
C
o
p
y
r
i
g
h
t

2
0
2
2
.

D
e

G
r
u
y
t
e
r
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on
2/9/2023 11:31 AM via
AN: 3102599 ; Elias Munapo, Santosh Kumar.; Linear Integer
Programming : Theory, Applications, Recent Developments
Account: ns335141

Elias Munapo, Santosh Kumar
Linear Integer Programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

De Gruyter Series on the
Applications of Mathematics
in Engineering and
Information Sciences

Edited by
Mangey Ram

Volume 9

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Linear Integer
Programming

Theory, Applications, Recent Developments

Elias Munapo, Santosh Kumar

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Authors
Prof. Elias Munapo
North West University
Dept. of Business Statistics &
Operations Research
Dr Albert Luthuli Drive
Mmabatho
2745
South Africa
Elias.Munapo@nwu.ac.za

Prof. Santosh Kumar
RMIT University
School of Mathematical and Geospatial Sciences
Melbourne
Australia
Santosh.Kumarau@gmail.com

ISBN 978-3-11-070292-7
e-ISBN (PDF) 978-3-11-070302-3
e-ISBN (EPUB) 978-3-11-070311-5
ISSN 2626-5427

Library of Congress Control Number: 2021946656

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2022 Walter de Gruyter GmbH, Berlin/Boston
Cover image: MF3d/E+/Getty Images
Typesetting: Integra Software Services Pvt. Ltd.
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://dnb.dnb.de
http://www.degruyter.com

To our families, and past, present, and future students
EM and SK

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Acknowledgements

The work in this book is based on our recently published papers in various journals.
We wish to express our sincere gratitude to many anonymous referees who raised
searching questions and made suggestions for improving the paper. We learn from
their comments and remarks, and while improving the presentation of the paper,
we also improved our own understanding of the subject. We are thankful to these
referees, to our students and to our colleagues who redirected us on the right path,
when we found ourselves a bit lonely and off the track.

The authors would also like to express sincere thanks to their respective universi-
ties, i.e., the North West University, South Africa and the RMIT University, Australia.

We also want to say ‘thank you’ to our families for their patience and under-
standing.

Elias Munapo
Santosh Kumar OAM

https://doi.org/10.1515/9783110703023-202

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-202

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

‘Hide-and-seek’ is a universal game played by children all over the world. Irrespec-
tive of their background, nationality, and race; the game enters everyone’s life in
one or the other form. For example, on Easter, children enjoy playing the ‘Hide-and-
Seek’ with Easter eggs. Many of us associate the ‘Hide-and-seek phenomenon’ only
with children, but a closer examination reveals that our lives are full of ‘hides-and-
seeks’ in the form of decision making. Good decisions hide and one is required to
seek them. These good-decisions on one hand can bring prosperity, however, danger
associated with a bad-decision also stays with us. These decisions in some commerce,
business, and industrial environments can be a matter of life and death. Some of
these situations are so complex that we make use of mathematical modelling tools to
examine their complexities and seek better outcomes from the situation. Therefore,
this ‘Hide-and-seek’ game never ends; and one is surrounded by the consequences of
decisions. The outcome of a bad decision can challenge the very existence of the
company. Mathematical programming is an abstract form of the ‘Hide-and-Seek’
game, where good decisions are hiding and with the help of mathematical rigour, we
try to unearth the good decisions.

This book is an attempt to develop some strategies to unearth good decisions
for a class of problems that can be represented in the form of a mathematical model
of the form:

Max z = f xð Þ (P1)

Subject to

gi xð Þ=
Xn
j= 1

aij xj ≤bi, i= 1, 2, . . ., m (P2)

xj ≥0 and integer, j= 1, 2, . . ., n

Here, we discuss only those cases where f xð Þ and gi xð Þ are linear functions and xj
are restricted to integer values. The authors have developed some new strategies
during their journey in the field of integer programming. Many pioneering ideas
have existed, and where possible, we added a bit more during our journey in this
fascinating field. The journey will never end; it will continue.

This book outlines some of our attempts in this fascinating field of mathemati-
cal programming.

Before we conclude this preface, we briefly recall a few pioneers in the general
field of Mathematical Programming. It is difficult to do proper justice to their contri-
butions, however, our tribute is just a symbol of our respect for them.

https://doi.org/10.1515/9783110703023-203

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-203

First let us recall the father of linear programming, George
B. Dantzig (8-11-1914 to 13-5-2005) an American mathe-
matician, Professor Emeritus of Operations Research and
Computer Science who made significant contributions to
industrial engineering, operations research, computer
science, economics, and statistics. He developed the LP
model and devised the ‘Simplex Method’ for solving the
LP model. This mathematical model has found immense
applications in various fields and helped decision makers.

The integer programming is a variation of a LP, where variables are restricted to inte-
ger values. Most approaches dealing with integer programming commence the inte-
ger optimal search from the LP optimal solutions.

While linear programming was being developed, Richard
Bellman (26-8-1920 to19-3-1984) was developing dynamic
programming. He was at Rand Corporation, where the
concept of dynamic programming was developed. Later
he moved to University of Southern California, Los An-
geles. The dynamic programming has applications in many
real-life industrial engineering and control engineering
processes. The dynamic programming creates a new ap-
proach to problem solving, fundamentally it is a process of
solving a ‘n’ dimensional problem as ‘n’ problems of one

dimension each. It is a simple but very powerful concept, and it is an art of problem
solving.

A transition from linear programming to integer program-
ming occurred by the pioneering work of Ralph E. Gomory
(born 7 -5 -1929). He is an American applied mathematician
and served as Chairman of IBM Mathematical Sciences De-
partment, Director of Research for the IBM and a research
professor at New York University.

The above scientists along with many other research-
ers have developed the fascinating filed of mathematical
programming, that has unending applications in industry
and commerce. The authors have made a few advances in
this fascinating field. More results will continue to make
the field richer and helpful to its users in various deci-
sion-making situations.

Elias Munapo and Santosh Kumar OAM

X Preface

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contents

Acknowledgements VII

Preface IX

About the authors XVII

Chapter 1
Segment search approach for the general linear integer model 1
1.0 Introduction 1
1.1 The Linear Integer Programming (LIP) Model and some

preliminaries 2
1.2 The concept of segments 3
1.2.1 Selection of the segment interval 4
1.2.2 Decreasing the objective value 6
1.2.3 Original variable sum limit 7
1.2.4 Determination of h0 value 8
1.3 Segment-search approach 8
1.3.1 General integer model 8
1.4 Mixed integer model 9
1.5 Numerical illustration 11
1.5.1 General linear integer model: Example 1.1 11
1.5.2 Solution by the proposed segment-search algorithm 12
1.5.3 Mixed integer model: Example 1.2 13
1.6 Conclusions 16

References 1

Chapter 2
Improved solution method for the 0-1 GAP model 19
2.0 Introduction 19
2.1 Generalized assignment problem 20
2.2 Relaxation process 21
2.3 GAP model in relaxed form 21
2.4 The relaxed transportation model 22
2.5 GAP transportation branch and bound algorithm 23
2.5.1 Optimality 23
2.5.2 Numerical illustration 23
2.6 Improved solution method for GAP 28
2.6.1 Proposed algorithm 28
2.6.2 Strength of proposed algorithm 28
2.6.3 Reconsider the same numerical example 28

7

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.7 Conclusions 30
References 31

Chapter 3
A search for an optimal integer solution over the integer polyhedron – Two
iterative approaches 33
3.0 Introduction 33
3.1 Background information 34
3.1.1 Geometry of integer-points in a convex space defined by the

linear constraints 35
3.1.2 Optimality of the solution 37
3.2 Young’s primal integer programming approach (1965) 37
3.2.1 Numerical Illustration of Young’s primal approach 38
3.3 The Integer Polyhedron Search Algorithm (IPSA) 43
3.3.1 Integer Polyhedron Search Algorithm (IPSA) by Munapo, Kumar

and Khan (2010) 46
3.4 More numerical illustrations of IPSA 47
3.5 Concluding remarks 50

References 50

Chapter 4
Use of variable sum limits to solve the knapsack problem 53
4.0 Introduction 53
4.1 The knapsack model 54
4.2 Development of the variable range for a knapsack problem 54
4.2.1 Variable range 54
4.2.2 Objective value upper bound 54
4.2.3 Objective value lower bound 55
4.2.4 How to overcome this challenge? 56
4.2.5 Variable sum bounds and subsets 56
4.2.6 Subsets of variable sum bound 57
4.3 Variable sum bounding algorithm 58
4.3.1 Algorithm 58
4.4 Numerical illustration
4.5 Conclusions

References 63

Chapter 5
The characteristic equation for linear integer programs 65
5.0 Introduction 65
5.1 Development of a characteristic equation for a pure linear integer

program 67

XII Contents

63
60

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

5.1.1 Analysis of a trivial example 67
5.1.2 The characteristic equation 71
5.1.3 Some interesting properties of the CE 72
5.1.4 An algorithm to find the kth best optimal solutions, k≥ 1 using the

CE approach 73
5.1.5 Features of the CE 74
5.1.6 A numerical illustration 75
5.1.7 An ill conditioned integer programming problem 77
5.1.8 Analogies of the characteristic equation with other systems and

models 78
5.2 The ordered tree method for an integer solution of a given CE by

Munapo et al. (2009) 79
5.2.1 A Numerical illustration of the ordered tree search technique 81
5.3 The CE for the binary integer program 82
5.3.1 Numerical illustration of a binary program 82
5.4 CE applied to a bi-objective integer programming model 84
5.4.1 Numerical illustration for bi-objective model 84
5.5 Characteristics equation for mixed integer program 86
5.5.1 Mathematical developments 86
5.5.2 A characteristic equation approach to solve a mixed-integer

program 88
5.5.3 Numerical illustration – MIP 1 89
5.6 Concluding remarks 92

References 93

Chapter 6
Random search method for integer programming 95
6.0 Introduction 95
6.1 The random search method for an integer programming

model 96
6.1.1 Integer linear program, notation, and definitions 96
6.1.2 The random search method for integer programming 97
6.1.3 Reduction in the region for search 98
6.1.4 The algorithm 98
6.1.5 Numerical illustrations for an integer program 99
6.2 Random search method for mixed-integer programming 101
6.2.1 The mixed-integer programming problem, notation and

definitions 101
6.2.2 Steps of the random search algorithm 102
6.2.3 Numerical illustration 103
6.3 An extreme point mathematical programming problem 104

Contents XIII

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

6.3.1 Mathematical formulation of an extreme point mathematical
programming model 105

6.3.2 Problems that can be reformulated as an extreme point
mathematical programming model: Some applications 106

6.4 Development of the random search method for the EPMP
model 109

6.4.1 Randomly generated solution 109
6.4.2 The number of search points 109
6.4.3 Reduction in search region or a successful solution 109
6.4.4 A feasible pivot for an EPMP 110
6.4.5 Algorithmic steps 111
6.4.6 Illustrative example 6.4 111
6.5 Conclusion 115

References 11

Chapter 7
Some special linear integer models and related problems 119
7.0 Introduction 119
7.1 The assignment problem 120
7.1.1 Features of the assignment model 121
7.1.2 Kuhn-Tucker conditions 122
7.1.3 Transportation simplex method 122
7.1.4 Hungarian approach 122
7.1.5 Tsoro and Hungarian hybrid approach 123
7.2 See-Saw rule and its application to an assignment model 123
7.2.1 Starting solutions 125
7.2.2 See-Saw algorithm 125
7.2.3 Numerical Illustration 1 125
7.2.4 Proof of optimality 127
7.3 The transportation problem 127
7.3.1 Existing methods to find a starting solution for the transportation

problem 128
7.3.2 Transportation simplex method 129
7.3.3 Network simplex method 129
7.3.4 The method of subtractions for an initial starting solution 130
7.4 The See-Saw algorithm for a general transportation problem 138
7.4.1 A General transportation model 138
7.4.2 The assignment-transportation model relationship 139
7.4.3 See-Saw rule for the transportation model 140
7.4.4 Initial position before the See-Saw move 141
7.4.5 See-Saw algorithm for the general transportation model 142
7.4.6 Numerical illustration of transportation model 143

XIV Contents

6

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

7.5 Determination of kth (k ≥ 2) ranked optimal solution 149
7.5.1 Murthy’s (1968) approach 150
7.5.2 Minimal cost assignment approach for the ranked solution 151
7.6 Concluding remarks 153

References 153

Chapter 8
The travelling salesman problem: Sub-tour elimination approaches and
algorithms 155
8.1 Introduction 155
8.2 Binary formulation of the TSP 156
8.2.1 Sub-tour elimination constraints 157
8.2.2 Some conceptual ideas and typical structure of the TSP

model 158
8.2.3 Changing model (8.5) from linear integer to quadratic convex

program (QP) 160
8.2.4 Convexity of f ð�XÞ 161
8.2.5 Complexity of convex quadratic programming 162
8.2.6 Other considerations 162
8.3 Construction of sub-tour elimination cuts 163
8.4 Proposed algorithm 164
8.4.1 Numerical illustration 164
8.4.2 Conclusion 166
8.5 The transshipment approach to the travelling salesman

problem 167
8.5.1 Conventional formulation 167
8.5.2 Some important properties of a totally unimodular matrix 167
8.5.3 Breaking a TSP into transshipment sub-problems 168
8.5.4 General case – transshipment sub-problem 169
8.5.5 Standard constraints 170
8.5.6 Infeasibility 171
8.6 The transshipment TSP linear integer model 171
8.6.1 Numerical illustration 172
8.6.2 The formulated transshipment TSP linear integer model 172
8.7 Conclusions 179

References 179

Index 181

Contents XV

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the authors

Elias Munapo is a Professor of Operations Research at the North
West University, Mafikeng Campus in South Africa. He is a guest
editor of the Applied Sciences journal, has published two books,
edited several books, a reviewer for several journals. He has
published a significant number of journal articles and book
chapters. In addition, he has presented at both local and
international conferences and has supervised doctoral students to
completion. His research interests are in the broad area of
operations research.

Prof Kumar OAM is author and co-author of 197 papers and 3 books
in the field of Operations Research. His contributions to the field of
OR have been recognised in the form of ‘Ren Pot Award’ from the
Australian Society for Operations Research (ASOR) in 2009 and a
recognition award from the South African OR society as a non-
member of the society in 2011. He has served as the President of
the Asia Pacific Operations Research societies (1995–97), where
ASOR was a member along with China, India, Japan, Korea,
Malaysia, New Zealand, and Singapore. He is currently an Adjunct
Professor at the RMIT University, Melbourne. He is a Fellow of the

Institute of Mathematics and its Applications, UK. Recently, on Queen’s birthday, 14 June 2021 he
was awarded a Medal of the Order of Australia.

https://doi.org/10.1515/9783110703023-205

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-205

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1
Segment search approach for the general linear
integer model

Abstract: This chapter presents a segment-search approach for the general linear
integer problem. In this approach the feasible region is divided into segments and
searched for the optimal solution. The segments are searched in their ascending
or descending order depending on the nature of the problem and a solution feasi-
ble in the kth segment is also optimal to the whole problem. This approach has
the strength that large numbers of sub-problems that usually result in large linear
problems can now be managed easily in this way.

Keywords: Linear integer problem, Sub-problems, Segment-search, Feasible region,
Variable limits

1.0 Introduction

The general linear integer programming model (LIP) is one of the most difficult
class of problems in combinatorial optimization and is in the NP-complete class of
hard problems. This is a linear programming problem in which variables are re-
stricted to integer values. There are several techniques that are available that can
be used to solve this problem. These include heuristics, use of cuts, branch and
bound (BB) [see Gomory (1958), Taha (2017), Land and Doig (1960), Dakin (1965)],
pricing, hybrids such as branch and cut [Brunetta, Conforti and Rinaldi (1977),
Mitchell (2001), Padberg and Rinaldi(1991)], branch and price [Barnerd et al. (1998),
Salvelsbergh (1997)], branch price and cut [Barnhart et al. (2000), Fukasawa et al.
(2006), Ladanyi et al. (2001)]. A linear relation to identify the required integer opti-
mal solution was developed by the authors, [Kumar, Munapo and Jones (2007),
Kumar and Munapo (2012)]. However, up to now (December 2020) there is no effi-
cient and consistent general known approach that has been developed to solve this
difficult model. The branch and bound is one the earliest approaches in the history
of integer programming and is still receiving attention from researchers [Munapo
and Kumar (2016), Al-Rabeeah et al. (2019)], and Munapo (2020)].

In this chapter, the feasible region is divided into segments and searched for the
optimal solution. The segments are searched in their ascending or descending order
depending on the nature of the problem and a feasible solution in the kth segment is
also optimal to the whole problem. This approach has the strength that large num-
bers of sub-problems that usually result in large linear integer model can now be
managed easily in this way.

https://doi.org/10.1515/9783110703023-001

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-001

1.1 The Linear Integer Programming (LIP) Model and some
preliminaries

A standard linear integer programming model is given by:
Maximize

Z =
X
j

cjxj

Such that X
i

X
j

aijxj ≤bi (1:1)

Where aij, bi, cj are constants, xj ≥0 and integer.

i= 1, 2, . . .,m and j= 1, 2, . . ., n

Earlier approaches solved the relaxed linear integer model as a LP and modified the LP
optimal solution to an IP optimal solution in different ways, see Kumar et al. (2010).
Instead of solving the relaxed integer linear model, an alternative possibility is to deter-
mine some very useful additional constraints, which can be in the form of:
(i) original variable sum constraint,
(ii) slack and excess variable sum constraint, and
(iii) slack and excess variable limits.

These approaches are discussed below.
The original variable sum constraint can be in the form of equation (1.2).

x1 + x2 + . . . + xn −ϕc =0. (1:2)

Where ϕc is not necessarily integer.
The excess and or slack variable sum constraint can be in the form of equation (1.3)

s1 + s2 + . . . + sm − λ=0 (1:3)

Where λ is an integer.
The slack and excess variable limits are generated from the given constraints in

the given model (1.1). This is easily done using the following procedure.
From each column of the coefficient matrix select the largest coefficient cLj .

Then from the selected values from all the columns, select the minimum value as
slack and or excess variable limit ,. as given by equation (1.4).

0≤ sj ≤ ð,− 1Þ,∀ slack or excess variables. (1:4)

The integer restrictions can be relaxed and the given model (1.1) can be solved as
an ordinary LP. The continuous optimal solution obtained will be in the form as
given in Table 1.1.

2 Chapter 1 Segment search approach for the general linear integer model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Where ω1, ω2, . . ., ωn, β1, β2, . . ., βm are non-negative constants, αij and Z0 are
constants. Z0 is a continuous optimal value. The variables x1 x2 . . . xm are basic and
s1 s2 . . . sn are non-basic for convenience. Some other arrangements of these variables
are also acceptable.

1.2 The concept of segments

From Figure 1.1, the segments are in descending order i.e.

Z0 >Z1 > Z2 > Z3 > . . . >Zk >Zk + 1. (1:5)

Table 1.1: The general continuous optimal tableau.

x1 x2 . . . xm s1 s2 sn . . . r.h.s.

Z   . . .  ω1 ω2 ωn . . . Z0

x1   . . .  α11 α12 α1n . . . β1

x2   . . .  α21 α22 α2n . . . β2

. . .

xm   . . .  αm1 αm2 αnn . . . βm

0 1 2Z (, ,...,)= nx x x

Segment 1 0Z

Segment 2 1Z

Segment 3 2Z

… 3Z

…
kth Segment Zk

1Zk+

Figure 1.1: Segments of the given LP feasible region.

1.2 The concept of segments 3

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The idea is to search segment 1, then segment 2 in that order until the optimal
solution is found in the kth segment. It is easier to search a segment at a time than
the whole feasible region.

1.2.1 Selection of the segment interval

There is need to select segment intervals so that the sizes of these segments are ap-
proximately equal. This may pose a challenge, and in this chapter, we present a
technique to select the segment intervals. Suitable shapes that can be used to ap-
proximate the intervals are triangle, cone, pyramid etc. In this chapter a triangle
shape is selected for its simplicity.

From Figure 1.1, the segments are in descending order i.e.

Z0 >Z1 > Z2 > Z3 > . . . > Zk − 1 > Zk >Zk + 1 (1:6)

The idea is to search segment 1, then segment 2 in that order until the optimal solu-
tion is found. Suppose the optimal solution is obtained in the kth segment, which
becomes the required optimal solution. It is easier to search a segment at a time
than the whole feasible region.

Using the triangle to approximate intervals

0Z

0h 0h

1
1Z 0h 0h 2

1Z

M

1h 1h 1h 1h
1
2Z 2

1Z

1h A 0h N 0h B 1h

2h 2h 2h 2h 2h 2h
1
3Z 2

3Z

2h 1h C 0h O 0h D 1h E 2h

Figure 1.2: Determining the distance between intervals.

4 Chapter 1 Segment search approach for the general linear integer model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assumption 1 - Assume we are viewing the feasible region in two dimensions.
Assumption 2 - We also assume the angle at the optimal vertex is a right angle,

i.e.

Z1
1 Ẑ0Z

2
1 = 90o (1:7)

Assumption 3 - Assume the surface areas of the segments are equal.
Assumption 4 - Assume decrease in the objective value from the first segment to

the second segment is known and is h0.

First Segment
The first segment is an isosceles triangle. Area is given by (1.8).

Area of First Segment ðSA1Þ:

SA1 =
1
2
ðh0 + h0Þh0 = h20 (1:8)

Second Segment
The second segment is a trapezium.

The first parallel side is ðh0 + h0Þ= 2h0, and the second parallel side is ð2h0 + 2h1Þ
and the height is h0.

Area of second segment ðSA2Þ:

SA2 =
1
2
½2h0 + ð2h0 + 2h1Þ� h1 = 1

2
ð4h0 + 2h1Þ h1 = ð2h0 + h1Þ h1. (1:9)

Since we are assuming the areas of segments to be equal then we have from (1.8)
and (1.9):

SA1 = SA2.

h20 = ð2h0 + h1Þh1,

i.e. 0= − h20 + 2h0h1 + h21 .

Solving as quadratic equation we have:

h1 = − h0 + h0
ffiffiffi
2

p

h1 =0.4142h0 (1:10)

The third segment is also a trapezium. The first parallel side is ð2h0 + 2h1Þ, and
the second parallel side is ð2h0 + 2h1 + 2h2Þ and the height is h2.

1.2 The concept of segments 5

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Area of the third segment ðSA3Þ:

SA3 =
1
2
½ð2h0 + 2h1Þ+ ð2h0 + 2h1 + 2h2Þ�h2,

SA3 = 2h0h2 + 2h1h2 + h22. (1:11)

Since h1 =0.4142h0, one can rewrite (1.11) as

SA3 = 2h0h2 + 2ð0.4142Þh0h2 + h22 SA3 = 2.8284h0h2 + h22.

Since, by assumption, areas of different segments are equal, then SA1 = SA3. giving

h20 = 2.8284h0h2 + h22,

i.e.

0= − h20 + 2.8284h0h2 + h22.

Solving as quadratic equation we have:

h2 =
− 2.8284h0 + h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.9998

p

2
=0.317h0 (1:12)

In other words, using the proposed approach we do not decrease the objective
value by the same value in all the segment. This implies when using the proposed
approach there is need to accurately estimate ðh0Þ. All the other intervals depend
on h0 as given in (1.13) and (1.14).

h0, h1, h2, h3, . . ., hk, hk + 1 (1:13)

i.e.

h0,0.4h0,0.3h0,0.2h3, . . . (1:14)

In other words, the decrease ðh0Þ by a factor of approximately 0.75 from one seg-
ment to the next.

1.2.2 Decreasing the objective value

First segment
To search over the first segment, add the inequality (1.15) to the continuous optimal
tableau given in Table 1.1.

ω1s1 +ω2s2 + . . . +ωnsn ≤ h0. (1:15)

6 Chapter 1 Segment search approach for the general linear integer model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Second segment
The second segment is searched by adding the following two constraints to the con-
tinuous optimal tableau.

ω1s1 +ω2s2 + . . . +ωnsn ≥ h0. (1:16)

ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1. (1:17)

Third segment
Similarly, the third segment is searched by adding to the continuous optimal tableau.

ω1s1 +ω2s2 + . . . +ωnsn ≥ h0 + h1.

ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1 + h2.

. . .

Kth segment
The Kth segment is searched by adding (1.18) and (1.19) to the continuous optimal
tableau.

ω1s1 +ω2s2 + . . . +ωnsn ≥ h0 + h1 + h2 + . . . + hk (1:18)

ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1 + h2 + . . . + hk + hk + 1 (1:19)

1.2.3 Original variable sum limit

The original variable sum (sum of the given variables) is given in (1.20).

x1 + x2 + . . . + xn =ϕ+ f . (1:20)

Where ϕc =ϕ+ f and ϕ, is the integer part and f is the fractional part.
From the sum of original variables, we develop two sub-problems A and B.

Sub-problem A:

x1 + x2 + . . . + xn ≤ϕ. (1:21)

Sub-problem B:

x1 + x2 + . . . + xn ≥ϕ+ 1. (1:22)

1.2 The concept of segments 7

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.2.4 Determination of h0 value

When the relaxed model in (1.1) together with the useful additional constraints is
solved, we obtain the optimal solution ðZ0Þ. From the two sub-problems A and B we
obtain ðZAÞ and ðZBÞ. From the sub-problem A, h0 is obtained as given in (1.23).

h0 = Z0 − ZA. (1:23)

Similarly, from the Sub-Problem B, h0 is obtained as given in (1.24).

h0 =Z0 − ZB. (1:24)

1.3 Segment-search approach

1.3.1 General integer model

The segment-search approach algorithm for the general integer model is summa-
rized below.
Step 1: Solve the relaxed model (together with the useful additional constraints

and slack/excess variable limits) and find an optimal solution.
Step 2: Is the continuous optimal solution integer?

– If yes, then go to Step 3.
– If no, then go to Step 4.

Step 3: Stop an optimal integer solution is available.
Step 4: From each of the two sub-problems determine h0 and then go to Step 5.
Step 5: Search segments 1, 2, 3, . . . , k until an integer optimal solution is obtained.

Segment 1: ω1s1 +ω2s2 + . . . +ωnsn ≤ h0.

Segment 2:
ω1s1 +ω2s2 + . . . +ωnsn ≥ h0
ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1.

Segment 3:
ω1s1 +ω2s2 + . . . +ωnsn ≥ h0 + h1
ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1 + h2.

. . .

Segment k:
ω1s1 +ω2s2 + . . . +ωnsn ≥ h0 + h1 + h2 + . . . + hk
ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1 + h2 + . . . + hk + hk + 1.

The algorithm is also presented in Figure 1.3.

8 Chapter 1 Segment search approach for the general linear integer model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.4 Mixed integer model

With the mixed integer model some of the variables are non-integer. As a result, we
cannot use the same technique that we used for the general case. Only the integer
restricted variables ðx1, x2, . . ., xrÞ are used to generate the variable sum constraint as
is given in (1.25).

Yes

Solve the relaxed model (together with

the useful additional constraints and

slack/excess variable limits) to obtain a

continuous optimal solution

Is the

continuous

optimal

solution

integer?

Search the segments 1,2,3,...,k until an integer solution is found

Segment 1:
1 1 2 2 0... .n ns s s hω ω

ω

ω

ω

ω

ω

ω

Segment 2:
1 1 2 2 0

1 1 2 2 0 1

...

... .

n n

n n

s s s h
s s s h h

ω

ω

Segment 3:
1 1 2 2 0 1

1 1 2 2 0 1 2

...

... .

n n

n n

s s s h h

s s s h h h
ω

ω

Segment k:
1 1 2 2 0 1 2

1 1 2 2 0 1 2 1

...

...

n n

kknn

s s s h h h
s s s h h h h h

ω

ω

From each of the

two sub-problems

determine h0

Stop an optimal

integer solution is

available.

++

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+ +
++ +

... kh++

+

+

+

+

+

+

≥

≥

≥

≤

≤

≤

≤ω

ω
ω

ω
ω

ω
ω

...

Figure 1.3: Segment searching algorithm for the general linear integer model.

1.4 Mixed integer model 9

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

x1 + x2 + . . . + xr =ϕ+ f . (1:25)

The two sub-problems A and B.

Sub-problem A:

x1 + x2 + . . . + xr ≤ϕ, (1:26)

Sub-problem B:

x1 + x2 + . . . + xr ≥ϕ+ 1. (1:27)

The segments are searched in such a way that all the non-integer variables are ig-
nored during the search. The segment-search approach for the mixed integer model
is summarized below. The decrease in objective value ðh0Þ is not necessarily integer.
Step 1: Solve the relaxed model (together with the useful additional constraints) to

get an optimal solution.
Step 2: Is the continuous optimal solution satisfies integer requirement on integer

restricted variables?
– If yes, then go to Step 3.
– If no, then go to Step 4.

Step 3: Stop as optimal mixed integer solution has been obtained.
Step 4: From each of the two sub-problems determine h0 and then go to Step 5.
Step 5: Search segments 1, 2, 3, . . ., k until the desired mixed integer solution is found,

Segment 1: ω1s1 +ω2s2 + . . . +ωnsn ≤ h0.

Segment 2:
ω1s1 +ω2s2 + . . . +ωnsn ≥ h0
ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1.

Segment 3:
ω1s1 +ω2s2 + . . . +ωnsn ≥ h0 + h1
ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1 + h2.. . .

Segment k:
ω1s1 +ω2s2 + . . . +ωnsn ≥ h0 + h1 + h2 + . . . + hk
ω1s1 +ω2s2 + . . . +ωnsn ≤ h0 + h1 + h2 + . . . + hk + hk + 1.

The algorithm is presented in Figure 1.4.

Optimality
As given in Figure 1.1, the segments are in descending order. Since Z0 > Z1 > Z2 > Z3 >
. . . > Zk–1 > Zk > Zk + 1, it implies that Zk is feasible and optimal provided Z0, Z1, Z2, Z3,
. . ., Zk–1 are infeasible.

10 Chapter 1 Segment search approach for the general linear integer model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.5 Numerical illustration

1.5.1 General linear integer model: Example 1.1

Maximize

Z = 23x1 + 25x2 + 24x3

Yes
Is the

continuous

optimal

solution, the

desired

Solution?

Stop an optimal

solution is

available.

Solve the relaxed model (together with

the useful additional constraints and

no slack/excess variable limits) to obtain

a continuous optimal solution

From each of the

two sub-problems

determine h0

Search the segments 1,2,3,...,k an integer solution is found

Segment 1:
1 1 2 2 ...s sω ω

ω

ω

ω

ω

ω

ω

Segment 2:
1 1 2 2

1 1 2 2

...

...

s s
s s

ω

ω

Segment 3:
1 1 2 2

1 1 2 2

...

...

s s
s s

ω

ω

Segment k:
1 1 2 2

1 1 2 2

...

...

s s
s s

ω

ω

++

+

+

+

+

+

+

+

+

+

+

+

0.n ns h

0

0 1.

n n

n n

s h
s h h

0 1

0 1 2.

n n

n n

s h h
s h h h

0 1 2

0 1 2 1... .

n n

kknn

s h h h + ... +

s h h h h
kh

h

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+ +
++ +

≥

≥

≥

≤

≤

≤

≤ω

ω
ω

ω
ω

ω
ω

...

Figure 1.4: Segment searching algorithm for the mixed general linear integer model.

1.5 Numerical illustration 11

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Such that:

6x1 + 23x2 + 24x3 ≤ 113

29x1 + 15x2 + 13x3 ≤ 211 (1:28)

18x1 + 7x2 + 16x3 ≤ 132

Where x1, x2 and x3 are non-negative integers.
Solving the relaxed problem, we obtain the continuous optimal solution as given

in Table 1.2.

Direct branch and bound
Solving directly by branch and bound method, the worst case takes 25 sub-
problems to verify the optimal solution given in (1.29).

Zopt = 190, x1 = 5, x2 = 3, x3 =0 (1:29)

1.5.2 Solution by the proposed segment-search algorithm

Useful additional constraints
From the coefficient matrix:

6x1 + 23x2 + 24x3 ≤ 113

29x1 + 15x2 + 13x3 ≤ 211

18x1 + 7x2 + 16x3 ≤ 132

↑ ↑ ↑

Max 29 23 24 → Min = 23
i.e. cL1 = 29, cL2 = 23, cL3 = 24, ,= 23 and ,− 1= 23− 1= 22.
Let our three slack variables be s1, s2, s3. ∴ s1 ≤ 22, s2 ≤ 22, s3 ≤ 22.

Table 1.2: Tableau giving continuous optimal solution to numerical illustration (1.28).

x1 x2 x3 s1 s2 s3 r.h.s.

Z   . . . . .

x2   .. . –. . .

x1   . . . . .

s3   . –. . . .

Z0 = 213

12 Chapter 1 Segment search approach for the general linear integer model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Original variable sum constraint: x1 + x2 + x3 −ϕc =0.
Slack variable sum constraint: s1 + s2 + s3 − λ=0.

With these useful additional constraints, the given problem becomes as given in (1.30).
Maximize

Z = 23x1 + 25x2 + 24x3

Such that:

6x1 + 23x2 + 24x3 + s1 = 113

29x1 + 15x2 + 13x3 + s2 = 211

18x1 + 7x2 + 16x3 + s3 = 132 (1:30)

x1 + x2 + x3 −ϕc =0

s1 + s2 + s3 − λ=0

s1 ≤ 22, s2 ≤ 22, s3 ≤ 22

Where s1, s2, s3,ϕc, λ are non-negative integers.
This solution process for the general case is presented in Figure 1.5.

1.5.3 Mixed integer model: Example 1.2

Maximize

Z = 23x1 + 25x2 + 24x3

Such that:

6x1 + 23x2 + 24x3 ≤ 113

29x1 + 15x2 + 13x3 ≤ 211 (1:31)

18x1 + 7x2 + 16x3 ≤ 132

Where x2 and x3 are non-negative integers.

Direct branch and bound
Solving directly by branch and bound method, the worst case takes 7 sub-problems
to verify the optimal solution given by:

Zopt = 206.66, x1 = 5.72, x2 = 3, x3 =0

1.5 Numerical illustration 13

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Solution by segment search

Useful additional constraint
Original variable sum constraint: x2 + x3 −ϕc =0.

With the useful additional constraint, the given problem becomes as in (1.32).

1

2 3

3 1 2

213.01, 5.47,

3.49, 9.09,

8.96, 9.09

0.

o

Øc

Z x
x s

x s s

Add useful additional constraints

1

2 3

3 1 2

213.01 213, 5.47,

3.49, 9.09,

8.96, 9.09

0.

o

Øc

Øc

Øc

Øc

Øc

Z x
x s

x s s

≤8

≤ ≤ ≤

9

11

2 1 2

3

3 0

190.14 190, 4.93,

3.07, 12.79, 22.00,

21.79, 8.00, 56.57,

0, 213
_
190 23.

AZ x
x s s
s
x h

Sub-Problem A Sub-Problem B (infeasible)

56,190 213Z

Solving as an integer model

(Branch and bound takes only 3 sub-problems to verify optimality)

1 1 2

1 2 3

3

190, 5, 3,

14, 21, 22,

8, 56, 0.

AZ x x
s s s

x
Optimal

1

2

5

3 4

=

=

= =

=

=

===

=

=

=

= ≈

=

=

=

=

=

=

= =

=

=

=

=

=

=

=

=

=

=

=

= =

=

=

=

=

λ

λ

λ

λ

λ

≈

≥

Figure 1.5: Flow chart - proposed solution process.

14 Chapter 1 Segment search approach for the general linear integer model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

1

2 3

213.01, 5.47,

3.49, 0.

oZ x
x x

Add useful additional constraint

1

2 3

213.01, 5.47,

3.49, 0,

3.49.

oZ x
x x

≤3 4

1 1

2 3

0

207.11, 5.78,

2.22, x 0.78, 3,

213.01
_

207.11 5.9.

AZ x
x
h

Sub-Problem A Sub-Problem B

1

1

2

3

180.50,

3.50,

4.00,

0.

4.

BZ
x
x
x

0

207.11 213.01

(213.01
_

207.11 5.9)

Z
h

Segment 1 is empty so go to Segment 2

0 0.75(5.9) 4.43h

So search segment 2: (202.62 207.11)Z

2 1

2 3

206.66, 5.72,

3, 3, 0.

AZ x
x x

Optimal

2

5

3
4

1

=

= =

=

=

=

= =

=

=

=

= =

=

= = =

=

=

= =

=

=

=

=

=

=

=

=

=

λ

Øc

Øc

Øc

Øc

Øc

Øc

≥

≤ ≤

≤ ≤

Figure 1.6: Flow chart - proposed solution process for the mixed integer model.

1.5 Numerical illustration 15

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Maximize

Z = 23x1 + 25x2 + 24x3

Such that:
6x1 + 23x2 + 24x3 ≤ 113

29x1 + 15x2 + 13x3 ≤ 211 (1:32)

18x1 + 7x2 + 16x3 ≤ 132

x2 + x3 −ϕc =0

Where ϕc is a non-negative integer.
This solution process for the mixed integer case is presented in Figure 1.6.

1.6 Conclusions

The segment search approach discussed in this chapter is very effective. Huge num-
bers of sub-problems that are required to verify optimality in a branch and bound
framework are significantly reduced if the feasible region is searched segment by
segment. The method accommodates other methods within its context. For exam-
ple, more efficient approaches such as the branch and cut, branch and prize or
branch cut and price can be used to search the segments once the additional con-
straints have been added. The segments are in descending order and the first feasi-
ble solution is optimal to the given problem.

It is our hope that the reformulation which was used to formulate useful addi-
tional constraints in this chapter will play an important role in search for an efficient
algorithm for the integer model. More on reformulation can be found in Munapo and
Kumar (2016).

16 Chapter 1 Segment search approach for the general linear integer model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

References

Al-Rabeeah, M., Kumar, S., Al-Hasani A., Munapo, E. & Eberhard, A. 2019. Computational
Enhancement in the Application of the Branch and Bound Method for Linear Integer Programs
and Related Models, International Journal of Mathematical, Engineering and Management
Sciences Vol. 4, No. 5, 1140–1153, 2019 https://dx.doi.org/10.33889/IJMEMS.2019.4.5-090

Taha, H.A. 2017. Operations Research: An Introduction, Pearson Educators, 10th Edition.
Winston, W.L. 2004. Operations Research Applications and Algorithms, Duxbury Press, 4th Edition.
Land, A.H., A.G. Doig. 1960. An Automatic method for solving discrete programming problems,

Econometrica 28, 497–520.
Dakin, R.J., 1965. A tree search algorithm for mixed integer programming problems. The Computer

Journal 8, 250–255.
Brunetta, L., M. Conforti, G. Rinaldi. 1997. A branch and cut algorithm for the equicut problem.

Mathematical Programming 78, 243–263.
Mitchell, J.E.,2001. Branch and cut algorithms for integer programming: In Floudas, C.A. and

Pardalos, P.M. (Eds.), Encyclopedia of Optimization, Kluwer Academic Publishers.
Padberg, M., G. Rinaldi. 1991, A branch and cut algorithm for the resolution of large-scale

symmetric traveling salesman problems. SIAM Review 33(1), 60–100.
Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance. 1998. Branch and

price column generation for solving huge integer programs. Operations Research 46,
316–329.

Salvelsbergh, M.W.P. 1997. A branch and price algorithm to solve the generalized assignment
problem. Operations Research 45, 381–841.

Barnhart, C., C.A. Hane, P.H. Vance. 2000. Using branch-and-price-and-cut to solve origin-
destination integer multicommodity flow problems. Operations Research 48, 318–326.

Fukasawa, R., H. Longo, J. Lysgaard, M. Poggi de Aragao, E. Uchoa, R.F. Werneck. 2006. Robust
branch-and-cut-price for the Capacitated vehicle routing problem. Mathematical Programming
Series A 106, 491–511.

Ladányi, L., T.K. Ralphs, L.E. Trotter (Jr.). 2001. Branch, cut and Price: Sequential and Parallel, in
Computational Combinatorial Optimization, Naddef, N. and Jüenger, M., eds, Springer, Berlin,
223.

Munapo, E. 2020. Improvement of the branch and bound algorithm for solving the knapsack linear
integer problem, Eastern-European Journal of Enterprise Technologies, pp. 59–69.

Munapo, E. and Kumar, S. 2016. Knapsack constraint reformulation: A new approach that
significantly reduces the number of sub-problems in the branch and bound algorithm, Cogent
Mathematics, Vol. 3, 1162372, 2016.

Kumar, S., Munapo, E., and Jones, B.C. (2007) An integer equation controlled descending path to
pure integer program, Indian Journal of Mathematics, Vol 49, No 2, pp 211–237.

Kumar, S., Luhandjula, M. K., Munapo, E., and Jones, B.C. (2010). Fifty years of Integer Programming:
A review of solution approaches, Asia Pacific Business review, Vol 6, No 2, pp 5–15.

Kumar, S., and Munapo, E., (2012), Some lateral ideas and their applications for developing new
solution procedures for a pure integer programming model, Proc of Herbal International
conference of application of Mathematics and Statistics – Intelligent Solutions through
Mathematics and Statistics, (Editor) Mariappan, Srinivasan and Amritraj, Excel India
Publishers, pp 13–21.

References 17

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2
Improved solution method for the 0-1 GAP model

Abstract: This chapter presents an improved version of the transportation branch
and bound algorithm for solving the generalized assignment problem (GAP). This
improved version is based on the branch and bound technique for the GAP model
that was proposed by Munapo et al. (2015) in which the sub-problems are solved by
the available efficient transportation techniques rather than the usual simplex-based
approaches. The improvement in this approach is that branches are not necessary.
The transportation GAP model is balanced and formulated as a linear program (LP)
and solved. An interesting feature of these relaxed constraints that result from the
GAP model is that they are made up of zero and ones only as coefficients. The GAP
model with relaxed constraints is solved and at every iteration the current solution is
tested for feasibility using the original constraints. The violated original constraints
are used to generate cuts that are added to the current problem and solved to get a
new solution. If solution is feasible then it is optimal else process is repeated until a
feasible and optimal solution is found.

Keywords: Generalized assignment problem (GAP), Transportation model, Linear
programming (LP), Violated constraints and cuts

2.0 Introduction

The generalized assignment problem is a very difficult zero-one linear programming
problem (LP) Fisher, et al. (1986), Guignard and Rosenwein, (1989), Martello and
Toth, (1981), Pigatti, et al. (2005). Some of the applications of the generalized assign-
ment problem include location, machine scheduling, supply chain, routing of vehicle
and allocation of resource, Savelsburgh, (1997), Toth and Vigo (2001), Yagiura, et al.
(2004, 2006). Munapo et al. (2015) proposed a transportation branch and bound algo-
rithm for solving the generalized assignment problem. This is a branch and bound
technique in which the sub-problems are solved by use of the available efficient
transportation techniques rather than the usual simplex-based approaches. A tech-
nique for selecting branching variables is also available. Yagiura and Glover (2004)
also discussed the GAP model.

The obvious weakness of the approach proposed by Munapo et al. (2015) is that
the larger the generalized model, the larger will be the number branches required
to verify optimality.

To alleviate this challenge of large numbers of sub-problems required to verify
optimality, this chapter presents an improved version of this algorithm where there
are no more branches but only a single transportation linear programming (LP)

https://doi.org/10.1515/9783110703023-002

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-002

problem, which increases only in size (i.e. increase in the number of rows) at every
iteration.

The chapter has been organized in 7 sections. Sections 2.1 to 2.4 present the
generalized assignment problem and the relaxation process. Sections 2.5 and 2.6
present the solution process of the generalized problem and finally 2.7 presents the
conclusion.

2.1 Generalized assignment problem

In this chapter the generalized assignment problem (2.1) is considered.

Minimize

c11 c12 . . . cmn½ �

x11

x12

...
xmn

2
66664

3
77775,

subject to

ai1 ai2 ... ain½ �

xi1
xi2

...
xin

2
66664

3
77775≤ bi½ �,∀i= 1, 2, ...,m. (2:1)

x1j x2j ... 2mj½ �

1

1

...
1

2
66664

3
77775= 1½ �,∀j= 1, 2, ..., n.

where xij =0 or 1,
i= 1, 2, ...m, is a set of agents.
j= 1, 2, ...n, is a set of tasks.
cij is the cost of assigning agent i to task j.
rij is the resource needed by agent i to do task j.
bi is the resource available to agent i.

20 Chapter 2 Improved solution method for the 0-1 GAP model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.2 Relaxation process

The generalized assignment problem is relaxed by changing it into a transportation
problem. The main reason is because transportation models are easier to solve than
original linear programming version. Efficient techniques to solve the transporta-
tion models such as the MODI or network simplex method can be applied.

2.3 GAP model in relaxed form

The GAP constraints which are given in (2.2), can be replaced by clique inequalities
given in (2.3).

ai1 ai2 ... ain½ �

xi1

xi2

...
xin

2
66664

3
77775≤ bi½ �,∀i= 1, 2, ...,m. (2:2)

xi1 xi2 ... xin½ �

1

1

...
1

2
66664

3
77775≤ λi½ �,∀i= 1, 2, ...,m. (2:3)

Where λi is integer and is obtained by solving the knapsack problem in (2.4).

λ i = Maximize xi1 xi2 ... xin½ �

1

1

...
1

2
66664

3
77775,

Subject to

ai1 ai2 ... ain½ �

xi1

xi2

...
xin

2
66664

3
77775≤ bi½ �, (2:4)

0≤ xij ≤ 1.

The optimal solution to this knapsack problem is obtained using simplex method.

2.3 GAP model in relaxed form 21

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.4 The relaxed transportation model

The relaxed transportation problem is given in (2.5).

Minimize

c11 c12 ... cmn½ �

x11

x12

...
xmn

2
66664

3
77775,

Subject to

ai1 ai2 ... ain½ �

xi1

xi2

...
xin

2
66664

3
77775≤ bi½ �,∀i= 1, 2, ...,m, (2:5)

x1j x2j ... 2mj½ �

1

1

...
1

2
66664

3
77775= 1½ �,∀j= 1, 2, ..., n.

The GAP in transportation relaxed form is given in Table 2.1.

The initial solution is obtained by solving the transportation problem given in
Table 2.1.

The solution is tested for feasibility, if feasible then it is optimal else improve
solution until it is optimal.

Table 2.1: The relaxed transportation form.

Supply

c11 c12 . . . cn1 λ1

c21 c22 . . . cn2 λ2

...

cm1 cm2 . . . cm2 λm

Demand   . . . 

22 Chapter 2 Improved solution method for the 0-1 GAP model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.5 GAP transportation branch and bound algorithm

The transportation branch and bound algorithm for GAP is summarized by the fol-
lowing steps.
Step 1: Obtain a lower bound by relaxing the GAP model.
Step 2: From the most restricted row select the branching variables.
Step 3: Branch using the selected variables. Return to step 2 until a candidate solu-

tion is feasible.

Candidate solution: A solution is said to be the candidate solution if it is the small-
est optimal solution available.

2.5.1 Optimality

From the k terminal nodes Zτ
1 , Zτ

2 , ..., Zτ
k the optimal solution Zo to the GAP problem

is obtained as given in (2.6).

Zo = min Zτ
1 ,Zτ

2 , ..., Zτ
k

� �
. (2:6)

2.5.2 Numerical illustration

Use the transportation branch and bound algorithm to (2.7).

MinZ0= 127 175 151 127 197 142 191 199 192 133 124 135½ �

x11

x12

x13

x14

x21

x22

x23

x24

x31

x32

x33

x34

2
66666666666666666666666666666664

3
77777777777777777777777777777775

, (2:7a)

2.5 GAP transportation branch and bound algorithm 23

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Subject to:

49 75 46 74

25 48 61 71

43 58 86 47

2
64

3
75

x11 x21 x31

x12 x22 x32

x13 x23 x33
x14 x24 x34

2
66664

3
77775≤

125

100

118

2
64

3
75 (2:7b)

x11 x21 x31

x12 x22 x32

x13 x23 x33

x14 x24 x34

2
66664

3
77775

1 1 1 1

1 1 1 1

1 1 1 1

2
64

3
75=

1

1

1

1

2
66664

3
77775 (2:7c)

Where

xij =0 or 1

i= 1, 2, ...m,

j= 1, 2, ...n,

(2:7d)

Solving directly using the branch and bound algorithms we require 15 sub-problems
to verify optimality and have (2.8) as the optimal solution.

Zo = 520, x11 = x14 = x22 = x33 = 1. (2:8)

From (2.9) we have (2.10).

λi = Maximize xi1 xi2 xi3 xi4½ �

1

1

1

1

2
66664

3
77775, i = 1, 2, 3.

Subject to

ai1 ai2 ai3 ai4½ �

xi1

xi2

xi3
xin

2
66664

3
77775≤ bi½ �, (2:9)

0≤ xij ≤ 1,

∀i= 1, 2, 3.

24 Chapter 2 Improved solution method for the 0-1 GAP model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Solving the three LPs we have (2.10).

λ1 = 2, λ2 = 2& λ3 = 2. (2:10)

The relaxed transportation becomes as shown in Table 2.2.

Balancing the transportation problem, we have Table 2.3.

Node 1
Solving as a transportation problem the optimal solution is given in Table 2.4.

Table 2.2: The relaxed transportation form for the illustration.

Supply

    

    

    

Demand    

Table 2.4: Optimal solution to balanced transportation problem.

Supply

()   ()  

    () 

 () ()   

Demand     

Table 2.3: Balanced transportation problem.

Supply

     

     

     

Demand     

2.5 GAP transportation branch and bound algorithm 25

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimal solution is given in (2.11).

Zo = 511, x11 = x14 = x32 = x33 = 1. (2:11)

This solution is Node 0 and is infeasible. The basic variables x32 and x33 cannot be
both basic. In other words the third constraint is violated, i.e.

43ð0Þ+ 58ð1Þ+ 86ð1Þ+ 47ð0Þ≤ 118,

144≤ 118. (2:12)

This is not possible so either x32 =0 or x33 =0. These are the two initial branches of
transportation branch and bound.

First Branch x33 =0
When branching in this direction the transportation problem becomes Table 2.5.

Solving this we obtain the optimal solution which becomes our Node 2 as in Table 2.6.

The optimal solution is given in (2.13).

Zτ
1 = 546, x11 = x13 = x32 = x35 = 1. (2:13)

This solution is feasible and is a candidate solution.

Table 2.5: When x33 =0.

Supply

     

     

     

Demand     

Table 2.6: Node 2.

Supply

()  ()   

    () 

 ()  ()  

Demand     

26 Chapter 2 Improved solution method for the 0-1 GAP model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Second Branch x32 =0
When branching in this direction the transportation problem becomes Table 2.7.

Solving this we obtain the optimal solution which becomes the Node 3 as in Table 2.8.

The optimal solution is given in (14).

Zτ
2 = 520, x11 = x14 = x22 = x33 = 1. (2:14)

This solution is feasible and is also a candidate solution.
The transportation branch and bound algorithm can be represented as a tree as

shown in Figure 2.1.

Table 2.8: Node 3.

Supply

()   ()  

 ()   () 

  ()  () 

Demand     

Table 2.7: When x32 =0.

Supply

     

     

     

Demand     

511Z = (Infeasible solution)

33 0x 32 0x

(Feasible solution) 1 546Z 2 520Z (Feasible solution) 2 3

1

==

= =
τ τ

Figure 2.1: Transportation branch and bound.

2.5 GAP transportation branch and bound algorithm 27

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The optimal solution for the GAP illustration is given in (2.15).

Zo = min 546, 520½ �= 520. (2:15)

2.6 Improved solution method for GAP

In this approach the relaxed GAP model is still changed into a transportation prob-
lem, balanced, and not solved directly. Instead, we use the relaxed GAP transporta-
tion problem to generate new constraints. These relaxed constraints are special and
easier to solve than the original ones. An interesting feature of these relaxed con-
straints is that they are made up of zero and ones only as coefficients. The GAP
model with relaxed constraints is solved and at every iteration the current solution
is tested for feasibility using the original constraint. The violated original con-
straints are used to generate cuts that are added to the current problem and solved
to get a new solution. If solution is feasible then it is optimal else process is re-
peated until a feasible and optimal solution is found.

2.6.1 Proposed algorithm

The improved GAP solution method is summarized as follows.
Step 1: Relax GAP to obtain a transportation model.
Step 2: Balance the transportation model and formulate a relaxed LP.
Step 3: Solve the relaxed LP model to obtain an optimal integer solution. If solu-

tion is feasible then it is optimal else go to Step 4.
Step 4: Use the violated original constraints to generate cuts and add these cuts to

the current LP problem and return to Step 3. Generated cuts must have 0,-1
and 1 as coefficients only.

2.6.2 Strength of proposed algorithm

The problem remains one. The number of sub-problems are kept at minimal.

2.6.3 Reconsider the same numerical example

Solving the same numerical example using the improved gap solution we start with
the balanced transportation given Table 2.3. From Table 2.3 the relaxed linear pro-
gramming model is given in (2.16).

28 Chapter 2 Improved solution method for the 0-1 GAP model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

MinZ0= 127 175 151 127 197 142 191 199 192 133 124 135½ �

x11

x12

x13

x14

x21

x22

x23

x24

x31

x32

x33

x34

2
66666666666666666666666666666664

3
77777777777777777777777777777775

(2:16a)

Subject to:

x11 x12 x13 x14

x21 x21 x23 x24

x31 x32 x33 x34

2
64

3
75

1 1 1

1 1 1

1 1 1

1 1 1

2
66664

3
77775≤

2

2

2

2
64
3
75, (2:16b)

x11 x21 x31

x12 x22 x32

x13 x23 x33

x14 x24 x34

2
66664

3
77775

1 1 1 1

1 1 1 1

1 1 1 1

2
64

3
75=

1

1

1

1

2
66664

3
77775 (2:16c)

Where

xij =0 or 1

i= 1, 2, 3 is a set of agents,
j= 1, 2, 3, 4 is a set of tasks.

9>=
>; (2:16d)

The flow diagram for the given numerical illustration using the improved solution
method for GAP is given in Figure 2.2.

2.6 Improved solution method for GAP 29

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Iteration 1
Solving (2.16) as a linear integer problem we have Node 0.

Node 0: Zo = 511, x11 = x14 = x32 = x33 = 1.

Violation: 43 58 86 47½ �
x31
x32
x33
x34

2
664

3
775≤ 118½ �.

Generated cut: x31 x32 x33 x34½ �
0
1
1
0

2
664

3
775≤ 1. Note that the cut has coefficients

0s and 1s only.

Iteration 2
Solving (2.16) + cut as a linear integer problem we have Node 1.

Node 1: Z1 = 520, x11 = x14 = x22 = x33 = 1.
Check violations: No violations and therefore this solution is feasible and

optimal.
The search tree for the proposed algorithm can be represented in Figure 2.2.

Note that the problem remains one and that the number of rows increase as cuts
are added at every iteration.

2.7 Conclusions

The proposed approach has the advantage that the problem remains a single prob-
lem. The numbers of sub-problems created are kept at minimal thus reducing the
chances of the GAP model exploding into large numbers of sub-problems as is the
case with branch and bound related approaches. The relaxed coefficients of the re-
laxed formulated LP are made of zeros and ones only. This makes the sub-problems
easier to solve than the original GAP constraints.

0

0 511Z (infeasible solution)

32 33 1x x

1

0 520Z (feasible solution & optimal)1

0

+ ≤

=

=

Figure 2.2: Search tree for the proposed algorithm.

30 Chapter 2 Improved solution method for the 0-1 GAP model

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

References

Fisher, M.L., Jaikumar, R., Van Wassenhove, L.N., (1986). A Multiplier Adjustment Method for the
Generalized Assignment Problem. Mangement Science 32(9),1095–1103.

Guignard, M. Rosenwein, M., (1989). An Improved Dual-Based Algorithm for the Generalized
Assignment Problem, Operations Research 37(4),658–663.

Martello, S., Toth, P., (1981). An algorithm for the generalized Assignment Problem. In Operations
Research 81. J.P. Brans (ed.), North-Holland, Amsterdam, 589–603.

Munapo, E., Lesaoana, M., Philimon, N., & Kumar, S. (2015). A transportation branch and bound
algorithm for solving the generalized assignment problem. International Journal of System
Assurance Engineering and Management. 6. 217–223. 10.1007/s13198-015-0343-9.

Pigatti, A., Poggie de Aragao, M., Uchoa, E., (2005). Stabilized branch and cut and price for the
generalized assignment problem. In 2nd Brazilian Symposium on Graphs, Algorithms and
Combinatorics. Electronic Notes in Discrete Mathematics, Elsevier, Amsterdam, Vol. 19,
389–395.

Ross, G.T., Soland, R.M., (1975). A Branch and Bound algorithm for the Generalized Assignment
Problem, Mathematical Programming 8, 91–103.

Savelsburgh, M., (1997). A branch and price algorithm for the generalized assignment problem,
Operations Research 45(6),831–841.

Toth, P., Vigo, D., (2001). The Vehicle Routing Problem, Society for Industrial and Applied.
Yagiura, M., Ibaraki, T., Glover, F., (2004). An ejection chain approach for the generalized

assignment problem, Informs Journal of Computing 16, 133–151.
Yagiura, M., Ibaraki, T., Glover, F., (2006). A path re-linking approach with ejection chains for the

generalized assignment problem, European Journal of Operational Research 169, 548–569.

References 31

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3
A search for an optimal integer solution over
the integer polyhedron – Two iterative approaches

Abstract: This chapter presents a search procedure for a pure integer programming
model, which is a modification of the simplex method for linear programming. This
modified search procedure moves on the integer polyhedron to find the optimal in-
teger solution. This integer polyhedron is formed within the convex feasible space
generated by the given linear constraints. Young (1965, 1968, 1969) developed, for the
first time, a method that searched for the optimal solution over the integer polyhedron,
but surprisingly this method has not received as much attention as other methods
have. In this chapter, a new search procedure over the integer polyhedron has been
described. This new method is by Munapo, Kumar and Khan (2010, 2012) and it is
different to Young’s approach and it was developed independently. This new
method has been compared to the Young’s approach and the method by Munapo,
Kumar and Khan (2010, 2012) has potential applications, when information recy-
cling in integer programs is required. Some illustrative examples are given.

Keywords: Integer polyhedron, Young’s approach, Pure integer program, Gomory
constraints, Integer polyhedron iterative approach

3.0 Introduction

An integer program is a linear program with integer restrictions on all variables. It
is also known as a pure linear integer program (PLIP). These problems are usually
difficult to solve as the required optimal integer point may be within the convex
region generated by the LP constraints. An exception arises for totally uni-modular
systems, where extreme points of the convex polyhedron are also integer points.
Since the required optimal integer solution is not necessarily an extreme point of the
convex space, the LP based approaches need appropriate modifications to detect the
integer optimal solution. For a general pure integer programming (PIP) model, Young
(1965, 1968, 1969) developed a simplex like search procedure. Young’s approach
moves on an integer polyhedron. He called this approach a primal integer program-
ming method. It may be noted that although the method has been around for a long
time, but not much has been written about its performance, application and usage by
the practitioners, as the software developers did not pay attention to include Young’s
approach in the standard LP and ILP solvers. However, a search for a direct method
remained in demand as can be seen from Schnijiver (1986). Motivated by Schnijiver
(1986) statement, Munapo, Kumar and Khan (2010, 2012) developed a direct method

https://doi.org/10.1515/9783110703023-003

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-003

that finds an optimal integer point by moving along on the integer polyhedron. The
approach by Munapo, Kumar and Khan (2010), is different to Young’s approach and
unlike the Young’s approach, where recycling concept by Kumar (2005, 2006) is also
applicable. Both approaches are discussed in this chapter. This chapter has the fol-
lowing objectives:
(a) Identify properties associated with the integer polyhedron.
(b) Discuss the Young’s approach.
(c) Present the alternative search method by Munapo, Kumar and Khan (2010),

which also moves around the integer polyhedron. It is hoped that it will revive
interest in the direct search over the integer polyhedron. This new approach
has been called “Integer Polyhedron Search Procedure” (IPSP).

(d) We hope, our approach will encourage researchers to experiment with these
two direct search methods and software companies will add these procedures
in the software library. We also hope researchers will evaluate performances of
these two methods and compare them with other methods for solving a general
linear integer program. As far as known to us, experiments with these direct
search methods are lacking in the literature.

Other available approaches in integer programming rely on the strategy to
generate a continuous LP optimal solution and from the optimal LP solution,
these methods have developed strategies to move towards the required integer
optimal solution (see Edelsbrunner (1987), Beasely (1996), Hillier and Lieber-
man (2005), and Karlof (2005). Other studies that may be of interest are: Nem-
hauser and Wolsey (1988); and Salkin and Mathur (1989). A review of various
approaches has been presented by Kumar et al. (2010).

This chapter has been organized in six sections. Section 3.1 deals with vari-
ous definitions and the mathematical background required for the development
of this chapter. Young’s (1965) approach has been described in Section 3.2. The
integer polyhedron search procedure (IPSP) by Munapo, Kumar and Khan (2010)
has been presented in Section 3.3. Numerical illustrations have been presented
for both approaches are discussed in Section 3.4 and finally the chapter has been
concluded in Section 3.5.

3.1 Background information

This section deals with the necessary background information needed for the two
methods presented in this chapter.

34 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

3.1.1 Geometry of integer-points in a convex space defined
by the linear constraints

Consider a m constraints and n variables PIP with integer data, i.e. A, b and C are
integer element matrix and vectors, respectively. Let a PIP model be denoted by:

Max x0 =CX

Subject to AX ≤ b,X ≥0 and integers. (3:1)

After introducing the slack variables, (3.1) can be expressed as:
Max x0 =CX

Subject to AX = b,X ≥0 and integers. (3:2)

The models (3.1) and (3.2) are equivalent, except for the dimensions of the matrix
A and the vector X due to addition of slack variables in (3.2). Also an extreme
point vertex and the associated basic feasible solution of (3.2) for the relaxed LP di-
vides (n+m) variables into two subsets, m basic and n non-basic variables, where
A= ðB,NÞ and X = ðXB +XNBÞ so that

BXB +NXNB = b or IXB + ðB−1NÞXNB = B−1b (3:3)

Similarly, all integer points in the feasible region also divide the (n+m) variables into
two sub-sets: the set X represents the physical location of the point in the n dimen-
sional space of (3.1), and the set including the slack variables represents a point in
(n+m) dimensional space in (3.2). Thus, the two sets for all integer points do not have
a sharp division ofm and n as is the case for the LP extreme points.

Integer polyhedron is a convex space generated by joining the integer points in
the feasible convex region of AX ≤b,X ≥0 such that at least one higher integer point
of the integer polyhedron is outside the convex region defined by (3.1). It means
that if xj = αj, j= 1, 2, . . ., n is an extreme point of the integer polyhedron, then there
exists a point

xj = αj + 1, or at least some j, j= 1, 2, . . ., n,

which is not in the LP feasible region. Let the LP convex space be denoted by SLP
and the integer-point convex space be denoted by SIP. The integer polyhedron con-
vex space will satisfy that it is a sub-space of the LP convex region, SIP ≤ SLP. This
inequality holds for all LP/IP models, including the uni-modular systems like trans-
portation and assignment models, where SLP = SIP. The integer polyhedron has inter-
esting properties. Proofs are given where necessary.

Property 3.1: All n dimensional integer points within the feasible region of the con-
vex region defined by the constraints set AX ≤b,X ≥0 of the given PIP, are such that
the associated ðn+mÞ dimensional vectors with respect to (3.2) are also integer
vectors.

3.1 Background information 35

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Property 3.2: The search of an optimal integer point along the integer polyhedron
should be free of fractional values. This follows immediately from Property 1 above.

Property 3.3: Given that matrix A is composed of integer elements, the selected
pivot element aij is a non-negative integer element such that aij ≥ 1. If aij = 1, the
transformed matrix A as well as the RHS vector b will remain integer-valued ele-
ments after the pivoting operation. However, if the selected pivot element aij > 1,
the transformed matrix after pivoting will contain fractional elements, hence it will
not lead to an extreme point of the integer polyhedron. In that case, some modifica-
tions are required, as developed by two independent approaches, which are dis-
cussed in this Chapter.

Property 3.4: Fractional values can be avoided by using an additional constraint,
described below. Assuming, that bi> 0, let a pivot row, pivot element and pivot vari-
able be given by:

ai1x1 + ai2x2 + . . . + aijxj + . . . + ainxn + si =bi, aij and xj, respectively.

When aij>1, dividing the pivot row by aij, yields:

ai1
aij

x1 +
ai2
aij

x2 + . . . + xj + . . . + ain
aij

xn +
1
aij

si =
bi
aij

(3:4)

Separating fractional and integer part in each term in (3.4), keeping the fractional
parts positive, gives:

ðdi1 + f1Þx1 + ðdi2 + f2Þx2 + . . . + xj + . . . + ðdin + fnÞxn + ðdi + fiÞsi = ðd+ f Þ (3:5)

where 0< f1, f2, . . ., fi, . . ., fn, f < 1 and di1,di2, . . .,din,di,d are discrete constants. The ele-
ment d≥0 in the RHS of (3.5), since bi >0. The relation (3.5) can be expressed as (3.6)
as follows:

di1x1 +di2x2 + . . . + xj + . . . +dinxn +disi −d

= f − ðf1x1 + f2x2 + . . . + fnxn + fisiÞ
(3:6)

Since LHS of (3.6) is an integer and the RHS will be less than the fractional part of
the RHS of (3.5), it is easy to see that:

Max ½f − ðf1x1 + f2x2 + . . . + fnxn + fisiÞ�=0 (3:7)

) di1x1 +di2x2 + . . . + xj + . . . +dinxn +disi − d≤0 (3:7)

From (3.7), we get:

xj ≤d− ðdi1x1 + di2x2 + . . . + dinxn + disiÞ

36 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

or equivalently,

xj = d− ðdi1x1 +di2x2 + . . . +dinxn +disiÞ− x′j (3:8)

where x′j is also restricted to a nonnegative integer value. This constraint (3.8) have
been used in different ways by Young (1965) and by Munapo, Kumar and Khan
(2010). This additional constraint (3.8) allows us to move on the integer polyhedron.
More on the application of (3.8) will be discussed in Sections (3.3) and (3.4).

It is important to note that the original pivot element which was greater than 1
is reduced to 1, hence fractions will not be generated.

Since the new variable x′j may again be subjected similar situation as the vari-
able xj, it has been assumed that in general, xl+ 1

j will be used to represent the new
variable replacing the variable xlj, l=0, 1, 2, . . . and j= 1, 2, . . . Note that xj ≡ x0j .

Property 3.5: In LP, and as well as in PIP, each entry in a pivoting operation is a solu-
tion of the system of linear equations of the form BXB =Pi or b, which by Cramer’s rule
is given by xi =detðBiÞ=detðBÞ. Since in integer polyhedron case fractions do not arise,
it leads to an interesting result that all bases for the integer polyhedron will be such
that their detðBÞ= 1, otherwise fractions will be generated.

3.1.2 Optimality of the solution

Since we are dealing with convex space generated by the linear constraints, the
usual LP rules are applicable. In addition, the solution is required to satisfy the inte-
ger requirement. The selected pivot element may not satisfy the integer requirement.
When the Property 3.3 is satisfied, the normal simplex iteration will be carried out,
otherwise when fractions arise, one must develop a constraint (3.8) and carry out the
iterations as discussed in the two approaches. When optimality conditions are satis-
fied, a search for the optimal solution over the integer polyhedron is complete.

3.2 Young’s primal integer programming approach (1965)

Young (1965) selects the source column and row exactly in the same way as it is done
for the LP model, but instead of pivoting on the selected pivot element, he developed
a Gomory constraint and selected the pivot element from the Gomory constraint,
which has the co-efficient value 1. Since in Young’s approach the pivot element is
always 1, the property 3 is satisfied. Hence Young’s iteration transforms an integer
matrix into another integer matrix, thus one is moving from one integer point to an-
other integer point on the integer convex polyhedron. In this respect, the Young’s
method, and the method by Munapo, Kumar and Khan (2010) are seemingly similar,

3.2 Young’s primal integer programming approach (1965) 37

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

but are different as the substitution (3.8) retains the history of the iterative process.
Since an integer point in n dimensional space in the positive quadrant will be an n
element vector with value for each element ≥0, Young’s tableau are subject to in-
crease in dimension but the approach discussed in Section (3.3) does not increase di-
mension with each iteration.

3.2.1 Numerical Illustration of Young’s primal approach

Consider a trivial example that was also used by Young (1965).
Max x0 = 3x1 + x2,
subject to 2x1 + 3x2 ≤ 6,

2x1 − 3x2 ≤ 3,

x1, x2 ≥0 and integers. (3:9)

This problem can be easily analysed by graphical approach. Before attempting to
Young’s approach, let us investigate it graphically, as shown in Figure 3.1.

Now let us investigate the approach by Young (1965).
Let us define for convenience, the given variables are denoted by xj, j= 1, 2 . . . , n,

(in the illustration, we have two variables.)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

Y-Values

Figure 3.1: From the graph, one may note that the feasible space has only five integer points.
This information is given in Table 3.1.

38 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The slack variables are denoted by si, i= 1, 2, . . .m and slack variables required
for the Gomory constraints be denoted by tj, j= 1, 2, . . . , k. We have two slack varia-
bles and other slack variables will unfold as we go through the search procedure.

The initial Tableau for the example (3.9) will be as shown in Table 3.2.

According to the usual simplex iterations, both variables x1 and x2 can enter the
basis. If x1 enters, the outgoing variable will be s2 and similarly if x2 enters, the vari-
able to go out will be s1.In both cases, the pivot element will be an element greater
than 1, hence fractions will be generated and we will no longer be on the integer
polyhedron. If arbitrarily, we select x2 as the entering variable, we develop a con-
straint equivalent to (3.8), which is given by:

xj = d− ðdi1x1 +di2x2 + . . . +dinxn +disiÞ− x′j

or for the above case, it will be:

6
3

� �
= 2

3

� �
x1 +

3
3

� �
x2 +

1
3

� �
s1) 2= x2 + t1.

This constraint is added to (3.9), resulting in the Table 3.3 given below.
Note that when x2 enters the pivot element will be 1 as indicated by an asterisk

mark and this pivot will take us to an improved integer point. The updated table is
given in Table 3.4.

Table 3.1: Feasible points and value of the objective function.

Serial No Feasible Pt Z Value Remarks

 (,)  Not opt

 (,)  Not opt

 (,)  Not opt

 (,)  Optimal

 (,)  Not opt.

Table 3.2: Initial table for model (3.9).

RHS x1 x2 s1 s2

Z  ‒ ‒  

s1     

s2   ‒  

3.2 Young’s primal integer programming approach (1965) 39

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table 3.4: Improved values after the pivot operation.

RHS x1 x2 s1 s2 t1.

Z  ‒    

s1      ‒

s2      

x2.      

Table 3.3: After adding the additional constraint.

RHS x1 x2 s1 s2 t1.

Z  ‒ ‒   

s1      

s2   ‒   

t1.   *   

Table 3.5: Table after adding the extra constraint due to
fractions.

RHS x1 x2 s1 s2 t1 t2

Z  ‒     

s1      ‒ 

s2       

x2       

t2  *    ‒ 

Table 3.6: After the pivot operation.

RHS x1 x2 s1 s2 t1 t2

Z      ‒ 

s1      * ‒

s2       ‒

x2       

x1      ‒ 

40 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table 3.4 indicates that we have not reached to an optimal solution. When vari-
able x1 enters, the outgoing variable will be s1 and once again the pivot will lead to
fractional values as the pivot element value is not equal to 1. This will need generat-
ing a new constraint and it will be 0= x1 − 2t1 + t2. This constraint is added to the
Table 3.4, resulting in Table 3.5 and after the pivot operation gives Table 3.6.

The solution in Table 3.6 is not yet optimal. The variable t1 enters and s1 will
exit the basis. The pivot element is 1, shown by an * mark. No additional constraint
is required. The pivot resulted in Table 3.7.

The pivot being not equal to 1, a new constraint will have to be added. It will give
rise to new Table 3.8 given below:

The pivot operation give rise to Table 3.9.

Table 3.7: Updated table.

RHS x1 x2 s1 s2 t1 t2

Z       ‒

t1       ‒

s2    ‒   *

x2.    ‒   

x1       ‒

Table 3.8: After adding the constraint.

RHS x1 x2 s1 s2 t1 t2 t3

Z       ‒ 

t1       ‒ 

s2    ‒    

x2.    ‒    

x1       ‒ 

t3    ‒   * 

3.2 Young’s primal integer programming approach (1965) 41

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

It will give rise to one more additional constraint as shown in Table 3.10, which
indicates the solution is not optimal. After the iteration, we get Table 3.11.

Table 3.9: Updated table after the pivot operation.

RHS x x s s t t t

Z    ‒    

t1    ‒    

s    *    ‒

x.        ‒

x    ‒    

t    ‒    

Table 3.10: Updated Table.

RHS x1 x2 s1 s2 t1 t2 t3 t4

Z    ‒     

t1    ‒     

s2        ‒ 

x2.        ‒ 

x1    ‒     

t2    ‒     

t4    *    ‒ 

Table 3.11: Final Tableau resulting in an optimal integer
solution.

RHS x1 x2 s1 s2 t1 t2 t3 t4

Z         

t1        ‒ 

s2         ‒

x2.         ‒

x1         

t2        ‒ 

s1        ‒ 

42 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Solution summary is presented in Table 3.12

Later Young expressed simplex tables as a function of non-basic variables as from
all Tables, it may be noted that number of non-basic variables remain two. For ex-
ample, the initial table will look like the Table 3.13, given below.

Note that S1 and S2 are the slack variables in the two inequalities. The variable X1 is
the entering variable and S2 will be the outgoing variable by the conventional sim-
plex rule. Since it will lead to fractions, Young developed a constraint, which re-
sults in the last row with pivot element as 1, resulting in no fractions by Property 3.

3.3 The Integer Polyhedron Search Algorithm (IPSA)

The Integer polyhedron search algorithm was developed by Munapo, Kumar and Khan
(2010, 2012). Their approach, seemingly similar, to Young’s approach; is different, and

Table 3.12: Summary of all computations.

Reference
Table

S. No Solution
x1, x2, s1, s2

Z Remarks

T.  ,,,  Not optimal

T.  ,,,  Not optimal

T.  ,,,  Degenerate

T.  ,,,  Degenerate

T.  ,,,  Optimal

Table 3.13: Initial Table shown as a function of non-basic
variables.

 − x1 # − x2

X  ‒ ‒

X  ‒ 

X   ‒

S   

S   ‒

t  * ‒

3.3 The Integer Polyhedron Search Algorithm (IPSA) 43

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

it was developed independently of the Young’s approach. They also find the pivot ele-
ment as is done in simplex iterations and when pivot element is not equal to 1, they
develop a condition, and call it an upper bound constraint. This upper bound con-
straint is used to replace the variable and maintain integers values. Let us explain this
point by using the example 3.1 and its initial Table 3.2.

As noted earlier, both variables x1 and x2 qualify for entry and both will lead to
fractional values. If we let the variable x1 enter the basis, the pivot row we have is:

2x1 − 3x2 +0s1 + s2 = 3 (3:10)

The relation (3.10) can be expressed as:

2
2

� �
x1 −

3
2

� �
x2 +0s1 +

1
2

� �
s2 =

3
2

� �

Like in the Gomory constraint, separating integers and fractions, retaining frac-
tional part positive, we have:

1+0ð Þx1 + − 2+ 1=2ð Þx2 +0s1 + 0+ 1
2

� �
s2 = 1+ 1

2

� �

The above relation gives rise to an upper bound relation (3.11) given below:

x1 − 2x2 + x11 = 1 or x1 = 1+ 2x2 − x11 (3:11)

When the variable x1 in Table 3.2 is replaced by the relation (3.11), i.e. x1 = 1 is re-
placed by x11, it gives rise to Table 3.14.

Not that table size remains unchanged, objective has improved, and we have an
extra relation (3.11) in the memory. The integer point corresponding to Table 3.14 is
given by:

x11 = x2 = 0, s1 = 4, s2 = 1, and x1 = 1.

The solution in Table 3.14 is not optimal. The variable x2 enters and once again,
pivot element is not equal to 1, we need to develop a new upper bound relation,
which is given below:

Table 3.14: After replacing the variable x1 by x11 using (3.11).

RHS x11 x2 s1 s2

Z  + ‒  

s1  ‒ *  

s2  ‒   

44 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

− 2x11 + 7x2 + s1 = 4≡ −
2
7

� �
x11 + x2 +

1
7

� �
s1 =

4
7

� �
,

which leads to the relation (3.14) given by:

x2 = − x12 + x11 (3:14)

Substituting relation (3.14) in Table 3.14, we have Table 3.15.

Now x11 enters at its upper bound. It will give rise to a relation:

x11 = 2x12 − x21 (3:15)

From the Table 3.14 and the relation (3.15), we get Table 3.15a.

The variable x12 will be at its upper bound. The relation will be given by (3,16) and it
will result in Table 3.16.

x12 = 1+ 2x21 − x22 (3:16)

Table 3.15: Obtained from Table 3.14 and relation (3.14).

RHS x11 x12 s1 s2

Z  ‒   

s1  * ‒  

s2  ‒ ‒  

Table 3.15a: After replacing the incoming variable at its upper
bound.

RHS x21 x12 s1 s2

Z   ‒  

s1  ‒ *  

s2   ‒  

3.3 The Integer Polyhedron Search Algorithm (IPSA) 45

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Optimal solution is given by:

S1= 1, S2= 4, and x21 = x22 =0 (3:17)

When values in (3.17) are used in (3.16), we have x12 = 1. These values are used in
relation (3.15), we have x11 = 2 and again go back to relation (3.14), we have x2 = 1
and finally using the relation (3.11), we have x1 = 1

Thus, the final optimal solution is:

x1 = 1, x2 = 1, s1 = 1, and s2 = 4, Z = 4 as was expected.

3.3.1 Integer Polyhedron Search Algorithm (IPSA) by Munapo, Kumar
and Khan (2010)

From the properties discussed in Section 3.2 and from the illustration given above,
the integer polyhedron search algorithm can be summarized in the following steps:
Step 1: Assume that all bi ≥0. Select a pivot element as is selected in the simplex

method. If the pivot element is >1, go to Step 2; else when it is l, go to
Step 3.

Step 2: Develop a new upper bound constraint, similar to (3.8), i.e.
xj = d− ðdi1x1 +di2x2 + . . . + xj + . . . +dinxn +disiÞ− x1j and replace the pivot var-
iable xj by this upper bound relation. The number of variables will remain
unchanged and the variable xj is replaced by the variable x1j . Keep this lin-
ear relation in memory and go to Step 4.

Step 3: Apply the usual pivot operation used in the simplex procedure and go to
Step 4.

Step4: Check if the objective row has nonnegative elements? If yes, then an opti-
mal integer solution has been obtained, else return to Step 1.

The flow diagram for the algorithm is shown in Figure 3.2.
Further reading on Gomory cuts can found in the work by Gomory (1965, 1969);

Balas et al. (1996), Balas (1971), Salkin (1971), Gomory et al. (2003) and Kumar
et al. (2008).

Table 3.16: Optimal solution.

RHS x21 x22 s1 s2

Z     

s1   ‒  

s2  ‒   

46 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

3.4 More numerical illustrations of IPSA

Consider two simple examples taken from Winston (2004). Example 3.4.1 illustrates
that IPSA is insensitive with regard to the magnitude of fractions compared to the
Branch and Bound (BB) approach, and Example 3.4.2 illustrates a degenerate case
handled by the IPSA.

Example 3.4.1
Maximize Z =8x1 + 4x2
Such that x1 + x2 ≤ 5

9x1 +4x2 ≤ 40 (3:18)

where x1, x2 ≥0 and integer.
The problem (3.18) can be rearranged as a simplex tableau shown in Table 3.17.
As per the simplex method, one would select pivot element 9 in the last row. However, since it

will result in fractional values, a corresponding upper bound constraint for the variable x1 is devel-
oped. It is given by x1 ≤4, or equivalently (3.19).

No

No

Yes

Yes

No

Select pivot element as done in
simplex approach

Is the pivot going to
generate fractions?

Create an upper bound substitution.

Is the objective row
nonnegative?

fractions?

Optimal integer solution obtained.

Apply the usual
Simplex
iteration

Figure 3.2: Integer Polyhedron Search Algorithm.

3.4 More numerical illustrations of IPSA 47

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

x1 =4− x11 (3:19)

Here x11 is a nonnegative integer variable. Substituting (3.19) in Table 3.17, generates Table 3.18.

From Table 3.18, the next pivot element to be selected has a tie. It can be 1 in the second row or 4
in in row 3. Since pivot is 1, it will not give rise to fractions; hence Step 2 will be applicable. The
outcome is shown in Table 3.19.

This is an optimal solution to problem (3.19). It results in

x11 =0) x1 = 4, x2 = 1, s1 = s2 =0, Z = 36

The above simple example was experimented with the BB approach. It was noticed that if we
change slightly some elements, the BB method requires relatively more effort before identifying
the optimal solution. It is summarized in Table 3.20.

From Table 3.20, it is clear, that although optimality was achieved at iteration 2, its verification
took longer, whereas the effort required in the IPSA is independent of minor changes in the RHS.
More experiments are desired.

Table 3.18: First Iteration of the Search.

x11 x s s RHS

Z  ‒   

S ‒ *   

S ‒    

Table 3.17: Initial Tableau for LIP (3.18).

x x s s RHS

Z ‒ ‒   

S     

S *    

Table 3.19: Second Iteration of the Search.

x11 x s s RHS

Z     

X ‒    

S ‒  -  

48 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Example 3.4.2 Consider again one more example taken from Winston (2004).
Maximize Z = x1 + 2x2
Such that

x1 + x2 ≤ 10, 2x1 + 5x2 ≤ 30 (3:20)

x1, x2 ≥0 and integer.
The solution to Example 3.4.2 is summarized in Table 3.21.

The above problem, when solved by the BB method, creates 8 sub-problems before
optimality is reached.

Table 3.20: Summary of Results from the BB Method.

Changes in RHS Solution of sub-problem
that resulted in the
optimal solution

Optimality verified at
iteration number

Iterations in the
proposed method

No change – Numerical
example with
b1 = 5,b2 =40

  

b1 =6,b2 = 40   

b1 =6,b2 = 41   

b1 =6,b2 = 42   

b1 = 7,b2 = 42   

Table 3.21: Summary of the Solution for Example 3.5.2.

Iteration
number

Basis/
Non-
basic

Value of
basic
variables

Pivot and
its
position

Upper bound
constraint

Solution Optimality
of the
solution

Initial Z, s1, s2=
x1, x2

, ,   in row ,
col. 

x2 =6− x′2 x1 = x2 =0 Not
optimal

Iteration  Z, s1, s2=
x1, x′2

, ,   in row 

Col. 
x1 = 3x′2 − x′1 x1 =0,

x2 =6

Not
optimal

Iteration  Z, s1, s2=
x′1, x′2

, ,   in row 

Col. 
Not required Same as above due

to degeneracy
Not
optimal

Iteration  Z, s1, x′2=
x′1, s2

, ,   in row 

col. 
x′1 = 1+ s2 − x′′1 Same as above due

to degeneracy
Not
optimal

Iteration  Z, s1, x′2=
x′′1, s2

, ,  NA NA x1 = 5, x2 =4

Z = 13
Optimal

3.4 More numerical illustrations of IPSA 49

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

3.5 Concluding remarks

The process has many interesting features.
a. Since one is not dealing with fractions, there are no round-off errors in the

process.
b. The number of variables grows, but the dimension of matrix A remains

unchanged.
c. There is neither a sub-problem nor any growth in the number of these sub-

problems at any iteration, which is not true for the branch and bound, cutting
plane and hybrid approaches.

d. Need for an initial good solution is not crucial.
e. The proposed algorithm makes a direct search over the integer polyhedron, it is

not dependent on the continuous LP optimal solution.
f. The bounded variable constraint embedded within the approach executes an it-

eration faster, compared to a normal pivoting operation.
g. The approach is suitable for solving protean integer programs as information is

never lost.
h. Improvements in computational efficiency, if any, will only be known after de-

velopment of the software, testing and handling larger problems. This remains
as a task for future investigations.

References

Balas, E., Ceria, S., Cornnejols, G. and Natraj, N. (1996) Gomory cuts revisited, Operations
Research Letters, 19(1), pp 19 –39.

Balas, E., (1971) Intersection cuts – a new type of cutting planes for integer programming,
Operations Research, 19(1), pp 1 –9.

Beasely, J.E., (Ed.) (1996) Advances in Linear and Integer programming, Oxford University Ptress.
Edelsbrunner, H., (1987) Algorithms in combinatorial Geometry, Springer-Verlag.
Gomory, R.E., (1965) On the relation between integer and non-integer solutions to a linear program,

Proc. of the National Academy of Sciences, 53(2), pp 260 –265.
Gomory, R.E., (1969) Some polyhedral relations to combinatorial problems, Linear Algebra and its

Applications, 2(4), pp 451–458.
Gomory, R.E., Jonson, E.L. and Evans, L. (2003) Corner polyhedral and their connections with

integer programming, Mathematical programming, Ser B, 96, pp 321 –339.
Hillier, F. and Lieberman, S. (2005) Introduction to Operations Research, McGraw Hill, 8th Edition.
Karlof, L.K., (2005) Integer programming: Theory and Practice, CRC Press
Kumar, S., Luhandjula, M.K., Munapo, E., and Jones, B.C., (2010) Fifty years of Integer

Programming: A review of Solution Approaches, Asia Pacific Business Review, Vol. 6, No. 2,
pp 5–15.

Kumar, S., Munapo, E., Lesaoana, M. and Nyamugure, P., (2018) Some Innovations in OR
Methodology: Linear Optimization, Lambert Academic Publishing, ISBN 978-613-7-38007-9.

Munapo, E., Kumar, S. and Khan, L. (2010). Pure integer programming on Integer Polyhedron, AIMS
International Journal of Management, 4(2), pp 135–44.

50 Chapter 3 A search for an optimal integer solution over the integer polyhedron

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Munapo, E., Kumar, S. and Khan, L. (2012). Information Recycling on Integer Polyhedron in Protean
Environment, International Journal of Mathematical Modelling, Simulation and Applications,
5(1), pp 41–51.

Nemhauser, G.L. and Wolsey, L.A., (Eds.) (1988) Integer and Combinatorial Optimization, Inter-
science Series in Discrete Mathematics and Optimization, John Wiley and Sons

Salkin, H. M., and Mathur K., (1989) Foundations of Integer Programming, North Holland.
Schrijiver, A., (1986) Theory of linear and Integer Programming, John Wiley, New York.
Young, R.D. (1965) Primal integer programming algorithms, Journal of Research of National Bureau

of Standards – B Mathematics and Mathematical Physics, Vol 69 B, No. 3, pp213–251.
Young, R.D. (1968) A simplified primal (all-integer) integer programming algorithm, J of ORSA,

16(4), pp750–782.
Young, R.D. (1969) Primal integer programming, Chapter in TC Hu, Integer programming and

Network Flows, Addison Wesley, pp 287–309.

References 51

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4
Use of variable sum limits to solve the knapsack
problem

Abstract: This chapter presents a technique for determining variable sum limits and
then use these limits to solve the knapsack problem in a branch and bound related
setting. Variable sum limits idea was used by Munapo (2020) to improve optimality
verification of a knapsack model. In this chapter, variable sum limits of subsets of
variables have been used. The strength of using variable sum limits is that deter-
mining a variable sum limit is a process that can be done independently. Taking
advantage of the availability of massively parallel processors in modern computers,
optimality in knapsack problems can be verified using a significantly small number
of sub-problems.

Keywords: Knapsack problem, Variable sum limits, Sub-problems, Parallel proces-
sing

4.0 Introduction

A general linear integer problem (LIP) is one of those difficult problems that have
been attracting active research for a very long time without a breakthrough. It is our
belief that an effective general-purpose algorithm for this model has not been devel-
oped. Some researchers believe that such a general-purpose algorithm may not exist.

This chapter presents a technique for determining variable sum limits and then
use these limits to solve the knapsack problem in a branch and bound related environ-
ment. The concept of variable sum limits has been used by Munapo (2020a, 2020b) for
improving optimality verification. In this chapter variable sum limits of subsets of vari-
ables has been used. The strength of using variable sum limits is that these limits can
be processed independently, talking advantage of the availability of massively parallel
processors in modern computers, see Vasilchikov (2018). Using these limits, the opti-
mality in knapsack problems can be verified using significantly a small number of sub-
problems. The branch and bound algorithm was developed by Land and Doig (1960)
and later it was improved to solve the mixed integer problems by Dakin(1965). Im-
provement on the branch and bound approach is an ongoing research, see Al-Rabeeah
et al. (2019), Bhattacharjee and Sarmah (2014) and Munapo and Kumar (2016).

https://doi.org/10.1515/9783110703023-004

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-004

4.1 The knapsack model

Mathematical model of a knapsack problem is given by (4.1).

Minimize
Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

Such that:

a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b. (4:1)

Where aj, b and cj are given nonnegative constants and xj ≥0, and integers.

4.2 Development of the variable range for a knapsack problem

4.2.1 Variable range

In general, limits on range of a variable are given in (4.2).

,aj ≤ xj ≤ ,bj . (4:2)

Where ,aj and ,bj are lower and upper bounds for the variable xj. In general, the
lower limit for the variable xj, j= 1, 2, . . . , n is as shown by (4.3).

ð,aj =0Þ. (4:3)

Similarly, the largest possible value for the variable xj as its upper limit can be de-
termined as (4.4), which can be obtained as.

,bj = Ij + 1. (4:4)

Where b
cj
= Ij + f and f is the fractional part of b

Cj
.

These variable limits ,aj and ,bj for the variable xj are two wide to show any ad-
vantage in their current form. However, there is a need to narrow it down and fortu-
nately it is possible. The variable range for the variable xj is given by (4.5).

R½xj�= ,bj − ,aj . (4:5)

4.2.2 Objective value upper bound

For a given knapsack problem, the variables, variable upper limits and values of
the objective function can be summarized as given in Table 4.1.

54 Chapter 4 Use of variable sum limits to solve the knapsack problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

In Table 4.1, the integral upper limits are used to calculate the n values of the
objective function. The most likely basic variable can be identified using the mini-
mum objective value ðZUB

j Þ given by (4.6).

ZUB
j =Min½Z1, Z2, ...,Zn�. (4:6)

The objective upper bound constraint can be formulated as given in (4.7).

c1x1 + c2x2 + ... + cjxj + ... + cnxn ≤ ZUB
j . (4:7)

4.2.3 Objective value lower bound

The objective lower bound ðZLBÞ is obtained by solving (4.8) and must be adjusted
to an integer value.

Minimize
Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

Such that:

a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b. (4:8)

Where xj ≥0 and relaxed.
In this case ðZLBÞ is rounded up and the resulting constraint is given in (4.9).

c1x1 + c2x2 + ... + cjxj + ... + cnxn ≥ ZLB. (4:9)

Challenge
The region to be searched is given by (4.10).

ZLB ≤ c1x1 + c2x2 + ... + cjxj + ... + cnxn ≤ZUB
j . (4:10)

The obvious challenge is to search this whole convex region. For small-sized knap-
sack models, this may not be difficult but for large-sized models, it poses a challenge.

Table 4.1: Variables, variable upper limits and values of the objective.

Variable ðxjÞ x1 x2 . . . xn

Upper limit ð,bj Þ ,b1 ,b2 . . . ,bn

Objective value ðZjÞ Z1 = c1,
b
1 Z2 = c2,

b
2 . . . Zn = cn,

b
n

4.2 Development of the variable range for a knapsack problem 55

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

4.2.4 How to overcome this challenge?

A way to alleviate this challenge is to divide this convex region into two parts. Since
we expect the optimal integer solution to be near the upper bound, Figure 4.1 may be
a possible ratio of the distances of the optimal solution ðZÞ from upper bound and
the continuous optimal point. Let the distance of the upper bound from the continu-
ous optimal solution or lower bound be D.

In other words, the two regions that are searched separately are given by (4.11) and
(4.12).

ZLB ≤Z ≤ZLB +0.9D. (4:11)

ZUB
j −0.1D≤Z ≤ZUB

j (4:12)

The values can be easily adjusted to integers.

4.2.5 Variable sum bounds and subsets

Variable sum bounds
To determine variable bounds, we need all corner points of the convex region. This is a
challenge as it is computationally expensive to calculate all corner points. To alleviate
this difficult process, we can use the bounds of sums of variables instead. These are easier
to calculate. Let the 0.6D convex region be region be denoted by A and the 0.4D region
be denoted by B. Then the variable sum ranges can be found as given by (4.13) to (4.16).

Region A
Minimize

λA1 = x1 + x2 + ... + xj + ... + xn,
Such that:

a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b. (4:13)

Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

ZLB ≤Z ≤ZLB +0.6D.

0.6D 0.4D

(Z)LB
(Z) (Z)UB

j

Figure 4.1: Distances from the lower bound.

56 Chapter 4 Use of variable sum limits to solve the knapsack problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Where λA1 is the lower variable sum bound.

Maximize
λA2 = x1 + x2 + ... + xj + ... + xn,

Such that:

a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b. (4:14)

Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

ZLB ≤Z ≤ZLB +0.6D.

Where λA2 is the upper variable sum bound.

Region B
Minimize

λB1 = x1 + x2 + ... + xj + ... + xn,
Such that:

a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b. (4:15)

Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

ZUB
j −0.4D≤Z ≤ZUB

j .

Where λB1 is the lower variable sum bound.

Maximize
λA2 = x1 + x2 + ... + xj + ... + xn,

Such that:

a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b. (4:16)

Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

ZUB
j −0.4D≤Z ≤ZUB

j .

Where λA2 is the upper variable sum bound.
Once the variable sum bounds for the two regions are available the two regions

can be searched efficiently for the optimal solution.

4.2.6 Subsets of variable sum bound

In section 4.2.5 the sum of all variables i.e. x1 + x2 + ... + xj + ... + xn is used in bounding.
In subset variable sum bounding only a partial number of variables x1 + x2 + ... + xj are
used in bounding. This is very important as some of the variables can be fixed result-
ing in unnecessary computations being avoided.

4.2 Development of the variable range for a knapsack problem 57

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

From (4.14) and (4.16), we can find the lower bound of a fraction of the varia-
bles, x1 + x2 + ... + xj. Let the lower bound be of this fraction of variables be from the
Region A be λAf 1 and that from the Region B be λBf 1. Thus for regions A and B we have
(4.17) and (4.18) respectively as lower bounds.

0≤ λAf 1. (4:17)

0≤ λBf 1. (4:18)

The upper bound for λAf 1 and λBf 1 can be found using (4.19) and (4.20), respectively.

Maximize
ZA
f 1 = x1 + x2 + ... + xj,

Such that:

a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b. (4:19)

Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

ZLB ≤Z ≤ZLB +0.6D.

Maximize
ZB
f 1 = x1 + x2 + ... + xj,

Such that:

a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b. (4:20)

Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

ZUB
j −0.4D≤Z ≤ZUB

j .

In other words the upper bound for λAf 1 and λBf 1 are ZA
f 1 and ZB

f 1,respectively. Thus,
the selected fraction of variables can be bounded as given by (4.21) and (4.22).

0≤ λAf 1 ≤ ZA
f 1. (4:21)

0≤ λBf 1 ≤ ZB
f 1. (4:22)

4.3 Variable sum bounding algorithm

4.3.1 Algorithm

Given any knapsack problem of the form:

Minimize
Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

58 Chapter 4 Use of variable sum limits to solve the knapsack problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Such that:
a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b.

Where xj ≥0 and integer.

The variable sum bounding algorithm can be summarized as given below.

Step 1: Relax knapsack problem from integer to real values and calculate
ZLB and ZUB

j .
Step 2: Use the calculated ZLB and ZUB

j values to determine λA1 and λA2 for Region A
and λB1 and λB2 for Region B.

Step 3: Fix some variables with large Z values in Table 7 of Step 1.
Step 4: Search Region A using (4.23) and Region B using (4.24).

Minimize
Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

Such that:
a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b,

λA1 ≤ x1 + x2 + ... + xj + ... + xn ≤ λA2 ,
(4:23)

ZLB ≤Z ≤ZLB +0.6D.

0≤ λAf 1 ≤ ZA
f 1.

Minimize
Z = c1x1 + c2x2 + ... + cjxj + ... + cnxn,

Such that:
a1x1 + a2x2 + ... + ajxj + ... + anxn ≥ b,

λB1 ≤ x1 + x2 + ... + xj + ... + xn ≤ λB2 ,
(4:24)

ZUB
j −0.4D≤Z ≤ZUB

j .

0≤ λBf 1 ≤ ZB
f 1.

Theorem: Any feasible integer solution in Region A is better than any feasible inte-
ger solution in Region B.

Proof: From ZLB <ZA < ZB <ZUBj . Where ZA and ZB are optimal solutions in Region A
and Region B, respectively.

4.3 Variable sum bounding algorithm 59

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

4.4 Numerical illustration

Solve the knapsack problem given by (4.25) using the variable sum bounding algorithm.

Minimize
Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,

Such that:
53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897. ð4:25Þ

Where xj ≥0∀j and integer.

Direct branch and bound algorithm
Solving directly by the branch and bound method the worst case takes 1901 sub-
problems to verify optimality given by (4.26).

x2 = 354, x7 = 3, x8 = 1, x1 = x3 = x4 = x5 = x6 =0:Z = 7884. (4:26)

Solution by the proposed method - Variable sum bounding algorithm
Step 1: ZLB = 7881.50, which is adjusted to ZLB = 7882.

∴ ZUB
j = 7898.

Step 2: Region A
From,

Minimize
λA1 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,

Such that:
53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897.

Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,
7882≤ Z ≤ 7882+0.6ð16Þ.

∴ λA1 = 353.50, which is adjusted to λA1 = 354.
From,

Minimize
λA2 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,

Table 4.2: Objective values.

Zj        

xj        

60 Chapter 4 Use of variable sum limits to solve the knapsack problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Such that:
53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897.
Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,

7882≤ Z ≤ 7882+0.6ð16Þ.

∴ λA2 = 360.62, which is adjusted to λA2 = 360.
Step 2: Region B
From,

Minimize
λB1 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,

Such that:
53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897.

Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,

7882≤ Z ≤ 7898, resulting in D = 16.

∴ λB1 = 350.

From,
Minimize

λB2 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,
Such that:

53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897.

Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,
7892≤Z ≤ 7898.

∴ λB2 = 362.37, which is adjusted to λB2 = 362.

Step 3: From Table 4.2 obtained from Step 1, variables x1, x3, x5 and x6 are selected
for fixing.
From Region A
Minimize

ZA
f 1 = x1 + x3 + x5 + x6

Such that:
53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897.

Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,
7882≤Z ≤ 7891.

i.e. ZA
f 1 = 1.35, i.e. 0≤ λAf 1 ≤ 1 or x1 + x3 + x5 + x6 ≤ 1.

From region B
Minimize

ZB
f 1 = x1 + x3 + x5 + x6

4.4 Numerical illustration 61

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Such that:
53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897.

Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,
7892≤Z ≤ 7898.

i.e. ZB
f 1 = 2.34, i.e. 0≤ λBf 1 ≤ 2 or x1 + x3 + x5 + x6 ≤ 2

Step 4: Searching Region A using (4.25) and Region B using (4.26).
Region A:
Minimize

Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,
Such that:

53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897,

350≤ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 362, (4:27)
7882≤Z ≤ 7891,

x1 + x3 + x5 + x6 ≤ 1.

Optimal solution Region B.

x2 = 354, x7 = 3, x8 = 1, x1 = x3 = x4 = x5 = x6 =0: Z = 7884.

A total of 313 sub-problems are required to verify this optimal solution.
Region B:
Minimize

Z = 42x1 + 42x2 + 27x3 + 24x4 + 53x5 + 37x6 + 26x7 + 18x8,
Such that:

53x1 + 36x2 + 26x3 + 37x4 + 24x5 + 49x6 + 42x7 + 28x8 ≥ 12897,

350≤ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 362. (4:28)
7892≤Z ≤ 7898.

x1 + x3 + x5 + x6 ≤ 2.

Optimal solution Region B.

x2 = 328, x7 = 26, x1 = x3 = x4 = x5 = x6 = x8 =0: Z = 7892.

A total of 155 sub-problems are required to verify this optimal solution.
By Theorem 1, we ignore optimal solution from Region B since there is a feasi-

ble one in Region A.

4.4.1 Optimality

The convex region is divided into two regions A and B and the searched separately.
The two optimal solutions from the two regions are compared and the overall opti-
mal solution selected.

62 Chapter 4 Use of variable sum limits to solve the knapsack problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

4.5 Conclusions

The proposed approach is taking advantage of the current and future computer par-
allel processing power. Determining a variable sum limit is a process that can be
done independently. More efficient hybrids of the branch such as branch & cut,
branch & price and branch, cut and price can be used within the context of the pro-
posed approach.

Reducing the number of sub-problems required to verify optimality from 1901 to
(313+165) is an improvement, which is worth further considerations. More work to
improve the proposed algorithm should be of interest to all researchers in the field.

References

Al-Rabeeah, M., Kumar, S., Al-Hasani A., Munapo, E. & Eberhard, A. 2019. Computational
Enhancement in the Application of the Branch and Bound Method for Linear Integer Programs
and Related Models, International Journal of Mathematical, Engineering and Management
Sciences Vol. 4, No. 5, 1140–1153, 2019 https://dx.doi.org/10.33889/IJMEMS.2019.4.5-090

Bhattacharjee, K.K., Sarmah, S.P. 2014. Shuffled frog leaping algorithm and its application to 0/1
knapsack problem, Applied Soft Computing, Vol. 19. 252–263.

Dakin, R.J., 1965. A tree search algorithm for mixed integer programming problems. The Computer
Journal 8, 250–255.

Land, A.H., A.G. Doig. 1960. An Automatic method for solving discrete programming problems,
Econometrica 28, 497–520.

Munapo, E. 2020a. Development of a dummy guided formulation and exactsolution method for
TSP, Eastern-European Journal of Enterprise Technologies, pp. 12–19.

Munapo, E. 2020b. Improving the Optimality Verification and the Parallel Processing of the General
Knapsack Linear Integer Problem, Research Advancements in Smart Technology, Optimization,
and Renewable Energy, Chapter 3, IGI Global.

Munapo, E. and Kumar, S. 2016. Knapsack constraint reformulation: A new approach that
significantly reduces the number of sub-problems in the branch and bound algorithm, Cogent
Mathematics, Vol. 3, 1162372, 2016.

Vasilchikov, V. 2018. On а Recursive-Parallel Algorithm for Solving the Knapsack Problem.
Automatic Control and Computer Sciences. 52. 810–816. 10.3103/S014641161807026X.

References 63

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5
The characteristic equation for linear integer
programs

Abstract: This chapter develops an innovative relation, called the characteristic
equation (CE) for solving a pure integer program (PIP) and illustrates how the char-
acteristic equation not only finds an optimal integer solution to a PIP but it also can
find the ordered kth best, k ≥ 2 optimal solution, which is a feature not available to
other approaches. The CE approach has been discussed for pure integer, binary in-
teger, and mixed-integer models. A potential application of CE in context of a bi-
objective and multi-objective models has been pointed out.

Keywords: Pure, Binary and Mixed integer programs, Descending hyperplane, The
Characteristic equation, The kthbest optimal integer solution, Ordered tree search
approach, Bi-objective and multi-objective integer problems

5.0 Introduction

In many real-life situations, integer restricted values are a natural consequence for
interpretation and implementation of solutions obtained from mathematical models
that are developed for analysis of complex industrial and business situations. In re-
sponse to challenges created by industrial and real-life situations, many methods
have been developed and discussed in the literature on integer programming, see
Winston (2004), Kumar et al. (2010, 2018). Many of these methods along with their
improved versions have been discussed in other chapters in this book. In this chap-
ter we develop an innovative linear relation, that provides not only an optimal inte-
ger solution, but it can also provide kthbest k ≥ 2ð Þ, ordered optimal solution. This
linear relation is called the characteristic equation (CE) for the linear integer linear
programming model. The feature of determining the kthbest k≥ 2ð Þ solution is unique
to the characteristic equation approach, which is not available to any other optimiza-
tion method, including linear integer and related models. This feature of provid-
ing the kthbest k≥ 2ð Þ solution has an interesting application in determination of the
non-dominated solution set for a multi-objective linear integer programming model.

Before presenting the characteristic equation approach, let us reexamine broadly
the philosophy used by earlier researchers for finding an optimal linear integer solu-
tion to a given linear integer programming model. In these programming approaches,
the authors have first identified the optimal LP solution and from that solution

https://doi.org/10.1515/9783110703023-005

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-005

they moved on towards the desired integer optimal solution in different ways, for
example:
1. Gomory (1958) proposed cuts to reach the integer point from the LP optimal solu-

tion. Gomory cuts iteratively reduce the feasible space, making sure that no integer
point is removed from the feasible space. These cuts develop a path from the LP
optimal solution towards the required integer optimal solution. However, the prob-
lem dimension increases and guarantee for convergence is not provided. This
approach forces the integer optimal point to become an extreme point of the
modified convex space and that optimal point is reached by using the LP
approach.

2. Another heavily used approach for determination of an optimal integer point is
the branch and bound (B & B) approach. In this approach, once again the prob-
lem is solved as a LP and if the optimal solution involves some fractional val-
ues, integer bounds are introduced on variables that take fractional values out
of the feasible region and create sub-problems by adding new constraints like:
xj ≤ Ij and xj ≥ Ij + 1, where Ij represents the largest integer value of the fractional
valued variable xj. This approach once again, develops integer extreme point
and recognizes optimality of the integer solution by using the linear program-
ming technique. The branch and bound approach, once again, suffers from a
disadvantage that problem size keeps on increasing with each iteration, and
the number of problems also increases.

3. Many variations of the above approaches have been discussed in the literature and
from time to time, many other heuristics were also developed using the above two
ideas, see Hillier and Lieberman (2004), Kumar et al. (2018), Winston (2014).

The CE approach discussed in this chapter also uses the LP output of the simplex
method, i.e. first the given PIP model is solved under a LP relaxed condition. It is
also known that the LP optimal tableau obtained by using the simplex technique has
many valuable information associated with various elements in the final output
table. The CE approach uses some more untapped information for obtaining an opti-
mal integer and other ranked-optimal solutions. This chapter explores that hidden
information from the LP optimal simplex tableau and establishes one more useful lin-
ear relation from the output to identify not only the optimal integer solution but all
other integer restricted kthbest k ≥ 2ð Þ optimal solutions.

The output of the simplex tableau provides an insight on position of the integer
points in the feasible LP space. The following observations are immediate by the
nature of the linear inequalities:
1. A linear inequality constraint can be changed to an equation after adding a

slack variable. Different values of this slack variable change the physical loca-
tion of the given constraint, but the changed position with different values of
the slack variable will generate a set of parallel hyperplanes.

66 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

2. Therefore, one can reach to an integer point within the feasible convex region
defined by the LP constraints by assigning an appropriate value to the slack
variables. Also note that the appropriate value to be assigned to the slack vari-
able will also be an integer restricted value. When all slack variables have an
appropriate integer values assigned to them, they will make all these con-
straints active at the integer point, one is looking for. Therefore, in one attempt,
it becomes possible to reach the required integer point, unlike the Gomory or
the B & B approach. Therefore, the problem size does not increase, as was the
situation with Gomory, B & B and other approaches, which are the variant of
these two approaches, developed as refinements.

3. The problem is to find the correct values for the non-basic variables for different
constraints. The characteristic equation (CE) exactly fulfills this objective. Once
the objectives are clearly understood, we are ready to understand, how we can
find these exact values.

This chapter has been organized in 6 sections. In section 5.1, we discuss the charac-
teristic equation for a pure linear integer model. Ordered tree search approach for
an integer solution to CE was developed by Munapo et al. (2009) and it is discussed
in section 5.2. In section 5.3, we have presented a CE for a binary integer problem
and in section 5.4 we present an application of the CE in context of a bi-objective
linear integer model. Finally, in section 5.5 we discuss CE for a mixed-integer model
and conclude the chapter in section 5.6.

5.1 Development of a characteristic equation for a pure linear
integer program

5.1.1 Analysis of a trivial example

The concepts associated with a CE can be appreciated by considering a simple triv-
ial numerical illustration. We are using a slightly modified LP problem in two di-
mensions taken from Hiller and Lieberman (2005) given below:

Max z = 7x1 + 4x2

Subject to

x1 + x2 ≤ 6

9x1 + 5x2 ≤ 45,

x1, x2 ≥0 and integer (5.1)

5.1 Development of a characteristic equation for a pure linear integer program 67

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

For this trivial example, one can easily do an exhaustive search of all integer points
in the LP feasible space and locate the optimal and other kthbest k ≥ 2ð Þ solutions.
This is given in Table 5.1, and Figure 5.1.

By inspection of the values in the ‘Z value’ column, one can easily identify the opti-
mal and other kthbest k ≥ 2ð Þ solutions. We have marked a couple of these solutions
by an asterisk mark in Table 5.1.

Table 5.1: All integer points in the feasible space for problem 5.1.

Sl. no Int. pt. Z value Sl. no Int. pt. Z value Sl. No Int. pt. Z value

 (,)   (,)   (,) 

 (,)   (,)   (,) *

 (,)   (,)   (,) 

 (,)   (,) *  (,) 

 (,)   (,)   (,) 

 (,)   (,)   (,) 

 (,) *  (,)   (,) 

 (,) *  (.)  – – –

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

x2 Values

Figure 5.1: All feasible integer points for the problem (5.1).

68 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

From the Table 5.1, one can easily verify that the integer optimal solution is sit-
uated at the point (5,0) resulting in z value equal to 35. Similarly, we have also la-
belled a few more ordered solutions by an asterisk mark. Now we will develop a
linear relation from the LP optimal solution and again identify all these solutions
by using that relation.

The problem (5.1) is solved as a LP and the optimal solution is given in Table 5.2.

The LP solution from Table 5.2 is:

z = 35.25, x1 = 3.75, x2 = 2.25, S1 =0 and S2 =0

The objective function z = 35.25 is an upper bound on the integer optimal solution.
From Table 5.2, the objective function and the two basic variables x1 and x2 as a
function of the non-basic variables are given by:

Z + 0.25ð ÞS1 + 0.75ð ÞS2 = 35.25

x1 − 1.25s1 +0.25s2 = 3.75

x2 + 2.25s1 −0.25s2 = 2.25 (5:2)

The optimal z, x1 and x2 values under the condition that both non-basic variables
S1 and S2 are equal to zero is given by 35.25, 3.75, and 2.25, respectively. Note that
z = 35.25, x1 and x2 equal to 3.75 and 2.25 are not acceptable values when dealing
with integer requirements. Under integer restrictions, all variables, basic or non-
basic and the objective function will be integer restricted values.

Rewriting the objective function again with common denominator, we have:

z + 1
4

� �
S1+ 3

4

� �
S2= ð141

4
Þ or

4
4

� �
z + 1S1+ 3S2

4

� �
= 35ð4

4
Þ+ ð1

4
Þ

The objective function will hold on to its integer value provided

S1 + 3S2 = 1+ 4i (5:3)

Table 5.2: LP optimal solution.

Z x1 x2 S1 S2 RHS

 . . .

 . -. .

 -. . .

5.1 Development of a characteristic equation for a pure linear integer program 69

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Z can be an integer valued quantity only if the LHS of (5.3), i.e. (S1 + 3S2Þ will be
equal to 1 (when i=0) or 5 (when i=1) or 9 (when i=2) etc. Here 1 on the RHS of rela-
tion (5.3) is the remainder when 141 is divided by 4 and 4 is the common denomina-
tor. The LHS in a LP interpretation is zero but for the integer solution, we must
increase values of non-basic variables to integer values in a controlled way i.e. the
total sum of these values must be equal to 1 or 5 or 9 etc. For all other values, the
objective function will continue to have fractional values. The role of ′i ′ on the RHS
is to increase LHS in a controlled way for i=0, 1, 2,

For example, let us consider various possibilities from equation (5.3):
Iteration 1: For ′i=0′, 1S1 + 3S2 =1 will have integer solution for S1 and S2 that can

make the LHS =1. A feasible integer solution for non-basic variables is given by
S1 = 1, S2 =0,whichwill determine values of basic variables as below:

x1 −
5
4

� �
S1 +

1
4

� �
S2 =

15
4

� �
at S1 = 1 and S2 =0, x1 = 5

x2 +
9
4

� �
S1 −

1
4

� �
S2 =

9
4

� �
at S1 and S2 as above, x2 =0.

This is the same point as was reflected as the optimal solution from Table 5.1.
For the next possibility consider:
Iteration 2: For ′i= 1′, 1S1 + 3S2 = 5 gives two alternative solutions: (1) S1 =2 and

S2 =1 and (2) S1 =5 and S2 =0.
For the first solution, the values of S1 and S2 will alter the value of the basic

variables which are also functions of non-basic variables. From the relation (5.2),
we have

x1 −
5
4

� �
S1 +

1
4

� �
S2 =

15
4

� �
at S1 = 2 and S2 = 1, x1 = 6

and

x2 +
9
4

� �
S1 −

1
4

� �
S2 =

9
4

� �
at S1 and S2 as above, x2 = − 2

Hence the identified integer solution is given by: S1 = 2 and S2 = 1, resulting in
x1 = 6 and x2 = − 2, which is infeasible. Let us continue with the other solution.

For the second solution, we get:

x1 −
5
4

� �
S1 +

1
4

� �
S2 =

15
4

� �
at S1 = 5 and S2 =0, x1 = 10

x2 +
9
4

� �
S1 −

1
4

� �
S2 =

9
4

� �
at S1 and S2 as above, x2 = − 9

70 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Hence both solutions lead to infeasible solutions.
Iteration 3: For ′i= 2′, S1 + 3S2 = 9 gives more than one integer solutions again.

These solutions are: (1) S1 =0 and S2 = 3; (2) S1 = 3 and S2 = 2, 3ð Þ S1 = 6 and S2 = 1 or
4ð Þ S1 = 9 and S2 =0. All these solutions are investigated separately.

The first solution S1 =0 and S2 = 3 gives z = (141/4) – (9/4) + (1/4)0 = 33, now let
us check values of the basic variables again.

x1 −
5
4

� �
S1 +

1
4

� �
S2 =

15
4

� �
at S1 =0 and S2 = 3 gives x1 = 3

and as above

x2 +
9
4

� �
S1 −

1
4

� �
S2 =

9
4

� �
at S1 and S2 as above gives x2 = 3

Thus z = 33 at x1 = x2 =3 is the second-best solution, as was expected from the
Table 5.1.

Similarly, other solutions need be investigated. Consider, for example the solu-
tion: S1 = 3 and S2 = 2.

This solution will give rise to x1 = 7, and x1 = − 4 a infeasible solution.,
Similarly, other solutions will also lead to infeasible solutions.
For the 3rd best integer solution, we investigate for ′i= 3′, S1 + 3S2 = 13, one gets

S1 = 1, S2 = 4, x1 = 4 and x2 =1, gives Z=32. This time again we can get a few more
solutions, which will lead to infeasible answers.

If we keep increasing the RHS of (5.2), when i=35, z =0. The CE will be
S1 + 3S2 = 141 and Z = 0.
For increased values of i, the number of solutions will start increasing and

computational load will increase.
The above discussion can be formulized in the form of a characteristic equation.

5.1.2 The characteristic equation

From the LP optimal solution, one gets

D
D

� �
Z + β1s1 + β2s2 + . . . + βksk

D
= P
D
= R+ iDð Þ

D
(5:4)

where k represents the number of non-basic variables, β1, β2, . . . , βk represent their inte-
ger coefficients, D is the lowest common factor and R is the remainder, also an integer
value. From (5.4), one can establish a CE for that problem as given by equation (5.5):

Xk
j= 1

βjsj =R+ iD, i=0, 1, 2, . . . (5:5)

5.1 Development of a characteristic equation for a pure linear integer program 71

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Note that the RHS is a constant for a given value of i. The equation (5.5) is a moving
hyperplane, where the objective function values are integer restricted values. If so-
lution of the equation (5.5) gives integer non-basic values, it may also have integer
values for basic variables. In other words, theses hyperplanes will pass through var-
ious integer points in the LP convex region.

5.1.3 Some interesting properties of the CE

Property 5.1.3.1
The characteristic equations for a multi-objective integer model will be more than
one, as one CE will be obtained from each objective function. However, since solution
space is the same defined by the given set of constraints; with respect to each objec-
tive these different CE’s will pass through the same integer points in a different de-
scending order. Therefore, we will have a choice of several CEs to identify these
integer points. We can select the one with larger values of D and R or the one with
minimum i values.

Property 5.1.3.2
Search for an integer point will be better if coefficients of non-basic variables are not
equal to 0 or 1. Note that in the equation (5.3), the coefficient of s1 = 1, which resulted
in increased number of alternative solutions. In the case of a multi-objective model, if
such cases can be avoided, it is computationally beneficial.

Property 5.1.3.3
The number of solutions starts to increase as i takes on larger values. This number
further increases when some non-basic variables have 0 or 1 as their coefficient.

Property 5.1.3.4
The concept of CE will not be useful for models like transportation and assignment
problems as these models do not deal with slack variables. However, if uni-modular
problem can be approached in the conventional LP sense, the CE approach will be
applicable. For more observations, see Kumar et al. (2020). Therefore, determination
of the kth best of special transportation and assignment models create a challenge,
that deserves more attention.

Property 5.1.3.5
The CE is a necessary but not a sufficient condition, for an integer solution. Note for
developing a CE, we first restricted the objective function value to an integer value,
then we restricted the non-basic variables to an integer value and use those values

72 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

to find the corresponding value of the basic variables. If these variables turn out to
be a feasible integer values, we stop, else we continue the search.

5.1.4 An algorithm to find the kth best optimal solutions, k≥ 1 using the CE
approach

The above properties give rise to an algorithm to find integer ordered-optimal solu-
tions for a given PIP using the CE.
Initial Step 0:

0.1 Assign a value to K (i.e. the number of ordered optimal solutions required) and
set k=1 (i.e. find the optimal integer solution).

Step 1:
1.1 Solve the LP relaxation of the given LIP model.
1.2 Write down the CE from the objective function row from the optimal solution

in the form of an equation (5.4) and solve for integer values of s1, s2 from
the equation for i=0,

Xk
j= 1

βjsj =R+ iD

If we find an integer solution, check the values of the basic variables. If these
variables are integer valued quantities, go to Step 4.2, else go to Step 2.

Step 2:
2.1 Set i= i+ 1 and go to 2.2
2.2 Solve the CE for s1, s2 . . .

Xk
j= 1

βjsj =R+ iD

If it results in integer solution, go to Step 3, otherwise go to Step 2.1.

Step 3:
Substitute the integer solution sj, j =1, 2, . . ., k in the expressions of the basic var-
iables as a function of the non-basic variables obtained from the LP optimal solu-
tion. If all basic variables are integer, go to Step 4, otherwise return to Step 2.1.

Step 4:
4.1 Optimal solution for kth best has been obtained and one can find the inte-

ger value of the objective function also.

5.1 Development of a characteristic equation for a pure linear integer program 73

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

4.2 If k <K, set k = k + 1 go to Step 1.2, else go to Step 4.3.
4.3 Stop as all K optimal solutions have been obtained.

5.1.5 Features of the CE

There are many interesting features associated with the CE, which are presented as
follows:

5.1.5.1 The solution of the equation (5.4) for any given value of i is independent of
the knowledge of the previous set of solutions. If a solution for a particular value of
i is infeasible with respect to the integer requirement, a desirable feature of the CE
is that one can move on to the next value of the i. One does not have to have com-
plete calculation with respect to the infeasible solution. This is not the case with
the branch and bound and the cutting plane methods. In these two methods, the
next iteration can commence only when the previous iteration is completed, be it a
feasible or infeasible solution. In other words, even after detecting a fractional
value of a variable, one is required to complete that iteration to proceed further
with the next iteration. The CE finds the integral solution in two stages and subse-
quent search is independent of the previous searches. Therefore, the CE (5.4) is re-
cycled again until the required solution has been determined. Two possibilities
arise for the solution of the CE, which is comprised of the non-basic variables only.
a. The solution of the CE satisfies the integral requirement of the non-basic varia-

bles. One moves to test basic variables for integer values for those integer val-
ues of the non-basic variables. If the solutions are integer, the search ends else
we reconsider the next value of i in the equation (5.4).

b. If the non-basic variables do not satisfy integral requirement, we need not test
the basic variables. One can move immediately to the next value of i.

5.1.5.2 Parallel computing is a desirable feature for any method, particularly when
larger problems are to be solved. The CE is suitable for parallel computing.

5.1.5.3 Approaches like branch and bound and cutting plane result in an increase of
the size of the problem with each iteration. This is not the case with the CE.

5.1.5.4 The method relies on the property that the LP solution is unique. The appli-
cation of CE can be bit more demanding when the coefficient of a non-basic variable
in the LP final tableau has a zero or one in the objective function row. In some
cases, it happens due to multiple solutions, and if this is not the case, it may be
desirable to subject the objective function to a small perturbation to avoid an alter-
native LP solution or having a coefficient 1 in the final simplex tableau. We have

74 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

given some numerical illustrations for these situations. This aspect has been dis-
cussed in more details by Kumar et al. (2020).

5.1.5.5 Generally it is claimed that the branch and bound works better on small
problems, we have pointed out later that the branch and bound may have difficul-
ties even on small size problems. See the problem discussed in section 5.1.7.

5.1.5.6 Since the CE is used again and again, rounding errors do not play any role in
the CE approach.

5.1.5.7 Determination of the kth best optimal solution is a very difficult problem in
any discrete optimization. The difficulty arises as there is no direct measure to test
the kth best optimality of a solution. However, the presence of i in the CE (5.4) pro-
vides this feature as an indirect bonus and makes the kth best a very special feature
of the CE approach that other methods do not have.

5.1.5.8 The procedure can be highly efficient if the coefficients of non-basic varia-
bles are factors of the RHS value of the equation (5.4).

5.1.5.9 For larger the value of the RHS, the complexity of possible solutions in-
creases. Therefore, the CE approach is likely to work efficiently if required ordered-
optimal integer solutions are in a close vicinity of the LP optimal solution.

5.1.6 A numerical illustration

Consider, once again a simple problem given by (5.6)

Maximize
Z = 7x1 + 9x2

Subject to

− x1 + 3x2 ≤ 6, 7x1 + x2 ≤ 35, x1, x2 ≥0 and integers. (5:6)

The LP optimal solution is given in Table 5.3.

Table 5.3: LP optimal solution.

Basic x1 x2 S S RHS

Z   / / 

x2   / / /=.

x1   -/ / /=.

5.1 Development of a characteristic equation for a pure linear integer program 75

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

For the CE, we have from Table 5.3 the relation (5.7)

Z + 28
11

� �
S1 +

15
11

� �
S2 = 63 (5:7)

Which give rise to the CE as shown in (5.8)

28S1 + 15S2 = 11i (5:8)

Note R = 0 as the RHS was free of fractions and D = 11. From (5.8), it is easy to see
that for a feasible solution, the RHS must be ≥ min 28, 15ð Þ and multiple of 15 or 28
or some combination. Thus for i=0, 1 and 2, there is no solution to (5.8).

For i =3, we have 28S1 + 15S2 = 33, which also does not give any integer solution.
Similarly, for i = 4, 5, 6 and 7 there are no feasible integer solutions.

When i = 8, we have 28S1 + 15S2 = 88
Results into a solution S1 = 1 and S2 = 4. Since we have an integer solution for

non-basic, we now test these values for the basic variables, given below from Table 5.3

x2 +
7
22

� �
S1 +

1
22

� �
S2 =

7
2

� �
,which at S1 = 1 and S2 = 4 gives x2 = 3.

Similarly

x1 −
1
22

� �
S1 +

3
22

� �
S2 =

9
2

� �
,which at S1 = 1 and S2 = 4 gives x1 = 4.

and

Z = 63−
28
11

� �
S1 −

15
11

� �
S2, which at S1 = 1 and S2 = 4 gives Z = 55

This concludes into an optimal integer solution. If we want to find more solutions,
we continue the search for higher values of i. For example, let us find the 2nd best
integer solution. The CE for the next value of i = 9, will be given by:

28S1 + 15S2 = 99, for which the solution will be S1 = 3 and S2 = 1. For these integer
values of the non-basic variables, we get fractional values of basic variables and
the objective function. Hence it does not give us an acceptable feasible solution for
the integer model. Next integer solution for non-basic variables is achieved when
i=15, giving the RHS =165. A feasible integer solution is when S1 =0 and S2 = 11. The
value of the basic variables is obtained as detailed below.

x2 +
7
22

� �
S1 +

1
22

� �
S2 =

7
2

� �
, which at S1 =0 and S2 = 11 gives x2 = 3.

Similarly

x1 −
1
22

� �
S1 +

3
22

� �
S2 =

9
2

� �
, which at S1 =0 and S2 = 11 gives x1 = 3.

76 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

and

Z = 63−
28
11

� �
S1 −

15
11

� �
S2, which at S1 =0 and S2 = 11 gives Z = 48

Similarly, more ordered optimal solutions can be investigated. See Figure 5.2.

5.1.7 An ill conditioned integer programming problem

Consider a 10-variable, 10-constraint problem, which when solved by the Branch
and Bound algorithm took 1799 iterations for attaining the optimal solution. This
problem was solved using TORA software. The same problem was attempted by the
CE approach, it took 123 i-iterations. The problem is:

Max z =CX, subject to AX≤b,X ≥0 and integers, (5:9)

where

C = 5 90 12 27 56 56 23 36 8 178½ �

0

5

10

15

20

25

30

35

40

-8 -6 -4 -2 0 2 4 6

Y-Values

Figure 5.2: Graphical presentation of the problem (5.6).

5.1 Development of a characteristic equation for a pure linear integer program 77

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

A = ½aij� =

1 1 1 1 1 1 1 1 1 1

1 − 1 1 1 56 1 1 1 1 1

1 1 − 5 1 1 1 16 20 1 1

5 1 1 − 8 1 1 1 1 1 1

1 19 1 1 − 1 3 1 1 1 1

1 1 1 1 1 − 12 1 1 1 1

1 1 1 1 90 8 − 1 1 1 1

1 1 34 5 1 1 1 − 9 1 1

1 1 1 0 1 81 1 1 − 1 25

23 1 1 1 1 5 1 1 1 − 10

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

b=

100

5679

1990

450

670

80

8887

68
350

523

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

, X =

x1

x2
x3
x4

x5
x6

x7

x8
x9

x10

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

≥ 0½ � and integer.

For more ill condition pure integer programs, see Kumar et al. (2007).

5.1.8 Analogies of the characteristic equation with other systems and models

Here are a few more features of the CE.

5.1.8.1 Mapping of LP optimal solution on integer points
The CE is a kind of linear mapping of the LP optimal solution on to an integer point
in a descending order. It is left for further attention from the readers.

5.1.8.2 A CE may be viewed as a modified knapsack problem
A multi-item knapsack problem deals with maximizing the value of collected items
within the capacity of the given knapsack. However, the CE from equation (5.5) rep-
resents a knapsack with changing capacity, i.e. R,R+D,R+ 2D, . . .ð Þ, hence we call
it a protean knapsack, see Kumar (1994) and the other difference is that we want
the knapsack is full to its capacity. Since the same equation is solved again and

78 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

again with different values in the RHS, information recycling by Kumar (2005,
2006) may be useful here.

5.1.8.3 Integer solution search strategies
The CE is comprised of LP non-basic variables and integer coefficients and integer
RHS value. If these integer coefficients are arranged either in increasing or decreas-
ing order, one can minimize the efforts required for searching integer solutions.
One such method – ‘The ordered tree method’, developed by Munapo et al. (2009)
is discussed here in Section 5.2.

5.2 The ordered tree method for an integer solution of a given CE
by Munapo et al. (2009)

The ordered tree method was developed to solve a knapsack problem, however,
since there is similarity between the knapsack and the CE, the method can be modi-
fied to solve the CE also. To understand the method, some terms are necessary.
They are defined, and when required illustrated below:
1. An ordered branch and ordered tree: The non-negative linear expression in

CE may be used to construct an ordered branch and subsequently an ordered
tree. An ordered branch is set of emanating links from the same node and hav-
ing the coefficients of the non-basic variables as link lengths. The branch is or-
dered because link lengths are arranged in ascending order. The ordered tree
is developed by adding ordered branches to the smallest node of the tree. An
ordered branch is shown in Figure 5.3, where C1 < C2 < < Cn.

2. Node value: Each node is assigned a value that is a sum of the links from the
root note of the tree to that node. The value of the root node is assumed zero. In
Figure 5.4, if an ordered branch is added to a node, the value of the nodes will
be as shown in Figure 5.4.

3. Smallest node: is a node with smallest node value.
4. Node merging: is a process of joining nodes with the same value by a dummy

link, denoted by a dotted line with link length zero. This node merging process
reduces tree expansion and it indicates existence of multiple solutions to the

C1

Cn

Figure 5.3: An ordered branch of an ordered tree.

5.2 The ordered tree method for an integer solution of a given CE 79

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

CE. The concept of node merging can be explained by a simple illustration. For
example, consider the following CE.

2s1 + 3s2 + 4s3 = 2+ 2i, i=0, 1, 2 . . . (5:10)

For i=0, the equation (5.10) will become 2s1 + 3s2 + 4s3 = 2. Since the coefficients
in equation (5.10) are in an increasing order, no changes are required. The tree,
at the initial stage, will have 3 leaves i.e. three links of lengths 2, 3 and 4. Let us
investigate it for three stages. Two stages leaves are shown in Figure 5.5.

2

3

7

5

6

6

7

8

6

5

4

4

R

Figure 5.5: The ordered tree for i =0, 1, 2.

C1

Cn
f

f+C

nn

f+C1

1

Figure 5.4: Value of the nodes.

80 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Since the nodes with same value do not give rise to more information, the con-
cept of node merger helps in reducing the number of leaves without any loss of in-
formation. The solution of the CE (5.10) for i=0 is s1 = 1 and for i= 1, the CE has two
solutions, i.e. s1 = 2, s2 = s3 =0 and s1 = s2 =0, s3 = 1.

Similarly, more node mergers will take place if we proceed with the next stage.
5. Fathomed node: A node in an ordered tree is fathomed, when the no further

ordered branch are required to be added on to it. A node is fathomed when the
node value is greater than the RHS value. For example, for i=0, the RHS of the
CE (5.10) was 2 and the node value of one leaf was equal to 2 and other nodes
were greater than 2. Hence one solution for i=0 was concluded. However, for
i= 1, the RHS became 4 and we obtained two solutions, one from the node
with value equal to the RHS and the other from the merger. All other nodes
were fathomed.

6. Fathomed tree: An ordered tree is fathomed when the smallest node is fathomed.
7. An integer solution to the CE: An integer solution to the CE is obtained when

node value is exactly equal to the RHS. The solution is easily traced by the path
from the root to that node.

8. Level of search: A tree is fathomed at a given level, when no ordered branch
can be added to it and no node has the value equal to the RHS. Alternatively, if
the node value is equal to the RHS, an integer solution for non-basic variables
has been obtained and then one must check for an integer basic solution.

5.2.1 A Numerical illustration of the ordered tree search technique

Let us reconsider the problem (5.6) for which the LP relaxation solution is given in
Table 5.3 and the CE was given by equation (5.8). This equation and relations be-
tween the basic and non-basic variables are reproduced below as (5.11).

The CE was 28S1 + 15S2 = 11i and the

x2 +
7
22

� �
S1 +

1
22

� �
S2 =

7
2

� �

x1 −
1
22

� �
S1 +

3
22

� �
S2 =

9
2

� �
. (5:11)

For developing an ordered tree, we rewrite the CE as:

15S2 + 28S1 = 11i

The ordered branch for (5.11) will be given by Figure 5.6
The tree in Figure 5.6 is fathomed for i=0 and 1. It will start to grow for i = 0,

1, 2, 3, 4, 5, 6, 7 and 8. Tree for i=8 will be complex when the CE has a solution. This
solution is given by the slack variable values as s1 = 1 and s2 = 4. These values

5.2 The ordered tree method for an integer solution of a given CE 81

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

when substituted in (5.11) give x1 = 4, x2 = 3 and Z = 55. Once again, it has resulted
in the same answer, as was expected.

It may be noted that combinatorial explosion is a serious issue with the ap-
proach. The node merger idea does help to reduce the bulk of combinations. Solu-
tion of a CE is an interesting problem that requires more attention.

5.3 The CE for the binary integer program

Steps for the CE approach for the binary integer problem are similar to the earlier
discussion with a few specific differences.
1. The binary variables are restricted to 0 or 1 value. However, for its LP relaxation

these variables are replaced by 0≤ xj ≤ 1, which can be handled by using the LP
upper bounded variable technique.

2. The slack variables with respect to the binary variables are also binary i.e. they
restricted to 0 or 1 value. However, the slack variables arising from each given
constraint is not restricted to a binary value.

5.3.1 Numerical illustration of a binary program

Max Z = 3x1 + 4x2 − 2x3 − x4 + 2x5

Subject to: 2x1 − x2 + x3 + x4 + 3x5 ≤ 4

− x1 + 3x2 + 4x3 − x4 + 2x5 ≥ 5

2x1 + 2x2 − x3 + 6x4 + 2x5 ≤ 8

xj =0∨ 1,∀j and j= 1, 2, . . . , 5. (5:11)

Using the upper bound technique, the continuous optimal solutions is given in
Table 5.4, where variable xj = 1− xj, j= 2 and 5.

From the Table 5.5, the solution to the model (5.11) is given by:
x1 = 8=9, x2 =0≡ x2 = 1, x3 = 2

9 , x4 =0, x5 =0≡ x5 = 1, s1 =0, s2 =0, s3 = 22=9.

0

28

15

Figure 5.6: The ordered branch for the CE (5.11).

82 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing the basic as a function of non-basic and the objective function row
gives:

x3 =
2− − 5x2 − x4 − 7x5 + s1 − 2s2½ �

9

x1 =
8− − 7x2 − 5x4 − 10x5 + 4s1 − s2½ �

9

s3 =
22− ½− 37x2 + 43x4 − 5x5 − 7s1 − 4s2�

9

Z + 67x2 + 26x4 + 2x5 + 10s1 + 7s2½ �
9

= 74
9

(5:12)

Resulting in the CE given by:

67x2 + 26x4 + 2x5 + 10s1 + 7s2 = 2+ 9i (5:13)

Where i=0, 1, 2 . . .
Solution of the CE (5.13)
Iteration 1: Put i=0, the RHS becomes 2. The only possible solution will be x5=1.

This value results in values of basic variables as follows: x3, x3 = 1, x1 = 2 and s3 = 3.
Since variables were binary restricted, the above solution is binary infeasible.

Iteration 2: Put i=1, the CE becomes
67x2 + 26x4 + 2x5 + 10s1 + 7s2 = 11, and therefore the CE for integer solution can be

simplified to 2x5 + 10s1 + 7s2 = 11, and has a solution x5 = 2, and s2 = 1, which is again
binary infeasible.

Iteration 3: Put i=2, the CE becomes 67x2 + 26x4 + 2x5 + 10s1 + 7s2 = 20, which on
simplification becomes 2x5 + 10s1 + 7s2 = 20. Many binary infeasible solutions are
possible, for example: (1) x5 = 10, x5 = 3 and s2 = 2. However, the solution s1 = 2 is a
feasible solution as s1 is not a binary restricted variable. From the relations (5.11),
one can easily verify that x1 = 1, x2 = 1, x3 = 0, x4 = 0, x5 = 1, s1 = 2, s2 = 0, and s3 = 4;
giving Z = 6

Table 5.4: LP Optimal solution using the upper bound technique.

x1 x2 x3 x4 x5 s1 s2 s3 RSH

 67
9

 26
9

2
9

10
9

7
9

 74
9

 −
5
9

 −
1
9

−
7
9

1
9

−
2
9

 2
9

 7
9

 5
9

−
10
9

4
9

1
9

 8
9

 −
37
9

 43
9

−
5
9

−
7
9

4
9

 22
9

5.3 The CE for the binary integer program 83

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The solution can also be traced by developing a binary tree as discussed by
Kumar, Munapo and Jones (2009). We develop this tree for the CE when i=2. We
know that x2 =0, x4 =0, and equation reduces to 2x5 + 10s1 + 7s2 = 20. The binary tree
is shown in Figure 5.7.

Node 6 leads to a feasible solution with s1 = 2, s2 =0, and all other values will be the
same as were obtained earlier.

It may be noted that the tree will get larger and larger as the value of the RHS
increases for higher values of i≥ 3.

5.4 CE applied to a bi-objective integer programming model

Multi-objective optimization models are a natural modelling tool for analyzing
many practical situations arising in business and industry. Accordingly, the field of
multi-objective optimization has demanded researchers’ attention, for example, see
Antunes et al. (2016), Ehrgott and Gandibleux (2000), Ehrgott (2006). The central
problem in bi-objective and multi-objective cases is to find the non-dominated
point set unlike the optimal solution for single-objective models. Al-Rabeeah, et al.
(2019) used the CE approach to find the set of non-dominated point set for a given
bi-objective model, which is presented here.

5.4.1 Numerical illustration for bi-objective model

Consider that the bi-objective model is given by:

Max Z1 = 3x1 + 2x2

Max Z2 = x1 + 3x2

= 0 = 1

10 + 7 = 20 10 + 7 = 18

= 0 1 2 0 1

7 = 8

7 = 20

Infeasible 7 = 10 (Inf) = 0 7 = 18 (.) Infeasible

1

7

8654

32

Figure 5.7: Binary tree.

84 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

S.t. 2x1 + 3x2 ≤ 11

x1 ≤ 4, x2 ≤ 3, x1, x2 ≥0, x1, x2 2 Z (5:14)

For developing the CEs for the above model (5.14), we consider the given two objec-
tives Z1 andZ2.

For these two objectives the LP final simplex tables are given below as Tables (5.5)
and (5.6), respectively.

The CE with respect to the objective Z1 from the above table is given by:
2s1 + 5s2 = 3i, i=0, 1, 2, . . . 14 and relations between basic and non-basic variables

are given by:

x2 +
1
3

� �
s1 −

2
3

� �
s2 = 1

x1 + 0ð Þs1 + s2 = 4

s3 −
1
3

� �
s1 +

2
3

� �
s2 = 2 (5:15)

For i=0, s1 = s2 =0 and we obtain x1 = 4, x2 = 1 and s3 = 2 giving the optimal solution
as was expected as LP solution was free of fractions.

For i= 1, there is no solution. For i= 2, s1 = 3, s2 =0, s3 = 2, x1 = 4, x2 =0, giving
z1 = 12 is the second best solution.

Similarly for i= 3, we have s1 = 2, s2 = 1, s3 = 2, x1 = 3, x2 = 1, z1 = 11. For i= 4, we
have s1 = 1, s2 = 2, s3 = 2, x1 = 2, x2 = 2, z1 = 10, and for i = 5, we have s1 = 0, s2 = 3,
s3 = 0, x1 = 1, x2 = 3, z1 = 9.

Similarly, the final simplex tables and CE’s for the objectives Z2 is given below.
Once again, the CE and relations in basic and non-basic will be as follows:

s1 + 3s3 = 2i, i=0, 1, . . . , 10

x1 + 1 2= Þs1 − 3 2= Þs3 = 1ðð

Table 5.5: Final simplex table for the objective Z1.

x1 x2 s1 s2 s3 rhs

x2   1
3

−
2
3

 

x1      

s3   −
1
3

2
3

 

zj − cj   2
3

5
3

 

5.4 CE applied to a bi-objective integer programming model 85

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

s2 − 1 2= Þs1 + 3 2= Þs3 = 3ðð
x2 + 0ð Þs1 + s3 = 3 (5:16)

Once again, for i=0, the LP solution will be the optimal solution as it is free of frac-
tions. For i= 1, we have s1 = 2, s2 = 4, s3 =0, x1 =0, x2 = 3, z2 = 9.

For i= 2, we have two possible solutions. One of them results into an infeasible
solution and the other one gives: s1 = 1, s2 = 2, s3 = 1, x1 = 2, x2 = 2, z2 = 8. For i= 3, we
have three solutions. Two of them lead to infeasible solutions and the remaining
one gives, s1 =0, s2 =0, s3 = 2, x1 = 4, x2 = 1, z2 = 7.

These integer ordered-optimal solutions identified with respect to the objectives
z1 can also be traced from z2 and vice a versa. For example, the optimal solution
with respect to the objective z1 is the same as the point with respect to z2 = 7. There-
fore, in multi-objective situations, no need to scan with respect to each objective.
An integer point in the convex space is independent of the objective. Once we have
values of the objective functions, one can easily check each point for membership
of the non-dominated point set, see Kumar et al. (2020).

5.5 Characteristics equation for mixed integer program

5.5.1 Mathematical developments

A mathematical model of a general mixed integer program is given by (5.17):

Max z =CX

Subject to AX ≤ b,X ≥0,X1 2 Z (5:17)

Here C = c1, c2, . . . , cnð Þ,XT = x1, x2, . . . , xnð Þ= X1,X2½ �

Table 5.6: Final simplex table for the objective Z2.

x1 x2 s1 s2 s3 rhs

x1   1
2

 −
3
2



s2   −
1
2

 3
2



x2   0   

zj − cj   1
2

 3
2



86 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Aij =

a11 a12 . . . a1n

a21 a22 . . . a2n
. . .

am1

. . .

am2

. . .

. . .

. . .

amn

2
6664

3
7775, i= 1, 2, . . . ,m;j= 1, 2, . . . , n, bT = b1, b2, . . . , bmð Þ

The given n variables form two kinds of variables, n1 < n are integer restricted non-
negative variables and the remaining (n –n1Þ are non-negative real variables. In the
model (5.17), the n1 variables are represented by the vector X1 and (n –n1Þ variables
by a vector X2.

From the mixed-integer model (5.17), one can generate two more models rep-
resented by (5.18) and (5.19), which forms a linear and a pure integer program,
respectively.

The LP model is given by:

Max zLP =CX

Subject to AX ≤b,X ≥0. (5:18)

The pure integer program is given by:

Max zPIP =CX1

Subject to AX1 ≤b,X1 ≥0 and integer. (5:19)

Once a PIP solution to (5.19) is obtained, a new linear program can be developed by
replacing the n1 integer-restricted variables by their values from the PIP solution
and the new LP becomes a problem of (n –n1Þ variables. These variables are re-
stricted non-negative real variables. This new LP can be solved for these (n –n1Þ
variables.

The above three models (5.17), (5.18) and (5.19), and the modified LP have
strong interdependence properties, which are useful for establishing a solution of
the given mixed integer program. These properties are presented below.

An upper bound relation
The LP optimal solution to (5.18) will be an upper bound to the given MIP model
(5.17).

Feasibility and a lower bound relation
Since an optimal solution to the PIP model (5.19) will also satisfy all constraints of
the MIP model (5.17), this optimal value will be a lower bound for the MIP.

5.5 Characteristics equation for mixed integer program 87

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Resource distribution relation
The MIP model deals with an optimal distribution of the given resources represented
by the vector b to integer restricted n1 variables and the remaining resources to the
remaining n− n1ð Þ real variables. The distribution of the resource vector b to integer
restricted variables can be obtained by using the characteristic equation and the dis-
tribution of the remaining resources to continuous variables is obtained by solving
the LP model.

Nature of an infeasible solution point
Let the optimal solution to the pure integer program be denoted by: x1 = β1, ...,

	
xj = βj, . . . , xn = βng. This optimal solution has a property that any solution point de-
noted by: x1 = β1, ..., xj = βj + 1, . . . , xn = βn

n o
for any j will always lead to an infeasible

solution point.
Proof: Assume that the LP solution involves fractional values. The search for an

optimal solution by using the CE approach is such that the part of the convex region
from the optimal zLP to the optimal zPIP is comprised of only fractional values.
Hence the next integer points with respect to any j i.e. for xj = βj + 1 must lie in the
infeasible region.

5.5.2 A characteristic equation approach to solve a mixed-integer program

Using the characteristic equation, one can solve a mixed-integer model also. It in-
volves the following:
Step 1: Solve the LP model (5.18). Its optimal value will be an upper bound for the

mixed integer program (5.17). It is denoted by: ZUb
LP .

Step 2: Develop a CE from the final simplex tableau of the LP solution and find the
PIP optimal solution. This PIP solution will be a lower bound for the given
MIP. It is denoted by ZLB

PIP.
Step 3: Substitute the integer values for the integer-restricted variables obtained

from Step 2 into the original MIP model (5.17) and develop a modified LP in
(n–n1Þ variables.Solve the LP in (n–n1Þ real variables. Denote the compo-
nent of the objective function based on n1 integer restricted values by zIn1
and the optimal solution of the modified LP by zLP n− n1ð Þ.
The new lower bound for the given MIP (5.17) will be given by: zIn1 + zLP n− n1ð Þ.

Step 4: If ZUB
LP −ZLB

PIP

 �
orðZUB

LP − (zIn1 + zLP n− n1ð ÞÞÞ= DLP −MIP is equal to zero, or ap-
proximately equal to zero stop, the two part solution will constitute an op-
timal solution to the mixed-integer program. Else repeat these calculations
with the next best PIP solution. If the difference DLP−MIP starts to increase,
stop further calculations and conclude the best solution as an optimal so-
lution to the MIP.

88 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

5.5.3 Numerical illustration – MIP 1

Consider a slight modified version of an example taken from Hillier and Lieberman
(2001).

Max 5x1 − 2x2 + 8x3 − 2x4

subject to:

x1 + 5x3 ≤ 10
x1 + x2 − x3 ≤ 1
6x1 − 5x2 ≤0

− x1 + 2x3 − 2x4 ≤ 3
x1, x2, x3 ≥0 and 2 Z 0

x4 ≥0 (5:20)

The LP solution is given below, and the final simplex tableau is shown in Table 5.7.

x1 =
5
4
, x2 =

3
2
, x3 =

7
4
, s4 =

5
4
, x4 = s1 = s2 = s3 =0,ZLP =

69
4

Here s1, s2, s3, and s4 are the slack variables in the 4 constraints in 5.20ð Þ

From the Table 5.7, the LP optimal value giving an upper bound = 69/4 = 69
4 = 17+ 1

4

for the MIP model (5.20). We again reconsider the model (5.20), and solve it as a
PIP, i.e. all variables as non-negative integer restricted variables. The CE from
Table 5.7 will be given by (5.21):

120x4 + 101s1 + 25s2 + 29s3 = 15+ 60i, i=0, 1, 2 . . . (5:21)

The non-basic variables x4, s1, s2 and s3 have to move from the current value zero
to some non-negative integer value such that (5.21) remains satisfied for the mini-
mum i, and also converts the current basic variables from the real values to integer

Table 5.7: Final Table of the simplex iterations for (5.20).

Basic x1 x2 x3 x4 s1 s2 s3 s4 RHS

x2     / / -/  /

s4    - -/ / /  /

x1     / / /  /

x3     / -/ -/  /

Obj     / / /  /

5.5 Characteristics equation for mixed integer program 89

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

values. From Table 5.7, the relations between the basic and non-basic variables are
given by:

x1 =
5
4
−

1
12

s1 −
5
12

s2 −
1
12

s3

x2 =
3
2
−

1
10

s1 −
1
2
s2 +

1
10

s3

x3 =
7
4
−

11
60

s1 +
1
12

s2 +
1
60

s3

s4 =
3
4
+ 2x4 +

17
60

s1 −
7
12

s2 −
7
60

s3 (5:22)

The CE (5.21) has no solution for i = 0. For i = 1, the CE (5.21) becomes:

120x4 + 101s1 + 25s2 + 29s3 = 75 (5:23)

The equation (5.23) has a solution given by: s2 = 3, which results in x1 = 0, x2 = 0,
x3 = 2, x4 = 0, s1 = 0, s2 = 3, s3 = 0, s4 = –1, which is not an acceptable integer solu-
tion. We try the next value i.e., i= 2. For this value, the RHS of (5.23) becomes 135,
which again has no solution. The next value is i= 3 which gives equation (5.24).

120x4 + 101s1 + 25s2 + 29s3 = 195 (5:24)

Equation (5.24) has an integer solution, which is given by (5.25):

x4 = 1, s1 =0, s2 = 3, s3 =0 (5:25)

At the solution given by (5.25), basic variables become: x1 = 0, x2 = 0, x3 = 2, s4 = 1,
zPIP = 14

Therefore, the optimal solution for the MIP is bounded by the values
14 ≤ zMIP ≤ 17.25
From the PIP integer solution, a modified LP is developed by substituting values

of the integer restricted variables, which are:x1, x2, x3 ≥ 0 and 2 Z
Substituting the integer values for the integer restricted variables from the above

solution ðx1 = x2 =0, x3 = 2Þ into MIP model, a modified LP as a function of remaining
real variables, which is the variable x4 becomes as given by (5.26).

Max z = 16− 2x4

Subject to

4− 2x4 ≤ 3, x4 ≥0 (5:26)

Solving (5.26) trivially gives x4 = 1
2

Combining the integer solution and the above continuous solution, we have an
improved solution to the given MIP model, which is given by:

x1 =0, x2 =0, x3 = 2, s4 = 1, zMIP = 15 (5:27)

90 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The above solution can be concluded as an optimal solution to the given MIP. Note
that the only variation possible is to increase the values of the variables x1 or x3,
but the solution will exceed the current UB. Similarly, an increase in the values of
the remaining variables will worsen the current solution. Hence an optimal solution
has been obtained and the search is terminated.

MIP illustration 2
Consider the problem:

Max z = 3x1 + 5x2
Subject to:

x1 + 3x2 ≥ 7
x1 − 3x2 ≤ 0
x1 + 2x2 ≤ 13
2x1 + x2 ≤ 15

3x1 + x2 ≥ 15, x1 ≥0 and integer, x2 ≥0 (5:28)

The LP solution when x1, x2 ≥ 0, The LP output table is as given in Table (5.8)

The CE will be given by (5.29)

7s3 + s4 = 1+ 3i (5:29)

The relations among basic and non-basic variables are given by (5.30)

x1 = 17
3

+ 1
3
s3 −

2
3
s4

s2 = 16
3

−
7
3
s3 + 5

3
s4

s5 = 17
3

+ 1
3
s3 −

5
3
s4

x2 = 11
3
−
2
3
s3 + 1

3
s4

Table 5.8: Final simplex output for the LP relaxed model (5.28).

Basic x1 x2 s1 s2 s3 s4 s5 RHS

x1     -/ /  /

s2     / -/  /

s5     -/ /  /

x2     / -/  /

s1     / -/  /

zj − cj     / /  /

5.5 Characteristics equation for mixed integer program 91

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

s1 = 29
3

−
5
3
s3 + 1

3
s4 (5:30)

The CE (5.29) has a solution for i = 0 gives

s4 = 1, s3 =0, x1 = 5, s2 = 7, s5 = 4, x2 = 4, s1 = 10, and 35 (5:31)

For the given MIP (5.28), the upper bound is given by: ZUB
LP = 106=3= 35+ 1=3

Substituting x1 = 5 in the model (5.28), gives a LP as a function of a single vari-
able x2 It is given below as model (5.32).

Max z = 15 + 5x2
Subject to:

3x2 ≥ 2

− 3x2 ≤ − 5

2x2 ≤ 8

x2 ≤ 5

x2 ≥0, x1 = 4 (5:32)

Which has a trivial solution given by: x2 = 4
Hence MIP and PIP solutions are identical in this case.

5.6 Concluding remarks

In this chapter the characteristic equation approach has been discussed for solving
integer, binary integer, multi-objective linear integer and mixed-integer programs.
We find that:
– An integer point can be approached by many methods and techniques yielding

either an exact or an approximate solution. Many solution methods have been
developed in the literature, see Kumar et al. (2010).

– The complexity of an IP can increase with the size of the model (i.e. the number
of variables and the number of constraints.)

– The special class of integer models like assignment, transportation, transshipment,
vehicle routing and related problems play an important role in real life problems.
There are many special methods to deal with these special problems. However, de-
termination of the kth best for k ≥ 2 deserve further attention. One possible ap-
proach is based on random search has been discussed by Kumar et al. (2020b)

– An effective general-purpose method and proper software support for many re-
cently developed approaches are not available.

– Efforts have been recently devoted to incorporation of randomness and fuzzi-
ness within the IP models.

92 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

For future developments in the field of IP, the following needs attention:
– Production of user-friendly software for these recently developed PIP solution

approaches is desirable.
– Investigation of computational efficiency for these PIP approaches need be

examined.
– Description of high-quality case studies to demonstrate the usefulness of more

recent approaches will be desirable.

The information-recycling concept has been discussed by Kumar (2005, 2006) and
applied to Linear and Geometric programming. Munapo et al. (2010) have applied
information recycling to the integer polyhedron to solve protean PIP problems. In-
formation recycling methods attempt to find a solution to a problem from available
information of a similar but different problem, which was solved earlier by applying
any known method. This concept may be useful for i-iterations for the CE approach.

References

Al-Rabeeah, M., Kumar, S., Al-Hasani, A., Munapo, E., and Eberhard, A., (2019). Bi-objective integer
programming analysis based on the characteristic equation, International Journal of System
Assurance Engineering and Management, DOI 10.1007/s13198-019-00824-7 (Online published
05 July 2019), Vol 10, No. 5, pp 937–944.

Antunes C.H., Alves M.J., and Climaco, J. (2016), Multiobjective linear and integer programming,
Speringer, Berlin.

Erhgott, M., (2006), A discussion of scalarization techniques for multiple objective integer
programming, Ann Oper Res, 147(1),343–360.

Ehrgott, M., and Gandibleux, X., (2000) A survey and annotated bibliography of multi-objective
combinatorial optimization, OR Spektrum, Vol 22, No 4, pp 425–460.

Gomory, R.E., 1958. Outline of an algorithm for integer solutions to linear programs, Bulletin of the
American Mathematical Society, 64 (5), pp 275–78.

Gomory, R.E., 1965. On the relation between integer and non-integer solutions to linear programs,
Proc. Of the National Academy of Sciences, 53(2), pp 260–65.

Hillier, F. and Lieberman, S., 2004. Introduction to operations Research, McGraw-Hill, 8th Edition.
Kumar, S. (1994), Optimizations of protean systems: A review, APORS’94, Fukuoka, (Eds. Masanori

Fushimi and Kaoru Tone, World Scientific Publishers, pp 139–46.
Kumar, S. (2005), Information recycling mathematical methods for protean systems: A path-way

approach, South African Journal of Industrial Engineering, Vol 16, No 2, pp 81–101.
Kumar, S. (2006), Information recycling mathematical methods for protean systems: A path-way

approach to a Geometric Program, South African Journal of Industrial Engineering, Vol 17,
No 2, pp 127–143.

Kumar, S., Munapo, E. and Jones, B.C., 2007. An integer equation controlled descending path to a
protean pure integer program, Indian Journal of Mathematics, Allahabad, 49(2), pp 211–237.

Kumar, S., Munapo, E., and Jones, B.C. (2009), Descending hyper-plane approach for a binary
integer program, International Journal of Mathematical Modelling, Simulation and
Applications, Vol. 2, No 1, pp 53–62.

References 93

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Kumar, S. Luhandjula, M.K., Munapo, E. and Jones, B.C. 2010. Fifty years of integer programming:
A review of solution approaches, Asia Pacific Business Review, 6(2), pp 5–15.

Kumar, S. and Munapo, E., 2012. Some lateral ideas and their applications for developing new
solution procedures for a pure integer programming model, Keynote address, Proc. Of the
Herbal International conference on Applications of Mathematics and Statistics -Intelligent
solutions through Mathematics and Statistics, (Eds) Mariappan, Srinivasan and Amritraj, Excel
India Publisher, pp 13–21.

Kumar, S., Munapo, E., Lesaoana, M. and Nyamugure, P., (2018) Some innovations in OR
Methodology: Linear Optimization, Lambert Academic Publishing. ISBN: 978-613-7-38007-9

Kumar, S., Al-Hasani, A., Al-Rabeeah, M., Eberhard, A. (2020), Journal of Physics, Conference
Series, ICoMPAC 2019, 1490(2020) 012063, doi:10.1088/1742-6596/1490/1/012063.

Kumar, S., Munapo, E. and Nyamugure, P. (2020), An insight into characteristic equation for an
integer program, to appear in International J, of Mathematical, Engineering and Management’

Munapo, E., Jones, B.C., and Kumar, S., 2009, Ordered tree method for an integer solution of the
characteristic equation arising in PIP, International Journal of Mathematical Modelling,
Simulation and Applications, Vol. 1, No. 4, pp 24–37.

Winston, W.L., 2004. Operations Research: Applications and Algorithms, Duxbury.
Wolsey, L.A., 1980. Heuristic analysis, linear programming and branch and bound in Combinatorial

optimization II, pp 121–134, Springer, Berlin, Heidelberg.

94 Chapter 5 The characteristic equation for linear integer programs

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6
Random search method for integer programming

Abstract: This chapter presents development of the random search method in context
of the linear integer programming model, mixed-integer programming model and the
extreme point mathematical programming model. The random search method is an
approximation technique, where optimality of a solution is ascertained by a given
probability, which is controlled by the investigator. Higher the probability, better re-
sults are achieved but computational load also increases. Each situation is illustrated
by a numerical example.

Keywords: Random search method, Pure integer programming model, Mixed-integer
programming model, Extreme point mathematical programming model

6.0 Introduction

Analytical solution procedures in integer programming have made considerable
progress to identify the optimal integer or mixed-integer solutions to integer pro-
gramming models arising in modern commercial and industrial situations, see
[Hiller and Lieberman (2004), Kumar, et al. (2018), Nemhauser and Wolsey (1988, 89),
Salkin (1971), Taha (2006, 2014) and Winston (2004)]. Many of these analytical so-
lution methods have also been discussed elsewhere in this book. However, ap-
proximation methods have always played an important role in situations where
mathematical conditions of optimality are either not easy to define or finding a
solution that can satisfy the defined conditions is computationally very demand-
ing. In such situations, approximation techniques are handy to develop approxi-
mate solutions within a reasonable time frame. The random search method for
integer programming is one such technique, which is discussed in this chapter.
Many different situations have been discussed in this chapter, where random
search is meaningful for providing approximate answers in some realistic time.

The chapter has been organised in 6 sections. The random search method for a
pure integer program has been discussed in Section 6.1, which was developed by
Huynh, Kumar and Connell (1987). The random search method for a mixed-integer
programming model is presented in Section 6.2, which was developed by Huynh,
Connell and Kumar (1987). A computationally difficult type problem, known as an
extreme point mathematical programming problem (EPMP) has been discussed in
Section 6.3. After discussing the random search methods for integer and mixed-
integer cases, general characteristics of the random search technique are presented
in Section 6.4, and based on these characteristics, a random search method for an

https://doi.org/10.1515/9783110703023-006

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-006

EPMP problem has also been discussed in this section. This method was developed
by Huynh and Kumar (1988). Finally, the chapter is concluded in Section 6.5.

6.1 The random search method for an integer
programming model

In this section, a random search method for integer programming is discussed. This
approach was developed by Huynh, Kumar and Connell (1987).

6.1.1 Integer linear program, notation, and definitions

Consider a linear integer programming model of the form:

Max Z =C.X

Subject to:

A.X ≤b,X ≥0 and integer (6:1)

Furthermore, X may have some defined lower and upper bounds given by L≤X ≤U.
Note that A is a matrix m by n, b is m by 1, X, L and U are n by 1, and C is 1 by n.
Let,
p= Probability that a search point under investigation is the required integer point.
If we are searching for an optimal integer point, then p is the probability that the

randomly selected point is the required optimal integer solution. In other situations,
the probability p and the solution may have some different interpretation in different
situations. These different interpretations are seen in other sections of this chapter.

ns= the required number of random searches for determination of the point
under investigation. It may be an optimal solution or some other point of interest.

Prob= The probability that at least one search point from the ns number of ran-
dom search points is the required optimal integer point or some other point of interest.

H = The set of integer points in the hyper-box determined by the bounds
U − Lð Þ, where U is the upper bound and L is the lower bound for each variable
with origin as the point L. The integer points in the box are determined by the given
constraints in (6.1).

S= The set of feasible integer points defined by the given constraints
A.X ≤b,X ≥0 and integer. Note that S is a subset of H (S � HÞ.
Zmax = Is an upper bound on the maximum value of the objective function.
xj max = Is the upper bound on the value of the variable xj, j= 1, 2, . . . , n.
xj min = Is equal to the lower bound on the value of the variable xj, j= 1, 2, . . . , n.

In the initial position, the origin, which is equal to 0 for all xj, is the lower bound.
ZCP = The value of the objective at the current feasible point.

96 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Successful solution: It is a feasible solution X, ZCPð Þ obtained after a previous
feasible solution X′,Z′CP, which is said to be a successful solution if ZCP ≥ Z′CP.

Bounds on the variable xj can be obtained by solving two linear programming
problems:

Uj for the variable xj is determined by solving the LP, Max xj, ST AX ≤b,X ≥0
and the lower bound Lj for the same variable xj is obtained by solving the LP, Max
(-xjÞ, ST AX ≤ b,X ≥0, j= 1, 2, . . . , n i.e. this step is repeated for each variable xj.

6.1.2 The random search method for integer programming

The random search method has some essential elements, which are discussed here
with reference to the integer programming model:

First find the number of integer points in the set H. Let this number be repre-
sented by Product, where its value is given by (6.2)

Product =
Yn

j=1 Uj + 1− Lj

 �

(6:2)

Note Uj + 1− Lj

 �

is the number of integer points on the jth side of the box repre-
sented by the set H, j= 1, 2, . . . , n.

The set S is empty initially, as no solution is available.
Assume that the problem has only one optimal solution. The probability, p,

that a search point is the required optimal solution is given by:

p= 1
Product

(6:3)

The probability that the current search point is other than the required optimal inte-
ger point is given by: 1− pð Þ.

The probability of not obtaining an optimal solution in ns number of searches
is = 1− pð Þns.

Therefore, probability that at least one search point in the ns number of random
searches is the required optimal solution is given by ð1− 1− pð Þns).

We, therefore, can control the quality of our search by assigning a value to this
probability and denote it by PROB. Therefore, we have:

PROB = ð1− 1− pð Þns). This relation in PROB and ns can be used to find the
value of the number of random searches for a given PROB and p. It is given by:

ns= ln 1−PROBð Þ
ln 1− pð Þ (6:4)

Note that the probability ‘Prob’ and ‘p’ are known probabilities, hence from the
relation (6.4), we can find the maximum number of random searches to find the

6.1 The random search method for an integer programming model 97

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

required optimal integer solution for that given p and PROB. As we increase the
value of ‘PROB’, the given assurance factor, the value of ‘ns’ will increase.

Note that we assumed that the optimal integer solution was unique. However, if
the number of optimal solutions is more than one and assume it is given by k, k≥ 1.
The probability will be denoted by:

pk =
k

PRODUCT
> 1
PRODUCT

= p ! pk > p

Since we have no knowledge of the number of optimal solutions to the given model,
by using the ns number of searches under the condition of one optimal solution,
we are likely to detect one of the required optimal points more rapidly, when num-
ber of optimal solutions are more than one.

6.1.3 Reduction in the region for search

After obtaining an initial solution X0, let value of the objective at this point be
given by Z0. Suppose after obtaining the initial solution, if we get a solution, call it
X′0 and Z′0 such that Z′0 > Z0. We call it a successful solution.

Note the given objective Z =CX will increase in the direction of the normal to the
objective function, which is defined by the vector C. The objective will increase only
when it moves in the direction of the vector C. Thus after each successful solution, the
search region is reduced, when Z′0 >Z0 is added to the given integer programming
model.

6.1.4 The algorithm

Assume that X0 is an initial feasible solution, the values of the objective Z0 and
PROB are known. Steps of the algorithm are as follows: all upper and lower bounds
can be re-evaluated by using the ILP multi-objective model (6.5):

Max Min x1, . . . , xnð Þ; Max x1, . . . , xnð Þf g≡Max −XT ,XT	 �
Subject to:

A.X ≤b,C.X ≥Z0 and X ≥0. (6:5)

This results in the following steps of the random search method.
Step 1: Using the relations (6.2), (6.3) and (6.4), find for the given problem lower

and upper bounds, the value of the PRODUCT, p and ns and an initial solu-
tion X0 and calculate Z0 =C.X0. Set the counter s:=1 and go to Step 2.

98 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Step 2: Update# the value of p and go to Step 3.
Step 3: If p= 1, then Go to Step 7, otherwise calculate ns= Int

ln 1− PROBð Þ
ln 1− pð Þ

� �� �
and

set s=0, s is a counter. Go to Step 4.
Step 4: Set s:= s+1.

If s ≥ ns then Go to Step 7.
Otherwise, go to Step 5.

Step 5: Calculate Z =CX.If Z >Z0 and Z ≤ Zmax, go to Step 6, otherwise go to Step 4.
Step 6: Check for feasibility of the solution, i.e. if A.X ≤b, then replace Z0 =Z and

X0 =X. Go to Step 2. Otherwise go to Step 4.
Step 7: Stop, the optimal solution is Z0 and X0.

#The update requires localizing the search region, finding the Lower and Upper
bounds on each variable, and calculate p and ns values.

6.1.5 Numerical illustrations for an integer program

Example 6.1 Consider a trivial example
Maximize Z = 3x1 + 13x2

Subject to

2x1 +9x2 ≤40, 11x1 −8x2 ≤82, x1, x2 ≥0 and integer. (6:6)

For the above LIP model, we let X0 =0,PROB=0.99 and Zmax = 58.8 is the LP value of the objective
function.

Iterative steps of the random search method are given in Table 6.1.

We have reached the optimal solution as the upper bound by the LP solution was 58.8. There is no
integer value >58 and <58.8.

Table 6.1: Iterative output by the random search method.

Iteration
No

Variables
Value x1, x2

L Bound
Values L, L

Upper Bound
Values U, U

Z value

 , , , 

 , , , 

 , , , 

 , . , 

 , , , 

6.1 The random search method for an integer programming model 99

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Figure 6.1: Steps of random search process for the example 6.1

Example 6.2 Consider the following problem.

Max Z = 3x1 + x2 + 2x3 + x4 − x5

Subject to:

25x1 −40x2 + 16x3 + 21x4 + x5 ≤ 300

x1 + 20x2 − 50x3 + x4 − x5 ≤ 200

60x1 + x2 − x3 + 2x4 + x5 ≤600

− 5x1 +4x2 + 15x3 − x4 +65x5 ≤ 700

x1, x2, x3, x4, x5 ≥0 and integer. (6:7)

The linear programming solution of problem (6.7) is Zmax = 321.48, x1 =4.04, x2 =88.52, x3 = 34.52,
x4 = 151.78, x5 =0

For application of the random search method, let the initial solution be X0 =0 and PROB =0.90.
The ILP solution obtained by the random search method resulted in ZILP = 316, x1 = 4, x2 =87,

x3 = 34, x4 = 149, x5 =0

A few iterations are summarized below in the Table 6.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12

y Column1

Optimal
LP solution

Optimal integer solution

Figure 6.1: Random search.

100 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

6.2 Random search method for mixed-integer programming

The random search method for mixed-integer programming was developed by Huynh,
Connell and Kumar (1987) is presented in this section.

6.2.1 The mixed-integer programming problem, notation and definitions

A mixed-integer programming model is given by (6.8).

Max Z =C1X1 +C2X2

Subject to:

A1X1 +A2X2 ≤b,X1 ≥0 and X2 ≥0 and integer

and

L≤X2 ≤U. (6:8)

Note that L and U are the lower and upper bounds on the integer varaiables X2.
Here let the real and integer variable be denoted by: x1, . . . , xn1 , xn1 + 1, . . . ,

xn1 + n2 , where n1 + n2 = n.
In other words, n1 number of variables are real and n2 are integer restricted

variables.
Following similar notation as were used for the random search method for the

integer programming model, we have:
H = Set of integer points in the hyper-box determined by the integer variables

in X2. Assume an integer value of all variables can be determined randomly, and if
that random value is feasible, one can locate value of the objective by solving a
problem given by (6.9), which is:

Table 6.2: Iterative values for Example 6.2.

Iteration
Number

Value of
x1, x2, x3, x4, x5

Lower bound of
x1, x2, x3, x4, x5

Upper bound of
x1, x2, x3, x4, x5

Z
value

 , , , ,  , , , ,  ,, , ,  

.

 , , , ,  , , , ,  ,, ,,  

 , , , ,  , , , ,  , , , ,  

Opt. Solution , , , ,  , , , ,  , , , ,  

6.2 Random search method for mixed-integer programming 101

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Max Z =C1X1 + C2X2½ �at known random integer point

Subject to

A1X1 ≤b−A2X2,X1 ≥0 (6:9)

Therefore, for the model (6.8), various parameters are given by:
The number of points in the set H is given by:

Yj= n1 + n2
j= n1 + 1

Un1+ j + 1− Ln1 + j

h i

The

p= 1Qj= n1 + n2
j= n1 + 1 Un1+ j + 1− Ln1 + j

h i,

and

ns= ln 1−PROBð Þ
ln 1− pð Þ

6.2.2 Steps of the random search algorithm

The random search approach for the mixed-integer program is similar to the ap-
proach that was used for the random search method for the integer programming
model discussed in Section 6.2. These steps are:
Step 1: Calculate Z0 =C1X1 initialð Þ +C2X2 initialð Þ
Step 2: Find the value of the number of points in the set H.
Step 3: Calculate the value of

p= 1Qj= n1 + n2
j= n1 + 1 Un1+ j + 1− Ln1 + j

h i

Step 4: If p= 1, then go to Step 7,
Otherwise, calculate ns= ln 1− PROBð Þ

ln 1− pð Þ
And set s=0 (s is a counter)

Step 5: Set s=s+1, if s≥ ns then go to Step 7. Otherwise randomly generate X2 in the
region H,

Step 6: Solve the problem (6.9), using the simplex method. If it is a successful solu-
tion X0,Z0ð Þ, and go to step 2 otherwise to Step 5.

Step 7: The process is terminated and conclude the optimal solution.

102 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

6.2.3 Numerical illustration

Example 6.3
Consider the following situation:

Max Z = x1 + x2

Where x1, x2 ≥0 and must satisfy at least two constraint sets of the following three sets of
constraints:

Set 1: − 2x1 + x2 ≤0,4x1 + x2 ≤ 16 call these constraints 1 and 2ð Þ
Set 2: − x1 + x2 ≤0, 3x1 − x2 ≤9 call these constraints 3 and 4ð Þ
Set 3: x1 ≤6, 2x2 ≤ 5 call these constraints 5 and 6ð Þ

(6:10)

The constraints of the model (6.10) will generate a non-convex feasible space, see Figure 6.2. However,
the problem can be reformulated as a mixed-integer model by introducing two binary variables as follows

Max Z = x1 + x2

Subject to:

− 2x1 + x2 −My1 ≤0,

4x1 + x2 −My1 ≤ 16

− x1 + x2 −My2 ≤0,

3x1 − x2 −My2 ≤9

x1 −M 1− y1 − y2ð Þ≤6,

2x2 −M 1− y1 − y2ð Þ≤ 5

y1 + y2 ≤ 1,

x1, x2 ≥0 and real

and y1, y2 ≥0 and binary integer,

M is a large quantity (6:11)

The feasible space, which is non-convex, is shown in Figure 6.2

6.2 Random search method for mixed-integer programming 103

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The solution of (6.11) was obtained by the random search method with x1 = x2 =0,
y1 = y2 =0, PROB =0.99, and M=100. The output is given in Table 6.3.

6.3 An extreme point mathematical programming problem

In this section, we present a model that is difficult to solve by analytical approaches,
although attempts have been made by many researchers. It is known as an extreme
point mathematical programming problem, which is a linear programming problem
where an optimal solution must be feasible for a set of linear constraints and be an
extreme point of another set of linear constraints. Many problems in this category can
be converted as a mixed-integer program, hence their discussion in this book is appro-
priate. Historically, Kirby and Scobey (1970) considered a problem of manufacturing K

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

2
3

4

5

6
1

Figure 6.2: Three regions defined by constraints (1) to (6).

Table 6.3: Sample output of the random search.

Iteration Real variables
x1, x2

Integer variables
y1, y2

Lower bound
l1, l2

Upper bound
u1, u2

Objective value

 .,. , , , .

 ., . , , , .

Optimal ., . , , , .

104 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

products, each of these products could be processed by the same machine and the
machine could process any N out of K products, simultaneously. Products were proc-
essed on the machine’s N rings of dies (N < K). To change the production from one set
of N products to another set of N products, the entire machine is shut down while dies
on the rings were changed. This problem, when formulated as a mathematical model,
became a special model, which later they called as an extreme point mathematical pro-
gramming problem (EPMP). To find a solution for the EPMP model, these authors
(Kirby and Scobey) discovered that Charnes and Cooper (1961) had also developed an
EPMP model, however, they did not provide any solution procedure for it, at that time.

6.3.1 Mathematical formulation of an extreme point mathematical
programming model

A mathematical model of the EPMP problem can be stated as follows:

Max Z =C.X

Subject to AX ≤B, and X is an extreme point of the convex set H,
Where

H = X :DX ≤E, and X ≥0f g. (6:12)

Here A is m1 by n, B is m1 by 1, C is 1 by n, D is m2 by n, E is m2 by 1, and X is n by 1.
Solution to the model (6.12) were proposed by Kirby, Love and Swarup (1972).

The basic ideas in their approach was:
(i) To rank the extreme points of the convex region defined by:

DX ≤E and X ≥0, and
(ii) To test the elements of a vector representing a solution for linear independence

with respect to DX ≤E.

Kumar and Wagner (1979) further developed an algorithm for solving the model
(6.12). Features of the method developed by Kumar and Wagner (1979) included:
(i) Ranking of the extreme points as was done by Kirby, Love and Swarup (1972).
(ii) However, they avoided the test for linear independence and established upper

and lower bounds using a restricted base entry in the modified linear program-
ming model:

Max Z =C.X

Subject to AX ≤B,DX ≤E, andX ≥0.
Ranking of extreme point solutions was a common feature of both approaches

i.e. Kirby, Love and Swarup (1972) and that by Kumar and Wagner (1979). The rank-
ing of solutions can be time consuming, computationally difficult and inefficient.

6.3 An extreme point mathematical programming problem 105

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

(iii) Sen (1982), Sen and Sherali (1985), and Sherali and Sen (1985) used ideas like the
cutting plane technique but these ideas also blow up the size of the problem and
once again solution to the extreme point mathematical programming model re-
mained unsatisfactory.

6.3.2 Problems that can be reformulated as an extreme point mathematical
programming model: Some applications

Before we develop another method for solving an EPMPP, we discuss a few applica-
tions, where a given situation can be transformed as an extreme point mathematical
programming model.

Application 6.1: A single source transportation model
Single source of transportation problem is an ordinary transportation problem where
each demand is restricted to be supplied by a single source as described by Negelh-
out and Thompson (1980). These situations arise in military movements, where it is a
common practice that troops going on a mission are preferred from the same unit.
Similarly, large supermarket chains orders are filled from a single warehouse, and in
computer networks, it is a common requirement, that all computations relating to a
single job are performed by a single computer. Mathematical model of a single source
transportation problem can be stated as the following mathematical model.

Min Z =
Xm
i= 1

Xn
j= 1

cijxij

Subject to:

Xn
j= 1

xij ≤ ai, i= 1, 2, . . . ,m

Xm
i= 1

xij =bj, j= 1, 2, . . . , n

And xij is an extreme point of xij ≤ bj, xij ≥0∀ i, jð Þ.
From the equality constraints, we may eliminate variables xm1, xm2, . . . , xmn since

xmj =bj −
Xi= m− 1ð Þ

i= 1

xij, j= 1, 2, . . . , n. (6:13)

The model (6.13) can be expressed as in (6.14)

Min Z =
Xm− 1

i= 1

Xn
j= 1

ðcij − cmjÞxij +
Xn
j= 1

cmjbj

106 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Subject to

Xn
j= 1

xij ≤ ai, i= 1, 2, . . . , m− 1ð Þ

Xm− 1

i= 1

Xn
j= 1

xij =
Xn
j= 1

bj − am

Xm− 1

i= 1

xij ≤bj, j= 1, 2, . . . , n.

fxijg is an extreme point of

xij ≤bj, xij ≥0∀ i, jð Þ for i= 1, 2, . . . , m− 1ð Þ and j= 1, 2,n. (6:14)

Application 6.2: Zero-one integer linear programming model
The zero-one linear programming problem was expressed by Kirby, Love and Swarup
(1972) as an extreme point mathematical programming model as follows:

Max z =C.X

Subject to

AX ≤B

Where X is an extreme point of

xj ≤ 1, j= 1, 2, . . . , n and X ≥0. (6:15)

Thus zero-one integer linear programming is a class of the extreme point mathemat-
ical problem. There are several other applications described by William (1978).

Application 6.3: Critical path problem under assignment constraints
Chandrasekhar, Kumar and Wagner (1975) considered the critical path problem under
assignment constraints and formulated a mathematical model which was in the
form of an extreme point mathematical programming model. They assumed that:
(i) There are precedence constraints among activities of a project.
(ii) There are n men who can accomplish each of these activities.
(iii) The time of performing these activities depend upon men-job combination, and
(iv) The precedence constraints are assumed to be independent of assignments.

Mathematical model for the above problem
A project consisting of n activities with specified precedence constraints is given. In
order to have the project completed, it is required that all the activities must be

6.3 An extreme point mathematical programming problem 107

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

accomplished. There are m men who can perform any one of these activities, but
they differ in their skills, i.e. the time needed to perform any one of these activities
depends on a man-activity combination. However, if the number of available per-
sons is less than the number of activities, i.e., m < n, it follows that a person will
have to be assigned more than one activity, but, of course, he can perform only on
one activity at a time. In other words, if the person is busy with on an activity, work
on another activity will have to wait for completion of activity in hand. Thus, work
will have to be delayed to-commence work of the other activity until work on the
activity on hand is completed.

Let the n activities be denoted by ijð Þ, where i and j are nodes (events) of the net-
work (j> i). Let tijk ≥0, is time required to complete the activity ijð Þ, if it is assigned
to person k.

ijð Þ= 1, 2, . . . , n and k = 1, 2, . . . ,m

Let Ti = Time to reach the event i or node i. Note the given n activities will result in
a network, that can be written as a mathematical model of the form (6.16).

Min z = TL ð1Þ
Subject to:

Tj − Ti −
Xm
k = 1

tijkxijk ≥0∀ ijð Þ, j> i ð2Þ

Xm
k = 1

xijk = 1,∀ ijð Þ ð3Þ

xijk =0 or 1 ð4Þ

(6:16)

And if xijk = 1,

then the kth person cannot be assigned to any other activity during the time he is
performing the activity. Here

i, j= 1, 2, . . . , L; ijð Þ= 1, 2, . . . , n; k = 1, 2, . . . ,m ð5Þ
The model (6.16) has five sets of components denoted by (1), (2), . . ., (5). All these
relations (1) to (5) form the model (6.16).

Note that (1) represents the objective function and the inequality (2) is due to
precedence constraints imposed by the structure of the network. The set of con-
straint (3) indicates that all the activities must be accomplished. The condition (4)
indicates that all events are attended to. However, it is not easy to mathematically
express the condition (5).

In all such cases, when analytical approaches are difficult and computationally
demanding, sometimes it is convenient to apply the random search method, where
optimality is assured with an associated probability.

108 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

6.4 Development of the random search method
for the EPMP model

It is comprised of the following process.

6.4.1 Randomly generated solution

A solution may have different meaning in different situations. For example, in the
case of a linear program, Max g = FX, subject to DX ≤E and X ≥0, we know the solu-
tion is an extreme point of the feasible convex set DX ≤E and X ≥0. Furthermore, it
is assumed that the feasible space generated by the linear constraints is bounded
and non-empty. The simplex method search takes us to the extreme point that is
farthest and in the direction of the vector F. Thus one can change the direction by
randomly generating directions from a uniform distribution between two known
values, for example, say it is U(-15, 15). For each F value, the method will generate
a different extreme point.

6.4.2 The number of search points

As explained, the maximum number of vertices nv for an n-dimensional polyhedron
with m facets is given by u(m,n) as given by McMullen (1970). Then the probability
of a vertex under investigation is the required answer is given by p= 1 nv.=

Klee (1964, 1974) and McMullen (1970) have established that the maximum
and minimum number of vertices of an n-dimensional polytope with m-facets are
given by

U m, nð Þ= m− ½n+ 1
2 �

m− n

 !
+

m− ½n+ 2
2 �

m− n

 !
, and l m, nð Þ= n− 1ð Þm− n− 2ð Þ n+ 1ð Þ (6:17)

In (6.17), kb c denotes the greatest integer ≤ k. If we makems number of such searches,
the probability at least one them is correct is given by:

Prob= 1− 1− pð Þms

Equivalently, the number of searches, ms= ln 1−Probð Þ
ln 1− pð Þ .

6.4.3 Reduction in search region or a successful solution

Given a feasible solution, one should be able to define another feasible solution,
which is better compared to the previous one. For example, for a feasible solution

6.4 Development of the random search method for the EPMP model 109

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

X0, z0ð Þ, another feasible solution X, zð Þ is a successful solution if z > z0.Thus one
can reduce the feasible region from H = X :DX ≤E,X ≥0f g to H = X :DX ≤E,X ≥0f
and CX ≤ z0g.

From the above it is clear, that after each successful solution, the search region
will be reduced, and search procedure will be accelerated.

6.4.4 A feasible pivot for an EPMP

The EPMP can be arranged as shown in Table 6.4.

Note that the random objective is denoted by z=FX. Let Nb be the set of indices for
basic variables and let Ng denote the set of indices for non-basic variables when
zj − f j ≤0. The entering variable is selected from the set Ng and the outgoing variable
is selected in the usual way of simplex calculations. It means if drt is a pivot ele-
ment, it satisfies the usual condition:

er
drt

=Min
ei
dit

≥0

 �

for i= 1, 2, . . . ,md.

A pivot element drt for each t 2 Ng.
An element drt is said to be feasible pivot for EPMP if and only if the simplex

operation on that pivot yields a feasible solution X with respect to AX ≤B.
It is clear, that such a pivot exists only if the following conditions are satisfied.

(i) Ng is a non-empty set.

(ii)
bi − erait

drt
≥0 for all i and t 2 Ng.

If there are more than one feasible pivot, we select the best feasible pivot duv, which
gives a maximum increase in the value of the objective function.

Table 6.4: Initial Table of the EPMP problem.

Basic\nonbasic x1x2x3 xn RHS

s1
s2

..

.

smd

smd+ 1

D
‒C

E
‒Z

Zj − Cj ‒F Z

R A B

zj − f j ‒C 

110 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

6.4.5 Algorithmic steps

The algorithmic approach may be described as follows:
Step 1: Arrange the given problem as arranged in Table 6.4. Initially F = C. Find

the optimal solution to Max Z =CX, subject to DX ≤E,X ≥0 by using the
usual simplex iterations.

Step 2: Check feasibility of the optimal solution for the constraints set Table 6.4:
AX ≤b,X ≥0. If the solution is also feasible to AX ≤b,X ≥0, stop and go to
Step 5, else go to Step 3.

Step 3: If solution is not feasible, check all previous iterations, and find the ex-
treme point which corresponded to a feasible solution to AX ≤b,X ≥0. Let
the value of the objective CX at this feasible extreme point of DX ≤E,X ≥0
be denoted by zf . Add a constraint CX ≥ zf .

Step 4: Generate randomly the objective vector F and rearrange the problem as in
Table 6.4.

Step 5: Terminate the process and conclude the extreme point solution.

These steps are illustrated for a numerical example.

6.4.6 Illustrative example 6.4

Consider the following EPMP problem:

Max Z = x1 + 2x2 + x3

Subject to:

x1 ≤ 1, x2 ≤ 3, x3 ≤ 4,which is the set of constraints≡AX ≤B

Where x1, x2, x3 is an extreme point of:

3x1 + 2x2 − x3 ≤ 6,

3x1 + 2x2 + 4x3 ≤ 16,

3x1 − 4x3 ≤ 3,

2.25x1 + 4x2 + 3x3 ≤ 17,

x1 + 2x2 + x3 ≤ 10,

x1, x2, x3 ≥0. (6:18)

This second set of constraints is equivalent to the constraints set denoted by
DX ≤E,X ≥0.

6.4 Development of the random search method for the EPMP model 111

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The second constraints set in (6.18) has been taken from Balinski (1961) and
they called the convex polyhedron generated by these constraints as a ‘Baby’ con-
vex polyhedral. All vertices of these polyhedron are shown in Table 6.5

Now let us reconsider this problem by using the random search method.
The given problem (6.18) is arranged in Tabular form as shown in Table 6.6.

Table 6.6: Initial table of the given problem (6.18).

Basis\N Basis x1 x2 x3 RHS

x4 . . (Pivot) ‒. .

x5 . . . .

x6 . . ‒. .

x7 . . . .

x8 . . . .

x9 ‒. ‒. ‒. .

zj − cj ‒. ‒2.00 ‒. .

r1 . . . .

r2 . . . .

r3 . . . .

gj − fj ‒. ‒. ‒. .

Table 6.5: Exhaustive search for the optimal solution.

List of vertices x1, x2, x3 Values of Z Inspection of the set EP set of (.)

, ,   Feasible

, ,   Feasible

, ,   Optimal

, /,   Infeasible

, ,   Feasible

, ,   Feasible

, /   Feasible

/, ,  / Infeasible

/, ,  / Infeasible

/, ,  / Infeasible

112 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Note that the variables x4, . . . , x8 are the slack variables and x9 is the slack vari-
able for the additional constraint x1 + 2x2 + x3 ≥0. The pivot operation will give rise
to Table 6.7, indicating x2 basic and the slack variable x4 as a non-basic variable.
These calculations are shown with respect to the given objective function.

For an interpretation of the outcome of the pivot operation in Table 6.7, note that the
current value of the objective has not reached its optimum as ðzj − cj) is equal to -2 for
the variable x3. Hence variable x3 must enter the basis. Consequently, the outgoing var-
iable will be x7 as shown in Table 6.7. Further it may also be noted from the Table 6.7
that r1 = 1, r2 =0 and r3 = 4 indicates that the basic solution in Table 6.7 is also a feasi-
ble solution to the given constraints AX ≤B, which is given by x1 = 0, x2 = 3 and x3 =0.

If the pivot operation was carried out, the variable x3 will enter and x7 will go out
of the basis. One can easily verify updated values of the basic variables will be as
given in Table 6.8.

This clearly is an infeasible solution with respect to given constraints AX ≤B. Note that
r2 = −0.5,means that x2 = 3.5. Hence it is not the required optimal solution, we were

Table 6.7: Results after the pivot operation.

Basis\N Basis x1 x4 x3 RHS

x2 . . ‒. .

x5 . ‒. . .

x6 . . ‒. .

x7 ‒. ‒. . (Pivot) .

x8 ‒. ‒. . .

x9 . . ‒. .

zj − cj . . ‒2.00 .

r1 . . . .

r2 ‒. ‒. . .

r3 . , . .

gj − fj . . ‒. .

Table 6.8: Giving only partial information resulting from the pivot operation.

basic x2 x5 x6 x3 x8 x9 zj-cj r1 r2 r3 gj − fj

value .        ‒.  

6.4 Development of the random search method for the EPMP model 113

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

looking for. By the application of the random search method, we generate three ran-
dom numbers as the coefficients of three variables in the random objective function
and resolve the problem. Note that the simplex procedure takes to the farthest point in
the direction of the normal to the objective plane, Munapo and Kumar (2013, 2014).
The randomly generated coefficients of the objective function are likely to change the
direction of the normal, hence likely to reach to some other extreme point of the
same polyhedron.

The updated model to be analysed will be given by (6.19):
Max Z = x1 + 2x2 + x3 and the random objective consideredMax Z = x1 + 3x2 + 6x3

Subject to:

x1 ≤ 1, x2 ≤ 3, x3 ≤ 4,which is≡AX ≤B

Where x1, x2, x3 is an extreme point of:

3x1 + 2x2 − x3 ≤ 6,

3x1 + 2x2 + 4x3 ≤ 16,

3x1 − 4x3 ≤ 3,

2.25x1 + 4x2 + 3x3 ≤ 17,

x1 + 2x2 + x3 ≤ 10,

x1, x2, x3 ≥0. (6:19)

Note that a new constraint has been added to the set of constraints DX ≤ F, as the
objective value 6 was a feasible and 8 was an infeasible solution. True solution will
be bounded by the condition 6≤ z < 8.

The model (6.19) is again solved and the final simplex is given in Table 6.9.

Table 6.9: Optimal solution to model (6.19).

Basis\N Basis x1 x5 x7 RHS

x2  ‒/ / .

x4 /  ‒ .

x6  / ‒/ .

x9 ‒/ ‒/ / .

x8 / / ‒/ .

x3 / / ‒/ .

zj − cj / / / .

114 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

This solution indicates that when x9=1, it means the given objective value is 7, and
values of other variables is given by x2 = 2, x3 = 3, which is also feasible to the given
constraints AX ≤b. The new bounds for the objective value is 7≤ z < 8.

If the model is resolved, random objective will not be able to change the ex-
treme point as there is only one extreme point in the region when CX ≥ zf = 7 is
added. Thus, the current solution is optimal, which is the same as was given by the
exhaustive search results in Table 6.5.

6.5 Conclusion

The random search method discussed in this chapter is a useful tool for managing sit-
uations that are otherwise difficult to deal with. The application of the random search
method is not a set of specified steps, but this method can be applied with care
and creative thinking. The optimality of a solution obtained by the random search
approach is ascertained with a specified probability. Many more applications of the
random search methods arise in context of a multi-objective linear integer program-
ming problem, see Kumar et al. (2018a), where the random search method has been
developed to find the ordered optimal solutions for an assignment problem, see
Kumar et al. (2020) and in Al-Hasani et al. (2020), a method has been developed for
generating non-dominated point set for a multi-objective model.

Table 6.9 (continued)

Basis\N Basis x1 x5 x7 RHS

r1 . . . .

r2 ‒. ‒. . .

r3 . , . .

gj − fj . . ‒. .

6.5 Conclusion 115

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

References

Al-Hasani, A., Al-Rabeeah, M., Kumar, S., and Eberhard, A. (2020), Rank-based Solution Methods
and their applications in Determination of non-dominated Points set for a Multi-Objective
Integer Programming Model, International Journal of Mathematical, Engineering and
Management Sciences, Vol. 5, N0 6, 1249–1269. http://doi.org/10.33889/
IJMEMS.2020.5.6.093.

Kumar S., Al-Hasani, A., Al-Rabeeah, M., Eberhard, A. (2020), A random search method for finding
K>=2 number of ranked optimal solutions to an assignment problem, J. of Physics, Conf
Series, 1490 (012063), doi: 10.1088/1742-6596/1490/1/2063, pp 13.

Balinski, M.L. (1961) An algorithm for finding all vertices of a convex polyhedral sets, J. of Soc.
Industrial and Applied Maths. 9, 72–88.

Chandrasekaran, R., Kumar, S. and Wagner, D. (1975) Critical path problem under assignment
constraints, Department of Operations Research, Case Western Reserve University, Cleveland,
Technical Memorandum No 357.

Charnes, A. and Cooper, W.W. (1961) Mathematical models and industrial applications of Linear
Programming, Vol 1 and 2, John Wiley & Sons, Ne York.

Hillier, F. and Lieberman, S. (2004). Introduction to Operations Research, Tata McGraw-Hill Education.
Huynh, H.N., Kumar, S. and Connell, H.J. (1987). Random search method for integer programming,

Proc of the International Conference on Optimization Techniques, (Editor) K.L Teo, H. Paul,
K.L. Chew, and M.C. Wong, 1987, pp 601–610, University of Singapore.

Huynh, H.N., Connell, H.J. and Kumar, S. (1987). Random search Method for Mixed-integer
programming, ASOR 1987 Proc of the OR Conference, (Editor) Kumar, S. pp109–118.

Huynh, H.N. and Kumar, S. (1988). A random search method for extreme point Mathematical
programming, Asia Pacific Journal of Operations Research, Vol. 7, pp30–45.

Kirby, M.J.L. and Scobey, P.F. (1970) Production scheduling on n identical machines, Journal of
Canadian Operations Research, Vol 8, pp14–27.

Kirby, M.J.L., Love, H.R. and Swarup, K. (1972) Extreme point mathematical programming,
Management Science, Vol 18, pp540–49.

Klee, V. (1964) On the number of vertices of a convex polytope, Canadian J Maths 16, pp701–720.
Klee, V. (1974) Polytopes pairs and their relationships to linear programming, ACTA Mathematica,

133, pp1–25.
Kumar, S., Al-Hasani, A., Al Rabeeah, M., and Ebehard, A. (2018) A random search method for

finding number of ranked optimal solution to an-assignment problem. In http://www.optimiza
tion-online.org/DB_HTML/2018/11/6942.Html. 2018a.

Kumar, S., Munapo, E., Lesaoana, M., and Nyamugure, P. (2018). Some innovations in OR
Methodology: Linear optimization, Lambert Academic Publishing, ISBN: 978-613-7-38007-9.

Kumar, S and Wagner, D. (1979) Some algorithms for solving extreme point mathematical
programming problems, Journal of New Zealand Operational Research, Vol 7, pp127–49.

McMullen, P. (1970) The maximum number of faces of a convex polytope, Mathematica, 17,
127–149.

Munapo, E., and Kumar, S., (2013) Solving large-scale linear optimization problem with non-
negative coefficients by transforming n-variable LP into two-variable LP problem, ASOR
Bulletion, Vol 32, No 1, pp1–12.

Munapo, E., and Kumar, S., Leasaoana, M., and Nyamugure, P., (2014) Solving a large-scale LP
model with non-negative coeficients: Anhybrid search over the extreme points and the normal
direction to the given objective function, ASOR Bulletion, Vol 33, Issue 1, pp 11–23.

Naglehout, R.V., and Thompson, G.L. (1980) A single source transportation algorithm, Computing
and Operations Research, 7, pp185–198.

116 Chapter 6 Random search method for integer programming

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.optimization-online.org/DB_HTML/2018/11/6942.Html
http://www.optimization-online.org/DB_HTML/2018/11/6942.Html

Nemhauser, G.L. and Wolsey, L.A. (1988). Integer and combinatorial optimization, Inter Science
Series in Discrete Mathematics and Optimization, John Wiley and Sons.

Nemhauser, G.L. and Wolsey, L.A. (1989). Chapter 6, Integer Programming, HND Book in Operations
Research and Management Sciences, pp 447–527.

Salkin, H.M. (1971). Foundations of integer programming, North Holland.
Sen, S. and Sherali, H.D. (1985) A branch and bound algorithm for extreme point mathematical

programming problem, Discrete Applied Mathematics, Vol 11, pp 265–280.
Sen, S. (1982) The extreme point mathematical programming problem, PhD Thesis, Virginia

Polytechnic Institute and State university.
Sherali, H.D. and Sen, S. (1985) A disjunctive cutting planes for extreme point for the mathematical

programming problem, Opsearch, 22, pp83–94.
Taha, H.A. (2006). Operations Research: An Introduction, Pearson Educators, 7th Edition.
Taha, H.A. (2014). Integer programming: theory, applications and computations, Academic Press.
Williams, H.P. (1978) Model building in mathematical programming, Wiley and Sons, New York 1978.
Winston, W.L. (2004). Operations Research: Applications and Algorithms, Duxbury.

References 117

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7
Some special linear integer models and related
problems

Abstract: The assignment and transportation problems are well known, and they
have applications in production planning, telecommunication, scheduling, military
operations etc. This Chapter presents a See-Saw approach for solving the assign-
ment and transportation problems. In this approach two columns are paired and
the See-Saw movement is done in such a way that when moving up in one column
then we have to move down in the other column and vice versa. The current solu-
tion is improved by See-Saw moves until optimality is reached. The See-Saw moves
are very simple. The (n-1) ‘See-Saw’ moves for a fixed column can be calculated at
the same time by parallel processors. Even the n various columns can also be han-
dled at the same time by parallel processing. This is not the case with both the Hun-
garian and transportation simplex methods. Every see-saw move occupies two new
cells. We have also discussed a method to find a very a good starting solution for
the transportation problem and briefly discussed the problem of ranked optimal so-
lution for an assignment problem.

Keywords: Assignment problem, Transportation problem, Sew-Saw methods, Trans-
portation simplex algorithm, North-west corner method, Least cost method, Vogel’s
approximation method, Transportation simplex method, Network simplex method,
Ranked optimal solution

7.0 Introduction

The linear programming has played a major role in quantitative models arising in
real-life industrial situations. The class of special linear integer models include
problems like assignment, transportation, and transshipment models, which have
been discussed in many books, see Hillier and Lieberman (2015), Taha (2017), Win-
ston (2004). In this chapter, a See-Saw approach has been developed for solving
the assignment and transportation models. This new approach is suited for parallel
computing. This chapter has been organized as follows:
1. General discussion on the assignment model is discussed in section 7.1.
2. A ‘See-Saw’ approach to an assignment problem has been presented in section 7.2.
3. In sections 7.3, we relook at the starting solution for the transportation problem

and develop a method for improved starting solution of the transportation
problem.

4. In section 7.4, we develop a ‘See-Saw’ approach for the transportation model.

https://doi.org/10.1515/9783110703023-007

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-007

5. In section 7.5 we discuss the problem of finding ranked optimal solutions for an
assignment problem, and finally make a few concluding remarks in section 7.6.

7.1 The assignment problem

The assignment problem is a well-known linear integer model, which is a special
case of the general transportation and linear programming problem. Since it is a
degenerate problem, its solution by standard LP method is not suited for this model.
In the case of an assignment problem, each supply point has exactly one unit to sup-
ply in each row and the demand at each demand point is also one for each column.
Solution to an assignment model have been developed by Aboli, et al. (2020), Niv,
et al. (2020), Oncan, et al. (2019), Zhang, et al. (2019). There are many available exact
methods for solving an assignment model, which include, the Hungarian method of
assignment, (see Date and Nagi (2016); Edmonds and Karp (1972); Kuhn (1955);
Kumar, Ncube, and Munapo (2003); Munkres (1957); Quddoos and Rabbani (2019);
Tomizawa (1971)). Other approaches are the transportation simplex method, linear
programming approach and network simplex method. Of these approaches, the net-
work simplex method is the most efficient one.

The ‘Sew-Saw’ approach for solving the assignment problem is discussed in
section 7.2. In this approach two-column paired movement is done in such a way
that when moving up in one column then we must move down in the other column
and vice a vera. The solution is verified for optimality and if optimal then algorithm
stops. If not, then use the transportation simplex to move to the optimal solution.
This method is suited for parallel computing.

Let an assignment problem be given as shown by Table 7.1.

Table 7.1: Assignment problem in general.

120 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Where cij is the cost of assignment when j
th

job is assigned to the i
th

source?
This is a balanced problem, i.e., number of rows (n) is equal to the number of col-
umns (m), means D= n=m. The objective is to minimize the total assignment cost.

In mathematical form the assignment problem can be represented as given in (7.1).

Minimize Z =
Xn

i= 1

Xn

j= 1
cijxij,

Xm
j

xij = 1, i= 1, 2, . . ., n,

Xn
i

xji = 1, j= 1, 2, . . ., n

xij ≥0. (7:1)

Solving (7.1) directly as a linear programming model will give the optimal solution,
unfortunately (7.1) is a highly degenerate case and this makes the simplex method
inefficient for solving the model (7.1).

7.1.1 Features of the assignment model

Feature 7.1: Subtracting or adding a constant to a row or column does not change
optimality of the solution.
In general subtracting or adding a constant to a row or column does not change the
optimal solution of an assignment problem. Let pi be a constant subtracted from row
i and qj be constant subtracted from column j. Thus, the cost element cij changes to
�cij as given in (7.2).

�cij = cij − pi − qj. (7:2)

This means:

Total cost =
Xn
i= 1

Xm
j= 1

cijxij =
Xn
i= 1

Xm
j= 1

cij − pi − qj

 �

xij,

=
Xn
i= 1

Xm
j= 1

cijxij −
X
i

pi

�X
j

xij

�
−
X
j

qj
X
i

xij

� �
,

=
Xn
i= 1

Xm
j= 1

cijxij −
�X

i

pi

�
dj

 �

−
�X

j

qj

�
aið Þ

=
Xn
i= 1

Xm
j= 1

cijxij − constant. (7:3)

7.1 The assignment problem 121

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

7.1.2 Kuhn-Tucker conditions

Since (7.1) has equality constraints, a Lagrangian function is constructed as given
by (7.4).

L=
Xn
i= 1

Xm
j= 1

cijxij + uj 1−
Xn
j

xij

 !
+ vi 1−

Xn
i

xij

� �
(7:4)

Where ui and vj are Lagrangian multipliers.
The necessary first order optimality conditions are given in (7.5).

∂L
∂xij

=
∂
Pn

i= 1

Pm
j= 1 cijxij

h i
∂xij

+ uj
∂ 1−

Pn
j xij

h i
∂xij

+ vi
∂ 1−

Pn
i xij

� �
∂xij

∂L
∂ui

= 1−
Xn
i

xij =0

∂L
∂vj

= 1−
Xn
j

xij =0 (7:5)

7.1.3 Transportation simplex method

In this approach the Lagrangian multipliers are used to improve a given starting
solution. The current solution is improved until it becomes optimal. In this ap-
proach the multipliers are calculated from current basic cells. An index for each of
the unoccupied cell is calculated from the determined multipliers and that cell with
largest index is the best candidate for occupation. Optimality stops when there is
no more candidate for occupation.

7.1.4 Hungarian approach

The Hungarian method was developed and published by Kuhn (1955). Kuhn named
his approach as the ‘Hungarian method of assignment’ because his approach was
based on the works of two Hungarian mathematicians Kőnig (1931) and Egerváry
(1931). This work of the two Hungarian mathematicians are summarized as follows.

Kőnig’s theorem
In a bipartite graph G= ðS, T; EÞ, the minimum number of elements of S exposed by
a matching is equal to the maximum of the deficit hðXÞ over the subsets of S where
hðXÞ: = Xj j− ΓðXÞj j and ΓðXÞ denotes the set of elements of T having a neighbour in
X. Particularly, there is a match covering S if and ΓðXÞj j≥ Xj j holds for every subset
X � S.

122 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://Hungarian%20method%20

Egerváry’s theorem
In the same year of 1931, Kőnig’s theorem was extended to Egervary’s theorem

Let G= ðS, T; EÞ, be a complete bipartite graph with Sj j= Tj j and let
c: E ! Z+ be a nonnegative integer-valued weight function. The maximum

weight of a perfect matching of G is equal to the minimum weight of a nonnegative,
integer-valued, weighted-covering of c where a weighted-covering is a function
π: S∪T ! Z+ for which πðuÞ+πðvÞ≥ cðuvÞ for every uv 2 E and the weight of π is
defined to be

X
πðvÞ: v 2 SUT½ �.

7.1.5 Tsoro and Hungarian hybrid approach

This is a hybrid of the Hungarian method and a Tsoro winning strategy, Kumar,
Ncube, and Munapo (2003). Tsoro is a two-person game which is widely played in
Southern African countries. The idea of the game is to optimize (maximize or mini-
mize) the number of playing stones depending on the objective of the game.

7.2 See-Saw rule and its application to an assignment model

The see-saw rule is derived from the see-saw game. In a see-saw game two people
sit on rod fixed in the middle and when one person goes up the other goes down
and vice versa.

The see-saw principle can be used to solve an assignment problem. In this case
two columns are paired at a time. Movement is done in one column such that when
one goes up then in the other column the movement goes down in such a way the
total cost is decreased. The see-saw game is shown in Figure 7.1 and the initial as-
signment problem is as given by Table 7.2.

Figure 7.1: The see-saw game.

7.2 See-Saw rule and its application to an assignment model 123

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Suppose the current allocation is shown in yellow in Table 7.2. The current
combined cost for columns j1 and j2 is given by ðcccj1j2Þ. For the data in Table 7.2, it
is given in (7.6).

cccj1j2 = c2j1 + c n−1ð Þj2 (7:6)

Movement is possible if the new combined cost is less or equal to current combined
cost. Suppose the allocation in the two columns is changed as shown in Table 7.3.

The new current cost is given by:

ccj1j2 = c n− 1ð Þj1 + c2j2

See-Saw movement is done in such a way that rows are exchanged. This is done to
ensure feasibility of the new solution. The see saw movement is desirable only if
and only if (7.7) is satisfied.

c2j1 + c n− 1ð Þj2 − c n− 1ð Þj1 + c2j2

 �

≤0 (7:7)

Pairing of columns
Pairing of columns is done from the left to the right i.e. select first column and pair it
with all the (n-1) on the right and select the best see-saw move. Pairing of columns
can be done from right to left and still get the same optimal solution. In this chapter
columns are paired but pairs can be developed in any way one likes. We will get the
same optimal solution.

Table 7.2: Initial position.

Table 7.3: New position.

124 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

7.2.1 Starting solutions

Just like the transportation simplex method this method requires a starting solu-
tion. Its efficiency depends on how near the starting solution is to the optimal. In
this chapter we recommend the Least Cost (LC) method and Vogel’s Approximation
(VA) method for an initial starting solution.

The least cost method finds a starting solution by targeting the least cost cells.
Once a cell is allocated, the corresponding row and column is crossed out. If there
is a tie, it is resolved arbitrarily. The procedure is repeated until all rows or columns
are satisfied.

In Vogel’s approximation method both row and column penalties are used in
allocating cells. The cell with the largest row and or column penalty is selected for
allocation, ties are broken arbitrarily, and the process is repeated until all rows and
columns are satisfied.

7.2.2 See-Saw algorithm

The See-Saw Algorithm for assignment problem is summarized as follows.
Step 1: Determine a stating solution for the assignment problem
Step 2: Pair the columns starting from the left. Select the best see-move. Repeat

procedure until there is no see-saw move possible and go Step 3.
Step 3: Current solution is optimal.

7.2.3 Numerical Illustration 1

This algorithm is illustrated on the following 6X6 assignment problem given in
Table 7.4.

Table 7.4: Given example.

7.2 See-Saw rule and its application to an assignment model 125

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using the See Saw rule we have the following steps:
Step 1: Starting solution using the least cost method is given in Table 7.5.

Where c1 − c2 stand for columns 1 to 6.
Total cost =158.
Fixing c1
c1 & c2 : c11 + c25 − ðc15 + c21Þ = 20 + 64 − ð62 + 16Þ = + 6 > 0. See-Saw move is

impossible.
c1 & c3 : c12 + c35 − ðc15 + c32Þ = 28 + 8 − ð62 + 4Þ = − 30≤0. See-Saw move is

possible.
c1 & c4 : c14 + c45 − ðc45 + c15Þ = 4 + 86 − ð2 + 62Þ = + 26 > 0. See-Saw move is

impossible.
c1 & c5 : c13 + c55 − ðc15 + c53Þ = 88 + 56 − ð62 + 30Þ = + 52 > 0. See-Saw move

is impossible.
c1 & c6 : c15 + c65 − ðc15 + c66Þ = 50 + 82 − ð62 + 44Þ = + 26 > 0 . See-Saw move

is impossible. (7.8)
Selecting See-Saw move with the largest negative (-30) we have Table 7.6.

Total cost = 128.
We now fix column c2 and repeating the process for c3 − c6 we can note that

there is no See-Saw move that is possible.

Table 7.5: Least cost starting solution.

Table 7.6: First See-Saw move.

126 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

7.2.4 Proof of optimality

The See-Saw algorithm uses a current solution to examine the possibility of moving
into unoccupied cells.

Possible to have a See-Saw move, if: c2i + cðn− 1Þj − ðcðn− 1Þ1 + c2jÞ≤0
See-Saw move is undesirable, if: c2i + cðn− 1Þj − ðcðn− 1Þ1 + c2jÞ>0
The See-Saw algorithm examines all unoccupied cells.
Algorithm terminates if See-Saw moves are impossible to all unoccupied cell.
When no move is possible, it implies that the current solution cannot be im-

proved and hence is optimal.
In conclusion, it may be stated that the See-Saw moves are simple. The (n-1)

See-Saw moves for a fixed column can be calculated at the same time by parallel
processors. Even the n various columns can also be handled at the same time.
This is not the case with both the Hungarian and transportations simplex meth-
ods. Every see-saw move occupies two new cells. The assignment model has appli-
cation in the Weapon Target Assignment (WTA) problem. This is the problem of
assigning weapons to targets while considering the maximum probability of kill,
see Kline, Ahner and Hill (2019). The assignment problem is also used in schedul-
ing problem large hospitals, transport industry, manufacturing, and production
Lan et al. (2019).

7.3 The transportation problem

Let any transportation problem be given by Table 7.7.

Where cij is the cost of transporting one unit from the source si to the destination dj.
It is a balanced transportation problem, if d1 +d2 + ... +dn =D= s1 + s2 + ... + sm.

Table 7.7: Transportation problem in general.

7.3 The transportation problem 127

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

7.3.1 Existing methods to find a starting solution for the transportation problem

Transportation model in linear programming has many interesting features, such as
the LP formulation has a coefficient matrix that is unimodular implying that the
continuous optimal solution is also the integer solution. The main challenge is that
the LP model is degenerate resulting in the simplex method being inefficient for
this kind of problems. The interior point algorithms are not affected by degeneracy
and are good for very large transportation problems. Comparing with the interior
point algorithms the simplex method is very good for small and medium sized LP
models. There are improved versions of the simplex method specifically developed
to handle transportation problem. These are the transportation simplex method
and the network simplex method. Of these two, the network simplex method is
more recent and more efficient. These two approaches require a starting solution
and there is need to improve the starting solutions. The efficiency of the transpor-
tation and network simplex method depend on the starting solution. There are
three main methods available for determining the starting solutions. These are
north-west, least coast and Vogel’s methods. In section 7.4, we discuss a method
for determining a good starting solution quickly. The method is called method of
subtractions as it is made of subtraction operations only.

The existing methods to find a starting solution for the transportation problem
are briefly presented below:

7.3.1.1 North-West corner method
The North-West Corner method computes a starting solution of a transportation
problem. In this approach, the basic variables are selected from the extreme top left
corner to develop a feasible solution. This approach is simple and reliable, and it is
easy to compute. The obvious disadvantage is that it does consider the transporta-
tion cost, therefore, it can result in a high cost starting solution. In terms of itera-
tions to move towards an optimal solution can be time consuming and is generally
not preferred.

7.3.1.2 Least Cost method
The Least Cost Method starts obtaining a feasible solution by starting from the
least-cost cells. The justification is that if more lower cost cells are chosen in the
initial starting solution, the lower the total transportation cost will be and lesser
number of iterations will be required to move to an optimal solution. This method has
the advantage of giving a near optimal solution to the transportation problem and it
is very simple and easy to implement to find a starting solution. In the presence of
ties, this method can be challenging to select the cell which is likely to give the total
lower cost.

128 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

7.3.1.3 Vogel’s Approximation Method (VAM)
Vogel’s Approximation Method considers cost like the least cost method. The
difference is that the allocation starts in the cell with the largest difference be-
tween the two smallest or lowest costs in rows and columns. The advantage of
this method is that it is highly accurate and as result it takes fewer iterations to
reach to the optimal solution. The disadvantage is that it is tedious when it is im-
plemented to large-sized problems.

Since each method has its limitations, it is necessary to generate a simple and
an accurate approach to come up a good starting solution.

7.3.2 Transportation simplex method

The transportation simplex method is also known as the modified distribution (MODI)
method and the steps are summarized as follows.
Step 1: From the starting solution with ðm+ n− 1Þ occupied cells, calculate ui and

vj such that cij = ðuj + vjÞ and that either ui or vj=0.
Step 2: From the unoccupied cells calculate Δij such that Δij = cij − ðui + vjÞ. If all

Δij >0 then current solution is optimal and unique. If any Δij ≥0, the current
solution is optimal and alternate solution exists. If any Δij <0, than the cur-
rent solution must be improved and go to the cell ði, jÞ.

Step 3: Select the unoccupied cell with the most negative Δij. Ship the maximum
amount to this cell and make the necessary adjustments to the other occu-
pied cells.

Step 4: Return to Step 2
Step 5: This method is efficient if the starting solution is the near optimal solution.

Therefore, a need to develop a method to find a good starting solution is
desirable.

7.3.3 Network simplex method

This is an efficient method for solving the minimum cost network flow problem
(MCNFP). Any transportation (assignment and transshipment included) problem
can be formulated as a MCNFP by use of a dummy-arcs and or node.
Step 1: Determine the ðn− 1Þ starting balanced feasible solution ðbfsÞ which corre-

sponds to a spanning tree. Indicate non-basic variables at their upper
bound by coloured arcs.

7.3 The transportation problem 129

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Step 2: Compute the simplex multipliers, ðy1, y2, ..., ynÞ,) by solving u1 =0 and
cij = yi − yjÞ for all basic variables xij. For all non-basic variables, determine
the row 0 coefficient from �cij = yi − yj − cij. The current bfs is optimal if
�cij ≤0 ∀ xij = Lij and �cij ≥0 ∀ xij =Uij. If the bfs is not optimal, choose the
non-basic variable that most violates the optimality conditions as the en-
tering basic variable.

Step 3: Identify the cycle that is created by adding the arc corresponding to the
entering variable to the current spanning tree of the current bfs. Use con-
servation of flow to determine the new values of the variables in the
cycle. The variable that exits the basis will be the variable that first hits
its upper or lower bound as the value of the entering basic variable is
changed.

Step 4: Find the new bfs by changing the flows of the arcs in the cycle found in
Step 3 and return to Step 2.

Just like the transportation simplex method the efficiency of the network simplex
method is determined by the starting solution. The more accurate the starting solu-
tion the fewer the steps to optimality.

7.3.4 The method of subtractions for an initial starting solution

7.3.4.1 Derivation
The derivation comes from the fact that subtracting or adding a constant to a row or
column does not change the optimal solution. The transportation problem can be
represented as given in (7.9).

Minimize Z =
Pn
i= 1

Pm
j= 1

cijxij,

Xm
j

xij = sj,

Xn
i

xij =di.

xij ≥0. (7:9)

Let pi be constant subtracted from row i and qj be constant subtracted from column j.
Thus, the constant element cij changes to �cij as given in (7.10).

130 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

�cij = cij − pi − qj.
Xn
i= 1

Xm
j= 1

cijxij =
Xn
i= 1

Xm
j= 1

ðcij − pi − pjÞ,

=
Xn
i= 1

Xm
j= 1

cijxij −
X
i

pi
X
j

xij

 !
−
X
j

qj
X
i

xij

� �
,

=
Xn
i= 1

Xm
j= 1

cijxij −
X
i

pi

� �
dj

 �

−
X
j

qj

 !
sið Þ,

=
Xn
i= 1

Xm
j= 1

cijxij − constant. (7:10)

7.3.4.2 Cost matrix with at least a zero in every row and column
From Table 7.8 we can create at least a zero in every row and every column. This is
done by selecting a row minimum and then subtracting it from all elements in that
row. This is repeated for all rows and all columns to obtain Table 7.8.

Where c′ij = cij + kij, kij ≥0 and constant.
If allocation can be done to zero elements only then the current solution is opti-

mal. If not possible to allocate to zero elements only then there is a need to create
new zeros.

7.3.4.3 Allocation to zero elements
With the method of subtractions allocation is done to furthest zero. In this case the
furthest zero is the zero that with the greatest difference from the next smallest number
its row or column. If there is a tie, then the zero with larger numbers in its row or

Table 7.8: At least a zero in every row and column of the
cost matrix.

7.3 The transportation problem 131

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

column is selected. Immediately after an allocation to the selected zero the satisfied
row and or column is removed from the problem. The reduced cost matrix must have
at least a zero in its row or column. If not at least a zero is created in the remaining
rows and columns.

7.3.4.4 The method of subtractions
The method of subtractions is summarized as follows.
Step 1: Ensure that the given transportation problem is a balanced problem. This

is done by creating a dummy row or column.
Step 2: Create at least a zero in every row and every column.
Step 3: Identify the furthest zero. If there is a tie, select and allocate that zero with

larger numbers in its row or column.
Step 4: Remove the satisfied row and or column and return to Step 2 until all rows

and columns are satisfied.

7.3.4.5 Numerical illustration 2
Use the method of subtractions to find a starting solution for the following transpor-
tation problem as shown in Table 7.9.

Row minima are given in Table 7.10.

Table 7.9: Given transportation problem.

Table 7.10: Row minima.

132 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Subtracting row minimum, we have Table 7.11.

The furthest zero is in second row and second column (nearest number in column is 4
units away and 0 units away in row = 4+0 = 4). Allocating in the selected cell (2,2),
making the necessary adjustments, and removing the satisfied row we have Table 7.12.

There are zeros in all rows but there are no zeros in the second, third and sixth col-
umns. Creating at least a zero in these columns we have Table 7.13.

The furthest zero is in first row and last column (nearest number in column is 3
units away and 0 units away in row =3+0=3). Allocating in the selected cell, making
the necessary adjustments, and removing the satisfied row we have Table 7.14.

Table 7.11: Subtracting row minima.

Table 7.12: Allocating in the selected cell and removing satisfied row.

Table 7.13: Creating at least a zero in all columns.

Table 7.14: Allocating in the selected cell and removing satisfied row.

7.3 The transportation problem 133

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

There are zeros in all rows but there are no zeros in the fourth, fifth and sixth
columns. Creating at least a zero in these columns we have Table 7.15.

The furthest zero is in third row and fifth column (nearest number in column is 5 units
away and 0 units away in row =5+0=5). Allocating in the selected cell, making the nec-
essary adjustments, and removing the satisfied column we have Table 7.16.

There are zeros in all rows and all columns, and we can select another cell and allo-
cate. The furthest zero is in fourth row and fourth column (nearest number in col-
umn is 3 units away and 0 units away in row =3+0=3). Allocating in the selected
cell, making the necessary adjustments, and removing the satisfied column we
have Table 7.17.

Table 7.15: Creating at least a zero in all columns.

Table 7.16: Allocating in the selected cell and removing satisfied column.

Table 7.17: Allocating in the selected cell and removing satisfied column.

134 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

There are zeros in all rows and all columns, and we can select another cell and
allocate. The furthest zero is in fourth row and second column (nearest number in
column is 2 units away and 0 units away in row =2+0=2). Allocating in the selected
cell, making the necessary adjustments, and removing the satisfied column we
have Table 7.18.

There are zeros in all rows and all columns, and we can select another cell and allo-
cate. The furthest zero is in third row and first column (nearest number in column
is 0 units away and 7 units away in row =0+7=7). Allocating in the selected cell,
making the necessary adjustments, and removing the satisfied column we have
Table 7.19.

There are zeros in all rows and all columns, and we can select another cell and allo-
cate. There are three furthest zeros (in the case of a tie). First zero is in fourth row
and first column (nearest number in column is 0 units away and 1 unit away in row
=0+1=1). The other two furthest zero are in third and fifth columns. In this case we
select the one in fourth row and first column. This zero has more big numbers in its
row (i.e., two 1s). Allocating in the selected cell, making the necessary adjustments,
and removing the satisfied column we have Table 7.20.

Table 7.18: Allocating in the selected cell and removing satisfied column.

Table 7.19: Allocating in the selected cell and removing satisfied column.

7.3 The transportation problem 135

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

There are no zeros in the fourth row but there are zeros in the columns. Creating
at least a zero in the fourth row we have Table 7.21.

All zeros are furthest zeros (i.e. a tie). In this case the zero that can make the largest
allocation is selected as given in Table 7.22 and Table 7.23.

Table 7.20: Allocating in the selected cell and removing satisfied column.

Table 7.21: Creating at least a zero in all rows.

Table 7.22: Allocating in the selected cell and removing satisfied column.

Table 7.23: Allocating in the selected cell and removing satisfied rows and only column.

136 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

There are zeros in all rows and in the only column and we can allocate as given
in Table 7.24.

Total cost =
20ð2Þ+ 2ð10Þ+ 1ð30Þ+ 6ð10Þ+ 5ð50Þ
+ 4ð20Þ+ 3ð20Þ+ 6ð20Þ+ 8ð10Þ+ 7ð10Þ=810.

The optimal solution for this transportation problem is 780 and solution approximated
by the methods of subtractions is closer than any other available approximating meth-
ods. Starting solution using VAM is given in Table 7.25, using the Least Cost method in
Table 7.26 and using the North West Corner method in Table 7.27.

Total cost =
2ð30Þ+ 1ð30Þ+ 8ð10Þ+ 5ð50Þ+ 14½10�
+ 4ð20Þ+ 3ð20Þ+ 1ð10Þ+ 7ð30Þ =960.

Total cost =
2ð30Þ+ 1ð30Þ+ 6ð10Þ+ 5ð50Þ+ 4ð20Þ
+ 3ð20Þ+ 11ð10Þ+ 8ð30Þ+ 7ð10Þ =930

Table 7.24: Starting solution obtained.

Table 7.26: Least Cost method starting solution.

Table 7.25: VAM starting solution.

7.3 The transportation problem 137

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Total cost =
8ð20Þ+ 2ð10Þ+ 1ð20Þ+ 8ð20Þ+ 19ð20Þ
+ 6ð30Þ+ 4ð20Þ+ 8ð20Þ+ 7ð10Þ =1140

In conclusion, one can state that the method of subtraction for transportation
models performs much better for a starting solution. An experiment was created
on 20 randomly generated problems and the method of subtraction performed
better compared to VAG and Least Cost method on all those 20 problems. The method
discussed above is simple and is made up of only subtraction operations. The only
obvious weakness is number of iterations required to obtain this better starting
solution.

7.4 The See-Saw algorithm for a general transportation problem

In this section, we develop the see-saw approach for the transportation problem.
Since every transportation problem can be viewed as a special assignment prob-
lem, therefore the method for the assignment problem can also be used for solv-
ing the general transportation problem. Slight modifications are required, which
are presented in this section. It may be noted that unlike the assignment prob-
lem where there is exactly one unit of allocation exists in every column and
row, the transportation problem may have more than one allocation in a column
or row. The See-Saw moves in this case are done from more than one cells in
one column to more than one cells in the other column. As stated in earlier, See-
Saw moves are very simple and can be calculated at the same time by parallel
processors.

7.4.1 A General transportation model

A transportation model in general can be expressed as given in Table 7.28

Table 7.27: North West Corner method starting solution.

8[20] 9 20 4 4 6 20
2[10] 1[20] 1 1 1 1 30

2 8[20] 19[20] 7 3 14 40
2 6 6[30] 4[20] 11 8 50
2 15 5 12 8[20] 7[40] 60
30 40 50 20 20 40

138 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Where cij is the cost of transporting a unit from i to j. We are assuming this is
a balanced transportation problem, i.e. number of total supply is equal to the total de-
mand ðDTÞ i.e.

P
i
si =

P
i
dj =DT . The objective is to minimize the total transportation

cost.
In mathematical form the transportation problem can be represented as given

in (7.11).

Minimize ZTra =
Xn
i= 1

Xm
j= 1

cijxij,

Xm
j

xij = si, ;i= 1, 2, ..., n. (7:11)

Xn
i

xji =dj, j= 1, 2, ..., n.

xij ≥0. and integer.
Like the assignment model the transportation model is also degenerate.

7.4.2 The assignment-transportation model relationship

A general transportation problem can be easily converted into an assignment
problem by splitting all rows so that supply for each is exactly one as given in
Table 7.29. Similarly, for the columns are repeated so that demand for each col-
umn is also one. The transportation problem as an assignment problem is shown
in Table 7.30.

Splitting the columns so that each column has exactly a demand of one we
have Table 7.30. Note that Table 7.30 is the transportation problem in an assign-
ment form.

Table 7.30 shows that any balanced transportation problem can be expressed
as an assignment problem.

Table 7.28: Transportation model
in general.

7.4 The See-Saw algorithm for a general transportation problem 139

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

A starting solution is required for the See-Saw procedure and the more accurate
the starting solution is, a fewer See-Saw moves will be necessary to reach the opti-
mal solution. In theory, we have three approaches, which are:
a) Method of subtractions,
b) Least cost method and
c) Vogel’s approximation method.

As stated earlier, method of subtraction, seems to the best choice.

7.4.3 See-Saw rule for the transportation model

The See-Saw rule for the general transportation problem is like the one for the assign-
ment problem. The only difference is that more than one allocation is possible in every
row and column unlike in the assignment problem where there is exactly one allocation.

In transportation See-Saw moves, one column is pivoted and then paired with the
other movement is done in one column such that when one goes up in the pivoted

Table 7.29: Splitting the rows of transportation problem.

Supply

11c 12c … 1nc 1

11c 12c … 1nc 1
1 timess

…

11c 12c … 1nc 1

21c 22c … 2nc 1

21c 22c … 2nc 1
2 timess

…

21c 22c … 2nc 1

1mc 2mc … mnc 1

1mc 2mc … mnc 1 timesms
…

1mc 2mc … mnc 1

1d 2d … nd TD

… … …

140 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

column then the other is forced to go down in the paired column and vice versa. A
column may have more than one allocation and all these basic values must be sub-
jected to See-Saw moves. Similarly, the paired column may have more than one basic
allocation and all these must be subjected to See-Saw moves, and most profitable
move selected.

7.4.4 Initial position before the See-Saw move

The initial or starting solution for the See-Saw rule has more than one allocation in
the columns as given in Table 7.31.

The current combined cost ðcccijÞ for the two paired columns is given in (7.12).

cccij = c1iγ1i + c2iγ2i + ... + cðn− 1Þiγðn− 1Þi + c2jγ2j + ... + cðn− 1Þjγðn− 1Þj + cnjγnj. (7:12)

Table 7.30: Transportation problem in an assignment form.

1 timesd 2 timesd timesnd Supply

11c 11c … 11c 12c 12c … 12c … 1nc 1nc … 1nc 1

11c 11c … 11c 12c 12c … 12c … 1nc 1nc … 1nc 1 1 timess

…

11c 11c … 11c 12c 12c … 12c … 1nc 1nc … 1nc 1

21c 21c … 21c 22c 22c … 22c … 2nc 2nc … 2nc 1

21c 21c … 21c 22c 22c … 22c … 2nc 2nc … 2nc 1 2 timess

…

21c 21c … 21c 22c 22c … 22c … 2nc 2nc … 2nc 1

… … …

1mc 1mc … 1mc 2mc 2mc … 2mc … mnc mnc … mnc 1

1mc 1mc … 1mc 2mc 2mc … 2mc … mnc mnc … mnc 1 timesms

…

1mc 1mc … 1mc 2mc 2mc … 2mc … mnc mnc … mnc 1

1 1 1 1 1 1 1 1 1 (Demand)

7.4 The See-Saw algorithm for a general transportation problem 141

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The new cost after the See-saw move is calculated from the allocation given in
Table 7.32.

The new combined cost ðnccijÞ is given in (7.13).

nccij = c2iðγ1i + γ2iÞ+ ... + cðn− 1Þiγðn− 1Þi + c2jðγ2j − γ1iÞ+ ... + cðn− 1Þjγðn− 1Þj + cnjγnj. (7:13)

See-Saw movement is possible and profitable if the new combined cost ðnccijÞ is
less than or equal to current combined cost ðcccijÞ as given in (7.14).

cccij ≤ nccij. (7:14)

Pairing of columns
Just like the See-Saw move for the assignment model pairing of columns is done
from the left to the right i.e., select first column and pair it with all the (n-1) on the
right and select the best see-saw move. The only version for assignment model is
that all allocations in the same column are used for the see-saw moves.

7.4.5 See-Saw algorithm for the general transportation model

The See-Saw algorithm for general transportation problem is summarized as follows.
Step 1: Determine a stating solution for the transportation problem
Step 2: Pair the columns starting from the left. Use allocations in the column for

the See-Saw moves and select the move that gives cccij ≤ nccij. Repeat

Table 7.31: Initial position.

Table 7.32: New position after the See-Saw move.

142 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

procedure for all columns from left to right until there is no more See-Saw
move possible and go Step 3.

Step 3: Current solution is optimal.

7.4.6 Numerical illustration of transportation model

Use the See-Saw rule to solve the transportation problem as given in Table 7.33.

Starting solution by using the method of subtractions

Row minima is given in Table 7.34 and after subtraction, we have Table 7.35. Similarly
column give Tables 7.36 and 7.37.

Table 7.33: Given example.

Table 7.34: Row minima.

Table 7.35: Subtracting row minima.

Table 7.36: Column minima.

7.4 The See-Saw algorithm for a general transportation problem 143

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Table 7.37, we obtain differences of the two minimum as shown in
Table 7.38.

The furthest zero has a total distance of ðβ3 + α2Þ= 10+0= 10. Allocating this
zero we have Table 7.39.

The third column is now satisfied. Repeating the procedure in method of subtrac-
tions we have Table 7.40.

Table 7.39: Subtracting column minima.

Table 7.40: Determining new row ðαjÞ & column ðβiÞ differences.

Table 7.37: Subtracting column minima.

Table 7.38: Determining row ðαjÞ & column ðβiÞ differences.

144 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The furthest zero has a total distance of ðβ1 + α3Þ= 5+ 5= 10. Allocating this zero
we have Table 7.41, Table 7.42 and Table 7.43.

The furthest zero has a total distance of ðβ4 + α3Þ=0+ 4= 4. Allocating this zero we
have Table 7.44, and Table 7.45.

Table 7.42: Subtracting row minima.

Table 7.43: Determining new row ðαjÞ & column ðβiÞ differences.

Table 7.44: Allocating the furthest zero.

Table 7.41: Allocating the furthest zero and identifying new row & column minima.

Table 7.45: Determining new row ðαjÞ & column ðβiÞ differences.

7.4 The See-Saw algorithm for a general transportation problem 145

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The furthest zero has a total distance of ðβ4 + α1Þ=0+ 4= 4. Allocating this zero
we have Table 7.46.

Automatically the second column is allocated as given in Table 7.47.

Using the See-Saw algorithm to move to optimality
Iterative steps of the algorithm are shown in successive tables, as given by Table
7.48 to Table 7.58 below.

---Pivoting Column 1---

See-Saw Move 1:5ð50Þ+ 3ð50Þ+ 8ð100Þ− f11ð50Þ+ 15ð50Þ+ 8ð100Þg= − 900<0. The
See-Saw move is not profitable.

Table 7.47: Allocating in the second column.

Table 7.48: Starting solution.

Table 7.49: See-Saw Move 1.

Table 7.46: Allocating the furthest zero.

146 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

See-Saw Move 2:5ð50Þ+ 8ð100Þ− f13ð50Þ+ 15ð50Þ+ 8ð50Þg= − 750<0. The See-
Saw move is not profitable.

See-Saw Move 3:5ð50Þ + 10ð150Þ − f13ð50Þ + 100ð100Þ + 50ð17Þg = − 750 < 0. The See-
Saw move is not profitable.

See-Saw Move 4:5ð50Þ+ 12ð100Þ+ 19ð50Þ− f11ð50Þ+ 12ð50Þ+ 19ð100Þg= −650<0. The
See-Saw move is not profitable
---Pivoting Column 2---

See-Saw Move 5:8ð100Þ+3ð50Þ+10ð150Þ−f8ð150Þ+21ð50Þ+10ð100Þg= −800<0. The
See-Saw move is not profitable.

Table 7.51: See-Saw Move 3.

Table 7.52: See-Saw Move 4.

Table 7.53: See-Saw Move 5.

Table 7.50: See-Saw Move 2.

7.4 The See-Saw algorithm for a general transportation problem 147

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

See-Saw Move 6:3ð50Þ+8ð100Þ+12ð100Þ+19ð50Þ−f3ð150Þ+21ð100Þ+19ð50Þ=−400<0.
The See-Saw move is not profitable.

See-Saw Move 7:3ð50Þ+8ð100Þ+12ð100Þ+19ð50Þ−f3ð50Þ+8ð50Þ+15ð50Þ+12ð100Þ+21ð50Þg=
−450<0. The See-Saw move is not profitable.

See-Saw Move 8:3ð50Þ + 8ð100Þ + 12ð100Þ + 19ð50Þ − f8ð100Þ + 15ð50Þ + 12ð150Þg =
− 250<0. The See-Saw move is not profitable.
---Pivoting Column 3---

See-Saw Move 9:10ð150Þ+ 12ð100Þ+ 19ð50Þ− f21ð100Þ+ 10ð50Þ+ 21ð100Þ+ 19ð50Þg=
− 2000<0. The See-Saw move is not profitable.

Table 7.55: See-Saw Move 7.

Table 7.56: See-Saw Move 8.

Table 7.57: See-Saw Move 9.

Table 7.54: See-Saw Move 6.

148 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

See-Saw Move 10:10ð150Þ+12ð100Þ+19ð50Þ−f10ð100Þ+21ð50Þ+12ð100Þ+50ð17Þ+
19ð50Þg=−1400<0. The See-Saw move is not profitable.

The current solution is optimal since there is no See - Saw move possible.
The See-Saw algorithm use a current solution to examine the possibility of mov-

ing into an unoccupied cell.
Possible See-Saw move: cccij ≤ nccij.
Impossible See-Saw move: cccij > nccij.
The See-Saw algorithm examines all unoccupied cells.
Algorithm terminates if See-Saw moves are impossible to all unoccupied cell.
Impossibility to move implies current solution cannot be improved and is

optimal.
In conclusion, the See-Saw is a heuristic rule and moves are simple and can be

done independently. The See-Saw moves for all the paired columns can be calcu-
lated independently by use of massively parallel processing. This is not possible for
the available transportation simplex, Hungarian and the network simplex methods.
The transportation model has application in the military, see Kline et al. (2019) and
scheduling problems, see Lan et al. (2019).

7.5 Determination of kth (k ≥ 2) ranked optimal solution

Determination of the best or an optimal solution for a given mathematical model is
relatively easy as the existing methods have in them some inbuilt optimality condi-
tions, and when these conditions are satisfied at a particular point of search; that
point is declared as the optimal solution and the search process ends. However, de-
termination of the kthbest, k ≥ 2 is mathematically a difficult problem as ranked opti-
mality or the kthbest, k ≥ 2 is linked to previous k− 1ð Þ ranked optimal solutions. For
example, the 2nd best solution may be defined as the best solution among all possi-
ble solutions, excluding the best one. In general, the k + 1ð Þth best solution will be
the best solution after excluding 1, 2, . . ., kth best solutions and this seemingly simple
variation makes the problem difficult and computationally demanding. In context of
an assignment problem, many attempts have been made by various researchers.
Here we just mention the attempts by Murty (1968) and Kumar et al. (2020). In this
section, we discuss, a new approach and apply this new approach to a couple of

Table 7.58: See-Saw Move 10.

7.5 Determination of kth (k ≥ 2) ranked optimal solution 149

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

numerical illustrations from Murty (1968) and Kumar et al. (2020) and compare with
the results obtained by them.

7.5.1 Murthy’s (1968) approach

The main idea behind Murthy’s approach can be explained by considering a nXn
assignment problem and assume the optimal string of assignment has been deter-
mined by the Hungarian method of assignment. Murty has denoted this optimal
string by: a 1ð Þ= i1, j1ð Þ, � � � , ir, jrð Þ, � � � , in, jnð Þf g. It means job jr is assigned to the per-
son ir, r = 1, 2, ... n− 1ð Þ, n. Murthy solves (n-1) assignment problems, as follows:

M1 = i1, j1

 �	 �

M2 = i1, j1ð Þ, ði2, j2Þ
n o

. . .

Mr = i1, j1ð Þ, ..., ir − 1, jr − 1ð Þ, ir, jr

 �	 �

, r = 1, 2, ... n− 1ð Þ (7:15)

In other words, from the given problem, one can create (n-1) more assignment prob-
lems, where the problem M1 is the given problem with the element ði1, j1Þ=∞, and
the problem is solved again by the Hungarian method of assignment. Similarly, the
problem is solved again with an assignment in row 1 as was in the optimal string,
i.e., the location ði1, j1Þ and the next element from the optimal string ði2, j2Þ=∞.
This process is repeated on each Mr, r = 1, 2, ..., n− 1ð Þ.

This approach is implementing the idea that the 2nd best will differ from the
best with respect to at least one assignment, which is achieved by setting that cost
of assignment equal to ∞

Thus Murty (1968) continues to use the Hungarian method of assignment, and
minimum from these (n-1) problems gives the required 2nd best.

Let us reconsider the illustration used by Murthy (1968), which is shown in
Table 7.59.

The optimal assignment for the problem in Table 7.59 is given by the following
assignment combinations:

a 1ð Þ= 1,9ð Þ, 2,7ð Þ, 3,3ð Þ, 4,8ð Þ, 5,6ð Þ, 6,4ð Þ, 7,10ð Þ, 8,1ð Þ, 9,5ð Þ, 10,2ð Þf g,withtotalcost = 0

(7:16)

Since the 2nd best will differ from the best solution in at least one assignment, there-
fore, for a nXn assignment model, Murty (1968) solves (n-1) conditional assignment
problems. For the above illustration, he solves 9 conditional assignment problems
and obtained optimal cost as follows:

150 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

M1 = f 1, 9ð Þ�g,M1 = 10

M2 = 1, 9ð Þ, 2, 7ð Þ
n o

,Cost M2 = 14

M3 = 1, 9ð Þ, 2, 7ð Þ, 3.3

 �	 �

,Cost M3 = 14

M4 = 1, 9ð Þ, 2, 7ð Þ, 3, 3ð Þ, 4.8

 �

,Cost M4 = 1

M5 = 1, 9ð Þ, 2, 7ð Þ, 3, 3ð Þ, 4, 8ð Þ, 5.6

 �

,Cost M5 = 12

M6 = f 1, 9ð Þ, 2, 7ð Þ, 3, 3ð Þ, 4, 8ð Þ, 5, 6ð Þ, 6.4

 �

,Cost M6 = 53

M7 = f 1, 9ð Þ, 2, 7ð Þ, 3, 3ð Þ, 4, 8ð Þ, 5, 6ð Þ, 6, 4ð Þ, 7.10

 �

,Cost M7 = 45

M8 = f 1, 9ð Þ, 2, 7ð Þ, 3, 3ð Þ, 4, 8ð Þ, 5, 6ð Þ, 6, 4ð Þ, 7, 10ð Þ, 8.1

 �

,Cost M8 = 47

M9 = f 1, 9ð Þ, 2, 7ð Þ, 3, 3ð Þ, 4, 8ð Þ, 5, 6ð Þ, 6, 4ð Þ, 7, 10ð Þ, 8, 1ð Þ, 9.5

 �

,CostM9 = 56 (7:17)

From (7.17), he concludes that the 2nd best solution is given by M4 with total cost
equal to 1. The assignment for the 2nd best solution were obtained as:

a 2ð Þ= 1, 9ð Þ, 2, 7ð Þ, 3, 3ð Þ, 4, 2ð Þ, 5, 6ð Þ, 6, 4ð Þ, 7, 8ð Þ, 8, 1ð Þ, 9, 5ð Þ, 10, 10ð Þf g (7:18)

7.5.2 Minimal cost assignment approach for the ranked solution

The minimum cost approach is an alternative approach, following are the steps to
find the ranked solutions.
Step 1: Consider a nXn assignment problem. Find the optimal solution by the Hun-

garian method of assignment with total cost equal to zero for the modified
cost in the usual Hungarian approach.

Step 2: Locate the minimum nonnegative coat cell in the modified cost matrix. Let
this cell be denoted by ði, jÞ.

Step 3: Make an allocation in the cell ði, jÞ, delete the row i and column j. Find the
optimal allocation for the remaining n− 1ð ÞX n− 1ð Þ assignment problem.

Table 7.59: Assignment data for the 10X10 problem.

7.5 Determination of kth (k ≥ 2) ranked optimal solution 151

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Step 4: If the total cost for this n− 1ð ÞX n− 1ð Þ is equal to zero, then we have ob-
tained the ranked solution, else list the result and return to Step 2.

Let us reconsider the numerical illustration by Murty and find the 2nd best solu-
tion by this approach. The best solution has been identified in (7.16) with total
cost zero.

As per the step 2, we identify a minimum non-zero cost cell from Table 7.59.
This element is 1 situated at the cell (10,10). Thus, we make a conditional allocation
in the cell (10, 10), and therefore delete the row 10 and, also delete the column 10.
The new matrix will be as given in Table 7.60.

It may be noted that the cell (10,10) together with the allocations shown in red in
Table 7.60 constitute a feasible solution to the given assignment model and it is the
2nd best solution as it is the best after excluding the optimal solution shown by the
allocations in (7.16).

Illustration 2 taken from Kumar et al.(2020)
Consider the assignment problem given by Table 7.61. Optimal cost is 9 and the

optimal string is {(1,2), (2,4), (3,1), (4,3)}.

Once again, we select a non-zero smallest element which is 1 in the cell (3,2). Deleting
row 3 and column 2, we get a reduced cost matrix as shown in Table 7.62.

Table 7.60: Modified Table after deleting row 10 and column 10.

Table 7.61: Assignment cost matrix
considered by Kumar et al. (2020).

152 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Feasible solution at 0 cost locations is possible only after subtracting 3 from the ele-
ments in row 1 and possible feasible solution for given problem will be as shown in
the string {(1,1), (2,4), (3,2), and (4,3)}. Its total cost will be given by (9+1+3) =13. This
solution is not accepted as the second-best solution as increase in total cost is 4
units, whereas the reduced cost matrix (See Table 7.61) has elements less than 4.
Therefore, we must check with respect to the elements which are less than 4. These
elements in addition to the element in the cell (3,2) are 3 in cells (1,1), (1,4) and (3,3).
In fact, if we make an allocation in the cell (3,3), we do end up getting a feasible solu-
tion given by {(1,2), (2,1), (3,3) and (4,4) with total cost 12, which is now the 2nd best
solution. There are more than one third best solutions with total cost equal to 13.

7.6 Concluding remarks

In this chapter we have introduced a new approach for solving an assignment and
transportation problem, which is suitable for parallel computing. Earlier approaches
are not suited to parallel computing ideas. We have emphasized the importance of a
starting solution for a transportation model and presented a method that gives a bet-
ter starting solution compared to existing approaches. Finally, we have also identi-
fied some methods for determination of the kthbest, k≥ 2 for an assignment problem.
A need exists for developing methods for the kthbest, k≥ 2 for other optimization
models.

References

Aboli H. Patil, Parikshit N. Mahalle. (2020). Trends and Challenges in Measuring Performance of
Reviewer Paper Assignment, Procedia Computer Science, Volume 171, 709–718.

Aramuthakannan S, Kandasamy PR. (2013). Revised distribution method of finding optimal solution
for transportation problems. IOSR Journal of Mathematics (IOSR-JM). 4(5):39–42.

Charnes Cooper. (1954). The stepping-stone method for explaining linear programming. Calculation
in transportation problems. Management Science. 1954;1(1):49–69.

Date, Ketan, Nagi, Rakesh. (2016). GPU-accelerated Hungarian algorithms for the Linear
Assignment Problem. Parallel Computing. 57, 52–72.

Table 7.62: Assignment matrix after
the conditional allocation.

References 153

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Edmonds, Jack, Karp, Richard. (1972). Theoretical Improvement in Algorithmic Efficiency for
Network Flow Problems. Journal of the ACM. 19. 248–264.

Jenő Egerváry, (1931). [=Eugene], Matrixok kombinatorius tulajdons´agair´ol, [in Hungarian: On
combinatorial properties of matrices] Matematikai ´es Fizikai Lapok 38, 16–28.

Hillier, F.S., Lieberman, G.J. (2015), Introduction to Operations Research, ISBN 13:79812 59545962.
Kline, A., Ahner, D., Hill, R. (2019). The Weapon-Target Assignment Problem. Computers and

Operations Research 105, 226–236.
Kőnig, D. 1931. Graphok ´es matrixok, [in Hungarian: Graphs and matrices], Matematikai ´es Fizikai

Lapok 38, 116–119.
Kuhn, H.W. (1955). The Hungarian Method for the assignment problem, Naval Research Logistic

Quarterly 2, 83–97.
Kumar, S., Ncube, O., and Munapo, E. (2003). Tsoro and Hungarian approaches: A hybrid algorithm

for an assignment problem. Asia-Pacific Journal of Operational Research. 20. Pp 41–49.
Kumar, S., Al-Hasani, A., Al-Rabeeah, M. and Ebehard, A. (2020). A random search method for finding

‘ k≥2’ number of ranked optimal solution to an assignment problem, Journal of Physics:
Conference series 1490 (2020)012063, doi:10.1088/1742-6596/1490/1/012063, pp 1–13.

Lan S., Fan, W., Liu, T., Yang, S. (2019). A hybrid SCA-VNS meta-heuristic based on Iterated
Hungarian algorithm for physicians and medical staff scheduling problem in outpatient
department of large hospitals with multiple branches. Applied Soft Computing 85.

Munkres, J. (1957). Algorithms for the Assignment and Transportation Problems. Journal of the
Society for Industrial and Applied Mathematics 5, 32–38.

Murty, K.G. (1968). An algorithm for ranking all the assignments in order of increasing cost,
Operations Research, 16.3, pp 682–687.

Niv A., Maccaig M., Sergeev, S. (2020). Optimal assignments with supervisions. Linear Algebra and
its Applications 595. 72–100.

Oncan, T., Suvak, Z., Akyuz, M.H., Altinel, I.K., (2019). Assignment problem with conflicts
Computers and Operations Research 111, 214–229.

Pandian, P., Natarajan, G. (2010). A new method for finding an optimal solution for transportation
problems. International J. of Math. Sci. and Engg. Appls 4. 59–65.

Quddoos A., Javaid S., Khalid M.M. (2012). A new method for finding an optimal solution for
transportation problems. International Journal on Computer Science & Engineering. 4(7).

Quddoos A., Rabbani, Q. (2019). Modified Hungarian method for unbalanced assignment problem
with multiple jobs. Applied Mathematics and Computation 361. 493–498.

Soomro A.S., Tularam, G.A., Bhayo, G.M. (2014). A comparative study of initial basic feasible
solution methods for transportation problem. Mathematical theory and Modelling.
2224–5804.

Soomro, A.S., Jamali, S., Shaikh, M.M. (2017). On non-optimality of direct exponential approach
method for solution of transportation problems, Sindh Univ. Res. Jour. (Sci. Ser.). 49(1):183–188.

Taha, H.A. (2017). Operations Research: An Introduction, Pearson Educators, 10th Edition.
Tomizawa, N. (1971). On some techniques useful for solution of transportation network problems.

Networks, 1, 173–194.
Winston, W.L. (2004). Operations Research Applications and Algorithms, Duxbury Press, 4th Edition
Zhang, Ren-Qian, Wang, M. and Pan, X. (2019). New model of the storage location assignment

problem considering demand correlation pattern. Computers and Industrial Engineering 129,
210–219.

154 Chapter 7 Some special linear integer models and related problems

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8
The travelling salesman problem: Sub-tour
elimination approaches and algorithms

Abstract: This chapter presents a few new approaches to the travelling salesman prob-
lem by generating sub-tour elimination cuts and adding these to a binary LP formula-
tion of the TSP. The binary LP is converted as a convex quadratic problem which is
solved efficiently by interior point algorithms. The other approach is to deal with the
TSP network and convert that into transshipment sub-problems. These separate trans-
shipment problems are then combined to come up with a master formulation for the
TSP problem. The proposed formulation has the advantage that in most cases the re-
laxed LP gives an optimal integer solution.

Keywords: Traveling salesman problem, Sub-tour elimination cuts, Formulation of
the TSP as a binary LP, Convex quadratic problem, Interior point algorithm, Linear
integer model, Totally unimodular and transshipment

8.1 Introduction

A travelling salesman problem (TSP) can be defined as a problem of visiting n centers
in such a way that:
– each center is visited only once,
– after visiting all centers, finally return to the original center (i.e. the starting center)

and
– the total distance covered is the shortest of all the possible routes available.

The TSP model has so many applications and it is for this reason, it has remained as
an active research area. Some of the areas of practical applications are vehicle rout-
ing, crystallography, circuit board drilling, order collection in warehouses etc.

The traveling salesman problem (TSP) was believed to be a difficult problem in
combinatorial optimization until recently, see Munapo (2020). Researchers were un-
aware of any consistent and efficient general-purpose algorithm for this NP hard prob-
lem. The TSP has been extensively discussed by Finke et al. (1983), Gavish and Graves
(1978), Lenstra and Rinnoonkan (1975), Miller (1960), Schrijver (1998), Vajda (1961),
and Wong (1980). Several variants of the TSP have originated from various real-life
problems, see Applegate et al. (2007), and Gutine and Punnen (2006). Large scale TSP
has been studied by Bland and Shallcross (1989). Special class of TSP have been stud-
ied by Claus (1984), Fox et al. (1980), Grostschel et al. (1991), Van Dal (1992) and Plante
et al. (1987). Munapo et al. (2016) developed a minimum spanning tree with node

https://doi.org/10.1515/9783110703023-008

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-008

index ≤2. Kumar et al. obtained a TSP using the special minimum spanning tree, see
Kumar et al. (2016, 2017, 2020).

In this chapter the TSP is studied to come up with a linear binary integer formu-
lation. The binary linear integer formulation has a special feature that it can be con-
verted into a convex quadratic problem which can then be solved efficiently by
interior point algorithms. This makes the TSP model easier to solve than what was
widely believed to be. This chapter has been organized in 6 sections. The TSP is a
binary linear integer program, which has been converted into a convex quadratic pro-
gram and solved in polynomial time. This discussion has been covered in sections
8.2, 8.3 and 8.4. The TSP network has been reconsidered as a transshipment model in
sections 8.5 and 8.6. Finally, the chapter is concluded in section 8.7.

8.2 Binary formulation of the TSP

The TSP model is represented diagrammatically as shown in Figure 8.1 below.

From the nature of the TSP problem to every node exactly two arcs must be basic, one
to come-in and the other to go-out. Suppose there are ω arcs emanating from some
node i as shown in Figure 8.2.

It is simple that the in - out rule for the TSP will be shown by (8.1):

xi1 + xi2 + . . . + xiω = 2 (8:1)

It is also clear that if we assume that at node 1, r number of links are emanating, at
node 2, number of links are emanating and let from the node k, the number of links

2lx
.

.
12x .

23x
. inx

.
.

13x … jnx
. .

. .
. .

1rx knx

1

2

3

n

Figure 8.1: The TSP model, where nodes i,j,k,l and r are some of the nodes in the TSP network
diagram.

156 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

emanating from node i be denoted by n. Nodes 1, 2, . . ., k will give rise to con-
straints as given in (8.2)

x12 + x13 + . . . + x1r = 2;

x21 + x23 + . . . + x2i = 2;

. . .

xk1 + xkp + xkn = 2

(8:2)

This well-known formulation on its own can have feasible basic solutions corre-
sponding to a collection of sub-tours. It can produce a collection of two or more node
disjoint simple cycle covering the set of n nodes rather than a Hamiltonian cycle as
required by the TSP problem. Detailed information about TSP sub-tours can be found
in introductory books such as Papadimitriou and Steiglitz (1998).

Given the nature of the TSP, it may be noted that for a n node network, where
n> 2, a minimum of n arcs are required to connect all the nodes and forming a tour.
In other words, the number of basic variables in the optimal solution is n, i.e., the
sum of selected arcs should be equal to n.

8.2.1 Sub-tour elimination constraints

Any two sub-tours (ST1 and ST2) can be connected by addition of the sub tour elimi-
nation inequality, xis + xjt + . . . + xku ≥ 2, as shown in Figure 8.3.

Here, note that:
– xis, xjt, . . ., xku are the non-basic variables connecting nodes in the two sub-tours,
– , is a sub tour elimination line,
– ◊ represents a node in the sub-tour.

The inequality, xis + xjt + . . . + xku ≥ 2, is valid because a minimum of two arcs are re-
quired to connect any two sub-tours. There can be two or more sub-tours in a TSP.

1ix

2ix

.

.
.

iωx

i

Figure 8.2: A typical sub-section of the TSP network.

8.2 Binary formulation of the TSP 157

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

A sub-tour can form if the number of nodes ðηÞ is at least three and if the num-
ber of arcs ðαÞ connecting the identified nodes is also at least three, i.e., η, α≥ 3.

Justification for the above statement is simple. The smallest sub-tour with respect
to the formulation presented above can only be formed by at least three nodes and
this is possible when there are three or more arcs to connect the identified nodes.

8.2.2 Some conceptual ideas and typical structure of the TSP model

Some terms are necessary for developing the further discussion.

(1) Boundary arcs
In a TSP network diagram, boundary arcs are defined as the outer most arcs of the
network diagram. In Figure 8.1 for example, arcs (1-2), (2-l) or (k-n) are examples of
boundary arcs.

(2) Construction of sub-tour elimination lines
Given a TSP diagram, all the sub-tour elimination lines can easily be identified, and
the necessary sub-tour elimination constraints generated. A sub-tour elimination line
in this case can be defined as a line moving from one boundary arc to another and
passing through arcs only in between. All the arcs that are crossed (including the two
boundary arcs) are then used to generate the sub-tour elimination constraint.

(3) The objective function of a TSP
Since the objective is to minimize the distance travelled then the objective function
will be:

Minimize Z = c12x12 + c13x13 + . . . + c1rx1r + . . . + cknxkn. (8:3)

Where cij is the cost associated with moving from node the i to the node j.

isx

jtx

…

kux

ST1 ST2

󰢓

Figure 8.3: Sub-tour elimination constraint.

158 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

(4) Non-negativity conditions on the variables
The basic nature of the variables in a TSP is that they are binary. Thus, the variables
x12, x13, . . ., x1r, . . ., xkn are binary. This integral restriction can be relaxed to develop
a LP model that is easier to solve. Thus, we change the binary to continuous varia-
bles as given by (8.4)

0≤ x12 ≤ 1;

0≤ x13 ≤ 1;

. . .

0≤ x1r ≤ 1;

. . .

0≤ xkn ≤ 1.

(8:4)

In other words, these variables can also be considered as upper-bounded variables.

(5) The relaxed LP is presented by (8.5) below

Minimize

Z = c12x12 + c13x13 + . . . + c1rx1r + . . . + cknxkn;

x12 + x13 + . . . + x1r = 2;

x12 + x23 + . . . + x2l = 2;

. . .

xin + . . . + xjn + . . . + xkn = 2;

x12 + x13 + . . . + x1r + . . . + xkn = n;

xis + xjt + . . . + xku ≥ 2;

. . .

xfo + xgp + . . . + xhq ≥ 2;

0≤ xij ≤ 1 ∀ij.

(8:5)

The model (8.5) has five structured components, which are (1) the objective function,
(2) the constraints from each node, (3) the total number of basic variables in the TSP
tour, (4) sub-tour elimination constraints, and (5) the non-negative upper bound con-
ditions. The model (8.5) is not unimodular and there is a need to convert it into a
convex quadratic problem.

In the linear integer form, there is no algorithm that can solve the model (8.5)
directly in polynomial time. A way out was discussed by Munapo (2016), where he
transformed the linear integer model into a convex quadratic form and then applied
interior point algorithms, see Gondizio (2012) to obtain an optimal integer solution.

8.2 Binary formulation of the TSP 159

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.2.3 Changing model (8.5) from linear integer to quadratic convex
program (QP)

Let

S= s1 s2 . . . snð Þ.

Such that XT + ST = IT and ST ≥0.
Then the convex quadratic objective function becomes

f ð�XÞ= ,1ðc1x21 + c2x22 + . . . + cnx2nÞ+ ðs21 + s22 + . . . + s2nÞ+ ,2ðx1s1 + x2s2 + . . . + xnsnÞ.
(8:6)

In matrix form it simplifies to

f ð�XÞ= ,1CXXT + SST + ,2XST . (8:7)

The LP model (8.5) becomes a convex quadratic problem given by (8.8).

Minimize

f ð�XÞ= ,1CXXT + SST + ,2XST ,

AXT ≥BT ,

XT + ST = IT .

(8:8)

Where ,1 and ,2 are very large numbers in terms of their sizes compared to any of
the coefficients in the objective function. For this to work

,1 < < ,2

,1 = 1000ðc1 + c2 + . . . + cnÞ
,2 = 1000000ðc1 + c2 + . . . + cnÞ

(8:9)

Note that the weights of 1 000 and 1 000 000 depend on the sizes of the coefficients
of the problem. For some small binary linear problems with small coefficients,
weights of 10 and 1000 can be used effectively.

Significance of the term ,2ðx1s1 + x2s2 + . . . + xnsnÞ. in the objective function in
the model (8.8) acts as an ‘Enforcer’ towards the integer solution. Note that (8.8) is
a minimization quadratic objective function, the objective function will be minimal
when:

,2ðx1s1 + x2s2 + . . . + xnsnÞ=0 (8:10)

i.e. x1s1 + x2s2 + . . . + xnsn =0
i.e. x1s1 = x2s2 = . . . = xnsn =0

160 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

This is possible when either xj =0 or sj =0. The expression in (8.10) is called an en-
forcer since it forces the variables to assume only binary values. It may further be
noted that from (8.5) the linear term and (8.6), the quadratic terms are equivalent.

c1x1 + c2x2 + . . . + cnxn = c1x21 + c2x22 + . . . + cnx2n (8:11)

The two quantities are equal if xj =0 or xj = 1. Similarly,

s1 + s2 + . . . + sn = s21 + s22 + . . . + s2n (8:12)

if sj =0 or sj = 1.

8.2.4 Convexity of f ð�XÞ

Since f ð�XÞ= ,1ðc1x21 + c2x22 + . . . + cnx2nÞ+ ðs21 + s22 + . . . + s2nÞ+ ,2ðx1s1 + x2s2 + . . . + xnsnÞ,
then this function f ð�XÞ= f ðx1, x2, . . ., xn, s1, s2, . . ., snÞ is convex if and only if it has
second-order partial derivatives for each point �X = ðx1, x2, . . ., xn, s1, s2, . . ., snÞ 2 S
and for each �X

′ 2 S, all principal minors of the Hessian matrix are non-negative.

Proof
In this case

f ð�XÞ= ,1ðc1x21 + c2x22 + . . . + cnx2nÞ+ ðs21 + s22 + . . . + s2nÞ+ ,2ðx1s1 + x2s2 + . . . + xnsnÞ

This has continuous second order partial derivatives and the (2n X 2n) Hessian ma-
trix is given by

Hðx1, x2, . . ., xn, s1, s2, . . ., snÞ=

2,1c1 0 . . . 0 0 0 . . . 0

0 2,1c2 . . . 0 0 0 . . . 0

. . .
0 0 . . . 2,1cn 0 0 . . . 0

0 0 . . . 0 2 0 . . . 0

0 0 . . . 0 0 2 . . . 0

. . .
0 0 . . . 0 0 0 . . . 2

2
666666666666664

3
777777777777775

(8:13)

Since all principal minors of Hðx1, x2, . . ., xn, s1, s2, . . ., snÞ are nonnegative then f ðx1, x2,
. . ., xn, s1, s2, . . ., snÞ is convex. See Winston (2004) [14] for more on convex functions.

Note that �XH�XT ≥0,∀�XT ≥0. Thus the matrix H is symmetric and positive definite.

8.2 Binary formulation of the TSP 161

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Theorem 8.1: A binary solution that minimizes f ð�XÞ also minimizes

c1x1 + c2x2 + . . . + cnxn

Proof
From ð�XÞ= ,1ðc1x21 + c2x22 + . . . + cnx2nÞ+ ðs21 + s22 + . . . + s2nÞ+ ,2ðx1s1 + x2s2 + . . . + xnsnÞ,
,2 is very large and ,1 < < ,2 then ,2ðx1s1 + x2s2 + . . . + xnsnÞ=0. Similarly ,1 is very
large and ,1ðc1x21 + c2x22 + . . . + cnx2nÞ> > ðs21 + s22 + . . . + s2nÞ.

Therefore, minimizing {c1x21 + c2x22 + . . . + cnx2n.} is the same as minimizing
f c1x1 + c2x2 + . . . + cnxn.g because the variables in this case assume only binary
variables.

8.2.5 Complexity of convex quadratic programming

Reason for converting a binary linear problem into a convex quadratic program-
ming model is to use the available interior point algorithms which have polynomial
complexity for convex QPs. If the binary LPs can be converted into a convex qua-
dratic problem, then P=NP, see Fortnow (2009, 2013) and Shapiro (1979) for more
on complexity and for more on convex quadratic form see Freund (2002), Jenson
and Bard (2012), and Munapo and Kumar (2015).

8.2.6 Other considerations

1. Consider that the feasible solution does not exist
In the case when the given problem has no feasible solution, the convex quadratic
program will have a solution, but it will not be an integer solution.

2. Consider the given problem is a mixed binary linear integer model
For such models, the enforcer ,2ðx1s1 + x2s2 + . . . + xnsnÞ is made up of only those
variables that are restricted to binary values.

Munapo (2016) presented a very interesting and important property of binary
variables. The special property is given in (8.14).

x2j + s2j = 1. (8:14)

Where sj is a slack-variable. When xj = 1 then sj =0 and vice versa. The special fea-
ture given in (8.14) will force variables to assume binary values and is incorporated
into a quadratic function.

162 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.3 Construction of sub-tour elimination cuts

There are so many ways of generating sub-tour elimination cuts. In this chapter we
present the x-y movement. In this approach we move in the x-direction drawing
lines that separates groups of three nodes and then repeating the same technique
in the y-direction. Suppose the TSP network diagram is given in Figure 8.4. Three
nodes are used because we need a maximum of three nodes to form a sub-tour
shown in Figure 8.5 and Figure 8.6.

6

8
7

6 6

14 4 3

4 6
2

4
10 12

1

2

3

5

4

86

7

Figure 8.4: Given TSP network diagram.

6

8
7

6 6

14 4 3

4 6
2

4
10 12

2x

1x

1

2

3

5

4

86

7

Figure 8.5:~x- movement.

8.3 Construction of sub-tour elimination cuts 163

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.4 Proposed algorithm

The algorithm will be comprised of the following steps.
Step 1: From the TSP network diagram formulate the binary LP of the TSP.
Step 2: From the TSP network diagram generate the sub-tour elimination con-

straints and add these to the formulated binary LP of the TSP to come up
with the combined binary LP.

Step 3: Convert combined binary LP into convex quadratic problem.
Step 4: Solve the convex quadratic problem using interior point algorithm.

8.4.1 Numerical illustration

Use the proposed algorithm to solve the TSP network diagram given in Figure 8.4.
The combined binary LP is formulated as (8.15).

Minimize
z = 6x12 + 4x13 + 10x14 + . . . + 4x78;

Subject to

x12 + x13 + x14 = 2;

x12 + x23 + x25 = 2;

. . .

x68 + x78 = 2;

x12 + x13 + x14 + . . . + x78 = 8;

)
Standard constraints (8:15a)

6

8
7

6 6

14 4 3

4 6
2

4
10 12

1

2

3

5

4

86

7

2 yr

1yr

Figure 8.6:~y- movement.

164 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

x13 + x23 + x25 + x34 + x46 ≥ 2;

x36 + x46 + x67 + x78 ≥ 2;

)
~x direction (8:15b)

x12 + x23 + x35 + x37 + x67 + x78 ≥ 2;

x12 + x13 + x34 + x45 ≥ 2;

)
~y direction (8:15c)

Where x12, x13, . . ., x78 are binary.
In the convex quadratic form the BLP will becomes (8.16).

Minimize

Z = ,1f6x12 + 4x13 + 10x14 + . . . + 4x78g+ fs12 + s13 + s14 + . . . + s78g+
,2fx12s12 + x13s13 + x14s14 + . . . + x78s78g;

Subject to

x12 + x13 + x14 = 2;

x12 + x23 + x25 = 2;

. . .

x68 + x78 = 2;

x12 + x13 + x14 + . . . + x78 = 8;

)
Standard constraints (8:16a)

x13 + x23 + x25 + x34 + x46 ≥ 2;

x36 + x46 + x67 + x78 ≥ 2;

)
~x direction (8:16b)

x12 + x23 + x35 + x37 + x67 + x78 ≥ 2;

x12 + x13 + x34 + x45 ≥ 2;

)
~y direction (8:16c)

x12 + s12 = 1;

x13 + s13 = 1;

x14 + s14 = 1;

. . .

x78 + s78 = 1.

Where s12, s13, . . ., s78. are binary ,1 = ð92Þð1000Þ and ,2 = ð92Þð1000000Þ.
Note that a large value of ,2 = ð92Þð1000000Þ will force fx12s12 + x13s13 + x14s14 +

. . . + x78s78g=0. This is only possible if variables are binary which is what we want.
Solving (8.16) using interior point algorithms we have Figure 8.7a and b.

Optimal solution: Z = 45, x12 = x13 = x34 = x25 = x46 = x57 = x68 = x78 = 1 (8:7a)

Alternate solution: Z = 45, x12 = x14 = x25 = x43 = x36 = x57 = x68 = x78 = 1 (8:7b)

Where xij =0,∀ other variables ij.

8.4 Proposed algorithm 165

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.4.2 Conclusion

The algorithm proposed in this section shows that the TSP can be solved efficiently in
polynomial time. The main challenge of the proposed approach is the number of sub-
tour elimination cuts that increase with an increase in the number variables. However,
the interior point algorithms have the strength of being able to handle large number of
variables. As an area of further research, there is a need to minimize the number sub-
tour elimination constraints.

6

8
7

6 6

14 4 3

4 6

4
10 12

1

2

3

5

4

86

7

Figure 8.7a: Optimal tour in color.

6

8
7

6 6

14 4 3

4 6

4
10 12

1

2

3

5

4

86

7

Figure 8.7b: Optimal tour-alternate solution.

166 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.5 The transshipment approach to the travelling salesman
problem

First let us reconsider a conventional formulation of a TSP.

8.5.1 Conventional formulation

In this section, we first present only the conventional TSP formulation. Readers are
referred to Orman and Williams (2006) for detailed information on the other classi-
cal formulations of TSP. The challenging task of the conventional TSP formulation
is the exponential increase in number of constraints as the number of centers (n)
increases. The conventional formulation is presented in (8.17) and was proposed by
Dantzig et al. (1957). For the network diagram, see Figure 8.1

Minimize
c12x12 + c13x13 + . . . + cknxknP

j
xij = 1P

i
xij = 1

)
(8:17:1)

X
i, j2S

xij ≤ Sj j− 1, Sj j≥ 2, S � Nnf1g, S≠f1g (8:17:2)

i≠j.

Note that (8.17.1) are called assignment constraints and the (8.17.2) are called sub-
tour elimination constraints.

8.5.2 Some important properties of a totally unimodular matrix

A Matrix A is totally unimodular (TU) if the determinant of every square sub-matrix
of A (also called minor of A) has value -1, 0 or 1, for more details see De Werra
(1981). The properties of totally unimodular matrices, which are relevant for this
section are:

Property 8.1: If (0,1,-1) matrix A has no more than two nonzero entries in each col-
umn and if

X
aij =0 for column j that contains two nonzero elements then A is to-

tally unimodular (TU).

Property 8.2: A matrix obtained by multiplying a row/column of A by -1 is TU.
The proofs for these two important properties are given in Nemhauser and Wol-

sey (1999).

8.5 The transshipment approach to the travelling salesman problem 167

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.5.3 Breaking a TSP into transshipment sub-problems

Given any two adjacent nodes on the boundary of a TSP model, all the possible
ways of connecting the two nodes directly or via other nodes can be viewed as a
transshipment problem.

Suppose the two adjacent boundary centers are 2 and 5 as shown in Figure 8.8 and
that we are starting from base 2. There are only three feasible ways of moving from
center 2 to center 5. These ways are:

2-5 Direct movement (way 1)
2-3-5 Indirect movement (way 2)
2-3-6-5 Indirect movement (way 3)

The other possible but not feasible ways are:
2-3-8-6-5
2-3-4-8-6-5

These two ways are not feasible in the sense that, a center can only be visited once.
We cannot include center 8 in the movement from 2 as it will be used on the way
back to base. This is called back space in this chapter. The possible movements
from 2 to 5 can be described as a transshipment problem where center 2 is the sup-
ply point, center 5 is the demand point and 3 and 6 being the transshipment cen-
ters. The total supply is 1 and total demand is 1. This transshipment sub-problem is
shown in Figure 8.9.

This give rise to the transshipment constraints for this sub-problem are:

x23 + x25 = 1

x25 + x35 + x56 = 1

x23 = x35 + x36

x36 = x56

(8:18)

2 5

3 6

84

91

Figure 8.8: Breaking a TSP into
transshipment.

168 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

The coefficient matrix for this transshipment sub-problem can be shown to be
totally unimodular (TU).

x23 x25 x35 x36

1 1 0 0

0 1 1 0

1 0 − 1 − 1

x56

0

1

0

0 0 0 1 − 1

Multiply row one by –1

− 1 − 1 0 0

0 1 1 0

1 0 − 1 − 1

0 0 0 1

0

1

0

− 1

The coefficient matrix is unimodular because:
– Every column has a maximum of two nonzero elements.
– Sum of every column is 0.

For more on transshipment models, see Balakrishman (1995).

8.5.4 General case – transshipment sub-problem

The transshipment constraints for this general case sub-problem are:

xij + xil + . . . + xik = 1

xij + xjt + . . . + xjs = 1

. . .

xil = xlp + . . . + xlq

[1] [-1]
2 5

3 6

84

91

Figure 8.9: Transshipment sub-problem.

8.5 The transshipment approach to the travelling salesman problem 169

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.5.5 Standard constraints

According to the definition of a TSP, a center must be visited once. This implies that
one must enter a center through one arc and leave through a different arc. This is
presented in Figure 8.11 and gives a set of constraints. This class of constraints is
not necessarily new as they have been used before without success. On their own
do not give a feasible optimal solution. Some of the optimal solutions may have
sub-tours.

Suppose r is the number of arcs originating from center j.

xj1 + xj2 + . . . + xjr = 2 (8:19)

Where r 2 N. Standard constraints on their own give optimal integer solutions. The
only problem is that the optimal integer solution is sometimes not feasible for the
TSP, as it may contain sub-tours.

1jx

2jx

…
jrx

j

1

2

r

Figure 8.11: Standard constraint.

[1] [-1]

… …

… … … …

… …

i j

l t

qp

sk

Figure 8.10: General case – Transshipment sub-problem.

170 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Proof of integrality
Given a TSP network of the form shown in Figure 8.1, the number of standard con-
straints can be found to be n. If n standard constraints are used on their own, then
there are n basic variables at optimality. This implies that one of the optimal solu-
tions is integer.

8.5.6 Infeasibility

For the formulated model to be feasible the transshipment constraints for an arc
must not have the same variables as those that are contained in transshipment con-
straints of other arcs. In other words, the transshipment sub-problems cannot share
variables. This challenge is alleviated by introducing extra variables. Suppose vari-
able xi is common in sets of constraints from j arcs. For the model to be feasible this
variable is represented as j different variables i.e.

x1i , x2i , . . ., x
j
i (8:20)

8.6 The transshipment TSP linear integer model

For any TSP network model of the form given in Figure 8.1, a transshipment TSP
linear integer model can be formulated as:
Minimize

c12x12 + c13x13 + . . . + cknxkn
Such that

. . .

xj1 + xj2 + . . . + xjr = 2

. . .

)
Standard constraints

xij + xil + . . . + xik = 1

xij + xjt + . . . + xjs = 1

. . .

xil = xlp + . . . + xlq

)
Transshipment constraints for arc i, jð Þ

)
(8:21)

. . .
Where xij are binary variables ∀ij and i≠j.

The formulated model can be shown to be infeasible if the transshipment sub-
problems contain common variables.

8.6 The transshipment TSP linear integer model 171

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.6.1 Numerical illustration

The transshipment linear integer model for Figure 8.12 is presented in model (8.22).

8.6.2 The formulated transshipment TSP linear integer model

Objective function: Minimize

150x12 + 15x14 + 20x16 + 160x23 + 130x24 + 30x25 +
29x27 + 20x35 + 31x38 + 40x46 + 165x47 + 115x57 +

140x58 + 200x67 + 205x69 + 170x78 + 23x79 + 180x89

)

(8:22:1)

Standard constraints:

x12 + x14 + x16 = 2 Centre 1ð Þ
x12 + x23 + x24 + x25 + x27 = 2 Centre 2ð Þ
x23 + x35 + x38 = 2 Centre 3ð Þ
x14 + x24 + x46 + x47 = 2 Centre 4ð Þ
x25 + x35 + x57 + x58 = 2 Centre 5ð Þ
x16 + x46 + x67 + x69 = 2 Centre 6ð Þ
x27 + x47 + x57 + x67 + x78 + x79 = 2 Centre 7ð Þ
x38 + x58 + x78 + x89 = 2 Centre 8ð Þ
x69 + x79 + x89 = 2 Centre 9ð Þ

(8:22:2)

150 160

15 130 30 20

20 29 31

40 165 115 140

200 170

205 23
180

1 2 3

6 7 8

4 5

9
Figure 8.12: Numerical Illustration.

172 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Transshipment sub-problem constraints are shown in equation (8.22.3) and shown
in Figure 8.13. Similarly other transshipment constraints are shown in Figures 8.14
to Figure 8.18:

x12 + x14 = 1 Centre 1ð Þ
x12 + x24 + x25 + x27 = 1 Centre 2ð Þ
x14 = x24 + x47 Transshipment 1 from arc 1, 2ð Þ
x47 = x27 + x57

x57 = x25

(8:22:3)

x23 + x24 + x25 + x27 = 1 Centre 2ð Þ
x23 + x35 = 1 Centre 3ð Þ
x24 = x47 Transshipment 2 from arc 2, 3ð Þ
x27 + x47 = x57

x25 + x57 = x35

(8:22:4)

x35 + x38 = 1 Centre 3ð Þ
x38 + x58 + x78 = 1 Centre 8ð Þ
x35 = x57 + x58 Transshipment 3 from arc 3, 8ð Þ
x57 = x78

(8:22:5)

150 160

20 29 31

200 170

205 23
180

1 2 3

6 7 8

4 5

9

15 130 30 20

40 165 115 140

Figure 8.13: Illustration.

8.6 The transshipment TSP linear integer model 173

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

x58 + x78 + x89 = 1

x79 + x89 = 1

x58 = x57 Transshipment 4 from arc 8, 9ð Þ
x57 + x78 = x79

(8:22:6)

x69 + x79 = 1 Centre 9ð Þ
x46 + x67 + x69 = 1 Centre 6ð Þ
x79 = x47 + x67 Transshipment 5 from arc 9, 6ð Þ
x47 = x46

(8:22:7)

150 160

20 29 31

200 170

205 23
180

1 2 3

6 7 8

4 5

9

15 130 30 20

40 165 115 140

Figure 8.14: Illustration for the link (2-3).

150 160

15 130 30 20

20 29 31

205 23
180

1 2 3

6 7 8

4 5

9

40 165 115 140

200 170

Figure 8.15: Illustration for the link (3-8).

174 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

x16 + x46 + x67 = 1 Centre 6ð Þ
x14 + x16 = 1 Centre 1ð Þ
x47 = x67 Transshipment 6 from arc 6, 1ð Þ
x46 + x47 = x14

(8:22:8)

Binary variables
xij is a binary variable ∀ij.
This integer model is infeasible. The infeasibility is alleviated by considering

variables that are common to two or more transshipment sub-problems and replace
them by new variables.

150 160

15 130 30 20

20 29 31

40 165 115 140

200 170

205 23
180

1 2 3

6 7 8

4 5

9
Figure 8.16: Illustration link (8-9).

150 160

15 130 30 20

20 29 31

40 165 115 140

205 23
180

1 2 3

6 7 8

4 5

9

200 170

Figure 8.17: Illustration link (9-6).

8.6 The transshipment TSP linear integer model 175

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

New variables
– x14 is common to transshipments 1 and 6, thus introduce x114 and x614.
– x24 is common to transshipments 1 and 2, thus introduce x124 and x224.
– x25 is common to transshipments 1 and 2, thus introduce x125 and x225.
– x27 is common to transshipments 1 and 2, thus introduce x127 and x227.
– x35 is common to transshipments 2 and 3, thus introduce x235 and x335.
– x46 is common to transshipments 5 and 6, thus introduce x546 and x646.
– x47 is common to transshipments 1,2,5 and 6, thus introduce x147, x247, x547 and x647.
– x57 is common to transshipments 1,2,3 and 4, thus introduce x157, x257, x357 and x457.
– x58 is common to transshipments 3 and 4, thus introduce x358 and x458.
– x67 is common to transshipments 5 and 6, thus introduce x567 and x667.
– x78 is common to transshipments 3 and 4, thus introduce x378 and x478.
– x79 is common to transshipments 4 and 5, thus introduce x479 and x579.

The feasible linear integer model becomes:

Minimize

150x12 + 15x114 + 15x614 + 20x16 + 160x23 + 130x124 + 130x224 + 30x125
+ 30x225 + 29x127 + 29x227 + 20x235 + 20x335 + 31x38 + 40x546
+ 40x646 + 165x147 + 165x247 + 165x547 + 165x647 + 115x157 + 115x257
+ 115x357 + 115x457 + 140x358 + 140x458 + 200x567 + 200x667
+ 205x69 + 200x378 + 200x478 + 30x479 + 23x579 + 180x89

9>>>>>>>=
>>>>>>>;

(8:23:1)

150 160

15 130 30 20

20 29 31

40 165 115 140

200 170

205 23
180

1 2 3

6 7 8

4 5

9
Figure 8.18: Illustration link (6-1).

176 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard constraints

x12 + x114 + x614 + x16 = 2 Centre 1ð Þ
x12 + x23 + x124 + x224 + x125 + x225 + x127 + x227 = 2 Centre 2ð Þ
x23 + x235 + x335 + x38 = 2 Centre 3ð Þ
x114 + x614 + x124 + x224 + x546 + x646 + x147 + x247 + x547 + x647 = 2 Centre 4ð Þ
x125 + x225 + x235 + x335 + x157 + x257 + x357 + x457 + x358 + x458 = 2 Centre 5ð Þ
x16 + x546 + x646 + x567 + x667 + x69 = 2 Centre 6ð Þ
x127 + x227 + x147 + x247 + x547 + x647 + x157 + x257 +

x357 + x457 + x567 + x667 + x378 + x478 + x479 + x579 = 2 Centre 7ð Þ
x38 + x358 + x458 + x378 + x478 + x89 = 2 Centre 8ð Þ
x69 + x479 + x579 + x89 = 2 Centre 9ð Þ

(8:23:2)

Transshipment sub-problem constraints

x12 + x114 = 1

x12 + x124 + x125 + x127 = 1

x114 = x124 + x147
x147 = x127 + x157

x157 = x125

9>>>>>>>=
>>>>>>>;

Transshipment 1 (8:23:3)

x23 + x224 + x225 + x227 = 1

x23 + x235 = 1

x224 = x247
x227 + x247 = x257
x225 + x257 = x235

9>>>>>>>=
>>>>>>>;

Transshipment 2 (8:23:4)

x335 + x38 = 1

x38 + x358 + x378 = 1

x335 = x357 + x358
x357 = x378

9>>>>=
>>>>;

Transshipment 3 (8:23:5)

x458 + x478 + x89 = 1

x479 + x89 = 1

x458 = x457
x457 + x478 = x479

9>>>>=
>>>>;

Transshipment 4 (8:23:6)

8.6 The transshipment TSP linear integer model 177

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

x69 + x579 = 1

x546 + x567 + x69 = 1

x579 = x547 + x567
x547 = x546

9>>>>=
>>>>;

Transshipment 5 (8:23:7)

x16 + x646 + x667 = 1

x614 + x16 = 1

x647 = x667
x646 + x647 = x614

9>>>>=
>>>>;

Transshipment 6 (8:23:8)

Solution
The optimal solution to the relaxed model is obtained as

x114 = x16 = x124 = x225 = x235 = x38 = x69 + x478 = x479 = 1

x12 = x23 = x614 = x224 = x125 = x127 = x227 = x335 = x546 =0

x646 = x147 = x247 = x547 = x647 = x157 = x257 = x357 = x457 =0

x358 = x458 = x567 = x667 = x378 = x379 = x89 =0

9>>>>=
>>>>;

(8:23:9)

Going back to the original variables this is the same as

x14 = x16 = x24 = x25 = x35 = x38 = x69 + x78 = x79 = 1

x12 = x23 = x27 = x46 = x47 = x57 = x58 + x67 = x89 =0

)
(8:23:10)

The optimal cost is = 644. The optimal solution is shown in Figure 8.19.

150 160

15 130 30 20

20 29 31

40 165 115 140

200 170

205 23
180

1 2 3

6 7 8

4 5

9 Figure 8.19: The optimal solution to the
illustrative example.

178 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

8.7 Conclusions

The TSP model has so many applications in real life. So much work in terms of re-
search has been done without a breakthrough on this model. We are not aware of
any efficient and consistent approach to this problem. We hope that the approaches
discussed in this chapter will open new avenues for other researchers. There is no
need for those branch-and-bound related approaches where there is a fear compu-
tational explosion. Also the approaches presented here can solve the TSP in polyno-
mial time.

References

Applegate, D.L., R.E. Bixby, V. Chvatal, W.L. Cook. 2007. The Traveling Salesman Problem:
A Computational Study. Princeton University Press.

Balakrishman, VK. Network Optimization, Chapman and Hall Mathematics, London, 1995.
Bland, R.E. and Shallcross, D.E. 1989. Large traveling salesman problem arising from experiments

in X-ray crystallography, a preliminary report on computation, Operations Research Letters
8(3), 125–128.

Claus, A. 1984. A new formulation for the travelling salesman problem, SIAM J. Alg. Disc. Math. 5,
21–25.

Dantzig, G.B., Fulkerson, D.R. and Johnson, S.M. 1954. Solutions of a large-scale travelling
salesman Problem, Ops. Res. 2 pp 393–410.

De Werra D., 1981. On some characterizations of totally unimodular matrices, Mathematical
Programming, 20 pp. 14–21.

G. Finke, Claus, A., and Gunn, E. 1983. A two-commodity network flow approach to the travelling
salesman problem, Combinatorics, Graph Theory and Computing, Proc.14th South Eastern
Conf., Atlantic University, Florida.

Freund, R.M. 2002. Solution Methods for Quadratic Optimization: Lecture notes, Massachusetts
Institute of Technology. 2002.

Fortnow, F. 2013. The Golden Ticket: P, NP, and the Search for the Impossible. Princeton University
Press. Princeton, NJ.

Fortnow, F. 2009.The status of the P versus NP problem. Communications of the ACM 52(9), 78–86.
Fox, K.R., Gavish, B., and Graves, S.C. 1980. An n-constraint formulation of the (time-dependent)

travelling salesman problem, Ops. Res. 28, 1018–1021.
Gavish, B., Graves,S.C. 1978. The traveling salesman problem and related problems, Working

Paper OR-078-78, Operations Research Center, MIT, Cambridge MA.
Gondzio, J. 2012. Interior Point Methods 25 Years Later. European Journal of Operational

Research 218, 587–601.
Grötschel, M. Jünger, G. Reinelt, 1991. Optimal Control of Plotting and Drilling Machines: A Case

Study, Mathematical Methods of Operations Research 35(1), 61–84.
Gutin G., A.P. Punnen (eds.). 2006. The Traveling Salesman Problem and its Variations. Springer.
Jensen, P.A., and Bard, J.F. 2012. Operations Research Models and Methods. John Wiley and Sons,

Inc.
Kumar, S., Munapo, E., Lesaoana, M., and Nyamugure, P. (2016), Is the travelling salesman

problem actually NP hard? Chapter 3 in Engineering and Technology: Recent Innovations and

References 179

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Research, Editor A. Matani, International Research Publication House, ISBN 978-93-86138-06-
4, pp 37–58.

Kumar, S., Munapo, E., Lesaoana, M., and Nyamugure, P. 2017. A minimum spanning tree-based
heuristic for the travelling salesman tour, Opsearch, DOI 10.1007/s1259-017-0318-5, pp1–15.

Kumar, S., Munapo, E., Sigauke, C., and Al-Rabeeah, M. 2020. The minimum spanning tree with
node index ≤2 is equivalent to the minimum travelling salesman tour, Chapter 8 in
Mathematics in Engineering Sciences: Novel Theories, Technologies, and Applications Edited
by Mange Ram, CRC Press, ISBN 13:978-1-138-57767-1.

Lenstra, L.K., Rinnooy Kan, A.G.H., 1975. Some simple applications of the traveling salesman
Problem, Operational Research Quarterly 26, pp. 717–33.

Miller, C.E., Tucker, A.W., and Zemlin, R.A. 1960. Integer programming formulation of travelling
salesman problems, J. ACM 3, pp326–329.

Munapo, E. (2016) Solving the Binary Linear Programming Model in Polynomial Time, American
Journal of Operations Research, 6, 1–7. http://dx.doi.org/10.4236/ajor.2016.61001

Munapo, E. and Kumar, S. (2015) A New Heuristic for the Convex Quadratic Programming Problem.
American Journal of Operations Research, 5, 373–383. http://dx.doi.org/10.4236/
ajor.2015.55031

Munapo, E., Kumar, S., Lesaoana, M., and Nyamugure, P. 2016. A minimum spanning tree with
node index ≤2, ASOR Bulletin, Vol 34, Issue 1, pp 1–14.

Munapo, E. 2020. Development of a dummy guided formulation and exact solution method for TSP,
Eastern-European Journal of Enterprise Technologies, pp. 12–19.

Nemhauser, G, and Wolsey, L. 1999. Integer and Combinatorial Optimization, John Wiley
Orman, A.J., Williams, H.P. 2006. A survey of different integer programming formulations of the

travelling salesman problem. In: Kontoghiorghes E. & Gatu C. (eds). Optimization,
Econometric and Financial Analysis Advances in Computational Management Science,
Springer: Berlin, Heidelberg, pp. 91–104.

Papadimitriou, C.H., K. Steiglitz. 1998. Combinatorial Optimization: Algorithms and Complexity.
Dover Publications.

Plante, R.D., Lowe, T.J., and Chandrasekaran, R. 1987. The Product Matrix Traveling Salesman
Problem: An Application and Solution Heuristics, Operations Research 35, 772–783.

Shapiro J.F. 1979. Mathematical Programming: Structures and Algorithms. John Wiley and Sons.
Schrijver, A. 1998. Theory of Linear and Integer Programming. Wiley, John Wiley & Sons, ISBN 978-

0-471-98232–6.
Vajda, S. 1961. Mathematical Programming, Addison-Wesley, London.
Van Dal, R. 1992. Special Cases of the Traveling Salesman Problem. Wolters-Noordhoff, Groningen.
Winston, W.L. 2004. Operations Research: Applications and Algorithms. Duxbury Press 4th Edition.
Wong, R.T. 1980. Integer programming formulations of the travelling salesman problem, Proc. IEEE

Conf. on Circuits and Computers, pp. 149–152.

180 Chapter 8 The travelling salesman problem

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

approximation methods 95
assurance factor 98

binary integer problem 67, 82
binary LP 155, 164
branch and bound 66, 74–75
branch and bound technique 19

characteristic equation 65, 67, 71, 78, 88, 92
combinatorial explosion 82
convex quadratic problem 155–156, 159–160,

162, 164

‘Enforcer’ 160
extreme point 95, 104–107, 109, 111, 114–115

generalized assignment problem 19–21
Gomory cuts 66

heuristics 66
Hungarian method of assignment 120, 122,

150–151
hyper-box 96, 101

integer coefficients 71, 79
integer ordered-optimal solutions 73, 86
integer polyhedron 33–37, 39, 46, 50
Integer polyhedron search algorithm 43
interior point algorithms 155–156, 159, 162,

165–166

knapsack problem 53–54, 58–59, 78–79

Lagrangian function 122
lower and upper bounds 96, 98
LP convex region 72

method of subtractions 128, 130–132, 143–144

military movements 106
minimum spanning tree with node index ≤2 156
mixed integer programming problem 86

non-convex feasible space 103
NP hard problem 155

objective lower bound 55
optimal integer solution 155, 159, 170
ordered branch 79, 81–82
ordered optimal solution 65

Parallel computing 74, 119–120, 153
parallel hyperplanes 66
parallel processing power 63
polynomial time 156, 159, 166, 179

ranked optimal 119–120, 149
rounding errors 75

See-Saw Algorithm 125
see-saw game 123
‘See-Saw’ approach 119
supermarket chains 106

transportation models 21
transportation problem 119, 127–128, 130, 132,

137–140, 142–143, 153
travelling salesman 155, 167
travelling salesman problem 155, 167
Tsoro winning strategy 123
TSP sub-tours 157

variable sum 2
variable sum limits 53

Young’s approach 33–34, 37–38, 43

https://doi.org/10.1515/9783110703023-009

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110703023-009

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

De Gruyter Series on the Applications
of Mathematics in Engineering and Information
Sciences

Already published in the series

Volume 8: Mathematics for Reliability Engineering. Modern Concepts and Applications
Mangey Ram, Liudong Xing (Eds.)
ISBN 978-3-11-072556-8, e-ISBN (PDF) 978-3-11-072563-6
e-ISBN (EPUB) 978-3-11-072559-9

Volume 7: Mathematical Fluid Mechanics. Advances on Convection Instabilities
and Incompressible Fluid Flow
B. Mahanthesh (Ed.)
ISBN 978-3-11-069603-5, e-ISBN (PDF) 978-3-11-069608-0
e-ISBN (EPUB) 978-3-11-069612-7

Volume 6: Distributed Denial of Service Attacks. Concepts, Mathematical
and Cryptographic Solutions
Rajeev Singh, Mangey Ram (Eds.)
ISBN 978-3-11-061675-0, e-ISBN (PDF) 978-3-11-061975-1
e-ISBN (EPUB) 978-3-11-061985-0

Volume 5: Systems Reliability Engineering. Modeling and Performance Improvement
Amit Kumar, Mangey Ram (Eds.)
ISBN 978-3-11-060454-2, e-ISBN (PDF) 978-3-11-061737-5
e-ISBN (EPUB) 978-3-11-061754-2

Volume 4: Systems Performance Modeling
Adarsh Anand, Mangey Ram (Eds.)
ISBN 978-3-11-060450-4, e-ISBN (PDF) 978-3-11-061905-8
e-ISBN (EPUB) 978-3-11-060763-5

Volume 3: Computational Intelligence. Theoretical Advances and Advanced Applications
Dinesh C. S. Bisht, Mangey Ram (Eds.)
ISBN 978-3-11-065524-7, e-ISBN (PDF) 978-3-11-067135-3
e-ISBN (EPUB) 978-3-11-066833-9

Volume 2: Supply Chain Sustainability. Modeling and Innovative Research Frameworks
Sachin Kumar Mangla, Mangey Ram (Eds.)
ISBN 978-3-11-062556-1, e-ISBN (PDF) 978-3-11-062859-3
e-ISBN (EPUB) 978-3-11-062568-4

Volume 1: Soft Computing. Techniques in Engineering Sciences
Mangey Ram, Suraj B. Singh (Eds.)
ISBN 978-3-11-062560-8, e-ISBN (PDF) 978-3-11-062861-6
e-ISBN (EPUB) 978-3-11-062571-4

www.degruyter.com

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.degruyter.com

 EBSCOhost - printed on 2/9/2023 11:31 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Acknowledgements
	Preface
	Contents
	About the authors
	Chapter 1 Segment search approach for the general linear integer model
	Chapter 2 Improved solution method for the 0-1 GAP model
	Chapter 3 A search for an optimal integer solution over the integer polyhedron – Two iterative approaches
	Chapter 4 Use of variable sum limits to solve the knapsack problem
	Chapter 5 The characteristic equation for linear integer programs
	Chapter 6 Random search method for integer programming
	Chapter 7 Some special linear integer models and related problems
	Chapter 8 The travelling salesman problem: Sub-tour elimination approaches and algorithms
	Index

