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The.chapter.presents.an.outlook.on.the.recent.techniques.of.developing.nanoscale.
medicines.. With. advancement. in. technology,. nanoscale. therapeutics. is. slowly.
becoming. the. future.of.medicine. and. smart. diagnostics..The. combined. activity.
of. therapeutic. agents. with. assistance. of. nanomaterials. have. proved. effective. in.
troubleshooting.the.issues.concerned.with.the.conventional.therapeutic.techniques..
Despite.of.these.benefits,.improvement.in.certain.issues.like.side.effects.and.toxicity.
needs.to.be.studied.extensively.before.real-time.application.in.biological.systems..
Thus,.in.this.chapter,.emphasis.has.been.made.on.understanding.the.concept.of.a.
nanomaterial-based.therapeutic.system.with.recent.advances.and.exploration.of.the.
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In.cancer,.angiogenesis.is.a.hallmark.necessary.to.supply.sufficient.nutrients.for.
tumor.growth.and.metastasis.to.distant.sites..Therefore,.targeting.tumor.angiogenesis.
emerges. as. an. attractive. therapeutic. modality. to. retard. neoplastic. cell. growth.
and. dissemination. using. classes. of. anti-angiogenic. drugs.. However,. multiple.
administrations.of.these.drugs.show.adverse.effects,.precluding.their.long-term.usage..
Conventional.chemotherapeutic.drugs,.natural.compounds,.carbon-based.materials,.
inorganic.and.metallic.elements,.genes,.siRNAs,.shRNAs,.and.microRNAs.can.be.
incorporated.into.nanovehicles.(e.g..polymers).for.delivery.to.specific.targets..This.
chapter.reviews.angiogenesis.and.the.underlying.molecular.mechanisms.that.regulate.
this.process..Furthermore,.this.chapter.provides.an.overview.on.different.formulations.
of.nanoparticles.or.nanovectors.that.employed.to.combat.cancer,.with.a.special.focus.
on.their.therapeutic.potentials.in.the.context.of.the.suppressive.effects.on.tumor.
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Phytochemicals. have. been. attributed. beneficial. health. properties,. mainly. their.
anticancer.potential..Cancer. treatment.seeks. to.shrink. the. tumor.and.kill.cancer.
cells;. however,. the. conventional. treatment. available. frequently. fails. due. to. the.
emergence.of.drug-resistant.cell.lines..Plant-derived.compounds.have.been.studied.
for.their.potential.anticancer.effects.or.as.adjuvant.drug.to.conventional.treatment..
However,. some. of. the. physicochemical. properties. and. stability. characteristics.
of. the. phytocompounds. generate. biopharmaceuticals. difficulties. that. limit. their.
efficacy.and.clinical.applications.in.oncology..In.this.sense,.nanomedicine.offers.an.
alternative.for.the.development.of.biocompatible,.biodegradable,.safe,.and.efficacy.
phytoformulations..Nanostructured.delivery.systems.show.immense.potential.in.the.
bioavailability.of.phytodrugs.by.providing.better.alternatives.to.conventional.dosage.
forms,.through.improving.physicochemical.and.biopharmaceutical.properties.of.the.
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Extensive. studies. in. the. field. of. oncology. are. able. to. identify. potential. cancer.
biomarkers.with.tumor-specific.molecular.characteristics.that.exceed.or.complement.
those.of.existing.biomarkers..However,.there.are.challenges.in.the.development.and.
clinical.validation.of.the.cancer.biomarkers.due.to.the.complexity.of.the.biological.
process.involved..Standalone.or.integrative.approach.of.broad.range.of.biomolecules,.
their.expression.pattern,.epigenetic.alterations,.and.metabolic.effects.are.well.studied.
in.the.cancer.research..The.potential.cancer.biomarkers.need.to.be.studied.extensively.
with.advanced.technologies.to.bring.about.a.great.change.in.cancer.screening.and.
therapy..This.chapter.provide.an.overview.on.recent.studies.about.potential.cancer.
biomarkers..Also,.specific.characteristics.of.potential.biomarkers.in.three.common.
types.of.cancer.are.discussed.
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Carbon.nanotubes.(CNTs).are.allotropes.of.carbon.consisting.of.cylindrical.tubes,.
made. up. of. graphite. with. a. diameter. of. several. nm. to. a. length. of. several. mm..
They. had. extraordinary. structural,. mechanical,. and. electronic. properties. due. to.
their. small. size. and. mass,. high. mechanical. resilience,. and. high. electrical. and.
thermal.conductivity..Their.large.surface.area.made.them.applicable.in.pharmacy.
and.medicine.and.adsorb.or.conjugate.a.broad.variety.of.medical.and.diagnostic.
agents.(drugs,.genes,.vaccines,.antibodies,.biosensors,.etc.)..They.are.often.used.
to.deliver.drugs.directly.into.the.cells.without.going.through.the.metabolic.process.
of.body.. In.addition. to.drug.delivery.and.gene. therapy,.CNTs.are.also.used. for.
tissue.regeneration,.diagnostic.biosensors,.chiral.drug.enantiomer.separation,.drug.
extraction,.and.drug.or.pollutant.analysis..CNTs.have.recently.been.discovered.as.
effective.antioxidants..The.ADME.and.toxicity.of.different.types.of.CNTs.have.also.
been.documented.here,.as.well.as.the.prospects,.advantages,.and.challenges.of.this.
promising.bio-nano.technology.
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Current. research. on. phytochemicals. is. mainly. focused. on. novel. phenolic. and.
polyphenolic.compounds.expressing.their.potential.as.therapeutic.agents.in.various.
diseases. like. cancer,. autoimmune. diseases,. cardiovascular. disorders,. diabetes,.
oxidative.stress-related.diseases,.as.well.as.their.properties.to.inhibit.the.growth.and.
proliferation.of.infectious.agents..Among.the.human.physiological.disorders,.one.of.
the.most.severe.endocrine.metabolic.diseases.is.Diabetes.mellitus.which.is.a.clinical.
disease.distinguished.by.a.deficit.in.the.production.of.insulin.or.resistance.to.the.
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action.of.insulin..Globally,.diabetes.is.an.increasing.health.concern.which.is.now.
emerging.as.an.epidemic..About.700-800.plants.are.exhibiting.anti-diabetic.activity.
that.has.been.studied..As.far.as.nanotechnology.in.diabetes.research.is.concerned,.
it.has.made.possible.the.buildout.of.novel.glucose.measurement.as.well.as.insulin.
delivery.modalities.that.possess.the.potential.to.excellently.enhance.the.quality.of.
life.of.the.diabetic.patient.
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This.chapter.deals.with.the.formation.of.biofilms,.their.resistance.to.antibacterial.
agents,.the.importance.and.risk.of.biofilms,.and.nanotechnology.methods.for.biofilm.
control.in.the.food.industry..Biofilm.is.a.multi-layer.cell.cluster.embedded.in.an.
organic.polymer.matrix,.which.protects.microbial.cells.from.environmental.stress,.
antibiotics,.and.disinfectants..Microorganisms.that.live.in.contact.points.and.the.
environment.in.food.processing.are.mostly.harmful.because.the.microbial.community.
in.the.wrong.location.can.lead.to.contamination.of.the.surfaces.and.products.produced.
during. the. processing.. When. new. nanomaterials. (for. example,. silver. or. copper.
are.incorporated).are.used,.the.growth.of.surface.biofilms.can.also.be.reduced..In.
recent.years,.new.nanotechnology-based.antimicrobials.have.been.designed.to.kill.
planktonic,. antibiotic-resistant. bacteria,. but. additional. requirements. rather. than.
the.mere.killing.of.suspended.bacteria.must.be.met.to.combat.biofilm-infections.
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Preface

Innovative and fusion technologies have shown incredible influence to improve 
various aspects of society for the betterment of mankind and healthcare systems. 
Nanobiotechnology as well as nanomedicine refers to the application of nanotechnology 
in various aspects of life. Nanobiotechnology aspires to endow with economically 
sound yet excellent performing health and medical pieces of equipment, amenities 
as well as treatment approaches through continuous research investigations and 
studies. Many pharmaceutical and medical companies all over the world now count 
on medical nanotechnology due to its abundant applications and practical uses.

This book is a pivotal reference source that provides insights into a comprehensive 
collection of different new and novel techniques used for the development of safe 
drugs that use available resources for diverse deadly diseases. It also discusses the 
various platforms of nanobiotechnology to be utilized in various fields. Nevertheless, 
the safety of nanotechnology is not yet entirely clear. However, it is expected that in 
the near future, the bionanosytems will play a crucial role in the treatment of human 
diseases and also in the improvement of existing healthcare systems.

This book, Innovative Approaches for Nanobiotechnology in Healthcare Systems, 
is a collection of 12 chapters contributed by leading experts in nanotechnology field. 
This book is ideally designed for Scientists, Medical professionals, Entrepreneurs, 
Researchers, Academicians and Students. Nevertheless, this book is premeditated 
to act as a reference source on conceptual, methodological and technical aspects, 
as well as to provide insight into emerging trends and future opportunities within 
the healthcare systems. In this book, each chapter covers a special subject that falls 
within these areas: General introduction, properties, specific applications as well 
as escort to future directions.

Chapter 1 gives an outlook on recent techniques of developing nanoscale medicines. 
In this chapter, emphasis has been made on understanding the concept of nanomaterials 
based therapeutic system with recent advances and exploration of characteristics of 
nanomaterials as well as their interactions with the biological environment. Chapter 
2 deals with the research being carried out to further enhance the drug loading/and 
release kinetics of nanofibers. This chapter briefly summarizes the history, effects of 
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various parameters, and drug delivery applications of electrospun nanofibers. Also, 
the drug incorporation techniques are highlighted. In addition the challenges and 
future perspectives have been covered. Accordingly, Chapter 3 describes therapeutic 
potentials of different formulations of nanoparticles or nanovectors in combating 
cancer, with a special focus on their suppressive effects on angiogenesis process 
using the in vitro and in vivo models.

Furthermore, Chapter 4 particularly focuses on phytomedicine for cancer therapy 
based on nanocarrier systems to address them to tumor site, because nanosystems 
allow modifying physicochemical properties of the drugs and offers targeting ability 
in addition to their specificity. Similarly, Chapter 5 provides an overview on recent 
studies about potential cancer biomarkers. Also, specific characteristics of potential 
biomarkers in three common types of cancer are discussed herein.

On the other hand, Chapter 6 pays attention on the synthesis and applications 
of CNTs in therapeutics, mainly about the research in all areas of pharmacy and 
medicine. Chapter 7 addressed the significance of some medicinal plants and novel 
herb-based formulations from Himalayan region of India that offers numerous 
possible advantages for synergistic activity in the medication of diabetes with or 
without structural modifications.

Moreover, Chapter 8 draws attention on to the development of preventive strategies 
and methods for biofilm control using new nanotechnology. Interestingly, Chapter 9 
is targeted on potential of phytochemicals, in particular flavonoids in the management 
of Rheumatic diseases. Likewise, Chapter 10 attempts to obtain understanding on 
the biological effects of flavonoids with special references to their targeted and 
efficient delivery via novel nanosystems to treat various diseases and disorders.

Subsequently, Chapter 11 spotlights the application of electrospinning method 
and electrospun nanofibers for water purification, in order to control the spread of 
waterborne diseases. The last chapter (Chapter 12) endows awareness about the role 
of nanoscience to control pollution and its contribution in environment mitigation.

Conclusively, it has now been accepted that the innovative technologies have clout 
to supplement numerous sections of civilization. Unquestionably, the current times 
have observed an unmatched development in research in the field of nanotechnology. 
There is always an escalating confidence that nanotechnology subjected to medicine 
will fetch noteworthy progress in the area of cure, diagnosis, as well as deterrence 
of infectious diseases. Ever rising awareness about the prospective therapeutic 
potential of nanoscience is escorting to the appearance of a novel area eminently 
known as nanomedicine.

Nevertheless, the field of nanomedicine requires conquering the challenges for 
its uses, to advance the thoughtfulness of basis of illness, fetch advance and classy 
analytical methods and to deliver outstanding remedies and shielding applications. 
Nanomaterials are probing almost into each and every facet of our life, such as 
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nanoscale materials are progressively being applied in pharmaceutical and medical 
purposes, makeup and private stuffs, to store energy, for purification of water, air 
filtration as well as cleaning of environment, chemical and biological sensors, 
military defense etc. Furthermore, nanotechnology is also swiftly developing in 
industrial uses, medical imaging, targeted drug delivery applications, cancer cure, 
gene management therapeutics, and assist in visual imaging.

In summary, nanotechnology irrefutably, is at the climax of revolutionary stage 
of swift development of healthcare stuff/or nanomedicine, as it possesses numerous 
imminent human health significances. Admittedly, on the other hand nanotechnology 
still needs more in-depth research to investigate its possible potential health hazards. 
We hope that this book, Innovative Approaches for Nanobiotechnology in Healthcare 
Systems, will build a positive influence on students and scientists and aid in the 
development of novel healthcare materials/or nanomedicine for amelioration of 
society, simultaneously keeping in consideration the safety and environment. The 
Editors are highly grateful to all who facilitated in compiling the book project 
successfully in the given time frame.

Touseef Amna
Albaha University, Saudi Arabia
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ABSTRACT

The chapter presents an outlook on the recent techniques of developing nanoscale 
medicines. With advancement in technology, nanoscale therapeutics is slowly 
becoming the future of medicine and smart diagnostics. The combined activity 
of therapeutic agents with assistance of nanomaterials have proved effective in 
troubleshooting the issues concerned with the conventional therapeutic techniques. 
Despite of these benefits, improvement in certain issues like side effects and toxicity 
needs to be studied extensively before real-time application in biological systems. 
Thus, in this chapter, emphasis has been made on understanding the concept of a 
nanomaterial-based therapeutic system with recent advances and exploration of the 
characteristics of nanomaterials which would allow us to further develop strategies 
that are supportive towards effective treatment and disease diagnosis.

INTRODUCTION

In the today’s modern world, the field of nanotechnology is emerging as an 
interdisciplinary branch of science and technology which is slowly capturing a vital 
position in the development of latest technologies and techniques (Nair et al., 2010). 
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Its interdisciplinary property has allowed one to find its extensive employment in 
the field of research essentially in the areas of physics, chemistry, pharmaceutical 
science, material science, and agriculture. Apart from these scientific areas, use of 
nanotechnology can also be projected for therapeutics and diagnostics. In 21st century 
nanotechnology can be projected as an advanced tool in the field of medical science 
either as therapeutics or for diagnostics. At present, the conventional methods of 
drug administration can be considered as the only source but with certain limitations 
like occurrence of unwanted side effects, marginal efficiency, weak biodistribution 
(Kadam, Bourne, & Kompella, 2012). Whereas, new attempts along with the assistance 
of nanotechnology has proved fruitful in overcoming such kind of issues through 
reduction in the concentration of raw materials with optimum synthesis parameters 
(Cerrillo, Barandika, Igartua, Areitioaurtena, & Mendoza, 2017). However, a deep 
level standardization is highly desired as optimization process may involve use of 
harmful solvents that may prove fatal for the environment.

As a therapeutic source, nanomedicine can provide platform for promoting the 
therapeutic potency in drugs with marginalized side effect, therefore, an innovating 
strategy in conventional therapeutic approach could be anticipated (Pautler & 
Brenner, 2010). With implementation of nanomedicine, a strong prospect for 
sustained administration of target specific drug can be projected. Moreover, use of 
nanomedicines also provide additional benefit of protecting the drug from harsh 
environment thereby improving its overall performance (Bobo, Robinson, Islam, 
Thurecht, & Corrie, 2016; Brand et al., 2017; Havel et al., 2016). In a close aspect, 
the key reason behind formulating nanomedicines is to achieve effective therapy 
with high throughput and drug bioavailability with least toxicity that overall ensures 
patient’s safety through better efficacy (Agrawal et al., 2018; Brand et al., 2017). When 
it comes to select a nanomaterial for therapeutic applications, a critical evaluation 
based on fulfilment of specific objectives is strongly desired (Ciappellano, Tedesco, 
Venturini, & Benetti, 2016). These prime objectives chiefly account on:

1.  Enhanced solubilization of hydrophobic drugs
2.  Improved drug residence span in patient’s body
3.  Reduced or no additional unwanted effect of the administered drug
4.  Observation of drug release scheme

In addition to the fulfilment of key objectives, emphasis are also made on analysing 
the toxic profile in accordance to the dose administered in vivo (Oberdörster, 2010). 
Based on the aforementioned facts, the current chapter aims to present a descriptive 
overview to understand the utilization of the nanomaterials as a critical vehicle for 
targeted drug administration against various disorders like cancer, tumours, chronic 
as well as neurodegenerative diseases.
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DEVELOPMENT OF NANOMATERIALS

Nanomaterials offer unique property of demonstrating high surface to volume 
ratio. This enables them to potentially elevate the bioavailability of the drug via 
improvising its pharmacokinetic and dynamic profile via surface modification 
techniques like ligand binding, PEGylation (H. Kumar et al., 2017). Typically for 
active drug targeting, the ligand (like antibodies or peptides) bound nanomaterial-
drug complex is preferentially selected. The selection is made on the account that 
upon systemic movement, when the ligand bound nanomaterial-drug complex reaches 
the target site, the ligand gets itself bound to the receptor followed by engulfment of 
the nanomaterial-drug complex via endocytosis (Etheridge et al., 2013). Besides, a 
critical selection of binding entity has to be performed for effectiveness. This can 
be ascertained on the fact that once entering the bloodstream the most significant 
challenge is to mitigate the aggregation of nanomaterial (if bounded to protein as there 
is a chance of protein opsonization) that may lead to break down of nanomaterial-
drug complex before reaching the target site. Hence, the nanomaterial might get 
itself cleared from bloodstream before its activity either via phagocytosis or through 
natural filtration (liver, spleen, and kidney). Thus, the overall drug retention time 
gets reduced leading to a limited bioavailability. Alternatively, decorating the surface 
of the nanomaterial with polymers like polyethylene glycol (PEG), acetyl groups, 
proteins (like albumin) or carbohydrates can troubleshoot the issue of low retention 
span (Shreffler, Pullan, Dailey, Mallik, & Brooks, 2019). However, these strategies 
might vary the recognition potential for targeted drug delivery. Another factor that 
plays a critical role in effective targeted drug delivery is the size of the nanomaterial. 
Nanomaterials with size less than 10 nm might get themselves cleared through 
physiological system, whereas structures with size higher than 200 nm might be 
cleared via phagocytic cells in the RES (reticuloendothelial system). Besides, for 
therapeutic applications nanomaterials with size up to 100 nm show longer retention 
time in bloodstream (Wu et al., 2018). According to the report of Wu et al. therapeutic 
nanomaterials ranging between 20–200 nm demonstrate strong accumulation rate 
in tumours due to low recognition potential for RES (Wu et al., 2018) . The blood 
vessels in and across the tumour region are found to be larger in number as well as in 
volume compared to normal tissues. Therefore, nanomaterials offering appropriate 
dimensions can approach the tumour area in a facile manner with long accumulation 
time [referred as enhanced permeability and retention (EPR) effect] (Nakamura, 
Mochida, Choyke, & Kobayashi, 2016). For such kind of approach, active and passive 
targeting can be opted. Passive targeting allows accumulation of nanomaterials across 
the tumour site without surface functionalization. Whereas for active targeting, 
surface of nanomaterials is functionalized either with protein, peptide, nucleic acid 
etc (Yu, Park, & Jon, 2012). Shape is another factor that controls the effectiveness of 
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the nanomaterial for therapeutic applications. If nanomaterial exhibit a rod-shaped 
configuration then they will act an easier target for endosomal uptake compared to 
other structural configurations indicating that rod shaped nanomaterials might get 
grasped by immune system cells marking as rod-shaped bacteria (Yetisgin, Cetinel, 
Zuvin, Kosar, & Kutlu, 2020). Surface charge of therapeutic nanomaterials is also 
considered as a critical factor that ensures its clearance for targeted drug delivery 
applications as nanomaterials with positive charge develops a strong immune 
response in contrast to neutral and negatively charged nanomaterials. For instance, 
nanomaterials offering surface potential ranging between −10 to +10 mV are found 
to be less vulnerable to phagocytosis as well as non-specific interactions (Bhatia, 
2016; Wu et al., 2018). Besides, surface charge also shows close proximity to pH 
sensibility of nanomaterials e.g. nanomaterials with pH below 6 (acidic) offers high 
targeting susceptibility towards endosomes or lysosomes for their cargo release 
(Casey, Grinstein, & Orlowski, 2010; C. Wang et al., 2017).

It is observed that among all these factors the development of nanomaterial for 
targeted drug delivery application relies chiefly on surface modification that overall 
controls the phagocytic uptake and accumulation at non-target organs (Walkey, 
Olsen, Guo, Emili, & Chan, 2012; Yetisgin et al., 2020). In spite of availability 
of various surface encapsulants for drug delivery application, long chain polymer 
PEG has shown preferential selectivity on the basis of low phagocytic uptake and 
accumulation at non-target organs. The preference to PEG is generally made in context 
to the factors like density, length and shape that control the surface hydrophilicity 
and phagocytosis.

CATEGORIES OF THERAPEUTIC NANOMATERIALS

In general, nanomaterials are classified in two prime types i.e., nanostructured 
and nanocrystalline. A suitable representation to understand the categories of 
nanomaterials can be done through Fig. 1.

Figure 1. Schematic illustration of various categories of therapeutic nanomaterials
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Lipid-Based Nanomaterials

Lipid-based nanomaterials (LBNM) have been explored for many years to offer 
advantages similar to that of polymers. A common feature that both lipid-based 
nanoparticle and polymer share, is their potential to collect across the regions 
having enhanced vascular permeability such as sites of inflammation, infection or 
tumours, known as the EPR (Maeda, Wu, Sawa, Matsumura, & Hori, 2000). The 
EPR effect associated with LBNM was first introduced by Morgan et al. labelled 
with indium-111 for image-based detection of deep sealed infections and solid 
tumours (Morgan, Williams, & Howard, 1985). The preferential selection of lipids 
for therapeutic applications relies on the fact that they offer ability to encapsulate 
both hydrophobic and hydrophilic drugs in bilayer and aqueous core (Böttger et al., 
2020; Wisse, de Zanger, Charels, van der Smissen, & McCuskey, 1985). At present 
development of lipid-based nanoparticles chiefly involves exploration and association 
of nanoparticles with liposomes, exosomes and solid lipid nanoparticles (SLN).

Liposomes are vesicles which are realized via hydration of dry phospholipids. 
The realized liposomes offer discrete structure, configuration, flexibility and size. 
Interestingly, liposomes offer ability to fuse with the cell membrane followed by 
releasing of carried content thereby making them an intelligent carrier for targeted 
delivery system. Ideally, a simple liposome is composed of a lipid bilayer surrounding 
a hollow core having diameter of 50–1000 nm. The hollow core acts as a loading 
site for therapeutic molecules. Besides; the number of bilayers variates, liposomes is 
selected in configurations i.e., multilamellar, small unilamellar and large unilamellar. 
Multilamellar vesicles comprise of several lipid bilayers parted from one another 
via aqueous spaces whereas, unilamellar vesicles comprise of a single bilayer 
surrounding the entrapped aqueous space. These structural properties collectively 
allow liposomes to host both hydrophobic and hydrophilic molecules (Patil & Jadhav, 
2014). In addition to this, the liposomes offer advantage of loading more than one 
drug either in two compartments or in different layers of multilamellar liposomes 
overall allowing the drug molecule to get released in a sequential manner (Patil & 
Jadhav, 2014). Currently, liposomes are wide explored in different configurations as 
Long-Circulating Liposomes (S. Kumar, Dutta, Dutta, & Koh, 2020; Smith, Selby, 
Johnston, & Such, 2019), Active-Targeting Liposomes (Moghimipour et al., 2018a; 
Naeem et al., 2020), Stimuli-Sensitive Liposomes (Bi et al., 2019; Juang, Chang, 
Wang, Wang, & Lo, 2019; Mansoori et al., 2020; Moghimipour et al., 2018b), 
Cationic Liposomes (Garcia, Mertins, Silva, Mathews, & Han, 2020; Hashemi et 
al., 2018; Lu et al., 2019). A better understanding of these liposomal variants can 
be acquired from the recent review by Yang et al. (C. Yang & Merlin, 2020).

Besides liposomes, exosomes are another lipid based entity that are generally 
endosome-derived extracellular vesicles offering size variation between 30–150 nm 
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and usually found in body fluids like saliva, blood and urine (C. Yang & Merlin, 
2020). Ideally these are cell membrane like lipid bilayer vesicles, comprising of 
substances like RNA, DNA, glycolipids, and proteins. Their key feature is to perform 
intracellular communication via transferring different compounds in the physiological 
mechanisms like neural communication, antigen presentation, immune response etc 
in case of diseases like cancer, diabetes and inflammation (Shimasaki, Yamamoto, 
& Arisawa, 2018; Yamashita, Takahashi, & Takakura, 2018). With the advantage of 
eased isolation from patients’ body allogenic exosomes offer advantage of protecting 
the loaded drug from rapid clearance thereby improving the drug delivery at targeted 
site (Batrakova & Kim, 2015). These facts strongly account the motif behind the 
exploration of exosomes as drug delivery carrier for treating diseases like cancer, or 
during tissue regeneration (Familtseva, Jeremic, & Tyagi, 2019). For instance, Liang 
et al. has recently developed 5-fluorouracil- and miR-21 inhibitor oligonucleotide 
(miR-21i)- surface capping exosomes using engineered 293T cells (Liang et al., 
2020). The realized exosomes significantly altered the miR-21 expression in the 
5-fluorouracil-resistant HCT-1165FR cell line. The co-addition of miR-21i and 
5-fluorouracil through exosomes enhanced the cytotoxicity of 5-fluorouracil as 
well as reversed the drug resistance in 5-fluorouracil-resistant CRC cells. Further, 
trial administration in tumour-bearing mice yielded that realized exosome showed 
potent anti-tumour effect (Liang et al., 2020).

SLNs are considered as colloidal lipid particles made of lipids and surfactants 
and possess a solid lipid core matrix at the physiological temperature (Mishra 
et al., 2018). The realization of SLNs involves practicing of methods like ultra-
sonication, homogenization, solvent emulsification/evaporation and micro-emulsion 
(Doktorovová, Kovačević, Garcia, & Souto, 2016). Their non-payload lipids are 
composed of nontoxic compounds allowing them to prove a safer than polymeric 
nanoparticles (Doktorovová et al., 2016). They offer significantly good drug-loading 
capacity, better drug-retention span as well as particle stability compared to other 
polymers. This results that an enhanced overall bioavailability of the loaded drug is 
received at the targeted site. Besides, sustained drug release can also be obtained via 
adjusting the degradation rate of the lipid matrix in SLNs. According to the recent 
report by Kim et al., sustained release of docetaxel drug has been demonstrated 
through activity of docetaxel-loaded cationic SLNs, further coated with an anionic 
polymer conjugated with glycocholic acid (DOX@SLN@GA) (Kim, Youn, & Bae, 
2019). The working activity involved targeting of distal ileum which was found to 
be mediated through the apical sodium bile acid transporter. Post single oral dose 
(in treated mice), sustainable release of drug was experienced in the blood stream 
for 24 h. Moreover, daily dosage resulted in subdued growth of existing tumours 
that eventually reduced further tumour formation (Kim et al., 2019). Besides, these 
advantages, SLNs has a limiting factor of being poor encapsulator for hydrophilic 
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drugs, thereby exhibiting low drug loading capacity (Wong, Bendayan, Rauth, 
& Wu, 2004). To cater this situation, Wong et al. introduced addition of organic 
counterions during SLN synthesis (Wong et al., 2004). The process involved 
formation of ion pairs consisting of the charged hydrophilic drug molecule along 
with added organic counter ion. As a result, an increased distribution of the drug in 
the melting lipids was obtained. Alternatively, polymer-lipid hybrid nanoparticles 
having electrostatically attached hydrophilic drug (with polymer and drug polymer 
complex) can be distributed into lipid droplets for SLN preparation. Both these 
strategies have improved the performance of SLN containing hydrophilic drug and 
has expanded the future scope of SLN (Y. Li, Taulier, Rauth, & Wu, 2006).

Plant-Isolated Lipid Nanoparticles (PILPs) have been recently explored and 
gained attention on the account of their isolation from plants like fresh vegetables 
or fruit, ginger, garlic, lemon and grapefruit (Mu et al., 2014; Teng et al., 2016; 
C. Yang, Zhang, & Merlin, 2018). Oral administration of these PILPs effectively 
perform across the target specific tissues like colon and liver (Teng et al., 2018; M. 
Zhang, Xiao, et al., 2016). In contrast to bilayered liposomes, PILPs offer presence 
of glycolipids, phospholipids and digalactosyl-diacylglycerol. However, they lack 
in cholesterol, here presence of cholesterol is essential as it stabilizes the PILPs 
performance potential. To cater this issue, Wang et al. performed synthesis of 
PILPs isolated from grapefruit which was found to be more stable when incubated 
with bovine serum (10%) for 30 days (Q. Wang et al., 2013). Similarly, Zhang et 
al. also reported the formation of ginger based PLNPs that was found to be stable 
and efficient in preventing colitis-associated colon cancer (M. Zhang, Viennois, 
et al., 2016). The anticancer activity can be attributed to the inherent presence of 
secondary metabolites, peptides, proteins and mRNA in the encapsulating ginger. 
However, further studies suggests that PILPs can be also acquired via self-assembly 
(Jung, Yang, Viennois, Zhang, & Merlin, 2019; C. Yang et al., 2018).

Polymer-Based Nanomaterial

Polymer based nanomaterials (PBNs) have gained significant interest in due time 
as a result of their inherent morphological properties (Cano et al., 2019, 2020). 
Typically for therapeutic application, PBNs offer advantage of protecting the drug 
as well as controlled release thereby enabling the enhanced overall therapeutic index 
and bioavailability (Cano et al., 2019, 2020). Adapting polymer nanomaterials for 
targeted drug delivery, employs use of two configurations i.e., either in form of a 
reservoir (similar to a capsule) or in form of a matrix (sphere) (As shown in Fig. 2) 
(Christoforidis, Chang, Jiang, Wang, & Cebulla, 2012). Considering the profile of 
drug to be loaded as well as administration route, the synthesis technique for PBNs 
is selected (Jawahar & Meyyanathan, 2012). Generally, two strategies are employed 
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i.e. polymer dispersion or polymerization (Pinto Reis, Neufeld, Ribeiro, & Veiga, 
2006). The initial selectivity of polymer is a critical stage, typically for drug delivery 
applications wide variety of polymers are being explored which chiefly involve 
dendrimers, micelles, polymer-drug conjugates. Dendrimers are widely explored 
polymers for clinical applications as they exhibit compartmentalized structure, 
hyperbranching and high monodispersity. A precise control in the branches of these 
polymers allows realization of PBN’s with size range of 1-5 nm. Their realization 
can be performed effectively using polymerization allowing them to gain spherical 
shape with in build cavities thereby offering space of entrapment of therapeutic 
agents. Interestingly significant entrapment is obtained with higher generation of 
dendrimers in contrast to lower generation ones. Besides, dendrimers comprise of 
free end groups, which can be modified for providing further scope for conjugating 
biocompatible compounds to improve low cytotoxicity and better bio-permeability 
of the molecule. Such kind of surface modifications can also be practised to 
further enhance the target-specific delivery of therapeutic agents. The dendrimer 
assembling process is generally done either using encapsulation or complexation, 
therefore enabling them attractive vehicles for the delivery of biologically active 
molecules to the target locations (Hsu, Bugno, Lee, & Hong, 2017; Mendes, Pan, 
& Torchilin, 2017).

Micelles are another type of polymers that are explored for systemic delivery of 
water-insoluble therapeutic agents. Micelles generally offers dimensions less than 100 
nm allowing component molecules to get arranged in spheroidal structure enabling 
the overall structure to appear as a mantle of hydrophilic groups surrounding the 
hydrophobic cores. The presence of hydrophilic surface acts as a defence against 
nonspecific uptake by the reticuloendothelial system, thus, ensures their high stability 
within physiological systems. On the other hand, the hydrophobic core offers strong 

Figure 2. Schematic illustration of various types of polymer-based nanomaterials
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attraction towards the water-insoluble, hydrophobic therapeutic agents. However, 
the component molecules can get themselves linked to the hydrophobic core via 
covalent forces.

Table 1. Recent advances of PBNs as potential candidate in drug delivery applications

Type of PBN’s
Drug 

Formulation 
Loaded

Active Polymer Therapeutic 
Application Reference

Nanocapsule

Amphotericin B poly(ε-
caprolactone) anti-leishmanial (Saqib et al., 

2020)

Fenofibrate

Copolymers based 
on methacrylic 
acid and methyl 

methacrylate

Oral delivery
(Torres-Flores, 

Nazende, & Emre, 
2019)

Ciprofloxacin
poly(lactide-co- 

glycolide); poly(ε-
caprolactone)

Tissue regeneration 
and accelerated 
healing, anti-
inflammatory

(Günday et al., 
2020)

Curcumin

poly(lactide-
co- glycolide); 
poly(ethylene 

glycol)

antibacterial activity, 
anticancer

(Bechnak, 
Khalil, El Kurdi, 

Khnayzer, & 
Patra, 2020; Gao 

et al., 2020)

Pegademase 
bovine

poly(ethylene 
glycol)

immunodeficiency 
disease

(Moncalvo, 
Martinez 

Espinoza, & 
Cellesi, 2020)

Paclitaxel (PTX)

poly(ethylene 
glycol); 

poly(lactide-co-
glycolide); poly(ε-

caprolactone)

Anticancer (active 
against breast, 
pancreatic and 

ovarian and brain 
cancers)

(Avramović, 
Mandić, Savić-
Radojević, & 
Simić, 2020)

Palmarosa oil; 
Geraniol

poly(ε-
caprolactone)

antioxidant, 
antimicrobial

(Jummes et al., 
2020)

Nanosphere

Coumarin-6

poly(ε-
caprolactone); 
poly(lactide-

co- glycolide); 
poly(lactic acid)

Bioimaging
(Szczęch & 

Szczepanowicz, 
2020)

Rapamycin poly(lactide-co- 
glycolide) anti-glioma activity (Escalona-Rayo et 

al., 2019)

Hyperforin Acetalated dextran anti-inflammatory (Traeger et al., 
2020)

Fenofibrate poly(lactide-co- 
glycolide) diabetic retinopathy (Qiu et al., 2019)
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For effectively loading low molecular weight agents, particularly for cancer 
treatment, the active drug is conjugated with polymer. The conjugation of drug 
with polymer overall increases the molecular weight of the drug enabling them to 
promote an EPR effect in cancer cells (Markovsky, Baabur-Cohen, & Satchi-Fainaro, 
2014). In contrast to other polymer type discussed above, covalently conjugated 
drugs are more reliable for sustained drug release and enhanced drug capacity 
(R. Yang, Mondal, Wen, & Mahato, 2017). The polymer drug conjugation can be 
made pH sensitive enabling them to actively perform drug release at the tumour site 
due to acidic environment (Pang et al., 2016). Besides, polymer drug conjugates 
also provide the advantage of offering increased drug bioavailability (R. Yang et 
al., 2017). Towards updated approach recent advances in PBNs for drug delivery 
applications is shown in Table 1.

Non-Polymer Based Nanomaterials

In addition to polymer, lipid-based nanomaterials for therapeutic applications, non-
polymer based nanomaterials like Carbon nanotubes (CNT), carbon dots (CD), 
metallic nanoparticles, quantum dots (QDs) etc are also explored. CNT are allotropes 
of carbon which possess a tube-shaped hollow cylindrical structure (Hasnain et al., 
2018). On the basis of layer arrangement CNTs are classified either as single walled 
nanotube (SWNTs) or multiwalled nanotube (MWNTs), SWNT offer structural 
diameter maximum up to 1nm whereas MWNT offer inner diameter ~ 2 -6 nm and 
outer diameter ~ 5-20 nm (Hasnain et al., 2018). CNT in its raw form is hydrophobic 
therefore, to bring it applicable for drug delivery application they first need to be 
functionalized to be hydrophilic and biocompatible (Z. Liu, Tabakman, Chen, & Dai, 
2009). In order to make CNT biocompatible aromatic drugs like Doxorubicin can 
be attached to the CNT via supramolecular π–π stacking (Z. Liu et al., 2009). Once 
functionalized CNT can act as a carrier in various drug delivery applications enabling 
delivery of the active agents to various organs depending on the functionalization 
(Hasnain et al., 2018; Z. Liu et al., 2009). In addition to active contribution towards 
cancer treatment, CNT has also proved helpful against curing of other diseases as 
well. In a recent report of Leeper et al. combined use of PEG@SWNTs loaded 
with a fluorescent probe and a small-molecule inhibitor of the anti-phagocytic 
CD47-SIRPα signalling axis is supportive in curing atherosclerosis (Flores et al., 
2020). With a potential to penetrate the cells in an eased way, CNTs hold certain 
potential of crossing the blood-brain barrier (BBB) to treat neurological diseases 
(Gonzalez-Carter et al., 2019). Based on these analysis Porter et al. has reported that 
MWNT has highest transportation rate across the human BBB (Gonzalez-Carter et 
al., 2019). In concern to the safety profile, studies suggested that endocytosis of the 
CNTs induces oxidative stress to the cells, indicating a close connection between 
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CNTs and inflammation, fibrosis, and cancer, impeding the translational value of 
this nanocarrier (Dong & Ma, 2019; Mohanta, Patnaik, Sood, & Das, 2019b). CDs 
were accidentally discovered by Xu et al. during the purification of SWNTs (Xu et 
al., 2004). Later on, Sun et al. reported the formation of carbon nanoparticles offering 
luminescence emission across the visible range and near-infrared region that enabled 
fluorescent carbon nanoparticles to be identified as CDs (Sun et al., 2006). Further 
surface functionalization of CDs allows them to be used for different biomedical 
purposes which chiefly covers bio-imaging and drug delivery (Boakye-Yiadom et 
al., 2019). Bioconjugation of CDs involves attachment of active drug with CD via 
non-covalent bonding with surface carboxyl group or via electrostatic interactions 
using functional groups (Yuan et al., 2017; Zeng et al., 2016). The CD based drug 
delivery mechanism involves entering of CDs through endocytosis followed by 
passive diffusion further enabling passive release of conjugated drug inside the cells 
(Kong, Hao, Wei, Cai, & Zhu, 2018). CD offer small size (~10 nm), this allows them 
to provide hopes for overcoming the challenge of delivering drugs across the BBB 
for the treatment of neurological diseases. In this context, Leblanc et al. reported 
the development of CDs conjugated with targeting ligand and therapeutic drugs in 
order to treat glioblastoma brain tumours (Hettiarachchi et al., 2019). In addition 
to this the same group also developed carbon nitride dots that are reported to be 
effective in treating pediatric glioblastoma (Liyanage et al., 2020). Further testing 
on zebrafish model indicated the suitability of carbon nitride to penetrate BBB 
(Liyanage et al., 2020). Besides, these advantages, a further exploration of CD in 
therapeutic applications is still desired (Pardo, Peng, & Leblanc, 2018).

Metallic nanoparticles offering size dimensions (1 -100 nm) are also considered 
for potential use in medical applications. They are mostly made up of cobalt, nickel, 
iron, gold, and their respective oxides like magnetite, maghemite, cobalt ferrite 
and chromium dioxide. They can be synthesized easily and modified with versatile 
functional chemical groups, which allows them to be decorated with various molecules 
including therapeutic agents, biological molecules like peptides, proteins, and DNA. 
As a carrier, they provide unique characteristics such as magnetic properties besides 
stability and biocompatibility. Thus, magnetic nanoparticles can be targeted to a 
specific location in the body by using an external magnetic field. At present iron 
oxide is being widely explored as drug carrier due to its appreciable biocompatibility, 
relatively low toxicity, and their ability to randomly flip direction of magnetization 
under the influence of temperature (supramagnetism) (Cuenca et al., 2006). They 
can be induced into magnetic resonance by self-heating or external magnetic field 
(Ali et al., 2016). Pristine iron oxide nanoparticles tend to agglomerate and result 
in the uptake followed by clearance via RES (Ali et al., 2016). Therefore, to limit 
this challenge surface medication using PEG, chitosan or gelatine can be preferred 
(Ali et al., 2016). According to the recent report of Zanganeh et al. ferumoxytol 
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(FDA-approved iron oxide nanoparticle) can be used to treat anaemia as well as 
inhibit growth of tumour by inducing pro-inflammatory macrophage polarization 
in tumor tissues (Zanganeh et al., 2016). Besides, the authors also stated that 
prophylactic administration of iron oxide nanoparticles in vivo was also found to 
limit the development of hepatic metastasis (Zanganeh et al., 2016). These facts 
suggests the positive prospect of employing ferumoxytol in treating cancer patients 
(Ali et al., 2016). Gold nanoparticles are another type of metallic nanoparticle that 
are widely explore for drug delivery as well as diagnostic applications (Tian et al., 
2016; Yetisgin et al., 2020). The key reason for their high selectivity is based on their 
unique optical and localized surface plasmon resonance as well as relatively low 
cytotoxicity. When the light with suitable wavelength (as external stimuli) is made 
to fall on the gold nanoparticles, they exhibit photothermal conversion and heat up 
the targeted tumour tissue to kill the cancer cells. Besides, potential selective use 
of gold nanoparticles for drug delivery is also considered on the account of the fact 
that light irradiation can trigger the drug release (Tian et al., 2016).

Silica-Based Nanoparticles are also another type of non-polymer based 
nanomaterials that have gained significant attention as a potential tool in targeted 
drug delivery (F. Chen, Hableel, Zhao, & Jokerst, 2018). They offer a large surface 
area covered with polar silanol groups, which are suitable for water adsorption and 
enhance the stability of therapeutic agents. In addition, silica-based nanoparticles 
offer ability to interact with nucleic acids, which allows their use as targeted delivery 
vehicles (Bharali et al., 2005). As per the concentration and release of the drug, their 
pore size and density can be tailored to achieve a constant delivery rate. Besides, 
passivation of therapeutic agents within silica-based nanoparticles provides solid 
media for the delivery of agents. The pores of silica nanoparticles can be capped 
with various stimuli-responsive molecules to increase the rate of drug release in the 
targeted tissue (Mura, Nicolas, & Couvreur, 2013). Porous silica offers extremely 
hydrophobic as well as rigid matrix composition which enables them to make it 
simpler to stay homogeneously distributed in water as well as prevent deterioration 
shifts due to heat, pH, hydrolysis mechanical, and stress (Bagheri et al., 2018). It is 
clear that each carrier offers unique features however, they also face certain challenges 
that overall effects their performance in drug delivery applications. In this aspect, 
a summarized comparative matrix is shown as Table 2 for better understanding.
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PROGRESS IN DEVELOPMENT OF THERAPEUTIC 
NANOMATERIALS FOR EFFECTIVE DRUG DELIVERY

An ideal targeted delivery refers to the successful track of therapeutic agent and its 
dominant accumulation at a desirable site. Towards efficient targeted delivery, the 
agent-loaded system should be retained in the physiological system for the desirable 
time, evade the immunological system, target specific cell/tissue, and release the 
loaded therapeutic agent (Davis, Chen, & Shin, 2008). Currently, targeted delivery of 
nanoparticles is widely studied in treating cancer, infectious diseases, Autoimmune 
Diseases, Cardiovascular Diseases, Neurodegenerative Diseases, Ocular Diseases, 
Pulmonary Diseases, Regenerative Therapy. Table 3 summarizes the current trends 
in the activity and performance estimation of therapeutic nanomaterials in pathway 
of treating significant health diseases.

Table 2. Comparative matrix summarizing advances of non-polymer based 
nanomaterials in drug delivery applications

Therapeutic 
Nanomaterials Merits Challenges Safety Profile Ref.

Lipid based 
Nanomaterials

• Biocompatible 
• Eased modification 
• Self assembly 
• Better drug loading 
potential

• Rapid clearance 
• Off Target build up Good (Naumenko et 

al., 2019)

Polymer 
Nanomaterials

• Biocompatible 
• Self assembly 
• Prolonged 
therapeutic efficacy 
• High surface to 
volume ratio 
• Capacity to entrap 
large molecular 
weight hydrophilic/
hydrophobic entities

• Low drug loading 
potential 
• Less effective in case of 
polymer drug conjugates 
• Off target buildup

• Good 
• Toxicity 
issues with 
cationic 
dendrimers

(Wiwanitkit, 
2019)

Non-Polymer 
based 

Nanomaterials

• Easily internalized 
by cells 
• High drug loading 
• High fluorescent 
quality 
• Better performance 
in when directly 
conjugated with drug 
• Potent magnetic 
and catalytic 
properties 
• Biocompatibility

• Slow drug release 
• Insoluble unless 
functionalized 
• Performance directly 
related to size, shape, and 
surface charge

• Conflicting 
toxicity 
evidence 
• Toxicity 
depends on 
surface charge 
• Morphology 
induced toxicity

(Boakye-
Yiadom et al., 
2019; Dong 
& Ma, 2019; 

Gonzalez-
Carter et 
al., 2019; 
Mohanta, 
Patnaik, 

Sood, & Das, 
2019a)
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Table 3. Current trends in activity and performance estimation of therapeutic 
nanomaterials

Disease Nanomaterial Type Drug Conjugate Evaluation Ref.

Cancer

PEG-Platinum Dendrimer α-cyclodextrin Pre-clinical

(X. Wang, 
Wang, Zhang, 

& Cheng, 
2016)

Polypropylene sulfide 
PEG- serine-folic acid 
zinc phtalocyanine Micelle

doxorubicin Clinical 
phase I

(Dai et al., 
2016)

PEG-polyaspartate 
polymeric micelle paclitaxel Clinical 

phase III
(Fujiwara et 

al., 2019)

PEGylated single 
walled CNT CNT cisplatin Pre-clinical (Bhirde et al., 

2010)

Hollow mesoporous 
copper sulfide 
nanoparticle with iron 
oxides/ hyaluronic acid

Metallic 
nanonanomaterials doxorubicin Pre-clinical

(Feng et al., 
2017)

Azo-functionalized 
magnetite nanoparticles

(L. Chen et 
al., 2016)

PEGylated gold 
nanorods

(J. Chen et al., 
2018)

Peptide-functionalized 
mesoporous silica

Silica based 
Nano materials

Lactobionic acid, 
doxorubicin

Pre-clinical

(Y. Liu et al., 
2015)

PEGylated mesoporous 
silica

amino-β-
cyclodextrin, 
doxorubicin

(Q. Zhang et 
al., 2014)

Mesoporous silica

cytochrome 
C conjugated 

lactobionic acid 
doxorubicin

(Pei et al., 
2018)

Infectious 
Disease

Silver nanoparticle

Metallic 
nanomaterials

Fluconazole

In vitro

(Longhi et al., 
2016)

Silver and Gold 
nanoparticle Ampicillin (Brown et al., 

2012)

Polyethyleneimine 
capped ZnO 
nanoparticles

Tetracycline (Chakraborti 
et al., 2014)

Gold Nanoparticles Vancomycin, 
Ampicillin

(Shimizu, 
Otsuka, 
Sawada, 

Maejima, & 
Shirotake, 

2014)

continued on following page
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CHALLENGES IN FRONT OF THERAPEUTIC NANOMATERIALS

Utilization of nanoparticles can anticipate promising results for the treatment of a 
large variety of diseases. However, approaches based on nanoparticle technologies, 
unfortunately, come with some limitations and disadvantages. The most significant 
challenge that should be taken into consideration carefully while using administering 
the nanomaterial based drug in living organisms is nanoparticle toxicity, which 
eludes from the phagocytic system and refrains the physiological barrier, and initiate 

Table 3. Continued

Disease Nanomaterial Type Drug Conjugate Evaluation Ref.

Autoimmune 
Diseases

Poly(hexylcyanoacryla 
e) nanoparticles; 
Poly(isohexyl cyanate) 
nanoparticles

Polymeric

Zidovudine

Pre-clinical

(Dembri, 
Montisci, 
Gantier, 

Chacun, & 
Ponchel, 

2001; 
Löbenberg, 

Maas, & 
Kreuter, 
1998)

PLGA nanoparticles Ritonavir, Lopinavir, 
Efavirenz

(Liptrott, 
Giardiello, 
McDonald, 
Rannard, & 
Owen, 2018; 

Pham, Li, 
Guo, Penzak, 

& Dong, 
2016)

Poly(epsilon-
caprolactone) Saquinavir In vitro (Shah & 

Amiji, 2006)

Cardiovascular 
Diseases

Liposome

Lipid Based 
Nanomaterial

Phosphatidylcholine 
and cholesterol 

loaded with sirolimus

-

(Haeri et al., 
2017)

Niosome nanoparticle Carvedilol

(Arzani, 
Haeri, 

Daeihamed, 
Bakhtiari-

Kaboutaraki, 
& 

Dadashzadeh, 
2015)
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immune response are only some of the issues (Ferrari, 2005). As the nanoparticle 
sizes get reduces, it become more prone to aggregation as well as its dispersion 
into the nucleus steadily elevates, which in return results to intrinsic toxicity both 
at cellular and systemic level (Su & Sun, 2013). Although surface functionalization 
is an effective approach but their eluding potential from the phagocytic system may 
trigger cellular toxicity (S. D. Li & Huang, 2010).Another factor that controls the 
applicability of therapeutic nanomaterials is protein corona. When nanoparticles are 
administered in human bodies, their interaction with the physiological environment 
forms protein corona around the nanoparticle (Z. Zhang et al., 2019). The protein 
corona is a major obstacle for the bench-to-bedside translation of targeted drug 
delivery systems as it induces unfavourable biodistribution (Z. Zhang et al., 2019). 
However, recent technological advances have improved the stability of nanocarriers 
using various surface modifications (Guerrini, Alvarez-Puebla, & Pazos-Perez, 
2018). Besides, new discoveries have also helped us to challenge the old paradigm 
through new breakthroughs. For instance, Chan et al. re-examined the entry of 
nanoparticles into the solid tumours via four different models (Sindhwani et al., 
2020). Here the authors reported that tumour vasculature is mostly continuous and 
offer a very low gap frequency. Up to 97% of nanoparticles enter solid tumours via 
an active process through endothelial cells, and passive extravasation contributed 
only a small fraction of the nanoparticle tumour accumulation (Sindhwani et al., 
2020). Therefore, these findings encourage the refined design of the nanoparticle 
to improve its targeting potential. Despite of getting approved from Food and Drug 
Administration (FDA), large scale manufacture of nanomedicine is still challenging. 
This mostly occur on the account of factors like reduced active material loading, 
difficulty in homogeneous production, and purification (D’Mello et al., 2017). 
Most importantly, the size of the nanoparticle is the critical factor that ensures the 
overall absorption, biodistribution, and excretion of the nanoparticles (D’Mello et 
al., 2017). Thus, it is clear that with improving the methods of better drug delivery, 
the complexity of nanoparticles is also found to be increasing exponentially and is 
expected to further increase in the coming years.

FUTURE PROSPECTS

Over the years, an extensive study and development of nanoparticle-based therapeutic 
agents has been performed towards progressive treatment of many diseases. At 
present, the majority of nanoparticles employed for the targeting delivery approach 
are composed of either polymers or lipids. Although polymeric nanoparticles 
demonstrate great prospects in disease therapy, but certain demerits like usage of 
organic solvents in their fabrication process, biocompatibility, cytotoxicity etc needs 
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to be scaled up. In contrast to polymer-based nanomaterials, lipid-based nanomaterials 
possess similarity to cell membrane thereby enabling them to exhibit the potential 
of crossing hard-to-reach sites with ease (without any surface functionalization). 
Thus, lipid-based nanomaterials can emerge as the next generation of therapeutics. 
Nanoparticle-based delivery systems contribute significantly towards targeted therapy 
with improved performance and reduced side effect (with better bioavailability), 
however, more exploration is required for improving their clearance and toxicity of 
nanoparticles. In addition to this, the cost of nanomedicine manufacturing at larger 
scale is another important issue needing to be addressed. The marginalized financial 
support prevents the progress of therapeutics towards better market inception. 
Consequently, through better understanding of characteristics and behaviour of 
nanomaterials with biological environment or improving the mechanisms of action 
in disease curing, the factors associated with weak response of nanomaterial in drug 
delivery systems can be rectified.

CONCLUSION

This chapter outlines a discussion on the recent advances, limitations as well as 
future prospects of nanomaterial induced drug delivery system. A critical observation 
indicates that effectivity of nanomaterial based therapeutics is confined to act 
against mitigation of one single disease. However, with further improvement and 
optimizations, formulations of advanced nanomaterial based therapeutics that are 
active against multiple diseases can be projected. Moreover, it is clear that introduction 
of nanomaterial in drug delivery has revolutionized the entire medical field through 
new improved methods applicable in medical imaging and diagnostics or formulation 
of therapeutics (either as vaccine or biomaterials in regenerative medicine). Hence, 
through this chapter, the scholars who are actively working in the field domain of 
biomedical engineering, nanotechnology, microbiology and biotechnology can 
explore suitable insights and ideas to develop nanomaterial based therapeutics 
effective against multiple diseases including newly introduced Covid-19 infection.
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ABSTRACT

Nanofiber systems with various composition and biological properties have been 
extensively studied for various biomedical applications. The electrospinning process 
has been regarded as one of the versatile techniques to prepare nano to microfibers. 
The electrospun nanofibers are being used especially in textile industries, sensors, 
filters, protective clothing, energy storage materials, and biomedical applications. 
In the last decade, electrospun nanofibers have been highly investigated for drug 
delivery systems to achieve a therapeutic effect in specifically targeted sites. Various 
drugs or biomolecules can be easily loaded into the electrospun nanofibers by direct 
or indirect methods. The proper selection of polymers (or blends of various polymers), 
drugs, solvents to prepare the composite nanofibers with desired morphology are 
the tools in enhancing the bioavailability, stability, and bioactivity of drugs.

INTRODUCTION

Nanofibers were initially defined as fibers with a dimeter of less than 100 nm in a 
narrow sense. However, in a broad sense, the nanofibers refer to the fibers with a 
diameter below 1000 nm (or 1μm) (Kajdič, Planinšek, Gašperlin, & Kocbek, 2019; 
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Roodbar Shojaei, Hajalilou, Tabatabaei, Mobli, & Aghbashlo, 2019; Rošic, Kocbek, 
Pelipenko, Kristl, & Baumgartner, 2013). By reducing the diameter of fiber from 
micrometer to nanometers, several amazing features, for example, high surface to 
volume ratio, superior mechanical performance, flexibility, etc appeared. These 
properties make the nanofibers a promising candidate for various applications 
such as biomedical, filtration, sensor, personal care, energy storage, wastewater 
treatment, etc (Bhattarai, Bachu, Boddu, & Bhaduri, 2019; Pant, Ojha, Kim, Park, 
& Park, 2019; Pant et al., 2013; Pant et al., 2012; Pant, Park, Ojha, Park, et al., 
2018; Pant, Park, & Park, 2019a; T. Xu et al., 2020). There are several techniques to 
fabricate the nanofibers from various polymer solutions. The examples include phase 
separation, drawing, template synthesis, and electrospinning (Gugulothu, Barhoum, 
Nerella, Ajmer, & Bechelany, 2019). Among the various methods, electrospinning 
is the most popular approach for generating fibers from polymeric solutions due 
to its outstanding feathers such as simplicity, versatility, and cost-effectiveness 
(Pant, Park, et al., 2019a). So far a large number of natural and synthetic polymers 
as well as their blends have been electrospun into the nanofiber form for various 
applications, including biomedical (Agarwal, Wendorff, & Greiner, 2008; Lagaron, 
Solouk, Castro, & Echegoyen, 2017; Pant, Park, et al., 2019a).

History of Electrospinning

In 1745, Bose described that a high electric potential is required to generate aerosols 
from fluid drops (Bose, 1745). Later, in 1882, Lord Rayleigh calculated the quantity 
of charge required for overcoming the surface tension of a drop (Rayleigh, 1882). 
In 1902, Cooley patented (Patent No: 692631) electrospinning and described it 
as an apparatus for electrically dispersing fluids (Anton, 1934). Anton Formhals 
developed preparation methods and designed the apparatus (Formhals, 1934). He 
published a series of patents between 1934 and 1944. From 1964 to 1969, Sir Geoffrey 
Ingram Taylor brought a significant advancement in the theoretical understanding of 
electrospinning technique. Taylor defined the characteristic droplet shape, which is 
now known as the “Taylor cone” (Taylor, 1969). Later on (the late 1990s), several 
research groups, notably Ranker, popularized electrospinning to study the structural 
morphology of a wide variety of polymeric nanofibers (Bognitzki et al., 2001; Doshi 
& Reneker, 1995; Fong, Chun, & Reneker, 1999). Since then, the electrospinning 
technique has become popular for preparing nanofibers.
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Electrospinning Setup

Fig. 1A illustrates a basic configuration of the electrospinning setup. The basic 
electrospinning setup consists of four parts: a high voltage power supply, a capillary 
tube containing a polymer solution, a spinneret or nozzle, and a collector (Pant, 
Park, et al., 2019a; S. Ramakrishna et al., 2006). The nanofibers can be achieved 
either from the polymer solution prepared by dissolving in the proper solvent or 
a polymer melt. In the typical electrospinning process, a polymer solution/melt is 
taken in a syringe and a high voltage is applied into it to induce a charge on the 
surface of droplet (Wang, Ding, Sun, Wang, & Yu, 2013). At high intensity of the 
electric field, the droplet deforms into the conical object, which is known as the 
Taylor cone. Then, the charged jet is ejected from the Taylor cone and blows towards 
the collector. During the flow of jets, the solvent evaporates leaving behind dry 
polymer on the collector surface (S. A. F. Ramakrishna, Kazutoshi%A Teo, Wee-
Eong%A Lim, Teik-Cheng%A Ma, Zuwei; Wang et al., 2013). The morphology of 
nanofibers obtained by the electrospinning process is given in figure. 1B. As in the 
figure, continuous nanofibers can be obtained by this technique.

Affecting Parameters on Electrospinning

There are several parameters that can affect the electrospinning process and properties 
of nanofibers (Doshi & Reneker, 1995; Pant, Park, et al., 2019a; Thenmozhi, 
Dharmaraj, Kadirvelu, & Kim, 2017). The affecting parameters can be categorized 

Figure 1. A typical electrospinning setup (A) and morphology of electrospun 
nanofibers (B)
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as solution parameters, process parameters, and ambient parameters. Table 1 presents 
a list of key factors affecting the electrospinning process.

It has been observed that all of the above parameters affect the properties of 
electrospun nanofibers; therefore, it is important to optimize the various parameters 
to obtain the good morphology of nanofibers with desired properties. The effect of 
the various parameters on the properties of nanofibers is summarized in Table 2.

Table 1. List of various parameters affecting the properties of nanofibers

Solution Parameter Process Parameter Ambient Parameter

- Molecular weight of polymer 
- Type of solvent 
- Concentration of solution 
- Viscosity of solution 
- Conductivity of solution 
- Surface tension 
- Dielectric constant 
- Dipole moment

- Applied electric field 
- Distance from the tip to the collector. 
- Flow rate 
- Nozzle type 
- Rotation speed of the collecting drum

- Humidity 
- Temperature

Table 2. The effect of various electrospinning parameters on the properties of 
nanofibers

Parameter Effect

Applied voltage Fiber diameter is reduced at higher voltage.

Concentration of 
solution At higher concentration the nanofibers with higher diameter are produced.

Flow rate If the flow rate is increased, the fiber diameter also increases.

Conductivity of solution High conductivity reduces the diameter of fibers.

Solution viscosity The highly viscous solution forms thick nanofibers. 
The low viscous solution leads to the fine and short nanofibers.

Tip-to-collector distance If the distance is too long, thin nanofibers may form. 
Short distance may help to form a film.

Humidity High humidity leads to the formation of beaded and porous nanofibers.

Solvent volatility If the solvent is highly volatile, nanofibers with higher porosity and enhanced 
surface area will be formed.

Temperature Nanofibers with uniform temperature can be obtained at higher temperature.

(Casper, Stephens, Tassi, Chase, & Rabolt, 2004; Doshi & Reneker, 1995; Pant, Park, et al., 2019a; Yang et 
al., 2004).
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Biomedical Applications of Electrospun Nanofibers

Electrospun nanofibers have been considered amongst the most promising candidates 
for biomedical applications. The electrospun nanofibers possess several merits such 
as high surface area to volume ratio along with tunable diameter, and porosity, 
suitable flexibility, ease of fabrication, and potential to immobilize various active 
agents (Pant, Park, Ojha, Kim, et al., 2018; Pant, Park, et al., 2019a). The electrospun 
nanofibers are structurally similar to the natural extracellular matrix (ECM). Also, the 
mechanical properties of electrospun nanofibers are suitable for various biomedical 
applications. So far, the electrospun nanofibers have been used in tissue engineering, 
wound healing, biosensor, stent coating, drug delivery, implants, cosmetics, facial 
masks, etc. (Mwiiri & Daniels, 2020; Pant, Park, Ojha, Kim, et al., 2018; Pant, Park, 
et al., 2019a; Pant, Park, & Park, 2019b; Thenmozhi et al., 2017) Fig. 2 depicts some 
of the potential areas of biomedical applications of electrospun nanofibers. Till now, 
many biocompatible polymers (both biodegradable and non-biodegradable) have 
been successfully electrospun into the fiber form to be applied in the biomedical 
fields. Several synthetic, semisynthetic, biological polymers and their blends have 
been electrospun into the nanofibers for biomedical fields (da Silva & Córdoba de 
Torresi, 2019; Hu et al., 2014). The current research trends in biomedical fields 
can be categorized into three topics- tissue engineering, drug delivery, and enzyme 
immobilization (Pant, Park, et al., 2019a).

Figure 2. Some potential areas of biomedical applications of electrospun nanofibers
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Drug Delivery Applications of Electrospun Nanofibers

Currently, several diseases are treated with drugs. Such drugs or medicines, can 
be introduced to the patient’s body by several routes. For example, most of the 
drugs are available in the form of tablets, capsules, or pills and can be swallowed 
(oral administration). Some drugs are directly sent to the bloodstream by injection 
(intravenous administration). Due to the susceptibility to degradation and deactivation, 
more sophisticated drug delivery systems are required. Therefore, it is recommended 
that the drugs are loaded into a matrix until the moment of release. Over the past 
decades, numerous carriers for drug delivery have been developed. Electrospinning 
has appeared as one of the promising technique in drug delivery. In recent years, 
electrospun nanofibers have been extensively studied for the controlled and sustained 
release of various drugs. Several types of drugs, including anticancer agents, antiviral 
agents, cardiovascular agents, anti-inflammatory drugs, analgesic drugs, DNA, RNA, 
protein, etc have been encapsulated into the nanofibers (Balusamy, Celebioglu, 
Senthamizhan, & Uyar, 2020; Karthikeyan, Guhathakarta, Rajaram, & Korrapati, 
2012; Pant, Park, et al., 2019a; Singh, Garg, Goyal, & Rath, 2016; Son, Kim, & Yoo, 
2014; Topuz, Kilic, Durgun, & Szekely, 2021; X. Xu, Chen, Wang, & Jing, 2009; Yu 
et al., 2009; Zahedi et al., 2012). The electrospinning method offers the benefits of 
encapsulating both hydrophobic and hydrophilic drugs with high encapsulation and 
desired release efficiency. Most importantly, the release behavior of the drugs can 
be controlled by tailoring the morphological features of the electrospun nanofibers 
such as diameter and porosity, and adjusting the electrospinning parameter such as 
applied solvents and types of polymers, and the concentration of drugs, etc.

Drug Incorporation Techniques

Several types of electrospinning and drug encapsulation approaches have been 
developed for successful drug incorporation into the nanofiber membrane. As in 
Fig. 3, these approaches involve blending, coaxial, emulsion, surface modification 
(Cornejo Bravo, Villarreal Gómez, & Serrano Medina, 2016; Zamani, Prabhakaran, 
& Ramakrishna, 2013).

Blending Electrospinning

Blending is a most common method of incorporating drug molecules into the 
electrospun fibers. In this method, a homogenous drug/polymer solution is 
prepared and electrospun into the nanofibers with a single phase. In this method, 
the physiochemical properties of the polymer are important because they affect 
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the drug-polymer interactions, incorporation of drugs, and release behavior of the 
drugs (Zamani et al., 2013).

Coaxial Electrospinning

It is a modified version of the conventional electrospinning for preparing core-
sheath form of nanofibers. In coaxial electrospinning, a coaxial spinneret needle 
consisting of an inner and outer nozzle arrangement is used. Two separate solutions 
are filled in the inner and outer nozzles to obtain a core-sheath structured fibers. 
In the core-sheath nanofibers, one polymer fiber (core) is surrounded by another 
(sheath) and hence the sheath fiber effectively controls the release kinetics of the 
drugs. Coaxial electrospinning is useful for multiple drug delivery systems (Pant, 
Park, et al., 2019a; Zamani et al., 2013).

Emulsion Electrospinning

Emulsion electrospinning is a promising method for preparing a core-sheath structured 
fibers that can encapsulate various drugs. In this technique, an emulsion is the oil 
phase is created by the emulsion of the drugs (or aqueous solution of protein) in the 
hydrophobic polymer solution. After carrying out the spinning process, the drug-
loaded phase is administrated within the fibers, if a low molecular weight drug is 
used, or a core-sheath structured fiber is formed when macromolecules are in the 
aqueous phase. The emulsion technique does not require a common solvent for 
drugs and polymers. The drugs and polymers can be dissolved in suitable solvents. 
Hence, several hydrophobic polymers and hydrophilic drugs can be combined (Imani, 
Yousefzadeh, & Nour, 2018; Nikmaram et al., 2017).

Surface Modification

Surface modification is another simple and promising approach for introducing drug 
molecules directly into the nanofibers. In this method, the therapeutic agents or drugs 
are conjugated to the surface of electrospun nanofibers. Several secondary forces 
such as hydrogen bonding, Van der Waals interactions, electrostatic forces help to 
retain the drugs onto nanofiber surface. Also, the fiber surface can be functionalized 
with suitable functional groups such as amine, carboxyl, thiol, hydroxyl, etc and 
the drugs can be immobilized on its surface. This approach is helpful to avid initial 
burst release of the drugs (Mohammadian & Eatemadi, 2017).
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It should be noted that the type of electrospinning and drug loading processes 
greatly influence the properties of the fibers, which affect the drug release behavior. 
For example, the drug release rate can be controlled based on the fiber morphology, 
diameter, porosity, and drug binding mechanism, etc (Agrahari, Agrahari, Meng, & 
Mitra, 2017). Therefore, the drug loading methods should be chosen accordingly to 
obtain the desired results. In general, all drug incorporation techniques have their 
advantages and limitations, which can be summarized as in the Table 3 below.

Figure 3. Schematic representation of the spinneret for blend, coaxial, and emulsion 
electrospinning. Published by the Royal Society of Chemistry (Nikmaram et al., 2017)

Table 3. Advantages and limitations of various drug loading methods

Method Advantages Limitations

Blending 
Electrospinning

- Easy and simple method. 
- Improves the mechanical and other 
physiochemical properties of fibers. 
- The drug release rate can be modified.

- A clear understanding of the solvent system as 
well as the phase behavior of the polymer blend is 
required.

Coaxial Electrospinning

- The burst release can be controlled. 
- Enhanced biomolecule functionality. 
- Sustained release for long time. 
- Provides a better therapeutic effects and 
reduces toxicity.

- It requires a special nozzle.

Emulsion 
electrospinning

- No common solvent is required. 
- Several hydrophobic polymers and 
hydrophilic drugs can be combined.

- Only limited drugs can be loaded.

Surface Modification
- Large initial burst release can be 
controlled. 
- Biomolecules are surface immobilized.

- Depends on the nature of polymer and drugs. 
- Functionalization of fibers may be required.

(Cornejo Bravo et al., 2016; Pant, Park, et al., 2019a; Tipduangta et al., 2016)
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Drug Incorporated Nanofibers

In recent years, several biocompatible polymers nanofibers have been studied for 
drug delivery applications. Among them, biodegradable polymers have gained 
special attention because of some advantages. For example, if the biodegradable 
polymers are used as drug carrier and implant materials, no secondary surgery is 
required to remove the implant (Torres-Martinez, Cornejo Bravo, Serrano Medina, 
Pérez González, & Villarreal Gómez, 2018). Polymers such as poly(α-caprolactone) 
(PCL), chitosan, poly (vinyl alcohol) (PVA), poly (vinylpyrrolidone) (PVP) have 
been studied for drug delivery application (Potrč et al., 2015; Torres-Martinez et 
al., 2018). In the last decades, various types of drugs have been loaded into the 
electrospun nanofibers to study the release behavior. The biocompatible polymers 
used for the drug release neither cause harm to cells nor change the drug properties. 
The electrospun nanofibers go along with diffusion mechanism, thereby showing a 
good sustained release effects. Table 4 shows some examples of different types of 
drug incorporated electrospun nanofibers.

Table 4. Various types of drugs incorporated into the polymeric nanofibers

Drug Type Drug Name Polymer Ref.

Anticancer drug

Doxorubicin PVA-Chitosan (core-sheath) (Yan et al., 2016)

Paclitaxel and Doxorubicin PEG-PLA (X. Xu et al., 2009)

Cisplatin PLA/PLGA (Xie, Tan, & Wang, 2008)

Fusidic acid and 
rifampicin PLGA (Gilchrist et al., 2013)

Cisplatin PLA (Zhang et al., 2014)

Tamoxifen citrate EC and PVP (Zheng et al., 2021)

Antibiotic drug

Ciprofloxacin PVA/PMMA (core-sheath)
(Zupančič, Sinha-Ray, 
Sinha-Ray, Kristl, & 
Yarin, 2016)

Mefoxin PLGA (Kim et al., 2004)

Tetracycline hydrochloride PLA/PCL (Zahedi et al., 2012)

Tetracycline and 
amphotericin B PCL-PLA (Buschle-Diller et al., 

2007)

Cardiovascular 
drug

Carvedilol PCL (Potrč et al., 2015)

Nicorandil Hyaluronic acid-PVA (Singh et al., 2016)

Dipyridamole PLA (Bakola et al., 2018)

Cilostazol PCL (Rychter et al., 2018)

continued on following page
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CHALLENGES AND FUTURE PERSPECTIVES

Undoubtedly, electrospinning is a widely accepted strategy for fabricating nanofibers. 
Although the benefits of electrospinning have been largely demonstrated in drug 
delivery applications, there are several issues in practical use. For example, 
implementation of the product in an efficient way is still challenging. So far, many 
pharmaceutical drugs have been incorporated into the electrospun nanofibers; 
however, these studies are just limited in drug loadings, characterizations, and release 
behaviors. Most of the studies have pointed out the initial burst release of drugs as 
a major problem in the drug delivery system. Despite the tremendous efforts by the 
researchers, much of the researches conducted are in vitro. In the existing literature, 

Table 4. Continued 

Drug Type Drug Name Polymer Ref.

Anti-
inflammatory 
drug

Indomethacin PVP
(Lopez, Shearman, 
Gaisford, & Williams, 
2014)

Fenbufen PLGA/gelatin (Meng et al., 2011)

Ibuprofen PVP (Yu et al., 2009)

Naproxen PVP (Wu, Yu, Li, & Feng, 
2014)

Ketoprofen CA (Yu et al., 2013)

Aceclofenac Zein/Eudragit (Karthikeyan et al., 2012)

Antihistamine 
drug

Chlorpheniramine maleate PVA (Jaiturong et al., 2018)

Loratadine PVP
(Akhgari, Ghalambor 
Dezfuli, Rezaei, Kiarsi, & 
Abbaspour, 2016)

Diphenhydramine PVA (Dott et al., 2013)

Gastrointestinal 
drug

Metoclopramide 
hydrochloride PCL, PLLA, PLGA

(Tiwari, Tzezana, 
Zussman, & Venkatraman, 
2010)

Contraceptive 
drug

Levonorgestrrel PVA (Blakney, Krogstad, Jiang, 
& Woodrow, 2014)

Maraviroc, 
3′-azido-3′-
deoxythymidine, 
Acyclovir

PLLA/PEO
(Ball, Krogstad, 
Chaowanachan, & 
Woodrow, 2012)

Palliative drug Donepezil PVA (Nagy, Nyul, Wagner, 
Molnar, & Marosi, 2010)

Ethyl cellulose (EC), Poly(vinyl)alcohol (PVA), polyethylene glycol (PEG), polylactic acid (PLA), 
poly(lactic-co-glycolic acid) (PLGA), polymethyl (methacrylate) (PMMA), polyacrolactone (PCL), 
poly(vinylpyrrolidone) (PVP), poly-L-lactic acid (PLLA), cellulose acetate (CA), polyethylene oxide (PEO).
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until now, there is a lack of correct doses and optimized conditions for practical 
use. In addition, there are several challenges in the electrospinning and drug loading 
processes that need to be addressed. For example, mass production, reproducibility, 
and environmental aspects are the issues in electrospinning. Another concern is the 
toxicity of the solvent in polymer solution as the solvent residue might be present in 
the nanofibers. Therefore, deep investigations arenecessary to fully understand the 
interactions among the drugs, polymers, solvents in the solution. The future study 
should be directed to in vivo. With overcoming the existing challenges, it can be 
expected that the electrospinning technique will remain a promising strategy for 
drug delivery applications.

CONCLUSION

In the last decades, the electrospinning technique has made a remarkable contribution 
in various biomedical applications, including drug delivery. Besides drugs, several 
biomolecules have also been incorporated into the electrospun nanofibers via various 
routes. Researches are being carried out to further enhance the drug loading and 
drug release behavior of electrospun nanofibers. The optimized parameters play a 
crucial role in the successful encapsulation and release of drugs/biomolecules. By 
the careful selection of polymers, drugs, and solvents, it is now possible to deliver 
various therapeutic drugs (or biomolecules) in a desired manner using electrospinning 
technology.
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ABSTRACT

In cancer, angiogenesis is a hallmark necessary to supply sufficient nutrients for 
tumor growth and metastasis to distant sites. Therefore, targeting tumor angiogenesis 
emerges as an attractive therapeutic modality to retard neoplastic cell growth 
and dissemination using classes of anti-angiogenic drugs. However, multiple 
administrations of these drugs show adverse effects, precluding their long-term 
usage. Conventional chemotherapeutic drugs, natural compounds, carbon-based 
materials, inorganic and metallic elements, genes, siRNAs, shRNAs, and microRNAs 
can be incorporated into nanovehicles (e.g. polymers) for delivery to specific targets. 
This chapter reviews angiogenesis and the underlying molecular mechanisms that 
regulate this process. Furthermore, this chapter provides an overview on different 
formulations of nanoparticles or nanovectors that employed to combat cancer, 
with a special focus on their therapeutic potentials in the context of the suppressive 
effects on tumor angiogenesis process using in vitro and in vivo models of different 
tumor entities.
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INTRODUCTION

Tumor angiogenesis is a fundamental process consisting of sequential steps for 
developing cancer (Teleanu, Chircov, Grumezescu, & Teleanu, 2020). In 1971, the 
father of angiogenesis Judah Falkman, stated that solid tumors require angiogenesis 
to grow beyond microscopic sizes (Bagley, 2016; Folkman, 1971). Indeed, tumors 
can only grow 1–2 mm3 in diameter without angiogenesis due to lack of oxygen. 
The hypoxic tumor cells then excrete pro-angiogenic molecules, including growth 
factors, bioactive lipids, cytokines, or extracellular matrix (ECM) degrading enzymes, 
that specifically interact with receptors on neighboring vascular endothelium. This 
stimulates the pre-existing vessels to produce new blood vessels toward the tumor 
cells in order to obtain the needed oxygen and nutrients to survive, proliferate, grow 
beyond 2 mm3, and metastasize to distant sites (Lugano, Ramachandran, & Dimberg, 
2020; Nishida, Yano, Nishida, Kamura, & Kojiro, 2006; Teleanu et al., 2020; Weis 
& Cheresh, 2011). Many anti-angiogenic approaches, including antibodies and 
tyrosine kinase inhibitors, have been developed to stop tumor development and reduce 
mortality. However, the benefits of these anti-angiogenic inhibitors are modest, due 
to non-response rates being high for some patients and drug resistance (Lugano et al., 
2020). (Hanahan & Weinberg, 2011) Developing alternative treatment perspectives 
are highly warranted. Nanotechnology-based medicine has been progressively 
advanced in last recent years offering new avenues for cancer-targeted therapies 
(Edis et al., 2021). Cancer nanomedicine can overcome limitations of stability, poor 
biocompatibility, and bioavailability exerted by traditional drugs (Edis et al., 2021). 
Drugs can be either fabricated in nanostructures or loaded alone or in combination 
with small interfering RNAs (siRNAs), small hairpin RNA (shRNAs), microRNAs 
(miRNAs), and drugs into nanocarriers. These nanoparticles can be therapeutically 
used ‘’pristine’’ or functionalized by peptides, monoclonal antibodies, or aptamers 
to specifically facilitate their cancer targeting (Sindhwani & Chan, 2021).

CIRCULATORY SYSTEM

The fundamental difference in the structure of the circulatory system between 
vertebrate and invertebrate is the presence of a continuous monolayer of luminal 
epithelial cells, named as endothelium (Monahan‐Earley, Dvorak, & Aird, 2013; 
Muñoz‐Chápuli, Carmona, Guadix, Macías, & Pérez‐Pomares, 2005). The circulatory 
system facilitates transportation and exchange of nutrients, gases, and metabolic 
wastes to and from body cells. Vertebrates have blood vessels through which blood 
and its components are transported (Muñoz‐Chápuli et al., 2005). The anatomy of 
the blood vessels is structured based on the size and location into capillary, vein, 
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artery, arteriole, and venule. Capillaries, the smallest blood vessels, have one layer 
known as tunica intima. By comparison, the largest blood vessels have three layers. 
The innermost layer, tunica intima, contains endothelium and basement membrane 
(BM), whereas the BM encloses the endothelium along the entire blood vessels 
structure in body. The tunica media, which contains elastic fibers and vascular 
smooth muscle cells (vSMCs), is centered between the tunica intima and tunica 
externa layers. The function of the outermost layer, tunica externa, is to anchor the 
vessels to the surrounding tissue via its fibroelastic connective tissues (McConnell, 
2013; Ng, Lee, Kuo, & Shen, 2018; Zuyong Wang et al., 2019).

The cardiovascular system consists of two well-connected circulatory systems that 
circulate blood in a “closed loop”: the systemic circulatory system and the pulmonary 
circulatory system (Pugsley & Tabrizchi, 2000). In the systemic circulatory system, 
the heart pumps oxygenated blood through arteries that branch into smaller arteries, 
called arterioles, until the oxygenated blood eventually reaches the arterial capillaries. 
As a result of the higher hydrostatic pressure within these capillaries, the oxygenated 
blood diffuses along these capillaries into the interstitial tissues, where oxygen (O2) 
and nutrients can be absorbed by the cells. Carbon dioxide (CO2) and other toxic 
waste products secreted by these interstitial tissues are simultaneously diffused back 
to the venal capillaries due to the higher osmotic pressure within these capillaries. 
The deoxygenated blood is subsequently returned to the heart through venules and 
veins. During pulmonary circulation, the heart then pumps the deoxygenated blood 
to the capillaries of the lung. After that, the deoxygenated blood is diffused from 
these capillaries to the lung because the oxygen partial pressure (OPP) of CO2 in the 
capillaries is greater than that in the surrounding lung tissues. At the same time, O2 
diffuses from the lung tissues into the lung capillaries because the OPP within these 
capillaries is lower than that in the surrounding lung tissues. Following the binding 
of O2 to hemoglobin within the lung capillaries, the oxygenated blood is circulated 
back to the heart, where a new circulatory system begins (Collins, Rudenski, Gibson, 
Howard, & O’Driscoll, 2015; Ortiz-Prado, Dunn, Vasconez, Castillo, & Viscor, 
2019; Potente & Mäkinen, 2017; Pugsley & Tabrizchi, 2000)

The lymphatic system, which is, in contrast, an open-way circulatory system, 
consists of an extensive network of vessels and secondary lymphoid organs, including 
lymph nodes, Peyer’s patches, mucosa-associated lymphoid tissue (MALT), and 
spleens, that are spread all over the body. Lymphatic blood vessels are classified into 
three types: lymphatic capillaries, pre-collecting lymphatics, and collecting lymphatic 
ducts. Each type of vessel has specific structural and functional characteristics. The 
lymphatic capillaries are hollow, thin-walled, blind-ended vessels whose luminal side 
contains a monolayer of endothelial cells with discontinuous intracellular junctions 
to allow fluids to enter. In contrast, the collecting lymphatics have continuous 
intracellular junctions, a basement membrane, and contractile smooth muscle 
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cells that are responsible for pumping lymph through lymph nodes back into the 
bloodstream. The collecting lymphatics also have intraluminal bileaflet valves to 
prevent the backflow of lymph, as well as to ensure unidirectional transport. In the 
lymphatic system, the lymphatic capillaries collect excess interstitial fluid, white 
blood cells, and proteins from the interstitial space and circulate them in the form 
of lymph. The lymphatic capillaries then transport the lymph to the pre-collecting 
lymphatics and eventually to the collecting lymphatic ducts, which return lymph via 
lymph nodes to the cardiovascular circulatory system (H. Li et al., 2019; Potente & 
Mäkinen, 2017; Swartz, 2001).

ENDOTHELIUM

The major components of the endothelium are a monolayer of vascular endothelial 
cells (VECs) and lymphatic endothelial cells (LECs). These cells interact directly 
with the neighboring cells that present in the walls of the vessels, as well as the 
blood and lymph that flow within the vessels (Cahill & Redmond, 2016; Félétou, 
2011). The surface area of the human body is covered by 3000–6000 m2 of 
endothelium. This monolayer of cells is interconnected by junctional proteins 
that regulate permeability (J. A. Adams, Uryash, Lopez, & Sackner, 2021). These 
interconnections are classified into three surfaces. Cohesive surfaces have three main 
types of junctions (gap, adherent and tight) that collectively link the single layer 
of ECs together and establish crosslinks with the neighboring cells. The adhesive 
surfaces serve to adhere the monolayer of endothelium to the basement membrane 
(BM), while specific binding proteins and other molecules present on the luminal 
side of the vascular endothelium regulate the circulating blood cells within the blood 
vessels (Favero, Paganelli, Buffoli, Rodella, & Rezzani, 2014).

The shape and size of the endothelium varies along the vascular network (Setyawati 
et al., 2015). This intrinsic disparity gives the endothelial cells a heterogeneous 
characteristic in structure and function between organs, as well as within the same 
organ (J. A. Adams et al., 2021). The endothelium’s heterogeneity exists at the 
morphological level where there are three categories – discontinuous, continuous 
fenestrated, or continuous non-fenestrated. The heterogeneity promotes the EC roles 
in inflammation, fibrinolysis, inflammation, metabolism, angiogenesis, vascular 
proliferation of the SMCs, vascular permeability, vascular tone, and trafficking 
of white blood cells (Aird, 2007, 2012; Galley & Webster, 2004; Setyawati, Tay, 
Docter, Stauber, & Leong, 2015b).

Pericytes, small contractile cells embedded in the BM, together with ECs, control 
blood flow through capillaries, venules, and arterioles. The pericytes communicate 
with ECs via paracrine signaling and direct physical interactions. An example is the 
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exchange of small molecules and ions between the ECs and pericytes’ cytoplasm 
via the gap junctional complex present in the Peg-and-socket contacts. On the other 
hand, pericytes are anchored to the ECs via the action of adhesion plaques (Armulik, 
Genové, & Betsholtz, 2011; Bergers & Song, 2005; Gerhardt & Betsholtz, 2003; 
Munde, Khandekar, Dive, & Upadhyaya, 2014; Rucker, Wynder, & Thomas, 2000; 
S. Yang et al., 2017).

EXTRACELLULAR MATRIX (ECM)

ECM is a group of molecules organized in a three-dimensional fashion to anchor 
the embedded ECs. ECM compartments are classified into the interstitial matrix 
and the BM, also called basal lamina (Iivanainen, Kähäri, Heino, & Elenius, 
2003; Theocharis, Skandalis, Gialeli, & Karamanos, 2016; Witjas, van den Berg, 
van den Berg, Engelse, & Rabelink, 2019). These two distinct compartments are 
interconnected by anchoring fibrils. The ECs secrete the BMs in a sheet-like structure 
with a thickness of 50-100 nm. This structure also includes type IV collagen, heparan 
sulphate proteoglycans (HSPGs), laminin, and entactin/nidogen (Iivanainen et al., 
2003; Raghu, 2003; Witjas et al., 2019). The intrinsic deference between these 
two compartments is that the BM is directly connected with the endothelium in 
the luminal side of the blood vessels, providing structural support and preventing 
the blood vessels from rupturing. In contrast, the interstitial matrix is located in 
the surrounded interstitial space between cells, which mainly has glycoproteins 
and fibrillar collagens (Iivanainen et al., 2003; Theocharis et al., 2016). The ECM 
compartments interact with endothelial receptors besides providing the ECs’ scaffold 
architecture. The binding of specific ECM molecules to endothelial cells’ receptors 
in the ECM compartment leads to initiation of intracellular signaling cascades 
(Iivanainen et al., 2003; Theocharis et al., 2016). The result of these interactions 
cause enzymatic or non-enzymatic remodeling of ECM (Frantz, Stewart, & Weaver, 
2010; Streuli, 1999), which in turn results in the regulation of cell differentiation, 
migration, proliferation, survival, invasion, angiogenesis and morphogenesis (Akalu 
& Brooks, 2005; Iivanainen et al., 2003; Theocharis et al., 2016).

Vascular endothelium is also covered with specialized polysaccharide rich 
ECM, called endothelial glycocalyx, that extends at least 200–400 nm from the 
endothelial membrane into the lumen of blood vessels (Curry & Adamson, 2012; 
Moore, Murphy, & George, 2021). The main component of endothelial glycocalyx 
includes a network mixture of membrane-bound glycosaminoglycans (GAGs), 
proteoglycans (PGs) and glycoproteins. GAGs are linear chains of carbohydrates 
with an extraordinary structural diversity that allow them to bind to many biological 
molecules. They are characterized into five types: heparan sulfate, chondroitin sulfate, 
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dermatan sulfate, keratan sulfate, and hyaluronan (Tarbell & Cancel, 2016; L. Zhang, 
2010). Proteoglycans, such as HSPG, keratan sulfate proteoglycans, chondroitin 
sulfate proteoglycans (CSPs), keratan sulfate proteoglycans (KSPs), and dermatan 
sulfate proteoglycans (DSPs), are composed of a core protein linked by one or more 
glycosaminoglycans. The synthesis of these molecules is primarily occurring by 
VSMCs, endothelial cells, and other cells of mesenchymal origin. They are involved 
in regulating the structure of the matrix, including differentiation cell growth and 
permeability. Glycoproteins, in contrast, are oligosaccharide chains (glycans) 
covalently attached to proteins through a process called glycosylation (Rek, Krenn, 
& Kungl, 2009). The major glycoproteins of the ECM are fibronectins, laminins 
and tenascins (Reitsma, Slaaf, et al., 2007; Tarbell & Cancel, 2016). Fibronectin 
is made up of two polypeptide chains linked by two disulfide bonds. This type of 
glycoproteins binds to other extracellular proteins, including proteoglycans, fibrin 
and collagen, through specific domains. Fibronectin also binds to cells through 
cellular transmembrane receptors (Hayden, Sowers, & Tyagi, 2005). Laminins are 
essential glycoproteins for the formation and function of BM, being the most abundant 
glycoprotein present in the BM. This large cell-adhesive glycoproteins consist of 
three distinct polypeptide chains, known as α, β, and γ (Hohenester, 2019). Tenascins 
are a family of four structurally related glycoproteins in vertebrate that oligomerize 
into hexameric structure (Tenascin C, Tenascin X, Tenascin W) or trimeric structure 
(Tenascin R) (Jones & Jones, 2000; Kaur & Reinhardt, 2015). The unique structure 
of Tenascins allow them to interact with transmembrane receptor proteins, cytokines 
and other ECM proteins (Matsumoto & Aoki, 2020).

BLOOD VESSEL FORMATION

In a vertebrate embryo, the first organ to develop with high functionality is the 
blood vasculature (Risau & Flamme, 1995). Development of blood vessels during 
embryogenesis involves two processes- angiogenesis and vasculogenesis. These two 
vital processes cooperatively and simultaneously generate a complete functional 
vasculature. The process of the de novo development of blood vessels from progenitor 
cells is known as vasculogenesis. However, angiogenesis involves forming blood 
vessels from existing capillaries via primary and secondary extensions (Ramazan 
Demir, Yaba, & Huppertz, 2010; Vailhé, Vittet, & Feige, 2001).

In vasculogenesis, blood islands are developed via the gastrulation process in the 
mesoderm, which is seen adjacent to the extraembryonic membranous bag, or yolk 
sac. After proliferation, the mesenchymal cells (pluripotent stem cells) in the blood 
island differentiate to form hemangioblasts (multipotent stem cells). Subsequent 
proliferation and differentiation of hemangioblasts lead to the development of 
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hematopoietic progenitor cells that form different blood cell types. The differentiation 
also results into angioblasts that form blood vessels, including endothelial cells 
(Conway, Collen, & Carmeliet, 2001; R Demir, Kayisli, Cayli, & Huppertz, 2006; 
Failla, Carbo, & Morea, 2018; Kubis & Levy, 2003; Risau & Flamme, 1995). 
Consequently, vasculogenesis is a vital process during embryonic development to 
construct the first functional blood vessels, the dorsal aorta (Cox & Poole, 2000; 
Helker et al., 2015; D. Jin et al., 2017).

ANGIOGENESIS

Angiogenesis was first described in 1787 by John Hunter, the founder of scientific 
surgery, as the development of blood vessels from the already existing one (Natale, 
Bocci, & Lenzi, 2017; Ribatti & Pezzella, 2021). Angiogenesis is the pivotal 
mechanism that supplies the required nutrients and oxygen to the hypoxic cancer 
cells in order to survive, proliferate, migrate and eventually metastasize to distant 
sites (Hashemi Goradel et al., 2018; Rashidi, Malekzadeh, Goodarzi, Masoudifar, & 
Mirzaei, 2017; Saman, Raza, Uddin, & Rasul, 2020). Cancer cells cannot exceed the 
size of 1–2 mm3 without the physiological mechanism of angiogenesis (Folkman, 
1990; Saman et al., 2020). This mechanism could occur either through sprouting 
angiogenesis, in which endothelial cells protrude, extend and migrate away from 
an already existing vessel to eventually construct a complete functional vessel or 
via intussuscepted angiogenesis (tissue pillar insertion mechanism), in which the 
already existing vessel split to form two complete functional vessels (R. H. Adams 
& Alitalo, 2007; S. M. Kim, Faix, & Schnitzer, 2017; Ribatti & Pezzella, 2021; 
Vailhé et al., 2001). The two angiogenesis processes aim to supply the newly formed 
tissue with adequate blood (Ramazan Demir et al., 2010). Angiogenesis occurs at the 
embryo development stage following vasculogenesis. However, this process is not 
present in adults due to the quiescence of blood vessels, except, for example, after 
an injury where there is healing of the wound or fracture. Additionally, angiogenesis 
occur in some other conditions such as during muscle exercise, during the formation 
of corpus luteum and endometrial growth and in some diseases, including tumor 
growth and diabetes retinopathy (Ramazan Demir et al., 2010; Klagsbrun & Moses, 
1999; Kubis & Levy, 2003).

MECHANISM OF SPROUTING ANGIOGENESIS

In sprouting angiogenesis, growth factors from different cells and cellular proteins 
are utilized in sequential complex stages. In healthy adults, pericytes ensheath and 
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stabilize the interconnected quiescent ECs, thereby suppressing ECs proliferation 
and subsequent release of cell survival growth factors, including vascular endothelial 
growth factor (VEGF) and growth factors angiopoietin 2 (ANG-2). The ECs line 
the interior surface of the blood vessels; hence they continuously interact with 
the bloodstream. This monolayer of ECs contains oxygen sensors that control and 
optimize the rate of the blood flow within the blood vessels. Examples of these 
sensors include the prolyl hydroxylase domain 2 (PHD2) and hypoxia-inducible 
factor -2α (HIF-2α). The pericytes and ECs form BMs in a resting state. Removal 
of pericytes from vessel walls occurs when quiescent ECs mainly sense the presence 
of VEGFA, and other pro-angiogenetic growth factors such as ANG-2, basic 
fibroblast growth factor (bFGF), tumor necrosis factor alpha (TNF-α), placental 
growth factors (PGF), or chemokines. Subsequently, the liberation of ECs from BM 
occurs, therefore, increases the vessel’s permeability and vasodilation. The digestion 
of the surrounding BM by proteolytic enzymes including MMPs leads to disruption 
of the intracellular junctions, direct interaction with the ECM components – type I 
collagen, vitronectin, and Fibronectin, and activation of EC signaling pathways via 
the transmembrane cell surface proteins. After disrupting the intracellular junctions 
between ECs, the ECs begin the proliferation, migration and invasion the ECM 
toward the site that releases pro-angiogenic growth factors and thus stimulates the 
mechanism of angiogenesis, such as tumor cells. One of the ECs, named a tip cell, 
is selected to direct the growing sprout during the initial stages of forming a new 
blood vessel from an already existing one. These processes occur as a response 
to the release of pro-angiogenic growth factors, mainly binding of VEGFA to the 
transmembrane VEGF receptors on ECs. Other receptors such as jagged 1 and 
delta-like ligand 4 (DLL4) also play central roles in the sprouting growth phase of 
angiogenesis. Importantly, the process of angiogenesis could be pruned following 
a balance of anti- and pro-angiogenic factors. The division of the stalk cells found 
behind the tip cells result in elongating the sprout toward the angiogenic stimulus’s 
site. This elongation proceeds until a lumen forms within the endothelial sprout. The 
anastomoses of sprouts eventually form loops that connect blood flow within the 
new formed blood vessels. Functional maturity of the vessels is achieved when ECs 
regain their intracellular junctions and BM by protease inhibitors, tissue inhibitors 
of metalloproteinases (TIMPs) and plasminogen activator inhibitor-1 (PAI-1). The 
final stage of angiogenesis involves stabilizing ECs in their quiescent phalanx by 
mural cells (vSMCS and pericytes), which get recruited by platelet-derived growth 
factor-B (PDGF-B) and ANG-1 (Fig. 1). The flow of blood leads to increased oxygen 
delivery within the new formed blood vessels and a reduction in pro-angiogenic 
attractants (R. H. Adams & Alitalo, 2007; Bai et al., 2021; Ramazan Demir et al., 
2010; Elpek, 2015; Raghu, 2003; Senger & Davis, 2011).
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In resting state, ECs are interconnected by intracellular cohesive junctions (gap, 
adherent and tight), whereas the pericytes ensheath and stabilize the quiescent 
ECs via Peg-and-socket contacts and adhesion plaques. The mechanism of tumor 
angiogenesis are illustrated in seven sequential stages: 1) Hypoxic tumor cells mainly 
secretes VEGF-A, which binds to VEGFR2, and other pro-angiogenic growth factors, 
including ANG-2, bFGF, TNF-α, PGF, and chemokines; 2) Degradation of BM and 
removal of pericytes occur in response to proteolytic MMP enzymes, as well as the 
binding of the pro-angiogenic growth factors to their transmembrane receptors on 
ECs; 3) and 4) Selection of Tip cell, which guides the new sprout, and the stalk 
cells via jagged 1 and DLL4 (not shown in the figure); 5) The Tip cell migrates, 
while the stalk cells behind the tip cells proliferate and elongate the growing sprout 
toward the tumor cells; 6) BM and intracellular junctions between ECs are re-formed, 
while pericytes get recruited to stabilize the ECs; 7) the new growing blood vessel 
is completed allowing the tumor cells obtain the required nutrients and oxygen, and 
thus increase the tumor size.

VEGFs and VEGFRs

VEGFs, which are described as soluble glycoproteins linked by disulphide double 
bonds, are the main potent growth factors that stimulate the normal and pathological 
angiogenesis (Bai et al., 2021; Sherbet, 2011). The VEGFs are classified into: 

Figure 1. Illustration of the sequential stages during tumor angiogenesis
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VEGFA (so-called VEGF), -B, -C, -D and Placenta growth factor (PLGF). The main 
characteristic of these members is the presence of a cysteine knot structure made from 
eight conserved cysteine residues (Holmes & Zachary, 2005; Iyer & Acharya, 2011; 
Muller et al., 1997; Shibuya, 2011). These different classes of VEGFs bind specifically 
to their transmembrane receptors (VEGFRs), which belong to the receptors of type 
III tyrosine kinase, to control the pathological and physiological development of 
lymph and blood vessels (R Demir et al., 2006; Duffy, Bouchier-Hayes, & Harmey, 
2004; Nascimento, Gameiro, Ferreira, Correia, & Ferreira, 2021; Smith, Fearnley, 
Tomlinson, Harrison, & Ponnambalam, 2015). Autophosphorylation of VEGFRs 
occurs after the binding and dimerization of VEGFs and VEGFRs, respectively. The 
phosphorylation of these receptors leads to the generation of intracellular signals 
that induce changes and regulation of different cellular processes (Arroyo & Winn, 
2008; Mesquita et al., 2018). Importantly, the signaling pathway associated with 
binding of VEGF to VEGFR play a pivotal role in regulating the mechanism of 
angiogenesis (Carmeliet, 2003; Harry & Paleolog, 2003; S. M. Kim et al., 2017). 
Three transmembrane VEGFRs have been identified: VEGFR1, VEGFR2 and 
VEGFR3 (Froger et al., 2020). These tyrosine kinase receptors have the same 
structure as platelet-derived growth factor receptors (PDGFRs). The extracellular 
region in VEGFR1 and VEGFR2 contain seven immunoglobulins like domains. 
By comparison, VEGFR3 has six Ig-homology domains in its extracellular region 
(Ferrara, Gerber, & LeCouter, 2003; Shibuya, 2011).

An experiment on the embryos of mice targeting the genes of VEGFRs 
demonstrated that knocking out any VEGFR is fatal due to severe abnormality 
phenotypes in the development of vessels (Costache et al., 2015; Eichmann et al., 
1998; Tammela, Enholm, Alitalo, & Paavonen, 2005). Vascular ECs mainly express 
VEGFR1 and VEGFR2, whereas lymphatic ECs predominately express VEGFR3 
(Costache et al., 2015; Shibuya, 2011). Multiple line evidence indicated that VEGF-A/
VEGFR2 binding is the pivotal receptor, among the three receptors, that mediate the 
mitogenic, permeability and angiogenic mechanisms (Achen et al., 1998; Costache 
et al., 2015; Nascimento et al., 2021). The interaction affinity between VEGFR-A 
and VEGFR1 is ten folds greater than that in VEGFR2. However, the interaction 
between VEGF-A and VEGFR2 leads to greater response of angiogenesis than 
when VEGF-A binds to VEGFR1 (Sadremomtaz et al., 2020; Sawano, Takahashi, 
Yamaguchi, Aonuma, & Shibuya, 1996). VEGF-C and -D promote downstream 
signaling pathways through their binding to VEGFR2 or VEGFR3. In contrast, 
VEGFR1 mediates the downstream signaling only through its binding to VEGF-B 
or PLGF (Lal et al., 2017). Different isoforms of PLGF, VEGF-A, and -B can be 
generated via alternative splicing. In contrast, isoforms of VEGF-C and -D are 
generated only by proteolysis (Tammela et al., 2005).
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The dimerization and activation of VEGFR1 get established only through its 
binding to PLGF or VEGF-B (Klagsbrun & Moses, 1999; Lal et al., 2017). However, 
genetic ablation studies in mice proposed that knocking out PLGF and VEGF-B 
genes are indispensable for embryogenesis, as these mice did not have significant 
angiogenic defects despite lacking these two growths. Nevertheless, some studies 
evidenced that mice lacking PLGF and VEGF-B genes were found to develop mild 
phenotypes that included slower myocardial recovery and smaller hearts, especially 
after ischemia (Bellomo et al., 2000; X. Li et al., 2008; Y. Sun et al., 2004). The 
expression of VEGF-B is wildly distributed, but its expression in the pancreas, 
skeletal muscles, and heart is more (Lal et al., 2017; Mesquita et al., 2018), while 
the level of PLGF in placenta, ovary, lung, and heart is a higher (Tammela et al., 
2005). VEGF-A and -B compete for binding to VEGFR1 due to their structural 
similarities. Additionally, they are able to form heterodimers with VEGFR1 leading 
to high bioavailability (Iyer & Acharya, 2011). Despite having a high affinity for 
VEGFR1, PLGF can also bind to VEGFR2 by forming a heterodimer with VEGF-A 
(Autiero, Luttun, Tjwa, & Carmeliet, 2003).

The formation of blood vessels does not require the expression of VEGF-C 
and -D. However, they are essential in lymph angiogenesis (Tammela et al., 2005). 
Furthermore, VEGF-C is highly expressed during embryogenesis, while VEGF-D 
is expressed during postnatal development (Shibuya, 2011). VEGF-D and VEGF-D 
are produced as pro-proteins possessing long C- and N- terminal amino acids. Then, 
these two growth factors have to get cleaved via proteolytic processing before binding 
to VEGFR2 or VEGFR3 (Lal, Puri, & Rodrigues, 2018). VEGF-C and VEGFR3 
are highly expressed at the regions of lymphogenesis. Subsequently, their proteins 
level dropped but remains high only in the lymph nodes (Iyer & Acharya, 2011; 
Kaipainen et al., 1995). An experiment on the embryos of mice targeting both alleles 
of VEGF-C is lethal due to a severe abnormality in the lymphatic vessel formation, 
which indicates that expression of VEGF-C is essential for sprouting of the first 
lymphatic vessels. In line with previous studies, Shibuya showed an enlargement 
of lymph nodes when VEGF-C was overexpressed (Shibuya, 2011). However, the 
deficiency of VEGF-D during embryonic development had no pathologic changes 
in the development of the lymph vessels (Baldwin et al., 2005).

NANOPARTICLES

Several therapeutic agents are being used to treat cancer. One of the promising 
therapeutic approaches that recently gained great attention is cancer nanomedicine, 
where drugs can be formulated in nano-size particles or encapsulated and delivered 
into tumors through nano vehicles (Edis et al., 2021) as summarized in Fig. 2. In the 
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following sections, we will describe these nanoparticles (NPs)/nanostructured delivery 
systems and their potential to combat cancer through disruption of angiogenesis 
process using in vitro and in vivo models.

Polymeric Nanoparticles-Based Delivery Systems

A set of polymers have been fabricated as nano-sized systems to load and deliver 
drugs, siRNAs, miRNAs, etc. For instance, chitosan, poly(lactic-co-glycolic acid) 
(PLGA), poly(lactic acid) (PLA), polycaprolactone (PCL), polyethylene glycol (PEG), 
gelatin, heparin, and albumin can be used as platforms to exert anti-angiogenesis 
effect (Kargozar, Baino, Hamzehlou, Hamblin, & Mozafari, 2020; Piperigkou, 
Karamanou, Afratis, et al., 2016; Piperigkou, Karamanou, Engin, et al., 2016). They 
can be employed as ‘’pristine’’ or functionalized (Fig. 2). It is worth mentioning 
that PEG, PCL, PLA, PLGA, and chitosan are food and drug administration)FDA) 
approved materials (Kargozar et al., 2020). Their copolymers can also be used, e.g., 
PLA/PGA or PLGA/PEG. We will only discuss here chitosan and PLGA as examples 

Figure 2. Schematic diagram shows different examples of nanoparticles and 
nanodelivery systems employed to impair tumor angiogenesis and consequently tumor 
size and growth via downregulation of angiogenic-related factors (e.g. VEGFA, MMP-
2, and MMP-9) and increased expression of anti-angiogenic factors (e.g. Maspin and 
TSP1). Nanovetcors can be functionalized with monoclonal antibodies, peptides, or 
aptamers, as well as loaded with siRNAs, shRNA, miRNAs, and chemotherapeutic 
drugs. Please refer to the text for full details.
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for polymeric NPs due to their preclinical usage and biomedical applications on 
wide range.

Chitosan-Based Nanosystems

Chitosan NPs per se have anti-tumor activities (Taher et al., 2019). In a mouse 
model of hepatocellular carcinoma, chitosan NPs impedes tumor growth and 
angiogenesis evidenced by reduced microvessel density. Mechanistically, chitosan 
NPs modulate this effect via VEGFR2 targeting (Xu et al., 2009). Chitosan and 
its sulfonamide derivatives-based NPs impede in vivo angiogenesis in chicken 
chorioallantoic membrane (CAM) model (Dragostin et al., 2020). Owing to its 
low toxicity, biocompatibility, and biodegradability, a number of studies placed 
chitosan in NP formulations as an excellent drug delivery system (Ashrafizadeh et 
al., 2021; Nagpal, Singh, & Mishra, 2010). Therapeutic applications and efficiency 
of a wide range of emerging natural or synthetic compounds with promising anti-
cancer activities might be limited by their poor water solubility. For example, Ursolic 
acid regulates tumor growth via inhibition of angiogenesis, but it is poorly soluble 
in water. Therefore, to improve its solubility and clinical application, Ursolic acid 
was encapsulated in chitosan NPs forming ursolic acid-loaded chitosan NPs, whose 
anti-angiogenic activity in vitro and in ascites mouse H22 hepatoma cells xenograft 
model and CAM model has been revealed (H. Jin et al., 2016). Several studies 
used chitosan-derived NPs as a drug delivery system along with conjugates for 
targeted therapy in preclinical models. Chitosan NPs can also be used as a delivery 
platform to siRNAs and miRNAs. Therefore, many interesting studies have been 
evolved to investigate these approaches on different tumor entities. siRNA against 
the angiogenesis factor Plexin domain-containing protein 1 (PLXDC1) contained 
in hyaluronic acid-coated chitosan NPs delayed tumor growth and suppressed 
angiogenesis evident by decreased blood vessel density in an epithelial ovarian cancer 
mice model (G. H. Kim et al., 2018). Of note, hyaluronic acid is used to enable NPs 
to target the endothelial cell receptor CD44. Another study used a combination of 
siRNAs loaded into (PEG)-trimethyl Chitosan-hyaluronic acid NPs to concurrently 
silence p68 and signal transducer and activator of transcription-3 (STAT3) and 
proved repressed tumor growth and angiogenesis in vitro and in vivo (Hashemi et al., 
2020). The co-silencing of hypoxia inducible factor 1 alpha (HIF-1α) and CD73 by 
siRNAs-loaded superparamagnetic iron oxide nanocarriers entrapped with trimethyl 
chitosan and thiolated chitosan significantly resulted in reduced tumor growth and 
angiogenesis using CAM assay. Similarly, the co-silencing IL-6 and its transcription 
factor STAT3 mediated by siRNAs-loaded NPs had the same inhibitory effect on 
cancer cell angiogenesis (Masjedi, Ahmadi, Atyabi, et al., 2020). Chitosan NPs 
coloaded with VEGFA and IL-4 siRNAs (Fig. 2) robustly regressed tumor growth 
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via angiogenesis blocking in murine model of breast cancer (Şalva et al., 2014). 
Nanocomplexes formed of chitosan and mimic miR-141 delivered at specific doses 
exhibits tumor-suppressive and anti-angiogenic effects in breast cancer (Kaban, Salva, 
& Akbuga, 2019). Immunotherapy as cancer treatment option has gained recently a 
great attention last few years, where immune checkpoint molecules specifically are 
targeted. It has been reported that dual silencing of programmed cell death-ligand 
1 and the tumor-promoting STAT3 (Fig. 2) by siRNAs-loaded in thiolated chitosan 
and trimethyl chitosan NPs coupled with hyaluronic acid and HIV-1-derived TAT 
peptide had an inhibitory effect on angiogenesis of melanoma and breast cancer 
cells (Bastaki et al., 2021).

Raloxifene delivery can inhibit angiogenesis and tumor growth encapsulated in 
Arg-Gly-Asp (RGD)-conjugated chitosan NPs (Fig. 2), which exhibit higher stability 
and greater uptake by αvβ3 integrin expressing-breast tumor cells at acidic pH without 
any cytotoxic effect on normal cells (Yadav et al., 2020). Another recent study showed 
that docetaxel-loaded chitosan derivative NPs conjugated with the specific gastric 
cancer vasculature peptide GX1 impairs angiogenesis of human umbilical vascular 
endothelial cells (HUVECs) cocultured with gastric cancer cells (E. Zhang et al., 
2019). Glycol chitosan-Suramin NPs robustly dampen tube numbers and length of 
HUVECs (Cheng, Gao, Maissy, & Xu, 2019). A very recent exciting report used 
a combinatorial approach of siRNA, and the prostaglandin E2 receptor antagonist 
E7046-loaded NPs to examine their effect on tumor progression. HIF-1α siRNA and 
E7046-loaded HA-trimethyl chitosan-superparamagnetic iron oxide NPs strongly 
curtail tumor growth and angiogenesis (Karpisheh et al., 2021). Another dual gene/
drug delivery strategy to silence HIF-1α- by siRNA and inhibit cyclin-dependent 
kinase (CDK) activity by dinaciclib in angiogenesis suppression was reported (Izadi 
et al., 2020). Another efficient modality of combination treatment used was the 
dendritic cell-based vaccine along with siRNA-loaded NPs to enhance the cytotoxic 
T lymphocyte functions against breast cancer. In this context, PEG-chitosan-lactate 
(PCL) NPs incorporated with adenosine 2a receptor (A2aR) siRNA act synergistically 
with dendritic cell vaccine to profoundly regress tumor growth, metastasis, and 
angiogenesis via decreased VEGFA, VEGF-R2, and CD31 expressions, and in turn, 
a prolonged survival rate in a 4T1 breast cancer mice model (Masjedi et al., 2020). 
Another group of researchers applied the same approach of dendritic cell-based 
cancer immunotherapy, but with the delivery of specific siRNA to downregulate 
the expression of cytotoxic T-lymphocyte antigen 4, inhibitory immune checkpoint 
molecules expressed on tumor-infiltrating T lymphocytes. Similar findings were 
obtained for their anti-angiogenic potential (Esmaily et al., 2020). Regarding gene 
therapy, further research reported the synthesis of a delivery system consisting of 
graphene oxide-reinforced chitosan festooned with carbon dot to deliver tumor 
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necrosis factor α (TNF-α). This system resulted in the suppression of angiogenesis 
using CAM assay (Jaleel, Ashraf, Rathinasamy, & Pramod, 2019).

Apart from siRNAs and miRNAs, chitosan NPs are able to deliver and control the 
release of the endostatin peptide drug, which significantly exhibited potent toxicity 
against endothelial cells in vitro (Ebrahimi Samani et al., 2017).

We further summarize different genes, siRNAs, shRNAs, aptamers, monoclonal 
antibodies, and/or drug-loaded chitosan-based NPs as suppressors for angiogenesis 
process in Table 1.

Table 1. Chitosan as delivery nanoplatforms to block tumor angiogenesis

Therapeutic Agent/
Modified Nanoparticles

Therapeutic 
Targeting/Drug 

Delivery
Model(s) Used References

Chitosan lactate conjugated 
with RGD

ZEB-1 and CD73 
siRNAs

Mouse models of 
murine breast (4T1) 
and colorectal (CT26) 
carcinomas

(Alzamely et al., 2021)

hyaluronic acid PEG-
Chitosan-Lactate (H-PCL)

IL6 siRNA and BV6 
to block inhibitor of 
apoptosis (IAP)

Mouse models of 
murine breast (4T1) 
and colorectal (CT26) 
carcinomas

(Salimifard et al., 2020)

Chitosan magnetic NPs Ang-2 siRNA mice model of 
Melanoma (Shan et al., 2020)

Lipid-core nanocapsules 
coated with chitosan- and 
modified with gold-III and 
bevacizumab (MLNC-Au-
BCZ)

VEGFA using 
monoclonal antibody CAM assay (de Cristo Soares Alves 

et al., 2020a)

Mucin1 aptamer-conjugated 
chitosan NPs

cMET siRNA and 
docetaxel

mucin1+ SKBR3 vs. 
mucin1- CHO cells 
(MMP2, MMP9, IL8, 
VEGFA, and STAT3)

(Zolbanin et al., 2018)

Fe3O4-bLf-AEC-CP 
nanocarrier

locked nucleic acid 
(LNA) modified 
aptamers against 
EpCAM, CD133, and 
CD44

xenograft mice model 
injected with colon 
cancer stem cells

(Roy, Kanwar, & 
Kanwar, 2015)

Galactose modified 
trimethyl chitosan-cysteine 
(GTC) NPs

Oral Survivin shRNA- 
and VEGFA siRNA

Mice model of human 
hepatoma

(L. Han, Tang, & Yin, 
2014)

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



67

Nanoparticles as a Therapeutic Approach for Tumor Angiogenesis

PLGA-Based Nanosystems

PLGA is biodegradable and biocompatible, and its nanoparticle formulation has 
been proved to be efficient for drug delivery in different studies (Lü et al., 2009). 
Notably, it is well established an overexpression of FGFR1 on tumor cells and tumor 
microvessels. Therefore, PLGA NPs (D/P-NPs) loaded with the truncated bFGF 
peptide (tbFGF) and paclitaxel (PTX) resulted in massive impairment in the tube 
formation by HUVECs and exerted an anti-angiogenic activity in vivo using the 
alginate-encapsulated tumor cell and the transgenic zebrafish models (B. Xu et al., 
2016). Based on the knowledge of homing sequences and internalizing receptors, 
tumor-penetrating peptides were used as effective strategy to enhance drug or NP 
penetration, e.g., Asn-Gly-Arg (NGR) sequence, which is able to bind endothelial 
CD13 (Alberici et al., 2013; Sugahara et al., 2009). The principle of NGR peptide 
action is similar to iRGD peptide. The iRGD peptide consists of 2 peptides motifs: 
RGD, which binds to αvβ3/5 integrins on tumor vasculature and neoplastic cells, 
and CendR motif. Once integrins interact with RGD, proteolytic cleavage occurs 
with subsequent exposure of the cryptic CendR motif. This results in binding of 
truncated peptide to neuropilin-1, enhancing penetration of peptide conjugated or 
co-administered with drugs into tumors. The tumor vasculature homing efficacy and 
tumor penetration ability of NGR peptide was enhanced by embedding its sequence 
in the CendR motif, and this sequence was placed in the iRGD framework to form 
iNGR. Several studies have exploited the mechanism of action of iRGD and iNGR 
to target different tumors, and that can be achieved through selective delivery and 
accumulation of the drug in tumors in vivo and the expression of both integrin 
and neuropilin-1 on neoplasm vasculatures. A study demonstrated that iNGR 
functionalized-PTX-loaded PEG-PLGA NPs have recognized tumor vessels and 
penetrated the tumor upon intravenous administration, leading to reduced angiogenesis 
activity and increased survival time in a mice model of glioma (Kang et al., 2014). 
Another study showed that cotreatment of PTX-loaded PLGA (PLGA-PTX) NPs 
with iRGD peptide enhanced treatment of colorectal tumors in mice model (Zhong 
et al., 2019). Other several studies reported PLGA as a delivery system for gene 
(Yu et al., 2016), siRNAs/shRNAs (Chuntang Sun et al., 2011; Zou et al., 2013, 
2014), and aptamers (T. Duan et al., 2019) to inhibit tumor angiogenesis (Fig. 2).

Carbon-Based Nanomaterials

Carbon Nanotubes

Carbon nanotubes (CNTs) are synthetic scaffolds discovered in 1991 and characterized 
by excellent chemical mechanical and electrical properties. They can act as nanovectors 
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for drug or gene delivery (Cao & Luo, 2019) CNTs can be divided into single-
walled (SW) or multi-walled CNTs (MWCNTs). Codelivery of the chemotherapy 
candesartan and VEGFA-targeted siRNA (siVEGFA) loaded into polyethylenimine 
(PEI)-modified SWCNTs synergistically dampens tumor growth and angiogenesis in 
vitro and in vivo using HUVECs and pancreatic cancer mouse models, respectively, 
with no remarkable toxicity on normal cells (X. Ding et al., 2017) Delivery of NGR 
peptide-linked SWCNTs loaded with anti-angiogenesis 2-methoxyestradiol were 
able to inhibit neoangiogenesis in a mice model of sarcoma (C. Chen et al., 2013) 
Another study developed plasmid angiotensin II type 2-packaged MWCNTs, which 
are functionalized with iRGD peptide and conjugated with candesartan forming 
nanocomplex to dual target ανβ3-integrin and angiotensin II type 1 receptor and 
subsequent angiogenesis suppression in xenograft mice model of lung cancer (Su 
et al., 2017). In contrast, it has been shown that MWCNTs have little impact on the 
capacity of human brain microvascular endothelial cells (HBMECs) to form rings 
as read out for angiogenesis. This suggests that MWCNTs alone may not suffice to 
inhibit angiogenesis, and their effect is cell culture model-dependent (Eldridge et 
al., 2017). A nanohybrid consisting of (+)-catechin, gelatin and CNTs completely 
abolished neo-angiogenesis in zebrafish xenotransplants (di Leo et al., 2017). The 
disruption of angiogenesis in CAM model by MWCNTs was augmented when 
modified with pachymic acid via downregulation of metalloproteinase-3 (MMP-3) 
(Ma et al., 2015). Coloading of curcumin and doxorubicin (DOX) hydrochloride 
into CNTs functionalized with pH and thermo responsive polymer resulted in a 
synergistic anti-tumor effect via suppression of growth factors-mediated angiogenesis 
in CAM model and reversal of multidrug resistance in hepatocellular carcinoma mice 
model (Das et al., 2020). Interestingly, functionalized SWCNTs can be exploited for 
their photothermal effect near-infrared irradiation to eradicate solid cancers in vivo. 
Indeed, treatment of mouse model of S180 ascites with NGR peptide-linked SWCNTs 
incorporated with docetaxel and exposed to thermal therapy resulted in synergistic 
regression of tumor mass via angiogenesis disruption (Lei Wang et al., 2011) Further, 
a SWCNT platform can be used in radioimmunotherapy when they radiolabeled by 
covalently linking to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and 
the tumor neovascular (vascular endothelial-cadherin epitope)-targeting antibody 
E4G10. Administration of a single intravenous dose of targeted radiolabelled SWCNTs 
significantly diminished tumor volume and enhanced the survival rate in a xenograft 
mice model of colon adenocarcinoma (LS174T) via targeting tumor neovasculature 
(Ruggiero et al., 2010) The effect of CNTs has been extended to the main immune 
effector cells of tumor microenvironment, namely macrophages. A study by Yang 
M et al., showed that oxidized MWCNTs decrease tumor-associated macrophages 
and tumor vasculature, resulting in delayed tumor progression and lung metastasis 
in a mice model of breast cancer (M. Yang et al., 2012).
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Although an in vitro study showed that “pristine” and functionalized SWCNTs had 
limited cytotoxicity to endothelial cells (Albini et al., 2010). A study by Chaudhuri 
P et al., reported that DOX-loaded-SWCNTs promoted tumor angiogenesis in vitro 
and in vivo in zebrafish and murine models. Mechanistically, SWCNTs stimulated 
integrin clustering in endothelial cells and elicited activation of phosphoinositide-3-
kinase (PI3K) and focal adhesion kinase (FAK). Additionally, SWCNTs mitigated the 
cytotoxic effect of DOX and increased endothelial tubulogenesis, This is in contrast 
to the action of fullerenols or DOX-conjugated fullerenols, where anti-angiogenesis 
activity was observed in the same in vivo models (Chaudhuri et al., 2010).

The usage of CNTs should be applied with cautions, as the neoplastic-like 
transformation effect of SWCNTs and MWCNTs has been previously shown (L. 
Wang et al., 2014). This has been further confirmed in another study, where single 
pulmonary exposure to MWCNTs markedly promotes angiogenesis and metastasis 
of breast carcinoma into lungs. This led the authors to raise concerns and to point 
out the risks of the long-term exposure to airborne NPs that may prepare the pre-
metastatic environment and contribute non-lung cancer progression (Lu et al., 2019). 
Besides their adverse effects on normal development of embryo (Al Moustafa et al., 
2016) MWCNTs triggered elevated reactive oxygen species (ROS), actin filament 
remodeling, and increased migration of human microvascular endothelial cells 
(HMVECs) via increased intercellular adhesion molecule 1 (ICAM-1) and monocyte 
chemoattractant protein-1 (MCP-1) (Pacurari et al., 2012).

Carbon Quantum Dots

Similar to CNTs, carbon quantum dots (CQDs) and CQDs-based composites hold 
anti-cancer potential by radio- and phototherapy. For instance, in comparison with 
the commercial anti-angiogenic inhibitor semaxanib (SU5416, a selective VEGFA 
inhibitor), a composite of (CQDs/Cu2O) had a higher anti-angiogenic capacity in 
ovarian cancer SKOV3 cells via decreased expression of VEGFR2, MMP-2, and 
MMP-9 (Fig. 2), besides increased expression levels of the anti-angiogenesis-related 
factors Maspin, and TSP1 (D. Chen et al., 2021). CAM treated with CQDs showed 
significantly reduced vessels associated with downregulation of VEGFA, FGF, 
VEGFR2, and hemoglobin (R. Shereema et al., 2015).

Fullerene

Rice University researchers discovered fullerenes, also known as buckyballs, in 1985. 
Fullerenes, such as C60, C70, and C82, are carbon-based molecules that exhibit the 
shape of ellipsoid, hollow sphere, or tube (Fig. 2). It is also called metallofullerene 
when a metal atom is inserted into a fullerene, and the metal atom is usually a 
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Group III transition element or a lanthanide (Jiang, Wu, & Wang, 2017; Peng et al., 
2017; Saleem, Wang, & Chen, 2018). These NPs are apparently biocompatible and 
demolish tumor blood vessels, with subsequent tumor starvation and regression (Zhou, 
Deng, Zhen, Li, Guan, Jia, Li, Zhang, Yu, Zou, et al., 2017). It has been reported 
that C60(OH)20 are able to inhibit the expression of angiogenesis-related factors, 
including VEGFA, PDGF, and TNF-α. In a dose-dependent manner, C60(OH)20 
retard tumorgenesis and metastatic potential in a mouse breast cancer model. The 
number of tumor microvessels have been substantially decreased upon NPs’ treatment, 
and that effect was attributed to lower VEGFA expression (Jiao et al., 2010). 
C60(OH)22 inhibited tube formation and inhibited MMP2 and MMP9 activities, 
as well as histone deacetylase 1 (HDAC1), histone deacetylase 2 (HDAC2), HIF-1, 
and VEGFA expression levels were decreased in vitro and in HUVEC xenograft 
mice, where all factors are required for tumor growth, angiogenesis, and metastasis 
(Chengdu Sun et al., 2016). Interestingly, silencing of HDAC1 or HDAC2 exerted 
the same inhibitory effect of C60(OH)22 on angiogenesis of HUVECs, suggesting 
that C60(OH)22 is a HDAC inhibitor (Chengdu Sun et al., 2016). Together, this 
suggests that fullerenes with several hydroxyl groups can effectively inhibit 
angiogenesis. Another study showed that gadolinium incorporated with fullerenol 
NPs have been shown to inhibit 10 angiogenesis-promoting factors at transcriptional 
and posttranslational levels. These NPs decreased microvessel density by 40% in a 
human microvascular endothelial cell (HMEC) xenograft model as compared to the 
controls. Notably, gadofullerenol NPs had no obvious harmful effects on mice as 
compared to PTX (Meng et al., 2010). In hepatoma H22 mice model, gadofullerene 
functionalized with β-alanine has been shown to specifically target blood vessels 
within tumors (Y. Zhou et al., 2017).

Graphene

Graphene is a stunning new nanocarbon with six-membered rings formed by single, 
bi-, or few (< 10) layers of carbon atoms (Rao, Biswas, Subrahmanyam, & Govindaraj, 
2009). Being easily processed, costly effective, thermal stable, biocompatible, 
highly electrical conductive, and able to bind aromatic and hydrophobic compounds, 
graphene is an appealing polymer for drug delivery and gene therapy (Z. Singh, 2016; 
B. Zhang, Wei, Zhou, & Wei, 2016). As an example for a dual gene/drug targeting 
nanosystem, carboxylated graphene oxide (GO) coupled with trimethyl chitosan 
and hyaluronic acid NPs and loaded with both (HIF)-1α-siRNA and dinaciclib 
(known to inhibit cyclin-dependent kinases family) was able to significantly inhibit 
angiogenesis, cell growth, and cell motility (Izadi et al., 2020). In a recent study, 
GO, hyaluronic acid, and copper sulfide were conjugated in a nanostructure which 
markedly inhibited angiogenesis in squamous cell cancer (SCC-7) xenograft mice 
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model (Izadi et al., 2020). Another study by Cibecchini et al., reported that GO 
exhibited anti-angiogenic effect on HUVECs (Cibecchini et al., 2020). A GO-based 
nanocarrier has recently been developed to target the VEGF mRNA using VEGF-
siRNA. GO functionalized to improve its electropositivity and targeting efficiency 
and loaded with VEGF siRNA suppressed tumor growth and angiogenesis via 
downregulation of VEGFA mRNA and protein expression levels in HeLa cells 
and in a mice model (J. Li et al., 2018). Notably, in a coculture of HUVECs with 
glioblastoma cancer cells of wild type p53 (U87) in the presence of graphite NPs 
and graphene oxide nanoplatelets, angiogenesis was reduced, whereas in case of 
glioblastoma cells with mutant p53 (U118) angiogenesis was not affected. The anti-
angiogenesis process of the nanostructures can be explained by diminished ROS and 
reactive nitrogen species (RNS) levels, associated with a reduced NFkB activation in 
p53 status-dependent manner (Wierzbicki et al., 2018). Another research found that 
bovine serum albumin-conjugated GO (BSA-GO) has a high affinity for VEGF-165, 
which is the primary receptor for angiogenesis. As a result of competing binding, 
angiogenesis was repressed. The treatment of HUVECs with BSA-GO nanosheets 
resulted in reduced cell proliferation and tube formation. Furthermore, in-vivo findings 
revealed that BSA-GO interferes with angiogenesis in a CAM model and in corneal 
neovascularization in rabbit (Lai et al., 2016). Reduced GO (rGO) nanosheets coated 
with the anti-angiogenic low-molecular-weight heparin (LMWH) derivative displayed 
stable dispersion and tumor distribution relative to uncoated nanosheets. Relative to 
untreated group, when human oral squamous cancer (KB) cells-bearing mice were 
intravenously injected with the coated rGO nanosheets encapsulating DOX, tumor 
volume was reduced via increased apoptosis (Shim et al., 2014).

Natural Compounds-Based Nanoparticles

Curcumin

Curcumin is a polyphenolic phytochemical yellow pigment and a component of 
the Indian turmeric spice (Anand et al., 2008). Several studies have been addressed 
the multifaceted functions of curcumin as a safe and a promising therapeutic or a 
preventive agent against inflammation and a wide range of diseases, including cancers 
(Slika & Patra, 2020). However, poor water solubility and, consequently, relatively 
low systemic bioavailability due to the rapid metabolism and conjugation in the liver 
narrows the therapeutic efficiency window of curcumin. Therefore, the formulation 
of curcumin as nanoparticle or encapsulation in a nano-sized system will overcome 
this limitation. Curcumin-loaded chitosan/poly(butyl cyanoacrylate) NPs suppress 
angiogenesis and tumor growth in a murine xenograft model of hepatocellular 
carcinoma (J. Duan et al., 2010). Curcumin encapsulated into biodegradable polymeric 
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micelles (MPEG-PCL) reduced embryonic angiogenesis and tumor angiogenesis 
in the transgenic zebrafish model and tube formation of HUVECs, respectively 
(Gong et al., 2013). Further, curcumin- and DOX-co-loaded MPEG-PCL micelles 
inhibit tumor angiogenesis in a lung cancer mouse model (B. L. Wang et al., 2013) 
and in a diethylnitrosamine-induced hepatocellular carcinoma mice model (Zhao et 
al., 2015). The biodegradable MPEG-PLAs micelles enhanced the anti-angiogenic 
effect of curcumin in the glioma xenograft mice model (Zheng et al., 2016). Upon 
loading with organically modified silica NPs, phototoxicity of curcumin in human 
oral cancer cells was improved over free curcumin via downregulation of NF-κB-
regulated VEGFA levels, (S. P. Singh, Sharma, & Gupta, 2014) . Similar findings 
were obtained when curcumin-loaded polyester amine (PEA) NPs were used in the 
alginate-encapsulated tumor cells and transgenic zebrafish model (Ding et al., 2014). 
Dendrosome/curcumin micelle displays a chemoprotective activity against breast 
cancer metastasis via downregulation of NF-κB-regulated VEGFA, cyclooxygenase 
2 (COX-2), and MMP-9 expressions, and in turn angiogenesis (Farhangi et al., 2015). 
However, curcumin-capped copper NPs did not show a superior anti-angiogenic 
effect than native curcumin in breast cancer (Kamble et al., 2016). Dual treatment 
of docetaxel and curcumin-loaded nanofibrous microspheres resulted in inhibition of 
abdominal metastases of colorectal cancer in a mice model via inhibition of tumor 
angiogenesis (Fan et al., 2016). Another strategy of treatment exploited the acidic 
environment of cancer cells. For example, DOX and curcumin-co-encapsulated 
in the pH-sensitive amphiphilic poly β-amino ester NPs massively inhibited in 
vitro and in vivo angiogenesis via repression of HUVEC proliferation, invasion, 
migratory potential, and tube formation, as well as modulation of VEGFA pathway 
(J. Zhang et al., 2017). The in vivo anti-tumor and potent anti-angiogenic effect of 
curcumin was greatly increased upon conjugation either with LMWH to formulate 
LMWH-curcumin-nanodrugs (Xiao et al., 2018) or with gold NPs (AuNPs) to form 
biosynthesized AuNPs tested against breast cancer cell lines (Vemuri et al., 2019a). 
For targeted therapy, co-delivery of curcumin and folate by PEG-PLA micelles 
effectively repressed glioma in mice via angiogenesis inhibition (He et al., 2020).

Resveratrol

Resveratrol is a non-flavonoid polyphenolic natural compound found in many 
nutrients. Numerous studies have demonstrated that resveratrol exerts anti-cancer 
effects, namely anti-proliferative, anti-angiogenesis, and apoptotic activities, on 
different tumor entities (Delmas, Cornebise, Courtaut, Xiao, & Aires, 2021). The 
potent anti-angiogenic properties of resveratrol can be synergistically enhanced 
when combined with the chemotherapeutic DOX drug in vitro and in vivo using 
HUVECs and CAM models (Uvez et al., 2020). Mechanistically, resveratrol treatment 
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inhibits VEGF and ERK1/2-AKT signaling, as well as reduces ROS production and 
downregulates the pro-angiogenic factor expression, such as VEGFA, interleukin 8 
(IL-8), and CXCL8 (Y. Han, Jo, Cho, Dhanasekaran, & Song, 2019). Interestingly, 
expressions of angiogenesis-related miRNAs miRNA-34a, miRNA-424, miRNA-503, 
miRNA-155 are regulated by resveratrol (Varghese, Liskova, Kubatka, Samuel, & 
Büsselberg, 2020). Few nanotechnological studies either formulated or encapsulated 
resveratrol in NPs to enhance its bioavailability and overcome its chemical instability. 
The chemotherapeutic agent pemetrexed and resveratrol co-delivery by lyotropic 
liquid crystalline NPs repressed tumor growth via angiogenesis suppression in a 
mice model of urethane-induced lung cancer (Abdelaziz et al., 2019). Another study 
used the phospholipid complex resveratrol to facilitate its physical incorporation 
into albumin NPs, being coupled with quantum dots (QDs) and mannose moieties, 
as well as conjugated with the chemotherapeutic pemetrexed drug. This nanohybrid 
platform induced tumor regression via inhibition of VEGFA-induced angiogenesis 
with non-immunogenic effect in Ehrlich-Induce mammary tumor-bearing mice 
(Zayed et al., 2019).

Paclitaxel

PTX is one of the taxane families of naturally occurring alkaloids. It has potent 
anti-cancer effects via targeting the microtubules by β-tubulin-binding resulting in 
cell cycle arrest. It is used as the first-line chemotherapy to treat different tumor 
entities (Mikuła-Pietrasik et al., 2019; Vacca et al., 2002). It was reported that PTX 
has a suppressive effect on angiogenesis, and this can be attributed to its extensive 
accumulation in endothelial cells relative to other cell types (Merchan et al., 2005). 
Furthermore, PTX treatment decreased vasculogenesis and angiogenesis-related 
factors VEGFA and FGF-2, whereas it increased expressions of an endogenous 
inhibitor of angiogenesis TSP1 (Hata et al., 2004). PTX in the nano-sized formulation 
or encapsulated in nanoparticle delivery systems markedly enhances its anti-tumor 
and anti-angiogenic potency. PTX loaded in emulsifying wax NPs (PX-NPs) as 
colloidal carriers showed potent anti-tumor growth and anti-angiogenic efficacy 
compared to Taxol in colon adenocarcinoma mouse xenograft model (Koziara, 
Whisman, Tseng, & Mumper, 2006). Dual treatment also holds great potential as 
an efficient combinatorial therapy compared with monotherapy. In this regard, a 
nanocapsule of PTX-conjugated amphiphilic polyester entrapped with the FDA-
approved inhibitor of neovasculature combretastatin A4 was able to be sequentially 
released to dampen tumor angiogenesis and liver metastasis in tumor xenograft 
models, and intrasplenic liver metastasis model (Wang & Ho, 2010). Similar anti-
tumor and anti-angiogenesis findings were observed when both drugs were co-
loaded into PLGA solid nanoparticulate decorated with RGD peptide as targeted 
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therapy (Zhe Wang, Chui, & Ho, 2011). Another approach for targeted therapy is 
using folate receptor-targeted NPs to circumvent chemotherapy resistance. These 
NPs encompassing a heparin-folate-PTX platform loaded with additional PTX 
profoundly diminished tumor growth. This nanosystem decreased angiogenic 
activity in the resistant squamous cancer xenograft model (X. Wang et al., 2011). 
Interestingly, a very recent study reported that co-loading of the FDA-approved 
drugs PTX, combretastatin, and verteporfin in polymer-lipid hybrid NPs markedly 
inhibits triple-negative breast tumor growth and stemness, as well as angiogenesis 
in patient-derived xenograft (PDX) and in vivo zebrafish models (El-Sahli et al., 
2021). Since platelets are involved in angiogenesis and interact with circulating tumor 
cells (CTCs), a platelet membrane protein-coated nanostructured lipid carrier and 
loaded with PTX has been engineered. This lipid-based nano-sized drug delivery 
system has an anti-tumor effect against the ovarian cancer cell line SK-OV-3 (Bang 
et al., 2019).

Inorganic and Metallic Elements-Based 
Nanoparticles With Anti-Angiogenic Activity

Normal diet contains several inorganic and metallic elements, which are indispensable 
for metabolism and many physiological functions within the human body. Some of 
these elements are of therapeutic relevance exerting anti-angiogenic functions in 
cancer upon their delivery in nanosystems (Fig. 2). In this regard, we will discuss 
some examples of these elements.

Cerium Nanoparticles

Cerium is a rare earth metal and has two oxide forms. Cerium oxide NPs (CNPs) 
or nanoceria have two coexisting oxidation states caused by the partial reduction of 
Ce3+ to Ce4+ (Dhall & Self, 2018). Therefore, nanoceria has a pivotal scavenging role 
for ROS and RNS in turn, emerging as a promising therapy in many pathological 
diseases (B. H. Chen & Stephen Inbaraj, 2018; Walkey et al., 2015). For example, 
treatment with nanoceria suppressed VEGFA (165)-induced cell growth, activation 
of VEGFR2, MMP2, and capillary tube formation of HUVECs. Further, it 
significantly blunted tumor growth and attenuated angiogenesis, evidenced by reduced 
immunohistochemical staining of CD31 and apoptosis of vascular endothelial cells 
in nude mice of ovarian cancer (Giri et al., 2013). Heparin functionalized nanoceria 
mitigated endothelial cell proliferation and, in turn, angiogenesis (Lord et al., 2013). 
A study by Hijaz M et al. showed that folic acid-conjugated nanoceria markedly 
retarded tumor growth and angiogenesis in an ovarian cancer xenograft mouse model 
(Hijaz et al., 2016). It is noteworthy that nanoceria possesses multifaceted anti-cancer 
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activity via a redox-independent radio-sensitizing effect on human keratinocytes 
(Corsi, Caputo, Traversa, & Ghibelli, 2018). In contrast, it appears that nanoceria 
has dual roles, where it serves as bioactive scaffolds to enhance angiogenesis (Z. 
Xu et al., 2020). Therefore, this should be taken in consideration when nanoceria 
is being employed in clinical settings.

Gold Nanoparticles

The fascinating bioactivity of gold NPs (AuNPs) renders it a promising therapeutic 
and diagnostic tool. AuNPs are inorganic nucleus encircled by an organic monolayer 
(Arvizo, Bhattacharya, & Mukherjee, 2010). AuNPs can form different structures 
such as clusters, plasmonic crystals, or catalytic particles with a variety of nano-
based structures depending on their size ranges (Mori & Hegmann, 2016; Seo & 
Song, 2012). Several biomolecules can be used for the surface functionalization of 
AuNPs, such as peptides, proteins, and oligonucleotides (T. Sun et al., 2014; Webb 
& Bardhan, 2014). A wide range of studies has been performed to reveal the most 
efficient Au nanoformulations to curtail angiogenesis. Lipid-core nanocapsules 
coated with chitosan and functionalized with Bevacizumab (BCZ) and Au III showed 
strong anticancer activity against C6 glioma cell line in vitro and anti-angiogenic 
capacity in CAM model, with a remarkable decrease of BCZ dose used in 
nanoformulation relative to BCZ in aqueous solution (de Cristo Soares Alves et al., 
2020b). Hollow gold nanoshell coated with anti-programmed death ligand-1 and 
loaded with DOX (T-HGNS-DOX) was designed for chemo- and photothermal 
therapies. T-HGNS-DOX had a marked anti-cancer activity due to substantial 
absorption of DOX post nonionizing radiation caused by elevated programmed 
death-1. The proliferative marker Ki-67 and the angiogenesis marker CD31 expressions 
were mitigated, with a subsequently drastic reduction in locally advanced melanoma 
(Banstola et al., 2021). A conjugate of AuNPs with folic acid inhibited tumor 
angiogenesis and showed reduced tumor vasculature (Huang et al., 2020). AuNPs 
conjugated with anti-angiogenic peptides inhibited the angiogenesis by modulating 
VEGFA intrinsic pathway in a CAM model induced by exosomes isolated from 
chronic myeloid leukemia k562 cells (Roma-Rodrigues, Fernandes, & Baptista, 
2019). AuNPs interferes with the crosstalk between the tumor niche and endothelial 
cells. Endothelial cells conferred decreased tubes formation and migratory phenotype 
when cultured with condition media isolated from AuNPs-treated ovarian cells or 
cocultured with cancer cells and cancer-associated fibroblast pretreated with AuNPs. 
The AuNPs exerted their effect by reducing VEGF-165 mRNA expression, thus 
decreasing the activation of VEGFR2 (Y. Zhang et al., 2019). Biosynthesis of AuNPs 
conjugated with naturally occurring compounds, such as, quercetin, PTX, curcumin, 
and turmeric, showed significant inhibition of angiogenesis when tested against the 
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human breast cancer cell lines MCF-7 (low metastatic potential) and MDA-MB-231 
(highly aggressive cells), without showing cytotoxic effect against the normal human 
embryonic kidney cells (HEK293) (Vemuri et al., 2019b) AuNPs used to treat human 
colorectal cancer (SW620)-xenograft nude mice showed a significant decrease in 
the anterior gradient 2 (AGR2, a protein that is secreted by the malignant tumor) 
together with vascular normalization (F. Pan et al., 2018). AuNPs also had been 
used as a delivery system for human endostatin (Anti-angiogenic agent used in the 
treatment of tumor); this nanocarrier was tested in colorectal metastatic cancer-
xenograft mice model and HUVEC cells in vitro and showed inhibition of VEGFR2 
and obstructed AG2-mediated angiogenesis and decreased formation of tubes and 
cell motility (F. Pan et al., 2017). AuNPs were also integrated with tetrasodium salt 
meso-tetrakis (4-sulfonatophenyl) porphyrin. This nanosystem was capable of 
invading selectively the cancer cells and transported anti-tumor drug DOX to the 
cancer cells’ nucleus in multidrug resistance brain cancer. This delivery system 
enhanced cellular apoptosis and showed a strong inhibition of metastasis, invasion, 
and angiogenesis (Bera, Maiti, Maity, Mandal, & Maiti, 2018). The biosynthesized 
AuNPs showed a significant decrease in the Ang-1/tie2 pathway, thus reducing 
angiogenesis in a CAM model (Vimalraj, Ashokkumar, & Saravanan, 2018). AuNPs 
were also investigated against two types of cancer cells, the mouse fibroblast L929 
and human cervix adenocarcinoma Hela cells. Results showed that AuNPs were 
linked to the cell membrane and localized in cytoplasmic vesicles or the cytosol. 
AuNPs inhibited angiogenesis in a CAM model (Tan & Onur, 2018). A hybrid-NP 
composite of quinacrine and Au (QAuNPs) was used to treat oral squamous cell 
carcinoma and showed a significant inhibition of cell growth and angiogenesis in 
a xenograft mice model. Action of QAuNPs caused a downregulation in the 
angiogenic-related markers, such as Ang-1, Ang-2, VEGFA, and MMP-2. So, 
QAuNPs demonstrated an efficient treatment against angiogenesis and metastasis 
of oral squamous cell carcinoma (Satapathy et al., 2018). When AuNPs were loaded 
with anti-angiogenic peptide and combined with laser irradiation exhibited a localized 
angiogenesis blockade effect in a CAM model via 4-fold downregulating VEGFA 
expression, thus inhibiting the VEGFR pathway (Pedrosa, Heuer-Jungemann, 
Kanaras, Fernandes, & Baptista, 2017). AuNPs confirmed its anti-angiogenic effect 
and showed normalization of tumor vasculature and revert the epithelial-mesenchymal 
transition (EMT) inducing lung metastasis. As a result, AuNPs reduced metastasis 
of melanoma tumor (W. Li et al., 2017). AuNPs were also conjugated with gum 
arabic with a diameter of 15-18 nm. This nanocomposite administration followed 
by laser irradiation caused a significant downregulation of VEGFA leading to 
decreased angiogenesis in mice model of lung cancer induced by a chemical substance 
(Gamal-Eldeen et al., 2017). Quercetin (a potent anti-malignant and anti-oxidant 
flavonoid) conjugated to AuNPs blocked epithelial growth factor receptor (EGFR)/
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VEGFR-2 pathway leading to a decrease in tube formation of HUVECs, reduced 
the formation of new vessels in a CAM model, and inhibited the tumor progression 
in mammary carcinoma induced by dimethylbenzanthracene (DMBA) in rats 
(Balakrishnan et al., 2016). PEGylated Au nano semi-cubes treatment followed by 
laser activation downregulated VEGFA and was associated with decreased VEGFR2, 
PDGFR, and HIF-1 expression levels in skin cancer-bearing mice (Abo-Elfadl et 
al., 2016). Nanogold was also used as a drug carrier for human endostatin (an 
inhibitory factor of angiogenesis) for non-small cell lung cancer treatment. Besides, 
nanogold conjugated with human endostatin improved the cytotoxic effect of 5-fluoro 
uracil (W. Li et al., 2016). Oligo-ethylene glycol-capped AuNPs were conjugated 
with peptides that can associate with cellular receptor involved in angiogenesis 
regulation. This AuNP-peptide composite displayed a specific inhibition of 
angiogenesis using CAM assay (Roma-Rodrigues, Heuer-Jungemann, Fernandes, 
Kanaras, & Baptista, 2016). Popovtzer et al., combined cetuximab (an inhibitor of 
EGFR) with AuNPs reduced significantly radio resistance and the tumor growth in 
head and neck cancer bearing mice via angiogenesis supersession evidenced by 
decreased CD34 expression (Popovtzer et al., 2016). AuNPs linked with captopril 
and VEGFA-siRNA reduced the VEGFA expression in vitro and decreased the 
tumor progression in MDA-MB-435 xenograft mice model (M. Li, Li, Huang, & 
Lu, 2015). Changing the chemistry of the surface of AuNPs also can change its 
bioactivity as reported by Grzincic E et al., who coated the AuNPs with four different 
coatings: citrate, lipid alkanethiols, lipid poly allylamine hydrochloride PAH, or 
PAH alone, showed a downregulation in angiogenesis genes in both human dermal 
fibroblasts and prostate cancer PC3 cells with a change in the levels of expression 
and the pathways involved according to the chemistry of coated surface (Grzincic, 
Yang, Drnevich, Falagan-Lotsch, & Murphy, 2015). AuNPs blocked HUVEC motility 
and tube formation evoked by VEGF-165-mediated Akt pathway resulting in 
disruption of the cell surface ultrastructure and destabilization of cytoskeleton (Y. 
Pan, Wu, Qin, Cai, & Du, 2014). AuNPs was also conjugated to snake venom 
NKCT1 toxin and exhibited a potent inhibition of angiogenesis through reduced 
VEGFA mRNA level in solid Ehrlich carcinoma (Bhowmik, Saha, DasGupta, & 
Gomes, 2014). Radiolabeled 177Lu AuNPs conjugated with RGD showed a significant 
decrease in tumor progression and reduced metabolic processes, as well as lowered 
the mRNA levels of VEGFA genes associated with reduced the tumor vascularization 
(Vilchis-Juárez et al., 2014). AuNPs repressed VEGFA expression and reduced the 
migration of HUVECs that were cultured with condition medium isolated from 
human hepatocarcinoma cells (Y. Pan, Wu, Liu, et al., 2014). AuNPs showed 
inhibitory effect on the interactions between VEGFA (165)-VEGFR2 and inhibited 
the phosphorylation of Akt in HUVECs and reduced tumor volume and angiogenesis 
exemplified by immunohistochemical staining of CD34 in H22 xenograft mice 
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model (Y. Pan et al., 2013). AuNPs conjugated with tunicamycin (a strong inhibitor 
of N-acetylglucosaminyl 1-phosphate transferase) linked to peptide nanotubes 
decreased the endothelial cells proliferation and thus inhibiting the angiogenesis by 
50% (Banerjee, Johnson, Banerjee, & Banerjee, 2013). Reduction of AuNPs by 
diaminopyridinyl (DAP)-derivatized heparin inhibited the angiogenesis process 
mediated by fibroblast growth factor (FGF-2) (Kemp et al., 2009). AuNPs suppress 
HUVEC and fibroblast proliferation caused by inhibition of VEGFA (165) and 
bFGF (basic fibroblast growth factor), respectively. AuNPs binds to heparin-binding 
growth factors and cause a blockade to growth factor–mediated signaling, probably 
by cysteine residues in the heparin-binding domain (Mukherjee et al., 2005).

Silver Nanoparticles

Silver nanoparticles (AgNPs) are small clusters of silver atoms used as anti-bacterial 
and anti-microbial agents in medicine (Chaloupka, Malam, & Seifalian, 2010). 
Having distinct physical and optical properties and biochemical versatility, AgNPs 
appear to have tremendous importance in a wide variety of biomedical applications 
(Lee & Jun, 2019). AgNPs exerted various activities inducing loss of membrane 
integrity, formation of free radicals, and promoting DNA damage demonstrated by 
comet assay against human microvascular endothelial cells. In addition, a cytotoxic 
effect against the endothelial colony-forming cells which is important in angiogenesis 
was also observed (Zhu et al., 2015).

Conjugation of AgNPs with plant extract from palm pollen downregulated 
VEGFA and its receptor VEGFR and decreased the vasculature in a CAM model 
(Homayouni-Tabrizi et al., 2019). Quinacrine (QC) conjugated to AgNPs and 
encapsulated in PLGA in CAM model showed a significant anti-angiogenic effect 
(Satapathy, Siddharth, Das, Nayak, & Kundu, 2015). Not only the silver conjugated 
nanoparticles have a biological effect, but also the naked AgNPs synthesized either by 
green methods or by other chemical methods showed anti-angiogenic bioactivity as 
reported in several studies. The biosynthesized AgNPs using the extract isolated from 
rapeseed flower pollen downregulated the VEGFA in MDA-MB-231 cells (Hajebi, 
Tabrizi, Moghaddam, Shahraki, & Yadamani, 2019). Another biosynthesized AgNPs 
using the aqueous isolated from Clitoria Ternatea flower showed anti-angiogenic 
properties in Ehrlich ascites carcinoma in vivo model via reduced VEGFA protein 
levels assessed by ELISA. Counts and densities of microvessels were also reduced 
in tumors and in a CAM model (Srinivas, Shivamadhu, Siddappaji, Krishnappa, & 
Jayarama, 2019). AgNPs biosynthesized using Saliva Officinalis significantly reduced 
the vessel number and length in the CAM assay compared with untreated group 
(Baharara, Namvar, Mousavi, Ramezani, & Mohamad, 2014). AgNPs significantly 
inhibited VEGFA and glucose transporter 1 (GLUT1) expression under the hypoxic 
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conditions in the MCF-7 cells (T. Yang et al., 2016). AgNPs biosynthesized using 
Bacillus licheniformis resulted in inducing apoptosis and DNA fragmentation in 
bovine retinal endothelial cells (BRECs) and hampered the cell survival mediated by 
PI3K/Akt signaling pathway (Kalishwaralal et al., 2009). In another study, AgNPs 
also caused inhibition of angiogenesis through reducing VEGFA, cell motility, 
and formation of tubes in BRECs and blocked the formation of new vasculature in 
Matrigel plug assay in vivo (Gurunathan et al., 2009).

On the contrary, AgNPs exerted a pro-angiogenic effect when coated with 
polyvinylpyrrolidone. They caused endothelial cells to form tubes, produce ROS, and 
induce expression of angiogenic-related factors, such as VEGFA and NO. AgNPs 
facilitated the activation of signaling pathways regulating VEGFR, such as FAK, 
Akt, ERK1/2, and p38. In vivo, angiogenesis was induced by Ag in the B16F10-
induced melanomas xenograft mice model (K. Kang et al., 2011).

Zinc Oxide Nanoparticles

Zinc oxide nanoparticles (ZnO-NPs) are a vital and important commodity because 
of their multifunctional properties, stability, low cost, and widespread use (Rahman, 
Harunsani, Tan, & Khan, 2021). For example, ZnO.is used in Pharmaceutics, cosmetics, 
and glass industries. It is also a bio-friendly substance that have photo-catalytic and 
photo-oxidizing potentials (Ansari et al., 2013; Mirzaei & Darroudi, 2017; Sirelkhatim 
et al., 2015). Numerous studies were conducted to underscore the anticancer properties 
of ZnO-NPs synthesized by green methods. ZnO-NPs biosynthesized by Ceratonia 
siliqua extract showed a significant VEGFR downregulation and high VEGFA 
mRNA expression levels in MCF-7 and MDA-MB-231 cells, leading to inhibiting 
angiogenesis (Pouresmaeil, Haghighi, Raeisalsadati, Neamati, & Homayouni-
Tabrizi, 2020). ZnO-NPs showed a promising anti-angiogenic effect on HUVECs 
by inducing cell apoptosis and DNA damage. Besides, reduced VEGFA expression 
and impairment of tube formation leading to blockade of angiogenesis (Poier et al., 
2020). ZnO-NPs biosynthesized by Hyssops officinalis L. decreased the number of 
vessels and their length in a CAM model. Also, ZnO-NPs downregulated VEGFA 
and its receptor on the MCF-7 cells (Rahimi Kalateh Shah Mohammad, Homayouni 
Tabrizi, Ardalan, Yadamani, & Safavi, 2019). Synthesis of ZnO-NPs in a green 
manner using algae Sargassum muticum showed reduced angiogenesis in a CAM 
model and induced apoptosis in the human liver cancer HepG2 cells (Sanaeimehr, 
Javadi, & Namvar, 2018). ZnO-NPs functionalized with biopolymer gelatin showed 
a remarkable anti-angiogenic activity in chick embryos (Divya et al., 2018).
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FUTURE RESEARCH DIRECTIONS

During last few years, progress has been made toward NPs’ manufacturing. 
This makes them appealing choice for wide biomedical applications, especially 
cancer treatment. It is very crucial to determine NPs’ acute and chronic toxicity, 
pharmacokinetics, pharmacodynamics, toxicity to and interactions with immune 
system, biodegradability, and safety to the environment. These challenges can be 
overcome to some extent by green biosynthesis method as a good alternative over 
the chemical method for NPs’ synthesis, where properties of reduced toxicity, cost 
effective, and ecofriendly can be achieved. Although results of cancer nanomedicine 
in clinical trials are very encouraging, applications of nano therapy to target tumor 
angiogenesis in clinical settings are very limited and under-investigated. Therefore, 
more research is required to fully examine the therapeutic efficacy of nanomedical 
drugs against tumor angiogenesis in clinical trials. Further, dual roles of NPs in 
promoting or suppressing angiogenesis based on their size, shape, and dosage should 
be very carefully considered before clinical translation.

CONCLUSION

In this chapter, we provide an overview on physiological and pathological 
angiogenesis process. Different types of drugs have been developed to target tumor 
angiogenesis. However, these therapeutic agents have toxicity and became ineffective 
due to developing drug resistance. Recent advances of nanotechology used for 
nanoparticulate drug formulation or nanocarrier delivery system fabrication hold 
promising hopes to target tumor vasculature. These nano-based treatment perspectives 
(e.g., polymer-based nanosystems, carbon-based nanomaterials, natural compounds-
derived NPs, and inorganic and metallic elements-based NPs encapsulating siRNAs, 
shRNA, miRNAs, and/or chemotherapeutic drugs, and functionalized with peptides, 
aptamers, or monoclonal antibodies) targeting tumor angiogenesis have been proved 
to be efficient in preclinical models of numerous tumor entities. Therefore, these 
findings can open new horizons for clinical translation in the near future.
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ABSTRACT

Phytochemicals have been attributed beneficial health properties, mainly their 
anticancer potential. Cancer treatment seeks to shrink the tumor and kill cancer 
cells; however, the conventional treatment available frequently fails due to the 
emergence of drug-resistant cell lines. Plant-derived compounds have been studied 
for their potential anticancer effects or as adjuvant drug to conventional treatment. 
However, some of the physicochemical properties and stability characteristics 
of the phytocompounds generate biopharmaceuticals difficulties that limit their 
efficacy and clinical applications in oncology. In this sense, nanomedicine offers an 
alternative for the development of biocompatible, biodegradable, safe, and efficacy 
phytoformulations. Nanostructured delivery systems show immense potential in the 
bioavailability of phytodrugs by providing better alternatives to conventional dosage 
forms, through improving physicochemical and biopharmaceutical properties of the 
phytocompounds and along with it to enhance the therapeutic efficacy.
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INTRODUCTION

The importance of natural products in medicine, agriculture and industry has 
led to numerous studies on the synthesis, biosynthesis and biological activities 
of these substances (Huang et al., 2016). Obtaining molecules of natural origin 
have been used for several centuries to prevent and treat various chronic ailments. 
These bioactive constituents are described as phytochemicals, and are secondary 
metabolites made by plants for their own defense purposes. They have been attributed 
beneficial health properties for being antioxidants, anti-inflammatory, antiallergic, 
hepatoprotective, neuroprotective, dermatoprotective, antimicrobial, antifungal, 
antispasmodic/antidiarrheal Agents, hypolipidemic, hypotensive, antidiabetic, 
analgesic, immunomodulating, and anticancer (Patel, 2017).

Cancer is noncommunicable disease with incidence of 19 million of new cases 
and responsible for nearly 10 million deaths worldwide in 2020. The World Health 
Organization estimates that these values   will increase by about 60% for 2040 (IARC, 
2020). The Cancer treatment is aimed at achieving sustained reductions in tumor 
and the elimination of cancer cells, however, the conventional treatment available 
such as chemotherapy, laser therapy, and cell-directed surgery, frequently fails due 
to the emergence of drug‐resistant cell lineages (Hansen and Read, 2020). On the 
other hand, the side effects of systemic chemotherapy are often severe (Schirrmacher, 
2019). Therefore, emerging strategies of Cancer therapy are still being studied with 
the aim of increasing long-lasting efficacy and reducing side effects.

The plant derived compound have been studied for their anticancer effects or 
potential adjuvants for conventional treatment, taking into consideration their low 
toxicity, low costs, affordable acquisition and multitargeting properties that allow 
the modulation of different signaling pathways (Lin et al., 2020). Between these, 
alkaloids, diterpenoids, flavonoids, polyphenolic compounds, and sesquiterpenes 
attained from medicinal plants, fruits, and vegetables possess immense anti-cancer 
potential (Banik et al., 2019). In fact, approximately, 50% of approved anticancer 
drugs are phytochemical or directly derived therefrom, which belong to four major 
classes of clinically used plant-derived anticancer compounds: vinca alkaloids, taxane 
diterpenoids, camptothecin derivatives, and epipodophyllotoxin (Choudhari et al., 
2020). Considering that approximately the 10% of the plant species with therapeutic 
potential have been studied, there is still much to study on the way to the discovery 
anticancer agents based on phytochemicals (Subramaniam et al., 2019).

Many natural products such as curcumin, genistein, and others, exhibit anti-cancer 
activity through inhibition of proliferation, induction of apoptosis, induction of cell 
cycle arrest, inhibition of invasive behavior, and suppression of tumor angiogenesis 
in vitro and in vivo models (Agbarya et al., 2014). Among these, curcumin has been 
recognized as the most promising phytochemical in the treatment of several cancer 
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types for its ability by targeting different cell signaling pathways including growth 
factors, cytokines, transcription factors, and genes modulating cellular proliferation 
and apoptosis (Giordano and Tommonaro, 2019).

On the other hand, the adjuvant action of phytochemicals is based on 1) Direct 
potentiating tumoricidal effect or sensitizing cancer cells to be more responsive 
to chemotherapeutic drugs; 2) Reversing chemoresistance, through diminishing 
drug efflux or overcoming other mechanism to increase the accumulation of 
chemotherapeutic drugs in cancer cells; and 3) Alleviating toxicity induced by 
chemotherapeutic drugs, promoting the repairing mechanism in normal cells against 
damage of chemotherapeutic drugs (Lin et al., 2020). Phytochemicals such as 
curcumin, silymarin, allicin, lycopene, ellagic acid, resveratrol and among others, 
have showed additive/synergic effects, improving the activity of the anticancer drugs 
and reducing their collateral and side effects (Zhang et al., 2021). For example, 
Resveratrol could enhance anticancer therapies by regulating multidrugresistant 
protein expressions and interfering with cell signaling pathways include cellular 
cycle and apoptosis (Zhang et al., 2021).

However, applications of phytochemicals as anticancer and adjuvant therapy, 
have been limited due to poor oral bioavailability, poor aqueous solubility, rapid 
metabolism, and systemic elimination that limit its efficacy in cancer treatment 
(Yadav et al., 2020). In this sense, the nanomedicine is the solution to promote the 
development of nanoformulations biocompatible, biodegradable and stable. In short, 
optimized nanophytherapeutics would contribute to increase efficiency, improve 
drug specificity, enhance absorption rates, reduce drug degradation and diminish 
systemic toxicity in cancer therapy (Wei et al., 2019).

PHYTOCHEMICALS FOR CANCER THERAPY 
(PHYTOCHEMICALS AS ANTICANCER DRUG)

The Fig. 1 shows the main phytochemical groups employed as Current Clinical Drug 
(CCD), Evaluated in Clinical Trials (ECT) (only Clinical Trials with completed 
status and Phase II and III were included) and studied in Pre-clinical Trials (PCT). 
The selection of the compound is based on a bibliographic search on Pubmed using 
the keywords: “Nanoformulation” “Nanoparticle” “Phytochemical”, “Anticancer 
Drug”, “Natural Compound”, “Cancer Therapy”. Next, a brief description of the 
prototype compounds of each group will be made.
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Alkaloids

Alkaloids have a wide range of biological activities and diverse chemical structure 
dependent on precursor amino acid (phenylalanine, tyrosine, tryptophan, ornithine, 
or lysine) (Verpoorte, 2004). Chemically, alkaloids correspond to cyclic compounds 
that contain one or more basic nitrogen atoms in ring system, which in turn, some 
hydrogen atoms are replaced by various oxy-alkyl radicals (Habli et al., 2017). Most 
of the known alkaloids have been isolated from plants, mainly from plant families 
Leguminosae, Menispermaceae, Ranunculaceae, Loganiaceae and Papaveraceae 
(Mondal et al., 2019). The significant biological activities, such as the analgesic 
action, bronchodilation and the anticancer effects make these compounds serve 
as an attractive reservoir for drug discovery (Lu et al., 2012). Alkaloids, such as 
Vincristine, Vinblastine, Vinorelbine, Camptothecin and Berberine have already 
been successfully developed into anticancer drugs, but only vincristine, vinblastine 
and vinorelbine have been approved by Food and Drug Administration (FDA) as 
pharmaceutical strategy against different tumors (Lee et al., 2015).

The Vinca alkaloids (VAs) (Vincristine, Vinblastine and Vinorelbine) are 
phytochemicals isolated from the leaves of the Madagascar periwinkle plant, 

Figure 1. Group of phytochemicals with anticancer activity and delivered by nano-
structured systems. [CCD] Current Clinical Drug; [ECT] Evaluated in Clinical 
Trials (only Clinical Trials with completed status and Phase II and III were included) 
and [PCT] Pre-clinical Trials
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Catharanthus roseus, formerly known as Vinca rosea (Agrawal, 2007). The VAs are 
current cancer therapy indicated in hematologic malignancies, leukemia, Hodgkin’s 
and non–Hodgkin’s lymphoma, rhabdomyosarcoma, neuroblastoma, Non-small-cell 
lung carcinoma (NSCLC), breast, lung and testicular carcinoma, Kaposi’s sarcoma, 
and second-line transitional cell carcinoma of the urothelium (TCCU) (Choudhari et 
al., 2020). These phytochemicals, constitute the first class of mitotic inhibitor, acting 
as tubulin targeting anticancer drugs. Specifically, the VAs interact with GDP-α/β-
tubulin dimers blocking the microtube formation required to anaphase onset and 
consequently to generate a prolonged arrest state. Additionally, the VAs interact 
with GTP-α/β-tubulin eliciting the microtubular that determines the accumulation 
of chromosomes in unnatural forms, leading to cell death through activation of 
p53-dependent and/or -independent apoptotic pathways (Martino et al., 2018). On 
the other hand, the VAs have non-mitotic toxic effects including inhibition of axon 
transport, secretion processes and structure disorders and impairment of platelet 
functions, actions related with their toxicological profile and side effect reported, 
in particular, neurotoxicity (Choudhari et al., 2020).

On the other hand, Camptothecin and its derivatives, topotecan and irinotecan 
approved by FDA, act by targeting Topoisomerase I (TOP1) function (Effect also 
known as TOP1 inhibition). TOP1 is enzyme responsible of change the topological 
state of nucleic acids by forming Topoisomerase Cleavage Complexes (TOP1CCs), a 
TOP1-DNA interface required for DNA replication and transcription. Camptothecin 
target TOP1CCs causing DNA synthesis damage by replication run-off and inducing 
the cell death pathways by engaging p53 (TP53) and Schlafen 11 (SLFN11) (Thomas 
and Pommier, 2019). Camptothecin registers phase II clinical trial for the treatment 
of solid tumor, Advanced Gastric, Gastroesophageal, or Esophageal Squamous or 
Adenocarcinoma and Non-Small Cell Lung Cancer (https://www.clinicaltrials.gov).

Finally, Berberine has been used in Traditional Chinese Medicine as antineoplastic, 
radiosensitizing, anti-inflammatory, anti-lipidemic, anti-oxidant, antimicrobial 
and anti-diabetic therapy (Miguel et al., 2014). Diverse pharmacological actions 
of Berberine have been reported, between these, the apoptosis induction through 
up-regulate p53 expression, by suppressing the inner inhibitor MDM2 at the post-
transcriptional level TP53 and via activation of AMPK pathway. Besides, Berberine 
has exhibited the ability to overcome multidrug resistance, to increase efficacy of 
drug such as Cisplatin, Tomoxifen and to suppress tumor metastasis (Zhang et al., 
2020). Recently, Berberine to be safe and effective in reducing the risk of recurrence 
of colorectal adenoma in Phase II and III Clinical Trials (Chen et al., 2020).
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Polyphenols

Among the secondary metabolites present in plants, the group corresponding to 
polyphenols is the one with the greatest diversity of compounds, characterized by 
having within their chemical structure at least one aromatic ring with hydroxyl 
groups. According to their number of phenolic groups and structural elements, 
they are mainly divided into phenolic acids, flavonoids, stilbenes, lignans, lignins, 
coumarins, anthraquinones, xanthones, tannins, curcuminoids, quinones and others 
(Huang et al., 2010). The polyphenols have multiples health benefits, especially with 
regard to chronic diseases (Fraga et al., 2019). For example, the polyphenols have 
shown antioxidant (Luo et al., 2021), anticancer (Zhou et al., 2016), neuroprotective 
(Spagnuolo et al., 2016), anti-inflammatory (Joseph et al., 2016), antiviral {Formatting 
Citation}, antidiabetic (Haddad and Eid, 2017), antifungal and antibacterial 
(Zorofchian Moghadamtousi et al., 2014) effects.

Given the great diversity of compounds, twelve polyphenols have been selected 
in the present work based on the advances in research carried out as anticancer 
agents and potential nanophytotherapeutics (Fig. 1). This way, ten of the selected 
polyphenols have pre-clinical studies about their anticancer activity (Apigenin, 
Coumarin, Ellagic acid, Epigallocatechin, Fisetin, Honokiol, Naringenin, Quercetin, 
Resveratrol and Wogonin) and only two have already been part of Clinical Trials 
(Genistein and Curcumin). A summary with the basic pharmacotherapy of the 
polyphenols of the TCP group is presented in the Table 1.

Table 1. Basic Pharmacotherapy of polyphenols with pre-clinical studies in cancer

Polyphenol Cancer Type Action Mechanism

Apigenin

Bladder, Prostate, Lung, 
Pancreatic and Colon Cancer, 
among others (Imran et al., 
2020).

Apigenin modulate different hallmarks of cancer such 
as cell proliferation, apoptosis and autophagy through 
enhanced expression of pro-apoptotic proteins, activation 
of caspase cascades, inhibiting PI3K/Akt/FOXO, MAPK/
ERK, NF-κB, JAK/STAT, and Wnt/β-catenin signaling 
pathways (Ahmed et al., 2021).

Coumarin
Breast Cancer, Leukemia, 
Melanoma and Prostate Cancer 
(Akkol et al., 2020).

Coumarins target a number of pathways in cancer such 
as kinase inhibition, cell cycle arrest, angiogenesis 
inhibition, heat shock protein (HSP90) inhibition, 
telomerase inhibition and antimitotic activity (Thakur et 
al., 2015).

Ellagic acid

Prostate, colon, pancreatic, 
breast, ovarian, bladder, and 
glioblastoma cancers, as well 
as lymphoma (Ceci et al., 
2018).

Ellagic acid induce apoptosis (Upregulation Bax and 
downregulation Bcl-2), generate DNA damage (Oxidative 
stress) and Cell cycle arrest G0/G1 via TGF-β/Smads 
pathway (Ríos et al., 2018).

continued on following page
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Polyphenol Cancer Type Action Mechanism
Ep

ig
al

lo
ca

te
ch

in

Cervix, liver, Prostate, Lung, 
Pancreatic and Colon Cancer 
among others (Almatrood et 
al., 2020).

Epigallocatechin can induce apoptosis through the 
activation of the apoptosis-related molecules and 
modulation of multiple molecular pathways as well as 
decreasing the mitochondrial membrane potential in 
cancer cells and activating caspase-9, Procaspase-3, -6, 
-7, Procaspase-8, -10. Additionally, Epigallocatechin can 
arrest cancer cell cycle in G1 phase by regulating cell 
cycle related proteins (Aggarwal et al., 2020).

Fisetin
Breast, Prostate, Pancreatic 
Lung Cancer (Imran et al., 
2021).

Fisetin activate caspase-9, caspase-3 and upregulate p53, 
Bax, Bak and down regulate NF-κB and Bcl-2 to generate 
apoptosis. Besides, Fisetin produces G0/G1 phase arrest 
through increase in p53 and p21 proteins, and decrease 
cyclin D1, cyclin A, Cdk- 4 and Cdk-2 (Kashyap et al., 
2018).

Honokiol
Colorectar, breast, lung, skin, 
brain, bone Cancer (Ong et al., 
2020).

Honokiol induces apoptosis, suppresses the proliferation, 
expression of cancer stem cell marker protein, 
P-glycoprotein number reduction, and radiosensitization 
through pathways as STAT3, NF-κB, mTOR, EGFR, 
MAPK, SHH among several others (Rauf et al., 2018b).

Naringenin

Breast, prostate, lung, gastric, 
colon, bladder, cervical cancers 
and leukemia (Memariani et 
al., 2020).

Naringenin inhibite survival signaling pathways such 
as NF-κB, MAPK and AKT and suppresses MAPK 
activation to induce cancer cells apoptosis (Zeng et al., 
2018).

Quercetin
Breast, gastric, colon, 
pancreatic, prostate ad Lung 
Cancer (Rauf et al., 2018a).

Quercetin promotes loss of cell viability, apoptosis and 
autophagy in cancer by reducing β-catenin and HIF-1α 
stabilization, inducing caspase-3 activation and inhibiting 
of Akt, mTOR, and ERK phosphorylation. Quercetin 
also prevents metastasis by reducing VEGF secretion 
and MMP levels. By interfering in PI3K/Akt/mTOR 
pathways, quercetin exerts its metabolic effect on cancer, 
inhibiting key enzymes of glycolysis and glucose uptake 
(Reyes-Farias and Carrasco-Pozo, 2019; Tang et al., 
2020).

Resveratrol
Breast, Skin, Liver and 
Prostate Cancer (Ko et al., 
2017).

Inhibition Sirt-1/PTEN/PI3K/AKT Upregulation p21/p53 
Inhibition AMPK/YAP Inhibition NF-κB/STAT3 
Downregulation HIF-1α (Berretta et al., 2020; Elshaer et 
al., 2018).

Wogonin

Ovarian, colorectal and breast 
Cancer (Feng et al., 2018; D. 
Yang et al., 2020; Zhao et al., 
2019).

Wogonin induces apoptosis via different mechanisms 
including DNA fragmentation, PARP degradation, 
activation of Caspase-3 (but not Caspase-1), induction of 
Caspase-9 
or Caspase-8 cleavage, reduction of Bcl2 family proteins 
and via ER-stress pathway. Besides, wogonin interferes 
with the cell cycle, arresting the cells in G1 phase and 
induces differentiation leading to decreased malignant cell 
growth (Huynh et al., 2017).

Table 1 Continued
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Within selected polyphenols, Curcumin and Genistein have completed phase II 
and III clinical studies as monotherapy for the treatment of cancer and only Curcumin 
has also been evaluated as an adjuvant combination therapy to chemotherapy. In this 
way, Curcumin have been studied to breast and pancreatic cancer and in combination 
with Plaquitaxel in Advanced Breast Cancer. Moreover, Genistein have been studied 
to breast, prostate and metastatic Colorectal Cancer and as adjuvant with decitabine 
in Lung cancer (https://www.clinicaltrials.gov).

Curcumin causes death of cancer cells by cell cycle arrest sequentially in the G1/S 
and G2/M phases and induce apoptosis through upregulate the expression and activity 
of p53, inhibition the activity of NF-κB, attenuate the regulation of anti-apoptosis 
PI3K signaling and decreases anti-apoptotic Bcl-2 protein expression (Liczbiński et 
al., 2020). Furthermore, curcumin also increase the expression of MAPKs to induce 
endogenous production of ROS and inhibition of 26S proteasome activity in the 
context of treatment of cancer (Hassan et al., 2019). On the other hand, Genistein 
has multitarget activity on cancer pathway (inducing apoptosis, cell cycle arrest, 
antiangiogenic activity) and antimetastatic potential. Thus, the main molecular targets 
of genistein include caspases, Bcl-2, Bax, nuclear factor-κB, inhibitor of NF-κB, 
phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase 1/2, MAPK, 
and Wingless and integration 1/β-catenin signaling pathway (Tuli et al., 2019).

Terpenes

Terpenoids are natural hydrocarbons made up of isoprene units (five carbons) as their 
basic components. Different terpenes include hemiterpenes (C5), monoterpenes (C10), 
sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30), 
and polyterpenes (> C30). This group of metabolites are produced predominantly 
by plants, particularly conifers (Brahmkshatriya and Brahmkshatriya, 2013). The 
terpenoid family of natural products has been a valuable source of medical discoveries, 
for example, currently is known the anti-microbial action of monoterpenes or the 
psychoactive, anxiolytic and anesthetic effect of derived Meroterpenes such as 
Cannabinoids (Bergman et al., 2019). We found eight representatives terpenes 
studied in anticancer nanophytotherapy (Fig. 1).

Docetaxel and Paclitaxel with FDA approbation, Docetaxel for breast, prostate, 
and non-small cell lung as single agent and in combination with chemotherapy, and 
Paclitaxel for breast cancer (https://www.fda.gov/ - Drug Approvals and Databases). 
Both phytochemicals are antimicrotubule agent, whose primary mechanism of action 
is to bind beta-tubulin, enhancing the action of tubulin dimers and stabilizing current 
microtubules while inhibiting their disassembly, producing cell cycle arrest during 
G2/M (Phillips and Petrylak, 2010; Wang and Du, 2018).
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Triptolide and Thymoquinone have pre-clinical studies for patients with refractory 
pancreatic cancer and as chemopreventive on oral potentially malignant lesions, 
respectively (https://www.clinicaltrials.gov). The activation of apoptosis is one of 
the major mechanism associated to anticancer effect of Triptolide through different 
pathways such as activation of caspases and HSP70, NF-kB, ERK1/2, Bcl-2 signaling 
inhibition (Noel et al., 2019). Otherwise, Thymoquinone has reported antiproliferative 
activity by means of p53- independent pathway and arrest of cells in the progression 
of the cell cycle (Banerjee et al., 2010).

Finally, Artemisinin, Ursolic acid, Andrographolide and Oridonin have been 
studied in diverse pre-clinical assays. For example, Artemisin acts in a multi-
specific manner also against hematological malignancies (Mancuso et al., 2021); 
Ursolic acid inhibits breast cancer cell proliferation (Jaman and Sayeed, 2018); 
Andrographolide has shown anticancer and preventive effect (Farooqi et al., 2020; 
Mishra et al., 2015) and Oridonin has been studied as potential antiangiogenic and 
antimetastatic pharmacology alternative (Abdullah et al., 2021).

Even though the diverse groups of phytochemicals described shown broad 
anticancer properties, some factors do not contribute to good bioavailability. For 
example, the polyphenols are associated with low absorption from the gastrointestinal 
tract, transformation in the intestine, rapid metabolism, and systemic elimination. 
The action of salivary proteins rich in proline, make polyphenols become insoluble 
complexes (Adrar et al., 2019). Besides their stability is affected by the action of 
acidic pH in the stomach and alkaline in the small intestine and as product of their 
metabolism can present methylations, sulphations and glucuronidations, generating 
changes in its structure and as a consequence in its biological activity (Mithul 
Aravind et al., 2021; Squillaro et al., 2018). The alkaloids also do not escape of 
pharmaceutical challenges. The physicochemical properties presented by this group 
of compounds have been unfavorable for good bioavailability, due to their low 
solubility and stability (Zheng et al., 2018). For example, in the case of berberine, 
a pentacyclic isoquinoline alkaloid, presents poor intestinal absorption and / or 
bioavailability (Habtemariam, 2020).

NANO-STRUCTURED DELIVERY SYSTEM FOR 
PHYTOMEDICINE IN CANCER TREATMENT

As mentioned in the previous section, most of the biologically active constituents of 
plants, such as, alkaloids, polyphenols, flavonoids, tannins, and terpenoids are poorly 
absorbed from the gastrointestinal tract because of their large molecular weight, 
high lipophilicity, low water solubility, poor permeability, instability, high first pass 
metabolism or low which caused problems in clinical trials (Choudhari et al., 2020). 
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Therefore, sometimes these active constituents need to be given in large quantities, 
which brings associated problems with its potential toxicity (Martino et al., 2018).

Based on the biopharmaceutical challenges involved with phytochemicals and 
their delivery, recent advancements in the field of nanotechnology can help to solve 
many of them by improving solubility, stability (protecting them from degradation 
and increasing residence time), absorption, targetability, safety, dosage (due to allow 
sustained drug release) and therefore, their activity, efficacy and even efficiency 
because allow combination therapy or co-delivery of two or more phytoconstituents 
or drugs enhancing the therapeutic index (Bagheri et al., 2018; Din et al., 2017; Yang 
et al., 2020). The Table 2 show the potential of different nano-structured carriers 
for anticancer phytochemicals delivery.

The Fig. 2 summarizes the most used nano-structured systems and their main 
advantages for phytomedicine delivery in cancer therapy. As we can see, there are 
multiple advantages in the use of nanocarriers for nanophytomedicine, particularly 
in cancer treatment these strategies of delivery, in addition have shown an enhanced 
permeation and retention (EPR) effect, which improves permeation through barrier 
due to nano size carrier and the retention caused due to poor lymphatic drainage at 
the tumor sites. The preferential accumulation of the nanoparticles into the cancer 
cells, allow a passive targeting without addition of any of ligand moiety, extending 
half-life of the phytocompound, decreases side effect due to avoid unwanted effects in 
non-target organs and reduces dosages (Kim et al., 2021). Besides, nanotechological 
approaches allow flexibility in routes of administration such as oral, transdermal, 
and parental, among others (Table 2).

Figure 2. Schematic representation of the most commonly nano-structured systems 
used for phytochemicals delivery in cancer treatment and their main advantages
(Modified from Bagheri et al., 2018; Din et al., 2017; Yang et al., 2020)
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Table 2. List of phytochemicals formulated in nanocarriers for Cancer therapy

Phytochemicals Nanocarrier 
Formulation

Route of 
Delivery

Biopharmaceutical 
Advantages

Pharmacological 
Advantages Reference

ALKALOIDS

Berberine
https://www.

guidetopharmacology.org/
GRAC/LigandDisplayForwa

rd?ligandId=11353 
https://go.drugbank.com/

drugs/DB04115 
Class: benzylisoquinoline 

alkaloid 
Pharmaceutical Problem:

− Poorly soluble due its 
hydrophobic properties. 

− Poor stability 
Low bioavailability.

Nanoemulsion

in vitro
↑ stability 
↑ oral bioavailability 
↑ permeability

- (Hua et al., 
2018)

in vitro - ↑ phototoxicity in 
cervical carcinoma

(Floriano et al., 
2021)

Self-
nanoemulsifying 
drug delivery 
system

in vitro Approach for improving 
oral absorption - (Ke et al., 

2015)

Folate acid 
modified chitosan 
nanoparticle

in vitro / in 
vivo sustained release

↓ proliferation and 
migration 
Promoted apoptosis 
and necrosis

(Y. Wang et al., 
2018)

Lyotropic liquid 
crystalline 
nanoparticles

In vitro ↑ solubility 
↑ cell uptake - (Loo et al., 

2020)

Berberine + Diosmin Casein micelles in vitro / in 
vivo

↑ targeting ability 
sustained release 
↑ cellular uptake

↓ NF-κB and TNF-α 
↓angiogenesis 
↑apoptosis.

(Abdelmoneem 
et al., 2018)

Camptothecin
Class: Quinoline alkaloid
https://go.drugbank.com/
drugs/DB04690 
Pharmaceutical Problem:
− Lactone hydrolysis. 
− Poor aqueous solubility. 
− Low oral efficacy due 
to poor absorption and 
bioavailability. 
− Some toxic effects.

Solid lipid 
nanoparticles in vitro ↑ stability - (Martins et al., 

2012)

PEGylated 
Liposomes coated 
with human serum 
albumin

in vivo

↑ stability 
↑ circulation time in the 
plasma and AUC 
↑ accumulation in tumor 
tissue

↓ Tumor growth (colon 
adenocarcinoma)

(Watanabe et 
al., 2008)

Polymer conjugated in vitro / in 
vivo

↑ stability 
Prolonged intra-tumor 
retention and sustained 
release. 
Improved 
pharmacological profile.

Tumor regressions 
(HT29 human colon 
carcinoma) 
No toxic deaths

(Caiolfa et al., 
2000)

Hydrophobically 
modified 
glycol chitosan 
nanoparticles

in vivo

↑ stability (prolonged 
blood circulation) 
↑ accumulation in tumors 
↑ tumor targeting

↓ Tumor growth 
(MDA-MB231 
human breast 
cancer xenografts 
subcutaneously 
implanted in nude 
mice)

(Min et al., 
2008)

Poly(lactic-co-
glycolic acid) 
microspheres

In vitro ↑ stability 
Sustained delivery - (Ertl et al., 

1999)

Self-
microemulsifying 
drug delivery 
system

in vitro / in 
vivo

↑ oral bioavailability 
(AUC)

↓ Tumor growth 
(SKOV-3 human 
ovarian cancer 
xenograft in nude 
mice)

(Lu et al., 
2008)

Microparticles In vivo ↓ dose size
↓ Tumor growth 
(orthotopic rat model 
of lung cancer)

(Chao et al., 
2009)

continued on following page
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Vinblastine
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=6851 
https://go.drugbank.com/
drugs/DB00570 
Class: alkaloid
Pharmaceutical Problem:
Margins of safety reduced 
(Toxicity)

Aptamer-
nanoparticle 
bioconjugates

in vitro ↑ cellular uptake and 
internalization capability

↑ Cytotoxicity 
(Breast Cancer Cells)

(Zhou et al., 
2014)

Liposomes in vitro / in 
vivo Sustained release

↓ cells survival 
↓ cell proliferation G0/
G1 and G2/M arrest 
(ovarian cancer celis)

(Shah et al., 
2018)

Cationic liposomes in vitro / in 
vivo

↑drugs across the blood-
brain barrier 
↑accumulation selective 
in tumor site

↑ Apoptosis 
↓Tumor 
metastasis through 
downregulation of 
PI3K, MMP-2, MMP-
9 and FAK. 
(Glioma cells) 
In vivo: 
↓Toxicity

(Xiao et al., 
2018)

Poly(ethylene 
glycol)–folate 
nanoparticles

in vivo

↑Tumor-Targeting 
↓Toxicity 
↓ low release 
↓ toxicity

- (Zhu et al., 
2019)

Vincristine
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=6785 
https://go.drugbank.com/
drugs/DB00541 
Class: alkaloid
Pharmaceutical Problem:
− Margins of safety reduced 
(Neurotoxicity)

Polymeric 
nanoparticles 
(F56 peptide 
conjugated 
nanoparticles)

in vitro / in 
vivo

Slower and sustained 
release 
↑nanoparticle distribution

↑ Cytotoxicity 
↓proliferation, 
migration, and tube 
formation 
(Colon cancer cells) 
In vivo assay: 
↑Mouse survival 
↓lung metastasis in 
mice 
Survival

(Lee et al., 
2015)

Liposomes in vitro
↑ site specific drug 
release 
↑ uptake into the tumor

↓ IC50 (Lung cancer 
cell line)

(Thakkar et al., 
2012)

Polymeric 
magnetic: Dextran 
shell, with 
superparamagnetic 
iron oxide core and 
was conjugated 
with folate

in vitro
↑ entrapment efficiency 
↑ skin permeation 
Controlled release of drug

↑ Apoptosis through 
increase of Caspase-9 
and P53 expression. 
↑ Apoptosis through 
decrease P21 and 
AKt1 expression. 
(Testicular tumor cells)

(Al-Musawi et 
al., 2021)

POLYPHENOLS

Coumarin
https://go.drugbank.com/
drugs/DB04665 
Class: Coumarins
Pharmaceutical Problem:
− Hidrophobicity

Poly(lactic-co-
glycolic acid) 
nanoparticles

in vitro ↑ cellular uptake 
↑ bioavailability

↑ apoptotic through 
down-regulation of 
cyclin-D1, survivin 
and Stat-3, and up-
regulation of p53 and 
caspase-3. 
(melanoma cancer 
cells)

(Khuda-
Bukhsh et al., 
2010)
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Curcumin
Class: Curcuminoid
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=7000 
https://go.drugbank.com/
drugs/DB11672 
Pharmaceutical Problem:
− Low aqueous 
solubility due to its high 
hydrophobicity. 
− Low oral bioavailability 
due to poor absorption and 
rapid metabolism.

Monomethoxy 
poly(ethylene 
glycol)-oleate 
micelles

In vitro ↑ water solubility 
↑ bioavailability

↓ IC50 (Brain Cancer 
cells) 
↑ Apoptosis

(Erfani-
Moghadam et 
al., 2014)

Monomethoxy 
poly(ethylene 
glycol)- poly(ε-
caprolactone) 
micelles

In vivo ↑ t(1/2) and AUC ↓ Angiogenesis 
(Zebrafish)

(Gou et al., 
2011)

Copolymeric 
nanoparticles In vitro ↑dispersion in aqueous 

medium. None (Bisht et al., 
2007)

poly(lactic-co-
glycolic acid) 
nanospheres

In vitro
↑ uptake of the 
nanospheres in prostate 
cancer cell lines.

↓ IC50 (Prostate Cancer 
cells) 
↓ NF-κB activation

(Mukerjee and 
Vishwanatha, 
2009)

poly(lactic-co-
glycolic acid) 
nanoparticles

in vitro / in 
vivo

↑ water solubility 
↑ bioavailability 
(enhanced absorption by 
improved permeability, 
inhibition of 
P-glycoprotein-mediated 
efflux, and increased 
residence time in the 
intestinal cavity)

- (Xie et al., 
2011)

Liposomes in vitro ↑ bioavailability ↑ anticancer effects 
↓ adverse effects

(Feng et al., 
2017)

Nanostructured 
lipid carrier

in vitro / in 
vivo ↑ oral bioavailability

↑ cytotoxicity 
↑ cellular uptake 
(HCT116 and HT29)

(Vijayakumar 
et al., 2019)

Phytosomes in vitro / in 
vivo -

↓ cell growth 
↓ tumor number 
↓tumor size 
(colorectal-cancer 
model)

(Marjaneh et 
al., 2018) 

Meriva® 
Curcumin 
formulated with 
phosphatidylcholine

in vivo ↑ bioavailability ↓ MMP-9 expression 
↓ Lung metastasis

(Ibrahim et al., 
2010)

Polymeric micelles in vitro ↑ cellular uptake
↓ Proliferation 
↑ Apoptosis 
(Breast cancer cells)

(Karimpour et 
al., 2019)

Micellar 
nanoparticles in vitro ↑Aerosolization property 

↓Side effects

↑ cytotoxicity on lung 
cancer cells 
G2/M arrest 
↓Interleukin-8 
(Lung cancer cells)

(Lee et al., 
2016)

Ethosomes in vitro / ex 
vivo

↑transdermal permeation 
Controlled-release Melanoma skin cáncer

(Krishna 
Kollipara et al., 
2019)

Dendrimers in vitro ↑ solubility 
↑ bioavailability

↑ inhibition of tumor 
cell proliferation

(Ghaffari et al., 
2020)
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Self-
microemulsifying 
drug delivery 
system

in situ / in 
vivo

↑ solubility 
↑ oral absorption - (Cui et al., 

2009)

Solid lipid 
nanoparticles in vitro ↑ uptake efficiency

↑ cytotoxicity 
↑ Apoptosis 
(breast cancer cells) 
↑ Bax/Bcl-2 
↓ cyclin D1 and CDK4

(Wang et al., 
2018)

PEGylated solid 
lipid nanoparticles in vivo ↑ oral bioavailability - (Ban et al., 

2020)

Solid lipid 
nanoparticles with 
mesoporous silica 
shells

in vivo ↑ Oral delivery 
↑ Cell-uptake - (Kim et al., 

2016)

Solid lipid 
nanoparticles in vivo

Enhanced 
pharmacokinetic (Cmax, 
AUC)

- (Kakkar et al., 
2011)

Immunoliposomes in vitro
↑ uptake at intracellular 
level 
↑ selectivity

↓ IC50 (breast cancer 
cell lines).

(Catania et al., 
2013)

Chitosan 
nanoparticles

in vitro / in 
vivo ↑ bioavailability - (Kar et al., 

2009)

Curcumin + Camptothecin
Class: Polyphenol + 
Alkaloid

Cationic polymeric 
nanoparticles in vitro -

Enhances synergistic 
effects of anticancer 
activity in colon-26 
cells

(Ruttala and 
Ko, 2015; Tan 
and Norhaizan, 
2019)

Curcumin + Paclitaxel
Class: Polyphenol + 
Terpene

Liposomes in vitro -

Effectively kills the 
breast cancer cells 
compared to individual 
treatment

Ruttala and 
Ko, 2015; Tan 
and Norhaizan, 
2019)

Curcumin + Rutin
Class: Polyphenols

Chitosan 
nanoparticles

in vitro / in 
vivo ↑ oral bioavailability - (Ramaswamy 

et al., 2017)

Curcumin + Resveratrol
Class: Polyphenols + 
Polyphenols

Immunoliposomes In vitro
↑ uptake at intracellular 
level 
↑ selectivity

↑ Antiproliferative 
activity 
↓ IC50 (breast cancer 
cell lines)

(Catania et al., 
2013)

Honokiol
https://pubchem.ncbi.nlm.
nih.gov/compound/72303 
Class: Lignane
Pharmaceutical Problem:
High hydrophobicity 
prevents vascular 
administration

Monomethoxy 
poly(ethylene 
glycol)- poly(lactic 
acid) nanoparticles

in vitro Sustained release ↓ viability of human 
(ovarian cancer cells)

(Zheng et al., 
2010)

Polymeric 
nanoparticles 
(nanoparticles 
based on 
epigallocatechin 
gallate 
functionalized 
chitin)

in vitro / in 
vivo ↑Tumor selectivity

↑citotoxicity 
↓ cell proliferation of 
by inhibiting more 
cells in the G2/M 
phase 
↓ mitochondrial 
membrane potential. 
(Liver cancer and lung 
cancer cell lines).

(Tang et al., 
2018)
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Resveratrol
Class: Stilbenes
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=8741 
https://go.drugbank.com/
drugs/DB02709 
Pharmaceutical Problem:
− Low water solubility 
− Low oral bioavailability 
due to poor absorption and 
rapid metabolism 
− Low selectivity

Self-
nanoemulsifying 
drug delivery 
system

in situ

Improved release 
↑ absorption 
↑ permeability 
↑ bioavailability

- (Singh and Pai, 
2015)

Solid lipid 
nanoparticles In vitro

↑ solubility 
↑ stability 
↑ intracellular delivery

↓ G2/M phase 
↑ S-arrest

(Teskač and 
Kristl, 2010)

Immunoliposomes in vitro
↑ uptake at intracellular 
level 
↑ selectivity

↓ IC50 (breast cancer 
cell lines)

(Catania et al., 
2013)

Gold nanoparticles in vitro ↑ cellular uptake
↓ IC50 (breast, prostate 
and pancreatic cancer 
cell lines)

(Golonko et 
al., 2019)

Ellagic acid
https://go.drugbank.com/
drugs/DB08846 
Class: Tannin
Pharmaceutical Problem:
− Low water solubility

Solid lipid 
nanoparticles in vitro ↑ targeting ability

↓ proliferation 
↓ cell growth 
(liver, breast and 
prostate cancer cell 
lines)

(Badawi et al., 
2018)

Ellagic acid + pemetrexed
Class: Tannin + 
chemotherapeutic

Lactoferrin coated 
mesoporous silica 
nanoparticles

in vitro ↑ water solubility 
↑ cellular uptake

Synergistic effect in 
breast cancer cells 
↑ cytotoxicity

(Ali et al., 
2020)

Anthocyanin
Class: Flavonoid
Pharmaceutical Problem:
− Highly susceptible to 
degradation in high pH, 
light, heat, and oxygen. 
− Poor bioavailability.

Nanoemulsion and 
nanoliposome in vitro ↑ physicochemical 

stability - (Chen and 
Inbaraj, 2019)

Apigenin
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=4136 
https://go.drugbank.com/
drugs/DB07352 
Class: Flavonoid
Pharmaceutical Problem:
− Low water solubility 
− Poor bioavailability

Nanogel in vitro ↑concentration and 
exposure time ↑ apoptosis

(Hashemi and 
Samadian, 
2018)

Fisetin
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=5182 
https://go.drugbank.com/
drugs/DB07795 
Class: Flavonoid
Pharmaceutical Problem:
− Low water solubility

Monomethoxy 
poly(ethylene 
glycol)- poly(ε-
caprolactone) 
micelles

in vivo 
(CT26 
animal 
model)

↑ water solubility. 
↑ cellular uptake 
Sustained release

↑ cytotoxicity 
↑ apoptosis 
↑ antiproliferation 
↑ angiogenesis

(Chen et al., 
2015)

Liposomes in vitro / in 
vivo

↑ bioavailability 
↑ antitumor efficacy

↓ tumor growth (lung 
carcinoma)

(Seguin et al., 
2013)

Ethosomes in vivo
Improved 
pharmacokinetic. 
Improved dermal delivery

↓TNF-α and IL-1α 
↓ Tumor incidences 
(skin cancer)

(Moolakkadath 
et al., 2019)

Wogonin
Class: Flavonoid
Pharmaceutical Problem:
− Low water solubility 
− Low oral bioavailability

Glycyrrhetinic acid 
modified liposome

in vitro / in 
vivo

↑uptake of liposome in 
the tumor 
↑ bio-distribution

↓ IC50 (Liver cancer 
cell lines) 
↓ Liver tumor weight

(Tian et al., 
2014)
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Epigallocatechin
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=7002 
https://go.drugbank.com/
drugs/DB03823 
Class: Flavonoid
Pharmaceutical Problem:
− Instability (very prone 
to oxidation in aqueous 
solutions) 
− Poor intestinal absorbance 
Reduce efficacy in vivo.

Cationic solid lipid 
nanoparticles in vitro

↑ stability 
Intrinsic toxicity, due to 
the surfactant used in its 
production.

↑or ≈ antiproliferative 
effect depend on cell 
lines: Caco-2, HepG2, 
MCF-7, SV-80 and 
Y-79).

(Silva et al., 
2019)

Liposomes in vitro ↓ degradation ↑ basal cell carcinomas 
(BCCs) death

(Fang et al., 
2006)

Chitosan 
nanoparticles In vivo ↑ efficacy

↓ tumor growth 
↑ prostate-specific 
antigen

(Khan et al., 
2014)

Polymeric 
nanoparticles In vitro ↑ targeting ability. 

↑ efficacy
↓ cell proliferation 
↓IC50

(Zeng et al., 
2017)

Quercetin
Class: Flavonoid
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=5346 
https://go.drugbank.com/
drugs/DB04216 
Pharmaceutical Problem:
− Low water solubility 
− Low oral bioavailability

Polyethylene glycol 
4000 liposomes.

in vitro / in 
vivo

↑ solubility 
↑ bioavailability

↓ tumor growth in vivo
↓ tumor angiogenesis 
↑ apoptosis

(Chen et al., 
2006)

polymer-
lipid hybrid 
nanoparticles

in vitro / in 
vivo

↑ bioavailability 
↑ cellular uptake and 
internalization capability 
↑ therapeutic index

↑ cytotoxic in vitro
↑ antileukemic effects 
in vivo

(Yin et al., 
2019)

Solid lipid 
nanoparticles in situ

Improved 
pharmacokinetic. 
↑ GI absorption 
↑ bioavailability

- (Li et al., 2009)

Solid lipid 
nanoparticles in vitro -

↓ Colony numbers 
↓ IC50
↑ apoptotic and 
necrotic indexes 
↑ Bax expression 
↓ Bcl-2 expression 
↑ ROS and MDA 
(Breast cells)

(Niazvand et 
al., 2019)

Poly(lactic-co-
glycolic acid) 
nanoparticles

in vitro / in 
vivo -

In liver cancer cells: 
↓ Proliferation 
↑ apoptosis through 
Cyto-c/caspase 
pathway 
↓ colony formation 
↓ cell growth 
through Akt/ERK1/2 
and AP-2β/hTERT 
pathway inactivation 
In xenograft tumor 
model: 
↓ Tumor volumes 
↓ Tumor weights

(Ren et al., 
2017)

Ethylcellulose 
nanoparticles ex vivo

Sustained release 
↑ skin retention 
↓ dose and administration 
frequency

- (Sahu et al., 
2013)

Quercetin + Doxorrubicin
Class: Polyphenols + 
Chemotherapeutics

Phytosomes (nano-
quercetin) in vitro ↑ therapeutic efficacy ↑ apoptosis (Minaei et al., 

2016)

continued on following page
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Quercetin + Vincristine
Class: Polyphenols + 
Alkaloid

Liposomes in vivo
Prolonged plasma 
circulation of the two 
drugs

Maintained the 
synergistic drug ratio. 
Effective tumor growth 
inhibition in human 
breast tumor xenograft

(Wong and 
Chiu, 2011)

Quercetin + alantolactone
Class: Polyphenols + 
Terpene

Micelles in vivo Synergistic effect 
↑ therapeutic efficiency ↓Tumor growth (Zhang et al., 

2019)

Genistein
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=2826 
https://go.drugbank.com/
drugs/DB01645 
Class: Flavonoid
Pharmaceutical Problem:
− Low water solubility 
− Low bioavailability 
− Low stability (instability 
to high temperatures, pH, 
oxygen)

PEGylated silica 
nanoparticles in vitro ↑ aqueous dispersibility

Antiproliferative 
effects on colon cancer 
cells: 
↑ apoptosis 
↑ autophagy

(Pool et al., 
2018)

Biodegradable 
nanoparticles

in vitro / in 
vivo ↑ cellular uptake ↑ cytotoxicity 

↓ tumor cell growth
(Zhang et al., 
2015)

Naringenin
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=10298 
https://go.drugbank.com/
drugs/DB03467 
Class: Flavonoid
Pharmaceutical Problem:
− Poor solubility in water 
and slow dissolution rate. 
− Low bioavailability at the 
tumor site.

Polymeric 
biodegradable 
nanoparticles

in vitro - ↑ anticancer potential (Fuster et al., 
2020)

Multi-Walled 
Carbon Nanotubes in vitro Prolonged release in the 

tumor pH environment.
↑ anticancer effect on 
skin and lung cell line

(Morais et al., 
2020)

Poly(lactic-co-
glycolic acid) 
nanoparticles

in vitro Sustained release 
behavior ↑cytotoxic effect (Akhter et al., 

2020)

TERPENES

Andrographolide
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=9675 
https://go.drugbank.com/
drugs/DB05767 
Class: Diterpenoid
Pharmaceutical Problem:
− Clinical efficacy by oral 
administration is contrasted 
by its biopharmaceutical 
properties.

Biodegradable 
nanoparticles in vitro

Improved 
biopharmaceutical 
Properties: 
Sustained release

-
(Chellampillai 
and Pawar, 
2011)
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Artemisinin
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=9954 
https://go.drugbank.com/
drugs/DB13132 
Class: Sesquiterpene
Pharmaceutical Problem:
− Low bioavailability due to 
its low solubility. 
− Rapid metabolisms 
produce an initial burst 
effect and high peak plasma 
concentrations. 
Not very stable (opening of 
the lactone ring)

Nanocapsule in vitro ↑ hydrophilicity 
↑Sustained drug release - (Chen et al., 

2009)

Dihydroartemisinin 
(Artenimol)
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=9957 
https://go.drugbank.com/
drugs/DB11638 
Class: Sesquiterpene
Pharmaceutical Problem:
− Insoluble in water and 
poorly soluble in lipid 
− Short half-life

Magnetic nano-
liposomes

in vitro / in 
vivo

Improved targeting 
antitumor efficiency 
↑ bioavailability

Cycle G1 block 
↑Apoptosis 
(Head and neck 
squamous cell 
carcinoma). 
↓ Tumor size 
↓ Tumor weight

(Li et al., 2019)

Docetaxel
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=6809 
https://go.drugbank.com/
drugs/DB01248 
Class: Taxane
Pharmaceutical Problem:
Low solubility and high 
lipophilicity

Polymeric 
nanoparticles: 
NGR-PM–
docetaxel. 
Asn-Gly-Arg motif 
with PEG-b-PLA 
copolymer.

in vitro / in 
vivo ↑ sustained drug release

↑ in vivo antitumor 
activity 
↓ IC50 (Prostate cancer 
cell lines)

(Zhao and 
Astruc, 2012)

Chitosan 
microspheres

in vitro / in 
vivo

↑accumulation in lung 
cancer cells 
Sustained release

- (Wang et al., 
2014)

Docetaxel + Nicotinamide
Class: Terpene + Vitamin

Nanostructured 
lipid 
carrier

in vitro / in 
vivo

↑ solubility 
↑ skin permeation 
↑ skin retention

- (Fan et al., 
2013)

Paclitaxel
https://www.
guidetopharmacology.org/
GRAC/LigandDisplayForwa
rd?ligandId=2770 
https://go.drugbank.com/
drugs/DB01229 
Class: Taxane
Pharmaceutical Problem:
Toxicity

Nanoparticles 
coated with 
polydopamine 
and grafted by 
alendronate as 
ligand.

in vitro / in 
vivo

Sustained release in vitro 
Targeted delivery in vivo 
↑ accumulate in tumor. 
↓ side effects in vivo

↑ Cytotoxicity 
(Osteosarcoma cells) 
↓ Tumor tumor 
volumen

(Zhao et al., 
2019)

Biotin 
functionalized 
PEGylated 
poly(amidoamine) 
dendrimer

in vitro Efficient targeted 
drug delivery

↑ Cytotoxicity on 
A549 cell line (human 
non-small cell lung 
cancer) 
↓ growth tumor

(Rompicharla 
et al., 2019)

PEGylated 
phospholipid 
particles

in vitro ↑ encapsulation efficiency - (Meenach et 
al., 2013)

chitosan hollow 
nanoparticles in vitro ↑cellular uptake

↓Proliferation 
↑Apoptosis 
(Lung cancer cells)

(Jiang et al., 
2017)
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Chitosan-modified 
poly(lactide-co-
glycolic acid) 
nanoparticles

in vitro ↑cellular uptake ↑Citotoxicity 
(Lung cancer cells)

(Yang et al., 
2009)

Paclitaxel + β-Lapachone
Class: Terpene + 
Naphthoquinone

Micelles in vitro
↑ solubility 
↑ half-life 
↑ delivery efficiency

Synergistic 
cytotoxicity effect 
against the NQO1 
overexpressing cancer 
cells, including A549 
NSCLC cells, and 
several pancreatic 
cancer cells.

(Rompicharla 
et al., 2019)

Oridonin
https://pubchem.ncbi.nlm.
nih.gov/compound/5321010 
Class: Diterpenoid
Pharmaceutical Problem:
− sPoorly water-soluble

Self-
nanoemulsifying 
drug delivery 
system

in vitro / in 
vivo

Enhanced 
pharmacokinetic (Cmax 
and AUC) 
↑oral bioavailability

- (Zhang et al., 
2008)

Thymoquinone
https://go.drugbank.com/
drugs/DB16447 
Class: Diterpenoid
Pharmaceutical Problem:
− Poorly water solubility. 
− Low bioavailability after 
oral administration.

Nanostructured 
lipid carrier in vitro -

↑ apoptosis 
cell cycle arrest 
(breast cancer and 
cervical cancer cell 
lines)

(Ng et al., 
2015)

Self-
nanoemulsifying 
drug delivery 
system

in vivo

Enhanced 
pharmacokinetic (Cmax 
and AUC) 
↑ absorption 
↑ oral bioavailability 
↓ side effects

Improved anticancer 
activity. 
Hepatoprotective effect

(Kalam et al., 
2017)

Nanoemulsion in vivo ↓ toxicity after acute 
exposition - (Tubesha et al., 

2013)

pH-dependent 
mesoporous 
silica core-shell 
nanoparticles

in vitro controlled release

↑ caspase-3 activation 
cell cycle arrest at 
G2/M 
↑ apoptosis

(Shahein et al., 
2019)

Polymeric micelles in vitro controlled release ↓ IC50
(Shaarani et 
al., 2017)

Triptolide
https://go.drugbank.com/
drugs/DB12025 
Class: Diterpenoid 
triepoxide 
Pharmaceutical Problem:
− Poor water solubility. 
− High toxicity

Cationic liposomes in vitro / in 
vivo

↑ uptake into the tumor 
↓ toxicity

↑ apoptosis 
↓ volume and weight 
of the tumor (breast 
cancer)

(Zheng et al., 
2019)

Polymeric 
pH-sensitive 
nanoparticles 
coated with folate

in vitro / in 
vivo

↑ solubility 
↑ site specific drug 
release 
↑ uptake into the tumor 
↓ toxicity

Orthotopic Mouse 
Models-liver cancer: 
↓ Tumor size 
↑ Survival Mice 
Liver Cells: 
↑ apoptosis

(Ren et al., 
2017)

PEGylated 
nanoparticles

in vitro / in 
vivo - None (Wang et al., 

2018)

Table 2. Continued 

continued on following page
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Phytochemicals Nanocarrier 
Formulation

Route of 
Delivery

Biopharmaceutical 
Advantages

Pharmacological 
Advantages Reference

Polymeric 
nanocarrier

in vitro / in 
vivo -

↓ Cell viability 
(Pancreatic cancer 
cells) 
In vivo assay: 
↑cell necrosis and 
inflammatory cell 
infiltration 
↑ inhibition cancer 
cells.

(Wang et al., 
2016)

Ursolic acid
https://pubchem.ncbi.nlm.
nih.gov/compound/64945 
https://go.drugbank.com/
drugs/DB15588 
Class: triterpene
Pharmaceutical Problem:
− Low solubility 
− Poor bioavailability

Poly(lactic-co-
glycolic acid) 
nanoparticles

in vitro 
(cervial 
cancer cell) 
and in vivo

↓ proliferation 
↑ apoptosis 
↓ tumor size

(Wang et al., 
2017)

Chitosan 
nanoparticles

in vitro / in 
vivo -

↓proliferation, 
migration, and tube 
formation of human 
umbilical vascular 
endothelial cells

(Jin et al., 
2016)

pH-Sensitive 
mesoporous silica 
nanoparticles

in vitro ↑ cellular uptake 
Controlled release

↓ proliferation 
G2/M arrest 
↑apoptosis

(Li et al., 2017)

Liposomes in vitro -
↓ proliferation in breast 
and prostate cells. 
↓IC50

(Caldeira De 
Araújo Lopes 
et al., 2013)

PEGylated 
liposomes in vitro

↑ stability than 
conventional liposomes 
Sustained release 
↑ Uptake in tumor tissues

↓ cytotoxic effect (Zhao et al., 
2015)

OTHERS

Avicequinone-B
https://pubchem.ncbi.nlm.
nih.gov/compound/79740 
Class: 
Furanonaphthoquinone 
Pharmaceutical Problem:
Hydrophobic compound with 
poor aqueous solubility

Liposomes in vitro ↑ aqueous solubility
↑ cytotoxic effect on 
cutaneous squamous 
cell carcinoma cells

(Hu et al., 
2019)

β-Lapachone
https://go.drugbank.com/
drugs/DB11948 
Class: Naphthoquinone 
derivative 
Pharmaceutical Problem:
− Low water solubility 
− Short blood half-life 
− Non-specific distribution 
− Narrow therapeutic 
window

Gold nanoparticles in vivo ↑ targeting ability ↑radiotherapeutic 
efficacy

(Jeong et al., 
2009)

Poly(ethylene 
glycol) and 
polylactide acid 
micelles

in vitro -
↑ cytotoxicity on lung, 
prostate, and breast 
cancer cells.

(Blanco et al., 
2007)

Table 2. Continued 

continued on following page
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In this sense, developing of new drug delivery system based on nano-structures 
such as polymeric systems: nanoparticles, nanocapsules, micelles, dendrimers and 
nanogels; lipid-based nano-systems such as solid lipid nanoparticles, liposomes, 
phytosomes, niosomes, nanoemulsions; inorganic nanostructures as carbon nanotubes 
and mesoporous silica nanoparticles or gold nanoparticles, among others, have shown 
many advantages to deliver phytochemicals in cancer therapy (Table 2).

Nano-structured systems help in the modulation of physicochemical and 
biopharmaceutical characteristics of the phytochemicals since they are known to 
modify the hydrophobic surface of the drugs (Cui et al., 2009). As far as solubility 

Phytochemicals Nanocarrier 
Formulation

Route of 
Delivery

Biopharmaceutical 
Advantages

Pharmacological 
Advantages Reference

Polymeric micelles in vitro

↓ side-effects (preferential 
accumulation in tumors) 
↑ maximum tolerated 
dose 
↑ stability 
↑ blood circulation time

↑ antitumor efficacy 
in treating orthotopic 
non-small cell 
lung tumors that 
overexpress NQO1.

(Ma et al., 
2015)

Cationic solid lipid 
nanoparticles in vitro

↑ stability 
Intrinsic toxicity, due to 
the surfactant used in its 
production.

↑or ≈ antiproliferative 
effect depend on cell 
lines: Caco-2, HepG2, 
MCF-7, SV-80 and 
Y-79).

(Silva et al., 
2019)

Liposomes in vitro ↓ degradation ↑ basal cell carcinomas 
(BCCs) death

(Fang et al., 
2006)

Chitosan 
nanoparticles In vivo ↑ efficacy

↓ tumor growth 
↑ prostate-specific 
antigen

(Khan et al., 
2014)

Polymeric 
nanoparticles In vitro ↑ targeting ability. 

↑ efficacy
↓ cell proliferation 
↓IC50

(Zeng et al., 
2017)

Emodin
https://go.drugbank.com/
drugs/DB07715 
Class: Anthraquinone
Pharmaceutical Problem:
− Poor solubility

Solid lipid 
nanoparticles in vitro ↑ aqueous solubility 

Sustained release

↑ cytotoxicity on 
human breast cancer 
cell line 
G2/M arrest 
↑ apoptosis

(Wang et al., 
2012)

Gambogic acid
https://pubchem.ncbi.nlm.
nih.gov/compound/9852185 
Class: Xanthonoid
Pharmaceutical Problem:
− Poor solubility 
− Inadequate oral 
bioavailability

Graphene and 
single-walled 
carbon nanotubes

in vitro -

No toxicity 
↑ antiproliferative 
effects in breast and 
pancreatic cancer cells

(Saeed et al., 
2014)

Gambogic acid + 
Indocyanine green
Class: Xanthonoid + 
fluorescent dye

Red cell membrane 
coated bovine 
serum albumin 
nanoparticles

in vitro / in 
vivo long-term circulation

Synergistic chemo-
photothermal 
therapeutic efficacy.

(Wang et al., 
2020)

Lycopene
https://go.drugbank.com/
drugs/DB11231 
Class: Carotenoid
Pharmaceutical Problem:
− Stability (susceptible to 
oxidants, light, and heat)

Niosomes in vitro / in 
vivo

Sustained release 
Improved 
pharmacokinetic (Cmax 
and AUC) 
↑ oral bioavailability 
↑ entrapment efficiency

↑ apoptosis in vitro (Et Al, 2016)

Table 2. Continued 
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improvement is concerned, most work are focused on improving the aqueous 
solubility of the high hydrophobic or poorly aqueous soluble phytoactives, such as 
curcumin, resveratrol, fisetin, quercetin, triptolide, artemisin, avicequinone, emodin 
and genistein, among others (Table 2). At this point, is important to mention that 
solubility is not an isolated parameter. It is always associated with drug dissolution, 
distribution, local availability, and bioavailability. Therefore, improvements in 
solubility are also associated with pharmacokinetics parameters as absorption, 
permeability, and bioavailability.

Pharmacokinetic properties get affected by different routes of administration and 
the amount of drug administered. Nano-structured systems for phytochemicals are 
designed to alter the pharmacokinetic pattern of the isolated natural compounds. 
The incorporation in a nano-structured system by encapsulation, conjugation, 
or other mechanism, involves surface modification of the molecule and hence 
modifies the rate of absorption of the less absorbed drugs. In this context, the 
utility of nanostructured lipid carriers as nanoemulsions, liposomes, solid lipid 
nanoparticles and many more have demonstrated to improve solubility, which also 
improve absorption, permeability and in consequence bioavailability and efficacy 
(Chen et al., 2016). In the case of curcumin, liposomes, solid lipid nanoparticles 
and self-microemulsifying drug delivery system (SMEDDS) have shown to improve 
considerably its solubility and oral absorption (Table 2). Other lipophilic drugs as 
paclitaxel, docetaxel and camptothecin have shown to improve their bioavailability 
when are formulated in nano-structured systems (Table 2).

Due to bioavailability also depends on various factors (ie drug solubilization at 
blood pH, absorption of the drug, distribution of the solubilized drug into systemic 
circulation, first-pass metabolism, gastrointestinal stability, molecular weight of the 
drugs, etc.), many efforts have been made in enhancing stability of phytochemicals. 
Examples of phytomolecules very prone to chemical unstability (hydrolisis and 
oxidation) are camptothecin, anthocyanin, lycopene, epigallocatechin and ursolic 
acid, whilst curcumin, resveratrol and artemisinin are examples of phytocompound 
which suffering from extensive first-pass metabolism. In both cases, after being 
formulated in nanocarrier systems have demonstrated to improve their stability. 
The nanoformulations tend to reduce extent of hepatic first pass metabolism, and 
gastric pH mediated degradation, so overall enhancing bioavailability of orally 
administered drugs (Table 2).

According to Fig. 2, formulations of phytochemicals based on nano-structurated 
systems improve efficacy prolonged blood circulation, EPR effect and high deposition 
in tumors, example of this are camptothecin nanoformulations (Caiolfa et al., 2000; 
Min et al., 2008). In addition, in most nanoformulations have been possible to observe 
a sustained release effect that significantly decreases the dose size, improving its 
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safety profile, good examples are nanoformulations of camptotecin (Chao et al., 
2010) and quercetin (Sahu et al., 2013).

Regarding to toxicity, triptolide, vincristine and paclitaxel are some examples of 
phytocompounds that have reduced their toxicity by improving targeting antitumor 
efficiency when are loaded into nano-structurated delivery systems (Table 2). 
Improved target ability is meant to specify a drug target and help them achieve 
highest concentration of drug for optimum therapeutic effect at the desired site 
of action and avoid their distribution in other tissues and organs, which also helps 
reduce toxic effects. In general, to improve target ability leads to increase efficacy 
and reduce toxic effects. In this regard, dihydroartemisinin, honokiol, lapachone, 
camptothecin and triptolide are some examples of phytocompund that have shown 
specific distribution and accumulation in tumors when are formulated in nano-
structured carriers, which makes them safer for potential clinical use (Table 2).

The delivery of nano-structured systems containing anticancer drugs as camptothecin 
and paclitaxel has been investigated with significant success. In this way, a completed 
phase II study was performed with cyclodextrin-based polymer-camptothecin 
[CRLX101] for advanced gastric, gastroesophageal, or esophageal squamous or 
adenocarcinoma and non-small cell lung cancer. On the other hand, liposomal paclitaxel 
has demostred clinical efficacy (phase II) in advanced or metastatic esophageal 
carcinoma (https://www.clinicaltrials.gov). Considering this, is important to mention 
that the research in phytonanoformulations is moving from pre-clinical assays to 
clinical trials. In fact, nowadays there are commercial formulations based on nano-
phytotherapeutics approved by the FDA for cancer therapy (Table 3). For example, 
vincristine was approved in a liposomal formulation, which demonstrated enhanced 
efficacy with reduced toxicity. Paclitaxel in albumin nanoparticle formulation showed 
to increase the solubility and the bioavailability resulting in a higher concentration of 
the drug in the tumor and simultaneously to reduce its toxicity. Table 2 shows some 
additional nanosystem based strategies for this purpose. Finally, a semisynthetic 
derivative of camptothecin liposomal formulations (Irinotecan) was approved in 
combination with fluorouracil and leucovorin, as therapy for metastatic pancreatic 
cancer in patients when gemcitabine-based chemotherapy failed (Table 3).

FUTURE RESEARCH DIRECTIONS

This chapter has described the advances in the use of nanophytoformulations as drug in 
cancer therapy at the level of pre-clinical and clinical trials, and in addition discussed 
the application of the nano-structured systems in the optimizing their formulations 
and how this help to enhance their physicochemical and biopharmaceutical properties 
and hence their therapeutic efficacy.
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We believe that, in the coming years, the continuous development of 
nanotechnology in the field of the nanocarriers and the increasing interest in the 
use of natural products in wester (traditional) medicine, will allow us to have a wide 
range of optimized nanophytotherapeutics, which will generate greater efficacy and 
safety of pharmacological therapies for the routine management of cancer patients.

Nanomedicine will become in a solution that will promote the development of 
phytoformulations more biocompatible and much more stables and effectives, due 
to the optimized nanophytherapeutics would contribute to improve the specificity 
of the phytochemicals, improve their absorption rates, reduce their degradation, and 
decrease their systemic toxicity in cancer therapy.

Increasingly there will be a greater interaction between the area of phytochemistry 
and nanotechnology, aimed at improving oral bioavailability, aqueous solubility, 
metabolism, and its systemic elimination (physicochemical and biopharmaceutical 
properties). This improvement should be aimed at ensuring that most of the 
biologically active components of plants, such as alkaloids, flavonoids, tannins, 
terpenoids and particularly polyphenols are better absorbed, have better feasibility 
to be used in clinical trials.

CONCLUSION

Nano-structured delivery systems show immense potential in delivering phytomedicine 
by providing better alternatives than conventional dosage forms compared to 
isolated conventional phytocompounds. This is due to their tremendous ability in 
the improvement of solubility, pharmacokinetic parameters such as absorption, 
distribution, metabolism and excretion, bioavailability, targeting ability, efficacy, 
and safety. In addition, they itself have therapeutic benefits such as cationic solid 

Table 3. Nanophytotherapeutics for cancer approved for the FDA

Phytocompound Nano-structured System Indication FDA 
Approval Reference

Paclitaxel Protein based nanoparticles 
(Abraxane®)

Lung cancer and 
metastatic breast 
cancer

2013
(Anselmo and 
Mitragotri, 
2016; Harshita 
et al., 2019; 
Ventola, 
2017).

Vincristine Non-PEGylated liposomes 
(Marqibo®)

Acute 
lymphoblastic 
leukaemia

2012

Irinotecan PEGylated liposomes 
(Onivyde®)

Metastatic pancreatic 
cancer 2015

(https://www.fda.gov/)
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lipid nanoparticles used for delivering epigallocatechin gallate has shown intrinsic 
toxicity, due to the surfactant used in its production (Silva et al., 2019). Particularly, 
in cancer therapy, phytomedicine based on nanocarrier systems has been development 
to address them to tumor site, because nano-systems allow to modify physicochemical 
properties of the drugs and offer targeting ability additional to their specificity. 
However, despite of all tremendous advantages mentioned, very few phytomedicines 
have reached clinical use. This could be explained considering the follow still existing 
challenges: scaling-up for production, the high cost of preparation and the low shelf 
life of this type of formulations associated to their stability problems (i.e. particle 
aggregation) (Hua et al., 2018).
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ABSTRACT

Extensive studies in the field of oncology are able to identify potential cancer 
biomarkers with tumor-specific molecular characteristics that exceed or complement 
those of existing biomarkers. However, there are challenges in the development and 
clinical validation of the cancer biomarkers due to the complexity of the biological 
process involved. Standalone or integrative approach of broad range of biomolecules, 
their expression pattern, epigenetic alterations, and metabolic effects are well 
studied in the cancer research. The potential cancer biomarkers need to be studied 
extensively with advanced technologies to bring about a great change in cancer 
screening and therapy. This chapter provide an overview on recent studies about 
potential cancer biomarkers. Also, specific characteristics of potential biomarkers 
in three common types of cancer are discussed.

INTRODUCTION

Cancer remains the second leading cause of death around the world (Nalejska, 2014; 
Wild, 2014). Though cancer affects almost every organ system; most affected organs 
are lung, breast, prostate, colon and rectum, stomach and skin. Effective cancer 
treatment strategies depend on many factors such as assessment of individuals 
susceptibility and early-stage detection. Effective cancer screening strategies 
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depend on less labor-intensive, economical, and non-invasive methods. Cancer 
detection in their early stages of development is very crucial in providing therapies 
efficiently. Biological molecular markers are commonly used for cancer screening. 
A biomarker is described with a “characteristic that it is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention” (Biomarkers Definitions 
Working Group 2001). Biomarkers detected using molecular biology tools provide 
evidence that are crucial for molecular characterization of cancer phenotypes and 
personalized treatment. Based on the purpose, they can be useful in diagnostic, 
prognostic, treatment and prevention (Nalejska, 2014). Diagnostic biomarkers are 
used for screening and early detection. Prediction biomarkers are staging markers for 
risk stratification. Prognostic biomarkers help to understand the cancer recurrence 
and metastatic. Treatment biomarkers are used in selection and therapy response 
prediction (Hoseok, 2015).

Identifying potential cancer biomarkers as a tool in diagnostic, prognostic, or 
therapeutic information has been challenging. Biomarker-based personalized cancer 
therapy helps in treatment decisions based on tumor genotypes and genetic profiles 
(Kalia, 2015; Maruvada 2005). Main challenge is the criteria to select, interpret, and 
apply these new genetic and genomic assays (Li, 2013). Currently, some available 
biomarkers with clinical applications (e.g., prostate-specific antigen for prostate 
cancer, alpha-fetoprotein for liver cancer, carcinoembryonic antigen for colorectal 
cancer, cancer antigen 125 for ovarian cancer, and cancer antigen 19–9 for pancreatic 
cancer) are less sensitive. Therefore, there is a need for more reliable biomarkers 
that act as precise indicators of tumorigenesis at the cellular levels and for better 
therapeutic outcome.

POTENTIAL CANCER BIOMARKERS

Any biomolecule or biological processes which may lead to a cancer prognosis, 
screening, risk assessment or therapy are potential candidates as cancer biomarkers 
(Mishra, 2010). There is an abnormal expression of specific biomolecules such as 
peptides, proteins, and nucleic acids in cancer tissues that can be considered as 
potential candidates for biomarkers. A biomarker can also be a collection of alterations 
that leads to change in the gene expression or variant protein or metabolic product 
(Henry, 2012). Types of potential biomarkers may include micro RNAs (miRNAs), 
circulating long non-coding RNAs (lncRNAs), extracellular vesicle (EV)-associated 
proteins, circular RNAs (circRNAs), messenger RNAs (mRNAs), enzymes, genetic 
variants and epigenetic modifications (Fig. 1).
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Circulating miRNAs are small, non-coding RNA molecules that can regulate 
gene expression and may act as potential oncogenes or tumor suppressors. Thus, they 
are considered as potential biomarkers for cancer screening. Abnormal expression 
profiles of regulated miRNAs in both tumor paraffin sections and body fluids with 
high specificity, sensitivity, and stability shows its potential as cancer biomarkers 
(Matsuzaki, 2017). Moreover, miRNA microarrays and high-throughput techniques 
are being used in understanding altered miRNA expressions to correlate it with 
occurrence of human carcinogenesis (Biomarkers Definitions Working Group 2001).

Extracellular vesicles (EV) are small membrane-bound structures that helps 
in local and distant cell-to-cell communication. Tumor-derived EVs modifies the 
microenvironment and evades the immune system. Thus, facilitate metastasis and 
angiogenesis (Matsuzaki, 2017). Micro-RNAs contained within EVs are functionally 
associated with cancer phenotypes. Understanding the physiological alterations in 
EVs during tumorigenesis helps to design better therapeutic approach. Considering 
these factors and their stability in body fluids, investigations are being carried out to 
elucidate the role of EV-derived miRNAs as tumor biomarkers (Kinoshita, 2017).

Circulating long non-coding RNAs (lncRNAs) regulate gene expression but lack 
protein-coding potential. They play important role in modulating mRNA stability 
and maintaining nuclear architecture. Specific combinations of lncRNAs with other 
circulating markers have been studies as potential biomarkers for cancer detection 
as it can be involved in tumorigenesis and tumor metastasis. They are uniquely 
expressed in differentiated tissues or specific cancer types. However, extensive studies 
may be required to demonstrate their reproducibility in the clinical applications 
(Matsuzaki, 2017).

Circular RNAs (circRNAs) are novel class of endogenous noncoding RNAs with 
diverse cellular functions. circRNAs can function as cancer diagnosis biomarker as 
it plays an important role in cancer development and progression. circRNAs could 
be molecular markers of cancer associated with stomach, liver, lung, colon and 
circulatory system (Henry, 2012).

Messenger RNAs (mRNAs) could be considered as noninvasive biomarkers for 
tissue or organ specific biomarkers for diagnosis and prognosis of cancer. For example, 
in many cancer types, the ubiquitin-conjugating enzymes 2C (UBE2C) mRNA and/
or protein expression was abnormally high. Functional studies demonstrated that 
UBE2C variant expression was associated with spontaneous tumors and carcinogen-
induced tumor with evidence of chromosome aneuploidy. Cell proliferation and 
anchorage-independent growth was stimulated by overexpression and accumulation 
of UBE2C (Xie, 2014).

Mitochondrial DNA (mtDNA) mutations have been associated with different types 
of cancer. It has been reported that there is no single mutational hotspot associated 
with the wide spectrum of cancer phenotypes; hence, sequencing and characterization 
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of the entire mitochondrial genome is required to detect the precise mutation load 
(Jakupciak, 2006). Mitochondrial microarray technology and real-time PCR can be 
used to detect variations in the entire mitochondrial genome that which has predictive 
potential for cancer detection and prognosis. mtDNA mutation analysis may provide 
a molecular tool for the early cancer detection as the mutations occur as recurrent 
events in primary tumor tissues and can be analyzed from non-invasively collected 
body fluids though validation need to consider.

Integration of methods, technologies and data set may enrich the understanding 
and application of such novel biomarker in cancer studies (Matsuzaki, 2017). The 
clinical studies and basic research findings in a large scale helps in the broader 
decoding of the interactive pathways in the biological system.

POTENTIAL BIOMARKERS IN THREE MOST 
COMMON TYPE OF CANCERS

Lung Cancer

Protein biomarkers studied with regard to lung cancer diagnosis, prognosis and 
therapy shows great significance. An in vitro carcinogenesis model identified 
PGP9.5 (protein gene product 9.5/ ubiquitin COOH-terminal esterase L1), TIMP-2 
(Tissue inhibitors of metalloproteinases-2), TCTP (translationally controlled tumor 
protein), and TPI (triosephosphate isomerase) as potential lung cancer biomarkers. 
PGP9.5 is an enzyme (ubiquitin hydrolase) that is commonly expressed as neuron 
cytoplasmic protein during neuronal differentiation. PGP9.5 expression was strongly 
associated with lung cancer pathology. In addition, mutations leading to alterations 
in the expression of cell-cycle regulators may indicate multiple cancer types. TIMP-2 
protein is involved in regulating cellular functions such cell growth, differentiation, 
and apoptosis and its expression was decreased in human malignancies. TCTP is 
a highly conserved protein expressed in various tissues and is associated with cell 
cycle and apoptosis. TCTP protein expression is increased in various human tumor 
tissues that are mainly a part of digestive and reproductive systems. It has IgE-
dependent histamine releasing activity and can be studied for potential therapeutic 
application leading to tumor reversion. TPI is a highly conserved enzyme that plays 
a major role in glycolysis and other metabolic pathways and it was significantly 
overexpressed in lung cancer tissues (Kim, 2008). Other potential lung protein 
biomarkers include serum amyloid, haptoglobin, plasma kallikrein protein fragments, 
complement component 9, complement fragment C4d, matrix metallopeptidase 9, 
insulin-like growth factor binding protein, peroxiredoxin, progesterone receptor 
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membrane component 1 protein, nuclear protein-Ciz1, and cell surface receptor-
uPAR1 (Hoseok, 2015).

Micro RNAs (miRNAs) are studied widely and considered as promising biomarkers 
for noninvasive lung cancer screening. For example, miRNA-34 was studied to 
understand the early stage lung cancer detection (Bianchi, 2011). miRNAs such as 
miR-7, miR-21, miR-200b, miR-210, miR-219-1, miR-324 were upregulated; and 
miR-126, miR-451, miR-30a, and miR-486-5p were downregulated in lung cancer 
tissues compared to the normal. These miRNAs expression was found to be highly 
sensitive and specific (Boeri, 2011; Gayosso-Gomez, 2021; Shen, 2011).

Epigenetic modification of certain genes was studies as potential markers in lung 
carcinoma. Atypical methylation pattern of many gene promoters has been reported to 
be strongly associated with lung cancer risk. Studies shows that methylation of p16, 
SHOX2, BRMS1, Septin 9, TMEFF2 genes in the plasma were also associated with 
lung cancer. It was reported that lung cancer survivors, the hypermethylation of the 
certain enzymes and proteins such as O(6)-methylguanine DNA methyltransferase 
(MGMT), ras effector homologue 1 (RASSF1A), death-associated protein kinase 
(DAPK), and PAX5α in sputum was significant compared with smokers (Constancio, 
2020).

Circulating tumor cells (CTCs) are defined as cells shed by a primary tumor; that 
shows a significant high concentration in plasma of lung cancer patients. Cancer 
cells metastasize through the bloodstream as single CTC or cluster in a consistent 
manner and it may be less invasive method for lung cancer screening (Huang, 2018). 
Thus, CTCs may be studies as a promising biomarker for lung cancer with good 
sensitivity and specificity.

Breast Cancer

Micro RNAs are studied as potential candidates for screening breast cancer in 
early prognosis or diagnosis. The expression pattern of seven miRNAs (miR-10b, 
miR-21, miR-125b, miR-145, miR-155 miR-191 and miR-382) in the serum breast 
cancer patients has been demonstrated. In this study, miR-145, miR-155 and miR-
382 profiles showed a better sensitivity and specificity (Mar-Aguilar, 2013). Breast 
cancer miRNA profiling studies showed consistent upregulation of miR-21 and 
miR-210; and downregulation of miR-145, miR-139-5p, miR-195, miR-99a, miR-
497 miR-205 and miR-622. Metastasis of breast cancer cells were associated with 
modulation of miR-622 expression profile and its functional target enzyme (NUAK1 
kinase/threonine-protein kinase) which is associated with cell proliferation and 
tumor progression. In breast cancer patients, miR-622/NUAK1 axis is deregulated 
and affects the motility phenotype of breast cancer cells (Orlandella, 2020). Studies 
reported that circulating tumor associated miRNAs have the potential to detect breast 
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cancer and can differentiate tumors according to histologic features. Higher levels of 
miR-21 was associated lymph node metastasis and advanced cancer stage (Heneghan, 
2010). miR-10b is highly expressed in metastatic breast cancer cells and play a part 
specifically in the tumor metastasis. In addition, there is a significant association 
between miR-10b and the hormonal status of breast cancers (Ma, 2007). Moreover, 
multiple gene expression associated with tumor phenotype such as miR-622/NUAK1 
expression and miR-10b are studied as potential biomarkers for breast cancer.

Many potential protein biomarkers are studied with regard to breast cancer 
diagnosis, prognosis and therapy. Ki67 (cellular marker for proliferation) is a nuclear 
non-histone protein expressed during cell growth and DNA synthesis phases of cell 
cycle. Evaluation of Ki67 showed that it is expressed among proliferating cells and 
absent in quiescent cells. Another cell cycle protein, cyclin D1 is overexpressed in 
over 50% of breast cancer. Cyclin E acts as a positive regulator of cell cycle transition 
and its increased levels may be significant in association with the response to cancer 
therapy. Estrogen receptor-beta (ERb) expression has been linked to the expression 
of Estrogen receptor-alpha (ERa) and progesterone receptors (PgR). In breast cancer 
tissues, ERb was significantly downregulated, is correlated positively with Ki67, 
and is also associated with human epidermal growth factor receptor 2 (HER2) 
overexpression. These factors could be studied standalone or in a complement with 
each other for prognostic or therapeutic value in invasive breast cancer for better 
outcome (Weigel, 2010).

Immunohistochemical biomarkers are used to classify breast cancer into 
biologically distinct subtypes that helps in a guided treatment. Programmed death-
ligand 1 (PD-L1) are transmembrane protein receptors that is overexpressed in 
certain type of breast cancers as its expression mainly occurs on tumor-infiltrating 
immune cells than on tumor cells. Tumor immune system interaction may be 
influenced by many molecular pathways as a response to immunotherapy. High level 
of microsatellite instability is considered a predictive factor of response to immune 
checkpoint blockade, showing mismatch repair deficiency. Vascular endothelial 
growth factor (VEGF) is a signaling protein that acts as an endothelial cell survival 
factor/angiogenetic factor promote blood supply to the tumorous cells. VEGF level 
alteration may be correlated to clinical prognosis or associated pathologies (Ronchi, 
2020). In addition, blood-based biomarkers such as serum protein biomarkers (SPBs) 
and tumor-associated autoantibodies (TAbs) may improve the sensitivity of breast 
cancer screening. These molecules are highly specific, and biochemically stable. 
Hence, they have greatest potential in screening assays that helps to correlate with 
tumor metastasis (Hollingsworth, 2014).

A DNA microarray allows gene expression profiling of tumors that measure 
thousands of mRNA transcripts. In breast cancer, existence of tumors originated 
from different cell types has been studied with this bulk expression profiling (Weigel, 
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2010). Breast cancer genes such as BRCA1 and BRCA2 have been studied extensively 
as a biomarker in screening. Functional variations in BRCA1 are studied as novel 
predictive markers in response to chemotherapy (James, 2007). Furthermore, certain 
developmental control genes are critical in tumor development and progression. 
Beta protein 1 (BP1) is expressed in 80% of invasive ductal breast carcinomas and 
its overexpression is implicated in aggressive phenotype. BP1 could serve as both a 
novel prognostic biomarker for breast cancer and a therapeutic target (Lang, 2021; 
Lou, 2018).

Colorectal Cancer

Potential protein biomarkers for the prediction of tumor progression have been studied. 
E-cadherin is a transmembrane glycoprotein that acts like an adhesion encoded 
by the CDH1 gene. It is involved in cell-cell interactions is downregulated during 
certain types of tumors and is associated with cancer cell phenotypes. Mutations, 
epigenetic silencing, increased endocytosis and proteolysis mechanisms may lead 
to E-cadherin inactivation in cancer. Progressions of multiple cancer types have 
been associated with suppression on E–cadherin expression. In addition, epigenetic 
modification such as promoter hypermethylation has been reported with the loss of 
E-cadherin expression in cancer (Christou, 2017).

All clinical stages of colorectal cancer (CRC) may be associated with expression 
of the inflammatory response genes. Expression of tyrosine kinase-LCK, granulysin 
-GNLY, taurine transporter- SLC6A6 and lysosome-associated membrane protein- 
LAMP2 genes are studied in early stage of colorectal cancer. LCK gene is a proto-
oncogene involved in immune cell differentiation and GNLY gene is involved in 
antimicrobial immune response. LCK and GNLY are both lymphocytic inflammatory 
response genes that are elevated in stage I and reduced in stage IV CRC. In contrast, 
SLC6A6 and LAMP2 genes were showing decreased expression in stage I, and over 
expressed in stage II (Janikowska, 2018). In addition, tubby-like-3 protein/TULP3 
(transcription regulator) expression levels were elevated associated to lymphatic 
and vascular invasion in CRC (Sartor, 2019). Thus, it shows a possible role of these 
genes as a diagnostic and prognostic biomarker in CRC.

Few other gene expression profiles were studied in association in CRC screening. 
Altered expression of vitamin D catabolizing enzyme coded by CYP24A1 gene 
was reported to be associated with CRC progression and in several cancer types. 
CRC phenotypes such depth of tumor invasion, lymph node metastasis, venous 
permeation, and apoptosis were correlated with CYP24A1 protein expression 
(Sun, 2016). Tyrosine phosphatase coded by DUSP4 gene was upregulated and its 
transcript variants are individually overexpressed in early-stage CRC tissue. Hence, 
DUSP4 transcripts elevated expression could distinguish all tumor stages from 
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normal tissues and have the potential to serve as diagnostic biomarkers for CRC 
(Varela, 2020). Hypermethylation of the secreted frizzled-related protein (SFRP) 
genes might serve as indicator for early CRC. A study that identified that SFRP2 
gene (tumor suppressor) is inactivated by the epigenetic hypermethylation which 
leads abnormal molecular signaling in CRC. Thus, SFRP2 has been studied as 
potential biomarker in early CRC progression events (Wang, 2009). Furthermore, 
down-regulation of HOTAIRM1 (HOXA transcript antisense RNA, myeloid-specific 
1) - a long non-coding RNA that regulates gene expression during myelopoiesis- act 
as tumour suppressor in CRC. HOTAIRM1 and CEA (carcinoembryonic antigen) 
based combined assay might provide a promising diagnosis for CRC (Wan, 2016).

Altered miRNAs expression are studied as potential diagnostic, prognostic and 
therapeutic markers at different stages of CRC. Co-expressed miRNAs in CRC 
phenotypes may have a collective role in associated cellular events (Arndt, 2009). 
Crucial pathways of CRC carcinogenesis include epidermal growth factor receptor 
signaling pathway, DNA mismatch repair and aberrant DNA methylation of miRNA 
genes (Pellino, 2018). Clinical and functional studies demonstrated that 11 common 
miRNAs (miR-20a, miR-19a, miR-17-5p, miR-93, miR-25, miR-31, miR-106a, miR-
143, miR-145, miR-125a, miR-1) that were differentially expressed between normal 
colon and CRC (35). Another research finding show that miR-92a, miR-103a-3p, 
miR-127-3p, miR-151a-5p, miR-17-5p, miR-181a-5p, miR-18a-5p and miR-18b-5p 
was significantly elevated in colorectal cancer plasma samples compared to normal 
(Yang, 2014; Zhang, 2019). In addition, miR-92a is among the best characterized 
miRNA oncogenes whose abnormal alteration are frequently observed in a variety of 
tumor types (Yang, 2014). Response to adjuvant chemotherapy studies on miR-150 
expression of CRC patients shows that tumor tissue had reduced levels of miR-150 
expression compared with paired non-cancerous tissue (Ma, 2012). These findings 
suggest that miRNAs expression in standalone or in combinations could be potential 
non-invasive molecular biomarkers for CRC screening or to study therapeutic outcome.

Specific and sensitive biomarkers can provide great insights into tumorigenesis 
and facilitate the development of improved therapies (Lan, 2015). The practicality 
of clinical use of the biomarker depends both on the level of application and the 
feasibility. The potential cancer biomarkers need to be studied extensively with 
advanced technologies to bring about a great change in cancer screening and 
therapies by improving risk analysis, early detection, diagnosis, and prognosis 
where these biomarkers will be used either as stand-alone tests or to complement 
existing approaches.
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NANOTECHNOLOGY FOR THE DEVELOPMENT OF 
NOVEL BIOMARKERS IN CANCER THERAPY

In cancer nanotechnology, nanometer-sized particles linked with tumor targeting 
ligands with high affinity and specificity are used to target tumor pathophysiology 
(Zhang, 2019; Nie, 2007). It is an interdisciplinary area of research in medicine 
and technology. Metals like gold or silver nanoparticles have great electromagnetic, 
optical, or structural properties that are used in photothermal therapy (Song, 
2010). Metal oxide nanoparticles and semiconductor quantum dots includes other 
examples that are like acts like an immunogenic cargo along with biomolecules to 
capture cancer biomarkers, such as exosomes and cancer-associated proteins (Jia, 
2017). The large surface area to the volume ratio or the size is the crucial factor in 
applying nanoparticles for cancer detection because its surface can be covered by the 
biological targets efficiently and densely which then recognizes the targeted tumor 
(Song, 2010). Thus, improving the specificity and sensitivity of an assay designed 
with this principle (Zhang, 2019).

FUTURE RESEARCH DIRECTION

A panel of highly specific, sensitive and effective biomarkers could play a great in 
the cost-effective prediction, detection and treatment of cancer. Predictive cancer 
biomarkers could be the future of cancer management at various molecular staging 
of disease. Oncology research should focus on more reliable, accurate, simple and 
non-invasive diagnostic methods. Technology-driven research approach and “omics” 

Figure 1. Potential cancer biomarkers studied for clinical application
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technologies (genomic, proteomic, metabolomics and interactomics) with the efficient 
molecular techniques and bioinformatic tools shows a great promise in biomarker 
discovery and clinical application. In addition, from developing a biomarker in the 
research laboratory to using it as a clinical tool is a long complex journey which 
would need a collaborative effort of the experts in the field. Moreover, there are 
still scope for innovative approaches when it comes to efficient clinical application 
of cancer biomarkers.

CONCLUSION

The research and development in the field of oncology is growing at a phenomenal 
rate that keeps a high pace with the evolving disease pathophysiology at the molecular 
level. Although there are scientific and technological challenges in the translation 
from academic research to clinical application, these developments increase 
opportunities for personalized oncology. Genetic and metabolic biomarkers based 
on the molecular profiles of individual patients brings a promising approach to this 
aspect. Interdisciplinary research in nanotech and genetic engineering are looked 
up to in the field chemotherapeutic development.
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ABSTRACT

Carbon nanotubes (CNTs) are allotropes of carbon consisting of cylindrical tubes, 
made up of graphite with a diameter of several nm to a length of several mm. They 
had extraordinary structural, mechanical, and electronic properties due to their 
small size and mass, high mechanical resilience, and high electrical and thermal 
conductivity. Their large surface area made them applicable in pharmacy and 
medicine and adsorb or conjugate a broad variety of medical and diagnostic 
agents (drugs, genes, vaccines, antibodies, biosensors, etc.). They are often used 
to deliver drugs directly into the cells without going through the metabolic process 
of body. In addition to drug delivery and gene therapy, CNTs are also used for 
tissue regeneration, diagnostic biosensors, chiral drug enantiomer separation, drug 
extraction, and drug or pollutant analysis. CNTs have recently been discovered as 
effective antioxidants. The ADME and toxicity of different types of CNTs have also 
been documented here, as well as the prospects, advantages, and challenges of this 
promising bio-nano technology.
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INTRODUCTION

Carbon nanotubes (CNTs), first discovered by Japanese scientist Iijima in 1991 
(Iijima, 1991), are now considered the top focus in research and industries. These 
are allotropes of carbon consisting of cylindrical tubes made up of graphite with a 
diameter of several nanometers to a length of several millimeters (Hirlekar et al., 
2009; Singh et al., 2012; Zhang et al., 2010). Due to their small size and mass, 
immense mechanical strength, and high electrical and thermal conductivity. They 
have remarkable structural, mechanical, and electronic properties (Usui et al., 2012; 
Zhang et al., 2010). Carbon nanotubes are used chiefly as a substitute for different 
structural components for electronics, optics, plastics, and other products in the field 
of nanotechnology. Since the beginning of the twenty-first century, they have been 
used in pharmacy and medicine for drug delivery systems in therapeutics. CNTs 
can adsorb or conjugate with a wide range of therapeutic materials such as drugs, 
proteins, antibodies, DNA, and enzymes due to their high surface area, excellent 
chemical stability, and rich electronic poly-aromatic structure. They are a perfect 
vehicle for drug delivery by reaching directly into cells and by preserving the drug’s 
integrity during metabolism through the body (Hirlekar et al., 2009; Zhang et al., 
2010). Many studies have shown that when drug molecules are bonded to CNTs, they 
are delivered into cells more efficiently and safely than the conventional methods 
(Singh et al., 2012; Zhang et al., 2010). This fantastic innovation has brought a new 
age of drug preparation that is entirely different from the existing techniques used 
in the pharmaceutical industry and has drastically altered previous pharmacology 
principles (Singh et al., 2012; Usui et al., 2012). It was first used to bind antibiotic 
drugs to carbon nanotubes to treat cancer and particular infection, respectively. 
Then, for gene therapy, immunotherapy, tissue regeneration, and diagnosis of 
various diseases, other biomolecules such as genes, proteins, DNA, antibodies, 
vaccines, biosensors, and cells, etc., were attached to CNTs and assayed for their 
pharmacological application (Bekyarova et al., 2005; Kateb et al., 2010; Zhuang et al., 
2007; Rosen & Elman, 2009; W. Zhang, Zhang, & Zhang, 2011). As a result, CNTs 
have attracted the interest of scientists from a variety of fields in a relatively short 
period of time. They may be useful antioxidants in the future for health protection 
and disease prevention (Galano, 2010). All these advances in medicine, however are 
only in the developmental stage and are not being used in humans. CNTs can also 
be used for enantiomer isolation of chiral drugs and chemicals in the drug industry 
as well as in the laboratory, and for solid phase extraction of drugs from impurities 
before analysis (El-Sheikh, 2011; Yu et al., 2011). Many scientific groups have 
recently led to the development of novel functionalization method of CNTs for drug 
delivery and evaluation, as well as to the study of CNT-albumin interactions (He 
et al., 2020). The area of pharmacy and medicine is the subject which describes 
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various CNT applications. It focuses on some of the most effective approaches for 
using carbon nanotubes as a drug delivery system for drugs and biomolecules in 
the treatment and diagnosis of various diseases. It also explains Pharmacokinetics, 
metabolism, and toxicity of CNTs.

CARBON NANOTUBES: CLASSIFICATION 
AND METHODS OF SYNTHESIS

Carbon, the primary component of all organic materials, is widely acknowledged 
as one of the world’s most available elements. It can develop allotropes, as shown 
in Fig. 1. Diamond, which has sp3 hybridization, and graphite, which has sp2 
hybridization, are two well-known forms (Heimann et al., 1997). The physical and 
chemical properties of carbon allotropes are defined by valence bond hybridization. 
Diamond, for example, is the hardest known substance on the planet, and graphite is 
weak in one direction but hard in others. Carbon nanotubes have unique properties 
for various engineering applications that make them attractive. Because of their 
chemical inertness, carbon nanotubes must be functionalized to achieve additional 
physicochemical properties. Single-walled carbon nanotubes and fullerenes are not 
the same as multi-walled.

Fullerenes

In 1985, Rice University’s Smalley research group discovered a new carbon source, 
Buckminsterfullerene, while performing tests on carbon vaporization using laser 
pulses (Kroto, 1993). This structure is also identified as buckyball or fullerene, and 
it has a bonding between sp2 and sp3 hybridization (Pierson, 1993). Fullerenes with 

Figure 1. Allotropes of carbon: fullerenes, nanotubes, and diamond, respectively
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a varying number of carbon atoms were discovered later. The formula C2n, where 
n is an integer, represents the number of carbons in any cluster of fullerenes. Each 
fullerene has (n-10) hexagons (Ajayan, 1999; Ebbesen, 1996). The discovery of 
fullerenes motivated scientists to explore other types of carbon.

Nanodiamonds

Nanodiamond is yet another carbon nanostructure that has gained significant interest 
in recent years. In 1950, the first artificial diamonds were created using a high-
pressure/high-temperature process. Then, in 1960, low-pressure chemical vapor 
deposition (CVD) was developed as a method for producing polycrystalline films 
(Shenderova et al., 2002).

Carbon Nanotubes

The discovery of graphitic tubules, a new form of carbon, was ignited by the 
discovery of fullerenes (Iijima, 1991). First, carbon nanotube (CNT), discovered 
and identified by Iijima, had two to fifty sheets of graphene walls, so they were 
referred to as multi-walled carbon nanotubes (MWNT) (Thostenson, 2001). CNTs 
are made up of rolled-up graphene sheets with a buckyball-shaped hemisphere at 
one end. Types of CNTs are determined by the direction in which this graphene 
sheet is rolled up. The angle between C-C bonds and the tube’s axis can alter, and 
thus the chirality of a CNT is defined by this angle (Hernadi et al., 1996); Iijima 
and Ichihashi (1993); (Thostenson et al., 2001) .The various types of CNTs are 
described by a chiral vector, as explained in Fig. 2

Figure 2. A graphene sheet customized honeycomb structure
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By folding the sheet along the vectors, SWCNT can be established. The two basic 
vectors are shown: a1 and a2. The folding of the vectors (θ = 0), (0<θ <30) and 
(θ = 30) leads to nanotubes of zig-zig, chiral and armchair structure.The common 
possibilities are “zigzag” and “armchair” CNTs, the former having θ = 0, and the 
latter with θ = 30°, and all the CNTs with 0° < θ < 30° are defined as chiral tubes. 
The electronic properties of nanotubes vary depending on their shape; therefore, 
armchair nanotubes are metallic; however, zigzag and chiral nanotubes may be 
either metallic or semiconducting. Multi-walled CNTs are considered to be metal 
conductors, while SWCNTs are usually a combination of metal and semiconducting 
material (Katz & Willner, 2004)[REMOVED HYPERLINK FIELD].

METHOD OF SYNTHESIS

Various synthetic techniques have been modified to improve the yield and properties 
of CNTs, such as Electric-arc discharge (EAD), laser ablation (LA), and another 
cost-effective process for producing extremely pure carbon nanotubes (CNTs) is 
chemical vapor deposition (CCVD).

Electric-Arc Discharge (EAD)

In this process, the catalytic decomposition of hydrocarbon vapors produces CNTs. 
The synthetic method improves the level, amount, and type of nanotubes manufactured. 
Invariably, the inherent reaction conditions (Fu et al., 2004). This technique was 
first established in the 1960s and 1970s, and it has been effectively used in the 
development of carbon nanofibers for the last 20 years (Baker, 1989; Tibbetts, 1989). 
In this method, CNTs are obtained by decomposing carbon-containing materials 
(usually in gaseous form, such as CH4, C2H2) at high temperatures and flowing 
them through a transition metal catalyst. (typically Fe, Co or Ni) (José‐Yacamán et 
al.,1993). This method can generate high-yield of carbon nanotubes, but they are 
structurally weaker compared to those caused by arc discharged or laser evaporation. 
This method can generate high-yield carbon nanotubes, but they are structurally 
more vulnerable than those generated by arc discharged or laser evaporation.

In contrast to other available synthesis methods, the CVD method has many 
advantages. Firstly, the product tends to be free from impurities (in the form of graphite 
or metal). Secondly, CNTs were produced at a lower temperature (550°C-1000°C), 
thus, significantly reducing the cost of the process and making it more available 
for lab usage (Ci et al., 2005; Elhissi et al., 2012). Finally, the metal catalyst can 
be mounted on a substrate, assisting the growth of aligned nanotubes in the desired 
direction relative to the substrate. While experimenting with the fullerene synthesis, 
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during the arc discharge evaporation of carbon in argon at a pressure of 100 Torr, the 
first needle-like carbon filaments were produced, which he named Carbon nanotubes. 
These filaments, which formed on the opposing end of the graphite electrode, were 
identified by Iijima as rolled graphite sheets inserted into each other.

In the same issue of nature 1993, two papers describing the same method for 
synthesizing single-walled carbon nanotubes were published. (Bethune et al., 1993; 
Iijima & Ichihashi, 1993). Two groups of researchers independently discovered 
that single shelled nanotubes could be produced by co-evaporating carbon and iron 
or cobalt. For the synthesis, the reaction vessel was filled with a mixture of argon 
and methane (40 Torr argon and 10 Torr methane). The iron carbide particles are 
formed with the carbon from the cathode or from methane under these conditions. 
On these nanoparticles, carbon nanotubes with only one shell were formed. Most 
miniature tubes had a diameter of 0.75 nm, while the largest had a diameter of 1.6 
nm (Bethune et al., 1993; Iijima & Ichihashi, 1993).

Laser Ablation/Laser Vaporization

Laser ablation/laser vaporization of a graphite rod in an oven with Co and Ni as 
catalysts is the second most common method for synthesizing single-walled nanotubes 
(Thess et al., 1996). The soot produced by the laser was deposited on a cooled copper 
collector when argon flowed at a pressure of 500 Torr and a flow rate of 50 cm in 
a chamber heated to 1200°C. Fig. 3 (Guo et al.,1995).

The process was later improved to produce more than 70% yield of nanotubes 
(Thess et al., 1996). The advantages of this method over arc discharge are that the 
nanotubes made are “pure,” with less amorphous carbon and no graphite particles 
on the outer walls.(Guo et al., 1995). The third most popular synthesis method is 

Figure 3. Instrument of laser vaporization
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catalytic growth of carbon tubules by decomposition of hydrocarbons, which was 
introduced in 1992 (José‐Yacamán et al., 1993). MWCNTs and SWCNTs were 
formed by this process, which later referred to as chemical vapor catalytic deposition 
(CCVD); as a catalyst, the iron particles (Fonseca et al., 1996; José‐Yacamán et 
al., 1993), cobalt or iron on SiO2 (Fonseca et al., 1996; Hernadi et al., 1996; Kong 
et al., 1998; W. Li et al., 1996; Pan et al., 1998) iron or cobalt with zeolite support 
(Fonseca et al., 1996; Hernadi et al., 1996) iron on alumina substrate (Al2O3)(Qin 
et al., 1998) and cobalt di-silicide (CoSi2)(Mao et al., 1998) can be used. Acetylene 
(Fonseca et al., 1996; Mao et al., 1998), propylene, ethylene (Andrews et al., 2002; 
José‐Yacamán et al., 1993) or methane (Baker, 1989; Kong et al., 1998) can be used 
as a carbon supplier at decomposition temperature of 650-900 °C. The pyrolysis of 
these compounds was carried out at 1100 °C with a mixture of methane or acetylene, 
producing SWNTs or MWNTs based on the process conditions (Hernadi et al., 1996; 
Kong et al., 1998). The use of the ferrocene-xylene combination can also produce 
Multi-walled carbon nanotubes. Fig 4.

The synthesis of carbon nanotubes (CNT) from carbon monoxide as a carbon 
source on molybdenum particles was documented (Dai et al., 1996) using a metal-
catalyzed disproportion of carbon monoxide at 1200°C. Terrones et al. (Terrones 
et al., 1997) introduced the use of a silica substrate with laser etching templates. 
They initiated by depositing cobalt on a patterned substrate, then used an unusual 
chemical substance called 2-amino-4,6-dichloro-triazine to grow the CNTs. In 
particular, this was the first article on laser etching that developed a pattern for 
catalyst deposition on the substrate, resulting in aligned nanotubes. The proposed 
growth model is given in Fig. 5

Figure 4. Diagrammatic representation of reactor used for nanotubes synthesis 
from ferrocene-xylene mixture
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Catalytic Chemical Vapor Deposition

The technique of catalytic chemical vapor deposition (CCVD) has recently gained 
popularity since the reaction takes place at a far lower temperature, thus reducing the 
cost of producing carbon nanotubes (Baker, 1989). Another benefit of CCVD is that 
it allows you to control the thickness, diameter, and length of aligned multi-walled 
or single-walled nanotubes by varying the reaction conditions. In 1995, Japanese 
scientist Kyotani invented a non-catalytic chemical vapor deposition process to 
develop CNTs as a modification of this technique. (Kyotani, Tsai, & Tomita, 1995). 
The method of producing uniform, well-aligned multi-walled CNTs in the channels 
of alumina porous oxide films is called template synthesis (Keller et al., 1953).

Martin demonstrated in 1994 that porous alumina could be used as a base for 
various nanomaterials, ranging from polymers to metals (Martin, 1994; O’sullivan 
& Wood, 1970) Publications, especially those from Masuda’s group, revealed that 
this method of using a highly ordered porous alumina template for the synthesis of 
ordered nanometal structures could be easily applied for a variety of applications 
(Masuda & Fukuda, 1995). Kyotani published a paper in August 1995 (Kyotani 
et al., 1995) explaining the preparation of carbon tubules in pores of the anodic 
alumina oxide film. This approach was also outlined by Itaya in a publication in 
1984 (Itaya et al., 1984) The thickness and pore diameters of alumina films can 
be modified by altering the anodic oxidation process parameters (Jessensky et al., 
1998; Masuda & Fukuda, 1995). The Kyotani group produces carbon tubules by 
thermally decomposing propylene gas (2.5 percent in N2) in channels of porous 
alumina membrane at 800°C (Che et al., 1998; Kyotani et al., 1996). After carbon 
was deposited on the inner walls of the alumina membrane’s pores, the alumina 
was dissolved in hydrofluoric acid, yielding multi-walled carbon nanotubes. The 
schematic of the process shown in Fig. 6

Figure 5. Possible growth model of CNT on iron particles
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BIOMEDICAL APPLICATIONS OF FUNCTIONALIZED CNT

Purified carbon nanotubes are not soluble in water because of their hydrophobic 
surfaces; hence surface functionalization is needed to solubilize carbon nanotubes and 
to achieve better biocompatibility and low toxicity for medical applications (Digge et 
al, 2012; Zhuang et al., 2009). Depending on the type of the biomolecule attached to 
the carbon nanotube, the functionalization method for CNTs can be divided into two 
main approaches: covalent attachment (chemical bond formation) and noncovalent 
attachment (physio adsorption) (Yang et al., 2007; Zhang et al., 2010).

Oxidation of CNTs with strong acids like HNO3 is the way to obtain covalently 
functionalized CNTs. Carboxyl (–COOH) groups are formed on the open sides (tips) 
and defects on the sidewalls of SWCNT or MWCNT during the process, followed by 
further covalent conjugation with amino acid. Nitrene cycloaddition, arylation with 
diazonium salts, or 1,3-dipolar cycloadditions are widely used to create –COOH 
groups on the sidewalls of CNTs (Kateb et al., 2010; Zhuang Liu et al., 2007; Yang 
et al., 2007; Zhang et al., 2010).Fig. 7

Coating of CNTs with amphiphilic surfactant molecules or polymers may be used 
to achieve noncovalent functionalization (polyethylene glycol). Carbon nanotubes 
are perfect partners for noncovalent interactions with complementary molecules 
and macro biomolecules like (DNA), because of their aromatic (𝜋 electron) and
large hydrophobic surface. These interactions can occur on the inside as well as 
the outside of CNTs; on the other hand, macromolecules cannot be attached on the 
inside of CNTs (Digge et al., 2012; Zhuang Liu et al., 2009; Y. Zhang et al., 2010). 

Figure 6. Schematic drawing of the formation of CNTs via chemical vapor deposition 
in alumina template pores

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



184

CNT-Based Nano Medicine From Synthesis to Therapeutic Application

Schematic noncovalent functionalization of CNTs is illustrated in Fig. 8. CNTs 
become soluble in water after functionalization and can be able to attach to the 
drugs or biomolecules (DNA, proteins, and enzymes etc.) in order to deliver them 
to the desired cells or organs (Digge et al., 2012; Kateb et al., 2010; Zhuang et al., 
2007; Yang et al., 2007; Zhang et al., 2010).

Figure 7. Chemical modification of carbon nanotubes by nitric acid oxidation 
followed by carboxyl group esterification or amidation

Figure 8. Functionalization possibilities for SWNTs: A) Functionalization at defect 
groups B) By covalent bond formation C) By surfactant-based noncovalent binding 
D) Exohedral functionalization with polymers, and E) endohedral functionalization
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APPLICATION OF CNT IN PHARMACEUTICAL 
AND NANOMEDICINE

Some of the most common uses of CNTs in pharmacy and medicine are delivery 
of drug, biomolecule, and genes to the cells or organs. It can also be used for tissue 
regeneration, biosensor-based diagnosis, and assessment. Fig 9 summarizes them. 
The general method for drug delivery by CNTs can be simply explained as follows. 
The drug is first attached to the surface or inside of functionalized carbon nanotubes. 
The nanocomposite is then introduced into the animal body in conventional ways 
(oral injection) or directly to the specified location using a magnetic conjugate, 
which is guided to the target organ, such as lymphatic nodes by an external magnet. 
Finally, the drug CNT capsule is ingested by the cell, and the nanotube then spills 
its contents into the cell, thus delivering the drug (Kateb et al., 2010; Zhuang et al., 
2007; Singh et al., 2012; Usui et al., 2012; Zhang et al., 2010)

In general, functionalized carbon nanotubes can transport molecules of interest 
across the cytoplasmic and nuclear membranes without any toxicity; Fig. 10 shows a 
schematic representation of the drug delivery process. Consequently, the drug CNT 
conjugate is safer and more effective than the drug alone in conventional preparation.

After approaching the target cell, the drug can be delivered in two ways: either 
the drug enters the cells without the CNT carrier or both the drug and the CNT 
carrier enter the cells. The latter form of internalization is more efficient than the 
first because the intracellular environment degrades the drug carrier conjugate after 
it reaches the cells, thus releasing drug molecules in situ, that is, within the cells. 
Although in the non-internalization process, the extracellular environment facilitates 
in the degradation of drug carrier conjugates, and the drug then passes through the 
lipid membrane by itself to reach the cells, so during this process, there is a chance 
of drug degradation. Briefly, the ability of CNTs to cross cell membranes for drug 
delivery is accompanied by their structure, which includes fundamental hydrophobic 
interactions, -𝜋 stacking interactions, and electrostatic adsorption.

Adsorption into the hollow cylinder, which helps in increasing the adsorptive 
potential (Yang et al., 2007). Furthermore, CNTs can enter cells not only to facilitate 
cellular reception of therapeutic molecules, but also to retain them unchanged during 
transport and cellular penetration.
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Figure 9. Schematic representation for Application of CNT in pharmacy and medicine

Figure 10. Schematic representation of drug delivery process
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APPLICATION OF CNTS IN CANCER THERAPY

By Means of Drug Delivery

CNTs can be used as drug delivery systems in the treatment of tumors (Al-Jamal et 
al., 2011; Digge et al., 2012; Elhissi et al., 2012; Lay., 2011; Zhuang et al., 2009; 
Madani at al, 2011; Yang et al., 2007). Anticancer drug’s potency is limited by their 
systemic toxicity and limited therapeutic window and drug resistance and cellular 
penetration. Since CNTs can easily cross the cytoplasmic and nuclear membranes, 
anticancer drugs transported by this vehicle would be liberated in situ with intact 
concentration, resulting in a higher effect in the tumor cell than conventional therapy 
alone. Hence, efficient delivery systems that can improve the cellular uptake of 
existing potent drugs are needed. In addition, CNTs have a high aspect ratio, which 
gives them a significant advantage over another delivery system because their large 
surface area allows multiple drug attachment sites. (Kateb et al., 2010; Liu & Sun, 
2007; Usui et al., 2012; Zhang et al., 2010).

Epirubicin, doxorubicin, cisplatin, methotrexate, quercetin, and paclitaxel are 
anticancer drugs covalently linked with functionalized CNTs and successfully 
studied in vitro and in vivo. (Elhissi et al., 2012; Lay et al., 2011; Li et al., 2010; 
Madani et al., 2011). Researchers have linked anticancer drugs with magnetic CNTs 
and the complex obtained by fixing magnetite (Fe3O4) nanoparticles on the surface 
of nanotubes and the tips of shortened MWCNTs. This modification prevents the 
harmful effects of anticancer drugs on healthy organs and cells. In addition, other 
researchers have used the epirubicin magnetic CNTs complex to treat lymphatic 
tumors. An externally positioned magnet will direct such a device to the targeted 
tumor in the nodes (Zhang et al., 2011).

Anticancer drugs may also be attached to a complex formed by carbon nanotubes 
and antibodies against an antigen expressed on the cancer cell surface. To achieve 
targeted delivery, the antigen-antibody attraction causes CNTs to be taken up by 
tumor cells just before the anticancer drug is cleaved off CNTs (Elhissi et al., 2012; 
Lay et al., 2011; Madani et al., 2011). Multidrug resistance, driven by increased 
anticancer drug efflux by the overexpressed p-glycoprotein, which results in poor 
activity is a significant barrier to successful anticancer therapy (Elhissi et al., 
2012). Li and coworkers (Li et al., 2010) researchers have found that SWCNT can 
be functionalized with p-glycoprotein antibodies and charged with the anticancer 
agent like doxorubicin, The cytotoxic activity of this formulation was higher than 
those of free doxorubicin. In vivo administration of SWCNT paclitaxel conjugate 
was found to have higher efficacy in controlling tumor growth in breast cancer model 
and having fewer toxic effects on normal organs (Madani et al., 2011; Zhang et al., 
2011). Prolonged blood flow, higher tumor absorption, and slower drug release from 
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SWCNTs could explain the higher therapeutic efficacy and lower adverse effects 
of cancer drugs (Digge et al., 2012).

By Antitumor Immunotherapy

CNTs can be used as nano-carriers, making antitumor immunotherapy more efficient 
(Elhissi et al., 2012; Lay et al., 2011; Li et al., 2010; Pantarotto et al., 2004; Singh 
et al., 2012) The aim of this treatment is to activate the patient’s immune system to 
target the malignant cancer cells. This can be done by delivering a cancer vaccine 
or a therapeutic antibody as a medicine. Some scientists have validated the use of 
CNTs as vaccine delivery tools (Pantarotto et al., 2004). In a clinical study, Yang’s 
team discovered that coupling MWCNTs with tumor lysate protein (tumor cell 
vaccine) would significantly and precisely increase the effectiveness of antitumor 
immunotherapy. CNTs and their adjuvant effects can play a significant role in 
activating antitumor immunotherapy; but the mechanism is still unknown (Pantarotto 
et al., 2004; Yang et al., 2007).

Hyperthermia Therapy for Cancer Treatment

This CNT-based therapy has recently been proposed as an effective cancer treatment 
method. Since in the near-infrared region, SWCNTs have a high absorbance.(NIR;700–
1100 nm). They produce large amounts of heat when excited with NIR light. Hence 
these nanomaterials are considered promising candidates for hyperthermia therapy 
(Elhissi et al., 2012; Lay et al., 2011; Madani et al., 2011). Excessive heating of 
SWCNTs shackled in tumor cells, as in the case of pancreatic cancer. It can induce 
local thermal ablation of tumor cells through the photothermal effect. In recent 
years, some progress has been made in the procedure, showing clinical viability.

OTHER APPLICATIONS

Treatment for Infections

CNTs have been examined to address the problems such as infectious agent resistance 
to a number of antiviral and antibacterial drugs, as well as vaccine ineffectiveness 
in the body. Some antimicrobial and antifungal drugs have been shown to be carried 
by functionalized carbon nanotubes (Rosen & Elman, 2009; Rosen, 2011).

CNTs can bind to amphotericin B covalently and transport it into mammalian 
cells. As compared to the free drug, this conjugate has a 40% lower antifungal 
toxicity (Pantarotto et al., 2004; Rosen et al., 2011).Pazufloxacin mesylate, an 
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antimicrobial agent with high adsorption, has been successfully combined with 
amino-MWCNT and will be used in infection treatment assays. Functionalized 
CNTs, when attached with B and T cell peptide receptors, can result in forming 
a multivalent system capable of inducing an effective immune response, making 
it a promising vaccine delivery system (Usui et al., 2012; Y. Zhang et al., 2010). 
Furthermore, the antibacterial effect of CNTs was due to carbon nanotube-induced 
oxidation of the intracellular antioxidant, resulting in higher oxidative stress and 
subsequent cell death in bacterial cells (Digge et al., 2012).

Gene Therapy by Using CNT

Gene therapy is a procedure that involves introducing a DNA molecule into the cell 
nucleus to correct a faulty gene that causes certain chronic or inherited diseases. 
Liposomes, cationic lipids, and nanomaterials such as carbon nanotubes (CNTs) 
are delivery tools for DNA transfer (Al-Jamal et al., 2011; Bekyarova et al., 2005; 
Yang et al., 2007). DNA probes, when attached to SWCNTs, are safe from enzymatic 
cleavage and interference from nucleic acid-binding proteins. As a result, the 
DNA-SWCNT complex has better biostability and improves its self-delivery ability 
compared to DNA alone (Bekyarova et al., 2005; He et al., 2020; Usui et al., 2012; 
Zhang et al., 2011). Stable complexes of plasmid DNA and cationic CNTs have 
been shown to strengthen therapeutic gene ability as compared to DNA alone. CNTs 
conjugated with DNA were discovered to release DNA before it was killed by the 
cell’s defensive mechanism, resulting in a significant increase in transfection (Liu 
& Sun, 2007; Zhuang et al., 2009). The use of carbon nanotubes as gene therapy 
agents has demonstrated that these engineered structures can efficiently transport 
genes within mammalian cells while maintaining their integrity, as the CNT-gene 
complex has retained the ability to express proteins (He et al., 2020). Pantarotto and 
coworkers (Pantarotto et al., 2004) revealed that newly formed, novel functionalized 
SWCNT-DNA complexes have high DNA expression ability than DNA alone.

Tissue Regeneration and Artificial Implants

In recent years, innovations in the study of CNT synthesis and knowledge of cell and 
organ transplantation have led to the continued advancement of CNT-based tissue 
engineering and regenerative medicine. Among various other materials, such as 
natural and synthetic polymers, carbon nanotubes could be the best tissue engineering 
candidate. Since this nanomaterial is biocompatible, non-biodegradable, and can 
be functionalized with biomolecules, it can be used to facilitate organ regeneration. 
CNTs can be used as additives in this area to enhance the mechanical strength and 
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conductivity by incorporating them with the host’s body (Bekyarova et al., 2005; 
Kateb et al., 2010; MacDonald et al., 2005; Usui et al., 2012; Zhang et al., 2010).

Indeed, MacDonald et al. (MacDonald et al., 2005) and the researchers have 
successfully merged carboxylated SWCNTs with a polymer or collagen to develop 
a nano composite that can be used as a tissue regeneration scaffold. CNTs, for 
example, have been shown to improve bone tissue regeneration in mice and cell 
differentiation arising from nerves by embryonic stem cells in vitro (Singh et al., 
2012; Zhang et al., 2010). Normally, the body rejects the implants by inducing 
discomfort after they are implanted. However, nanotubes of a smaller size, bound 
to other proteins and amino acids, prevent this rejection. They can also be used as 
implants in the form of artificial joints that do not cause rejection from host. Carbon 
nanotubes filled with calcium and organized in the structure of bone can also serve 
as a bone replacement due to their high tensile strength.

For the Treatment of Neurodegenerative 
Disorders and Alzheimer’s Disease

CNTs have been used in neuroscience as a potential biomedical material due to their 
small dimensions and accessible external modifications (Singh et al., 2012; Yang et 
al., 2010; Zhang et al., 2010). CNTs can cross the blood-brain barrier through different 
targeting mechanisms and serve as successful delivery carriers for the targeting 
brain. Yang et al. (Yang et al., 2010) have found that SWCNTs were successfully 
used to deliver acetylcholine with a high safety range in mice brains, which was 
affected by Alzheimer’s disease. Most of the functionally modified SWCNTs or 
MWCNTs have been widely used to treat neurodegenerative diseases and brain 
tumors (Bekyarova et al., 2005; Digge et al., 2012; Zhuang Liu et al., 2009). These 
findings suggest that CNT-drug molecule complexes have a more significant effect 
on neuronal growth than the drug alone.

CNT as Antioxidants

Approximately fifty years ago, the principle of oxygen-free radicals was established. 
However, it was only in the last twenty years that their functions in the development 
of disease, as well as the protective effects of antioxidants, have been discovered 
(Pham-Huy et al., 2008). Despite these challenges, research into the potential role 
of carbon nanotubes as free-radical scavengers is still in its initial stages. CNTs, 
especially carboxylated SWCNTs, are antioxidants in nature,, and may have biomedical 
applications in the prevention of chronic illnesses, aging, and food preservation 
(Galano, 2008, 2010).
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Francisco-Marquez et al. discovered that the existence of –COOH groups 
increases the free radical scavenging behavior of SWCNTs. That carboxylated 
SWCNTs are just as strong as their nonfunctionalized counterparts in scavenging 
free radicals (Francisco-Marquez, Galano, & Martínez, 2010). Antioxidant properties 
of carboxylated CNTs have been used in anti-aging cosmetics and sunscreen creams 
to prevent skin from free radicals produced by the body or UV light (Digge et al., 
2012; B. Singh et al., 2012). More research into different CNT types is required in the 
future to improve their beneficial impact as a free radical scavenger for biomedical 
applications, as free radicals are well-known to be highly harmful (Galano, 2008; 
Pham-Huy et al., 2008).

CNTs as a Biosensor for Detection and Diagnosis

A biosensor is an analytical system that combines a biological component with 
a physicochemical detector. CNTs have been recently been used in biosensing 
nanotechnology, but it represents an exciting new field for therapeutic monitoring 
and in vitro and in vivo diagnostics. Many scientists, have combined carbon 
nanotubes with glucose-oxidase biosensors to enhance blood sugar monitoring in 
diabetic patients with greater precision and ease of manipulation than biosensors 
alone (Digge et al., 2012; Usui et al., 2012; Wang et al., 2004) . Other CNT-enzyme 
biosensors have been developed for therapeutic monitoring and diagnostics, such 
as CNT-based dehydrogenase biosensors or peroxidase and catalase biosensors (J. 
Wang, 2005; Zhu, Wang, & Xu, 2011). The sensitivity of the assay for electrical 
detection of DNA was greater with the alkaline phosphatase (ALP) enzyme linked 
to CNTs than with ALP alone. The assay using the SWCNT-DNA sensor, which 
was created by combining SWCNTs with single-strand DNA (ssDNA), had a much 
higher sensitivity than conventional fluorescent and hybridization assays. Antigen 
detection can also be done by using this CNT-biosensor-linked assay. As a result, 
it could provide a quick and easy method for molecular diagnosis in diseases that 
have molecular markers, such as DNA or protein. (Wang, 2005). Besides this, 
using acetylcholine esterase immobilized on the CNT surface, it can detect certain 
organophosphorus pesticides with electrochemical detection (Digge et al., 2012; J. 
Wang, 2005; Zhu et al., 2011). CNTs as biosensor vehicles are extremely important 
for establishing sensitive diagnostic and analysis techniques from the lab to the clinic 
due to their size and unique structure.

Separation of Chiral Drugs Using Carbon Nanotubes

In the drug industry, 56% of drugs are currently being used are chiral products, 
and 88% of drugs are distributed as racemic mixture (Nguyen et al., 2006). The US 
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Food and Drug Administration recently proposed that racemic medications should 
be tested for each enantiomer’s action in the body and suggested the development 
of innovative chiral drugs as single enantiomers (Galano, 2008). Hence a number 
of new chiral drug separation technologies have been developed, which includes 
carbon nanotechnology (Silva et al., 2012) A microcolumn packed with SWCNT was 
recently used as a chiral selector for the separation of enantiomers with fluorescent 
detection. Yu et al. (Yu et al., 2011) have developed a chiral solid phase of MWCNT 
crosslinked with hydroxypropyl-𝛽-cyclodextrin for enantio-separation of racemic
clenbuterol, a bronchodilator, with a high-resolution factor. The helical winding of 
the graphitic rings around the tube axis also reveals that CNTs are chiral forms. Many 
racemic mixtures of drugs have been successfully separated as single enantiomers 
using chiral selector modified CNTs.

Solid Phase Extraction of Drugs Using CNTs

CNT surfaces provide excellent adsorption potential due to their strong interaction 
with other molecules, especially those containing benzene rings. Non-modified and 
modified carbon nanotubes have been identified as Solid Phase Extraction adsorbents 
for the extraction of drugs, pesticides, and natural compounds in various media, 
including biological fluids, drug formulations, the environment, plants, and so on 
(El-Sheikh, 2011). CNTs were reported to have equivalent or higher adsorption ability 
than silica-based adsorbent or microporous resins. Many uses of carbon nanotubes 
in SPE can be found in several recently published papers that deal with the topic in 
particular (El-Sheikh, 2011; Ravelo-Pérez et al., 2010). Many medications, such as 
benzodiazepines, sulfonamides, non-steroidal anti-inflammatory drugs (NSAIDs), 
barbiturates, antidepressants, propranolol, cinchonine, and quinine, have been isolated 
by SPE using either SWCNTs or MWCNTs as adsorbent materials in different 
samples, and then analyzed using various physicochemical techniques.(El-Sheikh, 
2011). Many other applications of CNTs in SPE have been carried out for detection 
of pesticide (carbofuran, iprobenfos, parathion-methyl, etc.), natural products and 
phenolic compounds used as preservative. Furthermore, carbon nanotubes can be 
used to remove inorganic ions and organometallic compounds, and also to prepare 
stationary phases for GC, LC, and HPLC columns (El-Sheikh, 2011; Ravelo-Pérez 
et al., 2010).

ADME (Absorption, Distribution, Metabolism 
and Excretion) of CNTs

ADME of different types of CNTs has been studied, and many research articles on 
the subject have already been published in the literature (Hirlekar et al., 2009; Yang et 
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al., 2012; Zhang et al., 2011). The biodistribution and metabolism of these nanotubes 
are mainly influenced by physicochemical properties, size, surface modification, 
solubility, shape, diffusion, and chemical composition. Already a lot of research 
have been published in the literature, on the biodistribution of water soluble CNTs 
(SWCNT/ MWCNT) in animal model (Hirlekar et al., 2009; Wang et al., 2004; Yang 
et al., 2012). No toxic effects or deaths reported in any of these research. In both 
the studies, Iodine or Indium a radioactive isotope used as a tracer to observe their 
biodistribution in animals (Pantarotto et al., 2004; H. Wang et al., 2004).

The first study reveals that the administration route had no effect on CNT 
biodistribution and that the Iodine-SWCNT-OH complex spread rapidly across the 
body, with 94% of the nanotubes excreted unchanged in the urine and 6% in the feces 
(Hirlekar et al., 2009; Wang et al., 2004). Stomach, kidneys, and bone were the most 
common organs for its deposition, but there were no records of tissue injury or pain.

In the second study, animals were injected with two types of Indium-functionalized 
SWCNT or MWCNT through IV. Both forms of functionalized CNTs reported an 
affinity for kidneys, muscle, skin, bone, and blood 30 minutes after administration 
and with very similar biodistribution profiles. (Singh et al., 2006; Yang et al., 2012). 
It was observed that all types of CNTs, were efficiently removed from all tissues, 
with a maximum blood circulation half-life of 3.5 hours (Yang et al., 2012).

According to some researchers, CNTs can be broken down by myeloperoxidase 
(MPO), an enzyme found in mice neutrophils. But their findings counter the widely 
held view that carbon nanotubes are not broken down in the body.(Kagan et al., 
2010). Since it clearly shows that endogenous MPO can break down CNTs into 
water and carbon dioxide, this action of how MPO transforms CNTs into water and 
carbon dioxide may be important in medicine. It also represents a breakthrough in 
nanotechnology and nanotoxicology.(Singh et al., 2012).

Peglyation of CNTs

Pristine carbon nanotubes are insoluble in the majority of solvents that have deterred 
their utility in biomedical applications despite their unique physicochemical 
characteristics like good penetrability, large surface area for imparting 
multifunctionality, photothermal/photoacoustic effects, and so on. All these 
advantages will be realized only if the nanotubes show sufficient dispersibility.

Due to the formation of large bundles held together by the van der Waals forces, 
pristine CNTs are difficult to disperse in solution. Various dispersion agents, such as 
peptides, biomolecules, surfactants, and polymers, were used to keep the nanotubes 
away from self- aggregating (Dalmasso et al, 2012; Filip et al, 2011; Han et al., 
2012; Oleszczuk & Xing, 2011). To meet the optimum dispersion effect, other 
natural polymers such as gum Arabic, amylose, and some natural organic matter can 
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be used (Alpatova et al., 2010). Due to the existence of –COOH groups, oxidized 
carbon nanotubes have better dispersibility than pristine carbon nanotubes. However, 
despite of improved dispersibility, they have a low blood half-life due to rapid uptake 
by reticuloendothelial cells, so PEGylation can be used to increase the blood half-
life (Pisal et al., 2010). Polyethylene glycol is a polymer made up of repeated units 
of ethylene glycol (HO-CH2–CH2-OH) with MW varying typically from 200 to 
6000 amu. At low molecular weights (200 to 800 amu), it is a liquid, but at higher 
M.W(1000 amu), it becomes a waxy solid. The former PEGs are highly soluble in 
water, but as the molecular weight increases, the solubility decreases. PEG has a 
high degree of chemical stability in both oxidizing and reducing environments, and 
is resistant to acid and base-induced decomposition (Bhirde et al., 2010; Ravelli 
et al., 2013). Furthermore, when injected in small amounts as a protein conjugate 
in different species, high molecular weight PEGs are considered nontoxic (Pisal et 
al., 2010).

PEG has an excellent physico-chemical and biological properties, such as 
hydrophilicity, solubility in water and organic solvents, lack of toxicity, and lack 
of antigenicity and immunogenicity, which allowed it to be used in a wide range 
of biomedical and biotechnological applications (Ravelli et al., 2013; Tsubokawa 
et al., 1987). Terminal hydroxyl groups present on PEG can be covalently bound 
with a wide range of drug molecules. Carbon nanotubes can be PEGylated easily, 
and the presence of hydrophilic chains on the surface of CNTs avoids bundling of 
CNTs, thus increasing solubility and preventing carrier engulfment by the body’s 
RES (Reticulo Endothelial System). SWCNT modified with branched PEG chains 
was shown to have a more extended circulation period, lower toxicity, and more 
efficient clearance from the body (Bhirde et al., 2010; Ravelli et al., 2013). PEGylated 
SWCNTs have a larger hydrodynamic scale and are less immunogenic (Mazzaglia 
et al., 2001; Tsubokawa et al., 1987).

PEGylation of CNT is performed in one of two ways: covalent or non-covalent 
functionalization (Tsubokawa et al., 1987). If a strong bond between the nanotubes 
and the drug biomolecules is required, covalent functionalization is the preferable 
method of modification. This covalent binding is highly dependent on the grafting 
of reactive species molecules onto the inert sp2 carbon structure of the -conjugated 
skeleton, which can only be accomplished by directly polymerizing pristine CNTs 
with hydrophilic polymers like polyethylene glycol (PEG), oligomers, or biomolecules 
with defect or sidewall functionalization. (Peretz and Regev, 2012). The most widely 
used surface defect-derived groups to bind CNTs with amine sites on biomolecules 
is carboxylic acid group. However, during the oxidation process, this method can 
result in loss of material as well as a partial loss of properties of the CNTs (Qi et al., 
2012). Crosslinking agents such as carbodiimides (Hao et al., 2011), active esters 
(Darabi et al., 2014), thionyl, or oxalyl chloride activate the carboxylic acids first 
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(Ghini et al., 2013) to generate highly reactive intermediates that yield ester or amide 
linkages, which can then be covalently attached to a variety of biomolecules. Other 
methods for sidewall covalent functionalization of CNTs were found to be effective, 
including elemental fluorination, hydrogenation, radical additions, ozonolysis, 
electrophilic addition, and 1,3-dipolar cycloaddition of azomethine.

In comparison to covalent functionalization, noncovalent functionalization does 
not disrupt sp2 bonding and thus retaining the functional properties and native 
structure of CNTs more effectively. The use of sonication, mixing, centrifugation, 
or filtration are standard functionalization methods for noncovalent dispersion of 
CNTs (Fernando et al., 2004). Surface modifications by covalent and noncovalent 
methods for efficient CNT dispersion are reviewed in depth by Kim and the coworkers 
(Kim et al., 2012).

π-π Stacking of Aromatic Drug Molecules

Large surface areas exist for supramolecular chemistry on carbon nanotubes 
prefunctionalized noncovalently or covalently by a common surfactant or acid-
oxidation routes. Water-soluble MWCNTs with poly(ethylene glycol) (PEG) 
functionalization via these routes allow for surprisingly high degrees of π-π stacking 
of aromatic molecules, including a cancer drug (doxorubicin) with ultrahigh loading 
capacity (Liu & Sun, 2007).

PEG–PLA Nanoparticles as Drug Carrier

Over the last two decades, another group of polymers has been widely studied to 
develop systems for sustained drug delivery-the aliphatic polyester-in particular 
bioresorbable poly(lactic acid) (PLA) (Rashkov et al., 1996). The ability of PLA to 
interact with other polymers such as PEG through hydrogen bonding is an essential 
factor for the controlled release of a drug from a delivery vehicle. This type of 
interaction is sensitive to pH and temperature, and thus, increasing the temperature 
or lowering the pH can lead to dissociation of hydrogen bonds, thus avoiding the 
drug’s excess release.

The PEG–PLA nanoparticles have the advantages of both PEG and PLA. As a drug 
carrier, PEG–PLA nanoparticles have some benefits, eg, 1) reducing the first-pass 
effect and increasing bioavailability; 2) increasing drug loading and encapsulation 
efficiency; 3) reducing particle size and burst release while improving targeting; 
4) avoiding recognition and removal by the reticuloendothelial system, thereby 
prolonging the circulation time of drugs in the blood and improving stability; and 
5) good safety. In many studies, PEG–PLA nanoparticles were used as carriers 
for vaccine, protein, and gene, particularly in a sustained/controlled release drug 
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delivery system and targeted-drug delivery system that could enhance drug efficacy 
and reduce drug resistance (Xiao et al., 2010).

Controlled Release Drug Delivery System

PEG–PLA nanoparticles are mainly diffusion and degradation-controlled release 
systems. Hydrophobic drugs especially accumulate in the hydrophobic matrix. In 
diffusion-controlled systems, drugs are dissolved or dispersed in PLA based polymers, 
and the release rate is controlled by drug diffusion through a PLA matrix. In the 
controlled degradation system, drugs are dispersed in PLA, and the drug release rate 
is determined by degradation rate due to influences from PLA chain length, drug 
loading of nanoparticles, release medium, and other factors (Utreja et al., 2010).

Riboflavin-Conjugates for Targeted Drug Delivery

Nanotechnology offers a wide range of unique opportunities for the targeted delivery 
of various molecules to cancer cells through nanoparticles (NP) coupled with ligands 
for cancer cell membrane molecules. This approach can deliver anticancer drugs, 
therapeutic genes, and imaging molecules and aims to enhance the therapeutic 
index of a drug or improve the ability of an imaging agent to identify cancer. Recent 
studies have demonstrated the utility of this approach with anticancer drugs including 
methotrexate, doxorubicin, paclitaxel, and cisplatin as well as imaging agents for 
detection based on fluorescence, magnetic resonance imaging (MRI), and radioactive 
isotopes (Thomas et al., 2010).

The therapeutic or imaging molecules are carried either covalently attached 
to the particle or encapsulated within an NP. Riboflavin, more commonly known 
as Vitamin B2, is a naturally occurring molecule with a vital role in the energy 
metabolism of cells. It is internalized via receptor-mediated endocytosis and is 
essential in synthesizing the redox cofactors FMN (flavin mononucleotide) and 
FAD (flavin adenine dinucleotide). Dendrimer conjugated ligands provide novel 
opportunities for the development of nanomedicines due to their unique ability to 
traverse biological barriers. Functionalized dendrimers can be used for imaging and 
receptor-mediated tumor targeting leading to enhanced efficacy of the drug while 
reducing toxic effect on healthy cells. Riboflavin receptors are over-expressed in 
breast and prostate cancer cells, and for this reason we studied active drug targeting 
using riboflavin as a ligand (Witte et al., 2012).

This concept is essential from a therapeutic point of view. In fact, it has been 
argued that the linkage of cytotoxic drug to selected vitamins, leading to vitamin-
drug conjugates, would result in precisely delivering great amounts of the targeted 
drug at high doses to cancer cells, and thus, represents an attractive and valuable 
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approach for targeting tumor cells. Nowadays, biotin, folic acid, vitamin B12 and 
riboflavin, which are essential for the division of all cells and particularly for tumor 
cells have been recently experimented as targeting agents (Bareford et al., 2013).

TOXICOLOGY STUDIES OF CNTS

In the literature, the outcomes of CNT toxicological assays appear to be contrary. 
Some preliminary in vitro experiments have shown that CNTs are toxicologically 
benign to certain cells, whereas other studies have shown that CNTs, especially raw 
materials, are potentially harmful to a wide range of living systems (Chang et al., 2011; 
Digge et al., 2012; Ravelo-Pérez et al., 2010; Yang et al., 2007). It should be noted 
that the pharmacological effects of CNTs conjugated with drug molecules have yet 
to be examined in men, and therefore their clinical toxicity has not yet determined.

In Vitro Toxicological Studies

In vitro toxicity studies of water-dispersible nanotubes (SWCNT) on a human lung 
cell line reported that SWCNT had no intracellular localization and showed that 
SWCNT could trigger indirect cytotoxicity by changing the cell culture medium, 
resulting in an inaccurate toxic impact (Casey et al., 2008; Chang et al., 2011; Firme 
III & Bandaru, 2010; Yang et al., 2007). Dumortier et al. (Dumortier et al., 2006; 
Han et al., 2012) Water-soluble SWCNTs labeled with fluorescein were found to be 
nontoxic to cultures of rodent B- and T-lymphocytes as well as macrophages, thus 
retaining their feature. MWCNTs of smaller sizes proved to be more harmful than 
those of larger sizes. The increased oxidative stress caused by MWCNT induces 
cytotoxicity in rat glioma cells. However, numerous forms of cells, including human 
keratinocytes, rat brain neuronal cells, human embryonic kidney cells, and human 
lung cancer cells, have shown to be damaged by in vitro administration of pristine 
CNTs, which are water insoluble (Fisher et al., 2012; Shvedova et al., 2009; Ursini et 
al., 2012). For this reason, these insoluble pristine CNTs cannot be used as vehicles 
for drug and gene delivery in therapeutic applications.

In vivo Toxicological Studies

An important review article about CNT toxicity recently published has documented 
many in vivo toxicological studies performed in different animals using IV or SC 
injections and gastrointestinal exposure with functionalized or distributed SWCNTs 
or MWCNTs (Yang et al., 2012). Available safety data shows that CNTs have low 
toxicity through various exposure pathways for biomedical applications. CNTs can 
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cause significant toxicity in mice only when given at a very high dose (60 mg/kg) in 
the form of Polyethylene-Glycol-MWCNTs (PEG-MWCNTs) (Yang et al., 2012; D. 
Zhang et al., 2010). Despite the route of administration, SWCNT toxicity is closely 
linked to oxidative damage induced by them (Folkmann et al., 2009). CNTs, when 
used as tissue engineering products for cell growth by implanting subcutaneously, it 
has demonstrated an excellent biocompatibility and induced no significant toxicity, 
except mild inflammation (Fraczek et al., 2008). However, (Folkmann et al., 2009), 
some researchers have found that SWCNTs can cause oxidative stress to DNA in 
mice after oral administration, while others reported that implanted SWCNTs and 
MWCNTs can cause inflammation.(Fraczek et al., 2008). In contrary other studies 
on the toxicity of CNTs to skin, indicated that CNTs were nontoxic for skin and had 
strong biocompatibility after being implanted subcutaneously (Yang et al., 2012).

Toxicity of CNTs in Human Beings

As nanomedicine of functionalized CNTs attached to drug molecules have yet to 
be tested in humans for clinical trials, most publications in the literature indicated 
that pristine CNTs might be the source of lungs diseases in employees of CNT 
industries similar to workers of asbestos industries (Lacerda et al., 2006; Takanash 
et al., 2012). Authors concluded that CNTs were capable of causing inflammation, 
fibrosis, and biochemical changes in the lungs based upon many animal studies in 
which CNT specks of dust were administered directly to the trachea and pharyngeal 
cavity to determine the pulmonary toxicity of manufactured CNTs (Donaldson et 
al., 2006; Fisher et al., 2012; Lacerda et al., 2006; Shvedova et al., 2009; Takanashi 
et al., 2012; Ursini et al., 2012).

In a recent publication in 2013 (Ali‐Boucetta et al., 2013; Poland et al., 2008), 
Ali-Boucetta et al. reported that the pathogenicity of long/ pristine CNTs could 
be reduced, and their effective length can dramatically decreased if the surface of 
CNTs are funtionalized by chemical treatment, with either TEG or PEG. However, 
there is still uncertainty about the potential risks by access to pristine CNTs and 
their residual impurities.

When various types of CNTs are evaluated in the clinic for short- and long-term 
therapy, the first critical concern is human toxicity. Some experimental toxicological 
tests in vitro and animals have recently found conflicting results; hence optimizing 
the physicochemical parameters to reduce CNT toxicity is exceptionally beneficial. 
Future CNT formulations, for example, should be attached with new sensitive 
markers so that they can directly enter target cells, or scientists should be able to 
instantly drive them from the outside to the target organ to prevent adverse effects 
on other normal tissue. More toxicological studies of various CNTs, from pristine 
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to functionalized CNTs and their conjugates, are strongly advised before being used 
in clinical trials and then sold internationally.

FUTURE RESEARCH DIRECTIONS

This chapter reveals recent applications of CNTs in various fields of drug and 
medicine. Since carbon nanotubes (CNTs) can move through cell membranes, they 
can transport drugs, genes, biomolecules, vaccines, and other materials deep into 
target cells. Carbon nanotubes have demonstrated a variety of impressive benefits 
such as invention of nanomedicine that opened up new options for drug delivery 
which are more successful than traditional methods. CNTs avoid biodegradation 
and are a powerful engineering option over other existing materials used to repair 
damaged organs; another innovative method is the use of collagen CNTs materials 
as scaffolds in tissue generation and artificial implants. CNTs, when combined with 
biosensors or other materials, have also proved to be practical tools for therapeutic 
monitoring and diagnosis. For general health, it’s also a good idea to improve the 
free radical scavenger capacity of functionalized CNTs. Overall, nanotechnology 
can revolutionize future clinical ideas and provide opportunities for the treatment 
of many medical conditions.

CONCLUSION

A vast range of CNT applications can be found in the pharmacy and medicine 
domains. It focuses on the most promising approaches to using carbon nanotubes as 
a drug delivery system for pharmaceuticals and biomolecules in the treatment and 
diagnosis of a variety of diseases. Many synthetic approaches have been tweaked to 
increase CNT production and characteristics, and new techniques are being tested 
to obtain perfect CNTs. It’s worth noting that the pharmacological effects of CNTs 
coupled with medication molecules have yet investigated in humans, therefore 
their clinical toxicity has yet to be determined. However, despite many surprising 
results of CNTs obtained during the beginning of this research field, there are still 
tremendous opportunities to be explored and significant challenges and risks to be 
solved. Therefore, more imagination and innovation are needed to elaborate on new 
CNTs and their conjugates with high efficacy and safety for medicinal use in the 
future. At the same time, several problems in this nanomedicine technology must 
be resolved or explained.
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ABSTRACT

Current research on phytochemicals is mainly focused on novel phenolic and 
polyphenolic compounds expressing their potential as therapeutic agents in various 
diseases like cancer, autoimmune diseases, cardiovascular disorders, diabetes, 
oxidative stress-related diseases, as well as their properties to inhibit the growth 
and proliferation of infectious agents. Among the human physiological disorders, 
one of the most severe endocrine metabolic diseases is Diabetes mellitus which is a 
clinical disease distinguished by a deficit in the production of insulin or resistance 
to the action of insulin. Globally, diabetes is an increasing health concern which is 
now emerging as an epidemic. About 700-800 plants are exhibiting anti-diabetic 
activity that has been studied. As far as nanotechnology in diabetes research is 
concerned, it has made possible the buildout of novel glucose measurement as well 
as insulin delivery modalities that possess the potential to excellently enhance the 
quality of life of the diabetic patient.
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Role of Polyherbal Formulations of Medicinal Plants From Himalayan Regions

INTRODUCTION

The term “medicinal plant” is given to broad classes of plants and herbs possessing 
medicinal properties. Such classes incorporate various types of plants used in 
herbalism (“herbology” or “herbal medicine”), which can be defined as the use 
of plants for medicinal purposes, and the study of such uses in context of animal 
physiology. The word “herb” is derived from the Latin word, “herba” and an old 
French word “herbe”. Now-a-days the definition of herb has been extended to leafy 
green or flowering parts of a plant either fresh or dried. Earlier, the term “herb” 
was only applied to non-woody plants that die down to the ground after flowering. 
Medicinal plants are used as great sources of phenolic and polyphenolic compounds 
that are attributed to their medicinal properties. These benign compounds as part of 
phytochemical pool of different plant parts are the promising agents as antidiabetic, 
antimicrobial, anti-inflammatory, antifertility, antianxiety, antiaging, antiarthritic, 
antidepressant, analgesic, antispasmodic, etc. (Boy et al., 2018, Spinella, M. 2001). 
There are several plants that are reported for their anti-diabetes activity and the 
most potent and the most frequently studied for diabetes and its complications are 
Allium cepa, Allium sativum, Zingiber officinale, Curcuma longa, Ginkgo biloba, 
Aloe Vera, Panax ginseng, Momordica charantia, Azadirachta indica, Phaseolus 
vulgaris, etc. With continuously rising rates of prevalence and mortality, Diabetes 
mellitus is a severe health concern. It is characterized by excessive amounts of 
plasma glucose due to deficiency of insulin and insulin resistance, or both, leading 
to metabolic deformity in lipids, carbohydrates, and proteins. These lead to many 
secondary complications including ketosis, polyurea, retinopathy, polyphasia, and 
cardiovascular disorder (Nisha R et al., 2020, Bera TK et al., 2010). Despite the 
advent of hypoglycemic agents and their widespread use, diabetes and associated 
problems appear to be a global health concern, affecting almost 10% of the world’s 
population and perceived to be a major source of high economic losses that can 
obstruct nations’ growth in turn. Insulin and many oral hypoglycemic drugs, such as 
metformin, sulfonylureas, troglitazone, glucosidase inhibitors, etc., are commercially 
available treatment for diabetes. However, serious adverse side effects are reported 
to occur, such as lactic acidosis, diarrhea as well as hepatic and nephrotoxicity. By 
enhancing insulin sensitivity, rising the production of insulin, and reducing the 
amount of glucose in the blood, traditional medications are used to treat diabetes. 
In maintaining normal blood glucose levels, the adverse effect of drug therapy is 
not always satisfactory, and this observation has been granted to many medicinal 
and aromatic plants as a promising source of antidiabetic agents that is commonly 
used in different conventional medicine systems worldwide for the treatment of 
Diabetes mellitus, and many of them are considered to be successful against diabetes. 
In the last few decades, there has been an increasing interest in herbal medicine in 
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the management of diabetes both in developing and developed countries, due to 
their natural source and minimum side effect profiles (Mamun-or-Rashid ANM et 
al.,2014, Khan A et al., 2011). In this chapter we addressed the significance of some 
medicinal plants and novel herb-based formulations from Himalayan region of India 
that offers numerous possible advantages for synergistic activity in the medication 
of diabetes with or without structural modifications.

MEDICINAL PLANTS: A HISTORICAL PROSPECTIVE

Plants have been used as sources of food, perfume, and essential oils long before 
prehistoric period. Ancient Egyptian papyrus, Unani manuscripts, and Chinese 
writings described the use of herbs in management of various ailments. Various 
evidences exist that Indian Vadis, Unani Hakims, and European and Mediterranean 
cultures were involving herbs for their medical needs over 3000 years. Indigenous 
cultures such as Egypt, Rome, Iran, Africa, and America incorporated herbs in their 
healing rituals, while other developed traditional medical systems such as Unani, 
Ayurveda and Chinese medicine used herbal therapies systematically. Indian workers 
worked carefully to analyze and arrange the spices (Kabera et al., 2014). Charaka made 
50 gatherings of 10 spices, every one of which would get the job done conventional 
doctors’ necessities. Likewise, Sushruta orchestrated 760 spices in 7 particular sets 
dependent on a portion of their normal properties. The utilization of restorative 
plants isn’t only a custom of the far-off past but 90% of the total populace depends 
totally on crude spices and crude concentrates as drugs (Kala, C. P.2005, Alamgir 
et al., 2017). A 1997 overview demonstrated that 23% of Canadians have utilized 
homegrown prescriptions. Also, it is assessed that around 75–80% of individuals 
of non-industrial nations and around 25% of individuals of created nations depend 
either straightforwardly or in a roundabout way on restorative plants for the primary 
line of treatment. Traditional medicinal systems continue to be widely practiced on 
many accounts. Rise in Population, prohibitive cost of treatments, inadequate supply 
of medicines, high side effect profiles of several synthetic drugs and development of 
antimicrobial resistance to currently used drugs for infectious diseases have led to 
enhanced emphasis on the use of plant derived bioactive compounds as the source 
of medicines for the innumerous kinds of human diseases and disorders. World 
Health Organization (WHO) recently estimated that more than 80% percent of people 
rely on herbal medicine formulations for some aspect of their primary health care 
needs worldwide. According to WHO, more than 21000 plant species have such 
phytochemical composition that express the potential for being used as therapeutic 
therapies. More than 35% of the entire plant species, at one time or other are used 
for medicinal purposes (Dubey et al., 2004, Alvin et al., 2014).
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India is perched on a gold mine of very much recorded and generally all- around 
rehearsed information on natural medicine. This nation is considered as biggest maker 
of restorative spices and is appropriately called the greenhouse of the world. India 
authoritatively perceives more than 3000 plants for their therapeutic worth. It is by 
and large assessed that more than 6000 plants in India are being used in customary, 
society and homegrown medication, speaking to about 75% of the therapeutic 
requirements of the underdeveloped nations. WHO additionally has perceived the 
significance of customary medication and has been dynamic in making procedures, 
rules, and norms for the herbal medication (Kala, C. P. 2000).

PATHOPHYSIOLOGY OF DIABETES MELLITUS

Diabetes is a metabolic disorder in which there is chronically increased blood glucose 
levels (BGLs) and an incapability to sustain BGL homeostasis. Individuals having 
type 1 diabetes are unable to produce insulin because of autoimmune mediated 
demolition of the insulin producing beta cells within the pancreas. In type 2 diabetes, 
there is insulin resistance, or unresponsive of cells to insulin in the bloodstream. In 
both cases, the inability of homeostasis-regulation can result in chronically high and 
low blood glucose levels known as hyperglycemia or hypoglycemia respectively. 
Diabetes mellitus is recognized as one of the world’s five leading causes of death. 
According to the WHO, Diabetes mellitus is defined as a metabolic condition of 
multiple etiology characterized by chronic hyperglycemia with fat, carbohydrate, 
and protein metabolism disruptions arising from deficiencies in insulin release, 
insulin action, or both. The distinctive symptoms of Diabetes mellitus include 
polyuria, thirst, weight loss, blurred vision, Long-term impairment, dysfunction, 
and malfunction of multiple organs (Arumugam G et al 2013). There are four main 
types of Diabetes mellitus viz. type 1 diabetes, type 2 diabetes, other specific types 
of diabetes and gestational diabetes (Table 1).

Table 1. Different types of Diabetes mellitus with definition

S. No. Types Definition

1 Type 1 Diabetes
Type 1 diabetes is a disorder in which immune system abolishes insulin-making cells in pancreas. These are 
so- called beta cells. The disorder is usually spotted in 
children and youngsters, so it used to be termed as juvenile diabetes.

2 Type 2 Diabetes Type 2 diabetes is a chronic disorder that prohibits insulin from being processed by the body the way it 
should. It is said that people with type 2 diabetes have insulin resistance.

3 Gestational Diabetes 
Mellitus

Gestational diabetes is a disease in which, during pregnancy, the blood sugar levels get elevated. Per year it 
affects up to 10% of women who are pregnant in the 
U.S. It effects pregnant women who are not diagnosed with diabetes ever.

4 Other types of 
Diabetes

Other types of diabetes comprise those caused by genetic abnormalities of the beta cells, the insulin- 
producing part of the pancreas such as neonatal diabetes
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Insulin as a hormone plays a cardinal role in the absorption of blood glucose into 
most cells of the body, particularly in the muscle, liver, and adipose tissue. Thus, in the 
entire pathophysiology of Diabetes mellitus, lack of insulin or the inconsiderateness 
of its receptors reflects a critical task. Insulin into the blood is released by β-cells, 
which are located in the pancreatic islets of Langerhans, in response to increasing 
blood glucose levels, mainly after food intake. Insulin is used for absorption of 
blood glucose for the use of energy, for conversion to other molecules required, or 
for storage by approximately two-thirds of the body cells (Grover JK et al., 2002, 
Mutalik S et al., 2003). Lower glucose levels in the bold reduces insulin release from 
the beta cells and the breakdown of glycogen into glucose. The hormone glucagon, 
which works in the opposite manner to insulin, is regulating this whole process. 
If the quantity of insulin available is insufficient, if there is poor response to the 
effects of insulin (insulin insensitivity or insulin resistance) or if the insulin itself 
is nonfunctional or deficient, glucose will not be precisely absorbed and processed 
in the liver and muscles by the cells of body which require it. The net result is 
gradually increased blood glucose level, decreased synthesis of proteins, and other 
metabolic derangements, such as acidosis. Although, if the glucose content in the 
blood vestiges rises with time, the kidneys can reach a reabsorption portal, leading 
to urinary excretion, a condition called glycosuria (Salehi B et al., 2019, Gaonkar 
VP et al., 2020). (Fig.1)

Figure 1. Pathophysiology of Type 1 & 2 Diabetes Mellitus
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NANOTECHNOLOGY FOR DIABETES TREATMENT

The incorporation of nanotechnology in medicine revealed to have many possible 
benefits, for example, analysis of minute volumes of analytes as well as easy access 
to small and clinically relevant areas of tissues and cells. Diabetes management at 
its interface with nanotechnology seems to have revolutionized the treatment trend. 
Glucose sensors are examined with nanoscale components that include carbon 
nanostructures and metal nanoparticles. Their addition generally enhances the glucose 
sensor sensitivity, temporal response, and can result in generation of efficient sensors 
that are facilitated with continuous in vivo glucose monitoring. This enhanced glucose 
sensing technology seems to have an immediate and significant impact on the health 
of diabetic patients, as improved sensing results in more accurate insulin dosing and 
thus management. Additionally, strategies have been developed to deliver insulin 
on nanoscale level in which there is an automatic release of insulin in response to 
changing blood glucose levels. Nanomedicine has thus made possible the more robust 
insulin delivery strategy that can detect small changes in blood glucose levels and 
precisely regulate the rate of insulin release to maintain normal glucose levels (Fig. 
2). Such strategies are tremendous developments over contemporary standards of 
care and when applied on clinical level, these technologies will allow improving 
the health and quality of life of diabetes more effectively (DiSanto et al., 2015). 

Figure 2. Nanotechnology approach for diabetes treatment
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ANTIDIABETIC EFFECTS OF MEDICINAL PLANTS

Since the advent of human beings on this planet, natural herbal medicines have 
been used and are thus roughly as ancient as time itself. Phytochemical constituents 
mainly secondary metabolites are having disease modulating activities and are 
considered as rich resources of ingredients which can be used in drug development- 
pharmacopoeial, non-pharmacopoeial or synthetic drugs. Plant based medicines have 
better cultural acceptability, better compatibility and adaptability with the human 
body and pose minimum side effect profiles as compared to chemical allopathic 
drugs. The World Health Organization (WHO) has identified approximately 21,000 
plants which are used around the world for medicinal purposes. Treatment with 
medicinal plants is considered very safe. The biggest benefit of using such remedies 
is that they are in synchronization with nature and independent of any age group 
or the sex of subject under treatment (Robertshawe, P. et al.,2007, Grabley, S., & 
Sattler, I. 2003). Health researchers are of the firm conviction that herbs are only 
solutions to cure a number of health-related problems and diseases. Thorough 
studies are being conducted on the novel compounds that form part of phytochemical 
pool of different plants and herbs to arrive at accurate conclusions about their use 
and efficacy as oral and topical drugs for management of different diseases and 
disorders. Related researches are showing promising results everywhere and this is 
the reason why herbal treatment is growing in popularity throughout the globe. In 
maintaining normal blood glucose levels, the adverse effect of drug therapy is not 
always satisfactory. While there are various chemical pharmaceutical treatments 
developed for patients, it is still the fact that such medications are not able to cure 
diabetes completely. Adversely, various side effects are produced by chemical 
hypoglycemic agents used currently (Chandra S. J et al., 2007, Wadkar KA et al., 
2008). Therefore, the antidiabetic potentiality of medicinal foliage plus its herbal 
preparation in the treatment of disease has been highly considered in recent times 
(Fig. 3). Different medicinal plants with hypoglycemic assets are recognized as a 
substitute to synthetic agents. Natural herbs for the treatment of diabetes focus on 
lowering the level of blood sugar and reducing the adverse effects of the disease. In 
the last few decades, there has been an increasing interest in herbal medicine in the 
management of diabetes both in developing and developed countries, due to their 
natural source and minimum side effect profile (Modak M et al., 2007, Salehi B et 
al., 2019). In the Indian subcontinent, following are some polyherbal formulations 
derived from medicinal plants of Himalayan regions for the treatment of diabetes.
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POLYHERBAL FORMULATIONS AND THEIR 
POTENTIAL AS ANTIDIABETIC

• Diabecon

A polyherbal detailing fabricated by ‘Himalaya’ containing Gymnema sylvestre, 
Pterocarpus marsupium, Glycyrrhiza glabra, Casearia esculenta, Syzygium cumini, 
Asparagus racemosus, Boerhavia diffusa, Sphaeranthus indicus, Tinospora cordifolia, 
Swertia chirata, Tribulus terrestris, Phyllanthus amarus, Gmelina arborea, Gossypium 
herbaceum, Berberis aristata, Aloe vera, Triphala, Commiphora wightii, shilajeet, 
Momordica charantia, Piper nigrum, Ocimum sanctum, Abutilon indicum, Curcuma 
longa, and Rumex maritimus is recommended for bringing down the level of glucose, 
increment hepatic and muscle glucagon substance, advance B cells fix and recovery 
and increment c peptide level. It has cancer prevention agent properties and shields 
B cells from oxidative pressure. It possesses insulin like activity by decreasing the 
glycated hemoglobin levels, normalizing the microalbuminuria, and balancing the 
lipid profile (Bera TK, et al., 2006, Maroo J et al., 2002).

• Dia-Care

Fabricated by Admark Herbals Ltd., this formulation is professed to be compelling 
for both Type 1 and Type 2 diabetes. It contains Sanjeevan Mool; Himej, Jambu beej, 
Kadu, Namejav, and Neem Patients taking insulin will, at last, be freed from the 
reliance on it, when taken regularly. The entire treatment finishes in 6 stages, each 
stage being of 90 days. The flavor of the medication is exceptionally unpleasant. 
It is an unadulterated natural formulation that successfully and securely improves 
Sugar Metabolism (The Diabetes Prevention Program,DPP 2002).

Figure 3. Antidiabetic effects of medicinal plants
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• Diabetes Daily Care

Produced by Nature’s Health Supply, it is a Unique natural formula, which 
successfully and securely improves sugar metabolism. It was planned for type 2 
diabetes. It contains Alpha Lipoic Acid, Cinnamon 4% Extract, Chromax, Vanadium, 
Fenugreek half concentrate, Gymnema sylvestre 25% concentrate, Momordica 7% 
concentrate, Licorice Root 20% as essential ingredients (Thakkar NV & Jagruti 
AP 2010).

• Epinsulin

Advertised by Swastik plans, this formulation contains epicatechin, a benzopyran, 
as a functioning agent. Epicatechin expands the cAMP substance of the islet, which 
is related to expanded insulin discharge. It assumes a job in the change of proinsulin 
to insulin by expanding cathepsin movement. Furthermore, it has an insulin-mimetic 
impact on the osmotic delicacy of human erythrocytes, and it restrains Na/K ATPase 
movement from the patient’s erythrocytes. It remedies neuropathy, retinopathy, 
and upset digestion of glucose and lipids. It keeps up the respectability of all organ 
frameworks influenced by the sickness. It is accounted for to be therapeutic for 
diabetes, Non-Insulin Dependent Diabetes Mellitus (NIDDM) and a decent adjuvant 
for Insulin Dependent Diabetes Mellitus (IDDM), to decrease the measure of required 
insulin (Smith Olsen, C., & Overgaard Larsen, H. 2003).

• Diabeta

A formulation of Ayurvedic Cure, accessible in the container structure is shown 
to have anti- diabetic potential. It is formulated with a blend of a demonstrated 
immunomodulators, antihyperlipidemic, and hepatoprotective compounds. Diabeta 
contains Gymnema sylvestre, Vinca rosea (Periwinkle), Curcuma longa (Turmeric), 
Azadirachta indica (Neem), Pterocarpus marsupium (Kino Tree), Momordica 
charantia (Bitter Gourd), Syzygiumcumini (Black Plum), Acacia arabica (Black 
Babhul), Tinospora cordifolia, and Zingiber officinale (Ginger) extracts. It assaults 
the different components, which accelerate the diabetic condition, and adjusts the 
degenerative difficulties. Diabeta conquers protection from oral hypoglycemic 
medications when utilized as adjuvant to instances of uncontrolled diabetes. Diabeta 
presents a feeling of well-being in patients and advances indicative help of objections 
like shortcoming energy, torment in legs, body hurt, polyuria, and pruritis (Babuji, 
S. S. H. et al., 2010, The Diabetes Prevention Program, DPP 2002).
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• Syndrex

Fabricated by Plethico Laboratory, it contains concentrates of sprouted fenugreek 
seed. Fenugreek is utilized as an element of conventional definitions for more than 
1000 years. It has profound effect on the stabilization of islet cells ((Joshi CS et 
al., 2007).

• Dihar

This polyherbal blend contains eight distinct spices Syzygium cumini, Momordica 
charantia, Emblica officinalis, Gymnema sylvestre, Enicostemm, Azadirachta indiaca, 
Tinospora cordifolia, and Curcuma longa. Literary works uncovered that blend of 
these eight spices shows successful anti-hyperglycemic activity in Strptozotocin 
(STZ,45 mg/kg iv single portion) instigated type 1 diabetic rodents. Treatment 
with Dihar (100 mg/kg) for about a month and a half-created decline in STZ incited 
serum glucose and lipid levels and builds insulin levels when contrasted with control. 
Dihar showed huge lessening in serum creatinine urea level and lipid peroxidation in 
diabetic rodents (Patel SS et al., 2009, The Diabetes Prevention Program, DPP 2002).

• Diabet

A polyherbal plan containing Curcuma longa, Coscinium fenestratum, Strychnos 
potatorum, Phyllanthus reticulatus. Tamarindus indica, and Tribulus terrestris, was 
researched for its glucose resilience and antidiabetic potential in alloxan prompted 
diabetic rodents. The glucose resilience test and hypoglycemic investigations was 
done in ordinary rodents at a portion of 500mg/kg. The item demonstrated its viability 
at that concentration (Lanjhiyana Sweety et al., 2011).

• Diasol

A polyherbal antidiabetic definition containing plant concentrates of Eugenia 
jambolana, Foenum graceum, Terminalia chebula, Quercus, infectoria, Cuminum 
cyminum, Taraxacum officinale, Emblica officinalis, Gymnea sylvestre, Phyllanthus 
nerui and Enicostemma littorale, indicated 63.4% decrease of blood glucose level in a 
portion of 125 and 250 mg/kg body weight and end up being compelling antidiabetic 
polyherbal formulation (Babuji, S. S. H. et al., 2010).
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• Dianex

A polyherbal detailing was screened for antidiabetic action in rodents and it 
has been accounted for in written works that Dianex produce huge hypoglycemic 
movement in both typical and diabetic mice. It was directed orally in various 
dosages of 100, 250 and 500 mg/kg body weight as long as about a month and a 
half. Administrationof Dianex as long as about a month and a half demonstrated it 
to be compelling in long haul treatment (Ogbonnia SO et al., 2010).

• DRF/AY/5001

An indigenous polyherbal blend containing Gymnema sylvestre, Syzygium cumini, 
Pterocarpus marsupium, Momordica charantia, Emblica officinalis, Terminalia 
belirica, Terminalia chebula and Shudh shilajit) created by Dabur Research 
establishment Gaziabad, inspire hypoglycemic/antidiabetic impact in both typical 
and tentatively prompted hyperglycemic rats. DRF/AY/5001 hindered altogether the 
hyperglycemia actuated by epinephrine. It indicated critical decrease in blood glucose 
level at 1-3 hr. With single portion treatment in alloxan initiated diabetes rodents 
with 600 mg/kg of Drf/Ay/5001 was like that of Glibenclamide. DRF/AY/5001 gave 
almost comparable outcome with that of engineered drug Glibenclamide (Mandlik 
RV et al., 2008).

• Diashis

An investigation was directed on polyherbal formulation made out of eight 
restorative plants for the administration of streptozotocin (STZ)- initiated diabetes 
in rodents. The investigation uncovered that treatment with ‘Diashis’ in STZ-
instigated diabetic rodents brought about a huge recuperation in the exercises of 
hepatic hexokinase, glucose-6-phosphate dehydrogenase, and glucose-6-phosphatase 
alongside revision in the degrees of fasting blood glucose, glycated hemoglobin, 
and liver and skeletal muscle glycogen. The oxidative pressure status in the liver 
was revised by ‘Diashis’ which was featured by the recuperation in the exercises of 
catalase, peroxidase, and glutathione-S-transferase (Bera TK, et al., 2006).

• Diabrid

A homegrown based antidiabetic formulation was clinically assessed in 60 diabetic 
patients for a half year. The clinical examinations uncovered that Diabrid was all 
around endured in high dosages and was discovered to be a potential antidiabetic 
drug in mellow and moderate diabetic cases (180-280 mg/dl). The glucose level 
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was controlled inside 2-multi week relying on the introductory glucose level. The 
hypoglycemic action was portion reliant and slow. No harmful impact was seen on 
the kidney and liver (Quadri NM et al., 2006).

• Diakyur

A polyherbal detailing made out of Cassia javanica, Cassia auriculata, 
Salacia reticulate, Gymnema sylvestre, Mucuna pruriens, Syzygium jambolaum, 
and Terminalia arjuna, experimentally end up being a potential antidiabetic. The 
report demonstrated that Diakyur has huge hypoglycemic action just as anti-lipid 
peroxidative action. Literature investigations inferred that Diakyur is beneficial for 
long haul treatment in diabetic condition (Joshi CS et al., 2007).

• Diasulin

This polyherbal formulation contains extracts of Cassia auriculata, Coccinia 
indica, Curcuma longa, Emblica officinalis, Gymnema sylvestre, Momordica 
charantia, Scoparia dulcis, Syzygium cumini, Tinospora cordifolia, and Trigonella 
foenum . Investigation revealed that it controls the blood glucose level by expanding 
glycolysis and diminishing gluconeogenesis with a lower interest of pancreatic insulin 
than in untreated rodents. This is conceivable, in light of the fact that it manages 
the exercises of hepatic glucose metabolic catalysts. Diasulin additionally brought 
about huge lessening in tissue lipids and lipid peroxide development (Pari, L., & 
Saravanan, R. 2004).

• ESF/AY/500

A polyherbal detailing expected to be utilized for diabetic patients has been 
screened for cancer prevention initially. It is made out of eight restorative plants, 
namely Aerva lanata, Aegle marmelos, Ficus benghalensis, Catharanthus roseus, 
Bambusa arundinaceae, Salacia reticulata, and Szygium cumini and ‘Eruca sativa’. 
Tthe ethanolic concentrate of ESF/AY/500 displayed critical cell reinforcement 
action indicating expanded degrees of superoxide dismutase (SOD), catalase (CAT), 
glutathione peroxidase (GPx), and diminished degree of lipid peroxidation. It has been 
revealed that EFPTT/09 evokes hypoglycemic and antidiabetic impact in both typical 
and alloxan actuated diabetes rodents. It likewise inspired a huge cancer prevention 
agent impact in diabetic rodents by its capacity to repress lipid peroxidation and raise 
the enzymatic cell reinforcement in pancreatic tissue. It has been discovered that at 
a portion of 600 mg/kg, the hypoglycemic impact of EFPTT/09 almost equivalent 
to that of Glibenclamide (5 mg/kg.). Exploration demonstrated that treatment with 
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5EPHF at portion 200 mg/kg to diabetic rodents brought about huge decrease of 
serum glucose, glycosylated hemoglobin, complete cholesterol, fatty oil, low thickness 
lipoprotein, creatinine, and urea though huge, expanded degree of insulin and high 
thickness lipoprotein was noticed (Sajeeth CI et al., 2010).

• Glyoherb

A polyherbal detailing was assessed for its antihyperglycemic, antihyperlipidemic, 
and cancer prevention agent impacts against ordinary and streptozotocin-prompted 
diabetic rodents. ‘Glyoherb’ sugar control granules have potential antidiabetic 
function as it brings down serum glucose levels and expands glucose resistance 
in STZ-actuated diabetic rodents. This polyherbal formulation also possess huge 
antihyperlipidemic activity as it brings down serum cholesterol and fatty oil 
levels. It was fairly discovered to be improving kidney and liver capacities. Also, 
‘Glyoherb’ has potential cell reinforcement action as it diminishes lipid peroxidation. 
The antidiabetic action of ‘Glyoherb’ might be ascribed to its cell reinforcement 
properties too. Consequently, past exploration presumed that ‘Glyoherb’ might be 
viewed as a promising common and safe solution for the avoidance or deferral of 
diabetic intricacies (Thakkar NV & Jagruti AP 2010).

• Karmin Plus

An indigenous polyherbal definition containing Momordica charantia, 
Azadirachta indica, Picrorrhiza kurroa, Ocimum sanctum, and Zinziber officinale 
was assessed for antidiabetic movement by Banger et al and it was discovered that 
item demonstrated viability at two portion levels at 200 mg/kg and 400 mg/kg body 
weight for antidiabetic activity. Studies demonstrated that polyherbal detailing 
was compelling in diminishing plasma glucose levels in the diabetic rodents and 
demonstrated a beneficial impact on cardiovascular system. The high LD 50 worth 
(16.5g/kg) demonstrates that definition could be safe for use (Om PB et al., 2009).

• SMK001

Literature uncovered that SMK001 is a potential antidiabetic polyherbal detailing. 
Researches explored the anti-diabetic impact of SMK001 by assessing in the 
streptozotocin (STZ; 60 mg/kg, single intraperitoneal infusion) prompted diabetic 
rodents. Results demonstrated that SMK001 altogether decreases the blood and 
pee glucose level, and it shows more favorable impact at a portion of 100mg/kg 
contrasted with that of Glibenclamide 5mg/kg (Kim JD et al., 2006).
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• PM021

Herbal equation comprises of two homegrown segments, Mori Folium and 
Aurantii Fructus, which is regularly used to treat diabetes in Korea. Antidiabetic 
impact of PM021 on the sort II diabetic Otsuka Long–Evans Tokushima Fatty 
(OLETF) rodents was tested. The outcomes demonstrated that PM021 fundamentally 
forestalled increments in body weight, blood glucose, and food consumption that 
came about because of the enlistment of corpulence and diabetes. PM021 likewise 
improved glucose resistance in OLETO rodents (Maroo J et al., 2002, The Diabetes 
Prevention Program, DPP 2002).

FUTURE RESEARCH DIRECTIONS

Medicinal plants and herbs have remained the greatest sources of essential medicines 
and oils since times immemorial. Even today researches are much more focused on 
them to trace out novel compounds for the management of diseases and disorders that 
have wreaked havoc on human health. In the quest for new medicines, ethnobotany 
and ethnopharmacology have emerged as important sources of information. Studies 
on structure-activity relationships and their effects on the design of novel drugs have 
made pharmacochemistry an advanced constituent in the category of pharmaceutical 
sciences- one of the most valuable and therefore significant consummations. 
Phytomedicines are being recognized by researchers, physicians, and patients for 
their better therapeutic value as they possess fewer adverse effects as compared with 
modern chemical medicines. The need of the hour is to develop scientific approaches 
via which phototherapeutic compounds could be delivered in a sustained manner to 
increase patient compliance and avoid repeated administration. By designing novel 
drug delivery systems (NDDS) for drug delivery such strategies can be achieved. 
Nanotechnology is one such novel approach. Nano-sized drug delivery systems 
of herbal drugs have a potential future for increasing the bioactivity as well as 
overcoming problems associated with toxic phytoconstituents. Hence, integration 
of the nanocarriers as NDDSs in the traditional medicine system is the need of 
hour to conflict more chronic diseases like cancer asthma, diabetes, cardiovascular 
diseases, and others.

CONCLUSION

Innumerous types of medicinal plants have been considered for their conceivable 
hypoglycemic activities and the specialists have done some starter examinations. 
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Their extracts containing thousands of phenolic, and polyphenolic has demonstrated 
the viability of the botanicals in reducing the sugar level. Now-a-days, there is an 
extraordinary premium towards plant-based drugs for diabetes as well as for other fatal 
conditions like autoimmune disorders, cancer, ageing, cardiovascular complications. 
One of the serious issues with this natural definition is that the dynamic fixings are 
not very much characterized. It is critical to know the dynamic segment and their 
sub-atomic communication, which will assist with examining the remedial viability 
of the target compounds.
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KEY TERMS AND DEFINITIONS

Antioxidants: Compounds that inhibit oxidation, a chemical reaction that give 
rise to free radicals and chain reactions that may damage the cells of organisms.

Diabetes: A chronic (long-lasting) health condition metabolic disease that causes 
high blood sugar.

Hormone: Hormones are organic substances secreted by complex multicellular 
organisms that functions in the regulation of physiological activities and in maintaining 
homeostasis.

Insulin: Insulin is a hormone in our body that is responsible for allowing glucose 
in the blood to enter cells, providing them with the energy to function.

Nanotechnology: Nanotechnology is science, engineering, and technology 
conducted at the nanoscale, which is about 1 to 100 nanometers.

Phytochemicals: Chemicals that occur naturally in Plants and their parts
Polyphenolic Compounds: Polyphenolic compounds are a diverse group of 

naturally occurring compounds that contain multiple phenolic functionalities.

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



230

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  8

DOI: 10.4018/978-1-7998-8251-0.ch008

ABSTRACT

This chapter deals with the formation of biofilms, their resistance to antibacterial 
agents, the importance and risk of biofilms, and nanotechnology methods for biofilm 
control in the food industry. Biofilm is a multi-layer cell cluster embedded in an 
organic polymer matrix, which protects microbial cells from environmental stress, 
antibiotics, and disinfectants. Microorganisms that live in contact points and the 
environment in food processing are mostly harmful because the microbial community 
in the wrong location can lead to contamination of the surfaces and products produced 
during the processing. When new nanomaterials (for example, silver or copper 
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INTRODUCTION

Biofilm is a microbial community of extracellular matrix rich in polysaccharides. 
Microbial biofilm was first discovered in 1936. When a glass rod was added to the 
microbial solution, the adhesion of the microbial cell layer to the bottle wall and the 
biological activity of the suspension culture were significantly increased; subsequent 
research introduced the ubiquity of biofilm and planktonic microorganisms (Probert 
& Gibson, 2002). Various non-biological and biological surfaces, such as minerals, 
metals, animal or plant surfaces, lungs and intestines, as well as all types of medical 
implants are prone to bacterial colonization and biofilm formation. On the one hand, 
the advantages of biofilms have been applied in industrial processes. The microbial 
biofilmspose a huge risk, including chronic infections caused by these biofilms (R. 
M. Donlan & Costerton, 2002). Most importantly, biofilms are characterized by 
their resistance to biocides, antibiotics, and clearance caused by humoral or cellular 
host defense mechanisms (J. W. Costerton, Stewart, & Greenberg, 1999). Therefore, 
the use of traditional concentrations of bactericides or antibiotics is not effective 
in eliminating biofilms.

To control the risk caused by the formation of undesirable biofilms in the medical 
industry, it is necessary to formulate corresponding strategies to prevent and control 
the formation of biofilms. So, in this regard we need to fully understand the initial 
formation mechanism of biofilms, including attachment, development, maturation 
and detachment, and molecular level related regulatory process (Simoes, Borges, & 
Simoes, 2020). In fact, the microbes in the planktonic state hardly form biofilms, but 
the formation of biofilms occurs only in the presence of microbial groups (Berlanga 
& Guerrero, 2016). The strange thing is that the number of microorganisms that 
grow in planktonic growth is less than 0.1% of the total microorganisms (J. W. 
Costerton, Lewandowski, Caldwell, Korber, & Lappin-Scott, 1995). In general, 
the biofilm can be defined as an aggregated microbial community surrounded 
by an extracellular polymer (EPS) matrix, which develops on various inert or 
organic surfaces. Certainly, these biofilms are regulated by various physiological, 
environmental, and genetic factors. Admittedly, it is a very complex phenomenon, 
ranging from the structural characteristics of biofilms to various biofilm-related 
resistance mechanisms. Therefore, due to the complexity of biofilm formation and 

are incorporated) are used, the growth of surface biofilms can also be reduced. In 
recent years, new nanotechnology-based antimicrobials have been designed to kill 
planktonic, antibiotic-resistant bacteria, but additional requirements rather than 
the mere killing of suspended bacteria must be met to combat biofilm-infections.
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the antimicrobial resistance associated with biofilms, medical and industrial impacts 
are still difficult to control. Consequently, more research on biofilms is still needed 
in order to fully understand this phenomenon and to develop more effective methods 
for the prevention and eradication of these biofilms (Simoes et al., 2020).

Nevertheless, several speculations come about regarding the resistance of biofilm 
cells, including slow growth pattern of sessile cells, interaction of exopolymer with 
the antimicrobials, mutation, certain resistance genes expression, and the presence of 
a diffusion barrier to the chemicals posed by the glycocalyx, (Pace, Rupp, & Finch, 
2005). In the natural ecological environment and pathogenic systems, bacterial 
biofilms are ubiquitous. The formation of biofilms can be beneficial or harmful. 
Many factors that affect the development of biofilms have been extensively studied, 
including the types of microorganisms, cell surface composition, surface, nutrition, 
fluid dynamics, and cell-to-cell communication.

Recently, by means of further understanding, the cell-to-cell communication in 
microorganisms, quorum sensing has become one of the most important mechanisms 
for controlling the development of highly structured biofilms on biological and non-
biological surfaces. The resistance of biofilms to antibiotics often leads to the failure 
of chemotherapy and further refractory infections. In fact, biofilms are associated 
with more than 65% of all medical infections (Pace et al., 2005).

Nonetheless, it is believed that the use of biosynthesized NPs facilitate electrostatic 
interactions that result in the structural rupture of the biofilm matrix. Their reduced 
size allows penetration into microbial cell walls leading to loss of cell viability and 
alteration in the biofilm cell physiology. The use of NPs also ensures controlled 
release of the antimicrobial agent, presenting reduced toxicity and greater stability, 
thus also providing greater antimicrobial effects on the biofilm (Fig. 1) (Banerjee 
et al., 2020; Habimana et al., 2018; Nayan, Onteru, Singh, & Energy, 2018; Souza, 
de Oliveira Vieira, Naldi, Pereira, & Winkelstroter, 2021). The possibility of using 
medicinal plants and phytochemicals with antimicrobial effects for the synthesis of 
NPs contributes to the biofilm eradication. Many phytochemicals can alter the cell 
membrane and compromise the respiratory activity of cells, in addition to cause 
lipid peroxidation and the production of free radicals that cause deleterious effects 
on biofilms (Rodríguez-Serrano et al., 2020; Ruddaraju, Pammi, sankar Guntuku, 
Padavala, & Kolapalli, 2020).

In a previous reported study, dextrin was used for biological synthesis of silver 
particles, demonstrating a remarkable reduction of approximately 70% in the formation 
of biofilms by the pathogens K. pneumoniae, P. aeruginosa, C. albicans, and S. 
aureus MRSA (Rajkumari, Busi, Vasu, & Reddy, 2017). The study also evaluated the 
positive effect on the inhibition of EPS secretion, guaranteeing an important role of 
biosynthesized NPs in controlling the infections by multi-resistant microorganisms 
that form biofilms. In another investigation the Avicennia marina was used for 
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biosynthesis of Fe2O3NPs, thus obtaining a percentage of 65% inhibition of biofilm 
formation at a very low concentration of 2 ppm for species of P. aeruginosa and 5 
ppm for the pathogenic S. aureus, while complete anti-biofilm activity was achieved 
with the doses of 28 μg/mL for E. coli and 52 μg/mL for P. aeruginosa (Ramalingam, 
Dhinesh, Sundaramahalingam, Rajaram, & Interfaces, 2019).

BIOFILM FORMATION

The first scientific research about the biofilm appeared in 1943. However, it was not 
clearly understood until the 1970s, when the researchers realized that biofilms are 
widespread (J. W. Costerton et al., 1987). Bacteria exist in two basic states, floating 
or fixed cells. Microorganisms in planktonic state are very important for their rapid 
proliferation and spread, while fixed or slow-growing microbial populations are more 
conducive to their persistence. Studies have shown that adherent microorganisms 
in the form of colonies, called biofilms, exist in almost all natural and pathogenic 
ecosystems (Bjarnsholt, Jensen, Moser, & Høiby, 2011; J. W. Costerton et al., 1995).

Moreover, the process of biofilm formation is complex and is usually divided into 
five stages: 1) The development of surface conditioning film 2) The movement of 
microorganisms to the surface 3) Adhesion 4) Growth and division of organisms and 
surface colonization, formation of microcolony and biofilm; phenotype and genotype 
changes 5) Biofilm cell detachment/dispersion (Palmer & White, 1997; Percival, 
Knottenbelt, & Cochrane, 2011). There are also reported documents that divide the 
formation and reproduction of biofilms into the following four steps: (1) Transport 
(2) Initial adhesion, (3) Substrate adhesion, (4) The formation of microcolonies, 
leading to the formation of mature biofilms to form cells and surrounding extracellular 

Figure 1. Schematic illustration of different stages of biofilm formation
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polymer matrix, the last step is the scattering or destruction of biofilms (Fig. 1) 
(Pometto III & Demirci, 2015).

Furthermore, regarding the properties of biofilms, microbes have different growth 
rates and physiology relative to the floating state, and can show different physiological 
responses to different nutritional conditions (Hodgson, Nelson, Brown, & Gilbert, 
1995). Although gas and liquid nutrients are diffused and transported through the 
biofilm matrix, studies have shown that bacteria that form biofilms require less 
oxygen and nutrients than bacteria in a planktonic state. Surprisingly, compared 
with its floating form, it is more conducive to growth, changes in physiology, and 
increases tolerance to various stresses (Fox, Leonard, Jordan, & Microbiology, 2011). 
Although gas and liquid nutrients are diffused and transported through the biofilm 
matrix, studies have shown that bacteria that form biofilms require less oxygen 
and nutrients than bacteria in a planktonic state. Surprisingly, compared with its 
floating form, it is more conducive to growth, changes in physiology, and increases 
tolerance to various stresses (Bolton, Dodd, Mead, & Waites, 1988; Pometto III & 
Demirci, 2015).

Certainly, the formation of biofilms is an important physiological phenomenon 
for microbial pathogens to survive in the environment or mammalian hosts. The 
microbial cells in the floating state are first attached briefly, and then permanently 
attached as a single layer on the surface or tissues of the inert material. This monolayer 
produces larger clusters of cells, which eventually develop into a highly structured 
biofilm consisting of mushroom-shaped bacterial microcolonies separated by fluid-
filled channels. These channels can transport nutrients to various parts of the biofilm, 
while toxic waste diffuses out. Endogenous oxidative stress produces diversity and 
adaptability in biofilm communities (Boles & Singh, 2008).

RESISTANCE TO ANTIMICROBIALS

Biofilm is a microbial community composed of bacteria encased in an autogenous 
polymer matrix attached to the surface of various inert and active substances 
(Steenackers, Hermans, Vanderleyden, & De Keersmaecker, 2012). The biofilm on 
the food contact surface is the source of pathogenic bacteria and spoilage bacteria, 
which increases the risk of microbial contamination in food processing plants, and 
leads to serious public health problems and potentially significant economic impacts 
(Shi, Zhu, & Technology, 2009). However, it should be noted that the resistance 
of a biofilm to antibiotics is not the same as its antibiotic resistance, because when 
the bacteria are wrapped in a biofilm, they can withstand antibiotic treatment, but 
if the biofilm is destroyed, the bacteria will become easy to treat (Bayles, 2007).
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Obviously, the microorganisms in biofilms grow in a protected microenvironment 
mainly by producing biofilm substrates composed of extracellular polysaccharides, 
proteins and nucleic acids (Davey, O’toole, & reviews, 2000). The structure of the 
biofilm and the physiological characteristics of the microorganisms in the biofilm 
also provide intrinsic resistance to antibiotics. Indeed, the resistance of biofilms 
to antibiotics is thousand times that of equivalent to planktonic bacteria (Hoyle & 
Costerton, 1991). The ability of microorganisms acting on the biofilm matrix by 
antibiotics is reduced, which is an important factor in the resistance of a certain 
biofilm. This may be caused by chemical interaction with extracellular biofilm 
components or adsorption to anionic polysaccharides (Percival et al., 2011). Once 
microorganisms attach to a certain surface, they may express a biofilm phenotype 
that is more virulent than that in a planktonic state (Mah & O’Toole, 2001). It is 
suggested that cells with specific phenotype of biofilm may be induced. These 
phenotypes may express active mechanisms, such as the expression of bacterial 
extracellular glucans combined with them, and physical sequester of antibiotics to 
reduce the efficacy of antibiotics (Gilbert, Das, & Foley, 1997).

Biofilms as usual are highly resistant to most antimicrobial agents and disinfectants. 
The attached bacteria in the biofilm can acquire resistance through the transfer of 
resistance plasmids. The acquisition of this resistance is particularly important for 
patients with urinary catheters and orthopedic patients in the medical environment. 
Studies have shown that plasmids carried by many organisms encode multiple 
antimicrobial resistances, especially in the medical field. Microorganisms can grow 
in free form (plankton) or biofilms attached to solid surfaces (Kumamoto & Vinces, 
2005). Surfaces that support the growth of biofilms include inanimate environmental 
materials, biological materials in contact with host tissues and systems or host tissues 
themselves. It is known that there are significant differences in the behavior and 
phenotype of microbes in the state of plankton and biofilm. Perhaps the best example 
is the study of antibacterial effects at different growth stages (Hill et al., 2003).

Furthermore, compared with planktonic cells, bacteria in biofilms are difficult 
to eliminate because they are well protected from antibiotics, disinfectants, host 
immune system and environmental stress. The use of standard National Committee 
on Clinical Laboratory Standards (NCCLS) broth microdilution methods for 
susceptibility testing cannot accurately determine the activity of antibiotics against 
biofilm microorganisms because these techniques are based on exposing plankton to 
antimicrobial agents. Instead, the biofilm is exposed to antimicrobial agents, removed 
from the attached matrix, homogenized and quantified as a viable cell counting (R. 
M. Donlan & Costerton, 2002). In the development of a model biofilm system, in 
addition to the culture medium and inoculum, the matrix and fluid dynamics also 
need to be considered.
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Above all various studies have shown that the inherent resistance of biofilm 
bacteria to antimicrobials is a common phenomenon. The resistance of biofilms to 
bacteria may be three or more orders of magnitude higher than that of the same strain 
in a planktonic state, depending on the species-drug combination (Ceri et al., 1999). 
After exposure to high concentrations of antibiotics, a small number of surviving 
persistent bacteria will immediately reproduce on the surface and become more 
resistant to antimicrobial treatment. Paradoxically, once these bacterial cells escape 
from the biofilm, they usually return to a form that is sensitive to antimicrobials (J. 
W. Costerton et al., 1987). The general mechanism of biofilm resistance to antibiotics 
is as follows: 1) The polymer outside the biofilm slowly penetrates the antibiotic; 
2) The growth rate of the biofilm cell is slow; 3) The rate of genetic transfer in 
the biofilm increases; 4) The resistance gene in the biofilm 5) Hypermutation of 
biofilms; 6) Multicellular nature of biofilm communities (Pace et al., 2005). However, 
some studies have shown the opposite view that the biofilm and planktonic cells of 
Pseudomonas aeruginosa have similar resistance to the killing effect of antibiotics. 
They concluded that, at least for Pseudomonas aeruginosa (a model organism for 
biofilm research), the idea that biofilms are more resistant than planktonic cells is 
groundless (Spoering & Lewis, 2001).

Identically in order to survive, microorganisms have evolved cell protection 
mechanisms or resistance mechanisms to combat harsh environmental conditions. 
As plankton cells transform into an attached form, biofilm resistance becomes 
more complicated. Therefore, biofilms have unique characteristics that make cell 
membranes thousand times more resistant than planktonic cells. Due to this fact, it 
is often difficult or impossible to eradicate disease infections related to biofilms and 
become serious chronic diseases. A group of bacteria consisting of Pseudomonas 
aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii and Enterobacter, which are characterized by resistance and 
in particular resistance to antibacterial agents, Known as the “ESKAPE pathogen” 
(Santajit & Indrawattana, 2016).

In addition to medical and health care, drug resistance produced by cell attachment 
on surfaces is also a huge hazard in the petroleum industry, drinking water distribution 
systems, paper industry, metal processing industry, and food processing industry. 
Since the health problems associated with biofilms will generate huge global health 
and economic costs, the link between biofilms and antibiotic resistance deserves 
deep attention. Several studies have shown that certain antibiotics can induce biofilm 
formation. Other researchers focused on the relationship between biofilm formation 
and multidrug resistance (MDR), and proved that microorganisms with biofilm 
formation ability are more resistant to antibiotics than microorganisms without 
biofilm formation ability (Gurung et al., 2013).
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The underlying mechanisms of antibiotic resistance in biofilms can be divided 
into the following five categories: 1) Restriction of the penetration of antibiotics; 
2) Different physiological activities; 3) Persistence and phenotypic variation; 4) 
Specifics related to the growth pattern of biofilms tolerance mechanism; 5) Specific 
tolerance mechanism that has nothing to do with the growth pattern of biofilm 
(Bjarnsholt et al., 2011).

IMPORTANCE AND RISK OF BIOFILMS

Biofilms can be formed on a variety of surfaces, including natural aquatic systems, 
living tissues, residential medical equipment, and industrial/or drinking water system 
pipes. Most microorganisms grow in the form of biofilm in water environment 
(Percival et al., 2011). These biofilms may be benign or pathogenic, releasing harmful 
products and toxins, and these harmful products and toxins are encapsulated in the 
biofilm matrix. Biofilm formation is a phenomenon that occurs under a variety of 
conditions both in natural and man-made environments, and appears on most wet 
surfaces, plant roots and almost every living animal. Biofilms may exist as beneficial 
epithelial communities in rivers and streams, trickling filter beds in wastewater 
treatment plants, or mammalian digestive tracts (J. Costerton, Irvin, & Cheng, 
1981). However, biofilms are not limited to the solid/or liquid interface but can 
also be found at the solid/or gas or liquid/or liquid interface (for example, airborne 
pathogens and pathogenic bacteria) have been shown to be important factors in the 
biodegradation of surface coatings; The biofilm/or liquid interface at the liquid is 
related to the degradation of hydrocarbons, including fuels, engine oils and industrial 
coolants. In humans, it is estimated that 65% of all nosocomial infections are of 
biofilm origin. Once biofilms are formed, their infections are difficult to eradicate 
because they have the flexibility to be cleared by host defense mechanisms and 
antibacterial agents (Percival et al., 2011).

Additionally, studies have shown that biofilm microorganisms initiate initial 
attachment to the surface, forming a community structure and ecosystem, and a 
specific mechanism for detachment. In addition, biofilm is becoming one of the 
buzzwords in the food industry (Merino, Procura, Trejo, Bueno, & Golowczyc, 
2019). There are various definitions of biofilms, where biofilms are collections of 
microbial cells that are irreversibly attached (not removed by gentle washing) to the 
surface and are surrounded by a matrix mainly made of polysaccharide materials. 
Non-biological materials such as mineral crystals, corrosion particles, clay or silt 
particles or blood components, depending on the environment in which the biofilm 
is formed, can also be found in the biofilm matrix. Organisms related to biofilms are 
also different from microorganisms in their planktonic state in transcribing genes. 
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Biofilms in nature usually continue to adhere to certain surfaces, rather than pure 
unattached cultures. In this case, the bacterial cells in the biofilm have the ability 
to exchange genetic components at a higher rate, which may help to acquire new 
genes to improve virulence and environmental survival (R. Donlan, 2002). Bacteria 
generally seem to be more resistant to physical and chemical agents in biofilms. 
The cleaning process affects the food source, remaining on the surface, which in 
turn affects the bacterial population on the surface. In addition, it is suspected that 
the bacteria in the biofilm will communicate with each other by releasing specific 
chemicals. As the number of bacteria increases, the concentration of these chemicals 
in their microenvironment increases at a certain concentration.

Since Costerton et al. defined the term biofilm in 1978 (J. W. Costerton, Geesey, 
& Cheng, 1978), due to the importance of biofilms in many fields (such as clinical 
microbiology, environmental microbiology and food microbiology), research has 
continued to increase over the years. As we all know, most of the microorganisms 
found in nature live in structured groups, which are encapsulated in different kinds 
of polymer substances, such as carbohydrates and proteins. Surprisingly several 
pathogens, such as Listeria monocytogenes, methicillin-resistant Staphylococcus 
aureus (MRSA), Enterobacter sakazakii, Enterohemorrhagic Escherichia coli, 
Salmonella typhi, Campylobacter jejuni, Yersinia acidophilus, Sclerococcus, 
Legionella, Actinobacillus pleuropneumoniae, Mycoplasma and Candida albicans 
can produce biofilms on food surfaces and pipes (J. Costerton et al., 1981; Juvonen 
et al., 2001; Wirtanen & Salo, 2016). It is proven fact that the treatment of biofilm 
infections is difficult. Antibiotics can effectively fight the planktonic microorganisms 
released from the biofilm, but they cannot eliminate the biofilm (Marrie, Nelligan, 
& Costerton, 1982).

The spread of various microorganisms through food is related to human infections. 
Among these microorganisms, Campylobacter and Salmonella are the two main 
food-borne pathogens in the world. Salmonella and Campylobacter can continue to 
exist throughout the food supply chain due to their ability to form biofilms (Lamas et 
al., 2018). Campylobacter jejuni forms biofilms on various non-biological surfaces. 
Interestingly, Campylobacter is often isolated from biofilms in various natural 
environments, which suggests that the formation of biofilms may help this bacteria 
to survive in the given environment (Bae, Oh, Jeon, & chemotherapy, 2014).

In addition, the biofilm of Campylobacter jejuni is involved in enhanced 
fluoroquinolone resistance. Under aerobic or stress conditions, Campylobacter jejuni 
adapts to the biofilm lifestyle, allowing it to survive under harmful conditions, and 
this biofilm can act as a reservoir for living planktonic microorganisms. The increased 
ability of biofilm formation under aerobic conditions is likely to be an adaptation to 
the zoonotic lifestyle of Campylobacter jejuni (Reuter, Mallett, Pearson, van Vliet, 
& microbiology, 2010).
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Biofilm bacteria show several characteristics different from planktonic bacteria, 
one of which is increased resistance to antibacterial agents, this process is considered 
to be the main contributor to the etiology of infectious diseases (J. W. Costerton et al., 
1999). The human gastric pathogen Helicobacter pylori forms biofilm in vitro. The 
formation of Helicobacter pylori biofilm reduces the sensitivity to clarithromycin 
(CLR), and it is easier to produce Helicobacter pylori CLR resistance mutations 
in the biofilm than planktonic bacteria (Yonezawa et al., 2013). This may indicate 
that the evaluation of the biofilm formation ability of Helicobacter pylori may play 
an important role in the prevention and control of antibiotic resistance. Likewise, 
biofilms represent a rich source of mutational resistance of Staphylococci to antibiotics 
(Ryder, Chopra, & O’Neill, 2012).

During various acute and chronic infections, the human microbiome and bacterial 
pathogens also adopt the growth state of biofilms (Hall-Stoodley, Costerton, & 
Stoodley, 2004; Macfarlane, 2008). Due to the refractory nature of organisms in this 
growth state, they can resist most antibiotics and the killing effect of the immune 
system, so the infections associated with biofilms are difficult to eradicate (Izano, 
Shah, & Kaplan, 2009; Jensen, Givskov, Bjarnsholt, Moser, & Microbiology, 2010; 
Stewart & Costerton, 2001; Vuong et al., 2004). In addition, there is limited but 
growing evidence that biofilms may promote the emergence of antibiotic resistance. 
It is reported that the binding rate in biofilms of Enterococcus and Pseudomonas 
has increased and mutation frequency of antibiotic resistance has been found in the 
biofilms of Pseudomonas aeruginosa and Streptococcus pneumoniae to be increased 
(Ehlers, Bouwer, & Technology, 1999).

As a result, infections based on biofilms are extremely difficult to cure. Biofilms 
are important in medicine because they are related to the pathogenesis of many 
bacterial infections, which are difficult to successfully eradicate with antimicrobials 
(J. W. Costerton et al., 1999). Non-healing wounds due to chronic biofilms are also 
a problem. Complex non-healing wounds are usually related to the presence of 
biofilms containing multiple bacteria, and at least Staphylococcus aureus (Wolcott, 
Gontcharova, Sun, Zischakau, & Dowd, 2009). For example, in patients with diabetic 
neuropathy, small incisions often become life-threatening wounds due to the common 
underlying condition of immunocompromised hosts. These conditions often lead to 
severely infected diabetic foot ulcers, which often become chronic and difficult to 
treat. These chronic wounds usually have no effect on commercially available drugs 
such as appropriate antibiotics, selective biocides, and advanced dressings. The use 
of anti-biofilm agents to remove bacterial biofilms from these types of chronically 
infected wounds is the key to their healing (Wolcott & Rhoads, 2008). Otherwise, 
the limb is usually amputated, or the infection may spread, posing a high risk of 
death. Using conventional treatment methods, this infection now causes more than 
100,000 limb amputations and kills thousands of people in the United States in one 

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



240

Bionanotechnology Approaches to Combat Biofilms and Drug Resistance

year alone (Ziegler-Graham et al., 2008). Therefore, there is an urgent need for a new 
therapeutic agent specifically for staphylococcal biofilms. The National Institutes 
of Health estimates that as many as 80% of human infectious diseases are based on 
biofilms (J. W. Costerton et al., 1999). However, infection management based on 
biofilms is very new to the medical community and is subject to frequent review. 
Despite this, a series of treatments that can successfully eliminate biofilm bacteria 
have saved many limbs and lives. According to new standards of care, including anti-
biofilm strategies, as many as 91% of wounds have now been healed. These wounds 
are considered incurable and can lead to amputation of large limbs. In addition, 
through the use of anti-biofilm strategies, the use of conventional antibiotics has 
been reduced by 85%, which indicates that the key to improving the recovery rate 
is to implement anti-biofilm treatment (Wolcott & Rhoads, 2008).

The formation of biofilms by microorganisms has been considered a serious 
problem in the food industry. Due to the diversity of bacteria in nature and different 
biofilm formation mechanisms, it is difficult to develop a perfect strategy to control 
biofilms. The design of appropriate biofilm control strategies depends to a large 
extent on our understanding of the mechanism of biofilm formation in the wild 
environment. Cooperation between researchers from different disciplines is a trend 
in biofilm research. Large-scale and high-resolution characterization of biofilms 
in the wild will require the introduction of systems biology methods for biofilm 
research, which in turn will generate biomarkers to better detection of biofilms. 
The mechanism of biofilm diffusion also needs further study, especially under 
field conditions. The combination of biofilm dispersants and conventional biofilm 
control agents may greatly enhance current biofilm control methods (den Besten, 
Ding, Abee, & Yang, 2015).

The unique phenotype of microbial biofilms makes them resistant to antibiotics. 
The increasing use of indwelling medical devices has increased the incidence of 
persistent infections with implants, which are closely related to biofilms and are 
usually persistent, multi-drug resistant microorganisms. The chronic nature of biofilm 
infections increases the risk of sequelae of their promotion of immune complexes 
(Pace et al., 2005).

ROLE OF NANOMATERIALS IN BIOFILM CONTROL

Considering the aforementioned problems caused by the biofilms, there is great need 
for the development of effective remedies for control and eradication of resistant 
microorganisms. The main problem of eliminating this complicated biofilm structure 
is resistance to present clinically used drugs used. Therefore, it is necessary to 
find new compounds with efficient anti-biofilm activity. Nanotechnology-based 
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antibacterial agents and delivery systems can be used to control microbial biofilms 
(Liu et al., 2019; Ramos et al., 2018).

Unquestionably, nanotechnology has played an important role in all fields of science 
and has contributed to the advancement of physics, chemistry, engineering, medicine, 
and pharmaceutical industries. In medicine, nanotechnology is becoming more and 
more important due to its applications in the prevention, diagnosis and treatment 
of various diseases (Lin et al., 2015). Currently, the main types of nanosystems 
used to deliver biologically active substances are liposomes, microemulsions, 
nanoemulsions, cyclodextrins, solid lipid nanoparticles, polymer nanoparticles 
and metal nanoparticles. Nanostructured systems have become a promising tool 
for the treatment of infectious diseases that are resistant or durable to conventional 
treatments and can improve the quality and life expectancy of patients suffering from 
such diseases (Bharali et al., 2011). Due to the resistance mechanism and biofilm 
formation of these microorganisms, the effectiveness of conventional antimicrobial 
agents is gradually declining. One promising strategy to overcome bacterial resistance 
is nanotechnology, which uses nanocarriers to deliver drugs and biomolecules to 
prevent and treat bacterial biofilms (Pelgrift & Friedman, 2013). The applicability 
of these systems in biofilm processing is variable. However, nanotechnology-based 
drug delivery systems can promote direct interaction between drugs and the complex 
structure of biofilms and play a role in different stages of biofilm formation.

The nanoparticles can be synthesized by a wide variety of methods, including 
mechanical stretching, soft lithography, microfluidics or self-assembly using different 
materials like inorganic, small molecules, macromolecules, and polymers. Size and 
shape, surface and interior properties of the resulting nanoparticles are important 
to consider with respect to the control of biofilm-infection. Nanotechnology-based 
new antimicrobials include metal-based nanocomposites (such as metal oxide, Ag, 
Au etc nanoparticles), carbon-based nanomaterials (such as graphene materials, 
carbon quantum dots), polymer-based nanoparticles (such as natural and synthetic 
polymeric nanoparticles) (Liu et al., 2019).

Nanoparticles not only possess antimicrobial properties of their own, but can 
also be applied as antimicrobial delivery systems, particularly with core structure. 
There are different types of antimicrobial nanocarriers including mesoporous silica 
nanocarriers, liposomes, polymeric nanocarriers, and dendrimeric nanocarriers 
(Liu et al., 2019).
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FUTURE RESEARCH DIRECTIONS

This chapter deals with the formation of biofilms, its resistance to antibacterial 
agents, the importance and risks of biofilms, and nanotechnology methods for 
biofilm control. All in all, the regulation of biofilms by a variety of physiological, 
environmental, and genetic factors is not yet fully understood. The promise of 
nanotechnology-based antimicrobial agents and delivery systems in infection control 
is promising. The application of nanotechnology in drug delivery systems has great 
potential and can be considered as an effective alternative method for the treatment 
of microbial biofilms soon. The ability of nanoparticles to synergize with active 
molecules to inhibit biofilms is a promising feature because it allows drugs available 
in clinical practice to be used in a more effective manner, thereby ensuring that the 
limitations related to the bioavailability of antimicrobial agents are overcome. To 
fully understand this phenomenon and develop more effective methods to prevent 
and eradicate biofilms, more research on biofilms is still needed.

CONCLUSION

Medical biofilms still pose as a critical issue for the clinical community, as most of 
the traditional therapies are not effective, due to the recalcitrant cells within these 

Figure 2. Schematic representation of interaction between different kinds of 
nanomaterials and biofilm
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communities and the emergence of new highly resistant strains. New nanotechnological 
strategies are being developed in order to overcome the problems associated with 
bacterial or /and fungi biofilm formation. At this point of time, few of these therapies 
although are being applied systematically by the medical community. Even so, the 
nanotechnology approaches seem to be now the most promising field of research 
to control/eradicate biomedical biofilms, most especially for the multi-resistant 
microorganisms. Nanotechnology, as a novel biofilm control strategy may have 
potential for public health, environmental and economic benefits by effectively limiting 
the levels of biocides used in cleaning and disinfection practices. Nanoscience and 
its applications are very recent fields and fundamental properties of nanoparticles 
are being discovered every day. Further studies and investigation are still needed but 
the ability of nanoparticles to penetrate the biofilm, enter the cells and affect their 
biochemical functions makes them potential tools in biofilm control. The exploration 
of novel approaches toward the improvement of human life is everlasting, and it is 
evident that the search for alternatives for the treatment and control of microbial 
diseases associated with biofilms is a complex path. It may be concluded that the 
application of nanotechnology has enormous potential and can be considered as an 
effective alternative for the treatment of microbial biofilms soon. The ability of the 
nanoparticles to synergize the active molecules for the inhibition of biofilms is a 
promising characteristic as it allows the use of drugs available in clinical practice 
in more efficient manner that guarantees overcoming of the constraints related to 
the bioavailability of the antimicrobials.
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ABSTRACT

Over 100 types of arthritis have been recognized in which the dominating forms are 
osteoarthritis and rheumatoid arthritis. Joint stiffness, pain, swelling, lowered range 
of motion of joints affected, redness around joints are the main complications of 
almost all types of arthritis. Medications like non-steroidal anti-inflammatory drugs 
(NSAIDs), opioids, corticosteroids, and immunosuppressants are only used to control 
the symptoms of the disease but are not able to alleviate them properly. However, 
with the incorporation of disease-modifying antirheumatic drugs (DMARDs) as well 
as tumor necrosis factor inhibitors (TNFi) in treatment, there are now promising 
therapeutic options to select from for the management of rheumatoid diseases. 
Nanotherapeutic approach has enabled us to deliver the disease-modifying agents 
directly to the inflammation site, thus eschewing off-target and unwanted systemic 
effects. Therefore, it provides an opportunity to reconsider the therapeutic compounds 
that were considered too toxic to be administrated via oral or parenteral route.
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INTRODUCTION

The benign immune system in our body plays a cardinal role in defending different 
types of infectious diseases as well as eliminates the altered cells that may prove 
fatal. But if any type of exaggeration occurs in the elements of this system, it leads 
to several fatal disorders. Such disorders range from hypersensitive or allergic 
reactions to numerous derangements like loss of normal ability to differentiate 
non-self from self, resulting in immune actions against bodies own tissues and 
cells called auto-immune disorders (Choudhary et al., 2015). Among some such 
common disorders like pernicious anemia, myasthenia gravis, serum sickness, etc. 
rheumatic diseases are also common with almost of unknown etiology (Hajja et 
al., 2018). Rheumatic diseases mainly affect joints, but some types of arthritis also 
involve organs. Rheumatic diseases are chronic systemic inflammatory disorders 
with primary symptoms of pain, swelling, Joint stiffness, lowered range of motion 
of joints affected, redness around joints, destruction of cartilages and bones which 
sometimes may lead to permeant disabilities as well as secondary health issues like 
muscle weakness, fatigue, malaise, tenderness, loss of flexibility, poor sleep, and 
decreased aerobic fitness. Despite the presence of much more knowledge in the 
field of immunopathology, the exact etiology of Rheumatic diseases remained a far 
cry. Rheumatic diseases have become a common reason that people miss work and 
experience a decreased life quality (Tripathy et al., 2010). These disorders make 
it difficult for affected individuals to be active physically. More than 100 types of 
arthritis are known today in which osteoarthritis dominates by affecting more than 
3.8% of people followed by Rheumatoid arthritis. According to WHO, rheumatoid 
arthritis (RA) affects 1-2% of the world population, and females are 3-4 times more 
susceptible to these disorders than males (Chunxia et al., 2011). Main pathological 
alterations in rheumatoid arthritis are synovial membrane hyperplasia, inflammation, 
cell infiltration, and neovascularization which eventually may lead to articular 
destruction and cartilage erosion. This attack is principally targeted at flexible 
synovial joints. In this whole pathology, capsule inflammation around the joints and 
secondary swelling of the synovial cells is triggered which may lead to deformity 
(Babushetty et al., 2012). Occasionally rheumatoid arthritis can incorporate other 
internal organs like nerves, lungs, eyes, or heart. Initial symptoms of rheumatoid 
arthritis can be non-specific like feeling unwell, tired soreness in joints, complications 
in handling and walking. Gradually it involves more and more joints of the body. 
Although the precise etiology of this disorder is not known fully, several hypotheses 
put forth by some immunologists suggest that it is prompted by a combination of 
immuno-genetic and environmental factors. Some viruses have been also found to 
trigger rheumatic disorders (Mazumder et al., 2012).
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The main goal of the management of rheumatic diseases is to eliminate symptoms 
of pain, inflammation, and functional maintenance. Clinically, the initial management 
of rheumatoid diseases involves the use of non-steroidal anti-inflammatory drugs 
(NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs) followed by 
glucocorticoids to reduce the pain and inflammation as well as slow down the disease 
progression. This treatment strategy approach has now changed to the use of novel 
biological agents or so-called biologics such as tumor necrosis factor inhibitors 
(TNFi), monoclonal antibodies, TNF-α antagonists such as infliximab, etanercept, 
etc. IL-1 antagonists like anakinra and the agents that disturb T- cell activation 
like abatacept, immunosuppressive and cytotoxic medications like azathioprine, 
cyclophosphamide, and cyclosporin are now thoroughly used in chronic cases 
(Singh et al., 2012, Jeoung et al., 2013). Novel treatment strategies are significantly 
lessening the disease progression and improving the quality of afflicted ones. Yet in 
many cases, the patients either do not respond to or shortly develop tolerance to such 
therapies. Moreover, such therapies inversely alter the functioning of the immune 
system, digestive system, kidneys, liver, and nervous system. All these therapeutic 
agents minimize the symptoms of pain, inflammation, and joint destruction but are 
not without deadly side effects. Their long-term use risks include serious infections, 
gastric ulcers, hepatotoxicity, nephrotoxicity, hematologic toxicity, cardiovascular 
diseases, immune system malfunctioning, etc. The high risk of malignancies and 
infections associated with the use of such agents needs to be monitored continuously 
(Shen et al., 2011, Mishra et al., 2011). Also, TNF antagonists have been revealed to 
be linked with Leukocytoclastic vasculitis (LCV) (Suha et al., 2011). Considering 
all these complications caused due to use of such medications, an urge has been 
raised to search for alternative therapeutic agents and their targeted delivery into 
specific tissues. Nanotechnological approaches are promising when such issues are 
taken into consideration. This approach incorporates novel tools and techniques 
that are aimed at disease diagnosis and delivery of therapeutic agents at sites of 
interest using carriers of sub-micrometer size termed nanocarriers. Through these 
nanocarriers, targeted delivery of disease-modifying agents is feasible. It allows 
adjusted drug delivery directly to inflammation sites keeping in view the alterations 
in disease expression. Bioactive disease-modifying compounds are encapsulated 
into the nano carriers and selectively delivered to joints under inflammation to 
accomplish effectual drug concentration locally. Treatment options involving direct 
drug delivery through intra-articular injections are available, but such strategies are 
invasive and pose a threat of injection site infections. Hence, nanocarrier delivery is 
preferable. Other benefits associated with nanocarrier delivery system is that target 
drug solubility is enhanced, drug depredation is avoided as circulation is skipped 
and site-specific bioavailability of drug can be increased to effectual level. With 
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this off-target unwanted systemic effects like toxicity to delicate tissues and organs 
are skipped (Pham C. T. 2011).

Alternative therapeutic agents that pose less threat when administrated orally 
to treat rheumatic disorders have been revealed to occur naturally as bioactive 
compounds in phytochemicals. Infect vast research exists that reveal the potential use 
of phytochemicals as anti-rheumatic agents. This gave an added impulse to current 
research to be mainly focused on the use of plant-based phenolic and polyphenolic 
compounds like flavonoids, alkaloids, terpenoids, phenolic acids, etc.as anti-rheumatic 
agents (Subramoniam et al., 2013).

RHEUMATOID ARTHRITIS: A PATHOPHYSIOLOGICAL INSIGHT

Rheumatoid arthritis (RA) is an autoimmune disorder that leads to progressive 
cartilage erosion resulting in chronic polyarthritis and distortion of mainly 
diarthrodial joints (Surjeet et al., 2011). This disorder is almost of unknown etiology 
as its precise pathogenesis mechanism has not been elucidated properly. The joint 
change in RA seems to be directly linked to the synovial cell malign growth as 
a pannus that overlays and erodes bone and cartilage (Mohammed et al., 2015). 
Joint space-maintaining synovial membrane becomes highly cellular because of 
immunological hyperactivity as a large number of CD4 T cells especially CD17 cells 
infiltrate inside (Sachin et al., 2013). This whole action that is fiery immunological 
hyperactivity gives an intense stimulus to the cells lining the synovium which in turn 
undergo Dr. Jekyll and Mr. Hyde transformation into the invasive Pannus, bringing 
about bone damage and joint erosion via the production of destructive mediators 
like pro-inflammatory cytokines. (Fig. 1) (Sanmugapriya et al., 2012). Reports 
now-a-days are also supporting the role of reactive free radicles associated with 
its pathogenesis (Dimitra et al., 2018). Researchers are putting forth their forceful 
efforts to trace out the molecular basis for its pathogenesis. It has been revealed that 
certain proinflammatory cytokines such as IL-1β and TNF-α and IL-6 are important 
players in disease perpetuation (Marri et al., 2013). CD4 T-cells were said to play 
a cardinal role in the pathogenesis of Rheumatoid arthritis as they heavily infiltrate 
the synovial membranes during RA synovitis. However, in recent years this ‘T-cell 
centric hypothesis’ in RA pathogenesis has now been challenged because therapies 
that would deplete CD4 T-cell population failed to alleviate RA in clinical trials. 
As a result, it is now being proposed that proinflammatory cytokines secreted 
by macrophages, fibroblast-like synoviocytes such as IL-1, IL-6, TNF-α are key 
mediators of Rheumatoid arthritis because application of ‘anti-cytokine therapy’ 
against such cytokines showed promising results and thus revolutionized current 
RA treatment (Jeoung et al., 2013).
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As of the latest reports from research, Th17 cells which are linage of CD4 T-cells 
but different from Th1 and Th2 cells, play a paramount role in inflammatory and 
autoimmune disorders. These cells produce the cytokine IL-17 in the rheumatoid 
arthritis synovium. This ‘Th17 cell-centric theory’ adds an impulsive insight into 
how T- cells participate in the perpetuation of Rheumatoid arthritis. It is now being 
proposed that Th17 cells are potent mediators of rheumatoid arthritis, coordinating 
cartilage damage, bone erosion, and joint inflammation (Dimitra et al., 2018). 
Central to the pathophysiology of RA is inflammation of the synovium with synovial 
thickening and erythema. Patients afflicted with Rheumatoid arthritis are having 
synovial tissues characterized by neovascularization, mononuclear cell infiltration, 
and synovial fibroblast proliferation. Formation of invasive tissue ‘Pannus’ due to 
synovial vessel endothelial cell transformation into high endothelial venules take 
place and is considered a marked feature of rheumatoid arthritis. The pannus contains 
fibroblasts, mononuclear cells along matrix metalloproteinases (MMPs) which are 
later converted into fibrous type Pannus with vascularized layer. Inflammation 
progression around the joints is mainly due to pro-inflammatory cytokines which 
also synergically lead to the production of more Matrix metalloproteinases (MMPs) 
from chondrocytes and synovial cells (Shyama et al., 2015). The presence of high 
titer of rheumatoid factor (RF) as well as anticitrullinated peptide antibodies (ACPAs) 
is taken as a serological hallmarks of RA (Rathore et al., 2007).

Current reports are associating reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) which are regarded as reactive free radicles, with the pathogenesis 
of Rheumatic arthritis. These highly reactive species are generated in the biological 
systems having aerobic metabolism. Their production seems to increase at the sites 

Figure 1. Pathogenesis of RA
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under chronic inflammation (Patil et al., 2011). Reactive species like Hydroxyl 
radicles, hypochlorous acid, and superoxide radicles have been found to contribute to 
tissue erosion in Rheumatoid arthritis. The generation of reactive oxygen species in 
the joints of rheumatoid arthritis patients is directly linked to enhanced metabolism 
rate in synovial tissue, enhanced pressure in the synovium cavity reduced capillary 
density, as well as by the action of overactive WBCs. Reactive oxygen species have 
the potential to erode basic articular elements and thus contribute to the symptoms 
of inflammation. Elevation in plasma conjugated dines, malondialdehyde, and 
deviation of free radical scavenging vitamins like vitamin A, E as well as catalases 
are directly correlated with increased oxidative stress and tissue damage (Baranwal 
et al., 2012). Alterations of such kind also inversely affect glutathione reductase 
activities in synovial fluid of Rheumatoid arthritis. A Higher level of thioredoxin 
which acts as a marker of oxidative stress is also seen in the synovial fluid of afflicted 
patients (Sahu et al., 2014).

NANOTHERAPEUTIC APPROACHES IN THE 
MANAGEMENT OF RHEUMATIC DISEASES

In current Rheumatic disease management strategies in which the therapeutic agents 
used range from Nonsteroidal anti-inflammatory drugs (NSAIDs) to novel biologics, 
nonselective activities of such drugs often limit dose escalation as well as pose a 
threat to the normal physiological functioning of other tissues and organs. By packing 
bioactive disease-modifying agents into nanocarriers and delivered locally to the 
afflicted sites under inflammation, effectual drug concentration can be achieved 
locally. Due to nanocarrier delivery, drug stability and solubility are enhanced and 
there are fewer risks of drug degradation. Using nanocarrier system, a macrophage 
targeting approach was investigated (Pham C. T. 2011). Macrophages are the main 
players in the pathophysiology of RA as they produce pro-inflammatory cytokines, 
and their number is increased in the joints under inflammation. By targeting these 
macrophages via nanocarriers, their pro-inflammatory cytokine release was attempted 
to modulate. This approach known as passive targeting involves delivering anti-
macrophage nanocarriers directly into the specific sites in a controlled manner 
which are then efficiently phagocytosed by macrophages so as to modulate their 
inflammation mediating activity. In the first study, the compound encapsulated in 
nanocarrier was clodronate, a bisphosphonate that was able to trigger apoptosis in 
macrophages. Targeting of phagocytic cells that release pro-inflammatory cytokines 
at the sites of inflammation through parenteral delivery of nanotherapeutics has also 
been pursued actively however through this route, nanocarriers are quickly cleared 
by Reticuloendothelial macrophages, thus minimizing the availability of drug 
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reaching the inflammation site. Therefore, attempts are being made to encapsulate 
bioactive compounds in nanocarriers with surface modifications for selective 
targeting of immune cells (Ceponis et al., 2001). Similar approaches have been 
incorporated in the delivery of Nonsteroidal anti-inflammatory drugs (NSAIDs) 
and Glucocorticoids (GCs).

For achieving the analgesic effect, NSAIDs are widely involved in rheumatoid 
diseases. These drugs inhibit the activity of enzyme cyclooxygenase (COX) that 
possess the main pathophysiological role in many pathways like pain, inflammation, 
angiogenesis, cartilage and bone erosion etc. However there use in RA management is 
often overlooked due to higher side effect profiles especially in pediatric and elderly 
people (Amer et al., 2010) Selective cyclooxygenase-2 (COX-2) inhibitors proved 
more promising in pain management in rheumatoid diseases with lower gastrointestinal 
side effects as compared to COX-1 inhibitors, but it was soon revealed that their long-
term use lad to increase in cardiovascular disorders like stroke and cardiovascular 
infraction. For this reason, several COX-2 inhibitors were suspended and withdrawn 
from the market (Khan et al., 2011). It has also been revealed that NSAIDs apart 
from having analgesic and anti-inflammatory effects also have immunomodulatory 
and anti-angiogenic actions recently explored for cancer therapy. Coupled with the 
nanocarrier delivery system, researchers are prompted to reconsider the benefits of 
NSAIDs in the management of rheumatoid diseases. Nanocarrier delivery enables 
controlled release and site-specific delivery of potent NSAIDs thus skip the off-
target unwanted effects. Studies showed that lipid microsphere (LM) preparations 
encapsulating indomethacin- a potent NSAID, improved its anti-inflammatory 
effects while minimizing gastrointestinal distress. LM being rapidly cleared by 
Reticuloendothelial system addition of polyethylene glycol (PEG) delayed this 
quick degradation thereby prolonging their bioavailability and circulation time in 
the body. With filled with NSAIDs like indomethacin, these nanocapsules showed 
potent anti-inflammatory action via an adjuvant-induced model. This is evidenced 
by the decrease in serum levels of proinflammatory cytokines like IL-6 and TNF-α 
and an enhanced level of anti-inflammatory cytokine IL-10 (Srinath et al., 2000, 
Bernardi et al., 2009). This model is thought to function through the accumulation 
of the NSAID- nanocapsules at inflammation sites via enhanced permeability and 
retention (EPR) effect. NSAIDs being hydrophobic drugs have been also covalently 
attached to another emerging nanoparticle class called Dendrimers. Their branching 
configuration entraps the drug molecules through their end functional groups to 
enhance their solubility and retention time (Fahmy et al., 2007).

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



256

Phytochemicals and Novel Nanotherapeutic Approaches

Similarly, glucocorticoids (GCs) are considered fast-acting anti-inflammatory 
drugs whose prolonged use is also discouraged. Systemic administration of GCs 
makes them susceptible to quicker degradation, so high and frequent administration 
is often needed to accomplish desired anti-inflammatory effects. Nanocarrier 
preparations of GCs are also aimed at site-specific delivery in a sustained release 
manner. By encapsulating prednisolone in a mini-PEG-liposomes of 100 nm size, 
Metselaar et al. in 2003 revealed that these nanocarriers sustained in circulation 
with a greater half-life of more than 50hrs, with the effect lasting for more than 
two weeks. Extravasation of these PEG-liposomes into inflamed joints enhanced 
the retention and bioavailability of the drug with better solubility. Recently, 
glucocorticoid conjugated polymers have attained much interest in application 
in rheumatoid diseases. Here polymer bond drugs are released more slowly and 
thus necessitates less frequent administration (Ishihara et al., 2010). In summary, 
polymeric, and liposomal glucocorticoid and NSAID preparations have enhanced 
their safety profile by minimizing the dosage and frequency of administration. Such 
recent advancements in therapeutic nanotechnology have revolutionized the treatment 
strategies for various diseases especially rheumatoid disorders.

Figure 2. Active and passive targeting via nanoparticles
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The use of nanotechnology-based gene therapy has also revolutionized rheumatoid 
arthritis treatment. The intentional delivery of interference producing nucleic acids 
in the cell to repress or silence the expression of the protein is termed gene therapy 
and now-a-days is considered a promising approach in the treatment of many human 
diseases and disorders. In rheumatic diseases, this approach can be incorporated to 
either suppress the expression of proinflammatory cytokines (IL-6, IL-1β, TNF-α) 
or trigger an overexpression of anti-inflammatory cytokines (IFN-β, IL-10, IL-4). 
The incorporation of viral vectors like adenovirus (Adv), retrovirus (Rv), etc. for 
gene therapy in Rheumatic arthritis has been explored in animal models well as in 
clinical trials. Main concerns arising due to the use of such viral vectors include 
humoral immune response to viral antigens, spreading of vector, off-target transgene 
expression, and oncogenic effects. In the search for non-viral vector delivery of 
nucleic acids to modulate gene expression, nanotechnology has provided the best 
tools. Nanotechnology-based vectors have many advantages over viral vectors like 
minimal immunogenicity, infection less delivery, and less risk of mutagenesis. 
Nanocarriers termed Lipoplexes have proved much more beneficial in the delivery 
of small interference RNA (siRNA) designed to suppress TNF-α expression to 
reduce inflammation in rheumatoid diseases (Pham C. T. 2011).

FLAVONOIDS AND RHEUMATIC DISEASES: 
HERBAL THERAPY FOR THE MANAGEMENT 
OF RHEUMATIC DISEASES

In developing nations of the world where resources are meager, traditional plants 
with medicinal properties are used for the treatment of innumerous diseases including 
rheumatic diseases and it would not be an exaggeration to put forth that the use 
of herbal medicines in the management of different diseases is an old as mankind 
(Panche et al., 2016). Continuing this practice, researchers today are also much more 
focused on the benign compounds that are part of phytochemicals and have beneficial 
effects on human health. This is because currently available medicines that are used 
in the treatment of rheumatic diseases are having high side effect profiles or are 
much more expansive. Nature has bestowed us with the wealth of medicinal plants 
widely distributed on this planet earth as great sources of therapeutic compounds. 
Such compounds have the potential to alleviate different kinds of diseases and 
disorders without having harsh side effects on the normal physiological functions 
of our bodies (Corradini et al., 2011). WHO has revealed that more than 78% of 
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the world’s population incorporate herbal supplements for their basic health care 
needs. More than 2550 plant species in India are used as herbal medicaments either 
directly as folk medicines or indirectly in the production of pharmaceuticals. Since 
times immemorial, Indian people have used herbal formulations under the officially 
alternative health systems like Ayurveda, Unani, Homeopathy, Sidha, and Naturopathy. 
Much more is still unrevealed about the natural compounds in phytochemicals 
that have the potential to cure various diseases and disorders. From the existing 
knowledge of Pharmacognosy, it is thus possible to trace out novel compounds that 
may be used in the management of rheumatic diseases (Patwardhan et al., 2010, 
Agrawal et al., 2011). Innumerous numbers of herbal formulations like polyherbal 
formulations have been made from plant extracts to minimize the symptoms and 
progression of rheumatic diseases. Anti-arthritic activities of various phytochemical 
formulations have been confirmed on Freud’s complete adjuvant (CFA)- induced 
arthritis model in Wister rats. Their results were promising as they revealed the 
significant minimization in arthritis index as well as, the reduction in the markers 
of inflammation like C-reactive protein (CRP), erythrocyte sedimentation rate 
(ESR), and serum rheumatoid factor (SRF) as compared to corticosteroids (Mishra 
et al., 2011).

Plants are the main sources of majority of foods, drugs, and dietary supplements. 
Plant chemicals called phytochemicals can be classified as primary and secondary 
metabolites. Primary metabolites are central to sustain plant life as they are the 
main players of the functions like cell division, growth, reproduction, respiration, 
metabolism, and storage. Secondary metabolites are not merely the plant waste 
products of primary metabolism but have profound effects on plant defensive 
mechanisms, ecology, and evolution. Among the major plant secondary metabolites 
are flavonoids. The term ‘Flavonoid’ includes the compounds that are defined by 
pigment. This term is derived from the Latin word flavus meaning yellow. Chemically 
these compounds are polyphenols conjugated to sugars in glycosylated forms. 
However, some exist in free form as aglycones (Morales et al., 2012). Flavonoids 
include the class of more than 6000 compounds having 15 carbon skeletons with 
the core structure of 2- phenyl- benzopyrone in which the three-carbon bridge is 
cyclized with oxygen. Such structure makes them important variable phenolic 
compounds with marked antioxidant and anti-inflammatory potentials. Flavonoids 
are ubiquitous in vegetables and fruits that are regularly eaten by humans. These 
compounds occur as secondary metabolites in plants (fruits, vegetables, roots, 
stems, flowers, bark, leaves) and are reported to have propitious effects on human 
health for the reason of which they are incorporated in the constituents of various 
nutraceuticals, medicines, cosmetic products (Gonzalez et al., 2011).
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Flavonoids have been reported to possess anti-viral, anti-allergic, anti-mutagenic, 
anti-tumor, anti-inflammatory, anti-oxidative, anti- carcinogenic, and anti-aging 
effects along with the ability to modulate cellular enzyme functions, induce 
apoptosis, inhibit cell proliferation, among others. Investigations are focusing mainly 
on antioxidant activities, particularly their role in cancer control. They have been 
reported to be efficient singlet oxygen quenchers and thus could reduce the load 
of ROS in systems under stress by acting as antioxidants. Based on their chemical 
structure flavonoids have been categorized into six major sub-groups; Flavones, 
Flavanones, Isoflavonoids, Chalcones, Anthocyanins, and Anthoxanthins (Fig. 3). 
The research process on flavonoids gained an added impulse since the discovery 
of the French paradox in which a low mortality rate was observed in populations 
due to consumption of red wine which is the richest source of flavonoids and 
high saturated fat intake (Kumar et al., 2103). Current trends of research on these 
phenolic compounds relate to their identification, isolation, characterization, 
and functioning in biological systems as well as their effects on the growth and 
proliferation of plant pathogenic microorganisms. Knowledge of bioinformatics 
and molecular docking is being employed to predict the potential application of 
flavonoids related to human health and disease (Soo et al., 2013). Rheumatic 
diseases being especially inflammation and oxidative stress-related disorders may 
be alleviated safely through the use of bioactive flavonoids that have been revealed 
to have powerful anti-inflammatory and antioxidant potential. Being powerful anti-
inflammatory agents through their immunomodulatory potential; their use in the 
management of inflammatory and autoimmune diseases has started to emerge. In 

Figure 3. Flavonoid sub-classes
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both human rheumatic diseases and animal models of arthritis, dietary flavonoids 
from different medicinal plants have been reported to minimize the symptoms of 
joint inflammation and gradually alleviate rheumatic disorders. Due to diversity in 
the sub-classes of flavonoids and indecipherable problems related to their purity as 
well as dosage, an established immunomodulatory potential of flavonoids in clinical 
trials had remained controversial so far. Also, their exact mechanism of action in 
alleviating rheumatic diseases remains elusive. However, it has been reported that 
direct or indirect antagonism of pro-inflammatory cytokines via immunomodulation 
of key inflammatory signaling cascades, reduced recruitment of proinflammatory 
cell types, enhanced free radical scavenging potential are primary mechanisms that 
different classes of flavonoids exert to alleviate rheumatic diseases (Izzi et al., 2012, 
Hughes et al., 2017). Flavonoids like apigenin, quercetin, kaempferol, and luteolin 
have been reported to diminish cytokine expression and secretion. Regarding this 
therapeutic potential, they can be termed as cytokine modulators and thus modulators 
of both innate and adaptive immune responses. Research is much focused on their 
potential effect to elevate the regulatory T cells (tregs) and their potential to induce 
overproduction of anti-inflammatory cytokines especially IL-10. Receptor-ligand 
actions like, PI3K/Akt inhibition, mTORC1 inhibition, TLR suppression, IKK/
MAPK inhibition, NFκΒ, and JAK/STAT inhibition have been attributed as key 
targets of flavonoids to mediate anti-inflammatory effects (Grover et al., 2010, 
Indra et al., 2013).

FUTURE RESEARCH DIRECTIONS

The objective of the present chapter is to evaluate the potential of plant bioactive 
compounds in the management of rheumatoid diseases, which are disorders of 
chronic joint inflammation along with swelling and pain. Such compounds are 
able to control inflammatory responses, proinflammatory cytokines, osteoclast 
differentiation and prevent bone erosion in the joints. In this chapter, we reviewed 
anti-arthritic potential of phytochemicals via gathering data from various research 
articles. Till date clinical trials carried out on anti-arthritic activity of phytoactive 
compounds are very less. Hence, more research and clinical trials are desired to 
bring novel phytoactive compounds as safe and effective anti-arthritic agents in 
the market, either alone or in combination with other anti-arthritic agents that are 
currently in use.
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CONCLUSION

At least 100 types of arthritis are known today in which osteoarthritis dominates by 
affecting more than 3.8% of people followed by RA, which is one of the prototypes of 
chronic inflammatory polyarthritis characterized by infiltration of B-cells, T- cells, 
fibroblasts, and macrophages inside the synovial membranes, leading to inflammation 
and function loss. Treatment of rheumatic diseases has been revolutionized through 
the development of novel biologics, but off-target side effects and development of 
tolerance are the main concerns associated with them when administrated via oral 
and systemic routes. Nanosystems have enabled site-specific and localized delivery 
of NSAIDs, GCs, interference-producing nucleic acids like siRNA, and other disease-
modifying agents, while decreasing the frequency and quantity of drugs used, thus 
skipping potential unwanted off-target effects to some extent. Because drugs used 
to treat rheumatic diseases like non-steroidal anti-inflammatory drugs (NSAIDs), 
disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids and new 
generation immunosuppressants have wreaked havoc on the normal physiological 
functions of the body, there a dire need to trace out potent novel compounds that 
may somehow interfere with the signaling pathways of pro-inflammatory cytokines 
and recruitment of inflammation mediating cell types. Currently innumerous kinds 
of medicinal plant phytochemical are under clinical trials to target the rheumatic 
disease progression. It is being hypothesized that phytochemicals act through 
producing interference in chemical messenger signaling responsible for triggering 
inflammation. Flavonoids being anti-oxidative and anti-inflammatory in nature 
have been specially found to exert such a role in inflammatory and auto-immune 
disorders. So in-depth research on these benign compounds is the need of the hour.

REFERENCES

Agrawal, B., Das, S., & Pandey, A. (2011). Boerhaavia diffusa Linn. A review on its 
phytochemical and pharmacological profile. Asian J Appl Science, 4(7), 663–684. 
doi:10.3923/ajaps.2011.663.684

Amer, M., Bead, V. R., Bathon, J., Blumenthal, R. S., & Edwards, D. N. (2010). 
Use of nonsteroidal anti-inflammatory drugs in patients with cardiovascular 
disease: A cautionary tale. Cardiology in Review, 18(4), 204–212. doi:10.1097/
CRD.0b013e3181ce1521 PMID:20539104

Babushetty, V., & Sultanpur, M. C. (2012). Evaluation of anti-arthritis activity of 
Asystasiadal zelliana leaves. International Journal of Pharmaceutical and Biological 
Archives, 3, 377–382.

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



262

Phytochemicals and Novel Nanotherapeutic Approaches

Baranwal, V. K., Irchhaiya, R., & Alok, S. (2012). Antiarthritic activity of some 
indigenous plants: A review. International Journal of Pharmaceutical Sciences and 
Research, 3(4), 981–986.

Bernardi, A., Zilberstein, A. C., Jager, E., Campos, M. M., Morrone, F. B., Calixto, 
J. B., Pohlmann, A. R., Guterres, S. S., & Battastini, A. M. O. (2009). Effects of 
indomethacin-loaded nanocapsules in experimental models of inflammation in 
rats. Br J Pharm, 158(4), 1104–1111. doi:10.1111/j.1476-5381.2009.00244.x 
PMID:19422380

Ceponis, A., Waris, E., Monkkonen, J., Laasonen, L., & Hyttinen, M. (2001). 
Effects of low-dose, noncytotoxic, intraarticular liposomal clodronate on 
development of erosions and proteoglycan loss in established antigen-induced 
arthritis in rabbits. Arthritis and Rheumatism, 44, 1908–1916. doi:10.1002/1529-
0131(200108)44:8<1908::AID-ART329>3.0.CO;2-4 PMID:11508444

Choudhary, M., Kumar, V., Malhotra, H., & Singh, S. (2015). Medicinal plants with 
potential anti-arthritic activity. Journal of Intercultural Ethnopharmacology, 4(2), 
147–179. doi:10.5455/jice.20150313021918 PMID:26401403

Chunxia, C., Peng, Z., Huifang, P., Hanli, R., Zehua, H., & Jizhou, W. (2011). 
Extracts of Arisaema rhizomatum C.E.C. Fischer attenuate inflammatory response 
on collagen-induced arthritis in BALB/c mice. Journal of Ethnopharmacology, 
133(2), 573–582. doi:10.1016/j.jep.2010.10.035 PMID:21029771

Corradini, E., Foglia, P., Giansanti, P., Gubbiotti, R., Samperi, R., & Lagana, A. (2011). 
Flavonoids: Chemical properties and analytical methodologies of identification and 
quantitation in foods and plants. Natural Product Research, 25(5), 469–495. doi:1
0.1080/14786419.2010.482054 PMID:21391112

Dimitra, K., Athanasios, M., Dimitrios, P., Bogdanos, Lazaros, I., & Sakkas. (2018). 
The Role of Flavonoids in Inhibiting Th17 Responses in Inflammatory Arthritis. 
Journal of Immunology Research.

Fahmy, T. M., Fong, P. M., Park, J., Constable, T., & Saltzman, W. M. (2007). 
Nanosystems for simultaneous imaging and drug delivery to T cells. The AAPS 
Journal, 9, E171–E180.

Gonzalez-Paramas, A. M., Santos-Buelga, C., Duenas, M., & Gonzalez-Manzano, 
S. (2011). Analysis of flavonoids in foods and biological samples. Mini-Reviews in 
Medicinal Chemistry, 11, 1239–1255. PMID:22070683

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



263

Phytochemicals and Novel Nanotherapeutic Approaches

Grover, A., Shandilya, A., Punetha, A., Bisaria, V. S., & Sundar, D. (2010). Inhibition 
of the NEMO/IKKβ association complex formation, a novel mechanism associated 
with the NF-kB activation suppression by with aniasomnifera’s key metabolite 
withaferin A. BMC Genomics, 11(S4), 25. doi:10.1186/1471-2164-11-S4-S25

Hajja, G., & Bahlouli, A. (2018). Medicinal plants in the prevention and treatment 
of rheumatoid arthritis. MOJ BioequivAvailab, 5(1), 60–64. doi:10.15406/
mojbb.2018.05.00084

Hughes, S. D., Ketheesan, N., & Haleagrahara, N. (2017). The therapeutic 
potential of plant flavonoids on rheumatoid arthritis. Critical Reviews in Food 
Science and Nutrition, 57(17), 3601–3613. doi:10.1080/10408398.2016.1246413 
PMID:27874281

Indra, M., Karyono, S., Ratnawati, R., & Malik, S. G. (2013). Quercetin suppresses 
inflammation by reducing ERK1/2 phosphorylation and NF kappa B activation in 
leptin-induced human umbilical vein endothelial cells (HUVECs). BMC Research 
Notes, 6(1), 275. doi:10.1186/1756-0500-6-275 PMID:23856194

Izzi, V., Masuelli, L., Tresoldi, I., Sacchetti, P., Modesti, A., & Galvano, F. (2012). 
The effects of dietary flavonoids on the regulation of redox inflammatory networks. 
Frontiers in Bioscience, 17(7), 2396–2418. doi:10.2741/4061 PMID:22652788

Jeoung, L.K.D., Na, C.S., Kim, Y.E., Kim, B., & Kim, Y.R. (2013). 
Ganghwaljetongyeum, an anti-arthritic remedy, attenuates synoviocytes proliferation 
and reduces the production of proinflammatory mediators in macrophages: The 
therapeutic effect of GHJTY on rheumatoid arthritis. BMC Complementary and 
Alternative Medicine, 13, 47. doi:10.1186/1472-6882-13-47 PMID:23442977

Khan, Z., Khan, N., Tiwari, R. P., Sah, N. K., Prasad, G. B., & Bisen, P. S. (2011). 
Biology of Cox-2: An Application in Cancer Therapeutics. Current Drug Targets, 
12, 1082–1093. doi:10.2174/138945011795677764 PMID:21443470

Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: 
An overview. TheScientificWorldJournal, 2013, 162750. doi:10.1155/2013/162750 
PMID:24470791

Marri, P., Janarthan, M. (2013). Evaluation of anti-arthritic activity of aqueous 
extract of Hibiscus platinifolius in albino rats. IJRPB, 815–818.

Mazumder, M. P., Mondal, A., Sasmal, D., Arulmozhi, S., & Rathinavelusamy, P. 
(2012). Evaluation of antiarthritic and immunomodulatory activity of Barlerialupulina. 
Asian Pacific Journal of Tropical Biomedicine, 2(3), S1400–S1406. doi:10.1016/
S2221-1691(12)60425-0

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



264

Phytochemicals and Novel Nanotherapeutic Approaches

Metselaar, J. M., Wauben, M. H., Wagenaar-Hilbers, J. P., Boerman, O. C., & 
Storm, G. (2003). Complete remission of experimental arthritis by joint targeting of 
glucocorticoids with long-circulating liposomes. Arthritis and Rheumatism, 48(7), 
2059–2066. doi:10.1002/art.11140 PMID:12847701

Mishra, N. K., Bstia, S., & Mishra, G. (2011). Anti–arthritic activity of Glycyrrhiza 
glabra, Boswellia serrata and their synergistic activity in combined formulation 
studied in freund’s adjuvant induced arthritic rats. J Pharm Educ Res, 2(2), 92–98.

Mohammed, M.H., & Mohammad, S.H.K., & Abul, H. (2015). Investigation of in 
vitro anti–arthritic and membrane stabilizing activity of ethanol extracts of three 
Bangladeshi plants. The Pharma Innovation Journal, 4(1), 76–80.

Morales, J., Günther, G., Zanocco, A. L., & Lemp, E. (2012). Singlet oxygen 
reactions with flavonoids. A theoretical - experimental study. PLoS One, 7(7), 
e40548. doi:10.1371/journal.pone.0040548 PMID:22802966

Panche, A.N., Diwan, A.D., & Chandra, S.R. (2016). Flavonoids: an overview. J 
Nutr Sci., 29(5), e47. 

Patil, K. R., Patil, C. R., Jadhav, R. B., Mahajan, V. K., Patil, P. R., & Gaikwad, P. S. 
(2011). Anti-arthritic activity of bartogenic acid isolated from fruits of Barringtonia 
racemosaRoxb. (Lecythidaceae). Evidence-Based Complementary and Alternative 
Medicine, 2011, 1–7. doi:10.1093/ecam/nep148 PMID:19770265

Patwardhan, S. K., Bodas, K. S., & Gundewar, S. S. (2010). Coping with arthritis 
sing safer herbal options. International Journal of Pharmacy and Pharmaceutical 
Sciences, 2(1), 6–7.

Pham, C. T. (2011). Nanotherapeutic approaches for the treatment of rheumatoid 
arthritis. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 
3(6), 607–619. doi:10.1002/wnan.157 PMID:21837725

Rathore, B., Ali, M. A., Nath, P. B., Narayan, S. P., & Kumar, D. S. (2007). Indian 
herbal medicines: Possible potent therapeutic agents for rheumatoid arthritis. Journal 
of Clinical Biochemistry and Nutrition, 41(1), 12–17. doi:10.3164/jcbn.2007002 
PMID:18392103

Sachin, V., Subhash, L. B., & Vishwaraman, M. (2013). Anti–inflammatory and 
anti–arthritic activity of type–A procyanidine polyphenols from bark of Cinnamomum 
zeylanicum in rats. Food Science and Human Wellness, 2(2), 59–67. doi:10.1016/j.
fshw.2013.03.003

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



265

Phytochemicals and Novel Nanotherapeutic Approaches

Sahu, B. D., Kalvala, A. K., Koneru, M., Mahesh Kumar, J., Kuncha, M., Rachamalla, 
S. S., & Sistla, R. (2014). Ameliorative effect of fisetin on cisplatin-induced 
nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defense. 
PLoS One, 9(9), e105070. doi:10.1371/journal.pone.0105070 PMID:25184746

Sanmugapriya, E., Senthamil, S. P., & Venkatarama, S. (2012). Evaluation of 
antiarthritic activity of Strychnospotatorum Linn seeds in Freund’s adjuvant induced 
arthritic rat model. BMC Complementary and Alternative Medicine, 10, 56.

Shen, X., Li, C., Zhao, H., Li, S., Chen, J., Kobayashi, Y., & Shen, W. (2011). Inhibitory 
effects of a traditional Chinese herbal formula TBL-II on type II collagen-induced 
arthritis in mice. Journal of Ethnopharmacology, 134(2), 399–405. doi:10.1016/j.
jep.2010.12.033 PMID:21215307

Shyama, S. K., Divya, B., Akshay, J., Shraddha, D., Parijeeta, R., Chetan, V., Mukta, 
A., Nisha, A., Mukesh, S., TapanGiri, D.K., Tripathi1, & Ajazuddin, A. (2015). 
Indian Medicinal Plants Used for Treatment of Rheumatoid Arthritis. Research J. 
Pharm. and Tech., 8(5).

Singh, V., Patel, H., Suvagiya, V., & Singh, K. (2011). Some traditionally used 
anti-arthritic herbs a review. Int Res J Pharm, 2, 43–45.

Soo, C., Jai, H. L., & Sang, U. P. (2013). Recent studies on flavonoids and their 
antioxidant effects. EXCLI Journal, 12, 226–230. PMID:27034634

Srinath, P., Vyas, S. P., & Diwan, P. V. (2000). Preparation and pharmacodynamic 
evaluation of liposomes of indomethacin. Drug Development and Industrial 
Pharmacy, 26(3), 313–321. doi:10.1081/DDC-100100359 PMID:10738648

Subramoniam, A., Madhavachandran, V., & Gangaprasad, A. (2013). Medicinal 
plants in the treatment of arthritis. Annals of Phytomedicine, 2(1), 3–36.

Suha, A., Ahmad, D., & Eyad, Q. (2011). Anti–Arthritic Activity of the Methanolic 
Leaf Extract of Urtica pilulifera L. on Albino Rats. American Journal of Pharmacology 
and Toxicology, 6(1), 27–32. doi:10.3844/ajptsp.2011.27.32

Surjeet, S., Rohit, S., & Gurdarshan, S. (2011). Anti–inflammatory and anti–arthritic 
activity of the rhizome extract of Polygonum viviparum L. Spatula DD, 1(4), 225–232. 
doi:10.5455patula.20111222111451

Tripathy, S., Pradhan, D., & Anjana, M. (2010). Anti-inflammatory and antiarthritic 
potential of Ammaniabaccifera Linn. Int J Pharm Bio Sci, 1, 1–7.

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



266

Phytochemicals and Novel Nanotherapeutic Approaches

KEY TERMS AND DEFINITIONS

Arthritis: Arthritis is a term that describes around 200 conditions that cause 
pain in the joints and the tissues surrounding the joints.

Cytokines: Cytokines are small messenger proteins that are crucial in controlling 
the growth, differentiation and activity of immune system cells.

Flavonoids: Flavonoids are a group of plant secondary metabolites which are 
supposed to provide health benefits through cell signaling pathways and antioxidant 
effects.

Nanodelivery: Delivery of drugs via nano-drug delivery systems (NDDSs) 
which are different classes of nanomaterials.

Nanotechnology: Nanotechnology is science, engineering, and technology 
conducted at the nanoscale, which is about 1 to 100 nanometers.
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ABSTRACT

The term “flavonoid” is a broad term given to the collection of natural polyphenolic 
compounds which occur in plants (fruits, vegetables, roots, flowers, stems, bark, 
leaves) as their secondary metabolites. Subsequent research reveals that flavonoids 
possess anti-inflammatory, anti-mutagenic, anti-oxidative, anti-ageing, and anti-
carcinogenic effects along with their capacity to modulate enzymatic activities, 
inhibit cell proliferation, and inhibit bacterial growth, among others. The main 
shortcomings of oral administration of flavonoids as therapeutic that various studies 
have revealed are related to their stability, bioefficacy, and bioavailability. Novel 
nanotechnological strategies involving nanocarrier systems are proving promising 
to overcome the delivery challenge of flavonoids as therapeutics. Nanocapsules, 
nanospheres, solid lipid nanoparticles, nanoemulsions, micelles are examples of 
novel nanocarrier systems that are currently being explored for targeted and efficient 
bio functioning of flavonoids after their oral administration.
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INTRODUCTION

Plants are main sources of majority of foods, drugs, and dietary supplements. 
All the plant chemicals known as phytochemicals can be classified as primary 
and secondary metabolites. Primary metabolites are central to sustain plant life 
as they are main players of the functions like cell division, growth, reproduction, 
respiration, metabolism, and storage. Secondary metabolites are not merely the 
plant waste products of primary metabolism but have profound effects on plant 
defensive mechanisms, ecology, and evolution (Udomsuk et al., 2011, Corradini et 
al., 2011). Among the major plant secondary metabolites are flavonoids. Flavonoid 
is the name given to class of more than 6000 compounds having fifteen- carbon 
skeleton with the core structure of 2- phenyl- benzopyrone with three-carbon bridge 
cyclized with oxygen. Such structure makes them important variable phenolic 
compounds with marked antioxidant activities (Morales et al., 2012). Flavonoids 
are abundantly found in vegetables and fruits that are regularly eaten by humans. 
Such compounds occur as secondary metabolites in plants (fruits, vegetables, roots, 
stems, flowers, bark, leaves) and are reported to have propitious effects on human 
health for the reason of which they are incorporated in the constituents of various 
nutraceuticals, medicines, cosmetic products (Winkel et al., 2011). Flavonoids 
have been reported to have anti-viral, anti-allergic, anti-mutagenic, anti-tumor, 
anti-inflammatory, anti-oxidative, anti- carcinogenic and anti-ageing capacities 
along with the ability to modulate cellular enzyme functions, induce apoptosis, 
and inhibit cell proliferation, among others. (Fig. 1). They have been reported to 
be efficient singlet oxygen quenchers and thus could reduce the lode of ROS in 
systems under stress by acting as antioxidants (Panche et al., 2016). Investigations 
are focusing mainly on the antioxidant activities, particularly their role in cancer 
control. Almost all plant parts including fruits and vegetables pack a big flavonoid 
punch. Compounds like procyanidin, catechin, epicatechin, chlorogenic acid, 
Phloridzin and quercetin are main flavonoids occurring in edible plant parts. They 
are actively incorporated in the plant life processes like UV filtration, symbiotic 
nitrogen fixation and play an important role as chemical messengers, regulators of 
physiology, and inhibitors of pathogens that are involved in plant diseases. Data from 
literature have also revealed that flavonoids get incorporated in the response against 
pathogens, both when they are enhanced following infection of plants tissues, as 
well as when they are applied externally. A plethora of evidence supports that after 
a plant is challenged by a pathogen or other abiotic stressors like physical, chemical, 
or biological stressors, various biochemical changes in the plant tissue take place 
inwardly which trigger down- or upregulation of specific phenolic compounds. Such 
alterations which mainly lead to the over expression of phytoalexins in turn may 
play a cardinal role in resistance/susceptibility of that plant to that invader. An added 
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impulse on the process of research on flavonoids is gained since the discovery of 
French paradox in which low mortality rate was observed in populations because 
of consumption of red wine which is considered as richest source of flavonoids. 
Current trends of research on Flavonoids and other phenolic compounds relate to 
their identification, isolation, characterization, and particularly in the prevention of 
degenerative conditions including cancers, cardiovascular and neurodegenerative 
diseases. Knowledge of bioinformatics and molecular docking is being employed 
to predict potential application of flavonoids related to human health and disease. 
Current trends of research relate to their identification, isolation, characterization, 
and disease modulating capabilities as well as their impact on defending the growth 
and proliferation of plant pathogenic microorganisms by acting as phytoalexins 
(Kumar et al., 2013, Kay et al., 2012).

Despite the beneficial effects of flavonoids on human health, their main concerns 
to be used as therapeutic are related to their stability, bioavailability, and absorption 
after oral administration. Even in the form of glycosides, they show limited water 
solubility and poor bioavailability. Their delicate configurations are easily susceptible 
to modifications after being exposed to light, temperature, and pH. In their natural 
form, flavonoids have poor gastrointestinal absorption, poor permeability, and 
instability towards gastric and colonic pH. C Certain studies have shown that 
flavonoids are subjected to active efflux mechanisms on their absorption across the 
intestinal wall. Moreover, these compounds are extensively disintegrated to different 
metabolites by intestinal microbiota and/or enzymes which have varied bioactivity 
as expected from original compounds (Manach et al., 2005, Bilia et al., 2014). To 
overcome the shortcomings of flavonoid post administration stability, bioavailability, 
and absorption, nanosystems involving nanocarrier delivery are being designed. 
Upon encapsulating the potent flavonoids in nanocarriers and administrated orally, 
their bioefficacy and bioavailability have been shown to enhance to the effectual 
degree. Nanocarrier mediated delivery have enhanced their solubilization potential, 
altered absorption pathways and prevented their metabolic disintegration by the 
gut microorganisms and enzymes. Through nanocarrier encapsulation, they have 
efficiently withstood the gastric pH and other factors that were rendering them 
instable. Thus, their therapeutic outcome depends on the improvement of their 
pharmacokinetic profile after administration (Roger et al., 2010).
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CHEMICAL STRUCTURE OF FLAVONOIDS

Flavonoids are group of polyphenolic plant and fungus low molecular weight 
secondary metabolites. They possess a general structure of 15- carbon skeleton 
possessing two phenyl rings A & B and a heterocyclic ring C. Rings A and B are 
joined by mediation of the oxygen having heterocyclic ring C. This chemical structure 
is denoted as C6-C3-C6 (Soo et al., 2013). Subclasses of flavonoids are generated 
because of variations occurring in the heterocyclic ring (Fig 2). Multiple hydroxyl 
groups in polyphenol bases are variably conjugated which gives rise such a huge 
number of specific compounds. Flavonoids possess a characteristic flavone nucleus 
derived biosynthetically from malonate and phenylalanine (Gonzalez et al., 2011). 
Plant flavonoids take the form of glycosides because of conjugation with sugars and 
organic acids. Conjugation with sugars mostly at position 3 in the heterocyclic C ring 
of flavonols and anthocyanins is common and sometimes conjugation with position 
5 and 7 of A ring have also been reported. Rhamnose, rutinose, acetate, malonate, 
galactose, glucose and caffeic acid conjugate with flavonoid skeleton rings which 
results in the increase in their molecular weight. For example, in food plants like tea, 
onion, apple the most naturally occurring glycosides of quercetin appear to be the 
3- rhamnoside-glactoside (bio quercetin), 3- rutinoside (rutin), & 3- glucoside (iso 
quercetin) (Manach et al., 2004). Antioxidant properties of flavonoids are attributed 
to multiple phenolic groups (3’ & 4’ hydroxyl groups), C2-C3 double bound, and 
C5 hydroxyl groups (Panche et al., 2016).

Figure 1. Biological functions of flavonoids
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DIFFERENT SUB CLASSES OF FLAVONOIDS

Based on their chemical structure flavonoids have been categorized into six major 
sub-groups including Flavones, Flavanones, Isoflavonoids, chalcones, anthocyanins 
and Anthoxanthins [4]. Keeping in view the carbon atom of the C ring with which 
B ring is fused along with the degree of unsaturation and oxidation of the C ring, 
flavonoids have been grouped into various sub-categories like flavonols, flavones, 
flavanones, flavonols (catechins), Isoflavonoids, neoflavanoids, anthocyanins, and 
chalcones (Fig. 2 and 3) (Panche et al., 2016, Hussain et al., 2012).

• Flavonols: This subgroup possesses a ketone group in their core structure 
and at position 3 of C ring contain hydroxyl group. These groups are 
glycosylated as well. This class is very diverse in hydroxylation patterns. Best 
examples of this class include Kaempferol, Quercetin, Myricetin and Fisetin. 
Proanthocyanins are mainly composed of flavonols (Dillard et al., 2000). 
Main sources of Flavonols include tomatoes, apples, oranges, berries, grapes 
along with tea and red wine. This class is considered to be largest flavonoid 
subgroup to be present in vegetables and fruits. This class of flavonoids are 
considered as potent antioxidants and have been reported to confer health 
benefits by reducing risk of cardiovascular diseases (Galeotti et al., 2008).

• Flavones: Flavonoids that between positions 2 & 3 possess double bond and 
a ketone group at position 4 of the C ring are categorized under flavones. 
These flavonoids mainly occur in the form of glycosides in flowers, leaves, 
herbs, and fruits. Best examples of this class include tangeritin, luteolin, and 
apigenin. In most fruits, these flavonoids possess at position 5 of ring A, a 
hydroxyl group. Main sources of flavones include Ginkgo, Mint, Celery, red 
Peppers, and Chamomile (de et al., 2010).

• Flavanones: These are also called as dihydroflavones and are subclass of 
flavonoids having saturated C ring which means double bond is saturated 
between positions 2and 3. These flavonoids are characteristic feature of almost 
all citrus fruits and vegetables like lemon, oranges, grapes, and tomatoes. 
In fact, bitterness of all these fruit juices is because of these flavonoids 
Examples of this class include Eriodyctiol, Naringenin, and Hesperitin. 
These flavonoids are considered as elegant free radical scavengers (Seelinger 
et al., 2008, Panche et al., 2016).

• Isoflavonoids: Isoflavonoids form a large sub-group of flavonoids and 
occur mainly in leguminous plants and soya beans. Some have also been 
reported to occur in microbes (Dixon et al., 2010). Genistein and Daidzein 
are best studied Isoflavonoids which have been reported to have oestrogenic 
properties. For this reason, they are sometimes known as phyto-oestrogens. 
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Effect of genistein induced metabolic and hormonal changes through which 
various disease pathways can be influenced is reviewed by Szkudelska & 
Nogowski. These flavonoids are also effective ROS scavengers (Szkudelska 
et al., 2007).

• Neoflavanoids: These polyphenolic compounds differ from rest of flavonoids 
in having a 4- phenylchromen backbone and no hydroxyl group at position 2. 
Calophyllolide is best studied neoflavanoid that was isolated from seeds of 
Calophyllum inophyllum (Garazd et al., 2003).

Figure 2. Sub classes of flavonoids based on variations in the heterocyclic ring

Figure 3.  
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• Anthocyanins: This subclass of flavonoids impart pigmentation to vegetables, 
fruits, and flowers in which they naturally occur. Pigment colorations depend 
upon acylation of hydroxyl groups associated with A and B rings and on pH. 
Best examples of anthocyanins include Malvidin, Cyanidin, Peonidin and 
delphinidin ((Kumar et al., 2013).

• Flavanols: These are also known as Catechins. These compounds are 3- 
hydroxy flavanone derivatives. In their core structure hydroxyl group is always 
linked with C ring at position 3 and hence they are also called as flavan- 3- ols. 
These compounds are not saturated as double bond between positions 2 & 3 
do not exist at all. These compounds are highly multi-substituted and act as 
free radical scavenging and anti-inflammatory agents in biological systems. 
Apples, Bananas, Pears, Peaches, Mangoes, and cherries are main dietary 
sources of flavanols (Annadurai et al., 2012).

• Chalcones: These are only flavonoids that lack the ‘ring C’ from their 
basic skeleton frame unlike rest of flavonoid sub-groups. For this reason, 
they are sometimes known as ‘open chain flavonoids and best examples 
of this subgroup include phloretin, phloridzin, and arbutin that occur most 
abundantly in Berries, Pears, wheat, Maize and Tomatoes. These compounds 
are reported to have numerous health benefits and have thus gained much 
more attention in research (Buer et al., 2010).

Figure 4. Different sub classes of flavonoids
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BIOLOGICAL FUNCTIONS OF FLAVONOIDS

Flavonoids are among important phytochemicals as secondary metabolites. 
Phytochemicals are reported to have human health benefits when consumed via 
pant-based foods and supplements. Important biological functions of phytochemicals 
are summed up in Table 1.

Figure 5. Biological functions of phytochemicals

Table 1. Recently revealed biological activities of flavonoids

Study Reference

A potent antioxidant flavonoid namely Rutin has been shown to block apoptosis 
in umbilical vein endothelial cells by augmenting glutathione production (master 
antioxidant), quenching reactive oxygen species that protect DNA damage.

Gong et al., 2010

Luteolin was shown to decrease vascular permeability by acting as anti-
inflammatory agent after parenteral and oral administration in animal models. It also 
displayed cytoprotective properties when used in combination with vitamins

Seelinger et al., 2008

Myocardial oxidative injury induced due to isoproterenol was shown much restored 
by quercetin, a potent antioxidant flavonoid. Liu et al., 2012

Consumption of plant foods containing Flavonoid Kaempferol was found to reduce 
the risk of cancer development, cardiovascular diseases, and auto-immune disorders.

De Pascual- Teresa et 
al., 2010

Anthocyanins and Flavonols have been shown to reduce the cholesterol content in 
erythrocyte membranes.

Duchnowicz et al., 
2012

Baicalin have been reported to decrease oxidative stress induced due to 
hyperglycemia by enhancing the expression of antioxidant enzymes.

Waisundara et al., 
2011

Myricetin displayed the properties of enhancing expression of cellular antioxidant 
enzymes like Superoxide dismutase (SOD), Catalase (CAT) and Glutathione 
peroxidase (GPx), that were retarded via hydrogen peroxide treatment.

Wang et al., 2010

Naringenin displayed antioxidant as well as anti-hyperglycemic effects in diabetic 
rats under experiment.

Annadural et al., 
2012

Isoquercetin (IQ) being one of the most important flavonoids has been reported to 
have hydroxyl radical, superoxide anion, and nitrate scavenging abilities. Li et al., 2011

Quercetin, catechin, taxifolin and kaempferol diminished the superoxide ion and 
hydrogen peroxide cytotoxicity. Park et al., 2010
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The main biological functions of flavonoids as phytochemicals are discussed 
as under:

• Plant physiology: Flavonoids are secondary metabolites that are widely 
distributed in pant kingdom, serving many biological functions. They act 
as most important pigments in plants that impart color to fruits and flowers 
to attract pollinators. Important functions in higher plants where flavonoids 
are incorporated include, symbiotic nitrogen fixation, UV filtration, floral 
pigmentation, among others. They also play a role as chemical messengers, 
modulate function of certain cellular enzymes, inhibit cell cycle at certain 
points and regulate metabolism (Benavente et al., 2008, Udomsuk et al., 
2011).

•  Antioxidant activity- To some extent, fruits and vegetables resist oxidative 
damage due to their natural flavonoids and in this sense, they become dietary 
source of antioxidants when consumed (Morales et al., 2012). Antioxidant 
properties of flavonoids are attributed to the phenolic hydroxyl groups on 
the A & B rings. Due to their hydroxyl substitutes in hydrogen atoms, they 
are efficient free radical scavengers. They have been reported to be singlet 
oxygen quenchers and thus can reduce their load in systems under oxidative 
stress. They can also inhibit free radical generating enzymes like xanthine 
oxidase which is liable for superoxide production (Mira et al., 2002, Park et 
al., 2010).

FI (OH) + R· ~ FI(O) + RH FI(OH) + 02·· ~ FI(O) + HOO· 

It has also been reported that antioxidant potential of flavonoids is enhanced with 
increasing the number of hydroxyl groups in ring B.

• Metal chelating ability of flavonoids- Flavonoids are efficient metal ion 
chelators at the 3-hydroxy-4 keto group mostly when the ring A is hydroxylated 
at position. if there is O-quinol group at ring B, metal chelating activity is 
also enhanced (Mira et al., 2002). Flavonoids are good at iron and copper 
chelation. For example, iron chelating ability of rutin in fat peroxidation can 
be evaluated by the formation of iron-rutin complexes. Flavonoids with 2, 
3- double bond and have catechol group in the B ring have efficient Fe3+ 
chelating activity. On the other hand, number of hydroxyl groups present 
in a flavonoid is directly proportional to its copper reducing activity. In this 
sense, flavonoids may play a paramount role in metal overload diseases and 
conditions of oxidative stress incorporating transition metal ions (Lurdes et 
al., 2002).
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Other biological actions of flavonoids include their ability of inhibition of cell 
proliferation, inducing apoptosis, modulating cellular enzymes, reducing the risk of 
cancer and cardiovascular diseases. Moreover, some findings report that flavonoids 
also have numerous clinical properties such as, anti-inflammatory, antitumor, 
antithrombogenic, antiosteoporotic, antiatherosclerotic, and anti-microbial effects 
(Grassi et al., 2010), Izzi et al., 2012). Flavonoids possess the ability of reducing 
coronary heart diseases via three actions: enhancing coronary vasodilation, decrease 
blood platelet aggregation, and preventing oxidation of low-density lipoproteins 
(LDPs). Flavonoids have been reported to interact with ABC drug transporters that 
are incorporated in drug absorption, drug resistance, drug distribution and drug 
excretion. This ABC transporter- Flavonoid interaction could enhance the absorption 
of poorly absorbed drugs but may increase the risk of drug toxicity (Iwashina, T. 
2013). Recently revealed biological activities of flavonoids are reviewed in the table 1.

NANOCARRIER DELIVERY SYSTEMS TO INCREASE 
ORAL BIOAVAILABILITY OF FLAVONOIDS

Inspite of being propitious to human health, the main issues associated with 
flavonoids is their post administration instability. in gastrointestinal tract they 
have low bioavailability, water solubility and permeability. These compounds are 

Figure 6. Nanosized delivery systems for oral route
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susceptible to gastric enzyme and pH degradation. Several studies have shown that 
flavonoids are subjected to active efflux mechanisms on their absorption across the 
intestinal wall. Moreover, these compounds are extensively disintegrated to different 
metabolites by intestinal microbiota and/or enzymes which have varied bioactivity as 
expected from original compounds (Plapied et al., 2011). Development of nanosized 
carriers in the size range of 10- 100 nm represent a promising approach to overcome 
the delivery challenge of flavonoids as therapeutics after oral administration. 
Such strategies for enhanced oral delivery of flavonoids that are currently being 
explored for targeted and efficient bio functioning of flavonoids include the 
polymer-based nanocarriers (Nanocapsules, Nanoparticles, polymeric micelles), 
molecular complexes (Inclusion Complexes with Cyclodextrins, Phytosomes), 
and lipid-based nanocarriers (lipid nanospheres, solid lipid nanocapsules (SLN), 
nano- and microemulsions, Nanostructured Lipid Capsules (NLC), micelles). (Fig 
2). Surface properties, particle size and shape of nanoparticles play a cardinal role 
in the uptake of loaded molecules across the gastrointestinal mucosa. Therefore, 
encapsulating, and administrating flavonoids in nanocarriers significantly enhances 
their absorption and permeability. Positive zeta potential and hydrophobicity of 
nanoparticles enhances their uptake from gastrointestinal tract. Other mechanisms 
that have been shown to support enhanced absorption of flavonoid-nanocarriers 
are electrostatic interaction between positive nanocarrier surfaces and negatively 
charged mucin, modulation of tight junctions by nanoparticles via interaction with 
junction proteins, enhanced transcytosis and receptor mediated endocytosis, targeted 
phagocytosis of nanoparticles by specialized microfold cells (M-cells), chylomicron 
based absorption by enterocytes mediated by lipases for lipid based nanocarriers. 
This all enhances solubilization and dissolution of loaded flavonoids in GI tract 
(Gaucher et al., 2010).

Polymer-based nanocarriers being structurally efficient can accommodate a 
wide variety a drug molecules due to hydrophobicity and hydrophilicity within the 
polymeric system. The carrier material of polymer-based nanocarriers is generally 
natural or synthetic biodegradable polymers. Poly-α-cyanoacrylate alkyl esters, 
polylactic acid, polyglycolic acid, Polyvinyl alcohol and polylactic-glycolic acid 
are examples of synthetic polymers. Natural ones are more preferred because of 
less toxicity associated with them. They are either polysaccharides or proteins. 
Pectin, alginate, gum arabic, starch and its derivatives, cellulose and its derivatives 
represent the natural plant-based polysaccharides while as chitosan, xanthan gum 
are examples of animal-based polysaccharides from which polymeric nanoparticles 
are designed. Polysaccharide nanoparticles have unique properties that make them 
promising carriers to deliver the hydrophilic drugs. Being natural biomaterials, 
polysaccharide nanoparticles are safe, stable, non-toxic, and biodegradable. 
Polysaccharides have abundant natural resources and demand a low cost in their 
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processing. Flavonoids and other disease-modifying agents are embedded or dissolved 
in polymeric nanoparticles. They can also be adsorbed or coupled on their surfaces. 
Then accordingly these nanocarrier systems are named. For example, in core-
shell nanocapsules therapeutic agents are encapsulated in the core surrounded by 
polymeric wall whereas in matrix carrier systems bioactive compounds are embedded 
in the polymeric matrix (Dube et al.,2010). There is a sustained release of drug 
molecules from these nanocarriers to ensure that no molecules are released till they 
are reached to systemic circulation thereby skipping various physiological barriers 
that could interfere with drug metabolism. Most of the loaded nanoparticles enter 
in enterocytes through transcellular transport after they reach the pical membrane 
of intestinal epithelial cells. Via clathrin and caveolae mediated endocytosis, small 
particles (100-400nm) are internalized by enterocytes. Specialized Peyer’s patches (M 
cells) as well as follicles of the GALT present in the gastrointestinal tract uptake the 
loaded carrier molecules. By coating nanoparticles with cationic chitosan, they are 
protected from endolysosomal degradation. Nanocarrier micelles alter the membrane 
permeability, inhibit the efflux transport proteins and mucoadhesion inside the GI 
tract to ensure the enhanced drug absorption. There are several mechanisms via 
which the protected and functional bioactive ingredients are released from these 
nanosystems. These include desorption of the adsorbed/surface bound ingredients, 
dissolution, diffusion via matrix, matrix erosion through enzymatic degradation or 
through the combination of these processes (Konecsni et al., 2012).

FUTURE RESEARCH DIRECTIONS

The present chapter summarizes recent developments in Nanodelivery of Flavonoids 
as well as other phytoactive compounds and its application to combat diseases and 
disorders associated with oxidative stress, inflammation etc. Nanobiotechnology is fast 
growing area of applied biological sciences. It has opened the routes for novel drug 
delivery systems that has prominently subsided the unwanted and off-target effects 
of drugs and other bioactive molecules. Amalgamating the nanobiotechnology and 
phytochemical therapeutics had proved promising in bringing the novel bioactive 
compounds in use against various pathological conditions. Thus, it is the need of 
the hour to conduct more research and clinical trials with phytoactive compounds 
and their encapsulation in nanocarriers to deliver them site specifically. This review 
on biological potential of flavonoids and their encapsulation in nanocarriers has 
been done by gathering data from different researches and is a humble attempt to 
encourage the researchers to perform their research in this field.
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CONCLUSION

Flavonoids are natural phenolic compounds that occur in plants as secondary 
metabolites. These compounds play an important role in human health and disease. 
Their Propitious effects on human health gained an added impulse in their research. 
Their role as regulators of cellular activity and potent antioxidants makes them 
best supplements to fight off free radicals and reduce oxidative stress in biological 
systems. Fruits, vegetables, tea, red wine, and nuts are best dietary source of 
flavonoids. Gastric instability and low water solubility in their natural forms are 
the main limiting factors for flavonoids to be absorbed systematically after oral 
administration. As a result, various potent bioactivities shown by flavonoids in vitro 
demonstrate less or no in vivo activities. When same flavonoids are encapsulated 
and administered through nanocarrier delivery systems, their stability is enhanced 
as well as they show much better absorption profile in the gastrointestinal tract. As 
a result, their biological activities are enhanced and prolonged. Finally, encapsulated 
flavonoids are released from these nanocarriers in a controlled manner to ensure 
their maximum bioefficacy.
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KEY TERMS AND DEFINITIONS

Antioxidants: Compounds that inhibit oxidation, a chemical reaction that give 
rise to free radicals and chain reactions that may damage the cells of organisms.

Carcinogens: Cancer causing compounds are said to be carcinogenic.
Free Radicals: A molecule having one or more unpaired electron in its outer 

shell is called a free radical.
Inflammation: Inflammation is part of the process characterized by swelling, 

pain and redness by which the immune system defends the body from harmful 
agents, such as bacteria and viruses.

Mutagenesis: Occurrence of mutations in the genome of an organism is termed 
mutagenesis.

Nanodelivery: Delivery of drugs via Nano-drug delivery systems (NDDSs) 
which are different classes of nanomaterials.

Nanotechnology: Nanotechnology is science, engineering, and technology 
conducted at the nanoscale, which is about 1 to 100 nanometers.

Phytochemicals: Chemicals that occur naturally in plants and their parts.
Secondary Metabolites: Secondary metabolites are compounds of living 

organisms that are not incorporated directly in growth or reproduction of an organism 
but are produced to confer value-added advantages.
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ABSTRACT

Water pollution is one of the key global problems which require immediate attention. 
Worldwide, it is predicted that more than 50% of countries will encounter water 
scarcities by 2025 which will increase to 75% by 2075. Each year more than 5 million 
people die due to water-borne diseases. The threat due to pollution by industries, 
exponential population growth, urbanization, by pathogenic microorganisms from 
human and animal waste, etc. The rise in water pollution and its subsequent effects 
on human health and environment is a matter of great concern. The water pollutants 
ought to be removed to improve water quality for human use. Nanoparticles or 
zero dimensional materials have been extensively studied since long, whereas one 
dimensional material (nanorods, nanotubes, nanowires, or nanofibers) have recently 
grabbed a lot of interest from global researchers. Nanofibers having large aspect 
ratio are grabbing incredible attention owing to dependency of physical property on 
directionality having high porosity and surface area as compared to normal fibers.

Electrospun Nanofibers for 
Scheming Water Pollution:

Pioneer Strategies

M. Shamshi Haasan
Department of Chemistry, Albaha University, Albaha, Saudi Arabia

Ali Q. Alorabi
Department of Chemistry, Albaha University, Albaha, Saudi Arabia

Touseef Amna
Department of Biology, Albaha University, Albaha, Saudi Arabia

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 285

Electrospun Nanofibers for Scheming Water Pollution

INTRODUCTION

Wastewater comes from various industrial resources (Fig. 1); for instance; aluminum, 
fabric, steel, petroleum, foodstuff, metal refinement as well as petrochemical and 
leather manufacturing, (Xue, Cao, Liu, Feng, & Jiang, 2014). On one hand we have 
several oil/waters partition methodologies (centrifugation, air flotation, coalescence, 
gravity separation, etc.); however; on the other hand, these techniques have scores of 
drawbacks, such as low separation effectiveness, prolonged duration, and elevated 
energy usage. Conversely, membrane separation method is believed to be outstanding 
method for oil/water separation process. This method has scores of usefulness such 
as steady quality of permeation, relatively low operating cost, and low energy costs. 
Therefore, membrane tools are widely being utilized for purification of wastewater. 
Although, this is energy-efficient process for removal of contaminations for water 
purification, however, the key challenge of this technology is selection of materials 
that can improve membrane characteristics as well as efficiency. Principally, there 
are two major kinds of membrane supplies such as polymeric and inorganic, (ceramic 
and composite), that are mostly utilized in membrane development for wastewater 
treatment. Environmental remediation imposes execution of innovative materials 
and techniques, which should be cost effective as well as energy proficient. In this 
direction the nanomaterials with distinctive physicochemical characterization are 
most favorable resolution. Consequently, there is urgent requirement for designing 
of novel nanomaterials for attenuation of ecological problems in economic approach. 
Nevertheless, the electrospun nanofibers are desirable possessions owing to high 
aspect ratio and excellent porosity which impart amazing selection and permeability 
to filter membranes. The functional properties and applications of these fibers are 
enhanced through nanocomposite approach. The nanofibers can be blend with 
metal oxides, carbon nanotubes, worthy metals as well as novel biomolecules all 
through the electrospinning and post-electrospinning to impart fascinating and 
practical properties. Furthermore, to meet operational necessities such as to improve 
mechanical firmness, lessen of pressure drop, etc., nanofibers are blended by non-
woven microfibers to form a crossbreed crust. These unique nanofibrous composites 
can accomplish amazing goal of environmental remediation.

Similarly encapsulating inorganic nanomaterials, e.g., ZnO, Ag, Au nanoparticles 
(NPs) etc, as well as graphene within polymeric matrices significantly advances 
permeation, antifouling, photocatalytic, and antibacterial characteristics of nanofibers. 
Interesting aforementioned nanocomposites offer excellent mechanical strength 
and thermal stability. Furthermore, these electrospun nanofibers having excellent 
antimicrobial features can reject biological contaminants (viz.; bacteria, fungi, 
mycoplasms and viruses etc.) in wastewater and therefore will conduct excellent 
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disinfection and microbial control. Conclusively, well organized nanofibrous filters 
with aforementioned characteristics are required for pertinent future water purification 
industries (Mousa, Alfadhel, & Abouel Nasr, 2020). An extensive estimation has been 
offered on existing research and development of electrospun nanofibers containing 
various antimicrobial compounds. The impact of encapsulation of antimicrobial 
compounds (organic or/ and inorganic) on properties of precursor solutions with 
different polymers and characteristics of resultant electrospun nanofibers are 
recapitulated in this chapter.

Electrospinning Process

Electrospinning is an established technique to fabricate nanofibers. The extraordinary 
characteristics displayed by electrospun materials are utilized for various applications. 
The high surface area and controlled grain size attained by electrospinning enhances 
materials with certain interesting properties which make them very suitable for 
certain applications. Electrospinning is also one of the fastest growing techniques 
for nanofibers synthesis. In this technique, we use electrostatic forces to generate 
fine fibers utilizing high molecular weight polymer solutions.

Figure 1. Possible sources of wastewaters and role of novel Electrospun nanofibers 
for purification
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Conventionally, an electrospinning typically comprises of three main parts: a 
high-power provider, a spinneret (i.e. syringe tip) as well as a collector (a revolving 
cylindrical axle) (Fig. 2). Prior to electrospinning, polymers are completely dissolved 
in solvent and then it is fed into the syringe or pipette tip to electrospin. The 
thickness of synthesized fibers and their morphology depend on various parameters, 
like conductivity or viscosity of solution, strength of electric field, space between 
spinneret and grounded collector, operating temperature, and moisture etc.

Ceramic Nanofibers

In last few years, there has been a lot of advancement in ceramic nanofibers preparation. 
Ceramic oxide nanofibers are stable at high temperature, so, used in wide range 
of applications because of their high surface ratio. Ceramic oxide nanofibers show 
better properties compare to their bulk counterparts. During last decade, there has 
been remarkable progress in synthesis of ceramic nanofibers.

Ceramic nanofibers show exceptional characteristics like increased surface 
area, easy to tune composition and exceptional stability (Dai, Liu, Formo, Sun, & 
Xia, 2011; Nazari, Kashanian, Moradipour, & Maleki, 2018). Moreover, porous 

Figure 2. Schematic Diagram of Electrospinning Set-up

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



288

Electrospun Nanofibers for Scheming Water Pollution

ceramic nanofibers are considered as good support for nanoparticles for enhanced 
catalytic reactions due to its elevated plane and lofty permeable morphology. 
Ceramic nanofibers are getting more beneficial and functional materials in numerous 
applications due to their surface dependent and size dependent properties. Ceramic 
oxides nanostructures are known for their stability and green chemistry contrary 
to several polymers which are toxic. Ceramic nanofibers are usually prepared by 
electrospinning of ceramic precursors in addition to polymer solution then after 
calcination at high temperatures.

APPLICATIONS

Scientists have started to investigate numerous applications of nanofibers which 
have special characteristics like high aspect ratio, porous morphology, and superior 
physico-mechanical features as in this procedure, exploitation of solution and 
progression factors can easily be completed to acquire preferred fiber morphology 
and mechanical strength. The applications of electrospun nanofibers have been 
discussed in the below section of this chapter.

Nanofibers in Photocatalytic Applications

Using nanofibers as photocatalyst has many benefits in photocatalytic reactions 
owing to their higher surface to volume ratio. Nanofibers having high surface areas 
and sufficient porosity exhibit higher influence on organic pollutant degradation. 
Degradation efficiency increases if surface contacts between catalyst and pollutant 
are more, so, nanofibers play an important role here. Among the photocatalysts, 
titania is most exploited as photocatalyst owing to its excellent chemical and physical 
properties. It has been reported that the electrospun TiO2 nanofibers demonstrated 
better photodegradation of methyl orange dye compared to TiO2 nanoparticles or 
TiO2 thin film (Hamadanian, Akbari, & Jabbari, 2011; Zhang, Xu, & Han, 2009). 
The reaction in photocatalysis includes production of excited electrons and holes 
and photocatalytic efficiency is dependent upon separation of charge, transport of 
charge to surface and charge recombination. Higher photo-efficiency of nanofibers 
was due to some features like high surface area, fast charge separation and fast 
diffusion rates between excited electrons and holes. Very recently, TiO2/g-C3N4 
hierarchical nanofibers were synthesized with high absorption in visible light and 
efficient photocatalytic activity for hydrogen evolution of 1202 μmolg−1 in 7 hours 
(Zou et al., 2021). Similarly, in another study titania nanofibers decorated with Au-
Ag NPs photocatalyst exhibited intense light absorption property which covered all 
visible light wavelength having strong stability (Chattopadhyay, Bysakh, Mishra, 
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& De, 2019). Nowadays, carbon nanomaterials are also getting a lot of attentions 
for their applications in various fields. The unique property of carbon nanofibers 
shows higher degree of graphitization as compared to conventional activated 
carbons (Figueiredo et al., 2006; Serp, Corrias, & Kalck, 2003). Carbon nanofibers 
generally used as support for photocatalytic materials. CNFs hydrophilic properties 
are due to oxygenated functional groups positioned on its surface which assist in 
allowed facile bonding of TiO2 particles using sol–gel synthesis method (Keller, 
Rebmann, Barraud, Zahraa, & Keller, 2005). Recently, CNF doped ZnO were 
prepared and applied for photodegradation of methylene blue (MB) under sunlight. 
Total degradation of dye was attained within 10 minutes at low ultra-violet (UV) 
intensity in natural sunlight (Dehghani et al., 2020). Additionally, in very recent 
report CdO-ZnO core-shell nanofibers were synthesized by electrospinning method 
and demonstrated outstanding photocatalytic efficiency of 98.4% for MB degradation 
under sunlight (Maafa et al., 2021). Similarly, MnWO4/WO3 composite nanofibers 
showed photocatalytic breakdown of methyl orange (85%) in visible light irradiation 
and stable photocatalytic cyclability (Li et al., 2018).

Nonetheless, the Graphene (Gr) incorporated composite nanofibers synthesized by 
a sol-gel nozzle-less electrospinning method having band gap of 2.5 eV can efficiently 
turn on organic dyes under visible light and UV-light irradiation. Titanium dioxide- 
Zinc Oxide-Bismuth oxide-Graphene (TZB-Gr) displayed superior degeneration rate 
of 0.0371 min-1 as compared to P25 and TZB (k = 0.0008 min-1, 0.008 min-1) in presence 
of visible light degradation of MB and higher degradation rate (k) of (0.1557 min-1) 
than P25 and TZB (k = 0.0162 min-1, 0.0482 min-1) under UV degradation of MB 
(Kanjwal, Lo, & Leung, 2019). Liu et al. reported synthesis of mesoporous BiVO4 
nanofibers having surface area four times than that of normal solid counterparts. 
It’s photocatalytic degradation of Rhodamine B (RhB) demonstrated an intensely 
better photocatalytic activity in visible light irradiation, which is three times to that 
of conventional solid counterparts (Liu, Hou, Gao, Yao, & Yang, 2016). Asif et al. 
reported Co3O4/Fe2O3 composite nanofibers having band gap energy of 2.12 eV, 
exhibited photodegradation efficiency (97%) of acridine orange (AO) dye under 
sunlight at pH~10 (Asif, Khan, & Asiri, 2014). Bi2Fe4O9 nanofibers were prepared 
by sol-gel electrospinning method at 700 °C with band gap energy of 2.1 eV shows 
70% degradation efficiency for methyl orange (MO) (Qi, Zuo, Wang, & Chan, 2013). 
Sharma et al. reported the preparation of graphene-oxide-based hydrophobic PAN/GO 
nanofibers by electrospinning method for photocatalytic degradation of Rhodamine 
6G (R6G) dye in sunlight (Sharma, Sokhi, Balomajumder, & Satapathi, 2017). In 
another study heterostructured Co0.5Mn0.5Fe2O4-polyaniline macroporous hollow 
core shell nanofibers were prepared by electrospinning and chemical polymerization 
method which shows high photocatalytic efficiency for breakdown of MO in visible 
light (Jung, Kim, & Lee, 2019). Conclusively, aforementioned studies clearly show 
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that the novel electrospun nanofibers possess great potential for photocatalytic 
activity. Table 1 summarized some of the interesting reports which demonstrated 
the use on nanofibers photocatalyst for degradation of water pollutants.

Table 1. Recent report on nanofibers photocatalyst for degradation of pollutants

Photocatalysts Pollutants Efficiency (time) Reference

CdO/ZnO Methylene blue (UV 
light) 98.4% (210 min.) (Maafa et al., 2021)

g-C3N4/TiO2/Ag Methylene blue 
(Sunlight) 98% (40 min.) (Ghafoor et al., 2019)

MnWO4/WO3
methyl orange (Visible 
light) 85% (120 min.) (Li et al., 2018)

Graphene-TiO2/ZnO/Bi2O3
methyl orange (Visible 
light) 99.86%(70 min.) (Kanjwal et al., 2019)

g-C3N4/Ag3PO4/PAN Rhodamine B (Visible 
light) 96% (120 min.) (Tao et al., 2019)

BiVO4
Rhodamine B (Visible 
light) 87.1% (180 min.) (Liu et al., 2016)

Ce-doped β-Ga2O3
Methylene blue (UV 
light) 80% (125 min.) (Kim, Heo, Koh, Shin, 

& Choi, 2021)

Co3O4/Fe2O3
Acridine orange 
(Sunlight) 97% (180 min.) (Asif et al., 2014)

Bi2Fe4O9
Methyl orange (Visible 
light) 70% (180 min.) (Qi et al., 2013)

PAN/GO Rhodamine 6G 65% (12 hours) (Sharma et al., 2017)

g-C3N4@CdS Methylene blue (Visible 
light) 98% (40 min.) (Jiang et al., 2014)

Co0.5Mn0.5Fe2O4-PANI Methyl orange (Visible 
light) 92% (120 min.) (Jung et al., 2019)

WO3/Fe(III) Methyl orange (Visible 
light) 94.6% (180 min.) (Ma et al., 2017)

CuWO4
Methyl orange (Visible 
light) 90% (180 min.) (Chen et al., 2019)

Zn-doped Ga2O3
Rhodamine B 
(UV light) 92% (60 min.) (Du et al., 2021)
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Electrospun Polymer Nanofibers 
(EPNFs) for Water Remediation

Water pollution associated with heavy metal and dye contaminated wastewater is the 
most serious problem that has resulted from rapid industrialization and urbanization. 
The release of huge amount of toxic heavy metals such as copper Cu(II), cadmium 
Cd(II), lead Pb(II), mercury Hg(II), chromium Cr(IV), nickel Ni(II)) and colored dyes 
to aquatic systems cause many problems such as human body diseases and their ability 
to reduce sunlight transmission (Ayoub Abdullah Alqadami, Naushad, ALOthman, 
Alsuhybani, & Algamdi, 2020; Alsuhybani, Alshahrani, Algamdi, Al-Kahtani, & 
Alqadami, 2020). In recent years, many processes were employed to eliminate heavy 
metals and dyes from wastewater such as chemical precipitation (J. Zhu et al., 2018), 
photodegradation (Ayodhya & Veerabhadram, 2018), coagulation (Harrelkas, Azizi, 
Yaacoubi, Benhammou, & Pons, 2009), biodegradation (Varjani, Rakholiya, Ng, 
You, & Teixeira, 2020), membrane separation (Gao, Sun, Zhu, & Chung, 2014), 
ultrasonic degradation (Rehorek, Tauber, & Gübitz, 2004), chemical oxidation (Lin 
& Chen, 1997), and adsorption (A.A. Alqadami, Khan, Siddiqui, & Alothman, 2018). 
Among them, adsorption of heavy metals and dyes is considered a preferable and 
successful method due to its advantages such as easy operation, low cost, and high 
efficiency (A.A. Alqadami, Khan, Siddiqui, Alothman, & Sumbul, 2020; M.A. Khan, 
Wabaidur, Siddiqui, Alqadami, & Khan, 2020; Naushad, Alqadami, & Ahamad, 
2020). Recently, researchers have made great efforts in producing highly efficient 
and low-cost adsorbents. With the advent of nanotechnology, various nanomaterials 
have been used as an effective and alternative to conventional adsorbent materials. 
In the last two decades, scientists have paid much attention to using electrospun 
polymer nanofibers (EPNFs) in water treatment. These EPNFs showed valuable 
adsorption for different water pollutants for example heavy metal and dyes because 
of their unique properties as aforementioned as well as possessing adsorption sites, 
and high adsorption capacity (Xue, Wu, Dai, & Xia, 2019).

Heavy Metal Adsorption by EPNFs

Nanofibrous materials are excellent adsorbents for heavy metals due to many 
advantages such as high porosity, large specific surface area, ease to be prepared, 
functionalized and separated, high adsorption capacity, and fast adsorption rate 
(F. Zhu, Zheng, Zhang, & Dai, 2021), (Du & Zhang, 2020). The presence of some 
functional groups on the surface of nanofibers such as hydroxyl (OH), amino (NH2), 
carboxyl (COOH), and phosphate (PO4

3-) can form bonds between functional groups 
and heavy metal ions by electrostatic and coordination interactions, showing high 
adsorption capacity and removal efficiency (Chen, Huang, Liu, Meng, & Ma, 2020). 
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Inorganic materials and organic polymers have been electrospun into nanofibrous 
membranes as adsorbents for elimination of metals from aqueous solutions. Chitosan 
(CS) displays effective adsorption ability for heavy metals due to presence of 
hydroxyl and amino functional groups as coordination sites. The use of chitosan 
directly for water treatment is unfavorable to metal adsorption and to be reused due 
to weak mechanical strength and small surface area. Thus, specific surface area and 
adsorption efficiency of chitosan can be improved when CS is made into nanofibers. 
Ang et al. prepared Chitosan/PVA/zeolite nanofibrous composite via electrospinning 
method and applied it for Cr(VI), Fe(III), and Ni(II) removal. The results show that 
the removal efficiency was more than 99% at low concentrations with the order Cr 
(VI) >Fe (III) > Ni (II). These order resulting from the order of ionic radius for these 
heavy metal ions Cr (VI) <Fe (III) < Ni (II) (Habiba, Afifi, Salleh, & Ang, 2017). 
In other study a novel adsorbent based on chitosan/TiO2 nanofibers by two methods 
(coating and entrapped methods) were developed. The result revealed that prepared 
nanofibrous adsorbent by electrospinning method was better than that of coated method 
due to the maximum adsorption capacities for Pb(II) and Cu(II) metal ions (Razzaz, 
Ghorban, Hosayni, Irani, & Aliabadi, 2016). Poly(ethyleneimine) has a high affinity 
for adsorption of heavy metal ions from wastewater (Bessbousse, Rhlalou, Verchère, 
& Lebrun, 2008). Wang et al. synthesized PVA doped PEI nanofibrous membranes 
using wet-electrospinning method. The adsorbent was applied for removal of Cu(II), 
Cd(II), and Pb(II) from an aqueous solution. The high adsorption capacity of PVA 
doped PEI nanofibers for heavy metals can be assigned to the available chelating 
active sites of the nanofibrous membrane (Fig. 3a) (Wang et al., 2011). Feng et al. 
synthesized AOPAN/RC blend nanofiber membranes by combining hydrolysis and 
amidoximation modification. The nanofiber membranes were used to remove Cd(II), 
Cu(II), and Fe(III) ions from aqueous solutions. The result revealed that adsorption 
of AOPAN/RC membranes was for 7.47, 1.13, and 4.26 mmolg−1 for Fe(III), Cd(II), 
and Cu(II) at 25 °C, respectively. The adsorption of Fe(III), Cu(II), and Cd(II) ions 
on the surface of AOPAN/RC membranes occurs by coordination mechanism (Fig. 
3b) (Feng et al., 2018). Fang et al. prepared Polyurethane/phytic acid nanofibrous 
membrane by electrospinning. The PU/phytic acid nanofibrous membrane was 
used for Pb(II) removal. They found the capacity of Phytic acid-modified PU NMF 
was over 6 times more than Pure PU NFM due to the presence of Phytic acid that 
contains 6 phosphate groups (Fang, Liu, Wu, Tao, & Fei, 2021). Also, the thiol (-SH) 
group can capture heavy metal ions through chelation and improved performance of 
absorbents which result in an increase in adsorption capacity and removal efficiency. 
Thiol-functionalized cellulose nanofiber membranes were synthesized by Choi 
et al. for removal of Cu(II), Cd(II), and Pb(II) metal ions from water. The result 
revealed that the maximum adsorption capacities were 49.0, 45.9, and 22.0 mg/g 
for Cu(II), Cd(II), and Pb(II), respectively. The adsorption of Pd(II), Cu(II), and 
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Cd(II) ions onto TC nanofibers occurs by chemical adsorption (Choi et al., 2020). 
Additionally, Li et al., produced chitosan nanofibers with an average diameter of 
75 nm by electrospinning. The chitosan and chitosan nanofiber were used for the 
removal of Cr(VI) from water. They found that the maximum adsorption capacity 
was 131 mg/g, more than twice that of chitosan powders (L. Li, Li, Cao, & Yang, 
2015). Table 2 summarized important publications reporting the use of electrospun 
nanofiber membranes (ENMs) for the removal of heavy metals polluted water

Table 2. Electrospun nanofiber membranes (ENMs) for removal of heavy metals 
polluted water

Adsorbent Metal 
Ion pH Contact 

Time

Adsorption 
Capacity 

(mg/g)

Best Fitted 
Kinetic

Best 
Fitted 

Isotherm
Ref.

Carboxylic-functional 
nanofibers Pb(II) 7 120 min 143.27 Pseudo-second-

order
Langmuir 

model
(Zhao, Ma, & 
Zheng, 2018)

PEI-grafted chitosan 
electrospun membrane

Cr(VI), 
Cu(II) 
Co(II))

2 
4 
6

60 min 
60 min 
60 min

138.96 
69.27 
68.31

Pseudo-second-
order

Langmuir 
model

(D. Yang et al., 
2019)

Fe3O4/o-MWCNTs/
PA6 hybrid nanofibrous 
membrane

Pb(II) 6 120 min 49.3 - Langmuir 
model

(Bassyouni et 
al., 2019)

Chitosan grafted PPLLA/
PDA nanofibrous membrane Cu(II) 6 60 min 270.27 Pseudo second 

order
Langmuir 

model
(Zia et al., 
2021)

Electrospun PVA/PEI 
nanofibers Cr(VI) 4 180 min 150

Pseudo-first and 
pseudo-second 

order

Langmuir 
model

(Zhang et al., 
2020)

Hordein/MBA/β-CD 
nanofiber membrane Cu(II) 6 12h 88.50 - Langmuir 

model
(Guan et al., 
2019)

Fum-F/PAN nanocomposite 
nanofibers Pb(II) 6.18 68.23 min 357.14 - Langmuir 

model
(Moradi et al., 
2018)

ZIF-8@ZIF-8/
polyacrylonitrile nanofibers Cr(VI) 2 90 min 39.68 Pseudo-second-

order
Langmuir 

model

(X. Yang, Zhou, 
Sun, Yang, & 
Tang, 2020)

Amine grafted nanofibers 
(AGNFs)

Cu(II) 
Pb(II)

- 
-

8h 
8h

166.67  
94.34 - Langmuir 

model

(Haider, 
Ali, Haider, 
Al-Masry, & 
Al-Zeghayer, 
2018)

PVA/SA/PEO/HZSM5 
nanofiber

Th(IV) 
U(VI)

5.5 
5.5

240 min 
240 min

274.6 
144.7

Double 
exponential 

kinetic model

Langmuir 
model

(Talebi, 
Abbasizadeh, 
& Keshtkar, 
2017)
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Dyes Adsorption by EPNFs

Dyeing wastewater usually results from different industries such as textile, tannery, 
cosmetic, food, photographs, and plastic industries (M.A. Khan et al., 2020; Moonis 
Ali Khan et al., 2019). These industries depend on water for many of their processes. 
Organic dyes can change the properties of water, even at low concentrations. 
According to some studies, 700,000 tons of dyes are produced annually and 15% 
of dyes are discharged as waste to environment (Samsami, Mohamadi, Sarrafzadeh, 
Rene, & Firoozbahr, 2020), (Tkaczyk, Mitrowska, & Posyniak, 2020). The release 
of colored contaminant to environment causes many problems to humans and other 
organisms due to their toxicity such as causes cancer and disorder of liver (Altaleb 
et al., 2021). Recently, researchers have made great efforts in developing adsorbents 
to eliminate dyes from wastewater by using EPNFs. The adsorption efficacy of dyes 
onto polymeric nanofibers differs according to nature of functional groups onto their 
surface. Thus, presence of COOH and NH2 groups on surface of nanofibers plays 
an important role in interaction between modified nanofibers and anionic/cationic 
dyes (Vakili et al., 2014). Two adsorbents PAN nanofibers and EDA-g-PAN NFs 
membrane were synthesized using electrospinning and chemical grafting techniques 
(Fig. 4a). These adsorbents were applied for removal of rhodamine B (RB), safranin 
T (ST), and methylene blue (MB). The results revealed that the adsorption capacities 
of PAN nanofibers and EDA-g-PAN NFs were (63.46, 41.80, and 35.523) and (65.19, 
45.56, and 39.03) for RB, (ST) and MB, respectively. The high adsorption of ST, 

Figure 3. Mechanistic representation of Cu(II), Cd(II), and Pb(II) adsorption on PVA 
doped PEI nanofibrous membranes (Wang et al., 2011) (a) Schematic representations 
of adsorption mechanism of Cd(II), Cu(II), and Fe(III) on electrospun AOPAN/RC 
blend nanofiber membrane (b) (Feng et al., 2018)
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MB, and RB onto EDA-g-PAN nanofibers is due to the presence of amino groups 
compared to the nitrile groups onto PAN nanofibers (Haider et al., 2015). Chitosan-
coated polyacrylonitrile nanofibrous mat (CPNM) was synthesized by two-step. In 
the first step, the preparation process of polyacrylonitrile electrospinning, and the 
second step, chitosan-coated polyacrylonitrile nanofibrous. CPNM and PNM were 
applied to adsorption of acid Blue-113 dye. The results revealed that adsorption 
capacities were found to be 1368 and 48.6 mg/g under the same adsorption conditions 
at 120 h, respectively. The high adsorption capacity of CPNM compared to PNM 
due to the presence of chitosan on the surface of PNM nanofiber. Similarly, novel 
composite nanofiber (PVDF/PDA/PPy) were fabricated in three steps. In the first 
step, the electrospun PVDF nanofiber was coated with polydopamine. In the second 
step, the self-polymerization of PDA was triggered in a Tris–HCl buffer solution 
on the surface of PVDF/DA electrospun nanofibers. In third step, deposition of 
polypyrrole (PPy) particles on electrospun PVDF nanofibers (Fig. 4b). PVDF/PDA/
PPy was used to remove the anion congo red (CR) and cation dye methylene blue 
(MB) from wastewater. The absorption intensity of CR and MB dyes was decreased 
with increasing the equilibrium time which indicated that the adsorption process 
of CR and MB dyes was improved with increasing the contact time (Fig. 4c, d). 
Color changes of the MB and CR dyes solution with time are given in (Fig. 4e, f). 
They found that the adsorption capacities of CR and MB were 384.6 at pH=1 and 
370.4 at pH=13 mg/g, respectively. The high adsorption capacity of PVDF/PDA/
PPy composite is due to the introduction of nitrogen-containing groups on the 
surface of PVDF/PDA/PPy and also improves their hydrophilicity (F. Ma, Zhang, 
Zhang, Huang, & Wang, 2018). Interestingly, Zhu et al. developed PDA/PEI@PVA/
PEI NFMs by a combination of PVA/PEI co-electrospinning and ultrathin PDA/
PEI coating. PDA/PEI@PVA/PEI NFMs were applied for removal of anionic dyes 
MB, MO, ponceaus (PS) & CR and cationic dyes crystal violet (CV) & MB. The 
result revealed that the maximum adsorption capacity for anionic dyes onto PDA/
PEI@PVA/PEI NFMs was higher than cationic dyes at pH = 7 and pH = 3 with 
separation factor of anionic to cationic dyes was 970 due to high-density positive 
charges from its abundant aminoalkyl (NR3

+) and amine (NH3
+) on the surface of 

PDA/PEI@PVA/PEI NFMs which capture of anionic dyes through electrostatic 
attraction. Also, they found that the maximum adsorption capacity for MB and PS 
were 1290 and 1180 mg/g (Z. Zhu et al., 2017). Table 2 summarized some important 
publications reporting the use of ENMs for the removal of dyes.
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Figure 4. Schematic representations of the preparation of EDA-g-PAN NFs 
membrane (a) (Haider et al., 2015), Schematic representations of the modification 
of the electrospun PVDF nanofibers by PPy (F. Ma et al., 2018) (b) Time-dependent 
UV–vis spectra of MB dye (c) and CR dye (d) Color changing of the MB (e) and 
CR dye ion solution (f) in the presence of PVDF/PDA/PPy composite nanofibers 
(F. Ma et al., 2018)
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Potential of Electrospun Nanofibers for 
Rejection of Pathogenic Contamination

The pollution caused by pathogenic microorganisms has been measured as momentous 
distress regarding water quality throughout the world. Due to exponential enlargement 
in population, it has been predictable that human population will get to approximately 
9 billion by 2050 (Ray, Chen, Li, Nguyen, & Nguyen, 2016). Consequently, the 
accessibility of hygienic water resources to this huge population will create one of 
the most serious problems to mankind. The World Health Organization has already 
addressed that safe drinking water ease of access is worry of approximately 785 
million natives and ~2 million people utilize contaminated water for consumption 
(Bain, Johnston, & Slaymaker, 2020). This polluted water is considered to be 
accountable for serious types of waterborne illness as well as responsible for 
~502,000 deaths worldwide annually (Silva & Scalize, 2020). The presence of 
bacterial pathogens in drinking water stores is responsible for major intimidation 
to public health which result outbreak of sicknesses such as gastroenteritis, cholera, 
giardiasis, cryptosporidiosis, etc. Shigella dysenteriae, Vibrio cholera, bacteria from 
genus Legionella, Escherichia coli O157:H7 and Campylobacter jejuni are major 
bacteria mixed up with these outbreaks (Fahimirad, Fahimirad, & Sillanpää, 2020).

Additionally, the pathogens such as Cryptosporidium parvum and Giardia 
lamblia are very dangerous as their presence in water result grave sicknesses. 
Consequently, in a lot of nation states, their elimination from water is obligatory. 
Interestingly, one of the latest model techniques to create nanofiber based membranes 
with modifiable pore size and allotment of pore is electrospinning method. The 
outstanding potential of electrospun nanofiber in function, such as uniform fiber 
morphology with controllable pore size and membrane width, makes them a better 
alternate to substitute the conservative membranes. Furthermore; interesting uses of 
electrospun nanofiber in water decontamination and bacterial refutation is thin-film 
nanocomposite membrane(Fahimirad et al., 2020). Moreover, the functionalized 
nanofibrous membranes can also be very advantageous in purification of water. 
Therefore, introduction of materials for instance elemental silver and silver salts, silver-
TiO2 systems as well as ammonium salt-having cationic polymers be able to provoke 
excellent antimicrobial features to the existing membranes. Admittedly; having high 
aspect ratio, antimicrobial agents incorporated ENMs can present exceptionally 
efficient competence in elimination of these contaminants (Homaeigohar & Elbahri, 
2014). Unquestionably, the electrospun nano-membranes encompass the prospective 
ability to efficiently eradicate protozoa also. Similarly, nanofiltration is competent 
to remove bacteria proficiently. In addition, it is competent to abolish viruses, such 
as, rotavirus, norovirus, enteric virus and hepatitis A (Tlili & Alkanhal, 2019). 
Nevertheless; electrospun nanofibers integrated with antimicrobial components have 

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



299

Electrospun Nanofibers for Scheming Water Pollution

been produced with excellent antimicrobial properties against diverse microbes. 
These nanofibers demonstrate novel applications in other processes such as filtration, 
wound-dressing materials, protective textiles, tissue scaffolds, and biomedical 
devices (Song, Wu, Qi, & Kärki, 2017) in addition to water decontamination. In a 
study the silk nanofibers (SNFs) and hydroxyapatite (HAP) materials are used to 
prepare membranes. These SNF/HAP membranes demonstrated efficient high water 
flux in comparison with membranes of similar size and thickness. Conclusively, in 
comparison with conventional water purification systems, the membrane separation 
process has many features due to simple technology, high-quality water sanitization, 
low energy utilization, as well as no secondary pollution. Filtration schemes in 
bionic system possess multi-layer nanoporous membrane made up of biomaterials, 
which is appropriate for extensive production of water purification membranes with 
economic cost.

Role of Electrospun Nanofibers in Antifouling

Generally speaking; membrane fouling address to adsorption or deposition of 
particulate /or colloidal material or solute molecules in treated material as a result 
of physico-chemical communication or mechanical interaction with crust, ensuing 
blockage or lessen of pore size. Membrane fouling significantly decreases the life 
of membrane as well as raise price, in turn seriously influence practical utilization 
(Hu, Zhang, Zhang, & Yang, 2019). Noteworthy consideration has been accredited 
to electrospun polymer nanofibrous membrane in wastewater management owing 
to their inherent benefits as aforementioned (Wan et al., 2014). The integration of 
efficient moieties for instance inorganic nanoparticles and macromolecular organic 
compounds may enhance the features of nanofiberous films for water decontamination. 
Antifouling ability of membrane is regarded as an important feature required for 
wastewater management. Special strategies for example combination with hydrophilic 
well-designed nanomaterials, plane grafting, and hydrophilic monomers coating the 
exterior of membrane have been customized to reduce fouling of membrane (Kiani, 
Mousavi, Shahtahmassebi, & Saljoughi, 2015). In a very recent study PU/rGO–
TiO2 nanofiber has been reported as efficient resolution to the efficient cleansing 
of wastewater polluted with MB dye (Sundaran, Reshmi, Sagitha, & Sujith, 2020).

Moreover, membrane fouling also refers inorganic fouling/scaling, organic fouling, 
particulate/colloidal fouling and biofouling (such as occurrence of microorganisms 
or biological fouling). It has been observed that fouling as a result of organic; 
inorganic components as well as microbes may take place concurrently, and these 
mechanisms may interrelate (Amjad, Zibrida, & Zuhl, 1997). In case of membrane 
biofouling, the microorganisms first adhere to membrane facade, resulting in the 
development of biofilm stratum. This biofilm may possibly include diverse category 
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of microbes (e.g., bacteria, algae, protozoa as well as fungi etc.). Preliminary 
microbial adhesion is intervened by electrokinetic and hydrophobic communications 
(Bendinger, Rijnaarts, Altendorf, & Zehnder, 1993), and is commonly preceded by 
cell duplication and expansion at expenditure of dissolved nutrients in supply water 
or adsorbed organics on exterior membrane (Costerton et al., 1994). Therefore, 
biofouling is a grave problem in membrane water and wastewater management 
process significantly gets affected. Correspondingly, it is complicated to manage 
as well as considerable financial capital is being devoted to progress of effectual 
biofouling screening and management. In this direction the electrospun nanofibrous 
membranes (ENMs) are innovative membrane tools that put forward considerable 
high flux and prominent refusal rate as compared to conservative membrane systems. 
As mentioned above, electrospinning engineers nanofibrous membranes with 
controllable pore size (micro/or nano range), which possibly will be replacement for 
conventional membrane. Interestingly, these ENMs represent modernism in water 
and wastewater decontamination by virtue of insubstantial mass, low price, as well 
as low energy utilization than classical membranes. As described earlier the ENMs 
own lofty porosity and elevated surface ratio. Their porosity is in general ~ 80%, 
while conservative membranes possess ~5–35%. The interconnecting organization 
and utmost permeability of ENMs authorize excellent permeability as compared 
to their conventional counterparts. In a study the hydrophilicity of composite 
nanofibrous membranes improved with nanocellulose confirmed by water contact 
angle size, therefore enhanced anti-fouling characteristics of membranes. On the 
contrary, occurrence of organic material and traces of its amassing in wastewater 
pretense chief crisis and current methods for instance coagulation/flocculation and 
chlorine technology are not capable to give in pleasing outcome. Moreover, these 
technologies produce additional volumes of sludge, which require additional handling 
and clearance. Consequently, it has been given to understand that the nanotechnology 
possesses immense prospective in filtration applications owing to its potential to 
generate specific structurally controlled materials for such necessities. The significant 
features of ENMs, are pore size, porosity, and fiber diameter control flux, removal 
rate, and efficiency of ENMs which can be generated in the fabricated electrospun 
nanofibers using electrospinning technique.

Conclusively, this chapter briefly highlights fundamental reasons of membrane 
biofouling as well as makes available an assessment report on current developments 
of prospective monitoring and organizes techniques for wastewater treatment (Fig. 
5) regarding identify the enduring concerns and challenges in this field.
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FUTURE RESEARCH DIRECTIONS

With swift growth of nanoscience, growing consideration has been remunerated to 
fabrication of electrospun nanofibers. Electrospun nanofibers display significant part 
in numerous research areas owing to their elevated specific surface area, excellent 
porosity as well as fine practical capabilities. Therefore, these nanofibers are and 
will be used in solving various global problems particularly in area of wastewater 
handling and purification. These electrospun fibers have resolved shortcomings such 
as lofty energy utilization, poor efficacy, and complicated reuse of conventional 
process. Conclusively, these electrospun nanomembranes can speedily and sensitively 
eradicate different pollutants viz, pathogens, monovalent and multivalent anions 
and cations, salts, minerals as well as surplus suspended materials from wastewater.

CONCLUSION

In conclusion, quick global industrialization and population explosion has resulted 
in environmental pollution. Consequently, in current times various nations are 
facing misery owing to water scarcity stimulated by respective pollution, and large 
amount of money gets exhausted annually owed to pollution troubles in the world. 

Figure 5. Schematic diagram illustrating the use of as-synthesized MnWO4 nanofibers 
as an example for cleaning of wastewater reservoirs
(Adapted from Musarat Amina Korean J. Chem. Eng. Vol. 33, No. 11)
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On one hand the wastewaters contaminated with heavy metals, organic dyes, oils, 
and other contaminants have a dangerous consequence on individual fitness as well 
as atmosphere. On the other hand, biofouling symbolize a composite system where 
quality of feed water, physico-chemical characteristics of nanofibrous membrane as 
well as working parameters each one plays a function. Biofouling starts with addition 
of microorganisms to membrane plane resulting in development of a biofilm coating. 
This chapter underscored some key features. Firstly herein, we introduced important 
aspects of electrospinning equipment, method as well as research development 
in fabrication of different types of nanofibers possessing diverse morphology. 
Mechanism of electrospun nanofiber adsorption and filtration of industrial wastewater 
has been portrayed. Additionally, current research developments of electrospun 
nanofiber for wastewater management have been detailed. Lastly, the challenges 
and probable implications are conversed.
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ABSTRACT

With nanoscience, new environmental benefits have emerged to aid pollution 
control. Nanotechnology is becoming beneficial for air and water pollution control 
and eradication in the future. Air pollution can be controlled with nano-adsorptive 
materials, nanocatalysis, and nano filters. For water pollution, nanofiltration and 
nano sorbents techniques are used. Nanotechnology establishes a framework to 
manipulate the molecular structure of objects depending on the characteristic to 
generate new materials. Environmental pollution is being controlled more efficiently 
and strategically through the application of nanotechnology. The technology deals 
with numerous contaminants like nitrogen oxides, volatile organic compounds, 
carbon dioxide, among other harmful gases. The research narrows down to the 
argument that nanotechnology has a positive impact on environmental protection 
and provides an effective way to eliminate pollution by developing reliable treatment 
plans. In this chapter, the authors have briefly discussed the different nontechniques 
applied to control the pollution.
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INTRODUCTION

The topic of nanomaterials is becoming extremely popular due to the diversification 
of its usage in numerous areas of science and engineering. With that, the production 
of nanomaterials is significantly increasing in an enormous scope of utilizations 
(Varghese et al., 2019). Some of the industries that integrate materials made from 
nanomaterials into their practice settings include the healthcare industry, electronics, 
information technology, textile industry, and environmental conservation (Peng et 
al., 2020). Significantly, nanomaterials and nanotechnology offer a huge benefit 
through contaminants trace and handling to narrow environmental pollutions (Zhang 
& Fang, 2010).

WHAT ARE NANOMATERIALS?

Scientists have not comprehensively established the definition of nanomaterials. 
However, most scholars define nanomaterials based on their size measured in 
nanometers (one-millionth of a millimeter) (Yang et al., 2019). Nanomaterials are 
materials with at least one external dimension and internal structure measuring 
between one and 100 nanometers (Yang et al., 2019). According to the European 
Commission, nanomaterials should be named based on the principle that the particle 
sizer of at least half of the particles in the distribution of number size should measure 
100 nanometers or below. “Engineered nanometers” (“ENMs”) are materials designed 
on a small scale to take on exclusive optical, electrical, and magnetic properties. 
Engineered nanomaterials have both significant and adverse impacts on the health 
of individuals as well as the environment (Luo & Deng, 2018).

Nanometers occur in different forms, including particles, fibers, and rods (Luo & 
Deng, 2018). The occurrence of nanometers can be natural or manmade as by-products 
of reactions involving combustion and engineering procedures to conduct a specific 
function. The natural occurrence of nanomaterials includes blood-borne proteins 
required for life and lipids in the blood and body fat, viruses, and spider-, mite silk. 
Nanomaterials can be created from products including carbon and minerals such as 
silver (Lin et al., 2018). The physical and chemical characteristics of nanomaterials 
can vary significantly from their bulk-form counterparts. Hence, nanomaterials that 
have a similar composition as their bulk counterparts may portray varying physical 
and chemical characteristics. On the contrary, nanomaterials that have a similar 
composition as the same bulk materials may have similar physical and chemical 
properties (Lin et al., 2018). As a result, these materials portray different behaviors 

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



311

Nanomaterials and Pollution Control

when they are introduced to the human body through skin contact, ingestion, and 
inhalation to pose varying potential risks. Aggregated nanomaterials may also 
portray similar properties with single nanoparticles, especially in circumstances 
when the single nanoparticles have remarkably large surface areas for a specified 
amount of material. Therefore, nanomaterials have numerous advantages over bulky 
material forms because of their size and versatility that makes it easy to tailor them 
for specific purposes (Lin et al., 2018).

In the contemporary market industry, nanomaterials containing products are very 
popular in different industries for their individual purposes. In the cosmetic industry, 
for instance, mineral nanoparticles, including titanium oxide that have poor stability 
offered by conventional chemical ultraviolet protection, are used in sunscreen. In 
the healthcare industry, equipment made from nanomaterials is mainly used for the 
targeted delivery of drugs, regenerative medicine, and diagnostic services. On the 
other hand, the sports industry makes use of nanomaterials such as carbon nanotubes 
to produce and manufacture baseball bats. Consequently, the bats are made lighter 
for enhanced performance (Peng et al., 2020). Antimicrobial nanotechnology also 
utilizes nanotechnology to make towels and mats used by individuals in the sports 
industry to prevent diseases caused by bacteria. Lastly, nanomaterials are used in 
the military to manufacture excellent forms of camouflage through their insertion 
into the soldiers’ attires. Titanium dioxide made from nanotechnology is also used to 
develop sensor systems for purposes of detecting biological agents (Peng et al., 2020).

Figure 1. Titanium dioxide.
Source: (Peng et al., 2020)
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PROPERTIES OF NANOMATERIALS

Nanomaterials have exceptional physical and chemical characteristics because of their 
size and surface area (Corsi et al., 2018). It is essential to understand the physical 
and chemical properties of nanomaterials to evaluate their associated toxicological 
and ecological risks. This section discusses the different chemical, physical and 
optical properties of nanomaterials.

Physical Properties of Nanomaterials

Nanomaterials are made up of three layers, including the surface layer, the shell 
layer, and the core (Gubicza, 2017). While some nanomaterials consist of single 
materials, others contain a combination of many materials. The surface layer of 
nanomaterials is made up of different molecules such as metal ions, surfactants, and 
polymers. Based on the layers and materials found in nanoparticles, nanoparticles 
exist in different forms, including suspensions, dispersed aerosols, and colloids 
(Gubicza, 2017).

Nanomaterials are also characterized based on their size. Most nanomaterials 
have at least one external dimension measuring less than 100 nanometers (Patil & 
Burungale, 2020). The size of nanomaterials determines the different properties 
exhibited by them. For example, copper nanomaterials that measure less than 50 
nanometers are hard, non-malleable, and non-ductile compared to bulk copper. 
At the same time, size determines the super Paramagnetism of magnetic objects, 
quantum confinement portrayed by semiconductor Q materials, and surface plasm 
on the resonance of metallic objects. Similarly, the radiation of solar energy in 
photovoltaic nanomaterials is high compared to solar radiation in thin films of 
continuous sheets of counterpart bulk cells. This characteristic is attributed to the 
small size of nanomaterials that increase their capability of absorbing solar radiation 
(Patil & Burngale, 2020). With an increase in temperature, nanomaterials portray 
enhanced diffusion. Nanomaterials exhibit this characteristic because of their high 
surface area to volume ratio. Hence, the process of sintering can easily take place in 
nanomaterials even at low temperatures compared to large particles. The diffusion 
characteristic in nanomaterials can cause agglomeration despite its little to no impact 
on the density of the object (Patil & Burungale, 2020).

Chemical Properties of Nanomaterials

Nanomaterials are characterized based on chemical properties such as structure, 
composition, the weight of molecules, boiling and melting points, pressure of vapor, 
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the partition coefficient of octanol-water, reactivity, nature of stability, and solubility 
in water (Chen et al., 2018).

The major determiners of the size and structure of nanomaterials include the salt 
and surfactant additives, the concentration of the reactant, temperatures under which 
the reaction takes place and solvent conditions integrated during the synthesis process.

Nanomaterials take the form of different shapes. These shapes play a significant 
role in determining cellular uptake, biocompatibility, and retention in body organs 
and tissues. Nanomaterials also have different shapes, sizes, and agglomeration states 
that influence their disposition and translocation in an organism (Chen et al., 2018).

The size of nanomaterials plays an important role in determining their rates of 
circulation and movement in the bloodstream. Size also determines the penetration of 
nanomaterials across the physiological drug barriers, localizations that are specific 
to a given cell, and the induction of cellular responses (Chen et al., 2018).

Optical Properties of Nanomaterials

The optical characteristics of nanomaterials are discussed based on the existence of 
surface plasmon resonance and the nanoscale dimension of nanomaterials (Manera 
et al., 2018). The optical properties of nanomaterials based on their size occurs 
due to alterations in the band gap of optical energy. A decrease in particle size 
of nanomaterials leads to an increase in the optical band gap for semiconductor 
nanomaterials (Manera et al., 2018). Consequently, nanomaterials interact with 
electromagnetic radiation based on particle dimensions. This aspect, in turn, provides 
an opportunity for engineers and technological scholars to develop tailor-made 
materials for novel optical components (Wood, 2018).

Different mechanisms also influence the optical properties of nanomaterials. For 
instance, scattering and absorption occur due to incident light on a nanomaterial. 
Similarly, quantum dots are used to refer to nanomaterials with semiconductor 
materials. These types of nanomaterials tend to absorb and emit light at different 
wavelengths based on particle size and shape (Wood, 2018).

NANOTECHNOLOGIES

Nanotechnology is a branch of technology that focuses on manipulating the 
molecular structure of objects to alter their inherent characteristics to generate new 
materials with revolutionary operations (Duhan et al., 2017). Richard Feynman first 
mentioned the application of nanotechnology in 1959 at the California Institute of 
Technology. In 1974, Norio Taniguichi from Tokyo Science University invented 
the term to define the processes of semiconductors, including the deposition of 
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thin films to regulate nanometer orders (Duhan et al., 2017). Norio Taniguichi 
initially defined nanotechnology as a process that mainly incorporates separation 
processing, consolidation, and material deformation through the use of one atom or 
molecule. Since the invention of the term, several technological organizations have 
come up to describe their understanding of nanotechnology. For instance, National 
Nanotechnology Initiative in the United States defines nanotechnology as “…the 
understanding and control of matter at dimensions between approximately 1 and 100 
nanometers, where unique phenomena enable novel nanotechnology applications” 
(Raman Martin, 2017). According to NNI also, nanotechnology utilizes the science 
of nanoscale, engineering, and technology to incorporate imaging approaches, 
measure, model, and manipulate matter on a scale. Between the years 2001 and 
2013, the NNI program in the US led to the investment of up to $18 billion to present 
nanotechnology as a key force of competitiveness and economic growth (Raman 
Martin, 2017). At the same time, Wang et al. (2019) defined nanotechnology based 
on no size limitations as “the design, characterization, production, and application 
of structures, equipment, and systems by controlled manipulation of size and shape 
at the nanometer scale that produces structures, devices, and systems with at least 
one novel/superior characteristic or property.”

There are different types of nanotechnology whose classifications are based on 
the manner of the procession (from top to down or bottom to up) and their medium 
of operation. Hence, nanotechnology can be descending (top-down), ascending 
(bottom-up), dry and wet nanotechnology (Raman Martin, 2017). Dry nanotechnology 
is utilized in the manufacture of coal, silicon, metal, and semiconductor structures 
that do not operate effectively under humid conditions. On the other hand, the basis 
of wet nanotechnology is on existing biological structures in aqueous ecology, 
including different components of the cell such as membranes and enzymes. In 
ascending nanotechnology, evaluation is initiated from a nanometric structure 
through a self-assembly procedure to develop a larger mechanism compared to the 
initiating mechanism. Lastly, descending nanotechnology involves miniaturizing 
techniques and structures at the nanometer scale and is the most common approach 
integrated into the electronics industry. The use of nanotechnology in the environment 
involves the purification of air with ions and the purification of wastewater using 
nanobubbles and nanofiltration techniques for heavy metals. Hence, it can be 
speculated that nanotechnology plays a significant role in developing applications 
that are environmentally friendly. Nanotechnology also yields optimal outcomes 
after its implementation in industries such as electronics, energy, biomedicine, food, 
and textile industry (Raman Martin, 2017).

Nanotechnology is perceived as a significant discipline that fosters the 
implementation of techniques to enhance the industrial revolution. Its practical 
application ranges from the development of invisible cancer cell fighting particles, 
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microprocessors that work at low power-consumption levels, solar panels that produce 
double energy, and the manufacture of long-lasting batteries. According to Contreras 
et al. (2017), the application of nanotechnology together with its microscopic universe 
in the contemporary world plays a significant role in boosting science and operating 
industries. Since its commencement, the nanotechnology industry has significantly 
flourished over the past few decades. A report by the Research and Markets on the 
Global Nanotechnology Market indicates that the industry is expected to increase 
its value by $125,000 million in the next five years (Contreras et al., 2017).

NANOTECHNOLOGY FUTURE OF 
ENVIRONMENTAL POLLUTION CONTROL

More efforts in the contemporary world are focused on fighting environmental 
pollution. The air across the world contains numerous contaminants, including 
carbon dioxide, chlorofluorocarbons, hydrocarbons, volatile organic compounds, 
and nitrogen oxides (Chirag, 2015). Water and soil pollution today is also 
significantly contributed to by organic and inorganic compounds found in sewage 
water, fertilizers, oil spills, and pesticides. When ingested, inhaled, or comes into 
contact with the human skin, these pollutants pose adverse impacts to human health. 
Consequently, scientists and engineers should put more focus on developing more 
efficient technologies to detect and effectively manage toxic contaminants in the 
environment. Scientists also argue that nanotechnology may be the new solution for 
environmental cleaning and enhancing the performance of traditional technologies 
(Chirag, 2015). The innovation is also considered an effective approach to control 
environmental pollution by minimizing the release of pollutants into the atmosphere 
or preventing their formation.

Over the past years, nanotechnology has integrated knowledge from a wide 
range of fields, including informatics, physics, medicine, and biology, contributing 
to contemporary science and technology (Chirag, 2015). Hence, scientists began 
to incorporate nanomaterials in improved systems to facilitate the monitoring and 
clean up of the environment. Nanomaterials can be used to develop environmental 
conservation equipment to sense and detect pollutants and advance novel remediation 
technologies. Nanomaterials have physical and chemical properties such as large 
surface area, and high reactivates that improve their adsorbent properties of catalysts 
and sensors. Today, nanotechnology is perceived as an emerging technology because 
of its capability to facilitate the advancement of well-established equipment with 
new characteristics and functions in different fields (Umar et al., 2019).
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Nanotechnology is anticipated to play a significant role in controlling environmental 
pollution in the future. Nanotechnologies have the potential to produce innovative 
equipment with exclusive properties that can be implemented in different fields of 
environmental protection. The small size and high surface area of nanomaterials can 
facilitate the production of materials with significant monitoring properties (Umar 
et al., 2019). As a result, the Physico-chemical properties provide an opportunity 
of improving highly accurate and highly sensitive nano-sensors equipment. At the 
same time, the production of equipment from nanomaterials can be specifically 
designed to facilitate effective reactions with pollutants and degrade them into 
non-toxic materials. In the future conservation of environmental contamination, 
nanotechnologies have the ability to replace toxic products utilized with other safety 
devices. Nanotechnology can also be used in the development of non-structured 
coating technologies that develop resistance to contaminants and possess self-
cleaning properties (Umar et al., 2019).

NANOTECHNOLOGIES IN AIR POLLUTION TREATMENT

Nanotechnology is perceived to demonstrate effectiveness in the treatment and 
reduction of a wide variety of air pollutants. Nanotechnologies can be used to treat 
and remedy air pollution through strategies such as the use of nano-adsorptive 
materials for adsorption, degradation by nanocatalysis, and the use of nano filters 
to filter and separate air pollutants (Umar et al., 2019).

Use of Nano-Adsorptive Materials to Adsorb Air Pollutants

According to scientists and researchers, nanoscience and nanotechnology are 
considered effective approaches to solve air pollution problems by improving air 
quality. The perception holds that nanotechnology can solve current air pollution 
problems by utilizing nanoscale adsorbents, also known as nano adsorbents (Yunus 
et al., 2012). For instance, carbon nanostructures are applied in industries as nano-
adsorbents that have high selectivity, capacity, and affinity. This is because of the 
physical characteristics of carbon nanostructures, including average pre diameter, 
the volume of the pores, and high surface area. Structural bonds in nanomaterials 
also play a significant role in adsorption properties (Yunus et al., 2012).

Nano-adsorbents have unique properties that enable effective interactions with 
organic compounds through non-covalent bonds, including hydrogen bonding, 
electrostatic forces, hydrophobic interactions, and van der Waal forces (Yunus et al., 
2012). Carbon nanotubes have been used as adsorbent materials in environmental 
protection because of their characteristics, including high electrical and thermal 
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conductivity, high strength, the unique potential for adsorption, and high hardness. 
Table 1 illustrates different nanostructures and how they are used to treat greenhouse 
gases through nano-adsorption.

Table 1.  

Reprinted by permission from Materials Today: Proceedings: (Panahi et al., 2018)

 EBSCOhost - printed on 2/14/2023 2:35 PM via . All use subject to https://www.ebsco.com/terms-of-use



318

Nanomaterials and Pollution Control

Degradation by Nanocatalysis

Since the early 1900s, indoor pollution has been a topic of significant concern. 
This is because of the perception that most people spend their time indoors, which 
predisposes them to the risk of inhaling pollutants compared to when they are 
outside. Indoor contaminants include the harmful gas VOC, which poses health 
hazards to human beings (Panahi et al., 2018). Nanotechnology can be used to 
prevent air pollution in indoor environments in a variety of ways. Semiconducting 
materials photocatalytic remediation is one effective strategy used to manage indoor 
pollution through nanotechnology (Panahi et al., 2018). These materials are exposed 
to light with equal energy as that of the bandgap to result in the electron-hole pair 
formation. Reaction mainly occurs on the active surface, which is the significant 
catalyst structure. A decrease in the size of the catalyst leads to an increase in the 
surface area to increase the efficiency of the reaction. The size of the nanoparticle 
and the structure of the molecule can be improved by nanotechnology to develop 
new nano-catalysts that have a higher surface area. Nano-catalysts are considered 
appropriate materials in improving air quality and reducing pollutants in the air. 
This is because nano-catalysts permit the rapid and selective transformation of 
chemicals with optimal product outcomes than conventional catalysts (Panahi et al., 
2018). For instance, titanium dioxide nanoparticles have photocatalytic properties 
to produce self-cleaning coatings used to decontaminate environmental pollutants, 
including nitrogen oxides and VOCs, into materials that have low toxicity levels/. 
Carbon nanostructures, including CNTs and graphene nanosheets, have been utilized 
over the past years to increase titanium dioxide’s photocatalytic effectiveness by 
facilitating the easy movement of electrons.

Use of Nano Filters for Separation and Filtration Purposes

Nano filters are structured membranes with small pores to separate several 
contaminants from the exhaust. In the contemporary era, scholars focus on improving 
and optimizing nanostructured membranes used to control air pollution by capturing 
gas pollutants. Filter media coated with nanofiber is mainly used in industrial plants 
to remove dust and filter the inlet air for gas turbines. According to Kaur et al. (2017), 
nanostructured membranes are mainly designed to filter gas pollutants, including VOC 
vapors. For instance, electrospun polyacrylonitrile (PAN)-based carbon nanofiber 
membrane that contains properties such as increased microporosity. Numerous 
nitrogen-containing functional categories have been used as an effective filtration 
approach to adsorb formaldehyde (Kaur et al., 2017). Silver and copper nanoparticles 
filters are also extensively used in air filtration technology as antimicrobial agents 
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for the removal of biological aerosols such as viruses, bacteria, and fungi that 
predispose individuals to infections.

NANOTECHNOLOGY IN WATER POLLUTION TREATMENT

Over the past years, scientists have focused on considering nanotechnology as a 
potent approach for water treatment rather than other expensive and time-consuming 
conventional technologies (Yunus et al., 2012). Hence, the low cost of nanotechnology 
in water treatment would significantly benefit developing countries like India and 
Bangladesh, where success is measured through the implementation of new removal 
techniques. Nanoparticles are effective sorbents because of their large surface area 
and their ability to be enhanced with different reactor groups to enhance their 
chemical affinity towards specific compounds. The technology of nanofiltration has 
gained popularity in contemporary operations to eliminate cations, natural organic 
materials, organic contaminants, biological pollutants, and nitrates from surface and 
groundwater. At the same time, nano-sorbents can be used as separation techniques 
in the process of water purification to eradicate inorganic and organic matter from 
contaminated matter. Hence, it can be concluded that the major mechanisms used 
to remove contaminants from contaminated water through nanotechnology include 
nano-sorbents and nanofiltration (Yunus et al., 2012).

Nanofiltration

Nanofiltration is a membrane process used in water pollution treatment for drinking 
water and wastewater (Kamali et al., 2019). Nanofiltration is a low-pressure membrane 
technique used to separate substances measuring 0.001-0.1 micrometer. Nanofiltration 
is perceived as an effective method used to remove biological pollutants, turbidity, 
and inorganic compounds. At the same time, nano filters are used to soften hard 
water, remove dissolved organic materials, and trace contaminants from surface 
water, treatment of wastewater, and pre-treatment during the desalination of 
seawater. Nanofiltration can also be combined with reverse osmosis to increase 
the portability of brackish water (Kamali et al., 2019). Technology advances have 
led to the development of carbon nanotubes filters to remove pollutants from water 
through bacteria removal in contaminated water. After use, immediate cleansing of 
carbon nanotube filters occurs through autoclaving and ultrasonication. In another 
technology, nanoceramic filters, a combination of nano alumina fiber and micro-glass, 
are used to remove bioaerosols, including bacteria and viruses, from contaminated 
water. Nanoceramic fitters remove contaminants from water by retaining negatively 
charged particles. Their major advantage is they possess an increased ability for 
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particulates, less clogging, and they can adsorb heavy metals through their chemical 
properties (Kamali et al., 2019).

Nano Sorbents

Nanoparticles have a large surface area and can be enhanced with different reactor 
compounds to improve their affinity towards specific compounds (Panahi et al., 2018). 
These characteristics render nanoparticles as effective sorbents. Hence, research 
focuses on these properties to develop more efficient sorbents to eliminate organic 
and inorganic materials from polluted water. Since the evolution of nanotechnology, 
scientists have developed different nano-agglomerates of mixed oxides, including 
iron-cerium, iron-manganese, and iron titanium, among others, to remove pollutants 
in water. Carbon is also considered a versatile adsorbent extensively utilized to 
remove a wide variety of pollutants such as heavy metals from contaminated water 
(Panahi et al., 2018). For instance, graphene, a carbon nano sorbent, is a recently 
researched nanoparticle used in water treatment. However, reduced graphene oxide 
has antibacterial characteristics that may be used to prevent the formation of biofilm 
on the surface of filters because of bacterial growth. The growth of bacteria on filter 
surfaces may result in unwanted odor and taste in water and premature clogging of 
filters (Pathakoti et al., 2018).

FUTURE RESEARCH DIRECTIONS

The future research direction is to identify the side effects of nanotechnology, 
especially when it comes to health. Nanotechnology may contribute to health 
complications that might be detrimental and affect human existence. For example, 
the inhaled nanoparticles may result in lung inflammation and heart problems which 
can affect human health. Lung damage can be a complex health complication that 
might affect health. Nemmar et al. (2017) acknowledged that nanoparticles in diesel 
fuel additives could emit exhaust which might cause health concerns. As a result, it 
is important to carry out future research about the negative effects associated with 
nanotechnology. Similarly, it is important to carry out research in relation to the 
standardization and legislation of the use of nanomaterials. The scientific research 
and international levels should focus on standardized research mechanisms related 
to nanotechnological material. Scientific research should also identify the risks 
associated with nanotechnology materials.
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CONCLUSION

To sum up, the application of nanomaterials and nanotechnology is contributing 
massively to the acts of pollution control and environmental protection. The 
popularity of nanoscience in the scientific field sheds light on a very promising 
future for environmental healing. Finally, nanomaterials offer many possibilities 
to meet future demands not only in the environmental sector but in other industrial 
regions as well. Therefore, the investment in nanotechnologies and their research 
is very efficient and valuable.
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