℤr × F, where F is a finite
abelian group. For every n ∈ ℕ+, define

An = (−n, n]
r × F.

Fix arbitrarily a = (a1, . . . , ar ; f ) ∈ A, n ∈ ℕ+ and i ∈ {1, . . . , r}. The set

Jn,i = (−n, n] ∩ (−n − ai, n − ai] ∩ℤ

satisfies |Jn,i| = 2n − |ai| when 2n ≥ |ai|. In particular, for every i ∈ {1, . . . , r},

Jn,i ̸= 0 for every n > n0 := max{|ai|: i ∈ {1, . . . , r}}.

For all n > n0, as (An − a) ∩ An = ∏
r
i=1 Jn,i × F,

|(An − a) ∩ An| ≥ |F|
r
∏
i=1
(2n − |ai|).

Since |An| = |F|(2n)r for every n ∈ ℕ+, we can apply Lemma 11.2.3. Thus, for every
ε > 0, there exists Nε > 0 with Nε ≥ n0 such that (11.9) holds for all n ≥ Nε.

For n ≥ Nε, define Gn = A/(6nℤr) and E = q(V ∩An)where q:A→ Gn is the canon-
ical projection. Observe that q ↾An

is injective, as (An − An) ∩ ker q = {0}. Then (11.9)
gives

|E| = |V ∩ An| > (
1
k
− ε)|An| = (

1
k
− ε)(2n)r |F|,

and so

|Gn|
|E|
≤
(6n)r |F|
( 1k − ε)(2n)

r |F|
=

3rk
1 − kε
.

Fix ε > 0 sufficiently small to have ⌊ 32rk2
(1−kε)2 ⌋ = 3

2rk2 and pick n ≥ Nε. Now apply
Lemma 11.2.1 to find s = 32rk2 characters ξ1,n, . . . , ξs,n ∈ G∗n such that

UGn
(ξ1,n, . . . , ξs,n;

π
2
) ⊆ E(4).

For j ∈ {1, . . . , s}, define ϱj,n = ξj,n ∘ q ∈ A∗:

A

q ?? ??

ϱj,n ?? 𝕊

Gn

ξj,n
??
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If a ∈ An ∩UA(ϱ1,n, . . . , ϱs,n;
π
2 ), then q(a) ∈ UGn

(ξ1,n, . . . , ξs,n;
π
2 ) ⊆ E(4), and so there exist

b1, b2, b3, b4 ∈ V ∩ An and c = (ci)ri=1 ∈ 6nℤ
r such that a = b1 − b2 + b3 − b4 + c. Now

c = a − b1 + b2 − b3 + b4 ∈ (An)(4) + An

implies |ci| ≤ 5n for each i ∈ {1, . . . , r}. So, c = 0 as 6n divides ci for each i ∈ {1, . . . , r}.
Thus, a ∈ V(4) and we conclude that, for every n ≥ Nε,

An ∩ UA (ϱ1,n, . . . , ϱs,n;
π
2
) ⊆ V(4). (11.12)

By Lemma 8.1.3, there exist ϱ1, . . . , ϱs ∈ A∗ and a subsequence {nl}l∈ℕ of {n}n∈ℕ+
such that, for every i ∈ {1, . . . , s},

ϱi(a) = liml→∞
ϱi,nl (a) for every a ∈ A. (11.13)

We prove that

UA (ϱ1, . . . ϱs;
π
2
) ⊆ V(4). (11.14)

Take a ∈ UA(ϱ1, . . . , ϱs;
π
2 ). Since A = ⋃

∞
l=t Anl for any t ∈ ℕ, and by (11.13) we can pick

l ∈ ℕ to have nl ≥ Nε such that a ∈ Anl and |Arg(ϱi,nl (a))| < π/2 for every i ∈ {1, . . . , s},
i. e., a ∈ UA(ϱ1,nl , . . . , ϱs,nl ;

π
2 ) ∩ Anl . Now (11.12), applied to nl, yields a ∈ V(4), and this

proves (11.14).

Our next aim is to eliminate the dependence of the numberm of characters on the
free-rank of the group A in the Bogoliouboff–Følner lemma. The price to pay for this
is taking V(8) instead of V(4).

Lemma 11.2.5 (Følner lemma). Let A be an infinite abelian group. If k ∈ ℕ+ and V is a
subset of A such that k translates of V cover A, then there exist χ1, . . . , χm ∈ A∗, where
m = k2, such that UA(χ1, . . . , χm;

π
2 ) ⊆ V(8).

Proof. First, we consider the case when A is finitely generated, and let r = r0(A). By
Lemma 11.2.4, there exist ϱ1, . . . , ϱs ∈ A∗, where s = 32rk2, such that

UA (ϱ1, . . . , ϱs;
π
2
) ⊆ V(4).

As above, by Theorem A.1.1, we can identify A with ℤr × F, where F is a finite abelian
group. For t ∈ {1, . . . , r}, define a monomorphism it :ℤ → A by letting, for every n ∈ ℤ,

it(n) = (0, . . . ,0, n⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
t
,0, . . . ,0;0) ∈ A.

Then each κj,t := ϱj ∘ it, where j ∈ {1, . . . , s}, t ∈ {1, . . . , r}, is a character of ℤ:

ℤ ??

it ??

κj,t ?? 𝕊

A
ϱj

??
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By Proposition 10.2.16, the subset

L = Uℤ ({κj,t : j ∈ {1, . . . , s}, t ∈ {1, . . . , r}};
π
8r
) ⊆ ℤ

is big in ℤ and so unbounded from above and from below. Let

L0 =
r
⋃
t=1

it(L) ⊆ A.

Then obviously L0 ⊆ UA (ϱ1, . . . , ϱs;
π
8r ), and therefore,

L0(4r) ⊆ UA (ϱ1, . . . , ϱs;
π
2
) ⊆ V(4). (11.15)

For every n ∈ ℕ+, define An = (−n, n]r × F and pick ε > 0 such that ε < 1
6k4 .

Then ⌊( k
1−kε )

2
⌋ = k2, since k2 ≤ k2

(1−kε)2 ≤
k2

1−2kε <
3k5
3k3−1 < k

2 + 1. As in Lemma 11.2.4, the
sequence {An}n∈ℕ+ satisfies thehypotheses of Lemma11.2.3, and so |V∩An| > (

1
k−ε)|An|

for sufficiently large n ∈ ℕ+. Moreover, we choose n ∈ L. Let

Gn = A/(2nℤ
r) ≅ ℤ(2n)r × F

and E = q(V ∩An), where q:A→ Gn is the canonical projection. Then q↾An
is injective

as (An−An)∩ker q = {0}, so q induces a bijection betweenAn andGn, on the one hand,
and between V ∩ An and E, on the other hand. Thus,

|Gn| = |An| = (2n)
r |F| and |E| = |V ∩ An| > (

1
k
− ε) |An|,

and so

(
|Gn|
|E|
)
2
≤ (

k
1 − kε
)
2
, hence ⌊( |Gn|

|E|
)
2
⌋ ≤ ⌊(

k
1 − kε
)
2
⌋ = k2.

To the finite group Gn apply Lemma 11.2.1 to get ξ1,n, . . . , ξm,n ∈ G∗n , wherem = k
2, such

that

UGn
(ξ1,n, . . . , ξm,n;

π
2
) ⊆ E(4).

For every j ∈ {1, . . . ,m}, let χj,n = ξj,n ∘ q ∈ A∗.
If a ∈ An ∩ UA(χ1,n, . . . , χm,n;

π
2 ), then q(a) ∈ UGn

(ξ1,n, . . . , ξm,n;
π
2 ) ⊆ E(4). Therefore,

there exist b1, b2, b3, b4 ∈ V ∩ An and c = (ci)ri=1 ∈ 2nℤ
r such that a = b1 − b2 + b3 −

b4 + c. Since, for every i ∈ {1, . . . , r}, 2n divides ci and |ci| ≤ 5n, we conclude that
ci ∈ {0,±2n,±4n}. Since n ∈ L, c can be written as a sum of at most 4r elements of L0,
so c ∈ L0(4r) ⊆ V(4) by (11.15), and consequently a ∈ V(8). We have proved that

An ∩ UA (χ1,n, . . . , χm,n;
π
2
) ⊆ V(8).
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By Lemma 8.1.3, there exist χ1, . . . , χm ∈ A∗ and a subsequence {nl}l∈ℕ of {n}n∈ℕ+∩L
such that χj(a) = liml→∞ χj,nl (a) for every j ∈ {1, . . . ,m} and for every a ∈ A. Since
A = ⋃{Anl : l > j, nl ∈ L} for every j ∈ ℕ+, we can conclude, as in the last part of the
proof of Lemma 11.2.4, that UA (χ1, . . . , χm;

π
2 ) ⊆ V(8).

Consider now the general case. Let g1, . . . , gk ∈ A be such that A = ⋃ki=1(gi + V).
Suppose that G is a finitely generated subgroup of A containing g1, . . . , gk . Then G =
⋃ki=1(gi + (V ∩ G)), and so k translates of V ∩ G cover G. By the above argument, there
exist φ1G, . . . ,φmG ∈ G∗, wherem = k2, such that

UG (φ1G, . . . ,φmG;
π
2
) ⊆ (V ∩ G)(8) ⊆ V(8).

By Corollary A.2.5, we can extend each φiG to a character of A, so that we can assume
from now on that φ1G, . . . ,φmG ∈ A∗, and so

G ∩ UA (φ1G, . . . ,φmG;
π
2
) = UG (φ1G, . . . ,φmG;

π
2
) ⊆ V(8). (11.16)

Let 𝒢 be the family of all finitely generated subgroups G of A containing g1, . . . , gk,
which is a directed set under inclusion. For every j ∈ {1, . . . ,m}, we get a net {φjG}G∈𝒢
in A∗; by Lemma 8.1.3, there exist a subnet {φjGβ

}β∈B and χj ∈ A∗ such that

χj(a) = limβ∈B
φjGβ
(a) for every a ∈ A. (11.17)

From (11.16) and (11.17), we conclude, as in the finitely generated case, that

UA (χ1, . . . , χm;
π
2
) ⊆ V(8).

As a corollary of the Følner lemma, we obtain the following internal description
of the neighborhoods of 0 in the Bohr topology of an abelian group A.

Corollary 11.2.6. For a subset E of an infinite abelian group A, the following conditions
are equivalent:
(a) E contains V(8) for some big subset V of A;
(b) for every n ∈ ℕ+, E contains V(2n) for some big subset V of A;
(c) E is a neighborhood of 0 in the Bohr topology of A.

Proof. (a)⇒(c) follows from Følner lemma 11.2.5, while (c)⇒(b) follows from Corol-
lary 10.2.17 and Proposition 10.2.16, and (b)⇒(a) is obvious.

The previous and the next corollary should be compared with Remark 10.2.18(b).

Corollary 11.2.7. For an abelian group G, the Bohr topology BG = 𝒯G∗ coincides with
the finest precompact group topology 𝒫G.

Corollary 11.2.8. For a subgroup H of an abelian group G, the Bohr topology BG/H of
G/H coincides with the quotient topology of the Bohr topologyBG.
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Proof. Let q:G → G/H be the canonical projection. The quotient topology BG of the
Bohr topology BG is a precompact group topology on G/H (as H is closed in G# by
Proposition 3.1.9). Hence, BG ≤ 𝒫G/H = BG/H . On the other hand, q:G# → (G/H)#

is continuous by Lemma 2.2.12, hence BG/H ≤ BG by the properties of the quotient
topology. We conclude thatBG = BG/H .

11.3 The Prodanov lemma and independence of characters

In the sequel various linear subspaces of theℂ-algebra C∗(G) of all bounded complex-
valued functions of an abelian group G are used (see Example 5.2.21).

Let G be a topological abelian group. We denote byX(G) theℂ-linear subspace of
C∗(G) spanned by all continuous characters of G, and by X0(G) its ℂ-linear subspace
spanned by the nontrivial continuous characters of G. Then

X(G) = ℂ ⋅ 1 ⊕ X0(G)

(by Corollary 11.3.7) and both X(G) and X0(G) are invariant under the action of G on
C∗(G) such that, for all a ∈ G, f → fa, where fa(x) = f (xa) for all x ∈ G.

Moreover, let

A(G) = {f ∈ C∗(G):∀ε > 0,∃g ∈ X(G), ‖f − g‖ ≤ ε},

namely, A(G) is the closure of X(G) in C∗(G) with respect to the uniform convergence
topologyofC∗(G). Hence,A(G) is aℂ-subalgebra ofC∗(G) containingall constants and
closed under complex conjugation. Since X(G) is contained in C(G) and the uniform
limit of a sequence of continuous functions is again continuous, it follows that A(G)
is a subalgebra of C(G).

Furthermore, let

A0(G) = {f ∈ C
∗(G):∀ε > 0,∃g ∈ X0(G), ‖f − g‖ ≤ ε},

namely,A0(G) is the closure ofX0(G) inC∗(G)with respect to the uniform convergence
topology. It is easy to see that A0(G) is aℂ-linear subspace of A(G) (hence of C∗(G) as
well). Moreover,

A(G) = ℂ ⋅ 1 + A0(G),

whereℂ ⋅ 1 is the one-dimensionalℂ-subalgebra consisting of the constant functions.
Following the spirit of the setting of §B.5.4, we adopt this notation also for an ab-

stract group G, assuming silently that G carries the discrete topology.
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11.3.1 The Prodanov lemma and the Følner theorem

The next lemma, due to Prodanov [237], allows us to eliminate the discontinuous char-
acters in uniform approximations of continuous functions via linear combinations of
characters. In [99, Lemma 1.4.1] it is proved for abelian groups G that carry a topology
τ such that, for every g ∈ G and n ∈ ℤ, the functions x → x + g and x → nx are contin-
uous in (G, τ). The fact that this topology is not assumed to be Hausdorff is crucial in
the applications of the lemma.

Recall that a subset C of a real or complex vector space is said to be convex if, for
all x, y ∈ C and all t ∈ [0, 1], (1 − t)x + ty ∈ C.

Lemma 11.3.1 (Prodanov lemma). Let G be a topological abelian group, U an open set
of G, f :U → ℂ a continuous function, and M a convex closed set of ℂ. Let k ∈ ℕ+,
χ1, . . . , χk ∈ G∗, and c1, . . . , ck ∈ ℂ be such that

k
∑
j=1

cjχj(x) − f (x) ∈ M for every x ∈ U . (11.18)

If χm1
, . . . , χms

, with m1 < ⋅ ⋅ ⋅ < ms, s ∈ ℕ and {m1, . . . ,ms} ⊆ {1, . . . , k}, are precisely
all continuous characters among χ1, . . . , χk (i. e., {χm1

, . . . , χms
} = Ĝ ∩ {χ1, . . . , χk}), then

∑si=1 cmi
χmi
(x) − f (x) ∈ M for every x ∈ U.

Proof. Assume that χk ∈ G∗ is not continuous; then it is not continuous at 0. Conse-
quently, there exists a net {xγ}γ∈A in G such that xγ → 0 and {χk(xγ)}γ∈A does not con-
verge to 1 in 𝕊. Using the compactness of 𝕊 and passing to a subnet, we may assume
that it converges, i. e., yk := limγ∈A χk(xγ) ̸= 1. Furthermore, exploiting the compact-
ness of 𝕊, and passing subsequently to subnets, we can arrange to achieve also the
nets {χj(xγ)}γ∈A to converge for all j ∈ {1, . . . , k − 1}; let yj = limγ∈A χj(xγ). Obviously,
yj = 1 when χj is continuous because xγ → 0.

For t ∈ ℕ, γ ∈ A, and for every x ∈ U, let

zt,γ(x) =
k
∑
j=1

cjχj(x)χj(xγ)
t − f (x + txγ) =

k
∑
j=1

cjχj(x + txγ) − f (x + txγ).

Fix t ∈ ℕ. Since xγ → 0, we get x + txγ ∈ U for every x ∈ U and for every sufficiently
large γ ∈ A; thus, by (11.18), zt,γ(x) ∈ M and so, passing to the limit for γ ∈ A,

zt(x) := limγ∈A zt,γ(x) =
k
∑
j=1

cjχj(x)y
t
j − f (x) ∈ M, (11.19)

because f is continuous andM is closed.
Take an arbitrary n ∈ ℕ. By the convexity of M and (11.19) for t ∈ {0, . . . , n}, for

every x ∈ U,

z(n)(x) := 1
n + 1

n
∑
t=0

zt(x) =
1

n + 1

n
∑
t=0
(

k
∑
j=1

cjχj(x)y
t
j − f (x)) ∈ M.
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Note that∑nt=0 y
t
k =

yn+1k −1
yk−1

because yk ̸= 1. Hence, for every j ∈ {1, . . . , k − 1}, letting

cjn =
cj

n + 1

n
∑
t=0

ytj ,

we get, for every x ∈ U,

z(n)(x) =
k−1
∑
j=1

cjnχj(x) +
ck
1 + n

1 − yn+1k
1 − yk

χk(x) − f (x) ∈ M.

Now for every j ∈ {1, . . . , k − 1},
(1) |cjn| ≤

|cj|
n+1 ∑

n
t=0 |yj|

t = |cj| (because |yj| = 1), and
(2) if yj = 1, then cjn = cj.

By the boundedness of the sequences {cjn}n∈ℕ for j ∈ {1, . . . , k − 1}, there exists a sub-
sequence {nm}m∈ℕ+ of {n}n∈ℕ+ such that all limits c′j = limm→∞ cjnm exist. On the other
hand, |yk | = 1, so

|1 − yn+1k | ≤ 1 + |y
n+1
k | ≤ 2,

and hence

lim
n→∞

ck
1 + n

1 − yn+1k
1 − yk
= 0.

For every x ∈ U, we get

lim
m→∞

z(nm)(x) =
k−1
∑
j=1

c′j χj(x) − f (x) ∈ M; (11.20)

moreover, c′j = cj for every j ∈ {1, . . . , k − 1} such that χj is continuous by (2).
The condition in (11.20) is obtained from the hypothesis, removing the discontin-

uous character χk in such a way that the coefficients of the continuous characters re-
main the same. Iterating this procedure, we can remove all discontinuous characters
among χ1, . . . , χk .

This lemma allows one to “produce continuity out of nothing” in the process of
approximation. Moreover, a careful analysis of the proof shows that one can safely
replace the group topology of G with a semitopological group topology such that for
every n ∈ ℤ, the function x → nx on G is continuous.

Corollary 11.3.2. Let G be a topological abelian group, f :G → ℂ a continuous function,
and ε > 0. If ‖∑kj=1 cjχj − f ‖ ≤ ε for some k ∈ ℕ+, χ1, . . . , χk ∈ G

∗, and c1, . . . , ck ∈ ℂ, then
also ‖∑si=1 cmi

χmi
− f ‖ ≤ ε, where {χm1

, . . . , χms
} = {χ1, . . . , χn} ∩ Ĝ, with m1 < ⋅ ⋅ ⋅ < ms.
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In particular, if f = ∑kj=1 cjχj for some k ∈ ℕ+, χ1, . . . , χk ∈ G∗, and c1, . . . , ck ∈ ℂ,
then also f = ∑si=1 cmi

χmi
with {χm1

, . . . , χms
} = {χ1, . . . , χn} ∩ Ĝ.

In other words, denoting by Gd the topological abelian group G considered with
the discrete topology, C(G) ∩ X(Gd) coincides with the ℂ-subalgebra X(G) of C∗(G)
generated by Ĝ.

Corollary 11.3.3. For every topological abelian group G, C(G) ∩ A(Gd) = A(G).

In other words, as far as continuous complex-valued functions are concerned, in
the definition of A(G) it is irrelevant whether one approximates via (linear combina-
tions of) continuous or discontinuous characters.

Nowwegive a version for topological abeliangroupsof the local Stone–Weierstraß
theorem (see Corollary B.5.22).

Proposition 11.3.4. Let G be a topological abelian group and H a subgroup of Ĝ. If X is
a nonempty subset of G and f ∈ C∗(X), then the following are equivalent:
(a) f can be uniformly approximated on X by a linear combination of elements of H with

complex coefficients;
(b) for every ε > 0, there exist δ > 0 and χ1, . . . , χm ∈ H such that, for every x, y ∈ X,

x − y ∈ UG(χ1, . . . , χm; δ) yields |f (x) − f (y)| < ε.

Proof. (a)⇒(b) Let ε > 0. By hypothesis, there exist c1, . . . , cm ∈ ℂ and χ1, . . . , χm ∈ H
such that ‖∑mi=1 ciχi − f ‖ <

ε
4 on X, that is, for every x ∈ X,



m
∑
i=1

ciχi(x) − f (x)

<
ε
4
.

On the other hand, for every x, y ∈ X,



m
∑
i=1

ciχi(x) −
m
∑
i=1

ciχi(y)

≤

m
∑
i=1
|ci| ⋅ |χi(x) − χi(y)|

and, for every i ∈ {1, . . . ,m},

|χi(x − y) − 1| = |χi(x)χi(y)
−1 − 1| = |χi(x) − χi(y)|.

Take

δ = ε
2mmaxi∈1,...,m |ci|

.

For x, y ∈ X, x − y ∈ U(χ1, . . . , χm; δ) implies |χi(x − y) − 1| ≤ |Arg(χi(x − y))| < δ for every
i ∈ {1, . . . ,m}, so



m
∑
i=1

ciχi(x) −
m
∑
i=1

ciχi(y)

≤

m
∑
i=1
|ci| ⋅ |χi(x) − χi(y)| <

ε
2
;
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consequently,

|f (x) − f (y)| ≤

f (x) −

m
∑
i=1

ciχi(x)

+


m
∑
i=1

ciχi(x) −
m
∑
i=1

ciχi(y)

+


m
∑
i=1

ciχi(y) − f (y)

< ε.

(b)⇒(a) Let βX be the Čech–Stone compactification of the discrete space X. If
the function F:X → ℂ is bounded, there exists a unique continuous extension Fβ

of F to βX. Let 𝒮 be the collection of all complex-valued continuous functions g of
βX such that g = ∑nj=1 cjχ

β
j with χ1, . . . , χn ∈ H, c1, . . . , cn ∈ ℂ, and n ∈ ℕ+. Then

𝒮 is a ℂ-subalgebra of C(βX) closed under complex conjugation and containing all
constants. To see that 𝒮 is a ℂ-subalgebra, it is enough to note that for χ, ξ ∈ H,
χβξ β = (χξ )β ∈ 𝒮. To see that𝒮 is closedunder complex conjugation, it suffices to check
that χβ = (χ)β ∈ 𝒮. Indeed, χχ = 1 yields 1β = (χχ)β = χβ(χ)β, and hence χβ = (χβ)−1 = χβ.

Now we see that 𝒮 separates the points of βX separated by f β, to apply the lo-
cal Stone–Weierstraß theorem (see Corollary B.5.22). Let x, y ∈ βX and f β(x) ̸= f β(y).
Consider two nets {xi}i∈I and {yi}i∈I in X such that xi → x and yi → y. Since f β is contin-
uous, f β(x) = limi∈I f (xi) and f β(y) = limi∈I f (yi). Along with f β(x) ̸= f β(y), this implies
that there exists ε > 0 such that |f (xi) − f (yi)| ≥ ε for every sufficiently large i ∈ I. By
hypothesis, there exist δ > 0 and χ1, . . . , χm ∈ H such that for u, v ∈ X,

if u − v ∈ UG(χ1, . . . , χm; δ) then |f (u) − f (v)| < ε. (11.21)

Assume that χβj (x) = χ
β
j (y) holds for every j ∈ {1, . . . ,m}. Then xi − yi ∈ UG(χ1, . . . , χm; δ)

for every sufficiently large i ∈ I. This, togetherwith |f (xi)−f (yi)| ≥ ε, contradicts (11.21).
So, each pair of points of βX separated by f β is also separated by 𝒮.

Since βX is compact, one can apply the local version of the Stone–Weierstraß the-
orem, that is, Corollary B.5.22, to 𝒮 and f β. So, f β can be uniformly approximated by
elements of 𝒮. To conclude, note that if g = ∑nj=1 cjχ

β
j on βX for some c1, . . . , cn ∈ ℂ and

χ1, . . . , χn ∈ H, then g ↾X= ∑
n
j=1 cjχj.

The reader familiar with uniform spaces will note that item (b) is nothing else but
uniform continuity of f with respect to the uniformity on X induced by the uniformity
of the whole group G determined by the topology 𝒯H .

The use of the Čech–Stone compactification in the above proof is inspired by
Nöbeling and Bauer [25], who proved that if 𝒮 is a ℂ-subalgebra of C∗(X) for some
nonempty set X, and 𝒮 contains the constants and is stable under complex conjuga-
tion, then g ∈ C∗(X) belongs to the closure of 𝒮 with respect to the norm topology
if and only if for every net {xα}α∈A in X the net {g(xα)}α∈A is convergent whenever the
nets {f (xα)}α∈A are convergent for all f ∈ 𝒮.

Theorem 11.3.5 (Følner theorem). Let G be a topological abelian group. If k ∈ ℕ+ and
E is a subset of G such that k translates of E cover G, then for every U ∈ 𝒱G(0) there exist
χ1, . . . , χm ∈ Ĝ, where m = k2, and δ > 0 such that UG(χ1, . . . , χm; δ) ⊆ U − U + E(8).
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Proof. Wecanassume,without loss of generality, thatU is open.ByFølner lemma11.2.5,
there exist φ1, . . . ,φm ∈ G∗ such that UG (φ1, . . . ,φm;

π
2 ) ⊆ E(8); our aim is to replace

these characters by continuous ones by “enlarging” E(8) to U − U + E(8).
It follows from Lemma 3.1.1 that

C := E(8) + U ⊆ E(8) + U − U . (11.22)

Consider the open set X = U ∪ (G \ C) and the function f :X → ℂ defined by

f (x) = {
0 if x ∈ U ,
1 if x ∈ G \ C.

Then f is continuous, as X = U ∪ (G \ C) is partition of X in two clopen sets.
Let H = ⟨φ1, . . . ,φm⟩. Take x, y ∈ X with x − y ∈ UG(φ1, . . . ,φm;

π
2 ) ⊆ E(8). So, if

y ∈ U, then x ∈ E(8) + U, and consequently x ̸∈ G \ E(8) + U = G \ C, that is, x ∈ U . In
the same way it can be shown that x ∈ U yields y ∈ U . This gives f (x) = f (y), by the
definition of f . By Proposition 11.3.4, one can uniformly approximate f on X by linear
combinations of elements of H, namely, one can find ξ1, . . . , ξt ∈ H and c1, . . . , ct ∈ ℂ
such that, for every x ∈ X,



t
∑
j=1

cjξj(x) − f (x)

≤
1
3
. (11.23)

SinceX is open and f is continuous, we can apply Prodanov lemma 11.3.1 to the convex
closed set M = {z ∈ ℂ: |z| ≤ 1

3 }, and this permits us to assume that all ξ1, . . . , ξt are
continuous. Letting x = 0 in (11.23), we get |∑tj=1 cj| ≤

1
3 , and consequently,

2
3
≤


t
∑
j=1

cj − 1

. (11.24)

Let now Φ = H ∩ Ĝ. By Theorem A.1.1, there exist χ1, . . . , χm ∈ Φ such that Φ =
⟨χ1, . . . , χm⟩. Since for every j ∈ {1, . . . , t} the character ξj is continuous and belongs to
H, ξj ∈ Φ, so each ξj can be written as a product ξj = χ

s1(j)
1 ⋅ ⋅ ⋅ χ

sm(j)
m for appropriate

s1(j), . . . , sm(j) ∈ ℤ.
Choose ε > 0 with

ε
t
∑
j=1
|cj| <

1
3
.

By the continuity of χ1, . . . , χm ∈ Φ, there exists δ > 0 such that, for all j ∈ {1, . . . , t},

|ξj(x) − 1| ≤ ε whenever x ∈ UG(χ1, . . . , χm; δ).
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To prove that UG(χ1, . . . , χm; δ) ⊆ U − U + E(8), assume for a contradiction that there is
some z ∈ UG(χ1, . . . , χm; δ) \ (U − U + E(8)). In view of (11.22), z ∈ G \ C ⊆ X. Thus, by
the definition of f (which yields f (z) = 1), (11.23), (11.24), and |ξj(z) − 1| ≤ ε for every
j ∈ {1, . . . , t},

2
3
≤


t
∑
j=1

cj − 1

≤


t
∑
j=1

cj(1 − ξj(z))

+


t
∑
j=1

cjξj(z) − f (z)

≤ ε

t
∑
j=1
|cj| +

1
3
.

These inequalities together give 1
3 ≤ ε∑

t
j=1 |cj|, against the choice of ε.

11.3.2 Independence of characters

Now we apply Prodanov lemma 11.3.1 for an indiscrete abelian group G and U = G.
Note that this necessarily yields that f is a constant function.

Corollary 11.3.6. Let G be a topological abelian group, g ∈ A0(G), and M a convex
closed set of ℂ. If c ∈ ℂ is such that g(x) + c ∈ M for every x ∈ G, then c ∈ M. In
particular, if ε ≥ 0 and |g(x) − c| ≤ ε for every x ∈ G, then |c| ≤ ε.

Proof. Assume first that g ∈ X0(G). Suppose that for every x ∈ G, g(x) = ∑
k
j=1 cjχj(x) for

some c1, . . . , ck ∈ ℂ and nonconstant χ1, . . . , χk ∈ Ĝ. Apply Prodanov lemma 11.3.1 with
G indiscrete, U = G, and f the constant function −c. Since all characters χ1, . . . , χk are
discontinuous, we conclude that c ∈ M.

Assume now that g ∈ A0(G) and assume for contradiction that c ̸∈ M. SinceM is
closed, there exists ε > 0 such that c ̸∈ M + D, where D is the closed (so compact) ball
with center 0 and radius ε. Let h ∈ X0(G)with ‖g−h‖ ≤ ε/2. SinceM+D is still a closed
convex set ofℂ and h(x) + c ∈ M +D for every x ∈ G, we conclude with the first case of
the proof that c ∈ M + D, a contradiction.

For the second assertion, take asM the closed disk of center 0 and radius ε.

Corollary 11.3.7. Let G be an abelian group and χ0, χ1, . . . , χk ∈ G∗ pairwise distinct
characters. Then χ0, χ1, . . . , χk are linearly independent.

Proof. Let c0, c1, . . . , ck ∈ ℂ be such that ∑ki=0 ciχi(x) = 0 for every x ∈ G. Then
∑ki=1 ciχi(x)χ0(x)

−1 + c0 = 0 for every x ∈ G. By hypothesis, the function g:G → ℂ,
x → ∑ki=1 ciχi(x)χ0(x)

−1 is in X0(G), so Corollary 11.3.6 with ε = 0 implies c0 = 0.
Proceeding by induction, one can prove that ci = 0 for all i ∈ {0, 1, . . . , k}.

Using this corollary, we see that for an abelian group G the characters G∗ not only
span X(G) as a base, but they have a much stronger independence property.

Corollary 11.3.8. Let G be an abelian group and χ0, χ1, . . . , χk ∈ G∗ pairwise distinct
characters. Then ‖∑kj=1 cjχj − χ0‖ ≥ 1 for every c1, . . . , ck ∈ ℂ.
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Proof. Let ε = ‖∑kj=1 cjχj − χ0‖. Then, for every x ∈ G,



k
∑
j=1

cjχj(x) − χ0(x)

≤ ε. (11.25)

According to Corollary 11.3.7, χ0, χ1, . . . , χk are linearly independent, hence ε > 0.
By our assumption, ξj := χjχ−10 is nonconstant for every j ∈ {1, . . . , k}. So, g :=

∑kj=1 cjξj ∈ X0(G), and (11.25) yields that, for every x ∈ G,

|g(x) − 1| =


k
∑
j=1

cjχj(x)χ
−1
0 (x) − 1


≤ ε.

According to Corollary 11.3.6, |1| ≤ ε.

Corollary 11.3.9. Let G be an abelian group, H a subgroup of G∗, and let χ ∈ G∗ be such
that there exist k ∈ ℕ+, χ1, . . . , χk ∈ H, and c1, . . . , ck ∈ ℂ with



k
∑
j=1

cjχj − χ

≤
1
2
. (11.26)

Then there exists i ∈ {1, . . . , k} such that χ = χi (in particular, χ ∈ H).

Proof. We assume without loss of generality that χ1, . . . , χk are pairwise distinct. As-
sume for a contradiction that χ ̸= χj for all j ∈ {1, . . . , k}. Then Corollary 11.3.8 applied
to χ, χ1, . . . , χk yields ‖∑

k
j=1 cjχj − χ‖ ≥ 1, against (11.26).

As a consequence of Corollary 11.3.9, the continuous characters of (G, 𝒯H ) are pre-
cisely the characters of H.

Proposition 11.3.10. Let G be an abelian group. Then H = ?(G, 𝒯H ) for every subgroup H
of G∗.

Proof. Obviously, H ⊆ ?(G, 𝒯H ). Now let χ ∈ ?(G, 𝒯H ). For every fixed ε > 0, the set
O = {a ∈ 𝕊: |a − 1| < ε} is an open neighborhood of 1 in 𝕊. Hence, W = χ−1(O) is
𝒯H -open in G. So, there exist χ1, . . . , χm ∈ H and δ > 0 such that UG(χ1, . . . , χm; δ) ⊆ W .
If x − y ∈ UG(χ1, . . . , χm; δ), then χ(x − y) = χ(x)χ(y)−1 ∈ O, and so |χ(x)χ(y)−1 − 1| < ε; in
particular, |χ(x)−χ(y)| < ε. In otherwords, χ satisfies condition (b) of Proposition 11.3.4,
and hence there exist χ1, . . . , χm ∈ H and c1, . . . , cm ∈ ℂ such that

∑
m
j=1 cjχj − χ

 ≤
1
2 . By

Corollary 11.3.9, χ ∈ H.

11.4 Precompact group topologies on abelian groups

Let us recall here that for an abelian group G and a subgroup H of G∗ = Hom(G,𝕊),
the group topology 𝒯H generated byH is the coarsest group topology on G that makes
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every character fromH continuous.We recall its description and properties in the next
proposition.

Proposition 11.4.1. Let G be an abelian group andH a subgroup of G∗. A local base at 0
in (G, 𝒯H ) is given by the sets U(χ1, . . . , χm; δ), where χ1, . . . , χm ∈ H and δ > 0. Moreover,
(G, 𝒯H ) is a Hausdorff group if and only if H separates the points of G.

Nowwe can characterize the totally bounded group topologies on abelian groups.

Theorem 11.4.2. Let (G, τ) be a topological abelian group. The following conditions are
equivalent:
(a) τ is totally bounded;
(b) the neighborhoods of 0 in G are big subsets;
(c) τ = 𝒯?(G,τ).

Proof. (a)⇒(b) This is the definition of totally bounded topology.
(b)⇒(c) If H = ?(G, τ) then 𝒯H ≤ τ. Let U ,V be open neighborhoods of 0 in (G, τ)

such that V(10) ⊆ U . Then V is big by hypothesis, and by Følner theorem 11.3.5 there
exist δ > 0 and χ1, . . . , χm ∈ Ĝ such that UG(χ1, . . . , χm; δ) ⊆ V(10) ⊆ U . Thus, U ∈ 𝒱𝒯H

(0),
and this proves that τ ≤ 𝒯H .

(c)⇒(a) follows from Corollary 10.2.17.

For the sake of completeness, we give the obvious counterpart for precompact-
ness:

Corollary 11.4.3. Let (G, τ) be a topological abelian group. The following conditions are
equivalent:
(a) τ is precompact;
(b) τ is Hausdorff and the neighborhoods of 0 in G are big subsets;
(c) H :=?(G, τ) separates the points of G and τ = 𝒯H .

Theorem 11.4.4 allows us to sharpen this property (see Corollary 11.5.3).

Theorem 11.4.4. For an abelian group G, let

𝒟(G) = {H ≤ G∗:H separates the points of G},
𝒫 = {τ: τ precompact group topology on G}.

Then the following is an order-preserving bijection:

T :𝒟(G)→ 𝒫 , H → 𝒯H (11.27)

(i. e., if H1,H2 ∈ 𝒟(G) then 𝒯H1
≤ 𝒯H2

if and only if H1 ⊆ H2).

Proof. Corollary 11.4.3 yields that 𝒯H ∈ 𝒫 for every H ∈ 𝒟(G) and that T is surjective.
By Proposition 11.3.10, 𝒯H1

= 𝒯H2
for H1,H2 ∈ 𝒟(G) yields H1 = H2. Therefore, T is

a bijection. The last statement of the theorem is obvious.
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We proved in Proposition 11.3.10, that for an abelian group G and a subgroupH of
G∗ the continuous characters of (G, 𝒯H ) are precisely the characters of H. This allows
us to prove that w(G) = χ(G) = |Ĝ| for a precompact abelian group G:

Corollary 11.4.5. If G is an infinite abelian group and H a subgroup of G∗ that separates
the points of G, then w(G, 𝒯H ) = χ(G, 𝒯H ) = |H|.

Proof. Let κ = χ(G, 𝒯H ) and note that κ cannot be finite. (Indeed, otherwise κ = 1 and
𝒯H must be discrete, so being also precompact, this would imply that G is finite, a
contradiction.) According to Exercise 5.4.2, κ ≤ w(G, 𝒯H ) ≤ |H|.

We aim to prove that |H| ≤ κ. Pick a base ℬ of 𝒱𝒯H
(0) of size κ. We can assume that

every B ∈ ℬ can be written as B = UG(χ1,B, . . . , χnB ,B; δB), where nB ∈ ℕ+, δB > 0, and
χi,B ∈ H for i ∈ {1, . . . , nB}. Then the set

X = {χi,B:B ∈ ℬ, i ∈ {1, . . . , nB}} ⊆ H

has size atmost κ and 𝒯H = 𝒯X , by the choice ofℬ. LetH′ = ⟨X⟩; then |H′| ≤ κ and 𝒯H =
𝒯X = 𝒯H′ , by Theorem 11.4.4. Since the correspondence (11.27) from Theorem 11.4.4 is
bijective, we deduce that H′ = H. Therefore, |H| = |H′| ≤ κ.

Corollary 11.4.6. Let G be an abelian group and H a subgroup of G∗ such that 𝒯H is
metrizable. Then H is countable.

11.5 The Peter–Weyl theorem for compact abelian groups

Let us start with the following important direct consequence of Corollary 11.4.3, which
is the Peter–Weyl theorem in the abelian case.

Corollary 11.5.1 (Peter–Weyl theorem). If K is a compact abelian group, then the group
topology on K coincides with 𝒯K̂ and K̂ separates the points of K.

Corollary 11.5.2. If K is a compact abelian group, then K is topologically isomorphic to
a (closed) subgroup of 𝕋K̂ .

Proof. Since K̂ separates the points of K by Corollary 11.5.1, the diagonal map deter-
mined by all characters in K̂ defines a continuous injective homomorphism ΔK̂ :K →
𝕋K̂ . By the compactness of K and the open mapping theorem (Theorem 8.4.1), ΔK̂ is
the required topological embedding.

If K is not elementary compact, the power 𝕋K̂ is the smallest possible one with
this property. Indeed, if the compact but not elementary compact abelian group K
topologically embeds into some power 𝕋κ, then κ is infinite, so κ = w(𝕋κ) ≥ w(K) =
|K̂|, by Corollary 11.4.5.

As a corollary of Theorem11.4.4,weobtain the followinguseful fact that completes
Corollary 11.5.1. It is essentially used in the proof of Pontryagin-van Kampen duality
theorem 13.4.17.
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Corollary 11.5.3. If (K, τ) is a compact abelian group and H is a subgroup of K̂ that sep-
arates the points of K, then H = K̂.

Proof. ByCorollary 11.5.1, τ = 𝒯K̂ . Since𝒯H ≤ 𝒯K̂ byTheorem11.4.4 and𝒯H isHausdorff,
𝒯H = 𝒯K̂ = τ, as τ is compact and due to the open mapping theorem (Theorem 8.4.1).
Now again Theorem 11.4.4 yields H = K̂.

We show now that every compact abelian group is an inverse limit of elementary
compact abelian groups (see Definition 9.4.2).

Proposition 11.5.4. Let K be a compact abelian group and U an open neighborhood
of 0 in K. Then there exists a closed subgroup C of K such that C ⊆ U and K/C is an
elementary compact abelian group. In particular, K is an inverse limit of elementary
compact abelian groups.

Proof. By Corollary 11.5.1, the topology on K is 𝒯K̂ , hence there exists a finite subset F
of K̂ such that C = ⋂χ∈F ker χ ⊆ U . Define g = ∏χ∈F χ:K → 𝕋

F . Thus, ker g = C and
K/C is topologically isomorphic to the closed subgroup g(K) of𝕋F in view of the open
mapping theorem (Theorem 8.4.1). So, K/C is elementary compact, by Corollary 9.4.3.

To prove the last statement, let {Ui: i ∈ I} be the family of all open neighborhoods
of 0 in K. For every i ∈ I, fix a closed subgroup Ci of K with Ci ⊆ Ui and such that
K/Ci is elementary compact. For i, j ∈ I, K/Ci ∩ Cj is elementary compact, as K/Ci ∩ Cj
is topologically isomorphic to a closed subgroup of K/Ci × K/Cj, which is again an
elementary compact abelian group. So, enlarging the family {Ci: i ∈ I} with all the
finite intersections of its elements, we obtain a family {Cj: j ∈ J} that gives an inverse
system [K/Cj, νji, J] of elementary compact abelian groups,where the homomorphisms
νji:K/Ci → K/Cj, when Ci ⊆ Cj, are simply the canonical projections. Then the inverse
limit K′ of this inverse system is a compact abelian group together with a continuous
homomorphism f :K → K′ induced by the projections pi:K → K/Ci with i ∈ J.

Let x ∈ K \ {0} and pick on open neighborhood U of 0 in K such that x ̸∈ U . By the
first part of the proof, there exists Ci ⊆ U for some i ∈ J; hence x ̸∈ Ci, and therefore
pi(x) ̸= 0, so f (x) ̸= 0 as well. This proves that f is injective. To check the surjectivity
of f , take an element x′ = (xi + Ci)i∈J ∈ K′ ⊆ ∏i∈J K/Ci. Then the family {xi + Ci: i ∈ J} of
closed cosets in K has the finite intersection property, so has nonempty intersection.
For every element x of that intersection, one has f (x) = x′. Finally, the continuous
isomorphism f :K → K′must be open, by the compactness ofK and the openmapping
theorem (Theorem 8.4.1).

For a topological group G, we say that G has no small subgroups, or shortly, G is
NSS, if there exists a neighborhood U of 0 such that U contains no nontrivial sub-
groups of G. For example, 𝕋 is NSS.

Corollary 11.5.5. A compact abelian group K is NSS precisely when K is an elementary
compact abelian group.
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Proof. IfK is NSS, thenK must be elementary compact, by Proposition 11.5.4. To prove
the inverse implication, note first that 𝕋 is NSS. Moreover, the class of NSS abelian
groups is stable under taking finite products and subgroups, by Exercise 11.7.4(a).
Thus, all powers 𝕋n, as well as their subgroups, are NSS. Since by definition all ele-
mentary compact abelian groups can be obtained in this way, we are done.

11.6 On the structure of compactly generated LCA groups

From now on, all topological groups are Hausdorff; quotients are taken with respect
to closed subgroups, and so they are still Hausdorff.

Proposition 11.6.1. Let G be a compactly generated locally compact abelian group.
Then there exists a discrete subgroup H of G such that H ≅ ℤs for some s ∈ ℕ and G/H
is compact.

Proof. Suppose first that there exist g1, . . . , gm ∈ G such that G = ⟨g1, . . . , gm⟩. We pro-
ceed by induction on m ∈ ℕ+. For m = 1, apply Theorem 10.2.9: if G is infinite and
discrete, take H = G, and if G is compact, let H = {0}. Suppose now that the property
holds for m ≥ 1 and that G = ⟨g1, . . . , gm+1⟩. If every ⟨gi⟩ is compact, then so is G, and
we can take H = {0}. Suppose without loss of generality that ⟨gm+1⟩ is discrete and
consider the canonical projection q:G → G1 = G/⟨gm+1⟩. Since G1 = ⟨q(g1), . . . , q(gm)⟩,
by inductive hypothesis there exists a discrete subgroup H1 of G1 such that H1 ≅ ℤ

n

and G1/H1 is compact. Therefore, H = q−1(H1) is a closed countable subgroup of G.
Thus, H is locally compact and countable, hence discrete by Example 8.1.5(a). Since
H is finitely generated, it is isomorphic to H2 × F, where H2 ≅ ℤ

s for some s ∈ ℕ and
F is a finite abelian group (see Theorem A.1.1). Now G/H is isomorphic to G1/H1 and
H/H2 is finite, so G/H2 is compact thanks to Lemma 8.2.3(b).

Now consider the general case. There exists a compact subset K of G that gener-
ates G. By Lemma 8.3.4, we can assume without loss of generality that K = U, where
U is a symmetric neighborhood of 0 in G. We show that there exists a finite subset F
of G such that

K + K ⊆ ⟨F⟩ + K : (11.28)

pick a symmetric neighborhoodV of 0 inG such thatV +V ⊆ U; sinceK ⊆ ⋃x∈K(x+V),
there exists a finite subset F of K such that K ⊆ ⋃x∈F(x + V) = F + V , and so

K + K ⊆ F + F + V + V ⊆ ⟨F⟩ + U ⊆ ⟨F⟩ + K.

Since G = ⟨K⟩, an easy inductive argument and (11.28) show that

G = ⟨F⟩ + K.
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Let G1 = ⟨F⟩ and let q:G → G/G1 be the canonical projection. By the equality G =
K + G1, the quotient q(K) = G/G1 is compact. By the first part of the proof, there exists
a discrete subgroup H of G1 such that H ≅ ℤs for some s ∈ ℕ and G1/H is compact. By
Theorem 3.2.8(b), (G/H)/(G1/H) ≅ G/G1 is compact. SinceG1/H is a compact subgroup
of G/H, also G/H is compact, in view of Lemma 8.2.3(b).

Proposition 11.6.2. Let G be a compactly generated locally compact abelian group.
Then there exists a compact subgroup K of G such that G/K is elementary locally com-
pact.

Proof. By Proposition 11.6.1, there exists a discrete subgroup H ≅ ℤs of G such that
G/H is compact. Consider the canonical projection q:G → G/H and letU be a compact
symmetric neighborhood of 0 in G such that (U + U + U) ∩ H = {0}. So, q(U) is a
neighborhood of 0 in G/H and, applying Proposition 11.5.4, we find a closed subgroup
L of G such that H ⊆ L and the closed subgroup C = L/H of G/H satisfies

C ⊆ q(U) and (G/H)/C ≅ G/L ≅ 𝕋t × F, (11.29)

where F is a finite abelian group and t ∈ ℕ (i. e., G/L is elementary compact).
The set K = L ∩ U is compact, being closed in the compact neighborhood U . Let

us see that K is a subgroup of G: if x, y ∈ K, then x − y ∈ L and q(x − y) ∈ C ⊆ q(U), thus
q(x − y) = q(u) for some u ∈ U; as q(x − y − u) = 0 in G/H,

x − y − u ∈ (U + U + U) ∩ H = {0},

and hence x − y = u ∈ K.
Now take x ∈ L; consequently, q(x) ∈ C ⊆ q(U), and so q(x) = q(u) for some u ∈ U .

Clearly, u ∈ K, hence q(L) = q(K). Thus, L = K + H, and since also K ∩ H = {0}, the
canonical projection l:G → G/K restricted toH is a continuous isomorphism ofH onto
l(H) = l(L). Let us see now that l(H) is discrete. By Lemma 8.2.2, l(H) is closed. Since
H is discrete, {0G} is open in H, so A = H \ {0G} is a closed set of H, and hence of G as
well. Again by Lemma 8.2.2, l(A) = l(H) \ {0G/K} is closed in G/K. Hence, {0G/K} is open
in l(H) and l(L) = l(H) ≅ H ≅ ℤs is discrete in G/K.

Observe that (11.29) and Theorem 3.2.8(b) yield the isomorphisms

(G/K)/l(L) = (G/K)/(L/K) ≅ G/L ≅ 𝕋t × F.

Denote by ϱ the canonical projection G/K → G/L and recall that ker ϱ = l(L) = l(H) is
a discrete subgroup G/K. Hence, to ϱ:G/K → G/L and the composition π:ℝt → G/L
of the canonical projection ℝt → 𝕋t and the obvious inclusion of 𝕋t in G/L, apply
Lemma 9.1.32 to obtain an open continuous homomorphism f :ℝt → G/K such that

2 The reader who is familiar with covering maps may deduce the existence of such a lifting from the
facts that ϱ is a covering homomorphism and ℝt is simply connected.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.6 On the structure of compactly generated LCA groups | 181

ϱ ∘ f = π:

G/K

ϱ
??

ℝt π
??

f
??

G/L

In particular, N = f (ℝt) is an open subgroup of G/K. As f :ℝt → N is open, N is iso-
morphic to a quotient of ℝt, so N ≅ ℝk × 𝕋m, where k + m ≤ t by Corollary 9.4.1; in
particular, N is elementary locally compact. Since N is divisible, by Corollary A.2.7
there exists a subgroup B of G/K such that G/K = N × B. Since N ∩ B = {0} and N is
open, B is discrete; moreover, B is compactly generated as it is a quotient of G, and so
B is finitely generated. Therefore, G/K is elementary locally compact.

To prove Pontryagin-van Kampen duality theorem 13.4.17, we need the next theo-
rem, generalizing Corollary 11.5.1 and showing that all locally compact abelian groups
are MAP.

Theorem 11.6.3. If G is a locally compact abelian group, then Ĝ separates the points
of G.

Proof. LetV bea compactneighborhoodof 0 inG. Take x ∈ G\{0}. ThenG1 = ⟨V∪{x}⟩ is
an open (it has nonempty interior) compactly generated subgroup of G. In particular,
G1 is locally compact. By Proposition 11.6.1, there exists a discrete subgroup H of G1
such that H ≅ ℤs for some s ∈ ℕ and G1/H is compact. Thus, ⋂n∈ℕ+ nH = {0}, and so
there exists n ∈ ℕ+ such that x ̸∈ nH. Since nH is discrete and hence closed in G1, and
H/nH is finite, the quotient G2 = G1/nH is compact, by Lemma 8.2.3(b). Consider the
canonical projection q:G1 → G2 and note that q(x) ̸= 0 in G2. By Corollary 11.5.1, there
exists ξ ∈ Ĝ2 such that ξ (q(x)) ̸= 0. Consequently, χ := ξ ∘ q ∈ Ĝ1 and χ(x) ̸= 0. By
Theorem A.2.4, there exists χ̃ ∈ G∗ such that χ̃ ↾G1

= χ. Since G1 is an open subgroup of
G, χ̃ is continuous, namely, χ̃ ∈ Ĝ.

Corollary 11.6.4. If G is a locally compact abelian group, then every compact subgroup
K of G is dually embedded.

Proof. Clearly, H = {χ ∈ K̂:∃ξ ∈ Ĝ, ξ ↾K= χ} is a subgroup of K̂. By Theorem 11.6.3,
Ĝ separates the points of G, so H separates the points of K. Now apply Corollary 11.5.3
to conclude that H = K̂.

Corollary 11.6.5. Let G be a nontrivial locally compact abelian group.
(a) Then G is connected if and only if χ(G) = 𝕋 for every nontrivial χ ∈ Ĝ.
(b) If for every χ ∈ Ĝ the image χ(G) is a proper subgroup of 𝕋, then G is hereditarily

disconnected. The converse implication holds when G is also σ-compact.

Proof. (a) If G is connected and χ ∈ Ĝ is nontrivial, then χ(G) is a nontrivial connected
subgroup of 𝕋, hence χ(G) = 𝕋 (see Example 6.1.8(b)). If G is not connected, then G
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has a proper open subgroup H, by Theorem 8.5.2(b). Pick a nontrivial character ξ of
the discrete group G/H such that ξ (G/H) ̸= 𝕋. Then the composition χ of ξ and the
canonical projection G → G/H gives a nontrivial χ ∈ Ĝ with χ(G) ̸= 𝕋.

(b) Assume that χ(G) is a proper subgroup of 𝕋 for every χ ∈ Ĝ. Since the proper
subgroups of𝕋 are hereditarily disconnected (see Example 6.1.8(b)), χ(G) is hereditar-
ily disconnected for every χ ∈ Ĝ. According to Theorem 11.6.3, the diagonal homomor-
phism f :G → ∏χ∈Ĝ χ(G) is continuous and injective. Since the product is hereditarily
disconnected, we deduce that also G is hereditarily disconnected since this property
is preserved under taking subgroups and finer topologies.

Now assume that G is σ-compact and hereditarily disconnected. Consider χ ∈ Ĝ
and assume for a contradiction that χ(G) = 𝕋. Then χ:G → 𝕋 is open by the openmap-
ping theorem (Theorem 8.4.1), so𝕋 is a quotient of G. As hereditary disconnectedness
is inherited by quotients of locally compact groups (see Corollary 8.5.9), we conclude
that 𝕋must be hereditarily disconnected, a contradiction.

One cannot remove “σ-compact” in the above corollary.

Example 11.6.6. LetG denote𝕋 equipped with the discrete topology. ThenG is hered-
itarily disconnected, although the identity map provides a character χ:G → 𝕋 with
χ(G) = 𝕋.

Algebraic properties of the dual group Ĝ of a compact abelian group G can be de-
scribed in terms of topological properties of G. We prove in Corollary 11.6.7 that Ĝ is
torsion precisely when G is hereditarily disconnected; compactness plays an essen-
tial role here, and we shall see examples of hereditarily disconnected σ-compact and
locally compact abelian groups G such that no continuous character of G is torsion
(e. g., G = ℚp).

Corollary 11.6.7. For a compact abelian group G, the following are equivalent:
(a) G is profinite;
(b) G is hereditarily disconnected;
(c) G is topologically torsion (i. e., G = G!);
(d) Ĝ is torsion;
(e) χ(G) ̸= 𝕋 for every χ ∈ Ĝ.

Proof. (a)⇔(b) is Corollary 8.5.7, (b)⇔(e) is Corollary 11.6.5(b), (b)⇒(c) was proved in
Exercise 8.7.11.

(b)⇔(d) The image χ(G) under a continuous character χ of G is a compact, hence
closed, subgroup of𝕋. Thus, χ(G) is a proper subgroup of𝕋 precisely when it is finite.
By Corollary 11.6.5(b), G is hereditarily disconnected if and only if χ(G) is finite for
every χ ∈ Ĝ, and this means that the character χ is torsion.

(c)⇒(e) Pick any χ ∈ Ĝ. Since every x ∈ G is topologically torsion, χ(x) is a topolog-
ically torsion element of𝕋, so χ(x) ∈ 𝕋!. Hence, χ(G) ⊆ 𝕋! ⊊ 𝕋, by Exercise 5.4.20.
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Corollary 11.6.8. For a compact abelian groupG and a prime p, the following conditions
are equivalent:
(a) G is pro-p-finite;
(b) G is topologically p-torsion (i. e., G = Gp);
(c) Ĝ is p-torsion;
(d) χ(G) ⊆ ℤ(p∞) for every χ ∈ Ĝ.

Proof. (a)⇒(b) This was proved in Exercise 8.7.12.
(b)⇒(d) Pick any χ ∈ Ĝ. Then every x ∈ K being topologically p-torsion implies

that χ(x) is a topologicallyp-torsion element of𝕋, so χ(x) ∈ ℤ(p∞) (see Exercise 5.4.15).
(d)⇒(c) By the equivalence (d)⇔(e) in Corollary 11.6.7, Ĝ is torsion. Now χ(G) ⊆

ℤ(p∞) implies that χ(G) is a finite p-group, so Ĝ is p-torsion.
(c)⇒(a) Since every continuous character of G has as range a finite p-subgroup of

𝕋, G has a local base at 0 formed by open subgroups of finite index that is a power of
p. Hence, G is pro-p-finite.

Corollary 11.6.9. For a locally compact abelian group G, one has tdp(G) = Gp for every
prime p.

Proof. Fix a primep. In viewof Remark 5.3.7, always tdp(G) ⊆ Gp. To prove the opposite
inclusion, let x ∈ Gp; so pnx → 0 in G. If ⟨x⟩ is finite, then x ∈ tp(G) ⊆ tdp(G). If ⟨x⟩
is infinite, then ⟨x⟩ cannot be discrete since pnx → 0. So, in view of Theorem 10.2.9,
K := ⟨x⟩ is compact. Let χ ∈ K̂. Then χ(x) ∈ 𝕋p = ℤ(p∞) (see Exercise 5.4.15), so
K̂ ≅ ℤ(p∞). Since the precompact topology 𝒯ℤ(p∞) ofℤ coincides with ϖp

ℤ, we deduce
that x ∈ tdp(K).

Here is the counterpart of Corollary 11.6.7 for the connected case:

Proposition 11.6.10. Let G be a topological abelian group.
(a) If G is connected, then Ĝ is torsion-free.
(b) If G is compact, then Ĝ is torsion-free if and only if G is connected.

Proof. (a) For every nonzero χ ∈ Ĝ, the image χ(G) is a nontrivial connected subgroup
of 𝕋, so we deduce that χ(G) = 𝕋 (see Example 6.1.8(b)). Hence, Ĝ is torsion-free.

(b) If G is compact and not connected, then by Theorem 8.5.2(b) there exists a
proper open subgroup N of G. Take any nonzero character ξ of the finite group G/N .
Thenmξ = 0 for somem ∈ ℕ+ (e. g.,m = [G : N]). Now the composition χ of ξ and the
canonical projection G → G/N satisfiesmχ = 0 as well. So, χ ∈ Ĝ is a nonzero torsion
continuous character of G.

In view of Theorem 11.6.3, every locally compact abelian group (G, τ) is MAP.
Then, as a consequence also of Proposition 10.2.13, the group G+ is simply the group
G equipped with the finest totally bounded group topology τ+ with τ+ ≤ τ.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



184 | 11 The Følner theorem

According to the following theorem, due to Glicksberg, these two topologies share
the same compact sets:

Theorem 11.6.11. For a locally compact abelian group (G, τ), its Bohr modification G+ =
(G, τ+) has the same compact sets as (G, τ).

A proof of this theorem in the discrete case will be given in Theorem 13.4.9.

11.7 Exercises

Exercise 11.7.1. Prove that G∗ ≅ G for every finite abelian group G.

Exercise 11.7.2. Let G be a torsion abelian group. Apply Proposition 11.1.3(a) to show
that G∗ is ℂ-linearly independent in ℂG.
Hint. Let χ1, . . . , χm be pairwise distinct characters of G. There exists a finite subset F of G which sepa-
rates these characters. LetH be the (finite) subgroup of G generated by F and let ψj denote the restric-
tion of χj toH for j ∈ {1, . . . ,m}. According to Proposition 11.1.3(a),ψ1, . . . ,ψm are linearly independent.
Hence, also χ1, . . . , χm are linearly independent.

Exercise 11.7.3. Prove Corollary 11.2.8 using the explicit description of the neighbor-
hoods of 0 in G# given in Corollary 11.2.6.
Hint. Since q:G# → (G/H)# is continuous, it remains to show that it is also open. To this end, take a
neighborhood U of 0 in G#. Then U contains some V(8), where V is a big subset of G. Since q(V) is big
in G/H and q(V)(8) = q(V(8)) ⊆ q(U), we deduce from Corollary 11.2.6 that q(U) is a neighborhood of 0
in (G/H)#.

Exercise 11.7.4. Prove that:
(a) the class of NSS groups is stable under taking finite product and subgroups; show

that no infinite products of nontrivial groups can be NSS;
(b) every NSS group is Hausdorff;
(c) strongly monothetic non-indiscrete groups are NSS;
(d) a monothetic group need not be NSS;
(e) every Hausdorff group topology on ℤ is either NSS or admits a coarser Hausdorff

linear topology;
(f) every elementary locally compact abelian group is NSS;
(g) if G is an abelian NSS group, td(G) = t(G) and tdp(G) = tp(G) for p ∈ ℙ.

Hint. (a), (c) and (g) are immediate.
(b) If G is an NSS group, then the subgroup core(G) is contained in every neighborhood of the

identity eG.
For (d), use the fact that 𝕋ℕ is monothetic.
For (e) and (f), apply Exercise 3.5.22 and Exercise 9.5.4, respectively.

Exercise 11.7.5. Prove that for a direct product G = ∏i∈I Gi of topological groups, one
has n(G) = ∏i∈I n(Gi), G+ ≅ ∏i∈I G

+
i , and bG ≅ ∏i∈I bGi.
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Hint. For finite I, this follows from Exercise 10.4.13 by induction.
In the general case apply Proposition 10.3.5 and the fact that a continuous homomorphism f :G →

U(n) factorizes as f = f1∘pJ through some of the projections pJ :G → GJ := ∏i∈J Gi for somefinite subset
J of I and f1:GJ → U(n). Indeed, choosing U ∈ 𝒱U(n)(e) witnessing NSS, there existsW ∈ 𝒱G(eG) with
f (W) ⊆ U . As W contains a subproduct of the form A = ∏i∈I\J Gi for some finite subset J of I, the
subgroup f (A) ⊆ U must be trivial. This gives the desired factorization f = f1 ∘ pJ .

By Exercise 10.4.13, bGJ = ∏i∈J bGi, so f1 can be extended to ̄f1:∏i∈J bGi → U(n). Let f ′ = ̄f1 ∘ p̄J ,
where p̄J :∏i∈I bGi → ∏i∈J bGi is the canonical projection. This provides the factorization f = f ′ ∘ b
witnessing the universal property of the Bohr compactification for the inclusion b:G = ∏i∈I Gi →
∏i∈I bGi.

11.8 Further readings, notes, and comments

It follows from results of Følner [136] obtained by less elementary tools that condi-
tion (a) in Corollary 11.2.6 can be replaced by the weaker assumption V(4) ⊆ E (see
also the work by Ellis and Keynes [133] or by Cotlar and Ricabarra [63] for further im-
provements). Nevertheless, the following old problem concerning the group ℤ is still
open (see Cotlar and Ricabarra [63], Ellis and Keynes [133], Følner [136], Glasner [157],
Pestov [227, Question 1025], or Veech [279]):

Question 11.8.1. Does there exist a big subset V of ℤ such that V − V is not a neigh-
borhood of 0 in the Bohr topology of G?

Every infinite abelian groupG admits a big subsetwith empty interiorwith respect
to the Bohr topology (see [10]); more precisely, these authors proved that every totally
bounded abelian group has a big subset with empty interior.

Using Følner theorem 11.3.5, as well as [98] and [232], Stoyanov [266] proved that
the minimal metrizable torsion abelian groups are precompact.

The results from §11.4 can be attributed to Comfort and Ross [60].
Making use of the argument of Proposition 11.5.4 (and Theorem 10.3.3, instead of

Corollary 11.5.1), one can prove that for a compact (not necessarily abelian) group K
and U ∈ 𝒱K(eK) there exists a closed normal subgroup C of K with C ⊆ U and K/C
isomorphic to a subgroup of a finite product U(n1)× ⋅ ⋅ ⋅×U(nk). But since this group is
isomorphic to a subgroup of U(n1 + ⋅ ⋅ ⋅+nk), one can claim that K/C is isomorphic to a
subgroup of someU(mU ),mU ∈ ℕ+. This fact calls attention to the closed subgroups of
the groupsU(n) (known under the term Lie groups, defined alternatively as locally Eu-
clidean groups, i. e., groups locally homeomorphic toℝn for some n ∈ ℕ+).Wewill not
enter now in a detailed exposition of the properties of this remarkable class of groups
(see, for example, [177]). Let us only mention that the compact Lie groups (defined in
this way) are NSS, so these are exactly the compact NSS groups, and from the above
argument one can deduce that every compact group is an inverse limit of compact Lie
groups. The compact abelian Lie groups are nothing else but the elementary compact
abelian groups.
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The closed subgroups of compact Lie groups are obviously compact Lie groups.
Since a compact Lie groupL is locally arcwise connected (being locally homeomorphic
to ℝn), the subgroup c(L) = a(L) is open, so a finite-index normal subgroup of L.

The notions of topologically torsion element and topologically p-torsion element
are widely known, due to their intuitively more natural definition compared to those
of quasitorsion and quasi-p-torsion element, introduced by Stoyanov [265] to resolve
specific problems on minimal abelian groups (see below). On the other hand, the re-
spective subgroupsGp andG! contain in general toomany elements (unlike the respec-
tive smaller subgroups tdp(G) and td(G), determined by a condition involving more
algebra). The equality tdp(G) = Gp for a compact abelian group G was proved in [99,
§ 4] (containing also Corollary 11.6.8). Corollary 11.6.9 obviously remains true also for
subgroups of locally compact abelian groups (see [81, Proposition 2.13]). Nevertheless,
these results do not imply the equality td(G) = G! even for G = 𝕋 (see Exercise 5.4.20).

The subgroup wtd(K) of a compact abelian group K is always totally dense
(see [265]), hence wtd(K) is a dense totally minimal subgroup of K, by Exercise 8.7.8.
As pointed out in §10.5, the minimal abelian groups are precisely the dense essential
subgroups of the compact abelian groups. As total density is a transitive property, a
subgroup G of a compact abelian group K is totally dense in K if and only if G∩wtd(K)
is totally dense in themuch smaller groupwtd(K). Hence, to build an embedding of an
abelian group G into a compact abelian group K as a dense totally minimal subgroup,
it suffices to embed G as a totally dense subgroup in wtd(K). Using this trick the (to-
tally) minimal torsion abelian groups G were described in [98], while their compact
completions K (named exotic tori there) were described by various equivalent proper-
ties (e. g., wtd(K) = t(K), which means that K contains copies of 𝕁p for no prime p). In
particular, a divisible torsion abelian group G admits a minimal topology if and only
if G = (ℚ/ℤ)n for some n ∈ ℕ.
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12.1 Almost periodic functions

12.1.1 The algebra of almost periodic functions

In this chapter, for a topological group G, the Banach space (C∗(G), ‖ − ‖) of bounded
complex-valued continuous functions on Gwith the supremum norm ‖− ‖will always
carry the uniform convergence topology. For f ∈ C∗(G) and a ∈ G, define the translate
fa ∈ C∗(G) of f by a letting fa(x) = f (xa) for all x ∈ G.

The definition of almost periodic functions on ℝ is due to Bohr [35]; here we use
the generalization of the equivalent definition given by Bochner [33].

Definition 12.1.1. For a topological group G, a function f ∈ C∗(G) is almost periodic if
Kf := {fa: a ∈ G} is compact in C∗(G).

Denote by A(G) the family of all almost periodic continuous functions on G.

Here we give an equivalent condition to that of Definition 12.1.1.

Lemma 12.1.2. For a topological group G, a function f ∈ C∗(G) is almost periodic if and
only if every infinite sequence of translates {fbm }m∈ℕ of f admits a Cauchy subsequence.

Proof. If f is almost periodic, then Kf = {fa: a ∈ G} is compact by hypothesis, so every
sequence in Kf admits a convergent subsequence.

Assumenow that every infinite sequence of translates {fbn }n∈ℕ of f admits a subse-
quence that is Cauchy in C∗(G). According to Exercise 7.3.8, C∗(Gd) is complete, where
Gd denotes the discrete group G. So, each Cauchy sequence of C∗(G) converges uni-
formly to a bounded function. Since the uniform limit of continuous functions is again
continuous, the limit function belongs toC∗(G). This gives the desired convergent sub-
sequence. Hence, Kf is compact and f is almost periodic.

IfG is a compact group, then every continuous functionG → ℂ is almost periodic.
More precisely, the almost periodic continuous functions of a topological group G are
related to the Bohr compactification bG of G as follows.

Remark 12.1.3. For a topological group G, every almost periodic continuous function
f :G → ℂ admits an extension to bG (see [124], and for the proof of this fact in the
abelian case see Corollary 12.1.10). In other words, the almost periodic continuous
functions of G are precisely the compositions of bG with complex-valued continuous
functions of the compact group bG. Therefore, G is MAP if and only if the almost peri-
odic continuous functions of G separate the points of G.

Theorem 12.1.4. For a topological group G, A(G) is a closedℂ-subalgebra, stable under
complex conjugation, of C∗(G).

Proof. The closedness of A(G) under complex conjugation is obvious.

https://doi.org/10.1515/9783110654936-012

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



188 | 12 Almost periodic functions and Haar integrals

To check that A(G) is aℂ-linear subspace of C∗(G), take f , g ∈ A(G) and c1, c2 ∈ ℂ.
Since h = c1f + c2g is continuous, it remains to see that h is also almost periodic.
It suffices to consider the case c1 = c2 = 1, since c1f and c2g are obviously almost
periodic. Then the closures Kf = {fa: a ∈ G} and Kg = {ga: a ∈ G} are compact. Hence,
Kf +Kg is compact as well. Since (f +g)a = fa+ga ∈ Kf +Kg for every a ∈ G, we conclude
that f + g is almost periodic.

Analogously one can prove that if f , g ∈ A(G), then fg ∈ A(G) as well.
Next we check that A(G) is closed. Pick f ∈ C∗(G) and assume that f can be uni-

formly approximated by almost periodic continuous functions. To prove that f ∈ A(G),
pick a sequence {g(m)}m∈ℕ+ in A(G) such that, for everym ∈ ℕ+,

f − g
(m) ≤

1
2m
. (12.1)

Then, for every sequence {fan }n∈ℕ of translates of f , one can inductively define a series
of subsequences of {an}n∈ℕ as follows.

For the first one, pick a subsequence {ank }k∈ℕ of {an}n∈ℕ such that the subse-
quence {g(1)ank }k∈ℕ of the sequence {g(1)an }n∈ℕ converges in C∗(G) and such that ‖g(1)ank −

g(1)anl ‖ ≤ 1/2 for all k, l ∈ ℕ.

Thenpick a subsequence {anks }s∈ℕ of {ank }k∈ℕ such that the subsequence {g
(2)
anks
}s∈ℕ

of the sequence {g(2)ank }k∈ℕ converges in C∗(G) and also

g(2)anks
− g(2)ankt


≤ 1/22 for all

s, t ∈ ℕ. Continue by taking iterated subsequences of {an}n∈ℕ such that at the mth
stage the respective translates of the function g(m) obtained by means of the newmth
subsequence is uniformly convergent and themembers of the sequence of these trans-
lates are at pairwise distance ≤ 1/2m. Finally, take the diagonal subsequence {aν}ν∈I
relative to this infinite series of iterated subsequences, namely, {aν}ν∈I is given by

a1, an2 , ank3 , anks4 , . . .

Then eachm-tail of the sequence {aν}ν∈I is a subsequence of {an}n∈ℕ chosen at themth
stage. So, for everym ∈ ℕ+, the sequence {g(m)aν }ν∈I converges in C

∗(G) and satisfies

g
(m)
aν − g

(m)
aμ
 ≤

1
2m

for every ν, μ ≥ m. (12.2)

By (12.1) and (12.2), for allm > 2 and all ν, μ ≥ m,

faν − faμ
 ≤
faν − g

(m)
aν
 +
g
(m)
aν − g

(m)
aμ
 +
g
(m)
aμ − faμ

 ≤
1

2m−2
.

Therefore, {faν }ν∈I is a Cauchy sequence in C
∗(G), and so Lemma 12.1.2 yields that f ∈

A(G).

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



12.1 Almost periodic functions | 189

12.1.2 Almost periodic functions and the Bohr compactification of abelian groups

Example 12.1.5. Let f :ℝ → ℂ be a function. One says that a ∈ ℝ is a period of f if
f (x+a) = f (x) for every x ∈ ℝ (i. e., fa = f ). Clearly, if a ∈ ℝ is a period of f , then also ka
is a period of f for every k ∈ ℤ. More precisely, the periods of f form a subgroup Π(f )
of ℝ. Call f periodic if Π(f ) ̸= {0}.

It is easy to see that a periodic function f :ℝ → ℂ has period a ∈ ℝ \ {0} if and
only if f factorizes through the canonical projection q:ℝ→ ℝ/⟨a⟩, that is, there exists
a function f ′:ℝ/⟨a⟩→ ℂ such that f = f ′ ∘ q:

ℝ
f ??

q ??

ℂ

ℝ/⟨a⟩ ≅ 𝕋
f ′

??

Since ℝ/⟨a⟩ ≅ 𝕋 is compact, this explains the great importance of the periodic func-
tionsℝ→ ℂ, namely, these are the functions that can be factorized through the com-
pact circle group 𝕋.

If f is continuous, then also f ′ is continuous. In this case, since f ′ is almost peri-
odic by Corollary 12.1.10 below,we can conclude that the periodic continuous function
f :ℝ→ ℂ is almost periodic.

This example can be generalized to periodic functions on an abelian group (see
Exercise 12.3.3).

Definition 12.1.6. Let G be a topological abelian group, f ∈ C∗(G), and ε > 0. An
element a ∈ G is an ε-almost period of f if ‖f − fa‖ ≤ ε. Moreover, let

T(f , ε) := {a ∈ G: a ε-almost period of f }.

Given an abelian group G and f ∈ C∗(G), the family {T(f , ε): ε > 0} is a filter base
of the neighborhoods of 0 in a group topology Tf on G (see Exercise 12.3.5). Now we
use the group topology Tf to find an equivalent description of almost periodicity of
f ∈ C∗(G).

Proposition 12.1.7. Let G be a topological abelian group and f ∈ C∗(G). Then the fol-
lowing conditions are equivalent:
(a) f is almost periodic (i. e., f ∈ A(G));
(b) Tf is totally bounded.

Proof. Clearly, Tf is totally bounded if and only if for every ε > 0 the set T(f , ε) is big,
i. e., for every ε > 0 there exist a1, . . . , an ∈ G such that G = ⋃nj=1 aj + T(f , ε).

(a)⇒(b) Arguing for a contradiction, assume that Tf is not totally bounded. By
Lemma 10.2.7, there exists ε > 0 such that T(f , ε) is small, so there exists a sequence
{bn}n∈ℕ in G such that the sets in {bn + T(f , ε): n ∈ ℕ} are pairwise disjoint. Since f
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is almost periodic, the sequence of translates {fbm }m∈ℕ admits a Cauchy subsequence,
by Lemma 12.1.2. So, there exist n < m inℕ such that fbm − fbn

 =
f − fbm−bn

 ≤ ε; this
means that bm−bn ∈ T(f , ε), and hence (bm+T(f , ε))∩(bn+T(f , ε)) ̸= 0, a contradiction.

(b)⇒(a) By Lemma 12.1.2, it suffices to check that every infinite sequence of trans-
lates {fbm }m∈ℕ of f admits a subsequence that is Cauchy in C∗(G). Assume for a con-
tradiction that some sequence of translates {fbm }m∈ℕ admits no Cauchy subsequence.
This means that for every subsequence {fbmk }k∈ℕ, there exists ε > 0 such that for some
subsequence {mks }s∈ℕ of {mk}k∈ℕ,

 fbmks
− fbmkt
 =
 f − fbmks −bmkt

 ≥ 2ε for all s ̸= t. (12.3)

By hypothesis T(f , ε/2) is big, so there exist a1, . . . , an ∈ G such that G = ⋃nj=1 aj +
T(f , ε/2). Then there exists j ∈ {1, . . . , n} such that infinitely many bmks

are in aj +
T(f , ε/2). We deduce that for distinct s and t with bmks

, bmkt
∈ aj + T(f , ε/2),

bmks
− bmkt
∈ T(f , ε/2) − T(f , ε/2) ⊆ T(f , ε).

Therefore,
f − fbmks −bmkt

 ≤ ε, which contradicts (12.3).

Example 12.1.8. Let G be a topological abelian group and χ ∈ Ĝ. For ε > 0, one has
|χ(x + a) − χ(x)| = |χ(a) − 1| for every x ∈ G, hence

T(χ, ε) = {a ∈ G: |χ(a) − 1| ≤ ε}.

So, there exists δ > 0 such that UG(χ; δ) ⊆ T(χ, ε). Since UG(χ; δ) is big by Proposi-
tion 10.2.16, also T(χ, ε) is big, and Proposition 12.1.7 yields that χ is almost periodic.

Moreover, Theorem 12.1.4 yields that linear combinations with complex coeffi-
cients of continuous characters are still almost periodic continuous functions. In other
words, X(G) ⊆ A(G).

The next theorem reinforces the above inclusion to the more precise equation
A(G) = A(G) (see [99, Theorem 2.2.2] for more details).

Theorem 12.1.9 (Bohr–von Neumann theorem). If G is a topological abelian group,
then A(G) = A(G) (i. e., f ∈ C∗(G) is almost periodic if and only if f can be uniformly ap-
proximated by linear combinations with complex coefficients of continuous characters
of G, namely, functions from X(G)).

Proof. According to Example 12.1.8, X(G) ⊆ A(G). By Theorem 12.1.4, A(G) is closed in
C∗(G), and A(G) is the closure of X(G) in C∗(G), so A(G) ⊆ A(G).

To establish the converse inclusion, let f ∈ A(G) and fix ε > 0. By Proposi-
tion 12.1.7, the set T(f , ε/10) is big. Hence, Følner theorem 11.3.5 applies with U = E =
T(f , ε/10) to give χ1, . . . , χn ∈ Ĝ and δ > 0 such that

UG(χ1, . . . , χn; δ) ⊆ T(f , ε/10)(10) ⊆ T(f , ε).
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If x, y ∈ G satisfy x − y ∈ UG(χ1, . . . , χn; δ), then x − y ∈ T(f , ε), and so ‖f − fx−y‖ ≤ ε;
in particular, |f (x) − f (y)| ≤ ε. Then f satisfies condition (b) of Proposition 11.3.4 with
H = Ĝ, and hence f ∈ A(G).

Corollary 12.1.10. For a compact abelian group G, every continuous function G → ℂ is
almost periodic (i. e., C(G) = A(G) = A(G)).

Proof. It follows from Corollary 11.5.1 and Theorem B.5.21 that X(G) is dense in C(G),
so C(G) = X(G) = A(G) = A(G), by Theorem 12.1.9.

For a compact abelian groupG, the above corollary gives C0(G) = C(G) = A(G). On
the other hand, it is easy to prove that if C0(G) ∩ A(G) ̸= {0} for a topological abelian
group, then G is compact. In other words, G is compact if and only if C0(G) = A(G).

Recall that a map f :G → H between topological abelian groups is said to be uni-
formly continuous if for every U ∈ 𝒱H (0) there exists V ∈ 𝒱G(0) such that for x, y ∈ G
with x − y ∈ V one has f (x) − f (y) ∈ U .

Corollary 12.1.11. Let (G, τ) be a topological abelian group and f ∈ A(G, τ). Then
f : (G, τ+)→ ℂ is uniformly continuous.

Proof. By Theorem 12.1.9, f :G → ℂ can be uniformly approximated by functions from
X(G). On the other hand,X(G, τ) = X(G, τ+) and these functions are uniformly contin-
uous. Therefore, f : (G, τ+)→ ℂ is uniformly continuous.

Now we are in position to prove that the almost periodic continuous functions
on a topological abelian group G are precisely those that factorize through the Bohr
compactification bG:G → bG.

Theorem 12.1.12. Let G = (G, τ) be a topological abelian group. Then a continuous
function f :G → ℂ is almost periodic if and only if there exists a continuous function
̃f : bG → ℂ such that f = ̃f ∘ bG:

G
f ??

bG ??

ℂ

bG
̃f

??

Proof. Assume that there exists a continuous function ̃f : bG → ℂ such that f = ̃f ∘ bG.
Then ̃f is almost periodic by Corollary 12.1.10, and Exercise 12.3.1 implies that f is al-
most periodic, too.

Now let f ∈ A(G). By Theorem 12.1.9, f can be uniformly approximated by func-
tions from X(G), so X(G) separates the points of G separated by f .

Let x, y ∈ G. Then

g(x) = g(y) for every g ∈ X(G) if and only if bG(x) = bG(y).

In fact, if bG(x) = bG(y), then χ(x) = χ(y) for every χ ∈ Ĝ by Corollary 8.6.3, and so
g(x) = g(y) for every g ∈ X(G). Conversely, if g(x) = g(y) for every g ∈ X(G), then
χ(x) = χ(y) for every χ ∈ Ĝ, and so bG(x) = bG(y).
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We conclude that f (x) = f (y) whenever bG(x) = bG(y). Therefore, recalling that
bG(G) = G+ and bG is the completion of G+, there exists a function f ′′:G+ → ℂ such
that f = f ′′ ∘ bG.

By Corollary 12.1.11, f : (G, τ+) → ℂ is uniformly continuous. Since the canonical
projection q: (G, τ+) → G+ is an open continuous homomorphism, f ′′: bG(G) → ℂ is
uniformly continuous as well. Now, f ′′ extends to a uniformly continuous function
̃f : bG → ℂ by [134, Theorem 8.3.10], and so f = ̃f ∘ bG.

We recall that for a topological abelian group G, A(G) = A0(G) + ℂ ⋅ 1, where ℂ ⋅ 1
is the one-dimensional subalgebra consisting of the constant functions. We shall see
below that A0(G) ∩ ℂ ⋅ 1 = {0}, so A0(G) has codimension 1 in A(G).

Lemma 12.1.13. For every topological abelian group G,

A(G) = ℂ ⋅ 1 ⊕ A0(G). (12.4)

Moreover, if f ∈ C∗(G) is written as f (x) = cf + gf (x), with cf ∈ ℂ and gf ∈ A0(G), then
|cf | ≤ ‖f ‖. Finally, cf ≥ 0 whenever f is real-valued and satisfies f (x) ≥ 0 for all x ∈ G.

Proof. Assume that c ⋅ 1 = g ∈ A0(G) for some c ∈ ℂ. Apply Corollary 11.3.6 to g − c = 0
andM = {0}, to get c = 0. Hence, A0(G) ∩ ℂ ⋅ 1 = {0}, that is, (12.4) holds.

For f ∈ A(G), the projections f → gf ∈ A0(G) and f → cf ∈ ℂ ⋅ 1 related to the
factorization in (12.4) can be obtained as follows. By the definition of A(G), for every
n ∈ ℕ+ there exists hn ∈ X(G) such that hn = gn + cn, with gn ∈ X0(G) and cn ∈ ℂ, and
for every x ∈ G,

|f (x) − gn(x) − cn| ≤
1
n
. (∗n)

Applying the triangle inequality to (∗n) and (∗k) one gets, for every x ∈ G,

|cn − ck + gn(x) − gk(x)| ≤
1
n
+
1
k
.

Corollary 11.3.6, applied to the closed disk M with center 0 and radius 1
n +

1
k , yields

that |cn − ck | ≤
1
n +

1
k . Hence, {cn}n∈ℕ is a Cauchy sequence in ℂ. Let cf := limn→∞ cn.

Then gf := f − cf ∈ A0(G) since, according to (∗n),

‖f − cf − gn‖ ≤ ‖f − cn − gn + (cn − cf )‖ ≤
1
n
+ |cn − cf |

becomes arbitrarily small when n→∞.
If f = 0, then cf = 0 and there is nothing to prove. Assume f ̸= 0 and let ε = ‖f ‖.

Then ‖f ‖ = ‖gf + cf ‖ ≤ ε yields |cf | ≤ ε, by Corollary 11.3.6.
To prove the last assertion, apply Corollary 11.3.6 to the closed convex subset ofℂ

consisting of all nonnegative real numbers.

According to Lemma 12.1.13, the projection A(G) → ℂ, f → cf , is a continuous
positive linear functional. We show in the sequel that this is the Haar integral onA(G)
(see Theorem 12.2.3).
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12.2 The Haar integral

Definition 12.2.1. Let G be a topological abelian group and J(G) a translation-invar-
iantℂ-linear subspace of C∗(G) closed under complex conjugation. AHaar integral on
J(G) is a nontrivial linear functional IJ(G): J(G)→ ℂ which is
(i) positive (i. e., IJ(G)(f ) ≥ 0 for any real-valued f ∈ J(G) with f ≥ 0), and
(ii) invariant (i. e., IJ(G)(fa) = IJ(G)(f ) for any f ∈ J(G) and any a ∈ G).

In case J(G) contains all constant functions and IJ(G)(1) = 1, we call IJ(G) a normedHaar
integral on J(G).

In the sequel we adopt two choices for J(G). In §12.2.1 J(G) = A(G) and in §12.2.2
J(G) = C0(G) for a locally compact abelian group G. Both cases give A(G) = C0(G) =
C(G) in caseG is compact. To avoid heavy notation,we brieflywrite IG instead of IJ(G) in
both cases, although these two specific choices of J(G)must be kept in mind through-
out these two subsections. Following the standard terminology, we will simply say
that IG = IC0(G) is a Haar integral on G in the latter case.

12.2.1 The Haar integral for almost periodic functions on topological abelian
groups

We see in Corollary 12.2.4 that there is a unique normed Haar integral on A(G). To this
end, we show first that every Haar integral vanishes on A0(G). Recall that for every
χ ∈ G∗ the inverse χ−1 of χ in G∗ is the character χ:G → 𝕊, x → χ(x).

Proposition 12.2.2. Let G be a topological abelian group and IG an arbitrary Haar in-
tegral on A(G). If φ ∈ Ĝ is nontrivial, then IG(φ) = 0.

Proof. Let φ ∈ Ĝ and a ∈ G be such that φ(a) ̸= 1. For every x ∈ G, φa(x) = φ(a)φ(x),
so IG(φ) = IG(φa) = φ(a)IG(φ), and thus IG(φ) = 0.

Theorem 12.2.3. For every topological abelian group G, the assignment

IG:A(G)→ ℂ, f → cf ,

with cf ∈ ℂ defined as in Lemma 12.1.13, gives a normed Haar integral on A(G).

Proof. Fix f ∈ A(G). Since IG is the projection on the first component in (12.4), it is
linear. Moreover, it was established in the same lemma that this linear functional is
positive. To check the invariance, note that if f = gf +cf with gf ∈ A0(G), then for every
a ∈ G, (gf )a ∈ A0(G) and fa = (gf )a + cf . Hence, IG(fa) = cf = IG(f ). Finally, for f ≡ 1,
clearly c1 = 1.

Corollary 12.2.4. Let G be a topological abelian group. Then the Haar integral IG de-
fined in Theorem 12.2.3 is the unique normed Haar integral on A(G).
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Proof. Let I be a Haar integral on A(G). Let f ∈ A0(G). For every ε > 0, there exists
g ∈ X0(G) such that ‖f − g‖ ≤ ε. Since I(g) = 0 by Proposition 12.2.2, we get |I(f )| ≤ ε
(see Exercise 12.3.6). Therefore, I(f ) = 0.

Now assume additionally that I is normed. Then Lemma 12.1.13 guarantees that
the functionals I and IG coincide since they coincide on ℂ ⋅ 1 and have A0(G) as
kernel.

According to Corollary 12.1.10, every continuous complex-valued function on a
compact abelian group G is almost periodic, namely, C(G) = A(G) = A(G). This fact
gives a natural way to define the Haar integral on a compact abelian group:

Theorem 12.2.5. For every compact abelian group G, the assignment IG:C(G) → ℂ,
f → cf , defines the (unique) normed Haar integral on G.

12.2.2 The Haar integral on LCA groups

In this section we show that every locally compact abelian group G admits a Haar
integral IG on C0(G). The following simple property of the Haar integrals will be useful
later on.

Lemma 12.2.6. Let IG be a Haar integral on a locally compact abelian group G. If h ∈
C0(G) is real-valued, h ≥ 0 on G, and h(x0) > 0 for at least one x0 ∈ G, then IG(h) > 0.

Proof. There exists a neighborhood V of 0 in G such that h(x) ≥ a := h(x0)/2 for all
x ∈ x0 + V .

There exists f ∈ C0(G) with IG(f ) ̸= 0. Since f = u + iv for some real-valued u, v ∈
C0(G), one has either IG(u) ̸= 0 or IG(v) ̸= 0. So, without loss of generality we may
assume that f is real-valued. Setting, for every x ∈ G, f+(x) = max{f (x),0} and f−(x) =
max{−f (x),0} gives functions f+, f− ∈ C0(G) such that f+ ≥ 0 and f− ≥ 0 on G and
f = f+ − f−. Thus, either IG(f+) ̸= 0 or IG(f−) ̸= 0. So, we may assume that f ≥ 0 on G
and IG(f ) ̸= 0. Hence, IG(f ) > 0.

Since f ∈ C0(G), there exists a compact subset K of G with f ≡ 0 on G \ K. There
exists a finite subset F of G such that K ⊆ F + V . If A = maxx∈G f (x), then A > 0.
Moreover, for every g ∈ F and every x ∈ g + V , one has hx0−g(x) ≥ a, since x0 + x − g ∈
x0 + V . Thus, for every x ∈ K, there exists g ∈ F such that af (x) ≤ Ahx0−g(x). So, for all
x ∈ G,

f (x) ≤ A
a
∑
g∈F

hx0−g(x),

and therefore

0 < IG(f ) ≤
A
a
|F| IG(h),

which shows that IG(h) > 0.
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The following two lemmas are the main steps in the proof of the existence of Haar
integrals on locally compact abelian groups.

Lemma 12.2.7. If G is a discrete abelian group, then G admits a Haar integral.

Proof. For f ∈ C0(G), which has finite support, set IG(f ) = ∑x∈G f (x). One checks easily
that IG is a Haar integral on G.

Lemma 12.2.8. If G is a locally compact abelian group and H is a closed subgroup of G
such that both H and G/H admit a Haar integral, then also G admits a Haar integral.

Proof. Let f ∈ C0(G). Then fy ↾H∈ C0(H) for every y ∈ G. Let, for every y ∈ G,

F(y) = IH (fy ↾H ).

Then F:G → ℂ is a continuous function. Indeed, let y0 ∈ G; we prove that F is con-
tinuous at y0. Fix ε > 0. There exists a nonempty compact subset K of G such that
f ≡ 0 onG \K. LetU be an arbitrary compact symmetric neighborhood of 0 inG. There
exists h ∈ C0(G) such that h:G → [0, 1] and h(C) = {1}, where C = −y0 + U + K. Indeed,
for B = G \ (C + U), the closed subsets C and B of G are disjoint, and G is a normal
space by Corollary 8.3.3. By Urysohn lemma B.5.2, there exists a continuous function
h:G → [0, 1] with h(C) = {1} and h(B) ⊆ {0}. In particular, the support of h is compact,
being contained in C + U .

Since f is continuous andU+K is compact, there exists a symmetric neighborhood
V of 0 in G such that V ⊆ U and

|f (x) − f (y)| ≤ ε for every x, y ∈ U + K, x − y ∈ V . (12.5)

We show that |F(y) − F(y0)| ≤ ε for all y ∈ y0 + V . Given y ∈ y0 + V (so, y − y0 ∈ V), let
us first check that, for x ∈ G,

|f (x + y) − f (x + y0)| ≤ ε h(x). (12.6)

Indeed, if x ∈ G is such that f (x + y) = f (x + y0) = 0, then (12.6) is obviously true.
Assume that either f (x + y) ̸= 0 or f (x + y0) ̸= 0. Then either x + y ∈ K or x + y0 ∈ K,
so either x ∈ −y + K ⊆ −y0 + V + K or x ∈ −y0 + K. In both cases x ∈ −y0 + U + K and
x + y, x + y0 ∈ U + K. Moreover,

(x + y) − (x + y0) = y − y0 ∈ V ,

so (12.5) and h(x) = 1 imply |f (x + y) − f (x + y0)| ≤ ε = ε h(x), i. e., (12.6) holds true.
From (12.6) it follows that |fy ↾H (x) − fy0 ↾H (x)| ≤ ε h↾H (x) for every x ∈ G, so, as

a consequence of Exercise 12.3.7,

|F(y) − F(y0)| ≤ IH (|fy ↾H −fy0 ↾H |) ≤ ε IH (h↾H ).

This proves the continuity of F at y0.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



196 | 12 Almost periodic functions and Haar integrals

Next, for any x, y ∈ G with x − y ∈ H,

F(x) = IH (fx ↾H ) = IH ((fy)x−y ↾H ) = IH (fy ↾H ) = F(y).

Then there exists a continuous function F̃:G/H → ℂ such that F = F̃ ∘p, where p:G →
G/H is the canonical projection:

G F ??

p ??

ℂ

G/H
F̃

??

Moreover, F̃ ∈ C0(G/H).
Set, for every f ∈ C0(G),

IG(f ) := IG/H (F̃).

We check that IG is a Haar integral on G.
Indeed, the linearity of IG follows from that of IG/H and the fact that, for any α, β ∈

ℂ and any f1, f2 ∈ C0(G), letting l = αf1+βf2, we have L = αF1+βF2, so also L̃ = αF̃1+βF̃2.
If f ∈ C0(G) is a real-valued functionwith f ≥ 0, then F̃ ≥ 0, too, so IG(f ) = IG/H (F̃) ≥ 0.
To check the invariance, notice that for any x ∈ G, setting l = fx, we have L̃ = (F̃)p(x),
so

IG(fx) = IG/H (L̃) = IG/H ((F̃)p(x)) = IG/H (F̃) = IG(f ).

We show that IG is nontrivial. Take an arbitrary compact neighborhood U of 0 in G.
Proceed as in the construction of the function h above, to produce a function f ∈ C0(G)
such that f :G → [0, 1] and f (U) = {1}. Then f ≥ 1 on U ∩ H, so by Lemma 12.2.6,
F(0G) = IH (f ↾H ) > 0, which gives F̃(0G/H ) > 0. Moreover, f ≥ 0 implies F̃ ≥ 0 on G/H,
so using Lemma 12.2.6 again, IG(f ) = IG/H (F̃) > 0. Thus, IG is a Haar integral on G.

We are ready to prove the existence of Haar integrals on general locally compact
abelian groups:

Theorem 12.2.9. Every locally compact abelian group G admits a Haar integral.

Proof. If G is compact or discrete, then Theorem 12.2.5 or Lemma 12.2.7 apply, respec-
tively. In case G is compactly generated, G has a discrete subgroup H such that G/H
is compact by Proposition 11.6.1. So, both H and G/H admit a Haar integral. It follows
from Lemma 12.2.8 that G admits a Haar integral, too.

In the general case, G has an open subgroup H which is compactly generated:
just take the subgroup of G generated by an arbitrary compact neighborhood of 0
in G. Such a subgroup H is locally compact (and compactly generated), hence admits
a Haar integral by the above argument, while G/H is discrete, so it also admits a Haar
integral by Lemma 12.2.7. Finally, Lemma 12.2.8 implies that G admits a Haar integral,
too.
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12.2.3 The Haar integral of locally compact groups

Every locally compact group G admits a right Haar integral (see [174, Theorem (15.5)]):

Definition 12.2.10. A right Haar integral on a locally compact group G is a nontrivial
linear functional IG:C0(G)→ ℂwhich is positive and right invariant (i. e., IG(fa) = IG(f )
for any f ∈ C0(G) and any a ∈ G).

Moreover, if J is another right Haar integral on G then there exists c ∈ ℝ>0 such
that IG = cJ. Analogously, a locally compact group admits a unique, up to a positive
multiplicative constant, left Haar integral.

The Haar integral gives the possibility to obtain unitary representations of locally
compact groups (see also [174]).

Remark 12.2.11. In the presence of a right Haar integral IG on a locally compact group
G, one can define also a scalar product on C0(G) making it a pre-Hilbert space, by
letting, for f , g ∈ C0(G),

(f | g) = IG(f g).

This scalar product is invariant, namely, (fa | ga) = (f | g) for every a ∈ G. Hence, the
assignments f → fa are unitary operators of the pre-Hilbert space C0(G). This provides
a unitary representation G → U(C0(G)) similarly as in Definition 10.3.1.

A right Haar integral IG on a locally compact groupG induces – by Riesz represen-
tation theorem (see [174, Theorem (11.37)] or [252, Theorem (2.14)]) – a right invariant
measure m on the σ-algebra ℬ(G) of all Borel sets of G such that IG(f ) = ∫ fdm for all
f ∈ C0(G). Right invariance means that m(Ba) = m(B) holds for all B ∈ ℬ(G) and all
a ∈ G.

Definition 12.2.12. Let G be a locally compact group. The measure m induced by a
right Haar integral on G on ℬ(G) is called a right Haar measure.

A locally compact group G has finite right Haar measurem if and only if G is com-
pact. In such a case m is determined uniquely by the additional condition m(G) = 1.
Every compact group G admits a unique Haar integral that is right and left invariant,
such that its Haar measure satisfiesm(G) = 1 (see Theorem 12.2.5 in the case of a com-
pact abelian group).

Remark 12.2.13. Alternatively, the Haar measure of a compact group G is a function
m:ℬ(G)→ [0, 1] such that:
(a) m is σ-additive (i. e., m(⋃n∈ℕ Bn) = ∑n∈ℕm(Bn) for every family {Bn: n ∈ ℕ} of

pairwise disjoint members of ℬ(G));
(b) m is left and right invariant (i. e., m(aB) = m(Ba) = m(B) for every B ∈ ℬ(G) and

every a ∈ G);
(c) m(G) = 1.
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It easily follows from (b) and (c) that m(U) > 0 for every nonempty open set U of G.
The Haar measure is unique with the properties (a), (b), and (c).

12.3 Exercises

Exercise 12.3.1. Let G,H be topological groups and h:G → H a continuous homomor-
phism. Prove that if f :H → ℂ is an almost periodic function, then also g = f ∘h:G → ℂ
is almost periodic.
Hint. Let {an}n∈ℕ be a sequence in G. Letting bn = h(an) for n ∈ ℕ, the sequence {fbn }n∈ℕ has a uni-
formly convergent subsequence {fbnk }k∈ℕ in C∗(H). Then {gank }k∈ℕ is a convergent subsequence of
{gan }n∈ℕ in C

∗(G). Thus, g ∈ A(G).

Exercise 12.3.2. For a nonconstant periodic continuous function f :ℝ→ ℂ, prove that
there exists a smallest positive period a of f .

Exercise 12.3.3. Let G be an abelian group. Call a ∈ G a period of a function f :G → ℂ
if f (x + a) = f (x) for every x ∈ G. Prove that:
(a) the subset Π(f ) of all periods of f is a subgroup of G and f factorizes through the

canonical projection G → G/Π(f );
(b) Π(f ) is the largest subgroup such that f is constant on each coset of Π(f );
(c) if G is a topological group and f is continuous, Π(f ) is a closed subgroup of G.

Exercise 12.3.4. Let f :ℝ→ ℝ be a continuous function. Show that:
(a) f is almost periodic if and only if for every ε > 0 there exists a trigonometric poly-

nomial Pε(x) = ∑
n
k=1 ak cos rkx + bk sin rkx, ak , bk , rk ∈ ℝ such that ‖f − Pε‖ ≤ ε;

(b) if f is periodic with period 1, then given ε > 0, there exists a trigonometric polyno-
mial Pε(x) = a0 + ∑

n
k=1 ak cos 2kπx + bk sin 2kπx, ak , bk ∈ ℝ such that ‖f − Pε‖ ≤ ε.

Hint. (a) Use Theorem 12.1.9 and the fact that a continuous character of ℝ has the form χ:ℝ → 𝕊,
x → cos rx + i sin rx ∈ 𝕊 for some r ∈ ℝ.

(b) Use the fact that f factorizes through the canonical projection q0:ℝ → 𝕋, so f = f ′ ∘ q0 and
f ′:𝕋→ ℝ is almost periodic, as 𝕋 is compact.

Exercise 12.3.5. Let G be a topological abelian group and f ∈ C∗(G). Prove that
{T(f , ε): ε > 0} is a local base at 0 in a group topology Tf on G.
Hint. For every ε > 0, −T(f , ε) = T(f , ε) and T(f , ε/2) + T(f , ε/2) ⊆ T(f , ε).

Exercise 12.3.6. Let G be a topological abelian group and IG a Haar integral on a
translation-invariant ℂ-linear subspace J(G) of C∗(G) containing all constant func-
tions and closed under complex conjugation which satisfies IG(1) = 1. Prove that if
f ∈ J(G) and ‖f ‖ ≤ ε, then also |IG(f )| ≤ ε.
Hint. First, consider the case when f is real-valued.
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Exercise 12.3.7. Let G be a locally compact abelian group and IG a Haar integral on G.
Prove that |IG(f )| ≤ IG(|f |) for all f ∈ C0(G).
Hint. We may assume that IG(f ) ̸= 0. Choose α ∈ 𝕊 such that IG(αf ) = |IG(f )|. Since |αf | = |f |, we
may assume that IG(f ) ≥ 0. So, if f = u + iv with real-valued functions u, v ∈ C0(G), IG(v) = 0 and
IG(f ) = IG(u) ≤ IG(|u|) ≤ IG(|f |).

Exercise 12.3.8. For a continuous homomorphism ϕ:G → H of topological abelian
groups, define A(ϕ):A(H) → A(G) by A(ϕ)(f ) = f ∘ ϕ for f ∈ A(H). Show that the
assignmentsG → A(G) andϕ → A(ϕ)define a contravariant functor from the category
of abelian topological groups to the category of ℂ-Banach algebras.

12.4 Further readings, notes, and comments

Almost periodic functions on the real line were first introduced in 1923 by Bohr [35],
inspired by the work [34] of Bohl on ϵ-periodicity. An equivalent definition was fur-
nished by Bochner [33], which was later generalized to arbitrary topological groups
(see [174]). Using Bochner’s definition, von Neumann [284] studied almost periodic
functions on general groups. A third approach to almost periodic functions using the
Bohr compactification was given by Weil [288]. Other classical references for almost
periodic functions are [197] and [124].

Theorems 12.2.5, 12.2.9 and Lemma 12.2.8 are [99, Lemma 2.4.3, Theorem 2.4.5,
Lemma 2.4.5] (and also [109, Theorem 7.1, Theorem 7.5, Lemma 7.4]), respectively.

Uniform continuity can be defined also for maps between arbitrary topological
groups, but we preferred to remain in the abelian case in order to avoid technical com-
plications related to the various uniformities that appear in the nonabelian case. In
particular, when G is a compact group, then every continuous function f :G → ℂ is
uniformly continuous. This property can be extended to pseudocompact groups (see
§15.5).
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13 The Pontryagin-van Kampen duality

The main aim of this chapter is to introduce in detail the dual group of a topological
abelian group and to prove the Pontryagin-van Kampen duality theorem for locally
compact abelian groups.

13.1 The dual group

Here we write the circle additively as𝕋 and denote by q0:ℝ→ 𝕋 = ℝ/ℤ the canonical
projection. As {(− 1

3k ,
1
3k ) : k ∈ ℕ+} is a local base at 0 in ℝ, letting, for every k ∈ ℕ+,

Λk := q0 ((−
1
3k
,
1
3k
)) ,

we obtain a local base {Λk : k ∈ ℕ+} at 0 in 𝕋.
For an abelian groupG, we letG∗ = Hom(G,𝕋), equippedwith the compact topol-

ogy inherited from𝕋G (i. e., the pointwise convergence topology – see Example 8.1.2).
This topology coincides with the compact-open topology (see below) if we consider G
as a discrete group.

For a subset K of G and a subset U of 𝕋, let

WG∗ (K,U) := {χ ∈ G
∗: χ(K) ⊆ U}.

For any subgroup H of G∗, we abbreviate H ∩ WG∗ (K,U) as WH (K,U). When there is
no danger of confusion, we shall write onlyW(K,U) in place ofWG∗ (K,U).

IfG is a topological abelian group, the dual group Ĝ of all continuous characters of
G carries the compact-open topology (see Remark 5.2.24): the basic neighborhoods of
0 in Ĝ are the setsWĜ(K,U), whereK is a compact subset ofG andU is a neighborhood
of 0 in 𝕋. We show in Theorem 13.1.2(f) thatWĜ(K,U) coincides withWG∗ (K,U)when
U ⊆ Λ1 and K is a neighborhood of 0 in G; therefore, we use mainly the notation
W(K,U) when the group is clear from the context.

Let us start with an easy example.

Proposition 13.1.1. Let G be a topological abelian group.
(a) If G is compact, then Ĝ is discrete.
(b) If G is discrete, then Ĝ is compact.

Proof. If G is compact, then WĜ(G,Λ1) = {0}, as Λ1 contains no subgroup of 𝕋 be-
yond {0}. If G is discrete, then Ĝ = G∗ is compact, as explained above.

Both implications can be inverted as we will see in Corollary 13.4.18.
Now we prove that the dual group of a topological abelian group G is always a

topological group (see Theorem 13.1.2(c)), and if G is locally compact, then Ĝ is locally

https://doi.org/10.1515/9783110654936-013
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compact, too (see Corollary 13.1.3(a)). This is the starting point of the Pontryagin-van
Kampen duality theorem.

Theorem 13.1.2. For a topological abelian group G, the following hold true:
(a) if x ∈ 𝕋 and k ∈ ℕ+, then x ∈ Λk if and only if x, 2x, . . . , kx ∈ Λ1;
(b) χ ∈ G∗ is continuous if and only if χ−1(Λ1) is a neighborhood of 0 in G;
(c) Ĝ is a topological group and {WĜ(K,Λ1):K ⊆ G,K compact} is a local base at 0 in Ĝ;
(d) for every subset A of G and every integer s > 1,

WĜ(A,Λs) +WĜ(A,Λs) ⊆ WĜ(A,Λ⌊s/2⌋);

(e) if F is a closed set of 𝕋, for every subset K of G, WG∗ (K, F) is closed in G∗ (hence,
compact);

(f) if U is neighborhood of 0 in G, then:
(f1) WĜ(U ,V) = WG∗ (U ,V) for every neighborhood V ⊆ Λ1 of 0 in 𝕋;
(f2) W(U ,Λ4) has compact closure;
(f3) if U has compact closure, then W(U ,Λ4) is a neighborhood of 0 in Ĝ with com-

pact closure, so Ĝ is locally compact.

Proof. (a) For s ∈ ℕ+, sx ∈ Λ1 if and only if x ∈ As,t := q0 (
t
s ) + Λs for some t ∈

{0, . . . , s− 1}. On the other hand, As,0 = Λs and Λs ∩As+1,t ̸= 0 if and only if t = 0. Hence,
if x ∈ Λs and (s + 1)x ∈ Λ1, then x ∈ Λs+1. Inductively we obtain sx ∈ Λ1 for every
s ∈ {1, . . . , k} if and only if x ∈ Λk .

(b) Suppose that χ−1(Λ1) ∈ 𝒱G(0). We have to see that χ−1(Λk) ∈ 𝒱G(0) for all
k ∈ ℕ+. Pick V ∈ 𝒱G(0) with V + ⋅ ⋅ ⋅ + V⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

k
⊆ χ−1(Λ1). Now sχ(y) ∈ Λ1 for every y ∈ V

and every s ∈ {1, . . . , k}. By item (a), χ(y) ∈ Λk and so χ(V) ⊆ Λk .
(c) The first assertion follows from Exercise 5.4.12. Moreover, the family

{WĜ(K,Λk):K ⊆ G,K compact, k ∈ ℕ+} is a local base at 0 in Ĝ. Let k ∈ ℕ+ and K
a compact subset of G containing {0}. Define L = K + ⋅ ⋅ ⋅ + K⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

k
, which is a compact sub-

set of G, and take χ ∈ WĜ(L,Λ1). For every x ∈ K and s ∈ {1, . . . , k}, sχ(x) ∈ Λ1, and so
χ(x) ∈ Λk by item (a). Hence,WĜ(L,Λ1) ⊆ WĜ(K,Λk). This proves the second assertion.

(d) is obvious.
(e) If πx :𝕋G → 𝕋 is the projection defined by the evaluation at x, for x ∈ G, then

WG∗ (K, F) = ⋂x∈K{χ ∈ G
∗: χ(x) ∈ F} = ⋂x∈K(π

−1
x (F) ∩ G

∗) is closed as each π−1x (F) ∩ G
∗

is closed in G∗.
(f1) follows immediately from item (b).
(f2) To prove that the closure ofW0 = WĜ(U ,Λ4) is compact it is sufficient to note

thatW0 ⊆ W1 = WĜ(U ,Λ4) and prove thatW1 is compact. Let τs denote the subspace
topology ofW1 in Ĝ; we prove that (W1, τs) is compact. Consider on the setW1 also the
weaker topology τ induced from G∗ and consequently from 𝕋G. Observe first, that,
due to (f1),W1 = WĜ(U ,Λ4) = WG∗ (U ,Λ4). By item (e), (W1, τ) is compact. It remains to
show that both topologies τs and τ coincide onW1. Since τs is finer than τ, it suffices
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to show that if α ∈ W1 and K is a compact subset of G, then (α+WĜ(K,Λ1))∩W1 is also
a neighborhood of α in (W1, τ). Since K is compact, there exists a finite subset F of K
such that K ⊆ F + U . We verify that

(α +WG∗ (F,Λ2)) ∩W1 ⊆ (α +WĜ(K,Λ1)) ∩W1. (13.1)

Let ξ ∈ WG∗ (F,Λ2), so that α + ξ ∈ W1. As α ∈ W1 as well, we deduce from item (d) that
ξ (U) ⊆ Λ2 ⊆ Λ1, since ξ = (α + ξ ) − α ∈ W1 −W1. Consequently, ξ ∈ Ĝ by item (b) and
ξ (K) ⊆ ξ (F + U) ⊆ Λ2 + Λ2 ⊆ Λ1. This proves that ξ ∈ WĜ(K,Λ1), and so (13.1).

(f3) follows from (f2) and the definition of the compact-open topology.

Corollary 13.1.3. Let G be a locally compact abelian group. Then:
(a) Ĝ is locally compact;
(b) if G is metrizable, then Ĝ is σ-compact;
(c) if G is σ-compact, then Ĝ is metrizable.

Proof. (a) follows immediately from Theorem 13.1.2(f3).
(b) Since G is metrizable, there exists a countable base {Un: n ∈ ℕ} of 𝒱G(0),

with Un+1 ⊆ Un for every n ∈ ℕ. By Theorem 13.1.2(f2), W(Un,Λ4) has compact clo-
sure Kn. Let χ ∈ Ĝ. By the continuity of χ, there exists n ∈ ℕ such that χ(Un) ⊆ Λ4, so
χ(Un+1) ⊆ Λ4, that is, χ ∈ WĜ(Un+1,Λ4). In particular, χ ∈ Kn+1. Therefore, Ĝ = ⋃n∈ℕ Kn
is σ-compact.

(c) If G is σ-compact, then G is hemicompact (see Exercise B.7.13), so G = ⋃n∈ℕ Kn
where each Kn is a compact subset of G and every compact subset K of G is contained
in some Kn. Then W(K,Λ1) ⊇ W(Kn,Λ1). Hence, the neighborhoodsW(Kn,Λ1) form a
countable base of 𝒱Ĝ(0) by Theorem 13.1.2(c). By Birkhoff–Kakutani theorem 5.2.17, Ĝ
is metrizable.

Local compactness is not needed for the proof of (b), while the proof of (c) needs
only hemicompactness, not local compactness (plus σ-compactness).

The proof of Theorem 13.1.2 shows also that, for a topological abelian group G
and a neighborhoodU of 0 inG, the neighborhoodW(U ,Λ4) of 0 in Ĝ carries the same
topology in Ĝ and G∗; nevertheless, the inclusion map j: Ĝ → G∗ need not be an em-
bedding since W(U ,Λ4) need not be a neighborhood of 0 in j(Ĝ) equipped with the
topology induced by G∗. More precisely, one has:

Corollary 13.1.4. For a locally compact abelian group G, the following conditions are
equivalent:
(a) the inclusion map j: Ĝ → G∗ is an embedding;
(b) Ĝ is compact.

Proof. (a)⇒(b) Assume that j: Ĝ → G∗ is an embedding. By Corollary 13.1.3(a), Ĝ is
locally compact, hence complete by Proposition 8.2.6. By Proposition 7.1.22, j(Ĝ) ≅ Ĝ
is closed in the compact group G∗, and consequently j(Ĝ) is compact. Therefore, Ĝ is
compact.
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(b)⇒(a) Since the compact-open topology of Ĝ is finer than the pointwise conver-
gence topology of G∗, the inclusion map j: Ĝ → G∗ is a continuous injective homo-
morphism, and j is an embedding by the open mapping theorem (Theorem 8.4.1).

13.2 Computation of some dual groups

The next lemma is used for the computation of the dual groups in Example 13.2.4.

Lemma 13.2.1. Every continuous homomorphism χ:𝕋→ 𝕋 has the form k id𝕋, for some
k ∈ ℤ.

We give two proofs of this fact. The first, straightforward one, is based on Lem-
ma 9.1.3, the second one on Lemma 4.4.7.

First proof of Lemma 13.2.1. Applying Lemma9.1.3 to q := χ∘q0:ℝ→ 𝕋 and q0:ℝ→ 𝕋,
we can find a continuous homomorphism η:ℝ → ℝ such that q0 ∘ η = q = χ ∘ q0, i. e.,
one has the following commutative diagram:

ℝ

q0
??

η ??

q

??

ℝ

q0
??

𝕋 χ
?? 𝕋

(13.2)

As χ(q0(ℤ)) = {0}, we deduce that q0(η(ℤ)) = {0} aswell. Therefore, η(ℤ) ⊆ ker q0 = ℤ.
By Exercise 9.5.8, there exists ρ ∈ ℝ such that η(y) = ρy for every y ∈ ℝ. Thus, η(ℤ) ⊆ ℤ
yields ρ ∈ ℤ. Hence, χ(x) = ρx for every x ∈ 𝕋.

Second proof of Lemma 13.2.1. For k ∈ ℕ+, the endomorphism μk :𝕋 → 𝕋, x → kx, is
surjective, continuous, and ker μk = ℤ(k). Let now χ:𝕋 → 𝕋 be a nontrivial continu-
ous homomorphism. Then ker χ is a proper closed subgroup of 𝕋, hence ker χ = ℤ(k)
for some k ∈ ℕ+. Let q:𝕋 → 𝕋/ℤ(k) be the canonical projection. Since χ(𝕋) is a
connected nontrivial subgroup of 𝕋, one has χ(𝕋) = 𝕋 (see Example 6.1.8(b)). Apply
Proposition 3.2.5 with G = H1 = H2 = 𝕋, f2 = χ, and f1 = μk . Since ker f1 = ker f2 = ℤ(k),
q1 = q2 = q, and the homomorphism t in Proposition 3.2.5 is the identity map of
𝕋/ℤ(k), we obtain this commutative diagram:

𝕋
μk

??
q
??

χ

??
𝕋

η

??𝕋/ℤ(k)?? ?? 𝕋

(13.3)

Since μk and χ are open in view of the open mapping theorem (Theorem 8.4.1), by
Proposition 3.2.5 we have that η:𝕋 → 𝕋 is a topological automorphism, so η = ±id𝕋
according to Lemma 4.4.7. Therefore, χ = ±μk .
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For a topological abelian group G, the equality χ = ±ξ for continuous characters
χ, ξ :G → 𝕋 implies ker χ = ker ξ and χ(G) = ξ (G). More generally, if χ = k ξ for some
k ∈ ℤ, ker ξ ⊆ ker χ and χ(G) ⊆ ξ (G). Nowwesee that this implication canbe (partially)
inverted under appropriate hypotheses.

Corollary 13.2.2. Let G be a σ-compact locally compact abelian group and χ, ξ :G → 𝕋
continuous surjective characters of G. Then there exists m ∈ ℤ such that ξ = mχ if and
only if ker χ ⊆ ker ξ . If ker χ = ker ξ , then ξ = ±χ.

Proof. Argue as in the final part of the second proof of Lemma 13.2.1. Since χ and ξ are
open by the open mapping theorem (Theorem 8.4.1), Proposition 3.2.5 can be applied
with H1 = H2 = 𝕋 and the diagram (13.3) (with G in place of 𝕋 at the top) can be used
to conclude.

Corollary 13.2.3. Let G be a topological abelian group and χ, ξ :G → 𝕋 continuous char-
acters of G such that ker ξ ⊆ ker χ.
(a) If |ξ (G)| = m for some m ∈ ℕ+, then χ = k ξ for some k ∈ ℤ; moreover, ker χ = ker ξ

if and only if χ(G) = ξ (G), and in such a case k is coprime to m.
(b) If ker χ = ker ξ = N is open and χ(G) = ξ (G) = H, then there exists an automorphism

η of H (equipped with the discrete topology), with χ = η ∘ ξ .

Proof. (a) If |ξ (G)| = m for some m ∈ ℕ+, then G/ ker ξ ≅ ξ (G) = ℤ(m) ≤ 𝕋. The hy-
pothesis ker ξ ⊆ ker χ implies that G/ ker χ ≅ χ(G) = ℤ(n) ≤ 𝕋 with n | m, as G/ ker χ
is isomorphic to a quotient of G/ ker ξ ≅ ℤ(m). Therefore, χ(G) ⊆ ξ (G). Since both
ξ :G → ξ (G) and χ:G → χ(G) are open (as the groups ξ (G) and χ(G) are discrete), there
exists a homomorphism η: ξ (G)→ χ(G) such that χ = η∘ξ , by Proposition 3.2.5. The in-
clusion χ(G) = ℤ(n) ⊆ ξ (G) = ℤ(m) implies that ηmust be the multiplication by some
k ∈ ℤ, therefore χ = kξ . Moreover, ker χ = ker ξ precisely when η is an isomorphism,
and so this means χ(G) = ξ (G). Clearly, χ(G) = ξ (G) if and only if k ̸= 0 is coprime to
m.

(b) The assertion follows from Proposition 3.2.5.

Example 13.2.4. Let p be a prime. Then

?ℤ(p∞) ≅ 𝕁p, �̂�p ≅ ℤ(p
∞), �̂� ≅ ℤ, ℤ̂ ≅ 𝕋, and ℝ̂ ≅ ℝ.

The first isomorphism follows from our definition 𝕁p = End(ℤ(p∞)) =
Hom(ℤ(p∞),𝕋) = ?ℤ(p∞) and the fact that the topology on 𝕁p = ?ℤ(p∞) described in
Example 2.1.5 coincides with the pointwise convergence topology of ?ℤ(p∞) = ℤ(p∞)∗.

To verify the isomorphism �̂�p ≅ ℤ(p∞), consider first the canonical projection
ηn: 𝕁p → 𝕁p/pn𝕁p ≅ ℤ(pn) ≤ 𝕋 for n ∈ ℕ+. With this identification, we consider
ηn ∈ 𝕁∗p . As ker ηn = p

n𝕁p is open, ηn ∈ �̂�p. It is easy to see that under this identifi-
cation pηn = ηn−1 for every n ∈ ℕ+. Therefore, the subgroup H of �̂�p generated by the
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characters ηn is isomorphic toℤ(p∞). To see that H = �̂�p, take any nontrivial continu-
ous character χ: 𝕁p → 𝕋. ThenN = ker χ is a proper closed subgroup of 𝕁p. By the open
mapping theorem (Theorem 8.4.1), χ(G) ≅ G/ ker(χ). Moreover, N ̸= {0} as 𝕁p is not
topologically isomorphic to a subgroup of 𝕋. Indeed, 𝕁p ̸≅ 𝕋 (since 𝕋 is connected,
while 𝕁p is disconnected) and all proper closed subgroups of 𝕋 are finite (see Exer-
cise 9.5.7). Thus,N = pn𝕁p for some n ∈ ℕ+. SinceN = ker ηn, Corollary 13.2.3(b) yields
χ = k ηn for some k ∈ ℤ coprime to p, so χ ∈ H. We conclude that �̂�p = H ≅ ℤ(p∞).

The isomorphism g: ℤ̂ → 𝕋 is obtained by setting g(χ) = χ(1) for every χ:ℤ → 𝕋.
It is easy to check that this isomorphism is topological.

According to Lemma 13.2.1, every χ ∈ �̂� has the form χ = μk = k id𝕋 for some
k ∈ ℤ. This gives a homomorphism �̂� → ℤ, μk → k, which is obviously bijective.
Hence, �̂� ≅ ℤ since both groups are discrete (see Proposition 13.1.1(a)).

To prove ℝ̂ ≅ ℝ, for every r ∈ ℝ, consider the map ρr :ℝ → ℝ defined by ρr(x) =
rx. Then χr = q0 ∘ ρr is a continuous character of ℝ. If r ̸= 0, then χr ̸= 0, so the
homomorphism

g:ℝ→ ℝ̂, r → χr ,

has ker g = {0}. To see that g is surjective, consider any nontrivial χ ∈ ℝ̂. Applying
Lemma 9.1.3 to χ:ℝ→ 𝕋 and q0:ℝ→ 𝕋, we find a continuous homomorphism η:ℝ→
ℝ such that q0 ∘ η = χ:

ℝ
η ??

χ ??

ℝ

q0
??
𝕋

Let r = η(1). It is easy to check that η = ρr, and so χ = χr . Then g is an isomorphism.
Its continuity follows from the definition of the compact-open topology of ℝ̂. As ℝ is
σ-compact, g is also open by the open mapping theorem (Theorem 8.4.1).

We need the next result to compute the dual ofℚp.

Proposition 13.2.5. Let G be a hereditarily disconnected locally compact abelian group.
Then ker χ is an open subgroup of G for every χ ∈ Ĝ.

Proof. According to Theorem 8.5.2, G has a local base at 0 formed by open subgroups.
Hence, there exists an open subgroupO of G such that χ(O) ⊆ Λ1. Since Λ1 contains no
nontrivial subgroup, χ(O) = {0}, and so O ⊆ ker χ. Therefore, ker χ is open.

Example 13.2.6. Let p be a prime. Then ℚ̂p ≅ ℚp.
Consider the character χ1:ℚp → 𝕋 obtained simply by the canonical projection

ℚp → ℚp/𝕁p ≅ ℤ(p∞) ⊆ 𝕋. As 𝕁p is open in ℚp, χ1 ∈ ℚ̂p. For every ξ ∈ ℚp, consider
the map μξ :ℚp → ℚp, x → ξx. Then its composition χξ = χ1 ∘ μξ with χ1 gives a
continuous character ofℚp. If ξ ̸= 0, then χξ ̸= 0, so the homomorphism

g:ℚp → ℚ̂p, ξ → χξ ,
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has ker g = {0}. To see that g is surjective consider any nontrivial χ ∈ ℚ̂p. By Propo-
sition 13.2.5, N = ker χ is an open subgroup of ℚp, and so N = pm𝕁p for some m ∈ ℤ.
Let χ′ be defined by χ′(x) = χ(p−mx) for all x ∈ ℚp. Then ker χ′ = 𝕁p = ker χ1. On the
other hand, χ1(ℚp) = χ′(ℚp) = ℤ(p∞). By Corollary 13.2.3(b), there exists an auto-
morphism η of ℤ(p∞) such that χ′ = η ∘ χ1. Moreover, there exists ξ ∈ 𝕁p such that
η(x) = ξx for every x ∈ ℤ(p∞). Since all three homomorphisms χ1:ℚp → ℤ(p∞),
χ′:ℚp → ℤ(p∞), and η:ℤ(p∞) → ℤ(p∞) are 𝕁p-module homomorphisms, we deduce
that χ′(x) = χ1(ξx) for all x ∈ ℚp. Consequently, χ(x) = χ′(pmξx) for all x ∈ ℚp. In other
words, χ = χpmξ = g(pmξ ). Therefore, g:ℚp → ℚ̂p is an isomorphism.

To check its continuity, note first that every compact subset ofℚp is contained in
some of the compact open subgroups p−m𝕁p form ∈ ℕ. Then the basic neighborhood
Um := W(p−m𝕁p,Λ1) of 0 in ℚ̂p coincides with the set of all χ ∈ ℚ̂p that vanish on p−m𝕁p
(as Λ1 contains no nontrivial subgroups). Hence, for every m ∈ ℕ, g−1(Um) is open
as it contains the open subgroup pm𝕁p of ℚp. This proves the continuity of g. As ℚp
is σ-compact, since ℚp = ⋃n∈ℕ+ p

−n𝕁p, g is also open by the open mapping theorem
(Theorem 8.4.1).

13.3 Some general properties of the dual group

13.3.1 The dual of direct products and direct sums

We start proving that the dual group of a finite product of topological abelian groups
is the product of their dual groups.

Lemma 13.3.1. If G,H are topological abelian groups, then ?G × H ≅ Ĝ × Ĥ.

Proof. The isomorphismΦ: Ĝ× Ĥ →?G × H, defined by Φ(χ1, χ2)(x1, x2) = χ1(x1)+ χ2(x2)
for every (χ1, χ2) ∈ Ĝ × Ĥ and (x1, x2) ∈ G × H, is a particular case of (A.3) when the
target group is 𝕋 and only continuous homomorphisms are taken into account.

Now we show that Φ is continuous. Let W(K,U) be an open neighborhood of 0
in ?G × H (namely, K is a compact subset of G × H and U is an open neighborhood
of 0 in 𝕋). Since the projections πG and πH of G × H onto G and H, respectively, are
continuous,KG := πG(K) andKH := πH (K) are compact inG andH, respectively. Taking
an open neighborhood V of 0 in 𝕋 with V + V ⊆ U, since K ⊆ KG × KH , it follows that
Φ(W(KG,V) ×W(KH ,V)) ⊆ W(K,U).

It remains to prove that Φ is open. Consider two open neighborhoodsW(KG,UG)
of 0 in Ĝ andW(KH ,UH ) of 0 in Ĥ, where KG ⊆ G and KH ⊆ H are compact and UG,UH
are open neighborhoods of 0 in 𝕋. Then K := (KG ∪ {0}) × (KH ∪ {0}) is a compact
subset of G × H and U := UG ∩ UH is an open neighborhood of 0 in 𝕋 withW(K,U) ⊆
Φ(W(KG,UG) ×W(KH ,UH )).
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By Examples 13.2.4 and 13.2.6, 𝕋, ℤ, ℤ(p∞), 𝕁p, ℝ, andℚp satisfy
̂̂G ≅ G, namely,

they satisfy the Pontryagin-van Kampen duality theorem (amore precise form is given
in Definition 13.4.4, but we prefer to anticipate this weaker one). Using Lemma 13.3.1,
this property extends to all finite direct products of these groups.

As a matter of fact, all finite groups (see Example 13.3.3(a)), as well as the groups
ℝ and ℚp (see Examples 13.2.4 and 13.2.6) satisfy the even stronger condition Ĝ ≅ G
(which immediately implies ̂̂G ≅ G in view of the obvious fact that if G ≅ H, then also
Ĝ ≅ Ĥ). This motivates the following notion:

Definition 13.3.2. Call a topological abelian group G selfdual if Ĝ ≅ G.

Example 13.3.3. (a) Any finite abelian group F is selfdual. Indeed, F̂ = F∗ and we
prove that F∗ ≅ F. Recall that F has the form F ≅ ℤ(n1) × ⋅ ⋅ ⋅ × ℤ(nm) for suitable
n1, . . . , nm ∈ ℕ+, by Theorem A.1.1. So, applying Lemma 13.3.1, we are left with the
proof of the isomorphism ℤ(n)∗ ≅ ℤ(n) for every n ∈ ℕ+. The elements x of 𝕋
satisfying nx = 0 are precisely those of the unique cyclic subgroup ℤ(n) of order
n of 𝕋, so ℤ(n)∗ ≅ Hom(ℤ(n),ℤ(n)) ≅ ℤ(n).

(b) As already mentioned, ℝ and ℚp, by Examples 13.2.4 and 13.2.6, and all finite
abelian groups by item (a) are selfdual. By Lemma 13.3.1, finite direct products
of selfdual groups are selfdual, hence all groups of the form F × ℝm ×ℚnp, where
F is a finite abelian group andm, n ∈ ℕ, are selfdual.

Example 13.3.3 and Lemma 13.3.1 provide a large supply of topological abelian
groups G satisfying ̂̂G ≅ G:

Proposition 13.3.4. Let P1,P2,P3 be finite sets of primes, m, n, k, kp ∈ ℕ with p ∈ P3,
np ∈ ℕ+ with p ∈ P1 and mp ∈ ℕ+ with p ∈ P2. Every group of the form

G = 𝕋n ×ℤm × ℝk × F × ∏
p∈P1
ℤ(p∞)np × ∏

p∈P2
𝕁
mp
p × ∏

p∈P3
ℚ

kp
p ,

where F is a finite abelian group, satisfies ̂̂G ≅ G. Such a group G is selfdual if and only
if n = m, P1 = P2, and np = mp for all p ∈ P1 = P2. In particular,

̂̂G ≅ G holds true for all
elementary locally compact abelian groups G.

Proof. Example 13.2.4 gives that ℤ̂ ≅ 𝕋 and �̂� ≅ ℤ, hence ℤ ≅ ̂̂ℤ and 𝕋 ≅ ̂̂𝕋.

Analogously, ?ℤ(p∞) ≅ 𝕁p and �̂�p ≅ ℤ(p∞) yield ℤ(p∞) ≅
??ℤ(p∞) and 𝕁p ≅

̂̂𝕁p. So,
H ∈ {𝕋,ℤ,ℤ(p∞), 𝕁p} satisfies

̂̂H ≅ H. Moreover, ℝ̂ ≅ ℝ, ℚ̂p ≅ ℚp, and F̂ ≅ F were al-
ready checked (see Examples 13.2.4, 13.2.6, and 13.3.3(a)). The conclusions follow from
Lemma 13.3.1.

The problem of characterizing all selfdual locally compact abelian groups is still
open (see [140, 141]).
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Theorem 13.3.5. Let {Di: i ∈ I} be a family of discrete abelian groups and let {Gi: i ∈ I}
be a family of compact abelian groups. Then

?⨁
i∈I

Di ≅∏
i∈I

D̂i and ?∏
i∈I

Gi ≅⨁
i∈I

Ĝi. (13.4)

Proof. Let D =⨁i∈I Di, let χ:D → 𝕋 be a character and, for i ∈ I, let χi:Di → 𝕋 be its
restriction to Di. The isomorphismΦ: D̂→ ∏i∈I D̂i in (13.4) is defined by χ → (χi)i∈I . To
see that Φ is continuous, pick a prebasic neighborhoodV = WDi0

(F0,Λ1)×∏i∈I\{i0} D̂i ∈
𝒱∏i∈I D̂i
(0), with i0 ∈ I and F0 a finite subset of Di0 . Let F = F0 ⊕⨁i∈I\{i0}{0}; then

Φ(WD(F,Λ1)) ⊆ V . Finally, Φ is open, by Corollary 8.4.2 and Proposition 13.1.1(b).
Let G = ∏i∈I Gi, pick a continuous character χ:G → 𝕋 and V ∈ 𝒱G(0) with

χ(V) ⊆ Λ1. There exists a finite subset F of I such that V ⊇ B := ∏i∈F{0} ×∏i∈I\F Gi.
Since χ(B) ⊆ Λ1 is a subgroup of 𝕋, χ(B) = {0}. Hence, χ factorizes through the pro-
jection p:G → ∏i∈F Gi ≅ G/B; so there exists a character χ′:∏i∈F Gi → 𝕋 such that
χ = χ′ ∘ p. Obviously, χ′ ∈⨁i∈F Ĝi ⊆⨁i∈I Ĝi. Then the assignment χ → χ′ induces the
second isomorphism in (13.4). Since both groups are discrete by Proposition 13.1.1(a),
this is a topological isomorphism.

In order to extend the isomorphisms (13.4) to the general case of topological
abelian groups, one has to consider a specific topology on the direct sum (see [18,
14.11] or [182]).

Example 13.3.6. Using the isomorphismℚ/ℤ ≅⨁p∈ℙℤ(p
∞), whereℚ/ℤ is discrete,

Example 13.2.4 and Theorem 13.3.5, we obtain ℚ̂/ℤ ≅ ∏p∈ℙ 𝕁p.

13.3.2 Extending the duality functor to homomorphisms

Let G,H be topological abelian groups. If f :G → H is a continuous homomorphism,
then the function f̂ : Ĥ → Ĝ, χ → χ ∘ f , is well-defined since χ ∘ f is continuous. Clearly,
a subgroup H of a topological abelian group G is dually embedded if and only if the
map î: Ĝ → Ĥ is surjective, where i:H → G is the inclusion map. Open subgroups H
are dually embedded (for a continuous character χ:H → 𝕋, any extension χ′:G → 𝕋
of χ is continuous, and such an extension χ′ exists by Theorem A.2.4.

Lemma 13.3.7. If G,H are topological abelian groups and f :G → H is a continuous
homomorphism, then f̂ : Ĥ → Ĝ is a continuous homomorphism as well.
(a) If f (G) is dense in H, then f̂ is bijective.
(b) If f is an embedding and f (G) is dually embedded in H, then f̂ is surjective.
(c) If f is a surjective homomorphism such that every compact subset of H is covered

by some compact subset of G, then f̂ is an embedding.
(d) If f is a quotient homomorphism and G is locally compact, then f̂ is an embedding.
(e) If H = G and f = idG, then f̂ = idĜ.
(f) If g:H → L is a continuous homomorphism, then ĝ ∘ f = f̂ ∘ ĝ.
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Proof. Clearly, f̂ is a homomorphism. Assume that K is a compact subset of G. Then
f (K) is a compact subset of H, soW := WĤ (f (K),Λ1) is a neighborhood of 0 in Ĥ and
f̂ (W) ⊆ WĜ(K,Λ1). This proves the continuity of f̂ .

The proofs of items (e) and (f) are immediate.
(a) If f̂ (χ) = 0 for χ ∈ Ĥ, then χ ∘ f = 0. By the density of f (G) inH, this yields χ = 0.

By Exercise 7.3.14, dense subgroups are dually embedded, so f̂ is surjective.
(b) Let χ ∈ Ĝ. Then χ′: f (G)→ 𝕋, defined by χ′(f (x)) = χ(x) for x ∈ G, is continuous

since f is an embedding. Since f (G) is dually embedded in H, χ′ can be extended to a
continuous character ξ of H. This yields f̂ (ξ ) = χ.

(c) Assume that L is a compact subset of H. By hypothesis, there exists a compact
subset K of G such that f (K) = L. Therefore, we get f̂ (WĤ (L,Λ1)) = f̂ (Ĥ) ∩WĜ(K,Λ1).
This proves that f̂ is an embedding.

(d) follows from (c) and Lemma 8.2.5.

Corollary 13.3.8. Let G be a locally compact abelian group, H a subgroup of G, and
i:H → G the canonical inclusion of H in G. Then:
(a) î: Ĝ → Ĥ is surjective if H is dense or open, or compact;
(b) î is injective if and only if H is dense in G.

Proof. (a) If H is compact, apply Corollary 11.6.4, otherwise Lemma 13.3.7(b).
(b) If H is dense, then î is injective by Lemma 13.3.7(a). Conversely, assume that H

is a proper subgroup of G and let q:G → G/H be the canonical projection. By Theo-
rem 11.6.3, there exists a nonzero χ ∈ Ĝ/H. Then ξ = χ ∘ q ∈ Ĝ is nonzero and satisfies
ξ (H) = {0}, i. e., î(ξ ) = 0. Then î is not injective.

Ifℋ denotes the category of all Hausdorff topological abelian groups, the Pontrya-
gin–van Kampen duality functor, defined by

̂:ℋ→ ℋ, G → Ĝ and f → f̂ ,

for objects G and morphisms f :G → H in ℋ, is a contravariant representable functor
(see Lemma 13.3.7). In particular, the following property holds.

Corollary 13.3.9. If G,H are topological abelian groups and f :G → H is a topological
isomorphism, then f̂ : Ĥ → Ĝ is a topological isomorphism as well.

The next corollary is valid for arbitrary locally compact abelian groups, but that
stronger form will be proved later on. The case of discrete abelian groups considered
in this corollary follows immediately from Corollary 13.3.8(a).

Corollary 13.3.10. If G is a discrete abelian group andH a subgroup of G, then |Ĥ| ≤ |Ĝ|.

We use this corollary to compute the size of Ĝ = G∗ for a discrete abelian group G:

Theorem 13.3.11 (Kakutani theorem). If G is an infinite discrete abelian group, then
|Ĝ| = 2|G|.
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Proof. The inequality |Ĝ| ≤ 2|G| is obvious since Ĝ is contained in the Cartesian power
𝕋G which has cardinality 2|G|. It remains to prove the inequality |Ĝ| ≥ 2|G|. We consider
several cases using each time the inequality |Ĝ| ≥ |Ĥ| from Corollary 13.3.10 for an
appropriate subgroup H of G with |Ĥ| ≥ 2|G|.

Case 1. If r(G) is finite,G is countable by LemmaA.4.14, sowehave to check that |Ĝ| ≥ c.
According to Lemma A.4.14, G ≅ G0 ⊕ F ⊕⨁

m
i=1ℤ(p

∞
i ), where the primes p1, . . . , pm are

not necessarily distinct, F is a finite abelian group, and G0 is a subgroup of ℚn for
n = r0(G). Since G is infinite, either n > 0 or m > 0. In the first case, G contains
a subgroup H ≅ ℤ, in the latter case, G contains a subgroup H ≅ ℤ(p∞i ) for some
i ∈ {1, . . . ,m}. In both cases, |Ĥ| = c, as |ℤ̂| = |𝕋| = c and |?ℤ(p∞i )| = |𝕁p| = c, respectively.
This proves the desired inequality |Ĝ| ≥ c.

Case 2. If r(G) is infinite, according to Lemma A.4.14, G has a subgroup H such that
H = ⨁i∈I Ci, |I| = |G| and each Ci is cyclic. Then Ĥ = ∏i∈I Ĉi by Theorem 13.3.5, and
so |Ĥ| = 2|I| = 2|G| since each Ĉi is either finite or has size c. This proves the desired
inequality |Ĝ| ≥ 2|G| in this case.

From Corollary 11.4.5 and Theorem 13.3.11, we obtain:

Corollary 13.3.12. For every infinite abelian group G, w(G#) = 2|G|.

Remark 13.3.13. As we shall see in the sequel, every compact abelian group K has
the form K = Ĝ for some discrete abelian group G. Moreover, G can be taken to be K̂.
Applying Kakutani theorem 13.3.11 to K = Ĝ, we obtain |K| = |Ĝ| = 2|G|, while w(K) =
|K̂| = |G| according to Corollary 11.4.5. Combining these equalities yields |K| = 2w(K).

This property can be established for arbitrary compact groups. Since the inequal-
ity |K| ≤ 2w(K) holds true for every Hausdorff group, it remains to use the deeply
nontrivial fact, due to the joint efforts of Hagler–Gerlits–Efimov (see [256] for a direct
proof), that a compact group K contains a copy of the Cantor cube {0, 1}w(K) having
size 2w(K). The compactness plays a relevant role in this embedding theorem. Indeed,
there are precompact groups that contain no copy of {0, 1}ℵ0 (e. g., all groups of the
form G# with G an abelian group, as they contain no nontrivial convergent sequences
in view of Glicksberg theorem 11.6.11, whereas {0, 1}ℵ0 contains nontrivial convergent
sequences).

We conclude this section studying the dual group ℚ̂.

Example 13.3.14. Let K denote the compact group ℚ̂. Then:
(a) K contains a closed subgroup H isomorphic to ℚ̂/ℤ such that K/H ≅ 𝕋;
(b) K̂ ≅ ℚ.

To verify (a), consider the continuous character ρ:K → ℤ̂ ≅ 𝕋 obtained by the re-
striction to ℤ of every χ ∈ K (i. e., ρ = ĵ, where j:ℤ → ℚ). Then ρ is surjective by
Lemma 13.3.7(b) and H := ker ρ = {χ ∈ K: χ(ℤ) = {0}} is a closed subgroup of K with
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K/H ≅ ρ(K) ≅ 𝕋. To see thatH ≅ ℚ̂/ℤ, note that the characters ofℚ/ℤ correspond pre-
cisely to those characters ofℚ that vanish on ℤ, and these are precisely the elements
of H.

To prove (b), note that K is divisible and torsion-free, by Exercise 13.7.3. Hence,
every r ∈ ℚ \ {0} defines a continuous automorphism λr of K by setting λr(χ) = rχ for
every χ ∈ K (see Example 8.7.4). Then the composition ρ ∘ λr :K → ℤ̂ ≅ 𝕋 defines a
character ηr ∈ K̂ with ker ηr = r−1H. For the sake of completeness, let η0 = 0.We prove
now that K̂ = {ηr : r ∈ ℚ} ≅ ℚ.

Indeed, let η ∈ K̂ be nonzero. Then η(K) is a nonzero closed divisible subgroup of
𝕋, hence η(K) = 𝕋. By Exercise 13.7.4, H is a totally disconnected compact group. On
the other hand, N = ker η is a proper closed subgroup of K such that N + H ̸= K, as
η(H) is a proper closed subgroup of𝕋, by Corollary 11.6.5(b). Hence, η(H) is finite, say
of order m ∈ ℕ+. Then N + H contains N as a finite-index subgroup, more precisely
[N +H : N] = [H : N ∩H] = m, and somH ⊆ N . Consider the character ηm−1 of K having
ker ηm−1 = mH ⊆ N . By Corollary 13.2.2, there exists k ∈ ℤ such that η = kηm−1 = ηr,
where r = km−1 ∈ ℚ.

13.4 The natural transformation ω

Let G be a topological abelian group. Define ωG:G →
̂̂G, by ωG(x)(χ) = χ(x) for every

x ∈ G and for every χ ∈ Ĝ.

Proposition 13.4.1. If G is a topological abelian group, then ωG(x) ∈
̂̂G for every x ∈

G and ωG is a homomorphism. The restriction of ωG to every compact subset of G is
continuous. In particular, if G is locally compact or metrizable, then ωG is continuous.

Proof. For every χ,ψ ∈ Ĝ and x ∈ G,

ωG(x)(χ + ψ) = (χ + ψ)(x) = χ(x) + ψ(x) = ωG(x)(χ) + ωG(x)(ψ).

If U is an open neighborhood of 0 in 𝕋, then ωG(x)(W({x},U)) ⊆ U . This proves that
ωG(x) is a continuous character of Ĝ, that is, ωG(x) ∈

̂̂G.
Moreover, ωG is a homomorphism, since for every x, y ∈ G and every χ ∈ Ĝ,

ωG(x + y)(χ) = χ(x + y) = χ(x) + χ(y) = ωG(x)(χ) + ωG(y)(χ).

Fix a compact subset C of G and x ∈ C. We are going to show thatωG ↾C is continu-
ous in x. LetK be a compact subset of Ĝ. Since C−C is still compact,U := WĜ(C−C,Λ2)
is a nonempty open set of Ĝ, so there is a finite subset F of K such that K ⊆ F + U . Fix
V ∈ 𝒱G(0) such that χ(V) ⊆ Λ2 for all χ ∈ F. Our aim is to prove that

ωG ↾C ((x + V) ∩ C) ∈ ωG(x) +W ̂̂G(K,Λ1). (13.5)
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Since K is an arbitrary compact subset of Ĝ, this shows that ωG ↾C is continuous. To
prove (13.5), pick y ∈ (x + V) ∩ C and χ ∈ K. Then there are χ1 ∈ F, χ2 ∈ U and v ∈ V
such that χ = χ1 + χ2 and y = x + v ∈ C. As v ∈ C − C and χ2 ∈ U, we have χ2(v) ∈ Λ2.
Moreover, χ1(v) ∈ Λ2 as v ∈ V and χ1 ∈ F, so

ωG ↾C (y)(χ) − ωG ↾C (x)(χ) = χ(y) − χ(x) = χ(v) = χ1(v) + χ2(v) ∈ Λ2 + Λ2 = Λ1.

In other words, ωG ↾C (y) − ωG ↾C (x) ∈ W ̂̂G(K,Λ1). This proves (13.5).
Since continuity is a local property and every point in a locally compact abelian

group G has a compact neighborhood, we obtain that ωG is continuous in this case.
Finally, let G be a metrizable group. Since the continuity of ωG can be shown by

considering the images of convergent sequences inG (which are compact), also in this
case ωG is continuous.

Remark 13.4.2. For a topological abelian groupG,ωG is injective if and only if Ĝ sepa-
rates thepoints ofG. Hence, byTheorem11.6.3,ωG is injective for every locally compact
abelian group. Moreover, ωG(G) is a subgroup of

̂̂G that separates the points of Ĝ.

Let us see that local compactness is essential in Proposition 13.4.1.

Example 13.4.3. For an infinite discrete abelian group G the map ωG# :G# →
̂̂G# = Ĝ∗

is not continuous. Indeed, Ĝ# = G∗, since the groups G# and G have the same dual
group, namely, Hom(G,𝕋). Furthermore, the only compact subsets of G# are the finite
ones, according toGlicksberg theorem 11.6.11 (see also Theorem 13.4.9 for a proof in the
discrete case, relevant in this example). Hence, Ĝ# has the same compact topology as
G∗, namely, the pointwise convergence topology, so ̂̂G# = Ĝ∗ is discrete, by Proposi-
tion 13.1.1(a). The canonical mapping ωG# :G# →

̂̂G# is not continuous, since G# is an
infinite precompact group by Corollary 10.2.17, so {0G# } is not open, but it is the inverse
image under ωG# of the open set {0̂̂G#

}.

Here we adopt a more precise approach to the Pontryagin-van Kampen duality
theorem, by asking ωG to be a topological isomorphism:

Definition 13.4.4. A topological abelian group G is said to satisfy the Pontryagin-van
Kampen duality theorem, or shortly, to be reflexive, ifωG is a topological isomorphism.

Lemma 13.4.5. If, for i ∈ {1, . . . , n}, the topological abelian groups Gi are reflexive, then
also G = ∏ni=1 Gi is reflexive.

Proof. To obtain a topological isomorphism j:∏ni=1
̂̂Gi →
̂̂G, apply Lemma 13.3.1 twice.

Then the product π:G → ∏ni=1
̂̂Gi of the topological isomorphisms ωGi

:Gi →
̂̂Gi com-

posed with j gives precisely ωG.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



214 | 13 The Pontryagin-van Kampen duality

Let ℒ be the full subcategory of ℋ having as objects all locally compact abelian
groups. According to Corollary 13.1.3(a), the functor ̂:ℋ → ℋ sends ℒ to itself, i. e.,
defines a functor ̂:ℒ→ ℒ. Pontryagin-van Kampen duality theorem 13.4.17 states that
ω is a natural equivalence from 1ℒ to ̂̂:ℒ→ ℒ, where ̂̂ =̂⋅ .̂ We start by proving that
ω is a natural transformation.

Proposition 13.4.6. ω is a natural transformation from 1ℒ to ̂̂:ℒ→ ℒ.

Proof. By Proposition 13.4.1, ωG is continuous for every G ∈ ℒ. Moreover, for every
continuoushomomorphism f :G → H of locally compact abelian groups, the following
diagram commutes:

G
f ??

ωG ??

H

ωH??
̂̂G
̂̂f
?? ̂̂H

In fact, if x ∈ G and ξ ∈ Ĥ, then ωH (f (x))(ξ ) = ξ (f (x)). On the other hand,

( ̂̂f (ωG(x)))(ξ ) = (ωG(x) ∘ f̂ )(ξ ) = ωG(x)( f̂ (ξ )) = ωG(x)(ξ ∘ f ) = ξ (f (x)).

Hence, ωH (f (x)) =
̂̂f (ωG(x)) for every x ∈ G.

13.4.1 The compact or discrete case

Now we can prove the Pontryagin-van Kampen duality theorem in the case when the
topological abelian group G is either compact or discrete.

Theorem 13.4.7. If the topological abelian group G is either compact or discrete, then
ωG is a topological isomorphism.

Proof. If G is discrete, then Ĝ separates the points of G by Corollary A.2.6, and if G is
compact, then Ĝ separates the points ofG by Corollary 11.5.1. Therefore,ωG is injective
by Remark 13.4.2.

If G is discrete, then Ĝ is compact by Proposition 13.1.1(b) and the characters from
ωG(G) separate the points of Ĝ, in view of Remark 13.4.2. Hence, ωG(G) =

̂̂G by Corol-
lary 11.5.3. Since ̂̂G is discrete, ωG is a topological isomorphism.

Let now G be compact. Then ωG is a continuous injective homomorphism by
Proposition 13.4.1 and Remark 13.4.2. Suppose by contradiction that ωG(G) is a proper
subgroup of ̂̂G. By the compactness of G, ωG(G) is compact, hence closed in the com-
pact group ̂̂G (see Proposition 13.1.1). By Corollary 11.5.1 applied to ̂̂G/ωG(G), there

exists ξ ∈
̂̂̂
G \ {0} such that ξ (ωG(G)) = {0}. Since Ĝ is discrete by Proposition 13.1.1(a),
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ωĜ is a topological isomorphism by the first part of the proof, and so there exists χ ∈ Ĝ
such that ωĜ(χ) = ξ . So, for x ∈ G,

0 = ξ (ωG(x)) = ωĜ(χ)(ωG(x)) = ωG(x)(χ) = χ(x).

Hence, χ ≡ 0, and so also ξ ≡ 0, a contradiction. Therefore, ωG is surjective.
Finally, ωG is open by the open mapping theorem (Theorem 8.4.1).

Our next step is to prove the Pontryagin-van Kampen duality theorem for elemen-
tary locally compact abelian groups.

Theorem 13.4.8. If G is an elementary locally compact abelian group, thenωG is a topo-
logical isomorphism.

Proof. According to Lemma 13.4.5 and Theorem 13.4.7, it suffices to prove that ωℝ is a
topological isomorphism. Themapping g:ℝ→ ℝ̂, r → χr, where χr(x) = q0(rx) ∈ 𝕋 for
x ∈ ℝ, was shown to be a topological isomorphism in Example 13.2.4. For x, r ∈ ℝ, we
have ωℝ(x)(g(r)) = g(r)(x) = χr(x) = χx(r), so ωℝ(x) ∘ g = χx = g(x). Since ωℝ(x) ∘ g =
ĝ(ωℝ(x)) = ĝ ∘ωℝ(x), this implies (g−1 ∘ ĝ ∘ωℝ)(x) = x, so g−1 ∘ ĝ ∘ωℝ = idℝ. Hence,ωℝ
is a topological isomorphism, since g−1 and ĝ are topological isomorphisms.

Here is a second argument proving thatωℝ is a topological isomorphism, using in
a crucial way the (ℤ-)bilinear map

λ:ℝ × ℝ→ 𝕋, (x, y) → λ(x, y) := q0(xy).

For every y ∈ ℝ, the map χy := λ(−, y):ℝ → 𝕋, x → λ(x, y), is an element of ℝ̂.
Hence, the second copy {0} × ℝ of ℝ in ℝ × ℝ can be identified with ℝ̂, since by Ex-
ample 13.2.4 every continuous character of ℝ has this form. On the other hand, every
element x ∈ ℝ gives a continuous character ℝ → 𝕋, y → λ(x, y), so can be consid-
ered as the element ωℝ(x) of

̂̂ℝ. We have seen in Example 13.2.4 that every ξ ∈ ̂̂ℝ has
this form, that is, ωℝ is surjective. Since ωℝ is continuous by Proposition 13.4.1, we
conclude that ωℝ is a topological isomorphism by the open mapping theorem (Theo-
rem 8.4.1) and Theorem 11.6.3.

The following is an application of Theorem 13.4.8 to the Bohr topology.

Theorem 13.4.9. For G an abelian group, G# has no infinite compact subsets. In partic-
ular, G# admits no nontrivial convergent sequence.

Proof. The assertion is obviously true when G is finite, so we suppose from now on
that G is infinite.

Suppose that C is an infinite compact subset of G# and pick a countably infinite
subset X of C. Then the subgroup H = ⟨X⟩ of G is countably infinite and closed in
G# by Proposition 3.1.9. Therefore, C1 = C ∩ H is compact, as a closed set of C, and
C1 is countably infinite, as H is countable and X ⊆ C1 is infinite. Since the countable
subgroup H of G carries its Bohr topology, we shall work from now on in H#.
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According to Theorem B.5.11, C1 has a nontrivial convergent sequence {xn}n∈ℕ.
Since it is contained in H along with its limit, it is not restrictive to assume that it
is a null sequence in H#. This means that {χ(xn)}n∈ℕ converges to 0 in𝕋 for all χ ∈ Ĥ#.
Algebraically, Ĥ# coincides with the dual group K of the discrete group H. By Propo-
sition 13.1.1(b), K is compact and

ωH (xn)(χ) = χ(xn)→ 0 in 𝕋 for every χ ∈ K. (13.6)

Hence, letting for every n ∈ ℕ, Fn = {χ ∈ K:∀m ≥ n,ωH (xm)(χ) ∈ Λ4}, we get an
increasing chainF0 ⊆ F1 ⊆ ⋅ ⋅ ⋅ ⊆ Fn ⊆ ⋅ ⋅ ⋅of closed sets ofK withK = ⋃n∈ℕ Fn. SinceK is
compact, from TheoremB.5.20we deduce that some Fn0 must have nonempty interior,
i. e., there exist ξ ∈ K and U ∈ 𝒱K(0) with ξ + U ⊆ Fn0 . Hence, ωH (xm)(ξ + U) ⊆ Λ4 for
all m ≥ n0. From (13.6) we deduce that there exists n1 ∈ ℕ such that ωH (xm)(ξ ) ∈ Λ4
for allm ≥ n1. Therefore, ωH (xm)(U) ⊆ Λ2 for allm ≥ n2 = max{n0, n1}.

From (13.6)wededuce that, for every χ ∈ K, there existsnχ ∈ ℕ such that χ(xn) ∈ Λ2
for all n ≥ nχ . By the compactness ofK = ⋃χ∈K(χ+U), there exist χ1, . . . , χs ∈ K such that
K = ⋃si=1(χi +U). Let n3 = max{nχ1 , . . . , nχs } and n4 = max{n2, n3}. Then ωH (xm)(K) ⊆ Λ1
for allm ≥ n4. As Λ1 contains no nontrivial subgroups,ωH (xm) = 0 for allm ≥ n4. This
entails xm = 0 for all m ≥ n4, since ωH is an isomorphism in view of Theorem 13.4.8.
Thus, {xn}n∈ℕ is trivial, a contradiction.

13.4.2 Exactness of the duality functor

For a topological abelian group G and a subset X of G, the annihilator of X in Ĝ is

AĜ(X) := {χ ∈ Ĝ: χ(X) = {0}},

and for a subset Y of Ĝ the annihilator of Y in G is

AG(Y) := {x ∈ G: χ(x) = 0 for every χ ∈ Y}.

When no confusion is possible, we omit the subscripts and write A(X) and A(Y).

Lemma 13.4.10. Let G be a topological abelian group and M a subset of G. Then:
(a) AĜ(M) is a closed subgroup of Ĝ;
(b) the correspondence M → AĜ(M) is monotone decreasing;
(c) AĜ(M) = AĜ(⟨M⟩);
(d) if 0 ∈ M ⊆ G and 0 ∈ M′ ⊆ G, then AĜ(M +M

′) = AĜ(M) ∩ AĜ(M
′);

(e) AĜ(mG) = Ĝ[m] for every m ∈ ℕ+.

Proof. (a) Assume that {χα}α∈A is a net in AĜ(M) converging to χ in Ĝ. Since the net
converges also in the (coarser) pointwise-convergence topology, χα(x)→ χ(x) for every
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x ∈ M. As χα(x) = 0 for all α ∈ A, we deduce that χ(x) = 0 for all x ∈ M, i. e., χ ∈ AĜ(M),
hence this set is closed.

(b) is obvious.
(c) Use (b) and the fact that when χ ∈ Ĝ vanishes onM, it also vanishes on ⟨M⟩.
(d) The inclusion AĜ(M +M

′) ⊆ AĜ(M) ∩ AĜ(M
′) easily follows from (b) andM ⊆

M +M′ ⊇ M′. The other inclusion is obvious.
(e) For ξ ∈ Ĝ, ξ ∈ Ĝ[m] if and only if ξ (mG) = {0}, namely, ξ ∈ AĜ(mG).

Next we show a first use of the annihilator in a direct consequence of Theo-
rem 11.6.3.

Proposition 13.4.11. Every closed subgroup of a locally compact abelian group G is du-
ally closed.

Proof. Let H be a closed subgroup of G and let a ∈ G \ H. By Theorem 11.6.3, G/H is
MAP, that is, Ĝ/H separates the points of G/H, and so there exists ξ ∈ Ĝ/H such that
ξ (q(a)) ̸= 0, where q:G → G/H is the canonical projection. Now χ = ξ ∘ q ∈ AĜ(H) and
χ(a) ̸= 0.

Call a continuous homomorphism f :G → H of topological groups proper if f :G →
f (G) is open, when f (G) carries the topology inherited from H. A continuous surjec-
tive homomorphism is proper if and only if it is open, while an injective continuous
homomorphism is proper if and only if it is an embedding.

A short sequence 0 → G1
f
→ G h
→ G2 → 0 in ℒ, where f and h are continuous

homomorphisms, is exact if f is injective, h is surjective and im f = ker h; we call it
proper if f and h are proper.

Proposition 13.4.12. Let G be a locally compact abelian group, H a closed subgroup of
G, i:H → G the canonical inclusion, and q:G → G/H the canonical projection. Then the
sequence

0→ Ĝ/H
q̂
→ Ĝ î
→ Ĥ

is exact, q̂ is proper, and im q̂ = AĜ(H). If H is open or compact, î is open and surjective.

Proof. According to Lemma 13.3.7(d), q̂ is an embedding, so it is proper. We have that
î ∘ q̂ = q̂ ∘ i = 0, hence im q̂ ⊆ ker î. If ξ ∈ ker î = AĜ(H), then ξ (H) = {0}. So, there
exists ξ1 ∈ Ĝ/H such that ξ = ξ1 ∘ q (i. e., ξ = q̂(ξ1)), and we can conclude that ker î =
im q̂ = AĜ(H). Thus, the sequence is exact.

If H is open or compact, Corollary 13.3.8(a) implies that î is surjective. It remains
to show that î is open. If H is compact, then Ĥ is discrete by Proposition 13.1.1(a), so
î is obviously open. If H is open, let K be a compact neighborhood of 0 in G such
that K ⊆ H. Then W = WĜ(K,Λ4) is a compact neighborhood of 0 in Ĝ. Since î is
continuous and surjective, V = î(W) = WĤ (K,Λ4) is a compact neighborhood of 0 in
Ĥ. NowM = ⟨W⟩ andM1 = ⟨V⟩ are compactly generated open subgroups of Ĝ and Ĥ,
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respectively, and î(M) = M1. SinceM is σ-compact by Lemma 8.3.2, we apply the open
mapping theorem (Theorem 8.4.1) to î↾M :M → M1, and so î is open.

The next corollary of Proposition 13.4.12 says that the duality functor preserves
proper exactness for some sequences.

Corollary 13.4.13. If the sequence 0 → G1
f
→ G h
→ G2 → 0 in ℒ is proper exact, with G1

compact or G2 discrete (i. e., G1 open), then 0→ Ĝ2
ĥ
→ Ĝ

f̂
→ Ĝ1 → 0 is proper exact with

the same property (i. e., Ĝ1 is discrete or Ĝ2 is compact).

Corollary 13.4.14. For a locally compact abelian group G and a closed subgroup H of
G, Ĝ/H ≅ AĜ(H). If H is open or compact, then Ĥ ≅ Ĝ/AĜ(H).

Corollary 13.4.15. Let G be a locally compact abelian group and H a closed subgroup
of G. If H is open (respectively, compact), then AĜ(H) is compact (respectively, open).

Proof. If H is open, then G/H is discrete by Lemma 3.2.10(a) and so Ĝ/H ≅ AĜ(H)
is compact by Corollary 13.4.14 and Proposition 13.1.1(b). If H is compact, then Ĥ ≅
Ĝ/AĜ(H) is discrete by Corollary 13.4.14 and Proposition 13.1.1(a), so AĜ(H) is open by
Lemma 3.2.10(a).

For the duality functor, f is an epimorphism in ℒ if and only if f̂ is a monomor-
phism:

Corollary 13.4.16. Let f :G → H be a continuous homomorphism of locally compact
abelian groups. Then the following conditions are equivalent:
(a) f (G) is dense in H;
(b) f̂ is injective (i. e., f̂ is a monomorphism in the category ℒ);
(c) if g ∘ f = h ∘ f for a pair of morphisms g, h:H → L in ℒ, then g = h (i. e., f is an

epimorphism in the category ℒ);
(d) if g ∘ f = 0 for a morphism g:H → L in ℒ, then g = 0.

Proof. (a)⇒(b) If f (G) is dense in H then f̂ is injective by Lemma 13.3.7(a). As far as
the second assertion is concerned, it is easy to check the monomorphisms in ℒ are
precisely the continuous injective homomorphisms (see Exercise 13.7.5).

(b)⇒(c) Assume that g ̸= h. Then the subgroupN = {x ∈ H : g(x) = h(x)} is a proper
closed subgroup of H containing f (G). By Proposition 13.4.11, there exists a nonzero
χ ∈ AĤ (N). Since f (G) ⊆ N, one has χ ∘ f = f̂ (χ) = 0. This contradicts the injectivity of f̂ .

(c)⇒(d) Apply (c) for the pair of morphisms g and 0.
(d)⇒(a) Assume that f (G) is not dense inH. Then f (G) is a proper closed subgroup

of H. Let a ∈ H \ f (G). By Proposition 13.4.11, there exists χ ∈ AĤ (f (G)) such that
χ(a) ̸= 0. In particular, χ ̸= 0. On the other hand, our choice of χ entails χ ∘ f = 0,
which leads to χ = 0, according to our hypothesis applied to g = χ. This contradiction
proves that f (G) is dense in H.
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13.4.3 Proof of the Pontryagin-van Kampen duality theorem

Now we can prove the Pontryagin-van Kampen duality theorem, namely, that ω is a
natural equivalence from 1ℒ to ̂̂:ℒ→ ℒ.

Theorem 13.4.17. If G is a locally compact abelian group, then ωG:G →
̂̂G is a topolog-

ical isomorphism.

Proof. We know by Proposition 13.4.6 that ω is a natural transformation from 1ℒ to
̂̂:ℒ → ℒ. Our plan is to chase the given locally compact abelian group G into an
appropriately chosen proper exact sequence 0 → G1

f
→ G h
→ G2 → 0 in ℒ, with G1

compact or G2 discrete, such that both G1 and G2 satisfy the Pontryagin-van Kampen
duality theorem. By Corollary 13.4.13, the sequences

0→ Ĝ2
ĥ
→ Ĝ

f̂
→ Ĝ2 → 0 and 0→ ̂̂G1

̂̂f
→ ̂̂G

̂̂h
→ ̂̂G2 → 0

are proper exact. By Proposition 13.4.6, the following diagram commutes:

0 → G1
f
→ G h

→ G2 → 0

ωG1

↑↑↑↑↓
↑↑↑↑↓
ωG

↑↑↑↑↓
ωG2

0 → ̂̂G1 →̂̂f

̂̂G →
̂̂h

̂̂G2 → 0

According to Remark 13.4.2 and Proposition 13.4.1, ωG1
, ωG, and ωG2

are injective con-
tinuous homomorphisms. Moreover, ωG1

and ωG2
are surjective by our choice of G1

and G2. Then ωG must be surjective too, by Lemma A.5.3.
If G is compactly generated, by Proposition 11.6.2 we can choose G1 compact and

G2 elementary locally compact. Then G1 and G2 satisfy the Pontryagin-van Kampen
duality theorem by Theorems 13.4.7 and 13.4.8, so ωG is a continuous isomorphism
by Lemma A.5.3. Since G is σ-compact by Lemma 8.3.2, we conclude with the open
mapping theorem (Theorem 8.4.1) that ωG is a topological isomorphism.

In the general case, we can take a compactly generated open subgroup G1 of G.
This produces a proper exact sequence 0→ G1

f
→ G h
→ G2 → 0withG1 compactly gen-

erated and G2 ≅ G/G1 discrete. By the previous case,ωG1
is a topological isomorphism

andωG2
is an isomorphism thanks to Theorem13.4.7. Therefore,ωG is a continuous iso-

morphism by LemmaA.5.3. Since f is an embeddingwith open image, to show thatωG

is open, it is enough to verify thatωG ∘f =
̂̂f ∘ωG1

(the equality due to Proposition 13.4.6)

is open. As ωG1
is a topological isomorphism, it is enough to prove that ̂̂f : ̂̂G1 →

̂̂G is

open. Since Ĝ2 is compact, Corollary 13.4.13 applied to 0 → Ĝ2
ĥ
→ Ĝ

f̂
→ Ĝ1 → 0

yields that the homomorphism ̂̂f is an embedding. Further, im ̂̂f = ker ̂̂h = A ̂̂G(im ĥ)
by Proposition 13.4.12. As im ĥ is compact, we conclude thatA ̂̂G(im ĥ) is open by Corol-

lary 13.4.15. So, ̂̂f is open.
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We give a first application of Theorem 13.4.8, with Proposition 13.1.1:

Corollary 13.4.18. A locally compact abelian groupG is compact (respectively, discrete)
if and only if Ĝ is discrete (respectively, compact).

Proof. If Ĝ is compact (respectively, discrete), Proposition 13.1.1 implies that ̂̂G is dis-
crete (respectively, compact). So, the assertions follow from Theorem 13.4.17.

Finally, let us discuss the uniqueness of the Pontryagin-van Kampen duality. For
topological abelian groups G,H denote by Chom(G,H) the group of all continuous
homomorphismsG → H equippedwith the compact-open topology. Itwaspointedout
already by Pontryagin that the group𝕋 is the unique locally compact abelian group L
with the property Chom(Chom(𝕋, L), L) ≅ 𝕋 (note that this ismuchweaker than asking
Chom(−, L) to define a duality of ℒ).

Much later Roeder proved:

Theorem 13.4.19 (Roeder theorem [250]). The Pontryagin-van Kampen duality functor
is the unique functorial duality of ℒ, i. e., the unique involutive duality of ℒ.

See §16.2.1 for amore rigorous formulation and further results in the realmof topo-
logical modules.

13.5 Further properties of the annihilators

Our last aim concerning the annihilators is to prove that they define an inclusion-
inverting bijection between the family of all closed subgroups of a locally compact
abelian group G and the family of all closed subgroups of its dual Ĝ. We use the fact
that one can identify G and ̂̂G by the topological isomorphism ωG.

Lemma 13.5.1. If G is a locally compact abelian group and H a closed subgroup of G,
then H = AG(AĜ(H)) = ω

−1
G (A ̂̂G(AĜ(H))).

Proof. Clearly, H ⊆ AG(AĜ(H)), the equality H = AG(AĜ(H)) follows immediately from
Proposition 13.4.11. The second equality follows from the first and Exercise 13.7.14.

Remark 13.5.2. Let G be a locally compact abelian group.
(a) LetH a subgroupofG. The equalityH = AG(AĜ(H))holds if andonly ifH is a closed

subgroup ofG by Lemma 13.5.1, Lemma 13.4.10(a), and by Pontryagin-vanKampen
duality theorem 13.4.17. In particular, one can deduce from this equivalence and
Lemma 13.4.10(c) that AG(AĜ(H)) = H for an arbitrary subgroup H of G.

(b) According to Lemma 13.4.10(e), Ĝ[m] = AĜ(mG) for every m ∈ ℕ+, hence Lem-
ma 13.5.1 and item (a) give AG(Ĝ[m]) = AG(AĜ(mG)) = mG.

(c) If K is a compact subgroup of Ĝ, then AG(K) is open in G. Indeed, A ̂̂G(K) is open in
̂̂G by Corollary 13.4.15, and AG(K) = ω−1G (A ̂̂G(K)) by Exercise 13.7.14.
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For a locally compact abelian group G, let 𝒮(G) denote the complete lattice of all
closed subgroups of G.

Corollary 13.5.3. Let G be a locally compact abelian group. The pair of maps

AĜ:𝒮(G)→ 𝒮(Ĝ) and AG:𝒮(Ĝ)→ 𝒮(G)

define a complete lattice antiisomorphism. For every family {Hi: i ∈ I} in 𝒮(G),

AĜ (∑
i∈I

Hi) =⋂
i∈I

AĜ(Hi) and AĜ (⋂
i∈I

Hi) =∑
i∈I

AĜ(Hi). (13.7)

Analogously, for every family {Li: i ∈ I} in 𝒮(Ĝ),

AG (∑
i∈I

Li) =⋂
i∈I

AG(Li) and AG (⋂
i∈I

Li) =∑
i∈I

AG(Li). (13.8)

Proof. The map AĜ:𝒮(G) → 𝒮(Ĝ) is monotone decreasing by Lemma 13.4.10(b). By
Lemma 13.5.1, the maps AĜ:𝒮(G) → 𝒮(Ĝ) and AG:𝒮(Ĝ) → 𝒮(G) are inverse to each
other, so they are bijective and AG is monotone decreasing as well.

To prove (13.7), note that the inclusion AĜ (∑i∈I Hi) ⊆ ⋂i∈I AĜ(Hi) follows from the
monotonicity of AĜ, while the opposite inclusion is immediate from the definition of
the annihilator. Analogously, one can prove that AG (∑i∈I Li) = ⋂i∈I AG(Li) in (13.8).
As the subgroups of the second equalities in (13.7) and (13.8) are closed, it is sufficient
to prove that their annihilators in G, respectively in Ĝ, are the same. Remark 13.5.2(a)
gives AG(∑i∈I AĜ(Hi)) = AG(∑i∈I AĜ(Hi)) = ⋂i∈I AG(AĜ(Hi)) = ⋂i∈I Hi = AG(AĜ(⋂Hi)).
The remaining equality in (13.8) can be shown analogously.

Corollary 13.5.4. Let G be a discrete abelian group. If H is a pure subgroup of G, then
AĜ(H) is a pure subgroup of Ĝ.

Proof. Put for brevity K = Ĝ and pick anm ∈ ℕ+. The purity of H givesmH = mG ∩H,
so taking the annihilators and making use of Corollary 13.5.3, as AK(mG) = K[m] by
Lemma 13.4.10(e) and Lemma 13.5.1, we getAK(mH) = AK(mG)+AK(H) = K[m]+AK(H).
AsAK(mH) = {χ ∈ K:mχ ∈ AK(H)} by ExampleA.4.9(b), this shows thatAK(H) is a pure
subgroup of K.

We can extend the isomorphism in Corollary 13.4.14 to the general case:

Proposition 13.5.5. Let G be a locally compact abelian group and H a closed subgroup
of G. Then AĜ(H) ≅ Ĝ/H and Ĝ/AĜ(H) ≅ Ĥ. More precisely, Ĝ/AĜ(H)→ Ĥ, χ +AĜ(H) →
χ ↾H , is a topological isomorphism; in particular, this shows that H is dually embedded
in G.
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Proof. The first assertion follows from Corollary 13.4.14. We apply this result to
Ĝ/AĜ(H) in order to deduce that

A ̂̂G(AĜ(H))→
?Ĝ/AĜ(H), η → (χ + AĜ(H) → η(χ)),

is a topological isomorphism. According to Lemma 13.5.1, ωG(H) = A ̂̂G(AĜ(H)). Com-
posing ωG ↾H with the above topological isomorphism gives that

ϕ:H → ?Ĝ/AĜ(H), h → (χ + AĜ(H) → ωG(h)(χ) = χ(h)),

is a topological isomorphism. Hence, also ϕ̂ is a topological isomorphism by Corol-
lary 13.3.9. Composingwith the topological isomorphismωĜ/AĜ(H)

(see Pontryagin-van
Kampen duality theorem 13.4.17), one obtains the topological isomorphism

ρ: Ĝ/AĜ(H)→ Ĥ , χ + AĜ(H) → ϕ̂ ∘ ωĜ/AĜ(H)
(χ + AĜ(H)).

For h ∈ H,

ϕ̂ ∘ ωĜ/AĜ(H)
(χ + AĜ(H))(h) = ωĜ/AĜ(H)

(χ + AĜ(H))(ϕ(h)) = χ(h).

This shows that ρ(χ + AĜ(H)) = χ ↾H , as desired.

13.6 Duality for precompact abelian groups

Another duality can be obtained for precompact abelian groups as follows. First of
all, for every topological abelian group G, the dual Ĝ of G equipped with the topol-
ogy of the pointwise convergence instead of the finer compact-open topology will be
denoted by Ĝpw. Then

̂̂Gpw is a subgroup of ̂̂G. Moreover, for every x ∈ G obviously
ωG(x)(W({x},Λ1)) ⊆ Λ1, i. e., ωG(x) ∈

̂̂Gpw. Therefore, the image of ωG is actually con-
tained in ̂̂Gpw for every topological abelian group G. This allows us to define the ho-

momorphism γG:G →
?(Ĝpw)pw by simply putting γG(x) = ωG(x) for every x ∈ G. Hence,

disregarding the topology of the second dual group (and the larger codomain), this
map coincides with ωG.

The next lemma follows directly from the definitions.

Lemma 13.6.1. For a topological abelian group G, χ1, . . . , χn ∈ Ĝ, δ > 0, and the
neighborhood U = {z ∈ 𝕊: |Arg(z)| < δ} of 0 in 𝕋 ≅ 𝕊, we have UG(χ1, . . . , χn; δ) =
γ−1G (W ̂̂G({χ1, . . . , χn},U)).

Immediately we can give the promised duality for precompact abelian groups.

Theorem 13.6.2. The assignment G → Ĝpw defines a duality in the category of precom-

pact abelian groups, more precisely γG:G →
?(Ĝpw)pw is a topological isomorphism for

every precompact abelian group G.
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Proof. By the definition of Ĝpw, its topology coincides with 𝒯G. This proves that γG is
surjective in viewofProposition 11.3.10. The injectivity of γG follows fromRemark 13.4.2
and the precompactness of G. The continuous characters of G separate the points of G
by Proposition 3.1.20(a). That γG is a homeomorphism follows from Lemma 13.6.1 and
the fact that a basic neighborhood of 0 in ?(Ĝpw)pw has the formW ̂̂G({χ1, . . . , χn},U) for
some χ1, . . . , χn ∈ Ĝ and a neighborhood U of 0 in 𝕋 ≅ 𝕊.

13.7 Exercises

Exercise 13.7.1. For χ, ξ ∈ ℤ∗ with ker χ = ker ξ = {0}, prove that 𝒯χ = 𝒯ξ if and only if
ξ = χ±1.
Hint. Use the completion and that ±id𝕋 are the only topological automorphisms of 𝕋.

Exercise 13.7.2. For an infinite abelian group G, prove that d(G#) = |G|, χ(G#) =
w(G#) = 2|G|, while ψ(G#) = log |G|.
Hint. To prove the first equality, use the fact that every subgroup of G# is closed. To prove the second
chain of equalities, apply Corollary 11.4.5 and use the fact that |G∗| = 2|G| (see Theorem 13.3.11). For the
third one, use the fact that if |G| ≤ 2κ for some infinite cardinal κ, then G is isomorphic to a subgroup
of 𝕋κ .

Exercise 13.7.3. Let G be a discrete abelian group, p a prime, and χ ∈ Ĝ. Prove that:
(a) χ ∈ pĜ if and only if χ(G[p]) = {0};
(b) pχ = 0 in Ĝ if and only if χ(pG) = {0}.

Conclude that:
(c) a discrete abelian group G is divisible (respectively, torsion-free) if and only if Ĝ is

torsion-free (respectively, divisible);
(d) the groups ℚ̂ and ℚ̂p are torsion-free and divisible.

Exercise 13.7.4. LetG be a discrete abelian torsion group. Show that Ĝ is a hereditarily
disconnected compact group.
Hint. For every x ∈ G, the neighborhoodWĜ(⟨x⟩,Λ1) is an open subgroup of Ĝ.

Exercise 13.7.5. Prove that the monomorphisms in ℒ are precisely the continuous in-
jective homomorphisms.
Hint. Clearly, all continuous injective homomorphisms between locally compact abelian groups are
monomorphisms in ℒ. If f :G → H is a noninjective continuous homomorphism of locally compact
abelian groups, pick a ∈ ker f \ {0} and consider the homomorphism g:ℤ → G defined by g(1) = a.
Obviously, f ∘ g = 0 = f ∘ 0, yet g ̸= 0, where 0 denotes the zero morphism ℤ→ G.

Exercise 13.7.6. Prove that bG:G → bG is a bimorphism inℒ for every locally compact
abelian group G. Deduce that a locally compact abelian group G is:
(a) compact if and only if every bimorphism G → H in ℒ is an isomorphism;
(b) discrete if and only if every bimorphism H → G in ℒ is an isomorphism.
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Deduce from (a) and (b) an alternative proof of Proposition 13.1.1.
Hint. Apply Corollary 13.4.16 and Exercise 13.7.5.

Exercise 13.7.7. Let H be a subgroup of ℝn. Prove that every χ ∈ Ĥ extends to a con-
tinuous character of ℝn.
Hint. Applying Theorem 7.1.18, extend χ ∈ Ĥ to a continuous character of H and apply Theorem 9.2.2.

Exercise 13.7.8. Prove without recourse to the Pontryagin-van Kampen duality theo-
rem that a discrete abelian group G satisfies ̂̂G ≅ G whenever:
(a) G is divisible;
(b) G is free;
(c) G is of finite exponent;
(d) G is torsion and every primary component of G is of finite exponent.

Hint. (a) Use Example 13.2.4, Example 13.3.14(b), and the fact that every divisible abelian group is a
direct sum of copies ofℚ and of ℤ(p∞), with p prime (see Theorem A.2.17).

(c), (d) Use that fact that every abelian group of finite exponent is a direct sumof cyclic subgroups
(i. e., Prüfer theorem A.1.4).

Exercise 13.7.9. Prove that, for every locally compact abelian groupG, the groupG×Ĝ
is selfdual.

Exercise 13.7.10. Give an example of:
(a) a selfdual locally compact abelian group G such that some quotients and some

closed subgroups of G are not selfdual;
(b) a selfdual locally compact abelian group G such that all nontrivial quotients and

all proper nontrivial closed subgroups of G are not selfdual.

Exercise 13.7.11. Let G be a reflexive group. Show that also Ĝ is reflexive.

Exercise 13.7.12. Show that a compact group K admits a continuous homomorphism
f :ℝ→ K with f (ℝ) = K if and only if K is connected, abelian, and w(K) ≤ c.
Hint. The necessity follows from the connectedness of f (ℝ) and the fact that f (ℝ) is separable, so
w(K) = w(f (ℝ)) ≤ c. For the sufficiency, note that if G is connected and w(K) ≤ c, then K̂ is a torsion-
free abelian group of size ≤ c. Hence, there exists an injective homomorphism j: K̂ → ℝ. Then com-
posing ĵ: ℝ̂ → ̂̂K with the topological isomorphisms ℝ ≅ ℝ̂ and ω−1K we obtain the desired continuous
homomorphism f :ℝ→ K. By Corollary 13.4.16, it has dense image since j is a monomorphism in ℒ.

Exercise 13.7.13. Show that a(K) is dense in c(K) for every compact abelian group K.
Hint. It suffices to see that a(K) is dense in K when K is a connected compact abelian group. Let H =
a(K) and note that H contains the union U of all connected metrizable closed subgroups of K, by
Exercise 13.7.12. In view of ⟨U⟩ ≤ H, it suffices to show that ⟨U⟩ is dense in K. To this end consider the
torsion-freedualX = K̂ andpick for everynon-zero x ∈ X a subgroupYx ofXmaximalwith theproperty
Yx ∩ ⟨x⟩ = {0}. Then X/Yx is a rank-one torsion-free abelian group, so its dual Kx =?X/Yx = A(Yx) is a
connected metrizable closed subgroup of K, so Kx ⊆ U . Since⋂x∈X\{0} Yx = {0} and Yx = A(Kx), we get
A(∑x∈X\{0} Kx) = ⋂x∈X\{0} A(Kx) = {0}, so ∑x∈X\{0} Kx = K. Since∑x∈X\{0} Kx ⊆ ⟨U⟩, this yields that ⟨U⟩
is dense in K, and we are done.
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Exercise 13.7.14. Let G be a locally compact abelian group and Y a subset of Ĝ. Prove
that A ̂̂G(Y) = ωG(AG(Y)).

Exercise 13.7.15. Deduce from Glicksberg theorem 11.6.11 that for locally compact
abelian groups G,H, a group homomorphism f :G → H is continuous if and only if
χ ∘ f :G → 𝕋 is continuous for every χ ∈ Ĥ.

13.8 Further readings, notes, and comments

Here we briefly explain how the Pontryagin-van Kampen duality theorem was ex-
tended to some non-locally compact topological abelian groups and the relation to
the duality theory of locally convex spaces.

The dual space V ′ of a normed vector space V over the field K ∈ {ℝ,ℂ} is the
set of all continuous linear forms V → K. With pointwise defined operations and en-
dowed with the strong topology (a neighborhood base at 0 is given by suitably de-
fined polars of bounded subsets), it is again a normed space, which allows one to it-
erate this process. A normed space V is called reflexive if the canonical map V → V ′′,
x → (f → f (x)) is a topological isomorphism. Many famous and important Banach
spaces, e. g., the sequence spaces ℓp for p ∈ {1,∞}, are not reflexive in this sense. Sur-
prisingly, Smith [262] showed that every Banach space satisfies the Pontryagin-van
Kampen duality theorem. Although the dual space of a real normed vector space is
canonically isomorphic to its dual group (when considered as a topological abelian
group), the dual objects are endowed with different topologies: the compact-open
topology is strictly coarser than the strong topology in case V has infinite dimen-
sion.

Now we discuss a property of reflexive groups that is not sufficient for reflexivity
butmuch easier to deal with. Vilenkin [282] introduced the notions of quasi-convexity
and local quasi-convexity as follows. A subset A of a topological abelian group G is
called quasi-convex if for every x ∈ G \ A there exists χ ∈ Ĝ such that χ(A) ⊆ 𝕋+
and χ(x) ∉ 𝕋+ where 𝕋+ = {t +ℤ: |t| ≤

1
4 }. This notion generalizes convexity in lo-

cally convex vector spaces due to the description of closed convex sets given by the
Hahn–Banach theorem. A topological abelian group is locally quasi-convex if it has
a neighborhood base at 0 consisting of quasi-convex sets. The dual of every topologi-
cal abelian group is locally quasi-convex, so reflexive groups are locally quasi-convex,
while locally quasi-convex Hausdorff groups are MAP.

A topological vector space is locally quasi-convex if and only if it is locally con-
vex (see [18]). The class of locally quasi-convex groups is closed under taking arbitrary
products and subgroups, but it fails to be closed under takingHausdorff quotients (ac-
tually, every Hausdorff group is a quotient of a locally quasi-convex Hausdorff group).
Since every reflexive group is locally quasi-convex, this property is necessary but not
sufficient – as we shall see soon – for reflexivity.
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While the local quasi-convexity of a topological abelian group G implies that the
canonical map ωG is open with respect to its image, the injectivity of ωG is equivalent
to G being MAP. However, the continuity and surjectivity of ωG are not as well classi-
fied.While the continuity is somehow related to k-space properties of the groupG, the
surjectivity requires some forms of completeness (e. g., a metrizable reflexive group
must be complete). However, the group Z = L2ℤ([0, 1]) of all square-integrable almost
everywhere integer valued functions on [0, 1] is a closed subgroup of the Hilbert space
L2([0, 1]), so complete and metrizable. Nevertheless, the dual homomorphism î of the
inclusion map i:Z → L2([0, 1]) is a topological isomorphism (see [11]), which implies
that Z = L2ℤ([0, 1]) is not reflexive. The group Z is locally quasi-convex (being a sub-
group of the Hilbert space L2([0, 1])) andωZ is continuous by Proposition 13.4.1. So,ωZ
is an embedding with closed image, which is not surjective.

In general, the dual group of a metrizable abelian group G is not only σ-compact
(see Corollary 13.1.3(b)), but also hemicompact which means that Ĝ can be written as
a countable union of compact sets such that every compact subset of Ĝ is contained
in one of these. Further, Ĝ is a k-space (see [11, 44]). Due to Proposition 13.4.1, ωĜ is
continuous. Since Ĝ is locally quasi-convex, the canonical mapping ωĜ is an embed-
ding. For example, the group Z = L2ℤ([0, 1]) ismetrizable but not reflexive. Its character
group is topologically isomorphic to the reflexive character group of L2([0, 1]), hence
reflexive. So, in this particular case ωẐ is not only an embedding, but a topological
isomorphism.

However, it is an open question whether the dual group of a metrizable abelian
group G is reflexive in general (see [11, (5.23)]). Only the surjectivity of ωĜ remains to
be proved or disproved. Since the dual group of a metrizable abelian group is a hemi-
compact k-space (and by Corollary 13.1.3 also vice versa), the above question can be
equivalently reformulated: let H be a topological abelian group which is a hemicom-
pact k-space. Is Ĥ reflexive?

Also in this situation, examples which suggest a positive answer are available:
for every compact space K, the free abelian topological group A(K) is a hemicompact
k-space, but A(K) is reflexive if and only if K is hereditarily disconnected (see [11, 220,
226]), while its character group is reflexive for all compact spaces (see [11, 151]).

It was shown by Kaplan [182] that arbitrary products of reflexive groups are re-
flexive. Leptin [196] gave an example of a closed subgroup C of a product P of discrete
groups such thatωC is not continuous but open and bijective. (Observe that P is reflex-
ive due to Kaplan’s result.) The same failure of reflexivity arises with quotient groups:
every infinite dimensional Banach space E has a discrete free subgroupDwhich is not
dually embedded and with E/Dminimally almost periodic (see [18]).

As described above, closed subgroups and Hausdorff quotient groups of Banach
spaces are in general not reflexive. The situation changes when we consider locally
convex nuclear vector spaces instead of Banach spaces. The intersection of these two
classes of topological vector spaces consists of the finite-dimensional vector spaces.
Although thedefinitionof a locally convexnuclear vector space is abit technical,many
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famous function spaces, such as the space of harmonic functions or that of holomor-
phic functions (with the compact-open topology), are nuclear vector spaces. It was
shown by T. and Y. Kōmura [186] that every real locally convex nuclear space can be
embedded into a product of the sequence space Σ of rapidly decreasing sequences

Σ = {(xn)n∈ℕ+ ∈ ℝ
ℕ+ : sup{nr |xn|: n ∈ ℕ+} <∞ ∀ r ∈ ℕ}

when Σ is endowed with the vector space topology induced by the family {pr : r ∈ ℕ}
of norms where pr : Σ → ℝ+, (xn)n∈ℕ+ → sup{nr |xn|: n ∈ ℕ+}. Locally convex nuclear
vector spaces share many common properties with locally compact abelian groups.
This motivated Banaszczyk to introduce the class of nuclear groups containing the
class of all locally convexnuclear vector spaces and all locally compact abelian groups
(see [18]). This class of groups consists of Hausdorff groups and is closed under taking
subgroups, Hausdorff quotient groups, arbitrary products, and countable sums. Ba-
naszczyk proved that every nuclear group is locally quasi-convex. Since every Haus-
dorff quotient group of a nuclear group is again nuclear, hence a locally quasi-convex
Hausdorff group, it is MAP (asmentioned above). This easily implies that every closed
subgroup of a nuclear group is dually closed. Moreover, every subgroup of a nuclear
group is dually embedded. Nuclear groups have very strong duality properties, as the
following examples shall demonstrate: every completemetrizable nuclear group is re-
flexive (see [18]) and the canonical mapping ωG of every complete nuclear group G is
surjective (see [11]). However, Leptin’s example C, which is a subgroup of a product
of discrete groups and hence nuclear, provides an example of a nonreflexive nuclear
group. There exists noncompact precompact groups (which are, of course, nuclear),
which are reflexive (see [154, 5]). This shows that completeness is sufficient for the
surjectivity of ωG in the class of nuclear groups, but it is not necessary.

Characterizations of reflexive groups were proposed by Venkatamaran [280] and
Kye [193], but they contained flaws. These gaps were removed in the recent paper [170]
of Hernández. While a vector space V that is topologically isomorphic to its bidual V ′′

need not be reflexive (in the vector space sense), the question whether every topolog-
ical group G which is topologically isomorphic to ̂̂G is reflexive is still open. Further
references to this topic can be found also in [44, 151, 172, 45].

According to Glicksberg theorem 11.6.11, the compact sets of a locally compact
group (G, τ) coincide with the compact sets of the Bohr modification (G, τ+) of (G, τ).
In [19] it was shown that a nuclear group (G, τ) and its Bohr modification (G, τ+) share
the same compact, countably compact, and pseudocompact subsets.

We do not discuss here noncommutative versions of duality for locally compact
groups. The difficulties arise already in the compact case: there is no appropriate (or
at least, comfortable) structure on the set of irreducible unitary representations of a
nonabelian compact group. The reader is referred to [174] for a historical panorama of
this trend (Tanaka–Kreĭn duality, etc.). In the locally compact case, one should see the
pioneeringpaper [47] ofH. Chu, aswell as themonograph [175] ofHeyer (see also [176]).
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The reader can find the last achievements in this field in the survey [153] of Galindo,
Hernández, and Wu (see also [84, 171]).

The well-knownMackey–Arens theorem says that a Hausdorff locally convex vec-
tor space has a finest compatible topology. A locally convex vector space that carries
this finest compatible topology is called a Mackey space. Varopoulos [278] studied the
analogue question for locally precompact groups. In 1999, this was further general-
ized for locally quasi-convex groups by Chasco, Martín Peinador, and Tarieladze [46]:
for such a group (G, τ), one can define similarly the notion of a compatible (locally
quasi-convex) group topology η by asking (G, η) to have the same continuous char-
acters as (G, τ), i. e., ?(G, τ) = ?(G, η) as abstract groups. Denoting by 𝒞(G, τ) the poset
of all compatible with τ topologies on G, ordered by inclusion, one can immediately
see that 𝒞(G, τ) has a bottom element, namely, the weak topology τ+. The question
of whether 𝒞(G, τ) has also a top element (named Mackey topology) already posed in
1999 remainedopen for almost twenty years. The survey [14] presents recent (negative)
answers to this problem (see [12, 13, 150]) and many other related results.
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14.1 The structure of compact abelian groups

First, we give a characterization of the connected compact abelian groups.

Proposition 14.1.1. For a compact abelian group K, the following are equivalent:
(a) K is connected;
(b) K is divisible;
(c) K̂ is torsion-free.

Proof. (a)⇔(c) is Proposition 11.6.10.
(b)⇔(c) For m ∈ ℕ+, since AK̂(mK) = K̂[m] by Lemma 13.4.10(e), mK = K if and

only if K̂[m] = {0}. So, K is divisible precisely when K̂[m] = {0} for every m ∈ ℕ+,
namely, K̂ is torsion-free.

Remark 14.1.2. Proposition 14.1.1 fails in the noncompact case: (b)⇏(a) is witnessed
by ℚp ≅ ℚ̂p divisible (see Example 13.2.6), but not connected; while (c)⇏(b) is wit-
nessed by Exercise 14.5.1.

On the other hand, one can prove that if G is a divisible locally compact abelian
group, then Ĝ is torsion-free following the proof of Proposition 14.1.1, while a con-
nected locally compact abelian group G is of the form ℝn × K, where n ∈ ℕ and K is a
connected compact abelian group by Corollary 14.2.11(a) below, and so G is divisible
since K is divisible by Proposition 14.1.1.

As an application of the Pontryagin-van Kampen duality theorem, we describe
the structure of some classes of compact abelian groups, such as the monothetic or
the bounded ones.

Theorem 14.1.3. Let K be a compact abelian group. Then K is monothetic if and only if
K̂ admits an injective homomorphism into 𝕋.

Proof. The group K is monothetic if and only if there exists a homomorphism ℤ → K
with dense image. According to Corollary 13.4.16, this is equivalent to the existence of
an injective homomorphism K̂ → 𝕋.

Corollary 14.1.4. Let K be a compact abelian group.
(a) If K is connected, then K is monothetic if and only if w(K) ≤ c.
(b) If K is hereditarily disconnected, then K is monothetic if and only if K is isomorphic

to a quotient group of∏p∈ℙ 𝕁p.

Proof. By Proposition 13.1.1(a), G = K̂ is discrete.
(a) By Proposition 14.1.1,G is torsion-free, soG admits an injective homomorphism

into𝕋 precisely when r0(G) ≤ c by Example A.2.16(b); equivalently, |G| ≤ c. It remains
to recall that w(K) = |G| by Corollary 11.4.5. To conclude, apply Theorem 14.1.3.

https://doi.org/10.1515/9783110654936-014
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(b) By Corollary 11.6.7, G is torsion. Since t(𝕋) = ℚ/ℤ, the torsion abelian group G
admits an injective homomorphism into 𝕋 if and only if G admits an injective homo-
morphism into ℚ/ℤ. This is equivalent to being K isomorphic to a quotient group of
∏p∈ℙ 𝕁p ≅ ℚ̂/ℤ, by Proposition 13.4.12 and Theorem 13.4.17.

Now we provide more information on the set MK of topological generators of a
compact abelian group K.

Theorem 14.1.5. Let K be a compact abelian group. Then:
(a) MK = {x ∈ K:ωK(x) is injective};
(b) MK is the intersection of at most |K̂| open sets;
(c) if K is connected and metrizable, MK is a dense Gδ-set of K.

Proof. (a) Let x ∈ MK and χ ∈ K̂. If ωK(x)(χ) = χ(x) = 0, then χ(K) = {0}, and so χ ≡ 0
(by assumption). This shows that kerωK(x) = {0} and hence that ωK(x) is injective.
Conversely, assume that x ∈ K is not a topological generator of K, i. e., ⟨x⟩ ̸= K. By
Proposition 13.4.11, there exists a nontrivial continuous character χ ∈ AK̂(⟨x⟩). This
character satisfies 0 = χ(x) = ωK(x)(χ). Since χ was not the trivial character, this yields
that ωK(x) is not injective.

(b) For χ ∈ K̂ \ {0}, the set Uχ = K \ ker χ is open. In view of (a),MK = ⋂χ∈K̂\{0} Uχ,
soMK is an intersection of at most |K̂| open sets.

(c) Since K is compact andmetrizable, K̂ is countable by Corollary 13.1.3(b). More-
over, as K is connected, ker χ has empty interior for every χ ∈ K̂ \ {0}, i. e., the open set
Uχ = K \ ker χ is dense. Theorem B.5.20, applied to the compact group K, yields that
MK = ⋂χ∈K̂\{0} Uχ is a dense Gδ-set.

Now we describe the torsion compact abelian groups.

Theorem 14.1.6. Every torsion compact abelian group K is bounded, and there exist
m1, . . . ,mn ∈ ℕ+ and cardinals α1, . . . , αn such that K ≅ ∏

n
i=1ℤ(mi)

αi .

Proof. Since K = ⋃n∈ℕ+ K[n!] is a union of closed subgroups, we conclude, with The-
orem B.5.20, that K[n!] is open for some n ∈ ℕ+, so must have finite index, by the
compactness of K. This yields mK = {0} for some m ∈ ℕ+, so also mK̂ = {0}. By
Prüfer theorem A.1.4, there exist m1, . . . ,mn ∈ ℕ+ and cardinals α1, . . . , αn such that
K̂ ≅ ∏ni=1ℤ(mi)

(αi). Then by Theorems 13.4.7 and 13.3.5, as well as Example 13.3.3(a),
K ≅ ̂̂K ≅ ∏ni=1ℤ(mi)

αi .

Nextwe compute the density character of a compact abelian groupK as a function
of its weight w(K) = |K̂| (see Corollary 11.4.5 for this equality). More precisely, given
the already known inequality w(K) ≤ 2d(K) from Lemma 5.1.5, valid for all topological
groups, now we see that the density character d(K) has the smallest possible value
(with respect to w(K)).

Proposition 14.1.7. For K an infinite compact abelian group, d(K) = logw(K).
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Proof. Let κ = min{β:w(K) ≤ 2β}. Then the inequality w(K) ≤ 2d(K) (see Lemma 5.1.5)
implies κ ≤ d(K).

Since rp(𝕋κ) = r0(𝕋κ) = 2κ, the inequality |K̂| = w(K) ≤ 2κ, given by Corol-
lary 11.4.5, and the divisibility of 𝕋κ ensure that there exists an injective homomor-
phism j: K̂ → 𝕋κ. Therefore, the continuous homomorphism ĵ:ℤ(κ) ≅ 𝕋κ → ̂̂K ≅ K has
dense image by Corollary 13.4.16. This proves d(K) ≤ κ.

Now we consider the case of connected compact abelian groups.

Proposition 14.1.8. For a connected compact abelian group K, the subgroup t(K) is
dense in K if and only if K̂ is reduced. Consequently, every connected compact abelian
group K has the form K ≅ K1 × ℚ̂α for some cardinal α, where K1 = t(K).

Proof. Since K̂ is discrete byProposition 13.1.1(a) and torsion-free byProposition 14.1.1,
K̂ is reduced if and only if ⋂m∈ℕ+ mK̂ = {0}, by Proposition A.4.6(e). Since AK(mK̂) =
K[m] by Lemma 13.4.10(e), so Corollary 13.5.3 implies

AK ( ⋂
m∈ℕ+

mK̂) = ∑
m∈ℕ+

K[m] = ⋃
m∈ℕ+

K[m] = t(K).

Therefore, the equality⋂m∈ℕ+ mK̂ = {0} is equivalent to the density of t(K) in K.
To prove the second assertion, consider the torsion-free and discrete dual K̂ and

its decomposition K̂ = div(K̂) ×R, where R is a reduced subgroup of K̂, given by Theo-
rem A.4.3. Since K̂ is torsion-free, there exists a cardinal α such that div(K̂) ≅ ℚ(α), by
Theorem A.2.17. Therefore, ?div(K̂) ≅ ℚ̂α in view of Theorem 13.3.5. On the other hand,
by the first part of the proof, the connected compact abelian group K1 = R̂ has dense
torsion part t(K1). Since K ≅

̂̂K ≅ ℚ̂α × K1 by Theorems 13.4.7 and 13.3.5, and ℚ̂α is
torsion-free by Exercise 13.7.3(d), the torsion subgroup of ̂̂K coincides with t(K1), so its
closure gives K1.

We conclude with a result on the structure of hereditarily disconnected compact
abelian groups.

Theorem 14.1.9. A compact abelian group K is hereditarily disconnected if and only if
K = ∏p∈ℙ Kp, where each Kp is a closed topological 𝕁p-module. The closed subgroups M
of K are of the form M = ∏p∈ℙMp where Mp is a closed subgroup of Kp for every p ∈ ℙ.

Proof. By Corollary 11.6.5(b), K is hereditarily disconnected if and only if K̂ is tor-
sion, which is equivalent to K̂ = ⨁p∈ℙ tp(K̂). According to Corollary 11.6.8, the group

Xp :=
?tp(K̂) is topologically p-torsion, and so Xp ⊆ Kp. Since K ≅ ∏p∈ℙ Xp by Theo-

rems 13.3.5 and 13.4.7, and as (Xq)p = {0} for every q ∈ ℙ \ {p} by Corollary 11.6.9 and
Exercise 5.4.14(d), we conclude that for every prime p necessarily Kp ≅ Xp; in particu-
lar, Kp is closed as Xp is compact by Proposition 13.1.1(b). Thus, K ≅ ∏p∈ℙ Kp, where
each Kp is a 𝕁p-module by Remark 5.3.7.
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The last assertion follows from the first one applied to M and the fact that Mp =
M ∩ Kp (see Exercise 5.4.14(a)), soMp is a closed subgroup of Kp.

By Corollary 8.5.7, K in Theorem 14.1.9 is equivalently profinite. Each Kp is a
pro-p-group in view of Corollary 11.6.8.

Remark 14.1.10. For an arbitrary compact abelian group K, the sum of the family of
all closed hereditarily disconnected subgroups of K coincides with td(K) and plays
a prominent role (recall that td(N) = N for all closed hereditarily disconnected
subgroups N of K, by Exercise 8.7.11). Since Kp = tdp(K) ⊆ td(K) for all primes p
(by Corollary 11.6.9), td(K) contains the sum wtd(K) of all subgroups Kp (see Exer-
cise 5.4.14(d)) and it is, like the subgroups Kp, functorial, so td(∏i∈I Ki) = ∏i∈I td(Ki),
td(H) = H ∩ td(K), and td(K/H) = (td(K) + H)/H for a closed subgroup H of K (see
Exercises 14.5.3 and 5.4.14).

14.2 The structure of LCA groups
14.2.1 The subgroup of compact elements of an LCA group

Definition 14.2.1. For a topological group G, let B(G) be the union of all compact sub-
groups of G. Moreover, G is compactly covered if G = B(G).

Clearly, if G is compact, then G = B(G), that is, G is compactly covered. On the
other hand, a locally compact group G satisfies G = B(G) precisely when G contains
no subgroups isomorphic to ℤ, according to Theorem 10.2.9.

Example 14.2.2. (a) For every n ∈ ℕ, B(ℝn) = {0}.
(b) If G is a proper subgroup of 𝕋 properly containing t(𝕋), then B(G) = t(𝕋) ̸= G. In

particular, B(G) is a proper dense subgroup of G. This shows that B(G) need not
be closed.

Remark 14.2.3. Let G be a topological group.
(a) For every closed subgroup H of G, B(H) = B(G) ∩ H.
(b) If f :G → H is a continuous homomorphism, then f (B(G)) ⊆ B(H).
(c) If G = ∏i∈I Gi for a family {Gi: i ∈ I} of topological groups, then B(G) = ∏i∈I B(Gi).

The following lemma is a direct consequence of the definition.

Lemma 14.2.4. Let G be a topological abelian group. Then B(G) is a subgroup of G and
t(G) ⊆ B(G).

In the nonabelian case, B(G)may fail to be a subgroup of the topological group G.
Indeed, B(G) = t(G) in a discrete group G, so it suffices to take a discrete group G such
that t(G) is not a subgroup of G (e. g., G = ℤ ⋊ℤ(2)).

Our aim is to prove in Corollary 14.3.10 that the conclusion of the following propo-
sition characterizes the hereditarily disconnected locally compact abelian groups.
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Proposition 14.2.5. For a locally compact abelian group G and every prime p, the sub-
group Gp is contained in B(G). If G is hereditarily disconnected, then B(G) is open and
Gp is closed in G.

Proof. Pick an element x ∈ Gp. If x is torsion, then x ∈ B(G). Otherwise, the infinite
cyclic subgroup ⟨x⟩ is nondiscrete, as pnx → 0. By Theorem 10.2.9, ⟨x⟩ is contained in
B(G).

If G is hereditarily disconnected, then G has a compact open subgroup K, by van
Dantzig theorem8.5.1. SinceK ⊆ B(G), this entails thatB(G) is open.Moreover, by The-
orem 14.1.9, Kp is compact and hence Kp = K ∩ Gp (see Exercise 5.4.14(a)) is a compact
open subgroup of Gp, so Gp is locally compact, in particular closed in G by Proposi-
tion 8.2.6.

The locally compact abelian groups G with B(G) = G and c(G) = {0} are known
also under the name periodic locally compact abelian groups:

Definition 14.2.6 ([169]). A locally compact abelian group G is periodic if G is heredi-
tarily disconnected and compactly covered.

Van Dantzig theorem 8.5.1 implies that a locally compact abelian group G is peri-
odic if and only if G has a hereditarily disconnected compact open subgroup K such
that G/K is torsion and (necessarily) discrete. Therefore, for such a group G, the dual
Ĝ is periodic as well, since A(K) ≅ Ĝ/K is a hereditarily disconnected compact open
subgroup of Ĝ and Ĝ/A(K) ≅ K̂ is torsion (see also Corollary 14.2.16).

Remark 14.2.7. Any two compact open subgroups K,K1 of a (necessarily) locally com-
pact abelian group are commensurable, namely, the indices [K : K∩K1] and [K1 : K∩K1]
are finite.

The next theorem, due to Braconnier (see [41]), describes the structure of the pe-
riodic locally compact abelian groups via local direct products.

Theorem 14.2.8. For a periodic locally compact abelian group G, the subgroup Gp is

closed for every prime p and G ≅
loc
∏p∈ℙ(Gp,Kp), where K = ∏p∈ℙ Kp is a compact open

subgroup of G.

Proof. By van Dantzig theorem 8.5.1, G has a compact open subgroup K, which splits
in a direct product K = ∏p∈ℙ Kp, as in Theorem 14.1.9.

According to Proposition 14.2.5, the subgroup Gp is closed. Moreover, the open-
ness of K in G yields that Gp = {x ∈ G:∃n ∈ ℕ, pnx ∈ Kp}. In particular, Gp/Kp is a
p-torsion group.

By Exercise 5.4.14(d) and Corollary 11.6.9, wtd(G) =⨁p∈ℙ Gp.
Let us see thatG = K+wtd(G). Indeed, fix g ∈ G. Since the groupG/K is compactly

covered and discrete, it is torsion. So, there existsm = pk11 ⋅ ⋅ ⋅ p
ks
s ∈ ℕ+ such thatmg ∈

K, where p1, . . . , ps are pairwise distinct primes, k1, . . . , ks ∈ ℕ+, and s ∈ ℕ+. Let P =
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{p1, . . . , ps} andM = ∏p∈ℙ\P Kp; we prove that

g ∈ M + ∑
p∈P

Gp ⊆ K + wtd(G).

Write mg = h′ + h′′, where h′ ∈ ∏p∈P Kp and h
′′ ∈ M. SinceM = mM by Remark 5.3.7,

we can write h′′ = mz, with z ∈ M. Thenm(g − z) = h′ ∈ ∏p∈P Kp. Letting g1 = g − z, it
suffices to show that g1 ∈ ∑p∈P Gp. Observe that in case s = 1 this means that h′ ∈ Kp1
and thenmg1 = p

k1
1 g1 = h

′ ∈ Kp1 , so g1 ∈ Gp1 .
Letmi = m/p

ki
i for every i ∈ {1, . . . , s}, so the greatest common divisor ofm1, . . . ,ms

is 1, and hence 1 = ∑si=1 uimi for suitable u1, . . . , us ∈ ℤ. Therefore, g1 = ∑
s
i=1 uimig1. The

above discussed case s = 1 applies to show that mig1 ∈ Gpi for every i ∈ {1, . . . , s}, and
this proves that g1 ∈ ∑p∈P Gp. Consequently, g = z + g1 ∈ M +∑p∈P Gp, as required.

14.2.2 The structure theory of LCA groups

Using the full power of the Pontryagin-van Kampen duality theorem one can prove the
following structure theorem.

Theorem 14.2.9. Let G be a compactly generated locally compact abelian group. Then
G ≅ ℝn ×ℤm × K, where n,m ∈ ℕ and K is a compact abelian group.

Proof. According to Proposition 11.6.2, there exists a compact subgroup K of G such
that G/K is an elementary locally compact abelian group. Taking a bigger compact
subgroup, one can get the quotient G/K to be of the form ℝn × ℤm for some n,m ∈ ℕ.
Now, by Proposition 13.5.5 and Theorem 13.3.5, A(K) ≅ Ĝ/K ≅ ℝn ×𝕋m is an open sub-
group of Ĝ, asA(K) = W(K,Λ1) (by the definition of the compact-open topology). Since
A(K) is divisible, Ĝ ≅ ℝn × 𝕋m × D by Corollary A.2.7, and D ≅ Ĝ/A(K) ≅ K̂ (again by
Proposition 13.5.5). Taking the duals, Pontryagin-van Kampen duality theorem 13.4.17
gives G ≅ ̂̂G ≅ ℝn ×ℤm × K.

Making sharper use of the annihilators, we describe in Theorem 14.2.18 the struc-
ture of locally compact abelian groups. Theorem 14.2.9 can be obtained as a corollary,
but we need Theorem 14.2.9 for the proof of Theorem 14.2.18.

We first propose some consequences of Theorem 14.2.9.

Corollary 14.2.10. If G is a locally compact abelian group, then B(G) is closed.

Proof. Let x ∈ B(G) and letH be a compactly generated open subgroup ofGwith x ∈ H.
By Theorem 14.2.9, H ≅ ℝn ×ℤm × K for some compact subgroup K of G and n,m ∈ ℕ.
Hence, B(H) = K is closed in H.

Next we show that B(G) ∩ H ⊆ B(G) ∩ H. Indeed, pick y ∈ B(G) ∩ H and a neigh-
borhood W of y in G. Since y ∈ H and H is open, we can assume that W ⊆ H. So,
W∩(B(G)∩H) = W∩B(G) ̸= 0. Hence, y ∈ B(G) ∩ H. This gives, also byRemark 14.2.3(a),
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x ∈ B(G)∩H ⊆ B(G) ∩ H = B(H) = B(H) ⊆ B(G). So, x ∈ B(G), and this proves that B(G)
is closed.

Corollary 14.2.11. Let G be a connected locally compact abelian group. Then:
(a) G is compactly generated, so G ≅ ℝn×C for some connected compact abelian group

C and n ∈ ℕ;
(b) C = B(G) is the largest compact subgroup of G (so fully invariant) and n is the largest

possible dimension of an affine subgroup V (i. e., V ≅ ℝm for some m ∈ ℕ) of G, in
particular n is uniquely determined by G.

Proof. (a) If U is a compact neighborhood of 0 in G, then U generates an open sub-
group H of G that is obviously compactly generated. Since G is connected, H = G.
From Theorem 14.2.9 we deduce that G ≅ ℝn × C for some compact group C that is
necessarily connected, as G is connected.

(b) Letp:G ≅ ℝn×C → ℝn be the canonical projection. ByRemark 14.2.3,p(B(G)) ⊆
B(ℝn) = {0}, according to Example 14.2.2. Therefore, B(G) ⊆ C, and hence C = B(G) is
the largest compact subgroup of G.

Now assume thatV ≅ ℝm is an affine (so, necessarily closed) subgroup ofG. Since
the kernel C of the projection p is compact, p is a closed map, by Lemma 8.2.2. Hence,
p(V) is a closed subgroup of ℝn. Since C ∩ V = {0}, the restriction p↾V :V → p(V) is a
continuous isomorphism between locally compact abelian groups.

Since V is σ-compact, the open mapping theorem (Theorem 8.4.1) implies that
p ↾V is open. So, p(V) ≅ V ≅ ℝm is a connected closed subgroup of ℝn. This implies
m ≤ n, by Theorem 9.2.2.

Remark 14.2.12. (a) It follows from the above corollary that for an arbitrary locally
compact abelian group G there is a highest dimension n for the affine subgroups
V ≅ ℝn of G (it suffices to note that each V is necessarily contained in the closed
subgroup c(G), so Corollary 14.2.11 applies to c(G)).

(b) It follows from Exercise 13.7.13 and the above corollary that a(G) is dense in c(G)
for every locally compact abelian group G.

Theorem 14.2.13. If G is a locally compact abelian group, then

c(G) = AG(B(Ĝ)) and B(G) = AG(c(Ĝ)).

Proof. Let {Ki: i ∈ I} be the family of all compact subgroups of Ĝ. By definition, B(Ĝ) =
∑i∈I Ki. By Remark 13.5.2(c), {AG(Ki): i ∈ I} is precisely the family of all open subgroups
of G, so Theorem 8.5.2(b) yields ⋂i∈I AG(Ki) = c(G). To conclude, Corollary 13.5.3 and
Lemma 13.4.10(c) give

c(G) =⋂
i∈I

AG(Ki) = AG (∑
i∈I

Ki) = AG(B(Ĝ)).
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This equality and Theorem 13.4.17 imply that

c(Ĝ) = AĜ(B(
̂̂G)) = AĜ(ωG(B(G))) = AĜ(B(G)).

Hence, as B(G) is closed by Corollary 14.2.10, Remark 13.5.2(a) implies that B(G) =
AG(AĜ(B(G))) = AG(c(Ĝ)), as desired.

Proposition 14.2.14. Let G be a locally compact abelian group. Then B(G)+c(G) is open
and B(G) ∩ c(G) is the maximal connected compact subgroup of G.

Proof. Let H be a compactly generated open subgroup of G. By Theorem 14.2.9, H =
R ⊕ D ⊕ K topologically, where K is a compact subgroup of G, R ≅ ℝn, D ≅ ℤm and
n,m ∈ ℕ. Clearly,R⊕K is an open subgroupofH, hence ofG aswell. On the other hand,
R ⊆ c(G) and K ⊆ B(G). So, R ⊕ K is an open subgroup of G contained in c(G) + B(G).
Therefore, c(G) + B(G) is open.

By Corollary 14.2.11, c(G) = S ⊕ C, where S ≅ ℝm and C = B(c(G)) is a connected
compact subgroupof c(G). AsC = B(G)∩c(G) (seeRemark 14.2.3(a)) obviously contains
all connected compact subgroups of G, we are done.

Corollary 14.2.15. For K a compact abelian group, c(K) = A(t(K̂)).

Proof. Now K̂ is discrete byProposition 13.1.1(a), henceB(K̂) = t(K̂), so Theorem14.2.13
applies.

From Theorem 14.2.13 and Corollary 14.2.10, we obtain also the following charac-
terization of hereditarily disconnected locally compact abelian groups as those locally
compact abelian groupswith compactly covereddual group, or vice versa, a character-
ization of compactly covered locally compact abelian groups as those locally compact
abelian groups with hereditarily disconnected dual group.

Corollary 14.2.16. A locally compact abelian group G is hereditarily disconnected (re-
spectively, compactly covered) if and only if Ĝ is compactly covered (respectively, hered-
itarily disconnected). In particular, G is periodic if and only if Ĝ is periodic.

The next is the last step before proving Theorem 14.2.18.

Lemma 14.2.17. Let G be a locally compact abelian group and let K, L be closed sub-
groups of G such that algebraically G is the direct sum of the subgroups K and L and K
is compactly generated. Then the topology on G coincides with the product topology of
K ⊕ L.

Proof. Let C be a compact subset of K that generates K and let U be a compact neigh-
borhood of 0 in G. Then H = ⟨C + U⟩ is a compactly generated open subgroup of G
containing K and algebraically H = K ⊕ (L ∩ H), as K ⊆ H.

Since the inclusion maps of K and L∩H inH are continuous, the identity isomor-
phism idH :K⊕(L∩H)→ H is continuouswhenK⊕(L∩H) is endowedwith the product
topology. AsK and L∩H (as closed subgroups ofH) are σ-compact, idH :K⊕(L∩H)→ H
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is openby theopenmapping theorem (Theorem8.4.1). Therefore, also the identitymap
idG:K ⊕ L→ G is a topological isomorphism, as L ∩ H is open in L.

Theorem 14.2.18. If G is a locally compact abelian group, then G ≅ ℝn × G0, where
n ∈ ℕ and G0 is a closed subgroup of G containing a compact open subgroup.

Proof. By Corollary 14.2.11(a), there exist connected compact subgroups C of G and K
of Ĝ and closed subgroups R ≅ ℝn of G and S ≅ ℝm of Ĝ such that c(G) = R ⊕ C and
c(Ĝ) = S ⊕ K topologically. We verify that

R + AG(S) = G and S + AĜ(R) = Ĝ. (14.1)

Observe first that S + AĜ(R) is an open subgroup of Ĝ. Indeed, R ⊆ c(G) and hence
Theorem 14.2.13 implies B(Ĝ) = AĜ(c(G)) ⊆ AĜ(R). So, c(Ĝ) + AĜ(R) ⊇ c(Ĝ) + B(Ĝ),
which is an open subgroup according to Proposition 14.2.14. Analogously, R+AG(S) is
an open subgroup of G. By Example 14.2.2 and Remark 14.2.3, {0} = B(R) = B(G) ∩ R.
By Corollary 13.5.3 and Theorem 14.2.13, Ĝ = c(Ĝ) + AĜ(R), as the latter subgroup is
open and hence closed. Analogously, G = c(G) + AG(S). By Theorem 14.2.13 and the
compactness of C,

C ⊆ B(G) = AG(c(Ĝ)) ⊆ AG(S),

where the last inclusion follows from S ⊆ c(Ĝ), by Lemma 13.4.10(b). Consequently,

R + AG(S) ⊇ R + C + AG(S) = c(G) + AG(S) = G,

and this proves the first equality in (14.1). The second equality is proved similarly.
By Corollary 13.5.3, (14.1) yields AĜ(R)∩S = {0} and AG(S)∩R = {0}. Consequently,

R ⊕ AG(S) = G and S ⊕ AĜ(R) = Ĝ.

By Lemma 14.2.17, G and Ĝ are endowed with the respective product topology, since R
and S are compactly generated. By Remark 14.2.12 and by the choice of R, this implies
that AG(S) contains no copies of ℝ.

It remains to prove that AG(S) admits a compact open subgroup. Let H be a com-
pactly generated open subgroup of AG(S); as AG(S) contains no copies of ℝ, Theo-
rem 14.2.9 implies that H ≅ ℤk × H1, where H1 is a compact subgroup of H and k ∈ ℕ.
Since H1 is open in H, it is open also in AG(S).

This is the strongest structure theorem concerning locally compact abelian
groups. The affine subgroup ℝn is not uniquely determined (one can see that in
ℝ × 𝕋), but its dimension n is. According to [9, p. 595], the group G0 is unique up to
topological isomorphism. If n = 0, we say that G is line-free.

According to Corollary 11.4.5, w(K) = |K̂| = w(K̂) for a compact abelian group K.
Now we extend this equality between weights.
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Corollary 14.2.19. If G is a locally compact abelian group, then w(G) = w(Ĝ).

Proof. Since this equality is obviously true for finite groups, we assume that G is infi-
nite. By Theorem 14.2.18,G ≅ ℝn×G0, whereG0 is a closed subgroup ofG containing a
compact open subgroupK. Then Ĝ ≅ ℝn×Ĝ0. So, it suffices toprove thatw(G0) = w(Ĝ0)
in view of Theorem 5.1.15.

As AĜ0
(K) ≅ ?G0/K by Proposition 13.5.5 and it is a compact open subgroup of Ĝ0

(by Remark 13.5.2(c)), Ĝ0/AĜ0
(K) ≅ K̂ is discrete. Next we use the fact that, for an open

subgroup H0 of a topological group H, one has w(H) = w(H0) ⋅ |H/H0|. Applying this
to the pairs (AĜ0

(K), Ĝ0) and (K,G0), we get

w(Ĝ0) = w(AĜ0
(K)) ⋅ |K̂| = |G0/K| ⋅ w(K) = w(G0),

since w(K) = |K̂| and w(AĜ0
(K)) = |G0/K|, by Corollary 11.4.5.

As another consequence of Theorem 14.2.18, one obtains:

Corollary 14.2.20. Every locally compact abelian group is topologically isomorphic to
a closed subgroup of a group of the formℝn×D×C, where n ∈ ℕ, D is a discrete divisible
abelian group, and C is a compact abelian group.

Proof. LetG ≅ ℝn×G0 with n,G0 andK as in Theorem 14.2.18. By Corollary 11.5.2, there
exist a cardinal κ and an embedding j:K → 𝕋κ. Since 𝕋κ is divisible, one can extend
j to a homomorphism j1:G0 → 𝕋

κ, which is continuous by the continuity of j and by
the openness of K in G0.

Since G0/K is discrete, there exists an injective homomorphism j2:G0/K → Dwith
D a discrete divisible abelian group. Then the diagonalmap f = (j1, j2 ∘π):G0 → 𝕋

κ×D,
where π:G0 → G0/K is the canonical projection, is injective and continuous. Since K
is compact, the restriction of f to K is an embedding, by the open mapping theorem
(Theorem 8.4.1). SinceK is open inG0, this yields that f :G0 → 𝕋

κ×D is an embedding.
This provides an embedding ν of G ≅ ℝn × G0 into the group ℝn × 𝕋κ × D. The image
ν(G) ≅ G is a closed subgroup ofℝn×𝕋κ×D since locally compact groups are complete
(see Propositions 8.2.6 and 7.1.22).

14.3 Topological features of LCA groups

14.3.1 Dimension of locally compact groups

In the sequel we discuss the dimension of a locally compact abelian group (see [78,
254, 255] for further information on dimension theory for topological groups). There
are threemajor dimension functions for a topological spaceX: the covering dimension
dimX, the small inductive dimension indX, and the large inductive dimension IndX
(see Definition 14.3.1). We are not going to define the covering dimension here, since
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according to a well-known theorem of Pasynkov [225], in the realm of locally compact
groups X,

dimX = Ind X = ind X. (14.2)

The small inductive dimension ind was introduced by Urysohn and Menger. The
intuitive idea behind it is that a nonempty topological space X has indX = 0 precisely
when it is zero-dimensional in the sense of Definition B.6.6(b); the dimension function
IndX is introduced similarly. Here are the formal definitions:

Definition 14.3.1. Let X be a topological space.
(i) Put indX = −1 for X = 0, and for n ∈ ℕ+ put indX ≤ n if X has a base of open sets

U, such that ind Fr(U) < n.
(ii) Put IndX = −1 for X = 0, and for n ∈ ℕ put IndX ≤ n if every closed set F of X has

a base of open sets U such that ind Fr(U) < n.

Then indX = n for some n ∈ ℕ, if indX ≤ n and indX ̸≤ n− 1; if indX ̸≤ n for all n ∈ ℕ,
we put indX =∞. Analogously for IndX.

Remark 14.3.2. For a topological space X and n ∈ ℕ, note that indX ≤ n is a local
property: if every point x ∈ X has a neighborhood U with indU ≤ n then indX ≤ n.

Obviously, indX ≤ IndX for every T1-space X. Moreover, dimX ≤ IndX for a nor-
mal space X, and furthermore indX ≤ IndX = dimX for every metrizable space X,
according to a theorem of Katětov. While P. S. Alexandrov established that every com-
pact Hausdorff space X satisfies dimX ≤ indX ≤ IndX (see [134]). In particular, (14.2)
holds when X is a compactmetric space. Moreover, according to a theorem of Urysohn
(see [134]), the equality (14.2) is available for all separable metric spaces, in particular
for all spaces considered in the next example.

Example 14.3.3. (a) It is easy to see that indℝ = 1 and indℝn ≤ n for every n ∈ ℕ+.
By Remark 14.3.2, ind𝕋n ≤ n for every n ∈ ℕ+, since 𝕋n and ℝn are locally home-
omorphic.

(b) The highly nontrivial equality dimℝn = n is due to Lebesgue who introduced the
covering dimension. Since 𝕋n and ℝn are locally homeomorphic, we deduce that
dim𝕋n = n.

(c) The Menger–Nöbeling theorem from 1932 (see [134]) states that if X is a separable
compact metric space with dimX = n, then it embeds as a subspace in ℝ2n+1.

Since all locally compact groups satisfy (14.2), from now on we use only dimG for
such groups. Recall that for such groups zero-dimensionality is equivalent to heredi-
tary disconnectedness (see Vedenissov theorem B.6.10).

The following classical additivity result for the covering dimension turns out to
be crucial for the dimension theory of locally compact groups. We refer to [217] for a
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proof. Here, G/H denotes the quotient space, that need not be a group if the subgroup
H is not normal.

Theorem 14.3.4. Let G be a locally compact group and H a closed subgroup of G. Then
dimG = dimG/H + dimH. In particular, if K is another locally compact group, then
dim(G × K) = dimG + dimK.

Theorem 14.3.4 implies that the dimension function is monotone decreasing with
respect to taking quotients and closed subgroups. In items (a) and (c) of the next re-
mark, we discuss two extremal values of the dimension.

Remark 14.3.5. (a) By van Dantzig theorem 8.5.1, hereditarily disconnected locally
compact groups are zero-dimensional and have a local base of compact open sub-
groups (local compactness plays a relevant role here, since dimℚ/ℤ = 0, yetℚ/ℤ
does not carry a linear topology, see Example 6.1.8).

(b) Theorem 14.3.4 yields dimG = dim c(G) for a locally compact group G, as
dimG/c(G) = 0. Thus, the dimension theory of locally compact groups is worth
studying in connected groups.

(c) In Theorem 14.3.4, the locally compact group G is not necessarily finite-dimen-
sional, so it implies that dimG = ∞ precisely when (at least) one of G/H and H,
where H is a closed subgroup of G, is infinite-dimensional.
According to [51, Theorem 1] (see also [51, Remarks (ii)]), a locally compact group
G is homeomorphic to ℝn × K × D, where K is a compact subgroup of G and D is a
discrete space. Since dimension is invariant under homeomorphisms, this (in con-
junction with (b)) shows that dimG = dim(ℝn ×K ×D) = dim(ℝn ×K) = n+dimK.
Hence, a locally compact group is infinite-dimensional if and only if it contains an
infinite-dimensional compact subgroup. This iswhywemainly concentrate on the
compact case.

(d) In order to better exploit Theorem 14.3.4 also in the case of infinite-dimensional
connected compact groups K, only for such groups K we put dimK := w(K) (e. g.,
dim𝕋κ = κ for an arbitrary infinite cardinal κ).
For every compact connected group K, the group K/Z(K) is center-free and
K/Z(K) ≅ K′/(Z(K) ∩ K′) ≅ ∏i∈I Li, where I is either finite (when K′ is a Lie
group), or infinite with |I| = w(K) and each Li is a simple connected compact Lie
group. Moreover, K = K′c(Z(K)).

(e) With K and {Li: i ∈ I} as in (d), denote by L̃i the covering group of Li. This is
a connected compact Lie group with finite center Z(L̃i) such that L̃i/Z(L̃i) ≅ Li.
Moreover, for L = ∏i∈I L̃i there exists a closed totally disconnected subgroup N of
c(Z(K)) × Z(L), such that K ≅ (c(Z(K)) × Z(L))/N and K′ ≅ L/L ∩ N .

Theorem 14.3.6. Let K be a compact abelian group. Then dimK = r0(K̂) and:
(a) for every hereditarily disconnected closed subgroupH of K such that K/H ≅ 𝕋κ, one

has κ = dimK = dimK/H;
(b) there exists a subgroup H of K as in (a), so r0(K) ≥ max{c, 2dimK} = max{c, 2r0(K̂)}.
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Proof. For H as in (a), one has dimH = 0, by Remark 14.3.5(a). So, Theorem 14.3.4
applied to K and H gives dimK = dimK/H = dim𝕋κ = κ, where the last equality
comes from Remark 14.3.5(d).

Next we put G = K̂ and ρ = r0(G), and we prove (b) and ρ = κ. Fix a free sub-
group F ≅ ℤ(ρ) of G such that Y = G/F is torsion. By Lemma 13.4.10(a), H = AK(F)
is a closed subgroup of K such that, in view of Corollary 13.4.14, K/H ≅ F̂ ≅ 𝕋ρ. By
Corollary 11.6.7, H ≅ Ŷ is hereditarily disconnected. This proves the first assertion in
(b). By the conclusion of item (a), ρ = dimK = κ.

The second assertion in (b) follows from r0(K) ≥ r0(𝕋ρ) ≥ max{c, 2ρ}.

The next corollary is covered by the more general Theorem 14.3.8, yet we prefer to
give a direct proof in this case:

Corollary 14.3.7. A nontrivial finite-dimensional connected compact abelian group K is
metrizable, |K| = c, and rp(K) ≤ dimK for every prime p.

Proof. Let n = dimK and G = K̂. Then G is torsion-free by Proposition 11.6.10(b) with
r0(G) = n by Theorem 14.3.6. Hence, D(G) ≅ ℚn by Lemma A.2.14, and in particular G
is countable. Thus, K is metrizable by Corollary 13.1.3(c). Moreover, |K| = 2|G| = c, by
Theorem 13.3.11.

Since AG(K[p]) = pG, by Lemmas 13.4.10(e) and 13.5.1, we deduce from Corol-
lary 13.4.14 that K̂[p] ≅ G/pG. AsG is a torsion-free abelian group of rank n, rp(G/pG) ≤
n. Indeed, if g1, . . . , gn+1 ∈ G, then there exist k1, . . . , kn+1 ∈ ℤ not all 0 such that
∑n+1j=1 kjgj = 0.Wemay assume thatpdoes not divide all kj. Then0 = ∑

n+1
j=1 kjgj ∈ pG, and

so g1 + pG, . . . , gn+1 + pG are dependent in G/pG. Hence, rp(G/pG) ≤ n and each G/pG
is finite. By Example 13.3.3(a), K[p] ≅ K̂[p] ≅ G/pG is finite as well, and we conclude
that rp(K) = rp(K[p]) = rp(G/pG) ≤ n.

Theorem 14.3.8. Let K be a nontrivial connected compact abelian group with σ =
dimK.
(a) There exists a continuous surjective homomorphism q: ℚ̂σ → K with N = ker q

hereditarily disconnected and Np ≅ 𝕁
γp
p for cardinals γp ≤ σ for every prime p, con-

sequently, r0(K) = |K| = 2w(K).
(b) For every q as in (a), γp = rp(K), if γp <∞, otherwise 2γp = rp(K).

Proof. (a) Since K is connected, G = K̂ is discrete and torsion-free by Proposi-
tion 13.1.1(a) and Proposition 11.6.10(a), and β := |G| = w(K) according to Corol-
lary 11.4.5. By Theorem 14.3.6, r0(G) = σ, so G contains a subgroup F ≅ ℤ(σ) with G/F
torsion and β = max{σ,ω}. The divisible hull of G is D(G) ≅ ℚ(σ), by Lemma A.2.14.
Put

L =?D(G) ≅ ℚ̂σ ,

so w(L) = |ℚ(σ)| = β and L is a compact torsion-free abelian group by Proposi-
tion 13.1.1(b) and Exercise 13.7.3(c). We identify in the sequel Ĝ with K in view of
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Pontryagin-van Kampen duality theorem 13.4.17. Let us see that the dual homomor-
phism q: L → K = Ĝ of the inclusion G → D(G), which is obviously continuous
and surjective, is the desired surjective homomorphism. Indeed, the group D(G)/G is
torsion and divisible, hence D(G)/G ≅⨁p∈ℙℤ(p

∞)(γp), where

γp = rp(D(G)/G) ≤ rp(D(G)/F) = σ ≤ β (14.3)

by Proposition A.4.13. Further, N := ker q ≅ ?D(G)/G is hereditarily disconnected by
Corollary 11.6.7, and N ≅ ∏p∈ℙ Np by Theorems 13.3.5 and 14.1.9, where Np ≅ 𝕁

γp
p for

every prime p.
Since L is torsion-free, r0(L) = |L| = 2w(L) = 2β, by Remark 13.3.13. By Theo-

rem 14.3.6, r0(K) ≥ 2β, and K is a quotient of L, so we get 2β = r0(L) ≥ r0(K) ≥ 2β.
Hence, r0(K) = 2β = |K|, by Theorem 13.3.11.

(b) For L, q, and N as in (a), put Yp = {y ∈ L: py ∈ Np} for every prime p. We prove
first that

K[p] = q(Yp) ≅ Yp/Np ≅ Np/pNp,

so rp(K) = rp(Np/pNp). Indeed, the inclusion q(Yp) ⊆ K[p] is trivial. To check the op-
posite inclusion, pick x ∈ K[p]. Then x = q(y) for some y ∈ L with py ∈ N = ∏p∈ℙ Np.
Let

M = ∏
r∈ℙ\{p}

Nr , so that N = Np ×M.

Thenwe canwritepy = (yr)r∈ℙ ∈ N aspy = yp+z, where yp ∈ Np and z = (zr)r∈ℙ\{p} ∈ M.
Since Nr is p-divisible for all primes r ̸= p by Theorem 14.1.9 and Remark 5.3.7, M is
p-divisible as well. So, z = pu for some u ∈ M and py = pu + yp. This means that
yp = p(y − u), so y − u ∈ Yp. As q(u) = 0, we have x = q(y) = q(y − u) ∈ q(Yp). This
proves that K[p] = q(Yp).

Our next aim is to compute ker q ↾Yp= Yp ∩ N . Clearly, Yp ∩ N ⊇ Np. On the other
hand, p(Yp ∩ N) ⊆ Np and pN ∩ Np = pNp, since Np is a direct summand of N . Hence,
p(Yp ∩ N) ≤ pN ∩ Np = pNp. As L is torsion-free, we deduce that Yp ∩ N ⊆ Np, so
ker q↾Yp= Yp ∩ N = Np.

Combining the equalities ker q ↾Yp= Np and K[p] = q(Yp), we obtain that K[p] ≅
Yp/Np (since q is continuous and Yp is compact, Frobenius theorem 3.2.3 and the open
mapping theorem (Theorem 8.4.1) imply that this isomorphism is topological). Now
it only remains to note that pYp = Np, as L is divisible; moreover, the injective con-
tinuous homomorphism μp: L → L, x → px, induces a topological isomorphism
j:Yp → Np, which induces in turn a topological isomorphism Yp/Np ≅ pYp/pNp =
Np/pNp ≅ ℤ(p)γp . Hence,

rp(K) = rp(Np/pNp) = rp(ℤ(p)
γp ).

Therefore, either rp(K) = γp <∞, or rp(K) = 2γp when γp ≥ ω.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



14.3 Topological features of LCA groups | 243

In the sequel we discuss properties of the subgroup Gp, first in case the group G is
connected and compact, and then forG hereditarily disconnected and locally compact
abelian.

Theorem 14.3.9. For a connected compact abelian group K, the subgroup Kp is dense
and proper for every prime p.

Proof. Let us start with K = ℚ̂, which has dimK = r0(ℚ) = 1 in view of Theorem 14.3.6.
SinceK is divisible, for every prime p the groupKp is divisible by Remark 5.3.7; so,H :=
Kp is divisible as well (see Exercise 3.5.18). There exists a continuous surjective homo-
morphism q:K → 𝕋, by Example 13.3.14(a). By Exercise 14.5.4(b), q(Kp) = 𝕋p ̸= {0},
hence H ̸= {0} is a nontrivial connected compact abelian group by Proposition 14.1.1,
and consequently dimH > 0. By Theorem 14.3.4, dimK/H = 0, as dimK = 1 and
dimH > 0. Since the quotient K/H is connected, we deduce that H = K, i. e., Kp is
dense in K.

Now let K = ℚ̂σ for a cardinal σ. According to Exercise 5.4.14 and Corollary 11.6.9,
Kp = ((ℚ̂)p)σ, hence Kp is dense in K as a consequence of the fact above that (ℚ̂)p is
dense in ℚ̂.

In the general case, if σ = dimK, there exists a continuous surjective homomor-
phism q: ℚ̂σ → K, by Theorem 14.3.8. Since L := ((ℚ̂)p)σ is dense in ℚ̂σ and q(L) ⊆ Kp
by Exercise 5.4.14, we conclude that Kp is dense in K. By Exercise 5.4.14(d) and Corol-
lary 11.6.9, the sum of all Kp is direct, hence the density of each Kp yields proper-
ness.

The above property does not hold in the noncompact case: for example, ℝp = {0}
for every prime p.

Corollary 14.3.10. A locally compact abelian groupG is hereditarily disconnected if and
only if G is line-free and all subgroups Gp are closed.

Proof. We can assume without loss of generality that G contains no copies of ℝ, so
that G has a compact open subgroup K by Theorem 14.2.18.

If G is hereditarily disconnected, then each Gp is closed by Proposition 14.2.5. If G
is not hereditarily disconnected, thenK is not hereditarily disconnected either. Hence,
c(K)p is a proper dense subgroup of c(K) by Theorem 14.3.9. As c(K)p = Gp ∩ c(K), and
c(K)p is not closed in c(K), we deduce that Gp is not closed in G.

The compact group ℚ̂ is closely related to the Adele ring Aℚ of the field ℚ, the

subring ofℝ×∏p∈ℙℚp defined by Aℚ := ℝ×
loc
∏p∈ℙ(ℚp, 𝕁p) (more details can be found

in [94, 117, 205, 289]).

Theorem 14.3.11. The diagonal subgroup Q := {(r, (r)p∈ℙ) ∈ Aℚ: r ∈ ℚ} of Aℚ is discrete
and Aℚ/Q ≅ ℚ̂ is compact.
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Proof. Let K = Aℚ/Q and let q:Aℚ → K be the canonical projection.We show first that
K is compact.

To this end, consider the closed subgroup N = {0} ×
loc
∏p∈ℙ(ℚp, 𝕁p) of Aℚ, its com-

pact subgroup H = {0} ×∏p∈ℙ 𝕁p and u = (0, (1p)p∈ℙ) ∈ H. Then the subgroupℚ ⋅ u =
{(0, (r)p∈ℙ): r ∈ ℚ} is contained in N, since for r = n/m ∈ ℚ one has r ⋅ 1p ∈ 𝕁p for all
primes p ∤ m. Moreover, a standard proof using the Chinese remainder theorem shows
that ⟨u⟩ is dense in H. This implies that

ℚ ⋅ u + H = N and ℚ ⋅ u is dense in N .

Indeed, for x ∈ N there existsm ∈ ℕ+ withmx ∈ H. AsmH is open and ⟨u⟩ is dense in
H, there exists k ∈ ℤ such that ku ∈ mx + mH, i. e., mx ∈ ku + mH. Pick a ξ ∈ H with
mx = ku +mξ , then x = (k/m)u + ξ ∈ ℚ ⋅ u +H. This proves the equality N = ℚ ⋅ u +H,
which yields the density ofℚ ⋅ u in N, as ⟨u⟩ is dense in H.

Consider the open neighborhood U = ((−1/2, 1/2) × {0}) + H of 0 in Aℚ. Since
ℚ ∩ 𝕁p = {

k
m : k ∈ ℤ, p ∤ m} for every prime p, we get U ∩ Q = {0}, so the subgroup Q

is discrete, hence closed in Aℚ. Thus, L := Q + H is closed in Aℚ, by Lemma 8.2.1(a).
Sinceℚ × {0} +ℚ ⋅ u = (ℚ × {0}) + Q, one has

N ⊆ (ℚ × {0}) + N = (ℚ × {0}) +ℚ ⋅ u + H = (ℚ × {0}) + Q + H = (ℚ × {0}) + L.

Therefore, Aℚ = (ℝ × {0}) + N = (ℝ × {0}) + L. As Q ∩ H = {0}, q(L) = q(H) ≅ H, and so
q(L) is a compact subgroup of K; moreover,

K/q(L) ≅ (Aℚ/Q)/(L/Q) ≅ Aℚ/L ≅ (ℝ × {0}) + L/L ≅ ℝ × {0}/(ℝ × {0}) ∩ L ≅ ℝ/ℤ,

where the isomorphismℝ×{0}/(ℝ×{0})∩L→ Aℚ/L ≅ (ℝ×{0})+L/L is topological. In-
deed, it is continuous, by Theorem3.2.8(c), and it is open since the domain is compact.
This proves that K/q(L) is compact. Therefore, K is compact, by Lemma 8.2.3(b).

It remains to see that K ≅ ℚ̂. By using Pontryagin-van Kampen duality theo-
rem 13.4.17, it is enough to check that K̂ ≅ ℚ.

Next we prove thatK is connected. To this end, we note that (ℝ×{0})+Q is a dense
subgroup of Aℚ because it contains the dense subgroupℚ ⋅ u of N . Since q((ℝ × {0}) +
Q) = q(ℝ× {0}), this is a dense connected subgroup of K, so K is connected as well. By
Proposition 11.6.10(a), K̂ is torsion-free.

Moreover, sinceQ is discrete, Theorem 14.3.4 gives dimK = dimAℚ = dim c(Aℚ) =
dimℝ = 1. Hence, r0(K̂) = 1, by Theorem 14.3.6.

Finally, to show that K = Aℚ/Q is torsion-free, we consider the following alge-
braic isomorphisms: the subgroup B := (Q + N)/Q ≅ N of K is torsion-free and K/B =
(Aℚ/Q)/(Q + N)/Q ≅ ((ℝ × {0}) + N)/((ℚ × {0}) + N) ≅ ℝ/ℚ is torsion-free as well. By
Exercise 13.7.3(c), K̂ is divisible.

Since we have seen that the discrete abelian group K̂ is torsion-free, divisible and
of rank 1, we deduce that K̂ ≅ ℚ.
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Example 14.3.12. This theorem allows us to consider the quotient K = Aℚ/Q as the
dual ofℚ. According to Remark 8.5.11(b), q(a(Aℚ)) = a(K). As a(Aℚ) = c(Aℚ) = ℝ× {0}
and q ↾ℝ×{0} is injective, this entails that a(K) = q(ℝ × {0}) is a continuous isomor-
phic image of ℝ. For the surjective continuous homomorphism q:Aℚ → K, one has
q(c(Aℚ)) ̸= c(K) = K. Indeed, otherwise ℝ → K, x → q(x, (0)), would be a contin-
uous isomorphism and by the open mapping theorem (Theorem 8.4.1) a topological
isomorphism. (Compare this with Corollary 8.5.10.)

14.3.2 The Halmos problem: the algebraic structure of compact abelian groups

Halmos [163] noticed that the compact group ℚ̂, being divisible and torsion-free with
|ℚ̂| = c, is algebraically isomorphic to ℝ = ℚ(c), and deduced that one can endow the
reals with a compact group topology. He posed the problem to determine all abelian
groups that support a compact group topology, in other words, to describe the alge-
braic structure of all compact abelian groups.

In the attempt to give a solution to the Halmos problem, a new relevant class of
abelian groups, namely, that of algebraically compact groups, was introduced by Ka-
plansky as those abelian groups that are summands of abelian groups admitting a
compact group topology.

Definition 14.3.13. An abelian group G is algebraically compact if it is a direct sum-
mand of every abelian group containing it as a pure subgroup.

These groups are also named pure-injective because of the following equivalent
form, due to Maranda, that we are not going to use here:

Fact 14.3.14. Anabelian groupG is algebraically compact if and only if for every abelian
group H, any homomorphism from a pure subgroup of H to G can be extended to a ho-
momorphism H → G.

Remark 14.3.15. We recall some properties of algebraically compact abelian groups
(even if not all are used in the sequel):
(a) ([174, Theorem (25.21)]) compact abelian groups are algebraically compact ;
(b) ([223]) a reduced abelian group is algebraically compact if and only if it is Haus-

dorff and complete in the ℤ-adic topology ;
(c) ([138]) every abelian group can be embedded as a pure subgroup in an alge-

braically compact group;
(d) ([137, Theorem 3]) every linearly compact group is algebraically compact.

Remark 14.3.16. The connected component c(K) of a compact abelian group K is di-
visible by Corollary 14.1.1 and K/c(K) is hereditarily disconnected, so profinite. There-
fore, K ≅ c(K) × K/c(K) algebraically, and div(K) = c(K) admits a connected compact
group topology, while the reduced profinite part R = K/c(K) admits a hereditarily dis-
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connected compact group topology. Since hereditarily disconnected compact groups
are profinite (see Remark 8.5.5), we deduce that the abelian groups admitting heredi-
tarily disconnected compact group topologies are actually residually finite.

Since, for an abelian group G, Theorem A.4.3 implies that G ≅ div(G) × Rwhere R
is a reduced subgroup ofG, if we equip div(G)with a compact (necessarily connected)
group topology and R with a compact (necessarily hereditarily disconnected) group
topology, we can take the compact product topology on G.

In this way we are left with these two cases. We start with the second.

Theorem 14.3.17. A reduced abelian group K admits a compact group topology if and
only if there exist cardinals {σp: p ∈ ℙ} and {αn,p: p ∈ ℙ, n ∈ ℕ} such that

K is algebraically isomorphic to ∏
p∈ℙ
(𝕁σpp × ∏

n∈ℕ+
ℤ(pn)αn,p) . (14.4)

Proof. Starting with the necessity of (14.4), assume that K is a reduced abelian group
that admits a compact, necessarily hereditarily disconnected, group topology. Then
K ≅ ∏p∈ℙ Kp, where each Kp is a 𝕁p-module, by Theorem 14.1.9. First, we note that
⋂n∈ℕ p

nKp = {0} for all primes p. Indeed, the discrete dual group K̂p is a p-group, so
K̂p = ∑n∈ℕ K̂p[p

n], and we obtain {0} = ⋂n∈ℕ AKp (K̂p[p
n]) = ⋂n∈ℕ p

nKp from Corol-
lary 13.5.3, Lemma 13.5.1, and Lemma 13.4.10(e).

On the other hand, Kp is q-divisible for all primes q ̸= p, so one has Kp =
⋂m∈ℕ+ ,(m,p)=1mK. Therefore, the subgroups Kp = {x ∈ K: p

nx → 0} are determined
also by a purely algebraic condition. Hence, one can “localize” the problem by study-
ing the algebraic structure of the hereditarily disconnected compact abelian groups
of the form Kp.

According to Theorem A.4.11, the dual X = K̂p has a basic subgroup B. Then B =
⨁n∈ℕ+ ℤ(p

n)(αn,p), for cardinals αn,p with n ∈ ℕ+, B is a pure subgroup of X and X/B ≅
ℤ(p∞)(σp), with a suitable cardinal σp, is divisible. Identifying X̂ with Kp in view of
Theorem 13.4.7, we obtain a closed subgroup N = AKp (B) of Kp such that, in view of
Proposition 13.5.5, Example 13.2.4, and Theorem 13.3.5,

N ≅ X̂/B ≅ 𝕁σpp and Kp/N ≅ B̂ ≅ ∏
n∈ℕ+
ℤ(pn)αn,p .

According to Corollary 13.5.4, the purity of B implies that N is a pure subgroup of Kp.
Since N ≅ 𝕁σpp is compact, we deduce from Remark 14.3.15(a) that N is algebraically
compact, hence algebraically splits in Kp. In other words,

Kp is algebraically isomorphic to 𝕁σpp × ∏
n∈ℕ+
ℤ(pn)αn,p . (14.5)

Summarizing, we showed that if a reduced abelian group K admits a compact group
topology, then K = ∏p∈ℙ Kp and the subgroups Kp (which are determined by a purely
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algebraic condition regardless of the specific compact group topology on K) sat-
isfy (14.5). This proves the necessity of (14.4)

On the other hand, if an abelian group K satisfies (14.4) for appropriate cardinals
σp and αn,p, then we can first identify (algebraically) K with the product ∏p∈ℙ(𝕁

σp
p ×

∏n∈ℕ+ ℤ(p
n)αn,p ). Since each Kp = 𝕁

σp
p × ∏n∈ℕ+ ℤ(p

n)αn,p admits an obvious compact
group topology, taking theproduct topologyonK = ∏p∈ℙ Kp,weobtain also a compact
group topology on K.

The splitting (14.5) need not be topological in general (see Exercise 14.5.7).
In the next theorem we describe the algebraic structure of the connected (so, di-

visible) compact abelian groups. Since the trivial group G = {0} is both divisible and
connected in any topology, we rule out this trivial case in the next theorem.

Theorem 14.3.18. A divisible abelian group G ̸= {0} admits a compact group topology
if and only if there exist cardinals β and {γp: p ∈ ℙ} with

β ≥ ω, r0(G) = 2
β and ∀p ∈ ℙ γp ≤ β and rp(G) = {

γp if γp <∞,
2γp otherwise.

(14.6)

Furthermore, G admits a finite-dimensional compact group topology if and only if
r0(G) = c and all {rp(G): p ∈ ℙ} are bounded by some m ∈ ℕ. In this case dimG ≥
supp∈ℙ rp(G) when G carries such a topology.

Proof. Suppose first that G is a divisible abelian group which admits a compact group
topology that is necessarily connected. Put σ = dimG and β = max{σ,ω}. Then, |G| =
2β; indeed, if σ is finite, this is a consequence of Corollary 14.3.7; in case σ is infinite,
|G| = 2|Ĝ| = 2w(G) = 2σ by Theorem 13.3.11, Corollary 14.2.19, and Remark 14.3.5(d).
So, Theorem 14.3.8 gives r0(G) = 2β and rp(G) for appropriate cardinals {γp: p ∈ ℙ} as
in (14.6).

To verify the sufficiency, let G be a divisible abelian group satisfying (14.6) for car-
dinals β and {γp: p ∈ ℙ} as stated there.

Put ρ = supp∈ℙ rp(G). In case ρ < ∞ and 2β = c, put σ = ρ, otherwise let σ = β (so
cσ = cβ = 2β in both cases). Let K = ℚ̂σ . Dualizing the short exact sequence 0 → ℤ →
ℚ → ℚ/ℤ → 0, one gets a closed subgroup H ≅ ∏p∈ℙ 𝕁p of ℚ̂ with ℚ̂/H ≅ 𝕋. There-
fore, K contains a closed subgroup L ≅ Hσ ≅ ∏p∈ℙ 𝕁

σ
p, such that K/L ≅ 𝕋

σ . Moreover,
L obviously contains a closed subgroup N = ∏p∈ℙ Np, with Np ≅ 𝕁

γp
p , γp ≤ σ for every

prime p. Since dimN = 0, Theorem 14.3.4 gives dimK/N = σ. This yields w(K/N) = β
in case σ is infinite (so σ = β), since in this case σ = dimK/N = w(K/N). Otherwise, if
σ is finite, K/N is metrizable by Corollary 14.3.7, so w(K/N) = ω, so 2w(K/N) = c = 2β,
by the definition of σ. Hence, 2w(K/N) = 2β in both cases. Now Theorem 14.3.8, ap-
plied to the nontrivial connected compact group K/N, yields r0(K/N) = 2w(K/N) = 2β,
rp(K/N) = γp = rp(G) in case rp(G) is finite; otherwise, rp(K/N) = 2γp = rp(G)when rp(G)
is infinite. Since both groupsG and K/N are divisible and have the same free-rank and
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the same p-rank for every prime p, these groups are algebraically isomorphic in virtue
of TheoremA.2.17. This isomorphism of abstract abelian groups produces a connected
compact group topology on G.

The necessity of the condition |G| = c and ρ ≤ dimG < ∞ follows from Corol-
lary 14.3.7, when G admits a finite-dimensional connected compact group topology
(see also (14.3)). On the other hand, if G satisfies the condition |G| = c and ρ < ∞,
then choosing any finite σ with ρ ≤ σ <∞ the above argument produces a connected
compact group topology on G with dimG = dimK = σ.

Theorem 14.3.18 shows that the existence of a compact group topology on an
abelian group may bring relevant restraints on the algebraic structure of the group.
One may try to relax compactness to a weaker compactness-like property:
(a) In the case of precompactness, one has an immediate answer: every abelian group

admits a precompact group topology (for example, the Bohr topology). Yet some
nonabelian groups admit no precompact group topology, e. g., the infinite per-
mutation groups S(X) (see Exercise 10.4.2), or the group SL2(ℂ) (see [285]), just to
mention two examples.

(b) In the case of pseudocompactness, the problem has been completely resolved
(see [101] for a partial solution), reported in Chapter 15, where some information
about the countable compactness can be found as well.

14.3.3 The Bohr topology of abelian groups

For a discrete abelian group G, the Bohr compactification bG is simply the comple-
tion of G# (see the proof of Theorem 10.2.15). The Pontryagin-van Kampen duality can
be used to easily build the Bohr compactification bG in the more general case of a lo-
cally compact abelian group G. Indeed, next we see that the Bohr compactification
of any locally compact abelian group G can be obtained as ̂̂Gd, where Ĝd denotes the
group Ĝ equippedwith the discrete topology. This result can be seen as a consequence
of [4, Theorem2] characterizing theBohr compactificationof a locally compact abelian
group by means of dual groups. For a comment on the nonabelian case, see [82, 153].

Theorem 14.3.19. Let G be a locally compact abelian group, Ĝd its dual equipped with
the discrete topology, and i: Ĝd → Ĝ the continuous identity map. The Bohr compacti-
fication bG:G → bG of G coincides, up to isomorphism, with the composition î ∘ ωG of
ωG:G →

̂̂G and î: ̂̂G → ̂̂Gd.

Proof. To see that ϕ := î ∘ ωG:G →
̂̂Gd is the Bohr compactification of G, pick a con-

tinuous homomorphism f :G → K to a compact group K. We can assume without loss
of generality that f (G) is dense in K. Then K is abelian, by Theorem 3.1.22. The dual
homomorphism f̂ : K̂ → Ĝ, as well as g := i−1 ∘ f̂ : K̂ → Ĝd, are continuous since K̂ is
discrete, by Proposition 13.1.1(a). Then ĝ : ̂̂Gd →

̂̂K is a continuous homomorphism,
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by Lemma 13.3.7. Moreover, as f̂ = i ∘ g, we deduce that ĝ ∘ î = ̂̂f by Lemma 13.3.7(f).
Composing with ωG, we get

ωK ∘ f =
̂̂f ∘ ωG = ĝ ∘ î ∘ ωG = ĝ ∘ ϕ.

Since ωK is a topological isomorphism by Pontryagin-van Kampen duality theo-
rem 13.4.17, f = ω−1K ∘ ĝ ∘ ϕ. Then f ′ := ω−1K ∘ ĝ with f ′ ∘ ϕ = f witnesses the uni-
versal property of the Bohr compactification of G, so ϕ = bG:G →

̂̂Gd is the Bohr
compactification of G.

From a rapid look at the cardinal invariants (of topological nature, introduced so
far in this book) of the group G#, for an abelian group G, one can see that they de-
pend only on |G| and no other features of the group G (see Theorem 13.3.12 and Exer-
cise 13.7.2). This motivated E. van Douwen to pose in [277] the following challenging
problem (see also [153]): if G and H are abelian groups of the same size, must G#,H# be
homeomorphic? The first negative solution was obtained by Kunen [190]. Following
his notation, we write𝕍κm := ℤ(m)

(κ) for a cardinal κ, andm ∈ ℕ+.

Theorem 14.3.20 ([190]). For primes p ̸= q, (𝕍ωp )
# and (𝕍ωq )

# are not homeomorphic.

Independently, and by using a simpler argument, Watson and the second named
author proved in [116] that (𝕍κ2 )

# and (𝕍κ3)
# are not homeomorphic whenever κ > 22

c

.
Motivated by these results, we give the following:

Definition 14.3.21. A pair G,H of infinite abelian groups is:
(i) Bohr-homeomorphic if G# and H# are homeomorphic;
(ii) weakly Bohr-homeomorphic if G# can be homeomorphically embedded into H#,

and H# can also be homeomorphically embedded into G#.

Obviously, Bohr-homeomorphic abelian groups are weakly Bohr-homeomorphic,
the status of the converse implication is unclear so far (see Question 14.3.30(ii)).
Clearly, two finite groups G,H satisfy the condition in (ii) if and only if |G| = |H|. More-
over, van Douwen’s problem has obviously a positive answer for finite groups. This
is why in this definition, as well as in the sequel, we consider only pairs of infinite
abelian groups.

The notion of weak Bohr-homeomorphism provides amore flexible tool for study-
ing the Bohr topology than the more rigid notion of Bohr-homeomorphism, e. g.,
𝕍ωp and 𝕍ωq are not even weakly Bohr-homeomorphic for distinct primes p and q
(see [190]).

Remark 14.3.22. If G is an abelian group such that G# homeomorphically embeds
into H# and H is a bounded abelian group, then also G must be a bounded abelian
group (see [156, Theorem 5.1]). So, boundedness is invariant under weak Bohr-
homeomorphisms, i. e., if G,H are weakly Bohr-homeomorphic abelian groups and
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G is bounded, then H must be bounded as well. Hence, the study of (weak) Bohr-
homeomorphisms can be carried out separately for bounded and for unbounded
abelian groups.

Starting with the class of bounded abelian groups, recall that every bounded
abelian group has the form ∏ni=1𝕍

κi
mi

for certain integers mi ∈ ℕ+ and cardinals κi,
by Prüfer theorem A.1.4. For this reason, the study of the Bohr topology of bounded
abelian groups can be focused on the groups𝕍κm.

Definition 14.3.23 ([65, 156]). For a bounded abelian group G, the essential order
eo(G) of G is the smallestm ∈ ℕ+ such thatmG is finite.

Example 14.3.24. A bounded abelian p-group G = ℤ(p)(α1) ⊕ ⋅ ⋅ ⋅ ⊕ℤ(pn)(αn), for p ∈ ℙ,
has eo(G) = 1 in case G is finite and eo(G) = pk for some k ∈ {1, . . . , n}, when αk is
infinite, but all αi, with k < i ≤ n, are finite, provided k < n. Therefore, rp(G) = ω for a
countably infinite bounded abelian group G and a prime p, if and only if p | eo(G).

Definition 14.3.25. Two infinite abelian groups G,H are:
(i) ([165]) almost isomorphic if G and H have isomorphic finite index subgroups;
(ii) ([65])weakly isomorphic if a finite-index subgroupofG is isomorphic to a subgroup

of H and a finite-index subgroup of H is isomorphic to a subgroup of G.

The first of these notionswasmotivated by the following result of Hart andKunen:

Theorem 14.3.26 ([165]). Almost isomorphic abelian groups are Bohr-homeomorphic.

It is unclear whether the implication in the above theorem can be inverted for
bounded abelian groups:

Question 14.3.27 ([190]). Are Bohr-homeomorphic bounded abelian groups almost
isomorphic?

By [65], a pair of infinite bounded abelian groupsG,H is weakly isomorphic if and
only if

|mG| = |mH| wheneverm ∈ ℕ and |mG| ⋅ |mH| ≥ ω. (14.7)

By Theorem 14.3.26, weakly isomorphic bounded abelian groups are weakly
Bohr-homeomorphic. On the other hand, if G# embeds into H# for bounded abelian
groups G, H, then eo(G) | eo(H) and rp(G) ≤ rp(H) whenever rp(G) is infinite, ac-
cording to [65, Theorem 1.16]. Hence, weakly Bohr-homeomorphic bounded abelian
groups satisfy the following simple algebraic conditions:

eo(G) = eo(H) and rp(G) = rp(H) for all p ∈ ℙ with rp(G) ⋅ rp(H) ≥ ω. (B)
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The above arguments show that the following implications hold for a pair of infinite
bounded abelian groups:

weakly isomorphic⇒ weakly Bohr-homeomorphic⇒ (B). (14.8)

Now we discuss the opposite implications. By Example 14.3.24, if eo(G) = eo(H)
for countable bounded abelian groups G,H, then they satisfy (B) and they are weakly
isomorphic (see Exercise 14.5.14(a)). By Exercise 14.5.14(b), for bounded abelian
groups of square-free essential order, (B) implies almost isomorphism, hence Bohr-
homeomorphism, by Theorem 14.3.26. In summary:

Theorem 14.3.28 ([65, 156]). For a pair G,H of infinite bounded abelian groups that are
either countable or have square-free essential order, all three properties in (14.8) are
equivalent.

Therefore, the essential order is an invariant that alone allows for a complete
classification, up to (weak) Bohr-homeomorphism, of all countable bounded abelian
groups.

The situation changes completely even for the simplest uncountable bounded
abelian groups of essential order 4. Indeed, G = 𝕍ω1

4 andH = 𝕍ω1
2 ×𝕍

ω
4 are not weakly

isomorphic because ω1 = |2G| > |2H| = ω. However, we do not know whether these
groups are weakly Bohr-homeomorphic. More generally:

Question 14.3.29. Let p be a prime, κ ≥ ω a cardinal, and k > 1 an integer.
(i) Are𝕍κpk and𝕍

κ
p ×𝕍

ω
pk weakly Bohr-homeomorphic? Can this depend on p?

(ii) If (𝕍κpk )
# can be homeomorphically embedded into (𝕍κpk−1 × 𝕍

λ
pk )

# for an infinite
cardinal λ, is then necessarily λ ≥ κ?

If the answer to Question 14.3.29(i) were positive for all cardinals κ ≥ ω, primes
p, and integers k > 1, then two bounded abelian groups G,H would be weakly Bohr-
homeomorphic if and only if (B) holds. Item (ii) is an equivalent form of the strongest
negative answer to (i).

Question 14.3.30 ([190]). (i) Are𝕍ω4 and𝕍ω2 ×𝕍
ω
4 Bohr-homeomorphic?

(ii) Are weakly Bohr-homeomorphic bounded groups always Bohr-homeomorphic?

Question 14.3.31. Suppose thatG,H are infinite bounded abelian groups such thatG#

homeomorphically embeds intoH#. Does there exist a subgroupG′ ofG of finite index
that algebraically embeds into H?

A positive answer to this question would imply, in particular, that weak Bohr-
homeomorphism coincides with weak isomorphism for infinite bounded abelian
groups. Hence, a positive answer to this question would imply a positive answer to
Question 14.3.29(ii).

Now we leave the “bounded world” and turn to the class of unbounded abelian
groups. The implication of Theorem 14.3.26 and the first implication in (14.8) cannot
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be inverted:ℚ andℚ/ℤ × ℤ are Bohr-homeomorphic (see [53]), and yet these groups
are not even weakly isomorphic.

The question on whether the pairs ℤ,ℤ2 and ℤ,ℚ are Bohr-homeomorphic is
raised in [56, 153]. Let us consider here the version for weak Bohr-homeomorphisms:

Question 14.3.32. (i) Are ℤ andℚ weakly Bohr-homeomorphic?
(ii) Are ℤ andℚ/ℤ weakly Bohr-homeomorphic?

A positive answer to Question 14.3.32(i) would yield that all torsion-free abelian
groups of a fixed finite free-rank are pairwise weakly Bohr-homeomorphic.

14.4 Precompact group topologies determined by sequences

14.4.1 Characterized subgroups of𝕋

Large and lacunary sets (mainly inℤ or elsewhere) are largely studied in number the-
ory, harmonic analysis, and dynamical systems (see [63, 133, 152, 153, 157, 227]).

Let us consider a specific problem. For a strictly increasing sequence A = {an}n∈ℕ
of integers, the interest in the distribution of the multiples {anα: n ∈ ℕ} of a nontor-
sion element α of 𝕋 = ℝ/ℤ has roots in ergodic theory (e. g., Sturmian sequences and
Hartman sets – see [290]) and furthermore in number theory, according to the Weyl
theorem: a sequence {xn}n∈ℕ in 𝕋 is uniformly distributed if for all [a, b] ⊆ 𝕋 (with
a, b ∈ [0, 1)),

|{j ∈ {0, . . . , n}: xj ∈ [a, b]}|
n

→ |a − b|;

by the Weyl theorem, the set 𝒲A := {β ∈ 𝕋: {anβ}n∈ℕ is uniformly distributed} has
Lebesgue measure 1 (e. g., see [189]).

Definition 14.4.1. For a sequence A = {an}n∈ℕ of integers, the subgroup

tA(𝕋) := {α ∈ 𝕋: anα→ 0}

of𝕋 is called topologically A-torsion subgroup.We say also that the sequenceA charac-
terizes a subgroup H of 𝕋, or that H is characterized by A, if H = tA(𝕋); we briefly call
H a characterized subgroup if H = tA(𝕋) for some sequence A = {an}n∈ℕ of integers.

With respect to the above definition, note that we can always assume that the se-
quence A is inℕ+.

Topologically A-torsion subgroups were introduced in [81, 99], while the term
characterized subgroup was first coined in [32].

Example 14.4.2. (a) If H is a finite subgroup of 𝕋, then H is cyclic and it is straight-
forward to verify that H is characterized.
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(b) A sequence A inℤ characterizes𝕋 precisely when A is eventually zero. Indeed, in
case A = {an}n∈ℕ characterizes 𝕋, then an → 0 in ℤ#, and so A is eventually zero
by Theorem 13.4.9. The converse implication is obvious.

Example 14.4.3. It was observed by Armacost [8] that, for A = {pn}n∈ℕ, where p is a
prime, tA(𝕋) = tp(𝕋) = ℤ(p∞).

Armacost posed the question of describing the subgroup tA(𝕋) for the sequence
A = {n!}n∈ℕ+ . This was done in [36], [99, § 4.4.2], and [66].

In [66, 89, 99] an analogous more general problem was considered of describing
tA(𝕋) for an increasing sequences A = {an}n∈ℕ of integers with a0 = 1 and an | an+1 for
every n ∈ ℕ.

For a sequence A = {an}n∈ℕ of integers, the subgroup tA(𝕋) is a Borel set, since

tA(𝕋) = ⋂
N≥2
⋃
m∈ℕ
⋂
n≥m
{x ∈ 𝕋: ‖anx‖ ≤

1
N
} ;

actually, this proves that tA(𝕋) is an Fσδ-set.

Remark 14.4.4. Inspiredbya constructionofAaronson–Nadkarni [1], Biró [31] showed
that the Fσ-subgroups of𝕋 need not be characterized. His proof is based on the crucial
point that the characterized subgroups of 𝕋 are Polishable, that is, they admit a finer
Polish group topology; this topology is unique by a result of Solecki [263].

We state nowBiró’s result; first recall that a nonempty subsetK of𝕋 is aKronecker
set if K is compact and, for every continuous function f :K → 𝕋 and every δ > 0, there
exists n ∈ ℤ such that maxk∈K ‖f (k) − nk‖ < δ (i. e., f can be uniformly approximated
by characters of 𝕋).

Theorem 14.4.5 (Biró theorem [31]). Let K be an uncountable Kronecker set in𝕋. Then
the subgroup ⟨K⟩ is not Polishable. In particular, ⟨K⟩ cannot be characterized.

Since ⟨K⟩ is obviously Fσ, this provides an example of a noncharacterized Fσ-sub-
group of 𝕋, thereby answering a question of the second named author (see also [91],
where some special classes of Fσ-subgroups were shown to be characterized).

Being a Borel set, tA(𝕋) is measurable and either countable or has size c (see [184,
Theorem 13.6]).

Egglestone [127] proved that, for a sequence of positive integers A = {an}n∈ℕ, the
asymptotic behavior of the sequence of ratios {qn}n∈ℕ, with qn =

an+1
an

for every n ∈
ℕ, may have an impact on the size of the subgroup tA(𝕋) in terms of the following
remarkable “dichotomy”:

Theorem 14.4.6 ([127]). Let A = {an}n∈ℕ be an increasing sequence inℕ+.
(a) If limn→∞

an+1
an
= +∞, then |tA(𝕋)| = c.

(b) If { an+1an
}n∈ℕ is bounded, then tA(𝕋) is countable.
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If A is sequence of integers and tA(𝕋) ̸= 𝕋, then tA(𝕋) has Haar measure zero, as
every proper subgroup of𝕋 has infinite index. Ameasure zero subgroupH of𝕋 of size
c that is not even contained in any proper characterized subgroup tA(𝕋) of𝕋was built
in [21] (under the assumption of Martin axiom) and later in [166, 167] (in ZFC).

Theorem 14.4.7 (Borel theorem [36]). Every countable subgroup of 𝕋 is characterized.

Three proofs of Borel theorem 14.4.7 were given in [32].
Unaware of Borel’s result, Larcher [194], and later Kraaikamp and Liardet [188],

proved that the cyclic subgroups of 𝕋 are characterized. In this specific case they ex-
plicitly described characterizing sequences of a subgroup ⟨q0(α)⟩ of𝕋, with α ∈ ℝ\ℚ,
in terms of the continued fraction expansion of α.

In particular, as an illustration we propose the following example (related to Ex-
ample 5.3.3(c) and Exercise 14.5.16), which answers [81, Question 3.11].

Example 14.4.8 ([22]). Let ϕ be the golden ratio, that is, ϕ = 1+√5
2 . Then

⟨q0(ϕ)⟩ = tF(𝕋), (14.9)

where F = {fn}n∈ℕ is the Fibonacci sequence.

This is a particular case of the more general form of sequences A = {an}n∈ℕ in ℤ
considered in [81], namely, those which satisfy

an | an+1 − an−1 for all n ∈ ℕ+. (14.10)

Inspired by (14.9) and,more generally, by the class of sequences satisfying (14.10),
the paper [23] describes the algebraic structure of the subgroup tA(𝕋) when the se-
quence A = {an}n∈ℕ verifies a linear recurrence relation of order ≤ k, that is,

an = u
(1)
n an−1 + u

(2)
n an−2 + ⋅ ⋅ ⋅ + u

(k)
n an−k

for every n > k with u(i)n ∈ ℤ for i ∈ {1, . . . , k}.

14.4.2 Characterized subgroups of topological abelian groups

In [32] the authors conjectured that Borel theorem 14.4.7 of characterizability of the
countable subgroups of 𝕋 can be extended to compact abelian groups in place of 𝕋,
without providing any precise formulation. There is a natural way to extend the def-
inition of tA(𝕋) to an arbitrary topological abelian group G by letting, for a sequence
A = {an}n∈ℕ of integers,

tA(G) := {x ∈ G: anx → 0 in G} .
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Prominent examples are provided by the sequence of integers {pn}n∈ℕ, with p a
prime, and {n!}n∈ℕ+ , defining respectively the topologically p-torsion and the topolog-
ically torsion elements – see Definition 5.3.4. For locally compact abelian groups G,
one can easily reduce the computation of tA(G) to that of tA(𝕋) (see [81]), and inde-
pendently on their relevance in other questions, the subgroups tA(G) turned out to be
of no help in the characterization of countable subgroups of compact abelian groups
other than 𝕋. Indeed, a much weaker condition, turned out to determine the circle
group 𝕋 in the class of all locally compact abelian groups:

Theorem 14.4.9 ([67]). In a locally compact abelian group G, every cyclic subgroup of
G is an intersection of subgroups of the form tA(G), where A is a sequence of integers, if
and only if G ≅ 𝕋.

One can remove the “abelian restraint” in the above theorem, recalling that in the
nonabelian case tA(G) is just a subset of G, not a subgroup in general (see [66]).

Theorem 14.4.9 suggested to use in [95] a different approach to the problem, re-
placing the sequences of integers (that can be seen as characters of 𝕋) by a sequence
A = (an)n∈ℕ in the dual group Ĝ of a locally compact abelian group G.

Definition 14.4.10 ([95]). Let G be a topological abelian group and A = {an}n∈ℕ a se-
quence in Ĝ. Define

sA(G) := {x ∈ G: an(x)→ 0 in 𝕋} .

A subgroup H of G is called characterized if there exists a sequence A in Ĝ such that
H = sA(G). We say that H is characterized by A and that A characterizes H.

If G = 𝕋, then we can identify �̂� = ℤ, so tA(𝕋) = sA(𝕋) for a sequence A in ℤ.
For a topological abelian group G,

sA(G) = ⋂
N≥2
⋃
m∈ℕ
⋂
n≥m
{x ∈ G: ‖an(x)‖ ≤

1
N
} .

So, if K is a compact abelian group, then:
(1) sA(K) is a Borel set (actually, an Fσδ-set), and so either sA(K) is countable or
|sA(K)| ≥ c;

(2) μ(sA(K)) = 0 if A is faithfully indexed (see [57, Lemma 3.10], and see [242] for
locally compact abelian groups).

For G an abelian group and a subgroup H of G, let

gG(H) :=⋂{sA(G):A ∈ Ĝ
ℕ, H ≤ sA(G)};

we say that the subgroup H of G is g-closed if H = gG(H).
It is proved in [95] that a topological abelian groupG is maximally almost periodic

if and only if every cyclic subgroup of G is g-closed. The following positive answer
to [95, Problem 5.1] was given independently and simultaneously in three papers.
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Theorem 14.4.11 ([28, 91, 199]). All countable subgroups of a compact abelian group
are g-closed.

Moreover, Borel theorem 14.4.7 was extended independently in two papers:

Theorem 14.4.12 ([28, 91]). If K is a metrizable compact abelian group, then every
countable subgroup of K is characterized.

As observed above, every characterized subgroup of ametrizable compact abelian
group K is Fσδ. Inspired by Biró theorem 14.4.5, Gabriyelyan proved in [146] that if K is
an uncountable Kronecker set of an infinitemetrizable compact abelian group X, then
⟨K⟩ is not Polishable. In particular, ⟨K⟩ cannot be characterized.

Moreover, Gabriyelyan [146] showed that every characterized subgroup H of a
compactmetrizable abelian groupK is Polishable (and the finer Polish group topology
is also locally quasi-convex). For further results in this direction, see [90, 147, 145, 219].

14.4.3 TB-sequences

Anothermotivation for the study of characterized subgroups tA(𝕋) comes from the fact
that they lead to the description of precompact group topologies on ℤ that make the
sequence of integers A = {an}n∈ℕ converge to 0 in ℤ (see Corollary 14.4.16).

In other words, we discuss a counterpart of the notion of T-sequences, defined
with respect to group topologies induced by characters, i. e., precompact group
topologies. Recall from Theorem 11.4.2 and Corollary 11.4.3 that τ is a totally bounded
group topology on an abelian group G precisely when τ = 𝒯H for some subgroup H of
Ĝ, and moreover τ is precompact if and only if H separates the points of G.

Definition 14.4.13 ([21, 23]). A sequence A = {an}n∈ℕ in an abelian group G is a
TB-sequence if there exists a precompact group topology τ on G such that an → 0
in τ.

Clearly, every TB-sequence is a T-sequence (see Proposition 14.4.18 for a T-se-
quence in ℤ that is not a TB-sequence). The advantage of TB-sequences over T-se-
quences is in the easier way of determining sufficient conditions for a sequence to be
a TB-sequence (see [21, 23]).

Let us start by an easy to prove general fact:

Fact 14.4.14 ([21]). A sequence A = {an}n∈ℕ in a totally bounded abelian group G con-
verges to 0 in G if and only if χ(an)→ 0 in 𝕋 for every χ ∈ Ĝ.

In the case of G = ℤ, the characters of G are simply elements of 𝕋, i. e., a to-
tally bounded group topology on ℤ has the form 𝒯H for some subgroup H of 𝕋. Thus,
Fact 14.4.14 for G = ℤ can be reformulated as follows: for a subgroup H of 𝕋, a se-
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quence A = {an}n∈ℕ in ℤ converges to 0 in 𝒯H if and only if anx → 0 for every x ∈ H
(i. e., simply H ⊆ tA(𝕋)). This was generalized in [95] for any abelian group:

Theorem 14.4.15 ([95]). Let A = {an}n∈ℕ be a nontrivial sequence in an abelian group
G. Then:
(a) given a subgroup H of Ĝ, an → 0 in 𝒯H if and only if H ⊆ sA(Ĝ);
(b) 𝒯sA(Ĝ) is the finest totally bounded group topology on G with an → 0 in 𝒯sA(Ĝ);
(c) A is a TB-sequence if and only if sA(Ĝ) is dense in Ĝ.

Corollary 14.4.16. A sequence A = {an}n∈ℕ inℤ is a TB-sequence if and only if the sub-
group tA(𝕋) of 𝕋 is infinite.

Example 14.4.17. If A = {an}n∈ℕ is a sequence in ℤ with limn→∞
an+1
an
= +∞, then A is

a TB-sequence (see [127]). On the other hand, there exists a TB-sequence A = {an}n∈ℕ
in ℤ with limn→∞

an+1
an
= 1 (see [23]).

Here is an example of a T-sequence in ℤ that is not a TB-sequence.

Proposition 14.4.18 ([240]). For every TB-sequence A = {an}n∈ℕ inℤ such that tA(𝕋) is
countable, there exists a sequence {cn}n∈ℕ inℤ such that the sequence {qn}n∈ℕ, defined
by q2n = cn and q2n−1 = an, is a T-sequence but not a TB-sequence.

Proof. Let {z1, . . . , zn, . . .} be an enumeration of tA(𝕋).
According to Lemma 5.3.12, there exists a sequence B = {bn}n∈ℕ inℤ such that for

every choice of the sequence {en}n∈ℕ, where en ∈ {0, 1}, the sequence {qn}n∈ℕ defined
by q2n = bn + en and q2n−1 = an, is a T-sequence. Now we define the sequence {qn}n∈ℕ
with q2m−1 = am and q2m = bm when m is not a prime power. Let p1, . . . , pn, . . . be all
prime numbers enumerated one-to-one. Now fix k and define ek ∈ {0, 1} depending on
limn→∞ bpnk zk as follows:
(1) if limn→∞ bpnk zk = 0, let ek = 1;
(2) if limn→∞ bpnk zk ̸= 0 (in particular, if the limit does not exists) let ek = 0.

Now let q2pnk = bpnk +ek for n ∈ ℕ. To see thatQ = {qn}n∈ℕ is not a TB-sequence, assume
that χ:ℤ → 𝕋 is a character such that χ(qn) → 0 in 𝕋. Then x = χ(1) ∈ 𝕋 satisfies
qnx → 0, so x ∈ tQ(𝕋) ⊆ tA(𝕋). Hence, there exists k ∈ ℕ with x = zk . In particular,
q2pnk zk → 0.

Assume first that limn→∞ bpnk zk = 0. Then ek = 1 and 0 = limn→∞ q2pnk zk = zk
implies zk = 0. Conversely, if limn→∞ bpnk zk ̸= 0, then ek = 0, and hence one obtains
the contradiction 0 = limn→∞ q2pnk zk ̸= 0. This proves that every character χ:ℤ → 𝕋
such that χ(qn)→ 0 in 𝕋 is trivial. In particular, Q not a TB-sequence.

The above proof gives more. Since qn → 0 in τ{qn} (the topology τ{qn} was in-
troduced in §5.3), it shows that every τ{qn}-continuous character of ℤ is trivial, i. e.,
?(ℤ, τ{qn}) = {0}. Therefore, (ℤ, τ{qn}) is a minimally almost periodic group.
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14.5 Exercises

Exercise 14.5.1. Let p be a prime, G = 𝕁ℕp , and K = pG. Equip G with the topology that
makes the compact abelian group K, equipped with the product topology, open in G.
Prove that G is a torsion-free periodic locally compact abelian group, yet Ĝ is neither
divisible nor torsion-free.
Hint. Since D = G/K ≅ ℤ(p)ℕ is discrete, the dual Ĝ has a compact open subgroup D̂ ≅ ℤ(p)c with
Ĝ/D̂ ≅ K̂ ≅ ℤ(p∞)(ℕ) countable. Hence, Ĝ is torsion and pĜ, being isomorphic to a quotient of Ĝ/D̂, is
countable, thus Ĝ ̸= pĜ is not divisible.

Exercise 14.5.2. Prove that:
(a) a compact abelian group G is separable if and only if |Ĝ| ≤ c, if and only if G is

isomorphic to a quotient of (ℚ̂ ×∏p∈ℙ 𝕁p)
c;

(b) a product of at most c separable compact abelian groups is still separable.

Exercise 14.5.3. Let K be a compact abelian group. Prove that:
(a) td(K) = ω−1K (Hom(K̂,ℚ/ℤ));
(b) if f :K → G is a continuous surjective homomorphism onto a compact group G,

then f (td(K)) = td(G);
(c) td(ℚ̂) contains a subgroup H ≅ ∏p∈ℙ 𝕁p such that td(ℚ̂/H) ≅ td(𝕋) ≅ ℚ/ℤ.

Hint. (a) Fix x ∈ td(K) and χ ∈ K̂. If ⟨x⟩ is finite, then χ(x) ∈ ℚ/ℤ. In case ⟨x⟩ is an infinite cyclic
group endowedwith anondiscrete linear topology, the continuity of χ implies that an open (nontrivial)
subgroup is mapped to Λ1 and hence to 0. This yields that χ(G) is finite and hence χ(x) ∈ ℚ/ℤ.

On the other hand, if x ∈ ω−1K (Hom(K̂,ℚ/ℤ)), then for every χ ∈ K̂ the subgroup ⟨χ(x)⟩ of 𝕋 is
finite. Since ⟨x⟩ is isomorphic to a subgroup of∏χ∈K̂⟨χ(x)⟩ and the latter group has a linear topology,
we deduce that ⟨x⟩ has a linear topology as well, so x ∈ td(G).

(b) Since f̂ is injective andℚ/ℤ is divisible, the following holds: for every η ∈ Hom(Ĝ,ℚ/ℤ), there
exists η′ ∈ Hom(K̂,ℚ/ℤ) such that η′ ∘ f̂ = η. Combined with (a) this yields that for every g ∈ td(G)
exists x ∈ td(K) such that ωG(g) = ωK (x) ∘ f̂ =

̂̂f (ωK (x)) = ωG(f (x)). Since ωG is injective, one obtains
g ∈ f (td(K)).

Exercise 14.5.4. Let G be a discrete abelian group and K = Ĝ. Prove that:
(a) Kp = Hom(G,ℤ(p∞)) equipped with the topology induced from the product topol-

ogy of ℤ(p∞)G, where ℤ(p∞) carries the topology induced by 𝕋;
(b) deduce that if f :K → L is a surjective homomorphism of compact abelian groups,

then f (Kp) = Lp and f (wtd(K)) = wtd(L).

Exercise 14.5.5. Deduce Theorem 14.2.9 from Theorem 14.2.18.
Hint. Let G be a compactly generated locally compact abelian group and let C be a compact subset
of G generating G. By Theorem 14.2.18, we can write G = ℝn × G0, where G0 is a closed subgroup of
G containing a compact open subgroup K. Since the quotient group G0/K ≅ G/(ℝn × K) is discrete,
the image of C in G/(ℝn × K) is finite. Since G is generated by C, this yields that G/(ℝn × K) is finitely
generated, so isomorphic to ℤd × F for some finite abelian group F and d ∈ ℕ. By taking a suitable
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compact subgroup K1 of G containing K, we can assume that G/(ℝn × K) ≅ ℤd. Since the group ℤd is
free, the group G splits as G = ℝn × K × ℤd.

Exercise 14.5.6. Show that:
(a) divisible abelian groups and bounded abelian groups are algebraically compact;
(b) summands and products of algebraically compact groups are algebraically com-

pact.

Exercise 14.5.7. Let p be a prime, G = ∏n∈ℕ+ ℤ(p
n), and X = t(G). Show that:

(a) B =⨁n∈ℕ+ ℤ(p
n) is a basic subgroup of X and X/B ≅ ℤ(p∞)(c), so the short exact

sequence 0→ B→ X → X/B→ 0 does not split;
(b) the subgroup N = A(B) of K = X̂ is pure and satisfies N ≅ 𝕁cp, so it splits alge-

braically, yet N does not split topologically.

Hint. (a) It is easy check that B is a pure subgroup of X. To show that X/B is divisible it is enough to
check that X = pX + B. Since X is reduced, X cannot contain a subgroup isomorphic to X/B, so the
subgroup B does not split.

(b) The subgroup N splits algebraically by Remark 14.3.15(a). The rest follows from the exactness
of the duality functor (see also the proof of Theorem 14.3.17). For an alternative argument to see that the
subgroup N does not split topologically, assume that K ≅ N × G. Then obviously t(K) = ⋃n∈ℕ K[p

n],
being contained in G, is not dense. On the other hand, A(t(K)) = ⋂n∈ℕ A(K[p

n]) = ⋂n∈ℕ p
nX = {0} by

Remark 13.5.2(b) and Corollary 13.5.3, so t(K) = K by Remark 13.5.2(a), a contradiction.

Exercise 14.5.8. LetK be a connected compact abelian group. Show that the following
conditions are equivalent:
(a) for some prime p the group 𝕁ℕp embeds into K;
(b) for all primes p the group 𝕁ℕp embeds into K;
(c) dimK =∞.

Exercise 14.5.9. Show that a nontrivial connected compact abelian group K admits
2|K| involutive discontinuous automorphisms.
Hint. By Theorem 14.3.8, K is a divisible abelian group with r0(K) = |K|, there is an algebraic isomor-
phism K ≅ t(K) × ℚ(|K|). Since Aut(ℚ(|K|)) is isomorphic to a subgroup of Aut(K) and contains 2|K|

involutions, so does Aut(K). Using Pontryagin–van Kampen duality conclude that at most |K| = 2K̂ ≥
Aut(K̂) of them are continuous. So, the remaining 2|K| involutive automorphisms are discontinuous.

Exercise 14.5.10. Show that a nontrivial connected compact abelian group K admits
an extension G, such that [G : K] = 2 and the compact topology of K cannot be ex-
tended to a group topology of G.
Hint. By Exercise 14.5.9, there exists a discontinuous automorphism f of K of order 2. Arguing as in
Example 4.4.8, show that the group G = K ⋊ ⟨f ⟩ has the desired property.

Exercise 14.5.11. Show that for every locally compact abelian group G the subgroup
wtd(G) is dense in B(G).
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Hint. SinceB(G) is a union of compact subgroups, it is enough to consider the casewhenG itself is com-
pact. Apply Theorem 14.3.9 to deduce that N = wtd(G) contains c(G). Let q:G → G/c(G) be the canon-
ical projection. Since G/c(G) is hereditarily disconnected, G/c(G) ≅ ∏p∈ℙ(G/c(G))p, so wtd(G/c(G)) =
⨁p∈ℙ(G/c(G))p is dense in G/c(G). Since q(wtd(G)) = wtd(G/c(G)) by Exercise 14.5.4, we deduce that
q(N) is dense in G/c(G) = wtd(G/c(G)). As q(N) is compact and contains ker q = c(G), this implies
N = K.

Exercise 14.5.12. Let K be a compact abelian group and p a prime. Show that K[p] ≅
ℤ(p)rp(K̂/pK̂). In particular, rp(K) = rp(K̂/pK̂) if these cardinals are finite, otherwise
rp(K) = 2rp(K̂/pK̂).

Exercise 14.5.13. Let G be a discrete abelian group. Show that:
(a) w(bG) = χ(bG) = ψ(bG) = 2|G| in case G is infinite;
(b) bG is metrizable if and only if G is finite;
(c) bG is connected if and only if G is divisible;
(d) bG is hereditarily disconnected if and only if G is bounded torsion;
(e) bG is torsion-free if and only if G is torsion-free, in such a case

bG ≅ ℚ̂2
|G|
×∏
p∈ℙ
ℤβpp ,

where βp = rp(G/pG) if rp(G/pG) <∞, otherwise βp = 2rp(G/pG);
(f) describe bG for the following discrete abelian groups G: ℤ, ℚ, ℤ(p∞), ℚ/ℤ,
ℤ(p)(ℕ), and ℤ(pm)(κ), with p ∈ ℙ, κ ≥ ω, and m ∈ ℕ+, making use of Theo-
rem 14.3.19.

Hint. (a) Use the fact that bG = G̃# and apply Corollary 11.4.5.
(b) follows from (a).
(c), (d) Use the fact that the topological properties (connectedness or hereditary disconnected-

ness) depend only on the algebraic properties of Ĝ. Therefore, bG is connected if and only if Ĝ is
torsion-free if and only if G is divisible, while bG is hereditarily connected if and only if Ĝ is torsion if
and only if G is bounded torsion.

(e) If bG is torsion-free, then G is torsion-free as a subgroup of bG. If G is torsion-free, then Ĝ is
connected, hence divisible. Therefore, bG, as a dual of the discrete group Ĝd, is torsion-free.

(f) It is easy to see that bℤ ≅ ℚ̂c ×∏p∈ℙ 𝕁p, bℚ = ℚ̂
c, b(ℤ(pm)(ℕ)) = ℤ(pm)c, and b(ℤ(p)(κ)) =

ℤ(p)2
κ
.

For G = ℤ(p∞), note that Ĝ = 𝕁p. For the (discrete) group 𝕁p, the subgroup ℤ is dense in the
natural topology of 𝕁p, hence ℤ + n𝕁p = 𝕁p for every n ∈ ℕ. This means that the quotient group 𝕁p/ℤ
is divisible. A more careful look at this group shows that 𝕁p/ℤ ≅ ℚ(c) ⊕⨁q∈ℙ\{p} ℤ(q

∞). Therefore, bG
has a (large) closed torsion-free subgroup N ≅ ℚ̂c ×∏q∈ℙ\{p} 𝕁q such that bG/N ≅ 𝕋.

Show that for G = ℚ/ℤ, the dual group Ĝ = ∏p∈ℙ 𝕁p contains a dense pure infinite cyclic sub-
group. Then an argument similar to the previous one shows that b(ℚ/ℤ) contains a closed subgroup
N ≅ ℚ̂c such that b(ℚ/ℤ)/N ≅ 𝕋.

Exercise 14.5.14. Let G,H be bounded abelian groups. Prove that:
(a) if G,H are countable with eo(G) = eo(H), then they are weakly isomorphic;
(b) if (B) holds and eo(G) = eo(H) is square-free, then G,H are almost isomorphic.
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Exercise 14.5.15. Give examples of (countable) bounded abelian groups G,H that are
weakly isomorphic, but not almost isomorphic.
Hint. Try𝕍ω4 and𝕍ω2 ×𝕍

ω
4 .

Exercise 14.5.16. (a) Prove that the Fibonacci sequence is a TB-sequence.
(b) Let {an}n∈ℕ+ be a sequence of positive integers. Define the sequence {un}n∈ℕ by

letting u0 = 1, u1 = a1 and un = anun−1 + un−2 for any n > 1. Prove that {un}n∈ℕ is a
TB-sequence.

Hint. (a) See Example 5.3.3(c).
(b) Apply Exercise 5.4.18 to the irrational number α determined by the continued fraction

[a1, a2, a3, . . .].

14.6 Further readings, notes, and comments

Anapplicationof the structure theorem for locally compact abeliangroups reduces the
characterization of arcwise connected or locally connected locally compact abelian
groups to compact abelian groupswith the corresponding properties. It was shown by
Pontryagin [228] that a compact abelian group is locally connected if and only if it is
the character group of a discrete abelian L-group. A discrete abelian group D is called
an L-group if every finite subset F of D is contained in a finitely generated subgroup
H of D such that D/H is torsion-free. Free abelian groups are L-groups and countable
torsion-free L-groups are free. Hence, the countable products of tori are the only ex-
amples of connected and locally connected compact metrizable groups.

A compact abelian group K is arcwise connected if and only if the discrete group
D = K̂ is aWhitehead group,whichmeans that Ext(D,ℤ) = {0}. Obviously, free abelian
groups areWhiteheadgroups,whileWhiteheadgroups are always torsion-free.White-
head askedwhether everyWhitehead group is free. Shelah proved that this question is
undecidable under the axioms of Zermelo–Fraenkel and the axiomof choice (see [259]
or [128] or [177, p. 654]). This question is, of course, equivalent to: is every arcwise
connected compact abelian group a product of tori? The answer is affirmative in the
metrizable case, since countable Whitehead groups are free (see [138]).

As wementioned in §8.8, arcwise connected compact (abelian) groups are locally
(arcwise) connected, so Whitehead groups are L-groups. The discrete Specker group
ℤℕ is an L-group but not a Whitehead group (see [123, 138]), so its dual group is a
connected and locally connected compact abelian group which is not arcwise con-
nected.

The survey papers [68, 87, 147] offermore information on characterized subgroups
of𝕋 (the first one, for this direction see also [67]), on characterized subgroups of arbi-
trary topological abelian groups (the second and third, whereas the latter offers also a
discussion of the nonabelian counterpart of the characterized subgroups of a compact
abelian group). For the quite recent variation of statistically characterized subgroups
of the circle, using statistical convergence in place of the usual one, see [37, 83].
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For the connection of characterized subgroups of𝕋 (and ofℝ) with thin sets from
harmonic analysis, such as Arbault sets and Dirichlet sets, see [20], where Dirichlet
sets of 𝕋 are studied, in connection to the Erdös–Kunen–Mauldin theorem from [135]
(see also the improvement by Eliaš [130]). Moreover, in [24] the problem of the inclu-
sion of a characterized subgroup in another is resolved under suitable hypotheses.
This problem is connected to Arbault sets (see Eliaš [129]).

J. Pelant conjectured in 1996 that𝕍ω2 and𝕍
ω
3 are not Bohr-homeomorphic, he had

a proof with a gap he could not fill.
Many nice properties of ℤ# can be found in [191]. For a fast growing sequence

{an}n∈ℕ in ℤ#, the range is a closed discrete set of ℤ# (see [153] for further properties
of the lacunary sets in ℤ#), whereas for a sequence {an}n∈ℕ determined by a polyno-
mial P(x) ∈ ℤ[x], that is, an = P(n) for every n ∈ ℕ, the range has no isolated points
(see [191, Theorem 5.4]). Moreover, the range P(ℤ) is closed when P(x) = xk is a mono-
mial. For quadratic polynomials P(x) = ax2 + bx + c with a, b, c, ∈ ℤ \ {0}, the situation
is alreadymore complicated: the range P(ℤ) is closed if and only if there is atmost one
prime that divides a, but does not divide b (see [191, Theorem 5.6]). This leaves open
the general question from [191]:

Problem 14.6.1 ([102, Problem 954]). Characterize the polynomials P(x) ∈ ℤ[x] such
that P(ℤ) is closed in ℤ#.
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15 Pseudocompact groups

This chapter deals with pseudocompact groups, which will be supposed to be Haus-
dorff. The first section gives fairly general properties of pseudocompact and countably
compact topological spaces.

15.1 General properties of countably compact and
pseudocompact spaces

Lemma 15.1.1. (a) Closed subspaces and continuous images of countably compact
spaces are countably compact.

(b) Continuous images of pseudocompact spaces are pseudocompact.
(c) Countable compactness implies pseudocompactness.

Proof. (a) The first assertion is obvious. To prove the second, assume that X is a count-
ably compact space and f :X → Y is a continuous surjective function. Let 𝒰 = {Un: n ∈
ℕ} be an open cover of Y , so 𝒱 = {f −1(Un): n ∈ ℕ} is an open cover of X; by hypoth-
esis, there exists a finite subcover {f −1(Un): n ∈ {1, . . . , k}} of 𝒱, and, clearly, {Un: n ∈
{1, . . . , k}} is a finite subcover of 𝒰 .

(b) This is obvious.
(c) Assume that X is a countably compact space and consider a continuous func-

tion f :X → ℝ. For every n ∈ ℕ, let Un = {x ∈ X: |f (x)| < n}. Then {Un: n ∈ ℕ} is a
countable open cover of X, which has a finite subcover since X is countably compact.
Therefore, f is bounded.

Pseudocompact T4-spaces are countably compact (see Exercise 15.4.3). In partic-
ular, pseudocompact metric spaces are countably compact, hence compact.

There exist regular spaces without nonconstant real-valued functions, they are
vacuously pseudocompact. This is why pseudocompactness is treated only in Ti-
chonov spaces. Here comes a criterion for pseudocompactness of such spaces. Recall
that a family {Ai: i ∈ I} of nonempty subsets of a topological space X is locally finite if
for every x ∈ X there exists an open neighborhood U of x in X such that U ∩ Ai ̸= 0 for
finitely many i ∈ I.

Theorem 15.1.2. For a Tichonov space X, the following are equivalent:
(a) X is pseudocompact;
(b) every locally finite family of nonempty open sets of X is finite;
(c) ⋂n∈ℕ Vn ̸= 0 for every chain {Vn: n ∈ ℕ} of nonempty open sets of X with

Vn+1 ⊆ Vn for every n ∈ ℕ. (15.1)

https://doi.org/10.1515/9783110654936-015

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



264 | 15 Pseudocompact groups

Proof. (a)⇒(b) Assume that {Vn: n ∈ ℕ+} is an infinite locally finite family of nonempty
open sets of X. For every n ∈ ℕ+, fix a point xn ∈ Vn; since X is Tichonov, there exists
a continuous function fn:X → [0, 1] such that fn vanishes on X \ Vn and fn(xn) = 1.
Define a function f :X → ℝ by letting f (x) = ∑n∈ℕ+ nfn(x) for every x ∈ X. Since {Vn: n ∈
ℕ+} is locally finite and each fn is continuous, f is continuous as well. Obviously, f is
unbounded, as f (xn) = n for every n ∈ ℕ+. This contradicts the pseudocompactness
of X.

(b)⇒(c) is obvious.
(c)⇒(a) Assume that f :X → ℝ is an unbounded continuous function. Then for

every n ∈ ℕ the open set Vn = f −1(ℝ \ [−n, n]) is nonempty, and obviously (15.1) and
⋂n∈ℕ Vn = 0 hold, a contradiction.

Proposition 15.1.3. If X is a dense pseudocompact subspace of a Tichonov space Y,
then X is Gδ-dense in Y.

Proof. Let O be a nonempty Gδ-set of Y . Then there exist y ∈ O and open sets Un of Y
such that O = ⋂n∈ℕ Un. By the regularity of Y , we can find, for each n ∈ ℕ, an open
set Vn of Y such that Vn ⊆ Vn−1 for every n ∈ ℕ+ and y ∈ Vn ⊆ Vn ⊆ Un for every n ∈ ℕ.
Hence, y ∈ O′ = ⋂n∈ℕ Vn ⊆ O and O′ is a Gδ-set in Y .

For every n ∈ ℕ, let An = X ∩ Vn, which is an open set of X with An
Y
= Vn

Y , in
view of the density of X in Y and Lemma B.1.19. So, for every n ∈ ℕ+, An

X
= X ∩ An

Y
=

X ∩ Vn
Y
⊆ X ∩ Vn−1 = An−1, and hence ⋂n∈ℕ An

X
= ⋂n∈ℕ An ̸= 0, by Theorem 15.1.2.

Therefore, X ∩ O ⊇ X ∩ O′ = X ∩⋂n∈ℕ Vn = ⋂n∈ℕ An ̸= 0.

If the topological space Y is only regular, one can prove that, if X is a dense count-
ably compact subspace of Y , then X is Gδ-dense in Y (see Exercise 15.4.2).

A consequence of Proposition 15.1.3 is the next useful criterion.

Corollary 15.1.4. A Tichonov space X is pseudocompact if and only if X is Gδ-dense in
βX.

Proof. Assume that X is not pseudocompact and arrange for an unbounded contin-
uous function f :X → ℝ with f (x) ≥ 1 for all x ∈ X. Then g := 1/f :X → (0, 1] has
inf{g(x): x ∈ X} = 0, so its continuous extension ḡ: βX → [0, 1] has 0 ∈ ḡ(βX). Thus,
ḡ−1(0) ̸= 0 is a Gδ-set of βX that does not meet X, namely, X is not Gδ-dense in βX.

The converse implication follows from Proposition 15.1.3.

Theorem 15.1.5. Every pseudocompact Tichonov space X is a Baire space.

Proof. Any compactification Y of X is a Baire space, by Theorem B.5.20. Since X is
Gδ-dense in Y by Proposition 15.1.3, Exercise 15.4.1 applies.
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15.2 The Comfort–Ross criterion for pseudocompact groups

15.2.1 The Comfort–Ross criterion and first applications

The following characterization of pseudocompact groups, due to Comfort and Ross
[61], makes them a very convenient class to work with.

Theorem 15.2.1 (Comfort–Ross criterion). A topological group G is pseudocompact if
and only if G is precompact and Gδ-dense in its (compact) completion.

Proof. Assume that the topological groupG is not precompact. By Lemma 10.2.7, there
are a symmetric neighborhood V ∈ 𝒱G(eG) and a sequence {gn}n∈ℕ in G such that
gnV ∩ gmV = 0 whenever m ̸= n in ℕ. Pick a symmetric open W ∈ 𝒱G(eG) with
WW ⊆ V . Then the family {gnW : n ∈ ℕ} of nonempty open sets is locally finite. This
contradicts the pseudocompactness of G, by Theorem 15.1.2. For the second assertion,
apply Proposition 15.1.3. So, every pseudocompact group is a dense – and by Proposi-
tion 15.1.3 even a Gδ-dense – subgroup of its compact completion.

Conversely, let G be precompact and Gδ-dense in its completion K. Assume for
contradiction that ℱ = {xnUn: n ∈ ℕ} is an infinite locally finite family in G, where
Un ∈ 𝒱G(eG) is open and xn ∈ G for all n ∈ ℕ. Write Un = G ∩ Wn for an appropriate
openWn ∈ 𝒱K(eK), for n ∈ ℕ. Then xnWn ∩ G = xnUn for all n ∈ ℕ andW = ⋂n∈ℕWn
is a Gδ-set of K. For every n ∈ ℕ, let Vn = ⋃k>n xkUk and V∗n = ⋃k>n xkWk; note that
V∗n ∩ G = Vn. The local finiteness of ℱ implies Vn

G
= ⋃k>n xkUk

G, hence

⋂
n∈ℕ

Vn
G
= 0, (15.2)

since every z ∈ G has an open neighborhood O that does not meet xkUk
G for all k ≥

n and sufficiently large n ∈ ℕ, hence z ̸∈ Vn
G. Since K is compact, there exists an

accumulation point x of the sequence {xk}k∈ℕ in K. By the Gδ-density of G in K, there
exists g ∈ xW ∩ G. Then g = xy for some y ∈ W . For a fixed n ∈ ℕ, since g = xy is
an accumulation point of the sequence {xky}k∈ℕ in K and xky ∈ xkW ⊆ xkWk ⊆ V∗n for
every k > n, we deduce that

g ∈ V∗n
K
∩ G = V∗n ∩ G

G
= Vn

G
.

Then g ∈ ⋂n∈ℕ Vn
G, which obviously contradicts (15.2). So, the familyℱ must be finite,

and G is pseudocompact by Theorem 15.1.2.

Corollary 15.2.2. If G is a Gδ-dense subgroup of a pseudocompact group H, then G is
pseudocompact.

Proof. Since Gδ-density is transitive, G is Gδ-dense in the completion of H. So,
Comfort–Ross criterion 15.2.1 applies.
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Corollary 15.2.3. Direct products of pseudocompact groups are pseudocompact.

Proof. If {Gi: i ∈ I} is a family of pseudocompact groups, then their completions {Ki: i ∈
I} are compact and the completion of G = ∏i∈I Gi is K = ∏i∈I Ki. Then K is compact
and Gi is Gδ-dense in Ki for each i ∈ I, so G is Gδ-dense in K. Now Comfort–Ross crite-
rion 15.2.1 applies.

Corollary 15.2.4. Every countably compact group is precompact. In particular, a count-
ably compact group is compact precisely when it is complete.

Proof. This follows fromComfort–Ross criterion 15.2.1, since every countably compact
group is pseudocompact by Lemma 15.1.1(c) and Theorem 10.2.6.

The following example shows that not all countably compact groups are compact.
For an example of a pseudocompact group that is not countably compact, see Exer-
cise 15.4.6.

Example 15.2.5. The Σ-product Σ𝕋ℝ = ⋃{𝕋A:A ⊆ ℝ, |A| ≤ ω} (here 𝕋A is considered
as a subgroup of 𝕋ℝ) is countably compact and noncompact.

Corollary 15.2.4 andExample 15.2.5 allowus to distinguish countable compactness
from compactness. In particular, countably compact groups need not be complete.
Nevertheless, countably compact groups are sequentially complete:

Remark 15.2.6. To see that a countably compact group G is sequentially complete,
consider its completion G̃. If G is sequentially closed in G̃, then G is sequentially com-
plete. Assume that G is not sequentially closed in G̃. Then there exist x ∈ G̃ \ G and a
sequence {xn}n∈ℕ in G such that xn → x. So, {xn}n∈ℕ is a Cauchy sequence of G with
no accumulation points in G, against the countable compactness of G (see Proposi-
tion B.5.8).

15.2.2 The Gδ-refinement and its relation to pseudocompact groups

Now we present an alternative way to prove that a pseudocompact group is Gδ-dense
in its (compact) completion, by showing that the Gδ-refinement of a compact group is
linear.

Notation 15.2.7. Let (X, τ) be a topological space. The family of all nonempty Gδ-sets
of (X, τ) is a base of a finer topology τδ on X, called Gδ-refinement of τ. The space (X, τ)
is a P-space if τδ = τ.

The following elementary properties can be proved straightforward.

Lemma 15.2.8. (a) The Gδ-refinement of a topological space is a P-space.
(b) The Gδ-refinement of a topological group is a topological group.
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(c) If f : (X, τ) → (Y , σ) is a continuous map (respectively, an embedding of topological
spaces), then so is fδ: (X, τδ)→ (Y , σ), x → f (x).

(d) A subset Y of a topological space (X, τ) is Gδ-dense if and only if it is dense in the
topology τδ.

For a topological group G, we define

Λ(G) := {H ≤ G:H closed Gδ-set} and Λ⊴(G) := {N ⊴ G:N closed Gδ-set}.

Lemma 15.2.9. Let (G, τ) be a topological group. Then Λ(G) is a neighborhood base at
eG of (G, τδ). If G is precompact, then Λ⊴(G) is a neighborhood base at eG of (G, τδ); in
particular, the Gδ-refinement is linear.

Proof. It is clear that every H ∈ Λ(G) is a neighborhood of eG in τδ. Conversely, let O =
⋂n∈ℕ Un, where each Un is an open neighborhood of eG in τ. We can build inductively
a chain {Wn: n ∈ ℕ} of symmetric neighborhoods of eG in τ such that, for every n ∈ ℕ,
Wn ⊆ Un andWn+1Wn+1 ⊆ Wn. Then H := ⋂n∈ℕWn ⊆ O is a closed Gδ-subgroup of G,
as desired. In case G is compact, we can additionally assume that y−1Wn+1y ⊆ Wn for
all n ∈ ℕ and y ∈ G. In this case, H is a closed normal Gδ-subgroup of G.

Finally, assume that G is precompact and let G̃ be the compact completion. There
exist a sequence {Ũn}n∈ℕ of open neighborhoods of eG̃ such that Ũn ∩ G = Un and Ñ ∈
Λ⊴(G̃) contained in⋂n∈ℕ Ũn. Then N := Ñ ∩ G ∈ Λ⊴(G) has the desired properties.

Lemma 15.2.10. Let (G, τ) be a topological group and H a subgroup of G. Then:
(a) if H ∈ Λ(G) and L ∈ Λ(H), then L ∈ Λ(G);
(b) H is Gδ-dense in G if and only if HL = G for every L ∈ Λ(G);
(c) if H is Gδ-dense in G and N ∈ Λ(G), then N ∩ H is Gδ-dense in N; if additionally,

N ∈ Λ⊴(G), then H/H ∩ N ≅ HN/N = G/N.

Proof. (a) The subgroup L of G is τ-closed and L ∈ (τ↾H )δ ⊆ τδ, since H ∈ τδ.
(b) The subgroup H is Gδ-dense in G if and only if H is dense in (G, τδ). This is

equivalent to HL = G for all L ∈ Λ(G), by Lemma 15.2.9.
(c) The first assertion follows from Lemma B.1.19 applied to the topology τδ, since

N ∈ τδ. Assumenow thatN ∈ Λ⊴(G). SinceH∩N is in particular dense inN, the second
assertion is a consequence of Theorem 3.2.9 and (b).

Remark 15.2.11. LetK be a compact group. Obviously,ψ(K/N) ≤ ω for a closed normal
subgroupN ofK impliesN ∈ Λ⊴(K). On the other hand, ifN ∈ Λ⊴(K), thenN = ⋂n∈ℕ On
with On ∈ 𝒱(eK) open for all n ∈ ℕ. By Lemma 8.2.1, for all n ∈ ℕ, there exists
Un ∈ 𝒱(eK) with NUn ⊆ On. Obviously, N = ⋂n∈ℕ NUn, hence {NUn: n ∈ ℕ} witnesses
ψ(K/N) ≤ ω. Since compact groups of countable pseudocharacter are metrizable by
Theorem 8.2.7 and Birkhoff–Kakutani theorem 5.2.17, we deduce that N ∈ Λ⊴(K) pre-
cisely when K/N is metrizable.
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In conclusion, an alternative way to establish the Gδ-density of a pseudocompact
group G in K = G̃ is the following. By Lemma 15.2.10(b), this is equivalent to prov-
ing that if N ∈ Λ⊴(K) then GN = K, namely, the canonical projection q:K → K/N
satisfies q(G) = K/N . By Remark 15.2.11, K/N is metrizable, so its dense subgroup
q(G) is metrizable as well. On the other hand, q(G) is pseudocompact (as a contin-
uous image of G). Hence, q(G) is compact, and by its density in K/N we conclude that
q(G) = K/N .

15.3 C-embedded subsets and Moscow spaces

15.3.1 C- and C∗-embedded subgroups and subspaces

Let us recall that a subset Y of a topological space X is C-embedded (respectively,
C∗-embedded) if every continuous function f :Y → ℝ (respectively, f :Y → [0, 1])
extends to X. According to Tietze theorem B.5.3, a closed subset of a normal space
is C-embedded. Every C-embedded subspace Y of a topological space X is also
C∗-embedded. Indeed, let f :Y → [0, 1] be a continuous function. Then there is a
continuous extension g:X → ℝ of f . The function ̄f = max{min{g, 1},0} is continuous,
extends f , and has values in [0, 1].

Let us see that C∗-embeddedness is equivalent to C-embeddedness for a pseudo-
compact Gδ-dense subset.

Lemma 15.3.1. Let X be a topological space and Y a pseudocompact Gδ-dense subset
of X. Then Y is C-embedded in X if and only if Y is C∗-embedded in X.

Proof. By the above remark, it is sufficient to prove that Y is C-embedded if it is
C∗-embedded. Pick a continuous function f :Y → ℝ. Since Y is pseudocompact, f is
bounded, and so we can assumewithout loss of generality that f (Y) ⊆ (0, 1). There ex-
ists a continuous extension ̄f :X → [0, 1] of f . SinceY isGδ-dense inX, f (Y) isGδ-dense
in ̄f (X), thus ̄f (X) = f (Y) ⊆ (0, 1) as f (Y) is pseudocompact by Lemma 15.1.1(b), and so
compact. Then ̄f :X → ℝ is a continuous extension of f , and thereforeY isC-embedded
in X.

Claim 15.3.2. If X is a Tichonov space and O is a nonempty Gδ-set of X with x ∈ O, then
there exists a nonempty zero-set Z of X such that x ∈ Z ⊆ O.

Proof. Assume that O ̸= 0 is a Gδ-set of X, and let O = ⋂n∈ℕ+ Un for open sets Un of X.
Pick x ∈ O and build a zero-set x ∈ Z ⊆ O as follows. As X is a Tichonov space, for
every n ∈ ℕ+ there exists a continuous function fn:X → [0, 1] such that fn(x) = 0 and
fn(X \ Un) = {1}. Put

f = ∑
n∈ℕ+

1
2n
fn,
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which is a continuous function f :X → [0, 1] and obviously x ∈ Z := f −1(0). If z ∈ Z,
then f (z) = 0; thus, fn(z) = 0, and so z ∈ Un, for every n ∈ ℕ+. Hence, z ∈ O. This
proves that Z ⊆ O.

There is a well-known fact, due to Gillman and Jerison, that connects C-embed-
dedness of a dense subspace of a Tichonov space to its Gδ-density:

Theorem 15.3.3. If a dense subspace Y of a Tichonov space X is C-embedded in X, then
Y is Gδ-dense in X.

Proof. Assume that Y is dense but not Gδ-dense in X. We build a continuous real-
valued function on Y that cannot be extended to X.

Let O be a nonempty Gδ-set contained in X \Y and let x ∈ O. By Claim 15.3.2, there
exists a zero-set Z of X such that x ∈ Z ⊆ O. Let the continuous function f :X → ℝ
witness Z = f −1(0). Then 0 ̸∈ f (Y), so the function g := 1/f :Y → ℝ is continuous.
Since Y is dense in X, g cannot be extended to a continuous function ḡ:X → ℝ, as
the equality f (y)g(y) = 1, valid for every y ∈ Y , cannot be extended to f (y)ḡ(y) = 1 on
X \ Y .

Corollary 15.1.4 ensures the pseudocompactness of a topological groupGwhich is
Gδ-dense in βG. In Corollary 15.3.7 we see thatK = βG in caseG is aGδ-dense subgroup
of a compact group K. This amounts to check that every continuous function f :G →
[0, 1] extends to K, in other words, that G is C∗-embedded in K.

Unfortunately, the implication in Theorem 15.3.3 goes in the “wrong direction”.
Indeed, we need to deduce C∗-embeddedness from Gδ-density and this is apparently
not always possible in the framework of topological spaces. But fortunately, this is the
case when G is a Gδ-dense subgroup of a compact group K.

The argument we give here is inspired by the original proof of the Comfort–Ross
criterion with due modifications and simplifications.

We make use of the following sharpening of the property from Lemma 15.2.9:

Lemma 15.3.4. In a compact group K, for every nonempty open set U of K, there exists
N ∈ Λ⊴(K) such that U = UN.

Proof. According to [251, Theorem 1.6], U is a Baire set, hence [164, Theorem 64 G]
applies.

In other words, if eK ∈ U, then U not only contains a subgroup N ∈ Λ⊴(K), but it
is actually a union of cosets of N .

Remark 15.3.5. If in Lemma 15.3.4 the compact group K is metrizable, then one can
take N = {eK} to achieve that U = UN . Also when K = ∏i∈I Mi, where each Mi is a
metrizable compact group, the statement of Lemma 15.3.4 is obviously true for U =
W ×∏i∈I\J Mi, a basic open set of K, withW ⊆ ∏j∈J Mj open and J a finite subset of I:
indeed, take N = ∏j∈J{eK} ×∏i∈I\J Mi.
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The following lemma, combined with Theorem 15.3.3, shows that a precompact
group is C-embedded in a maximal possible subgroup of its completion.

Lemma 15.3.6. Let G be a precompact group with completion (K, τ). Then G is C-em-
bedded in H := Gτδ , the closure of G in (K, τδ).

Proof. Fix a continuous function f :G → ℝ and a countable base of open sets ℬ =
{Δn: n ∈ ℕ} of the topology on ℝ. For every n ∈ ℕ, let Un = f −1(Δn) and find an open
setWn of K such that Un = G ∩Wn. By Lemma 15.3.4, for n ∈ ℕ there exists Nn ∈ Λ⊴(K)
such that

WnNn = Wn (15.3)

(here and in the sequel all closures are taken in K). Let N = ⋂n∈ℕ Nn ∈ Λ⊴(K). Let us
see first that WnN = Wn for every n ∈ ℕ: the inclusion Wn ⊆ WnN is obvious, while
WnN ⊆ WnNn = Wn comes by (15.3).

We check that, for x, y ∈ G,

if xN = yN then f (x) = f (y). (15.4)

Assume for a contradiction that f (x) ̸= f (y) in ℝ. Then there exist n,m ∈ ℕ such that
Δn ∩ Δm = 0 and f (x) ∈ Δn, while f (y) ∈ Δm, that is, x ∈ Un and y ∈ Um. From xN = yN,
we deduce that y ∈ xN ⊆ WnN = Wn, and so y ∈ Wm ∩ Wn. Moreover, Wn = Un by
Lemma B.1.19. Therefore, f (y) ∈ f (Un∩G) ⊆ f (Un) ⊆ Δn. On the other hand, f (y) ∈ Δm ⊆
Δm, and so f (y) ∈ Δm ∩ Δn, against Δn ∩ Δm = 0.

By (15.4), there exists a correctly defined function f ′:G/(N ∩ G) → ℝ such that
f = f ′ ∘ q, where q:G → G/(N ∩ G) is the canonical projection. Since f = f ′ ∘ q is
continuous, the standard property of the quotient topology of G/(N ∩ G) guarantees
that f ′ is continuous as well.

G

q ??

f ?? ℝ

G/(N ∩ G)
f ′

?? (15.5)

Since G is Gδ-dense in H and N ∩ H ∈ Λ⊴(H), Lemma 15.2.10(c) yields that G/(G ∩ N)
is topologically isomorphic to H/(H ∩ N). So, the composition H → H/(H ∩ N) →

G/(G ∩ N)
f ′
→ ℝ is a continuous extension of f .

The following corollary reinforces one of the implications of Comfort–Ross crite-
rion 15.2.1.

Corollary 15.3.7. If G is a Gδ-dense subgroup of a compact group K, then K = βG and G
is pseudocompact.

Proof. In view of Lemma 15.3.6, G is C-embedded in K, and hence K = βG. Since G is
Gδ-dense in K = βG, G is pseudocompact by Corollary 15.1.4.
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Corollary 15.3.8. If G is a pseudocompact group, then bG = G̃ = βG.

Proof. Since G is pseudocompact, G is Gδ-dense in G̃ by Theorem 15.2.1. By Corol-
lary 15.3.7, G̃ = βG. That bG = G̃ follows from Theorem 10.2.15, since G is precompact
by Theorem 15.2.1.

15.3.2 ℝ-factorizable groups and Moscow spaces

We discuss here two remarkable notions in view of their utility for the study of topo-
logical groups, even if we are not using them.

The above proofs of Lemma 15.3.6 and Corollary 15.3.7 show also the following
interesting property.

Proposition 15.3.9. If G is a pseudocompact group and f :G → ℝ is a continuous func-
tion, then there exist a second countable group M, a continuous homomorphism h:G →
M, and a continuous function f ′:M → ℝ such that f = f ′ ∘ h.

The factorization property in Proposition 15.3.9 appeared implicitly in many pa-
pers and monographs, starting with Pontryagin [228]. Topological groups with this
property were calledℝ-factorizable by Tkachenkowho carried out a deep study of this
remarkable class of groups [272, 273]. In particular, he proved that precompact groups
are ℝ-factorizable (see [7] where further results can be found).

A Tichonov space X is said to be aMoscow space if for every open set U in X and
x ∈ U there exists aGδ-set P of X such that x ∈ P ⊆ U (hence, the closure of an open set
is a union of closures of Gδ-sets). It was proved by Tkachenko and Uspenskij (see [7])
that a Tichonov space X is a Moscow space if and only if every dense subset Y of X is
C-embedded in its Gδ-closure in X.

Lemma 15.3.4 shows that compact groups are Moscow spaces. Actually, all pre-
compact groups are Moscow spaces (see [7]).

15.3.3 Submetrizable pseudocompact groups are compact

To prove the statement in the subsection title, we need the following:

Lemma 15.3.10. If X is a pseudocompact Tichonov space, then every singleton {x} in X
that is a Gδ-set in X is also a Gδ-set in βX.

Proof. According to Claim 15.3.2, if a singleton {x} in a Tichonov space X is a Gδ-set,
then {x} is functionally closed, i. e., there exists a continuous function f :X → [0, 1]
such that f −1(0) = {x}. Let us see that {x} is functionally closed in βX as well. Indeed,
let ̄f : βX → [0, 1] be the continuous extension of f . Assume that y ∈ ̄f −1(0) \X, and pick
a continuous function g: βX → [0, 1] with g(x) = 1 and g(y) = 0. Then, for h = g + ̄f ,
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one has h > 0 on X, while h(y) = 0. On the other hand, h(X) ⊆ (0, 2] is compact, in
view of the pseudocompactness of X. Hence, h(βX) = h(X) ⊆ h(X) = h(X) ⊆ (0, 2], a
contradiction (in view of h(y) = 0).

Corollary 15.3.11. A pseudocompact submetrizable group G is compact.

Proof. By Theorem 15.2.1, G is precompact. Let K be the compact completion of G. If
G admits a coarser metrizable group topology, then the singleton {eG} is a Gδ-set of G.
Since K = βG by Corollary 15.3.7, Lemma 15.3.10 yields that {eG} is a Gδ-set of K = βG
as well. Therefore, K is metrizable, so G is metrizable as well. Since G is Gδ-dense in K
by Theorem 15.2.1, we get that G = K is compact.

Corollary 15.3.12. A metrizable compact group admits no strictly finer pseudocompact
group topology.

Proof. If (G, τ) is a metrizable compact group and τ′ ≥ τ is a finer pseudocompact
group topology on G, then τ′ is submetrizable, hence compact by Corollary 15.3.11.
Since compact groups are minimal, this entails τ′ = τ.

This corollary is a part of a more precise theorem due to Comfort and Robert-
son [58], treating the question of when a compact abelian group G admits a strictly
finer pseudocompact group topology:

Theorem 15.3.13 ([58]). A compact abelian group G admits a strictly finer pseudocom-
pact group topology if and only if G is not metrizable.

15.4 Exercises

Exercise 15.4.1. Let Y be a Baire space and X be a Gδ-dense subspace of Y . Prove that
X is a Baire space as well.

Exercise 15.4.2. Prove that if X is a dense countably compact subspace of a regular
space Y , then X is Gδ-dense in Y .
Hint. Proceed as in the proof of Lemma 15.1.3.

Exercise 15.4.3. Prove that a pseudocompact T4-space X is countably compact.
Hint. Assume for a contradiction that X is not countably compact. Then there exists a sequence A =
{xn}n∈ℕ inXwithnoaccumulationpoint; in particular,A is discrete and closed. Let f :A→ ℝbedefined
by f (xn) = n for every n ∈ ℕ. By Tietze theorem B.5.3, there exists a continuous extension of f to X,
which is clearly unbounded.

Exercise 15.4.4. Prove that a group having a dense pseudocompact subgroup is nec-
essarily pseudocompact.

Exercise 15.4.5. Show that a countably infinite Hausdorff group cannot be pseudo-
compact.
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Hint. IfG is a countably infiniteHausdorff group and it is also pseudocompact, then it is discrete, being
a Baire space in view of Theorem 15.1.5. By Theorem 15.2.1, pseudocompact groups are precompact, so
Gmust be finite, a contradiction.

Exercise 15.4.6. Give examples of pseudocompact groups having closed nonpseudo-
compact subgroups.Deduce fromLemma15.1.1 that there exist pseudocompact groups
that are not countably compact.
Hint. Let K = 𝕋ℝ and G0 = Σ𝕋ℝ; moreover, let Q = (ℚ/ℤ)ℝ ∩ ΔK ≅ ℚ/ℤ, where ΔK denotes the
diagonal. By Example 15.2.5 and Exercise 15.4.4, G = G0 + Q is pseudocompact. Yet Q = G ∩ ΔK is a
closed subgroup of G that is not pseudocompact, in view of Exercise 15.4.5.

Exercise 15.4.7. Show that for an infinite abelian group G, the group G# cannot be
pseudocompact.
Hint. Show first that G admits a subgroupH such that G/H is countably infinite. Then use the fact that
H is a closed subgroupofG# and (G/H)# coincideswith the quotientG#/H, somust bepseudocompact.
This contradicts Exercise 15.4.5.

15.5 Further readings, notes, and comments

The fact that metrizable pseudocompact groups are compact triggered another ques-
tion that was aggressively attacked by Comfort and his coauthors. Namely, the ne-
cessity in Theorem 15.3.13 can be interpreted by saying that a metrizable pseudocom-
pact group (G, τ) is r-extremal, in the sense that it admits no strictly finer pseudo-
compact group topology. The question of whether this implication can be inverted,
i. e., whether the r-extremal pseudocompact groups are necessarily metrizable turned
out to be rather hard (see [59, 88] for some partial results). The final affirmative so-
lution came only twentyfive years later in [62]. A generalization of this problem for
α-pseudocompact groups was resolved in [155].

The structure of groups admitting pseudocompact group topologies, as well as
many other features of pseudocompact groups, is discussed in [101]. The final solu-
tion of the problem of the description of the algebraic structure of pseudocompact
groups was given by Shakhmatov and the second named author (unpublished). An
alternative proof of the necessity part of this characterizationwas given later in [85] as
an application of the new cardinal invariant (divisible weight) introduced there. This
cardinal invariant motivated the introduction in [107] of a similar one (divisible rank)
that turned out to have relevant applications (along with the divisible weight) for the
solution of various problems (see [106, 107, 108, 257]).

As a relevant consequence of Corollary 15.3.7, one can deduce that all real-valued
continuous functions on a pseudocompact group are uniformly continuous.
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16 Topological rings, fields, and modules

16.1 Topological rings and fields

Definition 16.1.1. A topology τ on a ring A is a ring topology if the maps f :A × A → A,
(x, y) → x − y, and m:A × A → A, (x, y) → xy, are continuous when A × A carries the
product topology. A topological ring is a pair (A, τ) of a ring A and a ring topology τ
on A.

For every ring A, the discrete and indiscrete topologies on A are ring topologies.
Nontrivial examples of topological rings are provided by the fields ℝ and ℂ.

Example 16.1.2. For every prime p, the group 𝕁p of p-adic integers carries also a ring
structure and its compact group topology is also a ring topology.

Other examples of ring topologies are given in Example 16.1.7.
Obviously, a topology τ on a ring A is a ring topology if and only if (A,+, τ) is a

topological group and the mapm:A × A → A is continuous. We shall exploit this fact
and in particular that, for a ∈ A, the filter 𝒱τ(a) coincides with a + 𝒱τ(0).

The following theorem is a counterpart of Theorem 2.1.10.

Theorem 16.1.3. Let A be a ring and 𝒱(0A) the filter of all neighborhoods of 0A in some
ring topology τ on A. Then (gt1), (gt2), and the following conditions hold:
(rt1) for every U ∈ 𝒱(0A) and a ∈ A, there is V ∈ 𝒱(0A) with Va ∪ aV ⊆ U;
(rt2) for every U ∈ 𝒱(0A), there exists V ∈ 𝒱(0A) with VV ⊆ U.

Conversely, if 𝒱 is a filter on A satisfying (gt1), (gt2), (rt1), and (rt2), then there exists a
unique ring topology τ on A such that 𝒱 = 𝒱τ(0A).

Proof. Since (A,+, τ) is a topological group, (gt1) and (gt2) hold by Theorem 2.1.10. To
prove (rt2), it suffices to apply the definition of continuity of the multiplication m at
(0A,0A) ∈ A × A. Analogously, for (rt1) use the continuity of the multiplication m at
(0A, a) ∈ A × A and (a,0A) ∈ A × A.

Let 𝒱 be a filter on A satisfying all conditions (gt1), (gt2), (rt1), and (rt2). By The-
orem 2.1.10, there exists a group topology τ on (A,+) such that 𝒱 = 𝒱τ(0A). It remains
to check that τ is a ring topology, i. e., the multiplication m:A × A → A is continuous
at every pair (a, b) ∈ A×A. Pick a neighborhood of ab ∈ A; it is not restrictive to take it
of the form ab + U, with U ∈ 𝒱. Next, choose V ∈ 𝒱 such that V + V + V ⊆ U and pick
W ∈ 𝒱 withWW ⊆ V , aW ⊆ V , andWb ⊆ V . Then

m((a +W) × (b +W)) = ab + aW +Wb +WW ⊆ ab + V + V + V ⊆ ab + U .

This proves the continuity of the multiplicationm:A × A→ A at (a, b).

https://doi.org/10.1515/9783110654936-016
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16.1.1 Examples and general properties of topological rings

Remark 16.1.4. Let 𝒱 = {Ji: i ∈ I} be a filter base consisting of two-sided ideals of a
ring A. Since 𝒱 satisfies (gt1), (gt2), (rt1), and (rt2), by Theorem 16.1.3 it generates a
ring topology on A having as a local base at a ∈ A the family of cosets {a + Ji: i ∈ I}.
Ring topologies of this type are called linear ring topologies.

Let (A, τ)be a topological ring and letAbe a two-sided ideal ofA. The quotient ring
A/A, equipped with the quotient topology of the underlying abelian group (A/A,+),
is a topological ring that we call the quotient ring.

If (A, τ) is a topological ring, the closure of a two-sided (respectively, left, right)
ideal of A is again a two-sided (respectively, left, right) ideal of A. In particular, A =
core(A) is a closed two-sided ideal. As we already know, the quotient ring hA = A/A is
Hausdorff and shares many of the properties of the topological ring (A, τ). This is why
we consider exclusively Hausdorff rings.

Definition 16.1.5. A Hausdorff ring (A, τ) is called complete if it is complete as a topo-
logical group.

If (A, τ) is a Hausdorff ring, the completion Ã of the topological group (A,+, τ) car-
ries a natural ring structure, obtained by the extension of the ring operation of A to Ã
by continuity using the fact that the product of two Cauchy nets of A is a Cauchy net
(see Exercise 16.3.1). In this way, Ã becomes a topological ring.

As far as connectedness is concerned, one has the following easy to prove fact:

Theorem 16.1.6. The connected component of a topological ring is a two-sided ideal.
Hence, every topological ring that is a division ring is either connected or hereditarily
disconnected.

Let us see some basic examples of linear ring topologies.

Example 16.1.7. Let A be a ring and A a two-sided ideal of A. Then {An: n ∈ ℕ} is a
filter base of a ring topology, named the A-adic topology.
(a) The p-adic topology of the ring 𝕁p coincides also with the p𝕁p-adic topology of the

ring 𝕁p, generated by the ideal p𝕁p.
(b) Let k be a field and A = k[x] the polynomial ring over k. Take A = xA = (x); then

the A-adic topology has as basic neighborhoods of 0 the principal ideals xnA.
(c) The completion Ã of the ring A = k[x], equipped with the (x)-adic topology is the

ring k[[x]] of formal power series over k (elements of k[[x]] are the formal power
series of the form∑∞n=0 anx

n, with an ∈ k for all n). The topology of the completion
Ã coincides with the xÃ-adic topology of Ã.

(d) Let k be a field, n ∈ ℕ+, andA = k[x1, . . . , xn] the ring of polynomials of n variables
over k. Take A = x1A + ⋅ ⋅ ⋅ + xnA; then the A-adic topology has as basic neighbor-
hoods of 0 the ideals (Am),m ∈ ℕ, where the powerAm consists of all polynomials
having no terms of degree less thanm.
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(e) For every n ∈ ℕ+, the completion Ã of the ring A = k[x1, . . . , xn], equipped with
the (x1, . . . , xn)-adic topology, is the ring k[[x1, . . . , xn]] of formal power series of n
variables over k. The topologyof Ã coincideswith the (x1Ã+⋅ ⋅ ⋅+xnÃ)-adic topology.
Moreover, Ã is compact precisely when k is finite.

16.1.2 Topological fields

Definition 16.1.8. A topology τ on a field K is said to be a field topology if (K, τ) is a
topological ring and the map ι:K \ {0}→ K \ {0}, x → x−1, is continuous. A topological
field is a pair (K, τ) of a field K and a field topology τ on K.

The next example provides instances of infinite locally compact fields.

Example 16.1.9. (a) Clearly, ℝ and ℂ are (connected) locally compact fields.
(b) For every prime p, the fieldℚp is a locally compact field.

The example in item (a) gives all connected locally compact fields:

Theorem 16.1.10 (Pontryagin [228]). The only connected locally compact fields are ℝ
and ℂ.

According to Theorem 16.1.6, a topological field that is not connected is necessar-
ily hereditarily disconnected. In the sequel we discuss the hereditarily disconnected
locally compact fields.

A subset B of a topological ring A is bounded if for every U ∈ 𝒱(0) there exists a
V ∈ 𝒱(0) such that VB ⊆ U and BV ⊆ U . If A = K is a topological field, a subset B ⊆ K
containing 0 is retrobounded if (K \ B)−1 is bounded. If every neighborhood of 0 in K
is retrobounded, K is said to be locally retrobounded.

Example 16.1.11. An absolute value on a field K is a norm x → |x| of the additive group
(K,+) such that |xy| = |x| ⋅ |y| for x, y ∈ K. Themetric topology τ generated by this norm
makes (K, τ) a retrobounded topological field, where the bounded sets are precisely
thosewhich are bounded for themetric (see Exercise 16.3.5). The usual absolute values
in ℝ and ℂ, as well as the p-adic norm | − |p inℚp, are absolute values in this sense.

Theorem 16.1.12. If K is a locally retrobounded field, then:
(a) ([216, Theorems 2 and 6]) every finite dimensional K-vector space admits a unique

topological K-vector space topology, namely, the product topology;
(b) ([287, Theorem 13.9]) the completion K̃ is a locally retrobounded field.

Since locally compact fields are locally retrobounded (see [287]), item (a) of this
theorem applies for locally compact fields. Item (b) provides examples of topological
fields that are not locally retrobounded (see Exercise 16.3.6).
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The locally compact fields from Example 16.1.9 have characteristic 0. Kowal-
sky [187] proved that a hereditarily disconnected locally compact field K of character-
istic 0 is necessarily a finite extension ofℚp, for some prime p. By Theorem 16.1.12(a),
we can assume that K carries the Tichonov topology, so K ≅ ℚdp as aℚp-vector space,
where d = [K : ℚp].

Here comes an example of a locally compact field of positive characteristic.

Example 16.1.13. Take the compact ring k[[x]], where k is a finite field, and its field of
fractions K = k((x)), consisting of formal Laurent power series of the form∑∞n=n0 anx

n,
n0 ∈ ℤ and an = 0 for all n < n0. By declaring the subring k[[x]] of K open, with
its compact topology, one obtains a locally compact field topology on K having the
same characteristic as k. Moreover, since K ≅ k(ℕ) × kℕ as topological groups, where
kℕ ≅ k[[x]] is open and compact while the first summand is discrete, one has K ≅ K̂,
i. e., K is selfdual.

The topology in the above example is generated by an appropriate absolute value
of K (e. g., letting |f | = 2−n0 for a nonzero f = ∑∞n=n0 anx

n ∈ K with an0 ̸= 0, and |0| = 0)
and the same applies to the finite extensions ofℚp mentioned above. More generally,
every locally compact fieldK admits an absolute value and carries themetric topology
induced by this absolute value (see [180, 289]). An infinite locally compact field K of
finite characteristic p is necessarily of the form described in Example 16.1.13 for some
finite field k of characteristic p (see [289, Theorem 8]).

Since ℝ,ℚp, and ℤ/pℤ((x)) are selfdual and this property is preserved by taking
finite products, we deduce that all locally compact fields are selfdual.

16.2 Topological modules

Definition 16.2.1. LetA be a topological ring. A (left)A-moduleM is a (left) topological
A-module if M is a topological group and the module multiplication A × M → M is
continuous when A ×M carries the product topology.

A proof in the line of the proof of Theorem 16.1.3 shows that:

Theorem 16.2.2. If A is a topological ring, then a left A-moduleM equippedwith a group
topology τ is a topological A-module if and only if its filter 𝒱(0M) of neighborhoods sat-
isfies, beyond (gt1) and (gt2), also these three properties:
(mt1) for every W ∈ 𝒱(0M), there exist U ∈ 𝒱(0A) and V ∈ 𝒱(0M) with UV ⊆ W;
(mt2) for every U ∈ 𝒱(0M) and x ∈ M, there exists V ∈ 𝒱(0A) with Vx ⊆ U;
(mt3) for every U ∈ 𝒱(0M) and a ∈ A, there exists V ∈ 𝒱(0M) with aV ⊆ U.

Conversely, if 𝒱 is a filter on M satisfying (gt1), (gt2), (mt1), (mt2), and (mt3), then there
exists a unique topological A-module topology τ on M such that 𝒱 = 𝒱τ(0M).
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Remark 16.2.3. Combining (mt1) and (mt2), one can show that for every U ∈ 𝒱(0M)
and x ∈ M there exists V ∈ 𝒱(0A) andW ∈ 𝒱M(x) such that VW ⊆ U . Using this, one
can show that for everyU ∈ 𝒱(0M) and every compact setK ∈ M there existsV ∈ 𝒱(0A)
such that VK ⊆ U .

16.2.1 Uniqueness of the Pontryagin-van Kampen duality

In this subsection R will be a locally compact commutative unitary ring and ℒR the
category of locally compact topological unitary R-modules and continuous R-module
homomorphisms. The commutativity of R allows us to avoid distinguishing between
left and right R-modules and gives the possibility to define, for a morphism f :M →
N in ℒR and r ∈ R, the morphism rf :M → N by (rf )(x) = rf (x) for x ∈ M. For the
discrete ring ℤ, ℒℤ is the whole class of locally compact abelian groups. However,
for the discrete ring ℚ, ℒℚ consists only of the torsion-free divisible locally compact
abelian groups (for more examples, see Exercise 16.3.8).

The Pontryagin-van Kampen dual M̂ of M ∈ ℒR has a natural structure of an
R-module (with (rχ)(x) = χ(rx) for χ ∈ M̂ and r ∈ R) and M̂ ∈ ℒR (see Exercise 16.3.10).
For a morphism f :M → N in ℒR and r ∈ R, one has r̂f = rf̂ .

Roeder theorem 13.4.19 on the uniqueness of the Pontryagin-van Kampen duality
functor was rediscovered independently by Prodanov [235] several years later in the
much more general setting of the category ℒR, as follows.

Definition 16.2.4. A functorial duality #:ℒR → ℒR is an involutive duality of ℒR such
that (rf )# = rf # for each morphism f :M → N in ℒR and r ∈ R.

The above observation shows that the restriction of the Pontryagin-van Kampen
duality functor on ℒR is a functorial duality, so there is always a functorial duality on
ℒR, that we shall briefly call Pontryagin-van Kampen functor (duality) of ℒR.

Theorem 16.2.5 (Stoyanov [268]). If R is a compact commutative ring, then the
Pontryagin-van Kampen functor is the only functorial duality on ℒR.

Surprisingly, the case of a discrete ringR turned out to bemore complicated. From
now on R is discrete.

Let us recall that X ∈ ℒR is a (co)generator if for every nontrivial M ∈ ℒR there
exists a nontrivial morphism X → M (respectively, M → X). Clearly, every functo-
rial duality #:ℒR → ℒR takes generators to cogenerators, and vice versa. Furthermore,
# takes the subcategory 𝒞R of compact R-modules to the subcategory 𝒟R of discrete
ones, and vice versa (use an argument as in Exercise 13.7.6 tailored for ℒR).

Of primary importance is the compact R-module T = R#, named the torus of the
functorial duality #:ℒR → ℒR (in particular, R̂ is the torus of the Pontryagin-van Kam-
pen functor). Since R is a discrete projective generator of ℒR, T is a compact injective
cogenerator ofℒR with CHomR(T ,T) ≅ R canonically. Let us denote byTR the family of
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isomorphism classes of R-modules T with these properties, i. e., T is a compact injec-
tive cogenerator of ℒR with CHomR(T ,T) ≅ R. To every functorial duality #:ℒR → ℒR
we associated the R-module T = R# ∈ TR. For the sake of brevity, we denote byDR the
family of all (equivalence classes under natural equivalence of) functorial dualities #

on ℒR. Then the assignment #:R → R# defines a correspondence ΦR:DR → TR which
need not be one-to-one in general.

Let us see now that ΦR is surjective. To this end, for T ∈ TR, define the R-module
ΔT (X) := CHomR(X,T)of all continuousR-module homomorphisms equippedwith the
compact-open topology. The elements of ΔT (X) are called continuous T-characters of X
and it is easily checked that ΔT (X) ∈ ℒR. The assignment ΔT :ℒR → ℒR, X → ΔT (X), in-
duces a contravariant functor which is a functorial duality. The natural equivalence
ω̄ between 1ℒR

and ΔT ⋅ ΔT is defined by the evaluation homomorphisms ω̄X :X →
ΔT (ΔT (X)), i. e., for x ∈ X and χ ∈ ΔT (X), ω̄X(x)(χ) = χ(x) (see [96, Theorem 5.2]).
Moreover, ΔT (R) = CHomR(R,T) ≅ T, so T is the torus of ΔT . This shows that each
T ∈ TR is the torus of some functorial duality on ℒR. This is why we briefly call torus
any R-module T ∈ TR.

In order to discuss injectivity of the correspondence ΦR:DR → TR, pick a functo-
rial duality #:ℒR → ℒR and its torus T. As we already discussed above, there is already
a functorial duality, namely, ΔT , with torus T. The question is whether ΔT coincides
with (namely, is naturally equivalent to) #. It is easy to find an algebraic isomorphism
iX :X# → ΔT (X) for every X ∈ ℒR, obtained as a composition of the algebraic isomor-
phisms

X# → HomR(R,X
#)→ CHomR(X

##,R#)→ CHomR(X,R
#) = ΔT (X),

where the first is given by the assignment x → ϕx with ϕx(r) = rx for x ∈ X# and
r ∈ R, the second is inducedby the functorial duality, and the thirdby the isomorphism
eX :X → X## given by the natural equivalence between 1ℒR

and # ⋅ # (see [96]).

Remark 16.2.6. Denote by X′ the R-module ΔT (X) equipped with the topology that
makes iX :X# → X′ a topological isomorphism. Then iX :X# → X′ defines a natural
equivalence between # and ′ (i. e., they coincide inDR), so modulo this identification
one can assume that the elements of X# are the T-characters X → T, but the topology
of X# need not be the compact-open one (see [96, Proposition 4.2]). This topology will
be described later on.

Definition 16.2.7. A functorial duality #:ℒR → ℒR is continuous if for each X ∈ ℒR the
isomorphism iX :X# → ΔT (X) is also topological (so, # is naturally equivalent to ΔT );
otherwise # is discontinuous.

The topological isomorphisms iX : X̂ → ΔR̂(X), X ∈ ℒR, witnesses that:

Fact 16.2.8 ([96]). The Pontryagin-van Kampen duality functor of ℒR is a continuous
functorial duality.
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As stated above, the continuous dualities of ℒR are classified by their tori, hence
by means of the discrete Pontryagin-van Kampen duals of those tori, which are the
projective finitely generated R-modules V with EndR(V) ≅ R. They form the Picard
group Pic(R) of R: this is the set of isomorphism classes of finitely generated projective
R-modulesV satisfying End(V) ≅ Rwith group operation [V]+[V ′] = [V ⊗RV ′] (where
[V] denotes the isomorphism class of V ; the neutral element of the group Pic(R) is
[R] and the opposite of [V] is HomR(V ,R)). Therefore, roughly speaking, (up to the
bijection TR → Pic(R), T → T̂, composed with ΦR) the continuous functorial dualities
of ℒR form a group, namely, Pic(R).

Theorem 16.2.9 ([96, Theorem 5.17], [99, §3.4]). Let R be a discrete ring. The unique
continuous functorial duality on ℒR is the Pontryagin-van Kampen duality if and only if
Pic(R) = {0}.

Prodanov proved in [235] (see also [99, §3.4]) that every functorial duality on ℒ =
ℒℤ is continuous. In view of Pic(ℤ) = {0}, this result, combined with Theorem 16.2.9,
gives another proof of Roeder theorem 13.4.19.

Continuous dualities were studied in the noncommutative context in [159].

While thePicard groupprovides an excellent tool tomeasure the failure of unique-
ness for continuous dualities, there is still no completely efficient way to capture it for
discontinuous ones. The first example of a discontinuous duality was given in [96,
Theorem 11.1] (see Example 16.2.10).

The classification of the discontinuous functorial dualities with a given torus T
amounts to the description of the “fiber” Φ−1R (T) of ΦR:DR → TR. According to [96,
Theorem 4.4], for every functorial duality # with torus T there is a (not necessarily
continuous) automorphism κ:T → T such that the natural equivalence e between
1ℒR

and #⋅# satisfies eX(x) = κ ∘ ω̄X(x) for every X ∈ ℒR and x ∈ X. Moreover, κ ∘ κ:
T → T is a topological isomorphism, hence a multiplication by an invertible element
r ∈ R (see [96, Theorem 4.8]). For this reason, κ is called the involution of #, and it is
continuous precisely when κ is amultiplication by an element ofR. In these terms, the
duality # is (dis)continuous precisely when κ is (dis)continuous. The torus T and the
involution κ determine the duality # up to natural equivalence (see [96, Theorem 9.3]).
The question of which involutions of a torus T are involutions of a functorial duality
is highly nontrivial.

To summarize, the existence of nonisomorphic tori (i. e., Pic(R) ̸= {0}) leads to
nonuniqueness of (continuous) functorial dualities; nevertheless, the existence of dis-
continuous functorial dualities does not always lead to nonuniqueness (see Exam-
ple 16.2.11).

In order to describe very briefly the construction of the duality # with assigned
torus T and involution κ, we need to recall the following facts (proofs can be found
in [96, 99]). For a torus T and (X, τ) ∈ ℒR, the weak topology of all continuous
T-characters X → T coincides with τ+. Hence, the topology of X ∈ ℒR is uniquely

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



282 | 16 Topological rings, fields, and modules

determined by its continuous T-characters χ:X → T (i. e., if X,Y ∈ ℒR have the same
underlying abstract module and the same continuous T-characters, then they coin-
cide topologically). Using this fact, the following counterpart for ℒR of Exercise 13.7.15
was proved in [96, §6]: if T is a torus and X,Y ∈ ℒR, a homomorphism f :X → Y of
abstract R-modules is continuous if and only if χ ∘ f :X → T is continuous for every
continuous T-character χ:Y → T.

This permits us tobuild, for each functorial duality #:ℒR → ℒRwith torusT and in-
volution κ, a functor (concrete equivalence) μ:ℒR → ℒR (see [96, §6]). More precisely, μ
leaves unchanged the underlying abstract R-modules and their R-module homomor-
phisms, but the continuous T-characters χ: μ(X) → T are the R-module homomor-
phisms χ:X → T such that κ−1 ∘ χ:X → T is continuous. Then μ = 1ℒR

if and only
if μ(T) = T (if and only if # is continuous). Moreover, μ preserves exact sequences,
μ(𝒞R) = 𝒞R and μ(𝒟R) = 𝒟R. An R-module homomorphism h:X → Y is continuous if
and only if h: μ(X)→ μ(Y) is continuous.

On the other hand, starting fromT, κ, andμwith the above properties, one obtains
the isomorphisms ηX :ΔT (μ(X))→ μ(ΔT (X)), letting ηX(χ) = κ−1 ∘χ for every continuous
T-character χ:X → T and X ∈ ℒR. They give a natural equivalence between ΔT ⋅ μ and
μ ⋅ΔT , and the assignment X → X# := ΔT (μ(X)) induces a functorial duality #:ℒR → ℒR
out of a torus T with involution κ and a concrete equivalence μ related to T and κ as
above (see [96, 6.7]).

Let ℒ0
R be the full subcategory of ℒR with objects all R-modules having a compact

open submodule. This subcategory contains 𝒞R and 𝒟R, and each functorial duality
#:ℒR → ℒR sends ℒ0

R to ℒ0
R. This permits us to consider the restriction of # to ℒ0

R as a
functorial duality onℒ0

R. On the other hand,we canassociate to each functorial duality
# on ℒ0

R a torus and an involution as we did for ℒR, and speak of (dis)continuity of #.
Then a compact module T is a torus in ℒ0

R if and only if it is a torus in ℒR.

Example 16.2.10. It turns out thatℒ0
R hasmuchmore functorial dualities than the cat-

egory ℒR. Actually, every pair (T , κ) where T is a torus T and κ:T → T an involution
give rise to a functorial duality # on ℒ0

R with torus T and involution κ (see [96, 10.2] –
bymeans of κ, one builds a concrete involutive equivalence μ: 𝒞R → 𝒞R which extends
toℒ0

R and defines X
# = ΔT (μ(X)), as above). In particular,ℒ0

R has always discontinuous
dualities. Using this fact, one can produce examples of rings R (e. g., any field R with
char(R) = 0and |R| > c– see [96, Theorem11.1])withℒR = ℒ

0
R, soℒR hasdiscontinuous

dualities.

It was conjectured by Prodanov that in case R is an algebraic number ring, all
functorial dualities are continuous (so uniqueness is available if R is a principal ideal
domain). This conjecture was proved to be true for real algebraic number rings, but it
was shown to fail in case R = ℤ[i] (see [76] for more detail).

Example 16.2.11. A full subcategory ofℒℚ containingℒ0
ℚ is finitely closed if it is closed

with respect to isomorphisms, taking quotients (with respect to closed submodules),
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finite products, and closed submodules. Using the fact that the Adele ring Aℚ has no
ring automorphisms beyond the identity (see [117]), it was proved in [94] that all du-
alities of the finitely closed subcategories of ℒℚ are continuous (actually, among all
finitely closed subcategories ℒ of ℒℚ, exactly those with Aℚ ∈ ℒ have this property),
whereas ℒℝ and ℒℂ, where ℝ and ℂ are considered with the discrete topology, admit
discontinuous dualities. Nevertheless, there is a unique functorial duality both on ℒℝ
and ℒℂ.

16.2.2 Locally linearly compact modules

In the sequel A will be a Hausdorff topological ring.

Definition 16.2.12. A topological A-moduleM is linearly topologized if it is Hausdorff
and admits a local base at 0 consisting of open submodules ofM.

Discrete modules are obviously linearly topologized.
Given a linearly topologized A-moduleM, a linear variety V ofM is a coset x + N,

where x ∈ M and N is a submodule of M. A linear variety x + N is open (respectively,
closed) inM if N is open (respectively, closed) inM.

Definition 16.2.13. A linearly topologized A-module M is linearly compact if any
collection of closed linear varieties of M with the finite intersection property has
nonempty intersection. A topological ring A is linearly compact if A is a linearly com-
pact A-module.

Inspired by the samenotion for vector spaces given by Lefschetz [195] (see §16.2.3),
linearly compact modules were introduced by Zelinsky [292]. Linear compactness is
largely used for the study of ring and module structure (e. g., see [224]).

We collect basic properties concerning linearly compact modules that are very
similar to the properties of compact groups:

Proposition 16.2.14 ([292]). Let M be a linearly topologized A-module.
(a) Then M is linearly compact if and only if any collection of open linear varieties of M

with the finite intersection property has a nonempty intersection.
(b) If N is a linearly compact submodule of M, then N is closed.
(c) If M is linearly compact and N is a closed submodule of M, then N is linearly com-

pact.
(d) If M is linearly compact, N a linearly topologized A-module, and f :M → N is a

continuous surjective A-module homomorphism, then N is linearly compact.
(e) If N is a closed linear submodule of M, then M is linearly compact if and only if N

and M/N are linearly compact.
(f) The direct product of linearly compact modules is linearly compact.
(g) An inverse limit of linearly compact modules is linearly compact.
(h) If M is linearly compact, then M is complete.
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Definition 16.2.15. A linearly topologizedA-moduleM is strictly linearly compact if ev-
ery continuous surjective A-module homomorphism f :M → N, onto a linearly topol-
ogized A-module N, is open.

There exist linearly compact modules that are not strictly linearly compact. A dis-
crete strictly linearly compact module is Artinian (see Exercise 16.3.12).

Since linearly compact modules are complete, similarly to Proposition of 7.2.11,
one can see that a linearly compactmodule is an inverse limit of discrete linearly com-
pact modules. So, a linearly compact module is strictly linearly compact if and only if
it is an inverse limit of discrete Artinian modules. In particular, every linearly com-
pact module over an Artinian ring (in particular, a division ring) is necessarily strictly
linearly compact.

As in [195] for vector spaces, we introduce the following concept in the obvious
way (a slightly weaker notion under the same name was discussed in [2, 204], see
Definition 16.2.24).

Definition 16.2.16. A linearly topologized A-module M is locally linearly compact if
there exists an open submodule ofM that is linearly compact.

Thus, anA-moduleM is locally linearly compact if andonly if it admits a local base
at 0 consisting of open linearly compact submodules of M. Clearly, linearly compact
A-modules and discrete A-modules are locally linearly compact.

Example 16.2.17. Let G be a topological abelian group considered as a topological
ℤ-module. Then G is a linearly compactℤ-module if and only if G is linearly compact.
If G is locally compact and hereditarily disconnected, then G is linearly topologized
by Theorem 8.5.2(a) and G is a locally linearly compact ℤ-module.

Proposition 16.2.18. Let M be a linearly topologized A-module.
(a) If M is locally linearly compact, then M is complete.
(b) If N is a locally linearly compact submodule of M, then N is closed.
(c) If N is a closed linear submodule of M, thenM is locally linearly compact if and only

if N and M/N are locally linearly compact.

Proof. (a) is a consequence of Proposition 16.2.14(h) and implies (b), since a complete
topological subgroup of a Hausdorff group is closed by Proposition 7.1.22.

(c) IfM is locally linearly compact, thenN andM/N are locally linearly compact as
well. Conversely, assume thatN andM/N are locally linearly compact and let us show
that M has a linearly compact open submodule U . To this end, let W be a linearly
compact open submodule ofN andO a linearly compact open submodule ofM/N . We
can assumewithout loss of generality that there exists an open submoduleB ofM such
that B ∩ N = W . Moreover, let π:M → M/N be the canonical projection and set A =
π−1(O), which is an open submodule ofM. Therefore,U = B∩A is an open submodule
ofM andU ⊆ A. Hence,π(U), as an open submodule of the linearly compactA-module
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O, is linearly compact as well. Since both U/(U ∩ N) ≅ π(U) and U ∩ N = B ∩ A ∩ N =
A ∩ W = W are linearly compact, we deduce from Proposition 16.2.14(e) that U is
linearly compact.

16.2.3 The Lefschetz–Kaplansky–MacDonald duality

Here we concentrate on the special case proposed by Lefschetz [195], that is, K is a
discrete field, andweconsider the categoryLLCK ,with objects beingall locally linearly
compact vector spaces over K and morphisms all continuous linear transformations.
First, we see that locally linearly compact vector spaces have a very simple structure:

Theorem 16.2.19. Every V ∈ LLCK is topologically isomorphic to Vc ×Vd, where Vc and
Vd are linear subspaces of V, with Vc linearly compact open and Vd discrete.

Proof. Let Vc be an open linear subspace of V that is linearly compact. There exists a
linear subspaceVd ofV such thatV = Vc⊕Vd, whereVd is discrete, being topologically
isomorphic toV/Vc. It is straightforward to prove that the isomorphismbetweenV and
Vc × Vd is a topological isomorphism.

The duality theory of LLCK , for a discrete field K, proposed by Lefschetz [195],
was inspired by the Pontryagin-van Kampen duality, with which it shares many
common features. Let CHom(V,K) be the vector space of all continuous function-
als V → K. For a linear subspace A of V , the annihilator of A in CHom(V,K) is
A⊥ := {χ ∈ CHom(V,K): χ(A) = {0}}, while for a linear subspace B of CHom(V,K),
the annihilator of B in V is B⊤ := {v ∈ V : χ(v) = 0 for every χ ∈ B}.

Definition 16.2.20. For V ∈ LLCK , the Lefschetz dual V∧ of V is CHom(V,K) en-
dowed with the topology having as a local base at 0 the family of linear subspaces
{A⊥:A linearly compact linear subspace of V}.

Since, for a linearly compact open linear subspaceA ofV , Theorem 16.2.19 implies
V = A × B for some discrete subspace B of V , it follows that A⊥ ≅ B∧ is linearly com-
pact. Therefore, V∧ ∈ LLCK and V is discrete if and only if V∧ is linearly compact. Let
∧: LLCK → LLCK be the Lefschetz duality functor, which is defined on the objects by
V → V∧ and on themorphisms sending f :V → W to f ∧:W∧ → V∧ such that f (χ) = χ ∘f
for every χ ∈ W∧. This is a contravariant representable functor. The biduality functor
∧∧: LLCK → LLCK is defined by composing ∧ with itself. Here is a counterpart of the
Pontryagin-van Kampen duality theorem.

Theorem 16.2.21 (Lefschetz duality theorem [195, Theorem 29.1]). The biduality func-
tor ∧∧: LLCK → LLCK and 1LLCK : LLCK → LLCK are naturally isomorphic. This induces
a duality between the subcategories LCK of linearly compact vector spaces over K and
VectK of discrete vector spaces over K.
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As in Pontryagin-van Kampen duality theorem 13.4.17, one proves that, for every
locally linearly compact vector spaceV , the evaluationmapωV :V → V∧∧, v → ωV (v),
with ωV (v)(χ) = χ(v) for every χ ∈ V∧, is a topological isomorphism.

Corollary 16.2.22. Let V be a linearly compact vector space over a discrete field K. Then
V is compact if andonly if K is finite. In particular, V is a hereditarily disconnected locally
compact abelian group whenever K is finite.

Proof. By Exercise 16.3.16, V = ∏i∈I Ki with Ki = K for all i ∈ I. If V is compact, then
each Ki is compact as well, hence K is finite, being compact and discrete. Conversely,
if K is finite, then each Ki is compact, so V is compact.

Example 16.2.23. The Pontryagin-van Kampen duality functor, when restricted to
p-torsion discrete abelian groups, gives a duality between p-torsion discrete abelian
groups and abelian pro-p-groups. Both categories consist of 𝕁p-modules; moreover,
Ĝ = Hom(G,𝕋) = Hom𝕁p (G,ℤ(p

∞)) for a discrete p-torsion abelian group G, and
K̂ = CHom(K,𝕋) = CHom𝕁p (K,ℤ(p

∞)) for an abelian pro-p-group K, since χ(K) is a
finite cyclic p-group for every χ ∈ K̂.

Kaplansky [183] and MacDonald [204] succeeded to cover both Example 16.2.23
and the Lefschetz duality as follows. Assume thatR is a commutative local Noetherian
ring with maximal ideal m such that R is complete in the m-topology τ. An R-module
M is primary if for every x ∈ M the ideal Ann(x) = {a ∈ R: ax = 0} is τ-open in R, i. e.,
the discrete R-moduleM is a topological (R, τ)-module.

Definition 16.2.24. Call an R-moduleM:
(i) linearly discrete if every primary quotient ofM is discrete;
(ii) KM-locally linearly compact if M has a linearly compact submodule N such that

M/N is linearly discrete.

Property (ii) is obviously weaker than local linear compactness.
Denote by LLCKMR the category of KM-locally linearly compact R-modules. Let E

be the injective hull of the (unique) simple R-module R/m equipped with the discrete
topology. For every M ∈ LLCKMR , the continuous R-module homomorphisms M → E
(i. e., the continuous E-characters) separate the points ofM. Following [204, 8.1], de-
note byM† the R-module CHomR(M,E) carrying the topology with local base at 0 the
family {A⊥:A linearly compact submodule ofM}.

Theorem 16.2.25 ([204, 9.13]). In the above notations, for every M ∈ LLCKMR also M† ∈
LLCKMR and the evaluation map ωM :M → M†† defined as above is a topological isomor-
phism. This gives a natural equivalence between the functors 1LLCKMR and ††, hence † is a
duality of LLCKMR .

Remark 16.2.26. (a) With R = K a discrete field (so,m = {0} and E = K), one obtains
the Lefschetz duality.
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(b) According to [204, 9.4], if M is a discrete R-module, then M† is linearly compact
andm-separated (i. e.,⋂n∈ℕ+ m

nM = {0}), whileM† is discrete whenM is linearly
compact and m-separated. So, the restriction of the duality †: LLCKMR → LLCKMR
gives a duality between discrete R-modules and linearly compact m-separated
R-modules.
With R = 𝕁p, the discrete R-modules are the abelian p-groups M, and their duals
M†, coinciding algebraically with M̂, are pro-p-finite groups with a possibly finer
topology. This is why M† is p𝕁p-separated (having a Hausdorff topology coarser
than ϖp

M† , by Corollary 11.6.8). This gives Example 16.2.23.

16.3 Exercises

Exercise 16.3.1. Prove that the product of two Cauchy nets of a topological ring is a
Cauchy net.
Hint. Let {xα}α∈A and {yα}α∈A be Cauchy nets in a topological ring. To see that {xαbα}α∈A is a Cauchy net
as well, pick U ∈ 𝒱 and V ∈ 𝒱 with VV + VV + V + V ⊆ U . Pick α0 ∈ A such that xα − xα′ ∈ V and
yα − yα′ ∈ V for all α, α′ ≥ α0 in A. Now chooseW ∈ 𝒱 with xα0W ⊆ V ,Wyα0 ⊆ V andW ⊆ V . There
exists α1 ≥ α0 in A such that xα −xα′ ∈ W and yα −yα′ ∈ W for all α, α′ ≥ α1 in A. Then xαyα −xα′yα′ ∈ U
for all α, α′ ≥ α1 in A, so {xαyα}α∈A is Cauchy.

Exercise 16.3.2. For a topological ring A prove that:
(a) the family of bounded subsets of A is stable under taking subsets and finite

unions;
(b) every compact subset of A is bounded;
(c) if A has a linear topology, then A is bounded;
(d)∗if A is a precompact unitary ring, then A is linearly topologized.

Hint. (d) Let U ∈ 𝒱(0). There exist χ1, . . . , χn ∈ Â such that U ′ := ⋂ni=1 χ
−1
i (Λ1) ⊆ U . By (a) and (b), there

exists V ∈ 𝒱(0) such that AV ∪ VA ⊆ U ′. Then χi(Av) ∪ χi(vA) ⊆ Λ1 for every v ∈ V . Since Λ1 contains
no nontrivial subgroup of 𝕋, this yields χi(Av) = χi(vA) = 0. Hence, ker χi ⊇ Ji := ⟨AV ∪ VA⟩ ⊇ V .
Therefore, Ji is an open two-sided ideal and⋂

n
i=1 Ji ⊆ U

′ ⊆ U . So, A is linearly topologized.

Exercise 16.3.3. Deduce from Exercise 16.3.2(d) that compact fields are finite.

Exercise 16.3.4. Prove that a subfield of a locally retrobounded field is locally retro-
bounded.

Exercise 16.3.5. Prove that the metric topology τ generated by an absolute value on a
field K makes (K, τ) a retrobounded topological field.

Exercise 16.3.6. Let A be a commutative unitary ring. Prove that:
(a) if σ, τ are ring topologies on A, then sup{σ, τ} is a ring topology on A;
(b) if A is a field and σ, τ are field topologies on A, then sup{σ, τ} is a field topology

on A;
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(c) for every prime p, the p-adic topology τp onℚ is a locally retroboundedfield topol-
ogy that is not locally compact;

(d) for distinct primes p, q, the topology sup{τp, τq} onℚ is a field topology that is not
locally retrobounded.

Hint. (c) Apply Exercise 16.3.5 and note thatℚ is countable and nondiscrete, so cannot be locally com-
pact.

(d) According to Theorem 16.1.12, the completion of a locally retrobounded field is a field. It re-
mains to observe that the completionℚp ×ℚq of (ℚ, sup{τp, τq}) is not a field.

Exercise 16.3.7. Deduce from the above hint that the completion of a topological field
need not be a field.

Exercise 16.3.8. Show that ℒℝ, where ℝ is the ring of reals with the usual topology,
consists of all groups topologically isomorphic to ℝn for some n ∈ ℕ.

Exercise 16.3.9. For a discrete commutative unitary ring R, construct the Bohr com-
pactification in ℒR following the line of the proof of Theorem 8.6.1 (or, in alternative,
the proof of Theorem 14.3.19, using the torus R̂ in place of 𝕋).

Exercise 16.3.10. Prove that ifM ∈ ℒR, then M̂ is a topological R-module.
Hint. Fix a basic neighborhoodW(K,Λ1) ∈ 𝒱M̂(0), where U ∈ 𝒱M(0) and K = U is compact.

To check (mt1), fix an open O ∈ 𝒱M(0) with C = O compact. By Remark 16.2.3, there exists V ∈
𝒱R(0) such that VK ⊆ C, then VW(C,Λ1) ⊆ W(K,Λ1) proves (mt1). To check (mt2), pick χ ∈ M̂, then
O = χ−1(Λ1) ∈ 𝒱M(0) is open. So, again by Remark 16.2.3, there exists V ∈ 𝒱R(0) such that VK ⊆ O.
Now Vχ ⊆ W(K,Λ1), and this proves (mt2). Finally, to check (mt3), pick r ∈ R and put C = rK. Then rC
is compact and rW(rC,Λ1) ⊆ W(K,Λ1).

Exercise 16.3.11.∗ Compute Pic(ℤ), Pic(ℤ[i]), Pic(𝕁p), Pic(ℚ), Pic(ℚ[x]), and Pic(ℝ).
Show that Pic(R) is trivial when R is a principal ideal domain.

Exercise 16.3.12. Prove that a discrete strictly linearly compact moduleM is Artinian.
Hint. To show that M satisfies the descending chain condition on submodules, assume for a contra-
diction that {Nn: n ∈ ℕ} is a proper descending chain of submodules ofM and let N = ⋂n∈ℕ Nn. Then
M/N has a nondiscrete linear topology τ with local base {Nn/N : n ∈ ℕ}. Therefore, M → (M/N , τ) is
not open, a contradiction.

Exercise 16.3.13. Let V be a linearly topologized vector space. Prove that:
(a) if dimV <∞, then V is linearly topologized if and only if V is discrete;
(b) if V is discrete, then V is linearly compact if and only if it has finite dimension.

Exercise 16.3.14. Let V be a locally linearly compact vector space. Prove that:
(a) CHom(V,K) separates the points of V ;
(b) if dimV <∞, then V is discrete and V∧ ≅ V is the algebraic dual of V ;
(c) V is discrete if and only if V∧ is linearly compact;
(d) V is linearly compact if and only if V∧ is discrete;
(e) if B is a linear subspace of V∧, then ϖV (B⊤) = B⊥.
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Exercise 16.3.15. Let f :V → W be a continuous homomorphism of locally linearly
compact vector spaces. Prove that:
(a) if f is injective and open onto its image, then f̂ is surjective;
(b) if f is surjective, then f̂ is injective.

Exercise 16.3.16. Deduce from the Lefschetz duality theorem that every linearly com-
pact vector space is a product of one-dimensional vector spaces.

Exercise 16.3.17. Let V be a locally linearly compact vector space and A,B linear sub-
spaces of V . Prove that:
(a) if A ⊆ B, then B⊥ ⊆ A⊥;
(b) A⊥ = A⊥ and A⊥ is a closed linear subspace of V∧;
(c) if A is a closed, then (A⊥)⊤ = A.

Exercise 16.3.18. Let V be a locally linearly compact vector space and U a closed lin-
ear subspace of V . Prove that (V/U)∧ ≅ U⊥ and U∧ ≅ V∧/U⊥.

Exercise 16.3.19. Prove that the linearly compact abelian groups are strictly linearly
compact ℤ-modules, and the same about 𝕁p-modules.

16.4 Further readings, notes, and comments

Minimal topological rings can be introduced in analogy to the minimal topological
groups [72]. As fields equipped with a topology induced by an absolute value are min-
imal (see [72]), minimal commutative rings need not be precompact (this should be
compared with the precompactness of minimal abelian groups, see Theorem 10.5.1).

For the connection of minimal ring topologies to Krull dimension, see [71, 72].
A complete proof of Roeder theorem 13.4.19 on the uniqueness of Pontryagin-van

Kampen duality in ℒ = ℒℤ following the line of §16.2.1 can be found in [99, §3.4]. The
backbone of §16.2.1 is the unpublishedmanuscript [235] of Prodanov. Its results, along
with some further development, were published in [96], where the reader can find
complete proofs of his results announced in §16.2.1 without proof. For a more general
setting of dualities, see [121, 122, 229].

The fact that the Pontryagin-van Kampen functor onℒR is a functorial dualitymo-
tivated Prodanov to raise the question of how many functorial dualities can carry ℒR
(Theorem 16.2.5 answers this question in case R is compact) and to extend this ques-
tion to other well-known dualities and adjunctions, such as the Stone duality, the
spectrum of a commutative rings (see [236]), etc., at his Seminar on dualities (Sofia
University, 1979/1983 – see [118] for the part concerning the theory of abstract spec-
tra). His conjecture that the Stone duality (see §C.2.3) is the unique functorial duality
between hereditarily disconnected compact Hausdorff spaces and Boolean algebras
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was proved to be true by Dimov [120] (for more recent results see also [119] and the
references therein).

Gregorio [158] extended Theorem 16.2.5 to the general case of not necessarily com-
mutative compact rings R (here left and right R-modules should be distinguished, so
that the dualities are no more endofunctors). Later Gregorio jointly with Orsatti [160]
offered another approach to this phenomenon.

A more general result than Theorem 16.2.25 was obtained by Áhn [2]; we do not
formulate it explicitly, while we preferred to explicitly formulate the Kaplansky–
MacDonald duality, due to its nicer features: the duality functor, CHom(−,E), as well
as its domain and codomain LLCKMR , has a rather simple form.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



A Background on groups

We start with general notation and terminology, for undefined terms and notation
see [134, 138, 139, 174, 177, 184, 203]. The symbols ℤ, ℚ, ℝ, ℂ denote the integers,
rationals, reals, and complex numbers, respectively. Let also ℝ≥0 = {r ∈ ℝ: r ≥ 0} and
ℝ>0 = {r ∈ ℝ: r > 0}. We denote by ℙ, ℕ, and ℕ+, respectively, the set of positive
primes, the set of natural numbers, and the set of positive integers. For x ∈ ℝ, we de-
note by ⌊x⌋ the unique integer (called integral part of x) such that ⌊x⌋ ≤ x < ⌊x⌋ + 1.
The symbol ℵ0 = |ℕ| denotes the smallest infinite cardinal, while c = |ℝ| stands for
the cardinality of the continuum. For a set X, we denote by [X]<ω the family of all
nonempty finite subsets of X. For a cardinal κ, let log κ = min{λ: 2λ ≥ κ}.

Generally, a groupG is writtenmultiplicatively and the neutral element is denoted
by eG, simply e when there is no danger of confusion. For abelian groups, we use the
additive notation, consequently 0 denotes the neutral element.

For subsets A,A1,A2, . . . ,An of a group G, we denote

A−1 = {a−1: a ∈ A} and A1A2 ⋅ ⋅ ⋅An = {a1a2 ⋅ ⋅ ⋅ an: ai ∈ Ai, i ∈ {1, . . . , n}} (A.1)

and, if all Ai = A for A1A2 ⋅ ⋅ ⋅An, we write

An = AA ⋅ ⋅ ⋅A⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n
. (A.2)

Clearly, the counterparts of (A.1) and (A.2) for subsets A,A1,A2, . . . ,An of an abelian
group G are −A, A1 + A2 + ⋅ ⋅ ⋅ + An, and nA = {na: a ∈ A}.

For a family {Gi: i ∈ I} of groups, we denote by ∏i∈I Gi the direct product of the
groups Gi: the underlying set is the Cartesian product ∏i∈I Gi and the operation is
defined coordinatewise. When I is empty, we define∏i∈I Gi to be the trivial group {e}.

For x = (xi)i∈I ∈ ∏i∈I Gi, the support of x is supp(x) = {i ∈ I : xi ̸= eGi
}. The direct

sum⨁i∈I Gi is the subgroup of ∏i∈I Gi consisting of all elements of finite support. If
all Gi are isomorphic to the same group G and |I| = α, we denote∏i∈I Gi = ∏I G = G

I

also by∏α G or Gα and⨁i∈I Gi = ⨁I G also by⨁α G or G(α). Moreover, the diagonal
subgroup of GI is ΔG = {(x)i∈I ∈ GI : x ∈ G}.

For every i ∈ I, consider eGi
∈ Di ⊆ Gi. The σ-product of the family {Di: i ∈ I} is

⨁i∈I Di = {x ∈ ∏i∈I Di: |supp(x)| is finite}, while the Σ-product of {Di: i ∈ I} is Σi∈IDi =
{x ∈ ∏i∈I Di: |supp(x)| ≤ ℵ0}; if Gi = G and Di = D for every i ∈ I, we denote the
Σ-product also by ΣDI .

For groups G,H, we denote by Hom(G,H) the group of all homomorphisms from
G to H where the operation is defined pointwise. Moreover, we denote by Aut(G) the
group of the automorphisms of G; an automorphism f of G is involutive (or, an involu-
tion) if f ∘ f = idG.

When the groupsG,H are abelian, the groupHom(G,H) is abelian andwritten ad-
ditively. We leave to the reader the verification of the following isomorphisms related

https://doi.org/10.1515/9783110654936-017
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to families of abelian groups {Gi: i ∈ I}, {Hi: i ∈ I} and abelian groups G,H:

Hom(H ,∏
i∈I

Gi) ≅∏
i∈I

Hom(H ,Gi) and Hom(⨁
i∈I

Hi,G) ≅∏
i∈I

Hom(Hi,G). (A.3)

For m ∈ ℕ+, we use ℤ(m) for the finite cyclic group of order m. For an abelian
group G and m ∈ ℕ+, let G[m] = {x ∈ G:mx = 0}. Denoting μm = m idG, x → mx,
clearly G[m] = ker μm. It is straightforward to verify that

Hom(ℤ,G) ≅ G and Hom(ℤ(m),G) ≅ G[m]. (A.4)

The group 𝕋 = ℝ/ℤ and the group Hom(G,𝕋), for an abelian group G, play a
central role in this book, and they are always used in additive notation. The multi-
plicative form 𝕊 = {z ∈ ℂ: |z| = 1} of 𝕋 and G∗ = Hom(G,𝕊) ≅ Hom(G,𝕋) are used as
well, when necessary (e. g., concerning easier computation in ℂ, etc.). The elements
of Hom(G,𝕋) ≅ Hom(G,𝕊) are called characters of G. For m ∈ ℕ+, we identify ℤ(m)
with the unique cyclic subgroup of orderm of the circle group 𝕊 ≅ 𝕋.

A standard reference for abelian groups is the monograph [138] (see also its latest
version [139]) and for nonabelian groups we refer to [249]. Here we give only those
facts or definitions that appear very frequently in the book.

A.1 Torsion abelian groups and torsion-free abelian groups

The torsion elements of an abelian group G form a subgroup of G denoted by t(G) =
⋃m∈ℕ+ G[m]. For a prime p, tp(G) = ⋃n∈ℕ G[p

n] is a subgroup of G called p-primary
component of G. It is not hard to check that t(G) =⨁p∈ℙ tp(G).

Since the subgroup G[p] is a vector space over the finite field ℤ/pℤ, the p-rank
rp(G) of G is the dimension of G[p] overℤ/pℤ. The socle of G is the subgroup Soc(G) =
⨁p∈ℙ G[p]. The nonzero elements of Soc(G) are precisely the elements of square-free
order of G.

Let us start with the structure theorem for finitely generated abelian groups, that
extends the Frobenius–Stickelberger theoremon the structure of finite abelian groups.
We provide a proof of Theorem A.1.1 after Theorem A.3.4.

Theorem A.1.1. If G is a finitely generated abelian group, then G is isomorphic to a finite
direct product of cyclic groups. If m ∈ ℕ+ and G has m generators, then every subgroup
of G is finitely generated and has at most m generators.

Definition A.1.2. An abelian group G is:
(a) torsion if t(G) = G;
(b) a p-group, for a prime p, if tp(G) = G;
(c) torsion-free if t(G) = {0};
(d) bounded (or, bounded torsion) ifmG = {0} for somem ∈ ℕ+.
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In case an abelian group G is bounded and m = min{n ∈ ℕ+: nG = {0}}, we say
that G has finite exponent m, denoted bym = exp(G).

Example A.1.3. (a) The additive groups ℤ,ℚ, ℝ, and ℂ are torsion-free. The class of
torsion-free abelian groups is stable under taking direct products and subgroups.

(b) The groups ℤ(m), for m ∈ ℕ+, and ℚ/ℤ are torsion. The class of torsion abelian
groups is stable under taking direct sums, subgroups, and quotients.

(c) Let m1, . . . ,mk ∈ ℕ with mi > 1 for i ∈ {1, . . . , k}, and let α1, . . . , αk be cardinal
numbers. Then G =⨁k

i=1ℤ(mi)
(αi) is bounded, as clearlym1 ⋅ ⋅ ⋅mkG = {0}. We see

next that every bounded abelian group has this form.

Since a direct sum of cyclic groups which has finite exponent has necessarily the
form given in Example A.1.3(c), all bounded abelian groups have that form:

Theorem A.1.4 (Prüfer theorem). Every bounded abelian group G is a direct sum of
cyclic groups.

Proof. Since G = ⨁p∈ℙ tp(G), we can assume without loss of generality that G is a
p-group for some prime p, so Soc(G) = G[p] and pnG = {0} for some n ∈ ℕ+. We
proceed by induction on n ∈ ℕ+.

If n = 1, then G = G[p] is a vector space over the finite field ℤ/pℤ, so G is a direct
sum of cyclic groups all isomorphic to ℤ(p).

Assume that n > 1 and that the assertion is true for all p-groups of exponent pn−1.
The subgroup pG has exponent pn−1, so pG = ⨁i∈I⟨ai⟩ for appropriate elements ai ∈
pG. Then for all i ∈ I, there exists xi ∈ G with ai = pxi. Let H = ∑i∈I⟨xi⟩; we prove that

H =⨁
i∈I
⟨xi⟩. (A.5)

Assume, aiming for a contradiction, that for distinct elements i1, . . . , ik ∈ I there exist
nonzero elements yj ∈ ⟨xij⟩, with j ∈ {1, . . . , k} such that ∑kj=1 yj = 0. Then yj = mjxij
with 1 ≤ mj < pn for all j ∈ {1, . . . , k}, and in particular ∑kj=1mjxij = 0. Let us consider
two cases.
Case 1. If for all j ∈ {1, . . . , k}, p | mj, then mj = pm′j for some m′j ∈ ℤ, and we obtain
∑kj=1m

′
jaij = 0 by taking into account the equality pxij = aij . Since the sum⨁i∈I⟨ai⟩

is direct, this yields to the conclusion that, for all j ∈ {1, . . . , k}, m′jaij = 0, and conse-
quently also yj = mjxij = m

′
jpxij = m

′
jaij = 0, a contradiction.

Case 2. Assume that there exists j ∈ {1, . . . , k} such that p ∤ mj. Suppose for simplicity
that j = 1. From ∑kj=1mjxij = 0, we get xi1 = ∑

k
j=2 ljxij for appropriate lj ∈ ℤ. Multiplying

by p and taking into account the equality pxi = ai for all i ∈ I, we deduce that ai1 =
∑kj=2 ljaij . This contradicts the fact that the sum pG =⨁i∈I⟨ai⟩ is direct.

This concludes the proof of (A.5). Next we see that G = H + G[p]. Indeed, for any
g ∈ G, one has pg ∈ pG = pH, so pg = ph for some h ∈ H. Hence, p(g − h) = 0, and we
conclude that g − h ∈ G[p]. Therefore, g ∈ H + G[p].
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As G[p] is a vector space over ℤ/pℤ, its ℤ/pℤ-linear subspace H ∩ G[p] splits,
namely, there exists a ℤ/pℤ-linear subspace S1 of G[p] such that

G[p] = (H ∩ G[p]) ⊕ S1. (A.6)

Then G = H + G[p] = H + (H ∩ G[p]) + S1 = H + S1. Moreover, H ∩ S1 = H ∩ G[p] ∩ S1, as
S1 ⊆ G[p], and henceH ∩ S1 = (H ∩G[p])∩ S1 = {0} by (A.6). We proved that G = H ⊕ S1.
As S1 is a vector space overℤ/pℤ, S1 is a direct sum of copies ofℤ(p). In view of (A.5),
G is a direct sum of cyclic subgroups.

This generalizes the Frobenius–Stickelberger theorem about the structure of the
finite abelian groups (see Theorem A.1.1).

A.2 Divisible abelian groups

Divisible abelian groups G are defined by the property that the equations of the form
mx = g have solution in G for all g ∈ G andm ∈ ℕ+:

Definition A.2.1. An abelian group G is:
(i) divisible if G = mG for everym ∈ ℕ+;
(ii) p-divisible, for p a prime, if G = pG.

As, for G an abelian group, nG ∩mG = nmG whenever n,m ∈ ℕ+ are coprime, G is
divisible if and only if it is p-divisible for every prime p.

Example A.2.2. (a) The groupsℚ, ℝ, ℂ, and 𝕋 are divisible.
(b) Forp ∈ ℙ,wedenote byℤ(p∞) thePrüfer group, namely, thep-primary component

of the torsion abelian groupℚ/ℤ (so thatℤ(p∞) has generators {cn = 1/pn +ℤ: n ∈
ℕ}). The group ℤ(p∞) is divisible.

(c) A torsion-free divisible abelian group D is a ℚ-vector space, hence D ≅ ℚ(κ) with
κ = dimℚ D.

Remark A.2.3. The class of divisible abelian groups is stable under taking direct prod-
ucts, direct sums, and quotients. In particular, every abelian group G has a maximal
divisible subgroup, denoted by div(G).

If X is a nonempty set, a set Y ⊆ ZX of functions from X to a nonempty set Z
separates the points of X if for every x, y ∈ X with x ̸= y, there exists f ∈ Y such that
f (x) ̸= f (y). In Corollary A.2.6 of the next result, we see that the characters separate
the points of a discrete abelian group.

Theorem A.2.4. Let G be an abelian group, H a subgroup of G and D a divisible abelian
group. Then for every homomorphism f :H → D there exists a homomorphism f :G → D
such that f ↾H= f . If a ∈ G \ H and D contains elements of arbitrary finite order, then f
can be chosen such that f (a) ̸= 0.
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Proof. LetH′ be a subgroup of G such thatH ⊆ H′ and suppose that g:H′ → D is such
that g ↾H= f . We prove that for every x ∈ G, definingN = H′+⟨x⟩, there exists g:N → D
such that g ↾H′= g. There are two cases.

If ⟨x⟩ ∩ H′ = {0}, define g(h + kx) = g(h) for every h ∈ H′ and k ∈ ℤ. Then
g is a homomorphism. This definition is correct because every element of N can be
represented in a unique way as h + kx, where h ∈ H′ and k ∈ ℤ.

If C = ⟨x⟩ ∩ H′ is not {0}, then C is cyclic, being a subgroup of a cyclic group. So,
C = ⟨lx⟩ for some l ∈ ℤ, l ̸= 0. In particular, lx ∈ H′ and we can consider the element
g(lx) ∈ D. Since D is divisible, there exists y ∈ D such that g(lx) = ly. Now define
g:N → D by putting g(h+ kx) = g(h)+ ky for every h+ kx ∈ N, where h ∈ H′ and k ∈ ℤ.
To see that this definition is correct, suppose that h + kx = h′ + k′x for h, h′ ∈ H′ and
k, k′ ∈ ℤ. Then h − h′ = k′x − kx = (k′ − k)x ∈ C. So k′ − k = sl for some s ∈ ℤ. Since
g:H′ → D is a homomorphism and lx ∈ H′,

g(h) − g(h′) = g(h − h′) = g(s(lx)) = sg(lx) = sly = (k′ − k)y = k′y − ky.

Thus, from g(h) − g(h′) = k′y − ky, we conclude that g(h) + ky = g(h′) + k′y. Therefore,
g is correctly defined. Moreover, g is a homomorphism and extends g.

Letℳ be the family of all pairs (Hi, fi), where Hi is a subgroup of G containing H
and fi:Hi → D is a homomorphism extending f :H → D. For (Hi, fi), (Hj, fj) ∈ ℳ, let
(Hi, fi) ≤ (Hj, fj) if Hi ≤ Hj and fj extends fi. In this way (ℳ,≤) is partially ordered. Let
{(Hi, fi): i ∈ I} be a totally ordered subset of (ℳ,≤). Then H0 = ⋃i∈I Hi is a subgroup of
G and f0:H0 → D, defined by f0(x) = fi(x) whenever x ∈ Hi, is a homomorphism that
extends fi for every i ∈ I. This proves that (ℳ,≤) is inductive and so we can apply the
Zorn lemma to find a maximal element (Hmax, fmax) of (ℳ,≤). Using the first part of
the proof, we can conclude that Hmax = G.

Suppose now thatD contains elements of arbitrary finite order. If a ∈ G\H, we can
extend f to f onH + ⟨a⟩ defining it as in the first part of the proof. If ⟨a⟩∩H = {0}, then
f (h+ka) = f (h)+ky for every k ∈ ℤ, where y ∈ D \ {0}. If ⟨a⟩∩H ̸= {0}, sinceD contains
elements of arbitrary finite order, we can choose y ∈ D such that f (h + ka) = f (h) + ky
with y ̸= 0. In both cases f (a) = y ̸= 0.

Corollary A.2.5. Let G be an abelian group and H a subgroup of G. For a ∈ G \ H, any
χ ∈ Hom(H ,𝕋) can be extended to χ ∈ Hom(G,𝕋), with χ(a) ̸= 0.

Proof. Since 𝕋 has elements of arbitrary finite order, Theorem A.2.4 applies.

Corollary A.2.6. For an abelian group G, Hom(G,𝕋) separates the points of G.

Proof. If x ̸= y in G, then a = x − y ̸= 0, and so, by Corollary A.2.5, there exists χ ∈
Hom(G,𝕋) with χ(a) ̸= 0, that is, χ(x) ̸= χ(y).

Corollary A.2.7. If G is an abelian group and D a divisible subgroup of G, then there
exists a subgroup B of G such that G = D ⊕ B. Moreover, if a subgroup H of G satisfies
H ∩ D = {0}, then B can be chosen to contain H.
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Proof. Since the first assertion can be obtained from the second one with H = {0}, let
us prove directly the second assertion. AsH∩D = {0}, we can define a homomorphism
f :D + H → D, (x + h) → x. By Theorem A.2.4, we can extend f to a homomorphism
f :G → D. Then put B = ker f and observe that H ⊆ B, G = D + B and D ∩ B = {0};
consequently, G = D ⊕ B.

Call a subgroupH of a not necessarily abelian group G essential in G if every non-
trivial normal subgroup of G nontrivially meets H.

Example A.2.8. Obviously, every group G is an essential subgroup of G itself. On the
other hand, a direct summand H of G (in particular, any divisible subgroup of an
abelian group G) is essential in G if and only if H = G.

Here come some less trivial examples (see also Exercise A.7.8).
(a) Every nontrivial subgroup (in particular,ℤ) is essential inℚ.
(b) Every essential subgroup of an abelian group G contains Soc(G).
(c) For an abelian group G, Soc(G) is essential in G if and only if G is torsion.

Lemma A.2.9. Let G be an abelian group. Then:
(a) G has no proper essential subgroups if and only if G = Soc(G);
(b) a subgroup H of G is essential if and only if every homomorphism f :G → G1 of

abelian groups, such that the restriction f ↾H is injective, is injective itself.

Proof. (a) Apply Example A.2.8(b) and Exercise A.7.4.
(b) Apply the definition to the subgroup N = ker f .

The following property follows from Exercise A.7.4 and Theorem A.1.4.

Lemma A.2.10. Every abelian group contains an essential subgroup that is a direct sum
of cyclic groups.

Next comes a more general version of Exercise A.7.5.

Lemma A.2.11. Let {Gi: i ∈ I} be a family of abelian groups andHi an essential subgroup
of Gi for i ∈ I. Then⨁i∈I Hi is an essential subgroup of⨁i∈I Gi.

Asℤ is an essential subgroup ofℚ, whileℤℕ is not an essential subgroup ofℚℕ,
so the above property cannot be extended to infinite direct products.

For a proof of the next theorem, see [138].

Theorem A.2.12. For every abelian group G, there exists a divisible abelian group D(G)
containing G as an essential subgroup. If D′ is another group with the same properties,
there exists an isomorphism i:D(G)→ D′ such that i↾G= idG.

The divisible abelian group D(G) defined above is called divisible hull of the
abelian group G. When G is torsion-free,D(G) is torsion-free as well, so it is aℚ-vector
space (it is built explicitly in Lemma A.2.14 below).
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Example A.2.13. (a) Forpaprime,D(ℤ(p)) = ℤ(p∞)and, for a cardinalα,D(ℤ(p)(α))=
ℤ(p∞)(α).

(b) If G is a torsion divisible abelian group, then G = D(Soc(G)). So, if G is a torsion
abelian group, then D(G) = D(Soc(G)).

(c) If G is an abelian p-group for a prime p, then D(G) ≅ ℤ(p∞)(rp(G)).
Item (a) follows from Theorem A.2.12 and Lemma A.2.11, while (b) from Exam-

ple A.2.8(c). For (c), Theorem A.1.4 gives that Soc(G) ≅ ℤ(p)(rp(G)), and so we can use
item (a).

A subset X of an abelian group G is independent if ∑ni=1 kixi = 0, with ki ∈ ℤ and
distinct elements xi of X for i ∈ {1, . . . , n}, imply k1 = k2 = ⋅ ⋅ ⋅ = kn = 0. The maximum
size r0(G) of an independent subset of G is the free-rank of G.

The next pair of lemmas takes care of the correctness of the definition of r0(G).

Lemma A.2.14. For a torsion-free abelian group G:
(a) the divisible hull D(G) is a vector space over the fieldℚ containing G as a subgroup

and such that D(G)/G is torsion; moreover, dimℚ(G) = r0(G);
(b) for G and D(G) as in (a), a subset X in H is independent (respectively, maximal in-

dependent) if and only if it is linearly independent in (respectively, a base of) the
ℚ-vector space D(G);

(c) all maximal independent subsets of G have the same size (namely, dimℚ(G)).

Proof. (a) In this specific case one can build the divisible hull D(G) independently
of Theorem A.2.12. To this end, consider the relation ∼ in X = G × ℕ+ defined by
(g, n) ∼ (g′, n′) precisely when n′g = ng′. The quotient set D(G) = X/∼ carries a bi-
nary operation defined by [(g, n)] + [(g′, n′)] = [(n′g + ng′), nn′]. It is easy to show that
D(G) is the desiredℚ-vector space.

Item (b) is immediate and (c) follows from (b).

Lemma A.2.15. Let G be an abelian group and consider the canonical projection q:G →
G/t(G). Then:
(a) if X is a subset of G, then X is independent if and only if q(X) is independent;
(b) all maximal independent subsets of G have the same size;
(c) r0(G) = r0(G/t(G)).

Proof. The proof of (a) is straightforward, (b) follows from (a) and Lemma A.2.14, and
(c) follows from (a) and (b).

Example A.2.16. (a) The divisible abelian group ℝ has r0(ℝ) = c, in view of Lem-
ma A.2.14(a).

(b) Thedivisible abeliangroup𝕋has t(𝕋) = ℚ/ℤ, and so r0(𝕋) = cbyLemmaA.2.15(c).
Hence, algebraically 𝕋 is isomorphic toℚ/ℤ ⊕ℚ(c).
If G is any torsion-free abelian group, then D(G) ≅ ℚ(r0(G)) by Lemma A.2.14(a),
and so G can be algebraically embedded in 𝕋 if and only if r0(G) ≤ c.
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The following result describes precisely the structure of divisible abelian groups
in terms of their ranks.

Theorem A.2.17. Every divisible abelian group G has the form ℚ(r0(G)) ⊕
(⨁p∈ℙℤ(p

∞)(rp(G))).

Proof. The subgroups t(G) and tp(G) are divisible (for tp(G) use Exercise A.7.2), so G ≅
G1 ⊕⨁p∈ℙ tp(G), where G1 = G/t(G) is torsion-free by Exercise A.7.1, with r0(G1) =
r0(G) by Lemma A.2.15(c), and divisible by Remark A.2.3. By Example A.2.2(c), G1 ≅
ℚ(r0(G)). The divisible abelian group tp(G) coincides with D(Soc(tp(G))) = D(G[p]),
hence tp(G) ≅ ℤ(p∞)(rp(G)) by Example A.2.13(c).

A.3 Free abelian groups
An abelian group G is free if G has an independent set of generators X. In such a case,
G ≅ ℤ(X), where the isomorphism is given by g → (kx)x with g = ∑x∈X kxx (only
finitely many kx ̸= 0, so effectively (kx)x∈X ∈ ℤ(X)). Since the empty-set is vacuously
independent, the trivial group {0} is free of rank 0. So, given a cardinal α, we can speak
about the free abelian group of rank α, that is, ℤ(α).

Lemma A.3.1. An abelian group G is free if and only if G has a set of generators X with
the following property:
(F) every map f :X → H to an abelian group H can be extended to a homomorphism
̄f :G → H.

Proof. Without loss of generality, let F = ℤ(X) be the free abelian group of rank |X|, and
let 1x denote the generator of the xth copy of ℤ in F. The set S = {1x : x ∈ X} generates
F. Every map f : S → H to an abelian group H extends to a homomorphism ̄f : F → H
by letting ̄f (∑ni=1 ki1xi ) = ∑

n
i=1 kif (1xi ).

Now assume that G has a set of generators X with the property (F). To prove that
G is free, we show that X is independent. As above, let F = ℤ(X) and S = {1x : x ∈ X},
and define f :X → F by f (x) = 1x for every x ∈ X. Let ̄f :G → F be the extension of f
given by (F). Since f (X) = S is independent in F, we deduce that X is independent in
G as well.

Clearly, a set of generators of a free abelian group G with the property (F) is a
maximal independent set of generators. In the sequel we briefly refer to such a set of
generators as a basis of G.

Next we collect some useful properties of free abelian groups.

Theorem A.3.2. (a) Every abelian group is (isomorphic to) a quotient group of a free
group.

(b) If G is an abelian group such that for a subgroup H of G the quotient group G/H is
free, then H is a direct summand of G.

(c) A subgroup of a free abelian group is free.
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Proof. (a) follows from Lemma A.3.1, while for (c) see [138].
(b) Fix an independent set of generators X of G/H and let q:G → G/H be the

canonical projection. For every x ∈ X, pick an element s(x) ∈ G such that q(s(x)) = x.
By LemmaA.3.1, there exists an homomorphism f :G/H → G extending s:X → G. Then
q ∘ f = idG/H as q ∘ s = idX . This implies thatH ∩ f (G/H) = {0} andH + f (G/H) = G, that
is, G = H ⊕ f (G/H).

Remark A.3.3. A free abelian group F is divisible if and only if F is trivial. Indeed, if
F = ℤ(X) with nonempty X, then, for p a prime, pF = (pℤ)(X), so F/pF ≅ ℤ(p)(X) is
nontrivial.

Also in order to ensure a proof to Theorem A.1.1 (see below), we provide a proof of
Theorem A.3.2(c) for free abelian groups of finite rank:

Theorem A.3.4 (Stacked bases theorem). Let Fn be a free abelian group of rank n∈ℕ+.
If H is a subgroup of Fn, then H is free. Moreover, if H is nontrivial, there exist bases
{h1, h2, . . . , hk} and {f1, f2, . . . , fn} of H and Fn, respectively, such that k ≤ n, and there
exist m1,m2, . . . ,mk ∈ ℕ+ with hi = mifi for every i ∈ {1, . . . , k} and mi | mi+1 for every
i ∈ {1, . . . , k − 1}.

Proof. We proceed by induction on n ∈ ℕ+. The case n = 1 is clear, so assume that
n > 1 and that the statement holds for n − 1. Let ℬ = {f1, b2, . . . , bn} be a basis of Fn and
let a ∈ H \ {0} be such that the pair (ℬ, a) has the property:

m1 in a = m1f1 +
n
∑
i=2

sibi is positive and minimal. (A.7)

We prove first that m1 | si for every i ∈ {2, . . . , n}. Indeed, for every i ∈ {2, . . . , n},
there exist qi, ri ∈ ℤ with si = qim1 + ri and 0 ≤ ri < m1. Letting f ′1 = f1 + ∑

n
i=2 qibi, we

have

a = m1f
′
1 +

n
∑
i=2

ribi (A.8)

with 0 ≤ ri < m1. If ri > 0 for some i ∈ {2, . . . , n}, then

ℬ∗ = {bi, b2, . . . , bi−1, f
′
1 , bi+1, . . . , bn}

is a basis of Fn, such that, due to (A.8), the pair (ℬ∗, a) gives rise to a positive coefficient
ri relative to bi smaller thanm1. This contradicts the choice of the pair (ℬ, a)with (A.7).
Hence, ri = 0 for every i ∈ {2, . . . , n}; so,m1 | si = qim1 for every i ∈ {2, . . . , n} and

a = m1f
′
1 . (A.9)
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Let us anticipate that f ′1 and a are precisely the first elements of the bases of Fn
and H, respectively, we are building. But before exposing the whole bases, we need
to establish another property of f ′1 and a with respect to the basis ℬ′ = {f ′1 , b2, . . . , bn}
of Fn. Namely, if h ∈ H has the presentation h = mf ′1 + ∑

n
i=2 tibi, with m, ti ∈ ℤ, with

respect to the basis ℬ′, thenm1 | m. Indeed, let q, r ∈ ℤ be such thatm = qm1 + r with
0 ≤ r < m1; in view of (A.9),

h = qm1f
′
1 + rf
′
1 +

n
∑
i=2

tibi = qa + rf
′
1 +

n
∑
i=2

tibi.

Therefore, H ∋ h − qa = rf ′1 + ∑
n
i=2 tibi. By the choice of (ℬ, a) with (A.7), r = 0, hence

m = qm1. This shows that letting

Fn−1 = ⟨b2, . . . , bn⟩ and K = H ∩ Fn−1 ≤ Fn−1,

h = qa +∑ni=2 tibi ∈ ⟨a⟩ + K for every h ∈ H. Since obviously ⟨a⟩ ∩ K = ⟨a⟩ ∩ Fn−1 = {0},
this proves that H = ⟨a⟩ ⊕ K, and we can apply the inductive hypothesis to K ≤ Fn−1.
Set a1 = a.

By the inductive hypothesis, Fn−1 and K admit bases {f2, . . . , fn} and {a2, . . . , ak},
respectively, such that ai = mifi for every i ∈ {2, . . . , k} and mi | mi+1 for every i ∈
{2, . . . , k−1}. In order to show thatℬ′′ = {f ′1 , f2, . . . , fn} and {a1, a2, . . . , ak} are the required
bases of Fn andH, respectively, it remains to verify thatm1 | m2. To this end, let q, r ∈ ℤ
with m2 = qm1 + r and 0 ≤ r < m1. Then a2 − a1 ∈ H and a2 − a1 = m2f2 − m1f ′1 =
m1(qf2 − f ′1 ) + rf2. With respect to the basis {qf2 − f ′1 , f2, f3, . . . , fn} of Fn, the coefficient
of a2 − a1 ∈ H relative to f2 is r < m1. By the choice of the pair (ℬ, a) with (A.7), this
implies r = 0. Therefore,m1 | m2.

Proof of Theorem A.1.1. Let G be a finitely generated abelian group. By Theorem A.3.2,
G is isomorphic to a quotient ℤn/H of ℤn for some n ∈ ℕ+ and some subgroup H
of ℤn. By Theorem A.3.4, there exist bases {h1, h2, . . . , hk} and {f1, f2, . . . , fn} of H and
ℤn, respectively, such that k ≤ n, and there exist m1,m2, . . . ,mk ∈ ℕ+ with hi = mifi
for every i ∈ {1, . . . , k} (and mi | mi+1 for every i ∈ {1, . . . , k − 1}). Then G ≅ ℤn/H ≅
ℤ(m1) × ⋅ ⋅ ⋅ ×ℤ(mk) ×ℤ

n−k .

A.4 Reduced abelian groups

Definition A.4.1. An abelian group G is reduced if the only divisible subgroup of G is
the trivial one, that is, div(G) = {0}.
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A series of reduced abelian groups can be given right away:

Example A.4.2. According to RemarkA.3.3, every free abelian group is reduced.More-
over, every bounded abelian group is reduced as well. Finally, every proper subgroup
ofℚ is reduced.

Our initial supply of reduced abelian groups can be extended due to the nice
properties of this class, which is stable under taking subgroups and direct products
(see Exercise A.7.10(a)). Yet this class is not stable under taking quotients (see Exer-
cise A.7.10(b)). Another source of reduced abelian groups is based on Exercise A.7.10(a)
and the fact that finite abelian groups are reduced.

Now, as a consequence of Corollary A.2.7, we obtain the following important fac-
torization theorem for arbitrary abelian groups.

Theorem A.4.3. Every abelian group G can be written as G = div(G) ⊕ R, where R is a
reduced subgroup of G.

Proof. By Corollary A.2.7, there exists a subgroup R of G such that G = div(G) ⊕ R. To
conclude that R is reduced, it suffices to apply the definition of div(G).

In particular, this theorem implies that every abelian p-group G can be written as
G ≅ ℤ(p∞)(κ) × R, where κ = rp(div(G)) and R is a reduced abelian p-group.

Call an abelian group G almost divisible if there exists m ∈ ℕ+ such that mG is
divisible. Obviously, divisible abelian groups, as well as bounded abelian groups, are
almost divisible. The class of almost divisible abelian groups is closed under taking
finite direct sums and quotients. In this class the factorization from TheoremA.4.3 has
more subtle properties:

Proposition A.4.4. An abelian group G is almost divisible if and only G/div(G) is
bounded iff G = div(G)⊕B, where B is a bounded subgroup of G. If f :G1 → G2 is a surjec-
tive homomorphismof abelian groups and if G1 is an almost divisible abelian group, then
so is G2. Moreover, if Gi = div(Gi) ⊕ Bi, with Bi bounded for i = 1, 2, f (div(G1)) = div(G2),
and f (B1) ≅ B2.

Proof. Let G = div(G) ⊕ R as in Theorem A.4.3 where R is a reduced group. For every
m ∈ ℕ+, we havemG = div(G)⊕mR and div(G) is also the maximal divisible subgroup
of mG. So, G is almost divisible iff mR = {0} for some m ∈ ℕ+ iff R is bounded. Since
R ≅ G/div(G), the first assertion follows.

Ifm ∈ ℕ+ is such thatmG1 is divisible, thenmG2 = f (mG1) is divisible as well. So,
G2 is almost divisible.

To see that f (div(G1)) = div(G2), note first that f (div(G1)) ⊆ div(G2). The opposite
inclusion follows from div(G2) ⊆ mG2 = f (div(G1)) + f (mB1) = f (div(G1)) for a suitable
m ∈ ℕ+. Since f (B1) ∩ f (div(G1)) is a bounded divisible group, it is trivial. This shows
that G2 = f (div(G1)) ⊕ f (B1) = div(G2) ⊕ f (B1), and hence f (B1) ≅ B2.
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A.4.1 Residually finite groups

Definition A.4.5. A group G is residually finite if G is isomorphic to a subgroup of a
direct product of finite groups. The Ulm subgroup G1 of an abelian group G is G1 =
⋂n∈ℕ+ nG.

We prove item (a) in the following result for not necessarily abelian groups.

Proposition A.4.6. Let G be an abelian group. Then:
(a) (in case G is not necessarily abelian) G is residually finite if and only if the intersec-

tion of all normal subgroups of G of finite index is trivial;
(b) if G is residually finite, G is reduced;
(c) G is residually finite if and only if G1 = {0};
(d) G1 coincides with the intersection of all subgroups of G of finite index;
(e) if G is torsion-free, div(G) = G1; hence, G is reduced if and only if G is residually

finite, that is, G1 = {0}.

Proof. (a) Suppose that G is (isomorphic to) a subgroup of the direct product P =
∏i∈I Fi of finite groups Fi. If pi:P → Fi is the ith canonical projection, then ker pi is
a normal subgroup of P of finite index, hence Ni = G ∩ ker pi is a normal subgroup of
G of finite index and obviously⋂i∈I Ni is trivial.

Vice versa, if {Ni: i ∈ I} is a family of normal subgroups of G of finite index with
⋂i∈I Ni = {eG}, then the diagonal homomorphism G → ∏i∈I G/Ni of the family of
canonical projections qi:G → G/Ni has trivial kernel⋂i∈I Ni, and so G is isomorphic to
a subgroup of the product∏i∈I G/Ni of finite groups.

(b) follows from Exercise A.7.10(a), since finite groups are reduced.
(c) Assume that G1 = {0}. Then the family of canonical projections qn:G → G/nG,

for n ∈ ℕ+, gives rise to a diagonal homomorphism q:G → ∏n∈ℕ+ G/nG which is
injective, since ker q = G1 = {0}. Hence, it suffices to see that each group G/nG is
residually finite. Since G/nG is bounded, G is a direct sum G =⨁i∈I Fi of finite cyclic
groups Fi by Theorem A.1.4, and hence G is a subgroup of the direct product∏i∈I Fi of
finite cyclic groups.

To prove the converse implication, it suffices to note that the Ulm subgroup has
the following remarkable property:

if f :N → H is a group homomorphism, then f (N1) ⊆ H1. (A.10)

Then for every direct product H = ∏i∈I Hi,

H1 = (∏
i∈I

Hi)
1

⊆∏
i∈I

H1
i , (A.11)

by applying (A.10) to the canonical projections of the product.
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Now assume that G is a subgroup of a product P = ∏i∈I Fi of finite abelian groups.
Then F1i = {0} for every i ∈ I, so P

1 ⊆ ∏i∈I F
1
i = {0}, by (A.11). Applying (A.10) to the

inclusion homomorphism G → P, we deduce that G1 = {0}.
(d) For every m ∈ ℕ+, each mG is an intersection of finite index subgroups of

G, since G/mG has finite exponent and so it is a direct sum of finite cyclic groups by
Theorem A.1.4, thus the intersection of the finite index subgroups of G/mG is trivial.

(e) It is enough to prove that div(G) = G1, where the inclusion div(G) ⊆ G1 is
obvious. To verify the inclusion G1 ⊆ div(G), it is enough to see that G1 is divisible. Fix
a prime p and g ∈ G1 ⊆ pG. Then there exists a unique element x ∈ G such that px = g.
To see that x ∈ G1, fixm ∈ ℕ+. As g ∈ G1, we know that g ∈ pmG, so g = pmy for some
y ∈ G. As G is torsion-free, px = pmy gives x ∈ mG, and hence x ∈ G1.

Proposition A.4.6(e) allows us to conclude that for torsion-free abelian groups the
notions “reduced” and “residually finite” coincide. This fails in the torsion case:

Example A.4.7. Let p be a prime,G =⨁n∈ℕ+ ℤ(p
n), and for every n ∈ ℕ+ let bn denote

a generator of ℤ(pn). Let

H = ⟨b1 − pb2, b1 − p
2b3, . . . , b1 − p

n−1bn, . . .⟩,

N = G/H, and b̄1 = b1 + H ∈ N . Then N1 = ⟨b̄1⟩ ̸= {0̄}, so N is not residually finite.
Nevertheless, N is reduced since div(N) ⊆ N1, consequently, div(N) = pdiv(N) ⊆
pN1 = {0̄}.

Clearly, direct sums of cyclic groups are reduced (since cyclic groups are reduced).
The notion of a basic subgroup we introduce below allows for a nice “approximation”
of reduced abelian p-groups by direct sums of cyclic subgroups. First, we need the
following notion that can be introduced for arbitrary abelian groups:

Definition A.4.8. A subgroupH of an abelian groupG is pure ifmG∩H = mH for every
m ∈ ℕ+.

Example A.4.9. (a) Direct summands are always pure subgroups. The torsion sub-
group t(G) of an abelian group G is pure, as well.

(b) For an abelian group G, one can obviously write the equality in Definition A.4.8
also as μm(H) = μm(G)∩H. Since inverse images commute with intersections, this
is equivalent to

μ−1m (H) = μ
−1
m (μm(G) ∩ H) = μ

−1
m (μm(H)) = ker μm + H = G[m] + H ,

which means that {g ∈ G:mg ∈ H} = μ−1m (mH) = G[m] + H.

IfG is an abelian p-group andm ∈ ℕ+,mG = pnGwhere pn | m and pn+1 ∤ m. Then
a subgroup H of G is pure if and only if pnG ∩ H = pnH for every n ∈ ℕ.

Definition A.4.10. A subgroup B of an abelian p-group G is a basic subgroup if B is a
direct sum of cyclic subgroups, B is pure and G/B is divisible.
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Theorem A.4.11 ([138]). Every abelian p-group admits a basic subgroup.

The case considered in the next example is the one that we use in this book.

Example A.4.12. Let G be an abelian p-group.
(a) If B is a bounded basic subgroup of G, then B splits off as a direct summand of G,

soG = B⊕D for some subgroupD ofG, whereD ≅ G/B is divisible. Indeed, if pnB =
{0}, then pnG∩B = {0}. On the other hand, G = pnG+B (as pn(G/B) = (pnG+B)/B,
so the divisibility of G/B yields (pnG + B)/B = G/B), hence this sum is direct.

(b) If rp(G) <∞ and G is infinite, then G is almost divisible and G = div(G) ⊕ Bwhere
div(G) ≅ ℤ(p∞)k for some k > 0 and B is a finite subgroup of G. Indeed, fix a basic
subgroup B of G which exists by Theorem A.4.11. Then rp(B) ≤ rp(G) is finite, so B
is bounded (actually, finite). Hence, by (a), G = B ⊕ D holds with D ≅ ℤ(p∞)k and
k ≤ rp(G). Since B is finite, necessarily k > 0, and the group G is almost divisible
by Proposition A.4.4.

(c) A reduced abelian p-group of finite rank is finite. Indeed, by TheoremA.4.11, there
is a basic subgroup B of G. Since B is a direct sum of cyclic groups and has finite
p-rank, B is a bounded p-group, hence finite. By (a), the subgroup B splits, i.e.,
G = D ⊕ B holds for a suitable divisible subgroup D of G. Since G is reduced, D
must be trivial. Hence G = B is finite.

Proposition A.4.13. If G is a torsionabelian groupandH is a subgroupofG, then rp(G) ≥
rp(G/H).

Proof. Since G =⨁q∈ℙ tq(G) and H =⨁q∈ℙ tq(H), we may assume that G is a p-group
and that G/H has exponent p. Let f :G → G/H be the canonical projection.

Case 1: Let G be a finite p-group. Since pG is contained in the kernel of the projection
f , it can be factorized f :G → G/pG → G/H. By Exercise A.7.9, rp(G) = rp(G/pG). Since
G/pG and G/H are vector spaces over the field ℤ/pℤ, we obtain rp(G/pG) ≥ rp(G/H).
Combining both results yields the assertion in this case.

Case 2: Assume now that rp(G) is infinite. Since G = ⋃n∈ℕ G[p
n] and |G[pn]| = |G[p]| =

rp(G) holds for every n ∈ ℕ+, we obtain |G| = rp(G). This gives the desired inequality
rp(G/H) ≤ |G/H| ≤ |G| = rp(G).

Case 3: Finally, suppose that rp(G) is finite and G is infinite. Example A.4.12(b) and
Proposition A.4.4 yield that G and H are almost divisible. So, G = div(G) ⊕ FG and
H = div(H) ⊕ FH for finite subgroups FG of G and FH of H.

IfG is divisible, by Corollary A.2.7 there exists a divisible subgroupD ofG contain-
ing FH such that G = div(H)⊕D. Hence, G/H ≅ D/FH ≅ D. So, rp(G/H) = rp(D) ≤ rp(G).

In case G itself is not divisible, the quotient G/H is almost divisible hence G/H =
div(G/H) ⊕ FG/H for a suitable bounded p-group FG/H ≤ G/H by Proposition A.4.4 and
the surjective homomorphism f :G → G/H satisfies f (div(G)) = div(G/H) and f (FG) ≅
FG/H . Since div(G) is divisible and has finite p-rank, rp(div(G)) ≥ rp(div(G/H)), by the
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above argument. Since f induces a surjective homomorphism FG → FG/H , the estimate
rp(FG) ≥ rp(FG/H ) holds by case 1. So, rp(G/H) = rp(div(G/H)) + rp(FG/H ) ≤ rp(div(G)) +
rp(FG) = rp(G).

Define the rank r(G) of an abelian group G by r(G) = r0(G) +∑p∈ℙ rp(G). Then one
can easily prove the following properties of this rank:

Lemma A.4.14. Let G be an abelian group. Then:
(a) r(G) < ∞ if and only if G ≅ G0 ⊕ F ⊕⨁

m
i=1ℤ(p

∞
i ), where the primes p1, . . . , pm are

not necessarily distinct, F is a finite abelian group and G0 is a subgroup of ℚn for
n = r0(G);

(b) if r(G) is infinite, then |G| = r(G) andG contains a subgroupH such that H =⨁i∈I Ci,
|I| = |G| and each Ci is cyclic; moreover, H can be chosen to be essential and each
group Ci to be either infinite or of finite of prime order.

A.4.2 The p-adic integers

Here we describe, for p ∈ ℙ, the ring of endomorphisms of the group ℤ(p∞), known
as the ring of p-adic integers and denoted by 𝕁p. We shall see that it is isomorphic to
the inverse limit lim

←n∈ℕ
ℤ(pn) of the finite rings ℤ(pn).

In order to describe the ring 𝕁p = End(ℤ(p∞)), write ℤ(p∞) = ⋃n∈ℕ+ ℤ(p
n) and,

for n ∈ ℕ+, denote by cn the generator
1
pn +ℤ of

ℤ(pn) = {0 +ℤ, 1
pn
+ℤ, . . . ,

pn − 1
pn
+ℤ} ≤ ℤ(p∞) = tp(𝕋).

Let α ∈ End(ℤ(p∞)). Every subgroup ⟨cn⟩ = ℤ(pn)=ℤ(p∞)[pn] ofℤ(p∞) is α-invariant,
hence

α(cn) = kncn (A.12)

for some kn ∈ ℤ, and the sequence of integers k = (kn)n∈ℕ+ ∈ ℤ
ℕ+ satisfies

kn+1 ≡ kn(mod pn) (A.13)

as pcn+1 = cn. Vice versa, every k = (kn)n∈ℕ+ ∈ ℤ
ℕ+ satisfying (A.13) defines an endo-

morphism αk ∈ End(ℤ(p∞)) with (A.12).
For k = (kn)n∈ℕ+ , k

′ = (k′n)n∈ℕ+ ∈ ℤ
ℕ+ , put k ∼ k′ if kn ≡ k′n(mod pn) for every

n ∈ ℕ+. Obviously, αk = αk′ if and only if k ∼ k′. Let

B = {k = (kn)n∈ℕ+ ∈ ℤ
ℕ+ : kn+1 ≡ kn(mod pn) ∀n ∈ ℕ}.

Then B is a subring of the ring ℤℕ+ and setting μ(k) = αk we define a surjective ring
homomorphism μ:B→ 𝕁p. Let J be the ideal pℤ × p2ℤ × ⋅ ⋅ ⋅ × pnℤ × ⋅ ⋅ ⋅ of the ringℤℕ+
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and I = J ∩ B. Then I is an ideal of B such that k − k′ ∈ I if and only if k ∼ k′. In other
words, I = ker μ. This gives the isomorphism 𝕁p ≅ B/I.

Obviously, one can identify the ring 𝕁p also with the subring B̄ of the quotient
ℤℕ/J ≅ ℤ(p) ×ℤ(p2) × ⋅ ⋅ ⋅ ×ℤ(pn) × ⋅ ⋅ ⋅ defined by the relations

B̄ = {x = (xn)n∈ℕ+ ∈ ∏
n∈ℕ+
ℤ(pn):φn(xn+1) = xn for all n ∈ ℕ+} ,

where φn:ℤ(pn+1)→ ℤ(pn) is the canonical homomorphism with kernel the principal
ideal (pn) of the ring ℤ(pn+1).

Theorem A.4.15. For p a prime, 𝕁p is a domain with unique maximal ideal L = {α ∈
𝕁p: α(c1) = 0} = p𝕁p and group of units U(𝕁p) = 𝕁p \ p𝕁p.

Proof. If α ∈ 𝕁p\{0}, then there exists n ∈ ℕ+ such that α(cn) ̸= 0 (hence, also α(cm) ̸= 0
for allm ≥ n). Let β ∈ 𝕁p \ {0}. There existsm ∈ ℕ+ such that α(cm) ̸= 0 and β(cm) ̸= 0;
hence, letting k = (kn)n∈ℕ and k′ = (k′n)n∈ℕ be the sequences in B corresponding to α
and β, respectively, pm ∤ km and pm ∤ k′m. Since

km ≡ k2m(mod pm) and k′m ≡ k
′
2m(mod pm),

clearly pm ∤ k2m and pm ∤ k′2m. Then p2m ∤ k2mk′2m, and therefore α(β(c2m)) ̸= 0. This
proves that αβ ̸= 0.

Moreover, 𝕁p is commutative, as α(β(cm)) = kmk′mcm = k
′
mkmcm = β(α(cm)) for every

m ∈ ℕ+. Since 𝕁p is a unitary ring, this proves that 𝕁p is a domain.
Next we recall that Aut(ℤ(p∞)) = U(𝕁p) is the set of units of 𝕁p. If α ∈ U(𝕁p),

then α is injective, and so clearly α(c1) ̸= 0 and α ∈ 𝕁p \ L. To prove that U(𝕁p) =
𝕁p \ L, pick an α ∈ 𝕁p \ L. Then α is injective, as ker α trivially meets Soc(ℤ(p∞)) =
ℤ(p) which is essential in ℤ(p∞) by Example A.2.8(c), and so ker α = {0}. Hence, D =
α(ℤ(p∞)) is a divisible subgroup of ℤ(p∞) containing ℤ(p). As ℤ(p∞) is divisible, by
the uniqueness of the divisible hull, we deduce thatD = ℤ(p∞), so α is also surjective,
hence an automorphism. Therefore, α ∈ U(𝕁p).

The last assertion L = p𝕁p is deduced from the more general result in
Claim A.4.16.

Claim A.4.16. Let α ∈ L satisfy α(c1) = ⋅ ⋅ ⋅ = α(cn) = 0 and α(cn+1) ̸= 0. Then α = pnβ for
some β ∈ U(𝕁p). Consequently, pn𝕁p, for n ∈ ℕ, are exactly all the nonzero ideals of 𝕁p
and⋂n∈ℕ p

n𝕁p = {0}.

Proof. Let α = μ(k) with k = (kn)n∈ℕ+ ∈ B. Our hypothesis yields k1 = ⋅ ⋅ ⋅ = kn = 0.
By (A.13), pn | km for all m > n and pn+1 ∤ kn+1, since α(cn+1) ̸= 0. Let k′i = kn+ip

−n.
Then k′ = (k′i )i∈ℕ+ ∈ B, as k

′
n ≡ k
′
n+1(mod pn). Moreover, β = μ(k′) ̸∈ L, as p ∤ k′1 and

so β(c1) ̸= 0. By the above argument, β is an automorphism of 𝕁p, that is, β ∈ U(𝕁p).
Obviously, α = pnβ.
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Remark A.4.17. The field of quotientsℚp of 𝕁p is called field of p-adic numbers. Some-
times we shall consider only the underlying groups of these rings and simply speak
of “the group of p-adic integers”, or “the group of p-adic numbers”. Since all nonzero
ideals of 𝕁p are of the form pn𝕁p, for n ∈ ℕ, one can writeℚp = ⋃n∈ℤ p

n𝕁p, i. e., every
element ofℚp \ 𝕁p can be written as p−nη, with η ∈ U(𝕁p) and n ∈ ℕ.

A.4.3 Indecomposable abelian groups

We have seen that the finitely generated abelian groups, the divisible abelian groups,
the bounded abelian groups and the free abelian groups are direct sums of very simple
groups, actually indecomposable ones:

Definition A.4.18. An abelian group is indecomposable if it is not a direct product of
any pair of its proper subgroups.

Example A.4.19. The groups ℤ, ℚ, ℤ(pn), for a prime p and n ∈ ℕ+, and ℤ(p∞) for a
prime p, are indecomposable.

The reader may have the impression that every abelian group is a direct sum of
cyclic groups or copies of ℚ or the Prüfer groups ℤ(p∞). This fails in a spectacular
way: there exist arbitrarily large indecomposable abelian groups (hence, nonisomor-
phic to any of the groups ℤ, ℚ, ℤ(pn) and ℤ(p∞)). As the next theorem shows, 𝕁p is
indecomposable (note that |𝕁p| = c, see Exercise A.7.13). There exist also smaller inde-
composable groups (e. g., subgroups ofℚ2).

Theorem A.4.20. For p a prime, 𝕁p/p𝕁p ≅ ℤ(p). Consequently, the group (𝕁p,+) is inde-
composable.

Proof. The isomorphism is given by the first theorem of homomorphisms applied to
the surjective homomorphism ρ: 𝕁p → ℤ(p), α → α(c1).

Suppose that 𝕁p = A ⊕ B for a pair of subgroups A,B of 𝕁p. Then p𝕁p = pA ⊕ pB,
so 𝕁p/p𝕁p ≅ A/pA ⊕ B/pB. As 𝕁p/p𝕁p ≅ ℤ(p) and both A/pA and B/pB are of exponent
p, they must be isomorphic to direct sums of copies ofℤ(p). Hence, either A/pA = {0}
or B/pB = {0}. Suppose that A/pA = {0}. We prove that then A = {0} as well. In fact,
A/pA = {0} implies A = pA, and so A = pnA for every n ∈ ℕ. By Remark A.4.16, this
yields A = {0}.

A.5 Extensions of abelian groups

Definition A.5.1. Let A,C be abelian groups. An abelian group B is an extension of A
by C if B has a subgroup A′ ≅ A such that B/A′ ≅ C.
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In such a case, if i:A → B is the injective homomorphism with i(A) = A′ and
B/A′ ≅ C, we shall briefly denote this by the diagram

0 → A i
→ B

q
→ C → 0 (A.14)

where q is the composition of the canonical projection B → B/i(A) and the isomor-
phismB/i(A) ≅ C.More generally,we shall refer to (A.14), aswell as to anypair of group
homomorphisms i:A → B and q:B → C with ker q = i(A), ker i = 0, and coker q = 0,
as a short exact sequence.

Example A.5.2. A typical extension of a group A by a group C is the direct product
B = A × C. We call this extension trivial extension.
(a) There exist nontrivial extensions:ℤ is a nontrivial extension of ℤ and ℤ(2).
(b) In some cases only trivial extensions are available of A by C: take A = ℤ(2) and

C = ℤ(3).

For more examples, see Exercise A.7.18.

A property G of abelian groups is called stable under extension (or, three space
property) if every abelian group B that is an extension of two abelian groups, both
havingG, necessarily hasG.

Lemma A.5.3. Assume that the two horizontal rows are exact in the following commu-
tative diagram of abelian groups and homomorphisms:

0 → G1
i1→ G

q1→ G2 → 0

f1
↑↑↑↑↓

↑↑↑↑↓
f

↑↑↑↑↓
f2

0 → H1 →i2
H →

q2
H2 → 0

If the homomorphisms f1 and f2 are surjective (respectively, injective), then also f is sur-
jective (respectively, injective).

Proof. Assume that both f1 and f2 are surjective. Since the second row is exact, ker q2 =
im i2. We prove first that

ker q2 = im i2 ⊆ f (G). (A.15)

Indeed, if x ∈ H1, then i2(x) ∈ i2(f1(G1)) = f (i1(G1)) ⊆ f (G) by the surjectivity of f1.
Now to check the surjectivity of f , pick y ∈ H. Then q2(y) ∈ f2(q1(G)) = q2(f (G)), by
the surjectivity of f2 and q1. Therefore, q2(y) = q2(z) for some z ∈ f (G). This yields
y ∈ z + ker q2 ⊆ f (G) + f (G) = f (G), by (A.15).

Now assume that both f1 and f2 are injective. To prove that f is injective, assume
that f (x) = 0 for some x ∈ G. Then 0 = q2(f (x)) = f2(q1(x)). By the injectivity of f2,
q1(x) = 0. Hence, x ∈ i1(G1). Let x = i1(y) for some y ∈ G1. So, f (x) = f (i1(y)) = i2(f1(y)) =
0. As both i2 and f1 are injective, y = 0. Therefore, x = 0.
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Let us find a description of an extension B of given abelian groups A and C. Sup-
pose for simplicity that A is a subgroup of B and C = B/A. Let q:B → C = B/A be the
canonical projection. Since it is surjective one can fix a section s:C → B of q (namely,
a map such that q(s(c)) = c for all c ∈ C) with s(0) = 0.

For b ∈ B the element r(b) = b − s(q(b)) belongs to A = ker q. This defines a map
r:B → A such that r ↾A= idA. Therefore, every element b ∈ B is uniquely described by
the pair (q(b), r(b)) ∈ C × A by b = s(q(b)) + r(b). If s is a homomorphism, the image
s(C) is a subgroup of B and B ≅ s(C) × A splits.

From now on we consider the general case. Then, for c, c′ ∈ C, the element

fs(c, c
′) := s(c) + s(c′) − s(c + c′) ∈ B (A.16)

certainly belongs to A, as q is a homomorphism. This defines a map fs:C × C → A
uniquely determined by the extension B and the choice of the section s. When s is a
homomorphism, fs = 0.

We leave to the reader the verification of the fact that the commutativity and the
associativity of the operation in B yield, for all c, c′, c′′ ∈ C,

fs(c, c
′) = fs(c

′, c) and fs(c, c
′) + fs(c + c

′, c′′) = fs(c, c
′ + c′′) + fs(c

′, c′′). (A.17)

As the section s satisfies s(0) = 0, for all c ∈ C,

fs(c,0) = fs(0, c) = 0. (A.18)

Definition A.5.4. Let C,A be abelian groups. A function f :C × C → A satisfying (A.17)
and (A.18) is a factor set on C to A.

We denote by Fact(C,A) the set of all factor sets on C to A. One can easily see that
Fact(C,A) is a subgroup of the abelian group (AC×C ,+).

The proof of the next proposition is straightforward.

Proposition A.5.5. Let A,C be abelian groups. Every f ∈ Fact(C,A) gives rise to an ex-
tension Bf of A by C defined in the following way. The support of the group is Bf = C ×A,
with operation

(c, a) + (c′, a′) = (c + c′, a + a′ + f (c, c′)) for c, c′ ∈ C, a, a′ ∈ A

and the subgroup A′ = {0} × A ≅ A is such that Bf /A′ ≅ C. For the section s:C → Bf of
the canonical projection q:Bf → C, defined by letting s(c) = (c,0) for every c ∈ C, we get
f = fs.

It is important to note that the subset C × {0} = s(C) need not be a subgroup of Bf ;
it is a subgroup of Bf precisely when f = 0.

Proposition A.5.5 shows that there exists a correspondence

Fact(C,A)→ {extensions of A by C}, f → Bf ,
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and this correspondence is such that, for the section s:C → Bf with s(c) = (c,0), we
get fs = f .

The trivial extension is determinedby the identically zero factor set f , if the section
s(c) = c is chosen. More precisely one has:

Example A.5.6. Let A,C be abelian groups and identify C and A with subgroups of
the trivial extension B = C × A. Every section s:C → B of the canonical projection
q:B → C, with s(0) = 0, is defined by s(c) = c + h(c) for c ∈ C, where h:C → A is map
with h(0) = 0. The factor set fs obtained from (A.16) satisfies, for c, c′ ∈ C,

fs(c, c
′) = h(c) + h(c′) − h(c + c′). (A.19)

Inspired by this example, for abelian groups C,A, now we consider two sections
s1, s2:C → B, with s1(0) = 0 = s2(0), of the same arbitrary extension B of A by C. For
every c ∈ C, let h:C → A be defined by

h(c) = s1(c) − s2(c) ∈ A;

in particular, h(0) = 0. The factor sets fs1 and fs2 satisfy

fs1 (c, c
′) − fs2 (c, c

′) = h(c) + h(c′) − h(c + c′). (A.20)

This motivates the following definition.

Definition A.5.7. Let A,C be abelian groups. Call two factor sets f1, f2:C ×C → A equiv-
alent if (A.20) holds for some map h:C → A with h(0) = 0.

Definition A.5.8. LetA,C be abelian groups. Call two extensions B1,B2 ofA by C equiv-
alent if there exists a homomorphism ξ :B1 → B2 such that the following diagram,
where both horizontal rows describe the respective extension, is commutative:

0 → A
i1→ B1

q1→ C → 0

idA
↑↑↑↑↓

↑↑↑↑↓
ξ

↑↑↑↑↓
idA

0 → A →
i2

B2 →q2
C → 0

(A.21)

It follows from Lemma A.5.3 that the homomorphism ξ in the above definition is
necessarily an isomorphism, provided it exists.

Theorem A.5.9. Let A,C be abelian groups and f1, f2 ∈ Fact(C,A). The two extensions
Bf1 ,Bf2 of A by C are equivalent if and only if the factor sets f1, f2 are equivalent. On the
other hand, if B is an extension of A by C with section s, then for fs ∈ Fact(C,A) the
extension Bfs is equivalent to B.
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Proof. Assume that the factor sets f1, f2 are equivalent, namely, there exists a map
h:C → A with h(0) = 0 and such that (A.20) holds. For i = 1, 2, let and ξ :Bf1 → Bf2 ,
(c, a) → (c, a+ h(c)). We leave the verification of the fact that ξ is an isomorphism and
the extensions Bf1 ,Bf2 are equivalent to the reader.

Now assume that the extensions Bf1 ,Bf2 are equivalent. From the commutativity
of (A.21), we deduce that the isomorphism ξ :B1 → B2 must be of the form ξ (c, a) =
(c, a + h(c)), where h:C → A is a map with h(0) = 0. For c, c′ ∈ C, one has

(c + c′, h(c + c′) + f1(c, c
′)) = ξ (c + c′, f1(c, c

′)) = ξ ((c,0) +1 (c
′,0))

= ξ (c,0) +2 ξ (c
′,0) = (c, h(c)) +2 (c

′, h(c′)) = (c + c′, f2(c, c
′) + h(c) + h(c′)).

This gives h(c + c′) + f1(c, c′) = f2(c, c′) + h(c) + h(c′), so f1, f2 are equivalent.
To prove the last assertion, assume that (A.14) is an extension of A by C with

section s. It is easy to check that the required isomorphism ξ :B → Bf is defined by
ξ (b) = (r(b), q(b)), where b ∈ B and r = s ∘ q.

The factor sets f of the form (A.19) obviously form a subgroup Trans(C,A) of
Fact(C,A). Hence, the above theorem tells us that the set Ext(C,A) of all equivalence
classes of extensions ofA byC admits a bijectionwith the set of all equivalence classes
of factor sets. But since these equivalence classes of factor sets form precisely the quo-
tient group Fact(C,A)/Trans(C,A), we see that Ext(C,A) carries a structure of abelian
group transported from the group Fact(C,A)/Trans(C,A). In particular, using the fact
that Ext(C,A) is a group, we write Ext(C,A) = {0} to say that there are only trivial
extensions of A by C.

See [202] for a different equivalent definition of the group structure of Ext(C,A).

A.6 Nonabelian groups

Recall that a simple group is a nontrivial group whose only normal subgroups are the
trivial group and the group itself.

In a group G, the centralizer of a ∈ G is the subgroup cG(a) = {x ∈ G: xa = ax} of
G, and more generally for X ⊆ G, cG(X) = {x ∈ G: xg = gx for every g ∈ X}. The center
of G is Z(G) = cG(G); it is a normal subgroup.

For x, y ∈ G, denote by [x, y] = x−1y−1xy the commutator of x and y in G. Moreover,
for subgroupsH ,K ofG, the commutator ofH andK inG is the subgroupofG generated
by {[x, y]: x ∈ H , y ∈ K}. The commutator of G is G′ = [G,G], which is a characteristic
(so, normal) subgroup of G.

The lower central series of G is defined inductively by γ1(G) = G and, for every
n ∈ ℕ+, by γn+1(G) = [γn(G),G]. Each γn(G) is a characteristic subgroup of G.

The upper central series of G is defined inductively by Z0(G) = {eG}, Z1(G) = Z(G)
and, for every n ∈ ℕ, by Zn+1(G) = {x ∈ G:∀y ∈ G, [x, y] ∈ Zn(G)} (equivalently,
Zn+1(G)/Zn(G) = Z(G/Zn(G))).
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Definition A.6.1. A group G is nilpotent if γc+1(G) = {eg} for some c ∈ ℕ. We say that G
has nilpotency class c if c ∈ ℕ is the minimum such that γc+1(G) = {eG} (equivalently,
Zc+1(G) = G).

It is easy to verify that subgroups and quotients of nilpotent groups are nilpotent.
For a group G, the derived series is defined inductively by G(0) = G and, for every

n ∈ ℕ, G(n+1) = [G(n),G(n)]. Each G(n) is a characteristic subgroup of G.

Definition A.6.2. A group G is solvable if G(d) = {eG} for some d ∈ ℕ. We say that G
has derived length d if d ∈ ℕ is the minimum such that G(d) = {eG}.

A group G ismetabelian if G is solvable of derived length at most 2.

Subgroups and quotients of solvable groups are solvable. Clearly, a group G is
metabelian in case G′ is abelian.

Nilpotent groups are solvable, but, for example, S3 is metabelian but not nilpo-
tent. Moreover, we recall that a torsion finitely generated solvable group is necessarily
finite.

For a unitary ring R the Heisenberg group over R is the subgroup ℋ(R) of GL3(R)
of all upper unitriangular 3 × 3 matrices) over the ring R. The group ℋ(R) is always
nilpotent of class 2.

The Frattini subgroup Fratt(G) of a group G is the intersection of all maximal sub-
groups of G. Note that Fratt(G) = G in case G has no maximal subgroups.

Let us recall that for groups K,H and a group homomorphism θ:K → Aut(H), one
defines the semidirect product G = H ⋊θ K, as the group with support the Cartesian
product G = H × K and group operation defined by (h, k) ⋅ (h1, k1) = (hθ(k)(h1), kk1).
Identifying H and K with the subgroups H × {eK} and {eH } × K, respectively, of G, the
conjugation in G by an element k of K restricted to H is precisely the automorphism
θ(k) of H. For a subgroup K ≤ Aut(H) and the inclusion θ:K → Aut(H), we simply
write H ⋊ K in place of H ⋊θ K (in particular, for an automorphism ϕ ∈ Aut(H), we
write H ⋊ ⟨ϕ⟩).

A.7 Exercises

Exercise A.7.1. Verify that for every abelian group G, the quotient G/t(G) is torsion-
free.

Exercise A.7.2. For a prime p andG an abelian p-group, prove thatG is divisible if and
only if G is p-divisible.

Exercise A.7.3. Let G be a torsion-free abelian group.
(a) Let M be an independent subset of G. Prove that M is maximal if and only if the

subgroup ⟨M⟩ is essential.
(b) Prove that a subgroup H of G is essential if and only if G/H is torsion.
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Exercise A.7.4. Prove that a subgroup H of an abelian group G is essential in G if and
only if H contains Soc(G) and a maximal independent subset of G.

Exercise A.7.5. Prove that if G,H are abelian groups and N ,K are essential subgroups
of G,H, respectively, then N × K is an essential subgroup of G × H.

Exercise A.7.6. Let G be an abelian group and H a subgroup of G. Prove that r0(G) =
r0(H) + r0(G/H). If G is a p-group for a prime p, prove that rp(G) = rp(H) + rp(G/H).

Exercise A.7.7. For an abelian group G, prove that:
(a) r0(Gℕ) > 0 if and only if r0(Gℕ) ≥ c, if and only if G is not bounded;
(b) if G is not bounded and |G| ≤ c, then r0(Gρ) = 2ρ for any infinite cardinal ρ.

Exercise A.7.8. Prove that every subgroup ofℚ2 of rank 2 is essential inℚ2.

Exercise A.7.9. For a prime p and a bounded abelian p-group B, prove that rp(B) =
rp(B/pB).
Hint. Use the fact that B ≅ ℤ(p)(α1) ⊕ ⋅ ⋅ ⋅ ⊕ ℤ(pn)(αn) for some n ∈ ℕ+ and cardinals α1, . . . , αn, and
rp(ℤ(pk)(κ)) = κ for every k ∈ ℕ+ and a cardinal κ.

Exercise A.7.10. Prove that:
(a) subgroups and direct products of reduced abelian groups are reduced;
(b) every abelian group is a quotient of a reduced group.

Hint. Use Theorem A.3.2(a) and Example A.4.2.

Exercise A.7.11. Prove that G/G1 is residually finite for every abelian group G.

Exercise A.7.12. Prove that, for an odd prime p, if ξ p = 1 for ξ ∈ 𝕁p then ξ = 1. For
ξ ∈ 𝕁2, if ξ 2 = 1 then ξ = ±1.
Hint. Use Claim A.4.16.

Exercise A.7.13. Prove that |𝕁p| = c.

Hint. Show that to every sequence of integers k = {kn}n∈ℕ satisfying (A.13) and 0 ≤ kn < pn, one can
assign a sequence {an}n∈ℕ ∈ {0, 1, . . . , p − 1}ℕ such that

kn =
n−1
∑
j=0

ajp
j (A.22)

for every n ∈ ℕ+. Vice versa, every sequence {an}n∈ℕ ∈ {0, 1, . . . , p− 1}ℕ defines, via (A.22), a sequence
k = {kn}n∈ℕ ∈ ℤℕ satisfying (A.13) and 0 ≤ kn < pn.

Exercise A.7.14. Prove that a finite abelian group G is indecomposable if and only if
G ≅ ℤ(pn) for some prime p and n ∈ ℕ.

Exercise A.7.15. Prove that an abelian group is indecomposable if its endomorphism
ring has no nontrivial idempotents.
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Exercise A.7.16. An abelian group G is called rigid if its endomorphism ring consists
only of the endomorphisms m ⋅ idG with m ∈ ℤ. Prove that an infinite rigid abelian
group is indecomposable.

Exercise A.7.17. Prove that the following properties of the abelian groups are stable
under extension: torsion, torsion-free, divisible, reduced, p-torsion, having no non-
trivial p-torsion elements, having finite exponent. Prove that residual finiteness is not
stable under extension.
Hint. In Example A.4.7, N is not residually finite, N1 is finite, and N/N1 is residually finite.

Exercise A.7.18. Let A,C be abelian groups. Prove that Ext(C,A) = {0} in the following
cases:
(a) A is divisible;
(b) C is free;
(c) both A and C are torsion and for every prime p either rp(A) = 0 or rp(C) = 0;
(d) ∗ (Prüfer theorem)C is torsion-free andAhas finite exponent. (So, in every abelian

group G such that t(G) is bounded, the torsion subgroup splits as G = t(G) ⊕
G/t(G).)

Hint. For (a) use Corollary A.2.7, for (b) use Lemma A.3.1. For (c), deduce first that every extension B of
A by C is torsion and then argue using the hypothesis on rp(A) and rp(C). A proof of (d) can be found
in [138].
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B Background on topological spaces

For the sake of completeness, we recall some frequently used notions and notations
from general topology. We omit most of the proofs, since these are classical results in
general topology. See, for example, the monograph [134].

B.1 Basic definitions

B.1.1 Filters

We start with the definition of filter, filter base, and topology.

Definition B.1.1. Let X be a set. A family ℱ ⊆ 𝒫(X) \ {0} is:
(i) a filter prebase on X if it has the finite intersection property, that is,A1 ∩ ⋅ ⋅ ⋅∩An ̸= 0

for every A1, . . . ,An ∈ ℱ ;
(ii) a filter base on X if for A,B ∈ ℱ there exists C ∈ ℱ such that C ⊆ A ∩ B;
(iii) up-closed if F1 ∈ ℱ , F2 ∈ 𝒫(X) and F1 ⊆ F2 imply F2 ∈ ℱ ;
(iv) a filter on X if ℱ is an up-closed filter base;
(v) an ultrafilter of X if ℱ ⊆ ℱ ′ for some filter ℱ ′ of X yields ℱ ′ = ℱ .

Clearly, every filter is a filter base, and every filter base is a filter prebase.
Every family ℬ ⊆ 𝒫(X) \ {0} generates a smallest up-closed family ℬ∗ containing

ℬ, namely, ℬ∗ = {F ∈ 𝒫(X):∃G ∈ ℬ, G ⊆ F}. Then ℱ = ℬ∗ is a filter if and only if ℬ is
a filter base. In such a case we say that the filter base ℬ generates the filter ℱ and we
call ℬ a base of ℱ .

Example B.1.2. If A is a nonempty subset of a set X, let [A] denote the family of all
subsets of X containing A. If A = {a}, we briefly write [a] in place of [{a}].
(a) It is easy to see that [A] is a filter; moreover, if A ⊆ B ⊆ X, then [B] ⊆ [A].
(b) One can deduce from (a), that [a] is an ultrafilter for every a ∈ X.

A filter of the form [A] is called principal or fixed, and we say that it is generated by the
set A. Clearly, a filter ℱ is fixed if and only if⋂ℱ ̸= 0 belongs to ℱ .

All filters on a finite set are fixed.

Example B.1.3. An example of a nonfixed filter on an infinite set X is the Fréchet filter
defined as the family of all the cofinite subsets of X, where A ⊆ X is called cofinite if
the complement X \ A is finite.

More generally, if X is an infinite set and α is a cardinal with α ≤ |X|, the family
{A ⊆ X: |X \ A| < α} is a filter on X.

https://doi.org/10.1515/9783110654936-018

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



316 | B Background on topological spaces

B.1.2 Topologies, bases, prebases, and neighborhoods

Definition B.1.4. Let X be a set. A family τ ⊆ 𝒫(X) is a topology on X if:
(a) 0,X ∈ τ;
(b) if U1, . . . ,Un ∈ τ for n ∈ ℕ+, then U1 ∩ ⋅ ⋅ ⋅ ∩ Un ∈ τ;
(c) if {Ui: i ∈ I} ⊆ τ, then⋃i∈I Ui ∈ τ.

The pair (X, τ) is called a topological space; when there is no possibility of confusion,
we simply say that X is a topological space omitting its topology τ.

The members of τ are called open, or τ-open, the complement of an open set is
called closed, or τ-closed, and a set is clopen if it is both closed and open.

In the sequel, all topological spaces are assumed to be nonempty.

Example B.1.5. Let X be a set.
(a) The discrete topology δX onX has as open sets all subsets ofX, namely, δX = 𝒫(X).

The indiscrete topology ιX on X has as open sets only the sets X and 0, namely,
ιX = {0,X}.

(b) If X is infinite, the cofinite topology on X is γX = {0} ∪ {A ∈ 𝒫(X):X \ A finite}. So, a
proper subset Y ⊆ X is closed in γX precisely when Y is finite.

Recall that a point x of a topological space X is isolated if {x} is open in X.

Definition B.1.6. For a topological space (X, τ), a family ℬ ⊆ τ is:
(i) a base of (X, τ) if for every x ∈ X and for every x ∈ U ∈ τ there exists B ∈ ℬ such

that x ∈ B ⊆ U;
(ii) a prebase of (X, τ) if the family ℬ⋆ of all nonempty finite intersections of members

of ℬ is a base of (X, τ).

A base of a topological space need not be stable for finite intersections. Clearly,
for a set X, {{x}: x ∈ X} is a base of δX and {X} is a base of ιX .

Example B.1.7. Consider ℝ with its usual Euclidean topology τ induced by the usual
metric d of ℝ (see §B.3.2). Then ℬ = {(a, b): a, b ∈ ℚ, a < b} is a (countable) base of τ
while 𝒫 = {(a,+∞): a ∈ ℚ} ∪ {(−∞, b): b ∈ ℚ} is a prebase of τ.

We omit the immediate proof of the next lemma.

Lemma B.1.8. Let X be a set and ℬ ⊆ 𝒫(X) \ {0}. Then:
(a) ℬ is base of some topology τ on X if and only if ⋃B∈ℬ B = X and for every pair

B,B′ ∈ ℬ and x ∈ X with x ∈ B ∩ B′ there exists B′′ ∈ ℬ such that x ∈ B′′ ⊆ B ∩ B′;
(b) ℬ is prebase of some topology τ on X if and only if⋃B∈ℬ B = X.
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The following is another fundamental concept when dealing with topological
spaces.

Definition B.1.9. Let (X, τ) be a topological space and x ∈ X. A neighborhood U of x in
τ is any subset V of X such that there exists U ∈ τ with x ∈ U ⊆ V .

The neighborhoods of a point x in a topological space (X, τ) form a filter 𝒱(X,τ)(x)
of X. When there is no possibility of confusion, we denote it simply by 𝒱τ(x), 𝒱X(x), or
𝒱(x).

Definition B.1.10. Let (X, τ) be a topological space and x ∈ X. A base ℬ of the filter
𝒱(x) is called base of the neighborhoods of x (or briefly, local base at x) in (X, τ); the
elements of ℬ are called basic neighborhoods of x in (X, τ).

A prebase ℬ of the filter 𝒱(x) is called prebase of the neighborhoods of x in (X, τ);
the elements of ℬ are called prebasic neighborhoods of x in (X, τ).

Remark B.1.11. If (X, τ) is a topological space and, for x ∈ X, ℬx is a local base at x in
(X, τ) consisting of open neighborhoods, then⋃x∈X ℬx is a base of τ.

We recall also the following known fact.

Lemma B.1.12. Let (X, τ) be a topological space and V ⊆ X. Then V ∈ τ if and only
V ∈ 𝒱τ(x) for every x ∈ V.

Moreover, for a topological space (X, τ) and x ∈ X, the family {U ∈ 𝒱τ(x):U ∈ τ} of
all open neighborhoods of x in τ is a base of 𝒱τ(x).

B.1.3 Ordering topologies, closure, and interior

The set 𝒯 (X) of all topologies on a given set X is ordered by inclusion.

Definition B.1.13. Let X be a set and τ1, τ2 ∈ 𝒯 (X). We say that τ1 is coarser than τ2, or
that τ2 is finer than τ1, if τ1 ⊆ τ2. We denote this also by τ1 ≤ τ2.

Remark B.1.14. For a set X, 𝒯 (X) becomes a complete lattice with top element the dis-
crete topology and bottom element the indiscrete topology. If {τi: i ∈ I} is a family of
topologies of X, then the intersection τ = ⋂i∈I τi is a topology on X and so τ = infi∈I τi,
that is, τ is the infimum of the family {τi: i ∈ I}. In other words, τ is the finest topology
on X coarser than τi for every i ∈ I.

This is enough to claim that 𝒯 (X) is a complete lattice, but it is convenient to get
an explicit description of the supremum τ′ = supi∈I τi of {τi: i ∈ I} in 𝒯 (X). This is the
topology τ′ on X with prebase ⋃i∈I τi. In other words, for every x ∈ X a local base at
x in (X, τ′) is the family {U1 ∩ ⋅ ⋅ ⋅ ∩ Un:Uk ∈ 𝒱τik (x), k ∈ {1, . . . , n}, n ∈ ℕ+}. So, τ

′ is the
coarsest topology on X that is finer than τi for every i ∈ I.

We conclude this section with the following basic definition.

 EBSCOhost - printed on 2/10/2023 4:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



318 | B Background on topological spaces

Definition B.1.15. Let (X, τ) be a topological space andM ⊆ X.
(a) The closure M (denoted also byMτ, when it is necessary to enhance the topology)

of M in X is the smallest closed set of X containing M. This is the intersection of
all closed sets containingM. Clearly, it coincides also with the set of all x ∈ X such
that every U ∈ 𝒱τ(x)meetsM.

(b) Dually, the interior Int(M) of M in X is the largest open set of X contained in M.
This is the union of all open sets contained inM, that is, the set of all x ∈ M such
that there exists U ∈ τ with x ∈ U ⊆ M.

Obviously, M is closed if and only if M = M, while M is open if and only if
Int(M) = M. An open set U is a regular open set if U = Int(U).

Example B.1.16. A topology τ on a set X is an Alexandrov topology, and (X, τ) is an
Alexandrov topological space, if arbitrary intersections of τ-open sets are τ-open. So,
in this case⋂𝒱(x) ∈ τ for every x ∈ X, i. e., every point x ∈ X has a smallest neighbor-
hood⋂𝒱(x) (obviously, it coincides with {x} for all x ∈ X, for an Alexandrov space X,
precisely when τ is discrete).

The Alexandrov topological spaces are exactly the topological spaces (X, τ) such
that arbitrary unions of τ-closed sets are τ-closed. Hence, for every M ⊆ X there is a
smallest open set containingM (namely, the intersectionof all open sets containingM)
and a largest closed set contained inM (namely, the union of all closed sets contained
inM).

The reader is maybe tempted to compare the set ⋂𝒱(x), that prominently ap-
peared in the above example, with the point-closure {x}, and even expect that they
coincide. Let us anticipate here that the equality⋂𝒱(x) = {x} occurs very rarely (actu-
ally, only when the space is indiscrete), as we discuss in the extended Exercise B.7.9.

Definition B.1.17. A subset D of a topological space (X, τ) is dense in (X, τ) if Dτ
= X

(we say also that D is τ-dense in X). A topological space X is separable if X has a dense
countable subset.

Example B.1.18. (a) For a nonempty set X, a subsetD ofX is dense in (X, δX) precisely
when D = X and every nonempty subset of X is dense in (X, ιX).

(b) Asℚ is dense in ℝ with its usual Euclidean topology, ℝ is separable.

Lemma B.1.19. Let X be a topological space and U an open set of X. If D is a dense
subset of X, then U ∩ D is dense in U.

Proof. Let V be a nonempty open set of U . Then V is open in X, and so V ∩ (U ∩ D) =
V ∩ D ̸= 0.
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B.2 Convergent nets and filters

B.2.1 Convergent sequences

Definition B.2.1. A sequence {xn}n∈ℕ in a topological space (X, τ) is said to converge to
x ∈ X, and we write xn → x, if every neighborhood U of x in τ contains all but finitely
many members of the sequence.

A convergent sequence {xn}n∈ℕ is trivial if all but finitely many members xn coin-
cide with the limit point x, otherwise we call it nontrivial.

Unlike in the case of metric spaces, where the topology can be completely de-
termined by convergence of sequences (see §B.3.2), topological spaces may have few
convergent sequences, or at least not sufficiently many to provide a description of the
topology (or the closure) in terms of convergent sequences.

Definition B.2.2. A subset A of a topological space X is sequentially closed if A con-
tains the limits of all convergent sequences {an}n∈ℕ entirely contained inA. A topolog-
ical space X is sequential if every sequentially closed set of X is closed.

Clearly, every closed set is also sequentially closed, but the inverse implica-
tion may fail (for example, in a nondiscrete space without nontrivial convergent se-
quences). Moreover, sequential spaces are the most general class of spaces for which
sequences suffice to determine the topology.

There is amore subtle (stronger) connection between the topology and convergent
sequences, given by the following notion.

Definition B.2.3. A topological space X is Fréchet–Urysohn if for every subset A of X
and every x ∈ A, there exists a sequence {an}n∈ℕ in A such that an → x.

The Fréchet–Urysohn spaces X are obviously sequential, as sequentially closed
sets in a Fréchet–Urysohn space are obviously closed.

B.2.2 Convergent nets

An alternative to sequences are nets, invented by Moore and Smith.
A partially ordered set (A,≤) is directed if for every α, β ∈ A there exists γ ∈ A such

that α ≤ γ and β ≤ γ. A subset B of (A,≤) is cofinal in A if for every α ∈ A there exists
β ∈ B with α ≤ β.

A net S in a topological space X is amap from a directed set (A,≤) to X. Wewrite xα
for the image of α ∈ A in X, so that the net S is usually written in the form S = {xα}α∈A
in order to keep the similarity with the leading example, that is, with the sequences,
obtained with A = (ℕ,≤).
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Definition B.2.4. LetX be a topological space. A net S = {xα}α∈A inX converges to x ∈ X
if for every U ∈ 𝒱(x) there exists β ∈ A such that α ∈ A and β ≤ α imply xα ∈ U . In such
a case, we call x limit point of the net S.

A net S = {xα}α∈A in a topological space X can have more than one limit point. We
denote by limα∈A xα or by lim S the set of all limit points of S, andwewrite x ∈ limα∈A xα,
or xα → x, or S → x, to denote that the net S = {xα}α∈A converges to x. Wewrite as usual
x = limα∈A xα in case the limit is unique.

Here comes the leading example of a (convergent) net.

Example B.2.5. Let X be a topological space and x ∈ X. Consider the set 𝒜 of neigh-
borhoods of x with the reversed order, that is,U ≤ V forU ,V ∈ 𝒜 ifU ⊇ V . Then (𝒜,≤)
is directed and, if for every U ∈ 𝒜 one picks a point xU ∈ U, then the net {xU }U∈𝒜
converges to x.

From the above example we deduce:

Lemma B.2.6. Let X be a topological space. Then:
(a) for Z ⊆ X, x ∈ Z if and only if there exists a convergent net {xα}α∈A with xα → x and

xα ∈ Z for every α ∈ A;
(b) Z ⊆ X is closed if and only if for every convergent net {xα}α∈A, with xα ∈ Z for every

α ∈ A, one has limα∈A xα ⊆ Z.

The concept of subnet is a generalization of that of subsequence.While every sub-
sequence of a sequence is a subnet, a sequence may admit subnets that are not sub-
sequences.

Definition B.2.7. Let X be a topological space. A subnet of the net S = {xα}α∈A in X is
a net {yβ}β∈B in X, where B is a directed set such that there exists a function h:B → A
with the properties:
(i) for every α ∈ A there exists β0 ∈ B such that h(β) ≥ α for all β ≥ β0 in B;
(ii) yβ = xh(β) for all β ∈ B.

Definition B.2.8. Let X be a topological space, S = {xα}α∈A a net in X, and U ⊆ X. The
net S is frequently in U if for every α ∈ A there exists β ∈ A, β ≥ α such that xβ ∈ U . A
point x ∈ X is an accumulation point (or cluster point) of the net S if for every U ∈ 𝒱(x)
the net S is frequently in U .

Clearly, a point x ∈ X is an accumulation point of a net S preciselywhen some sub-
net of S converges to x. Nowwe see other similarities between the behavior of subnets
of nets and subsequences of sequences.

Proposition B.2.9. Let S = {xα}α∈A be a net in a topological space X.
(a) If S → x ∈ X, then S′ → x for every subnet S′ of S.
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(b) If x ∈ X is an accumulation point of a subnet of S, then x is an accumulation point
of S.

(c) If x ∈ X is an accumulation point of S, then x is a limit point of some subnet of S.

Proof. (a) and (b) are obvious.
(c) Assume that x ∈ X is an accumulation point of S. The set I = 𝒱(x) × A has a

partial order α′ ≤ β′, defined for α′ = (U , α) ∈ I and β′ = (V , β) ∈ I, by α ≤ β andU ⊇ V .
Now consider its subset

B = {(U , α) ∈ I : xα ∈ U}

with the induced order. Let us see that this makes the poset (B,≤) directed. Indeed, fix
α′ = (U , α), β′ = (V , β) ∈ B. SinceU ∩V ∈ 𝒱(x) and x ∈ X is an accumulation point of S,
the subset {γ ∈ A: xγ ∈ U ∩ V} of A is cofinal. Hence, there exists xγ ∈ U ∩ V with γ ≥ α
and γ ≥ β. Now γ′ = (U ∩ V , γ) ∈ B and γ′ ≥ α′, γ′ ≥ β′.

Define h:B → A simply as the restriction to B of the second projection 𝒱(x) ×
A → A. Then h is monotone and h(B) is cofinal in A. Therefore, by setting yα′ = xα
for α′ = (U , α) ∈ B, we obtain a subnet S′ = {yα′ }α′∈B of S. To check that S′ → x, fix
U ∈ 𝒱(x). Since x is an accumulation point of S, there exists α ∈ A such that xα ∈ U . Let
α′ = (U , α) ∈ B. If β′ = (V , β) ∈ B is such that β′ ≥ α′, then V ⊆ U and yβ′ = xβ ∈ V ⊆ U .
Therefore, S′ → x.

It follows from the above proposition that a net S in a topological space X con-
verges to x ∈ X if and only if every subnet of S converges to x.

B.2.3 Convergent filters

Now we introduce convergence of filters and filter bases.

Definition B.2.10. Let X be a topological space. A filter ℱ on X converges to x ∈ X
when 𝒱(x) ⊆ ℱ . A point x ∈ X is a limit point of ℱ if ℱ converges to x. Moreover, x is
an adherent point of ℱ , if x ∈ adℱ = ⋂{F: F ∈ ℱ}.

Similarly, let ℬ be a filter base on X and denote by ℬ∗ the filter generated by ℬ.
We say that ℬ converges to x ∈ X when 𝒱(x) ⊆ ℬ∗, and x is an adherent point of ℬ if
x ∈ adℬ = ⋂{B:B ∈ ℬ}. Since adℬ∗ = adℬ, x is an adherent point of ℬ∗ if and only if x
is an adherent point of ℬ. Obviously, ℬ converges to x if and only if ℬ∗ converges to x.

The following lemma reveals the close connection between convergence of filters
and convergence of nets.

Lemma B.2.11. Let X be a topological space and x ∈ X.
(a) Assume that S = {xα}α∈A is a net in X. Then ℬ = {xβ:∃α ∈ A, β ≥ α} is a filter base

on X. Moreover:
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(a1) ℬ converges to x ∈ X if and only if the net {xα}α∈A converges to x;
(a2) x is an accumulation point of the net S if and only if x is an adherence point ofℬ.

(b) For a filter ℱ = {Fa: a ∈ A} on X and α, β ∈ A, let α ≤ β if Fα ⊇ Fβ. Then:
(b1) the partially ordered set (A,≤) is directed;
(b2) the filter ℱ converges to x if and only if for every choice of a point xa ∈ Fa the

net {xα}α∈A converges to x;
(b3) x is an adherence point of the filter ℱ if and only if for every Fα ∈ ℱ one can

choose a point xα ∈ Fα such that x is an accumulation point of the net {xα}α∈A.

B.3 Continuous maps and cardinal invariants of topological
spaces

B.3.1 Continuous maps and their properties

Here we introduce continuity and discuss properties of continuous maps.

Definition B.3.1. For a map f : (X, τ) → (Y , τ′) between topological spaces and a point
x ∈ X we say that:
(i) f is continuous at x if for every U ∈ 𝒱Y (f (x)) there exists V ∈ 𝒱X(x)with f (V) ⊆ U;
(ii) f is open at x ∈ X if for every V ∈ 𝒱X(x) there exists U ∈ 𝒱Y (f (x)) with f (V) ⊇ U .

Moreover (global properties):
(iii) f is continuous (respectively, open) if f is continuous (respectively, open) at every

point x ∈ X;
(iv) f is closed if the subset f (A) of Y is closed for every closed set A of X;
(v) f is a homeomorphism if f is continuous, open, and bijective;
(vi) f is a local homeomorphism if for every x ∈ X there exists an open set U of X

containing x such that f (U) is open inY and f ↾U :U → f (U) is a homeomorphism;
(vii) f is a (topological) embedding if f :X → f (X) is a homeomorphism.

In item (i) and (ii), one can limit the test to only basic neighborhoods. Clearly, a
homeomorphism is a local homeomorphism, while the converse is not true (for exam-
ple, the map f :ℝ→ 𝕊, x → cos(x) + i sin(x), is a local homeomorphism which is not a
homeomorphism).

Thenext lemmadescribes continuity at apoint in termsof filters andnets similarly
to the description of continuity in metric spaces in terms of sequences.

Lemma B.3.2. Let X,Y be topological spaces, f :X → Y a map, and x ∈ X. Then the
following conditions are equivalent:
(a) f is continuous at x;
(b) f (xα)→ f (x) in Y for every net {xα}α∈A in X with xα → x;
(c) f (ℱ)→ f (x) in Y for every filter ℱ on X with ℱ → x.
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For item (c) of the above lemma, see Exercise B.7.1(a).
The next lemma describes global continuity (in all points of the space).

Lemma B.3.3. Let X,Y be topological spaces and f :X → Y a map. Then the following
conditions are equivalent:
(a) f is continuous;
(b) the inverse image under f of open sets of Y are open in X;
(c) the inverse image under f of prebasic open sets of Y are open in X;
(d) the inverse image under f of closed sets of Y are closed in X.

Continuity can be conveniently described by means of the closure:

Theorem B.3.4. A map f :X → Y between topological spaces is continuous if and only
if

f (M) ⊆ f (M) for every subset M of X. (B.1)

Proof. Assume that x ∈ M. By Lemma B.2.6, there exists a net {xα}α∈A contained inM
such that xα → x. Since f is continuous at x, f (xα) → f (x) in Y by Lemma B.3.2, so
f (x) ∈ f (M) by Lemma B.2.6(a).

Now assume that (B.1) holds for every subset M of X. We intend to use Lem-
ma B.3.3(d) to check the continuity of f . Let F be a closed set of Y and letM = f −1(F).
According to (B.1), f (M) ⊆ f (M) ⊆ F = F. This proves that M ⊆ M, that is, M is
closed.

A topological spaceX ishomogeneous if for every pair of points x, y ∈ X there exists
a homeomorphism f :X → X such that f (x) = y. Clearly, a nondiscrete homogeneous
space cannot have isolated points.

B.3.2 Metric spaces and the open ball topology

We recall that a pseudometric on a set X is a function d:X × X → ℝ≥0 such that:
(i) d(x, x) = 0 for every x ∈ X;
(ii) d(x, y) = d(y, x) for every x, y ∈ X;
(iii) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X.

In case d(x, y) = 0 always implies x = y, the function d is called a metric. A metric d
on X is an ultrametric if (iii) is replaced by the stronger axiom
(iii∗)d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.

A pair (X, d), where X is a set provided with a metric (respectively, a pseudometric,
an ultrametric) d, is calledmetric space (respectively, pseudometric space, ultrametric
space).
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The diameter of a nonempty subset Y of (X, d) is defined as diam(Y) =
sup{d(y1, y2): y1, y2 ∈ Y}.

For (X, d) a pseudometric space, x ∈ X, and ε > 0,

Bdε (x) = Bε(x) = {y ∈ X: d(y, x) < ε}

is the open disk (or open ball) in X with center x and radius ε.

Example B.3.5. Let (X, d) be a (pseudo)metric space. The family ℬ = {Bε(x): x ∈ X, ε >
0} is a base of a topology τd on X called the metric topology (or open ball topology) of
(X, d). For every x ∈ X, the family {Bε(x): ε > 0} is a base of𝒱τd (x). Also {B1/n(x): n ∈ ℕ+}
is a (countable) base of 𝒱τd (x).

Clearly, ℝ with its metric topology induced by the Euclidean metric is a homoge-
neous space.

Example B.3.6. On ℝn:
(a) the Euclidean distance is defined by d(x, y) = √∑ni=1(xi − yi)2 for every x, y ∈ ℝ

n;
(b) the Chebyshev distance (or chessboard distance) is defined by d(x, y) =

supi=1,...,n |xi − yi| for every x, y ∈ ℝn;
(c) the Manhattan distance is defined by d(x, y) = ∑ni=1 |xi − yi| for every x, y ∈ ℝ

n;
roughly speaking, for n = 2 this is how we compute distances when “walking in a
city whose streets follow a grid pattern”, so this metric carries also the name taxi
driver metric.

Definition B.3.7. A topological space (X, τ) is (pseudo)metrizable if there exists a
(pseudo)metric d on X such that τ = τd.

Definition B.3.8. Let (X, d) and (Y , d′) be metric spaces. A map f :X → Y is:
(i) continuous if for every x ∈ X and every ε > 0 there exists δx > 0 such that

d′(f (x), f (y)) < ε whenever d(x, y) < δx.
(ii) uniformly continuous if for every ε > 0 there exists δ > 0 such that d′(f (x), f (y)) < ε

whenever d(x, y) < δ.

Obviously, uniformly continuous maps between metric spaces are continuous.
Moreover, a map f : (X, d) → (Y , d′) between metric spaces is continuous if and only if
f : (X, τd)→ (Y , τd′ ) is continuous.

Definition B.3.9. A sequence {xn}n∈ℕ in a metric space (X, d) is a Cauchy sequence if
for every ε > 0 there exists n0 ∈ ℕ such that d(xn, xm) < ε for everym, n ≥ n0.

Remark B.3.10. Every convergent sequence is a Cauchy sequence. On the other hand,
somemetric spaces have nonconvergent Cauchy sequences, while others do not (e. g.,
ℝn as well as ℤn, for every n ∈ ℕ, have none).

This justifies the next fundamental notion.
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Definition B.3.11. A metric space X is complete if every Cauchy sequence in X is con-
vergent.

Every metric space X has a completion, namely, there exists a complete metric
space X̃ containing X as a dense subspace, having the property that if Y is a dense
subspace of ametric space Y ′ and f :Y → X is a uniformly continuousmap, then there
exists a unique uniformly continuous extension f̃ :Y ′ → X̃ of f . This implies that the
completion X̃ is unique up to isometry leaving the points of X fixed.

Example B.3.12. For a prime p, the p-adic norm | − |p:ℚ → ℝ≥0 is defined as follows.
Let |0|p = 0. For r ∈ ℚ \ {0} define vp(r) as the unique k ∈ ℤ such that r = pk ab , with
a, b ∈ ℤ \ {0} coprime and p ∤ a, p ∤ b. Now let |r|p = p−vp(r). This norm induces the
p-adic metric dp onℚ, which is an ultrametric.

The completion of (ℚ, dp) is the field ℚp of p-adic numbers. One can easily
show that for every choice of the integer coefficients (an)n≥n0 and n0 ∈ ℤ, the series
∑∞n=n0 anp

n converges inℚp. The closure of ℤ inℚp is the ring 𝕁p of p-adic integers.

B.3.3 Cardinal invariants

A cardinal invariant of topological spaces is a cardinal number i(X) attached to every
topological space X in such a way that if X and Y are homeomorphic spaces, then
i(X) = i(Y). Here we recall several cardinal invariants (see Exercise B.7.5).

The weight of a topological space X is the cardinal number

w(X) = min{|ℬ|:ℬ is a base of X}.

The topological spaces with countable base are called second countable.
Clearly, ℝ endowed with its metric topology induced by the Euclidean metric is

second countable, in view of Example B.1.7.

Example B.3.13. (a) Every base of a discrete space X = (X, δX) contains the family of
all singletons of X, and hence w(X) = |X|.

(b) If X = (X, ιX) is a nonempty indiscrete space, {X} is a base and w(X) = 1.

For a topological space X and x ∈ X, the cardinal number

χ(X, x) = min{|ℬ|:ℬ base of 𝒱(x)}

is the character of X at x. We use the symbol χ(X) for denoting the character of X de-
fined by χ(X) = sup{χ(X, x): x ∈ X}. The topological spaces with countable character
are called first countable. Clearly, a second countable space is also first countable.Met-
ric spaces are obviously first countable (see §B.3.2).

First countable spaces are obviously Fréchet–Urysohn, as sequences are sufficient
to describe the closure of a subset.
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If⋂𝒱(x) = {x} for a point x of a topological space X, the cardinal number

ψ(X, x) = min{|ℬ|:ℬ ⊆ 𝒱(x), ⋂
B∈ℬ

B = {x}}

is called pseudocharacter of X at x. If ⋂𝒱(x) = {x} for all points x ∈ X, we let ψ(X) =
supx∈X ψ(X, x), and we call it pseudocharacter of X.

For a topological space X, the density character of X is

d(X) = min{|D|:D is dense in X}.

Clearly, X is separable precisely when d(X) is countable.
For a discrete space X one has d(X) = w(X) = |X|, while χ(X) = 1. For a nonempty

indiscrete space X, one has d(X) = w(X) = χ(X) = 1.

Lemma B.3.14. Let (X, τ) be a topological space. Then:
(a) χ(X) ≤ w(X) ≤ |τ| ≤ 2w(X) and |τ| ≤ 2|X|;
(b) d(X) ≤ w(X) and d(X) ≤ |X|.

Proof. Fix a base ℬ of τ of size w(X).
(a) The inequalities |τ| ≤ 2|X| and χ(X) ≤ w(X) ≤ |τ| ≤ 2|X| are obvious. Moreover,

every U ∈ τ is a union of a subfamily ℬ1 of ℬ. Since the powerset of ℬ has size 2w(X),
we conclude that |τ| ≤ |𝒫(ℬ)| = 2w(X).

(b) Fix xB ∈ B for every B ∈ ℬ. Since the set D = {xB:B ∈ ℬ} is dense in X and
|D| ≤ w(X), this proves the first inequality. The second one is trivial.

Theorem B.3.15 (Hewitt–Marczewski–Pondiczery theorem). If {Xi: i ∈ I} is a family of
separable topological spaces and |I| ≤ 2κ for an infinite cardinal κ, then d(∏i∈I Xi) ≤ κ
holds. In particular,∏i∈I Xi is separable whenever |I| ≤ c.

B.3.4 Borel sets, zero-sets, and Baire sets

For a set X, a subfamilyB of 𝒫(X) is called a σ-algebra on X if X ∈ B andB is closed
under taking complements and countable unions. For a topological space (X, τ), de-
note byℬ(X) the smallestσ-algebra containing τ. Themembers ofℬ(X) are calledBorel
sets. Some of the Borel sets of X have special names:

Definition B.3.16. Let X be a topological space. A subset A of X is:
(i) a Gδ-set if A is the intersection of a countable family of open sets;
(ii) an Fσ-set if A is the union of a countable family of closed sets;
(iii) a Gδσ-set if A the intersection of a countable family of Fσ-sets;
(iv) an Fσδ-set if A is the union of a countable family of Gδ-sets.
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Obviously, A is a Gδ-set precisely when X \ A is an Fσ-set. Similarly, for Fσδ-sets
and Gδσ-sets. Moreover, every open set is also a Gδ-set, while every closed set is also
an Fσ-set.

Definition B.3.17. A subset A of a topological space X is Gδ-dense in X if every
nonempty Gδ-set of X nontrivially meets A.

Example B.3.18. If X is a metric space, then:
(a) all closed sets (in particular, all singletons) are also Gδ-sets;
(b) by (a), a subset A of X is Gδ-dense if and only if A = X.

If X is a topological space and f :X → ℝ is continuous, then f −1(0) is named a
zero-set of X. A zero-set is obviously closed, but it is also a Gδ-set. So, the σ-algebra
generated by the zero-sets is contained in the σ-algebraℬ(X) of all Borel sets of X, and
its members are named Baire sets. These two σ-algebras need not coincide.

B.4 Subspace, quotient, product, and coproduct topologies

A subset Y of a topological space (X, τ) becomes a topological space when endowed
with the topology induced by X, namely, τ ↾Y= {Y ∩ U :U ∈ τ}. This is also called
subspace topology and (Y , τ↾Y ) a subspace of (X, τ).

Let {Xi: i ∈ I} be a family of topological spaces. Consider the Cartesian product
X = ∏i∈I Xi with its canonical projections pi:X → Xi, for i ∈ I. Then X usually car-
ries the product topology (or Tichonov topology), having as a prebase ℬ′ the family
{p−1i (Ui):Ui open in Xi}. Hence, a base of the product topology is the family

ℬ = {WJ({Uj}j∈J): J ⊆ I , J finite},

where Ui ⊆ Xi is open for all i ∈ J andWJ({Uj}j∈J) = ⋂i∈J p
−1
i (Ui). For every finite subset

J ⊆ I, let XJ = ∏i∈J Xi and let pJ :X → ∏i∈J Xi be the projection.

Theorem B.4.1. Let {Xi: i ∈ I} be a family of topological spaces and let X = ∏i∈I Xi be
equipped with the product topology. Then:
(a) the projections pi:X → Xi are both open and continuous;
(b) for every topological space Y, a map f :Y → X is continuous if and only if for every

i ∈ I, the composition pi ∘ f :Y → Xi is continuous;
(c) if x ∈ X and F is a closed set of X with x ̸∈ F, there exists a finite subset J of I such

that pJ(x) ̸∈ pJ(F);
(d) a sequence {xn}n∈ℕ in X is convergent if and only if for every i ∈ I the sequence
{pi(xn)}n∈ℕ is convergent in Xi;

(e) a net {xd}d∈D in X is convergent if and only if the net {pi(xd)}d∈D is convergent in Xi
for every i ∈ I.
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If I is countable and all Xi are metric spaces, then the product topology of X =
∏i∈I Xi is induced by a metric appropriately defined on X. If I is uncountable and
uncountably many Xi are nontrivial (i. e., nonsingletons), then the product topology
is not first countable, so cannot be induced by any metric defined on the product
X = ∏i∈I Xi.

Using Theorem B.4.1(c), one can get the following useful rule for computing the
closure in infinite products by reduction to the case of finite subproducts, that is, for
everyM ⊆ ∏i∈I Xi,

M = ⋂
J⊆I finite

p−1J (pJ(M)).

In particular, for everyM ⊆ ∏i∈I Xi,

M ⊆∏
i∈I

pi(M).

This becomes an equality whenM = ∏i∈I Mi, whereMi = pi(M) for every i ∈ I.

Example B.4.2. For a family {Xi: i ∈ I} of topological spaces, on the Cartesian product
X = ∏i∈I Xi the box topology on X has as a base the family {∏i∈I Ui:Ui open in Xi}. The
box topology is finer than the product topology.

Let X be a topological space, let ∼ be an equivalence relation on X, and let q:X →
X/∼ be the canonical projection. This set carries the so-called quotient topology τq de-
fined as follows: a set U ⊆ X/∼ is open in τq if and only if q−1(U) is open in X. Obvi-
ously, this defines a topology τq onX/∼. Moreover, the quotient topology τq is the finest
among all topologies on X/∼ such that q is continuous. This determines the following
important property of the quotient topology.

Lemma B.4.3. Let X be a topological space, let∼ be an equivalence relation on X, let X/∼
be equipped with the quotient topology and let q:X → X/∼ be the canonical projection.
Then a map g:X/∼ → Z is continuous if and only if the composition g ∘ q:X → Z is
continuous.

For a family {(Xi, τi): i ∈ I} of topological spaces, the coproduct is the disjoint union
X = ⨆i∈I Xi equipped with the topology having as a base the union of all topologies τi
(here and in the sequel we consider Xi as a subset of X). In other words, the coproduct
topology of⨆i∈I Xi is defined in such a way that every Xi is open in⨆i∈I Xi. So, a subset
A of⨆i∈I Xi is open in the coproduct topology if and only if every intersection A ∩ Xi is
open.

Example B.4.4. Let X be the space ℕ × [0, 1] equipped with the product topology,
whereℕ is discrete and [0, 1] has the Euclidean topology. This topology coincides also
with the topology of the coproduct ofℕ-many copies of the interval [0, 1]. Now define
(n, x) ∼ (m, y) if and only if either n = m and x = y, or x = y = 0. The quotient space
V = X/∼ is called a fan.
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B.5 Separation axioms and compactness-like properties

B.5.1 Separation axioms

Now we recall the so-called separation axioms for topological spaces.

Definition B.5.1. A topological space X is:
(i) a T0-space (or, aKolmogorov space) if for every pair of distinct points x, y ∈ X there

exists an open set U of X such that either x ∈ U ̸∋ y, or y ∈ U ̸∋ x;
(ii) a T1-space if for every pair of distinct points x, y ∈ X there exist open sets U and

V of X such that x ∈ U ̸∋ y and y ∈ V ̸∋ x (or, equivalently, every singleton of X is
closed);

(iii) a T2-space (or, a Hausdorff space) if for every pair of distinct points x, y ∈ X there
exist disjoint open sets U and V of X such that x ∈ U and y ∈ V ;

(iv) a regular space if for every x ∈ X and every U ∈ 𝒱(x) there exists V ∈ 𝒱(x) with
V ⊆ U; a T3-space if it is a regular T1-space;

(v) a completely regular space if for every x ∈ X and every U ∈ 𝒱(x) there exists a
continuous function f :X → [0, 1]with f (x) = 1 and vanishing onX \U; a T3.5-space
(or, a Tichonov space) if X is a completely regular T1-space;

(vi) a normal space if for every pair of closed disjoint subsets F and G of X there exists
a pair of open disjoint subsetsU andV of X such that F ⊆ U andG ⊆ V ; a T4-space
if X is a normal T1-space.

The following implications hold true among these properties:

T0 ⇐ T1 ⇐ T2 ⇐ T3 ⇐ T3.5 ⇐ T4

While the first four implications are more or less easy to verify, the last implication
T4 ⇒ T3.5 requires Theorem B.5.2. All these properties (beyond T4) are preserved by
taking subspaces.

Theorem B.5.2 (Urysohn lemma). Let X beanormal space. Then for every pair of closed
nonempty disjoint sets F,G of X there exists a continuous function f :X → [0, 1] such that
f (F) = {1} and f (G) = {0}.

Theorem B.5.3 (Tietze theorem). Let X be a T4-space and Y a closed set of X. For every
continuous function f :Y → ℝ, there exists a continuous extension g:X → ℝ of f .

It is easy to see that a topological space X is Hausdorff if and only if every net in X
converges to at most one point in X.

Theorem B.5.4 (Tichonov embedding theorem). Let X be a Tichonov space. Then X is
homeomorphic to a subspace of the product [0, 1]w(X).

For a cardinal γ, the space [0, 1]γ is called the Tichonov cube of weight γ, the Ti-
chonov cube of countable weight is called Hilbert cube.
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B.5.2 Compactness-like properties

For the sake of completeness, we recall here some frequently used properties of topo-
logical spaces related to compactness.

For a topological space X, a family 𝒰 = {Ui: i ∈ I} of nonempty open sets of X is
an open cover of X if X = ⋃i∈I Ui. A subfamily 𝒱 = {Ui: i ∈ J} of 𝒰 , where J ⊆ I, is a
subcover of 𝒰 if X = ⋃i∈J Ui.

Definition B.5.5. A topological space X is:
(i) compact if every open cover of X admits a finite subcover;
(ii) countably compact if every countable open cover of X admits a finite subcover;
(iii) Lindelöff if every open cover of X admits a countable subcover;
(iv) pseudocompact if every continuous function X → ℝ is bounded;
(v) locally compact if every point of X has a compact neighborhood in X;
(vi) σ-compact if X is the union of countably many compact subsets;
(vii) hemicompact if X is σ-compact and has a countable family of compact subsets

such that every compact set of X is contained in one of them;
(viii) a k-space if a subspace A of X is closed in X if and only if A ∩ K is closed in K for

all compact subsets K of X.

Example B.5.6. Clearly, ℝn with the Euclidean topology is locally compact, not com-
pact, but hemicompact.

LetBbe a subset ofℝn equippedwith the usualmetric topology. ThenB is compact
if and only if B is closed and bounded (i. e., B has finite diameter).

Obviously, ℂn has the same property, being topologically isomorphic to ℝ2n.

The following is a criterion for (countable) compactness in terms of nets and fil-
ters.

Lemma B.5.7. Let X be a topological space. Then:
(a) X is (countably) compact if and only if every (countable) family of closed sets of X

with the finite intersection property has nonempty intersection;
(b) X is compact if and only if every ultrafilter on X is convergent;
(c) X is compact if and only if every net in X has a convergent subnet.

Proof. (a) Every family ℱ of closed sets of X with the finite intersection property and
having empty intersection corresponds to an open cover of X without finite subcovers
(simply take the complement of the members of ℱ).

(b) follows from (a) and Exercise B.7.3, while (c) can be deduced from (b) and
Lemma B.2.11(b3).

Proposition B.5.8. A T1 topological space is countably compact if and only if every se-
quence in X has an accumulation point.
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Lemma B.5.9. Let X be a topological space and Y a compact subset of X. If {Fi: i ∈ I} is
a family of closed sets of X such that Y ∩⋂i∈I Fi = 0, then there exists a finite subset J of
I such that Y ∩⋂i∈J Fi = 0.

Proof. Suppose for a contradiction that FJ = Y ∩ ⋂i∈J Fi is nonempty for every finite
subset J of I. Then {FJ : J ⊆ I , J finite} gives rise to a filter base of closed sets of Y with
⋂J FJ = Y ∩⋂i∈I Fi = 0, against the compactness of Y by Lemma B.5.7(a).

Compactness-like properties “improve” separation properties in the following
sense.

Theorem B.5.10. Let X be a topological space.
(a) If X is Hausdorff and compact, then X is normal, and if ψ(X) is countable, then X is

first countable.
(b) If X is regular and Lindelöff, then X is normal.
(c) If X is Hausdorff and locally compact, then X is Tichonov.

It follows from Theorem B.5.10(a) that every subspace of a compact Hausdorff
space is necessarily a Tichonov space. According to Theorem B.5.4, every Tichonov
space X is a subspace of a compact space K, so taking the closure Y of X in K one
obtains also a compact space Y containing X as a dense subspace, namely, a compact-
ification of X.

Theorem B.5.11 (Arhangel′skij). If a compact Hausdorff space X is countable, then X is
metrizable. In particular, a countably infinite compact Hausdorff space has a nontrivial
convergent sequence.

Proof. By Theorem B.5.10(c), X is Tichonov. Since X has countable pseudocharacter,
X is first countable (being compact) by Theorem B.5.10(a). Since X countable and first
countable, it is second countable, as well. By Theorem B.5.4, X is metrizable.

By βX we denote the Čech–Stone compactification of a Tichonov space X, that is,
the compact space βX togetherwith the dense embedding i:X → βX such that for every
continuous function f :X → [0, 1] there exists a continuous function f β: βX → [0, 1]
which extends f (this is equivalent to asking that every continuous map from X to a
compact space Y be extendable to βX).

For a topological space X, the one-point compactification (or,Alexandrov compact-
ification) αX of X is obtained as αX = X ∪ {∞}, where the open sets of αX are the open
sets of X together with the sets of the form U ∪ {∞}, where U is an open set of X such
thatX\U is compact. The topological spaceαX is Hausdorff if and only ifX is Hausdorff
and locally compact.

Now we discuss several properties of the notions from Definition B.5.5.
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Lemma B.5.12. Let X,Y be topological spaces and f :X → Y a continuous surjective
map. Then Y is compact (respectively, Lindelöff, countably compact, σ-compact) when-
ever X has the same property.

Most of the above properties are preserved by taking closed subspaces:

Lemma B.5.13. If X is a closed subspace of a topological space Y, then X is compact
(respectively, Lindelöff, countably compact, σ-compact, locally compact) whenever Y
has the same property.

Now we discuss the preservation of properties under unions.

Lemma B.5.14. Let X be a topological space and assume X = ⋃i∈I Xi, where Xi are sub-
spaces of X.
(a) If I is finite and each Xi is (countably) compact, X is (countably) compact.
(b) If I is countable and each Xi is σ-compact (respectively, Lindelöff), then X has the

same property.

The next theorem shows thatmany of the properties of topological spaces are pre-
served under taking products. As far as compactness is concerned, this is known as
Tichonov theorem:

Theorem B.5.15. Let {Xi: i ∈ I} be a family of topological spaces and let X = ∏i∈I Xi be
endowed with the product topology. Then:
(a) X is compact (respectively, T0, T1, T2, T3, T3.5) if and only if every Xi has the same

property;
(b) if I is finite, the same holds for local compactness and σ-compactness.

Let usmention here that countable compactness, as well as the Lindelöff property
and T4, are not stable even under taking finite products.

We add a fewmore compactness-like properties (see the next section for their con-
nection to the above ones).

Definition B.5.16. A topological space X is:
(i) a Baire space if any countable intersection of dense open sets of X is dense in X;
(ii) of first category if there exist a family {An: n ∈ ℕ} of closed sets of X with empty

interior such that X = ⋃n∈ℕ An;
(iii) of second category if X is not of first category.

Equivalently, a topological space X is a Baire space if any countable intersection
of denseGδ-sets ofX is still a denseGδ-set ofX. For example, every countable T1-space
without isolated points is of first category (e. g.,ℚ); indeed, the singletons are closed
sets with empty interior.
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Theorem B.5.17 (Baire category theorem). Every complete metric space is a Baire
space.

In the sequel we prove that locally compact, as well as countably compact spaces,
are Baire spaces.

B.5.3 Relations among compactness-like properties

Here we show the relations among the properties introduced in the previous section
(see the diagram at the end of this subsection). Obviously, a topological space is com-
pact if and only if it is both Lindelöff and countably compact. Compact spaces are
locally compact and σ-compact.

Lemma B.5.18. If X is a σ-compact space, then X is a Lindelöff space.

Proof. Let {Ui: i ∈ I} be an open cover of X. Since X is σ-compact, X = ⋃n∈ℕ+ Kn where
each Kn is a compact subset of X. For every n ∈ ℕ+, there exists a finite subset Fn of I
such that Kn ⊆ ⋃i∈Fn Ui. Now J = ⋃n∈ℕ+ Fn is a countable subset of I, and Kn ⊆ ⋃i∈J Ui
for every n ∈ ℕ+. Therefore, X = ⋃i∈J Ui.

Lemma B.5.19. A Baire space X is of second category.

Proof. Assume that X = ⋃n∈ℕ+ An where each An is a closed set of X with empty inte-
rior. For every n ∈ ℕ+, the set Dn = X \ An is open and dense in X. Then ⋂n∈ℕ+ Dn is
dense in X, in particular nonempty, so X ̸= ⋃n∈ℕ+ An, a contradiction.

According to TheoremB.5.17, completemetric spaces are Baire. Nowwe prove that
also locally compact spaces are Baire.

Theorem B.5.20. A Hausdorff locally compact space X is a Baire space.

Proof. For every n ∈ ℕ+, let Dn be a dense open set of X. To show that ⋂n∈ℕ+ Dn is
dense in X, fix an open set V ̸= 0 of X. According to Theorem B.5.10, X is a regular
space, so there exists an open setU0 ̸= 0 of X withU0 compact andU0 ⊆ V . SinceD1 is
dense in X,U0 ∩D1 ̸= 0. Pick x1 ∈ U0 ∩D1 and letU1 be an open set of X with x1 ∈ U1,U1
compact andU1 ⊆ U0∩D1. Proceeding in thisway, for everyn ∈ ℕ+wecanfindanopen
set Un+1 ̸= 0 of X with Un+1 compact and Un+1 ⊆ Un ∩ Dn+1. Since every Un is compact,
there exists x ∈ ⋂n∈ℕ+ Un by Lemma B.5.7(a). Obviously, x ∈ V ∩⋂n∈ℕ+ Dn.
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The above proof works also for complete metric spaces, that is, in Theorem B.5.17,
but the neighborhoods Un must be chosen each time with diam(Un) ≤ 1/n. Then the
Cantor theorem (for complete metric spaces) guarantees⋂n∈ℕ+ Un ̸= 0.

Next we collect all implications between the properties we have discussed so far.

compact??

??

?? ??

??

hemicompact

??

loc. compact

??
σ-compact

??

Lindelöff + c. c.

????

c. c.

??

?? Baire

??
Lindelöff pseudocompact

Tichonov

??

2nd cat

B.5.4 The Stone–Weierstraß theorem

Throughout this book, for a nonempty topological space X we denote by:
– C(X) the ℂ-algebra of all continuous complex-valued functions on X,
– C∗(X) the ℂ-algebra of all bounded continuous complex-valued functions on X,
– C0(X) the ℂ-algebra of all continuous complex-valued functions on X with com-

pact support (i. e., functions vanishing outside of a compact subset of X).

Note that C0(X) ⊆ C∗(X). Sometimes we adopt this notation also for a nonempty set
X, assuming silently that X carries the discrete topology, so that C(X) = ℂX , C∗(X) is
the family of all bounded complex-valued functions on X, and C0(X) the family of all
complex-valued functions on X with finite support.

On C∗(X)we consider the sup-norm, defined by letting, for every f ∈ C∗(X), ‖f ‖ =
sup{|f (x)|: x ∈ X}. In particular, if X is a compact space and f ∈ C(X), then f ∈ C∗(X),
and so ‖f ‖ is well-defined.

Theorem B.5.21 (Stone–Weierstraß theorem). Let X be a compact space. A ℂ-sub-
algebra 𝒜 of C(X), containing all constants and closed under complex conjugation, is
dense in (C(X), ‖−‖) if and only if𝒜 separates the points of X.

We need the following local form of the Stone–Weierstraß theorem.

Corollary B.5.22. For a compact space X, f ∈ C(X) can be uniformly approximated by a
ℂ-subalgebra𝒜 of C(X) containing all constants and closed under complex conjugation
if and only if𝒜 separates the points of X separated by f ∈ C(X).

Proof. The necessity of the condition is obvious, so we only check the sufficiency.
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Denote by G:X → ℂ𝒜 the diagonal map of the maps in 𝒜. Then Y = G(X) is a
compact subspace of ℂ𝒜 and, by the compactness of X, its subspace topology coin-
cides with the quotient topology of the map G:X → Y . The equivalence relation ∼ in
X determined by this quotient is as follows: x ∼ y for x, y ∈ X if and only if G(x) = G(y)
(if and only if g(x) = g(y) for every g ∈ 𝒜).

Clearly, every continuous function h:X → ℂ such that h(x) = h(y) for every pair
x, y ∈ X with x ∼ y can be factorized as h = h∗ ∘ G, where h∗ ∈ C(Y). In particular, this
holds true for all g ∈ 𝒜 and for f (for the latter case this follows from our hypothesis).

Let𝒜∗ be the ℂ-subalgebra {h∗: h ∈ 𝒜} of C(Y). Then𝒜∗ is closed under complex
conjugation and contains all constants;moreover, it separates the points of Y : if y ̸= y′

in Y with y = G(x), y′ = G(x′), x, x′ ∈ X, then x ̸∼ x′; so, there exists h ∈ 𝒜 with
h∗(y) = h(x) ̸= h(x′) = h∗(y′). Nowwe can apply Theorem B.5.21 to Y and𝒜∗ to deduce
that we can uniformly approximate f ∗ by functions of 𝒜∗. This produces a uniform
approximation of f by functions of𝒜.

B.6 Connected and hereditarily disconnected spaces

Connected setswere introducedbyLennes in 1911 andbyHausdorff inhis bookZusam-
menhängende Mengen in 1914.

Definition B.6.1. A topological space X is connected if every proper clopen set of X is
empty.

Remark B.6.2. It is easy to see that a topological space X is connected if and only
if every continuous function X → {0, 1}, where {0, 1} is equipped with the discrete
topology, is constant.

Example B.6.3. The space ℝ is connected. Moreover, a subset X of ℝ is connected if
and only if it is an interval. The same occurs in 𝕋.

Lemma B.6.4. (a) A continuous image of a connected space is connected.
(b) The closure of a connected set is connected.

Proof. (a) follows easily from the definition.
(b) Let D be a dense connected subset of a topological space X. If f :X → {0, 1} is

continuous, then f is constant on D, and consequently also on X by Theorem B.3.4.
So, X is connected by Remark B.6.2.

Lemma B.6.5. Let X = ⋃i∈I Xi be a topological space, where each Xi is a subspace of X.
If⋂i∈I Xi ̸= 0 and each Xi is connected, then X is connected.

Proof. Let f :X → {0, 1} be a continuous function. By Remark B.6.2, for every i ∈ I,
f ↾Xi is constant. Since there exists a common point to all Xi, this constant is common
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for all the subsets Xi. Consequently, f is constant as well, hence X is connected by
Remark B.6.2.

The same argument proves that if {Ci: i ∈ I} is a family of connected subspaces of
a topological space X having a common point, then the set⋃i∈I Ci is connected.

Lemma B.6.5 and the above comment imply that, for a topological space X, for
every x ∈ X there is a largest connected subsetCx ofX with x ∈ Cx, called the connected
component of x inX. In viewof LemmaB.6.4, eachCx is a closed set ofX, and {Cx : x ∈ X}
is a partition of X.

Definition B.6.6. A topological space X is:
(i) hereditarily disconnected if every connected component of X is a singleton;
(ii) zero-dimensional if X has a base of clopen sets; we denote this by dimX = 0.

Example B.6.7. Inℝ, clearly,ℤ is zero-dimensional since it is discrete. Moreover,ℚ is
zero-dimensional since {(a, b)∩ℚ: a, b ∈ ℝ \ℚ} is a base of clopen sets of the topology
induced onℚ by ℝ.

Zero-dimensional T0-spaces are T3.5 and hereditarily disconnected (as every
point is an intersection of clopen sets). Hereditary disconnectedness and zero-di-
mensionality are preserved under taking subspaces and products:

Theorem B.6.8. Let {Xi: i ∈ I} be a family of topological space and let X = ∏i∈I Xi be
endowed with the product topology. Then X is hereditarily disconnected (respectively,
connected, zero-dimensional) if and only if every Xi is hereditarily disconnected (respec-
tively, connected, zero-dimensional) for every i ∈ I.

In a topological space X, for a point x ∈ X, the quasicomponent Qx of x is the
intersection of all clopen sets of X containing x, namely,

Qx =⋂{O ⊆ X: x ∈ O, O clopen}.

Since, for every x ∈ X, x ∈ Cx ⊆ O whenever O ⊆ X is clopen, Cx ⊆ Qx.

Definition B.6.9. A topological space X is totally disconnected if all quasicomponents
are trivial.

In particular, for T0 topological spaces, the following implications hold:

zero-dimensional ⇒ totally disconnected ⇒ hereditarily disconnected.

These implications become equivalences for locally compact spaces:

Theorem B.6.10 (Vedenissov theorem). Every hereditarily disconnected locally com-
pact space is zero-dimensional.

Actually, one can say something more precise for compact spaces:
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Lemma B.6.11 (Shura–Bura lemma). In a compact space, the quasicomponents and the
connected components coincide.

B.7 Exercises

Exercise B.7.1. Let X,Y be nonempty sets and f :X → Y a map. Prove that:
(a) if ℱ is a filter on X, then f (ℱ) = {f (F): F ∈ ℱ} is a filter base on Y ;
(b) if ℱ is a filter on Y and f is surjective (or, more generally, ℱ ∪ {f (X)} has the finite

intersection property), then f −1(ℱ) = {f −1(F): F ∈ ℱ} is a filter base on X.

Exercise B.7.2. Let X be a nonempty set. Prove that every filterℱ on X is contained in
some ultrafilter.
Hint. Apply the Zorn lemma to the ordered by inclusion set of all filters of X containingℱ .

Exercise B.7.3. Prove that if x is an adherent point of an ultrafilter 𝒰 of a topological
space X, then x is also a limit point of 𝒰 .

Exercise B.7.4. Let X,Y be topological spaces, M a subset of X, and f :X → Y a con-
tinuous map. Prove that:
(a) f ↾M :M → Y is continuous;
(b) if f :X → Y is a homeomorphism, then also M and f (M) are homeomorphic (so,

being homeomorphic is preserved by taking restrictions to subspaces);
(c) if f :X → Y is injective and open (respectively, closed, an embedding), then also

f ↾M :M → f (M) is open (respectively, closed, an embedding) (in other words,
also the properties “open”, “closed”, and “embedding” of an injective map are
preserved by restrictions);

(d) the composition of continuous maps is a continuous map;
(e) provide an example of topological spaces X,Y , an openmap f :X → Y andM ⊆ X,

such that f ↾M :M → f (M) is not open.

Exercise B.7.5. Prove that | − |, d(−), w(−), χ(−), ψ(−) are cardinal invariants of topo-
logical spaces.

Exercise B.7.6. Let X be a set, {(Yi, τi): i ∈ I} a family of topological spaces, and for
every i ∈ I, let fi:X → Yi be amap. The topology τ onX having as a prebase {f −1i (U):U ⊆
Yi open, i ∈ I} is called initial topology of the family {fi: i ∈ I}. Prove that:
(a) every map fi: (X, τ)→ (Yi, τi) is continuous;
(b) τ is the coarsest topology on X with the property in (a);
(c) the product topology of X = ∏i∈I (Xi, τi) coincides with the initial topology of the

family {pi: i ∈ I} of all projections pi:X → Xi for i ∈ I;
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(d) if I = {0} and f0:X → Y0 is an injective map, then the topology on X induced
by the subspace topology of f0(X) in Y0 coincides with the initial topology of the
family {f0}.

Exercise B.7.7. Let X be a set, let {(Yi, τi): i ∈ I} be a family of topological spaces and,
for every i ∈ I, let fi:Yi → X be a map. The topology τ on X having as open sets all the
sets U ⊆ X such that f −1i (U) is open in Yi for every i ∈ I, is called final topology of the
family {fi: i ∈ I}. Prove that:
(a) every map fi: (Yi, τi)→ (X, τ) is continuous;
(b) τ is the finest topology on X with the property in (a);
(c) the coproduct topology of X = ⨆i∈I (Xi, τi) coincides with the final topology of the

family {ιi: i ∈ I} of all inclusions ιi:Xi → X for i ∈ I;
(d) if I = {0} and f0:Y0 → X is a surjective map, then the quotient topology on X

induced by f0 coincides with the final topology of the family {f0}.

Exercise B.7.8. Prove that the only convergent sequenceswith limit point the common
point 0 of the fan V (see Example B.4.4) are those that are eventually contained in the
sets q({0, . . . , n}× [0, 1]), where q:X = ℕ× [0, 1]→ V = X/∼ is the canonical projection.

Exercise B.7.9. For a topological space X and x ∈ X, let Vx = ⋂𝒱(x). Prove that:
(a) X is T0 if and only if Vx ∩ {x} = {x} for every x ∈ X; conclude that X is indiscrete if

and only if Vx = {x} for every x ∈ X;
(b) if X is an Alexandrov T0-space and x, y ∈ X, y ∈ {x} if and only if x ∈ Vy;
(c) for a T0-space (X, τ) and x, y ∈ X, putting x ⪯τ y whenever y ∈ {x}, ⪯τ is a partial

order onX; this is called specialization order (someauthors prefer to use this name
for the dual order).

Exercise B.7.10. For a partially ordered set (X,≤), let τAT be the topology having as a
base the family of all downward closed sets B of X (i. e., if b ∈ B and a ≤ b, then a ∈ B
as well). Show that τAT is a topology on X which is Alexandrov and T0; the topology
τAT is usually named Alexandroff–Tucker topology.

Moreover, the specialization order of the topological space (X, τAT ) coincides with
≤, and τAT is the finest topology on (X,≤) with this property.

Exercise B.7.11. Let X be a topological space. Show that for every subset Y of X the set
Int(Y) is a regular open set and deduce from this that every regular space has a base
(and local bases at each point) consisting of regular open sets.

Exercise B.7.12. Let X,Y be topological spaces such that Y is Hausdorff. Prove that if
f , g:X → Y are continuous maps, then {x ∈ X: f (x) = g(x)} is closed in X.
Hint. Let N = {x ∈ X: f (x) ̸= g(x)}. Let z ∈ N and let U ,V be disjoint open sets of Y with f (z) ∈ U and
g(z) ∈ V . Then f −1(U) ∩ g−1(V) is an open neighborhood of z contained in N . Thus, N is a union of
open sets, so open.
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Exercise B.7.13. Show that a locally compact σ-compact space X is hemicompact.
Hint. Use the definitions. If X is Hausdorff, then X is Tichonov by Theorem B.5.10(c), so one can con-
sider the one-point compactification of X.
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C Background on categories and functors

C.1 Categories

Definition C.1.1. A category 𝒳 consists of:
(i) a class𝒪b(𝒳 ) whose members X are called objects of the category;
(ii) a class Hom(𝒳 ) ofmorphisms f , so that each f has a domain X1 and codomain X2

belonging to 𝒪b(𝒳 ), and the morphisms with domain X1 and codomain X2 form
a set Hom𝒳 (X1,X2) for every ordered pair (X1,X2) of objects of 𝒳 ; a morphism f ∈
Hom𝒳 (X1,X2) is usually written as f :X1 → X2 (or shortly as f );

(iii) an associative composition law ∘:Hom𝒳 (X2,X3)×Hom𝒳 (X1,X2)→ Hom𝒳 (X1,X3),
for every ordered triple (X1,X2,X3) of objects of 𝒳 , that associates to every pair of
morphisms (f , g) ∈ Hom𝒳 (X2,X3)×Hom𝒳 (X1,X2), amorphism f ∘g ∈ Hom𝒳 (X1,X3)
called composition of f and g.

The following conditions must be satisfied:
(1) the sets Hom𝒳 (X,X′) and Hom𝒳 (Y ,Y ′) are disjoint if the pairs of objects (X,X′)

and (Y ,Y ′) of 𝒳 do not coincide;
(2) for every objectX of𝒳 there exists amorphism idX ∈ Hom𝒳 (X,X) such that idX∘f =

f and g ∘ idX = g for every f ∈ Hom𝒳 (X′,X) and g ∈ Hom𝒳 (X,X′).

Example C.1.2. The following categories are frequently used in this book:
(a) Set – sets and maps;
(b) VectK – vector spaces over a field K and linear transformations;
(c) Grp – groups and group homomorphisms;
(d) AbGrp – abelian groups and group homomorphisms;
(e) Rng – rings and ring homomorphisms;
(f) Rng1 – unitary rings and homomorphisms of unitary rings;
(g) Top – topological spaces and continuous maps.

Definition C.1.3. A morphism f :X → Y in a category 𝒳 is:
(i) an isomorphism if there exists a morphism g:Y → X in𝒳 such that g ∘ f = idX and

f ∘ g = idY ;
(ii) an epimorphism (or, right cancellable) if for every pair of morphisms g, h:Y → Z

in 𝒳 with g ∘ f = h ∘ f one has g = h;
(iii) amonomorphism (or, left cancellable) if for every pair of morphisms g, h: Z → X in

𝒳 with f ∘ g = f ∘ h one has g = h;
(iv) a bimorphism if it is simultaneously an epimorphism and a monomorphism.

IfM,X are objects of a category 𝒳 and m:M → X is a monomorphism, one often
refers toM (and the monomorphismm) as a subobject of X.

https://doi.org/10.1515/9783110654936-019
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Nevertheless, in some cases, as typically in Top, a smaller class of monomor-
phisms is more adapted to be treated as subobject:

Example C.1.4. In Set, VectK , Grp, AbGrp, and Top, the epimorphisms are precisely
the surjective morphisms, while the monomorphisms are precisely the injective mor-
phisms. Usually, as subobjects in Top one takes only those monomorphisms that are
topological embeddings.

We give below further examples to show that an epimorphism need not be surjec-
tive and that a monomorphism need not be injective (whenever “surjective” or “injec-
tive” still may make sense).

For a nonempty family of objectsℱ = {Xi: i ∈ I} in a category𝒳 , an object X of𝒳 is
aproduct of this family of objects if there exists a family ofmorphisms {pi:X → Xi: i ∈ I}
(often referred to as projections) such that for every family ofmorphisms {fi:Y → Xi: i ∈
I} in 𝒳 there exists a unique morphism f :Y → X in 𝒳 such that fi = pi ∘ f for every
i ∈ I. The product X is often denoted by∏i∈I Xi.

Y
f ??

fi ??

X = ∏i∈I Xi
pi
??
Xi

Dually, the coproduct of the family ℱ is the object X of 𝒳 provided with a family of
morphisms {νi:Xi → X: i ∈ I} such that for every family of morphisms {fi:Xi → Y : i ∈ I}
in 𝒳 there exists a unique morphism f :X → Y such that fi = f ∘ νi for every i ∈ I. The
coproduct X is usually denoted by∐i∈I Xi.

X = ∐i∈I Xi
f ?? Y

Xi

νi

??

fi

??

Both products and coproducts are uniquely determined up to isomorphism.
When the family ℱ is empty, its product T has the simple property that

|Hom(X,T)| = 1 for every object X in 𝒳 . The uniquely determined object T with
this property is called a terminal object. Dually, the coproduct I of the empty family
has the dual property |Hom(I ,X)| = 1 for every object X in𝒳 . The uniquely determined
object I with this property is called an initial object.

Clearly, products and coproducts (in particular, terminal and initial objects) need
not exist in general.

Example C.1.5. (a) In Set the product is the Cartesian product equipped with its
canonical projections. In VectK , Grp, and AbGrp, the product is the direct prod-
uct, while in Top the product is the topological product. In all these cases the
canonical projections accompany the product.
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(b) In Set the coproduct of a nonempty family of sets {Xi: i ∈ I} is the disjoint union
⨆i∈I Xi, in Top it is the coproduct ∐i∈I Xi with the coproduct topology. In both
cases the morphisms νi:Xi → ∐i∈I Xi are the canonical inclusions.

(c) The coproduct of a family of objects {Xi: i ∈ I} in VectK and AbGrp is simply the
direct sum⨁i∈I Xi equipped with the canonical inclusions νi:Xi →⨁i∈I Xi.

We say that a category 𝒴 is a subcategory of a category 𝒳 if 𝒪b(𝒴) ⊆ 𝒪b(𝒳 ) and
Hom𝒴 (Y ,Y ′) ⊆ Hom𝒳 (Y ,Y ′) for any pair Y ,Y ′ ∈ 𝒪b(𝒴). Moreover, the subcategory 𝒴
of 𝒳 is said to be a full subcategory of 𝒳 if Hom𝒴 (Y ,Y ′) = Hom𝒳 (Y ,Y ′) for any pair
Y ,Y ′ ∈ 𝒪b(𝒴).

Compare the following example with Remark C.2.18.

Example C.1.6. (a) AbGrp is a full subcategory of Grp.
(b) The class 𝒯t (respectively, ℱt) of all torsion (respectively, torsion-free) abelian

groups and group homomorphisms is a full subcategory of AbGrp.
(c) Similarly, the class 𝒯div (respectively, ℱdiv) of all divisible (respectively, reduced)

abelian groups and group homomorphisms is a full subcategory of AbGrp.
(d) For every m ∈ ℕ+, the class AbGrpm of all abelian groups G with the property

G = G[m] and group homomorphisms is a full subcategory of 𝒯t.
Some of these subcategories (as AbGrp, ℱt, ℱdiv, and AbGrpm) are stable under

taking direct products and subgroups, while others (asAbGrp, 𝒯t, 𝒯div, andAbGrpm)
are stable under taking direct sums and quotients.

There is a series of full subcategories of Top determined by separation axioms,
themost prominent among them is Top2, having as objects all Hausdorff spaces. Sim-
ilarly, one defines Topi for i ∈ {0, 1, 3, 3.5, 4}. All Topi, for i ̸= 4, are stable under taking
direct products and subspaces. We see below that this stability property determines a
relevant global property of the subcategory in question.

Example C.1.7. Here come examples where the epimorphisms and monomorphisms
are not precisely what one may expect.
(a) In ℱt the epimorphisms are precisely the group homomorphisms f :G → H such

that f (G) is an essential subgroup ofH (e. g., the nonsurjective inclusionmapℤ→
ℚ is an epimorphism in ℱt).

(b) In the category 𝒯div the noninjective quotient homomorphism ℚ → ℚ/ℤ is a
monomorphism.

(c) For i ∈ {2, 3, 3.5}, in the full subcategory Topi of Top the nonsurjective embedding
ℚ→ ℝ is an epimorphism. More generally, a continuous map f :X → Y in Topi is
an epimorphism if and only if f (X) is dense in Y .

Definition C.1.8. A full subcategoryVofGrp is called a variety (of groups) ifV is stable
under taking subgroups, direct products, and quotients. In such a case,V ∩AbGrp is
called a variety of abelian groups.
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In particular, AbGrp is a variety of groups.
The notion of a variety can be introduced also by using identities in a group:

Remark C.1.9. Let F be the free group with countably many free generators, namely,
{xn: n ∈ ℕ}, and denote by 1 its neutral element. An element w = xϵ1i1 ⋅ ⋅ ⋅ x

ϵn
in
∈ F \ {1},

with ϵk ∈ {1,−1} for k ∈ {1, . . . , n} and ϵk ̸= −ϵk+1 whenever xk = xk+1 for k ∈ {1, . . . , n−1},
is usually referred to as a word (in the alphabet {xn: n ∈ ℕ+}).

We say that the identity w = 1 holds in a group G if for every homomorphism
f : F → G one has f (w) = eG. For example, the identity [x1, x2] = 1 holds in every
abelian group G.

It is easy to see that, for every identity w = 1, the class Vw of groups G where it
holds forms a variety. More generally, ifW is a set of words in F, then the classVW of
groups G, where the identityw = 1 holds for everyw ∈ W , is a variety which obviously
coincides with⋂w∈W Vw.

According to a theorem of Birkhoff, every variety of groupsV can be obtained in
this way, i. e., there exists a set of wordsW in F such thatV = VW .

C.2 Functors

Definition C.2.1. Consider two categories 𝒳 and 𝒴. A covariant (respectively, con-
travariant) functor F:𝒳 → 𝒴 assigns to each object X of 𝒳 an object FX of 𝒴 and to
each morphism f :X → X′ in 𝒳 a morphism Ff : FX → FX′ (respectively, Ff : FX′ → FX)
such that

FidX = idFX and F(g ∘ f ) = Fg ∘ Ff (respectively, F(g ∘ f ) = Ff ∘ Fg)

for every pair of morphisms f :X → X′ and g:X′ → X′′ in 𝒳 . A functor F:𝒳 → 𝒴 with
𝒳 = 𝒴 is named endofunctor (of 𝒳 ).

For a category 𝒳 , denote by 1𝒳 the functor 1𝒳 :𝒳 → 𝒳 such that

1𝒳 (X) = X for every X ∈ 𝒪b(𝒳 ) and 1𝒳 (f ) = f for every f ∈ Hom(𝒳 ).

If F:𝒳 → 𝒴 and G:𝒴 → 𝒵 are functors, let G ⋅ F:𝒳 → 𝒵 be the functor defined by
letting (G ⋅ F)X = G(FX) for every object X in 𝒳 and (G ⋅ F)f = G(Ff ) for every morphism
f in 𝒳 . It is easy to see that the functor G ⋅ F is covariant whenever both functors are
simultaneously covariant or contravariant, otherwise the functorG ⋅F is contravariant.

A functor F:𝒳 → 𝒴 defines a map Hom𝒳 (X,X′) → Hom𝒴 (FX, FX′) for every pair
(X,X′) of objects of𝒳 . We say that F is faithful (respectively, full) if for every pair (X,X′)
of objects of 𝒳 the above map is injective (respectively, surjective).

If 𝒴 is a subcategory of a category 𝒳 , then the inclusion I:𝒴 → 𝒳 is a covariant
functor. It is full precisely when the subcategory is full.
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Definition C.2.2. A category𝒳 is concrete if it admits a faithful functor U:𝒳 → Set. In
such a case the functor U is called forgetful.

All examples above are concrete categories.

Example C.2.3. (a) For every abeliangroupG, the groupG/t(G) is torsion-free (seeEx-
ercise A.7.1), and for every morphism f :G → H in AbGrp, one has an induced ho-
momorphism ̄f :G/t(G)→ H/t(H) between torsion-free abelian groups. Therefore,
the assignments G → G/t(G) and f → ̄f define a covariant functor AbGrp→ ℱt.
Similarly, the assignment G → t(G) defines a covariant functor AbGrp → 𝒯t, by
assigning to everymorphism f :G → H inAbGrp its restriction f ↾t(G): t(G)→ t(H).

(b) For every abelian groupG, the group G/div(G) is reduced (see TheoremA.4.3) and
the assignment G → G/div(G) defines, as in (a), a covariant functor AbGrp →
ℱdiv.
On the other hand, as in (a), the assignmentG → div(G) induces a covariant func-
tor AbGrp→ 𝒯div.

(c) For every abelian group G, the quotient G/G1 is residually finite (see Exercise
A.7.11), and for every morphism f :G → H in AbGrp one has an induced homo-
morphism ̄f :G/G1 → H/H1 between residually finite abelian groups. Hence, the
assignment G → G/G1 induces a covariant functor from AbGrp to its full subcat-
egory ResFinGrp of residually finite abelian groups.

The next important notions connect two “parallel” functors.

Definition C.2.4. Let𝒳 ,𝒴 be categories and F, F′:𝒳 → 𝒴 be covariant functors. Anatu-
ral transformation γ from F to F′ assigns to each object X of𝒳 amorphism γX : FX → F′X
such that for every morphism f :X → X1 in 𝒳 the following diagram is commutative:

FX
Ff
→ FX1

γX
↑↑↑↑↓

↑↑↑↑↓
γX1

F′X →
F′f

F′X1

A natural equivalence is a natural transformation γ such that each γX is an isomor-
phism.

These notions allow us to define equivalence (respectively, duality) of categories
as follows. This is a pair of covariant (respectively, contravariant) functors F:𝒳 → 𝒴
and G:𝒴 → 𝒳 such that there exists a pair of natural equivalences η: 1𝒳 → G ⋅ F and
ε: F ⋅G→ 1𝒴 . In case 𝒳 = 𝒴 and the contravariant functors F = G coincide, we say that
F is an involutive duality.
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C.2.1 Reflectors and coreflectors

Beyond the inclusion functor I:𝒴 → 𝒳 , where 𝒴 is a subcategory of the category 𝒳 ,
other frequently used functors are the reflectors and the coreflectors defined below.
For the sake of simplicity, in the sequel we do not use I, so we write Y (respectively, f )
in place of IY (respectively, If ) for an object Y (respectively, morphism f ) of 𝒴.

Definition C.2.5. For a subcategory 𝒴 of a category 𝒳 , we say that:
(a) a functor R:𝒳 → 𝒴 is a reflector if there exists a natural transformation γ: 1𝒳 → R

such that R coincides with 1𝒴 on 𝒴 (i. e., RY = Y for every object Y of 𝒴 and Rf = f
for every morphism f of 𝒴);

(b) a functor C:𝒳 → 𝒴 is a coreflector if there exists a natural transformation η:C →
1𝒳 such that C coincides with 1𝒴 on 𝒴.

In particular we have the following commutative diagrams, where f :X → Y is a
morphism in 𝒳 with codomain Y an object of 𝒴, and g:Y → X is a morphism in 𝒳
with domain Y in 𝒴:

X
γX ??

f ??

RX ∈ 𝒴

Rf??

𝒴 ∋ CX
ηX ?? X

RY = Y ∈ 𝒴 CY = Y
Cg

??

g

??

Very often, the reflectors are actually epireflectors (i. e., all γY are epimorphisms),
while the coreflectors are most often monocoreflectors (i. e., all ηX are monomor-
phisms).

A full subcategory 𝒴 of a category 𝒳 is called (epi)reflective if there is an (epi)re-
flector R:𝒳 → 𝒴. This means that for each object X of 𝒳 there exist an object RX of 𝒴
and a morphism γX :X → RX in 𝒳 such that for each morphism f :X → Y in 𝒳 to an
object Y of 𝒴 there exists a unique morphism Rf :RX → Y in 𝒴 with Rf ∘ γX = f . The
morphism γX (and sometimes, only RX) is referred to as being the 𝒴-reflection of X.

Remark C.2.6. The 𝒴-reflection γX :X → RX is unique (up to isomorphism) with the
above property, in the following sense. If for every X ∈ 𝒳 a morphism hX :X → KX in
𝒳 with KX ∈ 𝒴 is assigned such that for every morphism f :X → C where C ∈ 𝒴, there
exists a uniquemorphism f ′:KX → Cwith f ′ ∘hX = f , then there exists an isomorphism
s:RX → KX such that s ∘ γX = hX (see Exercise C.3.16).

Similarly is defined a (mono)coreflective subcategory. In many cases some natu-
ral stability properties of a subcategory turn out to be equivalent to epireflectivity or
monocoreflectivity (see Exercises C.3.18 and C.3.19).

Example C.2.7. (a) The covariant functor AbGrp → ℱt defined by the assignment
G → G/t(G) in Example C.2.3(a) is an epireflector with natural transformation
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γ defined by letting γG:G → G/t(G) be the canonical projection. The covariant
functor AbGrp→ 𝒯t defined there by G → t(G) is a monocoreflector, with natural
transformation η defined by letting each ηG: t(G)→ G be the inclusion of t(G) inG.

(b) The covariant functor AbGrp → ℱdiv defined by the assignment G → G/div(G)
in Example C.2.3(b) is an epireflector with natural transformation γ defined by
letting each γG:G → G/div(G) be the canonical projection; on the other hand,
the covariant functor AbGrp → 𝒯div defined by the assignment G → div(G) is a
monocoreflectorwith natural transformation defined by letting each ηG:div(G)→
G be the inclusion of div(G) in G.

(c) The covariant functor AbGrp → ResFinGrp defined in Example C.2.3(c) by the
assignment G → G/G1 is an epireflector with natural transformation γ defined by
letting each γG:G → G/G1 be the canonical projection.
Unlike items (a) and (b), in (c) we did not mention anything about the assign-

ment G → G1. Indeed, it need not be a coreflector, as the subgroup G1 need not satisfy
(G1)1 = G1. Actually, an abelian group G satisfies G = G1 if and only if G = div(G), that
is, G is divisible. We further discuss this issue in §C.2.2.

A very natural and useful epireflection in Top is obtained as follows:

Example C.2.8. For a topological space X, set x ∼ y for x, y ∈ X when x ∈ {y} and
y ∈ {x}. This binary relation is an equivalence relation on X. The quotient T0X = X/∼
is a T0-space. Moreover, for every continuous map f :X → Z, where Z is a T0-space,
there exists a unique continuous map f ′: T0X → Z with f = f ′ ∘ γX , where γX :X → T0X
is the canonical projection. Therefore, the assignments X → T0X and f → T0f , where
T0f = (γX ∘ f )′, define an epireflector T0:Top→ Top0 with natural transformation γ.

The (co)reflectors in all cases above were built explicitly. Now we give a simple
construction of (epi)reflectors in Top that is not explicit. The same construction can
be carried out also inGrp andAbGrp for a subcategory stable under taking subgroups
and direct products.

Theorem C.2.9. LetA be a subcategory ofTop stable under taking subspaces and prod-
ucts. Then there exists an epireflector R:Top→ A.

Proof. We show that every topological space X admits a continuous surjective map
rX :X → RX, where RX ∈ A and for every continuous map f :X → Z with Z ∈ A, there
exists a unique continuous map f ′:RX → Z with f = f ′ ∘ rX ; in other words, f ′ = Rf .

Fix a set {fi:X → Ai: i ∈ I} of representatives of all continuous surjective maps
X → Awith A ∈ A (i. e., for every continuous surjective map f :X → Awith A ∈ A there
exist i ∈ I and a homeomorphism ξ :Ai → A such that f = ξ ∘ fi). Let g:X → ∏i∈I Ai be
the diagonal map of the family {fi: i ∈ I}, and let RX be the image g(X) equipped with
the topology induced by the product. Then rX :X → RX has the desired proprieties.
Indeed, if f :X → Z is a continuous surjective map and Z ∈ A, then there exists i ∈ I
such that f coincides with fi up to homeomorphism, so Z = Ai up to homeomorphism.
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Hence, we can take as f ′:RX → Z = Ai the restriction of the projection pi:∏i∈I Ai → Ai
to RX. In case f :X → Z is not surjective, apply the above argument to the surjective
map f :X → f (X).

In particular, for A = Topi with i ∈ {0, 1, 2, 3, 3.5} one obtains an epireflection
Ti:Top→ Topi relative to the subcategory Topi of Top. For a topological space X, we
call Ti-reflection of X the space TiX; the T2-reflection (respectively, T3.5-reflection) of X
is called also Hausdorff reflection (respectively, Tichonov reflection) of X.

We omit the proof of the next theorem which is similar to that of Theorem C.2.9.

Theorem C.2.10. Let A be a subcategory of Top stable under taking closed subspaces
and products. Then every topological space admits a continuous map with dense image
γX :X → RX, where RX ∈ A and for every continuous map f :X → Z, with Z ∈ A, there
exists a unique continuous map f ′:RX → Z with f = f ′ ∘ γX . In other words, R:Top→ A
is a reflector.

Remark C.2.11. In case A is the class of compact Hausdorff spaces, the theorem gives
the Čech–Stone compactification RX = βY of the Tichonov reflection Y = T3.5X of the
topological space X. In this case R is a reflector, but not an epireflector, since themaps
γX :X → RX need not be surjective.

C.2.2 Reflectors and coreflectors vs (pre)radicals in AbGrp

Definition C.2.12. A preradical r inAbGrp is an assignment of a subgroup rG to every
abelian group G, in such a way that if f :G → H is a homomorphism in AbGrp, then
f (rG) ⊆ rH. Call a preradical r:
(i) idempotent if r(rG) = rG for every abelian group G;
(ii) radical if r(G/rG) = {0} for every abelian group G;
(iii) hereditary if r(H) = H ∩ rG for every abelian group G and H ≤ G.

Example C.2.13. The property (A.10) in the proof of Proposition A.4.6 shows that let-
ting rG = G1 for every abelian group G defines a preradical, which is not idempotent
(see Example C.2.7(c)).

Similarly, one checks that the subgroups of an abelian group G listed below give
rise to preradicals with specific properties:
(a) t(G) induces a hereditary radical;
(b) div(G) induces an idempotent radical that is not hereditary;
(c) Soc(G), as well as G[p] for p a prime, induces an hereditary preradical that is not

a radical;
(d) mG, for everym ∈ ℕ+, induces a nonidempotent radical.
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Definition C.2.14. For a preradical r in AbGrp, call an abelian group G r-torsion-free
(respectively, r-torsion) if rG = 0 (respectively, if G = rG). Denote by ℱr (respectively,
𝒯r) the full subcategory of AbGrp with objects the r-torsion-free abelian groups (re-
spectively, the r-torsion abelian groups).

Exactly as in the proof of Proposition A.4.6, one can show that for every direct
product H = ∏i∈I Hi of a family {Hi: i ∈ I} of abelian groups,

rH = r(∏
i∈I

Hi) ⊆∏
i∈I

rHi, (C.1)

by applying the definition of preradical to the canonical projections of the product.

Remark C.2.15. For a preradical r in AbGrp, clearly ℱr is stable under taking sub-
groups. From (C.1) one can deduce that ℱr is stable also under taking products. On
the other hand, one can see that 𝒯r is stable under taking direct sums and quotients
(but need not be stable also under taking subgroups or products).

Remark C.2.16. (a) If r is a preradical in AbGrp, the assignment G → rG induces a
covariant functor by letting also, for a morphism f :G → H in AbGrp,

rf = f ↾rG: rG → rH .

This functor has a special property, namely, there is a natural transformation
γ: r → 1AbGrp such that γG: rG → G is a subgroup embedding for every abelian
groupG. Nevertheless, r is not a coreflection in general; indeed, it is a coreflection
if and only if r is idempotent.
Vice versa, if C:AbGrp → 𝒴 ⊆ AbGrp is a monocoreflector, then putting rG = CG
for every abelian group G (i. e., assuming that CG is simply a subgroup of G) one
obtains an idempotent preradical r and 𝒴 = 𝒯r.

(b) Similarly, a preradical r in AbGrp gives rise to another covariant functor defined
by the assignment G → G/rG for every abelian group G; in fact, every morphism
f :G → H in AbGrp gives rise to a morphism ̄f :G/rG → H/rH in AbGrp. Since
r(G/rG) = 0 for all abelian groups G precisely when r is a radical, we deduce that
the functor G → G/rG is a reflector precisely when r is a radical.
On the other hand, if R:AbGrp→ 𝒴 ⊆ AbGrp is an epireflectorwith natural trans-
formation γ, then putting rG = ker γG for every abelian group G, where γG:G →
RG, one gets a radical of AbGrp, such that G/rG = RG ∈ 𝒴, i. e., 𝒴 = ℱr.

We resume our observations from Remark C.2.16 in the following:

Theorem C.2.17. Every epireflective subcategory of AbGrp has the form ℱr for some
radical r, while every monocoreflective subcategory of AbGrp has the form 𝒯r for some
idempotent preradical r.
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Consequently, the epireflective subcategories of AbGrp are stable under taking di-
rect products and subgroups, while the monocoreflective subcategories of AbGrp are
stable under taking direct sums and quotients.

We conclude by noting that if r is an idempotent radical in AbGrp, then the pair
of subcategories (𝒯r,ℱr) has the following properties:
(a) 𝒯r ∩ ℱr = {{0}};
(b) every morphism 𝒯r ∋ T → F ∈ ℱr is zero;
(c) every abelian group G has a subgroup T ∈ 𝒯r such that G/T ∈ ℱr;
(d) the class 𝒯r is stable under taking extensions, direct sums, and quotients;
(e) the class ℱr is stable under taking extensions, direct products, and subgroups.

Remark C.2.18. A pair (𝒯 ,ℱ) of full subcategories of AbGrp with the properties
(a)–(e) above is called a torsion theory. Leading examples to this effect are the pairs
(𝒯t,ℱt) and (𝒯div,ℱdiv), namely, the radicals t = t(−) and div = div(−).

Every torsion theory (𝒯 ,ℱ) has this form for an appropriate idempotent radical r,
that is, 𝒯 = 𝒯r and ℱ = ℱr. (Just note that the subgroup T of a group G, as of item (c),
is uniquely determined, and put rG = T. The remaining properties imply that r is an
idempotent radical with 𝒯r = 𝒯 and ℱr = ℱ .)

C.2.3 Contravariant Hom-functors

The functors in the previous subsection were all covariant. Here we give a series of
examples of contravariant functors.

Example C.2.19. The simplest example is the contravariant functor P: Set → Set,
which takes each set X to its power set 𝒫(X) and each function f :X → Y to its inverse
image map P(f ): P(Y)→ P(X), B → f −1(B).

In this example one can obtain 𝒫(X) as a “function space”, identifying the ele-
ments of 𝒫(X) with functions X → D = {0, 1}. More precisely, 𝒫(X) ∋ A → χA ∈ DX ,
where χA is the characteristic function of A ⊆ X. Moreover, under this identification,
for a map f :X → Y and B ∈ P(Y), P(f )(χB) = χf −1(B) = χB ∘ f .

In the language of category theory, DX is Hom(X,D) in Set. Hence, in the above
example we obtain P(X) as the Hom-set Hom(X,D). This is the leading idea behind
the following fundamental notion.

Definition C.2.20. A representable functor F:𝒳 → Set is defined by F(X) = Hom(X,D)
for somefixedobjectDof the category𝒳 and F(f ): F(Y)→ F(X) for amorphism f :X → Y
in 𝒳 , defined by F(f )(g) = g ∘ f for every g ∈ Hom(Y ,D).

In all examples that follow theHom-set Hom(X,D)has also some additional struc-
ture that allows one to consider it as an object of some concrete category 𝒴, obtaining
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in this way a functor F:𝒳 → 𝒴 such that the composition with the forgetful functor
U:𝒴 → Set gives F = U ⋅ F.

Example C.2.21. Let K be a field and 𝒳 = VectK . Now for every object V in 𝒳 , the
set Hom(V ,K) carries an obvious structure of K-vector space, usually called the dual
vector space of V . Put V⋆ = Hom(V ,K) equipped with this structure.

We get a contravariant functor ⋆:𝒳 → 𝒳 by assigning V⋆ to every V in 𝒳 , while
to every f :V → W we assign the morphism f ⋆:W⋆ → V⋆ defined as above by letting
f ⋆(φ) = φ ∘ f for every φ ∈ W⋆.

There is a natural transformation α: 1𝒳 → ⋆⋆, where we denote by ⋆⋆ the com-
position of ⋆ with itself: α is given by the evaluation map αV :V → V⋆⋆ defined by
αV (v)(χ) = χ(v) for every v ∈ V and every χ ∈ V⋆.

It is well known that αV is an isomorphism precisely when dimK V < ∞. More
precisely, if𝒴 denotes the full subcategory of𝒳 of all finite dimensional vector spaces,
then ⋆ gives an involutive duality 𝒴 → 𝒴.

Example C.2.22. Let D = {0, 1} be the discrete doubleton. For every topological space
X, the set Hom(X,D) of all continuous functions is also a Boolean ring (recall that a
unitary ring B is Boolean if x2 = x for every x ∈ B): in fact, D can be provided with
the ring structure inherited by the identification D ≡ ℤ/2ℤ. An equivalent way to get a
Boolean ring structure on Hom(X,D) is to observe that Hom(X,D) is (identifying each
f ∈ Hom(X,D) with its clopen support) isomorphic to the Boolean ring B(X) of all
clopen sets of X with the operations of symmetric difference and intersection. There-
fore, one finds a contravariant functor

B:Top→ BRng,

whereBRng is the full subcategory ofRng1withobjects all Boolean rings, by assigning
also to each morphism f :X → Y in Top its inverse image map B(f ):B(Y) → B(X),
A → f −1(A) for A ∈ B(Y).

On the other hand, for every B ∈ BRng the set Hom(B,ℤ/2ℤ) coincides, up to
natural bijection (identifying each f ∈ Hom(B,ℤ/2ℤ) with ker f ), with the set SpecB
of all prime ideals of B (note that in a Boolean ring a prime ideal is also maximal).
It is well known that on SpecB one can consider its Zariski topology: a base of this
topology is given by the sets Ob = {p ∈ SpecB: b ̸∈ p}, with b ∈ B; in particular,
eachOb is clopen. ThenSpecBwith its Zariski topology is a zero-dimensional compact
Hausdorff space. Therefore, also in this case the assignment B → Hom(B,ℤ/2ℤ) gives
rise to a contravariant functorBRing→ Top. This coincides with the restriction of the
contravariant functor Spec from the category of all commutative unitary rings to Top,
so we still keep on denoting it by

Spec:BRing→ Top.
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Actually, the range of the restriction Spec:BRng → Top is the full subcategory
StoneSp of Top consisting of Stone spaces (i. e., zero-dimensional compact Hausdorff
spaces). It can be verified that B(Spec(A)) ≅ A for everyA ∈ BRng, and that X is home-
omorphic to Spec(B(X)) for every X ∈ StoneSp. Both isomorphisms induce natural
transformations, respectively

1BRng → B ⋅ Spec and 1StoneSp → Spec ⋅ B.

What we have described above can shortly be summarized by saying that the pair
of functors Spec and B gives a duality between the categories BRing and StoneSp,
known as Stone duality.

This is triggered by Hom-sets with target the very special double-faced object D ≡
ℤ/2ℤ carrying both a structure of a compact Hausdorff space D and also a structure
of a two-point Boolean ringℤ/2ℤ. This allows one to enrich the structure of the corre-
spondingHom-setsHom(X,D) andHom(B,ℤ/2ℤ), respectively, froma set to aBoolean
ring or Stone space, respectively:makinguse of the identificationD ≡ ℤ/2ℤ, by the ob-
vious inclusions Hom(X,D) ⊆ ℤ/2ℤX and Hom(B,ℤ/2ℤ) ⊆ DB, we get that Hom(X,D)
is a Boolean ring (as products and subrings of Boolean rings are Boolean) and that
Hom(B,ℤ/2ℤ) is a Stone space (since it results to be a closed subspace of the zero-
dimensional compact Hausdorff space DB). Due to this double-faced appearance of
this object D ≡ ℤ/2ℤ, it was very appropriately named schizophrenic object by Peter
Johnstone.

C.3 Exercises

Exercise C.3.1. Determine the terminal and initial objects in the categoriesSet,VectK ,
Grp, AbGrp, and Top.
Hint. In VectK , Grp, and AbGrp the initial and terminal object coincide with the trivial group (vector
space). In Set and Top the initial object is the empty-set (space), while the terminal object, denoted
by T in the sequel, is the singleton set (in Top equipped with the unique topology on T).

Exercise C.3.2. Build forgetful functors VectK → AbGrp, Rng→ AbGrp.

Exercise C.3.3. Show that:
(a) AbGrp and AbGrpm, form ∈ ℕ+, are all varieties of abelian groups;
(b) for everym ∈ ℕ+, the nilpotent groups of class ≤ m form a variety.

Exercise C.3.4. For a natural number m > 1, the variety of groups ℬm satisfying the
identity xm = 1 is called a Burnside variety. Show that ℬm is an epireflective subcate-
gory of Grp and build an explicit epireflection Bm:Grp→ ℬm.

Exercise C.3.5. Show that the nilpotent groups of class 2 form a variety of groups 𝒩2
and build an explicit epireflection Grp→ 𝒩2.
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Exercise C.3.6. Show that the metabelian groups form a variety ℛ2 and build an ex-
plicit epireflection R:Grp→ ℛ2.

Is the group S4 metabelian? Compute RS4. What about S5, or more generally, Sn
for n > 4?

Exercise C.3.7. (a) Is the subcategory𝒩 of all nilpotent groups reflexive in Grp? Is it
a variety?

(b) Is the subcategoryℛ of all solvable groups reflexive in Grp? Is it a variety?
(c) Is the subcategory ℛfin of all residually finite groups a reflective subcategory in

Grp? If yes, then build an explicit reflection. Isℛfin a variety?

Exercise C.3.8. Let r be a preradical in AbGrp. Show that for every G ∈ AbGrp the
subgroup rG is fully invariant (i. e., f (rG) ⊆ rG for every endomorphism f :G → G).

Exercise C.3.9. Introduce a partial order in the class PR(AbGrp) of all preradicals in
AbGrp by letting r ≤ s for r, s ∈ PR(AbGrp) whenever rG ≤ sG for every abelian
group G.
(a) Show that PR(AbGrp) is a large complete lattice where, for a family {ri: i ∈ I} of

preradicals in ABGrp,⋁i∈I ri and⋀i∈I ri are defined by (⋁i∈I ri)G = ∑i∈I ri(G) and
(⋀i∈I ri)G = ⋂i∈I riG for every abelian group G.

(b) Describe the top and bottom elements 1 and 0 of PR(AbGrp).
(c) Show that the subclass RAD(AbGrp) of PR(AbGrp) consisting of all radicals is

stable under meet and deduce that every preradical r admits a smallest radical
r∞ larger than r (called, radical hull of r).

(d) Show that the subclass IPR(AbGrp) of PR(AbGrp) consisting of all idempotent
preradicals is stable under join and deduce that every preradical r admits a largest
preradical r∞ smaller than r (called, idempotent core of r).

Exercise C.3.10. For preradicals r, s in AbGrp, define the composite (r : s) by letting,
for every abelian group G, (r: s)G = q−1(r(G/sG)), where q:G → G/sG is the canonical
projection.

Furthermore, for every ordinal α define rα by (r: rβ), provided α = β + 1 is a succes-
sor, otherwise let rαG = ⋃β<α rβG. Let r̂ = ⋁α rα.
(a) Show that (r: s) and rα, for every ordinal α, are preradicals.
(b) Show that r̂ is a radical and r̂ = r∞.
(c) Show that r is a radical if and only if (r: r) = r if and only if r = r̂.
(d) Let r be one of the preradicals in AbGrp given by rG = Soc(G) or rG = G[p], p a

prime, for every abelian group G. Compute r̂.

Exercise C.3.11. For preradicals r, s in AbGrp, define the composition r ⋅ s by (r ⋅ s)G =
r(sG) for G ∈ AbGrp. Furthermore, for every ordinal α define rα by rrβ, if α = β + 1 is a
successor, otherwise let rαG = ⋂β<α r

βG. Let ̌r = ⋀α r
α.
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(a) Show that ̌r is an idempotent preradical and ̌r = r∞, so r is idempotent if and only
if r = ̌r if and only if r2 = r.

(b) Compute ̌r for the preradicals r given by rG = G1 or rG = pG, p a prime, for every
abelian group G.

(c) For an abelian p-group G define by transfinite induction pαG by letting p0G = G,
pαG = p(pβG), when α = β+ 1 and pαG = ⋂β<α p

βG if α is a limit ordinal. Show that
pωG = G1. Moreover, ⋂α p

αG coincides with ̌rG, where the preradical r is defined
by rH = pH for every abelian groupH, as well as with šG, where sH = H1 for every
abelian group H.

(d) Show that the abelian group G in Example A.4.7 satisfies pωG ̸= {0}, but
pω+1G = {0}.

Exercise C.3.12. Show that for an abelian group G one has the equality Fratt(G) =
⋂p∈ℙ pG and deduce that Fratt is a radical. Is this radical idempotent? Compute its
idempotent core.

Exercise C.3.13. Let A be an abelian group.
(a) For G in AbGrp, let rA(G) = ⋂{ker f : f ∈ Hom(G,A)}.

(a1) Show that rA is a radical.
(a2) If 𝒜 = {Ai: i ∈ I} is a strongly rigid system in AbGrp (i. e., Hom(Ai,Aj) = {0}

whenever i ̸= j in I and End(Ai) ≅ ℤ for all i ∈ I), then all radicals rAi
are

pairwise distinct.
(b) For G in AbGrp, let rA(G) = TrA(G) = ∑{im f : f ∈ Hom(A,G)}.

(b1) Show that rA is an idempotent preradical.
(b2) If 𝒜 = {Ai: i ∈ I} is a strongly rigid system in AbGrp, then all preradicals rAi

are pairwise distinct.

Deduce that both RAD(AbGrp) and IPR(AbGrp) are proper classes.
Hint. For (a2), note that when i ≠ j in I, then rAi (Aj) = Aj, while rAj (Aj) = {0}. Hence, the group Aj
witnesses the inequality rAi ̸= rAj . Argue similarly for (b2).

For the final assertion, use the fact that Shelah proved that there exist strongly rigid systems
𝒜 = {Ai: i ∈ I} of torsion-free abelian groups of arbitrarily large size |I|. This answers the last question
taking into account both (a2) and (b2).

Exercise C.3.14. For a topological space (X, τ), consider the collection of all sequen-
tially closed sets ofX and show that they form the family of all closed sets of a topology
τs on X finer than τ.

Show that if (Y , τ′) is a topological space and f : (X, τ) → (Y , τ′) is a continu-
ous map, then also f : (X, τs) → (Y , τ′s) is continuous. Conclude that the assignment
(X, τ) → (X, τs) defines a coreflection C:Top → 𝒴, where 𝒴 is the full subcategory of
Top consisting of sequential spaces with natural transformation γ given by the iden-
tity map γ(X,τ) = idX : (X, τs)→ (X, τ).
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Exercise C.3.15. Show that the full subcategory Alex of Alexandroff spaces in Top is
coreflective and exhibit a coreflector.

Exercise C.3.16. Prove the uniqueness claimed in Remark C.2.6.
Hint. In the notation of Remark C.2.6, applied to f = γX :X → RX (so, C = RX), there exists a unique
morphism t:KX → RX with t ∘ hX = γX . Moreover, there exists a unique morphism s:RX → KX such
that s ∘ γX = hX , by the properties of the 𝒴-reflection. Then idRX ∘ γX = γX = t ∘ hX = (t ∘ s) ∘ γX . So,
by the uniqueness property applied to the morphism γX :X → RX composed with the morphisms idRX
and t ∘ s, we deduce that idRX = t ∘ s. Similarly, idKX = s ∘ t. So, s is the desired isomorphism.

Exercise C.3.17. Show that the subcategory of Top consisting of only the empty space
is coreflective in Top.

Assume that 𝒴 is a coreflective subcategory of Top. Show that:
(a) if 𝒴 contains a nonempty space, then T ∈ 𝒴;
(b) 𝒴 is stable under taking coproducts;
(c) 𝒴 contains all discrete spaces;
(d) 𝒴 is stable under taking quotients;
(e) 𝒴 is bicorefletive, i. e., for every X ∈ Top the coreflection map γX :CX → X is bijec-

tive.

Hint. (b) If C:Top → 𝒴 is the coreflection, and {Yi: i ∈ I} is a family in 𝒴, consider the coproduct
Y = ∐i∈I Yi and let Z = C(∐i∈I Yi) with the family of morphisms {Yi → Z: i ∈ I} obtained from the
coreflector. Show that it has the property of the coproduct and conclude, by the uniqueness of the
coproduct, that they coincide, i. e., γY : Z = CY → Y is an isomorphism. Therefore, Y ∈ 𝒴 .

(c) follows from (a) and (b).
(d) Argue similarly with the quotient q:Y → Z of some Y ∈ 𝒴, to show that γZ :CZ → Z is an

isomorphism.

Exercise C.3.18. Prove that a subcategory 𝒴 of Top is coreflective if and only if 𝒴 is
stable under taking coproducts and quotients.
Hint. For the necessity, use Exercise C.3.17. Assume now that 𝒴 is stable under taking coproducts and
quotients. For X ∈ Top, consider a set of continuous injective maps ni:Yi → X, i ∈ I, with Yi ∈ 𝒴,
such that for every continuous injective map n:Y → X with Y ∈ 𝒴, there exists a homeomorphism
ξ :Y → Yi such that n = ni ∘ ξ . Let S = ∐i∈I Yi, let νi:Yi → S be the related embeddings, and let
n: S → X be the map ensured by the coproduct property. Since the space X is covered by the images
ni(Yi), the map n is surjective. Put on X the quotient topology τq of the map n: S → X. Since n was
continuous, this topology is finer that the original topology of X. Denote by CX the space (X, τq) so
obtained, by l: S → CX the quotient map, and by γX :CX → X the identity map. Since CX is a quotient
of S ∈ 𝒴, we deduce that CX ∈ 𝒴 . Let Y ∈ 𝒴 and f :Y → X be a continuous map. Factorize f through
the quotient q:Y → Y ′, where Y ′ = f (Y), but which carries the quotient topology. Then Y ′ ∈ 𝒴 and
for the inclusion j:Y ′ → X there exists i ∈ I and a homeomorphism η:Y ′ → Yi such that j = ni ∘η. Now
q′ = l ∘ νi ∘ η ∘ q:Y → CX witnesses the coreflection property.

Exercise C.3.19. For 𝒳 being any of the categories Top, Grp, or AbGrp, show that a
subcategory 𝒴 of𝒳 is epireflective if and only if 𝒴 is stable under taking products and
subobjects (in the case of Top consider as subobjects the subspaces).
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Hint. For Top apply an argument dual to that of the hint to Exercise C.3.18 and apply Theorem C.2.9
for the sufficiency. For Grp and AbGrp argue similarly or use Theorem C.2.17.

Exercise C.3.20. Denote by Met the subcategory of Top having as objects the topo-
logical spaces with ametrizable topology and asmorphisms all uniformly continuous
maps. Show thatMet is a nonfull subcategory of Top.
Hint. Use a continuous not uniformly continuous map between metric spaces.

Exercise C.3.21. (a) Show that taking the class of all posets (X,≤) as objects and the
class of all monotone (i. e., order preserving) maps (X,≤) → (X,≤) as morphism
one obtains a category that we shall denote by PoSet.

(b) For a T0-space (X, τ), consider the specialization order ⪯τ on X and show that if
f : (X, τ)→ (Y , τ′) is continuous, then themap f : (X,⪯τ)→ (Y ,⪯τ′ ) is order preserv-
ing. Deduce that this gives a covariant functor O:Top0 → PoSet.

(c) Show that assigning to every (X,≤) ∈ PoSet the Alexandroff–Tucker topological
space (X, τAT ) we obtain a functor AT:PoSet→ Alex0 = Top0 ∩ Alex.

(d) Let O′ be the restriction of O to the subcategory Alex. Show that the pair of func-
tors AT:PoSet → Alex0 and O′:Alex0 → PoSet give an equivalence between the
categories Alex0 and PoSet.
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