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Preface
The theory of almost periodic functions is unavoidable in the world of mathematics.
The main purpose of this monograph, entitled “Selected Topics in Almost Periodic-
ity”, is to present the recent research results of the author in this field.

In the existing literature, there are numerous research articles dealing with the
almost periodic (automorphic) properties and asymptotically almost periodic (au-
tomorphic) properties of the abstract Volterra integro-differential equations in Ba-
nach spaces, degenerate or non-degenerate in the time variable. Special attention
has been paid to fractional integro-differential equations and inclusions, primarily
from their invaluable importance in modeling real-world phenomena appearing in
physics, chemistry, biology, economy, aerodynamics, etc. This is probably the first re-
search monograph considering uniformly recurrent solutions and c-almost periodic
solutions of abstract Volterra integro-differential equations aswell as various general-
izations of almost periodic functions in Lebesgue spaces with variable coefficients. In
our support, it is also worth noting that this is probably the first research monograph
considering multi-dimensional almost periodic type functions and their generaliza-
tions in adequate detail. Although there might still be a few things to arrange better,
we have tried to aggregate many complicated and miscellaneous parts into a stable,
compact unity.

Thismonograph is composed of the introductory chapter and twoparts, which are
further divided into chapters, sections and subsections. As inmypreviously published
monographs [629–633], the numbering of theorems, propositions, lemmas, corollar-
ies, definitions, etc., is done by chapter and section; we sort the reference list in al-
phabetical order (the notation with basic function spaces of one real variable is also
made). The reader should be familiar with the fundamentals of functional analysis
and integration theory, the basic theory of abstract differential equations in Banach
spaces, the basic theory of vector-valued almost periodic functions and the vector-
valued almost automorphic functions.

Conventionalwisdom says you should knowyour target audience. Concerning the
groups of people the book would interest, we wish to mention experts in the fields of
almost periodicity and almost automorphy, researchers in abstract partial differential
equations, experts from all areas of functional analysis, master students specializing
in functional analysis andPhDstudents inmathematics.Wehave tried in the reference
list to avoid any form of plagiarism. Although it contains more than 680 pages, and
around 1100 titles in the reference list, the book is not intended to be a thorough and
exhaustive study.

I would like to express my sincere gratitude to my family, godfather, closest
friends and colleagues. My special appreciation goes to Prof. S. Pilipović (Novi Sad,
Serbia), as well as to V. Fedorov (Chelyabinsk, Russia), B. Jovanović (MI SANU, Bel-
grade), C.-C. Chen (Taichung, Taiwan), W.-S. Du (Kaoshiung, Taiwan), E.M. A. El-
Sayed (Alexandria, Egypt), M. Li (Chengdu, China), B. Chaouchi (Khemis Miliana,

https://doi.org/10.1515/9783110763522-201

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



XII | Preface

Algeria), D. Velinov, P. Dimovski, B. Prangoski (Skopje, Macedonia), R. Ponce (Talca,
Chile), C. Lizama (Santiago, Chile), M. Pinto (Santiago, Chile), M. T. Khalladi (Adrar,
Algeria), A. Rahmani (Adrar, Algeria), M. Hasler (Pointe-à-Pitre, Guadeloupe, France),
F. Boulahia (Bejaia, Algeria), P. J. Miana, L. Abadias, J. E. Galé (Zaragoza, Spain),
M. Murillo-Arcila, J. A. Conejero, A. Peris, J. Bonet (Valencia, Spain), C. Bianca (Paris,
France), M. S. Moslehian (Mashhad, Iran), C.-C. Kuo (New Taipei City, Taiwan),
V. Valmorin (Pointe-à-Pitre, Guadeloupe, France), D. N. Cheban (Chisinau, Moldova),
V. Keyantuo (Rio Piedras Campus, Puerto Rico, USA), T. Diagana (Huntsville, USA)
and G.M. N’Guérékata (Baltimor, USA).

Loznica/Novi Sad, July 2021 Marko Kostić
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Notation
ℕ,ℤ,ℚ,ℝ,ℂ: the natural numbers, integers, rationals, reals, complexes.

For any s ∈ ℝ, we denote ⌊s⌋ = sup{l ∈ ℤ : s ≥ l} and ⌈s⌉ = inf{l ∈ ℤ : s ≤ l}.
Re z, Im z: the real and imaginary part of a complex number z ∈ ℂ; |z|: the module

of z, arg(z): the argument of z ∈ ℂ \ {0}.
ℂ+ = {z ∈ ℂ : Re z > 0}.
B(z0, r) = {z ∈ ℂ : |z − z0| ≤ r} (z0 ∈ ℂ, r > 0).
Σα = {z ∈ ℂ \ {0} : | arg(z)| < α}, α ∈ (0,π].
card(G): the cardinality of G.
ℕ0 = ℕ ∪ {0}.
ℕn = {1, . . . , n}.
ℕ0n = {0, 1, . . . , n}.
ℝn: the real Euclidean space, n ≥ 2.

If α = (α1, . . . , αn) ∈ ℕn0 is a multi-index, then we denote |α| = α1 + ⋅ ⋅ ⋅ + αn.
xα = xα11 ⋅ ⋅ ⋅ x

αn
n for x = (x1, . . . , xn) ∈ ℝn and α = (α1, . . . , αn) ∈ ℕn0. f

(α) :=
𝜕|α|f /𝜕xα11 ⋅ ⋅ ⋅ 𝜕xαnn ; Dαf := (−i)|α|f (α).
If (X, τ) is a topological space and F ⊆ X, then the interior, the closure, the
boundary, and the complement of F with respect to X are denoted by int(F)
(or F∘), F, 𝜕F and Fc, respectively.
IfZ is a vector space over the field𝔽 ∈ {ℝ,ℂ}, then for eachnon-empty subsetF
of Z by span(F)we denote the smallest linear subspace of Z which contains F.

X: a complex Banach space.
L(X,Y): the space of all continuous linear mappings between complex Banach

spaces X and Y , L(X) = L(X,X).
X∗: the dual space of X.
A: a linear operator on X.
𝒜: a multivalued linear operator on X (MLO).

If F is a subspace of X, then we denote by𝒜|F the part of𝒜 in F.
χΩ(⋅): the characteristic function, defined to be identically one on Ω and zero else-

where.
Γ(⋅): the Gamma function.

If α > 0, then gα(t) = tα−1/Γ(α), t > 0; g0(t) ≡ the Dirac delta distribution.
If 1 ≤ p < ∞, (X, ‖ ⋅ ‖) is a complex Banach space, and (Ω,ℛ, μ) is a mea-
sure space, then Lp(Ω,X, μ) denotes the space which consists of those strongly
μ-measurable functions f : Ω → X such that ‖f ‖p := (∫Ω ‖f (⋅)‖

p dμ)1/p is finite;
Lp(Ω, μ) ≡ Lp(Ω,ℂ, μ).

L∞(Ω,X, μ): the space which consists of all strongly μ-measurable, essentially
bounded functions.

‖f ‖∞ = ess supt∈Ω ‖f (t)‖, the norm of a function f ∈ L∞(Ω,X, μ).
Lp(Ω : X) ≡ Lp(Ω,X) ≡ Lp(Ω,X, μ), if p ∈ [1,∞] and μ = m is the Lebesgue measure;

Lp(Ω) ≡ Lp(Ω : ℂ).

https://doi.org/10.1515/9783110763522-202
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XIV | Notation

Lploc(Ω : X): the space consisting of those Lebesgue measurable functions u(⋅) such
that, for every bounded open subset Ω′ of Ω, one has u|Ω′ ∈ Lp(Ω′ : X);
Lploc(Ω) ≡ L

p
loc(Ω : ℂ) (1 ≤ p ≤∞).

Assume that I = ℝ or I = [0,∞). By Cb(I : X) we denote the space consisting
of bounded continuous functions from I into X; C0(I : X) denotes the closed
subspace of Cb(I : X) consisting of functions vanishing as the absolute value
of the argument tends to plus infinity. By BUC(I : X)we denote the space con-
sisting of all bounded uniformly continuous functions from I to X. Equipped
with the sup-norm, Cb(I : X), C0(I : X) and BUC(I : X) are Banach spaces.

Ck(Ω : X): the space of k-times continuously differentiable functions (k ∈ ℕ0) from
a non-empty subset Ω ⊆ ℂ into X; C(Ω : X) ≡ C0(Ω : X).

𝒟 = C∞0 (ℝ), ℰ = C∞(ℝ) and 𝒮 = 𝒮(ℝ): the Schwartz spaces of test functions. If 0 ̸=
Ω ⊆ ℝ, then by 𝒟Ω we denote the subspace of 𝒟 consisting of those functions
φ ∈ 𝒟 for which supp(φ) ⊆ Ω;𝒟0 ≡ 𝒟[0,∞).

𝒟′ := L(𝒟,ℂ): the space consisting of all scalar-valued distributions. If k ∈ ℕ, p ∈
[1,∞] and Ω is an open non-empty subset of ℝn, thenWk,p(Ω : X) stands for
the Sobolev space of those X-valued distributions u ∈ 𝒟′(Ω : X) such that, for
every i ∈ ℕ0k and for every α ∈ ℕ

n
0 with |α| ≤ k, one has D

αu ∈ Lp(Ω : X).
Wk,p

loc (Ω : X): the space of those X-valued distributions u ∈ 𝒟′(Ω : X) such that, for
every bounded open subset Ω′ of Ω, one has u|Ω′ ∈ Wk,p(Ω′ : X).

ℱ , ℱ−1: the Fourier transform and its inverse transform, respectively.
L1loc([0,∞)), resp. L

1
loc([0, τ)): the space of scalar-valued locally integrable functions

on [0,∞), resp. [0, τ).
Jαt : the Riemann–Liouville fractional integral of order α > 0.
Dα
t : the Riemann–Liouville fractional derivative of order α > 0.

Dα
t : the Caputo fractional derivative of order α > 0.

Dγ
t,+: the Weyl–Liouville fractional derivative of order γ ∈ (0, 1].

Eα,β(z): the Mittag-Leffler function (α > 0, β ∈ ℝ); Eα(z) ≡ Eα,1(z).
Ψγ(t): the Wright function (0 < γ < 1).
supp(f ): the support of the function f (t).
Lp(x)(Ω : X): the Lebesgue space with variable exponent p(x). Let I = ℝ or I = [0,∞),

and let 1 ≤ p <∞.
Pc(I : X): the space of all continuous c-periodic functions f : I → X (c > 0).
AP(I : X): the Banach space consisting of all almost periodic functions from the in-

terval I into X, equipped with the sup-norm.
UR(I : X): the collection of all uniformly recurrent functions from the interval I

into X.
AAP(I : X): the Banach space consisting of all asymptotically almost periodic func-

tions from the interval I into X, equipped with the sup-norm.
AUR(I : X): the collection of all asymptotically uniformly recurrent functions from

the interval I into X.
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Notation | XV

AP(I × Y : X): the set consisting of all almost periodic functions f : I × Y → X.
UR(I × Y : X): the set consisting of all uniformly recurrent functions f : I × Y → X.
AAP(I × Y : X): the set consisting of all asymptotically almost periodic functions f :

I × Y → X.
AUR(I × Y : X): the set consistingof all asymptoticallyuniformly recurrent functions

f : I × Y → X.
AP⊙g (I × Y : X): the collection of all two-parameter ⊙g-almost periodic functions f :

I × Y → X.
AP⊙g ,b(I × Y : X): the collectionof all two-parameter⊙g-almost periodic functions on

bounded sets.
URb(I × Y : X): the collection of all two-parameter uniformly recurrent functions on

bounded sets.
e −Wp

ap,K(I × Y : X): the collection of all equi-Weyl p-almost periodic functions f :
I × Y → X.

Wp
ap,K(I × Y : X): the collection of all Weyl p-almost periodic functions f : I ×Y → X.

Wp
0,K(I × Y : X): the collection of all Weyl p-vanishing functions f : I × Y → X.

e −Wp
0,K(I × Y : X): the collection of all equi-Weyl p-vanishing functions f : I ×
Y → X.

LpS(I : X): the space of all Stepanov p-bounded functions.
Lp(x)S (I : X): the space of all Stepanov p(x)-bounded functions.
APSp(I : X): the Banach space of all Stepanov p-almost periodic functions from I

into X, equipped with the Stepanov norm.
AAPSp(I : X): the Banach space of all asymptotically Stepanov p-almost periodic

functions f : I → X, equipped with the Stepanov norm.
AURSp(I : X): the collection of all asymptotically Stepanov p-uniformly recurrent

functions f : I → X.
AAPSp(I × Y : X): the vector space consisting of all Stepanov p-almost periodic func-

tions f : I × Y → X.
APSp(x)(I : X): the space of all Stepanov p(x)-almost periodic functions f : I → X.
AAPSp(x)(I : X): the space of all asymptotically Stepanov p(x)-almost periodic func-

tions f : I → X.
AURSp(x)(I : X): the collection of all asymptotically Stepanov p(x)-uniformly recur-

rent functions f : I → X.
AAPSp(x)(I × Y : X): the vector space consisting of all asymptotically Stepanov

p(x)-almost periodic functions f : I × Y → X.
e −Wp

ap(I : X): the collection of all equi-Weyl p-almost periodic functions f : I → X.
Wp

ap(I : X): the collection of all Weyl p-almost periodic functions f : I → X.
Wp

0 ([0,∞) : X) and e −W
p
0 ([0,∞) : X): the collections consisting of all Weyl p-van-

ishing functions and equi-Weyl p-vanishing functions, respectively.
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XVI | Notation

Bp(I : X) and Bp(I : X): the sets consisting of all Besicovitch–Doss p-almost periodic
functions f : I → X and all Besicovitch-p-almost periodic functions f : I → X,
respectively.

Dp(I : X): the class consisting of all Doss p-almost periodic functions f : I → X.
ANP0(I : X): the linear span of almost anti-periodic functions f : I → X.
ANP(I : X): the linear closure of ANP0(I : X) in AP(I : X).
AS(ℝ : X) and ASc(ℝ : X): the Banach spaces consisting of all almost automor-

phic functions and compactly almost automorphic functions, respectively,
equipped with the sup-norm.

WpAS(ℝ : X): the vector space consisting of all Weyl p-almost automorphic func-
tions.

BpAS(ℝ : X): the vector space consisting of all Besicovitch p-almost automorphic
functions.

𝒫p,k(I : X): the vector space consisting of all Bloch (p, k)-periodic functions.
Q − AAP(I : X): the set consisting of all quasi-asymptotically almost periodic func-

tions from I into X.
Q − AUR(I : X): the set consisting of all quasi-asymptotically uniformly recurrent

functions from I into X.
SpQ − AAP(I : X): the set consisting of all Stepanov p-quasi-asymptotically almost

periodic functions from I into X.
Sp(x)Q − AAP(I : X), Sp(x)Q − AUR(I : X) and Sp(x)SAPω(I : X): the set consisting of

all Stepanov p(x)-quasi-asymptotically almost periodic functions from I
into X, the set consisting of all Stepanov p(x)-quasi-asymptotically uni-
formly recurrent functions from I into X and the set consisting of all Stepanov
p(x)-asymptotically ω-periodic functions, respectively.

𝒮Bk(I : X): the space of all semi-Bloch k-periodic functions from I into X.
𝒮𝒜𝒩𝒫(I : X): the space consisting of all semi-anti-periodic functions from I into X.
(e−)W (p,ϕ,F)ap (I : X): the collection of all (equi)-Weyl (p,ϕ, F)-almost periodic func-

tions f : I → X.
(e−)W (p,ϕ,F)iap (I : X): the collection of all (equi)-Weyl (p,ϕ, F)i-almost periodic func-

tions f : I → X (i = 1, 2).
(e−)W [p,ϕ,F]ap (I : X): the collection of all (equi)-Weyl [p,ϕ, F]-almost periodic func-

tions f : I → X.
(e−)W [p,ϕ,F]iap (I : X): the collection of all (equi)-Weyl [p,ϕ, F]i-almost periodic func-

tions f : I → X (i = 1, 2).
Wp(x)

ϕ,F,0([0,∞) : X) and e −Wp(x)
ϕ,F,0([0,∞) : X) [Wp(x);1

ϕ,F,0 ([0,∞) : X) and e−Wp(x);1
ϕ,F,0 ([0,∞) :

X)/Wp(x);2
ϕ,F,0 ([0,∞) : X) and e −Wp(x);2

ϕ,F,0 ([0,∞) : X)]: the sets consisting of all
Weyl (p,ϕ, F)-vanishing functions and equi-Weyl (p,ϕ, F)-vanishing functions
[Weyl (p,ϕ, F)1-vanishing functions and equi-Weyl (p,ϕ, F)1-vanishing func-
tions/Weyl (p,ϕ, F)2-vanishing functions and equi-Weyl (p,ϕ, F)2-vanishing
functions].
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URω,c(I : X), APω,c(I : X), ASω,c(I : X) and ASω,c;c(I : X): the space of all (ω, c)-uni-
formly recurrent functions, the space of all (ω, c)-almost periodic functions,
the space of all (ω, c)-almost automorphic functions and the space of all com-
pactly (ω, c)-almost automorphic functions, respectively.

SpURω,c(I : X), SpAPω,c(I : X) and SpASω,c(I : X): the space of all Stepanov (p,ω, c)-
uniformly recurrent functions, the space of all Stepanov (p,ω, c)-almost pe-
riodic functions and the space of all Stepanov (p,ω, c)-almost automorphic
functions, respectively.

ASpURω,c(I : X), ASpAPω,c(I : X) and ASpASω,c(I : X): the space of all asymptotically
Stepanov (p,ω, c)-uniformly recurrent functions, the space of all asymptoti-
cally Stepanov (p,ω, c)-almost periodic functions and the space of all asymp-
totically Stepanov (p,ω, c)-almost automorphic functions, respectively.

URω,c,i(I : X) and APω,c,i(I : X): the space of all (ω, c)-uniformly recurrent functions
of type i and the space of all (ω, c)-almost periodic functions of type i, respec-
tively (i = 1, 2).

URc(I : X): the set consisting of all c-uniformly recurrent functions from the interval
I into X.

APc(I : X): the set consisting of all c-almost periodic functions from the interval I
into X.

𝒮𝒫c,i(I : X): the set of all semi-c-periodic functions of type i, where i = 1, 2.
𝒮𝒫c,i,+(I : X): the set of all semi-c-periodic functions of type i+, where i = 1, 2.
e −W (p(x),ϕ,F)ur (I : X): the set of all equi-Weyl (p(x),ϕ, F)-uniformly recurrent func-

tions.
e −W (p(x),ϕ,F)1ur (I : X): the set of all equi-Weyl (p(x),ϕ, F)1-uniformly recurrent func-

tions.
e −W (p(x),ϕ,F)2ur (I : X): the set of all equi-Weyl (p(x),ϕ, F)2-uniformly recurrent func-

tions.
e −W [p(x),ϕ,F]ur (I : X): the set of all equi-Weyl [p(x),ϕ, F]-uniformly recurrent func-

tions.
e −W [p(x),ϕ,F]1ur (I : X): the set of all equi-Weyl [p(x),ϕ, F]1-uniformly recurrent func-

tions.
e −W [p(x),ϕ,F]2ur (I : X): the set of all equi-Weyl [p(x),ϕ, F]2-uniformly recurrent func-

tions.
Q − AURB(I × Y : X): the set consisting of all quasi-asymptotically uniformly recur-

rent, uniformly on B functions from I × Y into X.
SpURω,c,2([0,∞) : X) and SpAPω,c,2([0,∞) : X): the collection of all Stepanov (p,ω,

c)-uniformly recurrent functions of type 2 and the collection of all Stepanov
(p,ω, c)-almost periodic functions of type 2, respectively.

Sp(x)URω,c,2([0,∞) : X) and Sp(x)APω,c,2([0,∞) : X): the collection of all Stepanov
(p(x),ω, c)-uniformly recurrent functions of type 2 and the collection of all
Stepanov (p(x),ω, c)-almost periodic functions of type 2, respectively.
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PAP0;ω,c,i(ℝ × Y : X): the space of (ω, c, i)-pseudo ergodic vanishing functions (i =
1, 2).

APω,c,i(ℝ × Y : X), resp. ASω,c,i(ℝ × Y : X): the space of all (ω, c, i)-almost periodic,
resp. (ω, c, i)-almost automorphic, functions (i = 1, 2).

PAPω,c(ℝ : X), resp. PAAω,c(ℝ : X): the space of all (ω, c)-pseudo-almost periodic,
resp. (ω, c)-pseudo-almost automorphic, functions.

PAPω,c,i(ℝ × Y : X), resp. PAAω,c,i(ℝ × Y : X): the space of all (ω, c, i)-pseudo-almost
periodic, resp. (ω, c, i)-pseudo-almost automorphic, functions.

ℬAPω,c : the space of smooth (ω, c)-almost periodic functions defined on ℝ.
ℬ′APω,c : the space of (ω, c)-almost periodic distributions.
ℬ′0+: the space of bounded distributions vanishing at infinity.
ℬ′aap([0,∞)): the space of asymptotically almost periodic Schwartz distributions.
(e−)Wp

ap;c(I : X): the collection of all (equi-)Weyl (p, c)-almost periodic functions.
SAPω;c(I : X) and SAPc(I : X): the sets of all S-asymptotically (ω, c)-periodic func-

tions and Sc-asymptotically periodic functions (ω ∈ I, c ∈ ℂ \ {0}).
Sp(x)Q − AAPc(I : X): the set consisting of all Stepanov p(x)-quasi-asymptotically c-

almost periodic functions from I into X.
SpQ − AAPc(I : X): the set consisting of all Stepanov p-quasi-asymptotically c-

almost periodic functions from I into X.
Q − AAPc(I : X): the collection of all quasi-asymptotically c-almost periodic func-

tions from I into X, respectively.
Q − AAPc;ℱ (I × Y : X): the collection consisting of all quasi-asymptotically c-almost

periodic functions f : I × Y → X on ℱ .
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Introduction

The class of almost periodic functions was introduced by the Danish mathematician
H. Bohr [196] (1925), the younger brother of the Nobel Prize-winning physicist N. Bohr,
and later generalized bymany others. Let I = ℝ or I = [0,∞), let (X, ‖ ⋅ ‖) be a complex
Banach space, and let f : I → X be continuous. Given ϵ > 0, we call τ > 0 an ϵ-period
for f (⋅) if and only if

f (t + τ) − f (t)
 ≤ ϵ, t ∈ I .

By ϑ(f , ϵ) we denote the set of all ϵ-periods for f (⋅). We say that f (⋅) is almost periodic
if and only if for each ϵ > 0 the set ϑ(f , ϵ) is relatively dense in [0,∞), which means
that there exists l > 0 such that any subinterval of [0,∞) of length lmeets ϑ(f , ϵ).

The class of almost automorphic functionswas introduced by theAmericanmath-
ematician S. Bochner [188] (1955). A continuous function f : ℝ→ X is said to be almost
automorphic if and only if for every real sequence (bn) there exist a subsequence (an)
of (bn) and a map g : ℝ→ X such that

lim
n→∞ f (t + an) = g(t) and lim

n→∞ g(t − an) = f (t),
pointwise for t ∈ ℝ. Any almost periodic function is almost automorphic, but the con-
verse statement is not true in general. The theory of almost periodic functions and the
theory of almost automorphic functions are still very active fields of investigations of
numerous authors, full of open problems, conjectures, hypotheses, and possibilities
for further expansions.

There is an enormous literature devoted to the study of almost periodic solutions
and almost automorphic solutions of the abstract first-order differential equations.
The notion of an almost periodic strongly continuous semigroup was introduced by
H. Bart and S. Goldberg in [119] (1978) but some particular results concerning the al-
most periodicity of individual orbits of strongly continuous semigroups were given
already by C. Foias, S. Zaidman [447] (1961), V. Zhikov [1097, 1098] (1966, 1968) and
A. I. Perov, T. K. Hai [835] (1972); see also the survey article [840] by V. Q. Phóng as well
as the reference list of [631] and the articles [841, 842] obtained in a collaboration of
V. Q. Phóng and Yu I. Lyubich.

The notion of an almost periodic cosine operator function was introduced by
I. Cioranescu [298] (1986) and after that received considerable attention from many
authors. The existence and uniqueness of almost periodic type solutions of the (ab-
stract) second-order differential equations have been investigated in many research
articles by now, using the theory of cosine operator functions or other methods (see
e. g., [81, 93, 102, 155, 530, 866, 943, 1062, 1068]). We will describe here the main ideas
and results of the recent investigation [371] by T. Diagana, J. H. Hassan and S. A. Mes-
saoudi, who analyzed the existence of asymptotically almost periodic mild solutions

https://doi.org/10.1515/9783110763522-203
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to a class of second-order hyperbolic integro-differential equations of Gurtin–Pipkin
type in separable Hilbert spaces. Let H be a separable Hilbert space, and let A be a
positive self-adjoint operator inH such that there exists a positive real constantω > 0
such that ‖Au‖ ≥ ω‖u‖ for all u ∈ H. Assume further that a function f : [0,∞)×H → H
is asymptotically almost periodic in the first variable, uniformly on compacts of
H in the second variable, and a non-increasing differentiable relaxation function
g : [0,∞)→ [0,∞) satisfies g(0) > 0 and ∫∞0 g(s) ds < 1. Under certain extra assump-
tions, the authors have proved that the abstract Volterra integro-differential equation

u′′(t) + A2u(t) − t

∫−∞ g(t − s)A2u(s) ds = f (t, u(t)), t ≥ 0,

accompanied by the initial conditions u(−t) = u0(t) for t ≥ 0 and u′(0) = u1, has an
asymptotically almost periodic mild solution. Themain strategy used is a transforma-
tion of such a system into a first-order linear evolution equation whose solutions are
governed by exponentially decaying strongly continuous semigroups; an interesting
application was made in the study of Kirchhoff plate equation with infinite memory.
For almost periodic type solutions of abstract differential equationswith integer-order
derivatives, we want also to recommend [54, 61, 80, 81, 111, 115, 134, 151, 249–251] and
[420, 550, 687, 799, 819, 839, 1001, 1093, 1095, 1096].

The study of almost periodic type solutions of the abstract Volterra integro-
differential equations was initiated by J. Prüss in [857, Section 11.4], where the author
has analyzed the almost periodic solutions, Stepanov almost periodic solutions and
asymptotically almost periodic solutions of the following abstract integro-differential
equation

u′(t) = ∞∫
0

A0(s)u
′(t − s) ds + ∞∫

0

dA1(s)u(t − s) + f (t), t ∈ ℝ;

here A0 ∈ L1([0,∞) : L(Y ,X)), t → A1(t) ∈ L(Y ,X), t ≥ 0 is locally of bounded varia-
tion, X and Y are Banach spaces such that Y is densely and continuously embedded
into X. Almost immediately after that, Q.-P. Vu [1006] has investigated the almost pe-
riodicity of the abstract Cauchy problem

u′(t) = Au(t) + ∞∫
0

dBu(τ)u(t − τ) + f (t), t ∈ ℝ,

where A is a closed linear operator acting on a Banach space X, (B(t))t≥0 is a family of
closed linear operators on X and f : ℝ→ X is continuous.

It is very difficult and unpleasant to say precisely whowas the first to study the al-
most periodic solutions of the abstract fractional differential equations. For example,
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J. Mu, Y. Zhoa and L. Peng [798] have recently investigated the periodic solutions and
S-asymptotically periodic solutions to fractional evolution equation

Dγ
t,+u(t) = −Au(t) + g(t), t ∈ ℝ

and its semilinear analogue

Dγ
t,+u(t) = −Au(t) + g(t, u(t)), t ∈ ℝ,

where Dγ
t,+ denotes the Weyl–Liouville fractional derivative of order γ ∈ (0, 1), A is the

infinitesimal generator of an exponentially decaying strongly continuous semigroup
of operators and g : ℝ × X → X satisfies certain assumptions (see also the article
[23] by R. Agarwal, B. de Andrade and C. Cuevas as well as the recent articles [138] by
P. Bedi, A. Kumar, T. Abdeljawad, A. Khan and [224] by D. Brindle, G.M. N’Guérékata,
where the authors have analyzed S-asymptotically ω-periodic mild solutions for frac-
tional differential equations with Hilfer derivatives and Riemann–Liouville deriva-
tives). Later, the author of this monograph extended the results of J. Mu, Y. Zhoa and
L. Peng to the abstract fractional differential inclusion

Dγ
t,+u(t) ∈ −𝒜u(t) + g(t), t ∈ ℝ,

and its semilinear analogue

Dγ
t,+u(t) ∈ −𝒜u(t) + g(t, u(t)), t ∈ ℝ,

where 𝒜 is a closed multivalued linear operator satisfying condition (P) below. The
obtained results enable one to examine the almost periodic type solutions of the fol-
lowing fractional Poisson heat equations:

{
𝜕𝜕t [m(x)v(t, x)] = (Δ − b)v(t, x) + f (t,m(x)v(t, x)), t ∈ ℝ, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0,∞) × 𝜕Ω,

{{
{{
{

Dγ
t [m(x)v(t, x)] = Δv(t, x) + bv(t, x), t ≥ 0, x ∈ Ω;

v(t, x) = 0, (t, x) ∈ [0,∞) × 𝜕Ω;
m(x)v(0, x) = u0(x), x ∈ Ω,

and the following fractional semilinear equation with higher-order differential oper-
ators in the Hölder space X = Cα(Ω):

{
Dγ
t u(t, x) = −∑|β|≤2m aβ(t, x)Dβu(t, x) − σu(t, x) + f (t, u(t, x)), t ≥ 0, x ∈ Ω;

u(0, x) = u0(x), x ∈ Ω;

see [631] for more details. Let us also recall that R. Ponce [854] has investigated
the bounded mild solutions of the following non-degenerate fractional integro-
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differential equation

Dγ
t,+u(t) = Au(t) + t

∫−∞ a(t − s)Au(s) ds + f (t, u(t)), t ∈ ℝ, (1)

where A is a closed linear operator, a ∈ L1([0,∞)) is a scalar-valued kernel and f (⋅, ⋅)
satisfies some Lipschitz type conditions. In particular, almost periodic solutions of
(1) have been analyzed. Furthermore, S. Abbas, V. Kavitha and R. Murugesu have re-
cently analyzedStepanov-like (weighted) pseudo-almost automorphic solutions to the
following fractional order abstract integro-differential equation:

Dα
t u(t) = Au(t) + D

α−1
t f (t, u(t),Ku(t)), t ∈ ℝ,

where

Ku(t) =
t

∫−∞ k(t − s)h(s, u(s)) ds, t ∈ ℝ,

1 < α < 2, A is a sectorial operator with domain and range in X, of negative sectorial
typeω < 0, the function k(t) is exponentially decaying, the functions f : ℝ×X×X → X
and h : ℝ × X → X are Stepanov-like weighted pseudo-almost automorphic in time
for each fixed elements of X × X and X, respectively, satisfying some extra conditions
[9]. For more details about almost periodic type solutions of the abstract fractional
differential equations, see the reference list of [631] and the articles [22, 24, 256, 340,
701, 774, 1039].

As we can see from the above, many results concerning the existence and unique-
ness of almost periodic type solutions and almost automorphic type solutions to the
abstract (semilinear) fractional differential equations have recently been given by nu-
merous authors. In almost all these results (in the linear setting, quite exceptional are
some examples and results presented by S. Zaidman [1067, Examples 4, 5, 7, 8; pp. 32–
34], which have been employed by many authors so far, for various purposes; we will
also use these examples to illustrate our results about the existence and uniqueness of
almost periodic type solutions of the abstract integro-differential equations), the basic
key is to investigate the invariance of certain kinds of generalized almost periodicity
and generalized almost automorphicity under the actions of the infinite convolution
product

t →
t

∫−∞ R(t − s)f (s) ds, t ∈ ℝ,
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and the finite convolution product

t →
t

∫
0

R(t − s)f (s) ds, t ≥ 0.

Here, it is commonly assumed that (R(t))t≥0 ⊆ L(X,Y) is a non-degenerate strongly
continuous operator family between the Banach spaces X and Y which exponentially
or, at least, polynomially decays as t → +∞. In [631], we have investigated the case in
which (R(t))t>0 ⊆ L(X,Y) is a degenerate strongly continuous operator family which
decays exponentially or polynomially as t → +∞, but we have allowed (R(t))t>0 to
have a removable singularity at zero; by that we basically mean that there exists a
number ζ ∈ (0, 1) such that the operator family (tζR(t))t≥0 is well defined and strongly
continuous at the point t = 0. The integral generator of (R(t))t≥0 is not single-valued
in the degenerate case and this is the main reason why we have employed the mul-
tivalued linear approach to the abstract degenerate integro-differential equations in
[631], which is also followed in this monograph. For the theory of abstract degenerate
differential equations of the first order,mention should bemade of the researchmono-
graphs [245] by R.W. Caroll and R.W. Showalter, [431] by A. Favini, A. Yagi, [853] by
M.V. Plekhanova, V. E. Fedorov and [965] by G. A. Sviridyuk, V. E. Fedorov. The well-
posedness of the abstract degenerate Cauchy problem

Bu(t) = f (t) +
t

∫
0

a(t − s)Au(s) ds, t ∈ [0, τ),

where 0 < τ ≤ ∞, t → f (t), t ∈ [0, τ) is a continuous mapping, a ∈ L1loc([0, τ))
and A,B are closed linear operators, has been thoroughly analyzed in the monograph
[633], which provides the reader a valuable information about the abstract degen-
erate Volterra integro-differential equations (for the scalar-valued Volterra integro-
differential equations, we refer the reader to the monograph [488] by G. Gripenberg,
S. O. Londen, O. J. Staffans).

We will say just a few words about periodic solutions of the abstract degen-
erate Volterra integro-differential equations. In [114], V. Barbu and A. Favini have
analyzed the 1-periodic solutions of the abstract degenerate differential equation
(d/dt)(Bu(t)) = Au(t), t ≥ 0, accompanied by the initial condition (Bu)(0) = (Bu)(1),
by using P. Grisvard’s sum of operators method and some results from investigation
of J. Prüss [858] in the non-degenerate case. The authors reduced the above prob-
lem to v′(t) ∈ 𝒜v(t), t ≥ 0, v(0) = v(1), where the multivalued linear operator 𝒜
is given by 𝒜 = AB−1. The main problem is whether the inclusion 1 ∈ ρ(𝒜) holds
or not; recall that J. Prüss [858] has proved that 1 ∈ ρ(A) if and only if 2πiℤ ⊆ ρ(A)
and sup({‖(2πin − A)−1‖ : n ∈ ℤ}) < ∞, provided that A generates a non-degenerate
strongly continuous semigroup. Applications are given to the Poissonheat equation in

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



XXIV | Introduction

H−1(Ω) and L2(Ω), as well as to some systems of ordinary differential equations. On the
other hand, C. Lizama and R. Ponce [727] have analyzed the existence of 2π-periodic
solutions to the following abstract inhomogeneous linear equation:

d
dt
(Bu(t)) = Au(t) +

t

∫−∞ a(t − s)Au(s) ds + f (t), t ≥ 0, (2)

subjected with the initial condition (Bu)(0) = (Bu)(2π). The authors also considered
themaximal regularity of (2) in periodic Besov, Triebel–Lizorkin and Lebesgue vector-
valued function spaces.

There is an enormous literature concerning periodic solutions for various classes
of (abstract) non-degenerate Volterra integro-differential equations. Regarding the
classical theory of partial differential equations with integer-order derivatives, we
would like to recommend for the reader the references and work quoted in the intro-
ductory part of the fourth chapter of the monograph [859] by B. I. Ptashnic, where the
following has been emphasized:
1. The ω-periodic solutions in time for the linear wave equation and the following

weakly nonlinear wave equation

utt(t, x) − uxx(t, x) = ϵf (t, x, u, ut , ux , ϵ), t ≥ 0, 0 ≤ x ≤ π,

accompanied by the boundary conditions u(t,0) = u(t,π) = 0, was analyzed by
O. Vejvoda [998] in 1964 (ϵ > 0 is a sufficiently small real parameter). If ω ∈ 2πℚ
and ω > 0, then the existence of ω-periodic solutions for the both classes of wave
equationswas proved; on the other hand, ifω ∉ 2πℚ andω > 0, then the situation
is much more complicated and the author was proved the existence ofω-periodic
solutions for a corresponding linear wave equation, only, provided that ω = 2πα
and there exist positive real numbers c > 0 and γ > 0 such that


α − m

k


>

c
kγ
.

After that, in 1965, Ya. Gavlova investigated the existence and uniqueness of peri-
odic solutions for the following weakly nonlinear telegraph equation

utt − uxx + 2aut + 2bux + cu = h(t, x) + ϵf (t, u, ut , ux , ϵ),

accompanied by the boundary conditions u(t,0) = u(t,π) = 0, where a, b, c ∈ ℝ
are certain constants and ϵ > 0 is a sufficiently small real parameter.

2. In 1972, A. Azis and M. Gorak investigated the existence and uniqueness of peri-
odic solutions in the time variable and space variable for the following quasilinear
hyperbolic second-order equation:

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = f (x, y, u, ux , uy);
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in 1971, N. Krylovoi and O. Vejvoda investigated the existence and uniqueness of
ω-periodic solutions in the time variable for the following equation:

utt + uxxxx = g(t, x) + ϵf (t, x, u, ux , uxx , ut , ϵ),

accompanied by the boundary conditions

u(t,0) = u(t, 2π) = uxx(t,0) = uxx(t,π) = 0.

Six years later, in 1977,M. Kopachkovoi andO. Vejvoda analyzed the existence and
uniqueness ofω-periodic solutions in the timevariable for the followingnonlinear
equation:

utt + uxxxx − ϵuxx

π

∫
0

u2(x, ξ ) dξ = g(t, x) + ϵ2F(u)(t, x),

which appears in the study of beam vibrations with the effect of elongation. See
also the research articles by B. P. Tkach [979], T. I. Kiguradze [603–606], M. F. Ku-
lagina [680, 681] and M. F. Kulagina, E. A. Mikishanina [682]. For nonlinear KdV
equations, we refer the reader to the research article [1007] by P. A. Vuillermot.

Furthermore, the Bohr almost periodic solutions to boundary value problems for sys-
tems of partial differential equations that arise in solving certain problems for inho-
mogeneousmedia have been investigated in the research articles [161] by L. C. Berselli,
L. Bisconti, [162] by L. C. Berselli, M. Romito and [1002] by E. V. Vetchanin, E. A. Mikis-
hanina. Regarding the existence and uniqueness of Bohr almost periodic solutions of
the Navier–Stokes type equations, the reader may consult [52, 99, 107, 271, 302, 423,
438, 535, 547, 549, 564, 565] and [581, 610, 614, 677, 742, 744, 969, 990, 1046].

For the periodic solutions of abstract first-order differential equations, we re-
fer the reader to the research monographs [234] by T. A. Burton, [721] by J. H. Liu,
G.M. N’Guerekata, N. V. Minh and [1061] by T. Yoshizawa and to the research articles
[201, 235, 419, 420, 474, 545, 613, 702, 724, 736, 883, 925]; concerning the abstract
second-order differential equations in Hilbert spaces, it should be also noted that the
existence and uniqueness of periodic solutions for the following equations:

utt + (A + γI)u(t) = F(t, u(t)), t ≥ 0 (γ ∈ ℝ);

utt + A
2u(t) = F(t, u(t), u′(t)), t ≥ 0;

utt(t) + 2αut(t) + Au(t) = g(t) + F(t, u(t)), t ≥ 0,

were analyzed by I. Strashkraby, O. Vejvoda (1973), V. Lovicar (1977) and K. Masudy
(1966), respectively (A is a positive self-adjoint operator in a Hilbert space H). Con-
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cerning the semilinear wave equations, we refer the reader to the research articles [53]
by H. Amann, E. Zehnder and [911] by B. Scarpellini, P. A. Vuillermot.

The study of differential equations with discontinuous arguments was initiated
by A. D. Myshkis [805] in 1977. The analysis of asymptotically anti-periodic solutions
for nonlinear differential first-order equations with piecewise constant argument car-
ried out by W. Dimbour and V. Valmorin [381] has recently been reconsidered and ex-
tended of asymptotically Bloch periodic solutions for nonlinear fractional differential
inclusions with piecewise constant argument by M. Kostić and D. Velinov in [664]. We
have analyzed the following fractional differential Cauchy inclusion with piecewise
constant argument:

Dγ
t u(t) ∈ 𝒜u(t) + A0u(⌊t⌋) + g(t, u(⌊t⌋)), t > 0; u(0) = u0,

whereA0 ∈ L(X), g : [0,∞)×X → X is a given function, andDγ
t u(t) denotes the Caputo

fractional derivative of order γ, taken in a weak sense (cf. the paragraph preceding
Definition 3.1.22). It is also worth noting that A. Chávez, S. Castillo and M. Pinto [263]
have analyzed the existence of a unique almost automorphic solution for the following
differential equation with a piecewise constant argument:

y′(t) = A(t)y(t) + B(t)y(⌊t⌋) + f (t, y(t), y(⌊t⌋)), t ∈ ℝ, (3)

where A(t) and B(t) are almost automorphic p × p complex matrices and f : ℝ × ℂp ×
ℂp → ℂp is an almost automorphic function satisfying a condition of Lipschitz type.
The study carried out in [263] leans heavily on the use of results on discontinuous
almost automorphic functions, exponential dichotomies and the Banach fixed point
theorem. The almost periodic solutions of (3) were considered for the first time by R.
Yuan and J. Hong in [1065] (1997); for more details about differential equations with
a piecewise constant argument (DEPCA), the reader may consult the articles [308] by
K. L. Cooke and J.Wiener, [920] by S.M. Shah and J.Wiener, [1026] by J.Wiener, as well
as the articles [33, 286, 287, 801, 826, 849, 1063] and the list of references cited therein.

There is a vast amount of articles in the existing literature which consider almost
automorphic type solutions for various classes of integro-differential equations. Let
us only mention our analysis (the joint work with Prof. G.M. N’Guérékata [496]) of the
following abstract multi-term fractional differential inclusion:

Dαn
t u(t) +

n−1
∑
i=1 AiDαi

t u(t) ∈ 𝒜D
α
t u(t) + f (t), t ≥ 0,

u(k)(0) = uk , k = 0, . . . , ⌈αn⌉ − 1,

where n ∈ ℕ \ {1}, A1, . . . ,An−1 are bounded linear operators on a Banach space X,
𝒜 is a closed multivalued linear operator on X, 0 ≤ α1 < ⋅ ⋅ ⋅ < αn, 0 ≤ α < αn, f (⋅)
is an X-valued function, and Dα

t denotes the Caputo fractional derivative of order α
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[133, 630]. Many excellent examples have been presented in the monograph [364] by
T. Diagana; see also the following monographs:
1. [56] by M. Amerio and G. Prouse for almost periodic solutions of functional equa-

tions,
2. [86] by L. N. Argabright, J. G. de Lamadrid for almost periodic measures,
3. [104, 105] by M. Baake, U. Grimm for applications of almost periodic functions in

crystallography,
4. [172] by P.H. Bezandry and T. Diagana for almost periodic solutions of stochastic

differential equations,
5. [203] by A. Böttcher, I. Yu. Karlovich and I.M. Spitkovsky for factorization of al-

most periodic matrix functions (cf. also the article [202] by A. Böttcher for the
problematic regarding corona theorem for almost periodic functions of several
real variables and the articles [192] by P. Boggiatto, C. Ferández, A. Galbis, [611]
by Y.H. Kim for problematic concerning Gabor systems and almost periodic func-
tions),

6. [258] by Y.-K. Chang, G.M. N’Guerekata and R. Ponce for Bloch (p, k)-periodic
functions, anti-periodic functions and their applications,

7. [269] by D.N. Cheban for asymptotically almost periodic solutions of linear and
nonlinear equations (cf. also the recent article [463] by C. A. Gallegos, H. R. Hen-
ríquez and the references cited therein),

8. [409] by E. Yu. Emel’anov for weakly almost periodic C0-semigroups,
9. [538] by Y. Hino, T. Naito, N. V. Minh and J. S. Shin and [494] by G.M. N’Guérékata

for spectral analysis of almost periodic functions andMassera type theorems [752],
10. [541] by R. Hsu for weakly almost periodic functions,
11. [596] by V. Kh. Kharasakhal for almost periodic solutions of ordinary differential

equations,
12. [616] by A. Yu. Kolesov, E. F.Mishchenko andN. Kh. Rozov for asymptoticmethods

of investigation of periodic solutions to nonlinear hyperbolic equations,
13. [895] by A.M. Samoilenko, B. P. Tkach for numerical–analytical methods in the

theory of periodic solutions to equations with partial derivatives,
14. [956] by G. Tr. Stamov for almost periodic solutions of impulsive differential equa-

tions (see also the research monographs [112] by D. Bainov, P. Simeonov, [832]
by N. A. Perestyuk, V. A. Plotnikov, A.M. Somoilenko, N. V. Skripnik, [946] by
X. Song, H. Gno, X. Shi, [957] by I. Stamova, G. Stamov, and the research articles
[862] by L. Qi, R. Yuan, [894] by A.M. Samoilenko, N. A. Perestyuk, [897] by A.M.
Samoilenko, S. I. Trofimchuk, [1036] by Z. Xia, D. Wang, [1057] by P. Yang, Y.-R.
Wang and M. Fečkan, [1059] by A. F. Yenicerioglu, V. Yazici, C. Yazici, and the
survey article [1018] by J. R. Wang, M. Fečkan and Y. Zhou),

15. [986] by D.U. Umbetzhanov for almost multiperiodic solutions of partial differen-
tial equations,

16. [999] by O. Vejvoda (with L. Herrmann, V. Lovicar as contributors) for time-
periodic solutions of partial differential equations.
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Concerning almost periodic solutions and almost automorphic solutions of the ab-
stract functional integro-differential equations, we also refer the reader to [5, 25, 30,
415–417, 529, 1062]; for almost periodic solutions and almost automorphic solutions
of abstract nonlinear integro-differential equations, see [177, 193, 678], the reference
lists in the articles [296, 712, 1051, 1052] and themonographs [442, 631]. For semilinear
Cauchy inclusions, we can also recommend the monograph [577] by M. Kamenskii, V.
Obukhovskii and P. Zeccawith another approach obeyed (for semilinear Cauchy equa-
tions, see also the monographs [252] by T. Cazenave, A. Haraux and [532] by D. Henry
as well as the paper [534] by M. Hieber, N. Kajiwara, K. Kress, P. Tolksdorf).

Concerning the existence and uniqueness of almost periodic type solutions of
inhomogeneous evolution equations of first order, the notions of hyperbolic evolu-
tion systems and Green’s functions are incredible important; for more details on the
subject, we refer the reader to P. Acquistapace [14], P. Acquistapace, B. Terreni [15],
Y.-H. Chang, J.-S. Chen [257], T. Diagana [364], K. Khalil [584], R. Schnaubelt [912],
V. V. Zhikov [1095, 1096] and the list of references in [631]. Let us recall that a family
{U(t, s) : t ≥ s, t, s ∈ ℝ} of bounded linear operators on X is said to be an evolution
system if and only if the following holds:
(a) U(s, s) = I, U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s and t, r, s ∈ ℝ,
(b) {(τ, s) ∈ ℝ2 : τ > s} ∋ (t, s) → U(t, s)x is continuous for any fixed element x ∈ X.

If the family A(⋅) satisfies the following condition introduced by P. Acquistapace and
B. Terreni in [15] (with ω = 0):
(H1) There is a real numberω ≥ 0 such that the family of closed linear operators A(t),

t ∈ ℝ acting on X satisfies Σϕ ⊆ ρ(A(t) − ω),

R(λ : A(t) − ω)
 = O((1 + |λ|)

−1), t ∈ ℝ, λ ∈ Σϕ, and
(A(t) − ω)R(λ : A(t) − ω)[R(ω : A(t)) − R(ω : A(s))]

 = O(|t − s|
μ|λ|−ν),

for any t, s ∈ ℝ, λ ∈ Σϕ, where ϕ ∈ (π/2,π), 0 < μ, ν ≤ 1 and μ + ν > 1,

then we have the existence of an evolution system U(⋅, ⋅) generated by A(⋅), satisfying
the following properties:
1. U(⋅, s) ∈ C1((s,∞) : L(X)) for all s ∈ ℝ,
2. 𝜕tU(t, s) = A(t)U(t, s), s ∈ ℝ, t > s,
3. ‖A(t)kU(t, s)‖ ≤ Const. ⋅ (t − s)−k, t > s, k ∈ ℕ0,
4. ‖A(t)U(t, s)R(ω : A(s))‖ ≤ Const., t > s,
5. ‖U(t, s)(ω − A(s))αx‖ ≤ Const. ⋅ (μ − α)−1(t − s)−α‖x‖, for 0 < t − s ≤ 1, k = 0, 1,

0 ≤ α < ν, x ∈ D((ω − A(s))α),
6. 𝜕+s U(t, s)x = −U(t, s)A(s)x, for s ∈ ℝ, t > s, x ∈ D(A(s)) and A(s)x ∈ D(A(s)).
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In many concrete situations, it is very difficult to verify the validity of the following
non-trivial condition:
(H2) The evolution system U(⋅, ⋅) generated by A(⋅) is hyperbolic (or, equivalently, has

exponential dichotomy), i. e., there exist a family of projections (P(t))t∈ℝ ⊆ L(X),
being uniformly bounded and strongly continuous in t, and constantsM′,ω > 0
such that the following holds, with Q := I − P and Q(⋅) := I − P(⋅):
(a) U(t, s)P(s) = P(t)U(t, s) for all t ≥ s,
(b) the restriction UQ(t, s) : Q(s)X → Q(t)X is invertible for all t ≥ s (here we set

UQ(s, t) = UQ(t, s)−1),
(c) ‖U(t, s)P(s)‖ ≤ M′e−ω(t−s) and ‖UQ(s, t)Q(t)‖ ≤ M′e−ω(t−s) for all t ≥ s.

If the choice P(t) = I for all t ∈ ℝ is possible, then U(⋅, ⋅) is called exponentially stable.
Furthermore,we say thatU(⋅, ⋅) is (bounded) exponentially bounded if andonly if there
exist real constantsM > 0 and (ω = 0) ω ∈ ℝ such that ‖U(t, s)P(s)‖ ≤ Me−ω(t−s) for all
t ≥ s.

The associated Green’s function Γ(⋅, ⋅), defined by

Γ(t, s) := { U(t, s)P(s), t ≥ s, t, s ∈ ℝ,
−UQ(t, s)Q(s), t < s, t, s ∈ ℝ,

satisfies

Γ(t, s)
 ≤ M

′e−ω|t−s|, t, s ∈ ℝ,

whereM′ is the constant appearing in the formulationof (H2). If the function f : ℝ→ X
is continuous, then the function

u(t) :=
+∞
∫−∞ Γ(t, s)f (s) ds, t ∈ ℝ

is a unique mild solution of the abstract Cauchy problem

u′(t) = A(t)u(t) + f (t), t ∈ ℝ, (4)

i. e., u(⋅) is a unique bounded continuous function on ℝ satisfying

u(t) = U(t, s)u(s) +
t

∫
s

U(t, τ)f (τ) dτ, t ≥ s;
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see e. g. [912] and [364, Lemma9.11, p. 234]. Furthermore, if the function f : [0,∞)→ X
is continuous, then we say that the function

u(t) := U(t,0)x +
t

∫
0

U(t, s)f (s) ds, t ≥ 0.

is a mild solution of the abstract Cauchy problem

u′(t) = A(t)u(t) + f (t), t > 0; u(0) = x. (5)

We would like to emphasize the following issues with regards to the nonau-
tonomous differential equations:
1. The almost periodic and almost automorphic solutions of the abstract Cauchy

problems (4)–(5) and their semilinear analogues have been investigated in a great
number of research papers. Without going into full details, we will only refer the
reader to the research monographs [364] by T. Diagana, [631] by M. Kostić, the ar-
ticles [117] by M. Baroun, L. Maniar, R. Schnaubelt, [116] by M. Baroun, K. Ezzinbi,
K. Khalil, L. Maniar and the list of references therein.

2. Concerning the applications of evolution systems in the theory of the second-
order nonautonomous differential equations, mention should be made of the pa-
per [1070] by D. A. Zakora (almost periodic solutions of such equations have been
investigated in [982], as well).

Furthermore, we want to mention the following issues (we continue the number-
ing):
3. Positive almost periodic solutions for various classes of abstract Volterra integro-

differential equations have been extensively studied by now; see, e. g., the arti-
cles [31] by E. Ait Dads, K. Ezzinbi, [313] by S.-O. Corduneanu, [418] by K. Ezzinbi,
M. A.Hachimi, [708] byY. Li, T. Zhang, [855] byK. R. Prasad,Md. Khuddush, [1056]
by G. Yang, L. Yao, [1086] by T.-W.-T. Zhang, [1101] by Q. Zhou, J. Shao.

4. The inequalities for almost periodic means and almost periodic solutions for cer-
tain classes of convolution equations have been considered by S.-O. Corduneanu
in her papers [312] and [314], respectively.

5. The almost periodic functions on time scales, the almost automorphic functions
on time scales and their applications to the abstract Volterra integro-differential
equations have recently been considered by numerous mathematicians (for time
scale calculus, we warmly recommend the monograph [186] by M. Bochner and
A. Peterson). Formore details about this topics, we refer the reader to the research
articles [27, 361–363, 498, 499, 561, 704–706, 725, 726, 781, 1009–1014], the recent
research monograph [1015] by C. Wang, R. P. Agarwal, D. O’Regan, R. Sakthivel
and the references cited therein.
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6. It would be really troublesome to quote here all relevant references concerning
the almost periodic traveling wave solutions and the almost automorphic travel-
ing wave solutions for various classes of nonlinear partial differential equations.
The reader may consult, e. g., [40, 113, 132, 276, 533, 713, 928–930, 1088] and the
references cited therein.

7. For recent results about higher-order differential operators onmetric graphs, gen-
eralized trigonometric polynomials and almost periodic functions, we refer the
reader to the papers [685] by P. Kurasov, J. Muller and [686] by P. Kurasov, R. Suhr.

8. The Bass and topological stable ranks for algebras of almost periodic functions on
the real line have recently been analyzed by R. Mortini, R. Rupp [794] and R. Mor-
tini, A. Sasane [795].

9. The order of magnitude of Fourier coefficients for almost periodic functions has
been investigated by A. Train, R. Jain and W. Carlson [980]; among many other
research studies concerning the Fourier analysis of almost periodic functions, we
can also recommend the article [502] by A. P. Guinand.

10. The nonlinear equations in some spaces of almost periodic functions have been
investigated by D. Bugajewski, X.-X. Ganb and P. Kasprzak in [230].

The notion of almost periodicity can be simply generalized to the case inwhich I = ℝn.
Suppose that F : ℝn → X is a continuous function. Then we say that F(⋅) is almost
periodic if and only if for each ϵ > 0 there exists l > 0 such that for each t0 ∈ ℝn there
exists τ ∈ B(t0, l) such that

F(t + τ) − F(t)
 ≤ ϵ, t ∈ ℝn. (6)

This is equivalent to saying that for any sequence (bn) inℝn there exists a subsequence
(an) of (bn) such that (F(⋅+an)) converges in Cb(ℝn : X). Any trigonometric polynomial
in ℝn is almost periodic and it is also well known that F(⋅) is almost periodic if and
only if there exists a sequence of trigonometric polynomials in ℝn which converges
uniformly to F(⋅); let us recall that a trigonometric polynomial in ℝn is any linear
combination of functions like t → ei⟨λ,t⟩, t ∈ ℝn, where λ ∈ ℝn and ⟨⋅, ⋅⟩ denotes the
usual inner product in ℝn. Using the above clarifications, we can simply prove that a
continuous function F : ℝn → X is almost periodic if and only if any of the following
equivalent conditions holds:
(i) for every j ∈ ℕn and ϵ > 0, there exists a finite real number l > 0 such that every

interval I ⊆ ℝ of length l contains a point τj ∈ I such that

F(t1, t2, . . . , tj + τj, . . . , tn) − F(t1, t2, . . . , tj, . . . , tn)
 ≤ ϵ, t = (t1, . . . , tn) ∈ ℝ

n; (7)

(ii) for every ϵ > 0, there exists a finite real number l > 0 such that, for every j ∈ ℕn
and for every interval I ⊆ ℝ of length l, there exists a point τj ∈ I such that (7)
holds;
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(iii) for every ϵ > 0, there exists a finite real number l > 0 such that every interval
I ⊆ ℝ of length l contains a point τ ∈ I such that, for every j ∈ ℕn, (7) holds with
the number τj replaced by the number τ therein.

Any almost periodic function F : ℝn → X is almost periodic with respect to each of the
variables but the converse statement is not true since the function (t1, t2) → cos(t1t2),
t1, t2 ∈ ℝ is almost periodic with respect to the both variables t1 and t2 but not almost
periodic with respect to (t1, t2); observe that, in (7), the inequality must be satisfied
for all t ∈ ℝn. Furthermore, for every almost periodic function F(⋅) and for every real
number ϵ > 0, there exists l > 0 such that for each t0 ∈ {(t, t, . . . , t) : t ∈ ℝ} there exists
τ ∈ B(t0, l) ∩ {(t, t, . . . , t) : t ∈ ℝ} such that (6) holds (see Subsection 6.1.2 for more
details). Any almost periodic function F(⋅) is bounded, the mean value

M(F) := lim
T→+∞ 1
(2T)n
∫

s+KT F(t) dt
exists and it does not depend on s ∈ ℝn; here, KT := {t = (t1, t2, . . . , tn) ∈ ℝn : |ti| ≤
T for 1 ≤ i ≤ n}. The Bohr–Fourier coefficient Fλ ∈ X is defined by

Fλ := M(e
−i⟨λ,⋅⟩F(⋅)), λ ∈ ℝn.

The Bohr spectrum of F(⋅), defined by

σ(F) := {λ ∈ ℝn : Fλ ̸= 0},

is at most a countable set.
The almost periodic functions of two real variables are also investigated by A. S.

Besicovitch in the classic monograph [166]. Here we would like to note that the re-
sults established in [166] can be straightforwardly generalized to the almost periodic
functions of several real variables. For example, if ti is a fixed variable from the set
{t1, . . . , tn}, then the function ti → F(t1, . . . , ti, . . . , tn), ti ∈ ℝ is almost periodic for every
fixed real numbers t1, . . . , ti−1, ti+1, . . . , tn so that the mean value

Mti {F(t1, . . . , tn)} := lim
Ti→+∞ 1

2Ti

Ti

∫−Ti F(t1, . . . , ti, . . . , tn) dti
exists. ConsideringMti {F(t1, . . . , tn)} as a function of the variables t1, . . . , ti−1, ti+1, . . . , tn,
it can be easily shown that it is almost periodic in ℝn−1. Therefore, we can calculate
the repeated mean value

(Mtj ∘Mti ){F(t1, . . . , tn)} := lim
Tj→+∞ 1

2Tj

Tj

∫−Tj Mti {F(t1, . . . , tn)} dtj
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for any fixed real numbers from the set {t1, . . . , tn} \ {ti, tj}. If we fix these numbers in
advance, we can apply [166, Corollary, p. 63] to the almost periodic function

Fij(ti, tj) := F(t1, . . . , ti, . . . , tj, . . . , tn), (ti, tj) ∈ ℝ
2,

in order to see that

(Mtj ∘Mti ){F(t1, . . . , tn)} ≡ (Mti ∘Mtj ){F(t1, . . . , tn)}.

Inductively, we easily see that, for every finite tuple of different variables (ti1 , . . . , til ),
where 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < il ≤ n, and for every permutation σ : {i1, . . . , il} → {i1, . . . , il},
we have

(Mti1
∘ ⋅ ⋅ ⋅ ∘Mtil

){F(t1, . . . , tn)} = (Mtσ(i1)
∘ ⋅ ⋅ ⋅ ∘Mtσ(il)

){F(t1, . . . , tn)}.

By AP(ℝn : X) and APΛ(ℝn : X) we denote respectively the Banach space con-
sisting of all almost periodic functions F : ℝn → X, equipped with the sup-norm,
and its subspace consisting of all almost periodic functions F : ℝn → X such that
σ(F) ⊆ Λ. As is well known, for every almost periodic function F ∈ APΛ(ℝn : X),
we can always find a sequence (Pk) of trigonometric polynomials in ℝn which uni-
formly converges to F(⋅) on ℝn and satisfies σ(Pk) ⊆ Λ for all k ∈ ℕ; see, e. g., [824,
Chapter 1, Section 2.3]. The Wiener algebra APW(ℝn : X) is defined as the set of all
almost periodic functions F : ℝn → X whose Fourier series converges absolutely;
APWΛ(ℝ

n : X) ≡ APW(ℝn : X) ∩ APΛ(ℝn : X). It is well known that the Wiener algebra
is aBanachalgebrawith respect to theWienernorm ‖F‖ := ∑λ∈ℝn |Fλ|,F ∈ APW(ℝn : X)
as well as that APW(ℝn : X) is dense in AP(ℝn : X).

We are obliged to say that the theory of almost periodic functions of several real
variables has not attracted somuch attention of the authors comparedwith the theory
of almost periodic functions of one real variable bynow. In support of our investigation
of the multi-dimensional almost periodicity, we would like to present the following
indicative examples.

Example 1. Suppose that a closed linear operator A generates a strongly continuous
semigroup (T(t))t≥0 on a Banach space X whose elements are certain complex-valued
functions defined on ℝn. Then it is well known that, under certain assumptions, the
function

u(t, x) = (T(t)u0)(x) +
t

∫
0

[T(t − s)f (s)](x) ds, t ≥ 0, x ∈ ℝn, (8)

is a unique classical solution of the abstract Cauchy problem

ut(t, x) = Au(t, x) + F(t, x), t ≥ 0, x ∈ ℝn; u(0, x) = u0(x),
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where F(t, x) := [f (t)](x), t ≥ 0, x ∈ ℝn. In many concrete situations (for example,
this holds for the Gaussian semigroup on ℝn; see [82, Example 3.7.6] and the results
obtained by M.U. Mazumder in his doctoral dissertation [758]), there exists a kernel
(t, y) → E(t, y), t > 0, y ∈ ℝn which is integrable on any set [0,T] × ℝn (T > 0) and
satisfies

[T(t)f (s)](x) = ∫
ℝn

F(s, x − y)E(t, y) dy, t > 0, s ≥ 0, x ∈ ℝn.

If this is the case, let us fix a positive real number t0 > 0. Regarding the inhomoge-
neous part in Eq. (8), we would like to note that the almost periodic behavior of the
function

x → ut0 (x) ≡
t0

∫
0

[T(t0 − s)f (s)](x) ds, x ∈ ℝn

depends on the almost periodic behavior of the function F(t, x) in the space variable
x. Themost intriguing case is that in which the function F(t, x) is Bohr almost periodic
with respect to the variable x ∈ ℝn, uniformly in the variable t on compact subsets of
[0,∞). Then the function ut0 (⋅) is likewise Bohr almost periodic, which follows from
the estimate

ut0 (x + τ) − ut0 (x)
 ≤

t0

∫
0

∫
ℝn

F(s, x + τ − y) − F(s, x − y)
 ⋅
E(t0, y)

 dy ds

≤ ϵ
t0

∫
0

∫
ℝn

E(t0, y)
 dy ds

and corresponding definitions.

Example 2. In this example, we perceive an interesting feature of the famous d’Alem-
bert formula, which has been used in [1067, Example 5] in a slightly different context
(for almost periodic functions of one real variable). Leta > 0; then it iswell known that
the regular solution of the wave equation utt = a2uxx in domain {(x, t) : x ∈ ℝ, t > 0},
equipped with the initial conditions u(x,0) = f (x) ∈ C2(ℝ) and ut(x,0) = g(x) ∈ C1(ℝ),
is given by the d’Alembert formula

u(x, t) = 1
2
[f (x − at) + f (x + at)] + 1

2a

x+at
∫

x−at g(s) ds, x ∈ ℝ, t > 0.

Let us suppose that the functions f (⋅) and g[1](⋅) ≡ ∫⋅0 g(s) ds are almost periodic. Then
the solution u(x, t) can be extended to the whole real line in the time variable and it is
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almost periodic in (x, t) ∈ ℝ2. To verify this, fix a positive real number ϵ > 0. Then there
exists a finite real number l > 0 such that any subinterval I of ℝ of length l contains a
point τ ∈ I such that

|f (x + τ) − f (x)| + |g[1](x + τ) − g[1](x)| < ϵ, x ∈ ℝ. (9)

Furthermore, we have (x, t, τ1, τ2 ∈ ℝ)

u(x + τ1, t + τ2) − u(x, t)


≤
1
2
f ((x − at) + (τ1 − aτ2)) − f (x − at)



+
1
2
f ((x + at) + (τ1 + aτ2)) − f ([x + at + (τ1 + aτ2)] − (τ1 + aτ2))



+
1
2a
g
[1]((x − at) + (τ1 − aτ2)) − g[1](x − at)

+
1
2a
g
[1]((x + at) − (τ1 − aτ2)) − g[1](x + at). (10)

Let (t1, t2) ∈ ℝ2. Then the interval [−t1−at2−(l/2),−t1−at2+(l/2)] contains a point τ′ and
the interval [t1−at2−(l/2), t1−at2+(l/2)] contains a point τ′′ such that Eq. (9) holdswith
the number τ replaced therein with any of the numbers τ′, τ′′. Setting τ1 := (τ′′ − τ′)/2
and τ2 := (−τ1 − τ2)/2a, it follows that |τ1 − t1| ≤ l/2 and |τ2 − t2| ≤ l/2a, so that the final
conclusion simply follows from the corresponding definition and (10).

Now we will remind the reader of several important investigations of multi-
dimensional almost periodic functions carried out so far:
1. Problems of Nehari type and contractive extension problems for matrix-valued

(Wiener) almost periodic functions of several real variables have been considered
by L. Rodman, I.M. Spitkovsky and H. J. Woerdeman in [875], where the authors
proved a generalization of the famous Sarason’s theorem [900]. In their analysis,
the notion of a halfspace inℝn plays an important role: a non-empty subset S ⊆ ℝn

is said to be a halfspace if and only if the following four conditions hold:
(i) ℝn = S ∪ (−S);
(ii) {0} = S ∩ (−S);
(iii) S + S ⊆ S;
(iv) α ⋅ S ⊆ S for α ≥ 0.
For any halfspace S we can always find a linear bijective mapping D : ℝn → ℝn

such that S = DEn, where En is a very special halfspace defined on [873, p. 3190].
In [873, Theorem 1.3], L. Rodman and I.M. Spitkovsky have proved that, if S is a
halfspace and Λ ⊆ S, 0 ∈ Λ and Λ + Λ ⊆ Λ, then APΛ(ℝn : ℂ) and APWΛ(ℝ

n : ℂ)
are Hermitian rings.

2. Let us recall that a subset Λ of ℝn is called discrete if and only if any point λ ∈
Λ is isolated in Λ. By 𝒱Λ we denote the vector space of all finite complex-valued
trigonometric polynomials ∑λ∈Λ c(λ)e−πiλ⋅ whose frequencies λ belong to Λ. The
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space of mean-periodic functions with the spectrum Λ, denoted by 𝒞Λ, is defined
as the closure of the space 𝒱Λ in the Fréchet space C(ℝn). Clearly, APΛ(ℝn : ℂ) is
contained in 𝒞Λ but the converse statement is not true, in general. The problem of
describing structure of closed discrete sets Λ for which the equality APΛ(ℝn : ℂ) =
𝒞Λ holds was proposed by J.-P. Kahane in 1957 [574]. For more details about this
interesting problem, we refer the reader to the survey article [765] by Y. Meyer; for
more details about mean-periodic functions, see also the lectures by J.-P. Kahane
[575].

3. In 1971, B. Basit [120] observed that there exists a complex-valued almost periodic
function f : ℝ2 → ℂ such that the function F : ℝ2 → ℂ, defined by F(x, y) :=
∫
x
0 f (t, y) dt, (x, y) ∈ ℝ

2, is bounded but not almost periodic. This result was re-
cently reconsidered by S.M. A. Alsulami in [47, Theorem 2.2], who proved that
for a complex-valued almost periodic function f : ℝ2 → ℂ, the boundedness
of the function F(⋅) in the whole plane implies its almost periodicity, provided
that there exists a complex-valued almost periodic function g : ℝ2 → ℂ such
that fx(x, y) = gy(x, y) is a continuous function in the whole plane. This result was
proved with the help of an old result of L. H. Loomis [731] which states that, for
a bounded complex-valued function f : ℝn → ℂ, the almost periodicity of all its
partial derivatives of the first order implies the almost periodicity of f (⋅) itself (see
also the article [320] by G. Crombez for related results on arbitrary locally compact
Hausdorff groups). Let us observe that the above-mentioned result of S.M. A. Al-
sulami can be straightforwardly extended, with the same proof, to the almost pe-
riodic functions f : ℝn → ℂ; in actual fact, if the function f : ℝn → ℂ is almost
periodic, the function F(x1, x2, . . . , xn) := ∫

x1
0 f (t, x2, . . . , xn) dt, (x1, x2, . . . , xn) ∈ ℝn

is bounded and there exist almost periodic functions Gi : ℝ
n → ℂ such that

Fxi (x1, x2, . . . , xn) = (Gi)x1 (x1, x2, . . . , xn) is a continuous function onℝ
n, for 2 ≤ i ≤ n,

then the function F : ℝn → ℂ is almost periodic.
4. In [597–601], Yu. Kh. Khasanov has investigated the approximations of uniformly

almost periodic functions of two variables by partial sums of Fourier sums and
Marcinkiewicz sums in the uniform metric, provided certain conditions (see also
the recent paper [609] by J.-G. Kim). For previous work as regards the summa-
bility of double Fourier series, we also refer the reader to the papers [749] by
I. Marcinkewisz and [1100] by L. V. Zhizhiashvily.

5. In [688, 689],M. A. Latif andM. I. Bhatti have investigated several important ques-
tions concerning almost periodic functions defined on ℝn with values in locally
convex spaces and fuzzynumber type spaces (see also the articles [137] byB. Bede,
S. G. Gal, [827] by Y. L. Park, I. H. Jung, M. J. Lee, [926] by S. Shen, Y. Li and the
monograph [493] by G.M. N’Guérékata); almost periodic functions defined onℝn

with values in p-Fréchet spaces, where 0 < p < 1, have been investigated in [497]
by G.M. N’Guérékata, M. A. Latif and M. I. Bhatti.

Concerning applications made so far, we recall the following:
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1. The problem of the existence of almost periodic solutions for the system of linear
partial differential equations

n
∑
j=1 Lijuj = fi, 1 ≤ i ≤ n,

onℝm, where Lij is an arbitrary linear partial differential operator onℝm, has been
analyzedbyG. R. Sell [915, 916]. Hehas extended the results obtained in the article
[941] by Y. Sibuya, where the author has analyzed the almost periodic solutions
of Poisson’s equation. Sibuya’s results have been also improved, in another di-
rection, in the recent article [800] by È. Muhamadiev and M. Nazarov, where the
authors have relaxed the assumption of the usual boundedness into boundedness
in the sense of distributions.

2. The almost periodic solutions of the (semilinear) systems of ordinary differen-
tial equations have been analyzed in [442, Chapter 8] with the help of fixed point
theorems. Furthermore, Liu Bao-Ping and C. V. Pao have investigated the almost
periodic wave plane solutions of certain classes of coupled nonlinear reaction-
diffusion equations [718]; in their approach, a solution u(t, x) of such a system,
where t ∈ ℝ and x ∈ ℝn, is almost periodic in ℝn+1 and satisfies the requirement
that u(t, x) is almost periodic in the time variable t ∈ ℝ andperiodic in each spatial
variable (see [718, Theorem 2]).

3. In his doctoral dissertation [46], S.M. A. Alsulami has considered the question
whether the boundedness of solutions of the system of partial first-order differen-
tial equations

us(s, t) = Au(s, t) + f1(s, t), ut(s, t) = Bu(s, t) + f2(s, t); (s, t) ∈ ℝ
2, (11)

implies the almost periodicity of solutions to (11). He has analyzed this question in
the finite-dimensional setting and the infinite-dimensional setting, by using two
different techniques; in both cases, A and B are bounded linear operators acting
on the pivot space X.

4. In [952–954], G. Spradlin has provided several interesting results and applications
regarding almost periodic functions of several real variables. The existence of pos-
itive homoclinic-type solutions of the equation

−Δu + u = H(t)f (u),

where H(⋅) is almost periodic and the first integral of f (⋅) satisfies certain su-
perquadraticity and critical growth conditions, has been analyzed in [954, Theo-
rem 1.2]. The equations of type

−ϵ2Δu + H(t)u = f (u), (12)
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arise in the study of the nonlinear Schrödinger equations (ϵ > 0). A qualitative
analysis of solutions of (12) has been carried out in [953], provided the almost pe-
riodicity of the function H(⋅) and several other non-trivial assumptions.

5. The existence and uniqueness of almost periodic solutions for a class of boundary
value problems for hyperbolic equations have been investigated by B. I. Ptashnic
and P. I. Shtabalyuk in [860] (cf. also the sixth chapter in the monograph [859] by
B. I. Ptashnic). In the region Dp = (0,T) × ℝp (T > 0, p ∈ ℕ), the authors have
analyzed the well-posedness of the following initial value problem:

Lu ≡
n
∑
s=0 ∑|α|=2s aα 𝜕2nu(t, x)

𝜕t2n−2s𝜕xα11 ⋅ ⋅ ⋅ 𝜕xαpp = 0, (13)

𝜕j−1u
𝜕tj−1 t=0 = φj(x),

𝜕j−1u
𝜕tj−1 t=T = φj+n(x) (1 ≤ j ≤ n). (14)

The basic assumption employed in [860] is that Eq. (13) is Petrovsky hyperbolic,
i. e., that for each μ = (μ1, μ2, . . . , μp) ∈ ℝp all λ-zeros of the equation

n
∑
s=0 ∑|α|=2s aαλ2n−2sμα11 μα22 ⋅ ⋅ ⋅ μαpp = 0

are real. The basic function space used is the Banach space CqB(Dp) consisting of
all q-times continuously differentiable functions u(t, x) in Dp that are Bohr almost
periodic in variables x1, x2, . . . , xp, uniformly in t ∈ [0,T], equipped with the norm

‖u‖CqB(Dp) := sup
0≤|s|≤q sup(t,x)∈Dp

𝜕|s|u(t, x)
𝜕ts0𝜕xs11 ⋅ ⋅ ⋅ 𝜕x

sp
p
;

by CqB(ℝ
p) the authors have designated the subspace of CqB(Dp) consisting of those

functionswhich do not depend on the variable t. The existence and uniqueness of
solutions of the initial value problem (13)–(14) have been investigated in the space
C2nB (Dp), under the assumption that φj(x) ∈ CrB(ℝ

p) and r ∈ ℕ is sufficiently large.
IfMp = {μk : k ∈ ℤp} is the union of spectrum of all functionsφ1(x), . . . ,φ2n(x), the
solutions u(t, x) of problem (13)–(14) have been found in the form

u(t, x) = ∑
k∈ℤp uk(t)ei⟨μk ,x⟩, μk ∈ Mp,

where the functions uk(t) satisfy certain conditions and have the form [860, (8),
p. 670]. The uniqueness of solutions of problem (13)–(14) has been considered
in [860, Theorem 1], while the existence of solutions of problem (13)–(14) has
been considered in [860, Theorem 2] (see also the research articles [932, 933] by
P. I. Shtabalyuk).
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Suppose now that ω ∈ ℝp \ {0} and C ∈ ℝ. We want to observe here that the
assumption φj ∈ APΛ(ℝn : ℂ) for all j ∈ ℕ2n, where

Λ := {(x1, . . . , xp) ∈ ℝ
p; x1ω1 + ⋅ ⋅ ⋅ + xpωp = C},

implies that the solutionu(t, x)of problem (13)–(14) is (ω, eiC)-periodic in the space
variable x; see Section 7.2 for the notion. This follows from the computation (t ∈
(0,T), x ∈ ℝp)

u(t, x + ω) = ∑
k∈ℤp uk(t)ei⟨μk ,x+ω⟩ = ∑k∈ℤp uk(t)ei⟨μk ,x⟩ei⟨μk ,ω⟩

= eiC ∑
k∈ℤp uk(t)ei⟨μk ,x⟩ = cu(t, x).

6. The class of vector-valued remotely almost periodic functions defined on ℝn was
introduced by F. Yang and C. Zhang in [1054] (2011). In the same paper, the au-
thors have provided several applications in the study of the existence and unique-
ness of remotely almost periodic solutions for parabolic boundary value prob-
lems. A bounded continuous function F : ℝn → X is said to be remotely almost
periodic if and only if for each ϵ > 0 the set of all vectors τ ∈ ℝn for which

lim sup|t|→+∞ |F(t + τ) − F(t)| < ϵ
is relatively dense in ℝn (the vector τ is called a remotely ϵ-translation vector of
F(⋅)); furthermore, if 0 ̸= Ω ⊆ ℝm, then abounded continuous continuous function
F : ℝn × Ω → X is said to be remotely almost periodic in t ∈ ℝn and uniform
on compact subsets of Ω if and only if F(⋅, y) is remotely almost periodic for each
y ∈ Ω and is uniformly continuous on ℝn × K for any compact subset K ⊆ Ω. The
following statements hold in the scalar-valued case (see, e. g., [1054, Proposition
2.1–Proposition 2.3]):
(i) If F(⋅), resp. F(⋅; ⋅), is remotely almost periodic and the function 𝜕F/𝜕ti(⋅),

resp. 𝜕F/𝜕ti(⋅; ⋅), is uniformly continuous on ℝn, then the function 𝜕F/𝜕ti,
resp. 𝜕F/𝜕ti(⋅; ⋅), is remotely almost periodic, as well (1 ≤ i ≤ n);

(ii) if the functions F1(⋅), . . . , Fk(⋅) are remotely almost periodic (k ∈ ℕ), then for
each ϵ > 0 the set of their common ϵ-translation vectors is relatively dense in
ℝn;

(iii) if the functions H1(⋅), . . . ,Hk(⋅) are remotely almost periodic (k ∈ ℕ) and
(H1(t), . . . ,Hk(t)) ∈ Ω for all t ∈ ℝ, then for every remotely almost periodic
function F : ℝ × Ω→ ℂ we see that the function

t → F(H1(t), . . . ,Hk(t), t), t ∈ ℝ

is remotely almost periodic.
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In [1054, Proposition 2.4–Proposition 2.6], the authors have examined the existence
and uniqueness of remotely almost periodic solutions of multi-dimensional heat
equations, while the main results of the third section of this paper are concerned
with the existence and uniqueness of remotely almost periodic type solutions of the
certain types of parabolic boundary value problems (see also [1053] and [1055], where
the authors have investigated almost periodic type solutions and slowly oscillating
type solutions for various classes of parabolic Cauchy inverse problems). Regarding
applications of remotely almost periodic functions, mention should be made of the
research articles [1085] by S. Zhang and D. Piao, where the authors have investigated
the time remotely almost periodic viscosity solutions of Hamilton–Jacobi equations,
and [1081] by C. Zhang and L. Jiang, where the authors have investigated remotely al-
most periodic solutions for a class of systems of differential equations with piecewise
constant argument. Some results about remotely almost periodic solutions of ordi-
nary differential equations will be given in Chapter 5; for more details about slowly
oscillating type functions and remotely c-almost periodic type functions inℝn, where
c ∈ ℂ \ {0}, see Chapter 9.

Furthermore, let us recall that H. Bart and S. Goldberg have proved in [119] that,
for every function f ∈ AP([0,∞) : X), there exists a unique almost periodic func-
tion 𝔼f : ℝ → X such that 𝔼f (t) = f (t) for all t ≥ 0 (see also the paper [427] by S.
Favarov and O. Udodova, where the authors have investigated the extensions of al-
most periodic functions defined on ℝn to the tube domains in ℂn, and the paper [157]
by J. F. Berglund, where the author has investigated the extensions of almost periodic
functions in topological groups and semigroups). We will investigate the extensions
of multi-dimensional almost periodic functions in Theorem 6.1.37 and Corollary 6.1.38
(cf. also Remark 4.2.98) following themethod proposed byW.M. Ruess andW.H. Sum-
mers in [881].

The boundedness and almost periodicity in time for certain classes of evo-
lution variational inequalities, positive boundary value problems for symmetric
hyperbolic systems and nonlinear Schrödinger equations have been investigated
in the third chapter and the fourth chapter of the important research monograph
[824] by A. A. Pankov (for almost periodic properties of Schrödinger equations and
Schrödinger type operators, see [95, 96, 98, 325, 326, 346, 347, 383, 828, 886] and
the research monograph [580] by Y.Karpeshina). Spatially Besicovitch almost peri-
odic solutions for certain classes of nonlinear second-order elliptic equations, first-
order hyperbolic systems, single higher-order hyperbolic equations and nonlinear
Schrödinger equations have been investigated in the fifth chapter of this monograph.

It is worth mentioning that G. Spradlin constructed, in [952], an almost periodic
infinitely differentiable almost periodic function G : ℝn → ℝ with no local minimum
(it can be simply shown that this situation cannot occur in the one-dimensional case
because any almost periodic function g : ℝ → ℝ must have infinitely many local
minima); this important peculiarity of almost periodic functions of several real vari-
ables was perceived 25 years ago. The construction of an almost periodic function

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



Introduction | XLI

G : ℝn → ℝ with no local minimum, established in [952], is very complicated and
the proof of the main result of this paper, [952, Theorem 1.0], contains almost eight
pages including some preliminaries. It can be easily proved, by observing that the
function G(x, y) is strictly positive, that the function (x, y) → H(x, y) ≡ ∫x0 G(t, y) dt is
bounded and not almost periodic in the plane. As alreadymentioned, the existence of
a complex-valued almost periodic function H(x, y)with these properties was clarified
by B. Basit (1971) with a piece of very obscure evidence, not including the smoothness
of G(x, y) or its non-negativity.

At the end of manuscript [952], G. Spradlin asked the following questions:
1. The almost periodic function F : ℝ2 → ℝ constructed in the proof of [952, Theo-

rem 1.0] has an absolute maximum at the point (0,0). Does there exist an almost
periodic function F : ℝn → ℝ with no local minimum or maximum?

2. Does there exist a real analytic almost periodic function F : ℝn → ℝwith no local
minimum or maximum?

3. Is it true that a continuously differentiable almost periodic function F : ℝn → ℝ
have a critical point?

4. Does there exist a quasi-periodic function F : ℝn → ℝ with no local minimum
(local minimum or maximum)?

To the best of the author’s knowledge, these questions are still open. Concerning al-
most periodic functions of several real variables, we also refer the reader to the re-
search monographs [309] by C. Corduneanu, [442] by A.M. Fink, [874] by L. Rodman,
I.M. Spitkovsky, H. J. Woerdeman, [1067] by S. Zaidman and the research article [936]
by M.A. Shubin. The reader also may consult the paper [187] by S. Bochner, which
concerns the extensions of the Riesz theorem to the analytic functions of several real
variables and the almost periodic functions of several real variables.

In this research monograph, we present several recent results concerning vari-
ous generalizations of almost periodic functions. The organization and main ideas of
the monograph, which consists of the introductory chapter and two parts, can be de-
scribed as follows. The first chapter is devoted to the recapitulation of basic concepts
wewill need later on.We reconsider linear andmultivalued linear operators in Banach
spaces, integration and strongly continuous semigroups in Banach spaces as well as
the basic definitions and results from fractional calculus and the theory of abstract
degenerate Volterra integro-differential equations. After introducing these basic con-
cepts, in Subsection 1.1.1 we recall the main definitions and results about Lebesgue
spaces with variable exponents Lp(x).

Part I consists of four chapters (Chapter 2–Chapter 5). Chapter 2 is divided into four
sections; Section 2.1, Section 2.2 and Section 2.3 are of introductory character and we
recollect there the basic definitions and results about almost periodic functions and
almost automorphic functions. Stepanov μ-pseudo-almost periodic functions and re-
lated applications are analyzed in Subsection 2.2.1 (this is a major part of our recent
joint research study [585] with K. Khalil andM. Pinto), composition principles forWeyl
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almost periodic functions are analyzed in Subsection 2.2.2, Proposition 2.3.1 and the
conclusion clarified in Example 2.3.6 are the only new contributions of ours given in
these sections. The main aims of Section 2.4, which considers uniformly recurrent
functions and ⊙g-almost periodic functions, will be explained within itself.

Various classes of generalized almost periodic functions in the Lebesgue spaces
with variable exponents have been analyzed in Chapter 3, which is broken down into
Section 3, Section 3.2 and Section 3.3. Section 3 consists of seven subsections. In our
joint papers with T. Diagana [372, 373], we have recently introduced and analyzed
several important classes of (asymptotically) Stepanov almost periodic functions and
(asymptotically) Stepanov almost automorphic functions in the Lebesgue spaces with
variable exponents (see also the earlier papers [375, 376] by T. Diagana andM. Zitane).
The material of Subsection 3.1.1, Subsection 3.1.2 and Subsection 3.1.3 is taken from
[372].

The classes introduced by H. Weyl [1025] and A. S. Kovanko [669] are enormously
large compared with the class of Stepanov almost periodic functions; the main pur-
pose of papers [638] and [647] has been to initiate the study of generalized (asymp-
totical) almost periodicity that intermediates Stepanov and Weyl concept. In these
papers, we have introduced the class of Stepanov p-quasi-asymptotically almost
periodic functions and proved that this class contains all asymptotically Stepanov
p-almost periodic functions and makes a subclass of the class consisting of all Weyl
p-almost periodic functions (p ∈ [1,∞)), taken in the sense of Kovanko’s approach
[669].

Themain aimof Subsection 3.1.4–Subsection 3.1.7 is to continue the research stud-
ies raised in [435] and [645–647] by investigating several various classes of asymp-
totically Weyl almost periodic functions in Lebesgue spaces with variable exponents
Lp(x). The first important novelty is that we analyze here, for the first time, the class
of (equi-)Weyl p-almost periodic functions from the point of view of the theory of
Lebesgue spaces with variable exponent Lp(x). The second important novelty can be
briefly explainedas follows: in the case that the functionsϕ(x) andF(l, t) satisfyϕ(x) ̸=
x or F(l, t) ̸= l(−1)/p, the (p,ϕ, F)-classes of Weyl almost periodic functions and the
[p,ϕ, F]-classes of Weyl almost periodic functions, introduced and systematically an-
alyzed in Section 3.1.4, seem to be not considered elsewhere in the existing literature
even in the case that the function p(x) has a constant value p ≥ 1. The motivation for
introduction of these classes of Weyl almost periodic functions comes from the fact
that the gap between the Stepanov almost periodicity and theWeyl almost periodicity
is enormously large, as mentioned above: we have actually tried to further profile and
contour the class of (equi-)Weyl almost periodic functions here. For example, it is well
known that the characteristic function of the interval [0, 1/2] is equi-Weyl p-almost
periodic for any p ∈ [1,∞) but not Stepanov almost periodic (see Example 3.1.34 be-
low for more details); we obtain here the better results about the equi-Weyl almost
periodicity of this function by showing that this function is equi-Weyl (p, x,ψ)-almost
periodic for any function ψ : (0,∞) → (0,∞) such that liml→+∞ ψ(l) = +∞ as well
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as that this function is equi-Weyl (p, x, lσ)-almost periodic if and only if σ ̸= 0. Besides
the above-mentioned novelties, and compared with many other research results es-
tablished in the previous papers, we would like to mention here only one more major
novelty with regards to our new way of approaching the problem of the invariance of
the (equi-)Weyl p-almost periodicity under the actions of infinite convolution product
(see, e. g., Theorem 3.1.46).

In Definition 3.1.23–Definition 3.1.25, we introduce the classes of (equi-)Weyl
(p,ϕ, F)-almost periodic functions and (equi-)Weyl (p,ϕ, F)i-almost periodic func-
tions, where i = 1, 2. The main aim of Proposition 3.1.27 is to clarify some inclusions
between these spaces provided that the functionϕ(⋅) is convex and satisfies certain ex-
tra conditions. In order to ensure the translation invariance of generalizedWeyl almost
periodic functions with variable exponent, in Definition 3.1.29–Definition 3.1.31 we in-
troduce the classes of (equi-)Weyl [p,ϕ, F]-almost periodic functions and (equi-)Weyl
[p,ϕ, F]i-almost periodic functions, where i = 1, 2. Several useful comments about
these spaces have been provided in Remark 3.1.32. In Example 3.1.34–Example 3.1.35,
we focus our attention on the following special case: p(x) ≡ p ∈ [1,∞), ϕ(x) = x and
F(l, t) = l(−1)/pσ, σ ∈ ℝ, which is the most important for the investigations of gener-
alized almost periodicity which stands between the Stepanov and Weyl concepts. In
Subsection 3.1.5, we introduce and analyze various types of Weyl ergodic components
with variable exponent and asymptotically Weyl almost periodic functions with vari-
able exponent. The introduced classes of generalized (asymptotically) Weyl almost
periodic functions are new even in the case that the function p(x) has a constant value
p ≥ 1 and ϕ(x) ̸= x or F(l, t) ̸= l(−1)/p(t). From the application point of view, Subsec-
tion 3.1.6 is very important because we examine there the invariance of generalized
Weyl almost periodicity with variable exponent under the action of convolution prod-
ucts and the convolution invariance of Weyl almost periodic functions with variable
exponent. In order to do that, we basically follow the method proposed in the proof
of Theorem 3.1.46. In Subsection 3.1.7, we face the situation in which the exponent
p(x) ≡ p ∈ [1,∞) is constant and the solution operator family (R(t))t>0 ⊆ L(X,Y)
has a certain growth order around the points zero and plus infinity, providing also
some illustrative applications in the qualitative analysis of solutions to the abstract
degenerate fractional differential equationswithWeyl–Liouville derivatives or Caputo
derivatives. The material of these subsections is taken from [649].

Section 3.2 is broken down into three subsections. In Subsection 3.2.1, we ana-
lyze Stepanov uniformly recurrent functions in the Lebesgue spaces with variable ex-
ponents. Doss almost periodic functions and Doss uniformly recurrent functions in
Lebesgue spaces with variable exponents are investigated in Subsection 3.2.2, while
the invariance of generalized Doss almost periodicity with variable exponent under
the actions of convolution products is investigated in Subsection 3.2.3.

Section 3.3 is broken down into six subsections. Subsection 3.3.1 introduces the
notion of several different types of generalized (equi-)Weyl almost periodicity in
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Lebesgue spaces with variable exponents. The spaces introduced in Definition 3.3.1–
Definition 3.3.3 may not be translation invariant, in general, which is not the case
with the spaces introduced in Definition 3.3.5–Definition 3.3.7. The main aim of
Subsection 3.3.1 is to explain without proofs how the structural results and char-
acterizations established for generalized (equi-)Weyl almost periodic functions in
[649] can be straightforwardly extended for the corresponding classes of generalized
(equi-)Weyl uniformly recurrent functions. In Definition 3.3.8, we introduce the class
of quasi-asymptotically uniformly recurrent functions (it is worth noting that some
classes of generalized Stepanov and Weyl p(x)-almost periodic type functions and
p(x)-uniformly recurrent type functions have not been considered elsewhere even for
the constant coefficients p(x) ≡ p ∈ [1,∞)). Proposition 3.3.9 shows that any asymp-
totically uniformly recurrent function is quasi-asymptotically uniformly recurrent;
the converse statement is generally false, as a class of very simple counterexam-
ples shows. In Proposition 3.3.10, we prove that the sum of a quasi-asymptotically
uniformly recurrent function and a continuous function vanishing at infinity is
again quasi-asymptotically uniformly recurrent. In Theorem 3.3.14, we revisit [647,
Theorem 2.5] once more and examine some extra conditions under which a quasi-
asymptotically uniformly recurrent function is (asymptotically) uniformly recurrent.
Subsection 3.3.3 introduces and investigates several different classes of Stepanov
quasi-asymptotically uniformly recurrent type functions in the Lebesgue spaces with
variable exponents. The notion introduced in this subsection, in which we reconsider
and slightly improve several known results from [647] in our new framework, is new
even for the constant coefficients p(x) ≡ p ∈ [1,∞), and can be used to intermediate
the concepts of the quasi-asymptotical almost periodicity (quasi-asymptotical uni-
form recurrence, S-asymptotical ω-periodicity) and its Stepanov generalizations with
constant exponents. In Proposition 3.3.23, we reconsider the assertion of [372, Propo-
sition 4.5] for the Stepanov quasi-asymptotically uniformly recurrent functions (see
also Corollary 3.3.24 and Proposition 3.3.25). Any Stepanov p-quasi-asymptotically
almost periodic function is Weyl p-almost periodic, and clearly, any (quasi-)asymp-
totically almost periodic function is Stepanov p-quasi-asymptotically almost periodic
for any finite exponent p ≥ 1 (see [647, Proposition 2.12]); as observed here, the same
holds for the related concepts of quasi-asymptotical uniform recurrence. The main
objective in Proposition 3.3.26 is to state and prove a general result in this direction.
In Subsection 3.3.4, we clarify the main composition principles for the class of quasi-
asymptotically uniformly recurrent functions. Our main contributions are given in
Subsection 3.3.5, where we examine the invariance of generalized quasi-asymptotical
uniform recurrence with variable exponents under the actions of convolution prod-
ucts. Some applications to the abstract Volterra integro-differential equations are
presented in Subsection 3.3.6. Thematerial of Section 3.2 and Section 3.3 is taken from
our recent papers obtained in a coauthorship with W.-S. Du [657, 658].

The definitions and basic properties of (ω, c)-periodic and (ω, c)-pseudo periodic
functions were introduced and analyzed by E. Alvarez, A. Gómez and M. Pinto in [48,
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49],motivated by some known results regarding the qualitative properties of solutions
to Mathieu’s linear differential equation

y′′(t) + [a − 2q cos 2t]y(t) = 0,
arising in modeling of railroad rails and seasonally forced population dynamics
(ω > 0, c ∈ ℂ \ {0}); see also [11, 12]. The linear delayed equations can have
(ω, c)-periodic solutions, as well (see, e. g., [49, Example 2.5]). The notions of anti-
periodicity andBlochperiodicity are special cases of thenotionof an (ω, c)-periodicity.

The authors of [49] have analyzed the existence and uniqueness of mild (ω, c)-
periodic solutions to the abstract semilinear integro-differential equation (1). Further-
more, E. Alvarez, S. Castillo and M. Pinto have analyzed in [48] the existence and
uniqueness of mild (ω, c)-pseudo periodic solutions to the abstract semilinear differ-
ential equation of the first order:

u′(t) = Au(t) + f (t, u(t)), t ∈ ℝ,

where A generates a strongly continuous semigroup. The authors have proved the ex-
istence of positive (ω, c)-pseudo periodic solutions to the Lasota-Wazewska equation
with (ω, c)-pseudo periodic coefficients

y′(t) = −δy(t) + h(t)e−a(t)y(t−τ), t ≥ 0.

This equation describes the survival of red blood cells in the blood of an animal (see,
e. g., M. Wazewska-Czyzewska and A. Lasota [1024]). Concerning the applications to
time-varying impulsive differential equations, mention should be made of the arti-
cle [1019] by J. R. Wang, L. Ren and Y. Zhou; cf. also the article [19] by M. Agaoglou,
M. Fečkan, A. P. Panagiotidou, the article [782] by G. Mophou, G.M. N’Guérékata and
the article [700] by M. Li, J. R. Wang and M. Fečkan.

Chapter 4 consists of Section 4.1 and Section 4.2. In Section 4.1, we analyze vari-
ous types of (ω, c)-almost periodic functions, (ω, c)-uniformly recurrent functions and
(compactly) (ω, c)-almost automorphic functions. The classes of (ω, c)-uniformly re-
current functions of type i and (ω, c)-almost periodic functions of type i (i = 1, 2) are
introduced and analyzed in Subsection 4.1.1. Composition principles for (ω, c)-almost
periodic type functions are analyzed in Subsection 4.1.2. The classes of (ω, c)-pseudo-
almost periodic functions, (ω, c)-pseudo-almost automorphic functions and related
applications are studied in Subsection 4.1.4. Subsection 4.1.5 introduces and investi-
gates (ω, c)-almost periodicity (resp. asymptotic (ω, c)-almost periodicity) in the set-
ting of Schwartz–Sobolev distributions (for simplicity, we will consider only scalar-
valued distributions because the extensions to the vector-valued case are straightfor-
ward); in the next subsection, we apply our abstract theoretical results in the study
of the existence of distributional (ω, c)-almost periodic solutions of linear differential
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systems. In [857, Chapter II], J. Prüss has analyzed abstract non-scalar Volterra equa-
tions. Applications have been given in the analysis of viscoelastic Timoshenko beam
model, Midlin–Timoshenko plate model and viscoelastic Kirchhoff plate model, with
the correspondingmaterials beingnon-synchronous, aswell as in the analysis of some
problems of linear thermoviscoelasticity and electrodynamics. In Subsection 4.1.7, we
initiate the study of asymptotically (ω, c)-almost periodic type solutions of abstract
degenerate non-scalar Volterra equations.

The organization and main ideas of Section 4.2, comprising seven subsections, is
given as follows. The notion of c-almost periodicity and the notion of c-uniform re-
currence, where c ∈ ℂ \ {0}, are introduced in Definition 4.2.2 and Definition 4.2.4,
respectively (in the case c = 1, we recover the usual notions of almost periodicity and
uniform recurrence, while in the case c = −1, we recover the usual notions of almost
anti-periodicity and uniform anti-recurrence); the main idea is the use of difference
f (⋅+τ)−cf (⋅) in place of the usually considered difference f (⋅+τ)−f (⋅). After that, inDef-
inition 4.2.5 and Proposition 4.2.6, we introduce the notion of semi-c-periodicity and
prove some necessary and sufficient conditions for a continuous function f : I → X to
be semi-c-periodic. Proposition 4.2.11 is crucially important in our analysis because it
states that there does not exist a c-uniformly recurrent function f : I → X if |c| ̸= 1.
The invariance of c-almost type periodicity under the actions of convolution products
is also analyzed here. The composition theorems for c-almost periodic type functions
are analyzed in Subsection 4.2.1 (the structural results in this subsection are given
without proofs, which can be deduced similarly as in our previous research studies;
it is also worth noting that we present numerous indicative examples and comments
about the problems considered). In Subsection 4.2.2, we present some applications of
our abstract results in the analysis of the existence and uniqueness of c-almost peri-
odic type solutions to the abstract (semilinear) Volterra integro-differential inclusions.
The class of semi-c-periodic functions with general parameter c ∈ ℂ\{0} is introduced
and analyzed in Subsection 4.2.3; the main result of this subsection is Theorem 4.2.45
which states that the notions of c-periodicity and semi-c-periodicity are equivalent for
|c| ̸= 1. The material of Section 4.1 and Section 4.2 is obtained in a coauthorship with
Prof. M. Pinto, M. T. Khalladi, A. Rahmani and D. Velinov [586–590].

Let p > 0 and k ∈ ℝ. Recall that a bounded continuous function f : I → X is said
to be Bloch (p, k)-periodic, or Bloch periodic with period p and Bloch wave vector or
Floquet exponent k if and only if f (x + p) = eikpf (x), x ∈ I , with p > 0 and k ∈ ℝ.
The study of Bloch (p, k)-periodic functions is an important subject of applied func-
tional analysis. TheBlochperiodic functions arewidely used in biology, physics, prob-
ability, modeling, solid mechanics [92] and many other areas (see the papers [204] by
R. F. Boukadia, C. Droz,M.N. Ichchou,W.Desmet, [246] byG. Carta,M. Brun, [259, 260]
by Y. K. Chang, Y. Wei, [307] by M. Collet, M. Ouisse, M. Ruzzene, M. Ichchou, [521]
by M. F. Hasler, [522] by M. F. Hasler, G.M. N’Guérékata, [579] by D. Karličić, M. Ca-
jić, T. Chatterjee, S. Adhikari, [664] by M. Kostić, D. Velinov, [679] by I. Krichever,
S. P. Novikov, [690] by V. Laude, R. P. Moiseyenko, S. Benchabane, N. F. Declercq, [691]

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



Introduction | XLVII

byM. J. Leamy, the forthcomingmonograph [258] byY.-K. Chang, G.M.N’Guerekata, R.
Ponce and the references cited therein; for the importance of almost periodicity inme-
chanics, electron propagation theory andmathematical physics; see also [97, 144] and
[950]). As is well known, the notion of an anti-periodic function is a special case of the
notion of a Bloch (p, k)-periodic function (a bounded continuous function f : I → X is
said to f (⋅) is anti-periodic if and only if there exists p > 0 such that f (x + p) = −f (x),
x ∈ I; any such function needs to be periodic of period 2p). For more details about
anti-periodic type functions and their applications,we refer the reader to [42, 280, 381,
501, 664, 720, 722] and the references cited therein. Semi-Bloch k-periodic functions
are investigated in Subsection 4.2.4 (the results are obtained in a coauthorship with
B. Chaouchi, S. Pilipović and D. Velinov [262]). The genesis of paper [262] is motivated
by reading the research article [69] by J. Andres and D. Pennequin, where the authors
have introduced and analyzed the class of semi-periodic functions (sequences) and
related applications to differential (difference) equations; see also [70]. Of course, a
semi-periodic function is nothing else but a semi-c-periodic function with c = 1.

The class of S-asymptotically ω-periodic functions, introduced by H. Henríquez
et al. [531] for case I = ℝ and M. Kostić [647] for the case I = [0,∞), are reconsidered
in Subsection 4.2.6, where we introduce the class of S-asymptotically (ω, c)-periodic
functions. Quasi-asymptotically c-almost periodic functions and related composition
principles are investigated in Subsection 4.2.7.

Several notes and appendices are provided in the final chapter of Part I, where
we particularly analyze recurrent strongly continuous semigroups of operators. The
organization of each chapter and section of Part II will be self-explaining.

Concerning drawbacks of the monograph, we wish to emphasize the following:
1. Although this is probably the first research monograph within the field of almost

periodicity where the results from the theory of Lebesgue spaces Lp(x) have been
employed, the use of constant coefficients p(x) ≡ p ∈ [1,∞) is unquestionably the
best and we need to put maximum effort into getting new applications of almost
periodic functions in Lebesgue spaces with variable exponents (from the theoret-
ical point of view, the use of constant coefficients does not give ground to a great
extent).

2. We feel it is our duty to say that the approach used for the introduction of the no-
tion in Definition 3.1.23–Definition 3.1.25 and Definition 3.1.29–Definition 3.1.31 is
exploited multiple times in the remainder of the book, for various types of gen-
eralized almost periodicity; this could be a bit tedious and monotonous for the
reader. For the sake of better readability, we have decided to repeat some equa-
tions with the Lipschitz type conditions, the convolution products used and the
consequences of the Jensen integral inequality several times throughout the book.
Also, there are some glaring omissions in time scales direction research since the
almost periodic and almost automorphic topic are also important in hybrid do-
mains (the author of monograph is really not an expert in this field; see also the
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corresponding part of [631, Section 2.16] for more details about the subject and
applications given so far).

3. Part II investigates multi-dimensional almost periodic type functions and their
applications (this topic has not been well presented in any published research
monograph by now). But many structural results exhibited in Part I are very spe-
cial consequences of the corresponding results from Part II; we keep all such re-
sults from Part I for the sake of better exposition and further popularization of
almost periodic functions of one real variable (there is no need to say that the
one-dimensional setting is very important from the application point of view).

Finally, wewould like to note that a great deal of the introductory part and some notes
and appendices to Part I and Part II have recently been published in our joint survey
article with W.-S. Du and M. Pinto [400].
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1 Preliminaries

1.1 Linear operators and integration in Banach spaces, strongly
continuous semigroups and fixed point theorems

In this section, we recollect some essential facts about vector-valued functions, closed
operators, integration and strongly continuous semigroups in Banach spaces.We also
recall the basic fixed point theorems we will employ later on. In Subsection 1.1.1, we
explore the basic definitions and results about the Lebesgue spaces with variable ex-
ponents Lp(x).
Vector-valued functions, closed operators
Generally, by (X, ‖ ⋅ ‖)we denote a Banach space over the field of complex numbers. If
(Y , ‖ ⋅ ‖Y ) is another Banach space over the field of complex numbers, then by L(X,Y)
wedenote the space consisting of all continuous linearmappings fromX intoY ;L(X) ≡
L(X,X). The topologies on L(X,Y) and X∗, the dual space of X, are introduced in the
usual way. If not stated otherwise, by I we denote the identity operator on X. If X and
Y are two Banach spaces such that Y is continuously embedded in X, then we write
Y → X.

We say that a linear operator A : D(A) → X is closed if and only if the graph of
the operator A, defined by GA := {(x,Ax) : x ∈ D(A)}, is a closed subset of X × X. The
null space and range of A are denoted by N(A) and R(A), respectively. Let us recall
that a linear operator A : D(A) → X is closed if and only if, for every sequence (xn) in
D(A) such that limn→∞ xn = x and limn→∞ Axn = y, the following hold: x ∈ D(A) and
Ax = y; a linear operator A is called closable if and only if there exists a closed linear
operator B such that A ⊆ B. If F is a linear submanifold of X, then we define the part
of A in F by D(A|F) := {x ∈ D(A) ∩ F : Ax ∈ F} and A|Fx := Ax, x ∈ D(A|F).

The power An of A is defined inductively (n ∈ ℕ0); set D∞(A) := ⋂n⩾1 D(An). For a
closed linear operator A acting on X, we introduce the adjoint A∗ of X∗ × X∗ by

A∗ := {(x∗, y∗) ∈ X∗ × X∗ : x∗(Ax) = y∗(x) for all x ∈ D(A)}.
In the case that A is densely defined, then A∗ is single-valued, closed and also known
as the adjoint operator of A. Assuming α ∈ ℂ ∖ {0}, A and B are linear operators, we
define the operators αA,A+B andAB in the usualway. TheGamma function is denoted
by Γ(⋅) and the principal branch is always used to take the powers. Set, for every α > 0,

gα(t) := t
α−1/Γ(α), t > 0,

g0(t) ≡ the Dirac δ-distribution and 0ζ := 0. Set Σα := {z ∈ ℂ ∖ {0} : | arg(z)| < α},
α ∈ (0,π].

By C(Ω : X)we denote the space consisting of all continuous functions f : Ω→ X,
where 0 ̸= Ω ⊆ ℂn (n ∈ ℕ); C(Ω) ≡ C(Ω : ℂ). Let 0 < τ ⩽ ∞ and a ∈ L1loc([0, τ)). Then

https://doi.org/10.1515/9783110763522-001
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we say that the function a(t) is a kernel on [0, τ) if and only if for each f ∈ C([0, τ)) the
assumption ∫t0 a(t − s)f (s) ds = 0, t ∈ [0, τ) implies f (t) = 0, t ∈ [0, τ). If s ∈ ℝ and
n ∈ ℕ, we define ⌊s⌋ := sup{l ∈ ℤ : s ⩾ l}, ⌈s⌉ := inf{l ∈ ℤ : s ⩽ l},ℕn := {1, . . . , n} and
ℕ0n := {0, 1, . . . , n}. If X, Y ̸= 0, put Y

X := {f | f : X→ Y}.
Let I = ℝ or I = [0,∞). By Cb(I : X)we denote the space consisting of all bounded

continuous functions from I into X; the symbol C0(I : X) denotes the vector subspace
of Cb(I : X) consisting of those functions f : I → X such that lim|t|→∞ ‖f (t)‖ = 0.
By BUC(I : X) we denote the space consisting of all bounded uniformly continuous
functions from I to X; Cb(I) ≡ Cb(I : ℂ), C0(I) ≡ C0(I : ℂ) and BUC(I) ≡ BUC(I : ℂ).
Equipped with the sup-norm, Cb(I : X), C0(I : X) and BUC(I : X) are Banach spaces.

Regarding analytical functions with values in Banach spaces and locally convex
spaces, we refer the reader to [82] and [633] (for almost periodic functions and al-
most automorphic functions with values in locally convex spaces and general vector
topological spaces, we refer the reader to [631, Section 3.11] and the references cited
therein).

Integration in Banach spaces
The following definition is elementary.

Definition 1.1.1.
(i) A function f : I → X is said to be simple if and only if there exist k ∈ ℕ, elements

zi ∈ X, 1 ⩽ i ⩽ k and Lebesgue measurable subsets Ωk, 1 ⩽ i ⩽ k of I, such that
m(Ωi) <∞, 1 ⩽ i ⩽ k and

f (t) =
k
∑
i=1 ziχΩi
(t), t ∈ I . (1.1)

(ii) A function f : I → X is said to be measurable if and only if there exists a sequence
(fn) in XI such that, for every n ∈ ℕ, fn(⋅) is a simple function and limn→∞ fn(t) =
f (t) for a. e. t ∈ I.

(iii) Let −∞ < a < b < ∞ and a < τ ⩽ ∞. A function f : [a, b] → X is said to be
absolutely continuous if and only if for every ε > 0 there exists a number δ > 0
such that, for any finite collection of open subintervals (ai, bi), 1 ⩽ i ⩽ k of [a, b]
with ∑ki=1(bi − ai) < δ, we have ∑ki=1 ‖f (bi) − f (ai)‖ < ε; a function f : [a, τ) → X is
said to be absolutely continuous if and only if for every τ0 ∈ (a, τ), the function
f|[a,τ0] : [a, τ0]→ X is absolutely continuous.

If f : I→X and (fn) is a sequence ofmeasurable functions satisfying limn→∞ fn(t)=
f (t) for a. e. t ∈ I, then the function f (⋅) is measurable too. The Bochner integral of a
simple function f : I → X, f (t) = ∑ki=1 ziχΩi

(t), t ∈ I is defined by

∫
I

f (t) dt :=
k
∑
i=1 zim(Ωi).
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The definition of Bochner integral does not depend on the representation (1.1), as eas-
ily approved.

We say that a measurable function f : I → X is Bochner integrable if and only if
there exists a sequence of simple functions (fn) in XI such that limn→∞ fn(t) = f (t) for
a. e. t ∈ I and

lim
n→∞∫

I

fn(t) − f (t)
 dt = 0; (1.2)

if this is the case, the Bochner integral of f (⋅) is defined by

∫
I

f (t) dt := lim
n→∞∫

I

fn(t) dt.

This definition does not depend on the choice of a sequence of simple functions (fn) in
XI satisfying limn→∞ fn(t) = f (t) for a. e. t ∈ I and (1.2). It is well known that f : I → X
is Bochner integrable if and only if f (⋅) is measurable and the function t → ‖f (t)‖,
t ∈ I is integrable. For any Bochner integrable function f : [0,∞) → X, we have
∫
∞
0 f (t) dt = limτ→+∞ ∫τ0 f|[0,τ](t) dt.

The space of all Bochner integrable functions from I into X is denoted by L1(I : X);
endowed with the norm ‖f ‖1 := ∫I ‖f (t)‖ dt, L

1(I : X) is a Banach space. It is said that a
function f : [0,∞)→ X is locally (Bochner) integrable if and only if f (⋅)|[0,τ] is Bochner
integrable for every τ > 0. The space of all locally integrable functions from [0,∞) into
X is denoted by L1loc([0,∞) : X). If f : [a, b] → X is Bochner integrable, where −∞ <
a < b < +∞, then the function F(t) := ∫ta f (s) ds, t ∈ [a, b] is absolutely continuous
and F′(t) = f (t) for a. e. t ∈ [a, b]. Basically, we will not distinguish a function and its
restriction to any subinterval of its domain.

Theorem 1.1.2.
(i) (The dominated convergence theorem) Suppose that (fn) is a sequence of Bochner

integrable functions from XI and that there exists an integrable function g : I → ℝ
such that ‖fn(t)‖ ⩽ g(t) for a. e. t ∈ I and n ∈ ℕ. If f : I → X and limn→∞ fn(t) = f (t)
for a. e. t ∈ I, then f (⋅) is Bochner integrable, ∫I f (t) dt = limn→∞ ∫I fn(t) dt and
limn→∞ ∫I ‖fn(t) − f (t)‖ dt = 0.

(ii) (The Fubini theorem) Let I1 and I2 be segments in ℝ and let I = I1 × I2. Suppose
that F : I → X is measurable and ∫I1 ∫I2 ‖f (s, t)‖ dt ds < ∞. Then f (⋅, ⋅) is Bochner
integrable, the repeated integrals ∫I1 ∫I2 f (s, t) dt ds and ∫I2 ∫I1 f (s, t) ds dt exist and
equal to the integral ∫I f (s, t) ds dt.

Suppose now that 1 ⩽ p < ∞ and (Ω,ℛ, μ) is a measure space. By Lp(Ω : X) we
denote the space of all strongly μ-measurable functions f : Ω → X such that ‖f ‖p :=
(∫Ω ‖f (⋅)‖

p dμ)1/p is finite. The space L∞(Ω : X) consists of all strongly μ-measurable,
essentially bounded functions; this space is a Banach space equipped with the norm
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‖f ‖∞ := ess supt∈Ω ‖f (t)‖, f ∈ L∞(Ω : X). Let us recall that we identify functions that
are equal μ-almost everywhere on Ω. The famous Riesz–Fischer theorem states that
(Lp(Ω : X), ‖ ⋅ ‖p) is a Banach space for all p ∈ [1,∞]; furthermore, (L2(Ω : X), ‖ ⋅ ‖2)
is a Hilbert space. If limn→∞ fn = f in Lp(Ω : X), then there exists a subsequence
(fnk ) of (fn) such that limk→∞ fnk (t) = f (t) μ-almost everywhere. If the Banach space X
is reflexive, then Lp(Ω : X) is reflexive for all p ∈ (1,∞) and its dual is isometrically
isomorphic to Lp/(p−1)(Ω : X).We refer the reader to [82] and [631] formore details about
the absolutely continuous functions. The space consisting of all X-valued functions
that are absolutely continuous on any closed subinterval of [0,∞)will be denoted by
ACloc([0,∞) : X).

Let 0 ̸= Ω ⊆ ℝn (n, k ∈ ℕ). By Ck(Ω : X) we denote the space of k-times continu-
ously differentiable functions f : Ω→ X. The space Lploc(Ω : X) for 1 ⩽ p ⩽∞ is defined
in the usual way (T , τ > 0); Lploc(Ω) ≡ L

p
loc(Ω : ℂ).

Assume now that k ∈ ℕ and p ∈ [1,∞]. Then the Sobolev space Wk,p(Ω : X)
consists of those X-valued distributions u ∈ 𝒟′(Ω : X) such that, for every i ∈ ℕ0k
and for every multi-index α ∈ ℕn0 with |α| ⩽ k, we have D

αu ∈ Lp(Ω,X). At this place,
the derivative Dα is taken in the sense of distributions. ByWk,p

loc (Ω : X) we denote the
space of those X-valued distributions u ∈ 𝒟′(Ω : X) such that, for every bounded open
subset Ω′ of Ω, one has u|Ω′ ∈ Wk,p(Ω′ : X).

We will use the following simple lemma.

Lemma 1.1.3. Let −∞ < a < b < ∞, let 1 ⩽ p′ < p′′ < ∞, and let f ∈ Lp′′ ([a, b] : X).
Then f ∈ Lp

′
([a, b] : X) and

[
1

b − a

b

∫
a

f (s)

p′ ds]1/p′ ⩽ [ 1

b − a

b

∫
a

f (s)

p′′ ds]1/p′′ .

Strongly continuous semigroups in Banach spaces
An operator family (T(t))t⩾0 ⊆ L(X) is said to be a strongly continuous semigroup if
and only if the following holds:
(i) T(0) = I,
(ii) T(t + s) = T(t)T(s), t, s ⩾ 0, and
(iii) the mapping t → T(t)x, t ⩾ 0 is continuous for every fixed x ∈ X.

The linear operator

A := {(x, y) ∈ X × X : lim
t→0+ T(t)x − xt

= y} (1.3)

is said to be the infinitesimal generator of (T(t))t⩾0. A strongly continuous semi-
group (group) (T(t))t⩾0 is also said to be C0-semigroup; if condition (i) is neglected,
then the operator T(0) is a projection and then we say that (T(t))t⩾0 is a degenerate
C0-semigroup.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use
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In both cases, degenerate and non-degenerate, we know that there exist finite
constants M ⩾ 1 and ω ⩾ 0 such that ‖T(t)‖ ⩽ Meωt, t ⩾ 0. The famous Hille–Yosida
theorem states that a linear operator A generates a non-degenerate strongly continu-
ous semigroup (T(t))t⩾0 satisfying the estimate ‖T(t)‖ ⩽ Meωt, t ⩾ 0 for some finite
constants M ⩾ 1 and ω ⩾ 0 if and only if A is closed, densely defined, (ω,∞) ⊆ ρ(A)
and

(λ − A)
−n ⩽ M
(λ − ω)n

, λ > ω, n ∈ ℕ.

If not stated otherwise, we will always assume that a C0-semigroup (T(t))t⩾0 is non-
degenerate.

If (T(t))t∈ℝ ⊆ L(X) satisfies (i), (ii) for all t, s ∈ ℝ and (iii) for t ∈ ℝ, then we say
that (T(t))t∈ℝ is a strongly continuous group, C0-group for short. Similarly as above,
if condition (i) is neglected, then we say that (T(t))t∈ℝ is a degenerate strongly contin-
uous group, degenerate C0-group for short. The infinitesimal generator of (T(t))t∈ℝ is
defined through (1.3); in the degenerate case, the infinitesimal generator is a closed
multivalued linear operator on X (see Section 1.2 below).

For more details about the theory of strongly continuous semigroups, the reader
may consult the monographs [410, 630, 633, 829] and the references quoted therein;
for the theory of integrated semigroups and C-regularized semigroups, we refer the
reader to [82, 348, 629, 630, 1092] and the references quoted therein.

Fixed point theorems
In this part, we remind the reader of the Banach contraction principle and its well
known generalizations, the Bryant fixed point theorem and the Meer–Keeler fixed
point theorem; for further information about the fixed point theory, the reader may
consult the monographs [26] and [480].

Let (E, d) be a metric space. Then T : E → E is called a contraction mapping on E
if and only if there exists a constant q ∈ [0, 1) such that d(T(x),T(y)) ⩽ qd(x, y) for all
x, y ∈ E. We have the following.

Theorem 1.1.4 (The Banach contraction principle, 1922). Let (E, d) be a complete met-
ric space, and let T : E → E be a contraction mapping. Then T admits a unique fixed
point x in X (i. e. T(x) = x).

Theorem 1.1.5 (The Bryant fixed point theorem, 1968). Let (E, d) be a complete metric
space, and let T : E → E satisfy the condition that there is an integer n ∈ ℕ such that
Tn : E → E is a contraction mapping. Then T has a unique fixed point x in E.

In their remarkable paper [759], A. Meir and E. Keeler have introduced the notion
of a weakly uniformly strict contraction and proved the following fixed point theo-
rem.
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Theorem 1.1.6 (A. Meir and E. Keeler, 1969). Suppose that (E, d) is a complete metric
space and T : E → E satisfies that for each ε > 0 there exists δ > 0 such that for each
x, y ∈ E we have

ε ⩽ d(x, y) ⩽ ε + δ implies d(Tx,Ty) < ε.

Then the mapping T has a unique fixed point ξ , and moreover, limn→+∞ Tnx = ξ for any
x ∈ E.

1.1.1 Lebesgue spaces with variable exponents Lp(x)

The monograph [377] by L. Diening, P. Harjulehto, P. Hästüso and M. Ruzicka is of
invaluable importance in the study of Lebesgue spaces with variable exponents.

Let 0 ̸= Ω ⊆ ℝ be a nonempty subset and let M(Ω : X) be the collection of all
measurable functions f : Ω→ X;M(Ω) := M(Ω : ℝ). Furthermore, let 𝒫(Ω) denote the
vector space of all Lebesgue measurable functions p : Ω → [1,∞]. For any p ∈ 𝒫(Ω)
and f ∈ M(Ω : X), we set

φp(x)(t) := {{{{
{

tp(x), t ⩾ 0, 1 ⩽ p(x) <∞,
0, 0 ⩽ t ⩽ 1, p(x) =∞,
∞, t > 1, p(x) =∞,

and

ρ(f ) := ∫
Ω

φp(x)(f (x)) dx. (1.4)

We define the Lebesgue space Lp(x)(Ω : X) with variable exponent by
Lp(x)(Ω : X) := {f ∈ M(Ω : X) : lim

λ→0+ ρ(λf ) = 0}.
Equivalently,

Lp(x)(Ω : X) = {f ∈ M(Ω : X) : there exists λ > 0 such that ρ(λf ) <∞};
see, e. g., [377, p. 73]. For every u ∈ Lp(x)(Ω : X), we introduce the Luxemburg norm of
u(⋅) in the following way (see the doctoral dissertation of W.A. J. Luxemburg [739] for
further information):

‖u‖p(x) := ‖u‖Lp(x)(Ω:X) := inf{λ > 0 : ρ(f /λ) ⩽ 1}.
Equipped with the above norm, Lp(x)(Ω : X) becomes a Banach space (see, e. g., [377,
Theorem 3.2.7] for the scalar-valued case), coinciding with the usual Lebesgue space
Lp(Ω : X) in the case that p(x) = p ⩾ 1 is a constant function. For any p ∈ M(Ω), we set

p− := essinfx∈Ωp(x) and p+ := esssupx∈Ωp(x).
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1.1 Linear operators and integration in Banach spaces | 7

Define

C+(Ω) := {p ∈ M(Ω) : 1 < p− ⩽ p(x) ⩽ p+ <∞ for a. e. x ∈ Ω}

and

D+(Ω) := {p ∈ M(Ω) : 1 ⩽ p− ⩽ p(x) ⩽ p+ <∞ for a. e. x ∈ Ω}.

For p ∈ D+(Ω), the space Lp(x)(Ω : X) behaves nicely, with almost all fundamental
properties of the Lebesgue space with constant exponent Lp(Ω : X) being retained; in
this case, we know that the function ρ(⋅) given by (1.4) is modular in the sense of [377,
Definition 2.1.1], and that

Lp(x)(Ω : X) = {f ∈ M(Ω : X) : for all λ > 0 we have ρ(λf ) <∞}.
Furthermore, if p ∈ C+(Ω), then Lp(x)(Ω : X) is uniformly convex and thus reflexive
([421]).

We will use the following lemma (see, e. g., [377, Lemma 3.2.20, (3.2.22); Corollary
3.3.4; p. 77] for the scalar-valued case).

Lemma 1.1.7.
(i) (The Hölder inequality) Let p, q, r ∈ 𝒫(Ω) such that

1
q(x)
=

1
p(x)
+

1
r(x)
, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈ Lq(x)(Ω : X) and
‖uv‖q(x) ⩽ 2‖u‖p(x)‖v‖r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ 𝒫(Ω) be such that q ⩽ p a. e.
on Ω. Then Lp(x)(Ω : X) is continuously embedded in Lq(x)(Ω : X).

(iii) Let f ∈ Lp(x)(Ω : X), g ∈ M(Ω : X) and 0 ⩽ ‖g‖ ⩽ ‖f ‖ a. e. on Ω. Then g ∈ Lp(x)(Ω : X)
and ‖g‖p(x) ⩽ ‖f ‖p(x).
We will use the following simple lemma, whose proof can be omitted.

Lemma 1.1.8. Suppose that f ∈ Lp(x)(Ω : X) and A ∈ L(X,Y). Then Af ∈ Lp(x)(Ω : Y) and
‖Af ‖Lp(x)(Ω:Y) ⩽ ‖A‖ ⋅ ‖f ‖Lp(x)(Ω:X).

For additional details upon Lebesgue spaces with variable exponents Lp(x), we
refer the reader to [375, 376, 421, 797, 815, 891].
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1.2 Multivalued linear operators

This section aims to present a brief synopsis of definitions and results from the theory
of multivalued linear operators. For more details, we refer to the monograph [321] by
R. Cross.

Suppose that X and Y are two Banach spaces. A multivalued map (multimap)𝒜 :
X → P(Y) is said to be a multivalued linear operator (MLO) if and only if the following
hold:
(i) D(𝒜) := {x ∈ X : 𝒜x ̸= 0} is a linear subspace of X;
(ii) 𝒜x +𝒜y ⊆ 𝒜(x + y), x, y ∈ D(𝒜) and λ𝒜x ⊆ 𝒜(λx), λ ∈ ℂ, x ∈ D(𝒜).

If X = Y , then we say that 𝒜 is an MLO in X. Let us recall that, for every x, y ∈ D(𝒜)
and λ, η ∈ ℂ with |λ| + |η| ̸= 0, we have λ𝒜x + η𝒜y = 𝒜(λx + ηy). If𝒜 is an MLO, then
𝒜0 is a linear submanifold of Y and 𝒜x = f + 𝒜0 for any x ∈ D(𝒜) and f ∈ 𝒜x. Set
R(𝒜) := {𝒜x : x ∈ D(𝒜)} and N(𝒜) := 𝒜−10 := {x ∈ D(𝒜) : 0 ∈ 𝒜x} (we call that the
range and kernel space of 𝒜, respectively). The inverse 𝒜−1 of an MLO is defined by
D(𝒜−1) := R(𝒜) and 𝒜−1y := {x ∈ D(𝒜) : y ∈ 𝒜x}. It follows that 𝒜−1 is an MLO in X,
and thatN(𝒜−1) = 𝒜0 and (𝒜−1)−1 = 𝒜. IfN(𝒜) = {0}, i. e., if𝒜−1 is single-valued, then
𝒜 is said to be injective.

Assuming that 𝒜, ℬ : X → P(Y) are two MLOs, we define its sum 𝒜 + ℬ by D(𝒜 +
ℬ) := D(𝒜) ∩ D(ℬ) and (𝒜 + ℬ)x := 𝒜x + ℬx, x ∈ D(𝒜 + ℬ). Clearly,𝒜 + ℬ is likewise an
MLO.

Suppose now that 𝒜 : X → P(Y) and ℬ : Y → P(Z) are two MLOs, where Z is a
complex Banach space. The product of 𝒜 and ℬ is defined by D(ℬ𝒜) := {x ∈ D(𝒜) :
D(ℬ) ∩ 𝒜x ̸= 0} and ℬ𝒜x := ℬ(D(ℬ) ∩ 𝒜x). ℬ𝒜 : X → P(Z) is an MLO and (ℬ𝒜)−1 =
𝒜−1ℬ−1. The scalar multiplication of an MLO𝒜 : X → P(Y)with the number z ∈ ℂ, z𝒜
for short, is defined by D(z𝒜) := D(𝒜) and (z𝒜)(x) := z𝒜x, x ∈ D(𝒜).

The integer powers of an MLO 𝒜 : X → P(X) are defined inductively as follows:
𝒜0 =: I; if𝒜n−1 is defined, set

D(𝒜n) := {x ∈ D(𝒜n−1) : D(𝒜) ∩𝒜n−1x ̸= 0}
and

𝒜nx := (𝒜𝒜n−1)x = ⋃
y∈D(𝒜)∩𝒜n−1x𝒜y, x ∈ D(𝒜n).

Assume that 𝒜 : X → P(Y) and ℬ : X → P(Y) are two MLOs. Then the inclusion
𝒜 ⊆ ℬ is equivalent to saying that D(𝒜) ⊆ D(ℬ) and𝒜x ⊆ ℬx for all x ∈ D(𝒜).

It is said that an MLO operator 𝒜 : X → P(Y) is closed if and only if for any se-
quences (xn) in D(𝒜) and (yn) in Y such that yn ∈ 𝒜xn for all n ∈ ℕ the suppositions
limn→∞ xn = x and limn→∞ yn = y imply x ∈ D(𝒜) and y ∈ 𝒜x.
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Assume that 𝒜 : X → P(Y) is an MLO. Then 𝒜 : X → P(Y) is an MLO as well, so
that anyMLO has a closed linear extension, in contrast to the usually analyzed single-
valued linear operators.

Let 𝒜 be an MLO in X and C ∈ L(X). The C-resolvent set of 𝒜, ρC(𝒜) for short, is
defined as the union of those complex numbers λ ∈ ℂ for which
(i) R(C) ⊆ R(λ −𝒜);
(ii) (λ −𝒜)−1C is a single-valued linear continuous operator on X.

The operator λ → (λ − 𝒜)−1C is called the C-resolvent of 𝒜. If C = I, then we say that
ρ(𝒜) ≡ ρC(𝒜) is the resolvent set of 𝒜 and the mapping λ → R(λ : 𝒜) ≡ (λ − 𝒜)−1
is called the resolvent of 𝒜 (λ ∈ ρ(𝒜)). For the generalized resolvent equations and
the analytical properties of C-resolvents of multivalued linear operators, we refer the
reader to [633].

Suppose now that (−∞,0] ⊆ ρ(𝒜) and that there exist finite numbers M ⩾ 1 and
β ∈ (0, 1] such that

R(λ : 𝒜)
 ⩽ M(1 + |λ|)

−β
, λ ⩽ 0.

Then there are two positive numbers c > 0 andM1 > 0 such that the resolvent set of𝒜
contains an open region Ω = {λ ∈ ℂ : | Im λ| ⩽ (2M1)

−1(c − Re λ)β, Re λ ⩽ c} of complex
plane around the half-line (−∞,0], where we have the estimate ‖R(λ : 𝒜)‖ = O((1 +
|λ|)−β), λ ∈ Ω. Let Γ′ be the upwards oriented curve {ξ ± i(2M1)

−1(c − ξ )β : −∞ < ξ ⩽ c}.
Following A. Favini and A. Yagi [431], we define the fractional power

𝒜−θ := 1
2πi
∫

Γ′ λ
−θ(λ −𝒜)−1 dλ ∈ L(X),

for θ > 1 − β. Set 𝒜θ := (𝒜−θ)−1 (θ > 1 − β). Then the semigroup properties 𝒜−θ1𝒜−θ2 =
𝒜−(θ1+θ2) and 𝒜θ1𝒜θ2 = 𝒜θ1+θ2 hold for θ1, θ2 > 1 − β (it is worth recalling that the
fractional power𝒜θ is not generally injective and the meaning of𝒜θ is understood in
the MLO sense for θ > 1 − β).

For any θ ∈ (0, 1), the vector space

Xθ
𝒜 := {x ∈ X : sup

ξ>0 ξ θξ (ξ +𝒜)−1x − x <∞},
endowed with the norm

‖ ⋅ ‖Xθ
𝒜
:= ‖ ⋅ ‖ + sup

ξ>0 ξ θξ (ξ +𝒜)−1 ⋅ −⋅,
is a Banach space.

We will use conditions (P) and (QP) henceforth:
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(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ := Ψc := {λ ∈ ℂ : Re λ ⩾ −c(| Im λ| + 1)} ⊆ ρ(𝒜)

and

R(λ : 𝒜)
 ⩽ M(1 + |λ|)

−β
, λ ∈ Ψ.

(QP) There exist finite numbers 0 < β ⩽ 1, 0 < d ⩽ 1,M > 0 and 0 < η′ < η′′ ⩽ 1 such
that

Ψd,πη′′/2 := {λ ∈ ℂ : |λ| ⩽ d or λ ∈ Σπη′′/2} ⊆ ρ(𝒜)
and

R(λ : 𝒜)
 ⩽ M(1 + |λ|)

−β
, λ ∈ Ψd,πη′′/2.

Hence, the resolvent set of a multivalued linear operator 𝒜 satisfying (QP) can be
strictly contained in an acute angle. In the single-valued linear case, the class of al-
most sectorial operatorsA = 𝒜 satisfying condition (P) is crucially important; formore
details about almost sectorial operators and their applications, we refer the reader
to the papers [833] by F. Periago, [834] by F. Periago and B. Straub, the monographs
[630, 631] and the references cited therein.

1.3 Fractional calculus and solution operator families

Fractional calculus and fractional differential equations play an important role in vari-
ous fields of theoretical and applied science, such as engineering, physics, chemistry,
mechanics, electricity, economics, control theory and image processing. For further
information about fractional calculus and fractional differential equations, we refer
the reader to the monographs S. Abbas, M. Benchohra, G.M. N’Guérékata [6, 7], K. Di-
ethelm [378], C. Goodrich, A. C. Peterson [476], A. A. Kilbas, H.M. Srivastava, J. J. Tru-
jillo [607], V. Kiryakova [612], F.Mainardi [746], S. G. Samko,A. A. Kilbas, O. I.Marichev
[892] and M. Kostić [629–633], and to the doctoral dissertation of E. Bazhlekova [133].

Suppose that α > 0, m = ⌈α⌉ and I = (0,T) for some T ∈ (0,∞]. Then the
Riemann–Liouville fractional integral Jαt of order α is defined by

Jαt f (t) := (gα ∗ f )(t), f ∈ L1(I : X), t ∈ I .

The Caputo fractional derivativeDα
t u(t) is defined for those functions u ∈ C

m−1([0,∞) :
X) for which gm−α ∗ (u −∑m−1k=0 ukgk+1) ∈ Cm([0,∞) : X), by

Dα
t u(t) :=

dm

dtm
[gm−α ∗ (u − m−1∑

k=0 ukgk+1)].
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It is worth noticing that the existence of Caputo fractional derivative Dα
t u for t ⩾ 0

implies the existence of Caputo fractional derivativeDζ
t u for t ⩾ 0 and any ζ ∈ (0, α). At

some places, we will use a slightly weakened notion of Caputo fractional derivatives,
as explicitly emphasized.

The Riemann–Liouville fractional derivative Dα
t of order α is defined for those

functions f ∈ L1(I : X) satisfying gm−α ∗ f ∈ Wm,1((0,∞) : X), by
Dα
t f (t) :=

dm

dtm
Jm−αt f (t), t ∈ I .

The Riemann–Liouville fractional integrals and derivatives satisfy the following
equalities:

Jαt J
β
t f (t) = J

α+β
t f (t), Dα

t J
α
t f (t) = f (t),

for f ∈ L1(I : X) and

Jαt D
α
t f (t) = f (t) −

m−1
∑
k=0(gm−α ∗ f )(k)(0)gα+k+1−m(t)

for any f ∈ L1(I : X) with gm−α ∗ f ∈ Wm,1(I : X).
The Weyl–Liouville fractional derivative Dγ

t,+u(t) of order γ ∈ (0, 1) is defined for
those continuous functions u : ℝ→ X such that

t →
t

∫−∞ g1−γ(t − s)u(s) ds, t ∈ ℝ,

is a well-defined continuously differentiable mapping, by

Dγ
t,+u(t) := d

dt

t

∫−∞ g1−γ(t − s)u(s) ds, t ∈ ℝ.

Set D1
t,+u(t) := −(d/dt)u(t). For more details about the subject, the reader may consult

the article [798].
The Mittag-Leffler functions and the Wright functions play an incredible role in

fractional calculus. Let α > 0 and β ∈ ℝ. Then the Mittag-Leffler function Eα,β(z) is
defined by

Eα,β(z) := ∞∑
n=0 zn

Γ(αn + β)
, z ∈ ℂ;

set, for short, Eα(z) := Eα,1(z), z ∈ ℂ.
The asymptotic behavior of the entire function Eα,β(z) is given by the following

important result (see, e. g., [1028, Theorem 1.1]).
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Theorem 1.3.1. Let 0 < σ < 1
2π. Then, for every z ∈ ℂ ∖ {0} and m ∈ ℕ ∖ {1},

Eα,β(z) = 1α∑s Z1−βs eZs −
m−1
∑
j=1 z−j

Γ(β − αj)
+ O(|z|−m),

where Zs is defined by Zs := z1/αe2πis/α and the first summation is taken over all those
integers s satisfying | arg(z) + 2πs| < α( π2 + σ).

Let γ ∈ (0, 1). Then the Wright function Φγ(⋅) is defined by

Φγ(z) :=
∞
∑
n=0 (−z)n

n!Γ(1 − γ − γn)
, z ∈ ℂ.

Let us recall that Φγ(⋅) is an entire function and that:
(i) Φγ(t) ⩾ 0, t ⩾ 0,

(ii) ∫∞0 e−λtγst−1−γΦγ(t−γs) dt = e−λγs, λ ∈ ℂ+, s > 0, and
(iii) ∫∞0 trΦγ(t) dt =

Γ(1+r)
Γ(1+γr) , r > −1.

The asymptotic expansion of the Wright function Φγ(⋅), as |z| → ∞ in the sector
| arg(z)| ⩽ min((1 − γ)3π/2,π) − ε, is given by

Φγ(z) = Y
γ−1/2e−Y(M−1∑

m=0AmY−M + O(|Y |−M)),
where Y = (1 − γ)(γγz)1/(1−γ),M ∈ ℕ and Am are certain real numbers (see, e. g., [133]).

Solution operator families
Suppose now that 0 < τ ⩽∞, k ∈ C([0, τ)), k ̸= 0, a ∈ L1loc([0, τ)), a ̸= 0,𝒜 : X → P(X)
is an MLO, C1 ∈ L(Y ,X), C2 ∈ L(X) is injective, C ∈ L(X) is injective and C𝒜 ⊆ 𝒜C.

We will use the following general definition.

Definition 1.3.2 ([633]). Suppose 0 < τ ⩽ ∞, k ∈ C([0, τ)), k ̸= 0, a ∈ L1loc([0, τ)),
a ̸= 0,𝒜 : X → P(X) is an MLO, C1 ∈ L(Y ,X), and C2 ∈ L(X) is injective.
(i) Then it is said that𝒜 is a subgenerator of a (local, if τ <∞) mild (a, k)-regularized
(C1,C2)-existence and uniqueness family (R1(t),R2(t))t∈[0,τ) ⊆ L(Y ,X) × L(X) if and
only if the mappings t → R1(t)y, t ⩾ 0 and t → R2(t)x, t ∈ [0, τ) are continuous for
every fixed x ∈ X and y ∈ Y , and the following conditions hold:

(
t

∫
0

a(t − s)R1(s)y ds,R1(t)y − k(t)C1y) ∈ 𝒜, t ∈ [0, τ), y ∈ Y and (1.5)

t

∫
0

a(t − s)R2(s)y ds = R2(t)x − k(t)C2x, whenever t ∈ [0, τ) and (x, y) ∈ 𝒜. (1.6)
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(ii) Let (R1(t))t∈[0,τ) ⊆ L(Y ,X)be strongly continuous. Then it is said that𝒜 is a subgen-
erator of a (local, if τ <∞) mild (a, k)-regularized C1-existence family (R1(t))t∈[0,τ)
if and only if (1.5) holds.

(iii) Let (R2(t))t∈[0,τ) ⊆ L(X) be strongly continuous. Then it is said that𝒜 is a subgener-
ator of a (local, if τ <∞) mild (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ)
if and only if (1.6) holds.

Let us recall that R(R1(0) − k(0)C1) ⊆ 𝒜0 and, if a(t) is a kernel on [0, τ), then
R2(t)𝒜 is single-valued for any t ∈ [0, τ) and R2(t)y = 0 for any y ∈ 𝒜0 and t ∈ [0, τ).

Definition 1.3.3 ([633]). Suppose that 0 < τ ⩽ ∞, k ∈ C([0, τ)), k ̸= 0, a ∈ L1loc([0, τ)),
a ̸= 0, 𝒜 : X → P(X) is an MLO, C ∈ L(X) is injective and C𝒜 ⊆ 𝒜C. Then it is
said that a strongly continuous operator family (R(t))t∈[0,τ) ⊆ L(X) is an (a, k)-regu-
larized C-resolvent family with a subgenerator 𝒜 if and only if (R(t))t∈[0,τ) is a mild
(a, k)-regularized C-uniqueness family having 𝒜 as subgenerator, R(t)C = CR(t) and
R(t)𝒜 ⊆ 𝒜R(t) (t ∈ [0, τ)).

If k(t) = gα+1(t), where α ⩾ 0, then we also say that (R(t))t∈[0,τ) is an α-times in-
tegrated (a,C)-resolvent family; 0-times integrated (a,C)-resolvent family is further
abbreviated to (a,C)-resolvent family. We will accept a similar terminology for mild
(a, k)-regularizedC1-existence families andmild (a, k)-regularizedC2-uniqueness fam-
ilies.

Suppose that (R1(t),R2(t))t∈[0,τ) is a mild (a, k)-regularized (C1,C2)-existence and
uniqueness family with a subgenerator𝒜. Then we have

(a ∗ R2)(s)R1(t)y − R2(s)(a ∗ R1)(t)y
= k(t)(a ∗ R2)(s)C1y − k(s)C2(a ∗ R1)(t)y, t ∈ [0, τ), y ∈ Y .

The integral generator of a mild (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ)
(mild (a, k)-regularized (C1,C2)-existence and uniqueness family (R1(t),R2(t))t∈[0,τ)) is
defined by

𝒜int := {(x, y) ∈ X × X : R2(t)x − k(t)C2x =
t

∫
0

a(t − s)R2(s)y ds, t ∈ [0, τ)};

we define the integral generator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ)
in the same way as above. The integral generator 𝒜int is an MLO in X which extends
any subgenerator of (R2(t))t∈[0,τ) ((R(t))t∈[0,τ)) in the set theoretical sense; furthermore,
the assumption R2(t)C2 = C2R2(t), t ∈ [0, τ) implies that C−12 𝒜intC2 = 𝒜int so that
C−1𝒜intC = 𝒜int for resolvent families.

Concerning the vector-valued Laplace transform, we can recommend for the
reader the monograph [82] by W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander
(cf. also [633, 1040]). The following condition on a scalar-valued function k(t) will be
used:
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14 | 1 Preliminaries

(P1) k(t) is Laplace transformable, i. e., it is locally integrable on [0,∞) and there
exists β ∈ ℝ such that k̃(λ) := ℒ(k)(λ) := limb→∞ ∫b0 e−λtk(t) dt := ∫∞0 e−λtk(t) dt
exists for all λ ∈ ℂ with Re λ > β. Put abs(k) := inf{Re λ : k̃(λ) exists}, and denote
by ℒ−1 the inverse Laplace transform.

We have the following ([633]).

Theorem 1.3.4. Suppose𝒜 is a closedMLO in X, C1 ∈ L(Y ,X), C2 ∈ L(X), C2 is injective,
ω0 ⩾ 0 and ω ⩾ max(ω0, abs(|a|), abs(k)).
(i) Let (R1(t),R2(t))t⩾0 ⊆ L(Y ,X) × L(X) be strongly continuous, and let the family
{e−ωtRi(t) : t ⩾ 0} be equicontinuous for i = 1, 2.
(a) Suppose (R1(t),R2(t))t⩾0 is a mild (a, k)-regularized (C1,C2)-existence and

uniqueness family with a subgenerator 𝒜. Then, for every λ ∈ ℂ with Re λ > ω
and ã(λ)k̃(λ) ̸= 0, the operator I − ã(λ)𝒜 is injective, R(C1) ⊆ R(I − ã(λ)𝒜),

k̃(λ)(I − ã(λ)𝒜)−1C1y = ∞∫
0

e−λtR1(t)y dt, y ∈ Y , (1.7)

{
1

ã(z)
: Re z > ω, k̃(z)ã(z) ̸= 0} ⊆ ρC1 (𝒜), (1.8)

and

k̃(λ)C2x =
∞
∫
0

e−λt[R2(t)x − (a ∗ R2)(t)y] dt whenever (x, y) ∈ 𝒜. (1.9)

(b) Let (1.8) hold, and let (1.7) and (1.9) hold for any λ ∈ ℂ with Re λ > ω and
ã(λ)k̃(λ) ̸= 0. Then (R1(t),R2(t))t⩾0 is a mild (a, k)-regularized (C1,C2)-existence
and uniqueness family with a subgenerator𝒜.

(ii) Let (R1(t))t⩾0 be strongly continuous, and let the family {e−ωtR1(t) : t ⩾ 0} be
equicontinuous. Then (R1(t))t⩾0 is a mild (a, k)-regularized C1-existence family with
a subgenerator 𝒜 if and only if for every λ ∈ ℂ with Re λ > ω and ã(λ)k̃(λ) ̸= 0, one
has R(C1) ⊆ R(I − ã(λ)𝒜) and

k̃(λ)C1y ∈ (I − ã(λ)𝒜)
∞
∫
0

e−λtR1(t)y dt, y ∈ Y .

(iii) Let (R2(t))t⩾0 be strongly continuous, and let the family {e−ωtR2(t) : t ⩾ 0} be
equicontinuous. Then (R2(t))t⩾0 is a mild (a, k)-regularized C2-uniqueness family
with a subgenerator𝒜 if and only if for every λ ∈ ℂ with Re λ > ω and ã(λ)k̃(λ) ̸= 0,
the operator I − ã(λ)𝒜 is injective and (1.9) holds.
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Theorem 1.3.5. Let (R(t))t⩾0 ⊆ L(X) be a strongly continuous operator family such that
there exists ω ⩾ 0 satisfying the condition that the family {e−ωtR(t) : t ⩾ 0} is equicon-
tinuous, and let ω0 > max(ω, abs(|a|), abs(k)). Suppose that𝒜 is a closedMLO in X and
C𝒜 ⊆ 𝒜C.
(i) Assume that 𝒜 is a subgenerator of the global (a, k)-regularized C-resolvent family
(R(t))t⩾0 satisfying (1.5) for all x = y ∈ X. Then, for every λ ∈ ℂ with Re λ > ω0 and
ã(λ)k̃(λ) ̸= 0, the operator I − ã(λ)𝒜 is injective, R(C) ⊆ R(I − ã(λ)𝒜), and

k̃(λ)(I − ã(λ)𝒜)−1Cx = ∞∫
0

e−λtR(t)x dt, x ∈ X, Re λ > ω0, ã(λ)k̃(λ) ̸= 0, (1.10)

{
1

ã(λ)
: Re λ > ω0, k̃(λ)ã(λ) ̸= 0} ⊆ ρC(𝒜), (1.11)

and R(s)R(t) = R(t)R(s), t, s ⩾ 0.
(ii) Assume (1.10)–(1.11). Then 𝒜 is a subgenerator of the global (a, k)-regularized C-

resolvent family (R(t))t⩾0 satisfying (1.5) for all x = y ∈ X and R(s)R(t) = R(t)R(s),
t, s ⩾ 0.

Abstract degenerate Volterra integro-differential equations with nonlocal or im-
pulsive conditions have received much attention recently. See, e. g., the research ar-
ticles [699] by F. Li, J. Liang, H. K. Xu, [709] by J. Liang, Y. Mu, T. J. Xiao, [1091] by
Z. H. Zhao, Y. K. Chang and the list of references quoted in the monograph [258]. Men-
tion should be made of the research monograph [1102] by Y. Zhou as well.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



|
Part I: Almost periodic type functions and solutions

to integro-differential equations

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



In this part, which consists of Chapters 2–5, we investigate vector-valued almost
periodic type functions and almost periodic type solutions of the abstract Volterra
integro-differential equations in Banach spaces, which could be degenerate or non-
degenerate in the time variable. Special attention is paid to the analysis of various
classes of abstract semilinear fractional Cauchy inclusions.

https://doi.org/10.1515/9783110763522-002
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2 Almost periodic type functions

2.1 Almost periodic functions and asymptotically almost periodic
functions

As already mentioned, the notion of almost periodicity was introduced by the famous
DanishmathematicianH. Bohr around 1925 [196] and later generalizedbymanyothers
(cf. [34, 309, 311, 364, 442, 492, 493, 538, 697, 934, 1067] for more details on the sub-
ject). Here we would like to note that P. Bohl [194, 195] (and E. Esclangon [411–413])
had created the theory of quasi-periodic functions (an important class of almost pe-
riodic functions). In his dissertation [194], P. Bohl laid the theoretical foundations for
the study of quasi-periodic functions; after that, in the research article [195], he sig-
nificantly advanced this theory, proving several essential theorems for quasi-periodic
functions.

Suppose that I = ℝ or I = [0,∞), and f : I → X is continuous. For any given real
number ε > 0, we say that a real number τ > 0 is an ε-period for f (⋅) if and only if

f (t + τ) − f (t)
 ⩽ ε, t ∈ I . (2.1)

By ϑ(f , ε)we denote the set of all ε-periods for f (⋅). It is said that f (⋅) is almost periodic
if and only if for each ε > 0 the set ϑ(f , ε) is relatively dense in [0,∞), which means
that there exists l > 0 such that any subinterval of [0,∞) of length l meets ϑ(f , ε). It
is said that f (⋅) is weakly almost periodic if and only if for each x∗ ∈ X∗ the function
x∗(f (⋅)) is almost periodic. Any weakly almost periodic function f ∈ BUC(I : X) with a
relatively compact range in X is almost periodic; see, e. g., [82, Proposition 4.5.12].

By AP(I : X) we denote the space consisting of all almost periodic functions from
the interval I into X; equipped with the sup-norm, AP(I : X) is a Banach space. This
space contains the space Pc(I : X) consisting of all continuous functions f : I → X of
period c > 0; by P(I : X) we denote the space consisting of all continuous functions
f : I → X for which there exists c > 0 such that f (⋅) is of period c.

It iswell known that the spaceAP(I : X) is the closure of the set of all trigonometric
polynomials in the space BUC(I : X). If α and β are real numbers such that β ̸= 0
and α/β is an irrational real number, then the trigonometric polynomial t → fα,β(t) ≡
eiαt + eiβt, t ∈ ℝ is not periodic but it is almost periodic. The almost periodicity of this
mapping has been proved byH. Bohr as follows. Clearly, α ̸= 0 and the number p1/p2 is
irrational, where p1 = 2π/|α| and p2 = 2π/|β|. As a consequence of general theorem in
the theory of Diophantine approximations, for any given number ε > 0 in advance, we
can find the existence of two sequences (an) and (bn) of arbitrarily large integers such
that |anp1 − bnp2| < ε for all n ∈ ℕ and that the sequences (an+1 − an) and (bn+1 − bn)
are bounded. If n ∈ ℕ and τ is any real number between anp1 and bnp2, then τ will be
(2(|α|+ |β|)ε)-period of the function fα,β(⋅), as it can be simply approved. Using this fact
and the boundedness of sequences (an+1 − an) and (bn+1 − bn), we obtain the required.

https://doi.org/10.1515/9783110763522-003
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Before proceeding, we would like to recommend the articles [83, 84] by V. V. Arestov,
[85] by V. V. Arestov, P. Yu. Glazyrina, [391] by M. Donovski and the references quoted
therein for the basic results concerning inequalities for trigonometric polynomials and
their (fractional) derivatives.

For the sequel, we need some preliminaries from [119]. The translation semigroup
(W(t))t⩾0 on AP([0,∞) : X), defined by [W(t)f ](s) := f (t + s), t ⩾ 0, s ⩾ 0, f ∈
AP([0,∞) : X) is consisting solely of surjective isometriesW(t) (t ⩾ 0) and can be ex-
tended to a C0-group (W(t))t∈ℝ of isometries on AP([0,∞) : X), whereW(−t) := W(t)−1

for t > 0. Moreover, the mapping 𝔼 : AP([0,∞) : X)→ AP(ℝ : X), defined by

[𝔼f ](t) := [W(t)f ](0), t ∈ ℝ, f ∈ AP([0,∞) : X),

is a linear surjective isometry and 𝔼f (⋅) is the unique almost periodic extension of a
function f (⋅) from AP([0,∞) : X) to the whole real line. Let us recall that [𝔼(Bf )] =
B(𝔼f ) for all B ∈ L(X) and f ∈ AP([0,∞) : X).

In the following theorem, we collect the fundamental properties of almost peri-
odic vector-valued functions; by c0 we denote the Banach space of all numerical se-
quences tending to zero, equipped with the sup-norm.

Theorem 2.1.1. Let f ∈ AP(I : X). Then the following hold:
(i) f ∈ BUC(I : X);
(ii) if g ∈ AP(I : X), h ∈ AP(I : ℂ), α, β ∈ ℂ, then αf + βg and hf ∈ AP(I : X);
(iii) Bohr’s transform of f (⋅),

Pr(f ) := limt→∞

1
t

t

∫
0

e−irsf (s) ds,

exists for all r ∈ ℝ and

Pr(f ) := limt→∞

1
t

t+α

∫
α

e−irsf (s) ds

for all α ∈ I , r ∈ ℝ. The element Pr(f ) is called the Bohr coefficient or the Bohr–
Fourier coefficient of f (⋅);

(iv) if Pr(f ) = 0 for all r ∈ ℝ, then f (t) = 0 for all t ∈ I;
(v) Bohr’s spectrum σ(f ) := {r ∈ ℝ : Pr(f ) ̸= 0} is at most countable;
(vi) if X does not contain an isomorphic copy of c0, I = ℝ and g(t) = ∫

t
0 f (s) ds (t ∈ ℝ)

is bounded, then g ∈ AP(ℝ : X);
(vii) if (gn)n∈ℕ is a sequence in AP(I : X) and (gn)n∈ℕ converges uniformly to g, then

g ∈ AP(I : X);
(viii) if f ′ ∈ BUC(I : X), then f ′ ∈ AP(I : X);
(ix) (Spectral synthesis) f ∈ span{eiμ⋅x : μ ∈ σ(f ), x ∈ R(f )};
(x) R(f ) is relatively compact in X;
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(xi) (Supremum formula) we have

‖f ‖∞ = sup
t⩾t0

f (t)
, t0 ∈ I ;

(xii) (Convolution invariance) if I = ℝ and g ∈ L1(ℝ), then g ∗ f ∈ AP(ℝ : X), where

(g ∗ f )(t) =
∞

∫
−∞

g(t − s)f (s) ds, t ∈ ℝ;

(xiii) if n ∈ ℕ and f1 ∈ AP(I : X1), . . . , fn ∈ AP(I : Xn), then (f1, . . . , fn) ∈ AP(I : X1 × ⋅ ⋅ ⋅ ×
Xn). Here, Xi is a complex Banach space for all i = 1, . . . , n;

(xiv) if f1 ∈ AP(I : X1), . . . , fn ∈ AP(I : Xn), then for each ε > 0 there exists a common
relatively dense set ϑ(f1, . . . , fn, ε) of ε-periods for any of these functions. Here, Xi
is a complex Banach space for all i = 1, . . . , n;

(xv) (Bochner’s criterion) Let I = ℝ. Then f (⋅) is almost periodic if and only if for any
real sequence (bn) there exists a subsequence (an) of (bn) such that (f (⋅ + an))
converges in BUC(ℝ : X).

In connection with the point (vi), it should be noted that the necessary and suf-
ficient condition for X to contain c0 is given in [82, Theorem 4.6.14]; the importance
of such condition has been recognized already by H. Bohr and later employed fre-
quently (see, e. g., the formulation of Kadet’s theorem [82, Theorem 4.6.11]). In [572],
M. I. Kadets has also shown that a Banach space X contains c0 (sometimes we also say
for such aBanach spaceX that is perfect) if and only if for any f ∈ AP(ℝ : X)we see that
the boundedness of the first anti-derivative of f (⋅) implies its almost periodicity. Let us
recall that A. I. Perov and T. K. Hai have proved, in [835, Theorem 1], that any classical
solution of the abstract Cauchy problem u′(t) = iAu(t), t ∈ ℝ is almost periodic pro-
vided that the space X is perfect, the bounded linear operator A ∈ L(X) is completely
continuous (i. e., it maps every relatively weakly compact subset of X into a relatively
compact subset ofX) and generates a uniformly boundedC0-group of operators. In the
general case, this result does not hold if the underlying Banach space X is not perfect.
For more details regarding the anti-derivatives of almost periodic functions, we also
refer the reader to the research article [566] by R. A. Johnson.

Example 2.1.2 ([55]). Suppose that X := l∞ and (λn) is a sequence of positive real
numbers such that limn→∞ λn = 0. Then the function f : ℝ → X, given by f (t) :=
(λn cos(λnt)), t ∈ ℝ, is almost periodic, its first anti-derivative F(t) = (sin(λnt)), t ∈ ℝ,
is bounded but not almost periodic.

By APΛ(I : X), where Λ is a non-empty subset of I, we denote the vector subspace
of AP(I : X) consisting of all functions f ∈ AP(I : X) satisfying the requirement that
σ(f ) ⊆ Λ; APΛ(I : X) is a closed subspace of AP(I : X) and therefore a Banach space.
In [978], M. F. Timan and Yu. Kh. Khasanov have proved an analogue of the Jackson
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theorem for almost periodic functionswith anarbitrary spectrum (see, e. g., [1066] and
the references cited therein); for numerous equivalent criteria stating the necessary
and sufficient conditions for the almost periodicity of a given function, we refer the
reader to [631] and references quoted therein. It is well known that if f : I → X is a
continuous c-periodic function, where c > 0, then σ(f ) ⊆ 2πℤ/c.

In [446, Corollary 3], A. Fischer has proved that, for every almost periodic non-
constant function f : ℝ → X, we have diam(R(f )) > ‖f − P0(f )‖∞, where diam(X′)
denotes the diameter of subset X′ ⊆ X; in the same paper, he has established sev-
eral interesting results concerning the class of almost periodic vector-valued functions
which can be approximated, with an arbitrarily accuracy given in advance, by contin-
uous periodic functions uniformly on ℝ. We will also recall the following property of
almost periodic functions which is important in the analysis of the existence of pos-
itive almost periodic solutions for a class of hematopoiesis models in mathematical
biology.

Example 2.1.3 (see [388, Lemma 1.3(g)]). Suppose that f : ℝ → X and g : ℝ → ℝ are
almost periodic functions and inft∈ℝ g(t) > 0. Then the function

F(t) :=
t

∫
−∞

e−∫
t
s g(s) dsf (s) ds, t ∈ ℝ

is almost periodic.

In the case that I = [0,∞), the notion of asymptotical almost periodicity was
introduced by A. S. Kovanko [668] in 1929 and later rediscovered, in a slightly different
form, by M. Fréchet [453] in 1941 (for comprehensive information about the subject,
we refer to [129, 130, 236, 269, 364, 492, 493, 881, 882, 955, 961, 1042, 1078]). Following
M. Fréchet, a function f ∈ Cb(I : X) is said to be asymptotically almost periodic if
and only if for every ε > 0 we can find numbers l > 0 and M > 0 such that every
subinterval of I of length l contains, at least, one number τ such that ‖f (t+τ)−f (t)‖ ⩽ ε
provided |t|, |t + τ| ⩾ M. The space consisting of all asymptotically almost periodic
functions from I intoX is denoted byAAP(I : X). It is well known that (seeW.M. Ruess,
W.H. Summers [880–882] for the case that I = [0,∞) and C. Zhang [1077, 1078] for the
case that I = ℝ) the following statements are equivalent:
(i) f ∈ AAP(I : X).
(ii) There exist uniquely determined functions g ∈ AP(ℝ : X) and ϕ ∈ C0(I : X) such

that f = g + ϕ.

The functions g and ϕ from (ii) are called the principal and corrective terms of the
function f , respectively. If there exist functions g ∈ P(ℝ : X) (of period c > 0) and
ϕ ∈ C0(I : X) such that f = g + ϕ, then we say that f (⋅) is asymptotically periodic
(asymptotically c-periodic).
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By C0(I × Y : X) we denote the space of all continuous functions h : I × Y → X
such that lim|t|→∞ h(t, y) = 0 uniformly for y in any compact subset of Y . A continuous
function f : I × Y → X is called uniformly continuous on bounded sets, uniformly
for t ∈ I if and only if for every ε > 0 and every bounded subset K of Y there exists a
number δε,K > 0 such that ‖f (t, x)−f (t, y)‖ ⩽ ε for all t ∈ I and all x, y ∈ K satisfying the
requirement that ‖x− y‖ ⩽ δε,K . If f : I ×Y → X, then we define ̂f : I ×Y → Lp([0, 1] : X)
by ̂f (t, y) := f (t + ⋅, y), t ⩾ 0, y ∈ Y .

The following definition and related composition principle can be found, e. g., in
[631].

Definition 2.1.4. Let 1 ⩽ p <∞.
(i) A function f : I × Y → X is called almost periodic if and only if f (⋅, ⋅) is bounded,

continuous and for every ε > 0 and every compact K ⊆ Y there exists l(ε,K) > 0
such that every subinterval J ⊆ I of length l(ε,K) contains a number τ with the
property that ‖f (t + τ, y) − f (t, y)‖ ⩽ ε for all t ∈ I, y ∈ K. The collection of such
functions will be denoted by AP(I × Y : X).

(ii) A function f : I × Y → X is said to be asymptotically almost periodic if and only
if it is bounded continuous and admits a decomposition f (t) = g(t) + q(t), t ∈ I,
where g ∈ AP(ℝ×Y : X) and q ∈ C0(I ×Y : X). Denote by AAP(I ×Y : X) the vector
space consisting of all such functions.

Theorem 2.1.5.
(i) Let f ∈ AP(I × Y : X) and h ∈ AP(I : Y). Then the mapping t → f (t, h(t)), t ∈ I

belongs to the space AP(I : X).
(ii) Let f ∈ AAP(I × Y : X) and h ∈ AAP(I : Y). Then the mapping t → f (t, h(t)), t ⩾ 0

belongs to the space AAP(I : X).

Let us recall that f (⋅) is anti-periodic if and only if there exists p > 0 such that
f (x + p) = −f (x), x ∈ I. Any such function needs to be periodic, as it can be easily
proved. Given ε > 0, we call τ > 0 an ε-antiperiod for f (⋅) if and only if

f (t + τ) + f (t)
 ⩽ ε, t ∈ I .

By ϑap(f , ε)we denote the set of all ε-antiperiods for f (⋅). The notion of an almost anti-
periodic functionwas introduced by D.N. Cheban [270] in 1980 (see also D.N. Cheban,
I. N. Cheban [273]) and rediscovered 40 years later by M. Kostić and D. Velinov in [666]
(see [666, Definition 2.1]):

Definition 2.1.6. It is said that f (⋅) is almost anti-periodic if and only if for each ε > 0
the set ϑap(f , ε) is relatively dense in [0,∞).

We know that any almost anti-periodic function is almost periodic. Denote by
ANP0(I : X) the linear span of almost anti-periodic functions from I into X. Then [666,
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Theorem 2.3] implies that ANP0(I : X) is a linear subspace of AP(I : X) and that the
linear closure of ANP0(I : X) in AP(I : X), denoted by ANP(I : X), satisfies

ANP(I : X) = APℝ∖{0}(I : X). (2.2)

Later, we will generalize the notion of almost anti-periodicity by introducing the no-
tion of c-almost periodicity (see Section 4.2).

Within the theory of topological dynamical systems, the notion of recurrence
plays an important role; for more details, the reader may consult the research mono-
graphs [358] by J. de Vries and [408] by T. Eisner et al. Following A. Haraux and
P. Souplet [511], we introduce the following notion.

Definition 2.1.7. It is said that a continuous function f : I → X is uniformly recurrent
if and only if there exists a strictly increasing sequence (αn) of positive real numbers
such that limn→+∞ αn = +∞ and

lim
n→∞

sup
t∈I

f (t + αn) − f (t)
 = 0. (2.3)

It is well known that any almost periodic function is uniformly recurrent, while
the converse statement is not true in general. It is worth noting that the convergence
of the above limit is uniform in the variable t ∈ ℝ, so that the notion of a uniformly
recurrent function should not be mistakenly identified with the notion of a recurrent
function in the continuous Bebutov system [136], where the author has analyzed the
usual Fréchet space C(ℝ) and the topology of uniform convergence on compact sets
(cf. also Subsection 2.3.9 in the monograph [163] by G. Bertotti and I. D. Mayergoyz,
the paper [328] by L. I. Danilov and references cited therein for further information
in this direction). A uniformly recurrent function is also called pseudo-periodic by H.
Bohr (see [197, Part. II, p. 32]), which has been accepted by many other authors later
on; a recurrent function in the continuous Bebutov system is also called uniformly
Poisson-stable motion by M.V. Bebutov.

Let us recall that the notion of a pseudo-almost periodic function was introduced
by C. Zhang in the doctoral dissertation [1074] (cf. also [1075, 1076]). Henceforth,
PAP0(ℝ : X) stands for the space consisting of all pseudo-ergodic components, i. e.,
the bounded continuous functions Φ : ℝ→ X such that

lim
l→∞

1
2l

l

∫
−l

Φ(s)
 ds = 0.

Regarding the space PAP0(ℝ : ℂ), it should be recalled that f ∈ PAP0(ℝ : ℂ) if and
only if f ⋅ f ∈ PAP0(ℝ : ℂ).

We say that a continuous function f : ℝ→ X is pseudo-almost periodic if and only
if it admits a decomposition f = g + q, where g ∈ AP(ℝ : X) and q ∈ PAP0(ℝ : X). It
is well known that, if such a decomposition exists, then it must be unique. The space
consisting of all pseudo-almost periodic functions will be denoted by PAP(ℝ : X).
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Example 2.1.8. Define

f (t) := 1
2t

t

∫
−t

s| sin s|s
N
ds, t ∈ ℝ,

where N > 6. From [32, Example p. 1143] we know that limt→+∞ f (t) = 0 and therefore
⋅| sin ⋅|⋅

N
∈ PAP0(ℝ : ℂ) for N > 6.

For more details about pseudo-almost periodic functions and pseudo-almost pe-
riodic solutions of partial differential equations, see the book [365] by T. Diagana, the
doctoral dissertation of C. Zhang [1074], themonograph [1079] by the same author and
the recent article [1047] by P. T. Xuan, S. L. The and T. T. H. Vu.

The representation of functions by trigonometric series is an old mathematical
problem. In 1927, A. S. Besicovitch [167] proved that there exist infinitelymany trigono-
metric series convergent to a bounded, continuous function f : ℝ → ℂ, which is of
bounded variation in every finite interval; hence, an everywhere convergent trigono-
metric series need not be almost periodic, in general (see also [171, 714, 989] and refer-
ences quoted therein). Here we would like to note that D. E. Menshov [761] proved, in
1941, that there exists a sequence Λ of integers such that every measurable function
f : ℝ→ ℂ admits a representation

f (t) = ∑
k∈Λ

cke
ikt ,

which converges for a. e. t ∈ ℝ (ck ∈ ℤ, k ∈ Λ). This is the famous Menshov repre-
sentation theorem and any sequence of integers Λ satisfying the above requirement is
called a Menshov spectrum. For further information on the Menshov spectra, we refer
the reader to the research articles [626–628] by G. Kozma, A. Olevskii and references
cited therein.

Before we switch to the next section, we would like to emphasize the following:
1. The Hartman almost periodic functions on topological groups have been ana-

lyzed in the article [306] by G. Cohen, V. Losert and the research article [750] by G.
Maresh, R. Winkler.

2. Among many other research papers, almost periodic functions on Banach alge-
bras have been studied by M. Daws [333–335], J. Duncan and A. Ülger [404], M. Fi-
lali and M. S. Monfared [441], H. S. Mustafayev [803] and J. C. Quigg [863] (for al-
most periodic functions on quasigroups, pseudocompact grupoids and universal
algebras, see the research studies [288–290] by M.M. Choban and D. I. Pavel).

3. For (sub-)harmonic almost periodic functions and Hardy spaces of almost peri-
odic functions, the reader may consult the research articles [428, 429] by S. Yu.
Favorov, A. V. Rakhnin, [599] by Yu. Kh. Khasanov, [767] by J. P. Milaszewicz and
[821] by R. Owens, while for (holomorphic) semi-almost periodic functions, the
reader may consult the research articles [225–227] by A. Brudnyi, D. Kinzebulatov
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and [901] by D. Sarason; we also refer the reader to the interesting paper [723] by
K. Liu, Y. Wei and P. Yu which concerns generalized Yang’s conjecture for tran-
scendental entire functions.

4. The study of almost periodic transformation groups was initiated by D. Mont-
gomery in [780], with the main results given for the Euclidean space ℝ3; see
also the papers by B. L. Brechner [218], N. E. Foland [448] and masters’ thesis by
A. P. Wu [1033] for more details about the subject.

5. Certain types of non-classical almost periodic function spaces have been intro-
duced and analyzed by [128] by B. Basit and C. Zhang; concerning the almost peri-
odic solutions of partial differential equations, differential and pseudodifferential
operators in the spaces of almost periodic functions, we should also mention the
monograph article [938] by M.A. Shubin (cf. also [935]) and the research articles
[173, 174] by M. Biroli.

2.2 Stepanov, Weyl and Besicovitch classes

Suppose that 1 ⩽ p < ∞, l > 0 and f , g ∈ Lploc(I : X), where I = ℝ or I = [0,∞). We
define the Stepanov ‘metric’ by

Dp
Sl
[f (⋅), g(⋅)] := sup

x∈I
[
1
l

x+l

∫
x

f (t) − g(t)

p dt]

1/p

.

Then, for every two numbers l1, l2 > 0, there exist two positive real constants k1, k2 > 0
independent of f , g, such that

k1D
p
Sl1
[f (⋅), g(⋅)] ⩽ Dp

Sl2
[f (⋅), g(⋅)] ⩽ k2D

p
Sl1
[f (⋅), g(⋅)].

Furthermore, there exists

Dp
W [f (⋅), g(⋅)] := liml→∞

Dp
Sl
[f (⋅), g(⋅)] (2.4)

in [0,∞]. The distance appearing above is called theWeyl distance of f (⋅) and g(⋅). The
Stepanov and Weyl ‘norm’ of f (⋅) are defined by

‖f ‖Spl := D
p
Sl
[f (⋅),0] and ‖f ‖Wp := Dp

W [f (⋅),0],

respectively.
Before proceeding further, we would like to note that it is not clear how we can

define the Stepanov distance by considering a general variable exponent p ∈ 𝒫(I) in
place of the constant coefficient p ⩾ 1 above; moreover, it is not clear whether the
formula (2.4) can be generalized in this context.
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In the sequel of this section, we assume that l1 = l2 = 1. It is said that a function
f ∈ Lploc(I : X) is Stepanov p-bounded, S

p-bounded for short, if and only if

‖f ‖Sp := sup
t∈I
(

t+1

∫
t

f (s)

p ds)

1/p

<∞.

Equipped with the above norm, the space LpS(I : X) consisting of all S
p-bounded func-

tions is a Banach space.

Example 2.2.1. Let p ⩾ 1. Consider the function f : [0,∞)→ ℝ defined by

f (s) := { k, if k ⩽ s ⩽ k + k−p for some k ∈ ℕ,
0, otherwise.

Then the function f (⋅) is neither continuous nor bounded but for each t ∈ ℝ we have

∫
[t,t+1]

f (s)

p ds ⩽ ∫

[⌊t⌋,⌊t⌋+2]

f (s)

p ds

=
⌊t⌋+1
∑
k=⌊t⌋

∫
[k,k+k−p]∩[k,k+1]

f (s)

p ds

=
⌊t⌋+1
∑
k=⌊t⌋
∫

[k,k+k−p]

kp ds = 2.

Hence, f (⋅) is Stepanov p-bounded.

A function f ∈ LpS(I : X) is said to be Stepanov p-almost periodic, Sp-almost peri-
odic shortly, if and only if the function ̂f : I → Lp([0, 1] : X), defined by

̂f (t)(s) := f (t + s), t ∈ I , s ∈ [0, 1], (2.5)

is almost periodic. We say that the function f ∈ LpS(I : X) is asymptotically Stepanov
p-almost periodic if and only if there exist two locally p-integrable functions g : ℝ→ X
and q : I → X satisfying the following conditions:
(i) g is Sp-almost periodic,
(ii) q̂ belongs to the class C0(I : Lp([0, 1] : X)),
(iii) f (t) = g(t) + q(t) for all t ∈ I.

Recall, if f (⋅) is an (asymptotically) almost periodic function, then f (⋅) is also (asymp-
totically) Stepanov p-almost periodic for 1 ⩽ p < ∞. The converse statement is false,
however [696].
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Example 2.2.2. Assume that α, β ∈ ℝ and αβ−1 is a well-defined irrational number.
Then the functions

fα,β(t) := sin(
1

2 + cos αt + cos βt
), t ∈ ℝ, (2.6)

and

gα,β(t) := cos(
1

2 + cos αt + cos βt
), t ∈ ℝ, (2.7)

are Stepanov p-almost periodic but not almost periodic (1 ⩽ p < ∞). The case α = 1
and β = √2 has been further analyzed by A. Nawrocki in [810], who proved with the
help of Liouville’s theorem and some results from the theory of continuous fractions
[810, Theorem 1, Theorem 2] that

lim
t→+∞

t−2−ε

2 + cos t + cos√2t
= 0, ε > 0,

and

lim
t→+∞

t−2

2 + cos t + cos√2t

does not exist. Recall, the function t → 1/(2 + cos t + cos√2t), t ∈ ℝ is well defined,
continuous and unbounded.

Denote by APSp(I : X) and AAPSp(I : X) the space consisting of all Sp-almost pe-
riodic functions f : I → X and the space consisting of all asymptotically Sp-almost
periodic functions f : I → X, respectively. The Bochner theorem asserts that any uni-
formly continuous function which is also Stepanov p-almost periodic needs to be al-
most periodic (1 ⩽ p <∞); the Bochner theorem for Stepanov p-almost periodic func-
tions has been established by Z. Hu and A. B. Mingarelli in [543, Theorem 1] (see also
[602], where Yu. Kh. Khasanov and E. Safarzoda have analyzed the approximations of
Stepanov almost periodic functions by means of Marcinkiewicz; for the formulation
of Bochner criterion in convex bornological spaces, see the research article [991] by V.
Valmorin).

Before we introduce the notion of a Stepanov p-almost periodic function f : I ×
Y → X, let us note that M. Baake, A. Haynes and D. Len have recently considered the
Birkhoff-type averaging almost periodic functions along exponential sequences and
proved, in [106, Theorem 5.2], that for any almost periodic function f : ℝ→ X, for any
real number α ∈ (−∞,−1) ∪ (1,∞) and for a. e. x ∈ ℝ, one has

lim
N→+∞

1
N

N−1
∑
n=0

f (αnx) = lim
t→∞

1
t

t

∫
0

f (s) ds.
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An analogue of this result for scalar-valued Stepanov p-almost periodic functions
has been considered in [106, Theorem 4.8] and can be straightforwardly extended to
Stepanov p-almost periodic vector-valued functions (1 ⩽ p <∞).

Definition 2.2.3. Let 1 ⩽ p <∞. A function f : I × Y → X is called Stepanov p-almost
periodic if and only if ̂f : I × Y → Lp([0, 1] : X) is almost periodic.

Recall that a bounded continuous function f : I × Y → X is asymptotically almost
periodic if and only if for every ε > 0 and every compact K ⊆ Y there exist l(ε,K) > 0
andM(ε,K) > 0 such that every subinterval J ⊆ I of length l(ε,K) contains a number τ
with the property that ‖f (t + τ, y)− f (t, y)‖ ⩽ ε provided |t|, |t + τ| ⩾ M(ε,K), y ∈ K. The
notion of an asymptotically Stepanov p-almost periodic function f (⋅, ⋅) is introduced
in [631] for case I = [0,∞) as follows.

Definition 2.2.4. Let 1 ⩽ p < ∞. A function f : I × Y → X is said to be asymptotically
Sp-almost periodic if and only if ̂f : I × Y → Lp([0, 1] : X) is asymptotically almost
periodic. The collection of such functions will be denoted by AAPSp(I × Y : X).

Let ω ∈ I. Then we say that a bounded continuous function f : I → X is
S-asymptotically ω-periodic if and only if lim|t|→∞ ‖f (t + ω) − f (t)‖ = 0. Denote by
SAPω(I : X) the space consisting of all such functions. A Stepanov p-bounded func-
tion f (⋅) is said to be Stepanov p-asymptotically ω-periodic if and only if

lim
|t|→∞

t+1

∫
t

f (s + ω) − f (s)

p ds = 0.

If we denote by SpSAPω(I : X) the space consisting of all such functions, then we see
that SAPω(I : X) ⊆ SpSAPω(I : X) and the inclusion is strict (for more details, see
H. R. Henríquez [527] and H. R. Henríquez, M. Pierri, P. Táboas [531]).

The (Stepanov) quasi-asymptotically almost periodic functions have been ana-
lyzed in [647]. For our further work, it will be necessary to recall the following defini-
tion.

Definition 2.2.5. Suppose that 1 ⩽ p <∞, I = [0,∞) or I = ℝ.
(i) A bounded continuous function f : I → X is said to be quasi-asymptotically al-

most periodic if and only if for each ε > 0 there exists a finite number L(ε) > 0
such that any interval I′ ⊆ I of length L(ε) contains at least one number τ ∈ I′

satisfying the requirement that there exists a finite numberM(ε, τ) > 0 such that

f (t + τ) − f (t)
 ⩽ ε, provided t ∈ I and |t| ⩾ M(ε, τ).

Denote by Q − AAP(I : X) the set consisting of all quasi-asymptotically almost
periodic functions from I into X.

(ii) Let us assume that f ∈ LpS(I : X). Then it is said that f (⋅) is Stepanov p-quasi-
asymptotically almost periodic if and only if for each ε > 0 there exists a finite
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number L(ε) > 0 such that any interval I′ ⊆ I of length L(ε) contains at least
one number τ ∈ I′ satisfying the requirement that there exists a finite number
M(ε, τ) > 0 such that

t+1

∫
t

f (s + τ) − f (s)

p ds ⩽ εp, provided t ∈ I and |t| ⩾ M(ε, τ).

Denote by SpQ − AAP(I : X) the set consisting of all Stepanov p-quasi-asymptoti-
cally almost periodic functions from I into X.

Let us recall that for each number p ∈ [1,∞) we see that Q − AAP(I : X) ⊆
SpQ − AAP(I : X) and that any asymptotically Stepanov p-almost periodic function
is Stepanov p-quasi-asymptotically almost periodic. Furthermore, if 1 ⩽ p ⩽ q < ∞,
then SqQ − AAP(I : X) ⊆ SpQ − AAP(I : X) and for any function f ∈ LpS(I : X), we see
that f (⋅) is Stepanov p-quasi-asymptotically almost periodic if and only if the func-
tion ̂f : I → Lp([0, 1] : X), defined by (2.5), is quasi-asymptotically almost periodic.
It is said that f (⋅) is Stepanov quasi-asymptotically almost periodic if and only if f (⋅)
is Stepanov 1-quasi-asymptotically almost periodic. Any asymptotically almost peri-
odic function f : I → X is quasi-asymptotically almost periodic. Furthermore, we have
SAPω(I : X) ⊆ Q − AAP(I : X) and SpSAPω(I : X) ⊆ SpQ − AAP(I : X).

Let 1 ⩽ p < ∞. Now we recall the notions of the Besicovitch-p-almost periodic
functions and the Besicovitch–Doss-p-almost periodic functions (see also the article
[327] by L. I. Danilov for the corresponding notion in complete metric spaces, as well
as the landmark paper [748] by J. Marcinkiewicz and M.A. Picardello’s article [844]).
If f ∈ Lploc(ℝ : X), then we define

‖f ‖ℳp := lim sup
t→+∞
[
1
2t

t

∫
−t

f (s)

p ds]

1/p

;

if f ∈ Lploc([0,∞) : X), then

‖f ‖ℳp := lim sup
t→+∞
[
1
t

t

∫
0

f (s)

p ds]

1/p

.

In any case, ‖ ⋅ ‖ℳp is a seminorm on the space ℳp(I : X) consisting of those
Lploc(I : X)-functions f (⋅) for which ‖f ‖ℳp < ∞. Denote Kp(I : X) := {f ∈ ℳp(I : X) :
‖f ‖ℳp = 0} and

Mp(I : X) :=ℳ
p(I : X)/Kp(I : X).

The seminorm ‖ ⋅ ‖ℳp onℳp(I : X) induces the norm ‖ ⋅ ‖Mp onMp(I : X) under which
Mp(I : X) is complete so that (Mp(I : X), ‖ ⋅ ‖Mp ) is a Banach space.

Now we are able to introduce the following notion.
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Definition 2.2.6. Let 1 ⩽ p <∞. We say that a function f ∈ Lploc(I : X) is Besicovitch-p-
almost periodic if and only if there exists a sequence of X-valued trigonometric poly-
nomials converging to f (⋅) in (Mp(I : X), ‖ ⋅ ‖Mp ).

The vector space consisting of all Besicovitch-p-almost periodic functions is de-
noted by Bp(I : X). It is well known that Bp(I : X) is a closed subspace ofMp(I : X) and
therefore a Banach space equipped with the norm ‖ ⋅ ‖Mp .

The Besicovitch class can be equivalently introduced in a Bohr-like manner, by
using the notion of satisfactorily uniform sets (see e. g. [166] and [67, Definition 5.10,
Definition 5.11]). We will not use this approach henceforth.

We define the Besicovitch ‘distance’ of functions f , g ∈ Lploc(I : X) by

DBp[f (⋅), g(⋅)] := ‖f − g‖ℳp ;

the Besicovitch ‘norm’ of f ∈ Lploc(I : X) is defined by

‖f ‖Bp := DBp[f (⋅),0] := ‖f ‖ℳp .

We say that f (⋅) is Besicovitch p-bounded if and only if ‖f ‖ℳp <∞. Recall that

‖f − g‖∞ ⩾ DSpl
[f (⋅), g(⋅)] ⩾ DWp[f (⋅), g(⋅)] ⩾ DBp[f (⋅), g(⋅)],

for 1 ⩽ p < ∞, l > 0 and f , g ∈ Lploc(I : X), and that the assumption ‖f ‖ℳp = 0
does not imply f = 0 a. e. on I. For more details about absolute convergence of Fourier
series of Besicovitch almost periodic functions, the reader may consult [600, 601] and
references therein.

The notion of a vector-valued Besicovitch–Doss-p-almost periodic function is in-
troduced in [631] following the fundamental analyses of R. Doss [394, 395].

Definition 2.2.7. Let 1 ⩽ p < ∞. It is said that f ∈ Lploc(I : X) is Besicovitch–Doss-p-
almost periodic if and only if the following conditions hold:
(i) (Bp-boundedness) We have ‖f ‖ℳp <∞.
(ii) (Bp-continuity) We have

lim
τ→0

lim sup
t→+∞
[
1
2t

t

∫
−t

f (s + τ) − f (s)

p ds]

1/p

= 0,

in the case that I = ℝ, resp.,

lim
τ→0+

lim sup
t→+∞
[
1
t

t

∫
0

f (s + τ) − f (s)

p ds]

1/p

= 0,

in the case that I = [0,∞).
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(iii) (Doss-p-almost periodicity) For every ε > 0, the set of numbers τ ∈ I for which

lim sup
t→+∞
[
1
2t

t

∫
−t

f (s + τ) − f (s)

p ds]

1/p

< ε,

in the case that I = ℝ, resp.,

lim sup
t→+∞
[
1
t

t

∫
0

f (s + τ) − f (s)

p ds]

1/p

< ε,

in the case that I = [0,∞), is relatively dense in I.
(iv) For every λ ∈ ℝ, we have

lim
l→+∞

lim sup
t→+∞

1
l
[
1
2t

t

∫
−t


(

x+l

∫
x

−
l

∫
0

)eiλsf (s) ds


p

dx]
1/p

= 0,

in the case that I = ℝ, resp.,

lim
l→+∞

lim sup
t→+∞

1
l
[
1
t

t

∫
0


(

x+l

∫
x

−
l

∫
0

)eiλsf (s) ds


p

dx]
1/p

= 0,

in the case that I = [0,∞).

The vector space consisting of all Besicovitch–Doss-p-almost periodic functions
f : I → X in the sense of Definition 2.2.7 will be denoted by Bp(I : X). In the case
that X = ℂ, an intriguing result of R. Doss says that Bp(I : X) = Bp(I : X). It is still an
unsolved problemwhether the equality Bp(I : X) = Bp(I : X)holds in the vector-valued
case.

Before moving to the next subsection, we want also to recommend for the reader
the articles [58, 59, 94] and [228, 229], written by a group of Italian mathematicians,
for more details about the Besicovitch almost periodic functions.

2.2.1 Stepanov μ-pseudo-almost periodic functions and applications

In this subsection, we provide the main properties of Stepanov μ-ergodic functions
and (Stepanov) μ-pseudo-almost periodic functions. We will use the following as-
sumption on the measure μ:
(M) For all τ ∈ ℝ, there exist a number β > 0 and a bounded interval I such that

μ({a + τ : a ∈ A}) ⩽ βμ(A), provided A ∈ ℬ(ℝ) and A ∩ I = 0.

By ℳ we denote a collection consisting of all such measures. In particular, the
Lebesgue measure λ on (ℝ,ℬ(ℝ)) belongs toℳ.
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Definition 2.2.8 ([181]). Let μ ∈ℳ. A bounded continuous function f : ℝ→ X is said
to be μ-ergodic if and only if

lim
r→+∞

1
μ([−r, r])

∫
[−r,r]

f (t)
 dμ(t) = 0.

The space of all such functions is denoted by ℰ(ℝ,X, μ).

Example 2.2.9 ([181]).
(i) Any ergodic function which belongs to the space PAP0(ℝ : X) is nothing else but

a μ-ergodic function in the particular case when μ is the Lebesgue measure.
(ii) Let ρ : ℝ → [0,+∞) be a Lebesgue measurable function. We define the positive

measure μ on ℬ(ℝ) by

μ(A) := ∫
A

ρ(t) dt for A ∈ ℬ(ℝ),

where dt denotes the Lebesgue measure. The measure μ is absolutely continuous
with respect to dt and the function ρ is called the Radon–Nikodym derivative of
μ with respect to dt. In that case μ ∈ ℳ if and only if the function ρ(⋅) is locally
Lebesgue-integrable on ℝ and satisfies ∫ℝ ρ(t) dt = +∞.

The following definition has been introduced in [415].

Definition 2.2.10. Let μ ∈ ℳ and 1 ⩽ p < ∞. A function f ∈ LpS(ℝ : X) is said to be
Stepanov μ-ergodic (μ-Sp-ergodic, for short) if and only if

lim
r→+∞

1
μ([−r, r])

∫
[−r,r]

( ∫
[t,t+1]

f (s)

p ds)

1
p

dμ(t) = 0.

The space of all such functions is denoted by ℰp(ℝ,X, μ).

We need the following lemma from the last-mentioned paper.

Lemma 2.2.11. Let 1 ⩽ p <∞ and μ ∈ℳ satisfy (M). Then the following hold:
(i) ℰp(ℝ,X, μ) is translation invariant.
(ii) ℰ(ℝ,X, μ) ⊆ ℰp(ℝ,X, μ).

Now we introduce the following definitions.

Definition 2.2.12. Let μ ∈ ℳ and 1 ⩽ p < ∞. A function f : ℝ × X → Y such that
f (⋅, x) ∈ LpS(ℝ : Y) for each x ∈ X is said to be μ-Sp-ergodic in t with respect to x in X if
and only if the following hold:
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(i) For all x ∈ X, f (⋅, x) ∈ ℰp(ℝ,Y , μ);
(ii) f (⋅, ⋅) is Sp-uniformly continuous with respect to the second argument on each

compact subset K in X, namely: for every ε > 0, there exists δK,ε > 0 such that, for
every x1, x2 ∈ K, we have

‖x1 − x2‖ ⩽ δK,ε ⇒ (
t+1

∫
t

f (s, x1) − f (s, x2)

p ds)

1
p

⩽ ε for all t ∈ ℝ.

Denote by ℰpU(ℝ × X,Y , μ) the set of all such functions.

Definition 2.2.13 ([181]). Let μ ∈ ℳ. A continuous function f : ℝ → X is said to be
μ-pseudo-almost periodic if and only if f (⋅) can be decomposed in the form f = g + φ,
where g ∈ AP(ℝ : X) and φ ∈ ℰ(ℝ,X, μ). The space of all such functions is denoted by
PAP(ℝ,X, μ).

If μ ∈ℳ satisfies (M), then the following hold [181]:
(i) The decomposition of a μ-pseudo-almost periodic in the form f = g + φ, where

g ∈ AP(ℝ : X) and φ ∈ ℰ(ℝ,X, μ), is unique.
(ii) PAP(ℝ,X, μ) equipped with the sup-norm is a Banach space.
(iii) PAP(ℝ,X, μ) is translation invariant.

Definition 2.2.14. Let μ ∈ ℳ. A function f : ℝ × X → Y such that f (⋅, x) ∈ LpS(ℝ : Y)
for each x ∈ X is said to be Sp-μ-pseudo-almost periodic if f can be decomposed in the
form f = g + φ, where g ∈ APSp(ℝ × X : Y) and φ ∈ ℰpU(ℝ × X,Y , μ). The space of all
such functions will be denoted by PAPSpU(ℝ,X, μ).

For the sequel, we need some preliminary results obtained in [584].

Lemma 2.2.15. Let 1 ⩽ p < +∞ and f : ℝ × X → Y be such that f (⋅, x) ∈ Lploc(ℝ,Y) for
each x ∈ X. Then f ∈ APSpU(ℝ × X,Y) if and only if the following hold:
(i) For each x ∈ X, f (⋅, x) ∈ APSp(ℝ : Y).
(ii) f is Sp-uniformly continuous with respect to the second argument on each compact

subset K in X in the following sense: for all ε > 0 there exists δK,ε > 0 such that for
all x1, x2 ∈ K one has

‖x1 − x2‖ ⩽ δK,ε ⇒ (
t+1

∫
t

f (s, x1) − f (s, x2)

p ds)

1
p

⩽ ε for all t ∈ ℝ.

It is clear that Lemma 2.2.15 implies the following.

Proposition 2.2.16. Let μ ∈ℳ and f ∈ PAPSpU(ℝ × X,Y , μ), for 1 ⩽ p < +∞. Then the
following holds:
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(i) for each x ∈ X, f (⋅, x) ∈ PAPSp(ℝ,Y , μ);
(ii) f (⋅, ⋅) is Sp-uniformly continuous with respect to the second argument on each com-

pact subset K in X; namely, for each ε > 0 and for each compact set K in X there
exists δK,ε > 0 such that for all x1, x2 ∈ K, we have

‖x1 − x2‖ ⩽ δK,ε ⇒ (
t+1

∫
t

f (s, x1) − f (s, x2)

p ds)

1
p

⩽ ε for all t ∈ ℝ. (2.8)

Next, we provide some examples of Stepanov μ-pseudo-almost periodic functions
of order 1 ⩽ p <∞.

Example 2.2.17. Let X be any Banach space and let μ be a measure with the Radon–
Nikodymderivative θ definedby θ(t) := et for t ⩽ 0 and θ(t) := 1 for t > 0. From [181, Ex-
ample 3.6],we know that themeasureμ satisfies thehypothesis (M). Consider the func-
tion Φ : ℝ→ ℝ given by Φ(t) := Φ1(t) +Φ2(t) with Φ2(t) := arctan t − (π/2), t ∈ ℝ and

Φ1(t) := ∑
n⩾1

βn(t),

such that, for every n ∈ ℕ,

βn(t) := ∑
i∈Pn

H(n2(t − i)),

with Pn := 3n(2ℤ + 1) and H ∈ C∞0 (ℝ : ℝ) with support in ((−1)/2, 1/2) such that

H ⩾ 0, H(0) = 1 and

1
2

∫
(−1)
2

H(s) ds = 1.

Then we know that (see [181, Section 5]) the function Φ2(⋅) belongs to the space
ℰ(ℝ,ℝ, μ) and Φ1 ∈ APS1(ℝ). Furthermore, let h : X → X be any continuous function.
Then the functions f (t, x) := Ψ(t)h(x) and g(t, x) := Φ(t)h(x) for t ∈ ℝ and x ∈ X define
two examples of (purely) Stepanov μ-pseudo-almost periodic X-valued functions. In
particular, f is S1-μ-pseudo-almost periodic and g is S2-μ-pseudo-almost periodic.

Now we will investigate composition results for μ-pseudo-almost periodic func-
tions in Stepanov sense of order 1 ⩽ p <∞. In order to do that, we will use the follow-
ing lemma, which is a special case of Theorem 6.2.30 below.

Lemma 2.2.18. Let 1 ⩽ p < +∞ and f ∈ APSp(ℝ × X : Y). Assume that x ∈ AP(ℝ : X).
Then f (⋅, x(⋅)) ∈ APSp(ℝ : Y).

We have the following result.

Theorem 2.2.19. Let 1 ⩽ p < +∞ and μ ∈ℳ. If f ∈ ℰpU(ℝ × X,Y , μ) and x ∈ Cb(ℝ : X)
such that K = {x(t) : t ∈ ℝ} is compact in X, then f (⋅, x(⋅)) ∈ ℰp(ℝ,Y , μ).
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Proof. Let f ∈ ℰpU(ℝ × X,Y , μ), and let K = {x(t) : t ∈ ℝ} ⊆ X be a compact subset.
Then, for every ε > 0, there exists δε,K > 0 such that (2.8) holds. Since K is compact,
there exists a finite subset {x1, . . . , xn} ⊆ K (n ∈ ℕ) such that K ⊆ ⋃ni=1 B(xi, δε,K). There-
fore, for every t ∈ ℝ, there exists i(t) ∈ {1, . . . , n} such that ‖x(t)−xi(t)‖ ⩽ δ. Furthermore,

(
t+1

∫
t

f (s, x(s))

p
Y ds)

1
p

⩽ (
t+1

∫
t

f (s, x(s)) − f (s, xi(t))

p
Y ds)

1
p

+ (
t+1

∫
t

f (s, xi(t))

p
Y ds)

1
p

⩽ ε +
n
∑
i=1
(

t+1

∫
t

f (s, xi)

p
Y ds)

1
p

, t ∈ ℝ.

Since f (⋅, xi) ∈ ℰp(ℝ,Y , μ) for i = 1, . . . , n, we have

1
μ([−r, r])

r

∫
−r

(
t+1

∫
t

f (s, x(s))

p
Y ds)

1
p

dμ(t)

⩽ ε + 1
μ([−r, r])

n
∑
i=1

r

∫
−r

(
t+1

∫
t

f (s, xi)

p
Y ds)

1
p

dμ(t),

for r > 0 large enough. Consequently,

lim sup
r→+∞

1
μ([−r, r])

r

∫
−r

(
t+1

∫
t

f (s, x(s))

p
Y ds)

1
p

dμ(t) ⩽ ε. (2.9)

Since ε > 0 was arbitrary, (2.9) yields

lim
r→+∞

1
μ([−r, r])

r

∫
−r

(
t+1

∫
t

f (s, x(s))

p
Y ds)

1
p

dμ(t) = 0.

Corollary 2.2.20. Let μ ∈ ℳ. Assume that x ∈ AP(ℝ : X) and f ∈ ℰpU(ℝ × X,Y , μ).
Then f (⋅, x(⋅)) ∈ ℰp(ℝ,Y , μ).

The following lemma is taken from [181].

Lemma 2.2.21. Let μ ∈ ℳ and f ∈ Cb(ℝ : X). Then f ∈ ℰ(ℝ,X, μ) if and only if for all
ε > 0

lim
r→+∞

μ(Mε,r(f ))
μ([−r, r])

= 0,

where Mε,r(f ) := {t ∈ [−r, r] : ‖f (t)‖ ⩾ ε}.
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The proof of our result related to the composition of Sp-μ-pseudo-almost periodic
functions is based on the following lemma due to L. Schwartz [914, p. 109].

Lemma 2.2.22. LetΦ ∈ C(X : Y). Then, for each compact set K ⊆ X and for each ε > 0,
there exists δK,ε > 0 such that for any x1, x2 ∈ X, we have

x1 ∈ K and ‖x1 − x2‖ ⩽ δK,ε ⇒
Φ(x1) −Φ(x2)

Y ⩽ ε.

Theorem 2.2.23. Let 1 ⩽ p < +∞ and μ ∈ℳ. Assume the following:
(i) f : ℝ × X → Y is a function such that f = ̃f + φ ∈ PAPSpU(ℝ × X,Y , μ) with
̃f ∈ APSp(ℝ × X : Y) and φ ∈ ℰpU(ℝ × X,Y , μ);

(ii) x = x1 + x2 ∈ PAP(ℝ,X, μ), where x1 ∈ AP(ℝ : X) and x2 ∈ ℰ(ℝ,X, μ);
(iii) for every bounded subset B ⊆ X, we have supx∈B ‖f (⋅, x)‖Sp <∞.

Then f (⋅, x(⋅)) ∈ PAPSp(ℝ,Y , μ).

Proof. We have the following decomposition:

f (t, u(t)) = ̃f (t, x1(t))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟+ [f (t, x(t)) − f (t, x1(t))]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟+φ(t, x1(t))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:= F̃(t) + F(t) +Ψ(t), t ∈ ℝ.

Using Lemma 2.2.18, it follows that F̃ ∈ APSp(ℝ : Y); furthermore, Corollary 2.2.20
shows that Ψ ∈ ℰp(ℝ,Y , μ). Now, it suffices to prove that F ∈ ℰp(ℝ,Y , μ). In view of
Lemma 2.2.21, we have

lim
r→+∞

μ(Mε,r(x2))
μ([−r, r])

= 0, ε > 0.

Let ε > 0. Then, for r > 0 large enough, we have

1
μ([−r, r])

r

∫
−r

(
t+1

∫
t

F(s)

p
Y ds)

1
p

dμ(t)

⩽
1

μ([−r, r])
∫

Mε,r(x2)

(
t+1

∫
t

F(s)

p
Y ds)

1
p

dμ(t)

+
1

μ([−r, r])
∫

[−r,r]∖Mε,r(x2)

(
t+1

∫
t

F(s)

p
Y ds)

1
p

dμ(t)

⩽ ‖F‖BSp
μ(Mε,r(x2))
μ([−r, r])

+
1

μ([−r, r])
∫

[−r,r]∖Mε,r(x2)

(
t+1

∫
t

f (s, x(s)) − f (s, x1(s))

p ds)

1
p

dμ(t). (2.10)

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



40 | 2 Almost periodic type functions

Let K := {x1(t) : t ∈ ℝ}. From x1 ∈ AP(ℝ : X), we assert that K is a compact subset of X.
Define

Φ : X → PAPSp(ℝ,Y) through x → f (⋅, x).

Since f ∈ PAPSpU(ℝ × X,Y , μ), using Proposition 2.2.16 we may deduce that the re-
striction of Φ on any compact K of X is uniformly continuous, which is equivalent to
saying that the function Φ is continuous on X. If we apply Lemma 2.2.22 to Φ, we see
that, for every ε > 0, there exists δ > 0 such that, for every t ∈ ℝ and ξ1, ξ2 ∈ X, we
have

ξ1 ∈ K and ‖ξ1 − ξ2‖ ⩽ δ ⇒ (
t+1

∫
t

f (s, ξ1) − f (s, ξ2)

p
Y ds)

1
p

⩽ ε.

Since x(t) = x1(t) + x2(t) and x1(t) ∈ K, we have

t ∈ ℝ and x2(s)
 ⩽ δ for s ∈ [t, t + 1]

⇒ (
t+1

∫
t

f (s, x(s)) − f (s, x1(s))

p
Y ds)

1
p

⩽ ε.

Therefore, by the fact that x2 ∈ ℰ(ℝ,X, μ), we have

lim sup
r→+∞

μ(Mδ,r(x2))
μ([−r, r])

= 0.

Using (2.10), we obtain

lim sup
r→+∞

1
μ([−r, r])

r

∫
−r

(
t+1

∫
t

F(s)

p
Y ds)

1
p

dμ(t) ⩽ ε for all ε > 0.

Consequently,

lim
r→+∞

1
μ([−r, r])

r

∫
−r

(
t+1

∫
t

F(s)

p
Y ds)

1
p

dμ(t) = 0.

Keeping in mind Theorem 2.2.23, we obtain the following corollary.

Corollary 2.2.24. Let 1 ⩽ p < +∞ and μ ∈ℳ. Assume that f : ℝ × X → Y satisfies the
following:
(i) f = ̃f +φ ∈ PAPSpU(ℝ×X,Y , μ)with ̃f ∈ APSpU(ℝ×X,Y) and φ ∈ ℰpU(ℝ×X,Y , μ);
(ii) x = x1 + x2 ∈ PAP(ℝ,X, μ), where x1 ∈ AP(ℝ : X) and x2 ∈ ℰ(ℝ,X, μ);
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(iii) there exists a non-negative Stepanov p-bounded function L(⋅) such that

f (t, x) − f (t, y)
Y ⩽ L(t)‖x − y‖, x, y ∈ X, t ∈ ℝ.

Then f (⋅, x(⋅)) ∈ PAPSp(ℝ,Y , μ).

Nowwewill apply our theoretical results in the qualitative analysis of bounded so-
lutions for various kinds of abstract semilinear evolution inclusions in Banach spaces.
Consider the following semilinear evolution inclusion:

Dγ
t,+u(t) ∈ 𝒜u(t) + f (t, u(t)), t ∈ ℝ, (2.11)

where Dγ
t,+ denotes the Riemann–Liouville fractional derivative of order γ ∈ (0, 1),

f : ℝ × X → X is Stepanov μ-pseudo-almost periodic in t ∈ ℝ and satisfies certain
properties with respect to x ∈ X. We assume that a closed multivalued linear operator
𝒜 satisfies condition (P). Let (Rγ(t))t>0 be the operator family considered in [631]. Then
we know that

Rγ(t)
 = O(t

γ−1), t ∈ (0, 1] and Rγ(t)
 = O(t

−γ−1), t ⩾ 1.

It is said that a continuous function u : ℝ→ X is a mild solution of (2.11) if and only if

u(t) =
t

∫
−∞

Rγ(t − s)f (s, u(s)) ds, t ∈ ℝ. (2.12)

Nowwewould like to present the following application of Theorem 2.2.23. First of
all, we will impose the following hypotheses on f (⋅, ⋅):
(P2) There exists L ⩾ 0 such that for all ε > 0 there exists δ > 0 satisfying the require-

ment that

ε ⩽ ‖x − y‖ < ε + δ implies sup
t∈ℝ
(

t

∫
t+1

f (s, x) − f (s, y)

p ds)

1
p

< Lε,

for all x, y ∈ X.
(P3) For every bounded subset B ⊆ X, we have

sup
x∈B

sup
t∈ℝ
(

t+1

∫
t

f (s, x)

p ds)

1
p

<∞.

In the next example, we will show that a function satisfying (P2) is not necessarily a
strict contraction. On the other hand, Theorem 1.1.6 implies that this function has a
unique fixed point.
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Example 2.2.25.
(i) Define g : ℝ→ ℝ by

g(x) := |x|
1 + |x|
, x ∈ ℝ.

Let ε > 0 and δ > 0 such that ε ⩽ |x − y| < δ + ε for all x, y ∈ ℝ. Then we have

g(x) − g(y)
 =


|x|
1 + |x|
−
|y|

1 + |y|



⩽
||x| − |y||

1 + |x| + |y| + |x| |y|

⩽
||x| − |y||
1 + |x| + |y|

. (2.13)

Moreover, by our assumptions and (2.13), we have (δ ≡ ε)

g(x) − g(y)
 <
(ε + δ)
1 + ε
:=
(ε + ε2)
1 + ε
= ε.

Thus, (P2) holds with L = 1 and f (⋅, ⋅) ≡ g(⋅). If we assume that g(⋅) is a strong con-
traction, then there exists a constantK ∈ (0, 1) such that |g(x)−g(0)| = g(x) ⩽ K|x|,
which implies that 1/|x| ⩽ K. Therefore, by letting x → 0, we obtain a contradic-
tion. Hence, g(⋅) is not a strict contraction.

(ii) Let X := L2(Ω), where 0 ̸= Ω ⊆ ℝn is any bounded open set. Define the function
f : ℝ × X → X by

f (t,φ)(x) := K(t) ‖φ‖
1 + ‖φ‖

Q(x) + H(t, x), t ∈ ℝ, x ∈ Ω,

where K : ℝ → (0,∞), Q ∈ X, Q ⩾ 0 with ‖K‖BSp‖Q‖ ⩾ 1 and H : ℝ × Ω → [0,∞).
The function f satisfies (P2) but it is not a strict contraction. In fact, let φ1, φ2 ∈ X
and ε, δ > 0 such that ε ⩽ ‖φ1 − φ2‖ < ε + δ. Then a straightforward calculation
yields

f (t,φ1)(x) − f (t,φ2)(x)
 = K(t)



‖φ1‖
1 + ‖φ1‖

−
‖φ2‖

1 + ‖φ2‖


Q(x)

⩽ K(t) |‖φ1‖ − ‖φ2‖|
1 + ‖φ1‖ + ‖φ2‖ + ‖φ1‖ ‖φ2‖

Q(x)

< K(t)δ + ε
1 + ε

Q(x)

:= K(t)ε
2 + ε
1 + ε

Q(x)

= K(t)Q(x)ε, t ∈ ℝ, x ∈ Ω. (2.14)
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Moreover, by our assumption and (2.14), we get

f (t,φ1) − f (t,φ2)

2
= ∫

Ω

f (t,φ1)(x) − f (t,φ2)(x)

2 dx

< K(t)2 ∫
Ω

Q(x)2 dx ε2

= K(t)2‖Q‖2 ε2.

Finally,

(
t+1

∫
t

f (s,φ1) − f (s,φ2)

p ds)

1
p

< ‖K‖BSp‖Q‖ ε for all t ∈ ℝ.

This proves the result with L := ‖K‖BSp‖Q‖. To show that f (⋅, ⋅) is not necessarily a
strict contraction, assume the converse, i. e., there exists 0 < K̃ < 1 such that for
all φ1, φ2 ∈ X we have

f (t,φ1) − f (t,φ2)
 ⩽ K̃‖φ1 − φ2‖, t ∈ ℝ.

Set, for every n ∈ ℕ, φn(x) := exp(−n√|x|) for all x ∈ Ω. It is clear that (φn)n ⊆ X
and limn→∞ ‖φn‖ = 0. Therefore,

K(t) ‖φn‖
1 + ‖φn‖

‖Q‖ ⩽ K̃‖φn‖ for all n ⩾ 1, t ∈ ℝ,

which implies that

K(t) 1
1 + ‖φn‖

‖Q‖ ⩽ K̃ for all n ⩾ 1, t ∈ ℝ.

Now, by letting n→ +∞, we obtain

K(t)‖Q‖ ⩽ K̃ for all t ∈ ℝ.

Thus, if we pass to the Sp-norm, we obtain

1 ⩽ ‖K‖BSp‖Q‖ ⩽ K̃,

which contradicts the assumption on K̃.

Now we will state the following result.

Proposition 2.2.26. Let μ ∈ ℳ satisfy (M) and 1 < p < ∞. Suppose that f (⋅, u(⋅)) ∈
PAPSp(ℝ,X, μ). Then the mapping F0(⋅) given by

(F0u)(t) :=
t

∫
−∞

Rγ(t − s)f (s, u(s)) ds, t ∈ ℝ

maps PAP(ℝ,X, μ) into PAP(ℝ,X, μ).
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Proof. For any u ∈ PAP(ℝ,X, μ), we define

(F0u)(t) :=
t

∫
−∞

Rγ(t − s)f (s, u(s)) ds, t ∈ ℝ.

Since s → f (s, u(s)) ∈ LpS(ℝ : X), we obtain

F0u(t)
 ⩽

t

∫
−∞

Rγ(t − s)
 ⋅
f (s, u(s))

 ds

=
∞

∫
0

Rγ(s)
 ⋅
f (t − s, u(t − s))

 ds

=
1

∫
0

Rγ(s)
 ⋅
f (t − s, u(t − s))

 ds +
∞

∫
1

Rγ(s)
 ⋅
f (t − s, u(t − s))

 ds

⩽ (
1

∫
0

sq(γ−1) ds)

1
q

(
1

∫
0

f (t − s, u(t − s))

p ds)

1
p

+∑
k⩾1

k−γ−1(
k+1

∫
k

f (t − s, u(t − s))

p ds)

1
p

= (1 − q(γ − 1))
1
q(

1

∫
0

f (t − s, u(t − s))

p ds)

1
p

+ Sγ(
k+1

∫
k

f (t − s, u(t − s))

p ds)

1
p

⩽ ((1 − q(γ − 1))
1
q + Sγ)
f (⋅, u(⋅))

Sp , t ∈ ℝ.

Thus, F0(⋅) is well defined. Furthermore, from the fact that s → f (s, u(s)) ∈ PAPSp(ℝ,
X, μ), we obtain by definition that f (s, u(s)) = ̃f (s, u(s)) + φ(s, u(s)) with some s →
̃f (s, u(s)) ∈ APSp(ℝ : X) and s → φ(s, u(s)) ∈ ℰp(ℝ,X, μ). Clearly,

(F0u)(t) =
t

∫
−∞

Rγ(t − s) ̃f (s, u(s)) ds +
t

∫
−∞

Rγ(t − s)φ(s, u(s)) ds, t ∈ ℝ.

Let ε > 0, since s → ̃f (s, u(s)) ∈ APSp(ℝ : X), there exists lε > 0 such that each interval
of length lε contains an element τ such that

(
t+1

∫
t


̃f (s + τ, u(s + τ)) − ̃f (s, u(s))

p ds)

1
p

< ε/((1 − q(γ − 1))
1
q + Sγ)
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uniformly in t ∈ ℝ. Hence, by the Hölder inequality, we have
F0u(t + τ) − F0u(t)



⩽
∞

∫
0

Rγ(s)
 ⋅

̃f (t + τ − s, u(t + τ − s)) − ̃f (t − s, u(t − s)) ds

=
1

∫
0

Rγ(s)
 ⋅

̃f (t + τ − s, u(t + τ − s)) − ̃f (t − s, u(t − s)) ds

+
∞

∫
1

Rγ(s)
 ⋅

̃f (t + τ − s, u(t + τ − s)) − ̃f (t − s, u(t − s)) ds

⩽ (
1

∫
0

sq(γ−1) ds)

1
q

(
1

∫
0


̃f (t + τ − s, u(t + τ − s)) − ̃f (t − s, u(t − s))

p ds)

1
p

+∑
k⩾1

k−γ−1(
k+1

∫
k


̃f (t + τ − s, u(t + τ − s)) − ̃f (t − s, u(t − s))

p ds)

1
p

= (1 − q(γ − 1))
1
q(

1

∫
0


̃f (t + τ − s, u(t + τ − s)) − ̃f (t − s, u(t − s))

p ds)

1
p

+ Sγ(
k+1

∫
k


̃f (t + τ − s, u(t + τ − s)) − ̃f (t − s, u(t − s))

p ds)

1
p

⩽ ε, t ∈ ℝ.

Therefore, it suffices to prove that t → ∫t−∞ Rγ(t − s)φ(s, u(s)) ds ∈ ℰ(ℝ,X, μ). Indeed,
let r > 0. Then, by the Hölder inequality, we obtain

1
μ([−r, r])

r

∫
−r

F0u(t)
 dμ(t) ⩽

1
μ([−r, r])

r

∫
−r

t

∫
−∞

Rγ(t − s)
 ⋅
f (s, u(s))

 ds dμ(t)

=
1

μ([−r, r])

r

∫
−r

∞

∫
0

Rγ(s)
 ⋅
f (t − s, u(t − s))

 ds dμ(t)

=
1

μ([−r, r])

r

∫
−r

1

∫
0

Rγ(s)
 ⋅
f (t − s, u(t − s))

 ds dμ(t)

+
1

μ([−r, r])

r

∫
−r

∞

∫
1

Rγ(s)
 ⋅
f (t − s, u(t − s))

 ds dμ(t)

⩽
(1 − q(γ − 1))

1
q

μ([−r, r])

r

∫
−r

(
1

∫
0

f (t − s, u(t − s))

p ds)

1
p

dμ(t)
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+
Sγ

μ([−r, r])

r

∫
−r

(
k+1

∫
k

f (t − s, u(t − s))

p ds)

1
p

dμ(t)

→ 0 as r → +∞.

ByLemma2.2.11(i), the set ℰp(ℝ,X, μ) is translation invariant.Hence, the result follows
immediately.

Theorem 2.2.27. Let 1 < p < +∞ and μ ∈ℳ satisfy (M). Assume that f ∈ PAPSpU(ℝ ×
X,X, μ) such that (P2) and (P3) hold with LSqγ ⩽ 1, where

Sqγ := ∑
k⩾1

k−γ−1 + (1 − q(γ − 1))
1
q .

Then the inclusion (2.11) has a unique μ-pseudo-almost periodic mild solution given by
the integral representation (2.12).

Proof. Let u ∈ PAP(ℝ,X, μ). By (P3) and Theorem 6.2.30, we see that the function
s → f (s, u(s)) belongs to the space PAPSp(ℝ,X, μ). Then, by Proposition 2.2.26, F0(⋅)
maps PAP(ℝ,X, μ) into itself. It suffices to prove that F0(⋅) has a unique fixed point in
PAP(ℝ,X, μ) using Theorem 1.1.6. Let ε > 0, and let L > 0 and δ > 0 be determined
from (P2). Let u, v ∈ PAP(ℝ,X, μ) satisfy ε ⩽ ‖u(t) − v(t)‖ < ε + δ for all t ∈ ℝ. Then the
hypothesis (P2) yields

F0u(t) − F0v(t)
 ⩽

t

∫
−∞

Rγ(t − s)
 ⋅
f (s, u(s)) − f (s, v(s))

 ds

=
∞

∫
0

Rγ(s)
 ⋅
f (t − s, u(t − s)) − f (t − s, u(t − s))

 ds

=
1

∫
0

Rγ(s)
 ⋅
f (t − s, u(t − s)) − f (t − s, v(t − s))

 ds

+
∞

∫
1

Rγ(s)
 ⋅
f (t − s, u(t − s)) − f (t − s, v(t − s))

 ds

⩽ (
1

∫
0

sq(γ−1) ds)

1
q

(
1

∫
0

f (t − s, u(t − s)) − f (t − s, v(t − s))

p ds)

1
p

+∑
k⩾1

k−γ−1(
k+1

∫
k

f (t − s, u(t − s)) − f (t − s, v(t − s))

p ds)

1
p

= (1 − q(γ − 1))
1
q(

1

∫
0

f (t − s, u(t − s)) − f (t − s, v(t − s))

p ds)

1
p
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+∑
k⩾1

k−γ−1(
k+1

∫
k

f (t − s, u(t − s)) − f (t − s, v(t − s))

p ds)

1
p

< SqγLε for all t ∈ ℝ.

Hence, by the assumption SqγL ⩽ 1 we obtain

‖F0u − F0v‖∞ < ε.

The result follows immediately from Theorem 1.1.6.

In order to visualize the advantage of Theorem 2.2.27, in the next result we will
use the following Lipschitz type assumption:
(Q) There exists a non-negative Stepanov p-bounded function L(⋅), where 1 ⩽ p <∞,

such that
f (t, x) − f (t, y)

 ⩽ L(t)‖x − y‖, x, y ∈ X, t ∈ ℝ.

Theorem 2.2.28. Let 1 < p < +∞ and μ ∈ℳ satisfy (M). Assume that f ∈ PAPSpU(ℝ ×
X,X, μ) such that (Q) holds with ‖L‖SpSqγ < 1. Then the inclusion (2.11) has a unique
μ-pseudo-almost periodic mild solution given by the integral representation (2.12).

Proof. From Theorem 2.2.27 and Corollary 2.2.24, it suffices to prove that the mapping
F0(⋅) has a unique fixed point. Indeed, let u, v ∈ PAP(ℝ,X, μ). Then, by (Q), we get

F0u(t) − F0v(t)
 ⩽

t

∫
−∞

Rγ(t − s)
 ⋅
f (s, u(s)) − f (s, v(s))

 ds

=
∞

∫
0

Rγ(s)
 ⋅
f (t − s, u(t − s)) − f (t − s, v(t − s))

 ds

=
1

∫
0

Rγ(s)
 ⋅
f (t − s, u(t − s)) − f (t − s, v(t − s))

 ds

+
∞

∫
1

Rγ(s)
 ⋅
f (t − s, u(t − s)) − f (t − s, v(t − s))

 ds

⩽ (
1

∫
0

sq(γ−1) ds)

1
q

(
1

∫
0

f (t − s, u(t − s)) − f (t − s, v(t − s))

p ds)

1
p

+∑
k⩾1

k−γ−1(
k+1

∫
k

f (t − s, u(t − s)) − f (t − s, v(t − s))

p ds)

1
p

⩽ (1 − q(γ − 1))
1
q(

1

∫
0

L(t − s)p ds)

1
p

‖u − v‖∞
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+∑
k⩾1

k−γ−1(
k+1

∫
k

L(t − s)p ds)

1
p

‖u − v‖∞

⩽ Sqγ ‖L‖Sp‖u − v‖∞, t ∈ ℝ.

Hence, we obtain

‖F0u − F0v‖∞ ⩽ S
q
γ ‖L‖Sp‖u − v‖∞.

Then the result follows from the Banach contraction principle since Sqγ ‖L‖Sp < 1.

Remark 2.2.29. It is very important to state that, in Theorem 2.2.27, under the as-
sumptions (P2) and (P3), condition ‖L‖SpSqγ = 1 (i. e. ‖L‖Sp = (S

q
γ )
−1) yields the existence

and uniqueness of μ-pseudo-almost periodic mild solutions to the inclusion (2.11) in
view of the Meir–Keeler fixed point theorem. However, the existence and uniqueness
result does not hold in the case of consideration of Theorem 2.2.28.

Now we will revisit the fractional Poisson heat equation once more [631].

Example 2.2.30. Of concern is the following semilinear fractional Poisson heat equa-
tion in the L2-setting:

{
Dγ
t (m(x)v(t, x)) = Δv(t, x) + g(t, v(t, x)) + H(t, x), t ∈ ℝ, x ∈ Ω,

v(t, x)|𝜕Ω = 0; t ∈ ℝ, x ∈ 𝜕Ω,
(2.15)

where γ ∈ (0, 1), 0 ̸= Ω ⊆ ℝn an open bounded subset with a sufficiently smooth
boundary 𝜕Ω and m ∈ L∞(Ω), m ⩾ 0. Here, H : ℝ × Ω → ℝ is Sp-μ-pseudo-almost
periodic function. Let X = L2(Ω) be the Lebesgue space of square-integrable functions
on Ω. Define the multivalued linear operator𝒜 on X by

𝒜φ := Δ ⋅m(x)−1φ,

with maximal domain and Δ being the Dirichlet Laplacian. In addition, we set f : ℝ ×
X → X by

f (t,φ)(x) := g(t,φ(x)) + H(t, x), t ∈ ℝ, x ∈ Ω.

Then the problem (2.15) can bemodeled through (2.11). It is well known that𝒜 satisfies
(P); see [631] and the references therein. Moreover, for φ ∈ X, we define

g(t,φ(x)) := K(t) R(x)
1 + ‖φ‖
, t ∈ ℝ, x ∈ Ω,

where K : ℝ→ (0,∞) is Sp-μ-pseudo-almost periodic and R ∈ X, R ⩾ 0. Then we have
the following.

Lemma 2.2.31. The function f (⋅, ⋅) satisfies (P2) with L = ‖K‖BSp‖R‖.
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Proof. Let φ1, φ2 ∈ X, and let ε > 0 and δ > 0 be such that ε ⩽ ‖φ1 − φ2‖ < ε + δ. So,

f (t,φ1)(x) − f (t,φ2)(x)
 = K(t)


R(x)
1 + ‖φ1‖

−
R(x)

1 + ‖φ2‖



⩽ K(t) |‖φ1‖ − ‖φ2‖|
1 + ‖φ1‖ + ‖φ2‖

R(x), t ∈ ℝ, x ∈ Ω. (2.16)

Then, using (2.16), we get

∫
Ω

f (t,φ1)(x) − f (t,φ2)(x)

2 dx ⩽ K(t)2 ‖φ1 − φ2‖

2

(1 + ε)2
∫
Ω

R(x)2 dx

⩽ K(t)2 (δ + ε)
2

(1 + ε)2
‖R‖2

⩽ K(t)2‖R‖2ε2, t ∈ ℝ (by taking δ := ε2).

Hence, for all φ1, φ2 ∈ X, we have

(
t+1

∫
t

f (s,φ1) − f (s,φ2)

p ds)

1
p

< ‖K‖Spε for all t ∈ ℝ.

This proves the result with L := ‖K‖Sp‖R‖.

Lemma 2.2.32. The function f (⋅, ⋅) is Lipschitzian with respect to the second argument
with Lipschitz constant L(⋅) := K(⋅)‖R‖. Moreover, f (⋅, ⋅) satisfies (P3).

Proof. Let φ1, φ2 ∈ X. By the proof of Lemma 2.2.31, we have

f (t,φ1) − f (t,φ2)
 ⩽ K(t)‖R‖ ‖φ1 − φ2‖, t ∈ ℝ.

This simply completes the proof.

At this stage we set p := 2; then q = 2. Furthermore, we take

‖K‖BS2‖R‖ = (S
2
γ)
−1
.

Then we have the following result.

Theorem 2.2.33. The inclusion (2.15) has a unique μ-pseudo-almost periodic solution.

Proof. The result follows from Theorem 2.2.27.

Finally, let us note that, in our joint paper [585] with K. Khalil and M. Pinto, we
have also analyzed the existence and uniqueness of μ-pseudo-almost periodic solu-
tions of the following semilinear nonautonomous evolution equation:

x′(t) = A(t)x(t) + f (t, x(t)) for t ∈ ℝ.
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Let (A(t),D(A(t))), t ∈ ℝ be a family of linear closed operators on X. Of concern is the
following linear Cauchy problem:

{
u′(t) = A(t)u(t), t ⩾ s,
u(s) = x ∈ X.

Here, we assume that (A(t),D(A(t))), t ∈ ℝ generates an evolution family, which solves
theproblem (6.41), i. e., a two-parameter family (U(t, s))t⩾s of linear boundedoperators
in X such that the map (t, s) → U(t, s) ∈ L(X) is strongly continuous, U(t, s)U(s, r) =
U(t, r) and U(t, t) = I for t ⩾ s ⩾ r. A (mild) solution to problem (6.41) is u(t) =
U(t, s)x for t ⩾ s. In particular, if A(t) is time-independent, i. e., A(t) = A for all t ∈ ℝ,
thenU(t, s) = T(t−s), where (T(t))t⩾0 is a semigroup of bounded linear operators onX.
Notice that, in general, the domains D(A(t)) of the operators A(t) are not necessarily
dense in X andmay changewith respect to t. Unlike semigroups, there is no necessary
and sufficient spectral criteria for (A(t),D(A(t))), t ∈ ℝ to generate an evolution family.
IfA(t)has a constant domainD(A(t)) = D, t ∈ ℝ, thenwehave the followinggeneration
result.
(C1) Let (A(t),D), t ∈ ℝ be the generators of analytic semigroups (T t(τ))τ⩾0 on X of

the same type (N ,ω); that is, ‖Tt(s)‖ ⩽ Neωs, s ⩾ 0 (uniformly in t). Assume that
A(t) is invertible for all t ∈ ℝ, supt,s∈ℝ ‖A(t)A(s)−1‖ <∞ and there exist constants
ω ∈ ℝ, L ⩾ 0 and 0 < μ ⩽ 1 such that

(A(t) − A(s))R(ω : A(r))
 ⩽ L|t − s|

μ for t, s, r ∈ ℝ.

In this case, themap (t, s) → U(t, s) ∈ L(X) is continuously differentiable for t > s
with respect to the variable t,U(t, s)mapsX intoD(A(t))andwehave 𝜕U(t, s)/𝜕t =
A(t)U(t, s). Moreover, U(t, s) and (t − s)A(t)U(t, s) are exponentially bounded.

Given a hyperbolic evolution family (U(t, s))t⩾s, then its associated Green function is
defined by

G(t, s) := { U(t, s)P(s), t, s ∈ ℝ, s ⩽ t,
−Ũ(t, s)Q(s), t, s ∈ ℝ, s > t.

The exponential dichotomy of (U(t, s))t⩾s holds in the following case:
(C2) Assume that (C1) holds and the semigroups (T t(τ))τ⩾0 are hyperbolic with

projections Pt and constants N , δ > 0 such that ‖A(t)T t(τ)Pt‖ ⩽ ψ(τ) and
‖A(t)T tQ(τ)Qt‖ ⩽ ψ(−τ) for τ > 0 and a function ψ such that the mapping
ℝ ∋ s → φ(s) := |s|μψ(s) is integrable with L‖φ‖L1(ℝ) < 1.

In [585], we have used the following hypotheses:
(H1) The operators A(t), t ∈ ℝ generate a strongly continuous evolution family
(U(t, s))t⩾s on X.
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(H2) The evolution family (U(t, s))t⩾s has an exponential dichotomy on ℝ with con-
stants N , δ > 0, projections P(t), t ∈ ℝ and Green’s function G(⋅, ⋅).

(H3) R(ω : A(⋅)) is almost periodic for some ω ∈ ℝ.
(H4) f (⋅, ⋅) is Lipschitzian in bounded sets with respect to the second argument, i. e.,

for each ρ > 0 there exists a non-negative scalar function Lρ(⋅) ∈ L
p
S(ℝ) (for 1 ⩽

p <∞) such that

f (t, x) − f (t, y)
 ⩽ Lρ(t)‖x − y‖, x, y ∈ B(0, ρ), t ∈ ℝ.

We have also analyzed the semilinear Cauchy problem

x′(t) = A(t)x(t) + f (t, x(t)) for t ∈ ℝ. (2.17)

By amild solution of (2.17)wemean any continuous function u : ℝ→ Xwhich satisfies
the following variation of constants formula:

u(t) = U(t, σ)u(σ) +
t

∫
σ

U(t, s)f (s, u(s)) ds for all t ⩾ σ.

In particular, we have analyzed the existence and uniqueness of μ-pseudo-almost pe-
riodic solutions of the following linear inhomogeneous equation:

u′(t) = A(t)u(t) + h(t) for all t ∈ ℝ.

We have applied our abstract theoretical results in the study of following time-
dependent parameters reaction-diffusion equation describing the behavior of a one-
species intraspecific competition:

{
vt(t, x) = Δv(t, x) − a(t)v(t, x) + b(t)v(t, x)2 + C(t, x), t ∈ ℝ, x ∈ Ω,
v(t, x)|𝜕Ω = 0; t ∈ ℝ, x ∈ 𝜕Ω,

(2.18)

where
– Ω ⊆ ℝn (n ⩾ 1) is an open bounded subset with a sufficiently smooth boundary.
– Δ is the Dirichlet Laplacian on Ω; here the diffusion parameter equals 1.
– a ∈ AP(ℝ : [0,∞)) with 0 < a0 := infs∈ℝ a(s) ⩽ a(t) ⩽ sups∈ℝ a(s) = a1 < ∞. It is

assumed that a(⋅) is Hölder continuous with constant L = 1 and exponent μ = 1.
– The nonlinear term g : ℝ × ℝ→ ℝ is defined by

g(t, v(t, x)) = b(t)v2(t, x) + C(t, x), x ∈ Ω,

where b ∈ APS1(ℝ : [0,∞)).
– C : ℝ × Ω → (0,∞) is locally integrable with respect to t and continuous with

respect to x.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



52 | 2 Almost periodic type functions

2.2.2 Composition principles for Weyl almost periodic functions

The notion of an (equi-)Weyl p-almost periodic function plays an important role in our
investigations (cf. [631, Section 2.3] for more details):

Definition 2.2.34. Let 1 ⩽ p <∞ and f ∈ Lploc(I : X).
(i) We say that the function f (⋅) is equi-Weyl p-almost periodic, f ∈ e −Wp

ap(I : X) for
short, if and only if for each ε > 0 we can find two real numbers l > 0 and L > 0
such that any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

sup
x∈I
[
1
l

x+l

∫
x

f (t + τ) − f (t)

p dt]

1/p

⩽ ε. (2.19)

(ii) We say that the function f (⋅) is Weyl p-almost periodic, f ∈ Wp
ap(I : X) for short, if

and only if for each ε > 0 we can find a real number L > 0 such that any interval
I′ ⊆ I of length L contains a point τ ∈ I′ such that

lim
l→∞

sup
x∈I
[
1
l

x+l

∫
x

f (t + τ) − f (t)

p dt]

1/p

⩽ ε.

It is well known that APSp(I : X) ⊆ e −Wp
ap(I : X) ⊆ W

p
ap(I : X) and e −W

p
ap(I : X) ⊆

Bp(I : X). Some results about the integration of equi-Weyl p-almost periodic functions
have been established by L. Radová in [865].

In the remainder of this subsection, we will present a few research results ob-
tained recently in [639], which have not been presented in any other research mono-
graph by now.

The following definition is slightly different from the corresponding definitions
introduced in [141] and [642] for the class of equi-Weyl p-almost periodic functions,
with only one pivot space X = Y .

Definition 2.2.35.
(i) A function F : I×Y → X is said to be equi-Weyl p-almost periodic in t ∈ I uniformly

with respect to compact subsets of Y if and only if f (⋅, u) ∈ Lploc(I : X) for each fixed
element u ∈ Y and if for each ε > 0 and each compact K of Y there exist two
numbers l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point
τ ∈ I′ such that

sup
u∈K

sup
x∈I
[
1
l

x+l

∫
x

F(t + τ, u) − F(t, u)

p dt]

1/p

< ε.

We denote by e−Wp
ap,K(I ×Y : X) the vector space consisting of all such functions.
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(ii) A function F : I × Y → X is said to be Weyl p-almost periodic in t ∈ I uniformly
with respect to compact subsets of Y if f (⋅, u) ∈ Lploc(I : X) for each fixed element
u ∈ Y and if for each ε > 0 and each compact K of Y we can find a real number
L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′ satisfying the
requirement that there exists a finite number l(ε, τ) > 0 such that

sup
u∈K

sup
x∈I
[
1
l

x+l

∫
x

F(t + τ, u) − F(t, u)

p dt]

1/p

< ε, l ⩾ l(ε, τ).

We denote byWp
ap,K(I × Y : X) the collection of all such functions.

The following definition is well known in the case that X = Y (cf. [642]).

Definition 2.2.36. Let q : [0,∞)×Y → X be such that q(⋅, u) ∈ Lploc([0,∞) : X) for each
fixed element u ∈ Y .
(i) It is said that q(⋅, ⋅) is Weyl p-vanishing uniformly with respect to compact subsets

of Y if and only if for each compact set K of Y we have

lim
t→∞

lim
l→∞

sup
ξ⩾0,u∈K
[
1
l

ξ+l

∫
ξ

q(t + s, u)

p ds]

1/p

= 0.

(ii) It is said that q(⋅, ⋅) is equi-Weyl p-vanishing uniformly with respect to compact
subsets of Y if and only if for each compact set K of Y we have

lim
l→∞

lim
t→∞

sup
ξ⩾0,u∈K
[
1
l

ξ+l

∫
ξ

q(t + s, u)

p ds]

1/p

= 0.

We denote by Wp
0,K(I × Y : X) and e − Wp

0,K(I × Y : X) the classes consisting of all
Weyl p-vanishing functions, uniformly with respect to compact subsets of Y and all
equi-Weyl p-vanishing functions, uniformly with respect to compact subsets of Y , re-
spectively.

Similarly, for the class of (equi-)Weyl p-almost periodic functions, we have the
following result which is not comparable with [141, Theorem 3] in the case of consid-
eration of equi-Weyl p-almost periodic functions, with I = ℝ and X = Y .

Theorem 2.2.37. Suppose that the following conditions hold:
(i) F ∈ (e−)Wp

ap,K(I × Y : X) with p > 1, and there exist a number r ⩾ max(p, p/(p − 1))
and a function LF ∈ LrS(I) such that

F(t, x) − F(t, y)
 ⩽ LF(t)‖x − y‖Y , t ∈ I , x, y ∈ Y . (2.20)

(ii) x ∈ (e−)Wp
ap(I : Y), and there exists a set E ⊆ I with m(E) = 0 such that K := {x(t) :

t ∈ I ∖ E} is relatively compact in Y.
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(iii) For every ε > 0, there exist two numbers l > 0 and L > 0 such that any interval I′ ⊆ I
of length L contains a number τ ∈ I′ such that

sup
t∈I ,u∈K
[
1
l

t+l

∫
t

F(s + τ, u) − F(s, u)

p ds]

1/p

⩽ ε (2.21)

and

sup
t∈I
[
1
l

t+l

∫
t

x(s + τ) − x(s)

p
Y ds]

1/p

⩽ ε (2.22)

in the case of consideration of equi-Weyl p-almost periodic functions, resp., there
exists a finite number L > 0 such that any interval I′ ⊆ I of length L contains a
number τ ∈ I′ satisfying the requirement that there exists a number l(ε, τ) > 0 so
that (2.21)–(2.22) hold for all numbers l ⩾ l(ε, τ), in the case of consideration ofWeyl
p-almost periodic functions.

Then q := pr/(p + r) ∈ [1, p) and F(⋅, x(⋅)) ∈ (e−)Wq
ap(I : X).

Proof. Without loss of generality, we may assume that X = Y . Since the function
LF(⋅) is Stepanov r-bounded, equivalently, Weyl r-bounded, the measurability and
Sp-boundedness of the function F(⋅, x(⋅)) follow similarly to the proof of [729, Theo-
rem 2.2]. Applying the Hölder inequality and an elementary calculation involving the
estimate (2.20) and condition (ii), we see that, for every t, τ ∈ I and l > 0,

1
l

t+l

∫
t

F(s + τ, x(s + τ)) − F(s, x(s))

q ds

⩽
1
l
[(

t+l

∫
t

LrF(s + τ) ds)
1/r

(
t+l

∫
t

x(s + τ) − x(s)

p dt)

1/p

+ (
t+l

∫
t

F(s + τ, x(s)) − F(s, x(s))

q ds)

1/q

]

⩽
1
l
[(

t+l

∫
t

LrF(s + τ) ds)
1/r

(
t+l

∫
t

x(s + τ) − x(s)

p dt)

1/p

+ (
t+l

∫
t

(sup
u∈K

F(s + τ, u) − F(s, u)
)

q
ds)

1/q

].

The remaining part of the proof is almost the same for both classes of functions, equi-
Weyl p-almost periodic functions and Weyl p-almost periodic functions; because of
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that, we will consider only the first class up to the end of proof. Let ε > 0 be given. By
(iii), there exist two numbers l > 0 and L > 0 such that any interval I′ ⊆ I of length L
contains a number τ ∈ I′ such that (2.21)–(2.22) hold. Since the validity of (2.21)–(2.22)
with given numbers l > 0 and τ ∈ I implies the validity of (2.21)–(2.22) with numbers
nl and τ ∈ I (n ∈ ℕ), wemay assume that the number l > 0 is as large as wewant to be.
Then, due to Lemma 1.1.3, we obtain the existence of a finite numberM > 0 such that

1
l
(

t+l

∫
t

LrF(s + τ) ds)
1/r

⩽ Ml(1/r)−1‖LF‖W r , t ∈ I ,

and

1
l
(

t+l

∫
t

LrF(s + τ) ds)
1/r

(
t+l

∫
t

x(s + τ) − x(s)

p dt)

1/p

⩽ Ml(1/p)+(1/r)−1‖LF‖W r = l(1/q)−1‖LF‖W r ⩽ ‖LF‖W r , t ∈ I .

For the estimation of the term

1
l
(

t+l

∫
t

(sup
u∈K

F(s + τ, u) − F(s, u)
)

q
ds)

1/q

, t ∈ I ,

we canuse the trick employed for proving [729, Lemma 2.1]. SinceK is totally bounded,
there exist an integer k ∈ ℕ and a finite subset {x1, . . . , xk} of K such that K ⊆
⋃ki=1 B(xi, ε), where B(x, ε) := {y ∈ X : ‖x − y‖ ⩽ ε}. Applying Minkowski’s inequality
and a simple argumentation similar to that used in the proof of the above-mentioned
lemma, we get the existence of a finite positive real number cq > 0 such that

1
l
(

t+l

∫
t

(sup
u∈K

F(s + τ, u) − F(s, u)
)

q
ds)

1/q

⩽
cq
l
[ε(

t+l

∫
t

[LqF(s + τ) + L
q
F(s)] ds)

1/q

+
k
∑
i=1
(

t+l

∫
t

F(s + τ, xi) − F(s, xi)

q ds)

1/q

].

The term 1
l (∫

t+l
t [L

q
F(s + τ) + L

q
F(s)] ds)

1/q can be estimated by using Lemma 1.1.3 in the
following way:

⩽
1
l
(

t+l+τ

∫
t+τ

LqF(s) ds)
1/q

+
1
l
(

t+l

∫
t

LqF(s) ds)
1/q

⩽ Ml(−1/r)+(1/q)−1‖LF‖W r l1/r ⩽ M‖LF‖W r , t ∈ I .
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Similarly, using Lemma 1.1.3 and (iii), we get

1
l

k
∑
i=1
(

t+l

∫
t

F(s + τ, xi) − F(s, xi)

q ds)

1/q

⩽
1
l
l(1/q)−(1/p)

k
∑
i=1
(

t+l

∫
t

F(s + τ, xi) − F(s, xi)

p ds)

1/p

⩽ εl(1/q)−1, t ∈ I .

This completes the proof of theorem.

Remark 2.2.38. To the best knowledge of the author, it is not known whether the as-
sumptions F ∈ Wp

ap(I × Y : X) and x ∈ W
p
ap(I : Y) imply the validity of condition (iii),

as for the class of Stepanov p-almost periodic functions.

The following result for the class of Weyl p-almost periodic functions can be
also deduced with the help of argumentation contained in [729] (compare with Theo-
rem 2.4.49, where we will analyze the Stepanov class).

Theorem 2.2.39. Suppose that p, q ∈ [1,∞), r ∈ [1,∞], 1/p = 1/q+1/r and the following
conditions hold:
(i) F ∈ Wp

ap,KAP(I ×Y : X) and there exists a function LF ∈ L
r
S(I) such that (2.20) holds.

(ii) x ∈ Wq
apAP(I : Y), and there exists a set E ⊆ I with m(E) = 0 such that K := {x(t) :

t ∈ I ∖ E} is relatively compact in Y.
(iii) For every ε > 0, there exists a finite number L > 0 such that any interval I′ ⊆ I

of length L contains a number τ ∈ I′ satisfying the requirement that there exists a
number l(ε, τ) > 0 so that (2.21) holds for all numbers l ⩾ l(ε, τ) and (2.22) holds for
all numbers l ⩾ l(ε, τ), with the number p replaced by q therein.

Then F(⋅, x(⋅)) ∈ Wp
apAP(I : X).

After proving Theorem 2.2.37, the subsequent composition principle for asymp-
totically (equi-)Weyl p-almost periodic functions follows almost immediately; cf. also
[642, Theorem 3.4] for a similar result in this direction.

Theorem 2.2.40. Suppose that p > 1, r ⩾ max(p, p/(p − 1)), q = pr/(p + r), and the
conditions (i)–(iii) of Theorem 2.2.37 hold with the interval I = [0,∞) and the func-
tions F(⋅, ⋅), x(⋅) replaced therein with the functions G(⋅, ⋅), y(⋅). Suppose, further, that the
following hold:
(i) The functionQ := F−G : [0,∞)×Y → X belongs to the class (e−)Wq′

0,K([0,∞)×Y : X)
for some number q′ ∈ [1,∞).

(ii) The function z : [0,∞) → Y belongs to the class (e−)Wq′′
0 ([0,∞) : Y) for some

number q′′ ∈ [1,∞).
(iii) x(t) = y(t) + z(t) for a. e. t ⩾ 0, and there exists a set E ⊆ I with m(E) = 0 such that

K := {x(t) : t ∈ I ∖ E} is relatively compact in Y.
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Then the mapping t → F(t, x(t)), t ⩾ 0 belongs to the class (e−)Wq
ap([0,∞) : X) +

(e−)Wq′
0 ([0,∞) : X)+(e−)W

q′′′
0 ([0,∞) : X), provided q

′′′ ∈ [1,∞) and 1/r+1/q′′ = 1/q′′′.

Proof. It is clear that F(t, x(t)) = [G(t, x(t)) − G(t, y(t))] + G(t, y(t)) + Q(t, x(t)), t ⩾ 0.
By Theorem 2.2.37, we know that G(⋅, y(⋅)) ∈ (e−)Wq

ap([0,∞) : X). Keeping in mind (i)
and (iii), the function t → Q(t, x(t)), t ⩾ 0 belongs to the class (e−)Wq′

0 ([0,∞) : X) by
definition (see the notions of classesWp

0,K(I ×Y : X) and e−W
p
0,K(I ×Y : X) introduced

in Definition 2.2.36). Therefore, it suffices to show that the mapping t → G(t, x(t)) −
G(t, y(t)), t ⩾ 0 belongs to the class (e−)Wq′′′

0 ([0,∞) : X). But this follows similarly to
the proof of [642, Theorem 3.4], with the exponents p, q, r replaced therein with the
exponents q′′′, q′′, r, respectively.

An analogue of [642, Theorem 3.4] for the class of asymptotically Weyl p-almost
periodic functions can be also deduced by means of Theorem 2.2.39.

2.3 Almost automorphic type functions

Suppose that f : ℝ→ X is continuous. As already mentioned in the introductory part,
we say that f (⋅) is almost automorphic if and only if for every real sequence (bn) there
exist a subsequence (an) of (bn) and a mapping g : ℝ→ X such that

lim
n→∞

f (t + an) = g(t) and lim
n→∞

g(t − an) = f (t), (2.23)

pointwise for t ∈ ℝ. If this is the case, we have f ∈ Cb(ℝ : X) and the limit func-
tion g(⋅) is bounded on ℝ but not necessarily continuous on ℝ. If the convergence
of limits appearing in (2.23) is uniform on compact subsets of ℝ, then we say that
f (⋅) is compactly almost automorphic. The vector space consisting of all almost auto-
morphic, resp., compactly almost automorphic functions, is denoted by AA(ℝ : X),
resp., AAc(ℝ : X). By Bochner’s criterion [364], any almost periodic function is com-
pactly almost automorphic. The converse statement is not true, however [443]. Recall
that P. R. Bender proved in his doctoral dissertation [149] that an almost automorphic
function f (⋅) is compactly almost automorphic if and only if it is uniformly continuous
(1966, Iowa State University).

The almost automorphy of a function f : ℝ → X can be also introduced in the
following equivalent way: A function f : ℝ → X is said to be almost automorphic if
and only if for every real sequence (bn) there exist a subsequence (an) of (bn) such that

lim
m→∞

lim
n→∞

f (t + an − am) = f (t), t ∈ ℝ.

An interesting example of an almost automorphic function that is not compactly al-
most automorphic is given by W.A. Veech [993, 994]

f (t) := 2 + eit + eit√2

|2 + eit + eit√2|
, t ∈ ℝ. (2.24)
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Let I = ℝ or I = [0,∞). A continuous function f : I → X is said to be asymptoti-
cally (compactly) almost automorphic if and only if there exist a function q ∈ C0(I : X)
and a (compactly) almost automorphic function h : ℝ→ X such that f (t) = h(t) + q(t),
t ∈ I. Any asymptotically almost periodic function f : I → X is asymptotically (com-
pactly) almost automorphic. Asymptotically almost periodic functions and asymptot-
ically (compactly) almost automorphic functions form closed subspaces of Cb(ℝ : X)
equipped with the sup-norm.

For the sake of completeness, wewill include the proof of following simple propo-
sition.

Proposition 2.3.1.
(i) Suppose that f ∈ AA(ℝ : ℂ) and g ∈ AA(ℝ : X). Then fg ∈ AA(ℝ : X).
(ii) Suppose that f ∈ AAc(ℝ : ℂ) and g ∈ AAc(ℝ : X). Then fg ∈ AAc(ℝ : X).

Proof. Suppose that (bn) is a given real sequence. Then there exist a subsequence
(an) of (bn) and a map g : ℝ → X such that (2.23) holds pointwise for t ∈ ℝ, with
the function g(⋅) replaced therein with the function h1(⋅). Furthermore, there exist a
subsequence (ank ) of (an) and a map h2 : ℝ → ℂ such that limk→∞ f (t + ank ) =
h2(t) and limk→∞ h2(t − ank ) = f (t), pointwise for t ∈ ℝ. This simply implies that
limk→∞ f (t + ank )g(t + ank ) = h1(t)h2(t) and limk→∞ h1(t − ank )h2(t − ank ) = f (t)g(t),
pointwise for t ∈ ℝ, finishing the proof of (i). The proof of (ii) follows from (i) and the
fact that the pointwise product of two bounded uniformly continuous functions is a
uniformly continuous function.

Example 2.3.2 ([46]). Suppose that the function f : ℝ→ X is almost periodic (almost
automorphic), A ∈ L(X) and there exists a unique bounded classical solution u(⋅) of
the abstract Cauchy problem u′(t) = Au(t) + f (t), t ∈ ℝ. Then u(⋅) is almost periodic
(almost automorphic).

Let p ∈ [1,∞). Then a function f ∈ Lploc(ℝ : X) is said to be Stepanov p-almost
automorphic (see, e. g., G.M. N’Guérékata and A. Pankov [500], and V. Casarino [249–
251] for a slightly different approach) if and only if for every real sequence (an), there
exist a subsequence (ank ) and a function g ∈ L

p
loc(ℝ : X) such that

lim
k→∞

t+1

∫
t

f (ank + s) − g(s)

p ds = 0 and lim

k→∞

t+1

∫
t

g(s − ank ) − f (s)

p ds = 0

for each t ∈ ℝ; a function f ∈ Lploc(I : X) is called asymptotically Stepanov p-almost
automorphic if and only if there exist an Sp-almost automorphic function g : ℝ → X
and a function q ∈ LpS(I : X) such that f (t) = g(t) + q(t), t ∈ I and q̂ ∈ C0(I :
Lp([0, 1] : X)). Any Stepanov p-almost automorphic function f (⋅) has to be Stepanov
p-bounded. Furthermore, if 1 ⩽ p ⩽ q < ∞ and a function f (⋅) is (asymptotically)
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Stepanov q-almost automorphic, then f (⋅) is (asymptotically) Stepanov p-almost au-
tomorphic. We say that a function f (⋅) is (asymptotically) Stepanov almost automor-
phic if and only if f (⋅) is (asymptotically) Stepanov 1-almost automorphic. Let us re-
call that any uniformly continuous Stepanov almost periodic (automorphic) function
f (⋅) is almost periodic (automorphic). The vector space consisting of all Sp-almost au-
tomorphic functions, resp., asymptotically Sp-almost automorphic functions, will be
denoted by AASp(ℝ : X), resp., AAASp([0,∞) : X). By the (asymptotical) Stepanov al-
most automorphywemean (asymptotical) Stepanov 1-almost automorphy. Recall that
the (asymptotical) Stepanov p-almost periodicity of f (⋅) for some p ∈ [1,∞) implies the
(asymptotical) Stepanov p-almost automorphy of f (⋅).

Example 2.3.3 ([387]). Let ε ∈ (0, 1/2), and let f (t) := sin(1/(2 + cos n + cos√2n)), pro-
vided that n ∈ ℤ and t ∈ (n − ε, n + ε). Otherwise, we define f (t) := 0. Then for each
p ∈ [1,∞) we see that f (⋅) is Sp-almost automorphic.

Let us recall that any uniformly continuous Stepanov almost periodic (automor-
phic) function f (⋅) is almost periodic (automorphic); see [386, Theorem 3.3]. The fol-
lowing lemma can be deduced by using an elementary argumentation involving [560,
Proposition 3.1], the above-mentioned theorem and a simple observation that any uni-
formly continuous function q ∈ C0(I : Lp([0, 1] : X)) belongs to the space C0(I : X).

Lemma 2.3.4. Let f : I → X be uniformly continuous and p ∈ [1,∞).
(i) If f (⋅) is asymptotically Stepanov p-almost periodic, then f (⋅) is asymptotically al-

most periodic.
(ii) If f (⋅) is asymptotically Stepanov p-almost automorphic, then f (⋅) is asymptotically

almost automorphic.

The concepts of Weyl almost automorphy and Weyl pseudo-almost automorphy
were introduced by S. Abbas [4] in 2012.

Definition 2.3.5. Let p ⩾ 1. Thenwe say that a function f ∈ Lploc(ℝ : X) isWeyl p-almost
automorphic if and only if for every real sequence (sn), there exist a subsequence (snk )
and a function f ∗ ∈ Lploc(ℝ : X) such that

lim
k→+∞

lim
l→+∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx = 0 (2.25)

and

lim
k→+∞

lim
l→+∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx = 0 (2.26)

for each t ∈ ℝ. The set of all such functions is denoted byWpAA(ℝ : X).

We continue by providing the following example.
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60 | 2 Almost periodic type functions

Example 2.3.6. Assume that 1 ⩽ p < ∞. Let (an)n∈ℤ be a strictly increasing sequence
in ℝ such that limn→+∞ an = +∞ and limn→−∞ an = −∞. Let (bn)n∈ℤ be a real se-
quence. Consider the function f : ℝ → ℝ defined by f (t) := bn if t ∈ [an, an+1) for
some n ∈ ℤ, which can be written as a countable sums of step functions. Let us re-
call that the Stepanov p-almost automorphy of some special kinds of function f (⋅) has
been considered in [387] and [500].

Define the functions P1 : ℝ → ℤ and P2 : ℝ → ℤ by P1(t) := n if and only if
t ∈ [an, an+1) and P2(t) := m if and only if t + 1 ∈ [am, am+1) (t ∈ ℝ). These functions are
well defined, single valued, monotonically increasing and we have P1(t) ⩽ P2(t) for all
t ∈ ℝ. From the definition, it immediately follows that the function f (⋅) is Sp-bounded
if and only if

sup
t∈ℝ
[bP1(t) ⋅ (aP1(t)+1 − t) +

P2(t)−1
∑

j=P1(t)+1
bj ⋅ (aj+1 − aj) + (t + 1 − aP2(t)) ⋅ bP2(t)] <∞.

Note, if the function f (⋅) is Sp-bounded, then the continuity of f (⋅) is equivalent to say-
ing that the function f (⋅) is constant, which is also equivalent with the almost auto-
morphy of f (⋅).

Let us examine now the special case f (x) := χ(0,1/2)(x), x ∈ ℝ, where χ(0,1/2)(⋅) de-
notes the characteristic function of (0, 1/2). In [631, Example 3.1.3], we have proved
that this function is equi-Weyl 1-almost periodic, Weyl 1-almost automorphic and not
Stepanov p-almost automorphic (1 ⩽ p <∞). The analysis carried out in this example
also shows that a general function f (⋅) under the consideration from the first part of
this example cannot be Stepanov p-almost automorphic (1 ⩽ p <∞) if f (⋅) is constant
on some right half ray (ω,∞) or some left half ray (−∞,ω), where ω ∈ ℝ.

The setWpAA(ℝ : X), equipped with the usual operations of pointwise addition
of functions andmultiplication of functionswith scalars, has a linear vector structure.
As we will see later, the Weyl p-almost automorphicity does not imply the Besicovitch
p-boundedness.

The class of Besicovitch p-almost automorphic functions has been analyzed by F.
Bedouhene, N. Challali, O. Mellah, P. Raynaud de Fitte and M. Smaali in [139]. This
class extends the class ofWeyl p-almost automorphic functions and nowwe allow the
possible non-existence of limit

lim
l→+∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx,

resp.,

lim
l→+∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx

in (2.25), resp., (2.26).
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Definition 2.3.7. Let p ⩾ 1. Then we say that a function f ∈ Lploc(ℝ : X) is Besicovitch
p-almost automorphic if and only if for every real sequence (sn), there exist a subse-
quence (snk ) and a function f

∗ ∈ Lploc(ℝ : X) such that

lim
k→∞

lim sup
l→+∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx = 0

and

lim
k→∞

lim sup
l→+∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx = 0

for each t ∈ ℝ. The set of all such functions is denoted by BpAA(ℝ : X).

We can prove that the set BpAA(ℝ : X), equipped with the usual operations, has a
linear vector structure. Let us stress oncemore that it is not clear howwecanprove that
a Besicovitch p-almost periodic function is Besicovitch p-almost automorphic [631].
For more details about the class of Besicovitch p-pseudo-almost automorphic func-
tions, we refer the reader to [631].

For more details about almost periodic functions (sequences), almost automor-
phic functions (sequences) and their applications, we refer the reader to [9, 29, 191,
206, 209, 283–285, 369, 509, 620, 927] and [299–301, 366, 367, 461, 466, 637, 725, 726,
766, 850, 1069].

2.4 Almost periodic type functions and densities

We will first describe the main ideas and aims of this section, which consists of three
subsections. Albeit the definitions of an almost periodic function and a uniformly re-
current function are quite easy and understandable, the class consisting of all almost
periodic functions and the class consisting of all uniformly recurrent functions are
sometimes very unpleasant and difficult to deal with. For example, already H. Bohr
has marked in his pioneering papers that it is not so satisfactory to introduce the con-
cept of almost periodicity by requiring that for each number ε > 0 the set ϑ(f , ε) is
unbounded (see, e. g., [198]). A bounded uniformly continuous function f : I → ℝ sat-
isfying this property need not be almost periodic, its Bohr–Fourier coefficients cannot
be defined in general, and moreover, if two bounded uniformly continuous functions
f : I → ℝ and g : I → ℝ satisfy this property, then its sum f + g : I → ℝ generally
does not satisfy this property (see [196, part I, pp. 117–118]). Furthermore, saying that
for each number ε > 0 the set ϑ(f , ε) is unbounded is equivalent to saying that f (⋅)
is uniformly recurrent; hence, the sum of two bounded, uniformly continuous, uni-
formly recurrent functions is not uniformly recurrent, in general. Taking into account

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



62 | 2 Almost periodic type functions

Proposition 2.4.31 below, we see that the sum of two bounded, uniformly continuous
⊙g-almost periodic functions is not ⊙g-almost periodic, in general. This example can
be also used for proving the fact that the pointwise product of two bounded uniformly
continuous, uniformly recurrent (⊙g-almost periodic) functions is not uniformly re-
current (⊙g-periodic), in general.

The above-mentioned observation of H. Bohr has motivated us to further analyze
some very specific examples of generalized almost periodic functions in more detail
(see [122] and [824, Appendix 3] for a non-updated list of unsolved problems in the the-
ory). First of all, we recall that B. Basit and H. Güenzler have constructed, in [125, Ex-
ample 3.2], a bounded continuous function f : ℝ→ ℝ such that its first anti-derivative
t → ∫t0 f (s) ds, t ∈ ℝ is almost periodic, while the function f (⋅) itself is not uniformly
continuous, not Stepanov almost periodic, not almost automorphic and

sup
t∈[−2,0]

f (t + τ) − f (t)
 ⩾ 1 for all τ ⩾ 2. (2.27)

The construction concretely goes as follows. Define a continuous 2n+1-periodic func-
tion fn : ℝ→ ℝ by fn(t) := sin(2nπt) for t ∈ [2n − 1, 2n], fn(t) := 0 for t ∈ [−2n, 2n − 1), and
extend it 2n+1-periodically to the whole real axis. Then supp(fn) = [2n − 1, 2n] + 2n+1ℤ,
which simply implies that supp(fn) and supp(fm) are disjunct sets for each integers
n, m ∈ ℕ with n ̸= m. Therefore, the function f (x) := ∑∞n=1 fn(x), x ∈ ℝ is well defined.
This function satisfies all above properties, and we will provide a small contribution
here by proving that the set ϑ(f , ε) is empty for each number ε ∈ (0, 1):
△ Suppose that τ ∈ ϑ(f , ε). Due to (2.27), we have τ ∈ (0, 2) so that there exist two

possibilities: τ ∈ (0, 1) or τ ∈ [1, 2). In the first case, there exists a sufficiently large
number n ∈ ℕ such that (2n + 1) − (2n − 1 + 2−n−1) > τ. Let t = 2n − 1 + 2−n−1; then
t + τ ∈ (2n, 2n + 1) and therefore f (t) = 1 while f (t + τ) = 0 so that |f (t + τ) − f (t)| =
1 > ε. In the second case, there exists a sufficiently large number n ∈ ℕ such that
τ > 2−n−1. In this case, take t = 2n − 2−n−1; then t + τ ∈ (2n, 2n + 1) and therefore
f (t) = −1 while f (t + τ) = 0 so that |f (t + τ) − f (t)| = 1 > ε.

Essentially, the functions f (⋅) satisfying the requirement that there exists a number ε ∈
(0, 1) such that the set ϑ(f , ε) is bounded will not occupy our attention henceforth. In
connection with the above example, we would like to propose the following question.

Question 2.4.1. Suppose that f : I → X is a bounded, continuous and Stepanov al-
most periodic. Is it true that ϑ(f , ε) ̸= 0 (ϑ(f , ε) is unbounded) for all ε > 0?

More concretely, assume that α, β ∈ ℝ and αβ−1 is a well-defined irrational num-
ber. Let the function fα,β(⋅) and gα,β(⋅) be given through (2.6) and (2.7), respectively. Is
it true that ϑ(f , ε) ̸= 0 (ϑ(f , ε) is unbounded) [ϑ(g, ε) ̸= 0 (ϑ(g, ε) is unbounded)] for all
ε > 0?
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We continue by observing that A. Haraux and P. Souplet have proved, in [511, The-
orem 1.1], that the function f : ℝ→ ℝ, given by

f (t) :=
∞

∑
n=1

1
n
sin2( t

2n
) dt, t ∈ ℝ, (2.28)

is uniformly continuous, uniformly recurrent and unbounded. From the argumenta-
tion given in the proof of the above-mentioned theorem, it immediately follows that
the function f (⋅) given by (2.28) is neither Besicovitch almost periodic [631] nor asymp-
totically Stepanov almost automorphic. The reason for that is quite simple: this func-
tion is even and enjoys the property that

lim sup
t→+∞

1
2t

t

∫
−t

f (s) ds = +∞.

Since the concepts of H. Weyl and A. S. Besicovitch suggest very general ways of ap-
proaching almost automorphicity [631], it is logical to ask whether the function f (⋅) is
Weyl almost automorphic. We will prove the following result.

Theorem 2.4.2. The function f (⋅), given by (2.28), is Weyl p-almost automorphic for any
finite exponent p ⩾ 1 and satisfies the requirement that for each number τ ∈ ℝ the
function f (⋅ + τ) − f (⋅) belongs to the space ANP(ℝ : ℂ).

Concerning this contribution, it is worth noting that the unbounded functions f :
ℝ→ ℝ such that for each number τ ∈ ℝ the function f (⋅+τ)− f (⋅) belongs to the space
AP(ℝ : ℂ)have been analyzed byA.M. Samoilenko and S. I. Trofimchuk in [896] (let us
recall that the bounded functions satisfying this condition are always almost periodic
due to the famous Loomis theorem [731]; see also the results obtained in the articles
[127] by B. Basit and A. J. Pryde, [156] by I. Berg, [689] by M.A. Latif, M. I. Bhatti, [977]
by R. Terras and [996, 997] byW. P. Veith). Let us also note that the function f (⋅), given
by (2.28), has been employed by H. Y. Zhao and M. Fečkan in [1089], for proving the
fact that for each finite real numbersM, L > 0 the set consisting of all almost periodic
functions h : ℝ→ ℝ such that |h(t)| ⩽ M, t ∈ ℝ and |h(t1) − h(t2)| ⩽ L|t1 − t2|, t1, t2 ∈ ℝ
is not precompact in C(ℝ).

Furthermore, in [511, Theorem 1.2], A. Haraux and P. Souplet have proved that for
each real number c > 0 the function h(⋅) = min(c, f (⋅)), where f (⋅) is given by (2.28),
is bounded uniformly continuous, uniformly recurrent and not asymptotically almost
periodic. Since the function h(⋅) is uniformly continuous, Lemma 2.3.4(ii) below im-
plies that h(⋅) is asymptotically Stepanov p-almost automorphic (p ⩾ 1) if and only if
h(⋅) is asymptotically almost automorphic. But this is actually not the case because
[511, Lemma 2.1] can be improved in the following manner.
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Lemma 2.4.3. Let ω : ℝ → [0,∞) be Lipschitz continuous and such that the set
ω([0,+∞)) is unbounded. Define, for each finite number c > lim inft→+∞ ω(t), the func-
tion ω1 : ℝ → [0,∞) by ω1(t) := min(c,ω(t)), t ∈ ℝ. Then the restriction of the function
ω1(⋅) to the non-negative real axis is not asymptotically almost automorphic.

The proof of Lemma 2.4.3 is almost the same as that of [511, Lemma 2.1]. The only
thing worth noticing is that the existence of an almost automorphic function ω∗1 (⋅)
such that limt→+∞ |ω1(t) − ω∗1 (t)| = 0 implies, as in the proof of the above-mentioned
lemma, that ω∗1 ≡ c; this follows by using the same arguments, almost directly from
the definition of almost automorphicity (we do not use here the fact that the limits in
the second part of proof are uniform on ℝ).

We will extend [511, Theorem 1.2] in the following way.

Theorem 2.4.4. Let the function f (⋅) be given by (2.28), and let c > 0. Then the func-
tion h(t) := min(c, f (t)), t ∈ ℝ is bounded uniformly continuous, uniformly recur-
rent, not asymptotically (Stepanov) almost automorphic, and not (Stepanov) quasi-
asymptotically almost periodic.

Concerning this contribution, we have made a decision to further analyze the
function constructed by H. Bohr on pp. 113–115 of the first part of his landmark tril-
ogy [196]. In actual fact, the results obtained by A.M. Fink in his doctoral dissertation
[444] tell us that this function is uniformly continuous (nonexpansive, in fact), uni-
formly recurrent and not almost periodic. The construction of this function goes as
follows. Let τ1 := 1, τ2 > 2 and let the sequence (τn)n∈ℕ of positive real numbers satisfy
τn > 2∑

n−1
i=1 iτi for all n ∈ ℕ. Let the sequence (fn : ℝ → ℝ)n∈ℕ be defined as follows.

Set f1(x) := 1 − |x| for |x| ⩽ 1 and f1(x) := 0, otherwise. If the functions f1(⋅), . . . , fn−1(⋅)
are already defined, set

fn(x) := fn−1(x) +
n−1
∑
m=1

n −m
n
[fn−1(x −mτn) + fn−1(x +mτn)], x ∈ ℝ.

Then
fn(x + τn) − fn(x)

 ⩽
1
n
, n ∈ ℕ, x ∈ ℝ,

and the function

f (x) := lim
n→+∞

fn(x), x ∈ ℝ, (2.29)

is well defined, even and satisfies 0 ⩽ f (x) ⩽ 1 for all x ∈ ℝ. It is worth observing
that this function also satisfies all clarified properties of the function h(⋅) from Theo-
rem 2.4.4.

Theorem 2.4.5. The function f : ℝ → ℝ, given by (2.29), is bounded uniformly contin-
uous, uniformly recurrent, not asymptotically (Stepanov) almost automorphic, and not
(Stepanov) quasi-asymptotically almost periodic.
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In Example 2.4.37, we will show that, for some concrete choices of sequences
(τn)n∈ℕ, the function f : ℝ → ℝ, given by (2.29), is Weyl p-almost automorphic for
each finite exponent p ⩾ 1. Since any Stepanov p-quasi-asymptotically almost peri-
odic function isWeylp-almost periodic (p ⩾ 1) in the sense ofA. S. Kovanko’s approach
(see [647, Proposition 2.11]), it is quite reasonable to ask the following.

Question 2.4.6. Is it true that the function f (⋅), given by (2.29), is (equi-)Weyl p-almost
periodic for some (each) finite exponent p ⩾ 1?

We would like to note that the function used by J. de Vries in [358, point 6., p. 208]
can serve as a much simpler example of a bounded uniformly continuous function
f : ℝ → ℝ satisfying all clarified properties of functions examined in Theorem 2.4.4
and Theorem 2.4.5: Let (pi)i∈ℕ be a strictly increasing sequence of natural numbers
such that pi|pi+1, i ∈ ℕ and limi→∞ pi/pi+1 = 0. Define the function fi : [−pi, pi]→ [0, 1]
by fi(t) := |t|/pi, t ∈ [−pi, pi] and extend the function fi(⋅) periodically to the whole real
axis; the obtained function, denoted by the same symbol fi(⋅), is of period 2pi (i ∈ ℕ).
Set

f (t) := sup{fi(t) : i ∈ ℕ}, t ∈ ℝ. (2.30)

We will prove the following.

Theorem 2.4.7. The function f : ℝ → ℝ, given by (2.30), is bounded uniformly contin-
uous, uniformly recurrent, not asymptotically (Stepanov) almost automorphic, and not
(Stepanov) quasi-asymptotically almost periodic.

We proceed with much elementary things, by considering a general continuous
function f : I → X. Suppose first that there exists a number ε > 0 such that ϑ(f , ε) ̸= 0,
say τ ∈ ϑ(f , ε). Setting M := supt∈I ,|t|⩽τ ‖f (t)‖, it can be simply proved by induction
that we have ‖f (t)‖ ⩽ M + nε for all t ∈ I with |t| ∈ [nτ, (n + 1)τ] (n ∈ ℕ). Hence,
‖f (t)‖ ⩽ M + |t|ε/τ for all t ∈ I with |t| ∈ [nτ, (n + 1)τ] (n ∈ ℕ), so that

f (t)
 ⩽ M + |t|ε/τ, t ∈ ℝ (2.31)

and the function f (⋅) is linearly bounded as |t|→ +∞. Furthermore, it is clear that the
assumption ϑ(f , ε) ̸= 0 for each ε > 0 implies that ϑ(f , ε) is infinite for each ε > 0 and
that there does not exist a finite constantM such that the interval [0,M] contains the
union of sets ϑ(f , ε) when ε > 0; this is a simple consequence of the fact that for each
ε > 0we have jϑ(f , ε/n) ⊆ ϑ(f , ε) for all j = 1, . . . , n. Let us observe that a linear function
f : I → ℂ can serve as an example of a function for which the growth order in (2.31)
cannot be improved and for which the assumption ϑ(f , ε) ̸= 0 for each ε > 0 does not
imply the existence of a number ε0 > 0 such that the set ϑ(f , ε0) is unbounded.

To the best of our knowledge, this is the first systematic study of vector-valued
uniformly recurrent functions. In this section, we attempt to further profile the sets of
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ε-periods of uniformly recurrent functions by introducing the class of ⊙g-almost peri-
odic functions, which is simply defined by using the notions of lower and upper (Ba-
nach) densities for the subsets of the non-negative real axis (we feel it is our duty to say
thatwe have only partially succeeded in ourmission because it is very difficult to prac-
tically control and give intrinsic characterizations of ε-periods). The lower and upper
(Banach) mn-densities for the subsets ofℕ, considered recently in [643], are discrete
analogues of the lower and upper (Banach) g-densities considered in this section. In
the discrete setting, these densities play an important role in the field of linear chaos,
for example, in definitions of frequent hypercyclicity and reiterativemn-distributional
chaos of linear continuous operators on Fréchet spaces. In the continuous setting,
these densities play an important role in the qualitative analysis of solutions to the
abstract (fractional) integro-differential equations in Fréchet spaces; see, e. g., the re-
cent research monograph [632] by the author and references cited therein for a brief
introduction to the theory of linear chaos. We generalize the notion of almost period-
icity by analyzing several different types of (Stepanov) ⊙g-almost periodicity for func-
tions with values in complex Banach spaces. In actual fact, we analyze the lower and
upper (Banach) g-densities of sets ϑ(f , ε), where ε > 0 and g : [0,∞) → [1,∞) is an
increasing mapping satisfying condition (2.33) below.

The organization of section can be briefly described as follows. Subsection 2.4.1
investigates the lower and upper (Banach) g-densities for the subsets of the non-
negative real line; in this subsection, we present our first significant contributions,
Theorem 2.4.10 and Theorem 2.4.11, in whichwe transfer themain result of paper [482]
by G. Grekos, V. Toma and J. Tomanová to the continuous setting and reconsider the
notion and several recent results from [643].

In Subsection 2.4.2, we analyze ⊙g-almost periodic functions, uniformly recurrent
functions and their Stepanov generalizations. With the notation explained below, we
say that a continuous function f : I → X is ⊙g-almost periodic if and only if for each
ε > 0 we have ⊙g(ϑ(f , ε)) > 0; see Definition 2.4.12, in which the symbol ⊙g denotes
exactly one of the densities dgc, dgc,Bdl;gc,Bdu;gc,Bdl;gc orBdu;gc. In the paragraph fol-
lowingDefinition 2.4.12,we collect the basic properties of⊙g-almost periodic functions
and uniformly recurrent functions. The main purpose of Proposition 2.4.13 is to clar-
ify the supremum formula for uniformly recurrent functions; in Proposition 2.4.14, we
prove that any almost periodic function f : I → X is ⊙g-almost periodic. All introduced
concepts are equivalent in case g(x) ≡ x, and reduced then to the concept of almost pe-
riodicity (Proposition 2.4.15). After that, in Proposition 2.4.16, we prove that the almost
periodicity is equivalent with the Bdl;gc-almost periodicity and Bdu;gc-almost period-
icity for every increasing mapping g(⋅) satisfying condition (2.33).

Definition 2.4.20 introduces the notions of asymptotical uniform recurrence and
asymptotical ⊙g-almost periodicity, while Proposition 2.4.21 restates all results from
Subsection 2.4.2 proved by then in this context. We introduce the notion of (asymp-
totical) Stepanov p-uniform recurrence and (asymptotical) Stepanov (p,⊙g)-almost
periodicity in Definition 2.4.22. The main purpose of Theorem 2.4.24 is to show that
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any asymptotically uniformly recurrent, quasi-asymptotically almost periodic func-
tion is asymptotically almost periodic; the Stepanov analogue of this statement is also
considered here. Proposition 2.4.26 shows that the uniform recurrence and asymp-
totical almost automorphicity (asymptotical almost periodicity) implies almost au-
tomorphicity (almost periodicity), for the usually considered classes and Stepanov
classes. Furthermore, in Theorem 2.4.28 and Proposition 2.4.29, we prove that any uni-
formly continuous (asymptotically) Stepanov p-uniformly recurrent [(asymptotically)
Stepanov (p,⊙g)-almost periodic/Stepanov p-quasi-asymptotically almost periodic]
function f : I → X is asymptotically uniformly recurrent [asymptotically ⊙g-almost
periodic, quasi-asymptotically almost periodic].

Proposition 2.4.31 indicates that for any (asymptotically) uniformly continuous,
uniformly recurrent function we can find an increasing mapping g : [0,∞) → [1,∞)
such that (2.33) holds and f (⋅) is (asymptotically) ⋅g-almost periodic for ⋅g ∈ {dgc, dgc}
(see also Remark 2.4.32, where we use the densities Bdl:gc(⋅) and Bdu:gc(⋅)). In Exam-
ple 2.4.35, we prove that the compactly almost automorphic function constructed
by A.M. Fink in [443] is not asymptotically uniformly recurrent; the proofs of Theo-
rem 2.4.2, Theorem 2.4.4, Theorem 2.4.5 and Theorem 2.4.7 are provided after that.

We investigate the existence anduniqueness of uniformly recurrent and⊙g-almost
periodic type solutions of abstract integro-differential equations in Banach spaces
in a concise, semi-heuristical manner, paying special attention to the invariance of
(asymptotical) uniform recurrence and (asymptotical)⊙g-almost periodicity under the
actions of convolution products.

The function sign : ℝ → {−1,0, 1} is defined by sign(t) := −1 (0, 1) if and only if
t < 0 (t = 0, t > 0); if c ∈ ℝ and A ⊆ ℝ, then we define cA := {ca : a ∈ A}. Let us
recall that a function f : (0,∞) → ℝ is called subadditive if and only if f (x + y) ⩽
f (x) + f (y), x, y > 0. A continuous version of Fekete’s lemma states that, for every
measurable subadditive function f : (0,∞) → ℝ, the limit limt→+∞(f (t)/t) exists in
[−∞,∞) and

lim
t→+∞

f (t)
t
= inf

t>0

f (t)
t
;

see, e. g., [536, Theorem 6.6.1]. We will use the following simple lemma.

Lemma 2.4.8. There do not exist k ∈ ℕ and n0 ∈ ℕ such that

sign(cos((n + k)π√2)) = sign(cos(nπ√2)), n ∈ ℤ, |n| ⩾ n0. (2.32)

Proof. Since cos(nπ√2) ̸= 0 for all n ∈ ℤ, it is clear that (2.32) is equivalent to saying
that cos((n + k)π√2) ⋅ cos(nπ√2) > 0, n ∈ ℤ, |n| ⩾ n0. If k ∈ ℕ satisfies the above
condition and kπ√2 = 2k0π + a for some numbers k0 ∈ ℤ and a ∈ (0, 2π), then we get
from the above: cos(nπ√2+a) ⋅cos(nπ√2) > 0, n ∈ ℤ, |n| ⩾ n0. This cannot be satisfied
because the set {einπ√2 : n ∈ ℤ, |n| ⩾ n0} is dense in the unit circle and cos x = Re(eix),
x ∈ ℝ.
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2.4.1 Lower and upper (Banach) g-densities

Unless stated otherwise, in this subsection we will always assume that g : [0,∞) →
[1,∞) is an increasing mapping satisfying the requirement that there exists a finite
number L ⩾ 1 such that

x ⩽ Lg(x), x ⩾ 0, (2.33)

which clearly implies lim infx→+∞ g(x)/x > 0. If A ⊆ [0,∞) and a, b ⩾ 0, then we
define A(a, b) := {x ∈ A ; x ∈ [a, b]}.

For simplicity and better exposition, in this subsection we will use the Lebesgue
measurem(⋅) on the non-negative real line, only, which will be sufficiently enough for
our analyses of uniformly continuous ⊙g-almost periodic functions; we are obliged
to say that the general case is much more complicated and is almost not considered
below.

Let us define (cf. [632] and [643] for more details):
(i) The lower g-density of A, denoted for short by dgc(A),

dgc(A) := lim inf
x→+∞

m(A(0, g(x)))
x
;

(ii) the upper g-density of A, denoted for short by dgc(A),

dgc(A) := lim sup
x→+∞

m(A(0, g(x)))
x
,

as well as:
(i) the lower l; gc-Banach density of A, denoted for short by Bdl;gc(A),

Bdl;gc(A) := lim inf
x→+∞

lim inf
y→+∞

m(A(y, y + g(x)))
x

;

(ii) the lower u; gc-Banach density of A, denoted for short by Bdu;gc(A),

Bdu;gc(A) := lim sup
x→+∞

lim inf
y→+∞

m(A(y, y + g(x)))
x

;

(iii) the (upper) l; gc-Banach density of A, denoted for short by Bdl;gc(A),

Bdl;gc(A) := lim inf
x→+∞

lim sup
y→+∞

m(A(y, y + g(x)))
x

;

(iv) the (upper) u; fc-Banach density of A, denoted for short by Bdu;gc(A),

Bdu;gc(A) := lim sup
x→+∞

lim sup
y→+∞

m(A(y, y + g(x)))
x

.
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Remark 2.4.9. It is worth noting that, for every set A ⊆ [0,∞), we have

lim inf
x→+∞

lim sup
y→+∞

m([I ∖ A](y, y + g(x)))
x

= lim inf
x→+∞

lim sup
y→+∞
[
g(x) −m(A(y, y + g(x)))

x
]

= lim inf
x→+∞
[
g(x)
x
− lim inf

y→+∞
m(A(y, y + g(x)))

x
]. (2.34)

Similarly,

lim sup
x→+∞

lim sup
y→+∞

m([I ∖ A](y, y + g(x)))
x

= lim sup
x→+∞
[
g(x)
x
− lim inf

y→+∞
m(A(y, y + g(x)))

x
], (2.35)

lim inf
x→+∞

m([I ∖ A](0, g(x)))
x

= lim inf
x→+∞
[
g(x)
x
− lim sup

x→+∞

m(A(0, g(x)))
x
],

and

lim sup
x→+∞

m([I ∖ A](0, g(x)))
x

= lim sup
x→+∞
[
g(x)
x
− lim inf

x→+∞
m(A(0, g(x)))

x
].

Case g(x) := (1 + |x|)q, x ⩾ 0 is the most important (q ⩾ 1), when we denote the
corresponding densities by dqc(A), dqc(A), Bdl;qc(A), Bdu;qc(A), Bdl;qc(A) and Bdl;qc(A).
Arguing similarly as in [643, Example 2.1(i)], for each number q > 1 we can simply
construct a set A ⊆ [0,∞) such that Bdl;qc(A) = 0 and Bdu;qc(A) = +∞; using the
construction given in [643, Example 2.1(ii)], for each number q > 1 we can simply
construct a set A ⊆ [0,∞) such that dqc(A) = +∞ and Bdu;qc(A) = 0 so that the case
q > 1 is not standard. Furthermore, if q = 1, then we get the usual concepts of lower
and upper Banach densities: in this case, we have the following.

Theorem 2.4.10. Let A ⊆ [0,∞). Then we have

Bdl;1c(A) = Bdu;1c(A)

= sup
x>0

lim inf
y→+∞

m(A(y, y + x))
x

= sup
x>0

inf
y⩾0

m(A(y, y + x))
x

:= Bdc(A)

and

Bdl;1c(A) = Bdu;1c(A)

= inf
x>0

lim sup
y→+∞

m(A(y, y + x))
x

= inf
x>0

sup
y⩾0

m(A(y, y + x))
x

:= Bdc(A). (2.36)

Proof. Using the continuous version of Fekete’s lemma, for the proof of the first equal-
ity in (2.36) it suffices to show that the function

F(x) := lim sup
y→+∞

m(A(y, y + x)), x > 0,
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is subadditive, i. e., that for each fixed real numbers x1, x2 > 0 we have

lim
t→+∞

sup
t⩾y

m(A(t, t + x1 + x2)) ⩽ lim
t→+∞

sup
t⩾y

m(A(t, t + x1)) + lim
t→+∞

sup
t⩾y

m(A(t, t + x2)).

This follows immediately if we prove that for each real number y ⩾ 0 we have

m(A(t, t + x1 + x2)) ⩽ sup
t⩾y

m(A(t, t + x1)) + sup
t⩾y

m(A(t, t + x2)).

But this is a simple consequence of the fact that for each real number y ⩾ 0 we have
t + x1 ⩾ y and

m(A(t, t + x1 + x2)) ⩽ m(A(t, t + x1)) +m(A(t + x1, t + x1 + x2));

see also P. Ribenboim’s paper [871]. Since

lim sup
y→+∞

m(A(y, y + x))
x

⩽ sup
y⩾0

m(A(y, y + x))
x

⩽ lim inf
x→+∞

sup
y⩾0

m(A(y, y + x))
x

,

for the proof of (2.36) it remains to be shown that

lim inf
x→+∞

sup
y⩾0

m(A(y, y + x))
x

⩽ Bdu;1c(A). (2.37)

For this, wewill slightly adapt the arguments proposed in the proof of discrete version
of this statement, given in [482]. Define

D = {x ∈ [0, 1] : ∀L > 0 ∃ interval I′ ⊆ [0,∞) s. t.m(I′) ⩾ L andm(A ∩ I′)/m(I′) ⩾ x}.

Repeating verbatim the arguments given in [482, Subsection 2.1], we obtain

lim inf
x→+∞

sup
y⩾0

m(A(y, y + x))
x

⩽ b := supD.

The proof of (2.36) will be completed if one shows that

b ⩽ inf
x>0
(lim sup

y→+∞

m(A(y, y + x))
x

).

Suppose the contrary. Then there are a positive real number x0 > 0 and two real num-
bers x1, x2 ∈ [0, 1] such that x1 < x2 < b and

lim sup
y→+∞

m(A(y, y + x0)) < x0x1.

By definition of lim supy→+∞ ⋅, this implies that there exists a positive real number
y0 > 0 such that m(A(y, y + x0)) < x0x1 for all y ⩾ y0. We will prove that there exists
a sufficiently large number L > 0 such that every subinterval I′ ⊆ I with m(I′) ⩾ L
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satisfies m(A ∩ I′) < x2m(I′), showing that x2 ∉ D and implying the contradiction. To
see this, suppose that I′ = [y, y + h] for some h > 0. Then there exists q ∈ ℕ0 such that
qx0 ⩽ h < (q + 1)x0 and therefore

m(A(y, y + h)) ⩽ y0 +m(A(y0, y + h)) ⩽ y0 +
q
∑
j=0

m(A(y0 + jx0, y0 + (j + 1)x0))

⩽ y0 + (q + 1)x0x1 ⩽ y0 + x0x1 + qx0x1 < y0 + x0x1 + hx1 < hx2,

for any h > 0 sufficiently large. The proof of (2.37) follows from (2.34)–(2.35) and (2.36).

By the proof of Theorem 2.4.10, it follows that for each subset A ⊆ [0,∞) we have

Bdc(I ∖ A) + Bdc(A) = 1. (2.38)

Since the case g(x) ≡ x is very special in our analysis, we will also prove the fol-
lowing result which is well known in the discrete case (we then write dc(A) ≡ dgc(A)
and dc(A) ≡ dgc(A)).

Theorem 2.4.11. Let A ⊆ [0,∞). Then we have

0 ⩽ Bdc(A) ⩽ dc(A) ⩽ dc(A) ⩽ Bdc(A) ⩽ 1.

Proof. The only non-trivial parts are Bdc(A) ⩽ dc(A) and dc(A) ⩽ Bdc(A); due to (2.38),
it suffices to show that dc(A) ⩽ Bdc(A). Suppose the contrary. Due to (2.36) and defini-
tion of lim supx→+∞ ⋅, it follows that

lim
t→+∞

sup
t⩾x

m(A(0, t))
t
> inf

x>0
sup
y⩾0

m(A(y, y + x))
x

.

Since the mapping in the above limit is monotonically decreasing in variable t, we get
the existence of positive real numbers δ > 0, x0 > 0 and y0 > 0 such that

m(A(0, y))
y
⩾
m(A(z, z + x0))

x0
+ δ, y ⩾ y0, z ⩾ 0. (2.39)

Due to (2.39), we have

m(A(0, y)) ⩽
⌊y/x0⌋
∑
j=0

m(A(jx0, (j + 1)x0)) ⩽ (⌊y/x0⌋ + 1)(
m(A(0, y))

y
− δ)x0,

i. e.,

(1 − x0
y
(⌊y/x0⌋ + 1))

m(A(0, y))
y
⩽ −δx0(⌊y/x0⌋ + 1)/y, y ⩾ y0.

After taking the limits as y → +∞, we obtain 0 ⩽ −δ, which is a contradiction.
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Formore details about densities, see also Chapter 5. Let us finally note that, in the
combinatorial and additive number theory, the sets with positive upper Banach den-
sity play amajor role; see, e. g., [468, Section 5.7, Section 5.8]. A great number of results
about the lower and upper (Banach) densities, known for the subsets of integers, can-
not be so easily reformulated and reconsidered for the subsets of the non-negative real
axis. This is not the case with the statements of [643, Proposition 2.5–Proposition 2.7,
Corollary 2.2], which can be simply reformulated for (Banach) g-densities; details can
be left to the interested reader.

2.4.2 ⊙g-Almost periodic functions, uniformly recurrent functions and their
Stepanov generalizations

We will always assume henceforth that g : [0,∞) → [1,∞) is an increasing mapping
satisfying the requirement that there exists a finite number L ⩾ 1 such that (2.33) holds.
Let ⊙g denote exactly one of the symbols dgc, dgc, Bdl;gc, Bdu;gc, Bdl;gc or Bdu;gc.

We start by introducing the following notion.

Definition 2.4.12. Let f : I → X be continuous. Then it is said that f (⋅) is ⊙g-almost
periodic if and only if for each ε > 0 we have ⊙g(ϑ(f , ε)) > 0.

We will use hereafter the following fundamental properties of ⊙g-almost periodic
functions and uniformly recurrent functions, collected as follows (for parts (iv)–(vi),
see [166, pp. 3–4]; for parts (vii)–(viii), see [697, p. 3]):
(i) Any constant function is ⊙g-almost periodic, and for any ⊙g-almost periodic

(uniformly recurrent) function f (⋅) we see that the function ‖f (⋅)‖ is ⊙g-almost
periodic (uniformly recurrent). Any ⊙g-almost periodic function is uniformly re-
current.

(ii) Since for each ε > 0 and c ∈ ℂ ∖ {0} we have ϑ(cf , ε) = ϑ(f , ε/|c|), the ⊙g-almost
periodicity of the function f (⋅) implies the ⊙g-almost periodicity of the function
cf (⋅). Similarly, the uniform recurrence of the function f (⋅) implies the uniform
recurrence of the function cf (⋅).

(iii) The set consisting of all ⊙g-almost periodic (uniformly recurrent) functions is
translation invariant in the sense that for each τ ∈ I and any ⊙g-almost periodic
(uniformly recurrent) function f (⋅), the function f (⋅+τ) is also⊙g-almost periodic
(uniformly recurrent).

(iv) If (fn(⋅)) is a sequence of ⊙g-almost periodic (uniformly recurrent) functions and
(fn(⋅)) converges uniformly to a function f : I → X, then the function f (⋅) is
⊙g-almost periodic (uniformly recurrent).

(v) IfX = ℂ, infx∈I |f (x)| > m > 0and f (⋅) is a bounded⊙g-almost periodic (uniformly
recurrent) function, then the function 1/f (⋅) is likewise a bounded ⊙g-almost pe-
riodic (uniformly recurrent).
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(vi) If f (⋅) is a bounded ⊙g-almost periodic (uniformly recurrent) function and g :
[0,∞)→ X is continuous, then the mapping g(‖f (⋅)‖) is bounded and ⊙g-almost
periodic (uniformly recurrent).

(vii) If f (⋅) is a bounded ⊙g-almost periodic (uniformly recurrent) function and r > 0,
then the function ‖f (⋅)‖r is bounded and ⊙g-almost periodic (uniformly recur-
rent).

Furthermore, it can be simply shown that:
(viii) If f : ℝ→ X is a bounded ⊙g-almost periodic (uniformly recurrent) function and

ψ ∈ L1(ℝ), then the function (ψ ∗ f )(⋅) is bounded, uniformly continuous and
⊙g-almost periodic (uniformly recurrent).

(ix) If f : [0,∞)→ X is uniformly recurrent and belongs to the space C0([0,∞) : X),
then f ≡ 0.

(x) If f : ℝ → X is ⊙g-almost periodic (uniformly recurrent), then the function ̌f :
ℝ → X, defined by ̌f (⋅) := f (−⋅), is ⊙g-almost periodic (uniformly recurrent). If,
additionally, f|[0,∞)(⋅) ∈ C0([0,∞) : X) or ̌f|[0,∞)(⋅) ∈ C0([0,∞) : X), then f ≡ 0.

(xi) If a ∈ I and the function f (⋅) is ⊙g-almost periodic (uniformly recurrent), then
the function f (⋅ + a) − f (⋅) is ⊙g-almost periodic (uniformly recurrent).

For the sake of completeness, we will include short proofs of the following two propo-
sitions (the first proposition improves the corresponding result for almost periodic
functions; for almost automorphic functions, see [631, Lemma 3.9.9]).

Proposition 2.4.13. (Supremum formula) Suppose that f : I → X is uniformly recurrent.
Then we have

sup
t∈I

f (t)
 = sup

t⩾a

f (t)
 ∈ [0,∞], a ∈ I .

Proof. Let a ∈ I, t ∈ I and ε > 0 be fixed. It suffices to show that

f (t)
 ⩽ ε + sups⩾a

f (s)
.

In order to do that, take any strictly increasing sequence (αn) of positive real numbers
such that limn→+∞ αn = +∞ and (2.3) holds. Let n ∈ ℕ be such that t + αn ⩾ a. Then
‖f (t + αn) − f (t)‖ ⩽ ε and therefore

f (t)
 ⩽ ε +
f (t + αn)

 ⩽ ε + sups⩾a

f (s)
,

as claimed.

Proposition 2.4.14. Any almost periodic function f : I → X is ⊙g-almost periodic.

Proof. Let us recall that any almost periodic function is uniformly continuous. Using
this fact, it can be easily shown that for each ε > 0 there exist two finite constants
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δ > 0 and l > 0 such that any segment [y, y + g(x)] for x ⩾ L(1 + l) and y ⩾ 0 contains
the segment [y, y + x/L] (cf. (2.33)) and therefore at least ⌊x/Ll⌋ ⩾ 1 disjunct intervals
of length δ whose elements are ε-periods for f (⋅); see also [166, Corollary, p. 2]. This
clearly implies ⊙g(ϑ(f , ε)) > δ/Ll > 0.

Now we will prove the following.

Proposition 2.4.15. Let f : I → X be continuous and g(x) ≡ x. Then f (⋅) is almost
periodic if and only if f (⋅) is ⊙g-almost periodic.

Proof. Having in mind Proposition 2.4.14 and Theorem 2.4.11, it suffices to show that
any Bdc-almost periodic function f : I → X is almost periodic. Towards this end, it
suffices to show that any set A ⊆ [0,∞) satisfying Bdc(A) > 0 is relatively dense. Oth-
erwise, for every real number L > 0, we see that there exists an interval IL of length
L which does not contain any ε-period of f (⋅). Thus, an unbounded set ⋃n∈ℕ I2n does
not contain any ε-period of f (⋅), which immediately implies that Bdc(A) = 0 by defini-
tion.

Concerning the notions of Bdl;gc-almost periodicity and Bdu;gc-almost periodicity,
the things are pretty clear. In the following proposition, whose discrete analogue has
been considered in [643, Proposition 2.4], we will prove that these notions are equiva-
lent with the one of almost periodicity.

Proposition 2.4.16. Let f : I → X be continuous and let g : [0,∞) → [1,∞) be an in-
creasing mapping satisfying the requirement that there exists a finite number L ⩾ 1 such
that (2.33) holds. Then f (⋅) is almost periodic if and only if f (⋅) is Bdl;gc-almost periodic
if and only if f (⋅) is Bdu;gc-almost periodic.

Proof. Due to Proposition 2.4.14 and the fact that any Bdl;gc-almost periodic function
is Bdu;gc-almost periodic, it suffices to show that any Bdu;gc-almost periodic function
is almost periodic. Suppose the contrary and fix a number x > 0. Then there exists
a number ε > 0 such that, for every n ∈ ℕ, there exists an interval In = [yn, yn +
2n + 2g(x)] ⊆ [0,∞) of length 2n + 2g(x) such that the set ϑ(f , ε) does not meet In.
Then, for every n ∈ ℕ, the interval I′n = [yn + n + g(x), yn + 2n + 2g(x)] does not meet
ϑ(f , ε) and has the length n + g(x) ⩾ g(x). This implies m(([ϑ(f , ε)](yn + n + g(x), yn +
2n + 2g(x))) = 0. Hence, lim infy→+∞m([ϑ(f , ε)](y, y + x)) = 0, which contradicts the
condition Bdu;gc(ϑ(f , ε)) > 0.

Remark 2.4.17. Let f : I → X be continuous and let c ∈ I ∖ {0}. Define the function
fc : I → X by fc(t) := f (ct), t ∈ I. Then we have |c|ϑ(f , ε) ⊆ ϑ(fc, ε) for all ε > 0,
which simply implies that for any uniformly recurrent function f (⋅) we see that the
function fc(⋅) is uniformly recurrent. Due to Proposition 2.4.16 and the corresponding
statement for almost periodic functions, the same holds for⊙g-almost periodicitywith
⊙g ∈ {Bdl;gc,Bdu;gc}. If ⊙g is one of the densities dgc, dgc, Bdl;gc or Bdu;gc, then directly
from their definitions and the definition of ⊙g-almost periodicity we may conclude,
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keeping in mind the fact that for any Lebesgue measurable subset A ⊆ [0,∞) the set
cA is also Lebesgue measurable withm(cA) = cm(A), that the ⊙g-almost periodicity of
the function f (⋅) implies the⊙g-almost periodicity of the function fc(⋅) for any c ∈ I∖{0}
with |c| ⩽ 1. Assume now that ⊙g is one of the above four densities and |c| > 1. In
this case, it is almost inevitable to impose some additional conditions on the function
g(⋅) under which the ⊙g-almost periodicity of the function f (⋅) implies the ⊙g-almost
periodicity of the function fc(⋅). For example, it is very natural to assume additionally
that g(⋅) is continuous, strictly increasing and that there exist two numbers t0 > 0 and
δ > 0 such that |c|g(t) ⩽ g(t/δ) for all t ⩾ t0. For the Banach density Bdu;gc, the claimed
statement then follows from the computation (x > 0 satisfies t = g−1(g(x)/c) ⩾ t0)

lim sup
y→+∞

m(cA(y, y + g(x)))
x

= lim sup
y→+∞

cm(A(y/c, y/c + (g(x)/c)))
x

= lim sup
y→+∞

m(A(y, y + (g(x)/c)))
x

= lim sup
y→+∞

m(A(y, y + g(t)))
g−1(cg(t))

= lim sup
y→+∞

m(A(y, y + g(t)))
t

t
g−1(cg(t))

⩾ δ lim sup
y→+∞

m(A(y, y + g(t)))
t

.

For the Banach density Bdl;gc and for the densities dgc, dgc, the claimed statement
follows similarly.

Remark 2.4.18 (see also [511, Lemma 2.1]). If f : ℝ → ℝ is a (uniformly) continuous,
⊙g-almost periodic (uniformly recurrent) function, ε > 0, c ∈ ℝ and τ ∈ ϑ(f , ε), then τ ∈
ϑ(min(c, f ), ε) and the function min(c, f (⋅)) is (uniformly) continuous and ⊙g-almost
periodic (uniformly recurrent).

Remark 2.4.19. Let f : ℝ → ℝ be an almost periodic function such that there exist
two real numbers a and b such that a < 0 < b and an analytic function F : {z ∈ ℂ : a <
Re z < b}→ ℂ such thatF(ix) = f (x) for all x ∈ ℝ. Then the functionh : ℝ→ ℝ, defined
by h(x) := sign(f (x)), x ∈ ℝ is Stepanov p-almost periodic for any finite exponent p ⩾ 1.
For p = 1, this has been proved in [696, Theorem 5.3.1, p. 210], while the general case
follows from the consideration given in [631, Example 2.2.3(i)] (we feel it to be our
duty to say that we have made small mistakes in the formulations of conditions in
[631, Example 2.2.2, Example 2.2.3(ii)] by neglecting the necessary condition on the
analytical extensibility of the function f ((−i)⋅) to the strip {z ∈ ℂ : a < Re z < b}).
The Bochner criterion is essentially employed in the proof of the above-mentioned
theorem and we would like to observe here that the above condition on the analytical
extensibility of the function f ((−i)⋅) can be neglected in some situations, even for the
uniform recurrence and ⊙g-almost periodicity. More precisely, let f : ℝ → ℝ be a
uniformly recurrent function (an ⊙g-almost periodic function) satisfying

(∃L ⩾ 1) (∀ε > 0) (∀y ∈ ℝ)m({x ∈ [y, y + 1] : f (x)
 ⩽ ε}) ⩽ Lε.
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Then the function h(⋅), defined above, is uniformly recurrent (⊙g-almost periodic),
which follows from the foregoing arguments.

Now we will introduce the following definition.

Definition 2.4.20.
(i) Suppose that f ∈ C(I : X). Then we say that the function f (⋅) is asymptotically

uniformly recurrent if and only if there exist a uniformly recurrent function h :
ℝ→ X and a function ϕ ∈ C0(I : X) such that f (t) = h(t) + ϕ(t) for all t ∈ I.

(ii) Suppose that f ∈ C(I : X). Then we say that the function f (⋅) is asymptotically
⊙g-almost periodic if and only if there exist an ⊙g-almost periodic function h :
ℝ→ X and a function ϕ ∈ C0(I : X) such that f (t) = h(t) + ϕ(t) for all t ∈ I.

Assume that the function f : [0,∞) → X is continuous and the function h :
[0,∞)→ X is continuous. For each ε > 0 andM > 0, we define

ϑM(f , ε) := {τ > 0 :
f (t + τ) − f (t)

 ⩽ ε, t ⩾ M}.

Then it is clear that the assumptionM1 ⩽ M2 implies ϑM1
(f , ε) ⊆ ϑM2

(f , ε). Furthermore,
ifϕ ∈ C0([0,∞) : X) and ε > 0, thenwehave the existence of a numberM > 0 such that

[h + ϕ](t + τ) − [h + ϕ](t)
 ⩽
h(t + τ) − h(t)

 +
ϕ(t + τ) − ϕ(t)



⩽ h(t + τ) − h(t)
 +

ε
2
, t ⩾ M,

so that ϑ(h, ε/2) ⊆ ϑM(h + ϕ, ε). Therefore, for any asymptotically ⊙g-almost periodic
function f : [0,∞) → X for each ε > 0 there existsM > 0 such that ⊙g(ϑM(f , ε)) > 0 (a
similar statement holds for the Stepanov classes). In the case that g(x) ≡ x, then we
also have the converse: if for each ε > 0 there existsM > 0 such that ⊙g(ϑM(f , ε)) > 0,
then the function f (⋅) is asymptotically almost periodic; if ⊙g is Bdl;gc or Bdu;gc, then
the converse also holds in general case. For the remaining four densities, it seems
very conceivable that the converse does not hold in general case.

From this definition and previously proved results in this section, it is clear that
we have the following.

Proposition 2.4.21.
(i) Any asymptotically almost periodic function is asymptotically ⊙g-almost periodic,

and any asymptotically ⊙g-almost periodic function is asymptotically uniformly re-
current.

(ii) Let f : I → X be continuous and g(x) ≡ x. Then f (⋅) is asymptotically almost periodic
if and only if f (⋅) is asymptotically ⊙g-almost periodic.

(iii) Let f : I → X be continuous and let g : [0,∞) → [1,∞) be an increasing mapping
satisfying the requirement that there exists a finite number L ⩾ 1 such that (2.33)
holds. Then f (⋅) is asymptotically almost periodic if and only if f (⋅) is asymptotically
Bdl;gc-almost periodic if and only if f (⋅) is asymptotically Bdu;gc-almost periodic.
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Now we have an open door to the introduction of the concepts of (asymptotical)
Stepanov p(x)-uniform recurrence and (asymptotical) Stepanov (p(x),⊙g)-almost pe-
riodicity.

Definition 2.4.22.
(i) Let p ∈ 𝒫([0, 1]). A function f ∈ Lp(x)loc (I : X) is said to be Stepanov p(x)-uniformly

recurrent if and only if the function ̂f : I → Lp(x)([0, 1] : X), defined by (2.5), is
uniformly recurrent.

(ii) Let p ∈ 𝒫([0, 1]). A function f ∈ Lp(x)loc (I : X) is said to be Stepanov (p(x),⊙g)-almost
periodic if and only if the function ̂f : I → Lp(x)([0, 1] : X), defined by (2.5), is
⊙g-almost periodic.

If p(x) ≡ p ∈ [1,∞), then we also say that the function f (⋅) is Stepanov p-uniformly
recurrent (Stepanov (p,⊙g)-almost periodic).

Definition 2.4.23.
(i) Let p ∈ 𝒫([0, 1]). A function f ∈ Lp(x)loc (I : X) is said to be asymptotically Stepanov

p(x)-uniformly recurrent if and only if there exist a Stepanov p(x)-uniformly recur-
rent function h : ℝ → X and a function q ∈ Lp(x)S (I : X) such that f (t) = h(t) + q(t),
t ∈ I and q̂ ∈ C0(I : Lp(x)([0, 1] : X)).

(ii) Let p ∈ 𝒫([0, 1]). A function f ∈ Lp(x)loc (I : X) is said to be asymptotically Stepanov
(p(x),⊙g)-almost periodic if and only if there exist a Stepanov (p(x),⊙g)-almost
periodic function h : ℝ → X and a function q ∈ Lp(x)S (I : X) such that f (t) =
h(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp(x)([0, 1] : X)).

If p(x) ≡ p ∈ [1,∞), then we also say that the function f (⋅) is asymptotically Stepanov
p-uniformly recurrent (asymptotically Stepanov (p,⊙g)-almost periodic).

We can simply state the analogues of Proposition 2.4.14-Proposition 2.4.16 and
Proposition 2.4.21 for the Stepanov classes. Taking into account Proposition 2.4.16
and Proposition 2.4.21(iii), in the remainder of section we will always assume, if not
explicitly stated otherwise, that ⊙g denotes exactly one of the densities dgc, dgc, Bdl;gc
or Bdu;gc. Before proceeding any further, we would like to note that we can simi-
larly introduce and analyze the concepts of ⊙g-almost anti-periodicity and Stepanov
(p,⊙g)-almost anti-periodicity [631].

The following result, which is closely related with [647, Theorem 2.5, Theorem
2.10], plays a significant role in the proof of Theorem 2.4.4.

Theorem 2.4.24.
(i) Suppose that the function f : I → X is asymptotically uniformly recurrent and quasi-

asymptotically almost periodic. Then the function f (⋅) is asymptotically almost pe-
riodic.
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(ii) Suppose that p ∈ 𝒫([0, 1]), the function f ∈ Lp(x)S (I : X) is asymptotically Stepanov
p(x)-uniform recurrent and Stepanov p(x)-quasi-asymptotically almost periodic.
Then the function f (⋅) is asymptotically Stepanov p(x)-almost periodic.

Proof. The proof of theorem essentially follows from the argumentation contained in
the proof of [631, Theorem 2.5]; for the sake of completeness, wewill include all details
of proof. Suppose that the function f : I → X satisfies the assumptions in (i). Then
there exist a uniformly recurrent function h(⋅) and a function q ∈ C0(I : X) such that
f (t) = h(t) + q(t), t ∈ I and for each ε > 0 there exists a finite number L(ε) > 0 such
that any interval I′ ⊆ I of length L(ε) contains at least one number τ ∈ I′ satisfying the
requirement that there exists a finite numberM(ε, τ) > 0 such that

[h(t + τ) − h(t)] + [q(t + τ) − q(t)]
 ⩽ ε, provided t ∈ I and |t| ⩾ M(ε, τ).

Since f (⋅) is bounded and q ∈ C0(I : X), we see that h(⋅) is bounded. The above implies
the existence of a finite numberM1(ε, τ) ⩾ M(ε, τ) such that

h(t + τ) − h(t)
 ⩽ 2ε, provided t ∈ I and |t| ⩾ M1(ε, τ). (2.40)

Define the function H : I → X by H(t) := h(t + τ) − h(t), t ∈ I. Then the function H(⋅)
is bounded and, due to the property (xi), we see that the functionH(⋅) is uniformly re-
current. Applying supremum formula clarified in Proposition 2.4.13 and (2.40), we get

sup
t∈I

H(t)
 = sup

t⩾M1(ε,τ)

H(t)
 = sup

t⩾M1(ε,τ)

h(t + τ) − h(t)
 ⩽ 2ε.

Hence, ‖h(t + τ) − h(t)‖ ⩽ 2ε for all t ∈ I and h(⋅) is almost periodic by definition,
which completes the proof of part (i). For part (ii), observe first that there exist a
Stepanov p-uniformly recurrent function h(⋅) and a function q ∈ LpS(I : X) such that
f (t) = h(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : X)). Repeating verbatim the arguments
given in the proof of part (i), with the function f (⋅) replaced therein with the function
̂f (⋅), we see that the function ĥ : I → Lp([0, 1] : X) is asymptotically almost periodic.
This simply completes the proof of (ii).

Example 2.4.25. Define

f (t) := ( 4n2t2

(t2 + n2)2
)
n∈ℕ
, t ⩾ 0.

Then f ∈ Q − AAA([0,∞) : c0) ∩ BUC([0,∞) : c0) and f (⋅) is not asymptotically al-
most automorphic (see [647, Example 2.6, Theorem 2.5]). Due to Theorem 2.4.24(ii)
and Lemma 2.3.4(i), the function f (⋅) is not asymptotically Stepanov (1-)uniformly
recurrent.

The results presented in the subsequent proposition are expected to a certain
extent:
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Proposition 2.4.26. Let p ∈ 𝒫([0, 1]).
(i) If f : ℝ → X is uniformly recurrent and asymptotically almost automorphic, then

f (⋅) is almost automorphic.
(ii) If f : I → X is uniformly recurrent and asymptotically almost periodic, then f (⋅) is

almost periodic.
(iii) If f : ℝ → X is Stepanov p(x)-uniformly recurrent and asymptotically Stepanov

p(x)-almost automorphic, then f (⋅) is Stepanov p(x)-almost automorphic.
(iv) If f : I → X is Stepanov p(x)-uniformly recurrent and asymptotically Stepanov

p(x)-almost periodic, then f (⋅) is Stepanov p(x)-almost periodic.

Proof. We will prove only (i). Suppose that f : ℝ → X is uniformly recurrent and
asymptotically almost automorphic. Then there exist a function h ∈ AA(ℝ : X), a func-
tion q ∈ C0(ℝ : X) and a strictly increasing sequence (αn) of positive real numbers
tending to plus infinity such that (2.3) holds and f (t) = h(t) + q(t) for all t ∈ ℝ. Fix a
number t ∈ ℝ. Then limn→+∞ q(t + αn) = 0 and, in combination with (2.3), we get

lim
n→+∞

h(t + αn) = f (t) and lim
n→+∞

f (t − αn) = f (t). (2.41)

Since h(⋅) is almost automorphic, we can extract a subsequence (βn) of (αn) such that
there exists a mapping f1 : ℝ→ X satisfying

lim
n→+∞

h(t + βn) = f1(t) and lim
n→+∞

f1(t − βn) = h(t) for all t ∈ ℝ. (2.42)

The uniqueness of the first limits in (2.41) and (2.42) yields f1(t) = f (t). Using the
uniqueness of the second limits in (2.41) and (2.42), we get f (t) = h(t), which com-
pletes the proof of (i).

Combining Theorem 2.4.24 and Proposition 2.4.26, we may deduce the following.

Corollary 2.4.27. Let p ∈ 𝒫([0, 1]).
(i) If f : I → X is uniformly recurrent and asymptotically almost periodic, then f (⋅) is

almost periodic.
(ii) If f ∈ Lp(x)S (I : X) is Stepanov p(x)-uniform recurrent and Stepanov p(x)-quasi-

asymptotically almost periodic, then f (⋅) is Stepanov p(x)-almost periodic.

In the following theorem, we reconsider the statements given in Lemma 2.3.4 for
the (asymptotical) Stepanov p(x)-uniform recurrence and (asymptotical) Stepanov
(p(x),⊙g)-almost periodicity.

Theorem 2.4.28. Let p ∈ 𝒫([0, 1]).
(i) If the function h : I → X is uniformly recurrent, ϕ ∈ C0(I : X) and f (t) = h(t) + ϕ(t)

for all t ∈ I, then

{h(t) : t ∈ I} ⊆ {f (t) : t ∈ I}. (2.43)
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(ii) If h : I → X is uniformly continuous and Stepanov p(x)-uniformly recurrent
(Stepanov (p(x),⊙g)-almost periodic), then the function h(⋅) is uniformly recurrent
(⊙g-almost periodic).

(iii) If f : I → X is uniformly continuous and asymptotically Stepanov p(x)-uniformly re-
current (asymptotically Stepanov (p(x),⊙g)-almost periodic), then the function f (⋅)
is asymptotically uniformly recurrent (asymptotically ⊙g-almost periodic).

Proof. Part (i) can be simply deduced as follows. Let the numbers t ∈ ℝ and ε > 0
be fixed. It is clear that there exists a strictly increasing sequence (αn) of positive real
numbers such that ‖h(t)−h(t +αn)‖ < ε/2, n ∈ ℕ. Hence, there exists n0 ∈ ℕ such that

h(t) − f (t + αn)
 ⩽
h(t) − h(t + αn)

 +
q(t + αn)

 ⩽ ε/2 + ε/2 = ε.

This, in turn, implies (2.43). For the proofs of (ii) and (iii), it suffices to consider case
p(x) ≡ 1. If the function h : I → X satisfies the requirements of (ii), then for each
σ ∈ (0, 1) the function hσ : I → X, given by

hσ(t) :=
1
σ

t+σ

∫
t

h(s) ds, t ∈ I , (2.44)

is continuous and, due to the uniform continuity of h(⋅), we have the existence of a
number δ ∈ (0, 1) such that ‖h(t′) − h(t′′)‖ < ε, provided t′, t′′ ∈ I and |t′ − t′′| < δ.
Therefore, if σ ∈ (0, δ), then we have

hσ(t) − h(t)
 ⩽

1
σ

t+σ

∫
t

h(s) − h(t)
 ds < ε, t ∈ ℝ, (2.45)

and limσ→0+ hσ(t) = h(t) uniformly in t ∈ I. By property (iv) from the beginning of
section, it suffices to show that for each fixed number σ ∈ (0, 1) the function hδ(⋅)
is uniformly recurrent (⊙g-almost periodic). But this follows from the argumentation
given on [166, p. 80], where it has been proved that for each number ε > 0 we have
ϑ(ĥ, σε) ⊆ ϑ(hσ , ε). This completes the proof of (ii). To deduce (iii), observe that there
exist a Stepanov 1-uniformly recurrent (Stepanov (1,⊙g)-almost periodic) function h(⋅)
anda function q ∈ L1S(I : X) such that f (t) = h(t)+q(t), t ∈ I and q̂ ∈ C0(I : L

1([0, 1] : X)).
Using (i) and the arguments contained in the proof of [560, Proposition 3.1],we see that
the both functions h(⋅) and q(⋅) are uniformly continuous. This shows that q ∈ C0(I : X)
and, due to part (ii), h(⋅) is uniformly recurrent (⊙g-almost periodic). The proof of the
theorem is thereby completed.

In [1042, Proposition 12], R. Xie and C. Zhang have proved that any uniformly con-
tinuous function f ∈ SpSAPω(I : X) belongs to the space APω(I : X); see [1042] for the
notion. As already mentioned, we have SpSAPω(I : X) ⊆ SpQ − AAP(I : X) and it is
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reasonable to ask whether we can extend the above result by showing that any uni-
formly continuous function f ∈ SpQ − AAP(I : X) belongs to the space Q − AAP(I : X).
This is actually the case, as the next proposition shows (an extension to the variable
exponent p ∈ 𝒫([0, 1]) can be made).

Proposition 2.4.29. Let p ∈ [1,∞), and let f ∈ SpQ − AAP(I : X) be uniformly continu-
ous. Then f ∈ Q − AAP(I : X).

Proof. The proof of proposition is very similar to the proof of Theorem 2.4.28(ii).
Clearly, it suffices to consider the case p = 1. Define, for every number σ ∈ (0, 1), the
function fσ(⋅) by replacing the function h(⋅) in (2.44) with the function f (⋅). Then the
function fσ(⋅) is bounded and continuous (σ ∈ (0, 1)). Furthermore, (2.45) holds with
the functions hσ(⋅) and h(⋅) replaced therein with the functions fσ(⋅) and f (⋅). Due to
[647, Theorem2.13(ii)], it suffices to show that the function fσ(⋅) is quasi-asymptotically
almost periodic for each number σ ∈ (0, 1). But this simply follows from the estimate

fσ(t + τ) − fσ(t)
 ⩽

1
σ

t+1

∫
t

f (s + τ) − f (s)
 ds, t ∈ I , τ ∈ I , σ ∈ (0, 1),

which can be proved as in [166, p. 80].

Remark 2.4.30. The proof of Proposition 2.4.29 considerably shortens the proof of
[1042, Proposition 12]. Therefore, the word “Stepanov” in the formulations of Theo-
rem 2.4.4 and Theorem 2.4.5 can be encompassed with the round brackets.

The following proposition will be important in the sequel.

Proposition 2.4.31. Suppose that the function f : I → X is uniformly continuous and
(asymptotically) uniformly recurrent. Then there exist a finite number L ⩾ 1 and an in-
creasing mapping g : [0,∞)→ [1,∞) such that (2.33) holds and f (⋅) is (asymptotically)
⋅g-almost periodic for ⋅g ∈ {dgc, dgc}.

Proof. Without loss of generality, we may assume that the equation (2.3) holds with
the sequence (αn) satisfying αn+1 − αn ⩾ 1. It suffices to prove the proposition for uni-
formly recurrent functions. Let ε > 0 be fixed. Due to the uniform continuity of f (⋅),
we see that there exist an integer n0 ∈ ℕ and a finite real number δ > 0 such that
the set ϑ(f , ε) contains the union of disjunct intervals [αn − δ, αn + δ] for n ⩾ n0. Let
g : [0,∞) → [1,∞) be any increasing mapping such that g(n) > αn+1 for all n ∈ ℕ.
Hence, (2.33) holds with some finite number L ⩾ 1. Furthermore, if x ∈ [n, n + 1], then
the interval [0, g(x)] contains at least (n−n0)disjunct intervals of length δwhoseunion
belongs to ϑ(f , ε). This simply implies that m([ϑ(f , ε)](0, g(x))) ⩾ δ(n − n0) and there-
fore m([ϑ(f , ε)](0, g(x)))/x ⩾ δ(n − n0)/(n + 1). This simply implies dc(ϑ(f , ε)) > 0, so
that f (⋅) is dgc-almost periodic and therefore dgc-almost periodic.
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Remark 2.4.32. The proof of Proposition 2.4.31 does not work for the upper l; gc-Ba-
nach density Bdl;gc(⋅) and the upper u; gc-Banach density Bdu;gc(⋅). In general, these
densities differ from the densities

Bdl:gc(A) := lim inf
x→+∞

sup
y⩾0

m(A(y, y + g(x)))
x

and

Bdu:gc(A) := lim sup
x→+∞

sup
y⩾0

m(A(y, y + g(x)))
x

,

respectively. Repeating verbatim the above arguments, it can be simply proved that for
any uniformly continuous, uniformly recurrent function f : I → X there exist a finite
number L ⩾ 1 and an increasing mapping g : [0,∞) → [1,∞) such that (2.33) holds
and f (⋅) is ⋅g-almost periodic for ⋅g ∈ {Bdl:gc,Bdu:gc}.

Remark 2.4.33. By the proof of Proposition 2.4.31, it follows that, for every uniformly
continuous, uniformly recurrent function fi : I → X (1 ⩽ i ⩽ n), we can find a finite
number L ⩾ 1 and an increasing mapping g : [0,∞) → [1,∞) such that (2.33) holds
and fi(⋅) is ⋅g-almost periodic for all 1 ⩽ i ⩽ n and ⋅g ∈ {dgc, dgc}.

Keeping in mind the corresponding definitions and Proposition 2.4.31, the next
result follows immediately (the previous two remarks can be reformulated in this con-
text as well).

Proposition 2.4.34. Suppose that p ∈ 𝒫([0, 1]), f : I → X is (asymptotically) Stepanov
p(x)-uniformly recurrent and ̂f : I → Lp(x)([0, 1] : X) is uniformly continuous. Then
there exist a finite number L ⩾ 1 and an increasing mapping g : [0,∞) → [1,∞) such
that (2.33) holds and f (⋅) is (asymptotically) Stepanov (p(x),⊙g)-almost periodic for ⋅g ∈
{dgc, dgc}.

It is worth noticing that Proposition 2.4.31 cannot be applied to the compactly al-
most automorphic functionswhich arenot asymptotically uniformly recurrent, in gen-
eral. Concerning this problematic, we would like to present the following illustrative
example.

Example 2.4.35. Any almost periodic function has to be compactly almost automor-
phic, while the converse statement is not true, however. The first example of a scalar-
valued compactly almost automorphic functionwhich is not almost periodic has been
constructed by A.M. Fink (see [443, p. 521]). Set an := sign(cos(nπ√2)), n ∈ ℤ and de-
fine after that the function f : ℝ → ℝ by f (t) := αan + (1 − α)an+1 if t ∈ [n, n + 1) for
some integer n ∈ ℤ and t = αn + (1 − α)(n + 1) for some number α ∈ (0, 1]. As verified
in [443], this function is compactly almost automorphic (therefore, uniformly contin-
uous) but not almost periodic. We will extend this result by showing that the function
f (⋅) is not asymptotically uniformly recurrent. If we suppose the contraposition, then
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there exists a strictly increasing sequence (τn) of positive real numbers tending to plus
infinity such that, for every ε > 0, we have the existence of two finite numbersM > 0
and n0 ∈ ℕ such that

f (x + τn) − f (x)
 ⩽ 2ε, |x| ⩾ M, n ⩾ n0.

Let ε ∈ (0, 1/2) and n ⩾ n0. Then it is clear that there exists l ∈ ℕ, as large as we want,
such that al > 0 and al+1 < 0. Then f (l + (1/2)) = 0 and therefore |f (l + (1/2) + τn)| ⩽ 2ε.
This clearly implies the existence of an integer k ∈ ℤ such that the number l+ (1/2)+τn
lies in a certain small neighborhoodof number k+(1/2);moreprecisely, since the linear
function connecting the points (k,−1) and (k + 1, 1) is given by y = 2x − 2k − 1, we get
from the above that |2(l+ (1/2)+τn)− 2k − 1| ⩽ 2ε, which simply implies |τn − (k − l)| ⩽ ε
and therefore τn ∈ (0, ε] ∪ ⋃k∈ℕ[k − ε, k + ε]. Fix now an integer k ∈ ℕ. We will show
that the inclusion τn ∈ [k − ε, k + ε] cannot be true. Otherwise, for each real number
t ∈ ℝ we have |f (t + τn) − f (t + k)| ⩽ 2ε, which can be easily approved, so that

f (t + k) − f (t)
 ⩽
f (t + k) − f (t + τn)

 +
f (t + τn) − f (t)


⩽ 2ε + ε = 3ε, |t| ⩾ M.

This contradicts Lemma 2.4.8. Notice also that the argumentation given above shows
that, for every ε ∈ (0, 1), we have ϑ(f , ε)∩(ε/2,+∞) = 0. Furthermore, for every ε ∈ (0, 1)
and τ ∈ (0, ε/2], we have |f (t + τ) − f (t)| ⩽ 2τ ⩽ ε so that, actually,

∀ε ∈ (0, 1) : ϑ(f , ε) = (0, ε/2].

Let us recall that A.M. Fink has constructed in [442, Example 6.1] an odd almost
periodic function f : ℝ→ ℝ satisfying

t

∫
0

f (s) ds ⩽ 0, t ∈ ℝ,
2n−1

∫
0

f (s) ds ⩽ −n, n ∈ ℕ

and the function

F(t) := e∫
t
0 f (s) ds, t ∈ ℝ

is bounded but not almost periodic. The construction goes as follows. For any number
n ∈ ℕ∖ {1}, we define the function fn : ℝ→ ℝ by fn(t) := (−n)/(2n−1 − 1), t ∈ [1, 2n−1 − 1],
fn(0) := 0, fn(2n−1 − 1) := 0, fn(⋅) is linear on segments [0, 1] and [2n−1 − 1, 2n−1]; after
that, we extend fn(⋅) to be odd and periodic of period 2n. The function f (t) := ∑

∞
n=2 fn(t),

t ∈ ℝ is well defined, odd and satisfies the above-mentioned properties. Furthermore,
we have F(t) ⩽ 1 for all t ∈ ℝ so that the Lagrange mean value theorem directly shows
that the function F(⋅) is Lipschitzian with the Lipschitz constant ‖f ‖∞; in particular,
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F(⋅) is uniformly continuous. It could be of some interest to knowwhether the function
F(⋅) is not uniformly recurrent.

Finally, it shouldbenote that several intriguing examples of functionswith almost
periodic behavior have been constructed by D. Bugajewski, A. Nawrocki in [232] and
M. Vesely in [1000].

Before providing the proofs of Theorem 2.4.2, Theorem 2.4.4, Theorem 2.4.5 and
Theorem 2.4.7, we would like to mention one more problem.

Question 2.4.36. Let us recall that the function f (⋅), given by (2.24), is almost au-
tomorphic function and not compactly almost automorphic. We would like to ask
whether for each number ε ∈ (0, 1) we have ϑ(f , ε) ̸= 0 (ϑ(f , ε) is unbounded).

Proof of Theorem 2.4.2. We will first prove that for each fixed number τ ∈ ℝ we see
that the function f (⋅+τ)− f (⋅) belongs to the space ANP(ℝ : ℂ). Towards this end, note
that

f (t + τ) − f (t) =
∞

∑
n=1

1
n
[sin2 t + τ

2n
− sin2 t

2n
]

=
∞

∑
n=1

1
2n
[cos t

2n−1
− cos t + τ

2n−1
]

=
∞

∑
n=1

1
n
sin 2t + τ

2n
sin τ

2n

=
∞

∑
n=1

1
n
[sin t

2n−1
cos τ

2n
+ cos t

2n−1
sin τ

2n
] sin τ

2n
, t ∈ ℝ.

Since the functions t → sin t
2n−1 , t ∈ ℝ and t → cos t

2n−1 , t ∈ ℝ are anti-periodic of
anti-period T = 2n−1π, it follows that the function

fk(t) :=
k
∑
n=1

1
n
[sin t

2n−1
cos τ

2n
+ cos t

2n−1
sin τ

2n
] sin τ

2n
, t ∈ ℝ

belongs to the space ANP0(ℝ : ℂ). Moreover, limk→+∞ fk(t) = f (t + τ) − f (t) uniformly
on ℝ since



∞

∑
n=k+1

1
n
[sin t

2n−1
cos τ

2n
+ cos t

2n−1
sin τ

2n
] sin τ

2n


⩽ |τ|

∞

∑
n=k+1

1
n2n−1
, t ∈ ℝ.

Especially, due to the fact that ANP(ℝ : ℂ) = APℝ∖{0}(ℝ : ℂ), we have 0 ∉ σ(f (⋅ + τ) −
f (⋅)), i. e.,

lim
t→+∞

1
t

t

∫
0

f (s + τ) − f (s)
 ds = 0.
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This readily implies

lim
t→+∞

1
t

t

∫
0

f (s + τ) − f (s)

p ds = 0, p ⩾ 1,

because

f (s + τ) − f (s)

p
⩽ f (s + τ) − f (s)

 ⋅ (sup
x⩾0

f (x + τ) − f (x)
)
p−1
, s ⩾ 0.

Taking into account [631, Proposition 2.13.4], we easily see that for each numbers
t, τ ∈ ℝ we have

lim
l→+∞

1
2l

l

∫
−l

f (t + τ + x) − f (t + x)

p dx

= lim sup
l→+∞

1
2l

l

∫
−l

f (t + τ + x) − f (t + x)

p dx = 0,

so that the function f (⋅) is Weyl p-almost automorphic with the limit function f ∗ ≡ f .
This completes the proof of Theorem 2.4.2.

Proof of Theorem 2.4.4. Suppose that the function h(⋅) is Stepanov quasi-asymptoti-
cally almost periodic. It is clear that the function h(⋅) is asymptotically Stepanov uni-
form recurrent, so that Theorem 2.4.24(ii) implies that the function h(⋅) is asymptot-
ically Stepanov almost periodic. Since h(⋅) is uniformly continuous, Lemma 2.3.4(i)
implies that the function h(⋅) is asymptotically almost periodic. This cannot be true
because the restriction of the function h(⋅) to the non-negative real axis is not asymp-
totically (Stepanov) almost automorphic by Lemma 2.4.3.

Proof of Theorem 2.4.5. The function f (⋅), given by (2.29), satisfies the requirement
that for each ε > 0 there exists a positive real number δ > 0 such that the set ϑ(f , ε)
contains the set⋃n⩾⌈1/ε⌉[τn − δ, τn + δ] and f (x) = fn(x) for all x ∈ [−τn−1, τn−1] (n ∈ ℕ).
Furthermore, the function f (⋅) equals zero on arbitrarily long intervals and for each
number ε ∈ (0, 1)we see that the sets {x ∈ ℝ : f (x) ∉ [1−ε, 1+ε]} and ϑ(f , ε) are disjunct
(see [444, Example 8, pp. 31–33] for more details). This essentially implies that the
function f (⋅) cannot be asymptotically Stepanov almost automorphic (we will present
a direct proof, without appealing to Lemma 2.3.4(ii) and Proposition 2.4.26(iii)). If we
suppose the contraposition, then there exist a Stepanov almost automorphic function
h(⋅) and a function q ∈ C0(ℝ : L1([0, 1] : ℂ)) such that f (t) = h(t) + q(t) for a. e. t ∈ ℝ.
Moreover, we have the existence of disjunct intervals In = [bn, b′′n ] ⊆ [0,∞) whose
length is strictly greater than n2 andwhich satisfy f (x) = 0 for all x ∈ In (n ∈ ℕ). Define
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bn := (b′n + b
′′
n )/2 (n ∈ ℕ). Then there exist a subsequence (an) of (bn) and a function

g∗ ∈ L1loc(ℝ : ℂ) such that

lim
n→+∞

t+1

∫
t

f (x + an) − q(x + an) − g
∗(x) dx = 0

for all t ∈ ℝ, and

lim
n→+∞

t+1

∫
t

g
∗(x − an) − [f (x) − q(x)]

 dx = 0

for all t ⩾ 0. Let ε ∈ (0, 1/2) be given. Then there exists n0 ∈ ℕ such that n0/(n0 − 1) >
3ε/2 and ∫1+τn0τn0

|q(x)| dx < ε/8. Since 1 ⩾ f (x) ⩾ fn(x) ⩾ n0/(n0 − 1) for x = τn0 , fn(x) = 0
for x = τn0 + 1 and the function fn(⋅) is linear on the interval [τn0 , τn0 + 1] (see also [196,
part I, p. 115]), the second limit equality with t = τn0 easily implies the existence of an
integer n1 ⩾ n0 such that

1+τn0−an

∫
τn0−an

g
∗(x) dx ⩾

n0
2(n0 − 1)

−
ε
2
>
ε
4
, n ⩾ n1.

Returning to the first limit equation, with t = τn0 − an1 , and taking into account that
limm→∞ ∫

t+1
t |q(x+am)| dx < ε/8 for allm ∈ ℕ sufficiently large,weobtain the existence

of an integerm1 ⩾ n1 such that

1+τn0−an1+am

∫
τn0−an1+am

f (x)
 dx =

1+τn0−an1

∫
τn0−an1

f (x + am)
 dx >

ε
4
−
ε
8
> 0

for allm ⩾ m1. But this is simply impossible because for large values ofm we see that
[τn0 − an1 + am, 1 + τn0 − an1 + am] is contained in a larger interval where the function
f (⋅) equals zero. If we assume that the function f (⋅) is Stepanov quasi-asymptotically
almost periodic, then the first part of proof of Theorem 2.4.4 shows that the function
f (⋅) is asymptotically Stepanov almost periodic, which cannot be true according to the
first part of proof of this theorem.

Example 2.4.37. Without going into full details, let us only note that the function f (⋅)
considered above can be Weyl p-almost automorphic (p ⩾ 1) if the sequence (τn)
marches rapidly to plus infinity. This follows from the fact that the function f (⋅) is
bounded and belongs to the space PAP0(ℝ : ℂ). To explain this in more detail, let
an denote the number of triangles appearing on the graph of the function fn(⋅). Then
a1 = 1 and an = (2n − 1)an−1, n ∈ ℕ ∖ {1} so that an = (2n − 1)!!, n ∈ ℕ. The Lebesgue
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measure of each such triangle cannot exceed 1 so that ∫+∞−∞ fn(x) dx ⩽ (2n − 1)!!, n ∈ ℕ.
Suppose, for simplicity, that limn→+∞(2n − 1)!!/τn−2 = 0. If τn−1 ⩾ l ⩾ τn−2 for some
sufficiently large integer n ∈ ℕ, then

1
l

l

∫
−l

f (x) dx = 1
l

l

∫
−l

fn(x) dx ⩽
1

τn−2

∞

∫
−∞

fn(x) dx ⩽
(2n − 1)!!
τn−2
,

so that liml→+∞(1/2l)∫
l
−l f (x) dx = 0, as claimed. Needless to say that, due to Proposi-

tion 2.4.31, there exists a suitable function g(⋅) such that the function f (⋅) is ⋅g-almost
periodic for ⋅g ∈ {dgc, dgc} (see also [508, pp. 477–478]).

Proof of Theorem 2.4.7. It is alreadyknown that the function f (⋅) satisfies limi→+∞ ‖f (⋅+
2pi)− f (⋅)‖∞ = 0, so that f (⋅) is uniformly recurrent. Keeping inmind Proposition 2.4.29
and arguing as in the proof of Theorem 2.4.4, we see that f (⋅) is (Stepanov) quasi-
asymptotically almost periodic if and only if f (⋅) is asymptotically almost periodic. By
Proposition 2.4.26(ii), this would imply that the function f (⋅) is almost periodic; this
is not the case because the function f (⋅) is not almost automorphic (asymptotically
almost automorphic, equivalently, due to Proposition 2.4.26(i)). If we suppose the
contrary, then there exist a subsequence (pik ) of (pi) and a function ω : ℝ → ℝ such
that limk→+∞ f (t + pik ) = ω(t) and limk→+∞ ω(t − pik ) = f (t) for all t ∈ ℝ. Observe that
the function fi(⋅) satisfies fi(t + pi) ⩾ 1 − ε, provided |t| ⩽ εpi and i ∈ ℕ. Let t ∈ ℝ
and ε > 0 be given. Then there exists i0 ∈ ℕ such that |t| ⩽ εpi for all integers i ⩾ i0.
Therefore, for any integer i ⩾ i0, we have

1 ⩾ f (t + pi) ⩾ fi(t + pi) ⩾ 1 − ε,

so that 1 = limi→+∞ f (t + pi) = limk→+∞ f (t + pik ) = ω(t). Therefore, ω(t) ≡ 1 and
returning to the second limit equality we get f (t) ≡ 1, which is a contradiction (see
also [358, Figure 3.7.3, p. 208]).

We continue by proposing an interesting result closely connected with our previ-
ous analysis of uniformly recurrent functions and the recent researches of I. Area, J.
Losada and J. J. Nieto [77, 78] concerning the quasi-periodic properties of fractional in-
tegrals and fractional derivatives of scalar-valued periodic functions (see also I. Area,
J. Losada, J. J. Nieto [79] and J.M. Jonnalagadda [568] for the discrete analogues). In
[631], we have emphasized that the almost periodic properties and the almost au-
tomorphic properties of the Riemann–Liouville integrals are very unexplored in the
vector-valued case.

Suppose that α ∈ (0, 1) and T > 0. In [77, Theorem 1], the authors have proved
that the Riemann–Liouville integral Jαt f (t) = ∫

t
0 gα(t − s)f (s) ds, t ∈ ℝ of a non-zero

essentially bounded T-periodic function f : ℝ → ℝ cannot be T-periodic. Suppose
now that f : ℝ → X is a non-zero essentially bounded T-periodic function. Then [78,
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Lemma 3] continues to holds for f (⋅), as it can be simply verified, so that the func-
tion Jαt f (⋅) is S-asymptotically T-periodic. If we suppose that the function Jαt f (⋅) is uni-
formly recurrent (compactly almost automorphic), this would imply by [531, Lemma
3.1] and the arguments used in the proof of [531, Proposition 3.4] that the function Jαt f (⋅)
is T-periodic. This will be used in the proof of the following proper extension of [78,
Theorem 9].

Theorem 2.4.38. Suppose that α ∈ (0, 1), T > 0 and f : ℝ → X is a non-zero essen-
tially bounded T-periodic function. Then Jαt f (⋅) cannot be uniformly recurrent (almost
automorphic).

Proof. Suppose that Jαt f (⋅) is uniformly recurrent (almost automorphic) and x∗ ∈ X∗ is
an arbitrary functional. Let ⟨x∗, f (⋅)⟩ = a(⋅) + ib(⋅), where a(⋅) and b(⋅) are real-valued
functions. Then it is clear that the function Jαt ⟨x

∗, f (⋅)⟩ = Jαt a(⋅)+ iJ
α
t b(⋅) is uniformly re-

current (almost automorphic) because Jαt ⟨x
∗, f (⋅)⟩ = ⟨x∗, Jαt f (⋅)⟩, which further implies

that the functions Jαt a(⋅) and J
α
t b(⋅) are uniformly recurrent (almost automorphic). Let

us assume first that the functions Jαt a(⋅) and J
α
t b(⋅) are uniformly recurrent. Since a(⋅)

and b(⋅) are essentially bounded functions of period T, the above discussion implies
that Jαt a(⋅) and J

α
t b(⋅) are periodic functions of period T. Then we can apply [77, The-

orem 1] in order to see that a(⋅) ≡ b(⋅) ≡ 0. This implies ⟨x∗, f (⋅)⟩ ≡ 0 and therefore
f (⋅) ≡ 0. The proof is quite similar if we assume that the function Jαt f (⋅) is almost auto-
morphic, when the functions Jαt a(⋅) and J

α
t b(⋅) are also almost automorphic. Since the

function Jαt f (⋅) is bounded, repeating verbatim the above arguments we may deduce
from [78, Theorem 5] that the functions Jαt a(⋅) and J

α
t b(⋅) are asymptotically T-periodic

and, in particular, bounded and uniformly continuous. Therefore, the functions Jαt a(⋅)
and Jαt b(⋅) are compactly almost automorphic. But then we can argue in the same way
as for the uniform recurrence to see that a(⋅) ≡ b(⋅) ≡ 0.

Applying the trick used in the first part of the proof and the well known fact that
a weakly bounded set in a locally convex space is bounded, wemay conclude that the
statements of [77, Theorem 1, Corollary 2] and [78, Lemma 2, Lemma 3; Proposition 1,
Proposition 2; Theorem 2, Theorem3, Theorem4, Theorem8] hold in the vector-valued
case (concerning the above-mentioned statements from [78], it seems very plausible
that the continuity of the function f (⋅) in their formulations can be replaced with the
essential boundedness). It is clear that it [78, Corollary 1] cannot be reformulated
even for the complex-valued functions and, regarding the main structural results
established in [77, 78], it remains to be considered whether the statements of [78,
Theorem 5, Theorem 6, Theorem 7] hold in the vector-valued case. We will analyze
this question elsewhere.

We proceed with some applications of (asymptotically) uniformly recurrent func-
tions and (asymptotically) ⊙g-almost periodic functions. We shall mostly be con-
cerned with the invariance of (asymptotical) uniform recurrence and (asymptotical)
⊙g-almost periodicity under the actions of convolution products.
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Let f : ℝ → X. We will first investigate the uniformly recurrent and ⊙g-almost
periodic properties of the function

F(t) :=
t

∫
−∞

R(t − s)f (s) ds, t ∈ ℝ, (2.46)

where a strongly continuous operator family (R(t))t>0 ⊆ L(X,Y) satisfies certain as-
sumptions. In our recent research studies regarding this question, it is commonly as-
sumed that the function f (⋅) is Stepanov p(x)-bounded for some function p ∈ 𝒫([0, 1]).
If this is the case, we can simply reformulate the statement of Proposition 3.1.18 below
as follows (cf. also [1067, Examples 4, 5, 7, 8; pp. 32–34], which can be simply reformu-
lated for the uniform recurrence and ⊙g-almost periodicity).

Proposition 2.4.39. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family satisfying M := ∑∞k=0 ‖R(⋅ + k)‖Lq(x)[0,1] <
∞. If ̌f : ℝ → X is Stepanov p(x)-bounded and Stepanov p(x)-uniformly recurrent
(Stepanov (p(x),⊙g)-almost periodic), and the mapping t → ̌f (⋅ − t) ∈ Lp(x)([0, 1] : X) is
continuous, then the function F : ℝ → Y, given by (2.46), is well defined and uniformly
recurrent (⊙g-almost periodic).

Proof. The function F(⋅) is well defined due to the computation carried out in the proof
of Proposition 3.1.18. The proof of the above-mentioned proposition also shows that, if
τ ∈ ℝ is an ε-period of the function ̂̌f : ℝ→ Lp(x)([0, 1] : X), then the resulting function
F(⋅) satisfies, under given conditions on (R(t))t>0, an estimate of the type ‖F(t + τ) −
F(t)‖Y ⩽ Lε, t ∈ ℝ, where L ⩾ 1 is a finite constant independent of t, ε and τ. Hence,
the assumption ⊙g(ϑ(

̂̌f , ε)) > 0 for all ε > 0 implies that ⊙g(ϑ(F, ε)) > 0 for all ε > 0.
Therefore, it remains to be proved that the function F(⋅) is continuous. But this follows
similarly to the proof of [631, Proposition 3.5.3] and our assumption that the mapping
t → ̌f (⋅ − t) ∈ Lp(x)([0, 1] : X) is continuous (see also [373, Proposition 5.1]).

Remark 2.4.40. In general case p ∈ 𝒫([0, 1]), themapping t → ̌f (⋅−t) ∈ Lp(x)([0, 1] : X)
is not necessarily continuous (see, e. g., [667, p. 602]). This is always true provided that
p ∈ D+([0, 1]).

Basically, case in which the function f : ℝ → X is not Stepanov p(x)-bounded
has not attracted the attention of the authors so far. Keeping in mind our previous
results, we would like to state the following proposition with regards to this question
(the uniform continuity of the function ̂̌f : ℝ → Lp(x)([0, 1] : X) has not been assumed
above).

Proposition 2.4.41. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1, ̌f : ℝ → X is
Stepanov p(x)-uniformly recurrent (Stepanov (p(x),⊙g)-almost periodic), there exists a
continuous function P : ℝ→ [1,∞) such that

f (t − ⋅)
Lp(⋅)[0,1] ⩽ P(t), t ∈ ℝ (2.47)

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



90 | 2 Almost periodic type functions

and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying the require-
ment that for each t ∈ ℝ we have

∞

∑
k=0

R(⋅ + k)
Lq(⋅)[0,1]P(t − k) <∞. (2.48)

If the function ̂̌f : ℝ → Lp(x)([0, 1] : X) is uniformly continuous, then the function F :
ℝ→ Y, given by (2.46), is well defined and uniformly recurrent (⊙g-almost periodic).

Proof. Wewill only outline the most important details for Stepanov (p,⊙g)-almost pe-
riodic functions. The function F(⋅) is well defined since, due to Lemma 1.1.7(i) and the
estimates (2.47)–(2.48), we have

∞

∫
0

R(s)

f (t − s)

 ds =
∞

∑
k=0

k+1

∫
k

R(s)

f (t − s)

 ds

=
∞

∑
k=0

1

∫
0

R(s + k)

f (t − s − k)

 ds

⩽ 2
∞

∑
k=0

R(⋅ + k)
Lq(⋅)([0,1]:X)

f (t − k − ⋅)
Lp(x)([0,1]:X)

⩽ 2
∞

∑
k=0

R(⋅ + k)
Lq(⋅)([0,1]:X)P(t − k) <∞,

for any t ∈ ℝ. It is clear that our assumptions imply

M :=
∞

∑
k=0

R(⋅ + k)
Lq(⋅)[0,1] <∞,

so that ϑ(f , ε) ⊆ ϑ(F,Mε). Since we have assumed that the function ̂̌f : ℝ →
Lp(x)([0, 1] : X) is uniformly continuous, the arguments contained in the proof of
[631, Proposition 2.6.11] can be repeated verbatim in order to see that the function F(⋅)
is continuous. This completes the proof of proposition.

Proposition 2.4.39 and Proposition 2.4.41 can be simply incorporated in the study
of the existence and uniqueness of uniformly recurrent solutions and ⊙g-almost peri-
odic solutions of the fractional Cauchy inclusion

Dγ
t,+u(t) ∈ 𝒜u(t) + f (t), t ∈ ℝ, (2.49)

where Dγ
t,+ denotes the Riemann–Liouville fractional derivative of order γ ∈ (0, 1],

f : ℝ → X satisfies certain properties, and 𝒜 is a closed multivalued linear opera-
tor satisfying condition (P) (see Subsection 3.1.3 and [631] for more details).

Taking into account Proposition 2.4.39 and Proposition 2.4.41, we can simply
provide extensions of [631, Proposition 2.6.13, Theorem 2.9.5, Theorem 2.9.7, Theorem

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.4 Almost periodic type functions and densities | 91

2.9.15], concerning the asymptotical Stepanov p-uniform recurrence/asymptotical
Stepanov (p,⊙g)-almost periodicity of the finite convolution product

F(t) :=
t

∫
0

R(t − s)f (s) ds, t ⩾ 0.

These results can be applied in the qualitative analysis of asymptotically uniformly re-
current/asymptotically ⊙g-almost periodic solutions (asymptotically Stepanov p-uni-
formly recurrent/asymptotically Stepanov (p,⊙g)-almost periodic solutions) of the fol-
lowing abstract Cauchy inclusion:

(DFP)f ,γ : {
Dγ
t u(t) ∈ 𝒜u(t) + f (t), t ⩾ 0,

u(0) = x0,

where Dγ
t denotes the Caputo fractional derivative of order γ ∈ (0, 1], x0 ∈ X, f :

[0,∞) → X satisfies certain properties, and 𝒜 is a closed multivalued linear opera-
tor satisfying condition (P) (see Subsection 3.1.3 and [631] for more details).

The sum of two uniformly recurrent (⊙g-almost periodic) functions need not be
uniformly recurrent (⊙g-almost periodic), unfortunately. But it is worth noticing that
there exist many concrete situations where this difficulty can be overcome. For exam-
ple, it is very simple to extend the assertions of [631, Theorem2.14.7] and [389, Theorem
2.3] for the asymptotical Stepanov (p,⊙g)-almost periodicity. To explain this in more
detail, let us observe that the equation appearing on [389, p. 240, l. 5] can be rewritten
as

t

∫
−∞

Γ(t, s)f (s) ds = lim
k→+∞

k

∫
0

Γ(t, t − s)f (t − s) ds, t ∈ ℝ;

arguing as in the proof of above-mentioned theorem from [389] we may conclude that
for each integer k ∈ ℕ the function

t →
k

∫
0

Γ(t, t − s)f (t − s) ds, t ∈ ℝ

is ⊙g-almost periodic, provided that the function f (⋅) is Stepanov (p,⊙g)-almost peri-
odic and Stepanov p-bounded (p > 1), while case p = 1 follows from the same argu-
ments and the proof of [631, Theorem 2.14.6], when it is necessary to assume that f (⋅)
is Stepanov (1,⊙g)-almost periodic and Stepanov 1-bounded. In both cases, p > 1 and
p = 1, we need to employ the property (iv) to achieve the final results.

We close the subsection with the observation that the results whose proofs lean
heavily on the use of Bochner criterion cannot be really reconsidered for uniformly
recurrent functions and ⊙g-almost periodic functions.
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2.4.3 Composition principles for almost periodic type functions and applications

In this subsection, we introduce and analyze the classes of two-parameter (asymptot-
ically) uniformly recurrent functions, two-parameter (asymptotically) ⊙g-almost pe-
riodic functions and their Stepanov generalizations. Several composition principles
are established in this context, which enables one to provide certain applications to
the abstract semilinear integro-differential Cauchy problems and inclusions. Since the
structural results presented in this subsection can be deduced byuncomplicatedmod-
ifications of results known in the existing literature, we have decided to provide the
main details of the proofs for only two statements, Theorem2.4.44 andTheorem2.4.46.

For every ε > 0 and for every bounded set B ⊆ Y , we define ϑ(F; ε,B) as the set
constituted of all numbers τ > 0 such that

F(t + τ, y) − F(t, y)
 ⩽ ε, t ∈ I , y ∈ B.

The following definition is crucial in our analysis.

Definition 2.4.42.
(i) A continuous function F : I ×Y → X is called uniformly recurrent, resp. ⊙g-almost

periodic, if and only if for every ε > 0 and every compact K ⊆ Y there exists
a strictly increasing sequence (αn) of positive reals tending to plus infinity such
that

lim
n→+∞

sup
t∈I

F(t + αn, y) − F(t, y)
 = 0, y ∈ K, (2.50)

resp. if and only if for every ε > 0 and every compact K ⊆ Y we have ⊙g(ϑ(F;
ε,K)) > 0.
The collection of all two-parameter uniformly recurrent functions, resp.⊙g-almost
periodic functions, will be denoted by UR(I × Y : X), resp. AP⊙g (I × Y : X).

(ii) A continuous function F : I × Y → X is called uniformly recurrent on bounded
sets, resp. ⊙g-almost periodic on bounded sets, if and only if for every ε > 0 and
every bounded setB ⊆ Y there exists a strictly increasing sequence (αn) of positive
reals tending to plus infinity such that (2.50) holds with K = B, resp. if and only if
for every ε > 0 and every bounded set B ⊆ Y we have ⊙g(ϑ(F; ε,B)) > 0.
The collection of all two-parameter uniformly recurrent functions on bounded
sets, resp. ⊙g-almost periodic functions on bounded sets, will be denoted by
URb(I × Y : X), resp. AP⊙g ,b(I × Y : X).

(iii) A continuous function F : I × Y → X is said to be asymptotically uniformly recur-
rent, resp. asymptotically ⊙g-almost periodic, if and only if F(⋅) admits a decom-
position F = G + Q, where G ∈ UR(ℝ × Y : X), resp. G ∈ AP⊙g (ℝ × Y : X), and
Q ∈ C0(I × Y : X).
Denote by AUR(I × Y : X), resp. AAP⊙g (I × Y : X), the collection consisting of
all asymptotically uniformly recurrent functions, resp. asymptotically ⊙g-almost
periodic functions.
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(iv) A continuous function F : I × Y → X is said to be asymptotically uniformly recur-
rent on bounded sets, resp. asymptotically ⊙g-almost periodic on bounded sets,
if and only if F(⋅) admits a decomposition F = G + Q, where G ∈ URb(ℝ × Y : X),
resp. G ∈ AP⊙g ,b(ℝ × Y : X), and Q ∈ C0(I × Y : X).
Denote by AURb(I × Y : X), resp. AAP⊙g ,b(I × Y : X), the collection consisting of
all asymptotically uniformly recurrent functions, resp. asymptotically ⊙g-almost
periodic functions.

In the contrast to the approach of C. Zhang for almost periodic functions depend-
ing on the parameter [1078] (see also [631, Definition 2.1.4]), we do not assume a pri-
ori the boundedness of the function F(⋅, ⋅) in our approach. This is quite reasonable
because uniformly recurrent functions and ⊙g-almost periodic functions of one real
variable need not be bounded, in general. It is worth noticing that introducing parts
(ii) and (iv) is motivated by definition of almost periodicity used by T. Diagana in [631,
Definition 3.29].

For the Stepanov classes,wewill use the followingnotion (see also [631,Definition
2.2.4, Definition 2.2.5; Lemma 2.2.7]).

Definition 2.4.43. Let p ∈ 𝒫([0, 1]).
(i) A function F : I × Y → X is called Stepanov p(x)-uniformly recurrent/Stepanov

p(x)-uniformly recurrent on bounded sets (Stepanov (p(x),⊙g)-almost periodic/
Stepanov (p(x),⊙g)-almost periodic on bounded sets) if and only if the function
F̂ : I ×Y → Lp(x)([0, 1] : X) is uniformly recurrent/uniformly recurrent on bounded
sets (⊙g-almost periodic/⊙g-almost periodic on bounded sets).

(ii) We say that F : I × Y → X is asymptotically Stepanov p(x)-uniformly recur-
rent/asymptotically Stepanov p(x)-uniformly recurrent on bounded sets (asymp-
totically Stepanov (p(x),⊙g)-almost periodic/asymptotically Stepanov (p(x),⊙g)-
almost periodic on bounded sets) if and only if there exist two functions G : ℝ ×
Y → X and Q : I × Y → X satisfying the requirement that for each y ∈ Y the
functions G(⋅, y) and Q(⋅, y) are locally p(x)-integrable the following hold:
(a) Ĝ : ℝ × Y → Lp(x)([0, 1] : X) is uniformly recurrent/uniformly recurrent on

bounded sets (⊙g-almost periodic/⊙g-almost periodic on bounded sets),
(b) Q̂ ∈ C0(I × Y : Lp(x)([0, 1] : X)),
(c) F(t, y) = G(t, y) + Q(t, y) for all t ∈ I and y ∈ Y .

If p(x) ≡ p ∈ [1,∞), then we also say that a function F : I × Y → X is Stepanov
p-uniformly recurrent/Stepanov p-uniformly recurrent on bounded sets etc.

A serious difficulty in our investigations is that, for two given uniformly recurrent
functions f : I → X and g : I → X, the sequence (αn) for which (2.3) holds need not
have a subsequence (αnk ) for which

lim
k→∞

sup
t∈ℝ

g(t + αnk ) − g(t)
 = 0;
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moreover, for given two ⊙g-almost periodic functions f : I → X and g : I → X, the
set consisting of their joint ε-periods can be bounded (this cannot occur for almost
periodic functions). Now we will slightly improve [631, Theorem 3.30] for uniformly
recurrent functions and ⊙g-almost periodic functions.

Theorem 2.4.44. Suppose that f : I → Y is uniformly recurrent (⊙g-almost periodic)
and the range of f (⋅) is relatively compact, resp. bounded. If F : I × Y → X is uniformly
recurrent (⊙g-almost periodic), resp. uniformly recurrent on bounded sets (⊙g-almost
periodic on bounded sets), and there exists a finite constant L > 0 such that

F(t, x) − F(t, y)
 ⩽ L‖x − y‖Y , t ∈ I , x, y ∈ Y , (2.51)

then the mapping ℱ(t) := F(t, f (t)), t ∈ I is uniformly recurrent (⊙g-almost periodic),
providing additionally the following condition: there exists a strictly increasing sequence
(αn) of positive reals tending to plus infinity for which (2.3) holds and (2.50) holds with
K = {f (t) : t ∈ I}, resp. for each ε > 0 we have ⊙g(ϑ(F; ε, {f (t) : t ∈ I}) ∩ ϑ(f , ε)) > 0.

Proof. The proof of theorem is very similar to the proof of [631, Theorem 3.30] and we
will only outline the main details for ⊙g-almost periodic functions. Let ε > 0 be given,
and let τ ∈ ϑ(F; ε/2(1+L), {f (t) : t ∈ I})∩ϑ(f , ε/2(1+L)). Then ‖f (t+τ)− f (t)‖ ⩽ ε/2(1+L),
t ∈ I and we have

ℱ(t + τ) − ℱ(t)
 ⩽ L
f (t + τ) − f (t)

Y +
F(t + τ, f (t)) − F(t + τ, f (t))

, t ∈ I .

Hence,

ℱ(t + τ) − ℱ(t)
 ⩽ [Lε/2(1 + L)] + ε/2(1 + L) < ε, t ∈ I ,

which completes the proof.

Similarly we can prove the following slight extension of [631, Theorem 3.31].

Theorem 2.4.45. Suppose that f : I → Y is a bounded uniformly recurrent func-
tion (bounded ⊙g-almost periodic function). If F : I × Y → X is uniformly recurrent
on bounded sets (⊙g-almost periodic on bounded sets) and uniformly continuous on
bounded sets, uniformly for t ∈ I, then the mapping ℱ(t) := F(t, f (t)), t ∈ I is uniformly
recurrent (⊙g-almost periodic), providing additionally the following condition: there
exists a strictly increasing sequence (αn) of positive reals tending to plus infinity for
which (2.3) holds and (2.50) holds with K = {f (t) : t ∈ I}, resp. for each ε > 0 we have
⊙g(ϑ(F; ε, {f (t) : t ∈ I}) ∩ ϑ(f , ε)) > 0.

Before proceeding further, it should be observed that the statement of [631, The-
orem 3.32] (see also the proof of [442, Theorem 2.11]) can be formulated and slightly
extended for uniformly recurrent (⊙g-almost periodic) functions with relatively com-
pact range.
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Composition principles for asymptotically almost periodic functions have been
analyzed in a great number of research papers. With regards to this question, we will
state and give themain details of proof for the following slight extension of [364, Theo-
rem 3.49], only (observe, however, thatwe can similarly reconsider and slightly extend
the statements of [364, Theorems 3.50–3.52]).

Theorem 2.4.46. Suppose that h : I → Y is uniformly recurrent (⊙g-almost periodic),
the range of h(⋅) is relatively compact, resp. bounded, q ∈ C0(I : X) and f (t) = h(t) +
q(t) for all t ∈ I. Suppose, further, H : I × Y → X is uniformly recurrent (⊙g-almost
periodic), resp. uniformly recurrent on bounded sets (⊙g-almost periodic on bounded
sets), there exists a finite constant L > 0 such that (2.51) holds with the function F(⋅, ⋅)
replaced therein with the function H(⋅, ⋅), and there exists a strictly increasing sequence
(αn) of positive reals tending to plus infinity for which (2.3) holds with the function f (⋅)
replaced therein with the function h(⋅) and (2.50) holds with the function f (⋅) replaced
therein with the function h(⋅) and set K = {h(t) : t ∈ I}, resp. for each ε > 0 we have
⊙g(ϑ(H ; ε, {h(t) : t ∈ I})∩ϑ(h, ε)) > 0. If f (⋅) has a relatively compact range, Q ∈ C0(I×Y :
X) and F(t, y) = H(t, y)+Q(t, y) for all t ∈ I and y ∈ Y, then themappingℱ(t) := F(t, f (t)),
t ∈ I is asymptotically uniformly recurrent (asymptotically ⊙g-almost periodic).

Proof. Due toTheorem2.4.44,we see that themapping t → H(t, h(t)), t ∈ I is uniformly
recurrent (⊙g-almost periodic). Furthermore, we have the decomposition

F(t, f (t)) = H(t, h(t)) + [H(t, f (t)) − H(t, h(t))] + Q(t, f (t)), t ∈ I .

Since the function H(⋅, ⋅) satisfies (2.51), we have

H(t, f (t)) − H(t, h(t))
 ⩽ L
f (t) − h(t)

Y ⩽ L
q(t)
Y → 0 as |t|→ +∞.

The proof of theorem completes the observation that lim|t|→+∞ ‖Q(t, f (t))‖ = 0, which
follows from definition of space C0(I × Y : X) and our assumption that f (⋅) has a rela-
tively compact range.

Remark 2.4.47. The assumption [364, (3.13)] is superfluous. Furthermore, we note
that the assumption that the range of h(⋅) is relatively compact, resp. bounded, im-
plies that f (⋅) is bounded; therefore, if we use the space C0,b(I × Y : X) in place of
C0(I × Y : X) here, the assumption that f (⋅) has a relatively compact range is superflu-
ous as well.

Remark 2.4.48. Consider, for simplicity, asymptotically uniformly recurrent func-
tions. The principal part f(⋅) of the function ℱ(t) = F(t, f (t)), t ∈ I satisfies (2.3) with
the same sequence (αn) and the function f(⋅) in place of f (⋅). This holds for all remain-
ing results established in this subsection, and this fact will be of some importance for
applications made later on.

Concerning the composition principles for Stepanov almost periodic functions,
themost influential paper written by now is the paper [729] byW. Long andH.-S. Ding.
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Repeating almost verbatim the arguments given in the proof of [729, Lemma 2.1, The-
orem 2.2] (see also [372, Theorem 2.4]), we can deduce the following result (we feel it
is our duty to say that the previously proved results are more appropriate for applica-
tions in finite-dimensional spaces because condition on relative compactness of range
of the function f (⋅) is almost inevitable to be used; see condition (ii) below).

Theorem 2.4.49. Let I = ℝ or I = [0,∞), and let p ∈ 𝒫([0, 1]). Suppose that the follow-
ing conditions hold:
(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent, resp. Stepanov
(p(x),⊙g)-almost periodic and there exist a function r(⋅) ⩾ max(p(⋅), (p(⋅)/(p(⋅)− 1)))
and a function LF ∈ L

r(x)
S (I) such that (2.20) holds true.

(ii) The function f : I → Y is Stepanov p(x)-uniformly recurrent, resp. Stepanov
(p(x),⊙g)-almost periodic, and there exists a set E ⊆ I with m(E) = 0 such that
K := {f (t) : t ∈ I ∖ E} is relatively compact in Y.

(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence (αn) of
positive real numbers tending to plus infinity such that

lim
n→+∞

sup
t∈I

sup
u∈K

F(t + s + αn, u) − F(t + s, u)
Lp(s)[0,1] = 0 (2.52)

and (2.3) holds with the function f (⋅) and the norm ‖ ⋅ ‖ replaced, respectively, by the
function ̂f (⋅) and the norm ‖ ⋅ ‖Lp(x)([0,1]:X) therein, resp. for every number ε > 0 and
for every compact set K ⊆ Y, the set consisting of all positive real numbers τ > 0
such that

sup
t∈I

sup
u∈K

F(t + s + τ, u) − F(t + s, u)
Lp(s)[0,1] < ε

and (2.1) holds with the function f (⋅) and the norm ‖ ⋅ ‖ replaced, respectively, by the
function ̂f (⋅) and the norm ‖ ⋅ ‖Lp(x)([0,1]:X) therein.

Set q(x) := p(x)r(x)/(p(x) + r(x)) ∈ [1, p(x)) provided x ∈ [0, 1] and r(x) < ∞ and
q(x) := p(x) provided r(x) = +∞. Then q(x) := p(x)r(x)/(p(x) + r(x)) ∈ [1, p(x))
provided x ∈ [0, 1], r(x) < ∞ and F(⋅, f (⋅)) is Stepanov q(x)-uniformly recurrent,
resp. Stepanov (q(x),⊙g)-almost periodic. Furthermore, the assumption that F(⋅,0) is
Stepanov q(x)-bounded implies that the function F(⋅, f (⋅)) is Stepanov q(x)-bounded as
well.

In [631, Theorem 2.7.2], we have also considered the value p = 1 in Theorem 2.4.49
and the usual condition regarding the existence of a Lipschitz constant L > 0 such
that (2.51) holds.

Using the foregoing arguments, we can simply deduce the following extension of
the above-mentioned theorem.

Theorem 2.4.50. Let I = ℝ or I = [0,∞), and let p ∈ 𝒫([0, 1]). Suppose that the follow-
ing conditions hold:
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(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent, resp. Stepanov
(p(x),⊙g)-almost periodic, L > 0 and (2.51) holds.

(ii) The same as condition (ii) of Theorem 2.4.49.
(iii) The same as condition (iii) of Theorem 2.4.49.

Then the function F(⋅, f (⋅)) is Stepanov p(x)-uniformly recurrent, resp. Stepanov (p(x),
⊙g)-almost periodic. Furthermore, the assumption that F(⋅,0) is Stepanov p(x)-bounded
implies that the function F(⋅, f (⋅)) is Stepanov p(x)-bounded, as well.

Following the analysis of F. Bedouhene, Y. Ibaouene, O. Mellah and P. Raynaud
de Fitte [141, Theorem 3] for the class of equi-Weyl p-almost periodic functions and the
analysis of W. Long and H.-S. Ding [729], in [639, Theorem 2.1] we have established a
newcompositionprinciple for the class of Stepanovp-almost periodic functions that is
not comparablewith [729, Theorem2.2]. Using theproof of the last-mentioned theorem
and the proof of [639, Theorem 2.1], we can slightly generalize Theorem2.4.50. It is also
straightforward to reformulate the statements of [631, Proposition 2.7.3-Proposition
2.7.4], resp. [639, Proposition 2.1], for the asymptotical Stepanov p(x)-uniform recur-
rence and the asymptotical Stepanov (p(x),⊙g)-almost periodicity. Details can be left
to the interested reader.

Nowwewill present two interesting applications of established theoretical results
in the analysis of the existence and uniqueness of uniformly recurrent type solutions
of the abstract semilinear fractional integro-differential inclusions.

1. In the first application, we will consider the finite-dimensional space X := ℂn,
where n ⩾ 2. Suppose that c > 0, A, B ∈ ℂn,n (the space of all complex matrices of for-
mat n × n), the matrix B is not invertible, and that the degree of complex polynomial
P(λ) := det(λB − A), λ ∈ ℂ is equal to n and its roots lie in the region {λ ∈ ℂ : Re λ <
−c(| Im λ| + 1)}. Due to [633, Proposition 2.1.2], we see that the region Ψ from the for-
mulation of condition (P) belongs to the resolvent set of multivalued linear operator
𝒜 = AB−1 and that

(λ − AB−1)−1 = B(λB − A)−1, λ ∈ Ψ.

Since the degree of complex polynomial P(⋅) is equal to n, the above formula simply
implies that there exists a positive real constantM > 0 such that condition (P) holds
with β = 1, so that the operator 𝒜 generates an exponentially decaying strongly con-
tinuous degenerate semigroup (T(t))t⩾0 which can be analytically extended to a sector
around positive real axis (cf. [633] for more details).

Suppose now that 0 < γ < 1 and ν > −1. Define

Tγ,ν(t)x := t
γν
∞

∫
0

sνΦγ(s)T(st
γ)x ds, t > 0, x ∈ X, (2.53)

Sγ(t) := Tγ,0(t) and Pγ(t) := γTγ,1(t)/t
γ , t > 0;
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see also E. Bazhlekova [133] and R.-N. Wang, D.-H. Chen, T.-J. Xiao [1021]. Recall [633]
that, in the general case β ∈ (0, 1], there exists a finite constantM1 > 0 such that

Sγ(t)
 +
Pγ(t)
 ⩽ M1t

γ(β−1), t > 0, (2.54)

and

Sγ(t)
 ⩽ M1t

−γ , t ⩾ 1 and Pγ(t)
 ⩽ M2t

−2γ , t ⩾ 1. (2.55)

Set Rγ(t) := tγ−1Pγ(t), t > 0. Then (2.54)–(2.55) yield

Rγ(t)
 = O(t

γ−1 + t−γ−1), t > 0. (2.56)

Consider now the following abstract fractional inclusion:

Dγ
+u⃗(t) ∈ −𝒜u⃗(t) + F(t, u⃗(t)), t ∈ ℝ, (2.57)

where Dγ
+u(t) denotes the Weyl–Liouville fractional derivative of order γ and F : ℝ ×

X → X; after the usual substitution v⃗(t) ∈ B−1u⃗(t), t ∈ ℝ, this inclusion becomes

Dγ
+[Bv⃗(t)] = −Av⃗(t) + F(t,Bv⃗(t)), t ∈ ℝ.

Following J. Mu, Y. Zhoa and L. Peng [798], it will be said that a continuous function
u : ℝ→ X is a mild solution of (2.57) if and only if

u⃗(t) =
t

∫
−∞

Rγ(t − s)F(s, u⃗(s)) ds, t ∈ ℝ.

For the sequel, fix a strictly increasing sequence (αn) of positive reals tending to plus
infinity. Denote

BUR(αn)(ℝ : X) := {u⃗ ∈ UR(ℝ : X); u⃗(⋅) is bounded and (2.3) holds with f = u⃗}.

Equipped with the metric d(⋅, ⋅) := ‖ ⋅ − ⋅ ‖∞, BUR(αn)(ℝ : X) becomes a complete metric
space.

Now we are able to state the following result.

Theorem 2.4.51. Suppose that the function F : ℝ × X → X satisfies the requirement
that for each bounded subset B of X there exists a finite real constant MB > 0 such
that supt∈ℝ supy∈B ‖F(t, y)‖ ⩽ MB. Suppose, further, that the function F : ℝ × X → X is
Stepanov p-uniformly recurrentwith p > 1, and there exist a number r ⩾ max(p, p/(p−1))
and a function LF ∈ LrS(I) such that q := pr/(p + r) > 1 and (2.20) holds with I = ℝ. If

(γ − 1)q
q − 1
> −1, (2.58)
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there exists an integer n ∈ ℕ such that Mn < 1, where

Mn := sup
t⩾0

t

∫
−∞

xn

∫
−∞

⋅ ⋅ ⋅

x2

∫
−∞

Rγ(t − xn)


×
n
∏
i=2

Rγ(xi − xi−1)


n
∏
i=1

LF(xi) dx1 dx2 ⋅ ⋅ ⋅ dxn,

and for every compact set K ⊆ Y, (2.52) holds, then the abstract fractional Cauchy inclu-
sion (2.57) has a unique bounded uniformly recurrent solution.

Proof. Define ϒ : BUR(αn)(ℝ : X)→ BUR(αn)(ℝ : X) by

(ϒu⃗)(t) :=
t

∫
−∞

Rγ(t − s)F(s, u⃗(s)) ds, t ∈ ℝ.

Let us firstly show that the mapping ϒ(⋅) is well defined. Suppose that u⃗ ∈
BUR(αn)(ℝ : X). Then R(u⃗) = B is a bounded set so that the mapping t → F(t, u⃗(t)),
t ∈ ℝ is bounded due to the prescribed assumption. Applying Theorem 2.4.49, we see
that the function F(⋅, u⃗(⋅)) is Stepanov q-uniformly recurrent. Define q′ := q/(q − 1).
Then (2.56) and (2.58) together imply that ‖Rγ(⋅)‖ ∈ Lq

′
[0, 1] and ∑∞k=0 ‖Rγ(⋅)‖Lq′ [k,k+1] <

∞ due to our analysis from [631, Remark 2.6.12]. Applying Proposition 2.4.39, we see
that the function

t →
t

∫
−∞

Rγ(t − s)F(s, u⃗(s)) ds, t ∈ ℝ

is bounded, continuous and uniformly recurrent, which shows that ϒu⃗ ∈
BUR(αn)(ℝ : X), as claimed. Furthermore, a simple calculation shows that

(ϒ
nu⃗1) − (ϒ

nu⃗2)
∞ ⩽ Mn‖ ⃗u1 − ⃗u2‖∞, ⃗u1, ⃗u2 ∈ BUR(αn)(ℝ : X), n ∈ ℕ.

Since we have assumed that there exists an integer n ∈ ℕ such that Mn < 1, the well
known extension of the Banach contraction principle shows that themapping ϒ(⋅)has
a unique fixed point, finishing the proof of the theorem.

2. Suppose that a closedmultivalued linear operator𝒜 satisfies condition (P) inX,
which can be finite-dimensional or infinite-dimensional, with general exponent β ∈
(0, 1]. Consider the abstract semilinear fractional differential inclusion

(DFP)f ,γ,s : {
Dγ
t u(t) ∈ 𝒜u(t) + F(t, u(t)), t > 0,

u(0) = x0,
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where Dγ
t denotes the Caputo fractional derivative of order γ, x0 ∈ X and F : [0,∞) ×

X → X. By a mild solution of (DFP)f ,γ,s, we mean any function u ∈ C([0,∞) : X)
satisfying

u(t) = Sγ(t)x0 +
t

∫
0

Rγ(t − s)F(s, u(s)) ds, t ⩾ 0.

In what follows, we will assume that limt→0+ Sγ(t)x0 = x0 so that the mapping t →
Sγ(t)x0, t ⩾ 0 belongs to the space C0([0,∞) : X); see the estimate (2.54). Arguing
as in the proof of [364, Theorem 3.46], we may conclude that 𝒳 := BUR(αn)([0,∞) :
X) ⊕ C0([0,∞) : X) is a complete metric space equipped with the distance d(⋅, ⋅) used
above. Set, for every u ∈ 𝒳 and n ∈ ℕ,

(ϒAu)(t) := Sγ(t)x0 +
t

∫
0

Rγ(t − s)F(s, u(s)) ds, t ⩾ 0;

An := sup
t⩾0

t

∫
0

xn

∫
0

⋅ ⋅ ⋅

x2

∫
0

Rγ(t − xn)


n
∏
i=2

Rγ(xi − xi−1)


n
∏
i=1

LF(xi) dx1 dx2 ⋅ ⋅ ⋅ dxn.

Then a simple calculation shows that
(ϒ

n
Au) − (ϒ

n
Av)
∞ ⩽ An‖u − v‖∞, u, v ∈ 𝒳 , n ∈ ℕ.

Keeping inmind [648, Proposition 3.1], Theorem2.4.46, Remarks 2.4.47–2.4.48 and
the proof of [631, Lemma 2.6.3], we can similarly clarify the following result.

Theorem 2.4.52. Suppose that the function F : [0,∞) × X → X is continuous and
satisfies the requirement that for each bounded subset B of X there exists a finite real
constant MB > 0 such that supt⩾0 supy∈B ‖F(t, y)‖ ⩽ MB. Suppose, further, that H :
[0,∞) × X → X is uniformly recurrent on bounded sets, there exists a finite constant
L > 0 such that (2.51) holds with the function F(⋅, ⋅) replaced therein with the function
H(⋅, ⋅) and I = [0,∞). Let (2.50) hold with any bounded set B = K, and let there exist an
integer n ∈ ℕ such that An < 1. If Q ∈ C0,b(I × Y : X) and F(t, y) = H(t, y) + Q(t, y) for all
t ⩾ 0 and y ∈ Y, then the abstract fractional Cauchy inclusion (DFP)f ,γ,s has a unique
mild solution.

Let Ω be a bounded domain in ℝn, b > 0, m(x) ⩾ 0 a. e. x ∈ Ω, m ∈ L∞(Ω),
1 < p < ∞ and X := Lp(Ω). Suppose that the operator A := Δ − b acts on X with
the Dirichlet boundary conditions, and that B is the multiplication operator by the
function m(x). As explained in [631], we can apply Theorem 2.4.52 with 𝒜 = AB−1 in
the study of existence anduniqueness of asymptotically uniformly recurrent solutions
of the semilinear fractional Poisson heat equation

{{
{{
{

Dγ
t [m(x)v(t, x)] = (Δ − b)v(t, x) + f (t,m(x)v(t, x)), t ⩾ 0, x ∈ Ω;

v(t, x) = 0, (t, x) ∈ [0,∞) × 𝜕Ω,
m(x)v(0, x) = u0(x), x ∈ Ω.
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3 Generalized almost periodicity in Lebesgue spaces
with variable exponents

3.1 Generalized almost periodicity in Lebesgue spaces with
variable exponents. Part I

The main purpose of this section is to investigate generalized asymptotically al-
most periodic functions in Lebesgue spaces with variable exponents. Suppose that
f : [a, b] → ℝ is a non-negative Lebesgue-integrable function, where a, b ∈ ℝ,
a < b, and ϕ : [0,∞) → ℝ is a convex function. Let us recall that the Jensen integral
inequality states that

ϕ( 1
b − a

b

∫
a

f (x) dx) ⩽ 1
b − a

b

∫
a

ϕ(f (x)) dx.

Using this integral inequality, we can simply prove that, for every two sequences (ak)
and (xk) of non-negative real numbers such that∑∞k=0 ak = 1, we have

ϕ(
∞
∑
k=0 akxk) ⩽ ∞∑k=0 akϕ(xk). (3.1)

More generally, we have the following (see, e. g., [399, Theorem 1.1]).

Lemma 3.1.1. Let (Ω,Λ, μ) be a measure space with 0 < μ(Ω) < +∞ and let ϕ : I → ℝ
be a convex function defined on an open interval I in ℝ. If f : Ω → I satisfies f , ϕ ∘ f ∈
L(Ω,Λ, μ), then we have

ϕ( 1
μ(Ω)
∫
Ω

fdμ) ⩽ 1
μ(Ω)
∫
Ω

ϕ(f ) dμ. (3.2)

If ϕ(⋅) is strictly convex on I, then the equality in (3.2) holds if and only if f (⋅) is constant
almost everywhere on Ω; furthermore, if ϕ : [0,∞) → ℝ is a concave function, then the
above inequalities reverse.

3.1.1 Almost periodic and asymptotically almost periodic type solutions with
variable exponents Lp(x)

Before proceeding further, we need to recall the recently introduced notions of
Sp(x)-boundedness and (asymptotical) Stepanov p(x)-almost periodicity:

Definition 3.1.2 ([372]). Let p ∈ 𝒫([0, 1]) and let I = ℝ or I = [0,∞). A function f ∈
M(I : X) is said to be Stepanov p(x)-bounded (or Sp(x)-bounded) if and only if f (⋅ + t) ∈
https://doi.org/10.1515/9783110763522-004
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Lp(x)([0, 1] : X) for all t ∈ I, and the sup-norm of Bochner transform satisfies
supt∈I ‖f (⋅ + t)‖p(x) <∞; more precisely,

‖f ‖Sp(x) := sup
t∈I inf{λ > 0 :

1

∫
0

φp(x)( ‖f (x + t)‖λ
) dx ⩽ 1} <∞.

The collection of such functions will be denoted by Lp(x)S (I : X).

From Definition 3.1.2 it follows that the space Lp(x)S (I : X) is translation invariant
in the sense that, for every f ∈ Lp(x)S (I : X) and τ ∈ I, we have f (⋅ + τ) ∈ L

p(x)
S (I : X). This

is not the case with the notion introduced by T. Diagana and M. Zitane in [375, 376].
In the second part of the following definition, we extend the notion of asymptotical
Stepanov p(x)-almost periodicity introduced in the case I = [0,∞) to the general case
of interval I (see also [372, Proposition 4.12]).

Definition 3.1.3 ([372]).
(i) Let p ∈ 𝒫([0, 1]) and let I = ℝ or I = [0,∞). A function f ∈ Lp(x)S (I : X) is said

to be Stepanov p(x)-almost periodic (Stepanov p(x)-a. p., for short) if and only if
the function ̂f : I → Lp(x)([0, 1] : X) is almost periodic. The collection of such
functions will be denoted by APSp(x)(I : X).

(ii) Let p ∈ 𝒫([0, 1]). Then a function f ∈ Lp(x)S (I : X) is said to be asymptotically
Stepanov p(x)-almost periodic (Stepanov p(x)-a. p., for short) if and only if there
exist two locally p-integrable functions g : ℝ → X and q : I → X satisfying the
following conditions:
(i) g is Sp(x)-almost periodic,
(ii) q̂ belongs to the class C0(I : Lp(x)([0, 1] : X)),
(iii) f (t) = g(t) + q(t) for all t ∈ I.
The collection of such functions will be denoted by AAPSp(x)(I : X).
As in the case of Stepanov p(x)-boundedness, the space APSp(x)(I : X) is trans-

lation invariant in the sense that, for every f ∈ APSp(x)(I : X) and τ ∈ I, we have
f (⋅ + τ) ∈ APSp(x)(I : X). A similar statement holds for the space AAPSp(x)([0,∞) : X).

Wewill extend [375,Definition 3.10] in the followingway (in this paper, the authors
have considered the case I = ℝ and p ∈ C+(ℝ); we can extend the notion introduced
in [375, Definition 3.11] in the same way):

Definition 3.1.4. Let I = ℝ or I = [0,∞), and let p ∈ 𝒫(I). Then it is said that a mea-
surable function f : I → X belongs to the space BSp(x)(I : X) if and only if

‖f ‖Sp(x) := sup
t∈I inf{λ > 0 :

t+1
∫
t

φp(x)(f (x)/λ) dx ⩽ 1} <∞.
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Equippedwith the norm ‖ ⋅‖Sp(x) , the space Lp(x)S (I : X) consisting of all S
p-bounded

functions is a Banach space, which is continuously embedded in L1S(I : X), for any
p ∈ 𝒫([0, 1]). Furthermore, it can be easily shown that APSp(x)(I : X) (AAPSp(x)(I : X)
with I = [0,∞)) is a closed subspace of Lp(x)S (I : X) and therefore is a Banach space
itself, for any p ∈ 𝒫([0, 1]).

If p ∈ 𝒫([0, 1]), then Lemma 1.1.7(ii) yields Lp(x)([0, 1] : X) → L1([0, 1] : X), where
the symbol → stands for a “continuous embedding”, so that Lp(x)S (I : X) → L1S(I : X).

We have the following.

Proposition 3.1.5. Suppose p ∈ 𝒫([0, 1]). Then the following continuous embeddings
hold:
(i) Lp(x)S (I : X) → L1S(I : X), and
(ii) APSp(x)(I : X) → APS1(I : X) and AAPSp(x)([0,∞) : X) → AAPS1([0,∞) : X).

Similarly, the following holds.

Proposition 3.1.6. Suppose p ∈ D+([0, 1]) and 1 ⩽ p− ⩽ p(x) ⩽ p+ < ∞ for a. e. x ∈
[0, 1]. Then the following continuous embeddings hold:
(i) Lp

+
S (I : X) → Lp(x)S (I : X) → Lp

−
S (I : X), and

(ii) APSp
+
(I : X) → APSp(x)(I : X) → APSp

−
(I : X) and AAPSp

+
([0,∞) : X) →

AAPSp(x)([0,∞) : X) → AAPSp
−
([0,∞) : X).

Now we will prove that any almost periodic function is Sp(x)-almost periodic, for
any p ∈ 𝒫([0, 1]).

Proposition 3.1.7. Let p ∈ 𝒫([0, 1]), and let f : I → X be almost periodic. Then f (⋅) is
Sp(x)-almost periodic.
Proof. To prove that f (⋅) is Sp(x)-bounded and ‖f ‖Lp(x)S

⩽ ‖f ‖∞, it suffices to show that,
for every t ∈ ℝ, we have

[‖f ‖∞,∞) ⊆ {λ > 0 : 1∫
0

φp(x)( ‖f (x + t)‖λ
) dx ⩽ 1}. (3.3)

For λ ⩾ ‖f ‖∞, we have ‖f (x + t)‖/λ ⩽ 1, t ∈ I. It is obvious that, in this case,
φp(x)( ‖f (x + t)‖λ

) ⩽ 1, t ∈ I ,

so that the integrand does not exceed 1; as amatter of fact, by definition ofφp(x)(⋅), we
only need to observe that, for every x ∈ [0, 1]with p(x) <∞, we have (‖f (t+x)‖/λ)p(x) ⩽
1p(x) = 1, t ∈ I. Hence, (3.3) holds. Using the uniform continuity of f (⋅) and a similar
argumentation, we can show that the function ̂f : I → Lp(x)([0, 1] : X) is uniformly
continuous. The almost periodicity of the function ̂f : I → Lp(x)([0, 1] : X) can be
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proved in a direct way: for ε > 0 given as above, there is a finite number l > 0 such that
any subinterval I′ of I of length l contains a number τ ∈ I′ such that ‖f (t+τ)− f (t)‖ ⩽ ε,
t ∈ I. After that, it suffices to observe that, for this ε > 0,we can choose the same length
l > 0 and the same ε-almost period τ from I′ ensuring the validity of the inequality


̂f (t + τ + ⋅) − ̂f (t + ⋅)Lp(x)([0,1]:X) ⩽ ε, t ∈ I :

in order to see that the last inequality holds true, we only need to prove that, for every
t ∈ I, we have

[ε,∞) ⊆ {λ > 0 :
1

∫
0

φp(x)( ‖f (t + τ + x) − f (t + x)‖λ
) dx ⩽ 1}.

Indeed, if λ ⩾ ε, then ‖f (t + τ + x) − f (t + x)‖/λ ⩽ 1, t ∈ I and the integrand cannot
exceed 1: this simply follows from definition of φp(x)(⋅) and observation that, for every
x ∈ [0, 1] with p(x) < ∞, we have (‖f (t + τ + x) − f (t + x)‖/λ)p(x) ⩽ 1p(x) = 1, t ∈ I. The
proof of the proposition is thereby complete.

We can similarly prove the following proposition.

Proposition 3.1.8. Let p ∈ 𝒫([0, 1]), and let f : I → X be asymptotically almost peri-
odic. Then f (⋅) is asymptotically Sp(x)-almost periodic.

Taking into account Proposition 3.1.5(ii) and the method employed in the proof of
Proposition 3.1.7, we can state the following.

Proposition 3.1.9. Assume that p ∈ 𝒫([0, 1]) and f ∈ Lp(x)S (I : X). Then the following
holds:
(i) L∞(I : X) → Lp(x)S (I : X) → L1S(I : X).
(ii) AP(I : X) → APSp(x)(I : X) → APS1(I : X) and AAP(I : X) → AAPSp(x)(I : X) →

AAPS1(I : X).
(iii) The continuity (uniform continuity) of f (⋅) implies continuity (uniform continuity) of
̂f (⋅).

In the general case, we have the following.

Proposition 3.1.10. Assume that p, q ∈ 𝒫([0, 1]) and p ⩽ q a. e. on [0, 1]. Then we have:
(i) Lq(x)S (I : X) → Lp(x)S (I : X).
(ii) APSq(x)(I : X) → APSp(x)(I : X) and AAPSq(x)(I : X) → AAPSp(x)(I : X).
(iii) If p ∈ D+([0, 1]), then

L∞(I : X) ∩ APSp(x)(I : X) = L∞(I : X) ∩ APS1(I : X)
and

L∞(I : X) ∩ AAPSp(x)(I : X) = L∞(I : X) ∩ AAPS1(I : X).

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.1 Generalized almost periodicity in Lebesgue spaces | 105

Proof. We will prove only (iii) for almost periodicity. Keeping in mind Proposi-
tion 3.1.6(ii), it suffices to assume that p(x) ≡ p > 1. Then, clearly, L∞(I : X) ∩ APSp(I :
X) ⊆ L∞(I : X) ∩ APS1(I : X) and it remains to be proved the opposite inclusion. So,
let f ∈ L∞(I : X) ∩ APS1(I : X). The required conclusion follows from the elementary
definitions and the next simple calculation, which is valid for any t, τ ∈ ℝ:

[
t+1
∫
t

f (τ + s) − f (s)

p ds]

1/p
⩽ [

t+1
∫
t

(2‖f ‖∞)p−1f (τ + s) − f (s) ds]1/p
= (2‖f ‖∞)(p−1)/p[ t+1∫

t

f (τ + s) − f (s)
 ds]

1/p
.

Remark 3.1.11. Recall that APSp(x)(I : X) can be strictly contained in APS1(I : X), even
in the case that p(x) ≡ p > 1 is a constant function. The already employed example of
H. Bohr andE. Følner shows that AAPSp(I : X) canbe strictly contained inAAPS1(I : X)
for p > 1 (see e. g. [526, Lemma 1]).

Remark 3.1.12. Proposition 3.1.7 andProposition 3.1.8 canbe simply deducedbyusing
Proposition 3.1.10(ii) and the equalities AP(I : X) = APS∞(I : X) ∩ C(I : X), AAP(I :
X) = AAPS∞(I : X) ∩ C([0,∞) : X), which can be proved almost trivially.

Now we would like to present the following example.

Example 3.1.13. Let us note that, for every trigonometric polynomial f : ℝ → ℝ, the
function F(⋅) := sign(f (⋅)) is Stepanov 1-almost periodic. Since F ∈ L∞(ℝ), Proposi-
tion 3.1.10(iii) shows that the function F(⋅) is Stepanov p-almost periodic for any p ⩾ 1,
while Proposition 3.1.9(i) shows that the function F(⋅) is Stepanov p(x)-bounded for
any p ∈ 𝒫([0, 1]). Due to Proposition 3.1.6(ii), we have F ∈ APSp(x)(ℝ : ℂ) for any
p ∈ D+([0, 1]).

Suppose now that f (x) := sin x + sin√2x, x ∈ ℝ and p(x) := 1 − ln x, x ∈ [0, 1]. We
will prove that F ∉ APSp(x)(ℝ : ℂ). In actual fact, it is sufficient to show that, for every
λ ∈ (0, 2/e) and for every l > 0, we can find an interval I ⊆ ℝ of length l > 0 such that,
for every τ ∈ I, there exists t ∈ ℝ such that

1

∫
0

(
1
λ
)
1−ln x
sign[sin(x + t + τ) + sin√2(x + t + τ)]

− sign[sin(x + t) + sin√2(x + t)]
1−ln x dx =∞.

Let λ ∈ (0, 2/e) and l > 0 be given. Take arbitrarily any interval I ⊆ ℝ ∖ {0} of length
l and after that take arbitrarily any number τ ∈ I. Since (1/λ)1−ln x ⩾ 1/x, x ∈ [0, 1]
and 1 − ln x ⩾ 1, x ∈ [0, 1], a continuity argument shows that it is enough to prove the
existence of a number t ∈ ℝ such that

[sin(t + τ) + sin√2(t + τ)] ⋅ [sin t + sin√2t] < 0. (3.4)
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If sin τ + sin√2τ > 0 (sin τ + sin√2τ < 0), then we can take t ∼ 0− (t ∼ 0+). Hence, we
assume henceforward sin τ + sin√2τ = 0 and τ ̸= 0. There exist two possibilities:

τ ∈ 2ℤπ
1 +√2
∖ {0} or τ ∈ (2ℤ + 1)π

√2 − 1
.

In the first case, take t0 = π/(√2 − 1). Then an elementary argumentation shows that
τ + t0 ∉ (2ℤπ)/(1 +√2) ∪ ((2ℤ + 1)π)/(√2 − 1) so that sin(t0 + τ) + sin√2(t0 + τ) ̸= 0. If
sin(t0 + τ)+ sin√2(t0 + τ) > 0 (sin(t0 + τ)+ sin√2(t0 + τ) < 0), then for t satisfying (3.4)
we can take any number belonging to a small left/right interval around t0 for which
sin t + sin√2t < 0 (sin t + sin√2t > 0). In the second case, there exists an integer
m ∈ ℤ such that τ = (2m + 1)π/(√2 − 1) and we can take t0 = (−2m + 1)π/(√2 − 1).
Then τ + t0 = (2π)/(√2 − 1) and sin(t0 + τ) + sin√2(t0 + τ) ̸= 0, so that we can use
a trick similar to that used in the first case. Let us only mention in passing that, with
the notion introduced in [373], also the function F(⋅) cannot be Sp(x)-almost automor-
phic.

The situation is quite different if we consider the situation in which f (x) := sin x,
x ∈ ℝ. Then F(⋅) is Stepanov p(x)-almost periodic for any p ∈ 𝒫([0, 1]). Strictly speak-
ing, it can be easily shown that the mapping F̂ : ℝ → Lp(x)[0, 1] is continuous and
‖F(t + τ + ⋅) − F(t + ⋅)‖Lp(x)[0,1] = 0 for all t ∈ ℝ and τ ∈ 2πℤ. This, in turn, implies the
claimed statement.

3.1.2 Generalized two-parameter almost periodic type functions and composition
principles

Assume that I = ℝ or I = [0,∞). The notion of (asymptotical) Stepanov p(x)-almost
periodicity for the functions depending on two parameters is introduced as follows:

Definition 3.1.14. Let p ∈ 𝒫([0, 1]).
(i) A function f : I × Y → X is called Stepanov p(x)-almost periodic, Sp(x)-almost

periodic for short, if and only if ̂f : I × Y → Lp(x)([0, 1] : X) is almost periodic. The
vector space consisting of all such functions will be denoted by APSp(x)(I ×Y : X).

(ii) A function f : I × Y → X is said to be asymptotically Sp(x)-almost periodic if
and only if it admits a decomposition f (t, y) = g(t, y) + q(t, y), t ∈ I, where g ∈
APSp(x)(ℝ × Y : X) and q ∈ C0(I × Y : X). The vector space consisting of all such
functions will be denoted by AAPSp(x)(I × Y : X).
The proof of following proposition is very similar to the proof of [631, Lemma 2.2.7]

and therefore omitted (for simplicity, we will not consider case I = ℝ here).

Proposition 3.1.15. Let p ∈ 𝒫([0, 1]). Suppose that ̂f : [0,∞) × Y → Lp(x)([0, 1] : X) is
an asymptotically almost periodic function. Then there are two functions g : ℝ × Y → X
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and q : [0,∞) × Y → X satisfying the requirement that for each y ∈ Y the functions
g(⋅, y) and q(⋅, y) are Stepanov p(x)-bounded, and that the following holds:
(i) ĝ : ℝ × Y → Lp(x)([0, 1] : X) is almost periodic,
(ii) q̂ ∈ C0([0,∞) × Y : Lp(x)([0, 1] : X)),
(iii) f (t, y) = g(t, y) + q(t, y) for all t ⩾ 0 and y ∈ Y.

Moreover, for every compact set K ⊆ Y, there exists an increasing sequence (tn)n∈ℕ of
positive reals such that limn→∞ tn =∞ and g(t, y) = limn→∞ f (t + tn, y) for all y ∈ Y and
a. e. t ⩾ 0.

In [631, Theorem 2.7.1, Theorem 2.7.2], we have slightly improved the important
composition principle attributed to W. Long, S.-H. Ding [729, Theorem 2.2]. Fur-
ther refinements for Sp(x)-almost periodicity can be deduced similarly, appealing
to Lemma 1.1.7(i)–(iii) and the arguments employed in the proof of [729, Theorem 2.2].

Theorem 3.1.16. Let I = ℝor I = [0,∞), and let p ∈ 𝒫([0, 1]). Suppose that the following
conditions hold:
(i) F ∈ APSp(x)(I × Y : X) and there exist a function r ∈ 𝒫([0, 1]) such that r(⋅) ⩾

max(p(⋅), p(⋅)/(p(⋅) − 1)) and a function LF ∈ L
r(x)
S (I) such that (2.20) holds;

(ii) u ∈ APSp(x)(I : Y), and there exists a set E ⊆ I with m(E) = 0 such that K := {u(t) :
t ∈ I ∖ E} is relatively compact in Y; here, m(⋅) denotes the Lebesgue measure.

Define q ∈ 𝒫([0, 1]) by q(x) := p(x)r(x)/(p(x) + r(x)), if x ∈ [0, 1] and r(x) < ∞, q(x) :=
p(x), if x ∈ [0, 1] and r(x) = +∞. Then q(x) ∈ [1, p(x)) for x ∈ [0, 1], r(x) < ∞ and
F(⋅, u(⋅)) ∈ APSq(x)(I : X).

For the asymptotical two-parameter Stepanov p(x)-almost periodicity, we can de-
duce the following composition principles with X = Y ; the proof is very similar to
those of [631, Proposition 2.7.3, Proposition 2.7.4] established in the case of constant
functions p, q, r and the interval I = [0,∞).

Proposition 3.1.17. Let p ∈ 𝒫([0, 1]). Suppose that the following conditions hold:
(i) g ∈ APSp(x)(ℝ × X : X), there exist a function r ∈ 𝒫([0, 1]) such that r(⋅) ⩾

max(p(⋅), p(⋅)/(p(⋅) − 1)) and a function Lg ∈ L
r(x)
S (ℝ) such that (2.20) holds with

the function f (⋅, ⋅) replaced by the function g(⋅, ⋅) therein.
(ii) v ∈ APSp(x)(ℝ : X), and there exists a set E ⊆ ℝ with m(E) = 0 such that K = {v(t) :

t ∈ ℝ ∖ E} is relatively compact in X.
(iii) f (t, x) = g(t, x) + q(t, x) for all t ∈ I and x ∈ X, where q̂ ∈ C0(I × X : Lq(x)([0, 1] : X))

with q(⋅) defined as above;
(iv) u(t) = v(t) + ω(t) for all t ⩾ 0, where ω̂ ∈ C0(I : Lp(x)([0, 1] : X)).
(v) There exists a set E′ ⊆ I with m(E′) = 0 such that K′ = {u(t) : t ∈ I ∖ E′} is relatively

compact in X.

Then f (⋅, u(⋅)) ∈ AAPSq(x)(I : X).
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3.1.3 Generalized (asymptotical) almost periodicity in Lebesgue spaces with
variable exponents Lp(x): action of convolution products

Throughout this subsection, which has also appeared as a part of [633], we assume
that p ∈ 𝒫([0, 1]) and a multivalued linear operator 𝒜 fulfills condition (P). Then we
know that the degenerate strongly continuous semigroup (T(t))t>0 ⊆ L(X) generated
by 𝒜 satisfies the estimate ‖T(t)‖ ⩽ M0e−cttβ−1, t > 0 for some finite constantM0 > 0.
Furthermore, (T(t))t>0 is given by

T(t)x = 1
2πi
∫
Γ

eλt(λ −𝒜)−1x dλ, t > 0, x ∈ X,

where Γ is the upwards oriented curve λ = −c(|η| + 1) + iη (η ∈ ℝ). For any 0 <
γ < 1 and ν > −β, we define the operator family (Tγ,ν(t))t>0 through (2.53). Set, as be-
fore, Sγ(t) := Tγ,0(t) and Pγ(t) := γTγ,1(t)/tγ, t > 0. Then (Sγ(t))t>0 is a subordinated
(gγ , I)-regularized resolvent family generated by 𝒜, which is generally not strongly
continuous at zero. By our analysis from [633], we know that there exists a finite con-
stantM1 > 0 such that

Sγ(t)
 +
Pγ(t)
 ⩽ M1t

γ(β−1), t > 0,

and that there exists a finite constantM2 > 0 such that

Sγ(t)
 ⩽ M2t

−γ , t ⩾ 1 and Pγ(t)
 ⩽ M2t

−2γ , t ⩾ 1.

Set Rγ(t) := tγ−1Pγ(t), t > 0.
We will first investigate infinite convolution products. Keeping in mind compo-

sition principles clarified in the previous subsection, it is almost straightforward to
reformulate some known results concerning semilinear analogues of the above inclu-
sions (see e. g. [631, Theorem 2.7.6–Theorem 2.7.9; Theorem 2.9.10–Theorem 2.9.11; The-
orem 2.9.17–Theorem 2.9.18]); because of that, this question will not be examined here
for the sake of brevity.

We start by stating the following generalization of [636, Proposition 2.11] (the re-
flexion at zero keeps the spaces of Stepanov p-almost periodic functions unchanged,
which may or may not be the case with the spaces of Stepanov p(x)-almost periodic
functions).

Proposition 3.1.18. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family satisfying M := ∑∞k=0 ‖R(⋅ +
k)‖Lq(x)[0,1] <∞. If ǧ : ℝ→ X is Sp(x)-almost periodic, then the function G : ℝ→ Y, given
by (2.46), is well defined and almost periodic.
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Proof. Without loss of generality, we may assume that X = Y . It is clear that, for every
t ∈ ℝ, we see thatG(t) = ∫∞0 R(s)g(t−s) ds and the last integral is absolutely convergent
due to Lemma 1.1.7(i) and Sp(x)-boundedness of the function ǧ(⋅):∞

∫
0

R(s)

g(t − s)

 ds =
∞
∑
k=0

k+1
∫
k

R(s)

g(t − s)

 ds

=
∞
∑
k=0

1

∫
0

R(s + k)

g(t − s − k)

 ds

⩽ 2
∞
∑
k=0R(⋅ + k)Lq(⋅)([0,1]:X)g(t − k − ⋅)Lp(⋅)([0,1]:X)
⩽ 2M sup

t∈ℝ ǧ(⋅ − t)Lp(⋅)([0,1]:X),
for any t ∈ ℝ. Let a number ε > 0 be fixed. Then there is a finite number l > 0 such
that any subinterval I of ℝ of length l contains a number τ ∈ I such that ‖ǧ(t − τ + ⋅) −
ǧ(t + ⋅)‖Lp(x)([0,1]:X) ⩽ ε, t ∈ ℝ. Invoking Lemma 1.1.7(i) and this fact, we get

G(t + τ) − G(t)
 ⩽
∞
∫
0

R(r)
 ⋅
g(t + τ − r) − g(t − r)

 dr

=
∞
∑
k=0

k+1
∫
k

R(r)
 ⋅
g(t + τ − r) − g(t − r)

 dr

=
∞
∑
k=0

1

∫
0

R(r + k)
 ⋅
g(t + τ − r − k) − g(t − r − k)

 dr

⩽ 2
∞
∑
k=0R(⋅ + k)Lq(x)[0,1]g(t + τ − ⋅ − k) − g(t − ⋅ − k)Lp(x)[0,1]
= 2
∞
∑
k=0R(⋅ + k)Lq(⋅)[0,1]ǧ(⋅ − t − τ + k) − ǧ(⋅ − t + k)Lp(⋅)[0,1]
⩽ 2ε
∞
∑
k=0R(⋅ + k)Lq(⋅)[0,1] = 2Mε, t ∈ ℝ,

which clearly implies that the set of all ε-periods of G(⋅) is relatively dense in ℝ. It
remains to beproved theuniformcontinuity ofG(⋅). Since ̂ǧ(⋅) is uniformly continuous,
we have the existence of a number δ ∈ (0, 1) such that

ǧ(⋅ − t
′) − ǧ(⋅ − t)Lp(x)[0,1] < ε, provided t, t′ ∈ ℝ and t − t′ < δ. (3.5)
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For any δ′ ∈ (0, δ), the above computation with τ = δ′ = t′ − t and (3.5) together imply
that, for every t ∈ ℝ,

G(t + δ
′) − G(t) ⩽ 2 ∞∑

k=0R(⋅ + k)Lq(⋅)[0,1]ǧ(⋅ − t′ + k) − ǧ(⋅ − t + k)Lp(⋅)[0,1]
⩽ 2ε
∞
∑
k=0R(⋅ + k)Lq(⋅)[0,1] = 2Mε.

This completes the proof of the proposition.

Example 3.1.19.
(i) Suppose that β ∈ (0, 1) and (R(t))t>0 = (T(t))t>0 is a degenerate semigroup gen-

erated by 𝒜. Let us recall that there exists a finite constant M > 0 such that
‖T(t)‖ ⩽ Mtβ−1, t ∈ (0, 1] and ‖T(t)‖ ⩽ Me−ct, t ⩾ 1. Let p0 > 1 be such that

p0
p0 − 1
(β − 1) ⩽ −1,

let p ∈ 𝒫([0, 1]), and let ‖T(⋅)‖Lq(x)[0,1] < ∞. Assume that we have constructed a
function ǧ ∈ APSp(x)(ℝ : X) such that ǧ ∉ APSp(ℝ : X) for all p ⩾ p0 (Ques-
tion: Could we manipulate here somehow the construction established in [199,
Example, p. 70]?). Then, in our concrete situation, [636, Proposition 2.11] cannot
be applied since

p
p − 1
(β − 1) ⩽ −1, p ∈ [1, p0).

Now we will briefly explain that ∑∞k=0 ‖R(⋅ + k)‖Lq(x)[0,1] < ∞, showing that Propo-
sition 3.1.18 is applicable. Strictly speaking, for k = 0, ‖T(⋅)‖Lq(x)[0,1] < ∞ by our
assumption, while, for k ⩾ 1, it can be simply shown that ‖R(⋅+k)‖Lq(x)[0,1] ⩽ Me−ck
so that ∑∞k=0 ‖R(⋅ + k)‖Lq(x)[0,1] <∞, as claimed.

(ii) By a mild solution of problem obtained by replacing the MLO𝒜with the MLO −𝒜
in (2.49),wemean the function t → ∫t−∞ Rγ(t−s)g(s) ds, t ∈ ℝ (cf. also [798, Lemma
6]). Let p ∈ 𝒫([0, 1]), and let ‖Rγ(⋅)‖Lq(x)[0,1] <∞. Then, for k ∈ ℕ, we have

Rγ(⋅ + k)
Lq(x)[0,1] ⩽ M2k

−1−γ .
Hence,∑∞k=0 ‖Rγ(⋅ + k)‖Lq(x)[0,1] <∞ and we can apply Proposition 3.1.18.

The results obtained for the infinite convolution product can be simply incorpo-
rated in the study of existence and uniqueness of almost periodic solutions of the fol-
lowing abstract Cauchy differential inclusion of first order

u′(t) ∈ 𝒜u(t) + g(t), t ∈ ℝ,
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and the abstract Cauchy relaxation differential inclusion (2.49) with the MLO 𝒜 re-
placed therein with −𝒜. It is also clear that Proposition 3.1.18 can be used to study
the existence and uniqueness of almost periodic solutions of the following abstract
integral inclusion

u(t) ∈ 𝒜
t

∫−∞ a(t − s)u(s) ds + g(t), t ∈ ℝ,

where a ∈ L1loc([0,∞)), a ̸= 0, ǧ : ℝ → X is Sp(x)-almost periodic and 𝒜 is a closed
multivalued linear operator on X; see, e. g., [631].

In the following proposition, whose proof is very similar to that of [373, Propo-
sition 3.12], we state some invariance properties of generalized asymptotical almost
periodicity in Lebesgue spaces with variable exponents Lp(x) under the action of finite
convolution products (see also [631, Proposition 2.7.5, Lemma 2.9.3] for similar results).
This proposition generalizes [636, Proposition 2.13] provided that p > 1 in its formula-
tion.

Proposition 3.1.20. Suppose that p ∈ 𝒫([0, 1]), q ∈ D+([0, 1]), 1/p(x) + 1/q(x) = 1 and
(R(t))t>0 ⊆ L(X) is a strongly continuous operator family satisfying the requirement that,
for every t ⩾ 0, we have

mt :=
∞
∑
k=0R(⋅ + t + k)Lq(x)[0,1] <∞.

Suppose, further, that ǧ : ℝ → X is Sp(x)-almost periodic, q ∈ Lp(x)S ([0,∞) : X) and
f (t) = g(t) + q(t), t ⩾ 0. Let r1, r2 ∈ 𝒫([0, 1]) and the following hold:
(i) For every t ⩾ 0, the mapping x → ∫t+x0 R(t + x − s)q(s) ds, x ∈ [0, 1] belongs to the

space Lr1(x)([0, 1] : X) and we have
lim
t→+∞

t+x
∫
0

R(t + x − s)q(s) ds
Lr1(x)[0,1] = 0.

(ii) For every t ⩾ 0, the mapping x → mt+x, x ∈ [0, 1] belongs to the space Lr2(x)[0, 1]
and we have

lim
t→+∞ ‖mt+x‖Lr2(x)[0,1] = 0.

Then the function H(⋅), given by

H(t) :=
t

∫
0

R(t − s)f (s) ds, t ⩾ 0,

is well defined, bounded and belongs to the class APSp(x)(ℝ : X) + Sr1(x)0 ([0,∞) : X) +
Sr2(x)0 ([0,∞) : X), with the meaning clear.
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Remark 3.1.21. In [636, Remark 2.14], we have examined the conditions under which
the function H(⋅) defined above is asymptotically almost periodic, provided that the
function g(⋅) is Sp-almost periodic for some p ∈ [1,∞). The interested reader may try
to analyze similar problemswith the function ǧ(⋅) being Sp(x)-almost periodic for some
p ∈ 𝒫([0, 1]).

In order to describe how Proposition 3.1.20 can be applied in concrete situations,
we need the following weakened definition of Caputo fractional derivatives of order
γ ∈ (0, 1). The Caputo fractional derivative Dγ

t u(t) is defined for those functions u :
[0,T]→ X for which u|(0,T](⋅) ∈ C((0,T] : X), u(⋅)−u(0) ∈ L1((0,T) : X) and g1−γ ∗(u(⋅)−
u(0)) ∈ W 1,1((0,T) : X), by

Dγ
t u(t) =

d
dt
[g1−γ ∗ (u(⋅) − u(0))](t), t ∈ (0,T].

We will use the following definition.

Definition 3.1.22 (cf. [633, Section 3.5] for more details). By a classical solution of
the abstract fractional Cauchy problem

(DFP)f ,γ : { Dγ
t u(t) ∈ 𝒜u(t) + f (t), t > 0,

u(0) = x0,

we mean any function u ∈ C([0,∞) : X) satisfying the requirement that the function
Dγ
t u(t) iswell defined on anyfinite interval (0,T] andbelongs to the spaceC((0,T] : X),

and that u(0) = u0 and D
γ
t u(t) − f (t) ∈ 𝒜u(t) for t > 0.

Applying [633, Theorem 3.5.3], we see that the unique classical solution of (DFP)f ,γ
is given by the formula

u(t) = Sγ(t)x0 +
t

∫
0

(t − s)γ−1Pγ(t − s)f (s) ds, t ⩾ 0.

Suppose that x0 ∈ X belongs to the domain of continuity of (Sγ(t))t>0 (by that,wemean
that limt→0+ Sγ(t)x0 = x0; this holds in the case that x ∈ D((−𝒜)θ) with 1 ⩾ θ > 1 − β
or that x ∈ Xθ

𝒜 with 1 > θ > 1 − β). Then the function t → Sγ(t)x0, t ⩾ 0 is continu-
ous and tends to zero as t → +∞. Keeping this in mind and imposing some additional
conditions of the function f (⋅), we can straightforwardly apply Proposition 3.1.20. This
proposition can be also applied in the qualitative properties of solutions to the follow-
ing inhomogeneous abstract Cauchy problem of third order:

αu′′′(t) + u′′(t) − βAu(t) − γAu′(t) = f (t), α, β, γ > 0, t ⩾ 0,

appearing in the theory of dynamics of elastic vibrations of flexible structures [337]
(see also [336]).
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Finally, we will present some noteworthy applications. Let Ω ⊆ ℝn be an open
bounded subset with smooth boundary 𝜕Ω and let 1 < p < ∞. Among many other
statements, we can make use of Proposition 3.1.20 to establish the existence and
uniqueness of asymptotically Sp(x)-almost automorphic solutions to the damped
Poisson-wave type equation, in the spaces X := H−1(Ω) or X := Lp(Ω), given by
{{{{{{
{{{{{{
{

𝜕𝜕t (m(x) 𝜕u𝜕t ) + (2ωm(x) − Δ) 𝜕u𝜕t + (A(x;D) − ωΔ + ω2m(x))u(x, t) = f (x, t),
t ⩾ 0, x ∈ Ω;

u = 𝜕u𝜕t = 0, (x, t) ∈ 𝜕Ω × [0,∞),
u(0, x) = u0(x), m(x)[( 𝜕u𝜕t )(x,0) + ωu0] = m(x)u1(x), x ∈ Ω,

wherem(x) ∈ L∞(Ω),m(x) ⩾ 0 a. e. x ∈ Ω, Δ is the Dirichlet Laplacian in L2(Ω), acting
on itsmaximal domain,H1

0(Ω)∩H
2(Ω), andA(x;D) is a second-order linear differential

operator onΩwith continuous coefficients onΩ; see, e. g., [431, Example 6.1] and [631]
for further details.

Notice that we can also consider the existence and uniqueness of asymptotically
Sp(x)-almost periodic solutions to the following fractional damped Poisson-wave type
equation, in the spaces X := H−1(Ω) or X := Lp(Ω), given by
{{{{{{
{{{{{{
{

Dγ
t (m(x)D

γ
t u) + (2ωm(x) − Δ)D

γ
t u + (A(x;D) − ωΔ + ω

2m(x))u(x, t) = f (x, t),
t ⩾ 0, x ∈ Ω;

u = Dγ
t u = 0, (x, t) ∈ 𝜕Ω × [0,∞),

u(0, x) = u0(x), m(x)[Dγ
t u(x,0) + ωu0] = m(x)u1(x), x ∈ Ω.

3.1.4 (p,ϕ, F )-Classes and [p,ϕ, F ]-classes of Weyl almost periodic functions

Throughout this subsection, we assume the following general conditions:
(A) I = ℝ or I = [0,∞), ϕ : [0,∞)→ [0,∞), p ∈ 𝒫(I) and F : (0,∞) × I → (0,∞).
(B) The same as (A) with the assumption p ∈ 𝒫(I) replaced by p ∈ 𝒫([0, 1]) therein.

We introduce the notions of an (equi-)Weyl (p,ϕ, F)-almost periodic function and an
(equi-)Weyl (p,ϕ, F)i-almost periodic function, where i = 1, 2, as follows (see [631] for
case that p(x) ≡ p ∈ [1,∞),ϕ(x) = x and F(l, t) = l(−1)/p, when we deal with the usually
considered (equi-)Weyl p-almost periodic functions, as well as to [372, Remark 4.13]
for case that ϕ(x) = x and F(l, t) = l(−1)/p(t)).
Definition 3.1.23. Suppose that condition (A) holds, f : I → X andϕ(‖f (⋅+ τ)− f (⋅)‖) ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
(i) It is said that the function f (⋅) is equi-Weyl (p,ϕ, F)-almost periodic, f ∈ e −

W (p,ϕ,F)ap (I : X) for short, if and only if for each ε > 0 we can find two real numbers
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l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′
such that

e − ‖f ‖(p,ϕ,F,τ) := sup
t∈I [F(l, t)[ϕ(f (⋅ + τ) − f (⋅))Lp(⋅)[t,t+l]]] ⩽ ε. (3.6)

(ii) It is said that the function f (⋅) is Weyl (p,ϕ, F)-almost periodic, f ∈ W (p,ϕ,F)ap (I : X)
for short, if and only if for each ε > 0 we can find a real number L > 0 such that
any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

‖f ‖(p,ϕ,F,τ) := lim sup
l→∞ sup

t∈I [F(l, t)[ϕ(f (⋅ + τ) − f (⋅))Lp(⋅)[t,t+l]]] ⩽ ε. (3.7)

Definition 3.1.24. Suppose that condition (A) holds, f : I → X and ‖f (⋅ + τ) − f (⋅)‖ ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
(i) It is said that the function f (⋅) is equi-Weyl (p,ϕ, F)1-almost periodic, f ∈ e −

W (p,ϕ,F)1ap (I : X) for short, if and only if for each ε > 0 we can find two real numbers
l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′
such that

e − ‖f ‖(p,ϕ,F,τ)1 := supt∈I [F(l, t)ϕ[(f (⋅ + τ) − f (⋅))Lp(⋅)[t,t+l]]] ⩽ ε.
(ii) It is said that the function f (⋅) is Weyl (p,ϕ, F)1-almost periodic, f ∈ W (p,ϕ,F)1ap (I : X)

for short, if and only if for each ε > 0 we can find a real number L > 0 such that
any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

‖f ‖(p,ϕ,F,τ)1 := lim sup
l→∞ sup

t∈I [F(l, t)ϕ[(f (⋅ + τ) − f (⋅))Lp(⋅)[t,t+l]]] ⩽ ε.
Definition 3.1.25. Suppose that condition (A) holds, f : I → X and ‖f (⋅ + τ) − f (⋅)‖ ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
(i) It is said that the function f (⋅) is equi-Weyl (p,ϕ, F)2-almost periodic, f ∈ e −

W (p,ϕ,F)2ap (I : X) for short, if and only if for each ε > 0 we can find two real numbers
l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′
such that

e − ‖f ‖(p,ϕ,F,τ)2 := supt∈I ϕ[F(l, t)[(f (⋅ + τ) − f (⋅))Lp(⋅)[t,t+l]]] ⩽ ε.
(ii) It is said that the function f (⋅) is Weyl (p,ϕ, F)2-almost periodic, f ∈ W (p,ϕ,F)2ap (I : X)

for short, if and only if for each ε > 0 we can find a real number L > 0 such that
any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

‖f ‖(p,ϕ,F,τ)2 := lim sup
l→∞ sup

t∈I ϕ[F(l, t)[(f (⋅ + τ) − f (⋅))Lp(⋅)[t,t+l]]] ⩽ ε.
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Beforewe go any further, wewould like to that the above definitions are incapable
of being compared to each other: for example, in Definition 3.1.23, we calculate the
value ofϕ(‖f (⋅+τ)− f (⋅)‖)Lp(⋅)[t,t+l], while in Definition 3.1.24 we first calculate the value
of ‖f (⋅ + τ) − f (⋅)‖Lp(⋅)[t,t+l] and after that we apply the function ϕ(⋅).

If i = 1, 2 and F(l, t) = ψ(l)(−1)/p(t) for some function ψ : (0,∞) → (0,∞) and all
t ∈ I, then we also say that the function f (⋅) is (equi-)Weyl (p,ϕ,ψ)-almost periodic,
resp. (equi-)Weyl (p,ϕ,ψ)i-almost periodic,when the corresponding class of functions
is also denoted by (e−)W (p,ϕ,ψ)ap (I : X), resp. (e−)W

(p,ϕ,ψ)i
ap (I : X). There is no need to say

that the above classes coincide in the case that ϕ(x) ≡ x.

Example 3.1.26.
(i) If ϕ(0) = 0, then any continuous periodic function f : I → X belongs to any

of the above introduced function spaces. If ϕ(0) > 0, then a constant function
cannot belong to any of the function spaces introduced in Definition 3.1.25, while
the function spaces introduced in Definition 3.1.23–Definition 3.1.24 can contain
constant functions (see also Remark 3.1.28(iii)).

(ii) Ifϕ(x) = x and p(x) ≡ p ∈ [1,∞), then any Stepanov p-bounded function f : I → X
belongs to any of the above introduced function spaces with F(l, t) ≡ l−σ, where
σ > 1/p; in particular, if f (⋅) is Stepanov p(x)-bounded and p ∈ D+(I), then f (⋅)
belongs to any of the above introduced function spaces with F(l, t) ≡ l−σ, where
σ > 1/p+. This simply follows from the inequality

(
t+l
∫
t

f (s + τ) − f (s)

p ds)

1/p
⩽
⌊l⌋
∑
k=0(

t+k+1
∫
t+k f (s + τ) − f (s)p ds)

1/p
,

which is valid for any t, τ ∈ I, l > 0, and a simple argumentation. Suppose now
that I = ℝ or I = [0,∞), p ∈ 𝒫(I) and f ∈ BSp(x)(I : X). A similar line of reasoning
shows that f (⋅) belongs to any of the above introduced function spaces provided
that
(a) p ∈ D+(I) and F(l, t) ≡ l−σ, where σ > 1/p+, or
(b) F(l, t) ≡ l−σ, where σ > 1, in the general case. For this, it is only worth noting

that we have φp(x)(t/lσ) ⩽ (1/lσ)φp(x)(t) for any t ⩾ 0 and l ⩾ 1.
(iii) If X does not contain an isomorphic copy of the sequence space c0, ϕ(x) = x and

F(l, t) ≡ F(t), where limt→+∞ F(t) = +∞, then there is no trigonometric polyno-
mial f (⋅) and function p ∈ 𝒫(ℝ) such that f ∈ e −W (p,x,F)ap (ℝ : X). If we suppose the
contrary, then using the fact that the space Lp(x)[t, t+ l] is continuously embedded
into the space L1[t, t + l] with the constant of embeddings less than or equal to
2(1+ l) (see, e. g., [377, Corollary 3.3.4]), where t ∈ ℝ and l > 0, we see that for each
ε > 0 we can find two real numbers l > 0 and L > 0 such that any interval I′ ⊆ ℝ
of length L contains a point τ ∈ I′ such that

sup
t∈ℝ [F(t)f (⋅ + τ) − f (⋅)L1[t,t+l]] ⩽ 2ε(1 + l). (3.8)
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Let such numbers l > 0 and τ ∈ ℝ be fixed. By (3.8), we see that the mapping

t → f1(t) ≡
t+l
∫
t

f (s + τ) − f (s)
 ds, t ⩾ 0

belongs to the space C0([0,∞) : ℂ). On the other hand, the mapping s → ‖f (s +
τ) − f (s)‖, s ∈ ℝ is almost periodic and satisfies ∫t0 ‖f (s + τ) − f (s)‖ ds <∞, so that
the mapping

t → f2(t) ≡
t

∫
0

f (s + τ) − f (s)
 ds, t ∈ ℝ

is almost periodic by Theorem 2.1.1(vi). By the translation invariance, the same
holds for the mapping f1(⋅) = f2(⋅ + τ) − f2(⋅). Since f1 ∈ C0([0,∞) : ℂ), we get
f1 ≡ 0, so that ‖f (s + τ) − f (s)‖ = 0 for all s ⩾ 0 and f (⋅) is periodic, which is a
contradiction. Based on the conclusion obtained in this part, we will not examine
the question whether, for a given number ε > 0 and an equi-Weyl (p,ϕ, F)-almost
periodic function or an equi-Weyl (p,ϕ, F)i-almost periodic function (i = 1, 2), we
canfinda trigonometric polynomialP(⋅) such that ‖P−f ‖(p,ϕ,F) < ε or ‖P−f ‖(p,ϕ,F)i <
ε (i = 1, 2), where

e − ‖f ‖(p,ϕ,F) := sup
t∈I [F(l, t)[ϕ(f (⋅))Lp(⋅)[t,t+l]]],

e − ‖f ‖(p,ϕ,F)1 := supt∈I [F(l, t)ϕ[(f (⋅))Lp(⋅)[t,t+l]]],
and

e − ‖f ‖(p,ϕ,F)2 := supt∈I ϕ[F(l, t)[(f (⋅))Lp(⋅)[t,t+l]]].
For the usually considered class of equi-Weyl p-almost periodic functions, where
1 ⩽ p <∞, the answer to the abovequestion is affirmative (see, e. g., [631, Theorem
2.3.2]). Observe also that the sub-additivity of the function ϕ(⋅) implies the sub-
additivity of functions e − ‖ ⋅ ‖(p,ϕ,F) and e − ‖ ⋅ ‖(p,ϕ,F)i , where i = 1, 2; since the
limit superior is also a sub-additive operation, the same holds for the functions
‖ ⋅ ‖(p,ϕ,F) and ‖ ⋅ ‖(p,ϕ,F)i , where i = 1, 2, defined as above (cf. the second parts
of Definition 3.1.23–Definition 3.1.25, as well as Definition 3.1.29–Definition 3.1.31
below).

In the case that the function ϕ(⋅) is convex and p(x) ≡ 1, we have the following
result.

Proposition 3.1.27. Suppose that p(x) ≡ 1, f : I → X, ‖f (⋅ + τ) − f (⋅)‖ ∈ Lp(x)(K) for any
τ ∈ I and any compact subset K of I, as well as condition
(C) ϕ(⋅) is convex and there exists a function φ : [0,∞) → [0,∞) such that ϕ(lx) ⩽

φ(l)ϕ(x) for all l > 0 and x ⩾ 0
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holds. Set F1(l, t) := F(l, t)l[φ(l)]−1, l > 0, t ∈ I and F2(l, t) := l−1φ(F(l, t)l), l > 0, t ∈ I.
Then we have:
(i) f ∈ (e−)W (1,ϕ,F)ap ⇒ f ∈ (e−)W (1,ϕ,F1)1ap .
(ii) f ∈ (e−)W (1,ϕ,F2)ap ⇒ f ∈ (e−)W (1,ϕ,F)2ap .

Proof. To prove (i), suppose that f ∈ (e−)W (1,ϕ,F)ap . Then the assumption (C) and the
Jensen integral inequality together imply

ϕ(f (⋅ + τ) − f (⋅)
L1[t,t+l]) = ϕ(l ⋅ l−1f (⋅ + τ) − f (⋅)L1[t,t+l])

⩽ φ(l)ϕ(l−1f (⋅ + τ) − f (⋅)L1[t,t+l])
⩽ φ(l)l−1[ϕ(f (⋅ + τ) − f (⋅))]L1[t,t+l].

This simply yields f ∈ (e−)W (1,ϕ,F1)1ap . To prove (ii), suppose that f ∈ (e−)W (1,ϕ,F2)ap . Then
the assumption (C) and the Jensen integral inequality together imply

ϕ(F(l, t)f (⋅ + τ) − f (⋅)
L1[t,t+l]) = ϕ(F(l, t)l ⋅ l−1f (⋅ + τ) − f (⋅)L1[t,t+l])

⩽ φ(F(t, l)l)l−1[ϕ(f (⋅ + τ) − f (⋅))]L1[t,t+l].
This simply yields f ∈ (e−)W (1,ϕ,F)2ap .

Before we go any further, let us recall that any equi-Weyl p-almost periodic func-
tion needs to be Weyl p-almost periodic, while the converse statement does not hold
in general. On the other hand, it is not true that an equi-Weyl (p,ϕ,ψ)-almost periodic
function, resp. equi-Weyl (p,ϕ,ψ)i-almost periodic function, is Weyl (p,ϕ,ψ)-almost
periodic, resp.Weyl (p,ϕ,ψ)i-almost periodic;moreover, an unrestrictive choice of the
function ψ(⋅) allows us to work with a substantially large class of quasi-almost peri-
odic functions: As it can be simply approved, any Stepanov p-almost periodic function
f (⋅) is equi-Weyl (p,ϕ,ψ)-almost periodic with p(x) ≡ p ∈ [1,∞), ψ(l) ≡ 1, ϕ(x) = x;
on the other hand, any continuous Stepanov p-almost periodic function f (⋅) which is
not periodic cannot be Weyl (p, x, 1)-almost periodic, for example. Let us explain the
last fact in more detail. If we suppose the contrary, then for each ε > 0 we can find
a real number L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′
such that (3.7) holds with p(x) ≡ p ∈ [1,∞), ψ(l) ≡ 1 and ϕ(x) = φ(x) = x. This
simply implies that for each ε > 0 we can find a strictly increasing sequence (ln) of
positive real numbers tending to infinity such that for each t ∈ I and n ∈ ℕ we have
∫
t
t+ln ‖f (x + τ)− f (x)‖p dx ⩽ ε for each ε > 0; hence, ∫I ‖f (x + τ)− f (x)‖p dx ⩽ ε and there-
fore ∫I ‖f (x+τ)−f (x)‖

p dx = 0. This yields f (x+τ) = f (x), x ∈ I, which is a contradiction
to our preassumption.

Remark 3.1.28.
(i) It is clear that, if f (⋅) is an (equi-)Weyl (p,ϕ, F)-almost periodic function, resp.

(equi-)Weyl (p,ϕ, F)1-almost periodic function, and F(l, t) ⩾ F1(l, t) for every l > 0
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and t ∈ I, then f (⋅) is (equi-)Weyl (p,ϕ, F1)-almost periodic, resp. (equi-)Weyl
(p,ϕ, F1)1-almost periodic. Furthermore, if f (⋅) is an (equi-)Weyl (p,ϕ, F)2-almost
periodic function, then f (⋅) is an (equi-)Weyl (p,ϕ, F1)2-almost periodic function
provided that F(l, t) ⩾ F1(l, t) for every l > 0, t ∈ I and ϕ(⋅) is monotonically
increasing, or F(l, t) ⩽ F1(l, t) for every l > 0, t ∈ I and ϕ(⋅) is monotonically
decreasing.

(ii) If f (⋅) is an (equi-)Weyl (p,ϕ, F)-almost periodic function, resp. (equi-)Weyl (p,ϕ,
F)i-almost periodic function, ϕ1(⋅) is measurable and 0 ⩽ ϕ1 ⩽ ϕ, then Lem-
ma 1.1.7(iii) shows that f (⋅) is (equi-)Weyl (p,ϕ1, F)-almost periodic, resp. (equi-)-
Weyl (p,ϕ1, F)i-almost periodic, where i = 1, 2.

(iii) Regarding the first parts in the above definitions, it is worth noticing that we do
not allow the number l > 0 to be sufficiently large: in some concrete situations, it
is crucial to allow the number l > 0 to be sufficiently small; we will explain this
fact by two illustrative examples. First, let us considerDefinition 3.1.23(i). Suppose
that p(x) ≡ p ∈ [1,∞) and there exists an absolute constant c > 0 such that for
each l > 0 and τ ∈ I we have

sup
t∈I ϕ(f (⋅ + τ) − f (⋅))Lp(x)[t,t+l] ⩽ c.

Then it simply follows that the function f (⋅) is equi-Weyl (p,ϕ,ψ)-almost periodic
provided that liml→0+ ψ(l) = +∞. Second, suppose that f ∈ L∞(I : X). Then f (⋅)
is equi-Weyl (p, x, 1)-almost periodic for any p ∈ 𝒟(I), which can be simply ap-
proved by considering the case of constant coefficient p(x) ≡ p+ and the choice
l = l(ε) = ε.

In order to ensure the translation invariance of Weyl spaces with variable expo-
nent, we need to follow a slightly different approach [372, 373].

Definition 3.1.29. Suppose that condition (B) holds, f : I → X and ϕ(‖f (⋅l + t + τ) −
f (t + ⋅l)‖) ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.
(i) It is said that the function f (⋅) is equi-Weyl [p,ϕ, F]-almost periodic, f ∈ e −

W [p,ϕ,F]ap (I : X) for short, if and only if for each ε > 0 we can find two real numbers
l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′
such that

e − ‖f ‖[p,ϕ,F,τ] := sup
t∈I [F(l, t)[ϕ(f (⋅l + t + τ) − f (t + ⋅l))Lp(⋅)[0,1]]] ⩽ ε.

(ii) It is said that the function f (⋅) is Weyl [p,ϕ, F]-almost periodic, f ∈ W [p,ϕ,F]ap (I : X)
for short, if and only if for each ε > 0 we can find a real number L > 0 such that
any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that
‖f ‖[p,ϕ,F,τ] := lim sup

l→∞ sup
t∈I [F(l, t)[ϕ(f (⋅l + t + τ) − f (t + ⋅l))Lp(⋅)[0,1]]] ⩽ ε.
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Definition 3.1.30. Suppose that condition (B) holds, f : I → X and ‖f (⋅l + t + τ) − f (t +
⋅l)‖ ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.
(i) It is said that the function f (⋅) is equi-Weyl [p,ϕ, F]1-almost periodic, f ∈ e −

W [p,ϕ,F]1ap (I : X) for short, if and only if for each ε > 0 we can find two real numbers
l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′
such that

e − ‖f ‖[p,ϕ,F,τ]1 := supt∈I [F(l, t)ϕ[(f (⋅l + t + τ) − f (t + ⋅l))Lp(⋅)[0,1]]] ⩽ ε.
(ii) It is said that the function f (⋅) is Weyl [p,ϕ, F]2-almost periodic, f ∈ W [p,ϕ,F]2ap (I : X)

for short, if and only if for each ε > 0 we can find a real number L > 0 such that
any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that
‖f ‖[p,ϕ,F,τ]1 := lim sup

l→∞ sup
t∈I [F(l, t)ϕ[(f (⋅l + t + τ) − f (t + ⋅l))Lp(⋅)[0,1]]] ⩽ ε.

Definition 3.1.31. Suppose that condition (B) holds, f : I → X and ‖f (⋅l+t+τ)−f (t+⋅l)‖ ∈
Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.
(i) It is said that the function f (⋅) is equi-Weyl [p,ϕ, F]2-almost periodic, f ∈ e −

W [p,ϕ,F]2ap (I : X) for short, if and only if for each ε > 0 we can find two real numbers
l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′
such that

e − ‖f ‖[p,ϕ,F,τ]2 := supt∈I ϕ[F(l, t)[(f (⋅l + t + τ) − f (t + ⋅l))Lp(⋅)[0,1]]] ⩽ ε.
(ii) It is said that the function f (⋅) is Weyl [p,ϕ, F]2-almost periodic, f ∈ W [p,ϕ,F]2ap (I : X)

for short, if and only if for each ε > 0 we can find a real number L > 0 such that
any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that
‖f ‖[p,ϕ,F,τ]2 := lim sup

l→∞ sup
t∈I ϕ[F(l, t)[(f (⋅l + t + τ) − f (t + ⋅l))Lp(⋅)[0,1]]] ⩽ ε.

Remark 3.1.32.
(i) Let p ∈ 𝒫([0, 1]), let I = ℝ or I = [0,∞), and let a function f ∈ Lp(x)S (I : X)

be Stepanov p(x)-almost periodic. Then it readily follows that f (⋅) is equi-Weyl
[p,ϕ, F]-almost periodic with ϕ(x) ≡ x and F(l, t) ≡ 1.

(ii) In the case that p(x) ≡ p ∈ [1,∞), it can be simply shown that the class of
(equi)-Weyl [p,ϕ, [l/ψ(l)]1/p]-almost periodic functions, resp. (equi)-Weyl [p,ϕ,
[l/ψ(l)]1/p]2-almost periodic functions, coincides with the class of (equi)-Weyl
(p,ϕ,ψ)-almost periodic functions, resp. (equi)-Weyl (p,ϕ,ψ)2-almost periodic
functions. It is clear that the class of (equi)-Weyl [p,ϕ, [l/ψ(l)]1/p]1-almost peri-
odic functions and the class of (equi)-Weyl (p,ϕ,ψ)1-almost periodic functions
coincide provided that ϕ(cx) = cϕ(x) for all c, x ⩾ 0.
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(iii) It can be simply verified that the validity of condition
(D) For any τ0 ∈ I there exists c > 0 such that

F(l, t)
F(l, t + τ0)

⩽ c, t ∈ I , l > 0,

implies that the spaces (e−)W [p,ϕ,F]ap (I : X) and (e−)W
[p,ϕ,F]1
ap (I : X) are translation

invariant; this particularly holds provided the function F(l, t) does not depend on
the variable t. Furthermore, the space (e−)W [p,ϕ,F]2ap (I : X) is translation invariant
provided condition
(D)′ For any τ0 ∈ I there exists c > 0 such that

ϕ(F(l, t)x) ⩽ cϕ(F(l, t + τ0)x), x ⩾ 0, t ∈ I , l > 0.

(iv) If p, q ∈ 𝒫([0, 1]) and q(x) ⩽ p(x) for a. e. x ∈ [0, 1], then Lemma 1.1.7(ii) shows that
any (equi)-Weyl [p,ϕ, F]-almost periodic function is (equi)-Weyl [q,ϕ, F]-almost
periodic. Furthermore, condition x, y ⩾ 0 and x ⩽ cy implies ϕ(x) ⩽ cϕ(y),
resp. x, y ⩾ 0 and x ⩽ cy implies ϕ(F(l, t)x) ⩽ cϕ(F(l, t)y) for all l > 0 and t ∈ I,
ensures that any (equi)-Weyl [p,ϕ, F]1-almost periodic function is (equi)-Weyl
[q,ϕ, F]1-almost periodic, resp. any (equi)-Weyl [p,ϕ, F]2-almost periodic func-
tion is (equi)-Weyl [q,ϕ, F]2-almost periodic.

(v) It is clear that, if f (⋅) is an (equi)-Weyl [p,ϕ, F]-almost periodic function, resp.
(equi)-Weyl [p,ϕ, F]1-almost periodic function, and F(l, t) ⩾ F1(l, t) for every l > 0
and t ∈ I, then f (⋅) is (equi)-Weyl [p,ϕ, F1]-almost periodic, resp. (equi)-Weyl
[p,ϕ, F1]1-almost periodic. Furthermore, any (equi)-Weyl [p,ϕ, F]2-almost periodic
function is (equi)-Weyl [p,ϕ, F]2-almost periodic provided that F(l, t) ⩾ F1(l, t) for
every l > 0, t ∈ I and ϕ(⋅) is monotonically increasing, or F(l, t) ⩽ F1(l, t) for every
l > 0, t ∈ I and ϕ(⋅) is monotonically decreasing.

(vi) If f (⋅) is an (equi-)Weyl [p,ϕ, F]-almost periodic function,ϕ1(‖f (⋅l+t+τ)−f (t+⋅l)‖) is
measurable for any τ ∈ I, t ∈ I, l > 0, and 0 ⩽ ϕ1 ⩽ ϕ, then Lemma 1.1.7(iii) shows
that f (⋅) is an (equi)-Weyl [p,ϕ1, F]-almost periodic. Furthermore, if 0 ⩽ ϕ1 ⩽ ϕ,
only, and f (⋅) is an (equi-)Weyl [p,ϕ, F]i-almost periodic function, then f (⋅) is an
(equi-)Weyl [p,ϕ1, F]i-almost periodic function, where i = 1, 2.

In the case that the function ϕ(⋅) is convex and p(x) ≡ 1, we have the following
proposition which can be shown following the lines of the proof of Proposition 3.1.27.

Proposition 3.1.33. Suppose that ϕ(⋅) is convex, p(x) ≡ 1, f : I → X and ‖f (⋅l + t + τ) −
f (t + ⋅l)‖ ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0. Then the following holds:
(i) f ∈ (e−)W [1,ϕ,F]ap ⇒ f ∈ (e−)W [1,ϕ,F]1ap .
(ii) If condition (C) holds, then f ∈ (e−)W [1,ϕ,φ∘F]ap ⇒ f ∈ (e−)W [1,ϕ,F]2ap .

Regarding Proposition 3.1.27 and Proposition 3.1.33, it should be observed that the
reverse inclusions and inequalities can be obtained assuming the condition
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(C)′ ϕ(⋅) is concave and there exists a function φ : [0,∞) → [0,∞) such that ϕ(lx) ⩾
φ(l)ϕ(x) for all l > 0 and x ⩾ 0.

It is clear that any (equi-)Weyl p-almost periodic function f (⋅) is (equi-)Weyl (p,ϕ,
ψ)-almost periodic with p(x) ≡ p ∈ [1,∞), ϕ(x) = x, ψ(l) = l. Concerning this observa-
tion, we wish to present two illustrative examples.

Example 3.1.34. Let us recall (J. Stryja [962]; see, e. g., Example 4.27 in the survey ar-
ticle [67] by J. Andres, A.M. Bersani, R. F. Grande) that the function g(⋅) := χ[0,1/2](⋅)
is equi-Weyl p-almost periodic for any p ∈ [1,∞) but not Stepanov almost periodic.
Since for each l, τ ∈ ℝ we have

(sup
t∈ℝ t+l
∫
t

f (x + τ) − f (x)

p dx)

1/p
⩽ 1,

it can be easily shown that the function g(⋅) is equi-Weyl (p, x,ψ)-almost periodic for
any function ψ : (0,∞) → (0,∞) such that liml→+∞ ψ(l) = +∞; moreover, for each
ε ∈ (0, 1/2) we can always find t ∈ ℝ such that

t+1
∫
t

f (x + τ) − f (x)

p dx > ε, τ > ε.

Hence, the function g(⋅) cannot be equi-Weyl (p, x, l0)-almost periodic. Taking into
account Remark 3.1.28(iii) and the above conclusions, we see that g(⋅) is equi-Weyl
(p, x, lσ)-almost periodic if and only if σ ̸= 0.

Example 3.1.35. Let us recall (J. Stryja [962]; see also [67, Example 4.29] and [631]) that
the Heaviside function g(⋅) := χ[0,∞)(⋅) is not equi-Weyl 1-almost periodic but it is Weyl
p-almost periodic for any number p ∈ [1,∞). Furthermore, it is not difficult to see that
for each real number τ ∈ ℝ we have

sup
t∈ℝ( t+l∫

t

f (x + τ) − f (x)

p dx)

1/p
= |τ|1/p

for any real number l > |τ|. This implies that the function g(⋅) is Weyl (p, x,ψ)-almost
periodic for any function ψ : (0,∞) → (0,∞) such that liml→+∞ ψ(l) = +∞ and that
g(⋅) cannot beWeyl (p, x,ψ)-almost periodic for any functionψ : (0,∞)→ (0,∞) such
that lim supl→+∞[ψ(l)]−1 > 0; in particular, g(⋅) is Weyl (p, x, lσ)-almost periodic if and
only if σ > 0. On the other hand, the function g(⋅) cannot be equi-Weyl (p, x,ψ)-almost
periodic for any function ψ : (0,∞) → (0,∞); in actual fact, if we suppose contrary,
then Eq. (3.6) is violated with |τ|1/p > εψ(l)1/p. See also [631, Example 2.11.15–Example
2.11.17].
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3.1.5 Weyl ergodic components with variable exponents

Unless statedotherwise, in this subsectionweassume thatp ∈ 𝒫([0,∞)),ϕ : [0,∞)→
[0,∞) and F : (0,∞) × [0,∞) → (0,∞). In the following three definitions, we extend
the notion of an (equi-)Weyl p-vanishing function introduced in [645], where the case
p(x) ≡ p ∈ [1,∞), F(l, t) ≡ l(−1)/p and ϕ(x) ≡ x has been considered.
Definition 3.1.36.
(i) It is said that a function q : [0,∞)→ X is equi-Weyl (p,ϕ, F)-vanishing if and only

if ϕ(‖q(t + ⋅)‖) ∈ Lp(⋅)[x, x + l] for all t, x, l > 0 and
lim
l→+∞ lim sup

t→+∞ sup
x⩾0 [F(l, t)ϕ(q(t + v))Lp(v)[x,x+l]] = 0. (3.9)

(ii) It is said that a function q : [0,∞) → X is Weyl (p,ϕ, F)-vanishing if and only if
ϕ(q(t + ⋅)) ∈ Lp(⋅)[x, x + l] for all t, x, l > 0 and

lim
t→+∞ lim sup

l→+∞ sup
x⩾0 [F(l, t)ϕ(q(t + v))Lp(v)[x,x+l]] = 0. (3.10)

Definition 3.1.37.
(i) It is said that a function q : [0,∞) → X is equi-Weyl (p,ϕ, F)1-vanishing if and

only if q(t + ⋅) ∈ Lp(⋅)[x, x + l] for all t, x, l > 0 and
lim
l→+∞ lim sup

t→+∞ sup
x⩾0 [F(l, t)ϕ(q(t + v)Lp(v)[x,x+l])] = 0. (3.11)

(ii) It is said that a function q : [0,∞) → X is Weyl (p,ϕ, F)1-vanishing if and only if
q(t + ⋅) ∈ Lp(⋅)[x, x + l] for all t, x, l > 0 and

lim
t→+∞ lim sup

l→+∞ sup
x⩾0 [F(l, t)ϕ(q(t + v)Lp(v)[x,x+l])] = 0. (3.12)

Definition 3.1.38.
(i) It is said that a function q : [0,∞) → X is equi-Weyl (p,ϕ, F)2-vanishing if and

only if q(t + ⋅) ∈ Lp(⋅)[x, x + l] for all t, x, l > 0 and
lim
l→+∞ lim sup

t→+∞ sup
x⩾0 ϕ[F(l, t)q(t + v)Lp(v)[x,x+l]] = 0. (3.13)

(ii) It is said that a function q : [0,∞) → X is Weyl (p,ϕ, F)2-vanishing if and only if
q(t + ⋅) ∈ Lp(⋅)[x, x + l] for all t, x, l > 0 and

lim
t→+∞ lim sup

l→+∞ sup
x⩾0 ϕ[F(l, t)q(t + v)Lp(v)[x,x+l]] = 0. (3.14)

Denote by Wp(x)
ϕ,F,0([0,∞) : X) and e − Wp(x)

ϕ,F,0([0,∞) : X) [Wp(x);1
ϕ,F,0 ([0,∞) : X) and

e−Wp(x);1
ϕ,F,0 ([0,∞) : X)/Wp(x);2

ϕ,F,0 ([0,∞) : X) and e−Wp(x);2
ϕ,F,0 ([0,∞) : X)] the sets consisting
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of all Weyl (p,ϕ, F)-vanishing functions and equi-Weyl (p,ϕ, F)-vanishing functions
[Weyl (p,ϕ, F)1-vanishing functions and equi-Weyl (p,ϕ, F)1-vanishing functions/Weyl
(p,ϕ, F)2-vanishing functions and equi-Weyl (p,ϕ, F)2-vanishing functions], respec-
tively. In the case that p(x) ≡ p ∈ [1,∞), F(l, t) ≡ l(−1)/p and ϕ(x) ≡ x, the above
classes coincide and we denote them byWp

0 ([0,∞) : X) and e −W
p
0 ([0,∞) : X). These

classes are very general and we want only to recall that, for instance, an equi-Weyl
p-vanishing function q(⋅) need not be bounded as t → +∞ [645].

A great number of very simple examples can be constructed in order to show that,
in the general case, the limit

lim
t→+∞ supx⩾0 [F(l, t)ϕ(q(t + v))Lp(v)[x,x+l]]

in Eq. (3.9) does not exist for any fixed number l > 0; the same holds for Eqs. (3.10)–
(3.14). The question when these limits exist is meaningful but it will not be analyzed
here.

Furthermore, we have the following observation.

Remark 3.1.39.
(i) Suppose that the function ϕ(⋅) is monotonically increasing and satisfies, for each

scalar α, β ⩾ 0 there exists a finite real number π(α, β) > 0 such that, for every
non-negative real numbers x, y ⩾ 0, we have

ϕ(αx + βy) ⩽ π(α, β)[ϕ(x) + ϕ(y)].

Then (equi-)Weyl (p,ϕ, F)-vanishing functions and (equi-)Weyl (p,ϕ, F)i-vanish-
ing functions, where i = 1, 2, form vector spaces.

(ii) If the function F(l, t) satisfies condition (D), resp. (D)′, then the space of (equi-)-
Weyl (p,ϕ, F)-vanishing functions and the spaceof (equi-)Weyl (p,ϕ, F)1-vanishing
functions, resp. the space of (equi-)Weyl (p,ϕ, F)2-vanishing functions, are trans-
lation invariant.

In this section, we will not follow the approach obeyed in [372] and previous sec-
tion, with the principal assumption p ∈ 𝒫([0, 1]). With regard to this question, we will
present only one illustrative example.

Example 3.1.40. Suppose that p ∈ 𝒫([0, 1]). Let us recall that the space of Stepanov
p(⋅)-vanishing functions (see [372]), denoted by Sp(x)0 ([0,∞) : X), is consisting of those
functions q ∈ Lp(x)S ([0,∞) : X) such that q̂ ∈ C0([0,∞) : L

p(x)([0, 1] : X)). The notion of
space Sp(x)0 ([0,∞) : X) can be extended in many other ways; for example:
(i) Let ϕ : (0,∞) → (0,∞) and G : (0,∞) → (0,∞). Then we say that a function q(⋅)

belongs to the space Sp(⋅)ϕ,G,0([0,∞) : X) if and only if ϕ(‖q(t + ⋅)‖) ∈ Lp(⋅)[0, 1] for all
t ⩾ 0 and

lim
t→+∞G(t)ϕ(q(t + v))Lp(v)[0,1] = 0.
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In this part, as well as in parts (ii) and (iii), we will use the 1-periodic exten-
sion of the function p(⋅) to the non-negative real axis, denoted henceforth by
p1(⋅). Then the class Sp(⋅)ϕ,G,0([0,∞) : X) is contained in the class of equi-Weyl
(p1,ϕ, F)-vanishing functions with a suitable chosen function F(l, t), provided
that the function G(⋅) is monotonically increasing. More precisely, let a number
ε > 0 be fixed. Then there exists a sufficiently large real number t0 > 0 such that
‖ϕ(q(t + v))‖Lp(v)[0,1] < εG(t)−1 for all numbers t ⩾ t0. Since we have assumed that
G(⋅) is monotonically increasing, this implies that, for every t ⩾ t0, x ⩾ 0 and
m ∈ ℕ0, we have

1

∫
0

φp(v)(ϕ(q(t + v + ⌊x⌋ +m))/[εG(t)−1]) dv ⩽ 1.
Using the inequality (x ⩾ 0, l > 0)

x+l
∫
x

φp1(v)(ϕ(q(t + v))/[εG(t)−1]) dv
⩽

l
∑
k=0
⌊x⌋+k+1
∫⌊x⌋+k φp1(v)(ϕ(q(t + v))/[εG(t)−1]) dv,

the above yields

x+l
∫
x

φp1(v)(ϕ(q(t + v))/[εG(t)−1]) dv ⩽ l + 1, i. e.,

x+l
∫
x

1
l + 1

φp1(v)(ϕ(q(t + v))/[εG(t)−1]) dv ⩽ 1.
Since

φp1(v)(ϕ(q(t + v))/[ε(l + 1)G(t)−1]) ⩽ 1
l + 1

φp1(v)(ϕ(q(t + v))/[εG(t)−1]),
the above implies ‖ϕ(‖q(t + v)‖)‖Lp(v)[x,x+l] < εG(t)−1(1 + l) for all t ⩾ t0, x ⩾ 0 and
l > 0. Hence, the required conclusion holds provided that there exists a finite real
constant C > 0 such that

F(l, t)G(t)
−1(1 + l) ⩽ C, l > 0, t > 0.

(ii) Let ϕ : (0,∞) → (0,∞) and G : (0,∞) → (0,∞). Then we say that a function q(⋅)
belongs to the space Sp(⋅)ϕ,G,0;1([0,∞) : X) if and only if q(t+ ⋅) ∈ Lp(⋅)[0, 1] for all t ⩾ 0
and

lim
t→+∞G(t)ϕ(q(t + v)Lp(v)[0,1]) = 0.
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Then the class Sp(⋅)ϕ,G,0;1([0,∞) : X) is contained in the class of equi-Weyl (p1,ϕ, F)1-
vanishing functionswith a suitable chosen functionF(l, t), provided that the func-
tion G(⋅) is monotonically increasing. Arguing as in (i), this holds provided that,
for example, supϕ−1([0,G(t)−1]) <∞ and

lim
l→+∞ lim sup

t→+∞ F(l, t)(l + 1) supϕ−1([0,G(t)−1]) = 0.
(iii) Let ϕ : (0,∞) → (0,∞) and G : (0,∞) → (0,∞). Then we say that a function q(⋅)

belongs to the space Sp(⋅)ϕ,G,0;2([0,∞) : X) if and only if q(t+ ⋅) ∈ Lp(⋅)[0, 1] for all t ⩾ 0
and

lim
t→+∞ϕ(G(t)ϕ(q(t + v))Lp(v)[0,1]) = 0.

Then the class Sp(⋅)ϕ,G,0;2([0,∞) : X) is contained in the class of equi-Weyl (p1,ϕ, F)2-
vanishing functionswith a suitable chosen functionF(l, t), provided that the func-
tion G(⋅) is monotonically increasing. Arguing as in (i), this holds provided that,
for example, the function ϕ(⋅) is monotonically increasing, supϕ−1([0, 1]) < +∞
and

lim
l→+∞ lim sup

t→+∞ ϕ(F(l, t)G(t)−1(1 + l) supϕ−1([0, 1])) = 0.
Ananalogue of Proposition 3.1.27 canbeproved for (equi-)Weyl (p,ϕ, F)-vanishing

functions and (equi-)Weyl (p,ϕ, F)i-vanishing functions, provided that the func-
tion ϕ(⋅) is convex and q(v) ≡ 1. Furthermore, an analogue of Remark 3.1.28(i)–
(ii) can be formulated for (equi-)Weyl (p,ϕ, F)-vanishing functions and (equi-)Weyl
(p,ϕ, F)i-vanishing functions. Concerning Lemma 1.1.7(ii) and Remark 3.1.32(v), it
should be noted that the embedding type result established already in the mentioned
[377, Corollary 3.3.4] for scalar-valued functions (see also Lemma 1.1.7(ii)) enables one
to see that the following expected result holds true.

Proposition 3.1.41. Suppose r, p ∈ 𝒫([0,∞)) and 1 ⩽ r(x) ⩽ p(x) for a. e. x ⩾ 0. Let
F1(l, t) = 2max(lessinf(1/r(x)−1/p(x)), lesssup(1/r(x)−1/p(x)))F(l, t) or F1(l, t) = 2(1+ l)F(l, t) for all
l > 0 and t ⩾ 0. Then we have:
(i) If the function q(⋅) is (equi-)Weyl (r,ϕ, F)-vanishing provided that q(⋅) is (equi-)Weyl
(p,ϕ, F1)-vanishing.

(ii) Suppose that there exists a function φ : [0,∞) → [0,∞) such that ϕ(cx) ⩽
φ(c)ϕ(x) for all c ⩾ 0 and x ⩾ 0. Let F2(l, t) = φ(2(1 + l))F(l, t) or F1(l, t) =
φ(2max(lessinf(1/r(x)−1/p(x)), lesssup(1/r(x)−1/p(x))))F(l, t) for l > 0 and t ⩾ 0. Then the
function q(⋅) is (equi-)Weyl (r,ϕ, F)1-vanishing provided that q(⋅) is (equi-)Weyl
(p,ϕ, F2)1-vanishing.

(iii) If ϕ(⋅) is monotonically increasing, then the function q(⋅) is (equi-)Weyl (r,ϕ, F)2-
vanishing provided that q(⋅) is (equi-)Weyl (p,ϕ, F1)2-vanishing.
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If 1 ⩽ r ⩽ p are constant coefficients, then the choices F1(l, t) = l1/r−1/pF(l, t) in (i),
(iii) and F1(l, t) = φ(l1/r−1/p)F(l, t) in (ii) can be made.

We continue by reexamining the conclusions established in [645, Example 4.5,
Example 4.6].

Example 3.1.42. Define

q(t) :=
∞
∑
n=0 χ[n2 ,n2+1](t), t ⩾ 0.

Then we know that q̂ ∉ C0([0,∞) : Lp([0, 1] : ℂ)) and the function q(⋅) is equi-Weyl
p-almost periodic for any exponent p ⩾ 1; see [645, Example 4.5]. In this example, we
have proved the estimate

(
x+l
∫
x

q(t + v)

p dv)

1/p
⩽ (2 + l
√t +√l

)
1/p
⩽ 2 + ( l
√t +√l

)
1/p
,

for any x ⩾ 0, t ⩾ 0, l > 0, so that the function q(⋅) is equi-Weyl (p, x, F)-vanishing
provided that

lim
l→+∞ lim sup

t→+∞ F(l, t)[2 + ( l
√t +√l

)
1/p
] = 0.

In particular, this holds for the function F(l, t) = lσ, where σ < 0.

Example 3.1.43. Define

q(t) :=
∞
∑
n=0√nχ[n2 ,n2+1](t), t ⩾ 0.

Then we know that the function q(⋅) is not equi-Weyl p-vanishing for any exponent
p ⩾ 1 and that the function q(⋅) is Weyl p-vanishing for any exponent p ⩾ 1; see [645,
Example 4.6]. In this example, we have proved the estimate

(
x+l
∫
x

q(t + v)

p dv)

1/p
⩽ (l + t)1/2p, x ⩾ 0, t ⩾ 0, l > 0,

so that the function q(⋅) is Weyl (p, x, F)-vanishing provided that

lim
t→+∞ lim sup

l→+∞ F(l, t)(l + t)1/2p = 0.
In particular, this holds for the function F(l, t) = lσ, where σ < (−1)/2p.

We will present one more illustrative example.
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Example 3.1.44. Suppose that (an)n∈ℕ and (bn)n∈ℕ are two sequences of positive real
numbers such that (an)n∈ℕ is strictly monotonically increasing, limn→+∞(an+1 − an) =
+∞ and limn→+∞ ϕ(bn) = 0. Let q : [0,∞) → (0,∞) be defined by q(t) := bn if and
only if t ∈ [an−1, an) for some n ∈ ℕ, where a0 := 0. If p ∈ D+([0,∞)), l > 0 and t > 0,
then we have

sup
x⩾0 [F(l, t)ϕ(q(t + v))Lp(v)[x,x+l]]
⩽ sup

x⩾0 [2(1 + l)F(l, t)ϕ(q(t + ⋅))Lp+ [x,x+l]]
= sup

x⩾0 [2(1 + l)F(l, t)ϕ(q(⋅))Lp+ [t+x,t+x+l]].
Assume, additionally, that there exists a function G : (0,∞) → (0,∞) such that
F(l, t) ⩽ G(l) for all l > 0 and t > 0. Since we have assumed that limn→+∞(an+1 − an) =
+∞, for each number l > 0 we have

lim sup
t→+∞ sup

x⩾0 [2(1 + l)F(l, t)ϕ(q(⋅))Lp+ [t+x,t+x+l]] = 0,
because limn→+∞ ϕ(bn) = 0 and

ϕ(q(⋅))
Lp+ [t+x,t+x+l] ⩽ lmax(ϕ(bn), ϕ(bn+1)),

where n ∈ ℕ is such that x + t ⩽ an and x + t + l ⩽ an+1. Therefore, the function q(⋅) is
equi-Weyl (p,ϕ, F)-vanishing.

In [645], we have introduced a great number of various types of asymptotically
Weyl almost periodic function spaces with constant exponent p ⩾ 1. In order to relax
our exposition,wewill introduce here only one general definition of an asymptotically
Weyl almost periodic function with variable exponent, which extends the notion in-
troduced in Definition 3.1.3(ii).

Definition 3.1.45. Let h : I → X. Then we say that h(⋅) is asymptotically Weyl almost
periodic with variable exponent if and only if there exist two functions g : ℝ → X
and q : I → X such that h(t) = g(t) + q(t) for a. e. t ∈ I, g(⋅) belongs to some of
function spaces introduced in Definition 3.1.23–Definition 3.1.25 or Definition 3.1.29–
Definition 3.1.31 and q(⋅) belongs to some of function spaces introduced in Defini-
tion 3.1.36–Definition 3.1.38 (with possibly different functions p, p1; ϕ, ϕ1; F, F1 and
the meaning being clear).

Observe that we can also extend the notion of Weyl p-pseudo-ergodic component
(p ⩾ 1) following the approach obeyed in the previous part of the section and provide
certain extensions of [645, Proposition 4.11] in this context.
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3.1.6 Weyl almost periodicity with variable exponent and convolution products

In the analyses of (equi-)Weyl (p,ϕ, F)-almost periodic functions and (equi-)Weyl
[p,ϕ, F]-almost periodic functions, we will use the following conditions:
(A1) I = ℝor I = [0,∞),ψ : (0,∞)→ (0,∞),φ : [0,∞)→ [0,∞),ϕ : [0,∞)→ [0,∞)

is a convexmonotonically increasing function satisfyingϕ(xy) ⩽ φ(x)ϕ(y) for all
x, y ⩾ 0, p ∈ 𝒫(I).

(B1) The same as (A) with the assumption p ∈ 𝒫(I) replaced by p ∈ 𝒫([0, 1]) therein.

Theorem 3.1.46. Suppose that condition (A1) holds with I = ℝ, ǧ : ℝ → X is (equi-)-
Weyl (p,ϕ, F)-almost periodic and measurable, F1 : (0,∞) × I → (0,∞), p, q ∈ 𝒫(ℝ),
1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and (ak)
is a sequence of positive real numbers such that ∑∞k=0 ak = 1. If for every real number
x, τ ∈ ℝ we have ∞

∫−xR(v + x)ǧ(v) dv <∞, (3.15)

and if, for every t ∈ ℝ and l > 0, we have

H(l, x) :=
∞
∑
k=0 akφ(la−1k )φ(R(v + x))Lq(v)[−x+kl,−x+(k+1)l]F(l,−x + lk)−1 <∞, (3.16)

t+l
∫
t

φp(x)(2l−1H(l, x)F1(l, t)−1) dx ⩽ 1, (3.17)

resp. if (3.16) holds and there exists l0 > 0 such that for all l ⩾ l0 and t ∈ ℝ we
have (3.17), then the function G : ℝ → Y, given by (2.46), is well defined and (equi-)-
Weyl (p,ϕ, F1)-almost periodic.

Proof. We will prove the theorem only for the class of equi-Weyl (p,ϕ, F)-almost peri-
odic functions. SinceG(x) = ∫∞−x R(v+x)ǧ(v) dv, x ∈ ℝ, the estimate in (3.15) shows that
the function G(⋅) is well defined and that the integral in definition of G(x) converges
absolutely (x ∈ ℝ). Furthermore, the same estimate shows that for each real number
τ we have ∞

∫−xR(v + x)ǧ(v + τ) dv =
∞
∫−(x−τ)R(v + (x − τ))ǧ(v) dv <∞,

so that the integral in definition of G(x + τ) − G(x) converges absolutely (x ∈ ℝ). Let
ε > 0 be a fixed real number. Then we can find two real numbers l > 0 and L > 0
such that any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that (3.6) holds
for the function ǧ(⋅), with the number τ replaced by the number −τ therein. Using
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our assumptions from condition (A1), the Jensen integral inequality applied to the
functionϕ(⋅) (see also condition (3.15)), the fact that the functionsϕ(⋅) and φp(x)(⋅) are
monotonically increasing, (3.1) and Lemma 1.1.7(i), we see that for each real number
x ∈ ℝ the following holds:

φp(x)(ϕ(G(x + τ) − G(x))/λ)
⩽ φp(x)(ϕ(∞∫−xR(v + x)ǧ(v + τ) − ǧ(v) dv)/λ)
= φp(x)(ϕ( ∞∑

k=0 ak
−x+(k+1)l
∫−x+kl a−1k R(v + x)ǧ(v + τ) − ǧ(v) dv)/λ)

⩽ φp(x)( ∞∑
k=0 akϕ(

−x+(k+1)l
∫−x+kl a−1k R(v + x)ǧ(v + τ) − ǧ(v) dv)/λ)

⩽ φp(x)( ∞∑
k=0 akϕ(la−1k ⋅ l−1

−x+(k+1)l
∫−x+kl R(v + x)ǧ(v + τ) − ǧ(v) dv)/λ)

⩽ φp(x)(l−1 ∞∑
k=0 akφ(la−1k )

−x+(k+1)l
∫−x+kl ϕ(R(v + x)


ǧ(v + τ) − ǧ(v)

) dv/λ)

⩽ φp(x)(l−1 ∞∑
k=0 akφ(la−1k )

−x+(k+1)l
∫−x+kl φ(R(v + x)

)ϕ(
ǧ(v + τ) − ǧ(v)

) dv/λ)

⩽ φp(x)(2l−1 ∞∑
k=0 akφ(la−1k )φ(R(v + x))Lq(v)[−x+kl,−x+(k+1)l]

× ϕ(ǧ(v + τ) − ǧ(v)
)Lp(v)[−x+kl,−x+(k+1)l])/λ)

⩽ φp(x)(2l−1 ∞∑
k=0 akφ(la−1k )φ(R(v + x))Lq(v)[−x+kl,−x+(k+1)l]εF(l,−x + kl)−1/λ).

Let K ⊆ ℝ be an arbitrary compact set. Since the above computation holds for every
real number τ ∈ ℝ and for every arbitrarily large real number l > 0, we can find t ∈ ℝ
such that K ⊆ [t, t + l]. Now we get from (3.17) that the function ϕ(‖G(⋅ + τ) − G(⋅)‖)
belongs to the space Lp(x)(K)bydefinition. Condition (3.17) and the above computation
also imply that for each real number t ∈ ℝ we have

t+l
∫
t

φp(x)(ϕ(G(x + τ) − G(x))/λ) dx ⩽ 1,
with λ = εF1(l, t), which simply implies the final conclusion.
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Remark 3.1.47.
(i) Suppose that p(x) ≡ p ∈ [1,∞). Then condition (3.17) can be weakened to

t+l
∫
t

φp(x)(l−1H(l, x)F1(l, t)−1) dx ⩽ 1, (3.18)

resp. there exists l0 > 0 such that for all l ⩾ l0 and t ∈ ℝ we have (3.18).
(ii) Suppose that ϕ(x) = φ(x) = ψ(x) = x. Then condition (3.17), resp. (3.18), holds

provided that l ⩾ 1 and the term in the large brackets in this equation does not
exceed 1/l or that 0 < l < 1 and the term in the large brackets in this equation does
not exceed 1. Similar comments can be made in the case of the consideration of
Theorem 3.1.49 below (see also Corollary 2.3.4).

Corollary 3.1.48. Suppose that condition (A1) holds with I = ℝ, p(x) ≡ p ⩾ 1, 1/p +
1/q = 1, ǧ : ℝ→ X is (equi-)Weyl (p,ϕ, F)-almost periodic andmeasurable, F1 : (0,∞)×
I → (0,∞), (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and (ak) is
a sequence of positive real numbers such that ∑∞k=0 ak = 1. If for every real numbers
x, τ ∈ ℝ we have (3.15) and if, for every t ∈ ℝ and l > 0, we have

Hp(l, x) :=
∞
∑
k=0 akφ(la−1k )φ(R(⋅))Lq[kl,(k+1)l]F(l,−x + lk)−1 <∞ (3.19)

and

t+l
∫
t

(l−1Hp(l, x)F1(l, t)
−1)p dx ⩽ 1, (3.20)

resp. if (3.19) holds and there exists l0 > 0 such that for all l ⩾ l0 and t ∈ ℝ we
have (3.20), then the function G : ℝ→ Y, given by (2.46), is well defined and (equi-)Weyl
(p,ϕ, F1)-almost periodic.

Now we will state and prove the following result with regards to the class of
(equi-)Weyl [p,ϕ, F]-almost periodic functions.

Theorem 3.1.49. Suppose that condition (B1) holds with I = ℝ, g : ℝ → X is mea-
surable, ω : (0,∞) → (0,∞), F : (0,∞) × I → (0,∞), (ak) is a sequence of positive
real numbers such that ∑∞k=0 ak = 1, (bk)k⩾0 is a sequence of positive real numbers,
S : (0,∞) × ℝ → (0,∞) is a given function, as well as for each ε > 0 we can find two
real numbers l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point
τ ∈ I′ such that

sup
x∈[0,1][ϕ(g(xl + t − r − k + τ) − g(xl + t − r − k))Lp(r)[0,1]] ⩽ ω(ε)bkS(l, t) (3.21)
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for any integer k ⩾ 0 and real number t ∈ ℝ. Suppose, further, that the second inequality
in (3.15) holds, p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆ L(X,Y) is a strongly
continuous operator family. If for every real numbers t, τ ∈ ℝ, every positive real number
l > 0 and every real number x ∈ [0, 1] we have∞

∫
0

R(v)

g(xl + t + τ − v) − g(xl + t − v)

 dv <∞, (3.22)

and if, for every t ∈ ℝ, x ∈ [0, 1] and l, ε > 0, we have

W(x) :=
∞
∑
k=0 akφ(a−1k )φ(R(v + x))Lq(v)[0,1]bk <∞, (3.23)

1

∫
0

φp(x)(2ε−1F1(l, t)−1ω(ε)S(l, t)W(x)) dx ⩽ 1, (3.24)

resp. if (3.23) holds and there exists l0 > 0 such that for all l ⩾ l0, ε > 0 and t ∈ ℝ we
have (3.24), then the function G : ℝ→ Y, given by (2.46), is well defined and (equi-)Weyl
[p,ϕ, F1]-almost periodic.

Proof. We will prove the theorem only for the class of equi-Weyl [p,ϕ, F]-almost pe-
riodic functions. As above, the function G(⋅) is well defined. Let ε > 0 be a fixed real
number. Then we can find two real numbers l > 0 and L > 0 such that any interval
I′ ⊆ I of length L contains a point τ ∈ I′ such that (3.21) holds for any integer k ⩾ 0
and any real number t ∈ ℝ. Using our assumptions from condition (B1), the Jensen
integral inequality applied to the functionϕ(⋅) (see also condition (3.22)), the fact that
the functions ϕ(⋅) and φp(x)(⋅) are monotonically increasing, (3.1) and Lemma 1.1.7(i),
we see that, for every real numbers x ∈ [0, 1] and t ∈ ℝ, the following holds:

φp(x)(ϕ(G(xl + t + τ) − G(xl + t))/λ)
⩽ φp(x)(ϕ(∞∫

0

R(v)

g(xl + t + τ − v) − g(xl + t − v)

 dv)/λ)

= φp(x)(ϕ( ∞∑
k=0 ak

1

∫
0

a−1k R(v + k)g(xl + t + τ − v − k) − g(xl + t − v − k) dv)/λ)
⩽ φp(x)( ∞∑

k=0 ak
1

∫
0

ϕ(a−1k R(v + k)g(xl + t + τ − v − k) − g(xl + t − v − k) dv)/λ)
⩽ φp(x)( ∞∑

k=0 akφ(a−1k )
1

∫
0

φ(R(v + k)
)

× ϕ(g(xl + t + τ − v − k) − g(xl + t − v − k)
) dv/λ)
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⩽ φp(x)( 2λ ∞∑k=0 akφ(a−1k )φ(R(v + k))Lq(v)[0,1]
× ϕ(g(xl + t + τ − v − k) − g(xl + t − v − k)

)Lp(v)[0,1])
⩽ φp(x)( 2λ ∞∑k=0 akφ(a−1k )φ(R(v + k))Lq(v)[0,1]ω(ε)bkS(l, t)).

Arguing as in the proof of Theorem 3.1.46, we see from condition (3.24) that the func-
tion ϕ(‖G(⋅l + t + τ) − G(t + ⋅l)‖) belongs to the space Lp(⋅)([0, 1]) for arbitrary real num-
bers τ, t ∈ ℝ and l > 0. Condition (3.24) implies that for each real numbers t ∈ ℝ and
x ∈ [0, 1] we have

1

∫
0

φp(x)(ϕ(G(xl + t + τ) − G(xl + t))/λ) dx ⩽ 1,
with λ = εF1(l, t)−1, which simply implies the final conclusion.

Corollary 3.1.50. Suppose that condition (B1) holds with I = ℝ and p(x) ≡ p ∈ [1,∞),
1/p + 1/q = 1, g : ℝ → X is measurable, ω : (0,∞) → (0,∞), F : (0,∞) × I → (0,∞),
(ak) is a sequence of positive real numbers such that ∑

∞
k=0 ak = 1, (bk)k⩾0 is a sequence

of positive real numbers, S : (0,∞) ×ℝ→ (0,∞) is a given function, as well as for each
ε > 0 we can find real numbers l > 0 and L > 0 such that any interval I′ ⊆ I of length
L contains a point τ ∈ I′ such that (3.21) holds with p(r) ≡ p, for any integer k ⩾ 0
and any real number t ∈ ℝ. Suppose, further, that the second inequality in (3.15) holds,
and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family. If for every real number
t, τ ∈ ℝ, every positive real number l > 0 and every real number x ∈ [0, 1]we have (3.22),
and if, for every t ∈ ℝ, x ∈ [0, 1] and l > 0, we have

Wp(x) :=
∞
∑
k=0 akφ(a−1k )φ(R(⋅))Lq[x,x+1]bk <∞ (3.25)

and

1

∫
0

φp(x)(2F1(l, t)−1S(l, t)Wp(x)) dx ⩽ 1, (3.26)

resp. if (3.25) holds and there exists l0 > 0 such that for all l ⩾ l0 and t ∈ ℝ we
have (3.26), then the function G : ℝ→ Y, given by (2.46), is well defined and (equi-)Weyl
[p,ϕ, F1]-almost periodic.

Concerning Theorem 3.1.49, it should be noted that, in [372, Proposition 6.1], we
have analyzed the situation in which the function ǧ : ℝ → X is Sp(x)-almost periodic
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and ∑∞k=0 ‖R(⋅ + k)‖Lq(⋅)[0,1] < ∞. Then the resulting function G(⋅) is almost periodic,
which cannot be derived from the above-mentioned theorem.

For the class of (equi-)Weyl (p,ϕ, F)1-almost periodic functions, we will state the
following result.

Theorem 3.1.51. Suppose that ǧ : ℝ → X is (equi-)Weyl (p,ϕ, F)1-almost periodic and
measurable, F1 : (0,∞) × I → (0,∞), p, q ∈ 𝒫(ℝ), 1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family and for every real numbers x, τ ∈ ℝ
we have (3.15). Suppose that, for every real number t ∈ ℝ and positive real numbers
l, ε > 0, there exist two positive real numbers a > 0 and λ > 0 such that λ ⩽ a, [0, a] ⊆
ϕ−1([0, εF(l, t)−1]),∞

∑
k=0R(v + x)Lq(v)[−x+kl,−x+(k+1)l] supϕ−1([0, εF(l,−x + kl)−1]) <∞ (3.27)

and the term

t+l
∫
t

φp(x)(2∑∞k=0 ‖R(v + x)‖Lq(v)[−x+kl,−x+(k+1)l] supϕ−1([0, εF(l,−x + kl)−1])λ
) dx (3.28)

does not exceed 1, resp. (3.27) holds and there exists l0 > 0 such that for all l ⩾ l0, ε > 0
and t ∈ ℝ we see that the term in (3.28) does not exceed 1, then the function G : ℝ→ Y,
given by (2.46), is well defined and (equi-)Weyl (p,ϕ, F1)1-almost periodic.

Proof. As in the proof of Theorem 3.1.46, we see that the function G(⋅) is well defined
and the integrals in definitions ofG(x) andG(x+τ)−G(x) converge absolutely (x, τ ∈ ℝ).
By Lemma 1.1.7(ii), we see that the function G(⋅+ τ)−G(⋅) belongs to the space Lp(x)(K)
for each compact set K ⊆ ℝ. The remaining part follows similarly to the proof of The-
orem 3.1.46, by using condition (3.27), and the estimates

G(x + τ) − G(x)
 ⩽ 2

∞
∑
k=0R(v + x)Lq(v)[−x+kl,−x+(k+1)l]
× ǧ(v + τ) − ǧ(v)

Lp(v)[−x+kl,−x+(k+1)l]
and

ǧ(v + τ) − ǧ(v)
Lp(v)[−x+kl,−x+(k+1)l] ⩽ supϕ−1([0, εF(l,−x + kl)−1]),

and the equivalence relation

ϕ(G(⋅ + τ) − G(⋅)
Lp(x)[t,t+l]) ⩽ εF1(l, t)−1

⇔ G(⋅ + τ) − G(⋅)
Lp(x)[t,t+l] ⩽ ϕ−1([0, εF1(l, t)−1]),

for any x, t, τ ∈ ℝ and l > 0.
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Regarding the class of (equi-)Weyl [p,ϕ, F]1-almost periodic functions, we will
only state the following result; the proof can be deduced as above and therefore omit-
ted (we can similarly formulate analogues of Corollary 3.1.48 and Corollary 3.1.50, as
well as the conclusions from Remark 3.1.47).

Theorem 3.1.52. Suppose that g : ℝ → X is measurable, ω : (0,∞) → (0,∞), F :
(0,∞) × I → (0,∞), (bk)k⩾0 is a sequence of positive real numbers, S : (0,∞) × ℝ →
(0,∞) is a given function, as well as for each ε > 0 we can find two real numbers l > 0
and L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

sup
x∈[0,1][g(xl + t − r − k + τ) − g(xl + t − r − k)Lp(r)[0,1]] ⩽ ω(ε)bkS(l, t)

for any integer k ⩾ 0 and real number t ∈ ℝ. Suppose, further, that the second inequality
in (3.15) holds, p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆ L(X,Y) is a strongly
continuous operator family. If for every real numbers t, τ ∈ ℝ, every positive real number
l > 0 and every real number x ∈ [0, 1] we have (3.22), if

W2(x) :=
∞
∑
k=0R(v + x)Lq(v)[0,1]bk <∞, x ∈ [0, 1], (3.29)

and if, for every t ∈ ℝ and l, ε > 0, we have the existence of two positive real numbers
a > 0 and λ > 0 such that λ ⩽ a, [0, a] ⊆ ϕ−1([0, εF1(l, t)−1]) and

1

∫
0

φp(x)(2ω(ε)S(l, t)W2(x)
λ

) dx ⩽ 1, (3.30)

resp. if (3.29) holds and there exists l0 > 0 such that for all l ⩾ l0, ε > 0 and t ∈ ℝ we
have (3.30), then the function G : ℝ→ Y, given by (2.46), is well defined and (equi-)Weyl
[p,ϕ, F1]-almost periodic.

Remark 3.1.53. The assertions of Theorem 3.1.51, resp. Theorem 3.1.52, can be much
simpler formulated provided that:
(A2) The function ϕ : [0,∞) → [0,∞) is a monotonically increasing bijection and

p ∈ 𝒫(ℝ), resp.
(B2) The function ϕ : [0,∞) → [0,∞) is a monotonically increasing bijection and

p ∈ 𝒫([0, 1]).

Any of these conditions implies that the function ϕ−1 : [0,∞)→ [0,∞) is a monoton-
ically increasing bijection, as well. If condition (A2), resp. (B2), holds, then the class
of (equi-)Weyl (p,ϕ, F)2-almost periodic functions, resp. (equi-)Weyl [p,ϕ, F]2-almost
periodic functions, coincides with the class of (equi-)Weyl (p, x, F)2-almost periodic
functions, resp. (equi-)Weyl [p, x, F]2-almost periodic functions.
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Regarding the invariance of (equi-)Weyl (p,ϕ, F)2-almost periodicity and (equi-)-
Weyl [p,ϕ, F]2-almost periodicity under the actions of infinite convolution products,
we will only state the following analogues of Theorem 3.1.51 and Theorem 3.1.52.

Theorem 3.1.54. Suppose that ǧ : ℝ → X is (equi-)Weyl (p,ϕ, F)2-almost periodic and
measurable, F1 : (0,∞) × I → (0,∞), p, q ∈ 𝒫(ℝ), 1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family and for every real numbers x, τ ∈ ℝ
we have (3.15). Suppose that, for every real number t ∈ ℝ and positive real numbers
l, ε > 0, there exist two positive real numbers a > 0 and λ > 0 such that λ ⩽ a, [0, a] ⊆
F(l, t)−1ϕ−1([0, ε]), ∞

∑
k=0R(v + x)Lq(v)[−x+kl,−x+(k+1)l]F(l,−x + kl)−1 <∞ (3.31)

and the term

t+l
∫
t

φp(x)(2∑∞k=0 ‖R(v + x)‖Lq(v)[−x+kl,−x+(k+1)l]F(l,−x + kl)−1 supϕ−1([0, ε])λ
) dx (3.32)

does not exceed 1, resp. (3.31) holds and there exists l0 > 0 such that for all l ⩾ l0, ε > 0
and t ∈ ℝ we see that the term in (3.32) does not exceed 1, then the function G : ℝ → Y,
given by (2.46), is well defined and (equi-)Weyl (p,ϕ, F1)2-almost periodic.

Theorem 3.1.55. Suppose that, with the exception of Eq. (3.30), all remaining assump-
tions from the formulation of Theorem 3.1.52 hold. If for every t ∈ ℝ and l, ε > 0 we
have the existence of two positive real numbers a > 0 and λ > 0 such that λ ⩽ a,
[0, a] ⊆ F1(l, t)−1ϕ−1([0, ε]) and

1

∫
0

φp(x)(2ω(ε)S(l, t)W2(x)
λ

) dx ⩽ 1, (3.33)

resp. if (3.29) holds and there exists l0 > 0 such that for all l ⩾ l0, ε > 0 and t ∈ ℝ we
have (3.33), then the function G : ℝ→ Y, given by (2.46), is well defined and (equi-)Weyl
[p,ϕ, F2]-almost periodic.

The invariance of asymptoticalWeylp-almost periodicity under the action of finite
convolution product, where the exponent p ∈ [1,∞) has a constant value, has been
examined in [141], [645, Proposition 5.3, Examples 5.4–5.6] and [435, Proposition 1, Re-
mark 2–Remark 5]. Concerning the invariance of asymptotical Weyl p(x)-almost pe-
riodicity under the action of finite convolution product, we will state and prove only
one proposition. In order to do so, suppose that (see also Definition 3.1.45, where the
domain of the function g(⋅) is the non-negative real axis) there exist two functions
g : ℝ → X and q : [0,∞) → X such that h(t) = g(t) + q(t) for a. e. t ⩾ 0, g(⋅) belongs
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to some of function spaces introduced in Definition 3.1.23–Definition 3.1.25 or Defini-
tion 3.1.29–Definition 3.1.31, with I = ℝ, and q(⋅) belongs to some of function spaces
introduced in Definition 3.1.36–Definition 3.1.38, with I = [0,∞). The study of quali-
tative properties of the function

t → H(t) ≡
t

∫
0

R(t − s)[g(s) + q(s)] ds, t ⩾ 0,

is based on the decomposition

H(t) =
t

∫
0

R(t − s)q(s) ds + [
t

∫−∞ R(t − s)g(s) ds −
∞
∫
t

R(s)g(t − s) ds], t ⩾ 0

and the use of corresponding results for infinite convolution product. In the following
proposition, we will analyze the qualitative properties of functions

t → H1(t) ≡
∞
∫
t

R(s)g(t − s) ds, t ⩾ 0 (3.34)

and

t → H2(t) ≡
t

∫
0

R(t − s)q(s) ds, t ⩾ 0

separately. In the first part of the proposition, we continue our analysis from [373,
Proposition 5.2]; our previous results show that case p(x) ≡ p > 1 is not simple in
the analysis of asymptotical Weyl p-almost periodicity so that we will consider case
p(x) ≡ 1 in the second part, with the notion introduced in Definition 3.1.36(i) only (cf.
also [645, Proposition 5.3(i)]).

Proposition 3.1.56.
(i) Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x)+1/q(x) = 1 and (R(t))t>0 ⊆ L(X,Y) is a strongly

continuous operator family. Let the function ǧ : ℝ → X be Stepanov p(x)-bounded
and let for each t ⩾ 0 the series ∑∞k=0 ‖R(⋅ + t + k)‖Lq(⋅)[0,1] ≡ S(t) be convergent.
Then the function H1(⋅), given by (3.34), is well defined. Furthermore, this function
is continuous provided that the Bochner transform ̂ǧ : ℝ → Lp(x)([0, 1]) is uni-
formly continuous, while the function H1(⋅) satisfies limt→+∞ H1(t) = 0 provided
that limt→+∞ S(t) = 0.

(ii) Suppose that (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family such
that ∫∞0 ‖R(s)‖L(X,Y) ds < ∞. Let the function q : [0,∞) → Y be equi-Weyl
(1, x, F)-vanishing and let F1 : (0,∞) × [0,∞) → (0,∞). If for each ε > 0 there
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exists l0 > 0 such that for each l > l0 there exists t0,l > 0 such that for each t ⩾ t0,l
we have

sup
x⩾0[F1(l, t)

x+t
∫
0

[
x+t+l
∫
x+t R(s − r)L(X,Y) ds]q(r)Y dr] < ε,

and if, additionally, there exists a finite constant M > 0 such that

F1(l, t)
F(l, t)
⩽ M, l > 0, t ⩾ 0, (3.35)

then the function H2(⋅) is equi-Weyl (1, x, F1)-vanishing.

Proof. (i): The first part follows from the Stepanov p(x)-boundedness of the function
ǧ(⋅) and the next simple computation



∞
∫
t

R(s)ǧ(s − t) ds

=


∞
∑
k=0

1

∫
0

R(s + t + k)ǧ(s + k) ds


⩽ 2
∞
∑
k=0R(⋅ + t + k)Lq(⋅)[0,1] supk∈ℕ0ǧ(⋅ + k)Lp(⋅)[0,1].

This computation also shows that limt→+∞ H1(t) = 0 provided that limt→+∞ S(t) = 0.
For remainder, let us suppose that the function ̂ǧ : ℝ → Lp(x)([0, 1]) is uniformly con-
tinuous. Let (tn) be a sequence of non-negative reals converging to a number t ⩾ 0.
Then we can use the Hölder inequality and the decomposition∞

∫
t

R(s)g(t − s) ds −
∞
∫
tn

R(s)g(tn − s) ds

=
∞
∫
t

R(s)[ǧ(s − t) − ǧ(s − tn)] ds +
tn

∫
t

R(s)ǧ(s − t) ds, n ∈ ℕ,

in order to see that


∞
∫
t

R(s)g(t − s) ds −
∞
∫
tn

R(s)g(tn − s) ds


⩽ 2
∞
∑
k=0R(⋅ + t + k)Lq(⋅)[0,1] supk∈ℕ0ǧ(⋅ + k) − ǧ(⋅ + k + (t − tn))Lp(⋅)[0,1]
+ 2R(⋅)
Lq(⋅)[0,|tn−t|]ǧ(⋅)Lp(⋅)[0,1], n ∈ ℕ.

Since ‖R(⋅)‖Lq(⋅)[0,|tn−t|] → 0 as n → +∞ (see, e. g., [377, Lemma 3.2.8(c)]) and the func-
tion ̂ǧ : ℝ → Lp(x)([0, 1]) is uniformly continuous, the proof of the first part is com-
pleted.
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(ii): By the proof of [645, Proposition 5.3(i)], we have

F1(l, t)
x+t+l
∫
x+t H2(s)

Y ds ⩽ F1(l, t)
x+t
∫
0

[
x+t+l
∫
x+t R(s − r)L(X,Y) ds]q(r)Y dr

+ F1(l, t)[
∞
∫
0

R(v)
L(X,Y) dv] ⋅ x+t+l∫

x+t q(r)Y dr,
for any x ⩾ 0 and l > 0. Our preassumption shows that the first addend is equi-Weyl
(1, x, F1)-vanishing. The second addend is likewise equi-Weyl (1, x, F1)-vanishing be-
cause we have assumed that the function q(⋅) is equi-Weyl (1, x, F)-vanishing and con-
dition (3.35).

We round off this subsection by examining the convolution invariance of Weyl al-
most periodic functions with variable exponent. In order to do that, we shall basically
follow the method proposed in the proof of Theorem 3.1.46.

Proposition 3.1.57. Suppose that I = ℝ, ψ ∈ L1(ℝ), (ak)k∈ℤ is a sequence of positive real
numbers satisfying ∑k∈ℤ ak = 1 and condition (A1) holds true. Let f ∈ (e−)W (p,ϕ,F)ap (ℝ :
X) ∩ L∞(ℝ : X). Then the function

x → (ψ ∗ f )(x) :=
+∞
∫−∞ ψ(x − y)f (y) dy, x ∈ ℝ, (3.36)

is well defined and belongs to the space L∞(ℝ : X). Furthermore, if p1 ∈ 𝒫(ℝ), F1 :
(0,∞) × ℝ→ (0,∞) and if, for every t ∈ ℝ and l > 0, we have

t+l
∫
t

φp1(x)(2l−1F1(l, t)φ(l) ∑
k∈ℤ ak‖φ(a

−1
k ψ(x − z))‖Lq(z)[x−(k+1)l,x−kl]
F(l, x − (k + 1)l)

) dx ⩽ 1, (3.37)

then we have ψ ∗ f ∈ (e−)W (p1 ,ϕ,F1)ap (ℝ : X).

Proof. The proof can be deduced by using the arguments contained in the proof of
Theorem 3.1.46, the equalities

ϕ(
(ψ ∗ f )(⋅ + τ) − (ψ ∗ f )(⋅)

)
Lp1(⋅)[t,t+l]

= inf{λ > 0 :
t+l
∫
t

φp1(x)(ϕ(‖(ψ ∗ f )(x + τ) − (ψ ∗ f )(x)‖)λ
) dx ⩽ 1}

= inf{λ > 0 :
t+l
∫
t

φp1(x)(ϕ(‖∫+∞−∞ ψ(y)[f (x + τ − y) − f (x − y)] dy‖)
λ

) dx ⩽ 1}
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and the following computation:

t+l
∫
t

φp1(x)(ϕ(‖∫+∞−∞ ψ(y)[f (x + τ − y) − f (x − y)] dy‖)
λ

) dx

⩽
t+l
∫
t

φp1(x)(ϕ(∑k∈ℤ ak‖∫(k+1)lkl a−1k ψ(y)[f (x + τ − y) − f (x − y)] dy‖)
λ

) dx

⩽
t+l
∫
t

φp1(x)(∑k∈ℤ akϕ(l−1l‖∫(k+1)lkl a−1k ψ(y)[f (x + τ − y) − f (x − y)] dy‖)
λ

) dx

⩽
t+l
∫
t

φp1(x)(∑k∈ℤ akφ(l)l−1 ∫(k+1)lkl ϕ(a−1k ψ(y)‖f (x + τ − y) − f (x − y)‖) dy
λ

) dx

⩽
t+l
∫
t

φp1(x)(∑k∈ℤ akφ(l)l−1 ∫(k+1)lkl φ(a−1k ψ(y))ϕ(‖f (x + τ − y) − f (x − y)‖) dy
λ

) dx

=
t+l
∫
t

φp1(x)(∑k∈ℤ akφ(l)l−1 ∫x−klx−(k+1)l φ(a−1k ψ(x − z))ϕ(‖f (z + τ) − f (z)‖) dz
λ

) dx

⩽
t+l
∫
t

φp1(x)(2 ∑
k∈ℤ akφ(l)l−1φ(a−1k ψ(x − z))Lq(z)[x−(k+1)l,x−kl]

×
‖ϕ(‖f (z + τ) − f (z)‖)‖Lp(z)[x−(k+1)l,x−kl]

λ
) dx,

which is valid for every t, τ ∈ ℝ and l > 0.

We can similarly prove the following result for the class of (equi-)Weyl [p,ϕ, F]-
almost periodic functions.

Proposition 3.1.58. Suppose that I = ℝ, ψ ∈ L1(ℝ), (ak)k∈ℤ is a sequence of positive real
numbers satisfying ∑k∈ℤ ak = 1 and condition (B1) holds true. Let f ∈ (e−)W [p,ϕ,F]ap (ℝ :
X) ∩ L∞(ℝ : X). Then the function (ψ ∗ f )(⋅) defined by (3.36) belongs to the space
L∞(ℝ : X). Furthermore, if p1 ∈ 𝒫([0, 1]), F1 : (0,∞) × ℝ → (0,∞) and if, for every
t ∈ ℝ and l > 0, we have

1

∫
0

φp1(x)(2F1(l, t) ∑
k∈ℤ ‖φ(la

−1
k ψ(xl − (z + k)l))‖Lq(z)[0,1]

F(l, t + kl)
) dx ⩽ 1, (3.38)

then we have ψ ∗ f ∈ (e−)W [p1 ,ϕ,F1]ap (ℝ : X).

In the case of consideration of constant coefficients, the coefficient 2 in Eqs. (3.37)
and (3.38) can be neglected. It might be interesting to formulate the corresponding
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results for the classes of (equi-)Weyl (p,ϕ, F)i-almost periodic functions and (equi-)-
Weyl [p,ϕ, F]i-almost periodic functions, where i = 1, 2, and to formulate an extension
of [645, Proposition 4.3] for Weyl almost periodic functions with variable exponent.

3.1.7 Growth order of solution operator families

In this subsection, wewill analyze solution operator families (R(t))t>0 ⊆ L(X,Y)which
satisfies the condition

R(t)
L(X,Y) ⩽ Mtβ−1

1 + tγ
, t > 0 for some finite constants γ > 1, β ∈ (0, 1], M > 0, (3.39)

or the condition
R(t)
L(X,Y) ⩽ Mtβ−1e−ct , t > 0 for some finite constants β ∈ (0, 1] and c > 0. (3.40)

For simplicity, we will analyze only the constant exponents p(x) ≡ p ∈ [1,∞) as
well the class of (equi-)Weyl (p,ϕ, F)-almost periodic functions and the class of (equi-)-
Weyl (p,ϕ, F)i-almost periodic functions, where i = 1, 2. So, let 1/p + 1/q = 1 and let
(R(t))t>0 ⊆ L(X,Y) satisfy (3.39) or (3.40).Wewill additionally assume that q(β−1) > −1
provided that p > 1, resp. β = 1, provided that p = 1.

In [631, Proposition 2.11.1, Theorem 2.11.4], the author has investigated the es-
timate (3.39) and case p(x) ≡ p ∈ [1,∞), where the resulting function G(⋅) is also
bounded and continuous (see also [435] and [644]). We would like to note that Theo-
rem 3.1.46 provides a newway of looking at the invariance of the (equi-)Weyl p-almost
periodicity under the action of infinite convolution product and that the (equi-)-
Weyl p-almost periodicity in [631, Theorem 2.11.4] can be proved directly from Corol-
lary 3.1.48. Let us explain this in more detail. Let a function g : ℝ → X be (equi-)Weyl
p-almost periodic. Then the function G : ℝ → Y , defined through (2.46), is (equi-)-
Weyl p-almost periodic and we can show this in the following way. It is clear that
the function ǧ(⋅) is also (equi-)Weyl p-almost periodic. By Corollary 3.1.48, with an
arbitrary sequence of positive real numbers such that ∑∞k=0 ak = 1 and the function
φ(x) ≡ x, observing also that the class of (equi-)Weyl p-almost periodic functions is
closed under pointwise multiplications with scalars, it suffices to show, by consider-
ing the function (M−1R(t))t>0 for a sufficiently large real numberM > 0, that for every
real numbers t ∈ ℝ and l > 0 we have

t+l
∫
t

(
∞
∑
k=0(
(k+1)l
∫
kl

t(β−1)q dt
(1 + tγ)q

)

1/q
)

p

dx ⩽ Const., (3.41)

provided that p > 1, resp.
t+l
∫
t

∞
∑
k=0 ⋅β−11 + ⋅γ

L∞[kl,(k+1)l] dx ⩽ Const., (3.42)
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provided that p = 1. As(k+1)l
∫
kl

t(β−1)q dt
(1 + tγ)q

⩽
1

1 + kqγlqγ
(k + 1)(β−1)ql(β−1)q+1, k ∈ ℕ0,

the estimate (3.41) follows from the inequality (β− 1+ (1/q)− γ)p+ 1 ⩽ 0, which is true.
The estimate (3.42) is much simpler and follows from the inequality γ > 1.

With regards to Theorem 3.1.51 and Theorem 3.1.54, wewill provide two examples.

Example 3.1.59. Suppose that ϕ(x) = xα, x ⩾ 0, where α > 0. If the estimate (3.39)
holds, then condition (3.27) holds provided that, for every x ∈ ℝ and l > 0, we have∞

∑
k=0 kβ−1−γ[F(l,−x + kl)](−1)/α <∞,

while condition (3.28) holds provided that, for every t ∈ ℝ and l > 0, we have

t+l
∫
t

((
1

1 + kqγlqγ
(k + 1)(β−1)ql(β−1)q+1)1/q( F(l, t)

F(l,−x + kl)
)
1/α
)
p
dx ⩽ 1,

if p > 1, resp.

t+l
∫
t

(kl)β−1
1 + kγlγ

(
F(l, t)

F(l,−x + kl)
)
1/α

dx ⩽ 1,

if p = 1. If the estimate (3.40) holds, then condition (3.27) holds provided that, for every
x ∈ ℝ and l > 0, we have ∞

∑
k=0 e−ckkβ−1[F(l,−x + kl)](−1)/α <∞,

while condition (3.28) holds provided that, for every t ∈ ℝ and l > 0, we have

t+l
∫
t

(e−ck(kl)β−1( F(l, t)
F(l,−x + kl)

)
1/α
)
p
dx ⩽ 1.

Example 3.1.60. Suppose that condition (A2) holds. If the estimate (3.39) holds, then
condition (3.31) holds provided that∞

∑
k=0 kβ−1−γF(l,−x + kl)−1 <∞,

while condition (3.32) holds provided that, for every t ∈ ℝ and l > 0, we have

t+l
∫
t

((
1

1 + kqγlqγ
(k + 1)(β−1)ql(β−1)q+1)1/q F(l, t)

F(l,−x + kl)
)
p
dx ⩽ 1,
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if p > 1, resp.

t+l
∫
t

(kl)β−1
1 + kγlγ

F(l, t)
F(l,−x + kl)

dx ⩽ 1,

if p = 1. If the estimate (3.40) holds, then (3.31) holds provided that, for every x ∈ ℝ
and l > 0, we have ∞

∑
k=0 e−ckkβ−1[F(l,−x + kl)]−1 <∞,

while condition (3.32) holds provided that, for every t ∈ ℝ and l > 0, we have

t+l
∫
t

(e−ck(kl)β−1 F(l, t)
F(l,−x + kl)

)
p
dx ⩽ 1.

At the endof this section, let us only note thatwe can incorporate our results in the
study of the abstract fractional Cauchy inclusions (2.49) and (DFP)f ,ζ , provided that
the multivalued linear operator 𝒜 satisfies condition (P). Then there exists a strongly
continuous operator family (Sζ (t))t>0 satisfying the estimate of type (3.39), in the case
ζ ∈ (0, 1), or estimate of type (3.40), in the case ζ = 1, such that the unique mild
solution of problem (DFP)f ,ζ is given by

t → u(t) ≡ Sζ (t)u0 +
t

∫
0

Sζ (t − s)f (s) ds, t ⩾ 0,

where u0 belongs to the continuity set of (Sζ (t))t>0, i. e., limt→0+ Sζ (t)u0 = u0. More-
over, limt→+∞ Sζ (t)u0 = 0 and Proposition 3.1.56 can be straightforwardly applied.
3.2 Generalized almost periodicity in Lebesgue spaces with

variable exponents. Part II

In this section, we introduce and analyze Stepanov uniformly recurrent functions,
Doss uniformly recurrent functions and Doss almost periodic functions in Lebesgue
spaces with variable exponents. We investigate the invariance of these types of gen-
eralized almost periodicity in Lebesgue spaces with variable exponents under the ac-
tions of convolution products, providing also some illustrative applications to the ab-
stract semilinear integro-differential inclusions in Banach spaces.

The organization of the section can be briefly described as follows. Subsec-
tion 3.2.1 investigates the Stepanov uniformly recurrent functions in Lebesgue spaces
with variable exponents. The proofs of structural results in this section can be given by
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employing the slight modifications of the corresponding results from [372] (see also
[648]) and therefore omitted. Our main contributions are given in Subsection 3.2.2
and Subsection 3.2.3, where we introduce and analyze several various classes of Doss
almost periodic (uniformly recurrent) functions in Lebesgue spaces with variable ex-
ponents and the invariance of generalized Doss almost periodicity under the actions
of convolution products. The final subsection is reserved for applications of our ab-
stract theoretical results to the abstract semilinear integro-differential inclusions in
Banach spaces. In addition to the above, we provide several illustrative examples,
remarks and comments about the material presented.

3.2.1 Stepanov uniform recurrence in Lebesgue spaces with variable exponents

First of all, we will introduce the concept of (asymptotical) Sp(x)-uniform recurrence.

Definition 3.2.1. Let p ∈ 𝒫([0, 1]), and let f : I → X be such that f ∈ Lp(x)(K : X) for
any compact set K ⊆ I.
(i) We say that f (⋅) is Stepanov p(x)-uniformly recurrent if and only if the function
̂f : I → Lp(x)([0, 1] : X) is uniformly recurrent. The collection of such functions
will be denoted by URSp(x)(I : X) (URSp(I : X), if p(x) ≡ p ∈ [1,∞)).

(ii) We say that f (⋅) is asymptotically Stepanov p(x)-uniformly recurrent if and only if
there exist a Stepanov p(x)-uniformly recurrent function h : ℝ→ X and a function
q ∈ Lp(x)S (I : X) such that f (t) = h(t) + q(t), t ∈ I and q̂ ∈ C0(I : L

p(x)([0, 1] : X)). The
collection of such functions will be denoted by AURSp(x)(I : X) (AURSp(I : X), if
p(x) ≡ p ∈ [1,∞)).

The spaces URSp(x)(I : X) and AURSp(x)(I : X) are translation invariant, as it can
be easily approved. Furthermore, we have the following proposition which can be de-
duced by using the same argumentation as in the proofs of corresponding structural
results concerning Stepanov almost periodicity with variable exponent.

Proposition 3.2.2.
(i) Suppose p ∈ 𝒫([0, 1]). Then URSp(x)(I : X) ⊆ URS1(I : X), AURSp(x)(I : X) ⊆

AURS1(I : X), UR(I : X) ⊆ URSp(x)(I : X) ⊆ URS1(I : X) and AUR(I : X) ⊆
AURSp(x)(I : X) ⊆ AURS1(I : X).

(ii) Suppose p ∈ D+([0, 1]) and 1 ⩽ p− ⩽ p(x) ⩽ p+ <∞ for a. e. x ∈ [0, 1]. Then we have
URSp

+
(I : X) ⊆ URSp(x)(I : X) ⊆ URSp− (I : X) and AURSp+ (I : X) ⊆ AURSp(x)(I :

X) ⊆ AURSp
−
(I : X).

(iii) Assume that p, q ∈ 𝒫([0, 1]) and p ⩽ q a. e. on [0, 1]. Then we have URSq(x)(I : X) ⊆
URSp(x)(I : X) and AURSq(x)(I : X) ⊆ AURSp(x)(I : X).

(iv) If p ∈ D+([0, 1]), then
L∞(I : X) ∩ URSp(x)(I : X) = L∞(I : X) ∩ URS1(I : X)
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and

L∞(I : X) ∩ AURSp(x)(I : X) = L∞(I : X) ∩ AURS1(I : X).
We continue by providing two illustrative examples.

Example 3.2.3. Let us recall that H. Bohr and E. Følner have constructed, for any
given number p > 1, a Stepanov almost periodic function defined on the whole
real axis that is Stepanov p-bounded and not Stepanov p-almost automorphic (see
[199, Example, pp. 70–73]). We want to observe here that the function f (⋅) cannot
be Stepanov p-uniformly recurrent. Strictly speaking, let us consider case h1 = 2
in the afore-mentioned example. If we suppose the contrary, then the mapping
̂f : ℝ → Lp([0, 1] : X) is uniformly recurrent, which in particular implies that for each
number ε > 0 there exists an arbitrarily large positive real number τ > 0 such that

3/2
∫−3/2 f (s + τ) − f (s)p ds < 2εp,

which is in contradiction to the estimate ∫3/2−3/2 |f (s + τ) − f (s)|p ds ⩾ 2−p (see [199, p. 73,
l.-9–l.-4]).

Example 3.2.4. Define f (x) := sin x + sin√2x, x ∈ ℝ and p(x) := 1 − ln x, x ∈ [0, 1].
We know that the function sign(f (⋅)) is neither Stepanov p(x)-almost periodic nor
Stepanov p(x)-almost automorphic [372, 373]. Moreover, we have already proved that
for every real numbers λ ∈ (0, 2/e), l > 0, every interval I ⊆ ℝ ∖ {0} of length l and
every number τ ∈ I, there exists a number t ∈ ℝ such that

1

∫
0

(
1
λ
)
1−ln x
sign[sin(x + t + τ) + sin√2(x + t + τ)]

− sign[sin(x + t) + sin√2(x + t)]
1−ln x dx =∞.

This implies that the function sign f (⋅) cannot be Stepanov p(x)-uniformly recurrent,
as well.

Nowwewill state two results about the invarianceof uniform recurrenceunder the
actions of infinite convolution products. The first result slightly extends [631, Proposi-
tion 2.6.11]; the proof can be given by using the same arguments as in the proof of the
above-mentioned proposition, appealing to theHölder inequality fromLemma 1.1.7(i).

Proposition 3.2.5. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family satisfying M := ∑∞k=0 ‖R(⋅ +
k)‖Lq(x)[0,1] < ∞. If ̌f : ℝ → X is Sp(x)-bounded, Sp(x)-uniformly recurrent and the
Bochner transform of function ̌f : ℝ → X is uniformly continuous, then the function
F : ℝ→ Y, given by (2.46), is well defined and uniformly recurrent.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.2 Generalized almost periodicity in Lebesgue spaces | 145

Using a similar argumentation, we can clarify the following result in which we do
not require that the function ̌f : ℝ→ X is Sp(x)-bounded.
Proposition 3.2.6. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family satisfying M := ∑∞k=0 ‖R(⋅ +
k)‖Lq(x)[0,1] < ∞. If ̌f : ℝ → X is Sp(x)-uniformly recurrent, the Bochner transform of
function ̌f : ℝ→ X is uniformly continuous,


̌f (⋅ − t)Lp(x)[0,1] ⩽ P(t), t ∈ ℝ

and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying the require-
ment that for each t ∈ ℝ we have∞

∑
k=0R(⋅ + k)Lq(x)[0,1]P(t − k) <∞,

then the function F : ℝ→ Y, given by (2.46), is well defined and uniformly recurrent.

Now we will introduce the notion of (asymptotical) Stepanov p(x)-uniform recur-
rence for the functions depending on two parameters; this notion extends the notion
introduced in Definition 2.4.42 and Definition 2.4.43, where we have considered the
constant coefficient p(x) ≡ p ∈ [1,∞).

Definition 3.2.7. Let p ∈ 𝒫([0, 1]).
(i) A function f : I × Y → X is called Stepanov p(x)-uniformly recurrent if and only if
̂f : I × Y → Lp(x)([0, 1] : X) is uniformly recurrent.

(ii) A function f : I×Y → X is said to be asymptotically Sp(x)-uniformly recurrent if and
only if there exist a Stepanov p(x)-uniformly recurrent function g : [0,∞)×Y → X
and a function q ∈ C0(I × Y : X) such that f (t, y) = g(t, y) + q(t, y) for all t ∈ I and
y ∈ Y .

A great number of composition principles established for Stepanov p(x)-almost
periodic functions can be straightforwardly extended for Stepanov p(x)-uniformly re-
current functions. For example, we have the following.

Theorem 3.2.8. Let p ∈ 𝒫([0, 1]). Suppose that the following conditions hold:
(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent, and there exist

a function r ∈ 𝒫([0, 1]) and a function Lf ∈ L
r(x)
S (I) such that r(⋅) ⩾ max(p(⋅), p(⋅)/

(p(⋅) − 1)) and (2.20) holds.
(ii) The function f : I → Y is Stepanov p(x)-uniformly recurrent and there exists a set

E ⊆ I with m(E) = 0 such that K := {f (t) : t ∈ I ∖ E} is relatively compact in Y.
(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence (αn) of

positive real numbers tending to plus infinity such that

lim
n→+∞ supt∈I supu∈K F(t + s + αn, u) − F(t + s, u)Lp(s)([0,1]:X) = 0 (3.43)
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and (2.3) holds with the function f (⋅) and the norm ‖ ⋅ ‖ replaced, respectively, by the
function ̂f (⋅) and the norm ‖ ⋅ ‖Lp(x)([0,1]:X) therein.

Then q(x) := p(x)r(x)/(p(x)+ r(x)) ∈ [1, p(x)) and F(⋅, f (⋅)) is Stepanov q(x)-uniformly re-
current. Furthermore, the assumption that F(⋅,0) is Stepanov q(x)-bounded also implies
that the function F(⋅, f (⋅)) is Stepanov q(x)-bounded.

We close the subsection with the observation that it is not so difficult to refor-
mulate the statements of [631, Proposition 2.7.3–Proposition 2.7.4] for the asymptotical
Stepanov p(x)-uniform recurrence.

3.2.2 Doss almost periodicity and Doss uniform recurrence in Lebesgue spaces with
variable exponents

Throughout this subsection, we assume that condition (A) holds true. The notion of
Doss p(x)-almost periodicity has not been introduced so far. Following the approach
obeyed for the classes of (equi-)Weyl (p,ϕ, F)-almost periodic functions and (equi-)-
Weyl (p,ϕ, F)i-almost periodic functions (i = 1, 2), we introduce the following notion
for Doss classes.

Definition 3.2.9. Suppose that condition (A) holds, f : I → X and ϕ(‖f (⋅ + τ) − f (⋅)‖) ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
(i) A function f (⋅) is said to be Doss (p,ϕ, F)-almost periodic if and only if for every

ε > 0, the set of numbers τ ∈ I for which

lim sup
t→+∞ [F(t)[ϕ(f (⋅ + τ) − f (⋅))Lp(x)[−t,t]]] < ε, (3.44)

in the case that I = ℝ, resp.,

lim sup
t→+∞ [F(t)[ϕ(f (⋅ + τ) − f (⋅))Lp(x)[0,t]]] < ε,

in the case that I = [0,∞), is relatively dense in I.
(ii) A function f (⋅) is said to be Doss (p,ϕ, F)-uniformly recurrent if and only if there

exists a strictly increasing sequence (αn) of positive real numbers such that
limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

t→+∞ [F(t)[ϕ(f (⋅ + αn) − f (⋅))Lp(x)[−t,t]]] = 0,
in the case that I = ℝ, resp.,

lim
n→+∞ lim sup

t→+∞ [F(t)[ϕ(f (⋅ + αn) − f (⋅))Lp(x)[0,t]]] = 0,
in the case that I = [0,∞), is relatively dense in I.
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Definition 3.2.10. Suppose that condition (A) holds, f : I → X and ‖f (⋅ + τ) − f (⋅)‖ ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
(i) A function f (⋅) is said to be Doss (p,ϕ, F)1-almost periodic if and only if for every

ε > 0, the set of numbers τ ∈ I for which

lim sup
t→+∞ [F(t)ϕ[(f (⋅ + τ) − f (⋅))Lp(x)[−t,t]]] < ε,

in the case that I = ℝ, resp.,

lim sup
t→+∞ [F(t)ϕ[(f (⋅ + τ) − f (⋅))Lp(x)[0,t]]] < ε,

in the case that I = [0,∞), is relatively dense in I.
(ii) A function f (⋅) is said to be Doss (p,ϕ, F)1-uniformly recurrent if and only if

there exists a strictly increasing sequence (αn) of positive real numbers such
that limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

t→+∞ [F(t)ϕ[(f (⋅ + αn) − f (⋅))Lp(x)[−t,t]]] = 0,
in the case that I = ℝ, resp.,

lim
n→+∞ lim sup

t→+∞ [F(t)[ϕ(f (⋅ + αn) − f (⋅))Lp(x)[0,t]]] = 0,
in the case that I = [0,∞), is relatively dense in I.

Definition 3.2.11. Suppose that condition (A) holds, f : I → X and ‖f (⋅ + τ) − f (⋅)‖ ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
(i) A function f (⋅) is said to be Doss (p,ϕ, F)2-almost periodic if and only if for every

ε > 0, the set of numbers τ ∈ I for which

lim sup
t→+∞ [ϕ[F(t)(f (⋅ + τ) − f (⋅))Lp(x)[−t,t]]] < ε,

in the case that I = ℝ, resp.,

lim sup
t→+∞ [ϕ[F(t)(f (⋅ + τ) − f (⋅))Lp(x)[0,t]]] < ε,

in the case that I = [0,∞), is relatively dense in I.
(ii) A function f (⋅) is said to be Doss (p,ϕ, F)2-uniformly recurrent if and only if

there exists a strictly increasing sequence (αn) of positive real numbers such
that limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

t→+∞ [ϕ[F(t)(f (⋅ + αn) − f (⋅))Lp(x)[−t,t]]] = 0,
in the case that I = ℝ, resp.,

lim
n→+∞ lim sup

t→+∞ [ϕ[F(t)(f (⋅ + αn) − f (⋅))Lp(x)[0,t]]] = 0,
in the case that I = [0,∞), is relatively dense in I.
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The case in which ϕ(x) ≡ x and ψ(t) ≡ (2t)(−1)/p, t > 0 if I = ℝ, resp. ψ(t) ≡
t(−1)/p, t > 0 if I = [0,∞), leads to the usual class of Doss p-almost periodic functions
[631, 644]. The notion introduced in the above three definitions is rather general; for
example, in the case that p(x) ≡ p ∈ [1,∞) and σ > 0, then any essentially bounded
function f (⋅) is Doss (p, x, t−(1+σ)/p)-almost periodic.

Example 3.2.12.
(i) Suppose that ϕ(0) = 0. Then any continuous periodic function f : I → X is Doss
(p,ϕ, F)i-almost periodic for i = 1, 2; furthermore, if ϕ(⋅) is locally bounded, then
the function f (⋅) is Doss (p,ϕ, F)-almost periodic.

(ii) Suppose that f : I → X is almost periodic. Then f (⋅) is Doss (p,ϕ, F)-almost peri-
odic [Doss (p,ϕ, F)1-almost periodic/Doss (p,ϕ, F)2-almost periodic] if ϕ(⋅) is con-
tinuous, monotonically increasing and F(⋅)‖1‖Lp(x)[−⋅,⋅] ∈ L∞((0,∞)) [ϕ(⋅) is mono-
tonically increasing, there exists a continuous function φ : [0,∞) → [0,∞) such
that ϕ(xy) ⩽ φ(x)ϕ(y), x, y ⩾ 0 and F(⋅)‖1‖Lp(x)[−⋅,⋅] ∈ L∞((0,∞))/ϕ(⋅) is monotoni-
cally increasing, there exists a continuous function φ : [0,∞)→ [0,∞) such that
ϕ(xy) ⩽ φ(x)ϕ(y), x, y ⩾ 0 and ϕ(F(⋅)‖1‖Lp(x)[−⋅,⋅]) ∈ L∞((0,∞))].

Example 3.2.13. Wehave already clarified that the function f : ℝ→ ℝ, givenby (2.28),
is uniformly continuous, uniformly recurrent and Besicovitch unbounded. Further-
more, we have proved that for each number τ ∈ ℝ we have

lim
t→+∞ 1

t

t

∫
0

f (s + τ) − f (s)

p ds = 0, p ⩾ 1,

so that the function f (⋅) is Doss p(x)-almost periodic for any function p ∈ D+(ℝ).
Example 3.2.14. Let ζ ⩾ 1 and 0ζ := 0. Define the complex-valued function

fζ (t) :=
∞
∑
n=1 1n sinζ( t2n), t ∈ ℝ.

Then the function fζ (⋅) is Lipschitz continuous and uniformly recurrent. To prove the
Lipschitz continuity of the function fζ (⋅), it suffices to observe that the function t →
sinζ (t), t ∈ ℝ is continuous and

sin
ζ x − sinζ y ⩽ ζ |x − y|, x, y ∈ ℝ. (3.45)

To see that the function fζ (⋅) is uniformly recurrent, it suffices to see that for each in-
teger k ∈ ℕ ∖ {1} we have

fζ (t + 2
kπ) − fζ (t)



=


∞
∑
n=1 1n[sinζ( t + 2kπ2n

) − sinζ( t
2n
)]
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=


k−1
∑
n=1 1n[sinζ( t + 2kπ2n

) − sinζ( t
2n
)]

+


∞
∑
n=k 1n[sinζ( t + 2kπ2n

) − sinζ( t
2n
)]


=


∞
∑
n=k 1n[sinζ( t + 2kπ2n

) − sinζ( t
2n
)]

⩽
∞
∑
n=k 1n sinζ( t + 2kπ2n

) − sinζ( t
2n
)


⩽
∞
∑
n=k ζn2k−nπ = 2πζk , t ∈ ℝ,

where we have applied (3.45) in the last line of computation. In the case that ζ = 2l for
some integer l ∈ ℕ, we see that the function fζ (⋅) is Besicovitch unbounded. This can
be inspected as in the proof of [511, Theorem 1.1], with the additional observation that

2k−nπ
∫
0

sin2l t dt = 2
3
(2l − 1)!!
(2l)!!

2k−nπ
∫
0

sin2 t dt (k ∈ ℕ ∖ {1}, 1 ⩽ n ⩽ k);

here, we have used the well-known recurrent formula

2k−nπ
∫
0

sin2l t dt = 2l − 1
2l

2k−nπ
∫
0

sin2l−2 t dt,
which can be deduced with the help of the partial integration (take u = sin2l−1 t and
dv = sin t ⋅ dt). We would like to ask whether the function fζ (⋅) is Besicovitch un-
bounded in the general case and for which functions p ∈ D+(ℝ) we see that f (⋅) is
Doss p(x)-almost periodic (see also Example 4.2.24).

In order to ensure the translation invariance of generalizedWeyl spaces of almost
periodic functions, we have analyzed the classes of (equi-)Weyl [p,ϕ, F]-almost peri-
odic functions and (equi-)Weyl [p,ϕ, F]i-almost periodic functions (i = 1, 2). In this
subsection, we will follow a slightly different approach. First of all, for any τ0 ∈ I we
set pτ0 (⋅) := p(⋅ + τ0). Then we have the following.

Theorem 3.2.15. Suppose that F1(⋅) is monotonically decreasing, there exists a function
F0 : (0,∞)→ (0,∞) such that F(xy) ⩽ F0(x) ⋅ F(y), x, y > 0, τ0 ∈ I and

lim sup
t→+∞ F0(

t
t + τ0
) <∞. (3.46)

Define fτ0 (⋅) := f (⋅ + τ0). Then the following holds:
(i) Suppose that f (⋅) is Doss (p,ϕ, F)-almost periodic, resp. Doss (p,ϕ, F)-uniformly re-

current. Then fτ0 (⋅) is Doss (pτ0 ,ϕ, F1)-almost periodic, resp. Doss (pτ0 ,ϕ, F1)-uni-
formly recurrent.

(ii) Suppose that f (⋅) is Doss (p,ϕ, F)1-almost periodic, resp. Doss (p,ϕ, F)1-uniformly
recurrent, and ϕ(⋅) is monotonically increasing. Then fτ0 (⋅) is Doss (pτ0 ,ϕ, F1)1-al-
most periodic, resp. Doss (pτ0 ,ϕ, F1)1-uniformly recurrent.
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(iii) Suppose that f (⋅) is Doss (p,ϕ, F)2-almost periodic, resp. Doss (p,ϕ, F)2-uniformly
recurrent, ϕ(⋅) is monotonically increasing, there exists a function ϕ0 : [0,∞) →
[0,∞) such that ϕ(xy) ⩽ ϕ0(x) ⋅ ϕ(y), x, y ⩾ 0 and, in place of condition (3.46),

lim sup
t→+∞ (ϕ0 ∘ F0)(

t
t + τ0
) <∞. (3.47)

Then fτ0 (⋅) is Doss (pτ0 ,ϕ1, F1)2-almost periodic, resp. Doss (pτ0 ,ϕ1, F1)2-uniformly
recurrent.

Proof. We will consider only Doss almost periodic functions with variable exponent.
Suppose that τ ∈ I and (3.44) holds. We need to prove first that ϕ(‖f (⋅ + τ + τ0) −
f (⋅ + τ0)‖) ∈ L

pτ0 (x)(K) for any τ ∈ I and any compact subset K of I. But, this directly
follows from the corresponding definitions of the space Lpτ0 (x)(K), the function pτ0 (⋅)
and an elementary substitution ⋅ → ⋅+τ0. The statement (i) then follows from the next
computation:

lim sup
t→+∞ [F1(t) inf{λ > 0 : t∫

0

φpτ0 (x)(ϕ(‖f (x + τ + τ0) − f (x + τ0)‖)λ
) dx ⩽ 1}]

= lim sup
t→+∞ [F1(t) inf{λ > 0 :

t+τ0
∫
τ0

φpτ0 (x−τ0)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

= lim
t→+∞ supy⩾t [F1(y) inf{λ > 0 :

y+τ0
∫
τ0

φp(x)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

⩽ lim sup
t→+∞ sup

y⩾t [F1( t
t + τ0
(y + τ0))

× inf{λ > 0 :
y+τ0
∫
τ0

φp(x)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

⩽ lim sup
t→+∞ sup

y⩾t [F0( t
t + τ0
)

× F(y + τ0) inf{λ > 0 :
y+τ0
∫
τ0

φp(x)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

⩽ lim sup
t→+∞ F0(

t
t + τ0
)

× lim sup
t→+∞ sup

y⩾t [F(y + τ0) inf{λ > 0 :
y+τ0
∫
τ0

φp(x)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

⩽ lim sup
t→+∞ F0(

t
t + τ0
)
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× lim sup
t→+∞ sup

y⩾t [F(y + τ0) inf{λ > 0 :
y+τ0
∫
0

φp(x)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

⩽ lim sup
t→+∞ F0(

t
t + τ0
)

× lim sup
t→+∞ sup

y⩾t+τ0[F(y) inf{λ > 0 :
y

∫
0

φp(x)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

= lim sup
t→+∞ F0(

t
t + τ0
)

× lim sup
t→+∞ sup

y⩾t [F(y) inf{λ > 0 :
y

∫
0

φp(x)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

= lim sup
t→+∞ F0(

t
t + τ0
)

× lim sup
t→+∞ [F(t) inf{λ > 0 : t∫

0

φp(x)(ϕ(‖f (x + τ) − f (x)‖)λ
) dx ⩽ 1}]

⩽ lim sup
t→+∞ F0(

t
t + τ0
) ⋅ ε.

The proof of (ii) is similar because then we can start from the term

lim sup
t→+∞ [F1(t)ϕ(inf{λ > 0 : t∫

0

φpτ0 (x)( ‖f (x + τ + τ0) − f (x + τ0)‖λ
) dx ⩽ 1})],

use the same computation and the assumption that ϕ(⋅) is monotonically increasing.
The proof of (iii) is also similar because, with the obvious change of computation
caused by the use of different notion, we can use the same computation and the in-
equality (see also (3.47))

ϕ(F0(
t

t + τ0
) ⋅ F(y + τ0)) ⩽ ϕ0(F0(

t
t + τ0
)) ⋅ ϕ1(F(y + τ0)).

We will include the proof of the next proposition for the sake of completeness.

Proposition 3.2.16. Suppose that p(x) ≡ 1, f : I → X, ‖f (⋅ + τ) − f (⋅)‖ ∈ L1(K) for any
τ ∈ I and any compact subset K of I, as well as condition
(B)′ ϕ(⋅) is convex and there exists a function φ : [0,∞) → (0,∞) such that ϕ(tx) ⩽

φ(t)ϕ(x) for all t ⩾ 0 and x ⩾ 0.

Set F1(t) := F(t)t[φ(t)]−1, t > 0, F2(t) := (2t)−1φ(2F(t)t), t > 0 provided that I = ℝ, and
F2(t) := t−1φ(F(t)t), t > 0 provided that I = [0,∞). Then we have:
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(i) If f (⋅) is Doss (1,ϕ, F)-almost periodic, resp. Doss (1,ϕ, F)-uniformly recurrent, then
f (⋅) is Doss (1,ϕ, F1)1-almost periodic, resp. Doss (1,ϕ, F1)1-uniformly recurrent.

(ii) If f (⋅) is Doss (1,ϕ, F2)-almost periodic, resp. Doss (1,ϕ, F2)-uniformly recurrent,
then f (⋅) is Doss (1,ϕ, F)2-almost periodic, resp. Doss (1,ϕ, F)2-uniformly recurrent.

Proof. We will consider only Doss almost periodic functions with variable exponent
and case I = [0,∞). To prove (i), we can use the assumption (B)′ and the Jensen inte-
gral inequality (τ > 0):

ϕ(f (⋅ + τ) − f (⋅)
L1[0,t]) = ϕ(t ⋅ t−1f (⋅ + τ) − f (⋅)L1[0,t])
⩽ φ(t)ϕ(t−1f (⋅ + τ) − f (⋅)L1[0,t])
⩽ φ(t)t−1[ϕ(f (⋅ + τ) − f (⋅))]L1[0,t].

This simply shows that f (⋅) is Doss (1,ϕ, F1)1-almost periodic. To prove (ii), suppose
that f (⋅) is Doss (1,ϕ, F2)-almost periodic. Then the assumption (B)′ and the Jensen
integral inequality together imply (τ > 0):

ϕ(F(t)f (⋅ + τ) − f (⋅)
L1[0,t]) = ϕ(F(t)t ⋅ t−1f (⋅ + τ) − f (⋅)L1[0,t])
⩽ φ(F(t))t−1[ϕ(f (⋅ + τ) − f (⋅))]L1[0,t].

This simply shows that f (⋅) is Doss (1,ϕ, F)2-almost periodic.

Remark 3.2.17.
(i) It is clear that, if f (⋅) is Doss (p,ϕ, F)-almost periodic [Doss (p,ϕ, F)-uniformly

recurrent], resp. Doss (p,ϕ, F)1-almost periodic [Doss (p,ϕ, F)1-uniformly recur-
rent], and F(t) ⩾ F1(t) for every t ∈ I, then f (⋅) is Doss (p,ϕ, F1)-almost periodic
[Doss (p,ϕ, F1)–uniformly recurrent], resp. Doss (p,ϕ, F1)1-almost periodic [Doss
(p,ϕ, F1)1-uniformly recurrent]. Furthermore, if f (⋅) is Doss (p,ϕ, F)2-almost peri-
odic [Doss (p,ϕ, F)2-uniformly recurrent], then f (⋅) is Doss (p,ϕ, F1)2-almost peri-
odic [Doss (p,ϕ, F1)2-uniformly recurrent] provided that F(t) ⩾ F1(t) for every t ∈ I
and ϕ(⋅) is monotonically increasing, or F(t) ⩽ F1(t) for every t ∈ I and ϕ(⋅) is
monotonically decreasing.

(ii) If f (⋅) is Doss (p,ϕ, F)-almost periodic [Doss (p,ϕ, F)-uniformly recurrent], resp.
Doss (p,ϕ, F)i-almost periodic [Doss (p,ϕ, F)i-uniformly recurrent], ϕ1(⋅) is mea-
surable and 0 ⩽ ϕ1 ⩽ ϕ, then Lemma 1.1.7(iii) shows that f (⋅) is Doss (p,ϕ1, F)-al-
most periodic [Doss (p,ϕ1, F)-uniformly recurrent], resp. Doss (p,ϕ1, F)i-almost
periodic [Doss (p,ϕ1, F)i-uniformly recurrent], where i = 1, 2.

Example 3.2.18.
(i) Let p(x) ≡ p ∈ [1,∞) and f (x) := χ[0,1/2](x), x ∈ ℝ. Then it can be simply shown

that for each real number τ such that |τ| > 1 we have
t

∫−t f (x + τ) − f (x)p dx ⩽ 12 + 2
1/2
∫
0

f (x)

p dx, t ∈ ℝ.
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This implies that f (⋅) is Doss (p, x, t−σ)-almost periodic for each real number
σ > 0.

(ii) Let p(x) ≡ p ∈ [1,∞) and f (x) := χ[0,∞)(x), x ∈ ℝ. Then it can be simply shown
that for each real number τ we have

t

∫−t f (x + τ) − f (x)p dx =
τ

∫−t+τ f (x)p dx +
t+τ
∫
τ

f (x)

p dx, t ∈ ℝ.

Hence,

t

∫−t f (x + τ) − f (x)p dx ⩽ 2|τ|, provided τ ∈ ℝ, t ⩾ |τ|,

and f (⋅) is Doss (p, x, t−σ)-almost periodic for each real number σ > 0.

Concerning embeddings between different Doss almost periodic type spaces with
variable exponent, we would like to state the following result.

Proposition 3.2.19. Let p, q ∈ 𝒫(I) and let 1 ⩽ q(x) ⩽ p(x) for a. e. x ∈ I.
(i) Suppose that a function f (⋅) is Doss (p,ϕ, F)-almost periodic, resp. Doss (p,ϕ, F)-

uniformly recurrent, and F1(t) := F(t)/t, t > 0. Then f (⋅) is Doss (q,ϕ, F1)-almost
periodic, resp. Doss (q,ϕ, F1)-uniformly recurrent.

(ii) Suppose that a function f (⋅) is Doss (p,ϕ, F)1-almost periodic, resp. Doss (p,ϕ, F)1-
uniformly recurrent, ϕ(⋅) is monotonically increasing, there exists a function φ :
[0,∞)→ (0,∞) such that ϕ(xy) ⩽ φ(x)ϕ(y), x, y ⩾ 0 and F1(t) := F(t)/φ(2(1 + 2t)),
t > 0 provided I = ℝ, resp. F1(t) := F(t)/φ(2(1 + t)), t > 0 provided I = [0,∞).
Then f (⋅) is Doss (q,ϕ, F1)1-almost periodic, resp. Doss (q,ϕ, F1)1-uniformly recur-
rent.

(iii) Suppose that a function f (⋅) is Doss (p,ϕ, F)2-almost periodic, resp. Doss (p,ϕ, F)2-
uniformly recurrent, there exists a function φ : [0,∞) → [0,∞) such that ϕ(xy) ⩽
φ(x)ϕ(y), x, y ⩾ 0 and

φ(2F1(⋅)(1 + 2⋅)
F(⋅)

) ∈ L∞((0,∞)), if I = ℝ,

resp. φ(2F1(⋅)(1 + ⋅)
F(⋅)
) ∈ L∞((0,∞)), if I = [0,∞).

Then f (⋅) is Doss (q,ϕ, F1)2-almost periodic, resp. Doss (q,ϕ, F1)2-uniformly recur-
rent.

Proof. Wewill prove only (iii), for the class of Doss (p,ϕ, F)2-almost periodic functions
defined on the interval I = [0,∞). Let the numbers t, τ > 0 be given. Then the conclu-
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sion simply follows from the calculation

ϕ(F1(t)
f (⋅ + τ) − f (⋅)

Lq(x)[0,t]) ⩽ ϕ(2F1(t)(1 + t)f (⋅ + τ) − f (⋅)Lp(x)[0,t])
= ϕ(2F1(t)(1 + t)

F(t)
F(t)f (⋅ + τ) − f (⋅)

Lp(x)[0,t])
⩽ φ(2F1(t)(1 + t)

F(t)
)ϕ(F(t)f (⋅ + τ) − f (⋅)

Lp(x)[0,t]),
where we have used Lemma 1.1.7(ii), and the corresponding definition of Doss (q,ϕ,
F1)2-almost periodicity.

3.2.3 Invariance of generalized Doss almost periodicity with variable exponent
under the actions of convolution products

In this subsection,wewill investigate the invariance of three types of generalizedDoss
almost periodicity introducedaboveunder the actions of infinite convolutionproducts
(for the sake of simplicity, we will not consider here the finite convolution products).

In [644, Theorem 2.1], we have analyzed the invariance of Doss p-almost periodic-
ity under the actions of infinite convolution products, provided that the function f (⋅)
in (2.46) is Stepanov p-bounded (1 ⩽ p < ∞). In the formulation of the subsequent
result, which is not satisfactory to a certain extent (let us only note that the above-
mentioned theorem from [644], which is a unique result in the existing literature con-
cerning this problematic, cannot be deduced from Theorem 3.2.20), we will not use
this condition.

Theorem 3.2.20. Suppose that φ : [0,∞) → [0,∞), ϕ : [0,∞) → [0,∞) is a con-
vex monotonically increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0
and p ∈ 𝒫(ℝ). Suppose, further, ̌f : ℝ → X is Doss (p,ϕ, F)-almost periodic, resp.
Doss (p,ϕ, F)-uniformly recurrent, and measurable, F1 : (0,∞) → (0,∞), q ∈ 𝒫(ℝ),
1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and
for every real number x ∈ ℝ we have (3.15) with the function ǧ(⋅) replaced therein with
the function ǧ(⋅). Suppose that for each ε > 0 there exist an increasing sequence (am)
of positive real numbers tending to plus infinity and a number t0(ε) > 0 satisfying the
requirement that, for every t ⩾ t0(ε), we have

t

∫−t φp(x)(2φ(am)a−1m F1(t) lim sup
m→+∞ [[φ(R(⋅+ x))]Lq(⋅)[−x,−x+am]F(t + am)−1]) dx ⩽ 1. (3.48)

Then the function F : ℝ → Y, given by (2.46), is well defined and Doss (p,ϕ, F1)-almost
periodic, resp. Doss (p,ϕ, F1)-uniformly recurrent.
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Proof. We will consider only the class of Doss (p,ϕ, F)-almost periodic functions be-
cause the proof for the class of Doss (p,ϕ, F)-uniformly recurrent functions can be
deduced quite analogously. Since F(x) = ∫∞−x R(v + x) ̌f (v) dv, x ∈ ℝ, the validity of
condition (3.15) shows that the function F(⋅) is well defined and that the integrals in
definitions of F(x) and F(x + τ) − F(x) converge absolutely (x ∈ ℝ). Let ε > 0 be fixed,
and let the sequences (tn), (t′n) and (am) satisfy the prescribed requirements. Using the
facts that the functionϕ(⋅) is continuous and the functionφp(x)(⋅) is monotonically in-
creasing, we have (x ∈ ℝ, λ, τ > 0):

φp(x)(ϕ(‖F(x + τ) − F(x)‖)λ
)

⩽ φp(x)(ϕ(∫∞−x ‖R(v + x)‖‖ ̌f (v + τ) − ̌f (v)‖ dv)λ
)

⩽ φp(x)( lim
m→+∞ ϕ(∫−x+am−x ‖R(v + x)‖‖ ̌f (v + τ) − ̌f (v)‖ dv)

λ
)

= φp(x)( lim
m→+∞ ϕ(∫−x+am−x ama−1m ‖R(v + x)‖‖ ̌f (v + τ) − ̌f (v)‖ dv)

λ
)

⩽ φp(x)(lim sup
m→+∞ φ(am)a−1m ∫−x+am−x ϕ(‖R(v + x)‖‖ ̌f (v + τ) − ̌f (v)‖) dv

λ
)

⩽ φp(x)(lim sup
m→+∞ 2φ(am)a−1m [φ(‖R(v + x)‖)]Lq(v)[−x,−x+am]

λ

×
[ϕ(‖ ̌f (v + τ) − ̌f (v)‖)]Lp(v)[−x,−x+am]

λ
),

where we have also used the Jensen integral inequality and the Hölder inequality. Let
ε > 0 be fixed and let τ > 0 be such that (3.44) holds, i. e., there exists t1(ε, τ) ⩾ 0 such
that

[F(t)[ϕ( ̌f (⋅ + τ) − ̌f (⋅)
)Lp(x)[−t,t]]] < ε, t ⩾ t1(ε, τ). (3.49)

Suppose that t ⩾ max(t0(ε), t1(ε, τ)). Then for each x ∈ [−t, t] and m ∈ ℕ we have
[−x,−x + am] ⊆ [−(t + am), t + am] so that the above calculation and (3.49) give

φp(x)(ϕ(‖F(x + τ) − F(x)‖)λ
)

⩽ φp(x)(lim sup
m→+∞ 2φ(am)a−1m [φ(‖R(v + x)‖)]Lq(v)[−x,−x+am]ε/F(t + am)

λ
).

Integrating this estimate over the interval [−t, t] and using (3.48) we see that the
inequality

t

∫−t φp(x)(ϕ(‖F(x + τ) − F(x)‖)λ
) dx ⩽ 1

holds with λ = ε/F1(t), which completes the proof in a routine manner.
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We can similarly prove the following results for Doss (p,ϕ, F)1-almost periodic
functions, resp. Doss (p,ϕ, F)1-uniformly recurrent functions, and Doss (p,ϕ, F)2-al-
most periodic functions, resp. Doss (p,ϕ, F)2-uniformly recurrent functions; for the
sake of brevity, we will only provide descriptions of the proofs since they are very sim-
ilar to the proof of Theorem 3.2.20.

Theorem 3.2.21. Suppose that ϕ : [0,∞) → [0,∞) is a continuous monotonically in-
creasingbijectionandp ∈ 𝒫(ℝ). Suppose, further, ̌f : ℝ→ X isDoss (p,ϕ, F)1-almost pe-
riodic, resp. Doss (p,ϕ, F)1-uniformly recurrent, and measurable, F1 : (0,∞) → (0,∞),
q ∈ 𝒫(ℝ), 1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator fam-
ily and, for every real number x ∈ ℝ, we have (3.15). Suppose that for each ε > 0 there
exist an increasing sequence (am) of positive real numbers tending to plus infinity and a
number t0(ε) > 0 satisfying the requirement that, for every t ⩾ t0(ε), we have

t

∫−t φp(x)( lim supm→+∞[2[φ(‖R(⋅ + x)‖)]Lq(⋅)[−x,−x+am]ϕ−1(ε/F(t + am))]
ϕ−1(ε/F1(t)) ) dx ⩽ 1. (3.50)

Then the function F : ℝ→ Y, given by (2.46), is well defined and Doss (p,ϕ, F1)1-almost
periodic, resp. Doss (p,ϕ, F1)1-uniformly recurrent.

Proof. As in the proof of Theorem 3.2.20 above, the function F(⋅) is well defined and
the integrals in definitions of F(x) and F(x + τ) − F(x) converge absolutely (x ∈ ℝ).
Let ε > 0 be fixed. Then it suffices to show that, for every t ⩾ t0(ε), we have (x ∈ ℝ,
λ, τ > 0)

R(s)[F(x + t + τ − s) − F(x + t − s)]
Lp(x)[−t,t] ⩽ ϕ−1(ε/F1(t)).

But we can repeat the arguments used in the proof of the above-mentioned theorem,
with ϕ(x) ≡ x, in order to see that

φp(x)( ‖F(x + τ) − F(x)‖λ
)

⩽ φp(x)(2[φ(‖R(v + x)‖)]Lq(v)[−x,−x+am][‖ ̌f (v + τ) − ̌f (v)‖]Lp(v)[−x,−x+am]λ
)

⩽ φp(x)(2[φ(‖R(v + x)‖)]Lq(v)[−x,−x+am]ϕ−1(ε/F(t + am))λ
).

The rest of the proof is clear because we can take λ = ϕ−1(ε/F1(t)) and use condi-
tion (3.50).

Theorem 3.2.22. Suppose that ϕ : [0,∞) → [0,∞) is a continuous monotonically
increasing bijection and p ∈ 𝒫(ℝ). Suppose, further, ̌f : ℝ→ X is Doss (p,ϕ, F)2-almost
periodic, resp. Doss (p,ϕ, F)2-uniformly recurrent, and measurable, F1 : (0,∞) →
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(0,∞), q ∈ 𝒫(ℝ), 1/p(x) + 1/q(x) = 1, (R(t))t>0 ⊆ L(X,Y) is a strongly continuous opera-
tor family and, for every real number x ∈ ℝ, we have (3.15). Suppose that for each ε > 0
there exist an increasing sequence (am) of positive real numbers tending to plus infinity
and a number t0(ε) > 0 satisfying the requirement that, for every t ⩾ t0(ε), we have

t

∫−t φp(x)(2F1(t) lim sup
m→+∞ [φ(‖R(⋅ + x)‖)]Lq(⋅)[−x,−x+am]F(t + am)

) dx ⩽ 1. (3.51)

Then the function F : ℝ→ Y, given by (2.46), is well defined and Doss (p,ϕ, F1)2-almost
periodic, resp. Doss (p,ϕ, F1)2-uniformly recurrent.

Proof. We can use the same trick as above, with λ = ϕ−1(ε)/F1(t).
Remark 3.2.23.
(i) Suppose that p(x) ≡ p ∈ [1,∞). Then we can use the usual Hölder inequality

in order to see that the estimates (3.48)–(3.51) can be modified by removing the
multiplication with the number 2 therein.

(ii) Although we will not define the notion of Besicovitch–Doss almost periodicity
with variable exponent here, wewould like to note that the statement of [631, The-
orem 2.13.7] and the corresponding part of this result which considers the Doss
almost periodicity cannot be so easily reexamined in our framework.

Concerning the convolution invariance of generalized almost periodicity intro-
duced in this subsection, we will clarify the following result (see also [631, Theorem
3.11.26]).

Proposition 3.2.24. Suppose that ψ ∈ L1(ℝ), −∞ < a < b < +∞, supp(ψ) ⊆ [a, b],
φ : [0,∞)→ [0,∞), ϕ : [0,∞)→ [0,∞) is a convex monotonically increasing function
satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0, p, q ∈ 𝒫(ℝ) and 1/p(x) + 1/q(x) = 1.
Suppose, further, that the function f : ℝ → X is Doss (p,ϕ, F)-almost periodic, resp.
Doss (p,ϕ, F)-uniformly recurrent, and essentially bounded. Then the function

x → (ψ ∗ f )(x) :=
+∞
∫−∞ ψ(x − y)f (y) dy, x ∈ ℝ

is well defined and essentially bounded. Furthermore, if p1 ∈ 𝒫(ℝ), F1 : (0,∞)→ (0,∞)
and if, for every ε > 0 there exists a positive real number t1(ε) > 0 such that

t

∫−t φp1(x)(2F1(t)φ(b − a) ‖φ(|ψ(x − z)|)‖Lq(z)[x−b,x−a](b − a)F(t + c)
) dx ⩽ 1,

where c = max(|a|, |b|), then the function ψ∗f (⋅) is Doss (p1,ϕ, F1)-almost periodic, resp.
Doss (p1,ϕ, F1)-uniformly recurrent.
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Proof. We will give the main details of the proof for the class of Doss (p,ϕ, F)-almost
periodic functions, only. For every x ∈ ℝ and τ ∈ ℝ, we have

ϕ((ψ ∗ f )(x + τ) − (ψ ∗ f )(x)
)

⩽ ϕ((b − a)(b − a)−1 b

∫
a

ψ(y)
 ⋅
f (x + τ − y) − f (x − y)

 dy)

⩽
φ(b − a)
b − a

b

∫
a

ϕ(ψ(y)
 ⋅
f (x + τ − y) − f (x − y)

) dy

=
φ(b − a)
b − a

x−a
∫
x−b ϕ(ψ(x − z) ⋅ f (z + τ) − f (z)) dz

⩽ 2φ(b − a)
b − a
φ(
ψ(x − z)

)
Lq(z)[x−b,x−a]f (z + τ) − f (z)Lp(z)[x−b,x−a],

where we have used the Jensen integral inequality and the Hölder inequality. The
proof can be completed as it has been done in the final part of the proof of Theo-
rem 3.2.20.

Composition principles for Besicovitch almost periodic functions have been in-
vestigated by M. Ayachi and J. Blot in [101]. An issue that will not be addressed in this
study is composition principles for Doss almost periodic functions with variable ex-
ponents.

Fix nowa strictly increasing sequence (αn)of positive reals tending to plus infinity,
and set

BUR(αn)(ℝ : X) := {u⃗ ∈ UR(ℝ : X); u⃗(⋅) is bounded and (2.3) holds with f = u⃗}.

Equipped with the metric d(⋅, ⋅) := ‖ ⋅ − ⋅ ‖∞, BUR(αn)(ℝ : X) is a complete metric space.
We have the following.

Theorem 3.2.25. Suppose that the function F : ℝ × X → X satisfies the requirement
that for each bounded subset B of X there exists a finite real constant MB > 0 such
that supt∈ℝ supy∈B ‖F(t, y)‖ ⩽ MB. Suppose, further, that p, r ∈ 𝒫([0, 1]), the function F :
ℝ×X → X is Stepanov p(x)-uniformly recurrent, r(⋅) ⩾ max(p(⋅), p(⋅)/(p(⋅)−1)) and there
exists a function LF ∈ L

r(x)
S (I) is such that q(x) := p(x)r(x)/(p(x)+ r(x)) > 1 for a. e. x ∈ ℝ

and (2.20) holds with I = ℝ. If there exist a positive real number q′ > 0 and an integer
n ∈ ℕ such that (γ − 1)q′ > −1 and q(x)/(q(x) − 1) ⩽ q′ for a. e. x ∈ ℝ, and Mn < 1, where

Mn := sup
t⩾0

t

∫−∞
xn

∫−∞ ⋅ ⋅ ⋅
x2

∫−∞Rγ(t − xn)
×

n
∏
i=2Rγ(xi − xi−1) n

∏
i=1 LF(xi) dx1 dx2 ⋅ ⋅ ⋅ dxn,
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and for every compact set K ⊆ Y, (3.43) holds, then the abstract fractional Cauchy
inclusion (2.57) has a unique bounded uniformly recurrent solution.

Proof. We will only content ourselves with sketching it. Define ϒ : BUR(αn)(ℝ : X) →
BUR(αn)(ℝ : X) by

(ϒu⃗)(t) :=
t

∫−∞ Rγ(t − s)F(s, u⃗(s)) ds, t ∈ ℝ.

Suppose that u⃗ ∈ BUR(αn)(ℝ : X). Then R(u⃗) = B is a bounded set, so that the mapping
t → F(t, u⃗(t)), t ∈ ℝ is bounded. Applying Theorem 3.2.8, we see that the function
F(⋅, u⃗(⋅)) is Stepanov q(x)-uniformly recurrent. Define q′(x) := q(x)/(q(x) − 1) for a. e.
x ∈ ℝ. Then (2.56) and the prescribed assumptions imply that ‖Rγ(⋅)‖ ∈ Lq

′(x)[0, 1]
and ∑∞k=0 ‖Rγ(⋅)‖Lq′(x)[k,k+1] < ∞. Applying Proposition 3.2.5, we see that the function

t → ∫t−∞ Rγ(t − s)F(s, u⃗(s)) ds, t ∈ ℝ is uniformly recurrent. It can be simply proved
that this function is also bounded continuous so that ϒu⃗ ∈ BUR(αn)(ℝ : X) and the
mapping ϒ(⋅) is well defined. A simple calculation shows that

(ϒ
nu⃗1) − (ϒ

nu⃗2)
∞ ⩽ Mn‖ ⃗u1 − ⃗u2‖∞, ⃗u1, ⃗u2 ∈ BUR(αn)(ℝ : X), n ∈ ℕ.

Since we have assumed that Mn < 1, the Bryant fixed point theorem shows that the
mapping ϒ(⋅) has a unique fixed point. This completes the proof of theorem.

3.3 Generalized almost periodicity in Lebesgue spaces with
variable exponents. Part III

In this section, we consider the Stepanov and Weyl classes of generalized almost pe-
riodic type functions and generalized uniformly recurrent type functions. We investi-
gate the invariance of generalized almost periodicity and generalized uniform recur-
rence with variable exponents under the actions of convolution products, providing
also certain applications.

3.3.1 Generalized Weyl uniform recurrence in Lebesgue spaces with variable
exponents Lp(x)

Throughout this subsection, we will occasionally use conditions (A) and (B). We will
first extend the notion introduced in Definition 3.1.23–Definition 3.1.25.

Definition 3.3.1. Suppose that condition (A) holds, f : I → X, and ϕ(‖f (⋅ + τ) − f (⋅)‖) ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
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(i) It is said that the function f (⋅) is equi-Weyl (p(x),ϕ, F)-uniformly recurrent, f ∈
e−W (p(x),ϕ,F)ur (I : X) for short, if and only if we can find two sequences (ln) and (αn)
of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ supt∈I [F(ln, t)[ϕ(f (⋅ + αn) − f (⋅))Lp(⋅)[t,t+ln]]] = 0.

(ii) It is said that the function f (⋅) is Weyl (p(x),ϕ, F)-uniformly recurrent, f ∈
W (p(x),ϕ,F)ur (I : X) for short, if and only if we can find a sequence (αn) of positive
real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

l→∞ sup
t∈I [F(l, t)[ϕ(f (⋅ + αn) − f (⋅))Lp(⋅)[t,t+l]]] = 0. (3.52)

Definition 3.3.2. Suppose that condition (A) holds, f : I → X and ‖f (⋅ + τ) − f (⋅)‖ ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
(i) It is said that the function f (⋅) is equi-Weyl (p(x),ϕ, F)1-uniformly recurrent, f ∈

e − W (p(x),ϕ,F)1ur (I : X) for short, if and only if we can find two sequences (ln) and
(αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ supt∈I [F(ln, t)ϕ[(f (⋅ + αn) − f (⋅))Lp(⋅)[t,t+ln]]] = 0.

(ii) It is said that the function f (⋅) is Weyl (p(x),ϕ, F)1-uniformly recurrent, f ∈
W (p(x),ϕ,F)1ur (I : X) for short, if and only if we can find a sequence (αn) of posi-
tive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

l→∞ sup
t∈I [F(l, t)ϕ[(f (⋅ + αn) − f (⋅))Lp(⋅)[t,t+l]]] = 0.

Definition 3.3.3. Suppose that condition (A) holds, f : I → X and ‖f (⋅ + τ) − f (⋅)‖ ∈
Lp(x)(K) for any τ ∈ I and any compact subset K of I.
(i) It is said that the function f (⋅) is equi-Weyl (p(x),ϕ, F)2-uniformly recurrent, f ∈

e − W (p(x),ϕ,F)2ur (I : X) for short, if and only if we can find two sequences (ln) and
(αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ supt∈I ϕ[F(ln, t)[(f (⋅ + αn) − f (⋅))Lp(⋅)[t,t+ln]]] = 0.

(ii) It is said that the function f (⋅) is Weyl (p(x),ϕ, F)2-uniformly recurrent, f ∈
W (p(x),ϕ,F)2ur (I : X) for short, if and only if we can find a sequence (αn) of posi-
tive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

l→∞ sup
t∈I ϕ[F(l, t)[(f (⋅ + αn) − f (⋅))Lp(⋅)[t,t+l]]] = 0.

It is clear that the class of (equi-)Weyl (p(x),ϕ, F)-uniformly recurrent functions,
resp. (equi-)Weyl (p(x),ϕ, F)i-uniformly recurrent functions, extends the class of
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(equi-)Weyl (p(x),ϕ, F)-almost periodic functions, resp. (equi-)Weyl (p(x),ϕ, F)i-almost
periodic functions (i = 1, 2). The case that p(x) ≡ p, ϕ(x) ≡ x and F(l, t) = l(−1)/p is the
most indicative, when we say that the function f (⋅) is (equi-)Weyl p-uniformly recur-
rent. The class of (equi-)Weylp-uniformly recurrent functions has not been considered
elsewhere by now.

We have already shown that an equi-Weyl (p,ϕ,ψ)-almost periodic function, resp.
equi-Weyl (p,ϕ,ψ)i-almost periodic function, does not need to beWeyl (p,ϕ,ψ)-almost
periodic, resp. Weyl (p,ϕ,ψ)i-almost periodic (i = 1, 2). This statement continues to
hold for thegeneralizeduniformly recurrent functions introducedabove. For example,
any continuous Stepanov p-almost periodic function f (⋅)which is not periodic cannot
be Weyl (p, x, 1)-uniformly recurrent, while it is always equi-Weyl (p, x, 1)-almost peri-
odic.

Example 3.3.4. If X does not contain an isomorphic copy of the sequence space c0,
ϕ(x) = x and F(l, t) ≡ F(t), where limt→+∞ F(t) = +∞, then there do not exist a
non-periodic trigonometric polynomial f (⋅) and a function p ∈ 𝒫(ℝ) such that f ∈
e −W (p,x,F)ur (ℝ : X). This can be verified based on the argumentation contained in Ex-
ample 3.1.26(iii).

Furthermore, the statement of Proposition 3.1.27 and the conclusions established
in Remark 3.1.28 can be reformulated for the introduced classes of generalized Weyl
uniformly recurrent functions. In order to ensure the translation invariance of gener-
alized Weyl spaces of uniformly recurrent functions with variable exponents, we will
follow a slightly different approach based on the already exhibited idea from [372].

Definition 3.3.5. Suppose that condition (B) holds, f : I → X andϕ(‖f (⋅l+ t + τ)− f (t +
⋅l)‖) ∈ Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.
(i) It is said that the function f (⋅) is equi-Weyl [p(x),ϕ, F]-uniformly recurrent, f ∈

e−W [p(x),ϕ,F]ur (I : X) for short, if and only if we can find two sequences (ln) and (αn)
of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ supt∈I [F(ln, t)[ϕ(f (⋅ln + t + αn) − f (t + ⋅ln))Lp(⋅)[0,1]]] = 0.

(ii) It is said that the function f (⋅) is Weyl [p(x),ϕ, F]-uniformly recurrent, f ∈
W [p(x),ϕ,F]ur (I : X) for short, if and only if we can find a sequence (αn) of positive
real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

l→∞ sup
t∈I [F(l, t)[ϕ(f (⋅l + t + αn) − f (t + ⋅l))Lp(⋅)[0,1]]] = 0.

Definition 3.3.6. Suppose that condition (B) holds, f : I → X and ‖f (⋅l+t+τ)−f (t+⋅l)‖ ∈
Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.
(i) It is said that the function f (⋅) is equi-Weyl [p(x),ϕ, F]1-uniformly recurrent, f ∈

e − W [p(x),ϕ,F]1ur (I : X) for short, if and only if we can find two sequences (ln) and
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(αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ supt∈I [F(ln, t)ϕ[(f (⋅ln + t + αn) − f (t + ⋅ln))Lp(⋅)[0,1]]] = 0.

(ii) It is said that the function f (⋅) is Weyl [p(x),ϕ, F]2-uniformly recurrent, f ∈
W [p(x),ϕ,F]2ur (I : X) for short, if and only if we can find a sequence (αn) of posi-
tive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

l→∞ sup
t∈I [F(l, t)ϕ[(f (⋅l + t + αn) − f (t + ⋅l))Lp(⋅)[0,1]]] = 0.

Definition 3.3.7. Suppose that condition (B) holds, f : I → X and ‖f (⋅l+t+τ)−f (t+⋅l)‖ ∈
Lp(x)([0, 1]) for any τ ∈ I, t ∈ I and l > 0.
(i) It is said that the function f (⋅) is equi-Weyl [p(x),ϕ, F]2-uniformly recurrent, f ∈

e −W [p(x),ϕ,F]2ur (I : X) for short, if and only we can find two sequences (ln) and (αn)
of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ supt∈I ϕ[F(ln, t)[(f (⋅ln + t + αn) − f (t + ⋅ln))Lp(⋅)[0,1]]] = 0.

(ii) It is said that the function f (⋅) is Weyl [p(x),ϕ, F]2-uniformly recurrent, f ∈
W [p(x),ϕ,F]2ur (I : X) for short, if and only if we can find a sequence (αn) of posi-
tive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞ lim sup

l→∞ sup
t∈I ϕ[F(l, t)[(f (⋅l + t + αn) − f (t + ⋅l))Lp(⋅)[0,1]]] = 0.

The statement of Proposition 3.1.33 and the conclusions established in Re-
mark 3.1.32 can be reformulated for the generalized Weyl uniformly recurrent func-
tions introduced in the above three definitions. All statements regarding the convo-
lution invariance of the generalized Weyl almost periodicity with variable exponents
can be straightforwardly reformulated for the generalized Weyl uniformly recurrent
functions introduced in this section; we leave it to the reader to make this precise.

3.3.2 Quasi-asymptotically uniformly recurrent type functions with variable
exponents

In the following definition, we will extend the notion of quasi-asymptotical almost
periodicity.

Definition 3.3.8. We say that a continuous function f : I → X is quasi-asymptotically
uniformly recurrent if and only if there exist a strictly increasing sequence (αn) of posi-
tive real numbers tending to plus infinity and a sequence (Mn) of positive real numbers
such that

lim
n→+∞ sup|t|⩾Mn

f (t + αn) − f (t)
 = 0. (3.53)
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Denote by Q − AUR(I : X) the set consisting of all quasi-asymptotically uniformly
recurrent functions from I into X.

It is expected that the class of quasi-asymptotically uniformly recurrent functions
extends the class of asymptotically uniformly recurrent functions. For completeness,
we will include all details of the proof of the following proposition.

Proposition 3.3.9. Suppose that f : I → X is asymptotically uniformly recurrent. Then
f (⋅) is quasi-asymptotically uniformly recurrent.

Proof. Let h ∈ UR(ℝ : X), q ∈ C0(I : X) and f = h + q. By our assumption, we have
the existence of a strictly increasing sequence (αn) of positive real numbers tending
to plus infinity such that (2.3) holds with the function f (⋅) replaced therein with the
function h(⋅). Let n ∈ ℕ be fixed. Then we can find a sufficiently large real number
M′n > 0 and a sufficiently large integer n0 ∈ ℕ such that ‖q(t)‖ ⩽ 1/n for |t| ⩾ M′n and
‖h(t + αn) − h(t)‖ ⩽ 1/n, n ⩾ n0. Then, for every t ∈ ℝ such that |t| ⩾ Mn := M′n + αn, we
have |t|, |t + αn| ⩾ M′n and
[h(t + αn) − h(t)] + [q(t + αn) − q(t)]

 ⩽
1
n
+ q(t + αn) − q(t)

 ⩽
2
n
, n ⩾ n0.

This simply implies the required assertion.

Applying the same arguments, we can deduce the following.

Proposition 3.3.10. Suppose that f : I → X is quasi-asymptotically uniformly recurrent
and q ∈ C0(I : X). Then (f + q)(⋅) is likewise quasi-asymptotically uniformly recurrent.

The proof of following proposition is simple and also can be omitted.

Proposition 3.3.11. Suppose that I = ℝ and f : I → X. Then f (⋅) is quasi-asymptotically
uniformly recurrent (quasi-asymptotically almost periodic, S-asymptoticallyω-periodic)
if and only if ̌f (⋅) is quasi-asymptotically uniformly recurrent (quasi-asymptotically al-
most periodic, S-asymptotically ω-periodic).

If f ∈ Q − AUR(ℝ : X) and φ ∈ L1(ℝ) has a compact support, then it can be
easily shown that the convolution φ ∗ f (⋅) := ∫ℝ φ(⋅ − y)f (y) dy belongs to the class
Q − AUR(ℝ : X). Furthermore, any quasi-asymptotically almost periodic function is
bounded by definition, and this is no longer true for quasi-asymptotically uniformly
recurrent functions. In connection with this, we would like to present the following
illustrative example.

Example 3.3.12. Let the function f (⋅) be defined by (2.28). We know that for each real
number c > 0 the function h(t) := min(c, f (t)), t ∈ ℝ is bounded uniformly continu-
ous, uniformly recurrent, and not (Stepanov) p-quasi-asymptotically almost periodic
(p ⩾ 1). On the other hand, Proposition 3.3.9 shows that the function h(⋅) is quasi-
asymptotically uniformly recurrent.
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Furthermore, if f ∈ C1(I : X) and f ′ ∈ C0(I : X), then the Lagrange mean value
theorem implies that the function f (⋅) is quasi-asymptotically uniformly recurrent. In
particular, the function f (t) := ln(1+ t), t ⩾ 0, is quasi-asymptotically uniformly recur-
rent; on the other hand, it can be simply verified that the function f (⋅) is not asymptot-
ically uniformly recurrent. The notion of quasi-asymptotical uniform anti-recurrence
can be also introduced and analyzed (see also [647, Example 2.3, Remark 2.4]).

Example 3.3.13. The function f : [0,∞) → ℝ given by f (t) := sin(ln(1 + t)), t ⩾ 0, is
quasi-asymptotically almost periodic but not asymptotically almost periodic (see [647]
and [882, Example 4.1, Theorem 4.2]). Now we will prove that this function cannot be
asymptotically uniformly recurrent. Suppose the contrary, and fix a sufficiently small
number ε > 0. Then an elementary argumentation shows that there exist a strictly in-
creasing sequence (αn) of positive real numbers tending to plus infinity and a number
t0(ε) > 0 such that | sin(ln(t + αn)) − sin(ln t)| ⩽ 2ε for all t ⩾ t0(ε) and n ∈ ℕ. Hence,


sin ln(1 + (αn/t))

2
cos ln(t(t + αn))

2


⩽ ε, t ⩾ t0(ε), n ∈ ℕ.

Let n0(ε) ∈ ℕ be such that αn ⩾ t0(ε) for n ⩾ n0(ε). Plugging t = kαn, where 1 ⩽ k ⩽ 5,
the above estimate simply implies that there exists a finite constant c > 0 such that


cos

ln(aα2n)
2


⩽ cε, 2 ⩽ a ⩽ 30, n ⩾ n0(ε).

Then we get the existence of a real number cε > 0 such that limε→0+ cε = 0 and
dist(aα2n, {exp((2k + 1)π) : k ∈ ℕ0}) ⩽ e

2cε , 2 ⩽ a ⩽ 30, n ⩾ n0(ε).

It can be simply proved that this estimate cannot be satisfied simultaneously for a = 2
and a = eπ , which yields a contradiction.

In [647, Theorem2.5],wehaveproved that anyasymptotically almost automorphic
function which is also quasi-asymptotically almost periodic is always asymptotically
almost periodic. The arguments contained in the proof of the above-mentioned theo-
rem also show that any asymptotically uniformly recurrent function which is quasi-
asymptotically almost periodic is always asymptotically almost periodic and that the
following result holds true.

Theorem 3.3.14. Let F(I : X) be any space of functions h : I → X satisfying the require-
ment that for each τ ∈ I the supremum formula holds for the function h(⋅ + τ) − h(⋅), that
is,

sup
t∈I h(⋅ + τ) − h(⋅) = sup

t∈I , t⩾ah(⋅ + τ) − h(⋅), a ∈ I .

Then we have:
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(i) [F(I : X) + C0(I : X)] ∩ Q − AUR(I : X) ⊆ AUR(I : X).
(ii) F(I : X) ∩ Q − AUR(I : X) ⊆ UR(I : X).

Proof. We will include the main details of the proof for the sake of completeness. Let
h ∈ F(I : X), q ∈ C0(I : X) and f = h+q ∈ Q−AUR(I : X). By our assumptions, there exist
a strictly increasing sequence (αn) of positive real numbers tending to plus infinity
and a sequence (Mn) of positive real numbers such that, for every integer n ∈ ℕ, there
exists an integer n0 ∈ ℕ with

[h(t + αn) − h(t)] + [q(t + αn) − q(t)]
 ⩽ 1/n, for t ∈ I , |t| ⩾ Mn, n ⩾ n0.

Let n ∈ ℕ be fixed. Since q ∈ C0(I : X), there exists a finite numberM′n ⩾ Mn such that

h(t + αn) − h(t)
 ⩽ 2/n, provided t ∈ I and |t| ⩾ M′n, n ⩾ n0.

Define the function Hn : I → X by Hn(t) := h(t + αn) − h(t), t ∈ I. Since the supremum
formula holds for the function Hn(⋅), we get

sup
t∈I Hn(t)

 = sup
t⩾M′nHn(t)

 ⩽ 2/n.

Hence, limn→+∞ supt∈I ‖h(t+αn)−h(t)‖ = 0 and h(⋅) is thus uniformly recurrent, which
immediately implies part (i). Part (ii) can be deduced similarly.

In the following illustrative application of Theorem 3.3.14, we will consider case
in which I = ℝ and F(I : X) = AA(I : X), the space of all almost automorphic functions
from I into X (see [631] for more details).

Example 3.3.15. Set an := sign(cos(nπ√2)), n ∈ ℤ and define after that the function
f : ℝ → ℝ by f (t) := αan + (1 − α)an+1 if t ∈ [n, n + 1) for some integer n ∈ ℤ and
t = αn + (1 − α)(n + 1) for some number α ∈ (0, 1]. This function is compactly almost
automorphic but not almost periodic; furthermore, we have proved that the function
f (⋅) is not asymptotically uniformly recurrent. Using this fact and Theorem 3.3.14, it
readily follows that the function f (⋅) is not quasi-asymptotically uniformly recurrent,
as well.

3.3.3 Stepanov classes of quasi-asymptotically uniformly recurrent type functions

Throughout this subsection, we use the following conditions:
(A)S I = ℝ or I = [0,∞), ϕ : [0,∞) → [0,∞), p ∈ 𝒫(I), F : I × (0,∞) × I → (0,∞),

F : I ×ℕ→ (0,∞), F : I → (0,∞) and ω ∈ I.
(B)S The same as (A)S with the assumption p ∈ 𝒫(I) replaced by p ∈ 𝒫([0, 1]) therein.
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We first introduce the Stepanov (p,ϕ, F)-classes of quasi-asymptotically uniformly
recurrent functions and the Stepanov (p,ϕ, F)i-classes of quasi-asymptotically uni-
formly recurrent functions, where i = 1, 2 and p ∈ 𝒫(I). In this approach, we may lose
the information about the translation invariance of introduced spaces.

Definition 3.3.16. Let (A)S hold.
(i) A function f : I → X is called Stepanov (p,ϕ, F)-quasi-asymptotically almost pe-

riodic, resp. Stepanov (p,ϕ, F)-quasi-asymptotically uniformly recurrent, if and
only if ϕ(‖f (⋅ + τ) − f (⋅)‖) ∈ Lp(⋅)(K) for any τ ∈ I and any compact set K ⊆ I as well
as for each ε > 0 there exists a finite number L(ε) > 0 such that any interval I′ ⊆ I
of length L(ε) contains at least one number τ ∈ I′ satisfying the requirement that
there exists a finite numberM(ε, τ) > 0 such that

sup|t|⩾M(ε,τ) F(t, ε, τ)ϕ(f (⋅ + τ) − f (⋅))Lp(⋅)[t,t+1] ⩽ ε,
resp. there exist a strictly increasing sequence (αn) of positive real numbers tend-
ing to plus infinity and a sequence (Mn) of positive real numbers such that

lim
n→+∞ sup|t|⩾Mn

F(t, n)ϕ(f (⋅ + αn) − f (⋅)
)Lp(⋅)[t,t+1] = 0. (3.54)

(ii) We say that a function f : I → X is Stepanov (p,ϕ, F)-asymptotically ω-periodic if
and only if ϕ(‖f (⋅ + ω) − f (⋅)‖) ∈ Lp(⋅)(K) for any compact set K ⊆ I and

lim|t|→∞ F(t)ϕ(f (⋅ + ω) − f (⋅)
)Lp(⋅)[t,t+1] = 0.

Definition 3.3.17. Let (A)S hold.
(i) A function f : I → X is called Stepanov (p,ϕ, F)1-quasi-asymptotically almost pe-

riodic, resp. Stepanov (p,ϕ, F)1-quasi-asymptotically uniformly recurrent, if and
only if ‖f (⋅ + τ) − f (⋅)‖ ∈ Lp(⋅)(K) for any τ ∈ I and any compact set K ⊆ I as well as
for each ε > 0 there exists a finite number L(ε) > 0 such that any interval I′ ⊆ I
of length L(ε) contains at least one number τ ∈ I′ satisfying the requirement that
there exists a finite numberM(ε, τ) > 0 such that

sup|t|⩾M(ε,τ) F(t, ε, τ)ϕ(f (⋅ + τ) − f (⋅)Lp(⋅)[t,t+1]) ⩽ ε,
resp. there exist a strictly increasing sequence (αn) of positive real numbers tend-
ing to plus infinity and a sequence (Mn) of positive real numbers such that

lim
n→+∞ sup|t|⩾Mn

F(t, n)ϕ(f (⋅ + αn) − f (⋅)
Lp(⋅)[t,t+1]) = 0.

(ii) We say that a function f : I → X is Stepanov (p,ϕ, F)1-asymptotically ω-periodic
if and only if ‖f (⋅ + ω) − f (⋅)‖ ∈ Lp(⋅)(K) for any compact set K ⊆ I and

lim|t|→∞ F(t)ϕ(f (⋅ + ω) − f (⋅)
Lp(⋅)[t,t+1]) = 0.
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Definition 3.3.18. Let (A)S hold.
(i) A function f : I → X is called Stepanov (p,ϕ, F)2-quasi-asymptotically almost pe-

riodic, resp. Stepanov (p,ϕ, F)2-quasi-asymptotically uniformly recurrent, if and
only if ‖f (⋅ + τ) − f (⋅)‖ ∈ Lp(⋅)(K) for any τ ∈ I and any compact set K ⊆ I as well as
for each ε > 0 there exists a finite number L(ε) > 0 such that any interval I′ ⊆ I
of length L(ε) contains at least one number τ ∈ I′ satisfying the requirement that
there exists a finite numberM(ε, τ) > 0 such that

sup|t|⩾M(ε,τ)ϕ(F(t, ε, τ)f (⋅ + τ) − f (⋅)Lp(⋅)[t,t+1]) ⩽ ε,
resp. there exist a strictly increasing sequence (αn) of positive real numbers tend-
ing to plus infinity and a sequence (Mn) of positive real numbers such that

lim
n→+∞ sup|t|⩾Mn

ϕ(F(t, n)f (⋅ + αn) − f (⋅)
Lp(⋅)[t,t+1]) = 0.

(ii) Then we say that a function f : I → X is Stepanov (p,ϕ, F)2-asymptotically
ω-periodic if and only if ‖f (⋅ + ω) − f (⋅)‖ ∈ Lp(⋅)(K) for any compact set K ⊆ I and

lim|t|→∞ϕ(F(t)f (⋅ + ω) − f (⋅)Lp(⋅)[t,t+1]) = 0.
In the second approach, we will employ condition (B)S and assume therefore that

p ∈ 𝒫([0, 1]). Using the substitution ⋅→ ⋅ + t, the translation invariance of considered
function spaces can be obtained (see, e. g., Remark 3.1.32(iii)).

Definition 3.3.19. Let (B)S hold.
(i) A function f : I → X is called Stepanov [p,ϕ, F]-quasi-asymptotically almost pe-

riodic, resp. Stepanov [p,ϕ, F]-quasi-asymptotically uniformly recurrent, if and
only if ϕ(‖f (⋅ + t + τ) − f (⋅ + t)‖) ∈ Lp(⋅)[0, 1] for any τ, t ∈ I as well as for each ε > 0
there exists a finite number L(ε) > 0 such that any interval I′ ⊆ I of length L(ε)
contains at least one number τ ∈ I′ satisfying the requirement that there exists a
finite numberM(ε, τ) > 0 such that

sup|t|⩾M(ε,τ) F(t, ε, τ)ϕ(f (⋅ + t + τ) − f (⋅ + t))Lp(⋅)[0,1] ⩽ ε,
resp. there exist a strictly increasing sequence (αn) of positive real numbers tend-
ing to plus infinity and a sequence (Mn) of positive real numbers such that

lim
n→+∞ sup|t|⩾Mn

F(t, n)ϕ(f (⋅ + t + αn) − f (⋅ + t)
)Lp(⋅)[0,1] = 0.
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(ii) Then we say that a function f : I → X is Stepanov [p,ϕ, F]-asymptotically
ω-periodic if and only if ϕ(‖f (⋅ + t + ω) − f (⋅ + t)‖) ∈ Lp(⋅)[0, 1] for any t ∈ I
and

lim|t|→∞ F(t)ϕ(f (⋅ + t + ω) − f (⋅ + t)
)Lp(⋅)[0,1] = 0.

Definition 3.3.20. Let (B)S hold.
(i) A function f : I → X is called Stepanov [p,ϕ, F]1-quasi-asymptotically almost pe-

riodic, resp. Stepanov [p,ϕ, F]1-quasi-asymptotically uniformly recurrent, if and
only if ‖f (⋅ + t + τ) − f (⋅ + t)‖ ∈ Lp(⋅)[0, 1] for any τ, t ∈ I as well as for each ε > 0
there exists a finite number L(ε) > 0 such that any interval I′ ⊆ I of length L(ε)
contains at least one number τ ∈ I′ satisfying the requirement that there exists a
finite numberM(ε, τ) > 0 such that

sup|t|⩾M(ε,τ) F(t, ε, τ)ϕ(f (⋅ + t + τ) − f (⋅ + t)Lp(⋅)[0,1]) ⩽ ε,
resp. there exist a strictly increasing sequence (αn) of positive real numbers tend-
ing to plus infinity and a sequence (Mn) of positive real numbers such that

lim
n→+∞ sup|t|⩾Mn

F(t, n)ϕ(f (⋅ + t + αn) − f (⋅ + t)
Lp(⋅)[0,1]) = 0.

(ii) Then we say that a function f : I → X is Stepanov [p,ϕ, F]1-asymptotically
ω-periodic if and only if ‖f (⋅ + t + ω) − f (⋅ + t)‖ ∈ Lp(⋅)[0, 1] for any t ∈ I and

lim|t|→∞ F(t)ϕ(f (⋅ + t + ω) − f (⋅ + t)
Lp(⋅)[0,1]) = 0.

Definition 3.3.21. Let (B)S hold.
(i) A function f : I → X is called Stepanov [p,ϕ, F]2-quasi-asymptotically almost pe-

riodic, resp. Stepanov [p,ϕ, F]2-quasi-asymptotically uniformly recurrent, if and
only if ‖f (⋅ + t + τ) − f (⋅ + t)‖ ∈ Lp(⋅)[0, 1] for any τ, t ∈ I as well as for each ε > 0
there exists a finite number L(ε) > 0 such that any interval I′ ⊆ I of length L(ε)
contains at least one number τ ∈ I′ satisfying the requirement that there exists a
finite numberM(ε, τ) > 0 such that

sup|t|⩾M(ε,τ)ϕ(F(t, ε, τ)f (⋅ + t + τ) − f (⋅ + t)Lp(⋅)[0,1]) ⩽ ε,
resp. there exist a strictly increasing sequence (αn) of positive real numbers tend-
ing to plus infinity and a sequence (Mn) of positive real numbers such that

lim
n→+∞ sup|t|⩾Mn

ϕ(F(t, n)f (⋅ + t + αn) − f (⋅ + t)
Lp(⋅)[0,1]) = 0.
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(ii) Then we say that a function f : I → X is Stepanov [p,ϕ, F]2-asymptotically
ω-periodic if and only if ‖f (⋅ + t + ω) − f (⋅ + t)‖ ∈ Lp(⋅)[0, 1] for any t ∈ I and

lim|t|→∞ϕ(F(t)f (⋅ + t + ω) − f (⋅ + t)Lp(⋅)[0,1]) = 0.
Remark 3.3.22. The notion introduced in the above definitions is rather general. Let
us only say the following: suppose that I = ℝ, the function ϕ(⋅) is locally bounded,
ω ∈ ℝ and

sup
t∈ℝ [f (⋅)Lp(⋅−ω)[t,t+1] + f (⋅)Lp(⋅)[t,t+1]] <∞.

Then it readily follows that f (⋅) is Stepanov (p,ϕ, F)-asymptotically ω-periodic for any
function F ∈ C0(ℝ : X).

The notion introduced in the above definitions extends the notion of Stepanov
p-quasi-asymptotical almost periodicity and the notion of Stepanov p-asymptotical
ω-periodicity (1 ⩽ p <∞). In case that p(x) ≡ p ∈ [1,∞), the Stepanov (p,ϕ, F)-classes
coincide with the corresponding Stepanov [p,ϕ, F]-classes of functions. The most in-
triguing case, without any doubt, is that in which the functions F, F, F are identically
equal to one and ϕ(x) ≡ x; if this is the case and p ∈ 𝒫([0, 1]) (see Definition 3.3.19–
Definition 3.3.21), then we also say that the function f : I → X is Stepanov p(x)-quasi-
asymptotically almost periodic (Stepanov p(x)-quasi-asymptotically uniformly recur-
rent, Stepanov p(x)-asymptoticallyω-periodic). Inwhat follows, by Sp(x)Q−AAP(I : X)
(Sp(x)Q−AUR(I : X), Sp(x)SAPω(I : X)) we denote the collection of all such functions. It
can be easily verified that the function f : I → X is Stepanov p(x)-quasi-asymptotically
almost periodic (Stepanov p(x)-quasi-asymptotically uniformly recurrent, Stepanov
p(x)-asymptotically ω-periodic) if and only if the function ̂f : I → Lp(x)([0, 1] : X)
is quasi-asymptotically almost periodic (quasi-asymptotically uniformly recurrent,
S-asymptotically ω-periodic). This enables one to transfer the statements of Proposi-
tion 3.3.11 and Theorem 3.3.14 to the Stepanov classes (see also [647, Theorem 2.10,
Proposition 2.11]) as well as to conclude that Sp(x)SAPω(I : X) ⊆ Sp(x)Q − AAP(I : X) ⊆
Sp(x)Q − AUR(I : X) for any p ∈ 𝒫([0, 1]); see also [647, Proposition 2.7].

Unfortunately, the spaces of (Stepanov p(x)-) quasi-asymptotically uniformly re-
current type functions are not closed under the operations of pointwise addition and
multiplication. For instance, the consideration from [647, Example 2.16–Example 2.18]
enables one to see that the following hold:
(i) There exist a continuous periodic function f : ℝ→ ℝ and a function g ∈ SAP2(ℝ :
ℝ) such that the function (f ⋅g)(⋅) is not quasi-asymptotically uniformly recurrent.

(ii) There exist a Stepanov p-almost periodic function f : ℝ→ ℝ, where the exponent
p ⩾ 1 can be chosen arbitrarily, and a function g ∈ SAP4(ℝ : ℝ) such that (f ⋅ g)(⋅)
does not belong to the class S1Q − AUR(ℝ : ℝ).
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(iii) There exist a continuous periodic function f : [0,∞) → ℝ and a function g ∈
SAP4([0,∞) : ℝ) such that the function (f + g)(⋅) does not belong to the class
S1Q − AUR([0,∞) : ℝ).

We continue by stating the following.

Proposition 3.3.23. Suppose that ϕ(⋅) is continuous for t = 0, ϕ(0) = 0 and any of the
functions F, F, F is bounded. Then any quasi-asymptotically uniformly recurrent func-
tion f : I → X is Stepanov (p,ϕ, F)-quasi-asymptotically uniformly recurrent, Stepanov
[p,ϕ, F]-quasi-asymptotically uniformly recurrent as well as Stepanov (p,ϕ, F)i-quasi-
asymptotically uniformly recurrent and Stepanov [p,ϕ, F]i-quasi-asymptotically uni-
formly recurrent (i = 1, 2). The same statement holds for the corresponding classes of
quasi-asymptotically almost periodic functions and S-asymptotically ω-periodic func-
tions.

Proof. Wewill provide the main details of the proof for the class of Stepanov [p,ϕ, F]-
quasi-asymptotically uniformly recurrent functions. Let (αn) and (Mn) be the se-
quences from Definition 3.3.8, and let ε > 0. Then there exists δ > 0 such that
|ϕ(t)| = |ϕ(t) −ϕ(0)| < ε, |t| ⩽ δ. Hence, supϕ([0, δ]) ⩽ ε. By our assumption, we have
the existence of an integer n0 ∈ ℕ such that

sup|t|⩾Mn

f (t + αn) − f (t)
 ⩽ δ, n ⩾ n0.

Let n ∈ ℕ with n ⩾ n0 be fixed. Then, for every t ⩾ M′n := Mn + 1, we have |t + x| ⩾
|t| − 1 ⩾ Mn, x ∈ [0, 1]. This implies that, for every t ⩾ M′n, x ∈ [0, 1] and λ ⩾ ε, we have
ϕ(‖f (t + αn + x) − f (t + x)‖)/λ ⩽ 1, φp(x)(ϕ(‖f (t + αn + x) − f (t + x)‖)/λ) ⩽ 1 and therefore

1

∫
0

φp(x)(ϕ(f (t + αn + x) − f (t + x))/λ) dx ⩽ 1.
Thus,

[ε,∞) ⊆ {λ > 0 :
1

∫
0

φp(x)(ϕ(f (t + αn + x) − f (t + x))/λ) dx ⩽ 1},
which yields

ϕ(f (⋅ + t + αn) − f (⋅ + t)
)Lp(⋅)[0,1] ⩽ ε, n ⩾ n0.

This completes the proof by the boundedness of the function F(⋅, ⋅).

As an immediate consequence, we have the following statement.
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Corollary 3.3.24. Let ω ∈ I and p ∈ 𝒫([0, 1]). Then any quasi-asymptotically al-
most periodic (quasi-asymptotically uniformly recurrent, S-asymptotically ω-periodic)
function f : I → X is Stepanov p(x)-quasi-asymptotically almost periodic (Stepanov
p(x)-quasi-asymptotically uniformly recurrent, Stepanov p(x)-asymptotically ω-peri-
odic).

Using the trivial inequalities and Lemma 1.1.7, we can clarify numerous inclusions
for the introduced classes of functions. For instance, we can simply deduce the follow-
ing:
(i) Sp(x)SAPω(I : X) ⊆ S1SAPω(I : X), Sp(x)Q − AAP(I : X) ⊆ S1Q − AAP(I : X) and

Sp(x)Q − AUR(I : X) ⊆ S1Q − AUR(I : X).
(ii) Suppose p ∈ D+([0, 1]) and 1 ⩽ p− ⩽ p(x) ⩽ p+ < ∞ for a. e. x ∈ [0, 1]. Then we

have Sp
+
SAPω(I : X) ⊆ Sp(x)SAPω(I : X) ⊆ Sp−SAPω(I : X), Sp+Q − AAP(I : X) ⊆

Sp(x)Q − AAP(I : X) ⊆ Sp−Q − AAP(I : X), and Sp+Q − AUR(I : X) ⊆ Sp(x)Q − AUR(I :
X) ⊆ Sp

−
Q − AUR(I : X).

(iii) Suppose p, q ∈ 𝒫([0, 1]) and p ⩽ q a. e. on [0, 1]. Then we have Sq(x)SAPω(I : X) ⊆
Sp(x)SAPω(I : X), Sq(x)Q − AAP(I : X) ⊆ Sp(x)Q − AAP(I : X) and Sq(x)Q − AUR(I :
X) ⊆ Sp(x)Q − AUR(I : X).

These inclusions can be simply transferred and reformulated for the general classes
of functions introduced in Definition 3.3.16–Definition 3.3.18 and Definition 3.3.19–
Definition 3.3.21; details can be left to the interested reader.

The first part of subsequent result is very similar to Proposition 3.1.27; the proof is
based on the use of Jensen integral inequality and therefore is omitted.

Proposition 3.3.25.
(i) Suppose that ϕ(⋅) is convex, p(x) ≡ 1 and f ∈ L1loc(I : X). If f (⋅) is Stepanov
(p, 1, F)-quasi-asymptotically uniformly recurrent, then f (⋅) is Stepanov (p, 1, F)1-
quasi-asymptotically uniformly recurrent. If the function ϕ(⋅) is concave, then the
above inclusion reverses.

(ii) Suppose that there exists a function φ : [0,∞)→ [0,∞) such that ϕ(xy) ⩽ φ(x)ϕ(y)
for all x, y ⩾ 0. If f (⋅) is Stepanov (p,ϕ, F)1-quasi-asymptotically uniformly recur-
rent, resp. Stepanov [p,ϕ, F]1-quasi-asymptotically uniformly recurrent, then f (⋅)
is Stepanov (p,ϕ, F1)2-quasi-asymptotically uniformly recurrent, resp. Stepanov
[p,ϕ, F1]2-quasi-asymptotically uniformly recurrent, provided that F = φ ∘ F1.

Furthermore, the same statements hold for the corresponding classes of quasi-asymp-
totically almost periodic functions and S-asymptotically ω-periodic functions.

The basic structural properties of quasi-asymptotically almost periodic functions
clarified in [647, Theorem 2.13] can also be formulated in our framework, for the gen-
eral classes of functions introduced in this subsection. We leave it to the reader to
make this explicit.
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If p ∈ [1,∞), then any Stepanov p-quasi-asymptotically almost periodic function
is Weyl p-almost periodic (see [647, Proposition 2.12]). The argumentation used in the
proof of this result also shows that any Stepanov p-quasi-asymptotically uniformly
recurrent function is Weyl p-uniformly recurrent. In the general case, we will clarify
only one result of this type regarding the notion introduced in Definition 3.3.1 and
Definition 3.3.16. Before doing so, observe that, if p ∈ 𝒫(I), a, b, c ∈ I, a < b < c and
f ∈ Lp(x)[a, c], then f ∈ Lp(x)[a, b], f ∈ Lp(x)[b, c] and

‖f ‖Lp(x)[a,c] ⩽ ‖f ‖Lp(x)[a,b] + ‖f ‖Lp(x)[b,c]. (3.55)

Proposition 3.3.26. Suppose that the function f : I → X is Stepanov (p,ϕ, F)-quasi-
asymptotically uniformly recurrent. If F1 : (0,∞) × I → (0,∞) satisfies

lim
n→+∞ lim sup

l→+∞ sup
t∈I F1(l, t)[ 1

F(t, n)
+ ⋅ ⋅ ⋅ +

1
F(⌊t + l⌋, n)

] <∞ (3.56)

and

lim
l→+∞ supt∈I F1(l, t) = 0, (3.57)

then the function f (⋅) is Weyl (p(x),ϕ, F1)-uniformly recurrent.

Proof. By our assumption, we have ϕ(‖f (⋅ + τ) − f (⋅)‖) ∈ Lp(⋅)(K) for any τ ∈ I and
any compact set K ⊆ I; furthermore, we know that there exist a strictly increasing
sequence (αn) of positive real numbers tending to plus infinity and a sequence (Mn) of
positive real numbers such that (3.54) holds. We will prove that (3.52) holds with the
function F(⋅, ⋅) replaced therein with the function F1(⋅, ⋅). Let n ∈ ℕ and l > 0 be fixed.
If t ∈ I, then there exist four possibilities:
1. |t| ⩾ Mn and |t + l| ⩾ Mn;
2. |t| ⩾ Mn and |t + l| ⩽ Mn;
3. |t| ⩽ Mn and |t + l| ⩾ Mn;
4. |t| ⩽ Mn and |t + l| ⩽ Mn.

The consideration is similar for all these cases and we will give the proof for case [1.],
only. If t ⩾ 0, then we have t ⩾ Mn, t + l ⩾ Mn and therefore

[F1(l, t)[ϕ(
f (⋅ + αn) − f (⋅)

)Lp(⋅)[t,t+l]]] ⩽ F1(l, t)[ ε
F(t, n)
+ ⋅ ⋅ ⋅ +

ε
F(⌊t + l⌋, n)

];

see also (3.55). Employing condition (3.56), we immediately get (3.52). If t ⩽ 0, then we
have t ⩽ −Mn and t + l ⩾ Mn for a sufficiently large l > 0 (it suffices to consider only
this case because, in (3.52), we operate with lim supl→+∞ ⋅). We have

[F1(l, t)[ϕ(
f (⋅ + αn) − f (⋅)

)Lp(⋅)[t,t+l]]]
⩽ [F1(l, t)[ϕ(

f (⋅ + αn) − f (⋅)
)Lp(⋅)[t,−Mn] + ϕ(f (⋅ + αn) − f (⋅))Lp(⋅)[−Mn ,Mn]
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+ ϕ(f (⋅ + αn) − f (⋅)
)Lp(⋅)[Mn ,t+l]]]

⩽ F1(l, t)[(
ε

F(t, n)
+ ⋅ ⋅ ⋅ +

ε
F(t + ⌊−t −Mn⌋, n)

)

+ (
ε

F(Mn, n)
+ ⋅ ⋅ ⋅ +

ε
F(Mn + ⌊t + l −Mn⌋, n)

)]

+ F1(l, t)ϕ(
f (⋅ + αn) − f (⋅)

)Lp(⋅)[−Mn ,Mn]
⩽ 2F1(l, t)[

ε
F(t, n)
+ ⋅ ⋅ ⋅ +

ε
F(⌊t + l⌋, n)

]

+ F1(l, t)ϕ(
f (⋅ + αn) − f (⋅)

)Lp(⋅)[−Mn ,Mn].
Using (3.56)–(3.57), we get (3.52).

3.3.4 Composition principles for the class of quasi-asymptotically uniformly
recurrent functions

In this subsection, we will briefly consider quasi-asymptotically uniformly recurrent
functions depending on two parameters and related composition theorems (for the
sake of brevity, we will say only a few words about the Stepanov classes). In order
to unify several different approaches used in the existing literature (see also Defini-
tion 2.4.42–Definition 2.4.43 and Theorem 2.4.44), in this subsection we will assume
that B ⊆ P(Y), where P(Y) denotes the power set of Y ; usually, B denotes the collec-
tion of all bounded subsets of Y or all compact subsets of Y .

Definition 3.3.27.
(i) By C0,B(I × Y : X) we denote the space of all continuous functions H : I × Y → X

such that lim|t|→+∞ H(t, y) = 0 uniformly for y in any subset B ∈ B.
(ii) A continuous function F : I × Y → X is said to be uniformly continuous on B,

uniformly for t ∈ I if and only if for every ε > 0 and for every B ∈ B there exists
a number δε,B > 0 such that ‖F(t, x) − F(t, y)‖ ⩽ ε for all t ∈ I and all x, y ∈ B
satisfying ‖x − y‖ ⩽ δε,B.
We continue by introducing the following definition.

Definition 3.3.28. Suppose that F : I × Y → X is a continuous function and B ⊆ P(Y).
Then we say that F(⋅, ⋅) is quasi-asymptotically uniformly recurrent, uniformly on B if
and only if for every B ∈ B there exist a strictly increasing sequence (αn) of positive
real numbers tending to plus infinity and a sequence (Mn) of positive real numbers
such that:

lim
n→+∞ sup|t|⩾Mn

F(t + αn, x) − F(t, x)
 = 0, x ∈ B. (3.58)
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Denote by Q−AURB(I ×Y : X) the set consisting of all quasi-asymptotically uniformly
recurrent, uniformly on B functions from I × Y into X.

Using the argumentation employed in the proofs of [364, Theorem 3.30, Theorem
3.31], we may deduce the following results.

Theorem 3.3.29. Suppose that B ⊆ P(Y), R(f ) ∈ B, F ∈ Q − AURB(I × Y : X) and
f ∈ Q − AUR(I : Y). If there exist a finite number L > 0 such that (2.51) holds with a
strictly increasing sequence (αn) of positive real numbers tending to plus infinity and a
sequence (Mn) of positive real numbers such that (3.58) holds with B = R(f ) and (2.3)
holds, then the function t → F(t, f (t)), t ∈ I, belongs to the class Q − AUR(I : X).

Theorem 3.3.30. Suppose that B ⊆ P(Y), R(f ) ∈ B, F ∈ Q − AURB(I × Y : X) and
f ∈ Q − AUR(I : Y). If F : I × Y → X is uniformly continuous on B, uniformly for t ∈ I
and there exist a strictly increasing sequence (αn) of positive real numbers tending to
plus infinity and a sequence (Mn) of positive real numbers such that (3.58) holds with
B = R(f ) and (2.3) holds, then the function t → F(t, f (t)), t ∈ I belongs to the class
Q − AUR(I : X).

Similarly as in Definition 3.3.28, we can introduce the notion of a quasi-asymp-
totically almost periodic, uniformly onB function and the notion of a S-asymptotically
ω-periodic, uniformly on B function. It is worth noticing that Theorem 3.3.29 and The-
orem 3.3.30 continue to hold in this framework.

In [647, Definition 2.22], we have introduced the notion of a Stepanov p-quasi-
asymptotically almost periodic function depending on two parameters (1 ⩽ p <∞);
thenotionof aStepanovp(x)-quasi-asymptotically almost periodic function (Stepanov
p(x)-quasi-asymptoticallyuniformly recurrent function, Stepanovp(x)-asymptotically
ω-periodic function) can be introduced in a similar fashion. The interested reader
should try to extend [647, Theorem 2.23, Theorem 2.24] in this context.

3.3.5 Invariance of generalized quasi-asymptotical uniform recurrence under the
actions of convolution products

This subsection investigates the invariance of generalized quasi-asymptotical uniform
recurrence under the actions of finite and infinite convolution products. Using the
same arguments as in the proofs of [647, Proposition 3.1, Proposition 3.2], we can de-
duce the validity of the following statement.

Proposition 3.3.31.
(i) Suppose that (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and
∫
∞
0 ‖R(s)‖ ds < ∞. If f ∈ Q − AUR([0,∞) : X) ∩ L

∞([0,∞) : X), then the function
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F(⋅), defined by

F(t) :=
t

∫
0

R(t − s)f (s) ds, t ⩾ 0, (3.59)

belongs to the class Q − AUR([0,∞) : Y) ∩ L∞([0,∞) : Y).
(ii) Suppose that (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and
∫
∞
0 ‖R(s)‖ ds <∞. If f ∈ Q−AUR(ℝ : X)∩L

∞(ℝ : X), then the function F(t), defined
by (2.46), with the function F(⋅) replaced therein with the function F(⋅), belongs to
the class Q − AUR(ℝ : Y) ∩ L∞(ℝ : Y).
We would like to illustrate Proposition 3.3.31 by the following example.

Example 3.3.32. Suppose that X = H is an infinite-dimensional Hilbert space with
inner product ⟨⋅, ⋅⟩. In [770], R. K. Miller and R. L. Wheeler have investigated the well-
posedness of the following abstract Cauchy problem of non-scalar type

x′(t) = Au(t) + t

∫
0

b(t − s)(A + aI)u(s) ds + f (t), x(0) = x0; (3.60)

here, b(t) is a scalar-valued kernel, b ∈ C1([0,∞)), a ∈ ℂ, f : [0,∞) → H is con-
tinuous and A is a densely defined, self-adjoint closed linear operator in H. If the as-
sumptions [770, (A1)–(A5)] hold with the coefficients α = β0 = β1 = 0, then [770,
Theorem 7] implies that there exists a unique residual resolvent (R(t))t⩾0 for (3.60)
such that ‖R(⋅)‖ ∈ Lp([0,∞)) for 2 ⩽ p < ∞. Furthermore, if the assumptions [770,
(A1)–(A5)] hold with the coefficients α = β0 = β1 = 0 and the assumption [770,
(A6)] holds provided that Bσ(L) ̸= 0 (see [770, p. 273] for the notion), then [770, The-
orem 8] implies that there exists a unique residual resolvent (R(t))t⩾0 for (3.60) such
that ‖R(⋅)‖ ∈ Lp([0,∞)) for 1 ⩽ p <∞; if this is the case, then Proposition 3.3.31 is ap-
plicable since, due to [770, Theorem 2], the unique solution of (3.60) for all x0 ∈ D(A)
and f ∈ C1([0,∞) : X) is given by

x(t) = R(t)x0 +
t

∫
0

R(t − s)f (s) ds, t ⩾ 0.

For some other foundational papers concerning integrability of solution operator
families appearing in the theory of abstract Volterra integro-differential equations,
we can recommend for the reader [456, 487, 695, 771]. A comprehensive survey of non-
updated results can be found in [857, Section 10].

Concerning the invariance of Stepanov quasi-asymptotically almost periodic
properties analyzed in the previous subsection, it would be really difficult and rather
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long to examine all introduced classes. Primarily for this reason, we will focus our
attention on the notion introduced in Definition 3.3.19, only.

The following result admits a simple reformulation for the corresponding classes
of quasi-asymptotically almost periodic functions and S-asymptotically ω-periodic
functions.

Proposition 3.3.33. Suppose that (ak) is a sequence of positive real numbers such that
∑∞k=0 ak = 1, φ : [0,∞) → [0,∞), ϕ : [0,∞) → [0,∞) is a convex monotonically
increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0, p, q ∈ 𝒫([0, 1]), 1/p(x)+
1/q(x) = 1 and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying

M :=
∞
∑
k=0 akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1] <∞. (3.61)

Suppose, further, that for every x ∈ ℝ we have ∫∞−x ‖R(v + x)‖‖ ̌f (v)‖ dv <∞, and that ̌f (⋅)
is Stepanov [p,ϕ, F]-quasi-asymptotically uniformly recurrent, M1 := supt∈ℝ[ϕ(‖f (t −
s)‖)]Lp(s)[0,1] <∞, F1 : (0,∞)×ℕ→ (0,∞) is bounded and satisfies the requirement that
there exists a finite real constant c > 0 such that F1(t, n) ⩽ cF(t, n) for all t > 0andn ∈ ℕ.
Then the function F : ℝ→ Y, given by (2.46), with the function F(⋅) replaced therein with
the functionF(⋅), is well defined and Stepanov [∞,ϕ, F1]-quasi-asymptotically uniformly
recurrent.

Proof. Since for every x ∈ ℝwehave∫∞−x ‖R(v+x)‖‖ ̌f (v)‖ dv <∞, it canbe easily verified
that the function F(⋅) is well defined and that the integral which defines F(x + τ)−F(x)
is absolutely convergent for every x ∈ ℝ and τ ∈ ℝ. For the rest, let (αn) and (Mn)
be the sequences from Definition 3.3.19, for the function f (⋅) replaced therein with the
function ̌f (⋅). Let ε > 0 be given, and let n0 ∈ ℕ be such that ϕ(‖f (t + αn + ⋅) − f (t +
⋅)‖)Lp(⋅)[0,1] < ε/F(t, n), n ⩾ n0, |t| ⩾ Mn. Clearly, there exists k0(ε) ∈ ℕ such that∞

∑
k=k0(ε) akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1] < ε. (3.62)

Let αn ⩾ k0(ε) for n ⩾ n1. Let n ∈ ℕ with n ⩾ max(n0, n1) be fixed, and let |t| ⩾ M′n :=
Mn + αn + 2. Then for each x ∈ [0, 1]we have (apply the Jensen inequality, (3.1) and the
Hölder inequality)

F(t + x + αn) − F(t + x)


⩽ ϕ(
∞
∫
0

R(s)

f (x + t + αn − s) − f (x + t − s)

 ds)

= ϕ(
∞
∑
k=0 ak

1

∫
0

a−1k R(s + k)f (x + t + αn − k − s) − f (x + t − k − s) ds)
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⩽
∞
∑
k=0 akϕ(

1

∫
0

a−1k R(s + k)f (x + t + αn − k − s) − f (x + t − k − s) ds)
⩽
∞
∑
k=0 akφ(a−1k )

1

∫
0

ϕ(R(s + k)

f (x + t + αn − k − s) − f (x + t − k − s)

 )ds

⩽ 2
∞
∑
k=0 akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1]
× [ϕ(f (x + t + αn − k − ⋅) − f (x + t − k − ⋅)

 )]Lp(⋅)[0,1],
which implies that for t ⩽ −M′n we have

F(t + x + αn) − F(t + x)
 ⩽ 2

∞
∑
k=0 akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1] ε

F(t, n)

⩽ 2c
∞
∑
k=0 akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1] ε

F1(t, n)
.

If t ⩾ M′n, then we have ⌊t −Mn⌋ ⩾ k0(ε) and (3.62) implies

F(t + x + αn) − F(t + x)


⩽ 2
⌊t−Mn⌋
∑
k=0 akφ(a

−1
k )[φ(
R(⋅ + k)

)]Lq(⋅)[0,1]
× [ϕ(f (x + t + αn − k − s) − f (x + t − k − s)

)]Lp(s)[0,1]
+ 2
⌈t+Mn⌉
∑

k=⌊t−Mn⌋ akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1]
× [ϕ(f (x + t + αn − k − s) − f (x + t − k − s)

)]Lp(s)[0,1]
+ 2

∞
∑

k=⌈t+Mn⌉ akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1]
× [ϕ(f (x + t + αn − k − s) − f (x + t − k − s)

)]Lp(s)[0,1]
⩽ 2 ε

F(t, n)
(
⌊t−Mn⌋
∑
k=0 + ∞

∑
k=⌈t+Mn⌉)akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1] + ε ⋅ φ(2) ⋅M1

⩽ 2c ε
F1(t, n)
(
⌊t−Mn⌋
∑
k=0 + ∞

∑
k=⌈t+Mn⌉)akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1] + ε ⋅ φ(2) ⋅M1,

since

[ϕ(f (x + t + αn − k − s) − f (x + t − k − s)
)]Lp(s)[0,1]

⩽ [ϕ(f (x + t + αn − k − s)
 +
f (x + t − k − s)

)]Lp(s)[0,1]
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⩽ φ(2)[ 1
2
ϕ(f (x + t + αn − k − s)

) +
1
2
ϕ(f (x + t − k − s)

)]
Lp(s)[0,1]

⩽ φ(2) ⋅M1.

This simply completes the proof.

We will also state the following special corollary, which generalizes [647, Propo-
sition 3.4].

Proposition 3.3.34. Suppose that q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family satisfying M := ∑∞k=0 ‖R(⋅ + k)‖Lq(x)[0,1] <
∞. If ̌f : ℝ → X is Stepanov p(x)-quasi-asymptotically uniformly recurrent (Stepanov
p(x)-quasi-asymptotically almost periodic, Stepanov p(x)-asymptotically ω-periodic)
and Sp(x)-bounded, then the functionF : ℝ→ Y, given by (2.46), with the function F(⋅) re-
placed therein with the function F(⋅), is well defined, bounded and quasi-asymptotically
uniformly recurrent (quasi-asymptotically almost periodic, S-asymptotically ω-period-
ic).

Proof. We will consider the Stepanov p(x)-quasi-asymptotically uniformly recurrent
functions, only. Since∑∞k=0 ‖R(⋅+k)‖Lq(x)[0,1] <∞ and ̌f (⋅) is Sp(x)-bounded,we canapply
the same arguments as in the proofs of [372, Proposition 6.1] and [373, Proposition 5.1]
in order to see that the function F(⋅) is bounded and continuous. The remainder of
the proof follows from the computations carried out in the proof of Proposition 3.3.33,
with p(x) = φ(x) = ϕ(x) = x and F(t, n) = F1(t, n) = 1.

The following result regarding the finite convolution product also admits a refor-
mulation for the corresponding classes of quasi-asymptotically almost periodic func-
tions and S-asymptotically ω-periodic functions.

Proposition 3.3.35. Suppose that (ak) is a sequence of positive real numbers such that
∑∞k=0 ak = 1, φ : [0,∞) → [0,∞), ϕ : [0,∞) → [0,∞) is a convex monotonically
increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0, p, q ∈ 𝒫([0, 1]), 1/p(x)+
1/q(x) = 1 and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying
the requirement that (3.61) holds. Suppose, further, that the mapping F : [0,∞) → Y,
given by (3.59), is well defined and that f (⋅) is Stepanov [p,ϕ, F]-quasi-asymptotically
uniformly recurrent,

M1 := sup
t⩾0 sup

t∈[0,s][ϕ(f (t − s))]Lp(s)[0,1] <∞,
F1 : (0,∞) × ℕ → (0,∞) is bounded and satisfies the requirement that there exists a
finite real constant c > 0 such that F1(t, n) ⩽ cF(t, n) for all t > 0 and n ∈ ℕ. Then the
function F(⋅) is Stepanov [∞,ϕ, F1]-quasi-asymptotically uniformly recurrent.

Proof. The proof is very similar to the proof of Proposition 3.3.35 and we will only out-
line two details. Let ε > 0 be fixed, and let the numbersMn > 0 and k0(ε), n0, n1 ∈ ℕ
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be as above. Then for each x ∈ [0, 1], |t| ⩾ M′n + αn + 2 and n ∈ ℕ with n ⩾ max(n0, n1)
we have

ϕ(F(x + t + k + αn) − F(x + t + k)
)

⩽
⌈t⌉
∑
k=0 akφ(a−1k )[φ(R(⋅ + k))]Lq(⋅)[0,1]
× [ϕ(f (x + t + k + αn − s) − f (x + t + k − s)

)]Lp(s)[0,1].
After that, we can decompose the sum∑⌈t⌉k=0 ⋅ into two parts:⌈t⌉

∑
k=0 ⋅ =

k0(ε)
∑
k=0 ⋅ + ⌈t⌉∑k=k0(ε) ⋅,

and apply similar arguments. This completes the proof in a routine manner.

Similarly we can deduce the following extension of [647, Proposition 3.3] (see also
the proof of [373, Proposition 5.1]).

Proposition 3.3.36. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family satisfying M := ∑∞k=0 ‖R(⋅ + k)‖Lq(x)[0,1] <
∞. If f : [0,∞) → X is Stepanov p(x)-quasi-asymptotically almost periodic (Stepanov
p(x)-quasi-asymptotically uniformly recurrent, Stepanov p(x)-asymptotically ω-period-
ic), f (t − ⋅) ∈ Lp(x)[0, t] for 0 < t ⩽ 1 and

sup
k∈ℕ0 supt⩾0 f (t + k − ⋅)Lp(⋅)[0,1] <∞,

then the function F : [0,∞) → Y, given by (3.59), is well defined, bounded and quasi-
asymptotically almost periodic (quasi-asymptotically uniformly recurrent, S-asymp-
totically ω-periodic).

Remark 3.3.37. We would like to note that it is very difficult to remove the assump-
tion on the boundedness of the function f (⋅) in Proposition 3.3.31, resp. the Stepanov
p(x)-boundedness of functions in Proposition 3.3.34–Proposition 3.3.36, in contrast to
our recent research study [648].

3.3.6 Applications to the abstract Volterra integro-differential equations

Concerning possible applications of our theoretical results to the abstract Volterra
integro-differential equations in Banach spaces, we would like to say first a fewwords
about the abstract nonautonomous differential equations of first order. In the first part
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of [647, Section 4], we have investigated the generalized almost periodic properties of
the mild solutions to the abstract Cauchy problems

u′(t) = A(t)u(t) + f (t), t ∈ ℝ, (3.63)
u′(t) = A(t)u(t) + f (t), t > 0; u(0) = x, (3.64)

where the operator family A(⋅) satisfies certain conditions. In [647, Subsection 4.1], we
have investigated the generalized almost periodic properties of the semilinear ana-
logues to the abstract Cauchy problems (3.63)–(3.64).

The statement of [647, Theorem 4.1] can be straightforwardly extended for the in-
homogeneities f ∈ Sp(x)Q−AAP([0,∞) : X) by replacing the number q in the equation
[647, (4.1)] with the function q(x) and using the translation ⋅ → ⋅+k (1/p(x)+1/q(x) = 1)
therein; we can also consider the inhomogeneities f ∈ Sp(x)Q −AUR([0,∞) : X)which
are Stepanov p(x)-bounded, by slightly modifying the equation [647, (4.1)] in the for-
mulation of this result. Similar comments can be made for [647, Theorem 4.3]. Con-
cerning semilinear problems, the statements of [647, Theorem4.6, Theorem4.7] canbe
reformulated by replacing the space Q −AAP(I : X)with the space BQ −AUR(αn)(I : X)
consisting of all bounded functions f : I → X which are quasi-asymptotically uni-
formly recurrent and for which there exists a fixed sequence (αn) of positive real num-
bers such that (3.53) holds; equipped with the metric d(⋅, ⋅) := ‖ ⋅ − ⋅ ‖∞, this space
becomes a complete metric space. The conclusions established in [647, Example 2.8]
also can be reexamined in this context.

By a mild solution of the abstract semilinear Cauchy inclusion

(DFP)F,γ,s : { Dγ
t u(t) ∈ 𝒜u(t) + F(t, u(t)), t > 0,

u(0) = x0,

we mean any function u ∈ C([0,∞) : X) satisfying

u(t) = Sγ(t)x0 +
t

∫
0

Rγ(t − s)F(s, u(s)) ds, t ⩾ 0.

Now we are in a position to state the following result.

Theorem 3.3.38. Suppose that the function F : ℝ × X → X is continuous and satis-
fies the requirement that for each bounded subset B of X there exist a finite real con-
stant MB > 0 and a sequence (Mn) of positive real numbers such that (3.58) holds and
supt∈ℝ supx∈B ‖F(t, x)‖ ⩽ MB. Let there exist a finite number L > 0 such that (2.51) holds,
and let there exist an integer n ∈ ℕ such that An < 1, where

An := sup
t⩾0

t

∫
0

xn

∫
0

⋅ ⋅ ⋅

x2

∫
0

LnRγ(t − xn)


n
∏
i=2Rγ(xi − xi−1) dx1 dx2 ⋅ ⋅ ⋅ dxn.

Then the abstract fractional Cauchy inclusion (DFP)F,γ,s has a unique solution which
belongs to the space BQ − AUR(αn)([0,∞) : X).
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Proof. Set, for every u ∈ Cb([0,∞) : X),

(ϒu)(t) := Sγ(t)x0 +
t

∫
0

Rγ(t − s)F(s, u(s)) ds, t ⩾ 0.

Suppose that u ∈ BQ − AUR(αn)([0,∞) : X). Then R(u) = B is a bounded set and
our assumption implies that the mapping t → F(t, u(t)), t ∈ ℝ is bounded. Ap-
plying Theorem 3.3.29, we see that the function F(⋅, u(⋅)) is quasi-asymptotically
uniformly recurrent. After that, we can employ Proposition 3.3.31(i) and Proposi-
tion 3.3.10 (there is no need to say that we can retain the same sequence (αn) after
applying the above-mentioned statements, with the meaning clear) in order to see
that ϒu ∈ BQ − AUR(αn)([0,∞) : X). Hence, the mapping ϒ(⋅) is well defined. Since

(ϒ
nu) − (ϒnv)∞ ⩽ An‖u − v‖∞, u, v ∈ Cb([0,∞) : X), n ∈ ℕ,

thewell-knownextensionof theBanach contractionprinciple shows that themapping
ϒ(⋅) has a unique fixed point. This completes the proof.

Let Ω be a bounded domain in ℝn, b > 0, m(x) ⩾ 0 a. e. x ∈ Ω, m ∈ L∞(Ω),
1 < p < ∞ and X := Lp(Ω). Suppose that the operator A := Δ − b acts on X with the
Dirichlet boundary conditions, and that B is the multiplication operator by the func-
tionm(x). Then we can apply Theorem 3.3.38 with 𝒜 = AB−1 in the study of existence
and uniqueness of bounded quasi-asymptotically uniformly recurrent solutions of the
semilinear fractional Poisson heat equation

Dγ
t [m(x)v(t, x)] = (Δ − b)v(t, x) + f (t,m(x)v(t, x)), t ⩾ 0, x ∈ Ω;

v(t, x) = 0, (t, x) ∈ [0,∞) × 𝜕Ω,
m(x)v(0, x) = u0(x), x ∈ Ω.

It is alsoworthnoting thatwe canapplyTheorem3.3.38 in the analysis of existence
and uniqueness of bounded quasi-asymptotically uniformly recurrent solutions of the
following fractional semilinear equation with higher-order differential operators in
the Hölder space X = Cα(Ω):

{
Dγ
t u(t, x) = −∑|β|⩽2m aβ(t, x)Dβu(t, x) − σu(t, x) + f (t, u(t, x)), t ⩾ 0, x ∈ Ω;

u(0, x) = u0(x), x ∈ Ω,

where α ∈ (0, 1), m ∈ ℕ, Ω is a bounded domain in ℝn with boundary of class C4m,
Dβ = ∏ni=1( 1i 𝜕𝜕xi )βi , the functions aβ : Ω → ℂ satisfy certain conditions and σ > 0 is
sufficiently large. For more details, see [631].

Basically, our results on the invariance of generalized quasi-asymptotical almost
periodicity and uniform recurrence, established in Subsection 3.3.5, can be applied at
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any place where the variation of parameters formula takes effect. For our purposes, it
will be very important to reexamine [1067, Example 5]. It is well known that the unique
regular solution of the wave equation uxx(x, t) = utt(x, t), x ∈ ℝ, t ⩾ 0, accompanied
with the initial conditions u(x,0) = f (x), x ∈ ℝ, ut(x,0) = g(x), x ∈ ℝ, is given by the
famous d’Alembert formula

u(x, t) := 1
2
[f (x + t) + f (x − t)] + 1

2

x+t
∫
x−t g(s) ds, x ∈ ℝ, t ⩾ 0. (3.65)

Let t0 > 0 be a fixed real number. If the function f (⋅) is quasi-asymptotically uniformly
recurrent, resp. g(⋅) is quasi-asymptotically uniformly recurrent, then the function
x → 1/2[f (x + t0) + f (x − t0)], x ∈ ℝ, resp.

Ht0 (x) :=
1
2

x+t0
∫

x−t0 g(s) ds, x ∈ ℝ,

is likewise quasi-asymptotically uniformly recurrent; this can be shown as in [1067].
Their sum will be quasi-asymptotically uniformly recurrent provided that these func-
tions share the same sequence (αn) in Definition 3.3.8.
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4 (ω, c)-Almost periodic type functions, c-almost
periodic type functions and applications

4.1 (ω, c)-Almost periodic type functions and applications
The followingnotionhas recently been introducedandanalyzed in the case that I = ℝ;
see [48, 49]. Let c ∈ ℂ\{0} and ω > 0. A continuous function f : I → X is said to be
(ω, c)-periodic if and only if f (t + ω) = cf (t) for all t ∈ I. The number ω is called
c-period of f . The space of all (ω, c)-periodic functions f : I → X will be denoted with
Pω,c(I : X). Let we note that, by putting c = 1, we obtain the space of all ω-periodic
functions f : I → X; by putting c = −1, we obtain the space of all ω-anti-periodic
functions f : I → X; by putting c = eikω we obtain the space of all Bloch (ω, k)-periodic
functions.

The following facts about the (ω, c)-periodic functions should be stated at the very
beginning (see also [48, 49]):
(i) If f ∈ Pω,c([0,∞) : X), f (⋅) is not identically equal to zero and |c| > 1, then

lim supt→+∞ ‖f (t)‖ = +∞; if f ∈ Pω,c(ℝ : X) and |c| > 1, then limt→−∞ f (t) = 0
and, if f (⋅) is not identically equal to zero, then lim supt→+∞ ‖f (t)‖ = +∞.

(ii) If f ∈ Pω,c(I : X) and f (x) ̸= 0 for all x ∈ I, then the function (1/f )(⋅) belongs to the
class Pω,1/c(I : X).

(iii) If f ∈ Pω,c(I : X) and |c| = 1, then the function is almost periodic. To see this,
observe that there exists a real number k ∈ ℝ such that f (x + ω) = eikωf (x), x ∈ I,
so that the function f (⋅) is Bloch (ω, k)-periodic. After that, the conclusion sim-
ply follows because the function e−ik⋅f (⋅) is periodic. In this case, we can simply
compute the Bohr spectrum by using the computation

Pr(f ) = limt→∞

1
t

t

∫
0

e−irsf (s) ds = lim
n→+∞

1
nω

nω

∫
0

e−irsf (s) ds

= lim
n→+∞

1
nω

n−1
∑
j=0

(j+1)ω

∫
jω

e−irsf (s) ds

= lim
n→+∞

1
nω

n−1
∑
j=0

ω

∫
0

e−ir(s+jω)cjf (s) ds

=
1
ω

ω

∫
0

e−irsf (s) ds × lim
n→+∞

∑n−1j=0 (ce
−irω)j

n
.

Therefore, if c = eirω, then Pr = 1; otherwise, we have Pr = 0 because:


n−1
∑
j=0
(ce−irω)j


=


cne−irnω − 1
ce−irω − 1


⩽

2
ce−irω − 1

, n ∈ ℕ.

https://doi.org/10.1515/9783110763522-005
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Furthermore, arguing as in the above-mentioned remark, wemay deduce that for each
k ∈ ℝ the existence of a strictly increasing sequence (αn) of positive reals tending to
plus infinity such that

lim
n→+∞
f (⋅ + αn) − e

ikαn f (⋅)∞ = 0

is equivalent to saying that the function F(⋅) := e−ik⋅f (⋅) is uniformly recurrent.
Due to the argumentation given in the proof of [49, Proposition 2.2], with I = ℝ,

we see that the function f (⋅) is (ω, c)-periodic if and only if the function c−
⋅
ω f (⋅) belongs

to the space Pω(I : X). This statement will play an important role in our further work.
In this section, we will consider three different approaches for introducing the

spaces of (ω, c)-almost periodic type functions and their Stepanov generalizations.
The first approach is the simplest one and (in the case of consideration of (ω, c)-almost
automorphic functions and their Stepanov generalizations, we will always tacitly as-
sume that I = ℝ).

Definition 4.1.1. Let c ∈ ℂ\{0} and ω > 0. Then it is said that a continuous function
f : I → X is (ω, c)-uniformly recurrent ((ω, c)-almost periodic/(ω, c)-almost automor-
phic/compactly (ω, c)-almost automorphic) if and only if the function fω,c(⋅), defined
by

fω,c(t) := c
−(t/ω)f (t), t ∈ I , (4.1)

is uniformly recurrent (almost periodic/almost automorphic/compactly almost auto-
morphic). By URω,c(I : X), APω,c(I : X), AAω,c(I : X) and AAω,c;c(I : X) we denote the
space of all (ω, c)-uniformly recurrent functions, the space of all (ω, c)-almost peri-
odic functions, the space of all (ω, c)-almost automorphic functions and the space of
all compactly (ω, c)-almost automorphic, respectively.

It is clear that the space Pω,c(I : X) is contained in any of the above introduced
spaces. Since the sum of two uniformly recurrent functions need not be uniformly
recurrent, URω,c(I : E) is not a vector space together with the usual operations of ad-
dition of functions and pointwise multiplication of functions with scalars [648]. But
APω,c(I : E), AAω,c(I : E) and AAω,c;c(I : E) are vector spaces together with the above
operations. The class of (ω, c,⊙g)-almost periodic functions can be also introduced
and analyzed but we will skip all related details concerning this class of functions for
simplicity.

For positive real numbers c1, ω1 > 0 and c2, ω2 > 0, we have the identity

c
− t
ω1

1 c
− t
ω2

2 = (c
ω
ω1
1 c

ω
ω2
2 )
−t
ω , t ∈ I .

With the help of [631, Theorem 2.1.1(ii)], Proposition 2.3.1 and this equality, we can
simply deduce the following.
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Proposition 4.1.2. Suppose that ω > 0, c1, ω1 > 0, c2, ω2 > 0, f (⋅) is (ω1, c1)-almost
periodic ((ω1, c1)-almost automorphic/compactly (ω1, c1)-almost automorphic), g(⋅) is
(ω2, c2)-almost periodic ((ω2, c2)-almost automorphic/compactly (ω2, c2)-almost auto-

morphic) and the function f (⋅) or the function g(⋅) is scalar-valued. Set c := c
ω
ω1
1 c

ω
ω2
2 .

Then the function fg(⋅) is (ω, c)-almost periodic ((ω, c)-almost automorphic/compactly
(ω, c)-almost automorphic).

We continue by giving some elementary observations.

Remark 4.1.3. If the function fω,c(⋅) is bounded and |c| < 1, then we have
limt→+∞ f (t) = 0; moreover, if I = ℝ, the function fω,c(⋅) is bounded and |c| > 1,
then we have limt→−∞ f (t) = 0.

Remark 4.1.4. In (4.1), one can consider an arbitrary function c(⋅) in place of the func-
tion c−(⋅/ω) but then the things become much more complicated. For example, follow-
ing the examination from the previous remark, it seems reasonable to use the function
c−(|⋅|/ω) in place of the function c−(⋅/ω). We will not follow this approach for simplicity
andwewill considerhere only the asymptotically (ω, c)-almost periodic type functions
defined on the non-negative real axis.

It is clear that any (ω, c)-almost periodic function is (ω, c)-uniformly recurrent and
compactly (ω, c)-almost automorphic, as well as that any compactly (ω, c)-almost au-
tomorphic function is (ω, c)-almost automorphic. Even in the case that c = 1 andω > 0
is arbitrary, there exists a compactly almost automorphic function which is not uni-
formly recurrent and therefore not almost periodic.

Definition 4.1.5. Let c ∈ ℂ, |c| ⩾ 1 and ω > 0. Then it is said that a continuous
function f : [0,∞) → X is asymptotically (ω, c)-uniformly recurrent (asymptotically
(ω, c)-almost periodic, asymptotically (compactly) (ω, c)-almost automorphic) if and
only if there exist an (ω, c)-uniformly recurrent ((ω, c)-almost periodic, (compactly)
(ω, c)-almost automorphic) function h : ℝ→ X and a function q ∈ C0([0,∞) : X) such
that f (t) = h(t) + q(t) for all t ⩾ 0.

The following facts concerning the introduced classes of functions should be
stated:
1. Suppose that |c| = 1 and ω > 0. Then we can use Theorem 2.1.1(ii) and Propo-

sition 2.3.1 in order to see that the function f : I → X is (ω, c)-almost periodic
((compactly) (ω, c)-almost automorphic) if andonly if f (⋅) is almost periodic ((com-
pactly) almost automorphic). In the case that I = [0,∞), the same assertion holds
for the asymptotically (ω, c)-almost periodic functions and the asymptotically
(compactly) (ω, c)-almost automorphic functions.

2. Suppose that |c| > 1, ω > 0 and f : I → X is (ω, c)-uniformly recurrent or
(ω, c)-almost automorphic. If f (⋅) is not identically equal to zero, then the supre-
mum formula shows that f (⋅) is unbounded; moreover, in the case of considera-

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



186 | 4 (ω, c)-Almost periodic type functions

tion of (ω, c)-almost automorphicity, the function f (⋅) is unbounded as t → +∞
due to Remark 4.1.3. In the case that I = [0,∞), the same assertion holds for the
asymptotically (ω, c)-uniformly recurrent functions and the asymptotically (com-
pactly) (ω, c)-almost automorphic functions. In particular, a constant non-zero
function cannot be asymptotically (ω, c)-uniformly recurrent or asymptotically
(ω, c)-almost automorphic.

3. Suppose c ∈ ℂ\{0}, ω > 0 and f : [0,∞) → X is (ω, c)-almost periodic. Then it is
well known that there exists a unique almost periodic function Fω,c : ℝ→ X such
that Fω,c(t) = fω,c(t), t ⩾ 0. Define F(t) := ct/ωFω,c(t), t ∈ ℝ. Then it simply follows
that the function F(⋅) is a unique (ω, c)-almost periodic function which extends
the function f (⋅) to the whole real line.

4. Let c ∈ ℝ and ω > 0. Then, for every (ω, c)-uniformly recurrent ((compactly)
(ω, c)-almost automorphic) function f (⋅), we see that the function ‖f (⋅)‖ is (ω, c)-
uniformly recurrent ((compactly) (ω, c)-almost automorphic). In the case that I =
[0,∞), then the same assertion holds for the asymptotically (ω, c)-uniformly re-
current functions and the asymptotically (compactly) (ω, c)-almost automorphic
functions.

5. The spaces URω,c(I : X), APω,c(I : X), AAω,c(I : X) and AAω,c;c(I : X) are invariant
under pointwisemultiplicationswith scalars. In the case that I = [0,∞), the same
holds for the corresponding spaces of asymptotically (ω, c)-almost periodic type
functions.

6. The spaces URω,c(I : X), APω,c(I : X), AAω,c(I : X) and AAω,c;c(I : X) are translation
invariant. In the case that I = [0,∞), the same holds for the corresponding spaces
of asymptotically (ω, c)-almost periodic type functions.

7. If I = [0,∞), |c| ⩾ 1, ω > 0 and the sequence (fn(⋅)) in URω,c(I : X) (APω,c(I :
X)/AAω,c(I : X)/AAω,c;c(I : X)) converges uniformly to a function f : I → X,
then the function f (⋅) belongs to the space URω,c(I : X) (APω,c(I : X)/AAω,c(I :
X)/AAω,c;c(I : X)). In the case that I = [0,∞), then the same assertion holds for
the asymptotically (ω, c)-almost periodic type function spaces.

For completeness, wewill include themost relevant details of the proofs of the follow-
ing two propositions.

Proposition 4.1.6. Suppose X = ℂ, c ∈ ℂ ∖ {0}, ω > 0, f : I → ℂ and infx∈I |f (x)| >
m > 0. Then the following hold:
(i) If |c| = 1 and the function f (⋅) is (ω, c)-uniformly recurrent ((ω, c)-almost periodic/
(ω, c)-almost automorphic/compactly (ω, c)-almost automorphic), then the func-
tion (1/f )(⋅) is (ω, 1/c)-uniformly recurrent ((ω, 1/c)-almost periodic/(ω, 1/c)-almost
automorphic/compactly (ω, 1/c)-almost automorphic).

(ii) If |c| ⩽ 1, I = [0,∞) and f (⋅) is (ω, c)-uniformly recurrent ((ω, c)-almost peri-
odic), then the function (1/f )(⋅) is (ω, 1/c)-uniformly recurrent ((ω, 1/c)-almost peri-
odic).

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 (ω, c)-Almost periodic type functions | 187

Proof. The proof of (i) essentially follows from the simple argumentation and the con-
clusions obtained in the point [1.], while the proof of (ii) can be deduced as follows.
Suppose that the function f (⋅) is (ω, c)-almost periodic, i. e., the function fω,c(⋅) is al-
most periodic. This implies that for each number ε > 0 there exists a finite number
l > 0 such that any subinterval I′ of I contains at least one point τ such that

c
− t+τω f (t + τ) − c− t

ω f (t) ⩽ ε, t ⩾ 0.

This implies

f (t + τ) − c
− τω f (t) ⩽ ε

c
t+τ
ω , t ⩾ 0.

Then the final conclusion is a consequence of the following simple calculation:



c
t+τ
ω

f (t + τ)
−

c
t
ω

f (t)


= c

t
ω  ⋅


f (t + τ) − c−
τ
ω f (t)

f (t + τ) ⋅ f (t)



⩽
ε
m2
c

2t+τ
ω  ⩽

ε
m2 , t ⩾ 0.

The proof for (ω, c)-uniform recurrence is similar and therefore omitted.

Proposition 4.1.7. Suppose that I = ℝ, f : ℝ → X satisfies the requirement that the
function fω,c(⋅) is a bounded uniformly recurrent (almost periodic, (compactly) almost
automorphic) and c−

⋅
ωψ(⋅) ∈ L1(ℝ). Then the function c−

⋅
ω (ψ ∗ f )(⋅) is bounded uni-

formly continuous and the function (ψ∗ f )(⋅) is (ω, c)-uniformly recurrent ((ω, c)-almost
periodic/(compactly) (ω, c)-almost automorphic).

Proof. For every x ∈ ℝ, the convolution (ψ ∗ f )(x) is well defined and we have

c−
x
ω (ψ ∗ f )(x) =

∞

∫
−∞

[c−
x−y
ω ψ(x − y)] ⋅ [c−

y
ω f (y)] dy, x ∈ ℝ.

Then the corresponding statement follows from the fact that the space of all almost
periodic ((compactly) almost automorphic) functions and the space of all bounded
uniformly recurrent functions are convolution invariant.

The following definitions are logical analogues of Definition 4.1.1–Definition 4.1.5
for Stepanov classes.

Definition 4.1.8. Let p ∈ 𝒫([0, 1]), c ∈ ℂ\{0} and ω > 0. Then it is said that a
function f ∈ Lp(x)loc (I : X) is Stepanov (p(x),ω, c)-uniformly recurrent (Stepanov
(p(x),ω, c)-almost periodic/Stepanov (p(x),ω, c)-almost automorphic) if and only if
the function fω,c(⋅), defined by (4.1), is Stepanov p(x)-uniformly recurrent (Stepanov
p(x)-almost periodic/Stepanov p(x)-almost automorphic).

By Sp(x)URω,c(I : X), Sp(x)APω,c(I : X) and Sp(x)AAω,c(I : X) we denote the space
of all Stepanov (p(x),ω, c)-uniformly recurrent functions, the space of all Stepanov
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(p(x),ω, c)-almost periodic functions and the space of all Stepanov (p(x),ω, c)-almost
automorphic functions, respectively. If p(x) ≡ p ∈ [1,∞), then by SpURω,c(I : X),
SpAPω,c(I : X) and SpAAω,c(I : X)wedenote the space of all Stepanov (p,ω, c)-uniform-
ly recurrent functions, the space of all Stepanov (p,ω, c)-almost periodic functions and
the space of all Stepanov (p,ω, c)-almost automorphic functions, respectively.

Definition 4.1.9. Let p ∈ 𝒫([0, 1]), c ∈ ℂ, |c| ⩾ 1 and ω > 0. Then it is said that a
function f ∈ Lp(x)loc ([0,∞) : X) is asymptotically Stepanov (p(x),ω, c)-uniformly recur-
rent (asymptotically Stepanov (p(x),ω, c)-almost periodic, asymptotically Stepanov
(p(x),ω, c)-almost automorphic) if and only if the function fω,c(⋅), defined by (4.1), is
asymptotically Stepanov p(x)-uniformly recurrent (asymptotically Stepanov p(x)-al-
most periodic, asymptotically Stepanov p(x)-almost automorphic).

By ASp(x)URω,c(I : X), ASp(x)APω,c(I : X) and ASp(x)AAω,c(I : X) we denote the
space of all asymptotically Stepanov (p(x),ω, c)-uniformly recurrent functions, the
space of all asymptotically Stepanov (p(x),ω, c)-almost periodic functions and the
space of all asymptotically Stepanov (p(x),ω, c)-almost automorphic functions, re-
spectively. If p(x) ≡ p ∈ [1,∞), then by ASpURω,c(I : X), ASpAPω,c(I : X) and
ASpAAω,c(I : X)we denote the space of all asymptotically Stepanov (p,ω, c)-uniformly
recurrent functions, the space of all asymptotically Stepanov (p,ω, c)-almost periodic
functions and the space of all asymptotically Stepanov (p,ω, c)-almost automorphic
functions, respectively.

The conclusions established in the points [1.–2., 4.–7.] can be simply reformu-
lated for the Stepanov classes. For example, if we consider the point [2.], then we
may conclude the following: Suppose that |c| > 1, ω > 0 and f : I → X is Stepanov
(p(x),ω, c)-uniformly recurrent or Stepanov (p(x),ω, c)-almost automorphic. If f (⋅) is
not almost everywhere equal to zero, then the function f (⋅) is not Stepanovp(x)-bound-
ed; moreover, in the case of consideration of Stepanov (p(x),ω, c)-almost automor-
phicity, the function ̂f (⋅) is unbounded as t → +∞ so that a constant non-zero function
cannot be Stepanov (p(x),ω, c)-uniformly recurrent or Stepanov (p(x),ω, c)-almost au-
tomorphic.

Essentially, any established result for almost periodic type functions and their
Stepanov generalizations can be straightforwardly reformulated for (ω, c)-almost pe-
riodic type functions and their Stepanov generalizations (in the sequel, wewill try not
to consider such statements). For example, using the corresponding statement for the
uniformly recurrent functions we can immediately deduce the following.

Proposition 4.1.10. Let p ∈ 𝒫([0, 1]). If f : [0,∞) → X satisfies the requirement that
the function fω,c(⋅) is uniformly continuous and asymptotically Stepanov p(x)-uniformly
recurrent, then the function f (⋅) is asymptotically (ω, c)-uniformly recurrent.

Let us only note that the uniform continuity of the function fω,c(⋅) is ensured pro-
vided that |c| ⩾ 1 and f (⋅) is a bounded uniformly continuous function. This follows
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from the fact that, for every two non-negative real numbers t1, t2 ⩾ 0 such that t1 < t2,
the Darboux inequality yields

c
− t1ω f (t1) − c

− t2ω f (t2)
 ⩽
c
− t1ω [f (t1) − f (t2)]

 +
[c
− t1ω − c−

t2
ω ]f (t2)


⩽ f (t1) − f (t2)
 +

1
ω
(ln |c| + π) ⋅ |t1 − t2| ⋅ ‖f ‖∞.

Now we would like to endow the introduced spaces of (asymptotically) (ω, c)-al-
most periodic type functions with certain norms. We start with the notion introduced
in Definition 4.1.1 and Definition 4.1.5. Define

‖f ‖ω,c := sup
t∈I

c
− t
ω f (t).

Proposition 4.1.11. The spacesAPω,c(I : X),AAω,c(I : X),AAω,c;c(I : X),AAPω,c([0,∞) :
X), AAAω,c([0,∞) : X) and AAAω,c;c([0,∞) : X), equipped with the norm ‖ ⋅ ‖ω,c, are
Banach spaces.

Proof. Denote by 𝒳 any of the above spaces. Suppose that (fn)n is a Cauchy sequence
in 𝒳 . Hence, for every ε > 0, there exists N ∈ ℕ such that for all m, n ⩾ N, we have
‖fn − fm‖ω,c < ε. So, there exist um, un ∈ c−

⋅
ω𝒳 (with the meaning clear) such that

fm(t) = c
t
ω um(t) and fn(t) = c

t
ω un(t) for all t ∈ I. Form, n ⩾ N, we have

‖um − un‖∞ = sup
t∈I

um(t) − un(t)


= sup
t∈I

c
− t
ω fm(t) − c

− t
ω fn(t)


= sup
t∈I

|c|
− t
ω [fm(t) − fn(t)]



= ‖fn − fm‖ω,c < ε.

Hence, (un)n is a Cauchy sequence in c−
⋅
ω𝒳 , which is a complete space. Then there

exists u ∈ c−
⋅
ω𝒳 such that limn→+∞ un = u. Define f (t) := c

t
ω u(t), t ∈ I. Thus,

‖fn − f ‖ω,c = sup
t∈I

|c|
− t
ω [fn(t) − f (t)]



= sup
t∈I

|c|
− t
ω c

t
ω un(t) − |c|

− t
ω c

t
ω u(t)

= sup
t∈I

un(t) − u(t)
→ 0,

when n→∞. Hence, 𝒳 is a Banach space.

For any c ∈ ℂ∖{0} and p ∈ [1,∞), we denote by LpS,c(I : X) the space of all functions
f ∈ Lploc(I : X) such that

‖f ‖p,ω,c := sup
t∈I
(

t+1

∫
t

|c|−
s
ω f (s) ds)

1/p

.
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Then (LpS,c(I : X), ‖ ⋅ ‖p,ω,c) is a Banach space. Arguing as above, we may conclude that
SpAPω,c(I : X) (SpAAω,c(I : X)/ASpAPω,c(I : X), ASpAAω,c(I : X)) is a closed subspace
of LpS,c(I : X) and therefore a Banach space itself.

Before proceeding further, we want to recommend for the reader the recent re-
search [1] by L. Abadias, E. Alvarez and R. Grau concerning (ω, c)-periodic mild solu-
tions to non-autonomous abstract differential equations.

4.1.1 (ω, c)-Uniform recurrence of type i and (ω, c)-almost periodicity of type i
(i = 1, 2)

Suppose temporarily that f ∈ Pω,c(I : X) and n ∈ ℕ. Then we have f (t + nω) = cnf (t),
t ∈ I. Setting αn = nω, we get for each ε > 0 and t ∈ I

f (t + αn) − c
αn
ω f (t) ⩽ ε and c

−αn
ω f (t + αn) − f (t)

 ⩽ ε. (4.2)

Equation (4.2) motivates us to introduce the following concepts of (ω, c)-uniform re-
currence and (ω, c)-almost periodicity [it is not clear howwe can do that for (compact)
(ω, c)-almost automorphicity in a satisfactory way].

Definition 4.1.12. Suppose that f : I → X is continuous, c ∈ ℂ ∖ {0} and ω > 0.
(i) We say that f (⋅) is (ω, c)-uniformly recurrent of type 1 (type 2) if and only if there

exists a strictly increasing sequence (αn) of positive reals tending to plus infinity
such that

lim
n→+∞

sup
t∈I

f (t + αn) − c
αn
ω f (t) = 0 ( limn→+∞

sup
t∈I

c
−αn
ω f (t + αn) − f (t)

 = 0).

(ii) We say that f (⋅) is (ω, c)-almost periodic of type 1 (type 2) if and only if for each
ε > 0 the set

{τ > 0 : sup
t∈I

f (t + τ) − c
τ
ω f (t) < ε} ({τ > 0 : sup

t∈I

c
−τ
ω f (t + τ) − f (t) < ε})

is relatively dense in [0,∞).
By URω,c,i(I : X) and APω,c,i(I : X), we denote the space of all (ω, c)-uniformly
recurrent functions of type i and the space of all (ω, c)-almost periodic functions
of type i, respectively (i = 1, 2).

It is clear that the set {nω : n ∈ ℕ} is relatively dense in [0,∞). Taking into ac-
count this observation, it follows that the space Pω,c(I : X) is contained in the spaces
URω,c,i(I : X) and APω,c,i(I : X), for i = 1, 2; moreover, URω,c,i(I : X) ⊇ APω,c,i(I : X) for
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i = 1, 2 and it is clear that for any t ∈ I and τ ⩾ 0 we have

c
−τ
ω f (t + τ) − f (t) =

c
−τ
ω [f (t + τ) − c

τ
ω f (t)]

= |c|
−τ
ω f (t + τ) − c

τ
ω f (t).

Therefore, in the case that |c| = 1, it simply follows that the (ω, c)-almost periodicity of
type 1 (type 2) is equivalent with the usual almost periodicity as well as that the notion
of (ω, c)-uniform recurrence of type 1 is equivalent with the notion of (ω, c)-uniform
recurrence of type 2.

But, in the case that |c| ̸= 1, the concepts introduced in Definition 4.1.12 are not
satisfactory to a great extent. Before stating the corresponding result which justifies
this fact, let us denote by Mω,c(I : X) the space consisting of all functions f : I → X
such that c−⋅/ωf (⋅) ∈ P(I : X). It is clear that Mω,c(I : X) is not a vector space together
with the usual operations.

Theorem 4.1.13. Let c ∈ ℂ ∖ {0} and ω > 0.
(i) Suppose that |c| > 1. Then URω,c,i(I : X) = APω,c,i(I : X) = Mω,c(I : X) for i = 1, 2.
(ii) Suppose that |c| < 1 and I = ℝ. Then URω,c,i(I : X) = APω,c,i(I : X) = Mω,c(I : X) for

i = 1, 2.

Before giving the proof of Theorem 4.1.13, we will state two lemmas. The first one
is simple and follows almost immediately from Definition 4.1.12.

Lemma 4.1.14. Suppose that f : I → X is continuous, c ∈ ℂ ∖ {0} and ω > 0.
(i) If |c| ⩾ 1, then URω,c,1(I : X) ⊆ URω,c,2(I : X) and APω,c,1(I : X) ⊆ APω,c,2(I : X).
(ii) If |c| ⩽ 1, then URω,c,1(I : X) ⊇ URω,c,2(I : X) and APω,c,1(I : X) ⊇ APω,c,2(I : X).
(iii) In the case that I = [0,∞) and |c| ⩾ 1, then URω,c,2(I : X) ⊆ URω,c(I : X) and

APω,c,2(I : X) ⊆ APω,c(I : X).

Lemma 4.1.15. Suppose that I = ℝ and f : ℝ→ X. Then f (⋅) is (ω, c)-uniformly recurrent
of type 1 (type 2) [(ω, c)-almost periodic of type 1 (type 2)] if and only if the function ̌f (⋅)
is (ω, 1/c)-uniformly recurrent of type 2 (type 1) [(ω, c)-almost periodic of type 2 (type
1)].

Proof. The proof simply follows by observing that, for every τ > 0 and ε > 0, we have

sup
t∈I

f (t + τ) − c
τ
ω f (t) < ε ⇔ sup

t∈I

f (−t + τ) − c
τ
ω f (−t) < ε

⇕

sup
t∈I


̌f (t − τ) − c

τ
ω ̌f (t) < ε ⇔ sup

t∈I


̌f (t) − c

τ
ω ̌f (t + τ) < ε

⇕

sup
t∈I

(1/c)
− τω ̌f (t + τ) − ̌f (t) < ε.
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Proof of Theorem 4.1.13. Keeping inmindLemma4.1.15, it suffices toprove (i). Towards
this end, we recognize two cases: I = [0,∞) and I = ℝ. In the first case, it suffices to
show that URω,c,2([0,∞) : X) ⊆ Mω,c([0,∞) : X) andMω,c([0,∞) : X) ⊆ APω,c,1([0,∞) :
X). So, let f ∈ URω,c,2([0,∞) : X). This implies that there exist a finite constantM > 0
and a strictly increasing sequence (αn) of positive reals tending to plus infinity such
that

sup
t∈I ,n∈ℕ

c
−αn
ω f (t + αn) − f (t)

 ⩽ M.

Since f (t) = ct/ωfω,c(t), t ⩾ 0, the above implies

fω,c(t + αn) − fω,c(t)
 ⩽ |c|

−(t/ω)M, t ⩾ 0, n ∈ ℕ.

Hence, for every n ∈ ℕ, we have limt→+∞[fω,c(t + αn) − fω,c(t)] = 0. On the other hand,
Lemma4.1.14(iii) shows that, for every n ∈ ℕ, we see that the function fω,c(⋅+αn)−fω,c(⋅)
is uniformly recurrent; hence, for everyn ∈ ℕ,wehave fω,c(⋅+αn) ≡ fω,c(⋅) and therefore
fω,c(⋅) belongs to the space P([0,∞) : X), as claimed. To see that Mω,c([0,∞) : X) ⊆
APω,c,1([0,∞) : X), suppose that fω,c(t + T) = fω,c(t) for all t ⩾ 0 and some T > 0. This
simply implies that f (t + nT) = cnT/ωf (t) for all n ∈ ℕ so that f ∈ APω,c,1([0,∞) : X)
because the set {nT : n ∈ ℕ} is relatively dense in [0,∞). Suppose now that I = ℝ.
Similarly as above, it follows that URω,c,i(ℝ : X) ⊇ APω,c,i(ℝ : X) ⊇ Mω,c(ℝ : X) for i =
1, 2. Therefore, it suffices to show that URω,c,2(ℝ : X) ⊆ Mω,c(ℝ : X). Let f ∈ URω,c,2(ℝ :
X). Since the restriction of f (⋅) on [0,∞) belongs to the space URω,c,2([0,∞) : X), it
readily follows that there exists a number T > 0 such that fω,c(t + T) = fω,c(t) for all
t ⩾ 0. To complete the proof, it suffices to prove that this equality holds for all real
numbers t < 0. Let ε > 0 be fixed. Due to our assumption, we have the existence of an
integer n0 ∈ ℕ such that t + αn > 0 and that

c
t/ωfω,c(t + αn) − c

t/ωfω,c(t)
 ⩽ ε and

c
(t+T)/ωfω,c(t + T + αn) − c

(t+T)/ωfω,c(t + T)
 ⩽ ε,

i. e.,

c
t/ωfω,c(t + αn) − c

t/ωfω,c(t)
 ⩽ ε and

c
t/ωfω,c(t + αn) − c

t/ωfω,c(t + T)
 ⩽ ε|c|

−T/ω.

This implies

c
t/ω[fω,c(t + T) − fω,c(t)]

 ⩽ ε(1 + |c|
−T/ω).

Letting ε → 0+, we get fω,c(t + T) = fω,c(t), as claimed.
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Corollary 4.1.16. Suppose that i = 1, 2, |c| < 1, ω > 0 and f ∈ APω,c,i([0,∞) : X). Then
there exists a function F ∈ APω,c,i(ℝ : X) such that F(t) = f (t) for all t ⩾ 0 if and only if
f ∈ Mω,c([0,∞) : X).

Furthermore, the points [4., 5., 6., 7.] from the beginning of this section can be
restated as follows:
4′. Let c ∈ ℝ and ω > 0. Then, for every (ω, c)-uniformly recurrent function f (⋅) of

type 1 (type 2), we see that the function ‖f (⋅)‖ is (ω, |c|)-uniformly recurrent of type
1 (type 2).

5′. The spaces URω,c,i(I : X) and APω,c,i(I : X) are invariant under pointwise multipli-
cations with scalars (i = 1, 2).

6′. The spaces URω,c,i(I : X) and APω,c,i(I : X) are translation invariant (i = 1, 2).
7′. If I = [0,∞), |c| ⩾ 1, ω > 0 and the sequence (fn(⋅)) in URω,c,2(I : X) converges

uniformly to a function f : I → X, then the function f (⋅) belongs to the space
URω,c,2(I : X). Furthermore, if I = [0,∞), |c| ⩽ 1, ω > 0 and the sequence (fn(⋅)) in
URω,c,1(I : X) (APω,c,1(I : X)) converges uniformly to a function f : I → X, then the
function f (⋅) belongs to the space URω,c,1(I : X) (APω,c,1(I : X)).

Now we will prove the following.

Proposition 4.1.17. Suppose that i = 1, 2, |c| < 1, ω > 0 and f ∈ APω,c,i(I : X). Then the
function fω,c(⋅) is bounded and limt→+∞ f (t) = 0.

Proof. By Theorem 4.1.13(ii) and Lemma 4.1.14(iv) it suffices to consider the case I =
[0,∞) and the classAPω,c,1([0,∞) : X). Let ε = 1. Then there exists a finite number l > 0
such that any subinterval I′ of [0,∞) contains a point τ such that ‖c

−τ
ω f (t+τ)−f (t)‖ < 1

for all t ⩾ 0. Suppose that t ∈ [nl, (n + 1)l] for some n ∈ ℕ. Then there exists τn ∈ [(n −
1)l, nl] such that ‖c

−τn
ω f (t′ +τn)− f (t′)‖ < 1 for all t′ ⩾ 0. In particular, t −τn = t′ ∈ [0, 2l]

and the above implies ‖f (t)‖ ⩽ (1+M)|c|τn/ω ⩽ (1+M)[maxt′′∈[0,2l] |c|−t′′/ω]|c|t/ω, where
M := supx∈[0,2l] ‖f (x)‖. This yields the required limit equality.

Example 4.1.18. Denote the restriction of the function f (⋅) given by (2.28) to the non-
negative real axis by the same symbol. Then Proposition 4.1.17 implies that the func-
tion c−⋅/ωf (⋅) cannot belong to the space APω,c,i([0,∞) : ℂ) for i = 1, 2. On the other
hand, it is clear that c−⋅/ωf (⋅) ∈ URω,c([0,∞) : ℂ) ⊆ URω,c,i([0,∞) : ℂ) for i = 1, 2.

Corollary 4.1.19. Suppose that |c| < 1 and ω > 0. Then f ∈ APω,c,1([0,∞) : X) if and
only if the function fω,c(⋅) is bounded and continuous.

Proof. Due to Proposition 4.1.17, it suffices to show that the boundedness of function
fω,c(⋅) implies f ∈ APω,c,1([0,∞) : X). If so, then we need to prove that for each ε > 0
the set consisting of all positive reals t > 0 such that

c
(t+τ)/ωfω,c(t + τ) − c

(t+τ)/ωfω,c(t)
 ⩽ ε, t ⩾ 0
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is relatively dense in [0,∞). But this simply follows from the fact that this set contains
a ray [a(ε),∞) for a sufficiently large real number a(ε) > 0, which can be proved by
using the boundedness of fω,c(⋅) and the simple inequality |c|t/ω ⩽ 1, t ⩾ 0.

Remark 4.1.20. Suppose that |c| < 1 and ω > 0. Using Corollary 4.1.19, we can simply
prove that f ∈ APω,c,1([0,∞) : X) if and only if for every (there exists) strictly increasing
sequence (αn) of positive reals tending to plus infinity such that limn→+∞ supt⩾0 ‖f (t +
αn) − c

αn
ω f (t)‖ = 0.

Example 4.1.21. Suppose that f (t) := 2−t[1+(1/ ln(2+t))], t ⩾ 0. Due to Corollary 4.1.19,
this function belongs to the space AP1,1/2,1([0,∞) : ℂ) ⊆ UR1,1/2,1([0,∞) : ℂ). On the
other hand, f (⋅) does not belong to the spaceUR1,1/2,2([0,∞) : ℂ). Otherwise, wewould
have the existence of an arbitrarily large positive real number α > 0 such that

sup
t⩾0


2−t ln(1 + (α/(1 + t)))

ln(2 + t) ⋅ ln(2 + t + α)


⩽ ε.

Taking t = 0, this simply leads us to a contradiction.

The class URω,c,1([0,∞) : X) is also extremely non-interesting due to the following
characterization.

Proposition 4.1.22. Suppose c ∈ ℂ ∖ {0}, |c| < 1 and ω > 0. Then URω,c,1([0,∞) : X) =
C0([0,∞) : X).

Proof. If f ∈ C0([0,∞) : X), then for each strictly increasing sequence (αn) tending to
plus infinity and for each real number ε > 0we can always find an integer n0 ∈ ℕ such
that ‖f (t + αn) − cαn/ωf (t)‖ ⩽ (ε/2) + |c|αn/ω‖f (t)‖ ⩽ (ε/2) + |c|αn/ω‖f ‖∞ ⩽ ε, t ⩾ 0, n ⩾ n0,
which implies f ∈ URω,c,1([0,∞) : X). To prove the converse, let us first show that the
assumption f ∈ URω,c,1([0,∞) : X) implies the boundedness of f (⋅). If (αn) satisfies the
requirements of the definition of the space URω,c,1([0,∞) : X), then we may assume
without loss of generality that αn+1 − αn > 3 for all n ∈ ℕ and

f (t + αn)
 ⩽ 1 + |c|

αn/ωf (t)
, t ⩾ 0, n ∈ ℕ. (4.3)

Let n ∈ ℕ be fixed and letM0 := maxt∈[0,αn] ‖f (t)‖. Then (4.3) inductively implies that
for arbitrary T ∈ (0, αn] and for arbitrary k ∈ ℕ we have

f (T + kαn)
 ⩽

k−1
∑
j=0
|c|αnj/ω + |c|kαn/ωM0 ⩽

∞

∑
j=0
|c|j/ω +M0.

Therefore, ‖f (t)‖ ⩽ ∑∞j=0 |c|
j/ω + M0, t ⩾ 0, as claimed. The remainder of the proof is

simple; since the function f (⋅) is bounded, we have the existence of an integer n1 ∈ ℕ
such that

f (t + αn)
 ⩽ |c|

αn/ω‖f ‖∞ + (ε/2) < ε, t ⩾ 0, n ⩾ n1,

and therefore f ∈ C0([0,∞) : X).
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Now we will prove the following result.

Proposition 4.1.23. Suppose that |c| < 1 and ω > 0. Then f ∈ APω,c,2([0,∞) : X) if and
only if the function fω,c(⋅) is bounded continuous and for each ε > 0 and N > 0 the set of
all positive real numbers τ > 0 such that

fω,c(t + τ) − fω,c(t)
 ⩽ ε, t ∈ [0,N] (4.4)

is relatively dense in [0,∞).

Proof. Suppose first that f ∈ APω,c,2([0,∞) : X). Due to Proposition 4.1.17, the func-
tion fω,c(⋅) is bounded. Let ε > 0 and N > 0 be fixed, and let ε0 > 0 be such that
ε0|c|−N/ω ⩽ ε. By our assumption, the set of all positive reals τ > 0 such that ‖fω,c(t +
τ)−fω,c(t)‖ ⩽ ε0|c|−t/ω, t ⩾ 0 is relatively dense in [0,∞). If τ belongs to this set, thenwe
have ‖fω,c(t+τ)−fω,c(t)‖ ⩽ ε0|c|−t/ω ⩽ ε, t ∈ [0,N]. For the converse, it suffices to assume
fω,c ̸= 0. Fix a number ε > 0. In this case, we can find a numberN > 0 such that |c|t/ω ⩽
ε/(2(1+‖fω,c‖∞)) for all t ⩾ N . For this ε > 0 andN > 0we can find a relatively dense set
of positive reals τ satisfying (4.4). If τ belongs to this set, then there exist two possibil-
ities: t ⩾ N or t ∈ [0,N). In the first case, we have ‖ct/ω[fω,c(t+τ)− fω,c(t)]‖ ⩽ ε|c|t/ω ⩽ ε;
in the second case, we have ‖ct/ω[fω,c(t +τ)− fω,c(t)]‖ ⩽ (2ε‖fω,c‖∞)/(2(1+ ‖fω,c‖∞)) < ε.
Hence, we have ‖fω,c(t + τ) − fω,c(t)‖ ⩽ ε0|c|−t/ω, t ⩾ 0 and the proof of the proposition
is thereby complete.

Remark 4.1.24.
(i) Let us recall that any LevitanN-almost periodic function fω,c : [0,∞)→ X satisfies

the requirement that for each ε > 0 and N > 0 the set of all positive reals τ > 0
such that (4.4) holds is relatively dense in [0,∞) (cf. [697, Definition 2, p. 53]).
In particular, the restriction of any almost automorphic function fω,c : ℝ → X
satisfies this condition. Denote by AA[0,∞)(X) the vector space consisting of such
functions; thus, c⋅/ωAA[0,∞)(X) ⊆ APω,c,2([0,∞) : X). Recall also that the function
t → 1/(2 + cos t + cos(√2t)), t ⩾ 0 is Levitan N-almost periodic and unbounded.

(ii) According to [697, Definition 2, p. 80], a continuous function f : I → X is called re-
current if and only if for each ε > 0 andN > 0 the set of all positive reals τ > 0 such
that (4.4) holds is relatively dense in [0,∞) (the case I = ℝ has been considered in
[697], only). The Stepanov generalizations of recurrent functions can be also in-
troduced but then it is not clear howone can consider the invariance of recurrence
under the action of infinite convolution product given by (2.46) since themethods
proposed in the proof of [631, Proposition 2.6.11] and related results do not work
in this framework. Note also that we can extend the notion of (ω, c)-almost auto-
morphicity by requiring that the function fω,c(⋅) is recurrent.

(iii) Due to Corollary 4.1.19, APω,c,1([0,∞) : X) is the vector space together with the
usual operations. This is no longer true for the space APω,c,2([0,∞) : X), which
can be deduced from Proposition 4.1.23 and a counterexample constructed by
W.A. Veech (see, e. g., [126, Example 2.8], and the corresponding example given in
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the pioneering paper [694] by B. Ya. Levin, aswell as the articles [407] by J. Egawa,
[766] by A. Michalowicz, S. Stoínski and [272] by D.N. Cheban). In particular, the
space APω,c,2([0,∞) : X) ⊆ URω,c,2([0,∞) : X) strictly contains c⋅/ωAA[0,∞)(X).
On the other hand, the compactly almost automorphic function constructed by
A.M. Fink in [443] is not asymptotically uniformly recurrent, as shown earlier.
This implies that there exists a function f ∈ c⋅/ωAA[0,∞)(X) such that fω,c(⋅) is not
uniformly recurrent; in particular, URω,c,2([0,∞) : X) strictly contains URω,c([0,
∞) : X).

(iv) As already seen, there exist two bounded, even, uniformly continuous, uniformly
recurrent functions f : ℝ → ℝ and g : ℝ → ℝ such that its sum is not uniformly
recurrent. Furthermore, we can choose f (⋅) and g(⋅) such that f (0) = g(0) = 1 and
|f (t) + g(t)| ⩽ 1 for |t| ⩾ 1. Denote the restrictions of such functions to the non-
negative real axis by the same symbols, and define after that F(t) := 2−tf (t), t ⩾ 0
and G(t) := 2−tg(t), t ⩾ 0. Then F, G ∈ UR1,1/2([0,∞) : ℂ) ⊆ UR1,1/2,2([0,∞) : ℂ)
but F + G ∉ UR1,1/2,2([0,∞) : ℂ). If we suppose the contrary, then we would have
the existence of a strictly increasing sequence (αn) of positive reals tending to plus
infinity such that

lim
n→+∞

sup
t⩾0

2
−t[f (t + αn) + g(t + αn)] − 2

−t[f (t) + g(t)] = 0,

which is impossible because for each n ∈ ℕ such that αn ⩾ 1 we have

sup
t⩾0

2
−t[f (t + αn) + g(t + αn)] − 2

−t[f (t) + g(t)]

⩾ f (0) + g(0) − [f (αn) + g(αn)]
 =
2 − [f (αn) + g(αn)]

 ⩾ 1.

In particular, this example can be used to show that the set URω,c,2([0,∞) : ℂ)
does not form a vector space together with the usual operations.

(v) Using Proposition 4.1.23, as well as the arguments contained in the proofs of
Proposition 4.1.11 and [166, Theorem 8°, pp. 3-4], it follows that APω,c,2([0,∞) : X)
is a complete metric space equipped with the distance d(⋅, ⋅) := ‖ ⋅ − ⋅ ‖ω,c.

Keeping in mind the proved results, it seems logical to consider the following no-
tion for Stepanov classes, only.

Definition 4.1.25. Let p ∈ 𝒫([0, 1]), c ∈ ℂ\{0}, |c| ⩽ 1 and ω > 0. Then it is said that
a function f ∈ Lp(x)loc ([0,∞) : X) is Stepanov (p(x),ω, c)-uniformly recurrent of type 2,
resp. Stepanov (p(x),ω, c)-almost periodic of type 2 if and only if

lim
n→+∞

sup
t⩾0

c
−αn
ω f (s + t + αn) − f (s + t)

Lp(s)[0,1] = 0,
resp. for each ε > 0 the set

{τ > 0 : sup
t⩾0

c
−αn
ω f (s + t + αn) − f (s + t)

Lp(s)[0,1] < ε}
is relatively dense in [0,∞).
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By Sp(x)URω,c,2([0,∞) : X) and Sp(x)APω,c,2([0,∞) : X) we denote the space of
all Stepanov (p(x),ω, c)-uniformly recurrent functions of type 2 and the space of
all Stepanov (p(x),ω, c)-almost periodic functions of type 2, respectively. If p(x) ≡
p ∈ [1,∞), then the above classes are also denoted by SpURω,c,2([0,∞) : X) and
SpAPω,c,2([0,∞) : X), respectively.

If 1 ⩽ p(x) ⩽ q(x) <∞and f ∈ Sq(x)URω,c,2([0,∞) : X), resp. f ∈ Sq(x)APω,c,2([0,∞) :
X), then f ∈ Sp(x)URω,c,2([0,∞) : X), resp. f ∈ Sp(x)APω,c,2([0,∞) : X); further-
more, the space Sp(x)URω,c,2([0,∞) : X), resp. Sp(x)APω,c,2([0,∞) : X), contains
the space URω,c,2([0,∞) : X), resp. APω,c,2([0,∞) : X). It is simply verified that
the space Sp(x)URω,c,2([0,∞) : X), resp. Sp(x)APω,c,2([0,∞) : X), consists of those
locally p(x)-integrable functions f : I → X for which ̂f (⋅) belongs to the space
URω,c,2([0,∞) : Lp(x)([0, 1] : X)), resp. APω,c,2([0,∞) : Lp(x)([0, 1] : X)). Keeping in
mind this observation, it is straightforward to transfer the previously proved results
and the points [4′.–7′.] for the introduced Stepanov classes; details can be omitted.
Note, finally, that Sp(x)APω,c,2([0,∞) : X) is a complete metric space equipped with
the distance d(⋅, ⋅) := ‖ ⋅ − ⋅ ‖p,ω,c.

4.1.2 Composition principles for (ω, c)-almost periodic type functions
Themethods established in [650] enable one to formulate a great number of composi-
tion principles for (ω, c)-almost periodic type functions. We will explain this fact only
in the case of consideration of [650, Theorem 2.9] for Stepanov uniformly recurrent
functions. So, let us assume that the function F : I × Y → X is continuous and the
function fω,c(⋅) is Stepanov p-uniformly recurrent, i. e., the function f (⋅) is Stepanov
(p,ω, c)-almost periodic (p > 1,ω > 0, c ∈ ℂ∖{0}). Define the functionG : I×Y → X by

G(t, y) := c
− t
ω1

1 F(t, ct/ωy), t ∈ I , y ∈ Y ,

where c1 ∈ ℂ ∖ {0} and ω1 > 0. If the requirements of the above-mentioned theorem
hold with the functions f (⋅) and F(⋅, ⋅) replaced, respectively, with the functions fω,c(⋅)
and G(⋅, ⋅), then the resulting function

t → G(t, fω,c(t)) = c
−t1/ω1
1 F(t, f (t)), t ∈ I ,

is Stepanov q-uniformly recurrent so that the function t → F(t, f (t)), t ∈ I is Stepanov
(q,ω1, c1)-uniformly recurrent. More precisely, we have the following.

Theorem 4.1.26. Let I = ℝ or I = [0,∞), and let p ∈ 𝒫([0, 1]). Suppose that the follow-
ing conditions hold:
(i) The function G : I × Y → X is Stepanov p(x)-uniformly recurrent and there exist a

function r(x) ⩾ max(p(x), p(x)/(p(x)−1))anda function LG ∈ L
r(x)
S (I) such that (2.20)
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holdswith the functions F(⋅, ⋅)andLF(⋅) replaced thereinwith the functionsG(⋅, ⋅)and
LG(⋅), respectively.

(ii) The function fω,c : I → Y is Stepanov p(x)-uniformly recurrent and there exists a set
E ⊆ I with m(E) = 0 such that K := {fω,c(t) : t ∈ I ∖ E} is relatively compact in Y.

(iii) For every compact set K ⊆ Y, there exists a strictly increasing sequence (αn) of
positive real numbers tending to plus infinity such that (2.52) holds with the function
F(⋅, ⋅) replaced thereinwith the functionG(⋅, ⋅), and (2.3)holdswith the function fω,c(⋅)
and the norm ‖ ⋅ ‖ replaced, respectively, by the function ̂fω,c(⋅) and the norm ‖ ⋅
‖Lp(x)([0,1]:Y) therein.

Set q(x) := p(x)r(x)/(p(x)+r(x)) ∈ [1, p(x)) provided x ∈ [0, 1] and r(x) < +∞ and q(x) :=
p(x) for x ∈ [0, 1] and r(x) = +∞. Then F(⋅, f (⋅)) is Stepanov (q(x),ω1, c1)-uniformly
recurrent.

In the remainder of this subsection, we will furnish some composition principles
for (ω, c)-uniformly recurrent functions of type 2; see also Corollary 4.1.19 and Proposi-
tion 4.1.22 (we can simply reformulate these results for (ω, c)-almost periodic functions
of type 2). Hence, in the continuation of this subsection, we will assume that |c| ⩽ 1,
I = [0,∞) and i = 2.

Suppose that F : I × Y → X is a continuous function and there exists a finite
constant L > 0 such that (2.51) holds. Define ℱ(t) := F(t, f (t)), t ∈ I. We will use the
following estimate (τ ⩾ 0, ω > 0, c ∈ ℂ ∖ {0}, t ∈ I):

c
(−τ)/ωF(t + τ, f (t + τ)) − F(t, f (t))
⩽ c
(−τ)/ωF(t + τ, f (t + τ)) − F(t, c(−τ)/ωf (t + τ))
+ F(t, c

(−τ)/ωf (t + τ)) − F(t, f (t))
⩽ c
(−τ)/ωF(t + τ, f (t + τ)) − F(t, c(−τ)/ωf (t + τ)) + L

c
(−τ)/ωf (t + τ) − f (t). (4.5)

Remark 4.1.27. Although we will not employ this estimate henceforth, it should be
noticed that we also have

F(t + τ, f (t + τ)) − c
τ/ωF(t, f (t))

⩽ F(t + τ, f (t + τ)) − F(t + τ, c
τ/ωf (t)) +

F(t + τ, c
τ/ωf (t)) − cτ/ωF(t, f (t))

⩽ Lf (t + τ) − c
τ/ωf (t) +

F(t + τ, c
τ/ωf (t)) − cτ/ωF(t, f (t)).

Using the proof of [631, Theorem 3.29] and (4.5), we can simply deduce the follow-
ing result.

Theorem 4.1.28. Suppose that F : I × Y → X is a continuous function and there exists
a finite constant L > 0 such that (2.51) holds.
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(i) Suppose that f : I → Y is (ω, c)-uniformly recurrent of type 2. If there exists a strictly
increasing sequence (αn) of positive reals tending to plus infinity such that

lim
n→+∞

sup
t∈I

c
−αn
ω f (t + αn) − f (t)

 = 0

and

lim
n→+∞

sup
t∈I

c
(−αn)/ωF(t + αn, f (t + αn)) − F(t, c

(−αn)/ωf (t + αn))
 = 0,

then the mapping ℱ(t) := F(t, f (t)), t ∈ I is (ω, c)-uniformly recurrent of type 2.
(ii) Suppose that f : I → Y is (ω, c)-almost periodic of type 2. If for each ε > 0 the set of

all positive real numbers τ > 0 such that

sup
t∈I

c
−τ
ω f (t + τ) − f (t) < ε

and

sup
t∈I

c
(−τ)/ωF(t + τ, f (t + τ)) − F(t, c(−τ)/ωf (t + τ)) < ε

is relatively dense in [0,∞), then themappingℱ(t) := F(t, f (t)), t ∈ I is (ω, c)-almost
periodic of type 2.

We can similarly reformulate the statements of [631, Theorem 3.30, Theorem 3.31]
in our context (cf. also [49, Theorem 2.11] and [442, Theorem 2.11]).

Nowwewill provide two results for Stepanov classes of (ω, c)-uniformly recurrent
functions of type 2. We will first state the following.

Theorem 4.1.29. Let I = [0,∞), |c| ⩽ 1, ω > 0, p, q, r ∈ 𝒫([0, 1]), p(x), q(x) ∈ [1,∞),
r(x) ∈ [1,∞], 1/p(x) = 1/q(x) + 1/r(x) and the following conditions hold:
(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent and there exists a

function LF ∈ L
r(x)
S (I) such that (2.20) holds.

(ii) There exists a strictly increasing sequence (αn) of positive real numbers tending to
plus infinity such that

lim
n→+∞

sup
t⩾0

 supu∈R(f )

c
−αn/ωF(s + t + αn, u) − F(s + t, c

αn/ωu)
Lp(s)[0,1] = 0 (4.6)

and

lim
n→+∞

sup
t⩾0

c
−αn
ω f (s + t + αn) − f (s + t)

Lp(s)[0,1] = 0.
Then the function F(⋅, f (⋅)) is Stepanov (p(x),ω, c)-uniformly recurrent of type 2. Further-
more, the assumption that F(⋅,0) is Stepanov p(x)-bounded implies that the function
F(⋅, f (⋅)) is also Stepanov p(x)-bounded.
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Proof. We will only provide the main details of the proof since it is very similar to
the proof of [729, Theorem 2.2]. Using the arguments contained for showing the esti-
mate (4.5), we get (t ⩾ 0, n ∈ ℕ)

c
−αn/ωF(t + αn, f (t + αn)) − F(t, f (t))



⩽ c
(−αn)/ωF(t + αn, f (t + αn)) − F(t, c

(−αn)/ωf (t + αn))


+ LF(t)
c
(−αn)/ωf (t + αn) − f (t)

. (4.7)

Keeping inmind (4.7), we can repeat almost verbatim the arguments given in the proof
of [729, Theorem 2.2] so as to conclude that there exists a finite constant cp > 0 such
that (n ∈ ℕ)

sup
t⩾0

c
−αn/ωF(s + t + αn, f (s + t + αn)) − F(s, f (s))

Lp(s)[0,1]
⩽ cp
LF(⋅)

p
Sr(x) ⋅ sup

t⩾0


c
−αn/ωf (s + t + αn) − f (s + t)


Lp(s)[0,1]

+ cp sup
t⩾0

 supu∈R(f )

c
−αn/ωF(s + t + αn, u) − F(s + t, u)


Lp(s)[0,1].

By (4.6), this shows that the function F(⋅, f (⋅)) is Stepanov (p(x),ω, c)-uniformly recur-
rent of type 2. If the function F(⋅,0) is Stepanov p(x)-bounded, then the arguments
given on [729, p. 6, l.-1–l.-5] enable one to see that the function F(⋅, f (⋅)) is Stepanov
p(x)-bounded, as claimed.

We can simply formulate a consequence of this result with the usual Lipshitzian
condition used. Similarly, we can prove the following result.

Theorem 4.1.30. Let I = [0,∞), |c| ⩽ 1, ω > 0, p ∈ 𝒫([0, 1]), and the following condi-
tions hold:
(i) The function F : I × Y → X is Stepanov p(x)-uniformly recurrent and there exist a

function r(x) ⩾ max(p(x), p(x)/(p(x)−1))anda function LF ∈ L
r(x)
S (I) such that (2.20)

holds.
(ii) There exists a strictly increasing sequence (αn) of positive real numbers tending to

plus infinity such that

lim
n→+∞

sup
t⩾0

 supu∈R(f )

c
−αn/ωF(s + t + αn, u) − F(s + t, c

αn/ωu)
Lp(s)[0,1] = 0

and

lim
n→+∞

sup
t⩾0

c
−αn
ω f (s + t + αn) − f (s + t)

Lp(s)[0,1] = 0.
Then q(x) := p(x)r(x)/(p(x) + r(x)) for x ∈ [0, 1] and r(x) < +∞ and q(x) := p(x) for
x ∈ [0, 1] and r(x) = +∞. Then the function F(⋅, f (⋅)) is Stepanov (q(x),ω, c)-uniformly
recurrent of type 2. Furthermore, the assumption that F(⋅,0) is Stepanov q(x)-bounded
implies that the function F(⋅, f (⋅)) is also Stepanov q(x)-bounded.
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Remark 4.1.31. Concerning Theorem 4.1.29 and Theorem 4.1.30, it should be noticed
that we do not require that there exists a set E ⊆ I with m(E) = 0 such that the set
K := {f (t) : t ∈ I ∖ E} is relatively compact. For Stepanov (p,ω, c)-uniformly recurrent
functions of type 2, we cannot assume, in (4.6), a slightly weaker condition (see [729,
Lemma 2.1]):

lim
n→+∞

sup
t⩾0

sup
u∈R(f )

c
−αn/ωF(s + t + αn, u) − F(s + t, c

αn/ωu)Lp(s)[0,1] = 0.

4.1.3 (ω, c)-Almost periodic properties of convolution products and applications to
integro-differential equations

In the first part of this subsection, we will examine the invariance of (ω, c)-almost
periodic properties of the infinite convolution product (2.46), where a strongly con-
tinuous operator family (R(t))t>0 ⊆ L(X,Y) satisfies certain assumptions. As already
mentioned, the consideration is simple for the (ω, c)-uniformly recurrent functions,
(ω, c)-almost periodic functions and (compactly) (ω, c)-almost automorphic functions
becausewe thenneed to examinewhen the function t → c−(t/ω)F(t), t ∈ ℝ is uniformly
recurrent, almost periodic or (compactly) almost automorphic, respectively. But we
have

c−
t
ω F(t) =

t

∫
−∞

[c−
t−s
ω R(t − s)][c−

s
ω f (s)] ds, t ∈ ℝ,

so that the statements of [648, Proposition 3.1, 3.2] (uniform recurrence), [631, Propo-
sition 2.6.11] (almost periodicity) and [631, Proposition 3.5.3] (almost automorphicity),
for instance, can be simply reformulated in our context by replacing, respectively, the
operator family (R(t))t>0 and the function f (⋅) by the operator family (c−

t
ωR(t))t>0 and

the function c−
⋅
ω f (⋅). We will do this only in the case of the last mentioned result (see

[373] for the notion).

Proposition 4.1.32. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family satisfying

M :=
∞

∑
k=0

c
− ⋅+kω R(⋅ + k)Lq(x)[0,1] <∞.

If ̌c−
⋅
ω f : ℝ → X is Sp(x)-almost automorphic, then the function F : ℝ → Y, given

by (2.46), is well defined and (ω, c)-almost automorphic.

It is worth noting that this result can be applied in both cases |c| > 1 and |c| < 1,
under suitable conditions. It is straightforward to incorporate the above results in the
study of the existence and uniqueness of (ω, c)-almost periodic type solutions for the
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various classes of abstract inhomogeneous integro-differential equations. Keeping in
mind Theorem 4.1.13, we will skip all related details with regard to the invariance
of (ω, c)-uniform recurrence of type 1 (type 2) and (ω, c)-almost periodicity of type 1
(type 2) under the actions of infinite convolution products.

Due to the fact that

c−
t
ω

t

∫
0

R(t − s)f (s) ds =
t

∫
0

[c−
t−s
ω R(t − s)][c−

s
ω f (s)] ds, t ⩾ 0, (4.8)

we can similarly analyze the invariance of asymptotical (ω, c)-uniform recurrence,
asymptotical (ω, c)-almost periodicity and asymptotical (compact) (ω, c)-almost auto-
morphicity under the actions of finite convolution products; the interested readermay
try to reformulate the statements of [631, Proposition 2.6.13, Theorem 2.9.5, Theorem
2.9.7, Theorem 2.9.15] in our new context.

If |c| < 1 and ω > 0, then it is worth noting that the (ω, c)-uniform recurrence
of type 2 and the (ω, c)-almost periodicity of type 2 cannot be so simply retained
after the actions of finite convolution products. The situation is much simpler for
the classes APω,c,1([0,∞) : X) and URω,c,1([0,∞) : X) (Sp(x)APω,c,1([0,∞) : X) and
Sp(x)URω,c,1([0,∞) : X)) because in this case we can apply Corollary 4.1.19, Proposi-
tion 4.1.22 and (4.8).

In the remainder of this subsection, we will provide a few applications to the ab-
stract integro-differential equations and inclusions in Banach spaces.
1. In the concrete situation of [1067, Example 4], we know that the unique solution

of the heat equation ut(x, t) = uxx(x, t), x ∈ ℝ, t ⩾ 0, accompanied with the initial
condition u(x,0) = f (x), is given by

u(x, t) := 1
2√πt

+∞

∫
−∞

e−
(x−s)2
4t f (s) ds, x ∈ ℝ, t ⩾ 0. (4.9)

Let the number t0 > 0 be fixed, let c ∈ ℂ ∖ {0}, ω > 0 and let the function c−⋅/ωf (⋅)
be bounded uniformly recurrent (almost periodic, (compactly) almost automor-
phic). Since c−

⋅
ω e−⋅

2/4t0 ∈ L1(ℝ), we can apply Proposition 4.1.7 in order to see that
the solution x → u(x, t0), x ∈ ℝ is (ω, c)-uniformly recurrent ((ω, c)-almost peri-
odic/(compactly) (ω, c)-almost automorphic). See also [49, Example 2.9].

2. It is worth noting that the notion from Definition 4.1.12 and Definition 4.1.25 can
be introduced with the intervals I = [−a,∞), where a > 0 is an arbitrary real
number. To explain the importance of this observation, we will reexamine [1067,
Example 5]. It is well known that the unique regular solution of the wave equation
uxx(x, t) = utt(x, t), x ∈ ℝ, t ⩾ 0, accompanied with the initial conditions u(x,0) =
f (x), x ∈ ℝ, ut(x,0) = g(x), x ∈ ℝ, is given by the d’Alembert formula (3.65). Here
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we would like to note the following fact about the term

Ht0 (x) :=
1
2

x+t0

∫
x−t0

g(s) ds, x ∈ ℝ,

where t0 > 0 is a fixed real number. Suppose that the function g : [−t0,∞) → ℂ
is (ω, c)-uniformly recurrent of type 2, for example (the same comment applies to
all other classes of functions introduced in Definition 4.1.12). Then there exists a
strictly increasing sequence (αn) of positive real numbers such that

lim
n→+∞

sup
t⩾−t0

c
−αn/ωg(t + αn) − g(t)

 = 0.

If ε > 0 is given, this implies the existence of an integer n0 ∈ ℕ such that, for every
n ⩾ n0,

c
−αn/ωHt0 (x + αn) − Ht0 (x)

 ⩽

t0

∫
−t0

c
−αn/ωg(x + s + αn) − g(x + s)

 ds ⩽ 2t0ε, x ⩾ 0.

Hence, the function Ht0 : [0,∞)→ ℂ is (ω, c)-uniformly recurrent of type 2.

It would be very enticing to provide certain applications of composition principles
established in Subsection 4.1.2 in the qualitative analysis of solutions to the ab-
stract semilinear Cauchy inclusions which belongs to the classes APω,c,2([0,∞)) and
URω,c,2([0,∞)).

The case |c| ̸= 1 is still unexplored in the theory of almost periodic functions and
we are obliged to say that the classes of (ω, c)-almost periodic type functions with
|c| ̸= 1 have some very unusual and unpleasant features.

4.1.4 (ω, c)-Pseudo-almost periodic functions, (ω, c)-pseudo-almost automorphic
functions and applications

In this subsection, we deal with the interval I = ℝ, only. Let us recall the (ω, c)-mean
of a function h : ℝ→ X is introduced in [48] by

ℳω,c(h) := lim
T→∞

1
2T

T

∫
−T

c−σ/ωh(σ) dσ,

whenever the limit exists. For example, for h1(t) = ct/ω and h2(t) = ct/ωeit, we see
that ℳω,c(h1) = 1 and ℳω,c(h2) = 0. Furthermore, ℳω,c is a linear and continuous
operator. Indeed, if c−t/ωhn(t) → c−t/ωh(t) uniformly as n → ∞, then ℳω,c(hn) →
ℳω,c(h) as n→∞.
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Remark 4.1.33. If h(⋅) is (ω, c)-almost periodic, then the meanℳω,c(h) always exists,
because the function c−(⋅/ω)f (⋅) is almost periodic and the usual mean value of any
almost periodic function exists.

We will use the space

PAP0;ω,c(ℝ : X) := {h ∈ C(ℝ : X); c
−⋅/ωh(⋅) ∈ PAP0(ℝ : X)}.

A function h(⋅) is said to be c-ergodic if and only if h(⋅) belongs to this space.
Furthermore, wewill use the following two types of (ω, c)-pseudo-ergodic compo-

nents.

Definition 4.1.34. Let c ∈ ℂ\{0} and ω > 0.
(i) A function f ∈ C(ℝ × Y : X) is said to be (ω, c, 1)-pseudo-ergodic vanishing if and

only if c−t/ωf (t, ⋅) ∈ PAP0(ℝ×Y : X). The space of all such functionswill be denoted
by PAP0;ω,c,1(ℝ × Y : X).

(ii) A function f ∈ C(ℝ × Y : X) is said to be (ω, c, 2)-pseudo-ergodic vanishing if and
only if c−t/ωf (t, ct/ω⋅) ∈ PAP0(ℝ × Y : X). The space of all such functions will be
denoted by PAP0;ω,c,2(ℝ × Y : X).

Similarly, we will use two different types of (ω, c)-almost periodic functions, resp.
(ω, c)-almost automorphic functions, depending on two variables. Nowwewould like
to introduce the following definitions.

Definition 4.1.35. Let c ∈ ℂ\{0}, ω > 0 and i = 1, 2.
(i) A function f ∈ C(ℝ × Y : X) is said to be (ω, c, 1)-almost periodic, resp. (ω, c, 1)-al-

most automorphic, if and only if c−t/ωf (t, ⋅) ∈ AP(ℝ × Y : X), resp. c−t/ωf (t, ⋅) ∈
AA(ℝ×Y : X). The space of all such functionswill be denoted byAPω,c,1(ℝ×Y : X),
resp. AAω,c,1(ℝ × Y : X).

(ii) A function f ∈ C(ℝ × Y : X) is said to be (ω, c, 2)-almost periodic, resp. (ω, c, 2)-al-
most automorphic, if and only if c−t/ωf (t, ct/ω⋅) ∈ AP(ℝ × Y : X), resp. c−t/ωf (t,
ct/ω⋅) ∈ AA(ℝ×Y : X). The spaceof all such functionswill bedenotedbyAPω,c,2(ℝ×
Y : X), resp. AAω,c,2(ℝ × Y : X).

Definition 4.1.36. Let c ∈ ℂ\{0}, ω > 0 and i = 1, 2.
(i) A function f ∈ C(ℝ : X) is said to be (ω, c)-pseudo-almost periodic, resp.
(ω, c)-pseudo-almost automorphic, if and only if it admits a decomposition
f (t) = g(t) + h(t), t ∈ ℝ, where g(⋅) is (ω, c)-almost periodic, resp. (ω, c)-almost
automorphic, and h ∈ PAP0;ω,c(ℝ : X). The space of all such functions will be
denoted by PAPω,c(ℝ : X), resp. PAAω,c(ℝ : X).

(ii) A function f (⋅, ⋅) ∈ C(ℝ × Y : X) is said to be (ω, c, i)-pseudo-almost periodic,
resp. (ω, c, i)-pseudo-almost automorphic, if and only if it admits a decomposi-
tion f (t, x) = g(t, x) + h(t, x), t ∈ ℝ, x ∈ X, where g(⋅, ⋅) is (ω, c, i)-almost periodic,
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resp. (ω, c, i)-almost automorphic, and h(⋅, ⋅) ∈ PAP0;ω,i(ℝ×Y : X). The space of all
such functions will be denoted by PAPω,c,i(ℝ × Y : X), resp. PAAω,c,i(ℝ × Y : X).

Theorem 4.1.37. Let f ∈ C(ℝ : X). Then f (⋅) is (ω, c)-pseudo-almost periodic, resp.
(ω, c)-pseudo-almost automorphic, if and only if

f (t) ≡ c∧(t)u(t), with c∧(t) ≡ ct/ω, u ∈ PAP(ℝ : X), (4.10)

resp.

f (t) ≡ c∧(t)u(t), with c∧(t) ≡ ct/ω, u ∈ PAA(ℝ : X).

Proof. We will consider only (ω, c)-pseudo-almost periodic functions for simplicity. It
is clear that if f (⋅) satisfies (4.10), then f (⋅) is an (ω, c)-pseudo-almost periodic function.
In order to show the converse statement, let f ∈ PAPω,c(ℝ : X). Then there exist g ∈
APω,c(ℝ : X) and PAP0;ω,c(ℝ : X) such that f = g + h. Therefore,

u(t) = c−t/ωg(t) + c−t/ωh(t) = F1(t) + F2(t), t ∈ ℝ.

So, u(t) is written as a sum of F1(⋅)which is almost periodic and F2(⋅)which belongs to
PAP0;ω,c(ℝ : X).

Remark 4.1.38. Let us note that the decompositions given in Definition 4.1.36 are
unique; see also [48, Remark 2.9]. The proof of this fact can be left to the interested
reader.

It can be simply shown that:
(i) We have f + g ∈ PAPω,c(ℝ : X), resp. f + g ∈ PAAω,c(ℝ : X), and αh ∈ PAPω,c(ℝ :

X), resp. αh ∈ PAAω,c(ℝ : X), provided f , g, h ∈ PAPω,c(ℝ : X), resp. f , g, h ∈
PAAω,c(ℝ : X), and α ∈ ℂ.

(ii) If τ ∈ ℝ and f ∈ PAPω,c(ℝ : X), resp. f ∈ PAAω,c(ℝ : X), then fτ(⋅) ≡ f (⋅ + τ) ∈
PAPω,c(ℝ : X), resp. fτ(⋅) ∈ PAAω,c(ℝ : X).

Now we would like to endow the introduced space of (ω, c)-pseudo-almost periodic
functions, resp. (ω, c)-pseudo-almost automorphic functions, with a certain norm.

Proposition 4.1.39. The space PAPω,c(ℝ : X), resp. PAAω,c(ℝ : X), equipped with the
norm ‖ ⋅ ‖ω,c is a Banach space.

Proof. We will consider the space PAPω,c(ℝ : X), only. Let (fn) be a Cauchy sequence
in PAPω,c(ℝ : X). Then, given ε > 0, there exists N ∈ ℕ such that, for allm, n ⩾ N, we
have

‖fn − fm‖ω,c < ε.

Since fm, fn ∈ PAPω,c(ℝ : X), there exist um, un ∈ PAP(ℝ : X) such that fm(t) ≡
c∧(t)um(t) and fn(t) ≡ c∧(t)un(t) for all t ∈ ℝ. Now, form, n ⩾ N we have ‖um − un‖∞ ⩽
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‖fn−fm‖ω,c < ε. It follows that (un) is a Cauchy sequence inPAP(ℝ : X). SincePAP(ℝ : X)
is complete, there exists u ∈ PAP(ℝ : X) such that ‖un − u‖∞ → 0 as n → ∞. Let us
define f (t) := c∧(t)u(t), t ∈ ℝ. We claim that ‖un − u‖∞ → 0 as n → ∞. Indeed,
‖fn − f ‖ω,c = supt∈ℝ ‖un(t) − u(t)‖ → 0 (n → ∞). Hence, PAPω,c(ℝ : X) is a Banach
space with the norm ‖ ⋅ ‖ω,c.

Lemma 4.1.40 ([48]). Assume that k∼(⋅) := c∧(−⋅)k(⋅) ∈ L1(ℝ). Then h ∈ PAP0;ω,c(ℝ : X)
implies that k ∗ h ∈ PAP0;ω,c(ℝ : X).

Theorem 4.1.41. Let f ∈ PAPω,c(ℝ : X), resp. f ∈ PAAω,c(ℝ : X), with f (⋅) = c∧(⋅)p(⋅), p ∈
PAP(ℝ : X), resp. p ∈ PAA(ℝ : X). If for some k(⋅) we have k∼(⋅) := c∧(−⋅)k(⋅) ∈ L1(ℝ),
then

(k ∗ f )(t) =
∞

∫
−∞

k(t − s)f (s) ds = c∧(t)(k∼ ∗ p)(t), t ∈ ℝ.

In particular, k ∗ f ∈ PAPω,c(ℝ : X), resp. k ∗ f ∈ PAAω,c(ℝ : X).

Proof. As before, we will consider the space PAPω,c(ℝ : X) only, because the proof is
quite analogous for the space PAAω,c(ℝ : X). Since p ∈ PAP(ℝ : X), we see that there
exist p1 ∈ AP(ℝ : X) and p2 ∈ PAP0(ℝ : X) such that p = p1 + p2. Then f = f1 + f2, where
f1(⋅) = c∧(⋅)p1(⋅) ∈ APω,c(ℝ : X) and f2(⋅) = c∧(⋅)p1(⋅) ∈ PAP0;ω,c(ℝ : X). For every t ∈ ℝ,
we have

(k ∗ f )(t) =
∞

∫
−∞

k(t − s)f (s) ds

=
∞

∫
−∞

k(t − s)f1(s) ds +
∞

∫
−∞

k(t − s)f2(s) ds

= (k ∗ f1)(t) + (k ∗ f2)(t) =: I1(t) + I2(t).

We see that I1 ∈ APω,c(ℝ : X) and I2 ∈ PAP0;ω,c(ℝ : X). Moreover, by definition of f (⋅),
we have (k ∗ f )(⋅) = c∧(⋅)(k∼ ∗ p)(⋅) so that k ∗ f ∈ PAPω,c(ℝ : X).

Example 4.1.42. Let us consider the heat equation ut(x, t) = uxx(x, t), t > 0, x ∈ ℝ,
with the initial value condition u(x,0) = f (x). Let u(x, t) be a regular solution of this
equation; see (4.9). Fix t0 > 0 and assume that f (⋅) is an (ω, c)-pseudo-almost peri-
odic function. Then, by Theorem 4.1.41, the solution u(x, t0) is (ω, c)-pseudo-almost
periodic with respect to x.

To formulate the related composition principles, we will use two lemmas.

Lemma 4.1.43 (see [631, Lemma 2.12.2]). Let f ∈ PAP(ℝ × Y : X) and u ∈ PAP(ℝ : Y).
Then the mapping t → f (t, u(t)), t ∈ ℝ belongs to the space PAP(ℝ : X) provided that
the following conditions hold:
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(i) The set {f (t, y) : t ∈ ℝ, y ∈ B} is bounded for every bounded subset B ⊆ Y.
(ii) f (t, y) is uniformly continuous in each bounded subset of Y uniformly in t ∈ ℝ. That

is, for any ε > 0 and B ⊆ X bounded, there exists δ > 0 such that x, y ∈ B and
‖x − y‖ ⩽ δ imply ‖f (t, x) − f (t, y)‖ ⩽ ε for all t ∈ ℝ.

Lemma 4.1.44 (see [631, Theorem 3.2.4]). Suppose that f = g + ϕ ∈ PAA(ℝ × Y : X)
with g ∈ AA(ℝ × Y : X), ϕ ∈ PAP0(ℝ × Y : X) and the following holds:
(i) the mapping (t, y) → g(t, y) is uniformly continuous in any bounded subset B ⊆ Y

uniformly for t ∈ ℝ;
(ii) the mapping (t, y) → ϕ(t, y) is uniformly continuous in any bounded subset B ⊆ Y

uniformly for t ∈ ℝ.

Then for each u ∈ PAA(ℝ : Y) one has f (⋅, u(⋅)) ∈ PAA(ℝ : X).

For simplicity, we will not consider Stepanov p-almost periodic functions and
Stepanov p-almost automorphic functions depending on two variables here.

Suppose now that a continuous function g : ℝ×Y → X satisfies g(t+ω, y) = cg(t, y)
for all t ∈ ℝ and y ∈ Y , resp. g(t + ω, cy) = cg(t, y) for all t ∈ ℝ and y ∈ Y . Define the
functions

G1(t, y) := c
− t
ω g(t, y), t ∈ ℝ, y ∈ Y (4.11)

and

G2(t, y) := c
− t
ω g(t, ct/ωy), t ∈ ℝ, y ∈ Y .

Then, for every t ∈ ℝ and y ∈ Y , we have

G1(t + ω, y) = c
− t+ωω g(t + ω, y) = c−

t+ω
ω cg(t + ω, y) = c−

t
ω g(t, y) = G1(t, y)

and

G2(t + ω, y) = c
− t+ωω g(t + ω, c

t+ω
ω y) = c−

t+ω
ω cg(t, ct/ωy)

= c−t/ωg(t, ct/ωy) = G2(t, y).

In both cases, the function Gi(⋅, ⋅) is ω-periodic in time variable (i = 1, 2). Further-
more, if the requirements of [48, Theorem 2.24] hold (case i = 2), then condition (i) of
Lemma 4.1.44 holds with the function g(⋅, ⋅) replaced therein with the function G2(⋅, ⋅),
and condition (ii) of Lemma 4.1.44 holds with the functionϕ(⋅, ⋅) replaced therein with
the function h2(t, ⋅) ≡ c−t/ωh(t, ct/ω⋅), t ∈ ℝ. Furthermore, G2 ∈ AA(ℝ × Y : X) and
h2 ∈ PAP0(ℝ × Y : X) so that repeating verbatim the arguments used in the proof of
[711, Theorem 2.4] with appealing to [49, Theorem 2.11] in place of [711, Lemma 2.2]
immediately yields a much simpler proof of [48, Theorem 2.24]. Furthermore, the
statement of [49, Theorem 2.11] can be formulated for continuous functions which
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maps the space ℝ × Y into X; in other words, we can use two different pivot spaces X
and Y . Keeping in mind this observation, we can immediately clarify an extension of
[48, Theorem 2.24] in this context (the interested reader should try to reexamine [48,
Theorem 2.25] for (ω, c)-pseudo-almost periodic functions and (ω, c)-pseudo-almost
automorphic functions). Furthermore, we have the following result.

Proposition 4.1.45.
(i) Suppose that f = g + ϕ with g ∈ AAω,c,1(ℝ × Y : X), ϕ ∈ PAP0;ω,c,1(ℝ × Y : X) and

the following holds:
(a) the mapping (t, y) → G1(t, y) given by (4.11) is uniformly continuous in any

bounded subset B ⊆ Y uniformly for t ∈ ℝ;
(b) the mapping (t, y) → ϕ1(t, y) given by (4.11) with the function g(⋅, ⋅) replaced

therein with the function ϕ(⋅, ⋅), is uniformly continuous in any bounded subset
B ⊆ Y uniformly for t ∈ ℝ.

Then for each u ∈ PAA(ℝ : Y) one has f (⋅, u(⋅)) ∈ PAAω,c(ℝ : X).
(ii) Suppose that f = g + ϕ with g ∈ AAω,c,2(ℝ × Y : X), ϕ ∈ PAP0;ω,c,2(ℝ × Y : X) and

the following holds:
(c) the mapping (t, y) → G2(t, y) given by (4.11) is uniformly continuous in any

bounded subset B ⊆ Y uniformly for t ∈ ℝ;
(d) the mapping (t, y) → ϕ2(t, y) given by (4.11), with the function g(⋅, ⋅) replaced

therein with the function ϕ(⋅, ⋅), is uniformly continuous in any bounded subset
B ⊆ Y uniformly for t ∈ ℝ.

Then for each u ∈ PAAω,c(ℝ : Y) one has f (⋅, u(⋅)) ∈ PAAω,c(ℝ : X).

We can also clarify the following result.

Proposition 4.1.46.
(i) Let f ∈ PAPω,c,1(ℝ × Y : X) and u ∈ PAP(ℝ : Y). Then the mapping t → f (t, u(t)),

t ∈ ℝ belongs to the space PAPω,c(ℝ : X) provided that the following conditions
hold:
(a) The set {c−t/ωf (t, y) : t ∈ ℝ, y ∈ B} is bounded for every bounded subset B ⊆ Y.
(b) c−t/ωf (t, y) is uniformly continuous in each bounded subset of Y uniformly in

t ∈ ℝ.
(ii) Let f ∈ PAPω,c,2(ℝ × Y : X) and u ∈ PAPω,c(ℝ : Y). Then the mapping t → f (t, u(t)),

t ∈ ℝ belongs to the space PAPω,c(ℝ : X) provided that the following conditions
hold:
(a) The set {c−t/ωf (t, ct/ωy) : t ∈ ℝ, y ∈ B} is bounded for every bounded subset

B ⊆ Y.
(b) c−t/ωf (t, ct/ωy) is uniformly continuous in each bounded subset of Y uniformly

in t ∈ ℝ.

Consider the semilinear fractional Cauchy inclusion (2.11), where γ ∈ (0, 1], f :
ℝ → X satisfies certain properties, and 𝒜 is a closed multivalued linear operator in
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X satisfying condition (P). Then there exists a finite constant M0 > 0 such that the
degenerate strongly continuous semigroup (T(t))t>0 ⊆ L(X) generated by 𝒜 satisfies
the estimate ‖T(t)‖ ⩽ M0e−attβ−1, t > 0. Let us recall that by amild solution of problem
(2.11), we mean any continuous function t → u(t), t ∈ ℝ, satisfying

u(t) =
t

∫
−∞

T(t − s)f (s, u(s)) ds, t ∈ ℝ.

We will use the following auxiliary result.

Lemma 4.1.47 (see the proof of [631, Lemma 2.12.3]). Suppose that f : ℝ → X is
pseudo-almost periodic (pseudo-almost automorphic) and (R(t))t>0 ⊆ L(X,Y) is a
strongly continuous operator family satisfying that ‖R(t)‖ ⩽ Me−bttβ−1, t > 0 for some
finite numbers M ⩾ 1, b > 0 and β ∈ (0, 1]. Then the function F(t) := ∫t−∞ R(t − s)f (s) ds,
t ∈ ℝ is well defined and pseudo-almost periodic (pseudo-almost automorphic).

Suppose now that

0 < M0/(a + (ln |c|/ω)) < 1 (4.12)

and define the mapping

Pu : PAPω,c(ℝ : X)→ PAPω,c(ℝ : X), resp. Pu : PAAω,c(ℝ : X)→ PAAω,c(ℝ : X),

by

(Pu)(t) :=
t

∫
−∞

T(t − s)f (s, u(s)) ds, t ∈ ℝ.

Under certain assumptions, the mapping f (⋅, u(⋅)) belongs to the class PAPω,c(ℝ : X),
resp. PAAω,c(ℝ : X). Using the decomposition

t

∫
−∞

T(t − s)f (s, u(s)) ds =
t

∫
−∞

[c−
t−s
ω T(t − s)][c−

s
ω f (s, u(s))] ds, t ∈ ℝ,

the estimate (4.12) shows that the mapping t → ∫t−∞ T(t − s)f (s, u(s)) ds, t ∈ ℝ belongs
to the class PAPω,c(ℝ : X), resp. PAAω,c(ℝ : X). Hence, themappingP(⋅) iswell defined.
By simple calculation, we get

‖Pu‖ω,c ⩽
M0

a + (ln |c|/ω)
‖Pu‖ω,c, u ∈ PAPω,c(ℝ : X) [u ∈ PAAω,c(ℝ : X)].

Applying the Banach contraction principle, themapping P(⋅) has a unique fixed point,
so that there exists a unique solution of the abstract semilinear Cauchy inclusion (2.11)
which belongs to the class PAPω,c(ℝ : X), resp. PAAω,c(ℝ : X).
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4.1.5 (ω, c)-Almost periodic distributions
Almost periodic distributions extending the classical Bohr and Stepanov almost peri-
odic functions are introduced by L. Schwartz; see [913]. Asymptotical almost period-
icity of Schwartz distributions was introduced by I. Cioransescu [299] (see also [208,
209, 631, 764, 958, 959], Subsection 4.2.8 and the list of references quoted therein).

This subsection introduces and investigates (ω, c)-almost periodicity (resp. as-
ymptotic (ω, c)-almost periodicity) in the setting of Schwartz–Sobolev distributions.
For simplicity, we will consider only scalar-valued distributions because the exten-
sions to the vector-valued case are straightforward.

By 𝒟 = C∞0 (ℝ), ℰ = C
∞(ℝ) and 𝒮 = 𝒮(ℝ) we denote the Schwartz spaces of test

functions, endowedwith the usual topologies. If 0 ̸= Ω ⊆ ℝ, then by𝒟Ω we denote the
subspace of𝒟 consisting of those functionsφ ∈ 𝒟 for which supp(φ) ⊆ Ω;𝒟0 ≡ 𝒟[0,∞)
and𝒟′ := L(𝒟 : ℂ) stands for the space consisting of all scalar-valued distributions.

We will first introduce the space of smooth (ω, c)-almost periodic functions and
investigate some of their basic properties. We will use the following notations:

φω,c(⋅) := c
− (⋅)ω φ(⋅), φ ∈ 𝒞∞ or Lp, 1 ⩽ p ⩽ +∞ and Tω,c := c

− (⋅)ω T , T ∈ 𝒟′, (4.13)

where the equality is taken in the usual (resp. Lebesgue, distributional) sense.
To construct the (ω, c)-smooth almost periodic functions, we need to introduce

some new functional spaces. Let p ∈ [1,+∞] and f (⋅) be a complex-valuedmeasurable
function on ℝ.

We say that f (⋅) is a (ω, c)-Lebesgue function with exponent p, if

(∫
ℝ

fω,c(t)

p dt)

1
p

<∞, for 1 ⩽ p < +∞,

and

sup
t∈ℝ

fω,c(t)
 <∞, for p = +∞.

We denote by Lpω,c the set of (ω, c)-Lebesgue functions with exponent p, i. e.,

Lpω,c := {f : ℝ→ ℂmeasurable; fω,c ∈ L
p}.

When c = 1, Lpω,c := L
p is the classical Lebesgue space over ℝ.

Proposition 4.1.48. The space Lpω,c endowed with the (ω, c)-norm

‖f ‖Lpω,c := ‖fω,c‖Lp , for 1 ⩽ p < +∞,

and

‖f ‖L∞ω,c := ‖f ‖ω,c, for p = +∞,

is a Banach space.
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Proposition 4.1.49. 𝒟 is dense in Lpω,c; 1 ⩽ p <∞.

Proof. Since𝒟 is dense in the space 𝒞c of continuous functionswith compact support,
it suffices to show that 𝒞c is dense in Lpω,c for 1 ⩽ p <∞.

Let S be the set of all simple measurable functions s(⋅), with complex values, de-
fined on ℝ and such that

m({t : s(t) ̸= 0}) <∞.

First, it is clear that S is dense in Lpω,c for 1 ⩽ p <∞. Indeed, as c
− t
ω s ∈ Lp, then S ⊆ Lpω,c.

Suppose f ∈ Lpω,c is positive and define the sequence (sn)n such that

0 ⩽ s1 ⩽ s2 ⩽ ⋅ ⋅ ⋅ ⩽ f , and for each t ∈ ℝ, sn(t)→ f (t) when n→ +∞.

Then (f − sn)ω,c = c−
t
ω (f − sn) ∈ Lp, hence sn ∈ S. Furthermore, since

c
− t
ω (f − sn)


p
⩽ f p,

Lebesgue’s dominated convergence theorem shows that

(f − sn)ω,c
Lp =
c
− t
ω (f − sn)

Lp → 0

when n → +∞. Hence, ‖f − sn‖Lpω,c → 0 when n → +∞. On the other hand, by Lusin’s
theorem, for s ∈ S and ε > 0, there exists g ∈ 𝒞c such that g(t) = s(t), except on a
set of measure less than ε, and |g| ⩽ ‖s‖∞, and since s(⋅) takes only a finite number of
values, there exists a constant C > 0 which depends on c and ω such that

(g − s)ω,c
Lp = (∫

ℝ

c
− t
ω (g(t) − s(t))

p dt)
1
p

⩽ 2Cε
1
p ‖s‖∞.

The density of S in Lpω,c completes the proof.

We define

𝒟Lpω,c := {φ ∈ 𝒞∞ : φ(j)ω,c ∈ 𝒟Lp , j ∈ ℕ}.

When c = 1,weget𝒟Lpω,c := 𝒟Lp .Moreover, it is easy to show that the space𝒟Lpω,c , 1 ⩽
p ⩽∞, endowedwith the topologydefinedby the following countable family of norms

|φ|k,p;ω,c :=∑
j⩽k

(φω,c)
(j)Lp , k ∈ ℕ,

is a Fréchet subspace of 𝒞∞.

Proposition 4.1.50. Let 1 ⩽ p ⩽∞. If φ, ψ ∈ 𝒟Lp2ω,c , then φψ ∈ 𝒟Lpω,c .
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Proof. Let φ, ψ ∈ 𝒟Lp2ω,c , then φ2ω,c ∈ 𝒟Lp and ψ2ω,c ∈ 𝒟Lp , j ∈ ℕ. So φ
(j)
2ω,c ∈ L

p and

ψ(j)2ω,c ∈ L
p. By Leibniz’s rule, we obtain

((φψ)ω,c)
(j)
= (c−

t
2ωφc−

t
2ωψ)(j) = (φ2ω,cψ2ω,c)

(j) =
j
∑
i=0
(
i
j
)φ(i)2ω,cψ

(j−i)
2ω,c ∈ L

p.

This shows that (φψ)ω,c ∈ 𝒟Lp . Hence, φψ ∈ 𝒟Lpω,c .
The following result shows that the family of norms | ⋅ |k,p;ω,c is submultiplicative.

Proposition 4.1.51. Let 1 ⩽ p ⩽∞. If φ, ψ ∈ 𝒟Lp2ω,c , then for all k ∈ ℕ, there exists Ck > 0
such that

|φψ|k,p;ω,c ⩽ Ck |φ|k,p;2ω,c.|ψ|k,p;2ω,c.

Proof. Let φ, ψ ∈ 𝒟Lp2ω,c . We have

∑
j⩽k

((φψ)ω,c)
(j)Lp =

(
i
j
)(φ2ω,c)

(i)(ψ2ω,c)
(j−i)
Lp

⩽∑
j⩽k

j
∑
i=1
(
i
j
)(φ2ω,c)

(i)(ψ2ω,c)
(j−i)Lp

⩽∑
j⩽k

j
∑
i=1
(
i
j
)(φ2ω,c)

(i)Lp∑
j⩽k

j
∑
i=1
(
i
j
)(ψ2ω,c)

(j−i)Lp .

Set

Ck := (∑
j⩽k

j
∑
i=1
(
i
j
))

2
> 0.

Then

|φψ|k,p;ω,c ⩽ Ck |φ|k,p;2ω,c ⋅ |ψ|k,p;2ω,c.

For 1 ⩽ p <∞, we have 𝒟 ⊆ 𝒟Lpω,c ⊆ 𝒟L∞ω,c . Moreover, it can be simply shown that,
for 1 ⩽ p <∞, the space𝒟 is dense in𝒟Lpω,c .

The space𝒟 is not dense in𝒟L∞ω,c . We then define
.
𝒟L∞ω,c as the subspace of all func-

tions in𝒟L∞ω,c which vanish at infinitywith all their derivatives. This space is the closure
of the space 𝒟L∞ω,c in 𝒟. It is clear that

.
𝒟L∞ω,c is a closed subspace of 𝒟L∞ω,c ; hence, it is a

Fréchet space. Moreover, it is easy to prove the following result:

Proposition 4.1.52. For 1 ⩽ p <∞, we have

𝒟Lpω,c → .𝒟L∞ω,c → 𝒟L∞ω,c ,
with continuous embeddings.
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Recall also the following space of smooth almost periodic functions introduced
by L. Schwartz

ℬap := {φ ∈ 𝒟L∞ : φ(j) ∈ AP, j ∈ ℕ}.
We have the following properties of ℬap.

Proposition 4.1.53.
(i) ℬap = AP ∩𝒟L∞ .
(ii) ℬap is a closed differential subalgebra of𝒟L∞ .
(iii) If f ∈ L1 and φ ∈ ℬap, then f ∗ φ ∈ ℬap.

Proof. See [913].

Now, we can introduce the space of smooth (ω, c)-almost periodic functions.

Definition 4.1.54. The space of smooth (ω, c)-almost periodic functions on ℝ is de-
fined by

ℬAPω,c := {φ ∈ 𝒟L∞ω,c : φ(j)ω,c ∈ ℬap, j ∈ ℕ}.

We endow ℬAPω,c with the topology induced by𝒟L∞ω,c . Some properties of ℬAPω,c are
given in the following.

Proposition 4.1.55.
(i) ℬAPω,c = APω,c ∩𝒟L∞ω,c .
(ii) ℬAPω,c is a closed subspace of𝒟L∞ω,c .
(iii) If f ∈ L1ω,c and φ ∈ ℬAPω,c , then c t

ω (fω,c ∗ φω,c) ∈ ℬAPω,c .
Proof. (i): Obvious.

(ii): It follows from (i) and the completeness of the space of almost periodic func-
tions.

(iii): If f ∈ L1ω,c and φ ∈ ℬAPω,c , then fω,c ∈ L1 and φω,c ∈ ℬap. From Proposi-
tion 4.1.53, we have fω,c ∗ φω,c ∈ ℬap; hence,

c−
t
ω (c

t
ω (fω,c ∗ φω,c)) ∈ ℬap,

which shows that c
t
ω (fω,c ∗ φω,c) ∈ ℬAPω,c .

Corollary 4.1.56. If f ∈ 𝒟L∞ω,c and c t
ω (fω,c ∗ φω,c) ∈ APω,c, φ ∈ 𝒟, then f ∈ ℬAPω,c .

Remark 4.1.57. It is clear that ℬAPω,c ⊆ APω,c ∩ 𝒞∞, whereas the converse inclusion is
not true. Indeed, the function

f (t) = 2−t√2 + cos t + cos√2t, t ∈ ℝ,
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is an element of APω,c ∩ 𝒞∞ with c = 2 and ω = 1. However,

f ′(t) = 2−t( − sin t −
√2 sin√2t

2√2 + cos t + cos√2t
− ln 2√2 + cos t + cos√2t), t ∈ ℝ,

is not bounded, because inft∈ℝ(2 + cos t + cos√2t) = 0 and therefore

− sin t −√2 sin√2t

2√2 + cos t + cos√2t
∉ AP.

Hence, f ∉ ℬAPw,c .
Nowwewould like to introduce the concept of (ω, c)-almost periodicity in the set-

ting of Sobolev–Schwartz distributions. For this we need to introduce the so-called
space of Lpω,c-distributions, 1 ⩽ p ⩽ ∞. We first recall the space of Lp-distributions,
1 ⩽ p ⩽∞, which has been introduced by L. Schwartz in [913]. L. Schwartz has intro-
duced the space 𝒟′Lp as a topological dual of 𝒟Lq ,

1
p +

1
q = 1. These spaces is related to

Sobolev spaces; for more details, see [118] and [913].

Definition 4.1.58. Let 1 < p ⩽ ∞, the space 𝒟′Lp is the topological dual of 𝒟Lq , where
1
p +

1
q = 1. An element of𝒟′L∞ is called a bounded distribution.
Before we go any further, let us recall that the space of bounded distributions will

be denoted slightly different in Subsection 4.2.8, where we will use the notation 𝒟′L1 .
Now we will state the following result.

Theorem 4.1.59. Let T ∈ 𝒟′. Then the following statements are equivalent:
(i) T ∈ 𝒟′Lp .
(ii) T ∗ φ ∈ Lp, φ ∈ 𝒟.
(iii) ∃k ∈ ℕ,∃(fj)0⩽j⩽k ⊆ Lp : T = ∑

k
j=0 f
(j)
j .

Proof. See [118] or [913].

Owing to the density of the space 𝒟 in 𝒟Lpω,c , 1 ⩽ p < ∞, (resp. .𝒟L∞ω,c ), we see that
the space 𝒟Lpω,c (resp. .𝒟L∞ω,c ) is a normal space of distributions, i. e., the elements of
topological dual of 𝒟Lpω,c (resp. .𝒟L∞ω,c ) can be identified with continuous linear forms
on𝒟.

Definition 4.1.60. For 1 < p ⩽ ∞, we denote by 𝒟′Lpω,c the topological dual of 𝒟Lqω,c ,
where 1

p +
1
q = 1.

The following spaces of Lpω,c-distributions are needed to define and study the
(ω, c)-almost periodicity of distributions.
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Definition 4.1.61.
(i) The topological dual of𝒟L1ω,c , denotedbyℬ′ω,c, is called the spaceof (ω, c)-bounded

distributions.
(ii) The topological dual of

.
𝒟L∞ω,c , denoted by 𝒟′L1ω,c , is called the space of (ω, c)-inte-

grable distributions.

By applying Theorem 4.1.59, we can easily show the following characterizations
of Lpω,c-distributions.

Theorem 4.1.62. Let T ∈ 𝒟′. Then the following statements are equivalent:
(i) T ∈ 𝒟′Lpω,c .
(ii) c

t
ω (Tω,c ∗ φ) ∈ Lpω,c, φ ∈ 𝒟.

(iii) ∃k ∈ ℕ,∃(fj)0⩽j⩽k ⊆ Lpω,c : T = c
t
w ∑kj=0(fω,c)

(j)
j , where

((fω,c)j)0⩽j⩽k = (c
− t
ω fj)0⩽j⩽k .

Remark 4.1.63. As a consequence of Theorem 4.1.62, we see that T ∈ 𝒟′Lpω,c if and only
if Tω,c ∈ 𝒟′Lp .

Returning to the notation (4.13), we recall that a distribution T ∈ 𝒟′ is zero on an
open subset V of ℝ if

⟨T ,φ⟩ = 0, φ ∈ 𝒟(V),

and that two distributions T , S ∈ 𝒟′ coincide on V if T − S = 0 on V .

Lemma 4.1.64. Let f ∈ 𝒞∞ and T ∈ 𝒟′. If fT = 0, then T = 0 on the set G = {x ∈ ℝ :
f (x) ̸= 0}.

Proof. Let φ ∈ 𝒟 with supp(φ) ⊆ G. Then we have

⟨T ,φ⟩ = ⟨T , f φ
f
⟩ = ⟨fT , φ

f
⟩ = 0,

because φ
f ∈ 𝒟 and by hypothesis fT = 0.

Proposition 4.1.65. Let T ∈ 𝒟′. Then T ∈ 𝒟′Lpω,c , 1 ⩽ p ⩽ ∞, if and only if, there exists
S ∈ 𝒟′Lp , 1 ⩽ p ⩽∞, such that T = c

t
ω S in𝒟′.

Proof. (→): If T ∈ 𝒟′Lpω,c , then we have (see Remark 4.1.63) Tω,c = c−
t
ω T ∈ 𝒟′Lp , so there

exists S ∈ 𝒟′Lp such that c
− t
ω T −S = 0 in𝒟′Lp , i. e., c

− t
ω (T − c

t
ω S) = 0 in𝒟′Lp . By applying

Lemma 4.1.64, it follows that

T = c
t
ω S in𝒟′.
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(←): Suppose that T ∈ 𝒟′ and there exists S ∈ 𝒟′Lp , 1 ⩽ p ⩽ ∞, such that T = c
t
ω S

in𝒟′. Then c−
t
ω T = S ∈ 𝒟′Lp and hence T ∈ 𝒟

′
Lpω,c .

Recall that the space ℬ′ap of almost periodic distributions was studied by L.
Schwartz using the topological definition of Bochner’s almost periodic functions.
Let h ∈ ℝ and T ∈ 𝒟′, the translated of T by h, denoted by τhT, is defined by

⟨τhT ,φ⟩ := ⟨T , τ−hφ⟩, φ ∈ 𝒟,

where τ−hφ(x) := φ(x + h).
The following result gives the basic characterizations of Schwartz almost periodic

distributions.

Theorem 4.1.66. For any bounded distribution T ∈ 𝒟′L∞ , the following statements are
equivalent:
(i) The set {τhT : h ∈ ℝ} is relatively compact in𝒟′L∞ .
(ii) T ∗ φ ∈ AP, φ ∈ 𝒟.
(iii) ∃k ∈ ℕ, ∃(fj)0⩽j⩽k ⊆ AP : T = ∑

k
j=0 f
(j)
j .

Proof. See [913].

Now we will introduce the following concept.

Definition 4.1.67. A distribution T ∈ ℬ′ω,c is said to be (ω, c)-almost periodic, if and
only if, Tω,c ∈ ℬ′ap, i. e., the set {τhTω,c : h ∈ ℝ} is relatively compact in 𝒟′L∞ . The set of
(ω, c)-almost periodic distributions is denoted by ℬ′APω,c .
Example 4.1.68.
(i) The associated distribution of an (ω, c)-almost periodic function (resp. Stepanov
(p,ω, c)-almost periodic function) is an (ω, c)-almost periodic distribution, i. e.

APω,c → ℬ′APω,c (resp. SpAPω,c → ℬ′APω,c).
(ii) When c = 1 it follows that ℬ′APω,c := ℬ′ap.

Themain characterizations of (ω, c)-almost periodic distributions are given in the
following result.

Theorem 4.1.69. Let T ∈ ℬ′ω,c. Then the following statements are equivalent:
(i) T ∈ ℬ′APω,c .
(ii) c

t
w (Tω,c ∗ φ) ∈ APω,c, φ ∈ 𝒟.

(iii) ∃k ∈ ℕ, ∃(fj)0⩽j⩽k ⊆ APω,c : T = c
t
ω ∑kj=0(fω,c)

(j)
j , where

((fω,c)j)0⩽j⩽k = (c
− t
ω fj)0⩽j⩽k .
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Proof. Since for every T ∈ ℬ′APω,c , we have Tω,c ∈ ℬ′ap, the result follows immediately
from Theorem 4.1.66.

The main properties of ℬ′APω,c are given in the following proposition.
Proposition 4.1.70.
(i) If T ∈ ℬ′APω,c , then c t

ω (Tw,c)(j) ∈ ℬ′APω,c , j ∈ ℕ.
(ii) If φ ∈ ℬAPω,c and T ∈ ℬ′APω,c , then φω,cT ∈ ℬ′APω,c .
(iii) If T ∈ ℬ′APω,c and S ∈ 𝒟′L1ω,c , then c t

ω (Tw,c ∗ Sω,c) ∈ ℬ′APω,c .
Proof. (i) Obvious.

(ii) If φ ∈ ℬAPω,c and T ∈ ℬ′APω,c , then φω,c ∈ ℬap and Tω,c ∈ ℬ′ap. Then we simply
get φω,cTω,c ∈ ℬ′ap and therefore

c−
t
ω (c

t
ω (φω,cTω,c)) ∈ ℬ

′
ap,

which gives

c
t
ω (φω,cTω,c) ∈ ℬ

′
APω,c .

Hence, φω,cT ∈ ℬ′APω,c .
(iii) Let T ∈ ℬ′APω,c and S ∈ 𝒟′L1ω,c . Then Tω,c ∈ ℬ′ap and Sω,c ∈ 𝒟′L1 . Similarly as

above, Tω,c ∗ Sω,c ∈ ℬ′ap, and

c−
t
ω (c

t
ω (Tω,c ∗ Sω,c)) ∈ ℬ

′
ap.

Hence, c
t
ω (Tω,c ∗ Sω,c) ∈ ℬ′APω,c .

The following result shows that ℬAPω,c is dense in ℬ′APω,c .
Proposition 4.1.71. Let T ∈ ℬ′ω,c. Then T ∈ ℬ

′
APω,c if and only if there exists (φn)n∈ℕ ⊆

ℬAPω,c such that limn→+∞ φn = T in ℬ′ω,c.

Proof. If T ∈ ℬ′APω,c , then Tω,c ∈ ℬ′ap and from the density of ℬap in ℬ′ap there exists
(ψn)n∈ℕ ⊆ ℬap such that

lim
n→+∞

ψn = Tω,c in𝒟′L∞ ;
this is equivalent to

c
t
ω lim
n→+∞

ψn = lim
n→+∞
(c

t
ωψn) = c

t
ω Tω,c = T in ℬ′ω,c.

Hence, there exists (φn)n∈ℕ = (c
t
ωψn)n∈ℕ ⊆ ℬAPω,c such that
lim

n→+∞
φn = T in ℬ′ω,c.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



218 | 4 (ω, c)-Almost periodic type functions

Nowwewill introduce the concept of asymptotic (ω, c)-almost periodicity of distri-
butions. Asymptotically almost periodic Schwartz distributions have been introduced
and studied by I. Cioranescu in [299]. We recall the definition and some properties of
asymptotically almost periodic Schwartz distributions (ℝ+ ≡ [0,∞)).

Definition 4.1.72. A distribution T ∈ 𝒟′L∞ is called vanishing at infinity if
lim

h→+∞
⟨τ−hT ,φ⟩ = 0 in ℂ, φ ∈ 𝒟.

Denote by ℬ′0+ the space of bounded distributions vanishing at infinity.

Definition 4.1.73. A distribution T ∈ 𝒟′L∞ is called asymptotically almost periodic if
there exist R ∈ ℬ′ap and S ∈ ℬ

′
0+ such that T = R + S on [0,∞). The space of asymptoti-

cally almost periodic Schwartz distributions is denoted by ℬ′aap(ℝ+).

Proposition 4.1.74. If T ∈ ℬ′aap([0,∞)), the decompositionT = R+S on [0,∞), is unique
in𝒟′L∞ .
Proof. See [299].

Set𝒟+ := {φ ∈ 𝒟 : supp(φ) ⊆ [0,∞)}. Thenwehave the following characterization
of the space ℬ′aap([0,∞)).

Theorem 4.1.75. Let T ∈ 𝒟′L∞ . Then the following assertions are equivalent:
(i) T ∈ ℬ′aap(ℝ+).

(ii) T ∗
⋎
φ ∈ AAP([0,∞)), φ ∈ 𝒟+, where

⋎
φ(x) := φ(−x).

(iii) ∃k ∈ ℕ,∃(fj)0⩽j⩽k ⊆ AAP([0,∞)) : T = ∑
k
j=0 f
(j)
j on ℝ+.

Proof. See [299].

Asymptotic (ω, c)-almost periodicity of distributions is introduced in the following
definition.

Definition 4.1.76. Let c ∈ ℂ, |c| ⩾ 1 and ω > 0. Then a distribution T ∈ ℬ′ω,c is said to
be asymptotically (ω, c)-almost periodic, if and only if, Tω,c ∈ ℬ′aap([0,∞)). The space
of asymptotically (ω, c)-almost periodic distributions is denoted by ℬ′AAPω,c ([0,∞)).
Remark 4.1.77.
(i) When c = 1 it follows that ℬ′AAPω,c ([0,∞)) := ℬ′aap([0,∞)).
(ii) The associated distribution of an asymptotically (ω, c)-almost periodic function

(resp. asymptotically Stepanov (p,ω, c)-almost periodic function) is an asymptot-
ically (ω, c)-almost periodic distribution.

Let us define now the space (ℬ′ω,c)0+ of (ω, c)-bounded distributions vanishing at
infinity as follows.
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Definition 4.1.78. Let c ∈ ℂ, |c| ⩾ 1 and ω > 0. A distribution T ∈ ℬ′ω,c is said to be
(ω, c)-bounded distribution vanishing at infinity, if and only if, Tω,c ∈ ℬ′0+.

We have the following result.

Theorem 4.1.79. Let c ∈ ℂ, |c| ⩾ 1, ω > 0 and T ∈ ℬ′ω,c. Then T ∈ ℬ
′
AAPω,c ([0,∞)), if and

only if, there exist R ∈ ℬ′APω,c and S ∈ (ℬ′ω,c)0+ such that
T = R + S on [0,∞). (4.14)

Proof. (→): Let T ∈ ℬ′AAPω,c ([0,∞)). Then Tω,c ∈ ℬ′aap([0,∞)) and by Definition 4.1.73,
there exist P ∈ ℬ′ap and Q ∈ ℬ

′
0+ such that Tω,c = P + Q on [0,∞). On the other hand,

we have

Tω,c = c
− t
ω T = P + Q→ ⟨c−

t
ω T ,φ⟩ = ⟨P,φ⟩ + ⟨Q,φ⟩, φ ∈ 𝒟

→ ⟨T ,ψ⟩ = ⟨c
t
ω P,ψ⟩ + ⟨c

t
ωQ,ψ⟩, ψ = c−

t
ωφ ∈ 𝒟.

Thus there exist R = c
t
ω P ∈ ℬ′APω,c and S = c

t
ωQ ∈ (ℬ′ω,c)0+ such that T = R + S on

[0,∞).
(←): If there exist R ∈ ℬ′APω,c and S ∈ (ℬ′ω,c)0+ such that T = R + S on [0,∞),

then c−
t
ω T = c−

t
ωR + c−

t
ω S on [0,∞), i. e. Tω,c = Rω,c + Sω,c on [0,∞), where Rω,c ∈

ℬ′ap and Sω,c ∈ ℬ′0+; hence Tω,c ∈ ℬ′aap([0,∞)), which shows that T ∈ ℬ′AAPω,c (ℝ+).
Proposition 4.1.80. The decomposition (4.14) is unique in ℬ′ω,c.

Proof. Suppose that T ∈ ℬ′AAPω,c (ℝ+) is such that T = R + S on [0,∞), where R ∈
ℬ′APω,c and S ∈ (ℬ′ω,c)0+. Then the result follows from the proof of the implication (←)
of Theorem 4.1.79 and the uniqueness of the decomposition of asymptotically almost
periodic distributions.

Some characterizations of asymptotically (ω, c)-almost periodic distributions are
given in the following result.

Theorem 4.1.81. Let c ∈ ℂ, |c| ⩾ 1, ω > 0 and T ∈ ℬ′ω,c. The following assertions are
equivalent:
(i) T ∈ ℬ′AAPω,c (ℝ+).
(ii) c

t
ω (Tω,c ∗

⋎
φ) ∈ AAPω,c([0,∞)), φ ∈ 𝒟+, where

⋎
φ(x) := φ(−x).

(iii) ∃k ∈ ℕ, ∃(fj)0⩽j⩽k ⊆ AAPω,c([0,∞)) : T = c
t
ω ∑kj=0(fω,c)

(j)
j on [0,∞), where

((fω,c)j)0⩽j⩽k = (c−
t
ω fj)0⩽j⩽k .

Proof. It is clear that if T ∈ ℬ′AAPω,c (ℝ+) then Tω,c ∈ ℬ′aap(ℝ+). Applying Theorem 4.1.75,
we obtain the result.
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4.1.6 Linear differential equations in ℬ′APω,c

In this subsection, we will study the existence of distributional (ω, c)-almost periodic
solutions of the following system of linear ordinary differential equations

T′ = AT + S, (4.15)

where A = (aij)1⩽i,j⩽k , k ∈ ℕ, is a given square matrix of complex numbers, S =
(Si)1⩽i⩽k ∈ (𝒟′)k is a vector distribution and T = (Ti)1⩽i⩽k is the unknown vector distri-
bution.

First, consider the system (4.15) with S ∈ (AP)k and recall the following result.

Theorem 4.1.82. If the matrix A has no eigenvalues with real part zero, then for any
S ∈ (AP)k , there exists a unique solution T ∈ (AP)k of the system (4.15).

Proof. See [299].

Let Ik be the unitmatrix of order k. The following result gives a sufficient condition
for the (ω, c)-almost periodicity of the solution (if it exists) of the system (4.15).

Theorem 4.1.83. Let S ∈ (ℬ′APω,c )k . If the matrix A − log c
ω Ik has no eigenvalues with

real part zero, then the system (4.15) admits a unique solution T ∈ (𝒟′L∞ω,c )k which is
an (ω, c)-almost periodic vector distribution.

Proof. Let φ ∈ 𝒟. We have

c−
t
ω T′ ∗ φ = (c−

t
ω T ∗ φ)′ + log c

ω
c−

t
ω T ∗ φ. (4.16)

On the other hand, if T ∈ (𝒟′L∞ω,c )k satisfies (4.15), then
c−

t
ω T′ ∗ φ = Ac−

t
ω T ∗ φ + c−

t
ω S ∗ φ.

So from (4.16), we have

(c−
t
ω T ∗ φ)′ = (A − log c

ω
Ik)c
− t
ω T ∗ φ + c−

t
ω S ∗ φ,

i. e.

(Tω,c ∗ φ)
′ = (A − log c

ω
Ik)(Tω,c ∗ φ) + Sω,c ∗ φ, (4.17)

where

Tω,c ∗ φ = ((Tω,c)i ∗ φ)1⩽i⩽k = ((c
− t
ω Ti) ∗ φ)1⩽i⩽k
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and

Sω,c ∗ φ = ((Sω,c)i ∗ φ)1⩽i⩽k = ((c
− t
ω Si) ∗ φ)1⩽i⩽k .

Then the system (4.17) is equivalent in (𝒞∞)k to the following system of differential
equations

P′ = BP + Q,

with B = A − log c
ω Ik, P = Tω,c ∗ φ ∈ (𝒞∞)k and Q = Sω,c ∗ φ ∈ (AP)k . According

to Theorem 4.1.82, it follows that there exists a unique bounded solution P which is
almost periodic; therefore, (Tω,c)i∗φ ∈ AP, 1 ⩽ i ⩽ k, φ ∈ 𝒟 and c

t
ω ((Tω,c)i∗φ) ∈ APω,c,

1 ⩽ i ⩽ k, φ ∈ 𝒟. Thus, according to Theorem 4.1.69, we get (Ti)1⩽i⩽k ∈ (ℬ′APω,c )k .
4.1.7 Asymptotically (ω, c)-almost periodic type solutions of abstract degenerate

non-scalar Volterra equations

There are by now only a few relevant references concerning abstract non-scalar
Volterra equations, degenerate or non-degenerate in the time variable. Concerning
non-degenerate abstract Volterra equations of non-scalar type, mention should be
made of the research monograph [857] by J. Prüss, the article [569] by M. Jung and the
article [634] by M. Kostić. In [635], we have explained how the methods proposed in
[857] and [634] can be helpful in the analysis of abstract degenerate Volterra equa-
tions of non-scalar type. In this subsection, we initiate the study of the existence
and uniqueness of asymptotically almost periodic type solutions of the abstract de-
generate non-scalar Volterra equations. In actual fact, we investigate asymptotically
(ω, c)-almost periodic type solutions of the abstract degenerate non-scalar Volterra
equations in Banach spaces (we can similarly analyze (ω, c)-asymptotically peri-
odic solutions; the Stepanov, Weyl and Besicovitch generalizations of asymptotically
(ω, c)-almost periodic functions will not be considered, as well). The material of this
subsection is taken form our recent joint research article with V. E. Fedorov [659].

We will first recall the various notions of (A, k,B)-regularized C-pseudoresolvent
families introduced in [635]; after that, we will analyze the existence and unique-
ness of asymptotically (ω, c)-almost periodic type solutions of the abstract degenerate
Cauchy problem

Bu(t) = f (t) +
t

∫
0

A(t − s)u(s) ds, t ∈ [0, τ). (4.18)

Let (X, ‖ ⋅ ‖) and (Y , ‖ ⋅ ‖)Y be two non-trivial complex Banach spaces such that Y is
continuously embedded inX. Let the operator C ∈ L(X) be injective, and let τ ∈ (0,∞].
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The norm in X, resp. Y , will be denoted by ‖ ⋅ ‖X , resp. ‖ ⋅ ‖Y . We use the symbol B to
denote a closed linear operator with domain and range contained in X; by ‖ ⋅ ‖[D(B)] :=
‖ ⋅ ‖ + ‖B ⋅ ‖ we denote the corresponding graph norm and by [D(B)] = (D(B), ‖ ⋅ ‖[D(B)])
we denote the corresponding Banach space. If Z is a general topological space and
Z0 ⊆ Z, then by Z0

Z we denote the adherence of Z0 in Z. We will basically follow the
notation employed in the monograph of J. Prüss [857] and our paper [635].

We start by recalling the following notion introduced in [635] (see also [633, Sec-
tion 2.9]).

Definition 4.1.84. Let k ∈ C([0, τ)) and k ̸= 0, let τ ∈ (0,∞], f ∈ C([0, τ) : X), and let
A ∈ L1loc([0, τ) : L(Y ,X)). Then we say that a function u ∈ C([0, τ) : [D(B)]) is:
(i) a strong solution of (4.18) if and only if u ∈ L∞loc([0, τ) : Y) and (4.18) holds on
[0, τ),

(ii) amild solution of (4.18) if and only if there exist a sequence (fn) in C([0, τ) : X) and
a sequence (un) inC([0, τ) : [D(B)]) such thatun(t) is a strong solutionof (4.18)with
f (t) replaced by fn(t) and that limn→∞ fn(t) = f (t) as well as limn→∞ un(t) = u(t),
uniformly on compact subsets of [0, τ).

The following definition will be invaluably important in our further work [635].

Definition 4.1.85. Let τ ∈ (0,∞], k ∈ C([0, τ)), k ̸= 0 and A ∈ L1loc([0, τ) : L(Y ,X)).
A family (S(t))t∈[0,τ) in L(X, [D(B)]) is called an (A, k,B)-regularized C-pseudoresolvent
family if and only if the following hold:
(S1) The mappings t → S(t)x, t ∈ [0, τ) and t → BS(t)x, t ∈ [0, τ) are continuous in X

for every fixed x ∈ X, BS(0) = k(0)C and S(t)C = CS(t), t ∈ [0, τ).
(S2) Put U(t)x := ∫t0 S(s)x ds, x ∈ X, t ∈ [0, τ). Then (S2) means U(t)Y ⊆ Y , U(t)|Y ∈

L(Y), t ∈ [0, τ) and (U(t)|Y )t∈[0,τ) is locally Lipschitz continuous in L(Y).
(S3) The resolvent equations

BS(t)y = k(t)Cy +
t

∫
0

A(t − s) dU(s)y, t ∈ [0, τ), y ∈ Y , (4.19)

BS(t)y = k(t)Cy +
t

∫
0

S(t − s)A(s)y ds, t ∈ [0, τ), y ∈ Y , (4.20)

hold; (4.19), resp. (4.20), is called the first resolvent equation, resp. the second
resolvent equation.

An (A, k,B)-regularized C-pseudoresolvent family (S(t))t∈[0,τ) is said to be an (A, k,B)-
regularized C-resolvent family if additionally:
(S4) For every y ∈ Y , we have S(⋅)y ∈ L∞loc([0, τ) : Y).
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An operator family (S(t))t∈[0,τ) in L(X, [D(B)]) is called a weak (A, k,B)-regularized C-
pseudoresolvent family if and only if (S1) and (4.20) hold. Finally, a weak (A, k,B)-reg-
ularized C-pseudoresolvent family (S(t))t∈[0,τ) is said to be a-regular (a ∈ L1loc([0, τ)))
if and only if a ∗ S(⋅)x ∈ C([0, τ) : Y), x ∈ YX .

As iswell known, condition (S3) can be rewritten in the following equivalent form:
(S3)′

BU(t)y = Θ(t)Cy +
t

∫
0

A(t − s)U(s)y ds, t ∈ [0, τ), y ∈ Y ,

BU(t)y = Θ(t)Cy +
t

∫
0

U(t − s)A(s)y ds, t ∈ [0, τ), y ∈ Y .

We also need the following definition from [635].

Definition 4.1.86. Let k ∈ C([0,∞)), k ̸= 0, A ∈ L1loc([0,∞) : L(Y ,X)), α ∈ (0,π], and
let (S(t))t⩾0 ⊆ L(X, [D(B)]) be a (weak) (A, k,B)-regularized C-(pseudo)resolvent family.
Then it is said that (S(t))t⩾0 is an analytic (weak) (A, k,B)-regularized C-(pseudo)-
resolvent family of angle α, if there exists an analytic function S : Σα → L(X, [D(B)])
satisfying S(t) = S(t), t > 0, limz→0,z∈Σγ S(z)x = S(0)x and limz→0,z∈Σγ BS(z)x = BS(0)x
for all γ ∈ (0, α) and x ∈ X. We say that (S(t))t⩾0 is an exponentially bounded, an-
alytic (weak) (A, k,B)-regularized C-(pseudo)resolvent family, resp. bounded ana-
lytic (weak) (A, k,B)-regularized C-(pseudo)resolvent family, of angle α, if (S(t))t⩾0
is an analytic (weak) (A, k,B)-regularized C-(pseudo)resolvent family of angle α
and for each γ ∈ (0, α) there exist Mγ > 0 and ωγ ⩾ 0, resp. ωγ = 0, such that
‖S(z)‖L(X) + ‖BS(z)‖L(X) ⩽ Mγeωγ |z|, z ∈ Σγ. Since no confusion seems likely to arise, we
shall identify S(⋅) and S(⋅) in the sequel.

In [635], we have also introduced the notion of an (A, k,B)-regularized C-unique-
ness familywith a view to analyzing theuniqueness of solutions of the abstract Cauchy
problem (4.18).

Definition 4.1.87. Let τ ∈ (0,∞], k ∈ C([0, τ)), k ̸= 0 and A ∈ L1loc([0, τ) : L(Y ,X)).
A strongly continuous operator family (V(t))t∈[0,τ) ⊆ L(X) is said to be an (A, k,B)-reg-
ularized C-uniqueness family if and only if

V(t)By = k(t)Cy +
t

∫
0

V(t − s)A(s)y ds, t ∈ [0, τ), y ∈ Y ∩ D(B).

We will use the following statements proved in [635, Proposition 2]:
[P] Assume that (V(t))t∈[0,τ) is an (A, k,B)-regularized C-uniqueness family, f ∈

C([0, τ) : X) and u(t) is a mild solution of (4.18). Then we have (kC ∗ u)(t) =
(V ∗ f )(t), t ∈ [0, τ).
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[Q] Assume that (S(t))t∈[0,τ) is an (A, 1,B)-regularized C-pseudoresolvent family,
C−1f ∈ C([0, τ) : X) and f (0) = 0. Then we know that the following statements
hold:
(a) Let C−1f ∈ ACloc([0, τ) : Y) and (C−1f )′ ∈ L1loc([0, τ) : Y). Then the function

t → u(t), t ∈ [0, τ) given by

u(t) =
t

∫
0

S(t − s)(C−1f )′(s) ds =
t

∫
0

dU(s)(C−1f )′(t − s)

is a strong solution of (4.18). Moreover, u ∈ C([0, τ) : Y).
(b) Let (C−1f )′ ∈ L1loc([0, τ) : X) and YX

= X. Then the function u(t) = ∫t0 S(t −
s)(C−1f )′(s) ds, t ∈ [0, τ) is a mild solution of (4.18).

(c) Let C−1g ∈ W 1,1
loc([0, τ) : Y

X
), a ∈ L1loc([0, τ)), f (t) = (a ∗ g)(t), t ∈ [0, τ) and let

(S(t))t∈[0,τ) be a-regular. Then the function u(t) = ∫
t
0 S(t − s)(a ∗ (C

−1g)′)(s) ds,
t ∈ [0, τ) is a strong solution of (4.18).

The uniqueness of solutions in (a), (b) or (c) holds provided that for each y ∈ Y ∩D(B)
we have S(t)By = BS(t)y, t ∈ [0, τ).

Even in the case that B = C = I and k(t) ≡ 1, there exist examples of global not ex-
ponentially bounded (A, k,B)-regularized C-pseudoresolvent families (see, e. g., [857,
Example 6.2, pp. 165–166]). For our purposes, it will be crucial to examine whether the
operator family (S(t))t⩾0 is exponentially decaying as the time variable goes to plus
infinity. The existence of a number ε0 ⩾ 0 such that

∞

∫
0

e−εtA(t)
L(Y ,X) dt <∞, ε > ε0, (4.21)

which has been used in [857] and [634, 635], is not sufficient to ensure the exponential
decaying of (S(t))t⩾0 as t → +∞. Therefore, we must impose some extra conditions
ensuring this property of (S(t))t⩾0, which will be extremely important for us.

Nowwewill state two simple results concerning this problematic. The two of them
are basically deduced in [635].

Theorem 4.1.88. Assume ε0 ⩾ 0, k(t) satisfies (P1), ω ⩾ max(abs(k), ε0), (4.21) holds,
α ∈ (0,π/2], there exists an analytic mapping H : ω + Σ π

2 +α
→ L(X, [D(B)]) such that

(i) BH(λ)y − H(λ)Ã(λ)y = k̃(λ)Cy, y ∈ Y, Re λ > ω, k̃(λ) ̸= 0; H(λ)C = CH(λ), Re λ > ω,
(ii) supλ∈ω+Σ π

2 +γ [‖(λ − ω)H(λ)‖L(X) + ‖(λ − ω)BH(λ)‖L(X)] <∞ for all γ ∈ (0, α),
(iii) there exists an operator F ∈ L(X, [D(B)]) such that BFx = k(0)Cx, x ∈ X and

limλ→+∞,k̃(λ) ̸=0 λH(λ)x = Fx, x ∈ X, and

(iv) limλ→+∞,k̃(λ) ̸=0 λBH(λ)x = k(0)Cx, x ∈ X, provided that Y
X
̸= X.
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If there exists a real number ω0 < 0 such that the mapping H : ω + Σ π
2 +α
→ L(X, [D(B)])

can be analytically extended to the sector ω0 + Σ π
2 +α

and condition (ii) holds with
the number ω replaced by the number ω0 therein, then there exists a weak analytic
(A, k,B)-regularized C-pseudoresolvent family (S(t))t⩾0 of angle α such that

sup
z∈Σγ
[e
−ω0zS(z)L(X) +

e
−ω0zBS(z)L(X)] <∞ for all γ ∈ (0, α). (4.22)

Proof. By [635, Theorem 3], we know that there exists aweak analytic (A, k,B)-regular-
ized C-pseudoresolvent family (S(t))t⩾0 of angle α, satisfying that the estimate (4.22)
holds with the number ω0 replaced by the number ω. The final statement follows
easily from this fact, [82, Theorem 2.6.1], the uniqueness theorem for the Laplace
transform and the assumption we have made after the formulation of conditions
(i)–(iv).

We can similarly deduce the validity of the following result, which corresponds to
[635, Theorem 4].

Theorem 4.1.89. Assume α ∈ (0,π/2], ε0 ⩾ 0, k(t) satisfies (P1) and (4.21) holds. Let
ω ⩾ max(abs(k), ε0), and let there exist an analyticmappingH : ω+Σ π

2 +α
→ L(X, [D(B)])

such that H|Y : ω + Σ π
2 +α
→ L(Y) is an analytic mapping, as well as that:

(i) One has

sup
λ∈ω+Σ π

2 +γ[
(λ − ω)H(λ)

L(X) +
(λ − ω)BH(λ)

L(X) +
(λ − ω)H(λ)

L(Y)] <∞

for all γ ∈ (0, α),
(ii) BH(λ)y − H(λ)Ã(λ)y = k̃(λ)Cy, y ∈ Y, Re λ > ω, k̃(λ) ̸= 0; BH(λ)y − Ã(λ)H(λ)y =

k̃(λ)Cy, y ∈ Y, Re λ > ω, k̃(λ) ̸= 0; H(λ)C = CH(λ), Re λ > ω0,
(iii) there exists an operator F ∈ L(X, [D(B)]) such that BFx = k(0)Cx, x ∈ X,

limλ→+∞,k̃(λ) ̸=0 λH(λ)x = Fx, x ∈ X, and

(iv) limλ→+∞,k̃(λ) ̸=0 λBH(λ)x = k(0)Cx, x ∈ X, provided that Y
X
̸= X.

If there exists a real number ω0 < 0 such that the mapping H : ω + Σ π
2 +α
→ L(X, [D(B)])

can be analytically extended to the sector ω0+Σ π
2 +α

, themapping H|Y : ω+Σ π
2 +α
→ L(Y)

can be analytically extended to the sector ω0 + Σ π
2 +α

, and condition (i) holds with the
number ω replaced by the number ω0 therein, then there exists an analytic (A, k,B)-reg-
ularized C-resolvent family (S(t))t⩾0 of angle α such that

sup
z∈Σγ
[e
−ω0zS(z)L(X) +

e
−ω0zBS(z)L(X) + sup

z∈Σγ

e
−ω0zS(z)L(Y)] <∞

and the mapping t → U(t) ∈ L(Y), t > 0 can be analytically extended to the sector Σα.
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Remark 4.1.90. Concerning Theorem 4.1.88, it should be noted that we can also im-
pose the condition that there exist a negative real number ω < 0, a real number
β ∈ (0, 1] and a number α0 ∈ (0,π/2) such that H(⋅) is analytic on the region Ω ≡
ω0 + Σ(π/2)+α, continuous on Ω and satisfies the estimate

sup
λ∈Ω
[(1 + |λ|)

−βH(λ)L(X) +
(1 + |λ|)

−βBH(λ)L(X)] <∞.

Then the integral computation carried out in the proof of [82, Theorem 2.6.1] shows
that there exists aweakanalytic (A, k,B)-regularizedC-pseudoresolvent family (S(t))t⩾0
of angle α such that

sup
z∈Σγ
[e
−ω0z |z|β−1S(z)L(X) +

e
−ω0z |z|β−1BS(z)L(X)] <∞ for all γ ∈ (0, α).

A similar comment can be given in the case of Theorem 4.1.89.

Clearly, it is not trivial to practically verify the requirements of Theorem 4.1.88–
Theorem 4.1.89 as well as that these theorems are not suitable for applications to the
abstract fractional differential equations of non-scalar type. But, in many concrete
situations, the requirements of these theorems can be very simply verified.

Example 4.1.91. Suppose that X = Y , B = C = I, k(t) ≡ 1, ω0 < 0, 0 < α ⩽ π/2 and D is
a closed linear operator in X such that for each number γ ∈ (0, α) there exists a finite
real numberMγ > 0 such that

sup
λ∈ω0+Σ(π/2)+γλ(λ − D)−1 × (λ − ω0)(λ − D)

−1 <∞.

Define A(⋅) through Ã(λ) := (2D)/(λ) − (D2)/(λ2), λ ̸= 0. Then the assumptions of Theo-
rem 4.1.89 hold true because for each γ ∈ (0,π/2) we have

sup
λ∈ω0+Σ(π/2)+γ



λ − ω0
λ


× (I − Ã(λ))

−1

= sup
λ∈ω0+Σ(π/2)+γ



λ − ω0
λ


×

(I − 2D

λ
+
D2

λ2
)
−1

= sup
λ∈ω0+Σ(π/2)+γλ(λ − D)−1 × (λ − ω0)(λ − D)

−1 <∞.

Further possibilities to apply Theorem 4.1.88–Theorem 4.1.89 will be considered
somewhere else. In [634, Theorem 3] and [635, Theorem 2], we have considered the
hyperbolic perturbation results for the abstract non-scalar Volterra equations. Before
proceeding further, we want also to observe that it is very difficult to say whether the
perturbed resolvent solution family will be exponentially decaying if the initial resol-
vent solution family is exponentially decaying as time marches to plus infinity.

Concerning the exponential decaying rate at infinity of an (A, k,B)-regularized C-
pseudoresolvent family (S(t))t⩾0, we would like to stress that, in [631, Remark 2.6.15],
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we have presented a simple idea which can be also applied in the qualitative analysis
of asymptotically almost periodic type solutions of the abstract degenerate non-scalar
Volterra integral equations. This will be the starting point for our investigations car-
ried out in the remainder of subsection. First of all, we will clarify the following result
which can be also formulated for analytic (A, k,B)-regularized C-pseudoresolvent
families.

Proposition 4.1.92. Suppose that z ∈ ℂ, a ∈ L1loc([0, τ)), k ̸= 0, A ∈ L
1
loc([0, τ) : L(Y ,X))

and (S(t))t∈[0,τ) is an (A, k,B)-regularized C-pseudoresolvent family (weak (A, k,B)-reg-
ularized C-pseudoresolvent family). Define

kz(t) := e
−ztk(t), Az(t) := e

−ztA(t), and Sz(t) := e
−ztS(t), t ∈ [0, τ).

Then (Sz(t))t∈[0,τ) is an (Az , kz ,B)-regularized C-pseudoresolvent family (weak (Az , kz ,
B)-regularized C-pseudoresolvent family). Furthermore, (S(t))t∈[0,τ) is a-regular if and
only if (Sz(t))t∈[0,τ) is az-regular, where az(t) := e−zta(t), t ∈ [0, τ), and (Sz(t))t∈[0,τ) is
an (Az , kz ,B)-regularized C-resolvent family if (S(t))t∈[0,τ) is an (A, k,B)-regularized C-
resolvent family and Re z ⩽ 0.

Proof. Wewill provide themain details of the proof for (A, k,B)-regularized C-pseudo-
resolvent families, only. It is clear that condition (S1) holds true. In order to show (S2),
define Uz(t) := ∫

t
0 Sz(s)x ds, x ∈ X, t ∈ [0, τ) and observe that the partial integration

implies

Uz(t)x = e
−ztU(t)x + z

t

∫
0

e−zsU(s)x ds, x ∈ X, t ∈ [0, τ). (4.23)

This simply shows that Uz(t)Y ⊆ Y , Uz(t)|Y ∈ L(Y), t ∈ [0, τ) and (Uz(t)|Y )t∈[0,τ) is
locally Lipschitz continuous in L(Y). We will prove only the first resolvent equation in
(S3)′ because the second resolvent equation in (S3)′ [or (S3)] can be deduced almost
trivially. So, let y ∈ Y and t ∈ [0, τ) be fixed. Applying (4.23) twice and using the first
resolvent equation in (S3)’ for (S(t))t∈[0,τ), we get

BUz(t)y = e
−zt[

t

∫
0

e−zsk(s)Cy ds +
t

∫
0

A(t − s)U(s)y ds]

+ z
t

∫
0

e−zs[
s

∫
0

e−zrk(r)Cy dr +
s

∫
0

A(s − r)U(r)y dr] ds

= e−zt[
t

∫
0

e−zsk(s)Cy ds + zezt
t

∫
0

e−zs
s

∫
0

e−zrk(r)Cy dr ds]

+
t

∫
0

A(t − s)e−ztU(s)y ds + z[e−z⋅A(⋅) ∗ 1 ∗ e−z⋅U(⋅)y](t).
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Partial integration shows that

e−zt[
t

∫
0

e−zsk(s)Cy ds + zezt
t

∫
0

e−zs
s

∫
0

e−zrk(r)Cy dr ds] =
t

∫
0

e−zsk(s)Cy ds

and the required statement simply follows because the above equality yields

BUz(t)y =
t

∫
0

e−zsk(s)Cy ds

+
t

∫
0

e−z(t−s)A(t − s)[e−zsU(s)y + z
s

∫
0

e−zrU(r)y dr] ds.

In order to see that (S(t))t∈[0,τ) is a-regular if and only if (Sz(t))t∈[0,τ) is az-regular, it
suffices to observe that

(az ∗ Sz(⋅)x)(t) = e
−zt(a ∗ S(⋅)x)(t), t ∈ [0, τ), x ∈ YX

.

The remainder of the proof for (A, k,B)-regularized C-resolvent families is trivial.

Nowwewill analyze the existence and uniqueness of asymptotically (ω, c)-almost
periodic type solutions of the abstract Cauchy problem (4.18). First of all, we will state
the following lemma whose proof is very simple and therefore is omitted.

Lemma 4.1.93. Let k ∈ C([0, τ)) and k ̸= 0, let τ ∈ (0,∞], z ∈ ℂ, f ∈ C([0, τ) : X), and
let A ∈ L1loc([0, τ) : L(Y ,X)). Suppose that (V(t))t∈[0,τ) ⊆ L(X) is an (A, k,B)-regularized
C-uniqueness family. Define fz(t) := e−ztf (t), Vz(t) := e−ztV(t) and Az(t) := e−ztA(t) for
all t ∈ [0, τ). Then we have:
(i) If u(⋅) is a strong (mild) solution of problem (4.18), then uz(⋅) ≡ e−z⋅u(⋅) is a strong

(mild) solution of problem obtained by replacing, respectively, f (⋅) and A(⋅) in (4.18)
by fz(⋅) and Az(⋅).

(ii) (Vz(t))t⩾0 ⊆ L(X) is an (Az , kz ,B)-regularized C-uniqueness family.

Now we will prove the following proposition.

Proposition 4.1.94. Let k ∈ C([0,∞)), k ̸= 0, ω0 ⩾ 0, ω > 0, 1 > ωω0, A ∈ L1loc([0,∞) :
L(Y ,X)) and (V(t))t⩾0 ⊆ L(X) is an (A, k,B)-regularized C-uniqueness family such that
‖V(t)‖ ⩽ Meω0t , t ⩾ 0. If u(⋅) is a mild solution of (4.18) and f (⋅) is asymptotically
(ω, e)-almost periodic (asymptotically (ω, e)-almost automorphic, asymptotically com-
pactly (ω, e)-almost automorphic), then the function (kC∗u)(⋅) is likewise asymptotically
(ω, e)-almost periodic (asymptotically (ω, e)-almost automorphic, asymptotically com-
pactly (ω, e)-almost automorphic).
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Proof. Let z = 1/ω. Due to our assumptions, we see that the operator family (Vz(t) ≡
e−ztV(t))t⩾0 is exponentially decaying. By Lemma 4.1.93(i), uz(⋅) is a strong (mild) so-
lution of problem obtained by replacing, respectively, f (⋅) andA(⋅) in (4.18) by fz(⋅) and
Az(⋅). Due to Lemma 4.1.93(ii), we see that (Vz(t))t⩾0 ⊆ L(X) is an (Az , kz ,B)-regularized
C-uniqueness family. Applying now [P], we get

(kzC ∗ uz)(t) = (Vz ∗ fz)(t), t ⩾ 0,

i. e.,

e−z⋅(kC ∗ u)(t) = (Vz ∗ fz)(t), t ⩾ 0.

We see that fz(⋅) is asymptotically almost periodic (asymptotically almost automor-
phic, asymptotically compactly almost automorphic), so that the function t → (Vz ∗
fz)(t), t ⩾ 0 has the same property [631]. This implies the required statement.

It is clear that, if (S(t))t∈[0,τ) ⊆ L(X, [D(B)]) is a weak (A, k,B)-regularized C-
pseudoresolvent family and BS(t)y = S(t)By, t ∈ [0, τ), y ∈ Y ∩D(B), then (S(t))t∈[0,τ) ⊆
L(X) is an (A, k,B)-regularized C-uniqueness family. Using this observation, [P]–[Q]
and Proposition 4.1.94, we may deduce the following.

Proposition 4.1.95. Suppose that (S(t))t⩾0 ⊆ L(X, [D(B)]) is an (A, 1,B)-regularized C-
pseudoresolvent family, BS(t)y = S(t)By, t ∈ [0, τ), y ∈ Y ∩D(B), ω0 ⩾ 0, ω > 0, 1 > ωω0,
‖S(t)‖ ⩽ Meω0t , t ⩾ 0 and f (⋅) is asymptotically (ω, e)-almost periodic (asymptotically
(ω, e)-almost automorphic, asymptotically compactly (ω, e)-almost automorphic). Then
we have the following:
(i) Let C−1f ∈ ACloc([0,∞) : Y), (C−1f )′ ∈ L1loc([0,∞) : Y) and f (0) = 0. Then there ex-

ists a unique strong solution u(⋅) of (4.18); moreover, u ∈ C([0, τ) : Y) and the map-
ping t → C ∫t0 u(s) ds, t ⩾ 0 is asymptotically (ω, e)-almost periodic (asymptotically
(ω, e)-almost automorphic, asymptotically compactly (ω, e)-almost automorphic).

(ii) Let (C−1f )′ ∈ L1loc([0,∞) : X) and YX
= X. Then there exists a unique mild so-

lution u(⋅) of (4.18); moreover, the mapping t → C ∫t0 u(s) ds, t ⩾ 0 is asymptoti-
cally (ω, e)-almost periodic (asymptotically (ω, e)-almost automorphic, asymptoti-
cally compactly (ω, e)-almost automorphic).

(iii) Let C−1g ∈ W 1,1
loc([0,∞) : Y

X
), a ∈ L1loc([0,∞)), f (t) = (a∗g)(t), t ⩾ 0 and let (S(t))t⩾0

be a-regular. Then there exists a unique strong solution u(⋅) of (4.18); moreover, the
mapping t → C ∫t0 u(s) ds, t ⩾ 0 is asymptotically (ω, e)-almost periodic (asymptot-
ically (ω, e)-almost automorphic, asymptotically compactly (ω, e)-almost automor-
phic).

It is worth noting that Proposition 4.1.95 can be deduced directly, as well as that
some sufficient conditions ensuring the above features of the mapping t → u(t),
t ⩾ 0 can be also achieved. We will explain this only in the case of consideration
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of part (i). So, let us assume that (S(t))t⩾0 ⊆ L(X, [D(B)]) is an (A, 1,B)-regularized C-
pseudoresolvent family as well as that C−1f ∈ ACloc([0,∞) : Y), (C−1f )′ ∈ L1loc([0,∞) :
Y) and f (0) = 0. Then the function t → u(t), t ⩾ 0 given by u(t) = ∫t0 S(t−s)(C

−1f )′(s) ds
is a strong solution of (4.18). Let ω0 ⩾ 0, ω > 0, 1 > ωω0, let ‖S(t)‖ ⩽ Meω0t, t ⩾ 0, and
let the mapping (C−1f )′(⋅) be asymptotically (ω, e)-almost periodic (asymptotically
(ω, e)-almost automorphic, asymptotically compactly (ω, e)-almost automorphic).
Then we have

e−t/ωu(t) = e−t/ω
t

∫
0

S(t − s)(C−1f )′(s) ds

=
t

∫
0

[e−(t−s)/ωS(t − s)][e−s/ω(C−1f )′(s)] ds, t ⩾ 0.

Since the operator family (e−t/ωS(t))t⩾0 is exponentially decaying, it follows that the
function t → e−t/ωu(t), t ⩾ 0 is asymptotically almost periodic (asymptotically almost
automorphic, asymptotically compactly almost automorphic). Hence, the mapping
t → u(t), t ⩾ 0 is asymptotically (ω, e)-almost periodic (asymptotically (ω, e)-almost
automorphic, asymptotically compactly (ω, e)-almost automorphic).

Concerning the abstract non-degenerate Volterra equations of non-scalar type,
it is clear that the above results can be applied to numerous problems in linear
(thermo-)viscoelasticity and electrodynamics with memory (cf. [857, Chapter 9, Chap-
ter 13] for more details); for example, in the analysis of viscoelastic Timoshenko
beam in the case of non-synchronous materials. In both cases, degenerate and non-
degenerate, we can make many applications of our results with the regularizing
operator C ̸= I; see, e. g., [634, Corollary 1, Example 1, Example 2] and the paragraph
following [635, Theorem 2].

Finally, we would like to say a few words about the following special class of the
abstract non-degenerate Volterra equations of non-scalar type (cf. also [278]):

x′(t) = Ax(t) +
t

∫
0

B(t − s)x(s) + f (t), t ⩾ 0; x(0) = x0, (4.24)

where A generates a strongly continuous semigroup on X and (B(t))t⩾0 is a family of
linear operators on X such that, for almost every t ⩾ 0, the operator B(t) maps con-
tinuously the space Y = [D(A)] into X and there exists a locally integrable function
b : [0,∞)→ [0,∞) such that ‖B(t)y‖L(Y ,X) ⩽ b(t)‖y‖Y for all y ∈ Y and t ⩾ 0; see, e. g.,
[277, 278, 484, 485, 769] for more details about the subject. By a solution of (4.24), we
mean any function x ∈ C([0,∞) : Y) ∩ C1([0,∞) : X) satisfying the initial condition
x(0) = x0 and the first equality in (4.24) identically for t ⩾ 0. In the analysis of (4.24),
the following notion of resolvent family (which is a very special case of the notion
introduced in Definition 4.1.85) plays an important role.
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Definition 4.1.96 (W. Desch, R. Grimmer, W. Schappacher [360, Definition, pp. 220–
221]). A strongly continuous operator family (R(t))t⩾0 ⊆ L(X) is said to be a resolvent
family for (4.24) if and only if R(0) = I, the mapping y → R(t)y ∈ Y , t ⩾ 0 belongs to
the class C([0,∞) : Y) ∩ C1([0,∞) : X) and the following resolvent equations hold:

R′(t)y = AR(t)y +
t

∫
0

B(t − s)R(s)y ds, t ⩾ 0,

and

R′(t)y = R(t)Ay +
t

∫
0

R(t − s)B(s)y ds, t ⩾ 0.

In [360, Proposition 2(c)], it has been proved that any solution of (4.24) has the
form

x(t) = R(t)x0 +
t

∫
0

R(t − s)f (s) ds, t ⩾ 0.

The notion of a resolvent family for (4.24) has been extended by R. Grimmer in
[483], where the author has analyzed the well-posedness of the following abstract dif-
ferential first-order equation of non-convolution type:

x′(t) = A(t)x(t) +
t

∫
0

B(t, s)x(s) + f (t), x(0) = x0;

here, A(t) and B(t, s) are closed linear operators with fixed domain and the function
f : [0,∞) → X is continuous. In this paper, some particular results are given for
the convolution case B(t, s) ≡ B(t − s) and the usually considered autonomous case
A(t) ≡ A, which turns the above equation in (4.24). We would like to especially em-
phasize that the author has shown, in [483, Theorem 4.1], that there exists an expo-
nentially decaying resolvent family (R(t))t⩾0 ⊆ L(X) for (4.24) which decays exponen-
tially in time. Hence, we can simply apply many structural results obtained so far in
the analysis of the existence and uniqueness of asymptotically almost periodic type
solutions of (4.24). As an application, we can consider the existence and uniqueness
of asymptotically almost periodic type solutions of the equation

cΔtθ(x, t) + β(0)
𝜕
𝜕t
θ(x, t)

= α0Δxθ(x, t) −
t

∫
−∞

β′(t − s) 𝜕
𝜕s
θ(x, s) ds +

t

∫
−∞

α′(t − s)Δxθ(x, s) ds +
𝜕
𝜕t
r(x, t),
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which arises in the study of heat conduction in materials with memory; see [483] for
further information.

We close this section by recalling that the following special class of second-order
abstract Volterra equations of non-scalar type

u′′(t) = Au(t) +
t

∫
0

B(t − s)u(s) ds + f (t), t ⩾ 0, u(0) = x, u′(0) = y, (4.25)

where A generates a strongly continuous cosine function and B ∈ BVloc([0,∞) :
L([D(A)],X)), has been systematically investigated starting from the 1970s; see, e. g.,
[241, 242, 322, 323, 359], and the references cited therein for more details on the
subject. Almost periodic solutions of the abstract second-order differential equa-
tions of (4.25) and their generalizations with the added delay or nonlinear dissi-
pative terms have been investigated in [41, 100, 445, 528, 809, 843, 1020]; see also
[175–177, 615, 796, 943, 1049] and the reference lists of [631] and [859]. We want also
to mention the article [87] by M. Arienmughare and T. Diagana, where the authors
have employed the Drazin inverses to investigate the existence of almost periodic so-
lutions to some singular systems of first-and second-order differential equations with
complex coefficients (cf. also [89] and [437]).

4.2 c-Uniformly recurrent functions, c-almost periodic functions
and semi-c-periodic functions

Besides the notion depending on two parameters ω and c, it is meaningful to con-
sider the notion depending only on the parameter c. The main aim of this section is to
introduce and analyze the classes of c-almost periodic functions, c-uniformly recur-
rent functions, semi-c-periodic functions and their Stepanov generalizations, where
c ∈ ℂ∖{0}.We also introduce and investigate the corresponding classes of c-almost pe-
riodic type functions depending on two variables; several composition principles for
c-almost periodic type functions are established in this direction. We provide some
illustrative examples and applications to the abstract fractional semilinear integro-
differential inclusions [before proceeding further, we would like to note that it is not
clear how we can introduce and analyze the notion of (compact) c-almost automor-
phicity in a satisfactory way].

We will use the following auxiliary result, whose proof follows from the argu-
mentation used in the proof that every orbit under an irrational rotation is dense in
S1 ≡ {z ∈ ℂ : |z| = 1}; see e. g. the solution given by C. Blatter in [179].

Lemma 4.2.1. Suppose that c = eiπφ, where φ ∈ (−π,π] ∖ {0} is not rational. Then for
each c′ ∈ S1 there exists a strictly increasing sequence (lk) of positive integers such that
supk∈ℕ(lk+1 − lk) <∞ and |clk − c′| < ε.
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Unless stated otherwise, we will always assume here that c ∈ ℂ and |c| = 1. Let
f : I → X be a continuous function and let a number ε > 0 be given. We call a number
τ > 0 an (ε, c)-period for f (⋅) if ‖f (t + τ) − cf (t)‖ ⩽ ε for all t ∈ I. By ϑc(f , ε) we denote
the set consisting of all (ε, c)-periods for f (⋅).

We are concerned with the following notion.

Definition 4.2.2. It is said that f (⋅) is c-almost periodic if and only if for each ε > 0 the
set ϑc(f , ε) is relatively dense in [0,∞). The space consisting of all c-almost periodic
functions from the interval I into X will be denoted by APc(I : X).

If c = −1, then we recover the notion of almost anti-periodicity [666].
In general case, it is very simple to prove that the following holds (see, e. g., the

proof of [166, Theorem 4°, p. 2]).

Proposition 4.2.3. Suppose that f : I → X is c-almost periodic. Then f (⋅) is bounded.

The following generalization of c-almost periodicity is also meaningful.

Definition 4.2.4. Let c ∈ ℂ ∖ {0}. Then a continuous function f : I → X is said to be
c-uniformly recurrent if and only if there exists a strictly increasing sequence (αn) of
positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞
f (⋅ + αn) − cf (⋅)

∞ = 0. (4.26)

If c = −1, then we also say that the function f (⋅) is uniformly anti-recurrent. The space
consisting of all c-uniformly recurrent functions from the interval I into X will be de-
noted by URc(I : X).

Define now 𝕊 := ℕ if I = [0,∞), and 𝕊 := ℤ if I = ℝ. We will also consider the
following notion.

Definition 4.2.5. Let f ∈ C(I : X). It is said that f (⋅) is semi-c-periodic if and only if

∀ε > 0 ∃p > 0 ∀m ∈ 𝕊 ∀x ∈ I f (x +mp) − c
mf (x) ⩽ ε.

The space of all semi-c-periodic functions will be denoted by 𝒮𝒫c(I : X).

Suppose that I = ℝ, f ∈ C(ℝ : X), p > 0 andm ∈ ℕ. Then we have

sup
x∈ℝ

f (x +mp) − c
mf (x) = sup

x∈ℝ

f (x) − c
mf (x −mp)

= sup
x∈ℝ

c
m[c−mf (x) − f (x −mp)]

= |c|m sup
x∈ℝ

f (x −mp) − c
−mf (x)

= sup
x∈ℝ

f (x −mp) − c
−mf (x) ∈ [0,∞].

Therefore, we have the following.
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Proposition 4.2.6. Suppose that f ∈ C(I : X). Then f (⋅) is semi-c-periodic if and only if

∀ε > 0 ∃p > 0 ∀m ∈ ℕ ∀x ∈ I f (x +mp) − c
mf (x) ⩽ ε.

Furthermore, if I = ℝ, then the above is also equivalent with

∀ε > 0 ∃p > 0 ∀m ∈ −ℕ ∀x ∈ I f (x +mp) − c
mf (x) ⩽ ε.

It can be very simply shown that any semi-c-periodic function is bounded. Keep-
ing in mind Proposition 4.2.6 and this observation, we may conclude that the notion
introduced in Definition 4.2.5 is equivalent and extends the notion of semi-periodicity
for case c = 1, introduced by J. Andres and D. Pennequin in [69], and the notion of
semi-anti-periodicity for case c = −1, introduced by B. Chaouchi et al. in [262] (con-
cerning the papers of J. Andres and his coauthors,mention should bemade of [62–66],
as well).

We continue by providing several illustrative examples.

Example 4.2.7. Let f ≡ c ̸= 0. Due to (2.2), f ∉ ANP(ℝ : X) and clearly f (⋅) is not
semi-anti-periodic. On the other hand, f (⋅) is periodic and therefore semi-periodic.

Example 4.2.8. It can be simply verified that the function f (x) := sin x + sin(πx√2),
x ∈ ℝ is almost anti-periodic but not semi-periodic (see, e. g., [69, Remark 3] and [666,
Example 2.1]).

Example 4.2.9 (a slight modification of [69, Example 1]). The function

f (x) :=
∞

∑
n=1

eix/(2n+1)

n2
, x ∈ ℝ

is semi-anti-periodic because it is a uniform limit of [π ⋅ (2n + 1)!!]-anti-periodic func-
tions

fN (x) :=
∞

∑
n=1

eix/(2n+1)

n2
, x ∈ ℝ (N ∈ ℕ).

On the other hand, the function f (⋅) cannot be periodic.

Example 4.2.10. Setℚn := {(2n + 1)/(2m + 1) : m, n ∈ ℤ}. If θ > 0 and∑λ∈θ⋅ℚn ‖aλ(f )‖ <
∞, then the function

f (t) := ∑
λ∈θ⋅ℚn

aλ(f )e
iλt , t ∈ ℝ,

is semi-anti-periodic. This can be inspected as in the proof of [69, Proposition 2] since
the function fN (⋅) used therein is anti-periodic with the anti-period πq1 ⋅ ⋅ ⋅ qN/θ.

The following important result holds true.
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Proposition 4.2.11. Suppose that f ∈ URc(I : X) and c ∈ ℂ ∖ {0} satisfies |c| ̸= 1. Then
f ≡ 0.

Proof. Without loss of generality, we may assume that I = [0,∞). Suppose to the con-
trary that there exists t0 ⩾ 0 such that f (t0) ̸= 0. Inductively, (4.26) implies

|c|km − |c|
k − 1

n(|c| − 1)
⩽ f (t)
 ⩽ |c|

kM − |c|
k − 1

n(|c| − 1)
, k ∈ ℕ, t ∈ [kαn, (k + 1)αn]. (4.27)

Consider now case |c| < 1. Let 0 < ε < c‖f (t0)‖. Then (4.27) shows that there exist
integers k0 ∈ ℕ and n ∈ ℕ such that for each k ∈ ℕ with k ⩾ k0 we have ‖f (t)‖ ⩽ ε/2,
t ∈ [kαn, (k + 1)αn]. Then the contradiction is obvious because for each m ∈ ℕ with
m > n there exists k ∈ ℕ such that t0 +αm ∈ [kαn, (k + 1)αn] and therefore ‖f (t0 +αm)‖ ⩾
c‖f (t0)‖ − (1/m) → c‖f (t0)‖ > ε, m → +∞. Consider now case |c| > 1; let n ∈ ℕ
be such that ‖f (t0)‖ > 1/(n(|c| − 1)) and M := maxt∈[0,2αn] ‖f (t)‖ > 0. Then for each
m ∈ ℕ with m > n there exists k ∈ ℕ such that αm ∈ [(k − 1)αn, kαn] and therefore
‖f (t+αm)‖ ⩽ 1+ |c|M, t ∈ [0, 2αn]. On the other hand, we obtain inductively from (4.26)
that

f (t0 + kαn)
 ⩾ |c|

k[f (t0)
 −

1
n(|c| − 1)

] +
1

n(|c| − 1)
→ +∞ as k ∈ ℕ,

which immediately yields a contradiction.

In accordance with the established result, it is reasonable to assume |c| = 1. This
will be our standing assumption till the end of Subsection 4.2.2.

Proposition 4.2.12. Suppose that I = ℝ and f : ℝ → X. Then the function f (⋅) is
c-almost periodic (c-uniformly recurrent, semi-c-periodic) if and only if the function ̌f (⋅)
is 1/c-almost periodic (1/c-uniformly recurrent, semi-1/c-periodic).

Since for each number t, τ ∈ I andm ∈ ℕ we have

f (t + τ)

 −
f (t)

 =

f (t + τ)

 −
c

mf (t)
 ⩽
f (t + τ) − c

mf (t),

the subsequent result simply follows.

Proposition 4.2.13. Suppose that f : I → X is c-almost periodic (c-uniformly recurrent,
semi-c-periodic). Then ‖f ‖ : I → [0,∞) is almost periodic (uniformly recurrent, semi-
periodic).

Furthermore, we have (x ∈ I, τ > 0, l ∈ ℕ)

f (x + lτ) − clf (x) =
l−1
∑
j=0

cj[f (x + (l − j)τ) − cf (x + (l − j − 1)τ)]. (4.28)

Hence,
f (⋅ + lτ) − c

lf (⋅)∞ ⩽ l
f (⋅ + τ) − cf (⋅)

∞.

The above estimate can be used to prove the following.
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Proposition 4.2.14. Let f : I → X be a c-almost periodic function (c-uniformly recur-
rent function, semi-c-periodic function), and let l ∈ ℕ. Then f (⋅) is cl-almost periodic
(cl-uniformly recurrent, semi-cl-periodic).

Let us take into account the following condition:

p ∈ ℤ ∖ {0}, q ∈ ℕ, (p, q) = 1 and arg(c) = πp/q. (4.29)

The next corollary of Proposition 4.2.14 follows immediately by plugging l = q.

Corollary 4.2.15. Let f : I → X be a continuous function, and let (4.29) hold.
(i) If p is even and f (⋅) is c-almost periodic (c-uniformly recurrent, semi-c-periodic),

then f (⋅) is almost periodic (uniformly recurrent, semi-periodic).
(ii) If p is odd and f (⋅) is c-almost periodic (c-uniformly recurrent, semi-c-periodic), then

f (⋅) is almost anti-periodic (uniformly anti-recurrent, semi-anti-periodic).

Therefore, if arg(c)/π ∈ ℚ, then the class of c-almost periodic functions (c-uni-
formly recurrent functions, semi-c-periodic functions) is always contained in the class
of almost periodic functions (uniformly recurrent functions, semi-periodic functions);
in particular, we see that any almost anti-periodic function (uniformly anti-recurrent
function, semi-anti-periodic function) is almost periodic (uniformly recurrent, semi-
periodic).

Now we will prove the following.

Proposition 4.2.16. Let f : I → X be a continuous function, and let arg(c)/π ∉ ℚ.
(i) If f (⋅) is c-almost periodic, then f (⋅) is c′-almost periodic for all c′ ∈ S1.
(ii) If f (⋅) is bounded and c-uniformly recurrent, then f (⋅) is c′-uniformly recurrent for

all c′ ∈ S1.

Proof. Wewill prove only (i). Clearly, it suffices to consider the case in which the func-
tion f (⋅) is not identical to zero. Let c′ ∈ S1 and ε > 0 be fixed; then the prescribed
assumption implies that the set {cl : l ∈ ℕ} is dense in S1 and therefore there exists
an increasing sequence (lk) of positive integers such that limk→+∞ clk = c′. By Propo-
sition 4.2.3, the function f (⋅) is bounded; let k ∈ ℕ be such that |clk − c′| < ε/(2‖f ‖∞),
and let τ > 0 be any (ε/2, clk )-period for f (⋅). Then we have

f (x + τ) − c
′f (x) ⩽

f (x + τ) − c
lk f (x) +

c
lk − c′ ⋅ ‖f ‖∞ < ε/2 + ε/2 = ε,

for any x ∈ I. This simply completes the proof.

Proposition 4.2.17. Let f : I → X be a continuous function. Thenwe have the following:
(i) If f (⋅) is semi-c-periodic and arg(c)/π ∈ ℚ, then f (⋅) is c′-almost periodic for all

c′ ∈ {cl : l ∈ ℕ}.
(ii) If f (⋅) is semi-c-periodic and arg(c)/π ∉ ℚ, then f (⋅) is c′-almost periodic for all

c′ ∈ S1.
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Proof. Let ε > 0 be fixed. To prove (i), it suffices to show that f (⋅) is c-almost periodic
(see Proposition 4.2.14). Since arg(c)/π ∈ ℚ and (4.29) holds, then we have c1+2lq = c
for all l ∈ ℕ. Then there exists p > 0 such that, for every m ∈ ℕ and x ∈ I, we have
‖f (x + mp) − cmf (x)‖ ⩽ ε. With m = 1 + 2lq, we have ‖f (x + (1 + 2lq)p) − c1+2lqf (x)‖ =
‖f (x + (1 + 2lq)p) − cf (x)‖ ⩽ ε so that the conclusion follows from the fact that the set
{(1+2lq)p : l ∈ ℕ} is relatively dense in [0,∞). Assumenow that arg(c)/π ∉ ℚ. To prove
(ii), it suffices to consider case f ̸= 0. Observe first that Lemma 4.2.1 shows that there
exists a strictly increasing sequence (lk)of positive integers such that supk∈ℕ(lk+1−lk) <
∞ and |clk−c′| < ε/‖f ‖∞ for all k ∈ ℕ.With this sequence and thenumberp > 0 chosen
as above, we have

f (x + plk) − c
′f (x) ⩽

f (x + plk) − c
lk f (x) +

c
lk − c′‖f ‖∞

⩽ ε + ε‖f ‖∞/‖f ‖∞ = 2ε, x ∈ I , k ∈ ℕ.

Since the set {plk : k ∈ ℕ} is relatively dense in [0,∞), the proof is completed.

In connection with Proposition 4.2.17(ii), it is natural to ask whether the assump-
tions that the function f (⋅) is semi-c-periodic and arg(c)/π ∉ ℚ imply that f (⋅) is
semi-c′-almost periodic for all c′ ∈ S1?

We continue by providing the following extension of [666, Theorem 2.2] (see also
[166, pp. 3–4]).

Theorem 4.2.18. Let f : I → X be c-almost periodic (c-uniformly recurrent, semi-c-peri-
odic), and let α ∈ ℂ. Then we have:
(i) αf (⋅) is c-almost periodic (c-uniformly recurrent, semi-c-periodic).
(ii) If X = ℂ and infx∈ℝ |f (x)| = m > 0, then 1/f (⋅) is 1/c-almost periodic (1/c-uniformly

recurrent, semi-1/c-periodic).
(iii) If (gn : I → X)n∈ℕ is a sequence of c-almost periodic functions (c-uniformly

recurrent functions, semi-c-periodic functions) and (gn)n∈ℕ converges uniformly
to a function g : I → X, then g(⋅) is c-almost periodic (c-uniformly recurrent,
semi-c-periodic).

(iv) If a ∈ I and b ∈ I ∖ {0}, then the functions f (⋅ + a) and f (b ⋅) are likewise c-almost
periodic (c-uniformly recurrent, semi-c-periodic).

Let us recall that a continuous function f : I → X is called (p, c)-periodic if and
only if f (x + p) = cf (x), x ∈ I (p > 0, c ∈ ℂ ∖ {0}). We say that a function f : I → X is
c-periodic if and only if there exists p > 0 such that the function f (⋅) is (p, c)-periodic.

Keeping in mind Theorem 4.2.18(iii) and the proofs of [69, Lemma 1, Theorem 1],
we can clarify the following extension of [262, Proposition 3].

Theorem 4.2.19. Let f ∈ Cb(I : X). Then f (⋅) is semi-c-periodic if andonly if there exists a
sequence (fn) of c-periodic functions in Cb(I : X) such that limn→∞ fn(x) = f (x) uniformly
in I.
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We continue by providing two examples.

Example 4.2.20 (see also [666, Example 2.2]). The function f : ℝ → ℝ given by
f (t) := cos t, t ∈ ℝ is c-almost periodic (c-uniformly recurrent) if and only if c = ±1,
while f (⋅) is semi-c-periodic if and only if c = 1; the function fφ : ℝ → ℝ given
by fφ(t) := eitφ, t ∈ ℝ (φ ∈ (−π,π] ∖ {0}) is c-almost periodic (semi-c-periodic)
for any c ∈ S1, while the function f0(⋅) is c-almost periodic (c-uniformly recurrent,
semi-c-periodic) if and only if c = 1. Consider now the function g : ℝ → ℝ given by
g(t) := 2−1 cos 4t + 2 cos 2t, t ∈ ℝ. Then we know that the function g(⋅) is (almost)
periodic and not almost anti-periodic. Nowwewill prove that g(⋅) is c-almost periodic
(c-uniformly recurrent, semi-c-periodic) if and only if c = 1. Suppose that (αn) is a
strictly increasing sequence tending to plus infinity such that (c = eiα, α ∈ (−π,π]):

lim
n→+∞

sup
t∈ℝ

2
−1 cos(4t + αn)2 cos(2t + αn) − e

iα[2−1 cos 4t + 2 cos 2t] = 0.

With t = π, the above implies

lim
n→+∞
[cos 4αn + 4 cos 2αn − 5 cos α] = 0 and lim

n→+∞
5 sin α = 0, (4.30)

which immediately yields α = 0 or α = π. In the second case, the contradiction is
obvious since the first limit equation in (4.30) cannot be fulfilled, while the case α = 0
is possible and equivalent with the usual almost periodicity of g(⋅).

Example 4.2.21 (see also [69, Example 1] and [262, Example 4, Example 5]). Letpand
q be odd natural numbers such that p − 1 ≡ 0 (mod q), and let c = eiπp/q. The function

f (x) :=
∞

∑
n=1

eix/(2nq+1)

n2
, x ∈ ℝ,

is semi-c-periodic because it is a uniform limit of [π ⋅ (1 + 2q) ⋅ ⋅ ⋅ (1 + 2Nq)]-periodic
functions

fN (x) :=
N
∑
n=1

eix/(2nq+1)

n2
, x ∈ ℝ (N ∈ ℕ).

Now we will state and prove the following.

Proposition 4.2.22. Suppose that f : I → ℝ is c-uniformly recurrent (semi-c-periodic)
and f ̸= 0. Then c = ±1 and moreover, if f (t) ⩾ 0 for all t ∈ I, then c = 1.

Proof. We will consider the class of c-uniformly recurrent functions, only, when we
may assume without loss of generality that I = [0,∞). Then f ∉ C0([0,∞) : ℝ);
namely, if we suppose the contrary, then there exists a strictly increasing sequence
(αn) of positive real numbers such that limn→+∞ αn = +∞ and (4.26) holds. In partic-
ular, for every fixed number t0 ⩾ 0 we have limn→+∞ |f (t0 + αn) − cf (t0)| = 0. This
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automatically yields f (t0) = 0 and, since t0 ⩾ 0 was arbitrary, we get f = 0 identi-
cally, which is a contradiction. Therefore, there exist a strictly increasing sequence
(tl)l∈ℕ of positive real numbers tending to plus infinity and a positive real number
a ⩾ lim supt→+∞ |f (t)| > 0 such that |f (tl)| ⩾ a/2 for all l ∈ ℕ. Let ε > 0 be fixed.
Then there exist two real numbers t0 > 0 and n0 ∈ ℕ such that |f (t + αn) − f (t)| ⩽ ε for
all t ⩾ t0 and n ⩾ n0. If arg(c) = φ ∈ (−π,π], then we particularly get for each t ⩾ t0
and n ⩾ n0

f (t + αn) − cosφ ⋅ f (t)
 ⩽ ε and sinφ ⋅ f (t)

 ⩽ ε.

Plugging this in the second estimate t = tl for a sufficiently large l ∈ ℕwe get | sinφ| ⩽
2ε/a. Since ε > 0 was arbitrary, we get sinφ = 0 and c = ±1. Suppose, finally, that
f (t) ⩾ 0 for all t ⩾ 0 and c = −1. Then we have f (t + αn) + f (t) ⩽ 2ε for all t ⩾ t0 and
n ⩾ n0. Plugging in again t = tl for a sufficiently large l ∈ ℕ we get a ⩽ ε for all ε > 0
and therefore a = 0, which is a contradiction.

By the proof of Proposition 4.2.22, we have the following.

Proposition 4.2.23. Suppose that f : I → X is c-uniformly recurrent (semi-c-periodic)
and f ̸= 0. Then f ∉ C0(I : X).

We continue by providing some illustrative applications of Proposition 4.2.22.

Example 4.2.24.
(i) The function f : ℝ→ ℝ, given by (2.28), is unbounded, uniformly continuous and

uniformly recurrent. By the foregoing, f (⋅) is c-uniformly recurrent if and only if
c = 1.

(ii) The function g : ℝ→ ℝ, given by

g(t) :=
∞

∑
n=1

1
n
sin2( t

3n
) dt, t ∈ ℝ,

is unbounded, Lipschitz continuous and uniformly recurrent; furthermore, we
have the existence of a positive integer k0 ∈ ℕ such that

1
3kπ

3kπ

∫
0

g(s) ds ⩾ 1
2
(ln k − 1), k ⩾ k0, (4.31)

and

sup
t∈ℝ

g(t + 3
nπ) − g(t) ⩽

π
n + 1

∞

∑
j=1

3−j, n ∈ ℕ. (4.32)

This can be proved in exactly the same way as in the proof of [511, Theorem 1.1].
Define now f (t) := sin t ⋅ g(t), t ∈ ℝ. Then (4.32) easily implies

sup
t∈ℝ

f (t + 3
nπ) + f (t) ⩽

π
n + 1

∞

∑
j=1

3−j, n ∈ ℕ.
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Therefore, f (⋅) is uniformly anti-recurrent and Proposition 4.2.22 shows that the
function f (⋅) is c-uniformly recurrent if and only if c = ±1. To prove that f (⋅) is
Stepanov unbounded, observe that (4.31) implies the existence of a sequence
(tk)k∈ℕ of positive real numbers such that g(tk) ⩾ (1/2)(ln k − 1) for all k ⩾ k0. If
we denote by L ⩾ 1 the Lipschitzian constant of the mapping g(⋅), then the above
implies

g(x) ⩾ (1/2)(ln k − 1) − 8Lπ, x ∈ [tk , tk + 8π], k ⩾ k0. (4.33)

The existence of a constantM > 0 such that ∫t+1t | sin s| ⋅ g(s) ds < M for all t ∈ ℝ
would imply by (4.33) the existence of a sequence (ak) of positive integers such
that [2akπ+(π/2), 2akπ+(π/2)+1] ⊆ [tk , tk+8π] and therefore (take t = 2akπ+(π/2))

sin((π/2) + 1) ⋅ [(1/2)(ln k − 1) − 8Lπ] ⩽ M, k ⩾ k0,

which is a contradiction.

In connection with Proposition 4.2.22 and Proposition 4.2.23, we would like to
present an illustrative example with the complex-valued functions.

Example 4.2.25. Let h : I → ℝ, q : I → ℝ and f (t) := h(t) + iq(t), t ∈ I. Suppose that
f : I → ℂ is c-uniformly recurrent, where c = eiφ and sinφ ̸= 0. Then h ∈ C0(I : ℝ) or
q ∈ C0(I : ℝ) implies f ≡ 0. To show this, observe that the c-uniform recurrence of f (⋅)
implies the existence of a strictly increasing sequence (αn) of positive real numbers
tending to plus infinity such that

lim
n→+∞

sup
t∈I

h(t + αn) − cosφ ⋅ h(t) + sinφ ⋅ q(t)
 = 0, and

lim
n→+∞

sup
t∈I

q(t + αn) − cosφ ⋅ q(t) − sinφ ⋅ h(t)
 = 0.

Since we have assumed that sinφ ̸= 0, the assumption h ∈ C0(I : ℝ) (q ∈ C0(I : ℝ))
implies by the first (second) of the above equalities that q ∈ C0(I : ℝ) (h ∈ C0(I : ℝ)).
Hence, f ∈ C0(I : ℂ) and the claimed statement follows by Proposition 4.2.23.

The space consisting of all almost periodic functions (c = 1) is the only function
space from those introduced in Definition 4.2.2, Definition 4.2.4 and Definition 4.2.5
which has a linear vector structure.

Example 4.2.26.
(i) Suppose that c = 1. Then the set of all c-almost periodic functions is a vector

space together with the usual operations, while the set of c-uniformly recurrent
functions and the set of semi-c-periodic functions are not vector spaces together
with the usual operations.
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(ii) Suppose that c = −1. Then the set of all c-almost periodic functions (c-uniformly
recurrent functions, semi-c-periodic functions) is not a vector space together with
the usual operations [666].

(iii) Suppose that c ̸= ±1. Then the set of all c-almost periodic functions (c-uniformly
recurrent functions, semi-c-periodic functions) is not a vector space together with
the usual operations. In actual fact, the functions fφ,± : ℝ → ℝ given by fφ,±(t) :=
e±itφ, t ∈ ℝ (φ ∈ (−π,π] ∖ {0}) are c-almost periodic (semi-c-periodic); see Exam-
ple 4.2.20. The sum fφ,+(⋅) + fφ,−(⋅) = 2 cosφ⋅ is not c-uniformly recurrent due to
Proposition 4.2.22.

Similarly, we have the following.

Example 4.2.27. Let f : I → ℂ and g : I → X.
(i) Suppose that c = 1. If f ∈ AP(I : ℂ) and g ∈ AP(I : X), then f ⋅ g ∈ AP(I : X);

furthermore, there exist f ∈ UR(I : ℂ) and g ∈ UR(I : X) such that f ⋅ g ∉ UR(I : X)
[648]. It can be simply proved that the pointwise product of anti-periodic func-
tions f (t) := cos t, t ∈ ℝ and g(t) := cos√2t, t ∈ ℝ is not a semi-periodic function
(see, e. g., [69, Lemma 2]).

(ii) Suppose that c = −1. Then there exist an anti-periodic function f (⋅) and an anti-
periodic function g(⋅) such that f ⋅g(⋅) is not anti-uniformly recurrent. We can sim-
ply take X = ℂ and f (t) := g(t) := cos t, t ∈ I.

(iii) Suppose that c ̸= ±1. Then there exist a semi-c-periodic function f (⋅) and a
semi-c-periodic function g(⋅) such that f ⋅g(⋅) is not c-uniformly recurrent. Consider
again the functions fφ,± : ℝ→ ℝ given by fφ,±(t) := e±itφ, t ∈ ℝ (φ ∈ (−π,π] ∖ {0}).
They are semi-c-periodic but their pointwise product fφ,+(⋅) ⋅ fφ,−(⋅) = 1 is not
c-uniformly recurrent due to Proposition 4.2.22.

Let us recall that ANP0(I : X) and ANP(I : X) stand for the linear span of almost
anti-periodic functions f : I → E and its closure in AP(I : X), respectively; by (2.2), we
have ANP(I : X) = APℝ∖{0}(I : X). Now we will prove the following extension of this
equality.

Theorem 4.2.28. Denote by APc,0(I : X) and APc,0(I : X) the linear span of c-almost
periodic functions f : I → X and its closure in AP(I : X), respectively. Then the following
hold:
(i) Let arg(c) ∈ π ⋅ℚ. Then we have APc,0(I : X) = APℝ∖{0}(I : X).
(ii) Let arg(c) ∉ π ⋅ℚ. Then we have APc,0(I : X) ⊇ APℝ∖{0}(I : X).

Proof. Assume first that f ∈ APℝ∖{0}(I : X). By spectral synthesis, we have

f ∈ span{eiμ⋅x : μ ∈ σ(f ), x ∈ R(f )},
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where the closure is taken in the space Cb(I : X). Since σ(f ) ⊆ ℝ∖ {0} and the function
t → eiμt, t ∈ I (μ ∈ ℝ∖{0}) is c-almost periodic for all c ∈ S1, we see that span{eiμ⋅x : μ ∈
σ(f ), x ∈ R(f )} ⊆ APc,0(I : X). Hence, f ∈ APc,0(I : X). To complete the proof, it remains
to consider case arg(c) ∈ π ⋅ ℚ and show that any function f ∈ APc,0(I : X) belongs
to the space APℝ∖{0}(I : X). Furthermore, it suffices to consider case in which (4.29)
holds with the number p even because otherwise we can apply Corollary 4.2.15(ii) and
Proposition 4.2.16(i) to see that APc,0(I : X) ⊆ ANP0(I : X) and therefore APc,0(I : X) ⊆
ANP(I : X), so that the statement directly follows from [666, Theorem 2.3]. We will
prove that

lim
t→∞

1
t

t

∫
0

f (s) ds = 0; (4.34)

clearly, by almost periodicity of f (⋅), the limit in (4.34) exists. Let ε > 0 be fixed, and let
l > 0 satisfy the requirement that every interval of [0,∞) of length l contains a point τ
such that ‖f (t + τ)− cf (t)‖ ⩽ ε, t ⩾ 0. We have cq = 1 and therefore 1+ c + ⋅ ⋅ ⋅+ cq−1 = 0;
using this equality and the decomposition (s ⩾ 0, n ∈ ℕ)
f (s + (n − 1)τ) + f (s + (n − 2)τ) + ⋅ ⋅ ⋅ + f (s)


⩽ ε + (1 + c)f (s + (n − 2)τ) + f (s + (n − 3)τ) + ⋅ ⋅ ⋅ + f (s)


⩽ ε + (1 + c)f (s + (n − 2)τ) − (1 + c)cf (s + (n − 3)τ)


+ [1 + (1 + c)c]f (s + (n − 3)τ) + f (s + (n − 4)τ) ⋅ ⋅ ⋅ + f (s)


⩽ ε + |1 + c|ε + [1 + c + c

2]f (s + (n − 3)τ) + f (s + (n − 4)τ) + ⋅ ⋅ ⋅ + f (s)
⩽ ε + |1 + c|ε + 1 + c + c

2ε + ⋅ ⋅ ⋅

⩽ ε + |1 + c|ε + 1 + c + c
2ε + ⋅ ⋅ ⋅ +

1 + c + c
2 + ⋅ ⋅ ⋅ + cq−2ε

+ f (s) + f (s + τ) + ⋅ ⋅ ⋅ + f (s + (n − 1 − q)τ)
,

we immediately see that there exists a finite constant A ⩾ 1 such that, for every s ⩾ 0
and n ∈ ℕ,

f (s + (n − 1)τ) + f (s + (n − 2)τ) + ⋅ ⋅ ⋅ + f (s)
 ⩽ Aε⌈n/q⌉ + A‖f ‖∞.

Integrating this estimate over the segment [0, nτ], we get, for every s ⩾ 0 and n ∈ ℕ,


nτ

∫
0

f (s) ds

=


τ

∫
0

[f (s + (n − 1)τ) + f (s + (n − 2)τ) + ⋅ ⋅ ⋅ + f (s)] ds


⩽ Aτε⌈n/q⌉ + Aτ‖f ‖∞.

Dividing both sides of the above inequality by nτ, we get

lim
n→+∞



1
nτ

nτ

∫
0

f (s) ds

⩽ Aε/q.

Since ε > 0 was arbitrary, this immediately yields (4.34).
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Now we will clarify the following result.

Proposition 4.2.29. Suppose that f : [0,∞)→ X is c-almost periodic (semi-c-periodic).
Then 𝔼f : ℝ→ X is a unique c-almost periodic extension (semi-c-periodic extension) of
f (⋅) to the whole real axis.

Proof. The proof for the class of c-almost periodic functions is very similar to the proof
of [666, Proposition 2.2] and therefore is omitted. For the class of semi-c-periodic func-
tions, the proof can be deduced as follows. Due to Proposition 4.2.17, we see that the
function f : [0,∞) → X is almost periodic, so that the function 𝔼f : ℝ → X is a
unique almost periodic extension of f (⋅) to the whole real axis. Therefore, it remains
to be proved that 𝔼f (⋅) is semi-c-periodic. Let ε > 0 be fixed. Then there exists p > 0
such that for allm ∈ ℕ and x ⩾ 0we have ‖f (x+mp)−cmf (x)‖ ⩽ ε. For every fixed num-
berm ∈ ℕ, the function 𝔼f (⋅ +mp) − cm𝔼f (⋅) is almost periodic so that the supremum
formula implies

sup
x∈ℝ

𝔼f (x +mp) − c
m𝔼f (x) = sup

x⩾0

𝔼f (x +mp) − c
m𝔼f (x)

= sup
x⩾0

f (x +mp) − c
mf (x) ⩽ ε.

This completes the proof.

We continue by introducing the following notion.

Definition 4.2.30. A continuous function f : I → X is called asymptotically c-uni-
formly recurrent (asymptotically c-almost periodic, asymptotically semi-c-periodic)
if and only if there are a c-uniformly recurrent (c-almost periodic, semi-c-periodic)
function g : ℝ→ X and a function h ∈ C0(I : X) such that f (x) = g(x) + h(x), x ∈ I.

Definition 4.2.31. Let p ∈ 𝒫([0, 1]), and let f ∈ Lp(x)loc (I : X).
(i) It is said that f (⋅) is Stepanov (p(x), c)-uniformly recurrent (Stepanov (p(x), c)-al-

most periodic, Stepanov semi-(p(x), c)-periodic) if and only if the function ̂f :
I → Lp(x)([0, 1] : X), defined by (2.5), is c-uniformly recurrent (c-almost periodic,
semi-c-periodic).

(ii) It is said that f (⋅) is asymptotically Stepanov (p(x), c)-uniformly recurrent (asymp-
totically Stepanov (p(x), c)-almost periodic, asymptotically Stepanov semi-(p(x),
c)-periodic) if and only if there are a Stepanov (p(x), c)-uniformly recurrent
(Stepanov (p(x), c)-almost periodic, Stepanov semi-(p(x), c)-periodic) function
h(⋅) and q ∈ C0(I : Lp(x)([0, 1] : X)) such that f (t) = h(t) + q(t) for a. e. t ∈ I.

If p(x) ≡ p ∈ [1,∞), then we also say that the function f (⋅) is Stepanov (p, c)-uniformly
recurrent (Stepanov (p, c)-almost periodic, Stepanov semi-(p, c)-periodic) and so on.

In the case c = 1, resp. c = −1, we also say that an (asymptotically) Stepanov
(p(x), c)-uniformly recurrent ((asymptotically) Stepanov (p(x), c)-almost periodic/(as-
ymptotically) Stepanov semi-(p(x), c)-periodic) function is (asymptotically) Stepanov
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p(x)-uniformly recurrent, resp. (asymptotically) Stepanov p(x)-uniformly anti-recur-
rent ((asymptotically) Stepanov p(x)-almost periodic, resp. (asymptotically) Stepanov
p(x)-almost anti-periodic/(asymptotically) Stepanov semi-p(x)-periodic, resp. (as-
ymptotically) Stepanov semi-p(x)-anti-periodic).

Question 4.2.32. Assume that α, β ∈ ℝ and αβ−1 is a well-defined irrational num-
ber. We would like to raise the question whether the functions fα,β(⋅) and gα,β(⋅), given
by (2.6) and (2.7), respectively, are Stepanov q-semi-periodic for any 1 ⩽ q <∞.

Example 4.2.33. Let us consider the function f (x) := sin x + sin(πx√2), x ∈ ℝ. Then a
simple analysis involving the identity

f (x) = 2 sin(x 1 + π
√2

2
) ⋅ cos(xπ

√2 − 1
2
), x ∈ ℝ,

shows that the function sign(f (⋅)) is identically equal to a function F(⋅) of the follow-
ing,muchmore general form: Let (an)n∈ℤ be a strictly increasing sequence of real num-
bers satisfying limn→+∞(an+1 − an) = +∞, limn→+∞ an = +∞ and limn→−∞ an = −∞.
Suppose that (bn)n∈ℤ is a sequence of non-zero real numbers satisfying that the sets
{n ∈ ℤ : bn < 0} and {n ∈ ℤ : bn > 0} are infinite, as well as that there exists a finite
positive constant c > 0 such that c ⩽ |bn − bl| for any n, l ∈ ℤ such that bnbl < 0.
Define the function F : ℝ → ℝ by F(x) := bn if x ∈ [an, an+1), for any n ∈ ℤ. Then F(⋅)
cannot be Stepanov q-semi-periodic for any finite real number q ⩾ 1. Otherwise, for
ε ∈ (0, cq)wewould be able to find a number p > 0 such that for eachm ∈ ℤ and x ∈ ℝ
one has:

1

∫
0

F(x +mp + s) − F(x + s)

q ds < (1/2)q.

Let n ∈ ℤ be such that [x, x + 1] ⊆ [an, an+1) and bn < 0, say. Without loss of generality,
we may assume that the set {n ∈ ℕ : bn > 0} is infinite. Then the contradiction is
obvious because, for every sufficiently large number l ∈ ℕ with bl > 0, we can find
m ∈ ℕ such that [x +mp, x +mp + 1] ⊆ [al, al+1) so that

1

∫
0

F(x +mp + s) − F(x + s)

q ds ⩾ |bn − bl|

q ⩾ cq.

In the remainder of this subsection, we will present two statements concerning
the invariance of c-almost periodicity, c-uniform recurrence and semi-c-periodicity
under the actions of infinite convolution products. We first state the following slight
generalization of [666, Proposition 3.1], which can be deduced by using almost the
same arguments as in the proof of Proposition 2.4.39 (similarlywe can generalize [666,
Proposition 3.2] for asymptotical c-almost type periodicity).
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Proposition 4.2.34. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and (R(t))t>0 ⊆
L(X,Y) is a strongly continuous operator family satisfying that M := ∑∞k=0 ‖R(⋅ +
k)‖Lq(x)[0,1] <∞. If ̌f : ℝ→ X is Stepanov (p(x), c)-almost periodic (Stepanovp(x)-bound-
ed and Stepanov (p(x), c)-uniformly recurrent/Stepanov p(x)-bounded and Stepanov
semi-(p(x), c)-periodic), then the function F(⋅), given by (2.46), is well defined and
c-almost periodic (bounded c-uniformly recurrent/bounded and semi-c-periodic).

We can also consider the situation in which the forcing term f (⋅) is not Stepanov
p(x)-bounded (see Proposition 2.4.41).

Proposition 4.2.35. Suppose that p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1, ̌f : ℝ → X
is Stepanov (p(x), c)-almost periodic (Stepanov (p(x), c)-uniformly recurrent/Stepanov
semi-(p(x), c)-periodic), (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and
there exists a continuous functionP : ℝ→ [1,∞) such that (2.47)–(2.48)hold. If the func-
tion ̂f : ℝ→ Lp(x)([0, 1] : X) is uniformly continuous, then the function F : ℝ→ Y, given
by (2.46), is well defined and c-almost periodic (c-uniformly recurrent/semi-c-periodic).

4.2.1 Composition principles for c-almost periodic type functions

In this subsection, we will clarify and prove several composition principles for
c-almost periodic functions and c-uniformly recurrent functions.

Suppose that F : I × Y → X is a continuous function and there exists a finite
constant L > 0 such that (2.51) holds. Define ℱ(t) := F(t, f (t)), t ∈ I. We need the
following estimates (τ ⩾ 0, c ∈ ℂ ∖ {0}, t ∈ I):

F(t + τ, f (t + τ)) − cF(t, f (t))


⩽ F(t + τ, f (t + τ)) − F(t + τ, cf (t))
 +
F(t + τ, cf (t)) − cF(t, f (t))


⩽ Lf (t + τ) − cf (t)

 +
F(t + τ, cf (t)) − cF(t, f (t))

. (4.35)

Using (4.35), we can simply deduce the following result.

Theorem 4.2.36. Suppose that F : I × Y → X is a continuous function and there exists
a finite constant L > 0 such that (2.51) holds.
(i) Suppose that f : I → Y is c-uniformly recurrent. If there exists a strictly increasing

sequence (αn) of positive reals tending to plus infinity such that

lim
n→+∞

sup
t∈I

f (t + αn) − cf (t)
 = 0 (4.36)

and

lim
n→+∞

sup
t∈I

F(t + αn, cf (t)) − cF(t, f (t))
 = 0, (4.37)

then the mapping ℱ(t) := F(t, f (t)), t ∈ I is c-uniformly recurrent.
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(ii) Suppose that f : I → Y is c-almost periodic. If for each ε > 0 the set of all positive
real numbers τ > 0 such that

sup
t∈I

f (t + τ) − cf (t)
 < ε (4.38)

and

sup
t∈I

F(t + τ, cf (t)) − cF(t, f (t))
 < ε (4.39)

is relatively dense in [0,∞), then the mapping ℱ(t) := F(t, f (t)), t ∈ I is c-almost
periodic.

For the class of asymptotically c-almost periodic functions, the subsequent result
simply follows from the previous theorem and the argumentation used in the proof of
[364, Theorem 3.49].

Theorem 4.2.37. Suppose that F : I×Y → X andQ : I×Y → X are continuous functions
and there exists a finite constant L > 0 such that (2.51) holds and (2.51) holds with the
function F(⋅, ⋅) replaced therein with the function Q(⋅, ⋅).
(i) Suppose that g : I → E is a c-uniformly recurrent function, h ∈ C0(I : Y) and f (x) =

g(x) + h(x), x ∈ I. If there exists a strictly increasing sequence (αn) of positive reals
tending to plus infinity such that (4.36)and (4.37)holdwith the function f (⋅) replaced
therein with the function g(⋅), lim|t|→+∞ Q(t, y) = 0 uniformly for y ∈ R(f ), then the
mappingℋ(t) := (F + Q)(t, f (t)), t ∈ I is asymptotically c-uniformly recurrent.

(ii) Suppose that g : I → Y is a c-almost periodic function, h ∈ C0(I : Y) and f (x) =
g(x) + h(x), x ∈ I. If for each ε > 0 the set of all positive real numbers τ > 0 such
that (4.38) and (4.39) hold with the function f (⋅) replaced therein with the function
g(⋅), lim|t|→+∞ Q(t, y) = 0 uniformly for y ∈ R(f ), then the mapping ℋ(t) := (F +
Q)(t, f (t)), t ∈ I is asymptotically c-almost periodic.

For the Stepanov classes, we can also clarify certain results.

Theorem 4.2.38. Let p, q, r ∈ 𝒫([0, 1]), let p(x), q(x) ∈ [1,∞), r(x) ∈ [1,∞], 1/p(x) =
1/q(x) + 1/r(x) and the following conditions hold:
(i) Let F : I × Y → X and let there exist a function LF ∈ L

r(x)
S (I) such that (2.20) holds.

(ii) There exists a strictly increasing sequence (αn) of positive real numbers tending to
plus infinity such that

lim
n→+∞

sup
t∈I

sup
u∈R(f )

F(s + t + αn, cu) − cF(s + t, u)
Lp(s)[0,1] = 0 and

lim
n→+∞

sup
t∈I

f (s + t + αn) − cf (s + t)
Lq(s)[0,1] = 0. (4.40)
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Then the function F(⋅, f (⋅)) is Stepanov (p(x), c)-uniformly recurrent. Furthermore, the
assumption that F(⋅,0) is Stepanov p(x)-bounded implies that the function F(⋅, f (⋅)) is
Stepanov p(x)-bounded, as well.

Similarly, we can prove the following.

Theorem 4.2.39. Suppose that p ∈ 𝒫([0, 1]) and the following conditions hold:
(i) Let F : I × Y → X and there exist a function r(x) ⩾ max(p(x), p(x)/(p(x) − 1)) and a

function LF ∈ L
r(x)
S (I) such that (2.20) holds.

(ii) There exists a strictly increasing sequence (αn) of positive real numbers tending to
plus infinity such that (4.40) holds and (4.40) holds with the function q(⋅) replaced
by the function p(⋅) therein.

Then q(x) := p(x)r(x)/(p(x)+ r(x)) for x ∈ [0, 1], r(x) < +∞ and q(x) := p(x) for x ∈ [0, 1],
r(x) = +∞. Then the function F(⋅, f (⋅)) is Stepanov (q(x), c)-uniformly recurrent. Further-
more, the assumption that F(⋅,0) is Stepanov q(x)-bounded implies that the function
F(⋅, f (⋅)) is Stepanov q(x)-bounded, as well.

The above results can be simply reformulated for the class of Stepanov (p(x), c)-al-
most periodic functions. For the classes of asymptotically Stepanov (p(x), c)-uniformly
recurrent (asymptotically Stepanov (p(x), c)-almost periodic) functions,we can simply
extend the assertions of [631, Proposition 2.7.3, Proposition 2.7.4]. Details will be left to
the interested reader.

4.2.2 Applications to the abstract Volterra integro-differential inclusions

In this subsection,wewill present some illustrative applications of our abstract results
in the analysis of the existence and uniqueness of c-almost periodic type solutions to
the abstract (semilinear) Volterra integro-differential inclusions.

Regarding semilinear problems, we can apply our results in the study of the ex-
istence and uniqueness of c-almost periodic solutions and c-uniformly recurrent so-
lutions of the fractional semilinear Cauchy inclusion (2.11), where Dγ

t,+ denotes the
Riemann–Liouville fractional derivative of order γ ∈ (0, 1), F : ℝ × Y → X satisfies
certain properties, and 𝒜 is a closed multivalued linear operator satisfying condition
(P). To explain this in more detail, fix a strictly increasing sequence (αn) of positive
reals tending to plus infinity and define

BUR(αn);c(ℝ : X) := {f ∈ URc(ℝ : X); f (⋅) is bounded and

lim
n→+∞

sup
t∈ℝ

f (t + αn) − cf (t)
∞ = 0}.

Equipped with themetricd(⋅, ⋅) := ‖ ⋅− ⋅ ‖∞, BUR(αn);c(ℝ : X) becomes a complete metric
space. Let (Rγ(t))t>0 be the operator family considered in [631]. It is said that a contin-
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uous function u : ℝ→ X is a mild solution of (2.11) if and only if

u(t) =
t

∫
−∞

Rγ(t − s)F(s, u(s)) ds, t ∈ ℝ.

Nowweare able to state the following result,which is very similar to [631, Theorem
3.1] (for simplicity, we will consider the constant coefficient p(x) ≡ p > 1 here).

Theorem 4.2.40. Suppose that the function F : ℝ × X → X satisfies the require-
ment that for each bounded subset B of X there exists a finite real constant MB > 0
such that supt∈ℝ supy∈B ‖F(t, y)‖ ⩽ MB. Suppose, further, that the function F : ℝ ×
X → X is Stepanov (p, c)-uniformly recurrent with p > 1, and there exist a number
r ⩾ max(p, p/(p − 1)) and a function LF ∈ LrS(I) such that q := pr/(p + r) > 1 and (2.20)
holds with I = ℝ. If (2.58) holds and there exists an integer n ∈ ℕ such that Mn < 1,
where

Mn := sup
t⩾0

t

∫
−∞

xn

∫
−∞

⋅ ⋅ ⋅

x2

∫
−∞

Rγ(t − xn)


×
n
∏
i=2

Rγ(xi − xi−1)


n
∏
i=1

LF(xi) dx1 dx2 ⋅ ⋅ ⋅ dxn,

and (4.40) holds with the set R(f ) replaced therein with an arbitrary bounded set B ⊆ X,
then the abstract semilinear fractional Cauchy inclusion (2.11) has a unique bounded
uniformly recurrent solution which belongs to the space BUR(αn);c(ℝ : X).

Proof. Define ϒ : BUR(αn);c(ℝ : X)→ BUR(αn);c(ℝ : X) by

(ϒu)(t) :=
t

∫
−∞

Rγ(t − s)F(s, u(s)) ds, t ∈ ℝ.

Suppose that u ∈ BUR(αn);c(ℝ : X). Then R(u) = B is a bounded set and the map-
ping t → F(t, u(t)), t ∈ ℝ is bounded due to the prescribed assumption. Applying
Theorem 4.2.39, we see that the function F(⋅, u(⋅)) is Stepanov (q, c)-uniformly re-
current. Define q′ := q/(q − 1). By (2.56) and (2.58), we have ‖Rγ(⋅)‖ ∈ Lq

′
[0, 1] and

∑∞k=0 ‖Rγ(⋅)‖Lq′ [k,k+1] <∞. Applying Proposition 4.2.34, we see that the function
t →

t

∫
−∞

Rγ(t − s)F(s, u(s)) ds, t ∈ ℝ

is boundedand c-uniformly recurrent, implying that ϒu ∈ BUR(αn);c(ℝ : X), as claimed.
Furthermore, a simple calculation shows that

(ϒ
nu1) − (ϒ

nu2)
∞ ⩽ Mn‖u1 − u2‖∞, u1, u2 ∈ BUR(αn);c(ℝ : X), n ∈ ℕ.
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Since there exists an integer n ∈ ℕ such that Mn < 1, the Bryant fixed point theo-
rem shows that the mapping ϒ(⋅) has a unique fixed point, finishing the proof of the
theorem.

Similarlywecananalyze the existenceanduniqueness of asymptotically Stepanov
(p, c)-almost periodic solutions and Stepanov (p, c)-uniformly recurrent solutions of
the fractional semilinear Cauchy inclusion (DFP)f ,γ,s.

As mentioned earlier, the unique regular solution of the heat equation ut(x, t) =
uxx(x, t), x ∈ ℝ, t ⩾ 0, accompanied with the initial condition u(x,0) = f (x), is
given by (4.9). Let the number t0 > 0 be fixed, and let the function f (⋅) be bounded
c-uniformly recurrent (c-almost periodic, semi-c-periodic). Since e−⋅

2/4t0 ∈ L1(ℝ), we
can use the fact that the space of bounded c-uniformly recurrent functions (c-almost
periodic functions, semi-c-periodic functions) is convolution invariant in order to see
that the solution x → u(x, t0), x ∈ ℝ is bounded and c-uniformly recurrent (c-almost
periodic, semi-c-periodic).

4.2.3 Semi-c-periodic functions

Let us recall that𝕊 := ℕ if I = [0,∞), and𝕊 := ℤ if I = ℝ. In this subsection,wewill first
extend the notion introduced in Definition 4.2.5 with general parameter c ∈ ℂ ∖ {0}.

Definition 4.2.41. Let f ∈ C(I : X).
(i) It is said that f (⋅) is semi-c-periodic of type 1 if and only if

∀ε > 0 ∃p > 0 ∀m ∈ 𝕊 ∀x ∈ I f (x +mp) − c
mf (x) ⩽ ε. (4.41)

(ii) It is said that f (⋅) is semi-c-periodic of type 2 if and only if

∀ε > 0 ∃p > 0 ∀m ∈ 𝕊 ∀x ∈ I c
−mf (x +mp) − f (x) ⩽ ε.

The space of all semi-c-periodic functions of type i will be denoted by 𝒮𝒫c,i(I : X),
i = 1, 2.

Definition 4.2.42. Let f ∈ C(I : X).
(i) It is said that f (⋅) is semi-c-periodic of type 1+ if and only if

∀ε > 0 ∃p > 0 ∀m ∈ ℕ ∀x ∈ I f (x +mp) − c
mf (x) ⩽ ε.

(ii) It is said that f (⋅) is semi-c-periodic of type 2+ if and only if

∀ε > 0 ∃p > 0 ∀m ∈ ℕ ∀x ∈ I c
−mf (x +mp) − f (x) ⩽ ε.

The space of all semi-c-periodic functions of type i+ will be denoted by 𝒮𝒫c,i,+(I : X),
i = 1, 2.
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Wehave already seen that the notion of a semi-c-periodicity of type i (i+), where i =
1, 2, is equivalent with the notion of semi-c-periodicity introduced in Definition 4.2.5,
provided that |c| = 1.

Now we will focus our attention to the general case c ∈ ℂ ∖ {0}. We will first state
the following.

Lemma 4.2.43.
(i) If |c| ⩾ 1 and f : I → X is semi-c-periodic of type 1+, then f (⋅) is semi-c-periodic of

type 2+.
(ii) If |c| ⩽ 1 and f : I → X is semi-c-periodic of type 2+, then f (⋅) is semi-c-periodic of

type 1+.

Proof. If x ∈ I, p > 0,m ∈ ℕ and |c| ⩾ 1, then we have

f (x +mp) − c
mf (x) ⩽ ε ⇒

c
−mf (x +mp) − f (x) ⩽ ε,

which implies (i); the proof of (ii) is similar.

Using the proofs of [69, Lemma 1, Theorem 1], we can clarify the following impor-
tant lemma.

Lemma 4.2.44. Suppose that |c| ⩽ 1, resp. |c| ⩾ 1, and f : [0,∞)→ X is semi-c-periodic
of type 1+, resp. 2+. Then there exists a sequence (fn : [0,∞) → X)n∈ℕ of c-periodic
functions which converges uniformly to f (⋅).

Now we are able to prove the following result.

Theorem 4.2.45. Let |c| ̸= 1, i = 1, 2 and f : I → X. Then f (⋅) is c-periodic if and only if
f (⋅) is semi-c-periodic of type i (i+).

Proof. Suppose that the function f (⋅) is (p, c)-periodic. Then we have f (x + mp) =
cmf (x), x ∈ I,m ∈ 𝕊, so that f (⋅) is automatically semi-c-periodic of type i (i+). To prove
the converse statement, let us observe that any semi-c-periodic function of type i is
clearly semi-c-periodic of type i+. Suppose first that |c| > 1. Due to Lemma 4.2.43(i),
it suffices to show that, if f (⋅) is semi-c-periodic of type 2+, then f (⋅) is c-periodic.
Assume first I = [0,∞). Using Lemma 4.2.44, we get the existence of a sequence
(fn : [0,∞) → X)n∈ℕ of c-periodic functions which converges uniformly to f (⋅). Let
fn(t + pn) = cfn(t), t ⩾ 0 for some sequence (pn) of positive real numbers. Suppose first
that (pn) is bounded. Then there exist a strictly increasing sequence (nk) of positive
integers and a number p ⩾ 0 such that limk→+∞ pnk = p. Let ε > 0 be given. Then there
exists an integer k0 ∈ ℕ such that ‖f (t) − fnk (t)‖ ⩽ ε/(2 + 2|c|

−1) for all real numbers
t ⩾ 0 and all integers k ⩾ k0. Furthermore, we have

c
−1f (t + pnk ) − f (t)


⩽ c
−1f (t + pnk ) − c

−1fnk (t + pnk )
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+ c
−1fnk (t + pnk ) − fnk (t)

 +
fnk (t) − f (t)


= c
−1f (t + pnk ) − c

−1fnk (t + pnk)
 +
fnk (t) − f (t)


⩽ 2(1 + |c|−1)ε/(2 + 2|c|−1) = ε,

for all real numbers t ⩾ 0 and all integers k ⩾ k0. Letting k → +∞we get f (t+p) = cf (t)
for all t ⩾ 0. If p > 0 the above shows that f (⋅) is (p, c)-periodic, while the assumption
p = 0 yields f ≡ 0 or c = 1, i. e., f (⋅) ≡ 0; in any case, f (⋅) is (p, c)-periodic. Suppose
now that (pn) is unbounded. Then, with the same notation as above, we may assume
that limk→+∞ pnk = +∞. Using the same computation, it follows that limk→+∞ ‖c−1f (⋅+
pnk ) − f (⋅)‖∞ = 0, so that f ∈ URc([0,∞) : X). Due to Proposition 4.2.11, we get f (⋅) ≡ 0.
Assume now I = ℝ. By the foregoing arguments, we know that there exists p > 0
such that f (x + p) = cf (x) for all x ⩾ 0. Let x < 0 and ε > 0 be fixed. Since f (⋅)
is semi-c-periodic, there exists pε > 0 such that ‖c−mf (x + p + mpε) − f (x + p)‖ ⩽
ε and ‖c1−mf (x + mpε) − cf (x)‖ ⩽ ε for all m ∈ ℕ. For all sufficiently large integers
m ∈ ℕ we have x +mpε > 0 so that c−mf (x + p +mpε) = c1−mf (x +mpε) and therefore
‖f (x+p)−cf (x)‖ ⩽ 2ε. Since ε > 0was arbitrary,we get f (x+p) = cf (x), which completes
the proof in the case |c| > 1. Suppose now that |c| < 1. Due to Lemma 4.2.43(ii), it
suffices to show that, if f (⋅) is semi-c-periodic of type 1+, then f (⋅) is c-periodic. But
then we can apply Lemma 4.2.44 again and similar arguments to above to complete
the whole proof.

Corollary 4.2.46. Let c ∈ ℂ∖ {0}, let i = 1, 2, and let f (⋅) be semi-c-periodic of type i (i+).
Then there exist two finite real constants M > 0 and p > 0 such that ‖f (t)‖ ⩽ M|c|t/p,
t ∈ I.

Using Theorem 4.2.19 and the proof of Theorem 4.2.45, wemay deduce the follow-
ing corollaries.

Corollary 4.2.47. Let f ∈ C(I : X) and c ∈ ℂ∖{0}. Then f (⋅) is semi-c-periodic if and only
if there exists a sequence (fn) of c-periodic functions in C(I : X) such that limn→∞ fn(x) =
f (x) uniformly in I.

Corollary 4.2.48. Let f ∈ C(I : X) and |c| ̸= 1. If (fn) is a sequence of c-periodic functions
and limn→∞ fn(x) = f (x) uniformly in I, then f (⋅) is c-periodic.

For the Stepanov classes, we will use the following notion.

Definition 4.2.49. Let p ∈ 𝒫([0, 1]), and let f ∈ Lp(x)loc (I : X).
(i) It is said that f (⋅) is Stepanov semi-(p(x), c)-periodic of type i (i+) if and only if the

function ̂f : I → Lp(x)([0, 1] : X), defined by (2.5), is semi-c-periodic of type i (i+).
(ii) It is said that f (⋅) is asymptotically Stepanov semi-(p(x), c)-periodic of type i (i+) if

and only if there are a Stepanov semi-(p(x), c)-periodic function of type i (i+) h(⋅)
and q ∈ C0(I : Lp(x)([0, 1] : X)) such that f (t) = h(t) + q(t) for a. e. t ∈ I.
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If p(x) ≡ [1,∞), then we also say that the function f (⋅) is Stepanov semi-(p, c)-periodic
of type i (i+) and so on.

Remark 4.2.50. Let us observe that we can also analyze the following notion in the
case that the parameter c is not given in advance (compare with (4.41)):

∀ε > 0 ∃c > 0 ∃p > 0 ∀m ∈ 𝕊 ∀x ∈ I f (x +mp) − c
mf (x) ⩽ ε.

More details will be given elsewhere.

Semi-periodic functions depending on a parameter have been introduced in [69,
Definition4],where the authorshave considered case inwhich I = ℝ,E = ℝk and c = 1.
We will not introduce the related notion in the case |c| = 1, which will be standing till
the end of the subsection.

The composition theorems for semi-c-periodic functions have not been consid-
ered elsewhere even in the case c = 1. In order to formulate the first result in this
direction, suppose that t ∈ I, p > 0, m ∈ 𝕊 and c ∈ ℂ ∖ {0}. Let F : I × Y → X be a
continuous function. If there exists a finite constant L ⩾ 1 such that (2.51) holds, then
we have

F(t +mp, f (t +mp)) − c
mF(t, f (t))

⩽ F(t +mp, f (t +mp)) − F(t +mp, c
mf (t))

+ F(t +mp, c
mf (t)) − cmF(t, f (t))

⩽ Lf (t +mp) − c
mf (t) +

F(t +mp, c
mf (t)) − cmF(t, f (t)). (4.42)

Therefore, it is natural to consider the following condition:

∀ε > 0 ∃p > 0 ∀m ∈ 𝕊 ∀t ∈ I F(t +mp, c
mf (t)) − cmF(t, f (t)) ⩽ ε. (4.43)

Using the estimate (4.42), we can immediately clarify the following result which
can be simply formulated for semi-c-periodic functions.

Theorem 4.2.51. Suppose that F : I × Y → X is a continuous function satisfying that
there exists a finite real constant L > 0 such that (2.51) holds, f : I → Y is a continuous
function and for each ε > 0 there exists p > 0 such that (4.41) and (4.43) hold. Then the
function t → F(t, f (t)), t ∈ I, is semi-c-periodic.

In the following result,we reconsider [364, Theorem3.31] for semi-c-periodic func-
tions.

Theorem 4.2.52. Suppose that F : I × Y → X is a continuous function, f : I → Y is
a continuous function and F(⋅, ⋅) is uniformly continuous on set {ηf (t) : η ∈ ℂ, t ∈ I},
uniformly in t ∈ I (that is, for every ε > 0 there exists δ > 0 such that ‖f (t, x)− f (t, y)‖ ⩽ ε
for all t ∈ I and x, y ∈ {ηf (t) : η ∈ ℂ, t ∈ I}). Suppose that for each ε > 0 there
exists p > 0 such that (4.41) and (4.43) hold. Then the function t → F(t, f (t)), t ∈ I is
semi-c-periodic.
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Proof. Since (4.43) holds, the statement easily follows from the estimate (4.42) and the
prescribed assumptions.

For the Stepanov classes, we will first clarify the following result.

Theorem 4.2.53. Suppose that p1 ∈ 𝒫([0, 1]), r(x) ⩾ max(p1(x)/(p1(x) − 1)), and there
exists a function LF ∈ L

r(x)
S (I) such that (2.20) holds. Suppose, further, that for each ε > 0

there exists p > 0 such that

∀m ∈ 𝕊 ∀t ∈ I F(s + t +mp, c
mf (s + t)) − cmF(s + t, f (s + t))Lp1(s)[0,1] ⩽ ε

holds, as well as (4.41) holds, with the function f (⋅) and the space Y replaced therein with
the function ̂f (⋅) and the space Lp1(x)([0, 1] : Y). Then the function F(⋅, f (⋅)) is Stepanov
semi-(q(x), c)-periodic with q(x) := p(x)r(x)/(p(x) + r(x)) for x ∈ [0, 1], r(x) < ∞ and
q(x) := p(x) for x ∈ [0, 1], r(x) = +∞.

Proof. We will prove the theorem with the constant coefficient p1(x) ≡ p1 ∈ [1,∞). Let
ε > 0 be given and let the number p > 0 satisfy the above requirements. Fix numbers
t ∈ I andm ∈ ℤ. Arguing as in the proof of estimate (4.42), we get

F(t +mp, f (t +mp)) − c
mF(t, f (t))

⩽ LF(t)
f (t +mp) − c

mf (t) +
F(t +mp, c

mf (t)) − cmF(t, f (t)).

Using the Hölder inequality and the inequality q < p1, we get

(
t+1

∫
t

F(s +mp, f (s +mp)) − c
mF(s, f (s))

q ds)
1/q

⩽ 2(q−1)/q[LF(⋅)
Lr[t,t+1]
f (⋅ +mp) − c

mf (⋅)Lp1 [t,t+1]
+ F(⋅ +mp, c

mf (⋅)) − cmF(⋅, f (⋅))Lp1 [t,t+1]].

This completes the proof of the theorem in a routine manner.

Remark 4.2.54. We will not reconsider the statement of [729, Lemma 2.1] here.

We can similarly prove the result which naturally corresponds to [639, Theo-
rem 2.1] and the consequence for the usual Lipschitz condition used. Finally, we
would like to clarify an interesting result concerning the existence and uniqueness
of semi-c-periodic solutions of the following abstract semilinear fractional Cauchy
problem:

Dαu(t) = Au(t) +
t

∫
−∞

a(t − s)Au(s) ds + F(t, u(t)), t ∈ ℝ, (4.44)

where Dαu(t) denotes the Weyl–Liouville fractional derivative of order α > 0, a ∈
L1loc([0,∞)) is a scalar-valued kernel, the function F(⋅, ⋅) enjoys some properties and A
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generates a non-degenerate α-resolvent operator family (Sα(t))t⩾0 on X satisfying that
∫
∞
0 ‖Sα(t)‖ dt < ∞ (see R. Ponce [854] for more details; equations of this kind arise
in the study of heat flow in materials with memory as well as in certain equations of
population dynamics). By amild solution of (4.44), wemean any continuous function
u : ℝ→ X such that

u(t) =
t

∫
−∞

Sα(t − s)F(s, u(s)) ds, t ∈ ℝ.

Now we are able to formulate the following theorem.

Theorem 4.2.55. Suppose that F : ℝ × X → X is a continuous function satisfying that
there exists a finite real constant L > 0 such that (2.51) holds. If L∫∞0 ‖Sα(t)‖ dt < 1, then
the abstract fractional semilinear Cauchy inclusion (4.44) has a unique semi-c-periodic
solution.

Proof. It can be easily shown that the set 𝒮𝒫c,1(ℝ : X), equipped with the distance
d(u, v) := supt∈ℝ ‖u(t) − v(t)‖, u, v ∈ 𝒮𝒫c,1(ℝ : X), is a complete metric space. Define
the mapping

(Λu)(t) :=
t

∫
−∞

Sα(t − s)F(s, u(s)) ds, t ∈ ℝ (u ∈ 𝒮𝒫c,1(ℝ : X)).

Applying Theorem 4.2.51 and the foregoing arguments, we see that the mapping Λ(⋅)
is well defined. Moreover, our assumption L∫∞0 ‖Sα(t)‖ dt < 1 easily implies that
Λ(⋅) is a contraction. The proof completes an application of the Banach contraction
principle.

Before we switch to the next subsection, we note that J. Cao, A. Debbouche and
Y. Zhou have applied, in [239], the Krasnoselskii fixed point theorem and a decompo-
sition technique to obtain some sufficient conditions ensuring the existence of asymp-
totically almost periodic mild solutions for (4.44).

4.2.4 Semi-Bloch k-periodicity

In this subsection, we will always assume that I = [0,∞) or I = ℝ; as before, we set
𝕊 := ℕ if I = [0,∞), and 𝕊 := ℤ if I = ℝ. For the convenience of the reader, we recall
that a bounded continuous function f : I → X is said to be Bloch (p, k)-periodic, or
Bloch periodic with period p and Bloch wave vector or Floquet exponent k if and only
if f (x + p) = eikpf (x), x ∈ I, with p > 0 and k ∈ ℝ. The space of all functions f : I → X
that are Bloch (p, k)-periodic will be denoted by ℬp,k(I : X).
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If f ∈ ℬp,k(I : X), then we have

f (x +mp) = eikmpf (x), x ∈ I , m ∈ 𝕊,

so that the function f (⋅) must be periodic provided that kp ∈ ℚ; but, if kp ∉ ℚ, then
the function f (⋅) need not be periodic as the following simple counterexample shows:
The function

f (x) := eix + ei(√2−1)x , x ∈ ℝ,

is Bloch (p, k)-periodic with p = 2π +√2π and k = √2 − 1 but not periodic.
Given k ∈ ℝ, we set ℬk(I : X) := ⋃p>0 ℬp,k(I : X). Observing that f ∈ Pc(I : X)

satisfies f (x + p) = f (x) for all x ∈ I and some p > 0 if and only if the function F(x) :=
eikxf (x), x ∈ I satisfies F(x + p) = eikpF(x), x ∈ I, we may conclude that

ℬk(I : X) := {e
ik⋅f (⋅) : f ∈ Pc(I : X)}. (4.45)

Formore details on theBloch (p, k)-periodic functions, see [522] and the references
cited therein.

Let us define the notion of a semi-Bloch k-periodic function as follows.

Definition 4.2.56. Let k ∈ ℝ. A function f ∈ Cb(I : X) is said to be semi-Bloch
k-periodic if and only if

∀ε > 0 ∃p > 0 ∀m ∈ 𝕊 ∀x ∈ I f (x +mp) − e
ikmpf (x) ⩽ ε. (4.46)

The space of all semi-Bloch k-periodic functions will be denoted by 𝒮Bk(I : X).

It is clear that Definition 4.2.56 provides a generalization of [69, Definition 2 and
Definition 3], given only in the case that I = ℝ. In actual fact, a function f : ℝ → X is
semi-periodic in the sense of above-mentioned (equivalent) definitions if and only if
f : ℝ→ X is semi-Bloch 0-periodic. Furthermore, it can be easily shown that for each
k ∈ ℝ any constant function f ≡ c belongs to the space 𝒮Bk(I : X); for this, it is only
worth noticing that for each ε > 0 and k ̸= 0 we can take p = 2π/k and (4.46) will be
satisfied.

Remark 4.2.57. It is not so easy to introduce the concept of almost Bloch k-periodicity,
where k ∈ ℝ. In order to explain this in more detail, assume that a function f ∈ Cb(I :
X) and a number ε > 0 are given. Let us say that a real number p > 0 is an (ε, k)-Bloch
period for f (⋅) if and only if

f (x + p) − e
ikpf (x) ⩽ ε, x ∈ I , (4.47)

and f (⋅) is almost Bloch k-periodic if and only if for each ε > 0 the set constituted of
all (ε, k)-Bloch periods for f (⋅) is relatively dense in [0,∞). But then we see that f (⋅) is
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almost Bloch k-periodic if and only if f (⋅) is almost periodic. To see this, it suffices to
observe that (4.47) is equivalent with

e
−ik(x+p)f (x + p) − e−ikxf (x) ⩽ ε, x ∈ I ,

so that, actually, the function f (⋅) is almost Bloch k-periodic if and only if the function
e−ik⋅f (⋅) is almost periodic, which is equivalent to saying that the function f (⋅) is almost
periodic. Furthermore, let f (⋅) ∈ 𝒮Bk(I : X). Then for each number ε > 0 we see that
the set constituted of all (ε, k)-Bloch periods for f (⋅) is relatively dense in [0,∞) since
it contains the set {mp : m ∈ ℕ}, where p > 0 is determined by (4.46). In view of our
previous conclusions, f (⋅) is almost periodic. In particular, any Bloch (p, k)-periodic
function needs to be almost periodic, which has not been observed in the researches
of Bloch periodic functions carried out so far (see, e. g., [381] and [522]).

Now we will prove the following result.

Proposition 4.2.58. Let k ∈ ℝ and f ∈ Cb(I : X). Then the following hold:
(i) f (⋅) is semi-Bloch k-periodic if and only if e−ik⋅f (⋅) is semi-periodic.
(ii) f (⋅) is semi-Bloch k-periodic if and only if there exists a sequence (fn) in Pc(I : X)

such that limn→∞ eikxfn(x) = f (x) uniformly in I.
(iii) f (⋅) is semi-Bloch k-periodic if and only if there exists a sequence (fn) in ℬk(I : X)

such that limn→∞ fn(x) = f (x) uniformly in I.

Proof. The proof of (i) follows similarly as above. Since [69, Lemma 1 and Theorem 1]
hold for the functions defined on the interval I = [0,∞), we see that (i) implies that f (⋅)
is semi-Bloch k-periodic if and only if there exists a sequence (fn) in Pc(I : X) such that
limn→∞ eikxfn(x) = f (x) uniformly in I. This proves (ii). For the proof of (iii), it suffices
to apply (ii), (4.45) and the conclusion preceding it.

Let k ∈ ℝ. Using Proposition 4.2.58 and [69, Proposition 2], we may construct
a substantially large class of semi-Bloch k-periodic functions, which do not form a
vector space due to a simple example in the second part of [69, Remark 3]; [69, Lemma
2] can be straightforwardly reformulated for semi-Bloch k-periodic functions, while
the function given in [69, Example 1] can be simply used to provide an example of
a scalar-valued semi-Bloch k-periodic function which is not contained in the space
ℬk(I : ℂ). If we define Bloch k-quasi-periodic function

ℬk;q(I : X) := {e
ik⋅f (⋅) : f ∈ QP0(I : X)},

where QP0(I : X) denotes the space of all quasi-periodic functions from I into X (see
[69, 185] and the references cited therein for the notion), then [69, Theorem 2] can be
also reformulated in our context; this also holds for [69, Example 2, Example 3].

By the foregoing, we have

ℬk(I : X) ⊆ 𝒮Bk(I : X) ⊆ AP(I : X) ⊆ BUC(I : X), k ∈ ℝ.
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Example 4.2.59. The function f (x) := cos x, x ∈ ℝ is anti-periodic. Now we will prove
that f ∈ 𝒮Bk(I : X) if and only if k ∈ ℚ. For k ∈ ℚ, this is clear because we can take
p in (4.46) as a certain multiple of 2π. Let us assume now that k ∉ ℚ. Then it suffices
to show that the function e−ik⋅f (⋅) is not semi-periodic. To this aim, let us observe that
σ(e−ik⋅f (⋅)) = {1 − k,−1 − k} so that there does not exist a positive real number θ > 0
such that σ(e−ik⋅f (⋅)) ⊆ θ ⋅ℚ, which can be simply proved and which contradicts [69,
Lemma 2].

Remark 4.2.60. Let a ∈ AP(I : ℂ). Then we can introduce and analyze the following
notion: A function f ∈ Cb(I : X) is said to be semi a-periodic if and only if there exists
a sequence (fn) in Pc(I : X) such that limn→∞ a(x)fn(x) = f (x) uniformly in I. Any such
function needs to be almost periodic. We will analyze this notion somewhere else.

Example 4.2.61. Roughly speaking, it is well known that the unique solution of the
heat equation ut(x, t) = uxx(x, t), x ∈ ℝ, t ⩾ 0, accompanied with the initial condition
u(x,0) = f (x), is given by (4.9). By the conclusion from [522, Example 2.1], we know
that, if the function f (⋅) is Bloch (p, k)-periodic, then the solution u(x, ⋅) is likewise
Bloch (p, k)-periodic (p > 0, k ∈ ℝ). Using this fact, the dominated convergence the-
orem and Proposition 4.2.58, if f (⋅) is semi-Bloch k-periodic, then the solution u(x, ⋅)
will be likewise semi-Bloch k-periodic.

Proposition 4.2.62. Let k ∈ ℝ, let p > 0, and let a function f ∈ Cb([0,∞) : X) be given.
If f (⋅) is Bloch (p, k)-periodic (semi-Bloch k-periodic), then the function 𝔼f (⋅) is likewise
Bloch (p, k)-periodic (semi-Bloch k-periodic).

Proof. Suppose first that f (⋅) is Bloch (p, k)-periodic. Then f (x+p) = eikpf (x), x ⩾ 0; we
need to show that (𝔼f )(x+p) = eikp(𝔼f )(x), x ∈ ℝ, i. e., [W(x+p)f ](0) = eikp[W(x)f ](0),
x ∈ ℝ. SinceW(x + p) = W(x)W(p), x ∈ ℝ, it suffices to show that [W(x)f (⋅ + p)](0) =
eikp[W(x)f ](0), x ∈ ℝ, i. e., [W(x)eikpf (⋅)](0) = eikp[W(x)f ](0), x ∈ ℝ, which is true.
If f (⋅) is semi-Bloch k-periodic, then Proposition 4.2.58(iii) shows that there exists a
sequence (fn) in ℬk([0,∞) : X) such that limn→∞ fn(x) = f (x) uniformly in [0,∞). Due
to the supremum formula, we see that limn→∞(𝔼fn)(x) = (𝔼f )(x) uniformly in ℝ. By
the first part of the proof, we know that for each n ∈ ℕ the function (𝔼fn)(⋅) belongs to
the spaceℬk(ℝ : X). Applying again Proposition 4.2.58(iii), we see that𝔼f (⋅) is likewise
semi-Bloch k-periodic.

The proof of the following simple proposition is left to the interested reader.

Proposition 4.2.63. Let k ∈ ℝ, let p > 0, and let f : I → X. Then we have:
(i) If f (⋅) is Bloch (p, k)-periodic (semi-Bloch k-periodic), then cf (⋅) is Bloch (p, k)-peri-

odic (semi-Bloch k-periodic) for any c ∈ ℂ.
(ii) If X = ℂ, infx∈ℝ |f (x)| = m > 0 and f (⋅) is Bloch (p, k)-periodic (semi-Bloch

k-periodic), then 1/f (⋅) is Bloch (p,−k)-periodic (semi-Bloch (−k)-periodic).

Now we will introduce the following definition.
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Definition 4.2.64. Let f ∈ Cb(I : X) and k ∈ ℝ. Then we say that f (⋅) is asymptotically
semi Bloch k-periodic if and only if there exist a function ϕ ∈ C0(I : X) and a semi
Bloch k-periodic function g : ℝ→ X such that f (t) = g(t) + ϕ(t) for all t ⩾ 0.

As already mentioned, the notion of Stepanov semi-periodicity has not been ana-
lyzed in [69]. We will use the following definitions.

Definition 4.2.65. Let k ∈ ℝ and p ∈ 𝒫([0, 1]). Then we say that a function f ∈
Lp(x)S (I : X) is Stepanov p(x)-semi-Bloch k-periodic if and only if the function ̂f : I →
Lp(x)([0, 1] : X), defined by (2.5), is semi-Bloch k-periodic.

If p(x) ≡ p ∈ [1,∞), then we also say that the function f (⋅) is Stepanov p-semi-
Bloch k-periodic.

Definition 4.2.66. Let k ∈ ℝ and p ∈ 𝒫([0, 1]). Then we say that a function f ∈ Lp(x)S (I :
X) is asymptotically Stepanov p(x)-semi-Bloch k-periodic if and only if the function
̂f : I → Lp(x)([0, 1] : X), defined by (2.5), is asymptotically semi-Bloch k-periodic.

If p(x) ≡ p ∈ [1,∞), then we also say that the function f (⋅) is asymptotically
Stepanov p-semi-Bloch k-periodic.

Let p > 0 and k ∈ ℝ. It should be noted that, if f : I → X is Bloch (p, k)-periodic,
then ̂f : I → Lq([0, 1] : X) is likewise Bloch (p, k)-periodic. Furthermore, it immediately
follows from the corresponding definitions that, if f : I → X is semi-Bloch k-periodic,
then f (⋅) is Stepanov q-semi-Bloch k-periodic for every number q ∈ [1,∞); a large class
of non-continuous periodic or Bloch (p, k)-periodic functions can be used to provide
that the converse statement does not hold in general. If 1 ⩽ q < q′ < ∞ and f : I →
X is (asymptotically) Stepanov q′-semi-Bloch k-periodic, then f (⋅) is (asymptotically)
Stepanov q-semi-Bloch k-periodic. To see that the converse statement does not hold
in general, we will provide only one illustrative example.

Example 4.2.67. Suppose that 1 < q <∞. Let us revisit the example of H. Bohr and E.
Følner once more; they have constructed an example of a Stepanov 1-almost periodic
function F : ℝ→ ℝ that is not Stepanov q-almost periodic (see [199, p. 70]). Moreover,
for each n ∈ ℕ there exists a bounded periodic function Fn : ℝ → ℝ with at most
countable points of discontinuity such that

lim
n→∞

sup
t∈ℝ

t+1

∫
t

Fn(s) − F(s)
 ds = 0. (4.48)

Therefore, ̂Fn : ℝ → L1([0, 1] : ℝ) is a bounded periodic function and, in addition to
the above, ̂Fn(⋅) is continuous (n ∈ ℕ). Due to (4.48), we see that limn→∞ ̂Fn(t) = F̂(t)
uniformly in t ∈ ℝ. This implies that the function F(⋅) is Stepanov 1-semi-periodic but
not Stepanov q-semi-periodic because it is not Stepanov q-almost periodic.
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The above conclusions can also be clarified for Stepanov p(x)-semi-Bloch k-
periodic functions. Concerning the invariance of semi-Bloch k-periodicity under the
actions of infinite convolution products, we have the following result.

Proposition 4.2.68. Suppose that k ∈ ℝ, p, q ∈ 𝒫([0, 1]), 1/p(x) + 1/q(x) = 1 and
(R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying that M :=
∑∞k=0 ‖R(⋅ + k)‖Lq(⋅)[0,1] < ∞. If ̌f : ℝ → X is Stepanov p(x)-semi-Bloch (−k)-periodic,
then the function F(⋅), given by (2.46), is well defined and semi-Bloch k-periodic.

Proof. Using the same arguments as in the proof of Proposition 3.1.18, we see that
F(⋅) is well defined and continuous. It remains to be proved that F(⋅) is semi-Bloch
k-periodic. Let a number ε > 0 be given in advance. Then we can find a finite number
p > 0 such that, for everym ∈ ℤ and t ∈ ℝ, we have


̌f (t +mp) − e−ikmp ̌f (t)Lp(x)[0,1] ⩽ ε, t ∈ ℝ.

Applying the Hölder inequality and this estimate, we get

F(t +mp) − e
ikmpF(t)

⩽
∞

∫
0

R(r)
 ⋅
f (t +mp − r) − e

ikmpf (t − r) dr

=
∞

∑
k=0

1

∫
0

R(r + k)
 ⋅
f (t + k +mp − r) − e

ikmpf (t + k − r) dr

⩽ 2
∞

∑
k=0

R(⋅ + k)
Lq(⋅)[0,1]e−ikmp ̌f (r − t −mp − k) − ̌f (r − t − k)Lp(r)[0,1]

⩽ 2
∞

∑
k=0

R(⋅ + k)
Lq(⋅)[0,1]ε = 2Mε, t ∈ ℝ,

which clearly implies the required conclusion.

The above result canbe simply applied in the studyof existence anduniqueness of
semi-Bloch k-periodic solutions of the fractional Cauchy inclusion (2.49). We can also
analyze the invariance of asymptotical semi-Bloch k-periodicity under the actions of
finite convolution products, applying the obtained results in the qualitative analysis
of asymptotically (Stepanov) semi-Bloch k-periodic solutions of the abstract fractional
Cauchy inclusion (DFP)f ,γ.

Let p > 0 and k ∈ ℝ. If f : ℝ → X is Bloch (p, k)-periodic and a ∈ L1(ℝ), then
the function a ∗ f (⋅) is likewise Bloch (p, k)-periodic. Using the Young inequality and
our previous results, it can be simply shown that the space of semi-Bloch k-periodic
functions is convolution invariant.

Finally, let B be a subset of ℝs and f : ℝ × B → ℝs. Then we say that the function
f (⋅) is uniformly semi-Bloch k-periodic function if and only if for any compact subset
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K of B, we have

∀ε > 0 ∃p ⩾ 0 ∀m ∈ ℤ ∀x ∈ ℝ ∀α ∈ K f (x +mp, α) − e
ikmpf (x, α)ℝs ⩽ ε.

We close the subsection with the observation that we can simply reformulate [69,
Proposition 3] for uniformly semi-Bloch k-periodic functions and provide certain ap-
plications to thematrix differential equations, as has been done in [69, Theorem 4] for
semi-periodic functions.

4.2.5 Weyl (p, c)-almost periodic type functions
The material of the next three subsections is taken from a joint paper [588] with Prof.
M. T. Khalladi, A. Rahmani, M. Pinto and D. Velinov.

We first introduce the notion of an (equi-)Weyl (p, c)-almost periodic function as
follows.

Definition 4.2.69. Let 1 ⩽ p <∞ and f ∈ Lploc(I : X).
(i) We say that the function f (⋅) is equi-Weyl (p, c)-almost periodic, f ∈ e−Wp

ap;c(I : X)
for short, if and only if for each ε > 0we can find two real numbers l > 0 and L > 0
such that any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

sup
x∈I
[
1
l

x+l

∫
x

f (t + τ) − cf (t)

p dt]

1/p

⩽ ε. (4.49)

(ii) We say that the function f (⋅) is Weyl (p, c)-almost periodic, f ∈ Wp
ap;c(I : X) for

short, if and only if for each ε > 0 we can find a real number L > 0 such that any
interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

lim
l→+∞

sup
x∈I
[
1
l

x+l

∫
x

f (t + τ) − cf (t)

p dt]

1/p

⩽ ε.

If c = 1, resp. c = −1, then we also say that f (⋅) is (equi-)Weyl p-almost periodic,
resp. (equi-)Weyl p-almost anti-periodic.

It is clear that any equi-Weyl (p, c)-almost periodic function is Weyl (p, c)-almost
periodic. The proofs of following results are trivial and therefore are omitted.

Proposition 4.2.70. Suppose that f : I → X is (equi-)Weyl (p, c)-almost periodic. Then
‖f ‖ : I → [0,∞) is (equi-)Weyl p-almost periodic.

Proposition 4.2.71. Let 1 ⩽ p < ∞ and f ∈ Lploc(I : X). If the function f (⋅) is (equi-)-
Weyl (p, c)-almost periodic and I = ℝ, then the function ̌f : ℝ → X is (equi-)Weyl
(p, 1/c)-almost periodic.
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We will include the proof of the following proposition for the sake of complete-
ness.

Proposition 4.2.72. Let 1 ⩽ p <∞ and f ∈ Lploc(I : X). If the function f (⋅) is (equi-)Weyl
(p, c)-almost periodic and m ∈ ℕ, then the function f (⋅) is (equi-)Weyl (p, cm)-almost
periodic.

Proof. Wewill give the proof for the class of equi-Weyl (p, c)-almost periodic functions.
Let ε > 0 be fixed; then we can find two real numbers l > 0 and L > 0 such that any
interval I′ ⊆ I of length L contains a point τ ∈ I′ such that (4.49) holds true. Clearly,
integrating the estimate (4.28) (with the number l replaced by the numberm therein)
over the segment [x, x + l], where x ∈ I, we obtain the existence of a finite constant
cp > 0 such that

[
1
l

x+l

∫
x

f (t +mτ) − c
mf (t)

p dt]
1/p

⩽ cp[
m−1
∑
j=0

|c|jp

l

x+l

∫
x

f (t + (m − j)τ) − cf (t + (m − j − 1)τ)

p dt]

1/p

⩽ cp[
m−1
∑
j=0

|c|jp

l

x+l+(m−j−1)τ

∫
x+(m−j−1)τ

f (t + τ) − cf (t)

p dt]

1/p

⩽ cpε[
m−1
∑
j=0
|c|jp]

1/p

.

Therefore, for this number ε > 0, we can take the numbers l > 0 and mL > 0 in the
definition of equi-Weyl (p, c)-almost periodicity. This completes the proof.

The next corollary of Proposition 4.2.72 follows immediately.

Corollary 4.2.73. Let 1 ⩽ p <∞, f ∈ Lploc(I : X), and let (4.29) hold with the numbers p
and q replaced therein with the numbers m and n, respectively.
(i) If m is even and f (⋅) is an (equi-)Weyl (p, c)-almost periodic function, then f (⋅) is

(equi-)Weyl p-almost periodic.
(ii) Ifm is oddand f (⋅) is an (equi-)Weyl (p, c)-almost periodic function, then f (⋅) is (equi-

)Weyl p-almost anti-periodic.

Proposition 4.2.74. Let 1 ⩽ p < ∞, f ∈ Lploc(I : X), and let |c| = 1, arg(c)/π ∉ ℚ. If f (⋅)
is (equi-)Weyl (p, c)-almost periodic and Stepanov p-bounded, then f (⋅) is (equi-)Weyl
(p, c′)-almost periodic for all c′ ∈ S1.

Proof. It suffices to consider case in which the function f (⋅) is not almost everywhere
equal to zero. Let the numbers c′ ∈ S1 and ε > 0 be fixed; then the set {cl : l ∈ ℕ} is
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dense in S1 and therefore there exists an increasing sequence (lk) of positive integers
such that limk→+∞ clk = c′. Let k ∈ ℕ be such that |clk − c′| < ε/(2‖f ‖Sp ), and let ε > 0
be given. Then we can find two real numbers l > 0 and L > 0 such that any interval
I′ ⊆ I of length L contains a point τ ∈ I′ such that (4.49) holds. Then we have

f (x + τ) − c
′f (x) ⩽

f (x + τ) − c
lk f (x) +

c
lk − c′ ⋅

f (x)
,

for any x ∈ I. Then the conclusion follows from Proposition 4.2.72, after integrating
the above estimate over the segment [x, x + l] and using the estimate

1
l

x+l

∫
x

f (t)

p dt ⩽ 1

l
(1 + ⌊l⌋)‖f ‖pSp .

The main structural properties of (equi-)Weyl (p, c)-almost periodic functions are
collected in the following theorem (see also [631, Proposition 2.3.5]).

Theorem 4.2.75. Let f : I → X be (equi-)Weyl (p, c)-almost periodic, and let α ∈ ℂ.
Then we have:
(i) αf (⋅) is (equi-)Weyl (p, c)-almost periodic.
(ii) If X = ℂ and ess infx∈ℝ |f (x)| = m > 0, then 1/f (⋅) is (equi-)Weyl (p, 1/c)-almost

periodic).
(iii) If (gn : I → X)n∈ℕ is a sequence of bounded, continuous, (equi-)Weyl (p, c)-almost

periodic functions and (gn)n∈ℕ converges uniformly to a function g : I → X, then
g(⋅) is (equi-)Weyl (p, c)-almost periodic.

(iv) If a ∈ I and b ∈ I ∖ {0}, then the functions f (⋅ + a) and f (b ⋅) are likewise (equi-)Weyl
(p, c)-almost periodic.

Now we will provide two simple examples.

Example 4.2.76. Set f (t) := χ[0,1/2](t), t ∈ ℝ. Then for each number l > 0 we have

1
l

x+l

∫
x

f (t + τ) − cf (t)

p dt ⩽ 1

2l
(1 + |c|)p, x ∈ ℝ.

This implies that f (⋅) is equi-Weyl (p, c)-almost periodic for each complex number c ∈
ℂ ∖ {0} and for each finite exponent p ⩾ 1.

Example 4.2.77. Set f (t) := χ[0,∞)(t), t ∈ ℝ. Then for each number l > 0 we have

sup
x∈ℝ

1
l

x+l

∫
x

f (t + τ) − cf (t)

p dt ⩾ |1 − c|p,

so that f (⋅) cannot beWeyl (p, c)-almost periodic for c ̸= 1. On the other hand, it is well
known that f (⋅) is Weyl (p, 1)-almost periodic for any finite exponent p ⩾ 1.
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Concerning the invariance of (equi-)Weyl (p, c)-almost periodicity under the ac-
tions of convolution products, we will only note that the statements of [631, Proposi-
tion 2.11.1, Theorem 2.11.4, Proposition 2.11.6] can be simply reformulated in our frame-
work. The interested reader can try to slightly generalize the notions and results of this
subsection for variable exponents p(x).

4.2.6 S-asymptotically (ω, c)-periodic functions
We start this subsection by introducing the following notion.

Definition 4.2.78. Let ω ∈ I. Then we say that a continuous function f : I → X is
S-asymptotically (ω, c)-periodic if and only if lim|t|→∞ ‖f (t +ω)− cf (t)‖ = 0; a continu-
ous function f : I → X is said to be Sc-asymptotically periodic if and only if there exists
ω > 0 such that f (⋅) is S-asymptotically (ω, c)-periodic. By SAPω;c(I : X) andSAPc(I : X)
we denote the spaces consisting of all such functions; if c = −1, then we also say
that the function f (⋅) is S-asymptotically ω-anti-periodic, resp. S-asymptotically anti-
periodic.

This definition extends the well-known definition of an S-asymptotically ω-peri-
odic function, introduced byH. Henríquez et al. [531] for case I = ℝ andM. Kostić [647]
for case I = [0,∞). Furthermore, this notion extends the notion of Y.-K. Chang and Y.
Wei [259], where the authors have analyzed S-asymptotically Bloch type periodic func-
tions and some applications to the semilinear evolution equations in Banach spaces
(c = eikω for some k ∈ ℝ and I = ℝ; see, especially, [259, Subsection 4.2], where the
authors investigate semilinear fractional differential equation of Sobolev type).

Definition 4.2.79. Let p ∈ 𝒫([0, 1]). A p(x)-locally integrable function f (⋅) is said to be
Stepanov p(x)-asymptotically (ω, c)-periodic if and only if

lim
|t|→∞
f (s + t + ω) − cf (s + t)

Lp(s)[0,1] = 0;
a p(x)-locally integrable function f : I → X is called Stepanov pc(x)-asymptotically
periodic if and only if there existsω > 0 such that f (⋅) is Stepanov p(x)-asymptotically
(ω, c)-periodic.

By Sp(x)SAPω;c(I : X) and Sp(x)SAPc(I : X) we denote the spaces consisting of
all such functions; if c = −1, then we also say that the function f (⋅) is Stepanov
p(x)-asymptotically ω-anti-periodic, resp. Stepanov p(x)-asymptotically anti-peri-
odic.

If p(x) ≡ p ∈ [1,∞), then by SpSAPω;c(I : X) and SpSAPc(I : X) we denote the
spaces consisting of all such functions; if c = −1, then we also say that the function
f (⋅) is Stepanov p-asymptotically ω-anti-periodic, resp. Stepanov p-asymptotically
anti-periodic.
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Now we will introduce the class of quasi-asymptotically c-almost periodic func-
tions.

Definition 4.2.80. It is said that a continuous function f : I → X is quasi-asymptotical-
ly c-almost periodic if and only if for each ε > 0 there exists a finite number L(ε) > 0
such that any interval I′ ⊆ I of length L(ε) contains at least one number τ ∈ I′ satisfy-
ing that there exists a finite numberM(ε, τ) > 0 such that

f (t + τ) − cf (t)
 ⩽ ε, provided t ∈ I and |t| ⩾ M(ε, τ).

Denote by Q − AAPc(I : X) the set consisting of all quasi-asymptotically c-almost pe-
riodic functions from I into X; if c = −1, then we also say that the function f (⋅) is
quasi-asymptotically almost anti-periodic.

Next, we introduce the following notion of Stepanov (p, c)-quasi-asymptotical al-
most periodicity.

Definition 4.2.81. Let p ∈ 𝒫([0, 1]). A p(x)-locally integrable function f (⋅) is said to be
Stepanov (p(x), c)-quasi-asymptotically almost periodic if and only if for each ε > 0
there exists a finite numberL(ε) > 0 such that any interval I′ ⊆ I of lengthL(ε) contains
at least one number τ ∈ I′ satisfying that there exists a finite numberM(ε, τ) > 0 such
that

f (s + t + τ) − cf (s + t)
Lp(s)[0,1] ⩽ ε, provided t ∈ I and |t| ⩾ M(ε, τ).

By Sp(x)Q − AAPc(I : X) we denote the set consisting of all Stepanov p(x)-quasi-
asymptotically c-almost periodic functions from I into X; if c = −1, then we also say
that the function f (⋅) is Stepanov p(x)-quasi-asymptotically almost anti-periodic.

If p(x) ≡ p ∈ [1,∞), then we accept the usual terminology and then we denote the
above space by SpQ − AAPc(I : X).

Remark 4.2.82. A p(x)-locally integrable function f (⋅) is Stepanov (p(x), c)-quasi-
asymptotically almost periodic if and only if the function f : I → Lp(x)([0, 1] : X)
is quasi-asymptotically c-almost periodic. Similar statements hold for the class of
Stepanov p(x)-asymptotically (ω, c)-periodic functions. This observation enables one
to see that many results clarified below, like Proposition 4.2.83, Corollary 4.2.84 and
Theorem 4.2.86, continue to hold for the corresponding Stepanov classes of functions
under our consideration.

It is very simple to prove that any asymptotically c-almost periodic function is
quasi-asymptotically c-almost periodic. Furthermore, (4.28) easily implies the follow-
ing.

Proposition 4.2.83. Let ω > 0, f : I → X be an S-asymptotically (ω, c)-periodic
(Sc-asymptotically periodic, quasi-asymptotically c-almost periodic), and let m ∈ ℕ.
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Then f (⋅) is S-asymptotically (mω, cm)-periodic (Scm -asymptotically periodic, quasi-
asymptotically cm-almost periodic).

The next corollary of Proposition 4.2.83 follows immediately.

Corollary 4.2.84. Let f : I → X be a continuous function, and let (4.29) hold with the
numbers p and q replaced therein with the numbers m and n, respectively.
(i) If m is even and f (⋅) is S-asymptotically (ω, c)-periodic (Sc-asymptotically periodic,

quasi-asymptotically c-almost periodic), then the function f (⋅) is S-asymptotically
ω-anti-periodic (S-asymptotically anti-periodic, quasi-asymptotically almost anti-
periodic).

(ii) If m is odd and f (⋅) is S-asymptotically (ω, c)-periodic (Sc-asymptotically periodic,
quasi-asymptotically c-almost periodic), then the function f (⋅) is S-asymptotically
ω-periodic (S-asymptotically periodic, quasi-asymptotically almost periodic).

Therefore, if arg(c)/π ∈ ℚ, then the class of S-asymptotically (ω, c)-periodic
functions (Sc-asymptotically periodic functions, quasi-asymptotically c-almost pe-
riodic functions) is always contained in the class of S-asymptotically ω-periodic
functions (S-asymptotically periodic functions, quasi-asymptotically almost periodic
functions).

The following result holds true.

Corollary 4.2.85. Suppose that |c| = 1 and arg(c)/π ∉ ℚ. If the function f (⋅) is bounded
S-asymptotically (ω, c)-periodic (bounded Sc-asymptotically periodic, bounded quasi-
asymptotically c-almost periodic), then f (⋅) is S-asymptotically ω-periodic (S-asymp-
totically periodic, quasi-asymptotically almost periodic).

Furthermore, a slight modification of the proof of [647, Theorem 2.5] shows that
the following statement holds.

Theorem 4.2.86. Let F(I : X) be any space consisting of continuous functions h : I → X
such that supt∈I ‖h(t + τ) − ch(t)‖ = supt⩾a ‖h(t + τ) − ch(t)‖, a ∈ I. Then the following
hold:
(i) AAAc(I : X) ∩ Q − AAPc(I : X) = AAPc(I : X).
(ii) AAc(ℝ : X) ∩ Q − AAPc(ℝ : X) = APc(ℝ : X).

Wewill include the proof of the following proposition for the sake of completeness
(see also the proof of [647, Proposition 2.7]).

Proposition 4.2.87. Let |c| ⩽ 1. Then SAPω;c(I : X) ⊆ Q − AAPc(I : X).

Proof. Let ε > 0 be given. Then we can take L(ε) = 2ω in definition of the space Q −
AAPc(I : X). Then any interval I′ ⊆ I of length L(ε) contains a number τ = nω for some
n ∈ ℕ. For this n and ε, there exists a finite number M(ε, n) > 0 such that ‖f (t + ω) −
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cf (t)‖ ⩽ ε/nω for |t| ⩾ M(ε, n). Then we have

f (t + nω) − cf (t)
 ⩽

n−1
∑
k=0
|c|n−k−1f (t + (k + 1)ω) − cf (t + kω)



⩽
n−1
∑
k=0

f (t + (k + 1)ω) − cf (t + kω)
 ⩽

n−1
∑
k=0

ε
nω
= ε/ω,

provided |t| ⩾ M(ε, n) + nω. This completes the proof.

The following proposition can be deduced using the argumentation contained in
the proof of [647, Proposition 2.12].

Proposition 4.2.88. We have SpQ − AAPc(I : X) ⊆ Wp
ap;c(I : X).

The structural properties of quasi-asymptotically almost periodic functions clari-
fied in [647, Theorem 2.13] can be slightly generalized in the following manner.

Theorem 4.2.89. Let f : I → X be a quasi-asymptotically c-almost periodic function
(Stepanov (p, c)-quasi-asymptotically almost periodic function). Then we have:
(i) αf (⋅) is quasi-asymptotically c-almost periodic (Stepanov (p, c)-quasi-asymptotical-

ly almost periodic) for any α ∈ ℂ.
(ii) If X = ℂ and infx∈I |f (x)| = m > 0 (ess infx∈I |f (x)| = m > 0), then 1/f (⋅) is quasi-

asymptotically 1/c-almost periodic (Stepanov (p, 1/c)-quasi-asymptotically almost
periodic).

(iii) If (gn : I → X)n∈ℕ is a sequence of quasi-asymptotically c-almost periodic func-
tions and (gn)n∈ℕ converges uniformly to a function g : I → X, then g(⋅) is quasi-
asymptotically c-almost periodic.

(iv) If (gn : I → X)n∈ℕ is a sequence of Stepanov (p, c)-quasi-asymptotically almost
periodic functions and (gn)n∈ℕ converges to a function g : I → X in the space LpS(I :
X), then g(⋅) is Stepanov (p, c)-quasi-asymptotically almost periodic.

(v) The functions f (⋅+ a) and f (b ⋅) are likewise quasi-asymptotically c-almost periodic
(Stepanov (p, c)-quasi-asymptotically almost periodic), where a ∈ I and b ∈ I ∖ {0}.

The space of quasi-asymptotically c-almost periodic functions is not closed under
pointwise addition and multiplication (see also [647, Proposition 2.15, Example 2.16–
Example 2.18]).

Concerning the invariance of quasi-asymptotical c-almost periodicity under the
actions of convolution products, the structural results clarified in [647, Section 3] con-
tinue to hold for (Stepanov p-) bounded forcing terms f (⋅).

Proposition 4.2.90.
(i) Suppose that (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and
∫
∞
0 ‖R(s)‖ ds < ∞. If the function f ∈ Q − AAPc([0,∞) : X) is bounded, then the
function F(⋅), defined through (3.59), with the function F(⋅) replaced therein with the
function f (⋅), belongs to the class Q − AAPc([0,∞) : Y).

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.2 c-Uniformly recurrent functions and c-almost periodic | 267

(ii) Suppose that (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and
∫
∞
0 ‖R(s)‖ ds <∞. If f ∈ Q−AAPc(ℝ : X) is bounded, then the function F(t), defined
through (2.46), belongs to the class Q − AAPc(ℝ : Y).

Proposition 4.2.91.
(i) Suppose that 1/p + 1/q = 1, (R(t))t>0 ⊆ L(X,Y) is a strongly continuous op-

erator family and ∑∞k=0 ‖R(⋅)‖Lq[k,k+1] < ∞. If f ∈ SpQ − AAPc([0,∞) : X) is
Stepanov p-bounded, then the function F(⋅), defined by (3.59), belongs to the class
Q − AAPc([0,∞) : Y).

(ii) Suppose that 1/p + 1/q = 1, (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator
family and∑∞k=0 ‖R(⋅)‖Lq[k,k+1] <∞. If f ∈ S

pQ−AAPc(ℝ : X) is Stepanov p-bounded,
then the function F(⋅), defined by (2.46), belongs to the class Q − AAPc(ℝ : Y).

Before we move to the next subsection, let us note the obvious fact that the vari-
ous notions of Stepanov quasi-asymptotically almost periodic functions in Lebesgue
spaces with variable exponent, among many other classes of generalized almost pe-
riodic functions, can be slightly generalized using the difference f (⋅ + τ) − cf (⋅). Albeit
that a fairly complete analysis is out of the scope of this book, we will consider some
classes of multi-dimensional c-almost periodic type functions in Part II.

4.2.7 Composition principles for quasi-asymptotically c-almost periodic functions

The main aim of this subsection is to introduce the class of quasi-asymptotically
c-almost periodic functions depending on two parameters, its Stepanov general-
ization and to formulate several composition principles for quasi-asymptotically
c-almost periodic functions. First of all, we will introduce the following defini-
tion.

Definition 4.2.92. Suppose that F : I × Y → X is a continuous function and ℱ is a
non-empty collection of subsets of Y . Then we say that F(⋅, ⋅) is quasi-asymptotically
c-almost periodic, uniformly on ℱ if and only if for each ε > 0 there exists a finite
number L(ε) > 0 such that any interval I′ ⊆ I of length L(ε) contains at least one
number τ ∈ I′ satisfying the requirement that there exists a finite number holds with
a numberM(ε, τ) > 0 such that for each subset B ∈ ℱ we have

F(t + τ, x) − cF(t, x)
Y ⩽ ε, provided t ∈ I , x ∈ B and |t| ⩾ M(ε, τ).

Denote byQ−AAPc;ℱ (I ×Y : X) the set consisting of all quasi-asymptotically c-almost
periodic functions F : I × Y → X on ℱ .

Suppose that F : I × Y → X is a continuous function and there exists a finite
constant L > 0 such that (2.51) holds. Define ℱ(t) := F(t, f (t)), t ∈ I. Using (4.35)
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and the proofs of [364, Theorem 3.30, Theorem 3.31], we may deduce the following
composition principles.

Theorem 4.2.93. Suppose that F ∈ Q − AAPc(I × Y : X) and f ∈ Q − AAPc(I : Y). If
there exists a finite number L > 0 such that (2.51) holds and for each ε > 0 there exists
a finite number L(ε) > 0 such that any interval I′ ⊆ I of length L(ε) contains at least one
number τ ∈ I′ satisfying

F(t + τ, cf (t)) − cF(t, f (t))
 ⩽ ε, t ∈ I , (4.50)

then the function t → F(t, f (t)), t ∈ I belongs to the class Q − AAPc(I : X).

Theorem 4.2.94. Suppose that F ∈ Q − AAPc(I × Y : X) and f ∈ Q − AAPc(I : Y). If the
function x → F(t, x), t ∈ I is uniformly continuous on R(f ) uniformly for t ∈ I and for
each ε > 0 there exists a finite number L(ε) > 0 such that any interval I′ ⊆ I of length
L(ε) contains at least one number τ ∈ I′ satisfying that (4.50) holds, then the function
t → F(t, f (t)), t ∈ I belongs to the class Q − AAPc(I : X).

The notion of a Stepanov (p, c)-quasi-asymptotically almost periodic function de-
pending on two parameters can be also introduced, and [647, Theorem 2.23, Theorem
2.24] can be slightly generalized in this framework.

In [647, Section 4], we have analyzed the qualitative solutions of the abstract non-
autonomous differential equations (3.63)–(3.64) and their semilinear analogues. We
close the subsection with the observation that the structural results established in
[647, Theorem 4.1, Theorem 4.3] can be simply reformulated in our context; for exam-
ple, in the formulation of [647, Theorem 4.1], we can assume that

∞

∑
k=0

Γ(t + τ, t + τ − ⋅) − cΓ(t, t − ⋅)
Lq[k,k+1] ⩽ ε, provided t ⩾ M(ε, τ),

in place of condition [647, (4.1)]. Then the unique mild solution u(⋅) of the abstract
Cauchy problem (3.64) will belong to the class Q − AAPc([0,∞) : X) + ℱ ; see [647]
for the notation. The structural results established for the abstract non-autonomous
semilinear differential equations [647, Theorem 4.6, Theorem 4.7] also can be slightly
generalized in our framework.

4.2.8 c-Almost periodic type distributions

Let us recall that the classes of scalar-valued bounded distributions and scalar-valued
almost periodic distributions have been introduced by L. Schwartz [913] and later ex-
tended to the vector-valued case by I. Cioranescu in [300]. On the other hand, the class
of scalar-valued asymptotically almost periodic distributions has been introduced by
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I. Cioranescu in [299], while the notion of a vector-valued asymptotically almost pe-
riodic distribution has been analyzed by D.N. Cheban [269] following a different ap-
proach (cf. also I. K. Dontvi [392] and A. Halanay, D. Wexler [506]). For more details
about the subject, we refer the reader to [124, 207–210, 665, 958, 959] as well as the
recent research studies [211] by C. Bouzar, F. Z. Tchouar, [646] by M. Kostić and [663]
by M. Kostić, S. Pilipović, D. Velinov.

In this subsection, which presents some results from our recent joint research
study [436] with V. Fedorov, S. Pilipović and D. Velinov, we introduce and investi-
gate various classes of vector-valued c-almost periodic type distributions and vector-
valued asymptotically c-almost periodic type distributions. In order to be consistent
with the notion employed in [646], we will say that f : ℝ → X is half-asymptotically
c-almost periodic (half-asymptotically c-uniformly recurrent, half-asymptotically
semi-c-periodic) if and only if there are a c-almost periodic function (c-uniformly
recurrent function, semi-c-periodic function) g : ℝ→ X and a function h ∈ C0([0,∞) :
X) such that f (t) = g(t) + h(t), t ⩾ 0.

If c = 1, then we also say that f (⋅) is ((half-)asymptotically) uniformly recurrent
(((half-)asymptotically) semi-periodic, ((half-)asymptotically) almost periodic); if c =
−1, then we also say that f (⋅) is ((half-)asymptotically) almost anti-periodic (((half-)-
asymptotically) uniformly anti-recurrent, ((half-)asymptotically) semi-anti-periodic).
Note, if f (⋅) is c-almost periodic, then f (⋅) is almost periodic and therefore bounded
(see [586]).

We will use the following lemma, which can be deduced with the help of [1078,
Theorem 2.6] and [364, Theorem 3.36, Theorem 3.47; pp. 97-98].

Lemma 4.2.95. Suppose that the sequence (fn : ℝ → X) of asymptotically almost pe-
riodic functions (half-asymptotically almost periodic functions) converges uniformly to
a function f : ℝ → X. Then f (⋅) is asymptotically almost periodic (half-asymptotically
almost periodic).

For the sake of better readability, wewill recall the notion of Schwartz distribution
spaces aswell as thebasic definitions and results about vector-valued (asymptotically)
almost periodic distributions (see also Subsection 4.1.5). Denote by 𝒟(X) = 𝒟(ℝ : X)
the Schwartz space of all infinitely differentiable functions f : ℝ → ℂ with compact
support in X. By 𝒮(X) = 𝒮(ℝ : X)we denote the Schwartz space of all rapidly decreas-
ing functions with values in X, and by ℰ(X) = ℰ(ℝ : X) we denote the space of all
infinitely differentiable functions with values in X;𝒟 ≡ 𝒟(ℂ), 𝒮 ≡ 𝒮(ℂ) and ℰ ≡ ℰ(ℂ).
The spaces of all linear continuous mappings from 𝒟, 𝒮 and ℰ into X are denoted by
𝒟′(X), 𝒮′(X) and ℰ ′(X), respectively [913];𝒟0 stands for the subspace of 𝒟 consisting
of all functions with the support contained in [0,∞). If T ∈ 𝒟′(X) and φ ∈ 𝒟, then we
define T ∗φ ∈ ℰ(X) by (T ∗φ)(x) := ⟨T ,φ(x− ⋅)⟩. If f : ℝ→ X, then we define ̌f : ℝ→ X
by ̌f (t) := f (−t), t ∈ ℝ; for any T ∈ 𝒟′(X), we define Ť ∈ 𝒟′(X) by ⟨Ť ,φ⟩ := ⟨T , φ̌⟩,
φ ∈ 𝒟.
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Let 1 ⩽ p ⩽∞. By𝒟Lp (ℝ : X)we denote the vector space consisting of all infinitely
differentiable functions f : ℝ→ X such that f (j) ∈ Lp(ℝ : X) for all j ∈ ℕ0. The Fréchet
topology on𝒟Lp (ℝ : X) is induced by the following system of norms:

‖f ‖k :=
k
∑
j=0

f
(j)Lp(ℝ), k ∈ ℕ.

If X = ℂ, then the above space is simply denoted by 𝒟Lp . The space of all linear con-
tinuous mappings f : 𝒟L1 → X is denoted by 𝒟′L1 (X). Endowed with the strong topol-
ogy, 𝒟′L1 (X) becomes a complete locally convex space; 𝒟′L1 (X) is a well-known space
of bounded X-valued distributions. In the sequel, we will use the fact that a vector-
valued distribution T ∈ 𝒟′(X) is bounded if and only if the function T ∗ φ is bounded
for all φ ∈ 𝒟; see, e. g., [300, Theorem 1.1].

Let T ∈ 𝒟′L1 (X). Then the following assertions are equivalent [300]:
(i) T ∗ φ ∈ AP(ℝ : X), φ ∈ 𝒟.
(ii) There exist an integer k ∈ ℕ and almost periodic functions fj(⋅) : ℝ→ X (0 ⩽ j ⩽ k)

such that T = ∑kj=0 f
(j)
j in the distributional sense.

We say that a bounded distribution T ∈ 𝒟′L1 (X) is almost periodic if and only if T satis-
fies any of the above two equivalent conditions; if this is the case, then the restriction
of T to the space 𝒮 is an X-valued tempered distribution [631]. By B′AP(X) we denote
the space consisting of all almost periodic distributions.

Define the space of bounded distributions tending to zero at plus infinity as fol-
lows:

B′+,0(X) := {T ∈ 𝒟
′
L1 (X); limh→+∞

⟨Th,φ⟩ = 0, φ ∈ 𝒟},

where ⟨Th,φ⟩ := ⟨T ,φ(⋅ − h)⟩, T ∈ 𝒟′(X), h > 0. A bounded distribution T ∈ 𝒟′L1 (X) is
said to be asymptotically almost periodic if and only if there exist an almost periodic
distribution Tap ∈ B′AP(X) and a bounded distribution tending to zero at plus infinity
Q ∈ B′+,0(X) such that ⟨T ,φ⟩ = ⟨Tap,φ⟩ + ⟨Q,φ⟩, φ ∈ 𝒟0. By B′AAP(X) we denote the
vector space consisting of all asymptotically almost periodic distributions (see, e. g.,
[646, Definition 1]).

Let T ∈ 𝒟′L1 (X). Then the following assertions are equivalent (see, e. g., [646, The-
orem 1]):
(i) T ∈ B′AAP(X).
(ii) The function T ∗ φ is half-asymptotically almost periodic for all φ ∈ 𝒟0.
(iii) The function T ∗ φ is half-asymptotically almost periodic for all φ ∈ 𝒟.
(iv) There exist an integer k ∈ ℕ and half-asymptotically almost periodic functions

fj(⋅) : ℝ→ X (0 ⩽ j ⩽ k) such that T = ∑kj=0 f
(j)
j on [0,∞), i. e.,

⟨T ,φ⟩ =
k
∑
j=0
(−1)j
∞

∫
0

φ(j)(t)fj(t) dt, φ ∈ 𝒟0. (4.51)
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(v) There exists a sequence (Tn) of half-asymptotically almost periodic functions from
ℰ(X) such that limn→∞ Tn = T in𝒟′L1 (X).

For the first time in the existing literature, we consider here the space

B′0(X) := {T ∈ 𝒟
′
L1 (X); lim

|h|→+∞
⟨Th,φ⟩ = 0, φ ∈ 𝒟},

which is slightly different from the space B′+,0(X) used above. For example, the regular
distribution determined by the locally integrable function f : ℝ→ ℝ, given by f (t) := 1
for t ⩽ 0 and f (t) := 0 for t > 0, belongs to the space B′+,0(X) but not to the space B

′
0(X).

Since for every fixed test function φ ∈ 𝒟 and for every real number h ∈ ℝ we have

⟨Ť ,φ(⋅ − h)⟩ = ⟨T ,φ(− ⋅ −h)⟩ = ⟨T , φ̌(⋅ − h)⟩,

it follows that T ∈ B′0(X) if and only if T ∈ B′+,0(X) and Ť ∈ B′+,0(X). Therefore, [299,
Proposition 1] immediately implies the following result (see also [211, Proposition 10]).

Proposition 4.2.96. Suppose that T ∈ 𝒟′L1 (X). Then the following statements are equiv-
alent:
(i) T ∈ B′0(X).
(ii) The restrictions of functions T ∗φ and Ť ∗φ to the non-negative real axis belong to

the space C0([0,∞) : X) for all φ ∈ 𝒟.
(iii) There exist an integer k ∈ ℕ and functions fj ∈ C0(ℝ : X) (0 ⩽ j ⩽ k) such that

T = ∑kj=0 f
(j)
j .

(iv) There exists a sequence (Tn) in ℰ ′(X) which converges to T for topology of𝒟′L1 (X).

We continue by introducing the following notion.

Definition 4.2.97. Let T ∈ 𝒟′(X) and c ∈ ℂ ∖ {0}.
(i) T is said to be a c-almost periodic (c-uniformly recurrent, semi-c-periodic) distri-

bution, (APc) ((URc), (SAPc)) distribution in short, if and only if T∗φ ∈ APc(ℝ : X)
(T ∗ φ ∈ URc(ℝ : X), T ∗ φ ∈ SAPc(ℝ : X)) for all φ ∈ 𝒟. By B′APc (X) (B

′
URc (X),

B′SAPc (X)) we denote the space of all c-almost periodic (c-uniformly recurrent,
semi-c-periodic) distributions;

(ii) T is said to be a (half-)asymptotically c-almost periodic ((half-)asymptotically
c-uniformly recurrent, (half-)asymptotically semi-c-periodic) distribution if and
only if the function T ∗φ is (half-)asymptotically c-almost periodic ((half-)asymp-
totically c-uniformly recurrent, (half-)asymptotically semi-c-periodic) for all
φ ∈ 𝒟;

(iii) T is said to be a (half-)asymptotically (𝒟0, c)-almost periodic ((half-)asymptoti-
cally (𝒟0, c)-uniformly recurrent, (half-)asymptotically semi-(𝒟0, c)-periodic) dis-
tribution if and only if the function T∗φ is (half-)asymptotically c-almost periodic
((half-)asymptotically c-uniformly recurrent, (half-)asymptotically semi-c-peri-
odic) for all φ ∈ 𝒟0.
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Remark 4.2.98. We have already introduced the notion of a semi-Bloch k-periodic
function (k ∈ ℝ). The class of semi-Bloch k-periodic distributions can be also intro-
duced but we will skip all related details concerning this notion for simplicity.

All distribution spaces introduced in Definition 4.2.97 are closed under differ-
entiation. It is also clear that, if T ∈ 𝒟′(X) belongs to any of the spaces intro-
duced above, then the distribution αT belongs to the same space, where α ∈ ℂ and
⟨αT ,φ⟩ := ⟨T , αφ⟩, φ ∈ 𝒟; but, if c ̸= 1, then the spaces of c-almost periodic functions
(c-uniformly recurrent functions, semi-c-periodic functions) are not closed under
pointwise addition, which continues to hold for corresponding distribution spaces.
Furthermore, since every c-almost periodic (semi-c-periodic) function is almost peri-
odic and therefore bounded continuous, an application of [300, Theorem 1.1] shows
that any c-almost periodic (semi-c-periodic) distribution is a bounded distribution.
This is no longer true for the c-uniformly recurrent distributions because there exists
an unbounded uniformly recurrent function [511] and therefore the regular distribu-
tion determined by this function is a uniformly recurrent distribution which is not a
bounded distribution (c = 1).

We continue by stating the following.

Proposition 4.2.99. Suppose that T is a c-uniformly recurrent distribution and c ∈
ℂ\{0} satisfies |c| ̸= 1. Then T ≡ 0.

Proof. By definition, we have T ∗ φ ∈ URc(ℝ : X) for all φ ∈ 𝒟. Since |c| ̸= 1, Proposi-
tion 4.2.11 shows that T ∗ φ ≡ 0 for all φ ∈ 𝒟. This immediately implies T = 0.

A distribution T ∈ 𝒟′(X) is called c-periodic if and only if T ∗ φ ∈ Pc(ℝ : X) for all
φ ∈ 𝒟. Similarly, we have the following.

Proposition 4.2.100. Suppose that T is a semi-c-periodic distribution and c ∈ ℂ\{0}
satisfies |c| ̸= 1. Then T is c-periodic.

Keeping in mind Proposition 4.2.99 and Proposition 4.2.100, it seems reasonable
to impose the following condition.

Blank Hypothesis. Unless stated otherwise, we will always assume in the sequel of
this subsection that c ∈ ℂ and |c| = 1.

We continue by stating the following proposition.

Proposition 4.2.101. The following statements are equivalent:
(i) T ∈ B′APc (X) (T ∈ B

′
URc (X), T ∈ B

′
SAPc (X));

(ii) Ť ∈ 𝒟′AP1/c (X) (Ť ∈ 𝒟′UR1/c (X), Ť ∈ 𝒟′SAP1/c (X)).
Proof. Clearly, it suffices to show that (i) implies (ii). We will do that only for c-almost
periodicity. Let φ ∈ 𝒟 be fixed; we need to show that Ť ∗ φ ∈ AP1/c(ℝ : X). Keeping in
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mind Proposition 4.1.15, it suffices to show that

Ť ∗ φ = ̌T ∗ φ̌, φ ∈ 𝒟. (4.52)

To prove this equality, fix a real number t ∈ ℝ. Then (4.52) follows from the next simple
computations:

(Ť ∗ φ)(t) = ⟨Ť ,φ(t − ⋅)⟩ = ⟨T , ̌φ(t − ⋅)⟩ = ⟨T ,φ(t + ⋅)⟩,
̌T ∗ φ̌(t) = (T ∗ φ̌)(−t) = ⟨T , φ̌(−t − ⋅)⟩ = ⟨T ,φ(t − ⋅)⟩ = ⟨T ,φ(t + ⋅)⟩.

We continue by observing that Proposition 4.2.70 and Proposition 4.2.14 directly
imply the following: if T ∈ B′APc (X) (T ∈ B

′
URc (X), T ∈ B

′
SAPc (X)), then ‖T ∗ φ‖ : I →

[0,∞) is almost periodic (uniformly recurrent, semi-periodic) for all φ ∈ 𝒟 as well as
T ∈ B′APcl (X) (T ∈ B

′
URcl
(X), T ∈ B′SAPcl (X)) for any positive integer l ∈ ℕ. Furthermore,

Corollary 4.2.73, Proposition 4.2.74 and Proposition 4.2.17 directly imply the following:
(i) Suppose that

p ∈ ℤ\{0}, q ∈ ℕ, (p, q) = 1 and arg(c) = p
q
π

and T ∈ B′APc (X) (T ∈ B
′
URc (X), T ∈ B

′
SAPc (X)).

(a) If p is even, then T ∈ B′AP(X) (T ∈ B
′
UR(X), T ∈ B

′
SAP(X)).

(b) If p is odd, thenT is almost anti-periodic (uniformly anti-recurrent, semi-anti-
periodic) distribution.

(ii) Suppose that arg(c)/π ∉ ℚ and T ∈ B′APc (X). Then T ∈ B′APc′ (X) for all c′ ∈ S1 ≡
{z ∈ ℂ : |z| = 1}.

(iii) Suppose that arg(c)/π ∈ ℚ and T ∈ B′SAPc (X). Then T ∈ B′APc′ (X) for all c′ ∈ {cl :
l ∈ ℕ}.

(iv) Suppose that arg(c)/π ∉ ℚ and T ∈ B′SAPc (X). Then T ∈ B
′
APc′ (X) for all c′ ∈ S1.

The following statements known for functions can also be simply deduced for distri-
butions:
(i) Suppose that c = 1. Then the set consisting of all c-almost periodic distributions

is a vector space together with the usual operations, while the set consisting of
c-uniformly recurrent distributions and the set consisting of semi-c-periodic dis-
tributions are not vector spaces together with the usual operations.

(ii) Suppose that c ̸= 1. Then the set consisting of all c-almost periodic (c-uniformly
recurrent, semi-c-periodic) distributions is not a vector space together with the
usual operations.

It is worthwhile to mention that all established statements concerning the pointwise
products of c-almost periodic type functions with the scalar-valued functions can be
reformulated for the pointwise products of c-almost periodic type distributions with
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the scalar-valued infinitely differentiable functions; concerning Stepanov classes of
c-almost periodic type functions, it should be noticed that [646, Proposition 1] contin-
ues to hold in our new framework. Details can be left to the interested reader.

We proceed by stating the following simple result.

Proposition 4.2.102. Let h ∈ ℝ, b ∈ ℝ ∖ {0} and T ∈ B′APc (X) (T ∈ B
′
URc (X), T ∈

B′SAPc (X)). Then:
(i) Any translation Th of T ∈ B′APc (X) (T ∈ B

′
URc (X), T ∈ B

′
SAPc (X)) belongs to B

′
APc (X)

(B′URc (X), B
′
SAPc (X)).

(ii) Define the distribution Tb by ⟨Tb,φ⟩ := ⟨T ,φ(b⋅)⟩, φ ∈ 𝒟. Then Tb ∈ B′APc (X) (Tb ∈
B′URc (X), Tb ∈ B

′
SAPc (X)).

Proof. Wewill prove thepropositiononly for c-almost periodicity. To show (i), suppose
that T ∈ B′APc (X) andφ ∈ 𝒟. Then we know that T ∗φ ∈ APc(I : X). Due to the first part
of [586, Theorem 2.13(iv)], the above implies that the function x → ⟨T ,φ(x +h− ⋅)⟩, x ∈
ℝ is c-almost periodic (c-uniformly recurrent, semi-c-periodic). Now the conclusion
follows from the calculation

(Th ∗ φ)(x) = ⟨Th,φ(x − ⋅)⟩ = ⟨Th,φ(x − ⋅)⟩ = ⟨T ,φ(x + h − ⋅)⟩, x ∈ ℝ.

To show (ii), define the test function φb(⋅) by φb(t) := φ(bt), t ∈ ℝ. Then Gb :=
T ∗ φb ∈ APc(ℝ : X) and the required conclusion follows from the second part of
Theorem 4.2.75(iv) and the calculation

(Tb ∗ φ)(t) = ⟨Tb,φ(t − ⋅)⟩ = ⟨T ,φ(t − b⋅)⟩

= ⟨T ,φ(b((t/b) − ⋅))⟩ = ⟨T ,φb((t/b) − ⋅)⟩ = Gb(t/b), t ∈ ℝ.

The following result is a distributional analogue of Proposition 4.2.23.

Proposition 4.2.103. Let T ∈ B′URc (X) (T ∈ B
′
SAPc (X)) and T ̸= 0. Then T ∉ B

′
+,0(X).

Proof. SinceT ̸= 0, there existsφ ∈ 𝒟 such thatT∗φ̌ ̸= 0. Clearly,T∗φ̌ is a c-uniformly
recurrent function (semi-c-periodic function), so that [586, Proposition 2.18] implies
T ∗ φ̌ ∉ C0(ℝ : X). Assume to the contrary that T ∈ B′+,0(X). Then we have

(T ∗ φ̌)(t) = ⟨T ,φ(⋅ − t)⟩→ 0 as t → +∞,

which is a contradiction.

The following result will be important in our further analyses.

Theorem 4.2.104. Suppose that there exist an integer k ∈ ℕ and c-almost periodic
(c-uniformly recurrent, semi-c-periodic) functions fj : ℝ → X (0 ⩽ j ⩽ k) such that
the function

t → f (t) ≡ (f0(t), . . . , fk(t)), t ∈ ℝ (4.53)
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is c-almost periodic (c-uniformly recurrent, semi-c-periodic). Define T := ∑kj=0 f
(j)
j . Then

T ∈ B′APc (X) (T ∈ B
′
URc (X), T ∈ B

′
SAPc (X)).

Proof. We will prove the theorem only for c-almost periodicity because the proofs for
c-uniform recurrence and semi-c-periodicity are quite analogous. It is clear that T ∈
𝒟′(X), and that (4.51) shows that for each φ ∈ 𝒟 and t ∈ ℝ we have

(T ∗ φ)(t) = ⟨T ,φ(t − ⋅)⟩ =
k
∑
j=0

+∞

∫
−∞

φ(j)(t − v)fj(v) dv

=
k
∑
j=0

+∞

∫
−∞

φ(j)(v)fj(t − v) dv. (4.54)

Let ε > 0 be given. Then the set θc(f , ε) is relatively dense in [0,∞); let τ ∈ θc(f , ε) be
arbitrary. Then the above computation shows that

(T ∗ φ)(t + τ) − c(T ∗ φ)(t)
 ⩽

k
∑
j=0

+∞

∫
−∞

φ
(j)(v) ⋅
fj(t + τ − v) − cfj(t − v)

 dv

⩽ ε
k
∑
j=0

+∞

∫
−∞

φ
(j)(v) dv, φ ∈ 𝒟, t ∈ ℝ,

which simply implies the required statement.

The following counterexample demonstrates the fact that Theorem 4.2.104 does
not generally hold if the function f (⋅), defined by (4.53), is not c-almost periodic
(c-uniformly recurrent, semi-c-periodic); we will provide a direct non-trivial calcula-
tion showing this.

Example 4.2.105. Suppose that c = −1, k = 1, f0(t) = cos t and f1(t) = cos(2t) for all
t ∈ ℝ. Then the function f (⋅), defined by (4.53), is not almost anti-periodic (see [666,
Example 2.2(ii)]) and we have

⟨T ,φ⟩ =
+∞

∫
−∞

φ(v) cos v dv −
+∞

∫
−∞

φ′(v) cos(2v) dv, φ ∈ 𝒟.

Due to (4.54), we have

(T ∗ φ)(t + τ) + (T ∗ φ)(t)

=
+∞

∫
−∞

φ(v)[cos(t + τ − v) + cos(t − v)] dv

+
+∞

∫
−∞

φ′(v)[cos(2(t + τ − v)) + cos(2(t − v))] dv, φ ∈ 𝒟, t ∈ ℝ.
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Applying the partial integration, the above implies

(T ∗ φ)(t + τ) + (T ∗ φ)(t)

=
+∞

∫
−∞

φ(v)[cos(t + τ − v) + cos(t − v) − 2 sin(2(t + τ − v)) − 2 sin(2(t − v))] dv,

(4.55)

for any φ ∈ 𝒟 and t ∈ ℝ. Suppose that φ ∈ 𝒟 is non-negative and its support belongs
to the interval [1/6, 1/4] ⊂ [0, 1/4] and that

0 < ε <
1/4

∫
0

φ(v)min((sin v)/2, cos v, 2 sin(2v)) dv (4.56)

and

0 < ε < 2
3

1/4

∫
0

φ(v) dv ⋅ sin(π
4
−
1
8
), 0 < ε < 2 sin 1

12
⋅ cos 1

4

1/4

∫
0

φ(v) dv. (4.57)

We will prove that the set θ−1(T ∗ φ, ε) is empty in the following, a rather technical,
way. Suppose to the contrary that τ ∈ θ−1(T ∗ φ, ε). Then (4.55) implies



1/4

∫
0

φ(v)[cos(t + τ − v) + cos(t − v) − 2 sin(2(t + τ − v)) − 2 sin(2(t − v))] dv

< ε (4.58)

for all t ∈ ℝ. Plugging t = −τ, t = π − τ and t = (π/2) − τ in (4.58), we get



1/4

∫
0

φ(v)[cos(v) + cos(τ + v) + 2 sin(2v) + 2 sin(2(τ + v))] dv

< ε, (4.59)



1/4

∫
0

φ(v)[− cos(v) − cos(τ + v) + 2 sin(2v) + 2 sin(2(τ + v))] dv

< ε (4.60)

and



1/4

∫
0

φ(v)[sin(v) + sin(τ + v) − 2 sin(2v) − 2 sin(2(τ + v))] dv

< ε, (4.61)

respectively. Adding and subtracting of (4.59) and (4.60), we get



1/4

∫
0

φ(v)[cos(v) + cos(τ + v)] dv

< ε (4.62)
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and



1/4

∫
0

φ(v)[sin(2v) + sin(2(τ + v))] dv

< ε/2, (4.63)

respectively. Inserting (4.63) in (4.61), we get



1/4

∫
0

φ(v)[sin(v) + sin(τ + v)] dv

< 2ε. (4.64)

Furthermore, there exist k ∈ ℕ ∪ {−1,0} and a ∈ [0, 2π) such that τ = (2k + 1)π + a.
Then (4.62)–(4.64) give



1/4

∫
0

φ(v)[cos(v) − cos(v + a)] dv

< ε, (4.65)



1/4

∫
0

φ(v)[sin(2v) + sin(2a + 2v)] dv

< ε/2, (4.66)

and



1/4

∫
0

φ(v)[sin(v) − sin(v + a)] dv

< 2ε. (4.67)

If a ∈ [0, (π/2) − (1/4)], then 2a + 2v ∈ [0,π/2] for all v ∈ [0, 1/4] and the contradiction
is obvious due to our choice of the value of ε in (4.56) and the estimate (4.66); if a ∈
[π, 2π−(1/4)], thena+v ∈ [π, 2π] for all v ∈ [0, 1/4] and the contradiction is obviousdue
to our choice of number ε in (4.56) and the estimate (4.67). Furthermore, if a ∈ [π/2,π],
then a + v ∈ [π/2, 3π/2] for all v ∈ [0, 1/4] and the contradiction is obvious due to our
choice of the value of ε in (4.56) and the estimate (4.65). If a ∈ [(π/2)− (1/4),π/2], then
the estimates (4.65) and (4.67) imply



1/4

∫
0

φ(v) sin(v + (a/2)) ⋅ sin(a/2) dv

< ε/2

and



1/4

∫
0

φ(v) cos(v + (a/2)) ⋅ sin(a/2) dv

< ε,

respectively. By adding, we get



1/4

∫
0

φ(v)[sin(v + (a/2)) + cos(v + (a/2))] dv

<
3
2
ε ⋅ [sin(a/2)]−1 ⩽ 3

2 sin( π4 −
1
8 )
ε,
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which is a contradiction due to our choice of ε in (4.57) and the fact that a+v ⩽ (π+1)/4
for all v ∈ [0, 1/4] and therefore sin(v + (a/2)) + cos(v + (a/2)) ⩾ 1 for all v ∈ [0, 1/4].
Finally, if a ∈ [2π − (1/4), 2π), then

1/4

∫
0

φ(v)[sin(2v) + sin(2a + 2v)] dv

= 2
1/4

∫
0

φ(v) sin(2v + a) ⋅ cos(a) dv = 2
1/4

∫
1/6

φ(v) sin(2v + a) ⋅ cos(a) dv

⩾ 2 sin 1
12
⋅ cos 1

4

1/4

∫
0

φ(v) dv,

which contradicts the second inequality in (4.57).

We continue by stating the following structural characterization of the space
B′APc (X) (B

′
URc (X), B

′
SAPc (X)).

Theorem 4.2.106. Let T ∈ B′APc (X) (T ∈ B
′
URc (X), T ∈ B

′
SAPc (X)) and let T be a bounded

distribution. Then there exist an integer p ∈ ℕ and a c-almost periodic (bounded
c-uniformly recurrent, semi-c-periodic) function F : ℝ→ X such that

T =
p
∑
j=0
(−1)j(p

j
)F(2j) (4.68)

in the distributional sense.

Proof. The proof essentially follows from the argumentation contained in the proof
of [210, Theorem 1]; we will only outline the main details for c-almost periodicity be-
cause the proofs for c-uniform recurrence and semi-c-periodicity are quite analogous.
Let us consider a fundamental solution G of the differential operator (1 − d2/dx2)p for
a certain sufficiently large natural number p ∈ ℕ depending on T. By the proof of the
above-mentioned theorem, we see that the convolution F := T ∗G exists as a continu-
ous function and (4.68) holds in the distributional sense; furthermore, there exists a
sequence (φk) in 𝒟 such that limk→+∞(T ∗ φk)(t) = F(t), uniformly in t ∈ ℝ. Since for
each integer k ∈ ℕ the function (T ∗ φk)(⋅) is c-almost periodic (apply also [300, The-
orem 1.1] for c-uniform recurrence), an application of Theorem 4.2.75(iii) shows that
F(⋅) is c-almost periodic, as well. This completes the proof.

Now we are able to formulate and prove the following result.

Theorem 4.2.107. Suppose that T ∈ 𝒟′L1 (X). Then the following statements are equiva-
lent:
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(i) We have T ∈ B′APc (X) (T ∈ B
′
URc (X), T ∈ B

′
SAPc (X)).

(ii) There exist an integer p ∈ ℕ and a c-almost periodic (bounded c-uniformly recur-
rent, semi-c-periodic) function F : ℝ→ X such that (4.68) holds in the distributional
sense.

(iii) There exist an integer k ∈ ℕ and c-almost periodic (bounded c-uniformly recurrent,
semi-c-periodic) functions fj : ℝ→ X (0 ⩽ j ⩽ k) such that the function f (⋅), defined
through (4.53), is c-almost periodic (c-uniformly recurrent, semi-c-periodic) and T =
∑kj=0 f

(j)
j .

(iv) There exists a sequence (Tn) of c-almost periodic functions (bounded c-uniformly
recurrent functions, semi-c-periodic functions) from ℰ(X) such that limn→∞ Tn = T
in𝒟′L1 (X).

Proof. The implication (i)⇒ (ii) is proved in Theorem 4.2.106, while the implication
(ii) ⇒ (iii) is trivial. The implication (iii) ⇒ (i) follows from Theorem 4.2.104; there-
fore, we have proved the equivalence of statements (i), (ii) and (iii). Their equivalence
with (iv) essentially follows from the argumentation contained in the proof of [210,
Proposition 7]; see also the proof of Theorem 4.2.112 below.

As a direct consequence of Theorem 4.2.107 (see also [646, Remark 1(ii)]), we have
the following.

Corollary 4.2.108. Let (Tn) be a sequence in B′APc (X) (B
′
URc (X) ∩𝒟

′
L1 (X), B

′
SAPc (X)), and

let limn→∞ Tn = T in𝒟′L1 (X). Then T ∈ B
′
APc (X) (T ∈ B

′
URc (X) ∩𝒟

′
L1 (X), T ∈ B

′
SAPc (X)).

For the sequel, we need the following definition.

Definition 4.2.109. Suppose that T ∈ 𝒟′(X).
(i) We say that T is an asymptotically c-almost periodic distribution of type 1 (asymp-

totically c-uniformly recurrent distribution of type 1, asymptotically semi-c-peri-
odic distributionof type 1) if andonly if there exist a c-almost periodic (c-uniformly
recurrent, semi-c-periodic) distribution Tapc ∈ B′APc (X), (Turc ∈ B

′
URc (X), Tsapc ∈

B′SAPc (X)) and a distributionQ ∈ B
′
0(X) such that ⟨T ,φ⟩ = ⟨Tapc,φ⟩+ ⟨Q,φ⟩,φ ∈ 𝒟,

(⟨T ,φ⟩ = ⟨Turc,φ⟩ + ⟨Q,φ⟩, φ ∈ 𝒟, ⟨T ,φ⟩ = ⟨Tsapc,φ⟩ + ⟨Q,φ⟩, φ ∈ 𝒟).
(ii) We say that T is an asymptotically (𝒟0, c)-almost periodic distribution of type 1

(asymptotically (𝒟0, c)-uniformly recurrent distribution of type 1, asymptotically
semi-(𝒟0, c)-periodic distribution of type 1) if and only if there exist a c-almost
periodic (c-uniformly recurrent, semi-c-periodic) distribution Tapc ∈ B′APc (X),
(Turc ∈ B′URc (X), Tsapc ∈ B′SAPc (X)) and a distribution Q ∈ B′0(X) such that
⟨T ,φ⟩ = ⟨Tapc,φ⟩ + ⟨Q,φ⟩, φ ∈ 𝒟0, (⟨T ,φ⟩ = ⟨Turc,φ⟩ + ⟨Q,φ⟩, φ ∈ 𝒟0,
⟨T ,φ⟩ = ⟨Tsapc,φ⟩ + ⟨Q,φ⟩, φ ∈ 𝒟0).

Remark 4.2.110. Concerning Definition 4.2.109(ii), it should be noted that it is com-
pletely irrelevant whether we will write Q ∈ B′0(X) or Q ∈ B

′
+,0(X) here because any el-

ement Q ∈ B′+,0(X) can be extended to an element Q̃ ∈ B′0(X) by the formula Q̃ := F ⋅Q,
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where F ∈ C∞(ℝ) is any fixed function satisfying F(t) = 1 for all t ⩾ 0 and F(t) = 0 for
all t ⩽ −1.

Remark 4.2.111. We note that the decompositions in Definition 4.2.109 are unique in
the case of consideration of c-almost periodicity (semi-c-periodicity) because they are
unique for almost periodicity [646].

Nowwewill prove the following asymptotical analogue of Theorem4.2.107,which
gives some new insights at the assertion of [646, Theorem 1] and [211, Theorem 2] (in
the last mentioned theorem, C. Bouzar and F. Z. Tchouar have recently established a
structural characterization for the space of asymptotically almost automorphic distri-
butions following the approach of I. Cioranescu from [299] (see also [646, Theorem
2]); our novelty here is the use of approach obeyed in the proof of [210, Proposition 7],
with a direct proof of implication (i)⇒ (ii) and a new characterization (iii) for the class
of vector-valued asymptotically almost automorphic distributions).

Theorem 4.2.112. Suppose that T ∈ 𝒟′L1 (X). Then the following statements are equiva-
lent:
(i) T is (half-)asymptotically (𝒟0, c)-almost periodic ((half-)asymptotically semi-
(𝒟0, c)-periodic).

(ii) T is (half-)asymptotically c-almost periodic ((half-)asymptotically semi-c-peri-
odic).

(iii) There exist an integer p ∈ ℕ and a bounded (half-)asymptotically c-almost pe-
riodic (bounded (half-)asymptotically semi-c-periodic) function F : ℝ → X such
that (4.68) holds in the distributional sense.

(iii)′ There exist an integer p ∈ ℕ and a bounded (half-)asymptotically c-almost pe-
riodic (bounded (half-)asymptotically semi-c-periodic) function F : ℝ → X such
that (4.68) holds in the distributional sense ((4.68) holds in the distributional sense
on [0,∞)).

(iv) There exist an integer k ∈ ℕ and bounded (half-)asymptotically c-almost periodic
(bounded (half-)asymptotically semi-c-periodic) functions fj : ℝ → X (0 ⩽ j ⩽ k)
such that the function f (⋅), defined through (4.53), is (half-)asymptotically c-almost
periodic ((half-)asymptotically semi-c-periodic) and T = ∑kj=0 f

(j)
j .

(iv)′ There exist an integer k ∈ ℕ and bounded (half-)asymptotically c-almost periodic
(bounded (half-)asymptotically semi-c-periodic) functions fj : ℝ → X (0 ⩽ j ⩽ k)
such that the function f (⋅), defined through (4.53), is (half-)asymptotically c-almost
periodic ((half-)asymptotically semi-c-periodic) and T = ∑kj=0 f

(j)
j (T = ∑kj=0 f

(j)
j on

[0,∞)).
(v) T is an asymptotically c-almost periodic distribution of type 1 (asymptotically

semi-c-periodic distribution of type 1), in the case of consideration of asymptotical
c-almost periodicity (asymptotical semi-c-periodicity), resp. T is an asymptoti-
cally (𝒟0, c)-almost periodic distribution of type 1 (asymptotically semi-(𝒟0, c)–

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.2 c-Uniformly recurrent functions and c-almost periodic | 281

periodic distribution of type 1), in the case of consideration of half-asymptotical
c-almost periodicity (half-asymptotical semi-c-periodicity).

(vi) There exists a sequence (Tn) of bounded (half-)asymptotically c-almost periodic
functions (bounded (half-)asymptotically semi-c-periodic functions) from ℰ(X)
such that limn→∞ Tn = T in𝒟′L1 (X).

Proof. Wewill prove the implication (i)⇒ (ii) only for half-asymptotical (𝒟0, c)-almost
periodicity. Letφ ∈ 𝒟 be given and let supp(φ) ⊆ [a, b]. Ifa ⩾ 0, thenφ ∈ 𝒟0 and there-
fore the function T ∗ φ is half-asymptotically c-almost periodic, as required. If a < 0,
then we consider the function φa(⋅) := φ(⋅ + a) ∈ 𝒟0. Since the convolution map-
ping is translation invariant, we see that the function (T ∗ φ)a(⋅) = (T ∗ φa)(⋅) is half-
asymptotically c-almost periodic, so that there exist a c-almost periodic function g :
ℝ→ X and a function h ∈ C0([0,∞) : X) such that (T ∗φ)a(t) = (T ∗φa)(t) = g(t)+h(t)
for all t ⩾ 0. This implies (T ∗φ)(t) = g(t − a) + h(t − a) := ga(t) + ha(t), t ⩾ a. It is clear
that the restriction of the function ha(⋅) to the non-negative real axis belongs to the
space C0([0,∞) : X), so that the statement (ii) follows by applying Theorem 4.2.75(iv)
with I = [0,∞) and the number a replaced therein with the number −a > 0. The im-
plication (ii)⇒ (iii) can be proved following the lines of the proof of Theorem 4.2.107;
we will use the same notation. As in the proof of the above-mentioned result, we see
that limk→+∞(T ∗ φk)(t) = F(t), uniformly in t ∈ ℝ; due to [300, Theorem 1.1], the
function F(⋅) is bounded. In the newly arisen situation, the function (T ∗ φk)(⋅) is
(half-)asymptotically c-almost periodic ((half-)asymptotically semi-c-periodic) for all
integers k ∈ ℕ. Therefore, there exist a c-almost periodic function (semi-c-periodic
function) gk : ℝ → X and a function hk ∈ C0(ℝ : X), resp. hk ∈ C0([0,∞) : X), such
that (T ∗ φk)(t) = gk(t) + hk(t), t ∈ ℝ, resp. (T ∗ φk)(t) = gk(t) + hk(t), t ⩾ 0 (k ∈ ℕ).
Since for each integer k ∈ ℕ the function gk(⋅) is almost periodic, Lemma 4.2.95 shows
that there exist an almost periodic function g : ℝ → X and a function ϕ ∈ C0(ℝ : X),
resp.ϕ ∈ C0([0,∞) : X), such that F(t) = g(t)+ϕ(t) for all t ∈ ℝ, resp. F(t) = g(t)+ϕ(t)
for all t ⩾ 0. But the argumentation contained in the proofs of [364, Theorem 3.36,
Theorem 3.47; pp. 97–98] also shows that the sequence of functions (gk) converges to
the function g(⋅), uniformly on ℝ. Since for each integer k ∈ ℕ the function gk(⋅) is
c-almost periodic (semi-c-periodic), an application of Theorem 4.2.75(iii) shows that
the function g(⋅) is also c-almost periodic (semi-c-periodic). This implies (iii). The im-
plications (iii)⇒ (iv)⇒ (iv)′ are trivial.Wewill prove that (iv)′ implies (v) only for half-
asymptotical c-almost periodicity. It simply follows that there exist c-almost periodic
functions gj : ℝ → X and functions hj ∈ C0([0,∞) : X) (0 ⩽ j ⩽ k) such that the func-
tion t → (g0(t), . . . , gk(t)), t ∈ ℝ is c-almost periodic as well as that fj(t) = gj(t) + hj(t)
for all t ⩾ 0. Define Tapc ∈ B′APc (X) by

Tapc(φ) :=
k
∑
j=0
(−1)j
+∞

∫
−∞

φ(j)(v)gj(v) dv, φ ∈ 𝒟,
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(see Theorem 4.2.104) and

Q(φ) :=
k
∑
j=0
(−1)j
+∞

∫
−∞

φ(j)(v)hej (v) dv, φ ∈ 𝒟,

where hej (⋅) denotes the even extension of the function hj(⋅) to the whole real axis. It is
clear that we have ⟨T ,φ⟩ = ⟨Tapc,φ⟩ + ⟨Q,φ⟩, φ ∈ 𝒟0. In order to see that Q ∈ B′0(X),
it suffices to observe that, for every test function φ ∈ 𝒟 with supp(φ) ⊆ [a, b], we see
that

⟨Q,φ(⋅ − h)⟩ :=
k
∑
j=0

b

∫
a

φ(j)(v)hej (v + h) dv, φ ∈ 𝒟, h ∈ ℝ,

and therefore lim|h|→+∞⟨Q,φ(⋅ − h)⟩ = 0, φ ∈ 𝒟. In order to see that (v) implies (i), it
suffices to repeat verbatim the argumentation given in [646, Remark 2]. We will prove
that (vi) implies (i) only for half-asymptotical c-almost periodicity. Using the argu-
mentation contained in the proof of [210, Proposition 7], it suffices to show that, for
every fixed function φ ∈ 𝒟 with supp(φ) ⊆ [0, b] and for every fixed bounded half-
asymptotically c-almost periodic function f : ℝ → X, the function φ ∗ f is bounded
and half-asymptotically c-almost periodic. This is clear for boundedness; in order to
see that the function φ ∗ f is half-asymptotically c-almost periodic, we can argue as
follows. Let g : ℝ → X be a c-almost periodic function and let h ∈ C0([0,∞) : X) such
that f (t) = g(t) + h(t) for all t ⩾ 0. Then we have

(φ ∗ f )(t) =
+∞

∫
−∞

φ(s)g(t − s) ds +
b

∫
0

φ(s)h(t − s) ds, t ⩾ b,

so that the final conclusion follows from the fact that the space consisting of all
c-almost periodic functions is convolution invariant and that the function

t → (φ ∗ f )(t) −
+∞

∫
−∞

φ(s)g(t − s) ds, t ⩾ 0,

belongs to the class C0([0,∞) : X), which a simple consequence of the last equality.
The implication (i)⇒ (vi) follows directly from the corresponding part of the proof of
[210, Proposition 7]. Therefore, we have proved the equivalence of all statements (i)–
(vi). Since (iii)′ implies (iv)′ and (iv)′ implies (v), we see that (iii)′ or (iv)′ implies all
other statements (i)–(vi). On the other hand, it is clear that (iii) implies (iii)′, finishing
the proof.

Corollary 4.2.113. Let (Tn) be a sequence of bounded (half-)asymptotically c-almost
periodic ((half-)asymptotically semi-c-periodic) distributions, and let limn→∞ Tn = T
in 𝒟′L1 (X). Then T is (half-)asymptotically c-almost periodic ((half-)asymptotically
semi-c-periodic).
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Remark 4.2.114.
(i) It is worth noting that the implications (i)⇒ (ii) and (iii)⇒ (iv)⇒ (v)⇒ (i) and

the equivalence (vi) ⇔ (i) can be formulated for bounded (half-)asymptotically
c-uniformly recurrent functions, but it is not clear how one can prove that (ii) im-
plies (iii) in this framework.

(ii) Using the idea from the proof of implication (i) ⇒ (ii) of Theorem 4.2.112, we
may conclude that a distribution T ∈ 𝒟′(X) is c-periodic (c-almost periodic,
c-uniformly recurrent, semi-c-periodic) if andonly if the functionT∗φ is c-periodic
(c-almost periodic, c-uniformly recurrent, semi-c-periodic) for all φ ∈ 𝒟0.

(iii) If c ̸= 1, then it is not clear how we can introduce and analyze the classes of
c-almost automorphic functions and c-almost automorphic distributions.

Let n ∈ ℕ, and let A = [aij]1⩽i,j⩽n be a given complex matrix such that σ(A) ⊆
{z ∈ ℂ : Re z < 0}. Following the analysis of C. Bouzar andM. T. Khalladi [207], we will
provide here a small application in the analysis of the existence of half-asymptotically
c-almost periodic (half-asymptotically semi-c-periodic) solutions of equation

T′ = AT + G, T ∈ 𝒟′(Xn) on [0,∞), (4.69)

where G is a half-asymptotically c-almost periodic (half-asymptotically semi-c-peri-
odic) Xn-valued distribution; applications can be also made to certain classes of
functional-differential equations (see also the interesting research papers [747] by
N.M. Man, N. V. Minh and [921, 922] by I. F. Shahpazova concerning this issue). By
a solution of (4.69), we mean any element T ∈ 𝒟′(Xn) such that (4.69) holds in the
distributional sense on [0,∞). Since the spaces of half-asymptotically c-almost pe-
riodic (half-asymptotically semi-c-periodic) distributions are not closed under the
pointwise addition of functions, some obvious unpleasant difficulties occur in the
case that c ̸= 1. In the one-dimensional case, these difficulties can be overcome,
fortunately.

Theorem 4.2.115. Suppose that F is a half-asymptotically c-almost periodic (half-
asymptotically semi-c-periodic) distribution, n = 1 and a11 = λ < 0. Then there
exists a half-asymptotically c-almost periodic (half-asymptotically semi-c-periodic)
distributional solution of (4.69). Furthermore, any distributional solution T of (4.69) is
half-asymptotically c-almost periodic (half-asymptotically semi-c-periodic).

Proof. By Theorem 4.2.112, we know that there exist an integer p ∈ ℕ and a bounded
half-asymptotically c-almost periodic (bounded half-asymptotically semi-c-periodic)
function F : ℝ→ X such that (4.68) holds in the distributional sense, with T replaced
with G therein. By the proof of [646, Theorem 4], given in the ultradistributional case,
we get the existence of a positive integerm ∈ ℕ, continuous functions Fj : [0,∞)→ X
(0 ⩽ j ⩽ m) and a function Q ∈ C0([0,∞) : X) such that any function Fj(⋅) has the
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form

Fj(t) = c1,j(λ)F(t) + c2,j(λ)
t

∫
0

eλ(t−s)F(s) ds, t ⩾ 0,

for certain complex numbers c1,j(λ) and c2,j(λ) (0 ⩽ j ⩽ m) and T = Q + ∑mj=0 F
(j)
j

on [0,∞). By the proofs of [631, Proposition 2.6.11] and [337, Lemma 4.1], we see
that the function t → (F0(t), . . . , Fm(t)), t ⩾ 0 is half-asymptotically c-almost peri-
odic (half-asymptotically semi-c-periodic) so that it can be uniquely extended to a
half-asymptotically c-almost periodic (half-asymptotically semi-c-periodic) function
t → ( ̃F0(t), . . . , ̃Fm(t)), t ∈ ℝ due to Proposition 4.2.29. Define T0 := ∑

m
j=0
̃Fj
(j) and

T1 := Qe, where Qe denotes the even extension of the function Q(⋅) to the whole
real axis. Then T = T0 + T1 on [0,∞), T is c-almost periodic (semi-c-periodic) and
T1 ∈ B′0(X), so that T is half-asymptotically c-almost periodic (half-asymptotically
semi-c-periodic). The existence of solutions is proved in a similar fashion.

Unfortunately, the use of [207, Lemma 1] and the arguments contained in the
proof of [207, Theorem 3, pp. 117-118] do not enable us to extend Theorem 4.2.115 to
the multi-dimensional case. Keeping in mind the proofs of [646, Theorem 4] and
Theorem 4.2.115, we can only prove the following.

Theorem 4.2.116. Let there exist an integer m ∈ ℕ and half-asymptotically c-almost
periodic (half-asymptotically semi-c-periodic) Xn-valued functions Gj(⋅) (0 ⩽ j ⩽ m)
such that G = ∑mj=0 G

(j)
j on [0,∞). Then there exists a solution T of (4.69) which has the

same form as G; furthermore, any distributional solution T of (4.69) has the same form
as G (with the meaning being clear).
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In this chapter, we will briefly consider several important topics which have not been
discussed in the previous part of this monograph.

Recurrent strongly continuous semigroups
The notion of a uniformly recurrent operator is closely connected with the notion of
a recurrent operator in a complex Banach space X. Let us recall that a linear operator
T : X → X is called recurrent if and only if for every non-empty open subset U of X
there exists some k ∈ ℕ such thatU ∩T−k(U) ̸= 0. A vector x ∈ X is said to be recurrent
forT if andonly if there exists a strictly increasing sequenceof positive integers (kn)n∈ℕ
such that Tknx → x as n → +∞; the set consisting of all recurrent vectors of T will
be denoted by Rec(T). A much stronger notion than the recurrence is the measure
theoretic rigidity, introduced in the ergodic theoretic setting by H. Furstenberg and
B. Weiss ([459]; see also [458]). This concept, in the context of topological dynamical
systems, is known as (uniform) rigidity; it was introduced by S. Glasner and D. Maon
[472]. We say that a bounded linear operator T : X → X is rigid if and only if there
exists a strictly increasing sequence of positive integers (kn)n∈ℕ such that Tknx → x as
n → +∞, for every x ∈ X. A bounded linear operator T : X → X is called uniformly
rigid if and only if there exists an increasing sequence of positive integers (kn)n∈ℕ such
that

T
kn − I = sup

‖x‖⩽1

T
knx − x→ 0 as n→ +∞.

For more details about recurrent and rigid operators on Banach spaces, see the re-
search articles [316] by G. Costakis, A. Manoussos, I. Parissis and [317] by G. Costakis,
I. Parissis.

For families of bounded linear operators, we will use the following notion (the
material is taken from [274], a joint research study with C.-C. Chen and D. Velinov).

Definition 5.0.1. Let I = [0,∞) or I = ℝ. We say that a family (W(t))t∈I of bounded
linear operators on X is recurrent if and only if for every open non-empty set U ⊆ X
there exists some t ∈ I such thatU∩(W(t))−1(U) ̸= 0. A vector x ∈ X is called a recurrent
vector for (W(t))t∈I if and only if there exists an unbounded sequence of numbers (tk)
in I such thatW(tk)x → x as k → +∞. By Rec(W(t))we denote the set consisting of all
recurrent vectors for (W(t))t∈I .

Definition 5.0.2. We say that a family (W(t))t∈I of bounded linear operators on X is
rigid if and only if there exists an unbounded sequence of numbers (tk) in I such that
W(tk)x → x as k → +∞, for every x ∈ X, i. e., W(tk) → I as k → +∞ in the strong
operator topology, while (W(t))t∈I is called uniformly rigid if and only if there exists
an unbounded sequence (tk) in I such that ‖W(tk) − I‖→ 0 as k →∞.

https://doi.org/10.1515/9783110763522-006
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The following result is fundamental.

Theorem 5.0.3. Let (T(t))t∈I be a C0-semigroup if I = [0,∞), resp. C0-group if I = ℝ, of
bounded linear operators on X. The following statements are equivalent:
(i) (T(t))t∈I is recurrent.
(ii) Rec (T(t)) = X.

If this is the case, the set of recurrent vectors for (T(t))t∈I is a Gδ-subset of X.

Proof. First we will show that (ii)⇒ (i). Let Rec (T(t)) = X and U be an arbitrary open
non-empty subset in X. Let x be a recurrent vector and ε > 0 such that B(x, ε) ⊆ U,
where B(x, ε) = {y ∈ X : ‖x − y‖ < ε}. Then there exists t ∈ I such that ‖T(t)x − x‖ < ε.
Thus x ∈ U ∩ T(t)(U) ̸= 0, so (T(t))t∈I is recurrent. Now, we will show that (i)⇒ (ii).
Let (T(t))t∈I be recurrent and let B = B(x, ε) be an open ball in X, for fixed x ∈ X and
ε < 1. The proof will end if we show that there exists a recurrent vector in B. We use
the recurrence property of (T(t))t∈I . So, there exists t1 ∈ I such that x1 ∈ B∩ T(t1)−1(B),
for some x1 ∈ E. Since (T(t))t∈I is strongly continuous, we see that there exists ε1 < 1/2
such that B2 = B(x1, ε1) ⊆ B ∩ T(t1)−1(B). Since (T(t))t∈I is recurrent, there exists t2 ∈ I
with |t2| > |t1| and some x2 ∈ E such that x2 ∈ B2∩T(t2)−1(B2). Using the same argument
with the strong continuity and recurrence of (T(t))t∈I , we can inductively construct a
sequence (xn) in X, an unbounded sequence (tn) in I and a decreasing sequence of
positive real numbers (εn), such that for every integer n ∈ ℕ one has εn < 2−n,

B(xn, εn) ⊆ B(xn−1, εn−1) and T(tn)(B(xn, εn)) ⊆ B(xn−1, εn−1).

By Cantor’s theorem we have
∞

⋂
n=1

B(xn, εn) = {y},

for some y ∈ X. It is clear that T(tn)y → y as n→ +∞. Hence y ∈ B is a recurrent vector
in the open ball B, so the proof of (ii)⇒ (i) is finished. Let us prove that

Rec(T(t)) =
∞

⋂
k=1

∞

⋃
n=1
{x ∈ X : T(qn)x − x

 <
1
k
} =: R(T(t)), (5.1)

where (qn) denotes the sequence consisting of all rational numbers which do have
the modulus strictly greater than 1. It simply follows that Rec(T(t)) is contained in
the set R(T(t)). For the opposite inclusion, for each element x ∈ R(T(t)) and for each
integer k ∈ ℕ we can pick up a rational number qk which do have the module strictly
greater than 1 and for which ‖T(qk)x − x‖ < 1/k. If the sequence (qk) is unbounded, we
have done. If not, then there exists a convergent subsequence (qnk ) of (qn) such that
limk→∞ qnk = q for some real number q ∈ I such that |q| ⩾ 1. In this case, the strong
continuity of (T(t))t∈I shows that x = T(q)x so that clearly x ∈ Rec(T(t)) because, in
this case, we have T(nq)x = x for all n ∈ ℕ. Hence, (5.1) holds and (T(t))t∈I is a Gδ
subset of X.
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Using the representation formula (5.1) and the proof of [316, Proposition 2.6], it
can be easily shown that the following result holds good.

Theorem 5.0.4. Let (T(t))t∈ℝ be a C0-group on X. Then (T(t))t⩾0 is recurrent if and only
if (T(−t))t⩾0 is recurrent.

We continue by stating the following continuous analogue of [316, Proposition
2.3(i)].

Theorem 5.0.5. Let (T(t))t∈I be a C0-semigroup if I = [0,∞), resp. C0-group if I = ℝ, of
bounded linear operators on X. Then, for every λ ∈ ℂ with |λ| = 1, we have Rec(T(t)) =
Rec(λT(t)).

Proof. It is enough to show that Rec(T(t)) ⊆ Rec(λT(t)). For x ∈ Rec(T(t)), we define
the set L = {|μ| = 1 : λnT(tn)x → μx, for some unbounded sequence (tn) in I}. To finish
the proof, we have to prove that 1 ∈ L. First of all, let us note that L ̸= 0. Since x ∈
Rec(T(t)), there exists an unbounded sequence (tn) in I such that T(tn)x → x. There
exists a subsequence of (tn), denoted by (tnk ), such that λ

tnk → ρ as k → ∞, for some
|ρ| = 1. Hence, we have λtnk T(tnk )x → ρx as k → ∞, which means that ρ ∈ L. Let
μ1, μ2 ∈ L and ε > 0 be fixed. Since μ1 ∈ L, there exist a positive integer n1 ∈ ℕ and a
real number t1 ∈ I, with modulus sufficiently large, such that

λ
n1T(t1)x − μ1x

 <
ε
2
.

Since μ2 ∈ L, there are a positive integer n2 ∈ ℕ and a real number t2 ∈ I, with module
sufficiently large, such that

λ
n2T(t2)x − μ2x

 <
ε

2‖T(t1)‖
.

Hence,

λ
n1+n2T(t1 + t2)x − μ1μ2x

 ⩽
λ

n1T(t1)(λ
n2T(t2)x − μ2x)

 +
μ2(λ

n1T(t1)x − μ1x)


⩽ T(t1)

(λ

n2T(t2))x − μ2x
 +

ε
2
< ε,

so that μ1μ2 ∈ L. Hence, μn ∈ L for μ ∈ L. If μ is a rational rotation, thismeans that 1 ∈ L
and we are done. If μ is an irrational rotation, there is a strictly increasing sequence
of positive integers (sk) such that μsk → 1. Since L is closed, it follows that 1 ∈ L.

Theorem 5.0.6. Let (T(t))t∈I be a C0-semigroup if I = [0,∞), resp. C0-group if I = ℝ, of
bounded linear operators on X. If (T(t) ⊕ T(t))t∈I is recurrent, then (T(t))t∈I is likewise
recurrent.

Proof. Let x1 ⊕ x2 be a recurrent vector for (T(t)⊕T(t))t∈I . Then it is clear that x1 and x2
are recurrent vectors for (T(t))t∈I ; hence, (T(t))t∈I is recurrent.
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The question whether the direct sum (T(t) ⊕ T(t))t∈I of recurrent strongly contin-
uous operator families (T(t))t∈I is recurrent is not simple. The answer is affirmative if
(T(t))t∈I possesses some extra properties (see [316] for more details about the single-
valued case).

The following continuous analogue of [316, Proposition 2.3(ii)] appears in this
monograph for the first time.

Theorem 5.0.7. Let (T(t))t∈ℝ be a C0-group. Then the following assertions are equiva-
lent:
(i) (T(t))t⩾0 is recurrent.
(ii) For every t0 > 0, the operator T(t0) is recurrent.
(iii) There exists t0 > 0 such that the operator T(t0) is recurrent.

If this is the case, then, for every t0 ∈ I ∖ {0}, we have Rec(T(t)) = Rec(T(t0)).

Proof. All non-trivial that we need to show is that (i) implies (ii), with the equality
Rec(T(t)) = Rec(T(t0)) for any fixed number t0 > 0. To see this, assume that (T(t))t⩾0
is a recurrent C0-semigroup. Then it is clear that Rec(T(t)) ⊇ Rec(T(t0)) and, owing
to Theorem 5.0.3, all that we need to prove is that the preassumption x ∈ Rec(T(t))
implies x ∈ Rec(T(t0)). Without loss of generality, we can assume that t0 = 1. Indeed,
we can consider the semigroup (T̃(t))t⩾0, with T̃(t) := T(tt0), for every t ⩾ 0. It is clear
that x is a recurrent vector for (T̃(t))t⩾0 and T̃(1) = T(t0). Denote by𝕋 the unit circle in
ℂ and define the mapping ϕ : [0,∞) → 𝕋 by ϕ(t) := e2πit, t ⩾ 0. For every u ∈ X, we
define the set

Fu := {λ ∈ 𝕋 : ∃(tn)n ∈ (0,∞) s. t. lim
n→∞

tn =∞, limn→∞
T(tn)u = u and lim

n→∞
ϕ(tn) = λ}.

Note that the set Fu is not empty by its definition and the recurrence property of the
semigroup (T(t))t⩾0. The set Fu is closed for u ∈ X, as can be easily proved. Next, we
will prove that, if u ∈ X and λ, μ ∈ Fu, then λμ ∈ Fu. Let U be an open balanced
neighborhood of zero in X and ε > 0 arbitrary. Then we can find t1 > 0 such that
‖T(t1)u−λu‖ ⩽ ε/2 and |ϕ(t1)−μ| < ε/2. Choose an open balanced neighborhood of zero
V in X and number t2 > 0 such that T(t1)(V) ⊆ U, T(t2)u − μu ∈ V and |ϕ(t2) − λ| < ε/2.
Hence,

T(t1 + t2)u − λμu = T(t1)(T(t2)u − μu) + μ(T(t1)u − λu)
∈ T(t1)(V) + B(0, ε/2) ⊆ U + B(0, ε/2),

so that

ϕ(t1 + t2) − λμ
 =
ϕ(t1)ϕ(t2) − λμ

 ⩽
ϕ(t1) − μ

 ⋅
ϕ(t2)
 + |μ| ⋅
ϕ(t2) − λ

 < ε.

This simply implies that λμ ∈ Fu as claimed. Furthermore, it is clear that there exists
x ∈ (−π,π] such that eix = λ ∈ Fu. If x is rational, then using the fact that Fu is closed
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under multiplication immediately gives 1 ∈ Fu. If x is not rational, then Fu is dense in
𝕋 since it contains the set {einx : n ∈ ℕ} so that 1 ∈ Fu again. Hence, 1 ∈ Fu. Suppose
now u ∈ Rec(T(t)). Then we have the existence of a sequence (tn)n∈ℕ of positive real
numbers tending to infinity such that limn→∞ T(tn)u = u and lim→∞ ϕ(tn) = 1. Let (kn)
be a sequence of positive integers and εn ∈ [−1, 1] such that tn = kn + εn for all n ∈ ℕ.
Obviously, limn→∞ εn = 0. Hence, ‖T(kn)u−u‖ ⩽ ‖T(−εn)[T(tn)u−u]+ [T(−εn)u−u]‖ ⩽
supξ∈[−1,1] ‖T(ξ )‖ ⋅ ‖T(tn)u − u‖ + ‖T(−εn)u − u‖→ 0 as n→ +∞. As a consequence, we
have u ∈ Rec(T(1)).

Remark 5.0.8. Condition that (T(t))t⩾0 can be extended to a C0-group seems to be
slightly redundant. Due to [829, Theorem6.5, p. 24], this is the case provided that there
exists a finite number t0 > 0 such that [T(t0)]−1 ∈ L(X).

Suppose that Δ = [0,∞) or Δ = ℝ. A measurable function ρ : Δ→ (0,∞) is said to
be an admissible weight function if and only if there exist constantsM ⩾ 1 and ω ∈ ℝ
such that ρ(t) ⩽ Meω|t

′|ρ(t + t′) for all t, t′ ∈ Δ. Let us introduce the Banach spaces
Lpρ(Δ,ℂ) := {u : Δ→ ℂ ; u(⋅) is measurable and ‖u‖p <∞},

where p ∈ [1,∞) and ‖u‖p := (∫Δ |u(t)|
pρ(t) dt)1/p, and

C0,ρ(Δ,ℂ) := {u : Δ→ 𝕂 ; u(⋅) is continuous and lim
t→∞

u(t)ρ(t) = 0},

with ‖u‖ := supt∈Δ |u(t)ρ(t)|. For any function f : Δ→ ℂ, wedefineT(t)f := f (⋅+t), t ∈ Δ.
If ρ(⋅) is an admissible weight function and Δ = [0,∞), resp. Δ = ℝ, then the transla-
tion semigroup, resp. group, (T(t))t∈Δ is strongly continuous on Lpρ(Δ,ℂ) andC0,ρ(Δ,ℂ).
Recently, Z. Yin and Y. Wei have considered the weak recurrence of translation oper-
ators on weighted Lebesgue spaces and weighted continuous function spaces [1060].
They have shown that the existence of a function f ∈ X, where X = Lpρ([0,∞),ℂ) or
X = C0,ρ([0,∞),ℂ), satisfying that there exists a strictly increasing sequence (αn) of
positive reals tending to plus infinity such that (compare with (2.3))

lim
n→+∞
f (⋅ + αn) − f (⋅)

X = 0

is equivalent to saying that lim inft→+∞ ρ(t) = 0 (the hypercyclicity of (T(t))t⩾0); see
also the preprint [219] by W. Brian and J. P. Kelly.

Formore details about recurrent sets of operators, we refer the reader to the recent
paper [57] by M. Amouch and O. Benchiheb.

Lower and upper densities
In Subsection 2.4.1, we have used various notions of lower and upper densities for a
subset A ⊆ [0,∞) which can take, generally speaking, any value in the range [0,∞].
Without any doubt, the most important densities are those ones with values in the
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range [0, 1]. As in the discrete case, the minimal conditions which should satisfy any
lower or upper density d : P([0,∞)) → [0, 1] are: d(0) = 0, d([0,∞)) = 1 and d(A) ⩽
d(B), wheneverA, B ⊆ [0,∞) andA ⊆ B. But some other axioms are needed for obtain-
ing a good definition of density. For example, following A. R. Freedman and J. J. Sem-
ber [455]we can consider theupperdensityδ⋆(⋅) : P([0,∞))→ [0, 1]with the following
properties:
(l1) δ⋆(A ∪ B) ⩽ δ⋆(A) + δ⋆(B);
(l2) δ⋆(A) = δ⋆(B), provided that AΔB is bounded;
(l3) δ⋆(A) ⩽ δ⋆(A).

It is also worth noting that we can consider the upper density ν⋆ : P([0,∞)) → [0, 1]
with the following properties introduced recently by P. Leonetti and S. Tringali in the
discrete case [693]:
(f1) ν⋆(A ∪ B) ⩽ ν⋆(A) + ν⋆(B);
(f2) ν⋆(αA) = α−1ν⋆(A), provided that α > 0;
(f3) ν⋆(A + α) = ν⋆(A), provided that α > 0.

Besides that, it could be of some importance to analyze many other notions of lower
and upper densities in the continuous setting, like the notions of upper logarithmic,
upper Buck, upper Pólya or upper analytic densities (see also the classical studies
by A. S. Besicovitch [168–170], the monograph [353] by C. De Lellis and the doctoral
dissertation of N. F. G. Martin [751]). For further information, see also [481, 632] and
the references cited therein.

Remotely almost periodic solutions of ordinary differential equations
In this section, we will briefly describe the notion and results obtained in our recent
joint paper with C. Maulén, S. Castillo and M. Pinto [757]. For the sake of brevity, we
will not include the proofs of structural results regarding remotely almost periodic
solutions of ordinary differential equations (besides the already mentioned research
articles and monographs concerning this issue, we want also to recommend to the
reader [13, 17, 37, 60, 71, 145–148, 178, 238, 254, 329, 354–356, 398, 449, 452, 457, 475,
490, 576, 676, 734, 762] and [784–788, 820, 830, 852, 893, 924, 1050]).

To better understand the space of remotely almost periodic functions, denoted by
RAP(ℝ : ℂn), wewill recall the notion of a slowly oscillating function (the correspond-
ing space is denoted by SO(ℝ : ℂn) henceforth): A function f ∈ BUC(ℝ : ℂn) is called
slowly oscillating if and only if for every a ∈ ℝ we have

lim
|t|→+∞
f (t + a) − f (t)

 = 0.

Now we recall the notion of a remotely almost periodic function.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



5 Notes and appendices to Part I | 291

Definition 5.0.9. A function f ∈ BUC(ℝ : ℂn) is called remotely almost periodic if and
only if ε > 0 we see that the set

T(f , ε) := {τ ∈ ℝ : lim sup
|t|→+∞

f (t + τ) − f (t)
 < ε}

is relatively dense in ℝ.

Any number τ ∈ T(f , ε) is called an ε-remote-translation vector of f (⋅). It will be
assumed here that any remotely almost periodic function f : ℝ → ℝ possesses the
mean value

ℳ(f ) := lim
t→+∞

1
t

t

∫
0

f (s) ds.

Consider now the following systems of differential equations:

dx
dt
= A(t)x(t) (5.2)

and

dx
dt
= A(t)x(t) + f (t), (5.3)

where A(t) is a complex-valued matrix of format n × n for all t ∈ ℝ.
In [757], we have used the following notion.

Definition 5.0.10. Let Φ(⋅) be a fundamental matrix of Eq. (5.2). Then we say that
Eq. (5.2) has an (α,K,P)-exponential dichotomy if and only if there exist positive con-
stants α, K > 0 and a projection P (P2 = P) such that

G(t, s)
 ⩽ Ke

−α|t−s|, t, s ∈ ℝ,

where the Green function G(t, s) of (5.2) is given by G(t, s) := Φ(t)PΦ−1(s) for t ⩾ s and
G(t, s) := −Φ(t)[I − P]Φ−1(s) for t < s.

The notion of bi-almost periodicity of the Green function, which has been omitted
or less considered for a long time, plays a crucial role in our study.

Definition 5.0.11. We say that the Green function G(t, s) of (5.2) is exponentially bi-
almost periodic if and only if for all ε > 0 there exist positive real constants α′ > 0,
c > 0 and a relatively dense set T(G, ε) in ℝ such that, for every τ ∈ T(G, ε), we have

G(t + τ, s + τ) − G(t, s)
 ⩽ εce

−α′|t−s|, t, s ∈ ℝ.

We have also used the following notions.
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Definition 5.0.12. We say that the Green function G(t, s) of (5.2) is integro bi-almost
periodic if and only if for all ε > 0 there exist a positive real constant c > 0 and a
relatively dense set T(G, ε) in ℝ such that, for every τ ∈ T(G, ε), we have

+∞

∫
−∞

G(t + τ, s + τ) − G(t, s)
 ds ⩽ εc, t ∈ ℝ.

Definition 5.0.13. Let α > 0. Then we say that the Green function G(t, s) of (5.2) is
α-exponentialy bi-remotely almost periodic if and only if for every ε > 0 there exist a
positive real constant c > 0 and a relatively dense set T(G, ε) in ℝ such that, for every
τ ∈ T(G, ε), we have

lim sup
|t|→∞

e
α(t−s)[G(t + τ, s + τ) − G(t, s)] ⩽ εc, t, s ∈ ℝ, t ⩾ s,

and

lim sup
|t|→∞

e
α(s−t)[G(t + τ, s + τ) − G(t, s)] ⩽ εc, t, s ∈ ℝ, t < s.

Definition 5.0.14. Let α > 0. Then we say that the Green function G(t, s) of (5.2) is
integro bi-remotely almost periodic if and only if for every ε > 0 there exist a positive
real constant c > 0 and a relatively dense set T(G, ε) in ℝ such that, for every τ ∈
T(G, ε), we have

lim sup
|t|→∞

+∞

∫
−∞

G(t + τ, s + τ) − G(t, s)
 ds ⩽ εc, t ∈ ℝ.

The following results have been established.

Theorem 5.0.15. If a(⋅) is a remotely almost periodic function with ℳ(a) ̸= 0, then for
every ε > 0 there exists δ > 0 such that, for every τ ∈ T(a, δ), we have

lim sup
|t|→∞

t

∫
−∞

e
∫
t+τ
s+τ a(r) dr−∫ts a(r) dr  ds < ε, provided t < s andℳ(a) < 0

and

lim sup
|t|→∞

+∞

∫
t

e
∫
t+τ
s+τ a(r) dr−∫ts a(r) dr  ds < ε, provided t ⩾ s andℳ(a) > 0.

Theorem 5.0.16. Suppose that f ∈ RAP(ℝ : ℂn) and the homogeneous system (5.2)
has an (α,K,P)-exponential dichotomy and the associated Green function is integro bi-
remotely almost periodic. Then the unique bounded solution of (5.3) is remotely almost
periodic.
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Theorem 5.0.17. Let f ∈ RAP(ℝ : ℝn) and let g(⋅) be remotely almost periodic in the first
variable and locally Lipschitz in the second variable. Suppose, further, that the homo-
geneous system (5.2) has an (α,K,P)-exponential dichotomy and the associated Green
function is integro bi-remotely almost periodic. Then there exists a positive constant μ0
such that the assumption μ ∈ [0, μ0) implies that the differential equation

z′(t) = A(t)z(t) + f (t) + μg(t, z(t)) (5.4)

has a unique bounded solution which is remotely almost periodic.

We have also analyzed the Richard–Chapman equation with an external pertur-
bation f (⋅):

x′(t) = x(t)[a(t) − b(t)xθ(t)] + f (t), (5.5)

where θ ⩾ 0. Consider the following hypotheses:
(H1) a(t), b(t) and f (t) are remotely almost periodic functions;
(H2) 0 < α ⩽ a(t) ⩽ A, 0 < β ⩽ b(t) ⩽ B, 0 < f (t) < F;
(H3) With ω = A−1[β − γ(1+θ)/θF] and γ = B/α, we have (1 + θ)Fγ1/θθ−1α−1 < 1 and

β(1 + θ)Bθ−1 < 1.

We have proved the following result on the existence and uniqueness of positive re-
motely almost periodic solutions to (5.5).

Theorem 5.0.18. Suppose that the hypotheses (H1)–(H3) hold. Then Eq. (5.5) has a
unique remotely almost periodic solution ϕ∗(t) satisfying γ−1/θ ⩽ ϕ∗ ⩽ ω−1/θ for all
t ∈ ℝ.

Almost periodic functions of complex variables
The theory of almost periodic functions of one complex variable, initiated already by
H. Bohr in the third part of [196], is still very popular and attracts the attention of
numerous mathematicians (see, e. g., [426, 559, 917, 918]). Suppose that −∞ ⩽ α <
β ⩽ +∞ and the function f : Ω ≡ {z ∈ ℂ : α < Re z < β} → X is analytic. Then
we say that f (⋅) is almost periodic if and only if for any ε > 0 and every reduced strip
{z ∈ ℂ : α′ < Re z < β′}, where α < α′ < β′ < β, there exists a number l > 0 such that
each subinterval of length l of ℝ contains a number τ satisfying the inequality

f (z + iτ) − f (z)
 ⩽ ε for α′ < Re z < β′.

In particular, this definition implies that, for any fixed σ ∈ (α, β), the function fσ(t) :=
f (σ + it), t ∈ ℝ is almost periodic. Moreover, the definition implies that the almost
periodicity should be uniform on the various straight lines, with the meaning clear.
The Fourier series of these functions can be obtained from a certain exponential series
with complex coefficients; the associated series is called the Dirichlet series of f (⋅).
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As for the functions of one real variable, Bohr’s notion of almost periodicity of f (⋅)
in a vertical strip Ω is equivalent to the relative compactness of the set of its vertical
translates, {f (⋅+ ih) : h ∈ ℝ}, with the topology of the uniform convergence on reduced
strips. Meanmotions and zeros of generalized almost periodic analytic functions have
been analyzed by V. Borchsenius and B. Jessen in [200], where the reader can find
several important applications to the Riemann zeta function (see also [783] and the
references there for further information about applications of results from the theory
of almost periodic analytic functions to the Riemann zeta function).

We would like to accent that the notions of uniform recurrence and ⊙g-almost pe-
riodicity for the functions of one real variable can be simply modified and introduced
for the functions of one complex variable. For more details about almost periodic an-
alytic functions of several complex variables, we refer the reader to [430, 877] and the
references therein.

C (n)-almost periodic functions
The notion of C(n)-almost periodicity was introduced by M. Adamczak [16] in 1997 and
later received a great attention of many other authors. In this monograph, we will
not consider C(n)-almost periodic type functions and solutions of integro-differential
equations; we shall only say a fewwords about generalized C(n)-almost periodic func-
tions and possibilities for further expansions.

Several different classes of Stepanov-like C(n)-pseudo almost automorphic func-
tions have been analyzed by T. Diagana, V. Nelson and G.M. N’Guérékata in [374]. For
example, let 1 ⩽ p <∞, let n ∈ ℕ, and let f ∈ Lploc(I : X).
(i) We say that the function f (⋅) is Stepanov-p-C(n)-almost periodic, f ∈ C(n)−APSp(I :

X) for short, if and only if for each k = 0, 1, . . . , n, we have f (k) ∈ APSp(I : X).
(ii) We say that the function f ∈ Lploc([0,∞) : X) is asymptotically Stepanov-p-C(n)-

almost periodic, f ∈ C(n) − AAPSp([0,∞) : X) for short, if and only if for each
k = 0, 1, . . . , n, we have f (k) ∈ AAPSp([0,∞) : X). The following definitions have
been analyzed in [631]:

(iii) We say that the function f (⋅) is equi-Weyl p-C(n)-almost periodic, f ∈ e − C(n) −
Wp

ap(I : X) for short, if and only if for each k = 0, 1, . . . , n, we have f
(k) ∈ e −Wp

ap(I :
X).

(iv) We say that the function f (⋅) is Weyl p-C(n)-almost periodic, f ∈ C(n) −Wp
ap(I : X)

for short, if and only if for each k = 0, 1, . . . , n, we have f (k) ∈ Wp
ap(I : X).

(v) We say that he function f (⋅) is Besicovitch–Doss p-C(n)-almost periodic, f ∈ C(n) −
Bp(I : X) for short, if and only if for each k = 0, 1, . . . , n, we have f (k) ∈ Bp(I : X).

Using the same idea, we can introduce and analyze a great number of C(n)-almost au-
tomorphic function spaces [631]. For example, the function

f (t) =
∞

∑
n=1

sin nt
n4
, t ∈ ℝ,
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is C(2)-almost periodic but not C(3)-almost automorphic. Furthermore, for any real-
valued function g ∈ C(3) − AA(ℝ : ℂ) satisfying inft∈ℝ g′′′(t) > 0, we see that the
function

f (t) =
∞

∑
n=1

g(nt)
n4
, t ∈ ℝ,

belongs to the space C(2)-AAS1(ℝ : ℂ) ∖ C(3)-AAS1(ℝ : ℂ); see e. g. [374, Example 2.23].
It is clear that we can slightly generalize the notion of all above-mentioned function
spaces by using the definitions and results from the theory of Lp(x)-spaces.

Riemann–Stepanov almost periodicity, Riemann–Weyl almost periodicity and
Riemann–Besicovitch almost periodicity
In [396], R. Doss has analyzed the classes of Riemann–Stepanov almost periodic func-
tions, Riemann–Weyl almost periodic functions and Riemann–Besicovitch almost pe-
riodic functions. All considerations in this paper are carried outwith the scalar-valued
functions.

Following [396, Definition 1], we say that an essentially bounded function f :
I → X is Riemann–Stepanov almost periodic if and only if for every ε > 0 there exist
δ > 0 and numbers π1 ∈ I , . . . ,πm ∈ I such that

sup
x∈I
∫
x+1

x

f (t + τt) − f (t)
 dt < ε (5.6)

provided that |τt | < δ (mod πk), k ∈ ℕm; here, ∫ denotes the upper Lebesgue integral.
If we replace the quantity in (5.6) with

lim sup
l→+∞

sup
x∈I

1
l
∫
x+l

x

f (t + τt) − f (t)
 dt < ε

resp.,

lim sup
l→+∞

1
2l
∫
l

−l

f (t + τt) − f (t)
 dt, if I = ℝ, resp.

lim sup
l→+∞

1
l
∫
l

0

f (t + τt) − f (t)
 dt, if I = [0,∞),

then we say that f (⋅) is Riemann–Weyl almost periodic, resp. Riemann–Besicovitch
almost periodic.

FollowingA. S.Kovanko [670], R.Dosshas also introduced the classes ofKovanko–
Stepanov almost periodic functions, Kovanko–Weyl almost periodic functions and
Kovanko–Besicovitch almost periodic functions (see [396,Definition 2]). These classes
can be simply introduced in the vector-valued case.
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For any measurable set E ⊆ I, we introduce the quantities

S(E) := sup
x∈I

x+1

∫
x

χE(t) dt,

W(E) := lim
l→+∞

sup
x∈I

1
l

x+l

∫
x

χE(t) dt,

and

B(E) := lim sup
l→+∞

1
2l

l

∫
−l

χE(t) dt, if I = ℝ, resp.

B(E) := lim sup
l→+∞

1
l

l

∫
0

χE(t) dt, if I = [0,∞).

In [396, Theorem 1], it has been proved that an essentially bounded function f : I → X
is Riemann–Stepanov almost periodic if and only if for every ε > 0 there exist a mea-
surable set E ⊆ I and numbers δ > 0, π1 ∈ I , . . . ,πm ∈ I such that S(I ∖ E) < ε and
|f (x)−f (x′)| < ε provided x ∈ E and |x−x′| < δ (modπk), k ∈ ℕm. For theRiemann–Weyl
almost periodicity and the Riemann–Besicovitch almost periodicity,wehave the same
statement with the quantity S(I ∖ E) replaced, respectively, byW(I ∖ E) and B(I ∖ E).
We would like to note that the proof of necessity in this theorem works for the vector-
valued functions, as it can be simply approved. But the proof of sufficiency in this the-
orem and the statement of [396, Theorem 2] are intended solely for the scalar-valued
functions. Furthermore, in the scalar-valued case, we see that the concepts Riemann–
Weyl almost periodicity and the Riemann–Besicovitch almost periodicity coincide.

Due to [396, Theorem 3], we see that an essentially bounded function f : I → X is
Riemann–Stepanov almost periodic if and only if for every ε > 0 there exist a mea-
surable set E ⊆ I and a trigonometric polynomial q(⋅) such that S(I ∖ E) < ε and
|f (x) − q(x)| < ε provided x ∈ E. For the Riemann–Weyl almost periodicity and the
Riemann–Besicovitch almost periodicity, we have the same statement with the quan-
tity S(I ∖E) replaced, respectively, byW(I ∖E) and B(I ∖E). We would like to note that
the proof of sufficiency in this theorem works for the vector-valued functions.

Nemytskii operators between Stepanov almost periodic function spaces
Let p and q be two real numbers belonging to the interval [1,∞), and letT > 0. It is said
that f : (0,T) × X → Y is a Carathéodory function if and only if the following holds:
(i) the mapping t → f (t, x), t ∈ (0,T) is measurable for any fixed element x ∈ X;
(ii) for a. e. t ∈ (0,T) the function f (t, ⋅) is continuous from X and Y .
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Consider now the Nemytskii operator𝒩f : Lp((0,T) : X)→ Lq((0,T) : Y) by

[𝒩f (ω)](t) := f (t,ω(t)), t ∈ (0,T), ω ∈ Lp((0,T) : X).

The well known result of R. Lucchetti and F. Patrone [735, Theorem 3.1] states that the
Nemytskii operator is a well defined between these spaces if and only if there exist
a > 0 and b ∈ Lp((0,T)) such that for all x ∈ X and a. e. t ∈ (0,T) we have

f (t, x)
 ⩽ a‖x‖

p/q + b(t).

In this case, the Nemytskii operator is continuous.
Concerning the Nemytskii operator between the spaces of almost periodic func-

tions AP(ℝ : X) and AP(ℝ : Y), it should be noted that we have the equivalence of the
following statements (see e. g. J. Blot, P. Cieutat, G.M. N’Guérékata and D. Pennequin
[183]):
(i) The Nemytskii operator𝒩f : AP(ℝ : X)→ AP(ℝ : Y) is continuous.
(ii) For each compact set K ⊆ X and for each ε > 0 the set

{τ ∈ ℝ : sup
t∈ℝ

sup
x∈K

f (t + τ, x) − f (t, x)
 ⩽ ε}

is relatively dense in ℝ.
(iii) For all x ∈ X, f (⋅, x) ∈ AP(ℝ : Y) and for each compact set K ⊆ X and for each ε > 0

there exists δ > 0 such that for each x1, x2 ∈ K and for each t ∈ ℝ we have the
implication: ‖x1 − x2‖ ⩽ δ ⇒ ‖f (t, x1) − f (t, x2)‖ ⩽ ε.

A similar statement holds for the continuity of Nemytskii operator between the spaces
of almost automorphic functions AA(ℝ : X) and AA(ℝ : Y); see, e. g., the recent paper
[295, Theorem 2.3] by P. Cieutat. Several necessary and sufficient conditions clarifying
the continuity of Nemytskii operators between almost periodic and almost automor-
phic spaces in the sense of Stepanov approach can be found in [295, Section 4].

Geometric properties of generalized almost periodic function spaces of Orlicz type
In his fundamental paper [537], T. R. Hillmannhas investigated the Besicovitch–Orlicz
spaces of almost periodic functions. After that, numerousmathematicians working in
the field of almost periodic functions have investigated the geometric properties of
generalized almost periodic function spaces of Orlicz type.

We will inscribe here the results of M. Morsli, M. Smaali established in [793] and
the results of F. Bedouhene, Y. Djabri, F. Boulahia established in [140], only; for more
details on the subject, we refer the reader to [142, 279, 791, 792] and the references in
these papers. Assume that the function φ : ℝ× [0,∞)→ [0,∞) satisfies the following
conditions:
(i) For every t ∈ ℝ, we have φ(t,0) = 0.
(ii) For every t ∈ ℝ, the mapping u → φ(t, u), u ⩾ 0 is convex.
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(iii) φ(t + 1, u) = φ(t, u) for all t ∈ ℝ and u ⩾ 0.
(iv) For every u > 0, we have inft∈ℝ φ(t, u) = ϕ(u) > 0.

If f : ℝ→ [0,+∞] is a measurable function, then it is well known that the functional

f → ρφ(f ) := lim sup
t→+∞

1
2t

t

∫
−t

φ(t, f (t)
) dt, f ∈ M(ℝ),

is convex and pseudomodular.
In [793], the authors have defined the Besicovitch–Musielak–Orlicz space associ-

ated to φ(⋅, ⋅) by

Bφ(ℝ) := {f ∈ M(ℝ) : lim
α→0+

ρφ(αf ) = 0}.

We have

Bφ(ℝ) = {f ∈ M(ℝ) : (∃α > 0) ρφ(αf ) <∞}.

The space Bφ(ℝ) is equipped with the pseudonorm

‖f ‖φ := {k > 0 : ρφ(f /k) ⩽ 1}.

The authors have introduced two different types of Besicovitch–Musielak–Orlicz
spaces of almost periodic functions, B̃φa.p.(ℝ) and Bφa.p.(ℝ), as follows: A function
f : ℝ→ ℂ is said to belong the space Bφa.p.(ℝ), resp. B̃

φ
a.p.(ℝ), if and only if there exists

a sequence (fn) of trigonometric polynomials such that for every k > 0, resp. there
exists k > 0, such that limn→+∞ ρφ(k(fn − f )) = 0. Then we clearly have

Bφa.p.(ℝ) ⊆ B̃
φ
a.p.(ℝ) ⊆ B

φ(ℝ).

If φ(t, |x|) = |x|, then by B1a.p.(ℝ), B̃
1
a.p.(ℝ) and B

1(ℝ) we denote the respective spaces.
Let us recall that a function φ : ℝ × [0,∞) → [0,∞) is strictly convex if and only

if φ(t, λu + (1 − λ)v) < λφ(t, u) + (1 − λ)φ(t, v) for a. e. t ∈ ℝ and for all λ ∈ (0, 1),
0 ⩽ u < v <∞. On the other hand, a normed linear space (E, ‖ ⋅ ‖) is said to be strictly
convex if and only if



x + y
2


< 1, provided that ‖x‖ = ‖y‖ = 1 and x ̸= y.

It is said that the function φ(⋅, ⋅) satisfies the Δ2-condition if and only if there exist
a number k > 1 and a measurable nonnegative function h(⋅) such that ρφ(h) <∞ and
φ(t, 2u) ⩽ kφ(t, u) for almost all t ∈ ℝ and all u ⩾ h(t).
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Let f ∈ Bφa.p.(ℝ). Then, due to [793, Proposition 1], we have φ(⋅, |f (⋅)|) ∈ B1a.p.(ℝ) so
that the limit

lim
T→+∞

1
2T

T

∫
−T

φ(t, f (t)
) dt

always exists and is finite. The main result of paper is [793, Theorem 1], which states
that the space B̃φa.p.(ℝ) is strictly convex if and only if φ(⋅, ⋅) is strictly convex and sat-
isfies the Δ2-condition.

Ergodicity in Stepanov–Orlicz spaces has been investigated in [140]. Let us recall
that a convex function ϕ : ℝ → [0,∞) is said to be an Orlicz function if and only if
it is non-decreasing, even and continuous on ℝ and satisfies ϕ(0) = 0, ϕ(u) > 0 for
u > 0 and limu→+∞ ϕ(u) = +∞. In the newly arisen situation, we say that the function
ϕ(⋅) satisfies the Δ2-condition if and only if there exist real numbers k > 1 and u0 > 0
such that ϕ(2u) ⩽ kφ(u) for |u| ⩾ u0. For any Orlicz function ϕ : ℝ → [0,∞), it can be
simply proved that f ∈ PAP0(ℝ : X) if and only if ϕ(‖f ‖) ∈ PAP0(ℝ : X).

For any vector-valued measurable function f : ℝ → X, we define the positive
functional

ρSϕ (f ) := sup
x∈ℝ

x+1

∫
x

ϕ(f (s)
) ds.

The Stepanov–Orlicz function space generated by ϕ is defined by

BSϕ(ℝ,X) := {f ∈ M(ℝ : X); (∃α > 0) ρSϕ (αf ) <∞}.

We know that the vector space BSϕ(ℝ,X) equipped with the Luxemburg norm

‖f ‖Sϕ := inf{k > 0 : sup
x∈ℝ

x+1

∫
x

ϕ(f (s)
/k) ds ⩽ 1}

is a Banach space. It is also worth noting that the Morse–Transue space type

B̃S
ϕ
(ℝ,X) := {f ∈ M(ℝ : X); (∃α > 0) ρSϕ (αf ) <∞}

equipped with the Luxemburg norm is a closed subspace of BSϕ(ℝ,X), which is com-
monly called the Besicovitch–Orlicz class. We know that BSϕ(ℝ,X) = B̃S

ϕ
(ℝ,X) if and

only if ϕ(⋅) satisfies the Δ2-condition.
Furthermore, for any p ∈ C+(ℝ)wedefine theMusielak–Orliczmodular type space

BSp(⋅)(ℝ,X) := {f ∈ M(ℝ : X); (∃α > 0) sup
x∈ℝ

x+1

∫
x

(f (s)
/k)

p(s) ds ⩽ 1}.
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For any function f ∈ BSp(⋅)(ℝ,X), the notion of BSp(⋅)(ℝ,X)-ergodicity in norm sense
and the notion of BSp(⋅)(ℝ,X)-ergodicity in modular sense are introduced in [140, Def-
inition 3.1] and [140, Definition 3.2], respectively. Due to [140, Proposition 3.4], these
concepts are equivalent.

Let ϕ : ℝ → [0,∞) be an Orlicz function. In [140, Definition 3.6], the authors in-
troduced the notions of norm ergodicity in Stepanov Orlicz sense, modular ergodicity
in Stepanov Orlicz sense and strongly modular ergodicity in Stepanov Orlicz sense for
a given function f ∈ BSϕ(ℝ,X). After that, the authors further explored this notion
in [140, Theorem 3.8, Theorem 3.10, Theorem 3.11] and provided several illustrative
examples in [140, Section 4].

Density theorems for almost periodic functions in Hilbert spaces
In this section, we will inscribe a few relevant results obtained by A. Haraux and V.
Komornik in [510]; these results have been obtained in their investigation of the oscil-
latory properties of the wave equation. Denote by XT the vector space of all square-
integrable functions with zero mean

XT := {f ∈ L
2
loc(ℝ : ℂ) ; f (t + T) ≡ f (t),

T

∫
0

f (t) dt = 0},

where T > 0. If the setA = {T1, . . . ,TN } is a given set of positive real numbers, we define

X := XT1 + ⋅ ⋅ ⋅ + XTN .

If V is a certain collection of complex-valued functions and I is an interval inℝ, then
we set VI := {fI : f ∈ V}. In [510, Theorem 1], the authors have proved that there exists
a positive real number T(A) such that for any interval I ⊆ ℝ we have

XI is dense in L
2(I) if and only if |I| < T(A),

where |I| denotes the length of interval I; furthermore, the orthogonal complement
of XI in L2(I) is finite dimensional if |I| = T(A) and infinite dimensional if |I| > T(A).
Suppose that |I| = T(A) and the orthogonal complement ofXI in L2(I) is p-dimensional
for some integer p ∈ ℕ. If Pp−1 denotes the vector space consisting of all complex
polynomials of degree⩽ p−1 (including also the zero polynomial), then [510, Theorem
3(a)] states that YI is dense in L2(I), where Y := Pp−1 +X; furthermore, YI = L2(I) if and
only if p = 1, which is equivalent to saying that Pi/Pj ∈ ℚ for 1 ⩽ i ⩽ j ⩽ N . Due to [510,
Theorem 3(b)], there exists a real-valued function h ∈ L2(I) such that the functions
h, h′, . . . , hp−1 span XI ; furthermore, if we extend the function h(⋅) by zero to the whole
real line and denote the obtained function by H(⋅), then we know that the function
H(⋅) is a nonzero finite linear combinations of Dirac measures.
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Almost periodicity in chaos
In this part, we will only draw the attention of the reader to the results presented in
the tenth chapter of the recent researchmonograph [34] byM. Akhmet. In [34, Section
10], the author has investigated the dynamical properties of the following system:

y′ = Ay + G(t, y) + H(x(t)), t ∈ ℝ, (5.7)

where G : ℝ × ℝn → ℝn is continuous in both variables, almost periodic in variable
t uniformly for y ∈ ℝn, the function H : ℝm → ℝn is continuous, and all eigenvalues
of the constant n × n real matrix A have negative real parts. Roughly speaking, if the
perturbation partH(x(t)) is chaotic in a certain sense, then the system (5.7) has the in-
teresting feature of chaos with infinitely many almost periodic motions. The obtained
results are well illustrated with several numerical tests involving the coupled Duffing
oscillators, for which it is well known that play an important role in modeling of the
enhanced signal propagation (see also [35] and [36]). The most important notion used
in [34, Section 10] is the notion of Li–Yorke chaotic set with infinitely many almost
periodic motions, which is introduced in [34, Definition 10.1] for the equicontinuous
families of uniformly bounded functions x : ℝ → Λ, where Λ is a non-empty com-
pact subset ofℝm. Wewould like to note here that this notion can be introduced in the
infinite-dimensional setting, even for other types of chaos like distributional chaos or
mean Li–Yorke chaos [632].

Almost periodicity in mathematical biology
There exist numerous research articles concerning almost periodic and almost auto-
morphic type solutions for various classes of ordinary and partial differential equa-
tions (see, e. g., [8, 28, 72, 154, 384, 388, 401, 563, 719, 889]). In this part,wewill present
the main details of the investigation [388] carried out by H.-S. Ding, J. Liang, T.-J. Xiao
and the investigation [1083] carried out by H. Zhang, M. Yang and L. Wang. The non-
linear functional differential equation

x′(t) = −ax(t) + p
1 + xn(t − τ)

, n > 0, (5.8)

has been proposed by M. C. Mackey, L. Glass [743] for modeling of hematopoiesis de-
scribing the process of production of all types of blood cells generated by a remark-
able self-regulated system that is responsive to the demands put upon it. The authors
of [388] have studied the following modification of (5.8):

x′(t) = −a(t)x(t) + p(t)x
l(t − τ(t))

1 + xl(t − τ(t))
, n > 0,

where a, p, τ : ℝ → (0,∞) are almost periodic functions, 0 < m ⩽ 1 and l > 0. The
almost periodic solutions of this equation have been previously studied in [390] and
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[822] by using the Leggett–Williams fixed point theorem, which involves the compact-
ness of operators. In contrast to this, the authors of [388] have employed a fixed point
theorem in cones, which does not require such conditions. The authors of [1083] have
considered the existence and global exponential convergence of positive almost peri-
odic solutions for the generalizedmodel of hematopoiesis, described by the following
nonlinear functional differential equation:

x′(t) = −a(t)x(t) +
m
∑
i=1

bi(t)
1 + xn(t − τi(t))

, n > 0, (5.9)

where a, bi, τi : ℝ → (0,∞) are continuous functions for i = 1, 2, . . . ,m; clearly,
this equation is a generalization of (5.8). This model has been proposed by I. Gyori,
G. Ladas [504] to describe the dynamics of hematopoiesis, i. e., blood cell production.
In any reasonable biological interpretation of model (5.9), only positive functions x(⋅)
can be accepted as solutions. In [51], J. O. Alzabut, J. J. Nieto and G. Tr. Stamov have
analyzed the existence and exponential stability of a positive almost periodic solu-
tion for (5.9), provided thatm = 1 and supt∈ℝ b1(t) < inft∈ℝ a(t). Furthermore, X. Wang
and H. Zhang have proved a new fixed point theorem in [1023] in order to establish
sufficient conditions for the existence, nonexistence and uniqueness of positive al-
most periodic solutions of (5.9) with n > 1. The main results of [1083] are Theorem 3.1
and Theorem 3.2, in which the authors have not used the requirements from [51] and
[1023]. They have assumed that a, bi, τi : ℝ → (0,∞) are almost periodic functions
for i = 1, 2, . . . ,m. Set

a− := inf
t∈ℝ

a(t), a+ := sup
t∈ℝ

a(t), b−i := inft∈ℝ
bi(t) > 0, b+i := sup

t∈ℝ
bi(t),

r := max
1⩽q⩽n

sup
t∈ℝ

τi(t) > 0, M1 :=
∑mi=1 b

+
i

a−
, M2 :=

∑mi=1 b
−
i

a+(1 +Mn
1 )
,

and suppose that

n
m
∑
i=1

b+i < a
−.

Then there exists a unique positive almost periodic solution of (5.9) in the closed set
B∗ = {f ∈ AP(ℝ : ℝ);M2 ⩽ ‖f ‖∞ ⩽ M1}. If we denote by x∗(⋅) this solution, then any
solution x(t; t0,φ) of Eq. (5.9) equipped with the initial condition

xt0 = φ, φ ∈ C+, φ(0) > 0

converges exponentially to x∗(t) as t → +∞; see [1083] for the notion and more de-
tails.
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Almost periodic solutions and almost automorphic solutions of abstract difference
equations
Let l∞(ℕ : X) denote the Banach space of all bounded X-valued sequences equipped
with the sup-norm. We say that an X-valued sequence (xn)n∈ℕ is almost periodic if
and only if for each ε > 0 there exists an integer N0(ε) ∈ ℕ such that among any
N0(ε) consecutive natural numbers, there exists at least one natural number τ ∈ ℕ
satisfying that

‖xn+τ − xn‖ ⩽ ε, n ∈ ℕ;

the number τ is said to be an ε-period of the sequence (xn)n∈ℕ. Any almost periodic
X-valued sequence is bounded.

The class of almost automorphic sequences has been already analyzed in the old
papers by S. Bochner and W.A. Veech. We say that an X-valued sequence (xn)n∈ℤ is
almost automorphic if and only if for every sequence (h′k)k∈ℤ there exist a subsequence
(hk)k∈ℤ of (h′k)k∈ℤ and an X-valued sequence (yn)n∈ℤ satisfying

lim
n→∞

xn+hk = yn, n ∈ ℤ and lim
n→∞

yn−hk = xn, n ∈ ℤ.

The notion asymptotical almost (automorphy) periodicity for an X-valued sequence
(xn)n∈ℤ can be also introduced and analyzed.

Regarding almost (automorphic) periodic sequences and almost (automorphic)
periodic type solutions of abstract differences equations, we have quoted some basic
references in the corresponding part of [631, Section 3.11]. Besides these references,
mention shouldbemadeof [2, 50, 134, 243, 244, 349, 390, 507, 728, 730, 947–949, 1003]
and [1038]; the research monographs by R. Agarwal [20] and R. Agarwal, C. Cuevas,
C. Lizama [21] are also of importance.

c-Almost periodic ultradistributions and c-almost periodic hyperfunctions
In this section, we analyze c-almost periodic ultradistributions and c-almost periodic
hyperfunctions; we will skip all related details concerning c-uniformly recurrent ul-
tradistributions (hyperfunctions) and semi-c-periodic ultradistributions (hyperfunc-
tions). The material is taken from [655].

Assume that (Mp) is a sequence of positive real numbers satisfyingM0 = 1 and the
following conditions:
(M.1) M2

p ⩽ Mp+1Mp−1, p ∈ ℕ,
(M.2) Mp ⩽ AHp sup0⩽i⩽pMiMp−i, p ∈ ℕ, for some A,H > 1.

We will occasionally use the conditions:
(M.3′)∑∞p=1

Mp−1
Mp
<∞,

(M.3) supp∈ℕ∑
∞
q=p+1

Mq−1Mp+1
pMpMq
<∞,

(C) The sequence (M2
p) satisfies (M.3).
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Let us recall that conditions (M.3′) and (C) are substantiallyweaker than (M.3) and that
condition (C) has been essentially employed in the analysis of almost periodic hyper-
functions [291] carried out by J. Chung, S.-Y. Chung, D. Kim, H. J. Kim and the analysis
of representations of quasianalytic ultradistributions carried out by S.-Y. Chung, D.
Kim [292] (it is well known that (Mp) satisfies (C) if and only if there exists a positive
integer k ∈ ℕ such that lim infp→+∞(mkp/mp)

2 > k, wheremp := Mp/Mp−1 for all p ∈ ℕ
and that H. Petzche has proved, in [837], that (Mp) satisfies (M.3) if and only if there
exists a positive integer k ∈ ℕ such that lim infp→+∞mkp/mp > k). If s > 1, then the
Gevrey sequence (p!s) satisfies the above conditions, while the sequence (p!s) satisfies
(M.1), (M.2) and (C) for s > 1/2.

The space of Beurling, resp., Roumieu ultradifferentiable functions, is defined
by 𝒟(Mp) := indlimK⋐⋐ℝ𝒟

(Mp)
K , resp., 𝒟{Mp} := indlimK⋐⋐ℝ𝒟

{Mp}
K , where 𝒟(Mp)

K :=

projlimh→∞𝒟
Mp ,h
K , resp.,𝒟{Mp}

K := indlimh→0𝒟
Mp ,h
K ,

𝒟Mp ,h
K := {ϕ ∈ C

∞(ℝ) : suppϕ ⊆ K, ‖ϕ‖Mp ,h,K <∞}

and

‖ϕ‖Mp ,h,K := sup{
hp|ϕ(p)(t)|

Mp
: t ∈ K, p ∈ ℕ0}.

The asterisk ∗ is used to designate both, the Beurling case (Mp) or the Roumieu case
{Mp}. The space consisting of all linear continuous functions from𝒟∗ into X, denoted
by 𝒟′∗(X) := L(𝒟∗ : X), is said to be the space of all X-valued ultradistributions of
∗-class.

Let us recall (see [617–619] for the basic introduction to the theory of ultradistribu-
tions) that an entire function of the formP(λ) = ∑∞p=0 apλ

p, λ ∈ ℂ, is of class (Mp), resp.,
of class {Mp}, if there exist l > 0 and C > 0, resp., for every l > 0 there exists a constant
C > 0, such that |ap| ⩽ Clp/Mp, p ∈ ℕ. The corresponding ultradifferential operator
P(D) = ∑∞p=0 apD

p is of class (Mp), resp., of class {Mp}. For more details about convolu-
tion of scalar-valued ultradistributions (ultradifferentiable functions), see [617]. The
convolution of Banach space valued ultradistributions and scalar-valued ultradiffer-
entiable functions will be taken in the sense of the considerations given on page 685
of [619]. As in the distributional case, we define ⟨Th,ϕ⟩ := ⟨T ,ϕ(⋅ − h)⟩, T ∈ 𝒟′∗(X),
h > 0, ϕ ∈ 𝒟∗.

The Sato space ℱH consists of all infinitely differentiable functions ϕ : ℝ → ℂ
satisfying that there exist h > 0 and k > 0 such that

‖ϕ‖p,k := sup
x∈ℝ,p∈ℕ0

hp|ϕ(p)(x)|ek|x|

p!
< +∞.

LetℱH be topologized by the corresponding inductive limit topology induced by these
seminorms. The space of all X-valued Fourier hyperfunctions, denoted by ℱ ′H (X), is
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defined as the space of all linear continuous mappings T : ℱH → X, equipped with
the strong topology.

Now we will consider bounded ultradistributions and bounded hyperfunctions
with values in complex Banach spaces. First of all, for every h > 0, we define

𝒟L1((Mp), h) := {f ∈ 𝒟L1 ; ‖f ‖1,h := sup
p∈ℕ0

hp‖f (p)‖1
Mp
<∞}.

Then (𝒟L1 ((Mp), h), ‖ ⋅ ‖1,h) is a Banach space and the space of all X-valued bounded
Beurling ultradistributions of class (Mp), resp., X-valued bounded Roumieu ultradis-
tributions of class {Mp}, is defined as the space consisting of all linear continuous
mappings from𝒟L1 ((Mp)), resp.,𝒟L1 ({Mp}), into X, where

𝒟L1((Mp)) := projlimh→+∞𝒟L1((Mp), h),

resp.,

𝒟L1({Mp}) := indlimh→0+𝒟L1((Mp), h).

These spaces, carrying the strong topologies, will be shortly denoted by𝒟′L1 ((Mp) : X),
resp., 𝒟′L1 ({Mp} : X). It is well known that 𝒟(Mp), resp. 𝒟{Mp}, is a dense subspace of
𝒟L1 ((Mp)), resp.,𝒟L1 ({Mp}), and that𝒟L1 ((Mp)) ⊆ 𝒟L1 ({Mp}).

In particular case Mp := p!, the space 𝒟′L1 ({p!} : X) is said to be the space of
bounded hyperfunctions. As in the scalar-valued case, this space is contained in the
space ℱ ′H (X) of all X-valued Fourier hyperfunctions (see also [293, Definition 3.1] for
the multi-dimensional analogue).

Recall that the heat kernel E(x, t) is defined by E(x, t) := (4πt)−1/2e−x
2/4t, x ∈ ℝ,

t > 0 and E(x, t) := 0, x ∈ ℝ, t ⩽ 0. It can be simply shown that the function E(⋅, t)
belongs to the Sato space for every fixed real number t > 0 and that for each x ∈ ℝ and
t > 0 the function E(x − ⋅, t) belongs to the space𝒟L1 ({p!} : X). Hence, for each Fourier
hyperfunction T ∈ ℱ ′H (X), its Gauss transform u(x, t) := ⟨T ,E(x − ⋅, t)⟩ is infinitely
differentiable in ℝ × (0,∞).

We would like to note that the statements of [293, Theorem 3.4, Theorem 3.5] con-
tinue to hold in the vector-valued case. In connection with this observation, it should
be only observed that the existence of the functions g(x) and h(x), established on [293,
p. 2425, l.-3] (see also [291, p. 735, l.-1; l.-5]), follows from the facts (see [82, Example
3.7.6, Example 3.7.8] for more details) that the Laplacian Δwithmaximal distributional
domain (≡ A) generates a strongly continuous Gaussian semigroup on Lp(ℝn : X), the
operatorA generates a polynomially bounded once integratedGaussian semigroup on
L∞(ℝn : X), the basic results hold about the existence and uniqueness of mild solu-
tions of the abstract (ill-posed) Cauchy problems of the first order and the conclusion
established on [293, p. 2425, l.-4]. In particular, the statement of [291, Theorem 3.1] can
be extended to the vector-valued case.
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Theorem 5.0.19. Suppose that T ∈ ℱ ′H (X). Then the following statements are equiva-
lent:
(i) We have T ∈ 𝒟′L1 ({p!} : X).
(ii) T ∗ φ ∈ L∞(ℝ : X) for all φ ∈ ℱH .
(iii) There exist two bounded continuous functions f : ℝ → X, g : ℝ → X and an

ultradifferential operator P of class {p!2} such that T = P(−Δ)f + g.
(iv) The Gauss transform u(x, t) of T is infinitely differentiable in (0,∞)2 and solves the

heat equation in (0,∞)2, and for every ε > 0 there exists a constant c > 0 such that
u(x, t)
 ⩽ ce

ε/t , x ∈ ℝ, t > 0,

and

⟨T ,φ⟩ = lim
t→0+

+∞

∫
−∞

u(x, t)φ(x) dx, φ ∈ 𝒟L1({p!} : X).

In connection with bounded quasianalytic ultradistributions, we would like to
note that the statement of [291, Lemma 4.2] also holds in the vector-valued case.

Concerning c-almost periodic ultradistributions, we will use the function space

ℰ∗APc (X) := {ϕ ∈ ℰ
∗(X) : ϕ(i) ∈ APc(ℝ : X) for all i ∈ ℕ0},

which is a slight generalization of the space ℰ∗AP(X) used in [640], with c = 1.
In [301] and [640], a bounded X-valued ultradistribution T ∈ 𝒟′L1 ((Mp) : X), resp.,

T ∈ 𝒟′L1 ({Mp} : X), is said to be almost periodic of Beurling class (Mp), resp., almost
periodic of Roumeiu class {Mp}, if and only if there exists a sequence of X-valued
trigonometric polynomials converging to T in 𝒟′L1 ((Mp) : X), resp., 𝒟′L1 ({Mp} : X). If
the sequence (Mp) satisfies (M.3), then T ∈ 𝒟′L1 ((Mp) : X) is almost periodic if and only
if T ∗ φ ∈ AP(ℝ : X) for all φ ∈ 𝒟(Mp).

Concerning [640, Theorem 2], the following result should be stated for c-almost
periodicity.

Theorem 5.0.20. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3′), and let T ∈
𝒟′L1 ((Mp) : X), resp., T ∈ 𝒟′L1 ({Mp} : X). Consider the following assertions:
(i) There exists an ultradifferential operator P(D) = ∑∞p=0 apD

p of class (Mp), resp., of
class {Mp}, and functions f , g ∈APc(ℝ :X) such that the function t → (f (t), g(t)), t ∈ℝ
is c-almost periodic and T = P(D)f + g for all φ ∈ 𝒟L1 ((Mp)), resp., φ ∈ 𝒟L1 ({Mp}).

(ii) For every φ ∈ 𝒟∗, we have T ∗ φ ∈ APc(ℝ : X).
(iii) T ∈𝒟′∗L1 ((Mp) :X), resp. T ∈𝒟′∗L1 ({Mp} :X), and there exists a sequence (ϕn) in ℰ∗APc (X)

such that limn→∞ ϕn = T for the topology of𝒟′L1 ((Mp) : X), resp.𝒟′L1 ({Mp} : X).
(iv) There exists h > 0 such that for each compact set K ⊆ ℝ, in the Beurling case, resp.,

for each compact set K ⊆ ℝ and for each h > 0, in the Roumieu case, the following
holds: T ∗ φ ∈ APc(ℝ : X), φ ∈ 𝒟

Mp ,h
K .

Then we have (i)⇒ (ii)⇔ (iii)⇔ (iv).
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Unfortunately, if (Mp) additionally satisfies (M.3), then the equivalence of the
above assertions cannot be so simply clarified in the Beurling case (see, e. g., [301,
Lemma 2] and the proofs of [301, Theorem 1, Theorem 2]); more precisely, it is not clear
how one can prove that (iv) implies (i) for c-almost periodicity; we can only prove that
(iv) implies that there exists an ultradifferential operator P(D) = ∑∞p=0 apD

p of class
(Mp), resp., of class {Mp}, and functions f , g ∈ APc(ℝ : X) such that T = P(D)f + g for
all φ ∈ 𝒟L1 ((Mp)), resp., φ ∈ 𝒟L1 ({Mp}).

Concerning almost periodic quasianalytic ultradistributions, we would like to
note that the statement of [291, Theorem 4.3] continues to hold in the vector-valued
case. Concerning c-almost periodic quasianalytic ultradistributions and asymptot-
ically c-almost periodic ultradistributions of ∗-class, let us only mention that the
notion introduced in [640, Definition 1, Definition 2] and the notion of the space B′0(X)
can be straightforwardly extended to the ultradistributional case (cf. also the recent
article [342] by A. Debrouwere, L. Neyt and J. Vindas). Also, it could be very interesting
to reconsider [640, Theorem 3] for asymptotical c-almost periodicity.

Now we would like to say something about the class of c-almost periodic hyper-
functions. We will follow the approach of J. Chung, S.-Y. Chung, D. Kim and H. J. Kim
obeyed in [291]. In this paper, the authors use the operation calculus approach to hy-
perfunctions developed by T. Matsuzawa in [754–756], which is based on the use of
Gauss kernels.

First of all, we introduce the vector-valued analogue of [291, Definition 3.2]:

Definition 5.0.21. A hyperfunction T ∈ 𝒟′L1 ({p!} : X) is said to be almost periodic if
and only if there exists a sequence of trigonometric polynomials in X which converges
to T in𝒟′L1 ({p!} : X).

Furthermore, we wish to emphasize that the statement of [291, Theorem 3.5] can
be extended to the vector-valued case.

Theorem 5.0.22. Suppose that T ∈ 𝒟′L1 ({p!} : X). Then the following statements are
equivalent:
(i) T is almost periodic.
(ii) T ∗ φ ∈ AP(ℝ : X) for all φ ∈ ℱH .
(iii) There exist two almost periodic functions f : ℝ → X, g : ℝ → X and an ultradiffer-

ential operator P of class {p!2} such that T = P(−Δ)f + g.
(iv) The Gauss transform u(x, t) of T is almost periodic.

Now we would like to introduce the notion of a c-almost periodic hyperfunction,
which extends the notion of an almost periodic hyperfunction (c = 1) due to Theo-
rem 5.0.22(ii).

Definition 5.0.23. Suppose that c ∈ S1 and T ∈ 𝒟′L1 ({p!} : X). Then T is said to be
c-almost periodic if and only if T ∗ φ ∈ APc(ℝ : X) for all φ ∈ ℱH .
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Immediately from definition, it follows that any c-almost periodic hyperfunction
is almost periodic, bounded and belongs to the Fourier class of hyperfunctions and
that the space of c-almost periodic functions is closed under differentiation. Many
structural properties of c-almost periodic hyperfunctions can be obtained by using
the corresponding structural properties of space APc(ℝ : X) given in [586]; for exam-
ple, any almost anti-periodic hyperfunction (obtained by plugging c = −1 in the above
definition) is almost periodic and any c-almost periodic hyperfunction is almost anti-
periodic, provided that |c|= 1, p ∈ℤ\{0}, q ∈ℕ, (p, q)= 1 and arg(c)= (p/q)π. Further-
more,many structural properties of c-almost periodic hyperfunctions can be obtained
analogously as for c-almost periodic distributions; for example, the statements of [436,
Proposition 2.5, Proposition 2.6] continue tohold for c-almost periodichyperfunctions.

Concerning c-almost periodic hyperfunctions, we have the following analogue of
Theorem 5.0.22.

Theorem 5.0.24. Suppose that T ∈ 𝒟′L1 ({p!} : X). Consider the following statements:
(i) There exists a X2-valued c-almost periodic function x → (f (x), g(x)), x ∈ ℝ and an

ultradifferential operator P of class {p!2} such that T = P(−Δ)f + g.
(ii) For every φ, ψ ∈ ℱH , the function x → ((T ∗ φ)(x), (T ∗ ψ)(x)), x ∈ ℝ is c-almost

periodic.
(iii) T is c-almost periodic.
(iv) The Gauss transform u(x, t) of T is c-almost periodic.

Then we have (i)⇔ (ii)⇒ (iii)⇔ (iv).

Proof. The proofs of the equivalence (iii)⇔ (iv), the implication (ii)⇒ (i) and the im-
plication (ii)⇒ (iii) can be given similarly as in the proof of [291, Theorem 3.5]. In order
to see that (i) implies (ii), we can argue as in the proof of [436, Theorem 2.8]. In actual
fact, let φ, ψ ∈ ℱH . Let ε > 0 be given, and let τ be a common (c, ε)-almost period of
functions f (⋅) and g(⋅). If we assume that ‖φ‖p,k < ∞ for some h, k > 0, then for each
t ∈ ℝ we have

(T ∗ φ)(t) = ⟨T ,φ(t − ⋅)⟩ =
∞

∑
p=0
(−1)pap

+∞

∫
−∞

φ(2p)(v)f (t − v) dv +
+∞

∫
−∞

φ(v)g(t − v) dv

and therefore
(T ∗ φ)(t + τ) − c(T ∗ φ)(t)



⩽


∞

∑
p=0
(−1)pap

+∞

∫
−∞

φ(2p)(v)[f (t + τ − v) − cf (t − v)] dv

+
+∞

∫
−∞

φ(v)[g(t + τ − v) − cg(t − v)] dv


⩽ ε[
∞

∑
p=0
|ap|
+∞

∫
−∞

φ
(2p)(v) dv +

+∞

∫
−∞

φ(v)
 dv].
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Wehave the existence of a finite real numberM ⩾ 1 such that |φ(2p)(v)|⩽Mh−pe−k|v|(2p)!
for all p ∈ ℕ0 and v ∈ ℝ. Moreover, for any l ∈ (0, h/4), we have the existence of a finite
real number c > 0 such that |ap| ⩽ clpp!2 for all p ∈ ℕ0, so that we can continue the
calculation as follows:

⩽ ε[
∞

∑
p=0

clpp!2Mh−p(2p)!
+∞

∫
−∞

e−k|v| dv +
+∞

∫
−∞

e−k|v| dv]

⩽ ε[
∞

∑
p=0

clp22pMh−p
+∞

∫
−∞

e−k|v| dv +
+∞

∫
−∞

e−k|v| dv].

A similar estimate holds with the function ψ(⋅) considered, with the same number τ.
This simply completes the proof.

Remark 5.0.25. Consider the following condition:
(i)′ There exist two c-almost periodic functions x → f (x), x ∈ ℝ, x → g(x), x ∈ ℝ and

an ultradifferential operator P of class {p!2} such that T = P(−Δ)f + g.

Then clearly (i) implies (i)′ but it is not clear whether (i)′ implies (ii).

Affine-periodic solutions and pseudo affine-periodic solutions for various classes of
systems of ordinary differential equations
In a great number of recent research studies, the notions of affine-periodicity and
pseudoaffine-periodicity play an incredible role in thequalitative analysis of solutions
for various classes of systems of ordinary differential equations, systems of functional
differential equations and systems of Newtonian equations of motion with friction;
see, e. g., [255, 282, 703, 707, 760, 1016, 1017, 1035, 1087] for some results obtained
by Chinese mathematicians in this direction. In this section, we will only describe the
main ideas of research studies carried out by X. Chang, Y. Li in [255] and Y. Li, H.Wang,
X. Yang in [707]. By a (Q,T) affine-periodic function x : ℝ → ℝn we mean any contin-
uous function x(⋅) for which

x(t + T) = Qx(t), t ∈ ℝ,

where Q is a regular matrix of format n × n and T > 0. Some qualitative properties
of x(⋅) like periodicity, subharmonicity, or quasi-periodicity are induced by the corre-
sponding qualitative properties of matrix Q; the most important subclasses of regu-
lar matrices for Q are power identity matrices, i. e., those matrices for which we have
Qk = I for some integer k ∈ ℤ, or orthogonal matrices belonging to the group O(n);
these subclasses are important for modeling certain real phenomena describing rota-
tion motions in body from mechanics.
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In [255], X. Chang and Y. Li have investigated the rotating periodic solutions of
second-order dissipative dynamical systems. More precisely, the authors have consid-
ered the following dissipative dynamical system:

u′′ + cu′ + ∇g(u) + h(u) = e(t), t ∈ ℝ,

where c > 0 is a constant, g(u) = g(|u|), h ∈ C(ℝn : ℝn), h(u) = Qh(Q−1u) for some
orthogonal matrix Q ∈ O(n) and e ∈ C(ℝ : ℝn) satisfies e(t + T) = Qe(t) for all t ∈ ℝ. It
has been shown that the above equation admits a solution of the form u(t+T) = Qu(t),
t ∈ ℝ, which is usually called rotating periodic solution.

In [707], Y. Li, H. Wang and X. Yang have analyzed Fink’s conjecture on affine-
periodic solutions and Levinson’s conjecture to Newtonian systems. The authors have
analyzed the following system of ordinary differential equations:

x′(t) = f (t, x(t)), t ∈ ℝ,

where f ∈ C(ℝ × ℝn : ℝn), f (t, x) ≡ Qf (t,Q−1x), the following system of functional
differential equations:

x′(t) = F(t, xt), t ∈ ℝ,

where xt(s) = x(t + s) for s ∈ [−r,0] and fixed r > 0, F : ℝ × C → ℝn is continuous with
C being the Banach space of continuous functions C([−r,0] : ℝn) equipped with the
sup-normand F(t,φ) ≡ QF(t,Q−1φ), and the following systemofNewtonian equations
of motion with friction:

x′′ + A(t, x)u′ + ∇V(x) + h(u) = e(t), t ∈ ℝ,

where A : ℝ × ℝm → ℝm,m, V : ℝm → ℝ and e : ℝ → ℝm are continuous, A(t, x) sat-
isfies the local Lipschitz condition with respect to the variable x, V(⋅) is continuously
differentiable and A(t +T , x)y ≡ QA(t,Q−1x)Q−1y, ∇V(x) ≡ Q∇V(Q−1x), e(t +T) ≡ Qe(t).
Following the authors, such a vectorial equation is called a (Q,T) affine-periodic or-
dinary differential equation, a (Q,T) affine-periodic functional differential equation,
or a (Q,T) affine-periodic Newtonian equation, respectively. Practically, the authors
have essentially verified Levinson’s conjecture for Newtonian systems with friction
and proposed the problem of existence of a (Q,T) affine-periodic solution for a New-
tonian system with friction.

𝕋-Almost periodic functions
Assume that𝕋 : X → X is a linear isomorphism. The notion of (Q,T) affine-periodicity
is a special case of the notion of (w,𝕋)-periodicity,whichhas recently been introduced
and analyzed in the infinite-dimensional setting byM. Fečkan, K. Liu and J.-R.Wang in
[434]: A function h : I → X is called (w,𝕋)-periodic if and only if there existsw ∈ I∖{0}
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such that h(t+w) = 𝕋h(t) for all t ∈ I. In the same paper, the authors have investigated
the existence and uniqueness of (w,T)-periodic solutions of the following semilinear
impulsive differential equations:

y′(t) = Cy(t) + h(t, y(t)), t ̸= τi, i ∈ ℕ;
Δy|t=τi = y(τ

+
i ) − y(τ

−
i ) = Dy(τ

−
i ) + di,

where C is the generator a strongly continuous semigroup on X, D ∈ L(X), y(τ+i ) and
y(τ−i )denote the right and left limits of function y(t)at thepoint t = τi > 0, respectively,
and y(τi) ≡ y(τ−i ).

Now, we consider the following notion: For a given ε > 0, a real number τ > 0 is
called (ε,𝕋)-almost period of a continuous function f : I → X if and only if

f (t + τ) − 𝕋f (t)
 < ε, t ∈ I .

Denote by ϑ𝕋(f , ε) the set of all (ε,𝕋)-almost periods of f (⋅), i. e.,

ϑ𝕋(f , ε) := {τ ∈ I : sup
t∈I

f (t + τ) − 𝕋f (t)
 < ε}.

A continuous function f : I → X is called 𝕋-almost periodic if and only if for any
ε > 0 the set ϑ𝕋(f , ε) is relatively dense in [0,∞).

In the case that there exists an integer k ∈ ℕ0 such that 𝕋k = I, the notion of
(w,𝕋)-periodicity is a special case of the notion of 𝕋-almost periodicity; the converse
statement does not true in general. In the case that 𝕋 = cI, where c ∈ ℂ ∖ {0} and I
denotes the identity operator on X, the notion of 𝕋-almost periodicity reduces to the
notion of c-almost periodicity.

For more details about the class of𝕋-almost periodic functions as well as the gen-
eral class of multi-dimensional ρ-almost periodic functions, we refer the reader to the
forthcoming paper [433] by M. Fečkan et al.

Interpolation by periodic and almost periodic functions
The problems of interpolation by periodic and almost periodic functions were inten-
sively studied by a group of Polish mathematicians during the 1960s. Probably the
first fundamental result in this direction was obtained in 1961 by J. Mycielski [804],
who proved that there exists a sequence (tn) of positive real numbers such that, for ev-
ery sequence (εn) in {0, 1}, there exists a continuous periodic function f : ℝ→ ℂ such
that f (tn) = εn for all n ∈ ℕ, answering so a question proposed earlier by E.Marczewski
and C. Ryll-Nardzewski. Two years later, this result was extended by J. S. Lipiński in
[716], who proved that there exists a sequence (tn) of positive real numbers such that,
for every bounded real function g(⋅) defined on the set {tn : n ∈ ℕ}, there exists a con-
tinuous periodic function f : ℝ → ℂ such that f (tn) = g(tn) for all n ∈ ℕ. The essence
of the above-mentioned results is the rapid increasing of the sequence (tn) as n→ +∞:
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in [804], we concretely have tn = (3 + α)n, where α > 0. In [887], C. Ryll-Nardzewski
has shown that, for every sequence (εn) in {0, 1}, there exists a continuous periodic
function f : ℝ → ℂ such that f (3n) = εn for all n ∈ ℕ and that there does not exist
a sequence (tn) of positive real numbers with tn = O(2n), n ∈ ℕ satisfying the above
property.

Interpolation by almost periodic functions was investigated for the first time by
S. Hartman [515] in 1961 and later reconsidered in a series of his joint research papers
with C. Ryll-Nardzewski [517–519] during the period 1964–1967. In [517], the authors
analyzed the following properties for the subset Λ of the real line ℝ (and the Abelian
topological groups):
I. Λ satisfies the property I if and only if any bounded, uniformly continuous func-

tion g : Λ→ ℂ can be extended to an almost periodic function f : ℝ→ ℂ;
I0. Λ satisfies the property I0 if and only if any bounded function g : Λ → ℂ can be

extended to an almost periodic function f : ℝ→ ℂ.

The authors first proved that there is no sequence (εn) in {0, 1} and there is no almost
periodic function f : ℝ → ℂ such that f (nα) = εn for all n ∈ ℕ, provided that α > 0 is
not an integer; this essentially follows from the equality

lim
N→∞

1
N

N
∑
n=1

f (nα) = lim
T→∞

1
2T

T

∫
−T

f (t) dt,

which is valid for these values of number α > 0. The main results concerning the
properties I and I0 and extensions to uniformly continuous almost periodic functions
were proved in [517, Theorem 1, Theorem 2], while the third main result of this paper,
[517, Theorem 3], analyzes a similar problem for extensions to Stepanov almost pe-
riodic functions. In [963], E. Strzelecki proved that any sequence (tn) of positive real
numbers such that tn+1/tn > 1 + δ, n ∈ ℕ, where δ > 0 is a fixed real number, has
the property I0; later, this result was extended in [518, Theorem 5]. Interpolation by
Levitan almost periodic functions was considered by S. Hartman in [516] (1974).

We close Part I with the observation that we will not analyze the Bohr compactifi-
cations nor the interplays between the almost periodicity and the representation the-
ory in thismonograph. Concerning these important subjects, we refer the reader to the
doctoral dissertation of L. Riggins [872], the research articles [43] byR. Alizade, A. Pan-
car, [330] by B. A. Davey, M. Haviar, H. Priestley, [462] by J. Galindo, S. Hernández,
T.-S.Wu, [512–514] by J. E.Hart, K. Kunen, [1104] by P. Zlatoš, the articles [539, 885, 888]
(Bohr compactifications) and the presentation [1022] by S. Wang, the research arti-
cles [110] by U. Bader, C. Rosendal, R. Sauer, [334] by M. Daws, [479] by A. Gorbis,
A. Tempelman, [740] by M. Yu. Ljubich, Yu. I. Ljyubich, [573] by M. I. Kadets, the arti-
cles [451, 571, 741] (almost periodic representations) and the references cited therein.
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Themain aim of this part is to consider various types of multi-dimensional almost pe-
riodic functions and multi-dimensional almost automorphic functions with values in
complexBanach spaces. Unless stated otherwise,we assume that (X, ‖⋅‖), (Y , ‖⋅‖Y ) and
(Z, ‖ ⋅ ‖Z) are complex Banach spaces, n ∈ ℕ, 0 ̸= I ⊆ ℝn, ℬ is a non-empty collection
of non-empty subsets of X, R is a non-empty collection of sequences inℝn and RX is a
non-empty collection of sequences in ℝn × X; usually, ℬ denotes the collection of all
bounded subsets ofX or all compact subsets ofX. SetℬX := {y ∈ X : (∃B ∈ ℬ) y ∈ B}. Al-
though itmay seemslightly redundant,wewill always assumehenceforth thatℬX = X,
i. e., that for each x ∈ X there exists B ∈ ℬ such that x ∈ B.

If t0 ∈ ℝn and ϵ > 0, then we set B(t0, ϵ) := {t ∈ ℝn : |t− t0| ≤ ϵ}, where | ⋅ | denotes
the Euclidean norm in ℝn. By (e1, e2, . . . , en) we denote the standard basis of ℝn.

https://doi.org/10.1515/9783110763522-007
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6 Multi-dimensional almost periodic type functions
and applications

This chapter consists of four sections, Section 6.1–Section 6.4.

6.1 Multi-dimensional almost periodic type functions

In this section, we provide deeper insight intomulti-dimensional almost periodic type
functions and their applications to abstract Volterra integro-differential equations.

Suppose that F : ℝn → X is a continuous function. Let us recall that F(⋅) is almost
periodic if and only if, for every real number ε > 0, there exists a real number l > 0
such that for each t0 ∈ ℝn there exists τ ∈ B(t0, l) with

F(t + τ) − F(t)
 ⩽ ε, t ∈ ℝn;

equivalently, for every sequence (bn) in ℝn, there exists a subsequence (an) of (bn)
such that (F(⋅+an)) converges inCb(ℝn : X), or there exists a sequence of trigonometric
polynomials inℝn which converges uniformly to F(⋅). If this is the case, then themean
value

M(F) := lim
T→+∞

1
(2T)n
∫

s+KT

F(t) dt

exists and is independent of s ∈ ℝn, where KT := {t = (t1, t2, . . . , tn) ∈ ℝn : |ti| ⩽
T for 1 ⩽ i ⩽ n}.

The notion of an almost periodic function f : G → E, where G is a topological
group and E is a complete locally convex space, was introduced in the landmark paper
by S. Bochner and J. von Neumann [191] (1935); see also the paper by J. von Neumann
[811] (1934) for the scalar-valued caseE = ℂ. Almost periodic functions on (semi-)topo-
logical (semi-)groups have been also analyzed in the research monographs [158] by
J. F. Berglund, K. H. Hofmann, [233] by R. B. Burckel, [696] by B.M. Levitan and [824]
by A. A. Pankov, the doctoral dissertations of A. B. Ferrentino [440] and X. Zhu [1103],
the survey article [934] by A. I. Shtern as well as the articles [38, 143, 159, 294, 304,
351, 352, 473, 525, 582, 773, 778, 779, 1048]; for more details about almost automorphic
functions on (semi-)topological groups, the reader may consult [772] and [870].

Working with general almost periodic functions on topological groups is rather
non-trivial and, clearly, it is very difficult to provide certain applications to the abstract
PDEs following this general approach. Because of that, we have decided to concretize
the situation here by considering various notions of almost periodicity for the vector-
valued functions defined on the domain of form I × X, where 0 ̸= I ⊆ ℝn generally
does not satisfy the semigroup property I + I ⊆ I or contain the zero vector. Actu-
ally, the main aim of this section is to introduce and systematically analyze various

https://doi.org/10.1515/9783110763522-008
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classes of (asymptotically) (RX ,ℬ)-multi-almost periodic type functions and (asymp-
totically) Bohrℬ-almost periodic type functions aswell as toprovide several important
applications to the abstract PDEs in Banach spaces. With the exception of the usual
notion of Bohr almost periodicity only, the introduced notion is new even in the one-
dimensional setting.

In Definition 6.1.1 and Definition 6.1.2, we introduce the notion of (R,ℬ)-multi-
almost periodicity and the notion of (RX,ℬ)-multi-almost periodicity for a continu-
ous function F : I × X → Y . The convolution invariance of space consisting of all
(RX,ℬ)-multi-almost periodic functions is stated in Proposition 6.1.5, while the supre-
mum formula for the class of (R,ℬ)-multi-almost periodic functions is stated in Propo-
sition 6.1.6 (we also analyze the relative compactness of the range of the restrictions of
an (R,ℬ)-multi-almost periodic function F : I ×X → Y to the sets of form I ×B, B ∈ ℬ).

The notion of Bohr ℬ-almost periodicity and the notion of ℬ-uniform recurrence
for a continuous function F : I × X → Y are introduced in Definition 6.1.9, provided
that the region I satisfies I+I ⊆ I. Numerous illustrative examples of Bohrℬ-almost pe-
riodic functions and ℬ-uniformly recurrent functions are presented in Example 6.1.12
and Example 6.1.13. In Definition 6.1.14, we introduce the notion of Bohr (ℬ, I′)-almost
periodicity and (ℬ, I′)-uniform recurrence, provided that 0 ̸= I′ ⊆ I ⊆ ℝn, F : I ×X → Y
is a continuous function and I + I′ ⊆ I. After that, we provide several examples of Bohr
(ℬ, I′)-almost periodic functions and (ℬ, I′)-uniformly recurrent functions in Exam-
ple 6.1.16. The relative compactness of range F(I×B), where B ∈ ℬ, for a Bohrℬ-almost
periodic function F : I ×X → Y is analyzed in Proposition 6.1.17. The Bochner criterion
for Bohr ℬ-almost periodic functions is stated in Theorem 6.1.18. Proposition 6.1.19 is
crucial for clarifying the composition principles of Bohr ℬ-almost periodic functions;
there we investigate the common ε-periods (see Definition 6.1.9(i)) for the finite fami-
lies of Bohr ℬ-almost periodic functions defined onℝn ×X (see also Proposition 6.1.20
and Proposition 6.1.21, where we analyze the pointwise products of Bohr ℬ-functions
and (R,ℬ)-multi-almost periodic functionswith scalar-valued functions). The uniform
continuity of a Bohr ℬ-almost periodic function F : I × X → Y is analyzed in Propo-
sition 6.1.22. The analysis carried out in this proposition indicates again that it is very
unpleasant to work, in the case of consideration of Bohr ℬ-almost periodicity, with a
general region I ̸= ℝn.

Definition 6.1.26 introduces the notion of space C0,𝔻(I × X : Y), which is crucial
for introducing the notions of various types of 𝔻-asymptotically (R,ℬ)-multi-almost
periodicity and 𝔻-asymptotically Bohr ℬ-almost periodicity; see Definition 6.1.27.
The main structural properties of introduced classes of almost periodic functions
are established in Proposition 6.1.28 and Proposition 6.1.29–Proposition 6.1.32. Defi-
nition 6.1.33 introduces the notion of 𝔻-asymptotical Bohr (ℬ, I′)-almost periodicity
of type 1 and 𝔻-asymptotical (ℬ, I′)-uniform recurrence of type 1, which are further
analyzed in terms of several results preceding Subsection 6.1.4, where we investigate
the differentiation and integration of (RX ,ℬ)-multi-almost periodic type functions.
Our main results in this part are Theorem 6.1.35 and Theorem 6.1.40.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.1 Multi-dimensional almost periodic type functions | 319

Concerning the proof of Theorem 6.1.35, we should recall that H. Bart and S. Gold-
berg have proved in [119] that, for every function f ∈ AP([0,∞) : X), there exists a
unique almost periodic function𝔼f : ℝ→ X such that𝔼f (t) = f (t) for all t ⩾ 0.Wewill
investigate the extensions of multi-dimensional almost periodic functions and multi-
dimensional uniformly recurrent functions in Remark 4.2.98, Theorem 6.1.37 and
Corollary 6.1.38 following the method proposed in the proof of Theorem 6.1.35, which
is essentially based on the argumentation contained in the proof of [881, Theorem 3.4],
the important theoretical result deduced by W.M. Ruess and W.H. Summers. Subsec-
tion 6.1.5 is devoted to the study of composition theorems for multi-dimensional
almost periodic type functions. The final subsection is reserved for some applica-
tions of our theoretical results to the abstract Volterra integro-differential equations
in Banach spaces.

6.1.1 (R,ℬ)-Multi-almost periodic type functions

The main aim of this subsection is to analyze (R,ℬ)-multi-almost periodic type func-
tions. Let us recall that ℬ denotes a non-empty collection of non-empty subsets of X,
R denotes a non-empty collection of sequences in ℝn and RX denotes a non-empty
collection of sequences in ℝn × X.

In the following two definitions, we introduce the notion of (R,ℬ)-multi-almost
periodicity and one of its most important generalizations, the notion of (RX,ℬ)-multi-
almost periodicity (the both notions can be introduced on general semitopological
groups but the possibility for providing certain applications to the abstract PDEs is
rather confined in this approach).

Definition 6.1.1. Suppose that 0 ̸= I ⊆ ℝn, F : I × X → Y is a continuous function, and
the following condition holds:

If t ∈ I , b ∈ R and l ∈ ℕ, then we have t + b(l) ∈ I . (6.1)

Then we say that the function F(⋅; ⋅) is (R,ℬ)-multi-almost periodic if and only if for ev-
ery B ∈ ℬ and for every sequence (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence

(bkl = (b
1
kl , b

2
kl , . . . , b

n
kl )) of (bk) and a function F

∗ : I × X → Y such that

lim
l→+∞

F(t + (b1kl , . . . , b
n
kl); x) = F

∗(t; x), (6.2)

uniformly for all x ∈ B and t ∈ I. By AP(R,ℬ)(I × X : Y) we denote the space consisting
of all (R,ℬ)-multi-almost periodic functions.

Definition 6.1.2. Suppose that 0 ̸= I ⊆ ℝn, F : I ×X → Y is a continuous function, and
the following condition holds:

If t ∈ I , (b;x) ∈ RX and l ∈ ℕ, then we have t + b(l) ∈ I . (6.3)
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Then we say that the function F(⋅; ⋅) is (RX,ℬ)-multi-almost periodic if and only if for
every B ∈ ℬ and for every sequence ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)k) ∈ RX there exist a

subsequence ((b;x)kl = ((b
1
kl , b

2
kl , . . . , b

n
kl ); xkl )kl ) of ((b;x)k) and a function F

∗ : I × X →
Y such that

lim
l→+∞

F(t + (b1kl , . . . , b
n
kl); x + xkl) = F

∗(t; x), (6.4)

uniformly for all x ∈ B and t ∈ I. By AP(RX ,ℬ)(I × X : Y)we denote the space consisting
of all (RX,ℬ)-multi-almost periodic functions.

In our further investigations of (R,ℬ)-multi-almost periodicity ((RX ,ℬ)-multi-
almost periodicity),wewill always assume that (6.1) ((6.3)) holds for I andR (I andRX).
Before we proceed, we would like to provide several useful observations about the
notion introduced above.

Remark 6.1.3.
(i) The notion introduced in Definition 6.1.1 is a special case of the notion introduced

in Definition 6.1.2. In order to see this, suppose that the function F : I × X → Y is
continuous. Set

RX := {b : ℕ→ I × X; (∃a ∈ R)b(l) = (a(l);0) for all l ∈ ℕ}.

Then it is clear that (6.1) holds for I and R if and only if (6.3) holds for I and RX ;
furthermore, with this collection of sequences, we find that F(⋅; ⋅) is (R,ℬ)-multi-
almost periodic if and only if F(⋅; ⋅) is (RX,ℬ)-multi-almost periodic. It is also clear
that, if the function F(⋅; ⋅) is (RX,ℬ)-multi-almost periodic, then we have F∗(t; x) ∈
R(F) for all x ∈ X and t ∈ I.

(ii) The domain I from the above two definitions is rather general. For example, if
n = 1, I = [0,∞),X = {0},ℬ = {X} and R is the collection of all sequences in [0,∞),
then the notion of (R,ℬ)-multi-almost periodicity is equivalent with the notion of
asymptotical almost periodicity considered usually since a function f : [0,∞) →
Y is asymptotically almost periodic if and only if the set H(f ) := {f (⋅ + s) : s ⩾ 0}
is relatively compact in Cb([0,∞) : X), which means that for any sequence (bn)
of non-negative real numbers there exists a subsequence (an) of (bn) such that
(f (⋅ + an)) converges in Cb([0,∞) : X). Moreover, if I is a cone in ℝn, X = {0},
ℬ = {X}, Y = ℂ and R is a collection of all sequences in I, then a well-known
result of K. deLeeuwand I. Glicksberg [352, Theorem9.1] says that any (R,ℬ)-multi-
almost periodic function F : I → ℂ can be uniformly approximated by linear
combinations of semicharacters of I, which will be exponential functions in this
case. If X = {0}, then we also say that the function F : I → Y is R-multi-almost
periodic, resp. RX-multi-almost periodic.

(iii) It is clear that an R-multi-almost periodic function need not be bounded in gen-
eral; for example, if R is the collection of all bounded sequences in ℝn, then an
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application of the Bolzano–Weierstrass theorem shows that the identical map-
ping from ℝn into ℝn is R-multi-almost periodic. The existence of an unbounded
sequence (bk) ∈ R does not imply the boundedness of F(⋅), as well; for exam-
ple, any unbounded uniformly recurrent function F : ℝn → Y satisfying the es-
timate (6.9) below with the sequence (τk) in ℝn satisfying limk→+∞ |τk | = +∞ is
R-multi-almost periodic with R being the collection consisting of the sequence
(τk) and all its subsequences.

(iv) Suppose 0 ∈ I, I + I ⊆ I, RX denotes the collection of all sequences in I × X and
ℬ = {X}. Let us recall that two sufficient conditions for a continuous function
F : I × X → Y to be (RX,ℬ)-multi-almost periodic were obtained by P. Milnes in
[773, Theorem 2] and T. Kayano in [582, Theorem 3]; some equivalent conditions
for F(⋅; ⋅) to be (RX,ℬ)-multi-almost periodic can be found in [773, Theorem 1(i)]
and [582, Theorem 4(d)].

Let k ∈ ℕ and Fi : I × X → Yi (1 ⩽ i ⩽ k). Then we define the function (F1, . . . , Fk) :
I × X → Y1 × ⋅ ⋅ ⋅ × Yk by

(F1, . . . , Fk)(t; x) := (F1(t; x), . . . , Fk(t; x)), t ∈ I , x ∈ X.

Using an induction argument and an elementary argumentation, we may deduce the
following.

Proposition 6.1.4.
(i) Suppose that k ∈ ℕ, 0 ̸= I ⊆ ℝn, (6.1) holds and for any sequence which belongs

to R we find that any its subsequence also belongs to R. If the function Fi(⋅; ⋅) is
(R,ℬ)-multi-almost periodic for 1 ⩽ i ⩽ k, then the function (F1, . . . , Fk)(⋅; ⋅) is also
(R,ℬ)-multi-almost periodic.

(ii) Suppose that k ∈ ℕ, 0 ̸= I ⊆ ℝn, (6.1) holds and for any sequence which belongs
to RX we find that any its subsequence also belongs to RX. If the function Fi(⋅; ⋅) is
(RX,ℬ)-multi-almost periodic for 1 ⩽ i ⩽ k, then the function (F1, . . . , Fk)(⋅; ⋅) is also
(RX,ℬ)-multi-almost periodic.

The convolution invariance of (RX,ℬ)-multi-almost periodicity is analyzed in the
following proposition (see also Theorem 7.3.6 below).

Proposition 6.1.5. Suppose that h ∈ L1(ℝn), the function F(⋅; ⋅) is (RX,ℬ)-multi-almost
periodic and for each bounded subset D of X there exists a constant cD > 0 such that
‖F(t; x)‖Y ⩽ cD for all t ∈ ℝn, x ∈ D. Suppose, further, that for each sequence ((b;x)k =
((b1k , b

2
k , . . . , b

n
k); xk)k) ∈ RX and for each set B ∈ ℬ we find that B + {xk : k ∈ ℕ} is a

bounded set in X. Then the function

(h ∗ F)(t; x) := ∫
ℝn

h(σ)F(t − σ; x) dσ, t ∈ ℝn, x ∈ X,
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is (RX,ℬ)-multi-almost periodic and satisfies the requirement that for eachbounded sub-
set D of X there exists a constant c′D > 0 such that ‖(h ∗ F)(t; x)‖Y ⩽ c′D for all t ∈ ℝn,
x ∈ D.

Proof. Since h ∈ L1(ℝn), the prescribed assumptions imply that the function (h∗F)(⋅; ⋅)
is well defined as well as that for each bounded subset D of X there exists a constant
c′′D > 0 such that ‖(h∗F)(t; x)‖Y ⩽ c

′′
D for all t ∈ ℝ

n, x ∈ D. The continuity of the function
(h∗F)(⋅; ⋅) follows from the dominated convergence theoremand the same assumption
on the function F(⋅; ⋅). Let the set B ∈ ℬ be fixed. Then for each sequence ((b;x)k =
((b1k , b

2
k , . . . , b

n
k); xk) ∈ RX there exist a subsequence ((b;x)kl = ((b

1
kl , b

2
kl , . . . , b

n
kl ); xkl )kl )

of ((b;x)k) and a function F∗ : ℝn × X → Y such that (6.4) holds. By our assumption,
B + {xk : k ∈ ℕ} is a bounded set in X so that there exists a finite real constant c′′′B > 0
such that ‖F∗(t; x)‖Y ⩽ c′′′B for all t ∈ ℝn, x ∈ B. Keeping this in mind and our standing
hypothesis Xℬ = X, we see that the function (h∗F∗)(⋅; ⋅) is well defined. The remainder
of the proof can be deduced by using the estimate

(h ∗ F)(t + bkl ; x + xkl ) − (h ∗ F
∗)(t; x)Y

⩽ ∫
ℝn

h(σ)

F(t + bkl − σ; x + xkl ) − F

∗(t − σ; x)Y dσ,

which holds for any t ∈ ℝn, l ∈ ℕ and x ∈ X; see Definition 6.1.2.

Almost directly from the above definitions we may conclude the following: If
X ∈ ℬ, I = ℝn and RX is a collection of all sequences in ℝn × X, then the notion of
(RX,ℬ)-multi-almost periodicity is equivalent with the usual notion of almost period-
icity (see, e. g., [696, p. 255]).

For the notion introduced inDefinition 6.1.1, the supremum formula canbe proved
under the following conditions.

Proposition 6.1.6. Suppose that F : I × X → Y is (R,ℬ)-multi-almost periodic, a ⩾ 0
and x ∈ X. If there exists a sequence b(⋅) in Rwhose any subsequence is unbounded and
for which we have T − b(l) ∈ I whenever T ∈ I and l ∈ ℕ, then

sup
t∈I

F(t; x)
Y = sup

t∈I ,|t|⩾a

F(t; x)
Y . (6.5)

Proof. We will include all relevant details of the proof for the sake of completeness.
Let ε > 0, a ⩾ 0 and x ∈ X be given. Then (6.5) will be satisfied if we prove that

F(t; x)
Y ⩽ ε + sup

t∈I ,|t|⩾a

F(t; x)
Y . (6.6)

Let B ∈ ℬ be such that x ∈ B, and let b(⋅) be any sequence in R with the prescribed
assumptions. Then there exists an integer l0 ∈ ℕ such that
F(T − (b

1
kl0
, . . . , bnkl0 ); x) − F(T − (b

1
kl , . . . , b

n
kl); x)
Y ⩽ ε, l ⩾ l0, T ∈ I , x ∈ B.

Plugging t = T − (b1kl0 , . . . , b
n
kl0
), we simply obtain (6.6).
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Now we will prove the following result.

Proposition 6.1.7. Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is (RX,ℬ)-
multi-almost periodic and, for every sequence which belongs to RX, any its subsequence
also belongs to RX. If the sequence (Fj(⋅; ⋅)) converges uniformly to a function F(⋅; ⋅) on X,
then the function F(⋅; ⋅) is (RX,ℬ)-multi-almost periodic.

Proof. The proof is very similar to the proof of [492, Theorem 2.1.10] butwewill provide
all relevant details. Let t ∈ I and x ∈ X be given. In order to prove that the function
F(⋅; ⋅) is continuous at (t; x), observe first that our standing assumption ℬX = X gives
the existence of a set B ∈ ℬ such that x ∈ B. Since the sequence (Fj(⋅; ⋅)) converges
uniformly to a function F(⋅; ⋅) on X, we have the existence of a positive integer n0 ∈ ℕ
such that ‖Fn0 (t

′; x′) − F(t′; x′)‖Y ⩽ ε/3 for all t′ ∈ I and x′ ∈ X. After that, it suffices to
observe that

F(t; x) − F(t
′; x′)Y ⩽

F(t
′; x′) − Fn0(t

′; x′)Y +
Fn0(t

′; x′) − Fn0 (t; x)
Y

+ Fn0 (t; x) − F(t; x)
Y , t′ ∈ I , x′ ∈ X, (6.7)

as well as to employ the continuity of Fn0 (⋅; ⋅) at (t; x). Furthermore, let the set B ∈ ℬ
and the sequence ((bk ; xk) = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX be given. Since we have as-

sumed that, for every sequence which belongs to RX, any of its subsequences also
belongs to RX, using the diagonal procedure we get the existence of a subsequence
((bkl ; xkl ) = ((b

1
kl , b

2
kl , . . . , b

n
kl ); xkl )) of ((bk ; xk)) such that for each integer j ∈ ℕ there

exists a function F∗j : I × X → Y such that

lim
l→+∞
Fj(t + (b

1
kl , . . . , b

n
kl); x + xkl) − F

∗
j (t; x)
Y = 0, (6.8)

uniformly for x ∈ B and t ∈ I. Fix now a positive real number ε > 0. Since

F
∗
i (t; x) − F

∗
j (t; x)
Y ⩽
F
∗
i (t; x) − Fi(t + (b

1
kl , . . . , b

n
kl); x + xkl)

Y
+ Fi(t + (b

1
kl , . . . , b

n
kl); x + xkl) − Fj(t + (b

1
kl , . . . , b

n
kl); x + xkl)

Y
+ Fj(t + (b

1
kl , . . . , b

n
kl); x + xkl) − F

∗
j (t; x)
Y ,

and (6.8) holds, we can find a number l0 ∈ ℕ such that for all integers l ⩾ l0 we have

F
∗
i (t; x) − Fi(t + (b

1
kl , . . . , b

n
kl); x + xkl)

Y
+ Fj(t + (b

1
kl , . . . , b

n
kl); x + xkl) − F

∗
j (t; x)
Y < 2ε/3,

uniformly for x ∈ B and t ∈ I. Since the sequence (Fj(⋅; ⋅)) converges uniformly to a
function F(⋅; ⋅), there exists N(ε) ∈ ℕ such that for all integers i, j ∈ ℕ with min(i, j) ⩾
N(ε) we have

Fi(t + (b
1
kl , . . . , b

n
kl); x + xkl) − Fj(t + (b

1
kl , . . . , b

n
kl); x + xkl)

Y < ε/3,
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uniformly for x ∈ B and t ∈ I. This implies that (F∗j (t; x)) is a Cauchy sequence in Y and
therefore convergent to an elementF∗(t; x), say. The above arguments simply yield that
limj→+∞ F∗j (t; x) = F

∗(t; x) uniformly for t ∈ I and x ∈ B. Furthermore, observe that for
each j ∈ ℕ we have

F(t + (b
1
kl , . . . , b

n
kl); x + xkl) − F

∗(t; x)Y

⩽ F(t + (b
1
kl , . . . , b

n
kl); x + xkl) − Fj(t + (b

1
kl , . . . , b

n
kl); x + xkl)

Y

+ Fj(t + (b
1
kl , . . . , b

n
kl); x + xkl) − F

∗
j (t; x)
Y +
F
∗
j (t; x) − F

∗(t; x)Y .

It can be simply shown that there exists a number j0(ε) ∈ ℕ such that for all integers
j ⩾ j0 the first addend and the third addend in the above estimate are less or greater
than ε/3, uniformly for x ∈ B and t ∈ I. For the second addend, take any integer l ∈ ℕ
such that

Fj(t + (b
1
kl , . . . , b

n
kl); x + xkl) − F

∗
j (t; x)
Y < ε/3, x ∈ B, t ∈ I .

This completes the proof in a routine manner.

We can similarly deduce the following.

Corollary 6.1.8. Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is (R,ℬ)-multi-
almost periodic and, for every sequence which belongs to R, any its subsequence also
belongs to R. If for each B ∈ ℬ there exists εB > 0 such that the sequence (Fj(⋅; ⋅)) con-
verges uniformly to a function F(⋅; ⋅) on the set B∘∪⋃x∈𝜕B B(x, εB), then the function F(⋅; ⋅)
is (R,ℬ)-multi-almost periodic.

Proof. The proof is almost completely the same as the proof of the previous propo-
sition and we will only emphasize the main differences. The first difference is with
regards to the continuity of the function F(⋅; ⋅) at (t; x), where t ∈ I and x ∈ X are
given in advance. As above, we have the existence of a set B ∈ ℬ such that x ∈ B.
Since the sequence (Fj(⋅; ⋅)) converges uniformly to a function F(⋅; ⋅) on the set B′ ≡ B∘∪
⋃x∈𝜕B B(x, εB), we have the existence of a positive integer n0 ∈ ℕ such that ‖Fn0 (t

′; x′)−
F(t′; x′)‖Y ⩽ ε/3 for all t′ ∈ I and x′ ∈ B′. After that, it suffices to apply (6.7) and the
continuity of Fn0 (⋅; ⋅) at (t; x) (it should be noted that this part can be applied for prov-
ing the continuity of the function F(⋅; ⋅) at (t; x) in the previous proposition under this
weaker condition). The second difference is with regards to the uniform continuity; in
Proposition 6.1.7, it is necessary to assume that the sequence (Fj(⋅; ⋅)) converges uni-
formly to a function F(⋅; ⋅) on the whole space X. In the newly arisen situation, it suf-
fices to assume that the sequence (Fj(⋅; ⋅)) converges uniformly to a function F(⋅; ⋅) on
the set B, only.

The following special cases will be very important for us in the sequel:

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.1 Multi-dimensional almost periodic type functions | 325

L1. R = {b : ℕ → ℝn; for all j ∈ ℕ we have bj ∈ {(a, a, a, . . . , a) ∈ ℝn : a ∈ ℝ}}. If n = 2
and ℬ denotes the collection of all bounded subsets of X, then we also say that
the function F(⋅; ⋅) is bi-almost periodic.
The notion of bi-almost periodicity plays an incredible role in the research study
[674] by H. C. Koyuncuoǧlu and M. Adıvar, where the authors have analyzed the
existence of almost periodic solutions for a class of discrete Volterra systems
and the research study [851] by M. Pinto and C. Vidal, where the authors have
used the notion of integrable bi-almost periodic Green functions of linear ho-
mogeneous differential equations and the Banach contraction principle to show
the existence of almost and pseudo-almost periodic mild solutions for a class
of the abstract differential equations with constant delay (see also the research
article [264], where A. Chávez, S. Castillo and M. Pinto have used the notion of
bi-almost-automorphicity in their investigation of almost automorphic solutions
of abstract differential equations with piecewise constant arguments, as well as
[148, 717, 745]). The notion of k-bi-almost periodicity was introduced by M. Pinto
in [848] and further analyzed in [315, Section 4], where the authors have analyzed
the existence and uniqueness of weighted pseudo-almost periodic solutions for a
class of abstract integro-differential equations.

L2. R is the collection of all sequences b(⋅) in ℝn, resp. RX is the collection of all se-
quences inℝn × X. This is the limit case in our analysis because, in this case, any
(R,ℬ)-multi-almost periodic function, resp. (RX,ℬ)-multi-almost periodic func-
tion, is automatically (R1,ℬ)-multi-almost periodic, resp. (R1X,ℬ)-multi-almost
periodic, for any other collection R1 of sequences b(⋅) in ℝn, resp. any other col-
lection R1X is the collection of sequences in ℝ

n × X.

Concerning Bohr type definitions, we will consider the following notion (see also the
paper [836] by A. I. Perov and T. K. Kacaran).

Definition 6.1.9. Suppose that 0 ̸= I ⊆ ℝn, F : I × X → Y is a continuous function and
I + I ⊆ I. Then we say that:
(i) F(⋅; ⋅) is Bohr ℬ-almost periodic if and only if for every B ∈ ℬ and ε > 0 there exists

l > 0 such that for each t0 ∈ I there exists τ ∈ B(t0, l) ∩ I such that

F(t + τ; x) − F(t; x)
Y ⩽ ε, t ∈ I , x ∈ B.

(ii) F(⋅; ⋅) isℬ-uniformly recurrent if and only if for every B ∈ ℬ there exists a sequence
(τk) in I such that limk→+∞ |τk | = +∞ and

lim
k→+∞

sup
t∈I ;x∈B

F(t + τk ; x) − F(t; x)
Y = 0. (6.9)

If X ∈ ℬ, then it is also said that F(⋅; ⋅) is Bohr almost periodic (uniformly recurrent).
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Remark 6.1.10. Suppose that F : I × X → Y is a continuous function. If ℬ′ is a certain
collection of subsets of X which contains ℬ, R′ is a certain collection of sequences in
ℝn which contains R and Eq. (6.1) holds with the family R replaced with the family
R′ therein, resp. R′X is a certain collection of sequences in ℝn × X which contains RX
and Eq. (6.3) holds with the family RX replaced with the family R′X therein. If F(⋅; ⋅)
is (R′,ℬ′)-multi-almost periodic, resp. (R′X,ℬ

′)-multi-almost periodic, then F(⋅; ⋅) is
(R,ℬ)-multi-almost periodic, resp. (RX,ℬ)-multi-almost periodic. Similarly, if F(⋅; ⋅) is
Bohr ℬ′-almost periodic (ℬ-uniformly recurrent) for some family ℬ′ which contains ℬ,
then F(⋅; ⋅) is Bohr ℬ-almost periodic (ℬ-uniformly recurrent). Therefore, it is impor-
tant to know the maximal collections ℬ, R and RX , with the meaning clear, for which
the function F(⋅; ⋅) is (R,ℬ)-multi-almost periodic, (RX,ℬ)-multi-almost periodic, Bohr
ℬ-almost periodic or ℬ-uniformly recurrent.

It is clear that any Bohr (ℬ-)almost periodic function is (ℬ-)uniformly recurrent;
in general, the converse statement does not hold. It is also clear that, if F(⋅; ⋅) is
ℬ-uniformly recurrent and x ∈ X, then we have the following supremum formula:

sup
t∈I

F(t; x)
Y = sup

t∈I ,|t|⩾a

F(t; x)
Y ,

which in particular shows that for each x ∈ X the function F(⋅; x) is identically equal
to zero provided that the function F(⋅; ⋅) is ℬ-uniformly recurrent and limt∈I ,|t|→+∞ F(t;
x) = 0. The statements of [166, Theorem 7, p. 3] and Proposition 6.1.5 can be reformu-
lated in this framework, as well.

Keeping in mind the proof of [697, Property 4, p. 3], the following result can be
proved as in the one-dimensional case.

Proposition 6.1.11. Suppose that F : I × X → Y is (R,ℬ)-multi-almost periodic, resp.
(RX,ℬ)-multi-almost periodic (Bohr ℬ-almost periodic/ℬ-uniformly recurrent), and ϕ :
Y → Z is uniformly continuous on R(F). Then ϕ ∘ F : I × X → Z is (R,ℬ)-multi-almost
periodic, resp. (RX,ℬ)-multi-almost periodic (Bohrℬ-almost periodic/ℬ-uniformly recur-
rent).

We continue by providing several illustrative examples and useful observations.

Example 6.1.12. In contrastwith the class of Bohrℬ-almost periodic functions,we can
simply construct a great number of multi-dimensional ℬ-uniformly recurrent func-
tions by using Proposition 6.1.11 and the fact that, for any given tuple a = (a1, . . . , an) ∈
ℝn ̸= 0, the linear function

g(t) := a1t1 + ⋅ ⋅ ⋅ + antn, t = (t1, . . . , tn) ∈ ℝ
n

is uniformly recurrent provided that n > 1. To verify this, it suffices to observe that the
setW := {(t1, . . . , tn) ∈ ℝn : a1t1 + ⋅ ⋅ ⋅ + antn = 0} is a non-trivial linear submanifold of
ℝn as well as that g(t+ t′) = g(t) for all t ∈ ℝn and t′ ∈ W . Therefore, for any uniformly
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continuous function ϕ : ℝ→ X, we find that the function ϕ ∘ g : ℝn → X is uniformly
recurrent.

Example 6.1.13.
(i) Suppose that Fj : X → Y is a continuous function, for each B ∈ ℬ we have

supx∈B ‖Fj(x)‖Y < ∞ and the complex-valued mapping t → ∫t0 fj(s) ds, t ⩾ 0 is
almost periodic (1 ⩽ j ⩽ n). Set

F(t1, . . . , tn+1; x) :=
n
∑
j=1

tj+1

∫
tj

fj(s) ds ⋅ Fj(x) for all x ∈ X and tj ⩾ 0, 1 ⩽ j ⩽ n.

Then the mapping F : [0,∞)n+1 ×X → Y is Bohr ℬ-almost periodic. In actual fact,
for every B ∈ ℬ and ε > 0, we have

F(t1 + τ1, . . . , tn+1 + τn+1; x) − F(t1, . . . , tn+1; x)
Y

⩽
n
∑
j=1



tj+1+τj+1

∫
tj+τj

fj(s) ds −
tj+1

∫
tj

fj(s) ds

⋅ Fj(x)
Y

⩽
n
∑
j=1
{


tj+1+τj+1

∫
0

fj(s) ds −
tj+1

∫
0

fj(s) ds


+


tj+τj

∫
0

fj(s) ds −
tj

∫
0

fj(s) ds

} ⋅ Fj(x)

Y

⩽ M
n
∑
j=1
{


tj+1+τj+1

∫
0

fj(s) ds −
tj+1

∫
0

fj(s) ds


+


tj+τj

∫
0

fj(s) ds −
tj

∫
0

fj(s) ds

},

whereM = supx∈B,1⩽j⩽n ‖Fj(x)‖Y . The corresponding statement follows by consid-
ering the common ε/(2nM)-periods τj of the functions∫

⋅
0 fj−1(s) ds and∫

⋅
0 fj(s) ds for

2 ⩽ j ⩽ n, the ε/(2nM)-periods τ1 of the function∫
⋅
0 f1(s) ds and the ε/(2nM)-periods

τn+1 of the function ∫
⋅
0 fn+1(s) ds. Furthermore, let us denote by Gj(⋅) the unique al-

most periodic extension of the function t → ∫t0 fj(s) ds, t ⩾ 0 to the whole real line
(1 ⩽ j ⩽ n). Let (bk) be any sequence in ℝn+1. Then we can use Theorem 6.1.18 be-
low to conclude that there exists a subsequence (bkl ) of (bk) such that, for every
j ∈ ℕn, Fj(tj + b

j
kl
, tj+1 + b

j+1
kl
) = Gj(tj+1 + b

j+1
kl
) − Gj(tj + b

j
kl
) converges to a function

F∗j (tj, tj+1) as l → +∞, uniformly for (tj, tj+1) ∈ ℝ2. Define

F(t1, . . . , tn+1; x) :=
n
∑
j=1

F∗j (tj, tj+1)Fj(x), for all x ∈ X and tj ⩾ 0, 1 ⩽ j ⩽ n.
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Let B ∈ ℬ be fixed. Then it can be simply shown that

lim
l→+∞

F(t1 + b
1
kl , . . . , tn+1 + b

n+1
kl ; x) = F(t1, . . . , tn+1; x)

uniformly for x ∈ B and t = (t1, . . . , tn+1) ∈ ℝn+1. Hence, the function F1(⋅) is
R-multi-almost periodic with R being the collection of all sequences in ℝn+1.

(ii) Suppose that F : X → Y is a continuous function, for each B ∈ ℬ we have
supx∈B ‖F(x)‖Y < ∞ and the complex-valued mapping t → fj(t), t ⩾ 0 is almost
periodic, resp. bounded and uniformly recurrent (1 ⩽ j ⩽ n). Set

F(t1, . . . , tn; x) :=
n
∏
j=1

fj(tj) ⋅ F(x) for all x ∈ X and tj ⩾ 0, 1 ⩽ j ⩽ n.

Then themappingF : [0,∞)n×X → X is Bohrℬ-almost periodic, resp.ℬ-uniformly
recurrent. In actual fact, for every B ∈ ℬ and ε > 0, we have

F(t1 + τ1, . . . , tn + τn; x) − F(t1, . . . , tn; x)
Y

⩽ M{f1(t1 + τ1) − f1(t1)
 ⋅

n
∏
j=2

fj(tj + τj)
 +
f1(t1)
 ⋅

n
∏
j=2

fj(tj + τj) − fj(tj)
}

⩽ Mf1(t1 + τ1) − f1(t1)
 ⋅

n
∏
j=2
‖fj‖∞ + ‖f1‖∞ ⋅

n
∏
j=2

fj(tj + τj) − fj(tj)
,

whereM = supx∈B ‖F(x)‖Y . Repeating this procedure, we simply get the required
statement; furthermore, we can use the usual Bochner criterion and repeat the
above calculus in order to see that the function F2(⋅) is R-multi-almost periodic
with R being the collection of all sequences in ℝn.

(iii) Suppose thatG : [0,∞)n → ℂ is almost periodic, resp. bounded and uniformly re-
current, F : [0,∞)×X → Y is Bohrℬ-almost periodic, resp.ℬ-uniformly recurrent,
and for each set B ∈ ℬ we have supt⩾0;x∈B ‖F(t; x)‖Y <∞. Set

F(t1, . . . , tn+1; x) := G(t1, . . . , tn) ⋅ F(tn+1; x)
for all x ∈ X and tj ⩾ 0, 1 ⩽ j ⩽ n + 1.

Then the mapping F : [0,∞)n+1 × X → Y is Bohr ℬ-almost periodic, resp.
ℬ-uniformly recurrent,which canbe simply shownbyusing the estimate (ti, τi ⩾ 0
for 1 ⩽ i ⩽ n + 1; x ∈ X):

F(t1 + τ1, . . . , tn+1 + τn+1; x) − F(t1, . . . , tn+1; x)
Y

⩽ G(t1 + τ1, . . . , tn + τn) − G(t1, . . . , tn)
 ⋅
F(tn+1 + τn+1; x)

Y
+ G(t1, . . . , tn)

 ⋅
F(tn+1 + τn+1; x) − F(tn+1; x)

Y ,

the boundedness of the function G(⋅, . . . , ⋅) and the assumption that for each set
B ∈ ℬ we have supt⩾0;x∈B ‖F(t; x)‖Y <∞ (see also Proposition 6.1.17 below).
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It is worth noting that we can extend the notion introduced in Definition 6.1.9 as
follows.

Definition 6.1.14. Suppose that 0 ̸= I′ ⊆ I ⊆ ℝn, F : I ×X → Y is a continuous function
and I + I′ ⊆ I. Then we say that:
(i) F(⋅; ⋅) is Bohr (ℬ, I′)-almost periodic if and only if for every B ∈ ℬ and ε > 0 there

exists l > 0 such that for each t0 ∈ I′ there exists τ ∈ B(t0, l) ∩ I′ such that

F(t + τ; x) − F(t; x)
Y ⩽ ε, t ∈ I , x ∈ B. (6.10)

(ii) F(⋅; ⋅) is (ℬ, I′)-uniformly recurrent if and only if for every B ∈ ℬ there exists a
sequence (τn) in I′ such that limn→+∞ |τn| = +∞ and

lim
n→+∞

sup
t∈I ;x∈B

F(t + τn; x) − F(t; x)
Y = 0.

If X ∈ ℬ, then it is also said that F(⋅; ⋅) is Bohr I′-almost periodic (I′-uniformly recur-
rent).

Clearly, the notion from Definition 6.1.9 is recovered by plugging I′ = I and any
(ℬ, I′)-uniformly recurrent function is (ℬ, I)-uniformly recurrent provided that I+I ⊆ I.
This is not true for almost periodicity: we can simply construct a great number of cor-
responding examples showing that the notion of (ℬ, I′)-almost periodicity is neither
stronger nor weaker than the notion of (ℬ, I)-almost periodicity, provided that I+I ⊆ I.

Before proceeding any further, wewould like to notice that the assumption I+ I′ ⊆
I is crucial as well as that the notion introduced above can be understood even if the
assumption I′ ⊆ I is neglected (a similar comment can be made for the corresponding
Stepanov and Weyl classes of multi-dimensional almost periodic functions analyzed
below). For example, we have the following.

Example 6.1.15. Suppose that L > 0 is a fixed real number aswell as that the functions
t → f (t), t ∈ ℝ and t → g(t), t ∈ ℝ are almost periodic. Set I := {(x, y) ∈ ℝ2 : |x−y| ⩾ L},
I′ := {(τ, τ) : τ ∈ ℝ} and

u(x, y) := f (x) + g(y)
x − y

, (x, y) ∈ I .

Then I + I′ ⊆ I but I′ is not a subset of I. Furthermore, if ε > 0 is given and τ > 0 is a
common ε-period of the functions f (⋅) and g(⋅), then we have

u(x + τ, y + τ) − u(x, y)
 ⩽
‖f (x + τ) − f (x)‖ + ‖g(y + τ) − g(y)‖

|x − y|
⩽ 2ε/L, (x, y) ∈ I .

This implies that the function u(⋅, ⋅) is Bohr I′-almost periodic. Observe, finally, that
under some regularity conditions on the functions f (⋅) and g(⋅), the function u(⋅, ⋅) is a
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solution of the partial differential equation

uxy −
ux
x − y
+

uy
x − y
= 0.

In many concrete situations, the situation in which I′ ̸= I can occur; for example,
we have the following.

Example 6.1.16.
(i) Suppose that the complex-valued mapping t → ∫t0 fj(s) ds, t ⩾ 0 is almost peri-

odic, resp. bounded and uniformly recurrent (1 ⩽ j ⩽ n). Set

F1(t1, . . . , t2n) :=
n
∏
j=1

tj+n

∫
tj

fj(s) ds and tj ∈ ℝ, 1 ⩽ j ⩽ 2n.

Then the argumentation used in Example 6.1.13(i)–(ii) shows that the mapping
F1 : ℝ2n → ℂ is both Bohr I′-almost periodic, resp. I′-uniformly recurrent, where
I′ = {(τ, τ) : τ ∈ ℝn}; in the case of consideration of almost periodicity, we can
use [631, Theorem 2.1.1(xiv)] in order to see that F1(⋅) is also Bohr I′′-almost peri-
odic, where I′′ = {(a, a, . . . , a) ∈ ℝ2n : a ∈ ℝ}. Furthermore, in the same case, we
can use Theorem 6.1.18 below and the usual Bochner criterion for the functions
of one real variable to see that the function F1(⋅) is Bohr almost periodic because
it is R-almost periodic with R being the collection of all sequences in ℝ2n.

(ii) Suppose that an X-valued mapping t → ∫t0 fj(s) ds, t ∈ ℝ, is almost periodic,
resp. bounded and uniformly recurrent, as well as that a strongly continuous
operator family (Tj(t))t∈ℝ ⊆ L(X,Y) is uniformly bounded (1 ⩽ j ⩽ n). Set

F2(t1, . . . , t2n) :=
n
∑
j=1

Tj(tj − tj+n)
tj+n

∫
tj

fj(s) ds

for all tj ∈ ℝ, 1 ⩽ j ⩽ 2n.

Since, for every ti, τi ∈ ℝ (1 ⩽ j ⩽ 2n) with τj = τj+n (1 ⩽ j ⩽ n), we have
F2(t1 + τ1, . . . , t2n + τ2n) − F2(t1, . . . , t2n)

Y

⩽ M
n
∑
j=1
{


tj+τj

∫
0

fj(s) ds −
tj

∫
0

fj(s) ds

+


tj+n+τj

∫
0

fj(s) ds −
tj+n

∫
0

fj(s) ds

},

whereM = sup1⩽j⩽n supt∈ℝ ‖Tj(t)‖, we may conclude as above that the mapping
F2 : ℝ2n → Y is Bohr I′-almost periodic, resp. I′-uniformly recurrent, where I′ =
{(τ, τ) : τ ∈ ℝn}, but not generally almost periodic, in the case of consideration of
almost periodicity; in this case,we also find that F2(⋅) is Bohr I′′-almost periodic,
where I′′ = {(a, a, . . . , a) ∈ ℝ2n : a ∈ ℝ}, and that the function F2(⋅) is R-multi-
almost periodic with R being the collection of all sequences in I′.
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(iii) Suppose that an X-valued mapping t → fj(t), t ∈ ℝ is almost periodic, resp.
bounded and uniformly recurrent, Fj : X → X is continuous as well as that
a strongly continuous operator family (Tj(t))t∈ℝ ⊆ L(X,Y) satisfies the require-
ment that ‖Tj(t)‖ ⩽ Mje−ωj|t|, t ∈ ℝ with ωj > ‖fj‖∞ (1 ⩽ j ⩽ n). Set

𝔽3(t1, . . . , t2n; x) :=
n
∑
j=1

e
∫
tj+n
tj

fj(s) dsTj(tj − tj+n)Fj(x)

for all x ∈ X and tj ∈ ℝ, 1 ⩽ j ⩽ 2n.

Suppose, additionally, that for each set B ∈ ℬ we have

sup
1⩽j⩽n;x∈B

Fj(x)
 <∞.

Arguing as before, we may conclude with the help of the elementary inequality
|ez − 1| ⩽ |z| ⋅ e|z|, z ∈ ℂ that the mapping 𝔽3 : ℝ2n × X → Y is Bohr (ℬ, I′)-almost
periodic, resp. (ℬ, I′)-uniformly recurrent, where I′ = {(τ, τ) : τ ∈ ℝn}, but not
generally Bohr ℬ-almost periodic, in the case of consideration of almost period-
icity; in this case, we also find that 𝔽3(⋅; ⋅) is Bohr (ℬ, I′′)-almost periodic, where
I′′ = {(a, a, . . . , a) ∈ ℝ2n : a ∈ ℝ}, and that the function F2(⋅) is R-multi-almost
periodic with R being the collection of all sequences in I′.

(iv) Suppose that −∞ ⩽ α < β ⩽ +∞ and f : Ω ≡ {z ∈ ℂ : α < Re z < β} → X is an
analytic almost periodic function (see also [824, Appendix 3]). Set, for α < α′ <
β′ < β, Iα′ ,β′ := [α′, β′] × ℝ, I′α′ ,β′ := {0} × ℝ and F(x, y) := f (x + iy), (x, y) ∈ Iα′ ,β′ .
Then F(⋅, ⋅) is Bohr I′α′ ,β′ -almost periodic.

(v) In connectionwith Example 6.1.12 and the notion introduced inDefinition 6.1.14,
the following should be stated: Suppose that 0 ̸= I ⊆ ℝn, I0 = [0,∞) or I0 =
ℝ, a = (a1, . . . , an) ∈ ℝn ̸= 0 and the linear function g(t) := a1t1 + ⋅ ⋅ ⋅ + antn,
t = (t1, . . . , tn) ∈ I maps surjectively the region I onto I0. Suppose, further, that
f : I0 → X is a uniformly recurrent function as well as that a sequence (αk) in
I0 satisfies the requirement that limk→+∞ |αk | = +∞ and limk→+∞ supt∈I0 ‖f (t +
αk) − f (t)‖ = 0. Define I′ := g−1({αk : k ∈ ℕ}) and F : I → X by F(t) := f (g(t)),
t ∈ I. Then F(⋅) is I′-uniformly recurrent, and F(⋅) is not almost periodic provided
that f (⋅) is not almost periodic. In order to see this, observe that the surjectivity
of the mapping g : I → I0 implies the existence of a sequence (τk) in I′ such
that g(τk) = αk for all k ∈ ℕ. Due to the Cauchy–Schwarz inequality, we have
|τk | ⩾ |αk |/|a|→ +∞ as k → +∞. Furthermore, for every t ∈ I, we have

F(t + τk) − F(t)


⩽ f (g(t + τk)) − f (g(t) + αk)
 +
f (g(t) + αk) − f (g(t))


= f (g(t + τk)) − f (g(t + τk))

 +
f (g(t) + αk) − f (g(t))


= f (g(t) + αk) − f (g(t))

 ⩽ sup
t∈I0

f (t + αk) − f (t)
→ 0,
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as k → +∞. Suppose now that f (⋅) is not almost periodic. We will prove that F(⋅)
is not almost periodic, as well. Let l > 0 be arbitrary. Due to our assumption,
there exists ε > 0 such that there exists a subinterval I′′ ⊆ I0 of length 2|a|l such
that for each τ ∈ I′′ there exists t ∈ I0 such that ‖f (t + τ) − f (t)‖ > ε. Let i′′ be
the center of I′′. Then there exists t0 ∈ I such that g(t0) = i′′ and this simply
implies that for each α ∈ B(t0, l)∩ I we have g(α) ∈ I′′. Therefore, for fixed α from
this range, we can find t ∈ I0 such that ‖f (t + τ) − f (t)‖ > ε, where τ = g(α). By
surjectivity of g(⋅), we have the existence of a tuple t ∈ I such that g(t) = t, which
gives the required result.

(vi) Let f : ℝ → ℝ be given by (2.28). Then f (⋅) is uniformly continuous, uniformly
recurrent (the sequence (αk ≡ 2kπ)k∈ℕ can be chosen in definition of uniform
recurrence) and unbounded. Let a = (a1, . . . , an) ∈ ℝn ̸= 0, let I′ = g−1({2kπ : k ∈
ℕ}) and let F : ℝn → ℝ be given by F(t) := f (a1t1 + ⋅ ⋅ ⋅+antn), t = (t1, . . . , tn) ∈ ℝn.
Then the function F(⋅) is I′-uniformly recurrent and not almost periodic; further-
more, F(⋅) is uniformly continuous and unbounded.

(vii) Suppose thatK is a bounded Lebesguemeasurable set and I+K ⊆ I. Thenwe can
simply prove that the Bohr (ℬ, I′)-almost periodicity, resp. (ℬ, I′)-uniform recur-
rence, of the function F : I × X → Y implies the Bohr (ℬ, I′)-almost periodicity,
resp. (ℬ, I′)-uniform recurrence, of the function G : I × X → Y defined by

G(t; x) :=
t+K

∫
t

F(σ; x) dσ = ∫
K

F(σ + t; x) dσ, t ∈ I , x ∈ X,

which extends the conclusions established in [1067, Example 7, p. 33] to the
multi-dimensional case; furthermore, if F : I × X → Y is (R,ℬ)-multi-almost
periodic and for each x ∈ X we have supt∈I ‖F(t; x)‖Y < ∞, resp. F : I × X → Y
is (RX ,ℬ)-multi-almost periodic and for each B ∈ ℬ, x ∈ B and each sequence
(xk) in X for which there exists a sequence (bk) in I such that (bk ; xk) ∈ RX we
have supt∈I ‖F(t + bk ; x + xk)‖Y < ∞, then the use of dominated convergence
theorem shows that the function G(⋅; ⋅) is likewise (R,ℬ)-multi-almost periodic,
resp. (RX ,ℬ)-multi-almost periodic.

(viii) The notion of Bloch (p, k)-periodicity can be simply extended to the functions
of several real variables as follows [521, 522]: a bounded continuous function
F : I → X is said to be Bloch (p,k)-periodic, or Bloch periodic with period p and
Bloch wave vector or Floquet exponent k, where p ∈ I and k ∈ ℝn if and only if
F(x+p) = ei⟨k,p⟩F(x), x ∈ I (of course, we assume here that p+ I ⊆ I). Arguing as
in Remark 4.2.57, we may conclude that the Bloch (p,k)-periodicity of the func-
tion F(⋅) implies the Bohr (ℬ, I′)-almost periodicity of function e−i⟨k,⋅⟩F(⋅)with I′

being the intersection of I and the one-dimensional submanifold generated by
the vector p; furthermore, if k is orthogonal to p, then the function F(⋅) will be
Bohr (ℬ, I′)-almost periodic.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.1 Multi-dimensional almost periodic type functions | 333

The previous examples show that the notions of Bohr I′-almost periodicity and
Bohr I′-uniform recurrence are extremely important in the case that I′ ̸= I. But we feel
it is our duty to say that the fundamental properties of Bohr I′-almost periodic func-
tions and Bohr I′-uniformly recurrent functions cannot be so simply clarified in the
case that I′ ̸= I. Because of that, we will basically assume henceforth that I′ = I; our
research has thrown up many questions in need of further analyses of Bohr I′-almost
periodicity and Bohr I′-uniform recurrence in the case I′ ̸= I.

It can be simply shown that the subsequent proposition is applicable if I = [0,∞)n

or I = ℝn.

Proposition 6.1.17. Suppose that 0 ̸= I ⊆ ℝn, I + I ⊆ I, I is closed, F : I × X → Y is Bohr
ℬ-almost periodic and ℬ is any family of compact subsets of X. If

(∀l > 0) (∃t0 ∈ I) (∃k > 0) (∀t ∈ I)(∃t
′
0 ∈ I)

(∀t′′0 ∈ B(t
′
0, l) ∩ I) t − t

′′
0 ∈ B(t0, kl) ∩ I , (6.11)

then for each B ∈ ℬ the set {F(t; x) : t ∈ I , x ∈ B} is relatively compact in Y; in particular,
supt∈I ;x∈B ‖F(t; x)‖Y <∞.

Proof. Let B ∈ ℬ and ε > 0 be given. Then we can find a finite number l > 0 such
that for each s ∈ I there exists τ ∈ B(s, l) ∩ I such that (6.10) holds with t0 = s. Let
t0 ∈ I and k > 0 be such that (6.11) holds. Since I is closed and B is compact, we
find that the set {F(s; x) : s ∈ B(t0, kl) ∩ I , x ∈ B} is compact in Y . Let t ∈ I be fixed.
We will show that ‖F(t; x)‖Y ⩽ M + ε for all x ∈ B. By our assumption, there exists
t′0 ∈ I such that, for every t

′′
0 ∈ B(t

′
0, l) ∩ I, we have t ∈ t

′′
0 + [B(t0, kl) ∩ I]. On the other

hand, there exists τ = t′′0 ∈ B(t
′
0, l) ∩ I such that ‖F(s + τ; x) − F(s; x)‖Y ⩽ ε, s ∈ I,

x ∈ B. Clearly, s = t − τ ∈ B(t0, kl) ∩ I, which simply implies from the last estimate that
‖F(t; x)‖Y ⩽ M + ε for all x ∈ B. This implies that {F(s; x) : s ∈ B(t0, kl) ∩ I , x ∈ B} is an
ε-net for {F(t; x) : t ∈ I , x ∈ B}, which completes the proof in a routine manner.

Suppose now that F : ℝn × X → Y is a Bohr ℬ-almost periodic function, where ℬ
is any family of compact subsets of X. Let B ∈ ℬ be fixed. We will consider the Banach
space l∞(B : Y) consisting of all bounded functions f : B → Y , equipped with the
sup-norm. Define the function FB : ℝn → l∞(B : Y) by

[FB(t)](x) := F(t; x), t ∈ ℝn, x ∈ B. (6.12)

By Proposition 6.1.17, this mapping is well defined. Furthermore, this mapping satis-
fies the requirement that for each ε > 0 there exists l > 0 such that for each t0 ∈ ℝn

there exists τ ∈ B(t0, l) ∩ ℝn such that

d(FB(t + τ), FB(t)) ⩽ ε, t ∈ I .

Hence, FB(⋅) is Bohr almost periodic in the sense of definition given in [824, Subsection
1.2, p. 7]. By [824, Theorem1.2, p. 7], it follows thatF : ℝn×X → Y is (R,ℬ)-multi-almost
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periodic with R being the collection of all sequences in ℝn (case [L2]). The converse
statement can be deduced similarly, and therefore, the following Bochner criterion
holds good.

Theorem 6.1.18. Suppose that F : ℝn×X → Y is continuous,ℬ is any family of compact
subsets of X and R is the collection of all sequences in ℝn. Then F(⋅; ⋅) is Bohr ℬ-almost
periodic if and only if F(⋅; ⋅) is (R,ℬ)-multi-almost periodic.

As a direct consequence of Proposition 6.1.4(i) and Theorem 6.1.18, we have the
following important result for our further investigations (see [442, pp. 17–24] for the
notion of a uniformly almost periodic family, where the corresponding problematic
has been considered for infinite number of almost periodic functions; for the sake of
brevity, we will not consider this topic here).

Proposition 6.1.19. Suppose that k ∈ ℕ and ℬ is any family of compact subsets of X. If
the function Fi : ℝn × X → Yi is Bohr ℬ-almost periodic for 1 ⩽ i ⩽ k, then the function
(F1, . . . , Fk)(⋅; ⋅) is also Bohr ℬ-almost periodic.

As a consequence, we find that the Bohr ℬ-almost periodic functions Fi(⋅; ⋅) can
share the same ε-periods in Definition 6.1.9(i), i. e., for every B ∈ ℬ and ε > 0 there
exists l > 0 such that for each t0 ∈ ℝn there exists τ ∈ B(t0, l) ∩ ℝn such that (6.10)
holds for all F = Fi and Y = Yi, 1 ⩽ i ⩽ k (observe that the original proof of H. Bohr,
see e. g. [198, pp. 36–38], does not work in the multi-dimensional case n > 1).

Now we can simply prove the following.

Proposition 6.1.20. Suppose that f : ℝn → ℂ is Bohr almost periodic and F : ℝn ×
X → Y is Bohr ℬ-almost periodic, where ℬ is any family of compact subsets of X. Define
F1(t; x) := f (t)F(t; x), t ∈ ℝn, x ∈ X. Then F1(⋅; ⋅) is Bohr ℬ-almost periodic.

Proof. Let B ∈ ℬ and ε > 0 be fixed. Due to Proposition 6.1.17, there exists a finite real
constantM ⩾ 1 such that |f (t)| + ‖F(t; x)‖Y ⩽ M for all t ∈ ℝn and x ∈ B. Let τ ∈ ℝn be
a common (ε/2M)-period for the functions f (⋅) and F(⋅; ⋅). Then the required statement
simply follows from the next estimates:

f (t + τ)F(t + τ; x) − f (t)F(t; x)
Y

⩽ |f (t + τ) − f (t)| ⋅ F(t + τ; x)
Y + |f (t + τ)| ⋅

F(t + τ; x) − F(t; x)
Y

⩽ 2M[f (t + τ) − f (t)
 +
F(t + τ; x) − F(t; x)

Y ] ⩽ 2Mε/2M = ε.

We can similarly prove the following analogue of Proposition 6.1.20 for (R,ℬ)-
multi-almost periodic functions.

Proposition 6.1.21. Suppose that 0 ̸= I ⊆ ℝn, f : I → ℂ is bounded R-multi-almost
periodic and F : I × X → Y is a (R,ℬ)-multi-almost periodic function whose restriction
to any set I × B, where B ∈ ℬ is arbitrary, is bounded. Define F1(t; x) := f (t)F(t; x), t ∈ I,
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x ∈ X. Then F1(⋅; ⋅) is (R,ℬ)-multi-almost periodic, provided that for each sequence (bk)
in R we find that any its subsequence also belongs to R.

Using the decomposition
F(t
′; x) − F(t′′; y)Y ⩽

F(t
′; x) − F(t′ + τ; x)Y +

F(t
′ + τ; x) − F(t′′ + τ; y)Y

+ F(t
′′ + τ; y) − F(t′′; y)Y , t′, t′′ ∈ I , x, y ∈ X,

and the assumptions clarified below,we can repeat almost literally the argumentation
contained in the proof of [166, Theorem 5, p. 2] in order to see that the following result
holds (unfortunately, the situation in which I = [0,∞)n is not covered by this result in
contrast with the usually considered case I = ℝn).

Proposition 6.1.22. Suppose that 0 ̸= I ⊆ ℝn, I + I ⊆ I, I is closed and F : I × X → Y is
Bohr ℬ-almost periodic, where ℬ is a family consisting of some compact subsets of X. If
the condition holds that

(∃t0 ∈ I) (∀ε > 0)(∀l > 0) (∃l
′ > 0) (∀t′, t′′ ∈ I)

B(t0, l) ∩ I ⊆ B(t0 − t
′, l′) ∩ B(t0 − t

′′, l′),

then for each B ∈ ℬ the function F(⋅; ⋅) is uniformly continuous on I × B.

The following is a multi-dimensional extension of [388, Lemma 1.3(f)].

Example 6.1.23. Suppose that f : ℝn → X and g : ℝn → ℝn are Bohr almost periodic
functions. Define the function

F(t) := f (t − g(t)), t ∈ ℝn.

Then the function F(⋅) is Bohr almost periodic, as well. We can show this similarly as
in the proof of the above-mentioned lemma, with appealing to Proposition 6.1.19 and
Proposition 6.1.22.

6.1.2 Stronglyℬ-almost periodic functions

This subsection analyzes stronglyℬ-almost periodic functions and their relationswith
Bohr ℬ-almost periodic functions and Bohr (ℬ, I′)-almost periodic functions. First of
all, we will introduce the following definition.

Definition 6.1.24. Suppose that 0 ̸= I ⊆ ℝn and F : I×X → Y is a continuous function.
Then we say that F(⋅; ⋅) is strongly ℬ-almost periodic if and only if for each B ∈ ℬ there
exists a sequence (PBk (t; x)) of trigonometric polynomials such that limk→+∞ PBk (t; x) =
F(t; x), uniformly for t ∈ I and x ∈ B. Here, by a trigonometric polynomial P : I×X → Y
we mean any linear combination of functions like

ei[λ1t1+λ2t2+⋅⋅⋅+λntn]c(x), (6.13)

where λi are real numbers (1 ⩽ i ⩽ n) and c : X → Y is a continuous mapping.
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The following proposition is of fundamental importance.

Proposition 6.1.25. Suppose that 0 ̸= I ⊆ ℝn and F : I × X → Y is a strongly ℬ-almost
periodic function, where ℬ is any collection of bounded subsets of X. Then we have the
following:
(i) for every j ∈ ℕn and ε > 0, there exists a finite real number l > 0 such that every

interval S ⊆ ℝ of length l contains a point τj ∈ I such that

F(t1, t2, . . . , tj + τj, . . . , tn; x) − F(t1, t2, . . . , tj, . . . , tn; x)
 ⩽ ε, (6.14)

provided (t1, t2, . . . , tj + τj, . . . , tn) ∈ I , (t1, . . . , tn) ∈ I and x ∈ B;
(ii) for every ε > 0, there exists a finite real number l > 0 such that, for every j ∈ ℕn

and every interval S ⊆ ℝ of length l, there exists a point τj ∈ I such that (6.14) holds
provided that (t1, t2, . . . , tj + τj, . . . , tn) ∈ I for all j ∈ ℕn, (t1, . . . , tn) ∈ I and x ∈ B;

(iii) for every ε > 0, there exists a finite real number l > 0 such that every interval S ⊆ ℝ
of length l contains a point τ ∈ I such that, for every j ∈ ℕn, (7) holds with the
number τj replaced by the number τ therein;

(iv) F(⋅; ⋅) is Bohr ℬ-almost periodic provided that I + I ⊆ I and that, for every points
(t1, . . . , tn) ∈ I and (τ1, . . . , τn) ∈ I, the points (t1, t2 + τ2, . . . , tn + τn), (t1, t2, t3 +
τ3, . . . , tn + τn), . . ., (t1, t2, . . . , tn−1, tn + τn), also belong to I;

(v) F(⋅; ⋅) is Bohr (ℬ, I ∩ Δn)-almost periodic provided that I ∩ Δn ̸= 0, I + (I ∩ Δn) ⊆ I
and that, for every points (t1, . . . , tn) ∈ I and (τ, . . . , τ) ∈ I ∩ Δn, the points (t1, t2 +
τ, . . . , tn + τ), (t1, t2, t3 + τ, . . . , tn + τ), . . ., (t1, t2, . . . , tn−1, tn + τ), also belong to I ∩ Δn.

Proof. The proof is not difficult and we will present the most relevant details only. For
the proof of (iii), we can verify first the validity of this statement for any trigonometric
polynomial P(⋅; ⋅) by using the fact that for each set B ∈ ℬ, which is bounded due to
our assumption, we find that the set c(B) is bounded in Y for any addend of P(⋅; ⋅)
of form (6.13) and the fact that any finite set of almost periodic functions of one real
variable has a commonset of joint ε-periods for each ε > 0. In general case, there exists
a sequence (PBk (t; x))of trigonometric polynomials such that limk→+∞ PBk (t; x) = F(t; x),
uniformly for t ∈ I and x ∈ B. Then, for a real number ε > 0 given in advance, we can
find an integer k0 ∈ ℕ such that ‖PBk0 (t; x) − F(t; x)‖Y ⩽ ε/3, for every t ∈ I, x ∈ B and
k ∈ ℕ with k ⩾ k0. Using the well known estimate (t′, t′′ ∈ I; x ∈ B):

F(t
′; x) − F(t′′; x)Y
⩽ F(t

′; x) − PBk0(t
′; x)Y +

P
B
k0(t
′; x) − PBk0(t

′′; x)Y +
P

B
k0(t
′′; x) − F(t′′; x)Y ,

the required statement readily follows; the proofs of (i) and (ii) are analogous. For the
proof of (iv), we can use (i) and the estimates

F(t1 + τ1, t2 + τ2, . . . , tj + τj, . . . , tn + τn) − F(t1, t2, . . . , tn)


⩽ F(t1 + τ1, t2 + τ2, . . . , tj + τj, . . . , tn + τn) − F(t1, t2 + τ2, . . . , tj + τj, . . . , tn + τn)
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+ F(t1, t2 + τ2, . . . , tj + τj, . . . , tn + τn) − F(t1, t2, . . . , tn)


⩽ F(t1 + τ1, t2 + τ2, . . . , tj + τj, . . . , tn + τn) − F(t1, t2 + τ2, . . . , tj + τj, . . . , tn + τn)


+ F(t1, t2 + τ2, . . . , tj + τj, . . . , tn + τn) − F(t1, t2, t3 + τ3, . . . , tn + τn)


+ F(t1, t2, t3 + τ3, . . . , tn + τn) − F(t1, t2, . . . , tn)
 ⩽ ⋅ ⋅ ⋅ ,

while for the proof of (v), we can use (iii) and the above estimates with τ = τ1 = τ2 =
⋅ ⋅ ⋅ = τn.

Concerning Proposition 6.1.25(iv)–(v), it is natural to ask the following: Sup-
pose that 0 ̸= I ⊆ ℝn and F : I × X → Y is a Bohr ℬ-almost periodic (Bohr
(ℬ, I ∩ Δn)-almost periodic) function. What conditions ensure the strong ℬ-almost
periodicity of F(⋅; ⋅)? After proving Theorem 6.1.37, it will be clear from a combination
with Proposition 6.1.25(iv) that the notion of strong Bohr ℬ-almost periodicity for con-
tinuous functions F : I → Y coincides with the notion of Bohr ℬ-almost periodicity,
provided that I is a convex polyhedral; as a simple consequence of the last mentioned
theorem, we also find that the uniform convergence of a sequence of scalar-valued
trigonometric polynomials on a convex polyhedral in ℝn always implies the uniform
convergence of this sequence on the whole space ℝn (in the present state of our
knowledge, we really do not know whether this result was known before stating the
above).

It could be interesting to formulate some statements concerning the relationship
between the strong ℬ-almost periodicity and the (RX ,ℬ)-multi-almost periodicity.

6.1.3 𝔻-asymptotically (RX ,ℬ)-multi-almost periodic type functions

We start this subsection by introducing the following definition.

Definition 6.1.26. Suppose that𝔻 ⊆ I ⊆ ℝn and the set𝔻 is unbounded. By C0,𝔻,ℬ(I ×
X : Y)we denote the vector space consisting of all continuous functions Q : I ×X → Y
such that, for every B ∈ ℬ, we have limt∈𝔻,|t|→+∞ Q(t; x) = 0, uniformly for x ∈ B.

Now we are ready to introduce the following notion.

Definition 6.1.27. Suppose that the set𝔻 ⊆ ℝn is unbounded, and F : I × X → Y is a
continuous function. Then we say that F(⋅; ⋅) is 𝔻-asymptotically (R,ℬ)-multi-almost
periodic, resp.𝔻-asymptotically (RX,ℬ)-multi-almost periodic, if and only if there ex-
ist an (R,ℬ)-multi-almost periodic function G : I × X → Y , resp. an (RX,ℬ)-multi-
almost periodic function G : I × X → Y , and a function Q ∈ C0,𝔻,ℬ(I × X : Y) such that
F(t; x) = G(t; x) + Q(t; x) for all t ∈ I and x ∈ X.

Let I = ℝn. Then it is said that F(⋅; ⋅) is asymptotically (R,ℬ)-multi-almost pe-
riodic, resp. asymptotically (RX,ℬ)-multi-almost periodic, if and only if F(⋅; ⋅) is
ℝn-asymptotically (R,ℬ)-multi-almost periodic, resp.ℝn-asymptotically (RX,ℬ)-multi-
almost periodic.
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We similarly introduce the notions of (𝔻-)asymptotical Bohrℬ-almost periodicity,
(𝔻-)asymptotical uniform recurrence, (𝔻-)-asymptotical Bohr (ℬ, I′)-almost periodic-
ity and (𝔻-)asymptotical (ℬ, I′)-uniform recurrence. If F(⋅; ⋅) is I-asymptotically uni-
formly recurrent, G : I × X → Y , Q ∈ C0,I ,ℬ(I × X : Y) and F(t; x) = G(t; x) + Q(t; x) for
all t ∈ I and x ∈ X, then we can simply show that, for every x ∈ X, we have

{G(t; x) : t ∈ I , x ∈ X} ⊆ {F(t; x) : t ∈ I , x ∈ X}. (6.15)

The first part of following proposition can be deduced as in the one-dimensional
case; keeping in mind the inclusion (6.15) and the argumentation used in the proof of
[364, Theorem 4.29], we can simply deduce the second part (see also Proposition 6.1.7,
Corollary 6.1.8 and Proposition 6.1.32 for the corresponding results regarding the
classes of (R,ℬ)-multi-almost periodic functions and (RX,ℬ)-multi-almost periodic
functions).

Proposition 6.1.28.
(i) Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is Bohr ℬ-almost periodic

(ℬ-uniformly recurrent). If for each B ∈ ℬ there exists εB > 0 such that the sequence
(Fj(⋅; ⋅)) converges uniformly to a function F(⋅; ⋅) on the set B∘ ∪ ⋃x∈𝜕B B(x, εB), then
the function F(⋅; ⋅) is Bohr ℬ-almost periodic (ℬ-uniformly recurrent).

(ii) Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is I-asymptotically Bohr
ℬ-almost periodic (I-asymptotically ℬ-uniformly recurrent). If for each B ∈ ℬ there
exists εB > 0 such that the sequence (Fj(⋅; ⋅)) converges uniformly to a function
F(⋅; ⋅) on the set B∘ ∪⋃x∈𝜕B B(x, εB), then the function F(⋅; ⋅) is I-asymptotically Bohr
ℬ-almost periodic (I-asymptotically ℬ-uniformly recurrent).

The proof of following proposition, which can be also clarified for the classes of
𝔻-asymptotically almost periodic type functions introduced in Definition 6.1.27, is
simple and therefore omitted.

Proposition 6.1.29.
(i) Suppose that c ∈ ℂ and F(⋅; ⋅) is (R,ℬ)-multi-almost periodic, resp. (RX,ℬ)-multi-

almost periodic (Bohr ℬ-almost periodic/ℬ-uniformly recurrent). Then cF(⋅; ⋅) is
(R,ℬ)-multi-almost periodic, resp. (RX,ℬ)-multi-almost periodic (Bohr ℬ-almost
periodic/ℬ-uniformly recurrent).

(ii) (a) Suppose that τ ∈ ℝn, τ + I ⊆ I and F(⋅; ⋅) is (R,ℬ)-multi-almost periodic, resp.
(RX,ℬ)-multi-almost periodic (Bohr ℬ-almost periodic/ℬ-uniformly recurrent).
Then F(⋅ + τ; ⋅) is (R,ℬ)-multi-almost periodic, resp. (RX,ℬ)-multi-almost peri-
odic (Bohr ℬ-almost periodic/ℬ-uniformly recurrent).

(b) Suppose that x0 ∈ X and F(⋅; ⋅) is (R,ℬ)-multi-almost periodic, resp. (RX,ℬ)-
multi-almost periodic (Bohr ℬ-almost periodic/ℬ-uniformly recurrent). Then
F(⋅; ⋅ + x0) is (R,ℬx0 )-multi-almost periodic, resp. (RX,ℬx0 )-multi-almost peri-
odic (Bohrℬx0 -almost periodic/ℬx0 -uniformly recurrent), whereℬx0 ≡ {−x0+B :
B ∈ ℬ}.
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(c) Suppose that τ ∈ ℝn, τ + I ⊆ I, x0 ∈ X and F(⋅; ⋅) is (R,ℬ)-multi-almost periodic,
resp. (RX,ℬ)-multi-almost periodic (Bohr ℬ-almost periodic/ℬ-uniformly recur-
rent). Then F(⋅+ τ; ⋅+ x0) is (R,ℬx0 )-multi-almost periodic, resp. (RX,ℬx0 )-multi-
almost periodic (Bohr ℬx0 -almost periodic/ℬx0 -uniformly recurrent).

(iii) (a) Suppose that c ∈ ℂ ∖ {0}, cI ⊆ I and F(⋅; ⋅) is (R,ℬ)-multi-almost periodic, resp.
(RX,ℬ)-multi-almost periodic (Bohr ℬ-almost periodic/ℬ-uniformly recurrent).
Then F(c⋅; ⋅) is (Rc,ℬ)-multi-almost periodic, resp. (RX,c,ℬ)-multi-almost peri-
odic (Bohrℬ-almost periodic/ℬ-uniformly recurrent), whereRc ≡ {c−1b : b ∈ R}
and RX,c ≡ {c−1b : b ∈ RX}.

(b) Suppose that c2 ∈ ℂ ∖ {0}, and F(⋅; ⋅) is (R,ℬ)-multi-almost periodic, resp.
(RX,ℬ)-multi-almost periodic (Bohr ℬ-almost periodic/ℬ-uniformly recurrent).
Then F(⋅; c2⋅) is (R,ℬc2 )-multi-almost periodic, resp. (RX,ℬc2 )-multi-almost pe-
riodic (Bohr ℬc2 -almost periodic/ℬc2 -uniformly recurrent), where ℬc2 ≡ {c

−1
2 B :

B ∈ ℬ}.
(c) Suppose that c1 ∈ ℂ∖{0}, c2 ∈ ℂ∖{0}, c1I ⊆ I andF(⋅; ⋅) is (R,ℬ)-multi-almost pe-

riodic, resp. (RX,ℬ)-multi-almost periodic (Bohrℬ-almost periodic/ℬ-uniformly
recurrent). Then F(c1⋅; c2⋅) is (Rc1 ,ℬc2 )-multi-almost periodic, resp. (RX,c1 ,ℬc2 )-
multi-almost periodic (Bohr ℬc2 -almost periodic/ℬc2 -uniformly recurrent).

(iv) Suppose that α, β ∈ ℂ and, for every sequence which belongs to R (RX), we find that
any its subsequence belongs to R (RX). If F(⋅; ⋅) and G(⋅; ⋅) are (R,ℬ)-multi-almost pe-
riodic, resp. (RX,ℬ)-multi-almost periodic, then (αF + βG)(⋅; ⋅) is (R,ℬ)-multi-almost
periodic, resp. (RX,ℬ)-multi-almost periodic.

(v) Suppose that α, β ∈ ℂ. If F : ℝn × X → Y and G : ℝn × X → Y are Bohr ℬ-almost
periodic, then (αF + βG)(⋅; ⋅) is Bohr ℬ-almost periodic.

Due to Proposition 6.1.8 and Proposition 6.1.29(ii), we may conclude that, in the
case that X = {0}, the limit function F∗(⋅) in (6.1) is likewise R-multi-almost periodic.
In such away,we can extend the statements of [189, Theorem 1] and [915, Lemma 1] for
vector-valued functions; the statement of [915, Lemma 3] also holds for vector-valued
functions.

Using Proposition 6.1.29(iv) and the supremum formula clarified in Proposi-
tion 6.1.6, we can simply deduce that the decomposition in Definition 6.1.27 is unique.

Proposition 6.1.30.
(i) Suppose that there exist a function Gi(⋅; ⋅) which is (R,ℬ)-multi-almost periodic and

a function Qi ∈ C0,I ,ℬ(I × X : Y) such that F(t; x) = Gi(t; x) + Qi(t; x) for all t ∈ I
and x ∈ X (i = 1, 2). Suppose that, for every sequence which belongs to R, any its
subsequencebelongs toR. If there exists a sequenceb(⋅) inRwhoseany subsequence
is unbounded and for which we have T − b(l) ∈ I whenever T ∈ I and l ∈ ℕ, then
G1 ≡ G2 and Q1 ≡ Q2.

(ii) Suppose thatℬ is any collection of compact subsets of X, there exist a Bohrℬ-almost
periodic function Gi : ℝ

n × X → Y and a function Qi ∈ C0,I ,ℬ(I × X : Y) such that
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F(t; x) = Gi(t; x) + Qi(t; x) for all t ∈ I and x ∈ X (i = 1, 2). Then G1 ≡ G2 and
Q1 ≡ Q2.

For the sequel, we need the following auxiliary lemma.

Lemma 6.1.31. Suppose that there exist an (R,ℬ)-multi-almost periodic function G(⋅; ⋅)
and a function Q ∈ C0,I ,ℬ(I × X : Y) such that F(t; x) = G(t; x) + Q(t; x) for all t ∈ I and
x ∈ X. Then (6.15) holds provided that for each sequence b ∈ Rwe have I ±b(l) ∈ I, l ∈ ℕ
and there exists a sequence in R whose any subsequence is unbounded.

Now we are in a position to clarify the following result.

Proposition 6.1.32. Suppose that, for every sequence b(⋅) which belongs to R, any its
subsequence belongs to R and T − b(l) ∈ I whenever T ∈ I and l ∈ ℕ. Suppose, further,
that there exists a sequence inRany subsequence ofwhich is unbounded. If for each inte-
ger j ∈ ℕ the function Fj(⋅; ⋅) is I-asymptotically (R,ℬ)-multi-almost periodic and for each
B ∈ ℬ the sequence (Fj(⋅; ⋅)) converges to F(⋅; ⋅) uniformly on the set B∘ ∪ ⋃x∈𝜕B B(x, εB),
then the function F(⋅; ⋅) is I-asymptotically (R,ℬ)-multi-almost periodic.

Proof. Due to Proposition 6.1.30,we know that there exist a uniquely determined func-
tion G(⋅; ⋅) which is (R,ℬ)-multi-almost periodic and a uniquely determined function
Q ∈ C0,I ,ℬ(I × X : Y) such that F(t; x) = G(t; x) + Q(t; x) for all t ∈ I and x ∈ X. Further-
more, we have

Fj(t; x) − Fm(t; x) = [Gj(t; x) − Gm(t; x)] + [Qj(t; x) − Qm(t; x)],

for all t ∈ I, x ∈ X and j, m ∈ ℕ. Due to Proposition 6.1.29(iv), we find that the function
Gj(⋅; ⋅)−Gm(⋅; ⋅) is (R,ℬ)-multi-almost periodic (j, m ∈ ℕ). Keeping inmind this fact and
Lemma 6.1.31 and the argumentation used in the proof of [364, Theorem 4.29], we get

3 sup
t∈I ,x∈X

Fj(t; x) − Fm(t; x)
Y

⩾ sup
t∈I ,x∈X

Gj(t; x) − Gm(t; x)
Y + sup

t∈I ,x∈X

Qj(t; x) − Qm(t; x)
Y ,

for any j, m ∈ ℕ. This implies that the sequences (Gj(⋅; ⋅)) and (Qj(⋅; ⋅)) converge uni-
formly to the functions G(⋅; ⋅) and Q(⋅; ⋅), respectively. Due to Proposition 6.1.8, we see
that the function G(⋅; ⋅) is (R,ℬ)-multi-almost periodic. The final conclusion follows
from the obvious equality F = G + Q and the fact that C0,I ,ℬ(I × X : Y) is a Banach
space.

Before we move ourselves to the next subsection, we would like to introduce the
following general definition in a Bohr likemanner; for any set Λ ⊆ ℝn, we define ΛM :=
{λ ∈ Λ; |λ| ⩾ M}:

Definition 6.1.33. Suppose that 𝔻 ⊆ I ⊆ ℝn and the set 𝔻 is unbounded, as well as
0 ̸= I′ ⊆ I ⊆ ℝn, F : I ×X → Y is a continuous function and I + I′ ⊆ I. Then we say that:
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(i) F(⋅; ⋅) is 𝔻-asymptotically Bohr (ℬ, I′)-almost periodic of type 1 if and only if for
every B ∈ ℬ and ε > 0 there exist l > 0 andM > 0 such that for each t0 ∈ I′ there
exists τ ∈ B(t0, l) ∩ I′ such that

F(t + τ; x) − F(t; x)
Y ⩽ ε, provided t, t + τ ∈ 𝔻M , x ∈ B. (6.16)

(ii) F(⋅; ⋅) is𝔻-asymptotically (ℬ, I′)-uniformly recurrent of type 1 if and only if for ev-
ery B ∈ ℬ there exist a sequence (τn) in I′ and a sequence (Mn) in (0,∞) such that
limn→+∞ |τn| = limn→+∞Mn = +∞ and

lim
n→+∞

sup
t,t+τn∈𝔻Mn ;x∈B

F(t + τn; x) − F(t; x)
Y = 0.

If I′ = I, then we also say that F(⋅; ⋅) is 𝔻-asymptotically Bohr ℬ-almost periodic of
type 1 (𝔻-asymptotically ℬ-uniformly recurrent of type 1); furthermore, if X ∈ ℬ,
then it is also said that F(⋅; ⋅) is 𝔻-asymptotically Bohr I′-almost periodic of type 1
(𝔻-asymptotically I′-uniformly recurrent of type 1). If I′ = I and X ∈ ℬ, then we also
say that F(⋅; ⋅) is 𝔻-asymptotically Bohr almost periodic of type 1 (𝔻-asymptotically
uniformly recurrent of type 1).

The proof of following proposition is trivial and therefore omitted.

Proposition 6.1.34. Suppose that 𝔻 ⊆ I ⊆ ℝn and the set 𝔻 is unbounded, as well as
0 ̸= I′ ⊆ I ⊆ ℝn, F : I × X → Y is a continuous function and I + I′ ⊆ I. If F(⋅; ⋅) is
𝔻-asymptotically Bohr (ℬ, I′)-almost periodic, resp.𝔻-asymptotically (ℬ, I′)-uniformly
recurrent, then F(⋅; ⋅) is 𝔻-asymptotically Bohr (ℬ, I′)-almost periodic of type 1, resp.
𝔻-asymptotically (ℬ, I′)-uniformly recurrent of type 1.

Suppose now that the general assumptions from the preamble of Definition 6.1.33
hold true. Keeping in mind Proposition 6.1.34 and Remark 6.1.3(i)–(ii), it is natural to
ask the following:
(i) In which cases the𝔻-asymptotical Bohr (ℬ, I′)-almost periodicity of type 1, resp.
𝔻-asymptotical (ℬ, I′)-uniform recurrence of type 1, implies the 𝔻-asymptotical
Bohr (ℬ, I′)-almost periodicity, resp.𝔻-asymptotical (ℬ, I′)-uniform recurrence of
the function F(⋅; ⋅)?

(ii) In which cases the asymptotical Bohr ℬ-almost periodicity (of type 1) implies the
(R,ℬ)-multi-almost periodicity of F(⋅; ⋅), where R denotes the collection of all se-
quences in I?

(iii) In which cases the asymptotical Bohr ℬ-almost periodicity (of type 1) is a conse-
quence of the (R,ℬ)-multi-almost periodicity of F(⋅; ⋅), where R denotes the collec-
tion of all sequences in I?

Concerning the item (ii), it is well known that the answer is negative provided that X =
{0}, ℬ = X and I = ℝ because, in this case, the asymptotical Bohr ℬ-almost periodicity
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of F : ℝ → Y is equivalent with the asymptotical Bohr ℬ-almost periodicity of type 1
of F(⋅), i. e., the usual asymptotical almost periodicity of F(⋅), while the (R,ℬ)-multi-
almost periodicity of F(⋅) is equivalent in this case with the usual almost periodicity of
F(⋅); cf. [1078, Definition 2.2, Definition 2.3; Theorem 2.6] for the notion used. But we
have the following statement in the particular case I = [0,∞)n.

Proposition 6.1.35. Suppose that 0 ̸= I ⊆ ℝn, I + I ⊆ I, I is closed and F : I ×X → Y is a
uniformly continuous, I-asymptotically Bohrℬ-almost periodic function of type 1, where
ℬ is any family of compact subsets of X. If

(∀l > 0) (∀M > 0) (∃t0 ∈ I) (∃k > 0) (∀t ∈ IM+l)(∃t
′
0 ∈ I)

(∀t′′0 ∈ B(t
′
0, l) ∩ I) t − t

′′
0 ∈ B(t0, kl) ∩ IM , (6.17)

there exists L > 0 such that IkL ∖ I(k+1)L ̸= 0 for all k ∈ ℕ and IM + I ⊆ IM for all M > 0,
then the function F(⋅; ⋅) is (R,ℬ)-multi-almost periodic, where R denotes the collection of
all sequences in I. Furthermore, if X = {0} and ℬ = {X}, then F(⋅) is I-asymptotically
Bohr almost periodic function.

Proof. Let B ∈ ℬ and ε > 0 be fixed. Since F(⋅; ⋅) is uniformly continuous, we find
that the function FB(⋅), given by (6.12), is likewise uniformly continuous. Arguing as
in the proof of Proposition 6.1.17, the assumption (6.17) enables one to deduce that the
set {F(t; x) : t ∈ I , x ∈ B} is relatively compact in Y as well as that the set {FB(t) :
t ∈ I} is relatively compact in the Banach space BUC(B : Y), consisting of all bounded,
uniformly continuous functions from B into Y , equippedwith the sup-norm.We know
that there exist l > 0 and M > 0 such that for each t0 ∈ I there exists τ ∈ B(t0, l) ∩ I
such that (6.16) holds with 𝔻 = I. Using these facts, we can slightly modify the first
part of the proof of [881, Theorem 3.3] (with the segment [N , 3N] replaced therein with
the set IN ∖ I3N , where N = max(L, l,M), and the number τk ∈ [kN , (k + 1)N] replaced
therein by the number τk ∈ IkL ∖ I(k+1)L; we need the condition IM + I ⊆ IM , M > 0 in
order to see that the estimate given on [881, l. 2, p. 23] holds in our framework) in order
to see that the set of translations {FB(⋅ + τ) : τ ∈ I} is relatively compact in BUC(B : Y),
which simply implies that F(⋅; ⋅) is (R,ℬ)-multi-almost periodic, where R denotes the
collection of all sequences in I. Suppose now that X = {0} and ℬ = {X}. Then for
each integer k ∈ ℕ there exist lk > 0 andMk > 0 such that for each t0 ∈ I there exists
τ ∈ B(t0, l)∩ I such that (6.16) holds with ε = 1/k and𝔻 = I. Let τk be any fixed element
of I such that |τk | > Mk + k2 and (6.16) holds with ε = 1/k and𝔻 = I (k ∈ ℕ). Then the
first part of the proof yields the existence of a subsequence (τkl ) of (τk) and a function
F∗ : I → Y such that liml→+∞ F(t + τkl ) = F

∗(t), uniformly for t ∈ I. The mapping
F∗(⋅) is clearly continuous and now we will prove that F∗(⋅) is Bohr almost periodic.
Let ε > 0 be fixed, and let l > 0 and M > 0 be such that for each t0 ∈ I there exists
τ ∈ B(t0, l) ∩ I such that (6.16) holds with𝔻 = I and the number ε replaced therein by
ε/3. Let t ∈ I be fixed, and let l0 ∈ ℕ be such that |t + τkl0 | ⩾ M and |t + τ + τkl0 | ⩾ M.
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Then we have
F
∗(t + τ) − F∗(t)
⩽ F
∗(t + τ) − F∗(t + τ + τkl0 )‖ +

F
∗(t + τ + τkl0 ) − F

∗(t + τkl0 )


+ F
∗(t + τkl0 ) − F

∗(t) ⩽ 3 ⋅ (ε/3) = ε,

as required. The fact that the function t → F(t) − F∗(t), t ∈ I belongs to the space
C0,I (I : Y) follows trivially by definition of F∗(⋅). The proof of the proposition is thereby
complete.

Remark 6.1.36. Suppose that the requirements of Theorem 6.1.35 hold with X = {0}
and ℬ = {X}. Suppose further that, for every t′ ∈ ℝn, there exist δ > 0 and l0 ∈ ℕ such
that the sequence (τk) from the above proof satisfies the requirement that t′′ + τkl ∈ I
for all l ∈ ℕ with l ⩾ l0 and t′′ ∈ B(t′, δ). Then the limit liml→+∞ F(t′ + τkl ) := ̃F

∗(t′)
exists for all t′ ∈ ℝn, which can be easily seen from the estimate
F(t
′ + τkl1 ) − F(t

′ + τkl2 )
Y

⩽ F(t
′ + τkl1 ) − F(t

′ + τkl1 + τ)
Y +
F(t
′ + τkl1 + τ) − F(t

′ + τkl2 + τ)
Y

+ F(t
′ + τkl2 + τ) − F(t

′ + τkl2 )
Y (6.18)

⩽ 3 ⋅ (ε/3) = ε,

which is valid for all numbers τ such that there exist l > 0 and M > 0 such that for
each t0 ∈ I there exists τ ∈ B(t0, l)∩I such that (6.16) holds with the number ε replaced
therein with the number ε/3 and𝔻 = I, all sufficiently large natural numbers l1 and l2
depending on τ, where we have also applied the Cauchy criterion of convergence for
the limit liml→+∞ F(t + τkl ) = F

∗(t), uniform in t ∈ I and our assumption I + I ⊆ I. The
function ̃F∗(⋅) is clearly continuous and it can be easily shown that it is Bohr I-almost
periodic. Furthermore, if for every t′ ∈ ℝn and M1, M2 > 0 there exists l0 ∈ ℕ such
that t′ + τkl − τ ∈ IM2

for all l ∈ ℕ with l ⩾ l0, then ̃F∗(⋅) is Bohr (I ∪ (−I))-almost
periodic. Using a simple translation argument, the above gives an extension of [881,
Theorem 3.4] in Banach spaces.

Keeping inmind the proof of Theorem 6.1.35 and our analysis fromRemark 4.2.98,
we can also deduce the following result concerning the extensions of Bohr I′-almost
periodic functions.

Theorem 6.1.37. Suppose that I′ ⊆ I ⊆ ℝn, I+I′ ⊆ I, the set I′ is unbounded, F : I → Y is
a uniformly continuous, Bohr I′-almost periodic function, resp. a uniformly continuous,
I′-uniformly recurrent function, S ⊆ ℝn is bounded and the following condition holds:
(AP-E) For every t′ ∈ ℝn, there exists a finite real number M > 0 such that t′ + I′M ⊆ I.

Define ΩS := [(I′ ∪ (−I′)) + (I′ ∪ (−I′))] ∪ S. Then there exists a uniformly continuous,
BohrΩS-almost periodic, resp. a uniformly continuous,ΩS-uniformly recurrent, function
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F̃ : ℝn → Y such that F̃(t) = F(t) for all t ∈ I; furthermore, in the almost periodic case,
the uniqueness of such a function F̃(⋅) holds provided that ℝn ∖ ΩS is a bounded set.

Proof. We will prove the theorem only for uniformly continuous, Bohr I′-almost peri-
odic functions. In this case, for each natural number k ∈ ℕ there exists a point τk ∈ I′

such that ‖F(t + τk) − F(t)‖Y ⩽ 1/k for all t ∈ I and k ∈ ℕ; furthermore, since the set
I′ is unbounded, we may assume without loss of generality that limk→+∞ |τk | = +∞.
Hence, one has limk→+∞ F(t+τk) = F(t), uniformly for t ∈ I. If t′ ∈ ℝn, thenwe can use
our assumption on the existence of a finite real numberM > 0 such that t′+I′M ⊆ I, and
the corresponding argumentation fromRemark 4.2.98 (see (6.18)), in order to conclude
that limk→+∞ F(t′ + τk) := F̃(t′) exists. The function F̃(⋅) is clearly uniformly continu-
ous because F(⋅) is uniformly continuous; furthermore, by construction, we find that
F̃(t) = F(t) for all t ∈ I. Now we will prove that the function F̃(⋅) is Bohr ΩS-almost
periodic. Suppose that a number ε > 0 is given. Then we know that there exists l > 0
such that for each t0 ∈ I′ there exists τ ∈ B(t0, l) ∩ I′ such that ‖F(t + τ) − F(t)‖Y ⩽ ε/2
for all t ∈ I. Let t′ ∈ ℝn be fixed. For any such numbers t0 ∈ I′ and τ ∈ B(t0, l) ∩ I′, we
have

F̃(t
′ + τ) − F̃(t′)Y =

 limk→+∞
[F(t′ + τ + τk) − F(t

′ + τk)]
Y

⩽ lim sup
k→+∞

F(t
′ + τ + τk) − F(t

′ + τk)
Y ⩽ ε/2, t′ ∈ ℝn.

This clearly implies

F̃(t
′ − τ) − F̃(t′)Y ⩽ ε/2, t′ ∈ ℝn,

which further implies that F(⋅) is Bohr (I′ ∪ (−I′))-almost periodic since −t0 ∈ I′ and
−τ ∈ B(−t0, l) ∩ (−I′). Take now any number τ ∈ Ω; then τ can be written as a sum of
two elements τ1 and τ2 from the set (I′ ∪ (−I′)) and, as a such, it will satisfy

F̃(t
′ + τ) − F̃(t′)Y =

F(t
′ + τ1 + τ2) − F(t

′)Y
⩽ F(t

′ + τ1 + τ2) − F(t
′ + τ1)
Y +
F(t
′ + τ1) − F(t

′)Y
⩽ 2 ⋅ (ε/2) = ε,

for any t′ ∈ ℝn. Therefore, F(⋅) is Bohr Ω-almost periodic, which clearly implies that
F(⋅) is Bohr ΩS-almost periodic, as well.

Assume, finally, that the set ℝn ∖ Ω is bounded. Then the function F̃(⋅) is Bohr
almost periodic and any function G̃ : ℝn → Y which extends the function F(⋅) to
the whole space and satisfies the above requirements must be Bohr almost periodic.
Therefore, G̃(⋅) is compactly almost automorphic (cf. Section 8.1 for the notion) so that
the sequence (τk) has a subsequence (τkl ) such that

lim
l→+∞

lim
m→+∞

G̃(t′ + τkm − τkl) = G̃(t
′), t′ ∈ ℝn.
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But, for every l ∈ ℕ and t′ ∈ ℝn,wehave limm→+∞ G̃(t′+τkm−τkl ) = limm→+∞ F(t′+τkm−
τkl ), so that the final conclusion follows from the almost automorphicity of function
F̃(⋅) and the equality

lim
l→+∞

lim
m→+∞

F̃(t′ + τkm − τkl) = F̃(t
′),

which holds pointwise on ℝn.

In particular, if (v1, . . . , vn) is a basis of ℝn, and

I′ = I = {α1v1 + ⋅ ⋅ ⋅ + αnvn : αi ⩾ 0 for all i ∈ ℕn}

is a convex polyhedral in ℝn, then we have Ω = ℝn and, in this case, there exists a
unique Bohr almost periodic extension of the function F : I → Y to the whole Eu-
clidean space, so that Proposition 6.1.19, Proposition 6.1.20, Proposition 6.1.21 and
Proposition 6.1.29(v) continue to hold in this framework (it is worth noting that the
almost periodic functions of one real variable have been used in the recent investiga-
tion of M. Cekić, B. Georgiev and M. Mukherjee [253] regarding dynamical properties
of the billiard flow on convex polyhedra; see also J. P. Gaivao [460] for a related prob-
lematic).

We also state the following important corollary of Theorem 6.1.37.

Corollary 6.1.38 (The uniqueness theorem for almost periodic functions). Suppose
that I ⊆ ℝn, I + I ⊆ I, condition (AP-E) holds with I′ = I, andℝn ∖ [(I ∪ (−I)) + (I ∪ (−I))]
is a bounded set. If F : ℝn → Y and G : ℝn → Y are two Bohr almost periodic functions
and F(t) = G(t) for all t ∈ I, then F(t) = G(t) for all t ∈ ℝn.

Now we would like to propose the following definition.

Definition 6.1.39. Suppose that 0 ̸= I ⊆ ℝn and I + I ⊆ I. Then we say that I is ad-
missible with respect to the almost periodic extensions if and only if for any com-
plex Banach spaceY and for any uniformly continuous, Bohr almost periodic function
F : I → Y there exists a unique Bohr almost periodic function F̃ : ℝn → Y such that
F̃(t) = F(t) for all t ∈ I.

By the foregoing, it is clear that any non-empty subset I of ℝn which is closed
under addition and satisfies the requirement that condition (AP-E) holds with I′ = I as
well as the setℝn∖[(I∪(−I))+(I∪(−I))] is bounded (in particular, this holds for convex
polyhedrals) has to be admissible with respect to the almost periodic extensions. But
it is clear that the set I = [0,∞) × {0} ⊆ ℝ2 is not admissible with respect to the
almost periodic extensions since there is no almost periodic extension of the function
F(x, y) = y, (x, y) ∈ I to the whole plane. Further analysis of the notion introduced in
Definition 6.1.39 is out of scope of this book.

Concerning item (iii), we will clarify the following result.

Theorem 6.1.40. Suppose that 0 ∈ I ⊆ ℝn, I is closed, I + I ⊆ I and 0 ̸= I′ ⊆ I. Suppose,
further, that the set𝔻 ⊆ I is unbounded and condition (MD) holds, where:
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(MD) For each M0 > 0 there exists a finite real number M1 > M0 such that𝔻M1
− t ∈ I

and I′M1
− t ∈ I′ for all t ∈ I ∖ IM0

.

Let R denote the collection of all sequences in I, and let ℬ denote any family of com-
pact subsets of X. Then any (R,ℬ)-multi-almost periodic function F : I × X → Y is
𝔻-asymptotically Bohr (ℬ, I′)-almost periodic of type 1.

Proof. Let B ∈ ℬ and ε > 0 be fixed. Since I is closed, we find that the restriction
of function F(⋅; ⋅) to the set I × B is uniformly continuous, which easily implies that
the function FB : I → BUC(B : Y), given by (6.12), is well defined and uniformly
continuous. Now we will prove that the function FB(⋅) has a relatively compact range.
DenoteKk = [−k, k]n for all integers k ∈ ℕ. Since the set FB(Kk∩I) is relatively compact
in BUC(B : Y) for all integers k ∈ ℕ, it suffices to show that there exists k ∈ ℕ such
that, for every t ∈ I, there exists a point s ∈ I∩Kk such that ‖F(t; x)−F(s; x)‖Y ⩽ ε for all
x ∈ B. Suppose the contrary holds. Then for each k ∈ ℕ there exists tk ∈ I such that,
for every s ∈ I∩Kk, there exists x ∈ Bwith ‖F(tk ; x)−F(s; x)‖Y > ε. Definebk := tk for all
k ∈ ℕ. Due to our assumption, there exists a subsequence (bkl ) of (bk) such that (6.2)
holds true. Since 0 ∈ I, this implies the existence of a number l0(ε) ∈ ℕ such that

F(tkl ; x) − F(tkm ; x)
Y ⩽ ε, l, m ∈ ℕ, l, m ⩾ l0(ε),

uniformly for x ∈ B. In particular, we have
F(tkl ; x) − F(tkl0(ε) ; x)

Y ⩽ ε, l ∈ ℕ, l ⩾ l0(ε), x ∈ B.

Therefore, tkl0(ε) ∉ Kl for all l ∈ ℕwith l ⩾ l0(ε), which is a contradiction. Now it is quite
simply to prove with the help of Cauchy criterion of convergence and the (R,ℬ)-multi-
almost periodicity of F(⋅; ⋅) that the set of translations {FB(⋅ + τ) : τ ∈ I} is relatively
compact in BUC(B : Y). Applying [881, Theorem 2.2; see 1. and 3.(ii)] (see also the
second part of the proof of [881, Theorem 3.3]), we see that there exist a finite cover
(Ti)ki=1 of the set I1 andpoints ti ∈ Ti (1 ⩽ i ⩽ k) such that ‖FB(t+ω)−FB(ti+ω)‖BUC(B:Y) ⩽ ε
for all ω ∈ I and t ∈ Ti (1 ⩽ i ⩽ k). LetM0 := l := 1 +max{|ti| : 1 ⩽ i ⩽ k}, and letM1 > 0
satisfy condition (MD) with thisM0. SetM := 2M1 + l. Suppose that t, t + τ ∈ 𝔻M and
t0 ∈ I′M . Then there exists i ∈ ℕk such that t0 ∈ Ti so that τ = t0−ti ∈ Ti−ti ∈ B(t0, l)∩I

′

due to the first condition in (MD) and the obvious inequality |ti| ⩽ l. Furthermore, the
second condition in (MD) implies t − ti ∈ I and therefore
FB(t + τ) − FB(t)

BUC(B:Y) =
FB(t + t0 − ti) − FB(t)

BUC(B:Y)
= FB(t0 + [t − ti]) − FB(ti + [t − ti])

BUC(B:Y) ⩽ ε,

which simply completes the proof.

Remark 6.1.41.
(i) In [881, Theorem 3.3], W.M. Ruess and W.H. Summers have considered the situa-

tion in which I = [a,∞), X = {0} and the set of all translations {f (⋅ + τ) : τ ⩾ 0} is
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relatively compact in BUC(I : Y). But the obtained result is a simple consequence
of the corresponding result with I = [0,∞), which follows from a simple trans-
lation argument. In Theorem 6.1.40, which therefore provides a proper extension
of the corresponding result from [881, Theorem 3.3] with 𝔻 = I′ = I = [0,∞),
we have decided to consider the collection R of all sequences in I, only. It might
be interesting to further analyze the assumption in which the function F(⋅; ⋅) is
(R,ℬ)-multi-almost periodic with R being the collection of all sequences in a cer-
tain subset I′′ of ℝn which contains 0 and satisfies I + I′′ ⊆ I.

(ii) In themulti-dimensional framework,we cannot expect the situation inwhich𝔻 =
I′ = I. The main problem lies in the fact that condition (MD) does not hold in this
case; but, if I = [0,∞)n, for example, then the conclusion of Theorem 6.1.40 holds
for any proper subsector I′ of I, with the meaning clear, and𝔻 = I′.

6.1.4 Differentiation and integration of (RX ,ℬ)-multi-almost periodic functions

Concerning the partial derivatives of (𝔻-asymptotically) (RX,ℬ)-multi-almost periodic
functions, wewould like to state the following result which can be also formulated for
the notion introduced in Definition 6.1.9.

Proposition 6.1.42.
(i) Suppose that the function F(⋅; ⋅) is (RX,ℬ)-multi-almost periodic, for every sequence

which belongs to RX, we find that any of its subsequences belongs to RX, the partial
derivative

𝜕F(⋅; ⋅)
𝜕ti
:= lim

h→0

F(⋅ + hei; ⋅) − F(⋅; ⋅)
h

exists on I × X and it is uniformly continuous on ℬ, i. e.,

(∀B ∈ ℬ) (∀ε > 0) (∃δ > 0) (∀t′, t′′ ∈ I) (∀x ∈ B)

(t
′ − t′′ < δ ⇒



𝜕F(t′; x)
𝜕ti
−
𝜕F(t′′; x)
𝜕ti


< ε).

Then the function 𝜕F(⋅; ⋅)/𝜕ti is (RX,ℬ)-multi-almost periodic.
(ii) Suppose that, for every sequence b(⋅) which belongs to R, any its subsequence be-

longs to R and T − b(l) ∈ I whenever T ∈ I and l ∈ ℕ. Suppose, further, that there
exists a sequence in R whose any subsequence is unbounded as well as that the
function F(⋅; ⋅) is I-asymptotically (R,ℬ)-multi-almost periodic, the partial deriva-
tive 𝜕F(t; x)/𝜕ti exists for all t ∈ I, x ∈ X and it is uniformly continuous on ℬ. Then
the function 𝜕F(⋅; ⋅)/𝜕ti is I-asymptotically (R,ℬ)-multi-almost periodic.

Proof. We will prove only (i) because (ii) follows similarly, by appealing to Proposi-
tion 6.1.32 in place of Proposition 6.1.8 (observe that we only need here the uniform
convergence of the sequence of functions (Fj(⋅; ⋅)) to the function 𝜕F(⋅; ⋅)/𝜕ti as j → +∞,
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on the individual sets B ∈ ℬ; see the proof of Proposition 6.1.8). The proof immediately
follows from the fact that the sequence (Fj(⋅; ⋅) ≡ j[F(⋅+ j−1ei; ⋅)−F(⋅; ⋅)]) of (RX,ℬ)-multi-
almost periodic functions converges uniformly to the function 𝜕F(⋅; ⋅)/𝜕ti as j → +∞.
This can be shown as in the one-dimensional case, by observing that

Fj(⋅; ⋅) −
𝜕F(⋅; ⋅)
𝜕ti
= j

1/j

∫
0

[
𝜕F(⋅ + sei; ⋅)
𝜕ti

−
𝜕F(⋅; ⋅)
𝜕ti
] ds.

We continue by stating the following extension of S.M. A. Alsulami’s result [47,
Theorem 3.2].

Theorem 6.1.43. Suppose that the function F : ℝn×X → Y is continuous as well as that
𝜕F(⋅; ⋅)/𝜕ti : ℝn × X → Y is a Bohr ℬ-almost periodic function, where ℬ is any collection
of compact subsets of X. Suppose that for each B ∈ ℬ we find that at least one of the
following two conditions holds:
(C1) The Banach space l∞(B : Y) does not contain c0.
(C2) The range of the function FB(⋅), given by (6.12), is weakly relatively compact in

l∞(B : Y).

Then the function F(⋅; ⋅) is Bohr ℬ-almost periodic.

Proof. Let B ∈ ℬ and a = (a1, . . . , an) ∈ ℝn be fixed. As easily approved, it suffices to
show that the mapping FB(⋅) is almost periodic. Since we have assumed (C1) or (C2),
an application of an old result of B. Basit (see, e. g., [47, Theorem 3.1]) shows that we
only need to prove that the function

t → FB(t + a) − FB(t), t ∈ ℝn,

is almost periodic. So, let (bk) be a sequence in ℝn. Since the mapping

((
𝜕F(⋅; ⋅)
𝜕t1
)
B
, . . . ,(
𝜕F(⋅; ⋅)
𝜕tn
)
B
) : ℝn → (l∞(B : Y))

n

is almost periodic (see Proposition 6.1.19), there exists a subsequence (bkl ) of (bk) such
that

lim
l→+∞

sup
x∈B


(
𝜕F(⋅; x)
𝜕ti
)(s + bkl ) − (

𝜕F(⋅; x)
𝜕ti
)(s)
Y
= 0, (6.19)

uniformly in s ∈ ℝn and 1 ⩽ i ⩽ n. Since, for every x ∈ B, we have

{[F(t + a + bkl ) − FB(t + bkl )] − [FB(t + a) − FB(t)]}(x)

=
n
∑
i=1

ai

∫
0

Fti(s1 + b
1
kl , . . . , si−1 + b

i−1
kl , si + b

i
kl + v, si+1 + b

i+1
kl + ai+1, . . . , sn + b

n
kl + an; x) dv

−
n
∑
i=1

ai

∫
0

Fti (s1, . . . , si−1, si + v, si+1 + ai+1, . . . , sn + an; x) dv,
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applying (6.19) we simply get

lim
l→+∞
[F(t + a + bkl ) − FB(t + bkl )] − [FB(t + a) − FB(t)]

l∞(B:Y) = 0,

uniformly in t ∈ ℝn. The proof of the theorem is thereby complete.

Corollary 6.1.44. Suppose that the function F : ℝn → Y is continuous as well as that
𝜕F(⋅)/𝜕ti : ℝn → Y is an almost periodic function. Suppose that at least one of the
following two conditions holds:
(C1) The Banach space Y does not contain c0.
(C2) The range of the function F(⋅) is weakly relatively compact in Y.

Then the function F(⋅) is almost periodic.

The proof of the following extension of [47, Theorem 3.2], which has already been
given in the introductory part for the scalar-valued functions, is simple and therefore
omitted.

Theorem 6.1.45. Suppose that the function F : ℝn × X → Y is Bohr ℬ-almost periodic
and for each set B ∈ ℬ the Banach space l∞(B : Y) does not contain c0 or the function

H(t1, t2, . . . , tn; x) :=
t1

∫
0

F(t, t2, . . . , tn; x) dt, (t1, t2, . . . , tn) ∈ ℝ
n, x ∈ X,

satisfies the requirement that the range of the function HB(⋅), given by (6.12) with F = G
therein, is weakly relatively compact in l∞(B : Y). If there exist Bohr ℬ-almost periodic
functions Gi : ℝ

n × X → Y such that Fti (t1, t2, . . . , tn; x) = (Gi)t1 (t1, t2, . . . , tn; x) is a con-
tinuous function on ℝn for each fixed element x ∈ X (2 ⩽ i ⩽ n), then the function
H : ℝn × X → Y is Bohr ℬ-almost periodic.

Corollary 6.1.46. Suppose that the function F : ℝn → Y is almost periodic and the
Banach space Y does not contain c0 or the function

H(t1, t2, . . . , tn) :=
t1

∫
0

F(t, t2, . . . , tn) dt, (t1, t2, . . . , tn) ∈ ℝ
n

satisfies the requirement that its range is weakly relatively compact in Y. If there exist
almost periodic functions Gi : ℝ

n → Y such that Fti (t1, t2, . . . , tn) = (Gi)t1 (t1, t2, . . . , tn)
is a continuous function on ℝn, for 2 ⩽ i ⩽ n, then the function H : ℝn → Y is almost
periodic.

The interested reader may try to extend the results of [47, Theorem 4.1, Theorem
4.2], regarding the almost periodicity of the function

t →
t1

∫
0

t2

∫
0

⋅ ⋅ ⋅

tn

∫
0

F(s1, s2, . . . , sn) ds1 ds2 ⋅ ⋅ ⋅ dsn, t = (t1, t2, . . . , tn) ∈ ℝ
n,
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in the above manner. The results about integration of multi-dimensional asymptot-
ically almost periodic functions and related connections with the weak asymptotic
almost periodicity, obtained in [882, Section 4], will be reconsidered elsewhere.

We can use Proposition 6.1.30 to simply deduce when the decompositions in Def-
inition 6.2.28 are unique; Proposition 6.1.28(ii) and Proposition 6.1.32 can be reformu-
lated in our new context, as well.

6.1.5 Composition theorems for (R,ℬ)-multi-almost periodic type functions

Suppose that F : I × X → Y and G : I × Y → Z are given functions. The main aim of
this subsection is to analyze the almost periodic properties of the multi-dimensional
Nemytskii operatorW : I × X → Z given by

W(t; x) := G(t; F(t; x)), t ∈ I , x ∈ X. (6.20)

We will first state the following generalization of [364, Theorem 4.16]; the proof is
similar to the proof of the above-mentioned theorem but wewill present it for the sake
of completeness.

Theorem 6.1.47. Suppose that F : I × X → Y is (R,ℬ)-multi-almost periodic and G :
I × Y → Z is (R′,ℬ′)-multi-almost periodic, where R′ is a collection of all sequences
b : ℕ→ ℝn from R and all their subsequences, as well as

ℬ′ := {⋃
t∈I

F(t;B) : B ∈ ℬ}. (6.21)

If there exists a finite constant L > 0 such that

G(t; x) − G(t; y)
Z ⩽ L‖x − y‖Y , t ∈ I , x, y ∈ Y , (6.22)

then the function W(⋅; ⋅) is (R,ℬ)-multi-almost periodic.

Proof. Let the set B ∈ ℬ and the sequence (bk = (b1k , b
2
k , . . . , b

n
k)) ∈ R be given. By

definition, there exist a subsequence (bkl = (b
1
kl , b

2
kl , . . . , b

n
kl )) of (bk) and a function

F∗ : I × X → Y such that (6.2) holds. Set B′ := ⋃t∈I F(t;B) and b
′ := (bkl ). Then there

exist a subsequence (bklm = (b
1
klm
, b2klm , . . . , b

n
klm
)) of (bkl ) and a function G

∗ : I × Y → Z
such that

lim
m→+∞
G(t + (b

1
klm
, . . . , bnklm ); y) − G

∗(t; y)Z = 0,

uniformly for y ∈ B′ and t ∈ I. It suffices to show that

lim
m→+∞
G(t + (b

1
klm
, . . . , bnklm ); F(t + (b

1
klm
, . . . , bnklm ); x)) − G

∗(t; F∗(t; x))Z = 0, (6.23)
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uniformly for x ∈ B and t ∈ I. Denote τm := (b1klm , . . . , b
n
klm
) for allm ∈ ℕ. We have (t ∈ I,

x ∈ B,m ∈ ℕ):

G(t + τm; F(t + τm; x)) − G
∗(t; F∗(t; x))Z

⩽ G(t + τm; F(t + τm; x)) − G(t + τm; F
∗(t; x))Z

+ G(t + τm; F
∗(t; x)) − G∗(t; F∗(t; x))Z

⩽ LF(t + τm; x) − F
∗(t; x)Y +

G(t + τm; F
∗(t; x)) − G∗(t; F∗(t; x))Z .

Since x ∈ B and F∗(t; x) ∈ B′ for all t ∈ I, the limit equality (6.23) holds, uniformly for
x ∈ B and t ∈ I, which completes the proof of the theorem.

Keeping in mind Proposition 6.1.17, Theorem 6.1.18, Theorem 6.1.47 and the fact
that a continuous function F : I × X → Y is (R,ℬ)-multi-almost periodic (Bohr
ℬ-almost periodic) if and only if it is (R,ℬ)-multi-almost periodic (Bohr ℬ-almost
periodic), where ℬ := {B : B ∈ ℬ}, we can immediately clarify the following.

Corollary 6.1.48. Suppose thatℬ is any collection of compact subsets of X, F : ℝn×X →
Y is Bohr ℬ-almost periodic and G : ℝn × Y → Z is Bohr ℬ′-almost periodic, where ℬ′ is
given by (6.21). If there exists a finite constant L > 0 such that (6.22) holds with I = ℝn,
then the function W(⋅; ⋅) is Bohr ℬ-almost periodic.

A slight modification of the proof of Theorem 6.1.47 (cf. also the proof of [364,
Theorem 3.31]) shows that the following result holds true.

Theorem 6.1.49. Suppose that F : I × X → Y is (R,ℬ)-multi-almost periodic and G :
I × Y → Z is (R′,ℬ′)-multi-almost periodic, where R′ is a collection of all sequences
b : ℕ→ ℝn from R and all their subsequences, as well as ℬ′ is given by (6.21). Set

ℬ′ ∗ := ⋃
(bk)∈R;B∈ℬ

{F∗(t;B) : t ∈ I},

with the meaning clear. If

(∀B ∈ ℬ) (∀ε > 0) (∃δ > 0)
(x, y ∈ ℬ′ ∪ ℬ′ ∗ and ‖x − y‖Y < δ ⇒

G(t; x) − G(t; y)
Z < ε, t ∈ I),

then the function W(⋅; ⋅) is (R,ℬ)-multi-almost periodic.

Now we proceed with the analysis of composition theorems for asymptotically
(R,ℬ)-multi-almost periodic functions. Our first result is in a close connection with
Theorem 6.1.47 and [364, Theorem 3.49].

Theorem 6.1.50. Suppose that the set 𝔻 ⊆ ℝn is unbounded, F0 : I × X → Y is
(R,ℬ)-multi-almost periodic, Q0 ∈ C0,𝔻,ℬ(I × X : Y) and F(t; x) = F0(t; x) + Q0(t; x) for
all t ∈ I and x ∈ X. Suppose further that G1 : I × Y → Z is (R′,ℬ′)-multi-almost periodic,
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where R′ is a collection of all sequences b : ℕ → ℝn from R and all their subsequences
as well as ℬ′ is defined by (6.21) with the function F(⋅; ⋅) replaced therein by the function
F0(⋅; ⋅), Q1 ∈ C0,𝔻,ℬ1

(I × Y : Z), where

ℬ1 := {⋃
t∈I

F(t;B) : B ∈ ℬ}, (6.24)

andG(t; x) = G1(t; x)+Q1(t; x) for all t ∈ I and x ∈ Y. If there exists a finite constant L > 0
such that the estimate (6.22) holds with the function G(⋅; ⋅) replaced therein by the func-
tion G1(⋅; ⋅), then the function W(⋅; ⋅) is𝔻-asymptotically (R,ℬ)-multi-almost periodic.

Proof. ByTheorem6.1.47, the function (t; x) → G1(t; F0(t; x)), t ∈ I, x ∈ X is (R,ℬ)-multi-
almost periodic. Furthermore, we have the following decomposition:

W(t; x) = G1(t; F0(t; x)) + [G1(t; F(t; x)) − G1(t; F0(t; x))] + Q1(t; F(t; x)),

for any t ∈ I and x ∈ X. Since

G1(t; F(t; x)) − G1(t; F0(t; x))
Z ⩽ L
Q0(t; x)

Y , t ∈ I , x ∈ X,

we find that the function (t; x) → G1(t; F(t; x)) − G1(t; F0(t; x)), t ∈ I, x ∈ X belongs to
the space C0,𝔻,ℬ(I × X : Z). The same holds for the function (t; x) → Q1(t; F(t; x)), t ∈ I,
x ∈ X, due to our choice of the collection ℬ1 in (6.24).

It seems that we cannot remove the Lipschitz type assumptions used in Corol-
lary 6.1.48without imposing some additional conditions; but, this can be always done
in the case thatF : ℝn → Y is Bohr almost periodic andG : ℝn×Y → Z is Bohrℬ-almost
periodic with R(F) = B ∈ ℬ; see, e. g., [442, Theorem 2.11, p. 27] and its proof for the
scalar-valued case. Keeping in mind Proposition 6.1.22, we can state the following ex-
tension of this result.

Theorem 6.1.51. Suppose that the set I is admissible with respect to the almost periodic
extensions. If F : I → Y is uniformly continuous, Bohr almost periodic and G : I ×
Y → Z is Bohr ℬ-almost periodic with R(F) = B ∈ ℬ, then the function W : I → Z
is uniformly continuous and Bohr almost periodic, provided that the function G(⋅; ⋅) is
uniformly continuous on I × B.

Proof. It is clear that there exists a unique almost periodic extension F̃ : ℝn → Y of the
function F(⋅) to the whole Euclidean space and there exists a unique almost periodic
extension G̃B : ℝ

n → l∞(B : Z) of the function GB(⋅) to the whole Euclidean space
since the function F(⋅) is uniformly continuous and the function G(⋅; ⋅) is uniformly
continuous on I × B. Define

W̃(t) := [G̃B(t)](F̃(t)), t ∈ ℝn.
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Since W(t) = [GB(t)](F(t)) for all t ∈ I, it is clear that the function W̃(⋅) extends
the function W(⋅) to the whole Euclidean space. Furthermore, by the proof of The-
orem 6.1.37, we have R(F̃) ⊆ B and there exists a sequence (τk) in I such that
limk→+∞ |τk | = +∞ and limk→+∞ GB(t + τk) = G̃B(t), uniformly for t ∈ I. In order
to see that the function W̃(⋅) is uniformly continuous onℝn, we can use the following
calculation:
W̃(t
′) − W̃(t′′)Y =

[G̃B(t
′)](F̃(t′)) − [G̃B(t

′′)](F̃(t′′))Y
⩽ [G̃B(t

′)](F̃(t′)) − [G̃B(t
′′)](F̃(t′))Y

+ [G̃B(t
′′)](F̃(t′)) − [G̃B(t

′′)](F̃(t′′))Y
⩽ sup

x∈B

[G̃B(t
′)](x) − [G̃B(t

′′)](x)Y

+ lim sup
k→+∞

[GB(t
′′ + τk)](F̃(t

′)) − [GB(t
′′ + τk)](F̃(t

′′))Y

= sup
x∈B

[G̃B(t
′)](x) − [G̃B(t

′′)](x)Y

+ lim sup
k→+∞

G(t
′′ + τk ; F̃(t

′)) − G(t′′ + τk ; F̃(t
′′))Y , t′, t′′ ∈ ℝn,

the uniform continuity of G̃B(⋅) and the uniform continuity of G(⋅; ⋅) on I × B. Due to
Proposition 6.1.19, for every ε > 0, the functions F̃(⋅) and G̃B(⋅) can share the same
set of ε-almost periods which is relatively dense in ℝn. Keeping in mind this fact, we
can repeat almost verbatim the above calculus, with the numbers t′ = t ∈ ℝn and
t′′ = t + τ ∈ ℝn so as to conclude that the function W̃(⋅) is Bohr almost periodic onℝn,
finishing the proof.

We can also prove the following result which corresponds to Theorem 6.1.49 and
[364, Theorem 3.50].

Theorem 6.1.52. Suppose that the set 𝔻 ⊆ ℝn is unbounded, F0 : I × X → Y is
(R,ℬ)-multi-almost periodic, Q0 ∈ C0,𝔻,ℬ(I × X : Y) and F(t; x) = F0(t; x) + Q0(t; x)
for all t ∈ I and x ∈ X. Suppose further that G1 : I × Y → Z is (R′,ℬ′)-multi-almost
periodic, where R′ is a collection of all sequences b : ℕ → ℝn from R and all their
subsequences as well as ℬ′ is defined by (6.21) with the function F(⋅; ⋅) replaced therein
by the function F0(⋅; ⋅), Q1 ∈ C0,𝔻,ℬ1

(I × Y : Z), where ℬ1 is given through (6.24), and
G(t; x) = G1(t; x) + Q1(t; x) for all t ∈ I and x ∈ Y. Set

ℬ2 := {⋃
t∈I

F0(t;B) : B ∈ ℬ} ∪ ⋃
(bk)∈R;B∈ℬ

{F∗0 (t;B) : t ∈ I}.

If

(∀B ∈ ℬ) (∀ε > 0) (∃δ > 0)
(x, y ∈ ℬ1 ∪ ℬ2 and ‖x − y‖Y < δ ⇒

G1(t; x) − G1(t; y)
Z < ε, t ∈ I),

then the function W(⋅; ⋅) is𝔻-asymptotically (R,ℬ)-multi-almost periodic.
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It is clear that Theorem 6.1.49 and Theorem 6.1.52 can be reformulated for Bohr
ℬ-almost periodic functions with small terminological difficulties concerning the use
of limit functions. Similar results can be established for the class of ℬ-uniformly re-
current functions.

6.1.6 Invariance of (R,ℬ)-multi-almost periodicity under the actions of convolution
products

This subsection investigates the invariance of (R,ℬ)-multi-almost periodicity under
the actions of convolution products. Wewill use the following notation: if any compo-
nent of tuple t = (t1, t2, . . . , tn) is strictly positive, then we simply write t > 0.

We start by stating the following result, which is very similar to [631, Proposition
2.6.11]; for the sake of better exposition, we will omit the proof (the main details of the
proof for Stepanov generalizations will be given later).

Theorem 6.1.53. Let (R(t))t>0 ⊆ L(X,Y) be a strongly continuous operator family such
that∫(0,∞)n ‖R(t)‖ dt <∞. If f : ℝ

n → X is almost periodic, then the function F : ℝn → Y,
given by

F(t) :=
t1

∫
−∞

t2

∫
−∞

⋅ ⋅ ⋅

tn

∫
−∞

R(t − s)f (s) ds, t ∈ ℝn, (6.25)

is well defined and almost periodic.

For completeness, we will include the proof of following result.

Theorem 6.1.54. Let (R(t))t>0 ⊆ L(X,Y) be a strongly continuous operator family such
that ∫(0,∞)n ‖R(t)‖ dt < ∞. If f : ℝ

n → X is a bounded R-almost periodic function, then
the function F : ℝn → Y, given by (6.25), is well defined and R-almost periodic.

Proof. Let (bk = (b1k , b
2
k , . . . , b

n
k)) ∈ R be given. Then there exist a subsequence

(bkl = (b
1
kl , b

2
kl , . . . , b

n
kl )) of (bk) and a function f ∗ : ℝn → X such that liml→+∞ f (t +

(b1kl , . . . , b
n
kl )) = f

∗(t) uniformly for t ∈ ℝn. Hence, the function f ∗ : ℝn → X is bounded
and measurable. Clearly,

F(t) = ∫
[0,∞)n

R(s)f (t − s) ds

for all t ∈ ℝn and the integral

∫
[0,∞)n

R(s)f ∗(t − s) ds
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is well defined for all t ∈ ℝn. Furthermore,

lim
l→∞
∫
[0,∞)n

R(s)f (t + bkl − s) ds = ∫
[0,∞)n

R(s)f ∗(t − s) ds

uniformly for t ∈ ℝn, because


∫
[0,∞)n

R(s)f (t + bkl − s) ds − ∫
[0,∞)n

R(s)f ∗(t − s) ds
Y

⩽ ∫
[0,∞)n

R(s)‖ ⋅ ‖f (t + bkl − s) − f
∗(t − s) ds, t ∈ ℝn, l ∈ ℕ,

which simply yields the required conclusion.

Under certain extra conditions, we can also reformulate the above result for uni-
formly recurrent functions defined on ℝn. On the other hand, it seems that we must
slightly strengthen the notion introduced inDefinition 6.1.27 in order to investigate the
invariance of 𝔻-asymptotical multi-almost periodicity under the actions of “finite”
convolution products (the various notions of asymptotical almost periodicity exam-
ined in Part I are introduced following the approach in Definition 6.1.55, so that we
must confess to a little abuse of the notion here).

Definition 6.1.55. Suppose that the set𝔻 ⊆ ℝn is unbounded, and F : I × X → Y is a
continuous function. Thenwe say that F(⋅; ⋅) is strongly𝔻-asymptotically (R,ℬ)-multi-
almost periodic, resp. strongly𝔻-asymptotically (RX,ℬ)-multi-almost periodic, if and
only if there exist an (R,ℬ)-multi-almost periodic function G : ℝn × X → Y , resp. an
(RX,ℬ)-multi-almost periodic functionG : ℝn×X → Y , and a functionQ ∈ C0,𝔻,ℬ(I×X :
Y) such that F(t; x) = G(t; x) + Q(t; x) for all t ∈ I and x ∈ X.

Let I = ℝn. Then it is said that F(⋅; ⋅) is strongly asymptotically (R,ℬ)-multi-
almost periodic, resp. strongly asymptotically (RX,ℬ)-multi-almost periodic, if and
only if F(⋅; ⋅) is strongly ℝn-asymptotically (R,ℬ)-multi-almost periodic, resp. strongly
ℝn-asymptotically (RX,ℬ)-multi-almost periodic. Finally, if X = {0}, then we also say
that the function F(⋅) is strongly asymptotically R-multi-almost periodic, and so on
and so forth.

Set, for brevity, It := (−∞, t1] × (−∞, t2] × ⋅ ⋅ ⋅ × (−∞, tn] and 𝔻t := It ∩ 𝔻 for any
t = (t1, t2, . . . , tn) ∈ ℝn. Now we are ready to formulate the following result.

Proposition 6.1.56. Suppose that (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator
family such that ∫(0,∞)n ‖R(t)‖ dt <∞. If f : ℝ

n → X is strongly𝔻-asymptotically almost
periodic (bounded strongly𝔻-asymptotically R-multi-almost periodic),

lim
|t|→∞,t∈𝔻

∫
It∩𝔻c

R(t − s)
 ds = 0 (6.26)

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



356 | 6 Multi-dimensional almost periodic type functions and applications

and for each r > 0 we have

lim
|t|→∞,t∈𝔻

∫
𝔻t∩B(0,r)

R(t − s)
 ds = 0, (6.27)

then the function

F(t) := ∫
𝔻t

R(t − s)f (s) ds, t ∈ I ,

is strongly 𝔻-asymptotically almost periodic (bounded strongly 𝔻-asymptotically
R-multi-almost periodic).

Proof. By definition, we have the existence of an almost periodic function G : ℝn → X
and a functionQ ∈ C0,𝔻(I : X) such that f (t) = g(t)+q(t) for all t ∈ I and x ∈ X. Clearly,
we have the decomposition

F(t) = ∫
It

R(t − s)g(s) ds + [∫
𝔻t

R(t − s)q(s) ds − ∫
It∩𝔻c

R(t − s)g(s) ds], t ∈ I .

Keeping in mind Theorem 6.1.53, it suffices to show that the function

t → ∫
𝔻t

R(t − s)q(s) ds − ∫
It∩𝔻c

R(t − s)g(s) ds, t ∈ I ,

belongs to the class C0,𝔻(I : X). For the second addend, this immediately follows from
the boundedness of the function g(⋅) and condition (6.26). In order to show this for the
first addend, fix a number ε > 0. Then there exists r > 0 such that, for every t ∈ 𝔻
with |t| > r, we have ‖q(t)‖ < ε. Furthermore, we have

∫
𝔻t

R(t − s)q(s) ds = ∫
𝔻t∩B(0,r)

R(t − s)q(s) ds + ∫
𝔻t∩B(0,r)c

R(t − s)q(s) ds, t ∈ I .

Clearly,M := supt∈𝔻 ‖q(t)‖ <∞ and


∫

𝔻t∩B(0,r)

R(t − s)q(s) ds
Y
⩽ M ∫
𝔻t∩B(0,r)

R(t − s)
 ds, t ∈ I ,

so that the first addend in the above sum belongs to the class C0,𝔻(I : X) due to condi-
tion (6.27). This is also clear for the second addend since


∫

𝔻t∩B(0,r)

R(t − s)q(s) ds
Y
⩽ ε ∫
(0,∞)n

R(s)
 ds, t ∈ I .
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If𝔻 = [α1,∞)×[α2,∞)×⋅ ⋅ ⋅×[αn,∞) for some real numbersα1, α2, . . . , αn, then𝔻t =
[α1, t1]× [α2, t2]× ⋅ ⋅ ⋅× [αn, tn] and conditions (6.26)–(6.27) hold, as easily shown, which
implies that the function F(t) = ∫αt R(t − s)f (s) ds, t ∈ I, is strongly𝔻-asymptotically
almost periodic, where we accept the notation

α

∫
t

⋅ =

t1

∫
α1

t2

∫
α2

⋅ ⋅ ⋅

tn

∫
αn

. (6.28)

6.1.7 Examples and applications to the abstract Volterra integro-differential
equations

In this subsection,we apply our results in the analysis of the existence anduniqueness
of themulti-dimensional almost periodic type solutions for various classes of abstract
Volterra integro-differential equations.

We start with the following important examples:
1. Let Y be one of the spaces Lp(ℝn), C0(ℝn) or BUC(ℝn), where 1 ⩽ p < ∞. It is

well known that the Gaussian semigroup

(G(t)F)(x) := (4πt)−(n/2) ∫
ℝn

F(x − y)e−
|y|2
4t dy, t > 0, f ∈ Y , x ∈ ℝn,

can be extended to a bounded analytic C0-semigroup of angle π/2, generated by the
Laplacian ΔY acting with its maximal distributional domain in Y ; see [82, Example
3.7.6] for more details (recall that the semigroup (G(t))t>0 is not strongly continu-
ous at zero on L∞(ℝn)). Suppose now that 0 ̸= I′ ⊆ I = ℝn and F(⋅) is bounded
Bohr (ℬ, I′)-almost periodic, resp. bounded (ℬ, I′)-uniformly recurrent. Then for each
t0 > 0 the function ℝn ∋ x → u(x, t0) ≡ (G(t0)F)(x) ∈ ℂ is likewise bounded Bohr
(ℬ, I′)-almost periodic, resp. bounded (ℬ, I′)-uniformly recurrent. Towards see this, it
suffices to recall the corresponding definitions and observe that, for every x, τ ∈ ℝn,
we have

u(x + τ, t0) − u(x, t0)
 ⩽ (4πt0)

−(n/2) ∫
ℝn

F(x − y + τ) − F(x − y)
e
− |y|

2
4t0 dy;

see also Proposition 6.1.5 which shows that for each t0 > 0 the function ℝn ∋ x →
u(x, t0) ≡ (G(t0)F)(x) ∈ ℂ is bounded, (R,ℬ)-multi-almost periodic provided that R
is a certain collection of subsets in ℝn and the function F(⋅) is bounded, (R,ℬ)-multi-
almost periodic (in such away, we have extended the conclusions obtained by S. Zaid-
man [1067, Example 4, p. 32] to the multi-dimensional case). Concerning this exam-
ple, it should be recalled that F. Yang and C. Zhang have analyzed, in [1054, Propo-
sition 2.4–Proposition 2.6], the existence and uniqueness of remotely almost periodic
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solutions of multi-dimensional heat equations following a similar approach; we will
further consider the class of multi-dimensional remotely almost periodic functions
somewhere else.

We can similarly clarify the corresponding results for the Poisson semigroup,
which is given by

(T(t)F)(x) := Γ((n + 1)/2)
π(n+1)/2

∫
ℝn

F(x − y) t ⋅ dy
(t2 + |y|2)(n+1)/2

, t > 0, f ∈ Y , x ∈ ℝn.

Let us recall that the Fourier transform of the function

x → Γ((n + 1)/2)
π(n+1)/2

t
(t2 + |x|2)(n+1)/2

, x ∈ ℝn,

is given by e−t|⋅| for all t > 0 (see [82, Example 3.7.9] for more details).
2. Set

E1(x, t) := (πt)
−1/2

x

∫
0

e−y
2/4t dy, x ∈ ℝ, t > 0. (6.29)

In connection with the homogeneous solutions of the heat equation on domain I :=
{(x, t) : x > 0, t > 0}, we would like to recall that F. Trèves [981, p. 433] has proposed
the following formula:

u(x, t) = 1
2

x

∫
−x

𝜕E1
𝜕y
(y, t)u0(x − y) dy −

t

∫
0

𝜕E1
𝜕t
(x, t − s)g(s) ds, x > 0, t > 0, (6.30)

for the solution of the following mixed initial value problem:

ut(x, t) = uxx(x, t), x > 0, t > 0;
u(x,0) = u0(x), x > 0, u(0, t) = g(t), t > 0; (6.31)

for simplicity, we will not consider here the evolution analogues of (6.30) and the
generation of various classes of operator semigroups with the help of this formula.
Concerning the existence and uniqueness of multi-dimensional almost periodic type
solutions of (6.31), we will present only one result which exploits the formula (6.30)
with g(t) ≡ 0. Suppose that 0 < T < ∞ and the function u0 : [0,∞) → ℂ is
bounded Bohr I0-almost periodic, resp. bounded I0-uniformly recurrent, for a certain
non-empty subset I0 of [0,∞). Set I′ := I0 × (0,T). If𝔻 is any unbounded subset of I
which has the property that

lim
|(x,t)|→+∞,(x,t)∈𝔻

min( x2

4(t + T)
, t) = +∞, (6.32)
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then the solution u(x, t) of (6.31) is𝔻-asymptotically I′-almost periodic of type 1, resp.
𝔻-asymptotically I′-uniformly recurrent of type 1 (see Definition 6.1.33). In order to see
that, observe that the formula (6.30), in our concrete situation, reads as follows:

u(x, t) = 1
2

x

∫
−x

(πt)−1/2e−y
2/4tu0(x − y) dy, x > 0, t > 0,

and that for any (x, t) ∈ I and (τ1, τ2) ∈ I we have

u(x + τ1, t + τ2) − u(x, t)


⩽
‖u0‖∞
2

x+τ1

∫
x

(π(t + τ2))
−1/2e−y

2/4(t+τ2) dy

+
‖u0‖∞
2

−x

∫
−(x+τ1)

(π(t + τ2))
−1/2e−y

2/4(t+τ2) dy

+
1
2

x

∫
−x

(π(t + τ2))
−1/2e−y

2/4(t+τ2)u0(x + τ1 − y) − (πt)
−1/2e−y

2/4tu0(x − y)
 dy. (6.33)

The considerations for both classes are similar and we will only analyze the class of
𝔻-asymptotically I′-almost periodic functions of type 1 below. Let ε > 0 be given.
Then we know that there exists l > 0 such that for each x0 ∈ I0 there exists τ1 ∈
(x0 − l, x0 + l) ∩ I0 such that

u0(x + τ1) − u0(x)
 ⩽ ε, x ⩾ 0. (6.34)

Furthermore, there exists a finite real numberM0 > 0 such that ∫
+∞
v e−x

2
dx < ε for all

v ⩾ M0. LetM > 0 be such that

min( x2

4(t + T)
, t) > M2

0 +
1
ε
, provided (x, t) ∈ 𝔻 and (x, t)

 > M. (6.35)

So, let (x, t) ∈ 𝔻 and |(x, t)| > M. For the first addend in (6.33), we can use the estimates

‖u0‖∞
2

x+τ1

∫
x

(π(t + τ2))
−1/2e−y

2/4(t+τ2) dy = π−1/2‖u0‖∞

(x+τ1)/2√t+τ2

∫

x/2√t+τ2

e−v
2
dv

⩽ π−1/2‖u0‖∞

+∞

∫

x/2√t+τ2

e−v
2
dv

⩽ π−1/2‖u0‖∞

+∞

∫

x/2√t+T

e−v
2
dv ⩽ επ−1/2‖u0‖∞;
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the same estimate can be used for the second addend in (6.33). For the third addend
in (6.33), we can use the decomposition (see (6.34))

1
2

x

∫
−x

(π(t + τ2))
−1/2e−y

2/4(t+τ2)u0(x + τ1 − y) − (πt)
−1/2e−y

2/4tu0(x − y)
 dy

⩽
1
2

x

∫
−x

(π(t + τ2))
−1/2e−y

2/4(t+τ2)u0(x + τ1 − y) − u0(x − y)
 dy,

+
1
2

x

∫
−x

(π(t + τ2))
−1/2e−y

2/4(t+τ2)u0(x − y) − (πt)
−1/2e−y

2/4tu0(x − y)
 dy,

which enables one to further continue the computation as follows:

⩽
ε
2

x

∫
−x

(π(t + τ2))
−1/2e−y

2/4(t+τ2) dy

+
‖u0‖∞
2

x

∫
−x

(π(t + τ2))
−1/2e−y

2/4(t+τ2) − (πt)−1/2e−y
2/4t  dy

⩽ επ−1/2
+∞

∫
−∞

e−v
2
dv

+
‖u0‖∞
2

x

∫
−x

(π(t + τ2))
−1/2e−y

2/4(t+τ2) − (πt)−1/2e−y
2/4t  dy.

Applying the substitution v2 = y2/4t, we get

‖u0‖∞
2

x

∫
−x

(π(t + τ2))
−1/2e−y

2/4(t+τ2) − (πt)−1/2e−y
2/4t  dy

⩽ π−1/2‖u0‖∞

+∞

∫
−∞


√

t
t + τ2

e−v
2 ⋅ t

t+τ2 − e−v
2 
dv.

Applying the Lagrange mean value theorem for the function x → xe−v
2x2 , x ∈

[√t/(t + τ2), 1] (v ∈ ℝ is fixed), we obtain

π−1/2‖u0‖∞

+∞

∫
−∞


√

t
t + τ2

e−v
2 ⋅ t

t+τ2 − e−v
2 
dv

⩽ π−1/2‖u0‖∞

+∞

∫
−∞


√

t
t + τ2
− 1


max
ζ∈[√ t

t+τ2
,1]
e−v

2ζ 2(1 + 2ζ 2v2) dv
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⩽ π−1/2‖u0‖∞

+∞

∫
−∞


√

t
t + τ2
− 1

e−

t
t+τ2

v2(1 + 2v2) dv

⩽ π−1/2‖u0‖∞

√

t
t + τ2
− 1


+∞

∫
−∞

e
−

M2
0

M2
0+T

v2
(1 + 2v2) dv.

The final conclusion now follows from the estimate (6.35), by observing that


√

t
t + τ2
− 1

=

τ2
t + τ2 +√t2 + tτ2

⩽
T
t
.

The following observation should be also made: If u0 : [0,∞) → ℂ is an essen-
tially bounded function, then it can be easily shown that for each x > 0 the func-
tion t → u(x, t), t ⩾ 0 is bounded and continuous. Furthermore, the calculus estab-
lished above enables one to see that for each x > 0 the function t → u(x, t), t ⩾ 0 is
S-asymptotically ω-periodic for any positive real number ω > 0.

Themulti-dimensional almost periodic type solutions of the inhomogeneous heat
equations (with respect to the space variable) will be considered somewhere else.

3. Let Ω = (0,∞) × ℝn. Consider the Hamilton–Jacobi equation

ut + H(Du) = 0 in Ω,
u(0, ⋅) = u0(⋅) in ℝn, (6.36)

where D is the gradient operator in space variable and H is the Hamiltonian. If we
assume that H ∈ C(Ω) and u0 ∈ BUC(ℝn), then the Hamilton–Jacobi equation (6.36)
has a unique viscosity solution. This result has been proved byM. G. Crandall and P.-L.
Lions in [319, Theorem VI.2].

Theorem 6.1.57. Suppose that H ∈ C(Ω) and u0 ∈ BUC(ℝn). Then for each finite real
number T > 0 there exists a unique function u ∈ C(Ω)∩Cb([0,T]×ℝn)which is a viscosity
solution of (6.36) and satisfies

lim
t↓0+
u(⋅, t) − u0(t)

L∞(ℝn) = 0.

Moreover,

u(t, x) − u(t, y)
 ⩽ sup

ξ∈ℝn
u0(ξ ) − u0(ξ + y − x)

, x, y ∈ ℝn, t ⩾ 0. (6.37)

As a direct consequence of this result (cf. the estimate (6.37)), we find that the
Bohr I′-almost periodicity (I′-uniform recurrence) of the function u0(⋅) implies the
Bohr I′-almost periodicity (I′-uniform recurrence) of viscosity solution x → u(t, x),
x ∈ ℝn for every fixed real number t ⩾ 0 (0 ̸= I′ ⊆ ℝn).
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4. Consider the following Hammerstein integral equation of convolution type on
ℝn (see, e. g., [310, Section 4.3, pp. 170–180] and the references cited therein for more
details on the subject):

y(t) = g(t) + ∫
ℝn

k(t − s)F(s, y(s)) ds, t ∈ ℝn, (6.38)

where g : ℝn → X is almost periodic, F : ℝn × X → X is Bohr ℬ-almost periodic with ℬ
being the collection of all compact subsets ofX, (6.22) holdswith F = G andX = Y = Z,
k ∈ L1(ℝn) and L‖k‖L1(ℝn) < 1. Then (6.38) has a unique Bohr almost periodic solution.
In actual fact, it suffices to apply the Banach contraction principle since the mapping

AP(ℝn : X) ∋ y → g(⋅) + ∫
ℝn

k(⋅ − s)F(s, y(s)) ds ∈ AP(ℝn : X)

is a well defined (L‖k‖L1(ℝn ))-contraction, as can be easily shown by using Proposi-
tion 6.1.5, Proposition 6.1.29(v), Corollary 6.1.48 and a simple calculation.

Suppose now that R is a certain collection of sequences in ℝn which satisfies the
requirement that, for every sequence from R, any its subsequence also belongs to R.
Letℬ′ be the collection of all bounded subsets of X, let F : ℝn×X → X be (R,ℬ′)-multi-
almost periodic, (6.22) holds with F = G and X = Y = Z, k ∈ L1(ℝn) and L‖k‖L1(ℝn) < 1.
Consider the integral equation (6.38), where g : ℝn → X is a bounded R-multi-almost
periodic function. Denote by Rb(ℝn : X) the vector space consisting of all such func-
tions; applying Proposition 6.1.8, we see that Rb(ℝn : X) is a Banach space equipped
with the sup-norm. Taking into account Proposition 6.1.5 and Theorem 6.1.47 (with
R′ = R), the use of Banach contraction principle enables one to see that the integral
equation (6.38) has auniqueboundedR-multi-almost periodic solution since themap-
ping

Rb(ℝ
n : X) ∋ y → g(⋅) + ∫

ℝn

k(⋅ − s)F(s, y(s)) ds ∈ Rb(ℝ
n : X)

is a well-defined (L‖k‖L1(ℝn ))-contraction.
We can similarly analyze the existence and uniqueness of Bohr almost periodic

solutions (bounded R-multi-almost periodic solutions) of the following integral equa-
tion:

y(t) = g(t) + ∫
ℝn

F(t, s, y(s)) ds, t ∈ ℝn,

provided that F : ℝ2n ×X → X is Bohr ℬ-almost periodic with ℬ being the collection of
all compact subsets of X (R is a certain collection of sequences in ℝ2n which satisfies
the requirement that, for every sequence from R, any of its subsequences also belongs
to R) and there exists a constant L ∈ (0, 1) such that

F(t, s, x) − F(t, s, y)
 ⩽ L‖x − y‖, t, s ∈ ℝn; x, y ∈ X.

Details are left to the interested reader.
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5. It is clear that Theorem 6.1.53 and Theorem 6.1.54 can be applied in the analy-
sis of existence of almost periodic solutions for an essentially large class of abstract
partial differential equations in Banach spaces, constructed in a little bit artificial way
(even with fractional derivatives and multivalued linear operators). For example, let
Ai be the infinitesimal generator of a uniformly integrable, strongly continuous semi-
group (Ti(t))t⩾0 on X (i = 1, 2), and let F : ℝ2 → X be an almost periodic function.
Define T(t1, t2) := T1(t1)T2(t2), t1, t2 ∈ ℝ and

u(t1, t2) := ∫
[0,∞)2

T1(s1)T2(s2)F(t1 − s1, t2 − s2) ds1 ds2, t1, t2 ∈ ℝ.

Due to Theorem 6.1.53, we find that u : ℝ2 → X is almost periodic; furthermore, under
certain conditions, we can use the Fubini theorem, interchange the order of integra-
tion and partial derivation, and use a well-known result from the one-dimensional
case, in order to see that

ut2 (t1, t2) =
𝜕
𝜕t2
∫
[0,∞)

T1(s1)(
∞

∫
0

T2(s2)F(t1 − s1, t2 − s2) ds2) ds1

= ∫
[0,∞)

T1(s1)
𝜕
𝜕t2
(
∞

∫
0

T2(s2)F(t1 − s1, t2 − s2) ds2) ds1

= ∫
[0,∞)

T1(s1)(A2

∞

∫
0

T2(s2)F(t1 − s1, t2 − s2) ds2 + F(t1 − s1, t2)) ds1

and

ut2t1 (t1, t2) =
𝜕
𝜕t1
(A2u(t1, t2) + ∫

[0,∞)

T1(s1)F(t1 − s1, t2) ds1)

= A2ut1 (t1, t2) + A1

∞

∫
0

T1(s1)F(t1 − s1, t2) ds1 + F(t1, t2), t1, t2 ∈ ℝ.

6. Consider the system of abstract partial differential equations (11) for (s, t) ∈
[0,∞)2, accompanied by the initial condition u(0,0) = x (since there is no risk for
confusion, we will also refer to this problem as (11)). In this part, we would like to
note that some partial results on the existence and uniqueness of 𝔻-asymptotically
almost periodic type solutions of this problem can be obtained by using the results
from [46, Section 2.1] and some additional analyses. For simplicity, let us assume that
A and B are two complex matrices of format n × n, AB = BA, and A, resp. B, generates
an exponentially decaying, strongly continuous semigroup (T1(s))s⩾0, resp. (T2(t))t⩾0.
Let the functions f1(s, t) and f2(s, t) be continuously differentiable, let the compati-
bility condition (f2)s − Af2 = (f1)t − Bf1 hold (s, t ⩾ 0), 𝔻 := {(s, t) ∈ [0,∞)2 :
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c1s ⩽ t ⩽ c2s for some positive real numbers c1 and c2}, and let the following condi-
tions hold true:
(i) There exists a finite real constant M > 0 such that |f1(v,0)| + |f2(0,ω)| ⩽ M, pro-

vided that v, ω ⩾ 0 (here and hereafter, |(z1, . . . , zn)| := (|z1|2 + ⋅ ⋅ ⋅+ |zn|2)1/2 if zi ∈ ℂ
for all i ∈ ℕn).

(ii) The mappings gi : ℝ2 → ℂn are continuous, bounded (i = 1, 2) and satisfy the
requirement that, for every ε > 0, there exists l > 0 such that any subinterval I of
ℝ of length l > 0 contains a number τ ∈ I such that, for every s, t ⩾ 0, we have
|g1(s + τ, t) − g1(s, t)| ⩽ ε and |g2(s, t + τ) − g2(s, t)| ⩽ ε.

(iii) We find that the function qi : [0,∞)2 → ℂn is bounded, qi ∈ C0,𝔻([0,∞)2 : ℂn)
and fi(s, t) = gi(s, t) + qi(s, t) for (s, t) ∈ [0,∞)2 and i = 1, 2.

Then there exists a unique classical solution u(s, t) of (11) (see [46, Definition 2.13]),
and moreover, there exist a continuous function uap(s, t) on [0,∞)2 and a function
u0 ∈ C0,𝔻([0,∞)2 : ℂn) such thatu(s, t) = uap(s, t)+u0(s, t) for all (s, t) ∈ [0,∞)2, aswell
as for every ε > 0, there exists l > 0 such that any subinterval I of [0,∞) of length l > 0
contains a number τ ∈ I such that, for every s, t ⩾ 0,we have |uap(s+τ, t)−uap(s, t)| ⩽ ε
and |uap(s, t + τ) − uap(s, t)| ⩽ ε. Keeping in mind [46, Theorem 2.6, Theorem 2.16], all
that we need to prove is that the above conclusion holds for the function

u(s, t) = T1(s)T2(t)x + T1(s)
t

∫
0

T2(t − ω)f2(0,ω) dω

+
s

∫
0

T1(s − v)f1(v, t) dv

= T1(s)T2(t)x + T2(t)
s

∫
0

T1(s − v)f1(v,0) dv

+
t

∫
0

T2(t − ω)f2(s,ω) dω, s, t ⩾ 0.

Since the quantities s, t and |(s, t)| are equivalent on 𝔻, with the meaning clear, our
assumption (i) and the exponential decaying of (T1(s))s⩾0 ((T2(t))t⩾0) together imply
that

lim
(s,t)∈𝔻,|(s,t)|→∞

[T1(s)T2(t)x + T1(s)
t

∫
0

T2(t − ω)f2(0,ω) dω]

= lim
(s,t)∈𝔻,|(s,t)|→∞

[T1(s)T2(t)x + T2(t)
s

∫
0

T1(s − v)f1(v,0) dv] = 0.
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Using the decomposition (s, t ⩾ 0)

s

∫
0

T1(s − v)f1(v, t) dv

=
s

∫
−∞

T1(s − v)g1(v, t) dv + [
s

∫
0

T1(s − v)q(v, t) dv −
0

∫
−∞

T1(s − v)g1(v, t) dv],

the corresponding decomposition for the term t → ∫t0 T2(t − ω)f2(s,ω) dω, t ⩾ 0, our
assumptions (ii)–(iii) and the argumentation contained in the proofs of [631, Proposi-
tion 2.6.11, Proposition 2.6.13; Remark 2.6.14], the required conclusion simply follows.
Let us note, finally, that there exist a great number of concrete situations where the
above assumptions are really satisfied. Suppose, for example, that n = 1, A = B =
[−1],

f1(s, t) = sin s + cos s +
t

∫
0

eξ−t

1 + ξ 2
d ξ , s, t ⩾ 0,

and

f2(s, t) = sin s +
1

1 + t2
, s, t ⩾ 0;

see also [82, Proposition 1.3.5(d)]. Then the above requirements hold. Similarly, if we
replace condition (ii) with the condition:
(ii)′ The mappings gi : ℝ2 → ℂn are continuous, bounded (i = 1, 2) and satisfy the

requirement that there exist positive real numbers ω1 > 0 and ω2 > 0 and com-
plex numbers c1 and c2 such that |c1| = |c2| = 1 and, for every s, t ∈ ℝ, we have
g1(s + ω1, t) = c1g1(s, t) and g2(s, t + ω2) = c2g2(s, t),

and accept all remaining assumptions, then we similarly may deduce that there exist
a continuous function uh(s, t) on [0,∞)2 and a function u0 ∈ C0,𝔻([0,∞)2 : ℂn) such
that u(s, t) = uh(s, t) + u0(s, t) for all (s, t) ∈ [0,∞)2, as well as that, for every s, t ⩾ 0,
we have uh(s + ω1, t) = c1uh(s, t) and uh(s, t + ω2) = c2uh(s, t) (see also Section 7.2 for
more details).

7. Concerning the big quantity of applications and techniques in the current lit-
erature which are devoted to the study of bi-almost periodic functions and bi-almost
automorphic functions, we would like to note first that Z. Hu and Z. Jin [542] have ana-
lyzed almost automorphic mild solutions to the following nonautonomous evolution
equation:

d
dt
[u(t) + f (t, u(t))] = A(t)[u(t) + f (t, u(t))] + g(t, u(t)), t ∈ ℝ, (6.39)
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and its generalization

d
dt
[u(t) + f (t,Bu(t))] = A(t)[u(t) + f (t,Bu(t))] + g(t,Cu(t)), t ∈ ℝ, (6.40)

where the domains of operators A(t) are not necessarily densely defined and satisfy
the well-known Acquistapace–Terreni conditions, the functions f , g : ℝ × X → X are
almost automorphic in the first argument and Lipschitzian in the second argument
as well as B and C are bounded linear operators on X. We would like to note that the
statements of [542, Lemma 17, Theorem 18], concerning the existence and uniqueness
of almost automorphic solutions of the problem (6.39), can be straightforwardly refor-
mulated for almost periodicity by replacing conditions (H4) and (H5) with the corre-
sponding almost periodic type conditions and assuming that the function Γ(t, s) from
the condition (H3) of this paper is (R,ℬ)-almost periodic with R being the collection
of all sequences in 𝔸 := {(a, a) : a ∈ ℝ} and X ∈ ℬ. Similarly, the statements of [542,
Lemma 20, Theorem 21], concerning the existence and uniqueness of almost automor-
phic solutions of the problem (6.40), can be straightforwardly reformulated for almost
periodicity; see also [1034, Theorem 26, Theorem 27], where the same comment can
be given, and the recent result of J. Cao, Z. Huang and G.M. N’Guérékata [240, Theo-
rem 3.6], where a similar modification of condition (H3) for bi-almost periodicity on
bounded subsets can be made.

We also stimulate the interested reader to reformulate the recent results of
A. Chávez, M. Pinto and U. Zavaleta established in the third section and the fourth
section of the paper [268], and the recent results of Y.-K. Chang, S. Zheng [261, Theo-
rem 4.4] and Z. Xia, D. Wang [1037, Theorem 3.1, Theorem 3.2] for almost periodicity.
It seems very plausible that all these results can be reformulated for almost period-
icity by replacing the notion of bi-almost automorphicity (on bounded subsets) in
their formulations and proofs with the notion of bi-almost periodicity (on bounded
subsets).

6.1.8 Application to nonautonomous retarded functional evolution equations

In this subsection, we study the asymptotic behavior of bounded solutions to the fol-
lowing classes of time-delay function evolution equations:

u′(t) = A(t)u(t) + f (t, u(t − r)) for t ∈ ℝ,

where r > 0 is the constant time delay, (A(t),D(A(t))), t ∈ ℝ is a family of linear closed
operators definedon aBanach spaceX. The nonlinear term f : ℝ×X → X is assumed to
be bounded and continuous with respect to t and satisfying suitable conditions with
respect to the second variable. Our aim here is to prove the existence and uniqueness
of almost periodic solutions to Eq. (2.17).
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Let (A(t),D(A(t))), t ∈ ℝ be the generators of a strongly continuous evolution fam-
ily, i. e., (U(t, s))t⩾s ⊆ L(X) such that for t ⩾ s the map (t, s) → U(t, s) is strongly contin-
uous, U(t, s)U(s, r) = U(t, r) and U(t, t) = I for t ⩾ s ⩾ r such that the following
linear Cauchy problem:

{
u′(t) = A(t)u(t), t ⩾ s, t, s ∈ ℝ,
u(s) = x ∈ X,

(6.41)

has a unique solution (at least in a mild sense) given by u(t) := U(t, s)x. For more
details, we refer to [15, 737] and the references therein.

Let R be the collection of sequences defined in [L1]. Let us define the mapping
F : ℝ2 × X → X by

F(t, s; x) := U(t, s)f (s, x), t, s ∈ ℝ, x ∈ X.

Hypotheses
Here, we list our main hypotheses:
(H1) There exists x0 ∈ X such that

sup
t∈ℝ

t

∫
−∞

F(t, s; x0)
 ds <∞.

(H2) There exists a bounded function L : ℝ2 → (0,∞) satisfying supt∈ℝ ∫ℝ L(t, s) ds <
∞ and

F(t, s; x) − F(t, s; y)
 ⩽ L(t, s)‖x − y‖, x, y ∈ X, t, s ∈ ℝ.

(H3) Themapping (t, s; x) ∈ ℝ×ℝ×X → F(t, s; x) is (R,ℬ)-almost periodic (in the sense
of [L1] above) and bounded on bounded subsets of X.

Hence, a mild solution of Eq. (2.17) is a continuous function u : ℝ→ X such that

u(t) =
t

∫
−∞

F(t, s, u(s − r)) ds, t ∈ ℝ; (6.42)

see [268] for more details. Notice that, in view of (H1)–(H2), the integral formula (6.42)
is well defined. We have the following.

Proposition 6.1.58. Assume that (H1)-(H3) are satisfied. Then the mapping Γ : AP(ℝ :
X)→ Cb(ℝ : X), given by

(Γu)(t) :=
t

∫
−∞

F(t, s; u(s − r)) ds, t ∈ ℝ, (6.43)

is well defined and maps AP(ℝ : X) into itself.
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Proof. Let u ∈ AP(ℝ : X). Firstly, we check that the mapping Γ(⋅) is well defined. In
fact, from (H1) and (H2), we have

(Γu)(t)
 ⩽

t

∫
−∞

F(t, s; u(s − r))
 ds

⩽
t

∫
−∞

F(t, s; x0)
 ds +

t

∫
−∞

L(t, s)u(s − r) − x0
 ds

⩽ sup
t∈ℝ

t

∫
−∞

F(t, s; x0)
 ds + (‖u‖∞ + ‖x0‖) sup

t∈ℝ

t

∫
−∞

L(t, s) ds.

Let (bn, bn)n ⊆ R be defined as in [L1], where (bn)n ⊆ ℝ is any scalar sequence. Since
u ∈ AP(ℝ : X), there exist a subsequence (an)n ⊆ (bn)n and a function u∗(⋅) such that

lim
n→∞

u(t + an) = u
∗(t) uniformly in t ∈ ℝ. (6.44)

Moreover, by (H3), for (relatively compact) bounded subset B = R(u) of X, there exists
a function F∗(⋅, ⋅; ⋅) such that

lim
n→∞

F(t + an, s + an; x) = F
∗(t, s; x) uniformly in t, s ∈ ℝ, x ∈ B. (6.45)

It is clear that condition (H2) implies

F
∗(t, s; x) − F∗(t, s; y) ⩽ L(t, s)‖x − y‖, x, y ∈ R(u), t, s ∈ ℝ.

Define the mapping

(Γu)∗(t) :=
t

∫
−∞

F∗(t, s; u∗(s − r)) ds, t ∈ ℝ.

The function (t, s) → F(t, s; u(s − r)), (t, s) ∈ ℝ2 is (R,ℬ)-almost periodic since

lim
n→∞

F(t + an, s + an; u(s + an − r)) = F
∗(t, s; u∗(s − r)) uniformly in t, s ∈ ℝ;

this simply follows from the estimates

F(t + an, s + an; u(s + an − r)) − F
∗(t, s; u∗(s − r))

⩽ F(t + an, s + an; u(s + an − r)) − F
∗(t, s; u(s + an − r))


+ F
∗(t, s; u(s + an − r)) − F

∗(t, s; u∗(s − r))
⩽ F(t + an, s + an; u(s + an − r)) − F

∗(t, s; u(s + an − r))


+ L(t, s)u(s + an − r) − u
∗(s − r) (6.46)

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.1 Multi-dimensional almost periodic type functions | 369

and the boundedness of the function L(⋅, ⋅); see also Eqs. (6.44) and (6.45). A straight-
forward calculation yields
(Γu)(t + an) − (Γu)

∗(t)

=


t+an

∫
−∞

F(t + an, s; u(s − r)) ds −
t

∫
−∞

F∗(t, s; u∗(s − r)) ds


⩽
+∞

∫
0

F(t + an, t − s + an; u(t − s + an − r)) − F
∗(t, t − s; u∗(t − s − r)) ds.

Using the dominated convergence theorem, the estimate (6.46) with the second argu-
ment s replaced by t − s, and the estimate supt,s∈ℝ;x∈B ‖F(t, s; x)‖ <∞, we obtain

(Γu)(t + an) − (Γu)
∗(t)→ 0 as n→∞, uniformly in t ∈ ℝ.

Theorem 6.1.59. Suppose that (H1)-(H3) hold. Then Eq. (2.17) has a unique mild almost
periodic solution u(⋅), given by the integral formula (6.42), provided that supt∈ℝ ∫

t
−∞ L(t,

s) ds < 1.

Proof. Consider the mapping Γ : AP(ℝ : X)→ Cb(ℝ : X) defined by (6.43). By Proposi-
tion 6.1.58, we find that Γ(AP(ℝ : X)) ⊆ AP(ℝ : X). Moreover, for p > 1, we have

(Γu)(t) − (Γv)(t)
 ⩽

t

∫
−∞

F(t, s; u(s − r)) − F(t, s; v(s − r))
 ds

⩽
t

∫
−∞

L(t, s)u(s − r) − v(s − r)
 ds

⩽ sup
t∈ℝ

t

∫
−∞

L(t, s) ds ⋅ ‖u − v‖∞, t ∈ ℝ.

Therefore, by the Banach contraction principle, the mapping Γ(⋅) has a unique fixed
point u ∈ AP(ℝ : X). This proves the result.

Now we will provide an illustrative application of obtained results. Consider the
following reaction–diffusion model with time-dependent diffusion and finite delay
coefficients given by

𝜕u(t, x)
𝜕t
= δ(t)𝜕

2u(t, x)
𝜕x2
+ α(t)u(t, x) + h(t, u(t − r, x)), t ∈ ℝ, x ∈ ℝ, (6.47)

where δ, α : ℝ → ℝ are almost periodic functions such that α(t) ⩽ −ω̃ < 0 and there
exists δ0 > 0 such that inft∈ℝ δ(t) ⩾ δ0. The nonlinear term h : ℝ × ℝ → ℝ is assumed
to be almost periodic with respect to t and L-Lipschitzian with respect to the second
variable with h(t,0) ̸= 0 for all t ∈ ℝ.
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Let X := L2(ℝ) and let A := Δ act with its maximal distributional domain. It is well
known that (A,D(A)) generates a contraction strongly continuous analytic semigroup
(T(t))t⩾0 on X; hence, ‖T(t)‖ ⩽ 1 for all t ⩾ 0. Clearly, the operators

A(t) := δ(t)A + α(t) with D(A(t)) := D(A), t ∈ ℝ,

generate a strongly continuous evolution family given by

U(t, s) := e∫
t
s α(τ) dτT(

t

∫
s

δ(τ) dτ), t ⩾ s.

Notice that the formula T(∫ts δ(τ) dτ) for t ⩾ s, corresponds to the mild solution for
equation (6.47) with α, f = 0. This follows by applying the Fourier transform and the
explicit representation of the diffusion semigroup; see, e. g., [82]. Setω := ω̃+λδ0 > 0.

It is well known that σ(A) = (−∞,0]. Therefore, using the spectral mapping theo-
rem σ(T(t)) ∖ {0} = etσ(A), t ⩾ 0, we get


T(

t

∫
s

δ(τ) dτ)φ

⩽ e−λ ∫

t
s δ(τ) dτ‖φ‖, φ ∈ X for some λ ⩾ 0.

Hence,

U(t, s)φ
 ⩽ e
∫
t
s α(τ) dτ−λ ∫

t
s δ(τ) dτ‖φ‖

⩽ e−(ω̃+λδ0)(t−s)‖φ‖ = e−ω(t−s)‖φ‖, t ⩾ s, φ ∈ X.

Furthermore, we define f : ℝ × X → X through

f (t,φ)(x) := h(t,φ(x)), t, x ∈ ℝ, φ ∈ X.

It is clear that f (⋅, ⋅) is ℬ-almost periodic. We also have the following.

Lemma 6.1.60. Hypotheses (H1) and (H2) are satisfied with

L(t, s) := Le−ω(t−s), t ⩾ s.

Proof. Define F(t, s;φ) := U(t, s)f (s,φ) for all φ ∈ X, t ⩾ s. Then

t

∫
−∞

F(t, s;0)
 ds ⩽

t

∫
−∞

U(t, s)f (s,0)
 ds

⩽
t

∫
−∞

e−ω(t−s)f (s,0)
 ds

⩽
1
ω
f (⋅,0)
∞, t ∈ ℝ.
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Let φ, ψ ∈ X. Then the above calculation yields

F(t, s;φ) − F(t, s;ψ)
 ⩽ Le

−ω(t−s)‖φ − ψ‖, t ∈ ℝ.

This proves the result.

We need to following auxiliary result.

Proposition 6.1.61. The mapping (t, s) → U(t, s) is (R,ℬ)-almost periodic. Moreover,
F(⋅, ⋅; ⋅) is (R,ℬ)-almost periodic.

Proof. LetB ⊆ X be bounded and (bk , bk)k⩾0 ∈ R,where (bk)k⩾0 is any scalar sequence.
Since δ ∈ AP(ℝ) and α ∈ AP(ℝ), it follows that there exist a subsequence (ak)k⩾0 ⊆
(bk)k⩾0 and measurable functions δ̃ and α̃ such that

lim
k→+∞

δ(t + ak) = δ̃(t) uniformly in t ∈ ℝ

and

lim
k→+∞

α(t + ak) = α̃(t) uniformly in t ∈ ℝ.

If φ ∈ B, we define

Ũ(t, s)φ := e∫
t
s α̃(τ) dτT(

t

∫
s

δ̃(τ) dτ)φ for all t ⩾ s.

Thus, by the semigroup property of (T(t))t⩾0, we have

U(t + ak , s + ak)φ − Ũ(t, s)φ


=

e∫

t+ak
s+ak

α(τ) dτT(
t+ak

∫
s+ak

δ(τ) dτ)φ − e∫
t
s α̃(τ) dτT(

t

∫
s

δ̃(τ) dτ)φ


=

e∫

t
s α(τ+ak) dτT(

t

∫
s

δ(τ + ak) dτ)φ − e
∫
t
s α̃(τ) dτT(

t

∫
s

δ̃(τ) dτ)φ


⩽ e∫
t
s α(τ+ak) dτ


T(

t

∫
s

δ(τ + ak) dτ)φ − T(
t

∫
s

δ̃(τ) dτ)φ


+ (e∫
t
s α(τ+ak) dτ − e∫

t
s α̃(τ) dτ)

T(

t

∫
s

δ̃(τ) dτ)φ

.

Therefore, by the strong continuity of the semigroup, we obtain

e∫
t
s α(τ+ak) dτ


T(

t

∫
s

δ(τ + ak) dτ)φ − T(
t

∫
s

δ̃(τ) dτ)φ

→ 0 as k →∞,
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uniformly in t, s. Furthermore, we find that

(e∫
t
s α(τ+ak) dτ − e∫

t
s α̃(τ) dτ)

T(

t

∫
s

δ̃(τ) dτ)φ


⩽ (e∫
t
s α(τ+ak) dτ − e∫

t
s α̃(τ) dτ)‖φ‖

→ 0 as k →∞, uniformly in t, s.

So, from Proposition 6.1.61, we see that F(⋅, ⋅; ⋅) satisfies (H3).

Hence, the following result can be deduced by applying Theorem 6.1.59.

Theorem 6.1.62. Assume that L < ω. Then the problem (6.47) admits a unique almost
periodic solution.

6.2 Stepanov multi-dimensional almost periodic type functions

This section investigates the generalized Stepanovmulti-dimensional almost periodic
type functions in Lebesgue spaces with variable exponents. With the exception of a
recent paper [951] by T. Spindeler, in which the author has analyzed the Stepanov
andWeyl almost periodic functions in locally compact Abelian groups, the introduced
classes of functions seem to be not considered elsewhere even in the constant coeffi-
cient case (concerning Besicovitch almost periodic functions onℝn and general topo-
logical groups, the reader may consult the important research monograph [824] by
A. A. Pankov). In our analysis of Stepanovp(u)-(R,ℬ)-multi-almost periodic functions,
we assume that Ω is a fixed compact subset ofℝn with positive Lebesguemeasure and
p ∈ 𝒫(Ω).

The organization of this section is briefly described as follows. Let 0 ̸= Λ ⊆ ℝn

satisfy Λ + Ω ⊆ Λ and let p : Ω ∈ [1,∞] belongs to the space 𝒫(Ω), introduced in
Subsection 1.1.1. At the beginning of Section 6.2, we introduce the notions of multi-
dimensional Bochner transform F̂Ω : Λ × X → YΩ. After that, in Subsection 6.2.1, we
analyze the notions of Stepanov (Ω, p(u))-boundedness, Stepanov distance Dp(⋅)

SΩ
(F,G)

and Stepanov norm ‖F‖Sp(u)Ω
for functions F : Λ × X → Y and G : Λ→ Y .

At the beginning of Subsection 6.2.2, we introduce the notion of Stepanov (Ω,
p(u))-(R,ℬ)-multi-almost periodicity and the notion of Stepanov (Ω, p(u))-(RX,ℬ)-
multi-almost periodicity (see Definition 6.2.4 and Definition 6.2.5, respectively). Our
first structural result in connection with the introduced notion is Proposition 6.2.6, in
which we analyze the Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodicity for a given
tuple (F1, . . . , Fk)(⋅; ⋅) of Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic functions. Af-
ter that, in Definition 6.2.7, we introduce the notions of Stepanov (Ω, p(u))-(ℬ,Λ′)-al-
most periodicity and Stepanov (Ω, p(u))-(ℬ,Λ′)-uniform recurrence in a Bohr like
manner. It is well known that, for every almost periodic function F : ℝ → ℝ which
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can be analytically extended to a strip around the real axis, its composition with the
signum function is always Stepanov p-almost periodic for any finite number p ⩾ 1;
in Example 6.2.9, we transfer and extend this statement to multi-dimensional almost
periodic functions.

The most important results about the introduced classes of functions are given
in Proposition 6.2.10–Proposition 6.2.12 and Theorem 6.2.13. Our first essential con-
tributions are Theorem 6.2.14 and Theorem 6.2.15, in which we prove the uniqueness
theorem for Stepanov (Ω, p(u))-almost periodic functions and an extension type theo-
rem for Stepanov (Ω, p(u))-almost periodic functions. In Remark 6.2.16, we reconsider
the obtained results for convex polyhedrals in ℝn. The main aim of Proposition 6.1.19
is to reconsider the issue analyzed in Proposition 6.2.6 for Stepanov (Ω, p(u))-ℬ-almost
periodic functions. The pointwise products of Stepanovmulti-dimensional almost pe-
riodic functionswith Stepanovmulti-dimensional scalar-valued almost periodic func-
tions are investigated in Propositon 6.2.18 and Proposition 6.2.19. Some other results
concerning Stepanov multi-dimensional almost periodic type functions are given in
Theorem 6.2.21, Proposition 6.2.22, Proposition 6.2.23 and Proposition 6.2.24. Asymp-
totically Stepanov multi-dimensional almost periodic functions are investigated in
Subsection 6.4, composition theorems for Stepanov multi-dimensional almost peri-
odic functions in Lebesgue spaces with variable exponents are investigated in Sub-
section 6.1.5; we also analyze the invariance of Stepanov multi-dimensional almost
periodicity under the actions of convolution products in Subsection 6.2.5. The final
subsection is reserved for giving some applications of our theoretical results to the
abstract Volterra integro-differential equations in Banach spaces.

In our investigations of generalized multi-dimensional almost periodicity, Λ de-
notes a general non-empty subset of ℝn satisfying Λ + Ω ⊆ Λ (for the usual almost
periodicity, this region has been denoted by I). We introduce the multi-dimensional
Bochner transform F̂Ω : Λ × X → YΩ by

[F̂Ω(t; x)](u) := F(t + u; x), t ∈ Λ, u ∈ Ω, x ∈ X.

6.2.1 Stepanov (Ω, p(u))-boundedness, Stepanov distance Dp(⋅)SΩ
(F , G) and Stepanov

norm ‖F ‖Sp(u)
Ω

We introduce the notion of Stepanov (Ω, p(u))-boundedness on ℬ as follows.

Definition 6.2.1. Suppose that 0 ̸= Λ ⊆ ℝn satisfies Λ + Ω ⊆ Λ and F : Λ × X → Y
satisfies the requirement that for each t ∈ Λ and x ∈ X, the function F(t+u; x) belongs
to the space Lp(u)(Ω : Y). Then we say that F(⋅; ⋅) is Stepanov (Ω, p(u))-bounded on ℬ if
and only if for each B ∈ ℬ we have

sup
t∈Λ;x∈B

[F̂Ω(t; x)](u)
Lp(u)(Ω:Y) = sup

t∈Λ;x∈B

F(t + u; x)
Lp(u)(Ω:Y) <∞.
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Denote by LΩ,p(u)S,ℬ (Λ × X : Y) the set consisting of all Stepanov (Ω, p(u))-bounded func-
tions on ℬ.

If n = 1, X = {0}, Ω = [0, 1] and Λ = [0,∞) or Λ = ℝ, then the notion introduced
above reduces to the notion introduced recently in [372, Definition 4.1]. If X = {0}, then
we abbreviate LΩ,p(u)S,ℬ (Λ × X : Y) to L

Ω,p(u)
S (Λ : Y); in this case, we say that the function

F(⋅) is Stepanov (Ω, p(u))-bounded and define ‖F‖SΩ,p(u) := supt∈Λ ‖F(t + u)‖Lp(u)(Ω:Y).

Remark 6.2.2.
(i) Condition Λ+Ω ⊆ Λused henceforth is clearly equivalent with condition Λ+Ω = Λ

if 0 ∈ Ω.
(ii) Suppose that Ω1 is also a compact subset of ℝn with positive Lebesgue measure,

Λ + Λ ⊆ Λ, Λ + Ω1 ⊆ Λ and 1 ⩽ p < ∞. It is clear that the existence of a finite
subset {t1, . . . , tk} of Λ such that Ω ⊆ ⋃ki=1(ti + Ω1) implies that for each t ∈ Λ we
have t + Ω ⊆ ⋃ki=1(t + ti + Ω1), so that the Stepanov (Ω1, p(u))-boundedness on ℬ
implies the Stepanov (Ω, p(u))-boundedness on ℬ, for any function F : Λ×X → Y .

(iii) Let 1 ⩽ p < ∞. In the one-dimensional case, the usual Stepanov p-boundedness
of the function F : Λ → Y , where Λ = [0,∞) or Λ = ℝ, is equivalent with the
Stepanov (Ω, p)-boundedness of the function F(⋅), where Ω = [a, b] is any non-
trivial segment in Λ.

In the general case, it is very simple to show that:
1. αF + βG ∈ LΩ,p(u)S,ℬ (Λ × X : Y), provided α, β ∈ ℂ and F, G ∈ L

Ω,p(u)
S,ℬ (Λ × X : Y).

2. Suppose that τ + Λ ⊆ Λ, x0 ∈ X and for each B ∈ ℬ there exists B′ ∈ ℬ such
that x0 + B ⊆ B′. Then we have F(⋅ + τ; ⋅ + x0) ∈ L

Ω,p(u)
S,ℬ (Λ × X : Y), provided that

F(⋅; ⋅) ∈ LΩ,p(u)S,ℬ (Λ × X : Y).
3. If 1 ⩽ p1(u) ⩽ p(u) for a. e. u ∈ Ω and f ∈ LΩ,p(u)S,ℬ (Λ × X : Y), then we have

f ∈ LΩ,p1(u)S,ℬ (Λ × X : Y).
4. (LΩ,p(u)S (Λ : Y), ‖ ⋅ ‖SΩ,p(u) ) is a complex Banach space.

The translation invariance stated in the point [2.] does not generally hold in the ap-
proach proposed by T. Diagana and M. Zitane in [375], as already mentioned.

Let 0 ̸= Λ ⊆ ℝn satisfy Λ+Ω ⊆ Λ. Suppose first that p(u) ≡ p ∈ [1,∞) and F : Λ→ Y
and G : Λ→ Y are two functions for which ‖F(t + u) − G(t + u)‖Y ∈ Lp(Ω) for all t ∈ Λ.
We define the Stepanov distance Dp

SΩ
(F,G) of functions F(⋅) and G(⋅) by

Dp
SΩ
(F,G) := sup

t∈Λ
[(

1
m(Ω)
)
1/p
F(t + u) − G(t + u)

Lp(Ω:Y)].

Suppose now that p, q ∈ 𝒫(Ω), 1/p(u) + 1/q(u) = 1 for a. e. u ∈ Ω and q(u) < +∞ for
a. e. u ∈ Ω. In this case (the definition is consistent with the above given provided that
p(u) ≡ p ∈ (1,∞)), we define the Stepanov distance Dp(⋅)

SΩ
(F,G) of functions F(⋅) and
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G(⋅) by

Dp(⋅)
SΩ
(F,G) := sup

t∈Λ
[m(Ω)−1‖1‖Lq(u)(Ω)

F(t + u) − G(t + u)
Lp(u)(Ω:Y)].

The use of the Hölder inequality (see Lemma 1.1.7(i)) enables one to see that the fol-
lowing proposition holds good.

Proposition 6.2.3. Suppose that 1 ⩽ p1(u) ⩽ p2(u) for a. e. u ∈ Ω, and ‖F(t + u) − G(t +
u)‖Y ∈ Lp2(u)(Ω) for all t ∈ Λ. Then

Dp1(⋅)
SΩ
(F,G) ⩽ 4Dp2(⋅)

SΩ
(F,G).

Proof. It is clear that ‖F(t + u) − G(t + u)‖Y ∈ Lp1(u)(Ω) for all t ∈ Λ. If p1(u) = 1 for
a. e. u ∈ Ω, then we can apply the Hölder inequality once to conclude that D1

SΩ (F,G) ⩽
2Dp2(⋅)

SΩ
(F,G). Otherwise, if 1/pi(u) + 1/qi(u) = 1 for a. e. u ∈ Ω (i = 1, 2), then q2(u) ⩽

q1(u) < +∞ for a. e. u ∈ Ω. Applying the Hölder inequality twice, we get for each t ∈ Λ

‖1‖Lq1(u)(Ω)
F(t + u) − G(t + u)

Lp1(u)(Ω:Y)
⩽ 2‖1‖Lq1(u)(Ω)‖1‖L(q1(u)−q2(u))−1 (Ω)

F(t + u) − G(t + u)
Lp2(u)(Ω:Y)

⩽ 4‖1‖Lq2(u)(Ω)
F(t + u) − G(t + u)

Lp2(u)(Ω:Y).

This simply completes the proof.

Clearly, if 1 ⩽ p1(u) ≡ p1 ⩽ p2 ≡ p2(u) for a. e. u ∈ Ω, then we have Dp1
SΩ
(F,G) ⩽

Dp2
SΩ
(F,G). If Ω ≡ [0, l]n for some l > 0, then we also write Dp

Sl
(F,G) ≡ Dp

SΩ
(F,G) and

Dp(⋅)
Sl
(F,G) ≡ Dp(⋅)

SΩ
(F,G).

Suppose now that p(u) ≡ p ∈ [1,∞) and l2 > l1 > 0. Since, for every t ∈ Λ, we have

(
1

m([0, l1]n)
)
1/p
F(t + u) − G(t + u)

Lp(l1Ω:Y)

⩽ (
m([0, l2]n)
m([0, l1]n)

)
1/p
(

1
m([0, l2]n)

)
1/p
F(t + u) − G(t + u)

Lp(l2Ω:Y),

it follows that

Dp
Sl1
(F,G) ⩽ [ l2

l1
]
n/p
⋅ Dp

Sl2
(F,G).

Suppose now that l2 = kl1 + θl1 for some k ∈ ℕ and θ ∈ [0, 1). Since, for every t ∈ Λ, we
have

(
1

m([0, l2]n)
)
1/p
F(t + u) − G(t + u)

Lp([0,l2]n :Y)

⩽ (
1

m([0, kl1]n)
)
1/p
F(t + u) − G(t + u)

Lp([0,(k+1)l1]n :Y)
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⩽ (
(k + 1)nm([0, l1]n)

m([0, kl1]n)
)
1/p

sup
t∈Λ
(

1
m([0, l1]n)

)
1/p
F(t + u) − G(t + u)

Lp([0,l1]n :Y)

⩽ (
k + 1
k
)
n/p
⋅ Dp

Sl1
(F,G), (6.48)

it follows that

Dp
Sl2
(F,G) ⩽ (k + 1

k
)
n/p
⋅ Dp

Sl1
(F,G).

Therefore, if p(t) ≡ p ∈ [1,∞), the metrics Dp
Sl1
(⋅, ⋅) and Dp

Sl2
(⋅, ⋅) are topologically equiv-

alent. Furthermore, the use of (6.48) enables one to see that

lim sup
l→∞

Dp
Sl
(F,G) ⩽ Dp

Sl1
p(F,G), l1 > 0,

provided that p(t) ≡ p ∈ [1,∞). Performing the limit inferior as l1 →∞, we get

lim sup
l→∞

Dp
Sl
(F,G) ⩽ lim inf

l→∞
Dp
Sl
(F,G),

so that the limit

Dp
W (F,G) := liml→∞

Dp
Sl
(F,G)

exists. Therefore, we can define the Weyl distance Dp
W (F,G) of functions F(⋅) and G(⋅);

see also Subsection 6.3.1 for a slight generalization.
By SpΩ(Λ : Y) we denote the vector space of all functions F : Λ → Y for which

‖F(t + u)‖Y ∈ Lp(Ω) for all t ∈ Λ and the Stepanov norm

‖F‖SpΩ := supt∈Λ
[(

1
m(Ω)
)
1/p
F(t + u)

Lp(Ω:Y)]

is finite; if Ω ≡ [0, l]n, then we also write Spl (Λ : Y) ≡ S
p
Ω(Λ : Y) and ‖ ⋅ ‖Spl ≡ ‖ ⋅ ‖SpΩ . If

p, q ∈ 𝒫(Ω), 1/p(u) + 1/q(u) = 1 for a. e. u ∈ Ω and q(u) < +∞ for a. e. u ∈ Ω, then
(the definition is consistent with the above given provided that p(u) ≡ p ∈ (1,∞)), we
define the Stepanov norm ‖F‖Sp(u)Ω

by

‖F‖Sp(u)Ω
:= sup

t∈Λ
[m(Ω)−1‖1‖Lq(u)(Ω)

F(t + u)
Lp(u)(Ω:Y)];

again, Sp(u)Ω (Λ : Y) denotes the vector space consisting of all functions F : Λ → Y
satisfying that ‖F(t + u)‖Y ∈ Lp(u)(Ω) for all t ∈ Λ and ‖F‖Sp(u)Ω

< ∞. Since Fatou’s
lemma holds in our framework (see, e. g., [377, p. 75]), using the arguments contained
in the proof of [696, Theorem 5.2.1, p. 199] and Lemma 1.1.7(ii) we may conclude that
Sp(u)Ω (Λ : Y) is a Banach space equipped with the norm ‖ ⋅ ‖Sp(u)Ω

.
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6.2.2 Stepanov (Ω, p(u))-(RX ,ℬ)-multi-almost periodic type functions and Stepanov
(Ω, p(u))-ℬ-almost periodic type functions

The notion of a Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic function is introduced
as follows.

Definition 6.2.4. Suppose that 0 ̸= Λ ⊆ ℝn satisfies Λ + Ω ⊆ Λ, F : Λ × X → Y , (6.1)
holds with the set I replaced by the set Λ therein and the function F̂ : Λ×X → Lp(u)(Ω :
Y) is well defined and continuous. Then we say that the function F(⋅; ⋅) is Stepanov
(Ω, p(u))-(R,ℬ)-multi-almost periodic if and only if the function F̂Ω : Λ × X → Lp(u)(Ω :
Y) is (R,ℬ)-multi-almost periodic, i. e., for every B ∈ ℬ and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R

there exist a subsequence (bkl = (b
1
kl , b

2
kl , . . . , b

n
kl )) of (bk) and a function F

∗ : Λ × X →
Lp(u)(Ω : Y) such that

lim
l→+∞
F(t + u + (b

1
kl , . . . , b

n
kl); x) − [F

∗(t; x)](u)Lp(u)(Ω:Y) = 0,

uniformly for all x ∈ B and t ∈ Λ. By APSΩ,p(u)(R,ℬ) (Λ × X : Y) we denote the collection
consisting of all Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic functions F : Λ×X →
Y . IfX = {0}andℬ = {X}, thenwealso say that the functionF(⋅) is Stepanov (Ω, p(u))-R-
multi-almost periodic and abbreviate APSΩ,p(u)(R,ℬ) (Λ × X : Y) to APS

Ω,p(u)
R (Λ : Y).

In the followingdefinition,we introduce thenotionof aStepanov (Ω, p(u))-(RX,ℬ)-
multi-almost periodic function.

Definition 6.2.5. Suppose that 0 ̸= Λ ⊆ ℝn, Λ + Ω ⊆ Λ and F : Λ × X → Y , (6.3)
holds with the set I replaced by Λ therein and the function F̂ : Λ × X → Lp(u)(Ω : Y)
is well defined and continuous. Then we say that the function F(⋅; ⋅) is Stepanov
(Ω, p(u))-(RX,ℬ)-multi-almost periodic if and only if the function F̂Ω : Λ × X →
Lp(u)(Ω : Y) is (RX,ℬ)-multi-almost periodic, i. e., for every B ∈ ℬ and for every se-
quence ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX there exist a subsequence ((b;x)kl =

((b1kl , b
2
kl , . . . , b

n
kl ); xkl )) of ((b;x)k) and a function F

∗ : Λ × X → Lp(u)(Ω : Y) such that

lim
l→+∞
F(t + u + (b

1
kl , . . . , b

n
kl); x + xkl) − [F

∗(t; x)](u)Lp(u)(Ω:Y) = 0,

uniformly for all x ∈ B and t ∈ Λ. ByAPSΩ,p(u)(RX ,ℬ)
(Λ×X : Y)wedenote the space consisting

of all Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic functions.

The following special cases will be very important for us (see also the previous
section):
L1. R = {b : ℕ → ℝn; for all j ∈ ℕ we have bj ∈ {(a, a, a, . . . , a) ∈ ℝn : a ∈ ℝ}}.

If n = 2 and ℬ denotes the collection of all bounded subsets of X, then we also
say that the function F(⋅; ⋅) is Stepanov (Ω, p(u))-bi-almost periodic. The notion
of Stepanov (Ω, p(u))-bi-almost periodicity seems to be new and not considered

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



378 | 6 Multi-dimensional almost periodic type functions and applications

elsewhere even in the one-dimensional caseΩ = [0, 1]with the constant exponent
p(u) ≡ p ∈ [1,∞).

L2. R is a collection of all sequences b(⋅) in ℝn. This is the limit case in our anal-
ysis because, in this case, any Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic,
resp. Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic function, is automatically
Stepanov (Ω, p(u))-(R1,ℬ)-multi-almost periodic, resp. Stepanov (Ω, p(u))-(R1X,ℬ)-
multi-almost periodic, for any other collection R1 of sequences b(⋅) in ℝn, resp.
any other collection R1X of sequences in ℝ

n × X.

Let k ∈ ℕ and Fi : Λ × X → Yi (1 ⩽ i ⩽ k). Let us recall that we define the function
(F1, . . . , Fk) : Λ × X → Y1 × ⋅ ⋅ ⋅ × Yk by

(F1, . . . , Fk)(t; x) := (F1(t; x), . . . , Fk(t; x)), t ∈ Λ, x ∈ X.

Almost immediately from definitions, we can clarify the following analogue of
Proposition 6.1.4.

Proposition 6.2.6.
(i) Suppose that k ∈ ℕ, 0 ̸= Λ ⊆ ℝn, (6.1) holds with I replaced by Λ therein, and

for any sequence which belongs to R we find that any its subsequence also belongs
to R. If the function Fi(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic for 1 ⩽
i ⩽ k, then the function (F1, . . . , Fk)(⋅; ⋅) is also Stepanov (Ω, p(u))-(R,ℬ)-multi-almost
periodic.

(ii) Suppose that k ∈ ℕ, 0 ̸= Λ ⊆ ℝn, (6.1) holds with I replaced by Λ therein, and for
any sequence which belongs to RX we find that any its subsequence also belongs
to RX. If the function Fi(⋅; ⋅) is Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic for
1 ⩽ i ⩽ k, then the function (F1, . . . , Fk)(⋅; ⋅) is also Stepanov (Ω, p(u))-(RX,ℬ)-multi-
almost periodic.

The supremum formula for Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic func-
tions, the conditions under which the range {F̂Ω(t; x) : t ∈ Λ; x ∈ B}, for a given
set B ∈ ℬ, is relatively compact in Lp(u)(Ω : Y) and the question when for a given
Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic function F : Λ × X → Y and a func-
tionϕ : Y → Z we find thatϕ∘F : Λ×X → Z is Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost
periodic can be deduced by appealing to [265, Proposition 2.5, Proposition 2.6, Propo-
sition 2.9].

Now we will introduce the following notion in a Bohr like manner.

Definition 6.2.7. Suppose that 0 ̸= Λ′ ⊆ Λ ⊆ ℝn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ, F : Λ × X → Y
and the function F̂Ω : Λ × X → Lp(u)(Ω : Y) is well defined and continuous.
(i) Then we say that F(⋅; ⋅) is Stepanov (Ω, p(u))-(ℬ,Λ′)-almost periodic (Stepanov
(Ω, p(u))-ℬ-almost periodic, if Λ′ = Λ) if and only if for every B ∈ ℬ and ε > 0 there
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exists l > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, l) ∩ Λ′ such that

F(t + τ + u; x) − F(t + u; x)
Lp(u)(Ω:Y) ⩽ ε, t ∈ Λ, x ∈ B.

By APSΩ,p(u)ℬ,Λ′ (Λ×X : Y) and APS
Ω,p(u)
ℬ (Λ×X : Y)we denote the spaces consisting of

all Stepanov (Ω, p(u))-(ℬ,Λ′)-almost periodic functions and Stepanov (Ω, p(u))-ℬ-
almost periodic functions, respectively.

(ii) Thenwe say that F(⋅; ⋅) is Stepanov (Ω, p(u))-(ℬ,Λ′)-uniformly recurrent (Stepanov
(Ω, p(u))-ℬ-uniformly recurrent, if Λ′ = Λ) if and only if for everyB ∈ ℬ there exists
a sequence (τn) in Λ′ such that limn→+∞ |τn| = +∞ and

lim
n→+∞

sup
t∈I ;x∈B

F(t + τn + u; x) − F(t + u; x)
Lp(u)(Ω:Y) = 0.

By URSΩ,p(u)ℬ,Λ′ (Λ × X : Y) and URSΩ,p(u)ℬ (Λ × X : Y) we denote the spaces consist-
ing of all Stepanov (Ω, p(u))-(ℬ,Λ′)-uniformly recurrent functions and Stepanov
(Ω, p(u))-ℬ-uniformly recurrent functions, respectively.

If X ∈ ℬ, then it is also said that F(⋅; ⋅) is Stepanov (Ω, p(u))-Λ′-almost periodic
(Stepanov (Ω, p(u))-Λ′-uniformly recurrent) [Stepanov (Ω, p(u))-almost periodic (Ste-
panov (Ω, p(u))-uniformly recurrent), if Λ = Λ′].

Remark 6.2.8.
(i) Suppose that p ∈ D+(Ω) and there exists a finite constant L ⩾ 1 such that

F(t; x) − F(t; y)
Y ⩽ L‖x − y‖, t ∈ Λ, x, y ∈ X, (6.49)

and the mapping F̂Ω : Λ × X → Lp(u)(Ω : Y) is well defined. Then it is continuous.
Towards this end, let (tn; xn)→ (t; x) as n→ +∞. Then (6.49) implies that

F(tn + u; xn) − F(t + u; x)
Lp(u)(Ω:Y)

⩽ F(tn + u; xn) − F(tn + u; x)
Lp(u)(Ω:Y) +

F(tn + u; x) − F(t + u; x)
Lp(u)(Ω:Y)

⩽ 2(1 +m(Ω)) ⋅ [L‖xn − x‖]Lp+ (Ω) +
F(tn + u; x) − F(t + u; x)

Lp(u)(Ω:Y).

The first addend clearly goes to zero since ‖xn − x‖ → 0 as n → +∞. For the
second addend, we can apply the arguments used for proving the continuity of
the translation mapping from the proof of [373, Proposition 5.1].

(ii) Suppose that F : Λ × X → Y is continuous and p ∈ D+(Ω). Then the continuity of
mapping F̂Ω : Λ × X → Lp(u)(Ω : Y) follows directly by applying the dominated
convergence theorem (see Lemma 1.1.7(iv)).

Example 6.2.9 (see also Remark 2.4.19). Let F : ℝn → ℝ be a Bohr Λ′-almost periodic
function (Λ′-uniformly recurrent function). Define sign(0) := 0 and H : ℝn → ℝ by
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H(t) := sign(F(t)), t ∈ ℝn. Then, for every p ∈ D+(Ω), the function H(⋅) is Stepanov
(Ω, p(u))-Λ′-almost periodic (Stepanov (Ω, p(u))-Λ′-uniformly recurrent), provided
that

(∃L ⩾ 1) (∀ε > 0) (∀y ∈ ℝn)m({x ∈ y + Ω : F(x)
 ⩽ ε}) ⩽ Lε.

Let ε > 0 be fixed. Then the required conclusion follows from the calculation
H(t + τ + u; x) − H(t + u; x)

Lp(u)(Ω:ℝ)
⩽ 2(1 +m(Ω)) ⋅ H(t + τ + u; x) − H(t + u; x)

Lp+ (Ω:ℝ)
⩽ 2(1 +m(Ω)) ⋅ ‖1‖Lp+ ((t+Ω)∩Ecε :ℝ),

where Eε denotes the set consisting of all tuples y ∈ ℝn such that |F(y)| ⩾ ε and
τ is a (Λ′, ε)-period od F(⋅) (the inequality stated in the last line of computation
follows from the fact that for any y ∈ Eε and for any such a number τ we have
H(y + τ) = H(y)); see also [696, Theorem 5.3.1] for the first result in this direc-
tion. Suppose now that the function F(⋅) is Bohr almost periodic and there exist
real numbers a and b such that a < 0 < b and the function F(⋅) can be analyt-
ically extended to the region {(z1, . . . , zn) ∈ ℂn : Re zi ∈ (a, b) for all i ∈ ℕn} (in
particular, this holds for any trigonometric polynomial). Then we can repeat verba-
tim the argumentation contained in the proof of the last mentioned theorem (see
also https://math.stackexchange.com/questions/3216833/holomorphic-function-
on-mathbbcn-vanishing-on-a-positive-lebesgue-measure?rq=1) in order to see that
limε→0+m(Ecε ∩ (t + Ω)) = 0, uniformly for t ∈ ℝn, which combined with the above
calculation shows that the function H(⋅) is Stepanov (Ω, p(u))-almost periodic.

In connection with the above example, it should be noted that the function H(⋅)
need not be Stepanov (Ω, p(u))-Λ′-almost periodic (Stepanov (Ω, p(u))-Λ′-uniformly
recurrent) for all p ∈ 𝒫(Ω), even in the one-dimensional case. Strictly speaking, if
Ω := [0, 1], Λ′ := ℝ and p(x) := −1 − ln x, x ∈ (0, 1], then we know that the function
x → sign(sin x + sin(√2x)), x ∈ ℝ is Stepanov (Ω, p(u))-bounded but not Stepanov
(Ω, p(u))-almost periodic. Suppose now that Ω = [0, 1]n and p(u) := 1− ln(u1 ⋅u2 ⋅ ⋅ ⋅ un),
u = (u1, u2, . . . , un) ∈ Ω and F(x1, x2, . . . , xn) := sin(x1 + x2 + ⋅ ⋅ ⋅ + xn) + sin(√2(x1 +
x2 + ⋅ ⋅ ⋅ + xn)), (x1, x2, . . . , xn) ∈ ℝn. Then H(⋅), defined as above, is essentially bounded
and therefore Stepanov (Ω, p(u))-bounded. On the other hand, using the argumenta-
tion from the above-mentioned example, the Fubini theorem and the equality ln(u1 ⋅
u2 ⋅ ⋅ ⋅ un) = ln u1 + ln u2 + ⋅ ⋅ ⋅ + ln un for all (u1, u2, . . . , un) ∈ Ω, we see that, for every
λ ∈ (0, 2/e) and l > 0, we can find a ball B(t0, l) ⊆ ℝn such that, for every τ ∈ B(t0, l),
there exists t ∈ ℝn such that

∫
Ω

(
1
λ
)
1−ln(u1 ⋅u2 ⋅⋅⋅un)sign[sin(u + t + τ) + sin(√2(u + t + τ))]

− sign[sin(u + t) + sin(√2(u + t))]
1−ln(u1 ⋅u2 ⋅⋅⋅un) du =∞.

This simply implies that the function H(⋅) is not Stepanov (Ω, p(u))-almost periodic.
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Now we will clarify the following result.

Proposition 6.2.10. Suppose that h ∈ L1(ℝn), p ∈ D+(Ω), the function F(⋅; ⋅) is Stepanov
(Ω, p(u))-(RX,ℬ)-multi-almost periodic and for each bounded subset D of X there exists
a constant cD > 0 such that ‖F(t; x)‖Y ⩽ cD for a. e. t ∈ ℝn andall x ∈ D. Suppose, further,
that for each sequence ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk) ∈ RX and for each set B ∈ ℬ we

find that B + {xk : k ∈ ℕ} is a bounded set in X. Then the function

(h ∗ F)(t; x) := ∫
ℝn

h(σ)F(t − σ; x) dσ, t ∈ ℝn, x ∈ X,

is Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic and satisfies the requirement that for
each bounded subset D of X there exists a constant c′D > 0 such that ‖(h∗F)(t; x)‖Y ⩽ c

′
D

for all t ∈ ℝn, x ∈ D.

Proof. The prescribed assumptions imply that for each bounded subset D of X there
exists a constant c′D > 0 such that ‖F̂Ω(t; x)‖Lp(u)(Ω:Y) ⩽ cD for all t ∈ ℝn and x ∈ D, as
well as that ‖(h∗ F)(t; x)‖Y ⩽ c′D for all t ∈ ℝ

n and x ∈ D. Applying Lemma 6.1.5, we see
that the function [h ∗ F̂Ω](⋅; ⋅) is (RX,ℬ)-multi-almost periodic. The result now simply
follows from the equality

h ∗ F̂Ω = ̂h ∗ FΩ (6.50)

and a corresponding definition of Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodicity.

Using [265, Proposition 2.18] and the corresponding definition, we can immedi-
ately deduce the following result which can be also formulated for the (asymptotical)
Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodicity (see [265, Proposition 2.19, Proposi-
tion 2.20]).

Proposition 6.2.11. Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is Stepanov
(Ω, p(u))-(R,ℬ)-multi-almost periodic. If for each B ∈ ℬ there exists εB > 0 such that

lim
j→+∞

sup
t∈Λ;x∈B′
Fj(t + u; x) − F(t + u; x)

Lp(u)(Ω:Y) = 0,

where B′ ≡ B∘∪⋃x∈𝜕B B(x, εB), then the function F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-
almost periodic.

The subsequent result is trivial and follows almost immediately from the above
definitions.

Proposition 6.2.12. Suppose that 0 ̸= Λ′ ⊆ Λ ⊆ ℝn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ, F :
Λ × X → Y and the function F̂Ω : Λ × X → Lp(u)(Ω : Y) is well defined and contin-
uous. Then the function F(⋅; ⋅) is Stepanov (Ω, p(u))-(ℬ,Λ′)-almost periodic (Stepanov
(Ω, p(u))-(ℬ,Λ′)-uniformly recurrent) if and only if the function F̂Ω : Λ×X → Lp(u)(Ω : Y)
is Bohr (ℬ,Λ′)-almost periodic ((ℬ,Λ′)-uniformly recurrent).
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Since every Bohr almost periodic function F : ℝn → Y is immediately Bohr
Δn-almost periodic, we may deduce from the previous proposition that a Stepanov
(Ω, p(u))-almost periodic function F : ℝn → Y is immediately Stepanov (Ω, p(u))-Δn-
almost periodic. Using Lemma 6.1.18 we can simply deduce the following.

Theorem 6.2.13. Suppose that F̂Ω : ℝn × X → Lp(u)(Ω : Y) is well defined and continu-
ous, ℬ is any family of compact subsets of X and R is the collection of all sequences in
ℝn. Then F(⋅; ⋅) is Stepanov (Ω, p(u))-ℬ-almost periodic if and only if F(⋅; ⋅) is Stepanov
(Ω, p(u))-(R,ℬ)-multi-almost periodic.

Keeping in mind Proposition 6.2.12, the notion of a strong Stepanov (Ω, p(u))-ℬ-
almost periodicity can be introduced in the following way: a function F : Λ × X → Y
is said to be strongly Stepanov (Ω, p(u))-ℬ-almost periodic if and only if the function
F̂Ω : Λ × X → Lp(u)(Ω : Y) is strongly almost periodic. We will skip all related details
concerning this issue for brevity.

Using Lemma 6.1.38 and Proposition 6.2.12, we can deduce the following result.

Theorem 6.2.14 (The uniqueness theorem forStepanov (Ω, p(u))-almost periodic func-
tions). Suppose that Λ ⊆ ℝn, Λ +Λ ⊆ Λ andℝn ∖ [(Λ ∪ (−Λ)) + (Λ ∪ (−Λ))] is a bounded
set. If F : ℝn → Y and G : ℝn → Y are two Stepanov (Ω, p(u))-almost periodic functions
and F(t) = G(t) for a. e. t ∈ Λ, then F(t) = G(t) for a. e. t ∈ ℝn.

Proof. By Proposition 6.2.12, F̂ : ℝn → Lp(u)(Ω : Y) and Ĝ : ℝn → Lp(u)(Ω : Y) are Bohr
almost periodic functions. Let t ∈ Λ be fixed. Then our assumption implies F(t + u) =
G(t + u) for a. e. u ∈ Ω so that F̂(t) = Ĝ(t). Applying Lemma 6.1.38, we get F̂(t) = Ĝ(t)
for all t ∈ ℝn, which simply implies that F(t) = G(t) for a. e. t ∈ ℝn.

Now we will render the following important result about extensions of Stepanov
(Ω, p(u))-almost periodic functions.

Theorem 6.2.15. Suppose that Λ′ ⊆ Λ ⊆ ℝn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ, the set Λ′ is
unbounded, m(𝜕Λ) = 0, Ω∘ ̸= 0, F : Λ → Y satisfies the requirement that F̂Ω : Λ →
Lp(u)(Ω : Y) is a uniformly continuous, Bohr Λ′-almost periodic function, resp. a uni-
formly continuous, Λ′-uniformly recurrent function, S ⊆ ℝn is bounded and, for ev-
ery t′ ∈ ℝn, there exists a finite real number M > 0 such that t′ + Λ′M ⊆ Λ. Define
ΛS := [(Λ′ ∪ (−Λ′)) + (Λ′ ∪ (−Λ′))] ∪ S. Then there exists a Stepanov (Ω, p(u))-ΛS-almost
periodic, resp. a Stepanov (Ω, p(u))-ΛS-uniformly recurrent, function F̃ : ℝn → Y such
that F̃(t) = F(t) for a. e. t ∈ Λ; furthermore, in Stepanov almost periodic case, ifℝn ∖ ΛS
is a bounded set and the function G̃(⋅) satisfies the same requirements as the function
F̃(⋅), then there exists a set N ⊆ ℝn such that m(N) = 0 and F̃(t) = G̃(t) for all t ∈ ℝn ∖N.

Proof. We will consider only Stepanov almost periodicity. By Proposition 6.2.12, we
find that the function F̂Ω : Λ→ Lp(u)(Ω : Y) is Bohr Λ′-almost periodic. Due to the pre-
scribed assumptions, we can apply Lemma 6.1.37 in order to see that there exists a uni-
formly continuous Bohr ΛS-almost periodic function H : ℝn → Lp(u)(Ω : Y) such that
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F̂Ω(t) = H(t) for all t ∈ Λ. Furthermore, by the corresponding proof of Lemma 6.1.37,
given in [265], there exists a sequence (τk) in Λ′ such that H(t) = limk→+∞ F̂Ω(t + τk),
where the limit is uniform in t ∈ ℝn, and limk→+∞ |τk | = +∞. Now we will prove the
following:
(⬦) Let t1, t2 ∈ ℝn be fixed. Then there exists a set N ⊆ Ω such that m(N) = 0 and,

for every u1, u2 ∈ Ω ∖ N, the assumption t1 + u1 = t2 + u2 implies [H(t1)](u1) =
[H(t2)](u2).

In actual fact, we find that there exists a set Ni ⊆ Ω such that m(Ni) = 0 and
[H(ti)](ui) = limk→+∞ F(ti + τk + ui) for i = 1, 2, so that (⬦) follows immediately
by plugging N ≡ N1 ∪ N2. Define now F̃ : ℝn → Y by F̃(t) := [H(xt)](t − xt), if xt ∈ ℚn

and t ∈ xt + Ω∘. Using (⬦) and our assumption Ω∘ ̸= 0, it is very simple to prove that
the function F̃(⋅) is well defined as well as that the Bochner transform of F̃(⋅) is H(⋅),
i. e., that for each t ∈ ℝn there exists a set Nt ⊆ Ω such that F̃(t + u) = [H(t)](u) for all
u ∈ Ω∖Nt. Applying again Proposition 6.2.12, we see that the function F̃(⋅) is Stepanov
(Ω, p(u))-ΛS-almost periodic. Now we will prove that F̃(t) = F(t) for a. e. t ∈ Λ. By the
foregoing, for every t ∈ Λ, there exists a set Nt ⊆ Ω such thatm(Nt) = 0 and

F(t + u) = [H(t)](u) = F̃(t + u), u ∈ Ω ∖ Nt. (6.51)

Let x ∈ ℚn be fixed. Denote Λk := {t ∈ (x + Ω) ∩ Λ : dist(t, 𝜕Ω) ⩾ 1/k} (k ∈ ℕ). Then
[(x + Ω) ∩ Λ] ∖ 𝜕Λ = ⋃k∈ℕ Λk so that the required statement easily follows from our
assumption m(𝜕Λ) = 0 and the fact that for each k ∈ ℕ and t ∈ Λk we have t ∈ Λ∘

and therefore Λk ⊆ ⋃t∈(x+Ω)∩Λ(t + Ω
∘); by the Heine–Borel theorem, for every k ∈ ℕ,

this implies the existence of a finite sequence of numbers t1, . . . , tak ∈ Ω
∘ such that Λk ⊆

⋃akk=1(t+Ω
∘) andwe can apply (6.51) to achieve our aims. Finally, ifℝn∖ΛS is a bounded

set and the function G̃(⋅) satisfies the same requirements as the function F̃(⋅), then the
foregoing arguments simply imply that the Bochner transform of functions F̃(t) and
G̃(t) are equal for all t ∈ Λ. Moreover, the Bochner transform of functions F̃(⋅) and G̃(⋅)
must be Bohr almost periodic on ℝn and therefore compactly almost automorphic so
that the arguments used in [265] show that these functions are equal identically on
ℝn, which completes the proof in a routine manner.

Remark 6.2.16.
(i) It is clear that Theorem 6.2.15 is applicable provided that (v1, . . . , vn) is a basis

of ℝn,

Λ′ = Λ = {α1v1 + ⋅ ⋅ ⋅ + αnvn : αi ⩾ 0 for all i ∈ ℕn}

is a convex polyhedral in ℝn and Ω is any compact subset of Λ with non-empty
interior; in this case, we find that there exists a unique Stepanov (Ω, p(u))-almost
periodic extension of the function F : Λ → Y to the whole Euclidean space. This
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enables one to see that Proposition 6.1.19 continues to hold with the set ℝn re-
placed therein with any convex polyhedral inℝn. It is also worth noting that The-
orem 6.2.15 is applicable in the following special case: Λ = [r1,∞) × [r2,∞) × ⋅ ⋅ ⋅ ×
[rn,∞) for some real numbers ri ∈ ℝ (1 ⩽ i ⩽ n), Λ′ = [r′1,∞)× [r

′
2,∞)× ⋅ ⋅ ⋅× [r

′
n,∞)

for some non-negative real numbers ri, r′i ⩾ 0 (1 ⩽ i ⩽ n) and Ω is any com-
pact subset of [0,∞)n with non-empty interior, when the function F̃(⋅) is Stepanov
(Ω, p(u))-almost periodic.

(ii) It is well known that a compact set with positive Lebesgue measure in ℝn, like
the famous Smith–Volterra–Cantor set in the one-dimensional case, can have the
empty interior.

Combining Proposition 6.2.6 and Theorem 6.1.18, we immediately get the follow-
ing.

Proposition 6.2.17. Suppose that k ∈ ℕ and ℬ is any family of compact subsets of X. If
the function Fi : ℝn × X → Yi is Stepanov (Ω, p(u))-ℬ-almost periodic for 1 ⩽ i ⩽ k, then
the function (F1, . . . , Fk)(⋅; ⋅) is also Stepanov (Ω, p(u))-ℬ-almost periodic.

It is clear that Lemma 6.1.17(i) can be particularly used to profile when, for a given
Stepanov (Ω, p(u))-ℬ-almost periodic function F : Λ × X → Y and a set B ∈ ℬ, we
have supt∈Λ;x∈B ‖F(t + u; x)‖Lp(u)(Ω:Y) < ∞; if for every x ∈ X we define the function
Fx : Λ → Y by Fx(t) := F(t; x), t ∈ Λ, then the above means supx∈B ‖Fx‖Sp(⋅)Ω

< ∞ for
each fixed set B ∈ ℬ. Furthermore, Lemma 6.1.17(ii) can be used to describe when, for
a given Stepanov (Ω, p(u))-ℬ-almost periodic function F : Λ × X → Y , we find that for
each B ∈ ℬ the function F̂Ω(⋅; ⋅) is uniformly continuous on Λ × B.

Now we will prove the following extension of [696, Theorem 5.2.5] concerning
pointwise products of multi-dimensional Stepanov p(u)-almost periodic type func-
tions with scalar-valued Stepanov r(u)-almost periodic functions (for simplicity, we
consider here case Λ = ℝn, only, albeit we can formulate a corresponding result in
case that Λ is admissible with respect to the almost periodic extensions).

Proposition 6.2.18. Suppose that p, q, r ∈ 𝒫(Ω), 1/p(u) + 1/r(u) = 1/q(u), f : ℝn → ℂ
is a Stepanov (Ω, r(u))-almost periodic function and F : ℝn × X → Y is a Stepanov
(Ω, p(u))-ℬ-almost periodic function, where ℬ denotes any family of compact subsets
of X. Define F1(t; x) := f (t)F(t; x), t ∈ ℝn, x ∈ X. Then the function F1(⋅; ⋅) is Stepanov
(Ω, q(u))-ℬ-almost periodic.

Proof. Let ε > 0 and B ∈ ℬ be given. We have

̂F1Ω(t
′; x′) − ̂F1Ω(t; x)

= ̂fΩ(t
′) ⋅ [F̂Ω(t

′; x′) − F̂Ω(t; x)] + [ ̂fΩ(t
′) − ̂fΩ(t)] ⋅ F̂Ω(t; x)

for every t, t′ ∈ ℝn and x, x′ ∈ X. Since the mapping ̂fΩ(⋅) is uniformly continuous and
bounded on ℝn as well as the mapping F̂Ω(⋅; ⋅) is continuous, we can apply the above
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equality and theHölder inequality (see Lemma1.1.7(i)) in order to see that themapping
̂F1Ω(⋅; ⋅) is continuous, as well. Due to Proposition 6.2.17, there exists l > 0 such that for

every t0 ∈ ℝn there exists τ ∈ B(t0, l) such that ‖F(t + τ + u; x) − F(t + u; x)‖Lp(u)(Ω:Y) ⩽ ε,
t ∈ ℝn, x ∈ B and ‖f (t + τ + u) − f (t + u)‖Lr(u)(Ω:Y) ⩽ ε, t ∈ ℝ

n. Since

F1(t + τ + u; x) − F1(t + τ; x)

= ̂fΩ(t + τ + u) ⋅ [F(t + τ + u; x) − F(t + τ; x)]
+ [f (t + τ + u) − f (t + τ)] ⋅ F(t + u; x)

for every t ∈ ℝn, u ∈ Ω and x ∈ B, we can apply the Hölder inequality again, along
with the estimates supt∈ℝn ‖ ̂fΩ(t)‖Lr(u)(Ω) < ∞ and supt∈ℝn ;x∈B ‖F̂Ω(t; x)‖Lp(u)(Ω) < ∞, to
complete the whole proof.

We can similarly prove the following.

Proposition 6.2.19. Suppose that 0 ̸= Λ ⊆ ℝn, f : Λ→ ℂ is Stepanov (Ω, r(u))-bounded
and Stepanov (Ω, r(u))-R-multi-almost periodic and F : Λ × X → Y is a Stepanov
(Ω, p(u))-(R,ℬ)-multi-almost periodic function satisfying that supt∈Λ;x∈B ‖F̂Ω(t;
x)‖Lp(u)(Ω:Y) < ∞. Define F1(t; x) := f (t)F(t; x), t ∈ Λ, x ∈ X. Then F1(⋅; ⋅) is Stepanov
(Ω, q(u))-(R,ℬ)-multi-almost periodic, provided that for each sequence (bk) in Rwe find
that any its subsequence also belongs to R.

Now we would like to present the following example.

Example 6.2.20. Suppose that α, β ∈ ℝ ∖ {0} and αβ−1 is an irrational number. As
we know, the functions fα,β(⋅) and gα,β(⋅), given, respectively, by (2.6) and (2.7), are
Stepanov p-almost periodic but not almost periodic (1 ⩽ p <∞). Suppose now that

F(t1, t2, . . . , tn) = f1(t1)f2(t2) ⋅ ⋅ ⋅ fn(tn), t = (t1, t2, . . . , tn) ∈ ℝ
n,

and for each i ∈ ℕn there exist real numbers αi, βi ∈ ℝ ∖ {0} such that αiβ−1i is an ir-
rational number and fi = fαi ,βi or fi = gαi ,βi . Applying Proposition 6.2.18, we inductively
may conclude that the function t → F(t), t ∈ ℝn is Stepanov (Ω, p(u))-almost periodic
with Ω = [0, 1]n and p ∈ D+(Ω).

Using Lemma 6.1.17(ii) and Theorem 6.1.18, we can repeat verbatim the argumen-
tation used in the one-dimensional case in order to see that the following result holds.

Theorem 6.2.21. Suppose that ℬ is any family of compact subsets of X and p ∈ D+(Ω).
If F : ℝn × X → Y is uniformly continuous and Stepanov (Ω, p(u))-ℬ-almost periodic,
then F(⋅; ⋅) is Bohr ℬ-multi-almost periodic.

A sufficient condition for a function F : Λ × X → Y to be Stepanov (Ω, p(u))-ℬ-
multi-almost periodic is given as follows.

Proposition 6.2.22. Let Λ + Λ ⊆ Λ, Λ + Ω ⊆ Λ, ℬ is any family of compact subsets of X
and F : Λ × X → Y satisfy the following conditions:
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(i) For each x ∈ X, F(⋅; x) ∈ APSΩ,p(u)(Λ : Y).
(ii) F(⋅; ⋅) is Sp(u)-uniformly continuous with respect to the second argument on each

compact subset B in ℬ in the following sense: for all ε > 0 there exists δB,ε > 0 such
that for all x1, x2 ∈ B one has

‖x1 − x2‖ ⩽ δB,ε ⇒
F(t + ⋅; x1) − F(t + ⋅; x2)

Lp(u)(Ω:Y) ⩽ ε for all t ∈ Λ. (6.52)

Then F(⋅; ⋅) is Stepanov (Ω, p(u))-ℬ-multi-almost periodic.

Proof. Without loss of generality, we may assume that p(u) ≡ p ∈ [1,∞). Let ε > 0
and B ⊆ X be a compact set. It follows that there exists a finite subset {x1, . . . , xn} ⊆ B
(n ∈ ℕ) such that B ⊆ ⋃ni=1 B(xi, δB,ε). Therefore, for every x ∈ B, there exists i ∈ ℕn
satisfying ‖x − xi‖ ⩽ δB,ε. Let τ ∈ Λ. Then we have

(∫
Ω

F(t + s + τ; x) − F(t + s; x)

p
Y ds)

1
p

⩽ (∫
Ω

F(t + s + τ; x) − F(t + s + τ; xi)

p
Y ds)

1
p

+ (∫
Ω

F(t + s + τ; xi) − F(t + s; xi)

p
Y ds)

1
p

+ (∫
Ω

F(t + s; xi) − F(t + s; x)

p
Y ds)

1
p

, t ∈ Λ. (6.53)

Using (i), we find that for each i = 1, . . . , n there exists lB,ε > 0 such that for all t0 ∈ Λ
there exists τ ∈ B(t0, lB,ε) satisfying

(∫
Ω

F(t + s + τ; xi) − F(t + s; xi)

p
Y ds)

1
p

⩽
ε
3

for all t ∈ Λ. (6.54)

Since ‖x − xi‖ ⩽ δK,δ, by (ii) we claim that

(∫
Ω

F(t + s + τ; x) − F(t + s + τ; xi)

p
Y ds)

1
p

⩽
ε
3

for all t ∈ Λ (6.55)

and

(∫
Ω

F(t + s; x) − F(t + s; xi)

p
Y ds)

1
p

⩽
ε
3

for all t ∈ Λ. (6.56)
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Inserting (6.54), (6.55) and (6.56) in (6.53), we obtain

sup
x∈B
(∫
Ω

F(t + s + τ; x) − F(t + s; x)

p
Y ds)

1
p

⩽ ε for all t ∈ Λ.

Hence, F(⋅; ⋅) is Stepanov (Ω, p(u))-ℬ-multi-almost periodic.

Almost directly from Definition 6.2.4, we may conclude the following; the sim-
ilar statements can be formulated for the notion introduced in Definition 6.2.5–
Definition 6.2.7 (cf. Lemma 1.1.7).

Proposition 6.2.23. Suppose that 0 ̸= Λ ⊆ ℝn satisfies Λ + Ω ⊆ Λ, F : Λ × X → Y and
the function F̂Ω : Λ × X → Lp(u)(Ω : Y) is well defined and continuous.
(i) For every p ∈ 𝒫(Ω), we find thatAPSΩ,p(u)(R,ℬ) (Λ×X : Y) is a subset ofAPS

Ω,1
(R,ℬ)(Λ×X : Y).

(ii) For every p, q ∈ 𝒫(Ω), we find that the assumption q(u) ⩽ p(u) for a. e. u ∈ Ω
implies that APSΩ,p(u)(R,ℬ) (Λ × X : Y) is a subset of APS

Ω,q(u)
(R,ℬ) (Λ × X : Y).

(iii) If p ∈ D+(Ω) and 1 ⩽ p− ⩽ p(u) ⩽ p+ < +∞ for a. e. u ∈ Ω, then

APSΩ,p
+

(R,ℬ)(Λ × X : Y) ⊆ APS
Ω,p(u)
(R,ℬ) (Λ × X : Y) ⊆ APS

Ω,p−
(R,ℬ)(Λ × X : Y).

Keeping in mind Remark 6.2.8(ii) and the proof of [372, Proposition 4.5], we may
deduce the following.

Proposition 6.2.24. Suppose that p ∈ D+(Ω) and the function F : ℝn × X → Y is
(R,ℬ)-multi-almost periodic [Bohr ℬ-almost periodic/ℬ-uniformly recurrent]. Then the
function F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic [Stepanov (Ω, p(u))-ℬ-
almost periodic/Stepanov p(u)-ℬ-uniformly recurrent].

Furthermore, we have the following simple result.

Proposition 6.2.25. Let F(⋅; ⋅) be Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic
[Stepanov (Ω, p(u))-ℬ-almost periodic/Stepanov (Ω, p(u))-ℬ-uniformly recurrent] and
A ∈ L(X, Z). Then AF(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic [Stepanov
(Ω, p(u))-ℬ-almost periodic/Stepanov (Ω, p(u))-ℬ-uniformly recurrent].

Themain structural properties of (R,ℬ)-multi-almost periodic type functions clar-
ified above can be simply reformulated for the corresponding Stepanov classes. For
example, we have the following:
(i) Suppose that c ∈ ℂ and F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic

[Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic/Stepanov (Ω, p(u))-ℬ-almost
periodic/Stepanov (Ω, p(u))-ℬ-uniformly recurrent].
Then cF(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic [Stepanov (Ω,
p(u))-(RX,ℬ)-multi-almost periodic/Stepanov (Ω, p(u))-ℬ-almost periodic/Ste-
panov (Ω, p(u))-ℬ-uniformly recurrent].
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(ii) Suppose that α, β ∈ ℂ and, for every sequence which belongs to R (RX), we
find that any its subsequence belongs to R (RX). If F(⋅; ⋅) and G(⋅; ⋅) are Stepanov
(Ω, p(u))-(R,ℬ)-multi-almost periodic [Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost
periodic/Stepanov (Ω, p(u))-ℬ-almost periodic/Stepanov (Ω, p(u))-ℬ-uniformly
recurrent]. Then (αF + βG)(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic
[Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic/Stepanov (Ω, p(u))-ℬ-almost
periodic/Stepanov (Ω, p(u))-ℬ-uniformly recurrent].

6.2.3 Asymptotically Stepanov multi-dimensional almost periodic type functions in
Lebesgue spaces with variable exponents

In this subsection, we will generalize the notion introduced in Definition 6.1.26 by in-
vestigating various classes of multi-dimensional ergodic components in the Lebesgue
spaces with variable exponent; the introduced notion is new even for the multi-
dimensional ergodic components with constant coefficients. This would enable us to
define various classes of asymptotically Stepanov (Ω, p(u))-(R,ℬ)-multi-almost peri-
odic functions.

We start by introducing the following notion.

Definition 6.2.26. Suppose that𝔻 ⊆ Λ ⊆ ℝn, Λ + Ω ⊆ Λ and the set𝔻 is unbounded.
By SΩ,p(u)0,𝔻,ℬ (Λ×X : Y)wedenote the vector space consisting of all functionsQ : Λ×X → Y
such that, for every t ∈ Λ and x ∈ Xℬ, we have [Q̂Ω(t; x)](u) ∈ Lp(u)(Ω : Y) as well as
that, for every B ∈ ℬ, we have limt∈𝔻,|t|→+∞[Q̂Ω(t; x)](u) = 0 in Lp(u)(Ω : Y), uniformly
for x ∈ B. In the case that X = {0} and ℬ = {X}, then we abbreviate SΩ,p(u)0,𝔻,ℬ (Λ × X : Y) to
SΩ,p(u)0,𝔻 (Λ : Y).

Using the dominated convergence theorem, it immediately follows that C0,𝔻,ℬ(Λ×
X : Y) ⊆ Sp(u)0,𝔻,ℬ(Λ × X : Y). We continue by providing two illustrative examples.

Example 6.2.27.
(i) Let 1 ⩽ p <∞. Consider the function f : [0,∞)→ ℝ defined by

f (s) := { k, if k ⩽ s ⩽ k + k−p for some k ∈ ℕ,
0, otherwise.

We already know that the function f (⋅) is Stepanov p-bounded in the usual sense.
Fix now a number t ⩾ 0. Then there exists a unique integer k ∈ ℕ0 such that
k ⩽ t < k + 1. There exists two possibilities: k ⩽ t < k + k−p or k + k−p ⩽ t < k + 1.
In the first case, we have

t+1

∫
t

f (s)

p ds =

k+k−p

∫
t

kp ds +
t+1

∫
k+1

(k + 1)p ds

= (t − k)[(k + 1)p − kp] + 1 ⩾ 1.
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In the second case, we have

t+1

∫
t

f (s)

p ds =

t+1

∫
k+1

(k + 1)p ds = (t − k)(k + 1)p ⩾ k−p(k + 1)p ⩾ 1.

Hence, there is no unbounded set𝔻 such that the function f (⋅)belongs to the class
Sp0,𝔻([0,∞) : ℂ).

(ii) Let (Ωn) be a sequence of pairwise disjoint Lebesgue measurable subsets of ℝn,
let Ω = [0, 1]n and let fn : Ωn → Y (n ∈ ℕ) satisfy

sup
n∈ℕ

fn(⋅)
L∞(Ωn :Y) <∞. (6.57)

Define the function f : ℝn → Y by f (t) := 0 if t ∉ ∪n∈ℕΩn and f (t) := fn(t) if t ∈ Ωn
for some n ∈ ℕ. Then it can be easily shown that the function f (⋅) is Stepanov
(Ω, p(u))-bounded for any p ∈ 𝒫(Ω), provided that there exists an integer l ∈ ℕ
such that for each t ∈ ℝn there exist at most l distinct positive integers s such that
(t + Ω) ∩ Ωs ̸= 0. In actual fact, we have

F(t + u)
Lp(u)(Ω:X) ⩽ 4

F(t + u)
L∞(Ω:X) ⩽ 4l supn∈ℕ

fn(⋅)
L∞(Ωn :X), t ∈ ℝn

and we can apply (6.57). Furthermore, if 𝔻 is any unbounded subset of ℝn such
that dist(𝔻,∪n∈ℕΩn) ⩾ diam(Ω), we have f ∈ S

Ω,p(u)
0,𝔻 (ℝ

n : Y) for any p ∈ 𝒫(Ω).

Now we are ready to introduce the following notion.

Definition 6.2.28.
(i) Suppose that 0 ̸= Λ ⊆ ℝn satisfies Λ + Ω ⊆ Λ, 𝔻 ⊆ Λ ⊆ ℝn, the set 𝔻 is un-

bounded, F : Λ × X → Y and (6.1), resp. (6.3), holds with the set I replaced by the
set Λ therein. Then we say that the function F(⋅; ⋅) is (strongly) 𝔻-asymptotically
Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic, resp. (strongly)𝔻-asymptotically
Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic, if and only if there exist a
Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic function (H : ℝn × X → Y)
H : Λ × X → Y , resp. a Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost periodic func-
tion (H : ℝn × X → Y) H : Λ × X → Y , and a function Q ∈ SΩ,p(u)0,𝔻,ℬ (Λ × X : Y) such
that F(t; x) = H(t; x) + Q(t; x) for a. e. t ∈ Λ and all x ∈ X. If X = {0} and ℬ = {X},
then we also say that the function F(⋅) is (strongly) 𝔻-asymptotically Stepanov
(Ω, p(u))-R-multi-almost periodic.

(ii) Suppose that 0 ̸= Λ ⊆ ℝn satisfies Λ + Λ ⊆ Λ, Λ +Ω ⊆ Λ,𝔻 ⊆ Λ ⊆ ℝn and the set𝔻
is unbounded.
(ii.1) Then we say that F(⋅; ⋅) is (strongly)𝔻-asymptotically Stepanov (Ω, p(u))-ℬ-

almost periodic if and only if there exist a Stepanov (Ω, p(u))-ℬ-almost peri-
odic function (H : ℝn×X → Y)H : Λ×X → Y anda functionQ ∈ SΩ,p(u)0,𝔻,ℬ (Λ×X :
Y) such that F(t; x) = H(t; x) + Q(t; x) for a. e. t ∈ Λ and all x ∈ X.
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(ii.2) Then we say that F(⋅; ⋅) is (strongly)𝔻-asymptotically Stepanov (Ω, p(u))-ℬ-
uniformly recurrent if and only if there exist a Stepanov (Ω, p(u))-ℬ-uniform-
ly recurrent function (H : ℝn × X → Y) H : Λ × X → Y and a function
Q ∈ SΩ,p(u)0,𝔻,ℬ (Λ × X : Y) such that F(t; x) = H(t; x) + Q(t; x) for a. e. t ∈ Λ and all
x ∈ X.

If X ∈ ℬ, then we also say that the function F(⋅; ⋅) is (strongly) 𝔻-asymptotically
Stepanov (Ω, p(u))-almost periodic ((strongly) 𝔻-asymptotically Stepanov (Ω, p(u))-
uniformly recurrent). If𝔻 = Λ, then we omit the “prefix𝔻-” and say that the function
F(⋅; ⋅) is (strongly) asymptotically Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic, for
example.

We can use Proposition 6.1.30 to simply deduce when the decompositions in Def-
inition 6.2.28 are unique; Proposition 6.1.28(ii) and Proposition 6.1.32 can be reformu-
lated in our new context, as well.

Suppose that 0 ̸= Λ′ ⊆ Λ ⊆ ℝn, Λ + Λ′ ⊆ Λ and Λ + Ω ⊆ Λ. The notion of
𝔻-asymptotically Stepanov (Ω, p(u))-(ℬ,Λ′)-almost periodicity and the notion of
𝔻-asymptotically Stepanov (Ω, p(u))-(ℬ,Λ′)-uniform recurrence can be also intro-
duced and analyzed. We will skip all related details for brevity. For applications, we
need the following definition.

Definition 6.2.29. Suppose that𝔻 ⊆ Λ ⊆ ℝn and the set𝔻 is unbounded, as well as
0 ̸= Λ′ ⊆ Λ ⊆ ℝn, F : Λ × X → Y is a continuous function and Λ + Λ′ ⊆ Λ. Then we say
that:
(i) F(⋅; ⋅) is Stepanov (Ω, p(u))-(ℬ,Λ′)-almost periodic of type 1 if and only if for every

B ∈ ℬ and ε > 0 there exist l > 0 andM > 0 such that for each t0 ∈ Λ′ there exists
τ ∈ B(t0, l) ∩ Λ′ such that
F(t + τ + u; x) − F(t + u; x)

Lp(u)(Ω:Y) ⩽ ε, provided t, t + τ ∈ 𝔻M , x ∈ B.

(ii) F(⋅; ⋅) is𝔻-asymptotically Stepanov (Ω, p(u))-(ℬ,Λ′)-uniformly recurrent of type 1
if and only if for every B ∈ ℬ there exist a sequence (τn) in Λ′ and a sequence (Mn)
in (0,∞) such that limn→+∞ |τn| = limn→+∞Mn = +∞ and

lim
n→+∞

sup
t,t+τn∈𝔻Mn ;x∈B

F(t + τn + u; x) − F(t + u; x)
Lp(u)(Ω:Y) = 0.

If Λ′ = Λ, then we also say that F(⋅; ⋅) is 𝔻-asymptotically Stepanov (Ω, p(u))-ℬ-
almost periodic of type 1 (𝔻-asymptotically Stepanov (Ω, p(u))-ℬ-uniformly recurrent
of type 1); furthermore, if X ∈ ℬ, then it is also said that F(⋅; ⋅) is 𝔻-asymptotically
Stepanov (Ω, p(u))-Λ′-almost periodic of type 1 (𝔻-asymptotically Stepanov Λ′-uni-
formly recurrent of type 1). If Λ′ = Λ and X ∈ ℬ, then we also say that F(⋅; ⋅) is
𝔻-asymptotically Stepanov almost periodic of type 1 (𝔻-asymptotically Stepanov
uniformly recurrent of type 1). As before, we remove the prefix “𝔻-” in the case that
𝔻 = Λ and remove the prefix “(ℬ, )” in the case that X ∈ ℬ.
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6.2.4 Composition theorems for Stepanov (R,ℬ)-multi-almost periodic functions in
Lebesgue spaces with variable exponents

In this subsection, we will analyze the (R,ℬ)-multi-almost periodic properties of the
multi-dimensional Nemytskii operatorW : Λ × X → Z, given by (6.20). First of all, we
will state and prove the following composition result for Stepanov (Ω, p(u))-ℬ-multi-
almost periodic functions.

Theorem 6.2.30. Suppose that Λ is admissible with respect to the almost periodic ex-
tensions, x : Λ → X is a uniformly continuous, Bohr almost periodic function, ℬ is any
family consisting of compact subsets of X containing R(x(⋅)), and F : Λ × X → Y satis-
fies the item (ii) of Proposition 6.2.22 as well as that, for every z ∈ R(x(⋅)), the function
F̂Ω(⋅; z) : Λ → Lp(u)(Ω : Y) is uniformly continuous, Bohr almost periodic. Then the
function F(⋅; x(⋅)) is Stepanov (Ω, p(u))-ℬ-multi-almost periodic.

Proof. Without loss of generality, we may assume that p(u) ≡ p ∈ [1,∞) and Λ = ℝn

(the assumptions prescribed imply that the function x(⋅) can be extended to a Bohr
almost periodic function defined on ℝn as well as that, for every z ∈ R(x(⋅)), the func-
tion F̂Ω(⋅; z) : Λ → Lp(u)(Ω : Y) can be extended to a Bohr almost periodic function
defined on ℝn so that the functions x(⋅) and the finite collection of functions of the
form F̂Ω(⋅; z) : Λ → Lp(u)(Ω : Y) can share the same ε-periods for each positive real
number ε > 0; we only need this fact and the relative compactness of range of range
of the function x(⋅) below). Let t, τ ∈ ℝn. Then we have

(∫
Ω

F(t + s + τ; x(t + s + τ)) − F(t + s; x(t + s))

p ds)

1
p

⩽ (∫
Ω

F(t + s + τ; x(t + s + τ)) − F(t + s + τ; x(t + s))

pds)

1
p

+ (∫
Ω

F(t + s + τ; x(t + s)) − F(t + s; x(t + s))

pds)

1
p

.

Let ε > 0 be fixed. Due to our assumption,K := {x(t) : t ∈ ℝn} is a compact subset of X.
We know that there exists δε,K > 0 such that (6.52) holds. Moreover, there exists lε > 0
such that every ball of center lε contains an element τ such that ‖x(s + τ) − x(s)‖ ⩽
δε,K for all s ∈ ℝn. Moreover, for each s ∈ ℝn, we have x(s) ∈ K. Hence,

(∫
Ω

F(t + s + τ; x(t + s + τ)) − F(t + s + τ; x(t + s))

p ds)

1
p

⩽
ε
4
. (6.58)

Since K is compact, it follows that there exists a finite subset {x1, . . . , xn} ⊆ K (n ∈ ℕ)
such that K ⊆ ⋃ni=1 B(xi, δε,K). Then for all t ∈ ℝn there exists i(t) ∈ ℕn such that
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‖x(t) − xi(t)‖ ⩽ δK,ε. Thus,

(∫
Ω

F(t + s + τ; x(t + s)) − F(t + s + τ; xi(t))

p ds)

1
p

⩽
ε
4

(6.59)

and

(∫
Ω

F(t + s; x(t + s)) − F(t + s; xi(t))

p ds)

1
p

⩽
ε
4
. (6.60)

By Proposition 6.2.22, we have

(∫
Ω

F(t + s + τ; xi(t)) − F(t + s; xi(t))

p ds)

1
p

⩽
ε
4
. (6.61)

Consequently, by (6.58), (6.59), (6.60) and (6.61), we obtain

(∫
Ω

F(t + s + τ; x(t + s + τ)) − F(t + s; x(t + s))

p ds)

1
p

⩽
ε
4
+
ε
4
+
ε
4
+
ε
4
= ε,

for any t ∈ ℝn. This proves the result.

Now we will state the following simple consequence of Theorem 6.2.30 in which
F(⋅; ⋅) is Lipschitzian with respect to the second argument; more precisely, we assume
that there exists a non-negative scalar-valued function LF(⋅) such that supt∈Λ ‖LF(t +
u)‖Lp(u)(Ω) < +∞ and

F(t; x) − F(t; y)
 ⩽ LF(t)‖x − y‖, x, y ∈ X, t ∈ Λ. (6.62)

Corollary 6.2.31. Suppose that Λ is admissible with respect to the almost periodic ex-
tensions, x : Λ → X is a uniformly continuous, Bohr almost periodic function, ℬ is any
family consisting of compact subsets of X containing R(x(⋅)), and F : Λ×X → Y satisfies
the requirement that, for every z ∈ R(x(⋅)), the function F̂Ω(⋅; z) : Λ → Lp(u)(Ω : Y)
is uniformly continuous, Bohr almost periodic. Then the function F(⋅; x(⋅)) is Stepanov
(Ω, p(u))-ℬ-multi-almost periodic, provided that there exists a non-negative scalar-
valued function LF(⋅) such that supt∈Λ ‖LF(t + u)‖Lp(u)(Ω) < +∞ and (6.62) holds.

The following composition principle generalizes [372, Theorem 5.4] and can be
proved by using the argumentation contained in the proofs of [729, Lemma 2.1, The-
orem 2.2] (the assumptions prescribed imply that we can pass to the case in which
Λ = ℝn, as in the proof of Theorem 6.2.30).
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Theorem 6.2.32. Suppose that Λ is admissible with respect to the almost periodic ex-
tensions, x̂ : Λ → Lp(u)(Ω : Y) is a uniformly continuous, Bohr almost periodic func-
tion, ℬ is any family consisting of compact subsets of X containing R(x(⋅)), p ∈ 𝒫(Ω),
and F : Λ × X → Y satisfies the requirement that, for every z ∈ R(x(⋅)), the function
F̂Ω(⋅; z) : Λ→ Lp(u)(Ω : Y) is uniformly continuous, Bohr almost periodic. Let the follow-
ing conditions hold:
(i) There exist a function r ∈ 𝒫(Ω) such that r(⋅) ⩾ max(p(⋅), p(⋅)/p(⋅)−1) and a function

LF ∈ L
Ω,r(u)
S (Λ) such that

F(t; x) − F(t; y)
 ⩽ LF(t)‖x − y‖Y , t ∈ Λ, x, y ∈ Y ; (6.63)

(ii) There exists a set E ⊆ I with m(E) = 0 such that K := {x(t) : t ∈ Λ ∖ E} is relatively
compact in X.

Define q ∈ 𝒫(Ω) by q(u) := p(u)r(u)/[p(u) + r(u)], if u ∈ Ω and r(u) < ∞, q(u) := p(u),
if u ∈ Ω and r(u) = ∞. Then q(u) ∈ [1, p(u)) for u ∈ Ω, r(u) < ∞ and F(⋅, x(⋅)) ∈
APSΩ,q(u)ℬ (Λ : Y).

The following composition principle generalizes [639, Theorem 2.1] and it is not
comparable with Theorem 6.2.32 in general (see [639] for more details).

Theorem 6.2.33. Suppose that Λ is admissible with respect to the almost periodic ex-
tensions, x̂ : Λ → Lq(u)(Ω : Y) is a uniformly continuous, Bohr almost periodic func-
tion, ℬ is any family consisting of compact subsets of X containing R(x(⋅)), p ∈ 𝒫(Ω),
and F : Λ × X → Y satisfies the requirement that, for every z ∈ R(x(⋅)), the function
F̂Ω(⋅; z) : Λ → Lp(u)(Ω : Y) is uniformly continuous, Bohr almost periodic. Suppose,
further, that p, q, r ∈ 𝒫(Ω), 1/p = 1/q + 1/r and the following conditions hold:
(i) There exists a function LF ∈ L

Ω,r(u)
S (Λ) such that (6.63) holds.

(ii) There exists a set E ⊆ I with m(E) = 0 such that K := {x(t) : t ∈ Λ ∖ E} is relatively
compact in X.

Then F(⋅, x(⋅)) ∈ APSΩ,p(u)ℬ (Λ : Y).

Keeping in mind the above two results, we can simply extend the statements
of [372, Proposition 5.5] and [639, Proposition 2.2] for 𝔻-asymptotically Stepanov
(Ω, p(u))-ℬ-almost periodic functions; the proofs are completely similar to the proofs
of these statements given in the one-dimensional case. For simplicity, in the formula-
tions of the following two theorems, we will assume that Λ = ℝn, albeit we can also
assume that Λ is admissible with respect to the almost periodic extensions.

Theorem 6.2.34. Let ℬ be any family consisting of compact subsets of X, p ∈ 𝒫(Ω) and
the following conditions hold:
(i) G ∈ APSΩ,p(u)ℬ (ℝn × X : Y) and there exist a function r ∈ 𝒫(Ω) such that r(⋅) ⩾

max(p(⋅), p(⋅)/p(⋅)−1) and a function LG ∈ L
Ω,r(u)
S (ℝ

n) such that (6.63) holds with the
function F(⋅; ⋅) replaced therein with the function G(⋅; ⋅);
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(ii) u ∈ APSΩ,p(u)(ℝn : X), and there exists a set E ⊆ I with m(E) = 0 such that K :=
{u(t) : t ∈ ℝn ∖ E} is relatively compact in X;

(iii) F(t; x) = G(t; x) + Q(t; x) for all t ∈ ℝn and x ∈ X, where Q ∈ SΩ,q(u)0,𝔻,ℬ (ℝ
n × X : Y) and

q(⋅) being defined as in the formulation of Theorem 6.2.32;
(iv) x(t) = u(t) + ω(t) for all t ∈ ℝn, where ω ∈ SΩ,p(u)0,𝔻 (ℝ

n : X);
(v) there exists a set E′ ⊆ I with m(E′) = 0 such that K′ = {x(t) : t ∈ ℝn∖E′} is relatively

compact in X.

Then F(⋅, x(⋅)) ∈ AAPSΩ,q(u)ℬ (ℝn : Y).

Theorem 6.2.35. Let ℬ be any family consisting of compact subsets of X. Suppose that
p, q, r ∈ 𝒫(Ω), 1/p = 1/q + 1/r and the following conditions hold:
(i) G ∈ APSΩ,p(u)ℬ (ℝn×X : Y)and there exists a function LG ∈ L

Ω,r(u)
S (ℝ

n) such that (6.63)
holds with the function F(⋅; ⋅) replaced therein with the function G(⋅; ⋅);

(ii) u ∈ APSΩ,q(u)(ℝn : X), and there exists a set E ⊆ I with m(E) = 0 such that K :=
{u(t) : t ∈ ℝn ∖ E} is relatively compact in X;

(iii) F(t; x) = G(t; x) + Q(t; x) for all t ∈ ℝn and x ∈ X, where Q ∈ SΩ,p(u)0,𝔻,ℬ (ℝ
n × X : Y);

(iv) x(t) = u(t) + ω(t) for all t ∈ ℝn, where ω ∈ SΩ,q(u)0,𝔻 (ℝ
n : X);

(v) there exists a set E′ ⊆ I with m(E′) = 0 such that K′ = {x(t) : t ∈ ℝn∖E′} is relatively
compact in X.

Then F(⋅, x(⋅)) ∈ APSΩ,p(u)ℬ (ℝn : Y).

The interested reader may try to formulate composition principles for Stepanov
(Ω, p(u))-ℬ-uniformly recurrent functions following the approach obeyed in [650].

6.2.5 Invariance of Stepanov (R,ℬ)-multi-almost periodicity under the actions of
convolution products

Define Ωk := Ω + k, k ∈ ℕn0. If any component of tuple t = (t1, t2, . . . , tn) is strictly
positive, then we simply write t > 0.

The following result is very similar to [631, Proposition 2.6.11] (see also [372, Propo-
sition 6.1]).

Theorem 6.2.36. Let Ω = [0, 1]n, p ∈ D+(Ω), q ∈ 𝒫(Ω), 1/p(x) + 1/q(x) = 1 for all
x ∈ Ω, and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying that
M := ∑k∈ℕn0 ‖R(⋅ + k)‖Lq(u)(Ω) < ∞. If

̌f : ℝn → X is Stepanov (Ω, p(u))-almost periodic,
then the function F : ℝn → Y, given by

F(t) :=
t1

∫
−∞

t2

∫
−∞

⋅ ⋅ ⋅

tn

∫
−∞

R(t − s)f (s) ds, t ∈ ℝn, (6.64)

is well defined and almost periodic.
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Proof. The proof of theorem can be deduced by using the argumentation given in the
proof of the above-mentioned propositions and we will only present the main details.
Since

F(t) :=
+∞

∫
0

+∞

∫
0

⋅ ⋅ ⋅
+∞

∫
0

R(s)f (t − s) ds, t ∈ ℝn, (6.65)

the Hölder inequality holds in our framework (see Lemma 1.1.7(ii)) and the function
f (⋅) is Stepanov (Ω, p(u))-bounded, the above integral converges absolutely. The proof
of fact that for each ε > 0 the set of all ε-periods of F(⋅) is relatively dense in ℝn can
be repeated verbatim. Since any element of Lp(u)(Ω : X) is absolutely continuous with
respect to the norm ‖ ⋅ ‖Lp(u) (see [421, Definition 1.12, Theorem 1.13]) and the Bochner
transform of the function ̌f (⋅) is uniformly continuous, the proof of continuity of the
function F(⋅) can be deduced along the same lines as in the one-dimensional case.

We can similarly deduce the following result.

Theorem 6.2.37. Let Ω = [0, 1]n, p ∈ D+(Ω), q ∈ 𝒫(Ω), 1/p(x) + 1/q(x) = 1 for all x ∈ Ω,
and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying that M :=
∑k∈ℕn0 ‖R(⋅ + k)‖Lq(u)(Ω) <∞. If

̌f : ℝn → X is Stepanov (Ω, p(u))-bounded and Stepanov
(Ω, p(u))-R-multi-almost periodic, then the function F : ℝn → Y, given by (6.64), is well
defined and R-multi-almost periodic.

Now we will state and prove the following analogue of Proposition 6.1.56 for
strong 𝔻-asymptotical Stepanov (Ω, p(u))-almost periodicity (see also [631, Proposi-
tion 2.6.13, Remark 2.6.14]).

Proposition 6.2.38. Suppose that Ω = [0, 1]n, p ∈ D+(Ω), q ∈ 𝒫(Ω), 1/p(x) + 1/q(x) = 1
for all x ∈ Ω, and (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family satisfying
that M := ∑k∈ℕn0 ‖R(⋅ + k)‖Lq(u)(Ω) < ∞. Suppose, further, that 0 ̸= Λ ⊆ ℝn satisfies
Λ + Ω ⊆ Λ, 𝔻 ⊆ Λ ⊆ ℝn and the set 𝔻 is unbounded. Let ǧ : ℝn → X be Stepanov
(Ω, p(u))-almost periodic (Stepanov (Ω, p(u))-bounded and Stepanov (Ω, p(u))-R-multi-
almost periodic), let q : Λ→ X, and let f (t) := g(t) + q(t) for all t ∈ Λ. Then the function
F : Λ→ Y, defined by

F(t) := ∫
𝔻t

R(t − s)f (s) ds, t ∈ Λ,

is strongly 𝔻-asymptotically Stepanov (Ω, p(u))-almost periodic (strongly 𝔻-asymp-
totically Stepanov (Ω, p(u))-R-multi-almost periodic), provided that

lim
|t|→∞,t∈𝔻

∑
k∈ℕn0

R(s + k)
Lq(s)((t−k−[It∩𝔻c])∩Ω) = 0, (6.66)
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and for each ε > 0 there exists r > 0 such that for each t ∈ 𝔻 with |t| ⩾ r there exists a
finite real number rt > 0 such that

∑
k∈ℕn0

{R(s + k)
Lq(s)((t−k−[It∩B(0,rt)])∩Ω)

× q̌(s + k − t)
Lq(s)((t−k−[𝔻t∩B(0,rt)])∩Ω)} < ε/2 (6.67)

and

∑
k∈ℕn0

{R(s + k)
Lq(s)((t−k−[𝔻t∩B(0,rt)c])∩Ω)

× q̌(s + k − t)
Lp(s)((t−k−[𝔻t∩B(0,rt)c])∩Ω)} < ε/2. (6.68)

Proof. Wewill consider only strong𝔻-asymptotical Stepanov (Ω, p(u))-almost period-
icity. Clearly, we have the decomposition

F(t) = ∫
It

R(t − s)g(s) ds + [∫
𝔻t

R(t − s)q(s) ds − ∫
It∩𝔻c

R(t − s)g(s) ds], t ∈ Λ.

Keeping in mind Theorem 6.2.36, it suffices to show that the function

t → ∫
𝔻t

R(t − s)q(s) ds − ∫
It∩𝔻c

R(t − s)g(s) ds, t ∈ Λ,

belongs to the class SΩ,p(u)0,𝔻 (Λ : X). For the second addend, this immediately follows
from the next calculus and condition (6.66):

∫
It∩𝔻c

R(t − s)g(s) ds = ∫
t−[It∩𝔻c]

R(s)ǧ(s − t) ds

= ∑
k∈ℕn0

∫
(t−k−[It∩𝔻c])∩Ω

R(s + k)ǧ(s + k − t) ds

⩽ 2 ∑
k∈ℕn0

R(s + k)
Lq(s)((t−k−[It∩𝔻c])∩Ω) ⋅ supt∈ℝn


̂ǧ(t)Lp(u)(Ω).

Let ε > 0 be given. Then there exists r > 0 such that for each t ∈ 𝔻 with |t| ⩾ r there
exists a finite real number rt > 0 such that (6.67)–(6.68) hold. If t ∈ 𝔻 and |t| ⩾ r, then
we have

∫
𝔻t

R(t − s)q(s) ds = ∫
𝔻t∩B(0,rt)

R(t − s)q(s) ds + ∫
𝔻t∩B(0,rt)c

R(t − s)q(s) ds.

For the first addend in the above sum, we can use the following calculation and con-
dition (6.67):

∫
𝔻t∩B(0,rt)

R(t − s)q(s) ds = ∫
t−[𝔻t∩B(0,rt)]

R(s)q̌(s − t) ds

= ∑
k∈ℕn0

∫
(t−k−[𝔻t∩B(0,rt)])∩Ω

R(s + k)q̌(s + k − t) ds
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⩽ 2 ∑
k∈ℕn0

R(s + k)
Lq(s)((t−k−[𝔻t∩B(0,rt)])∩Ω)

⋅ q̌(s + k − t)
Lq(s)((t−k−[𝔻t∩B(0,rt)])∩Ω).

For the second addend in the above sum, we can use the following calculation and
condition (6.68):

∫
𝔻t∩B(0,rt)c

R(t − s)q(s) ds = ∫
t−[𝔻t∩B(0,rt)c]

R(s)q̌(s − t) ds

= ∑
k∈ℕn0

∫
(t−k−[𝔻t∩B(0,rt)c])∩Ω

R(s + k)q̌(s + k − t) ds

⩽ 2 ∑
k∈ℕn0

R(s + k)
Lq(s)((t−k−[𝔻t∩B(0,rt)c])∩Ω)

⋅ q̌(s + k − t)
Lp(s)((t−k−[𝔻t∩B(0,rt)c])∩Ω).

The proof of the proposition is thereby completed.

6.2.6 Examples and applications to the abstract Volterra integro-differential
equations

We start with two examples concerning Stepanov almost periodic type solutions (with
respect to the space variable) of the multi-dimensional heat equations:
1. Let Y be one of the spaces Lp(ℝn), C0(ℝn) or BUC(ℝn), where 1 ⩽ p < ∞.

As already mentioned, the Gaussian semigroup (G(t))t>0 can be extended to
a bounded analytic C0-semigroup of angle π/2, generated by the Laplacian
ΔY acting with its maximal distributional domain in Y . Suppose now that F(⋅)
is bounded Stepanov (Ω, p(u))-(RX ,ℬ)-multi-almost periodic function, where
p ∈ D+(Ω). Then an application of Proposition 6.2.10 shows for each t0 > 0 the
function ℝn ∋ x → u(x, t0) ≡ (G(t0)F)(x) ∈ ℂ is likewise bounded and Stepanov
(Ω, p(u))-(RX ,ℬ)-multi-almost periodic; further on, if 0 ̸= Λ′ ⊆ ℝn, thenwe can use
Proposition 6.2.12, Lemma 6.1.5 and Eq. (6.50) in order to conclude that for each
t0 > 0 the function x → u(x, t0), x ∈ ℝn is bounded and Stepanov (Ω, p(u))-Λ′-
almost periodic provided that the function F(⋅) has the same properties. Similar
statements hold in the case of consideration of the Poisson semigroup.

2. Suppose that 0 < T < ∞. Set Λ := {(x, t) : x > 0, t > 0}, the function E1(x, t) is
given by (6.29) and suppose that𝔻 is any unbounded subset of Λ satisfying (6.32).
Suppose, further, that g(t) ≡ 0 as well as that the function u0 : [0,∞)→ ℂ is both
Stepanov bounded and Stepanov ([0, 1], 1)-Λ0-almost periodic, resp. Stepanov
bounded and Stepanov ([0, 1], 1)-Λ0-uniformly recurrent, for a certain non-empty
subset Λ0 of [0,∞). Set Λ′ := Λ0 × (0,T). We will prove that the solution u(x, t)
of (6.31) is 𝔻-asymptotically Stepanov ([0, 1]2, 1)-Λ′-almost periodic of type 1,
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resp. 𝔻-asymptotically Stepanov ([0, 1]2, 1)-Λ′-uniformly recurrent of type 1 (see
Definition 6.2.29). In our concrete situation, the formula (6.30) takes the following
form:

u(x, t) = 1
2

x

∫
−x

(πt)−1/2e−y
2/4tu0(x − y) dy, x > 0, t > 0.

For any (x, t) ∈ Λ and (τ1, τ2) ∈ Λ, we have

1

∫
0

1

∫
0

u(x + τ1 + u1, t + τ2 + u2) − u(x + u1, t + u2)
 du1 du2

⩽
1
2

1

∫
0

1

∫
0

x+τ1+u1

∫
x+u1

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + τ1 + u1 − y)
 dy du1 du2

+
1
2

1

∫
0

1

∫
0

−(x+u1)

∫
−(x+τ1+u1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + τ1 + u1 − y)
 dy du1 du2

+
1
2

1

∫
0

1

∫
0

x+u1

∫
−(x+u1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + τ1 + u1 − y)

− (π(t + u2))
−1/2e−y

2/4(t+u2)u0(x + u1 − y)
 dy du1 du2. (6.69)

Let ε > 0 be given. Then we know that there exists l > 0 such that for each x0 ∈ Λ0
there exists τ1 ∈ (x0 − l, x0 + l) ∩ Λ0 such that

x+1

∫
x

u0(t + τ1) − u0(t)
 dt ⩽ ε, x ⩾ 0.

Furthermore, there exists a finite real number M0 > 0 such that ∫+∞v e−x
2
dx < ε

for all v ⩾ M0. LetM > 0 be such that

min( x2

4(t + T)
, t) > M2

0 +
1
ε
, provided (x, t) ∈ 𝔻 and (x, t)

 > M. (6.70)

So, let (x, t) ∈ 𝔻 and |(x, t)| > M. For the first addend in (6.69), we use the Fubini
theorem and the following estimates (see (6.70)):

1
2

1

∫
0

1

∫
0

x+τ1+u1

∫
x+u1

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + τ1 + u1 − y)
 dy du1 du2

⩽
1
2

1

∫
0

x+τ1

∫
x+1

1

∫
0

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + τ1 + u1 − y)
 du1 dy du2
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+
1
2

1

∫
0

x+1

∫
x

1

∫
0

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + τ1 + u1 − y)
 du1 dy du2

+
1
2

1

∫
0

x+τ1+1

∫
x+τ1

1

∫
0

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + τ1 + u1 − y)
 du1 dy du2

⩽
‖u0‖S1
2

1

∫
0

x+τ1+1

∫
x

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2) dy du2

⩽
‖u0‖S1
2

1

∫
0

∞

∫
x

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2) dy du2

⩽ π−1/2‖u0‖S1
+∞

∫

x/2√t+T

e−v
2
dv ⩽ π−1/2‖u0‖S1ε. (6.71)

The second addend in (6.69) can be estimated in the samemanner as in (6.71). For
the third addend in (6.69), we use the following decomposition:

1
2

1

∫
0

1

∫
0

x+u1

∫
−(x+u1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + τ1 + u1 − y)

− (π(t + u2))
−1/2e−y

2/4(t+u2)u0(x + u1 − y)
 dy du1 du2

⩽
1
2

1

∫
0

1

∫
0

x+u1

∫
−(x+u1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)

× u0(x + τ1 + u1 − y) − u0(x + u1 − y)
 dy du1 du2

+
1
2

1

∫
0

1

∫
0

x+u1

∫
−(x+u1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + u1 − y)

− (π(t + u2))
−1/2e−y

2/4(t+u2)u0(x + u1 − y)
 dy du1 du2. (6.72)

The second addend in (6.72) can be estimated similarly as the first addend in (6.69)
and the corresponding term from the computation given in [265]. We get

1
2

1

∫
0

1

∫
0

x+u1

∫
−(x+u1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)u0(x + u1 − y)

− (π(t + u2))
−1/2e−y

2/4(t+u2)u0(x + u1 − y)
 dy du1 du2

⩽
‖u0‖S1
2

1

∫
0

x+1

∫
−(x+1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)
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− (π(t + u2))
−1/2e−y

2/4(t+τ2+u2) dy du2

⩽
‖u0‖S1
2

1

∫
0

2π−1/2
+∞

∫
−∞


√

t + u2
t + τ2 + u2

e−v
2 ⋅ t+u2

t+τ2+u2 − e−v
2 
dv du2

⩽ ‖u0‖S1π
−1/2

1

∫
0


√

t + u2
t + τ2 + u2

− 1

du2 ×

+∞

∫
−∞

e
−

M2
0

M2
0+T

v2
(1 + 2v2) dv

‖u0‖S1π
−1/2

1

∫
0

τ2
t + u2 +√(t + u2)2 + (t + u2)τ2

du2 ×
+∞

∫
−∞

e
−

M2
0

M2
0+T

v2
(1 + 2v2) dv

⩽ ‖u0‖S1π
−1/2 T

t
×
+∞

∫
−∞

e
−

M2
0

M2
0+T

v2
(1 + 2v2) dv. (6.73)

The first addend in (6.72) can be estimated similarly to (6.73); we have

1
2

1

∫
0

1

∫
0

x+u1

∫
−(x+u1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)

× u0(x + τ1 + u1 − y) − u0(x + u1 − y)
 dy du1 du2

⩽
1
2

1

∫
0

x+1

∫
−(x+1)

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2)

× [sup
ξ⩾0

1

∫
0

u0(ξ + τ1) − u0(ξ )
 du1] dy du2

⩽
ε
2

1

∫
0

+∞

∫
−∞

(π(t + τ2 + u2))
−1/2e−y

2/4(t+τ2+u2) dy du2 ⩽ επ
−1/2
+∞

∫
−∞

e−v
2
dv.

This finally implies the required conclusion.
3. As explained in [265], Theorem 6.2.36 and Theorem 6.2.37 are applicable in the

analysis of existence of almost periodic solutions for a wide class of the abstract
partial differential equations, which can be constructed in a little bit artificial
way. For example, let A be the infinitesimal generator of an exponentially decay-
ing, strongly continuous semigroup (T(t))t⩾0 on X (i = 1, 2), let γ ∈ (0, 1) and let
(Tγ(t))⩾0 be the subordinated γ-times resolvent family generated byA (see [631] for
more details). Suppose that 1 < p <∞, F : ℝ2 → X is a Stepanov ([0, 1]2, p)-almost
periodic function satisfying that the improper integral in (6.74) is absolutely con-
vergent. Define

u(t1, t2) := ∫
[0,∞)2

[−Tγ(s1) + T(s2)]F(t1 − s1, t2 − s2) ds1 ds2, t1, t2 ∈ ℝ. (6.74)
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Due to Theorem 6.2.36 (see also Eq. (6.65)), we find that u : ℝ2 → X is almost
periodic; furthermore, under certain conditions, we have (see also [631])

ut2 (t1, t2) = − ∫
[0,∞)

Tγ(s1)(
∞

∫
0

𝜕
𝜕t2

F(t1 − s1, t2 − s2) ds2) ds1

+
∞

∫
0

(
𝜕
𝜕t2

∞

∫
0

T(s2)F(t1 − s1, t2 − s2) ds2) ds1

= ∫
[0,∞)

Tγ(s1)Ft2 (t1 − s1, t2 − s2) ds2 ds1

+
∞

∫
0

(A
∞

∫
0

T(s2)F(t1 − s1, t2 − s2) ds2 + F(t1 − s1, t2)) ds1,

for any t1, t2 ∈ ℝ. Since the unique solution of the abstract fractional differential
equation

Dγ
t,+u(t) = (−A)u(t) + f (t), t ∈ ℝ,

is given by t → ∫∞0 Tγ(s)f (t − s) ds, t ∈ ℝ, we similarly obtain

−Dγ
t1 ,+u(t1, t2) = −

∞

∫
0

T(s2)(
∞

∫
0

Dγ
t1 ,+F(t1 − s1, t2 − s2) ds1) ds2

+
∞

∫
0

((−A)
∞

∫
0

Tγ(s1)F(t1 − s1, t2 − s2) ds1 + F(t1, t2 − s2)) ds2,

so that

ut2 (t1, t2) − D
γ
t1 ,+u(t1, t2) = Au(t1, t2) +

∞

∫
0

F(t1 − s1, t2) ds1

+
∞

∫
0

F(t1, t2 − s2) ds2 + ∫
[0,∞)

Tγ(s1)Ft2 (t1 − s1, t2 − s2) ds2 ds1

−
∞

∫
0

T(s2)(
∞

∫
0

Dγ
t1 ,+F(t1 − s1, t2 − s2) ds1) ds2, t1, t2 ∈ ℝ.

Unfortunately, it is very difficult to find some applications or interpretations of
these types of abstract fractional PDEs in the world of real phenomena.

4. The existence and uniqueness of almost periodic solutions for a wide class of ab-
stract semilinear integral equations of the form

u(t) = f (t) +
t

∫
−∞

R(t − s)F(s, u(s)) ds, t ∈ ℝn,
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can be shown by using the Banach contraction principle and our results about the
convolution invariance of almost periodicity under the actions of infinite convolu-
tion products and established composition principles; here, we assume that f (⋅) is
almost periodic, (R(t))t>0 has a similar growth rate as in Theorem 6.2.36 and F(⋅; ⋅)
is Stepanov (Ω, p(u))-almost periodic for a certain function p ∈ D+(Ω); Ω ≡ [0, 1]n.
The consideration is quite similar to the corresponding considerations given in
the proofs of [631, Theorem 2.7.6, Theorem 2.7.7] and therefore omitted. Observe,
however, that we can similarly analyze the existence and uniqueness of asymp-
totically almost periodic solutions for a wide class of abstract semilinear integral
equations of the form

u(t) = f (t) +
t

∫
0

R(t − s)F(s, u(s)) ds, t ∈ [0,∞)n,

by using a similar argumentation containing our results about the convolution in-
variance of asymptotical almost periodicity under the actions of finite convolution
products and established composition principles (see, e. g., [631, Theorem 2.9.10,
Theorem 2.9.11], which must be slightly reformulated for our new purposes).

5. Let A generate a strongly continuous semigroup (T(t))t⩾0 on a Banach space X
whose elements are certain complex-valued functions defined on ℝn. As we have
already clarified, the function

u(t, x) = (T(t)u0)(x) +
t

∫
0

[T(t − s)f (s)](x) ds, t ⩾ 0, x ∈ ℝn,

is a unique classical solution of the abstract Cauchy problem

ut(t, x) = Au(t, x) + F(t, x), t ⩾ 0, x ∈ ℝ
n; u(0, x) = u0(x),

where F(t, x) := [f (t)](x), t ⩾ 0, x ∈ ℝn. In many concrete situations (for example,
this holds for the Gaussian semigroup onℝn), there exists a kernel (t, y) → E(t, y),
t > 0, y ∈ ℝn which is integrable on any set [0,T] × ℝn (T > 0) and satisfies
[T(t)f (s)](x) = ∫ℝn F(s, x−y)E(t, y) dy, t > 0, s ⩾ 0, x ∈ ℝ

n. Suppose that this is the
case and fix a positive real number t0 > 0. We have already observed that the al-
most periodic behavior of the function x → ut0 (x) ≡ ∫

t0
0 [T(t0 − s)f (s)](x) ds, x ∈ ℝ

n

depends on the almost periodic behavior of the function F(t, x) in the space vari-
able x. Suppose, for example, that the function F(t, x) is Stepanov (Ω, 1)-almost
periodic with respect to the variable x ∈ ℝn, uniformly in the variable t on com-
pact subsets of [0,∞). Then we have (x, τ ∈ ℝn; u ∈ Ω)

ut0 (x + τ + u) − ut0 (x + u)


⩽

t0

∫
0

∫
ℝn

F(s, x + τ − y + u) − F(s, x − y + u)
 ⋅
E(t0, y)

 dy ds.
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Integrating this estimate over Ω and using the Fubini theorem, we get (x, τ ∈ ℝn)

∫
Ω

ut0 (x + τ + u) − ut0 (x + u)
 du

⩽

t0

∫
0

∫
ℝn

[∫
Ω

F(s, x + τ − y + u) − F(s, x − y + u)
 du] ⋅
E(t0, y)

 dy ds

⩽ ε
t0

∫
0

∫
ℝn

E(t0, y)
 dy ds;

see the corresponding definitions. It follows that the function ut0 (⋅) is Stepanov
(Ω, 1)-almost periodic, as well.

6.3 Multi-dimensional Weyl almost periodic type functions and
applications

This section aims to develop the basic theory of multi-dimensional Weyl almost pe-
riodic type functions in Lebesgue spaces with variable exponents. The introduced
classes of functions seem to be not considered elsewhere even in the constant coeffi-
cient case (for the one-dimensional Weyl almost periodic type functions and their ap-
plications, we refer the reader to [4, 68, 139, 166, 171, 199, 328, 435, 503, 554, 631, 988],
as well as the survey article [67] by J. Andres, A.M. Bersani, R. F. Grande, the pioneer-
ing papers by A. S. Kovanko [669–673] and themaster thesis of J. Stryja [962]; concern-
ing the multi-dimensional case, we would like to mention two recent papers [692] by
D. Lenz, T. Spindeler, N. Strungaru and [951] by T. Spindeler, where the authors have
analyzed the Stepanov andWeyl almost periodic functions on locally compactAbelian
groups).

The organization and main ideas of this section can be briefly described as fol-
lows. In Definition 6.3.1–Definition 6.3.3 [Definition 6.3.5–Definition 6.3.7], we con-
tinue the analysis of one-dimensional case by introducing the classes e−W (p(u),ϕ,𝔽)Ω,Λ′ ,ℬ (Λ×
X : Y) and e−W (p(u),ϕ,𝔽)iΩ,Λ′ ,ℬ (Λ×X : Y) [e−W

[p(u),ϕ,𝔽]
Ω,Λ′ ,ℬ (Λ×X : Y) and e−W

[p(u),ϕ,𝔽]i
Ω,Λ′ ,ℬ (Λ×X :

Y)] of Weyl almost periodic functions, where i = 1, 2. We further analyze these
classes in Subsection 6.3. The main result of this subsection is Theorem 6.3.10 (see
also Theorem 6.3.11), in which we investigate the convolution invariance of space
(e−)W (p1(u),ϕ,𝔽1)Ω,Λ′ ,ℬ (ℝn × X : Y); this is a crucial result for our applications to the multi-
dimensional heat equation. With the exception of this result, almost all other struc-
tural results of ours are given in Subsection 6.3.1, in which we investigate the usual
concept of (equi-)Weyl p-almost periodicity and the corresponding class of functions
(e−)Wp

ap,Λ′ ,ℬ(Λ × X : Y), with the constant exponent p(u) ≡ p ∈ [1,∞). We investi-
gate the Weyl p-distance, the Weyl p-boundedness, the Weyl p-normality and Weyl
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approximations by trigonometric polynomials. The main results of this subsection
are Theorem 6.3.19, Proposition 6.3.20–Proposition 6.3.21, Proposition 6.3.29 and
Proposition 6.3.31. We analyze the basic results about the existence of Bohr–Fourier
coefficients for multi-dimensional Weyl almost periodic functions and present some
applications of our theoretical results to the abstract Volterra integro-differential
equations in Banach spaces. We present several useful conclusions, remarks and
intriguing topics at the end of section, proposing also some open problems (special
thanks go to Prof. Kamal Khalil, who proposed the use of kernel K(t, s, ⋅, ⋅) in the third
point of part devoted to the applications).

As before, in this section, we will always assume that ℬ is a non-empty collection
of certain subsets of X such that for each x ∈ X there exists B ∈ ℬ such that x ∈ B. In
the first concept, we assume that the following condition holds:
(WM1) 0 ̸= Λ ⊆ ℝn, 0 ̸= Λ′ ⊆ ℝn, 0 ̸= Ω ⊆ ℝn is a Lebesgue measurable set such that

m(Ω) > 0, p ∈ 𝒫(Λ), Λ′ +Λ+ lΩ ⊆ Λ, Λ+ lΩ ⊆ Λ for all l > 0,ϕ : [0,∞)→ [0,∞)
and 𝔽 : (0,∞) × Λ→ (0,∞).

We introduce the following classes of multi-dimensional Weyl almost periodic func-
tions (the notion can be further generalized following the approach obeyed in Defini-
tion 6.3.28; all established results can be slightly generalized in this framework).

Definition 6.3.1.
(i) By e−W (p(u),ϕ,𝔽)Ω,Λ′ ,ℬ (Λ×X : Y)we denote the set consisting of all functions F : Λ×X →

Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers l > 0
and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ
𝔽(l, t)ϕ(F(τ + u; x) − F(u; x)

Y )Lp(u)(t+lΩ) < ε. (6.75)

(ii) ByW (p(u),ϕ,𝔽)Ω,Λ′ ,ℬ (Λ×X : Y)we denote the set consisting of all functions F : Λ×X → Y
such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ
𝔽(l, t)ϕ(F(τ + u; x) − F(u; x)

Y )Lp(u)(t+lΩ) < ε.

Definition 6.3.2.
(i) By e−W (p(u),ϕ,𝔽)1Ω,Λ′ ,ℬ (Λ×X : Y)wedenote the set consisting of all functions F : Λ×X →

Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers l > 0
and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ
𝔽(l, t)ϕ(F(τ + u; x) − F(u; x)

Lp(u)(t+lΩ:Y)) < ε.

(ii) ByW (p(u),ϕ,𝔽)1Ω,Λ′ ,ℬ (Λ×X : Y)we denote the set consisting of all functions F : Λ×X → Y
such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
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that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ
𝔽(l, t)ϕ(F(τ + u; x) − F(u; x)

Lp(u)(t+lΩ:Y)) < ε.

Definition 6.3.3.
(i) By e−W (p(u),ϕ,𝔽)2Ω,Λ′ ,ℬ (Λ×X : Y)wedenote the set consisting of all functions F : Λ×X →

Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers l > 0
and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ

ϕ(𝔽(l, t)F(τ + u; x) − F(u; x)
Lp(u)(t+lΩ:Y)) < ε.

(ii) ByW (p(u),ϕ,𝔽)2Ω,Λ′ ,ℬ (Λ×X : Y)we denote the set consisting of all functions F : Λ×X → Y
such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

ϕ(𝔽(l, t)F(τ + u; x) − F(u; x)
Lp(u)(t+lΩ:Y)) < ε.

In some cases, it is extremely important that the function 𝔽(l, t) depends not only
on l > 0 but also on t ∈ Λ. We will illustrate this fact by considering the second-order
partial differential equation Δu = −f , where f ∈ C2(ℝ3) has a compact support. Then
it is well known that the Newtonian potential of f (⋅), defined by

u(x) := 1
4π
∫

ℝ3

f (x − y)
|y|

dy, x ∈ ℝ3,

is a unique function belonging to the class C2(ℝ3), vanishing at infinity and satisfying
Δu = −f ; see e. g. [890, Theorem 3.9, pp. 126–127]. For simplicity, suppose that p =
p1 = 1, Ω = [0, 1]n, Λ′ ⊆ Λ = ℝ3 and

sup
l>0;t∈ℝ3
∫

ℝ3

𝔽1(l, t)
|y| ⋅ 𝔽(l, t − y)

dy < +∞. (6.76)

Then we have the following.

Example 6.3.4. Suppose that f ∈ (e−)W 1,x,𝔽
[0,1]n ,Λ′ (ℝ

3 : ℂ) and (6.76) holds. Then u ∈
(e−)W 1,x,𝔽1

[0,1]n ,Λ′ (ℝ
3 : ℂ). Towards this end, suppose that l > 0 and t ∈ ℝ3 are arbitrary;

consider the class e − W 1,x,𝔽
[0,1]n ,Λ′ (ℝ

3 : ℂ) for brevity. Let a point τ ∈ ℝ3 satisfy (6.75).
Using the Fubini theorem and (6.76), we have

u(⋅ + τ) − u(⋅)
L1(t+lΩ) ⩽

1
4π
∫

t+lΩ

∫

ℝ3

|f (x + τ − y) − f (x − y)|
|y|

dy dx

⩽
1
4π
∫

ℝ3

[ ∫
t+lΩ

f (x + τ − y) − f (x − y)
 dx]

dy
|y|
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=
1
4π
∫

ℝ3

[ ∫
t−y+lΩ

f (x + τ) − f (x)
 dx]

dy
|y|

⩽
1
4π
∫

ℝ3

ε ⋅ dy
|y| ⋅ 𝔽(l, t − y)

⩽
ε
𝔽1(l, t)
.

This simply implies the required (note that the function y → |y|−1, y ∈ ℝ3 does not
belong to the class L1(ℝ3) so that the results on convolution invariance of multi-
dimensional Weyl almost periodicity cannot be applied here).

We can similarly analyze the two-dimensional analogue of this example by con-
sidering the logarithmic potential of f (⋅), given by

u(x) := (−1)
2π
∫

ℝ2

ln(|y|) ⋅ f (x − y) dy, x ∈ ℝ2.

In this case, we only need to replace condition (6.76) by

sup
l>0;t∈ℝ2
∫

ℝ2

ln(|y|) ⋅ 𝔽1(l, t)
𝔽(l, t − y)

dy < +∞;

see also [890, Remark 3.7, p. 128].

It will be very complicated to reconsider here many other formulas from the clas-
sical theory of partial differential equations which can be employed for our purposes.

In the second concept, we aim to ensure the translation invariance of multi-
dimensional Weyl almost periodic functions. We will assume now that the following
condition holds:
(WM2) 0 ̸= Λ ⊆ ℝn, 0 ̸= Λ′ ⊆ ℝn, 0 ̸= Ω ⊆ ℝn is a Lebesgue measurable set such that

m(Ω) > 0, p ∈ 𝒫(Ω), Λ′ +Λ+ lΩ ⊆ Λ, Λ+ lΩ ⊆ Λ for all l > 0,ϕ : [0,∞)→ [0,∞)
and 𝔽 : (0,∞) × Λ→ (0,∞).

We introduce the following classes of functions.

Definition 6.3.5.
(i) By e−W [p(u),ϕ,𝔽]Ω,Λ′ ,ℬ (Λ×X : Y)we denote the set consisting of all functions F : Λ×X →

Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers l > 0
and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ

ln𝔽(l, t)ϕ(F(t + τ + lu; x) − F(t + lu; x)
Y )Lp(u)(Ω) < ε.

(ii) ByW [p(u),ϕ,𝔽]Ω,Λ′ ,ℬ (Λ×X : Y)we denote the set consisting of all functions F : Λ×X → Y
such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

ln𝔽(l, t)ϕ(F(t + τ + lu; x) − F(t + lu; x)
Y )Lp(u)(Ω:Y) < ε.
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Definition 6.3.6.
(i) By e−W [p(u),ϕ,𝔽]1Ω,Λ′ ,ℬ (Λ×X : Y)wedenote the set consisting of all functions F : Λ×X →

Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers l > 0
and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ

ln𝔽(l, t)ϕ(F(t + τ + lu; x) − F(t + lu; x)
Lp(u)(Ω:Y)) < ε.

(ii) ByW [p(u),ϕ,𝔽]1Ω,Λ′ ,ℬ (Λ×X : Y)we denote the set consisting of all functions F : Λ×X → Y
such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

ln𝔽(l, t)ϕ(F(t + τ + u; x) − F(t + u; x)
Lp(u)(lΩ:Y)) < ε.

Definition 6.3.7.
(i) By e−W [p(u),ϕ,𝔽]2Ω,Λ′ ,ℬ (Λ×X : Y)wedenote the set consisting of all functions F : Λ×X →

Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers l > 0
and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ

ϕ(ln𝔽(l, t)F(t + τ + lu; x) − F(t + lu; x)
Lp(u)(Ω:Y)) < ε.

(ii) ByW [p(u),ϕ,𝔽]2Ω,Λ′ ,ℬ (Λ×X : Y)we denote the set consisting of all functions F : Λ×X → Y
such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

ϕ(ln𝔽(l, t)F(t + τ + lu; x) − F(t + lu; x)
Lp(u)(Ω:Y)) < ε.

It is clear that the two concepts are equivalent in the constant coefficient case
p(u) ≡ p ∈ [1,∞). Furthermore, the notion introduced here generalizes the notion
introduced earlier, provided that Λ′ = Λ = I, Ω = [0, 1] and I is equal to [0,∞) or ℝ.
Let us also note that, if a function F : Λ × X → Y is Stepanov (Ω, p(u))-(ℬ,Λ′)-almost
periodic, then F ∈ e −W [p(u),x,𝔽]Ω,Λ′ ,ℬ (Λ × X : Y) for any function 𝔽(⋅; ⋅) satisfying 𝔽(1, t) = 1
for all t ∈ Λ. If X = {0} and ℬ = {X}, then we omit the term “ℬ” from the notation.

We continue by providing two examples.

Example 6.3.8. It can be simply shown that for each compact set K ⊆ ℝn with a posi-
tive Lebesgue measure and for each p ∈ 𝒫(ℝn) the function F(⋅) := χK(⋅) belongs to the
space e −W (p(u),x,l

−σ)
[0,1]n ,ℝn (ℝ

n : ℂ) if and only if σ > 0.

Example 6.3.9. Let p ∈ [1,∞). In [962], it has been proved that the Heaviside function
f (t) := χ[0,∞)(t), t ∈ ℝ is both Weyl p-normal (i. e., Weyl (R,ℬ, p)-normal with Λ =
Λ′ = ℝ, X = {0}, ℬ = {X}, Y = ℂ and R being the collection of all sequences in ℝ; see
Definition 6.3.16 below) andWeyl p-almost periodic aswell as that f (⋅) is not equi-Weyl
p-almost periodic.
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Suppose now that F(t) := χ[0,∞)n (t), t ∈ ℝn as well as that Λ := Λ′ := ℝn and
ϕ(x) ≡ x. Then, for every t, τ ∈ ℝn and l > 0, we have

∫
t+lΩ

|F(τ + u) − F(u)|p du

= ∫
(t+lΩ)∖[0,∞)n

F(τ + u)

p du + ∫

(t+lΩ)∩[0,∞)n
|F(u)|p du

= ∫
τ+[(t+lΩ)∖[0,∞)n]

|F(u)|p du + ∫
τ+[(t+lΩ)∩[0,∞)n]

|F(u) − 1|p du

⩽ m((τ + [(t + lΩ) ∖ [0,∞)n]) ∩ [0,∞)n) +m((τ + [(t + lΩ) ∩ [0,∞)n]) ∖ [0,∞)n).

If l > |τ|, then it is not difficult to prove that the latter does not exceed 2nln−1|τ|, which
implies that F ∈ W (p,x,l

−σ)
[0,1]n ,ℝn (ℝ

n : ℂ) if σ > (n− 1)/p; this is also the best constant for σ we
canobtainhere. On the other hand, there is noσ > 0 such thatF ∈ e−W (p,x,l

−σ)
[0,1]n ,ℝn (ℝ

n : ℂ).

Denote by AX,Y any of the above introduced classes of function spaces. Then we
have the following:
(i) Suppose that c ∈ ℂ and F(⋅; ⋅) belongs to AX,Y . Then cF(⋅; ⋅) belongs to AX,Y , pro-

vided that there exists a function φ : [0,∞) → [0,∞) satisfying that ϕ(xy) ⩽
φ(y)ϕ(x), x, y ⩾ 0.

(ii) Suppose that F ∈ AX,Y , A ∈ L(Y , Z), ϕ(⋅) is monotonically increasing function
and there exists a function φ : [0,∞) → [0,∞) satisfying that ϕ(xy) ⩽ φ(y)ϕ(x),
x, y ⩾ 0. Using Lemma 1.1.7(iii), Lemma 1.1.8 and a simple argumentation, it fol-
lows that AF ∈ AX,Y .

(iii) (a) Suppose that c2 ∈ ℂ ∖ {0} and F(⋅; ⋅) belongs to AX,Y . Then F(⋅; c2⋅) and F(⋅; ⋅)
belong to AX,Y , where ℬc2 ≡ {c

−1
2 B : B ∈ ℬ}.

(b) Suppose that c1 ∈ ℂ ∖ {0}, c2 ∈ ℂ ∖ {0}, and F(⋅; ⋅) belongs to AX,Y . Define the
function Fc1 ,c2 : Λ/c1 × X → Y by Fc1 ,c2 (t, x) := F(c1t; c2x), t ∈ Λ/c1, x ∈ X. If
we assume that ϕ(⋅) is a monotonically increasing function and there exists a
function φ : [0,∞) → [0,∞) satisfying that ϕ(xy) ⩽ φ(y)ϕ(x), x, y ⩾ 0, then
F ∈ (e−)W (p(u),ϕ,𝔽)Ω,Λ′ ,ℬ (Λ × X : Y) [F ∈ (e−)W

[p(u),ϕ,𝔽]
Ω,Λ′ ,ℬ (Λ × X : Y)] implies Fc1 ,c2 ∈

(e−)W (pc1 (u),ϕ,𝔽c1 )Ω/c1 ,Λ′/c1 ,ℬc2
((Λ/c1) × X : Y) [Fc1 ,c2 ∈ (e−)W

[pc1 (u),ϕ,𝔽c1 ]
Ω/c1 ,Λ′/c1 ,ℬc2

((Λ/c1) × X : Y)],
where pc1 (u) := p(c1u), u ∈ Λ/c1 and 𝔽c1 (x, t) := 𝔽(x, c1t), x ⩾ 0, t ∈ Λ/c1. For
the class e −W (p(u),ϕ,𝔽)Ω,Λ′ ,ℬ (Λ × X : Y), this follows from the inequality

[ϕ(Fc1 ,c2 (τ + u; x) − Fc1 ,c2 (u; x)
)]Lpc1 (u)(t/c1+lΩ/c1 :Y)

⩽ (1 + |c1|
−n)[ϕ(F(τ + u; x) − F(u; x)

)]Lp(u)(t+lΩ:Y), t ∈ Λ,

which follows from a trivial computation involving the chain rule, the el-
ementary definitions and the inequality φp(u)(c⋅) ⩽ |c|φp(u)(⋅) for |c| ⩽ 1.
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Similarly, if we assume that there exists a function φ : [0,∞) → [0,∞)
satisfying that ϕ(xy) ⩽ φ(y)ϕ(x), x, y ⩾ 0 and F ∈ (e−)W (p(u),ϕ,𝔽)iΩ,Λ′ ,ℬ (Λ ×
X : Y) [F ∈ (e−)W [p(u),ϕ,𝔽]iΩ,Λ′ ,ℬ (Λ × X : Y)] for i = 1 or i = 2, then Fc1 ,c2 ∈

(e−)W (pc1 (u),ϕ,𝔽c1 )iΩ/c1 ,Λ′/c1 ,ℬc2
((Λ/c1) × X : Y) [Fc1 ,c2 ∈ (e−)W

[pc1 (u),ϕ,𝔽c1 ]i
Ω/c1 ,Λ′/c1 ,ℬc2

((Λ/c1) × X : Y)].
(iv) The use of Jensen integral inequality in general measure spaces (see Lem-

ma 3.1.1) may be useful to state some inclusions about the introduced classes
of functions. The consideration is similar to that established in the one-
dimensional case and therefore omitted.

Regarding the convolution invariance of spaces (e−)W (p(u),ϕ,𝔽)Ω,Λ′ ,ℬ (ℝ
n × X : Y) and

(e−)W [p(u),ϕ,𝔽]Ω,Λ′ ,ℬ (ℝ
n × X : Y), we will state the following results (the corresponding

proofs are very similar to the proof already given in the one-dimensional case, and
we will only present the main details of the proof for Theorem 6.3.10; the results on
invariance of various kinds of (equi-)Weyl almost periodicity under the actions of
convolution products are not simply applied in the multi-dimensional setting and we
will not reconsider these results here).

Theorem 6.3.10. Suppose that φ : [0,∞) → [0,∞), ϕ : [0,∞) → [0,∞) is a convex
monotonically increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0, h ∈
L1(ℝn), Ω = [0, 1]n, F ∈ (e−)W (p(u),ϕ,𝔽)Ω,Λ′ ,ℬ (ℝ

n × X : Y), 1/p(u) + 1/q(u) = 1, and for each
x ∈ X we have supt∈ℝn ‖F(t; x)‖Y < ∞. If 𝔽1 : (0,∞) × ℝn → (0,∞), p1 ∈ 𝒫(ℝn) and
if, for every t ∈ ℝn and l > 0, there exists a sequence (ak)k∈lℤn of positive real numbers
such that∑k∈lℤn ak = 1 and

∫
t+lΩ

φp1(u)(2 ∑
k∈lℤn

ak l
−n[φ(a−1k lnh(u − v))]Lq(v)(u−k+lΩ)𝔽1(l, t)[𝔽(l,u − k)]

−1
) du ⩽ 1,

(6.77)

then h ∗ F ∈ (e−)W (p1(u),ϕ,𝔽1)Ω,Λ′ ,ℬ (ℝn × X : Y).

Proof. Since supt∈ℝn ‖F(t; x)‖Y <∞, x ∈ X, it is clear that the value (h ∗ F)(t; x) is well
defined for all t ∈ ℝn and x ∈ X. Furthermore, sincewe have assumed that the function
ϕ(⋅) is monotonically increasing, we have (t ∈ ℝn, l > 0; x ∈ X fixed):

ϕ((h ∗ F)(τ + u; x) − (h ∗ F)(u; x)
Y )Lp1(u)(t+lΩ)

= ϕ(

∫
ℝn

h(s)[F(τ + u − s; x) − F(u − s; x)]ds
Y
)
Lp1(u)(t+lΩ)

⩽ ϕ(∫
ℝn

h(s)
 ⋅
F(τ + u − s; x) − F(u − s; x)

Yds)
Lp1(u)(t+lΩ)

= inf{λ > 0 : ∫
t+lΩ

φp1(u)(
ϕ(∫ℝn |h(s)| ⋅ ‖F(τ + u − s; x) − F(u − s; x)‖Yds)

λ
) du ⩽ 1}.
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But, since we have assumed that ϕ(⋅) is convex and∑k∈lℤn ak = 1, we have

ϕ( ∑
k∈lℤn

akxk) ⩽ ∑
k∈lℤn

akϕ(xk), (6.78)

for any sequence (xk)of non-negative real numbers. Using (6.78), the fact that the func-
tion φp1(u)(⋅) is monotonically increasing, the above computation, and the Jensen in-
tegral inequality and the Hölder inequality (see Lemma 1.1.7(i)), we get

∫
t+lΩ

φp1(u)(
ϕ(∫ℝn |h(s)| ⋅ ‖F(τ + u − s; x) − F(u − s; x)‖Yds)

λ
) du

⩽ ∫
t+lΩ

φp1(u)(
∑k∈lℤn akϕ(∫k−lΩ a

−1
k |h(s)| ⋅ ‖F(τ + u − s; x) − F(u − s; x)‖Yds)

λ
) du

⩽ ∫
t+lΩ

φp1(u)(
∑k∈lℤn ak l

−n ∫k−lΩ ϕ(a
−1
k ln|h(s)| ⋅ ‖F(τ + u − s; x) − F(u − s; x)‖Yds)

λ
) du

= ∫
t+lΩ

φp1(u)(
∑k∈lℤn ak l

−n ∫k−lΩ ϕ(a
−1
k ln|h(u − v)| ⋅ ‖F(τ + v; x) − F(v; x)‖Y )dv

λ
) du

⩽ ∫
t+lΩ

φp1(u)(
∑k∈lℤn ak l

−n ∫u−k+lΩ φ(a
−1
k ln|h(u − v)|)ϕ(‖F(τ + v; x) − F(v; x)‖Y )dv

λ
) du

⩽ ∫
t+lΩ

φp1(u)(
∑k∈lℤn 2ak l

−n[φ(a−1k lnh(u − v))]Lq(v)(u−k+lΩ)
λ

× [ϕ(F(τ + v; x) − F(v; x)
Y )]Lp(v)(u−k+lΩ)) du

⩽ ∫
t+lΩ

φp1(u)(
∑k∈lℤn 2ak l

−n[φ(a−1k lnh(u − v))]Lq(v)(u−k+lΩ)
λ ⋅ 𝔽(l,u − k)

) du.

The use of (6.77) simply completes the proof.

Theorem 6.3.11. Suppose that φ : [0,∞) → [0,∞), ϕ : [0,∞) → [0,∞) is a convex
monotonically increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0, h ∈
L1(ℝn), Ω = [0, 1]n, F ∈ (e−)W [p(u),ϕ,𝔽]Ω,Λ′ ,ℬ (ℝ

n × X : Y), 1/p(u) + 1/q(u) = 1, and for each
x ∈ X we have supt∈ℝn ‖F(t; x)‖Y < ∞. If 𝔽1 : (0,∞) × ℝn → (0,∞), p1 ∈ 𝒫(ℝn) and
if, for every t ∈ ℝn and l > 0, there exists a sequence (ak)k∈lℤn of positive real numbers
such that∑k∈lℤn ak = 1 and

∫
Ω

φp1(u)(2 ∑
k∈lℤn

ak l
−n[φ(a−1k lnh(k − lv))]Lq(v)(Ω)𝔽1(l, t)[𝔽(l, t + lu − k)]

−1
) du ⩽ 1,

then h ∗ F ∈ (e−)W [p1(u),ϕ,𝔽1]Ω,Λ′ ,ℬ (ℝn × X : Y).
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The interested reader may try to formulate the corresponding statements about
the convolution invariance of Weyl almost periodicity for the remaining four classes
of functions introduced.

Concerning the functions ϕ(⋅) and 𝔽(⋅, ⋅), the most important case is that one in
which ϕ(x) ≡ x, 𝔽(l, t) ≡ m(lΩ)−1‖1‖Lq(u)(lΩ), where 1/p(u) + 1/q(u) = 1, when we obtain
the usual concept of (equi-)Weyl p(u)-almost periodicity; if this is the case, the spaces
(e−)W (p(u),ϕ,𝔽)Ω,Λ′ ,ℬ , (e−)W (p(u),ϕ,𝔽)1Ω,Λ′ ,ℬ and (e−)W (p(u),ϕ,𝔽)2Ω,Λ′ ,ℬ , resp. the spaces (e−)W [p(u),ϕ,𝔽]Ω,Λ′ ,ℬ ,
(e−)W [p(u),ϕ,𝔽]1Ω,Λ′ ,ℬ and (e−)W [p(u),ϕ,𝔽]2Ω,Λ′ ,ℬ , coincide. Furthermore, the use of Hölder inequal-
ity enables one to see that these spaces are contained in the corresponding spaces of
functions with p(u) ≡ 1.

6.3.1 The constant coefficient case

In this subsection, we will always assume that Ω = [0, 1]n, Λ is a general non-empty
subset of ℝn satisfying Λ′ + Λ + lΩ ⊆ Λ and Λ + lΩ ⊆ Λ for all l > 0, ϕ(x) ≡ x and
p(t) ≡ p ∈ [1,∞), when the usual concept of (equi-)Weyl p-almost periodicity is ob-
tained by plugging 𝔽(l, t) ≡ l−n/p. The corresponding class of functions is denoted by
(e−)Wp

ap,Λ′ ,ℬ(Λ × X : Y).
Now we would like to present the following illustrative example.

Example 6.3.12 (see also [265, Example 2.15(i)]). Suppose that a complex-valued
mapping t → ∫t0 gj(s) ds, t ∈ ℝ is essentially bounded and (equi-)Weyl p-almost
periodic (1 ⩽ j ⩽ n). Define

F(t1, . . . , t2n) :=
n
∏
j=1
[gj(tj+n) − gj(tj)], where tj ∈ ℝ for 1 ⩽ j ⩽ 2n,

and Λ′ := {(τ, τ) : τ ∈ ℝn}. Then the argumentation from [265, Example 2.13(ii)] shows
that there exists a finite constantM > 0 such that

F(t1 + τ1, . . . , t2n + τ2n) − F(t1, . . . , t2n)
Y

⩽ M{g1(tn+1 + τ1) − g1(tn+1)
 +
g1(t1 + τ1) − g1(t1)

 + ⋅ ⋅ ⋅

+ gn(t2n + τn) − gn(t2n)
 +
gn(tn + τn) − gn(tn)

},

for any (t1, . . . , t2n) ∈ ℝ2n and (τ1, . . . , τ2n) ∈ Λ′. Using the corresponding definitions,
the Fubini theorem and an elementary argumentation, it follows that the function F(⋅)
belongs to the class (e−)Wp

ap,Λ′ (ℝ
2n : Y). Furthermore, in the case of consideration of

equi-Weyl p-almost periodicity, when any direct product of finite number of equi-Weyl
p-almost periodic functions is again equi-Weyl p-almost periodic, we can show that
the function F(⋅) belongs to the class e −Wp

ap,Λ′′ (ℝ
2n : Y), where Λ′′ := {(a, a, . . . , a) ∈

ℝ2n : a ∈ ℝ}.
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Now we will say a few words about the Weyl p-distance and the Weyl p-bounded-
ness. Suppose that F : Λ × X → Y and G : Λ × X → Y are two functions satisfying that
F(t + ⋅; x) − G(t + ⋅; x) ∈ Lp(lΩ : Y) for all t ∈ Λ, x ∈ X and l > 0. The Stepanov distance
Dp
SΩ
(F(⋅; x),G(⋅; x)) of functions F(⋅; x) and G(⋅; x) is defined by

Dp
SlΩ
(F(⋅; x),G(⋅; x)) := sup

t∈Λ
[l−(n/p)F(t + ⋅; x) − G(t + ⋅; x)

Lp(lΩ:Y)],

for any x ∈ X and l > 0. Set

Dp
SlΩ ,B
(F,G) := sup

x∈B
Dp
SlΩ
(F(⋅; x),G(⋅; x)) (l > 0, B ∈ ℬ).

It is clear that the assumptions τ ∈ ℝn and τ + Λ ⊆ Λ, resp. τ + Λ = Λ, imply

Dp
SlΩ ,B
(F(⋅ + τ; ⋅),G(⋅ + τ; ⋅)) ⩽ Dp

SlΩ ,B
(F,G), l > 0, B ∈ ℬ, (6.79)

resp.

Dp
SlΩ ,B
(F(⋅ + τ; ⋅),G(⋅ + τ; ⋅)) = Dp

SlΩ ,B
(F,G), l > 0, B ∈ ℬ. (6.80)

Arguing as before, we may conclude to the following:
1.

Dp
Sl1Ω ,B
(F,G) ⩽ [ l2

l1
]
n/p
⋅ Dp

Sl2Ω ,B
(F,G),

provided that l2 > l1 > 0 and B ∈ ℬ.
2. If l2 > l1 > 0, l2 = kl1 + θl1 for some k ∈ ℕ and θ ∈ [0, 1), then

Dp
Sl2Ω ,B
(F,G) ⩽ (k + 1

k
)
n/p
⋅ Dp

Sl1Ω ,B
(F,G),

provided that B ∈ ℬ.

Hence, [1.–2.] imply that for each B ∈ ℬ we have

lim sup
l→∞

Dp
SlΩ ,B
(F,G) ⩽ Dp

Sl1Ω ,B
(F,G), l1 > 0;

performing the limit inferior as l1 →∞, we get

lim sup
l→∞

Dp
SlΩ ,B
(F,G) ⩽ lim inf

l→∞
Dp
SlΩ ,B
(F,G).

Hence, the limit

Dp
W ,B(F,G) := liml→∞

Dp
SlΩ ,B
(F,G)

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.3 Multi-dimensional Weyl almost periodic type functions | 413

exists and for each l > 0 we have

Dp
W ,B(F,G) ⩽ D

p
SlΩ ,B
(F,G), B ∈ ℬ. (6.81)

We call this limit theWeylp-distance of functionsF(⋅) andG(⋅)onB; theWeylp-normof
the function F(⋅) onB, denoted by ‖F‖pW ,B, is defined by ‖F‖

p
W ,B := D

p
W ,B(F,0). Moreover,

if X ∈ ℬ, then the Weyl p-norm ‖F‖pW ,X of F(⋅) on X is also said to be the Weyl p-norm
of the function F(⋅) and it is denoted by ‖F‖pW .

Due to (6.79)–(6.80), we find that the assumptions τ ∈ ℝn and τ + Λ ⊆ Λ, resp.
τ + Λ = Λ, imply

Dp
W ,B(F(⋅ + τ; ⋅),G(⋅ + τ; ⋅)) ⩽ D

p
W ,B(F,G), B ∈ ℬ,

resp.

Dp
W ,B(F(⋅ + τ; ⋅),G(⋅ + τ; ⋅)) = D

p
W ,B(F,G), B ∈ ℬ.

We will occasionally use the following condition:
(L) The function F : Λ × X → Y satisfies ‖F(t + ⋅; x)‖Y ∈ Lp(lΩ) for all t ∈ Λ, x ∈ X and

l > 0.

Definition 6.3.13. Suppose that (L) holds. Then we say that F(⋅; ⋅) is Weyl p-bounded
on ℬ if and only if for each B ∈ ℬ we have ‖F‖pW ,B <∞; moreover, if X ∈ ℬ, then we say
that F(⋅; ⋅) is Weyl p-bounded.

As is well known, the space of Weyl p-bounded functions is not complete with
respect to the Weyl norm ‖ ⋅ ‖pW in the case that X ∈ ℬ. Furthermore, if (L) holds, then
we set BpW ,B := {F : Λ × X → Y ; ‖F‖pW ,B < +∞} (B ∈ ℬ). Let us recall that the terms
“Weyl p-distance” and “Weyl p-norm” are a little bit incorrect because Dp

W ,B(⋅, ⋅) is a
pseudometric on BpW ,B, actually (for example, the function F := χ[0,1/2)(⋅) used before
is a non-zero function and ‖F‖pW = 0 for all p ⩾ 1).

The following result is well known in the one-dimensional framework.

Proposition 6.3.14. Suppose that (L) holds. Then the function F(⋅; ⋅) is Weyl p-bounded
on ℬ if and only if F(⋅; ⋅) is Stepanov p-bounded on ℬ.

Proof. Clearly, if F(⋅; ⋅) is Stepanov p-bounded on ℬ, then F(⋅; ⋅) is Weyl p-bounded on
ℬ due to (6.81). Suppose now that the function F(⋅; ⋅) is Weyl p-bounded on ℬ. Let the
set B ∈ ℬ be fixed. Then there exist two finite real constantsM > 0 and l ⩾ 1 such that
Dp
SlΩ ,B
(F,0) ⩽ M, which implies that for each t ∈ Λ and x ∈ B we have

F(t + ⋅; x)
Lp(Ω:Y) ⩽

F(t + ⋅; x)
Lp(lΩ:Y) ⩽ l

n/pDp
SlΩ ,B
(F,0) ⩽ ln/pM.

This completes the proof.
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Under the previous assumptions, the quantity

Dp
W ,B,1(F,G) := sup

x∈B
Dp
W (F(⋅; x),G(⋅; x)) = sup

x∈B
lim
l→+∞

Dp
SlΩ
(F(⋅; x),G(⋅; x))

also exists and we clearly have Dp
W ,B,1(F,G) ⩽ D

p
W ,B(F,G). Finding some sufficient con-

ditions ensuring that Dp
W ,B,1(F,G) ⩾ Dp

W ,B(F,G) could be an interested problem; for
simplicity, we will not consider the quantity Dp

W ,B,1(F,G) henceforth.
Suppose now that F : Λ × X → Y , G : Λ × X → Y and H : Λ × X → Y satisfy

F(t + ⋅; x) − G(t + ⋅; x) ∈ Lp(lΩ : Y) and G(t + ⋅; x) − H(t + ⋅; x) ∈ Lp(lΩ : Y) for all t ∈ Λ,
x ∈ X and l > 0. Then

Dp
SlΩ ,B
(F,G) ⩽ Dp

SlΩ ,B
(F,H) + Dp

SlΩ ,B
(H ,G), l > 0, B ∈ ℬ

and therefore

Dp
W ,B(F,G) ⩽ D

p
W ,B(F,H) + D

p
W ,B(H ,G), B ∈ ℬ. (6.82)

Nowwewill prove the following extension of [696, Theorem 5.5.5, pp. 222–227] (cf.
also [67, p. 150, l.-10; l.-5] and [696, Chapter 5, Section 9, pp. 242–247]).

Theorem 6.3.15. Suppose that any of the functions Fk : Λ × X → Y (k ∈ ℕ) and F :
Λ×X → Y satisfies condition (L). If for each set B ∈ ℬ we have limk→+∞ ‖Fk −F‖

p
W ,B = 0

and Fk ∈ e −W
p
ap,Λ′ ,ℬ(Λ × X : Y) for all k ∈ ℕ, then F ∈ e −W

p
ap,Λ′ ,ℬ(Λ × X : Y).

Proof. Let ε > 0andB ∈ ℬ befixed. Then there existsK ∈ ℕ such that ‖FK−F‖
p
W ,B < ε/3;

hence, there exists l1 > 0 such that

sup
t∈Λ,x∈B
[l−n/pFK(⋅; x) − F(⋅; x)

Lp(t+lΩ:Y)] < ε/3, l ⩾ l1. (6.83)

On the other hand, since FK ∈ e−W
p
ap,Λ,Λ′ (Λ×X : Y), we have the existence of two real

numbers l2 >0 and L>0 such that for each t0 ∈Λ′ there exists τ ∈B(t0, L)∩Λ′ such that

sup
t∈Λ,x∈B
[l−n/p2
FK(⋅ + τ; x) − FK(⋅; x)

Lp(t+lΩ:Y)] < 2
−n/pε/3. (6.84)

Set l := max(l1, l2), fix t ∈ Λ and x ∈ B. Then there exist an integer k ∈ ℕ and a number
θ ∈ [0, 1) such that l = kl2 + θl2. Due to (6.84), we have

[l−n ∫
t+lΩ

FK(u + τ; x) − FK(u; x)

p
Y du]

1/p

⩽ [(kl2)
−n ∫

t+(k+1)l2Ω

FK(u + τ; x) − FK(u; x)

p
Y du]

1/p

⩽ [(kl2)
−n2−n(k + 1)nεp3−pln2 ]

1/p
= 2−n/p (k + 1)

n/p

kn/p
ε
3
⩽ ε/3.
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Using this estimate and (6.83), we get

l−n/pF(⋅ + τ; x) − F(⋅; x)
Lp(t+lΩ:Y)

⩽ l−n/p[F(⋅ + τ; x) − FK(⋅ + τ; x)
Lp(t+lΩ:Y)

+ FK(⋅ + τ; x) − FK(⋅; x)
Lp(t+lΩ:Y) +

FK(⋅; x) − F(⋅; x)
Lp(t+lΩ:Y)]

⩽ 3 ⋅ ε
3
= ε,

which completes the proof.

Regarding the incompleteness of the space of equi-Weyl p-almost periodic func-
tionswith respect to theWeylmetric,wewant only to recall that the sequenceof partial
sums of the series (therefore, the sequence of trigonometric polynomials)

x →
∞

∑
k=1

1
k
sin x

k
, x ∈ ℝ,

is a Cauchy sequence with respect to the Weyl metricW2 but its sum, which is clearly
an essentially bounded function, is not equi-Weyl 2-almost periodic; see, e. g., [696,
p. 247].

Now we will investigate the Weyl p-normality and the Weyl approximations by
trigonometric polynomials. We first introduce the following notion (see also [67, Defi-
nition 4.5]).

Definition 6.3.16. Suppose that (L) holds, R is a non-empty collection of sequences in
ℝn and the following holds:

if t ∈ Λ, b ∈ R andm ∈ ℕ, then we have t + b(m) ∈ Λ. (6.85)

Thenwe say that the functionF(⋅; ⋅) isWeyl (R,ℬ, p)-normal if andonly if for everyB ∈ ℬ
and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence (bkm = (b

1
km , b

2
km , . . . , b

n
km ))

of (bk) such that (F(⋅ + (b1km , . . . , b
n
km ); ⋅))m∈ℕ is a Cauchy sequence with respect to the

metric Dp
W ,B(⋅, ⋅).

Remark 6.3.17. If RX is a non-empty collection of sequences in ℝn × X satisfying cer-
tain conditions, then the notion of Weyl (RX ,ℬ, p)-normality can be also introduced.

Now we are in a position to introduce the following generalization of the notion
considered in [67, Definition 4.6].

Definition 6.3.18. Suppose that (L) holds. Thenwe say that the function F(⋅; ⋅) belongs
to the space e − ℬ −Wp(Λ × X : Y) if and only if for every B ∈ ℬ and for every ε > 0
there exist a real number l0 > 0 and a trigonometric polynomial P(⋅; ⋅) such that

sup
x∈B,t∈Λ
[l−n/pP(t + ⋅; x) − F(t + ⋅; x)

Lp(lΩ:Y)] < ε, l ⩾ l0. (6.86)

If X ∈ ℬ, then we also say that F(⋅) belongs to the space e −Wp(Λ × X : Y).
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In other words, if (L) holds, then F ∈ e − ℬ − Wp(Λ × X : Y) if and only if for
every B ∈ ℬ there exists a sequence of trigonometric polynomials Pm(⋅; ⋅) such that
limm→+∞ D

p
W ,B(F,Pm) = 0. Now we will state the following extension of [67, Theorem

4.12].

Theorem 6.3.19. Suppose that (L) holds and F ∈ e − ℬ − Wp(Λ × X : Y). Let R be the
collection of all sequences in ℝn for which (6.85) holds, and let ℬ be any collection of
compact subsets of X. Then the function F(⋅; ⋅) is Weyl (R,ℬ, p)-normal.

Proof. Let (bk = (b1k , b
2
k , . . . , b

n
k)) ∈ R. Using [265, Theorem 2.17], for every Q ∈ ℕ, we

can always find a sequence ((b1km;Q , . . . , b
n
km;Q ))m∈ℕ and a function FQ : ℝ

n ×X → Y such
that

lim
m→+∞

PQ(t + (b
1
km;Q , . . . , b

n
km;Q); x) = FQ(t; x), (6.87)

uniformly for t ∈ ℝn and x ∈ B; furthermore, we may assume that the sequence
((b1km;Q , . . . , b

n
km;Q ))m∈ℕ is a subsequence of all sequences ((b1km;Q′ , . . . , b

n
km;Q′
))m∈ℕ for

1 ⩽ Q′ ⩽ Q and the initial sequence (bk = (b1k , b
2
k , . . . , b

n
k)) as well as that (km;m)

is a strictly increasing sequence of positive integers. Then a subsequence (bkm =
(b1km;m , b

2
km;m , . . . , b

n
km;m )) of (bk) satisfies the requirement that (F(⋅+(b1km;m , b

2
km;m , . . . , b

n
km;m );

⋅))m∈ℕ is a Cauchy sequence with respect to the metric Dp
W ,B(⋅, ⋅). Indeed, there exists

s ∈ ℕ such that Dp
W ,B(Ps, F) < ε/3 and we have, due to (6.82),

Dp
W ,B(F(⋅ + (b

1
km;m , b

2
km;m , . . . , b

n
km;m); x), F(⋅ + (b

1
km′ ;m′
, b2km′ ;m′ , . . . , b

n
km′ ;m′
); x))

⩽ Dp
W ,B(F(⋅ + (b

1
km;m , b

2
km;m , . . . , b

n
km;m); x),Ps(⋅ + (b

1
km;m , b

2
km;m , . . . , b

n
km;m); x))

+ Dp
W ,B(Ps(⋅ + (b

1
km;m , b

2
km;m , . . . , b

n
km;m); x),Ps(⋅ + (b

1
km′ ;m′
, b2km′ ;m′ , . . . , b

n
km′ ;m′
); x))

+ Dp
W ,B(Ps(⋅ + (b

1
km′ ;m′
, b2km′ ;m′ , . . . , b

n
km′ ;m′
); x), F(⋅ + (b1km′ ;m′ , b

2
km′ ;m′
, . . . , bnkm′ ;m′ ); x))

⩽ 2Dp
W ,B(F,Ps)

+ Dp
W ,B(Ps(⋅ + (b

1
km;m , b

2
km;m , . . . , b

n
km;m); x),Ps(⋅ + (b

1
km′ ;m′
, b2km′ ;m′ , . . . , b

n
km′ ;m′
); x))

⩽ 2ε/3 + Dp
W ,B(Ps(⋅ + (b

1
km;m , b

2
km;m , . . . , b

n
km;m); x),Ps(⋅ + (b

1
km′ ;m′
, b2km′ ;m′ , . . . , b

n
km′ ;m′
); x))

⩽ 2ε/3

+ sup
y∈B,⋅∈Λ

Ps(⋅ + (b
1
km;m , b

2
km;m , . . . , b

n
km;m); y) − Ps(⋅ + (b

1
km′ ;m′
, b2km′ ;m′ , . . . , b

n
km′ ;m′
); y)Y ,

for every m, m′ ∈ ℕ and x ∈ B. Since ((b1km;m , . . . , b
n
km;m ))m∈ℕ is a subsequence of the

sequence ((b1km;s , . . . , b
n
km;s ))m∈ℕ for s ⩽ m, this simply implies the required statement

by applying (6.87) with Q = s.

Our next structural result generalizes [67, Theorem 4.7].

Proposition 6.3.20. Suppose that (L) holds, ℬ is any collection of bounded subsets of X
and F ∈ e − ℬ −Wp(Λ × X : Y). Then F ∈ e −Wp

ap,Λ,ℬ(Λ × X : Y).

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.3 Multi-dimensional Weyl almost periodic type functions | 417

Proof. Let a bounded set B ∈ ℬ and a real number ε > 0 be given. By definition, there
exist a real number l0 > 0 and a trigonometric polynomial P(⋅; ⋅) such that (6.86) holds.
Let

P(t; x) :=
k
∑
j=1

ei[λ1,jt1+λ2,jt2+⋅⋅⋅+λn,jtn]cj(x), t = (t1, t2, . . . , tn) ∈ ℝ
n, x ∈ X,

for some integer k ∈ ℕ. Since the function cj(⋅) is continuous (1 ⩽ j ⩽ k), there exists a
finite real constantM > 1 such that

sup
x∈B

sup
1⩽j⩽k

cj(x)
Y ⩽ M.

Since every trigonometric polynomial is almost periodic in ℝn (cf. [265]), the ex-
istence of such a constant M and the Bochner criterion applied to the functions
ei[λ1,jt1+λ2,jt2+⋅⋅⋅+λn,jtn] for 1 ⩽ j ⩽ k together imply the existence of a finite real num-
ber L > 0 such that for each point t0 ∈ ℝn there exists τ ∈ B(t0, L) which satisfies
‖P(t + τ; x) − P(t; x)‖Y ⩽ (ε/3) for all t ∈ ℝn and x ∈ B. Suppose now that t0 ∈ Λ and
τ ∈ B(t0, L) is chosen as above. This yields

F(τ + ⋅; x) − F(⋅; x)
Lp(t+lΩ)

⩽ F(τ + ⋅; x) − P(τ + ⋅; x)
Lp(t+lΩ)

+ P(τ + ⋅; x) − P(⋅; x)
Lp(t+lΩ) +

P(⋅; x) − F(⋅; x)
Lp(t+lΩ)

⩽
2ε
3
ln/p + P(τ + ⋅; x) − P(⋅; x)

Lp(t+lΩ) ⩽
2ε
3
ln/p + ε

3
ln/p = εln/p,

which completes the proof.

Now we will extend the statement of [166, Lemma 2∘, p. 83] in the following way.

Proposition 6.3.21. Suppose that F ∈ e − Wp
ap,Λ′ ,ℬ(Λ × X : Y) and there exists a finite

real number M > 0 such that, for every t ∈ Λ, there exists t0 ∈ Λ′ such that |t + t0| ⩽ M.
Then for each B ∈ ℬ there exist real numbers l > 0 and M′ > 0 such that

sup
t∈Λ,x∈B
[l−(n/p)F(⋅; x)

Lp(t+lΩ:Y)] ⩽ M
′.

Proof. Let the set B ∈ ℬ be fixed and let ε = 1. Then there exist real numbers l > 0 and
L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that (6.75) holds. Fix
now a point t ∈ Λ. Due to our assumption, there exists t0 ∈ Λ′ such that |t + t0| ⩽ M.
Choose τ as above for this t0. Then |t + τ| ⩽ |t + t0| + |t0 − τ| ⩽ M + L, so that

F(⋅; x)
Lp(t+lΩ:Y) ⩽

F(⋅; x) − F(τ + ⋅; x)
Lp(t+lΩ:Y) +

F(τ + ⋅; x)
Lp(t+lΩ:Y)

⩽ ln/p + F(⋅; x)
Lp(t+τ+lΩ:Y) ⩽ l

n/p + sup
|v|⩽M

F(⋅; x)
Lp(v+lΩ:Y),

which simply completes the proof.
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Similarly we can prove the following extension of [166, Lemma 3∘, p. 84].

Proposition 6.3.22. Suppose that F ∈ e − Wp
ap,Λ′ (Λ : Y) and there exists a finite real

number M > 0 such that, for every t ∈ Λ, there exists t0 ∈ Λ′ such that |t+ t0| ⩽ M. Then
F(⋅) is equi-Wp-uniformly continuous, i. e., for each ε > 0 there exist real numbers l > 0
and δ > 0 such that, for every v ∈ Λ with |v| ⩽ δ, we have

sup
t∈Λ
[l−n/pF(t + ⋅ + v) − F(t + ⋅)

Lp(lΩ:Y)] < ε.

Now we are able to prove the following generalization of [166, Theorem 1∘, p. 82].

Theorem 6.3.23. Suppose that (L) holds with X = {0} and ℬ = {X}. Then F ∈ e −
Wp

ap,ℝn (ℝ
n : Y) if and only if F ∈ e −Wp(ℝn : Y).

Proof. Clearly, if F ∈ e − Wp(ℝn : Y), then F ∈ e − Wp
ap,ℝn (ℝ

n : Y) due to Propo-
sition 6.3.20. In order to prove that the assumption F ∈ e − Wp

ap,ℝn (ℝ
n : Y) implies

F ∈ e −Wp(ℝn : Y), we basically follow the approach obeyed in the proof of [166, The-
orem 1∘, pp. 82–91] in the abstract framework developed by T. Spindeler [951] for the
scalar-valued equi-Weyl p-almost periodic functions defined on the locally compact
Abelian group G = ℝn, with a little abuse of notation used. First of all, we note that
the sequence (Al ≡ lΩ)l∈ℕ is a vanHove sequence (see also Example 6.3.9 and the proof
of Theorem 6.3.32 below) in the sense of [951, Definition 3.1] as well as that Proposi-
tion 6.3.22 implies that F(⋅) is equi-Wp-uniformly continuous, so that [951, Lemma 3.11]
continues to hold in the vector-valued case. It can be simply shown that the construc-
tion of kernel K : ℝn → [0,∞) holds for the vector-valued functions, so that [951,
Lemma 3.12] continues to hold in the vector-valued case, as well. Furthermore, for a
real number ε > 0 given in advance, the function

Θ(t) := lim inf
l→+∞

l−n ∫
lΩ

F(t + s)K(s) ds = lim
l→+∞

l−n ∫
lΩ

F(t + s)K(s) ds, t ∈ ℝn,

is almost periodic and satisfies limm→+∞ D
p
W ,B(F,Θ) < ε by the same argumentation

as in the proof of implication (2)⇒ (1) of [951, Proposition 3.13]. The remainder of the
proof is trivial and therefore omitted.

Now we would like to introduce the following notion.

Definition 6.3.24. Suppose that 0 ̸= Λ ⊆ ℝn, Λ+Λ+ lΩ ⊆ Λ and Λ+ lΩ ⊆ Λ for all l > 0.
Then we say that Λ is admissible with respect to the (equi-)Weyl p-almost periodic
extensions if and only if for any complex Banach space Y and for any function F ∈
(e−)Wp

ap,Λ(Λ : Y) there exists a function F̃ ∈ (e−)Wp
ap,ℝn (ℝ

n : Y) such that F̃(t) = F(t)
for all t ∈ Λ.

Nowwe are able to state the following extensions of [696, Theorem 5.5.3-Theorem
5.5.4, pp. 225–226], whose proofs are immediate consequences of Theorem 6.3.23, the
fact that e−Wp(ℝn : Y) is a vector space and the notion introduced inDefinition 6.3.24.
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Theorem 6.3.25. Suppose that 0 ̸= Λ ⊆ ℝn, Λ + Λ + lΩ ⊆ Λ and Λ + lΩ ⊆ Λ for all
l > 0. If Λ is admissible with respect to the equi-Weyl p-almost periodic extensions, then
e −Wp

ap,Λ(Λ : Y) is a vector space.

Theorem 6.3.26. Suppose that 0 ̸= Λ ⊆ ℝn, Λ + Λ + lΩ ⊆ Λ and Λ + lΩ ⊆ Λ for all l > 0.
Suppose, further, that p, q, r ∈ [1,∞), 1/p+ 1/r = 1/q,Λ is admissible with respect to the
equi-Weyl p-almost periodic extensions, f ∈ e −Wp

ap,Λ(Λ : ℂ) and F ∈ e −W
r
ap,Λ(Λ : Y).

Define F1(t) := f (t)F(t), t ∈ Λ. Then F1 ∈ e −W
q
ap,Λ(Λ : Y).

Before proceeding further, let us note that Theorem 6.3.26 can be illustrated by
many elaborate examples. For instance, we know that there exists a bounded scalar-
valued infinitely differentiable Weyl p-almost periodic function f : ℝ → ℝ for all
p ∈ [1,∞) such that the regular distribution determined by this function is not al-
most periodic (cf. [124], [199, Main example IV, Appendix, pp. 131–133] and [631] for
the notion and more details). Define now

F(t1, t2, . . . , tn) = f (t1)f (t2) ⋅ ⋅ ⋅ f (tn), t = (t1, t2, . . . , tn) ∈ ℝ
n.

Then Theorem 6.3.26 inductively implies that F ∈ e −Wp
ap,ℝn (ℝ

n : Y) for all p ∈ [1,∞)
(even for all p ∈ D+(Ω)).

It is clear that the notion introduced inDefinition 6.3.24 is not trivial aswell as that
some known results for the usual classes of multi-dimensional Bohr and Stepanov
almost periodic type functions cannot be easily transferred to the correspondingWeyl
classes. In connection with this problem, we would like to ask the following question,
which seems to be not proposed elsewhere even in the one-dimensional setting.

Problem. Suppose that Λ is a convex polyhedral in ℝn, i. e., there exists a basis
(v1, . . . , vn) of ℝn such that

Λ = {α1v1 + ⋅ ⋅ ⋅ + αnvn : αi ⩾ 0 for all i ∈ ℕn}.

Is true that Λ is admissible with respect to the (equi-)Weyl p-almost periodic exten-
sions?

In the remainder of this section, we assume that condition (L) holds. If τ ∈ ℝn

satisfies τ + Λ ⊆ Λ and F ∈ BpW ,B for all B ∈ ℬ, then F(⋅ + τ; ⋅) ∈ BpW ,B for all B ∈ ℬ.
Therefore, the following notion is meaningful.

Definition 6.3.27. Suppose that F : Λ × X → Y is such that (L) holds. If Λ0 ⊆ {τ ∈ ℝn :
τ + Λ ⊆ Λ}, then we say that the function F(⋅; ⋅) is (ℬ,Λ0)-normal if and only if for each
B ∈ ℬ the set FΛ0

≡ {F(⋅ + τ; ⋅) : τ ∈ Λ0} is totally bounded in the pseudometric space
(BpW ,B,D

p
W ,B), which means that for any ε > 0 and B ∈ ℬ the set FΛ0

admits a cover by
finitely many open balls of radius ε in (BpW ,B,D

p
W ,B).

Consider now the following condition:
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(WM3) 0 ̸= Λ ⊆ ℝn, 0 ̸= Λ′ ⊆ ℝn, 0 ̸= Λ′′ ⊆ ℝn, Ω = [0, 1]n, p(u) ≡ p ∈ [1,∞),
Λ′′ + Λ + lΩ ⊆ Λ, Λ + lΩ ⊆ Λ for all l > 0, ϕ(x) ≡ x and 𝔽(l, t) ≡ l−n/p.

The following notion has an important role for our further investigations of the notion
introduced in Definition 6.3.27.

Definition 6.3.28. Suppose that (WM3) holds.
(i) By e−Wp

Ω,Λ′ ,Λ′′,ℬ(Λ×X : Y)we denote the set consisting of all functions F : Λ×X →
Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers l > 0
and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′′ such that

sup
x∈B

sup
t∈Λ
𝔽(l, t)ϕ(F(τ + u; x) − F(u; x)

Y )Lp(u)(t+lΩ) < ε.

(ii) ByWp
Ω,Λ′ ,Λ′′ ,ℬ(Λ×X : Y)we denote the set consisting of all functions F : Λ×X → Y

such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ
𝔽(l, t)ϕ(F(τ + u; x) − F(u; x)

Y )Lp(u)(t+lΩ) < ε.

Now we are able to state the following result (see also [67, Corollary 4.24] and the
proof of sufficiency in [67, Theorem 4.12]).

Proposition 6.3.29. Suppose that F : Λ × X → Y is such that (L) holds, Λ0 ⊆ {τ ∈ ℝn :
τ + Λ ⊆ Λ}, F(⋅; ⋅) is (ℬ,Λ0)-normal, τ + Λ = Λ for all τ ∈ Λ0, and condition (WM3) holds
with Λ′ := −Λ0, Λ′′ := Λ0 − Λ0. Then F ∈ W

p
Ω,Λ′ ,Λ′′ ,ℬ(Λ × X : Y).

Proof. Let ε > 0 and B ∈ ℬ be fixed. Due to the (ℬ,Λ0)-normality of the function F(⋅; ⋅),
we find that there exist a positive integer m ∈ ℕ and a finite subset {τ1, τ2, . . . , τm} of
Λ0 such that for each t0 = −τ ∈ −Λ0 there exist j ∈ ℕm and l0 > 0 such that, for every
l ⩾ l0 and x ∈ B, we have

sup
t∈Λ,x∈B
[l−n/pF(t + τ + ⋅; x) − F(t + τj + ⋅; x)

Lp(lΩ:Y)] < ε.

Substituting T = t+τ and using the assumption that τ+Λ = Λ for all τ ∈ Λ0, the above
implies

sup
t∈Λ,x∈B
[l−n/pF(t + ⋅; x) − F(t + (τj − τ) + ⋅; x)

Lp(lΩ:Y)] < ε.

Set L := max{|τj| : j ∈ ℕm}. Then τj − τ ∈ Λ0 − Λ0 and τj − τ ∈ B(t0, L), which simply
implies the required.

It is worth noting that Proposition 6.3.29 can be applied even in the case that
the assumption Λ = Λ0 = ℝ

n is not satisfied. For example, we can take Λ :=
{(x1, . . . , xn−1, xn) ∈ ℝn : xi ⩾ 0 for all i ∈ ℕn−1} and Λ0 := {(0,0, . . . ,0, xn) : xn ∈ ℝ};
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furthermore, the case in which −Λ0 ̸= Λ0 − Λ0 can also happen since we can take
Λ := ℝn and Λ0 := a + W , where a ̸= 0 and W is a non-trivial subspace of ℝn (then
Λ0 − Λ0 = W ̸= −Λ0).

Example 6.3.30 ([962]). Let Λ = Λ′ = ℝ, X = {0}, ℬ = {X}, Y = ℂ and R being the
collection of all sequences in ℝ. Define the function f : ℝ → ℝ by f (x) := 0 for x ⩽ 0,
f (x) := √n/2 for x ∈ (n − 2, n − 1] (n ∈ 2ℕ) and f (x) := −√n/2 for x ∈ (n − 1, n] (n ∈ 2ℕ).
Then f (⋅) isWeyl 1-almost periodic,Weyl 1-unbounded, but neither equi-Weyl 1-almost
periodic nor Weyl 1-normal, so that the converse of Proposition 6.3.29 does not hold,
in general. Although may be interesting, we will not consider here the general case
p > 1 as well as some more complicated relatives of Example 6.3.8-Example 6.3.9 with
locally integrable functions F : ℝn → ℝ whose range is at most countable.

Therefore, one needs to impose some extra conditions ensuring that the inclusion
F ∈ Wp

Ω,−Λ0 ,Λ0−Λ0 ,ℬ
(Λ × X : Y) implies that F(⋅; ⋅) is (ℬ,Λ0)-normal. In the following re-

sult, the assumption Λ = Λ0 = ℝ
n is almost inevitable to be made (see also [669], [67,

Theorem 4.22, Theorem 4.23] and the proof of necessity in [67, Theorem 4.12]; the com-
pactness criteria for the sets in the spaces of (equi-)Weyl p-almost periodic functions
have been analyzed in [671–673] with the help of Lusternik type theorems, we will not
reconsider these results in the multi-dimensional framework).

Proposition 6.3.31. Suppose that F : ℝn × X → Y is such that (L) holds, Λ0 = ℝ
n and

F ∈ Wp
Ω,ℝn ,ℝn ,ℬ(ℝ

n × X : Y). If for each ε > 0 and B ∈ ℬ there exists δ > 0 such that
Dp
W ,B(F(⋅; ⋅), F(⋅ + v; ⋅)) < ε for every v ∈ ℝ

n with |v| ⩽ δ, then F(⋅; ⋅) is (ℬ,ℝn)-normal.

Proof. Let ε > 0 and B ∈ ℬ be given. Due to our assumption, we have the existence of
a finite real number l > 0 such that, for every t0 ∈ ℝn, there exists η ∈ B(t0, l) such that
Dp
W ,B(F(⋅; ⋅), F(⋅+ η; ⋅)) < ε/2. Furthermore, there exists δ > 0 such that Dp

W ,B(F(⋅; ⋅), F(⋅+
v; ⋅)) < ε/2 for every v ∈ ℝn with |v| ⩽ δ. Let m ∈ ℕ be such that mδ > l, and let Sδ
denote the set consisting of all points of form (a1δ, . . . , anδ) ∈ B(0,mδ), where aj ∈ ℤ
for all j ∈ ℕn.With the samenotation as above, we have−t0+η ∈ B(0, l), and therefore,
there exists ζ ∈ Sδ such that |v| = |− t0 +η− ζ | < δ. This implies Dp

W ,B(F(⋅; ⋅), F(⋅+ [−t0 +
η − ζ ]; ⋅)) = Dp

W ,B(F(⋅ + ζ ; ⋅), F(⋅ − t0 + η; ⋅)) < ε/2. But then we have

Dp
W ,B(F(⋅ − t0; ⋅), F(⋅ + ζ ; ⋅))

⩽ Dp
W ,B(F(⋅ + ζ ; ⋅), F(⋅ − t0 + η; ⋅)) + D

p
W ,B(F(⋅ − t0 + η; ⋅), F(⋅ − t0; ⋅)) ⩽ 2 ⋅

ε
2
= ε,

which completes the proof.

In what follows, we analyze the existence of Bohr–Fourier coefficients for multi-
dimensional Weyl almost periodic functions. First of all, we would like to emphasize
that some relations presented in [67, Table 2, p. 56] seem to be stated incorrectly. The
main mistake made is that the authors have interchanged at some places the class of
equi-Weyl p-almost periodic functions and Weyl p-almost periodic functions, which
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can be simply justified by taking a closer look at the references quoted: in the research
articles [171] and [199], aswell as in the researchmonographs [166, 503] and its English
translation published by Pergamon Press, Oxford in 1966, the class of Weyl p-almost
periodic functions in the sense of Kovanko’s approach has not been considered at all
(the authors of [166, 171, 199, 503] have called an equi-Weyl p-almost periodic function
simply a Weyl p-almost periodic functions therein). Therefore, there is no reasonable
information which could tell us whether the class of Weyl p-almost periodic functions
is contained in the class of Besicovitch p-almost periodic functions or not, as well as
whether aWeyl p-almost periodic function f : ℝ→ ℂ has themean value (1 ⩽ p <∞).
As we will see in Theorem 8.3.8, for each finite exponent p ⩾ 1 there exists a real-
valued Weyl p-almost periodic functions which is not Besicovitch p-almost periodic
and which has no mean value.

Therefore, we must deal with the class of equi-Weyl p-almost periodic functions
in order to ensure the existence of the mean value and the Bohr–Fourier coefficients
for a function F : Λ × X → Y . The assumptions X = {0} and p = 1 (due to the obvious
embedding) are reasonable to be made, when we have the following.

Theorem 6.3.32. Suppose that λ ∈ ℝn, [0,∞)n = Λ′ ⊆ Λ, Ω = [0, 1]n, F : Λ → Y is
Stepanov (Ω, 1)-bounded and satisfies the requirement that the function t → Fλ(t) :=
e−i⟨λ,t⟩F(t), t ∈ ℝn belongs to the space e −W 1

ap,Λ(Λ : Y). Then the Bohr–Fourier coeffi-
cient Pλ(F) of F(⋅), defined by

Pλ(F) := lim
T→+∞

1
Tn
∫

s+[0,T]n
e−i⟨λ,t⟩F(t) dt, (6.88)

exists anddoes not dependon the choice of a tuple s ∈ [0,∞)n.Moreover, for every ε > 0,
there exists a real number T0(ε) > 0 such that, for every T ⩾ T0(ε) and s ∈ [0,∞)n, we
have



1
Tn
∫
[0,T]n

e−i⟨λ,t⟩F(t) dt − 1
Tn
∫

s+[0,T]n
e−i⟨λ,t⟩F(t) dt

Y
< ε. (6.89)

Proof. We slightly modify the arguments contained in the proof of corresponding
statement given in the one-dimensional case (see, e. g., [696, Theorem 1.3.1–Theorem
1.3.2, pp. 32–35]). Fix the numbers ε > 0 and λ ∈ ℝn. We know that there exist two
finite real numbers l > 0 and L > 0 such that for each t0 ∈ [0,∞)n there exists
τ ∈ B(t0, L) ∩ [0,∞)n such that

sup
t∈Λ

F(τ + ⋅) − F(⋅)
L1(t+lΩ:Y) < ε ⋅ l

n. (6.90)

Let T > l be an arbitrary real number and let k ∈ ℕ. Denote by AT ,k = {s1, . . . , skn }
the collection of all points s ∈ T ⋅ ℕn0 such that s + [0,T]n ⊆ [0, kT]n. Furthermore,
let BT ,k = {τ1, . . . , τkn } be a collection of points in [0,∞)n such that |τk − τj| ⩽ L for
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all j ∈ ℕkn as well as that (6.90) holds with the number τ replaced therein with the
number τj (j ∈ ℕkn ). Due to the computation following Eq. (6.84), we find that (6.90)
implies supt∈Λ ‖F(τ + ⋅) − F(⋅)‖L1(t+TΩ:Y) < ε ⋅ 2

nTn; in particular,

F(τ + ⋅) − F(⋅)
L1(TΩ:Y) < ε ⋅ 2

nTn. (6.91)

Keeping in mind (6.91), we get



1
Tn
∫
[0,T]n

Fλ(t) dt −
1
(kT)n

∫
[0,kT]n

Fλ(t) dt
Y

⩽
∑k

n

j=1 ‖
1
Tn ∫[0,T]n Fλ(t) dt −

1
Tn ∫sj+[0,T]n Fλ(t) dt‖Y

kn

=
∑k

n

j=1 ‖
1
Tn ∫[0,T]n Fλ(t) dt −

1
Tn ∫[0,T]n Fλ(sj + t) dt‖Y

kn

⩽
∑k

n

j=1 ‖
1
Tn ∫[0,T]n Fλ(t) dt −

1
Tn ∫[0,T]n Fλ(τj + t) dt‖Y

kn

+
∑k

n

j=1 ‖
1
Tn ∫[0,T]n Fλ(τj + t) dt −

1
Tn ∫[0,T]n Fλ(sj + t) dt‖Y

kn

⩽ ε2n +
∑k

n

j=1 ‖
1
Tn ∫[0,T]n Fλ(τj + t) dt −

1
Tn ∫[0,T]n Fλ(sj + t) dt‖Y

kn

= ε2n +
∑k

n

j=1 ‖
1
Tn ∫(τj+[0,T]n)∖(sj+[0,T]n) Fλ(t) dt‖Y

kn
.

Since |sj − τj| ⩽ L for all j ∈ ℕkn , an elementary geometrical argument shows that
there exists a finite real constant cn ∈ ℕ such that the set (τj + [0,T]n) ∖ (sj + [0,T]n)
can be covered by at most ⌈LTn−1⌉ translations of the cell [0, 1]n, so that the Stepanov
(Ω, 1)-boundedness of F(⋅) implies that there exists a finite real number T(ε) > 0 such
that



1
Tn
∫
[0,T]n

Fλ(t) dt −
1
(kT)n

∫
[0,kT]n

Fλ(t) dt
Y

⩽ ε2n + ‖F‖SΩ,1
⌈LTn−1⌉

T
⩽ ε(2n + 1), T ⩾ T(ε). (6.92)

After that, we can repeat verbatim the argumentation contained in the proof of [696,
Theorem 1.3.1, p. 33] in order to see that the limit

lim
T→+∞

1
Tn
∫
[0,T]n

e−i⟨λ,t⟩F(t) dt
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exists on the account of the Cauchy principle of convergence. The above geometrical
argument with sj = 0 and tj = 0 implies that

lim
T→+∞

1
Tn
∫
[0,T]n

e−i⟨λ,t⟩F(t) dt = lim
T→+∞

1
Tn
∫

s+[0,T]n
e−i⟨λ,t⟩F(t) dt

for all s ∈ [0,∞)n, which completes the first part of the proof. For the secondpart of the
proof, observe that for each s ∈ [0,∞)n the function t → Fλ(t+ s), t ∈ Λ belongs to the
class e−W 1

ap,Λ(Λ : Y) as well as that the numbers l > 0 and L > 0 in the corresponding
definition can be chosen independently of s. Letting k → +∞ in (6.92), we get



1
Tn
∫
[0,T]n

Fλ(t) dt − lim
T→+∞

1
Tn
∫
[0,T]n

Fλ(t) dt
Y
⩽ ε2n + ‖F‖SΩ,1

⌈LTn−1⌉
T
. (6.93)

By the foregoing, the same estimate holds for the function t → Fλ(t + s), t ∈ Λ, so that



1
Tn
∫
[0,T]n

Fλ(t + s) dt − lim
T→+∞

1
Tn
∫
[0,T]n

Fλ(t + s) dt
Y

⩽ ε2n + ‖F‖SΩ,1
⌈LTn−1⌉

T
, s ∈ [0,∞)n. (6.94)

After simple substitution, the first part of the proof shows that, for every s ∈ [0,∞)n,
we have

lim
T→+∞

1
Tn
∫
[0,T]n

Fλ(t) dt = lim
T→+∞

1
Tn
∫
[0,T]n

Fλ(t + s) dt.

Hence, in view of (6.93) and (6.94), we get



1
Tn
∫
[0,T]n

Fλ(t) dt −
1
Tn
∫
[0,T]n

Fλ(t + s) dt
Y
⩽ ε2n+1 + 2‖F‖SΩ,1

⌈LTn−1⌉
T
,

which completes the proof of theorem.

Remark 6.3.33. If we assume Λ′ = Λ = ℝn and accept all remaining requirements
in Theorem 6.3.32, then we get into a classical situation in which the corresponding
class is contained in the class of Besicovitch p-almost periodic functions in ℝn (see
[824, pp. 12–13]; we can use the set Ω = [−1, 1]n here producing the same results). In
this case, the function Fλ ∈ e−W 1

ap,Λ(ℝ
n : Y) if and only if F ∈ e−W 1

ap,Λ(ℝ
n : Y) for each

(some) λ ∈ ℝn; cf. also Theorem 6.3.26. Furthermore, the argumentation contained in
the proof of Theorem 6.3.32 shows that

lim
T→+∞

1
(2T)n

∫
s+[−T ,T]n

e−i⟨λ,t⟩F(t) dt
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exists and does not depend on the choice of a tuple s ∈ ℝn and that, for every ε > 0,
there exists a real number T0(ε) > 0 such that, for every T ⩾ T0(ε) and s ∈ ℝn, we have



1
(2T)n

∫
[−T ,T]n

e−i⟨λ,t⟩F(t) dt − 1
(2T)n

∫
s+[−T ,T]n

e−i⟨λ,t⟩F(t) dt
Y
< ε.

But the restriction of the function F(⋅) to [0,∞)n satisfies the requirements of Theo-
rem 6.3.32 with Λ′ = Λ = [0,∞)n and we similarly see that (6.88) holds for all s ∈ ℝn

and that (6.89) holds for all s ∈ ℝn; plugging s = (−T/2, . . . ,−T/2) in this estimate, we
particularly get

lim
T→+∞

1
Tn
∫

s+[0,T]n
e−i⟨λ,t⟩F(t) dt = lim

T→+∞

1
(2T)n

∫
s+[−T ,T]n

e−i⟨λ,t⟩F(t) dt,

aswell as that the above limits exist and do not depend on the choice of a tuple s ∈ ℝn.
It should be also noted that there exist at most countable values of λ ∈ ℝn for which
Pλ(F) ̸= 0 since F(⋅) can be uniformly approximated in theWeyl norm by trigonometric
polynomials and each of them has a finite Bohr–Fourier spectrum (i. e., the set {λ ∈
ℝn : Pλ(F) ̸= 0}); see also [951, Proposition 5.2]. But the function χ[0,1/2)(⋅) is equi-Weyl
p-almost periodic for every p ⩾ 1 and its Bohr–Fourier spectrum is empty so that we
cannot expect the validity of Parseval equality in our framework.

Finally, we shall apply our results in the analysis of existence and uniqueness
of the multi-dimensional Weyl almost periodic type solutions for various classes of
abstract Volterra integro-differential equations.
1. Let a > 0; then we know that the regular solution of the wave equation utt = a2uxx

in domain {(x, t) : x ∈ ℝ, t > 0}, equipped with the initial conditions u(x,0) =
f (x) ∈ C2(ℝ) and ut(x,0) = g(x) ∈ C1(ℝ), is given by the d’Alembert formula. Let
us suppose that the function x → (f (x), g[1](x)), x ∈ ℝ belongs to the class e −
W (1,x,𝔽)[0,1],ℝ(ℝ : ℂ), where g

[1](⋅) ≡ ∫
⋅
0 g(s) ds. Then the solution u(x, t) can be extended

to the whole real line in the time variable and this solution belongs to the class
e −W (1,x,𝔽1)

[0,1]2 ,ℝ2 (ℝ
2 : ℂ), provided that

sup
l>0

sup
(t1 ,t2)∈ℝ2
[

t1+(l/a)

∫
t1

𝔽1(l, t)
𝔽(l, x − at2 − l)

dx +
t1+(l/a)

∫
t1

𝔽1(l, t)
𝔽(l, x + at2)

dx] < +∞.

To verify this, fix a positive real number ε > 0. Then there exist two finite real
numbers l > 0 and L > 0 such that for each t0 ∈ ℝ there exists τ ∈ B(t0, L) such
that

sup
t∈ℝ
𝔽(l, t)f (τ + ⋅) − f (⋅)

L1(t+l[0,1]:ℂ) < ε (6.95)
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and that (6.95) holds with the function f (⋅) replaced therein with the function
g[1](⋅). For our purposes, we choose the real numbers l/a and L′ > L sufficiently
large. The required conclusions simply follow from the foregoing arguments, the
computation

t1+(l/a)

∫
t1

t2+(l/a)

∫
t2

1
2
f ((x − at) + (τ1 − aτ2)) − f (x − at)

 dx dt

⩽
1
2

t1+(l/a)

∫
t1

x−at2

∫
x−at2−l

f (z + (τ1 − aτ2)) − f (z)
 dz dx

⩽
1
2

t1+(l/a)

∫
t1

ε
𝔽(l, x − at2 − l)

dx,

a similar computation for the corresponding term f ((x +at)+ (τ1 +aτ2))− f (x +at)
and the corresponding terms with the function g[1](⋅).
We continue with the following application to the Gaussian semigroup in ℝn:

2. Let Y be one of the spaces Lp(ℝn), C0(ℝn) or BUC(ℝn), where 1 ⩽ p <∞. It is well
known that the Gaussian semigroup (G(t))t⩾0, already considered several times,
can be extended to a bounded analytic C0-semigroup of angle π/2, generated by
the Laplacian ΔY acting with its maximal distributional domain in Y . Suppose
now that 1 ⩽ p <∞, 1/p + 1/q = 1, t0 > 0, 0 ̸= Λ′ ⊆ Λ = ℝn, h ∈ L1(ℝn), Ω = [0, 1]n,
F ∈ (e−)W (p(u),ϕ,𝔽)Ω,Λ′ (ℝn : ℂ), 1/p(u) + 1/q(u) = 1, and supt∈ℝn ‖F(t)‖ <∞. Suppose,
further, that the functions 𝔽 : (0,∞)×ℝn → (0,∞) and 𝔽1 : (0,∞)×ℝn → (0,∞)
does not depend on t, as well as that p1(u) ≡ 1. If ϕ(x) = φ(x) = x, x ⩾ 0 and for
each l > 0 we have

2l−n/p(4πt0)
−n/2 ∑

k∈lℤn
e−
(|k|−3l√n)2

4t0
𝔽1(l)
𝔽(l)
⩽ 1,

then Proposition 6.3.10 can be applied and shows that the function ℝn ∋ x →
u(x, t0) ≡ (G(t0)F)(x) ∈ ℂ belongs to the class (e−)W (1,ϕ,𝔽1)Ω,Λ′ (ℝ

n : ℂ). It is worth
noting that this proposition can be applied even in the case thatϕ(x) = φ(x) = xα,
x ⩾ 0 for some constant α > 1 but then we must allow that the function 𝔽1(l)
rapidly decays to zero as l → +∞ (notice only that the assumptions u ∈ t+ lΩ and
v ∈ u − k + lΩ for some t ∈ ℝn and k ∈ lℤn imply u − v ∈ k + lΩ − lΩ − lΩ and
therefore |u − v| ⩾ |k| − 3l√n); Proposition 6.3.11 can be also applied here.
Here, we would like to stress that our previous analyses from [265, Example 0.1]
can be also used to provide certain applications of the multi-dimensional Weyl
almost periodic functions.

3. Suppose now thatY := Lr(ℝn) for some r ∈ [1,∞) andA(t) := Δ+a(t)I, t ⩾ 0,where
Δ is the Dirichlet Laplacian on Lr(ℝn), I is the identity operator on Lr(ℝn) and a ∈
L∞([0,∞)). Then it is well known that the evolution system (U(t, s))t⩾s⩾0 ⊆ L(Y)
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generated by the family (A(t))t⩾0 exists and is given by U(t, t) := I for all t ⩾ 0 and

[U(t, s)F](u) := ∫
ℝn

K(t, s,u, v)F(v) dv, F ∈ Lr(ℝn), t > s ⩾ 0, (6.96)

where K(t, s,u, v) is given by

K(t, s,u, v) := (4π(t − s))−
n
2 e∫

t
s a(τ) dτ exp(− |u − v|

2

4(t − s)
), t > s, u, v ∈ ℝn; (6.97)

see [331] for more details. Hence, for every τ ∈ ℝn, we have

K(t, s,u + τ, v + τ) = K(t, s,u, v), t > s ⩾ 0, u, v ∈ ℝn. (6.98)

It is well known that, under certain assumptions, a unique mild solution of the ab-
stract Cauchy problem (𝜕/𝜕t)u(t, x) = A(t)u(t, x), t > 0; u(0, x) = F(x) is given by
u(t, x) := [U(t,0)F](x), t ⩾ 0, x ∈ ℝn. Suppose now that F ∈ Lr(ℝn) ∩ (e−)W (p,x,𝔽)

[0,1]n ,Λ′ (ℝ
n :

ℂ), where 1 ⩽ p < ∞, 0 ̸= Λ′ ⊆ ℝn and the function 𝔽(l, t) ≡ 𝔽(l) does not depend
on t (at this place, it is worth noting that, in the usual Bohr or Stepanov concept, this
immediately yields F ≡ 0). Let 1/p + 1/q = 1 and let ε > 0 be given. Then there ex-
ist two finite real numbers l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists
τ ∈ B(t0, L) ∩ Λ′ such that

sup
t∈ℝn
𝔽(l)|F(τ + u) − F(u)|Lp(t+l[0,1]n) < ε.

Therefore, for every t > 0, l > 0 and u, τ ∈ ℝn, there exists a finite real constant ct > 0
such that

u(t,u + τ) − u(t,u)
 =

∫
ℝn

[K(t,0,u + τ, v) − K(t,0,u, v)]F(v) dv


=

∫
ℝn

K(t,0,u + τ, v + τ)F(v + τ) dv − ∫
ℝn

K(t,0,u, v)F(v) dv


=

∫
ℝn

K(t,0,u, v)[F(v + τ) dv − F(v)] dv


⩽ ct ∫
ℝn

e−
|u−v|2
4t |F(v + τ) − F(v)| dv

= ct ∑
k∈lℤn
∫

k+l[0,1]n
e−
|u−v|2
4t |F(v + τ) − F(v)| dv

⩽ ct ∑
k∈lℤn

e
− |u−⋅|

2
4t Lq(k+l[0,1]n)

F(⋅ + τ) − F(⋅)
Lp(k+l[0,1]n)

⩽ ct
ε
F(l)
∑

k∈lℤn

e
− |u−⋅|

2
4t Lq(k+l[0,1]n) := ct

ε
𝔽(l)

G(l,u).
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The convergence of series defining G(l,u) can be simply justified by the fact that for
each k ∈ lℤn with a sufficiently large absolute value we have |u−k −v| ⩾ |k|− l− |u| for
all v ∈ l[0, 1]n. Now we will fix a number t > 0 and a new exponent p′ ∈ [1,∞). Since
the function u → G(l,u), u ∈ ℝn is continuous and positive for every fixed l > 0, we
can define the function 𝔽1(⋅; ⋅) by

𝔽1(l, t) :=
𝔽(l)

(∫t+l[0,1]n G(l,u)
p′ du)1/p′

, l > 0.

By the above given argumentation, we immediately get from the corresponding defi-
nition that the mapping x → u(t, x), x ∈ ℝn belongs to the class (e−)W (p

′ ,x,𝔽1)
[0,1]n ,Λ′ (ℝ

n : ℂ).
Let us mention, finally, a few intriguing topics which have not been discussed

here. Composition theorems for Weyl almost periodic type functions were considered
by F. Bedouhene, Y. Ibaouene, O. Mellah, P. Raynaud de Fitte [139] and M. Kostić
[639] in the one-dimensional setting; we have not analyzed the multi-dimensional
analogues of the results established in these research studies (although considered
Weyl almost periodic type functions depend on two parameters, t ∈ ℝn and x ∈ X, the
applications to semilinear Cauchy equations and inclusions are not examined here,
as well). On the other hand, in [67, Section 6], the authors have presented several
results and examples about the relationship between one-dimensional Weyl almost
periodic type functions and one-dimensional Besicovitch almost periodic type func-
tions; for the sake of brevity and better exposition, we will skip all details concerning
this theme in the multi-dimensional framework. Also, many crucial properties and
important counterexamples in the theory of one-dimensional Stepanov, Weyl and
Besicovitch almost periodic type functions have been established by H. Bohr and E.
Følner in their landmark paper [199]; let us also note that, for any real number P > 1,
the authors of this paper have constructed a locally integrable function f : ℝ → ℝ
which is Stepanov p-almost periodic for any exponent p ∈ [1,P) but not equi-Weyl
P-almost periodic (see [199, Main example 3, pp. 83–91]). We have not been able to re-
consider here such exotic examples in the multi-dimensional setting (it is also worth
noting that L. I. Danilov [328] and H.D. Ursell [988] have established two interesting
characterizations of equi-Weyl p-almost periodic functions as well as that the notion
of Weyl almost periodicity has been investigated by A. Iwanik [554] within the field of
topological dynamics (cf. also [358, 768, 790]), as emphasized earlier in [631]).

Various classes of multi-dimensional (equi-)Weyl (p(x),ϕ, F)-uniformly recurrent
type functions will not be considered here. In this monograph, we will not consider
the multi-dimensional Doss-(p(x),ϕ, F)-uniformly recurrent type functions, as well.

6.4 Weighted ergodic components inℝn

Themain aim of this section is to analyzeweighted Stepanov ergodic spaces, weighted
Weyl ergodic spaces andweighted pseudo-ergodic spaces inℝn which provide certain
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generalizations of the space C0,𝔻,ℬ(Λ × X : Y). To achieve our aims, we essentially
employ the results from the theory of Lebesgue spaces with variable exponents Lp(x).
Before we go any further, we would like to note that several presented results seem to
beneweven in the case of consideration of the constant exponentsp(x) ≡ p ∈ [1,∞) as
well as that the material is taken from our joint research study [656] with B. Chaouchi
and W.-S. Du.

In connectionwith our studies ofweighted Stepanov ergodic spaces andweighted
Weyl ergodic spaces, we would like to recall that R. Farwig and Y. Taniuchi have
initiated, in [425], the study of backward asymptotically almost periodic-in-time so-
lutions to Navier–Stokes equations in unbounded domains (cf. also [424, 909]). To
the best of our knowledge, this was the first research article in which the asymp-
totic behavior of almost periodicity-in-time solutions of certain partial differential
equations or ordinary differential equations has been analyzed only for sufficiently
large negative values of the time variable (this is probably the unique research ar-
ticle in the existing literature which concerns this problematic, actually). Albeit
not explicitly influenced by the results established in [425], in Theorem 6.4.2 and
Theorem 6.4.11, we analyze the backward Stepanov asymptotic and the backward
Weyl asymptotic of almost periodicity-in-time solutions for a general classes of ab-
stract Volterra integro-differential equations, respectively (see also Corollary 6.4.3
and Corollary 6.4.12, which enables one to state the most important applications
in the one-dimensional case). We analyze the translation invariance of introduced
multi-dimensional weighted ergodic spaces and the convolution invariance of multi-
dimensional weighted pseudo-ergodic spaces, which also enables us to provide cer-
tain applications to the abstract Volterra integro-differential equations. In connection
with our study of multi-dimensional weighted pseudo-ergodic spaces, we would like
to note that the class of pseudo-almost periodic functions in ℝn seems to be not pre-
cisely defined and explored in the existing literature if n ⩾ 2 (the example concerning
the d’Alembert formula, given later, indicates that an X-valued pseudo-almost pe-
riodic function on ℝn should be defined as a sum of an X-valued almost periodic
function on ℝn and an ergodic part Q : ℝn → X, which needs to be bounded, contin-
uous and satisfies limT→+∞ T−n ∫|t|⩽T ‖Q(t)‖ dt = 0).

Suppose that𝔻 ⊆ Λ ⊆ ℝn, Ω is a compact subset of ℝn with a positive Lebesgue
measure, Λ + Ω ⊆ Λ, p ∈ 𝒫(Ω) and the set 𝔻 is unbounded. Let G : Λ → (0,∞) and
ϕ : [0,∞)→ [0,∞). In Definition 6.4.1, we introduce the notion of weighted Stepanov
ergodic spaces

SΩ,p(u),ϕ,G0,𝔻,ℬ (Λ × X : Y), SΩ,p(u),ϕ,G,10,𝔻,ℬ (Λ × X : Y) and SΩ,p(u),ϕ,G,20,𝔻,ℬ (Λ × X : Y);

any of these spaces contains, in the set theoretical sense, the usual Stepanov ergodic
space SΩ,p(u)0,𝔻,ℬ (Λ×X : Y) fromDefinition 6.2.26. Our first results in Subsection 6.4.1 are al-
readymentioned Theorem 6.4.2 and Corollary 6.4.3, in whichwe analyze the Stepanov
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asymptotically almost periodic properties at minus infinity of the function spaces in-
troduced in Definition 6.4.1; in Corollary 6.4.3, we particularly clarify an interesting
property of the infinite convolution product

t →
t

∫
−∞

R(t − s)f (s) ds, t ∈ ℝ,

which has been analyzed by many authors working in the field of almost periodic-
ity. In Subsection 6.4.2, we analyze multi-dimensional Weyl weighted ergodic compo-
nents. Suppose that 𝔻 ⊆ Λ ⊆ ℝn, the set 𝔻 is unbounded, as well as the inclusions
in Eq. (6.103) hold, ϕ : [0,∞) → [0,∞) and 𝔽 : (0,∞) × Λ → (0,∞). In Defini-
tion 6.4.4–Definition 6.4.6, we introduce the notion of spaces (e−)Wp(u),ϕ,𝔽

0,𝔻,ℬ (Λ × X : Y),
(e−)Wp(u),ϕ,𝔽,1

0,𝔻,ℬ (Λ × X : Y) and (e−)W
p(u),ϕ,𝔽,2
0,𝔻,ℬ (Λ × X : Y). Our first result in this subsec-

tion is Proposition 6.4.7, where we show that, under certain conditions, the ergodic
function spaces introduced in Definition 6.4.1 can be embedded into the correspond-
ing ergodic function spaces introduced in Definition 6.4.4–Definition 6.4.6. After that,
we continue the analysis of the asymptotical almost periodicity at minus infinity at
Theorem 6.4.11 and Corollary 6.4.12.

Subsection 6.4.3 investigates the weighted pseudo-ergodic components. Before
we explain themain ideas and results of this subsection, wewould like to briefly sum-
marize first the basic facts about pseudo-almost periodic functions, weighted pseudo-
almost periodic functions anddouble-weightedpseudo-almost periodic functions. Let
us recall that the notion of a pseudo-almost periodic function was introduced by C.
Zhang in his doctoral dissertation [1074]. Denote by PAP(ℝ,X, ρ) and PAP0(ℝ,X, ρ) the
space consisting of all weighted pseudo-almost periodic functions and the space of
weighted ergodic components, respectively (see, e. g., [32, 184, 315, 375, 562, 710, 1074,
1094] for the notion and more details on the subject). The translation invariance of
weightedpseudo-almost periodic functions and someother problems for these classes
have been investigated by D. Ji and C. Zhang [562]. The space PAP(ℝ,X, ρ) is not con-
volution invariant, in general, but we know that the convolution invariance of space
PAP(ℝ,X, ρ) is equivalent with the convolution invariance of space PAP0(ℝ,X, ρ). The
convolution invariance of space PAP(ℝ,X, ρ)was systematically analyzed by A. Coro-
nel, M. Pinto and D. Sepúlveda in [315].

Set 𝕌 := {ρ ∈ L1loc(ℝ) : ρ(t) > 0 a. e. t ∈ ℝ}, 𝕌∞ := {ρ ∈ 𝕌 : infx∈ℝ ρ(x) < ∞,
ν(T , ρ) := limT→+∞ ∫

T
−T ρ(t) dt = ∞} and 𝕌b := L

∞(ℝ) ∩ 𝕌∞. Then 𝕌b ⊆ 𝕌∞ ⊆ 𝕌
and we say that weights ρ1(⋅) and ρ2(⋅) are equivalent, ρ1 ∼ ρ2 for short, if and only if
ρ1/ρ2 ∈ 𝕌b. By 𝕌T we denote the space consisting of all weights ρ ∈ 𝕌∞ satisfying
that ρ is equivalent with all its translations. Assume that ρ1, ρ2 ∈ 𝕌∞. The space
PAP0(ℝ,X, ρ1, ρ2)of double-weightedpseudo ergodic componentswas introduced and
analyzed for the first time by T. Diagana in [367, 368] (2011); this space is defined as
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follows:

PAP0(ℝ,X, ρ1, ρ2) := {f ∈ Cb(ℝ : X) : limT→+∞

1
2∫T−T ρ1(t) dt

T

∫
−T

f (t)
ρ2(t) dt = 0}.

The spacePAP0(ℝ,X, ρ1, ρ2)was further generalizedby J. Blot, P. Cieutat andK. Ezzinbi
in [181–184] (2011–2012), by using certain results from themeasure theory (see also the
research article [370] by T. Diagana, K. Ezzinbi and M. Miraoui); if ρ1 = ρ2 = ρ, then
we use the shorthand PAP0(ℝ,X, ρ) ≡ PAP0(ℝ,X, ρ1, ρ2). It is well known that the sum
of spaces AP(ℝ : X) and PAP0(ℝ,X, ρ) need not be a closed subspace of Cb(ℝ : X) al-
though the two spaces AP(ℝ : X) and PAP0(ℝ,X, ρ) considered separately are closed
subspaces of Cb(ℝ : X). In order to analyze weighted pseudo-almost periodic prop-
erties of certain classes of semilinear first-order Cauchy problems, J. Zhang, T.-J. Xiao
and J. Liang [1084] have introduced the modular norm ‖ ⋅ ‖ρ on the space PAP(ℝ,X, ρ)
by

‖f ‖ρ := infi∈I
[sup
t∈ℝ

gi(t)
 + sup

t∈ℝ

qi(t)
],

where I denotes the family of all possible decompositions of f (⋅) into the almost pe-
riodic component gi(⋅) and the ergodic component qi(⋅). The modular norm turns
PAP(ℝ,X, ρ) into a Banach space, which enables one to further investigates the com-
position principles for weighted pseudo-almost periodic functions. As observed in
[631], the results established in [1084] can be also formulated for semilinear Cauchy
inclusions with multivalued linear operators satisfying condition (P), especially for
almost sectorial operators.

Suppose that ϕ : [0,∞) → [0,∞), ψ : [0,∞) → [0,∞), F : (0,∞) → (0,∞)
are given functions and p ∈ 𝒫(Λ), where 0 ̸= Λ ⊆ ℝn. In Definition 6.4.13, we
introduce the ergodic function spaces PAP0,p(Λ,ℬ, F,ϕ), PAP10,p(Λ,ℬ, F,ϕ,ψ) and
PAP20,p(Λ,ℬ, F,ϕ,ψ). These classes of weighted pseudo-ergodic spaces seem to be
new and not considered elsewhere even in the one-dimensional case. The space
PAP0,p(Λ,ℬ, F,ϕ) generalizes the spaces PAP(ℝ,X, ρ), PAP0(ℝ,X, ρ1, ρ2), the spaces
of the one-dimensional ergodic components considered in [631, Definition 3.3.3, Def-
inition 3.3.4], as well as the space ℰ(ℝ,X, μ, ν) introduced in [370, Definition 3.10],
provided that μ is the Lebesgue measure on Λ = ℝ. It is worth noting that the spaces
of weighted ergodic components considered in [370] can be further generalized by ex-
amining a generalmeasureμonΛ; in suchaway,we cangeneralize thenotionof space
ℰ(ℝ,X, μ, ν), for example. For simplicity, we will consider here the Lebesgue measure
on Λ, only. The translation invariance of spaces introduced in Definition 6.4.13 is in-
vestigated in Theorem 6.4.17, whilst the invariance of multi-dimensional weighted
pseudo-ergodicity is examined in Theorem 6.4.18. The method obeyed in the proof
of this result enables one to state some sufficient conditions about the convolution
invariance of multi-dimensional weighted ergodic spaces in Theorem 6.4.21.
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Weuse the standard notation throughout the section.We assume that 0 ̸= Λ ⊆ ℝn,
Ω is a compact subset of ℝn with a positive Lebesgue measure, and ℬ is a collection
of non-empty subsets of X satisfying that for each x ∈ X there exists B ∈ ℬ such that
x ∈ B. If T > 0 andQ : Λ×X → Y , thenwe set ΛT := {λ ∈ Λ : |λ| ⩽ T} and Q̌ : −Λ×X → Y
by Q̌(t; x) := Q(−t; x), t ∈ −Λ, x ∈ X.

6.4.1 Stepanov weighted ergodic components

We can extend the notion of space SΩ,p(u)0,𝔻,ℬ (Λ × X : Y) in the following ways.

Definition 6.4.1. Suppose that 𝔻 ⊆ Λ ⊆ ℝn, Λ + Ω ⊆ Λ, p ∈ 𝒫(Ω) and the set 𝔻 is
unbounded. Let G : Λ→ (0,∞) and ϕ : [0,∞)→ [0,∞). Then we say that:
(i) a function Q : Λ × X → Y belongs to the space SΩ,p(u),ϕ,G0,𝔻,ℬ (Λ × X : Y) if and only if

for every t ∈ Λ and x ∈ X, we find that ϕ(‖Q(t + u; x)‖Y ) ∈ Lp(u)(Ω) as well as that,
for every B ∈ ℬ, we have

lim
t∈𝔻,|t|→+∞

G(t)[ϕ(Q(t + u; x)
Y )]Lp(u)(Ω) = 0,

uniformly for x ∈ B;
(ii) a function Q : Λ × X → Y belongs to the space SΩ,p(u),ϕ,G,10,𝔻,ℬ (Λ × X : Y) if and only

if for every t ∈ Λ and x ∈ X, we find that [Q̂Ω(t; x)](u) ∈ Lp(u)(Ω : Y) and that, for
every B ∈ ℬ, we have

lim
t∈𝔻,|t|→+∞

G(t)ϕ(Q(t + u; x)
Lp(u)(Ω:Y)) = 0,

uniformly for x ∈ B;
(iii) a function Q : Λ × X → Y belongs to the space SΩ,p(u),ϕ,G,20,𝔻,ℬ (Λ × X : Y) if and only if

for every t ∈ Λ and x ∈ X, we have [Q̂Ω(t; x)](u) ∈ Lp(u)(Ω : Y) and, for every B ∈ ℬ,
we have

lim
t∈𝔻,|t|→+∞

ϕ(G(t)Q(t + u; x)
Lp(u)(Ω:Y)) = 0,

uniformly for x ∈ B.

Immediately from the definition, we find that the spaces introduced above are
translation invariant in the following sense. Define ℬx0 := {−x0 + B : B ∈ ℬ} (x0 ∈ X),
Gt0 (t) := G(t0+t), t ∈ −t0+ΛandQt0 ,x0 (t, x) := Q(t+t0, x+x0), t ∈ −t0+Λ, x ∈ X. Then the
supposition Q ∈ SΩ,p(u),ϕ,G0,𝔻,ℬ (Λ×X : Y) (Q ∈ S

Ω,p(u),ϕ,G,1
0,𝔻,ℬ (Λ×X : Y); Q ∈ SΩ,p(u),ϕ,G,20,𝔻,ℬ (Λ×X :

Y)) impliesQt0 ,x0 ∈ S
Ω,p(u),ϕ,G
0,−t0+𝔻,ℬx0

((−t0 +Λ)×X : Y) (Qt0 ,x0 ∈ S
Ω,p(u),ϕ,G,1
0,−t0+𝔻,ℬx0

((−t0 +Λ)×X : Y);

Qt0 ,x0 ∈ S
Ω,p(u),ϕ,G,2
0,−t0+𝔻,ℬx0

((−t0 + Λ) × X : Y)). The following result seems to be new even in
the one-dimensional case, with the constant exponent p(u) ≡ p ∈ [1,∞):
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Theorem 6.4.2.
(i) Suppose that φ : [0,∞) → [0,∞), ϕ : [0,∞) → [0,∞) is a convex monoton-

ically increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0, (ak)k∈ℕn0
is a sequence of positive real numbers such that ∑k∈ℕn0 ak = 1, Ω = [0, 1]n, Q ∈

S[0,1]
n ,p(u),ϕ,G

0,[0,∞)n ,ℬ (ℝ
n × X : Y), there exists a real number M ⩾ 1 such that, for every

T ⩾ M and t ∈ [0,∞)n with |t| ⩾ M, we have

∫
Ω

φp(u)(2 ∑
k∈ℕn0

G1(T)
G(k + t − u)

akφ(a
−1
k )[φ(
R(s + k)

)]Lq(s)(Ω)) du ⩽ 1, (6.99)

where the operator function (R(t))t>0 ⊆ L(Y , Z) is strongly continuous and the func-
tion

Q1(t; x) ≡
t

∫
−∞

R(t − s)Q̌(s; x) ds =
t1

∫
−∞

t2

∫
−∞

⋅ ⋅ ⋅

tn

∫
−∞

R(t − s) Q̌(s; x) ds (6.100)

is well defined for all t ∈ ℝn and x ∈ X. Then Q1 ∈ S
[0,1]n ,p(u),ϕ,G1
0,−[0,∞)n ,ℬ (ℝ

n × X : Z).
(ii) Suppose that ϕ : [0,∞) → [0,∞) is a continuous monotonically increasing func-

tion, Ω = [0, 1]n, Q ∈ S[0,1]
n ,p(u),ϕ,G,1

0,[0,∞)n ,ℬ (ℝn × X : Y), there exists a real number M ⩾ 1
such that, for every T ⩾ M and t ∈ [0,∞)n with |t| ⩾ M, we have

∫
Ω

φp(u)(2 ∑
k∈ℕn0

ϕ−1(ε/G(k + t − u))
ϕ−1(ε/G1(T))

R(s + k)
Lq(s)(Ω)) du ⩽ 1, ε > 0,

where the operator function (R(t))t>0 ⊆ L(Y , Z) is strongly continuous and the func-
tion Q1(⋅; ⋅), given by (6.100), is well defined for all t ∈ ℝn and x ∈ X. Then we have
Q1 ∈ S

[0,1]n ,p(u),ϕ,G1 ,1
0,−[0,∞)n ,ℬ (ℝ

n × X : Z).
(iii) Suppose that ϕ : [0,∞) → [0,∞) is a continuous monotonically increasing func-

tion, Ω = [0, 1]n, Q ∈ S[0,1]
n ,p(u),ϕ,G,2

0,[0,∞)n ,ℬ (ℝn × X : Y), there exists a real number M ⩾ 1
such that, for every T ⩾ M and t ∈ [0,∞)n with |t| ⩾ M, we have

∫
Ω

φp(u)(2 ∑
k∈ℕn0

G1(T)
G(k − t − u)

R(s + k)
Lq(s)(Ω)) du ⩽ 1,

where the operator function (R(t))t>0 ⊆ L(Y , Z) is strongly continuous and the func-
tion Q1(⋅; ⋅), given by (6.100), is well defined for all t ∈ ℝn and x ∈ X. Then we have
Q1 ∈ S

[0,1]n ,p(u),ϕ,G1 ,2
0,−[0,∞)n ,ℬ (ℝ

n × X : Z).

Proof. We will prove only (i). Let ε > 0 and B ∈ ℬ be given. Then we know that there
exists a sufficiently large real numberM1 ⩾ M such that, for every T ⩾ M1 and x ∈ B,
we have

[ϕ(Q(t + u; x)
Y )]Lp(u)(Ω:Y) < ε/G(T). (6.101)
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It suffices to show that, for every T ⩾ M1 and x ∈ B, we have

[ϕ(Q1(t + u; x)
Z)]Lp(u)(Ω:Y) < ε/G1(T).

It is clear that this follows if we prove that, for every T ⩾ M1 and x ∈ B, we have

∫
Ω

φp(u)(
ϕ(‖Q1(t + u; x)‖Z)

ε/G1(T)
) du ⩽ 1. (6.102)

But, since we have assumed that ϕ(⋅) is convex and ∑k∈ℕn0 ak = 1, Eq. (6.78) holds
for any sequence (xk) of non-negative real numbers. Using (6.101), (6.78), (6.99) and
the fact that the functions φp(u)(⋅) and ϕ(⋅) are monotonically increasing, we ob-
tain (6.102) from the following computation involving the Jensen integral inequality
(see Lemma 3.1.1) and the Hölder inequality (see Lemma 1.1.7(i)):

∫
Ω

φp(u)(
ϕ(‖Q1(t + u; x)‖Z)

ε/G1(T)
) du

= ∫
Ω

φp(u)(
ϕ(‖∑k∈ℕn0 ak ∫k+[0,1]n a

−1
k R(s)Q̌(t + u − s; x) ds‖Y )

ε/G1(T)
) du

⩽ ∫
Ω

φp(u)(
ϕ(∑k∈ℕn0 ak ∫k+[0,1]n a

−1
k ‖R(s)‖ ⋅ ‖Q̌(t + u − s; x)‖Y ds)
ε/G1(T)

) du

⩽ ∫
Ω

φp(u)(
∑k∈ℕn0 akϕ(∫k+[0,1]n a

−1
k ‖R(s)‖ ⋅ ‖Q̌(t + u − s; x)‖Y ds)
ε/G1(T)

) du

⩽ ∫
Ω

φp(u)(
∑k∈ℕn0 ak ∫k+[0,1]n ϕ(a

−1
k ‖R(s)‖ ⋅ ‖Q̌(t + u − s; x)‖Y ) ds
ε/G1(T)

) du

⩽ ∫
Ω

φp(u)(
∑k∈ℕn0 akφ(a

−1
k )∫k+[0,1]n φ(‖R(s)‖) ⋅ ϕ(‖Q̌(t + u − s; x)‖Y ) ds

ε/G1(T)
) du

= ∫
Ω

φp(u)(
∑k∈ℕn0 akφ(a

−1
k )∫[0,1]n φ(‖R(s + k)‖) ⋅ ϕ(‖Q̌(t + u − s − k; x)‖Y ) ds

ε/G1(T)
) du

= ∫
Ω

φp(u)(
∑k∈ℕn0 akφ(a

−1
k )∫[0,1]n φ(‖R(s + k)‖) ⋅ ϕ(‖Q(−t − u + s + k; x)‖Y ) ds

ε/G1(T)
) du

⩽ ∫
Ω

φp(u)(2 ∑
k∈ℕn0

G1(T)
G(k − t − u)

akφ(a
−1
k )[φ(
R(s + k)

)]Lq(s)(Ω)) du ⩽ 1,

which holds for any t ∈ −[0,∞)n with |t| ⩾ M1 +√n (in actual fact, this implies | − t −
u + k| ⩾ | − t + k| − |u| ⩾ | − t| − |u| ⩾ |t| −√n and we may apply (6.101)).
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Suppose that 1 ⩽ p <∞. We say that ameasurable function f : ℝ→ X is Stepanov
asymptotically p-almost periodic at minus infinity if and only if there exist an almost
periodic function f0 : ℝ → X and a measurable function q : ℝ → X such that f (t) =
f0(t)+q(t), t ∈ ℝ and limt→−∞ ‖q̂(t)‖Lp([0,1]:X) = 0.Nowweare able to state the following
corollary of Theorem 6.4.2.

Corollary 6.4.3. Suppose that 1 ⩽ p <∞, 1/p + 1/q = 1, (R(t))t>0 ⊆ L(X,Y) is a strongly
continuous operator family, and ∑∞k=0 ‖R(⋅)‖Lq[k,k+1] < ∞. If f : ℝ → X is Stepanov
p-almost periodic, q : ℝ → X is Stepanov p-bounded and limt→+∞ ‖q̂(t)‖Lp([0,1]:X) = 0,
then the function G : ℝ→ Y, given by

G(t) :=
t

∫
−∞

R(t − s)[f (s) + q̌(s)] ds, t ∈ ℝ,

is well defined and Stepanov asymptotically p-almost periodic at minus infinity.

Proof. Due to [631, Proposition 2.6.11], we find that the function t → ∫t−∞ R(t−s)f (s) ds,
t ∈ ℝ is almost periodic. It suffices to show that the Bochner transform of the function

t →
t

∫
−∞

R(t − s)q̌(s) ds, t ∈ ℝ

tends to zero in the space Lp([0, 1] : Y) as t goes to minus infinity. But this sim-
ply follows from Theorem 6.4.2 and a simple computation with G1(T) ≡ c > 0 be-
ing a sufficiently small constant function, since we have assumed that the series
∑∞k=0 ‖R(⋅)‖Lq[k,k+1] is convergent (ϕ(x) = φ(x) = x, x ⩾ 0 and G(T) ≡ 1).

6.4.2 Weyl weighted ergodic components

We assume here that p ∈ 𝒫(ℝn). The following notion generalizes the corresponding
notion already analyzed in the one-dimensional case.

Definition 6.4.4. Suppose that𝔻 ⊆ Λ ⊆ ℝn, the set𝔻 is unbounded, as well as

Λ + Λ ⊆ Λ, Λ + lΩ ⊆ Λ for all l > 0, (6.103)

ϕ : [0,∞)→ [0,∞) and 𝔽 : (0,∞) × Λ→ (0,∞).
(i) By e −Wp(u),ϕ,𝔽

0,𝔻,ℬ (Λ × X : Y)we denote the collection of all functions Q : Λ × X → Y
such that, for every t, s ∈ Λ, l > 0 and x ∈ X, we find that ϕ(‖Q(t + u; x)‖Y ) ∈
Lp(u)(s + lΩ) as well as that, for every B ∈ ℬ, we have

lim
l→+∞

lim sup
|t|→+∞,t∈𝔻

sup
s∈Λ
[𝔽(l, t)[ϕ(Q(t + u; x)

Y )]Lp(u)(s+lΩ)] = 0,

uniformly for x ∈ B.
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(ii) ByWp(u),ϕ,𝔽
0,𝔻,ℬ (Λ×X : Y)we denote the collection of all functionsQ : Λ×X → Y such

that, for every t, s ∈ Λ, l > 0 and x ∈ X, we find thatϕ(‖Q(t+u; x)‖Y ) ∈ Lp(u)(s+ lΩ)
as well as that, for every B ∈ ℬ, we have

lim
|t|→+∞,t∈𝔻

lim sup
l→+∞

sup
s∈Λ
[𝔽(l, t)[ϕ(Q(t + u; x)

Y )]Lp(u)(s+lΩ)] = 0,

uniformly for x ∈ B.

Definition 6.4.5. Suppose that𝔻 ⊆ Λ ⊆ ℝn, the set𝔻 is unbounded, as well as (6.103)
holds, ϕ : [0,∞)→ [0,∞) and 𝔽 : (0,∞) × Λ→ (0,∞).
(i) By e−Wp(u),ϕ,𝔽,1

0,𝔻,ℬ (Λ×X : Y)we denote the collection of all functions Q : Λ×X → Y
such that, for every t, s ∈ Λ, l > 0 and x ∈ X, we find that Q(t+u; x) ∈ Lp(u)(s+ lΩ :
Y) as well as that, for every B ∈ ℬ, we have

lim
l→+∞

lim sup
|t|→+∞,t∈𝔻

sup
s∈Λ
[𝔽(l, t)ϕ[Q(t + u; x)

Lp(u)(s+lΩ:Y)]] = 0,

uniformly for x ∈ B.
(ii) ByWp(u),ϕ,𝔽,1

0,𝔻,ℬ (Λ×X : Y)wedenote the collection of all functionsQ : Λ×X → Y such
that, for every t, s ∈ Λ, l > 0 and x ∈ X, we find that Q(t + u; x) ∈ Lp(u)(s + lΩ : Y)
and that, for every B ∈ ℬ, we have

lim
|t|→+∞,t∈𝔻

lim sup
l→+∞

sup
s∈Λ
[𝔽(l, t)ϕ[Q(t + u; x)

Lp(u)(s+lΩ:Y)]] = 0,

uniformly for x ∈ B.

Definition 6.4.6. Suppose that 𝔻 ⊆ Λ ⊆ ℝn, the set 𝔻 is unbounded, and (6.103)
holds, ϕ : [0,∞)→ [0,∞) and 𝔽 : (0,∞) × Λ→ (0,∞).
(i) By e−Wp(u),ϕ,𝔽,2

0,𝔻,ℬ (Λ×X : Y)we denote the collection of all functionsQ : Λ×X → Y
such that, for every t, s ∈ Λ, l > 0 and x ∈ X, we find that Q(t+u; x) ∈ Lp(u)(s+ lΩ :
Y) as well as that, for every B ∈ ℬ, we have

lim
l→+∞

lim sup
|t|→+∞,t∈𝔻

sup
s∈Λ

ϕ[𝔽(l, t) ⋅ Q(t + u; x)
Lp(u)(s+lΩ:Y)] = 0,

uniformly for x ∈ B.
(ii) ByWp(u),ϕ,𝔽,2

0,𝔻,ℬ (Λ×X : Y)wedenote the collection of all functionsQ : Λ×X → Y such
that, for every t, s ∈ Λ, l > 0 and x ∈ X, we find that Q(t + u; x) ∈ Lp(u)(s + lΩ : Y)
as well as that, for every B ∈ ℬ, we have

lim
|t|→+∞,t∈𝔻

lim sup
l→+∞

sup
s∈Λ

ϕ[𝔽(l, t) ⋅ Q(t + u; x)
Lp(u)(s+lΩ:Y)] = 0,

uniformly for x ∈ B.
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Applying the Jensen integral inequality and imposing some additional condi-
tions, we can simply clarify some sufficient conditions ensuring that a function
Q ∈ (e−)W 1,ϕ,𝔽

0,𝔻,ℬ(ℝ
n × X : Y) [Q ∈ (e−)W 1,ϕ,𝔽,1

0,𝔻,ℬ (ℝ
n × X : Y)] belongs to the space

(e−)W 1,ϕ1 ,𝔽1 ,1
0,𝔻,ℬ (ℝ

n × X : Y) [Q ∈ (e−)W 1,ϕ1 ,𝔽1 ,2
0,𝔻,ℬ (ℝ

n × X : Y)] for appropriately chosen
functions ϕ1(⋅) and 𝔽1(⋅; ⋅); this can be also done for the functions introduced in Def-
inition 6.4.1 and Definition 6.4.13 below. Concerning the embedding results between
the same classes of (equi)-Weyl multi-dimensional ergodic components with vari-
able exponent, we can apply [377, Corollary 3.3.4], which in particular states that, if
p, r ∈ 𝒫(ℝn) and 1 ⩽ r(u) ⩽ p(u) for a. e. u ∈ ℝn, then for every F ∈ M(ℝn : ℂ)we have

F(u)
Lr(u)(s+lΩ) ⩽ 2(1 + l

n)F(u)
Lp(u)(s+lΩ), s ∈ ℝn, l > 0. (6.104)

The translation invariance of spaces of (equi)-Weylmulti-dimensional ergodic compo-
nents with variable exponent holds if we impose condition (D) or (D)’.

Our next task will be to show that, under certain conditions, the ergodic function
spaces introduced in Definition 6.4.1 can be embedded into the corresponding ergodic
function spaces introduced in Definition 6.4.4–Definition 6.4.6 (cf. also [649, Example
3.5] for the one-dimensional case, where we have assumed that the function G(⋅) is
monotonically increasing and p ∈ 𝒫([0, 1])).

Proposition 6.4.7. Suppose that 𝔻 = Λ = [0,∞)n, Ω = [0, 1]n, p ∈ D+(Ω), G : Λ →
(0,∞), ϕ : [0,∞) → [0,∞) and Q : Λ × X → Y. Suppose that 0 < a < G(t) ⩽ b < +∞
for all t ∈ Λ.
(i) Suppose that the function Q(⋅; ⋅) belongs to the space SΩ,p(u),ϕ,G0,𝔻,ℬ (Λ×X : Y) and there

exists a finite real constant c > 0 such that

𝔽(l, t)G(t)−1ln ⩽ c, t ∈ Λ, l > 0. (6.105)

Then Q(⋅; ⋅) ∈ e −Wp(u),ϕ,𝔽
0,𝔻,ℬ (Λ × X : Y).

(ii) Suppose that the function Q(⋅; ⋅) belongs to the space SΩ,p(u),ϕ,G,10,𝔻,ℬ (Λ×X : Y) and there
exists a finite real constant c > 0 such that

lim
l→+∞

lim sup
|t|→+∞
𝔽(l, t)ln supϕ−1([0,G(t)−1]) ⩽ c, t ∈ Λ, l > 0.

Then Q(⋅; ⋅) ∈ e −Wp(u),ϕ,𝔽
0,𝔻,ℬ (Λ × X : Y).

(iii) Suppose that the function Q(⋅; ⋅) belongs to the space SΩ,p(u),ϕ,G,20,𝔻,ℬ (Λ×X : Y) and there
exists a finite real constant c > 0 such that

lim
l→+∞

lim sup
|t|→+∞

ϕ(𝔽(l, t)G(t)−1ln supϕ−1([0, 1])) ⩽ c, t ∈ Λ, l > 0.

Then Q(⋅; ⋅) ∈ e −Wp(u),ϕ,𝔽
0,𝔻,ℬ (Λ × X : Y).
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Proof. Wewill prove only (i). Let B ∈ ℬ be fixed. Due to our assumption p ∈ D+(Ω), we
have

φp(u)(dt) ⩽ d
p−+p+φp(u)(t), d > 0, u ∈ Ω.

Define p1 : ℝn → [p−, p+] by p1(u) := p(u−k), if there exists k ∈ ℤn such thatu ∈ k+Ω∘,
and p1(u) := p−, otherwise. Then, clearly, p1 ∈ 𝒫(ℝn). Let s ∈ Λ and l > 0 be fixed.
Then there exists k ∈ ℕn0 such that s ∈ k + Ω so that s + lΩ ⊆ k + (l + 1)Ω. Denote
by kl,j ∈ [0, ⌈l⌉ + 1]n all points with integer coordinates (1 ⩽ j ⩽ (⌈l⌉ + 2)n). By our
assumption, there exists t0 > 0 such that for all t ∈ Λ with |t| ⩾ t0 we have

[ϕ(Q(t + u; x)
Y )]Lp(u)(Ω:Y) ⩽ εG(t)

−1,

uniformly in x ∈ B, which implies

∫
Ω

φp(u)(
ϕ(‖Q(t + u; x)‖Y )

εG(t)−1
) du ⩽ 1, (6.106)

uniformly in x ∈ B. Then we have (t ∈ Λ, |t| ⩾ t0; x ∈ B):

∫
s+lΩ

φp1(u)(
ϕ(‖Q(t + u; x)‖Y )

εG(t)−1
) du

⩽ ∫
k+(l+1)Ω

φp1(u)(
ϕ(‖Q(t + u; x)‖Y )

εG(t)−1
) du

= ∫
(l+1)Ω

φp1(u+k)(
ϕ(‖Q(t + u + k; x)‖Y )

εG(t)−1
) du

⩽ ∫
(⌈l⌉+1)Ω

φp1(u+k)(
ϕ(‖Q(t + u + k; x)‖Y )

εG(t)−1
) du

⩽
(⌈l⌉+2)n

∑
j=1
∫

kl,j+Ω

φp1(u+k)(
ϕ(‖Q(t + u + k; x)‖Y )

εG(t)−1
) du

=
(⌈l⌉+2)n

∑
j=1
∫
Ω

φp1(u+k+kl,j)(
ϕ(‖Q(t + u + k + kl,j; x)‖Y )

εG(t)−1
) du

=
(⌈l⌉+2)n

∑
j=1
∫
Ω

φp(u)(
ϕ(‖Q(t + u + k + kl,j; x)‖Y )

εG(t)−1
) du

=
(⌈l⌉+2)n

∑
j=1
∫
Ω

φp(u)(
ϕ(‖Q(t + u + k + kl,j; x)‖Y )

εG(t + u + k + kl,j)−1
G(t)

G(t + u + k + kl,j)
) du
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⩽ (b/a)p−+p+
(⌈l⌉+2)n

∑
j=1
∫
Ω

φp(u)(
ϕ(‖Q(t + u + k + kl,j; x)‖Y )

εG(t + u + k + kl,j)−1
) du

⩽ (b/a)p−+p+(⌈l⌉ + 2)n ⩽ (1 + (b/a))p−+p+(⌈l⌉ + 2)n,

since |t + u + k + kl,j| ⩾ |t| for 1 ⩽ j ⩽ (⌈l⌉ + 2)n and (6.106) holds. This simply implies

∫
s+lΩ

φp1(u)(
ϕ(‖Q(t + u; x)‖Y )

εG(t)−1[(1 + (b/a))p−+p+ (⌈l⌉ + 2)n]
) du ⩽ 1

and therefore

[ϕ(Q(t + u; x)
Y )]Lp(u)(s+lΩ) ⩽ εG(t)

−1[(1 + (b/a))p−+p+(⌈l⌉ + 2)n], s ∈ Λ, l > 0.

This simply completes the proof with the help of (6.105).

Remark 6.4.8. It would be interesting to reconsider Proposition 6.4.7 for general ex-
ponents p ∈ 𝒫(Ω).

We continue by providing two illustrative examples.

Example 6.4.9 (see also [645, Example 4.5] and [649, Example 3.7]). Let k1, k2, . . . ,
kn ∈ ℕ0, Λk1 ,k2 ,...,kn := (k1, k1 + 1) × (k2, k2 + 1) × ⋅ ⋅ ⋅ × (kn, kn + 1) and𝔻 := Λ := [0,∞)

n

(X = {0}). Define the function Q : Λ → [0,∞) by Q(t) := Qk1 ,k2 ,...,kn (t) for t ∈ Λk1 ,k2 ,...,kn ,
where Qk1 ,k2 ,...,kn (t) := 0 if there exists ki (1 ⩽ i ⩽ n) such that ki ∉ {n2 : n ∈ ℕ0}, and
Qk1 ,k2 ,...,kn (t) := 1, otherwise. If there do not exist integers k1, k2, . . . , kn ∈ ℕ0 such that
t ∈ Λk1 ,k2 ,...,kn , we set Q(t) := 0. Since the interval [t, t + l] ⊆ [0,∞) contains at most
√t + l −√t + 2 squares of non-negative integers, it can be simply approved that the set
s + t + lΩ contains at most

(2 + l
√l +√|t|

)
n

cells Λk1 ,k2 ,...,kn where the functionQ(⋅) is not identically equal to zero. Using an elemen-
tary argumentation, it follows that Q ∈ e −Wp,ϕ,𝔽

0,𝔻,ℬ(Λ : ℂ), provided that 𝔽(l; t) := l
−σ

for some real number σ < 0 (p(u) ≡ p ∈ [1,∞)). It is also clear that the function Q(⋅) is
Stepanov p-bounded as well as that Q ∉ Sp0,Λ,ℬ(Λ : ℂ).

Example 6.4.10 (see also [645, Example 4.6] and [649, Example 3.6]). Let k1, k2, . . . ,
kn ∈ ℤ, Λk1 ,k2 ,...,kn := (k1, k1 + 1) × (k2, k2 + 1) × ⋅ ⋅ ⋅ × (kn, kn + 1) and 𝔻 := Λ := ℝn

(X = {0}). Define the function Q : Λ → [0,∞) by Q(t) := Qk1 ,k2 ,...,kn (t) for t ∈ Λk1 ,k2 ,...,kn ,
where Qk1 ,k2 ,...,kn (t) := 0 if there exists ki (1 ⩽ i ⩽ n) such that ki ∉ {n2 : n ∈ ℕ0}, and
Qk1 ,k2 ,...,kn (t) := √|k1| ⋅ ⋅ ⋅ ⋅ ⋅ |kn|, otherwise. If there do not exist integers k1, k2, . . . , kn ∈ ℤ
such that t ∈ Λk1 ,k2 ,...,kn , we set Q(t) := 0. If 𝔽(l; t) does not depend on t, it is very simple
to show that

lim sup
|t|→+∞

sup
s∈ℝn
Q(u)
Lp(s+t+lΩ) = +∞, l > 0,
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so that Q(⋅) ∉ e −Wp,ϕ,𝔽
0,𝔻,ℬ(Λ : ℂ). On the other hand, a direct calculation shows that

Q(u)
Lp(s+t+lΩ) ⩽ cpl

n/p(1 + |s| + |t| + l)n/2, s, t ∈ ℝn, l > 0,

so thatQ(⋅) ∈ Wp,ϕ,𝔽
0,𝔻,ℬ(Λ : ℂ)provided that𝔽(l; t) := l

−σ for some real numberσ > (n/p)+
(n/2). In general case, if p ∈ D+(ℝn), the above estimate in combination with (6.104)
shows that Q(⋅) ∈ Wp(u),ϕ,𝔽

0,𝔻,ℬ (Λ : ℂ) provided that 𝔽(l; t) := l−σ for some real number
σ > (n/p+) + (3n/2).

In the following result, we continue our analysis from Theorem 6.4.2.

Theorem 6.4.11. Assume that the operator function (R(t))t>0 ⊆ L(Y , Z) is strongly con-
tinuous.
(i) Suppose that Q : ℝn × X → Y satisfies the requirement that its restriction QR(⋅; ⋅)

to the set [0,∞)n × X belongs to the space e − Wp(u),ϕ,𝔽
0,[0,∞)n ,ℬ([0,∞)

n × X : Y), resp.
Wp(u),ϕ,𝔽

0,[0,∞)n ,ℬ([0,∞)
n ×X : Y). Suppose that φ : [0,∞)→ [0,∞), ϕ : [0,∞)→ [0,∞)

is a convex monotonically increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all
x, y ⩾ 0, (ak,l)k∈ℕn0 is a sequence of positive real numbers such that∑k∈lℕn0 ak,l = 1 for
all l > 0, and the value Q1(t; x), given by (6.100), is well defined for all t ∈ −[0,∞)n

and x ∈ X. If 𝔽1 : (0,∞) × (−[0,∞)n)→ (0,∞) satisfies

lim
l→+∞

lim sup
|t|→+∞,t∈−[0,∞)n

sup
s∈−[0,∞)n

∫
s−l[0,1]n

φp(u)(2
𝔽1(l, t)
𝔽(l, k − t − u)

× ∑
k∈lℕn0

ak,ll
−nφ(lna−1k,l)[φ(

R(v + k)
)]Lq(v)(l[0,1]n)) du < 1,

resp.

lim sup
|t|→+∞,t∈−[0,∞)n

lim
l→+∞

sup
s∈−[0,∞)n

∫
s−l[0,1]n

φp(u)(2
𝔽1(l, t)
𝔽(l, k − t − u)

× ∑
k∈lℕn0

ak,ll
−nφ(lna−1k,l)[φ(

R(v + k)
)]Lq(v)(l[0,1]n)) du < 1,

then we have Q1 ∈ e −W
p(u),ϕ,𝔽1
0,−[0,∞)n ,ℬ((−[0,∞)

n) × X : Z), resp. Q1 ∈ W
p(u),ϕ,𝔽1
0,−[0,∞)n ,ℬ((−[0,

∞)n) × X : Z).
(ii) Suppose that Q : ℝn × X → Y satisfies the requirement that its restriction QR(⋅; ⋅)

to the set [0,∞)n × X belongs to the space e − Wp(u),ϕ,𝔽,1
0,[0,∞)n ,ℬ([0,∞)

n × X : Y), resp.
Wp(u),ϕ,𝔽,1

0,[0,∞)n ,ℬ([0,∞)
n × X : Y). Suppose that φ : [0,∞) → [0,∞), ϕ : [0,∞) →

[0,∞) is a continuous monotonically increasing function, and the value Q1(t; x),
given by (6.100), is well defined for all t ∈ −[0,∞)n and x ∈ X. If 𝔽1 : (0,∞) ×
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(−[0,∞)n)→ (0,∞) satisfies

lim
l→+∞

lim sup
|t|→+∞,t∈−[0,∞)n

sup
s∈−[0,∞)n

∫
s−l[0,1]n

φp(u)(2 ∑
k∈lℕn0

ϕ−1(ε/𝔽(l, k − t − u))
ϕ−1(ε/𝔽1(l, t))

× [φ(R(v + k)
)]Lq(v)(l[0,1]n)) du < 1,

resp.

lim sup
|t|→+∞,t∈−[0,∞)n

lim
l→+∞

sup
s∈−[0,∞)n

∫
s−l[0,1]n

φp(u)(2 ∑
k∈lℕn0

ϕ−1(ε/𝔽(l, k − t − u))
ϕ−1(ε/𝔽1(l, t))

× [φ(R(v + k)
)]Lq(v)(l[0,1]n)) du < 1,

then we have Q1 ∈ e −W
p(u),ϕ,𝔽1 ,1
0,−[0,∞)n ,ℬ((−[0,∞)

n) × X : Z), resp. Q1 ∈ W
p(u),ϕ,𝔽1 ,1
0,−[0,∞)n ,ℬ((−[0,

∞)n) × X : Z).
(iii) Suppose that Q : ℝn × X → Y satisfies the requirement that its restriction QR(⋅; ⋅)

to the set [0,∞)n × X belongs to the space e − Wp(u),ϕ,𝔽,2
0,[0,∞)n ,ℬ([0,∞)

n × X : Y), resp.
Wp(u),ϕ,𝔽,2

0,[0,∞)n ,ℬ([0,∞)
n × X : Y). Suppose that φ : [0,∞) → [0,∞), ϕ : [0,∞) →

[0,∞) is a continuous monotonically increasing function, and the value Q1(t; x),
given by (6.100), is well defined for all t ∈ −[0,∞)n and x ∈ X. If 𝔽1 : (0,∞) ×
(−[0,∞)n)→ (0,∞) satisfies

lim
l→+∞

lim sup
|t|→+∞,t∈−[0,∞)n

sup
s∈−[0,∞)n

∫
s−l[0,1]n

φp(u)(2 ∑
k∈lℕn0

𝔽1(l, t)
𝔽(l, k − t − u)

× [φ(R(v + k)
)]Lq(v)(l[0,1]n)) du < 1,

resp.

lim sup
|t|→+∞,t∈−[0,∞)n

lim
l→+∞

sup
s∈−[0,∞)n

∫
s−l[0,1]n

φp(u)(2 ∑
k∈lℕn0

𝔽1(l, t)
𝔽(l, k − t − u)

× [φ(R(v + k)
)]Lq(v)(l[0,1]n)) du < 1,

then we have Q1 ∈ e −W
p(u),ϕ,𝔽1 ,2
0,−[0,∞)n ,ℬ((−[0,∞)

n) × X : Z), resp. Q1 ∈ W
p(u),ϕ,𝔽1 ,2
0,−[0,∞)n ,ℬ((−[0,

∞)n) × X : Z).

Proof. We will prove only (i), for the class e − Wp(u),ϕ,𝔽
0,[0,∞)n ,ℬ([0,∞)

n × X : Y). Let B ∈ ℬ
be given, and let ε > 0 be sufficiently small. We know that there exists l0 > 0 such
that for each l ⩾ l0 there exists Ml > 0 such that for each t ∈ [0,∞)n with |t| > Ml
and for each s ∈ [0,∞)n we have 𝔽(l, t)[ϕ(‖Q(t + u; x)‖Y )]Lp(u)(s+lΩ) < ε, x ∈ B. By our
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assumption, there exists l1 > 0 such that for each l ⩾ l1 there existsM′l > 0 such that
for each t ∈ −[0,∞)n with |t| > M′l and for each s ∈ −[0,∞)

n we have

∫
s−l[0,1]n

φp(u)(2
𝔽1(l, t)
𝔽(l, k − t − u)

× ∑
k∈lℕn0

ak,ll
−nφ(lna−1k,l)[φ(

R(v + k)
)]Lq(v)(l[0,1]n)) du ⩽ 1.

Let l2 = max(l, l1) and let M′′l = max(Ml,M′l ). Furthermore, let t ∈ −[0,∞)n with |t| >
M′′l and let s ∈ −[0,∞)

n. Then it suffices to show𝔽1(l, t)[ϕ(‖Q1(t+u; x)‖Z)]Lp(u)(s−l[0,1]n) <
ε, x ∈ B, which immediately follows if we prove that

∫
s−l[0,1]n

φp(u)(
ϕ(‖Q1(t + u; x)‖Z)

ε/𝔽1(l, t)
) du ⩽ 1, x ∈ B.

This follows from the next computation involving the Jensen integral inequality, the
Hölder inequality and our assumptions on the function ϕ(⋅):

∫
s−l[0,1]n

φp(u)(
ϕ(‖Q1(t + u; x)‖Z)

ε/𝔽1(l, t)
) du

⩽ ∫
s−l[0,1]n

φp(u)(
ϕ(∑k∈l[0,1]n ak,l ∫k+l[0,1]n a

−1
k,l‖R(v)‖ ⋅ ‖Q̌(t + u − v; x)‖Y dv)
ε/𝔽1(l, t)

) du

⩽ ∫
s−l[0,1]n

φp(u)(
∑k∈l[0,1]n ak,lϕ(∫k+l[0,1]n a

−1
k,l‖R(v)‖ ⋅ ‖Q̌(t + u − v; x)‖Y dv)
ε/𝔽1(l, t)

) du

= ∫
s−l[0,1]n

φp(u)(
∑k∈l[0,1]n ak,lϕ(l

−n ∫k+l[0,1]n a
−1
k,ll

n‖R(v)‖ ⋅ ‖Q̌(t + u − v; x)‖Y dv)
ε/𝔽1(l, t)

) du

⩽ ∫
s−l[0,1]n

φp(u)(
∑k∈l[0,1]n ak,ll

−nφ(a−1k,ll
n)∫k+l[0,1]n ϕ(‖R(v)‖ ⋅ ‖Q̌(t + u − v; x)‖Y ) dv

ε/𝔽1(l, t)
) du

⩽ ∫
s−l[0,1]n

φp(u)

× (
∑k∈l[0,1]n ak,ll

−nφ(a−1k,ll
n)∫k+l[0,1]n φ(‖R(v)‖) ⋅ ϕ(‖Q̌(t + u − v; x)‖Y ) dv

ε/𝔽1(l, t)
) du

⩽ ∫
s−l[0,1]n

φp(u)(
2∑k∈l[0,1]n ak,ll

−nφ(a−1k,ll
n)[φ(‖R(v + k)‖)]Lq(v)(l[0,1]n)

ε/𝔽1(l, t)

× [ϕ(Q(−t − u + k + v; x)
Y )]Lp(v)(l[0,1]n)) du
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⩽ ∫
s−l[0,1]n

φp(u)(
2∑k∈l[0,1]n ak,ll

−nφ(a−1k,ll
n)[φ(‖R(v + k)‖)]Lq(v)(l[0,1]n)

ε/𝔽1(l, t)
ε

𝔽(l, k − t − u)
) du

= ∫
s−l[0,1]n

φp(u)(2
𝔽1(l, t)
𝔽(l, k − t − u)

∑
k∈lℕn0

ak,ll
−nφ(lna−1k,l)[φ(

R(v + k)
)]Lq(v)(l[0,1]n)) du ⩽ 1,

since |k − t − u| ⩾ M′′l for all u ∈ s − l[0, 1]n and k ∈ lℕn0.

Suppose that 1 ⩽ p < ∞. We say that a measurable function f : ℝ → X is
(equi-)Weyl asymptotically p-almost periodic at minus infinity if and only if there ex-
ist a bounded continuous (equi-)Weyl p-almost periodic function f0 : ℝ → X and a
measurable function q : ℝ→ X such that f (t) = f0(t) + q(t), t ∈ ℝ and

q ∈ (e−)Wp,x,l(−1)/p
0,−[0,∞)(−[0,∞) : X).

The choice of term “bounded continuous” is a bit superfluous but in accordance with
our striving to apply [631, Theorem 2.11.4]. We have the following corollary of Theo-
rem 6.4.11.

Corollary 6.4.12. Let 1 ⩽ p <∞, 1/p + 1/q = 1 and let (R(t))t>0 ⊆ L(X,Y) satisfy

R(t)
L(X,Y) ⩽

Mtβ−1

1 + tγ
, t > 0 for some finite constants γ > 1, β ∈ (0, 1], M > 0. (6.107)

Let a function f : ℝ → X be equi-Weyl p-almost periodic, resp. Weyl p-almost periodic,
and Weyl (equivalently, Stepanov) p-bounded, and let q(β − 1) > −1 provided that p > 1,
resp. β = 1, provided that p = 1. If q : ℝ → X is Weyl p-bounded and its restriction to
[0,∞) is equi-Weyl p-vanishing, resp. Weyl p-vanishing, then the function G : ℝ → Y,
given by (2.46), is well defined and equi-Weyl asymptotically p-almost periodic at minus
infinity, resp. Weyl asymptotically p-almost periodic at minus infinity.

Proof. Due to [631, Theorem 2.11.4], we find that the function G : ℝ → Y , defined
through (2.46), is bounded continuous and (equi-)Weylp-almost periodic. To complete
the proof, it suffices to apply Theorem 6.4.11 since a trivial computation shows that

∑
k⩾0
(

(k+1)l

∫
kl

R(t)

q dt)

1/q

<∞, provided that p > 1,

and

∑
k⩾0

R(⋅)
L∞[kl,(k+1)l] <∞, provided that p = 1.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



444 | 6 Multi-dimensional almost periodic type functions and applications

6.4.3 Weighted pseudo-ergodic components

In this subsection, we introduce and analyze various generalizations of the space
PAP0(ℝ,X, ρ1, ρ2), which has been analyzed in a series of research papers by now.

Definition 6.4.13. Suppose that ϕ : [0,∞) → [0,∞), ψ : [0,∞) → [0,∞), F :
(0,∞) → (0,∞) are given functions and p ∈ 𝒫(Λ), where 0 ̸= Λ ⊆ ℝn. For every finite
number T > 0, we denote by pT (⋅) the restriction of function p(⋅) to ΛT . We introduce
the following function spaces:

PAP0,p(Λ,ℬ, F,ϕ) := {Q : Λ × X → Y ;ϕ(Q(t; x)
Y ) ∈ L

pT (t)(ΛT ), T > 0, x ∈ X and

lim
T→+∞

F(T)[ϕ(Q(t; x)
Y )]LpT (t)(ΛT )

= 0, uniformly in x ∈ B},

PAP10,p(Λ,ℬ, F,ϕ,ψ) := {Q : Λ × X → Y ;ψ(Q(t; x)
Y ) ∈ L

pT (t)(ΛT ), T > 0, x ∈ X and

lim
T→+∞

F(T)ϕ([ψ(Q(t; x)
Y )]LpT (t)(ΛT )

) = 0, uniformly in x ∈ B},

and

PAP20,p(Λ,ℬ, F,ϕ,ψ) := {Q : Λ × X → Y ;ψ(Q(t; x)
Y ) ∈ L

pT (t)(ΛT ), T > 0, x ∈ X and

lim
T→+∞

ϕ(F(T)[ψ(Q(t; x)
Y )]LpT (t)(ΛT )

) = 0, uniformly in x ∈ B}.

It is clear that, if the set Λ is bounded, then there exists a finite real number
T > 0 such that Λ = ΛT and therefore the assumption limT→+∞ F(T) = 0 implies
that Q ∈ PAP0,p(Λ,ℬ, F,ϕ) for any function Q ∈ M(Λ : X) such that ϕ(‖Q(t; x)‖Y ) ∈
LpT (t)(ΛT ), T > 0, x ∈ X. In general, a function F ∈ PAP0,p(Λ,ℬ, F,ϕ) need not be
bounded. If X = {0}, then we also omit the term “ℬ” from the above notation.

Now we will present a few illustrative examples.

Example 6.4.14 ([710, Example 4.1]). Suppose that X := {0}, ℬ := {X}, Y := ℂ, Q(t) :=
2 + sin t, t ∈ ℝ, ρ(t) := 2et, t ⩾ 0, ρ(t) := e−t, t < 0,

Fσ(t) := t
−σ[

t

∫
−t

ρ(s) ds]
−1

, t > 0, σ ∈ ℝ,

ϕ(t) := tρ(t), t ⩾ 0 and p(t) ≡ 1. Then

F0(T)[ϕ(
Q(⋅)
)]L1[−T ,T] =

eT (12 − cosT + sinT) − 11
6(eT − 1)

, T > 0.

This implies Q ∈ PAP0,1(ℝ,ℬ, Fσ ,ϕ) if and only if σ > 0.
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Example 6.4.15. Suppose now that 1/q(t) = 1/p(t)+1/r(t) for all t ∈ ℝn, where p, q, r ∈
𝒫(ℝn), Q ∈ PAP0,p(Λ,ℬ, F,ϕ) and a function F1 : (0,∞)→ (0,∞) satisfies

F1(T)[1]LrT (t)(ΛT )

F(T)
⩽ M, T > 0,

for some finite constantM > 0. Applying the Hölder inequality and this assumption,
we easily get

F1(T)[ϕ(
Q(t; x)
Y )]LqT (t)(ΛT )

⩽
2F1(T)[1]LrT (t)(ΛT )

F(T)
F(T)[ϕ(Q(t; x)

Y )]LpT (t)(ΛT )

→ 0, T → +∞,

so that Q ∈ PAP0,q(Λ,ℬ, F1,ϕ).

Example 6.4.16. Let Λ = [0,∞), ϕ(x) = x for x ⩾ 0, and let p ∈ 𝒫([0,∞)) be given by
p(t) := 1 − ln t, t ∈ (0, 1) and p(t) := 1, t ⩾ 1. Then p ∉ D+([0,∞)). If ∫

+∞
0 |Q(t)| dt < 1,

Q(t) = 0 for 0 ⩽ t ⩽ 1/2 and Q(t) ⩾ 1 for t ∈ (1/2, 1), then it can be easily shown that
Q ∈ PAP0,p(Λ, F,ϕ) for any function F : (0,∞)→ (0,∞) such that limT→+∞ F(T) = 0.

In the next theorem,we analyze the translation invariance of spaces introduced in
Definition6.4.13 (thefirst part of propositiongeneralizes [631, Proposition 3.3.6],where
we have analyzed the translation invariant properties of space PAP0(ℝ,X, ρ1, ρ2)).

Theorem 6.4.17. Suppose that ϕ : [0,∞) → [0,∞), ψ : [0,∞) → [0,∞), F : (0,∞) →
(0,∞), F1 : (0,∞) → (0,∞) are given functions and p ∈ 𝒫(Λ), where 0 ̸= Λ ⊆ ℝn. For
given t0 ∈ Λ and x0 ∈ X, we set Qt0 ;x0 := Q(t+t0; x+x0), t ∈ −t0+Λ, x ∈ X,Λt0 ,T := {t ∈ Λ;
|t − t0| ⩽ T} (T > 0) and ℬx0 := {−x0 + B : B ∈ ℬ}. Define pt0 : −t0 + Λ → [1,∞] by
pt0 (t) := p(t + t0), t ∈ −t0 + Λ. Then the following holds:
(i) If there exists a finite real number c > 0 such that F1(T) ⩽ cF(T) for all T ⩾ 1 and

lim
T→+∞

F1(T)[ϕ(
Q(t; x)
Y )]Lp(t)(Λt0 ,T∖ΛT )

= 0, uniformly in x ∈ B, (6.108)

then Qt0 ;x0 ∈ PAP0,pt0 (−t0 + Λ,ℬx0 , F1,ϕ).
(ii) Suppose, in addition, that ϕ(⋅) is monotonically increasing as well as that there ex-

ists a bounded function φ : [0,∞)2 → [0,∞) such that

ϕ(2x + 2y) ⩽ φ(x, y)[ϕ(x) + ϕ(y)], x, y ⩾ 0. (6.109)

If there exists a finite real number c > 0 such that F1(T) ⩽ cF(T) for all T ⩾ 1 and

lim
T→+∞

F1(T)ϕ([ψ(
Q(t; x)
Y )]Lp(t)(Λt0 ,T∖ΛT )

) = 0, uniformly in x ∈ B, (6.110)

then Qt0 ;x0 ∈ PAP
1
0,pt0
(−t0 + Λ,ℬx0 , F1,ϕ,ψ).
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(iii) Suppose, in addition, that ϕ(⋅) is monotonically increasing and that there exist a
bounded function φ : [0,∞)2 → [0,∞) such that (6.109) holds and a function θ :
[0,∞)→ [0,∞) such that ϕ(cx) ⩽ θ(c)ϕ(x), c, x ⩾ 0 and θ(F1(T)/F(T)) ⩽ M, T ⩾ 1
for a finite real constant M > 0. If

lim
T→+∞

ϕ(F1(T)[ψ(
Q(t; x)
Y )]Lp(t)(Λt0 ,T∖ΛT )

) = 0, uniformly in x ∈ B, (6.111)

then Qt0 ;x0 ∈ PAP
2
0,pt0
(−t0 + Λ,ℬx0 , F1,ϕ,ψ).

Proof. To prove (i), fix x ∈ X and B ∈ ℬ with x ∈ B. Recall that

[ϕ(‖Qt0 ;x0‖Y )]L(pt0 )T (t)((−t0+Λ)T )

= inf{λ > 0 : ∫
(−t0+Λ)T

φ(pt0 )T (t)(
ϕ(‖Q(t + t0; x + x0)‖Y )

λ
) dt ⩽ 1}

= inf{λ > 0 : ∫
Λt0 ,T

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ
) dt ⩽ 1}

= inf{λ > 0 : ∫
Λt0 ,T∩ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ
) dt

+ ∫
Λt0 ,T∖ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ
) dt ⩽ 1}.

We claim that

[ϕ(‖Qt0 ;x0‖Y )]L(pt0 )T (t)((−t0+Λ)T )

⩽ 2[ϕ(Q(t; x + x0)
Y )]Lp(t)(ΛT )

+ 2[ϕ(Q(t; x + x0)
Y )]Lp(t)(Λt0 ,T∖ΛT )

:= 2A + 2B. (6.112)

Let ε > 0 be arbitrary. Then there exist λ1 ∈ (A,A + (ε/2)) and λ2 ∈ (B,B + (ε/2)) such
that

∫
Λt0 ,T∩ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ1
) dt ⩽ 1

and

∫
Λt0 ,T∖ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ2
) dt ⩽ 1.
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This implies λ := 2λ1 + 2λ2 ∈ (2A + 2B, 2A + 2B + ε),

∫
Λt0 ,T∩ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ
) dt

⩽ ∫
Λt0 ,T∩ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

2λ1
) dt ⩽ 1/2,

∫
Λt0 ,T∖ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ
) dt

⩽ ∫
Λt0 ,T∖ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

2λ2
) dt ⩽ 1/2,

and therefore

∫
Λt0 ,T∩ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ
) dt

+ ∫
Λt0 ,T∖ΛT

φp(t)(
ϕ(‖Q(t; x + x0)‖Y )

λ
) dt ⩽ 1. (6.113)

This implies (6.112) due to (6.113) and the fact that ε > 0 was arbitrary. Since we have
assumed that there exists a finite real number c > 0 such that F1(T) ⩽ cF(T) for all
T ⩾ 1 and (6.108) holds, this completes the proof of (i) in a routine manner. To prove
(ii), notice first that (6.112), with the function ϕ(⋅) replaced therein with the function
ψ(⋅), (6.109) and our assumption that ϕ(⋅) is monotonically increasing together imply
that

F1(T)ϕ([ψ(‖Qt0 ;x0‖Y )]L(pt0 )T (t)((−t0+Λ)T ))

⩽ F1(T)ϕ(2[ψ(
Q(t; x + x0)

Y )]Lp(t)(ΛT )
+ 2[ψ(Q(t; x + x0)

Y )]Lp(t)(Λt0 ,T∖ΛT )
)

⩽ F1(T) ⋅ φ([ϕ(
Q(t; x + x0)

Y )]Lp(t)(ΛT )
, [ψ(Q(t; x + x0)

Y )]Lp(t)(Λt0 ,T∖ΛT )
)

⋅ [ϕ([ψ(Q(t; x + x0)
Y )]Lp(t)(ΛT )

) + ϕ([ψ(Q(t; x + x0)
Y )]Lp(t)(Λt0 ,T∖ΛT )

)].

Since we have assumed that φ(⋅, ⋅) is bounded as well as that there exists a finite real
number c > 0 such that F1(T) ⩽ cF(T) for all T ⩾ 1 and (6.110) holds, this completes
the proof of (ii) in a routine manner. To prove (iii), notice first that (6.112), with the
function ϕ(⋅) replaced therein with the function ψ(⋅), (6.109) and our assumption that
ϕ(⋅) is monotonically increasing together imply that

ϕ(F1(T)[ψ(‖Qt0 ;x0‖Y )]L(pt0 )T (t)((−t0+Λ)T ))

⩽ ϕ(2F1(T)[ψ(
Q(t; x + x0)

Y )]Lp(t)(ΛT )
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+ 2F1(T)[ψ(
Q(t; x + x0)

Y )]Lp(t)(Λt0 ,T∖ΛT )
)

⩽ φ(2F1(T)[ψ(
Q(t; x + x0)

Y )]Lp(t)(ΛT )
, 2F1(T)[ψ(

Q(t; x + x0)
Y )]Lp(t)(Λt0 ,T∖ΛT )

)

⋅ [ϕ(F1(T)[ψ(
Q(t; x + x0)

Y )]Lp(t)(ΛT )
)

+ ϕ(F1(T)[ψ(
Q(t; x + x0)

Y )]Lp(t)(Λt0 ,T∖ΛT )
)]

⩽ Const. ⋅ [θ(F1(T)/F(T)) ⋅ ϕ(F(T)[ψ(
Q(t; x + x0)

Y )]Lp(t)(ΛT )
)

+ ϕ(F1(T)[ψ(
Q(t; x + x0)

Y )]Lp(t)(Λt0 ,T∖ΛT )
)].

Since we have assumed that θ(F1(T)/F(T)) ⩽ M, T ⩾ 1 for a finite real constantM > 0
and (6.111) holds, this completes (iii) in a routine manner.

In the remainder of subsection, we will consider the class PAP0,p(Λ,ℬ, F,ϕ),
only, because all established results admit very simple reformulations for the classes
PAP10,p(Λ,ℬ, F,ϕ,ψ) and PAP20,p(Λ,ℬ, F,ϕ,ψ). Concerning the weighted pseudo-ergo-
dicity of the function

t → Q2(t; x) ≡
t

∫
−∞

R(t − s)Q(s; x) ds, t ∈ ℝn, x ∈ X,

the best we can do in the present situation is to show the following.

Theorem 6.4.18. Suppose that 1 ⩽ p1 < ∞, Λ = ℝn, p ∈ D+(ℝn) satisfies p+ ⩽ p1
and 1/p(t) + 1/q(t) = 1, t ∈ ℝn. If φ : [0,∞) → [0,∞), ϕ : [0,∞) → [0,∞) is a
convex monotonically increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0,
ψ : [0,∞) → [0,∞), F : (0,∞) → (0,∞), F1 : (0,∞) → (0,∞), Q ∈ PAP0,p1 (Λ,ℬ, F,ϕ)
and the value of Q2(t; x) is well defined for all t ∈ ℝn and x ∈ X. If for each ε > 0 and
B ∈ ℬ there exists a finite real number T1 > 0, as large as we want, such that for each
t ∈ ℝn with |t| ⩽ T1 there exists a finite real number Tt > 0, as large as we want, and a
sequence (ak,t)k∈Tt ⋅ℕn0 such that∑k∈Tt ⋅ℕn0 ak,t = 1 and

∫
ΛT

φp(t)(
a0,tT−nt ∫Tt[0,1]n φ(a

−1
0,tT

n
t ‖R(s)‖)ϕ(‖Q(t − s; x)‖Y ) ds

ε/F1(T)

+
4∑k∈Tt ⋅(ℕn0∖{0}) ak,tT

−n
t φ(a−1k,tT

n
t )(1 + T

n
t )[φ(‖R(s + k)‖)]Lq(s)(Tt[0,1]n)F1(T)

F(sup{|r| : r ∈ t − k − Tt[0, 1]n})
) dt ⩽ 1,

(6.114)

for any x ∈ B and T ⩾ T1, then Q2 ∈ PAP0,p(Λ,ℬ, F1,ϕ). Here, we assume that R :
(0,∞)n → L(Y , Z) is strongly continuous and satisfies the requirement that all terms
in (6.114) are well defined.
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Proof. For simplicity, we will not distinguish p(⋅) and its restrictions henceforth. Let
ε > 0 and B ∈ ℬ be given. By our assumption, we know that there exists a finite real
number T0 > 0 such that

∫
ΛT

[ϕ(Q(s; x)
Y )]

p1 ds ⩽ (ε/F(T))p1 , T ⩾ T0, x ∈ B. (6.115)

Let T1 > T0 be determined from our condition. We will prove that

∫
ΛT

φp(t)(
ϕ(‖Q2(t; x)‖Z)

ε/F1(T)
) dt ⩽ 1, T ⩾ T1, x ∈ B, (6.116)

which immediately implies F1(T)[ϕ(‖Q2(t; x)‖Z)]Lp(t)(ΛT )
< ε, T ⩾ T1, x ∈ B and com-

pletes theproof. Let t ∈ ℝnwith |t| ⩽ T1 befixed, and letTt > 0be chosen in accordance
with our condition aswell as condition that any component of the tuple t−Tt(1, 1, . . . , 1)
belongs to the interval (−∞,−T0/√n]. Then we have

sup{|r| : r ∈ t − k − Tt[0, 1]
n} ⩾ t − k − Tt(1, 1, . . . , 1)

 ⩾
t − Tt(1, 1, . . . , 1)

 ⩾ T0, (6.117)

and therefore, due to (6.115) and Lemma 1.1.7(ii),

[ϕ(Q(t − s − k; x)
Y )]Lp(s)(Tt[0,1]n)

⩽ 2(1 + Tnt )( ∫
t−k−Tt[0,1]n

[ϕ(Q(s; x)
Y )]

p1 ds)
1/p1

⩽ 2(1 + Tnt )( ∫
Λsup{|r|:r∈t−k−Tt[0,1]n}

[ϕ(Q(s; x)
Y )]

p1 ds)
1/p1

⩽ 2(1 + Tnt )(
ε

F(sup{|r| : r ∈ t − k − Tt[0, 1]n})
)
p1
.

Applying this estimate, the Jensen integral inequality, the Hölder inequality, our as-
sumption on the function ϕ(⋅), and the estimate (6.114), we obtain as before

∫
ΛT

φp(t)(
ϕ(‖Q2(t; x)‖Z)

ε/F1(T)
) dt

⩽ ∫
ΛT

φp(t)(
a0,tT−nt ∫Tt[0,1]n φ(T

n
t ‖R(s)‖)ϕ(‖Q(t − s; x)‖Y ) ds

ε/F1(T)

+
4∑k∈Tt ⋅(ℕn0∖{0}) ak,tT

−n
t φ(a−1k,tT

n
t )(1 + T

n
t )[φ(‖R(s + k)‖)]Lq(s)(Tt[0,1]n)F1(T)

F(sup{|r| : r ∈ tj − k − Ttj [0, 1]
n})

) dt ⩽ 1,

for any T ⩾ T1 and x ∈ B, so that (6.116) holds true.
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Remark 6.4.19.
(i) The ergodicity of component in [631, Lemma 2.12.3] can be deduced from Theo-

rem 6.4.18. In this lemma, we have assumed that I = ℝ as well as that the opera-
tor family (R(t))t>0 ⊆ L(X) satisfies the requirement that there exist real numbers
M > 0, c > 0 and β ∈ (0, 1] such that ‖R(t)‖ ⩽ Me−cttβ−1, t > 0. It would be valuable
to clarify some sufficient conditions for applications of Theorem 6.4.18, provided
that the operator family (R(t))t>0 has the growth order of type (6.107).

(ii) In the case that p(t) ≡ p1, the term “4(1 + Tnt )” in the second addend of (6.114) can
be replaced with the term “2”.

The method proposed in the proof of previous theorem can be used to de-
rive some results about the convolution invariance of space PAP0,p(Λ,ℬ, F,ϕ). Let
I1 = [0,∞)n, . . . , I2n be the orthants inℝn. For each j ∈ ℕ2n , let 1 ⩽ a1j < a

2
j < ⋅ ⋅ ⋅ < a

kj
j ⩽ n

be the corresponding axes forwhich all components of the points from Ij havenegative
values; we define

Ψj(t1, . . . , tn) := Ψ(t1σ(1), . . . , tnσ(n)), t = (t1, . . . , tn) ∈ ℝ
n,

and

Q̌j(t1, . . . , tn) := Q(t1σ(1), . . . , tnσ(n)) := Q(tj), t = (t1, . . . , tn) ∈ ℝ
n,

where σ(i) := −1 if i ∉ {a1j , a
2
j , . . . , a

kj
j } and σ(i) := 1, if i ∈ ℕn ∖ {a

1
j , a

2
j , . . . , a

kj
j }. Using the

decomposition

∫
ℝn

Ψ(t − s)Q(s; x) ds

=
2n

∑
j=1
∫
t+Ij

Ψ(t − s)Q(s; x) ds

=
2n

∑
j=1
∫
I1

Ψj(s)Q̌j(t1σ(1) − s1, . . . , ta1j − sa1j , . . . , takjj
− s

a
kj
j
, . . . , tn − sn; x) ds

and the argumentation contained in the proof of Theorem 6.4.18, with ‖R(⋅)‖ replaced
therein by ψj(⋅), we may deduce the following (the only thing worth noting is that
all variables s1, . . . , sn in the last sum are taken with the sign minus so that the esti-
mate (6.117) and the computation following it can be applied again).

Theorem 6.4.20. Suppose that 1 ⩽ p1 < ∞, Λ = ℝn, p ∈ D+(ℝn) satisfies p+ ⩽ p1
and 1/p(t) + 1/q(t) = 1, t ∈ ℝn. If φ : [0,∞) → [0,∞), ϕ : [0,∞) → [0,∞) is a
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convex monotonically increasing function satisfying ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0,
ψ : [0,∞) → [0,∞), F : (0,∞) → (0,∞), F1 : (0,∞) → (0,∞), Q̌j ∈ PAP0,p1 (Λ,ℬ, F,ϕ)
for all j ∈ ℕ2n , the value of all integrals

∫
t+Ijℝn

Ψ(t − s)Q(s; x) ds

and its sum

Q3(t; x) ≡ ∫
ℝn

Ψ(t − s)Q(s; x) ds

are well defined for all t ∈ ℝn and x ∈ X. If for each ε > 0 and B ∈ ℬ there exists a finite
real number T1 > 0, as large as we want, such that for each t ∈ ℝn with |t| ⩽ T1 there
exists a finite real number Tt > 0, as large as we want, and a sequence (ak,t)k∈Tt ⋅ℕn0 such
that∑k∈Tt ⋅ℕn0 ak,t = 1 and

∫
ΛT

φp(t)(
2n

∑
j=1

a0,t2−nT−nt ∫Tt[0,1]n φ(a
−1
0,t2

nTnt |Ψj(s)|)ϕ(‖Q̌j(t − s; x)‖Y ) ds

ε/F1(T)

+ 4
2n

∑
j=1
∑

k∈Tt ⋅(ℕn0)∖{0}
ak,t2
−nT−nt φ(a−1k,t2

nTnt )(1 + T
n
t )

× [φ(Ψj(s + k)
)]Lq(s)(Tt[0,1]n)F1(T)[F(sup{|r| : r ∈ tj − k − Tt[0, 1]

n})]
−1
) dt ⩽ 1,

(6.118)

holds for any x ∈ B and T ⩾ T1, then Q2 ∈ PAP0,p(Λ,ℬ, F1,ϕ). Here, we assume thatΨ(⋅)
satisfies the requirement that all terms in (6.118) are well defined.

Wewill introduce here only one general definition of an asymptotically almost pe-
riodic function with variable exponent. Let 𝒳Λ denote any of the spaces of (Stepanov,
Weyl, Besicovitch) almost periodic functions F : Λ ×X → Y considered in the existing
literature, and let𝒬Λ denote any of the spaces of weighted ergodic spaces introduced
and analyzed in this section.

Definition 6.4.21. Suppose that the set 0 ̸= Λ ⊆ ℝn is unbounded and F : Λ × X → Y .
Then we say that F(⋅; ⋅) is asymptotically (𝒳Λ,𝒬Λ)-almost periodic if and only if there
exist a function G(⋅; ⋅) ∈ 𝒳Λ and a function Q ∈ 𝒬Λ such that F(t; x) = G(t; x) + Q(t; x)
for all t ∈ Λ and x ∈ X; if, moreover, there exists a function G̃ ∈ 𝒳ℝn such that
G̃(t; x) = G(t; x) for all t ∈ Λ and x ∈ X, then we say that the function F(⋅; ⋅) is strongly
asymptotically (𝒳Λ,𝒬Λ)-almost periodic.

There is no need to say that the uniqueness of decomposition F = G + Q in Defi-
nition 6.4.21 cannot be expected in our general framework; for example, even the de-
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452 | 6 Multi-dimensional almost periodic type functions and applications

composition of a weighted pseudo-almost periodic function into its almost periodic
and ergodic component is not unique, in general (see, e. g., [710, Section 2]). In gen-
eral case, it is very difficult to state some sufficient conditions ensuring that the range
of G(⋅; ⋅) is contained in the closure of range of F(⋅; ⋅); see also [370, Theorem 2.16, The-
orem 2.17] for some particular results in this direction. These topics will be considered
somewhere else.

Basically, Corollary 6.4.3, Corollary 6.4.12 and Theorem 6.4.18 can be applied at
any place where the infinite convolution product (2.46) represents the solution of a
corresponding abstract Volterra integro-differential equation or inclusion.

In support of our investigation of multi-dimensional weighted ergodic compo-
nents, the following examples and applications are meaningful:
1. Recall that the regular solution of the wave equation utt = a2uxx in the domain
{(x, t) : x ∈ ℝ, t > 0}, equipped with the initial conditions u(x,0) = f (x) ∈ C2(ℝ)
and ut(x,0) = g(x) ∈ C1(ℝ), is given by the d’Alembert formula (3.65). Define
g[1](x) := ∫x0 g(s) ds, x ∈ ℝ (a > 0) and suppose that there exist numbersω ∈ ℝ∖{0}
and c ∈ ℂ ∖ {0} such that the following conditions hold:
(i) There exists an integer k ∈ ℕ such that ck−1 = 1 and the function x →
(f (x), g[1](x)), x ∈ ℝ is (ω, c)-periodic. Define

ω1 :=
1 + k
2

ω and ω2 :=
k − 1
2a

ω.

Then we know that the function u(⋅; ⋅) is (ω, c)-periodic in ℝ2. Let 𝒳ℝ2 denote
the space of all (ω, c)-periodic functions from ℝ2 into ℂ.

(ii) Let qi ∈ PAP0(ℝ : ℂ) for i = 1, 2. Then the solution u(⋅; ⋅), given by (3.65), with
the functions f (⋅) and g[1](⋅) replaced therein with the functions (f + q1)(⋅) and
(g[1] +q2)(⋅), is strongly asymptotically (𝒳ℝ2 ,𝒬ℝ2 )-almost periodic, where𝒬ℝ2
denotes the space PAP0,1(ℝ2,ℬ,T−σ ,ϕ) with ϕ(x) ≡ x, if σ ⩾ 2. To see this, it
suffices to show that the function

(x, t) → 1
2
[q1(x − at) + q2(x + at)] +

1
2a
[q2(x + at) − q2(x − at)], (x, t) ∈ ℝ

2

belongs to the space PAP0,1(ℝ2,ℬ,T−2,ϕ); for doing so, it suffices to consider
the case in which q2 ≡ 0. Then the required statement follows from the next
simple computation involving the corresponding definitions and the Fubini
theorem:

T−2 ∫
|(x,t)|⩽T

q1(x − at) + q1(x + at)
 dx dt

⩽ T−2 ∫
|x|⩽T ,|t|⩽T

q1(x − at) + q1(x + at)
 dx dt
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⩽ T−2
T

∫
−T

T

∫
−T

[q1(x − at)
 +
q1(x + at)

] dt dx

⩽ 2T−2
T

∫
−T

(a+1)T

∫
−(a+1)T

q1(t)
 dt dx, T > 0.

It can be shown, by a large number of very simple counterexamples, that the
choice σ = 2 is the best choice we can make for all choices of functions qi ∈
PAP0(ℝ : ℂ) for i = 1, 2.

3. Let (G(t))t⩾0 be the Gaussian semigroup. If 0 ̸= I′ ⊆ I = ℝn and F(⋅) is bounded
Bohr (ℬ, I′)-almost periodic, resp. bounded (ℬ, I′)-uniformly recurrent, then we
know that for each t0 > 0 the function ℝn ∋ x → u(x, t0) ≡ (G(t0)F)(x) ∈ ℂ is
likewise bounded Bohr (ℬ, I′)-almost periodic, resp. bounded (ℬ, I′)-uniformly
recurrent. Suppose now that 1 ⩽ p1 < ∞, Λ = ℝn, p ≡ p1, 1/p + 1/q = 1,
ϕ(x) = φ(x) = x, x ⩾ 0, F(T) = T−σ for some real number σ > 0, F1(T) = T−σ−1

(T > 0), Q̌j ∈ PAP0,p(ℝn,ℬ, F,ϕ) for all j ∈ ℕ2n , and for each B ∈ ℬ we have
supx∈B supt∈ℝn ‖Q(t; x)‖Y < ∞. Then a simple application of Theorem 6.4.20
shows that the function ℝn ∋ x → u(x, t0) ≡ (G(t0)Q)(x) ∈ ℂ belongs to the
class PAP0,p(ℝn,ℬ, F,ϕ). Here, it is only worth noting that the value of term
[φ(|Ψj(s + k)|)]Lq(Tt[0,1]n) is less than or equal to Tnt e

−|k|2/t0 for k ∈ Tt ⋅ (ℕn0 ∖ {0}).
Therefore, the function ℝn ∋ x → u(x, t0) ≡ (G(t0)[F + Q])(x) ∈ ℂ is strongly
asymptotically (𝒳ℝn ,𝒬ℝn )-almost periodic with 𝒳ℝn being the space of Bohr
(ℬ, I′)-almost periodic functions, resp. bounded (ℬ, I′)-uniformly recurrent func-
tions, and𝒬ℝn = PAP0,p(ℝn,ℬ, F,ϕ).
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7 Multi-dimensional (ω, c)-almost periodic type
functions, multi-dimensional c-almost periodic
type functions and applications

This chapter consists of three sections, Section 7.1–Section 7.3.

7.1 Multi-dimensional c-almost periodic type functions and
applications

As already emphasized, the theory of almost periodic functions of several real vari-
ables has not attracted so much attention of the authors by now. The main aim of this
section is to continue the research studies [265] and [586] by investigating various no-
tions of multi-dimensional c-almost periodic type functions and related applications,
where c ∈ ℂ ∖ {0}; for simplicity, we will not consider the corresponding Stepanov
classes here. In support of our investigation, we would like to note that Example 1
and Example 2 can be very simply reformulated for the multi-dimensional c-almost
periodicity.

Now we will briefly explain the organization and main ideas of this section. If
0 ̸= I ⊆ ℝn, I + I ⊆ I and F : I × X → Y is a continuous function, then the notions of
Bohr (ℬ, c)-almost periodicity and (ℬ, c)-uniform recurrence for F(⋅; ⋅) are introduced
in Definition 7.1.1. If the region I satisfies certain conditions, F : I × X → Y is Bohr
(ℬ, c)-almost periodic andℬ is any family of compact subsets ofX, then some sufficient
conditions ensuring that for each set B ∈ ℬ we see that the set {F(t; x) : t ∈ I , x ∈ B} is
relatively compact in Y are given in Proposition 7.1.2.

The notion introduced in Definition 6.1.14 is reexamined and extended in Defi-
nition 7.1.1, where we introduce the notions of Bohr (ℬ, I′, c)-almost periodicity and
(ℬ, I′, c)-uniform recurrence (0 ̸= I′ ⊆ I ⊆ ℝn). Example 7.1.8, although very simple
and elaborate, shows that the statement of Proposition 4.2.11 fails to be true for multi-
dimensional (ℬ, I′, c)-uniformly recurrent functions, in general. An important exten-
sion of Proposition 4.2.22 is proved in Proposition 7.1.9, where condition I + I′ = I is
crucial for proving the fact that we always have c = ±1 provided we have the existence
of a (ℬ, I′, c)-uniformly recurrent non-zero function F : I → ℝ (if F(t) ⩾ 0 for all t ∈ I,
then c = 1); see also Example 7.1.10. Proposition 7.1.9 is later employed in the proof
of Proposition 7.1.11, where it is shown that, if the function F : I × X → Y is Bohr
(ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uniformly recurrent), I + I′ = I and F(⋅; ⋅) ̸= 0, then
|c| = 1.

The first example of a multi-dimensional uniformly anti-recurrent function F :
ℝn → ℝ (c = −1) which is not almost periodic is presented in Example 6.1.16(iii)–
(b). After that, in Proposition 7.1.13, we transfer the statement of Proposition 4.2.14 for
multi-dimensional Bohr (ℬ, c)-almost periodic type functions (see also Corollary 7.1.14

https://doi.org/10.1515/9783110763522-009
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and Proposition 7.1.16 for similar results). We investigate the convolution invariance
of Bohr (ℬ, c)-almost periodic type functions, invariance of Bohr c-almost periodicity
and composition theorems for Bohr (ℬ, c)-almost periodic type functions are inves-
tigated. The main structural characterizations of𝔻-asymptotically c-almost periodic
type functions are given in Subsection 7.1.1. In this subsection, we state and prove our
main results, Theorem7.1.25 (inwhichweanalyze certain relationsbetween the classes
of I-asymptotically Bohr c-almost periodic functions of type 1 and I-asymptotically
Bohr c-almost periodic functions) and Theorem 7.1.26 (in which we analyze the ex-
tensions of Bohr (I′, c)-almost periodic functions and (I′, c)-uniformly recurrent func-
tions). The final subsection is reserved for applications of our abstract theoretical re-
sults. Unless stated otherwise, in this subsection we will always assume that c ∈ ℂ ∖
{0}.

We will consider the following notion.

Definition 7.1.1. Suppose that 0 ̸= I ⊆ ℝn, F : I × X → Y is a continuous function and
I + I ⊆ I. Then we say that:
(i) F(⋅; ⋅) is Bohr (ℬ, c)-almost periodic if and only if for every B ∈ ℬ and ε > 0 there

exists l > 0 such that for each t0 ∈ I there exists τ ∈ B(t0, l) ∩ I such that
F(t + τ; x) − cF(t; x)

Y ⩽ ε, t ∈ I , x ∈ B.

(ii) F(⋅; ⋅) is (ℬ, c)-uniformly recurrent if and only if for every B ∈ ℬ there exists a se-
quence (τk) in I such that limk→+∞ |τk | = +∞ and

lim
k→+∞

sup
t∈I ;x∈B

F(t + τk ; x) − cF(t; x)
Y = 0.

IfX ∈ ℬ, then it is also said thatF(⋅; ⋅) is Bohr c-almost periodic (c-uniformly recurrent).

Unless stated otherwise, wewill assume that 0 ̸= I ⊆ ℝn henceforth. It is clear that
any Bohr ((ℬ, c)-)almost periodic function is ((ℬ, c)-)uniformly recurrent; in general,
the converse statement does not hold. As already clarified, any Bohr almost periodic
function f : I → Y is bounded, provided that I = [0,∞) or I = ℝ. In the multi-
dimensional case, the things become more complicated and the best we can do is to
prove the following extension of the above-mentioned result following the method
proposed in the proof of Proposition 6.1.17, which is applicable in the case that I =
[0,∞)n or I = ℝn.

Proposition 7.1.2. Suppose that 0 ̸= I ⊆ ℝn, I + I ⊆ I, I is closed, F : I × X → Y is Bohr
(ℬ, c)-almost periodic and ℬ is any family of compact subsets of X. If

(∀l > 0) (∃t0 ∈ I) (∃k > 0) (∀t ∈ I)(∃t
′
0 ∈ I)

(∀t′′0 ∈ B(t
′
0, l) ∩ I) t − t

′′
0 ∈ B(t0, kl) ∩ I ,

then for each B ∈ ℬ we see that the set {F(t; x) : t ∈ I , x ∈ B} is relatively compact in Y;
in particular, supt∈I ;x∈B ‖F(t; x)‖Y <∞.
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We continue by providing the following illustrative example.

Example 7.1.3. Suppose that φ ∈ (−π,π] ∖ {0}, θ ∈ (−π,π], μ ∈ ℝn ∖ {0} and c = eiθ.
Then the trigonometric polynomial t → ei⟨μ,t⟩, t ∈ ℝn is c-almost periodic. Towards
see this, set S := {j ∈ ℕn : μj ̸= 0} and l := max{2π|μj|−1 : j ∈ S}. Let ε > 0 be fixed. Then
we have (t ∈ ℝn; τ ∈ ℝn)

e
i⟨μ,t+τ⟩ − eiθei⟨μ,t⟩

= e
i[μ1τ1+μ2τ2+⋅⋅⋅+μnτn−θ] − 1 = 2


sin(μ1τ1 + μ2τ2 + ⋅ ⋅ ⋅ + μnτn − θ

2
)

,

and therefore

e
i⟨μ,t+τ⟩ − eiθei⟨μ,t⟩ ⩽ ε, t ∈ ℝn if and only if there exists k ∈ ℤ such that

μ1τ1 + μ2τ2 + ⋅ ⋅ ⋅ + μnτn − θ ∈ [− arcsin(ε/2) + kπ, arcsin(ε/2) + kπ].

In particular, if there exists k ∈ ℤ such that μ1τ1 + μ2τ2 + ⋅ ⋅ ⋅ + μnτn = kπ + θ, then we
have |ei⟨μ,t+τ⟩ − eiθei⟨μ,t⟩| ⩽ ε, t ∈ ℝn. But, we can simply prove that for each t0 ∈ ℝn

there exists a point τ ∈ B(t0, l) such that μ1τ1 +μ2τ2 + ⋅ ⋅ ⋅+μnτn = kπ +θ for some k ∈ ℤ,
which simply implies the required result.

As in the case c = 1, we may conclude the following.

Proposition 7.1.4. Suppose that F : I × X → Y is Bohr (ℬ, c)-almost periodic/(ℬ, c)-uni-
formly recurrent, and ϕ : Y → Z is uniformly continuous on R(F) and satisfies the re-
quirement that ϕ(cy) = cϕ(y) for all y ∈ Y. Then ϕ ∘ F : I × X → Z is Bohr (ℬ, c)-almost
periodic/(ℬ, c)-uniformly recurrent.

We continue by providing the following example.

Example 7.1.5.
(i) Suppose that Fj : X → Y is a continuous function, for each B ∈ ℬ we have

supx∈B ‖Fj(x)‖Y < ∞ and the complex-valued mapping t → (∫t0 f1(s) ds, . . . ,
∫
t
0 fn(s) ds), t ⩾ 0 is c-almost periodic (1 ⩽ j ⩽ n). Set

F(t1, . . . , tn+1; x) :=
n
∑
j=1

tj+1

∫
tj

fj(s) ds ⋅ Fj(x) for all x ∈ X and tj ⩾ 0, 1 ⩽ j ⩽ n.

Then the mapping F : [0,∞)n+1 × X → Y is Bohr (ℬ, c)-almost periodic.
(ii) Suppose that F : X → Y is a continuous function, for each B ∈ ℬ we have

supx∈B ‖F(x)‖Y < ∞ and the complex-valued mapping t → fj(t), t ⩾ 0 is c-almost
periodic, resp. bounded and c-uniformly recurrent (1 ⩽ j ⩽ n). Set

F(t1, . . . , tn; x) :=
n
∏
j=1

fj(tj) ⋅ F(x) for all x ∈ X and tj ⩾ 0, 1 ⩽ j ⩽ n.
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Then the mapping F : [0,∞)n × X → Y is Bohr (ℬ, c)-almost periodic, resp.
(ℬ, c)-uniformly recurrent.

(iii) Suppose thatG : [0,∞)n → ℂ is c-almost periodic, resp. boundedand c-uniformly
recurrent, F : [0,∞) × X → Y is Bohr ℬ-almost periodic, resp. ℬ-uniformly recur-
rent, and for each set B ∈ ℬ we have supt⩾0;x∈B ‖F(t; x)‖Y <∞. Set

F(t1, . . . , tn+1; x) := G(t1, . . . , tn) ⋅ F(tn+1; x)
for all x ∈ X and tj ⩾ 0, 1 ⩽ j ⩽ n + 1.

Then the mapping F : [0,∞)n+1 × X → Y is Bohr (ℬ, c)-almost periodic, resp.
(ℬ, c)-uniformly recurrent.

The notion introduced in Definition 6.1.9 can be extended as follows.

Definition 7.1.6. Suppose that 0 ̸= I′ ⊆ I ⊆ ℝn, F : I × X → Y is a continuous function
and I + I′ ⊆ I. Then we say that:
(i) F(⋅; ⋅) is Bohr (ℬ, I′, c)-almost periodic if and only if for every B ∈ ℬ and ε > 0 there

exists l > 0 such that for each t0 ∈ I′ there exists τ ∈ B(t0, l) ∩ I′ such that

F(t + τ; x) − cF(t; x)
Y ⩽ ε, t ∈ I , x ∈ B. (7.1)

(ii) F(⋅; ⋅) is (ℬ, I′, c)-uniformly recurrent if and only if for every B ∈ ℬ there exists a
sequence (τk) in I′ such that limk→+∞ |τk | = +∞ and

lim
k→+∞

sup
t∈I ;x∈B

F(t + τk ; x) − cF(t; x)
Y = 0. (7.2)

If X ∈ ℬ, then it is also said that F(⋅; ⋅) is Bohr (I′, c)-almost periodic ((I′, c)-uniformly
recurrent).

Remark 7.1.7.
(i) Let |c| = 1 and F : ℝ → Y be a continuous function. Then F(⋅) is c-almost peri-

odic (c-uniformly recurrent) in the sense of our previous consideration if and only
if F(⋅) is Bohr ((0,∞), c)-almost periodic (((0,∞), c)-uniformly recurrent) in the
sense of Definition 7.1.6. Albeit wewill not consider here the general question con-
cerning the existence of larger sets I′′ ⊇ I′ forwhich a given a Bohr (ℬ, I′, c)-almost
periodic function F(⋅; ⋅) is also (ℬ, I′′, c)-almost periodic (the only exception is the
proof of Theorem 7.1.26), wewould like to note that any Bohr ((0,∞), c)-almost pe-
riodic function is already Bohr (ℝ, c)-almost periodic. This is clear if arg(c)/π ∉ ℚ
since we can apply then Proposition 4.2.17(i) in order to see that the function F(⋅)
is also Bohr ((0,∞), c−1)-almost periodic and therefore, given ε > 0 in advance,we
can collect all positive (ε, c)-periods of the function F(⋅) and all negative values of
all positive (ε, c−1)-periods of the function F(⋅) (with themeaning clear), obtaining
thus a relatively dense set in ℝ consisting solely of (ε, c)-periods of F(⋅). The situ-
ation is similar if arg(c)/π ∈ ℚ because then there existsm ∈ ℕ such that cm+1 = 1

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.1 Multi-dimensional c-almost periodic type functions | 459

so that cm = c−1 and we can collect all positive (ε, c)-periods of the function F(⋅)
and all negatives of all positive (ε/m, c)-periods of the function F(⋅) in order to ob-
tain a relatively dense set in ℝ consisting solely of (ε, c)-periods of F(⋅); observe
only that the assumption ‖F(t +τ)−cF(t)‖ ⩽ ε for all t ∈ ℝ and some τ ∈ ℝ implies

F(t +mτ) − c
mF(t) (7.3)

⩽ F(t +mτ) − cF(t + (m − 1)τ)
 + |c|
F(t + (m − 1)τ) − cF(t + (m − 2)τ)


+ ⋅ ⋅ ⋅ + |c|m−2F(t + 2τ) − cF(t + τ)

 + |c|
m−1F(t + τ) − cF(t)

 ⩽ mε, t ∈ ℝ.

(ii) Condition 0 ̸= I′ ⊆ I is a bit unnecessary and intended for considerations of re-
gions I for which 0 ∈ I; more precisely, the assumption I + I′ ⊆ I is mandatory and
implies that for each t0 ∈ I we have I′ ⊆ I − t0 (take, for example I = [1,∞) and
I′ = [0,∞); thenwe do not have I′ ⊆ I but the notion introduced in Definition 7.1.6
is meaningful).

(iii) The main structural properties of the functions introduced in Definition 6.1.9
and Definition 7.1.6, clarified in Theorem 4.2.75, continue to hold with appropriate
modifications. For example, the introduced spaces of the functions are translation
invariant, in a certain sense, with respect to both variables.

Clearly, the notion from Definition 6.1.9 is recovered by plugging I′ = I and any
(ℬ, I′, c)-uniformly recurrent function is (ℬ, I , c)-uniformly recurrent provided that I +
I ⊆ I. Concerning the statement of Proposition 4.2.11, we would like to present first the
following instructive example.

Example 7.1.8. Suppose that I := {(x, y) ∈ ℝ2 : x + y ⩾ 0} (I := {(x, y) ∈ ℝ2 : x + y ⩾ 0})
and I′ := {(x, y) ∈ ℝ2 : x + y = 1} (I′ := {(x, y) ∈ ℝ2 : x + y = −1}). Set F(x, y) := 2−x−y,
(x, y) ∈ I. Then I + I′ ⊆ I + I = I and for every (a, b) ∈ I′ we have F((x, y) + (a, b)) =
2−1F(x, y), (x, y) ∈ I (F((x, y) + (a, b)) = 2F(x, y), (x, y) ∈ I), so that F(⋅, ⋅) is both Bohr
(I′, 2−1)-almost periodic and 2−1-uniformly recurrent (Bohr (I′, 2)-almost periodic and
2-uniformly recurrent) but not identically equal to zero.

Furthermore, if the function F(⋅; ⋅) is Bohr (ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uni-
formly recurrent), then the function ‖F(⋅; ⋅)‖Y is Bohr (ℬ, I′, |c|)-almost periodic ((ℬ, I′,
|c|)-uniformly recurrent). The following fact should be also clarified: If the function
F(⋅; ⋅) is (ℬ, I′, c)-uniformly recurrent, then for each B ∈ ℬ we have

sup
t∈I ,x∈B

F(t; x)
Y ⩽ |c|

−1 sup
t∈I ,|t|⩾a,t∈I+I′ ,x∈B

F(t; x)
Y , (7.4)

and for each x ∈ X the function F(⋅; x) is identically equal to zero provided that the
function F(⋅; ⋅) is (ℬ, I′, c)-uniformly recurrent and lim|t|→+∞,t∈I+I′ F(t; x) = 0.

Now we are able to state and prove the following extension of Proposition 7.1.9.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



460 | 7 Multi-dimensional (ω, c)-almost periodic type functions

Proposition 7.1.9. Suppose that 0 ̸= I′ ⊆ I ⊆ ℝn and I + I′ = I. If the function F : I → ℝ
is (ℬ, I′, c)-uniformly recurrent and F ̸= 0, then c = ±1. Furthermore, if F(t) ⩾ 0 for all
t ∈ I, then c = 1.

Proof. Since we have assumed I + I′ = I and F ̸= 0, Eq. (7.4) yields the existence of a
finite real number a > 0 and a sequence (tk) in I such that |F(tk)| > a/2 for all k ∈ ℕ.
Then the final conclusion follows by repeating verbatim the arguments contained in
the proof of Proposition 7.1.9.

Remark 7.1.10. Suppose that c = 1/2 in Example 7.1.8. Then the function F(⋅; ⋅) is real-
valued so that the conclusion of Proposition 7.1.9 does not hold if the assumption I +
I′ ̸= I is neglected.

The most important corollary of Proposition 7.1.9, which extends the statement of
Proposition 4.2.11, is stated below.

Corollary 7.1.11. Suppose that 0 ̸= I′ ⊆ I ⊆ ℝn, I + I′ = I and F : I × X → Y is Bohr
(ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uniformly recurrent). If F(⋅; ⋅) ̸= 0, then |c| = 1.

Proof. By our assumption, there exist t0 ∈ I and x ∈ X such that F(t0; x) ̸= 0. Fur-
thermore, there exists B ∈ ℬ such that x ∈ B and this simply implies that the func-
tion Fx : I → Y is Bohr (ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uniformly recurrent) and
not identically equal to zero. Therefore, the function ‖Fx(⋅)‖Y is Bohr (ℬ, I′, |c|)-almost
periodic ((ℬ, I′, |c|)-uniformly recurrent) and not identically equal to zero. By Proposi-
tion 7.1.9, we get |c| = 1.

If c = ±1, then we also say that the function F(⋅) is Bohr ℬ-almost (anti-)periodic
(ℬ-uniformly (anti-)recurrent)/Bohr (ℬ, I′)-almost (anti-)periodic ((ℬ, I′)-uniformly
(anti-)recurrent). Let us recall that there are a great number of very simple examples
showing that the notion of (ℬ, I′)-almost periodicity is neither stronger nor weaker
than the notion of (ℬ, I)-almost periodicity, provided that I + I ⊆ I.

Similarly to before, we have the following.

Example 7.1.12.
(i) Suppose that the complex-valued mapping t → ∫t0 fj(s) ds, t ∈ ℝ is c-almost peri-

odic, resp. bounded and c-uniformly recurrent (1 ⩽ j ⩽ n). Set

F1(t1, . . . , t2n) :=
n
∏
j=1

tj+n

∫
tj

fj(s) ds and tj ∈ ℝ, 1 ⩽ j ⩽ 2n.

Then the mapping F1 : ℝ2n → ℂ is Bohr (I′, c)-almost periodic, resp. (I′, c)-uni-
formly recurrent, where I′ = {(τ, τ) : τ ∈ ℝn}; furthermore, if the function

t → w(t) ≡ (
t

∫
0

f1(s) ds, . . . ,
t

∫
0

fn(s) ds), t ∈ ℝ (7.5)
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is c-almost periodic, resp. bounded and c-uniformly recurrent, then the function
F1(⋅) is Bohr (I′′, c)-almost periodic, resp. (I′′, c)-uniformly recurrent, where I′′ =
{(a, a, . . . , a) ∈ ℝ2n : a ∈ ℝ}.

(ii) Suppose that an X-valued mapping t → ∫t0 fj(s) ds, t ∈ ℝ is c-almost periodic,
resp. bounded and c-uniformly recurrent, as well as that a strongly continuous
operator family (Tj(t))t∈ℝ ⊆ L(X,Y) is uniformly bounded (1 ⩽ j ⩽ n). Set

F2(t1, . . . , t2n) :=
n
∑
j=1

Tj(tj − tj+n)
tj+n

∫
tj

fj(s) ds and

tj ∈ ℝ, 1 ⩽ j ⩽ 2n.

Then the mapping F2 : ℝ2n → ℂ is Bohr (I′, c)-almost periodic, resp. (I′, c)-uni-
formly recurrent, where I′ = {(τ, τ) : τ ∈ ℝn}, but not generally Bohr c-almost
periodic, in the case of consideration of almost periodicity; furthermore, if the
function t → w(t), t ∈ ℝ given by (7.5), is c-almost periodic, resp. bounded and
c-uniformly recurrent, then the function F2(⋅) is Bohr I′′-almost periodic, where
I′′ = {(a, a, . . . , a) ∈ ℝ2n : a ∈ ℝ}.

(iii) Suppose that 0 ̸= I ⊆ ℝn, I0 = [0,∞) or I0 = ℝ, a = (a1, . . . , an) ∈ ℝn ̸= 0 and the
linear function g(t) := a1t1+⋅ ⋅ ⋅+antn, t = (t1, . . . , tn) ∈ Imaps surjectively the region
I onto I0. Suppose, further, that f : I0 → X is a c-uniformly recurrent function as
well as that a sequence (αk) in I0 satisfies the requirement that limk→+∞ |αk | =
+∞ and limk→+∞ supt∈I0 ‖f (t + αk) − cf (t)‖ = 0. Define I

′ := g−1({αk : k ∈ ℕ})
and F : I → X by F(t) := f (g(t)), t ∈ I. Then F(⋅) is (I′, c)-uniformly recurrent,
and F(⋅) is not c-almost periodic provided that f (⋅) is not c-almost periodic (note
that the conclusions established in Example 6.1.12 cannot be reformulated for the
c-uniform recurrence).

Set lI′ := {lt : t ∈ I′} for all l ∈ ℕ. The following result extends Proposition 4.2.14
for c-almost periodic functions and c-uniformly recurrent functions.

Proposition 7.1.13. Suppose that l ∈ ℕ, 0 ̸= I′ ⊆ I ⊆ ℝn, I + I′ ⊆ I and F : I × X → Y
is Bohr (ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uniformly recurrent). Then lI′ ⊆ I, I + lI′ ⊆ I
and F(⋅; ⋅) is Bohr (ℬ, lI′, cl)-almost periodic ((ℬ, lI′, cl)-uniformly recurrent).

Proof. Since I′ ⊆ I and I + I′ ⊆ I, we inductively get jI′ ⊆ I and I + jI′ ⊆ I for all j ∈ ℕ.
Keeping this inmind, the proof simply follows from the corresponding definitions and
the identity (t ∈ I, τ ∈ I′):

F(t + lτ) − clF(t) =
l−1
∑
j=0

cj[F(t + (l − j)τ) − cF(t + (l − j − 1)τ)].

The most important corollary of Proposition 7.1.13 follows by plugging l = q:
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Corollary 7.1.14. Suppose that (4.29) holds, 0 ̸= I′ ⊆ I ⊆ ℝn, I+I′ ⊆ I and F : I×X → Y is
Bohr (ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uniformly recurrent). Then the following holds:
(i) If p is even, then F(⋅; ⋅) is Bohr (ℬ, qI′)-almost periodic ((ℬ, qI′)-uniformly recurrent).
(ii) If p is odd, then F(⋅; ⋅) is Bohr (ℬ, qI′)-almost anti-periodic ((ℬ, qI′)-uniformly anti-

recurrent).

Similarly we can prove the following.

Proposition 7.1.15. Suppose that |c| = 1, arg(c) ∈ πℚ, 0 ̸= I′ ⊆ I ⊆ ℝn, I + I′ ⊆ I and F :
I × X → Y is Bohr (ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uniformly recurrent). Define Cc :=
{l ∈ ℕ : cl = 1} and Cc,−1 := {l ∈ ℕ : cl = −1}. If S is any finite non-empty subset of Cc,
resp. Cc,−1, and I′S := ⋃l∈S lI

′, then F(⋅; ⋅) is Bohr (ℬ, I′S)-almost periodic ((ℬ, I
′
S)-uniformly

recurrent), resp. Bohr (ℬ, I′S)-almost anti-periodic ((ℬ, I
′
S)-uniformly anti-recurrent).

The subsequent result follows from the argumentation contained in the proof of
Proposition 4.2.16(i).

Proposition 7.1.16. Let |c| = 1 and arg(c)/π ∉ ℚ. If 0 ̸= I′ ⊆ I ⊆ ℝn, I + I′ ⊆ I,
lI′ = I′ for all l ∈ ℕ and F : I × X → Y is a bounded, Bohr (ℬ, I′, c)-almost periodic
((ℬ, I′, c)-uniformly recurrent) function, then the function F(⋅; ⋅) is Bohr (ℬ, I′, c)-almost
periodic ((ℬ, I′, c)-uniformly recurrent) for all c′ ∈ S1.

Now we would like to state the following result.

Proposition 7.1.17. Suppose that h ∈ L1(ℝn), 0 ̸= I′ ⊆ ℝn and the function F(⋅; ⋅) is Bohr
(ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uniformly recurrent). If
(B)b For every B ∈ ℬ, there exists a finite real constant cB > 0 such that supt∈ℝn ,x∈B ‖F(t;

x)‖Y ⩽ cB,

then the function

(h ∗ F)(t; x) := ∫
ℝn

h(σ)F(t − σ; x) dσ, t ∈ ℝn, x ∈ X,

is Bohr (ℬ, I′, c)-almost periodic ((ℬ, I′, c)-uniformly recurrent) and satisfies (B)b.

Proof. Since h ∈ L1(ℝn), the prescribed assumptions imply that the function (h∗F)(⋅; ⋅)
is well defined and satisfies (B)b. The continuity of the function (h ∗ F)(⋅; ⋅) follows
from the dominated convergence theorem, the continuity of the function F(⋅; ⋅) and
condition (B)b. Let B ∈ ℬ and ε > 0 be fixed. Then there exists l > 0 such that for each
t0 ∈ I′ there exists τ ∈ B(t0, l) ∩ I′ such that (7.1) holds with I = ℝn. Therefore,

(h ∗ F)(t + τ; x) − c(h ∗ F)(t; x)
Y

⩽ ∫
ℝn

h(σ)
 ⋅
F(t + τ − σ; x) − cF(t − σ; x)

Y dσ,

for any t ∈ ℝn and x ∈ B. This simply implies the required result.
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Suppose that |c| = 1. Concerning the assertion of Theorem 4.2.28, we will first ob-
serve that any almost periodic function F ∈ APℝn∖{0}(ℝn : X) can be uniformly approxi-
mated by trigonometric polynomialswhose frequencies belong to the setℝn∖{0}. If we
denote by APc,0(ℝn : X) the linear span of all c-almost periodic functions F : ℝn → X
and by APc,0(ℝn : X) its closure in AP(ℝn : X), then it follows from the above and our
conclusion established in Example 7.1.3 that APℝn∖{0}(ℝn : X) ⊆ APc,0(ℝn : X). But, it is
not clear how to prove or disprove the converse inclusion provided that arg(c) ∈ π ⋅ℚ.

Before moving to the next subsection, we will state and prove a composition the-
orem for multi-dimensional Bohr (ℬ, c)-almost periodic type functions. Suppose that
F : I × X → Y and G : I × Y → Z are given functions; then the multi-dimensional
Nemytskii operatorW : I ×X → Z is defined by (6.20). Set R(F) ≡ {F(t; x) : t ∈ I , x ∈ X}
and suppose that there exists a finite real constant L > 0 such that

G(t; y) − G(t; y
′)Z ⩽ L

y − y
′Y , t ∈ I , y ∈ R(F), y′ ∈ cR(F). (7.6)

The following result is an extension of Theorem 4.2.36.

Theorem 7.1.18. Suppose that the functions F : I × X → Y and G : I × Y → Z are
continuous as well as 0 ̸= I′ ⊆ I ⊆ ℝn and (7.6) holds.
(i) Suppose further that, for every B ∈ ℬ and ε > 0, there exists l > 0 such that for each

t0 ∈ I′ there exists τ ∈ B(t0, l) ∩ I′ such that (7.1) holds and

G(t + τ; cy) − cG(t; y)
Z ⩽ ε, t ∈ I , y ∈ R(F). (7.7)

Then the function W(⋅; ⋅), given by (6.20), is Bohr (ℬ, I′, c)-almost periodic.
(ii) Suppose further that, for every B ∈ ℬ, there exists a sequence (τk) in I′ such that

limk→+∞ |τk | = +∞, (7.2) holds and

lim
k→+∞

sup
t∈I ;x∈B

G(t + τk ; cF(t; x)) − cG(t; F(t; x))
Y = 0. (7.8)

Then the function W(⋅; ⋅), given by (6.20), is (ℬ, I′, c)-uniformly recurrent.

Proof. We will prove only (i). The continuity of the function W(⋅; ⋅) is obvious. Then
the final conclusion follows from the assumption made, the corresponding definition
of Bohr (ℬ, I′, c)-almost periodicity and the next simple computation:

G(t + τ; F(t + τ; x)) − G(t; F(t; x))
Z

⩽ G(t + τ; F(t + τ; x)) − G(t + τ; cF(t; x))
Z

+ G(t + τ; cF(t; x)) − cG(t; F(t; x))
Z

⩽ LF(t + τ; x) − cF(t; x)
Y +
G(t + τ; cF(t; x)) − cG(t; F(t; x))

Z ,

for any t ∈ I, τ ∈ I′ and x ∈ X.
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7.1.1 𝔻-asymptotically (ℬ, c)-almost periodic type functions

We open this subsection by introducing the following notion.

Definition 7.1.19. Suppose that the set 𝔻 ⊆ I ⊆ ℝn is unbounded, 0 ̸= I′ ⊆ I ⊆ ℝn

and F : I × X → Y is a continuous function. Then we say that F(⋅; ⋅) is (strongly)
𝔻-asymptotically Bohr (ℬ, I′, c)-almost periodic, resp. (strongly) 𝔻-asymptotically
(ℬ, I′, c)-uniformly recurrent, if and only if there exist a Bohr (ℬ, I′, c)-almost peri-
odic function (G : ℝn × X → Y) G : I × X → Y , resp. a (ℬ, I′, c)-uniformly recurrent
function (G : ℝn × X → Y) G : I × X → Y and a function Q ∈ C0,𝔻,ℬ(I × X : Y)
such that F(t; x) = G(t; x) + Q(t; x) for all t ∈ I and x ∈ X. If I′ = I, then we also say
that F(⋅; ⋅) is (strongly) 𝔻-asymptotically Bohr (ℬ, c)-almost periodic, resp. (strongly)
𝔻-asymptotically (ℬ, c)-uniformly recurrent; if X ∈ ℬ, then we omit the term “ℬ” from
the notation introduced, with the meaning clear.

Before we go any further, we would like to present the following extension of The-
orem 4.2.37.

Theorem 7.1.20. Suppose that the functions Fh : I×X → Y, F0 : I×X → Y,Gh : I×Y → Z
and G0 : I × Y → Z are continuous, F = Fh + F0, G = Gh + G0 as well as 0 ̸= I′ ⊆ I ⊆ ℝn

and (7.6) holds with the functions F(⋅; ⋅) and G(⋅; ⋅) replaced therein with the functions
Fh(⋅; ⋅) and Gh(⋅; ⋅), respectively.
(i) Suppose further that, for every B ∈ ℬ and ε > 0, there exists l > 0 such that for each

t0 ∈ I′ there exists τ ∈ B(t0, l) ∩ I′ such that (7.1) holds with the function F(⋅; ⋅) re-
placed with the function Fh(⋅; ⋅) and (7.7) holds with the functions F(⋅; ⋅) and G(⋅; ⋅) re-
placed thereinwith the functions Fh(⋅; ⋅) andGh(⋅; ⋅), respectively. If F0 ∈ C0,𝔻,ℬ(I×X :
Y) and for each B ∈ ℬ we have limt∈𝔻,|t|→+∞ G0(t; F(t; x)) = 0, uniformly for x ∈ B,
then the function W(⋅; ⋅), given by (6.20), is𝔻-asymptotically Bohr (ℬ, I′, c)-almost
periodic.

(ii) Suppose further that, for every B ∈ ℬ, there exists a sequence (τk) in I′ such that
limk→+∞ |τk | = +∞, (7.2) holds and (7.8) holds with the functions F(⋅; ⋅) and G(⋅; ⋅)
replaced therein with the functions Fh(⋅; ⋅) and Gh(⋅; ⋅), respectively. If F0 ∈ C0,𝔻,ℬ(I ×
X : Y) and for each B ∈ ℬ we have limt∈𝔻,|t|→+∞ G0(t; F(t; x)) = 0, uniformly for
x ∈ B, then the function W(⋅; ⋅), given by (6.20), is (ℬ, I′, c)-uniformly recurrent.

Proof. Wewill outline all details of theproof of (i) for the sakeof completeness. Clearly,
the following decomposition holds true:

G(⋅; F(⋅; ⋅)) = Gh(⋅; Fh(⋅; ⋅)) + [Gh(⋅; F(⋅; ⋅)) − Gh(⋅; Fh(⋅; ⋅))] + G0(⋅; F(⋅; ⋅)).

Due to Theorem 7.1.18, we see that the functionGh(⋅; Fh(⋅; ⋅)) is Bohr (ℬ, I′, c)-almost pe-
riodic. Furthermore, the prescribed assumption implies that the function G0(⋅; F(⋅; ⋅))
belongs to the space C0,𝔻,ℬ(I × X : Y). This also holds for the function Gh(⋅; F(⋅; ⋅)) −
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Gh(⋅; Fh(⋅; ⋅)) since the function Gh(⋅; ⋅) satisfies the Lipschitz condition with respect to
the first variable and F0 ∈ C0,𝔻,ℬ(I × X : Y).

Recall that It = (−∞, t1] × (−∞, t2] × ⋅ ⋅ ⋅ × (−∞, tn] and 𝔻t = It ∩ 𝔻 for any t =
(t1, t2, . . . , tn) ∈ ℝn. Concerning the invariance of strong𝔻-asymptotical c-almost peri-
odicity under the actions of finite convolution products, we will formulate the follow-
ing result (the proof is similar to the proof of the corresponding result with c = 1 and
therefore is omitted).

Proposition 7.1.21. Suppose that (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator
family such that ∫(0,∞)n ‖R(t)‖ dt <∞. If f : I → X is strongly𝔻-asymptotically c-almost
periodic,

lim
|t|→∞,t∈𝔻

∫
It∩𝔻c

R(t − s)
 ds = 0

and for each r > 0 we have

lim
|t|→∞,t∈𝔻

∫
𝔻t∩B(0,r)

R(t − s)
 ds = 0,

then the function

F(t) := ∫
𝔻t

R(t − s)f (s) ds, t ∈ I ,

is strongly𝔻-asymptotically c-almost periodic.

Assuming that 𝔻 = [α1,∞) × [α2,∞) × ⋅ ⋅ ⋅ × [αn,∞) for some real numbers
α1, α2, . . . , αn, then 𝔻t = [α1, t1] × [α2, t2] × ⋅ ⋅ ⋅ × [αn, tn]. In this case, the function
F(t) = ∫αt R(t − s)f (s) ds, t ∈ I is strongly 𝔻-asymptotically c-almost periodic, where
we accept the notation (6.28).

Let F(⋅; ⋅) be I-asymptotically c-uniformly recurrent,G : I×X → Y ,Q ∈ C0,I ,ℬ(I×X :
Y) and F(t; x) = G(t; x) + Q(t; x) for all t ∈ I and x ∈ X. Then, for every x ∈ X, we have

c{G(t; x) : t ∈ I , x ∈ X} ⊆ {F(t; x) : t ∈ I , x ∈ X}.

The following proposition can be deduced as in the case that c = 1.

Proposition 7.1.22.
(i) Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is Bohr (ℬ, c)-almost periodic

((ℬ, c)-uniformly recurrent). If for each B ∈ ℬ there exists εB > 0 such that the se-
quence (Fj(⋅; ⋅)) converges uniformly to a function F(⋅; ⋅) on the set B∘∪⋃x∈𝜕B B(x, εB),
then the function F(⋅; ⋅) is Bohr (ℬ, c)-almost periodic ((ℬ, c)-uniformly recurrent).
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(ii) Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is I-asymptotically Bohr
(ℬ, c)-almost periodic (I-asymptotically (ℬ, c)-uniformly recurrent). If for each B ∈
ℬ there exists εB > 0 such that the sequence (Fj(⋅; ⋅)) converges uniformly to a func-
tion F(⋅; ⋅) on the set B∘ ∪ ⋃x∈𝜕B B(x, εB), then the function F(⋅; ⋅) is I-asymptotically
Bohr (ℬ, c)-almost periodic (I-asymptotically (ℬ, c)-uniformly recurrent).

Nowwewill introduce the following definition (recall that, for any set Λ ⊆ ℝn and
numberM > 0, we set ΛM := {λ ∈ Λ ; |λ| ⩾ M}).

Definition 7.1.23. Suppose that 𝔻 ⊆ I ⊆ ℝn and the set 𝔻 is unbounded, as well as
0 ̸= I′ ⊆ I ⊆ ℝn, F : I ×X → Y is a continuous function and I + I′ ⊆ I. Then we say that:
(i) F(⋅; ⋅) is𝔻-asymptotically Bohr (ℬ, I′, c)-almost periodic of type 1 if and only if for

every B ∈ ℬ and ε > 0 there exist l > 0 andM > 0 such that for each t0 ∈ I′ there
exists τ ∈ B(t0, l) ∩ I′ such that

F(t + τ; x) − cF(t; x)
Y ⩽ ε, provided t, t + τ ∈ 𝔻M , x ∈ B. (7.9)

(ii) F(⋅; ⋅) is 𝔻-asymptotically (ℬ, I′, c)-uniformly recurrent of type 1 if and only if for
every B ∈ ℬ there exist a sequence (τk) in I′ and a sequence (Mk) in (0,∞) such
that limk→+∞ |τk | = limk→+∞Mk = +∞ and

lim
k→+∞

sup
t,t+τk∈𝔻Mk

;x∈B

F(t + τk ; x) − cF(t; x)
Y = 0.

If I′ = I, then we also say that F(⋅; ⋅) is 𝔻-asymptotically Bohr (ℬ, c)-almost peri-
odic of type 1 (𝔻-asymptotically (ℬ, c)-uniformly recurrent of type 1); furthermore,
if X ∈ ℬ, then it is also said that F(⋅; ⋅) is 𝔻-asymptotically Bohr (I′, c)-almost peri-
odic of type 1 (𝔻-asymptotically (I′, c)-uniformly recurrent of type 1). If I′ = I and
X ∈ ℬ, then we also say that F(⋅; ⋅) is𝔻-asymptotically Bohr c-almost periodic of type 1
(𝔻-asymptotically c-uniformly recurrent of type 1). As before, we remove the prefix
“𝔻-” in the case that𝔻 = I and remove the prefix “(ℬ, )” in the case that X ∈ ℬ.

Clearly, we have the following.

Proposition 7.1.24. Suppose that 𝔻 ⊆ I ⊆ ℝn and the set 𝔻 is unbounded, as well
as 0 ̸= I′ ⊆ I ⊆ ℝn, F : I × X → Y is a continuous function and I + I′ ⊆ I. If F(⋅; ⋅)
is 𝔻-asymptotically Bohr (ℬ, I′, c)-almost periodic, resp. 𝔻-asymptotically (ℬ, I′, c)-
uniformly recurrent, then F(⋅; ⋅) is 𝔻-asymptotically Bohr (ℬ, I′, c)-almost periodic of
type 1, resp.𝔻-asymptotically (ℬ, I′, c)-uniformly recurrent of type 1.

Concerning the converse of Proposition 7.1.24, we will state and prove the follow-
ing statement which can be applied in the case that I = [0,∞)n.

Theorem 7.1.25. Suppose that 0 ̸= I ⊆ ℝn, I + I = I, I is closed and F : I → Y is
a uniformly continuous, bounded I-asymptotically Bohr c-almost periodic function of
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type 1, where |c| = 1. If

(∀l > 0) (∀M > 0) (∃t0 ∈ I) (∃k > 0) (∀t ∈ IM+l)(∃t
′
0 ∈ I)

(∀t′′0 ∈ B(t
′
0, l) ∩ I) t − t

′′
0 ∈ B(t0, kl) ∩ IM ,

there exists L > 0 such that IkL ∖ I(k+1)L ̸= 0 for all k ∈ ℕ and IM + I ⊆ IM for all M > 0,
then the function F(⋅) is I-asymptotically Bohr c-almost periodic.

Proof. Sincewehave assumed that the function F(⋅) is bounded and |c| = 1, we canuse
the foregoing arguments in order to see that the function F(⋅) is I-asymptotically Bohr
almost periodic function of type 1. By the foregoing, it follows that for each sequence
(bk) in I there exist a subsequence (bkl ) of (bk) and a function F∗ : I → Y such that
liml→+∞ F(t +bkl ) = F

∗(t), uniformly in t ∈ I. We continue the proof by observing that
for each integer k ∈ ℕ there exist lk > 0 and Mk > 0 such that for each t0 ∈ I there
exists τ ∈ B(t0, l) ∩ I such that (7.9) holds with c = 1, ε = 1/k and𝔻 = I. Let τk be any
fixed element of I such that |τk | > Mk + k2 and (7.9) holds with c = 1, ε = 1/k and𝔻 = I
(k ∈ ℕ). Then there exist of a subsequence (τkl ) of (τk) and a function F

∗ : I → Y such
that

lim
l→+∞

F(t + τkl ) = F
∗(t), uniformly for t ∈ I . (7.10)

The mapping F∗(⋅) is clearly continuous and now we will prove that F∗(⋅) is Bohr
c-almost periodic. Let ε > 0 be fixed, and let l > 0 and M > 0 be such that for each
t0 ∈ I there exists τ ∈ B(t0, l) ∩ I such that (7.9) holds with 𝔻 = I and the number ε
replaced therein by ε/3. Let t ∈ I be fixed, and let l0 ∈ ℕ be such that |t+ τkl0 | ⩾ M and
|t + τ + τkl0 | ⩾ M. Then we have

F
∗(t + τ) − cF∗(t)
⩽ F
∗(t + τ) − F(t + τ + τkl0 )‖ +

F(t + τ + τkl0 ) − cF(t + τkl0 )


+ cF(t + τkl0 ) − cF
∗(t) ⩽ 3 ⋅ (ε/3) = ε,

as required. The function t → F(t) − F∗(t), t ∈ I belongs to the space C0,I (I : Y)
due to (7.10) and the fact that F : I → Y is an I-asymptotically Bohr almost periodic
function of type 1, which completes the proof.

For any set S ⊆ ℝn and for any integer l ∈ ℕ, we define the set Sl inductively by
S1 := S and Sl+1 := Sl + S (l = 1, 2, . . .). Furthermore, we define Ω := I′ and ΩS := I′ ∪ S
if arg(c)/π ∉ ℚ. If arg(c)/π ∈ ℚ, then we take any non-empty finite set of integers
S1 ⊆ ℤ ∖ {0} such that cm+1 = 1 for all m ∈ S1 and any non-empty finite set of integers
S2 ⊆ ℕ such that cl = 1 for all l ∈ S2; in this case, we set Ω := (I′⋃m∈S1 (−mI

′))l and
ΩS := Ω ∪ S.

Nowwe are able to state and prove the following result concerning the extensions
of Bohr (I′, c)-almost periodic functions and (I′, c)-uniformly recurrent functions.
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Theorem 7.1.26. Suppose that I′ ⊆ I ⊆ ℝn, I + I′ ⊆ I, the set I′ is unbounded, |c| = 1,
F : I → Y is a uniformly continuous, Bohr (I′, c)-almost periodic function, resp. a uni-
formly continuous, (I′, c)-uniformly recurrent function, S ⊆ ℝn is bounded and condition
(AP-E) holds. Then there exists a uniformly continuous, Bohr (ΩS , c)-almost periodic,
resp. a uniformly continuous, (ΩS , c)-uniformly recurrent, function F̃ : ℝn → Y such that
F̃(t) = F(t) for all t ∈ I; furthermore, in c-almost periodic case, the uniqueness of such a
function F̃(⋅) holds provided that ℝn ∖ ΩS is a bounded set.

Proof. We will consider only uniformly continuous, Bohr (I′, c)-almost periodic func-
tions. In this case, for each natural number k ∈ ℕ there exists a point τk ∈ I′ such that
‖F(t + τk) − cF(t)‖Y ⩽ 1/k for all t ∈ I and k ∈ ℕ; furthermore, since the set I′ is un-
bounded, we may assume without loss of generality that limk→+∞ |τk | = +∞. Hence,
we have

lim
k→+∞

F(t + τk) = cF(t), uniformly for t ∈ I . (7.11)

If t′ ∈ ℝn, then there exists a finite real numberM > 0 such that t′ + I′M ⊆ I, and now
wewill prove that the sequence (F(t′+τk))k∈ℕ is Cauchy and therefore convergent. Let
ε > 0 be fixed; then we have the existence of a number k0 ∈ ℕ such that t′ + τk ∈ I for
all k ⩾ k0. Suppose that k, m ⩾ k0. Then we have

F(t
′ + τk) − F(t

′ + τm)
 ⩽
F(t
′ + τk) − c

−1F(t′ + τk + τ)


+ c
−1F(t′ + τk + τ) − c

−1F(t′ + τm + τ)


+ c
−1F(t′ + τm + τ) − F(t

′ + τm)
,

for any τ ∈ I′ such that t′ + τ ∈ I. Since the function F(⋅) is Bohr (I′, c)-almost periodic,
we can always find such a number τ so that the first and the third addend in the above
estimates are less than or equal to ε/3; for the second addend in the above estimate,
we can find a sufficiently large number k1 ⩾ k0 such that

c
−1F(t′ + τk + τ) − c

−1F(t′ + τm + τ)
 < ε/3,

for all k, m ⩾ k1 (see (7.11)). Therefore, limk→+∞ F(t′ + τk) := F̃(t′) exists. The func-
tion F̃(⋅) is clearly uniformly continuous because F(⋅) is uniformly continuous; fur-
thermore, by construction, we see that F̃(t)/c = F(t) for all t ∈ I. Now we will prove
that the function F̃(⋅) is Bohr (ΩS , c)-almost periodic. Let a number ε > 0 be given.
Then there exists l > 0 such that for each t0 ∈ I′ there exists τ ∈ B(t0, l) ∩ I′ such that
‖F(t + τ) − cF(t)‖Y ⩽ ε/2 for all t ∈ I. Let t′ ∈ ℝn be fixed. For any such numbers t0 ∈ I′

and τ ∈ B(t0, l) ∩ I′, we have

F̃(t
′ + τ) − cF̃(t′)Y =

 limk→+∞
[F(t′ + τ + τk) − cF(t

′ + τk)]
Y

⩽ lim sup
k→+∞

F(t
′ + τ + τk) − cF(t

′ + τk)
Y ⩽ ε/2, t′ ∈ ℝn. (7.12)
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If arg(c)/π ∉ ℚ, this clearly implies that F(⋅) is Bohr (Ω, c)-almost periodic and there-
fore Bohr (ΩS , c)-almost periodic. If arg(c)/π ∈ ℚ, then we may assume without loss
of generality that the sets S1 = {m} and S2 = {l} are singletons (this follows from the
corresponding definition of Bohr (I′, c)-almost periodicity). Given ε > 0 in advance,
we may assume that (7.12) holds with the number ε/2 replaced therein with the num-
ber ε/l|m|. By (7.3), we see that the number −mτ ∈ Ω is an (ε/l, c)-period of F(⋅), with
the meaning clear. Arguing as in the proof of the estimate (7.3), it readily follows that
any finite sum τ1 + ⋅ ⋅ ⋅+ τl, where τi ∈ I′⋃m∈S1 (−mI

′) for all i ∈ ℕl, is an (ε, c)-period of
F(⋅). As above, this implies that F(⋅) is Bohr (Ω, c)-almost periodic and therefore Bohr
(ΩS , c)-almost periodic.

Finally, if the setℝn ∖ΩS is bounded, we can argue as before to prove the unique-
ness of extension in the c-almost periodic case.

Remark 7.1.27.
(i) It is clear that Theorem 7.1.26 strengthens Theorem 6.1.37, wherewe have assumed

that c = 1 and ΩS = [(I′ ∪ (−I′)) + (I′ ∪ (−I′))] ∪ S.
(ii) In the case that arg(c)/π ∉ ℚ, it is not clearwhether there exists a set Ω′S ⊇ ΩS such

that the constructed function F̃ : ℝn → Y is Bohr (Ω′S , c)-almost periodic. Concern-
ing this issue, it is worth noting that the notion introduced in Definition 7.1.6 can
be further extended by allowing that the set I′ depends on the set B and the num-
ber ε > 0. This could probably fix some things here, but we will skip all related
details for the sake of brevity.

Before proceeding, we would like to propose the following definition.

Definition 7.1.28. Suppose that 0 ̸= I ⊆ ℝn and I + I ⊆ I. Then we say that I is admis-
sible with respect to the c-almost periodic extensions if and only if for any complex
Banach space Y and for any uniformly continuous, Bohr c-almost periodic function
F : I → Y there exists a unique Bohr c-almost periodic function F̃ : ℝn → Y such that
F̃(t) = F(t) for all t ∈ I. If c = ±1, then we also say that the region I is admissible with
respect to the almost (anti-)periodic extensions.

If |c| = 1, arg(c)/π ∈ ℚ, (v1, . . . , vn) is a basis of ℝn and

I′ = I = {α1v1 + ⋅ ⋅ ⋅ + αnvn : αi ⩾ 0 for all i ∈ ℕn}

is a convex polyhedral in ℝn, then ΩS = ℝ
n and therefore the set I is admissible with

respect to the c-almost periodic extensions. It is very simple to construct some sets
which are not admissible with respect to the c-almost periodic extensions; for exam-
ple, the set I = [0,∞)× {0} ⊆ ℝ2 is not admissible with respect to the c-almost periodic
extensions since there is no c-almost periodic extension of the function F(x, y) = y,
(x, y) ∈ I to the whole Euclidean space.

Several interesting examples and applications of our abstract theoretical results
can be found in [653]. Here we will present only one application, closely related with
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Theorem 4.2.40. Let (τk) be a sequence in ℝn, limk→+∞ |τk | = +∞ and

BUR(τk);c(ℝ
n : X) := {F : ℝn → X is bounded, continuous and

lim
k→+∞

sup
t∈ℝ

F(t + τk) − cf (t)
∞ = 0}.

Equippedwith themetric d(⋅, ⋅) := ‖⋅−⋅‖∞, BUR(τk);c(ℝ
n : X) becomes a completemetric

space. Define I′ := {τk : k ∈ ℕ} and consider the following Hammerstein integral
equation of convolution type on ℝn:

y(t) = ∫
ℝn

k(t − s)G(s, y(s)) ds, t ∈ ℝn, (7.13)

where G : ℝn × X → X is (ℬ, I′, c)-uniformly recurrent with ℬ being the collection of
all bounded subsets of X. Suppose, further, that the set {G(t,B) : t ∈ ℝn} is bounded
for any bounded subset B of X as well as that there exists a finite real constant L > 0
such that (7.6) holds with X = Z = Y , for every y, y′ ∈ ℝn, and (7.8) holds with the
term F(t; x) replacedwith the term y(t) for any function y ∈ BUC(τk);c(ℝ

n : X). Applying
Proposition 7.1.17 and Theorem 7.1.18(ii), we see that the mapping

BUR(τk);c(ℝ
n : X) ∋ y → ∫

ℝn

k(⋅ − s)G(s, y(s)) ds ∈ BUR(τk);c(ℝ
n : X)

is well defined. If we additionally assume that L∫ℝn |k(t)| dt < 1, then an application
of the Banach contraction principle shows that there exists a unique solution of (7.13)
which belongs to the space BUR(τk);c(ℝ

n : X).

7.2 Multi-dimensional (ω, c)-almost periodic type functions and
applications

Themain aim of this section is to introduce and analyze various notions of (ω, c)-peri-
odicity and (ω, c)-almost periodicity for vector-valued functions depending of sev-
eral real variables; we provide certain applications to the abstract partial differential
equations, as well [651]. In such a way, we continue our analysis of one-dimensional
(ω, c)-almost periodic type functions from Section 4.1. For multi-periodic solutions of
various classes of ordinary differential equations and partial differential equations,
we also refer the reader to [164, 165, 450, 583, 683, 684, 775, 905, 906, 984, 985, 987].
Especially, we would like to mention the investigations of G. Nadin [806–808] con-
cerning the space-time periodic reaction–diffusion equations, L. Rossi [879] concern-
ing Liouville type results for almost periodic type linear operators and the investiga-
tion of B. Scarpellini [910] concerning the space almost periodic solutions of reaction–
diffusion equations and the recent investigation of R. Xie, Z. Xia, J. Liu [1043] about
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quasi-periodic limit functions, (ω1,ω2)-(quasi)-periodic limit functions and their ap-
plications (two-dimensional setting).

The organization and main ideas of this section can be briefly described as fol-
lows. The main structural results concerning multi-dimensional (ω, c)-periodic func-
tions and multi-dimensional (ωj, cj)j∈ℕn -periodic functions are obtained in Propo-
sitions 7.2.4, 7.2.5, 7.2.7, 7.2.8 and 7.2.10. The corresponding classes of asymptoti-
cally (ω, c)-almost periodic type functions are introduced in Definition 7.2.14. Sub-
section 7.2.1 investigates (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic type functions. In Defini-
tion 7.2.15, we introduce the notion of (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodicity, (ωj, cj; rj,
𝕀′j )j∈ℕn -uniform recurrence and (ωj, cj)j∈ℕn -almost automorphy. The main structural
features of the function spaces introduced in Definition 7.2.15 are stated in Proposi-
tion 7.2.18; we also discuss the convolution invariance of the function spaces intro-
duced here before switching to the third subsection, which is reserved for the study
of (I′, a,ω, c)-uniform recurrence of type 1 (2) and the (I′, a,ω, c)-almost periodicity
of type 1 and type 2. Here we continue our investigation of the one-dimensional case
and prove two negative results, Theorem 7.2.21 and Theorem 7.2.23, saying that the in-
troduction of Definition 7.2.19 is basically an unsatisfactory way to extend the notion
of (ω, c)-almost periodicity. In the final subsection, we provide certain applications to
the abstract Volterra integro-differential equations in Banach spaces.

The following definition is crucial in our analysis.

Definition 7.2.1. Let ω ∈ ℝn ∖ {0}, c ∈ ℂ ∖ {0} and ω + I ⊆ I. A continuous function
F : I → X is said to be (ω, c)-periodic if and only if F(t + ω) = cF(t), t ∈ I.

If F : I → X is a Bloch (p,k)-periodic function, then F(⋅) is (p, c)-periodic with
c = ei⟨k,p⟩; conversely, if |c| = 1 and F : I → X is (ω, c)-periodic, then we can always
find a point k ∈ ℝn such that the function F(⋅) is Bloch (p,k)-periodic. In the case that
|c| ̸= 1, we have the following: if F : I → X is (ω, c)-periodic, then F(t +mω) = cmF(t),
t ∈ I, m ∈ ℕ, so that the existence of a point t0 ∈ I such that F(t0) ̸= 0 implies
limm→∞ ||F(t0 + mω)|| = +∞, provided that |c| > 1, and limm→∞ ||F(t0 + mω)|| = 0,
provided that |c| < 1.

If c = 1, resp. c = −1, then we also say that the function F(⋅) is ω-periodic, resp.
ω-anti-periodic. It is clear that, if F(⋅) is (ω, c)-periodic, k ∈ ℕ and ck = 1, resp. ck = −1,
then F(⋅) is (kω)-periodic, resp. (kω)-anti-periodic.

In [522, Definition 2.1], the authors have assumed that any Bloch (p,k)-periodic is
bounded a priori, which is a slightly redundant condition as the following example
shows.

Example 7.2.2. There exists a continuous, unbounded function F : ℝn → ℝ which
satisfies F(t+(1, 1, . . . , 1)) = F(t) for all t ∈ ℝn.We can simply construct such a function,
with n = 2, as follows. Let F0 : {(t1, t2) ∈ ℝ2 : 0 ⩽ t1 + t2 ⩽ 2} be any continuous function
satisfying that:

F0(t1, t2) = F(t1 + 1, t2 + 1), provided (t1, t2) ∈ ℝ
2 and t1 + t2 = 0, (7.14)
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the set {(4k√2,−4k√2) : k ∈ ℕ} is unbounded, and (7.15)

F0((4k + 2)√2,−(4k + 2)√2) = 1, k ∈ ℕ. (7.16)

Due to condition (7.14), we can extend the function F0(⋅) to a continuous function F :
ℝ2 → ℝwhich satisfies F(t1 + 1, t2 + 1) = F(t1, t2) for all t1, t2 ∈ ℝ. Clearly, this function
is unbounded due to condition (7.15).

The following definition is also meaningful.

Definition 7.2.3. Letωj ∈ ℝ∖ {0}, cj ∈ ℂ∖ {0} andωjej + I ⊆ I (1 ⩽ j ⩽ n). A continuous
function F : I → X is said to be (ωj, cj)j∈ℕn -periodic if and only if F(t + ωjej) = cjF(t),
t ∈ I, j ∈ ℕn.

It is clear that, if F : I → X is (ωj, cj)j∈ℕn -periodic, then F(t + mωjej) = cmj F(t),
t ∈ I,m ∈ ℕ, j ∈ ℕn, so that the existence of a point t0 ∈ I such that F(t0) ̸= 0 implies
limm→∞ ||F(t0+mωjej)|| = +∞, provided that |cj| > 1, and limm→∞ ||F(t0+mωjej)|| = 0,
provided that |cj| < 1, for some j ∈ ℕn.

If cj = 1 for all j ∈ ℕn, resp. cj = −1 for all j ∈ ℕn, then we also say that the
function F(⋅) is (ωj)j∈ℕn -periodic, resp. (ωj)j∈ℕn -anti-periodic. It is clear that, if F(⋅) is
(ωj, cj)j∈ℕn -periodic, k ∈ ℕ and ckj = 1 for all j ∈ ℕn, resp. c

k
j = −1 for all j ∈ ℕn, then

F(⋅) is (kωj)j∈ℕn -periodic, resp. (kωj)j∈ℕn -anti-periodic.
The classes of (ω, c)-periodic functions and (ωj, cj)j∈ℕn -periodic functions are

closed under the operation of the pointwise convergence of the functions, as easily ap-
proved. In the scalar-valued case, the following holds: If the function F : I → ℂ∖{0} is
(ω, c)-periodic, resp. (ωj, cj)j∈ℕn -periodic, then the function (1/F)(⋅) is (ω, 1/c)-periodic,
resp. (ωj, 1/cj)j∈ℕn -periodic. It is also clear that we have the following.

Proposition 7.2.4.
(i) Let ω, a ∈ ℝn ∖ {0}, c ∈ ℂ ∖ {0}, α ∈ ℂ, ω + I ⊆ I and a + I ⊆ I. If the function

F : I → X is (ω, c)-periodic, then −ω − I ⊆ −I and the function F̌ : −I → X, defined
by F̌(x) := F(−x), x ∈ I, is (−ω, c)-periodic. Moreover, ‖F(⋅)‖ is (ω, |c|)-periodic, the
function Fa : I → X defined by Fa(t) := F(t + a), t ∈ I is (ω, c)-periodic and the
function αF(⋅) is (ω, c)-periodic.

(ii) Let ωj ∈ ℝ ∖ {0}, cj ∈ ℂ ∖ {0}, α ∈ ℂ, ωjej + I ⊆ I (1 ⩽ j ⩽ n) and a + I ⊆ I.
If a continuous function F : I → X is (ωj, cj)j∈ℕn -periodic, then −ωjej − I ⊆ −I
(1 ⩽ j ⩽ n) and the function F̌ : −I → X is (−ωj, cj)j∈ℕn -periodic. Moreover, ‖F(⋅)‖ is
(ωj, |cj|)j∈ℕn -periodic, the function Fa : I → X defined above is (ωj, cj)j∈ℕn -periodic
and the function αF(⋅) is (ωj, cj)j∈ℕn -periodic.

Proposition 7.2.5. Letωj ∈ ℝ∖{0}, cj ∈ ℂ∖{0}andωjej+I ⊆ I (1 ⩽ j ⩽ n). If a continuous
function F : I → X is (ωj, cj)j∈ℕn -periodic, then ω + I ⊆ I, where ω := ∑

n
j=1 ωjej, and the

function F(⋅) is (ω, c)-periodic with c =: ∏nj=1 cj.
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The converse statement is not true in the general case n > 1, as the following
simple counterexample shows.

Example 7.2.6. Consider the function F : ℝ2 → ℝ from Example 7.2.2. Then there do
not exist numbersω1, ω2 ∈ ℝ∖ {0} and numbers c1, c2 ∈ ℂ∖ {0} such that the function
F(⋅) is (ωj, cj)j∈ℕ2 -periodic. Ifwe assume the contrary, thenwewouldhaveF(t1+ω1,0) =
c1F(t1,0) for all t1 ∈ ℝ. If |c1| ⩽ 1, then the contradiction is obvious since (7.15) implies
the unboundedness of the function F(⋅,0), because F(8k,0) = F(4k√2,−4k√2) for all
k ∈ ℕ. If |c1| > 1, then the contradiction is obvious due to condition (7.16), which
implies that the function F(⋅,0) cannot tend to plus infinity as the time variable tends
to plus infinity (see also [586, Remark 2.4]).

Concerning the boundedness of (ωj, cj)j∈ℕn -periodic functions, we will state only
one result.

Proposition 7.2.7. Suppose that ωj ∈ ℝ∖ {0}, cj ∈ ℂ∖ {0}, M > 0, ωjej+ I ⊆ I (1 ⩽ j ⩽ n),
the set I is closed, the function F : I → X is (ωj, cj)j∈ℕn -periodic, |cj| ⩽ 1 for all j ∈ ℕn
and, for every t = (t1, t2, . . . , tn) ∈ I, there exist a point η = (η1, η2, . . . , ηn) ∈ IM and
integers kj ∈ ℕ (1 ⩽ j ⩽ n) such that tj = kjωj + ηj (1 ⩽ j ⩽ n). Then the function F(⋅) is
bounded.

Proof. Let a point t = (t1, t2, . . . , tn) ∈ I be fixed, and let η ∈ I and integers kj ∈ ℕ
(1 ⩽ j ⩽ n) satisfy the above requirements. Then we have t = η + ∑nj=1 kjωjej so that
F(t) = ∏nj=1 c

kj
j F(η). Since I is closed, IM is compact and there exist a finite constant

M1 > 0 such that ‖F(x)‖ ⩽ M1 for all x ∈ IM . Then ‖F(t)‖ ⩽ M1 since |cj| ⩽ 1 for all
j ∈ ℕn.

We profile the class of (ω, c)-periodic functions in the following way.

Proposition 7.2.8. Let ω = (ω1,ω2, . . . ,ωn) ∈ ℝ
n ∖ {0}, ω + I ⊆ I, c ∈ ℂ ∖ {0} and

S := {i ∈ ℕn : ωi ̸= 0}. Denote by A the collection of all tuples a = (a1, a2, . . . , a|S|) ∈ ℝ|S|

such that∑i∈S ai = 1. Then a continuous function F : I → X is (ω, c)-periodic if and only
if, for every (some) a ∈ A, the function Ga : I → X, defined by

Ga(t1, t2, . . . , tn) := c
−∑i∈S

ai ti
ωi F(t1, t2, . . . , tn), t = (t1, t2, . . . , tn) ∈ I , (7.17)

is (ω, 1)-periodic.

Proof. Let a point t = (t1, t2, . . . , tn) ∈ I be fixed. Then it is clear that Ga(t +ω) = Ga(t) if
and only if

c−∑i∈S
ai(ti+ωi)

ωi F(t1 + ω1, t2 + ω2, . . . , tn + ωn) = c
−∑i∈S

ai ti
ωi F(t1, t2, . . . , tn)

if and only if F(t + ω) = cF(t).

We illustrate Proposition 7.2.8 with the following example.
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Example 7.2.9 (see also [522, pp. 22–23]). Suppose that ω = (ω1,ω2, . . . ,ωn) ∈ ℝ
n ∖

{0},k ∈ ℝn∖{0}, a ∈ A, (bl) is any sequence of complexnumbers such that |bl| = O(l−2),
⟨k,ω⟩ = 2π/3 and

F(t1, t2, . . . , tn) = c
∑i∈S

ai ti
ωi ∑

l∈1+3ℕ
ble

il⟨t,k⟩, t = (t1, t2, . . . , tn) ∈ ℝ
n.

Then F(⋅) is (3ω, c)-almost periodic.

Similarly, we can prove the following.

Proposition 7.2.10. Let ωj ∈ ℝ∖ {0}, cj ∈ ℂ∖ {0}, ωjej+ I ⊆ I (1 ⩽ j ⩽ n) and the function
F : I → X is continuous. For each j ∈ ℕn, we define the function Gj : I → X by

Gj(t1, t2, . . . , tn) := c
−

tj
ωj

j F(t1, t2, . . . , tn), t = (t1, t2, . . . , tn) ∈ I . (7.18)

Then F(⋅) is (ωj, cj)j∈ℕn -periodic if and only if, for every t = (t1, t2, . . . , tn) ∈ I and j ∈ ℕn,
we have

Gj(t1, t2, . . . , tj + ωj, . . . , tn) = Gj(t1, t2, . . . , tj, . . . , tn).

Therefore, we have the following.

Example 7.2.11. Let cj ∈ ℂ ∖ {0} for all j ∈ ℕn. Then the function

F(t1, . . . , tn) :=
n
∏
j=1

c
tj
2π
j sin tj, t = (t1, . . . , tn) ∈ ℝ

n,

is (2π, cj)j∈ℕn -periodic.

If ω ∈ ℝn ∖ {0}, ci ∈ ℂ ∖ {0} for i = 1, 2, ω + I ⊆ I, the function G : I → ℂ
is (ω, c1)-periodic and the function H : I → X is (ω, c2)-periodic, then the function
F(⋅) := G(⋅)H(⋅) is (ω, c1c2)-periodic. For the class of (ωj, cj)j∈ℕn -periodic functions, we
can clarify the following result.

Proposition 7.2.12. Let ωj ∈ ℝ ∖ {0}, cj,i ∈ ℂ ∖ {0} and ωjej + I ⊆ I (1 ⩽ j ⩽ n, 1 ⩽ i ⩽ 2).
Suppose that the function G : I → ℂ is (ωj, cj,1)j∈ℕn -periodic and the function H : I → X
is (ωj, cj,2)j∈ℕn -periodic. Set cj := cj,1cj,2, 1 ⩽ j ⩽ n. Then the function F(⋅) := G(⋅)H(⋅) is
(ωj, cj)j∈ℕn -periodic.

Now we would like to state and prove the following result.

Proposition 7.2.13. Suppose that ω ∈ ℝn ∖ {0}, c ∈ ℂ ∖ {0}, S = {i ∈ ℕn : ωi ̸= 0},
a = (a1, a2, . . . , a|S|) ∈ ℝ|S| and∑i∈S ai = 1, resp. ωj ∈ ℝ ∖ {0} and cj ∈ ℂ ∖ {0} (1 ⩽ j ⩽ n).
Suppose, further, that F : ℝn → X is (ω, c)-periodic and the function Ga(⋅), defined
through (7.17) is bounded, resp. F : ℝn → X is (ωj, cj)j∈ℕn -periodic and for each j ∈ ℕn the
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function Gj(⋅), defined through (7.18) is bounded. If the function c−∑i∈S aiti/ωih(t1, . . . , tn)
belongs to the space L1(ℝn), resp. for each j ∈ ℕn the function c−tj/ωjh(t1, . . . , tn) belongs
to the space L1(ℝn), then the function

(h ∗ F)(t) := ∫
ℝn

h(y)F(t − y) dy, t ∈ ℝn,

is (ω, c)-periodic, resp. (ωj, cj)j∈ℕn -periodic.

Proof. Wewill consider only (ω, c)-periodicity. By Proposition 7.2.8, it suffices to show
that

c−∑i∈S
ai(ti+ωi)

ωi (h ∗ F)(t + ω) = c−∑i∈S
ai ti
ωi (h ∗ F)(t) (7.19)

for every fixed point t = (t1, . . . , tn) ∈ ℝn. Note first that the value (h ∗ F)(t) is well
defined, since we have assumed that the function c−∑i∈S aiti/ωih(t1, . . . , tn) belongs to
the space L1(ℝn), and that the function Ga(⋅), defined through (7.17), is bounded and

c−∑i∈S aiti/ωi (h ∗ F)(t)

= ∫
ℝn

[c−∑i∈S aiyi/ωih(y1, . . . , yn)] ⋅ [c
−∑i∈S ai(ti−yi)/ωiF(t − y)] dy. (7.20)

Keeping inmind (7.20) and the dominated convergence theorem, we see that the func-
tion (h ∗ F)(⋅) is continuous. Similarly, by plugging t + ω in place of t in (7.20), we see
that (7.19) holds because∑i∈S ai = 1.

Concerning asymptotically (ω, c)-periodic type functions, we will use the follow-
ing definition, only.

Definition 7.2.14. Suppose that 𝔻 ⊆ I ⊆ ℝn, the set 𝔻 is unbounded, ω ∈ ℝn ∖ {0},
c ∈ ℂ ∖ {0}, ω + I ⊆ I, ωj ∈ ℝ ∖ {0}, cj ∈ ℂ ∖ {0}, ωjej + I ⊆ I (1 ⩽ j ⩽ n, 1 ⩽ i ⩽ 2)
and F : I → X. Then we say that the function F(⋅) is𝔻-asymptotically (ω, c)-periodic,
resp.𝔻-asymptotically (ωj, cj)j∈ℕn -periodic, if and only if there exists a (ω, c)-periodic,
resp. (ωj, cj)j∈ℕn -periodic, function F0 : I → X and a function C0,𝔻,ℬ(I : X) such that
F(t) = F0(t) + Q(t), t ∈ I.

7.2.1 (ωj , cj ; rj , 𝕀′j )j∈ℕn -Almost periodic type functions
We can introduce and analyze several various generalizations of the class of multi-
dimensional (ωj, cj)j∈ℕn -periodic functions with the help of Proposition 7.2.10. For ex-
ample, suppose that ωj ∈ ℝ ∖ {0}, cj ∈ ℂ ∖ {0} and ωjej + I ⊆ I (1 ⩽ j ⩽ n); if a
function F : I → X is (ωj, cj)j∈ℕn -periodic, then for each j ∈ ℕn and for every k ∈ ℕ
we have F(t + kωjej) = ckj F(t), t ∈ I, j ∈ ℕn and Gj(t + kωjej) = Gj(t), t ∈ I, j ∈ ℕn. Set
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W+ := {j ∈ ℕn : ωj > 0} andW− := {j ∈ ℕn : ωj < 0}, as well as Ij,t := {x ⩾ 0 : t + xej ∈ I}
if j ∈ W+, resp. Ij,t := {x ⩾ 0 : t− xej ∈ I} if j ∈ W− (t ∈ I), and Gj,t(x) := Gj(t+ xej), x ∈ Ij,t
if j ∈ W+, resp. Gj,t(x) := Gj(t − xej), x ∈ Ij,t if j ∈ W− (t ∈ I). Then we can generalize the
class of (ωj, cj)j∈ℕn -periodic functions as follows.

Definition 7.2.15. Suppose that ωj ∈ ℝ ∖ {0}, cj ∈ ℂ ∖ {0}, ωjej + I ⊆ I (1 ⩽ j ⩽ n) and
F : I → X is a continuous function. Let rj ∈ ℂ∖{0} for 1 ⩽ j ⩽ n, and let 0 ̸= I′j,t ⊆ Ij,t ⊆ ℝ,
Ij,t + I′j,t ⊆ Ij,t for 1 ⩽ j ⩽ n, t ∈ I. Set 𝕀

′
j := {I

′
j,t : t ∈ I}. Then we say that the function F(⋅)

is:
(i) (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic if and only if, for every j ∈ ℕn and t ∈ I, the

function Gj,t(⋅) defined above is (I′j,t, rj)-almost periodic;
(ii) (ωj, cj; rj, 𝕀′j )j∈ℕn -uniformly recurrent if and only if, for every j ∈ ℕn and t ∈ I, the

function Gj,t(⋅) is (I′j,t, rj)-uniformly recurrent.

Suppose that I = ℝn. Then we say that the function F(⋅) is:
(iii) (ωj, cj)j∈ℕn -almost automorphic if and only if, for every j ∈ ℕn, for every t ∈ ℝn and

for every real sequence (bk), there exist a subsequence (ak) of (bk) and a function
F∗j,t : ℝ→ X such that

lim
k→+∞

Gj(t + (x + ak)ej) = F
∗
j,t(x) and lim

k→+∞
F∗j,t(x − ak) = Gj(t + xej), (7.21)

pointwise for x ∈ ℝ; if, moreover, the convergence in (7.21) is uniform in the vari-
able x on compact subsets of ℝ, then we say that the function F(⋅) is compactly
(ωj, cj)j∈ℕn -almost automorphic.

Remark 7.2.16.
(i) It is clear that I = ℝn is equivalent to saying that I + ηej ⊆ I for all η ∈ ℝ ∖ {0} and

j ∈ ℕn.
(ii) It is clear that (i) implies (ii) and that the almost periodicity of the function

G̃j,t(x) := Gj(t + xej), x ∈ ℝ for all j ∈ ℕn and t ∈ I implies (iii), which is equiva-
lent to saying that the function G̃j,t(⋅) defined above is almost automorphic for all
j ∈ ℕn and t ∈ I.

Now we will provide an illustrative example in which we have I = ℝn, ωj = cj = 1
and Ij,t = I′j,t = [0,∞) for all j ∈ ℕn and t ∈ ℝ

n:

Example 7.2.17.
(i) Suppose that rj = 1 for all j ∈ ℕn. Then the function

F(t1, . . . , tn) :=
n
∏
j=1
[sin tj + sin(√2tj)], t = (t1, . . . , tn) ∈ ℝ

n,

is (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic but not (ωj, cj)j∈ℕn -periodic.
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(ii) Suppose that rj = −1 for all j ∈ ℕn. Then the function

F(t1, . . . , tn) :=
n
∏
j=1
[(sin tj) ⋅

∞

∑
n=1

1
n
sin2(

tj
3n
)], t = (t1, . . . , tn) ∈ ℝ

n,

is (ωj, cj; rj, 𝕀′j )j∈ℕn -uniformly recurrent but not (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic.
(iii) Suppose that rj = 1 for all j ∈ ℕn. Then the function

F(t1, . . . , tn) :=
n
∏
j=1

sin( 1
2 + sin tj + sin(√2tj)

), t = (t1, . . . , tn) ∈ ℝ
n,

is (ωj, cj)j∈ℕn -almost automorphic but not (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic.

The function spaces introduced in Definition 7.2.15 are translation invariant and
closed under the pointwise multiplications with complex scalars. Furthermore, if the
function F(⋅) is (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic, then it can be easily proved that the
function ‖F(⋅)‖ is (ωj, |cj|; |rj|, 𝕀′j )j∈ℕn -almost periodic. Suppose now that the function
F : I → ℂ ∖ {0} is (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic, |F(t)| ⩾ m > 0 for all t ∈ I, and
|cj| = 1 for all j ∈ ℕn. Then the function (1/F)(⋅) is (ωj, 1/cj; rj, 𝕀′j )j∈ℕn -almost periodic,
which can be simply proved as follows. Let j ∈ ℕn, t ∈ I and ε > 0 be fixed; without
loss of generality, wemay assume that j ∈ W+. Let τ ∈ I′j,t and |Gj,t(x + τ)− rjGj,t(x)| < ε,
x ⩾ 0. After multiplication with ctj/ωj

j , we get

c
− x+τωj
j F(t1, t2, . . . , tj + x, . . . , tn) − rjF(t1, t2, . . . , tj + (x + τ), . . . , tn)

 ⩽ ε, x ⩾ 0. (7.22)

Hence, for every x ⩾ 0, we have



c
tj+x+τ
ωj

j

F(t1, t2, . . . , tj + x + τ, . . . , tn)
− r−1j

c
tj+x
ωj
j

F(t1, t2, . . . , tj + x, . . . , tn)



= c
τ
ωj
j F(t1, t2, . . . , tj + x, . . . , tn) − r

−1
j F(t1, t2, . . . , tj + x + τ, . . . , tn)



⋅
1

|F(t1, t2, . . . , tj + x + τ, . . . , tn)| ⋅ |F(t1, t2, . . . , tj + x, . . . , tn)|
⩽ m−2|rj|

−1ε,

where we have employed (7.22) in the last estimate. This simply implies the required
result.

By a careful examination of the notion introduced in Definition 7.2.15 and the
paragraph preceding it, we may deduce that the (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodicity
of the function F : I → X implies the (−ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodicity of the
function F̌(⋅). We leave all details concerning the proof of this fact to the interested
reader.
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Using already proved results about multi-dimensional c-almost periodic func-
tions and corresponding definitions, we may deduce the following proposition.

Proposition 7.2.18.
(i) Suppose that, for every j ∈ ℕn and t ∈ I, we have Ij,t + I′j,t = Ij,t and the function

F : I → X is (ωj, cj; rj, 𝕀′j )j∈ℕn -uniformly recurrent. Then, for every j ∈ ℕn, we have
rj = ±1; if, additionally, F(t) ⩾ 0 for all t ∈ I, then, for every j ∈ ℕn, we have
rj = 1.

(ii) Suppose that l ∈ ℕ, and F : I → X is (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic ((ωj, cj; rj,
𝕀′j )j∈ℕn -uniformly recurrent). Then, for every j ∈ ℕn and t ∈ I, we have lI

′
j,t ⊆ Ij,t, Ij,t +

lI′j,t ⊆ Ij,t and F(⋅) is (ωj, cj; rlj , l𝕀
′
j )j∈ℕn -almost periodic ((ωj, cj; rlj , l𝕀

′
j )j∈ℕn -uniformly

recurrent), where l𝕀′j := {lI
′
j,t : t ∈ I} for all j ∈ ℕn.

(iii) Suppose that (4.29) holds and F : I → X is (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic
((ωj, cj; rj, 𝕀′j )j∈ℕn -uniformly recurrent). Then the following holds:
(a) If p is even, then F(⋅) is (ωj, cj; 1, 𝕀′j )j∈ℕn -almost periodic ((ωj, cj; 1, q𝕀′j )j∈ℕn -uni-

formly recurrent), where q𝕀′j := {qI
′
j,t : t ∈ I} for all j ∈ ℕn.

(b) If p is odd, then F(⋅) is (ωj, cj;−1, 𝕀′j )j∈ℕn -almost periodic ((ωj, cj;−1, q𝕀′j )j∈ℕn -uni-
formly recurrent).

(iv) Let |c| = 1 and arg(c)/π ∉ ℚ. If, for every j ∈ ℕn and t ∈ I, lI′j,t = I
′
j,t for all l ∈ ℕ

and F : I → X is a bounded, (ωj, cj; rj, 𝕀′j )j∈ℕn -almost periodic ((ωj, cj; rj, 𝕀′j )j∈ℕn -uni-
formly recurrent) function, then the function F(⋅) is (ωj, cj; r′j , 𝕀

′
j )j∈ℕn -almost periodic

((ωj, cj; r′j , 𝕀
′
j )j∈ℕn -uniformly recurrent) for all (r

′
1, . . . , r

′
n) ∈ (S1)

n.

Concerning the convolution invariance of spaces introduced in Definition 7.2.15,
the following important fact should be emphasized: we have introduced the notion of
(I′j,t, rj)-almost periodicity, for example, by requiring that, for every j ∈ ℕn and t ∈ I, the
functionGj,t(⋅) is (I′j,t, rj)-almost periodic. Unfortunately, sometimesweneed to assume
that, for every j ∈ ℕn, the function Gj,t(⋅) is (I′j,t, rj)-almost periodic uniformly in the
variable t ∈ I, in a certain sense. For simplicity, let us assume that I = ℝn, which
immediately implies that, for every j ∈ ℕn and t ∈ ℝn, we have Ij,t = [0,∞). Assume,
further, that for each j ∈ ℕn there exists a set Aj ⊆ [0,∞) such that Aj = I′j,t for every
t ∈ ℝn, as well as that for each ε > 0 there exists l > 0 such that for each x0 ∈ Aj we
have the existence of a number x ∈ B(x0, l) ∩ Aj such that

Gj,t(x + τ) − rjGj,t(x)
 ⩽ ε, x ⩾ 0, t ∈ ℝn,

i. e.,

c
−
tj+x+τ
ωj

j F(t + (x + τ)ej) − rjc
−
tj+x
ωj

j F(t + xej)
 ⩽ ε, x ⩾ 0, t ∈ ℝn. (7.23)

If h ∈ L1(ℝn) and F(⋅) is a bounded, continuous function, then the function (h∗F)(⋅) is
well defined on ℝn, bounded and continuous. If we assume, in addition to all above,
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that |cj| = 1 for all j ∈ ℕn, then the estimate (7.23) will be invariant under the action of
convolution h ∗ ⋅, since

c
−
tj+x+τ
ωj

j (h ∗ F)(t + (x + τ)ej) − rjc
−
tj+x
ωj

j (h ∗ F)(t + xej)


⩽ ∫
ℝn

h(y)

c
−
tj+x+τ
ωj

j F(t + (x + τ)ej − y) − rjc
−
tj+x
ωj

j F(t + xej − y)
 dy

= ∫
ℝn

h(y)

c
−
tj−yj+x+τ

ωj
j F(t + (x + τ)ej − y) − rjc

−
tj−yj+x

ωj
j F(t + xej − y)

 dy

⩽ ε, x ⩾ 0, t ∈ ℝn,

where we have employed (7.23) in the last estimate. We close this subsection with the
observation that a similar result can be established for the (ωj, cj; rj, 𝕀′j )j∈ℕn -uniform
recurrence and the (ωj, cj)j∈ℕn -almost automorphy.

7.2.2 Further generalizations of the concepts (ω, c)-periodicity and
(ωj , cj)j∈ℕn -periodicity

Unless stated otherwise, in this subsection we will assume that 0 ̸= I′ ⊆ I ⊆ ℝn,
I + I′ ⊆ I, ω ∈ ℝn ∖ {0} and c ∈ ℂ ∖ {0}. Define S := {i ∈ ℕn : ωi ̸= 0} and A to be the
collection of all tuples a = (a1, a2, . . . , a|S|) ∈ ℝ|S| such that∑i∈S ai = 1. Let a ∈ A.

We introduce the following notion.

Definition 7.2.19. We say that a continuous function F : I → X is:
(i) (I′, a,ω, c)-uniformly recurrent of type 1, resp. (I′, a,ω, c)-uniformly recurrent of

type 2, if and only if there exists a sequence (αk = (αk,1, . . . , αk,n)) in I′ such that
limk→+∞ |αk | = +∞ and

lim
k→+∞

sup
t∈I


F(t + αk) − c

∑i∈S
aiαk,i
ωi F(t)

= 0, (7.24)

resp.

lim
k→+∞

sup
t∈I


c−∑i∈S

aiαk,i
ωi F(t + αk) − F(t)


= 0; (7.25)

(ii) (I′, a,ω, c)-almost periodic of type 1, resp. (I′, a,ω, c)-almost periodic of type 2, if
and only if for each ε > 0 and t0 ∈ I′ there exist a finite number l > 0 and a point
τ ∈ B(t0, l) ∩ I′ such that

sup
t∈I


F(t + τ) − c∑i∈S

aiτi
ωi F(t)

< ε,
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resp.

sup
t∈I


c−∑i∈S

aiτi
ωi F(t + τ) − F(t)


< ε. (7.26)

If |c| = 1, then the concept (I′, a,ω, c)-uniform recurrence of type 1 and the con-
cept (I′, a,ω, c)-uniform recurrence of type 2 coincide, as easily approved by multiply-
ing (7.24) with c−∑i∈S

aiαk,i
ωi ; this also holds for the concepts (I′, a,ω, c)-almost periodicity

of type 1 and (I′, a,ω, c)-almost periodicity of type 2, but then we can say a little bit
more. In actual fact, we can multiply the two sides of (7.26) with c−∑i∈S

ai ti
ωi in order to

see that F(⋅) is (I′, a,ω, c)-almost periodic of type 2 (1) if and only if the function Ga(⋅),
defined through (7.17), is I′-almost periodic; in the usually considered case I = I′ = ℝn,
this is equivalent to saying that the function F(⋅) is almost periodic.

The function spaces introduced in Definition 7.2.15 are translation invariant and
closed under the pointwisemultiplicationswith complex scalars; if I = ℝn and F(⋅) is a
bounded, continuous function which belongs to any of the above introduced function
spaces, then for each h ∈ L1(ℝn) the function (h ∗ F)(⋅) is also bounded and belongs
to the same space. Furthermore, if the function F(⋅) is (I′, a,ω, c)-uniformly recurrent
of type 1, resp. (I′, a,ω, c)-uniformly recurrent of type 2 [(I′, a,ω, c)-almost periodic of
type 1, resp. (I′, a,ω, c)-almost periodic of type 2], then F(⋅) is (I′, a,ω, |c|)-uniformly
recurrent of type 1, resp. (I′, a,ω, |c|)-uniformly recurrent of type 2 [(I′, a,ω, |c|)-almost
periodic of type 1, resp. (I′, a,ω, |c|)-almost periodic of type 2]. Concerning the invari-
ance of the function spaces under the operation of uniform convergence, we will only
state that the assumptions ajωj > 0 for all j ∈ S, |c| ⩽ 1, I′ ⊆ [0,∞)n and the se-
quence (Fk) of (I′, a,ω, c)-uniformly recurrent functions of type 1 [(I′, a,ω, c)-almost
periodic functions of type 1] uniformly converging to a function F : I → X imply that
the function F(⋅) is likewise (I′, a,ω, c)-uniformly recurrent of type 1 [(I′, a,ω, c)-almost
periodic of type 1].

For the sequel, we need the following lemma.

Lemma 7.2.20. Suppose that 0 ̸= I′ ⊆ I ⊆ ℝn, I = −I, I + I′ = I and the function
F : I → X is continuous. Then F(⋅) is (I′, a,ω, c)-uniformly recurrent of type 1 [(I′, a,ω, c)-
almost periodic of type 1] if and only if F̌(⋅) is (I′, a,ω, 1/c)-uniformly recurrent of type 2
[(I′, a,ω, 1/c)-almost periodic of type 2].

Proof. Wewill present themaindetails of theproof provided thatF(⋅) is (I′, a,ω, c)-uni-
formly recurrent of type 1. Then there exists a sequence (αk = (αk,1, . . . , αk,n)) in I′ such
that limk→+∞ |αk | = +∞ and (7.24) holds. Since we have assumed I = −I and I + I′ = I,
the proof simply follows from the next computation (k ∈ ℕ):

sup
t∈I


(1/c)−∑i∈S

aiαk,i
ωi F̌(t + αk) − F̌(t)



= sup
t∈I

(1/c)
−∑i∈S

aiαk,i
ωi F(−t − αk) − F(−t)
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= sup
t∈−(I+I′)


c∑i∈S

aiαk,i
ωi F(t) − F(t + αk)



= sup
t∈−I


c∑i∈S

aiαk,i
ωi F(t) − F(t + αk)



= sup
t∈I


c∑i∈S

aiαk,i
ωi F(t) − F(t + αk)


.

Now we will state and prove the following result.

Theorem 7.2.21. Suppose that 0 ̸= I′ ⊆ I ⊆ ℝn, I′ is unbounded, F : I → X is continuous,
I + I′ = I, ω ∈ ℝn ∖ {0}, |c| > 1, S = ℕn and any component of a tuple a ∈ A is positive.
Suppose further that, for every t ∈ I and j ∈ ℕn, we have ωjtj ⩾ 0. Then the following
assertions are equivalent:
(i) The function F(⋅) is (I′, a,ω, c)-uniformly recurrent of type 1.
(ii) The function F(⋅) is (I′, a,ω, c)-uniformly recurrent of type 2.
(iii) There exists a sequence (αk = (αk,1, . . . , αk,n)) in I′ such that limk→+∞ |αk | = +∞ and

the function Ga : I → X, defined through (7.17), satisfies Ga(t + αk) = Ga(t) for all
t ∈ I and k ∈ ℕ.

(iv) There exists a sequence (αk = (αk,1, . . . , αk,n)) in I′ such that limk→+∞ |αk | = +∞ and

F(t + αk) = c
∑i∈S

aiαk,i
ωi F(t), t ∈ I , k ∈ ℕ. (7.27)

(v) There exists a point ω ∈ I′ ∖ {0} such that

F(t + ω) = c∑i∈S
aiωi
ωi F(t), t ∈ I . (7.28)

Proof. If F(⋅) is (I′, a,ω, c)-uniformly recurrent of type 1, then our assumptions aj > 0
and αk,j/ωi > 0 (k ∈ ℕ, j ∈ ℕn) imply that

c
−∑nj=1

ajαk,j
ωj  ⩽ 1,

so that (7.24) implies (7.25) after multiplication with c
−∑nj=1

ajαk,j
ωj ; hence, (i) implies (ii).

Suppose now that F(⋅) is (I′, a,ω, c)-uniformly recurrent of type 2 and the sequence
(αk) in I′ satisfies (7.25). Let k ∈ ℕ be fixed. Then (7.25) implies the existence of a finite
real numberM ⩾ 1 such that

sup
t∈I

Ga(t + αk) − Ga(t)
 ⩽ M|c|

−∑nj=1 ajtj/ωj .

Since we have assumed that aj > 0 and tj/ωj > 0 for all j ∈ ℕn, the above estimate
yields

Ga(t + αk) − Ga(t)
 ⩽ M|c|

−min{aj :j∈ℕn}[max{ωj :j∈ℕn}]−1[|t1|+⋅⋅⋅+|tn|],
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for all t ∈ I,which implies that lim|t|→∞ ‖Ga(t+αk)−Ga(t)‖ = 0.On theotherhand, (7.25)
implies

lim
m→+∞
Ga(t + αm + αk) − Ga(t + αm)

 = 0.

Therefore, the function t → Ga(t+αk)−Ga(t), t ∈ I is I′-uniformly recurrent and tends
to zero as |t|→ +∞. Since we have assumed that I + I′ = I, by the foregoing it follows
that Ga(t+αk) = Ga(t) for all t ∈ I, which implies (iii). The implications (iii)⇒ (iv), (iv)
⇒ (i) and (iv)⇒ (v) are trivial. To complete the proof, it suffices to show that (v) implies
(iv). This follows by plugging αk := kω for all k ∈ ℕ since (7.28) implies inductively

F(t + kω) = c∑i∈S
aikωi
ωi F(t), t ∈ I , k ∈ ℕ.

Remark 7.2.22.
(i) Since I′ is unbounded, it is clear that the (I′, a,ω, c)-almost periodicity of type 1

implies the (I′, a,ω, c)-uniform recurrence of type 1 for F(⋅) as well as that the
(I′, a,ω, c)-almost periodicity of type 1 implies the (I′, a,ω, c)-almost periodicity
of type 2 for F(⋅), which further implies the (I′, a,ω, c)-uniform recurrence of type
2 for F(⋅).

(ii) Let (αk) be a sequence from (iv). Then it is clear that (iv) implies that for each
number k ∈ ℕ the function F(⋅) is (I′k , a,ω, c)-almost periodic of type 1, where
I′k := {mαk : m ∈ ℕ}. Keeping Theorem 7.2.21 and this observation in mind, we
have extended so the first part of Theorem 4.1.13(i), where we have assumed that
I = [0,∞).

Concerning the statement of Theorem 4.1.13(i) with the interval I = ℝ, we would
like to note that it can be extended to the higher dimensions as follows. Suppose that
I = I0 ∪ I1, where 0 ̸= I′0 ⊆ I0 ⊆ ℝn, I0 + I′0 = I0 and the function F : I → X is
(I0, a,ω, c)-uniformly recurrent of type 2, where |c| > 1, S = ℕn, any component of
a tuple a ∈ A is positive and, for every t ∈ I0 and j ∈ ℕn, we have ωjtj ⩾ 0. Then
the restriction of the function F(⋅) to the interval I0 is (I′0, a,ω, c)-uniformly recurrent
of type 2, as well, so that we can apply Theorem 7.2.21 in order to conclude that (7.27)
holds for every t ∈ I0 and k ∈ ℕ. To show the validity of this condition for all t ∈ I and
k ∈ ℕ, we may assume additionally that:
(a) For every t ∈ I1, there exists m0 ∈ ℕ such that, for every m ∈ ℕ with m ⩾ m0, we

have t + αm ∈ I0.

Applying (7.27) twice, with t+αm and t the first time, and with t+αk +αm and t+αk the
second time, we easily see that (7.27) holds for every t ∈ I. Therefore, we have proved
the following.

Theorem 7.2.23. Suppose that 0 ̸= I′0 ⊆ I0 ⊆ ℝ
n, I′0 is unbounded, I0+ I

′
0 = I0, I = I0∪ I1,

condition (a) holds and F : I → X is continuous. Suppose that ω ∈ ℝn ∖ {0}, |c| > 1,
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S = ℕn and any component of a tuple a ∈ A is positive. Suppose further that, for every
t ∈ I0 and j ∈ ℕn, we have ωjtj ⩾ 0. Then the following assertions are equivalent:
(i) The function F(⋅) is (I′0, a,ω, c)-uniformly recurrent of type 1.
(ii) The function F(⋅) is (I′0, a,ω, c)-uniformly recurrent of type 2.
(iii) There exists a sequence (αk = (αk,1, . . . , αk,n)) in I′0 such that limk→+∞ |αk | = +∞

and the function Ga : I → X, defined through (7.17), satisfies Ga(t + αk) = Ga(t) for
all t ∈ I and k ∈ ℕ.

(iv) There exists a sequence (αk = (αk,1, . . . , αk,n)) in I′0 such that limk→+∞ |αk | = +∞
and (7.27) holds.

(v) There exists a point ω ∈ I′ ∖ {0} such that (7.28) holds.

Suppose now that |c| < 1, S := ℕn, any component of a tuple a ∈ A is positive
and, for every t ∈ I0 and j ∈ ℕn, we have ωjtj ⩾ 0. Applying Lemma 7.2.20, we can
simply extend the statement of Theorem 4.1.13(ii) to the higher dimensions, provided
that condition (a) holds with I1 = −I0. Details can be left to the interested reader.

In the case that ajωj > 0 for all j ∈ S = ℕn, |c| < 1, I = I′ = [0,∞)n, then it
can be simply proved as in the one-dimensional case that the function F : I → X is
(I′0, a,ω, c)-almost periodic of type 1 if and only if there exists a finite constant M ⩾ 1
such that

F(t)
 ⩽ M|c|

∑i∈S aiti/ωi , t ∈ I ;

the statement of Proposition 4.1.22 can be also extended to the higher dimensions pro-
vided that the function F(⋅) is bounded, ajωj > 0 for all j ∈ S = ℕn and |c| < 1.
Without any essential changes of the proof of Proposition 4.1.23, we may deduce the
following (the study of vector-valued Levitan N-almost periodic functions on topo-
logical (semi-)groups andmulti-dimensional vector-valued LevitanN-almost periodic
functions will be carried out somewhere else; see also the interesting article [1064] by
R. Yuan).

Proposition 7.2.24. Suppose that ajωj > 0 for all j ∈ S = ℕn, |c| < 1 and I = I′ =
[0,∞)n. Then a continuous function F : I → X is (I′0, a,ω, c)-almost periodic of type 2
if and only if the function t → G(t) ≡ c∑i∈S −aiti/ωiF(t), t ∈ I is bounded, continuous and
satisfies the requirement that for each ε > 0, t0 ∈ I and N > 0 there exist a finite number
l > 0 and a point τ ∈ B(t0, l) ∩ I such that

G(t + τ) − G(t)
 ⩽ ε, t ∈ IN .

In our previous research studies of the multi-dimensional almost periodicity, we
have also analyzed the invariance of almost periodicity under the actions of the finite
convolution products and the infinite convolution products. In the one-dimensional
case, this theme is crucially important for giving the most intriguing applications in
the qualitative analysis of almost periodic type solutions for various classes of the
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abstract Volterra integro-differential equations. In themulti-dimensional case, the re-
sults obtained so far are not so easily applicable and, because of that, we will skip all
related details with regards to this question.

Finally, we will present some illustrative examples and applications of our re-
sults to the abstract Volterra integro-differential equations in Banach spaces. We start
with the observation that all established results on the convolution invariance of in-
troduced function spaces can be applied to the Gaussian semigroup and the Poisson
semigroup; see [82, Example 3.7.9] and [265] for more details. Concerning the strongly
continuous semigroups, we would like to note that our recent consideration of Exam-
ple 1 can be used to justify the introduction of analyzed function spaces, as well.
1. Suppose that a > 0 and the function x → (f (x), g[1](x)), x ∈ ℝ is c-almost periodic,

where g[1](⋅) ≡ ∫⋅0 g(s) ds. Then the unique regular solution of the wave expression
u(x, t), given by the d’Alembert formula, can be extended to the whole real line in
the time variable and this solution is c-almost periodic in (x, t) ∈ ℝ2.
1.1. We assume here that there exist numbersω ∈ ℝ∖ {0} and c ∈ ℂ∖ {0} such that

the function x → (f (x), g[1](x)), x ∈ ℝ is (ω, c)-periodic. Then it is clear that
the solution u(x, t) can be extended to the whole real line in the time variable
and now we will prove that, for every ω2 ∈ ℝ, we have

u(x + ω, t) = cu(x, t), x, t ∈ ℝ,

i. e., the function u(⋅; ⋅) is ((ω,0), c)-periodic. But, the last equality simply fol-
lows from the next calculation:

u(x + ω, t) = 1
2
[f (x − at + ω) + f (x + at + ω)]

+
1
2a
[g[1](x + at + ω) − g[1](x − at + ω)]

=
1
2
[cf (x − at) + cf (x + at)]

+
c
2a
[g[1](x + at) − g[1](x − at)] = cu(x, t), x, t ∈ ℝ.

1.2. We assume here that there exist numbers ω ∈ ℝ ∖ {0}, k ∈ ℕ and c ∈ ℂ ∖ {0}
such that ck−1 = 1 and the function x → (f (x), g[1](x)), x ∈ ℝ is (ω, c)-periodic.
Set

ω1 :=
1 + k
2

ω and ω2 :=
k − 1
2a

ω.

Then (ω1,ω2) ̸= (0,0), ω1 − aω2 = ω, ω1 + aω2 = kω, ck = c, f (x + ω) = cf (x) =
ckf (x) = f (x + kω), g[1](x +ω) = cg[1](x) = ckg[1](x) = g[1](x + kω) for all x ∈ ℝ,
and we can simply show as above that

u(x + ω1, t + ω2) = cu(x, t), x, t ∈ ℝ,

i. e., the function u(⋅; ⋅) is ((ω1,ω2), c)-periodic.
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1.3. Let the assumptionsof thepreviouspoint hold.Assume, further, that the func-
tion x → (f0(x), g

[1]
0 (x)), x ∈ ℝ satisfies limx→±∞ f0(x) = limx→±∞ g

[1]
0 (x) = 0.

Set B := {(x, t) ∈ ℝ2 : x = ±at}. If𝔻 is any subset of ℝ2 satisfying

lim
|(x,t)|→+∞,(x,t)∈𝔻

dist((x, t);B) = +∞,

then the solution given by the d’Alembert formula, with the functions f (⋅)
and g(⋅) replaced therein with the functions (f + f0)(⋅) and (g + g0)(⋅), is
𝔻-asymptotically ((ω1,ω2), c)-periodic.

2. Let ω ∈ ℝn ∖ {0} and |c| = 1. Equipped with the sup-norm, the space Bω,c(ℝn : X)
consisting of all X-valued, bounded and (ω, c)-periodic functions becomes a Ba-
nach space. Consider the followingHammerstein integral equation of convolution
type on ℝn:

y(t) = g(t) + ∫
ℝn

k(t − s)G(s, y(s)) ds, t ∈ ℝn. (7.29)

Suppose now that g : ℝn → X is bounded and (ω, c)-periodic, k ∈ L1(ℝn),
G : ℝn ×X → X is continuous and satisfies the requirement that for each bounded
subset of X we see that the set {G(t, x) : t ∈ ℝn, x ∈ B} is bounded as well as that
G(t + ω, x) = cG(t, x) for all t ∈ ℝn and x ∈ X. If there exists a finite real constant
L ⩾ 1 such that

G(t, x) − G(t, y)
 ⩽ L‖x − y‖, t ∈ ℝn; x, y ∈ X,

and L∫ℝn |k(y)| dy < 1, then we can apply the Banach contraction principle and
Proposition 7.2.13 in order to see that there exists a unique solution of the integral
equation (7.29) which belongs to the space Bω,c(ℝn : X).

7.3 Generalized c-almost periodic type functions inℝn

In this section, we analyze multi-dimensional quasi-asymptotically c-almost peri-
odic functions and their Stepanov generalizations as well as multi-dimensional Weyl
c-almost periodic type functions [652]. We also analyze several important subclasses
of the class of multi-dimensional quasi-asymptotically c-almost periodic functions
and reconsider the notion of semi-c-periodicity in the multi-dimensional setting,
working in the general framework of Lebesgue spaces with variable exponent. We
provide certain applications of our results to the abstract Volterra integro-differential
equations in Banach spaces.

The organization of this section can be briefly described as follows. In Subsec-
tion 7.3.1we introduce and analyze (S,𝔻)-asymptotically (ω, c)-periodic type functions
and S-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic type functions; Subsection 7.3.2 inves-
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tigates semi-(cj,ℬ)j∈ℕn -periodic functions. Here, it is worth noting that the notion of
(S,𝔻)-asymptotical (ω, c)-periodicity seems to be new even in the one-dimensional
setting. Various classes of multi-dimensional quasi-asymptotically c-almost peri-
odic functions are examined in Subsection 7.3.3 following the approach in [588] and
[658], while the Stepanov generalizations of multi-dimensional quasi-asymptotically
c-almost periodic type functions are examined in Subsection 7.3.4 (the introduced
classes seem to be new and were not considered elsewhere even in the case that the
exponent p(⋅)has a constant value). Themain aimof Subsection 7.3.5 is to continue our
analysis of Weyl c-almost periodic type functions from [588] in the multi-dimensional
setting; some applications of our results to the abstract Volterra integro-differential
equations are presented at the end of this subsection. We also provide numerous
illustrative examples.

7.3.1 (S,𝔻,ℬ)-asymptotically (ω, c)-periodic type functions and
(S,ℬ)-asymptotically (ωj , cj ,𝔻j)j∈ℕn -periodic type functions

This section investigates the classes of (S,𝔻)-asymptotically (ω, c)-periodic type func-
tions and S-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic type functions. In the following two
definitions, we extend the recently introduced notion of Sc-asymptotical periodicity
(cf. M. T. Khalladi, M. Kostić, M. Pinto, A. Rahmani and D. Velinov [588, Definition
3.1], where the authors have considered the case in which X = {0} and I = 𝔻 = 𝔻1
is ℝ or [0,∞)) and its subnotions: the S-asymptotical Bloch (ω, c)-periodicity, resp.
S-asymptotical ω-anti-periodicity (see [259, Definition 3.1, Definition 3.2], where Y.-K.
Chang and Y. Wei have considered the particular cases |c| = 1, resp. c = −1, X = {0}
and I = ℝ = 𝔻 = 𝔻1).

Definition 7.3.1. Let ω ∈ ℝn ∖ {0}, c ∈ ℂ ∖ {0}, ω + I ⊆ I,𝔻 ⊆ I ⊆ ℝn and the set𝔻 be
unbounded. A continuous function F : I ×X → Y is said to be (S,𝔻,ℬ)-asymptotically
(ω, c)-periodic if and only if for each B ∈ ℬ we have

lim
|t|→+∞,t∈𝔻

F(t + ω; x) − cF(t; x)
Y = 0, uniformly in x ∈ B.

Definition 7.3.2. Let ωj ∈ ℝ ∖ {0}, cj ∈ ℂ ∖ {0}, ωjej + I ⊆ I, 𝔻j ⊆ I ⊆ ℝn and the
set 𝔻j be unbounded (1 ⩽ j ⩽ n). A continuous function F : I × X → Y is said to be
(S,ℬ)-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic if and only if for each j ∈ ℕn we have

lim
|t|→+∞,t∈𝔻j

F(t + ωjej; x) − cjF(t; x)
Y = 0, uniformly in x ∈ B.

Before going any further, we will present an illustrative example.

Example 7.3.3. Let X := c0 be the Banach space of all numerical sequences tending
to zero, equipped with the sup-norm. Suppose that ωj = 2π, cj ∈ ℂ and |cj| = 1 for all

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.3 Generalized c-almost periodic type functions in ℝn | 487

j ∈ ℕn. By the foregoing, we know that the function

F1(t1, . . . , tn) :=
n
∏
j=1

c
tj
2π
j sin tj, t = (t1, . . . , tn) ∈ [0,∞)

n,

is (2π, cj)j∈ℕn -periodic. On the other hand, from [531, Example 3.1] and [647, Example
2.6], we know that the function

f (t) := ( 4k2t2

(t2 + k2)2
)
k∈ℕ
, t ⩾ 0,

is S-asymptotically ω-periodic for any positive real number ω > 0, as well as that its
range is not relatively compact in X and f (⋅) is uniformly continuous; let us only note
here that R. Xie and C. Zhang have constructed, in [1042, Example 17], an example of
an S-asymptotically ω-periodic function which is not uniformly continuous. Set

F(t1, . . . , tn, tn+1) := F1(t1, . . . , tn) ⋅ f (tn+1), (t1, . . . , tn, tn+1) ∈ [0,∞)
n+1.

Then the function F(⋅) is S-asymptotically (ωj, cj,𝔻j)j∈ℕn+1 -periodic, where cn+1 = 1,
ωn+1 > 0 being arbitrary,𝔻j = [0,∞)n+1 for 1 ⩽ j ⩽ n and𝔻n+1 = K × [0,∞) (0 ̸= K ⊆
[0,∞)n is a compact set), as easily approved. See also [647, Example 2.16, Example
2.17, Example 2.18].

Immediately from the corresponding definitions, we have the following result.

Proposition 7.3.4.
(i) Let ω ∈ ℝn ∖ {0}, c ∈ ℂ ∖ {0}, ω + I ⊆ I,𝔻 ⊆ I ⊆ ℝn and the set𝔻 be unbounded. If

ω +𝔻 ⊆ 𝔻 and the function F : I × X → Y is (𝔻,ℬ)-asymptotically (ω, c)-periodic,
then the function F(⋅; ⋅) is (S,𝔻,ℬ)-asymptotically (ω, c)-periodic.

(ii) Let ωj ∈ ℝ∖ {0}, cj ∈ ℂ∖ {0}, ωjej + I ⊆ I,𝔻j ⊆ I ⊆ ℝn and the set𝔻j be unbounded
(1 ⩽ j ⩽ n). If ωej +𝔻 ⊆ 𝔻 and the function F : I × X → Y is (𝔻,ℬ)-asymptotically
(ωj, cj)j∈ℕn -periodic, then the function F(⋅; ⋅) is (S,ℬ)-asymptotically (ωj, cj,𝔻j)j∈ℕn -
periodic with𝔻j ≡ 𝔻 for all j ∈ ℕn.

Wewill provide the proof of the first part of the following simple result for the sake
of completeness.

Proposition 7.3.5.
(i) Let ω ∈ ℝn ∖ {0}, c ∈ ℂ ∖ {0}, ω + I ⊆ I, 𝔻 ⊆ I ⊆ ℝn and the set 𝔻 be un-

bounded. If for each B ∈ ℬ there exists εB > 0 such that the sequence (Fk(⋅; ⋅))
of (S,𝔻,ℬ)-asymptotically (ω, c)-periodic functions converges uniformly to a func-
tion F(⋅; ⋅) on the set B∘ ∪⋃x∈𝜕B B(x, εB), then F(⋅; ⋅) is (S,𝔻,ℬ)-asymptotically (ω, c)-
periodic.
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(ii) Let ωj ∈ ℝ ∖ {0}, cj ∈ ℂ ∖ {0}, ωjej + I ⊆ I, 𝔻j ⊆ I ⊆ ℝn and the set 𝔻j be
unbounded (1 ⩽ j ⩽ n). If for each B ∈ ℬ there exists εB > 0 such that the se-
quence (Fk(⋅; ⋅)) of (S,ℬ)-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic functions converges
uniformly to a function F(⋅; ⋅) on the set B∘ ∪ ⋃x∈𝜕B B(x, εB), then the function F(⋅; ⋅)
is (S,ℬ)-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic.

Proof. The validity of (i) can be deduced as follows. By the foregoing arguments, it
follows that the function F(⋅; ⋅) is continuous. Let ε > 0 and B ∈ ℬ be fixed. Then
there exists k0 ∈ ℕ such that ‖Fk0 (t; x) − F(t; x)‖Y ⩽ ε/3(1 + |c|) for all (t, x) ∈ I × B.
Furthermore, there exists M > 0 such that the assumptions |t| > M, t ∈ 𝔻 and x ∈ B
imply ‖Fk0 (t + ω; x) − cFk0 (t; x)‖Y < ε/3. Then the final conclusion follows from the
well-known decomposition and estimates

F(t + ω; x) − cF(t; x)
Y

⩽ F(t + ω; x) − Fk0 (t; x)
Y +
Fk0 (t + ω; x) − cFk0 (t; x)

Y
+ |c| ⋅ ‖Fk0 (t + ω; x) − F(t; x)

Y ⩽ 3 ⋅ (ε/3) = ε.

The convolution invariance of function spaces introduced in Definition 7.3.1 and
Definition 7.3.2 can be shown under very mild assumptions.

Theorem 7.3.6. Suppose that h ∈ L1(ℝn) and F : ℝn × X → Y is a continuous func-
tion satisfying that for each B ∈ ℬ there exists a finite real number εB > 0 such that
supt∈ℝn ,x∈B⋅ ‖F(t, x)‖Y < +∞, where B⋅ ≡ B∘ ∪⋃x∈𝜕B B(x, εB).
(i) Suppose that𝔻 = ℝn. Then the function

(h ∗ F)(t; x) := ∫
ℝn

h(σ)F(t − σ; x) dσ, t ∈ ℝn, x ∈ X, (7.30)

is well defined and for eachB ∈ ℬwehave supt∈ℝn ,x∈B⋅ ‖(h∗F)(t; x)‖Y < +∞; further-
more, if F(⋅; ⋅) is (S,ℝn,ℬ)-asymptotically (ω, c)-periodic, then the function (h∗F)(⋅; ⋅)
is (S,ℝn,ℬ)-asymptotically (ω, c)-periodic.

(ii) Suppose that𝔻j = ℝn for all j ∈ ℕn. Then the function (h ∗ F)(⋅; ⋅), given by (7.30),
is well defined and for each B ∈ ℬ we have supt∈ℝn ,x∈B⋅ ‖(h ∗ F)(t; x)‖Y < +∞; more-
over, if the function F(⋅; ⋅) is (S,ℬ)-asymptotically (ωj, cj,ℝn)j∈ℕn -periodic, then the
function (h ∗ F)(⋅; ⋅) is likewise (S,ℬ)-asymptotically (ωj, cj,ℝn)j∈ℕn -periodic.

Proof. We will prove only (i). It is clear that the function (h ∗ F)(⋅; ⋅) is well defined as
well as that supt∈ℝn ,x∈B⋅ ‖(h ∗ F)(t; x)‖Y < +∞ for all B ∈ ℬ. Its continuity at the fixed
point (t0; x0) ∈ ℝn × X follows from the existence of a set B ∈ ℬ such that x0 ∈ B, the
assumption supt∈ℝn ,x∈B⋅ ‖F(t; x)‖Y < +∞ and the dominated convergence theorem. Let
ε > 0 and B ∈ ℬ be fixed. Then there exists a sufficiently large real numberM > 0 such
that ‖F(t + ω; x) − cF(t; x)‖Y < ε/2, provided |t| > M1 and x ∈ B. Therefore, there exists

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.3 Generalized c-almost periodic type functions in ℝn | 489

a finite constant cB ⩾ 1 such that

(h ∗ F)(t + ω; x) − c(h ∗ F)(t; x)
Y

⩽ ∫
ℝn

h(σ)
 ⋅
F(t + ω − σ; x) − cF(t − σ; x)

Y dσ

= ∫
|σ|⩽M1

|h(t − σ)⋅
F(σ + ω; x) − cF(σ; x)

Y dσ

+ ∫
|σ|⩾M1

h(t − σ)
 ⋅
F(σ + ω; x) − cF(σ; x)

Y dσ

⩽ ε/2 + ∫
|σ|⩾M1

h(t − σ)
 ⋅
F(σ + ω; x) − cF(σ; x)

Y dσ

⩽ ε/2 + cB ∫
|σ|⩾M1

h(t − σ)
 dσ.

On the other hand, there exists a finite real numberM2 > 0 such that ∫|σ|⩾M2
|h(σ)| dσ <

ε/2cB. If |t| > M1 + M2, then for each σ ∈ ℝn with |σ| ⩽ M1 we have |t − σ| ⩾ M2. This
simply implies the required conclusion.

The following result will allow us to stretch the connections between the notion
introduced in Definition 7.3.1 and Definition 7.3.2.

Proposition 7.3.7. Letωj ∈ ℝ∖{0}, cj ∈ ℂ∖{0}, ωjej+I ⊆ I,𝔻j ⊆ I ⊆ ℝn and the set𝔻j be
unbounded (1 ⩽ j ⩽ n). If F : I × X → Y is (S,ℬ)-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic
and the set 𝔻 consisting of all tuples t ∈ 𝔻n such that t + ∑

n
i=j+1 ωiei for all j ∈ ℕn−1

is unbounded in ℝn, then the function F(⋅; ⋅) is (S,𝔻,ℬ)-asymptotically (ω, c)-periodic,
with ω := ∑nj=1 ωjej and c := ∏

n
j=1 cj.

Proof. The proof simply follows from the corresponding definitions and the next esti-
mates:

F(t + ω; x) − cF(t; x)


= F(t1 + ω1, . . . , tn + ωn; x) − c1 ⋅ ⋅ ⋅ cnF(t1, . . . , tn; x)


⩽ F(t1 + ω1, t2 + ω2, . . . , tn + ωn; x) − c1F(t1, t2 + ω2, . . . , tn + ωn; x)


+ |c1| ⋅
F(t1, t2 + ω2, . . . , tn + ωn; x) − c2 ⋅ ⋅ ⋅ cnF(t1, . . . , tn; x)


⩽ F(t1 + ω1, t2 + ω2, . . . , tn + ωn; x) − c1F(t1, t2 + ω2, . . . , tn + ωn; x)


+ |c1| ⋅ [
F(t1, t2 + ω2, . . . , tn + ωn; x) − c2F(t1, t2, . . . , tn + ωn; x)


+ |c2| ⋅
F(t1, t2, . . . , tn + ωn; x) − c3 ⋅ ⋅ ⋅ cnF(t1, t2, . . . , tn; x)

]

⩽ ⋅ ⋅ ⋅ .

The proof of following proposition is simple and therefore is omitted.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



490 | 7 Multi-dimensional (ω, c)-almost periodic type functions

Proposition 7.3.8. Let ω, a ∈ ℝn∖{0}, c ∈ ℂ∖{0}, α ∈ ℂ, ω+I ⊆ I and a+I ⊆ I. Suppose
that the functions F : I × X → Y and G : I × X → Y are (S,𝔻,ℬ)-asymptotically (ω, c)-
periodic ((S,ℬ)-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic). Then we have the following:
(i) The function F̌(⋅; ⋅) is (S,−𝔻,ℬ)-asymptotically (−ω, c)-periodic ((S,ℬ)-asymptotical-

ly (−ωj, cj,−𝔻j)j∈ℕn -periodic), where F̌(t; x) := F(−t; x), t ∈ −I, x ∈ X.
(ii) The functions ‖F(⋅; ⋅)‖, [F + G](⋅; ⋅) and αF(⋅; ⋅) are (S,𝔻,ℬ)-asymptotically (ω, |c|)-

periodic ((S,ℬ)-asymptotically (ωj, |cj|,𝔻j)j∈ℕn -periodic).
(iii) If a+𝔻 ⊆ 𝔻 (a+𝔻j ⊆ 𝔻j for all j ∈ ℕn) and y ∈ X, then the function Fa,y : I ×X → Y

defined by Fa,y(t; x) := F(t + a; x + y), t ∈ I, x ∈ X is (S,𝔻,ℬy)-asymptotically (ω, c)-
periodic ((S,ℬy)-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic), where ℬy := {−y + B :
B ∈ ℬ}.

(iv) If ω ∈ ℝn ∖ {0}, ci ∈ ℂ ∖ {0} for i = 1, 2, ω + I ⊆ I, the function G : I × X →
ℂ is (S,𝔻,ℬ)-asymptotically (ω, c1)-periodic and the function H : I × X → Y
is (S,𝔻,ℬ)-asymptotically (ω, c2)-periodic, then the function F(⋅) := G(⋅)H(⋅) is
(S,𝔻,ℬ)-asymptotically (ω, c1c2)-periodic, provided that for each set B ∈ ℬ we have
supt∈I ;x∈B[|G(t; x)| + ‖F(t; x)‖Y ] <∞.

(v) Let ωj ∈ ℝ ∖ {0}, cj,i ∈ ℂ ∖ {0} and ωjej + I ⊆ I (1 ⩽ j ⩽ n, 1 ⩽ i ⩽ 2). Suppose
that the function G : I × X → ℂ is (S,ℬ)-asymptotically (ωj, cj,1,𝔻j)j∈ℕn -periodic
and the function H : I → X is (S,ℬ)-asymptotically (ωj, cj,2,𝔻j)j∈ℕn -periodic. Set
cj := cj,1cj,2, 1 ⩽ j ⩽ n. Then the function F(⋅) := G(⋅)H(⋅) is (S,ℬ)-asymptotically
(ωj, cj,𝔻j)j∈ℕn -periodic, provided that for each set B ∈ ℬ we have supt∈I ;x∈B[|G(t;
x)| + ‖F(t; x)‖Y ] <∞.

Using the already proved characterizations of the classes of (ω, c)-periodic func-
tions and (ωj, cj)j∈ℕn -periodic functions, we can introduce various spaces of pseudo-
like (S,𝔻,ℬ)-asymptotically (ω, c)-periodic type functions and pseudo-like (S,ℬ)-as-
ymptotically (ωj, cj,𝔻j)j∈ℕn -periodic type functions following themethod proposed in
[48, Definition 2.4, Definition 2.5]; we will skip all related details for simplicity. The
interested reader may also try to formulate some extensions of [588, Proposition 3.1,
Corollary 3.1-Corollary 3.2] in the multi-dimensional setting.

7.3.2 Semi-(cj ,ℬ)j∈ℕn -periodic functions
In this subsection,wewill exhibit themain results about the class ofmulti-dimension-
al semi-(cj,ℬ)j∈ℕn -periodic functions. For the sake of brevity, we will always assume
here that the region I has the form I = I1 × I2 × ⋅... × In, where each set Ij is equal to ℝ,
(−∞, aj] or [aj,∞) for some real number aj ∈ ℕ (1 ⩽ j ⩽ n).

We will use the following definition.

Definition 7.3.9. Suppose that F : I × X → Y is a continuous function and cj ∈ ℂ∖ {0}
(1 ⩽ j ⩽ n). Then we say that F(⋅; ⋅) is semi-(cj,ℬ)j∈ℕn -periodic if and only if, for every
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ε > 0 and B ∈ ℬ, there exist real numbers ωj ∈ ℝ ∖ {0} such that ωjej + I ⊆ I (1 ⩽ j ⩽ n)
and

F(t +mωjej; x) − c
m
j F(t; x)

 ⩽ ε, m ∈ ℕ, j ∈ ℕn, t ∈ ℝ
n, x ∈ B. (7.31)

The function F(⋅; ⋅) is said to be semi-ℬ-periodic if and only if F(⋅; ⋅) is semi-(cj,ℬ)j∈ℕn -
periodic with cj = 1 for all j ∈ ℕn.

Suppose that j ∈ ℕn, x ∈ X and |cj| ̸= 1. Fix the variables t1, . . . , tj−1, tj+1, . . . , tn.
Then there exist three possibilities:
1. Ij = ℝ. Then, due to (7.31), the function f : ℝ → Y given by f (t) := F(t1, . . . , tj−1, t,

tj+1, . . . , tn), t ∈ ℝ is semi-cj-periodic of type 1+ in the sense of [587, Definition 3(i)]
and therefore f (⋅) is cj-periodic due to [587, Theorem 1]. Hence, the function F(⋅; x)
is cj-periodic in the variable tj.

2. Ij = [aj,+∞) for some real number aj ∈ ℝ. Then the function F(⋅; x) is cj-periodic in
the variable tj,which follows from the sameargumentationapplied to the function
f (t) := F(t1, . . . , tj−1, t − aj, tj+1, . . . , tn), t ⩾ 0.

3. Ij = (−∞, aj] for some real number aj ∈ ℝ. Then the function F(⋅; x) is cj-periodic in
the variable tj,which follows from the sameargumentationapplied to the function
f (t) := F(t1, . . . , tj−1,−t − |aj|, tj+1, . . . , tn), t ⩾ 0.

In the remainder of this subsection, we will assume that |cj| = 1 for all j ∈ ℕn. Then
any semi-(cj,ℬ)j∈ℕn -periodic function F : I × X → Y is bounded on any subset B of the
collection ℬ, as easily approved; even in the one-dimensional setting, this function
neednot be periodic in the usual sense (see [587, p. 2]). Furthermore, if for each integer
k ∈ ℕ the function Fk : I × X → Y is semi-(cj,ℬ)j∈ℕn -periodic and for each B ∈ ℬ
there exists a finite real number εB > 0 such that limk→+∞ Fk(t; x) = F(t; x) for all
t ∈ I, uniformly in x ∈ B⋅ ≡ B∘ ∪ ⋃x∈𝜕B B(x, εB), then the function F(⋅; ⋅) is likewise
semi-(cj,ℬ)j∈ℕn -periodic.

Let B ∈ ℬ be fixed. Let us recall that the Banach space l∞(B : Y) consists of all
bounded functions f : B → Y and is equipped with the sup-norm. Suppose that the
function F : I × X → Y is semi-(cj,ℬ)j∈ℕn -periodic. We define the function FB : I →
l∞(B : Y) as before; then the mapping FB(⋅) is well defined and semi-(cj)j∈ℕn -periodic.
Using now an insignificant modification of the proofs of [69, Lemma 1, Theorem 1],
we may conclude that for each set B ∈ ℬ there exists a sequence of (cj)j∈ℕn -periodic
functions (Fk : I×X → Y)k∈ℕ such that limk→+∞ Fk(t; x) = F(t; x) for all t ∈ I, uniformly
in x ∈ B. The converse statement is also true; hence, we have the following important
result.

Theorem 7.3.10. Suppose that F : I × X → Y is continuous. Then the function F(⋅; ⋅)
is semi-(cj,ℬ)j∈ℕn -periodic if and only if for each set B ∈ ℬ there exists a sequence of
(cj)j∈ℕn -periodic functions (Fk : I → l∞(B : Y))k∈ℕ such that limk→+∞ Fk(t) = FB(t)
uniformly in t ∈ I.
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Now we would like to present the following illustrative applications of Theo-
rem 7.3.10.

Example 7.3.11. Suppose that q1, . . . , qn are odd natural numbers. Define F : ℝn → ℂ
by

F(t1, t2, . . . , tn) := ∑
l=(l1 ,l2 ,...,ln)∈ℕn

eit1/(2l1q1+1)eit2/(2l2q2+1) ⋅ ⋅ ⋅ eitn/(2lnqn+1)

l1!l2! ⋅ ⋅ ⋅ ln!
,

for any t = (t1, t2, . . . , tn) ∈ ℝn. Then F(⋅) is a semi-(−1,−1, . . . ,−1)-periodic function
since it is a uniform limit of (−1,−1, . . . ,−1)-periodic functions

Fk(t) := ∑
|l|⩽k

eit1/(2l1q1+1)eit2/(2l2q2+1) ⋅ ⋅ ⋅ eitn/(2lnqn+1)

l1!l2! ⋅ ⋅ ⋅ ln!
, t ∈ ℝn, k ∈ ℕ.

Example 7.3.12. It is worth noticing that, inmany concrete situations, the solutions of
PDEs on rectangular domains, constructed by thewell knownmethod of separation of
variables, are restrictions of semi-(cj,ℬ)j∈ℕn -periodic functions defined on the whole
Euclidean space. For example, a unique solution of the wave equation utt = uxx in the
rectangle 0 < x < 1 and t > 0, equipped with the initial conditions u(0, t) = u(1, t) = 0,
u(x,0) = x(1 − x) and ut(x,0) = 0 is given by

u(x, t) = 8
π3
∞

∑
k=1

sin((2k − 1)πt) ⋅ sin((2k − 1)πx)
(2k − 1)3

.

It is clear that this solution can be extended to the whole plane by the same formula,
which defines a semi-(−1,−1)-periodic function there.

We continue with the observation that the statements of Proposition 2.5, Proposi-
tion 2.7, Proposition 2.8, Proposition 2.9, Proposition 2.12, Theorem 2.13 and Proposi-
tion 2.17 of [586] admit very simple reformulations in the multi-dimensional setting.
For example, if F : I → ℝ is semi-(cj)j∈ℕn -periodic, then cj ∈ {−1, 1} for all j ∈ ℕn;
furthermore, if F(t) ⩾ 0 for all t ∈ I, then cj = 1 for all j ∈ ℕn.

Any semi-(cj)j∈ℕn -periodic function F : I → Y can be extended uniquely to a
semi-(cj)j∈ℕn -periodic function F̃ : ℝn → Y and therefore it has a mean value as an
almost periodic function; see e. g., the proof of [265, Theorem 2.36]. Furthermore, any
semi-(cj)j∈ℕn -periodic function F : I → Y is semi-periodic. In the one-dimensional
case, [69, Lemma 2] tells us that there exists a positive real number θ > 0 such that
σ(F) ⊆ θ ⋅ℚ, which enables one to construct a great deal of almost periodic functions
which are not semi-periodic. If we put ourselves in a similar situation in the multi-
dimensional setting, then we have the following.

Proposition 7.3.13. Suppose that the function F : I → Y is semi-(cj)j∈ℕn -periodic, λ =
(λ1, λ2, . . . , λn) ∈ σ(F) and μ = (μ1, μ2, . . . , μn) ∈ σ(F). Then there exist non-zero real
numbers ωj ∈ ℝ ∖ {0} (1 ⩽ j ⩽ n) such that λjωj ∈ 2πℤ and μjωj ∈ 2πℤ for all j ∈ ℕn.
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Proof. By the foregoing, wemay assume that I = ℝn, λ = μ and cj = 1 for all j ∈ ℕn. We
will follow the proof of [82, Corollary 4.5.4(d)] with appropriate modifications. First of
all, note that

lim
k→+∞

k−1
k−1
∑
j=0

zj = 0,

if |z| = 1 and z ̸= 1, while

lim
k→+∞

k−1
k−1
∑
j=0

zj = 1,

if z = 1. Our assumption is that

lim
T→+∞

1
Tn
∫
[0,T]n

e−i⟨λ,t⟩F(t) dt ̸= 0 and lim
T→+∞

1
Tn
∫
[0,T]n

e−i⟨μ,t⟩F(t) dt ̸= 0.

By Theorem 7.3.10, the proof of [69, Lemma 2] and continuity, wemay assume without
loss of generality that F(⋅) is (ωj, cj)j∈ℕn -periodic for some non-zero real numbers ωj ∈
ℝ ∖ {0} (1 ⩽ j ⩽ n). We have

lim
T→+∞

1
Tn
∫
[0,T]n

e−i⟨λ,t⟩F(t) dt

= lim
T→+∞

1
Tn
⌊T/|ω1|⌋

∑
j1=0
⋅ ⋅ ⋅
⌊T/|ωn|⌋

∑
jn=0

∫

∏n
k=1[jk |ωk |,(jk+1)|ωk |]

e−i⟨λ,t⟩F(t) dt

= lim
T→+∞

1
Tn
⌊T/|ω1|⌋

∑
j1=0
⋅ ⋅ ⋅
⌊T/|ωn|⌋

∑
jn=0

∫
[0,|ω1|]×⋅⋅⋅×[0,|ωn|]

ei[λ1j1|ω1|+⋅⋅⋅+λnjn|ωn|]e−i⟨λ,t⟩F(t) dt

= lim
T→+∞
{[

1
T

⌊T/|ω1|⌋

∑
j1=0
(eiλ1|ω1|)

j1] ⋅ ⋅ ⋅[
1
T

⌊T/|ωn|⌋

∑
jn=0
(eiλn|ωn|)

jn]}

= lim
T→+∞
[
1
T

⌊T/|ω1|⌋

∑
j1=0
(eiλ1|ω1|)

j1] ⋅ ⋅ ⋅ lim
T→+∞
[
1
T

⌊T/|ωn|⌋

∑
jn=0
(eiλn|ωn|)

jn].

The final conclusion follows by observing that the product of the above limits, which
exist in ℂ, is not equal to zero if and only if exp(iλj|ωj|) = 1 for all j ∈ ℕn, and that the
same calculation can be given for the tuple μ.

The Stepanov classes of semi-(cj,ℬ)j∈ℕn -periodic functions can be also analyzed.

7.3.3 Multi-dimensional quasi-asymptotically c-almost periodic type functions

Wewill first introduce the notion of𝔻-quasi-asymptotical (ℬ, I′, c)-almost periodicity
and recall the notion of𝔻-quasi-asymptotical (ℬ, I′, c)-uniform recurrence here (it can

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



494 | 7 Multi-dimensional (ω, c)-almost periodic type functions

be easily shown that the notion of quasi-asymptotical uniform recurrence introduced
before is equivalentwith the correspondingnotion introduced in the secondpart of the
following definition; concerning the first part of this definition, it extends the notion
of one-dimensional quasi-asymptotical c-almost periodicity).

Definition 7.3.14. Suppose that 𝔻 ⊆ I ⊆ ℝn, 0 ̸= I′ ⊆ I ⊆ ℝn, the sets 𝔻 and I′ are
unbounded, F : I × X → Y is a continuous function and I + I′ ⊆ I. Then we say that:
(i) F(⋅; ⋅) is 𝔻-quasi-asymptotically (ℬ, I′, c)-almost periodic if and only if for every

B ∈ ℬ and ε > 0 there exists l > 0 such that for each t0 ∈ I′ there exists τ ∈
B(t0, l) ∩ I′ such that there exists a finite real numberM(ε, τ) > 0 such that

F(t + τ; x) − cF(t; x)
Y ⩽ ε, provided t, t + τ ∈ 𝔻M(ε,τ), x ∈ B. (7.32)

(ii) F(⋅; ⋅) is𝔻-quasi-asymptotically (ℬ, I′, c)-uniformly recurrent if and only if for ev-
ery B ∈ ℬ there exist a sequence (τk) in I′ and a sequence (Mk) in (0,∞) such that
limk→+∞ |τk | = limk→+∞Mk = +∞ and

lim
k→+∞

sup
t,t+τk∈𝔻Mk

;x∈B

F(t + τk ; x) − cF(t; x)
Y = 0. (7.33)

If I′ = I, then we also say that F(⋅; ⋅) is 𝔻-quasi-asymptotically (ℬ, c)-almost peri-
odic (𝔻-quasi-asymptotically (ℬ, c)-uniformly recurrent); furthermore, if X ∈ ℬ, then
it is also said that F(⋅; ⋅) is 𝔻-quasi-asymptotically (I′, c)-almost periodic (𝔻-quasi-
asymptotically (I′, c)-uniformly recurrent). If I′ = I and X ∈ ℬ, then we also say
that F(⋅; ⋅) is 𝔻-quasi-asymptotically c-almost periodic (𝔻-quasi-asymptotically c-
uniformly recurrent). We remove the prefix “𝔻-” in the case that 𝔻 = I, remove the
prefix “(ℬ, )” in the case that X ∈ ℬ and remove the prefix “c-” if c = 1.

Wehave already analyzed the notion of𝔻-asymptotical Bohr (ℬ, I′, c)-almost peri-
odicity of type 1, which is a special case of𝔻-quasi-asymptotical (ℬ, I′, c)-almost peri-
odicity. The notion of𝔻-quasi-asymptotical (ℬ, I′, c)-uniform recurrence, which gen-
eralizes the notion of𝔻-quasi-asymptotical (ℬ, I′, c)-almost periodicity has been also
introduced under the slightly different name of 𝔻-asymptotical (ℬ, I′, c)-uniform re-
currence of type 1. It is evident that the notion of𝔻-asymptotical Bohr (ℬ, I′, c)-almost
periodicity of type 1 (see Definition 6.1.33) is a special case of the notion of 𝔻-quasi-
asymptotical (ℬ, I′, c)-almost periodicity introduced in Definition 7.3.14(i). The follow-
ing generalization of [658, Proposition 2] can be deduced straightforwardly (we can
simply formulate an extension of [658, Proposition 3] in the multi-dimensional set-
ting, as well).

Proposition 7.3.15. Suppose that 𝔻 ⊆ I ⊆ ℝn, c ∈ ℂ ∖ {0} and the set 𝔻 is un-
bounded, as well as 0 ̸= I′ ⊆ I ⊆ ℝn, F : I × X → Y is a continuous function and
I + I′ ⊆ I. If the function F(⋅; ⋅) is 𝔻-quasi-asymptotically (ℬ, I′, c)-almost periodic,
resp. 𝔻-quasi-asymptotically (ℬ, I′, c)-uniformly recurrent, and Q ∈ C0,𝔻,ℬ(I × X : Y),
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then [F + Q](⋅; ⋅) is 𝔻-quasi-asymptotically (ℬ, I′, c)-almost periodic, resp. 𝔻-quasi-
asymptotically (ℬ, I′, c)-uniformly recurrent.

We continue by providing an example.

Example 7.3.16. The function F : ℝn → ℝ, given by F(t) := sin(ln(1 + |t|)), t ∈ ℝn, is
quasi-asymptotically almost periodic but not asymptotically uniformly recurrent; this
canbe shownas in the one-dimensional case. Furthermore, it canbe easily shown that
F(⋅) is quasi-asymptotically c-almost periodic for some c ∈ ℂ ∖ {0} if and only if c = 1.

In the following result,we show that thenotion introduced in theprevious subsec-
tion can be viewed as a particular case of the notion introduced in Definition 7.3.14(i),
under some very reasonable assumptions (in the second part, we can also consider
the situation in which I′ := ωjej ⋅ℕ for some j ∈ ℕn).

Proposition 7.3.17.
(i) Let ω ∈ I ∖ {0}, c ∈ ℂ ∖ {0}, |c| ⩽ 1, ω + I ⊆ I and𝔻 ⊆ I ⊆ ℝn. Set I′ := ω ⋅ℕ. If a

continuous function F : I × X → Y is (S,𝔻,ℬ)-asymptotically (ω, c)-periodic, then
the function F(⋅; ⋅) is𝔻-quasi-asymptotically (ℬ, I′, c)-almost periodic.

(ii) Let ωj ∈ ℝ ∖ {0}, cj ∈ ℂ ∖ {0}, ωjej + I ⊆ I,𝔻j ⊆ I ⊆ ℝn, the set𝔻j be unbounded
(1 ⩽ j ⩽ n) and the set𝔻 consisting of all tuples t ∈ 𝔻n such that t + ∑

n
i=j+1 ωiei for

all j ∈ ℕn−1 be unbounded in ℝn. Set ω := ∑nj=1 ωjej, I′ := ω ⋅ ℕ and c := ∏nj=1 cj.
If F : I × X → Y is (S,ℬ)-asymptotically (ωj, cj,𝔻j)j∈ℕn -periodic, |c| ⩽ 1 and ω ∈ I,
then the function F(⋅; ⋅) is𝔻-quasi-asymptotically (ℬ, I′, c)-almost periodic.

Proof. The proof of (i) is very similar to the proof of [588, Proposition 3.2]. First of all,
note that our assumptions ω ∈ I ∖ {0} and 𝔻 + ω ⋅ ℕ0 ⊆ 𝔻 imply that the set 𝔻
is unbounded, while the assumptions ω ∈ I ∖ {0} and ω + I ⊆ I imply that I′ is an
unbounded subset of I and I + I′ ⊆ I. Let B ∈ ℬ and ε > 0 be fixed. Then we can take
l = 2|ω| in Definition 7.3.14(i) since for each t0 = n′ω ∈ I′, where n′ ∈ ℕ, there exists
τ = nω ∈ B(t0, l)∩I′, with n′ = n+1. Since the function F(⋅; ⋅) is (S,𝔻,ℬ)-asymptotically
(ω, c)-periodic, we have the existence of a finite real number M > 0 such that the
assumptions |t| > M and t ∈ 𝔻 imply ‖F(t+ω; x)−cF(t; x)‖ < ε/n for all x ∈ B. Let t ∈ 𝔻
and |t| > M(ε, τ) ≡ M + n|ω|. Then (7.32) holds since the assumptions t, t + τ ∈ 𝔻M(ε,τ)
and x ∈ B imply

F(t + τ; x) − cF(t; x)
Y ⩽

n−1
∑
k=0
|c|n−k−1F(t + (k + 1)ω; x) − cF(t + kω; x)

Y

⩽
n−1
∑
k=0

F(t + (k + 1)ω; x) − cF(t + kω; x)
Y ⩽ n(ε/n) = ε,

as claimed. To deduce (ii), it suffices to observe that our assumptions imply by Propo-
sition 7.3.7 that the function F(⋅; ⋅) is (S,𝔻,ℬ)-asymptotically (ω, c)-periodic, with ω =
∑nj=1 ωjej. After that, we can apply the first part of proposition.
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The spaces introduced in Definition 7.3.14 do not form vector spaces under the
pointwise addition of functions and these spaces are not closed under the pointwise
multiplication with scalar-valued functions of the same type, as is well known in the
one-dimensional case [647]. The introduced spaces are homogeneous and, under cer-
tain reasonable assumptions, these spaces are translation invariant, invariant under
the homotheties with ratio b > 0 and the reflections at zero with respect to the first
variable. Furthermore, we have the following statements stated here without simple
proofs (see also [265, Proposition 2.7, Proposition 2.8]).

Proposition 7.3.18.
(i) Suppose that 𝔻 ⊆ I ⊆ ℝn, 0 ̸= I′ ⊆ I ⊆ ℝn, the sets 𝔻 and I′ are unbounded,

F : I × X → ℂ is a continuous function and I + I′ ⊆ I.
(a) If F(⋅; ⋅) is𝔻-quasi-asymptotically (ℬ, I′, c)-almost periodic and, for everyB ∈ ℬ,

there exists a real number cB > 0 such that |F(t; x)| ⩾ cB for all x ∈ B and t ∈ I,
then the function 1/F(⋅; ⋅) is𝔻-quasi-asymptotically (ℬ, I′, 1/c)-almost periodic.

(b) F(⋅; ⋅) is 𝔻-quasi-asymptotically (ℬ, I′, c)-uniformly recurrent if and only if for
every B ∈ ℬ there exist a sequence (τk) in I′ and a sequence (Mk) in (0,∞) such
that limk→+∞ |τk | = limk→+∞Mk = +∞ and

lim
k→+∞

sup
t,t+τk∈𝔻Mk

;x∈B

F(t + τk ; x) − cF(t; x)
Y = 0.

(ii) If (Fk(⋅; ⋅)) is a sequence of 𝔻-quasi-asymptotically (ℬ, I′, c)-almost periodic func-
tions, resp. 𝔻-quasi-asymptotically (ℬ, I′, c)-uniformly recurrent functions, such
that for each B ∈ ℬ there exists a finite real number εB > 0 such that limk→+∞ Fk(t;
x) = F(t; x) for all t ∈ ℝ, uniformly in x ∈ B⋅ ≡ B∘ ∪ ⋃x∈𝜕B B(x, εB), then the
function F(⋅; ⋅) is 𝔻-quasi-asymptotically (ℬ, I′, c)-almost periodic, resp. 𝔻-quasi-
asymptotically (ℬ, I′, c)-uniformly recurrent.

The proof of the following result is very similar to that of Theorem 7.3.6 and there-
fore omitted (the assumption on the compact support of the function h(⋅)made in [658]
for the class of quasi-asymptotically uniformly recurrent functions is superfluous).

Theorem 7.3.19. Suppose that h ∈ L1(ℝn), 0 ̸= I′ ⊆ ℝn is unbounded and F :
ℝn × X → Y is a continuous function satisfying that for each B ∈ ℬ there exists
a finite real number εB > 0 such that supt∈ℝn ,x∈B⋅ ‖F(t, x)‖Y < +∞, where B⋅ ≡
B∘ ∪⋃x∈𝜕B B(x, εB). Suppose that𝔻 = ℝ

n. Then the function (h ∗ F)(⋅; ⋅), given by (7.30),
is well defined and for each B ∈ ℬ we have supt∈ℝn ,x∈B⋅ ‖(h ∗ F)(t; x)‖Y < +∞; fur-
thermore, if F(⋅; ⋅) is ℝn-quasi-asymptotically (ℬ, I′, c)-almost periodic, resp. ℝn-quasi-
asymptotically (ℬ, I′, c)-uniformly recurrent, then the function (h ∗ F)(⋅; ⋅) is likewise
ℝn-quasi-asymptotically (ℬ, I′, c)-almost periodic, resp.ℝn-quasi-asymptotically (ℬ, I′,
c)-uniformly recurrent.

Accepting the notation employed in [647] and [658], we have the following (I = ℝ
or I = [0,∞); ω ∈ I):
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(i) Suppose that f ∈ SAPω(ℝ : X) ∩ AAA(ℝ : X), resp. f ∈ SAPω(I : X) ∩ AAP(I : X).
Then f ∈ APω(ℝ : X), resp. f ∈ APω(I : X).

(ii) Suppose that f ∈ SAPω(ℝ : X) ∩ AA(ℝ : X), resp. f ∈ SAPω(I : X) ∩ AP(I : X). Then
f ∈ Cω(ℝ : X), resp. f ∈ Cω(I : X).

(iii) AAA(ℝ : X) ∩ Q − AAP(ℝ : X) = AAP(ℝ : X) and [AAA(ℝ : X) ∖ AAP(ℝ : X)] ∩ Q −
AAP(ℝ : X) = 0.

(iv) AA(ℝ : X) ∩ Q − AAP(ℝ : X) = AP(ℝ : X).
(v) Let F(I : X) be any space of functions h : I → X satisfying that for each τ ∈ I the

supremum formula holds for the function h(⋅ + τ) − h(⋅), i. e.,

sup
t∈I

h(⋅ + τ) − h(⋅)
 = sup

t∈I , |t|⩾a

h(⋅ + τ) − h(⋅)
, a ∈ I .

Then we have [F(I : X) + C0(I : X)] ∩ Q − AUR(I : X) ⊆ AUR(I : X) and F(I :
X) ∩ Q − AUR(I : X) ⊆ UR(I : X).

Furthermore, the above statements can be reformulated for the corresponding Ste-
panov classes.

We will only note here that these statements admit very simple generalizations in
the multi-dimensional setting. For example, if I = ℝn or I = [0,∞)n and the function
F : I → Y is both S-asymptotically (ωj, cj, I)j∈ℕn -periodic and I-asymptotically Bohr
(I , 1)-almost periodic, then the function F(⋅) is (ωj, cj)j∈ℕn -periodic (this can be used
to provide certain examples of compactly almost automorphic functions in ℝn which
are not quasi-asymptotically uniformly recurrent). Essential is that the proof of [658,
Theorem 1] works in the multi-dimensional setting (see the item (v) above).

7.3.4 Stepanov classes of quasi-asymptotically c-almost periodic type functions

In this subsection, we investigate the Stepanov quasi-asymptotically c-almost peri-
odic type functions (theWeyl and Besicovitch generalizations of quasi-asymptotically
c-almost periodic type functions can be also introduced and analyzed but wewill skip
all related details concerning this issue here). We will always assume that c ∈ ℂ∖ {0},
Ω is a fixed compact subset of ℝn with a positive Lebesgue measure, 0 ̸= Λ ⊆ ℝn sat-
isfies Λ + Ω ⊆ Λ,𝔻 ⊆ Λ ⊆ ℝn, 0 ̸= Λ′ ⊆ Λ ⊆ ℝn, the sets𝔻 and Λ′ are unbounded, as
well as Λ + Λ′ ⊆ Λ.

We employ the following conditions:
(MD − B)S ϕ : [0,∞) → [0,∞), p ∈ 𝒫(Ω), F : Λ × (0,∞) × Λ′ → (0,∞), F : Λ ×ℕ →

(0,∞) and F : Λ→ (0,∞).

We will follow the approach obeyed for introduction of the notion in [658, Definition
13–Definition 15], only, in which we do not lose the valuable information about the
translation invariance of introduced spaces.
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Definition 7.3.20. Let (MD − B)S hold.
(i) A function F : Λ × X → Y is called Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ, F, c]-quasi-

asymptotically almost periodic, resp. Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ,F, c]-quasi-as-
ymptotically uniformly recurrent, if and only if for every B ∈ ℬ and ε > 0 there
exists l > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, l) ∩ Λ′ such that there
exists a finite real numberM(ε, τ) > 0 such that

sup
t∈𝔻M(ε,τ) :t+τ∈𝔻M(ε,τ) ;x∈B

F(t, ε, τ)ϕ(F(⋅ + t + τ; x) − cF(⋅ + t; x)
Y )Lp(⋅)(Ω) ⩽ ε, (7.34)

resp. there exist a strictly increasing sequence (τk) in Λ′ whose norms tending to
plus infinity and a sequence (Mk) of positive real numbers tending to plus infinity
such that

lim
k→+∞

sup
t∈𝔻Mk
:t+τk∈𝔻Mk

;x∈B
F(t, k)ϕ(F(⋅ + t + τk ; x) − cF(⋅ + t; x)

Y )Lp(⋅)(Ω) = 0.

(ii) Letω ∈ ℝn ∖ {0}, c ∈ ℂ∖ {0},ω +Λ ⊆ Λ,𝔻 ⊆ Λ ⊆ ℝn and the set𝔻 be unbounded.
A function F : Λ × X → Y is said to be Stepanov [S,Ω,ℬ,𝔻, p,ϕ, F]-asymptotically
(ω, c)-periodic if and only if for each B ∈ ℬ we have

lim
|t|→+∞,t∈𝔻

F(t)ϕ(F(t + ω + ⋅; x) − cF(t + ⋅; x)
Y )Lp(⋅)(Ω) = 0, uniformly in x ∈ B.

(iii) Letωj ∈ ℝ∖{0}, cj ∈ ℂ∖{0},ωjej+Λ ⊆ Λ,𝔻j ⊆ Λ ⊆ ℝn and the set𝔻j beunbounded
(1 ⩽ j ⩽ n). A function F : Λ×X → Y is said to be [S,Ω,ℬ,𝔻, p,ϕ, F]-asymptotically
(ωj, cj,𝔻j)j∈ℕn -periodic if and only if for each j ∈ ℕn we have

lim
|t|→+∞,t∈𝔻j

F(t)ϕ(F(t + ωjej + ⋅; x) − cjF(t + ⋅; x)
Y )Lp(⋅)(Ω) = 0, uniformly in x ∈ B.

Definition 7.3.21. Let (MD − B)S hold.
(i) A function F : Λ × X → Y is called Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ, F, c]-quasi-asymp-

totically almost periodic of type 1, resp. Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ,F, c]-quasi-
asymptotically uniformly recurrent of type 1, if and only if for every B ∈ ℬ and
ε > 0 there exists l > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, l) ∩ Λ′ such
that there exists a finite real numberM(ε, τ) > 0 such that

sup
t∈𝔻M(ε,τ) :t+τ∈𝔻M(ε,τ) ;x∈B

F(t, ε, τ)ϕ(F(⋅ + t + τ; x) − cF(⋅ + t; x)
Lp(⋅)(Ω:Y)) ⩽ ε,

resp. there exist a strictly increasing sequence (τk) in Λ′ whose norms tending to
plus infinity and a sequence (Mk) of positive real numbers tending to plus infinity
such that

lim
k→+∞

sup
t∈𝔻Mk
:t+τk∈𝔻Mk

;x∈B
F(t, k)ϕ(F(⋅ + t + τk ; x) − cF(⋅ + t; x)

Lp(⋅)(Ω:Y)) = 0.
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(ii) Letω ∈ ℝn ∖ {0}, c ∈ ℂ∖ {0},ω +Λ ⊆ Λ,𝔻 ⊆ Λ ⊆ ℝn and the set𝔻 be unbounded.
A function F : Λ × X → Y is said to be Stepanov [S,Ω,ℬ,𝔻, p,ϕ, F]-asymptotically
(ω, c)-periodic of type 1 if and only if for each B ∈ ℬ we have

lim
|t|→+∞,t∈𝔻

F(t)ϕ(F(t + ω + ⋅; x) − cF(t + ⋅; x)
Lp(⋅)(Ω:Y)) = 0, uniformly in x ∈ B.

(iii) Letωj ∈ ℝ∖{0}, cj ∈ ℂ∖{0},ωjej+Λ ⊆ Λ,𝔻j ⊆ Λ ⊆ ℝn and the set𝔻j beunbounded
(1 ⩽ j ⩽ n). A function F : Λ×X → Y is said to be [S,Ω,ℬ,𝔻, p,ϕ, F]-asymptotically
(ωj, cj,𝔻j)j∈ℕn -periodic of type 1 if and only if for each j ∈ ℕn we have

lim
|t|→+∞,t∈𝔻j

F(t)ϕ(F(t + ωjej + ⋅; x) − cjF(t + ⋅; x)
)Lp(⋅)(Ω:Y) = 0, uniformly in x ∈ B.

Definition 7.3.22. Let (MD − B)S hold.
(i) A function F : Λ × X → Y is called Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ, F, c]-quasi-asymp-

totically almost periodic of type 2, resp. Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ,F, c]-quasi-
asymptotically uniformly recurrent of type 2, if and only if for every B ∈ ℬ and
ε > 0 there exists l > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, l) ∩ Λ′ such
that there exists a finite real numberM(ε, τ) > 0 such that

sup
t∈𝔻M(ε,τ) :t+τ∈𝔻M(ε,τ) ;x∈B

ϕ(F(t, ε, τ)F(⋅ + t + τ; x) − cF(⋅ + t; x)
Lp(⋅)(Ω:Y)) ⩽ ε,

resp. there exist a strictly increasing sequence (τk) in Λ′ whose norms tending to
plus infinity and a sequence (Mk) of positive real numbers tending to plus infinity
such that

lim
k→+∞

sup
t∈𝔻Mk
:t+τk∈𝔻Mk

;x∈B
ϕ(F(t, k)F(⋅ + t + τk ; x) − cF(⋅ + t; x)

Lp(⋅)(Ω:Y)) = 0.

(ii) Letω ∈ ℝn ∖ {0}, c ∈ ℂ∖ {0},ω +Λ ⊆ Λ,𝔻 ⊆ Λ ⊆ ℝn and the set𝔻 be unbounded.
A function F : Λ × X → Y is said to be Stepanov [S,Ω,ℬ,𝔻, p,ϕ, F]-asymptotically
(ω, c)-periodic of type 2 if and only if for each B ∈ ℬ we have

lim
|t|→+∞,t∈𝔻

ϕ(F(t)F(t + ω + ⋅; x) − cF(t + ⋅; x)
Lp(⋅)(Ω:Y)) = 0, uniformly in x ∈ B.

(iii) Letωj ∈ ℝ∖{0}, cj ∈ ℂ∖{0},ωjej+Λ ⊆ Λ,𝔻j ⊆ Λ ⊆ ℝn and the set𝔻j beunbounded
(1 ⩽ j ⩽ n). A function F : Λ×X → Y is said to be [S,Ω,ℬ,𝔻, p,ϕ, F]-asymptotically
(ωj, cj,𝔻j)j∈ℕn -periodic of type 2 if and only if for each j ∈ ℕn we have

lim
|t|→+∞,t∈𝔻j

ϕ(F(t)F(t + ωjej + ⋅; x) − cjF(t + ⋅; x)
Lp(⋅)(Ω:Y)) = 0, uniformly in x ∈ B.

Remark 7.3.23. If𝔻+Λ′ ⊆ 𝔻 (this is always true provided that𝔻 = Λdue to our stand-
ing assumption), then it is irrelevant whether we will write supt∈𝔻Mk

:t+τk∈𝔻Mk
⋅ or only
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supt∈𝔻Mk
⋅ in Definition 7.3.20(ii); a similar comment holds for the notion introduced

in Definition 7.3.20(i), Definition 7.3.21 and Definition 7.3.22.

Without any doubt, the most intriguing case is that in which we have p(x) ≡ p ∈
[1,∞), ϕ(x) ≡ x, Ω = [0, 1]n, and the functions F, F, F are identically equal to one. In
this case, we can simply reformulate a great number of statements clarified by now
for the Stepanov classes of the functions introduced in this section by using the no-
tion of multi-dimensional Bochner transform. If F̂Ω : Λ × X → Lp(u)(Λ : Y) is well
defined and continuous, then the function F : Λ × X → Y will be, e. g., Stepanov
[Ω,ℬ,Λ′,𝔻, p,ϕ, F, c]-quasi-asymptotically almost periodic if and only if the function
F̂Ω : Λ × X → Lp(u)(Λ : Y) is𝔻-quasi-asymptotically (ℬ,Λ′, c)-almost periodic. In the
case that the functions F, F, F are only bounded and not necessarily identically equal
to one, then we can simply transfer the statements of [658, Proposition 4, Corollary 1]
to the multi-dimensional setting.

Using the trivial inequalities and Lemma 1.1.7, we can clarify a great number of
inclusions for the introduced classes of functions. The main result of this subsection,
Theorem 7.3.24, can be reworded for all other classes of the functions introduced in
Definition 7.3.20(ii)–(iii), Definition 7.3.21 and Definition 7.3.22.

Theorem 7.3.24. Let a functionF : ℝn×X → Y beStepanov [Ω,ℬ,Λ′,𝔻, p,ϕ, F, c]-quasi-
asymptotically almost periodic, resp. Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ,F, c]-quasi-asymptot-
ically uniformly recurrent, where Ω = [0, 1]n,𝔻 = ℝn, ϕ : [0,∞) → [0,∞) is a convex,
monotonically increasing function which additionally satisfies the requirement that
there exists a function φ : [0,∞) → [0,∞) such that ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0.
Let h ∈ L1(ℝn) and let for each set B ∈ ℬ we have supt∈ℝn ;x∈B ‖F(t; x)‖Y < ∞. Suppose
that there exists a continuous function g : [0,∞) → [0,∞) with g(0+) = 0+ and a
sequence (ak)k∈ℤn of strictly increasing positive reals such that ∑k∈ℤn ak = 1 and for
each ε > 0 and τ ∈ Λ′, resp. for each n ∈ ℕ and τ ∈ Λ′, there exists M′(ε, τ) > 0,
resp. M′(n, τ) > 0, such that for each t ∈ ℝn with |t| ⩾ M′(ε, τ), resp. |t| ⩾ M′(n, τ), we
have

∫
[0,1]n

φp(u)(F1(t, ε, τ)(φ(2) ∑
k∈ℤn

akφ(a−1k )[φ(|h(t − σ − k)|)]Lq(σ)(Ω)
F(u + k, ε, τ)

+ g(ε))) du ⩽ 1,

(7.35)

resp.

∫
[0,1]n

φp(u)(F1(t, n)(φ(2) ∑
k∈ℤn

akφ(a−1k )[φ(|h(t − σ − k)|)]Lq(σ)(Ω)
F(u + k, n)

+ g(1/n))) du ⩽ 1.

Then the function (h ∗ F)(⋅; ⋅) is Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ, F1, c]-quasi-asymptotically
almost periodic, resp. Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ,F1, c]-quasi-asymptotically uniformly
recurrent.
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Proof. We will prove the result only for the class of Stepanov [Ω,ℬ,Λ′,𝔻, p,ϕ, F, c]-
quasi-asymptotically almost periodic functions. It is clear that the function (h∗F)(⋅; ⋅)
is well defined. Let ε > 0 and B ∈ ℬ be fixed. Due to our assumption, there exists
l > 0 s. t. for each t0 ∈ Λ′ there exists τ ∈ B(t0, l) ∩ Λ′ s. t. there exists a finite real
number M(ε, τ) > 0 s. t. (7.34) holds. Let such a point τ be fixed. Then we know that
there exists M′(ε, τ) > 0 such that for each t ∈ ℝn with |t| ⩾ M′(ε, τ) we have (7.35).
Let M1(ε, τ) ⩾ M(ε, τ) + M′(ε, τ) + |τ|. Arguing as in the proof of Theorem 7.3.6, the
continuity of the function ϕ(⋅) at the point t = 0 implies that there exists a finite real
numberM3(ε, τ) ⩾ M1(ε, τ) such that

φ(2cB)
1
2
ϕ( ∫
|σ|⩽M2(ε,τ)

h(t − σ)
 dσ) ⩽ εg(ε). (7.36)

Keeping in mind (7.35) and the definition of the norm in Lp(⋅)(Ω), with λ = ε/F1(t, ε, τ)
and the meaning clear, it suffices to show that, for every fixed element x ∈ B and for
every fixed point t ∈ ℝn with |t| ⩾ M4(ε, τ) ≡ M3(ε, τ) + |τ|, we have

ϕ((h ∗ F)(t + u + τ; x) − c(h ∗ F)(t + u; x)
Y )

= ϕ(

∫
ℝn

h(t − σ) ⋅ [F(σ + u + τ; x) − cF(σ + u; x)] dσ
Y
) (7.37)

⩽ εφ(2) ∑
k∈ℤn

akφ(a−1k )[φ(|h(t − σ − k)|)]Lq(σ)(Ω)
F(u + k, ε, τ)

+ εg(ε). (7.38)

Towards this end, observe first that there exists a finite constant cB > 0 such that
(see (7.37))

ϕ(

∫
ℝn

h(t − σ) ⋅ [F(σ + u + τ; x) − cF(σ + u; x)] dσ
Y
)

⩽ ϕ(2 1
2
∫

|σ|⩾M4(ε,τ)

h(t − σ)

F(t + σ + τ; x) − cF(u + σ)

Y dσ

+
cB
2
∫

|σ|⩽M4(ε,τ)

h(t − σ)
 dσ)

⩽ φ(2) 1
2
ϕ( ∫
|σ|⩾M4(ε,τ)

h(t − σ)

F(t + σ + τ; x) − cF(u + σ)

Y dσ)

+ φ(2cB)
1
2
ϕ( ∫
|σ|⩽M4(ε,τ)

h(t − σ)
 dσ).
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Then (7.38) follows from the last estimate, (7.36) and the next computation involving
the Jensen inequality:

ϕ( ∫
|σ|⩾M4(ε,τ)

h(t − σ)

F(t + σ + τ; x) − cF(u + σ)

Y dσ)

= ϕ( ∑
k∈ℤn

ak ∫
σ∈k+Ω;|σ|⩾M4(ε,τ)

a−1k
h(t − σ)


F(t + σ + τ; x) − cF(u + σ)

Y dσ)

⩽ ∑
k∈ℤn

akφ(a
−1
k ) ∫

σ∈Ω;|σ+k|⩾M4(ε,τ)

φ(|h(t − σ)|)ϕ(F(t + σ + τ; x) − cF(u + σ)
Y ) dσ,

and a simple application of the Hölder inequality after that.

7.3.5 Multi-dimensional Weyl c-almost periodic type functions

In this subsection,wewill introduce andanalyze themulti-dimensionalWeyl c-almost
periodic type functions; we will always assume that the following condition holds:
(WM2) 0 ̸= Λ ⊆ ℝn, 0 ̸= Λ′ ⊆ ℝn, 0 ̸= Ω ⊆ ℝn is a Lebesgue measurable set such that

m(Ω) > 0, p ∈ 𝒫(Ω), Λ′ +Λ+ lΩ ⊆ Λ, Λ+ lΩ ⊆ Λ for all l > 0,ϕ : [0,∞)→ [0,∞)
and 𝔽 : (0,∞) × Λ→ (0,∞).

Definition 7.3.25.
(i) By e−W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ×X : Y)wedenote the set consisting of all functionsF : Λ×X →

Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers l > 0
and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ

ln𝔽(l, t)ϕ(F(t + τ + lu; x) − cF(t + lu; x)
Y )Lp(u)(Ω) < ε.

(ii) ByW [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ×X : Y)wedenote the set consisting of all functions F : Λ×X → Y
such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

ln𝔽(l, t)ϕ(F(t + τ + lu; x) − cF(t + lu; x)
Y )Lp(u)(Ω:Y) < ε.

Definition 7.3.26.
(i) By e − W [p(u),ϕ,𝔽,c]1Ω,Λ′ ,ℬ (Λ × X : Y) we denote the set consisting of all functions F :

Λ×X → Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers
l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ

ln𝔽(l, t)ϕ(F(t + τ + lu; x) − cF(t + lu; x)
Lp(u)(Ω:Y)) < ε.
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(ii) ByW [p(u),ϕ,𝔽,c]1Ω,Λ′ ,ℬ (Λ×X : Y)wedenote the set consisting of all functionsF : Λ×X → Y
such that, for every ε > 0 and B ∈ ℬ, there exists a finite real number L > 0 such
that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

ln𝔽(l, t)ϕ(F(t + τ + u; x) − cF(t + u; x)
Lp(u)(lΩ:Y)) < ε.

Definition 7.3.27.
(i) By e − W [p(u),ϕ,𝔽,c]2Ω,Λ′ ,ℬ (Λ × X : Y) we denote the set consisting of all functions F :

Λ×X → Y such that, for every ε > 0 and B ∈ ℬ, there exist two finite real numbers
l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such
that

sup
x∈B

sup
t∈Λ

ϕ(ln𝔽(l, t)F(t + τ + lu; x) − cF(t + lu; x)
Lp(u)(Ω:Y)) < ε.

(ii) By W [p(u),ϕ,𝔽,c]2Ω,Λ′ ,ℬ (Λ × X : Y) we denote the set consisting of all functions F :
Λ × X → Y such that, for every ε > 0 and B ∈ ℬ, there exists a finite real
number L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such
that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

ϕ(ln𝔽(l, t)F(t + τ + lu; x) − cF(t + lu; x)
Lp(u)(Ω:Y)) < ε.

It is clear that the notion from the second parts of the above definitions extends
the corresponding notion from the first parts of these definitions. In many concrete
situations, the situation in which Λ′ ̸= Λmay occur, as we have already clarified in the
case that c = 1.

It is clear that all introduced spaces are invariant under the pointwise multipli-
cations with complex scalars provided that ϕ : [0,∞) → [0,∞) is a convex, mono-
tonically increasing function which additionally satisfies the requirement that there
exists a function φ : [0,∞) → [0,∞) such that ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0. The
translation invariance of spaces introduced in Definition 7.3.25 and Definition 7.3.26
holds provided that, for every τ ∈ Λ, we have

sup
l>0,t∈Λ

𝔽(l, t)
𝔽(l, t + τ)

< +∞,

while the translation invariance of spaces introduced in Definition 7.3.27 holds pro-
vided this condition and the assumption on the existence of the function φ(⋅) above.
Furthermore, it can be simply shown that for any scalar-valued function F(⋅; ⋅) which
is bounded away from zero on elements of the collection ℬ, the function 1/F(⋅; ⋅) is
well defined and belongs to the same space of functions as F(⋅; ⋅), with the constant c
replaced by 1/c in the corresponding space and the meaning clear.

The conclusions from the following result can be also formulated for the classes
of functions introduced in Definition 7.3.26 and Definition 7.3.27.
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Proposition 7.3.28.
(i) Suppose that the function ϕ(⋅) is monotonically increasing and

F ∈ (e−)W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ × X : Y).

Then we have ‖F(⋅; ⋅)‖Y ∈ (e−)W
[p(u),ϕ,𝔽,|c|]
Ω,Λ′ ,ℬ (Λ × X : Y).

(ii) Suppose that F ∈ (e−)W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ × X : Y). Then we have

F̌ ∈ (e−)W [p1(u),ϕ,𝔽1 ,c]
−Ω,−Λ′ ,ℬ ((−Λ) × X : Y),

where p1(⋅) := p(−⋅) and 𝔽1(⋅; ⋅) := 𝔽(⋅;−⋅).

Proof. The proof of (i) simply follows from Lemma 1.1.7(iii), our assumption that the
function ϕ(⋅) is monotonically increasing and the inequality


F(t + τ + lu; x)

Y − |c|‖F(t + lu; x)
Y
 ⩽
F(t + τ + lu; x) − cF(t + lu; x)

Y ,

with the notation and meaning clear. The proof of (ii) follows from the chain rule, the
definition of norm in Lp1(⋅)(−Ω) and the next equalities:

ln𝔽(l,−t)[ϕ(F(−t − τ − lu; x) − cF(−t − lu; x)
Y )]Lp1(⋅)(−Ω)

= ln𝔽(l,−t) inf{λ > 0 : ∫
−Ω

φp(−u)(
ϕ(‖F(−t − τ − lu; x) − cF(−t − lu; x)‖Y )

λ
) du ⩽ 1}

= ln𝔽(l,−t) inf{λ > 0 : ∫
Ω

φp(u)(
ϕ(‖F(−t − τ + lu; x) − cF(−t + lu; x)‖Y )

λ
) du ⩽ 1},

with the notation and meaning clear.

In what follows, we will extend the statements of [588, Proposition 2.3, Corollary
2.1, Proposition 2.4] to the multi-dimensional setting.

Theorem 7.3.29. Suppose that the function 𝔽(⋅; ⋅) does not depend on the second argu-
ment.
(i) Suppose that m ∈ ℕ, jΛ′+Λ+ lΩ ⊆ Λ for all l ⩾ 0 and j ∈ ℕ, as well as that condition

(F) holds and there exists a finite real constant cm > 0 such that

ϕ(x1 + ⋅ ⋅ ⋅ + xm) ⩽ cm[ϕ(x1) + ⋅ ⋅ ⋅ + ϕ(xm)], xi ⩾ 0 (i ∈ ℕm). (7.39)

Suppose, further, that F ∈ (e−)W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ×X : Y), resp. F ∈ (e−)W [p(u),ϕ,𝔽,c]iΩ,Λ′ ,ℬ (Λ×

X :Y) for i = 1, 2. Then F ∈ (e−)W [p(u),ϕ,𝔽,c
m]

Ω,mΛ′ ,ℬ (Λ×X : Y), resp. F ∈ (e−)W [p(u),ϕ,𝔽,c
m]i

Ω,mΛ′ ,ℬ (Λ×
X : Y) provided i = 1, 2 and the function ϕ(⋅) is monotonically increasing.
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(ii) Suppose that m ∈ 2ℤ∖ {0}, p ∈ ℕ, (m, n) = 1, |c| = 1 and arg(c) = πm/p [m ∈ 2ℤ+ 1,
p ∈ ℕ, (m, n) = 1, |c| = 1 and arg(c) = πm/p], m ∈ ℕ, jΛ′ + Λ + lΩ ⊆ Λ for all
l ⩾ 0 and j ∈ ℕ, as well as that condition (F) holds and there exists a finite real
constant cm > 0 such that (7.39) holds. If F ∈ (e−)W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ × X : Y), resp.
F ∈ (e−)W [p(u),ϕ,𝔽,c]iΩ,Λ′ ,ℬ (Λ × X : Y) for i = 1, 2, then F ∈ (e−)W [p(u),ϕ,𝔽,1]Ω,mΛ′ ,ℬ (Λ × X : Y)
[F ∈ (e−)W [p(u),ϕ,𝔽,−1]Ω,mΛ′ ,ℬ (Λ × X : Y)], resp. F ∈ (e−)W [p(u),ϕ,𝔽,1]iΩ,mΛ′ ,ℬ (Λ × X : Y) [F ∈
(e−)W [p(u),ϕ,𝔽,−1]iΩ,mΛ′ ,ℬ (Λ×X : Y)], provided i = 1, 2 and the function ϕ(⋅) is monotonically
increasing.

(iii) Suppose that |c| = 1, arg(c) ∉ πℚ, jΛ′ +Λ + lΩ ⊆ Λ for all l ⩾ 0 and j ∈ ℕ, as well as
that condition (F) holds and for eachm ∈ ℕ there exists a finite real constant cm > 0
such that (7.39) holds. Let the function φ(⋅) be continuous at zero. Suppose, further,
that F ∈ (e−)W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ×X : Y), resp. F ∈ (e−)W [p(u),ϕ,𝔽,c]iΩ,Λ′ ,ℬ (Λ×X : Y) for i = 1, 2.

Then F ∈ (e−)W [p(u),ϕ,𝔽,c
′]

Ω,Λ′ ,ℬ (Λ × X : Y), provided that for each set B ∈ ℬ the following
condition holds

sup
l>1,t∈Λ;x∈B

ln𝔽(l)[ϕ(F(t + lu; x)
Y )]Lp(u)(Ω) < +∞, (7.40)

resp. F ∈ (e−)W [p(u),ϕ,𝔽,c
′]1

Ω,Λ′ ,ℬ (Λ×X : Y) [F ∈ (e−)W [p(u),ϕ,𝔽,c
′]2

Ω,Λ′ ,ℬ (Λ×X : Y)] provided that
the function ϕ(⋅) is monotonically increasing and for each set B ∈ ℬ the following
condition holds:

sup
l>1,t∈Λ;x∈B

ln𝔽(l)ϕ(F(t + lu; x)
Lp(u)(Ω:Y)) < +∞

[ sup
l>1,t∈Λ;x∈B

ϕ(ln𝔽(l)F(t + lu; x)
Lp(u)(Ω:Y)) < +∞].

Proof. Wewill prove the statements (i) and (iii) for the class (e−)W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ×X : Y),
only. Clearly, we have the following decomposition (t ∈ Λ; u ∈ Ω; l > 0):

F(t +mτ + lu; x) − cmF(t + lu; x)

=
m−1
∑
j=0

cj[F(t + (m − j)τ + lu; x) − cF(t + (m − j − 1) + lu; x)].

Therefore, our assumptions imply

ϕ(F(t +mτ + lu; x) − c
mF(t + lu; x)Y )Lp(u)(Ω)

⩽ cm
m−1
∑
j=0

φ(cj)ϕ(F(t + (m − j)τ + lu; x) − cF(t + (m − j − 1)τ + lu; x)
Y )Lp(u)(Ω)

and t + (m − j − 1)τ ∈ Λ for all t ∈ Λ and 0 ⩽ j ⩽ m − 1. The final conclusion of (i)
simply follows from the above. To prove (iii), it should be only recalled that the set
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{cm : m ∈ ℕ} is dense in the unit circle S1 ≡ {z ∈ ℂ : |z| = 1} so that there exists a
strictly increasing sequence (lk) of positive integers such that liml→+∞ clk = c′. Then
the conclusion follows similarly to the proof of [588, Proposition 2.3], by applying the
first part of this theorem, our assumption withm = 2 and the estimate (7.40).

We will revisit once more the characteristic function of the region [0,∞)n:

Example 7.3.30. Let Ω = [0, 1]n.
(i) Suppose that 0 ̸= K ⊆ ℝn and F(t) := χK(t), t ∈ ℝn. We will prove that for each

p ∈ D+(Ω) and c ∈ ℂ ∖ {0} we have F ∈ e −W
[p(u),x,l−σ ,c]
Ω,ℝn (ℝn : ℂ). Keeping in mind

Lemma 1.1.7(ii), we get (τ ∈ ℝn; l > 0)

sup
t∈ℝn

ln−σχK(t + τ + lu) − cχK(t + lu)
Lp(u)(Ω)

⩽ 4 sup
t∈ℝn

ln−σχK(t + τ + lu) − cχK(t + lu)
Lp+ (Ω)

= 4 sup
t∈ℝn

l−σχK(t + τ + u) − cχK(t + u)
Lp+ (lΩ)

⩽ 4 sup
t∈ℝn

l−σ[χK(⋅)
Lp+ (lΩ∩[K−t−τ]) + |c|

χK(⋅)
Lp+ (lΩ∩[K−t])]

⩽ 4l−σ(1 + |c|)m(K).

This simply implies the required result.
(ii) Set F(t) := χ[0,∞)n (t), t ∈ ℝn. We already know that F ∈ W [p,x,l

−σ ,1]
Ω,ℝn (ℝ

n : ℂ) if
and only if σ > (n − 1)/p, as well as that there is no σ > 0 such that F ∈ e −
W [p,x,l

−σ ,1]
Ω,ℝn (ℝ

n : ℂ); similarly, we see that there is no σ > 0 and c ∈ ℂ ∖ {0} such
that F ∈ e −W [p,x,l

−σ ,c]
Ω,ℝn (ℝ

n : ℂ). Since

sup
t∈ℝn
χ[0,∞)n (t + τ + lu) − cχ[0,∞)n (t + lu)

Lp(Ω) ⩾ |1 − c|,

as easily proved, we see that there is no c ∈ ℂ∖ {0, 1} such that F ∈ W [p,x,l
−σ ,c]

Ω,ℝn (ℝ
n :

ℂ) forn ⩾ σ > (n−1)/p. This is also theoptimal resultwe canobtainbecause for any
σ > 0 and any essentially bounded function F(⋅)wehave F ∈ e−W [p,x,l

−σ ,c]
Ω,ℝn (ℝ

n : ℂ).

Regarding the convolution invariance of spaces introduced in this section, wewill
clarify just one result for the class (e−)W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (Λ × X : Y); the proof is omitted.

Theorem 7.3.31. Suppose that ϕ : [0,∞) → [0,∞) is a convex monotonically in-
creasing function satisfying that there exists a function φ : [0,∞) → [0,∞) such that
ϕ(xy) ⩽ φ(x)ϕ(y) for all x, y ⩾ 0. Suppose, further, that h ∈ L1(ℝn), Ω = [0, 1]n,
F ∈ (e−)W [p(u),ϕ,𝔽,c]Ω,Λ′ ,ℬ (ℝn × X : Y), 1/p(u) + 1/q(u) = 1, and for each x ∈ X we have
supt∈ℝn ‖F(t; x)‖Y < ∞. If 𝔽1 : (0,∞) × ℝn → (0,∞), p1 ∈ 𝒫(ℝn) and if, for every
t ∈ ℝn and l > 0, there exists a sequence (ak)k∈lℤn of positive real numbers such that
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∑k∈lℤn ak = 1 and

∫
Ω

φp1(u)(2 ∑
k∈lℤn

ak l
−n[φ(a−1k lnh(k − lv))]Lq(v)(Ω)𝔽1(l, t)[𝔽(l, t + lu − k)]

−1
) du ⩽ 1,

then h ∗ F ∈ (e−)W [p1(u),ϕ,𝔽1 ,c]Ω,Λ′ ,ℬ (ℝn × X : Y).

If p ∈ [1,∞), then any Stepanov (p, c)-quasi-asymptotically almost periodic func-
tion is Weyl (p, c)-almost periodic, which also holds for the corresponding classes of
uniformly recurrent functions. The generalized Weyl uniform recurrence in Lebesgue
spaceswith variable exponents has been already analyzed in the one-dimensional set-
ting and here we will only mention the following multi-dimensional notion here: Let
(WM2) hold. Then we say that a function F : Λ×X → Y is Weyl [Ω,ℬ,Λ′, p,ϕ,F, c]-uni-
formly recurrent if and only if for each set B ∈ ℬwe can find a sequence (τk) in Λ′ such
that limk→+∞ |τk | = +∞ as well as that

lim
k→+∞

lim sup
l→+∞

sup
t∈Λ;x∈B
[F(l, t)ϕ(F(⋅l + t + τk ; x) − cF(⋅l + t; x)

Y )Lp(⋅)(Ω)] = 0.

The above-mentioned result on the set-theoretical embedding of space of Stepanov
(p, c)-quasi-asymptotically almost periodic functions into the space of Weyl (p, c)-al-
most periodic functions can be generalized in many different directions; in [658,
Proposition 6], e. g., we have shown that any Stepanov (p,ϕ, F)-quasi-asymptotically
uniformly recurrent function is Weyl (p(x),ϕ, F1)-uniformly recurrent under certain
assumptions. This result can be formulated in the multi-dimensional setting but we
will consider here only the constant coefficient case p(⋅) ≡ p ∈ [1,∞) for brevity.

Proposition 7.3.32. Suppose that (MD − B)S holds and a function F : Λ × X → Y is
Stepanov [Ω,ℬ,Λ′,Λ, p,ϕ,F, c]-quasi-asymptotically uniformly recurrent. IfF1 : (0,∞)×
Λ→ (0,∞) satisfies

lim
k→+∞

lim sup
l→+∞

sup
t∈Λ

F1(l, t) ∑
a∈ℤn∩[0,l]n

1
F(t + a, k)

<∞

and

lim
l→+∞

sup
t∈Λ

F1(l, t) = 0,

then the function F(⋅; ⋅) is Weyl [Ω,ℬ,Λ′, p,ϕ,F, c]-uniformly recurrent.

Now we will present some applications of our theoretical results to the abstract
Volterra integro-differential equations.
1. We start by noting that all established applications made in the application part

of Section 6.3 including applications to the d’Alembert formula, the Gaussian
semigroups in ℝn and the nonautonomous differential equations of the first or-
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der, can be straightforwardly formulated for the corresponding classes of multi-
dimensional (equi-)Weyl c-almost periodic type functions considered in this sec-
tion. In this part, we will present the following illustrative application of Theo-
rem 7.3.24, only: Let Y be one of the spaces Lp(ℝn), C0(ℝn) or BUC(ℝn), where
1 ⩽ p <∞. Suppose that t0 > 0 is a fixed real number, Ω = [0, 1]n,𝔻 = Λ = ℝn and
the function F : ℝn → ℂ is Stepanov [Ω,Λ′,ℝn, p, x, F, c]-quasi-asymptotically al-
most periodic, resp. Stepanov [Ω,Λ′,ℝn, p, x,F, c]-quasi-asymptotically uniformly
recurrent. Then the function x → (G(t0)F)(x), x ∈ ℝn, where (G(t))t⩾0 is the Gaus-
sian semigroup, is Stepanov [Ω,Λ′,ℝn, p, x, F1, c]-quasi-asymptotically almost
periodic, resp. Stepanov [Ω,Λ′,ℝn, p, x,F1, c]-quasi-asymptotically uniformly re-
current provided that there exists a continuous function g : [0,∞) → [0,∞)
with g(0+) = 0+ such that for each ε > 0 and τ ∈ Λ′, resp. for each n ∈ ℕ and
τ ∈ λ′, there exists M(ε, τ) > 0, resp. M(n, τ) > 0, such that for each t ∈ ℝn with
|t| ⩾ M(ε, τ), resp. |t| ⩾ M(n, τ), we have

∫
[0,1]n
[F1(t, ε, τ)( ∑

k∈ℤn

e−|t−k|
2

F(u + k, ε, τ)
+ g(ε))]

p
du ⩽ 1,

resp.

∫
[0,1]n
[F1(t, n)( ∑

k∈ℤn

e−|t−k|
2

F(u + k, n)
+ g(1/n))]

p
du ⩽ 1.

However, this is a pure theoretical condition which cannot be so simply verified
in some practical situations; see also Theorem 7.3.6 and Theorem 7.3.19 which can
be also applied here.

2. Concerning the regular solutions of the inhomogeneous wave equations given by
the d’Alembert formula, we would like to note that the analysis carried out in
the corresponding issues of section concerningmulti-dimensional (ω, c)-periodic
type functions can be also used to justify the introduction of the notion in Defini-
tion 7.3.1 and Definition 7.3.2. More precisely, suppose that ω ∈ ℝ ∖ {0}, k ∈ ℕ and
c ∈ ℂ ∖ {0} satisfies ck−1 = 1. Recall that the regular solution of the wave equation
utt = a2uxx in domain {(x, t) : x ∈ ℝ, t > 0}, equipped with the initial conditions
u(x,0) = f (x) ∈ C2(ℝ) and ut(x,0) = g(x) ∈ C1(ℝ), is given by (3.65). Suppose that
𝔻 is any unbounded set in the plane ℝ2 such that (g[1](⋅) ≡ ∫⋅0 g(s) ds):

lim
|(x,t)|→+∞,(x,t)∈𝔻

[f (x − at + ω) − cf (x − at)
 +
g
[1](x − at + ω) − cg[1](x − at)

+
k
∑
j=1
(f (x + at + jω) − cf (x + at + (j − 1)ω)



+ g
[1](x + at + jω) − cg[1](x + at + (j − 1)ω))] = 0,
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and that

ω1 :=
1 + k
2

ω and ω2 :=
k − 1
2a

ω.

Then (ω1,ω2) ̸= (0,0),ω1 − aω2 = ω,ω1 + aω2 = kω, ck = c and a simple use of the
estimate

f (x + kω) − c
kf (x) ⩽

k
∑
j=1

f (x + jω) − cf (x + (j − 1)ω)
, x ∈ ℝ

shows that the function (x, t) → u(x, t), (x, t) ∈ ℝ2 is (S,𝔻)-asymptotically (ω, c)-
periodic. In the particular case a = 1 and𝔻 := {(x, t) ∈ ℝ2 : x ⩾ 0, t ⩾ 0, x ⩾ t2+1},
e. g., it suffices to assume that the restrictions of the functions f (⋅) and g[1](⋅) to the
interval [0,∞) are S-asymptotically (ω, c)-periodic.

3. We will reconsider here the semilinear Hammerstein integral equation of convo-
lution type on ℝn. By the foregoing, we know that the space SP(ℝn : X) of all
semi-periodic functions F : ℝn → X is convolution invariant (it is not a Banach
space but only a complete metric space). Under certain assumptions, we are able
to show that the following semilinear Hammerstein integral equation

y(t) = ∫
ℝn

k(t − s)G(s, y(s)) ds, t ∈ ℝn,

where G : ℝn × X → X is semi-(cj,ℬ)j∈ℕn -periodic with ℬ being the collection of
all bounded subsets of X and cj = 1 for all j ∈ ℕn, has a unique semi-periodic
solution. Let us assume that there exists a finite real constant L > 0 such that

G(t; y) − G(t; y
′)X ⩽ L

y − y
′X , t ∈ ℝn, y ∈ X, y′ ∈ X.

It can be simply shown that for any semi-periodic function y : ℝn → X we see that
the mapping t → G(t; y(t)), t ∈ ℝn is semi-periodic, as well. Since the space of
semi-periodic functions inℝn is convolution invariant, it follows that themapping

SP(ℝn : X) ∋ y → ∫
ℝn

k(⋅ − s)G(s, y(s)) ds ∈ SP(ℝn : X)

is well defined. If we assume that L∫ℝn |k(t)| dt < 1, then the use of Banach con-
traction principle shows that there exists a unique solution of (7.13) which belongs
to the space SP(ℝn : X).
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8 Multi-dimensional almost automorphic type
functions and applications

This chapter consists of three sections, Section 8.1–Section 8.3.

8.1 Multi-dimensional almost automorphic functions and
applications

In 1955, S. Bochner discovered the concept of almost automorphy while he was study-
ing problems related to differential geometry [188]; after that, it was proved that the
almost automorphy is a generalization of the almost periodicity (see [189–191] and
the references therein). Starting presumably with the papers ofW.A. Veech [993, 994],
many authors have deeply investigated this concept on various classes of (semi-)topo-
logical groups.

Suppose that F : ℝn → X is continuous. Then it is said that F(⋅) is almost auto-
morphic if and only if for every sequence (bk) in ℝn there exist a subsequence (ak) of
(bk) and a map G : ℝn → X such that

lim
k→∞

F(t + ak) = G(t) and lim
k→∞

G(t − ak) = F(t).

The strong motivational factor for genesis of article [267], from which the ma-
trial of this section is taken, presents the fact that almost nothing has been said by
now about the space almost automorphic solutions to the (abstract) Volterra integro-
differential equations. In support of our investigations of multi-dimensional almost
automorphic type functions, we also want to note that we have not been able to find
any relevant reference in the existing literaturewhich throws light on somestrikingpe-
culiarities of almost automorphic functions inℝn different from those already known
for the almost automorphic functions on general topological groups.

The almost automorphic solutions with respect to the time variable for various
classes of the (abstract) Volterra integro-differential equations have been intensively
sought in numerous research studies (see, e. g., [231, 240, 261] and the references
therein). Let us recall here that some almost periodic systems do not necessarily
carry almost periodic dynamics (see, e. g., [819, 927]), while such systems may have
bounded oscillating solutions which belong to a broader class of almost automor-
phic functions (see also the research article of R. A. Johnson [567], who proved the
existence of a linear almost periodic system of ordinary differential equations which
admits an almost automorphic solution but no almost periodic solution).

Let us recall that the solutions to nonautonomous evolution differential equa-
tions satisfy certain integral equations in which the integral kernels are expressed
by means of two-parameter evolution families (U(t, s))t⩾s⩾0. In the case of nonau-
tonomous evolution differential equations with almost automorphic dynamics, the

https://doi.org/10.1515/9783110763522-010
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notion of bi-almost automorphy of the evolution operator (U(t, s))t⩾s⩾0 is essential
in the research studies of the existence and uniqueness of almost automorphic mild
solutions. The notion of a (positively) bi-almost automorphic functionwas introduced
by T. J. Xiao et al. in [1041, (2009)]; in this paper, the authors have obtained some suf-
ficient conditions for the existence of pseudo-almost automorphic mild solutions of
the following equations in ℝ:

x′(t) = A(t)x(t) + f (t, x(t)),
x′(t) = A(t)x(t) + f (t, x(t − h)),
x′(t) = A(t)x(t) + f (t, x(α(t, x(t)))).

Three years later, Z. Chen and W. Lin employed this notion in their investigation of
nonautonomous stochastic evolution equations [281]; see also [263, 264] and [364,
Appendix A.3], where the authors have analyzed the notion of bi-almost automor-
phic sequences. More precisely, in [281], the authors have introduced the notion of
a square-mean bi-almost automorphic function for a stochastic processes and ana-
lyzed the existence of square-mean almost automorphic solutions of the following
non-autonomous linear stochastic evolution equation:

dx(t) = A(t)x(t)dt + f (t)dt + γ(t) dW(t),

with f , γ being stochastic processes andW beinga two-sided standardone-dimension-
al Brownian motion. In [263, 264], the authors have analyzed the notion of discrete
bi-almost automorphy and prove several results concerning the non-autonomous
difference equations appearing in the dynamics of the following hybrid system of
differential equations:

x′(t) = A(t)x(t) + B(t)x(⌊t⌋) + f (t, x(t), x(⌊t⌋)).

We also mention that, in [268], the authors have used the notion of bi-almost auto-
morphy and the notion of λ-boundedness in their studies of the following nonlinear
abstract integral equations of advanced and delayed type:

y(t) = f (t, y(t), y(a0(t))) +
t

∫
−∞

C1(t, s, y(s), y(a1(s))) ds

+
+∞

∫
t

C2(t, s, y(s), y(a2(s))) ds.

Besides the above-mentioned papers, wewould like to quote the research studies [261]
by Y.-K. Chang, S. Zheng, [542] by Z. Hu, Z. Jin, [862] by L. Qi and R. Yuan, [1034] by
Z. Xia and [1037] by Z. Xia, D.Wang. Observing the previous works (and the references
cited therein), we emphasize that the notion of bi-almost automorphy is crucial in
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the study of almost automorphic dynamics for various classes of differential, integro-
differential and difference equations.

The notion of ℤ-almost automorphy and the notion of bi-almost automorphy,
which have been analyzed in the above-mentioned papers, are special cases of the no-
tion of (R,ℬ)-multi-almost automorphy, which is a crucial object of our investigations
(for example, the notion of bi-almost automorphy is obtained with the collection R of
all sequences in Δ2 ≡ {(w,w) : w ∈ ℝ}, the diagonal of ℝ2). Furthermore, the notion
of (R,ℬ)-multi-almost automorphy is a special case of the notion of (RX ,ℬ)-multi-
almost automorphy, which has been introduced and analyzed in this section follow-
ing the previous investigations of almost automorphic functions on (semi-)topological
groups. We aim to develop here the basic theory of (RX ,ℬ)-multi-almost automorphic
type functions aswell as to provide some concrete applications to the abstract Volterra
integro-differential equations and partial differential equations such as the classical
heat equation and the wave equation. It is our strong belief that the research study
[267] is only the beginning of serious investigations of space almost automorphic
solutions of integro-differential equations.

The organization of the present section is as follows. We introduce the classes of
(compactly) (R,ℬ)-multi-almost automorphic functions (Definition 8.1.1), (R,ℬ,Wℬ,R)-
multi-almost automorphic functions and (R,ℬ,Pℬ,R)-multi-almost automorphic func-
tions (Definition 8.1.2); here, we assume that for each B ∈ ℬ and (bk) ∈ R we have
WB,(bk) : B→ P(P(ℝn)) and PB,(bk) ∈ P(P(ℝ

n×B)). A real novelty of the introduced class
of (R,ℬ)-multi-almost automorphic functions is marked in Example 8.1.5 because we
present here an example of an (R,ℬ)-multi-almost automorphic function F : ℝ2 → X
(R is the collection of all sequences in Δ2 and ℬ denotes the collection of all bounded
subsets of X) in which the convergence of limits in Eqs. (8.1)–(8.2) below is uniform
not on the whole space (the almost periodic case) and not only on compact subsets of
ℝn (the compact almost automorphic case); this example is important for a better un-
derstanding of the notion (R,ℬ,Wℬ,R)-multi-almost automorphy we are working with.

After illustrating this notion with some other examples, we introduce the no-
tions of (RX,ℬ)-multi-almost automorphy, (RX ,ℬ,Wℬ,RX )-multi-almost automorphy
and (RX ,ℬ,Pℬ,RX )-multi-almost automorphy in Definition 8.1.8. In Proposition 8.1.9,
we investigate the relative compactness of range of a two-parameter (RX,ℬ)-multi-
almost automorphic function F : ℝn × X → Y . After that, we divide the remainder of
the second section into several separate subsections. Themain aim of Subsection 8.1.1
is to thoroughly study the compactly (RX ,ℬ)-multi-almost automorphic functions; in
Subsection 8.1.2, we continue our study by clarifying several new structural char-
acterizations of (RX,ℬ)-multi-almost automorphic type functions. Subsection 8.1.3
investigates𝔻-asymptotically (RX ,ℬ)-multi-almost automorphic functions; composi-
tion theorems for (R,ℬ)-multi-almost automorphic functions are analyzed in Subsec-
tion 8.1.4, while the invariance of (R,ℬ)-multi-almost automorphic properties under
the actions of convolution products are analyzed in Subsection 8.1.5. Subsection 8.1.6
is reserved for applications of our theoretical results to the various classes of abstract
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Volterra integro-differential equations (it should be noted that we revisit here the
theory of integrated solution operator families, C-regularized solution operator fam-
ilies and their applications to the abstract ill-posed Cauchy problems). We analyze
almost automorphic solutions to the abstract semilinear Volterra integral equations
and some applications to the classical heat equation and the wave equation. We do
not cover many important subjects; for example, we will not consider here the notion
of a positively (RX ,ℬ)-multi-almost automorphy and its generalizations [1041].

Before we go any further, we would like to note the conclusions established in Ex-
ample 2 can reformulated in our new framework,whichpresents a strongmotivational
factor for the investigation of multi-dimensional almost automorphic type functions,
as well; see [267] for more details.

In this section, we investigate almost automorphic analogues of (R,ℬ)-multi-
almost periodic functions and (RX,ℬ)-multi-almost periodic functions. We start with
the following definition, which seems to be new even in the one-dimensional setting.

Definition 8.1.1. Suppose that F : ℝn × X → Y is a continuous function. Then we
say that the function F(⋅; ⋅) is (R,ℬ)-multi-almost automorphic if and only if for every
B ∈ ℬ and for every sequence (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence

(bkl = (b
1
kl , b

2
kl , . . . , b

n
kl )) of (bk) and a function F

∗ : ℝn × X → Y such that

lim
l→+∞

F(t + (b1kl , . . . , b
n
kl); x) = F

∗(t; x) (8.1)

and

lim
l→+∞

F∗(t − (b1kl , . . . , b
n
kl); x) = F(t; x), (8.2)

pointwise for all x ∈ B and t ∈ ℝn. If for each x ∈ B the above limits converge uniformly
on compact subsets ofℝn, then we say that F(⋅; ⋅) is compactly (R,ℬ)-multi-almost au-
tomorphic. By AA(R,ℬ)(ℝn × X : Y) and AA(R,ℬ,c)(ℝn × X : Y)we denote the spaces con-
sisting of all (R,ℬ)-multi-almost automorphic functions and compactly (R,ℬ)-multi-
almost automorphic functions, respectively.

In the case that X = {0} and ℬ = {X}, i. e., if we consider the function F : ℝn → Y ,
then we also say that F(⋅) is (compactly) R-multi-almost automorphic and denote the
corresponding spaces by AAR(ℝ

n : Y) and AAR,c(ℝ
n : Y) [in the remainder of section,

we will tacitly omit the term “ℬ” from the notation in such situations].
The following definition also seems to be new in the one-dimensional setting.

Definition 8.1.2. Suppose that F : ℝn ×X → Y is a continuous function as well as that
for each B ∈ ℬ and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R we have WB,(bk) : B → P(P(ℝn)) and

PB,(bk) ∈ P(P(ℝ
n × B)). Then we say that F(⋅; ⋅) is:

(i) (R,ℬ,Wℬ,R)-multi-almost automorphic if and only if for every B ∈ ℬ and for
every sequence (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence (bkl =

(b1kl , b
2
kl , . . . , b

n
kl )) of (bk) and a function F∗ : ℝn × X → Y such that (8.1)–(8.2)
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hold pointwise for all x ∈ B and t ∈ ℝn and such that for each x ∈ B the conver-
gence in t is uniform for any element of the collectionWB,(bk)(x);

(ii) (R,ℬ,Pℬ,R)-multi-almost automorphic if and only if for every B ∈ ℬ and for
every sequence (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence (bkl =

(b1kl , b
2
kl , . . . , b

n
kl )) of (bk) and a function F

∗ : ℝn × X → Y such that (8.1)–(8.2) hold
pointwise for all x ∈ B and t ∈ ℝn and such that the convergence in (8.1)–(8.2) is
uniform in (t; x) for any set of the collection PB,(bk).

Before we go any further, wewould like to present the following illustrative exam-
ple of the notion introduced above.

Example 8.1.3 (R. Terras [976], P. Milnes [772]). Let us write the set ℝ as the disjoint
union of intervals⋃∞k=1 Vk, where Vk := ⋃m∈ℤ([0, 1)+ sk + 2

km) and sk := ((−2)k−1 − 1)/3
for all k ∈ ℕ. After that, we define a continuous function f : ℝ → ℝ through f (t) :=
sin(2kπt) if t ∈ Vk for some k ∈ ℕ.Weknow that the function f (⋅) is almost automorphic
as well as that the sequence of translations (f (⋅ + sk))k∈ℕ does not converge uniformly
on the set [0, 1], so that f (⋅) is not uniformly continuous and not compactly almost au-
tomorphic. If f1(⋅), . . . , fn−1(⋅) are almost automorphic complex-valued functions, then
we set F(t1, . . . , tn−1, tn) := f1(t1) ⋅ ⋅ ⋅ fn−1(tn−1)f (tn), t = (t1, . . . , tn−1, tn) ∈ ℝn. It can be
easily shown that F(⋅) is an almost automorphic function which is not compactly al-
most automorphic, aswell as thatF(⋅) cannot be (R,WR)-multi-almost automorphic for
any collection of sequences inℝn which contains the sequence (bk = (0, . . . ,0; sk))k∈ℕ
and for any collection Wbk of subsets of ℝ

n which contains the set S × [0, 1], where
S = (t01 , . . . , t

0
n ) ∈ ℝ

n−1 and f1(t01 ) ⋅ ⋅ ⋅ fn−1(t
0
n−1) ̸= 0.

The notion in which R is not the collection of all sequences inℝn is far from being
comparablewith theusual almost automorphy (see, e. g., Proposition 9.0.26 below). In
several important research studies of spatially almost periodic solutions of (abstract)
Volterra integro-differential equations, the Bochner criterion is essentially employed
with the collection R of all sequences inℝn; here wewould like to emphasize, without
going into full details, that some established results concerning this problematic can
be further extended by allowing that R is an arbitrary collection of sequences (in ℝn)
in their formulations.

Example 8.1.4. It is well known that the Euler equations in ℝn, where n ⩾ 2, describe
the motion of perfect incompressible fluids. It is problem to find the unknown func-
tions u = u(x, t) = (u1(x, t), . . . , un(x, t)) and p = p(x, t) denoting the velocity field and
the pressure of the fluid, respectively, such that

𝜕u
𝜕t
+ (u ⋅ ∇)u + ∇p = 0 in ℝn × (0,T),

div u = 0 in ℝn × (0,T),

u(x,0) = u0(x) in ℝn, (8.3)
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where u0 = u0(x) = (u10(x), . . . , u
n
0(x)) denotes the given initial velocity field. There are

many results concerning the well-posedness of (8.3) in the case that the initial veloc-
ity field u0(x) belongs to some direct product of (fractional) Sobolev spaces. For our
observation, it is crucial to remind the reader of the research article [823] by H. C. Pak
and Y. J. Park, who investigated the well-posedness of (8.3) in the case that the ini-
tial velocity field u0(x) belongs to the space B1∞,1(ℝ

n)n, where B1∞,1(ℝ
n) denotes the

usual Besov space (see, e. g., [908, Definition 2.1]). The authors have proved that for
any function u0 ∈ B1∞,1(ℝ

n)n such that div u0 = 0 there exists a finite real number
T > 0 such that there exists a solution u ∈ C([0,T] : B1∞,1(ℝ

n)n) of (8.3). Using some
known results proved by H. C. Pak, Y. J. Park and the fact that a function f ∈ B0∞,1(ℝ

n)
is almost periodic in ℝn if and only if the set of all its translations is relatively com-
pact in B0∞,1(ℝ

n) (see [908, Lemma 4.2]), O. Sawada and R. Takada have proved, in
[908, Theorem 1.5], that the assumption that u0(x) is almost periodic in ℝn implies
that the solution u(⋅, t) of (8.3) is almost periodic in ℝn for all t ∈ [0,T]. Let R denote
an arbitrary collection of sequences inℝn, and let u0(⋅) have the property that for each
sequence (bk) in R there exists a subsequence (bkl ) of (bk) such that the sequence of
translations (u0(⋅ +bkl )) is convergent in the space B

0
∞,1(ℝ

n)n. Then for each sequence
(bk) in R there exists a subsequence (bkl ) of (bk) such that, for every t ∈ [0,T], the
sequence of translations (u(⋅ + bkl , t)) is convergent in the space B

0
∞,1(ℝ

n)n; let us only
note that the assumptions on function u0(⋅) used here can serve one to introduce a
new notion of multi-dimensional R-almost automorphy which is not so simply con-
nected, in the general case, with the notion introduced in Definition 8.1.1 and Defini-
tion 8.1.2 (more details will appear elsewhere). See also the research studies [471] by
Y. Giga, A. Mahalov, B. Nicolaenko, [698] by C. Li and [969] by Y. Taniuchi, T. Tashiro,
T. Yoneda for further information concerning spatially almost periodic solutions of
(abstract) Volterra integro-differential equations.

In what follows, we will provide several elaborate examples illustrating the
concept of (R,ℬ)-multi-almost automorphy and the concepts introduced in Defini-
tion 8.1.2.

Example 8.1.5. Let φ : ℝ→ ℂ be a (compactly) almost automorphic function, and let
(T(t))t∈ℝ ⊆ L(X,Y) be a strongly continuous operator family. Suppose first that R is the
collection of all sequences in Δ2 as well as that X ∈ ℬ. Define a functionG : ℝ2×X → Y
by

F(t, s; x) := e∫
t
s φ(τ) dτT(t − s)x, (t, s) ∈ ℝ2, x ∈ X. (8.4)

The function F(⋅, ⋅; ⋅) is (compactly) bi-almost automorphic, which can be simply
shown (see also [281, Example 7.1] and [1041, Example 4.1]).

Suppose now that φ : ℝ → ℂ is almost periodic and that R is the collection of
all sequences in Δ2 and ℬ denotes the collection of all bounded subsets of X. Let for
each bounded subset B of X and for each sequence (bk = (bk , bk)) in R the collection
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PB,(bk) be constituted of all sets of form {(t, s) ∈ ℝ
2 : |t − s| ⩽ L} × B, where L > 0. Then

the function F(⋅, ⋅; ⋅) is (R,ℬ,Pℬ,R)-multi-almost automorphic, which can be deduced
as follows. Let a real number L > 0 and a bounded subset B of X be fixed, and let
(t, s) ∈ ℝ2 satisfy |t − s| ⩽ L. By Bochner’s criterion, there exist a subsequence (bkl , bkl )
of (bk , bk) and a function φ∗ : ℝ → ℂ such that liml→+∞ φ(r + bkl ) = φ

∗(r), uniformly
in r ∈ ℝ. Set

F∗(t, s; x) := e∫
t
s φ
∗(τ) dτT(t − s)x, (t, s) ∈ ℝ2, x ∈ X.

Then the functionφ∗(⋅) is bounded and there exists a finite real constant cL,B > 0 such
that

e
∫
t+bkl
s+bkl φ(τ) dτT(t − s)x − e∫ts φ∗(τ) dτT(t − s)xY
⩽ cL,B
e
∫
t+bkl
s+bkl φ(τ) dτ − e∫ts φ∗(τ) dτ ⩽ cL,Be∫ts φ(τ+bkl ) dτ − e∫ts φ∗(τ) dτ

⩽ cL,Be
L‖φ∗‖∞ e∫ts [φ(τ+bkl )−φ∗(τ)] dτ − 1

⩽ cL,Be
L‖φ∗‖∞ 

t

∫
s

[φ(τ + bkl ) − φ
∗(τ)] dτ


e|∫

t
s [φ(τ+bkl )−φ

∗(τ)] dτ|
⩽ cL,Be

L‖φ∗‖∞LεeLε, l ⩾ l0(ε),

which simply implies the required (we have used the well-known inequality |ez − 1| ⩽
|z| ⋅e|z|, z ∈ ℂ here). A large class of relatively simple examples shows that the function
F(⋅, ⋅; ⋅) is not (R,ℬ)-multi-almost periodic in general (let us only note here that the
obtained conclusions can be simply applied to some partial differential equations in
the distributional spaces as well as that it would be very difficult to aggregate all such
applications; put e. g. φ ≡ 0 in (8.4)).

We can simply construct the corresponding analogue of this example in the higher
dimensions n > 2; for example, if φj : ℝ → ℝ is (compactly) almost automorphic
or almost periodic and (T(t))t∈ℝ ⊆ L(X,Y) is a strongly continuous operator family
(1 ⩽ j ⩽ n − 1), resp., if φj : ℝ → ℝ is (compactly) almost automorphic or almost
periodic and (T(t))t∈ℝ ⊆ L(X,Y) is a strongly continuous operator family (1 ⩽ j ⩽ n),
then the similar conclusions hold for the function F : ℝn × X → X defined through

F(t1, t2, . . . , tn; x) :=
n−1
∑
j=1

Tj(tj+1 − tj)e
∫
tj+1
tj

φj(ξ ) dξ x, (t1, t2, . . . , tn) ∈ ℝ
n, x ∈ X,

with R := {b : ℕ → ℝn; for all j ∈ ℕ we have bj ∈ {(a, a, a, . . . , a) ∈ ℝn : a ∈ ℝ}}, resp.,
for the function

F(t1, t2, . . . , t2n; x) :=
n
∑
j=1

Tj(t2j − t2j−1)e
∫
t2j
t2j−1 φj(ξ ) dξ x, (t1, t2, . . . , t2n) ∈ ℝ

2n, x ∈ X,
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with R := {b : ℕ → ℝn; for all j ∈ ℕ we have bj ∈ {(a1, a1, a2, a2, . . . , an, an) ∈ ℝ2n : ai ∈
ℝ}}.

Example 8.1.6. Let fj : ℝ → ℝ be a (compactly) almost automorphic function
(1 ⩽ j ⩽ n). The function F : ℝ2n → ℝ, defined by

(s1, s2, . . . , sn, t1, t2, . . . , tn) → F(s1, s2, . . . , sn, t1, t2, . . . , tn) :=
n
∏
j=1

tj

∫
sj

fj(ξ ) dξ ,

is (compactly) R-multi-almost automorphic, where R := {b : ℕ → ℝn × ℝn; for all j ∈
ℕ we have bj ∈ {(a1, a2, . . . , an, a1, a2, . . . , an) ∈ ℝn × ℝn : ai ∈ ℝ for 1 ⩽ i ⩽ n}}. We
have already analyzed case in which the functions t → ∫t0 fj(s) ds, t ∈ ℝ are almost
periodic (1 ⩽ j ⩽ n); if we assume that the functions t → fj(t), t ∈ ℝ are almost periodic
(1 ⩽ j ⩽ n), thenwe can simply prove that the function F(⋅)will be (R,PR)-multi-almost
automorphic, where for each sequence b ∈ R the collection PR consists of all sets of
the form {(s1, s2, . . . , sn, t1, t2, . . . , tn) ∈ ℝ2n : |si − ti| ⩽ Li for all i ∈ ℕn}with Li > 0 for all
i ∈ ℕn.

Example 8.1.7. This example substantially generalizes the previous one. Let R be any
collection of sequences inℝn such that each subsequence of a sequence (bk) ∈ R also
belongs to R, and let R′ be any collection of sequences in ℝm such that each subse-
quence of a sequence (b′k) ∈ R

′ also belongs to R′. Let fi : ℝn → ℝ be a bounded,
(compactly) R-almost automorphic function (1 ⩽ i ⩽ p), and let gj : ℝm → ℝ be a
bounded, (compactly) R′-almost automorphic function (1 ⩽ j ⩽ q). Define the func-
tions F : ℝn → ℝq by F(t) := ∑pi=1 fi(t)ei and G : ℝ

m → ℝq by G(s) := ∑qj=1 gj(s)ej. Now,
we define the function F ⊗ G : ℝn × ℝm → Mp×q(ℝ) by (t ∈ ℝn, s ∈ ℝm)

F ⊗ G (t, s) :=(

f1(t)g1(s) f1(t)g2(s) ⋅ ⋅ ⋅ f1(t)gq(s)
f2(t)g1(s) f2(t)g2(s) ⋅ ⋅ ⋅ f2(t)gq(s)

...
...

. . .
...

fp(t)g1(s) fp(t)g2(s) ⋅ ⋅ ⋅ fp(t)gq(s)

) , (8.5)

where Mp×q(ℝ) denotes the set of all real matrices of format p × q. It is not difficult
to prove that F ⊗ G is (compactly) (R × R′)-almost automorphic, where R × R′ :=
{(b,b′) : b ∈ R,b′ ∈ R′}. Furthermore, if for each i ∈ ℕp fi : ℝn → ℝ is a bounded
(R,PR)-almost automorphic function as well as that for each j ∈ ℕq we see that
gj : ℝn → ℝ is a bounded (R′,P′R′ )-almost automorphic function, then the function
F ⊗ G is (R × R′,P′′R×R′ )-almost automorphic function, provided that for each sequence
b from R (c from R′) each set of the collection Pb (Pc) belongs to the collection Pb′
(Pc′ ) for any subsequence b′ of b (c′ of c) and for each sequence (b; c) belonging to
R×R′ the collection P′′(b;c) consists of all direct products of sets from the collections Pb
and P′c.
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From the viewpoint of the theory of differential equationswith piecewise constant
argument (see, e. g., the references quoted in [263, 264]), the continuity of the function
F(⋅; ⋅) in Definition 8.1.1 is a slightly redundant condition; we will not go into further
details with regard to this question here. Furthermore, the notion introduced in Defi-
nition 8.1.1 is a special case of the notion introduced in the following definition (with
RX := {b : ℕ → ℝn × X; (∃a ∈ R) b(l) = (a(l);0) for all l ∈ ℕ}); this is an extremely
important notion because, in the case that X ∈ ℬ and RX denotes the collection of all
sequences inℝn×X, the notion of (RX,ℬ)-multi-almost automorphy is equivalent with
the usual notion of almost automorphy on the topological group ℝn × X.

Definition 8.1.8. Suppose that F : ℝn × X → Y is a continuous function. Then we
say that the function F(⋅; ⋅) is (RX,ℬ)-multi-almost automorphic if and only if for every
B ∈ ℬ and for every sequence ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX there exist a subse-

quence ((b;x)kl = ((b
1
kl , b

2
kl , . . . , b

n
kl ); xkl )) of ((b;x)k) and a function F∗ : ℝn × X → Y

such that

lim
m→+∞

F(t + (b1km , . . . , b
n
km); x + xkm) = F

∗(t; x) (8.6)

and

lim
l→+∞

F∗(t − (b1kl , . . . , b
n
kl); x − xkl) = F(t; x), (8.7)

pointwise for all x ∈ B and t ∈ ℝn. We say that the function F(⋅; ⋅) is compactly
(RX,ℬ)-multi-almost automorphic if and only if the convergence of limits in (8.6)–(8.7)
is uniform on any compact subsetK ofℝn×X which belongs toℝn×B. By AA(RX ,ℬ)(ℝ

n×
X : Y) and AA(RX ,ℬ,c)(ℝ

n × X : Y) we denote the spaces consisting of all (RX,ℬ)-multi-
almost automorphic functions and compactly (RX,ℬ)-multi-almost automorphic func-
tions, respectively.

Furthermore, let for each B ∈ ℬ and (b;x) = ((b;x)k = ((b1k , b
2
k , . . . , b

n
k); xk)k) ∈ RX

us haveWB,(b;x) : B→ P(P(ℝn)) and PB,(b;x) ∈ P(P(ℝn × B)). Then the following notion
generalizes the corresponding notion from Definition 8.1.2; we say that F(⋅; ⋅) is:
(i) (RX ,ℬ,Wℬ,RX )-multi-almost automorphic if and only if for every B ∈ ℬ and for

every sequence ((b;x)k = ((b1k , b
2
k , . . . , b

n
k); xk)k) ∈ RX there exist a subsequence

((b;x)kl ) of ((b;x)k) and a function F∗ : ℝn × X → Y such that (8.6)–(8.7) hold
pointwise for all x ∈ B and t ∈ ℝn as well as that for each x ∈ B the convergence
in (8.6)–(8.7) is uniform in t for any set of the collectionWB,(b;x)(x);

(ii) (RX ,ℬ,Pℬ,RX )-multi-almost automorphic if and only if for everyB ∈ ℬ and for every
sequence ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX there exist a subsequence ((b;x)kl )

of ((b;x)k) of ((b;x)k) and a function F∗ : ℝn × X → Y such that (8.6)–(8.7) hold
pointwise for all x ∈ B and t ∈ ℝn as well as that the convergence in (8.6)–(8.7) is
uniform in (t; x) for any set of the collection PB,(b;x).
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It is clear that the assumption X ∈ ℬ implies that a continuous function F : ℝn ×
X → Y is (compactly) (RX,ℬ)-multi-almost automorphic if and only if the above re-
quirements hold for any sequence ((b;x)k) ∈ RX and the set B = X.

The following result holds true.

Proposition 8.1.9.
(i) Suppose that F : ℝn ×X → Y is an (R,ℬ)-multi-almost automorphic function, where

R denotes the collection of all sequences inℝn and ℬ denotes any collection of com-
pact subsets of X. If for every B ∈ ℬ there exists a finite real constant LB > 0 such
that, for every x, y ∈ B and t ∈ ℝn, we have

F(t; x) − F(t; y)
Y ⩽ LB‖x − y‖, (8.8)

then, for every set B ∈ ℬ, we see that the set {F(t, x) : t ∈ ℝn, x ∈ B} is relatively
compact in Y.

(ii) Suppose that F : ℝn×X → Y is an (RX ,ℬ)-multi-almost automorphic function,where
RX denotes the collection of all sequences in ℝn × X and ℬ denotes any collection
of compact subsets of X. Then, for every set B ∈ ℬ, we see that the set {F(t, x) : t ∈
ℝn, x ∈ B} is relatively compact in Y.

Proof. To prove (i), it suffices to show that, for every sequence ((tk ; xk))k∈ℕ in ℝn × B,
there exists a subsequence ((tkl ; xkl ))l∈ℕ which converges for topology of Y . Since B is
compact, we may assume without loss of generality that xk → x, k → +∞ for some
element x ∈ B. Applying the definition of (R,ℬ)-multi-almost automorphy, we can find
a subsequence ((tkl ; xkl ))l∈ℕ of ((tk ; xk))k∈ℕ such that F(0 + tkl ; x) = F(tkl ; x) converges
to some element y ∈ Y as l → +∞. Then the final conclusion follows from (8.8) and
the decomposition

F(tkl ; xkl ) − y
Y ⩽
F(tkl ; xkl ) − F(tkl , x)

Y +
F(tkl ; x) − y

Y
⩽ LB‖xkl − x‖ +

F(tkl ; x) − y
Y .

The proof of (ii) is similar but, in this part, we do not need any Lipschitz type condition
because there exists a subsequence of the sequence ((tkl ; xkl ))l∈ℕ ∈ RX of ((tk ; xk))n∈ℕ
obeying the properties in the definition of (RX ,ℬ)-multi-almost automorphy.

Before switching to Subsection 8.1.1, we would like to note that it is very simple to
show that the assumption X ∈ ℬ implies that a continuous function F : ℝn × X → Y is
(RX,ℬ)-multi-almost automorphic if and only if for every sequence ((b;x)k) ∈ RX there
exists a subsequence ((b;x)kl ) of ((b;x)k) such that

lim
l→+∞

lim
m→+∞

F(t − bkl + bkm ; x − xkl + xkm ) = F(t; x),

pointwise for all x ∈ X and t ∈ ℝn; in the general case (X ∈ ℬ orX ∉ ℬ), the (R,ℬ)-multi-
almost automorphy of a continuous function F : ℝn × X → Y is equivalent to saying
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that for every B ∈ ℬ and for every sequence (bk) ∈ R there exists a subsequence (bkl )
of (bk) such that

lim
l→+∞

lim
m→+∞

F(t − bkl + bkm ; x) = F(t; x), (8.9)

pointwise for all x ∈ B and t ∈ ℝn.

8.1.1 Compactly (RX ,ℬ)-multi-almost automorphic functions

In this subsection,we analyze compactly (RX ,ℬ)-multi-almost automorphic functions.
The following result is crucial.

Theorem 8.1.10. Suppose that F : ℝn × X → Y is an (RX,ℬ)-multi-almost automorphic
function as well as that, for every B ∈ ℬ and for every sequence ((b;x)k) ∈ RX, there exist
a subsequence ((b;x)kl ) of ((b;x)k) and a function F

∗ : ℝn×X → Y such that (8.6)–(8.7)
hold pointwise for all x ∈ B and t ∈ ℝn. Let for each B ∈ ℬ and (b;x) ∈ RX we have
PB,(b;x) ∈ P(P(ℝn × B)). Suppose also that the following conditions hold:
(a) if (b;x) ∈ RX, then every subsequence of (b;x) also belongs to RX;
(b) if B ∈ ℬ, ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX and D ∈ PB,((b;x)k), then D ∈ PB,((b;x)kl )

for every subsequence ((b;x)kl ) of ((b;x)k).

Then the following holds:
(i) If F(⋅; ⋅) is (RX,ℬ,Pℬ,RX )-multi-almost automorphic, then the following statements

are equivalent:
(c) for every B ∈ ℬ and ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX, the limit function

F∗(⋅; ⋅) is uniformly continuous on any set D of the collection PB,((b;x)k);
(d) for every ε > 0, B ∈ ℬ, ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX and D ∈ PB,((b;x)k),

there exist a subsequence ((b;x)kl ) of ((b;x)k), an integer l0 ∈ ℕ and a finite
real number δ > 0 such that, for every (t; x), (t′; x′) ∈ Dwith |t−t′|+‖x−x′‖ ⩽ δ
and for every integer l ⩾ l0, we have

F(t + bkl ; x + xkl ) − F(t
′ + bkl ; x

′ + xkl)
Y ⩽ ε. (8.10)

Moreover, (c) and (d) hold provided that condition (Q) holds, where:
(Q) For every B ∈ ℬ and (b;x) ∈ RX , we see that every set D of the collection

PB,((b;x)k) is compact in ℝ
n × X.

(ii) If (Q) holds, then the validity of condition (d) and
(d)s for every ε > 0, B ∈ ℬ, ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX and D ∈ PB,((b;x)k),

there exist a subsequence ((b;x)kl ) of ((b;x)k), integers l0, m0 ∈ ℕ, and a finite
real number δ > 0 such that, for every (t; x), (t′; x′) ∈ Dwith |t−t′|+‖x−x′‖ ⩽ δ
and for every integers l ⩾ l0 and m ⩾ m0, we have x − xkl ∈ B and
F(t − bkl + bkm ; x − xkl + xkm ) − F(t

′ − bkl + bkm ; x
′ − xkl + xkm)

Y ⩽ ε

implies that the function F(⋅; ⋅) is (RX,ℬ,Pℬ,RX )-multi-almost automorphic.
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Proof. We will firstly prove that (d) implies (c). Let ε > 0, B ∈ ℬ, ((b;x)k = ((b1k , b
2
k , . . . ,

bnk); xk)) ∈ RX andD ∈ PB,((b;x)k). Furthermore, let a subsequence ((b;x)kl = ((b
1
kl , b

2
kl , . . . ,

bnkl ); xkl )) of ((b;x)k) and a function F∗ : ℝn × X → Y be such that (8.6)–(8.7) hold
pointwise for all x ∈ B and t ∈ ℝn. Then ((b;x)kl ) is a sequence which belongs to the
collection RX and D ∈ PB,((b;x)kl ) due to conditions (a) and (b). Since (d) holds, we may
assume without loss of generality that there exist an integer l0 ∈ ℕ and a finite real
number δ > 0 such that, for every (t; x), (t′; x′) ∈ D with |t − t′| + ‖x − x′‖ ⩽ δ and
for every integer l ⩾ l0, we have (8.10) with the number ε replaced therein with the
number ε/3. Since F(⋅; ⋅) is (RX,ℬ,Pℬ,RX )-multi-almost automorphic, (c) simply follows
from the decomposition

F
∗(t; x) − F∗(t′; x′)Y
⩽ F
∗(t; x) − F(t + bkl ; x + xkl )

Y +
F(t + bkl ; x + xkl ) − F(t

′ + bkl ; x
′ + xkl)
Y

+ F(t
′ + bkl ; x

′ + xkl) − F
∗(t′; x′)Y

⩽ 2ε/3 + F(t + bkl ; x + xkl ) − F(t
′ + bkl ; x

′ + xkl)
Y ⩽ ε, l ⩾ l0.

The proof of implication (c)⇒ (d) is similar and follows from the decomposition:

F(t + bkl ; x + xkl ) − F(t
′ + bkl ; x

′ + xkl)
Y

⩽ F
∗(t; x) − F(t + bkl ; x + xkl )

Y +
F
∗(t; x) − F∗(t′; x′)Y

+ F
∗(t′; x′) − F(t′ + bkl ; x

′ + xkl)
Y .

Assume now that (Q) holds and ε > 0. Then, for every fixed set B ∈ ℬ and for every
sequence (b;x) ∈ RX , we see that every set D of the collection PB,((b;x)k) is compact.
Furthermore, the above argumentation shows that there exists an integer l0 ∈ ℕ such
that, for every (t; x), (t′; x′) ∈ D, we have

F
∗(t; x) − F∗(t′; x′)Y ⩽ 2ε/3 +

F(t + bkl0 ; x + xkl0 ) − F(t
′ + bkl0 ; x

′ + xkl0 )
Y .

Since the function F(⋅; ⋅) is uniformly continuous on the compact setD+ (bkl0 ; xkl0 ), the
above estimate simply implies (c). In order to show (ii), suppose again that condition
(Q) holds. Let (d) hold, and let ε > 0 be fixed. We need to prove that the function F(⋅; ⋅)
is (RX,ℬ,Pℬ,RX )-multi-almost automorphic. If the set D from the collection PB,((b;x)k) is
fixed, then (d) implies the existence of a subsequence ((b;x)kl ) of ((b;x)k), an integer
l0 ∈ ℕ and a finite real number δ1 > 0 such that, for every (t; x), (t′; x′) ∈ D with
|t − t′| + ‖x − x′‖ ⩽ δ1 and for every integer l ⩾ l0, we have (8.10) with the number ε
replaced thereinwith the number ε/3. Since (c) holds, there exists a number δ ∈ (0, δ1]
such that, for every (t; x), (t′; x′) ∈ D with |t − t′| + ‖x − x′‖ ⩽ δ, we have

F
∗(t; x) − F∗(t′; x′)Y ⩽ ε/3.
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Moreover, since D is compact and F(⋅; ⋅) is uniformly continuous on D, there exists a
finite net {(ti; xi)}1⩽i⩽n in D such that, for every (t; x) ∈ D, we have the existence of a
number i ∈ ℕn such that |t − ti| + ‖x − xi‖ ⩽ δ and

F(ti; xi) − F(t; x)
Y ⩽ ε/3.

Then there exists an integer l0 ∈ ℕ such that, for every integer l ⩾ l0 and for every
tuple (t; x) ∈ D, we have

F(t + bkl ; x + xkl ) − F
∗(t; x)Y

⩽ F(t + bkl ; x + xkl ) − F(ti + bkl ; xi + xkl )
Y

+ F(ti + bkl ; xi + xkl ) − F
∗(ti; xi)
Y +
F
∗(ti; xi) − F

∗(t; x)Y
⩽ 2ε/3 + F(ti + bkl ; xi + xkl ) − F

∗(ti; xi)
Y ⩽ 2ε/3 + ε/3 = ε,

due to condition (d). Moreover, we have

F
∗(t − bkl ; x − xkl ) − F(t; x)

Y
⩽ F
∗(t − bkl ; x − xkl ) − F

∗(ti − bkl ; xi − xkl )
Y

+ F
∗(ti − bkl ; xi − xkl ) − F(ti; xi)

Y +
F(ti; xi) − F(t; x)

Y
⩽ F
∗(t − bkl ; x − xkl ) − F

∗(ti − bkl ; xi − xkl )
Y

+ F
∗(ti − bkl ; xi − xkl ) − F(ti; xi)

Y + ε/3

⩽ F
∗(t − bkl ; x − xkl ) − F

∗(ti − bkl ; xi − xkl )
Y + 2ε/3 (l ⩾ l0)

=
 limm→+∞
[F(t − bkl + bkm ; x − xkl + xkm ) − F(ti − bkl + bkm ; xi − xkl + xkm )]

Y
+ 2ε/3 ⩽ ε, l ⩾ l0, m ⩾ m0,

where we have applied (d)s in the last estimate.

Now we would like to state the following important corollary of Theorem 8.1.10.

Corollary 8.1.11. Suppose that F : ℝn × X → Y is an (RX,ℬ)-multi-almost automorphic
function, X ∈ ℬ and RX denotes the collection of all sequences in ℝn × X. Then F(⋅; ⋅) is
compactly (RX,ℬ)-multi-almost automorphic if and only if F(⋅; ⋅) is uniformly continuous.

Proof. Without loss of generality, we may assume that ℬ = {X} and that, for every se-
quence (b;x) inℝn×X,PB,(b;x) is the collection of all compact sets inℝn×X. Let F(⋅; ⋅) be
uniformly continuous. Then conditions (d) and (d)s hold, so that the conclusion sim-
ply follows from Theorem 8.1.10. Assume that F(⋅; ⋅) is compactly (RX,ℬ)-multi-almost
automorphic and not uniformly continuous. Then there exist ε > 0 and two sequences
(bk ; xk) and (b′k ; x

′
k) inℝ

n×X such that, for every k ∈ ℕ, wehave |bk−b′k |+‖xk−x
′
k‖ ⩽ 1/k

and ‖F(bk ; xk) − F(b′k ; x
′
k)‖ ⩾ ε. The set D := {(0;0)} ∪ {(b

′
k − bk ; x

′
k − xk) : k ∈ ℕ} is com-

pact in ℝn × X and this violates condition (d) from Theorem 8.1.10 with the number
ε > 0, B = X, and the sequence (bk ; xk).
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Similarlywe canprove the following result (see also [149, Lemma5.1, Theorem5.1],
[443, Lemma 1] and [495, Theorem 2.6] for some particular cases of Theorem 8.1.10 and
Corollary 8.1.11–Corollary 8.1.12, as well as [149, Definition 5.2, Definition 5.3] where
the notion of compact almost automorphy has been defined for the first time).

Corollary 8.1.12. Suppose that F : ℝn × X → Y is an (R,ℬ)-multi-almost automorphic
function, where R denotes the collection of all sequences in ℝn and X ∈ ℬ. Then F(⋅; ⋅) is
compactly (R,ℬ)-multi-almost automorphic if and only if for every fixed element x ∈ X
we see that the function F(⋅; x) is uniformly continuous on ℝn.

Before proceeding further, we would like to note that the notion of a compact(ly)
almost automorphic function F : ℝ × X → X has been introduced by E.H. Ait Dads, F.
Boudchich and B. Es-sebbar [29, Definition 5] in a slightly artificial way, following the
results obtained in the previous two corollaries. The approach of these authors can be
also used for the introduction of several new types of compactly (RX ,ℬ)-multi-almost
automorphic functions which will not be considered here. For compactly almost au-
tomorphic solutions of evolution equations, we may refer also to [414] and [416].

We close the subsection with the following example, which has been already con-
sidered in the almost periodic case.

Example 8.1.13. Suppose that f : ℝn → X and g : ℝn → ℝn are (compactly) almost
automorphic functions. Define the function

F(t) := f (t − g(t)), t ∈ ℝn.

Then the function F(⋅) is (compactly) almost automorphic, as well. This can be shown
as in [29, Lemma 7], where the corresponding statement has been analyzed in the one-
dimensional setting.

8.1.2 Further properties of (RX ,ℬ)-multi-almost automorphic functions

In this subsection, we further explore the class of (RX ,ℬ)-multi-almost automorphic
functions. First of all, it is clear thatwehave the following: Suppose thatF : ℝn×X → Y
is a continuous function. If ℬ′ is a certain collection of subsets of X which contains ℬ,
R′X is a certain collection of sequences inℝ

n × X which contains RX and F(⋅; ⋅) is (com-
pactly) (R′X ,ℬ

′)-multi-almost automorphic, then F(⋅; ⋅) is (compactly) (RX ,ℬ)-multi-
almost automorphic. This also holds for any other class of functions introduced so far.

It is very simple to deduce the following result, which can be also reformulated for
(RX ,ℬ)-multi-almost automorphy by assuming additionally that X ∈ ℬ; see also (8.9)
and [697, Property 4, p. 3].

Proposition 8.1.14. Suppose that F : ℝn × X → Y is (R,ℬ)-multi-almost automor-
phic, resp. (R,ℬ,Wℬ,R)-multi-almost automorphic [(R,ℬ,Pℬ,R)-multi-almost automor-
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phic] and ϕ : Y → Z is continuous, resp. ϕ : Y → Z is continuous and satis-
fies the requirement that, for every B ∈ ℬ as well as for every element x ∈ B, for
every sequence (bk) ∈ R and every its subsequence (bkl ), there exists an integer
s ∈ ℕ such that the function ϕ(⋅) is uniformly continuous on the closure of the set
{F(t + bkm ; x) : m ⩾ s, t ∈ WB,(bk)(x)} ∪ {F(t − bkl + bkm ; x) : m, l ⩾ s, t ∈ WB,(bk)(x)}
[ϕ : Y → Z is continuous and satisfies the requirement that, for every B ∈ ℬ as well
as for every sequence (bk) ∈ R and every its subsequence (bkl ), there exists an inte-
ger s ∈ ℕ such that the function ϕ(⋅) is uniformly continuous on the closure of the set
{F(t+bkm ; x) : m ⩾ s, (t; x) ∈ PB,(bk)}∪ {F(t−bkl +bkm ; x) : m, l ⩾ s, (t; x) ∈ PB,(bk)}]. Then
ϕ ∘ F : ℝn × X → Z is (R,ℬ)-multi-almost automorphic, resp. (R,ℬ,Wℬ,R)-multi-almost
automorphic [(R,ℬ,Pℬ,R)-multi-almost automorphic].

In [631, Lemma 3.9.9], we have clarified the supremum formula for the one-
dimensional almost automorphic functions. This formula can be extended in our
framework as follows.

Proposition 8.1.15 (The supremum formula). Let F : ℝn×X → Y be (R,ℬ)-multi-almost
automorphic. Suppose that there exists a sequence b(⋅) in R whose any subsequence is
unbounded. Then for any a ⩾ 0 we have

sup
t∈ℝn ,x∈X

F(t; x)
Y = sup

t∈ℝn ,|t|⩾a,x∈X

F(t; x)
Y . (8.11)

Proof. We will include all relevant details of the proof for the sake of completeness.
Let ε > 0, a ⩾ 0 and x ∈ X be given. Then (8.11) holds if we prove that

F(t; x)
Y ⩽ ε + sup

t∈ℝn ,|t|⩾a

F(t; x)
Y . (8.12)

By assumption, there exists B ∈ ℬ with x ∈ B. Let b(⋅) be a sequence in R whose any
subsequence is unbounded. Then we have (8.9), and consequently, there exist two
integers l0 ∈ ℕ andm0 ∈ ℕ such that

F(t; x)
Y ⩽ ε +

F(t − (b
1
kl , . . . , b

n
kl) + (b

1
km , . . . , b

n
km); x)
Y , l ⩾ l0, m ⩾ m0.

In particular,

F(t; x)
Y ⩽ ε +

F(t − (b
1
kl0
, . . . , bnkl0 ) + (b

1
km , . . . , b

n
km); x)
Y , m ⩾ m0.

Since the sequence (b1km , . . . , b
n
km )m⩾m0

is unbounded, (8.12) follows immediately.

Arguing similarly to the almost periodic case, we may deduce the following.

Proposition 8.1.16.
(i) Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is (RX,ℬ)-multi-almost au-

tomorphic and, for every sequence which belongs to RX, any its subsequence also
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belongs to RX. If the sequence (Fj(⋅; ⋅)) converges uniformly to a function F(⋅; ⋅) on X,
then the function F(⋅; ⋅) is (RX,ℬ)-multi-almost automorphic. If, additionally, for
each B ∈ ℬ and (b;x) ∈ RX we have WB,(b;x) : B→ P(P(ℝn)), PB,(b;x) ∈ P(P(ℝn ×B)),
WB,(b;x)(x) ⊆ WB,(b;x)′ (x) and PB,(b;x) ⊆ PB,(b;x)′ for any x ∈ B and any subse-
quence (b;x)′ of (b;x), and Fj(⋅; ⋅) is (RX ,ℬ,Wℬ,RX )-multi-almost automorphic,
resp. (RX ,ℬ,Pℬ,RX )-multi-almost automorphic, then the function F(⋅; ⋅) is likewise
(RX ,ℬ,Wℬ,RX )-multi-almost automorphic, resp. (RX ,ℬ,Pℬ,RX )-multi-almost auto-
morphic.

(ii) Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is (R,ℬ)-multi-almost au-
tomorphic and, for every sequence which belongs to R, any its subsequence also
belongs to R. If for each B ∈ ℬ there exists εB > 0 such that the sequence (Fj(⋅; ⋅))
converges uniformly to a function F(⋅; ⋅) on the set B∘ ∪⋃x∈𝜕B B(x, εB), then the func-
tion F(⋅; ⋅) is (R,ℬ)-multi-almost automorphic. If, additionally, for each B ∈ ℬ and
(bk) ∈ R we have WB,(bk) : B → P(P(ℝn)), PB,(bk) ∈ P(P(ℝn × B)), WB,(b)(x) ⊆
WB,(b)′ (x) and PB,(b) ⊆ PB,(b)′ for any x ∈ B and any subsequence (b)′ of (b), and
Fj(⋅; ⋅) is (R,ℬ,Wℬ,R)-multi-almost automorphic, resp. (R,ℬ,Pℬ,R)-multi-almost au-
tomorphic, then the function F(⋅; ⋅) is likewise (R,ℬ,Wℬ,R)-multi-almost automor-
phic, resp. (R,ℬ,Pℬ,R)-multi-almost automorphic.

Concerning the convolution invariance of space consisting of all (RX ,ℬ)-multi-
almost automorphic functions, we would like to state the following result.

Proposition 8.1.17. Suppose that h ∈ L1(ℝn) and F : ℝn × X → Y is an (RX ,ℬ)-multi-
almost automorphic function satisfying that for each B ∈ ℬ there exists a finite real
number εB > 0 such that supt∈ℝn ,x∈B⋅ ‖F(t, x)‖Y < +∞, where B⋅ ≡ B∘ ∪ ⋃x∈𝜕B B(x, εB).
Let condition (CI) holds, where:
(CI) RX = R, or X ∈ ℬ and RX is general.

Then the function

(h ∗ F)(t; x) := ∫
ℝn

h(σ)F(t − σ; x) dσ, t ∈ ℝn, x ∈ X,

is well defined, (RX ,ℬ)-multi-almost automorphic, and for each B ∈ ℬ we have
supt∈ℝn ,x∈B⋅ ‖(h ∗ F)(t; x)‖Y < +∞.
Proof. It is clear that the function (h ∗ F)(⋅; ⋅) is well defined and that supt∈ℝn ,x∈B⋅ ‖(h ∗
F)(t; x)‖Y < +∞ for allB ∈ ℬ. The continuity of the function (h∗F)(⋅; ⋅) at the fixed point
(t0; x0) ∈ ℝn × X follows from the continuity of the function F(⋅; ⋅) at this point, the
existence of a set B ∈ ℬ such that x0 ∈ B, the assumption supt∈ℝn ,x∈B⋅ ‖F(t; x)‖Y < +∞
and the dominated convergence theorem. We will prove the remainder provided that
the second part of condition (CI) holds. Let ((b;x)k) ∈ RX be fixed. Then we know that
there exist a subsequence ((b;x)kl = ((b

1
kl , b

2
kl , . . . , b

n
kl ); xkl )) of ((b;x)k) and a function
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F∗ : ℝn × X → Y such that (8.6)–(8.7) hold pointwise for all x ∈ X and t ∈ ℝn. It is not
difficult to prove that the function F∗(⋅; x) is measurable for every fixed element x ∈ X.
Clearly, the function

(h ∗ F)∗(t; x) := ∫
ℝn

h(σ)F∗(t − σ; x) dσ, t ∈ ℝn, x ∈ B,

is well defined. Using the dominated convergence theorem, it can be simply shown
that we have

lim
m→+∞
(h ∗ F)(t + (b1km , . . . , b

n
km); x + xkm) = (h ∗ F)

∗(t; x)

and

lim
l→+∞
(h ∗ F)∗(t − (b1kl , . . . , b

n
kl); x − xkl) = (h ∗ F)(t; x),

pointwise for all x ∈ X and t ∈ ℝn. This completes the proof.

8.1.3 𝔻-Asymptotically (RX ,ℬ)-multi-almost automorphic functions

This subsection investigates 𝔻-asymptotically (RX ,ℬ)-multi-almost automorphic
functions. We start by introducing the following notion.

Definition 8.1.18. Suppose that the set𝔻 ⊆ ℝn is unbounded, i = 1, 2 and F : ℝn×X →
Y is a continuous function. Then we say that F(⋅; ⋅) is 𝔻-asymptotically (compactly)
(RX ,ℬ)-multi-almost automorphic if and only if there exist a function G(⋅; ⋅) which is
(compactly) (RX ,ℬ)-multi-almost automorphic and a function Q ∈ C0,𝔻,ℬ(ℝn × X : Y)
such that F(t; x) = G(t; x) + Q(t; x) for all t ∈ ℝn and x ∈ X.

It is said that F(⋅; ⋅) is asymptotically (compactly) (RX ,ℬ)-multi-almost automor-
phic if and only if F(⋅; ⋅) is ℝn-asymptotically (compactly) (RX ,ℬ)-multi-almost auto-
morphic.

We similarly introduce the classes of 𝔻-asymptotically (compactly) (R,ℬ)-multi-
almost automorphic functions and asymptotically (compactly) (R,ℬ)-multi-almost
automorphic functions, as well as the corresponding classes of functions in which
the notion of (R,ℬ)-multi-almost automorphy ((RX ,ℬ)-multi-almost automorphy) is
replaced with some of the notions introduced in Definition 8.1.2 or Definition 8.1.8.
We will not consider here the notion in which the space C0,𝔻,ℬ(ℝn × X : Y) is replaced
with some space of weighted ergodic components in ℝn.

The proof of the following proposition can be given as for the usually consid-
ered almost automorphic functions [492]; all clarifications also hold if the notion of
(R,ℬ)-multi-almost automorphy ((RX ,ℬ)-multi-almost automorphy) is replaced with
some of the notions introduced in Definition 8.1.2 or Definition 8.1.8.
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Proposition 8.1.19.
(i) Suppose that τ ∈ ℝn, x0 ∈ X and F(⋅; ⋅) is (compactly) (RX ,ℬ)-multi-almost au-

tomorphic. Then F(⋅ + τ; ⋅ + x0) is (compactly) (RX ,ℬx0 )-multi-almost automorphic,
whereℬx0 ≡ {−x0+B : B ∈ ℬ}. Furthermore, if F(⋅; ⋅) is𝔻-asymptotically (compactly)
(RX ,ℬ)-multi-almost automorphic, then F(⋅+τ; ⋅+x0) is (𝔻−τ)-asymptotically (com-
pactly) (RX ,ℬx0 )-multi-almost automorphic.

(ii) Suppose that c1 ∈ ℂ ∖ {0}, c2 ∈ ℂ ∖ {0}, and F(⋅; ⋅) is (compactly) (RX ,ℬ)-multi-
almost automorphic. Then F(c1⋅; c2⋅) is (compactly) ((Rc1 )X ,ℬc2 )-multi-almost auto-
morphic, where (Rc1 )X ≡ {c

−1
1 b(⋅) : b ∈ RX} and ℬc2 ≡ {c

−1
2 B : B ∈ ℬ}. Further-

more, if F(⋅; ⋅) is 𝔻-asymptotically (compactly) (RX ,ℬ)-multi-almost automorphic,
then F(c1⋅; c2⋅) is 𝔻/c1-asymptotically (compactly) ((Rc1 )X ,ℬc2 )-multi-almost auto-
morphic.

(iii) Suppose that α, β ∈ ℂ and, for every sequence which belongs to RX , we see that
any its subsequence belongs to RX . If F(⋅; ⋅) and G(⋅; ⋅) are (compactly) (RX ,ℬ)-multi-
almost automorphic, then αF(⋅; ⋅) + βG(⋅; ⋅) is also (compactly) (RX ,ℬ)-multi-almost
automorphic. The same holds for 𝔻-asymptotically (compactly) (RX ,ℬ)-multi-
almost automorphic functions.

(iv) If X ∈ ℬ and F(⋅; ⋅) is asymptotically (R,ℬ)-multi-almost automorphic, then F(⋅; ⋅) is
bounded in case [L3]; furthermore, if F(⋅; ⋅) is asymptotically (RX ,ℬ)-multi-almost
automorphic, then F(⋅; ⋅) is bounded in the case that RX denotes the collection of all
sequences in ℝn × X.

Using Proposition 8.1.19(iv) and the supremum formula clarified in Proposi-
tion 8.1.15 (see also the estimate (8.12)), we can simply deduce that the decompo-
sition in Definition 8.1.18 is unique (the same holds for the class of𝔻-asymptotically
(R,ℬ)-multi-almost automorphic functions, where 𝔻 contains the complement of a
ball centered at the origin).

Proposition 8.1.20. Suppose that there exist a function Gi(⋅; ⋅) which is (R,ℬ)-multi-
almost automorphic and a function Qi ∈ C0,ℝn ,ℬ(ℝn × X : Y) such that F(t; x) =
Gi(t; x) + Qi(t; x) for all t ∈ ℝn and x ∈ X (i = 1, 2). Then we have G1 ≡ G2 and Q1 ≡ Q2,
provided that the collection R satisfies the following two conditions:
D1. There exists a sequence in R whose any subsequence is unbounded.
D2. For every sequence which belongs to R, we see that any its subsequence belongs

to R.

Furthermore, arguing as in the proof of [364, Lemma 4.28], we may deduce the
following.

Lemma 8.1.21. Suppose that there exist an (R,ℬ)-multi-almost automorphic function
G(⋅; ⋅) and a function Q ∈ C0,ℝn ,ℬ(ℝn × X : Y) such that F(t; x) = G(t; x) + Q(t; x) for all
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t ∈ ℝn and x ∈ X. Then we have

{G(t; x) : t ∈ ℝn, x ∈ X} ⊆ {F(t; x) : t ∈ ℝn, x ∈ X},

provided that condition [D1] holds.

Proposition 8.1.22. Suppose that conditions [D1]-[D2] hold and for each integer j ∈
ℕ the function Fj(⋅; ⋅) is asymptotically (compactly) (R,ℬ)-multi-almost automorphic. If
the sequence (Fj(⋅; ⋅)) converges uniformly to a function F(⋅; ⋅), then the function F(⋅; ⋅) is
asymptotically (compactly) (R,ℬ)-multi-almost automorphic.

Proof. Due toProposition 8.1.20,weknow that there exist a uniquely determined func-
tion G(⋅; ⋅)which is (R,ℬ)-multi-almost automorphic and a uniquely determined func-
tion Q ∈ C0,ℝn ,ℬ(ℝn × X : Y) such that F(t; x) = G(t; x) + Q(t; x) for all t ∈ ℝn and x ∈ X.
Furthermore, we have

Fj(t; x) − Fm(t; x) = [Gj(t; x) − Gm(t; x)] + [Qj(t; x) − Qm(t; x)],

for all t ∈ ℝn, x ∈ X and j, m ∈ ℕ. Due to Proposition 8.1.19(iv), we see that the function
Fj(⋅; ⋅) − Fm(⋅; ⋅) is asymptotically (R,ℬ)-multi-almost automorphic as well as that the
function Gj(⋅; ⋅) − Gm(⋅; ⋅) is (R,ℬ)-multi-almost automorphic (j, m ∈ ℕ). Keeping in
mind this fact, Lemma8.1.21 and the argumentationused in the proof of [364, Theorem
4.29], we get

3 sup
t∈ℝn ,x∈X

Fj(t; x) − Fm(t; x)
Y

⩾ sup
t∈ℝn ,x∈X

Gj(t; x) − Gm(t; x)
Y + sup

t∈ℝn ,x∈X

Qj(t; x) − Qm(t; x)
Y ,

for any j, m ∈ ℕ. This implies that the sequences (Gj(⋅; ⋅)) and (Qj(⋅; ⋅)) converge uni-
formly to the functions G(⋅; ⋅) and Q(⋅; ⋅), respectively. Due to Proposition 8.1.16, we see
that the function G(⋅; ⋅) is (R,ℬ)-multi-almost automorphic. The final conclusion fol-
lows from the obvious equality F = G + Q and the fact that C0,ℝn ,ℬ(ℝn × X : Y) is a
Banach space.

Remark 8.1.23. The previous proposition is also true in the one-dimensional case,
with 𝔻 = [0,∞) and R being any collection of sequences in [0,∞) satisfying con-
ditions [D1]–[D2].

Concerning the partial derivatives of (asymptotically) (RX ,ℬ)-multi-almost auto-
morphic functions, we will state and prove only one partial result.

Proposition 8.1.24.
(i) Suppose that the function F(⋅; ⋅) is (compactly) (R,ℬ)-multi-almost automorphic,

[D2] holds, the partial derivative

𝜕F(⋅; ⋅)
𝜕ti
:= lim

h→0

F(⋅ + hei; ⋅) − F(⋅; ⋅)
h

, t ∈ ℝn, x ∈ X,
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exists and it is uniformly continuous on ℬ, i. e.,

(∀B ∈ ℬ) (∀ε > 0) (∃δ > 0) (∀t′, t′′ ∈ ℝn) (∀x ∈ B)

(t
′ − t′′ < δ ⇒



𝜕F(t′; x)
𝜕ti
−
𝜕F(t′′; x)
𝜕ti

Y
< ε).

Then the function 𝜕F(⋅; ⋅)/𝜕ti is (compactly) (R,ℬ)-multi-almost automorphic.
(ii) Suppose that the function F(⋅; ⋅) is asymptotically (compactly) (R,ℬ)-multi-almost

automorphic, [D1]–[D2] hold, the partial derivative 𝜕F(t; x)/𝜕ti exists for all t ∈ ℝn,
x ∈ X and it is uniformly continuous on ℬ. Then the function 𝜕F(⋅; ⋅)/𝜕ti is asymptot-
ically (compactly) (R,ℬ)-multi-almost automorphic.

Proof. We will prove only (i) because (ii) follows similarly, by appealing to Proposi-
tion 8.1.22 instead of Proposition 8.1.16. The proof immediately follows from the fact
that the sequence (Fj(⋅; ⋅) ≡ j[F(⋅ + j−1ei; ⋅) − F(⋅; ⋅)]) of (compactly) (R,ℬ)-multi-almost
automorphic functions converges uniformly to the function 𝜕F(⋅; ⋅)/𝜕ti as j → +∞. This
can be shown as in the one-dimensional case, by observing that

Fj(⋅; ⋅) −
𝜕F(⋅; ⋅)
𝜕ti
= j

1/j

∫
0

[
𝜕F(⋅ + sei; ⋅)
𝜕ti

−
𝜕F(⋅; ⋅)
𝜕ti
] ds.

8.1.4 Composition theorems for (R,ℬ)-multi-almost automorphic functions

Suppose that F : ℝn × X → Y and G : ℝm × Y → Z are given functions, where m ∈
ℕ. The main aim of this subsection is to analyze the (R,ℬ)-multi-almost automorphic
properties of the following multi-dimensional Nemytskii operator W : ℝn × X → Z,
given byW(t; x) := G(t; F(t; x)), t ∈ ℝn, x ∈ X.

We will first state the following generalization of [364, Theorem 4.16]; the proof is
similar to the proof of the above-mentioned theorem but we will present all details for
the sake of completeness.

Theorem 8.1.25. Suppose that F : ℝn × X → Y is (R,ℬ)-multi-almost automorphic and
G : ℝn × X → Y is (R′,ℬ′)-multi-almost automorphic, where R′ is a collection of all
sequences b : ℕ→ ℝn from R and all their subsequences, as well as

ℬ′ := {B′ ≡ ⋃
t∈ℝn

F(t;B) : B ∈ ℬ}. (8.13)

If there exists a finite constant L > 0 such that
G(t; x) − G(t; y)

Z ⩽ L‖x − y‖Y , t ∈ ℝn, x, y ∈ Y , (8.14)

then the function W(⋅; ⋅) is (R,ℬ)-multi-almost automorphic. Furthermore, let WB,(bk) :
B→ P(P(ℝn)) and PB,(bk) ∈ P(P(ℝ

n × B)). Then we have the following:
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(i) Suppose that F(⋅; ⋅) is (R,ℬ,Wℬ,R)-multi-almost automorphic, for every B ∈ ℬ, x ∈
B and (bk) ∈ R, we see that any set of collection WB,(bk)(x) is an element of the
collection WB,(bkl )

(x) for any subsequence (bkl ) of (bk). If the condition
(DB) for every B ∈ ℬ, (bk) ∈ R, x ∈ B, D ∈ WB,(bk)(x) as well as for every subse-

quence (bkl ) of (bk), we can find a subsequence (bklm ) of (bkl ) and a function
G∗ : ℝn × Y → Z such that

lim
m→+∞
G(t + (b

1
klm
, . . . , bnklm ); y) − G

∗(t; y)Z = 0 (8.15)

holds uniformly for (t, y) ∈ D × F([D × {x}] + {(bklm ;0) : m ∈ ℕ}) and

lim
m→+∞
G
∗(t − (b1klm , . . . , b

n
klm
); y) − G(t; y)Z = 0 (8.16)

holds uniformly for (t; y) ∈ D × F(D × {x})
holds, then the function W(⋅; ⋅) is (R,ℬ,Wℬ,R)-multi-almost automorphic.

(ii) Suppose that F(⋅; ⋅) is (R,ℬ,Pℬ,R)-multi-almost automorphic and, for every B ∈ ℬ
and (bk) ∈ R, we see that any set of collection PB,(bk) is an element of the collection
PB,(bkl ) for any subsequence (bkl ) of (bk). If the condition
(DB1) for every B ∈ ℬ, (bk) ∈ R, D ∈ PB,(bk) as well as for every subsequence (bkl ) of
(bk), we can find a subsequence (bklm ) of (bkl ) and a function G

∗ : ℝn × Y →
Z such that (8.15) holds uniformly for (t, y) ∈ D × F(D + {(bklm ;0) : m ∈ ℕ})
and (8.16) holds uniformly for (t; y) ∈ D × F(D × {x})

holds, then the function W(⋅; ⋅) is (R,ℬ,Pℬ,R)-multi-almost automorphic.

Proof. Let the set B ∈ ℬ and the sequence (bk = (b1k , b
2
k , . . . , b

n
k)) ∈ R be given. By

definition, there exist a subsequence (bkl = (b
1
kl , b

2
kl , . . . , b

n
kl )) of (bk) and a function

F∗ : ℝn×X → Y such that (8.1)–(8.2) hold true. Then there exist a subsequence (bklm =
(b1klm , b

2
klm
, . . . , bnklm )) of (bkl ) and a functionG

∗ : ℝn×X → Y such that (8.15)–(8.16) hold
pointwise for all y ∈ B′ and t ∈ ℝn. Using (8.14) and (8.15), we get

G
∗(t; x) − G∗(t; y)Z ⩽ L‖x − y‖Y , t ∈ ℝn, x, y ∈ B′. (8.17)

In order to see that the functionW(⋅; ⋅) is (R,ℬ)-multi-almost automorphic, it suffices
to show that

lim
m→+∞
G(t + (b

1
klm
, . . . , bnklm ); F(t + (b

1
klm
, . . . , bnklm ); x)) − G

∗(t; F∗(t; x))Z = 0 (8.18)

and

lim
m→+∞
G
∗(t − (b1klm , . . . , b

n
klm
); F∗(t − (b1klm , . . . , b

n
klm
); x)) − G(t; F(t; x))Z = 0, (8.19)

pointwise for t ∈ ℝn and x ∈ B. The proof of (8.18) goes as follows. For simplicity,
denote τm := (b1klm , . . . , b

n
klm
) for allm ∈ ℕ. We have (t ∈ ℝn, x ∈ B,m ∈ ℕ):

G(t + τm; F(t + τm; x)) − G
∗(t; F∗(t; x))Z

⩽ G(t + τm; F(t + τm; x)) − G(t + τm; F
∗(t; x))Z
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+ G(t + τm; F
∗(t; x)) − G∗(t; F∗(t; x))Z

⩽ LF(t + τm; x) − F
∗(t; x)Y +

G(t + τm; F
∗(t; x)) − G∗(t; F∗(t; x))Z .

Since x ∈ B and F∗(t; x) ∈ B′ for all t ∈ ℝn, (8.18) follows by applying (8.1) and (8.15).
Keeping in mind the estimate (8.17) and the estimate

G
∗(t − τl; F

∗(t − τl; x)) − G(t; F(t; x))
Z

⩽ G
∗(t − τl; F

∗(t − τl; x)) − G
∗(t − τl; F(t; x))

Z
+ G
∗(t − τl; F(t; x)) − G(t; F(t; x))

Z ,

the proof of (8.19) is quite analogous, which completes the proof of the first part of
theorem. The proofs of (i)–(ii) follow from the already shown part and an elementary
argumentation involving the corresponding definitions and the prescribed condi-
tions.

In the one-dimensional case, some composition principles for compactly almost
automorphic functions are stated in [364, Lemma 4.36, Lemma 4.37, Lemma 4.38] and
[29]. We will clarify only one, almost immediate, corollary of Theorem 8.1.25 for com-
pactly (R,ℬ)-multi-almost automorphic type functions.

Corollary 8.1.26. Suppose that F : ℝn × X → Y is compactly (R,ℬ)-multi-almost au-
tomorphic and G : ℝn × X → Y is (R,ℬ,PR,ℬ)-multi-almost automorphic, where R is a
collection of all sequences b : ℕ → ℝn, ℬ is the collection of all compact subsets of X,
and for every B ∈ ℬ we see that PR,ℬ(B) is the collection of all compact subsets ofℝn×X,
and there exists a finite constant L > 0 such that (8.14) holds. Then the function W(⋅; ⋅)
is compactly (R,ℬ)-multi-almost automorphic.

A slight modification of the proof of Theorem 8.1.25 (cf. also the proof of [364,
Theorem 4.17]) shows that the following result holds true.

Theorem 8.1.27. Suppose that F : ℝn × X → Y is (R,ℬ)-multi-almost automorphic and
G : ℝn × X → Y is (R′,ℬ′)-multi-almost automorphic, where R′ is a collection of all
sequences b : ℕ→ ℝn fromRandall their subsequences, aswell asℬ′ be givenby (8.13).
If

(∀B ∈ ℬ) (∀ε > 0) (∃δ > 0)
(x, y ∈ B′ and ‖x − y‖Y < δ ⇒

G(t; x) − G(t; y)
Z < ε, t ∈ ℝ

n),

then the function W(⋅; ⋅) is (R,ℬ)-multi-almost automorphic. Furthermore, let WB,(bk) :
B→ P(P(ℝn)) and PB,(bk) ∈ P(P(ℝ

n × B)). Then we have the following:
(i) The requirements in (i) of Theorem 8.1.25 imply that the function W(⋅; ⋅) is (R,ℬ,

Wℬ,R)-multi-almost automorphic.
(ii) The requirements in (ii) of Theorem 8.1.25 imply that the function W(⋅; ⋅) is (R,ℬ,

Pℬ,R)-multi-almost automorphic.
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Now we proceed with the analysis of composition theorems for asymptotically
(R,ℬ)-multi-almost automorphic functions. Our first result corresponds to Theo-
rem 8.1.25 and [364, Theorem 4.34].

Theorem 8.1.28. Suppose that F0 : ℝn × X → Y is (R,ℬ)-multi-almost automorphic,
Q0 ∈ C0,ℝn ,ℬ(ℝn × X : Y) and F(t; x) = F0(t; x) + Q0(t; x) for all t ∈ ℝn and x ∈ X.
Suppose further that G1 : ℝ

n × X → Y is (R′,ℬ′)-multi-almost automorphic, where R′

is a collection of all sequences b : ℕ → ℝn from R and all their subsequences as well
as ℬ′ is defined by (8.13) with the function F(⋅; ⋅) replaced therein by the function F0(⋅; ⋅),
Q1 ∈ C0,ℝn ,ℬ1

(ℝn × Y : Z), where

ℬ1 := { ⋃
t∈ℝn

F(t;B) : B ∈ ℬ}, (8.20)

and G(t; x) = G1(t; x) + Q1(t; x) for all t ∈ ℝn and x ∈ X. If there exists a finite constant
L > 0 such that the estimate (8.14) holds with the function G(⋅; ⋅) replaced therein by the
function G1(⋅; ⋅), then the function W(⋅; ⋅) is asymptotically (R,ℬ)-multi-almost automor-
phic.

Proof. Using the above assumptions and Theorem 8.1.25, we see that the function
(t; x) → G1(t; F0(t; x)), t ∈ ℝn, x ∈ X is (R,ℬ)-multi-almost automorphic. Furthermore,
we have the following decomposition:

W(t; x) = G1(t; F0(t; x)) + [G1(t; F(t; x)) − G1(t; F0(t; x))] + Q1(t; F(t; x)),

for any t ∈ ℝn and x ∈ X. Since

G1(t; F(t; x)) − G1(t; F0(t; x))
Z ⩽ L
Q0(t; x)

Y , t ∈ ℝn, x ∈ X,

we see that the function (t; x) → G1(t; F(t; x)) − G1(t; F0(t; x)), t ∈ ℝn, x ∈ X belongs to
the space C0,ℝn ,ℬ(ℝn × X : Z). The same holds for the function (t; x) → Q1(t; F(t; x)),
t ∈ ℝn, x ∈ X because of our choice of the collection ℬ1 in (8.20). The proof of the
theorem is thereby complete.

Similarly we can prove the following result, which corresponds to Theorem 8.1.27
and [364, Theorem 4.35].

Theorem 8.1.29. Suppose that F0 : ℝn × X → Y is (R,ℬ)-multi-almost automorphic,
Q0 ∈ C0,ℝn ,ℬ(ℝn × X : Y) and F(t; x) = F0(t; x) + Q0(t; x) for all t ∈ ℝn and x ∈ X.
Suppose further that G1 : ℝ

n × X → Y is (R′,ℬ′)-multi-almost automorphic, where R′

is a collection of all sequences b : ℕ → ℝn from R and all their subsequences and
ℬ′ is defined by (8.13) with the function F(⋅; ⋅) replaced therein by the function F0(⋅; ⋅),
Q1 ∈ C0,ℝn ,ℬ1

(ℝn×Y : Z), whereℬ1 is given through (8.20), and G(t; x) = G1(t; x)+Q1(t; x)

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



534 | 8 Multi-dimensional almost automorphic type functions

for all t ∈ ℝn and x ∈ X. For every B ∈ ℬ, we set B′ := ⋃t∈ℝn F0(t;B). If

(∀B ∈ ℬ) (∀ε > 0) (∃δ > 0)
(x, y ∈ B′ and ‖x − y‖Y < δ ⇒

G1(t; x) − G1(t; y)
Z < ε, t ∈ ℝ

n),

then the function W(⋅; ⋅) is asymptotically (R,ℬ)-multi-almost automorphic.

The statements of Theorem 8.1.28 and Theorem 8.1.29 can be reformulated for
the asymptotical (R,ℬ,WB,(bk))-multi-almost automorphy and the asymptotical (R,ℬ,
PB,(bk))-multi-almost automorphy by taking into consideration conditions (i) and (ii)
from the formulation of Theorem 8.1.25.

8.1.5 Invariance of (R,ℬ)-multi-almost automorpic properties under actions of
convolution products

Recall, if t = (t1, t2, . . . , tn), then we use the notation ℐt = (−∞, t1] × (−∞, t2] × ⋅ ⋅ ⋅ ×
(−∞, tn]. We impose the following condition:
(E1) (R(t))t∈(0,∞)n ⊆ L(X,Y) is a strongly continuous operator family and
∫(0,∞)n ‖R(t)‖L(X,Y) dt < +∞.

The main results of this subsection, Theorem 8.1.30 and Theorem 8.1.32, are new even
in the one-dimensional setting. This enables one to provide numerous applications in
the analysis of timealmost automorphic solutions of the abstract (degenerate)Volterra
integro-differential equations [631].

Theorem 8.1.30. Let f : ℝn → X be a bounded R-multi-almost automorphic function
and (E1) hold. Define

F(t) := ∫
ℐt

R(t − η)f (η) dη, t ∈ ℝn.

Then F(⋅) is a boundedR-multi-almost automorphic function. Furthermore, if f : ℝn → X
is a bounded (R,WR)-multi-almost automorphic function, then F(⋅) is likewise a bounded
(R,WR)-multi-almost automorphic function provided that, for every set D ∈ WR and for
every compact set K ⊆ [0,∞)n, we see that D − K ⊆ D′ for some set D′ ∈ WR.

Proof. First of all, observe that the Lebesgue dominated convergence theorem implies
in view of condition (E1) that F(⋅) is a continuous function on ℝn; it is also clear that
(E1) implies that the function F(⋅) is bounded on ℝn. On the other hand, since f (⋅)
is R-multi-multi-almost automorphic, given a sequence (bn) ∈ R, there exist a subse-
quence (cn) of (bn) and a function ̃f (⋅) such that limn→∞ f (t+cn) = ̃f (t) and limn→∞

̃f (t−
cn) = f (t) pointwise for all t ∈ ℝn. It is clear that the function ̃f (⋅) is measurable and
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bounded. Now, let us define

F∗(t) := ∫
ℐt

R(t − η) ̃f (η) dη, t ∈ ℝn.

Then we have

F(t + cn) − F
∗(t)Y =


∫

ℐt+cn
R(t + cn − η)f (η) dη − ∫

ℐt

R(t − η) ̃f (η) dη


⩽ ∫
ℐt

R(t − η)
L(X,Y) ⋅

f (η + cn) − ̃f (η)
 dη, t ∈ ℝn.

Using condition (E1), the above estimate and the Lebesgue dominated convergence
theorem, we get

lim
n→∞

F(t + cn) = F
∗(t), t ∈ ℝn.

Similarly we get

lim
n→∞

F∗(t − cn) = F(t), t ∈ ℝn,

which completes the proof of the first part of theorem. Suppose now that f : ℝn → X is
a bounded (R,WR)-multi-almost automorphic function, ε > 0 and D ∈ WR. Then there
exists L > 0 such that

‖f ‖∞ ∫
η∈[0,∞)n ;|η|⩾L

R(η)
L(X,Y) dη < ε/4.

Due to our assumption, we have the existence of a set D′ ∈ WR such that D − {t ∈
[0,∞)n : |t| ⩽ L} ⊆ D′. Choose after that a natural number n0 ∈ ℕ such that

f (t + cn − η) − ̃f (t − η)
 <

ε
2(1 + ∫η∈[0,∞)n ;|η|⩽L ‖R(η)‖L(X,Y) dη)

.

Arguing as above, we get

F(t + cn) − F
∗(t)Y ⩽ ∫

(0,∞)n

R(η)
L(X,Y)
f (t + cn − η) − ̃f (t − η)

 dη

⩽ 2‖f ‖∞ ∫
η∈[0,∞)n ;|η|⩾L

R(η)
L(X,Y) dη

+ ∫
η∈(0,∞)n ;|η|⩽L

R(η)
L(X,Y)
f (t + cn − η) − ̃f (t − η)

 dη

⩽ (ε/2) + (ε/2) = ε, t ∈ D.

We can similarly prove that limn→∞ F∗(t − cn) = F(t), uniformly in t ∈ D.
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Remark 8.1.31. It is clear that the above requirements hold if WR denotes the collec-
tion of all compact subsets of ℝn, so that Theorem 8.1.30 transfers the well-known
result of H. R. Henríquez and C. Lizama [529, Lemma 3.1] to themulti-dimensional set-
ting. On the other hand,WR need not consist of compact sets; for example, in our pre-
vious analyses, we have analyzed case in whichWR is a collection of sets of the form
{(x, y) ∈ ℝ2 : |x − y| ⩽ L}, when L > 0 (n = 2). Then the requirements of Theorem 8.1.30
and Theorem 8.1.32 are also satisfied.

Let 𝔻 be an unbounded subset of ℝn. For the invariance of 𝔻-asymptotical
R-multi-almost automorphy under the actions ofmulti-dimensional finite convolution
products, we impose the following conditions:
(E2) lim|t|→+∞,t∈𝔻 ∫ℐt∩𝔻c

‖R(t − η)‖L(X,Y) dη = 0;
(E3) there exists r0 > 0 such that, for every r > 0, we have

lim
|t|→+∞,t∈𝔻

∫
ℐt∩𝔻∩B(0,r)

R(t − η)
L(X,Y) dη = 0.

The following theorem can be shown as in the almost periodic case.

Theorem 8.1.32. Let conditions (E1)–(E3) be fulfilled, let for every set D ∈ WR and for
every compact set K ⊆ [0,∞)n, we see that D − K ⊆ D′ for some set D′ ∈ WR, and
let f = fa + f0, where fa(⋅) is a bounded R-multi-almost automorphic function (bounded
(R,WR)-multi-almost automorphic function) and f0(⋅) ∈ C0,𝔻(ℝn : X) ∩ L∞(ℝn : X).
Define

Γf (t) := ∫
𝔻t

R(t − η)f (η) dη, t ∈ ℝn.

Then Γf (⋅) can be written as a sum of a bounded R-multi-almost automorphic function
(bounded (R,WR)-multi-almost automorphic function) and a bounded function belong-
ing to the space C0,𝔻(ℝn : Y).

Remark 8.1.33. Inℝ2, let us consider the set𝔻 formedby theunionof lines containing
a fixed point p ∈ ℝ2. Then we have

∫
𝔻t

R(t − η)f (η) dη = 0,

for any t ∈ ℝ2. More generally, if𝔻 consists of sets contained in the Euclidean spaces
of dimension less than n, after the canonical embedding of this space into ℝn we get

∫
𝔻t

R(t − η)f (η) dη = 0,

for any t ∈ ℝn. Therefore, in the formulation of previous theorem, it seems very rea-
sonable to assume that there exists a point t0 ∈ ℝn such that int(𝔻t0 ) ̸= 0.
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Example 8.1.34. Let α, β be positive real numbers and consider the kernel function
Ke : ℝ2 → ℝ given by Ke(x, y) := exp(−αx) exp(−βy). Suppose that𝔻 is the first quad-
rant [0,+∞) × [0,+∞) and denote t = (x, y). Consider the integral operator

F(t) =∬
𝔻t

Ke(x − s, y − r)f (s, r) ds dr

with f (t) = 1 + e−(αx+βy) and R being any collection of sequences. Then

F(t) =∬
𝔻t

Ke(x − s, y − r)(1 + e
−(αs+βr)) ds dr

=∬
𝔻t

Ke(x − s, y − r) ds dr +∬
𝔻t

Ke(x − s, y − r)e
−(αs+βr) ds dr

=∬
ℐt

Ke(x − s, y − r) ds dr − ∬
ℐt∩𝔻c

Ke(x − s, y − r) ds dr +

+∬
𝔻t

Ke(x − s, y − r)e
−(αs+βr) ds dr

= F1(t) + F2(t),

where

F1(t) :=∬
ℐt

Ke(x − s, y − r) ds dr

and

F2(t) :=∬
𝔻t

Ke(x − s, y − r)e
−(αs+βr) ds dr − ∬

ℐt∩𝔻c

Ke(x − s, y − r) ds dr.

We see that F1(⋅) is R-multi-almost periodic (note that Ke(⋅; ⋅) satisfies condition (E1)).
On the other hand, F2(⋅) is not R-multi-almost automorphic because for (x0, y) ∈ 𝔻,
with fixed x0 ∈ (0,+∞), we have

lim
|(x0 ,y)|→+∞

F2(x0, y) ̸= 0.

8.1.6 Applications to the abstract Volterra integro-differential equations

In this subsection, we present some applications of our abstract results in the qualita-
tive analysis of solutions for various classes of the abstractVolterra integro-differential
equations.
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Applications to semilinear Volterra integral equations
First of all, we will present some applications of established composition results and
the results about the invariance of (R,ℬ)-multi-almost automorphy under the actions
of multi-dimensional convolution products. We start by stating the following result.

Theorem 8.1.35. Let F, G : ℝn × X → X be two (R,ℬ)-multi-almost automorphic func-
tions, where ℬ is the collection of all bounded subsets of X, R is any collection of se-
quences in ℝn satisfying that for each sequence (bk) in R any its subsequence also be-
longs to R. Suppose that, for every bounded subset B of X, we have

sup
t∈ℝn ;x∈B
[F(t; x)

 +
G(t; x)
] <∞. (8.21)

If [E1] holdswith Y = X, then there exists a unique boundedR-multi-almost automorphic
solution of the integral equation

u(t) = F(t; u(t)) + ∫
ℐt

K(t − η)G(η, u(η)) dη, t ∈ ℝn, (8.22)

provided that the function G(⋅; ⋅) satisfies the estimate (8.14) with some finite real con-
stant L > 0, the function F(⋅; ⋅) satisfies the estimate (8.14)with some finite real constant
LF > 0 and the meaning clear, and

LF + L ∫
(0,∞)n

K(η)
L(X) dη < 1. (8.23)

Proof. Due to Proposition 8.1.16(ii), the vector space 𝒳 of all bounded R-multi-almost
automorphic functions u : ℝn → X endowed with the sup-norm is a Banach space.
Furthermore, Theorem 8.1.25 in combination with the estimate (8.21) implies that, for
every function u : ℝn → X which belongs to𝒳 , the functions t → F(t; u(t)), t ∈ ℝn and
t → G(t; u(t)), t ∈ ℝn are bounded R-multi-almost automorphic. Applying after that
Theorem 8.1.30, we see that the integral operator

t → (Γu)(t) := F(t; u(t)) + ∫
ℐt

K(t − η)G(η, u(η)) dη, t ∈ ℝn,

is well defined and maps the space 𝒳 into itself. The final conclusion simply follows
from the Banach contraction principle and a simple calculation involving the esti-
mate (8.23).

Without any substantial difficulties, we can similarly consider the existence and
uniqueness of bounded compactly R-multi-almost automorphic solutions of the inte-
gral equation (8.22), provided that the functions F(⋅; ⋅) andG(⋅; ⋅) satisfy conditions suf-
ficient for applying Corollary 8.1.26. Furthermore, we can similarly consider the exis-
tence and uniqueness of bounded (R,WR)-multi-almost automorphic solutions of the

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.1 Multi-dimensional almost automorphic functions | 539

equation (and its semilinear analogues)

u(t) = f (t) + ∫
ℐt

K(t − η)u(η) dη, t ∈ ℝn,

where f (⋅) is bounded (R,WR)-multi-almost automorphic, (E1) holds and, for every set
D ∈ WR and for every compact set K ⊆ [0,∞)n, we see that D − K ⊆ D′ for some set
D′ ∈ WR; cf. also the formulation of Theorem 8.1.30.

It isworthnoting that Eq. (8.22) canbeused formodelingof some two-dimensional
nonlinear Volterra integral equations of convolution type of the second kindwith infi-
nite delay; see [103] for some examples in the absence of delay and [318, Chapter 10] for
some other results in this direction. In actual fact, we can consider thewell-posedness
of the equation

u(x, y) = g(x, y) +
x

∫
−∞

y

∫
−∞

K(x, y, s, t, u(s, t)) ds dt, (x, y) ∈ ℝ2,

provided that K(x, y, s, t, u(s, t)) has the form

K(x, y, s, t, u(s, t)) = k(s − x, t − y)h(s, t, u(s, t));

our results about the invariance of 𝔻-asymptotical (R,ℬ)-multi-almost automor-
phy can be applied in the qualitative analysis of solutions to the following two-
dimensional nonlinear Volterra integral equation (t = (x, y)):

f (t) = g(t; f (t)) +
x

∫
0

y

∫
0

K(t − η)h(η, f (η)) dη,

as well.
We close this part by observing that we can easily transfer the results established

for the Hammerstein integral equation of the convolution type (6.38) to the multi-
dimensional almost automorphic functions. For example, assume that g : ℝn → X
is (compactly) almost automorphic, R is the collection of all sequences in ℝn, ℬ is
the collection of all compact subsets of X, F(⋅; ⋅) is (R,ℬ,PR,ℬ)-multi-almost auto-
morphic, where for each B ∈ ℬ we see that PR,ℬ(B) is the collection of all compact
subsets of ℝn × X, and there exists a finite constant L > 0 such that (8.14) holds
with the function G(⋅; ⋅) replaced therein with the function F(⋅; ⋅). If k ∈ L1(ℝn) and
L‖k‖L1(ℝn) < 1, then (6.38) has a unique (compactly) almost automorphic solution (see
Proposition 8.1.17 and Corollary 8.1.26).

Applications to the heat equation and the wave equation
In this part, we will first study the initial value problem for the homogeneous heat
equation with nonlocal diffusion

ut − Δu = 0 in [0,+∞) × ℝn,
u(0, x) = F(x) in ℝn × {0}.
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Suppose for simplicity that X = BUC(ℝn : ℂ). Then it is well known that (the Gaussian
semigroup is denoted by (G(t))t⩾0) the unique solution of (8.40) is given by (t, x) →
(G(t)F)(x), t ⩾ 0, x ∈ ℝn. Suppose now that a number t0 > 0 is fixed. Then Proposi-
tion 8.1.17 shows that the function ℝn ∋ x → u(x, t0) ≡ (G(t0)F)(x) ∈ ℂ is bounded,
R-multi-almost automorphic provided that R is anynon-empty collection of sequences
inℝn and the function F(⋅) is bounded, R-multi-almost automorphic. We can similarly
apply Proposition 8.1.17 to the Poisson semigroup in ℝn.

Now we will revisit the classical theory of partial differential equations of second
order and provide some new applications in the qualitative analysis of solutions of the
wave equations in ℝ3:

utt(t, x) = d
2Δxu(t, x), x ∈ ℝ3, t > 0; u(0, x) = g(x), ut(0, x) = h(x), (8.24)

where d > 0, g ∈ C3(ℝ3 : ℝ) and h ∈ C2(ℝ3 : ℝ). By the famous Kirchhoff formula (see,
e. g., [890, Theorem 5.4, pp. 277-278]; we will use the same notion and notation), the
function

u(t, x) := 𝜕
𝜕t
[

1
4πd2t

∫
𝜕Bdt(x)

g(σ) dσ] + 1
4πd2t

∫
𝜕Bdt(x)

g(σ) dσ

=
1
4π
∫
𝜕B1(0)

g(x + dtω) dω + dt
4π
∫
𝜕B1(0)

∇g(x + dtω) ⋅ ωdω

+
t
4π
∫
𝜕B1(0)

h(x + dtω) dω, t ⩾ 0, x ∈ ℝ3, (8.25)

is a unique solution of problem (8.24) which belongs to the class C2([0,∞) × ℝ3). Fix
now a number t0 > 0. Then the function x → u(t0, x), x ∈ ℝ3 is Bohr c-almost periodic
(c-uniformly recurrent) provided that the functions g(⋅), ∇g(⋅) and h(⋅) are c-almost
periodic (c-uniformly recurrent), where c ∈ ℂ ∖ {0}. Similarly, let us assume that the
functions g(⋅), ∇g(⋅) and h(⋅) are bounded R-multi-almost automorphic, where R is any
collection of sequences inℝ3 such that, for every sequence (bk) ∈ R, any subsequence
(bkl ) of (bk) also belongs to R (the last condition is superfluous in the case that g ≡ 0).
If we replace the functions g(⋅) and ∇g(⋅) in (8.25) with the corresponding limit func-
tions g∗(⋅) and∇g∗(⋅) for the sequence (bk) from the definition of R-multi-almost auto-
morphy, then the use of the dominated convergence theorem shows that the function
x → u(t0, x), x ∈ ℝ3 is likewise bounded R-multi-almost automorphic; furthermore,
the same statement holds for the notion of bounded (R,PR)-multi-almost automorphy
provided that the following hold:
(i) For every sequence (bk) ∈ R and for every subsequence (bkl ) of (bk), we have

P(bk) ⊆ P(bkl ).
(ii) For every sequence (bk) ∈ R, for every set D ∈ P(bk) and for every compact set

K ⊆ ℝ3, we have the existence of a set D′ ∈ P(bk) such that D + K ⊆ D
′.
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We can similarly provide some applications in the qualitative analysis of solutions of
the wave equations in ℝ2:

utt(t, x) = d
2Δxu(t, x), x ∈ ℝ2, t > 0; u(0, x) = g(x), ut(0, x) = h(x), (8.26)

where d > 0, g ∈ C3(ℝ2 : ℝ) and h ∈ C2(ℝ2 : ℝ). By the Poisson formula (see, e. g.,
[890, Theorem 5.5, pp. 280–281]), we see that the function

u(t, x) := 𝜕
𝜕t
[

1
2πd
∫
𝜕Bdt(x)

g(σ)
√d2t2 − |x − y|2

dσ] + 1
2πd
∫
𝜕Bdt(x)

h(σ)
√d2t2 − |x − y|2

dσ

= d ∫
B1(0)

g(x + dtσ)
√1 − |σ|2

dσ + d2t ∫
B1(0)

∇g(x + dtσ) ⋅ σ
√1 − |σ|2

dσ

+ dt ∫
B1(0)

h(x + dtσ)
√1 − |σ|2

dσ, t ⩾ 0, x ∈ ℝ2,

is a unique solution of problem (8.26) which belongs to the class C2([0,∞)×ℝ3). Then
we can argue as in the three-dimensional case.

Concerning the one-dimensional case, it should be recalled that the unique regu-
lar solution of wave equation

utt(t, x) = d
2Δxu(t, x), x ∈ ℝ2, t > 0; u(0, x) = g(x), ut(0, x) = h(x),

where d > 0, g ∈ C2(ℝ2 : ℝ) and h ∈ C1(ℝ2 : ℝ), is given by the d’Alembert formula.
If we assume, in the corresponding formula usedmultiple times before, that the func-
tions g(⋅) and h[1](⋅) ≡ ∫⋅0 h(s) ds are almost automorphic, then the solution u(x, t) is
almost automorphic in (x, t) ∈ ℝ2. Details are left to the interested reader.

Consider now the inhomogeneous wave equation

utt(t, x) − d
2Δxu(t, x) = f (t, x), x ∈ ℝ2, t > 0;

u(0, x) = g(x), ut(0, x) = h(x), (8.27)

where d > 0, f (t, x) is continuously differentiable in the variable t ∈ ℝ and continuous
in the variable x ∈ ℝ, g ∈ C2(ℝ2 : ℝ) and h ∈ C1(ℝ2 : ℝ). Using the d’Alembert
formula and the Duhamel principle (we will not consider the higher dimensions here
for simplicity), the unique solution of (8.27) is given by

u(x, t) = 1
2
[g(x − at) + g(x + at)] + 1

2a

x+at

∫
x−at

h(s) ds + 1
2d

t

∫
0

[

x+d(t−s)

∫
x−d(t−s)

f (r, s) dr] ds

:= uh(x, t) +
1
2d

t

∫
0

[

x+d(t−s)

∫
x−d(t−s)

f (r, s) dr] ds, x ∈ ℝ, t > 0.
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If we assume that the functions g(⋅) and h[1](⋅) ≡ ∫⋅0 h(s) ds are almost automorphic,
then we see from the above that the solution uh(x, t) is almost automorphic in (x, t) ∈
ℝ2. It is clear that the function

(x, t) → up(x, t) ≡
1
2d

t

∫
0

[

x+d(t−s)

∫
x−d(t−s)

f (r, s) dr] ds

can be defined for all (x, t) ∈ ℝ2. Suppose now that L > 0 and the function f (⋅, ⋅) has
the property that lim|x|→+∞ f (x, t) = 0, uniformly in t ∈ [0, L]. Set𝔻 := {(x, t) ∈ ℝ2 : t ∈
[0, L]}. Then up ∈ C0,𝔻(ℝ2 : ℝ) since

up(x, t) =
1
2d

t

∫
0

[
x+ds

∫
x−ds

f (r, t − s) dr] ds, x ∈ ℝ, t ∈ ℝ

and there exists a sufficiently large real number x0 > 0 such that, for every x ∈ ℝwith
|x| ⩾ x0, for every t ∈ [0, L] and for every s ∈ [0, t], we have |f (r, t − s)| ⩽ ε for all
r ∈ [x − dL, x + dL] and therefore

up(x, t)
 ⩽ ε ⋅ L

2, (x, t) ∈ 𝔻, |x| ⩾ x0.

Hence, the solution u(x, t) obtained by a combination of the d’Alembert formula and
the Duhamel principle will be 𝔻-asymptotically R-multi-almost automorphic with R
being the collection of all sequences in ℝ2.

Let us note that H.-S. Ding, T.-J. Xiao and J. Liang have investigated, in [385],
the asymptotically almost automorphic solutions of the following integro-differential
equation (with nonlocal initial data), which models the heat conduction in materials
with memory:

u′(t) = Au(t) +
t

∫
0

B(t − s)u(s) ds + f (t, u(t)), t ⩾ 0, (8.28)

u(0) = u0 + g(u); (8.29)

here, u0 ∈ X, A and (B(t))t⩾0 are linear, closed and densely defined operators on X.
Some results about the existence and uniqueness of the asymptotically almost auto-
morphic solutions to the integro-differential equation (8.28)–(8.29) have been estab-
lished in [268], as well. It could be of some importance to reconsider the statement of
[385, Theorem 2.7], given in the one-dimensional setting, for asymptotically R-almost
automorphic type functions, where R denotes a certain collection of sequences in R
which has the property that, for every sequence (bk) ∈ R, any subsequence (bkl ) of
(bk) also belongs to R. It seems that this can be done with some obvious modifica-
tions, not only in the case of consideration [385, Theorem 2.7], but also in the case
of consideration of many other structural results obtained so far regarding the time
almost automorphic solutions of the abstract PDEs.
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Applications to the abstract ill-posed Cauchy problems
In the final part of this section, we will revisit once more the theory of integrated solu-
tion operator families, C-regularized solution operator families and their applications
to the abstract ill-posed Cauchy problems. For more details about the notion used,
we refer the reader to the monographs [82] by W. Arendt, C. J. K. Batty, M. Hieber, F.
Neubrander and [629, 630] by M. Kostić.

Without going into full details, which is almost impossible, we will only present
two illustrative examples which strongly justify the introduction of function spaces
analyzed in this chapter (similar conclusions hold for the corresponding classes of
multi-dimensional almost periodic type functions). In order to achieve our aims, we
mainly apply Proposition 8.1.17 concerning the convolution invariance of introduced
function spaces (the use of symbol D is clear from the context).
1. Suppose that k ∈ ℕ, aα ∈ ℂ, 0 ⩽ |α| ⩽ k, aα ̸= 0 for some α with |α| = k, P(x) =
∑|α|⩽k aαi

|α|xα, x ∈ ℝn, P(⋅) is an elliptic polynomial, i. e., there exist C > 0 and
L > 0 such that |P(x)| ⩾ C|x|k, |x| ⩾ L, ω := supx∈ℝn Re(P(x)) <∞, and X is one of
the spaces Lp(ℝn) (1 ⩽ p ⩽∞), C0(ℝn), Cb(ℝn), BUC(ℝn). Define

P(D) := ∑
|α|⩽k

aαf
(α) and D(P(D)) := {f ∈ E : P(D)f ∈ E distributionally},

nX := n|(1/2) − (1/p)|, if X = Lp(ℝn) for some p ∈ (1,∞) and nX > n/2, other-
wise. Then we know that the operator P(D) generates an exponentially bounded
r-times integrated semigroup (Sr(t))t⩾0 in X for any r > nX as well as that the op-
erator P(D) generates an exponentially bounded nX -times integrated semigroup
(SnX (t))t⩾0 in L

p(ℝn)providedp ∈ (1,∞); see, e. g., [629, Example 2.8.6] and the ref-
erences therein. We will consider the general case r > n/2 and the spaces Cb(ℝn),
BUC(ℝn) below; in the setting of Lp-spaces, certain applications can be given for
themulti-dimensionalWeyl almost periodic functions and themulti-dimensional
Weyl almost automorphic solutions. It is well known that for each t ⩾ 0 there ex-
ists a function ft ∈ L1(ℝn) such that

[Sr(t)f ](x) := (ft ∗ f )(x), x ∈ ℝn, f ∈ X.

Let us fix a number t0 ⩾ 0, and let us assume that the function X ∋ f is R-multi-
almost automorphic, where R is any non-empty collection of sequences in ℝn.
Applying Proposition 8.1.17, we see that the function x → [Sr(t0)f ](x), x ∈ ℝn is
R-multi-almost automorphic and belongs to X. In terms of the corresponding ab-
stract first-order Cauchy problem, this means that there exists a unique X-valued
continuous function t → u(t), t ⩾ 0 such that ∫t0 u(s) ds ∈ D(P(D)) for every t ⩾ 0
and

u(t) = P(D)
t

∫
0

u(s) ds − tr

Γ(r + 1)
f , t ⩾ 0;
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furthermore, the solution t → u(t), t ⩾ 0 of this abstract Cauchy problem has the
property that its orbit consists solely of R-multi-almost automorphic functions.
Suppose now that the collection R additionally satisfies the requirement that for
each sequence b ∈ R any its subsequence also belongs to R and consider, for
simplicity, case in which r ∈ ℕ. If we assume that f ∈ D(P(D)r) and all functions

f , P(D)f , . . . , P(D)rf

are R-multi-almost automorphic, then it is well known that the function

u(t) := Sr(t)P(D)
rf + tr−1

(r − 1)!
P(D)r−1f + ⋅ ⋅ ⋅ + tP(D)f + f , t ⩾ 0, (8.30)

is a unique continuous X-valued function which satisfies the requirement that
∫
t
0 u(s) ds ∈ D(P(D)) for every t ⩾ 0 and

u(t) = P(D)
t

∫
0

u(s) ds − f , t ⩾ 0;

due to the representation formula (8.30) and our assumptions, the solution t →
u(t), t ⩾ 0 of this abstract Cauchy problem has the property that its orbit con-
sists solely of R-multi-almost automorphic functions; see [630, Subsection 2.9.7]
for more details regarding the existence and growth of mild solutions of opera-
tors generating fractionally integrated C-semigroups and fractionally integrated
C-cosine functions in locally convex spaces.

2. Suppose now thatX isCb(ℝn) or BUC(ℝn),m ∈ ℕ, aα ∈ ℂ for 0 ⩽ |α| ⩽ k and aα ̸= 0
for some αwith |α| = k. Consider the operator P(D)with itsmaximal distributional
domain and its associated polynomial P(x) defined as above. Set

ht,β(x) := (1 + |x|
2)
−β/2 ∞
∑
j=0

t2jP(x)j

(2j)!
, x ∈ ℝn, t ⩾ 0, β ⩾ 0,

Ω(ω) := {λ2 : Re λ > ω}, if ω > 0 and Ω(ω) := ℂ ∖ (−∞,ω2], if ω ⩽ 0. Assume
r ∈ [0, k], ω ∈ ℝ and condition [630, (W); Example 2.2.14] holds. Then, for every
β > (k − r

2 )
n
4 , P(D) generates an exponentially bounded Cβ(0)-regularized cosine

function (Cβ(t))t⩾0 in X satisfying

Cβ(t)f = ℱ
−1ht,β ∗ f , t ⩾ 0, f ∈ X,

where ℱ−1 denotes the inverse Fourier transform inℝn. Since ℱ−1ht,β ∈ L1(ℝn) for
every t ⩾ 0, we can repeat verbatim the arguments from the first application. For
example, suppose that the function X ∋ f is R-multi-almost automorphic. Then
the function t → Cβ(t)f , t ⩾ 0 is a unique continuous X-valued function which
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satisfies ∫t0(t − s)u(s) ds ∈ D(P(D)) for every t ⩾ 0 and

u(t) = P(D)
t

∫
0

(t − s)u(s) ds − Cβ(0)f , t ⩾ 0;

as above, for each fixed number t ⩾ 0we see that u(t) is a spatially R-multi-almost
automorphic function which belongs to X. See also [630, Section 2.5], where we
have analyzed the generation of fractional resolvent families by (non-)coercive
differential operators; the obtained results can be appliedwith the obvious choice
of operators Aj ≡ −i𝜕/𝜕xj (1 ⩽ j ⩽ n).

8.2 Stepanov multi-dimensional almost automorphic type
functions

In [373, Definition 6, Definition 7], we have recently made the first steps in the anal-
ysis of (asymptotical) Stepanov p(x)-almost automorphy in the one-dimensional set-
ting. This study set out to provide the first systematic account of Stepanov multi-
dimensional almost automorphic type functions in Lebesgue spaces with variable
exponents (see [662] for more details). Among many other topics, we investigate here
the pointwise products of Stepanov multi-dimensional almost automorphic func-
tions, the convolution invariance of Stepanov multi-dimensional almost automorphy
and provide several illustrative examples. We also provide certain applications of our
results to the abstract Volterra integro-differential equations in Banach spaces, con-
sidering primarily the multi-dimensional heat equation and the multi-dimensional
wave equation. Although we work with Lebesgue spaces with variable exponents, it
is worth noting that the introduced classes of Stepanov multi-dimensional almost
automorphic functions seem to be not analyzed elsewhere even in the case that the
exponent p(⋅) has a constant value.

We will occasionally use the following condition:
(ST) The functionF : ℝn×X → Y satisfies the requirement that theBochner transform

F̂ : ℝn × X → Lp(u)(Ω : Y) is well defined and continuous. For each B ∈ ℬ and
b = (bk) ∈ R we see that WB,b : B → P(P(ℝn)) and PB,b ∈ P(P(ℝn × B)); for
each B ∈ ℬ and (b;x) = ((b;x)k) ∈ RX we have WB,(b;x) : B → P(P(ℝn)) and
PB,(b;x) ∈ P(P(ℝn × B)).

If this conditionholds, thenwe can simply introduce the following classes of Stepanov
multi-dimensional almost automorphic type functions.

Definition 8.2.1. Suppose that (ST) holds. Then we say that the function F(⋅; ⋅) is:
(i) Stepanov (Ω, p(u))-(R,ℬ)-multi-almost automorphic if and only if the function F̂ :
ℝn × X → Lp(u)(Ω : Y) is (R,ℬ)-multi-almost automorphic;
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(ii) Stepanov (Ω, p(u))-(R,ℬ,Wℬ,R)-multi-almost automorphic [Stepanov (Ω, p(u))-
(R,ℬ,Pℬ,R)-multi-almost automorphic] if and only if the function F̂ : ℝn × X →
Lp(u)(Ω : Y) is (R,ℬ,Wℬ,R)-multi-almost automorphic [(R,ℬ,Rℬ,R)-multi-almost
automorphic];

(iii) Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost automorphic if and only if the function
F̂ : ℝn × X → Lp(u)(Ω : Y) is (RX,ℬ)-multi-almost automorphic;

(iv) Stepanov (Ω, p(u))-(RX ,ℬ,Wℬ,R)-multi-almost automorphic [Stepanov (Ω, p(u))-
(RX ,ℬ,Pℬ,R)-multi-almost automorphic] if and only if the function F̂ : ℝn × X →
Lp(u)(Ω : Y) is (RX ,ℬ,Wℬ,R)-multi-almost automorphic [(RX ,ℬ,Pℬ,R)-multi-almost
automorphic].

For the functions of the form F : ℝn → Y , we will omit the term “ℬ” from the notation
henceforth.

Without any doubt, the most important case in our analysis is that one in which
we see that R (RX) is a collection of all sequences b(⋅) in ℝn ((b;x) in ℝn × X). If this
is the case and Ω = [0, 1]n, then we will simply say that the function F : ℝn → Y is
Stepanov p(⋅)-almost automorphic.

Let k ∈ ℕ and Fi : ℝn×X → Yi (1 ⩽ i ⩽ k). Thenwe define the function (F1, . . . , Fk) :
ℝn×X → Y1×⋅ ⋅ ⋅×Yk as before, by (F1, . . . , Fk)(t; x) := (F1(t; x), . . . , Fk(t; x)), t ∈ ℝn, x ∈ X.

Keeping in mind the introduced notion, we immediately get the following.

Proposition 8.2.2. Suppose that k ∈ ℕ, (ST) and the following condition hold:
(C1) for each set B ∈ ℬ, for each sequence (b;x) = ((b;x)k) ∈ RX and for every

subsequence (b;x)′ of (b;x) we have WB,(b;x)(x) ⊆ WB,(b;x)′ (x) for all x ∈ B and
PB,(b;x) ⊆ PB,(b;x)′ .

If the function Fi : ℝn × X → Yi is Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost automorphic
[Stepanov (Ω, p(u))-(RX ,ℬ,Wℬ,RX )-multi-almost automorphic; Stepanov (Ω, p(u))-(RX ,
ℬ,Pℬ,RX )-multi-almost automorphic] for 1 ⩽ i ⩽ k, then the function (F1, . . . , Fk)(⋅; ⋅) has
the same property.

Clearly, we also have the following.

Proposition 8.2.3. Suppose that (ST) holds.
(i) If the function F : ℝn × X → Y is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost periodic,

then F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ,Pℬ,R)-multi-almost automorphic, where for
each B ∈ ℬ and b ∈ R we have PB,b = {{ℝn × B}}.

(ii) Suppose that for each set B ∈ ℬ and sequence (bk ; xk) ∈ RX we see that there exists
an integer k0 ∈ ℕ such that, for every integer k ⩾ k0, we have B − xk ⊆ B. If the
function F : ℝn × X → Y is Stepanov (Ω, p(u))-(RX ,ℬ)-multi-almost periodic, then
F(⋅; ⋅) is Stepanov (Ω, p(u))-(RX ,ℬ,Pℬ,RX )-multi-almost automorphic, where for each
B ∈ ℬ and (b;x) ∈ RX we have PB,(b;x) = {{ℝn × B}}.
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We continue by providing two indicative examples; the first one is a slight modi-
fication of Example 8.1.5 and the second one is a slight modification of Example 8.1.7.

Example 8.2.4. Suppose that φ : ℝ → ℂ is an almost periodic function, Ω := [0, 1]2

and (T(t))t∈ℝ ⊆ L(X,Y) is an operator family which is strongly locally integrable and
not strongly continuous at zero. Suppose, further, that there exist a finite real number
M ⩾ 1 and a real number γ ∈ (0, 1) such that

T(t)
L(X,Y) ⩽

M
|t|γ
, t ∈ ℝ ∖ {0}, (8.31)

as well as that R is the collection of all sequences in Δ2 ≡ {(t, t) : t ∈ ℝ} and ℬ is the
collection of all bounded subsets of X. Define a function F : ℝ2 × X → Y by

F(t, s; x) := e∫
t
s φ(τ) dτT(t − s)x, (t, s) ∈ ℝ2, x ∈ X.

Let for each bounded subset B of X and for each sequence (bk = (bk , bk)) in R the
collection PB,(bk) be constituted of all sets of form {(t, s) ∈ ℝ

2 : |t − s| ⩽ L} × B, where
L > 0. Then the function F(⋅, ⋅; ⋅) is Stepanov (Ω, 1)-(R,ℬ,Pℬ,R)-multi-almost automor-
phic, which can be deduced as follows. First of all, it can be simply shown with the
help of Fubini theorem and our assumption (8.31) that for each real numbers s, t ∈ ℝ
and for each element x ∈ X we have (u = (u1, u2)):

(u1, u2) → F(t + u1, s + u2; x) ≡ e
∫
t+u1
s+u2 φ(r) drT(t − s + (u1 − u2))x ∈ L1([0, 1]2 : Y).

Furthermore, it can be simply shown with the help of the Fubini theorem, the domi-
nated convergence theorem and an elementary argumentation that the function F̂Ω :
ℝ2×X → Y is continuous. Let a real numberL > 0andabounded subsetBofX befixed,
and let (t, s) ∈ ℝ2 satisfy |t − s| ⩽ L. By Bochner’s criterion, there exist a subsequence
(bkl , bkl ) of (bk , bk) and a function φ∗ : ℝ → ℂ such that liml→+∞ φ(r + bkl ) = φ

∗(r),
uniformly in r ∈ ℝ. Set

[F∗(t, s; x)](u1, u2) := e
∫
t+u1
s+u2 φ∗(r) drT(t − s + (u1 − u2))x, (t, s) ∈ ℝ2, x ∈ X.

Arguing as in Example 8.1.5, we can simply show that this is the right choice of the re-
quired limit function and that the function F(⋅, ⋅; ⋅) is Stepanov (Ω, 1)-(R,ℬ,Pℬ,R)-multi-
almost automorphic, as claimed. Observe, finally, that the function F(⋅, ⋅; ⋅) is not
(R,ℬ)-multi-almost automorphic in general since it is not necessarily continuous in
general as well as that the higher-dimensional analogue of this example can be con-
structed in the same way as in final part of the above-mentioned example. It would
be valuable to reconsider the conclusions established in Example 8.1.6, provided that
the functions fj(⋅) from this example are Stepanov p-almost automorphic (Stepanov
p-almost periodic) for some finite real exponent p ⩾ 1.
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Example 8.2.5. Suppose that R is any collection of sequences in ℝn such that each
subsequence of a sequence (bk) ∈ R also belongs to R, as well as that R′ is any col-
lection of sequences in ℝm such that each subsequence of a sequence (b′k) ∈ R

′ also
belongs to R′. Let fi : ℝn → ℝ be a Stepanov 1-bounded, Stepanov (Ω1, 1)-R-almost au-
tomorphic function (1 ⩽ i ⩽ p), and gj : ℝm → ℝ be a Stepanov 1-bounded, Stepanov
(Ω1, 1)-R′-almost automorphic function (1 ⩽ j ⩽ q). Define the functions F : ℝn → ℝq

by F(t) := ∑pi=1 fi(t)ei and G : ℝ
m → ℝq by G(s) := ∑qj=1 gj(s)ej. Define also the function

F ⊗ G : ℝn × ℝm → Mp×q(ℝ) by (8.5), for any t ∈ ℝn and s ∈ ℝm. Set, for every u ∈ Ω1,
v ∈ Ω2, t ∈ ℝn and s ∈ ℝm,

[F ⊗ G(t, s)](u, v)

:=(

[f ∗1 (t)](u)[g
∗
1 (s)](v) [f

∗
1 (t)](u)[g

∗
2 (s)](v) ⋅ ⋅ ⋅ [f

∗
1 (t)](u)[g

∗
q (s)](v)

[f ∗2 (t)](u)[g
∗
1 (s)](v) [f

∗
2 (t)](u)[g

∗
2 (s)](v) ⋅ ⋅ ⋅ [f

∗
2 (t)](u)[g

∗
q (s)](v)

...
...

. . .
...

[f ∗p (t)](u)[g
∗
1 (s)](v) [f

∗
p (t)](u)[g

∗
2 (s)](v) ⋅ ⋅ ⋅ [f

∗
p (t)](u)[g

∗
q (s)](v)

) .

Then it is not difficult to prove that F ⊗ G is Stepanov (Ω1 × Ω2, 1)-(R × R′)-almost au-
tomorphic, where R × R′ := {(b,b′) : b ∈ R,b′ ∈ R′}. If, in addition to the above,
for each i ∈ ℕp we see that fi : ℝn → ℝ is a Stepanov (Ω1, 1)-(R,PR)-almost au-
tomorphic function as well as that for each j ∈ ℕq we see that gj : ℝn → ℝ is
a Stepanov (Ω2, 1)-(R′,P′R′ )-almost automorphic function, then the function F ⊗ G is
Stepanov (Ω1 × Ω2, 1)-(R × R′,P′′R×R′ )-almost automorphic function, provided that for
each sequence b from R (c from R′) each set of the collection Pb (Pc) belongs to the
collection Pb′ (Pc′ ) for any subsequence b′ of b (c′ of c) and for each sequence (b; c)
belonging to R × R′ the collection P′′(b;c) consists of all direct products of sets from the
collections Pb and P′c.

Furthermore, let us consider the notion introduced in Definition 8.2.1(iii). If the
function F̂ : ℝn × X → Lp(u)(Ω : Y) is (RX ,ℬ)-multi-almost automorphic, then for each
set B ∈ ℬ and sequence (bk ; xk) ∈ RX there exist a subsequence (bkl ; xkl ) of (bk ; xk) and
a function F∗ : ℝn × X → Y such that

lim
l→+∞
F(t + u + bkl ; x + xkl ) − [F

∗(t; x)](u)Lp(u)(Ω:Y) = 0 (8.32)

and

lim
l→+∞
[F
∗(t + u − bkl ; x − xkl ) − F(t + u; x)

Lp(u)(Ω:Y) = 0
pointwise for all x ∈ B and t ∈ ℝn. In the general case, it is very difficult to deduce
the existence of a function G : ℝn × X → Y such that G(t + u; x) = [F∗(t; x)](u) for all
x ∈ B and a. e. t ∈ ℝn, u ∈ Ω. But this can be always done provided that Ω = [0, 1]n,
which can be simply deduced by using the first limit equality (8.32) and the proof of
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[373, Proposition 3.1] with appropriate modifications (we can write down the setℝn as
the union of sets k + Ω when k ∈ ℤn and define after that G(t; x) := [F∗(k; x)](t − k) if
t ∈ k + Ω for some k ∈ ℤn).

Up to now, we have clarified several embedding type results for the spaces of
Stepanov multi-dimensional almost periodic functions. These results can be refor-
mulated for the corresponding spaces of Stepanov multi-dimensional almost au-
tomorphic functions since their proofs simply follow by applying Lemma 1.1.7. For
example, if p ∈ D+(Ω) and 1 ⩽ p− ⩽ p(u) ⩽ p+ < +∞ for a. e. u ∈ Ω, then any
Stepanov (Ω, p+)-(RX ,ℬ)-almost automorphic function is Stepanov (Ω, p(u))-(RX ,ℬ)-
almost automorphic and any Stepanov (Ω, p(u))-(RX ,ℬ)-almost automorphic func-
tion is Stepanov (Ω, p−)-(RX ,ℬ)-almost automorphic; in particular, any Stepanov
(Ω, p(u))-(RX ,ℬ)-almost automorphic function is Stepanov (Ω, 1)-(RX ,ℬ)-almost au-
tomorphic (this statement actually holds for any p ∈ 𝒫(Ω)).

Now we will clarify the following simple result.

Proposition 8.2.6. Suppose that the function F : ℝn × X → Y is (R,ℬ)-multi-almost
automorphic, p ∈ D+(Ω) and for each set B ∈ ℬ we have supt∈ℝn ;x∈B ‖F(t; x)‖Y < +∞.
Then the function F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-almost automorphic.

Proof. Due to our conclusion from Remark 6.2.8(ii), the function F̂Ω : ℝn × X → Y is
continuous. Since p ∈ D+(Ω), we have 1 ∈ Ep(u)(Ω) so that the final conclusion simply
follows by applying the dominated convergence theorem and our assumption that for
each set B ∈ ℬ we have supt∈ℝn ;x∈B ‖F(t; x)‖Y < +∞.

We continue by stating the following examples.

Example 8.2.7. Let ℱ := {F ∈ L1loc(ℝ
n : Y) ; supp(F) is compact}, let p ∈ 𝒫(Ω) and let

R denote any collection of sequences in ℝn such that there exists a sequence (bk) ∈ R
of which any subsequence is unbounded. Then a non-trivial function F ∈ ℱ cannot
be Stepanov (Ω, p(u))-R-multi-almost automorphic, which can be shown arguing as in
[641, Example 1, Example 2]. On the other hand, as we have already seen, a non-trivial
function F ∈ ℱ can belong to certain classes of equi-Weyl multi-dimensional almost
periodic functions.

Example 8.2.8. Suppose that Ω := [0, 1]n and p(u) := 1 − ln(u1 ⋅ u2 ⋅ ⋅ ⋅ un), where u =
(u1, u2, . . . , un) ∈ Ω, and F(x1, x2, . . . , xn) := sin(x1+x2+ ⋅ ⋅ ⋅+xn)+sin(√2(x1+x2+ ⋅ ⋅ ⋅+xn)),
(x1, x2, . . . , xn) ∈ ℝn. Set H(t) := sign(F(t)), t ∈ ℝn. Then the function H(⋅) is essentially
bounded and therefore Stepanov (Ω, p(u))-bounded. On the other hand, we know that
the function H(⋅) cannot be Stepanov (Ω, p(u))-almost periodic; the argumentation
used for proving this fact in combination with the argumentation used in [641, Exam-
ple 2] shows that the function H(⋅) cannot be Stepanov (Ω, p(u))-R-almost automor-
phic, where R denotes the collection of all sequences in ℝn.

Concerning the pointwise products of Stepanov multi-dimensional almost peri-
odic type functions, we have the following result.
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Proposition 8.2.9. Suppose that (ST) and (C1) hold with RX = R as well as that p, q, r ∈
𝒫(Ω) and 1/p(u) + 1/r(u) = 1/q(u). Suppose, further, that:
(i) f : ℝn → ℂ is Stepanov-(Ω, r(u))-bounded and Stepanov (Ω, r(u))-R-multi-almost

automorphic [Stepanov (Ω, r(u))-(R,W f
R)-multi-almost automorphic];

(ii) F : ℝn × X → Y is a Stepanov (Ω, p(u))-(R,ℬ)-multi-almost automorphic [Stepanov
(Ω, p(u))-(R,ℬ,WF

ℬ,R)-multi-almost automorphic; Stepanov (Ω, p(u))-(R,ℬ,PFℬ,R)-
multi-almost automorphic] function satisfying

sup
t∈ℝn ;x∈B

F̂Ω(t; x)
Lp(u)(Ω) <∞. (8.33)

Define

F1(t; x) := f (t)F(t; x), t ∈ ℝn, x ∈ X,

and let
(iii) WF1

ℬ,(bk)
(x) be the collection of all sets of the form D ∩ D′, where D ∈ WF

ℬ,(bk)(x) and
D′ ∈ W f

(bk)
for all B ∈ ℬ, (bk) ∈ R and x ∈ B [P

F1
ℬ,(bk)

be the collection of all sets of the
form D ∩ D′, where D ∈ RFℬ,(bk) and D

′ ∈ W f
(bk)

for all B ∈ ℬ and (bk) ∈ R].

Then F1(⋅; ⋅) is Stepanov-(Ω, q(u))-(R,ℬ)-multi-almost automorphic [Stepanov (Ω, q(u))-
(R,ℬ,WF1

ℬ,R)-multi-almost automorphic; Stepanov (Ω, q(u))-(R,ℬ,PF1ℬ,R)-multi-almost
automorphic].

Proof. Let (bk) ∈ R and B ∈ ℬ be given. Then we have

̂F1Ω(t
′; x′) − ̂F1Ω(t; x)

= ̂fΩ(t
′) ⋅ [F̂Ω(t

′; x′) − F̂Ω(t; x)] + [ ̂fΩ(t
′) − ̂fΩ(t)] ⋅ F̂Ω(t; x)

for every t, t′ ∈ ℝn and x, x′ ∈ X. Since the mapping ̂fΩ(⋅) ∈ Lr(u)(Ω : ℂ) is continuous
and the mapping F̂Ω(⋅; ⋅) is continuous, the above equality in combination with the
Hölder inequality (see Lemma 1.1.7(i)) shows that themapping ̂F1Ω(⋅; ⋅) ∈ L

p(u)(Ω : ℂ) is
continuous, as well. In the remainder of proof, we will consider only the general class
of Stepanov-(Ω, q(u))-(R,ℬ)-multi-almost automorphic functions. Since (C1) holds, we
know that there exist a subsequence (bkl ) of (bk) and two functions f

∗ : ℝn → ℂ and
F∗ : ℝn × X → Y such that, for every t ∈ ℝn and x ∈ B, we have

lim
l→+∞

f (t + bkl + u) = f
∗(t + u), and lim

l→+∞
f ∗(t + u − bkl ) = f

∗(t + u),

for the topology of Lr(u)(ℝn : ℂ),

lim
l→+∞

F(t + bkl + u; x) = [F
∗(t; x)](u),
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and

lim
l→+∞
[F∗(t − bkl ; x)](u) = F(t + u; x),

for the topology of Lp(u)(ℝn : Y). Define

[F∗1 (t; x)](u) := [f
∗(t)](u) ⋅ [F(t; x)](u), t ∈ ℝn, x ∈ X, u ∈ Ω.

Since

F1(t + bkl + u; x) − [F1(t; x)](u)

= [f (t + bkl + u) − f
∗(t + u)] ⋅ F(t + bkl + u; x)

+ f ∗(t + u) ⋅ [F(t + bkl + u; x) − [F
∗(t; x)](u)]

for every t ∈ ℝn, u ∈ Ω and x ∈ B, the first limit equality follows from the Hölder
inequality, the obvious estimate supt∈ℝn ‖f ∗(t)‖Lr(u)(Ω) <∞ and (8.33). The second limit
equality can be proved similarly.

Now we would like to present the following illustrative example.

Example 8.2.10. Suppose that Ω = [0, 1]n, R denotes the collection of all sequences in
ℝn and, for every i ∈ ℕn, the function fi(⋅) is Stepanov (Ω, p)-R-almost automorphic for
every finite exponent p ∈ [1,∞). Set

F(t1, t2, . . . , tn) := f1(t1)f2(t2) ⋅ ⋅ ⋅ fn(tn), t = (t1, t2, . . . , tn) ∈ ℝ
n.

Applying Proposition 8.2.9, we see that the function t → F(t), t ∈ ℝn is Stepanov-(Ω,
p(u))-R-almost automorphic for any p ∈ D+(Ω).

We also have the following result.

Proposition 8.2.11. Suppose that h ∈ L1(ℝn), p ∈ D+(Ω) and F : ℝn × X → Y is a
Stepanov (Ω, p(u))-(RX ,ℬ)-multi-almost automorphic function satisfying that for each
B ∈ ℬ there exists a finite real number εB > 0 such that

sup
t∈ℝn ,x∈B⋅ F(t, x)Y < +∞,

where B⋅ ≡ B∘ ∪⋃x∈𝜕B B(x, εB). Let condition (CI) hold, where:
(CI) RX = R, or X ∈ ℬ and RX is general.

Then the function

(h ∗ F)(t; x) := ∫
ℝn

h(σ)F(t − σ; x) dσ, t ∈ ℝn, x ∈ X,

iswell defined, Stepanov (Ω, p(u))-(RX ,ℬ)-multi-almost automorphic, and for eachB ∈ ℬ
we have supt∈ℝn ,x∈B⋅ ‖(h ∗ F)(t; x)‖Y < +∞.
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Proof. Arguing similarly to before, we may conclude that the function (h ∗ F)(⋅; ⋅) is
well defined and that supt∈ℝn ,x∈B⋅ ‖(h ∗ F)(t; x)‖Y < +∞ for all B ∈ ℬ. By definition,
the function F̂Ω(⋅; ⋅) is (RX ,ℬ)-multi-almost automorphic; furthermore, since we have
assumed that p ∈ D+(Ω), an application of Lemma 1.1.7(ii) shows that for each set
B ∈ ℬ we have

sup
t∈ℝn ,x∈B⋅ F̂Ω(t; x)Lp(u)(Ω:Y) < +∞.

This enables one to conclude that the function h ∗ F̂Ω(⋅; ⋅) is well defined and (RX,ℬ)-
multi-almost automorphic. Now the final conclusion follows from the equality

h ∗ F̂Ω = ̂h ∗ FΩ

and a corresponding definition of Stepanov (Ω, p(u))-(RX,ℬ)-multi-almost automor-
phy.

For the sequel, we need the following auxiliary lemma.

Lemma 8.2.12. Suppose that (ST) and (C1) hold. If for every ε > 0, B ∈ ℬ and (bk) ∈ R,
there exist a subsequence (bεkl ) of (bk) and a function F

∗,ε : ℝn × X → Lp(u)(Ω : Y) such
that, for every x ∈ B and t ∈ ℝn [for every x ∈ B, for every D ∈ WB,(bk)(x) and for every
t ∈ D; for every D ∈ PB,(bk) and for every (t; x) ∈ D], there exists l0 ∈ ℕ such that, for
every l ⩾ l0, we have

F(t + u + (b
1
kl , . . . , b

n
kl)

ε
; x) − [F∗,ε(t; x)](u)Lp(u)(Ω:Y) ⩽ ε/2

and

[F
∗,ε(t − (b1kl , . . . , b

n
kl)

ε
; x)](u) − F(t + u; x)Lp(u)(Ω:Y) ⩽ ε/2,

then F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost automorphic [Stepanov (Ω, p(u))-
(R,ℬ,Wℬ,R)-multi-almost automorphic; Stepanov (Ω, p(u))-(R,ℬ,Pℬ,R)-multi-almost
automorphic].

Proof. Let B ∈ ℬ and (bk) ∈ R be fixed. Suppose that s ∈ ℕ. Using our assumption, we
see that there exist a subsequence (bsk) of (bk) and a function F

∗
s : ℝ

n×X → Lp(u)(Ω : Y)
such that, for every x ∈ B and t ∈ ℝn [for every x ∈ B, for every D ∈ WB,(bk)(x) and for
every t ∈ D; for every D ∈ PB,(bk) and for every (t; x) ∈ D], there exists k0 ∈ ℕ such that,
for every k ⩾ k0, we have

F(t + u + b
s
k ; x) − [F

∗
s (t; x)](u)

Lp(u)(Ω:Y) ⩽ 1/s
and

[F
∗
s (t − b

s
k ; x)](u) − F(t + u; x)

Lp(u)(Ω:Y) ⩽ 1/s;
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furthermore, since (C1) holds, we may assume that (bs+1k ) is a subsequence of (b
s
k) for

all s ∈ ℕ. It is not difficult to prove that, for every fixed point t ∈ ℝn and element x ∈ X,
the sequence (F∗s (t; x)) is a Cauchy sequence in L

p(u)(Ω : Y) and therefore convergent;
indeed, let ε > 0 be given and let s0 ∈ ℕ satisfy 1/2s < ε. Suppose that s1 ⩾ s and
s2 ⩾ s. Then there exist two sufficiently large integers k, k′ ∈ ℕ such that

[F
∗
s1 (t; x)](u) − [F

∗
s2 (t; x)](u)

Lp(u)(Ω:Y)
⩽ [F
∗
s1 (t; x)](u) − F(t + u + b

s1
k ; x)
Lp(u)(Ω:Y)

+ F(t + u + b
s1
k ; x) − F(t + u + b

s2
k′ ; x)Lp(u)(Ω:Y)

+ F(t + u + b
s2
k′ ; x) − [F∗s2 (t; x)](u)Lp(u)(Ω:Y)

= [F
∗
s1 (t; x)](u) − F(t + u + b

s1
k ; x)
Lp(u)(Ω:Y)

+ F(t + u + b
s2
k′ ; x) − [F∗s2 (t; x)](u)Lp(u)(Ω:Y)

⩽ (1/s1) + (1/s2) ⩽ 1/2s < ε.

Set F∗(t; x) := lims→+∞ F∗s (t; x), t ∈ ℝ
n, x ∈ B and ck := bkk, k ∈ ℕ (with a little loss of

generality; we can always use here thewell known diagonal procedure). Observe that,
in the case of consideration of Stepanov (Ω, p(u))-(R,ℬ,Wℬ,R)-multi-almost automor-
phy, for every x ∈ B and for every D ∈ WB,(bk)(x), the above limit is uniform in t ∈ D,
as well as that, in the case of consideration of Stepanov (Ω, p(u))-(R,ℬ,Pℬ,R)-multi-
almost automorphy, for every D ∈ PB,(bk), the above limit is uniform in (t; x) ∈ D. Fur-
thermore, for every x ∈ B and t ∈ ℝn [for every x ∈ B, for every D ∈ WB,(bk)(x) and for
every t ∈ D; for every D ∈ PB,(bk) and for every (t; x) ∈ D], we have the existence of a
sufficiently large integer k ∈ ℕ such that

F(t + ck + u) − [F
∗(t; x)](u)Lp(u)(Ω:Y)

⩽ F(t + ck + u) − [F
∗
k (t; x)](u)

Lp(u)(Ω:Y)
+ [F
∗
k (t; x)](u) − [F

∗(t; x)](u)Lp(u)(Ω:Y) ⩽ (ε/2) + (ε/2) = ε.
This completes the proof of lemma.

Now we are able to state the following result.

Theorem 8.2.13. Suppose that k ∈ ℕ, (ST) and (C1) hold. Letℬ be any family of compact
subsets of X, let ℬf be the collection of all finite subsets of X, and let F : ℝn × X → Y
satisfy the following conditions:
(i) The function F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬf )-multi-almost automorphic [Stepa-

nov (Ω, p(u))-(R,ℬf ,W
f
ℬf ,R
)-multi-almost automorphic; Stepanov (Ω, p(u))-(R,ℬf ,

Pfℬf ,R
)-multi-almost automorphic].

(ii) For every B ∈ ℬ, (b) = (bk) ∈ R and ε > 0, there exist a subsequence (bkl ) ∈ R of
(bk) and a real number δ > 0 such that, for every point t ∈ ℝn and for every two
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elements x′, x′′ ∈ B, there exist two integers m0, l0 ∈ ℕ such that, for every integer
m ⩾ m0, we have

x
′ − x′′ ⩽ δ
⇒ F(t + u + bkm ; x

′) − F(t + u + bkm ; x
′′)Lp(u)(Ω:Y) ⩽ ε/2 (8.34)

and, for every integer m ⩾ m0 and l ⩾ l0, we have

x
′ − x′′ ⩽ δ
⇒ F(t + u − bkl + bkm ; x

′) − F(t + u − bkl + bkm ; x
′′)Lp(u)(Ω:Y) ⩽ ε/2 (8.35)

[for each B ∈ ℬ, (bk) ∈ R and ε > 0, there exist a subsequence (bkl ) ∈ R of (bk) and
a real number δ > 0 such that, for every two elements x′, x′′ ∈ B, set D ∈ WB;(bk)(x

′)
and point t ∈ D, there exist two integers m0, l0 ∈ ℕ such that, for every integer
m ⩾ m0, the implication (8.34) holds as well as that, for every integer l ⩾ l0 we have
D − bkl ⊆ WB,(bk)(x

′) ∩WB,(bk)(x
′′) and (8.35); for each B ∈ ℬ, (bk) ∈ R and ε > 0,

there exist a subsequence (bkl ) ∈ R of (bk) and a real number δ > 0 such that, for
every D ∈ P(b;x), (t; x′) ∈ D and x′′ ∈ B, there exist two integers m0, l0 ∈ ℕ such
that, for every integer m ⩾ m0, the implication (8.34) holds as well as that, for every
integer l ⩾ l0 we have D − (bkl ,0) ⊆ PB,(bk) and (8.35)].

(iii) For each set B ∈ ℬ and for each finite subset B′ of B, we haveW f
B′ ;(bk)(x) ⊇ WB′ ;(bk)(x)

for all x ∈ B, x′ ∈ B′ and PfB′ ;(bk) ⊇ PB;(b).
Then the functionF(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-almost automorphic [Stepanov
(Ω, p(u))-(R,ℬ,Wℬ,R)-multi-almost automorphic; Stepanov (Ω, p(u))-(R,ℬ,Pℬ,R)-multi-
almost automorphic].

Proof. Wemay assume that p(u) ≡ p ∈ [1,∞); the proof in the general case can be de-
duced similarly. Let ε > 0, B ∈ ℬ and (b;x) = ((bk ; xk)) ∈ RX be given. Then there exist
a subsequence (bkl ) ∈ R of (bk) and a real number δ > 0 such that (ii) holds, which im-
plies that there exists a finite subset {x′1, . . . , x

′
s} ⊆ B (s ∈ ℕ) such that B ⊆ ⋃

l
i=1 B(x

′
i , δ).

Due to (i) and (C1), we have the existence of a subsequence of (bkl ) [w. l. o. g. we may
assume that this subsequence is equal to the initial sequence (bkl )] and a function
F∗ : ℝn × X → Lp(Ω : Y) such that, for every t ∈ ℝn, there exists an integer m0 ∈ ℕ
such that, for everym ⩾ m0, we have

(∫
Ω

F(t + u + bkm ; x
′
i ) − [F

∗(t; x′i )](u)

p
Y du) ⩽ ε/2, m ⩾ m0, i ∈ ℕs, (8.36)

and

(∫
Ω

[F
∗(t − bkm ; x

′
i )](u) − F(t + u; x

′
i )

p
Y du) ⩽ ε/2, m ⩾ m0, i ∈ ℕs. (8.37)
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Let x ∈ B and t ∈ ℝn be fixed [let x ∈ B, D ∈ WB,(bk)(x) and t ∈ D be fixed; let D ∈ PB,(bk)
and (t; x) ∈ D be fixed]. By the foregoing, there exists i ∈ ℕs such that ‖x − x′i ‖ ⩽ δ. By
(ii), we have the existence of an integer m1 ∈ ℕ such that, for every integer m ⩾ m1,
one has

F(t + u + bkm ; x) − F(t + u + bkm ; x
′
i )
Lp(u)(Ω:Y) ⩽ ε/2. (8.38)

Assume first that the function F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬf )-multi-almost auto-
morphic. Then we have

(∫
Ω

F(t + u + bkm ; x) − [F
∗(t; x′i )](u)


p
Y du)

1
p

⩽ (∫
Ω

F(t + u + bkm ; x) − F(t + u + bkm ; x
′
i )

p
Y du)

1
p

+ (∫
Ω

F(t + u + bkm ; x
′
i ) − [F

∗(t; x′i )](u)

p
Y du)

1
p

⩽ (ε/2) + (ε/2) = ε, m ⩾ m0 +m1, (8.39)

where (8.39) follows by applying (8.36) and (8.38); in the case of consideration of
Stepanov (Ω, p(u))-(R,ℬ,Wℬ,R)-multi-almost automorphy [Stepanov (Ω, p(u))-(R,ℬ,
Pℬ,R)-multi-almost automorphy], we also need to apply condition (iii) and the corre-
sponding assumptions from the issue (ii). For the second limit equation, we use the
estimates

(∫
Ω

[F
∗(t − bkl ; x)](u) − F(t + u; x)


p
Y du)

1
p

⩽ (∫
Ω

[F
∗(t − bkl ; x)](u) − [F

∗(t − bkl ; x
′
i )](u)

p
Y du)

1
p

+ (∫
Ω

[F
∗(t − bkl ; x

′
i )](u) − F(t + u; x)


p
Y du)

1
p

, m ⩾ m0 +m1, l ⩾ l0,

where we have applied (8.35), (8.37), the limit equality

lim
l→+∞

F(t + u − bkl + bkm ; x
′) = [F∗(t − bkl ; x

′
i )](u),

and the corresponding limit equality with the element x′i replaced therein with the
element x. Then the final conclusion follows from Lemma 8.2.12.

It is clear that some known statements formulti-dimensional almost automorphic
functions canbe straightforwardly extended to the corresponding Stepanov classes by

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



556 | 8 Multi-dimensional almost automorphic type functions

using the properties of the Bochner transform. For example, suppose that F : ℝn×X →
Y is a Stepanov (Ω, p(u))-(R,ℬ)-multi-almost automorphic function, where R denotes
the collection of all sequences inℝn and ℬ denotes any collection of compact subsets
ofX. If there exists a finite real constant L > 0 such that (6.49) holds, then, for every set
B ∈ ℬ, we see that the set {F̂Ω(t, x) : t ∈ ℝn, x ∈ B} is relatively compact in Lp(u)(Ω : Y).
Similarly, we can clarify the supremum formula for Stepanov (Ω, p(u))-(R,ℬ)-multi-
almost automorphic functions and some sufficient conditions ensuring the invariance
of various types of Stepanov (Ω, p(u))-(R,ℬ)-multi-almost automorphy under the com-
position with continuous functions.

Suppose now that 𝔻 ⊆ ℝn and the set 𝔻 is unbounded. Any of the function
spaces from Definition 8.2.1 can be extended by introducing the corresponding space
of 𝔻-asymptotically Stepanov multi-almost automorphic functions; for example, we
can introduce the following notion.

Definition 8.2.14. We say that the function F(⋅; ⋅) is 𝔻-asymptotically Stepanov (Ω,
p(u))-(R,ℬ)-multi-almost automorphic if and only if there exist a Stepanov (Ω, p(u))-
(R,ℬ)-multi-almost automorphic function H : ℝn × X → Y and a function Q ∈
SΩ,p(u)0,𝔻,ℬ (ℝ

n × X : Y) such that F(t; x) = H(t; x) + Q(t; x) for a. e. t ∈ ℝn and all x ∈ X.
If X = {0} and ℬ = {X}, then we also say that the function F(⋅) is 𝔻-asymptotically
Stepanov (Ω, p(u))-R-multi-almost automorphic.

Using the Bochner transform, we can formulate a great number of corresponding
statements for (𝔻-asymptotically) Stepanov multi-dimensional almost automorphic
functions. For example, we can prove the following.

Proposition 8.2.15. Suppose that for each integer j ∈ ℕ the function Fj(⋅; ⋅) is Stepanov
(Ω, p(u))-(R,ℬ)-multi-almost automorphic. If for each B ∈ ℬ there exists εB > 0 such
that

lim
j→+∞

sup
t∈Λ;x∈B⋅ Fj(t + u; x) − F(t + u; x)Lp(u)(Ω:Y) = 0,

where B⋅ ≡ B∘ ∪⋃x∈𝜕B B(x, εB), then the function F(⋅; ⋅) is Stepanov (Ω, p(u))-(R,ℬ)-multi-
almost automorphic.

It is worth noting that any such space of 𝔻-asymptotically Stepanov multi-
dimensional almost automorphic functions has the linear vector structure provided
that the collection R (RX) has the property that, for every sequence which belongs
to R (RX), any its subsequence belongs to R (RX); under certain conditions, the de-
composition of an 𝔻-asymptotically Stepanov multi-almost automorphic function
into its Stepanov multi-almost automorphic part and the corrective part is unique,
which simply follows from an application of the deduced supremum formula. We
can simply transfer the corresponding parts of the above-mentioned proposition to
𝔻-asymptotically Stepanov multi-almost automorphic functions.

Now we would like to clarify the following result.
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Theorem 8.2.16.
(i) Suppose that Ω= [0, 1]n, the collection RX (R) has the property that, for every se-

quencewhich belongs toRX (R), any its subsequence belongs toRX (R) and the func-
tion F :ℝn ×X→Y is Stepanov (Ω, p(u))-(RX ,ℬ)-multi-almost automorphic (Stepa-
nov (Ω, p(u))-(R,ℬ)-multi-almost automorphic). If the function F(⋅; ⋅) is uniformly
convergent onℝn×X (if for eachB ∈ ℬ there exists εB > 0 such that the function F(⋅; ⋅)
is uniformly convergent onℝn×B⋅, where B⋅ := B∘∪⋃x∈𝜕B B(x, εB)), then the function
F(⋅; ⋅) is (RX ,ℬ)-multi-almost automorphic ((R,ℬ)-multi-almost automorphic).

(ii) Suppose thatΩ = [0, 1]n and the functionF : ℝn → Y is a Stepanovℝn-asymptotical-
ly (Ω, p(u))-R-multi-almost automorphic, where R denotes the collection of all se-
quences inℝn. If the function F(⋅) is uniformly continuous, then F(⋅) is asymptotically
almost automorphic.

Proof. We will prove the part (i) only for (RX ,ℬ)-multi-almost automorphic functions.
Define, for every s ∈ ℕ, t ∈ ℝn and x ∈ X, Fs(t; x) := ∫Ω F(t + (u/s); x) du. Suppose
that an integer s ∈ ℕ is fixed. In order to prove that the function Fs(⋅; ⋅) is continuous
at the fixed point (t; x) ∈ ℝn × X, let us take arbitrary real number ε > 0 and choose
after that a set B ∈ ℬ such that x ∈ B. Then there exists a real number εB > 0 such
that the function F(⋅; ⋅) is uniformly convergent onℝn×B⋅. Using this fact, the required
continuity of the function Fs(⋅; ⋅) at (t; x) follows from the equality

Fs(t; x) − Fs(t
′; x′) = ∫

Ω

[F(t + (u/s); x) − F(t′ + (u/s); x′)] du

and the fact that for each sufficiently small real number δ > 0we see that B(x′, δ) ⊆ B⋅.
Similarly we can prove that for each set B ∈ ℬ the sequence (Fs(⋅; ⋅)) converges uni-
formly to the function F(⋅; ⋅) on the set ℝn × B∘. In the remainder of the proof of (i) we
may assume without loss of generality (see Lemma 1.1.7(ii)) that p(u) ≡ 1. It suffices
to show that the function Fs(⋅; ⋅) is (R,ℬ)-multi-almost automorphic for all s ∈ ℕ. Let
a sequence (bk) ∈ R and a set B ∈ ℬ be given. By our assumption, we have the exis-
tence a subsequence (bkl ) of (bk) and a function F∗ : ℝn × X → L1(Ω : Y) such that
liml→+∞ F(t + ⋅ + bkl ; x) = [F

∗(t; x)](⋅) and liml→+∞[F∗(t − bkl ; x)](⋅) = F(t + ⋅; x) for the
topology of L1(Ω : Y). Define, for fixed integer s ∈ ℕ,

F∗s (t; x) := s
n ∫
Ω/s

[F∗(t; x)](u) du, t ∈ ℝn, x ∈ X.

Then, for every s ∈ ℕ, t ∈ ℝn and x ∈ B, we have

Fs(t + bkl ) − F
∗
s (t; x)
Y =
s

n ∫
Ω/s

[F(t + u + bkl ; x) du − s
n ∫
Ω/s

[F∗(t; x)](u) duY

⩽ sn ∫
Ω

F(t + u + bkl ; x) du − [F
∗(t; x)](u)Y du→ 0, l → +∞.
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We can similarly prove the second limit equation. The proof of (ii) follows similarly to
the one-dimensional case.

The composition principles for one-dimensional Stepanov p-almost automor-
phic type functions (1 ⩽ p < ∞), established by Z. Fan, J. Liang, T.-J. Xiao [422] and
H.-S. Ding, J. Liang, T.-J. Xiao [387], have recently been reconsidered and slightly gen-
eralized by T. Diagana and M. Kostić [373, Section 4] for one-dimensional Stepanov
p(x)-almost automorphic type functions (see also the research article [639]). The
above-mentioned results admit straightforward reformulations in the multi-dimen-
sional setting and, because of that, we will not reconsider these results here (cf.
also [266, Section 4] for more details given in the almost periodic case). For simplic-
ity, we will not consider here various questions about the invariance of Stepanov
multi-dimensional almost automorphic properties under the actions of convolution
products.

Considering applications, we would like to make a few noteworthy observations
concerning the homogeneous heat equation with nonlocal diffusion,

ut − Δu = 0 in [0,+∞) × ℝn, (8.40)
u(0, x) = F(x) in ℝn × {0}.

Let X = Cb(ℝn : ℂ), the Banach space of bounded continuous functions on ℝn

equipped with the sup-norm. Then we know that the Gaussian semigroup (G(t))t⩾0
is a bounded holomorphic semigroup which is not strongly continuous at zero,
generated by the Laplacian Δx with maximal distributional domain (see [82, Ex-
ample 3.7.6, Example 3.7.8] for more details). Under certain conditions, the unique
solution of (8.40) is given by (t, x) → (G(t)F)(x), t ⩾ 0, x ∈ ℝn. Let a number
t0 > 0 be fixed, and let p ∈ D+(Ω). Then Proposition 8.2.11 shows that the function
ℝn ∋ x → u(x, t0) ≡ (G(t0)F)(x) ∈ ℂ is bounded, Stepanov (Ω, p(u))-(RX ,ℬ)-multi-
almost automorphic provided that R is any non-empty collection of sequences in ℝn

and the function F(⋅) is bounded, Stepanov (Ω, p(u))-(RX ,ℬ)-multi-almost automor-
phic. We can similarly reconsider the conclusions obtained in Example 1 for Stepanov
multi-dimensional almost automorphic type inhomogeneities.

Let us consider now the wave equation (8.24) in ℝ3. Assume, in the already con-
sidered Kirchhoff formula, that a number t0 > 0 is fixed as well as that the functions
g(⋅), ∇g(⋅) and h(⋅) are bounded and Stepanov ([0, 1]3, 1)-R-multi-almost automorphic,
where R is any collection of sequences in ℝ3 such that, for every sequence (bk) ∈ R,
any subsequence (bkl ) of (bk) also belongs to R. Using the dominated convergence the-
orem and the Fubini theorem, we can simply conclude that the function x → u(t0, x),
x ∈ ℝ3 is likewise bounded and Stepanov ([0, 1]3, 1)-R-multi-almost automorphic. We
can similarly consider the Poisson formula and the wave equation in ℝ2.

Let usfinally consider the one-dimensional case. Then theunique regular solution
of wave equation is given by d’Alembert formula. If we suppose that the functions g(⋅)
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and h[1](⋅) ≡ ∫⋅0 h(s) ds are Stepanov 1-almost automorphic, then we can simply prove
with the help of the dominated convergence theorem and the Fubini theorem that the
solution u(x, t) is Stepanov 1-almost automorphic in the variable (x, t) ∈ ℝ2.

8.3 Weyl almost automorphic functions and applications

In this section, we reconsider the notion of Weyl p-almost automorphy introduced by
S. Abbas [4] in 2012 and propose the following notions of Weyl p-almost automorphy:
the Weyl p-almost automorphy of type 1, the Weyl p-almost automorphy of type 2 and
the joint Weyl p-almost automorphy (1 ⩽ p < ∞). Furthermore, we introduce and
analyze the multi-dimensional analogues of these concepts by using the definitions
and results from the theory of Lebesgue spaces with variable exponents. Several il-
lustrative examples, open problems and applications to the abstract Volterra integro-
differential equations are presented. It should be also noted that we present some new
results about the (equi-)Weyl almost periodic functions here; for example, we prove
by a simple example that for each finite number p ⩾ 1 there exists a Weyl p-almost
periodic function f : ℝ → [0,∞) satisfying that f (⋅) is Weyl p-almost automorphic,
neither Weyl p-almost automorphic of type 1 nor jointly Weyl p-almost automorphic,
as well as that f (⋅) is not Besicovitch-p-almost periodic (Besicovitch p-bounded) and
has no finite mean value. See Theorem 8.3.8 and Example 8.3.20 for more details (in
Theorem 8.3.10, we analyze the Weyl almost automorphic properties of the Heaviside
function; both results, Theorem 8.3.8 and Theorem 8.3.10, can be formulated as exam-
ples but we have decided to formulate them as theorems because of their indisputable
theoretical novelties).

The organization and main ideas of this section can be briefly summarized as fol-
lows. The core is Subsection 8.3.1, in which we introduce three new concepts of Weyl
p-almost automorphy for vector-valued functions depending on one real variable.
Here we reconsider and give some constructive criticism about the notion introduced
by S. Abbas, providing also numerous important examples and relations between
the notions of Weyl p-almost automorphy, Weyl p-almost automorphy of type 1, Weyl
p-almost automorphy of type 2 and joint Weyl p-almost automorphy (it is worth not-
ing that, in Subsection 8.3.2, we define the notion of Weyl p-almost automorphy of
type 2 without using limit functions, which seems to be completely new, not being
considered elsewhere in the existing literature; this is motivated by the fact that the
spaces of equi-Weyl p-almost periodic functions are not complete with respect to
the Weyl metric). We continue our analysis in Subsection 8.3, where we investigate
multi-dimensional Weyl almost automorphic functions in Lebesgue spaces with vari-
able exponent; in Subsection 8.3.4, we specifically analyze Weyl p(u)-(𝔽,R,ℬ,W)-
multi-almost automorphic functions of type 2 and jointly Weyl p(u)-(𝔽,R,ℬ,W)-
multi-almost automorphic functions, which are most important for applications.
In Subsection 8.3.5, we apply our theoretical results in the qualitative analysis of
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solutions for various classes of the abstract Volterra integro-differential equations
in Banach spaces; we also present some conclusions, remarks and further perspec-
tives for the investigations of Weyl and Besicovitch classes of almost automorphic
functions.

In this section, we deal with the double limits. We write limk→∞ liml→+∞ ak,l = a
if for each k ∈ ℕ the limit liml→+∞ ak,l exists as well as that for each ε > 0 there exists
k0 ∈ ℕ such that for each k ∈ ℕ0 with k ⩾ k0 we see that the limit liml→+∞ ak,l does not
exceed ε; the notion of double limit liml→∞ limk→+∞ ak,l = a is understood similarly.
See the research article [505] by E. Habil for more details about the subject.

8.3.1 Weyl almost automorphic functions of one real variable

In our previous considerations, we have dealt with the notion of Weyl p-almost au-
tomorphic function f : ℝ → X, where p ⩾ 1 (see Definition 2.3.5). The investigation
of Weyl p-almost automorphy, introduced by our friend and colleague S. Abbas, has
strongly motivated us to carry out many research studies of this intriguing notion by
now. Regrettably, we are obliged to emphasize some unclear places in Definition 2.3.5
and the main result of [4].

Remark 8.3.1.
1. In [4, Definition 0.4], it is assumed but not explicitly stated that the integration is

takenwith respect to the variable x because the limits as l → +∞ in this definition
must tend to zero as k → +∞, pointwise for every fixed t ∈ ℝ; hence, t cannot be
the variable under which the integration is taken twice. Also, there are two extra
left brackets in the integrals mentioned and the considered function has range
in X, which are only small typographical errors.

2. The class ofWeyl pseudo-almost automorphic functions has been introduced and
analyzed in [4], as well. But the above observation becomes crucial in this point
because the proof of deduced composition theorem forWeyl pseudo-almost auto-
morphic functions is based on thewrong arguments. In this proof, the integration
is taken over the variable t and the author has operated with sup−∞<x<+∞ ⋅ in the
expressions appearing on the right hand side of page 3 (see [4, l.-8, -9]), which is
completely meaningless because the integration (if we want to take the pointwise
limits for t ∈ ℝ as k → +∞) must be taken with the variable x.

3. Suppose that the function f (⋅) is Stepanov p-bounded as well as that, for a se-
quence (sn) given in advance, the limit function f ∗(⋅) from Definition 2.3.5 is also
Stepanov p-bounded. Then for each k ∈ ℕ the limits

lim
l→+∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.3 Weyl almost automorphic functions | 561

and

lim
l→+∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx

from Definition 2.3.5 are equal, which cannot be satisfied in any reasonable defi-
nition of Weyl p-almost automorphy. In actual fact, we have

lim
l→+∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx

= lim
l→+∞

1
2l

t+l+snk

∫
t−l+snk

f (x) − f
∗(x − snk )


p dx

= lim
l→+∞

1
2l

t+l

∫
t−l

f (x) − f
∗(x − snk )


p dx (8.41)

= lim
l→+∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx,

where (8.41) follows from a simple computation involving the Stepanov p-bound-
edness of functions f (⋅) and f ∗(⋅).

The genesis of paper [654], from which we take the material of this section, is
strongly motivated by the above observations and the following question.

Question 8.3.2. Let 1 ⩽ p <∞. If we accept the notion introduced in Definition 2.3.5,
is it true that a (compactly, Stepanovp-) almost automorphic function isWeylp-almost
automorphic?

In any expected notion of Weyl p-almost automorphy, this must be satisfied. But,
unfortunately, there is no reasonable argumentation which could tell us straightfor-
wardly that the answer to Question 8.3.2 is affirmative. Therefore, we are getting into
some unexpected troubles; how to proceed? Our first idea is to replace the limits in
Eqs. (2.25)–(2.26).

Definition 8.3.3. Let p ⩾ 1. Thenwe say that a function f ∈ Lploc(ℝ : X) isWeyl p-almost
automorphic of type 1 if and only if for every real sequence (sn), there exist a subse-
quence (snk ) and a function f

∗ ∈ Lploc(ℝ : X) such that

lim
l→+∞

lim
k→∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx = 0
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and

lim
l→+∞

lim
k→∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx = 0

for each t ∈ ℝ. The set of all such functions is denoted byWpAA1(ℝ : X).

Accepting this definition, it is very simple to show that a Stepanov p-almost auto-
morphic function is Weyl p-almost automorphic of type 1 because for every fixed real
numbers t and l we have

lim
k→∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx = 0

and

lim
k→∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx = 0. (8.42)

In actual fact, we have

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx ⩽ 1
2l

⌊2l⌋
∑
j=0

t−l+j+1

∫
t−l+j

f (snk + x) − f
∗(x)

p dx,

which simply implies by definition of Stepanov p-almost automorphy that for any real
number ε > 0 we can always find a positive integer k0 ∈ ℕ such that

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx ⩽ 1 + ⌊2l⌋
2l

ε
2
⩽ ε, k ⩾ k0;

we can similarly prove the limit equation (8.42). On the other hand, it can be easily
shown by using the Bochner criterion [631] that any Stepanov p-almost periodic func-
tion f : ℝ → X is Weyl p-almost automorphic, Weyl p-almost automorphic of type 1,
as well as jointly Weyl p-almost automorphic in the sense of the following definition
(with the limit function f ∗ ≡ f ).

Definition 8.3.4. Let p ⩾ 1. Then we say that a function f ∈ Lploc(ℝ : X) is jointly
Weyl p-almost automorphic if and only if for every real sequence (sn), there exist a
subsequence (snk ) and a function f

∗ ∈ Lploc(ℝ : X) such that

lim
(l,k)→∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx = 0 (8.43)
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and

lim
(l,k)→∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx = 0 (8.44)

for each t ∈ ℝ. The set of all such functions is denoted byWpAAj(ℝ : X).

All above conclusions regarding Stepanov p-almost automorphic (periodic) func-
tions and Weyl p-almost automorphic type functions can be formulated in the multi-
dimensional setting (we leave it to the reader tomake this precise). Furthermore, it can
be simply verified that the joint Weyl p-almost automorphy of the function f ∈ Lploc(ℝ :
X) implies its Weyl p-almost automorphy provided that for each k ∈ ℕ the two limits
in Eqs. (2.25)–(2.26) exist as l → +∞; a similar comment holds for the notion of Weyl
p-almost automorphy of type 1 (see also [505, Theorem 2.13]). Before proceeding, we
would like to note that the jointWeylp-almost automorphy of a function f ∈ Lploc(ℝ : X)
does not imply its Stepanov p-almost automorphy.

Example 8.3.5. Let p ⩾ 1. Then it is well known that the function f (t) := χ[0,1/2](t),
t ∈ ℝ is not Stepanov p-almost automorphic as well as that this function is equi-
Weyl p-almost periodic. It is also jointly Weyl p-almost automorphic with the limit
function f ∗ ≡ 0, as easily shown (furthermore, this function is jointly Weyl p-almost
automorphic in the sense of Definition 8.3.17(iii) below for any function 𝔽(l) satisfy-
ing liml→+∞ 𝔽(l) = 0, with the meaning clear). The use of the zero limit function
shows that Lp(ℝ : X) ⊆ WpAAj(ℝ : X) and Lp(ℝ : X) ⊆ AAW𝔽,p,jR (ℝ : X), provided
that liml→+∞ 𝔽(l) = 0 and R denotes the collection of all real sequences; see Defini-
tion 8.3.17(iii) for the notion. The above conclusions remain valid for theWeylp-almost
automorphy and theWeyl p-almost automorphy of type 1, with the same choice of the
limit function.

From the application point of view, the main drawback of the notion of Weyl
p-almost automorphy (Weyl p-almost automorphy of type 1) is presented by the
fact that we cannot so simply state satisfactory results about the invariance of Weyl
p-almost automorphy (Weyl p-almost automorphy of type 1) under the actions of con-
volution products. Concerning the joint Weyl p-almost automorphy, the best we can
do in the present situation is to state the following result with p = 1; the proof is very
similar to that of [641, Proposition 7] and therefore is omitted.

Proposition 8.3.6. Suppose that (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator
family satisfying

∞

∫
0

(1 + t)R(t)
L(X,Y) dt <∞.

Let f ∈ W 1AAj(ℝ : X), and let f (⋅) be essentially bounded. Then the function F(⋅), given
by (2.46), is bounded and belongs to the class W 1AAj(ℝ : Y).
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The situation in which the exponent p is strictly greater that one is a bit compli-
cated. Regarding this problematic, we would like to ask the following.

Question 8.3.7. Canwededuceananalogueof [435, Theorem1] for jointWeylp-almost
automorphy?

Furthermore, it should be noted that the Weyl p-almost automorphy does not im-
ply Weyl p-almost automorphy of type 1 or joint Weyl p-almost automorphy.

Theorem 8.3.8. Suppose that σ ∈ (0, 1), p ∈ [1,∞), (1 − σ)p < 1 and a > 1 − (1 − σ)p.
Define f (x) := |x|σ , x ∈ ℝ. Then the function f (⋅) is Weyl p-almost automorphic, not
Weyl p-almost automorphic of type 1 or joint Weyl p-almost automorphic; furthermore,
the function f (⋅) is Weyl p-almost periodic, Besicovitch p-unbounded and has no mean
value.

Proof. It is clear that, for every real numbers ω and t, we have

lim
l→+∞

l−a
l

∫
−l

|t + x + ω|
σ − |t + x|σ 

p dx = 0,

which implies that the function f (⋅) is Weyl p-almost automorphic with the limit func-
tion f ∗ ≡ f (moreover, f ∈ AW𝔽,pR (ℝ : ℂ) in the sense of Definition 8.3.17(i) with 𝔽(l) ≡
l−a and R being the collection of all real sequences). In order to see that, we can apply
the Lagrangemean value theoremand the following computation (l > max(|t|, |t±ω|)):

l−a
t+l

∫
t−l

|x + ω|
σ − |x|σ 

p dx

⩽ l−aσp|ω|p
t+l

∫
t−l

max
v∈[|x|,|x+ω|]∪[|x+ω|,|x|]

v(σ−1)p dx

⩽ l−aσp|ω|p
t+l

∫
t−l

[|x|(σ−1)p + |x + ω|(σ−1)p] dx

= l−aσp|ω|p[(t + l)1−(1−σ)p + (l − t)1−(1−σ)p + (l − t)1−(1−σ)p

+ (t + l + ω)1−(1−σ)p + (l − t − ω)1−(1−σ)p]

⩽ l−aσp|ω|p[4t1−(1−σ)p + 4l1−(1−σ)p + 2ω1−(1−σ)p]→ 0, l → +∞.

To see that f (⋅) is not Weyl p-almost automorphic of type 1, it suffices to show that, for
every l > 0, for every f ∗ ∈ Lploc(ℝ : ℂ) and for every strictly increasing real sequence
(sk) tending to plus infinity, we have

lim
k→+∞

l

∫
−l

|x + sk |
σ − f ∗(x)

p dx = +∞.
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This follows from the next computation:

l

∫
−l

|x + sk |
σ − f ∗(x)

p dx ⩾
l

∫
0

(x + sk)
σ − f ∗(x)

p dx

⩾
l

∫
0

21−p(x + sk)
σp dx −

l

∫
0

f
∗(x)

p dx

⩾ 21−plsσpk −
l

∫
0

f
∗(x)

p dx → +∞, k → +∞.

We can similarly prove that f (⋅) is not jointly Weyl p-almost automorphic.
Concerning the Weyl almost periodic properties of the function f (⋅), we first ob-

serve that this function is not equi-Weyl (p, x, F)-almost periodic for any function F(l, t)
which does not depend on t because, for every real numbers l > 0 and t ∈ ℝ, we have

lim
τ→+∞

t+l

∫
t

|x + τ|
σ − |x|σ  dx = +∞.

On the other hand, if a > (1 − (1 − σ)p)/p, then the function f (⋅) is Weyl (p, x, F)-almost
periodic with F(l, t) ≡ l−a. Towards this end, we will prove the following estimate:

t+l

∫
t

|x + τ|
σ − |x|σ 

p dx

⩽ σp|τ|p l1−(1−σ)p

1 − (1 − σ)p
[1 + 21−(σ−1)p] + |τ|σp+1 ⋅ (2σ + 1)p, (8.45)

provided t, τ ∈ ℝ and l > |τ|. This estimate is clearly satisfied for τ = 0 and, since the
right hand side of estimate does not depend on t ∈ ℝ, it suffices to verify its validity for
τ > 0 (we can apply the substitution x → x + τ). Let it be the case; then we recognize
the following subcases:
1. t ⩽ −τ and t + l ⩽ 0. Then we have two possibilities:

1.1. −τ ⩽ t + l. Then we have 0 ⩽ −(t + τ) ⩽ l and

t+l

∫
t

|x + τ|
σ − |x|σ 

p dx ⩽
0

∫
t

|x + τ|
σ − |x|σ 

p dx

=
−τ

∫
t

|x + τ|
σ − |x|σ 

p dx +
0

∫
−τ

|x + τ|
σ − |x|σ 

p dx

⩽
−τ

∫
t

|x + τ|
σ − |x|σ 

p dx + |τ|σp+1 ⋅ (2σ + 1)p.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



566 | 8 Multi-dimensional almost automorphic type functions

Applying the Lagrange mean value theorem, we can continue the computa-
tion as follows:

⩽ σp|τ|p
−τ

∫
t

max
v∈(−x−τ,−x)

vp(σ−1) dx + |τ|σp+1 ⋅ (2σ + 1)p

= σp|τ|p
−τ

∫
t

(−x − τ)p(σ−1) dx + |τ|σp+1 ⋅ (2σ + 1)p

= σp|τ|p [−(t + τ)]
1−(1−σ)p

1 − (1 − σ)p
+ |τ|σp+1 ⋅ (2σ + 1)p

⩽ σp|τ|p l1−(1−σ)p

1 − (1 − σ)p
+ |τ|σp+1 ⋅ (2σ + 1)p.

1.2. t + l ⩽ −τ. Then we have 0 ⩽ −(t + τ), 0 ⩽ −(t + τ + l) and we can apply the
Lagrange mean value theorem in order to see that

t+l

∫
t

|x + τ|
σ − |x|σ 

p dx

⩽ σp|τ|p
t+l

∫
t

max
v∈(−x−τ,−x)

vp(σ−1) dx = σp|τ|p
t+l

∫
t

(−x − τ)(σ−1)p dx

= σp|τ|p (−t − τ)
1−(1−σ)p − (−t − τ − l)1−(1−σ)p

1 − (1 − σ)p
⩽ σp|τ|p l1−(1−σ)p

1 − (1 − σ)p
.

2. t ⩽ −τ and t + l > 0. Then we have l ⩾ |t| ⩾ |τ| and arguing as in case 1.1, we get

t+l

∫
t

|x + τ|
σ − |x|σ 

p dx

⩽
−τ

∫
t

|x + τ|
σ − |x|σ 

p dx +
0

∫
−τ

|x + τ|
σ − |x|σ 

p dx +
t+l

∫
0

|x + τ|
σ − |x|σ 

p dx

⩽ σp|τ|p l1−(1−σ)p

1 − (1 − σ)p
+ |τ|σp+1 ⋅ (2σ + 1)p +

t+l

∫
0

[(x + τ)σ − xσ]p dx

⩽ σp|τ|p l1−(1−σ)p

1 − (1 − σ)p
+ |τ|σp+1 ⋅ (2σ + 1)p + σp|τ|p

t+l

∫
0

x(σ−1)p dx

⩽ σp|τ|p l1−(1−σ)p

1 − (1 − σ)p
+ |τ|σp+1 ⋅ (2σ + 1)p + σp|τ|p (t + l)

1−(1−σ)p

1 − (1 − σ)p

⩽ σp|τ|p l1−(1−σ)p

1 − (1 − σ)p
+ |τ|σp+1 ⋅ (2σ + 1)p + σp|τ|p (2l)

1−(1−σ)p

1 − (1 − σ)p
.
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3. t > −τ and t + l > 0 (case t > −τ and t + l ⩽ 0 cannot happen because then we
would have −τ < t < t + l ⩽ 0, which contradicts our assumption l > |τ|). We
consider the following two subcases of this case:
3.1. t ⩾ 0. Then the situation is clear since

t+l

∫
t

|x + τ|
σ − |x|σ 

p dx

=
t+l

∫
t

[(x + τ)σ − xσ]p dx ⩽ σp|τ|p
t+l

∫
t

x(σ−1)p dx

= σp|τ|p (t + l)
1−(1−σ)p − t1−(1−σ)p

1 − (1 − σ)p
⩽ σp|τ|p l1−(1−σ)p

1 − (1 − σ)p
.

3.2. −τ < t < 0. Then l > |t| and we have

t+l

∫
t

|x + τ|
σ − |x|σ 

p dx

⩽
0

∫
−τ

|x + τ|
σ − |x|σ 

p dx +
2l

∫
0

[(x + τ)σ − xσ]p dx

⩽ |τ|σp+1 ⋅ (2σ + 1)p + σp|τ|p (2l)
1−(1−σ)p

1 − (1 − σ)p
.

Therefore, the estimate (8.45) is proved. Fix now τ ∈ ℝ and l > |τ|. The estimate (8.45)
implies

sup
t∈ℝ

l−a[
t+l

∫
t

|x + τ|
σ − |x|σ 

p dx]
1/p

⩽ l−a[σ|τ| l(1−(1−σ)p)/p

(1 − (1 − σ)p)1/p
[1 + 21−(σ−1)p]1/p + |τ|(σp+1)/p ⋅ (2σ + 1)]. (8.46)

It is clear that (8.46) implies the required conclusion, because for any ε > 0 in the
corresponding definition of Weyl (p, x, F)-almost periodicity we can take L = 1 and
after that, for any τ ∈ I′ we can take

l ⩾ max((ε|τ|−
σp+1
p )
(−1)/a
, (ε|τ|−1)

p
1−(1−σ)p−ap ).

In particular, f (⋅) is Weyl p-almost periodic; furthermore, this function is not Besicov-
itch p-bounded since

lim
l→+∞

1
l

l

∫
0

xσp dx = lim
l→+∞

1
l
lσp+1

σp + 1
= +∞.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



568 | 8 Multi-dimensional almost automorphic type functions

Therefore, the function f (⋅) is not Besicovitch-p-almost periodic (Besicovitch–Doss
p-almost periodic, equivalently, see Definition 2.2.7) and the function f (⋅) has no fi-
nite mean value since

lim
l→+∞

1
l

l

∫
0

xσ dx = lim
l→+∞

1
l
lσ+1

σ + 1
= +∞.

Before going any further, we would like to note that we can prove that a function
f (⋅) is not Weyl p-almost automorphic of type 1 by applying the following general re-
sult.

Proposition 8.3.9. Suppose p ⩾ 1 and f : ℝ → Y is not Stepanov p-bounded. Then f (⋅)
is not Weyl p-almost automorphic of type 1 and not jointly Weyl p-almost automorphic.

Proof. Wewill only prove that f (⋅) is notWeyl p-almost automorphic of type 1. Suppose
the contrary. Then there exist a real number l ⩾ 1 and a p-locally integrable function
f ∗ : ℝ→ Y such that

lim
k→+∞

l

∫
−l

f (x + snk ) − f
∗(x)

p dx ⩽ 1. (8.47)

Since f (⋅) is not Stepanov p-bounded, we may assume without loss of generality
that there exists a strictly increasing sequence (ln) tending to plus infinity such that
limn→+∞ ‖f (x)‖p dx = +∞. Define sn := l + ln, n ∈ ℕ. Then for each subsequence (snk )
of (sn) we have

l+snk

∫
−l+snk

f (x)

p dx =

lnk+2l

∫
lnk

f (x)

p dx → +∞,

as k → +∞. This contradicts (8.47) since

1
2l

l

∫
−l

f (x + snk ) − f
∗(x)

p dx ⩾ 1
2l
[21−p

l

∫
−l

f (x + snk )

p dx −

l

∫
−l

f
∗(x)

p dx]

→ +∞, k → +∞.

Let p ⩾ 1. Then we know that the Heaviside function f (t) := χ[0,∞)(t), t ∈ ℝ is not
equi-Weyl p-almost periodic and that this function is Weyl p-almost periodic. Regard-
ing the Weyl p-almost automorphic properties of the Heaviside function, we have the
following.

Theorem 8.3.10. The Heaviside function f (⋅) is not jointly Weyl p-almost automorphic
but f (⋅) is both Weyl p-almost automorphic and Weyl p-almost automorphic of type 1.
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Proof. Suppose that f (⋅) is jointly Weyl p-almost automorphic; let (sn) be any strictly
increasing sequence of real numbers tending to plus infinity and let ε ∈ (0, 2−p/3)
be given. By definition, we know that there exist a subsequence (snk ) and a function
f ∗ ∈ Lploc(ℝ : X) such that (8.43) and (8.44) hold true. Hence, there exists a finite real
numberm > 0 such that, for every l ⩾ m and for every k ∈ ℕ with k ⩾ m, we have

1
2l
[

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx +
l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx] < ε.

This implies

1
2l
[ ∫
[−l,l]∩(−∞,−t−snk ]

f
∗(t + x)

p dx + ∫
[−l,l]∩[−t−snk ,+∞)

1 − f
∗(t + x)

p dx

+ ∫
[−l,l]∩(−∞,−t]

f
∗(t + x − snk )


p dx + ∫

[−l,l]∩[−t,+∞)

1 − f
∗(t + x − snk )


p dx]

=
1
2l
[ ∫
[−l+t,l+t]∩(−∞,−snk ]

f
∗(x)

p dx + ∫
[−l+t,l+t]∩[−snk ,+∞)

1 − f
∗(x)

p dx

+ ∫
[−l+t−snk ,l+t−snk ]∩(−∞,−snk ]

f
∗(x)

p dx

+ ∫
[−l+t−snk ,l+t−snk ]∩[−snk ,∞)

1 − f
∗(x)

p dx] < ε.

This particularly holds with t = 0, so that letting k → +∞ in the last estimate (cf. the
second addend) yields

1
2l

l

∫
−l

1 − f
∗(x)

p dx < ε, l ⩾ m.

With fixed k = ⌈m⌉, the last estimate in the previous calculation also yields (cf. the
first addend) that

1
2l

−sn⌈m⌉
∫
−l

f
∗(x)

p dx < ε, l ⩾ m,

so that there exists a finite real numberm1 > m such that

1
2l

l

∫
−l

1 − f
∗(x)

p dx + 1
2l

0

∫
−l

f
∗(x)

p dx < 3ε, l ⩾ m1.
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As a consequence, we have

1
2l

0

∫
−l

1 − f
∗(x)

p dx + 1
2l

0

∫
−l

f
∗(x)

p dx < 3ε, l ⩾ m1.

This contradicts the following estimate:

1
2l

0

∫
−l

1 − f
∗(x)

p dx + 1
2l

0

∫
−l

f
∗(x)

p dx ⩾ 1
2l

0

∫
−l

2 ⋅ 2−p dx = 2−p, l ⩾ m1,

so that f (⋅) is not jointly Weyl p-almost automorphic. In order to see that f (⋅) is Weyl
p-almost automorphic, we can take f ∗ ≡ f in the corresponding definition and here it
is onlyworth noting that, for every fixed real numbers t and a, we see that themapping

l →
l

∫
−l

f (t + x + a) − f (t + x)

p dx, l ∈ ℝ,

is bounded, which follows from a simple analysis concerning the support of the func-
tion x → f (t + x + a) − f (t + x), x ∈ ℝ; let us also stress that the above also shows that
f ∈ AAW𝔽,pR (ℝ : ℂ), provided that liml→+∞ 𝔽(l) = 0 and R denotes the collection of
all real sequences (see Definition 8.3.17(i) for the notion). It remains to be proved that
f (⋅) is Weyl p-almost automorphic of type 1. More generally, let 𝔽 : (0,∞)→ (0,∞) be
such that liml→+∞ 𝔽(l) = 0 and let R denote the collection of all real sequences; we
will prove that f ∈ AAW𝔽,p,1R (ℝ : ℂ). If the sequence (sn) is bounded, then the situation
is very simple andwe can take f ∗(⋅) to be a certain translation of f (⋅) after applying the
Bolzano–Weierstrass theorem. If the sequence (sn) is unbounded, then it has a strictly
monotone subsequence (s′n) tending to plus infinity or minus infinity. The consider-
ations in both cases are similar and we may assume without loss of generality that
limn→+∞ s′n = +∞ and s′n > 0 for all n ∈ ℕ. Choose any strictly increasing sequence
(an) of positive real numbers such that limn→+∞ an = +∞. After that, we construct in-
ductively a subsequence (snk ) of (s

′
n) so that sn1 = s

′
1 and the following conditions are

satisfied:

snk+1 > snk + 2ank , k ∈ ℕ; (8.48)
𝔽(v)
 <

1
(an1 + an2 + ⋅ ⋅ ⋅ + ank )

2 , provided v ⩾ snk and k ∈ ℕ ∖ {1}. (8.49)

Define now f ∗(t) := 1 for t ⩾ −sn1 or t ∈ [−snk+1 ,−ank − snk ] for some k ⩾ 2, and f ∗(t) := 0
if there exists k ∈ ℕ such that t ∈ (−ank − snk ,−snk ). By the corresponding definition,
the dominated convergence theorem and a simple argumentation, it suffices to show
that

lim
l→+∞
𝔽(l)

l

∫
−l

1 − f
∗(t + x)

p dx = 0 (8.50)
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and

∀l > 0 : lim
k→+∞

l

∫
−l

f
∗(t + x − snk ) − f (t + x)


p dx = 0. (8.51)

In order to prove (8.51), it suffices to repeat verbatim the argumentation used in the
proof of joint Weyl p-almost automorphy of f (⋅). We actually need to prove that there
exists k0 ∈ ℕ such that for all k ⩾ k0 we have

∫
[−l+t−snk ,l+t−snk ]∩(−∞,−snk ]

f
∗(x)

p dx

+ ∫
[−l+t−snk ,l+t−snk ]∩[−snk ,∞)

1 − f
∗(x)

p dx < ε.

But for sufficiently large values of parameter k we have ank > l + |t| + |l − t| so that
the above sum is equal to zero due to our construction of the function f ∗ and condi-
tion (8.48). Toprove (8.50), it suffices to consider the case t = 0due to theboundedness
of the function f ∗(⋅). We need to prove that

lim
l→+∞
𝔽(l)

−sn1

∫
−l

1 − f
∗(x)

p dx = 0.

Let l > sn3 and let l ∈ [snk+1 , snk+2 ) for some k ∈ ℕ ∖ {1}. Taking into account (8.49), we
have

𝔽(l)

−sn1

∫
−l

1 − f
∗(x)

p dx ⩽ [max
v⩾snk
𝔽(v)] ⋅

nk
∑
j=1

anj

⩽
1

(an1 + an2 + ⋅ ⋅ ⋅ + ank )
2 ⋅

nk
∑
j=1

anj ⩽
1

(an1 + an2 + ⋅ ⋅ ⋅ + ank )
.

This simply implies the required result.

8.3.2 Concept without limit functions

The set WpAA(ℝ : X), equipped with the usual operations of pointwise addition of
functions and multiplication of functions with scalars, has a linear vector structure.
As we have observed in [631], it is not clear how one can prove (see also [4, p. 5, l.2–3])
that an equi-Weyl p-almost periodic function f : ℝ→ X isWeyl p-almost automorphic.
Themain problem lies in the fact that it is not clear how one can prove that, for a given
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real sequence (sn), there exist a subsequence (snk ) of (sn) and a p-locally integrable
function f ∗ : ℝ → X such that the sequence of translations (f (⋅ + snk )) converges to
f ∗(⋅) in the Weyl metric, i. e., that

lim
k→+∞

lim
l→+∞

sup
t∈ℝ

1
2l

l

∫
−l

f (t + x + snk ) − f
∗(t + x)

p dx = 0.

We can only prove that the family of translations {f (⋅ + h) : h ∈ ℝ} is totally bounded
with respect to the Weyl metric (see, e. g., [68, Theorem 2] for case p = 1) as well as
that, for a given real sequence (sn), there exists a subsequence (snk ) of (sn) such that
the sequence of translations (f (⋅ + snk )) is a Cauchy sequence in the Weyl metric), i. e.,
that for each ε > 0 there exists k0 ∈ ℕ such that, for every k, m ∈ ℕ, the assumptions
k ⩾ k0 andm ⩾ k0 imply that

lim
l→+∞

sup
t∈ℝ
[
1
2l

l

∫
−l

f (t + snk + x) − f (t + snm + x)

p dx] < ε. (8.52)

Before proceeding any further, we would like to note that the existence of a subse-
quence (snk ) of (sn) such that the sequence of translations (f (⋅ + snk )) is a Cauchy se-
quence in the Weyl metric does not imply that the function f (⋅) is equi-Weyl p-almost
periodic; for example, this is not true for the Heaviside function f (⋅).

Example 8.3.11. Let (sn) be a real sequence, let (snk ) be the same as (sn), and let ε > 0.
We choose k0 = 1 in the above definition. Then, for every k, m ∈ ℕ, we have

lim
l→+∞

sup
t∈ℝ
[
1
2l

l

∫
−l

f (t + snk + x) − f (t + snm + x)

p dx] = 0, (8.53)

and therefore, (8.52) is satisfied. In order to see that (8.53) holds, observe that for each
t ∈ ℝ the integral

l

∫
−l

f (t + snk + x) − f (t + snm + x)

p dx (8.54)

is taken with respect to the variable x which belongs to the interval [−l, l] but the inte-
grand is not equal to zero only for those values of x for which the numbers t + snk + x
and t + snm + x have different signs; hence, the measure of set of integration in (8.54)
is less than or equal to 2|snk − snm |. Since the essential bound of the integrand is less
than or equal to 1 for each t ∈ ℝ, we get

sup
t∈ℝ
[

l

∫
−l

f (t + snk + x) − f (t + snm + x)

p dx] ⩽ 2|snk − snm |,

which simply implies the required result.
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In our new concept, which generalizes the concept of equi-Weyl p-almost period-
icity, we do not use the limit functions with the respect to the Weyl metric but only
Cauchy sequences with respect to the Weyl metric (our idea is, in fact, to remove the
operation supt∈ℝ ⋅ from Eq. (8.52)).

Definition 8.3.12. Let p ⩾ 1 and f ∈ Lploc(ℝ : X). Then we say that f (⋅) is Weyl p-almost
automorphic of type 2 if and only if for each real sequence (sn) there exists a subse-
quence (snk ) of (sn) such that for each ε > 0 and t ∈ ℝ there exists k0 ∈ ℕ such that,
for every k, m ∈ ℕ with k ⩾ k0 andm ⩾ k0, there exists l0 > 0 such that

1
2l

l

∫
−l

f (t + snk + x) − f (t + snm + x)

p dx < ε, l ⩾ l0. (8.55)

It is clear that the Weyl p-almost automorphic functions of type 2 form a vector
space under the usual operations as well as that [631, Lemma 2.2.13] implies that any
Weyl p′-almost automorphic function of type 2 isWeyl p-almost automorphic of type 2,
provided that 1 ⩽ p ⩽ p′ < +∞ (the same holds for all other classes of Weyl almost
automorphic functions considered so far).

We have the following result.

Proposition 8.3.13. Suppose that p ⩾ 1 and f ∈ Lploc(ℝ : X) is Weyl p-almost automor-
phic or jointly Weyl p-almost automorphic. Then f (⋅) is Weyl p-almost automorphic of
type 2.

Proof. We will consider the class of Weyl p-almost automorphic functions, only. Let
a real sequence (sn) be given. Then there exist a subsequence (snk ) and a function
f ∗ ∈ Lploc(ℝ : X) such that (2.25) holds. Let the numbers ε > 0 and t ∈ ℝ be given. Then
we have the existence of a positive integer k0 ∈ ℕ such that for every k ∈ ℕwith k ⩾ k0
there exists lk > 0 such that for every l ⩾ lk we have |ak,l| < ε/(2(2p − 1)), where

ak,l :=
1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx.

Let k′, k′′ ⩾ k0. Then there exists a finite real number l0 := max(lk′ , lk′′ ) > 0 such
that for every l ⩾ l0 we have |ak′ ,l| < ε/(2(2p − 1)) and |ak′′ ,l| < ε/(2(2p − 1)). Using the
inequality (a + b)p ⩽ 2p−1(ap + bp), a, b ⩾ 0, the above simply implies (8.55) with the
numbers k andm replaced therein with the numbers k′ and k′′, which completes the
proof.

The proof of Proposition 8.3.13 does notwork forWeyl p-almost automorphic func-
tions of type 1 and we would like to ask the following.

Question 8.3.14. Suppose that p ⩾ 1 and f : ℝ → Y is (Stepanov p-almost automor-
phic)Weylp-almost automorphic functions of type 1. Is it true that f (⋅) isWeylp-almost
automorphic of type 2?
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The following question is also meaningful.

Question 8.3.15. Suppose p ⩾ 1. Construct, if possible, a jointly Weyl p-almost auto-
morphic function which is not (equi-)Weyl p-almost periodic?

Before switching to the next subsection, we shall revisit some already considered
examples.

Example 8.3.16. Suppose thatp ⩾ 1. Let us recall that the function f (⋅), givenby (2.28),
is bounded, uniformly continuous, uniformly recurrent, Besicovitch 1-unbounded
and Weyl p-almost automorphic. By Proposition 8.3.9, we immediately see that f (⋅) is
not Weyl p-almost automorphic of type 1 nor jointly Weyl p-almost automorphic. On
the other hand, an application of Proposition 8.3.13 shows that f (⋅) is Weyl p-almost
automorphic of type 2. In the present situation, we do not know to tell whether, for
a given real sequence (sn), there exists a subsequence (snk ) of (sn) such that the se-
quence of translations (f (⋅ + snk )) is a Cauchy sequence in the Weyl metric (cf. also
the remarkable example by H. Bohr [196, pp. 113–115, part I], which will not be reex-
amined here). Concerning the already examined example of J. de Vries, [358, point 6.,
p. 208; Figure 3.7.3, p. 208], we will only prove here the following new property of the
function f (⋅) (we use the same notation):

lim sup
l→+∞

1
2l

l

∫
−l

1 − f (x)
 dx = lim sup

l→+∞

1
l

l

∫
0

1 − f (x)
 dx ⩾

1
4
. (8.56)

In order to do that, fix a positive integer i ∈ ℕ and consider the straight line y = x/pi+1
and the straight line y = [(−1)/pi](x − 2pi) connecting the points (pi, 1) and (2pi,0).
The intersection of these lines is the point (2pipi+1/(pi + pi+1), 2pi/(pi + pi+1)). Set li :=
2pipi+1/(pi+pi+1); then limi→+∞ li = +∞ and f (x) ⩾ fi(x), x ∈ [pi, li]. This implies (8.56),
because

1
li

li

∫
0

1 − f (x)
 dx ⩾

1
li

li

∫
pi

1 − f (x)
 dx

=
1
2
pi + pi+1
2pipi+1

[
2pipi+1
pi + pi+1

− pi] ⋅ [1 −
2pi

pi + pi+1
]

=
1
2
pipi+1 − p2i
2pipi+1

⋅ [1 − 2pi
pi + pi+1

]→
1
4
, i → +∞.

Finally, we would like to ask whether the function f (⋅) is (equi-)Weyl p-almost peri-
odic [(jointly)Weylp-almost automorphic (of type 1, 2)] for some (each) finite exponent
p ⩾ 1.
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8.3.3 Multi-dimensional Weyl almost automorphy in Lebesgue spaces with variable
exponent

The main aim of this subsection is to introduce and analyze multi-dimensional Weyl
almost automorphy in Lebesgue spaces with variable exponent. Here, we basically
follow the approach used in our investigations of (equi-)Weyl (p,ϕ,𝔽)-almost periodic
functions and our considerations from Subsection 8.3.1. Unless stated otherwise, we
will always assumehenceforth that Ω := [−1, 1]n ⊆ ℝn, p ∈ 𝒫(ℝn) and𝔽 : (0,∞)×ℝn →
(0,∞); in contrast with the above-mentioned research, we will always assume here
ϕ(x) ≡ x for simplicity.

We start by introducing the following notion.

Definition 8.3.17. Suppose that F : ℝn ×X → Y satisfies the requirement that for each
x ∈ X, l > 0 and t ∈ ℝn we have F(t + u; x) ∈ Lp(u)(lΩ : Y). Let for every B ∈ ℬ and
(bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence (bkm = (b

1
km , b

2
km , . . . , b

n
km )) of (bk)

and a function F∗ : ℝn × X → Y such that for each x ∈ B, l > 0 and t ∈ ℝn we have
F∗(t + u; x) ∈ Lp(u)(lΩ : Y), and
(i)

lim
m→+∞

lim
l→+∞
𝔽(l, t)F(t + u + (b

1
km , . . . , b

n
km); x) − F

∗(t + u; x)Lp(u)(lΩ:Y) = 0 (8.57)

and

lim
m→+∞

lim
l→+∞
𝔽(l, t)F

∗(t + u − (b1km , . . . , b
n
km); x) − F(t + u; x)

Lp(u)(lΩ:Y) = 0, (8.58)

pointwise for all x ∈ B and t ∈ ℝn, or
(ii)

lim
l→+∞

lim
m→+∞
𝔽(l, t)F(t + u + (b

1
km , . . . , b

n
km); x) − F

∗(t + u; x)Lp(u)(lΩ:Y) = 0
and

lim
l→+∞

lim
m→+∞
𝔽(l, t)F

∗(t + u − (b1km , . . . , b
n
km); x) − F(t + u; x)

Lp(u)(lΩ:Y) = 0,
pointwise for all x ∈ B and t ∈ ℝn, or

(iii)

lim
(l,m)→+∞

𝔽(l, t)F(t + u + (b
1
km , . . . , b

n
km); x) − F

∗(t + u; x)Lp(u)(lΩ:Y) = 0
and

lim
(l,m)→+∞

𝔽(l, t)F
∗(t + u − (b1km , . . . , b

n
km); x) − F(t + u; x)

Lp(u)(lΩ:Y) = 0,
pointwise for all x ∈ B and t ∈ ℝn.
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In the case that (i), resp. [(ii); (iii)], holds, then we say that the function F(⋅; ⋅) is
Weyl (𝔽, p(u),R,ℬ)-multi-almost automorphic, resp. [Weyl (𝔽, p(u),R,ℬ)-multi-almost
automorphic of type 1; jointly Weyl (𝔽, p(u),R,ℬ)-multi-almost automorphic]. By
AAW𝔽,p(u)(R,ℬ) (ℝ

n × X : Y), resp. [AAW𝔽,p(u),1(R,ℬ) (ℝ
n × X : Y); AAW𝔽,p(u),j(R,ℬ) (ℝ

n × X : Y)]
we denote the collection of all Weyl (𝔽, p(u),R,ℬ)-multi-almost automorphic [Weyl
(𝔽, p(u),R,ℬ)-multi-almost automorphic of type 1; jointly Weyl (𝔽, p(u),R,ℬ)-multi-
almost automorphic] functions F : ℝn × X → Y .

From our analysis of multi-dimensional Weyl almost periodicity, it follows that
the case p(u) ≡ p ∈ [1,∞) and 𝔽(l, t) ≡ l−n/p is the most important, when we say that
the function F : ℝn × X → Y is (jointly) Weyl p-(R,ℬ)-multi-almost automorphic (of
type 1).

In the next definition, we continue our analysis fromSubsection 8.3.2 by introduc-
ing the following non-trivial class of functions.

Definition 8.3.18. Suppose that 0 ̸= W ⊆ ℝn, 𝔽 : (0,∞) × ℝn → (0,∞) and F : ℝn ×
X → Y satisfies the requirement that for each x ∈ X, l > 0 and t ∈ ℝn we have F(t +
u; x) ∈ Lp(u)(lΩ : Y). If for every B ∈ ℬ and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exists a

subsequence (bkm = (b
1
km , b

2
km , . . . , b

n
km )) of (bk) such that for each ε > 0, x ∈ B and

t ∈ ℝn there existsm0 ∈ ℕ such that, for everym, m′ ∈ ℕ withm ⩾ m0 andm′ ⩾ m0,
there exists l0 > 0 such that, for every l ⩾ l0 and w ∈ lW , we have

F(t + u + (b
1
km , . . . , b

n
km) − w; x) − F(t + u + (b

1
km′ , . . . , bnkm′ ) − w; x)Lp(u)(lΩ:Y)

< ε/𝔽(l, t − w), (8.59)

then we say that F(⋅; ⋅) is Weyl p(u)-(𝔽,R,ℬ,W)-multi-almost automorphic of type 2.

We can also introduce the concepts in which the parameters x ∈ B and t ∈ ℝ are
separated with respect to the use of quantifiers, as well, but wewill not go into further
details concerning this notion. If F : ℝn → Y , then we omit the term “ℬ” from the
notation, as accepted before.

Remark 8.3.19.
(i) Since the introduced classes of almost automorphic functions are translation in-

variant, we do not need to follow the second approach, obeyed for the introduc-
tion of various classes of (equi-)Weyl [p,ϕ,𝔽]-almost periodic functions. In this
concept,we assume thatΩ := [−1, 1]n ⊆ ℝn, p ∈ 𝒫(Ω) and𝔽 : (0,∞)×ℝn → (0,∞).
We can consider the following notion: Suppose that F : ℝn × X → Y satisfies the
requirement that for each x ∈ X, l > 0 and t ∈ ℝn we have F(t+ lu; x) ∈ Lp(u)(Ω : Y).
We say that the function F(⋅; ⋅) is Weyl [𝔽, p(u),R,ℬ]-multi-almost automorphic if
and only if for everyB ∈ ℬ and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence

(bkm = (b
1
km , b

2
km , . . . , b

n
km )) of (bk) and a function F

∗ : ℝn×X → Y such that for each
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x ∈ B, l > 0 and t ∈ ℝn we have F∗(t + lu; x) ∈ Lp(u)(Ω : Y), as well as

lim
m→+∞

lim
l→+∞
𝔽(l, t)F(t + lu + (b

1
km , . . . , b

n
km); x) − F

∗(t + lu; x)Lp(u)(Ω:Y) = 0
and

lim
m→+∞

lim
l→+∞
𝔽(l, t)F

∗(t + lu − (b1km , . . . , b
n
km); x) − F(t + lu; x)

Lp(u)(Ω:Y) = 0,
pointwise for all x ∈ B and t ∈ ℝn. For the sake of brevity, we will skip all related
details concerning this class of functions and related classes of functions defined
in a similar way, with the replaced limits or just one joint limit.

(ii) Suppose that F : ℝn × X → Y satisfies the requirement that for each x ∈ X, l > 0
and t ∈ ℝn we have F(t + u; x) ∈ Lp(u)(lΩ : Y), as well as that, for every B ∈ ℬ and
(bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R, there exist a subsequence (bkm = (b

1
km , b

2
km , . . . , b

n
km )) of

(bk) and a function F∗ : ℝn × X → Y such that for each x ∈ B, l > 0 and t ∈ ℝn we
have F∗(t + u; x) ∈ Lp(u)(lΩ : Y), and

lim
m→+∞

lim
l→+∞

sup
t∈ℝn ,x∈B
𝔽(l)F(t + u + (b

1
km , . . . , b

n
km); x) − F

∗(t + u; x)Lp(u)(lΩ:Y) = 0.
Using the substitution t → t + (b1km , . . . , b

n
km ), t ∈ ℝ

n we get

lim
m→+∞

lim
l→+∞

sup
t∈ℝn ,x∈B
𝔽(l)F

∗(t + u − (b1km , . . . , b
n
km); x) − F(t + u; x)

Lp(u)(lΩ:Y) = 0.
Hence, F(⋅, ⋅) is Weyl (𝔽, p(u),R,ℬ)-multi-almost automorphic. It is also worth not-
ing that, in the case that p(u) ≡ p ∈ [1,∞) and 𝔽(l) ≡ l−n/p, the assumptions used
in this remark imply the Weyl (R,ℬ, p)-normality of the function F(⋅, ⋅).

We continue by providing the following examples.

Example 8.3.20 (J. Stryja [962, pp. 42–47]; see also [67, Example 4.28]). Define f :
ℝ → ℝ by f (x) := 0 for x ⩽ 0, f (x) := √n/2 if x ∈ (n − 2, n − 1] for some n ∈ 2ℕ
and f (x) := −√n/2 if x ∈ (n − 1, n] for some n ∈ 2ℕ. It is clear that the function f (⋅)
is not Stepanov 1-bounded, which immediately implies that the function f (⋅) is not
asymptotically Stepanov 1-almost automorphic, not Weyl 1-almost automorphic of
type 1 and not jointly Weyl 1-almost automorphic; furthermore, arguing in the same
way as in the proof of Proposition 8.3.9, we see that the function f (⋅) is not Weyl
(𝔽, 1,R)-multi-almost automorphic if R is any collection of real sequences containing
a strictly increasing sequence (sn) tending to plus infinity. We already know that the
function f (⋅) is not equi-Weyl 1-almost periodic as well as that the function f (⋅) is Weyl
1-almost periodic and not Weyl 1-normal, as well as that for each n ∈ 2ℕ we have

lim
l→+∞

1
2l
sup
t∈ℝ

l

∫
−l

f (t + n + x) − f (t + x)
 dx = 0, (8.60)
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so that the function f (⋅) is Weyl (𝔽, 1,R)-multi-almost automorphic with 𝔽(l, t) ≡ 1/l
and R being the collection of all real sequences (am) satisfying that am ∈ 2ℕ for all
m ∈ ℕ. Now we will prove that the function f (⋅) is not Weyl (𝔽, 1,R)-multi-almost au-
tomorphic provided that there exists a real sequence (sn) from R which contains only
a finite number of even numbers; in particular, the function f (⋅) is not Weyl 1-almost
automorphic. Towards this end, it suffices to show that, for every fixed real number
ω ∉ 2ℤ, we have

lim
l→+∞

1
2l

l

∫
0

f (x + ω) − f (x)
 dx = +∞, (8.61)

where ω′ ∈ 2ℤ denotes the nearest even number to ω. Without loss of generality, we
may assume that ω′ < ω so that h := ω − ω′ ∈ (0, 1]. Keeping in mind the triangle
inequality and the estimate (8.60) with t = 0 and n = ω′, we only need to show that

lim
l→+∞

1
2l

l

∫
0

f (x + ω) − f (x + ω
′) dx = +∞. (8.62)

This follows from the following calculation (l > 2 + |ω′|):

1
2l

l

∫
0

f (x + ω) − f (x + ω
′) dx

=
1
2l

ω′+l
∫

ω′
f (x + h) − f (x)

 dx

= 2ω
′ + l
l

1
2(ω′ + l)

ω′+l
∫
0

f (x + h) − f (x)
 dx −

1
2l

ω′
∫
0

f (x + h) − f (x)
 dx

⩾ 2ω
′ + l
l
[
4
3
h√⌊ l + ω

′

2
⌋ − 1] − 1

2l

ω′
∫
0

f (x + h) − f (x)
 dx → +∞, l → +∞,

where the estimate used above follows by applying the estimate proved on [67, p. 149,
l.7–9], which is valid for h ∈ (0, 1] and L ⩾ 2. Using a similar argumentation involving
the estimates (8.61)–(8.62), it follows that the function f (⋅) is not 1-(1/l,R, {0})-multi-
almost automorphic provided that there exists a sequence (sn) from R satisfying the
requirement that, for every its subsequence (snk ), there exist two arbitrarily large pos-
itive integers k′ and k′′ such that the difference snk′ − snk′′ is not an even number; in
particular, the function f (⋅) is notWeyl 1-almost automorphic of type 2. It is also worth
noting that the function f (⋅) is not Besicovitch 1-bounded, not Besicovitch 1-almost
periodic and has no finite mean value (cf. also Theorem 8.3.8 above).
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Example 8.3.21.
(i) Similarly to the one-dimensional case, it can be proved that for any compact set

K ⊆ ℝn and for any p ∈ 𝒫(ℝn) we see that the function χK(⋅) belongs to any of the
function spaces introduced in Definition 8.3.17 and Definition 8.3.18 with 𝔽(t, t) ≡
l−σ, with σ > 0.

(ii) Suppose now that F(t) := χ[0,∞)n (t), t ∈ ℝn. Let R denote the collection of all se-
quences in ℝn, and let 1 ⩽ p < ∞. Arguing as before, we can prove that the func-
tion F(⋅) is Weyl (𝔽, p,R)-multi-almost automorphic with 𝔽(l, t) ≡ l−σ if and only if
σ > (n− 1)/p, as well as that there is no σ > 0 such that F(⋅) is Weyl (𝔽, p,R)-multi-
almost automorphicwith𝔽(l, t) ≡ l−σ . On the other hand, our analysis fromExam-
ple 8.3.11 can be repeated with minor modifications in order to see that for each
real number σ > 0 the function F(⋅) isWeyl p-(𝔽,R,ℝn)-multi-almost automorphic
with 𝔽(l, t) ≡ l−σ . An insignificant modification of the construction established
in the corresponding part of the proof of Theorem 8.3.10 shows that the function
F(⋅) is also Weyl (𝔽, p,R)-multi-almost automorphic of type 1 for any function 𝔽(l)
satisfying that liml→+∞ 𝔽(l) = 0.

Example 8.3.22. The following example is a simplemodificationof the corresponding
example examined in the Weyl almost periodic case. Suppose that 1 ⩽ p < ∞, the
complex-valued mapping t → gj(t) ∈ Y , t ∈ ℝ is essentially bounded and jointly Weyl
(𝔽j, p,Rj)-almost automorphic, where Rj denotes the collection of all real sequences
(1 ⩽ j ⩽ n). Define

F(t1, . . . , t2n) :=
n
∏
j=1
[gj(tj+n) − gj(tj)], where tj ∈ ℝ for 1 ⩽ j ⩽ 2n,

and Λ′ := {(τ, τ) : τ ∈ ℝn}. Then we know there exists a finite constantM > 0 such that

F(t1 + τ1, . . . , t2n + τ2n) − F(t1, . . . , t2n)
Y

⩽ M{g1(tn+1 + τ1) − g1(tn+1)
 +
g1(t1 + τ1) − g1(t1)

 + ⋅ ⋅ ⋅

+ gn(t2n + τn) − gn(t2n)
 +
gn(tn + τn) − gn(tn)

},

for any (t1, . . . , t2n) ∈ ℝ2n and (τ1, . . . , τ2n) ∈ Λ′. Suppose that c ∈ (0,∞), 𝔽 : (0,∞) ×
ℝn → Y and

n
∑
j=1
[

1
Fj(l, tj)
+

1
Fj(l, tj+n)

] ⩽
c

F(l, t1, . . . , t2n)
, l > 0, (t1, . . . , t2n) ∈ ℝ

2n.

Using the corresponding definition and the above estimates, it follows that the func-
tion F(⋅) is jointly Weyl (𝔽, p,R)-almost automorphic, where R denotes the collection
of all sequences in Λ′.

Immediately from the above definitions,we have the following simple proposition
which can be clarified for all other classes of functions introduced above.
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Proposition 8.3.23.
(i) Suppose that c ∈ ℂ and the function F(⋅; ⋅) is Weyl (𝔽, p(u),R,ℬ)-multi-almost auto-

morphic. Then cF(⋅; ⋅) is Weyl (𝔽, p(u),R,ℬ)-multi-almost automorphic.
(ii) Suppose that τ ∈ ℝn, x0 ∈ X, the function 𝔽(⋅, ⋅) does not depend on the second

argument, andF(⋅; ⋅) isWeyl (𝔽, p(u),R,ℬ)-multi-almost automorphic. ThenF(⋅+τ; ⋅+
x0) is Weyl (𝔽, p(u),R,ℬ)-multi-almost automorphic, where ℬx0 ≡ {−x0 + B : B ∈ ℬ}.

(iii) (a) Suppose that c2 ∈ ℂ ∖ {0}, and F(⋅; ⋅) is Weyl (𝔽, p(u),R,ℬ)-multi-almost auto-
morphic. Then F(⋅; c2⋅) is Weyl (𝔽, p(u),R,ℬ)-multi-almost automorphic, where
ℬc2 ≡ {c

−1
2 B : B ∈ ℬ}.

(b) Suppose that c1 ∈ ℂ ∖ {0}, c2 ∈ ℂ ∖ {0}, and F(⋅; ⋅) is Weyl (𝔽, p(u),R,ℬ)-multi-
almost automorphic, with some constant exponent p ⩾ 1. Then the function
F(c1⋅; c2⋅) is Weyl (𝔽c1 , p,R,ℬ)-multi-almost automorphic, where Rc1 ≡ {c

−1
1 b :

b ∈ R} and 𝔽c1 (l, t) ≡ 𝔽(l, c1t).

We have the following simple result, which can be also clarified for all other
classes of functions introduced in this section so far.

Proposition 8.3.24. Suppose that F(⋅; ⋅) is Weyl (𝔽, p(u),R,ℬ)-multi-almost automor-
phic and A ∈ L(Y , Z). Then (A ∘ F)(⋅; ⋅) is Weyl (𝔽, p(u),R,ℬ)-multi-almost automorphic.

Proof. Let x ∈ X, t ∈ ℝn, B ∈ ℬ and (bk = (b1k , b
2
k , . . . , b

n
k)) ∈ R be fixed. Then we know

that F(t + u; x) ∈ Lp(u)(lΩ : Y), so that there exists a finite real number λ > 0 such that

∫
lΩ

φp(u)(
‖F(t + u; x)‖Y

λ
) du ⩽ 1.

This easily implies that

∫
lΩ

φp(u)(
‖A(F(t + u; x))‖Z

λ′
) du ⩽ 1,

with λ′ = ‖A‖ ⋅ λ. Hence, A(F(t+u; x)) ∈ Lp(u)(lΩ : Z). Furthermore, we know that there
exist a subsequence (bkl = (b

1
kl , b

2
kl , . . . , b

n
kl )) of (bk) and a function F∗ : ℝn × X → Y

such that for each x ∈ X and t ∈ ℝn we have F∗(t + u; x) ∈ Lp(u)(lΩ : Y), as well as
that (8.57)–(8.58) hold. By the foregoing, we see that A(F∗(t + u; x)) ∈ Lp(u)(lΩ : Z).
Using Lemma 1.1.8, it can be simply shown that (8.57)–(8.58) hold with the functions
F and F∗ replaced therein with the functions A ∘ F and A ∘ F∗, respectively, finishing
the proof of the proposition.

8.3.4 Weyl p(u)-(𝔽, R,ℬ,W )-multi-almost automorphy of type 2 and joint Weyl
p(u)-(𝔽, R,ℬ,W )-multi-almost automorphy

In this subsection,we investigate theWeylp(u)-(𝔽,R,ℬ,W)-multi-almost automorphic
functions of type 2 and jointly Weyl p(u)-(𝔽,R,ℬ,W)-multi-almost automorphic func-
tions, primarily from their invaluable importance in applications.
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In Definition 8.3.18, we can also assume that the set W depends on l but the sit-
uation is more complicated then. In Subsection 8.3.2 we haveW = {0}; caseW ̸= {0}
is also important to be analyzed, as the following result about the convolution invari-
ance of Weyl p(u)-(R,ℬ,W)-multi-almost automorphy of type 2 shows (the choice of
setsW1 = (2ℤ+1)n andW2 ⊆ (2ℤ)n strongly depends on the choice of regionΩ = [−1, 1]n

here; the things certainly can be arranged in a slightly different, generalized way, the
reader may try to make this more precise).

Theorem 8.3.25. Suppose that h ∈ L1(ℝn)andF : ℝn×X → Y isWeyl p(u)-(𝔽,R,ℬ, (2ℤ+
1)n)-multi-almost automorphic of type 2. Let p1, q ∈ 𝒫(ℝn), let 1/p(u)+1/q(u) ≡ 1, and let
𝔽1 : (0,∞)×ℝn → (0,∞). Suppose that, for every x ∈ X,we have supt∈ℝn ‖F(t; x)‖Y <∞,
as well as that 0 ̸= W2 ⊆ (2ℤ)n and for every t ∈ ℝn there exists l1 > 0 such that, for
every l ⩾ l1 and w ∈ lW2, we have

∫
lΩ

φp1(u)(2𝔽1(l, t + w) ∑
k∈l(2ℤ+1)n

‖h(u + k − v)‖Lq(v)(lΩ)
𝔽(l, t − k + w)

) du ⩽ 1. (8.63)

Then the function h ∗ F : ℝn × X → Y, defined by

(h ∗ F)(t; x) := ∫
ℝn

h(σ)F(t − σ; x) dσ, t ∈ ℝn, x ∈ X, (8.64)

is Weyl p1(u)-(𝔽1,R,ℬ,W2)-multi-almost automorphic of type 2.

Proof. It can be simply verified that the function (h ∗ F)(⋅; ⋅) is well defined because
we have assumed that, for every x ∈ X, we have supt∈ℝn ‖F(t; x)‖Y < ∞. By our as-
sumption, for every B ∈ ℬ and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R, there exists a subsequence

(bkm = (b
1
km , b

2
km , . . . , b

n
km )) of (bk) such that for each ε > 0, x ∈ B and t ∈ ℝ

n there exists
m0 ∈ ℕ such that, for every m, m′ ∈ ℕ with m ⩾ m0 and m′ ⩾ m0, there exists l ⩾ l0
such that, for every l ⩾ l0 and w ∈ l(2ℤ + 1)n (8.59) holds withW ≡ W1 ≡ (2ℤ + 1)n. Let
l ⩾ max(l0, l1) and w ∈ lW2. Since the mapping φp1(u)(⋅) is monotonically increasing,
we have

(h ∗ F)(t + w + bkm + u; x) − (h ∗ F)(t + w + bkm′ + u; x)Lp1(u)(lΩ:Y)
=

∫
ℝn

h(s)[F(t + w + bkm + u − s; x) − F(t + w + bkm′ + u − s; x)]dsLp1(u)(lΩ:Y)
⩽ (∫
ℝn

h(s)
 ⋅
F(t + w + bkm + u − s; x) − F(t + w + bkm′ + u − s; x)Yds)Lp1(u)(lΩ),

which is equal to the infimum of all positive real numbers λ > 0 such that

∫
lΩ

φp1(u)(
∫ℝn |h(s)| ⋅ ‖F(t + w + bkm + u − s; x) − F(t + w + bkm′ + u − s; x)‖Yds

λ
) du ⩽ 1.
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By definition of norm in Lp1(u)(lΩ), it suffices to show that the last estimate holds with
λ = ε/𝔽1(l, t+w). This follows from the next computation involving theHölder inequal-
ity (see Lemma 1.1.7(i)) as well as our assumptionsW2 ⊆ (2ℤ)n and (8.63):

∫
lΩ

φp1(u)(
∫ℝn |h(s)| ⋅ ‖F(t + w + bkm + u − s; x) − F(t + w + bkm′ + u − s; x)‖Yds

ε/𝔽1(l, t + w)
) du

= ∫
lΩ

φp1(u)(
∫ℝn |h(s + u)| ⋅ ‖F(t + w + bkm − s; x) − F(t + w + bkm′ − s; x)‖Yds

ε/𝔽1(l, t + w)
) du

= ∫
lΩ

φp1(u)

× ( ∑
k∈l(2ℤ+1)n

∫k−lΩ |h(s+u)| ⋅ ‖F(t+w +bkm − s; x)− F(t+w +bkm′ − s; x)‖Yds
ε/𝔽1(l, t + w)

) du

⩽ ∫
lΩ

φp1(u)

× ( ∑
k∈lW1

∫
lΩ

|h(u− v+ k)| ⋅ ‖F(t+w +bkm + v− k; x)− F(t+w +bkm′ + v− k; x)‖Ydv
ε/𝔽1(l, t+w)

) du

⩽ ∫
lΩ

φp1(u)(2 ∑
k∈lW1

‖h(u + k − v)‖Lq(v)(lΩ) ⋅ (ε/𝔽(l, t − k + w))
ε/𝔽1(l, t + w)

) du

⩽ ∫
lΩ

φp1(u)(2F1(l, t + w) ∑
k∈l(2ℤ+1)n

‖h(u + k − v)‖Lq(v)(lΩ)
𝔽(l, t − k + w)

) du ⩽ 1.

Remark 8.3.26. In contrast with the one-dimensional case, the set {l ⩾ l0 : t − l(2ℤ +
1)n} cannot be bounded inℝn for any t ∈ ℝn, as easily approved (n ⩾ 2). But even in the
one-dimensional setting, the requirements of Theorem 8.3.25 do not imply the equi-
Weyl p-almost periodicity of function under our consideration (see Example 8.3.11).
However, it is not clear whether the requirements of Theorem 8.3.25 imply the Weyl
p-almost periodicity of considered function or not.

Concerning the invariance of Weyl p1(u)-(𝔽1,R,W)-multi-almost automorphy of
type 2 under the actions of infinite convolution products, we will only investigate the
one-dimensional case for simplicity (the statements of Theorem 8.3.27 can be also for-
mulated in the multi-dimensional setting, with minor complications).

Theorem 8.3.27. Suppose that p, q ∈ 𝒫(ℝ), F : (0,∞) × X → (0,∞), F1 : (0,∞) ×
X → (0,∞), 0W2 ⊆ 2ℤ, (R(t))t>0 ⊆ L(X,Y) is a strongly continuous operator family and
f : ℝ→ X is a measurable function such that

t

∫
−∞

R(t − s)
 ⋅
f (s)
 ds <∞, t ∈ ℝ.
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If f (⋅) is Weyl p(u)-(𝔽,R, 2ℤ + 1)-multi-almost automorphic of type 2 and

l

∫
−l

φp(u)(2𝔽1(l, t − w)[ ∑
m∈ℕ

‖R(−v + 2ml − u)‖Lq(v)[−l,l]
𝔽(l, t − w − 2ml)

+
‖R(−v + u)‖Lq(v)[−l,l]
𝔽(l, t − w)

]) du ⩽ 1, (8.65)

then the function F(⋅), given by (2.46), isWeyl p(u)-(𝔽1,R,W2)-multi-almost automorphic
of type 2.

Proof. It is clear that the function F(⋅), given by (2.46), iswell defined since the integral
defining this function is absolutely convergent. Let (bk) ∈ R. Then we know that there
exists a subsequence (bkm ) of (bk) such that for each ε > 0 and t ∈ ℝ there exists
m0 ∈ ℕ such that, for every m, m′ ∈ ℕ with m ⩾ m0 and m′ ⩾ m0, there exists l ⩾ l0
such that, for every l ⩾ l0 and w ∈ l(2ℤ + 1), (8.59) holds withW ≡ W1 ≡ (2ℤ + 1) and
n = 1. Let l ⩾ max(l0, l1) and w ∈ lW2. Then the final conclusion follows similarly to
Theorem 8.3.25, by using (8.65) and the next estimate:

l

∫
−l

φp(u)(𝔽1(l, t − w)
∞

∫
0

R(s)

f (t + u + bkm − w − s) − f (t + u + bkm′ − w − s)Y ds) du

⩽ 1.

In order to see the last estimate is valid, we first conclude that

l

∫
−l

φp(u)(𝔽1(l, t − w)
∞

∫
0

R(s)

f (t + u + bkm − w − s) − f (t + u + bkm′ − w − s)Y ds) du

=
l

∫
−l

φp(u)(𝔽1(l, t − w)
u

∫
−l

R(−s + u)

f (t + bkm − w + s) − f (t + bkm′ − w + s)Y ds

+
∞

∑
m=1

l

∫
−l

R(−v + 2ml − u)


⋅ f (t + bkm − w − 2ml + v) − f (t + bkm′ − w − 2ml + v)Y) du.
After that, we can apply the Hölder inequality, our assumption on the function f (⋅)
and the estimate (8.65).

It is worth noting that an analogue of Theorem 8.3.25 can be formulated for the
following slight generalization of the class introduced in Definition 8.3.17(iii).
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Definition 8.3.28. Suppose that 0 ̸= W ⊆ ℝn and F : ℝn × X → Y satisfies the re-
quirement that for each x ∈ X, l > 0 and t ∈ ℝn we have F(t + u; x) ∈ Lp(u)(lΩ : Y).
Let for every B ∈ ℬ and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence (bkm =

(b1km , b
2
km , . . . , b

n
km )) of (bk) and a function F∗ : ℝn × X → Y such that for each x ∈ B,

l > 0 and t ∈ ℝn we have F∗(t + u; x) ∈ Lp(u)(lΩ : Y), as well as for each ε > 0, x ∈ B
and t ∈ ℝn, there exists p > 0 such that, for every l ∈ [p,+∞), m ∈ ℕ with m ⩾ p and
w ∈ lW , we have

𝔽(l, t − w)F(t + u + (b
1
km , . . . , b

n
km) − w; x) − F

∗(t + u − w; x)Lp(u)(lΩ:Y) < ε (8.66)

and

𝔽(l, t − w)F
∗(t + u − (b1km , . . . , b

n
km) − w; x) − F(t + u − w; x)

Lp(u)(lΩ:Y) < ε, (8.67)

then we say that the function F(⋅; ⋅) is jointly Weyl (𝔽, p(u),R,W)-multi-almost auto-
morphic.

It is clear that Lemma 1.1.7(ii) implies that any jointly Weyl (𝔽q, q(u),R,W)-multi-
almost automorphic function F(⋅; ⋅) is jointly Weyl (𝔽p, p(u),R,W)-multi-almost au-
tomorphic, provided that p, p′ ∈ 𝒫(ℝn), 1 ⩽ p ⩽ p′ a. e. on ℝn and 𝔽p(l, t) :=
(1 + ln)−1𝔽q(l, t) for l > 0 and t ∈ ℝn. Furthermore, if we assume that for each
sequence belonging to R any its subsequence belongs to R, then the jointly Weyl
(𝔽, p(u),R,W)-multi-almost automorphic functions form a vector spacewith the usual
operations (the same holds for all other classes of functions introduced in this sec-
tion).

Furthermore, we have the following result.

Theorem 8.3.29. Suppose that h ∈ L1(ℝn) and F : ℝn × X → Y is jointly Weyl
p(u)-(𝔽,R,ℬ,ℤn)-multi-almost automorphic. Let p1, q ∈ 𝒫(ℝn), let 1/p(u) +
1/q(u) ≡ 1, and let 𝔽1 : (0,∞) × ℝn → (0,∞). Suppose that, for every x ∈ X, we
have supt∈ℝn ‖F(t; x)‖Y <∞, as well as that for every t ∈ ℝn there exists l1 > 0 such that,
for every l ⩾ l1 and w ∈ lℤn, the estimate (8.63) holds. If, for every compact set K ⊆ ℝn,
x ∈ X and l > 0, there exists a finite real constant c > 0 such that

h(u − v)
Lq(v)(lΩ) ⩽ (𝔽(l,0)−1 + sup

t∈ℝn
F(t; x)
Y ⋅ ‖1‖Lp(u)(lΩ))−1, u ∈ K, (8.68)

then h ∗ F : ℝn × X → Y (cf. (8.64)), is a well-defined, jointly Weyl p1(u)-(𝔽1,R,ℬ,ℤn)-
multi-almost automorphic function.

Proof. The proof of theorem is very similar to the proof of Theorem 8.3.25 and we will
only emphasize themost important differences. First of all, it is clear that the function
h∗ F : ℝn ×X → Y is well defined. Fix B ∈ ℬ and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R. Then there

exists a subsequence (bkm = (b
1
km , b

2
km , . . . , b

n
km )) of (bk) and a function F

∗ : ℝn ×X → Y
such that for each x ∈ B, l > 0 and t ∈ ℝn we have F∗(t + u; x) ∈ Lp(u)(lΩ : Y), and for
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each ε > 0, x ∈ B and t ∈ ℝn, there exists p > 0 such that, for every l ∈ [p,+∞),m ∈ ℕ
with m ⩾ p and w ∈ lW , we have (8.66) and (8.67). Let t ∈ ℝn and x ∈ B be fixed; we
will prove that the value (h ∗ F∗)(t; x) is well defined. It suffices to prove that

∫
ℝn

|h(t − s)|F
∗(s; x)Y ds := lim

l→+∞
∫
lΩ

|h(t − s)|F
∗(s; x)Y ds < +∞.

Since the mapping l → ∫lΩ |h(t − s)|‖F
∗(s; x)‖Y ds, l > 0 is monotonically increas-

ing, it suffices to show its boundedness for l > 0. This follows from the fact that
F∗(u; x) ∈ Lp(u)(lΩ : Y) for all l > 0 (this is a consequence of (8.66) with t = ω = 0
and our assumption that, for every x ∈ X, we have supt∈ℝn ‖F(t; x)‖Y <∞), the Hölder
inequality and the assumption that, for every u ∈ ℝn and l > 0, there exists a finite
real constant c > 0 such that (8.68) holds. The remainder of proof can be given by
copying the corresponding part of proof of Theorem 8.3.25.

In order to relax our exposition, we will only note that an analogue of The-
orem 8.3.27 can be formulated for jointly Weyl p(u)-(𝔽,R,W)-multi-almost auto-
morphic functions following the method proposed in the proofs of Theorem 8.3.27
and Theorem 8.3.29, by assuming condition of type (8.68) for the resolvent family
(R(t))t>0 ⊆ L(X,Y) under consideration. Details can be left to the reader.

Concerning the pointwise products of Weyl p(u)-(𝔽,R,ℬ,W)-multi-almost auto-
morphic functions of type 2 and jointly Weyl p(u)-(𝔽,R,ℬ,W)-multi-almost automor-
phic functions with the scalar-valued functions of the same type, we will clarify only
the following result.

Proposition 8.3.30. Assume that for each sequence belonging to R any its subsequence
belongs to R.
(i) Suppose that 0 ̸= W ⊆ ℝn, p ∈ 𝒫(ℝn), g : (0,∞) × ℝn → (0,∞), 𝔽 : (0,∞) ×
ℝn → (0,∞), f : ℝn → ℂ is essentially bounded and Weyl p(u)-(g,R,W)-multi-
almost automorphic of type 2, F : ℝn×X → Y isWeyl p(u)-(𝔽,R,ℬ,W)-multi-almost
automorphic of type 2 and for each x ∈ X we have supt∈ℝn ‖F(t; x)‖Y <∞. Suppose
that𝔽1 : (0,∞)×ℝn → (0,∞) satisfies the requirement that there exist real numbers
c > 0 and l0 > 0 such that

1
𝔽(l, t)
+

1
g(l, t)
⩽

c
𝔽1(l, t)
, l ⩾ l0, t ∈ ℝ

n. (8.69)

Then the function F1(t; x) := f (t) ⋅ F(t; x), t ∈ ℝn, x ∈ X is Weyl p(u)-(𝔽1,R,ℬ,W)-
multi-almost automorphic of type 2.

(ii) Suppose that 0 ̸= W ⊆ ℝn, p, q ∈ 𝒫(ℝn), 1/p(u) + 1/q(u) ≡ 1, g : (0,∞) × ℝn →
(0,∞), 𝔽 : (0,∞) × ℝn → (0,∞), f : ℝn → ℂ is essentially bounded and
jointly Weyl p(u)-(g,R,W)-multi-almost automorphic, F : ℝn × X → Y is jointly
Weyl q(u)-(𝔽,R,ℬ,W)-multi-almost automorphic and for each x ∈ X we have
supt∈ℝn ‖F(t; x)‖Y < ∞. Suppose that 𝔽1 : (0,∞) × ℝn → (0,∞) satisfies the
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requirement that for each x ∈ X and t ∈ ℝn there exist real numbers c > 0 and
l0 > 0 such that, for every l ⩾ l0, we have

𝔽1(l, t − w)[
1

g(l, t − w)
sup
t∈ℝn
F(t; x)
Y ‖1‖Lq(u)(lΩ)

+
1

𝔽(l, t − w)
(

1
g(l, t − w)

+ ‖f ‖∞ ⋅ ‖1‖Lp(u)(lΩ))] ⩽ c. (8.70)

Then the function F1(t; x) := f (t) ⋅ F(t; x), t ∈ ℝn, x ∈ X is jointly Weyl 1-(𝔽1,R,ℬ,W)-
multi-almost automorphic.

Proof. Let B ∈ ℬ and (bk = (b1k , b
2
k , . . . , b

n
k)) ∈ R be given. Since we have assumed

that, for every sequence which belongs to R, any its subsequence also belongs
to R, by the corresponding definition we get the existence of a subsequence (bkm =
(b1km , b

2
km , . . . , b

n
km )) of (bk) such that for each ε > 0, x ∈ B and t ∈ ℝn there exists

m0 ∈ ℕ such that, for every m, m′ ∈ ℕ with m ⩾ m0 and m′ ⩾ m0, there exists l ⩾ l0
such that, for every l ⩾ l0 and w ∈ lW , we have

f (t + u + (b
1
km , . . . , b

n
km) − w) − f (t + u + (b

1
km′ , . . . , bnkm′ ) − w)Lp(u)(lΩ:Y)

< ε/g(l, t − w), (8.71)

and (8.59). Sincewe have assumed that the function f (⋅) is essentially bounded aswell
as that for each x ∈ Xwehave supt∈ℝn ‖F(t; x)‖Y <∞, the estimates (8.59), (8.69)–(8.71)
and the decomposition

F1(t + u + (b
1
km , . . . , b

n
km) − w; x) − F1(t + u + (b

1
km′ , . . . , bnkm′ ) − w)

= f (t + u + (b1km , . . . , b
n
km) − w)

× [F(t + u + (b1km , . . . , b
n
km) − w; x) − F(t + u + (b

1
km′ , . . . , bnkm′ ) − w; x)]

+ F(t + u + (b1km′ , . . . , bnkm′ ) − w; x)
× [f (t + u + (b1km , . . . , b

n
km) − w) − f (t + u + (b

1
km′ , . . . , bnkm′ ) − w)]

simply imply that F1(⋅; ⋅) is Weyl p(u)-(𝔽1,R,ℬ,W)-multi-almost automorphic of type 2.
The second part of proposition follows from a similar decomposition with the limit
functions, by applying theHölder inequality, the estimate (8.70) and a simple estimate
for the function f ∗(⋅) obtained from (8.66).

The interested reader may try to reformulate the statement of [660, Theorem 3.4]
for Weyl p(u)-(𝔽,R,ℬ,W)-multi-almost automorphic functions of type 2 and jointly
Weyl p(u)-(𝔽,R,ℬ,W)-multi-almost automorphic functions.
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8.3.5 Applications to the abstract Volterra integro-differential equations

In this subsection, we will present some applications of the obtained theoretical re-
sults in the qualitative analysis of solutions for various classes of the abstract Volterra
integro-differential equations in Banach spaces.
1. Besides many other applications, we would like to note that Proposition 8.3.6

takes effect in the qualitative analysis of jointly Weyl 1-almost automorphic so-
lutions of the fractional Poisson heat equation Dγ

t,+[m(x)v(t, x)] = (Δ − b)v(t, x) +
f (t, x), t ∈ ℝ, x ∈ Ω; v(t, x) = 0, v(t, x) ∈ [0,∞)× 𝜕Ω in the space X := Lp(Ω), where
Ω is a bounded domain in ℝn, b > 0, m(x) ⩾ 0 a. e. x ∈ Ω, m ∈ L∞(Ω), γ ∈ (0, 1)
and 1 < p <∞; in the case of consideration of general exponent p ∈ 𝒫(ℝ), we can
also apply Theorem 8.3.27. See [631] for more details.

2. Let Y be one of the spaces Lp(ℝn), C0(ℝn) or BUC(ℝn), where 1 ⩽ p <∞. Consider
again the Gaussian semigroup (G(t))t⩾0. Suppose now that the number t0 > 0
is fixed and that F : ℝn → ℂ is both essentially bounded and Weyl p-(𝔽,R, (2ℤ +
1)n)-multi-almost automorphic of type 2, where p(u) ≡ p ∈ [1,∞) and𝔽 : (0,∞)→
(0,∞). Let p1 ∈ [1,∞), let 1/p + 1/q = 1, and let 𝔽1 : (0,∞) → (0,∞). Then the
function x → (G(t0)F)(x), x ∈ ℝn is essentially bounded. Suppose, further, that
0 ̸= W2 ⊆ (2ℤ)n and for every t ∈ ℝn there exists l1 > 0 such that, for every l ⩾ l1
and w ∈ lW2, we have

(4πt0)
−(n/2)(
𝔽1(l)
𝔽(l)
)
p1
∫
lΩ

[ ∑
k∈l(2ℤ+1)n

(∫
lΩ

e−
q|(u+k−v)|2

4t0 dv)
1/q
]
p1
du ⩽ 1. (8.72)

Then Theorem 8.3.25 implies that the function x → (G(t0)F)(x), x ∈ ℝn is Weyl
p1-(𝔽1,R,W2)-multi-almost automorphic of type 2. Here we only want to note that
the series in (8.72) converges because, for every u ∈ lΩ, v ∈ lΩ and k ∈ l(2ℤ + 1)n,
we have |u + k − v| ⩾ |k − 2l√n|. Note that Theorem 8.3.29 is also applicable here.

3. (cf. also the corresponding application already considered in the part aboutmulti-
dimensional Weyl almost periodic functions) Suppose that Y := Lr(ℝn) for some
r ∈ [1,∞) and A(t) := Δ + a(t)I, t ⩾ 0, where Δ is the Dirichlet Laplacian on
Lr(ℝn), I is the identity operator on Lr(ℝn) and a ∈ L∞([0,∞)). Then the evolution
system (U(t, s))t⩾s⩾0 ⊆ L(Y) generated by the family (A(t))t⩾0 exists and is given
by U(t, t) := I for all t ⩾ 0 and

[U(t, s)F](u) := ∫
ℝn

K(t, s,u, v)F(v) dv, F ∈ Lr(ℝn), t > s ⩾ 0,

where

K(t, s,u, v) := (4π(t − s))−
n
2 e∫

t
s a(τ) dτ exp(− |u − v|

2

4(t − s)
), t > s, u, v ∈ ℝn.
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Under certain assumptions, a unique mild solution of the abstract Cauchy prob-
lem (𝜕/𝜕t)u(t, x) = A(t)u(t, x), t > 0;u(0, x) = F(x) is givenbyu(t, x) := [U(t,0)F](x),
t ⩾ 0, x ∈ ℝn. Supposenow thatF ∈ Lr(ℝn) andF(⋅) isWeylp-(𝔽,R, (2ℤ+1)n)-multi-
almost automorphic of type 2, where 1 ⩽ p < ∞ and the function 𝔽(l, t) ≡ 𝔽(l)
does not depend on t. Let 1/p+ 1/q = 1, let ε > 0 be given, and let (bk = (b1k , b

2
k , . . . ,

bnk)) ∈ R. Then we know that there exists a subsequence (bkm = (b
1
km , b

2
km , . . . , b

n
km ))

of (bk) such that for each ε > 0 and t ∈ ℝn there existsm0 ∈ ℕ such that, for every
m, m′ ∈ ℕwithm ⩾ m0 andm′ ⩾ m0, there exists l0 > 0 such that, for every l ⩾ l0
and w ∈ l(2ℤ)n, we have (8.59). Let a number t0 > 0 be fixed. Arguing as before,
we see that there exists a finite constant ct0 > 0 such that

u(t0, t + u + (b
1
km , . . . , b

n
km) − w) − u(t0, t + u + (b

1
km′ , . . . , bnkm′ ) − w)

⩽ ct0 ∫
ℝn

e−
|u−v|2
4t0
F(v + t + (b

1
km , . . . , b

n
km) − w) − F(v + t + (b

1
km′ , . . . , bnkm′ ) − w) dv

= ct0 ∑
k∈l(2ℤ+1)n

∫
k+l[−1,1]n

e−
|u−v|2
4t0

× F(v + t + (b
1
km , . . . , b

n
km) − w) − F(v + t + (b

1
km′ , . . . , bnkm′ ) − w) dv

⩽ ct0 ∑
k∈lℤn

e
− |u−⋅|24t0
Lq(k+l[−1,1]n)

× F(⋅ + t + (b
1
km , . . . , b

n
km) − w − k) − F(⋅ + t + (b

1
km′ , . . . , bnkm′ )−w − k)Lp(l[−1,1]n)

⩽ ct0
ε
𝔽(l)
∑

k∈lℤn

e
− |u−⋅|24t0
Lq(k+l[−1,1]n) := ct0

ε
𝔽(l)

G(l,u).

Let 1 ⩽ p′ <∞. Define the function 𝔽1(⋅) by

𝔽1(l, t) :=
𝔽(l)

(∫l[−1,1]n G(l,u)
p′ du)1/p′ , l > 0.

By the foregoing, we see that the mapping x → u(t0, x), x ∈ ℝn is Weyl p′-(𝔽1,R,
(2ℤ)n)-multi-almost automorphic of type 2.

Question 8.3.2, Question 8.3.7, Question 8.3.14, Question 8.3.15 and the following re-
main open after this study.

Question 8.3.31. Let I = ℝ and p ⩾ 1. Does there exist a Weyl p-almost automorphic
function of type 1 which is not Weyl p-almost automorphic?

The results of Subsection 8.3.3, which are formulated for the functions of the form
F : ℝn×X → Y , will be the basis of our further investigations of composition principles
for Weyl almost automorphic type functions and related abstract semilinear Cauchy
problems.
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Regarding the invariance of generalized almost periodicity and automorphy un-
der the action of infinite convolution products, we would like to note that the notion
of equi-Weyl p-normality (see Subsection 8.3.2) can be also modified following the ap-
proach obeyed in this paper; for example, in the one-dimensional setting, we can an-
alyze the following notions:
1. A p-locally integrable function f : ℝ→ X is said to be equi-Weyl p-normal of type

1 if and only if for any real sequence (sn) there exist a subsequence (snk ) of (sn) and
a p-locally integrable function f ∗ : ℝ→ X such that

lim
l→+∞

lim
k→+∞

sup
t∈ℝ

1
2l

l

∫
−l

f (t + x + snk ) − f
∗(t + x)

p dx = 0.

2. A p-locally integrable function f : ℝ → X is said to be jointly equi-Weyl p-normal
if and only if for any real sequence (sn) there exist a subsequence (snk ) of (sn) and
a p-locally integrable function f ∗ : ℝ→ X such that

lim
(k,l)→+∞

sup
t∈ℝ

1
2l

l

∫
−l

f (t + x + snk ) − f
∗(t + x)

p dx = 0.

Then it is possible to state some results about the invariance ofWeyl p-almost normal-
ity and jointlyWeyl p-almost normality under the actions of convolution products, like
[641, Proposition 7]. It is also worth noting that the characteristic function of any fixed
compact subset of ℝ is jointly equi-Weyl p-normal, with the limit function f ∗ ≡ 0.

The class of Besicovitch p-almost automorphic functions can be further general-
ized by replacing the lim sup ⋅ in the corresponding definition with lim inf ⋅.

Definition 8.3.32. Let p ⩾ 1. Then we say that a function f ∈ Lploc(ℝ : X) is weakly
Besicovitchp-almost automorphic if andonly if for every real sequence (sn), there exist
a subsequence (snk ) and a function f

∗ ∈ Lploc(ℝ : X) such that

lim
k→∞

lim inf
l→+∞

1
2l

l

∫
−l

f (t + snk + x) − f
∗(t + x)

p dx = 0

and

lim
k→∞

lim inf
l→+∞

1
2l

l

∫
−l

f
∗(t − snk + x) − f (t + x)


p dx = 0

for each t ∈ ℝ.

Multi-dimensional analogues of (weak) Besicovitch almost automorphic type
functions can be also introduced but we will analyze this topic elsewhere.
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9 Notes and appendices to Part II

In this chapter, we will briefly consider several important topics about multi-dimen-
sional almost periodic type functions and multi-dimensional almost automorphic
type functions which have not been discussed so far.

Almost periodicity and homogenization theory
For a brief introduction to themathematical theory of homogenization, the readermay
consult the monographs [152] by A. Bensoussan, J. L. Lions, G. Papanicolau, [215] by
A. Braides, A. Defraceschi, [297] by D. Cioranescu, P. Donato, [970] by L. Tartar and
[1099] by V. Zhikov, S. Kozlov, O. Oleinik. Roughly, homogenization extracts homoge-
neous effective parameters from models of disordered media, when it is often called
statistical homogenization, or heterogeneous media. The study of asymptotic behav-
ior of oscillating structures has been carried on successfully under certain hypothesis
of periodicity, in a great deal of papers in the field of calculus of variations (see also
[18, 74–76, 90, 91, 552, 861] for some relevant articles of mathematicians from the for-
mer USSR). It seems that the corresponding problems in the almost periodic setting
were analyzed for the first time by S.M. Kozlov [675] in 1979.

It would be really difficult to summarize here all relevant results obtained so far
with regards to the homogenization problems for various types of partial differential
operators, equations and systems of equations in the almost periodic setting. In this
part, we will briefly describe the main results of research articles [338] by R. De Ar-
cangelis, [551] by H. Ishii and [738] by B. Luo (see also [212–214, 216, 275, 339, 812, 817,
868, 931, 942, 1044]).

In the homogenization theory, numerous research articles investigate the asymp-
totic behavior of the solutions of the problem

inf{∫
Ω

f (hx,Du) + ∫
Ω

ψx : u(⋅) Lipschitz continuous and u = 0 on 𝜕Ω}, (9.1)

where 0 ̸= Ω ⊆ ℝn is an open bounded set, ψ(⋅) is essentially bounded on Ω, and
f : ℝn × ℝn → [0,∞) satisfies the usual Carathéodory conditions:

f (x, z) is measurable in x and convex in z, (9.2)
f (⋅, z) is [0, 1]n-periodic for every z ∈ ℝn, (9.3)

and

0 ⩽ w(x)|z|p ⩽ f (x, z) ⩽ W(x)(1 + |z|p) for a. e. x ∈ ℝn and every z ∈ ℝn;

p > 1; w(−1)/(p−1), W ∈ L1loc(ℝ
n).

https://doi.org/10.1515/9783110763522-011
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Under some extra assumptions, including the Lipschitz type boundary of Ω, G. de
Giorgi has proved in [345] that the values in (9.1) converge to

inf{∫
Ω

f∞(Du) + ∫
Ω

ψx : u(⋅) Lipschitz continuous and u = 0 on 𝜕Ω}, (9.4)

where f∞ : ℝn → [0,∞) is a convex function defined by

f∞(x) := lims→∞
s−n inf{ ∫

(0,s)n
f (x, z + Du) :

u(⋅) Lipschitz continuous and u = 0 on 𝜕((0, s)n)}.

Condition (9.3) has been replaced with certain almost periodic assumptions in many
research articles. In [338], the author has assumed that (9.2) holds, f (⋅, z) ∈ L1loc(ℝ

n) for
every z ∈ ℝn, |z| ⩽ f (x, z) for a. e. x ∈ ℝn and every z ∈ ℝn, and the following almost
periodic type condition: For every ε > 0, there exists a finite real number Lε > 0 such
that, for every x0 ∈ ℝn, there exists τ ∈ x0 + B(0, Lε) such that

f (x + τ, z) − f (x, z)
 ⩽ ε(1 + f (x, z)), for a. e. x ∈ ℝn and every z ∈ ℝn.

Then, for every open convex set Ω and for every essentially bounded function ψ(⋅)
on Ω, the values in (9.1) converges to the value in (9.4).

In [551], H. Ishii has analyzed the asymptotic behavior, as the parameter ε tends
to 0+, of the solution uε of the Hamilton–Jacobi equation

u(x) + H(x, x/ε,Du(x)) = 0, x ∈ ℝn, (9.5)

where ε > 0 is a positive real number. This equation describes a sort of distance func-
tions in the space where the Riemannian metric is oscillatory (for more details about
the generalized solutions of the Hamilton–Jacobi equations, we refer the reader to the
monograph [715] by P. L. Lions). The basic assumptionmade in [551] is that the Hamil-
tonian H(x, y, p) is almost periodic with respect to the variable y; since (9.5) does not
have classical solutions, the author has considered certain types of viscosity solutions
of this equation. If the assumptions [551, (A0)–(A4)] hold, then there exists a unique
bounded Lipschitz continuous solution u(⋅) of (9.5). The existence of a constant λ > 0,
whose existence is proved in [551, Theorem 2], enables the author to introduce the
notion of an effective Hamiltonian H : ℝn × ℝn → ℝ, which satisfies the following
estimates:

inf
y∈ℝn

H(x, y, p) ⩽ H(x, y) ⩽ sup
y∈ℝn

H(x, y, p), x, p ∈ ℝn.
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The effective Hamiltonian is continuous on its domain and the main result of paper is
Theorem 5 which asserts that uε → u locally uniformly as ε tends to 0+, where u(⋅) is
a unique bounded, uniformly continuous solution of the equation

u(x) + H(x,Du(x)) = 0, x ∈ ℝn.

Reference [738] investigates the homogenization limit of the following parabolic
equation:

ut = a(ux)uxx + f (ux), −1 < x < 1, t > 0, (9.6)

accompanied by the nonlinear boundary conditions:

ux(−1, t) = g(u(−1, t)/ε), ux(1, t) = −g(u(1, t)/ε), (9.7)

where ε > 0 is a real parameter and g(⋅) is a functionwhich takes values near its supre-
mum “frequently”. It is shown that a time-global solution uε of (9.6)–(9.7) converges
as ε → 0+ to the solution μ of (9.6) accompanied by the linear boundary conditions:

μx(−1, t) = sup g, μx(1, t) = − sup g,

provided μ(⋅) increases monotonically. In the case that the function g(⋅) is almost peri-
odic, we have the existence of a unique almost periodic travelingwaveUε of (9.6)–(9.7)
and the homogenization limit of Uε is a classical traveling wave of (9.6)–(9.7).

n-Parameter strongly continuous semigroups
The notion of a semigroup over topologicalmonoid naturally generalizes the notion of
usually considered one-parameter strongly continuous semigroup of bounded linear
operators. This broad class of semigroups includes the semigroups defined on the set
[0,∞)n, which are oftenly calledmultiparameter semigroups (this class of semigroups
was introduced by E. Hille in 1944; see [237] and [536]).

So, let (M,+) be a topological monoid with the neutral element 0. By a semigroup
over a Banach space X defined over a monoid M we mean any operator-valued func-
tion T : M → L(X) such that T(0) = I and T(t + s) = T(t)T(s) for all t, s ∈ M. A semi-
group T : M → L(X), which we also denote by (T(t))t∈M , is called strongly contin-
uous if and only if the mapping t → T(t)x, t ∈ M is strongly continuous at t = 0.
In [324], R. Dahya has extended a well-known result saying that every weakly contin-
uous semigroup (T(t))t⩾0 is strongly continuous to the semigroups over topological
monoids.

Furthermore, ifM = [0,∞)n and (T(t))t∈M is strongly continuous, then we denote
by Ti(t) := T(tei), t ⩾ 0, the corresponding one-parameter strongly continuous semi-
group (i ∈ ℕn). Let Ti(⋅) be generated by Ai (i ∈ ℕn). Then the tuple (A1,A2, . . . ,An)
is said to be the infinitesimal generator of (T(t))t∈[0,∞)n . We can simply prove that
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(T(t))t∈[0,∞)n is strongly continuous (uniformly continuous) if and only if for each i ∈
ℕn the one-parameter semigroup (Ti(t))t⩾0 is strongly continuous (uniformly continu-
ous). A strongly continuous semigroup (T(t))t∈[0,∞)n is always exponentially bounded
in the sense that there exist twofinite real constantsM ⩾ 1 andω > 0 such that ‖T(t)‖ ⩽
Meω|t| for all t ∈ [0,∞)n; see e. g., Theorem 1 in the paper [108] byV. A. Babalola,where
the author has considered generalizations of the Hille–Yosida–Phillips theorem for
abstract-parameter semigroups. Furthermore, the following hold [237, 536]:
(i) If i ∈ ℕn and x ∈ D(Ai), then T(t)x ∈ D(Ai) for all t ∈ [0,∞)n and T(t)Aix = AiT(t)x,

t ∈ [0,∞)n;
(ii) ⋂i∈ℕn D(Ai) is dense in X;
(iii) If i, j ∈ ℕn, then D(Ai) ∩ D(AiAj) ⊆ D(AjAi) and for each x ∈ D(Ai) ∩ D(AiAj) we

have AiAjx = AjAix.

Set I := [0,T1] × [0,T2] × ⋅ ⋅ ⋅ × [0,Tn] for some (T1,T2, . . . ,Tn) ∈ (0,∞)n. The well-
posedness of the homogeneous n-parameter abstract Cauchy problem

(ACP) :
{{
{{
{

u ∈ C(I : X) ∩ C1(I∘ : X),
uti (t) = Aiu(t) + Fi(t), t ∈ I∘, 1 ⩽ i ⩽ n,
u(0) = x, x ∈ ⋂i∈ℕn D(Ai),

has been analyzed by M. Janfada and A. Niknam in [557, Theorem 2.1], who proved
that, if (A1,A2, . . . ,An) is the infinitesimal generator of a strongly continuous semi-
group (T(t))t∈[0,∞)n , then (ACP) has a unique solution u(t) = T(t)x, t ∈ I for all initial
values x ∈ ⋂i∈ℕn D(Ai); a converse of this statement has been analyzed in [557, The-
orem 2.2] (see also Theorem 2.5 in this paper, where the authors have shown a neg-
ative result about the uniqueness of solutions of the abstract Cauchy problem (ACP)
as well as the paper [592] where the authors have considered the special case n = 2
by using the notion of a two-parameter integrated semigroup; the special case n = 2
has been also analyzed in [556] and [595], where the authors have introduced the no-
tion of a two-parameter C-regularized semigroup and the notion of a two-parameter
N-times integrated semigroup, respectively, where the operator C ∈ L(X) is injec-
tive and N ∈ ℕ). The extensions of the Lumer–Philips theorem for two-parameter
C0-semigroups have been analyzed by R. Abazari, A. Niknam and M. Hassani in [3],
while a Hille–Yosida type theorem for multiparameter semigroups has been analyzed
by Yu. S. Mishura and A. S. Lavréntev in [776]. The different notions of generators of
two parameter semigroups have been analyzed by Sh. Al-Sharif, R. Khalil [45] and
S. Arora, S. Sharda [88]; see also an interesting generalization of R. Datko’s result
[548, Theorem 1.3] to nonlinear two parameter semigroups established by A. Ichikawa
in [548, Theorem 2.1]. For some applications of multiparameter strongly continuous
semigroups in the analysis of partial differential equations in the spaces of almost pe-
riodic functions, we refer the reader to [180] and [1005]; for some applications to the
stochastic differential equations, see [205, 899, 1032] and the monograph [1099].

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



9 Notes and appendices to Part II | 595

To the best of our knowledge, the notion of an n-parameter α-times integrated
semigroup, the notion of an n-parameter C-regularized semigroup and the notion of
an n-parameter α-times integrated C-regularized semigroup have not been introduced
so far. The degenerate case also remains still very unexplored, even for degenerate
two-parameter strongly continuous semigroups (in the current literature, we have not
been able to locate any research paper regarding this issues).

Concerning some applications of multiparameter semigroups in the analysis of
multi-dimensional almost periodic type solutions of the abstract partial differential
equations and their systems, the situation is similar: there are only a few research
papers devoted to the study of variation of parameters formulas for multiparame-
ter semigroups (fractional multiparameter resolvent families have not been analyzed
elsewhere either) but the existence and uniqueness of almost periodic type solutions
of the abstract partial differential equations and their systems have not still been an-
alyzed with the help of the theory of multiparameter semigroups. With regards to this
intriguing topic, we want to mention only the investigation of M. Khanehgir, M. Jan-
fada andA. Niknam [593], where the authors have examined thewell-posedness of the
following inhomogeneous abstract Cauchy problem:

(ACP)2 :
{{
{{
{

u ∈ C(I : X) ∩ C1(I ⋅ : X),
uti (t) = Aiu(t) + F(t), t ∈ I , i = 1, 2,
u(0) = x, x ∈ ⋂i∈ℕ2 D(Ai),

assuming that the pair (A1,A2) generates a strongly continuous semigroup (T(t1,
t2))t1⩾0,t2⩾0 on X. In their analysis, the same inhomogeneity has appeared for i = 1 and
i = 2, which forces upon us a very unpleasant condition:

Ft1 (t1, t2) − Ft2 (t1, t2) = (A1 − A2)F(t1, t2), t1, t2 > 0.

Despite this, the following formula for a solution of (ACP)2 has been proposed:

u(t1, t2) = T(t1, t2)x +
t1

∫
0

T(t1 − t, t2)F(t,0) dt +
t2

∫
0

T(0, t − t2)F(t1,0) dt,

for any t1, t2 > 0. It could be interesting to formulate some results about the asymp-
totically almost periodic solutions of this solution provided that the semigroup
(T(t1, t2))t1⩾0,t2⩾0 is exponentially decaying and the function F(⋅; ⋅) is asymptotically
almost periodic in a certain sense.

The multiparameter semigroups play an important role in the study of the ap-
proximations of periodic functions of several real variables (A. P. Terehin [975]) and
the study of diffusion equations in space-time dynamics (S. V. Zelik [1072]). For some
other questions about multiparameter semigroups, we refer the reader to the research
articles [10, 343, 520, 553, 557, 558] and [593, 594, 732, 733, 975, 983].
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Multivariate trigonometric polynomials and approximations of periodic functions of
several real variables
Without any doubt, trigonometric polynomials of several real variables, sometimes
also called multivariate trigonometric polynomials, presents the best explored class
of almost periodic functions of several real variables. Multivariate trigonometric poly-
nomials have an invaluable importance in the theory of approximations of periodic
functions of several real variables, especially in the two-dimensional case. For the
basic source of information about this subject, the reader may consult the research
monographs [403] by B. Dumitrescu, [405] by D. Dung, V. Temlyakov, T. Ullrich, [971]
and [972] by V. Temlyakov (see also the research studies [44, 160, 357, 402, 491, 578,
621, 923, 973, 1045, 1058]; for some other questions about multivariate trigonometric
polynomials, we refer the reader to the research articles [131, 406, 469, 470, 486, 802,
838, 856, 876] and references quoted therein).

In this part, we will briefly explain the main results and ideas of papers [109] by
A.M.-B. Babayev, [838] by L. Pfister, Y. Bresler and [578] by L. Kämmerer, D. Potts,
T. Volkmer. If f : ℝ → ℝ belongs to the space C2π of all real continuous functions
of period 2π, then it is well known that the Vallee–Poussin singular integral Vk(⋅), de-
fined by

Vk(x) :=
1
2π
(2k)!!
(2k − 1)!!

π

∫
−π

f (t) cos2k t − x
2

dt, x ∈ ℝ (k ∈ ℕ),

has the property that limk→+∞ Vk(x) = f (x), uniformly for x ∈ ℝ. This result of Vallee–
Poussin improves the classical Weierstrass second theorem on the density of trigono-
metric polynomials in the spaces of continuous functions. The two-dimensional
Vallee–Poussin singular integral Vk,m(⋅), defined for each x ∈ ℝ by (k, m ∈ ℕ),

Vk,m(x, y) :=
1
(2π)2
(2k)!!
(2k − 1)!!

(2m)!!
(2m − 1)!!

π

∫
−π

f (t, τ) cos2k t − x
2

cos2k τ − y
2

dτ,

has been introduced in [109, Definition 2]. In the same paper, the author has shown
that limk→+∞ limm→+∞ Vk,m(x, y) = f (x, y), uniformly for (x, y) ∈ ℝ2 as well as that
Vk,m(x, y) is a trigonometric polynomial in variables x and y, for all k, m ∈ ℕ (see [109,
Theorem 2]). For proving the last fact, the author has used a lemma clarifying that the
product of two trigonometric polynomials of two variables is also the trigonometric
polynomial of two variables whose order equals the sum of order of cofactors as well
as that any even trigonometric polynomial T(x, y), i. e., a trigonometric polynomial
T(x, y) which satisfies T(−x,−y) = T(x, y), T(−x, y) = T(x, y) and T(x,−y) = T(x; y)
identically for (x, y) ∈ ℝ2, may be represented in the form

T(x, y) = A +
m
∑
k=1

n
∑
l=1
(akl cos kx cos ly + bkl cos kx + ckl cos ly), (x, y) ∈ ℝ

2,
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which does not contain the sines of multiple arcs (see [109, Lemma 3, Lemma 4]). We
would like to note that the obtained results continue to hold in the vector-valued case.

In [838], L. Pfister and Y. Bresler have investigated boundingmultivariate trigono-
metric polynomials and given some applications to the problems of filter bank design.
Denote

Tnl := span{e
i⟨k,λ⟩ : λ ∈ [0, 2π]n, k ∈ ℤn, ‖k‖ := sup

1⩽i⩽n
|ki| ⩽ l} (l ∈ ℕ)

and

ΘN := {2πk/N : k = 0, 1, . . . ,N − 1} (N ∈ ℕ).

For any N ∈ ℕ and for any real-valued trigonometric polynomial

P(λ) :=
l
∑
k1=−l

l
∑
k2=−l
⋅ ⋅ ⋅

l
∑
kn=−l

ck1k2 ⋅⋅⋅kne
i⟨k,λ⟩ ∈ Tnl ,

i. e., the multivariate trigonometric polynomial P(⋅) for which ck1 ,k2 ,...,kn = c
∗
−k1 ,−k2 ,...,−kn

(‖k‖ ⩽ l; the star denotes complex conjugation), we define

‖P‖∞ := max
λ∈[0,2π]n
P(λ)
 and ‖P‖Nn ,∞ := max

λ∈Θn
N

P(λ)
.

Then two well-known results of the approximation theory state that

‖P‖∞ ⩽ ‖P‖(2l+1)n ,∞(1 + 4π
−1 + 2π−1 ln(2l + 1))n

and, in the one-dimensional case,

‖P‖∞ ⩽
‖P‖N ,∞
√1 − (2l/N)

.

In [838, Theorem 1], the authors have shown that the assumptions N ⩾ 2l + 1 and
α = 2l/N yield the existence of a positive real constant CnN ,l ∈ [0, (1 − α)

−(n/2)] such that

‖P‖∞ ⩽ C
n
N ,l‖P‖Nn ,∞, P ∈ Tnl ,

and CnN ,l‖P‖Nn ,∞ − ‖P‖∞ = O(ln /N), P ∈ Tnl . In order to achieve their aims, the au-
thors have used the de la Vallée–Poussin kernels and the tensor products of one-
dimensional Dirichlet kernels.

In [578], the authors have investigated certain algorithms for the approximation
of multivariate periodic functions by trigonometric polynomials, which are based on
the use of a single one-dimensional fast Fourier transform and the so-called method
of sampling of multivariate functions on rank-1 lattices. In their analysis, the authors
have used periodic Sobolev spaces of generalized mixed smoothness and presented
some advantages of their method compared to the method based on the trigonomet-
ric interpolations on generalized sparse grids. Some numerical results and tests are
presented up to dimension n = 10, as well.
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Almost periodic pseudo-differential operators and Gevrey classes
Almost periodic pseudo-differential operators have been analyzed by numerous
mathematicians including L. A. Coburn, R. D. Moyer, I. M. Singer [305], P. E. Dedik
[344], R. Iannacci, A.M. Bersani, G. Dell’Acqua, P. Santucci [546], A. A. Pankov [825],
M. A. Shubin [937, 939, 940] andP.Wahlberg [1008]. In this section,wewill present the
main ideas and results of research study [818] by A. Oliaro, L. Rodino and P.Wahlberg,
only.

It is well known that M. A. Shubin has proved that almost periodic pseudo-
differential operators act continuously on the space of smooth almost periodic func-
tions as well as that the operator norm on L2 equals that on the Hilbert space B2(ℝn)
of Besicovitch almost periodic functions whose Fourier coefficients are square sum-
mable. It is also well known that M. A. Shubin has introduced, for every exponent
p ∈ [1,∞] and for every real number t ∈ ℝ, the space Wp

t (ℝ
n) of almost periodic

functions and proved the continuity of any almost periodic pseudo-differential op-
erator A : W2

t (ℝ
n) → W2

t−m(ℝ
n), with arbitrary t ∈ ℝ, provided that the symbol of A

belongs to the class Smρ,δ (0 ⩽ δ < ρ ⩽ 1). In the papers of M. A. Shubin, some regularity
results for formally hypoelliptic almost periodic pseudo-differential operators have
been examined on the spaceW2

−∞(ℝ
n) := ⋃t∈ℝW

2
t (ℝ

n).
In [818], the authors have sought for ultradistributional analogues of the above-

mentioned results, working with almost periodic functions that are Gevrey regular of
order s ⩾ 1 (the difference between the real analytic case s = 1 and the pure ultradis-
tributional case s > 1 should be emphasized here). If 0 ̸= Ω ⊆ ℝn, then the space of
all Gevrey functions of order s ⩾ 1, denoted by Gs(Ω), is defined as a collection of all
infinitely differentiable functions F : ℝn → ℂ such that for each compact set K ⊆ ℝn

there exists a finite real constant CK > 0 such that

|DαF(t)| ⩽ C1+|α|K α!s

for all t ∈ K and α ∈ ℕn0. It is natural to ask whether an almost periodic function
F : ℝn → ℂ which belongs to the space Gs(Ω) obeys the property of the existence of a
global real constant C > 0 such that

|DαF(t)| ⩽ C1+|α|α!s

for all t ∈ ℝn and α ∈ ℕn0? An instructive counterexample in the one-dimensional set-
ting, with s > 1, is given in [818, Example 2.1], showing that this is not true in general:
Set gs(x) := exp(−x1/(1−s)), x > 0, gs(x) := 0, x ⩽ 0, ψs(x) := gs(x)gs(1 − x), x ∈ ℝ,
ψs,n(x) := ψs(nx), x ∈ ℝ and φs,n(x) := ∑k∈ℤ ψs(x − 2n(2k + 1)), x ∈ ℝ (n ∈ ℕ). It has
been shown that the function

Fs(x) :=
∞

∑
n=1

n−1/4φs,n(x), x ∈ ℝ,
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is well defined, as well as that the above series is uniformly convergent in the variable
x ∈ ℝ, so that the function Fs(⋅) is actually, semi-periodic, since the function φs,n(⋅) is
of period 2n+1 (n ∈ ℕ). We also have Fs ∈ Gs(ℝ) and Fs ∉ Gs

ap(ℝ); see the notion ex-
plained below. Albeit not explicitly constructed in [818], it is our strong belief that also
this example can be transferred to the multi-dimensional setting without any serious
difficulties (more to the point, the case s = 1 has not been considered in [818, Example
2.1] and deserves further analysis).

After providing this counterexample, the authors have paid a special attention
to the analysis of almost periodic functions F : ℝn → ℂ belonging to the space
Gs(ℝn) and obeying the property that there exists a real constant C > 0 such that
|DαF(t)| ⩽ C1+|α|α!s for all t ∈ ℝn and α ∈ ℕn0. The union of these functions, denoted
by Gs

ap(ℝ
n), is equipped with the usual inductive limit topology as a union of Banach

spaces. The authors have introduced after that the corresponding classes of symbols,
pseudo-differential operators and continued their non-trivial analysis; see [818] for
more details.

Periodic generalized functions
It would be rather unpleasant to recapitulate here all relevant methods and already
established results about periodic generalized functions.Wewill only say a fewwords
about scalar-valued periodic distributions, scalar-valued periodic ultradistributions
and quote some references about periodic Colombeau hyperfunctions. A detailed
study of multi-dimensional periodic generalized functions with values in Banach
spaces and general topological spaces will be carried out in our forthcoming research
studies.
1. Periodic distributions. It is well known that a distribution F ∈ 𝒟′(ℝn) is called

periodic of period T = (T1, . . . ,Tn) > 0 if and only if for each i ∈ ℕn we have
F(x1, . . . , xi + Ti, . . . , xn) = F(x1, . . . , xi, . . . , xn). The vector space consisting of all
distributionsF ∈ 𝒟′(ℝn)which are periodic of periodT > 0are usually denoted by
𝒟′T (ℝ

n). Themost simple example of a periodic non-regular distribution of period
T > 0 is given by δT (x) := ∑k∈ℤn δ(x + kT); many similar examples can be found in
the paper [869] by N. Reckoski, V. Reckovski and V. Manova-Erakovikj.
We know that any distribution F ∈ 𝒟′T (ℝ

n) is tempered as well as that F can be
expanded into a corresponding Fourier series which converges to F in the space
𝒮′(ℝn) of tempered distributions. More precisely, if F ∈ 𝒟′T (ℝ

n) and φ : ℝn → ℂ
is an infinitely differentiable function of period T > 0, then we define ⟨F,φ⟩ :=
⟨F,ψ0φ⟩, where ψ0 : ℝ

n → ℂ is an arbitrary infinitely differentiable function sat-
isfying that ∑k∈ℤn ψ0(x + kT) = 1 for all x ∈ ℝn. It is well known that the value of
⟨F,φ⟩ does not depend on the choice of the function ψ0(⋅), and that the special
choice of the function ψ0(⋅) as in the book of V. Vladimirov [1004], shows that for
any regular distribution F ∈ 𝒟′T (ℝ

n)we have ⟨F,φ⟩ = ∫T0 F(x)φ(x) dx. For simplic-
ity, wewill assumenow that Ti = 1 for all i ∈ ℕn. In this case, with each F ∈ 𝒟′1(ℝ

n)
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we associate its formal Fourier series

∑
k∈ℤn

ak(F)e
i∑nj=1 2πkjxj ,

where

ak(F) :=
1

∫
0

⋅ ⋅ ⋅
1

∫
0

e−i∑
n
j=1 2πkjxjF(x1, . . . , xn) dx1 ⋅ ⋅ ⋅ dxn, k ∈ ℤn.

This series converges to F in the space of tempered distributions 𝒮′(ℝn); see [847,
Section 10.6] for more details.
It is worth noting that K. N. Khan, W. Lamb and A. C. McBride have developed, in
[591], two equivalent approaches for defining fractional derivatives of periodic dis-
tributions in the one-dimensional setting, following the approach of A.H. Zema-
nian from [1073, Chapter 9], with I = (0, 2π). The first approach is a distributional
version of the Weyl approach for ordinary functions, whilst the second approach
is based on the Grünwald–Letnikov formula for defining a fractional derivative
of a locally integrable function; the authors have provided an interesting appli-
cation in the study of distributional solutions of the fractional diffusion equation
(see also the research monograph [220] by A. C. McBride for further information
on fractional calculus of generalized functions). Let us also mention that E. L. Ko-
rotyaev has considered, in [625], the KdV equation on the Sobolev space of peri-
odic distributions (cf. also [622–624]).

2. Periodic ultradistributions. Within the Komatsu theory of ultradistributions,
V. I. Gorbachuk [477] andV. I. Gorbachuk,M. L. Gorbachuk [478]were the first who
introduced the classes of periodic ultradistributions of Beurling and Roumieu
type (1981–1982). As noticed by S. Pilipović in [845], who structurally character-
ized the spaces analyzed in [477, 478], a more general space of periodic gener-
alized functions was considered by A. Sźaz [966] in 1978. In [845], it has been
assumed that a sequence (Mp)p∈ℕ0 of positive real numbers satisfies conditions
(M.1),
(M.2)∗ Mp+1 ⩽ AHpMp, p ∈ ℕ0, for some constants A, H > 1,
and
(M.3)∗ limp→+∞

p√Mp = +∞,
which is a consequence of the already analyzed condition (M.3′); in particular,
these conditions are satisfied for the sequenceMp := p!α, where α > 0. The space
𝒟(Mp, L) is defined for each positive real number L > 0 as a collection of all in-
finitely differentiable functions φ : [0, 2π]→ ℂ for which

‖φ‖L,∞ := sup{
‖φ(p)‖∞
LpMp
: p ∈ ℕ0} < +∞.
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After that, the spaces𝒟(Mp) and𝒟{Mp} are defined by

𝒟(Mp) := proj limL→0+
𝒟(Mp, L) and 𝒟{Mp} := ind lim

L→+∞
𝒟(Mp, L).

The spaces of periodic ultradistributions of Beurling type and the Roumieu type
are defined, respectively, as the strong duals of these spaces; therefore, we have

𝒟′(Mp) = ind lim
L→0+

𝒟′(Mp, L) and 𝒟′{Mp} := proj lim
L→+∞

𝒟′(Mp, L).

The first serious observation made in [845] was that the spaces analyzed in [477,
478] present very exceptional cases of the spaces of periodic generalized function
spaces considered by A.H. Zemanian in [1073, Chapter 9]; see [845, Theorem 1]
for more details. The representation theorem established in [845, Theorem 2] says
that for any element f ∈ 𝒟′(Mp) we can always find a positive integer n ∈ ℕ and
a bounded sequence (fp)p∈ℕ0 in L

2[0, 2π] such that f = ∑∞p=0(n
pf (p)p /Mp) as well as

that for any positive integer n ∈ ℕ and any bounded sequence (fp)p∈ℕ0 in L
2[0, 2π]

the above expression determines an element f ∈ 𝒟′(Mp). For the Roumieu class
𝒟′{Mp}, the main representation theorem [845, Theorem 3] says that for any el-
ement f ∈ 𝒟′{Mp} we can always find a sequence (fp)p∈ℕ0 in L2[0, 2π] such that
∑∞n=0 ‖n

pMpfp‖L2[0,2π] < ∞ for any positive integer n ∈ ℕ and f = ∑∞p=0 f
(p)
p as well

as that for any sequence (fp)p∈ℕ0 in L2[0, 2π] such that ∑∞n=0 ‖n
pMpfp‖L2[0,2π] < ∞

for any positive integer n ∈ ℕ, the expression f = ∑∞p=0 f
(p)
p determines an element

f ∈ 𝒟′{Mp}.
Generalized differential algebras containing the spaces of periodic ultradistribu-
tions have recently been investigated by A. Debrouwere in [341], while the Fourier
coefficients of periodic functions of Gevrey classes and ultradistributions defined
on the torus have been analyzed by Y. Taguchi in [968]. For the sequential ap-
proach to the theory of (periodic) ultradistributions, we refer the reader to the
doctoral dissertation of P. Sokolski [945] (for the sequential approach to the theory
of distributions and the basic theory of periodic distributions, the classic mono-
graph [73] by P. Antosik, J. Mikusiński and R. Sikorski is also of incredible impor-
tance).Within the Braun-Meise-Taylor theory of ultradistributions [217], it isworth
mentioning the research article [944] by B. K. Sohn, who studied the classes of
periodic tempered distributions of Beurling type and periodic ultradifferentiable
functions with arbitrary support.

Concerning periodic Colombeau generalized functions, the reader may consult [291,
293, 350, 608, 992]; for more details about periodic generalized function spaces, we
also refer the reader to [135, 393, 591, 753, 816, 878] and [846, 884, 907, 919, 967, 991,
1071].
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Stepanov-like almost periodicity in mixed Lebesgue spaces
Let us recall that the notion of a mixed Lebesgue space can be traced back to the
paper of L. Hörmander [540], where he investigated the estimates for translation
invariant operators (1960). The mixed Lebesgue spaces (or the Lebesgue spaces
with vector exponents Lp⃗) are considered as a natural generalization of the classi-
cal Lebesgue space Lp via replacing the constant exponent p by a vector exponent
p⃗ := (p1, . . . , pn) ∈ (0,+∞]n. A first detailed study of the mixed Lebesgue spaces is
carried out by A. Benedek and R. Panzone in [150] (1961); see also [39, 150, 303, 439,
464, 467, 544, 570, 960, 1090] and the references cited therein for more details about
the subject.

The definition goes as follows. For any p⃗ := (p1, . . . , pn) ∈ [1,+∞]n, we denote by
q⃗ := (q1, . . . , qn) its conjugate exponent, i. e.,

1
p⃗ +

1
q⃗ = 1; namely, for any j ∈ {1, . . . , n},

1
pj
+ 1

qj
= 1. If p⃗ = (p1, . . . , pn) and q⃗ = (q1, . . . , qn) are two vectors in [1,+∞]n, then we

write p⃗ ⩽ q⃗ (p⃗ < q⃗) if and only if pj ⩽ qj (pj < qj) for any j ∈ {1, . . . , n}.

Definition 9.0.1. Let 0 ̸= Λj ⊆ ℝ be a Lebesgue measurable set (1 ⩽ j ⩽ n), let Λ =
∏nj=1 Λj ⊆ ℝ

n, and let p⃗ = (p1, . . . , pn) ∈ [1,+∞]n. The mixed Lebesgue space Lp⃗(Λ : X)
is defined to be the set of all Lebesgue measurable functions F : Λ→ X such that

‖f ‖Lp⃗(Λ:X) := (∫
Λn

⋅ ⋅ ⋅(∫
Λ2

(∫
Λ1

F(s1, . . . , sn)

p1
X ds1)

p2/p1
ds2)

p3/p2
⋅ ⋅ ⋅ dsn)

1/pn
<∞,

with the usual modifications when pj = +∞ for some j ∈ {1, . . . , n}.

In the case that p1 = ⋅ ⋅ ⋅ = pn = p, with some p ∈ [1,+∞], the space Lp⃗(Λ : X)
coincides with the usual Lebesgue space Lp(Λ : X).

Applying successively Minkowski’s inequality, for F, G ∈ Lp⃗(Λ : X), p⃗ ∈ [1,+∞]n,
we obtain the following Minkowski inequality in Lp⃗(Λ : X):

‖F + G‖Lp⃗(Λ:X) ⩽ ‖F‖Lp⃗(Λ:X) + ‖G‖Lp⃗(Λ:X). (9.8)

Similarly, for F ∈ Lp⃗(Λ : X) and G ∈ Lq⃗(Λ : X), we have FG ∈ L1(Λ : X) and
the successive applications of the usual Hölder inequality gives the following Hölder
inequality in Lp⃗(Λ : X):

‖FG‖L1(Λ:X) ⩽ ‖F‖Lp⃗(Λ:X)‖G‖Lq⃗(Λ:X), (9.9)

for any p⃗ ∈ [1,+∞]n and q⃗ ∈ [1,+∞]n satisfying 1
p⃗ +

1
q⃗ = 1.

As a consequence, (Lp⃗(Λ : X), ‖ ⋅ ‖Lp⃗(Λ:X)) is a Banach space for any p⃗ ∈ [1,+∞]
n.

Before proceeding to the next section, we would like to recall that the mixed
Lebesgue spaces play an important role in the abstract harmonic analysis, especially
in the theory of Wiener amalgam spaces and the theory of modulation spaces. For
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example, the mixed Lebesgue norm appears in definitions of the generalized modula-
tion spaceMm

p,q(ℝ
d) introduced byH. Feichtinger andK. Gröchening in [432, Definition

2.3], the amalgam spaceW(Lp; Lqω) introduced by C. Heil in [524, Definition 11.3.1], the
mixed Lebesgue space Lp,q(v) introduced by H. Rauhut in [867, Section 6], and the
general ultramodulation space Mωγ

p,q introduced by N. Teofanov in [974, Definition 4,
p. 36]; see also the research monographs [153] by A. Bényi, K. Okoudjou, [489] by
K. Gröchenig, [763] by Y. Meyer, [1027] by N. Wiener and the doctoral dissertation of C.
Heil [523] for more details about the subject.

Now we will extend the concept of Sp-almost periodicity to the Lebesgue spaces
Lp⃗(Λ : X) with vector exponent p⃗ ∈ [1,+∞)n. Unless stated otherwise, in the sequel of
this part we will always assume that Ω = [0, 1]n.

First of all, we will investigate the notion of Stepanov p⃗-boundedness.

Definition 9.0.2. Let 0 ̸= Λ ⊆ ℝn and p⃗ = (p1, . . . , pn) ∈ [1,+∞)n. A function F : Λ×X →
Y is said to be p⃗-locally integrable on ℬ if and only if, for every B ∈ ℬ and for every
sequence (Kj)1⩽j⩽n of compact subsets of ℝ such that K1 × K2 × ⋅ ⋅ ⋅ × Kn ⊆ Λ, we have

‖F‖Lp⃗(Λ:X),(Kj)1⩽j⩽n ,B

:= sup
x∈B
(∫
Kn

⋅ ⋅ ⋅(∫
K2

(∫
K1

F(s1, . . . , sn; x)

p1
X ds1)

p2/p1
ds2)

p3/p2
⋅ ⋅ ⋅ dsn)

1/pn
<∞.

The set of all p⃗-locally integrable functions on Λ is denoted by Lp⃗,ℬloc (Λ × X : Y).

In this part, the multi-dimensional Bochner transform will be also denoted by
Fb : Λ × X → YΩ; hence, if function F : Λ × X → Y is given, then

[Fb(t; x)](u) := F(t + u; x), t ∈ Λ, u ∈ Ω, x ∈ X.

Now we are ready to introduce the following notion.

Definition 9.0.3. Suppose that 0 ̸= Λ ⊆ ℝn satisfies Λ + [0, 1]n ⊆ Λ and let p⃗ =
(p1, . . . , pn) ∈ [1,+∞)n. Let a function F : Λ × X → Y be p⃗-locally integrable on ℬ.
Then we say that F(⋅; ⋅) is Stepanov p⃗-bounded on ℬ if and only if for every B ∈ ℬ there
exists a finite real constantM > 0 such that

‖F‖Sp⃗,B := sup
t∈Λ;x∈B
(

1

∫
0

(
1

∫
0

(
1

∫
0

F(t1 + s1, . . . , tn + sn; x)

p1 ds1)

p2/p1

ds2)
p3/p2

⋅ ⋅ ⋅ dsn)
1/pn

< M

for any t = (t1, . . . , tn) ∈ Λ and x ∈ B. The collection of these functions will be denoted
by BSp⃗,ℬ(Λ × X : Y).

By applying Minkowski’s inequality (9.8), it is easy to see that Lp⃗,ℬloc (Λ × X : Y) and
BSp⃗,ℬ(Λ×X : Y) are vector spaces. Let F(⋅; ⋅) be Stepanov p⃗-bounded onℬ, and letB ∈ ℬ
be fixed. Then it is easy to see that ‖ ⋅ ‖Sp⃗,B is a norm on BSp⃗,ℬ(Λ × X : Y); furthermore,
we have the following expected result.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



604 | 9 Notes and appendices to Part II

Proposition 9.0.4. Let p⃗ ∈ [1,+∞)n. Then (BSp⃗,ℬ(Λ × X : Y), ‖ ⋅ ‖Sp⃗,B ) is a Banach space.

Proof. Let (Fj)j∈ℕ be a Cauchy sequence in BSp⃗,ℬ(Λ × X : Y). Then we have

∀ε > 0 ∃j0 ∈ ℕ ∀i, j ⩾ j0 ⇒ ‖Fi − Fj‖Sp⃗,B ⩽ ε.

This shows that (Fj(t; x))j∈ℕ is a Cauchy sequence in the Banach space Lp⃗(∏
n
k=1[tk , tk +

1] : Y) uniformly with respect to t = (t1, . . . , tn) ∈ Λ and x ∈ B, so there exists a function
F : Λ × X → Y such that

sup
(t1 ,...,tn)∈Λ;x∈B

(
tn+1

∫
tn

⋅ ⋅ ⋅(
t2+1

∫
t2

(
t1+1

∫
t1

Fj(s1, . . . , sn; x)

− F(s1, . . . , sn; x)

p1
X ds1)

p2/p1

ds2)
p3/p2

⋅ ⋅ ⋅ dsn)
1/pn

→
j→+∞

0.

Minkowski’s inequality allows us to conclude that

‖F‖Sp⃗,B ⩽ ‖Fj − F‖Sp⃗,B + ‖Fj‖Sp⃗,B <∞, j ∈ ℕ,

which shows that F ∈ BSp⃗,ℬ(Λ×X : Y) since (Fj)j∈ℕ is a Cauchy sequence in BSp⃗(Λ×X :
Y) and therefore bounded.

Under certain very reasonable assumptions, we see that BSp⃗,ℬ(Λ × X : Y) is trans-
lation invariant in both arguments. Furthermore, if we assume that ⃗1 ⩽ q⃗ ⩽ p⃗, then
we can use the Hölder inequality (9.9) in order to see that there exist two finite real
constants c1 > 0 and c2 > 0 such that the following estimates hold true:

‖F‖Sq⃗,B ⩽ c1‖F‖Sp⃗,B ⩽ c2‖F‖S ⃗1,B ,

whenever the above expressions make a sense; here, of course, ⃗1 := (1, 1, . . . , 1).
We introduce the following spaces of mixed Lebesgue–Stepanov-like almost peri-

odic functions.

Definition 9.0.5. Suppose that 0 ̸= Λ ⊆ ℝn satisfies Λ + Ω ⊆ Λ, F : Λ × X → Y and the
following condition holds:

If t ∈ Λ, b ∈ R and l ∈ ℕ, then we have t + b(l) ∈ Λ.

Let the function Fb : Λ × X → Lp⃗(Ω : Y) be well defined and continuous. Then we
say that the function F(⋅; ⋅) is Stepanov (p⃗,R,ℬ)-multi-almost periodic if and only if the
function Fb : Λ × X → Lp⃗(Ω : Y) is (R,ℬ)-multi-almost periodic, i. e., for every B ∈ ℬ
and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exist a subsequence (bkl = (b

1
kl , b

2
kl , . . . , b

n
kl )) of (bk)

and a function F∗ : Λ × X → Lp⃗(Ω : Y) such that

lim
l→+∞
F(t + u + (b

1
kl , . . . , b

n
kl); x) − [F

∗(t; x)](u)Lp⃗(Ω:Y) = 0,

uniformly for all x ∈ B and t ∈ Λ.
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Definition 9.0.6. Suppose that 0 ̸= Λ ⊆ ℝn, Λ+Ω ⊆ Λ, F : Λ×X → Y and the following
condition holds:

If t ∈ Λ, (b;x) ∈ RX and l ∈ ℕ, then we have t + b(l) ∈ Λ.

Let the function Fb : Λ × X → Lp⃗(Ω : Y) be well defined and continuous. Then we say
that the function F(⋅; ⋅) is Stepanov (p⃗,RX,ℬ)-multi-almost periodic if and only if the
function Fb : Λ × X → Lp⃗(Ω : Y) is (RX,ℬ)-multi-almost periodic, i. e., for every B ∈ ℬ
and for every sequence ((b;x)k = ((b1k , b

2
k , . . . , b

n
k); xk)) ∈ RX there exist a subsequence

((b;x)kl = ((b
1
kl , b

2
kl , . . . , b

n
kl ); xkl )) of ((b;x)k) and a function F

∗ : Λ×X → Lp⃗(Ω : Y) such
that

lim
l→+∞
F(t + u + (b

1
kl , . . . , b

n
kl); x + xkl) − [F

∗(t; x)](u)Lp⃗(Ω:Y) = 0,

uniformly for all x ∈ B and t ∈ Λ.

Definition 9.0.7. Suppose that 0 ̸= Λ′ ⊆ Λ ⊆ ℝn, F : Λ × X → Y is a continuous
function and Λ + Λ′ ⊆ Λ. Then we say that:
(i) F(⋅; ⋅) is Stepanov (p⃗,ℬ,Λ′)-almost periodic (Stepanov (p⃗,ℬ)-almost periodic, if Λ =

Λ′) if and only if for every B ∈ ℬ and ε > 0 there exists l > 0 such that for each
t0 ∈ Λ′ there exists τ ∈ B(t0, l) ∩ Λ′ such that

F(t + τ + ⋅; x) − F(t + ⋅; x)
Lp⃗(Ω:Y) ⩽ ε, t ∈ Λ, x ∈ B.

(ii) F(⋅; ⋅) is Stepanov (p⃗,ℬ,Λ′)-uniformly recurrent ((p⃗,ℬ)-uniformly recurrent, if Λ =
Λ′) if and only if for every B ∈ ℬ there exists a sequence (τn) in Λ′ such that
limn→+∞ |τn| = +∞ and

lim
n→+∞

sup
t∈Λ;x∈B

F(t + τn + ⋅; x) − F(t + ⋅; x)
Lp⃗(Ω:Y) = 0.

If X ∈ ℬ, then it is also said that F(⋅; ⋅) is Stepanov (p⃗,Λ′)-almost periodic ((p⃗,Λ′)-uni-
formly recurrent) [Stepanov almost periodic (uniformly recurrent), if Λ = Λ′].

The use of space Lp⃗(Ω : X) in our approach is new but very similar to the use
of space Lp(u)(Ω : Y) in Section 6.2. Keeping in mind the proofs of our structural re-
sults from [266], it becomes clear from the introduced notion and the fact that the
Minkowski inequality and the Hölder inequality hold in mixed Lebesgue spaces, that
many structural results from Section 6.2 remain true in our framework without any
essential changes of the notion and notation (see also [266]). For example, the state-
ments of [266, Proposition 2.6, Propositions 2.10–2.12,Theorems 2.13–2.15, Theorem
2.17, Propositions 2.18–2.19, Proposition 2.25] can be straightforwardly formulated for
the Stepanov classes of functions introduced in Definition 9.0.5–Definition 9.0.7; sim-
ilarly, the supremum formula for Stepanov-like almost periodic functions in mixed
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Lebesgue spaces, the relative compactness of range {Fb(t; x) : t ∈ Λ; x ∈ B}, for a given
set B ∈ ℬ, and some results about the composition of Stepanov-like almost periodic
functions in mixed Lebesgue spaces, can be achieved similarly as in [266] (see also
Section 6.2). In particular, it is worth noting that any Stepanov (p⃗,ℬ)-almost periodic
function defined onℝnmust be Stepanov p⃗-bounded, provided thatℬ is a collection of
compact subsets of X, and that, in this case, the space APSp⃗ℬ(ℝ

n : Y), consisting of all
Stepanov (p⃗,ℬ)-almost periodic functions F : ℝn×X → Y , is densely and continuously
embedded in the space BSp⃗ℬ(ℝ

n : Y).
The result about the convolution invariance of Stepanov-like almost periodic func-

tions in mixed Lebesgue spaces, which can be simply obtained by reformulating [266,
Proposition 2.10], can be applied to the Gaussian semigroup in ℝn.

For example, we have the following analogue of [266, Proposition 2.22].

Proposition 9.0.8. Let Λ + Λ ⊆ Λ, Λ + Ω ⊆ Λ, ℬ is any family of compact subsets of X
and F : Λ × X → Y satisfy the following conditions:
(i) For each x ∈ X, the function F(⋅; x) is Stepanov (p⃗,Λ)-almost periodic.
(ii) For each ε > 0 there exists δB,ε > 0 such that for all x1, x2 ∈ B one has

‖x1 − x2‖ ⩽ δB,ε ⇒
F(t + ⋅; x1) − F(t + ⋅; x2)

Lp⃗(Ω:Y) ⩽ ε for all t ∈ Λ.

Then F(⋅; ⋅) is Stepanov (p⃗,ℬ)-almost periodic.

The following statement can be formulated for all other classes of functions intro-
duced in Definition 9.0.5–Definition 9.0.7.

Proposition 9.0.9. Suppose that 0 ̸= Λ ⊆ ℝn satisfies Λ +Ω ⊆ Λ, F : Λ × X → Y and the
function Fb : Λ × X → Lp⃗(Ω : Y) is well defined and continuous. If ⃗1 ⩽ q⃗ ⩽ p⃗, then

APSq⃗ℬ(ℝ
n : Y) ⊆ APSp⃗ℬ(ℝ

n : Y) ⊆ APS
→1
ℬ (ℝ

n : Y).

Using Proposition 9.0.9 and [266, Theorem 2.21] with p(u) ≡ 1, we immediately get
the following.

Proposition 9.0.10. Suppose that ℬ is any family of compact subsets of X. If F : ℝn ×
X → Y is uniformly continuous and Stepanov (p⃗,ℬ)-almost periodic, then F(⋅; ⋅) is Bohr
ℬ-almost periodic.

Furthermore, we can use Proposition 9.0.9 and our analysis from [266, Example
2.9] in order to conclude that for each p⃗ ∈ [1,∞)n we have the following (just take
p(u) ≡ max{pi : 1 ⩽ i ⩽ n} in the above-mentioned example):

Example 9.0.11. Suppose that F : ℝn → ℝ is a Bohr Λ′-almost periodic function
(Λ′-uniformly recurrent function). Define H : ℝn → ℝ by H(t) := sign(F(t)), t ∈ ℝn.
Then the functionH(⋅) is Stepanov (p⃗,Λ′)-almost periodic (Stepanov (p⃗,Λ′)-uniformly
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recurrent), provided that

(∃L ⩾ 1) (∀ε > 0) (∀y ∈ ℝn)m({x ∈ y + Ω : F(x)
 ⩽ ε}) ⩽ Lε.

In particular, the last estimate holds for any multivariate trigonometric polynomial.

Wewill not consider the composition principles for Stepanov-like almost periodic
functions inmixed Lebesgue spaces, as well as the invariance of Stepanov-like almost
periodicity in mixed Lebesgue spaces under the actions of convolution products and
many other topics here. Finally, we will present the following illustrative application
to close this section (see also the third application in Subsection 8.1.6; the final con-
clusion of Example 9.0.12 can be deduced by assuming that p⃗ = ⃗1 from the very begin-
ning):

Example 9.0.12. Suppose that Y := Lr(ℝn) for some r ∈ [1,∞) and A(t) := Δ + a(t)I,
t ⩾ 0, where Δ is the Dirichlet Laplacian on Lr(ℝn), I is the identity operator on Lr(ℝn)
and a ∈ L∞([0,∞)). Then we know that the evolution system (U(t, s))t⩾s⩾0 ⊆ L(Y)
generatedby the family (A(t))t⩾0 exists and is givenbyU(t, t) := I for all t ⩾ 0and (6.96)
for t > s ⩾ 0, where the corresponding kernel K(t, s,u, v) is given through (6.97). It is
clear that, for every τ ∈ ℝn, we have (6.98). Furthermore, under certain assumptions, a
unique mild solution of the abstract Cauchy problem (𝜕/𝜕t)u(t, x) = A(t)u(t, x), t > 0;
u(0, x) = F(x) is given by u(t, x) := [U(t,0)F](x), t ⩾ 0, x ∈ ℝn. Suppose now that
F : ℝn → ℂ is Stepanov (p⃗,ℝn)-almost periodic. Let 1/p⃗ + 1/q⃗ = 1, and let t > 0 be
fixed. Then there exists a finite real constant ct > 0 such that, for every t, τ ∈ ℝn and
u ∈ Ω, we have

u(t, t + u + τ) − u(t, t + u)


=

∫
ℝn

[K(t,0, t + u + τ, v) − K(t,0, t + u, v)]F(v) dv


=

∫
ℝn

K(t,0, t + u + τ, v + τ)F(v + τ) dv − ∫
ℝn

K(t,0, t + u, v)F(v) dv


=

∫
ℝn

K(t,0, t + u, v)[F(v + τ) dv − F(v)] dv


⩽ ct ∫
ℝn

e−
|t+u−v|2

4t |F(v + τ) − F(v)| dv

= ct ∑
k∈ℤn
∫
[0,1]n

e−
|t+u−v−k|2

4t |F(k + v + τ) − F(k + v)| dv

⩽ ct ∑
k∈ℤn

e
− |t+u−⋅−k|

2
4t Lq⃗([0,1]n)

F(k + ⋅ + τ) − F(k + ⋅)
Lp⃗([0,1]n)

⩽ ct ∑
k∈ℤn

e
− |t+u−⋅−k|

2
4t L∞([0,1]n)

F(k + ⋅ + τ) − F(k + ⋅)
Lp⃗([0,1]n).
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If τ ∈ ℝn satisfies ‖F(t+ ⋅+τ)−F(t+ ⋅)‖Lp⃗([0,1]n) < ε for all t ∈ ℝ
n, then the above implies

u(t, t + u + τ) − u(t, t + u)
 ⩽ ctε ∑

k∈ℤn

e
− |t+u−⋅−k|

2
4t L∞([0,1]n), t ∈ ℝn, u ∈ Ω.

A very simple computation involving the Cauchy–Schwartz inequality shows that

e
− |t+u−⋅−k|

2
4t L∞([0,1]n) ⩽ e

− |t−k|
2−4√n|t−k|
4t , t ∈ ℝn, k ∈ ℤn, u ∈ Ω,

so that

u(t, t + u + τ) − u(t, t + u)
 ⩽ ctε ∑

k∈ℤn
e−
|t−k|2−4√n|t−k|

4t , t ∈ ℝn, u ∈ Ω. (9.10)

Since the function defined by the above series is continuous in the variable t ∈ ℝn,
there exists a finite real numberMt ⩾ 1 such that

∑
k∈ℤn

e−
|t−k|2−4√n|t−k|

4t ⩽ Mt , |t| ⩽ 1;

furthermore, if |t| > 1, then we have

∑
k∈ℤn

e−
|t−k|2−4√n|t−k|

4t ⩽ ∑
k∈ℤn

e−
|k|2−2|k||t|+|t|2−4√n|k|−4√n|t|

4t

⩽ e−
|t|2−4√n|t|

4t ∑
k∈ℤn

e−
|k|2−2|k|−4√n||k|

4t ,

which simply implies along with the estimate (9.10) that the function x → u(t, x),
x ∈ ℝn is Bohr almost periodic in the usual sense since it is continuous.

Slowly oscillating and remotely c-almost periodic type functions inℝn

Thematerial presented here is a part of our recent joint research study [661] with V. Ku-
mar. We start this part by introducing the following notion (see also [82, Definition
4.2.1, p. 247] for a slightly different notion of a one-dimensional slowly oscillating func-
tion, and [902] for the notion of a slowly oscillating function f : [0,∞) → ℂ at 0 and
+∞):

Definition 9.0.13. Let c ∈ ℂ∖{0}, 0 ̸= I ⊆ ℝn,𝔻 ⊆ I ⊆ ℝn and the set𝔻 be unbounded.
Define

AI := {ω ∈ ℝ
n ∖ {0} : ω + I ⊆ I}.

Then we say that a continuous function F : I × X → Y is (𝔻,ℬ)-slowly oscillating if
and only if for each B ∈ ℬ and ω ∈ AI , we have

lim
|t|→+∞,t∈𝔻

F(t + ω; x) − F(t; x)
Y = 0, uniformly in x ∈ B. (9.11)
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In other words, a continuous function F : I × X → Y is (𝔻,ℬ)-slowly oscillating
if and only if F(⋅; ⋅) is (S,𝔻,ℬ)-asymptotically (ω, 1)-periodic for all ω ∈ AI . Clearly, we
have kAI ⊆ AI for all k ∈ ℕ.

If X ∈ ℬ, then we omit the term “ℬ” from the notation and, if𝔻 = I, then we omit
the term “𝔻” from the notation; for example, if𝔻 = I and F : I → Y is (𝔻,ℬ)-slowly
oscillating with X = {0}, then we simply say that the function F(⋅) is slowly oscillating.

We would like to note that it is not so logical to study the class of (𝔻,ℬ, c)-slowly
oscillating functions by replacing the term ‖F(t+ω; x)−F(t; x)‖Y in (2.4.29) by the term
‖F(t + ω; x) − cF(t; x)‖Y , where c ∈ ℂ ∖ {0}. In actual fact, we have the following result
which is clearly applicable if𝔻 = I = [0,∞)n or𝔻 = I = ℝn.

Proposition 9.0.14. Let c ∈ ℂ∖{0}, 0 ̸= I ⊆ ℝn,𝔻 ⊆ I ⊆ ℝn and the set𝔻beunbounded.
Suppose that AI ⊆ 2AI and ω′ +𝔻 ⊆ 𝔻 for all ω′ ∈ AI/2. Then the following hold:
(i) If a continuous function F : I × X → Y is (𝔻,ℬ, c)-slowly oscillating, then F ∈

C0,𝔻,ℬ(I × X : Y).
(ii) If, in addition to the above, we have ω + 𝔻 ⊆ 𝔻 for all ω ∈ AI , then a continuous

function F : I×X → Y is (𝔻,ℬ, c)-slowly oscillating if and only if F ∈ C0,𝔻,ℬ(I×X : Y).

Proof. To prove (i), suppose thatω′ ∈ AI and B ∈ ℬ; then there existsω ∈ AI such that
ω′ = 2ω. We have (t ∈ I; x ∈ B):

F(t + ω′; x) − c2F(t; x) = F(t + 2ω; x) − c2F(t; x)
= [F(t + 2ω; x) − cF(t + ω; x)] + c[F(t + ω; x) − cF(t; x)].

The prescribed assumption (AI/2) +𝔻 ⊆ 𝔻 implies t + ω ∈ 𝔻, t ∈ 𝔻 and

lim
|t|→+∞,t∈𝔻

F(t + ω
′; x) − c2F(t; x)Y = 0, uniformly in x ∈ B.

Subtracting the terms in the above limit equality and the limit equality (9.11), with the
number ω replaced therein with the number ω′, we get

lim
|t|→+∞,t∈𝔻

(c
2 − c) ⋅ F(t; x)Y = 0, uniformly in x ∈ B.

This immediately implies (i) since c ̸= 1. To prove (ii), it suffices to apply (i) and observe
that the assumption ω +𝔻 ⊆ 𝔻 for all ω ∈ AI implies

lim
|t|→+∞,t∈𝔻

F(t + ω; x)
Y = 0, uniformly in x ∈ B.

Concerning the notion of a (𝔻,ℬ)-slowly oscillating function, we would like to
note that we do not require any kind of boundedness of the function F(⋅; ⋅) here. In
the classical approach, developed by D. Sarason [904] for the functions of form f :
[0,∞) → ℂ, the boundedness of the function f (⋅) is required a priori, which is not

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



610 | 9 Notes and appendices to Part II

a direct consequence of definition since the function f (t) := tα, t ⩾ 0 satisfies (9.11)
if α ∈ (0, 1); the boundedness is obtained by applying the function ei⋅ after that (in
other words, the function t → eit

α
, t ⩾ 0 is slowly oscillating in the sense of [904],

for any α ∈ (0, 1)). It is also worth noting that the global boundedness of the function
f (⋅) has not been used in the proof of [904, Proposition 1], and that the argumenta-
tion contained in the proof of this theorem can serve to deduce the following result in
the multi-dimensional setting; we will include all details of the proof for the sake of
completeness.

Proposition 9.0.15. Suppose that 0 ̸= I ⊆ ℝn is an unbounded, closed set and the func-
tion F : I → Y is slowly oscillating. Suppose, further, that the following condition holds:
(DS1) For every r > 0 and δ > 0, for every points t, t′ ∈ I ∖ Ir with |t − t′| < δ, and for

every point z ∈ (AI + t− t′)∪ (AI + t′− t), there exists ηz > 0 such that B(z, ηz) ⊆ AI .
Here, Ir ≡ {t ∈ I : |t| ⩽ r} (r > 0).

Then the function F(⋅) is uniformly continuous.

Proof. Suppose that the function F(⋅) is not uniformly continuous. Since the set I is
closed, the set I ∩ B(0, r) is compact for all positive real numbers r > 0; hence, the
following holds:
(DS2) There exists a positive real number ε > 0 such that, for every positive real

numbers δ > 0 and r > 0, there exist t, t′ ∈ I ∖ Ir such that |t − t′| < δ and
‖F(t) − F(t′)‖Y > ε.

Using conditions (DS1) and (DS2), as well as the fact that the function F(⋅) is slowly
oscillating, we can inductively construct the sequences (ωk) in AI , (tk) in I and (ηk) in
(0,∞) such that limk→+∞ ηk = 0, limk→∞ |tk | = +∞, B(ωk , ηk) ⊆ B(ωk+1, ηk+1) ⊆ AI ,
k ∈ ℕ and ‖F(tk) − F(tk + t)‖Y ⩾ ε/2, provided k ∈ ℕ and t ∈ B(ωk , ηk); it is only
worth noting here that, in each step of this construction, we can choose the point
ωk+1 to be ωk + (tk − t′k) or ωk + (tk′ − tk), where the points tk and t′k are already cho-
sen points from I with sufficiently large absolute values, satisfying additionally that
‖F(tk)−F(t′k)‖Y > ε and |tk

′−tk | ⩽ 1/k. Due to the Cantor theorem, there exists a unique
number t′ ∈ ⋂k∈ℕ B(ωk , ηk). This implies ‖F(tk)−F(tk + t′)‖Y ⩾ ε/2 for all k ∈ ℕ, which
is a contradiction since the function F(⋅) is slowly oscillating and t′ ∈ AI .

Using this result, the interested reader may simply transfer the statement of [904,
Proposition 2] to the higher dimensions, as well; details can be left to the interested
reader. For more details about the life and professional work of D. Sarason, we refer
the reader to the communication paper [465] by S. R. Garcia.

We continue by observing that, in the infinite-dimensional setting, there exists a
bounded, uniformly continuous, slowly oscillating function F : [0,∞) → Y whose
range is not relatively compact in Y ; see e. g., Example 2.4.25.

The following notion is also meaningful.
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Definition 9.0.16. Let𝔻j ⊆ I ⊆ ℝn and the set𝔻j be unbounded (1 ⩽ j ⩽ n). Define

BI := {(ω1, . . . ,ωn) ∈ (ℝ ∖ {0})
n : ωjej + I ⊆ I for all j ∈ ℕn}.

Thenwe say that a continuous function F : I×X → Y is (ℬ, (𝔻j)j∈ℕn )-slowly oscillating
if and only if for each (ω1, . . . ,ωn) ∈ BI and j ∈ ℕn we have

lim
|t|→+∞,t∈𝔻j

F(t + ωjej; x) − F(t; x)
Y = 0, uniformly in x ∈ B.

In other words, a continuous function F : I × X → Y is (ℬ, (𝔻j)j∈ℕn )-slowly oscil-
lating if and only if F(⋅; ⋅) is (S,ℬ)-asymptotically (ωj, 1,𝔻j)j∈ℕn -periodic for all tuples
(ω1, . . . ,ωn) ∈ BI . Clearly, we have kBI ⊆ BI for all k ∈ ℕ.

In our previous work, we have investigated the following topics in connec-
tion with (S,𝔻,ℬ)-asymptotically (ω, c)-periodic functions and (S,ℬ)-asymptotically
(ωj, cj,𝔻j)j∈ℕn -periodic functions:
(i) the invariance under the operation of uniform convergence,
(ii) the convolution invariance,
(iii) the invariance under reflections at zero,
(iv) the translation invariance,
(v) the pointwise products with the scalar-valued functions of the same type, etc.

All these statements can be simply reformulated for the notion introduced in Defini-
tion 9.0.13 and Definition 9.0.16 (with c = 1; cj = 1 for all j ∈ ℕn). We will skip all
applications based on the use of results concerning the above-mentioned topics, like
those established to d’Alembert formula and the heat equation in ℝn.

Concerning the usual class of one-dimensional slowly oscillating functions, we
would like to note that the statement of [221, Lemma 2.1], which has recently been es-
tablished by D. Brindle in his doctoral dissertation and which plausibly holds for uni-
formly integrable resolvent operator families under consideration, and the statement
of [259, Theorem 3.9] with k = 0, which has recently been proved by Y.-K. Chang and
Y. Wei, can be used to profile important results concerning the invariance of slowly
oscillating property under the actions of finite convolution products and the actions
of infinite convolution products, respectively (the multi-dimensional analogues can
be deduced without any substantial difficulties). Such results enable one to analyze
the existence and uniqueness of slowly oscillating solutions for various classes of the
abstract Volterra integro-differential equations considered in [631].

Now we would like to state some relations between quasi-asymptotical c-almost
periodicity and remote c-almost periodicity. Let us take a closer look at the equa-
tions (7.32) and (7.33). We first observe that it is completely irrelevant whether we will
write that there exists a finite real numberM(ε, τ) > 0 such that (7.32) holds, or more
concisely,

lim sup
|t|→+∞,t∈𝔻

sup
x∈B

F(t + τ; x) − cF(t; x)
Y ⩽ ε, (9.12)
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i. e.,

lim
s→+∞

sup
|t|⩾s,t∈𝔻;x∈B

F(t + τ; x) − cF(t; x)
Y ⩽ ε.

It is also very simple to show that it is completely irrelevant whether we will write that
there exists a finite real numberM(ε, τ) > 0 such that (7.33) holds, or more concisely,

lim
k→+∞

lim sup
|t|→+∞,t∈𝔻

sup
x∈B

F(t + τk ; x) − cF(t; x)
Y = 0,

i. e.,

lim
k→+∞

lim
s→+∞

sup
|t|⩾s,t∈𝔻;x∈B

F(t + τk ; x) − cF(t; x)
Y = 0.

The special case c = 1, X ∈ ℬ and 𝔻 = I = I′ = ℝn has been considered in
[588, 647, 652], where a 𝔻-quasi-asymptotically Bohr (ℬ, I′, c)-almost periodic func-
tion is simply called quasi-asymptotically almost periodic. In this case, the above con-
sideration shows that the notion of quasi-asymptotical almost periodicity is equiva-
lent with the notion of remote almost periodicity considered by F. Yang and C. Zhang
in [1054, Definition 1.1; (1) and (3)]; see also the pioneering paper [903], where D. Sara-
son has analyzed the complex-valued remotely almost periodic functions defined on
the real line, and the paper [1081], where C. Zhang and L. Jiang have analyzed the class
of remotely almost periodic sequences (see also [864]).

As our former analyses show (see also the research article [1042] by R. Xie and
C. Zhang), a quasi-asymptotically almost periodic function F : ℝn → ℂ need not be
uniformly continuous, so that the notion introduced in [1054, Definition 1.1; (2)] is not
satisfactory to a certain extent (see also S. Zhang, D. Piao [1085, Definition 2.1] and
the first sentence after [1054, Definition 1.1], where the authors have assumed a pri-
ori that a remotely almost periodic function F : ℝn → X is uniformly continuous).
It is our strong belief that it is much better to analyze both: the general classes of
𝔻-quasi-asymptotically Bohr (ℬ, I′, c)-almost periodic type functions which are not
uniformly continuous on ℬ and the corresponding classes of𝔻-quasi-asymptotically
Bohr (ℬ, I′, c)-almost periodic type functions which are uniformly continuous onℬ (in
a certain sense).

Definition 9.0.17. Suppose that F : I × X → Y is a continuous function.
(i) It is said that F(⋅; ⋅) is 𝔻-remotely (ℬ, I′, c)-almost periodic if and only if F(⋅; ⋅) is
𝔻-quasi-asymptotically Bohr (ℬ, I′, c)-almost periodic and for each B ∈ ℬ the
function F(⋅; ⋅) is uniformly continuous on I × B; that is,

(∀B ∈ ℬ) (∀ε > 0) (∃δ > 0) (∀t′, t′′ ∈ I) (∀x′, x′′ ∈ B)
(t
′ − t′′ +

x − x
′ < δ ⇒

F(t
′; x′) − F(t′′; x′′)Y < ε).
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(ii) It is said that F(⋅; ⋅) is𝔻-remotely (ℬ, I′, c)-uniformly recurrent if and only if F(⋅; ⋅)
is 𝔻-quasi-asymptotically Bohr (ℬ, I′, c)-uniformly recurrent and for each B ∈ ℬ
the function F(⋅; ⋅) is uniformly continuous on I × B.

(iii) It is said that F(⋅; ⋅) is 𝔻-remotely (ℬ, I′, c)-almost periodic of type 1 if and only if
F(⋅; ⋅) is𝔻-quasi-asymptotically Bohr (ℬ, I′, c)-almost periodic and

(∀B ∈ ℬ) (∀ε > 0) (∃δ > 0) (∀t′, t′′ ∈ I) (∀x ∈ B)
(t
′ − t′′ < δ ⇒

F(t
′; x) − F(t′′; x)Y < ε). (9.13)

(iv) It is said that F(⋅; ⋅) is𝔻-remotely (ℬ, I′, c)-uniformly recurrent of type 1 if and only
if F(⋅; ⋅) is 𝔻-quasi-asymptotically Bohr (ℬ, I′, c)-uniformly recurrent and (9.13)
holds.

It is clear that any 𝔻-remotely (ℬ, I′, c)-almost periodic (𝔻-remotely (ℬ, I′, c)-
uniformly recurrent) function is 𝔻-remotely (ℬ, I′, c)-almost periodic of type 1 (𝔻-re-
motely (ℬ, I′, c)-uniformly recurrent) of type 1. The converse statement holds provided
that the function F(⋅; ⋅) is Lipshitzian with respect to the second argument.

Proposition 9.0.18. Suppose that F : I × X → Y is a continuous function and for each
set B ∈ ℬ there exists a finite real constant LB > 0 such that

F(t; x
′) − F(t; x′′)Y ⩽ LB

x
′ − x′′, t ∈ I , x′, x′′ ∈ B. (9.14)

If F(⋅; ⋅) is𝔻-remotely (ℬ, I′, c)-almost periodic of type 1 (𝔻-remotely (ℬ, I′, c)-uniformly
recurrent of type 1), then F(⋅; ⋅) is 𝔻-remotely (ℬ, I′, c)-almost periodic (𝔻-remotely
(ℬ, I′, c)-uniformly recurrent).

Proof. Let the set B ∈ ℬ be given and let LB > 0 satisfy (9.14). The proof is a simple
consequence of the corresponding definitions and the following decomposition (t, t ∈
I; x′, x′′ ∈ B):

F(t
′; x′) − F(t′′; x′′)Y ⩽

F(t
′; x′) − F(t′; x′′)Y +

F(t
′; x′′) − F(t′′; x′′)Y

⩽ LB
x
′ − x′′ +

F(t
′; x′′) − F(t′′; x′′)Y .

Furthermore, we want to notice that we do not require any type of boundedness
of the function F(⋅) in Definition 7.3.14 and Definition 9.0.17; for example, an appli-
cation of the Lagrange mean value theorem shows that for each fixed real number
σ ∈ (0, 1) we have |(t + τ)σ − tσ | ⩽ τσtσ−1, t > 0, σ ⩾ 0, so that the function t → tσ,
t ⩾ 0 is remotely almost periodic in the sense of Definition 9.0.17, as we have already
discussed for slowly oscillating functions. In connection with the unboundedness of
the function F(⋅) in these definitions, we would like to note that an application of the
supremum formula for almost periodic functions implies that the unbounded func-
tion f (⋅), given by (2.28), is not quasi-asymptotically almost periodic in the sense of
Definition 7.3.14 and [588, Definition 3.3].
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If we denote byQ−AAPbuc(ℝn : Y) the space consisting of all bounded, uniformly
continuous quasi-asymptotically almost periodic functions F : ℝn → Y , thenweknow
from the foregoing that Q − AAPbuc(ℝn : Y) coincides with the space of all uniformly
continuous (usually, we assume this as a blank hypothesis) remotely almost periodic
functions ℛ𝒜𝒫(ℝn : Y). We know therefore that Q − AAPbuc(ℝn : ℂ) is exactly the
closed subalgebra ofCb(ℝn : ℂ)generatedby the space of all almost periodic functions
F : ℝn → ℂ and the space of all slowly oscillating functions F : ℝn → ℂ; this means
that, for every ε > 0 and for every F ∈ Q − AAPbuc(ℝn : ℂ), we can always find two
almost periodic functions Gi : ℝ

n → ℂ (i = 1, 2) and two slowly oscillating functions
Qi : ℝ

n → ℂ (i = 1, 2) such that ‖F − [G1+Q1+G2Q2]‖∞ < ε [903, 1054]. The proof of this
important result is based on the use of certain results from the theory of C∗-algebras
concerning the Gelfand spaces of multiplicative linear functionals of ℛ𝒜𝒫(ℝn : ℂ);
it could be very enticing to extend this result for the functions defined on the general
regions I ⊆ ℝn.

The results obtained in [1082, Proposition 2.1, Proposition 2.2] provide new char-
acterizations of bounded, uniformly continuous quasi-asymptotically almost periodic
functions F : ℝn → Y , while [1082, Proposition 2.3] and [1085, Proposition 2.3] pro-
vide new characterizations of bounded, uniformly continuous quasi-asymptotically
almost periodic functions F : ℝ → Y . On the other hand, the results obtained in
[588, Theorem 3.1, Theorem 3.2, Proposition 3.4], the composition principles obtained
in [588, Theorem 3.3, Theorem 3.4] and the result obtained in [647, Proposition 2.15]
provide new characterizations of remotely (c-)almost periodic functions F : I → Y ,
I ⊆ ℝ (it is worth noting that [588, Proposition 3.4(ii)] can be used to substantially
shorten the proof of [1085, Lemma 3.6]), while the results obtained in [652, Proposition
3.2, Proposition 3.5, Theorem3.6] providenewcharacterizations of remotely (c-)almost
periodic functions F : I → Y , I ⊆ ℝn (and certain two-parameter analogues). For ex-
ample, using [588, Theorem 3.1(ii)] with c = 1 and our analysis contained in the final
paragraph of [652, Section 3], we immediately get

AA(ℝn : Y) ∩ℛ𝒜𝒫(ℝn : Y) = BUC(ℝn : Y),

where BUC(ℝn : Y) and AA(ℝn : Y) denote the space of all almost periodic functions
from ℝn into Y and the space of all almost automorphic functions from ℝn into Y ,
respectively.

From application point of view, it is incredibly important to emphasize that [588,
Proposition 3.4] can be used to profile some statements concerning the invariance of
remote c-almost periodicity under the actions of convolution products, since the uni-
form continuity is preserved under the actions of convolution products in the equa-
tions [588, (3.1); (3.2)]; these results seem to new and not considered elsewhere even
for the usual remote almost periodicity (c = 1). This enables one to provide numer-
ous important applications in the study of time-remotely almost periodic solutions
for various classes of the abstract (degenerate) Volterra integro-differential equations
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(see also [647, Section 4], where we have analyzed quasi-asymptotically almost peri-
odic solutions of the abstract nonautonomous differential equations of first order; the
question whether the obtained solutions are uniformly continuous is not so simple to
be answered and requires further analysis).

Let us observe that, if a continuous function F : I × X → Y is 𝔻-quasi-asymp-
totically (ℬ, I′i , c)-almost periodic for i = 1, 2, then the function F(⋅; ⋅) is 𝔻-quasi-
asymptotically (ℬ, I′1 ∪ I

′
2, c)-almost periodic (a similar statement holds for 𝔻-quasi-

asymptotical (ℬ, I′, c)-uniform recurrence). Keeping this in mind, the subsequent
result follows immediately from Proposition 7.3.17.

Proposition 9.0.19.
(i) Let𝔻 ⊆ I ⊆ ℝn and the set𝔻 be unbounded. If a continuous function F : I × X → Y

is (𝔻,ℬ)-slowly oscillating, then the function F(⋅; ⋅) is𝔻-quasi-asymptotically (ℬ, I′)-
almost periodic with

I′ := {ω ⋅ℕ;ω ∈ AI }.

(ii) Let 𝔻j ⊆ I ⊆ ℝn, the set 𝔻j be unbounded (1 ⩽ j ⩽ n) and for each tuple ω =
(ω1, . . . ,ωn) ∈ BI the set𝔻ω consisting of all tuples t ∈ 𝔻n such that t+∑

n
i=j+1 ωiei ∈

𝔻j for all j ∈ ℕn−1 be unbounded in ℝn. Suppose that the set 𝒟 ≡ ⋂ω∈BI 𝔻ω is
unbounded,

I′ := {ω ⋅ℕ;ω ∈ BI ∩ I},

and c := ∏nj=1 cj. If F : I ×X → Y is (ℬ, (𝔻j)j∈ℕn )-slowly oscillating, then the function
F(⋅; ⋅) is𝔻-quasi-asymptotically (ℬ, I′)-almost periodic.

It is clear that every slowly oscillating function F : I → Y , where I is [0,∞)n or
ℝn, is quasi-asymptotically almost periodic, which immediately follows from Propo-
sition 9.0.19.

Wewill not consider here the differentiation and integration ofmulti-dimensional
remotely c-almost periodic functions (see [265, Subsection 2.4] for the related re-
sults concerning multi-dimensional (R,ℬ)-almost periodic type functions, and [1085,
Proposition 2.3] for a result concerning the first anti-derivatives of one-dimensional
remotely almost periodic functions). Concerning the existence of mean value, the
boundedness of a remotely c-almost periodic function F(⋅) is almost inevitable to be
assumed in order to ensure the existence of finite mean value of F(⋅). We feel it is our
duty to emphasize that the proof of [1085, Proposition 2.4], a statement which consid-
ers the existence and properties of mean value of one-dimensional remotely almost
periodic functions defined on the whole real line, is not correct and contains several
important mistakes:
1. The estimate directly after the equation [1085, (2.12)] is not correct since the term

“2G(l+s0)” has to bewritten here as “2G(2l+s0+a)”, which causes several serious
and unpleasant consequences for the remainder of the proof.

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



616 | 9 Notes and appendices to Part II

2. It is not clear the meaning of the number T0 in the equations [1085, (2.13)–(2.14)].
3. The existence of mean value, stated in the equation [1085, (2.15)], is given without

any reasonable explanation; see also the proof of [696, Theorem 1.3.1, pp. 32-34],
where the correct proof of the existence ofmean value is given for the usually con-
sidered class of almost periodic functions (besides these observations, we would
like to note that the uniform continuity of the function f (⋅) has not been used in
the proof of the above-mentioned proposition).

Keeping in mind these observations, it follows that the problem of existence or non-
existence of mean value of remotely almost periodic functions is still unsolved. In the
following example, we will prove the existence of a bounded, uniformly continuous
slowly oscillating function f : [0,∞) → c0 which does not have mean value, which
clearly marks that the calculations given in [1085, Proposition 2.4] are not true:

Example 9.0.20. Define f : [0,∞) → c0 by f (t) := (e−t/n)n∈ℕ, t ⩾ 0. In [221, Example
2.2], D. Brindle has proved that the function f (⋅) is bounded, uniformly continuous
and slowly oscillating (albeit we have found some minor typographical errors in this
example, the obtained conclusions are correct; we can use the inequality 1 − e−x ⩽ x,
x ⩾ 0 here). If we assume that the limit

lim
t→+∞

1
t

t

∫
0

f (s) ds

exists in c0, then it can be simply approved that this limit has to be equal to the zero
sequence, so that we would have

lim
t→+∞

sup
n∈ℕ
[
n
t
(1 − e−(t/n))] = 0. (9.15)

If we assume that t ⩾ 1 and t ∈ [n, n + 1) for some integer n ∈ ℕ, then we have

n
t
(1 − e−(t/n)) ⩾ n

n + 1
(1 − e−(n/n)) ⩾ 1

2
(1 − e−1)

and therefore

sup
n∈ℕ
[
n
t
(1 − e−(t/n))] ⩾ 1

2
(1 − e−1), t ⩾ 1,

which clearly contradicts (9.15).

The interested reader may try to construct an example of a bounded, uniformly
continuous slowly oscillating function f : [0,∞) → ℂ without mean value (it is our
strong belief that such a function really exists; see also [221, Section 2.2], [222, 223, 379,
380]).
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At the end of this part, we would like to point out that we will not consider here
the extensions ofmulti-dimensional (c-)almost periodic type functions.Without going
into full details, let us only note that we can construct many different extensions of a
slowly oscillating function F : I → Y to the whole Euclidean space ℝn; for example,
if a slowly oscillating function f : [0,∞) → Y is given in advance, we can extend it
linearly to the interval [−r,0], where r > 0 is an arbitrary real number, and after that
we can extend the obtained function by zero outside the interval [−r,∞).

Now we will analyze some application of our results from this part.
1. In [1082, Theorem 3.4], C. Zhang and L. Jiang have analyzed remotely almost pe-

riodic solutions of the perturbed heat equation

ut =
m+n
∑
i=1
[uxixi + bi(x, t)uxi] − c(x, t)u = f (x, t), (x, t) ∈ ℝ

n+m
T ;

u(x,0) = φ(x), x ∈ ℝn+m, (9.16)

following themethod proposed byA. Friedman [454]; see also the boundary value
problem considered in [1054, Lemma 3.3], which can be also reconsidered in our
context. Since [1082, Lemma 3.1] (see also the proof of [1082, Proposition 2.41])
and [1082, Corollary 3.2, Lemma 3.3] can be reformulated for multi-dimensional
remotely c-almost periodic functions, the argumentation contained in the proof
of [1082, Theorem 3.4] shows that the following holds (we define the spaces
ℛBUCc(ℝn ×ℝmT ) andℛBUCc(ℝn+m) similarly to [1082], with the use of difference
⋅ − c⋅ in place of difference ⋅ − ⋅).

Theorem 9.0.21. If the functions f (x, t), bi(x, t), 𝜕bi/𝜕xj(x, t) (j = 1, . . . ., n+m) and c(x, t)
belong to the space ℛBUCc(ℝn × ℝmT ) and the functions φ, 𝜕φ/𝜕xj belong to the space
ℛBUCc(ℝn+m), then there exists a unique solution u(x, t) of (9.16) which can be written
as a finite sum of functions belonging to the spaceℛBUCc(ℝn × ℝmT ).

Let us also point out that the statement of [1082, Proposition 2.2] does not hold
for remotely c-almost periodic functions unless c = 1. We will not analyze the inverse
parabolic problems here.
2. The convolution invariance of multi-dimensional quasi-asymptotically c-almost

periodic functions has been analyzed in Theorem 7.3.19. We want also to note that
the uniform continuity of the function F(⋅) in the formulation of this theorem im-
plies the uniform continuity of the function (h ∗ F)(⋅), as can be simply shown;
using this observation, we can simply reconsider the application to the ill-posed
abstract Cauchy problems (see the related part of Subsection 8.1.6) for remotely
c-almost periodic functions.

3. Consider again the Richard–Chapman equation (5.5) with an external perturba-
tion f (⋅). We need the following auxiliary lemma,which generalizes [1054, Lemma
3.5] (see also [757, Lemma 4]).
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Lemma 9.0.22. Suppose that α > 0, the functions a : ℝ → [α,∞) and f : ℝ → ℝ are
slowly oscillating. Then also the function

t → F(t) ≡
t

∫
−∞

e−∫
t
s a(r) drf (s) ds, t ∈ ℝ

is slowly oscillating.

Proof. Letω ∈ ℝ∖ {0}. The proof that the function F(t) is slowly oscillating as t → −∞
follows from the existence of a sufficiently large number t0 > 0 such that |a(t + ω) −
a(t)| + |f (t + ω) − f (t)| < ε provided that |t| > t0, and from the following calculation:

F(t + ω) − F(t)


=


0

∫
−∞

e−∫
t
s+t a(r+ω) drf (t + s + ω) ds −

0

∫
−∞

e−∫
t
s+t a(r) drf (t + s) ds



⩽
0

∫
−∞

e−∫
t
s+t a(r+ω) dr f (t + s + ω) − f (t + s)

 ds

+ ‖f ‖∞

0

∫
−∞

e
−∫

t
s+t a(r+ω) dr − e−∫

t
s+t a(r) dr  ds

⩽ (ε/α) + ‖f ‖∞

0

∫
−∞

eαs1 − e
∫
t
s+t[a(r+ω)−a(r)] dr  ds

⩽ (ε/α) + ‖f ‖∞

0

∫
−∞

eαs


t

∫
s+t

[a(r + ω) − a(r)] dr

e|∫

t
s+t[a(r+ω)−a(r)] dr| ds

⩽ (ε/α) + ‖f ‖∞ε
0

∫
−∞

|s|e(α+ε)s ds = (ε/α) + ‖f ‖∞ε(α + ε)
2, t < −t0.

The proof that the function F(t) is slowly oscillating as t → +∞ is a little incorrect
in [1054, Lemma 3.5] but we can apply a trick from [1080, Remark 2.2] here. Strictly
speaking, we can use the same decomposition and calculation as above but we need
to divide first the interval of integration (−∞,0] into two subintervals (−∞,−M] and
[−M,0], whereM > 0 is a sufficiently large real number such that ∫0−∞ e

αs ds < ε/2.

Keeping in mind Lemma 9.0.22, the fact that the space of real-valued slowly oscil-
lating functions is closed under pointwise products and sums, as well as the fact that
for each positive slowly oscillating function f : ℝ → (0,∞) and for each real number
r > 0 the function f r : ℝ → (0,∞) is also slowly oscillating, we can repeat verbatim
the argumentation contained in the proof of Theorem 5.0.18 in order to see that the
following result holds true.
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Theorem 9.0.23. Suppose that the hypotheses (H1)–(H3) hold. Then the equation (5.5)
has a unique slowly oscillating solution ϕ∗(t) satisfying γ−1/θ ⩽ ϕ∗(t) ⩽ ω−1/θ for all
t ∈ ℝ.

Homogenization in algebras with mean value, generalized Besicovitch spaces and
applications
There are numerous recent research studies regarding homogenization in algebras
with mean value, generalized Besicovitch spaces and their applications. In this
section, we will briefly explain the main ideas of papers [1030] and [1031] by J. L.
Woukeng, only.

Homogenization in algebraswithmean value, generalizedBesicovitch spaces and
their applications are investigated in [1031].We say that a closed, translation invariant
subalgebra A of the C∗-algebra of bounded uniformly continuous functions BUC(ℝn)
is an algebra with mean value if and only if A contains all constants and satisfies the
requirement that each element of A has a mean value in the following sense: For each
u ∈ A, the sequence (uε)ε>0 (where uε(x) = u(x/ε1(ε)), x ∈ ℝn) weakly ∗-converges in
L∞(ℝn) to some constant functionM(u) ∈ ℂ as ε → 0+, and ε1(⋅) is a positive function
satisfying limε→0+ ε1(ε) = 0.

Endowed with the sup-norm topology, A is a commutative C∗-algebra with iden-
tity. By Am we denote the space of all elements ψ ∈ A such that Dαψ ∈ A for each
multi-index α ∈ ℕn0 with |α| ⩽ m (m ∈ ℕ0). We endow A with the norm ‖ψ‖m :=
supx∈ℝn ,|α|⩽m |Dαψ(x)| (ψ ∈ Am). By A∞ we denote the projective limit of spaces Am as
m → +∞. Furthermore, by BpA we denote the Besicovitch space associated to A, i. e.,
the closure of A with respect to the Besicovitch seminorm

‖u‖p := (lim sup
l→+∞

1
(2l)n
∫

l[−1,1]n

u(x)

p dx)

1/p
.

Then BpA is a complete seminormed vector space and BqA ⊆ B
p
A if 1 ⩽ p ⩽ q < +∞. By

B∞A we denote the space of all functions ψ(⋅) which belongs to the intersection of all
spaces BpA when 1 ⩽ p < +∞ and satisfies [ψ]∞ := sup1⩽p<+∞ ‖ψ‖p < ∞. Let us note
that B∞A is a complete seminormed space as well as that the spaces BpA for 1 ⩽ p ⩽ +∞
are not in general Fréchet spaces since they are not separated in general. The main
features of these spaces are:
(i) The Gelfand transform 𝒢 : A→ C(Δ(A)) can be continuously extended to a unique

continuous linear mapping, denoted by the same symbol, of BpA into Lp(Δ(A)),
which induces an isometric isomorphism 𝒢1 of B

p
A/𝒩 := ℬ

p
A onto L

p(Δ(A)), where
𝒩 := {u ∈ BpA : 𝒢(u) = 0}. Here, Δ(A) denotes the spectrum of A.

(ii) The mean value M defined initially on A, extends by continuity to a positive
continuous linear form, denoted by the same symbol, on BpA satisfying M(u(⋅)) =
M(u(⋅ + a)) for all a ∈ ℝn and ‖u‖p = [M(|u|p)]1/p.
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In [1031], the author has used the theory of strongly continuous n-parameter groups to
build a framework for solving random homogenization problems. The starting point
is the fact that the expression

T(x) : ℬp
A → ℬp

A, T(x)(u +𝒩 ) := u(⋅ + x) +𝒩 for u ∈ BpA

defines an n-parameter group of isometries (T(x))x∈ℝn . A compactness result for Young
measures in the algebras with mean is also proved and an important achievement in
the study of the homogenization problem associatedwith a stochastic Ladyzhenskaya
model for incompressible viscous flow is presented. Introverted algebras with mean
value and their applications have been analyzed in [1030]. We start by recalling that
the spectrumΔ(A) is topologizedwith the usual Gelfand topology,which is the relative
weak∗ topology induced on Δ(A) by σ(A′,A); as is well known, Δ(A) is a compact topo-
logical space. If A is the algebra of almost periodic functions, thenweknow that Δ(A) is
a compact topological abelian group; furthermore, if A is the algebra of periodic func-
tions, then we know that Δ(A) is topologically homeomorphic to the n-dimensional
torus 𝕋n.

In [1031], the author has investigated many intriguing questions about the prop-
erties of topological space Δ(A) when A is a general algebra with mean value (almost
nothing has been known before 2014 with regards to this issue). Among many other
clarifications, the author has proved the following:
(i) If the algebra A is introverted (see [777] for the notion), then Δ(A) is a com-

pact topological semigroup; furthermore, if the multiplication defined on Δ(A)
is jointly continuous, then Δ(A) is a compact topological group.

(ii) If the algebra A is introverted, thenA is a subalgebra of theweakly almost periodic
functions; furthermore, if the multiplication in Δ(A) is jointly continuous, then A
is a subalgebra of the almost periodic functions.

(iii) If the algebra A is introverted, then the kernel K(Δ(A)) of Δ(A) is a compact topo-
logical group, and themean value on A can be identified as the Haar integral over
K(Δ(A)).

As an application, the author has examined the homogenization of the following pa-
rameterized Wilson–Cowan model with delay

𝜕uε(x, t)
𝜕t
= −uε(x + a, t) + ∫

ℝn

Kε(x − ξ )f (ξ /ε, uε(ξ , t)) dξ in ℝnT ≡ ℝ
n × (0,T);

uε(x,0) = u
0(x), x ∈ ℝn.

Here, a ∈ ℝn is fixed, uε(⋅, ⋅) denotes the electrical activity level field, f (⋅) the fir-
ing rate function and Kε the connectivity kernel. The author has assumed that
K ∈ 𝒦(ℝn : A), where A is an introverted algebra with mean value on ℝn, is nonnega-
tive and ∫ℝn K

ε(x) dx ⩽ 1 as well as that f : ℝn ×ℝ→ ℝ is a nonnegative Carathéodory
function satisfying certain conditions.
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We refer the reader to [247, 248, 397, 555, 812–814, 868, 898, 964, 1029] for
many other nontrivial applications to the partial differential equations established
by J. L. Woukeng and his collaborators.

Almost automorphic functions on semi-topological groups
The first systematic study of almost automorphic functions on topological groups was
conducted byW.A. Veech in [993, 994] (see also the papers [870] by A. Reich and [976]
by R. Terras). Following P. Milnes [772], who considered only the scalar-valued case,
we say that a continuous function f : G → Y , where G is a (semi-)topological group, is
almost automorphic if and only if for any sequence (n′i ) inG there exists a subsequence
(ni) of (n′i ) such that the joint limit limi,j f (nin−1j t) = f (t) exists for all t ∈ G. It is clear
thatℝn×X is a semi-topological groupaswell as that thenotionof (RX,ℬ)-multi-almost
automorphy can be extended in this rather general framework.

In this section, we will briefly explain the main ideas and results about almost
automorphic functions on semi-topological groups established by P. Milnes in [772];
wewill also remind the reader of some known results about almost automorphic func-
tions on topological groups obtained by other authors (there is a vast literature about
topological groups and their generalizations;wewill only refer the reader to the recent
book [789] edited by S. A. Morris and the references cited therein).

LetG be a topological spacewhich is also amultiplicative group. Thenwe say that
G is a semi-topological space if and only if the mappings s → st and s → ts from G
into G are continuous for all t ∈ G; furthermore, G is called a topological group if, in
addition to the above, the mapping (s, t) → st−1 from G × G into G is continuous. By
𝒥 we denote the topology on G and by Cb(G : Y) we denote the space of all bounded
continuous functions f : G → Y equipped with the sup-norm ‖ ⋅ ‖∞. We say that:
(i) a subset D of a semi-topological group G is left relatively dense if and only if there

exists a finite set of elements {si : 1 ⩽ i ⩽ N} in G such that G ⊆ ⋃Ni=1(siD);
(ii) a topological group G is totally bounded if and only if for every non-empty neigh-

borhood V in G we have the existence of a finite set of elements {si : 1 ⩽ i ⩽ N} in
G such that G ⊆ ⋃Ni=1(siV).

For any s ∈ G, the left (right) translate fs (f s) of f is defined through fs(⋅) := f (s⋅) (fs(⋅) :=
f (⋅s)). A subspace C of Cb(G : Y) is called translation invariant if and only if fs and f s

belong to C for every f ∈ C. If f : G → Y and g : G → Y are given functions and (αi)i∈I ,
resp. (ni)i∈ℕ, is a net in G, resp. a sequence in G, then we write Tαf = g if and only if
the net of left translations fαi , resp. fni , converges pointwise on G. The right uniformly
continuous subspace RUCb(G : Y) of Cb(G : Y) is defined as the set of all functions
f ∈ Cb(G : Y) such that ‖f αi − f s‖ tends to zero whenever (αi)i∈I is a net in G converging
to s ∈ G; the left continuous subspace LUCb(G : Y) of Cb(G : Y) is defined similarly.

Definition 9.0.24. Let G be a semi-topological group. Then we say that a continuous
function f : G → Y is left almost automorphic if and only if every net α′ ⊆ G has a
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subnet α ⊆ G such that Tαf = g and Tα−1g = f , where α
−1 = (α−1i ); the notion of right

almost automorphy is introduced similarly, with the analogous conditions involving
right translates. By LAA(G : Y) and RAA(G : Y) we denote the family of all left al-
most automorphic functions on G and the right almost automorphic functions on G,
respectively.

A function f ∈ Cb(G : Y) is called almost periodic if and only if the set of all
left translations {fs : s ∈ G} is relatively compact in Cb(G : Y). Any almost periodic
function f ∈ Cb(G : Y) is left almost automorphic and satisfies the requirement that
the convergence in Tαf = g is uniform on G, along with the convergence in Tα−1g = f .
We know that LAA(G : Y) and RAA(G : Y) are translation invariant spaces and that
the limit Tαf = g need not be continuous on G.

Suppose, for the time being, that Y = ℂ. Then we know that, if G is a Hausdorff
topological group that is complete in a left invariant metric or locally compact and
f ∈ Cb(G : ℂ), then we can always find a net (αi)i∈I such that Tαf = g is discontinuous
on G if and only if f ∉ RUCb(G : ℂ). In what follows, it will be said that the Bohr
topology B on a semi-topological group G is that topology which has the property that
a subbase of B-neighborhoods of a point s ∈ G forms the sets {t ∈ G : |f (t) − f (s)| < ε},
where f : G → ℂ is almost periodic and ε > 0; a function f : G → ℂ is said to be
Bohr continuous if and only if the function f (⋅) is continuous for the Bohr topology.
Due to [772, Theorem 8], a necessary and sufficient condition for a topological group
G to be totally bounded is that every continuous complex-valued function onG is Bohr
continuous.

For the scalar-valued functions, [772, Theorem 13] states that for any continuous
function f : G → ℂ, where G is a semi-topological group, the following conditions are
mutually equivalent:
1. (2.) f (⋅) is left (right) almost automorphic.
3. f (⋅) is Bohr continuous.
4. For every ε > 0 and for every finite set N ⊆ G, there exists a left relatively

dense subset D ⊆ G ∋ D−1D ⊆ {s ∈ G : supr,t∈N |f (rst) − f (rt)| < ε}.
5. (6.) For every ε > 0 and t ∈ G, there exists a left relatively dense subset D ⊆

G ∋ D−1D ⊆ {s ∈ G : supr,t∈N |f (ts) − f (t)| < ε} (D ⊆ G ∋ D−1D ⊆ {s ∈ G :
supr,t∈N |f (st) − f (t)| < ε}).

7. For every net α ⊆ G, there exists a subnet α ⊆ G such that the joint limit
limi,j f (sαiα−1j t) = f (st) for all s, t ∈ G.

8. (9.) For every net α ⊆ G, there exists a subnet α ⊆ G such that the joint limit
limi,j f (αiα−1j t) = f (t) for all t ∈ G (limi,j f (tαiα−1j ) = f (t) for all t ∈ G).

10. For every sequence n′ ⊆ G, there exists a subnet n ⊆ G such that the joint
limit limi,j f (snin−1j t) = f (st) for all s, t ∈ G

11. (12.) For every sequence n′ ⊆ G, there exists a subnet n ⊆ G such that the joint
limit limi,j f (nin−1j t) = f (t) for all t ∈ G (limi,j f (tnin−1j ) = f (t) for all t ∈ G).

 EBSCOhost - printed on 2/10/2023 3:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



9 Notes and appendices to Part II | 623

Although itwouldbe veryunpleasant to clarify the validity or non-validity of the above
conditions for the vector-valued functions f : G → Y , especially for those Banach
spaces Y which are not separable (see e. g., the proof of [772, Theorem 10]), we would
like to note that some equivalence relations clarified above hold for the vector-valued
functions f : G → Y on topological groups G. For example, B. Basit has proved, in
[121, Theorem 1.2], that a bounded continuous function f : G → Y is almost auto-
morphic if and only if f (⋅) is Levitan almost periodic (see [121, Definition 1.1]), which
immediately implies the equivalence of [1. (2.)] and [8. (9.)] in this framework. Keeping
this inmind, it seems reasonable to further explore the following notion (more details
will appear somewhere else; see also the section regarding Weyl multi-dimensional
almost automorphic functions, where this approach has been essentially followed).

Definition 9.0.25. Suppose that F : ℝn × X → Y is a continuous function as well as
that for each B ∈ ℬ and (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R we haveWB,(bk) : B → P(P(ℝn)) and

PB,(bk) ∈ P(P(ℝ
n × B)). Then we say that F(⋅; ⋅) is:

(i) jointly (R,ℬ)-multi-almost automorphic if and only if for every B ∈ ℬ and for
every sequence (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exists a subsequence (bkl =

(b1kl , b
2
kl , . . . , b

n
kl )) of (bk) such that

lim
(l,m)→+∞

F(t − (b1kl , . . . , b
n
kl) + (b

1
km , . . . , b

n
km); x) = F(t; x), (9.17)

pointwise for all x ∈ B and t ∈ ℝn;
(ii) jointly (R,ℬ,Wℬ,R)-multi-almost automorphic if and only if for every B ∈ ℬ and

for every sequence (bk = (b1k , b
2
k , . . . , b

n
k)) ∈ R there exists a subsequence (bkl =

(b1kl , b
2
kl , . . . , b

n
kl )) of (bk) such that (9.17) holds pointwise for all x ∈ B and t ∈ ℝ

n as
well as that for each x ∈ B the convergence in (9.17) is uniform in t for any set of
the collectionWB,(bk)(x);

(iii) jointly (R,ℬ,Pℬ,R)-multi-almost automorphic if and only if for every B ∈ ℬ and
for every sequence (bk = (b1k , b

2
k , . . . , b

n
k)) ∈ R there exists a subsequence (bkl =

(b1kl , b
2
kl , . . . , b

n
kl )) of (bk) such that (9.17) holds pointwise for all x ∈ B and t ∈ ℝ

n as
well as that the convergence in (9.17) is uniform in (t; x) for any set of the collection
PB,(bk).

Arguing as above, it can be simply shown that any (R,ℬ)-multi-almost periodic
function F : ℝn × X → Y is jointly (R,ℬ,Pℬ,R)-multi-almost automorphic with Pℬ,R =
{{ℝn × B}}. We also have the following.

Proposition 9.0.26. Suppose that F : ℝn → Y is a c-uniformly recurrent function,where
the sequence (τk) satisfies limk→+∞ |τk | = +∞ and

lim
k→+∞

sup
t∈ℝn
F(t + τk) − F(t)

Y = 0.
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LetR denote the collection consisting of the sequence (τk) and all its subsequences. Then
the function F(⋅) is jointly (R,PR)-multi-almost automorphic with PR being the singleton
{ℝn}.

Proof. Let (τ′k) be any subsequence of (τk). Then we have

lim
k→+∞

sup
t∈ℝn
F(t − τ

′
k ; x) − c

−1F(t; x)Y = 0.

The final conclusion simply follows from the above estimates, the corresponding def-
inition of joint (R,PR)-multi-almost automorphy and the decomposition:

sup
t∈ℝn
F(t − τ

′
l + τ
′
m; x) − F(t; x)

Y

⩽ sup
t∈ℝn
F(t − τ

′
l + τ
′
m; x) − cF(t − τ

′
l ; x)
Y + sup

t∈ℝn
cF(t − τ

′
l ; x) − F(t; x)

Y

= sup
t∈ℝn
F(t − τ

′
l + τ
′
m; x) − cF(t − τ

′
l ; x)
Y + |c| sup

t∈ℝn
F(t − τ

′
l ; x) − c

−1F(t; x)Y .

Furthermore, we can similarly introduce and analyze the notions of joint (RX ,ℬ)-
multi-almost automorphy, joint (RX ,ℬ,Wℬ,RX )-multi-almost automorphy and joint
(RX ,ℬ,Pℬ,RX )-multi-almost automorphy (see Definition 9.0.25).

The results on approximations of almost automorphic functions, proved by
W.A. Veech [993, 994] on topological groups, continue to hold on semi-topological
groups without any essential changes. For example, by [772, Theorem 18], we know
that a continuous function f : G → Y is almost automorphic if and only if there exists
a uniformly bounded sequence (fk) of almost periodic functions fk : G → ℂ (k ∈ ℕ)
such that, for every s ∈ G and ε > 0, we have the existence of a Bohr neighborhood V
of s and an integer k0 ∈ ℕ such that, for very integer k ⩾ k0, we have |fk(t)−f (t)| < ε for
all t ∈ V . See also [993, Subsection 6.2] for some elementary facts regarding analytic
almost automorphic functions defined on the additive group of integers ℤ.

The complete characterization of those semi-topological groups for which the
equality BUC(G : ℂ) = AA(G : ℂ) holds is given in [772, Theorem 23]. In [772, Theorem
25], P. Milnes has shown that, if G is arbitrary semi-topological group and f : G → Y is
almost automorphic, then f (⋅) is almost periodic if and only if Tαf ∈ AA(G : ℂ) when-
ever it exists, extending thus a result of W.A. Veech known on topological groups
before that. It is also worth noting that R. Terras [976] has constructed an almost
automorphic function f : ℤ→ ℝ for which the limit

lim
N→+∞

1
2N + 1

N
∑
i=−N

f (i)

does not exist. It is well known that this example can be transferred to the continuous
setting as well as that there exists an almost automorphic function f : ℝ → ℝ such
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that the limit

ℳ(f ) := lim
t→+∞

1
2t

t

∫
−t

f (s) ds

does not exist.
Concerning the notion of almost automorphy and the notion of almost periodic-

ity for functions defined on (semi-)topological groups, it should be noted that some
definitions for introducing these notions do not require a priori the continuity or mea-
surability of the function f : G → Y under consideration; see the research articles by
H.W. Davies [332] and W.A. Veech [995] for some results obtained in this direction.

Concerning differences of almost periodic and almost automorphic functions de-
fined on topological groups, with values in general locally convex spaces, we refer the
reader to the research articles [123] by B. Basit, M. Emam and [382] by S. D. Dimitrova,
D. B. Dimitrov. Mention should also be made of Ref. [831] by Y. Péraire.
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575
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–Wright 11, 12

Gδ-set 286
Gauss transform of Fourier hyperfunctions 305
Gaussian semigroup 357, 397, 426, 587
Gelfand topology 620
Gelfand transform 619
generalized Besicovitch space 619
Green’s function XXVIII
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Hölder inequality 7, 90, 109
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hyperbolic evolution system XXVIII
hyperbolic integro-differential equations of

Gurtin–Pipkin type XIX
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introverted algebras with mean value 620
inverse Laplace transform 14

Jensen integral inequality 101

Kahane’s problem XXXVI
Kirchhoff formula 540

Lebesgue spaces with variable exponent 6
Leggett–Williams fixed point theorem 301
Li–Yorke chaos 301
logarithmic potential 406
Luxemburg norm 6

matrix-valued almost periodic functions XXXV
mean Li–Yorke chaos 301
Menshov representation theorem 27
Menshov spectrum 27
modular ergodicity in Stepanov Orlicz sense

300
modular norm 431
multi-dimensional Bochner transform 373
multiparameter C-regularized semigroup 594
multiparameter integrated semigroup 594
multiparameter semigroup 593
–generator 593
multivalued linear operator
– closed 8
– integer powers 8
– inverse 8
–kernel 8

–MLO 8
–product 8
– sum 8
multivariate trigonometric polynomials 595
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Newtonian potential 405
norm ergodicity in Stepanov Orlicz sense 300
normal space of distributions 214
normed space
– strictly convex 298(ω, c)-almost periodic distribution 216(ω, c)-bounded distribution 215(ω, c)-mean 203
one-dimensional fast Fourier transform 597
one-species intraspecific competition 51
operator
– adjoint 1
– closed 1
– completely continuous 23
– linear 1
– recurrent 285
– (uniformly) rigid 285
orthants in ℝn 450
orthogonal complement 300

part of operator 1
Petrovsky hyperbolicity XXXVIII
Poisson formula 541
principal term 24
property
– I 312
– I0 312

quasi-periodic properties of fractional integrals
87

Radon–Nikodym derivative 35
range 1
removable singularity at zero 9
resolvent family for (4.24) 231
resolvent set 1
Riemann–Liouville fractional integral 10, 87
Riemannian metric 592

sampling of multivariate functions on rank-1
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satisfactorily uniform set 33
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– Lp⃗(Λ : X) 602
–Morse–Transue 299
–Musielak–Orlicz modular 299
–
.
𝒟L∞ω,c 212

–PAP(ℝ, X , μ) 36
–PAPSpU(ℝ, X , μ) 36
–perfect 23
–SΩ,p(u),ϕ,G,10,𝔻,ℬ (Λ × X : Y ) 432
–SΩ,p(u),ϕ,G,20,𝔻,ℬ (Λ × X : Y ) 432
–SΩ,p(u),ϕ,G0,𝔻,ℬ (Λ × X : Y ) 432
–SΩ,p(u)0,𝔻,ℬ (Λ × X : Y ) 388
–SΩ,p(u)0,𝔻 (Λ : Y ) 388
–Sato 304
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spectral synthesis 22
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strongly continuous semigroup 4
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strongly modular ergodicity in Stepanov Orlicz
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supremum formula 22, 73
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–Sarason XXXV
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