
C
o
p
y
r
i
g
h
t

2
0
1
2
.

P
r
i
n
c
e
t
o
n

U
n
i
v
e
r
s
i
t
y

P
r
e
s
s
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) -
printed on 2/10/2023 4:07 PM via
AN: 310271 ; Amy N. Langville, Carl D. Meyer.; Google's
PageRank and Beyond : The Science of Search Engine
Rankings
Account: ns335141

Google’s PageRank and Beyond:
The Science of Search Engine Rankings

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Google’s PageRank and Beyond:
The Science of Search Engine Rankings

Amy N. Langville and Carl D. Meyer

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Contents

Preface ix

Chapter 1. Introduction to Web Search Engines 1

1.1 A Short History of Information Retrieval 1

1.2 An Overview of Traditional Information Retrieval 5

1.3 Web Information Retrieval 9

Chapter 2. Crawling, Indexing, and Query Processing 15

2.1 Crawling 15

2.2 The Content Index 19

2.3 Query Processing 21

Chapter 3. Ranking Webpages by Popularity 25

3.1 The Scene in 1998 25

3.2 Two Theses 26

3.3 Query-Independence 30

Chapter 4. The Mathematics of Google’s PageRank 31

4.1 The Original Summation Formula for PageRank 32

4.2 Matrix Representation of the Summation Equations 33

4.3 Problems with the Iterative Process 34

4.4 A Little Markov Chain Theory 36

4.5 Early Adjustments to the Basic Model 36

4.6 Computation of the PageRank Vector 39

4.7 Theorem and Proof for Spectrum of the Google Matrix 45

Chapter 5. Parameters in the PageRank Model 47

5.1 The α Factor 47

5.2 The Hyperlink Matrix H 48

5.3 The Teleportation Matrix E 49

Chapter 6. The Sensitivity of PageRank 57

6.1 Sensitivity with respect to α 57

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

vi CONTENTS

6.2 Sensitivity with respect to H 62

6.3 Sensitivity with respect to vT 63

6.4 Other Analyses of Sensitivity 63

6.5 Sensitivity Theorems and Proofs 66

Chapter 7. The PageRank Problem as a Linear System 71

7.1 Properties of (I − αS) 71

7.2 Properties of (I − αH) 72

7.3 Proof of the PageRank Sparse Linear System 73

Chapter 8. Issues in Large-Scale Implementation of PageRank 75

8.1 Storage Issues 75

8.2 Convergence Criterion 79

8.3 Accuracy 79

8.4 Dangling Nodes 80

8.5 Back Button Modeling 84

Chapter 9. Accelerating the Computation of PageRank 89

9.1 An Adaptive Power Method 89

9.2 Extrapolation 90

9.3 Aggregation 94

9.4 Other Numerical Methods 97

Chapter 10. Updating the PageRank Vector 99

10.1 The Two Updating Problems and their History 100

10.2 Restarting the Power Method 101

10.3 Approximate Updating Using Approximate Aggregation 102

10.4 Exact Aggregation 104

10.5 Exact vs. Approximate Aggregation 105

10.6 Updating with Iterative Aggregation 107

10.7 Determining the Partition 109

10.8 Conclusions 111

Chapter 11. The HITS Method for Ranking Webpages 115

11.1 The HITS Algorithm 115

11.2 HITS Implementation 117

11.3 HITS Convergence 119

11.4 HITS Example 120

11.5 Strengths and Weaknesses of HITS 122

11.6 HITS’s Relationship to Bibliometrics 123

11.7 Query-Independent HITS 124

11.8 Accelerating HITS 126

11.9 HITS Sensitivity 126

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

CONTENTS vii

Chapter 12. Other Link Methods for Ranking Webpages 131

12.1 SALSA 131

12.2 Hybrid Ranking Methods 135

12.3 Rankings based on Traffic Flow 136

Chapter 13. The Future of Web Information Retrieval 139

13.1 Spam 139

13.2 Personalization 142

13.3 Clustering 142

13.4 Intelligent Agents 143

13.5 Trends and Time-Sensitive Search 144

13.6 Privacy and Censorship 146

13.7 Library Classification Schemes 147

13.8 Data Fusion 148

Chapter 14. Resources for Web Information Retrieval 149

14.1 Resources for Getting Started 149

14.2 Resources for Serious Study 150

Chapter 15. The Mathematics Guide 153

15.1 Linear Algebra 153

15.2 Perron–Frobenius Theory 167

15.3 Markov Chains 175

15.4 Perron Complementation 186

15.5 Stochastic Complementation 192

15.6 Censoring 194

15.7 Aggregation 195

15.8 Disaggregation 198

Chapter 16. Glossary 201

Bibliography 207

Index 219

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

Purpose
As teachers of linear algebra, we wanted to write a book to help students and the general

public appreciate and understand one of the most exciting applications of linear algebra
today—the use of link analysis by web search engines. This topic is inherently interesting,
timely, and familiar. For instance, the book answers such curious questions as: How do
search engines work? Why is Google so good? What’s a Google bomb? How can I
improve the ranking of my homepage in Teoma?

We also wanted this book to be a single source for material on web search engine rank-
ings. A great deal has been written on this topic, but it’s currently spread across numerous
technical reports, preprints, conference proceedings, articles, and talks. Here we have
summarized, clarified, condensed, and categorized the state of the art in web ranking.

Our Audience
We wrote this book with two diverse audiences in mind: the general science reader

and the technical science reader. The title echoes the technical content of the book, but
in addition to being informative on a technical level, we have also tried to provide some
entertaining features and lighter material concerning search engines and how they work.

The Mathematics
Our goal in writing this book was to reach a challenging audience consisting of the

general scientific public as well as the technical scientific public. Of course, a complete
understanding of link analysis requires an acquaintance with many mathematical ideas.
Nevertheless, we have tried to make the majority of the book accessible to the general sci-
entific public. For instance, each chapter builds progressively in mathematical knowledge,
technicality, and prerequisites. As a result, Chapters 1-4, which introduce web search and
link analysis, are aimed at the general science reader. Chapters 6, 9, and 10 are particularly
mathematical. The last chapter, Chapter 15, “The Mathematics Guide,” is a condensed but
complete reference for every mathematical concept used in the earlier chapters. Through-
out the book, key mathematical concepts are highlighted in shaded boxes. By postponing
the mathematical definitions and formulas until Chapter 15 (rather than interspersing them
throughout the text), we were able to create a book that our mathematically sophisticated
readers will also enjoy. We feel this approach is a compromise that allows us to serve both
audiences: the general and technical scientific public.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

x PREFACE

Asides
An enjoyable feature of this book is the use of Asides. Asides contain entertaining news

stories, practical search tips, amusing quotes, and racy lawsuits. Every chapter, even the
particularly technical ones, contains several asides. Often times a light aside provides the
perfect break after a stretch of serious mathematical thinking. Brief asides appear in shaded
boxes while longer asides that stretch across multiple pages are offset by horizontal bars
and italicized font. We hope you enjoy these breaks—we found ourselves looking forward
to writing them.

Computing and Code
Truly mastering a subject requires experimenting with the ideas. Consequently, we have

incorporated Matlab code to encourage and jump-start the experimentation process. While
any programming language is appropriate, we chose Matlab for three reasons: (1) its matrix
storage architecture and built-in commands are particularly suited to the large sparse link
analysis matrices of this text, (2) among colleges and universities, Matlab is a market leader
in mathematical software, and (3) it’s very user-friendly. The Matlab programs in this book
are intended to be instruction, not production, code. We hope that, by playing with these
programs, readers will be inspired to create new models and algorithms.

Acknowledgments
We thank Princeton University Press for supporting this book. We especially enjoyed

working with Vickie Kearn, the Senior Editor at PUP. Vickie, thank you for displaying just
the right combination of patience and gentle pressure. For a book with such timely mate-
rial, you showed amazing faith in us. We thank all those who reviewed our manuscripts
and made this a better book. Of course, we also thank our families and friends for their
encouragement. Your pride in us is a powerful driving force.

Dedication
We dedicate this book to mentors and mentees worldwide. The energy, inspiration, and

support that is sparked through such relationships can inspire great products. For us, it
produced this book, but more importantly, a wonderful synergistic friendship.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter One

Introduction to Web Search Engines

1.1 A SHORT HISTORY OF INFORMATION RETRIEVAL

Today we have museums for everything—the museum of baseball, of baseball players, of
crazed fans of baseball players, museums for world wars, national battles, legal fights, and
family feuds. While there’s no shortage of museums, we have yet to find a museum ded-
icated to this book’s field, a museum of information retrieval and its history. Of course,
there are related museums, such as the Library Museum in Boras, Sweden, but none con-
centrating on information retrieval. Information retrieval1 is the process of searching
within a document collection for a particular information need (called a query). Although
dominated by recent events following the invention of the computer, information retrieval
actually has a long and glorious tradition. To honor that tradition, we propose the cre-
ation of a museum dedicated to its history. Like all museums, our museum of information
retrieval contains some very interesting artifacts. Join us for a brief tour.

The earliest document collections were recorded on the painted walls of caves. A
cave dweller interested in searching a collection of cave paintings to answer a particular
information query had to travel by foot, and stand, staring in front of each painting. Un-
fortunately, it’s hard to collect an artifact without being gruesome, so let’s fast forward a
bit.

Before the invention of paper, ancient Romans and Greeks recorded information on
papyrus rolls. Some papyrus artifacts from ancient Rome had tags attached to the rolls.
These tags were an ancient form of today’s Post-it Note, and make an excellent addition to
our museum. A tag contained a short summary of the rolled document, and was attached
in order to save readers from unnecessarily unraveling a long irrelevant document. These
abstracts also appeared in oral form. At the start of Greek plays in the fifth century B.C.,
the chorus recited an abstract of the ensuing action. While no actual classification scheme
has survived from the artifacts of Greek and Roman libraries, we do know that another
elementary information retrieval tool, the table of contents, first appeared in Greek scrolls
from the second century B.C. Books were not invented until centuries later, when necessity
required an alternative writing material. As the story goes, the Library of Pergamum (in
what is now Turkey) threatened to overtake the celebrated Library of Alexandria as the
best library in the world, claiming the largest collection of papyrus rolls. As a result, the
Egyptians ceased the supply of papyrus to Pergamum, so the Pergamenians invented an
alternative writing material, parchment, which is made from thin layers of animal skin. (In
fact, the root of the word parchment comes from the word Pergamum.) Unlike papyrus,

1The boldface terms that appear throughout the book are also listed and defined in the Glossary, which begins
on page 201.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

2 CHAPTER 1

parchment did not roll easily, so scribes folded several sheets of parchment and sewed them
into books. These books outlasted scrolls and were easier to use. Parchment books soon
replaced the papyrus rolls.

The heights of writing, knowledge, and documentation of the Greek and Roman
periods were contrasted with their lack during the Dark and Middle Ages. Precious few
documents were produced during this time. Instead, most information was recorded orally.
Document collections were recorded in the memory of a village’s best storyteller. Oral
traditions carried in poems, songs, and prayers were passed from one generation to the
next. One of the most legendary and lengthy tales is Beowulf, an epic about the adventures
of a sixth-century Scandinavian warrior. The tale is believed to have originated in the
seventh century and been passed from generation to generation through song. Minstrels
often took poetic license, altering and adding verses as the centuries passed. An inquisitive
child wishing to hear stories about the monster Grendel waited patiently while the master
storyteller searched his memory to find just the right part of the story. Thus, the result of the
child’s search for information was biased by the wisdom and judgement of the intermediary
storyteller. Fortunately, the invention of paper, the best writing medium yet, superior to
even parchment, brought renewed acceleration to the written record of information and
collections of documents. In fact, Beowulf passed from oral to written form around A.D.
1000, a date over which scholars still debate. Later, monks, the possessors of treasured
reading and writing skills, sat in scriptoriums working as scribes from sunrise to sunset.
The scribes’ works were placed in medieval libraries, which initially were so small that
they had no need for classification systems. Eventually the collections grew, and it became
common practice to divide the holdings into three groups: theological works, classical
authors of antiquity, and contemporary authors on the seven arts. Lists of holdings and
tables of contents from classical books make nice museum artifacts from the medieval
period.

Other document collections sprung up in a variety of fields. This dramatically ac-
celerated with the re-invention of the printing press by Johann Gutenberg in 1450. The
wealthy proudly boasted of their private libraries, and public libraries were instituted in
America in the 1700s at the prompting of Benjamin Franklin. As library collections grew
and became publicly accessible, the desire for focused search became more acute. Hierar-
chical classification systems were used to group documents on like subjects together. The
first use of a hierarchical organization system is attributed to the Roman author Valerius
Maximus, who used it in A.D. 30 to organize the topics in his book, Factorum ac dicto-
rum memorabilium libri IX (Nine Books of Memorable Deeds and Sayings). Despite these
rudimentary organization systems, word of mouth and the advice of a librarian were the
best means of obtaining accurate quality information for a search. Of course, document
collections and their organization expanded beyond the limits of even the best librarian’s
memory. More orderly ways of maintaining records of a collection’s holdings were de-
vised. Notable artifacts that belong in our information retrieval museum are a few lists
of individual library holdings, sorted by title and also author, as well as examples of the
Dewey decimal system (1872), the card catalog (early 1900s), microfilm (1930s), and the
MARC (MAchine Readable Cataloging) system (1960s).

These inventions were progress, yet still search was not completely in the hands of
the information seeker. It took the invention of the digital computer (1940s and 1950s) and
the subsequent inventions of computerized search systems to move toward that goal. The

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

INTRODUCTION TO WEB SEARCH ENGINES 3

first computerized search systems used special syntax to automatically retrieve book and
article information related to a user’s query. Unfortunately, the cumbersome syntax kept
search largely in the domain of librarians trained on the systems. An early representative
of computerized search such as the Cornell SMART system (1960s) [146] deserves a place
in our museum of information retrieval.

In 1989 the storage, access, and searching of document collections was revolution-
ized by an invention named the World Wide Web by its founder Tim Berners-Lee [79]. Of
course, our museum must include artifacts from this revolution such as a webpage, some
HTML, and a hyperlink or two. The invention of linked document collections was truly
original at this time, despite the fact that Vannevar Bush, once Director of the Office of
Scientific Research and Development, foreshadowed its coming in his famous 1945 essay,
“As We May Think” [43]. In that essay, he describes the memex, a futuristic machine
(with shocking similarity to today’s PC and Web) that mirrors the cognitive processes of
humans by leaving “trails of association” throughout document collections. Four decades
of progress later, remnants of Bush’s memex formed the skeleton of Berners-Lee’s Web. A
drawing of the memex (Figure 1.1) by a graphic artist and approved by Bush was included
in LIFE magazine’s 1945 publishing of Bush’s prophetic article.

Figure 1.1 Drawing of Vannevar Bush’s memex appearing in LIFE. Original caption read: “Memex
in the form of a desk would instantly bring files and material on any subject to the op-
erator’s fingertips. Slanting translucent screens supermicrofilm filed by code numbers.
At left is a mechanism which automatically photographs longhand notes, pictures, and
letters, then files them in the desk for future reference.”

The World Wide Web became the ultimate signal of the dominance of the Informa-
tion Age and the death of the Industrial Age. Yet despite the revolution in information
storage and access ushered in by the Web, users initiating web searches found themselves
floundering. They were looking for the proverbial needle in an enormous, ever-growing
information haystack. In fact, users felt much like the men in Jorge Luis Borges’ 1941
short story [35], “The Library of Babel”, which describes an imaginary, infinite library.

When it was proclaimed that the Library contained all books, the first im-
pression was one of extravagant happiness. All men felt themselves to be
the masters of an intact and secret treasure. There was no personal or world
problem whose eloquent solution did not exist in some hexagon.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

4 CHAPTER 1

. . . As was natural, this inordinate hope was followed by an excessive depres-
sion. The certitude that some shelf in some hexagon held precious books and
that these precious books were inaccessible seemed almost intolerable.

Much of the information in the Library of the Web, like that in the fictitious Library
of Babel, remained inaccessible. In fact, early web search engines did little to ease user
frustration; search could be conducted by sorting through hierarchies of topics on Yahoo, or
by sifting through the many (often thousands of) webpages returned by the search engine,
clicking on pages to personally determine which were most relevant to the query. Some
users resorted to the earliest search techniques used by ancient queriers—word of mouth
and expert advice. They learned about valuable websites from friends and linked to sites
recommended by colleagues who had already put in hours of search effort.

All this changed in 1998 when link analysis hit the information retrieval scene
[40, 106]. The most successful search engines began using link analysis, a technique that
exploited the additional information inherent in the hyperlink structure of the Web, to im-
prove the quality of search results. Web search improved dramatically, and web searchers
religiously used and promoted their favorite engines like Google and AltaVista. In fact, in
2004 many web surfers freely admit their obsession with, dependence on, and addiction
to today’s search engines. Below we include the comments [117] of a few Google fans
to convey the joy caused by the increased accessibility of the Library of the Web made
possible by the link analysis engines. Incidentally, in May 2004 Google held the largest
share of the search market with 37% of searchers using Google, followed by 27% using
the Yahoo conglomerate, which includes AltaVista, AlltheWeb, and Overture.2

• “It’s not my homepage, but it might as well be. I use it to ego-surf. I use
it to read the news. Anytime I want to find out anything, I use it.”—Matt
Groening, creator and executive producer, The Simpsons

• “I can’t imagine life without Google News. Thousands of sources from
around the world ensure anyone with an Internet connection can stay in-
formed. The diversity of viewpoints available is staggering.”—Michael
Powell, chair, Federal Communications Commission

• “Google is my rapid-response research assistant. On the run-up to a
deadline, I may use it to check the spelling of a foreign name, to acquire
an image of a particular piece of military hardware, to find the exact
quote of a public figure, check a stat, translate a phrase, or research the
background of a particular corporation. It’s the Swiss Army knife of
information retrieval.”—Garry Trudeau, cartoonist and creator, Doones-
bury

Nearly all major search engines now combine link analysis scores, similar to those
used by Google, with more traditional information retrieval scores. In this book, we record
the history of one aspect of web information retrieval. That aspect is the link analysis
or ranking algorithms underlying several of today’s most popular and successful search

2These market share statistics were compiled by comScore, a company that counted the number of searches
done by U.S. surfers in May 2004 using the major search engines. See the article at
http://searchenginewatch.com/reports/article.php/2156431.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://searchenginewatch.com/reports/article.php/2156431

INTRODUCTION TO WEB SEARCH ENGINES 5

engines, including Google and Teoma. Incidentally, we’ll add the PageRank link analysis
algorithm [40] used by Google (see Chapters 4-10) and the HITS algorithm [106] used by
Teoma (see Chapter 11) to our museum of information retrieval.

1.2 AN OVERVIEW OF TRADITIONAL INFORMATION RETRIEVAL

To set the stage for the exciting developments in link analysis to come in later chapters, we
begin our story by distinguishing web information retrieval from traditional informa-
tion retrieval. Web information retrieval is search within the world’s largest and linked
document collection, whereas traditional information retrieval is search within smaller,
more controlled, nonlinked collections. The traditional nonlinked collections existed be-
fore the birth of the Web and still exist today. Searching within a university library’s col-
lection of books or within a professor’s reserve of slides for an art history course—these
are examples of traditional information retrieval.

These document collections are nonlinked, mostly static, and are organized and cate-
gorized by specialists such as librarians and journal editors. These documents are stored in
physical form as books, journals, and artwork as well as electronically on microfiche, CDs,
and webpages. However, the mechanisms for searching for items in the collections are
now almost all computerized. These computerized mechanisms are referred to as search
engines, virtual machines created by software that enables them to sort through virtual
file folders to find relevant documents. There are three basic computer-aided techniques
for searching traditional information retrieval collections: Boolean models, vector space
models, and probabilistic models [14]. These search models, which were developed in
the 1960s, have had decades to grow, mesh, and morph into new search models. In fact,
as of June 2000, there were at least 3,500 different search engines (including the newer
web engines) [37], which means that there are possibly 3,500 different search techniques.
Nevertheless, since most search engines rely on one or more of the three basic models, we
describe these in turn.

1.2.1 Boolean Search Engines

The Boolean model of information retrieval, one of the earliest and simplest retrieval meth-
ods, uses the notion of exact matching to match documents to a user query. Its more refined
descendents are still used by most libraries. The adjective Boolean refers to the use of
Boolean algebra, whereby words are logically combined with the Boolean operators AND,
OR, and NOT. For example, the Boolean AND of two logical statements x and y means that
both x AND y must be satisfied, while the Boolean OR of these two statements means that
at least one of these statements must be satisfied. Any number of logical statements can be
combined using the three Boolean operators. The Boolean model of information retrieval
operates by considering which keywords are present or absent in a document. Thus, a doc-
ument is judged as relevant or irrelevant; there is no concept of a partial match between
documents and queries. This can lead to poor performance [14]. More advanced fuzzy set
theoretic techniques try to remedy this black-white Boolean logic by introducing shades of
gray. For example, a title search for car AND maintenance on a Boolean engine causes
the virtual machine to return all documents that use both words in the title. A relevant doc-
ument entitled “Automobile Maintenance” will not be returned. Fuzzy Boolean engines
use fuzzy logic to categorize this document as somewhat relevant and return it to the user.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

6 CHAPTER 1

The car maintenance query example introduces the main drawbacks of Boolean
search engines; they fall prey to two of the most common information retrieval problems,
synonymy and polysemy. Synonymy refers to multiple words having the same meaning,
such as car and automobile. A standard Boolean engine cannot return semantically related
documents whose keywords were not included in the original query. Polysemy refers to
words with multiple meanings. For example, when a user types bank as their query, does
he or she mean a financial center, a slope on a hill, a shot in pool, or a collection of objects
[24]? The problem of polysemy can cause many documents that are irrelevant to the user’s
actual intended query meaning to be retrieved. Many Boolean search engines also require
that the user be familiar with Boolean operators and the engine’s specialized syntax. For
example, to find information about the phrase iron curtain, many engines require quo-
tation marks around the phrase, which tell the search engine that the entire phrase should
be searched as if it were just one keyword. A user who forgets this syntax requirement
would be surprised to find retrieved documents about interior decorating and mining for
iron ore.

Nevertheless, variants of the Boolean model do form the basis for many search en-
gines. There are several reasons for their prevalence. First, creating and programming a
Boolean engine is straightforward. Second, queries can be processed quickly; a quick scan
through the keyword files for the documents can be executed in parallel. Third, Boolean
models scale well to very large document collections. Accommodating a growing collec-
tion is easy. The programming remains simple; merely the storage and parallel processing
capabilities need to grow. References [14, 75, 107] all contain chapters with excellent
introductions to the Boolean model and its extensions.

1.2.2 Vector Space Model Search Engines

Another information retrieval technique uses the vector space model [147], developed by
Gerard Salton in the early 1960s, to sidestep some of the information retrieval problems
mentioned above. Vector space models transform textual data into numeric vectors and ma-
trices, then employ matrix analysis3 techniques to discover key features and connections
in the document collection. Some advanced vector space models address the common text
analysis problems of synonymy and polysemy. Advanced vector space models, such as LSI
[64] (Latent Semantic Indexing), can access the hidden semantic structure in a document
collection. For example, an LSI engine processing the query car will return documents
whose keywords are related semantically (in meaning), e.g., automobile. This ability to
reveal hidden semantic meanings makes vector space models, such as LSI, very powerful
information retrieval tools.

Two additional advantages of the vector space model are relevance scoring and rel-
evance feedback. The vector space model allows documents to partially match a query by
assigning each document a number between 0 and 1, which can be interpreted as the like-
lihood of relevance to the query. The group of retrieved documents can then be sorted by
degree of relevancy, a luxury not possible with the simple Boolean model. Thus, vec-
tor space models return documents in an ordered list, sorted according to a relevance
score. The first document returned is judged to be most relevant to the user’s query.

3Mathematical terms are defined in Chapter 15, the Mathematics Chapter, and are italicized throughout.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

INTRODUCTION TO WEB SEARCH ENGINES 7

Some vector space search engines report the relevance score as a relevancy percentage.
For example, a 97% next to a document means that the document is judged as 97% rele-
vant to the user’s query. (See the Federal Communications Commission’s search engine,
http://www.fcc.gov/searchtools.html, which is powered by Inktomi, once known
to use the vector space model. Enter a query such as taxes and notice the relevancy score
reported on the right side.) Relevance feedback, the other advantage of the vector space
model, is an information retrieval tuning technique that is a natural addition to the vec-
tor space model. Relevance feedback allows the user to select a subset of the retrieved
documents that are useful. The query is then resubmitted with this additional relevance
feedback information, and a revised set of generally more useful documents is retrieved.

A drawback of the vector space model is its computational expense. At query time,
distance measures (also known as similarity measures) must be computed between each
document and the query. And advanced models, such as LSI, require an expensive singu-
lar value decomposition [82, 127] of a large matrix that numerically represents the entire
document collection. As the collection grows, the expense of this matrix decomposition
becomes prohibitive. This computational expense also exposes another drawback—vector
space models do not scale well. Their success is limited to small document collections.

Understanding Search Engines

The informative little book by Michael Berry and Murray Browne, Understanding
Search Engines: Mathematical Modeling and Text Retrieval [23], provides an
excellent explanation of vector space models, especially LSI, and contains several
examples and sample code. Our mathematical readers will enjoy this book and its
application of linear algebra algorithms in the context of traditional information
retrieval.

1.2.3 Probabilistic Model Search Engines

Probabilistic models attempt to estimate the probability that the user will find a particular
document relevant. Retrieved documents are ranked by their odds of relevance (the ratio
of the probability that the document is relevant to the query divided by the probability that
the document is not relevant to the query). The probabilistic model operates recursively
and requires that the underlying algorithm guess at initial parameters then iteratively tries
to improve this initial guess to obtain a final ranking of relevancy probabilities.

Unfortunately, probabilistic models can be very hard to build and program. Their
complexity grows quickly, deterring many researchers and limiting their scalability. Prob-
abilistic models also require several unrealistic simplifying assumptions, such as indepen-
dence between terms as well as documents. Of course, the independence assumption is
restrictive in most cases. For instance, in this document the most likely word to follow in-

formation is the word retrieval, but the independence assumption judges each word
as equally likely to follow the word information. On the other hand, the probabilistic
framework can naturally accommodate a priori preferences, and thus, these models do of-
fer promise of tailoring search results to the preferences of individual users. For example, a

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.fcc.gov/searchtools.html

8 CHAPTER 1

user’s query history can be incorporated into the probabilistic model’s initial guess, which
generates better query results than a democratic guess.

1.2.4 Meta-search Engines

There’s actually a fourth model for traditional search engines, meta-search engines, which
combines the three classic models. Meta-search engines are based on the principle that
while one search engine is good, two (or more) are better. One search engine may be great
at a certain task, while a second search engine is better at another task. Thus, meta-search
engines such as Copernic (www.copernic.com) and SurfWax (www.surfwax.com) were
created to simultaneously exploit the best features of many individual search engines.
Meta-search engines send the query to several search engines at once and return the re-
sults from all of the search engines in one long unified list. Some meta-search engines
also include subject-specific search engines, which can be helpful when searching within
one particular discipline. For example, Monster (www.monster.com) is an employment
search engine.

1.2.5 Comparing Search Engines

Annual information retrieval conferences, such as TREC [3], SIGIR, CIR [22] (for tradi-
tional information retrieval), and WWW [4] (for web information retrieval), are used to
compare the various information retrieval models underlying search engines and help the
field progress toward better, more efficient search engines. The two most common rat-
ings used to differentiate the various search techniques are precision and recall. Precision
is the ratio of the number of relevant documents retrieved to the total number of docu-
ments retrieved. Recall is the ratio of the number of relevant documents retrieved to the
total number of relevant documents in the collection. The higher the precision and recall,
the better the search engine is. Of course, search engines are tested on document collec-
tions with known parameters. For example, the commonly used test collection Medlars
[6], containing 5,831 keywords and 1,033 documents, has been examined so often that
its properties are well known. For instance, there are exactly 24 documents relevant to
the phrase neoplasm immunology. Thus, the denominator of the recall ratio for a user
query on neoplasm immunology is 24. If only 10 documents were retrieved by a search
engine for this query, then a recall of 10/24 = .416 is reported. Recall and precision
are information retrieval-specific performance measures, but, of course, when evaluating
any computer system, time and space are always performance issues. All else held con-
stant, quick, memory-efficient search engines are preferred to slower, memory-inefficient
engines. A search engine with fabulous recall and precision is useless if it requires 30
minutes to perform one query or stores the data on 75 supercomputers. Some other perfor-
mance measures take a user-centered viewpoint and are aimed at assessing user satisfaction
and frustration with the information system. A book by Robert Korfhage, Information Stor-
age and Retrieval [107], discusses these and several other measures for comparing search
engines. Excellent texts for information retrieval are [14, 75, 163].

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

www.copernic.com
www.surfwax.com
www.monster.com

INTRODUCTION TO WEB SEARCH ENGINES 9

1.3 WEB INFORMATION RETRIEVAL

1.3.1 The Challenges of Web Search

Tim Berners-Lee and his World Wide Web entered the information retrieval world in 1989
[79]. This event caused a branch that focused specifically on search within this new docu-
ment collection to break away from traditional information retrieval. This branch is called
web information retrieval. Many web search engines are built on the techniques of tradi-
tional search engines, but they differ in many important ways. We list the properties that
make the Web such a unique document collection. The Web is:

• huge,

• dynamic,

• self-organized, and

• hyperlinked.

The Web is indeed huge! In fact, it’s so big that it’s hard to get an accurate count of
its size. By January 2004, it was estimated that the Web contained over 10 billion pages,
with an average page size of 500KB [5]. With a world population of about 6.4 billion,
that’s almost 2 pages for each inhabitant. The early exponential growth of the Web has
slowed recently, but it is still the largest document collection in existence. The Berkeley
information project, “How Much Information,” estimates that the amount of information
on the Web is about 20 times the size of the entire Library of Congress print collection [5].
Bigger still, a company called BrightPlanet sells access to the so-called Deep Web, which
they estimate to contain over 92,000TB of data spread over 550 billion pages [1]. Bright-
Planet defines the Deep Web as the hundreds of thousands of publicly accessible databases
that create a collection over 500 times larger than the Surface Web. Deep webpages can
not be found by casual, routine surfing. Surfers must request information from a particular
database, at which point, the relevant pages are served to the user dynamically within a
matter of seconds. As a result, search engines cannot easily find these dynamic pages since
they do not exist before or after the query. However, Yahoo appears to be the first search
engine aiming to index parts of the Deep Web.

The Web is dynamic! Contrast this with traditional document collections which
can be considered static in two senses. First, once a document is added to a traditional
collection, it does not change. The books sitting on a bookshelf are well behaved. They
don’t change their content by themselves, but webpages do, very frequently. A study by
Junghoo Cho and Hector Garcia-Molina [52] in 2000 reported that 40% of all webpages in
their dataset changed within a week, and 23% of the .com pages changed daily. In a much
more extensive and recent study, the results of Fetterly et al. [74] concur. About 35% of
all webpages changed over the course of their study, and also pages that were larger in size
changed more often and more extensively than their smaller counterparts. Second, for the
most part, the size of a traditional document collection is relatively static. It is true that
abstracts are added to MEDLINE each year, but how many? Hundreds, maybe thousands.
These are minuscule additions by Web proportions. Billions of pages are added to the Web
each year. The dynamics of the Web make it tough to compute relevancy scores for queries
when the collection is a moving, evolving target.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

10 CHAPTER 1

The Web is self-organized! Traditional document collections are usually collected
and categorized by trained (and often highly paid) specialists. However, on the Web, any-
one can post a webpage and link away at will. There are no standards and no gatekeepers
policing content, structure, and format. The data are volatile; there are rapid updates, bro-
ken links, and file disappearances. One 2002 U.S. study reporting on “link rot” suggested
that up to 50% of URLs cited in articles in two information technology journals were in-
accessible within four years [1]. The data is heterogeneous, existing in multiple formats,
languages, and alphabets. And often this volatile, heterogeneous data is posted multiple
times. In addition, there is no editorial review process, which means errors, falsehoods,
and invalid statements abound. Further, this self-organization opens the door for sneaky
spammers who capitalize on the mercantile potential offered by the Web. Spammers was
the name originally given to those who send mass advertising emails. With one click of
the send button, spammers can send their advertising message to thousands of potential
customers in a matter of seconds. With web search and online retailing, this name was
broadened to include those using deceptive webpage creation techniques to rank highly in
web search listings for particular queries. Spammers resorted to using minuscule text font,
hidden text (white on a white background), and misleading metatag descriptions to fool
early web search engines (like those using the Boolean technique of traditional informa-
tion retrieval). The self-organization of the Web also means that webpages are created for
a variety of different purposes. Some pages are aimed at surfers who are shopping, others
at surfers who are researching. In fact, search engines must be able to answer many types
of queries, such as transactional queries, navigational queries, and informational queries.
All these features of the Web combine to make the job for web search engines Herculean.

Ah, but the Web is hyperlinked! This linking feature, the foundation of Vannevar
Bush’s memex, is the saving grace for web search engines. Hyperlinks make the new
national pastime of surfing possible. But much more importantly, they make focused, ef-
fective searching a reality. This book is about ways that web search engines exploit the
additional information available in the Web’s sprawling link structure to improve the qual-
ity of their search results. Consequently, we focus on just one aspect of the web information
retrieval process, but one we believe is the most exciting and important. However, the ad-
vantages resulting from the link structure of the Web did not come without negative side
effects. The most interesting side effects concern those sneaky spammers. Spammers soon
caught wind of the link analysis employed by major search engines, and immediately set
to work on link spamming. Link spammers carefully craft hyperlinking strategies in the
hope of increasing traffic to their pages. This has created an entertaining game of cat and
mouse between the search engines and the spammers, which many, the authors included,
enjoy spectating. See the asides on pages 43 and 52.

An additional information retrieval challenge for any document collection, but espe-
cially pertinent to the Web, concerns precision. Although the amount of accessible infor-
mation continues to grow, a user’s ability to look at documents does not. Users rarely look
beyond the first 10 or 20 documents retrieved [94]. This user impatience means that search
engine precision must increase just as rapidly as the number of documents is increasing.
Another dilemma unique to web search engines concerns their performance measurements
and comparison. While traditional search engines are compared by running tests on famil-
iar, well studied, controlled collections, this is not realistic for web engines. Even small
web collections are too large for researchers to catalog, count, and create estimates of the
precision and recall numerators and denominators for dozens of queries. Comparing two

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

INTRODUCTION TO WEB SEARCH ENGINES 11

search engines is usually done with user satisfaction studies and market share measures in
addition to the baseline comparison measures of speed and storage requirements.

1.3.2 Elements of the Web Search Process

This last section of the introductory chapter describes the basic elements of the web in-
formation retrieval process. Their relationship to one another is shown in Figure 1.2. Our
purpose in describing the many elements of the search process is twofold: first, it helps
emphasize the focus of this book, which is the ranking part of the search process, and sec-
ond, it shows how the ranking process fits into the grand scheme of search. Chapters 3-12
are devoted to the shaded parts of Figure 1.2, while all other parts are discussed briefly in
Chapter 2.

q
u

e
ry

-i
n

d
e

p
e

n
d

e
n

t

WWW
Crawler Module User

Indexing Module

Indexes

Query
Module

Ranking
Module

Content Index

Structure Index

Special-purpose indexes

Page Repository

Q
ue

ri
es

R
esults

Figure 1.2 Elements of a search engine

• Crawler Module. The Web’s self-organization means that, in contrast to traditional
document collections, there is no central collection and categorization organization.
Traditional document collections live in physical warehouses, such as the college’s
library or the local art museum, where they are categorized and filed. On the other
hand, the web document collection lives in a cyber warehouse, a virtual entity that
is not limited by geographical constraints and can grow without limit. However,
this geographic freedom brings one unfortunate side effect. Search engines must

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

12 CHAPTER 1

do the data collection and categorization tasks on their own. As a result, all web
search engines have a crawler module. This module contains the software that col-
lects and categorizes the web’s documents. The crawling software creates virtual
robots, called spiders, that constantly scour the Web gathering new information and
webpages and returning to store them in a central repository.

• Page Repository. The spiders return with new webpages, which are temporarily
stored as full, complete webpages in the page repository. The new pages remain in
the repository until they are sent to the indexing module, where their vital informa-
tion is stripped to create a compressed version of the page. Popular pages that are
repeatedly used to serve queries are stored here longer, perhaps indefinitely.

• Indexing Module. The indexing module takes each new uncompressed page and
extracts only the vital descriptors, creating a compressed description of the page that
is stored in various indexes. The indexing module is like a black box function that
takes the uncompressed page as input and outputs a “Cliffnotes” version of the page.
The uncompressed page is then tossed out or, if deemed popular, returned to the page
repository.

• Indexes. The indexes hold the valuable compressed information for each webpage.
This book describes three types of indexes. The first is called the content index.
Here the content, such as keyword, title, and anchor text for each webpage, is stored
in a compressed form using an inverted file structure. Chapter 2 describes the in-
verted file in detail. Further valuable information regarding the hyperlink structure
of pages in the search engine’s index is gleaned during the indexing phase. This
link information is stored in compressed form in the structure index. The crawler
module sometimes accesses the structure index to find uncrawled pages. Special-
purpose indexes are the final type of index. For example, indexes such as the image
index and pdf index hold information that is useful for particular query tasks.

The four modules above (crawler, page repository, indexers, indexes) and their cor-
responding data files exist and operate independent of users and their queries. Spiders
are constantly crawling the Web, bringing back new and updated pages to be indexed and
stored. In Figure 1.2 these modules are circled and labeled as query-independent. Unlike
the preceding modules, the query module is query-dependent and is initiated when a user
enters a query, to which the search engine must respond in real-time.

• Query Module. The query module converts a user’s natural language query into
a language that the search system can understand (usually numbers), and consults
the various indexes in order to answer the query. For example, the query module
consults the content index and its inverted file to find which pages use the query
terms. These pages are called the relevant pages. Then the query module passes the
set of relevant pages to the ranking module.

• Ranking Module. The ranking module takes the set of relevant pages and ranks
them according to some criterion. The outcome is an ordered list of webpages such
that the pages near the top of the list are most likely to be what the user desires.
The ranking module is perhaps the most important component of the search pro-
cess because the output of the query module often results in too many (thousands

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

INTRODUCTION TO WEB SEARCH ENGINES 13

of) relevant pages that the user must sort through. The ordered list filters the less
relevant pages to the bottom, making the list of pages more manageable for the user.
(In contrast, the similarity measures of traditional information retrieval often do not
filter out enough irrelevant pages.) Actually, this ranking which carries valuable,
discriminatory power is arrived at by combining two scores, the content score and
the popularity score. Many rules are used to give each relevant page a relevancy
or content score. For example, many web engines give pages using the query word
in the title or description a higher content score than pages using the query word in
the body of the page [39]. The popularity score, which is the focus of this book,
is determined from an analysis of the Web’s hyperlink structure. The content score
is combined with the popularity score to determine an overall score for each rele-
vant page [30]. The set of relevant pages resulting from the query module is then
presented to the user in order of their overall scores.

Chapter 2 gives an introduction to all components of the web search process, ex-
cept the ranking component. The ranking component, specifically the popularity score,
is the subject of this book. Chapters 3 through 12 provide a comprehensive treatment of
the ranking problem and its suggested solutions. Each chapter progresses in depth and
mathematical content.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Two

Crawling, Indexing, and Query Processing

Spiders are the building blocks of search engines. Decisions about the design of the crawler
and the capabilities of its spiders affect the design of the other modules, such as the index-
ing and query processing modules.

So in this chapter, we begin our description of the basic components of a web search
engine with the crawler and its spiders. We purposely exclude one component, the ranking
component, since it is the focus of this book and is covered in the remaining chapters.
The goals and challenges of web crawlers are introduced in section 2.1, and a simple
program for crawling the Web is provided. Indexing a collection of documents as enormous
as the Web creates special storage challenges (section 2.2), and also has search engines
constantly increasing the size of their indexes (see the aside on page 20). The size of
the Web makes the real-time processing of queries an astounding feat, and section 2.3
describes the structures and mechanisms that make this possible.

2.1 CRAWLING

The crawler module contains a short software program that instructs robots or spiders on
how and which pages to retrieve. The crawling module gives a spider a root set of URLs
to visit, instructing it to start there and follow links on those pages to find new pages.
Every crawling program must address several issues. For example, which pages should the
spiders crawl? Some search engines focus on specialized search, and as a result, conduct
specialized crawls, through only .gov pages, or pages with images, or blog files, etc. For
instance, Bernhard Seefeld’s search engine, search.ch, crawls only Swiss webpages and
stops at the geographical borders of Switzerland. Even the most comprehensive search
engine indexes only a small portion of the entire Web. Thus, crawlers must carefully select
which pages to visit.

How often should pages be crawled? Since the Web is dynamic, last month’s crawled
page may contain different content this month. Therefore, crawling is a never-ending pro-
cess. Spiders return exhausted, carrying several new and many updated pages, only to be
immediately given another root URL and told to start over. Theirs is an endless task like
Sisyphus’s uphill ball-rolling. However, some pages change more often than others, so a
crawler must decide which pages to revisit and how often. Some engines make this deci-
sion democratically, while others refresh pages in proportion to their perceived freshness
or importance levels. In fact, some researchers have proposed a crawling strategy that uses
the PageRank measure of Chapters 3 and 4 to decide which pages to update [31].

How should pages be crawled ethically? When a spider visits a webpage, it con-
sumes resources, such as bandwidth and hits quotas, belonging to the page’s host and the

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

16 CHAPTER 2

Internet at large. Like outdoor activists who try to “leave no trace,” polite spiders try to
minimize their impact. The Robots Exclusion Protocol was developed to define proper
spidering activities and punish obnoxious, disrespectful spiders. In fact, website adminis-
trators can use a robots.txt file to block spiders from accessing parts of their sites.

How should multiple spiders coordinate their activities to avoid coverage overlap?
One crawler can set several spiders loose on the Web, figuring parallel crawling can save
time and effort. However, an optimal crawling policy is needed to insure websites are not
visited multiple times, and thus significant overhead communication is required.

Regardless of the ways a crawling program addresses these issues, spiders return
with URLs for new or refreshed pages that need to be added to or updated in the search
engine’s indexes. We discuss one index in particular, the content index, in the next section.

Submitting a Site to Search Engines

Like a castaway stranded on a tiny island, many webpage authors worry that a
search engine spider might never find their webpage. This is certainly possible,
especially if the page is about an obscure topic, and contains little content and
few inlinks. Authors hosting a new page can check if spiders such as Googlebot
have visited their site by viewing their web server’s log files. Most search engines
have mechanisms to calm the fears of castaway authors. For example, Google
offers authors a submission feature. Every webpage author can submit his or
her site through a web form (http://www.google.com/addurl.html), which
adds the site to Google’s list of to-be-crawled URLs. While Google offers no
guarantees on if or when the site will be crawled, this service does help both site
authors and the Google crawler. Almost all major search engines offer a “Submit
Your Site” feature, although some require small fees in exchange for a listing,
featured listing, or sponsored listing in their index.

Spidering Hacks

Readers interested in programming their own special purpose crawler will find
the O’Reilly book, Spidering Hacks [93], useful. This book contains 100 tips and
tools for training a spider to do just about anything. With these tricks, your spider
will be able to do more than just sit, roll over, and play dead; he’ll go find news
stories about an actor, retrieve stock quotes, run an email discussion group, or find
current topical trends on the Web.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.google.com/addurl.html

CRAWLING, INDEXING, AND QUERY PROCESSING 17

Matlab Crawler m-file

With Cleve Moler’s permission, we display the guts of his Matlab spider here.
If you’re a programmer or curious reader who’s not squeamish around spiders or
Matlab code, please feel free to dissect. Squeamish, code-averse readers should
skip ahead to section 2.2.

Versions 6.5 and later of MATLAB contain two commands, urlread and url-

write, that enable one to write simple m-files that crawl the Web. The m-file
below, surfer.m, begins a web crawl at a root page and continues until n
pages have been crawled. The program creates two outputs, U, a list of the
n crawled URLs, and L, a sparse binary adjacency matrix containing the link
structure of the n pages. (The L matrix is related to the H PageRank matrix
of Chapter 4.) The command urlwrite can then be used to save the con-
tents of each retrieved URL to a file, which can then be sent to the indexing
module of the search engine for compression. (This m-file can be downloaded
from the website for Cleve’s book Numerical Computing with Matlab [132],
http://www.mathworks.com/moler/ncmfilelist.html.)

function [U,L] = surfer(root,n);

% SURFER Create the adjacency matrix of a portion of the Web.
% [U,L] = surfer(root,n) starts at the URL root and follows
% Web links until it forms an n-by-n adjacency matrix of links.
% The output U is a cell array of the URLs visited and
% L is a sparse matrix with L(i,j) = 1 if url{i} links to url{j}.
%
% Example: [U,L] = surfer(’http://www.ncsu.edu’,500);
%
% This function currently has two defects. (1) The algorithm for
% finding links is naive. We just look for the string ’http:’.
% (2) An attempt to read from a URL that is accessible, but very
% slow, might take an unacceptably long time to complete. In
% some cases, it may be necessary to have the operating system
% terminate MATLAB. Key words from such URLs can be added to the
% skip list in surfer.m.

% Initialize

U = cell(n,1);
hash = zeros(n,1);
L = logical(sparse(n,n));
m = 1;
U{m} = root;
hash(m) = hashfun(root);

for j = 1:n

% Try to open a page.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.mathworks.com/moler/ncmfilelist.html

18 CHAPTER 2

try
disp([’open ’ num2str(j) ’ ’ U{j}])
page = urlread(U{j});

catch
disp([’fail ’ num2str(j) ’ ’ U{j}])
continue

end

% Follow the links from the open page.

for f = findstr(’http:’,page);

% A link starts with ’http:’ and ends with next double quote.

e = min(findstr(’"’,page(f:end)));
if isempty(e), continue, end
url = deblank(page(f:f+e-2));
url(url<’ ’) = ’!’; % Nonprintable characters
if url(end) == ’/’, url(end) = []; end

% Look for links that should be skipped.

skips = {’.gif’,’.jpg’,’.pdf’,’.css’,’lmscadsi’,’cybernet’,...
’search.cgi’,’.ram’,’www.w3.org’, ...
’scripts’,’netscape’,’shockwave’,’webex’,’fansonly’};

skip = any(url==’!’) | any(url==’?’);
k = 0;
while ˜skip & (k < length(skips))

k = k+1;
skip = ˜isempty(findstr(url,skips{k}));

end
if skip

if isempty(findstr(url,’.gif’)) & ...
isempty(findstr(url,’.jpg’))

disp([’ skip ’ url])
end
continue

end

% Check if page is already in url list.

i = 0;
for k = find(hash(1:m) == hashfun(url))’;

if isequal(U{k},url)
i = k;
break

end
end

% Add a new url to the graph there if are fewer than n.

if (i == 0) & (m < n)
m = m+1;
U{m} = url;
hash(m) = hashfun(url);
i = m;

end

% Add a new link.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

CRAWLING, INDEXING, AND QUERY PROCESSING 19

if i > 0
disp([’ link ’ int2str(i) ’ ’ url])
L(i,j) = 1;

end
end

end

%------------------------
function h = hashfun(url)
% Almost unique numeric hash code for pages already visited.
h = length(url) + 1024*sum(url);

2.2 THE CONTENT INDEX

Each new or refreshed page that a spider brings back is sent to the indexing module, where
software programs parse the page content and strip it of its valuable information, so that
only the essential skeleton of the page is passed to the appropriate indexes. Valuable infor-
mation is contained in title, description, and anchor text as well as in bolded terms, terms
in large font, and hyperlinks. One important index is the content index, which stores the
textual information for each page in compressed form. An inverted file, which is used to
store this compressed information, is like the index in the back of a book. Next to each
term is a list of all locations where the term appears. In the simplest case, the location is
the page identifier. An inverted file might look like:

• term 1 (aardvark) - 3, 117, 3961
...

• term 10 (aztec) - 3, 15, 19, 101, 673, 1199

• term 11 (baby) - 3, 31, 56, 94, 673, 909, 11114, 253791
...

• term m (zymurgy) - 1159223

This means that term 1 is used in webpages 3, 117, and 3961. It is clear that an advantage
of the inverted file is its use as a quick lookup table. Processing a query on term 11 begins
by consulting the inverted list for term 11.

The simple inverted file, a staple in traditional information retrieval [147], does pose
some challenges for web collections. Because multilingual terms, phrases, and proper
names are used, the number of terms m, and thus the file size, is huge. Also, the number
of webpages using popular broad terms such as weather or sports is large. Therefore, the
number of page identifiers next to these terms is large and consumes storage. Further,
page identifiers are usually not the only descriptors stored for each term. See section
2.3. Other descriptors such as the location of the term in the page (title, description, or
body) and the appearance of the term (bolded, large font, or in anchor text) are stored
next to each page identifier. Any number of descriptors can be used to aid the search
engine in retrieving relevant documents. In addition, as pages change content, so must
their compressed representation in the inverted file. Thus, an active area of research is the
design of methods for efficiently updating indexes. Lastly, the enormous inverted file must

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

20 CHAPTER 2

be stored on a distributed architecture, which means strategies for optimal partitioning
must be designed.

ASIDE: Indexing Wars

While having a larger index of webpages accessed does not necessarily make one
search engine better than another, it does mean the “bigger” search engine has a better op-
portunity to return a longer list of relevant results, especially for unusual queries. As a result,
search engines are constantly battling for the title of “The World’s Largest Index.” Reporters
writing for The Search Engine Showdown or Search Engine Watch enjoy charting the chang-
ing leaders in the indexing war. Figure 2.1 shows how self-reported search engine sizes have
changed over the years.

12
/95

12
/96

12
/97

12
/98

12
/99

12
/00

12
/01

12
/02

Google

AlltheWeb

Inktomi

Teoma

AltaVista

Si
ze

 o
f

In
de

x
(i

n
bi

lli
on

s)

0.0

0.5

2.0

1.0

3.0

1.5

2.5

3.5

9/0
3

Figure 2.1 Growth of index for major search engines

Figure 2.2 Google servers
c©Timothy Archibald, 2006

Google, whose name is a play on googol, the
word for the number 10100, entered the search mar-
ket in 1998 and immediately grew, dethroning Al-
taVista and claiming the title of the World’s Largest
Index. In 2002, AlltheWeb snatched the title from
Google by declaring it had reached the two billion
mark. Google soon regained the lead by indexing
three billion pages. AlltheWeb and Inktomi quickly
upped their sizes to hit this same mark. The search
latecomer Teoma has been steadily growing its index
since its debut in early 2002. Web search engines use
elaborate schemes, structures, and machines to store
their massive indices. In fact, in 2003, Google used
a network of over 15,000 computers to store their in-
dex [19], which in November 2004 jumped from 4.3 billion to 8.1 billion webpages. The
number of servers used today is at least an order of magnitude higher. Figure 2.2 shows part
of the server system that is housed in the Googleplex Mountain View, California site. Google
history buffs can see the dramatic evolution of Google’s server system by viewing pictures of
their original servers that used a Lego-constructed cabinet to house disk drives and cooling
fans (http://www-db.stanford.edu/pub/voy/museum/pictures/display/0-4-Google.htm).

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www-db.stanford.edu/pub/voy/museum/pictures/display/0-4-Google.htm

CRAWLING, INDEXING, AND QUERY PROCESSING 21

The Internet Archive Project

In 1996 a nonprofit organization called the Internet Archive took on the ar-
duous task of archiving the Web’s contents–pages, images, video files, audio
files, etc. This project archives old versions of pages, pages that are now ex-
tinct, as well as current pages. For example, to view the previous versions of
author Carl Meyer’s homepage, use the Internet Archive’s Wayback Machine
(http://web.archive.org/). Enter the address for Carl’s current homepage,
http://meyer.math.ncsu.edu/, and the Wayback machine returns archived
versions and the dates of updates to this page. A temporary addition to the Archive
website was a beta version of Anna Patterson’s Recall search engine. Because this
engine was tailored to archival search, it had some novel features such as time-
series plots of the relevancy of search terms over time. (Perhaps such features
will become commonplace in mainstream engines, as Patterson now works for
Google.) One of the archive’s goals is to make sure information on ephemeral
pages is not lost forever because valuable trends and cultural artifacts exist in
such pages. The archive also allows for systematic tracking of the Web’s evo-
lution. Of course, as the Internet Archive Project continues to grow and receive
support, it will inevitably claim the undisputed title of Index King, and hold the
world’s largest document collection.

2.3 QUERY PROCESSING

Unlike the crawler and indexing modules of a search engine, the query module’s operations
depend on the user. The query module must process user queries in real-time, and return re-
sults in milliseconds. In February 2003, Google reported serving 250 million searches per
day, while Overture and Inktomi handled 167 and 80 million, respectively [156]. Google
likes to keep their processing time under half a second. In order to process a query this
quickly, the query module accesses precomputed indexes such as the content index and the
structure index.

Consider an example that uses the inverted file below, which is copied from section
2.2.

• term 1 (aardvark) — 3, 117, 3961
...

• term 10 (aztec) — 3, 15, 19, 101, 673, 1199

• term 11 (baby) — 3, 31, 56, 94, 673, 909, 11114, 253791
...

• term m (zymurgy) — 1159223

Suppose a user enters the unusual query of aztec baby, and the search engine assumes
the Boolean AND is used. Then the query module consults the inverted lists for aztec,

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://web.archive.org/
http://meyer.math.ncsu.edu/

22 CHAPTER 2

which is term 10, and baby, which is term 11. The resulting set of “on topic” or relevant
pages is {3, 673} because these pages use both query terms. Many traditional search
engines stop here, returning this list to the user. However, for broad queries on the vast
web collection, this set of relevant pages can be huge, containing hundreds of thousands of
pages. Therefore, rankings are imposed on the pages in this set to make the list of retrieved
pages more manageable. Consequently, the query module passes its list of relevant pages
to the ranking module, which creates the list of pages ordered from most relevant to least
relevant. The ranking module accesses precomputed indexes to create a ranking at query-
time. In Chapter 1, we mentioned that search engines combine content scores for relevant
pages with popularity scores to generate an overall score for each page. Relevant pages are
then sorted by their overall scores.

We describe the creation of the content score with an example that also shows how
the inverted file can be expanded to include more information. Suppose document 94 is
updated by its author and now contains information about term 10 (aztec). This means
that the inverted file must be updated, with the document identifier of 94 added to the
list of pages recorded next to term 10. However, suppose that rather than storing just the
document identifier, we decide to store three additional pieces of information. First, we
record whether the term in question (aztec) appears in the title. Second, we record the
term’s appearance (or not) in the description metatag. Finally, we record a count of the
number of times the term appears in the page. One way to record this information is to
append a vector to the document identifier for page 94 as follows:

term 10 (aztec) — 3, 15, 19, 94 [1, 0, 7], 101, 673, 1199.

In the vector [1, 0, 7], the 1 means that term 10 appears in the title tag of page 94, the 0
means that term 10 does not appear in the description tag of page 94, and the 7 means
that term 10 occurred seven times in page 94. Similar information must be added to each
element in the inverted file. That is, for every term, a three-dimensional vector must be
inserted after each page identifier. While more work must be done by the indexing module
and more storage used by the content index, the additional content information makes the
search engine much better at processing queries. This is achieved by creating a content
score for each page in the relevant set, which is now {3, 94, 673} in our example. At query
time, the query module consults the inverted file, and for each document in the relevant
set, pulls off the document identifier along with its appended three-dimensional vector.
Suppose the result is:

term 10 (aztec)− 3 [1, 1, 27], 94 [1, 0, 7], 673 [0, 0, 3]
term 11 (baby)− 3 [1, 1, 10], 94 [0, 0, 5], 673 [1, 1, 14]

Heuristics or rules are now applied to determine an content score for documents 3, 94, and
673. One elementary heuristic adds the values in the three-dimensional vector for term
10/page 3 and multiplies this by the sum of the values in the vector for term 11/page 3.
Thus, the content scores for the three relevant pages are:

content score (page 3) = (1 + 1 + 27) × (1 + 1 + 10) = 348,
content score (page 94) = (1 + 0 + 7) × (0 + 0 + 5) = 40,

content score (page 673) = (0 + 0 + 3) × (1 + 1 + 14) = 48.

Different schemes exist with many other factors making up the content score [30].

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

CRAWLING, INDEXING, AND QUERY PROCESSING 23

The content score can be computed solely from the content index and its inverted
file, and is query-dependent. On the other hand, the popularity score is computed solely
from the structure index, and is usually query-independent. The remainder of this book
is devoted to the popularity score, so we postpone its description and computation until
later. For now, we merely state that each page on the Web has a popularity score, which
is independent of user queries and which gives a global measure of that page’s popularity
within the search engine’s entire index of pages. This popularity score is then combined
with the content score, for example, by multiplication, to create an overall score for each
relevant page for a given query.

Lord Campbell’s Motion to Index

John Campbell (1799–1861) was a Scottish lawyer and politician who became
Lord Chancellor of Great Britain in 1859. In the preface to volume 3 of his book,
Lives of the Chief Justices [45], Lord Campbell writes:

So essential do I consider an Index to be to every book, that I proposed to bring
a Bill into Parliament to deprive an author who publishes a book without an
Index of the privilege of copyright; and, moreover, to subject him, for his
offence, to a pecuniary penalty.

Unfortunately, his bill was never enacted, perhaps because Parliamentary mem-
bers and their constituents wanted to shirk the responsibility and effort associated
with creating a good index.

Appeals similar to Lord Campbell’s have been made by the web community and
its indexers. W3C, the World Wide Web Consortium, has been pushing for a more
rigorous structure for HTML documents (e.g., XML documents and RSS code)
that will allow the indexers of search engines to more accurately and quickly pull
the essential elements from documents. On the other hand, the Web’s lack of
structure is recognized universally as a source of its strength and a major contrib-
utor to its many creative uses. In an attempt to outline a balance between structure
and freedom, in July 1997, former President Bill Clinton wrote the “Framework
for Global Electronic Commerce,” which advocated a laissez-faire attitude toward
web legislation and regulation.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Three

Ranking Webpages by Popularity

Nobody wants to be picked last for teams in gym class. Likewise, nobody wants their
webpage to appear last in the list of relevant pages for a search query. As a result, many
grown-ups transfer their high school wishes to be the “Most Popular” to their webpages.
The remainder of this book is about the popularity contests that search engines hold for
webpages. Specifically, it’s about the popularity score, which is combined with the tra-
ditional content score of section 2.3 to rank retrieved pages by relevance. By 1998, the
traditional content score was buckling under the Web’s massive size and the death grip
of spammers. In 1998, the popularity score came to the rescue of the content score. The
popularity score became a crucial complement to the content score and provided search en-
gines with impressively accurate results for all types of queries. The popularity score, also
known as the importance score, harnesses the information in the immense graph created by
the Web’s hyperlink structure. Thus, models exploiting the Web’s hyperlink structure are
called link analysis models. The impact that these link analysis models have had is truly
awesome. Since 1998, the use of web search engines has increased dramatically. In fact,
an April 2004 survey by Websense, Inc., reported that half of the respondents would rather
forfeit their habitual morning cup of coffee than their connectivity. That’s because today’s
search tools allow users to answer in seconds queries that were impossible just a decade
ago (from fun searches for pictures, quotes, and snooping amateur detective work to more
serious searches for academic research papers and patented inventions). In this chapter, we
introduce the intuition behind the classic link analysis systems of PageRank [40] and HITS
[106].

3.1 THE SCENE IN 1998

The year 1998 was a busy year for link analysis models. At IBM Almaden in Silicon Valley,
a young scientist named Jon Kleinberg, now a professor at Cornell
University, was working on a Web search engine project called HITS,
an acronym for Hypertext Induced Topic Search. His algorithm used
the hyperlink structure of the Web to improve search engine results,
an innovative idea at the time, as most search engines used only tex-
tual content to return relevant documents. He presented his work
[106], begun a year earlier at IBM, in January 1998 at the Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms held in San
Francisco, California.

Very nearby, at Stanford University, two computer science doctoral candidates were
working late nights on a similar project called PageRank. Sergey Brin and Larry Page had
been collaborating on their Web search engine since 1995. By 1998, things were really

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

26 CHAPTER 3

starting to accelerate for these two scientists. They were using their dorm rooms as offices
for their fledgling business, which later became the giant Google. By August 1998, both
Brin (right) and Page (left) took a leave of absence from Stanford in order to focus on
their growing business. In a public presentation at the Seventh International World Wide
Web conference (WWW98) in Brisbane, Australia, their
paper “The anatomy of a large-scale hypertextual Web
search engine” [39] made small ripples in the informa-
tion science community that quickly turned into waves.
It appears that HITS and PageRank were developed in-
dependently despite the close geographic and temporal
proximity of the discoveries. The connections between
the two models are striking (see [110]). Nevertheless, since that eventful year, PageRank
has emerged as the dominant link analysis model, partly due to its query-independence
(see section 3.3), its virtual immunity to spamming, and Google’s huge business success.
Kleinberg was already making a name for himself as an innovative academic, and unlike
Brin and Page did not try to develop HITS into a company. However, later entrepreneurs
did, thus giving HITS its belated and deserving claim to commercial success. The search
engine Teoma uses an extension of the HITS algorithm as the basis of its underlying tech-
nology [150]. Incidentally, Google has kept Brin and Page famously busy and wealthy
enough to remain on leave from Stanford, as well as make their debut break into People’s
June 28th List of the 50 Hottest Bachelors of 2004.

3.2 TWO THESES

In this section, we describe the theses underlying both PageRank and HITS. In order to do
that, we need to define the Web as a graph. The Web’s hyperlink structure forms a massive
directed graph. The nodes in the graph represent webpages and the directed arcs or links
represent the hyperlinks. Thus, hyperlinks into a page, which are called inlinks, point into
nodes, while outlinks point out from nodes. Figure 3.1 shows a tiny, artificial document
collection consisting of six webpages.

3

6 5

4

Node (e.g. www.ncsu.edu)

inlink to node 2

outlink from node 1
1 2

Figure 3.1 Directed graph representing web of six pages

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

RANKING WEBPAGES BY POPULARITY 27

Maps of the Web Graph

The massive web graph has little resemblance to the clean tiny graph of Figure
3.1. Instead, the Web’s nodes and arcs create a jumbled mess that’s a headache
to untangle and present in a visually appealing and meaningful way. Fortunately,
many researchers have succeeded. The Atlas of Cyberspace [62] presents over
300 colorful, informative maps of cyberactivities. With permission, we present
a hyperlink graph that was the graduate work of Stanford’s Tamara Munzner.
She used three-dimensional hyperbolic spaces to produce the map on the left side
of Figure 3.2. Munzner’s ideas were implemented by Young Hyun in his Java
software program called Walrus (even though the pictures it draws look like jelly-
fish.) The right side of Figure 3.2 is one of Hyun’s maps with 535,102 nodes and
601,678 links.

Figure 3.2 Munzner’s and Hyun’s maps of subsets of the Web

3.2.1 PageRank

Before 1998, the web graph was largely an untapped source of information. While re-
searchers like Kleinberg and Brin and Page recognized this graph’s potential, most people
wondered just what the web graph had to do with search engine results. The connection is
understood by viewing a hyperlink as a recommendation. A hyperlink from my homepage
to your page is my endorsement of your page. Thus, a page with more recommendations
(which are realized through inlinks) must be more important than a page with a few in-
links. However, similar to other recommendation systems such as bibliographic citations
or letters of reference, the status of the recommender is also important. For example, one
personal endorsement from Donald Trump probably does more to strengthen a job applica-
tion than 20 endorsements from 20 unknown teachers and colleagues. On the other hand, if
the job interviewer learns that Donald Trump is very free and generous with his praises of

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

28 CHAPTER 3

employees, and he (or his secretary) has written over 40,000 recommendations in his life,
then his recommendation suddenly drops in weight. Thus, weights signifying the status of
a recommender must be lowered for recommenders with little discrimination. In fact, the
weight of each endorsement should be tempered by the total number of recommendations
made by the recommender.

Actually, this is exactly how Google’s PageRank popularity score works. This
PageRank score is very famous, even notoriously so (see the asides on pages 52 and 112).
Literally hundreds of papers have been written about it, and this book is one of the first of
the undoubtedly many that is devoted to PageRank’s methodology, mechanism, and com-
putation. In the coming chapters we will reveal many reasons why PageRank has become
so popular, but one of the most convincing reasons for studying the PageRank score is
Google’s own admission of its impact on their successful technology. According to the
Google website (http://www.google.com/technology/index.html) “the heart of
[Google’s] software is PageRank . . . [which] continues to provide the basis for all of [our]
web search tools.”

In short, PageRank’s thesis is that a webpage is important if it is pointed to by other
important pages. Sounds circular, doesn’t it? We will see in Chapter 4 that this can be
formalized in a beautifully simple mathematical formula.

Google Toolbar

Comparing the PageRank scores for two pages gives an indication of the relative
importance of the two pages. However, Google guards the exact PageRank scores
for the pages in its index very carefully, and for good reason. (See the aside on
page 52.) Google does graciously provide public access to a very rough approxi-
mation of their PageRank scores. These approximations are available through the
Google toolbar, which can be downloaded at http://toolbar.google.com/.
The toolbar, which then resides on the browser, displays a lone bar graph show-
ing the approximate PageRank for the current page. The displayed PageRank
is an integer from 0 to 10, with the most important pages receiving a PageRank
of 10. The toolbar automatically updates this display for each page you visit.
Thus, it must send information about the page you’re viewing to the Google
servers. Google’s privacy policy states that it does not collect information that
directly identifies you (e.g., your name or email address) and will not sell any
information. For those still concerned with their privacy, Google allows users
to disable the PageRank feature while still maintaining the functionality of the
other toolbar features. There’s a way to access the approximate PageRank
scores without getting the Toolbar—visit http://www.seochat.com/seo-

tools/PageRank-search/, enter a query, and view the PageRank bar graphs
next to the results. Readers can get a feel for PageRank by locating high
PageRank pages (e.g., www.espn.com with a 9/10 score) and low PageRank
pages (http://www.csc.ncsu.edu:8080/nsmc2003/ with a 0/10 score).
Google’s homepage (www.google.com) has a PageRank of 10, perhaps auto-
matically set. Google sets the PageRank of pages identified to be authored by
spammers to 0 [160], a value known among spammers as the horrifying PR0.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.google.com/technology/index.html
http://www.seochat.com/seotools/PageRank-search/
http://www.seochat.com/seotools/PageRank-search/
http://www.csc.ncsu.edu:8080/nsmc2003/
www.google.com
www.espn.com
http://toolbar.google.com/

RANKING WEBPAGES BY POPULARITY 29

3.2.2 HITS

Kleinberg’s HITS method for ranking pages is very similar to PageRank, but it uses both
inlinks and outlinks to create two popularity scores for each page. HITS defines hubs and
authorities. A page is considered a hub if, similar in some respects to an airline hub, it con-
tains many outlinks. With an equally descriptive term, a page is called an authority if it has
many inlinks. Of course, a page can be both a hub and an authority, just as the Hartsfield–

Auth
Hub

Figure 3.3 A hub node and an authority node

Jackson Atlanta airport has many incoming and outgoing flights each hour. Thus, HITS
assigns both a hub score and an authority score to each page. Very similar to PageRank’s
lone circular thesis, HITS has a pair of interdependent circular theses: a page is a good
hub (and therefore deserves a high hub score) if it points to good authorities, and a page is
a good authority if it is pointed to by good hubs. Like PageRank, these circular definitions
create simple mathematical formulas. Readers will have to wait until Chapter 11 to hear
the details of HITS. Although developed during 1997–1998, HITS was not incorporated
into a commercial search engine until 2001 when the search newcomer Teoma adopted it
as the heart of its underlying technology [150]. Check out Teoma at www.teoma.com,
and notice that the pages listed as “Results” correspond to HITS authorities and the pages
listed under “Resources” correspond to HITS hubs.

Inlink Feature
Of course, every webpage author knows exactly how many outlinks his or
her page has and to which pages these outlinks point. However, getting a
hold on inlink counts and inlinking pages is not as obvious. Fortunately, with
the help of third party services, it is equally easy to uncover this inlink in-
formation. For example, Google’s link: feature can be used to see how
many and which, if any, important pages point to yours. Try typing link:

http://www4.ncsu.edu:8030/∼anlangvi into Google’s input box and no-
tice the modest number of inlinks to Amy’s homepage. (If you like this book
and our research, you can help both of us improve our popularity scores with rec-
ommendations through hyperlinks. We prefer inlinks from authors of important
pages. Of course, we joke in this parenthetical comment but our comments fore-
shadow some of the exciting and serious side effects associated with link analysis.
See the asides on search engine optimization and link farms on pages 43 and 52,
respectively.) To find out how many inlinks your page has in the indexes of other
search engines, go to http://www.top25web.com/cgi-bin/linkpop.cgi.
This website also provides other tools, such as a ranking report and PageRank
score that reports the Toolbar scores for several pages at once.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

www.teoma.com
http://www4.ncsu.edu:8030/~nlangvi
http://www.top25web.com/cgi-bin/linkpop.cgi

30 CHAPTER 3

3.3 QUERY-INDEPENDENCE

It is now time to emphasize the word query-independence. A ranking is called query-
independent if the popularity score for each page is determined off-line, and remains con-
stant (until the next update) regardless of the query. This means at query time, when mil-
liseconds are precious, no time is spent computing the popularity scores for relevant pages.
The scores are merely “looked up” in the previously computed popularity table. This can
be contrasted with the traditional information retrieval scores of section 2.3, which are
query-dependent. We will see that popularity scoring systems can be classified as either
query-independent or query-dependent. This classification is important because it imme-
diately reveals a system’s advantages and disadvantages. PageRank is query-independent,
which means it produces a global ranking of the importance of all pages in Google’s index
of 8.1 billion pages. On the other hand, HITS in its original version is query-dependent.
Both PageRank and HITS can be modified to change their classifications. See Chapter 11.

Who Links to Whom

The science of who links to whom has extended beyond the Web to a variety
of other networks that collectively go by the name of complex systems. Graph
techniques have successfully been applied to learn valuable information about
networks ranging from the AIDS transmission and power grid networks to terror-
ist and email networks. The recent book by Barabasi, Linked: The New Science
of Networks [16], contains a fascinating and entertaining introduction to these
complex systems.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Four

The Mathematics of Google’s PageRank

The famous and colorful mathematician Paul Erdos (1913–96) talked about The Great
Book, a make-believe book in which he imagined God kept the world’s most elegant and
beautiful proofs. In 2002, Graham Farmelo of London’s Science Museum edited and con-
tributed to a similar book, a book of beautiful equations. It Must Be Beautiful: Great
Equations of Modern Science [73] is a collection of 11 essays about the greatest scientific
equations, equations like E = hf and E = mc2. The contributing authors were invited
to give their answers to the tough question of what makes an equation great. One author,
Frank Wilczek, included a quote by Heinrich Hertz regarding Maxwell’s equation:

One cannot escape the feeling that these mathematical formulae have an inde-
pendent existence and an intelligence of their own, that they are wiser than we
are, wiser even than their discoverers, that we get more out of them than was
originally put into them.

While we are not suggesting that the PageRank equation presented in this chapter,

πT = πT (αS + (1 − α)E),

deserves a place in Farmelo’s book alongside Einstein’s theory of relativity, we do find
Hertz’s statement apropos. One can get a lot of mileage from the simple PageRank formula
above—Google certainly has. Since beauty is in the eye of the beholder, we’ll let you
decide whether or not the PageRank formula deserves the adjective beautiful. We hope the
next few chapters will convince you that it just might.

In Chapter 3, we used words to present the PageRank thesis: a page is important
if it is pointed to by other important pages. It is now time to translate these words into
mathematical equations. This translation reveals that the PageRank importance scores are
actually the stationary values of an enormous Markov chain, and consequently Markov
theory explains many interesting properties of the elegantly simple PageRank model used
by Google.

This is the first of the mathematical chapters. Many of the mathematical terms in
each chapter are explained in the Mathematics Chapter (Chapter 15). As terms that appear
in the Mathematics Chapter are introduced in the text, they are italicized to remind you
that definitions and more information can be found in Chapter 15.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

32 CHAPTER 4

4.1 THE ORIGINAL SUMMATION FORMULA FOR PAGERANK

Brin and Page, the inventors of PageRank,1 began with a simple summation equation,
the roots of which actually derive from bibliometrics research, the analysis of the citation
structure among academic papers. The PageRank of a page Pi, denoted r(Pi), is the sum
of the PageRanks of all pages pointing into Pi.

r(Pi) =
∑

Pj∈BPi

r(Pj)
|Pj |

, (4.1.1)

where BPi is the set of pages pointing into Pi (backlinking to Pi in Brin and Page’s words)
and |Pj | is the number of outlinks from page Pj . Notice that the PageRank of inlinking
pages r(Pj) in equation (4.1.1)) is tempered by the number of recommendations made
by Pj , denoted |Pj |. The problem with equation (4.1.1) is that the r(Pj) values, the
PageRanks of pages inlinking to page Pi, are unknown. To sidestep this problem, Brin
and Page used an iterative procedure. That is, they assumed that, in the beginning, all
pages have equal PageRank (of say, 1/n, where n is the number of pages in Google’s in-
dex of the Web). Now the rule in equation (4.1.1) is followed to compute r(Pi) for each
page Pi in the index. The rule in equation (4.1.1) is successively applied, substituting the
values of the previous iterate into r(Pj). We introduce some more notation in order to
define this iterative procedure. Let rk+1(Pi) be the PageRank of page Pi at iteration k+1.
Then,

rk+1(Pi) =
∑

Pj∈BPi

rk(Pj)
|Pj |

. (4.1.2)

This process is initiated with r0(Pi) = 1/n for all pages Pi and repeated with the hope
that the PageRank scores will eventually converge to some final stable values. Applying
equation (4.1.2) to the tiny web of Figure 4.1 gives the following values for the PageRanks
after a few iterations.

3

6 5

4

1 2

Figure 4.1 Directed graph representing web of six pages

1The patent for PageRank was filed in 1998 by Larry Page and granted in 2001 (US Patent #6285999), and
thus the name PageRank has a double reference to both webpages and one of its founding fathers.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS OF GOOGLE’S PAGERANK 33

Table 4.1 First few iterates using (4.1.2) on Figure 4.1

Iteration 0 Iteration 1 Iteration 2 Rank at Iter. 2

r0(P1) = 1/6 r1(P1) = 1/18 r2(P1) = 1/36 5
r0(P2) = 1/6 r1(P2) = 5/36 r2(P2) = 1/18 4
r0(P3) = 1/6 r1(P3) = 1/12 r2(P3) = 1/36 5
r0(P4) = 1/6 r1(P4) = 1/4 r2(P4) = 17/72 1
r0(P5) = 1/6 r1(P5) = 5/36 r2(P5) = 11/72 3
r0(P6) = 1/6 r1(P6) = 1/6 r2(P6) = 14/72 2

4.2 MATRIX REPRESENTATION OF THE SUMMATION EQUATIONS

Equations (4.1.1) and (4.1.2) compute PageRank one page at a time. Using matrices, we
replace the tedious

∑
symbol, and at each iteration, compute a PageRank vector, which

uses a single 1×n vector to hold the PageRank values for all pages in the index. In order to
do this, we introduce an n×n matrix H and a 1×n row vector πT . The matrix H is a row
normalized hyperlink matrix with Hij = 1/|Pi| if there is a link from node i to node j, and
0, otherwise. Although H has the same nonzero structure as the binary adjacency matrix
for the graph (called L in the Matlab Crawler m-file on page 17), its nonzero elements are
probabilities. Consider once again the tiny web graph of Figure 4.1.

The H matrix for this graph is

H =

⎛⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0
P2 0 0 0 0 0 0
P3 1/3 1/3 0 0 1/3 0
P4 0 0 0 0 1/2 1/2
P5 0 0 0 1/2 0 1/2
P6 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠.

The nonzero elements of row i correspond to the outlinking pages of page i, whereas
the nonzero elements of column i correspond to the inlinking pages of page i. We now
introduce a row vector π(k)T , which is the PageRank vector at the kth iteration. Using this
matrix notation, equation (4.1.2) can be written compactly as

π(k+1)T = π(k)T H. (4.2.1)

If you like, verify with the example of Figure 4.1 that the iterates of equation (4.2.1) match
those of equation (4.1.2).

Matrix equation (4.2.1) yields some immediate observations.

1. Each iteration of equation (4.2.1) involves one vector-matrix multiplication, which
generally requires O(n2) computation, where n is the size of the square matrix H.

2. H is a very sparse matrix (a large proportion of its elements are 0) because most
webpages link to only a handful of other pages. Sparse matrices, such as the one
shown in Figure 4.2, are welcome for several reasons. First, they require minimal
storage, since sparse storage schemes, which store only the nonzero elements of the

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

34 CHAPTER 4

Figure 4.2 Example of a sparse matrix. The nonzero elements are indicated by pixels.

matrix and their location [145], exist. Second, vector-matrix multiplication involving
a sparse matrix requires much less effort than the O(n2) dense computation. In fact,
it requires O(nnz(H)) computation, where nnz(H) is the number of nonzeros in
H. Estimates show that the average webpage has about 10 outlinks, which means
that H has about 10n nonzeros, as opposed to the n2 nonzeros in a completely dense
matrix. This means that the vector-matrix multiplication of equation (4.2.1) reduces
to O(n) effort.

3. The iterative process of equation (4.2.1) is a simple linear stationary process of the
form studied in most numerical analysis classes [82, 127]. In fact, it is the classical
power method applied to H.

4. H looks a lot like a stochastic transition probability matrix for a Markov chain.
The dangling nodes of the network, those nodes with no outlinks, create 0 rows in
the matrix. All the other rows, which correspond to the nondangling nodes, create
stochastic rows. Thus, H is called substochastic.

These four observations are important to the development and execution of the
PageRank model, and we will return to them throughout the chapter. For now, we spend
more time examining the iterative matrix equation (4.2.1).

4.3 PROBLEMS WITH THE ITERATIVE PROCESS

Equation (4.2.1) probably caused readers, especially our mathematical readers, to ask sev-
eral questions. For example,

• Will this iterative process continue indefinitely or will it converge?

• Under what circumstances or properties of H is it guaranteed to converge?

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS OF GOOGLE’S PAGERANK 35

• Will it converge to something that makes sense in the context of the PageRank prob-
lem?

• Will it converge to just one vector or multiple vectors?

• Does the convergence depend on the starting vector π(0)T ?

• If it will converge eventually, how long is “eventually”? That is, how many iterations
can we expect until convergence?

We’ll answer these questions in the next few sections. However, our answers depend on
how Brin and Page chose to resolve some of the problems they encountered with their
equation (4.2.1).

Brin and Page originally started the iterative process with π(0)T = 1/n eT , where
eT is the row vector of all 1s. They immediately ran into several problems when using
equation (4.2.1) with this initial vector. For example, there is the problem of rank sinks,
those pages that accumulate more and more PageRank at each iteration, monopolizing the
scores and refusing to share. In the simple example of Figure 4.3, the dangling node 3
is a rank sink. In the more complicated example of Figure 4.1, the cluster of nodes 4, 5,

1 2

3

Figure 4.3 Simple graph with rank sink

and 6 conspire to hoard PageRank. After just 13 iterations of equation (4.2.1), π(13)T =
(0 0 0 2/3 1/3 1/5). This conspiring can be malicious or inadvertent. (See the
asides on search engine optimization and link farms on pages 43 and 52, respectively.)
The example with π(13)T also shows another problem caused by sinks. As nodes hoard
PageRank, some nodes may be left with none. Thus, ranking nodes by their PageRank
values is tough when a majority of the nodes are tied with PageRank 0. Ideally, we’d
prefer the PageRank vector to be positive, i.e., contain all positive values.

There’s also the problem of cycles. Consider the simplest case in Figure 4.4. Page

1 2

Figure 4.4 Simple graph with cycle

1 only points to page 2 and vice versa, creating an infinite loop or cycle. Suppose the
iterative process of equation (4.2.1) is run with π(0)T = (1 0). The iterates will not
converge no matter how long the process is run. The iterates π(k)T flip-flop indefinitely
between (1 0) when k is even and (0 1) when k is odd.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

36 CHAPTER 4

4.4 A LITTLE MARKOV CHAIN THEORY

Before we get to Brin and Page’s adjustments to equation (4.2.1), which solve the problems
of the previous section, we pause to introduce a little theory for Markov chains. (We urge
readers who are less familiar with Markov chains to read the Mathematics Chapter, Chapter
15, before proceeding.) In observations 3 and 4, we noted that equation (4.2.1) resembled
the power method applied to a Markov chain with transition probability matrix H. These
observations are very helpful because the theory of Markov chains is well developed,2 and
very applicable to the PageRank problem. With Markov theory we can make adjustments
to equation (4.2.1) that insure desirable results, convergence properties, and encouraging
answers to the questions on page 34. In particular, we know that, for any starting vector, the
power method applied to a Markov matrix P converges to a unique positive vector called
the stationary vector as long as P is stochastic, irreducible, and aperiodic. (Aperiodicity
plus irreducibility implies primitivity.) Therefore, the PageRank convergence problems
caused by sinks and cycles can be overcome if H is modified slightly so that it is a Markov
matrix with these desired properties.

Markov properties affecting PageRank

A unique positive PageRank vector exists when the Google matrix is stochastic
and irreducible. Further, with the additional property of aperiodicity, the power
method will converge to this PageRank vector, regardless of the starting vector
for the iterative process.

4.5 EARLY ADJUSTMENTS TO THE BASIC MODEL

In fact, this is exactly what Brin and Page did. They describe their adjustments to the basic
PageRank model in their original 1998 papers. It is interesting to note that none of their
papers used the phrase “Markov chain,” not even once. Although, most surely, if they were
unaware of it in 1998, they now know the connection their original model has to Markov
chains, as Markov chain researchers have excitedly and steadily jumped on the PageRank
bandwagon, eager to work on what some call the grand application of Markov chains.

Rather than using Markov chains and their properties to describe their adjustments,
Brin and Page use the notion of a random surfer. Imagine a web surfer who bounces
along randomly following the hyperlink structure of the Web. That is, when he arrives at
a page with several outlinks, he chooses one at random, hyperlinks to this new page, and
continues this random decision process indefinitely. In the long run, the proportion of time
the random surfer spends on a given page is a measure of the relative importance of that
page. If he spends a large proportion of his time on a particular page, then he must have, in
randomly following the hyperlink structure of the Web, repeatedly found himself returning
to that page. Pages that he revisits often must be important, because they must be pointed
to by other important pages. Unfortunately, this random surfer encounters some problems.
He gets caught whenever he enters a dangling node. And on the Web there are plenty of
nodes dangling, e.g., pdf files, image files, data tables, etc. To fix this, Brin and Page define

2Almost 100 years ago in 1906, Andrei Andreyevich Markov invented the chains that after 1926 bore his name
[20].

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS OF GOOGLE’S PAGERANK 37

their first adjustment, which we call the stochasticity adjustment because the 0T rows of
H are replaced with 1/n eT , thereby making H stochastic. As a result, the random surfer,
after entering a dangling node, can now hyperlink to any page at random. For the tiny
6-node web of Figure 4.1, the stochastic matrix called S is

S =

⎛⎜⎜⎜⎜⎜⎝
0 1/2 1/2 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6
1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠ .

Writing this stochasticity fix mathematically reveals that S is created from a rank-
one update to H. That is, S = H + a(1/n eT), where ai = 1 if page i is a dangling
node and 0 otherwise. The binary vector a is called the dangling node vector. S is a
combination of the raw original hyperlink matrix H and a rank-one matrix 1/naeT .

This adjustment guarantees that S is stochastic, and thus, is the transition probability
matrix for a Markov chain. However, it alone cannot guarantee the convergence results
desired. (That is, that a unique positive πT exists and that equation (4.2.1) will converge
to this πT quickly.) Brin and Page needed another adjustment–this time a primitivity
adjustment. With this adjustment, the resulting matrix is stochastic and primitive. A
primitive matrix is both irreducible and aperiodic. Thus, the stationary vector of the chain
(which is the PageRank vector in this case) exists, is unique, and can be found by a simple
power iteration. Brin and Page once again use the random surfer to describe these Markov
properties.

The random surfer argument for the primitivity adjustment goes like this. While it
is true that surfers follow the hyperlink structure of the Web, at times they get bored and
abandon the hyperlink method of surfing by entering a new destination in the browser’s
URL line. When this happens, the random surfer, like a Star Trek character, “teleports” to
the new page, where he begins hyperlink surfing again, until the next teleportation, and so
on. To model this activity mathematically, Brin and Page invented a new matrix G, such
that

G = αS + (1 − α)1/n eeT ,

where α is a scalar between 0 and 1. G is called the Google matrix. In this model, α is a
parameter that controls the proportion of time the random surfer follows the hyperlinks as
opposed to teleporting. Suppose α = .6. Then 60% of the time the random surfer follows
the hyperlink structure of the Web and the other 40% of the time he teleports to a random
new page. The teleporting is random because the teleportation matrix E = 1/n eeT is
uniform, meaning the surfer is equally likely, when teleporting, to jump to any page.

There are several consequences of the primitivity adjustment.

• G is stochastic. It is the convex combination of the two stochastic matrices S and
E = 1/n eeT .

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

38 CHAPTER 4

• G is irreducible. Every page is directly connected to every other page, so irreducibil-
ity is trivially enforced.

• G is aperiodic. The self-loops (Gii > 0 for all i) create aperiodicity.

• G is primitive because Gk > 0 for some k. (In fact, this holds for k = 1.) This
implies that a unique positive πT exists, and the power method applied to G is
guaranteed to converge to this vector.

• G is completely dense, which is a very bad thing, computationally. Fortunately, G
can be written as a rank-one update to the very sparse hyperlink matrix H. This is
computationally advantageous, as we show later in section 4.6.

G= αS + (1 − α)1/n eeT

= α(H + 1/naeT) + (1 − α) 1/n eeT

= αH + (αa + (1 − α)e) 1/n eT .

• G is artificial in the sense that the raw hyperlink matrix H has been twice modi-
fied in order to produce desirable convergence properties. A stationary vector (thus,
a PageRank vector) does not exist for H, so Brin and Page creatively cheated to
achieve their desired result. For the twice-modified G, a unique PageRank vector
exists, and as it turns out, this vector is remarkably good at giving a global impor-
tance value to webpages.

Notation for the PageRank Problem

H very sparse, raw substochastic hyperlink matrix

S sparse, stochastic, most likely reducible matrix

G completely dense, stochastic, primitive matrix called the Google Matrix

E completely dense, rank-one teleportation matrix

n number of pages in the engine’s index = order of H, S, G, E

α scaling parameter between 0 and 1

πT stationary row vector of G called the PageRank vector

aT binary dangling node vector

In summary, Google’s adjusted PageRank method is

π(k+1)T = π(k)T G, (4.5.1)

which is simply the power method applied to G.

We close this section with an example. Returning again to Figure 4.1, for α = .9,

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS OF GOOGLE’S PAGERANK 39

the stochastic, primitive matrix G is

G= .9H + (.9

⎛⎜⎜⎜⎜⎜⎝
0
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠+ .1

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠) 1/6 (1 1 1 1 1 1)

=

⎛⎜⎜⎜⎜⎜⎝
1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60

⎞⎟⎟⎟⎟⎟⎠ .

Google’s PageRank vector is the stationary vector of G and is given by

πT =
(1 2 3 4 5 6
.03721 .05396 .04151 .3751 .206 .2862

)
.

The interpretation of π1 = .03721 is that 3.721% of the time the random surfer vis-
its page 1. Therefore, the pages in this tiny web can be ranked by their importance as
(4 6 5 2 3 1), meaning page 4 is the most important page and page 1 is the least
important page, according to the PageRank definition of importance.

4.6 COMPUTATION OF THE PAGERANK VECTOR

The PageRank problem can be stated in two ways:

1. Solve the following eigenvector problem for πT .

πT = πT G,

πT e = 1.

2. Solve the following linear homogeneous system for πT .

πT (I − G) =0T ,

πT e= 1.

In the first system, the goal is to find the normalized dominant left-hand eigenvector of G
corresponding to the dominant eigenvalue λ1 = 1. (G is a stochastic matrix, so λ1 = 1.)
In the second system, the goal is to find the normalized left-hand null vector of I − G.
Both systems are subject to the normalization equation πT e = 1, which insures that πT

is a probability vector. In the example in section 4.5, G is a 6 × 6 matrix, so we used
Matlab’s eig command to solve for πT , then normalized the result (by dividing the vector
by its sum) to get the PageRank vector. However, for a web-sized matrix like Google’s, this
will not do. Other more advanced and computationally efficient methods must be used. Of
course, πT is the stationary vector of a Markov chain with transition matrix G, and much
research has been done on computing the stationary vector for a general Markov chain. See
William J. Stewart’s book Introduction to the Numerical Solution of Markov Chains [154],
which contains over a dozen methods for finding πT . However, the specific features of the

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

40 CHAPTER 4

PageRank matrix G make one numerical method, the power method, the clear favorite. In
this section, we discuss the power method, which is the original method proposed by Brin
and Page for finding the PageRank vector. We describe other more advanced methods in
Chapter 9.

The World’s Largest Matrix Computation

Cleve Moler, the founder of Matlab, wrote an article [131] for his October 2002
newsletter Matlab News that cited PageRank as “The World’s Largest Matrix
Computation.” Then Google was applying the power method to a sparse matrix
of order 2.7 billion. Now it’s up to 8.1 billion!

The power method is one of the oldest and simplest iterative methods for finding
the dominant eigenvalue and eigenvector of a matrix.3 Therefore, it can be used to find
the stationary vector of a Markov chain. (The stationary vector is simply the dominant
left-hand eigenvector of the Markov matrix.) However, the power method is known for
its tortoise-like speed. Of the available iterative methods (Gauss-Seidel, Jacobi, restarted
GMRES, BICGSTAB, etc. [18]), the power method is generally the slowest. So why did
Brin and Page choose a method known for its sluggishness? There are several good reasons
for their choice.

First, the power method is simple. The implementation and programming are ele-
mentary. (See the box on page 42 for a Matlab implementation of the PageRank power
method.) In addition, the power method applied to G (equation (4.5.1)) can actually be
expressed in terms of the very sparse H.

π(k+1)T = π(k)T G

= α π(k)T S +
1 − α

n
π(k)T e eT

= α π(k)T H + (α π(k)T a + 1 − α) eT /n. (4.6.1)

The vector-matrix multiplications (π(k)T H) are executed on the extremely sparse H, and
S and G are never formed or stored, only their rank-one components, a and e, are needed.
Recall that each vector-matrix multiplication is O(n) since H has about 10 nonzeros per
row. This is probably the main reason for Brin and Page’s use of the power method in
1998. But why is the power method still the predominant method in PageRank research
papers today, and why have most improvements been novel modifications to the PageRank
power method, rather than experiments with other methods? The other advantages of the
PageRank power method answer these questions.

The power method, like many other iterative methods, is matrix-free, which is a term
that refers to the storage and handling of the coefficient matrix. For matrix-free methods,
the coefficient matrix is only accessed through the vector-matrix multiplication routine. No
manipulation of the matrix is done. Contrast this with direct methods, which manipulate
elements of the matrix during each step. Modifying and storing elements of the Google

3The power method goes back at least to 1913. With the help of James H. Wilkinson, the power method
became the standard method in the 1960s for finding the eigenvalues and eigenvectors of a matrix with a digital
computer [152, p. 69–70].

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS OF GOOGLE’S PAGERANK 41

matrix is not feasible. Even though H is very sparse, its enormous size and lack of structure
preclude the use of direct methods. Instead, matrix-free methods, such as the class of
iterative methods, are preferred.

The power method is also storage-friendly. In addition to the sparse matrix H and
the dangling node vector a, only one vector, the current iterate π(k)T , must be stored.
This vector is completely dense, meaning n real numbers must be stored. For Google,
n = 8.1 billion, so one can understand their frugal mentality when it comes to storage.
Other iterative methods, such as GMRES or BICGSTAB, while faster, require the storage
of multiple vectors. For example, a restarted GMRES(10) requires the storage of 10 vectors
of length n at each iteration, which is equivalent to the amount of storage required by the
entire H matrix, since nnz(H) ≈ 10n.

The last reason for using the power method to compute the PageRank vector con-
cerns the number of iterations it requires. Brin and Page reported in their 1998 papers,
and others have confirmed, that only 50-100 power iterations are needed before the iterates
have converged, giving a satisfactory approximation to the exact PageRank vector. Recall
that each iteration of the power method requires O(n) effort because H is so sparse. As a
result, it’s hard to find a method that can beat 50 O(n) power iterations. Algorithms whose
run time and computational effort are linear (or sublinear) in the problem size are very fast,
and rare.

The next logical question is: why does the power method applied to G require only
about 50 iterations to converge? Is there something about the structure of G that indicates
this speedy convergence? The answer comes from the theory of Markov chains. In general,
the asymptotic rate of convergence of the power method applied to a matrix depends on the
ratio of the two eigenvalues that are largest in magnitude, denoted λ1 and λ2. Precisely,
the asymptotic convergence rate is the rate at which |λ2/λ1|k → 0. For stochastic matrices
such as G, λ1 = 1, so |λ2| governs the convergence. Since G is also primitive, |λ2| < 1.
In general, numerically finding λ2 for a matrix requires computational effort that one is not
willing to spend just to get an estimate of the asymptotic rate of convergence. Fortunately,
for the PageRank problem, it’s easy to show [127, p. 502], [90, 108] that if the respective
spectrums are σ(S) = {1, µ2, . . . , µn} and σ(G) = {1, λ2, . . . , λn}, then

λk = αµk for k = 2, 3, . . . , n.

(A short proof of this statement is provided at the end of this chapter.) Furthermore, the link
structure of the Web makes it very likely that |µ2| = 1 (or at least |µ2| ≈ 1), which means
that |λ2(G)| = α (or |λ2(G)| ≈ α). As a result, the convex combination parameter α
explains the reported convergence after just 50 iterations. In their papers, Google founders
Brin and Page use α = .85, and at last report, this is still the value used by Google.
α50 = .8550 ≈ .000296, which implies that at the 50th iteration one can expect roughly
2-3 places of accuracy in the approximate PageRank vector. This degree of accuracy is
apparently adequate for Google’s ranking needs. Mathematically, ten places of accuracy
may be needed to distinguish between elements of the PageRank vector (see Section 8.3),
but when PageRank scores are combined with content scores, high accuracy may be less
important.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

42 CHAPTER 4

Subdominant Eigenvalue of the Google Matrix

For the Google matrix G = αS + (1 − α)1/n eeT ,

|λ2(G)| ≤ α.

• For the case when |λ2(S)| = 1 (which occurs often due to the reducibility of
the web graph), |λ2(G)| = α. Therefore, the asymptotic rate of convergence of
the PageRank power method of equation (4.6.1) is the rate at which αk → 0.

We can now give positive answers to the six questions of section 4.3. With the
stochasticity and primitivity adjustments, the power method applied to G is guaranteed to
converge to a unique positive vector called the PageRank vector, regardless of the starting
vector. Because the resulting PageRank vector is positive, there are no undesirable ties
at 0. Further, to produce PageRank scores with approximately τ digits of accuracy about
−τ/log10α iterations must be completed.

Matlab m-file for PageRank Power Method

This m-file is a Matlab implementation of the PageRank power method given in
equation (4.6.1).

function [pi,time,numiter]=\hbox{PageRank}(pi0,H,n,alpha,epsilon);

% \hbox{PageRank} computes the \hbox{PageRank} vector for an n-by-n Markov
% matrix H with starting vector pi0 (a row vector)
% and scaling parameter alpha (scalar). Uses power
% method.
%
% EXAMPLE: [pi,time,numiter]=\hbox{PageRank}(pi0,H,1000,.9,1e-8);
%
% INPUT: pi0 = starting vector at iteration 0 (a row vector)
% H = row-normalized hyperlink matrix (n-by-n sparse matrix)
% n = size of H matrix (scalar)
% alpha = scaling parameter in \hbox{PageRank} model (scalar)
% epsilon = convergence tolerance (scalar, e.g. 1e-8)
%
% OUTPUT: pi = \hbox{PageRank} vector
% time = time required to compute \hbox{PageRank} vector
% numiter = number of iterations until convergence
%
% The starting vector is usually set to the uniform vector,
% pi0=1/n*ones(1,n).
% NOTE: Matlab stores sparse matrices by columns, so it is faster
% to do some operations on H’, the transpose of H.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS OF GOOGLE’S PAGERANK 43

% get "a", the dangling node vector, where a(i)=1, if node i
% is dangling node and 0, o.w.

rowsumvector=ones(1,n)*H’;
nonzerorows=find(rowsumvector);
zerorows=setdiff(1:n,nonzerorows); l=length(zerorows);
a=sparse(zerorows,ones(l,1),ones(l,1),n,1);

k=0;
residual=1;
pi=pi0;
tic;

while (residual >= epsilon)
prevpi=pi;
k=k+1;
pi=alpha*pi*H + (alpha*(pi*a)+1-alpha)*((1/n)*ones(1,n));
residual=norm(pi-prevpi,1);

end
numiter=k;
time=toc;

Search within a Site

In the competitive business of search, Google is refreshingly generous at times.
For example, at no charge, Google lets website authors employ its technology to
search within their site. (Clicking on the “more” button on Google’s home page
will lead you to the latest information on their services.) For queries within a
site, Google restricts the set of relevant pages to only in-site pages. These in-site
relevant pages are then ranked using the global PageRank scores. In essence, this
in-site search extracts the site from Google’s massive index of billions of pages
and untangles the part of the Web pertaining to the site. Looking at an individual
subweb makes for a much more manageable hyperlink graph.

ASIDE: Search Engine Optimization

As more and more sales move online, large and small businesses alike turn to search
engine optimizers (SEOs) to help them boost profits. SEOs carefully craft webpages and links
in order to “optimize” the chances that their clients’ pages will appear in the first few pages of
search engine results. SEOs can be classified as ethical or unethical. Ethical SEOs are good
netizens, citizens of the net, who offer only sound advice, such as the best way to display text
and label pictures and tags. They encourage webpage authors to maintain good content, as
page rankings are the combination of the content score and the popularity score. They also
warn authors that search engines punish pages they perceive as deliberately spamming. Ethical
SEOs and search engines consider themselves partners who, by exchanging information and
tips, together improve search quality. Unethical SEOs, on the other hand, intentionally try
to outwit search engines and promote spamming techniques. See the aside on page 52 for a
specific case of unethical SEO practices. Since the Web’s infancy, search engines have been

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

44 CHAPTER 4

embroiled in an eternal battle with unethical SEOs. The battle rages all over the Web, from
visible webpage content to hidden metatags, from links to anchor text, and from inside servers
to out on link farms (again, see the aside on page 52).

SEOs had success against the early search engines by using term spamming and hiding
techniques [84]. In term spamming, spam words are included in the body of the page, often
times repeatedly, in the title, metatags, anchor text, and URL text. Hiding techniques use
color schemes and cloaking to deceive search engines. For example, using white text on a
white background makes spam invisible to human readers, which means search engines are
less likely to receive helpful complaints about pages with hidden spam. Cloaking refers to the
technique of returning one spam-loaded webpage for normal user requests and another spam-
free page for requests from search engine crawlers. As long as authors can clearly identify web
crawling agents, they can send the agent away with a clean, spam-free page. Because these
techniques are so easy for webpage authors to use, search engines had to retaliate. They did
so by increasing the IQ of their spiders and indexers. Many spiders and indexers are trained
to ignore metatags, since by the late 1990s these rarely held accurate page information. They
also ignore repeated keywords. However, cloaking is harder to counteract. Search engines
request help from users to stop cloaking. For example, Google asks surfers to act as referees
and to blow the whistle whenever they find a suspicious page that instantaneously redirects
them to a new page.

In 1998, search engines added link analysis to their bag of tricks. As a result, content
spam and cloaking alone could no longer fool the link analysis engines and garner spam-
mers unjustifiably high rankings. Spammers and SEOs adapted by learning how link analysis
works. The SEO community has always been active—its members, then and now, hold con-
ferences, write papers and books, host weblogs, and sell their secrets. The most famous and
informative SEO papers were written by Chris Ridings, “PageRank explained: Everything
you’ve always wanted to know about PageRank” [143] and “PageRank uncovered” [144].
These papers offer practical strategies for hoarding PageRank and avoiding such undesirable
things as PageRank leak. Search engines constantly tune their algorithms in order to stay one
step ahead of the SEO gamers. While search engines consider unethical SEOs to be adver-
saries, some web analysts call them an essential part of the web food chain, because they drive
innovation and research and development.

ASIDE: How Do Search Engines Make Money?

We are asked this question often. It’s a good question. Search engines provide free and
unlimited access to their services, so just where do the billions of dollars in search revenue
come from? Search engines have multiple sources of income. First, there’s the inclusion fee
that some search engines charge website authors. Some impatient authors want a guarantee
that their new site will be indexed soon (in a day or two) rather than in a month or two, when
a spider finally gets to it in the to-be-crawled URL list. Search engines supply this guarantee
for a small fee, and for a slightly larger fee, authors can guarantee that their site be reindexed
on a more frequent, perhaps monthly, basis.

Most search engines also generate revenue by selling profile data to interested parties.
Search engines collect enormous amounts of user data on a daily basis. This data are used to
improve the quality of search and predict user needs, but it is also sold in an aggregate form to
various companies. For example, search engine optimization companies who are interested in
popular query words or the percentage of searches that are commercial in nature can buy this
information directly from a search engine.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS OF GOOGLE’S PAGERANK 45

While search engines do not sell access to their search capabilities to individual users,
they do sell search services to companies. For example, Netscape pays Google to use Google
search as the default search provided by its browser. At one point, GoTo (which was bought
by Overture, which is now part of Yahoo) sold its top seven results for each query term to
Yahoo and AltaVista, who, in turn, used the seven results as their top results.

Despite these sources of income, by far the most profitable and fastest-growing revenue
source for search engines is advertising. It is estimated that in 2004 $3 billion in search
revenue will be generated from advertising. Google’s IPO filing on June 21, 2004 made the
company’s dependence on advertising very clear: advertising accounted for over 97% of their
2003 revenue. Many search engines sell banner ads that appear on their homepages and results
pages. Others sell pay-for-placement ads. These controversial ads allow a company to buy
their way to the top of the ranking. Many web analysts argue that these pay-for-placement
ads pollute the search results. However, search engines using this technique (GoTo is a prime
example) retort that this method of ranking is excellent for commercial searches. Since recent
surveys estimate that 15-30% of all searches are commercial in nature, engines like Overture
provide a valuable service for this class of queries. On the other hand, many searches are
research-oriented, and the results of pay-for-placement engines frustrate these users.

Google takes a different approach to advertisements and rankings. They present the
unpaid results in a main list while pay-for-placement sites appear separately on the side as
“sponsored links.” Google, and now Yahoo, are the only remaining companies not to mingle
paid links with pure links. Google uses a cost-per-click advertising scheme to present spon-
sored links. Companies choose a keyword associated with their product or service, and then
bid on a price they are willing to pay each time a searcher clicks on their link. For example,
a bike shop in Raleigh may bid 5 cents for every query on “bike Raleigh.” The bike shop is
billed only if a searcher actually clicks on their ad. However, another company may bid 17
cents for the same query. The ad for the second company is likely to appear first because, al-
though there is some fine tuning and optimization, sponsored ads generally are listed in order
from the highest bid to the lowest bid.

Cost-per-click advertising is an innovation in marketing. Small businesses who tradi-
tionally spent little on advertising are now spending much more on web advertising because
cost-per-click advertising is so cost-effective. If a searcher clicks on the link, he or she is
indicating an intent to buy, something that other means of advertising such as billboards or
mail circulars cannot deliver. Interestingly, like many other things on the Web, it was only a
matter of time before cost-per-click advertising turned into a battleground between competi-
tors. Without protection (which can be purchased in the form of a software program) naive
companies buying cost-per-click advertising can easily be sabotaged by competitors. Com-
petitors repeatedly click on the naive company’s ads, running up their tab and exhausting the
company’s advertising budget.

4.7 THEOREM AND PROOF FOR SPECTRUM OF THE GOOGLE MATRIX

In this chapter, we defined the Google matrix as G = αS + (1 − α)1/n eeT . However,
in the Section 5.3 of the next chapter, we broaden this to include a more general Google
matrix, where the fudge factor matrix E changes from the uniform matrix 1/n eeT to evT ,
where vT > 0 is a probability vector. In this section, we present the theorem and proof for
the second eigenvalue of this more general Google matrix.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

46 CHAPTER 4

Theorem 4.7.1. If the spectrum of the stochastic matrix S is {1, λ2, λ3, . . . , λn}, then
the spectrum of the Google matrix G = αS + (1 − α)evT is {1, αλ2, αλ3, . . . , αλn},
where vT is a probability vector.

Proof. Since S is stochastic, (1, e) is an eigenpair of S. Let Q = (e X) be a non-

singular matrix that has the eigenvector e as its first column. Let Q−1 =
(

yT

YT

)
. Then

Q−1Q =
(

yT e yT X
YT e YT X

)
=
(

1 0
0 I

)
, which gives two useful identities, yT e = 1 and

YT e = 0. As a result, the similarity transformation

Q−1SQ =
(

yT e yT SX
YT e YT SX

)
=
(

1 yT SX
0 YT SX

)
reveals that YT SX contains the remaining eigenvalues of S, λ2, . . . , λn. Applying the
similarity transformation to G = αS + (1 − α)evT gives

Q−1(αS + (1 − α)evT)Q= αQ−1SQ + (1 − α)Q−1evT Q

=
(

α αyT SX
0 αYT SX

)
+ (1 − α)

(
yT e
YT e

)
(vT e vT X)

=
(

α αyT SX
0 αYT SX

)
+
(

(1 − α) (1 − α)vT X
0 0

)
=
(

1 αyT SX + (1 − α)vT X
0 αYT SX

)
.

Therefore, the eigenvalues of G = αS + (1 − α)evT are {1, αλ2, αλ3, . . . , αλn}.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Five

Parameters in the PageRank Model

My grandfather, William H. Langville, Sr., loved fiddling with projects in his basement
workshop. Down there he had a production process for making his own shad darts for
fishing. He poured lead into a special mold, let it cool, then applied bright paints. He
manufactured those darts by the dozens, which was good because on each fishing trip my
brothers, cousins, and I always lost at least three each to trees, underwater boots, poor
knot-tying, and of course, really big, sharp-toothed fish. Grandpop kept meticulous fishing
records of where, when, how many, and which type of fish he caught each day. He also
noted the style of dart he’d used. He looked for success patterns. It wasn’t long before he
started fiddling with his manufacturing process, making big darts, small darts, green darts,
orange darts, two-toned darts, feathered darts, darts with sinks, and darts with spinners. He
found the fiddling fun—hypothesizing, testing, and reporting what happened if he tweaked
this parameter that way, that parameter this way.

We agree with Grandpop. The fun is in the fiddling. In this chapter, we introduce the
various methods for fiddling with the basic PageRank model of Chapter 4, and then, like
Grandpop, consider the implications of such changes.

5.1 THE α FACTOR

In Chapter 4, we introduced the scaling parameter 0 < α < 1 to create the Google matrix
G = αS+(1−α)E. The constant α clearly controls the priority given to the Web’s natural
hyperlink structure as opposed to the artificial teleportation matrix E. In their early papers
[39, 40], Brin and Page, the founders of Google, suggest setting α = .85. Like many
others, we wonder why .85? Why not .9? Or .95? Or .6? What effect does α have on the
PageRank problem? In Chapter 4, we mentioned that the scaling parameter controlled the
asymptotic rate of convergence of the PageRank power method. Reviewing the conclusion
there, as α → 1, the expected number of iterations required by the power method increases
dramatically. See Table 5.1 below.

For α = .5, only about 34 iterations are expected before the power method has
converged to a tolerance of 10−10. As α → 1, this number becomes prohibitive. Even
using α = .85, this choice of α still requires several days of computation before satisfac-
tory convergence due to the scale of the matrices and vectors involved. This means that
Google engineers are forced to perform a delicate balancing act—as α → 1, the artificial-
ity introduced by the teleportation matrix E = 1/n eeT reduces, yet the computation time
increases.

It seems that setting α = .85 strikes a workable compromise between efficiency and
effectiveness. Interestingly, this constant α controls more than just the convergence of the

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

48 CHAPTER 5

Table 5.1 Effect of α on expected number of power iterations

α Number of Iterations

.5 34
.75 81
.8 104
.85 142
.9 219
.95 449
.99 2,292
.999 23,015

PageRank method; it affects the sensitivity of the resulting PageRank vector. Specifically,
as α → 1, the PageRankings become much more volatile, and fluctuate noticeably for even
small changes in the Web’s structure. The Web’s dynamic nature, which we emphasized
in Chapter 1, makes sensitivity an important issue. Ideally, we’d like to produce a ranking
that is stable despite such small changes. The sensitivity issue, especially α’s effect on it,
is treated in depth in the next chapter.

5.2 THE HYPERLINK MATRIX H

Another part of the PageRank model that can be adjusted is the H matrix itself. Brin and
Page originally suggested a uniform weighting scheme for filling in elements in H. That
is, all outlinks from a page are given equal weight in terms of the random surfer’s hy-
perlinking probabilities. While fair, democratic, and easy to implement, equality may not
be best for webpage rankings. In fact, the random surfer description may not be accurate
at all. Rather than hyperlinking to new pages by randomly selecting one of the outlinking
pages, perhaps surfers select new pages by choosing outlinking pages with a lot of valuable
content or pertinent descriptive anchor text. (To understand the importance of anchor text,
see the aside on Google bombs on page 54.) In this case, take the random surfer who plays
eeni-meeni-meini-mo to decide which page to visit next and replace him with an intelli-
gent surfer who upon arriving at a new page pulls a calculator from his chest pocket and
pecks away until he decides which page is most appropriate to visit next (based on current
location, interests, history, and so on). For example, the intelligent surfer may be more
likely to jump to content-filled pages, so these pages should be given more probabilistic
weight than brief advertisement pages.

A practical approach to filling in H’s elements is to use access logs to find actual
surfer tendencies. For example, a webmaster can study his access logs and find that surfers
on page P1 are twice as likely to hyperlink to P2 as they are to P3. Thus, outlinking
probabilities in row 1 of H can be adjusted accordingly. For the webgraph from Figure
4.1, the original hyperlink matrix using the random surfer description,

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

PARAMETERS IN THE PAGERANK MODEL 49

H =

⎛⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 1/2 1/2 0 0 0
P2 0 0 0 0 0 0
P3 1/3 1/3 0 0 1/3 0
P4 0 0 0 0 1/2 1/2
P5 0 0 0 1/2 0 1/2
P6 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,

changes to

H =

⎛⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6

P1 0 2/3 1/3 0 0 0
P2 0 0 0 0 0 0
P3 1/3 1/3 0 0 1/3 0
P4 0 0 0 0 1/2 1/2
P5 0 0 0 1/2 0 1/2
P6 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,

when the intelligent surfer description is applied to page P1.
PageRank

researchers have presented many other methods for filling in the elements of raw
hyperlink matrix H [13, 26, 27, 142, 159]. These methods use heuristic rules to create the
nonzero elements of H by combining measures concerning the location of the outlinks in
a page, the length of the anchor text associated with the outlinks, and the content similarity
between the two documents connected by a link. For example, row 4 of the above matrix
shows that page P4 links to pages P5 and P6. The probabilities in H45 and H46 can be
determined by computing the angle similarity measure between pages P4 and P5 and P4

and P6, respectively. The angle similarity measure is an important part of a traditional
information retrieval model, the vector space model of Chapter 1 [23]. Regardless of how
H is created, it is important, in the context of the Markov chain, that the resulting matrix
be nearly stochastic. That is, the rows corresponding to nondangling nodes (pages with
at least one outlink) sum to 1, while rows for dangling nodes sum to 0. If this is not the
case, the rows must be normalized. We will discuss other non-Markovian ranking models
in Chapters 11 and 12.

5.3 THE TELEPORTATION MATRIX E

One of the first modifications to the basic PageRank model that founders Brin and Page
suggested was a change to the teleportation matrix E. Rather than using 1/n eeT , they
used evT , where vT > 0 is a probability vector called the personalization or telepor-
tation vector. Since vT is a probability vector with positive elements, every node is still
directly connected to every other node; thus, G is primitive, which means that a unique sta-
tionary vector for the Markov chain exists and is the PageRank vector. Using vT in place
of 1/n eT means that the teleportation probabilities are no longer uniformly distributed.
Instead, each time a surfer teleports, he or she follows the probability distribution given in
vT to jump to the next page. This slight modification retains the advantageous properties
of the power method. When G = αS + (1 − α)evT , the power method becomes

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

50 CHAPTER 5

π(k+1)T = π(k)T G

= α π(k)T S + (1 − α) π(k)T evT

= α π(k)T H + (α π(k)T a + 1 − α)vT . (5.3.1)

Compare equation (5.3.1) with equation (4.6.1) on page 40, which uses the original demo-
cratic teleportation matrix E = 1/n eeT . Since only the constant vector added at each
iteration changes from eT /n to vT , nearly all our Chapter 4 discoveries concerning the
PageRank power method still apply. Specifically, the asymptotic rate of convergence,
sparse vector-matrix multiplications, minimal storage, and coding simplicity are preserved.
However, one thing that does change is the PageRank vector itself. Different personaliza-
tion vectors produce different PageRankings [158]. That is, πT (vT) is a function of vT .

Recognizing the uses of vT is liberating. Think about it. Why should we all be
subject to the same ranking of webpages? That single global, query-independent ranking
πT (which uses vT = 1/n eT) says nothing about me and my preferences. As Americans,
aren’t we all entitled to our own individual ranking vector—one that knows our personal
preferences regarding pages and topics on the Web. If you like to surf for pages about news
and current events, simply bias your vT vector, so that vi is large for pages Pi about news
and current events and vj is nearly 0 for all other pages, and then compute the PageRank
vector that’s tailored to your needs. Politicians can add another phrase to their campaign
promises: “a car in every garage, a computer in every home, and a personalization vector
vT for every web surfer.”

This seems to have been Google’s original intent in introducing the personalization
vector [38]. However, it makes the once query-independent, user-independent PageRanks
user-dependent and more calculation-laden. Tailoring rankings for each user sounds won-
derful in theory, yet doing this in practice is computationally impossible. Remember, it
takes Google days to compute just one πT corresponding to one vT vector, the democratic
personalization vector vT = 1/n eT .

Motivated in part by the fact that many see personalized engines as the future of
search, several researchers have ignored the claims of computational impossibility and
have created pseudo-personalized PageRanking systems [58, 88, 91, 99, 142]. We say
pseudo because these systems do not deliver rankings that are customized for each and
every user, but rather groups of users.

One such system was the product of Taher Haveliwala, while he was a graduate stu-
dent at Stanford. He adapted the standard, query-independent PageRank to create a topic-
sensitive PageRank [88, 89]. He created a finite number of PageRank vectors πT (vT

i),
each biased toward some particular topic i. For his experiments, Haveliwala chose the 16
top-level topics from the Open Directory Project (ODP) classification of webpages. For
example, suppose πT (vT

1) is the PageRank vector for Arts, the first ODP topic, while
πT (vT

2) is the PageRank vector for Business, the second ODP topic. πT (vT
1) is biased

toward Arts because vT
1 has significant probabilities only for pages pertaining to Arts, the

remaining probabilities are nearly 0. The 16 biased PageRank vectors are precomputed.
Then at query time, the trick is to quickly combine these biased vectors in a way that
mimics the interests of the user and meanings of the query. Haveliwala forms his topic-
sensitive, query-dependent PageRank vector as a convex combination of the 16 biased

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

PARAMETERS IN THE PAGERANK MODEL 51

PageRank vectors. That is,

πT = β1π
T (vT

1) + β2π
T (vT

2) + · · · + β16π
T (vT

16),

where
∑

i βi = 1. For instance, a query on science project ideas falls between
the ODP categories of Kids and Teens (category 7), Reference (category 10), and Science
(category 12). Logically, the PageRank vectors associated with these topics should be
given more weight, or even all the weight, so that β7, β10, and β12 are large compared
to the other coefficients. Haveliwala uses a Bayesian classifier to compute the βi’s for
his experiments, but there are other options. When all this is done, the topic-sensitive
popularity score is combined with the traditional content score from Chapter 1. Of course,
if a finer gradation of personalization is desired, more than 16 topics can be used to better
bias the rankings toward the user’s query and interests.

It seems this little personalization vector vT has potentially more significant side ef-
fects. Some speculate that Google can use this personalization vector to control spamming
done by the so-called link farms. See the aside, SearchKing vs. Google, on page 52.

Kaltix’s Personalized Web Search

It didn’t take Google long to recognize the value of personalized search. In
fact, Google snatched up Kaltix, a personalized search startup, just three months
after its inception. Kaltix technology was created by Glen Jeh, Sepandar
Kamvar, and Taher Haveliwala in the summer of 2003, while the three were
on leaves of absence from the Stanford Computer Science Department. The
Kaltix guys worked 20 hours a day that summer, literally working their fin-
gers to the bone, falling asleep some nights with ice packs on their over-
worked wrists. The hard work paid off. Google bought Kaltix in Septem-
ber 2003, and the three moved into the Google headquarters to continue the
project. In March 2004, Google labs released Personalized Search in beta ver-
sion (http://labs.google.com/personalized). A user creates a profile by
setting check boxes in a hierarchical listing of categories of interest. A person-
alization vector is created from this profile. Then when a query is entered into
the Personalized Search box, the results are presented in the standard ranked list.
However, in addition, a slider bar allows one to turn up the level of customization
and increase the effect of the personalization vector.

Matlab m-file for Personalized PageRank Power Method

The Matlab implementation of the PageRank power method on page 42 used a
uniform personalization vector vT = eT /n. This m-file, which is a simple one-
line change in that code, implements a more general PageRank power method,
allowing the personalization vector to vary as input. Therefore, the m-file below
implements the PageRank power method applied to G = αS + (1 − α)evT .

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://labs.google.com/personalized

52 CHAPTER 5

function [pi,time,numiter]=\hbox{PageRank}(pi0,H,v,n,alpha,epsilon);

% \hbox{PageRank} computes the \hbox{PageRank} vector for an n-by-n Markov
% matrix H with starting vector pi0 (a row vector),
% scaling parameter alpha (scalar), and teleportation
% vector v (a row vector). Uses power method.
%
% EXAMPLE:[pi,time,numiter]=\hbox{PageRank}(pi0,H,v,900,.9,1e-8);
%
% INPUT: pi0 = starting vector at iteration 0 (a row vector)
% H = row-normalized hyperlink matrix (n-by-n sparse matrix)
% v = teleportation vector (1-by-n row vector)
% n = size of P matrix (scalar)
% alpha = scaling parameter in \hbox{PageRank} model (scalar)
% epsilon = convergence tolerance (scalar, e.g. 1e-8)
%
% OUTPUT: pi = \hbox{PageRank} vector
% time = time required to compute \hbox{PageRank} vector
% numiter = number of iterations until convergence
%
% The starting vector is usually set to the uniform vector,
% pi0=1/n*ones(1,n).
% NOTE: Matlab stores sparse matrices by columns, so it is faster
% to do some operations on H’, the transpose of H.

% get "a" vector, where a(i)=1, if row i is dangling node
% and 0, o.w.

rowsumvector=ones(1,n)*H’;
nonzerorows=find(rowsumvector);
zerorows=setdiff(1:n,nonzerorows); l=length(zerorows);
a=sparse(zerorows,ones(l,1),ones(l,1),n,1);

k=0;
residual=1;
pi=pi0;
tic;

while (residual >= epsilon)
prevpi=pi;
k=k+1;
pi=alpha*pi*H + (alpha*(pi*a)+1-alpha)*v;
residual=norm(pi-prevpi,1);

end
numiter=k;
time=toc;

ASIDE: SearchKing vs. Google

Link farms are set up by spammers to fool information retrieval systems into increasing
the rank of their clients’ pages. One client who made it onto the front page of the Wall
Street Journal is Joy Holton, the owner of an online store (exoticleatherwear.com)
that sells provocative leather clothing [160]. Using metatags and HTML coding, she was
able to attract a modest number of surfers to her store. However, an email from the search

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

PARAMETERS IN THE PAGERANK MODEL 53

engine optimization company, AutomatedLinks, convinced Holman to pay the $22 annual fee
to use their rank-boosting service. (See the aside on search engine optimization on page 43.)
AutomatedLinks’ sole efforts are aimed at increasing the PageRank (and ranking among other
search engines) of their clients’ pages. AutomatedLinks accomplishes this with link farms.
Knowing that PageRank increases when the number of important inlinks to a client’s page
increases, optimizers add such links to a client’s page. Link farms have several interconnected
nodes about important topics and with significant PageRanks. These interconnected nodes
then link to a client’s page, thus, in essence, sharing some of their PageRank with the client’s
page. Holman’s $22 investment with AutomatedLinks brought her over 26,000 visitors a
month and thousands of dollars in revenue.

Most link farms use a link exchange program or reciprocal linking policy to boost
the rank of client’s pages, but there are other scenarios for doing this [28, 29]. Of course,
link farms are very troublesome for search engines who are concerned with the integrity of
their rankings. Search engines employ several techniques to sniff out link farms. First, they
ask surfers to be tattletales and report any suspicious pages. Second, they use algorithms to
identify tightly connected subgraphs of the Web with a high density of reciprocal links. And
third, they manually inspect the algorithm’s results to determine whether suspected sites play
fair or foul. Google discourages link spamming by threatening to ban or drop the ranking of
suspected sites and their neighbors.

Google’s devalueing of the PageRank of link farmers created a legal stir during 2002
and 2003. The search engine optimization company, SearchKing, was running smoothly from
February 2001 until August 2002, in part because it had a high PageRank, which it then shared
with its clients. Clients with high PageRank had more traffic, and thus happily paid SearchK-
ing for its rank-boosting service. However, in the few months after August 2002, Bob Massa,
president of SearchKing, watched the PageRank estimate reported on his Google Toolbar (see
the box on page 28) drop from PR8 to PR4, then from PR2 to PR0. Of course, his clients
were affected as well. They complained and many jumped ship. Furious, Bob Massa took
action on October 17, 2002, by filing a suit against Google with the U.S. District Court for
the Western District of Oklahoma. SearchKing’s legal team sued Google, demanding $75,000
in lost revenue plus court fees, the restoration of its and its clients’ previous PageRanks, and
the disclosure of the source code for the PageRank algorithm used by Google from August
to October 2002. Both parties knew the import of the case. Its outcome would set a prece-
dent for the relationship between optimization companies and search engines. SearchKing
pushed for an early response, Google delayed. By December 30, 2002, Google had prepared
a powerful, convincing, and well-researched response to SearchKing’s motion for a prelimi-
nary injunction, and further added a motion to dismiss. There were two main arguments to
Google’s response. First, Google argued that PageRanks are opinions, the company’s judg-
ment of the value of webpages. These opinions are protected by the First Amendment. In fact,
the Google defense team cited a precedent for a similar ranking, the rankings created by credit
agencies. In 1999 in Jefferson County School District # R-I vs. Moody’s Investors Service,
Inc., the same court ruled that Moody’s low credit ranking of the school’s district, while possi-
bly harming the district’s perceived housing and schooling value in the public’s eye, was just
an opinion and was protected by the First Amendment. Similarly, the Google defense team
argued:

The PageRank values assigned by Google are not susceptible to being proved true
or false by objective evidence. How could SearchKing ever “prove” that its ranking
should “truly” be a 4 or a 6 or a 8? Certainly, SearchKing is not suggesting that
each one of the billions of web pages ranked by Google are subject to another “truer”
evaluation? If it believes so, it is certainly free to develop its own search services using
the criteria it deems most appropriate.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

54 CHAPTER 5

Google also mentioned that its crawlers index just a small part of the Web, and therefore,
Google is not entitled to index SearchKing’s page in the first place, much less rank it.

The second part of Google’s argument concerns the “irreparable harm” that could be
done by SearchKing’s demand to see the PageRank source code. A motion for preliminary
injunction can be granted if the plaintiff shows (among other required things) that not doing
so causes irreparable harm to the plaintiff as SearchKing claimed, due to its loss of clients.
On the other hand, a motion for a preliminary injunction cannot be granted if it causes the de-
fendant irreparable harm. Google presented the affidavit of Matthew Cutts, Google’s software
engineer who works on the PageRank quality team. Regarding the irreparable harm issue,
Cutts stated:

Google’s source code for its internally developed software is kept confidential by
Google and has great value to the ongoing business of Google. Indeed, the technology
that it encodes constitutes one of Google’s most valuable assets If an entity
were in possession of Google’s proprietary source code and wanted to manipulate or
to abuse Google’s guidelines or relevance, Google could suffer irreparable damage as
the integrity of, and the public’s confidence in, Google’s quality and scoring would be
seriously jeopardized.

Thus, Google made a much stronger case for possible irreparable harm.

On May 27, 2003, the Court denied SearchKing’s motion for a preliminary injunc-
tion, and instead, granted Google’s motion to dismiss. The court concluded that Google’s
PageRanks are entitled to full constitutional protection. Google won this one of their many le-
gal battles of late. (See the aside on censorship and privacy on page 147.) Those of us engaging
in hard-fought ethical search engine optimization rejoiced that justice was served. Unethical
rank-boosting reminds us of a similar unfair practice from our elementary school days—line-
butting at the water fountain. Nonbutters dislike both the butters (SearchKing clients) and the
enabler (Bob Massa). Nonbutters feel safer when a teacher is watching. Rest assured that
Google and other search engines are watching as often as they can. However, some netizens
argue that the Oklahoma court ruling only plays into the disturbing and growing Googleopoly
(see the aside on page 112).

It is not clear exactly how Google devalued SearchKing’s PageRank, whether algorith-
mically or in an ad-hoc ex postfacto way. One way to incorporate such devaluation algorith-
mically into the PageRank model is through the personalization vector vT . The elements in
vT > 0 corresponding to suspected or known link farming pages can be set to a very small
number, close to 0. As the iterative PageRank algorithm proceeds, such pages will be deval-
ued slightly, as the surfer will be less likely to teleport there. Of course, the simpler way to
devalue spammers’ pages is to assign them PR0 after the PageRank calculation is completed.
The much harder part of the spam problem is the identification of spam pages.

ASIDE: Google Bombs

Friday, April 6, 2001, G-Day: Adam Mathes, then a computer science major at Stanford,
launches the first Google bomb operation. Adam uses his Filler Friday web article to encour-
age his readers to help deploy the first ever international Google bomb. Readers are instructed
to make a hyperlink to the homepage of Adam’s friend, Andy Pressman. Adam reported that
the anchor text of the hyperlink was the key to the Google bomb. Adam’s readers were in-
structed to make “talentless hack” the anchor text of their new hyperlink, which pointed to

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

PARAMETERS IN THE PAGERANK MODEL 55

Andy Pressman’s page. Adam Mathes had cleverly discovered a loophole in Google’s use
of anchor text. Given enough links to Andy Pressman’s page with anchor text describing
that page as “talentless hack,” Google assumes that page really is about talentless hack, even
though the words may never once appear on Andy’s page. Google added Andy’s page to its
index under the terms “talentless” and “hack.” From the beginning, Google rightfully noticed
the descriptive power of anchor text. In fact, anchor text is useful in synonym association. If
several pages point to a page about autos, but use the term car, the auto page should also be
indexed under car. Of course, Google bombs have a slow-deploying mechanism—it takes an
accumulation of links with descriptive anchor text, and thus, time until the content of those
pages are updated in Google’s index before the bomb explodes.

Monday, October 27, 2003: George Johnston uses his blog (which is an interactive online di-
ary) to set off the most famous Google bomb, the “miserable failure” bomb aimed at President
George W. Bush. Johnston reported that his mission as bomb detonator had been accom-
plished by late November 2003. In December, entering the query “miserable failure” into
Google showed the official White House Biography of the President as the number 1 result.
One reporter noticed that of the over 800 links pointing to the Bush biography, only 32 used
the phrase “miserable failure” in the anchor text, which meant Google bombing was not only
fun, it was easy. By January 2004, bombers using the phrase “miserable failure” had to com-
pete; results showed Michael Moore, President Bush, Jimmy Carter, and Hillary Clinton in
the top four positions. And of course, other phrases were used by pranksters such as “French
military victories,” which brought up a Typo Correction page asking “did you mean: French
military defeats,” and “weapons of mass destruction,” which showed an error page similar to
the “404 Page Not Found” error page.

Google’s Reaction: Google initially took a disinterested stance toward Google bombs, claim-
ing that such games only affected obscure, goofy queries and not their typical serious queries.
Besides, they claimed that their rankings reflected accurate opinions on the Web; obviously,
many webpage authors agreed with Johnston that Bush really was a miserable failure. But
with their June 21, 2004 IPO filing, Google mentioned that the war with spammers including
these bombers, is “ongoing and increasing,” and that they were stepping up tactics to outsmart
the spammers and defuse the bombs.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Six

The Sensitivity of PageRank

Psychologists say that a person’s sensitivities give insights into the personality. They say
sensitivity to name-calling might indicate a maligned childhood. Sensitivity to injury, a
pampered, spoiled upbringing; a short fuse with the boss, anger toward parents, and so on.
It seems the same is true for the PageRank model. The sensitivities of the PageRank model
reveal quite a bit about the popularity scores it produces. For example, when α gets very
close to 1 (its upperbound), it seems to really get PageRank’s goat. In this chapter, we
explain exactly how PageRank reacts to changes like this.

In fact, the sensitivity of the PageRank vector can be analyzed by examining each
parameter of the Google matrix G separately. In Chapter 5, we emphasized G’s depen-
dence on three specific parameters: the scaling parameter α, the hyperlink matrix H, and
the personalization vector vT . We discuss the effect of each of these on the PageRank
vector in turn in this chapter.

6.1 SENSITIVITY WITH RESPECT TO α

In this section, we use the derivative to show the effect of changes in α on πT . The
derivative is a classical tool for answering questions of sensitivity. The derivative of πT

with respect to α, written dπT (α)/dα, tells how much the elements in the PageRank vector
πT vary when α varies slightly. If element j of dπT (α)/dα, denoted dπj(α)/dα, is large
in magnitude, then we can conclude that as α increases slightly, πj (the PageRank for page
Pj) is very sensitive to small changes in α. The signs of the derivatives also give important
information; if dπj(α)/dα > 0, then small increases in α imply that the PageRank for
Pj will increase. And similarly, dπj(α)/dα < 0 implies the PageRank decreases. It is
important to remember that dπT (α)/dα is only an approximation of how elements in πT

change when α changes, and does not describe exactly how they change. Nevertheless,
analyzing this derivative can reveal important information about how changes in α affect
πT .

Even though the parameter α is usually set to .85, it can theoretically vary between
0 < α < 1. Of course, G depends on α, and so, G(α) = αS+ (1−α)evT . The question
about how sensitive πT (α) is to changes in α can be answered precisely if the derivative
dπT (α)/dα, which gives the rate of change of πT (α) with respect to small changes in
α, can be evaluated. But before attempting to differentiate we should be sure that this
derivative is well defined. The distribution πT (α) is a left-hand eigenvector for G(α), but
eigenvector components need not be differentiable (or even continuous) functions of the
entries of G(α) [127, p. 497], so the existence of dπT (α)/dα is not a slam dunk. The
following theorem provides what is needed. (We have postponed all proofs in this chapter
until the last section, section 6.5.)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

58 CHAPTER 6

Theorem 6.1.1. The PageRank vector is given by

πT (α) =
1∑n

i=1 Di(α)
(
D1(α), D2(α), . . . , Dn(α)

)
,

where Di(α) is the ith principal minor determinant of order n − 1 in I − G(α). Because
each principal minor Di(α) > 0 is just a sum of products of numbers from I − G(α),
it follows that each component in πT (α) is a differentiable function of α on the interval
(0, 1).

The theorem below provides an upperbound on the individual components of the
derivative vector as well as an upperbound on the sum of these individual components,
denoted by the 1-norm.

Theorem 6.1.2. If πT (α) =
(
π1(α), π2(α), . . . πn(α)

)
is the PageRank vector , then∣∣∣∣dπj(α)

dα

∣∣∣∣ ≤ 1
1 − α

for each j = 1, 2, . . . , n, (6.1.1)

and ∥∥∥∥dπT (α)
dα

∥∥∥∥
1

≤ 2
1 − α

. (6.1.2)

The utility of Theorem 6.1.2 is limited to smaller values of α. For smaller values
of α, Theorem 6.1.2 insures that PageRanks are not overly sensitive as a function of the
Google parameter α. However, as α → 1, the upperbound (6.1.1) of 1/(1−α) → ∞. Thus,
the bound becomes increasingly useless because there is no guarantee that it is attainable.

But the larger values of α are the ones of most interest because they give more weight
to the true link structure of the Web while smaller values of α increase the influence of
the artificial probability vector vT . Since the PageRank concept is predicated on taking
advantage of the Web’s link structure, it is natural to choose α closer to 1. Again, it is been
reported that Google uses α ≈ .85 [39, 40]. Therefore, more analysis is needed to decide
on the degree of sensitivity of PageRank to larger values of α. The following theorem
provides a clear and more complete understanding.

Theorem 6.1.3. If πT (α) is the PageRank vector associated with the Google matrix
G(α) = αS + (1 − α)evT , then

dπT (α)
dα

= −vT (I − S)(I − αS)−2. (6.1.3)

In particular, the limiting values of this derivative are

lim
α→0

dπT (α)
dα

= −vT (I − S) and lim
α→1

dπT (α)
dα

= −vT (I − S)#,

where (�)# denotes the group inverse [46, 122].

The dominant eigenvalue λ1 = 1 of all stochastic matrices is semisimple [127, p.
696], so, when S is reduced to Jordan form by a similarity transformation, the result is

J = X−1SX =
(

I 0
0 C

)
, 1 �∈ σ(C), =⇒ (I − S) = X

(
0 0
0 I − C

)
X−1

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE SENSITIVITY OF PAGERANK 59

and
(I − S)# = X

(
0 0
0 (I − C)−1

)
X−1.

Matrix C is composed of Jordan blocks J� associated with eigenvalues λk �= 1, and the
corresponding blocks in (I − C)−1 are (I − J�)−1. Combining this with Theorem 6.1.3
makes it clear that the sensitivity of πT (α) as α → 1 is governed by the size of the entries
of (I − S)#. ‖(I − S)#‖ ≤ κ(X)‖(I − C)−1‖, where κ(X) is the condition number
of X. Therefore, the sensitivity of πT (α) as α → 1 is governed primarily by the size of
‖(I−C)−1‖, which is driven by the size of |1−λ2|−1 (along with the index of λ2), where
λ2 �= 1 is the eigenvalue of S that is closest to λ1 = 1. In other words, the closer λ2 is to
λ1 = 1, the more sensitive πT (α) is when α is close to 1.

Generally speaking, stochastic matrices having a subdominant eigenvalue near to 1
are those that represent nearly uncoupled chains [85] (also known as nearly completely
decomposable chains). These are chains whose states form clusters such that the states
within each cluster are strongly linked to each other, but the clusters themselves are only
weakly linked—i.e., the states can be ordered so that the transition probability matrix has
the form S = D + εE, where D is block diagonal, ‖E‖ ≤ 1, and 0 ≤ ε < 1 is small
relative to 1.

The chain defined by the link structure of the Web is almost certainly nearly uncou-
pled (weakly linked clusters of closely coupled nodes abound due to specialized interests,
regional interests, geographical considerations, etc.), so the matrix S can be expected to
have a subdominant eigenvalue very close to λ1 = 1. Therefore, as α grows, the PageRank
vector becomes increasingly sensitive to changes in α, and when α ≈ 1, PageRank is
extremely sensitive. Putting all of these observations together produces the following con-
clusions.

Summary of PageRank Sensitivity

As a function of the parameter α, the sensitivity of the PageRank vector πT (α)
to small changes in α is as follows.

• For small α, PageRank is insensitive to slight variations in α.

• As α becomes larger, PageRank becomes increasingly more sensitive to small
perturbations in α.

• For α close to 1, PageRank is very sensitive to small changes in α. The degree
of sensitivity is governed by the degree to which S is nearly uncoupled.

The Balancing Act

Larger values of α give more weight to the true link structure of the Web while
smaller values of α increase the influence of the artificial probability vector vT .
Because the PageRank concept is predicated on trying to take advantage of the
Web’s link structure, it’s more desirable to choose α close to 1. But this is where
PageRank becomes most sensitive, so moderation is necessary—it has been re-
ported that Google uses α ≈ .85 [39, 40].

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

60 CHAPTER 6

We close this section with a numerical example whereby we examine the eigenvalues
and PageRank vectors of the matrices associated with two related web graphs.

EXAMPLE 1 A small web graph is pictured in Figure 6.1.

3

4 5

6

1 2

7

Figure 6.1 Directed graph for web of seven pages

Table 6.1 shows the eigenvalues (sorted by magnitude) for the three matrices associ-
ated with this graph: the raw hyperlink matrix H, the stochastic matrix S, and the Google
matrix G. It also shows the PageRank values and rank for different values of α.

Table 6.1 Eigenvalues and PageRank vector for 7-node graph of Figure 6.1

α = .8 α = .9 α = .99

σ(H) σ(S) σ(G) πT Rank σ(G) πT Rank σ(G) πT Rank

1 1 1 .0641 6 1 .0404 6 1 .0054 6
-.50+.87i -.50+.87i -.40+.69i .0871 5 -.45+.78i .0558 5 -.50+.86i .0075 5
-.50-.87i -.50-.87i -.40-.69i .1056 4 -.45-.78i .0697 4 -.50+.86i .0096 4
-.35+.60i .7991 .6393 .2372 1 .7192 .2720 1 .7911 .3253 1
-.35-.60i -.33+.61i -.26+.49i .2256 2 -.30+.55i .2643 2 -.33+.60i .3240 2

.6934 -.33-.61i -.26-.49i .2164 3 -.30-.55i .2573 3 -.33-.60i .3231 3
0 0 0 .0641 6 0 .0404 6 0 .0054 6

According to PageRank, the pages are ordered from most important to least impor-
tant as (4 5 6 3 2 1 7). Table 6.1 reveals several facts. First, |λ2(G)| = α since
S has several eigenvalues on the unit circle, a consequence of the reducibility and period-
icity of the graph. Second, as α → 1, the PageRank values do change noticeably, however;
in this example, the actual ranks do not change. Other experiments on larger graphs show
that the ranks can also change as α → 1 [158]. (We discuss the issue of sensitivity of
PageRank values versus PageRank ranks later, in Section 6.4). Third, the second largest in
magnitude eigenvalue of S is .7991. In this section, we emphasized that this value (which
also measures the degree of coupling of the Markov chain) governs the sensitivity of the
PageRank vector. Since .7991 is not close to 1, we expect this chain to be rather insensitive
to small changes. Let’s check this hypothesis. We perturb the chain by adding one hyper-
link from page 6 to page 5. Thus, row 6 of H changes, so that H64 = H65 = .5. Table 6.2
shows the changes in the eigenvalues and PageRanks.

After the addition of just one hyperlink the pages are now ordered from most im-
portant to least important as (5 6 4 3 2 1 7). Comparing this with the original

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE SENSITIVITY OF PAGERANK 61

Table 6.2 Eigenvalues and PageRank vector for perturbed 7-node graph of Figure 6.1

α = .8 α = .9 α = .99

σ(H) σ(S) σ(G) πT Rank σ(G) πT Rank σ(G) πT Rank

1 1 1 .0641 6 1 .0404 6 1 .0054 6
-.50+.50i .7991 .6393 .0871 5 .7192 .0558 5 .7911 .0075 5
-.50-.50i -.50+.50i -.40+.40i .1056 4 -.45+.45i .0697 4 -.50+.50i .0096 4

.6934 -.50-.50i -.40-.40i .1637 3 -.45-.45i .1765 3 -.50-.50i 1968 3
-.35+.60i -.33+.61i -.26-.49i .2664 1 -.30+.55i .3145 1 -.33+.60i .3885 1
-.35-.60i -.33-.61i -.26-.49i .2491 2 -.30-.55i .3025 2 -.33-.60i .3848 2

0 0 0 .0641 6 0 .0404 6 0 .0054 6

ordering, we see that page 4 has moved down the ranked list from first place to third place.
Comparing the PageRank values for the original chain with those for the perturbed chain,
we see that only the PageRank values for pages 4, 5, and 6 have changed (again, a conse-
quence of the reducibility of the chain).

In Example 2, we consider a related graph in which the second largest in magnitude
eigenvalue of S is closer to 1. In this case, we expect the PageRank vector to be more
sensitive to small changes than the PageRank vector for Example 1.

EXAMPLE 2 In this example, we apply the intelligent surfer model of section 5.2 rather
than the democratic random surfer model to the same graph from Example 1. Suppose an
intelligent surfer determines new hyperlinking probabilities for page 3. See Figure 6.2.

3

4 5

6

1 2

7

1

.32
1

.32

.32

.04

1

11

Figure 6.2 Intelligent surfer’s graph for web of seven pages

Notice that the intelligent surfer decides to increase the hyperlinking probabilities of
pages inside the cluster of pages 1, 2, 3, and 7, while drastically decreasing the probability
of jumping to the other cluster of pages 4, 5, and 6. As a result, the stochastic matrix S is
much more uncoupled. Of course, we purposely designed this example so that the second
largest in magnitude eigenvalue of S is closer to 1. The increased degree of coupling is

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

62 CHAPTER 6

apparent—λ2(S) = .9193 in this example versus .7991 in Example 1. Table 6.3 shows the
eigenvalues and PageRank vectors associated with this new graph.

Table 6.3 Eigenvalues and PageRank vector for intelligent surfer graph of Figure 6.2

α = .8 α = .9 α = .99

σ(H) σ(S) σ(G) πT Rank σ(G) πT Rank σ(G) πT Rank

1 1 1 .0736 6 1 .0538 6 1 .0099 6
-.50+.870i -.50+.87i -.40+.70i .1324 5 -.45+.78i .1022 5 -.50+.86i .0197 5
-.50-.87i -.50-.87i -.40-.70i .1429 4 -.45-.78i .1132 4 -.50+.86i .0224 4

.8378 .9193 .7354 .1943 1 .8274 .2271 1 .9101 .3130 1
-.42+.43i -.39+.44i -.31+.36i .1924 2 -.35+.40i .2256 2 -.38+.44i .3127 2
-.42-.43i -.39-.44i -.31-.36i .1909 3 -.35-.40i .2242 3 -.38+.44i .3124 3

0 0 0 .0736 6 0 .0538 6 0 .0099 6

Notice that the pages in Figure 6.2 are ordered from most important to least impor-
tant as (4 5 6 3 2 1 7). Now let’s make the same perturbation that we did in
Example 1 (add a hyperlink from page 6 to page 5, making H64 = H65 = .5). Table 6.4
shows the effect on the PageRank vector.

Table 6.4 Eigenvalues and PageRank vector for perturbed intelligent surfer graph of Figure 6.2

α = .8 α = .9 α = .99

σ(H) σ(S) σ(G) πT Rank σ(G) πT Rank σ(G) πT Rank

1 1 1 .0736 6 1 .0538 6 1 .0099 6
.8378 .9193 .7354 .1324 4 .8274 .1022 5 .9101 .0197 5

-.50+.50i -.50+.50i -.40+.40i .1429 3 -.45+.45i .1132 4 -.50+.50i .0224 4
-.50-.50i -.50-.50i -.40-.40i .1294 5 -.45-.45i .1439 3 -.50-.50i .1889 3
-.42+.45i -.39+.44i -.31+.36i .2284 1 -.35+.40i .2694 1 -.38+.44i .3750 1
-.42-.45i -.39-.44i -.31-.36i .2197 2 -.35-.40i .2636 2 -.38-.44i .3741 2

0 0 0 .0736 6 0 .0538 6 0 .0099 6

After the perturbation, the pages are ordered from most important to least important
as (5 6 3 2 4 1 7). Page 4 slides much farther down the ranked list. Both the
rankings and the PageRank values are more sensitive in Example 2 than Example 1 to the
same small perturbation. This clearly demonstrates the effect of λ2(S) on the sensitivity
of the PageRank vector.

Very recently, researchers from the University of Southern California have studied
the behavior of PageRank with respect to changes in α in order to detect link spammers
[164]. Their results are promising. Their technique is successful in identifying “colluding”
pages, pages that are in collusion to boost each other’s PageRank through a link farm or link
exchange scheme. They also define a slightly modified PageRank algorithm that decreases
the value of links from the identified colluding pages.

Italian researchers have extended work on the sensitivity of PageRank with respect
to α by examining higher-order derivatives than the simple first-order derivatives of this
section [32].

6.2 SENSITIVITY WITH RESPECT TO H

The question in this section is: how sensitive is πT to changes in the H? Traditional per-
turbation results [121] say that for a Markov chain with transition matrix P and stationary
vector πT

πT is sensitive to perturbations in P ⇐⇒ |λ2(P)| ≈ 1.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE SENSITIVITY OF PAGERANK 63

For the PageRank problem, we know that |λ2(G)| ≤ α, and further, for a reducible S,
λ2(G) = α. Therefore, as α → 1, the PageRank vector becomes more and more sensitive
to changes in G, a result from the previous section. However, G depends on α, H, and
vT , so in this section we would like to isolate the effect of hyperlink changes (the effect
of changes to H on the sensitivity of the PageRank vector). We can squeeze a little more
information about the sensitivity with respect of hyperlink changes by computing another
derivative.

dπT (hij)
dhij

= απi(eT
j − vT)(I − αS)−1. (6.2.1)

The effect of α is clear. As α → 1, the elements of (I − αS)−1 approach infinity, and the
PageRank vector is more sensitive to small changes in the structure of the web graph. But
another result appears, a rather common sense result: adding a link or increasing the weight
of a link from an important page (i.e., πi is high) has a greater effect on the sensitivity of
the PageRank vector than changing a link from an unimportant page.

6.3 SENSITIVITY WITH RESPECT TO VT

Lastly, we consider the effect of changes in the personalization vector vT . We begin by
computing the derivative of πT with respect to vT .

dπT (vT)
dvT

= (1 − α + α
∑
i∈D

πi)(I − αS)−1, (6.3.1)

where D is the set of dangling nodes.

Equation 6.3.1 gives two insights into the sensitivity of πT with respect to vT . First,
there is the dependence on α. As α → 1, the elements of (I − αS)−1 approach infinity.
Again, we conclude that as α → 1, πT becomes increasingly sensitive. Nothing new
there. However, the second interpretation gives a bit more information. If the dangling
nodes combine to contain a large proportion of the PageRank (i.e.,

∑
i∈D πi is large), then

the PageRank vector is more sensitive to changes in the personalization vector vT . This
agrees with common sense. If collectively the set of dangling nodes is important, then
the random surfer revisits them often and thus follows the teleportation probabilities given
in vT more often. Therefore, the random surfer’s actions, and thus the distribution of
PageRanks, are sensitive to changes in the teleportation vector vT .

A Fundamental Matrix for the PageRank problem

Because the matrix (I−αS)−1 plays a fundamental role in the PageRank problem,
both in the sensitivity analysis of this chapter and the linear system formulation
of the next chapter, we call it the fundamental matrix of the PageRank problem.

6.4 OTHER ANALYSES OF SENSITIVITY

Three other research groups have examined the sensitivity and stability of the PageRank
vector; Ng et al. at the University of California at Berkeley, Bianchini et al. in Siena, Italy
and Borodin et al. at the University of Toronto. All three groups have computed some

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

64 CHAPTER 6

version of the following bound on the difference between the old PageRank vector πT and
the new, updated PageRank vector π̃T [29, 113, 133].

‖πT − π̃T ‖1 ≤ 2α

1−α

∑
i∈U

πi,

where U is the set of all pages that have been updated. (The proof is given in section 6.5,
p. 69.) This bound gives another sensitivity interpretation: as long as α is not close to 1
and the updated pages do not have high PageRank, then the updated PageRank values do
not change much. Let’s consider the two factors of the bound, 2α/(1 − α) and

∑
i∈U πi.

As an example, suppose α = .8 and the sum of the old PageRanks for all updated
pages,

∑
i∈U πi, is 10−6. Then the multiplicative constant 2α/(1 − α) = 8, which

means that the 1-norm of the difference between the old PageRank vector and the up-
dated PageRank vector, ‖πT − π̃T ‖1, is at most 8 × 10−6. Consequently, in this case,
the PageRank values are rather insensitive to the Web’s updates. As α → 1, the bound
becomes increasingly useless. The utility of the bound is governed by how much

∑
i∈U πi

can offset the growth of 2α/(1 − α). Two things affect the size of
∑

i∈U πi: the number
of updated pages and the PageRanks of those updated pages. This exposes another limi-
tation of the bound. It provides no help with the more interesting and natural question of
“what happens to PageRank when the high PageRank pages are updated?” For example,
how do changes to a popular, high rank page like the Amazon webpage affect the rankings?
Section 6.2 provided a more complete answer to this question.

PageRank and Link Spamming

The difference between the old PageRank vector πT and the updated PageRank
vector π̃T can be bounded as follows:

‖πT − π̃T ‖1 ≤ 2α

1−α

∑
i∈U

πi, (6.4.1)

where U is the set of all pages that have been updated.

• This bound is useful when α is small and the set of updated pages have small
aggregate PageRank. It implies that as long as α is not close to 1 and the updated
pages do not have high PageRank, then the updated PageRank values do not
differ greatly from the original PageRank values.

• On the other hand, the bound does not tell us how sensitive PageRank is to
changes in popular, high PageRank pages.

• Using the bound of (6.4.1), researchers [29] have made the following statement
about the effectiveness of link spamming:

... a nice property of PageRank [is] that a community can only make a
very limited change to the overall PageRank of the Web. Thus, regard-
less of the way they change, non-authoritative communities cannot affect
significantly the global PageRank.

This bound reinforces the philosophy that the optimizing game is to either get sev-
eral high PageRank pages or many lower PageRank pages to point to your page.
See [12] for other mathematically optimal linking strategies regarding PageRank.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE SENSITIVITY OF PAGERANK 65

A fourth group of researchers recently joined the stability discussion. Ronny Lempel
and Shlomo Moran, the inventors of the SALSA algorithm [114] (see Chapter 12), have
added a further distinction to the definition of stability. In [115], they note that the stability
of an algorithm, which concerns volatility of the values assigned to pages, has been well
studied. What has not been studied is the notion of rank-stability (first defined and studied
by Borodin et al. [36]), which addresses how volatile the rankings of pages are with respect
to changes in the underlying graph. As an example, suppose

πT = (.198 .199 .20 .201 .202) and

π̃T = (.202 .201 .20 .199 .198) .

The original and updated PageRank values have not changed much, ‖πT − π̃T ‖1 = .012,
and yet the rankings have flipped. Lempel and Moran show that stability of PageRank val-
ues does not imply rank-stability. In fact, they provide a small example demonstrating that
a change in just one outlink of a very low ranking page can turn the entire ranking upside
down! They also introduce the interesting concept of running-time stability, challenging
researchers to examine the effect of small perturbations in the graph on an algorithm’s
running time.

REMARK: From the start of the book, we’ve emphasized the Web’s dynamics. However,
while the content of webpages does change very often, we are concerned only with changes
to the graph structure of the Web. Graph changes affect the PageRank vector, whereas
content changes affect the inverted index of Chapters 1 and 2. Updates to the Web’s graph
can be of two types: link updates or node updates. The analyses of sensitivity and updating
in this chapter all assume that the Web’s updates are only link updates, which refers to the
addition or removal of hyperlinks. Node updates, the addition or removal of webpages,
are not considered. Analyzing node updates is a much harder problem, which we postpone
until Chapter 10.

ASIDE: RankPulse

The website www.rankpulse.com uses Google’s Web Application Programming
Interface (Web API, see the aside on page 97) to monitor the pulse of the top ten rankings for
1,000 queries. Even though exact PageRank values are not available, the RankPulse authors
have developed a clever workaround. They track only the first page of Google results (the top
ten list) for a query like “basketball,” noticing how the ten sites jockey for position. Every day
they record the websites and their positions in the top ten list. Then they plot these rankings
over time. Figure 6.3 shows a RankPulse chart for “basketball” on July 26, 2004.

We have included only the plots for five of the available 10 websites to reduce the
clutter on the chart. The sites www.nba.com and www.basketball.com are historical
fixtures in the top two spots, while www.basketball.ca bounces in and out of the bottom
part of the top ten. The other two sites, www.fiba.com and www.wnba.com fluctuate
among the top ten. The fluctuations for the WNBA site can be explained by the league’s
seasonal schedule and frequent updates—big college tournaments in March, predictions for
and the lead up to the April draft, then the May through September season.

Since Google’s overall rankings are a combination of content scores and PageRank
popularity scores, it is hard to isolate the sensitivity of PageRank in the RankPulse charts.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

www.rankpulse.com
www.nba.com
www.basketball.com
www.fiba.com
www.wnba.com
www.basketball.ca

66 CHAPTER 6

Figure 6.3 RankPulse chart for basketball

Nevertheless, these charts give some approximation to the sensitivity of Google rankings for
select pages.

6.5 SENSITIVITY THEOREMS AND PROOFS

Theorem 6.1.1 The PageRank vector is given by

πT (α) =
1∑n

i=1 Di(α)
(
D1(α), D2(α), . . . , Dn(α)

)
,

where Di(α) is the ith principal minor determinant of order n − 1 in I − G(α). Because
each principal minor Di(α) > 0 is just a sum of products of numbers from I − G(α),
it follows that each component in πT (α) is a differentiable function of α on the interval
(0, 1).

Proof. For convenience, let G = G(α), πT (α) = πT , Di = Di(α), and set A = I−G.
If adj (A) denotes the the transpose of the matrix of cofactors (often called the adjugate or
adjoint), then

A[adj (A)] = 0 = [adj (A)]A.

It follows from the Perron–Frobenius theorem that rank (A) = n − 1, and as a result
rank (adj (A)) = 1. Furthermore, Perron–Frobenius insures that each column of [adj (A)]
is a multiple of e, so [adj (A)] = ewT for some vector w. But [adj (A)]ii = Di, so
wT = (D1, D2, . . . , Dn). Similarly, [adj (A)]A = 0 insures that each row in [adj (A)]
is a multiple of πT and hence wT = απT for some α. This scalar α cannot be zero; oth-
erwise [adj (A)] = 0, which is impossible. Therefore, wT e = α �= 0, and wT /(wT e) =
wT /α = πT .

Theorem 6.1.2 If πT (α) =
(
π1(α), π2(α), . . . πn(α)

)
is the PageRank vector, then∣∣∣∣dπj(α)

dα

∣∣∣∣ ≤ 1
1 − α

for each j = 1, 2, . . . , n, (6.1.1)

and ∥∥∥∥dπT (α)
dα

∥∥∥∥
1

≤ 2
1 − α

. (6.1.2)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE SENSITIVITY OF PAGERANK 67

Proof. First compute dπT (α)/dα by noting that πT (α)e = 1 implies

dπT (α)
dα

e = 0.

Using this while differentiating both sides of

πT (α) = πT (α)
(
αS + (1 − α)evT

)
yields

dπT (α)
dα

(I − αS) = πT (α)(S − evT).

Matrix I − αS(α) is nonsingular because α < 1 guarantees that ρ
(
αS(α)

)
< 1, so

dπT (α)
dα

= πT (α)(S − evT)(I − αS)−1. (6.5.1)

The proof of (6.1.1) hinges on the following inequality. For every real x ∈ e⊥ (the orthog-
onal complement of span{e}), and for all real vectors yn×1,

|xT y| ≤ ‖x‖1

(
ymax − ymin

2

)
. (6.5.2)

This is a consequence of Hölder’s inequality because for all real α,

|xT y| = ‖xT (y − αe)| ≤ ‖x‖1‖y − αe‖∞,

and minα ‖y − αe‖∞ = (ymax − ymin)/2, where the minimum is attained when
α = (ymax + ymin)/2. It follows from (6.5.1) that

dπj(α)
dα

= πT (α)(S − evT)(I − αS)−1ej ,

where ej is the jth standard basis vector (i.e, the jth column of In×n). Since it’s true that
πT (α)(S − evT)e = 0, inequality (6.5.2) may be applied with

y = (I − αS)−1ej

to obtain ∣∣∣∣dπj(α)
dα

∣∣∣∣ ≤ ‖πT (α)(S − evT)‖1

(
ymax − ymin

2

)
.

But ‖πT (α)(S − evT)‖1 ≤ 2, so∣∣∣∣dπj(α)
dα

∣∣∣∣ ≤ ymax − ymin.

Now use the fact that (I − αS)−1 ≥ 0 together with the observation that

(I − αS)e = (1 − α)e =⇒ (I − αS)−1e = (1 − α)−1e

to conclude that ymin ≥ 0 and

ymax ≤ max
i,j

[
(I − αS)−1

]
ij
≤ ‖(I − αS)−1‖∞ = ‖(I − αS)−1e‖∞ =

1
1 − α

.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

68 CHAPTER 6

Consequently, ∣∣∣∣dπj(α)
dα

∣∣∣∣ ≤ 1
1 − α

,

which is (6.1.1). Inequality (6.1.2) is a direct consequence of (6.5.1), along with the above
observation that

‖(I − αS)−1‖∞ = ‖(I − αS)−1e‖∞ =
1

1 − α
.

Theorem 6.1.3 If πT (α) is the PageRank vector associated with the Google matrix
G(α) = αS + (1 − α)evT , then

dπT (α)
dα

= −vT (I − S)(I − αS)−2. (6.1.3)

In particular, the limiting values of this derivative are

lim
α→0

dπT (α)
dα

= −vT (I − S) and lim
α→1

dπT (α)
dα

= −vT (I − S)#,

where (�)# denotes the group inverse [46, 122].

Proof. Multiplying 0T = πT (α)
(
I − αS − (1 − α)evT

)
on the right by (I − αS)−1

yields

0T = πT (α)
(
I − (1 − α)evT (I − αS)−1

)
=⇒ πT (α) = (1 − α)vT (I − αS)−1.

Using the formula dA(α)−1/dα = −A−1(α)[dA(α)/dα]A−1(α) for differentiating an
inverse matrix [127, p. 130] together with the fact that (I−S) commutes with (I−αS)−1

produces

dπT (α)
dα

= (1 − α)vT (I − αS)−1S(I − αS)−1 − vT (I − αS)−1

=−vT (I − αS)−1
[
I − (1 − α)S(I − αS)−1

]
=−vT (I − αS)−1(I − αS − (1 − α)S)(I − αS)−1

=−vT (I − αS)−1(I − S)(I − αS)−1

=−vT (I − S)(I − αS)−2.

By definition, matrices Y and Z are group inverses of each other if and only if YZY = Y,
ZYZ = Z, and YZ = ZY, so it’s clear that if

Y(α) = (I − S)(I − αS)−2Z(α) = (I − S)#(I − αS)2,

then
Z#(α) =

{
Y(α) for α < 1,
I − S for α = 1.

Therefore, by continuity properties of group inversion [46, p. 232], it follows that

lim
α→1

Y(α) = lim
α→1

[
Z#(α)

]
=
[
lim
α→1

Z(α)
]#

= (I − S)#,

and thus

lim
α→1

dπT (α)
dα

= −vT (I − S)#.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE SENSITIVITY OF PAGERANK 69

Theorem 6.5.1. Suppose G = αS + (1 − α)evT is the Google matrix with PageRank
vector πT and G̃ = αS̃ + (1 − α)evT is the updated Google matrix (of the same size)
with corresponding PageRank vector π̃T . Then

‖πT − π̃T ‖1 ≤ 2α

1 − α

∑
i∈U

πi,

where U is the set of all pages that have been updated.

Proof. Let F be the matrix representing the perturbation between the two stochastic ma-
trices S and S̃. Thus, F = S − S̃. Then,

πT − π̃T = απ̃T S − απT S̃

= απT S − α(π̃T − πT + πT)S̃
= απT S − απT S̃ + α(πT − π̃T)S̃
= απT F + α(πT − π̃T)S̃.

Solving for πT − π̃T gives

πT − π̃T = απT F(I − αS̃)−1.

Computing norms, we obtain

‖πT − π̃T ‖1 ≤α‖πT F‖1‖(I − αS̃)−1‖∞
=

α

1 − α
‖πT F‖1.

See [108] for theorems and proofs showing that I − αS̃ is nonsingular and has row sums
of 1/(1 − α). Now reorder F (and πT) so that the rows corresponding to updated pages
(nonzero rows) are at the top of the matrix. Then

πT F = (πT
1 πT

2)
(

F1

0

)
= πT

1 F1.

Therefore, ‖πT F‖1 = ‖πT
1 F1‖1 ≤ ‖πT

1 ‖1‖F1‖∞. And ‖F1‖∞ = ‖S1 − S̃1‖∞ ≤
‖S1‖∞ + ‖S̃1‖∞ = 2, where S1 and S̃1 also correspond to the updated pages. Therefore,
‖πT F‖1 ≤ 2

∑
i∈U πi. Finally,

‖πT − π̃T ‖1 ≤ 2α

1 − α

∑
i∈U

πi.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Seven

The PageRank Problem as a Linear System

Abraham Lincoln, in his humorous, self-deprecating style, said “If I were two-faced, would
I be wearing this one?” Honest Abe wasn’t, but the PageRank problem is two-faced.
There’s the eigenvector face it was given by its parents, Brin and Page, at birth, and there’s
the linear system face, which can be arrived at with a little cosmetic surgery in the form
of algebraic manipulation. Because Brin and Page originally conceived of the PageRank
problem as an eigenvector problem (find the dominant eigenvector for the Google matrix),
the eigenvector face has received much more press and fanfare. However, the normalized
eigenvector problem πT (αS+(1−α)evT) = πT can be rewritten, with some algebra as,

πT (I − αS) = (1 − α)vT . (7.0.1)

This linear system is always accompanied by the normalization equation πT e = 1. The
question is: which face should PageRank be wearing, or does it even matter? By the end
of the chapter we will answer these questions about the two-faced PageRank.

7.1 PROPERTIES OF (I − αS)

In Chapter 4 we learned a lot about PageRank by discussing the properties of the Google
Markov matrix G in the eigenvector problem. Now it’s time to carefully examine the linear
system formulation of equation (7.0.1). Below are some interesting properties of the co-
efficient matrix in this equation. (The proofs of these statements are very straightforward.
See the books by Berman and Plemmons [21], Golub and Van Loan [82] or Meyer [127].)

Properties of (I − αS):

1. (I − αS) is an M-matrix.

2. (I − αS) is nonsingular.

3. The row sums of (I − αS) are 1 − α.

4. ‖I − αS‖∞ = 1 + α.

5. Since (I − αS) is an M-matrix, (I − αS)−1 ≥ 0.

6. The row sums of (I−αS)−1 are (1−α)−1. Therefore, ‖(I−αS)−1‖∞ = (1−α)−1.

7. Thus, the condition number κ∞(I − αS) = (1 + α)/(1 − α).

These are nice properties for (I − αS). However, recall that (I − αS) can be pretty
dense, whenever the number of dangling nodes is large because these completely sparse

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

72 CHAPTER 7

rows are replaced with completely dense rows. We like to operate, whenever possible, on
the very sparse H matrix. And so we wonder if similar properties hold for (I − αH).

7.2 PROPERTIES OF (I − αH)

Using the rank-one dangling node trick (i.e., S = H + avT), we can once again write the
PageRank problem in terms of the very sparse hyperlink matrix H. The linear system of
equation (7.0.1) can be rewritten as

πT (I − αH − αavT) = (1 − α)vT .

If we let πT a = γ, then the linear system becomes

πT (I − αH) = (1 − α + αγ)vT .

The scalar γ holds the aggregate PageRank for all the dangling nodes. Since the normal-
ization equation πT e = 1 will be applied at the end, we can arbitrarily choose a convenient
value for γ, say γ = 1 [55, 80, 109, 138]. We arrive at the following conclusion.

Theorem 7.2.1 (Linear System for Google problem). Solving the linear system

xT (I − αH) = vT (7.2.1)

and letting πT = xT /xT e produces the PageRank vector.

In addition, (I − αH) has many of the same properties as (I − αS).

Properties of (I − αH):

1. (I − αH) is an M-matrix.

2. (I − αH) is nonsingular.

3. The row sums of (I−αH) are either 1−α for nondangling nodes or 1 for dangling
nodes.

4. ‖I − αH‖∞ = 1 + α.

5. Since (I − αH) is an M-matrix, (I − αH)−1 ≥ 0.

6. The row sums of (I − αH)−1 are equal to 1 for the dangling nodes and less than or
equal to 1

1−α for the nondangling nodes.

7. The condition number κ∞(I − αH) ≤ 1+α
1−α .

8. The row of (I − αH)−1 corresponding to dangling node i is eT
i , where ei is the ith

column of the identity matrix.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE PAGERANK PROBLEM AS A LINEAR SYSTEM 73

Linear System for PageRank problem

The sparse linear system formulation of the PageRank problem is

xT (I − αH) = vT with πT = x/xT e.

Like the eigenvector formulation, the PageRank problem has a very sparse linear
system formulation (with at least eight nice properties). Solve both and you get the same
vector, the PageRank vector. So what’s the point? There are several good reasons for
remembering that PageRank is two-faced. First, for a small problem, such as comput-
ing a ranking for a company Intranet, a direct method applied to the linear system is
much faster than the power method. Try this out with Matlab. Compare the PageRank
power method code from page 51 with some of Matlab’s built-in linear system solvers,
e.g., pi=v/(eye(n)-alpha*H). Second, in Chapter 5 we warned that as α → 1, the
power method takes an increasing amount of time to converge. However, the solution time
of the direct method is unaffected by the parameter α. So α can be increased to capture
the true essence of the Web, giving less weight to the artificial teleportation matrix. But,
don’t forget the sensitivity issues of Chapter 6. Unfortunately, the PageRank vector is
sensitive as α → 1 regardless of the problem formulation [100]. Third, thinking about
PageRank as a linear system opens new research doors. Nearly all PageRank research
has focused on solving the eigenvector problem. Researchers have recently begun exper-
imenting with new PageRank techniques such as preconditioners, multigrid methods, and
reorderings [55, 80, 109]. In fact, a group from Yahoo! recently tried popular linear system
iterative methods such as BiCGSTAB and GMRES on several large web graphs [80]. The
preliminary results for some of these methods look promising; see Section 8.4.

Google Hacks

The O’Reilly book, Google Hacks: 100 Industrial-Strength Tips and Tools [44],
shows readers that there’s more to Google than most people know. Google pro-
vides a customizable interface as well as an even more flexible programming in-
terface (Google’s Web API; see the aside on page 97) that allows users to exercise
their creativity with Google. If you know how to use it and Google Hacks helps,
Google is, to name just a few, an entertainment, research, social, informational,
news, archival, spelling, calculating, shopping, and email tool all rolled into one
user-friendly package.

7.3 PROOF OF THE PAGERANK SPARSE LINEAR SYSTEM

Theorem 7.3.1. Solving the linear system

xT (I − αH) = vT (7.3.1)

and letting πT = xT /xT e produces the PageRank vector.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

74 CHAPTER 7

Proof. πT is the PageRank vector if it satisfies πT G = πT and πT e = 1. Clearly,
πT e = 1. Showing πT G = πT is equivalent to showing πT (I − G) = 0T , which is
equivalent to showing xT (I − G) = 0T .

xT (I − G) =xT (I − αH − αavT − (1 − α)evT)
=xT (I − αH) − xT (αa + (1 − α)e)vT

=vT − vT = 0T .

The above line results from the fact that xT (αa + (1 − α)e)vT = 1 because

1 =vT e

=xT (I − αH)e
=xT e − αxT He

=xT e − αxT (e − a)
= (1 − α)xT e + αxT a.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Eight

Issues in Large-Scale Implementation of PageRank

On two occasions, I have been asked [by members of Parliament], ‘Pray, Mr.
Babbage, if you put into the machine wrong figures, will the right answers
come out?’ I am not able to rightly apprehend the kind of confusion of ideas
that could provoke such a question. –Charles Babbage, designer of the Ana-
lytical Machine, a prototype of the first computer

That’s a funny quote, but of course, for us the question is: if you put the right
(in our case, arbitrary) figures into the PageRank machine, do you get the right answers
out? Simple enough to answer. Just check that, for any input π(0)T , the output satisfies
π(k)T G = π(k)T up to some tolerance. However, when the problem size grows dramat-
ically, crazy things can happen and simple questions aren’t so simple. It’s hard to even
put numbers into the machine, it’s hard to make the machine start running, and it’s hard to
know whether you have the right answer.

We’ve all had firsthand experiences with problems of scale. Things don’t always
scale up nicely. Strategies for babysitting two or three kids just don’t work when you’re
counseling 15-20 campers. Translating teaching strategies for 35 students to 120 students
doesn’t work either. (At least one of your authors found this out the hard way.) In this
chapter, we’ll talk about important issues that arise when researchers scale the PageRank
model up to web-sized proportions. For instance, how do you store G when it’s of order
8.1 billion? How accurate should the PageRank solution be? And how should dangling
nodes be handled? These are substantial issues at the scale of the World Wide Web.

8.1 STORAGE ISSUES

Every adequate search engine requires huge storage facilities for archiving information
such as webpages and their locations; inverted indexes and image indexes; content score
information; PageRank scores; and the hyperlink graph. The 1998 paper by Brin and Page
[39] and more recent papers by Google engineers [19, 78] provide detailed discussions of
the many storage schemes used by the Google search engine for all parts of its information
retrieval system. The excellent survey paper by Arasu et al. [9] also provides a section on
storage schemes needed by any web search engine. Since this book deals with mathemati-
cal link analysis algorithms, we focus only on the storage of the mathematical components,
the matrices and vectors, used in the PageRank part of the Google system.

Computing the PageRank vector requires access to the items in Table 8.1. Here
nnz(H) is the number of nonzeros in H, |D| is the number of dangling nodes, and n is the
number of pages in the web graph. When vT , the personalization vector, is the uniform
vector (vT = eT /n), no storage is required for vT .

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

76 CHAPTER 8

Table 8.1 Storage requirements for the PageRank problem

Entity Description Storage

H sparse hyperlink matrix nnz(H) doubles
a sparse binary dangling node vector |D| integers
vT dense personalization vector n doubles
π(k)T dense current iterate of PageRank n doubles

power method

Since there are roughly 10 outlinks per page on average, nnz(H) is about 10n,
which means that of the entities in Table 8.1, the sparse hyperlink matrix H requires the
most storage. Thus, we begin our discussion of storage for the PageRank problem with H.
The size of this matrix makes its storage nontrivial, and at times, requires some creativity.
The first thing to determine about H is whether or not it will fit in the main memory of the
available computer system.

For small subsets of the Web, when H fits in main memory, computation of the
PageRank vector can be implemented in the usual fashion (e.g., using code similar to the
Matlab programs given on pages 42 and 51). However, when the H matrix does not fit in
main memory, a little more ingenuity (and complexity) is required. When a large hyper-
link matrix exceeds a machine’s memory, there are two options: compress the data needed
so that the compressed representation fits in main memory, then creatively implement a
modified version of PageRank on this compressed representation, or keep the data in its
uncompressed form and develop I/O (input/output)-efficient implementations of the com-
putations that must take place on the large, uncompressed data.

Even for modest web graphs for which the hyperlink matrix H can be stored in
main memory (meaning compression of the data is not essential), minor storage techniques
should still be employed to reduce the work involved at each iteration. For example, for the
random surfer model only, the H matrix can be decomposed into the product of the inverse
of the diagonal matrix D holding outdegrees of the nodes and the adjacency matrix L of
0’s and 1’s. First, the simple decomposition H = D−1L, where [D−1]ii = 1/dii if i is a
nondangling node, 0 otherwise, saves storage. Rather than storing nnz(H) real numbers
in double precision, we can store n integers (for D) and nnz(H) integers (for the locations
of 1’s in L). Integers require less storage than doubles. Second, H = D−1L reduces the
work at each PageRank power iteration . Each power iteration is executed as

π(k+1)T = απ(k)T H + (απ(k)T a + 1 − α)vT .

The most expensive part, the vector-matrix multiplication π(k)T H, requires nnz(H) mul-
tiplications and nnz(H) additions. Using the vector diag(D−1), π(k)T H can be accom-
plished as π(k)T D−1L = (π(k)T). ∗ (diag(D−1))L, where .∗ represents componentwise
multiplication of the elements in the two vectors. The first part, (xT). ∗ (diag(D−1)) re-
quires n multiplications. Since L is an adjacency matrix, (π(k)T). ∗ (diag(D−1))L now
requires a total of n multiplications and nnz(H) additions. Thus, using the H = D−1L
decomposition saves nnz(H) − n multiplications. Unfortunately, this decomposition is
limited to the random surfer model. For the intelligent surfer model, other compact stor-
age schemes [18], such as compressed row storage or compressed column storage, may be

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ISSUES IN LARGE-SCALE IMPLEMENTATION OF PAGERANK 77

used. Of course, each compressed format, while saving some storage, requires a bit more
overhead for matrix operations.

As mathematicians, we see things as matrices and vectors, and so like to think of
H, π(k)T , vT , and a as stored in matrix or compressed matrix form. However, computer
scientists see arrays, stacks, and lists, and therefore, store our matrices as adjacency lists.

The web-sized implementations of the PageRank model store the H (or L) matrix
in an adjacency list of the columns of the matrix [139]. In order to compute the PageRank
vector, the PageRank power method requires vector-matrix multiplications of π(k)T H at
each iteration k. Therefore, quick access to the columns of the matrix H (or L) is essential
to algorithm speed. Column i contains the inlink information for page i, which, for the
PageRank system of ranking webpages, is more important than the outlink information
contained in the rows of H (or L). Table 8.2 is an adjacency list representation of the
columns of L for the tiny 6-node web in Figure 8.1.

3

6 5

4

1 2

Figure 8.1 Tiny 6-node web

Table 8.2 Adjacency list for random surfer model of Figure 8.1

Node Inlinks from

1 3
2 1, 3
3 1
4 5, 6
5 3, 4
6 4, 5

Exercise 2.24 of Cleve Moler’s recent book Numerical Computing with Matlab [132]
gives one possible implementation of the PageRank power method applied to an adja-
cency list, along with sample Matlab code (PageRankpow.m) that can be downloaded
from http://www.mathworks.com/moler/. When the adjacency list does not fit in

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.mathworks.com/moler/

78 CHAPTER 8

main memory, references [139, 141] suggest methods for compressing the data.

Because of their potential and promise, we briefly discuss two methods for com-
pressing the information in an adjacency list, the gap technique [25] and the reference
encoding technique [140, 141]. The gap method exploits the locality of hyperlinked pages.
Locality refers to the fact that the source and destination pages for a hyperlink are often
close to each other lexicographically. A page labeled 100 often has inlinks from pages
nearby lexicographically such as pages 112, 113, 116, and 117 rather than pages 924 and
4,931,010. Based on this locality principle, the information in an adjacency list for page
100 is stored as below.

Node Inlinks from

100 112 0 2 0

The label for the first page inlinking to page 100, which is page 112, is stored. After
that, only the gaps between subsequent inlinking pages are stored. Since these gaps are
usually nice, small integers, they require less storage.

The other graph compression method, reference encoding, exploits the similarity be-
tween webpages. If pages Pi and Pj have similar adjacency lists, it is possible to compress
the adjacency list of Pj by representing it in terms of the adjacency list of Pi, in which
case Pi is called a reference page for Pj . Pages within the same domain might often share
common outlinks, making the reference encoding technique attractive. Consider the ex-
ample in Figure 8.2, taken from [141]. The adjacency list for page Pj looks a lot like the

5 7 12 89 101 190 390

5 6 12 50 101 190

P

P 1010110 6 50
reference encode

P in terms of P

Adjacency List

i

j
ij

Figure 8.2 Reference encoding example

adjacency list for Pi. In fact, both pages have outlinks to pages 5, 12, 101, and 190. In
order to take advantage of this repetition, we need to create two vectors: a sharing vector
of 1’s and 0’s and a dissimilarity vector of integers. The binary sharing vector has the
same size as the adjacency list of Pi, and contains a 1 in the kth position if entry k of Pi’s
adjacency list appears in Pj’s adjacency list. The second vector in the reference encoding
is a list of all entries in the adjacency list of Pj that are not found in the adjacency list of its
reference Pi. Of course, the sharing vector for Pj requires less storage than the adjacency
list for Pj . Therefore, the effectiveness of reference encoding depends on the number of
dissimilar pages. Pi is a good reference page for Pj if the overlap between the adjacency
lists for the two pages is high, which means the dissimilarity vector is short. However, it’s
not easy to determine a reference page for each page in the index, so some guidelines are
given in [140]. Both the gap method and the reference encoding method are used, along
with other compression techniques, to impressively compress the information in a standard

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ISSUES IN LARGE-SCALE IMPLEMENTATION OF PAGERANK 79

web graph. These techniques are freely available in the efficient graph compression tool
WebGraph, which is produced by Paolo Boldi and Sebastiano Vigna [33, 34].

References [47, 86] take the other approach; rather than compressing the matrix
information, they suggest I/O-efficient implementations of PageRank. In addition, because
the PageRank vector itself is large and completely dense, containing over 4.3 billion pages,
and must be consulted in order to process each user query, Haveliwala [87] has suggested a
technique to compress the PageRank vector. This encoding of the PageRank vector hopes
to keep the ranking information cached in main memory, thus speeding query processing.

8.2 CONVERGENCE CRITERION

The power method applied to G is the predominant method for finding the PageRank vec-
tor. Being an iterative method, the power method continues until some termination crite-
rion is met. In Chapter 4, we mentioned the traditional termination criterion for the power
method: stop when the residual (as measured by the difference of successive iterates) is less
than some predetermined tolerance (i.e., ‖π(k+1)T − π(k)T ‖1 < τ). However, PageRank
researcher Taher Haveliwala [86] has rightfully noted that the exact values of the PageRank
vector are not as important as the correct ordering of the values in this vector. That is, iter-
ate until the ordering of the approximate PageRank vector obtained by the power method
converges. Considering the scope of the PageRank problem, saving just a handful of itera-
tions is praiseworthy. Haveliwala’s experiments show that the savings could be even more
substantial on some datasets. As few as 10 iterations produced a good approximate order-
ing, competitive with the exact ordering produced by the traditional convergence measure.
This raises several interesting issues: How do you measure the difference between two or-
derings? How do you determine when an ordering has converged satisfactorily? Or better
yet, is it possible to write a “power method” that operates on and stores only orderings,
rather than PageRank values, at each iteration? Several papers [65, 68, 69, 86, 88, 120]
have provided a variety of answers to the question of comparing rank orderings, using
such measures as Kendall’s Tau, rank aggregation, and set overlap.

8.3 ACCURACY

Another implementation issue is the accuracy of PageRank computations. We do not know
the accuracy with which Google works, but it at least has to be high enough to differentiate
between the often large list of ranked pages that Google commonly returns. Since πT is
a probability vector, each πi will be between 0 and 1. Suppose πT is a 1 by 4 billion
vector. Since the PageRank vector is known to follow a power law or Zipfian distribution
[16, 70, 136], it is possible that a small section of the tail of this vector, ranked in decreasing
order, might look like:

πT = (· · · .000001532 .0000015316 .0000015312 .0000015210 · · ·) .

Accuracy at least on the order of 10−9 is needed to distinguish among the elements of this
ranked subvector. However, comparisons are made only among a subset of elements of
this ranked vector. While the elements of the entire global PageRank vector may be tightly
packed in some sections of the (0,1) interval, elements of the subset related to a particular
query are much less densely packed. Therefore, extreme accuracy on the order of 10−12 is
most likely unnecessary for this application.

The fact that Brin and Page report reasonable estimates for πT after only 50 itera-

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

80 CHAPTER 8

tions of the power method on a matrix of order 322, 000, 000 has one of two implications:
either (1) their estimates of πT are not very accurate or (2) the subdominant eigenvalue of
the iteration matrix is far removed from λ1 = 1. The first statement is a claim that outsiders
not privy to inside information can never verify, as Google has never published information
about their convergence tests. The implication of the second statement is that the “fudge
factor” matrix E = evT must carry a good deal of weight and perhaps α is lowered to .8
in order to increase the eigengap and speed convergence. By decreasing α and simulta-
neously increasing the weight of the fudge factor, the transition probability matrix moves
farther from the Web’s original hyperlink structure.

8.4 DANGLING NODES

When you begin large-scale implementation of PageRank, you must make a design de-
cision about how you’re going to deal with dangling nodes, and this decision will affect
the PageRanks you produce. Every webpage is either a dangling node or a nondangling
node. We first encountered dangling nodes in Chapter 4–the pages with no outlinks that
caused the problem of rank sinks. All other pages, having at least one outlink, are called
nondangling nodes. Dangling nodes exist in many forms. For example, a page of data, a
page with a postscript graph, a page with jpeg pictures, a pdf document, a page that has
been fetched by a crawler but not yet explored–these are all examples of possible dangling
nodes. The more ambitious the crawl, the bigger the proportion of dangling nodes because
the set of fetched but uncrawled pages grows quickly. In fact, for some subsets of the Web,
dangling nodes make up 80% of the collection’s pages.

The presence of these dangling nodes causes both philosophical and computational
issues for the PageRank problem. To understand this, let’s recap how the PageRank model
addresses dangling nodes. Google founders Brin and Page suggested replacing 0T rows of
the sparse hyperlink matrix H with dense vectors (the uniform vector eT /n or the more
general vT vector) to create the stochastic matrix S. Of course, if this suggestion were to
be implemented explicitly, storage requirements would increase dramatically. Instead, we
showed in Chapter 4 how the stochasticity fix can be modeled implicitly with the construc-
tion of one vector, the dangling node vector a . Element ai = 1 if row i of H corresponds
to a dangling node, and 0, otherwise. Then S (and also G) can be written as a rank-one
update of H.

S = H + avT , and therefore, G= αS + (1 − α) evT

= αH + (α a + (1 − α) e)vT .

The PageRank power method

π(k+1)T = α π(k)T H + (α π(k)T a + 1 − α)vT (8.4.1)

is then applied to compute the PageRank vector. (The Matlab code for the PageRank power
method is given in the box on page 51.) However, this is not exactly the way that Brin
and Page originally dealt with dangling nodes [38, 40]. Instead, they suggest “removing
dangling nodes during the computation of PageRank, then adding them back in after the
PageRanks have converged” [38], presumably for the final few iterations [102].

This brings us to the philosophical issue of dangling nodes. To dangle or not to dan-
gle: that is the question. And it’s not an easy one to answer. We warn you—answer care-

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ISSUES IN LARGE-SCALE IMPLEMENTATION OF PAGERANK 81

fully or face discrimination charges. Leaving dangling nodes out somehow feels morally
wrong. Arguing in a utilitarian vein that dangling nodes can’t be that important anyway
certainly is scientifically wrong. A dangling node with lots of inlinks from important pages
has just as much right to a high PageRank as a nondangling node, and shouldn’t be tossed
aside (the way Brin and Page suggested) as matter of algorithmic convenience. Indeed,
this was confirmed experimentally by Kevin McCurley, one of the first scientists to boldly
explore the Web Frontier (Kevin’s name for the set of dangling nodes, since many dan-
gling nodes are yet to-be-crawled pages). He showed on small graphs as well as enormous
graphs that some dangling nodes can have higher rank than nondangling nodes [66]. Re-
moving the dangling nodes completely can cause even more problems. The process of
removing these nodes can itself produce new dangling nodes. If this process is repeated
until no dangling nodes remain, it’s possible in theory (although unlikely) that no nodes
remain. Further, removing the dangling nodes amounts to unnecessarily removing a great
deal of useful data.

Excluding the dangling nodes from the start, then trying to make it up to them later
(Brin and Page’s solution) also feels wrong. In fact, the dangling node gets a treatment
similar to the Native American. Further, the exclusion/correction procedure biases all the
PageRank values of nondangling and dangling nodes alike, and unnecessarily so.

A better solution is to treat all nodes fairly from the start. Include the dangling nodes,
but be aware of their unique talents. That’s exactly the solution proposed by three groups
of researchers, Lee et al. [112], McCurley et al. [66], and yours truly (authors Carl and
Amy) [109]. We note that our first solution to the PageRank problem (represented by the
power method of equation 8.4.1 and the linear system of equation 7.2.1) treats all nodes
fairly from the start, but doesn’t capitalize on the unique potential of the dangling nodes.
We describe this potential in the next few paragraphs.

Stanford graduate student Chris Lee and his colleagues noticed that, for the most
part, all dangling nodes look alike; at least their rows in H (and S and G) do [112].
And further, whenever the random surfer arrives at a dangling node, he always behaves
the same. Regardless of the particular dangling node he’s currently at, he always teleports
immediately to a new page (at random if vT = eT /n or according to the given teleportation
distribution if vT �= eT /n). If that’s the case, Lee et al. thought, why not lump the
individual dangling nodes together into one new state, a teleportation state. This reduces
the size of the problem greatly, especially if the proportion of dangling nodes is high.
However, solving the smaller (|ND| + 1) × (|ND| + 1) system, where |ND| is the number
of nondangling nodes, creates two new problems. First, ranking scores are available only
for the nondangling pages plus the one lumped teleportation state. Second, this smaller set
of rankings is biased. The question is: how can we recover the scores for each dangling
node and remove the bias in the ranks? While Lee et al.’s answer to this question can
be explained by the mathematical techniques of aggregation [51, 56, 92, 151, 154, 155]
and stochastic complementation [125], we present an alternative answer, which is easier to
follow and was inspired by the linear system formulation of McCurley et al. [112].

Suppose the rows and columns of H are permuted (i.e., the indices are reordered) so

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

82 CHAPTER 8

that the rows corresponding to dangling nodes are at the bottom of the matrix.

H =
(ND D

ND H11 H12

D 0 0

)
,

where ND is the set of nondangling nodes and D is the set of dangling nodes. The coefficient
matrix in the sparse linear system formulation of Chapter 7 (i.e., xT (I − αH) = vT with
πT = x/xT e) becomes

(I − αH) =
(

I − αH11 −αH12

0 I

)
,

and the inverse of this matrix is

(I − αH)−1 =
(

(I − αH11)−1 α(I − αH11)−1H12

0 I

)
.

Therefore, the unnormalized PageRank vector xT = vT (I − αH)−1 can be written as

xT = (vT
1 (I − αH11)−1 | αvT

1 (I − αH11)−1H12 + vT
2) ,

where the personalization vector vT has been partitioned accordingly into nondangling
(vT

1) and dangling (vT
2) sections. Note that I − αH11 inherits many of the properties of

I − αH from Chapter 7, most especially nonsingularity. In summary, we now have an
algorithm that computes the PageRank vector using only the nondangling portion of the
web, exploiting the rank-one structure (and therefore lumpability) of the dangling node
fix.

Dangling Node PageRank Algorithm

1. Solve for xT
1 in xT

1 (I − αH11) = vT
1 .

2. Compute xT
2 = αxT

1 H12 + vT
2 .

3. Normalize πT = [xT
1 xT

2]/‖[xT
1 xT

2]‖1.

This algorithm is much simpler and cleaner, but equivalent to the specialized iterative
method proposed by Lee et al. [112], which exploits the dangling nodes to reduce compu-
tation of the PageRank vector by a factor of 1/5 on a graph in which 80% of the nodes are
dangling. While this solution to the problem of dangling nodes gives them fair treatment
and capitalizes on their unique properties, we can do even better.

Inspired by the dangling node PageRank algorithm above, we wondered if a deeper
search for “sub-dangling” nodes might help further. That is, if the presence of dangling
nodes, and therefore, 0T rows in H is so advantageous, can we find more 0T rows in
submatrices of H? In fact, in [109], we proposed that the process of locating zero rows be
repeated recursively on smaller and smaller submatrices of H, continuing until a submatrix
is created that has no zero rows. For example, consider executing such a process on a
hyperlink matrix H that has 9664 rows and columns and contains 16773 nonzero entries in
the positions indicated in the left-hand side of Figure 8.3. The process amounts to a simple
reordering of the states of the Markov chain. The left pane shows the nonzero pattern in

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ISSUES IN LARGE-SCALE IMPLEMENTATION OF PAGERANK 83

Figure 8.3 Original and reordered H for sample web hyperlink matrix

H, and the right pane is the nonzero pattern after the rows of H are reordered according to
the recursive dangling node idea.

In general, after this symmetric reordering, the coefficient matrix of the linear system
formulation of the PageRank problem of equation (7.2.1) has the following structure.

(I − αH) =

⎛⎜⎜⎜⎜⎝
I − αH11 −αH12 −αH13 · · · −αH1b

I −αH23 · · · −αH2b

I · · · −αH3b

. . .
I

⎞⎟⎟⎟⎟⎠ ,

where b is the number of square diagonal blocks in the reordered matrix. Thus, the re-
ordered system can be solved by forward substitution. The only system that must be solved
directly is the first subsystem, xT

1 (I−αH11) = vT
1 , where πT and vT have also been par-

titioned accordingly. The remaining subvectors of xT are computed quickly and efficiently
by forward substitution.

Dangling Node PageRank Algorithm 2

1. Reorder the states of the original Markov chain, so that the reordered matrix has the
structure given above.

2. Solve for xT
1 in xT

1 (I − αH11) = vT
1 .

3. For i = 2 to b, compute xT
i = α

∑i−1
j=1 xT

j Hji + vT
i .

4. Normalize πT = [xT
1 xT

2 · · · xT
b]/‖[xT

1 xT
2 · · · xT

b]‖1.

In the example from Figure 8.3, a 2, 622 × 2, 622 system can be solved instead
of the full 9, 664 × 9, 664 system. The small subsystem xT

1 (I − αH11) = vT
1 can be

solved by a direct method (if small enough) or an iterative method (such as the Jacobi
method). Reference [109] provides further details of the reordering method along with
experimental results, suggested methods for solving the xT

1 (I − αH11) = vT
1 system,

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

84 CHAPTER 8

and convergence properties. Fortunately, it turns out that this dangling node PageRank
algorithm has the same asymptotic rate of convergence as the original PageRank algorithm
of equation (5.3.1), which means that because it operates on a much smaller problem it can
take much less time than the standard PageRank power method, provided the reordering
can be efficiently implemented.

8.5 BACK BUTTON MODELING

Related to the topic of dangling nodes is the issue of the back button. Often times during
a PageRank talk at a scientific conference, right after we’ve introduced dangling nodes
and their problems and solutions, we are asked, “But what about the browser’s back but-
ton? How does PageRank account for this button?” The short answer is that, as originally
conceived, the PageRank model does not allow for a back button. Our questioner usually
doesn’t give in so easily, “Whenever I’m surfing and I enter a dangling node, I simply back
my way out until I can proceed with forward links again.” We concede—that’s exactly
what most surfers do. However, accounting for the back button complicates the mathemat-
ics of the PageRank model. In fact, the defining property of a Markov chain is that it’s
memoryless. That is, upon transitioning and arriving at a new webpage, the chain does not
remember from whence it came. Therefore, one way to model the back button would be to
add memory to the Markov chain. Unfortunately, this quickly obscures the elegant mathe-
matical and computational beauty of the Markov chain. Nevertheless, several researchers
have proceeded in this direction [67, 119, 157], hoping that the increase in complexity is
offset by the back button’s ability to more accurately capture true Web surfing behavior.

There are many ways to model the back button on a Web browser. We propose one
very simplistic approach that incorporates limited back button usage into the PageRank
model yet still stays in the Markov framework. In this model, once the random surfer
arrives at a dangling node, he immediately returns to the page he came from. It’s important
to note that this bounce-back feature simulates the back button only for dangling nodes.
Unfortunately, in order to achieve this bounce back, we need to add a new node for every
inlink into each dangling node. However, the resulting, larger hyperlink matrix, which
we call H̄, has some nice structure. To understand the bounce-back model, consider an
example based on Figure 8.4. The hyperlink matrix H associated with Figure 8.4 is

3

4 5

6

1 2

Figure 8.4 Original 6-node graph for back button model

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ISSUES IN LARGE-SCALE IMPLEMENTATION OF PAGERANK 85

H =

⎛⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6
1 0 1/2 0 1/2 0 0
2 1/2 0 1/2 0 0 0
3 1/5 1/5 0 1/5 1/5 1/5
4 0 0 1/2 0 0 1/2
5 0 0 0 0 0 0
6 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠.

The modified graph with bounce back capability appears in Figure 8.5. The modifi-
cations are shown with dashes. Thus, the bounce-back hyperlink matrix H̄ is

3

4

5

6

1 2

6
3

4

3

Figure 8.5 Bounce-back 6-node graph for back button model

H̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 53 63 64

1 0 1/2 0 1/2 0 0 0
2 1/2 0 1/2 0 0 0 0
3 1/5 1/5 0 1/5 1/5 1/5 0
4 0 0 1/2 0 0 0 1/2
53 0 0 1 0 0 0 0
63 0 0 1 0 0 0 0
64 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

H̄ is now stochastic, so no artificial stochastic fix is needed. However, eventually an irre-
ducibility fix must still be applied. Execute the following steps to create H̄, the stochastic
hyperlink matrix for the bounce back model. (Note that H̄ could be called S̄.)

• Reorder H so that H =
(ND D

ND H11 H12

D 0 0

)
. See section 8.4.

• For each inlink into a dangling node, create a bounce-back node. There will be
nnz(H12) of these bounce-back nodes instead of the |D| nodes in the dangling node
set. If each dangling node has more than one inlink and there are many dangling
nodes, this could drastically increase the size of the matrix. The bounce-back hyper-

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

86 CHAPTER 8

link matrix has the following block form.

H̄ =
(ND BB

ND H̄11 H̄12

BB H̄21 0

)
.

• Form the three nonzero blocks of H̄. First, H̄11 = H11. Second, there is structural
symmetry between H̄12 and H̄21 that can be exploited. That is, if element (i, j) of
H̄12 is nonzero, then element (j, i) of H̄21 = 1. Further, while the size of H̄ can be
much larger than the size of H, H̄ only has nnz(H12) more nonzeros than H and
all of these are the integer 1. As a result of this nice structure, the Matlab commands
find and sparse can be used to create the H̄12 and H̄21 blocks.

[r,c,v]=find (H12);
H̄12 =sparse(r,1:nnz(H12),v);

H̄21 =(H̄12 > 0)’;

To compute the bounce-back PageRank vector, simply run any PageRank algorithm
such as the original algorithm of equation 4.6.1 on page 40 or the accelerated versions of
Chapter 9 on Ḡ = αH̄ + (1−α)evT . Of course, the algorithms are slightly modified due
to the fact that H̄ is now also stochastic. Thus, the bounce-back PageRank power method
is

π̄(k+1)T = π̄(k)T Ḡ

= α π̄(k)T H̄ + (1 − α)vT

The bounce-back PageRank vector for H̄ is longer than the standard PageRank vector for
H. To compare the two vectors, simply collapse multiple bounce-back nodes for each
dangling node back into one node. For the above example, with α = .85 and vT = eT /n,

πT (H) =
(1 2 3 4 5 6
0.1726 0.1726 0.2102 0.1726 0.0993 0.1726

)
and

π̄T (H̄) =
(1 2 3 4 53 63 64

0.1214 0.1214 0.2846 0.2186 0.0698 0.0698 0.1143
)
.

The collapsed vector π̄T = (0.1214 0.1214 0.2846 0.2186 0.0698 .1841). The
ranking of pages (from most to least important) associated with πT is (3 1/2/4/6 5),
while the ranking associated with π̄T is (3 4 6 1/2 5), where the / symbol indi-
cates a tie. Of course, on such a small example the difference in the two rankings is appar-
ent. Much larger experiments are needed to determine the value of bounce-back PageRank
as an alternative ranking.

ASIDE: Google’s Initial Public Offering

Speculation and rumors about Google’s initial public offering (IPO) of stock shares
began in 2003. On August 1, 2004, Google issued a press release about their IPO. True to
their founding principles, Google’s IPO was original. Google used a Dutch auction to take
bids from investors. For the auction, investors submitted a bid with the price and number of

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ISSUES IN LARGE-SCALE IMPLEMENTATION OF PAGERANK 87

shares they were willing to buy. Then Google and its underwriting bankers, Morgan Stanley
and Credit Suisse Group First Boston determined the clearing price, which is the highest price
at which there is a demand for all of the 24.6 million shares. The offer price was then set at
or below the clearing price. Google believed the Dutch auction was the best way to level the
playing field and allow small individual investors and large corporate investors equal access to
shares. Google expected the offer price to fall somewhere between $108 and $135. On July 31,
2004, the IPO information website, www.ipo.google.com opened. This site contained a
100-plus page prospectus that informed prospective investors about the risk factors, auction
process, company history and mission, search trends, and financial data. It also contained a
Meet the Management presentation in which the company’s leaders, founders Sergey Brin and
Larry Page, CEO Eric Schmidt, and CFO George Reyes, summarize some of the main issues
in the detailed prospectus. Google shares ended up selling on August 19, 2004 for $85 each,
bringing in over $1.1 billion for the company and making it the biggest technology IPO in
history and the 25th largest IPO overall. You can track the price of Google shares by watching
the Nasdaq ticker symbol GOOG.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

www.ipo.google.com

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Nine

Accelerating the Computation of PageRank

People have a natural fascination with speed. Look around; articles abound on Nascar and
the world’s fastest couple—Marion Jones and Tim Montgomery—speedboat racing and
speed dating, fast food and the Concorde jet. So the interest in speeding up the computation
of PageRank seems natural, but actually it’s essential because the PageRank computation
by the standard power method takes days to converge. And the Web is growing rapidly, so
days could turn into weeks if new methods aren’t discovered.

Because the classical power method is known for its slow convergence, researchers
immediately looked to other solution methods. However, the size and sparsity of the web
matrix create limitations on the solution methods and have caused the predominance of the
power method. This restriction to the power method has forced new research on the often
criticized power method and has resulted in numerous improvements to the vanilla-flavored
power method that are tailored to the PageRank problem. Since 1998, the resurgence in
work on the power method has brought exciting, innovative twists to the old, unadorned
workhorse. As each iteration of the power method on a web-sized matrix is so expensive,
reducing the number of iterations by a handful can save hours of computation. Some of the
most valuable contributions have come from researchers at Stanford who have discovered
several methods for accelerating the power method. There are really just two ways to
reduce the work involved in any iterative method: either reduce the work per iteration or
reduce the total number of iterations. These goals are often at odds with one another. That
is, reducing the number of iterations usually comes at the expense of a slight increase in
the work per iteration, and vice versa. As long as this overhead is minimal, the proposed
acceleration is considered beneficial. In this chapter, we review three of the most successful
methods for reducing the work associated with the PageRank vector.

9.1 AN ADAPTIVE POWER METHOD

The goal of the PageRank game is to compute πT , the stationary vector of G, or tech-
nically, the power iterates π(k)T such that ‖π(k)T − π(k−1)T ‖1 < τ , where τ is some
acceptable convergence criterion. Suppose, for the moment, that we magically know πT

from the start. We’d, of course, be done, problem solved. But, out of curiosity, let’s run
the power method to see how far the iterates π(k)T are from the final answer πT . We
want to know what kind of progress the power method is making throughout the iteration
history. There are several ways to do this. You can take a macroscopic view and look
at how far π(k)T , the current iterate, is from πT , the magical final answer, by computing
‖π(k)T − πT ‖1. By using the norm, the individual errors in each component are lumped
into a single scalar which gives the aggregated error. The standard power method takes the
macroscopic view at each iteration, using a convergence test that looks at an aggregated er-

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

90 CHAPTER 9

ror, ‖π(k)T −π(k−1)T ‖1. Another idea is to take a microscopic view and look at individual
components in the two vectors, examining how far π

(k)
i is from πi at each iteration. This is

exactly what Stanford researchers Sep Kamvar, Taher Haveliwala, Gene Golub, and Chris
Manning did [102].

Kamvar et al. [102] noticed that some pages converge to their PageRank values faster
than other pages. However, the standard power method with its macroscopic view doesn’t
notice this, and blindly charges on, making unnecessary calculations. In fact, the Stanford
group found that most pages converge to their final PageRank values quickly. The power
method is forced to drag on because a small proportion of obstinate pages take longer to
settle down to their final PageRank values. As elements of the PageRank vector converge,
the adaptive PageRank method “locks” them and does not compute them in subsequent
iterations. But how do you know which elements to lock and when? In the case when
we magically know πT , lock element i when |π(k)

i − πi| < ε, where ε is the microscopic
convergence tolerance. (Kamvar et al. used ε = 10−3.) In practice, lock element i when
|π(k)

i − π
(k−1)
i | < ε, i.e., the difference in successive iterates is small enough.

This adaptive power method provides a modest speedup in the computation of the
PageRank vector, i.e., 17% on Kamvar et al.’s experimental datasets. However, while this
algorithm was shown to converge in practice on a handful of datasets, there are serious open
theoretical issues with the algorithm. For instance, there is no proof regarding convergence
of the algorithm; the algorithm may or may not converge. And even if it does converge,
the final answer may not be right. Because only short-run dynamics are considered in
the locking decision, it’s not clear whether the algorithm converges to the true PageRank
values or some gross approximation of them. In fact, nearly uncoupled chains are known
to exhibit short-run stabilization in each cluster, which is then followed by a period of
progress toward the global equilibrium. Further, the final global equilibrium often does not
resemble properties of the short run equilibria, meaning the adaptive method could stop too
soon with a grossly inaccurate answer for an uncoupled chain. Nevertheless, the adaptive
algorithm makes a practical contribution to PageRank acceleration by attempting to reduce
the work per iteration required by the power method.

9.2 EXTRAPOLATION

Another acceleration method proposed by the same group of Stanford researchers aims
to reduce the number of power iterations. The expected number of power iterations is
governed by the size of the subdominant eigenvalue λ2. The idea of extrapolation goes
something like this: “if the subdominant eigenvalue causes the power method to sputter,
cut it out and throw it away.” To understand what this means, let’s look at the power iterates
using special spectral decomposition goggles. Spectral decomposition goggles are a bit
like x-ray vision in that they allow one to see deep into a matrix to examine its spectral
components. For simplicity, assume that G is diagonalizable and 1 > |λ2| > · · · ≥ |λn|.
Then, the power iterates look like

π(k)T = π(k−1)T G = π(0)T Gk

= π(0)T (eπT + λk
2x2yT

2 + λk
3x3yT

3 + · · · + λk
nxnyT

n)
= πT + λk

2γ2yT
2 + λk

3γ3yT
3 + · · · + λk

nγnyT
n , (9.2.1)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ACCELERATING THE COMPUTATION OF PAGERANK 91

where xi and yi are the right-hand and left-hand eigenvectors of G corresponding to λi and
γi = π(0)T xi. It’s frustrating—at each iteration the desired PageRank vector πT is sitting
right there, taunting us. In fact, equation (9.2.1) shows that λk

2γ2yT
2 does the spoiling for

the power method. πT is hidden until λk
2 → 0, which takes a while when |λ2| is large. The

technique of extrapolation removes the spoiler. Notice that

π(k)T − λk
2γ2yT

2 = πT + λk
3γ3yT

3 + · · · + λk
nγnyT

n ,

which is closer to the correct PageRank πT when |λ2| > |λ3|. This means that if we
could subtract λk

2γ2yT
2 from the current iterate we could propel the power method for-

ward. However, the problem is how to compute λk
2γ2yT

2 . When we take off the spectral
decomposition goggles, the spectral components are lumped together and we see only one
vector, π(k)T . Fortunately, we can estimate λk

2γ2yT
2 by using things we do have, or can

get, π(k+2)T , π(k+1)T , and π(k)T . Kamvar et al. have shown that

λk
2γ2yT

2 ≈ (π(k+1)T − π(k)T).2

π(k+2)T − 2π(k+1)T − π(k)T
,

where (∗).2 indicates component-wise squaring of elements in the vector (∗). Since extrap-
olation requires additional computation (getting and storing the two subsequent iterates),
it should only be applied periodically, say every 10 iterations. Unfortunately, this method,
which is referred to as Aitken extrapolation because it is derived from the classic Aitken ∆2

method for accelerating linearly convergent sequences, gives only modest speedups. One
reason concerns the eigenvalue λ3. If λ2 and λ3 are complex conjugates, then |λ2| = |λ3|
and Aitken extrapolation performs poorly.

Kamvar et al. developed an improved extrapolation method, called quadratic ex-
trapolation, which while more complicated, is based on the same idea as Aitken extrap-
olation. That is, “if λ2 and λ3 cause you problems, cut them both out and throw them
away.” On the datasets tested, quadratic extrapolation reduces PageRank computation time
by 50–300% with minimal overhead. Figure 9.1 compares the residuals when the stan-
dard power method and the power method with quadratic extrapolation are applied to a
small web graph. In this example, quadratic extrapolation is applied every 20 iterations.

0 20 40 60 80 100 120 140 160 180
12

10

8

6

4

2

0

iteration

log
 1

0
re

si
du

al

power method
power method with quad. extrap.

Figure 9.1 Residual plot for power method vs. power method with quadratic extrapolation

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

92 CHAPTER 9

Notice how the iterate that results at each application of quadratic extrapolation makes dra-
matic progress toward the solution. Unfortunately, quadratic extrapolation is expensive and
can be done only periodically. Researchers, such as extrapolation expert Claude Brezin-
ski, have recently begun experimenting with other classic extrapolation methods, such as
Chebyshev and ε-extrapolation.

Matlab m-file for PageRank Power Method with Aitken extrapolation

This m-file implements the PageRank power method applied to the Google matrix
G = αS + (1 − α)evT with Aitken extrapolation applied every ’l’ iterations.

function [pi,time,numiter]=aitkenPageRank(pi0,H,v,n,alpha,epsilon,l);

% AITKENPageRank computes the PageRank vector for an n-by-n Markov
% matrix H with starting vector pi0 (a row vector),
% scaling parameter alpha (scalar), and teleportation
% vector v (a row vector). Uses power method with
% Aitken extrapolation applied every l iterations.
%
% EXAMPLE: [pi,time,numiter]=aitkenPageRank(pi0,H,v,900,.9,1e-8,10);
%
% INPUT: pi0 = starting vector at iteration 0 (a row vector)
% H = row-normalized hyperlink matrix (n-by-n sparse matrix)
% v = teleportation vector (1-by-n row vector)
% n = size of P matrix (scalar)
% alpha = scaling parameter in PageRank model (scalar)
% epsilon = convergence tolerance (scalar, e.g. 1e-8)
% l = Aitken extrapolation applied every l iterations (scalar)
%
% OUTPUT: pi = PageRank vector
% time = time required to compute PageRank vector
% numiter = number of iterations until convergence
%
% The starting vector is usually set to the uniform vector,
% pi0=1/n*ones(1,n).
% NOTE: Matlab stores sparse matrices by columns, so it is faster
% to do some operations on H’, the transpose of H.

% get "a" vector, where a(i)=1, if row i is dangling node
% and 0, o.w.

rowsumvector=ones(1,n)*H’;
nonzerorows=find(rowsumvector);
zerorows=setdiff(1:n,nonzerorows); l=length(zerorows);
a=sparse(zerorows,ones(l,1),ones(l,1),n,1);

k=0;
residual=1;
pi=pi0;
tic;

while (residual >= epsilon)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ACCELERATING THE COMPUTATION OF PAGERANK 93

prevpi=pi;
k=k+1;
pi=alpha*pi*H + (alpha*(pi*a)+1-alpha)*v;
residual=norm(pi-prevpi,1);
if (mod(k,l))==0

% ’Aitken extrapolation’
nextpi=alpha*pi*H + (alpha*(pi*a)+1-alpha)*v;
g=(pi-prevpi).ˆ2;
h=nextpi-2*pi+prevpi;
nextpi=prevpi-(g./h);
if (any(nextpi==-Inf)==1)

pi=pi;
else

pi=nextpi;
end
%’end Aitken extrapolation’

end
end
numiter=k;
time=toc;

Matlab m-file for PageRank Power Method with quadratic extrapolation

This m-file implements the PageRank power method applied to the Google matrix
G = αS+(1−α)evT with quadratic extrapolation applied every ’l’ iterations.

function [pi,time,numiter]=quadPageRank(pi0,H,v,n,alpha,epsilon,l);

% QUADPageRank computes the PageRank vector for an n-by-n Markov
% matrix H with starting vector pi0 (a row vector),
% scaling parameter alpha (scalar), and teleportation
% vector v (a row vector). Uses power method with
% quadratic extrapolation applied every l ("ell") iterations.
%
% EXAMPLE: [pi,time,numiter]=quadPageRank(pi0,H,v,900,.9,1e-8,10);
%
% INPUT: pi0 = starting vector at iteration 0 (a row vector)
% H = row-normalized hyperlink matrix (n-by-n sparse matrix)
% v = teleportation vector (1-by-n row vector)
% n = size of P matrix (scalar)
% alpha = scaling parameter in PageRank model (scalar)
% epsilon = convergence tolerance (scalar, e.g. 1e-8)
% l ("ell") = quadratic extrapolation applied every l ("ell")
% iterations (scalar)
%
% OUTPUT: pi = PageRank vector
% time = time required to compute PageRank vector
% numiter = number of iterations until convergence
%
% The starting vector is usually set to the uniform vector,
% pi0=1/n*ones(1,n).
% NOTE: Matlab stores sparse matrices by columns, so it is faster
% to do some operations on H’, the transpose of H.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

94 CHAPTER 9

% get "a" vector, where a(i)=1, if row i is dangling node
% and 0, o.w.

rowsumvector=ones(1,n)*H’;
nonzerorows=find(rowsumvector);
zerorows=setdiff(1:n,nonzerorows); l=length(zerorows);
a=sparse(zerorows,ones(l,1),ones(l,1),n,1);

k=0;
residual=1;
pi=pi0;
tic;

while (residual >= epsilon)
prevpi=pi;
k=k+1;
pi=alpha*pi*H + (alpha*(pi*a)+1-alpha)*v;
residual=norm(pi-prevpi,1);
if (mod(k,l))==0

% ’quadratic extrapolation’
nextpi=alpha*pi*H + (alpha*(pi*a)+1-alpha)*v;
nextnextpi=alpha*nextpi*H + (alpha*(nextpi*a)+1-alpha)*v;
y=pi-prevpi; nexty=nextpi-prevpi; nextnexty=nextnextpi-prevpi;
Y=[y’ nexty’];
gamma3=1;
% do modified gram-schmidt QR instead of matlab’s [Q,R]=qr(Y);
[m, n] = size(Y);
Q = zeros(m,n);
R = zeros(n);
for j=1:n

R(j,j) = norm(Y(:,j));
Q(:,j) = Y(:,j)/R(j,j);
R(j,j+1:n) = Q(:,j)’*Y(:,j+1:n);
Y(:,j+1:n) = Y(:,j+1:n) - Q(:,j)*R(j,j+1:n);

end
Qnextnexty=Q’*nextnexty’;
gamma2=-Qnextnexty(2)/R(2,2);
gamma1=(-Qnextnexty(1)-gamma2*R(1,2))/R(1,1);
gamma0=-(gamma1+gamma2+gamma3);
beta0=gamma1+gamma2+gamma3;
beta1=gamma2+gamma3;
beta2=gamma3;
nextnextpi=beta0*pi+beta1*nextpi+beta2*nextnextpi;
nextnextpi=nextnextpi/sum(nextnextpi);
pi=nextnextpi;
%’end quadratic extrapolation’

end
pi=pi/sum(pi);

end
numiter=k;
time=toc;

9.3 AGGREGATION

The same group of Stanford researchers, Kamvar et al. [101] has produced one more
contribution to the acceleration of PageRank. This method works on both acceleration

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ACCELERATING THE COMPUTATION OF PAGERANK 95

goals simultaneously, trying to reduce both the number of iterations and the work per
iteration. This very promising method, called BlockRank, is an aggregation method that
lumps sections of the Web by hosts. BlockRank begins by taking the webgraph (where
nodes represent webpages) and compresses this into a hostgraph (where the nodes represent
hosts). Hosts are the high-level webpages like www.ncsu.edu, under which lots of other
pages sit. Most pages within a host intralink to other pages within the host, but a few links
are interhost links, meaning they link between hosts. In the global hostgraph, intralinks are
ignored. When the PageRank model is applied to the small hostgraph, a HostRank vector
is output. The HostRank for host i gives the relative importance of that host. While the
HostRank problem is much smaller than the original PageRank problem, it doesn’t give us
what we want, which is the importance of individual pages, not individual hosts. In order
to get one global PageRank vector, we first compute many local PageRank vectors—the
PageRank vector for pages in each individual host. Now only the intralinks are used, and
the interlinks are ignored. This is an easy computation since hosts generally have less than
a few thousand pages. Thus, the PageRank model is applied to each host, www.ncsu.edu,
www.msmary.edu, www.cofc.edu, and so on. At this point, there is one global 1 × |H|
HostRank vector, where |H| is the number of hosts, as well as |H| local PageRank vectors,
each 1 × |Hi| in size, where |Hi| is the number of pages in host Hi. To approximate the
global PageRank vector, simply multiply the local PageRank vector for host Hi by the
probability of being in that host, given by the ith element of the HostRank vector. This is
called the expansion step.

This method gives an approximation to the true PageRank vector that the power
method computes. It’s an approximation because at each step some links are ignored,
which means that valuable information is lost in the compression or so-called aggrega-
tion step. Fortunately, this approximation can be improved if, in an accordion style, the
collasping/expanding process is repeated until convergence. BlockRank is actually just
classic aggregation [51, 56, 92, 151, 155] applied to the PageRank problem. (See sections
10.3–10.5 for more on aggregation.) This method often reduces both the number of itera-
tions required and the work per iteration. It produced a speedup of a factor of 2 on some
datasets used by Kamvar et al. More recent, but very related, algorithms [42, 116] use sim-
ilar aggregation techniques to exploit the Web’s structure to speed ranking computations.

EXAMPLE In order to understand the basic principles of aggregation used by the
BlockRank algorithm, consider the nearly uncoupled chain of Example 2 from Chapter
6. The 7-node graph is reproduced below in Figure 9.2. Clearly, nodes 1, 2, 3, and 7 can
be considered as one host (called Host 1), due to their strong interaction. Nodes 4, 5, and 6
then make up Host 2. The BlockRank algorithm aggregates the 7-node graph into a smaller
2-node graph of hosts. The transition matrix associated with this host graph is

(H1 H2

H1 .96 .04
H2 0 1

)
.

The HostRank vector associated with the host graph, the stationary vector of the Google
matrix for the host graph, is (.3676 .6324) (here we used α = .9 and vT = (.5 .5)).
This means that 36.76% of the time we expect the random surfer to visit the states of Host
1, i.e., webpages 1, 2, 3, and 7.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

www.ncsu.edu
www.ncsu.edu
www.msmary.edu
www.cofc.edu

96 CHAPTER 9

3

4 5

6

1 2

7

1

.32
1

.32

.32

.04

1

11

Figure 9.2 Nearly uncoupled graph for web of seven pages

Next, local PageRank vectors are computed for each host. For Host 1, the hyperlink
matrix is

H1 =

⎛⎜⎜⎝
P1 P2 P3 P7

P1 0 1 0 0
P2 0 0 1 0
P3 1/3 1/3 0 1/3
P7 0 0 0 0

⎞⎟⎟⎠.

Only within-host links are used to create H1, all intrahost links are ignored, namely, the
link 3 → 4. With α = .9 and vT = (.25 .25 .25 .25) the local PageRank vector
for Host 1 is (.1671 .3175 .3483 .1671). The interpretation of the second element of
this vector is that, given the random surfer is in the states of Host 1, 31.75% of the time he
visits webpage 2. Similarly, the local hyperlink matrix for Host 2 is

H2 =

⎛⎝
P4 P5 P6

P4 0 1 0
P5 0 0 1
P6 1 0 0

⎞⎠.

And the local PageRank vector for Host 2 is (1/3 1/3 1/3).

The final step is the disaggregation step, which uses these three small vectors to
create a 1 × 7 vector π̃T that approximates the exact PageRank vector πT .

π̃T =
(1 2 3 7 4 5 6

.3676 (.1671 .3175 .3483 .1671) .6324 (1/3 1/3 1/3)
)

=
(1 2 3 7 4 5 6
.0614 .1167 .1280 .0614 .2108 .2108 .2108

)
.

Compare this with the exact PageRank vector πT computed by the power method.

πT =
(1 2 3 7 4 5 6
.0538 .1022 .1132 .0538 .2271 .2256 .2242

)
.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

ACCELERATING THE COMPUTATION OF PAGERANK 97

Classic aggregation methods are known to work well and reduce effort when computing
the stationary vector for a nearly uncoupled Markov chain. The web chain is somewhat
uncoupled so BlockRank works well so long as an appropriate level of host aggregation is
done.

9.4 OTHER NUMERICAL METHODS

Yet another group of researchers from Stanford, joined by IBM scientists, dropped the
restriction to the power method. In their short paper, Arasu et al. [10] provide one small
experiment with the Gauss-Seidel method applied to the PageRank problem. Bianchini et
al. [29] suggest using the Jacobi method to compute the PageRank vector. Golub and Greif
also conduct some experiments with the Arnoldi method [81].

Another promising avenue for PageRank acceleration recently began receiving aca-
demic attention: parallel processing. Daniel Szyld and his colleagues have conducted
experiments that execute the PageRank power method in parallel with very little overhead
communication between processors. Others have corroborated the benefits and particular
challenges of parallel processing for PageRank computation [80, 118].

Despite this progress, these are just beginnings. If the holy grail of real-time per-
sonalized search is ever to be realized, then drastic speed improvements must be made,
perhaps by innovative new algorithms, or the simple combination of many of the current
acceleration methods into one algorithm.

ASIDE: Google API

In April 2002, Google released its Web Application Programming Interface (API),
which provides fans a free (for now) and legal way to access their search results with auto-
mated queries. (Without the API, automated querying is against Google’s Terms of Service.)
By doing this, Google let the world’s programmers virtually run free in Google labs. Google
suddenly had thousands of free employees, some more productive and generous than others,
creating new services and applications of Google and offering to give them back to the public.
For example, four products from API programmers are available at http://www.tele-
pro.co.uk/scripts/google/. Developers are free to publish their results as long as
they are for noncommercial purposes. Software developers interested in the API download the
free developer’s kit, create an account, and get a license key. The license key allows a devel-
oper 1,000 queries a day (which explains why the API-generated application, RankPulse of
the aside on page 65, tracks exactly 1,000 terms). With the key, developers are free to exper-
iment with ways of accessing the standard Google index (which does not include the image,
news, shopping, or other special-purpose indexes). For example, the book Google Hacks (see
box on page 73) provides API code for adding to any webpage a small box of Google results
for your chosen query that are refreshed daily. Other developers anticipate using the API to
create applications that search both traditional library catalogs as well as the entire Web from
a single command. Of course, with access to one of the world’s largest indexes, the API is an
excellent way for web ranking researchers to test their new algorithms.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.telepro.co.uk/scripts/google/
http://www.telepro.co.uk/scripts/google/

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Ten

Updating the PageRank Vector

Every month a famous dance takes place on the Web. While there have been famous
dances throughout modern history—the Macarena, the Mambo #5, the Chicken Dance—
this dance is the first to have a profound impact on the search community. Every month
search engine optimizers (SEOs) watch the Google Dance carefully, anxious to see if any
steps have changed. Sometimes the modifications are easy to roll with, other times they
cause a stir.

The Google Dance is the nickname given to Google’s monthly updating of its rank-
ings. We begin with some statistics that emphasize the need for updating rankings fre-
quently. A study by web researchers Junghoo Cho and Hector Garcia-Molina [52] in 2000
reported that 40% of all webpages in their dataset changed within a week, and 23% of
the .com pages changed daily. In a much more extensive and recent study, the results of
Dennis Fetterly and his colleagues [74] concur. About 35% of all webpages changed over
the course of their study, and also pages that were larger in size changed more often and
more extensively than their smaller counterparts. In the above studies, change was defined
as either a change in page content or a change in page outlinks or both. Now consider
news webpages, where updates to both content and links might occur on an hourly basis.
Both the content score, which incorporates page content, and the PageRank score, which
incorporates the Web’s graph structure, must be updated frequently to stay fresh. Ideally,
the ranking scores would be as dynamic as the Web. Currently, it is believed that Google
updates its PageRank vector monthly and possibly its content scores more often [7]. Con-
sequently, researchers have been working to make updating easier, taking advantage of old
computations to speed updated computations, and thereby making more frequent updating
possible.

In this chapter we focus on the mathematical problem associated with the Google
Dance, specifically the issue of updating the PageRank vector. The phrase “updating
PageRank” refers to the process of computing the new PageRank vector after monthly
changes have been made to the Web’s graph structure. Between updates, thousands of
links are added and removed, and thousands of pages are added and removed. The simplest,
most naive updating strategy starts from scratch, that is, it recomputes the new PageRank
vector making no use of the previous PageRank vector. To our knowledge, the PageRank
vector for Google’s entire index is recomputed each month from scratch or nearly from
scratch. (Popular sites may have their PageRank updated more frequently.) That is, last
month’s vector is not used to create this month’s vector. A Google spokesperson at the
annual SIAM meeting in 2002 reported that restarting this month’s power method with last
month’s vector seemed to provide no improvement. The goal of updating is to beat this
naive method. Surely, all that effort spent last month to compute PageRank has some value

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

100 CHAPTER 10

toward computing this month’s PageRank with less work.

The setup for the updating problem follows. Suppose that the PageRank vector
φT = (φ1, φ2, . . . , φm) for last month’s Google matrix Qm×m is known (by prior com-
putation), but the web graph requires updating because some hyperlinks have been altered
or some webpages have been added or deleted. The updated Google matrix Gn×n may
have a different size than Q, i.e., m �= n. The updating problem is to compute the up-
dated PageRank πT = (π1, π2, . . . , πn) for G by somehow using the components in φT

to produce πT with less effort than that required by working blind (i.e., by computing πT

without knowledge of φT).

10.1 THE TWO UPDATING PROBLEMS AND THEIR HISTORY

One fact that makes updating PageRank so challenging is that there are really two types of
updates that are possible. First, when hyperlinks are added to or removed from the Web
(or their weights are changed), the elements of the hyperlink matrix H change but the size
of the matrix does not. If these are the only type of updates allowed, then the problem
is called a link-updating problem. However, webpages themselves may be added to or
removed from the Web. With this page-updating problem, states are added to or removed
from the Google Markov chain, and the size of the Google matrix changes. Of the two
updating problems, the page-updating problem is more difficult, and it generally includes
the link-updating problem as a special case. (In section 10.6, we present a general-purpose
algorithm that simultaneously handles both kinds of updating problems.)

Since Markov chains and their stationary vectors have been around for nearly a cen-
tury, the updating problem is not new. Researchers have been studying the problem for
decades. History has followed theory; the easier link-updating problem has been studied
much more extensively than the tougher page-updating problem. In fact, several solutions
for link-updating already exist. In 1980, a theoretical formula for exact link-updating was
derived in [129]. Unfortunately, the formula restricts updates so that only a single row of
link-updates can be made to the Markov transition matrix. Thus, more general updates
must be handled with a sequential one-row-at-a-time procedure. The idea is similar to the
well-known Sherman–Morrison formula [127, p. 124] for updating a solution to a nonsin-
gular linear system, but the techniques must be adapted to the singular matrix A = I−Q.
The mechanism for doing this is by means of the group inverse A# for A, which is
the unique matrix satisfying the three equations: AA#A = A, A#AA# = A# and
AA# = A#A. This matrix is often involved in questions concerning Markov chains—
see [46, 122, 127] for some general background and [46, 49, 50, 76, 83, 130, 122, 124,
121, 126, 129] for Markov chain applications.

The primary exact updating results from [129], as they apply to the PageRank prob-
lem, are summarized below.

Theorem 10.1.1. Let Q be the transition probability matrix of a Google Markov matrix
and suppose that the i-th row qT of Q is updated to produce gT = qT − δT , the i-th
row of G, which is the Google matrix of an updated Markov chain. If φT and πT denote
the stationary probability distributions of Q and G respectively, and if A = I − Q, then

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

UPDATING THE PAGERANK VECTOR 101

πT = φT − εT , where

εT =

[
φi

1 + δT A#
∗i

]
δT A# (A#

∗i = the i-th column of A#). (10.1.1)

To handle multiple row updates to Q, this formula must be sequentially applied one row at
a time, which means that the group inverse must be sequentially updated. The formula for
updating (I − Q)# to (I − G)# is as follows.

(I − G)# = A# + eεT
[
A# − γI

]
− A#

∗iε
T

φi
, (10.1.2)

where γ =
εT A#

∗i

φi
and e is a column of ones.

While these results provide theoretical answers to the link-updating problem, they
are not computationally satisfying, especially if more than just one or two rows are in-
volved. If every row is changed, then the formulas require O(n3) floating point operations.

Other updating formulas exist [50, 77, 96, 104, 148], but all are variations of the
same rank-one updating idea involving a Sherman–Morrison [127, p. 124] type of for-
mula, and all are O(n3) algorithms for a general update. Moreover, all of these rank-one
updating techniques apply only to the simpler link-updating problem, and they are not
easily adapted to handle the more complicated page-updating problem. Consequently, the
conclusion is that while the known exact link-updating formulas might be useful when only
a row or two is changed and no pages are added or deleted, they are not computationally
practical for making more general updates, and thus, because of the dynamics of the Web,
are virtually useless for updating PageRank. The survey of the available solutions for the
page-updating problem is even bleaker. No theoretical or practical solutions for the page-
updating problem for a Markov chain exist. In light of the dynamics of the Web, updating
PageRank is quite an important and open challenge.

10.2 RESTARTING THE POWER METHOD

It appears then that starting from scratch is perhaps the only alternative for the PageRank
updating problem. Let’s begin our discussion with the simpler type of problem, the link-
updating problem. Therefore, assume Q undergoes only link updates to create G. Sup-
pose that the power method is applied to the new, updated Google matrix G, but the old
PageRank vector φT is used as the starting vector for the iterative process (as opposed to
a random or uniform starting vector). Suppose that it is known that the updated stationary
distribution πT for G is in some sense close to the original stationary distribution φT for
Q. For example, this might occur if the perturbations to Q are small. It’s intuitive that if
φT and πT are close, then applying

π(k+1)T = π(k)T G with π(0)T = φT (10.2.1)

should produce an accurate approximation to πT in fewer iterations than that required
when an arbitrary initial vector is used. To some extent this is true, but intuition generally
overestimates the impact, as explained below.

It’s well known that if λ2 is the subdominant eigenvalue of G, and if λ2 has index
one (linear elementary divisors), then the asymptotic rate of convergence [127, p. 621] of

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

102 CHAPTER 10

(10.2.1) is
R = − log10 |λ2|. (10.2.2)

For linear stationary iterative procedures the asymptotic rate of convergence R is an in-
dication of the number of digits of accuracy that can be expected to be eventually gained
on each iteration, and this is independent of the initial vector. For example, suppose that
the entries of G−Q are small enough to ensure that each component πi agrees with φi in
the first significant digit, and suppose that the goal is to compute the update πT to twelve
significant places by using (10.2.1). Since π(0)T = φT already has one correct significant
digit, and since about 1/R iterations are required to gain each additional significant digit
of accuracy, (10.2.1) requires about 11/R iterations, whereas starting from scratch with an
initial vector containing no significant digits of accuracy requires about 12/R iterations. In
other words, the effort is reduced by about 8% for each correct significant digit that can be
built into π(0)T . This dictates how much effort should be invested in determining a “good”
initial vector.

To appreciate what this means concerning the effectiveness of using (10.2.1) as an
updating technique, suppose, for example, that |λ2| = .85 (as is common for PageRank),
and suppose that the perturbations resulting from updating Q to G are such that each com-
ponent πi agrees with φi in the first significant digit. If (10.2.1) is used to produce twelve
significant digits of accuracy, then it follows from (10.2.2) that about 156 iterations are
required. This is only about 16 fewer than needed when starting blind with a random ini-
tial vector. Consequently, restarting the power method with the old PageRank vector is
not an overly attractive approach to the link-updating problem even when changes are rel-
atively small. Because the power method is not easily adapted to handle more complicated
page-updating problems, it’s clear that, by itself, restarting the power method with the old
PageRank vector is not a viable updating technique.

At this point, it seems that efficiently updating the stationary vector πT of a Markov
chain G with knowledge of Q and φT may be too lofty a goal. The only available method
for both link-updating and page-updating, restarting the power method with φT , has lit-
tle benefit over starting completely from scratch, i.e., restarting the power method with a
random or uniform vector.

10.3 APPROXIMATE UPDATING USING APPROXIMATE AGGREGATION

If, instead of aiming for the exact value of the updated stationary distribution, you are
willing to settle for an approximation, then the door opens wider. For example, Steve Chien
and his coworkers [48] estimate Google’s PageRank with an approximation approach that
is based on state aggregation. State aggregation is part of a well-known class of methods
known as approximate aggregation techniques [151] that have been used in the past to
estimate stationary distributions of nearly uncoupled chains. The BlockRank algorithm of
Chapter 9 used aggregation to accelerate the computation of PageRank.

Even though it produces only estimates of πT , approximate aggregation can handle
both link-updating as well as page-updating, and it is computationally cheap.

The underlying idea of approximate aggregation is to use the previously known dis-
tribution

φT = (φ1, φ2, . . . , φm)

together with the updated transition probabilities in G to build an aggregated Markov chain

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

UPDATING THE PAGERANK VECTOR 103

having a transition probability matrix C that is smaller in size than G. The stationary
distribution ξT of C is used to generate an estimate of the true updated distribution πT as
outlined below.

The state space S of the updated Markov chain is first partitioned into two groups
as S = L ∪ L, where L is the subset of states whose stationary probabilities are likely
to be most affected by the updates (newly added states are automatically included in L,
and deleted states are accounted for by changing affected transition probabilities to zero).
The complement L naturally contains all other states. The intuition is that the effect on the
stationary vector of perturbations involving only a few states in large sparse chains (such as
those in Google’s PageRank application) is primarily local, and as a result, most stationary
probabilities are not significantly affected. Deriving good methods for determining L is a
pivotal issue, and this is discussed in more detail in section 10.7.

Partitioning the states of the updated chain as S = L ∪ L induces a partition (and
reordering) of the updated transition matrix and its respective stationary distribution

Gn×n =

(L L

L G11 G12

L G21 G22

)
and πT = (π1, . . . πl |πl+1, . . . , πn), (10.3.1)

where G11 is l× l with l = |L| being the cardinality of L and and G22 is (n− l)× (n− l).
The stationary probabilities from the original distribution φT that correspond to the states
in L are placed in a row vector ωT , and the states in L are lumped into one superstate to
create a smaller aggregated Markov chain whose transition matrix is the (l + 1) × (l + 1)
matrix given by

C̃ =
(

G11 G12e

s̃T G21 1 − s̃T G21e

)
, where s̃T =

ωT

ωT e
(e is a column of ones).

(10.3.2)
The approximation procedure in [48] computes the stationary distribution

ξ̃
T

=
(
ξ̃1, ξ̃2, . . . , ξ̃l, ξ̃l+1

)
,

for C̃ and uses the first l components in ξ̃
T

along with those in ωT to create an approxima-
tion π̃T to the exact updated distribution πT by setting

π̃T =
(
ξ̃1, ξ̃2, . . . , ξ̃l |ωT

)
. (10.3.3)

In other words,

π̃i =

{
ξ̃i, if state i belongs to L,

φi, if state i belongs to L.

The theoretical justification for this approximation scheme along with its accuracy is dis-
cussed in section 10.4. For now, it’s important to recognize the reduction in work that
is possible with approximate aggregation. Rather than finding the full updated PageRank

vector πT , a much much smaller stationary vector ξ̃
T

is used to build an approximation
π̃T to πT .

It’s reported in [48] that numerical experiments on chains with millions of states

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

104 CHAPTER 10

provide estimates such that

‖πT − π̃T ‖1 = O(10−5).

However, it’s not clear that this is a good result because it is an absolute error, and absolute
errors can be deceptive indicators of accuracy in large chains. If a chain has millions of
states, and if, as is reasonable to expect, some stationary probability πi is on the order of
10−5, then an approximation π̃i can be as much as 100% different from the exact πi in a
relative sense yet yield a deceptively small absolute difference. Making the complete case
should involve a relative measure.

10.4 EXACT AGGREGATION

The technique described in section 10.3 is simply one particular way to approximate the
results of exact aggregation, which was developed in [125] and is briefly outlined below.
For an irreducible n-state Markov chain whose state space has been partitioned into k
disjoint groups S = L1 ∪ L2 ∪ · · · ∪ Lk, the associated transition probability matrix
assumes the block-partitioned form

Gn×n =

⎛⎜⎜⎜⎝
L1 L2 · · · Lk

L1 G11 G12 · · · G1k

L2 G21 G22 · · · G2k
...

...
...

. . .
...

Lk Gk1 Gk2 · · · Gkk

⎞⎟⎟⎟⎠ (with square diagonal blocks). (10.4.1)

This parent Markov chain defined by G induces k smaller Markov chains, called censored
chains, as follows. The censored Markov chain associated with a group of states Li is
defined to be the Markov process that records the location of the parent chain only when
the parent chain visits states in Li. Visits to states outside of Li are ignored. The transition
probability matrix for the i-th censored chain is known to be the i-th stochastic complement
[125] given by the formula

Si = Gii + Gi�(I − G�
i)

−1G�i, (10.4.2)

where Gi� and G�i are, respectively, the i-th row and the i-th column of blocks with Gii

removed, and G�
i is the principal submatrix of G obtained by deleting the i-th row and i-th

column of blocks. For example, if the partition consists of just two groups S = L1 ∪ L2,
then there are only two censored chains, and their respective transition matrices are the two
stochastic complements

S1 = G11 + G12(I − G22)−1G21 and S2 = G22 + G21(I − G11)−1G12.

If the stationary distribution for G is πT = (πT
1 |πT

2 | · · · |πT
k) (partitioned conformably

with G), then the i-th censored distribution (the stationary distribution for Si) is known to
be equal to

sT
i =

πT
i

πT
i e

(e is an appropriately sized column of ones). (10.4.3)

For regular chains [104], the j-th component of sT
i is the limiting conditional probability

of being in the j-th state of group Li given that the process is somewhere in Li.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

UPDATING THE PAGERANK VECTOR 105

To compress each group Li into a single state in order to create a small k-state
aggregated chain, squeeze the parent transition matrix G down to the aggregated transition
matrix (also known as the coupling matrix) by setting

Ck×k =

⎛⎜⎝ sT
1 G11e · · · sT

1 G1ke
...

. . .
...

sT
k Gk1e · · · sT

k Gkke

⎞⎟⎠ (known to be stochastic and irreducible).

(10.4.4)
For regular chains, transitions between states in the aggregated chain defined by C corre-
spond to transitions between groups Li in the unaggregated parent chain when the parent
chain is in equilibrium.

The remarkable feature surrounding this aggregation idea is that it allows a parent
chain to be decomposed into k small censored chains that can be independently solved,
and the resulting censored distributions sT

i can be combined through the stationary distri-
bution of C to construct the parent stationary distribution πT . This is the exact aggregation
theorem.

Theorem 10.4.1. (The Exact Aggregation Theorem [125]). If G is the block-partitioned
transition probability matrix (10.4.1) for an irreducible n-state Markov chain whose sta-
tionary probability distribution is

πT = (πT
1 |πT

2 | · · · |πT
k) (partitioned conformably with G),

and if ξT = (ξ1, ξ2, . . . , ξk) is the stationary distribution for the aggregated chain defined
by the matrix Ck×k in (10.4.4), then the stationary distribution for G is

πT =
(
ξ1sT

1 | ξ2sT
2 | · · · | ξksT

k

)
,

where sT
i is the censored distribution associated with the stochastic complement Si in

(10.4.2).

10.5 EXACT VS. APPROXIMATE AGGREGATION

While exact aggregation as presented in Theorem 10.4.1 is elegant and appealing with its
divide and conquer philosophy, it’s an inefficient numerical procedure for computing πT

because costly inversions are embedded in the stochastic complements (10.4.2) that are
required to produce the censored distributions sT

i . Consequently, it’s common to attempt
to somehow approximate the censored distributions, and there are at least two methods for
doing so. Sometimes the stochastic complements Si are first estimated (e.g., approximat-
ing Si with Gii works well for nearly uncoupled chains). Then the distributions of these
estimates are computed to provide approximate censored distributions, which in turn lead
to an approximate aggregated transition matrix that is used by the exact aggregation the-
orem to produce an approximation to πT . The other approach is to bypass the stochastic
complements altogether and somehow estimate the censored distributions sT

i directly, and
this is the essence of the PageRank approximation scheme that was described in section
10.3.

To see this, consider the updated transition matrix G given in (10.3.1) to be parti-
tioned into l + 1 levels in which the first l diagonal blocks are just 1 × 1, and the lower
right-hand block is the (n − l) × (n − l) matrix G22 associated with the states in L. In

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

106 CHAPTER 10

other words, to fit the context of Theorem 10.4.1, the partition in (10.3.1) is viewed as

G =

(L L

L G11 G12

L G21 G22

)
=

⎛⎜⎜⎜⎜⎜⎜⎝

g11 · · · g1l G1�

...
. . .

...
...

gl1 · · · gll Gl�

G�1 · · · G�l G22

⎞⎟⎟⎟⎟⎟⎟⎠ , (10.5.1)

where

G11 =

⎛⎝ g11 · · · g1l
...

. . .
...

gl1 · · · gll

⎞⎠ , G12 =

⎛⎝G1�
...

Gl�

⎞⎠ , and G21 = (G�1 · · ·G�l) .

Since the first l diagonal blocks in the partition (10.5.1) are 1 × 1 (i.e., scalars), it’s evi-
dent that the corresponding stochastic complements are Si = 1 (they are 1 × 1 stochastic
matrices), so the censored distributions are si

T = 1 for i = 1, . . . , l. This means that the
exact aggregated transition matrix (10.4.4) associated with the partition (10.5.1) is

C =

⎛⎜⎜⎜⎜⎜⎜⎝

g11 · · · g1l G1�e

...
. . .

...
...

gl1 · · · gll Gl�e

sT G�1 · · · sT G�l sT G22e

⎞⎟⎟⎟⎟⎟⎟⎠
(l+1)×(l+1)

(10.5.2)

=

(
G11 G12e

sT G21 sT G22e

)
=

(
G11 G12e

sT G21 1 − sT G21e

)
,

where sT is the censored distribution derived from the only significant stochastic comple-
ment

S = G22 + G21

(
I − G11

)−1
G12.

Compare the exact coupling matrix C above with the approximate C̃ suggested by Chien
et al. in equation (10.3.2). If the stationary distribution for C is

ξT =
(
ξ1, . . . , ξl, ξl+1

)
,

then exact aggregation (Theorem 10.4.1) ensures that the exact stationary distribution for
G is

πT =
(
ξ1, . . . , ξl | ξl+1sT

)
=
(
π1, . . . , πl |πT

2

)
. (10.5.3)

It’s a fundamental issue to describe just how well the estimate π̃T given in equation
(10.3.3) approximates the exact distribution πT given in (10.5.3). Obviously, the degree
to which π̃i ≈ πi for i > l (i.e., the degree to which ωT ≈ πT

2) depends on the degree
to which the partition S = L ∪ L can be adequately constructed. While it’s somewhat
intuitive that this should also affect the degree to which π̃i approximates πi for i ≤ l, it’s
not clear, at least on the surface, just how good this latter approximation is expected to be.
The analysis is as follows.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

UPDATING THE PAGERANK VECTOR 107

Instead of using the exact censored distribution sT to build the exact aggregated
matrix C in (10.5.2), the vector s̃T = ωT /ωT e is used to approximate sT in order to
construct C̃ in (10.3.2). The magnitude of

δT = sT − s̃T =
πT

2

πT
2 e

− ωT

ωT e

and the magnitude of

E = C − C̃ =
(

0 0
δT G21 −δT G21e

)
=
(

0
δT

)
G21

(
I | − e

)
(10.5.4)

are clearly of the same order. This suggests that if the partition S = L ∪ L can be ade-
quately constructed so as to insure that the magnitude of δT is small, then C̃ is close to

C, so their respective stationary distributions ξ̃
T

and ξT should be close, thus ensuring
that π̃i and πi are close for i ≤ l. However, some care must be exercised before jump-
ing to this conclusion because Markov chains can sometimes exhibit sensitivities to small
perturbations.

The effects of perturbations in Markov chains are well documented, and there are
a variety of ways to measure the degree to which the stationary probabilities are sensitive
to changes in the transition probabilities. These measures include the extent to which
magnitude of the subdominant eigenvalue of the transition matrix is close to one [126, 128],
the degree to which various “condition numbers” are small [50, 76, 83, 98, 123], and the
degree to which the mean first passage times are small [49]. Any of these measures can be
used to produce a detailed perturbation analysis that revolves around the perturbation term
in (10.5.4), but, for the purposes at hand, it’s sufficient to note that it’s certainly possible for
ξ̃i and ξi (and hence π̃i and πi) to be relatively far apart for i ≤ l even when δT (and hence
E) have small components. For example, this badly conditioned behavior can occur if the
magnitude of G12 is small because this ensures that the subdominant eigenvalue of C is
close to 1 (and some mean first passage times are large), and this is known [49, 126, 128]
to make the stationary probabilities sensitive to perturbations. Other aberrations in C can
also cause similar problems. Of course, if the chain defined by C is well conditioned
by any of the measures referenced above, then ξT will be relatively insensitive to small
perturbations, and the degree to which ωT ≈ πT

2 (i.e., the degree to which S = L ∪ L
can be adequately constructed) will more directly reflect the degree to which π̃i ≈ πi for
i ≤ l. The point being made here is that unless the degree to which C is well conditioned
is established, the degree of the approximation in (10.3.3) is in doubt regardless of how
well ωT approximates πT

2 .

This may seem to be a criticism of the idea behind the approximation (10.3.3), but, to
the contrary, the purpose of this chapter is to argue that this is in fact a good idea because it
can be viewed as the first step in an iterative aggregation scheme that performs remarkably
well. The following section is dedicated to developing an iterative aggregation approach
to updating stationary probabilities.

10.6 UPDATING WITH ITERATIVE AGGREGATION

Iterative aggregation is an algorithm for solving nearly uncoupled (sometimes called nearly
completely decomposable) Markov chains, and it is discussed in detail in [154]. Iterative
aggregation is not a general-purpose technique, and it usually doesn’t work for chains that

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

108 CHAPTER 10

are not nearly uncoupled. However, the ideas can be adapted to the updating problem, and
these variations work extremely well, even when applied to Markov chains that are not
nearly uncoupled. This is in part due to the fact that the approximate aggregation matrix
(10.3.2) differs from the exact aggregation matrix (10.5.2) in only one row, namely, the last
row. The iterative aggregation updating algorithm is described below.

Assume that the stationary distribution

φT = (φ1, φ2, . . . , φm)

for some irreducible Markov chain C is already known, perhaps from prior computations,
and suppose that C needs to be updated. As in earlier sections, let the transition probability
matrix and stationary distribution for the updated chain be denoted by G and

πT = (π1, π2, . . . , πn),

respectively. The updated matrix G is assumed to be irreducible. Of course, the specific
application we have in mind is Google’s PageRank (in which case the matrix is guaranteed
to be irreducible), but this method can be used to update other general irreducible Markov
chains. Notice that m is not necessarily equal to n because the updating process may add
or delete states as well as alter transition probabilities.

The Iterative Aggregation Updating Algorithm

Initialization
• Partition the states of the updated chain as S = L∪L and reorder G as described

in (10.3.1)

• ωT ←− the components from φT that correspond to the states in L

• sT ←− ωT /(ωT e) (an initial approximate censored distribution)
Iterate until convergence

1. C ←−
(

G11 G12e

sT G21 1 − sT G21e

)
(l+1)×(l+1)

(l = |L|)

2. ξT ←− (ξ1, ξ2, . . . , ξl, ξl+1), the stationary distribution of C

3. χT ←−
(
ξ1, ξ2, . . . , ξl | ξl+1sT

)
4. ψT ←− χT G = (ψT

1 |ψT
2) (see note following the algorithm)

5. If ‖ψT −χT ‖ < τ for a given tolerance τ , then quit—else sT ←− ψT
2 /ψT

2 e and
go to step 1

Note concerning step 4. Step 4 is necessary because the vector χT generated in step 3 is
a fixed point in the sense that if step 4 is omitted and the algorithm is restarted with χT

instead of ψT , then the same χT is simply reproduced at step 3 on each subsequent itera-
tion. Step 4 has two purposes—it moves the iterate off the fixed point while simultaneously
contributing to the convergence process. Step 4 is the analog of the smoothing operation in
algebraic multigrid algorithms, and it can be replaced by a step from almost any iterative
procedure used to solve linear systems—e.g., a Gauss-Seidel step [154] is sometimes used.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

UPDATING THE PAGERANK VECTOR 109

While precise rates of convergence for general iterative aggregation algorithms are
difficult to articulate, the specialized nature of our iterative aggregation updating algorithm
allows us to easily establish its rate of convergence. The following theorem shows that
this rate is directly dependent on how fast the powers of the one significant stochastic
complement S = G22 + G21(I − G11)−1G12 converge. In other words, since S is an
irreducible stochastic matrix, the rate of convergence is completely dictated by the largest
subdominant eigenvalue (and Jordan structure) of S.

Theorem 10.6.1. (Convergence Theorem for the Iterative Aggregation Updating Algo-
rithm [111]). The iterative aggregation updating algorithm defined above converges to the
stationary distribution πT of G for all partitions S = L∪L. The rate at which the iterates
converge to πT is exactly the rate at which the powers Sn converge, which is dictated by
the largest subdominant eigenvalue λ2 (and Jordan structure) of S. In the common case
when λ2 is real and simple, the iterates converge to πT at the rate at which λn

2 → 0.

Further, Ilse Ipsen and Steve Kirkland have proven that, under a few assumptions
(that are easily satisfied for the PageRank case), the rate of convergence of this iterative
aggregation updating algorithm is always less than or equal to the rate of convergence of
the standard power method [97].

10.7 DETERMINING THE PARTITION

The iterative aggregation updating algorithm always converges, and it never requires more
iterations than the power method to attain a given level of convergence. However, iterative
aggregation requires more work per iteration than the power method. The key to realizing
an improvement in iterative aggregation over the power method rests in properly choosing
the partition S = L ∪ L. As Theorem 10.6.1 shows, good partitions are precisely those
that yield a stochastic complement S = G22 + G21(I−G11)−1G12 whose subdominant
eigenvalue λ2 is small in magnitude.

While it’s not a theorem, experience indicates that as |L| = l (the size of G11) be-
comes larger, iterative aggregation tends to converge in fewer iterations. But as l becomes
larger, each iteration requires more work, so the trick is to strike an acceptable balance. A
small l that significantly reduces |λ2| is the ideal situation.

Even for moderately sized problems there is an extremely large number of possible
partitions, but there are some useful heuristics that can help guide the choice of L so that
reasonably good results are produced. For example, a relatively simple approach is to take
L to be the set of all states “near” the updates, where “near” might be measured in a graph
theoretic sense or else by the magnitude of transient flow. In the absence of any other
information, this is not a completely bad strategy, and it is at least a good place to start.
However, there are usually additional options that lead to even better “L-sets,” and some
of these are described below.

10.7.1 Partitioning by Differing Time Scales

In most applications involving irreducible aperiodic Markov chains the components of the
n-th step distribution vector do not converge at a uniform rate, and consequently iterative
techniques, including the power method, often spend the majority of the time resolving a

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

110 CHAPTER 10

minority of slow converging components. The slow converging components can be isolated
either by monitoring the process for a few iterations or by theoretical means such as those
described in [111]. (Section 9.1 already introduced the idea and detection of slow vs. fast
converging states for the PageRank problem.) If the states corresponding to the slower
converging components are placed in L while the faster converging states are lumped into
L, then the iterative aggregation algorithm concentrates its effort on resolving the smaller
number of slow converging states.

In loose terms, the effect of steps 1–3 in the iterative aggregation algorithm is es-
sentially to make progress toward achieving an equilibrium (or steady state) for a smaller
chain consisting of just the “slow states” in L together with one additional aggregated
state that accounts for all “fast states” in L. The power iteration in step 4 moves the entire
process ahead on a global basis, so if the slow states in L are substantially resolved by
steps 1–3, then not many global power steps are required to push the entire chain toward
its global equilibrium. This is the essence of the original Simon–Ando idea as explained
and analyzed in [151] and [125]. If l = |L| is small relative to n, then steps 1–3 are rel-
atively cheap to execute, so the process can converge rapidly (in both iteration count and
wall-clock time). Examples are given in [111].

In some applications the slow states are particularly easy to identify because they are
the ones having the larger stationary probabilities. This is a particularly nice state of affairs
for the updating problem because we have the stationary probabilities from the prior period
at our disposal, so all we have to do to construct a good L-set is to include the states with
large prior stationary probabilities and throw in the states that were added or updated along
with a few of their nearest neighbors. Clearly, this is an advantage only when there are just
a few “large” states. Fortunately, it turns out that this is a characteristic feature of Google’s
PageRank application and other scale-free networks with power law distributions.

10.7.2 Scale-Free Networks and Google’s PageRank

As discussed in [16, 17, 41, 63], the link structure of the Web constitutes a “scale-free”
network. This means that the number of nodes n(j) having j edges (possibly directed)
is proportional to j−k where k is a constant that doesn’t change as the network expands
(hence the term “scale-free”). In other words, the distribution of nodal degrees seems to
follow a “power law distribution” in the sense that

Prob[deg(N) = d] ∝ 1
dk

, for some k > 1.

(The symbol ∝ is read “is proportional to.”) For example, studies [16, 17, 41, 63] have
shown that for the Web the parameter for the indegree power-law distribution is k ≈ 2.1,
while the outdegree distribution has k ≈ 2.7.

The scale-free nature of the Web translates into a power law for PageRanks. In fact,
experiments described in [63, 136] indicate that PageRank has a power law distribution
with a parameter k ≈ 2.1. In other words, there are relatively very few pages that have a
significant PageRank while the overwhelming majority of pages have a nearly negligible
PageRank. Consequently, when PageRanks are plotted in order of decreasing magnitude,
the resulting graph has a pronounced “L” shape with an extremely sharp bend. Figure 10.1
shows the PageRanks sorted in decreasing order of magnitude for a sample web graph con-

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

UPDATING THE PAGERANK VECTOR 111

taining over 6,000 pages collected from the hollins.edu domain. It’s this characteristic

0 1000 2000 3000 4000 5000 6000 7000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
hollins

i

pi
(i

)

Figure 10.1 Power law distribution of PageRanks

“L-shape” of PageRank distributions that reveals a near optimal partition S = L ∪ L, as
described in the next section and shown experimentally in [111].

10.8 CONCLUSIONS

Reference [111] contains the results of numerous experiments that apply the iterative ag-
gregation algorithm to update the PageRank for small subsets of the Web. The experiments
lead to several conclusions.

1. The iterative aggregation technique provides a significant improvement over the
power method when a good L-set is used. In some cases, it requires less than 1/7 of
the time required by the power method.

2. The improvements become more pronounced as the size of the datasets increases.

3. The iterative aggregation approach offers room for even greater improvements. For
example, the extrapolation technique introduced in section 9.1 can be employed in
conjunction with the iterative aggregation algorithm to further accelerate the updat-
ing process.

4. Good L-sets can be constructed by:

• first putting all new states and states with altered links (perhaps along with
some nearest neighbors) into L,

• then adding other states that remain after the update in order of the magnitude
of their prior stationary probabilities up to the point where these stationary
probabilities level off (i.e., include states to the left of the bend in the PageRank
L-curve).

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

112 CHAPTER 10

Of course, there is some subjectiveness in this strategy for choosing the L-set. How-
ever, the leveling-off point is relatively easy to discern in distributions having a very
sharply defined bend in the L-curve, and only distributions that gradually die away
or do not conform to a power distribution are problematic.

5. Finally (but very important), when iterative aggregation is used as an updating tech-
nique, the fact that updates change the problem size is of little or no consequence.
Thus, the algorithm is the first to handle both types of updates, link and page updates.

ASIDE: The Google Dance

It’s believed that Google updates their PageRank vector on a monthly basis. The pro-
cess of updating is known as the Google Dance because pages dance up and down the rank-
ings during the three days of updating computation. There’s a nifty tool called the Google
Dance Tool (http://www.seochat.com/googledance/) for watching this dance.
The tool sends the query off to Google’s three primary servers. First, it goes to the main
Google server, www.google.com, then the two auxiliary servers www2.google.com and
www3.google.com, which are believed to be test servers. The tool reports the three sets of
top ten rankings side by side in a chart.

Most times of the month, the three lists show little or no variation. But it’s clear when
Google is in the process of updating, the lists vary substantially. It’s possible that during the
updating time of the month, the main server uses last month’s PageRank vector, then the test
servers show rankings that use iterates of the updated PageRank vector as it is being computed.
After a few days, when the dancing is done, all servers show the same lists again as they all
use the completely updated PageRank vector.

Many webmasters have come to fear the Google Dance. After working so hard to im-
prove their rankings (by hook or by crook or by good content), just a slight tweak by Google
in their PageRank or content score algorithms can ruin a webmaster’s traffic and business. In
fact, the famous ethical SEO guru Danny Sullivan (see the aside on page 43) created the term
Google Dance Syndrome (GDS) to describe the ailment that some webmasters suffer each
month. In May 2003, there was a huge outbreak of GDS when Google made some substantial
modifications to its algorithms, adding spam filters, quick fresh updates for popular pages, and
more mirror sites. In September 2002 with their usual playful style, Google hosted an actual
Google Dance (see photos at http://www.google.com/googledance2002/), invit-
ing attendees of the nearby Search Engine Strategies Conference to the Googleplex to dance
the night away.

ASIDE: Googleopoly

Reporters use the term Googleopoly to refer to Google’s dominance of web search. In
May 2004, Google claimed 36.8% of the market. The Yahoo conglomerate, which includes
Yahoo, AllTheWeb, AltaVista, and Overture, took second place with 26.6%, MSN followed
with 14.5%. Google has steadily added more handy features like an online calculator, dictio-
nary, and spelling correction. Their recent rollout of Gmail, their email service that allows
for 1KB of storage and search within messages and message threads, has convinced many
that Google is poised to completely take over the market. BBC technology journalist Bill
Thompson has gone as far as to claim that government intervention is needed to break up
the Googleopoly. Thompson says that Google is a public utility that must be regulated in the

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.seochat.com/googledance/
www.google.com
www3.google.com
www2.google.com
http://www.google.com/googledance2002/

UPDATING THE PAGERANK VECTOR 113

public interest. Googlites personally defend Google, citing the company’s history of mak-
ing morally good decisions and referring to the monopoly-busting cries as alarmist chatter.
Besides, they argue, Brin and Page made the company motto, “Don’t be evil,” which clearly
reveals their earnest intentions.

Librarians deal with the Googleopoly everyday. They have to beg students to use search
services other than Google. Students are often surprised when a librarian finds a piece of
information that they couldn’t find on Google. It’s as if the information doesn’t exist if it’s not
on Google. Other diversified, specialized search tools have great value that a general purpose
engine like Google can’t supply. As the librarians preach, learn to use several search engines,
general and specialized, and watch your search skills multiply. Incidentally, number 8 on the
top 10 list of signs that you’re addicted to Google is: shouting at the librarian if he takes
longer than .1 seconds to find your information. A related bit of humor appears in the form
of a cartoon that is floating around the Web. The cartoon pictures Bart Simpson learning his
lesson by writing “I will use Google before asking dumb questions” over and over again on
the chalkboard.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Eleven

The HITS Method for Ranking Webpages

If you’re a sports fan, you’ve seen those “—— is Life” t-shirts, where the blank is filled
in by a sport like football, soccer, cheerleading, fishing, etc. After reading the first ten
chapters of this book, you might be ready to declare “Google is Life.” But your mom
probably told you long ago that “there’s more to life than sports.” And there’s more to
search than Google. In fact, there’s Teoma, and Alexa, and A9, to name a few. The next
few chapters are devoted to search beyond Google. This chapter focuses specifically on
one algorithm, HITS, the algorithm that forms the basis of Teoma’s popularity ranking.

11.1 THE HITS ALGORITHM

We first introduced HITS, the other system for ranking webpages by popularity back in
Chapter 3. Since that was many pages ago, we review the major points regarding HITS.
HITS, which is an acronym for Hypertext Induced Topic Search, was invented by Jon
Kleinberg in 1998—around the same time that Brin and Page were working on their
PageRank algorithm. HITS, like PageRank, uses the Web’s hyperlink structure to create
popularity scores associated with webpages. However, HITS has some important differ-
ences. Whereas the PageRank method produces one popularity score for each page, HITS
produces two. Whereas PageRank is query-independent, HITS is query-dependent. HITS
thinks of webpages as authorities and hubs. An authority is a page with many inlinks, and
a hub is a page with many outlinks. Authorities and hubs deserve the adjective good when
the following circular statement holds: Good authorities are pointed to by good hubs and
good hubs point to good authorities. And so every page is some measure of an authority
and some measure of a hub. The authority and hub measures of HITS have been incorpo-
rated into the CLEVER project at IBM Almaden Research Center [2]. HITS is also part of
the ranking technology used by the new search engine Teoma [150].

After this recap, we are ready to translate these words about what HITS does into
mathematics. Every page i has both an authority score xi and a hub score yi. Let E be
the set of all directed edges in the web graph and let eij represent the directed edge from
node i to node j. Given that each page has somehow been assigned an initial authority
score x

(0)
i and hub score y

(0)
i , HITS successively refines these scores by computing

x
(k)
i =

∑
j:eji∈E

y
(k−1)
j and y

(k)
i =

∑
j:eij∈E

x
(k)
j for k = 1, 2, 3, . . . (11.1.1)

These equations, which were Kleinberg’s original equations, can be written in matrix

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

116 CHAPTER 11

form with the help of the adjacency matrix L of the directed web graph.

Lij =
{

1, if there exists an edge from node i to node j,
0, otherwise.

For example, the adjacency matrix L for the small graph in Figure 11.1 is

L =

⎛⎜⎜⎝
P1 P2 P3 P4

P1 0 1 1 0
P2 1 0 1 0
P3 0 1 0 1
P4 0 1 0 0

⎞⎟⎟⎠.

1 2

3 4

Figure 11.1 Graph for 4-page web

In matrix notation, the equations in (11.1.1) assume the form

x(k) = LT y(k−1) and y(k) = Lx(k),

where x(k) and y(k) are n× 1 vectors holding the approximate authority and hub scores at
each iteration.

This leads to the following iterative algorithm for computing the ultimate authority
scores x and hub scores y.

The Original HITS Algorithm

1. Initialize: y(0) = e, where e is a column vector of all ones. Other positive starting
vectors may be used. (See section 11.3.)

2. Until convergence, do

x(k) =LT y(k−1)

y(k) =Lx(k)

k = k + 1

Normalize x(k) and y(k). (See section 11.3.)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE HITS METHOD FOR RANKING WEBPAGES 117

Note that in step 2 of this algorithm, the two equations

x(k) =LT y(k−1)

y(k) =Lx(k)

can be simplified by substitution to

x(k) =LT Lx(k−1)

y(k) =LLT y(k−1).

These two new equations define the iterative power method for computing the dominant
eigenvector for the matrices LT L and LLT . This is very similar to the PageRank power
method of Chapter 4, except a different coefficient matrix is used (LT L or LLT) instead of
the Google matrix G. Since the matrix LT L determines the authority scores, it is called the
authority matrix, and LLT is known as the hub matrix. LT L and LLT are symmetric
positive semidefinite matrices. Computing the authority vector x and the hub vector y can
be viewed as finding dominant right-hand eigenvectors of LT L and LLT , respectively.

11.2 HITS IMPLEMENTATION

The implementation of HITS involves two main steps. First, a neighborhood graph N
related to the query terms is built. Second, the authority and hub scores (x and y) for
each page in N are computed, and two ranked lists of the most authoritative pages and
most “hubby” pages are presented to the user. Since the second step was described in the
previous section, we focus on the first step. All pages containing references to the query
terms are put into the neighborhood graph N . There are various ways to determine these
pages. One simple method consults the inverted file index (see Chapter 2), which might
look like:

• term 1 (aardvark) - 3, 117, 3961
...

• term 10 (aztec) - 3, 15, 19, 101, 673, 1199

• term 11 (baby) - 3, 31, 56, 94, 673, 909, 11114, 253791
...

• term m (zymurgy) - 1159223

For each term, the pages mentioning that term are stored in list form. Thus, a query on
terms 1 and 10 would pull pages 3, 15, 19, 101, 117, 673, 1199, and 3961 into N . Next,
the graph around the subset of nodes in N is expanded by adding nodes that point either
to or from nodes in N . This expansion allows some semantic associations to be made.
That is, for the query term car, with the expansion about pages containing car, some
pages containing automobile may now be added to N (presuming some pages about cars
point to pages about automobiles and vice versa). This usually resolves the problem of
synonyms. However, the set N can become very large due to the expansion process; a page
containing the query terms may possess a huge indegree or outdegree. Thus, in practice,
the maximum number of inlinking nodes and outlinking nodes to add for a particular node
in N is fixed, at say 100, in which case only the first 100 outlinking nodes of a page

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

118 CHAPTER 11

containing a query term are added to N . (The process of building the neighborhood graph
is strongly related to building level sets in information filtering, which reduces a sparse
matrix to a much smaller more query-relevant matrix [165].)

Once the set N is built, the adjacency matrix L corresponding to the nodes in N
is formed. The order of L is much smaller than the total number of pages on the Web.
Therefore, computing authority and hub scores using the dominant eigenvectors of LT L
and LLT incurs a small cost, small in comparison to computing authority and hub scores
when all documents on the Web are placed in N (as is done by the PageRank method).

An additional cost reduction exists. Only one dominant eigenvector needs to be
computed, that of either LT L or LLT , but not both. For example, the authority vector x
can be obtained by computing the dominant eigenvector of LT L, then the hub vector y
can be obtained from the equation y = Lx. A similar statement applies if the hub vector
is computed first from the eigenvector problem.

Notation for the HITS Problem

N neighborhood graph

L sparse binary adjacency matrix for N

LT L sparse authority matrix

LLT sparse hub matrix

n number of pages in N = order of L

x authority vector

y hub vector

Matlab m-file for the HITS algorithm

This m-file is a Matlab implementation of the HITS power method given in sec-
tion 11.1.

function [x,y,time,numiter]=hits(L,x0,n,epsilon);

% HITS computes the HITS authority vector x and hub vector y
% for an n-by-n adjacency matrix L with starting vector
% x0 (a row vector). Uses power method on L’*L.
%
% EXAMPLE: [x,y,time,numiter]=hits(L,x0,100,1e-8);
%
% INPUT: L = adjacency matrix (n-by-n sparse matrix)
% x0 = starting vector (row vector)
% n = size of L matrix (integer)
% epsilon = convergence tolerance (scalar, e.g. 1e-8)
%
% OUTPUT: x = HITS authority vector

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE HITS METHOD FOR RANKING WEBPAGES 119

% y = HITS hub vector
% time = time until convergence
% numiter = number of iterations until convergence
%
% The starting vector is usually set to the uniform vector,
% x0=1/n*ones(1,n).

k=0;
residual=1;
x=x0;
tic;

while (residual >= epsilon)
prevx=x;
k=k+1;
x=x*L’;
x=x*L;
x=x/sum(x);
residual=norm(x-prevx,1);

end
y=x*L’;
y=y/sum(y);
numiter=k;
time=toc;

11.3 HITS CONVERGENCE

The iterative algorithm for computing HITS vectors is actually the power method (our
friend from Chapter 4) applied to LT L and LLT . For a diagonalizable matrix Bn×n

whose distinct eigenvalues are {λ1, λ2, . . . , λk} such that |λ1| > |λ2| ≥ |λ3| · · · ≥ |λk|,
the power method takes an initial vector x(0) and iteratively computes

x(k) =Bx(k−1), x(k) ←− x(k)

m(x(k))
,

where m(x(k)) is a normalizing scalar derived from x(k). For example, it is common to
take m(x(k)) to be the (signed) component of maximal magnitude (use the first if there are
more than one), in which case m(x(k)) converges to the dominant eigenvalue λ1, and x(k)

converges to an associated normalized eigenvector [127]. If only a dominant eigenvector
is needed (and not the eigenvalue λ1), then a normalization such as m(x(k)) = ‖x(k)‖ can
be used. (If λ1 < 0, then m(x(k)) = ‖x(k)‖ can’t converge to λ1, but x(k) still converges
to a normalized eigenvector associated with λ1.) The asymptotic rate of convergence of the
power method is the rate at which (|λ2(B)|/|λ1(B)|)k → 0.

The matrices LT L and LLT are symmetric, positive semidefinite, and nonnegative,
so their distinct eigenvalues {λ1, λ2, . . . , λk} are necessarily real and nonnegative with
λ1 > λ2 > · · · > λk ≥ 0. In other words, it is not possible to have multiple eigenvalues
on the spectral circle. Consequently, the HITS specialization of the power method avoids
most problematic convergence issues—HITS with normalization always converges. And
the rate of convergence is given by the rate at which [λ2(LT L)/λ1(LT L)]k → 0. Unlike
PageRank, we cannot give a good approximation to the asymptotic rate of convergence for
HITS. (Recall that the asymptotic rate of convergence for the PageRank problem is the rate
at which αk → 0.) Many experiments show the eigengap (λ1 − λ2) for HITS problems
to be large, and researchers suggest that only 10-15 iterations are required for convergence

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

120 CHAPTER 11

[59, 60, 106, 134, 133]. However, despite the quick convergence, there can be a problem
with the uniqueness of the limiting authority and hub vectors. While λ1 > λ2, the structure
of L might allow λ1 to be a repeated root of the characteristic polynomial, in which case
the associated eigenspace is multidimensional. This means that different limiting authority
(and hub) vectors can be produced by different choices of the initial vector.

A simple example from [72] demonstrates this problem. In this example,

L =

⎛⎜⎝
0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

⎞⎟⎠ and LT L =

⎛⎜⎝
2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞⎟⎠ .

The authority matrix LT L (and also the hub matrix LLT) has two distinct eigenvalues,
λ1 = 2 and λ2 = 0, which are each repeated twice. For the initial vector x(0) = 1/4 eT ,
the power method applied to LT L (with normalization by the 1-norm) converges to the
vector x(∞) = (1/3 1/3 1/3 0)T . Yet for x(0) = (1/4 1/8 1/8 1/2)T , the
power method converges to x(∞) = (1/2 1/4 1/4 0)T . At the heart of this unique-
ness problem is the issue of reducibility.

A square matrix B is said to be reducible if there exists a permutation matrix Q such
that

QT BQ =
(

X Y
0 Z

)
, where X and Z are both square.

Otherwise, the matrix is irreducible. The reducibility of a matrix means that there’s a set
of states that it’s possible to enter, but once entered, it’s impossible to exit. On the other
hand, a matrix is irreducible if every state is reachable from every other state. The Perron-
Frobenius theorem [127] ensures that an irreducible nonnegative matrix possesses a unique
normalized positive dominant eigenvector, called the Perron vector. Consequently, it’s the
reducibility of LT L that causes the HITS algorithm to converge to nonunique solutions.
PageRank actually encounters the same uniqueness problem, but the Google founders sug-
gested a way to cheat and alter the matrix, forcing irreducibility (actually primitivity as
well) and hence guaranteeing existence and uniqueness of the ranking vector—see sec-
tion 4.5. A modification similar to the Google primitivity trick can also be applied to
HITS. That is, a modified authority matrix ξLT L + (1 − ξ)/n eeT can be created, where
0 < ξ < 1 [134]. The modified hub matrix is similar. Miller et al. [72] and Ng et
al. [134] have developed similar modifications to HITS, called Exponentiated HITS and
Randomized HITS.

One final caveat regarding the power method concerns the starting vector x(0). In
general, regardless of whether the dominant eigenvalue λ1 of the iteration matrix B is
simple or repeated, convergence to a nonzero vector depends on the initial vector x(0)

not being in the range of (B − λ1I). If x(0) is randomly generated, almost certainly this
condition will hold, so in practice this is rarely an issue.

11.4 HITS EXAMPLE

We present a very small example to demonstrate the implementation of the HITS algorithm.
First, a user presents query terms to the HITS system. There are several schemes that can be
used to determine which nodes “contain” query terms. For instance, one could take nodes
using at least one query term. Or to create a smaller sparse graph, one could take only nodes

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE HITS METHOD FOR RANKING WEBPAGES 121

using all query terms. For our example, suppose the subset of nodes containing the query
terms is {1, 6}. Next, we build the neighborhood graph about nodes 1 and 6. Suppose this
produces the following graph N , shown in Figure 11.2. From this neighborhood graph N ,

2 1 6

3

5

10

Figure 11.2 Neighborhood graph N for pages 1 and 6

the adjacency matrix L is formed.

L =

⎛⎜⎜⎜⎜⎜⎜⎝

1 2 3 5 6 10
1 0 0 1 0 1 0
2 1 0 0 0 0 0
3 0 0 0 0 1 0
5 0 0 0 0 0 0
6 0 0 1 1 0 0
10 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠.

The respective authority and hub matrices are:

LT L =

⎛⎜⎜⎜⎜⎜⎜⎝

1 2 3 5 6 10
1 1 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 2 1 1 0
5 0 0 1 1 0 0
6 0 0 1 0 3 0
10 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ and LLT =

⎛⎜⎜⎜⎜⎜⎜⎝

1 2 3 5 6 10
1 2 0 1 0 1 1
2 0 1 0 0 0 0
3 1 0 1 0 0 1
5 0 0 0 0 0 0
6 1 0 0 0 2 0
10 1 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠.

The normalized principal eigenvectors with the authority scores x and hub scores y are:

xT = (0 0 .3660 .1340 .5 0) and

yT = (.3660 0 .2113 0 .2113 .2113) .

This example shows that there are two types of ties that can occur: ties at 0 and ties at
positive values. Ties at 0 can be avoided with the primitivity modification suggested at
the end of section 11.3. For the much larger matrices that occur in practice, the existence
of identical positive values in a dominant eigenvector is unlikely. Nevertheless, ties may

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

122 CHAPTER 11

occur and can be broken by any tie-breaking strategy. Using a “first-come, first-served”
tie-breaking strategy, the authority and hub scores are sorted in decreasing order and the
page numbers are presented.

Authority ranking = (6 3 5 1 2 10) ,

Hub ranking = (1 3 6 10 2 5) .

This means that page 6 is the most authoritative page for the query while page 1 is the best
hub for this query.

For comparison purposes, we now recompute the authority and hub vectors for the
modified HITS method, using the irreducible matrix ξLT L + (1 − ξ)/n eeT as the au-
thority matrix and ξLLT + (1 − ξ)/n eeT as the hub matrix. With this modification, the
matrices are irreducible, and by the Perron-Frobenius theorem, they each possess a unique,
normalized, positive dominant eigenvector (called the Perron vector). For the case when
ξ = .95,

xT = (0.0032 0.0023 0.3634 0.1351 0.4936 0.0023) and

yT = (0.3628 0.0032 0.2106 0.0023 0.2106 0.2106) .

Notice that, for this example, this irreducible modification does not change the authority
and hub rankings. Yet these modified scores are more appealing because they are unique
and positive (and thus, avoid ties at 0), and the power method is guaranteed to converge to
them in a finite number of steps.

11.5 STRENGTHS AND WEAKNESSES OF HITS

One advantage of the HITS algorithm is its dual rankings. HITS presents two ranked lists
to the user: one with the most authoritative documents related to the query and the other
with the most “hubby” documents. As a user, it’s nice to have this option. Sometimes you
want authoritative pages because you are searching deeply on a research query. Other times
you want hub (or portal) pages because you’re doing a broad search. Another advantage
of HITS is the size of the problem. HITS casts the ranking problem as a small problem,
finding the dominant eigenvectors of small matrices. The size of these matrices is very
small relative to the total number of pages on the Web.

However, there are some clear disadvantages to the HITS ranking system. Most
troublesome is HITS’s query-dependence. At query time, a neighborhood graph must be
built and at least one matrix eigenvector problem solved. And this must be done for each
query. Of course, it’s easy to make HITS query-independent. Simply, drop the neighbor-
hood graph step and compute the authority and hub vectors, x and y, using the adjacency
matrix of the entire web graph. For more on the query-independent version of HITS, see
section 11.7.

HITS’s susceptibility to spamming creates a second strong disadvantage. By adding
links to and from your webpage, you can slightly influence the authority and hub scores
of your page. A slight change in these scores might be enough to move your webpage a
few notches up the ranked lists returned to users. We’ve already mentioned how important
it is to get into the first few pages of a search engine’s results since users generally view
only the top 20 pages returned in a ranked list. Of course, adding outlinks from your
page is much easier than adding inlinks. So influencing your hub score is not difficult.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE HITS METHOD FOR RANKING WEBPAGES 123

Yet since hub scores and authority scores share a mutual dependence and are computed
interdependently, an authority score will increase as a hub score increases. Further, since
the neighborhood graph is small in comparison to the entire Web, local changes to the link
structure appear more drastic. Fortunately, Monika Henzinger and Krishna Bharat have
proposed a modification to HITS that mitigates the problem of link spamming by using
something called an L1 normalization step [26].

A final disadvantage of HITS is the problem of topic drift. In building the neigh-
borhood graph N for a query it is possible that a very authoritative yet off-topic page be
linked to a page containing the query terms. This very authoritative page can carry so much
weight that it and its neighboring documents dominate the relevant ranked list returned to
the user, skewing the results toward off-topic documents. Henzinger and Bharat suggest a
solution to the problem of topic drift, weighting the authority and hub scores of the nodes
in N by a measure of relevancy to the query [26]. In fact, to measure relevance of a node
in N to the query, they use the same cosine similarity measure that is often used by vector
space methods such as LSI [24, 64]. This solution to the topic drift problem is similar
to the intelligent surfer modification to the basic PageRank model (see section 5.2). The
binary elements in L (rather than H for the PageRank model) are given weights, which in
effect improves the IQ of the HITS system.

11.6 HITS’S RELATIONSHIP TO BIBLIOMETRICS

The HITS algorithm has strong connections to bibliometrics research. Bibliometrics is the
study of written documents and their citation structure. Such research uses the citation
structure of a body of documents to produce numerical measures of the importance and
impact of papers. Chris Ding and his colleagues at the Lawrence Berkeley National Labo-
ratory have noted the underlying connection between HITS and two common bibliometrics
concepts, co-citation and co-reference [59, 60].

In bibliometrics, co-citation occurs when two documents are both cited by the same
third document. Co-reference occurs when two documents both refer to the same third
document. On the Web, co-citation occurs when two nodes share a common inlinking
node, while co-reference means two nodes share a common outlinking node. Ding et al.
have shown that the authority matrix LT L of HITS has a direct relationship to the concept
of co-citation, while the hub matrix LLT is related to co-reference [59, 60]. Suppose the
small hyperlink graph of Figure 11.1 is studied again. The adjacency matrix is

L =

⎛⎜⎜⎝
P1 P2 P3 P4

P1 0 1 1 0
P2 1 0 1 0
P3 0 1 0 1
P4 0 1 0 0

⎞⎟⎟⎠.

So the authority and hub matrices are:

LT L=

⎛⎜⎝
1 0 1 0
0 3 1 1
1 1 2 0
0 1 0 1

⎞⎟⎠ = Din + Ccit, and

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

124 CHAPTER 11

LLT =

⎛⎜⎝
2 1 1 1
1 2 0 0
1 0 2 1
1 0 1 1

⎞⎟⎠ = Dout + Cref .

In general, Ding et al. [59, 60] show that LT L = Din + Ccit, where Din is a diagonal
matrix with the indegree of each node along the diagonal and Ccit is the co-citation matrix.
For example, the (3, 3)-element of LT L means that node 3 has an indegree of 2. The (1, 3)-
element of LT L means that nodes 1 and 3 share only one common inlinking node, node
2, as is apparent from Figure 11.1. The (4, 3)-element of LT L implies that nodes 3 and 4
do not share a common inlinking node, again, as is apparent from Figure 11.1. Similarly,
the hub matrix is actually Dout + Cref , where Dout is the diagonal matrix of outdegrees
and Cref is the co-reference matrix. The (1, 2)-element of LLT means that nodes 1 and 2
share a common outlinking node, node 3. The (4, 2)-element implies that nodes 4 and 2 do
not share a common outlinking node. Ding et al. use these relationships between authority
and co-citation and hubs and co-reference to claim that simple inlink ranking provides a
decent approximation to the HITS authority score and simple outlink ranking provides a
decent approximation to hub ranking [59, 60, 61].

11.7 QUERY-INDEPENDENT HITS

HITS can be forced to be query-independent by computing a global authority and a global
hub vector, which consequently slightly reduces the influence of link spamming. An effi-
cient, foolproof way to do this is with the algorithm below, which is guaranteed to converge
to the unique positive hub and authority vectors, regardless of the reducibility of the web
graph (because the modified HITS matrices are used). We recommend automatically us-
ing the modified HITS matrices because the web graph associated with an engine’s entire
index will almost certainly be reducible, and therefore cause convergence and uniqueness
problems for HITS.

A Query-Independent Modified HITS Algorithm

1. Initialize: x(0) = e/n, where e is a column vector of all ones. (Other positive
normalized starting vectors may be used.)

2. Until convergence, do

x(k) = ξLT Lx(k−1) + (1 − ξ)/n e

x(k) =x(k)/‖x(k)‖1

y(k) = ξLLT y(k−1) + (1 − ξ)/n e

y(k) =y(k)/‖y(k)‖1

k = k + 1

3. Set the authority vector x = x(k) and the hub vector y = y(k).

When the query-independent HITS algorithm is used, L is the adjacency matrix for
the search engine’s entire web graph, because the neighborhood graph N is no longer
formed. If Teoma used query-independent HITS, L would be about 1.5 billion in size.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE HITS METHOD FOR RANKING WEBPAGES 125

It’s worthwhile to compare the query-independent HITS algorithm above with the
other query-independent ranking method, PageRank. The work in each step boils down
to the matrix-vector multiplications: LT Lx(k−1) for HITS, LT D−1x(k−1) for random
surfer PageRank, and HT x(k−1) for intelligent surfer PageRank. The approximate work
required by one iteration of each method is given in Table 11.1. Here nnz(L) is the number
of nonzeros in L and n is the size of the matrix.

Table 11.1 Work per iteration required by the query-independent ranking methods

Method Multiplications Additions

HITS 0 2nnz(L)
Modified HITS 0 4nnz(L) + 2n
Random surfer PageRank n nnz(L) + n
Intelligent Surfer PageRank nnz(H) nnz(H) + n

For query-independent HITS, nnz(L) = nnz(H), but for query-dependent HITS
nnz(L) � nnz(H), where H is PageRank’s raw hyperlink matrix. Query-independent
HITS requires about twice (and as much as four times) as much work per iteration as
PageRank. (There are other ways to implement modified HITS so that only one power
method is required, not two. For example, form the modified authority matrix M = L̃T L̃,
where L̃ = L + ξeeT . However, these methods do not come with the cute mathematical
properties of our proposed modification. See theorem 11.7.1.) Now to make the compari-
son complete, let’s discuss the number of iterations required by the four methods.

There’s one very nice consequence of the modification to HITS that we’ve suggested
in this chapter. Unlike other modifications [72, 134], ours allows us to say a great deal
about the spectrum of our modified HITS matrix. Adapting a statement from [82] to our
particular situation gives the following theorem for the modified authority matrix. Similar
statements hold for the hub matrix.

Theorem 11.7.1. Let M = ξLT L + (1 − ξ)/n eeT be the modified authority matrix.
Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of LT L and γ1 ≥ γ2 ≥ · · · ≥ γn be the
eigenvalues of M. Then, the following interlacing property holds,

γ1 ≥ αλ1 ≥ γ2 ≥ αλ2 ≥ · · · ≥ γn ≥ αλn.

And further, there exist scalars βi ≥ 0,
∑n

i=1 βi = 1 such that γi = ξλi + (1 − ξ)βi.

With this theorem we can now compare the asymptotic rate of convergence of the
four query-independent methods. See Table 11.2. The bounds for γ2/γ1 are derived by
examining extreme behavior. In the best case scenario, the modification to LT L increases
only λ2 by the maximal amount to λ2 + 1 − ξ (i.e., β2 = 1, βi = 0 for all i �= 2). In
the worst case scenario, only λ1 increases to λ1 + 1 − ξ (i.e., β1 = 1, βi = 0 for all
i �= 1). In practice, many βi’s change at once (but

∑
i βi = 1), making the effect less

pronounced than the two extreme cases. Regardless of the exact values for the βi’s, for
modified HITS, ξ is usually chosen to be close to 1, so therefore, γ2/γ1 ≈ λ2/λ1. Thus,
the asymptotic rates of convergence of HITS and modified HITS are nearly the same. Many
HITS experiments have shown λ2/λ1 < .5 [59, 60, 106, 133, 134], which is much less than
α = .85 (the typical PageRank factor), so we can conclude that HITS and modified HITS

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

126 CHAPTER 11

Table 11.2 Asymptotic rate of convergence of the query-independent ranking methods

General

HITS λ2
λ1

Modified HITS ξλ2
ξλ1+1−ξ ≤ γ2

γ1
≤ λ2

λ1
+ (1−ξ)

ξλ1

Random surfer PageRank α
Intelligent Surfer PageRank α

require many fewer iterations than PageRank.

So the query-independent HITS takes about twice as long per iteration as query-
independent PageRank, but takes less than a quarter the number of iterations to reach the
same tolerance level. Query-independent HITS (even with our theoretically pretty but
practically slow version of modified HITS, which requires two power methods) is faster
than the query-independent PageRank. And further, you get two HITS ranking vectors for
the cost of one PageRank vector.

11.8 ACCELERATING HITS

Kleinberg used the power method in his original HITS paper [106] to compute the hub
and authority vectors, which are the dominant right-hand eigenvectors of LT L and LLT ,
respectively. Computing dominant eigenvectors is an old problem, for which there are
several available numerical methods, especially for sparse symmetric systems [18, 57, 137,
145, 162].

The problem of computing the original, query-dependent HITS vectors is different
from that of the PageRank vector because the sizes of the matrices involved are so differ-
ent. The HITS matrices are small, just the size of the neighborhood graph, whereas the
PageRank matrix is huge, the size of the search engine’s entire index. PageRank methods
are limited to memory-efficient methods that are matrix-free and don’t require the storage
of extra intermediate information, which explains the prevalence of the power method in
the PageRank literature. On the other hand, faster, more memory-intensive methods can be
used on the much smaller HITS problem. We don’t know what method a HITS-based com-
mercial engine like Teoma uses, but we expect it’d be a faster iterative method like Lanczos
[57, 82], for instance, not the slow power method. The small size of the matrices involved
in the HITS problem is also one reason why no research has been done on accelerating the
computation of the HITS vectors—it’s already fast enough. On the other hand, because
of the enormous size of the PageRank matrix, we spent an entire chapter (Chapter 9) on
methods for accelerating the computation of PageRank. Of course, if query-independent
HITS is done, then a large-scale implementation of HITS must handle the same issues that
PageRank does. And acceleration techniques similar to those of PageRank, for instance
the extrapolation techniques of Chapter 9, can be adapted to the HITS problem.

11.9 HITS SENSITIVITY

Suppose L, the adjacency matrix for the HITS neighborhood graph, changes, creating a
new matrix L̃. The question we pose in this section is: how sensitive are the authority and
hub vectors to these changes in the structure of the web graph? Regardless of the nature of

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE HITS METHOD FOR RANKING WEBPAGES 127

the changes, the authority and hub matrices, L̃T L̃ and L̃L̃T , are still symmetric, positive
definite matrices, which makes the perturbation analysis easier.

We adapt a theorem from Pete Stewart’s book [152, p. 51] for our specific situation.

Theorem 11.9.1. Let E be a perturbation matrix, so that L̃T L̃ = LT L + E. When λ1 is
simple,

sin � (x, x̃) ≤ ‖E‖2

λ1 − λ2
.

It is more appropriate to examine the angle between the old authority vector x and
the new one x̃ (� (x, x̃)) than the difference in length (‖x − x̃‖) for two reasons: (1) the
authority vectors are normalized in the HITS procedure, and (2) the ranking of elements
is important. Theorem 11.9.1 tells us that the separation between the two dominant eigen-
values governs the sensitivity of the HITS vectors. If the eigengap δ = λ1 − λ2 is large,
then the authority vector is insensitive to small changes in the web graph. On the other
hand, if the eigengap is small, the vector may be very sensitive. A similar theorem and
interpretation exist for the hub vector.

This theorem only applies when λ1 is a simple root, which is guaranteed by a mod-
ified HITS procedure (where an irreducible ξLT L + (1 − ξ)/neeT , or another modified
matrix [72, 134], replaces LT L as the authority matrix). If modified HITS is not done
and λ1 is a repeated root, then we can examine the sensitivity of the eigenspace associated
with λ1. A result from [153] gives the same conclusion: the sensitivity of the invariant
subspace associated with the repeated root λ1 of the symmetric matrix depends primarily
on the eigengap.

Let’s consider an extreme (but not uncommon) example that makes it clear why the
HITS vectors can be sensitive when the eigengap is small. Suppose the neighborhood
graph contains two separate connected components, so L is completely uncoupled. That
is, L can be permuted to have the form(

X 0
0 Z

)
.

First, we consider the case when the original unmodified HITS procedure is used. The
spectrum of the authority matrix is related to the spectrums of the connected components;
σ(LT L) = σ(XT X)∪σ(ZT Z). The component containing the largest eigenvalue is called
the largest connected component. The dominant eigenvector of LT L (thus, the authority
vector) has nonzero entries only in the positions corresponding to nodes in the largest
connected component because LT L has an eigendecomposition of the form

LT L =
(

U1 0
0 U2

)(
Λ1 0
0 Λ2

)(
UT

1 0
0 UT

2

)
.

That is, the authority vector has the form x = (x1 0)T . The addition of just one link
that connects the two components can make the authority vector positive, which can sig-
nificantly change the authority ranking.

A different perturbation, one that maintains the two separate connected components,
can more drastically change the authority vector and its ranking. Assume the largest and

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

128 CHAPTER 11

second largest eigenvalues are in different components, and are not well separated. Sup-
pose enough links are added to the component with the second largest eigenvalue, com-
ponent 2, so that this component and its eigenvalue overtake the largest eigenvalue of the
other component, component 1. The title of largest component is transferred from compo-
nent 1 to component 2 and the authority vector now has nonzero entries only for nodes in
component 2, rather than component 1.

In this example we began with a completely uncoupled matrix. However, even when
the modified HITS procedure is used, so that LT L is irreducible, the authority matrix may
be nearly uncoupled. Although somewhat disguised by the irreducibility modification,
sensitivity to small perturbations can exist for the same reasons as in the completely un-
coupled case. While the modification causes the zero entries in the authority vector to be
positive, they are close to 0. See the effect of the modification on the numerical example
of section 11.4. If a perturbation causes the two components to swap the title of largest
component, then the large entries in the authority vector are swapped from one component
to the other. (Ng et al. [134] propose a method called Subspace HITS that reduces the
dominance of the largest connected component in the HITS rankings and tries to spread
the scores across several connected components.)

Since we know a good bit about the spectrum of M, the modified authority matrix,
we might try to say something more specific about how the modification affects the sen-
sitivity of the system. The eigengap of the unmodified method is given by δ = λ1 − λ2,
whereas the modified method has an eigengap denoted by ρ = γ1 − γ2. Using Theorem
11.7.1, we have

ξδ − (1 − ξ) ≤ ρ ≤ ξδ + (1 − ξ).

As ξ → 0, the fudge factor matrix 1/n eeT takes over, creating the uninteresting case
with an eigengap of 1 and stable uniform authority and hub vectors. The more interesting
case occurs when ξ → 1. As expected, as ξ → 1, the eigengap of the modified method
ρ approaches the original eigengap δ. We can conclude that the modified HITS system
is about as sensitive as the original HITS system. In summary, modified HITS does not
significantly affect the rate of convergence or the sensitivity of the system; its only effect is
on the existence and uniqueness of the HITS vectors. That is, modified HITS is guaranteed
to converge to unique positive HITS vectors.

ASIDE: Ranking by Eigenvectors

PageRank

and HITS both use the dominant eigenvector as a ranking tool. But this is not a new
idea, the idea, although much less publicized, has been around for decades. In 1939, Mau-
rice Kendall and Babington Smith wrote one of the first ranking papers to use linear algebra
[105]. In order to create a ranking from voter preferences, Kendall and Smith built a pref-
erence matrix A, where aij is the number of voters who prefer player i to player j. Here
a player could be a candidate, team, participant, webpage, etc. The normalized row sums
r of the preference matrix are a measure of the “winning percentage” of player i. That is,
r = Ae/‖Ae‖. (Kendall and Smith also created a coefficient of agreement among voter
preferences that can be used to locate voters who are inconsistent, and thus should have their

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE HITS METHOD FOR RANKING WEBPAGES 129

scores tossed. This coefficient of agreement can also be used to determine whether the data
warrant a global ranking—it may be that all voters appear inconsistent, which implies that
voters have been challenged with the impossible task of ranking indistinguishable objects.)

T. H. Wei extended the row sum ranking method to include powers of the preference
matrix A. In his 1952 Cambridge University thesis [161], Wei suggested that the ranking
vector r(k) = Ake/‖Ake‖, for some integer k. For k = 2, the ranking vector r(2) gives
some information about the strength of schedule. Using the sports ranking problem, r

(2)
i

is the winning percentage of teams defeated by team i. For k = 3, r
(3)
i is the winning

percentage of teams defeated by teams defeated by team i. And so on. More recently, in
his 1993 paper [103], James P. Keener showed that many of the early ranking methods fall
under the Perron-Frobenius theorem. In fact, Wei’s powering idea can be extended so that
r = limk→∞ Ake/‖Ake‖, which can be arrived at by using the power method applied to
A with the starting vector e. The power method converges to the dominant eigenvector of A
provided A is nonnegative and irreducible.

Much of the art of the ranking problem is in how A is defined. For the problem of
ranking U.S. collegiate football teams, Keener provides the following possible definitions:

• aij = 1, if team i beats team j, 0, otherwise,

• aij = the proportion of times i beats j,

• aij = the proportion of football ranking polls that have i outranking j,

• aij = sij/(sij + sji), where sij is the number of points i scored in encounter with j.

Keener also extends this to other more complicated scoring schemes, but the common connec-
tion among all is the Perron-Frobenius theorem and the computation of a dominant eigenvec-
tor.

Using the dominant eigenvector for ranking problems has many applications besides
webpage scoring and the ranking of sports teams. For example, other applications include
tournament seeding (e.g., for tennis or golf) and handicapping assignments for betting pur-
poses. The ranking problem has recently been explored for other networks, such as email
networks among coworkers and networks of connection and communication among suspected
terrorists. The dominant eigenvector also plays a prominent role in market share statistics and
models of population dynamics.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Twelve

Other Link Methods for Ranking Webpages

The previous chapters dealt with the major ranking algorithms of PageRank and HITS in
depth, but there are other minor players in the ranking game. This chapter provides a brief
introduction to the ranking alternatives.

12.1 SALSA

In 1998, one could rank the popularity of webpages using either the PageRank or the
HITS algorithm. In 2000, SALSA [114] sashayed into the game. SALSA, an acronym
for Stochastic Approach to Link Structure Analysis, was developed by Ronny Lempel
and Shlomo Moran and incorporated ideas from both HITS and PageRank to create yet
another ranking of webpages. Like HITS, SALSA creates both hub and authority scores
for webpages, and like PageRank, they are derived from Markov chains. In this section,
we teach you the steps of SALSA with an example.

12.1.1 SALSA Example

In a manner similar to the original, query-dependent HITS, the neighborhood graph N
associated with a particular query is formed. We use the same neighborhood graph N
from the previous chapter, which is reproduced below in Figure 12.1.

2 1 6

3

5

10

Figure 12.1 Neighborhood graph N for pages 1 and 6

SALSA differs from HITS in the next step. Rather than forming an adjacency matrix
L for the neighborhood graph N , a bipartite undirected graph, denoted G, is built. G is

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

132 CHAPTER 12

defined by three sets: Vh, Va, E, where Vh is the set of hub nodes (all nodes in N with
outdegree > 0), Va is the set of authority nodes (all nodes in N with indegree > 0), and E
is the set of directed edges in N . Note that a node in N may be in both Vh and Va. For the
above neighborhood graph,

Vh = {1, 2, 3, 6, 10},
Va = {1, 3, 5, 6}.

The bipartite undirected graph G, shown in Figure 12.2, has a “hub side” and an “authority
side”. Nodes in Vh are listed on the hub side and nodes in Va are on the authority side. Ev-
ery directed edge in E is represented by an undirected edge in G. Next, two Markov chains

1

2

1

6

10

3

3

5

6

side
authority

side
hub

Figure 12.2 G: bipartite graph for SALSA

are formed from G, a hub Markov chain with transition probability matrix H, and an au-
thority Markov chain with matrix A. Notice that in this chapter the H matrix is SALSA’s
hub matrix, not to be confused with PageRank’s raw hyperlink matrix from several chap-
ters prior. Reference [114] contains a formula for computing the elements of H and A,
but we feel a more instructive approach to building H and A clearly reveals SALSA’s con-
nection to both HITS and PageRank. Recall that HITS uses the adjacency matrix L of N
to compute authority and hub scores using the unweighted matrix L. On the other hand,
PageRank computes a measure analogous to an authority score using a row-normalized
weighted matrix G. SALSA uses both row and column weighting to compute its hub and
authority scores. Let Lr be L with each nonzero row divided by its row sum and Lc be L
with each nonzero column divided by its column sum. For our example,

L =

⎛⎜⎜⎜⎝
1 2 3 5 6 10

1 0 0 1 0 1 0
2 1 0 0 0 0 0
3 0 0 0 0 1 0
5 0 0 0 0 0 0
6 0 0 1 1 0 0
10 0 0 0 0 1 0

⎞⎟⎟⎟⎠,

Lr =

⎛⎜⎜⎜⎝
1 2 3 5 6 10

1 0 0 1
2

0 1
2

0
2 1 0 0 0 0 0
3 0 0 0 0 1 0
5 0 0 0 0 0 0
6 0 0 1

2
1
2

0 0
10 0 0 0 0 1 0

⎞⎟⎟⎟⎠, and Lc =

⎛⎜⎜⎜⎜⎝

1 2 3 5 6 10

1 0 0 1
2

0 1
3

0
2 1 0 0 0 0 0
3 0 0 0 0 1

3
0

5 0 0 0 0 0 0
6 0 0 1

2
1 0 0

10 0 0 0 0 1
3

0

⎞⎟⎟⎟⎟⎠.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

OTHER LINK METHODS FOR RANKING WEBPAGES 133

Then H, SALSA’s hub matrix, consists of the nonzero rows and columns of LrLT
c and A

is the nonzero rows and columns of LT
c Lr.

LrL
T
c =

⎛⎜⎜⎜⎜⎝

1 2 3 5 6 10

1 5
12

0 2
12

0 3
12

2
12

2 0 1 0 0 0 0
3 1

3
0 1

3
0 0 1

3
5 0 0 0 0 0 0
6 1

4
0 0 0 3

4
0

10 1
3

0 1
3

0 0 1
3

⎞⎟⎟⎟⎟⎠, and LT
c Lr =

⎛⎜⎜⎜⎜⎝

1 2 3 5 6 10

1 1 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 1

2
1
4

1
4

0

5 0 0 1
2

1
2

0 0

6 0 0 1
6

0 5
6

0
10 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎠.

As a result, the SALSA hub and authority matrices are

H =

⎛⎜⎜⎜⎜⎝

1 2 3 6 10
1 5

12 0 2
12

3
12

2
12

2 0 1 0 0 0
3 1

3 0 1
3 0 1

3
6 1

4 0 0 3
4 0

10 1
3

1
3 0 0 1

3

⎞⎟⎟⎟⎟⎠ and A =

⎛⎜⎜⎝
1 3 5 6

1 1 0 0 0
3 0 1

2
1
4

1
4

5 0 1
2

1
2 0

6 0 1
6 0 5

6

⎞⎟⎟⎠.

If the bipartite graph G is connected, then H and A are both irreducible Markov
chains and πT

h , the stationary vector of H, gives the hub scores for the query with neigh-
borhood graph N , and πT

a gives the authority scores. If G is not connected, then H and A
contain multiple irreducible components. In this case, the global hub and authority scores
must be pasted together from the stationary vectors for each individual irreducible compo-
nent. (Reference [114] contains the justification for the two if-then statements above.)

Since an undirected graph G is connected if every node is reachable from every other
node, our graph G from Figure 12.2 is not connected because, for instance, node 2 is not
reachable from every other node. For bigger graphs, where connectedness cannot be deter-
mined by inspection, graph traversal algorithms exist that identify both the connectedness
and the connected components of the graph [54]. Because G is not connected, H and A
contain multiple connected components. H contains two connected components, C = {2}
and D = {1, 3, 6, 10}, while A’s connected components are E = {1} and F = {3, 5, 6}.
Also clear from the structure of H and A is the periodicity of the Markov chains. All irre-
ducible components of H and A contain self-loops, implying that the chains are aperiodic.
The stationary vectors for the two irreducible components of H are

πT
h (C) =

(2
1
)
, πT

h (D) =
(1 3 6 10

1
3

1
6

1
3

1
6

)
,

while the stationary vectors for the two irreducible components of A are

πT
a (E) =

(1
1
)
, πT

a (F) =
(3 5 6

1
3

1
6

1
2

)
.

Proposition 6 of the original SALSA paper [114] contains the method for pasting the hub
and authority scores for the individual components into global popularity vectors. The
suggestion there is simple and intuitive. Since the hub component C only contains 1 of the
5 total hub nodes, its stationary hub vector should be weighted by 1/5, while D, containing
4 of the 5 hub nodes, has its stationary vector weighted by 4/5. Thus the global hub vector

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

134 CHAPTER 12

is

πT
h =

(1 2 3 6 10
4
5 · 1

3
1
5 · 1 4

5 · 1
6

4
5 · 1

3
4
5 · 1

6

)
=
(1 2 3 6 10
.2667 .2 .1333 .2667 .1333

)
.

With similar weighting for authority nodes, the global authority vector can be constructed
from the individual authority vectors as

πT
a =

(1 3 5 6
1
4 · 1 3

4 · 1
3

3
4 · 1

6
3
4 · 1

2

)
=
(1 3 5 6
.25 .25 .125 .375

)
.

Compare the SALSA hub and authority vectors with those of HITS in section 11.4. They
are quite different. They’re not even the same length and they give significantly different
rankings for this example. Ranking the pages from most important to least important gives

SALSA hub ranking = (1/6 2 3/10)
HITS hub ranking = (1 3/6/10 2 5)

SALSA authority ranking = (6 1/3 5)
HITS authority ranking = (6 3 5 1 2/10)

where the / symbol indicates a tie.

Our little example is instructive for two additional reasons. First, it shows one way
to paste the individual component scores together to create global scores. There are, of
course, other weighting schemes for the pasting process. Second, the presence of mul-
tiple connected components (which occurs when G is not connected, and is common-
place in practice) is computationally welcome because the Markov chains to be solved
are much smaller. Contrast this with PageRank’s artificial correction for a disconnected
web graph, whereby connectedness is forced by adding direct links between all webpages.
PageRank researchers Konstantin Avrachenkov and Nelly Litvak have suggested that, sim-
ilar to SALSA, PageRank be computed on smaller connected components, then pasted
together to get the global PageRank vector [11]. Of course, in order to implement their
suggestion, the multiple connected components of the entire web graph must be found
first. But that’s not so hard—there’s Tarjan’s O(V + E) linear time algorithm [54], where
V and E are the number of vertices and edges in the graph. Unfortunately, it appears that
the connected component decomposition for the PageRank problem can have only limited
potential because researchers have discovered a bow-tie structure to the Web [41], which
shows that the largest connected component of the Web is over a quarter of the size of the
entire Web, meaning, at best, the decomposition can reduce the size of the problem by a
factor of 4.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

OTHER LINK METHODS FOR RANKING WEBPAGES 135

12.1.2 Strengths and Weaknesses of SALSA

Because SALSA combines some of the best features of HITS and PageRank, it has many
strengths. For example, unlike HITS, SALSA is not victimized by the topic drift prob-
lem [26, 114], whereby off-topic but important pages sneak into the neighborhood set and
dominate the scores. Recall that another problem with HITS was its susceptibility to spam-
ming due to the interdependence of hub and authority scores. SALSA is less susceptible to
spamming since the coupling between hub and authority scores is much less strict. How-
ever, both HITS and SALSA are a little easier to spam than PageRank. SALSA, like HITS,
also has the benefit of dual rankings, something that PageRank does not supply. Lastly,
the presence of multiple connected components in SALSA’s bipartite graph G, a common
occurrence in practice, is a computational blessing.

However, one serious drawback to the widespread use of the SALSA algorithm is
its query-dependence. At query time, the neighborhood graph N for the query must be
formed and the stationary vectors for two Markov chains must be computed. Another
problematic issue for SALSA is convergence. The convergence of SALSA is similar to
that of HITS. Because both HITS and SALSA in their original unmodified versions do
not force irreducibility onto the graph, the resulting vectors produced by their algorithms
may not be unique (and may depend on the starting vector) if the neighborhood graph is
reducible [72]. Nevertheless, a simple solution is to adopt the PageRank fix and force
irreducibility by altering the graph in some small way.

12.2 HYBRID RANKING METHODS

Due to the effectiveness of ranking algorithms in aiding web information retrieval, re-
searchers have proposed many new algorithms for ranking webpages. Most are modifica-
tions to and combinations of the original three methods of PageRank, HITS, and SALSA
[26, 36, 53, 60, 71, 88, 120, 134, 142]. In the next section, we discuss one of the most
original new ranking algorithms, TrafficRank.

Some recent work attempts to merge the results from several independent ranking
algorithms. This seems promising because experiments show that often the top-k lists
of the ranking scores created by different algorithms are very different. This surprising
lack of overlap is exciting—it suggests that in the future, perhaps medleys of information
retrieval algorithms (realized through meta-search engines) will provide the most relevant
and precise documents for user queries [120]. Cynthia Dwork, now of Microsoft, is one of
the leaders of the field of rank aggregation, the field that studies how to best combine the
top-k lists from several search engines into one unified ranked list.

ASIDE: Rank Aggregation and Voting Methods

The rank aggregation done by meta-search engines is very similar to the aggregation of
voter preferences. In the case of web search, the political candidates are replaced by webpages
and each ranked list of pages produced by a particular algorithm takes the place of the ranked
list of candidates that a voter submits for an election. Given a stack of rank ordered lists, the
goal in an election is usually to find one overall winner (and possibly a few runner-ups). For

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

136 CHAPTER 12

meta-search, the goal is to find not just the overall winner but the entire combined ranking, i.e.,
one ranking of all the candidates. Because of its influence on government, voting research,
also known as social choice theory, has a long history. In 1785, Marie Jean Antoine Nico-
las Caritat, the Marquis de Condorcet, a French philosopher, mathematician, economist, and
social scientist, wrote an Essay on the Application of Analysis to the Probability of Majority
Decisions, in which he revealed the Condorcet voting paradox. In a voting system that studies
pairwise comparisons, the Condorcet winner, if it exists, is the candidate that beats or ties all
others in the pairwise comparisons of candidates. Consider an example. Three voters rank
their preferences for three candidates A, B, and C as follows: voter 1 ranks the candidates A B
C, voter 2, B C A, and voter 3, C A B. The majority of the voters have A beating B, B beating
C, and C beating A, which creates a cycle, and thus, a Condorcet paradox because the majority
rule is in conflict with itself. Many methods have been proposed for resolving the problem of
cycles in order to declare a Condorcet winner.

Related to the voting paradox is Kenneth Arrow’s Impossibility Theorem. Arrow, an
American economist, won the 1972 Nobel Prize in Economics for his work on social choice
theory. His 1951 doctoral thesis, Social Choice and Individual Values, described five prop-
erties that every fair voting system should have. He then proved that no voting system could
satisfy all five properties. Scholars debate Arrow’s conditions, arguing over which are truly
necessary, which are less important, etc. Nevertheless, his theorem shows that in many situa-
tions there is no fair, logical way of aggregating individual preferences to accurately determine
the collective preferences of the voters. Many voting systems now exist for a variety of voting
situations, and voting systems are judged by various criteria, such as resistance to manipu-
lation, Condorcet efficiency (the percentage of elections in which the Condorcet winner is
selected), neutrality, and consistency.

Understanding the problems with determining a fair voting system that declares one
overall winner gives an appreciation for how much harder it is to determine a complete ranking
of all candidates, and thus, how much harder the rank aggregation problem is for web search.

12.3 RANKINGS BASED ON TRAFFIC FLOW

The Internet is often called the Information SuperHighway. That image helps describe
our final ranking method, TrafficRank. Rather than thinking about a lone surfer bouncing
around the Web (as Google does), imagine millions, or billions, as actually happens in real
life. Now the Web’s links become highways between pages, which means there’s conges-
tion and traffic. While these things are unpleasant on the auto highway, they’re useful for
ranking webpages on the information superhighway. In the auto analogy, if we knew the
total number of cars on the highways leading into the North Carolina Outer Banks, we’d
have a measure of how popular the Outer Banks are as a destination. (If you’ve ever waited
in the backup on Route 12 heading into Nags Head on a Saturday during the summer, you’d
agree this gives a pretty good approximation to destination popularity.) Actually, the total
number of cars entering the Outer Banks divided by the total number on all highways gives
a relative measure of the Outer Banks’ popularity compared to that of other destinations.
Unfortunately, counting the number of surfers on links on the Web is impossible. (A re-
lated effort counts the number of surfers on pages, a much more manageable number. See
the Alexa aside on page 138.) But all is not lost; there is a way to approximate the number
of surfers on each link using the available graph information.

Let pij be the proportion of all web traffic on the link from page i to page j. Then
pij = 0 if there is no hyperlink from i to j. This definition for pij means there’s a variable

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

OTHER LINK METHODS FOR RANKING WEBPAGES 137

for every hyperlink on the Web. The goal is to estimate these pij’s, then set
∑

i pij , which
is the proportion of traffic entering page j, as the TrafficRank of page j. The variables pij

must satisfy some constraints. First, of course,
∑

i,j pij = 1. Second, assuming traffic
flow into a page equals traffic flow out of a page,

∑
i pij −

∑
i pji = 0 for every page j.

Otherwise, the pij’s are free to take on any values. IBM researcher John Tomlin devised
the following optimization problem to find the pij’s for his TrafficRank model [159].

max −
∑
i,j

pij log pij subject to

∑
i,j

pij = 1,

∑
i

pij −
∑

i

pji = 0, for every j,

pij ≥ 0.

The objective function is the famous entropy function from Claude Shannon’s work on in-
formation theory [149]. The entropy function maximizes the freedom in choosing the pij’s.
The theory says that the entropy function gives the best unbiased probability assignment to
the variables given the constraints. It uses only the given information from the constraints
and is maximally noncommittal with respect to the missing information.

OK, so just solve the optimization problem to get the pij’s and form the TrafficRank
for each page. Problem solved. But wait, you protest, that optimization problem is huge; it
has |E| variables where |E| is the number of edges in the web graph. True, but Tomlin pro-
vides a fast iterative algorithm for computing the variables. The algorithm uses Lagrange
multipliers and impressively exploits the problem’s structure so that solving the optimiza-
tion problem only takes about 2.5 times longer than solving a PageRank problem for the
same graph. Tomlin’s results showed that TrafficRank was similar to HITS hub scores in
the sense that high TrafficRank pages tended to have many outlinks. This similarity to hubs
makes sense because TrafficRank measures flow through a page, and heavy flow requires
a large number of both inlinks and outlinks.

The TrafficRank model has two interesting extensions. First, as more traffic infor-
mation becomes available, it can easily be added to the model in the form of constraints.
For instance, if actual data is collected on traffic at popular sites, then constraints of the
form

βj ≤
∑

i

pij ≤ ωj , for j ∈ J,

give an allowable range on the computed TrafficRank values of pages in the set J of pop-
ular sites. Second, the dual solution of the optimization problem has an interesting in-
terpretation.1 Inverting the Lagrange multipliers (there’s one for each constraint) of the
primal solution gives a “temperature” for each webpage. (This interpretation comes from
the thermodynamics relationship between entropy and heat.) As a result, Tomlin used the
dual measure to form a HotRank for each page. This HotRank was similar to, but generally
outperformed, PageRank as a measure of authoritativeness.

1Many optimization problems have both primal and dual formulations whose solutions are related by the
famous Duality Theorem.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

138 CHAPTER 12

Finally, we mention TrafficRank’s connections to our two well-studied ranking al-
gorithms, PageRank and HITS. The matrix Pn×n = [pij] (where n is the number of pages
in the index) formed from the solutions to the TrafficRank optimization problem is sparse,
nonnegative, and substochastic. Of course, the Perron vector (the dominant eigenvector)
could be computed for this matrix and compared with the query-independent HITS vec-
tor. Similarly, the Traffic Rank matrix P could be row-normalized so that it is stochastic.
Then the dominant left-hand eigenvector is computed, which, in this case, is actually the
PageRank vector for an intelligent surfer model.

ASIDE: Alexa Traffic Ranking

Alexa, an amazon.com search company, uses its Toolbar to gather information about
web usage, which in turn produces popularity rankings based on site traffic. As the Alexa
website says, “the more people [that] use Alexa [specifically its Toolbar], the more useful it
will be.” Alexa makes other use of their collected data. For example, there’s a list of Movers
and Shakers, the top ten websites with the most dramatic increase or decrease in their traffic
ranking during the past week. There’s also a list of the 500 most popular sites according to
Alexa. And, there’s the traffic ranking plot of popular webpages over time. Figure 12.3 shows
the traffic rank trends for Yahoo!, Google, AltaVista, and Teoma from February to August
2004.

Figure 12.3 Alexa Traffic Rank Trends for 4 Search Engines

According to Alexa users, Yahoo! and Google clearly see more traffic than AltaVista
and Teoma. Alexa is also the company that supplies the Internet Archive (see the box on page
21) with its regular donation of pages.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Thirteen

The Future of Web Information Retrieval

Web search is a young research field with great room for growth. In this chapter, we survey
possible directions for future research, pausing along the way for some storytelling.

13.1 SPAM

ASIDE: The Ghosts of Search

Sammy the Spammer had been pecking away at his computer continuously for over
27 hours. Sammy was used to the sustained bursts of work—he’d been hacking, coding,
programming, and spamming since he could type at the age of four. He came from a proud line
of spammers. His older brother was a hacker, the brother before him, a hacker, and so Sammy
naturally displayed the talent early on. The family was well known in the search engine
optimization (SEO) community, with a reputation not too far from that of a leading mafia
family. His family had worked hard (unethically some said) to rule the world of underground
search rankings. If you needed to knock off a few competitors in the rankings, you came to
Sammy. The family was well rewarded for their computer skills. Sammy himself had three
houses—one in the Valley, Silicon, of course, one in Maui, and one in London.

Sammy had fallen asleep at the keyboard many nights after 20-plus hour days. But this
time when he woke up, something was different. His vision was blurry, his thoughts muddled.
He thought he saw a thin, white-haired man dressed in a red gown, a glow about his head,
standing ten feet in front of him. Sammy blinked twice; the man remained. He’d never seen
the man before, yet somehow felt as if he might have. He felt strangely unalarmed by the
apparition. Convinced he was dreaming, Sammy decided to play along with the scene, and
asked the man, “Are you a spirit?” “I am,” came a gentle reply. “Who and what are you?”
Sammy pried. “I am the Ghost of Search Past.” “Long past?” Sammy asked. “No, your past,”
the spirit said.

The ghost held Sammy’s arm as they whisked by the scenes of his past. Sammy saw
a young boy getting an award at a science fair. Sammy remembered the project—he’d built
a web crawler to find and connect the webpages of other young inventors on the Web. Next,
Sammy saw his 13-year-old self sitting at a table in a pizzeria talking with his older brothers.
They’d just taken little Sammy to his first SEO conference. The trio was buzzing about the
financial potential of the Web. They sat making plans for making money on the Web. Wit-
nessing that conversation now, Sammy felt the same excitement he’d felt years before. He
was jolted back to the present. The Ghost of Search Past said, “My time grows short. Quick.”
Sammy witnessed one last scene. Sammy and his brother sat in an office listening intently as
their older brother took a phone call from their friend Paul. That was the conversation where
Paul warned them to learn from his mistakes; he’d just lost a legal battle with the search engine
Anetta, and, consequently, his business.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

140 CHAPTER 13

Suddenly Sammy found himself back in his room. The Ghost of Search Past was gone
but another one had arrived. “You must be the Ghost of Search Present,” Sammy said. “Yes,
but we haven’t any time for me; we need to move this story along,” the spirit said. There
was a flash, darkness, then when Sammy could see again, he found himself standing in a
cemetery next to a shrouded, dark spirit, the Ghost of Search Future. The ghost pointed at
a headstone—PageRank 1998–2006. “What happened?” Sammy asked. “PageRank ruled
search. Before PageRank, web search was elementary. That algorithm changed everything. I
did all my projects from my keyboard, I hardly had to leave my room, thanks to PageRank.
What happened?” Sammy asked again. The spirit handed him a PDA. On it was an obituary.

Obituary: Born in 1998, PageRank is succeeded by parents Larry Page and Sergey
Brin. Died on November 27, 2006. After a long, hard-fought battle with link spam-
mers, PageRank finally succumbed to ...

The PDA slipped from Sammy’s hand as he blankly turned to the spirit. “Tell me truly,
Spirit, did I do this? Could I have changed the course of this algorithm’s life?” There was no
reply. Of course not. Sammy knew future spirits never spoke. Sammy slowly scanned the
graveyard. He saw headstones for other algorithms he’d known; HITS, SALSA, TrafficRank.
It was too much at once. Sammy begged to go back; he pleaded with the silent spirit. And
snap, back to reality. Sammy awoke in his room in front of his keyboard.

The story, the Ghosts of Search, might not be too outlandish. In fact, it was inspired
by a recent weblog posting. On May 24, 2003, Jeremy Zawodny declared PageRank dead.
He claimed the algorithm was no longer useful because bloggers and SEOs had learned
too much about it and had, in effect, changed the nature of the Web. Since PageRank is
based on an optimistic assumption that all links are conceived in good faith with no ulterior
motives, an assumption that no longer holds, then PageRank is no longer useful. The blog
article “PageRank is Dead” inspired many interesting rebuttals. We are certain (private
communication) that PageRank is not dead. It’s still a major part of the Google technology,
but just one part—new additions and refinements are constantly made. Nevertheless, while
spam may not have killed PageRank completely, it has initiated a lot of damage control.
In fact, spam is a major area of research for all search engines. New search engines turn
heads when they back up claims that their algorithms are impervious to spam.

Creating spam-resistant ranking algorithms is a current goal. But in the meantime,
many engines settle for simply identifying spam pages, which they can then devalue sig-
nificantly after the ranking computation. Spam identification probably isn’t any easier than
starting from scratch, trying to create a new, spam-resistant algorithm. But it’s a route many
engines are taking due to the personal attachment and resources they’ve already invested
in their existing ranking algorithms.

One algorithm for identifying link spam uses the structure of link farms and link
exchanges, the primary means for boosting rankings, to identify pages participating in link
spam. Specifically, the algorithm considers each page one at a time, and asks, “What pro-
portion of this page’s outlinking pages point back to it?” (In other words, what percentage
of a page’s links are reciprocal?) If the answer is greater than some threshold (say 80%),
then that page is identified as a page likely to be participating in link spam. The identified
page is then sent an email similar to the following message.

You’ve been identified as a link spammer. Your pages will be removed from

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE FUTURE OF WEB INFORMATION RETRIEVAL 141

our index unless you immediately remove all links to fellow spammers partic-
ipating in an exchange or farm program.

Search engine professionals cite an added bonus to the method: a spammer who has
been caught often rats on his fellow spammers participating in the same exchange program
to make sure they don’t reap the benefits of his lost business. Noticing which links the
identified spammer then removes also helps identify other potential spammers. However,
this simple algorithm has a few drawbacks. First, it’s a tedious computation that must be
done for each page in the index. Second, it’s not foolproof. Consider the following email
invitation that we received from a smarter link spammer (or perhaps one who’d been caught
once before).

Hello,
We offer accommodation services and I thought you might be interested in link

exchange. We provide several travel-related sites. All of them are PageRank 6.
Due to the possible harming nature of too many reciprocal links we suggest non

reciprocal links. You can link to us from your site and we will link back from another
of our sites.

If you got this message in error please forward this mail to your webmaster.
I look forward to hearing from you.

Best Regards, Mark

Another idea for deterring link spam is to build a score that is the “opposite” of
PageRank. It’s called BadRank (http://pr.efactory.de/). PageRank is a measure of
how good a page is, as measured by the quality of pages that point to it. Since goodness
does not mean the absence of badness, we can also give every page a BadRank score
that measures how bad the page is. The BadRank thesis is: a page is bad if it points to
other bad pages. BadRank is an outlink propagation whereas PageRank propagates along
inlinks. PageRank and BadRank can be combined to give an overall fitness score to each
page. Andrei Broder and his IBM colleagues presented a similar idea [15] at the 2004
World Wide Web conference in New York City. Their method creates a PageRank-like
algorithm for penalizing pages that point to dead pages, which are abandoned sites.

Some claim that, in the long run, the best spam deterrent may be the most obvious—
simply offer search engine optimizers an alternative way to boost their rank. Rather than
crawling their way up the rankings by haggling with competitors over link reciprocation,
let them buy their way to the top. The price of cost-per-click advertising, which is cheap for
more specific, less popular queries, often outweighs the effort and stress associated with
link spamming. However, since sponsored links don’t carry the authority that pure links
do in the list of results (and many users ignore them), some SEOs are willing to invest the
time to link spam their way into the list of pure results.

Well, there’s egg and bacon; egg sausage and bacon; egg and spam; egg bacon
and spam; egg bacon sausage and spam; spam bacon sausage and spam;
spam egg spam spam bacon and spam; spam sausage spam spam bacon spam
tomato and spam.–Monty Python Spam Skit

Like the Monty Python skit, it seems we just can’t escape spam on the Web. Spam
has clearly become an increasingly challenging problem. In the future, we predict the best

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://pr.efactory.de/

142 CHAPTER 13

search engines will be the ones with entirely new ranking algorithms that were devised
from the start to handle the issues of spam.

13.2 PERSONALIZATION

In section 5.3, we talked about personalized search where the motto is to let you “have it
your way” with regard to the rankings of search results. Google’s Personalized Search (in
beta in Google Labs) lets you do this, up to the granularity provided by their check box
categories of user interests. (See Section 5.3 and the box on page 51.) However, there’s
a newer company that offers much more personalization. A9 (www.a9.com), an Amazon
company, bases its search results on a simple idea. Whenever you are trying to find some-
thing, especially something you’ve lost, try retracing your steps. A9 keeps track of your
steps for you. The search engine automatically records a detailed history of your search
life: pages you’ve visited, when you visited them, how often, and what queries you’ve
attempted in the past. A9 results pages also come with a “site info” button, which contains
statistics such as Amazon’s average traffic rank for that page, lists of customer reviews, on-
line birth date, number of inlinks, plus Amazon’s famous recommendation system: “people
who visited this webpage also visited ...” It seems A9 is part of a growing trend—there will
be even more personalization for web users in the future.

13.3 CLUSTERING

The major search engines spend a lot of energy improving their ranking algorithms. They
are constantly tweaking their rankings because they know that users look only at the first 20
results. It’s important, in order to maintain user loyalty, that these be the best, most relevant
pages. However, some newer search companies believe that only modest gains are to be
had by these ranking refinements. No matter how hard you try, you just can’t pack more
than 20 highly relevant pages into the top 20 results. Instead, these companies abandon
the fixation with ranking one list and work on creating hierarchical clusterings of results.
These clusters help users drill down and quickly find the most appropriate category. This,
in turn, helps with query refinement, the process of submitting a slightly revised query
based on the prior search results. Teoma, which uses the HITS-based algorithm, actually
has a third set of results, in addition to the hub and authority lists we mentioned in Chapter
11, called the Refine List, which contains categories associated with the query.

Along these lines, the rising meta-search engine Viv´isimo is trying to set “a new
standard for the way document collections are organized.” Viv´isimo was founded in 2000
by computer scientists at Carnegie Mellon University. On the left-hand side of the results
page are hierarchical category folders. For example, try a query on “Kerri Walsh,” the taller
half of the May/Walsh pro beach volleyball pair, which recently won the gold medal in the
Athens Olympic games. Viv´isimo finds 153 results: 47 are grouped under the Gold cat-
egory, 20 under AVP (Association of Volleyball Professionals), 8 under Youngs/McPeak
(May/Walsh’s toughest competitor), 5 under Misty (Walsh’s doubles partner, Misty May),
and so on. The right-hand side looks like the results from a standard search engine like
Google or AltaVista. That is, the 153 results are listed from most relevant to least relevant
regardless of category. Viv´isimo technology is not limited to the Web; they recently cre-
ated a special tool to help the media and public find information quickly in the 570+ page
report of the 9/11 Commission. (You can give it a try at http://vivisimo.com/911.)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

www.a9.com
http://vivisimo.com/911

THE FUTURE OF WEB INFORMATION RETRIEVAL 143

ASIDE: Kartoo Clustering

The French meta-search engine KartOO (http://www.kartoo.com/) is a really
fun tool. It’s like an artist’s rendition of the Viv´isimo results. KartOO displays clustered
search results both on the left-hand side in a list as well as visually on an interactive map.
Notice in Figure 13.1 how the results of the example query of “Kerri Walsh” brighten up.

Figure 13.1 Sample map of KartOO results

Unfortunately, this screen shot does not allow interactivity, so you can’t see the links
between topics and webpages that would appear as your mouse scrolls over the map. Clicking
on any topic in the map automatically refines the query, biasing the revised results toward that
topic. KartOO is at the other end of the spectrum of search engines. Most search engines give
users a simple clean list of ranked results, assuming users lack time, effort, and discrimination.
KartOO instead fills the page with as much information as possible and allows users to sort
through the pages creating new connections as they proceed. Which type of display do users
prefer? Depends on who you ask and when you ask them. Sometimes you’re in a hurry and
want the search engine to do all the work, and sometimes you have the time to play around
and discover things for yourself.

13.4 INTELLIGENT AGENTS

ASIDE: The First Brain Implant

NY Times–June 30, 2009. Yesterday 36-year old Larry Page woke up from surgery

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.kartoo.com/

144 CHAPTER 13

still feeling a little groggy. His first post-surgery words were “I’m hungry.” The reporters
were hoping for something a little more prophetic, but the event itself is news enough. Just
12 hours prior, the Google cofounder and owner, in a bold public relations move, became the
first person to undergo a radical new surgery—the Google brain implant.

It was only six years ago when Page, speaking of the future of search, said, “On the
more exciting front, you can imagine your brain being augmented by Google” [135]. What
progress for mankind in such short time. Marjorie States already knows how she’d use a
Google implant. States loved using the GPS system in her Acura to find restaurants and
directions around town when she lived in Poughkeepsie. Since she moved to New York City
three months ago, she’s been walking around town or using the subway instead of the car.
She can’t wait for a Google brain implant to replace her current on-the-go restaurant locator
method of dialing 411. “Using 411 on the cell is so 1990s. With the Google implant I’ll save
like 5 blocks of walking and 15 minutes everyday.” You can’t put a value on time lost.

But not all citizens are thrilled by the scientific achievement. In fact, for months a small
but passionate group has been lobbying in D.C. for a constitutional amendment to ban brain
implants of any sort—informational, memory, sensory, audio/visual, etc. While this group
describes doomsday predictions of mind control, regression of analytical skills, and long-term
memory damage, others have literally sold the family farm to secure their $200,000 spot on the
recipient list. These implant hopefuls believe the benefits of improved test scores, increased
job performance, and general convenience far outweigh the risks. And Dr. Jonas Smith, a
neurosurgeon from Johns Hopkins University, puts the risks in perspective, “my feeling about
brain implantation is that only time will tell who is right and who is dead.” Indeed, it’s a very
scary but exciting time for science.

While Larry Page’s vision of the future of web search is a bit far-fetched, the story is
a good introduction to a more realistic vision—one that includes search pets and intelligent
agents. An intelligent agent is a software robot designed to retrieve specific information
automatically. The adjective intelligent describes the agent’s ability to run without super-
vision and learn about your preferences based on your search history, browser cookies, etc.
Intelligent agents exist already. Many go hunting for new postings on topics you preselect
like the Google Web Alert (available at Google Labs). Some find the best price for an item
you want to buy. Others collect and organize your e-mail.

There’s a futuristic agent that Google’s Director of Technology Craig Silverstein
calls a search pet. Most searches today are limited to facts. However, according to Sil-
verstein, that won’t be the case in the future. Because these search pets will be able to
understand emotions and the way humans interact, people will be able to search for things
that aren’t necessarily facts. That’s a tall order for a search pet, since most humans have
trouble understanding how other humans work. Nevertheless, we’ll be seeing much more
from intelligent agents in the future.

13.5 TRENDS AND TIME-SENSITIVE SEARCH

ASIDE: Blogs and Trends

In May 2004 I attended my first WWW conference, the Thirteenth International World
Wide Web Conference, held in New York City. Not being a computer scientist, I felt a bit
out of place as I was outnumbered at least 20 to 1 by computer scientists. During the first

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE FUTURE OF WEB INFORMATION RETRIEVAL 145

presentation, I noticed how different the WWW conference was from the SIAM (Society for
Industrial and Applied Mathematicians) conferences I normally attend. How rude of my new
colleagues to check their email and surf the Web on their laptops while the speaker covered his
material, I thought. I mentioned this fact, that over 80% of the audience (including those in the
front row) were pecking on their keyboards during the talks, to a friend. At least inattentive
SIAM attendees sat in the back. He explained that most of the audience members were not
being rude, but rather very attentive. They were following along, hosting chat rooms about
the ongoing talk, and surfing for definitions of acronyms. I was impressed with their use of
technology.

Here’s how one conversation with a new computer science friend went. “How much of
a computer geek are you, Amy?” asked Urban. “Not much of one,” I said. “So you don’t have
a blog!” “No.” “But you have read Slashdot, right?” “Never heard of it,” I said. Urban gasped.
“The blog Slashdot–News for Nerds. Stuff that matters. Just last week they had this article on
...”

Throughout the conference, my new computer science friends gladly filled my tabula
rasa. I soon learned much to amend for my blogging deficits. I learned that blog (rhymes
with flog) was short for weblog, which is an interactive online diary of time-stamped entries.
Soon I was curious to surf Salon and Slashdot, blogs with supposedly entertaining stories,
witty political commentary, and geeky must-read news. I also learned that blogs are easy to
start and maintain. (Anybody’s brother, with the help of software such as Blogger, Radio
Userland, or Live Journal, can host his own blog.) I learned that most blogs have a blog roll,
which is a list of other blogs the author recommends. Blogs contain lots of links so readers
can follow conversations across different blogs. Blogs are often organized by threads, which
are strings of comments on the same topic. I learned that some blogs have daily devotees,
while most others are read by a handful of fans. I also learned that, for the most part, I could
care less about the information contained in blogs. Most blogs serve as a creative outlet for
wannabe artists, writers, poets, political commentators, and the like. Every day Uncle Pete
in Franklin, Michigan can tell his family (and the world) what he thinks about his 1980 Ford
truck. Despite this, a precious few blogs do contain information that serves a community’s
needs and provides useful archival potential. That observation led me to the most important
thing I learned about blogs all week: searching blogs is an interesting new research area.

There are several issues when it comes to searching blogs. For example, should blog
results be listed in the search engine’s list of results or are blogs really a different beast? Since
most blogs contain little or no information, most people think they should not be mixed in
with the standard search results. But blogs aren’t completely useless, either. For example,
if you need to know how to install replacement bulbs for the headlights on your 1980 truck,
then you’d be interested in searching the pictures and postings by Uncle Pete of Franklin,
Michigan. Perhaps, instead, blogs should be searched in a separate domain, similar to the way
Google News searches just within news sites. That’s the prevailing feeling because blogs really
are different from most webpages. Blogs are updated even more frequently than ordinary
webpages, and blogs contain a time stamp that can be very helpful in searching for time-
sensitive information. Blogs are also link-rich and content-poor. Blogs are full of links like
“check out this cool page” or “here’s a great article” interspersed with a sentence or two
of commentary. This means traditional information retrieval scores have trouble identifying
topics when pages contain so little content. But it also highlights the editorial nature of blogs.
Blogs contain short snippets of personal opinions, shared and conflicting, whereas news sites
contain one aggregate opinion presented by the author. These personal opinions may be very
helpful when you’re deciding whether to buy the 10 GB iPod or the 20 GB iPod. Technorati,
www.technorati.com, is one search engine that keeps track of the blogspace, the world
of blogs, by watching over 3 million blogs and 470 million links. For example, Technorati

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

www.technorati.com

146 CHAPTER 13

tracks interesting opinions on the top books and news stories.

Eytan Adar and his colleagues at the Hewlett-Packard Information Dynamics Lab
have created an algorithm for ranking pages in the blogspace [8]. They rank blogs by
their so-called epidemic importance, that is, their ability to spread information quickly.
Their algorithm, called iRank, is very similar to PageRank. But there are two essential
differences. First, the original link graph for the blogspace, called the explicit graph, is
augmented by what they call implicit links. An implicit link between two blogs that are
not explicitly connected by a hyperlink is made if an implicit reference between the two
blogs is found in the text of one of the blogs or if the text and link similarity between
the two is high. For instance, Andy’s blog might say “Brian’s blog has an interesting post
about the new Elmo stuffed toy. You can buy the toys at website1 or website2.” Explicit
links from Andy’s blog are made to the two online stores, but no explicit link is made to
Brian’s blog. However, there’s a clear connection between the two blogs, and readers of
one probably read the other. Adar’s algorithm uses text analysis to find and add these
implicit links to the blog graph. The second distinguishing feature of iRank is its temporal
factor. All links are weighted by their freshness. A link’s weight is inversely proportional
to the difference in dates between the two blogs. Thus, a blog is rewarded for citing recent
postings on another blog. At this point, ordinary PageRank is run on this augmented, time-
weighted graph, giving an iRank vector that contains the ranking for the blogs. Adar et al.
found that iRank results differ substantially from PageRank results. Blogs with high iRank
tend to be portal pages or pages aimed at finding the most current information, whereas
blogs with high PageRank usually contained original authoritative material. Depending on
the search goal, one ranking may be more valuable than the other.

The use of time as a discriminating factor in search is relatively new. Some informa-
tion on the Web such as blog postings and news articles does come with an explicit time
stamp. In other cases, time-sensitive information can be extracted implicitly. For exam-
ple, the Internet Archive gets an approximation of dates for revisions to webpages with its
periodic crawls. The Recall Machine from the Internet Archive as well as Google Groups
allow search for information posted within specific time frames. This feature allows for
very focused queries. For example, with the time-sensitive search capability, it’s easy to
compare the tone and content of articles written within a month of the September 11, 2001
tragedy with those written three years later.

13.6 PRIVACY AND CENSORSHIP

Deciding which pages to index is not as simple as it once was. In the Web’s early days, the
goal was simply to index as many pages as possible. Now search companies must be more
judicious. They must also consider the privacy of users. For example, spiders must care-
fully obey all robots.txt files. Similarly, deciding which pages to retrieve for user queries
is complicated by issues like user safety. Because children have easy access to search en-
gines, most companies have added safe search filters to their offerings. These issues and
the two asides below demonstrate that the leaders of search companies must be critical
thinkers and students of the liberal arts. They routinely face philosophical, ethical, polit-
ical, business, and legal issues far afield from their graduate studies in computer science,
engineering, or mathematics.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE FUTURE OF WEB INFORMATION RETRIEVAL 147

ASIDE: Google’s Cookie

Privacy advocates think Google’s toolbar and Gmail are a nightmare. These privacy
hounds despise Google’s “immortal” cookie, which collects the IP address, time, date, and
search terms of Toolbar users and does not expire until 2038. The lengthy expiration date is
evidence enough for privacy hounds that Google cannot be trusted. However, Google could
make good use of some of the collected information. For example, they could use the IP
address to augment their new local search service, by sorting results for some queries (such
as those for businesses, addresses, phone numbers, etc.) by proximity to the location of the
user’s computer. Many Toolbar users are calmed by the fact that the amount of aggregated
data that Google collects makes individuals nearly anonymous. Especially cautious users can
turn off some features of the Toolbar to restrict Google’s data collection if they desire.

ASIDE: Search in China

In early September 2002, the Google homepage was inaccessible in China. A user
entering the Google URL was rerouted to Tianwang Search, a search engine operated by
Peking University. Google was blocked because its searches could return links to pornogra-
phy, democratic forums, content associated with the banned spiritual movement Falun Gong,
and information endangering national security. The Great Firewall of China, a reference to the
government’s open attempts to control web content by blocking foreign news sites and forcing
domestic sites to remove unwholesome content, has been in place since the birth of the Inter-
net. However, this was the first time censors had hijacked a search engine domain name and
rerouted traffic to another site. One week later, AltaVista was blocked as well. Apparently, the
volume of complaints by Chinese surfers was enough to lift the block. Within a few weeks,
access to Google and AltaVista was restored. Human rights groups have written letters to the
CEOs of Google and AltaVista requesting that they fight the Chinese censorship. Often the
search engines, Yahoo! is an example, have voluntarily signed pledges in support of Chinese
censorship policies, and therefore offer a limited service in order to remain accessible. Search
engines must weigh the cost and benefits of no accessibility versus limited accessibility.

13.7 LIBRARY CLASSIFICATION SCHEMES

During the 20th century, libraries underwent a transformation in their classification and
presentation of books. The Dewey decimal classification (DDC) system, introduced in
1876 by Melvin Dewey, for the library at Amherst College, was revised and refined, so
that today in its 21st edition, it is one of two popular classification systems in use. The
other alternative system is the Library of Congress classification (LC) system. Because
these systems enjoy worldwide use—for example, the Dewey decimal system is currently
used in over 135 countries—it’s natural to think of classifying webpages in a similar man-
ner. Some groups are trying to encourage users to use either the DDC numbers or LC
numbers in metatags. Yet, if a strong connection between webpages and traditional li-
brary classification systems is to develop, the job will probably fall on the crawlers and
indexers of web search engines. If DDC or LC numbers are associated with each webpage
in the future, then surfers are a short link away from accessing Amazon or digital libraries
for information on related books.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

148 CHAPTER 13

ASIDE: Google’s Digital Library Initiative

In December of 2004, Google announced its decade-long initiative to scan millions of
books from the collections of major research universities. Harvard, Michigan, Stanford, and
Oxford are among the cooperating universities, as well as the nonacademic New York Public
Library. The ultimate goal is to allow surfers to search through text in books online. For
books still under copyright protection, only brief snippets of text and reference information
will appear.

However, several publishing companies are not excited about Google’s new initiative.
These companies prefer that their books and series not be included in the collection. Scan-
ning a book is a clear violation of copyright law, and is allowed only with permission. Most
publishers will grant such permission, however, they just want be asked first. In effect, the
publishers are sending Google a warning message, that the search giant needs to respect the
rules of this long-standing profession. In the meantime, Google has a huge stack of “May I”
permission letters that need to be signed.

13.8 DATA FUSION

A new type of web retrieval application based on maps is the latest technology. The Where
2.0 conference assembles researchers and developers in location-based technology. The
idea is to layer advanced user-friendly interactive search features on top of the familiar
visual of a map. For example, the Swiss search engine, search.ch, which recently won the
Best of the Swiss Web Prize, places icons of restaurants, movie theatres, bus stops, park-
ing garages, hotels, and the like on satellite maps of Switzerland. Scrolling over an icon
shows details, such as the number of minutes until the next bus, the number of open seats
in the theatre, the number of open spots in a parking garage, ticket prices, and phone num-
bers. To achieve such up-to-date information, the engine periodically crawls the associated
websites for the relevant information. By fusing data from other sources, such as phone
directories and restaurant guides, search.ch provides a handy visual tool. In fact, visiting
www.map.search.ch allows you to take a virtual tour of the country. With eventual
cell phone and PDA accessibility, travel especially will be easy.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

www.map.search.ch

Chapter Fourteen

Resources for Web Information Retrieval

14.1 RESOURCES FOR GETTING STARTED

If you’re a student or a researcher new to the field, you’ll find these resources helpful for
getting started. The datasets are small and manageable, the code simple, and the algorithms
run quickly.

14.1.1 Datasets

There are several small web graphs that are available for download. The table below pro-
vides details.

Table 14.1 Small web graphs

Dataset # pages # links Available at

movies 451 713 website 1
censorship 562 736 website 1
abortion 1693 4325 website 1
genetics 2952 6485 website 1
EPA 4772 8965 website 2
Hollins 6012 23875 website 3
California 9664 16150 website 2

Most of these webpages also contain other graphs that are similar in size and source.
For example, Panayiotis Tsaparas hosts a nice webpage (website 4) that contains more
graphs (and some C code).

Website 1: http://www.cs.toronto.edu/˜tsap/experiments/datasets
/index.html

Website 2: http://www.cs.cornell.edu/Courses/cs685/2002fa/
Website 3: http://www.math.vt.edu/people/kemassey/ir/
Website 4: http://www.cs.toronto.edu/˜tsap/experiments/download

/download.html

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.cs.toronto.edu/~tsap/experiments/datasets/index.html
http://www.cs.toronto.edu/~tsap/experiments/datasets/index.html
http://www.cs.cornell.edu/Courses/cs685/2002fa/
http://www.math.vt.edu/people/kemassey/ir/
http://www.cs.toronto.edu/~tsap/experiments/download/download.html
http://www.cs.toronto.edu/~tsap/experiments/download/download.html

150 CHAPTER 14

14.1.2 Crawlers

On page 17, we provided Cleve Moler’s Matlab code for creating your own datasets. This
m-file can be downloaded from the website for Cleve’s new book Numerical Computing
with Matlab, http://www.mathworks.com/moler/ncmfilelist.html. This m-file
routine can be used to create small, tailored datasets. However, it can be slow and it does
have some documented problems, e.g., it can stall waiting to download pages with images
or data files.

14.1.3 Code

Matlab is a great tool for programming algorithms and testing ideas on reasonably sized
datasets. This book contains Matlab code for many algorithms, such as the PageRank
and HITS algorithms. Other programmers have also produced Matlab code for these link
analysis problems. See, for example, the following websites:

• http://www.stanford.edu/˜sdkamvar/research.html#Data

• http://math.cofc.edu/ langvillea/PRDataCode/index.html

14.1.4 References

Extensive lists of references, some hyperlinked, are available at:

• http://www.cs.cornell.edu/Courses/cs685/2002fa/

• http://linkanalysis.wlv.ac.uk/

• http://math.cofc.edu/˜langvillea/#Current%20Research

In addition, each year the World Wide Web Conference has several papers related to link
analysis.

14.2 RESOURCES FOR SERIOUS STUDY

When you are ready to move on to bigger problems, consider the tools cited in this section.

14.2.1 Datasets

Much larger datasets are available for those interested in more serious study of link analy-
sis. Table 14.2 gives information for some representative datasets.

Website 5: http://www.stanford.edu/˜sdkamvar/research.html#Data
Website 6: http://cybermetrics.wlv.ac.uk/database/

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.mathworks.com/moler/ncmfilelist.html
http://www.stanford.edu/~sdkamvar/research.html#Data
http://math.cofc.edu/langvillea/PRDataCode/index.html
http://www.cs.cornell.edu/Courses/cs685/2002fa/
http://linkanalysis.wlv.ac.uk/
http://math.cofc.edu/~langvillea/#Current%20Research
http://www.stanford.edu/~sdkamvar/research.html#Data
http://cybermetrics.wlv.ac.uk/database/

RESOURCES FOR WEB INFORMATION RETRIEVAL 151

Table 14.2 Large web graphs

Dataset # pages # links Available at

Stanford University sites .28 million 2.3 million website 5
Stanford-Berkeley sites .68 million 7.6 million website 5
23 U.S. University sites 3.0 million 23.9 million website 6
38 Australian University sites 2.3 million 19.8 million website 6

14.2.2 Crawlers

There are several nice tools for crawling and collecting link information for large datasets.
For example, try the following tools:

• SocSciBot3: http://socscibot.wlv.ac.uk/

• WebBot: information and directions for downloading are available at
http://www.math.vt.edu/people/kemassey/ir/

• Stanford WebBase Project: http://www-diglib.stanford.edu
/˜testbed/doc2/WebBase/

• WebGraph Graph Compression Tools: http://webgraph.dsi.unimi.it/

14.2.3 Code

Any serious study of algorithms, one aimed at creating production code, must imple-
ment algorithms in fortran, C, or C++ rather than a more user-friendly but high-level
language such as Matlab. In order to compute ranking vectors, many of the link analy-
sis methods in this book use classic numerical algorithms. Fortunately, effective, efficient
code is readily available for such classic algorithms. For example, the Netlib repository
(http://www.netlib.org/) contains various implementations of the power method or
other eigenvector methods written in several of the most popular programming languages.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://socscibot.wlv.ac.uk/
http://www.math.vt.edu/people/kemassey/ir/
http://www-diglib.stanford.edu/~testbed/doc2/WebBase/
http://www-diglib.stanford.edu/~testbed/doc2/WebBase/
http://webgraph.dsi.unimi.it/
http://www.netlib.org/

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Fifteen

The Mathematics Guide

Appreciating the subtleties of PageRank, HITS, and other ranking schemes requires knowl-
edge of some mathematical concepts. In particular, it’s necessary to understand some as-
pects of linear algebra, discrete Markov chains, and graph theory. Rather than presenting a
comprehensive survey of these areas, our purpose here is to touch on only the most relevant
topics that arise in the mathematical analysis of Web search concepts. Technical proofs are
generally omitted.

The common ground is linear algebra, so this is where we start. The reader that
wants more detail or simply wants to review elementary linear algebra to an extent greater
than that given here should consult [127].

15.1 LINEAR ALGEBRA

In the context of Web search the matrices encountered are almost always real, but because
real matrices can generate complex numbers (e.g., eigenvalues) it’s often necessary to con-
sider complex numbers, vectors, and matrices. Throughout this chapter real numbers, real
vectors, and real matrices are respectively denoted by �, �n, and �m×n, while complex
numbers, vectors, and matrices are respectively denoted by C, Cn, and Cm×n. The follow-
ing basic concepts of arise in the mathematical analysis of Web search problems.

Norms

The most common way to measure the magnitude of a row (or column) vector x =
(x1, x2, . . . , xn) of real or complex numbers is by means of the euclidean norm (some-
times called the 2-norm) that is defined by

‖x‖2 =
n∑

i=1

|xi|2.

However, in the applications involving PageRank and Markov chains, it’s more natural
(and convenient) to use the vector 1-norm defined by

‖x‖1 =
n∑

i=1

|xi|

because, for example, if p is a PageRank (or probability) vector, (i.e., a nonnegative vector
with components summing to one) then ‖p‖1 = 1. Occasionally the vector ∞-norm

‖x‖∞ = max
i

|xi|

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

154 CHAPTER 15

is used. All norms satisfy the three properties

‖x‖≥ 0 where ‖x‖ = 0 if and only if x = 0,

‖αx‖= |α| ‖x‖ for all scalars α,

‖x + y‖≤‖x‖ + ‖y‖ (the triangle inequality).

Associated with each vector norm is an induced matrix norm. If A is m × n and x
is n × 1, and if ‖∗‖� is any vector norm, then the corresponding induced matrix norm is
defined to be

‖A‖� = max
‖x‖�=1

‖Ax‖� .

The respective matrix norms that are induced by the 1- 2-, and ∞- vector norms are

‖A‖1 = max
j

∑
i

|aij | = the largest absolute column sum,

‖A‖2 =
√

λmax, where λmax = largest eigenvalue of AT A,

(replace transpose by conjugate transpose if A is complex),

‖A‖∞ = max
i

∑
j

|aij | = the largest absolute row sum.

The details surrounding these properties can be found in [127].

The nice thing about induced matrix norms is that each of them is compatible with
its corresponding vector norm in the sense that

‖Ax‖� ≤ ‖A‖� ‖x‖�.

However, this compatibility condition holds only for right-hand matrix-vector multiplica-
tion. For left-hand vector-matrix multiplication, which is common in Markov chain appli-
cations, transposition is needed to convert back to right-hand matrix-vector multiplication,
and this results in different compatibility rules. If xT is 1 × n and A is m × n, then

‖xT A‖1 ≤ ‖xT ‖1 ‖A‖∞, ‖xT A‖∞ ≤ ‖xT ‖∞ ‖A‖1.

Sensitivity of Linear Systems

It is assumed that the reader is familiar with Gaussian elimination methods for solving a
system Am×nxn×1 = bm×1 of m linear equations in n unknowns. If not, read [127].
Algorithms for solving Ax = b are important, but the general behavior of a solution to
small uncertainties or perturbations in the coefficients is particularly relevant, especially in
light of the fact that the PageRank vector is the solution to a particular linear system.

While greater generality is possible, it suffices to consider a square nonsingular sys-
tem Ax = b in which both A and b are subject to uncertainties that might be the result
of modeling error, numerical round-off error, measurement error, or small perturbations of
any kind. How much uncertainty (or sensitivity) can the solution x = A−1b exhibit?

An answer is provided by using calculus. Consider the entries of A = A(t) and
b = b(t) to vary with a differentiable parameter t, and compute the relative size of the

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 155

derivative of x = x(t) by differentiating b = Ax to obtain b′ = (Ax)′ = A′x + Ax′

(with �′ denoting d � /dt). Taking norms (the choice of norm is not important) yields

‖x′‖=
∥∥A−1b′ − A−1A′x

∥∥ ≤ ∥∥A−1b′∥∥+
∥∥A−1A′x

∥∥
≤
∥∥A−1

∥∥ ‖b′‖ +
∥∥A−1

∥∥ ‖A′‖ ‖x‖ .

Consequently,
‖x′‖
‖x‖ ≤

∥∥A−1
∥∥ ‖b′‖

‖x‖ +
∥∥A−1

∥∥ ‖A′‖

≤‖A‖
∥∥A−1

∥∥ ‖b′‖
‖A‖ ‖x‖ + ‖A‖

∥∥A−1
∥∥ ‖A′‖
‖A‖

≤κ
‖b′‖
‖b‖ + κ

‖A′‖
‖A‖ = κ

(‖b′‖
‖b‖ +

‖A′‖
‖A‖

)
,

where κ = ‖A‖
∥∥A−1

∥∥ . The terms ‖x′‖ / ‖x‖, ‖b′‖ / ‖b‖ and ‖A′‖ / ‖A‖ represent the
respective relative sensitivities of x, b, and A to small changes. Because κ represents a
magnification of the sum of the relative sensitivities in b, and A, κ is called a condition
number for A. The situation can summarize the situation as follows.

Sensitivity of Linear Systems
For a nonsingular system Ax = b, the relative sensitivity of x to uncertainties or
perturbations in A and b is never more than the sum of the relative changes in A
and b magnified by the condition number κ = ‖A‖

∥∥A−1
∥∥ .

A Practical Rule of Thumb. If Gaussian elimination with partial pivoting is used to solve
a well-scaled (row norms in A are approximately one) nonsingular system Ax = b using
t-digit floating-point arithmetic, and if κ is of order 10p, then, assuming no other source
of error exists, the computed solution can be expected to be accurate to at least t − p
significant digits, more or less. In other words, one expects to lose roughly p significant
figures. This doesn’t preclude the possibility of getting lucky and attaining a higher degree
of accuracy—it just says that you shouldn’t bet the farm on it.

Rank-One Updates

Suppose that A ∈ �n×n is the coefficient matrix of a nonsingular system Ax = b that
contains information that periodically requires updating, and each time new information
is received, the system must be re-solved. Rather than starting from scratch each time, it
makes sense to try to perturb the solution from the previous period in a simple but pre-
dictable way. Theoretically, the solution is always x = A−1b, so the problem of updat-
ing the solution to a linear system is equivalent to the problem of updating the inverse
matrix A−1. If the new information can be formatted as a rank-one matrix cdT , where
c,d ∈ �n×1, then there is a formula for updating A−1.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

156 CHAPTER 15

Sherman–Morrison Rank-One Updating Formula
If An×n is nonsingular and if c and d are columns such that 1 + dT A−1c �= 0,
then the sum A + cdT is nonsingular, and(

A + cdT
)−1

= A−1 − A−1cdT A−1

1 + dT A−1c
. (15.1.1)

The Sherman–Morrison formula makes it clear that when a nonsingular system
Ax = b is updated to produce another nonsingular system (A + cdT)z = b, where
b, c,d ∈ �n×1, the solution of the updated system is

z= (A + cdT)−1b =
(
A−1 − A−1cdT A−1

1 + dT A−1c

)
b

=A−1b − A−1cdT A−1b
1 + dT A−1c

= x − A−1cdT x
1 + dT A−1c

.

The Sherman–Morrison formula is particularly useful when an update involves only
one row or column of A. For example, suppose that the only the ith row of A is affected—
say row Ai∗ is updated to become Bi∗, and let εT

i = Bi∗ −Ai∗. If ei denotes the ith unit
column (the ith column of the identity matrix I), then the updated matrix can be written as

B = A + eiε
T
i ,

so that ei plays the role of c in (15.1.1), and A−1c = A−1ei = [A−1]∗i, the ith column
of A−1. Consequently, B−1 can be constructed directly from the entries in A−1 and the
perturbation vector εT by writing.

B−1 =
(
A + eiε

T
i

)−1
= A−1 − [A−1]∗iε

T
i A−1

1 + εT
i [A−1]∗i

.

Eigenvalues and Eigenvectors

For a matrix A ∈ Cn×n, the scalars λ and the vectors xn×1 �= 0 satisfying Ax = λx
are the respective eigenvalues and eigenvectors for A. A row vector yT is a left-hand
eigenvector if yT A = λyT .

The set σ (A) of distinct eigenvalues is called the spectrum of A, and the spectral
radius of A is the nonnegative number

ρ (A) = max
λ∈σ(A)

|λ|.

The circle in the complex plane that is centered at the origin and has radius ρ (A) is called
the spectral circle , and it is a straightforward exercise to verify that

ρ (A) ≤ ‖A‖ (15.1.2)

for all matrix norms.

The eigenvalues of An×n are the roots of the characteristic polynomial p(λ) =
det (A − λI), where det (�) denotes determinant. The degree of p(λ) is n, so, altogether,

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 157

A has n eigenvalues, but some may be complex numbers (even if the entries of A are real
numbers), and some eigenvalues may be repeated. If A contains only real numbers, then its
complex eigenvalues must occur in conjugate pairs—i.e., if λ ∈ σ (A) , then λ ∈ σ (A) .

The algebraic multiplicity of an eigenvalue λ of A is the number of times that λ is
repeated as a root of the characteristic equation. If alg multA (λ) = 1, then λ is said to be
a simple eigenvalue.

The geometric multiplicity of an eigenvalue λ of A is the number of linearly inde-
pendent eigenvectors that are associated with λ. In more formal terms, geo multA (λ) =
dimN(A − λI), where N(�) denotes the nullspace or kernel of a matrix. It is always the
case that geo multA (λ) ≤ alg multA (λ) . If geo multA (λ) = alg multA (λ) , then λ is
said to be a semisimple eigenvalue.

The index of an eigenvalue λ ∈ σ (A) is defined to be the smallest positive integer
k such that rank

(
(A − λI)k

)
= rank

(
(A − λI)k+1

)
. It is understood that index (λ) = 0

when λ �∈ σ (A) .

There are several different ways to characterize index. For λ ∈ σ(An×n), saying
that k = index (λ) is equivalent to saying that k is the smallest positive integer such that
any of the following statements hold.

• R
(
(A − λI)k

)
= R

(
(A − λI)k+1

)
, where R(�) denotes range.

• N
(
(A − λI)k

)
= N

(
(A − λI)k+1

)
, where N(�) denotes nullspace (or kernel).

• R
(
(A − λI)k

)
∩ N

(
(A − λI)k

)
= 0.

• Cn = R
(
(A − λI)k

)
⊕ N

(
(A − λI)k

)
, where ⊕ denotes direct sum.

The Jordan Form

Eigenvalues and eigenvectors are for matrices what DNA is for biological entities, and the
Jordan form for a square matrix A completely characterizes the eigenstructure of A. The
theoretical basis for why the Jordan form looks as it does is somewhat involved, but the
“form” itself is easy to understand, and that’s all you need to deal with the issues that arise
in understanding Web searching concepts.

Given a matrix An×n, a Jordan block associated with an eigenvalue λ ∈ σ (A) is
defined to be a matrix of the form

J�(λ) =

⎛⎜⎜⎜⎝
λ 1

. . .
. . .
. . . 1

λ

⎞⎟⎟⎟⎠. (15.1.3)

A Jordan segment J(λ) associated with λ ∈ σ (A) is defined to be a block-diagonal matrix
containing one or more Jordan blocks. In other words, a Jordan segment looks like

J(λ) =

⎛⎜⎜⎝
J1(λ) 0 · · · 0

0 J2(λ) · · · 0
...

...
. . .

...
0 0 · · · Jt(λ)

⎞⎟⎟⎠ with each J�(λ) being a Jordan block.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

158 CHAPTER 15

The Jordan canonical form (or simply the Jordan form) for A is a block-diagonal ma-
trix composed of the Jordan segments for each distinct eigenvalue. In other words, if
σ (A) = {λ1, λ2, . . . , λs} , then the Jordan form for A is

J =

⎛⎜⎜⎝
J(λ1) 0 · · · 0

0 J(λ2) · · · 0
...

...
. . .

...
0 0 · · · J(λs)

⎞⎟⎟⎠ . (15.1.4)

There is only one Jordan segment for each eigenvalue, but each segment can contain several
Jordan blocks of varying size. The formula that governs the sizes and numbers of Jordan
blocks is given in the following complete statement concerning the Jordan form.

Jordan’s Theorem
For every A ∈ Cn×n there is a nonsingular matrix P such that

P−1AP = J (15.1.5)

is the Jordan form (15.1.4) that is characterized by the following features.

• J contains one Jordan segment J(λ) for each distinct eigenvalue λ ∈ σ (A) .

• Each segment J(λ) contains t = dimN(A − λI) Jordan blocks.

• The number of i × i Jordan blocks in J(λ) is given by

νi(λ) = ri−1(λ) − 2ri(λ) + ri+1(λ), where ri(λ) = rank
(
(A − λI)i

)
.

• The largest Jordan block in each segment J(λ) is k × k, where k = index (λ).

The structure of J is unique in the sense that the number and sizes of the Jordan
blocks in each segment is uniquely determined by the entries in A. Two n × n matrices A
and B are similar (i.e., B = Q−1AQ for some nonsingular Q) if and only if A and B
have the same Jordan form.

The matrix P in (15.1.5) is not unique, but its columns always form Jordan chains
(or generalized eigenvectors) in the following sense. For each Jordan block J�(λ), there is
a set of columns P� of corresponding size and position in P =

[
· · · |P� | · · ·

]
such that

P� =
[
(A − λI)i x�

∣∣ (A − λI)i−1 x�

∣∣ · · · ∣∣ (A − λI)x�

∣∣x�

]
(i+1)×n

for some i and some x�, where (A − λI)i x� is a particular eigenvector associated with
λ. Formulas exist for determining i and x� [127, p. 594], but the computations can be
complicated. Fortunately, we rarely need to compute P.

An important corollary of Jordan’s theorem (15.1.5) is the following statement con-
cerning the diagonalizability of a square matrix.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 159

Diagonalizability
Each of the following statements is equivalent to saying that A ∈ Cn×n is similar
to a diagonal matrix—i.e., J is diagonal (all Jordan blocks are 1 × 1).

• index (λ) = 1 for each λ ∈ σ (A) (i.e., every eigenvalue is semisimple).

• alg multA (λ) = geo multA (λ) for each λ ∈ σ (A) .

• A has a complete set of n linearly independent eigenvectors (i.e., each column
of P is an eigenvector for A).

Functions of a Matrix

An important use of the Jordan form is to define functions of A ∈ Cn×n. That is, given
a function f : C → C, what should f(A) mean? The answer is straightforward. Suppose

that A = PJP−1, where J =

(
. . . J�

. . .

)
is in Jordan form with the J�’s representing

the Jordan blocks described in (15.1.3) It’s natural to define the value of f at A to be

f(A) = Pf(J)P−1 = P

⎛⎝ . . .
f(J�). . .

⎞⎠P−1, (15.1.6)

but the trick is correctly defining f(J�). It turns out that right way to do this is by setting

f(J�) = f

⎛⎜⎝
λ 1

. . .
. . .

. . . 1

λ

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(λ) f ′(λ)
f ′′(λ)

2!
· · · f(k−1)(λ)

(k − 1)!

f(λ) f ′(λ)
. . .

.

.

.

. . .
. . .

f ′′(λ)

2!

f(λ) f ′(λ)

f(λ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15.1.7)

Matrix Functions
Let A ∈ Cn×n with σ (A) = {λ1, λ2, . . . , λs} , and let f : C → C be such that
f(λi), f ′(λi), . . . , f (ki−1)(λi) exist for each i, where ki = index (λi). Define

f(A) = Pf(J)P−1 = P

⎛⎝ . . .
f(J�). . .

⎞⎠P−1, (15.1.8)

where J is the Jordan form for A and f(J�) is given by (15.1.7).

There are at least two other equivalent and useful ways to view functions of matrices.
The first of these is called the spectral theorem for matrix functions, and this arises by
expanding the product on the right-hand side of (15.1.8) expand to yield the following.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

160 CHAPTER 15

Spectral Theorem for General Matrices
If A ∈ Cn×n with σ (A) = {λ1, λ2, . . . , λs} , then

f(A) =
s∑

i=1

ki−1∑
j=0

f (j)(λi)
j!

(A − λiI)jGi, (15.1.9)

where each Gi has the following properties.

• Gi is a projector (i.e., G2
i = Gi) onto N

(
(A−λiI)ki

)
along R

(
(A−λiI)ki

)
.

• G1 + G2 + · · · + Gs = I.

• GiGj = 0 when i �= j.

• (A − λiI)Gi = Gi(A − λiI) is nilpotent of index ki.

The Gi’s are called the spectral projectors associated with matrix A.

Another useful way to deal with functions of a matrix is by means of infinite series.

Infinite Series Representations
If
∑∞

j=0 cj(z−z0)j converges to f(z) at each point in a circle |z−z0| = r, and if
|λ−z0| < r for each eigenvalue λ ∈ σ (A) , then

∑∞
j=0 cj(A−z0I)j converges,

and

f(A) =
∞∑

j=0

cj(A − z0I)j .

If A is diagonalizable—i.e., if is similar to a diagonal matrix

A = P

⎛⎜⎜⎝
λ1I 0 · · · 0
0 λ2I · · · 0
...

...
. . .

...
0 0 · · · λsI

⎞⎟⎟⎠P−1,

then

f(A) = P

⎛⎜⎜⎝
f(λ1)I 0 · · · 0

0 f(λ2)I · · · 0
...

...
. . .

...
0 0 · · · f(λs)I

⎞⎟⎟⎠P−1,

and formula (15.1.9) yields the following spectral theorem for diagonalizable matrices

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 161

Spectral Theorem for Diagonalizable Matrices
If A is diagonalizable with with σ (A) = {λ1, λ2, . . . , λs} , then

A= λ1G1 + λ2G2 + · · · + λsGs, (15.1.10)
and

f(A) = f(λ1)G1 + f(λ2)G2 + · · · + f(λs)Gs, (15.1.11)

where the spectral projectors Gi have the following properties.

• Gi = G2
i is the projector onto the eigenspace N (A − λiI) along R (A − λiI),

• G1 + G2 + · · · + Gs = I,

• GiGj = 0 when i �= j,

• Gi =
k∏

j=1
j �=i

(A − λjI)
/ k∏

j=1
j �=i

(λi − λj) for i = 1, 2, . . . , k.

• If λi happens to be a simple eigenvalue, then

Gi = xy∗/y∗x (15.1.12)

in which x and y∗ are respective right-hand and left-hand eigenvectors associ-
ated with λi.

Powers of Matrices and Convergence

A fundamental issue in analyzing PageRank concerns convergence of powers of matrices.
It follows from (15.1.8) that each power of A ∈ Cn×n is given by

Ak = PJkP−1 = P

⎛⎜⎝ . . .
Jk

�

. . .

⎞⎟⎠P−1, where J� =

⎛⎝λ 1
. . .

. . .

λ

⎞⎠ ,

and

Jk
� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λk
(

k
1

)
λk−1

(
k
2

)
λk−2 · · ·

(
k

m−1

)
λk−m+1

λk
(

k
1

)
λk−1

. . .
...

. . .
. . .

(
k
2

)
λk−2

λk
(

k
1

)
λk−1

λk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
m×m

. (15.1.13)

This observation leads to the following limiting properties.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

162 CHAPTER 15

Convergence to Zero and The Neumann Series
For A ∈ Cn×n, the following statements are equivalent.

(15.1.14)
• ρ(A) < 1.

(15.1.15)
• limk→∞ Ak = 0.

(15.1.16)
• The Neumann series series

∑∞
k=0 Ak converges to (I − A)−1.

It may be the case that the powers Ak converge, but not to the zero matrix. The
complete story concerning limk→∞ Ak is as follows.

Limits of Powers
For A ∈ Cn×n, limk→∞ Ak exists if and only if ρ(A) < 1, in which case
limk→∞ Ak = 0, or else ρ(A) = 1, with λ = 1 being semisimple and the only
eigenvalue on the unit circle. When it exists,

lim
k→∞

Ak = G = the projector onto N (I − A) along R (I − A). (15.1.17)

Averages and Summability

With each scalar sequence {α1, α2, α3, . . .} there is an associated sequence of averages
{µ1, µ2, µ3, . . .} in which

µ1 = α1, µ2 =
α1 + α2

2
, . . . , µn =

α1 + α2 + · · · + αn

n
.

This sequence of averages is called the Cesàro sequence, and when limn→∞ µn = α,
we say that {αn} is Cesàro summable (or merely summable) to α. It can be proven that
if {αn} converges to α, then {µn} converges to α, but not conversely. In other words,
convergence implies summability, but summability doesn’t insure convergence. To see
that a sequence can be summable without being convergent, notice that the oscillatory
sequence {0, 1, 0, 1, . . .} doesn’t converge, but it is summable to 1/2, the mean value of
{0, 1}. Averaging has a smoothing effect, so oscillations that prohibit convergence of the
original sequence tend to be smoothed away or averaged out in the Cesàro sequence.

Similar statements hold for sequences of vectors and matrices, but Cesàro summa-
bility is particularly interesting when it is applied to the sequence P = {Ak}∞k=0 of powers
of a square matrix A.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 163

Summability
A ∈ Cn×n is Cesàro summable if and only if ρ(A) < 1 or else ρ(A) = 1 with
each eigenvalue on the unit circle being semisimple. When it exists, the limit

lim
k→∞

I + A + · · · + Ak−1

k
= G (15.1.18)

is the projector onto N (I − A) along R (I − A).

Notice that G �= 0 if and only if 1 ∈ σ (A) , in which case G is the spectral projector
associated with λ = 1. Furthermore, if limk→∞ Ak = G, then A is summable to G, but
not conversely.

The Power Method

Google’s original method of choice for computing the PageRank vector was the power
method, which is an iterative technique for computing a dominant eigenpair (λ1,x) of a
diagonalizable matrix A ∈ �m×m with eigenvalues

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λk|.
For the Google matrix, the dominant eigenvalue is λ1 = 1, but since the analysis of the
power method is not dependent on this fact, we will allow λ1 to be more general. How-
ever, notice that the hypothesis |λ1| > |λ2| implies λ1 is real—otherwise λ1 (the complex
conjugate) is another eigenvalue with the same magnitude as λ1. Consider the function
f(z) = (z/λ1)n, and use the spectral representation (15.1.11) along with |λi/λ1| < 1 for
i = 2, 3, . . . , k to conclude that(

A
λ1

)n

= f(A) = f(λ1)G1 + f(λ2)G2 + · · · + f(λk)Gk

=G1 +
(

λ2

λ1

)n

G2 + · · · +
(

λk

λ1

)n

Gk → G1 as n → ∞. (15.1.19)

For every x0 we have (Anx0/λn
1) → G1x0 ∈ N (A − λ1I), so, if G1x0 �= 0, then

Anx0/λn
1 converges to an eigenvector associated with λ1. This means that the direction of

Anx0 tends toward the direction of an eigenvector because λn
1 acts only as a scaling factor

to keep the length of Anx0 under control. Rather than using λn
1 , we can scale Anx0 with

something more convenient. For example, ‖Anx0‖ (for any vector norm) is a reasonable
scaling factor, but there are better choices. For vectors v, let m(v) denote the component
of maximal magnitude, and if there is more than one maximal component, let m(v) be the
first maximal component—e.g., m(1, 3,−2) = 3, and m(−3, 3,−2) = −3. The power
method can be summarized as follows.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

164 CHAPTER 15

Power Method
Start with an arbitrary guess x0. (Actually it can’t be completely arbitrary because
you need x0 /∈ R (A − λ1I) to ensure G1x0 �= 0, but it’s highly unlikely that
randomly chosen vector x0 will satisfy G1x0 = 0.) It can be shown [127, p. 534]
that if we set

yn = Axn, νn = m(yn), xn+1 =
yn

νn
, for n = 0, 1, 2, . . . , (15.1.20)

then xn → x and νn → λ1, where Ax = λ1x.

There are several reasons why the power method might be attractive for computing
Google’s PageRank vector.

• Each iteration requires only one matrix-vector product, and this can be exploited to
reduce the computational effort when A is large and sparse (mostly zeros), as is the
case in Google’s application.

• Computations can be done in parallel by simultaneously computing inner products
of rows of A with xn.

• It’s clear from (15.1.19) that, for a diagonalizable matrix, the rate at which (15.1.20)
converges depends on how fast (λ2/λ1)n → 0. As discussed in section 4.7, Google
can regulate |λ2| through the choice of the Google parameter α, so they can control
the rate of convergence (it’s just assumed that Google’s matrix is diagonalizable).

• Since λ1 = 1 for Google’s PageRank problem, there is no need for the scaling factor
νn. In other words, the iterations are simply xn+1 = Axn.

Linear Stationary Iterations

Solving systems of linear equations An×nx = b is a frequent necessity for Web search
applications, but the magnitude of n is usually too large for direct solution methods based
on Gaussian elimination to be effective. Consequently, iterative techniques are often the
only choice, and, because of size, sparsity, and memory considerations, the preferred algo-
rithms are the simpler methods based on matrix-vector products that require no additional
storage beyond that of the original data. Linear stationary iterative methods are the most
common.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 165

Linear Stationary Iterations
Let Ax = b be a linear system that is square but otherwise arbitrary. Writing A
as A = M − N in which M−1 exists is called a splitting of A, and the product
H = M−1N is called the associated iteration matrix. For d = M−1b and for an
initial vector x(0), the sequence defined by

x(k) = Hx(k − 1) + d k = 1, 2, 3, . . . (15.1.21)

is called a linear stationary iteration. The primary result governing the conver-
gence of (15.1.21) is the fact that if ρ(H) < 1, then A is nonsingular, and

lim
k→∞

x(k) = x = A−1b (the solution to Ax = b) for every x(0). (15.1.22)

In theory, the convergence rate of (15.1.21) is governed by the size of ρ(H) along
with the index of its associated eigenvalue—look at (15.1.13). But for practical work an
indication of how many digits of accuracy can be expected to be gained per iteration is
needed. Suppose that Hn×n is diagonalizable with

σ (H) = {λ1, λ2, . . . , λs} , where 1 > |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λs|
(which is frequently the case in applications), and let ε(k) = x(k) − x denote the error
after the kth iteration. Subtracting x = Hx + d (the limiting value in (15.1.21)) from
x(k) = Hx(k − 1) + d produces (for large k)

ε(k) = Hε(k − 1) = Hkε(0) = (λk
1G1 + λk

2G2 + · · · + λk
sGs)ε(0) ≈ λk

1G1ε(0),

where the Gi’s are the spectral projectors occurring in the spectral decomposition (15.1.11)
of Hk. Similarly, ε(k − 1) ≈ λk−1

1 G1ε(0), so comparing the ith components of ε(k − 1)
and ε(k) reveals that after several iterations,∣∣∣∣εi(k − 1)

εi(k)

∣∣∣∣ ≈ 1
|λ1|

=
1

ρ (H)
for each i = 1, 2, . . . , n.

To understand the significance of this, suppose for example that

|εi(k − 1)| = 10−q and |εi(k)| = 10−p with p ≥ q > 0,

so that the error in each entry is reduced by p − q digits per iteration, and we have

p − q = log10

∣∣∣∣εi(k − 1)
εi(k)

∣∣∣∣ ≈ − log10 ρ (H) .

Below is a summary.

Asymptotic Convergence Rate
The number R = − log10 ρ (H) , called the asymptotic convergence rate for
(15.1.21), is used to compare different linear stationary iterative algorithms be-
cause it is an indication of the number of digits of accuracy that can be expected
to be eventually gained on each iteration of x(k) = Hx(k − 1) + d.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

166 CHAPTER 15

Each different splitting A = M − N produces a different iterative algorithm, but
there are three particular splittings that have found widespread use.

The Three Classical Splittings

• Jacobi’s method is the result of splitting A = D−N, where D is the diagonal
part of A (assuming each aii �= 0), and (−N) is the matrix containing the off-
diagonal entries of A. The Jacobi iteration is x(k) = D−1Nx(k− 1)+D−1b.

• The Gauss-Seidel method is the result of splitting A = (D−L)−U, where D
is the diagonal part of A (assuming each aii �= 0), and where (−L) and (−U)
contain the entries occurring below and above the diagonal of A, respectively.
The iteration matrix is H = (D − L)−1U, and d = (D − L)−1b. The Gauss-
Seidel iteration is x(k) = (D − L)−1Ux(k − 1) + (D − L)−1b.

• The successive overrelaxation (SOR) method incorporates a relaxation pa-
rameter ω �= 0 into the Gauss-Seidel method to build a splitting A = M − N,
where M = ω−1D − L and N = (ω−1 − 1)D + U.

It can be shown that Jacobi’s method as well as the Gauss-Seidel method converge
when A is diagonally dominant (i.e., when |aii| >

∑
j �=i |aij | for each i = 1, 2, . . . , n.)

This along with other convergence details can be found in [127].

M-matrices

Because the PageRank vector can be view as the solution to a Markov chain, and because
I − P is an M-matrix whenever P is a probability transition matrix, it’s handy to know a
few facts about M-matrices (named in honor Hermann Minkowski).

M-matrices
A square (real) matrix A is called an M-matrix whenever there exists a matrix
B ≥ 0 (i.e., bij ≥ 0) and a real number r ≥ ρ(B) such that A = rI − B.

If r > ρ(B) in the above definition then A is a nonsingular M-matrix. Below are
some of the important properties of nonsingular M-matrices.

• A is a nonsingular M-matrix if and only if aij ≤ 0 for all i �= j and A−1 ≥ 0.

• If A is a nonsingular M-matrix, then Re(λ) > 0 for all λ ∈ σ (A) . Conversely, all
matrices with nonpositive off-diagonal entries whose spectrums are in the right-hand
halfplane are nonsingular M-matrices.

• Principal submatrices of nonsingular M-matrices are also nonsingular M-matrices.

• If A is an M-matrix, then all of its principal minors are nonnegative. If A is a
nonsingular M-matrix, then all principal minors are positive.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 167

• All matrices with nonpositive off-diagonal entries whose principal minors are non-
negative are M-matrices. All matrices with nonpositive off-diagonal entries whose
principal minors are positive are nonsingular M-matrices.

• If A = M − N is a splitting of a nonsingular M-matrix for which M−1 ≥ 0, then
the linear stationary iteration (15.1.21) converges for all initial vectors x(0) and for
all right-hand sides b. In particular, Jacobi’s method converges.

15.2 PERRON–FROBENIUS THEORY

At a mathematics conference held a few years ago our friend Hans Schneider gave a mem-
orable presentation titled “Why I Love Perron–Frobenius” in which he made the case that
the Perron–Frobenius theory of nonnegative matrices is not only among the most elegant
theories in mathematics, but it is also among the most useful. One might sum up Hans’s
point by saying that Perron–Frobenius is a testament to the fact that beautiful mathematics
eventually tends to be useful, and useful mathematics eventually tends to be beautiful. The
applications involving PageRank, HITS, and other ranking schemes [103] help to under-
score this principle.

A matrix A is said to be nonnegative when each entry is a nonnegative number
(denote this by writing A ≥ 0). Similarly, A is a positive matrix when each aij > 0 (write
A > 0). For example, the hyperlink matrix H and the stochastic matrix S (from Chapter
4) that are at the foundation of PageRank are nonnegative matrices, and the Google matrix
G is a positive matrix. Consequently, properties of positive and nonnegative matrices
govern the behavior of PageRank, and the Perron–Frobenius theory reveals these properties
by describing the nature of the dominant eigenvalues and eigenvectors of positive and
nonnegative matrices.

Perron

So much of the mathematics of PageRank, HITS, and associated ideas involves nonnega-
tive matrices and graphs. This section provides you with the needed ammunition to handle
these concepts. Perron’s 1907 theorem provides the insight for understanding the eigen-
structure of positive matrices. Perron’s theorem for positive matrices is stated below, and
the proof is in [127].

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

168 CHAPTER 15

Perron’s Theorem for Positive Matrices
If An×n > 0 with r = ρ (A) , then the following statements are true.

1. r > 0.

2. r ∈ σ (A) (r is called the Perron root).

3. alg multA (r) = 1 (the Perron root is simple).

4. There exists an eigenvector x > 0 such that Ax = rx.

5. The Perron vector is the unique vector defined by

Ap = rp, p > 0, ‖p‖1 = 1,

and, except for positive multiples of p, there are no other nonnegative eigenvec-
tors for A, regardless of the eigenvalue.

6. r is the only eigenvalue on the spectral circle of A.

7. r = maxx∈N f(x), (the Collatz–Wielandt formula),

where f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x �= 0}.

Extensions to Nonnegative Matrices

Perron’s theorem for positive matrices is a powerful result, so it’s only natural to ask what
happens when zero entries creep into the picture. Not all is lost if we are willing to be
flexible. The next theorem (the proof of which is in [127]) says that a portion of Perron’s
theorem for positive matrices can be extended to nonnegative matrices by sacrificing the
existence of a positive eigenvector for a nonnegative one.

Perron’s Theorem for Nonnegative Matrices
For An×n ≥ 0 with r = ρ (A) , the following statements are true.

• r ∈ σ (A) , (but r = 0 is possible).

• There exists an eigenvector x ≥ 0 such that Ax = rx.

• The Collatz–Wielandt formula remains valid.

Frobenius

This is as far as Perron’s theorem can be generalized to nonnegative matrices without

additional hypothesis. For example, A =
(

0 1
0 0

)
shows that properties 1, 3, and 4 in

Perron’s theorem for positive matrices do not hold for general nonnegative matrices, and

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 169

A =
(

0 1
1 0

)
shows that property 6 is also lost. Rather than accepting that the major issues

concerning spectral properties of nonnegative matrices had been settled, F. G. Frobenius
had the insight in 1912 to look below the surface and see that the problem doesn’t stem
just from the existence of zero entries, but rather from the positions of the zero entries. For
example, properties 3 and 4 in Perron’s theorem do not hold for

A =
(

1 0
1 1

)
, but they are valid for B =

(
1 1
1 0

)
.

Frobenius’s genius was to see that the difference between A and B is in terms of matrix
reducibility (or irreducibility) and to relate these ideas to spectral properties of nonnegative
matrices. The next section introduces these ideas.

Graph and Irreducible Matrices

A graph is a set of nodes {N1, N2, . . . , Nn} and a set of edges {E1, E2, . . . , Ek} between
the nodes. A connected graph is one in which there is a sequence of edges linking any pair
of nodes. For example, the graph shown on the right-hand side of Figure 15.1 is undirected
and connected.

A directed graph is a graph containing directed edges. A directed graph is said to be
strongly connected if for each pair of nodes (Ni, Nk) there is a sequence of directed edges
leading from Ni to Nk. The graph on the left-hand side of Figure 15.1 is directed but not
strongly connected (e.g., you can’t get from N3 to N1).

E6

E5

E4

E3

E2E1

N1

N2

N3

N4

E6

E5

E4

E3

E2E1

N1

N2

N3

N4

Undirected and connected Directed but not strongly connected

Figure 15.1

Each graph defines two useful matrices—an adjacency matrix and an incidence ma-
trix. For a graph G containing nodes {N1, N2, . . . , Nn}, the adjacency matrix Ln×n is the
(0, 1)-matrix having

lij =
{ 1 if there is an edge from Ni to Nj ,

0 otherwise.

If G is undirected, then its adjacency matrix L is symmetric (i.e., L = LT). For example,

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

170 CHAPTER 15

the adjacency matrices for the two graphs shown in Figure 15.1 are

L1 =

⎛⎜⎝
N1 N2 N3 N4

N1 0 1 1 1
N2 1 0 1 1
N3 1 1 0 1
N4 1 1 1 0

⎞⎟⎠L2 =

⎛⎜⎝
N1 N2 N3 N4

N1 0 0 1 1
N2 1 0 1 0
N3 0 0 0 0
N4 0 1 1 0

⎞⎟⎠
For an undirected graph G with nodes {N1, N2, . . . , Nn} and edges {E1, E2, . . . , Ek}, the
incidence matrix Cn×k is the (0, 1)-matrix having

cij =
{ 1 if node Ni touches edge Ej ,

0 otherwise.

If G is a directed graph, then its incidence matrix is the (0,−1, 1)-matrix having

cij =

⎧⎨⎩
1 if edge Ej is directed toward node Ni,

−1 if edge Ej is directed away from node Ni,
0 if edge Ej neither begins nor ends at node Ni.

For example, the incidence matrices for the two graphs shown in Figure 15.1 are

C1 =

⎛⎜⎝
E1 E2 E3 E4 E5 E6

N1 1 1 0 0 1 0
N2 1 0 1 1 0 0
N3 0 0 1 0 1 1
N4 0 1 0 1 0 1

⎞⎟⎠ and C2 =

⎛⎜⎝
E1 E2 E3 E4 E5 E6

N1 1 −1 0 0 −1 0
N2 −1 0 −1 1 0 0
N3 0 0 1 0 1 1
N4 0 1 0 −1 0 −1

⎞⎟⎠.

There is a direct connection between the connectivity of a directed graph and the
rank of its incidence matrix.

Connectivity and Rank
A directed graph with n nodes and incidence matrix C is connected if and only if

rank (C) = n − 1. (15.2.1)

For undirected graphs, arbitrarily assign directions to the edges to make the graph
directed and apply (15.2.1) [127, p. 203].

Instead of starting with a graph to build a matrix, we can also do it in reverse—i.e.,
start with a matrix and build a graph. Given a matrix An×n, the graph of A is defined to be
the directed graph G(A) on a set of nodes {N1, N2, . . . , Nn} in which there is a directed

edge leading from Ni to Nj if and only if aij �= 0. For example, if A =
(

1 0
2 3

)
, then the

graph G(A) looks like this:

1 2

Any product of the form PT AP in which P is a permutation matrix (a matrix ob-
tained from the identity matrix I by permuting its rows or columns) is called a symmetric
permutation of A. The effect of a symmetric permutation to a matrix is to interchange rows

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 171

in the same way as columns are interchanged. The effect of a symmetric permutation on
the graph of a matrix is to relabel the nodes. Consequently, the directed graph of a matrix
in invariant under a symmetric permutation. In other words, G(PT AP) = G(A) whenever

P is a permutation matrix. For example, if P is the permutation matrix P =
(

0 1
1 0

)
, and

if we again use A =
(

1 0
2 3

)
, then

PT AP =
(

3 2
0 1

)
, (15.2.2)

and the graph G(PT AP) looks like this:

2 1

Matrix An×n is said to be a reducible matrix when there exists a permutation matrix
P such that

PT AP =
(

X Y
0 Z

)
, where X and Z are both square. (15.2.3)

For example, the matrix A in (15.2.2) is clearly reducible. Naturally, an irreducible matrix
is a matrix that is not reducible.

As the following theorem shows, the concepts of matrix irreducibility (or reducibil-
ity) and strong connectivity (or lack thereof) are intimately related.

Irreducibility and Connectivity
A square matrix A is irreducible if and only if its directed graph is strongly con-
nected. In other words, A is irreducible if and only if for each pair of indices (i, j)
there is a sequence of entries in A such that aik1ak1k2 · · · aktj �= 0. Equivalently,
A is irreducible if for all permutation matrices P,

PT AP �=
(

X Y
0 Z

)
, where X and Z are square.

For example, can you determine if

A =

⎛⎜⎜⎜⎝
0 1 2 0 0
0 0 0 7 0
2 0 0 0 0
0 9 2 0 4
0 0 0 1 0

⎞⎟⎟⎟⎠
is reducible or irreducible? It would be a mistake to try to use the definition because
deciding on whether or not there exists a permutation matrix P such that (15.2.3) holds by
sorting through all 6 × 6 permutation matrices is pretty hard. However, the above theorem
makes the question easy. Examining G(A) reveals that it is strongly connected (every node
is accessible by some sequence of paths from every other node), so A must be irreducible.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

172 CHAPTER 15

The Perron–Frobenius Theorem

Frobenius’s contribution was to realize that while properties 1, 3, 4, and 6 in Perron’s theo-
rem for positive matrices can be lost when zeros creep into the picture (i.e., for nonnegative
matrices), the trouble is not simply the existence of zero entries, but rather the problem is
the location of the zero entries. In other words, Frobenius realized that the lost properties
1, 3, and 4 are in fact not lost when the zeros are in just the right locations—namely the
locations that ensure that the matrix is irreducible. Unfortunately irreducibility alone still
does not save property 6—it remains lost (more about this issue later).

Below is the formal statement of the Perron–Frobenius theorem—the details con-
cerning the proof can be found in [127].

Perron–Frobenius Theorem
If An×n ≥ 0 is irreducible, then each of the following is true.

1. r = ρ (A) > 0.

2. r ∈ σ (A) (r is the Perron root).

3. alg multA (r) = 1. (the Perron root is simple).

4. There exists an eigenvector x > 0 such that Ax = rx.

5. The Perron vector is the unique vector defined by

Ap = rp, p > 0, ‖p‖1 = 1,

and, except for positive multiples of p, there are no other nonnegative eigenvec-
tors for A, regardless of the eigenvalue.

6. r need not be the only eigenvalue on the spectral circle of A.

7. r = maxx∈N f(x), (the Collatz–Wielandt formula),

where f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x �= 0}.

Primitive Matrices

The only property in Perron’s theorem for positive matrices on page 168 that irreducibility
is not able to salvage is the sixth property, which states that there is only one eigenvalue on

the spectral circle. Indeed, A =
(

0 1
1 0

)
is nonnegative and irreducible, but the eigenvalues

±1 are both on the unit circle. The property of having (or not having) only one eigenvalue
on the spectral circle divides the set of nonnegative irreducible matrices into two important
classes.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 173

Primitive Matrices

• A matrix A is defined to be a primitive matrix when A is a nonnegative irre-
ducible matrix that has only one eigenvalue, r = ρ (A) , on its spectral circle.

• A nonnegative irreducible matrix having h > 1 eigenvalues on its spectral circle
is said to be imprimitive, and h is called the index of imprimitivity.

• If A is imprimitive, then the h eigenvalues on the spectral circle are

{r, rω, rω2, . . . , rωh−1}, where ω = e2πi/h.

In other words, they are the hth roots of r = ρ (A) , and they are uniformly
spaced around the circle. Furthermore each eigenvalue rωk on the spectral circle
is simple.

So what’s the big deal about having only one eigenvalue on the spectral circle? Well,
primitivity is important because it’s precisely what determines whether or not the powers
of a normalized nonnegative irreducible matrix will have a limiting value, and this is the
fundamental issue concerning the existence of the PageRank vector. The precise wording
of the theorem is as follows.

Limits and Primitivity
A nonnegative irreducible matrix A with r = ρ (A) is primitive if and only if
limk→∞(A/r)k exists, in which case

lim
k→∞

(A
r

)k

=
pqT

qT p
> 0, (15.2.4)

where p and qT are the respective right-hand and left-hand Perron vectors for A.

If An×n ≥ 0 is irreducible but imprimitive so that there are h > 1 eigenvalues
on the spectral circle, then it can be demonstrated [127] that each of these eigenvalues is
simple and that they are distributed uniformly on the spectral circle in the sense that they
are the hth roots of r = ρ (A)—i.e., the eigenvalues on the spectral circle are given by

{r, rω, rω2, . . . , rωh−1}, where ω = e2πi/h.

Given a nonnegative matrix, do we really have to compute the eigenvalues and count
how many fall on the spectral circle to check for primitivity? No! There are simpler tests.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

174 CHAPTER 15

Tests for Primitivity
For a square nonnegative matrix A, each of the following is true.

• A is primitive if A is irreducible and has at least one positive diagonal element.

• A is primitive if and only if Am > 0 for some m > 0.

The first test above only provides a sufficient condition for primitivity, while the sec-
ond condition is both necessary and sufficient—the first test is cheaper but not conclusive,
while the second is more expensive, but absolutely conclusive. For example, to determine

whether or not the irreducible matrix A =
(

0 1 0
0 0 2
3 4 0

)
is primitive, the first test doesn’t

apply because the diagonal of A is entirely zeros, so we are forced to apply the second test
by computing powers of A. But the job is simplified by noticing that if B is the Boolean
matrix defined by

bij =
{

1 if aij > 0,
0 if aij = 0,

then [Bk]ij > 0 if and only if [Ak]ij > 0 for every k > 0. Therefore, we only need
to compute powers of B (it can be shown that no more than n2 − 2n + 2 powers are
required), and these powers require only Boolean operations AND and OR. The matrix
A in this example is primitive because the powers of B are

B =

(
0 1 0
0 0 1
1 1 0

)
, B

2
=

(
0 0 1
1 1 0
0 1 1

)
, B

3
=

(
1 1 0
0 1 1
1 1 1

)
, B

4
=

(
0 1 1
1 1 1
1 1 1

)
, B

5
=

(
1 1 1
1 1 1
1 1 1

)
.

While we might prefer our matrices to be primitive, Mother Nature doesn’t always
cooperate. Mathematical models of physical phenomena that involve oscillations gener-
ally produce imprimitive matrices, where the number of eigenvalues on the spectral circle
(the index of imprimitivity) corresponds to the period of oscillation. Consequently, it’s
worthwhile to have a grasp on the index of imprimitivity. While the powers of an irre-
ducible matrix A ≥ 0 can tell us if A has more than one eigenvalue on its spectral circle,
the powers of A provide no clue to the number of such eigenvalues. The issue is more
complicated—the following theorem is the primary theoretical aid in determining the in-
dex of imprimitivity short of actually computing all eigenvalues.

Index of Imprimitivity
If c(x) = xn + ck1x

n−k1 + ck2x
n−k2 + · · ·+ cksx

n−ks = 0 is the characteristic
equation of an imprimitive matrix An×n in which only the terms with nonzero
coefficients are listed (i.e., each ckj �= 0, and n > (n−k1) > · · · > (n−ks)), then
the index of imprimitivity h is the greatest common divisor of {k1, k2, . . . , ks}.

Finally, it is often useful to decompose an imprimitive matrix, and the Frobenius
form is the standard way of doing so.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 175

Frobenius Form
For each imprimitive matrix A with index of imprimitivity h > 1, there exists a
permutation matrix P such that

PT AP=

⎛⎜⎜⎝
0 A12 0 · · · 0
0 0 A23 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 Ah−1,h

Ah1 0 · · · 0 0

⎞⎟⎟⎠, (15.2.5)

where the zero blocks on the main diagonal are square.

15.3 MARKOV CHAINS

The mathematical component of Google’s PageRank vector is the stationary distribution of
a discrete-time, finite-state Markov chain. So, to understand and analyze the mathematics
of PageRank, it’s necessary to have an appreciation of Markov chain concepts, and that’s
the purpose of this section. Let’s begin with some definitions.

• A stochastic matrix is a nonnegative matrix Pn×n in which each row sum is equal
to 1. Some authors say “row-stochastic” to distinguish this from the case when each
column sum is 1.

• A stochastic process is a set of random variables{Xt}∞t=0 having a common range
{S1, S2, . . . , Sn}, which is called the state space for the process. Parameter t is
generally thought of as time, and Xt represents the state of the process at time t. For
example, consider the process of surfing the Web by successively clicking on links
to move from one Web page to another. The state space is the set of all Web pages,
and the random variable Xt is the Web page being viewed at time t.

– To emphasize that time is considered discretely rather than continuously the
phrase “discrete-time process” is often used, and the phrase “finite-state pro-
cess” can be used to emphasize that the state space is finite rather than infinite.
Our discussion is limited to discrete-time finite-state processes.

• A Markov chain is a stochastic process that satisfies the Markov property

P (Xt+1 = Sj |Xt=Sit , Xt−1=Sit−1 , . . . , X0=Si0) = P (Xt+1 = Sj |Xt = Sit)

for each t = 0, 1, 2, The notation P (E |F) denotes the conditional probability
that event E occurs given event F occurs—a review some elementary probability is
in order if this is not already a familiar concept.

– The Markov property asserts that the process is memoryless in the sense that
the state of the chain at the next time period depends only on the current state
and not on the past history of the chain. For example, the process of surfing the
Web is a Markov chain provided that the next page that the Web surfer visits
doesn’t depend on the pages that were visited in the past—the choice depends

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

176 CHAPTER 15

only on the current page. In other words, if the surfer randomly selects a link
on the current page in order to get to the next Web page, then the process is a
Markov chain. This kind of chain is referred to as a random walk on the link
structure of the Web.

• The transition probability pij(t) = P (Xt = Sj |Xt−1 = Si) is the probability of
being in state Sj at time t given that the chain is in state Si at time t− 1, so think of
this simply as the probability of moving from Si to Sj at time t.

• The transition probability matrix Pn×n(t) = [pij(t)] is clearly a nonnegative ma-
trix, and a little thought should convince you that each row sum must be 1. In other
words, P(t) is a stochastic matrix for each t.

• A stationary Markov chain is a chain in which the transition probabilities do not
vary with time—i.e., pij(t) = pij for all t. Stationary chains are also known as
homogeneous chains.

– In this case the transition probability matrix is a constant stochastic matrix
P = [pij]. Stationarity is assumed in the sequel.

– In such a way, every Markov chain defines a stochastic matrix, but the con-
verse is also true—every stochastic matrix Pn×n defines an n-state Markov
chain because the entries pij define a set of transition probabilities that can be
interpreted as a stationary Markov chain on n states.

• An irreducible Markov chain is a chain for which the transition probability matrix
P is an irreducible matrix. A chain is said to be reducible when P is a reducible
matrix.

– A periodic Markov chain is an irreducible chain whose transition probability
matrix P is an imprimitive matrix. These chains are called periodic because
each state can be occupied only at periodic points in time, where the period is
the index of imprimitivity. For example, consider an irreducible chain whose
index of imprimitivity is h = 3. The Frobenius form (15.2.5) means that the
states can be reorder (relabeled) to create three clusters of states for which the
transition matrix and its powers have the form

P=
(

0 � 0
0 0 �
� 0 0

)
, P2 =

(
0 0 �
� 0 0
0 � 0

)
, P3 =

(
� 0 0
0 � 0
0 0 �

)
, P4 =

(
0 � 0
0 0 �
� 0 0

)
· · ·,

where this pattern continues indefinitely. If the chain begins in a state in cluster
i, then this periodic pattern ensures that the chain can occupy a state in cluster
i only at the end of every third step—see transient properties on page 179.

– An aperiodic Markov chain is an irreducible chain whose transition probability
matrix P is a primitive matrix.

• A probability distribution vector (or “probability vector” for short) is defined to be
a nonnegative row vector pT = (p1, p2, . . . , pn) such that

∑
k pk = 1. (Every row

in a stochastic matrix is probability vector.)

• A stationary probability distribution vector for a Markov chain whose transition
probability matrix is P is a probability vector πT such that πT P = πT .

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 177

• The kthstep probability distribution vector for an n-state chain is defined to be

pT (k) =
(
p1(k), p2(k), . . . , pn(k)

)
, where pj(k) = P (Xk = Sj).

In other words, pj(k) is the probability of being in the jth state after the kth step,
but before the (k + 1)st step.

• The initial distribution vector is

pT (0) =
(
p1(0), p2(0), . . . , pn(0)

)
, where pj(0) = P (X0 = Sj).

In other words, pj(0) is the probability that the chain starts in Sj .

To illustrate these concepts, consider the tiny three-page web shown in Figure 15.2,

1

32

Figure 15.2

where the arrows indicate links—e.g., page 2 contains two links to page 3, and vice versa.
The Markov chain defined by a random walk on this link structure evolves as a Web surfer
clicks on a randomly selected link on the page currently being viewed, and the transition
probability matrix for this chain is the irreducible stochastic matrix

H =

⎛⎝ 0 1/2 1/2
1/3 0 2/3
1/3 2/3 0

⎞⎠ .

In this example H (the hyperlink matrix) is stochastic, but if there had been a dangling
node (a page containing no links to click on), then H would have a zero row, in which case
H would not be stochastic and the process would not be a Markov chain. 1

If our Web surfer starts on page 2 in Figure 15.2, then the initial distribution vector
for the chain is pT (0) = (0, 1, 0) = eT

2 . But if the surfer simply selects an initial page
at random, then pT (0) = (1/3, 1/3, 1/3) = eT /3 is the uniform distribution vector. A
standard eigenvalue calculation reveals that σ (H) = {1, −1/3, /,−2/3}, so it’s apparent
that H is a nonnegative matrix having spectral radius ρ (H) = 1.

The fact that ρ (H) = 1 is a feature of all stochastic matrices Pn×n because having
row sums equal to 1 means that ‖P‖∞ = 1 or, equivalently, Pe = e, where e is the
column of all 1’s. Because (1, e) is an eigenpair for every stochastic matrix, and because
ρ (�) ≤ ‖�‖ for every matrix norm, it follows that it follows that

1 ≤ ρ (P) ≤ ‖P‖∞ = 1 =⇒ ρ (P) = 1. (15.3.1)

1As explained earlier, this is why Google alters the raw hyperlink matrix before computing PageRank.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

178 CHAPTER 15

Furthermore, e is a positive eigenvector associated with ρ (P) = 1. But be careful! This
doesn’t mean that you necessarily can call e the Perron vector for P because P might not

be irreducible, 2 e.g., consider P =
(

.5 .5
0 1

)
.

Almost all Markovian analysis revolves around questions concerning the transient
behavior of the chain as well as the limiting behavior, and standard goals are as follows.

• Describe the kth step distribution pT (k) for any initial distribution vector pT (0).

• Determine if limk→∞ pT (k) exists, and, if so, find the value of limk→∞ pT (k).

• When limk→∞ pT (k) doesn’t exist, determine if the Cesàro limit

lim
k→∞

[
pT (0) + pT (1) + · · · + pT (k − 1)

k

]
exists, and, if so, find its value and interpret its meaning.

Transient Behavior

Given an initial distribution vector pT (0) =
(
p1(0), p2(0), . . . , pn(0)

)
, the first aim is to

calculate the probability of being in any given state after the first transition (but before
the second)—i.e., determine pT (1) =

(
p1(1), p2(1), . . . , pn(1)

)
. Let ∧ and ∨ respectively

denote AND and OR . It follows from elementary probability theory that for each j,

pj(1) =P (X1=Sj) = P
[
X1=Sj ∧ (X0=S1 ∨ X0=S2 ∨ · · · ∨ X0=Sn)

]
= P
[
(X1=Sj ∧ X0=S1) ∨ (X1=Sj ∧ X0=S2) ∨ · · · ∨ (X1=Sj ∧ X0=Sn)

]
=

n∑
i=1

P
[
X1=Sj ∧ X0=Si

]
=

n∑
i=1

P
[
X0 = Si

]
P
[
X1 = Sj |X0 = Si

]
=

n∑
i=1

pi(0)pij .

In other words, pT (1) = pT (0)P, which describes the evolution from the initial distribu-
tions to the distribution after one step. The “no memory” Markov property provides the
state of affairs at the end of two steps—it says to simply start over but with pT (1) as the
initial distribution. Consequently, pT (2) = pT (1)P, and pT (3) = pT (2)P, etc., and
successive substitution yields

pT (k) = pT (0)Pk, (15.3.2)

which is simply a special case of the power method (15.1.20) except that left-hand vector-
matrix multiplication is used. Furthermore, if Pk =

[
p
(k)
ij

]
, then setting pT (0) = eT

i in

(15.3.2) yields pj(k) = p
(k)
ij for each i = 1, 2, . . . , n. Below is a summary.

2The need to force irreducibility is another reason why Google modifies the raw hyperlink matrix.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 179

Transient Properties
If P is the transition probability matrix for a Markov chain on states
{S1, S2, . . . , Sn}, then each of the following is true.

• The matrix Pk represents the k-step transition probability matrix in the sense
that its (i, j)-entry [Pk]ij = p

(k)
ij is the probability of moving from Si to Sj in

exactly k steps.

• The kth step distribution vector is given by pT (k) = pT (0)Pk.

Limiting Behavior

Analyzing limiting properties of Markov chains requires that the class of stochastic ma-
trices (and hence the class of stationary Markov chains) be divided into four mutually
exclusive categories.

(1) P is irreducible with limk→∞ Pk existing (i.e., P is primitive).
(2) P is irreducible with limk→∞ Pk not existing (i.e., P is imprimitive).
(3) P is reducible with limk→∞ Pk existing.
(4) P is reducible with limk→∞ Pk not existing.

In case (1) (an aperiodic chain) limk→∞ Pk can be easily evaluated. The Perron vector
for P is e/n (the uniform distribution vector), so if π = (π1, π2, . . . , πn)T is the Perron
vector for PT , (i.e., πT P = πT) then, by (15.2.4),

lim
k→∞

Pk =
(e/n)πT

πT (e/n)
=

eπT

πT e
= eπT =

⎛⎜⎜⎝
π1 π2 · · · πn

π1 π2 · · · πn
...

...
...

π1 π2 · · · πn

⎞⎟⎟⎠ > 0. (15.3.3)

Therefore, if P is primitive, then a limiting probability distribution exists and is given by

lim
k→∞

pT (k) = lim
k→∞

pT (0)Pk = pT (0)eπT = πT . (15.3.4)

Notice that because
∑

k pk(0) = 1, the term pT (0)e drops away, so the value of the limit
is independent of the value of the initial distribution pT (0), which isn’t too surprising.

In case (2), where P is irreducible but imprimitive, (15.2.4) insures that limk→∞ Pk

cannot exist, and hence limk→∞ pT (k) cannot exist (otherwise taking pT (0) = eT
i for

each i would insure that Pk has a limit). However, the results on page 173 insure that the
eigenvalues of P lying on the unit circle are each simple, so, by (15.1.18), P is Cesàro
summable to the spectral projector G associated with the eigenvalue λ = 1. By recall-
ing (15.1.12) and using the fact that e/n is the Perron vector for P, it follows that if

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

180 CHAPTER 15

πT = (π1, π2, . . . , πn) is the left-hand Perron vector, then

lim
k→∞

I + P + · · · + Pk−1

k
=

(e/n)πT

πT (e/n)
=

eπT

πT e
= eπT =

⎛⎜⎜⎝
π1 π2 · · · πn

π1 π2 · · · πn
...

...
...

π1 π2 · · · πn

⎞⎟⎟⎠ ,

which is exactly the same form as the limit (15.3.3) for the primitive case. Consequently,
the kth step distributions have a Cesàro limit given by

lim
k→∞

[
pT (0) + pT (1) + · · · + pT (k − 1)

k

]
= lim

k→∞
pT (0)

[
I + P + · · · + Pk−1

k

]
=pT (0)eπT = πT ,

and, just as in the primitive case (15.3.4), this Cesàro limit is independent of the initial
distribution. To interpret the meaning of this Cesàro limit, focus on one state, say Sj , and
let {Zk}∞k=0 be random variables that count the number of visits to Sj by setting

Z0 =
{

1 if the chain starts in Sj ,
0 otherwise,

and for i > 1,

Zi =
{

1 if the chain is in Sj after the ith move,
0 otherwise.

Notice that Z0 + Z1 + · · · + Zk−1 counts the number of visits to Sj before the kth move,
so (Z0 + Z1 + · · · + Zk−1)/k represents the fraction of times that Sj is hit before the kth

move. The expected (or mean) value of each Zi is

E[Zi] = 1 · P (Zi=1) + 0 · P (Zi=0) = P (Zi=1) = pj(i).

Since expectation is linear, the expected fraction of times that Sj is hit before move k is

E

[
Z0 + Z1 + · · · + Zk−1

k

]
=

E[Z0] + E[Z1] + · · · + E[Zk−1]
k

=
pj(0) + pj(1) + · · · + pj(k − 1)

k
=
[
pT (0) + pT (1) + · · · + pT (k − 1)

k

]
j

→πj .

In other words, the long-run fraction of time that the chain spends in Sj is πj , which is
the jth component of the Cesàro limit or, equivalently, the jth component of the left-hand
Perron vector for P. When limk→∞ pT (k) exists, it is easily argued that

lim
k→∞

pT (k) = lim
k→∞

[
pT (0)+pT (1)+· · ·+pT (k−1)

k

]
so the interpretation of the limiting distribution limk→∞ pT (k) for the primitive case is
exactly the same as the interpretation of the Cesàro limit in the imprimitive case. Below is
a summary of irreducible chains.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 181

Irreducible Markov Chains
Let P be the transition probability matrix for an irreducible Markov chain on
states {S1, S2, . . . , Sn}, and let πT be the left-hand Perron vector for P (i.e.,
πT P = πT , ‖π‖1 = 1). The following hold for every initial distribution pT (0).

• The kth step transition matrix is Pk. In other words, the (i, j)-entry in Pk is the
probability of moving from Si to Sj in exactly k steps.

• The kth step distribution vector is given by pT (k) = pT (0)Pk.

• If P is primitive (so the chain is aperiodic), and if e is the column of all 1’s, then

lim
k→∞

Pk = eπT lim
k→∞

pT (k) = πT .

• If P is imprimitive (so the chain is periodic), then

limk→∞
I + P + · · · + Pk−1

k
= eπT

and

limk→∞

[
pT (0)+pT (1)+· · ·+pT (k−1)

k

]
= πT .

• Regardless of whether P is primitive or imprimitive, the jth component πj of
πT represents the long-run fraction of time that the chain is in Sj .

• The vector πT is the unique stationary distribution vector for the chain because
it is the unique probability distribution vector satisfying πT P = πT .

Reducible Markov Chains

The Perron–Frobenius theorem is not directly applicable to reducible chains (chains for
which P is a reducible matrix), so the strategy for analyzing reducible chains is to deflate
the situation, as much as possible, back to the irreducible case. If P is reducible, then, by
definition, there is a permutation matrix Q and square matrices X and Z such that

QT PQ =
(

X Y
0 Z

)
. For convenience, denote this by writing P ∼

(
X Y
0 Z

)
.

If X or Z is reducible, then another symmetric permutation can be performed to produce(
X Y
0 Z

)
∼
(

R S T
0 U V
0 0 W

)
, where R, U, and W are square.

Repeating this process eventually yields

P ∼

⎛⎜⎝
X11 X12 · · · X1k

0 X22 · · · X2k

...
. . .

...
0 0 · · · Xkk

⎞⎟⎠, where each Xii is irreducible or Xii = [0]1×1.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

182 CHAPTER 15

Finally, if there exist rows having nonzero entries only in diagonal blocks, then symmetri-
cally permute all such rows to the bottom to produce

P ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P11 P12 · · · P1r P1,r+1 P1,r+2 · · · P1m

0 P22 · · · P2r P2,r+1 P2,r+2 · · · P2m

.

.

.
. . .

.

.

.
.
.
.

.

.

. · · ·
.
.
.

0 0 · · · Prr Pr,r+1 Pr,r+2 · · · Prm

0 0 · · · 0 Pr+1,r+1 0 · · · 0
0 0 · · · 0 0 Pr+2,r+2 · · · 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · 0 0 0 · · · Pmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15.3.5)

where each P11, . . . ,Prr is either irreducible or [0]1×1, and Pr+1,r+1, . . . ,Pmm are ir-
reducible (they can’t be zero because each has row sums equal to 1). As mentioned on
page 171, the effect of a symmetric permutation is simply to relabel nodes in G(P) or,
equivalently, to reorder the states in the chain. When the states of a chain have been re-
ordered so that P assumes the form on the right-hand side of (15.3.5), we say that P is in
the canonical form for reducible matrices.

The results on page 173 guarantee that if an irreducible stochastic matrix P has h
eigenvalues on the unit circle, then these h eigenvalues are the hth roots of unity, and each
is a simple eigenvalue for P. The same can’t be said for reducible stochastic matrices, but
(15.3.5) leads to the next best result (the proof of which is in [127]).

Unit Eigenvalues
The unit eigenvalues are those eigenvalues that are on the unit circle. For every
stochastic matrix Pn×n, the following statements are true.

• Every unit eigenvalue of P is semisimple.

• Every unit eigenvalue has form λ = e2kπi/h for some k < h ≤ n.

• In particular, ρ (P) = 1 is always a semisimple eigenvalue of P.

The discussion on page 163 says that a matrix An×n is Cesàro summable if and
only if ρ(A) < 1 or ρ(A) = 1 with each eigenvalue on the unit circle being semisimple.
Since the result above says that the latter holds for all stochastic matrices P, we have the
following powerful realization concerning all stochastic matrices.

All Stochastic Matrices Are Summable
Every stochastic matrix P is Cesàro summable in the sense that

lim
k→∞

I + P + · · · + Pk−1

k
= G

always exists and, as discussed on page 163, the value of the limit is the spectral
projector G onto N (I − P) along R (I − P).

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 183

The structure and interpretation of the Cesàro limit when P is an irreducible stochas-
tic matrix was developed on page 181 so to complete the picture all that remains is to
analyze the nature of limk→∞ (I + P + · · · + Pk−1)/k for the reducible case.

Suppose that P =
(

T11 T12

0 T22

)
is a reducible stochastic matrix that is in the canon-

ical form (15.3.5), where

T11 =

⎛⎝P11 · · · P1r

. . .
...

Prr

⎞⎠, T12 =

⎛⎝P1,r+1 · · · P1m

...
...

Pr,r+1 · · · Prm

⎞⎠ , T22 =

⎛⎝Pr+1,r+1

. . .
Pmm

⎞⎠.

Because each row in T11 has a nonzero off-diagonal block, it follows that ρ (Pkk) < 1 for
each k = 1, 2, . . . , r. Consequently, ρ (T11) < 1, and

lim
k→∞

I + T11 + · · · + Tk−1
11

k
= lim

k→∞
Tk

11 = 0.

Furthermore, Pr+1,r+1, . . . ,Pmm are each irreducible stochastic matrices, so if πT
j is the

left-hand Perron vector for Pjj , r + 1 ≤ j ≤ m, then (15.1.12) combined with (15.1.18)
yields

lim
k→∞

I + T22 + · · · + Tk−1
22

k
=

⎛⎜⎝
eπT

r+1

. . .
eπT

m

⎞⎟⎠ = E.

It’s clear from (15.2.4) that limk→∞ Tk
22 exists if and only if Pr+1,r+1, . . . ,Pmm are

each primitive, in which case limk→∞ Tk
22 = E. Therefore, the limits, be they Cesàro or

ordinary (if it exists), all have the form

lim
k→∞

I + P + · · · + Pk−1

k
=
(

0 Z
0 E

)
= G = lim

k→∞
Pk (when it exists).

To determine the precise nature of Z, use the fact that R (G) = N (I − P) (because G is
the projector onto N (I − P) along R (I − P)) to write

(I − P)G = 0 =⇒
(

I − T11 −T12

0 I − T22

)(
0 Z
0 E

)
= 0 =⇒ (I − T11)Z = T12E.

Since I − T11 is nonsingular (because ρ (T11) < 1), it follows that

Z = (I − T11)−1T12E,

and thus the following results concerning limits of reducible chains are produced.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

184 CHAPTER 15

Reducible Markov Chains
If the states in a reducible Markov chain have been ordered to make the transition
matrix assume the canonical form

P =
(

T11 T12

0 T22

)
that is described in (15.3.5), and if πT

j is the left-hand Perron vector for Pjj

(r + 1 ≤ j ≤ m), then I − T11 is nonsingular, and

lim
k→∞

I + P + · · · + Pk−1

k
=
(

0 (I − T11)−1T12E

0 E

)
,

where

E =

⎛⎝ eπT
r+1

. . .
eπT

m

⎞⎠.

Furthermore, limk→∞ Pk exists if and only if the stochastic matrices
Pr+1,r+1, . . . ,Pmm in (15.3.5) are each primitive, in which case

lim
k→∞

Pk =
(

0 (I − T11)−1T12E

0 E

)
. (15.3.6)

Transient and Ergodic Classes

When the states of a chain are reordered so that P is in canonical form (15.3.5), the subset
of states corresponding to Pkk for 1 ≤ k ≤ r is called the kth transient class because once
left, a transient class can’t be reentered. The subset of states corresponding to Pr+j,r+j

for j ≥ 1 is called the jth ergodic class. Each ergodic class is an irreducible Markov chain
unto itself that is imbedded in the larger reducible chain. From now on, we will assume
that the states in reducible chains have been ordered so that P is in canonical form (15.3.5).

Every reducible chain eventually enters one of the ergodic classes, but what happens
after that depends on whether or not the ergodic class is primitive. If Pr+j,r+j is primitive,
then the chain settles down to a steady state defined by the left-hand Perron vector of
Pr+j,r+j , but if Pr+j,r+j is imprimitive, then the process will oscillate in the jth ergodic
class forever. There is not much more that can be said about the limit, but there are still
important questions concerning which ergodic class the chain will end up in and how long
it takes to get there. This time the answer depends on where the chain starts—i.e., on the
initial distribution.

For convenience, let Ti denote the ith transient class, and let Ej be the jth ergodic
class. Suppose that the chain starts in a particular transient state—say we start in the pth

state of Ti. Since the question at hand concerns only which ergodic class is hit but not what
happens after it’s entered, we might as well convert every state in each ergodic class into
a trap by setting Pr+j,r+j = I for each j ≥ 1 in (15.3.5). The transition matrix for this

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 185

modified chain is P̃ =
(

T11 T12

0 I

)
, and it follows from (15.3.6) that limk→∞ P̃k exists

and has the form

lim
k→∞

P̃k =
(

0 (I − T11)−1T12

0 I

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 L1,1 L1,2 · · · L1s

0 0 · · · 0 L2,1 L2,2 · · · L2s

...
. . .

...
...

... · · ·
...

0 0 · · · 0 Lr,1 Lr,2 · · · Lrs

0 0 · · · 0 I 0 · · · 0
0 0 · · · 0 0 I · · · 0
...

... · · ·
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Consequently, the (p, q)-entry in block Lij represents the probability of eventually hitting
the qth state in Ej given that we start from the pth state in Ti. Therefore, if e is the vector
of all 1’s, then the probability of eventually entering somewhere in Ej is given by

P (absorption into Ej | start in pth state of Ti) =
∑

k

[
Lij

]
pk

=
[
Lije

]
p
.

If pT
i (0) is an initial distribution for starting in the various states of Ti, then

P
(
absorption into Ej |pT

i (0)
)

= pT
i (0)Lije.

The expected number of steps required to first hit an ergodic state is determined as
follows. Count the number of times the chain is in transient state Sj given that it starts in
transient state Si by reapplying the argument given in on page 180. That is, given that the
chain starts in Si, let

Z0 =
{

1 if Si = Sj ,
0 otherwise,

Zk =
{ 1 if the chain is in Sj after step k,

0 otherwise.

Since
E[Zk] = 1 · P (Zk=1) + 0 · P (Zk=0) = P (Zk=1) =

[
Tk

11

]
ij

,

and since
∑∞

k=0 Zk is the total number of times the chain is in Sj , we have

E[# times in Sj | start in Si] =E

[∞∑
k=0

Zk

]
=

∞∑
k=0

E [Zk] =
∞∑

k=0

[
Tk

11

]
ij

=
[
(I − T11)−1

]
ij

(because ρ (T11) < 1).

Summing this over all transient states produces the expected number of times the chain
is in some transient state, which is the same as the expected number of times before first
hitting an ergodic state. In other words,

E[# steps until absorption | start in ith transient state] =
[
(I − T11)−1e

]
i
.

It’s often the case in practical applications that there is only one transient class, and
the ergodic classes are just single absorbing states (states such that once they are entered,
they are never left). If the single transient class contains r states, and if there are s absorb-

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

186 CHAPTER 15

ing states, then the canonical form for the transition matrix is

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

p11 · · · p1r p1,r+1 · · · p1s

...
...

...
...

pr1 · · · prr pr,r+1 · · · prs

0 · · · 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (15.3.7)

In this case, Lij =
[
(I−T11)−1T12

]
ij

, and the earlier development specializes to say that
every absorbing chain must eventually reach one of its absorbing states. The absorption
probabilities and absorption times are included in the following summary.

Absorption Probabilities and Absorption Times

For a reducible chain whose transition matrix P =
(

T11 T12
0 T22

)
is in the canon-

ical form (15.3.5), let Ti and Ej be the ith and jth transient and ergodic classes,
respectively, and let pT

i (0) be an initial distribution for starting in the various
states of Ti. If (I − T11)−1T12 is partitioned as

(I − T11)−1T12 =

⎛⎜⎝
L1,1 L1,2 · · · L1s

L2,1 L2,2 · · · L2s

...
... · · ·

...
Lr,1 Lr,2 · · · Lrs

⎞⎟⎠ ,

then

• P
(
absorption into Ej |pT

i (0)
)

= pT
i (0)Lije,

• P (absorption into Ej | start in pth state of Ti) =
∑

k

[
Lij

]
pk

=
[
Lije

]
p
,

• E[# steps until absorption | start in ith transient state] =
[
(I − T11)−1e

]
i
.

When there is only one transient class and each ergodic class is a single absorbing
state (Ej = Sr+j), P has the form (15.3.7). If Si and Sj are transient states, then

• P (absorption into Sr+j | start in Si) =
[
(I − T11)−1T12

]
ij

,

• E[# steps until absorption | start in Si] =
[
(I − T11)−1e

]
i
,

• E[# times in Sj | start in Si] =
[
(I − T11)−1

]
ij

.

15.4 PERRON COMPLEMENTATION

The theory of stochastic complementation in section 15.5 concerns the development of
methods that allow the stationary distribution of a large irreducible Markov chain to be
obtained by gluing together stationary distributions of smaller chains. The concepts are
based on the theory of Perron complementation, which describes how the Perron vector of
a large irreducible matrix can be expressed in terms of Perron vectors of smaller matrices.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 187

Perron Complements
Partition an irreducible An×n ≥ 0 with spectral radius ρ(A) = r, as

A =

⎛⎜⎝
A11 A12 · · · A1k

A21 A22 · · · A2k

...
...

. . .
...

Ak1 Ak2 · · · Akk

⎞⎟⎠ , (15.4.1)

where all diagonal blocks are square. The Perron complement of the ith diagonal
block Aiiis defined to be the matrix

Pi = Aii + Ai�(rI − A�
i)

−1A�i, (15.4.2)

where Ai� and A�i are, respectively, the ith row and the ith column of blocks
with Aii removed, and A�

i is the principal submatrix of A obtained by deleting
the ith row and ith column of blocks. The nonsingularity of rI−A�

i is discussed
on page 188.

For example, if A =
(

A11 A12

A21 A22

)
≥ 0 is irreducible with ρ(A) = r, then the two

Perron complements are

P1 = A11 + A12(rI − A22)−1A21P2 = A22 + A21(rI − A11)−1A12.

If A is partitioned as A =
(

A11 A12 A13

A21 A22 A23

A31 A32 A33

)
, then there are three Perron complements,

and the second one is

P2 = A22 + (A21 A23)
(

rI − A11 −A13

−A31 rI − A33

)−1(
A12

A32

)
,

with the other two complements, P1 and P3, being similarly formed.

For A =
(

A11 A12

A21 A22

)
, the more familiar Schur complements are defined [127] to

be
A11 − A12A−1

22 A21A22 − A21A−1
11 A12,

so, while they are not the same, the Perron complements are related to the Schur comple-
ments by the following construction.

1. Shift A by rI by constructing A − rI.

2. Form Schur complements Ci.

3. Shift the results back by constructing rI + Ci.

This is not the only reason for the terminology “Perron complement”—the other rea-
sons will become evident as other developments unfold. The salient feature of all Perron
complements is that they inherit “Perron properties” from their parent matrix in the sense
that if A is nonnegative and irreducible, then so is each Perron complement Pi that is

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

188 CHAPTER 15

derived from A. Furthermore, if ρ(A) = r, then ρ(Pi) = r for each i. And, most im-
portantly, the Perron vectors of the Pi’s combine to form the Perron vector of the parent
matrix A. Before these things can be understood, some preliminary results are needed.
The first such result is the converse to part of the Perron–Frobenius Theorem on page 172.

Irreducibility Revisited
An×n ≥ 0 is irreducible if and only if A has a simple positive eigenvalue λ > 0
that is associated with a positive right-hand eigenvector p > 0 as well as a positive
left-hand eigenvector qT > 0.

Proof. Suppose that A has a simple eigenvalue λ > 0 associated right-hand and left-hand
eigenvectors p > 0 and qT > 0, respectively. If D = diag (p1, p2, . . . , pn) , then

P =
D−1AD

λ
(15.4.3)

is a stochastic matrix that is irreducible if and only if A is irreducible. And 1 is a sim-
ple eigenvalue of P associated with the respective right-hand and left-hand eigenvectors
D−1p = e > 0 and qT D > 0. Consequently, P is Cesàro summable to the spectral
projector G onto N (I − P) (page 182). The simplicity of 1 ∈ σ (P) means that

G =
D−1pqT D

qT p
> 0 (recall (15.1.12) on page 161).

This ensures that P (and hence A) is irreducible. Otherwise,
[
Pk
]
ij

= 0 for some i �= j

and for all k, so[
I + P + · · · + Pk−1

k

]
ij

= 0 for k = 1, 2, . . . =⇒ Gij = 0.

In order for a Perron complement Pi = Aii + Ai�(rI − A�
i)

−1A�i to be well
defined, the existence of (rI − A�

i)
−1 must be ensured. This, along with the fact that

(rI − A�
i)

−1 > 0, is the point of the next theorem.

Principal Submatrices
Let An×n ≥ 0 be irreducible with ρ(A) = r, and partition A as in (15.4.1).
If A�

i is the principal submatrix of A obtained by deleting the ith row and ith

column of blocks, then

ρ(A�
i) < r, (15.4.4)

(rI − A�
i) is nonsingular, and (rI − A�

i)
−1 > 0. (15.4.5)

In other words, rI − A�
i is an M-matrix as described on page 166.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 189

Proof. To prove that ρ(A�
i) < r, suppose to the contrary that r ≤ ρ(A�

i). If Q is the
permutation matrix such that

QT AQ =
(

A�
i A�i

Ai� Aii

)
= Ã, and if B̃ =

(
A�

i 0
0 0

)
, (15.4.6)

then ρ(Ã) = ρ (A) = r ≤ ρ(A�
i) = ρ(B̃). Furthermore Ã ≥ B̃ ≥ 0 ensures that

ρ(Ã) ≥ ρ(B̃) [127, pg 619], so r = ρ(B̃) = ρ(A�
i). But this impossible because Perron’s

theorem for nonnegative matrices (page 168) guarantees the existence of a vector v ≥ 0,
v �= 0, such that A�

i v = rv, so z = (v 0)T is a nonnegative nonzero vector v such that
B̃z = rz. It follows from Ã ≥ B̃ that Ãz ≥ B̃z = rz, and it’s a straightforward exercise
[127, pg 674] to show that this implies Ãz = rz with z > 0, which is a contradiction.
Thus ρ(A�

i) < r. The fact that (rI − A�
i) is nonsingular and (rI − A�

i)
−1 > 0 can be

deduced from the Neumann series expansion (15.1.16) on page 162.

As discussed below, Perron complements inherit most of the useful properties that
their parent matrix possesses.

Inherited Perron Properties
If An×n ≥ 0 is an irreducible matrix with ρ(A) = r that is partitioned as in
(15.4.1), and if Pi = Aii + Ai�(rI − A�

i)
−1A�i is the ith Perron complement

as defined in (15.4.2), then

Pi ≥ 0 for every i, (15.4.7)

Pi is irreducible for every i, (15.4.8)

ρ(Pi) = r for every i. (15.4.9)

Proof. Pi ≥ 0 because (rI−A�
i)

−1 > 0, and all of the other terms in Pi are nonnegative.

To see that Pi is irreducible, let p̃ =
(

x
y

)
be the partitioned right-hand Perron vector for

the nonnegative irreducible matrix Ã in (15.4.6) so that (rI− Ã)p̃ = 0. The lower part of(
rI − A�

i −A�i

−Ai� rI − Aii

)(
x
y

)
=

(
0
0

)
=⇒
(

I 0
Ai�(rI − A�

i)−1 I

)(
rI − A�

i −A�i

−Ai� rI − Aii

)(
x
y

)
=

(
0
0

)
yields

(rI − Pi)y = 0, (15.4.10)

and thus (r,y) is a right-hand eigenpair for Pi with y > 0. A similar argument shows that
there is also a left-hand eigenpair (r, zT) for Pi with zT > 0. Furthermore, r is a simple
eigenvalue of Pi because Perron–Frobenius insures that r is a simple eigenvalue of A, as
well as Ã, so this together with(

I 0
Ai�(rI − A�

i)−1 I

)(
rI − A�

i −A�i

−Ai� rI − Aii

)(
I (rI − A�

i)−1A�i

0 I

)
=

(
rI − A�

i 0
0 rI − Pi

)
and the fact that (rI − A�

i) is nonsingular produces

1 = dimN(rI−Ã) = dimN(rI−A�
i)+dimN(rI−Pi) = dimN(rI−Pi). (15.4.11)

Since Pi can be transformed into a stochastic matrix without altering multiplicities as
described in (15.4.3), and since that the spectral radius of a stochastic matrix is semisimple

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

190 CHAPTER 15

(p. 182), it follows that r is a semisimple eigenvalue for Pi. Hence (15.4.11) insures that
r is a simple eigenvalue for Pi. The irreducibility of Pi is now a consequence of the
result on page 188. Finally, part of the Perron–Frobenius theorem (p. 172) states that a
nonnegative irreducible matrix can have no nonnegative eigenvectors other than multiples
of the positive Perron vector associated with the spectral radius. Therefore, since (r,y) is
an eigenpair for Pi with y > 0, it follows that ρ(Pi) = r, where zi = y/‖y‖1 is the
associated Perron vector.

The above proof is more important than it might first appear to be because it reveals
a significant relationship between the Perron vector of A and the Perron vector of Pi. If
the Perron vector for A is partitioned conformably with the partition in (15.4.1) as

p =

⎛⎜⎝
p1

p2

...
pk

⎞⎟⎠,

then the nature of the permutation in (15.4.6) makes it clear that pi = y, where y > 0 is
the vector in (15.4.10). Consequently, the Perron vector for Pi is

zi =
y

‖y‖1
=

y
eT y

=
pi

eT pi

or, equivalently,
pi = ξizi, where ξi = eT pi. (15.4.12)

In other words, the Perron vectors zi of smaller Perron complements can be glued together
to build the Perron vector of A by writing

p =

⎛⎜⎝
ξ1z1

ξ2z2

...
ξkzk

⎞⎟⎠. (15.4.13)

This looks like a nice result until you realize that the glue is the set of scalars ξi = eT pi,
so we are going in circles if we need to use the components of p in order to compute the
components p. Fortunately, there’s a clever way out of this dilemma by manufacturing
the glue from the Perron vector of a coupling matrix C, which is yet another matrix
that inherits its Perron properties from the parent matrix A. The following theorem brings
everything together.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 191

The Coupling Theorem
Suppose An×n ≥ 0 is irreducible with ρ(A) = r that is partitioned into k levels
as in (15.4.1). Let p and zi be the respective Perron vectors of A and the Perron
complement Pi defined in (15.4.2). The matrix

C =

⎛⎝ eT A11z1 · · · eT A1kzk

...
. . .

...
eT Ak1z1 · · · eT Akkzk

⎞⎠
k×k

is called the coupling matrix , and it has the following properties.

• C is nonnegative and irreducible.

• ρ (C) = r.

• The Perron vector for C, called the coupling vector, is given by ξ =

⎛⎜⎝ ξ1
ξ2

.

.

.
ξk

⎞⎟⎠,

where ξi = eT pi is as defined in (15.4.12).

• The Perron vector for A is given by p =

⎛⎜⎝ p1
p2

.

.

.
pk

⎞⎟⎠ =

⎛⎜⎝ ξ1z1
ξ2z2

.

.

.
ξkzk

⎞⎟⎠.

Proof. C ≥ 0 because each term cij = eT Aijzj is nonnegative. C is irreducible because
cij = 0 ⇐⇒ Aij = 0 (if C could be permuted to a block triangular form, then so could
A). To prove the rest of the theorem, notice that C = RAL, where R and L are given by

R =

⎛⎜⎜⎝
eT 0 · · · 0
0 eT · · · 0
...

...
. . .

...
0 0 · · · eT

⎞⎟⎟⎠
k×n

L =

⎛⎜⎜⎝
z1 0 · · · 0
0 z2 · · · 0
...

...
. . .

...
0 0 · · · zk

⎞⎟⎟⎠
n×k

.

We know from (15.4.12) that Lξ = p and Rp = ξ, so

Cξ = RALξ = RAp = R(rp) = rξ.

Furthermore, ξ > 0 (because pi > 0 for each i), and eT ξ = eT Rp = eT p = 1. It now

follows that r = ρ (C) and ξ is the Perron vector for C. The conclusion that p =

⎛⎜⎝ ξ1z1
ξ2z2

.

.

.
ξkzk

⎞⎟⎠
comes from (15.4.13).

The matrices R and L in the above proof are special cases of transformations known
respectively as restriction and prolongation operations because when n > k, R “re-
stricts” n-tuples down to k-tuples while L “prolongates” k-tuples back up to n-tuples in an
inverse-like manner since RL = I. Restriction-prolongation techniques like the one above
are popular tools in applied and numerical work.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

192 CHAPTER 15

To solidify the concepts of Perron complementation, consider the following exam-
ple. The matrix

A =

⎛⎜⎜⎝
2 1 0 3
4 2 3 0

0 3 2 4
3 0 1 2

⎞⎟⎟⎠ =
(

A11 A12

A21 A22

)

is irreducible with ρ (A) = 7, and the two Perron complements are

P1 = A11 + A12(7I − A22)−1A21 = 1
7

(
29 10
40 29

)
, with ρ (P1) = 7,

and

P2 = A22 + A21(7I − A11)−1A12 = 1
7

(
29 40
10 29

)
, with ρ (P2) = 7.

The respective Perron vectors for P1 and P2 are

z1 =
(

1/3
2/3

)
z2 =

(
2/3
1/3

)
,

and the coupling matrix is

C =
(

eT A11z1 eT A12z2

eT A21z1 eT A22z2

)
=
(

4 3

3 4

)
, with ρ (C) = 7.

The coupling vector (the Perron vector of C) is ξ =

(
1/2
1/2

)
, so the Perron vector of A is

p =
(

(1/2)z1

(1/2)z2

)
=

1
6

⎛⎜⎝
1
2
2
1

⎞⎟⎠ .

Knowledge of ρ (A) is required to form the Perron complements of A, and this can
be a bottleneck in some situations. However, there are important applications in which
the spectral radius is known in advance. A notable example is the theory of finite Markov
chains as described in section 15.3 because ρ (P) = 1 for all transition probability matrices
P. The next section is devoted to showing how Perron complementation is applied in the
theory of Markov chains.

15.5 STOCHASTIC COMPLEMENTATION

When the concept of Perron complementation is applied to irreducible stochastic matrices,
some useful aspects of Markov chains are produced. In particular, the Perron complemen-
tation idea applied to Markov chains results in a technique for reducing a chain with a large
number of states to a smaller chain without losing important characteristics.

Consider an n-state irreducible Markov chain, and let

P =

⎛⎜⎝
P11 P12 · · · P1k

P21 P22 · · · P2k

...
...

. . .
...

Pk1 Pk2 · · · Pkk

⎞⎟⎠ (with square diagonal blocks) (15.5.1)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 193

be a partition of the associated transition probability matrix. We know that P is an irre-
ducible stochastic matrix with ρ (P) = 1 (p. 177), so the associated Perron complements
are given by

Si = Pii + Pi�(I − P�
i)

−1P�i.

As we will see, these complements Si have additional stochastic properties, so they are
alternately referred to as stochastic complements in the context of Markov chains. Proper-
ties (15.4.7)–(15.4.9) on page 189 guarantee that each Si is also a nonnegative irreducible
matrix with ρ (Si) = 1. Furthermore,

Pe = e =⇒ Piie + Pi�e = e and P�ie + P�
i e = e

=⇒ Piie + Pi�e = e and e = (I − P�
i)

−1P�ie

=⇒ Sie = e.

In other words, every stochastic complement Si is itself the transition probability matrix
of some smaller Markov chain.

To understand the relationship between the smaller chain defined by Si and the par-
ent chain associated with P, consider the simpler (but equivalent) situation where the set
of states {1, 2, . . . , n} is partitioned into two clusters,

S1 = {1, 2, . . . , r}S2 = {r + 1, r + 2, . . . , n},
so that

P =

1 ... r r+1 ... n

1
...
r

r+1
...
n

⎛⎜⎜⎜⎜⎝
P11 P12

P21 P22

⎞⎟⎟⎟⎟⎠ , and
S1 = P11 + P12(I − P22)−1P21,

S2 = P22 + P21(I − P11)−1P12.
(15.5.2)

Focus on one of these complements—say, the second one—and interpret the (i, j)-entry
[S2]ij = [P22]ij + [P21(I − P11)−1P12]ij . Notice that [P22]ij is simply the probability
of moving from state r + i ∈ S2 to state r + j ∈ S2 in one step, while

[P21(I − P11)−1P12]ij =
r∑

k=1

[P21]ik[(I − P11)−1P12]kj .

The term [P21]ik is the probability of moving from r + i ∈ S2 to k ∈ S1 in one step, while
[(I − P11)−1P12]kj is the probability of hitting state r + j ∈ S2 the first time the chain
enters S2 when the process starts from k ∈ S1. This can be seen by considering the states in
S2 to be absorbing so as to artificially force the process to stop as soon as the chain enters
S2. It follows from the results on absorbing chains (p. 186) that [(I−P11)−1P12]ij is the
probability of entering S2 at state r + j when the chain starts in k ∈ S1. Consequently,
[P21]ik[(I−P11)−1P12]kj is the probability of moving directly from r+ i ∈ S2 to k ∈ S1

and then, perhaps after several steps inside of S1, reentering S2 at state r + j (without
regard to what happened while the process was in S1). Therefore,

[S2]ij = [P22]ij +
r∑

k=1

[P21]ik[(I − P11)−1P12]kj

is the probability of moving from r + i ∈ S2 to r + j ∈ S2 in a single step or else by

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

194 CHAPTER 15

moving directly from r + i ∈ S2 to somewhere inside of S1 (perhaps staying there for
awhile) and then hitting state r + j upon first reentry into S2. In other words, S2 is the
transition probability matrix for a chain that records the location of the process only when
the process is visiting states in S2, and visits to states in S1 are simply ignored or censored
out.

15.6 CENSORING

Censored Markov Chains
For an n-state irreducible Markov chain with transition probability matrix P that
is partitioned as in (15.5.1), let S denote the collection of states that correspond
to the row (or column) indices of the ith diagonal block Pii, and let S denote
the complementary set of states. The censored Markov chain associated with S
is defined to be the Markov chain that records the location of the parent chain
(defined by P) only when the parent chain visits states in S. Visits to states in
S are ignored. The transition probability matrix for this censored chain is the
stochastic complement

Si = Pii + Pi�(I − P�
i)

−1P�i. (15.6.1)

Property (15.4.8) guarantees that every stochastic complement Si is an irreducible
matrix, so every censored chain is an irreducible Markov chain. Consequently each cen-
sored chain has an associated stationary probability distribution, sT

i , such that

sT
i Si = sT

i , sT
i > 0, sT

i e = 1 (as summarized on p. 181).

In the language of matrix theory sT
i is the left-hand Perron vector for Si, but in the context

of Markov chains sT
i is called a censored probability distribution.

To interpret the meaning of a censored distribution, suppose that the state space for
an n-state Markov chain is partitioned into clusters as

{1, 2, . . . , n} = S1 ∪ S2 ∪ · · · ∪ Sk, where Si = {σi1, σi2, . . . , σini
}, (15.6.2)

and partition the tth step distribution and the stationary distribution in accord with (15.6.2)
as

pT (t) =
(
pT

1 (t) |pT
2 (t) | · · · |pT

k (t)
)
πT =

(
πT

1 |πT
2 | · · · |πT

k

)
. (15.6.3)

To ensure that limits exist assume the chain is primitive (page 181). Let Xt be the state of
the chain after the tth step, and let Yt be the cluster that contains Xt after the tth step. The
probability of being in state σij (the jth state of the ith cluster) after t steps is

P (Xt = σij) =
[
pT

i (t)
]
j

(the jth component of pT
i (t)),

and the limiting probability of being in σij is

lim
t→∞P (Xt = σij) = lim

t→∞
[
pT

i (t)
]
j

=
[
πT

i

]
j

(the jth component of πT
i).

Similarly, the probability of being inside cluster Si after t steps is

P (Yt = i) = pT
i (t)e,

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 195

and the limiting probability of being somewhere in Si is

lim
t→∞P (Yt = i) = lim

t→∞pT
i (t)e = πT

i e. (15.6.4)

Since πT the left-hand Perron vector for the transition probability matrix P, it follows from
the left-hand interpretation of (15.4.12) that the jth component of ith censored distribution
sT
i with respect to the partition (15.6.2) is

[
sT
i

]
j

=

[
πT

i

]
j

πT
i e

= lim
t→∞

[
pT

i (t)
]
j

pT
i (t)e

= lim
t→∞

P (Xt = σij)
P (Yt = i)

= lim
t→∞P (Xt = σij |Yt = i).

In other words,
[
sT
i

]
j

is the limiting conditional probability of being in σij given that the
process is somewhere in Si. Below is a summary.

Censored Probability Distributions
Consider an n-state irreducible Markov chain whose transition probability matrix
P, stationary distribution πT = (πT

1 |πT
2 | · · · |πT

k), and state space are parti-
tioned according to

{1, 2, . . . , n} = S1 ∪ S2 ∪ · · · ∪ Sk where Si = {σi1, σi2, . . . , σini}.
The censored probability distributions are the stationary distributions sT

i

of the censored Markov chains defined by the stochastic complements Si given in
(15.6.1) so that sT

i Si = sT
i , where sT

i > 0 and sT
i e = 1. Censored distributions

have the following additional properties.

sT
i = πT

i /πT
i e for each i = 1, 2, . . . k. (15.6.5)

• If P is primitive, then the jth component of sT
i is the limiting conditional prob-

ability of being in the jth state of cluster Si given that the process is somewhere
in Si. In other words,[

sT
i

]
j

= lim
t→∞P (Xt = σij |Yt = i),

where Xt and Yt are the respective state and cluster number of the chain after
the tth step.

15.7 AGGREGATION

Now specialize the coupling theorem for Perron complements given on page 191 to Markov
chains. Vectors are on the left-hand side of matrices for Markov chain applications, so, for
the partition of P in (15.5.1) that corresponds to the partition of the state space in (15.6.2),
the coupling matrix on page 191 takes the form

A =

⎛⎝ sT
1 P11e · · · sT

1 P1ke

...
. . .

...
sT
k Pk1e · · · sT

k Pkke

⎞⎠=

⎛⎝ sT
1 · · · 0

...
. . .

...
0 · · · sT

k

⎞⎠⎛⎝P11 · · · P1k

...
. . .

...
Pk1 · · · Pkk

⎞⎠(e · · · 0
...

. . .
.
..

0 · · · e

)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

196 CHAPTER 15

=Lk×nPn×nRn×k, (15.7.1)

where the sT
i ’s in L are the censored distributions, and the e’s in R are columns of 1’s

of appropriate size. (We switched the notation for the coupling matrix from C to A for
reasons that soon will be apparent.) Remarkably, A also defines an irreducible Markov
chain—but this chain has only k states. The nonnegativity and irreducibility of A are
guaranteed by the coupling theorem on page 191, and A is stochastic because

Ae = LPRe = LPe = Le = e.

To understand the nature of the chain defined by A along with its stationary distribution
αT , let’s interpret the individual entries aij = sT

i Pije in A as probabilities. As before, let
Xt and Yt be the respective state and cluster number of the chain after the tth step, and let
∧ and ∨ denote AND and OR, respectively.

Given that the process is in cluster Si after t steps, consider the the probability of
moving to cluster Sj on the next step. In other words, consider

P (Yt+1 = j |Yt = i) =
P (Yt = i ∧ Yt+1 = j)

P (Yt = i)
. (15.7.2)

To determine this conditional probability, suppose that

P =

⎛⎝P11 · · · P1k

...
. . .

...
Pk1 · · · Pkk

⎞⎠, pT (t) = (pT
1 (t) | · · · |pT

k (t)),πT = (πT
1 | · · · |πT

k)

are partitioned in accord with (15.6.2), and compute the numerator in (15.7.2) as

P (Yt = i ∧ Yt+1 = j)

= P
(
[Xt = σi1 ∨ · · · ∨ Xt = σini] ∧ [Xt+1 = σj1 ∨ · · · ∨ Xt+1 = σjnj]

)
= P
(
[Xt = σi1 ∧ Xt+1 = σj1] ∨ · · · ∨ [Xt = σini ∧ Xt+1 = σjnj]

)
=

ni∑
g=1

nj∑
h=1

P (Xt = σig ∧ Xt+1 = σjh)

=
ni∑

g=1

nj∑
h=1

P (Xt = σig) P (Xt+1 = σjh |Xt = σig)

=
ni∑

g=1

[
pT

i (t)
]
g

nj∑
h=1

[Pij]gh =
ni∑

g=1

[
pT

i (t)
]
g
[Pije]g

=pT
i (t)Pije.

The denominator in (15.7.2) is P (Yt = i) = pT
i (t)e, and thus

P (Yt+1 = j |Yt = i) =
pT

i (t)Pije
pT

i (t)e
. (15.7.3)

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 197

It follows from (15.6.5) on page 195 that 3

sT
i =

πT
i

πT
i e

= lim
t→∞

pT
i (t)

pT
i (t)e

,

and therefore, by (15.7.3), the entries in A are given by

aij = sT
i Pije = lim

t→∞
pT

i (t)Pije
pT

i (t)e
= lim

t→∞P (Yt+1 = j |Yt = i). (15.7.4)

An irreducible chain is said to be in equilibrium at time (step) t if the process is
at steady state in the sense that pT (t) = πT . Consequently, (15.7.4) means that aij is the
transition probability of moving from cluster Si to cluster Sj after the process has achieved
equilibrium. Below is a summary of these observations.

Aggregation Theorem for Markov Chains
An irreducible Markov chain whose states are partitioned into k clusters

{1, 2, . . . , n} = S1 ∪ S2 ∪ · · · ∪ Sk

can be compressed into a smaller k-state aggregated chain whose states are the
individual clusters Si.
• The transition probability matrix A of the aggregated chain is the coupling ma-

trix described on page 191. That is,

A =

⎛⎝ sT
1 P11e · · · sT

1 P1ke

...
. . .

...
sT
k Pk1e · · · sT

k Pkke

⎞⎠
k×k

, (15.7.5)

where Pij is the (i, j) block in the partitioned transition matrix P of the unag-
gregated chain, and sT

i is the censored distribution of the ith stochastic comple-
ment derived from P.

• If Yt is the cluster that the unaggregated chain occupies after t steps, then, for
primitive chains, the aggregated transition probability aij = sT

i Pije can be
expressed as

aij = lim
t→∞P (Yt+1 = j |Yt = i).

In other words, transitions between states in the aggregated chain correspond to
transitions between clusters in the unaggregated chain when the unaggregated
chain is in equilibrium.

As an example of the utility of aggregation in Markov chains consider the problem of
determining the eventual probability that the chain is somewhere inside cluster Si (the in-
dividual state in Si that the process might eventually occupy is irrelevant) without directly
computing the stationary probabilities for the chain. In other words, if Yt is the cluster in
which the process resides after t steps, the problem is to determine limt→∞ P (Yt = i).

3For these limits to exist, P must be assumed to be primitive.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

198 CHAPTER 15

Of course, there is no problem if the stationary probabilities are known because, as
pointed out in (15.6.4), if pT (t) =

(
pT

1 (t) | · · · |pT
k (t)
)

and πT =
(
πT

1 | · · · |πT
k

)
, then the

limiting probability of being somewhere in Si is

αi = lim
t→∞P (Yt = i) = lim

t→∞pT
i (t)e = πT

i e. (15.7.6)

But computing all of πT in a large chain just to find πT
i can be wasted effort. Since

transitions in the aggregated chain correspond to transitions between the clusters Si in the
unaggregated chain at equilibrium, we expect the ith component of stationary distribution
for the aggregated chain to be the limiting probability of being in Si, and this is true.

• In other words, if the stationary distribution of the aggregated chain defined by A in
(15.7.5) is αT = (α1, α2, . . . , αk), then αi = πT

i e = limt→∞ P (Yt = i).

15.8 DISAGGREGATION

When interpreted in the context of Markov chains, the coupling theorem on page 191
represents an expansion or disaggregation process. Below is the formal statement of the
disaggregation theorem.

Disaggregation in Markov Chains
Consider an irreducible Markov chain along with the associated aggregated chain
for which the respective transition probability matrices are

P =

⎛⎜⎝
P11 P12 · · · P1k

P21 P22 · · · P2k

...
...

. . .
...

Pk1 Pk2 · · · Pkk

⎞⎟⎠
n×n

and A =

⎛⎝ sT
1 P11e · · · sT

1 P1ke

...
. . .

...
sT
k Pk1e · · · sT

k Pkke

⎞⎠
k×k

,

where sT
i is the ith censored distribution (the stationary distribution of the ith

stochastic complement Si = Pii+Pi�(I−P�
i)

−1P�i). If αT = (α1, α2, . . . , αk)
is the stationary distribution of the aggregated chain defined by A, then the sta-
tionary distribution for the unaggregated chain defined by P is

πT = (α1sT
1 |α2sT

2 | · · ·αksT
k).

In other words, the censored distributions sT
i can be pasted together to form the

global distribution πT , and the αi’s provide the glue to do the job.

It’s clear that disaggregation as stated above can serve as an algorithm for com-
puting the stationary probabilities of any irreducible chain. But while the aggregation-
disaggregation results are beautiful theoretical theorems, their straightforward implemen-
tation usually doesn’t result in a computational advantage over more standard methods.
Computing the stochastic complements Si in order to determine the censored distributions
sT
i is generally a computationally intensive task, so as far as computation is concerned, the

goal is to somehow exploit special structure exhibited by the chain to judiciously imple-
ment the aggregation/disaggregation procedure.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

THE MATHEMATICS GUIDE 199

When someone is seeking, it happens quite easily that he sees only the thing that
he is seeking; that he is unable to find anything, unable to absorb anything,

because he is only thinking of the thing he is seeking, because
he has a goal, because he is obsessed with his goal.

Seeking means: to have a goal; but finding means: to be free, to be receptive, to
have no goal. You, O worthy one, are perhaps indeed a seeker, for in striving

towards your goal, you do not see many things that are under your nose.

— Siddhartha speaking to his friend Govinda
in Hermann Hesse’s Siddhartha [95]

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter Sixteen

Glossary

anchor text text used in the hyperlink when linking from one webpage to another

arc a link between two nodes in a graph

authority a webpage with many inlinks; a good authority has inlinks from pages with
high hub scores

authority matrix the matrix LT L created in the HITS method; its dominant right-hand
eigenvector is the authority vector, which is used to give a ranking of webpages by
their authoritativeness

authority score the numerical score assigned to a webpage that gives a measure of that
page’s authoritativeness

authority vector a vector that gives the authoritativeness of webpages; the ith component
is the authority score for page i

blog a webpage that represents an online diary on a particular topic, which typically has
postings sorted by time and many hyperlinks but little textual content

Boolean model a classic model in traditional information retrieval that uses the Boolean
operators AND, OR, and NOT to answer queries

co-citation a term in bibliometrics that is used when two papers are cited by the same
paper; on the Web it is used when two webpages have inlinks from the same page

content index the part of a search engine devoted to storing information about the content
of a webpage

content score the information retrieval score assigned to each page; it is computed from
traditional information retrieval factors such as similarity of the page to the query,
use of query terms in the title, and the number of times the query terms are used in
the page.

co-reference a term in bibliometrics that is used when two papers cite the same paper; on
the Web it is used when two webpages have outlinks to the same page

crawler the part of the search engine that sends spiders to travel the Web, gathering new
and updated webpages for the engine’s indexes

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

202 CHAPTER 16

cycle a path in the Web’s graph that always returns back to its origin, e.g., a trivial cycle
occurs when page A points only to page B and page B points only back to A; the
random surfer of the PageRank model can get stuck in a cycle and circle indefinitely
in the pages on the path, which causes convergence problems for PageRank

dangling node a webpage with no outlinks, which creates a 0T row in the PageRank
matrix; causes a problem for the random surfer of the PageRank model because the
random surfer is trapped whenever he enters a dangling node

dangling node vector the vector a that has a 1 if page i is a dangling node and 0 other-
wise; used to help give the random surfer an outlet whenever he reaches a dangling
node

fundamental matrix the matrix (I − αbS)−1 that appears in many PageRank computa-
tions

Google bomb a way to spam Google by using the anchor text of a hyperlink to boost the
rank of a target page; bomb detonates whenever a query on the terms in the anchor
text is submitted and enough pages have the appropriate anchor text for a hyperlink
pointing to the target page; invented by Adam Mathes in 2001 as a prank against his
friend Andy Pressman

Google dance the shuffling of pages in the ranked list that occurs during the monthly (it’s
speculated) updating of PageRank

Google matrix the matrix used to determine the PageRank importance scores for web-
pages; its dominant left-hand eigenvector is the PageRank vector; the Google matrix
is given by G = αS + (1 − α)evT

Googleopoly Google’s dominance of the search market

HITS link analysis model that defines webpages as hubs and authorities and uses the graph
structure of the web to rank webpages; developed by Jon Kleinberg in 1998; used by
the Teoma search engine; acronym for Hypertext Induced Topic Search

hub a webpage with many outlinks; a good hub has outlinks to pages with high authority
scores

hub matrix the matrix LLT created in the HITS method; its dominant right-hand eigen-
vector is the hub vector, which is used to give a ranking of webpages by their quality
as portal pages

hub score the numerical score assigned to a webpage that gives a measure of that page’s
“hubbiness”, which is a measure of the page’s quality as a portal page

hub vector a vector that gives the “hubbiness” of webpages; the ith component is the hub
score for page i

hyperlink a link in a webpage that allows a reader to automatically jump to another page;
creates a directed arc in the web graph

indexer the part of the search engine that compresses a webpage from the crawler into an
abbreviated Cliff Notes version; pulls off the essential elements of the page such as
title, description, date, images, and tables

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

GLOSSARY 203

indexes where the search engine stores all its webpage information; often a search engine
has several different indexes such as an image index, structure index, and inverted
index

inlink a link into a webpage

intelligent agent a software robot designed to retrieve specific information automatically

intelligent surfer replaces the random surfer; the intelligent surfer follows the hyperlinks
on the Web but does not randomly decide which page to visit next; rather he chooses
the page that best fits his needs and interests

inverted file index the search engine’s largest index; next to each term in the engine’s
database there is a list of all pages that use the term; similar to an index in the back
of a book

Jon Kleinberg Cornell University computer science professor; inventor of the HITS al-
gorithm

link analysis using the hyperlink structure of the Web to improve search engine rankings

link farm a link spamming technique for boosting a page’s rank; a set of webpages that
are densely connected

link spamming a type of spamming that uses the Web’s hyperlinks to fool search engines

meta-search engine a search engine that combines the results of several independent
search engines into one unified list

metatag hidden tag that is embedded in the HTML source code of a webpage to help
spiders locate title, description, and keyword information in the page

modified HITS a modification to the standard HITS method that guarantees the existence
and uniqueness of the HITS authority and hub vectors; uses the matrices ξLT L +
(1 − ξ)/n eeT and ξLLT + (1 − ξ)/n eeT in place of LT L and LLT , the standard
authority and hub matrices

neighborhood graph the graph created in the first step of the HITS method; includes all
pages that use the query terms as well as pages that link to and from the relevant
pages

netizen a citizen of the Internet

node a vertex in a graph; webpages are nodes in the web graph

nondangling node a webpage with at least one outlink; any page that is not dangling

outlink a link from a webpage

overall score the final query-dependent relevancy score given to a page; a combination of
the popularity score and the content score

PageRank link analysis model that uses an enormous Markov chain to rank webpages by
importance; invented by Brin and Page in 1998; now part of Google

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

204 CHAPTER 16

page repository where new or updated pages are temporarily stored after they are re-
trieved by the crawler module and before they are sent to the indexer

personalization vector the probability vector vT > 0 in the PageRank model; used to
fix the problems of rank sinks and cycles faced by the random surfer; can be used
to create personalized PageRank vectors that are biased toward a particular user’s
interests

polysemy occurs when a word has multiple meanings, e.g., bank

popularity score the score given to each webpage that measures the relative importance
or popularity of that page; created from the Web’s hyperlink structure

precision a measure of the quality of search results, specifically the ratio of the number of
relevant documents to the total number of retrieved documents

primitivity fix the adjustment to the PageRank model that artificially adds direct (al-
though small in weight) connections between every page on the Web; guarantees
the existence and uniqueness of the PageRank vector and the convergence of the
power method to that vector

probabilistic model a traditional information retrieval model that uses probability and
odds ratios to identify the relevance of documents to the query

PR0 an abbreviation for the lowest PageRank score; it’s believed that sometimes the pages
of spammers are set to PR0 by Google

pure link a page returned in the search results whose ranking is pure in the sense that the
page’s owner did not pay the search engine for an improved ranking

query information request that is sent to a search engine

query-dependent a measure or model that depends on the query and is computed for each
individual query

query-independent any measure or model that is computed regardless of the query; one
measure that holds for all queries

query processing the part of the search engine that transforms the user’s query into num-
bers that the system can handle

random surfer a surfer who follows the hyperlink structure of the Web indefinitely by
choosing the next page to visit at random from among the outlinking pages of the
current page; a convenient way of describing the PageRank model

rank sink a webpage or set of webpages that continue to suck in PageRank during the
iterative PageRank computation; once the random surfer enters this set of pages,
there is no escape route

real-time an adjective for a process that responds in a short and predictable time frame;
the time frame is usually measured in vague units such as a user’s patience threshold

recall a measure of the quality of search results, specifically the ratio of number of relevant
documents retrieved to the total number of relevant documents in the collection

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

GLOSSARY 205

relevance feedback a refining and tuning technique used by many information retrieval
systems; a user selects a subset of retrieved documents that are deemed useful, and
with this additional information, a revised set of generally more useful documents is
retrieved

relevance scoring a numerical score of a document’s relevance to the query that is pro-
vided by most information retrieval systems

SALSA link analysis model that combines properties of PageRank and HITS to rank web-
pages as hubs and authorities; developed by Ronny Lempel and Shlomo Moran in
2000; acronym for Stochastic Approach to Link Structure Analysis

search engine optimization the process of changing a webpage to optimize its potential
for high rankings by search engines; includes both ethical and unethical means of
boosting rank

Sergey Brin and Larry Page former Ph.D. candidates at Stanford University who devel-
oped the PageRank system for ranking webpages by importance; cofounders and
co-owners of Google

spam any act meant to intentionally deceive a search engine; spam includes using white
text on a white background, link spamming, cloaking, misleading meta-tag descrip-
tions, and Google bombing

special-purpose index the part of a search engine that is devoted to storing special pur-
pose information such as images, PDF files, etc.

spider part of a search engine’s crawler module that crawls the Web in search of new and
updated pages

sponsored link a page returned in the search results whose owner has paid the search
engine company for an improved ranking

stochasticity adjustment the adjustment to the original PageRank model that artificially
forces the PageRank matrix to be stochastic; allows the random surfer to teleport to
a new page immediately after entering a dangling node

structure index the part of a search engine that stores information about the link structure
of the Web

synonymy occurs when two words have the same meaning, e.g., car and automobile

teleport a periodic action taken by the random surfer whereby he stops following the
Web’s hyperlink structure and immediately jumps to a new page at random; also
occurs immediately after the random surfer enters a dangling node

traditional information retrieval the field that studies search within nonlinked document
collections

TrafficRank link analysis model that uses optimization and entropy to rank webpages by
their traffic flow; developed by John Tomlin in 2003

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

206 CHAPTER 16

vector space model a traditional information retrieval model that thinks of documents as
vectors in high-dimensional space and uses the angle between vectors to determine
the similarity of documents to the query

web graph the graph created by the Web’s hyperlink structure; the nodes in the graph are
webpages and the arcs are hyperlinks

web information retrieval the field that studies search within the world’s largest linked
collection, the World Wide Web

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Bibliography

[1] Caslon Analytics net metrics and statistics guide.
http://www.caslon.com.au/metricsguide.htm.

[2] Clever—IBM Corporation Almaden Research Center.
http://www.almaden.ibm.com/cs/k53/clever.html.

[3] Text REtrieval Conference. http://trec.nist.gov/.

[4] World Wide Web Conference. http://www2004.org.

[5] How much information, 2003. http://www.sims.berkeley.edu/how-
much-info-2003.

[6] Medlars test collection, December 2003. Available at
http://www.cs.utk.edu/˜lsi/.

[7] Why does my page’s rank keep changing? Google PageRank information.
http://www.google.com/webmasters/4.html, 2003.

[8] Eytan Adar, Li Zhang, Lada A. Adamic, and Rajan M. Lukose. Implicit structure
and the dynamics of blogspace. In The Thirteenth International World Wide Web
Conference, New York, 2004. ACM Press.

[9] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram
Raghavan. Searching the Web. ACM Transactions on Internet Technology, 2001.

[10] Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin. PageRank com-
putation and the structure of the Web: Experiments and algorithms. In The Eleventh
International WWW Conference, New York, May 2002. ACM Press.

[11] Konstantin Avrachenkov and Nelly Litvak. Decomposition of the Google PageRank
and optimal linking strategy. Technical report, INRIA, January 2004.

[12] Konstantin Avrachenkov and Nelly Litvak. The effect of new links on Google
PageRank. Technical report, INRIA, July 2004.

[13] Ricardo Baeza-Yates and Emilio Davis. Web page ranking using link attributes.
In The Thirteenth International World Wide Web Conference, pages 328–29, New
York, 2004. ACM Press. Poster.

[14] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
ACM Press, New York, 1999.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.caslon.com.au/metricsguide.htm
http://www.almaden.ibm.com/cs/k53/clever.html
http://trec.nist.gov/
http://www2004.org
http://www.sims.berkeley.edu/howmuch-info-2003
http://www.sims.berkeley.edu/howmuch-info-2003
http://www.cs.utk.edu/~lsi/
http://www.google.com/webmasters/4.html

208 BIBLIOGRAPHY

[15] Ziv Bar-Yossef, Andrei Z. Broder, Ravi Kumar, and Andrew Tomkins. Sic tran-
sit gloria telae: Towards an understanding of the Web’s decay. In The Thirteenth
International World Wide Web Conference, New York, 2004. ACM Press.

[16] Albert-Laszlo Barabasi. Linked: The New Science of Networks. Plume, 2003.

[17] Albert-Laszlo Barabasi, Reka Albert, and Hawoong Jeong. Scale-free characteris-
tics of random networks: The topology of the World-Wide Web. Physica A, 281:69–
77, 2000.

[18] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 2nd edition,
1994.

[19] Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet: The
Google cluster architecture. IEEE Micro, pages 22–28, 2003.

[20] Gely P. Basharin, Amy N. Langville, and Valeriy A. Naumov. The life and work of
A. A. Markov. Linear Algebra and Its Applications, (386):3–26, 2004.

[21] Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathemat-
ical Sciences. Academic Press, 1979.

[22] Michael W. Berry, editor. Computational Information Retrieval. SIAM, Philadel-
phia, 2001.

[23] Michael W. Berry and Murray Browne. Understanding Search Engines: Mathemat-
ical Modeling and Text Retrieval. SIAM, Philadelphia, 2nd edition, 2005.

[24] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. Matrices, vector spaces
and information retrieval. SIAM Review, 41:335–62, 1999.

[25] Krishna Bharat, Andrei Broder, Monika Henzinger, Puneet Kumar, and Suresh
Venkatasubramanian. The connectivity server: Fast access to linkage information
on the Web. In The Seventh World Wide Web Conference, pages 469–77, Brisbane,
Australia, 1998.

[26] Krishna Bharat and Monika R. Henzinger. Improved algorithms for topic distilla-
tion in hyperlinked environments. In 21st International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pages 104–11, 1998.

[27] Krishna Bharat, Farzin Maghoul, and Raymie Stata. The term vector database: Fast
access to indexing terms for webpages. Computer Networks, 33:247–255, 2000.

[28] Monica Bianchini, Marco Gori, and Franco Scarselli. PageRank: A circuital analy-
sis. In The Eleventh International WWW Conference, May 2002.

[29] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside PageRank. ACM Trans-
actions on Internet Technology, 5(1), 2005. To appear.

[30] Nancy Blachman, Eric Fredricksen, and Fritz Schneider. How to Do Everything
with Google. McGraw-Hill, 2003.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

BIBLIOGRAPHY 209

[31] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Do your worst to make the
best: Paradoxical effects in PageRank incremental computations. In Proceedings
of WAW 2004, Lecture Notes in Computer Science, number 3248, pages 168–80.
Springer-Verlag, 2004.

[32] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. PageRank as a function of the
damping factor. In The Fourteenth International World Wide Web Conference, New
York, 2005. ACM Press.

[33] Paolo Boldi and Sebastiano Vigna. The WebGraph framework II: Codes for the
World Wide Web. Technical Report 294-03, Universita di Milano, Dipartimento di
Scienze dell’ Informazione Engineering, 2003.

[34] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression tech-
niques. In The Thirteenth International World Wide Web Conference, pages 595–
602, New York, 2004. ACM Press.

[35] Jorge Luis Borges. The Library of Babel. David R. Godine, 2000. Translated by
Andrew Hurley.

[36] Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis Tsaparas.
Finding authorities and hubs from link structures on the World Wide Web. The
Eleventh International World Wide Web Conference, pages 415–29, 2001.

[37] P. Bradley. Multi-search engines–a comparison. webpage, January 2002.
http://www.philb.com/msengine.htm.

[38] Sergey Brin, Rajeev Motwani, Lawrence Page, and Terry Winograd. What can you
do with a Web in your pocket? Data Engineering Bulletin, 21:37–47, 1998.

[39] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 33:107–17, 1998.

[40] Sergey Brin, Lawrence Page, R. Motwami, and Terry Winograd. The PageRank
citation ranking: Bringing order to the Web. Technical Report 1999-0120, Computer
Science Department, Stanford University, 1999.

[41] Andrei Broder, Ravi Kumar, and Marzin Maghoul. Graph structure in the Web. In
The Ninth International World Wide Web Conference, pages 309–320, New York,
May 2000. ACM Press.

[42] Andrei Broder, Ronny Lempel, Farzin Maghoul, and Jan Pedersen. Efficient PageR-
ank approximation via graph aggregation. In The Thirteenth International World
Wide Web Conference, pages 484–85, New York, 2004. ACM Press. Poster.

[43] Vannevar Bush. As we may think. Atlantic Monthly, 176(1):101–8, 1945.

[44] Tara Calishain and Rael Dornfest. Google Hacks: 100 Industrial-Strength Tips and
Tricks. O’Reilly, 2003.

[45] Lord John Campbell. The Lives Of the Chief Justices of England, volume 3. John
Murray, Albemarle Street, London, 1868.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.philb.com/msengine.htm

210 BIBLIOGRAPHY

[46] Steven Campbell and Carl D. Meyer. Generalized Inverses of Linear Transforma-
tions. Pitman, San Francisco, 1979.

[47] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. I/O-efficient techniques for comput-
ing PageRank. In Proceedings of the Eleventh International Conference on Infor-
mation and Knowledge Management (CIKM’02), pages 549–557, Virginia, 2002.

[48] Steve Chien, Cynthia Dwork, Ravi Kumar, and D. Sivakumar. Towards exploiting
link evolution. In Workshop on Algorithms and Models for the Web Graph, 2001.

[49] Grace E. Cho and Carl D. Meyer. Markov chain sensitivity measured by mean first
passage times. Linear Algebra and Its Applications, 313:21–28, 2000.

[50] Grace E. Cho and Carl D. Meyer. Comparison of perturbation bounds for the sta-
tionary distribution of a Markov chain. Linear Algebra and Its Applications, 335(1–
3):137–150, 2001.

[51] Grace E. Cho and Carl D. Meyer. Aggregation/disaggregation errors for nearly
uncoupled Markov chains. Technical report, NCSU Tech. Report #102301, 2003.

[52] Junghoo Cho and Hector Garcia-Molina. The evolution of the Web and implica-
tions for an incremental crawler. In Proceedings of the Twenty-sixth International
Conference on Very Large Databases, pages 200–209, New York, 2000. ACM Press.

[53] David Cohn and Huan Chang. Learning to probabilistically identify authoritative
documents. In Proceedings of the 17th International Conference on Machine Learn-
ing, pages 167–174, Stanford, CA, 2000.

[54] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2001.

[55] G. M. Del Corso, A. Gulli, and F. Romani. Exploiting Web matrix permutations
to speedup PageRank computation. Technical Report IIT TR-04/2004, Istituto di
Informatica e Telematica, May 2004.

[56] P. J. Courtois. Decomposability. Academic Press, New York, 1977.

[57] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[58] Michelangelo Diligenti, Marco Gori, and Marco Maggini. Web page scoring sys-
tems for horizontal and vertical search. In The Eleventh International World Wide
Web Conference, pages 508–516, Honolulu, HI, 2002. ACM Press.

[59] Chris Ding, Xiaofeng He, Parry Husbands, Hongyuan Zha, and Horst Simon. Link
analysis: Hubs and authorities on the World Wide Web. Technical Report 47847,
Lawrence Berkeley National Laboratory, May 2001.

[60] Chris Ding, Xiaofeng He, Hongyuan Zha, and Horst Simon. PageRank, HITS and
a unified framework for link analysis. In Proceedings of the 25th ACM SIGIR Con-
ference, pages 353–354, Tampere, Finland, August 2002.

[61] Chris H. Q. Ding, Hongyuan Zha, Xiaofeng He, Parry Husbands, and Horst D.
Simon. Link analysis: Hubs and authorities on the World Wide Web. SIAM Review,
46(2):256–68, 2004.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

BIBLIOGRAPHY 211

[62] Martin Dodge and Rob Kitchins. Atlas of Cyberspace. Addison-Wesley, 2001.

[63] Debora Donato, Luigi Laura, Stefano Leonardi, and Stefano Millozzi. Large scale
properties of the webgraph. The European Physical Journal B, 38:239–43, 2004.

[64] Susan T. Dumais. Improving the retrieval of information from external sources.
Behavior Research Methods, Instruments and Computers, 23:229–236, 1991.

[65] Cynthia Dwork, Ravi Kumar, and Moni Naor and D. Sivakumar. Rank aggregation
methods for the Web. In The Tenth International World Wide Web Conference, New
York, 2001. ACM Press.

[66] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking the Web frontier. In
The Thirteenth International World Wide Web Conference, New York, 2004. ACM
Press.

[67] Ronald Fagin, Anna R. Karlin, Jon Kleinberg, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Ronitt Rubinfeld, Madhu Sudan, and Andrew Tomkins. Random walks
with “back buttons”. In 32nd ACM Symposium on Theory of Computing, 2000.

[68] Ronald Fagin, Ravi Kumar, Kevin S. McCurley, Jasmine Novak, D. Sivakumar,
John A. Tomlin, and David P. Williamson. Searching the workplace web. In The
Twelfth International World Wide Web Conference, pages 366–75, New York, 2003.
ACM Press.

[69] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. In ACM SIAM
Symposium on Discrete Algorithms, pages 28–36, 2003.

[70] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela-
tionships of the internet topology. In SIGCOMM, pages 251–62, 1999.

[71] Ayman Farahat, Thomas Lofaro, Joel C. Miller, Gregory Rae, F. Schaefer, and Les-
ley A. Ward. Modifications of Kleinberg’s HITS algorithm using matrix exponen-
tiation and web log records. In ACM SIGIR Conference, pages 444–45, September
2001.

[72] Ayman Farahat, Thomas Lofaro, Joel C. Miller, Gregory Rae, and Lesley A. Ward.
Authority rankings from HITS, PageRank, and SALSA: Existence, uniqueness, and
effect of initialization. SIAM Journal on Scientific Computing, 27(4):1181–201,
2006.

[73] Graham Farmelo. It Must Be Beautiful: Great Equations of Modern Science. Granta
Books, 2002.

[74] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale
study of the evolution of web pages. In The Twelfth International World Wide Web
Conference, 2003.

[75] William B. Frakes and Ricardo Baeza-Yates. Information Retrieval: Data Structures
and Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1992.

[76] Robert E. Funderlic and Carl D. Meyer. Sensitivity of the stationary distribution
vector for an ergodic Markov chain. Linear Algebra and Its Applications, 76:1–17,
1986.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

212 BIBLIOGRAPHY

[77] Robert E. Funderlic and Robert J. Plemmons. Updating LU factorizations for com-
puting stationary distributions. SIAM Journal on Algebraic and Discrete Methods,
7(1):30–42, 1986.

[78] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.
In Proceedings of the Nineteenth ACM symposium on Operating Systems Principles,
pages 29–43, New York, 2003.

[79] James Gillies and Robert Cailliau. How the Web Was Born: The Story of the World
Wide Web. Oxford University Press, 2000.

[80] David Gleich, Leonid Zhukov, and Pavel Berkhin. Fast parallel PageRank: A linear
system approach. In The Fourteenth International World Wide Web Conference,
New York, 2005. ACM Press.

[81] Gene H. Golub and Chen Greif. Arnoldi-type algorithms for computing stationary
distribution vectors, with application to PageRank. Technical Report SCCM-2004-
15, Scientific Computation and Computational Mathematics, Stanford University,
2004.

[82] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, 1996.

[83] Gene H. Golub and Carl D. Meyer. Using the QR factorization and group inverse
to compute, differentiate and estimate the sensitivity of stationary probabilities for
Markov chains. SIAM Journal on Algebraic and Discrete Methods, 17:273–81,
1986.

[84] Zoltan Gyongyi and Hector Garcia-Molina. Web spam taxonomy. Technical report,
Stanford University, 2004.

[85] D. J. Hartfiel and Carl D. Meyer. On the structure of stochastic matrices with a
subdominant eigenvalue near 1. Linear Algebra and Its Applications, 272:193–203,
1998.

[86] Taher H. Haveliwala. Efficient computation of PageRank. Technical Report 1999-
31, Computer Science Department, Stanford University, 1999.

[87] Taher H. Haveliwala. Efficient encodings for document ranking vectors. Technical
report, Computer Science Department, Stanford University, November 2002.

[88] Taher H. Haveliwala. Topic-sensitive PageRank. In The Eleventh International
WWW Conference, New York, May 2002. ACM Press.

[89] Taher H. Haveliwala. Topic-sensitive PageRank: A context-sensitive ranking al-
gorithm for web search. IEEE Transactions on Knowledge and Data Engineering,
15(4):784–96, July/August 2003.

[90] Taher H. Haveliwala and Sepandar D. Kamvar. The second eigenvalue of the Google
matrix. Technical Report 2003-20, Stanford University, 2003.

[91] Taher H. Haveliwala, Sepandar D. Kamvar, and Glen Jeh. An analytical comparison
of approaches to personalizing PageRank. Technical report, Stanford University,
2003.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

BIBLIOGRAPHY 213

[92] Moshe Haviv. Aggregation/disaggregation methods for computing the stationary
distribution of a Markov chain. SIAM Journal on Numerical Analysis, 22:952–66,
1987.

[93] Kevin Hemenway and Tara Calishain. Spidering Hacks: 100 Industrial-Strength
Tips and Tricks. O’Reilly, 2003.

[94] Monika R. Henzinger, Hannes Marais, Michael Moricz, and Craig Silverstein. Anal-
ysis of a very large AltaVista query log. Technical Report 1998-014, Digital SRC,
October 1998.

[95] Hermann Hesse. Siddhartha. New Directions Publishing Co., New York, 1951.
Translated by Hilda Rosner.

[96] Jeffrey J. Hunter. Stationary distributions of perturbed Markov chains. Linear Al-
gebra and Its Applications, 82:201–214, 1986.

[97] Ilse C. F. Ipsen and Steve Kirkland. Convergence analysis of a PageRank updating
algorithm by Langville and Meyer. SIAM Journal on Matrix Analysis and Applica-
tions, 2005. To appear.

[98] Ilse C. F. Ipsen and Carl D. Meyer. Uniform stability of Markov chains. SIAM
Journal on Matrix Analysis and Applications, 15(4):1061–74, 1994.

[99] Glen Jeh and Jennifer Widom. Scaling personalized web search. Technical report,
Stanford University, 2002.

[100] Sepandar D. Kamvar and Taher H. Haveliwala. The condition number of the PageR-
ank problem. Technical report, Stanford University, 2003.

[101] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H.
Golub. Exploiting the block structure of the Web for computing PageRank. Tech-
nical Report 2003-17, Stanford University, 2003.

[102] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H.
Golub. Extrapolation methods for accelerating PageRank computations. In Twelfth
International World Wide Web Conference, New York, 2003. ACM Press.

[103] James P. Keener. The Perron-Frobenius theorem and the ranking of football teams.
SIAM Review, 35(1):80–93, 1993.

[104] John G. Kemeny and Laurie J. Snell. Finite Markov Chains. D. Van Nostrand, New
York, 1960.

[105] Maurice G. Kendall and B. Babington Smith. On the method of paired comparisons.
Biometrica, 31, 1939.

[106] Jon Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46, 1999.

[107] Robert R. Korfhage. Information Storage and Retrieval. Wiley, New York, 1997.

[108] Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Internet Mathe-
matics Journal, 1(3):335–80, 2005.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

214 BIBLIOGRAPHY

[109] Amy N. Langville and Carl D. Meyer. A reordering for the PageRank problem.
SIAM Journal on Scientific Computing, 2005. To appear.

[110] Amy N. Langville and Carl D. Meyer. A survey of eigenvector methods of web
information retrieval. The SIAM Review, 47(1):135–61, 2005.

[111] Amy N. Langville and Carl D. Meyer. Updating the stationary vector of an irre-
ducible Markov chain with an eye on Google’s PageRank. SIAM Journal on Matrix
Analysis and Applications, 27:968–987, 2006.

[112] Chris Pan-Chi Lee, Gene H. Golub, and Stefanos A. Zenios. A fast two-stage algo-
rithm for computing PageRank and its extensions. Technical Report SCCM-2003-
15, Scientific Computation and Computational Mathematics, Stanford University,
2003.

[113] Hyun Chul Lee and Allan Borodin. Perturbation of the hyperlinked environment. In
Lecture Notes in Computer Science: Proceedings of the Ninth International Com-
puting and Combinatorics Conference, volume 2697, Heidelberg, 2003. Springer-
Verlag.

[114] Ronny Lempel and Shlomo Moran. The stochastic approach for link-structure anal-
ysis (SALSA) and the TKC effect. In The Ninth International World Wide Web
Conference, New York, 2000. ACM Press.

[115] Ronny Lempel and Shlomo Moran. Rank-stability and rank-similarity of link-based
web ranking algorithms in authority-connected graphs. In Second Workshop on
Algorithms and Models for the Web-Graph (WAW 2003), Budapest, Hungary, May
2003.

[116] Yizhou Lu, Benyu Zhang, Wensi Xi, Zheng Chen, Yi Liu, Michael R. Lyu, and
Wei-Ying Ma. The PowerRank Web link analysis algorithm. In The Thirteenth
International World Wide Web Conference, pages 254–55, New York, 2004. ACM
Press. Poster.

[117] Michael S. Malone. The complete guide to Googlemania. Wired, 12.03, 2004.

[118] Bundit Manaskasemsak and Arnon Rungsawang. Parallel PageRank computation
on a gigabit pc cluster. In 18th International Conference on Advanced Information
Networking and Applications, pages 273–277. IEEE, 2004.

[119] Fabien Mathieu and Mohamed Bouklit. The effect of the back button in a random
walk: Application for PageRank. In The Thirteenth International World Wide Web
Conference, pages 370–71, New York, 2004. Poster.

[120] Alberto O. Mendelzon and Davood Rafiei. An autonomous page ranking method for
metasearch engines. In The Eleventh International WWW Conference, May 2002.

[121] Carl D. Meyer. The character of a finite Markov chain. Linear Algebra, Markov
Chains, and Queueing Models, IMA Volumes in Mathematics and Its Applications.

[122] Carl D. Meyer. The role of the group generalized inverse in the theory of finite
Markov chains. SIAM Review, 17:443–64, 1975.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

BIBLIOGRAPHY 215

[123] Carl D. Meyer. The condition of a finite Markov chain and perturbation bounds
for the limiting probabilities. SIAM Journal on Algebraic and Discrete Methods,
1:273–83, 1980.

[124] Carl D. Meyer. Analysis of finite Markov chains by group inversion techniques. Re-
cent Applications of Generalized Inverses, Research Notes in Mathematics, 66:50–
81, 1982.

[125] Carl D. Meyer. Stochastic complementation, uncoupling Markov chains, and the
theory of nearly reducible systems. SIAM Review, 31(2):240–72, 1989.

[126] Carl D. Meyer. Sensitivity of the stationary distribution of a Markov chain. SIAM
Journal on Matrix Analysis and Applications, 15(3):715–28, 1994.

[127] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia,
2000.

[128] Carl D. Meyer and Robert J. Plemmons. Linear Algebra, Markov Chains, and
Queueing Models. Springer-Verlag, New York, 1993.

[129] Carl D. Meyer and James M. Shoaf. Updating finite Markov chains by using tech-
niques of group matrix inversion. Journal of Statistical Computation and Simula-
tion, 11:163–81, 1980.

[130] Carl D. Meyer and G. W. Stewart. Derivatives and perturbations of eigenvectors.
SIAM Journal on Numerical Analysis, 25:679–691, 1988.

[131] Cleve Moler. The world’s largest matrix computation. Matlab News and Notes,
pages 12–13, October 2002.

[132] Cleve B. Moler. Numerical Computing with MATLAB. SIAM, 2004.

[133] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. Link analysis, eigenvectors
and stability. In The Seventh International Joint Conference on Artificial Intelli-
gence, 2001.

[134] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. Stable algorithms for link
analysis. In Proceedings of the 24th Annual International ACM SIGIR Conference.
ACM, 2001.

[135] Andrew Orlowski. Google founder dreams of Google implant in your brain. The
Register, March 3, 2004.

[136] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Using PageRank to char-
acterize Web structure. In The Eighth Annual International Computing and Combi-
natorics Conference (COCOON), 2002.

[137] Beresford N. Parlett. The Symmetric Eigenvalue Problem. SIAM, 1998.

[138] Luca Pretto. A theoretical analysis of google’s PageRank. In Proceedings of the
Ninth International Symposium on String Processing and Information Retrieval,
pages 131–144, Lisbon, Portugal, September 2002.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

216 BIBLIOGRAPHY

[139] Sriram Raghavan and Hector Garcia-Molina. Compressing the graph structure of the
Web. In Proceedings of the IEEE Conference on Data Compression, pages 213–22,
March 2001.

[140] Sriram Raghavan and Hector Garcia-Molina. Towards compressing web graphs. In
Proceedings of the IEEE Conference on Data Compression, pages 203–212, March
2001.

[141] Sriram Raghavan and Hector Garcia-Molina. Representing web graphs. In Proceed-
ings of the 19th IEEE Conference on Data Engineering, Bangalore, India, March
2003.

[142] Matthew Richardson and Petro Domingos. The intelligent surfer: Probabilistic com-
bination of link and content information in PageRank. Advances in Neural Informa-
tion Processing Systems, 14:1441–8, 2002.

[143] Chris Ridings. PageRank explained: Everything you’ve always wanted to know
about PageRank. http://www.rankwrite.com/. Accessed on May 22, 2002.

[144] Chris Ridings and Mike Shishigin. PageRank uncovered.
www.voelspriet2.nl/PageRank.pdf. Accessed on September 19, 2002.

[145] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[146] Gerard Salton, editor. The SMART Retrieval System: Experiments in Automatic
Document Processing. Prentice Hall, Englewood Cliffs, NJ, 1971.

[147] Gerard Salton and Chris Buckley. Introduction to Modern Information Retrieval.
McGraw-Hill, New York, 1983.

[148] Eugene Seneta. Sensivity analysis, ergodicity coefficients, and rank-one updates for
finite Markov chains. In William J. Stewart, editor, Numerical Solution of Markov
Chains, pages 121–129. Marcel Dekker, 1991.

[149] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 1948.

[150] Chris Sherman. Teoma vs. Google, round 2. Silicon Valley Internet, 2002.
http://dc.internet.com/news/print.php/1002061.

[151] Herbert A. Simon and Albert Ando. Aggregation of variables in dynamic systems.
Econometrica, 29:111–38, 1961.

[152] G. W. Stewart. Matrix Algorithms, volume 2. SIAM, 2001.

[153] G. W. Stewart and Ji-guang Sun. Matrix Perturbation Theory. Academic Press,
1990.

[154] William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

[155] William J. Stewart and Wei Wu. Numerical experiments with iteration and aggrega-
tion for Markov chains. ORSA Journal on Computing, 4(3):336–50, 1992.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.rankwrite.com/
www.voelspriet2.nl/PageRank.pdf
http://dc.internet.com/news/print.php/1002061

BIBLIOGRAPHY 217

[156] Danny Sullivan. Searches per day. Search Engine Watch, 2003.
http://searchenginewatch.com/reports/article.php/2156461.

[157] Marcin Sydow. Random surfer with back step. In The Thirteenth International
World Wide Web Conference, pages 352–53, New York, 2004. Poster.

[158] Kristen Thorson. Modeling the Web and the computation of PageRank. Undergrad-
uate thesis, Hollins University, 2004.

[159] John A. Tomlin. A new paradigm for ranking pages on the World Wide Web. In The
Twelfth International World Wide Web Conference, New York, 2003. ACM Press.

[160] Michael Totty and Mylene Mangalindan. As Google becomes web’s gatekeeper,
sites fight to get in. Wall Street Journal, CCXLI(39), 2003. February 26.

[161] T. H. Wei. The algebraic foundations of ranking theory. PhD thesis, Cambridge
University, 1952.

[162] James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1965.

[163] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann, 1999.

[164] Hui Zhang, Ashish Goel, Ramesh Govindan, Kahn Mason, and Benjamin Van Roy.
Making eigenvector-based reputation systems robust to collusion. In Proceedings
of WAW 2004, Lecture Notes in Computer Science, number 3243, pages 92–104.
Springer-Verlag, 2004.

[165] Xiaoyan Zhang, Michael W. Berry, and Padma Raghavan. Level search schemes
for information filtering and retrieval. Information Processing and Management,
37:313–34, 2001.

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://searchenginewatch.com/reports/article.php/2156461

This page intentionally left blank

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

Index

k-step transition matrix, 179

a vector, 37, 38, 75, 80
A9, 142
absolute error, 104
absorbing Markov chains, 185
absorbing states, 185
accuracy, 79–80
adaptive PageRank method, 89–90
Adar, Eytan, 146
adjacency list, 77
adjacency matrix, 33, 76, 116, 132, 169
advertising, 45
aggregated chain, 197
aggregated chains, 195
aggregated transition matrix, 105
aggregated transition probability, 197
aggregation, 94–97

approximate, 102–104
exact, 104–105
exact vs. approximate, 105–107
iterative, 107–109

partition, 109–112
aggregation in Markov chains, 197
aggregation theorem, 105
Aitken extrapolation, 91
Alexa traffic ranking, 138
algebraic multiplicity, 157
algorithm

PageRank, 40
Aitken extrapolation, 92
dangling node PageRank, 82, 83
HITS, 116
iterative aggregation updating, 108
personalized PageRank power method, 49
quadratic extrapolation, 93
query-independent HITS, 124

α parameter, 37, 38, 41, 47–48
Amazon’s traffic rank, 142
anchor text, 48, 54, 201
Ando, Albert, 110
aperiodic, 36, 133
aperiodic Markov chain, 176
Application Programming Interface (API), 65, 73,

97
approximate aggregation, 102–104
arc, 201
Arrow, Kenneth, 136
asymptotic convergence rate, 165

asymptotic rate of convergence, 41, 47, 101, 119,
125

Atlas of Cyberspace, 27
authority, 29, 201
authority Markov chain, 132
authority matrix, 117, 201
authority score, 115, 201
authority vector, 201

Babbage, Charles, 75
back button, 84–86
BadRank, 141
Barabasi, Albert-Laszlo, 30
Berry, Michael, 7
bibliometrics, 32, 123
bipartite undirected graph, 131
BlockRank, 94–97, 102
blog, 55, 144–146, 201
Boldi, Paolo, 79
Boolean model, 5–6, 201
bounce back, 84–86
bowtie structure, 134
Brezinski, Claude, 92
Brin, Sergey, 25, 205
Browne, Murray, 7
Bush, Vannevar, 3, 10

Campbell, Lord John, 23
canonical form, reducible matrix, 182
censored chain, 104
censored chains, 194
censored distribution, 104, 195
censored Markov chain, 194
censorship, 146–147
Cesàro sequence, 162
Cesàro summability, stochastic matrix, 182
characteristic polynomial, 120, 156
Chebyshev extrapolation, 92
Chien, Steve, 102
cloaking, 44
clustering search results, 142–143
co-citation, 123, 201
co-reference, 123, 201
Collatz–Wielandt formula, 168, 172
complex networks, 30
compressed matrix storage, 76
condition number, 59, 71, 155
Condorcet, 136
connected components, 127, 133

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

220 INDEX

connected graph, 133, 169
content index, 12, 19–21, 201
content score, 13, 22, 25, 201
convergence criterion, 79, 89
convergence of matrices, 161
cost-per-click advertising, 45, 141
coupling matrix, 105, 191, 197
crawler, 11, 15–19, 201

Matlab crawler, 17
cycles, 35, 202

dangling node, 34, 63, 80–86, 177, 202
dangling node vector a, 37, 38, 75, 80, 202
dangling node PageRank algorithm, 82, 83
data fusion, 148
dead pages, 141
decomposition H = D−1L, 76
Deep Web, 9
degree of coupling, 60, 61
dense matrix, 34
derivative, 57
Dewey decimal system, 147
Dewey, Melvin, 147
diagonalizable, 119
diagonalizable matrices, 159
diagonally dominant, 166
digits of accuracy, 102
direct method, 73
directed graph, 169
disaggregation, 198
distribution, censored, 195
dominant eigenvalue, 39
dominant eigenvector, 117, 126, 138
dominant left-hand eigenvector, 39
dual solution, 137
Dwork, Cynthia, 135

E matrix, 37, 38, 49–51
eigengap, 119, 127
eigenspace, 120
Eigenvalues, 156
eigenvalues, unit, 182
Eigenvectors, 156
eigenvectors as ranking tool, 128–129
entropy function, 137
epidemic importance, 146
ε-extrapolation, 92
equilibrium, 197
Erdos, Paul, 31
ergodic class, 184
ergodic classes, 184
euclidean norm, 153
exact aggregation, 104–105
exact aggregation theorem, 105
exact vs. approximate aggregation, 105–107
Exponentiated HITS, 120
extrapolation, 90–94

Farmelo, Graham, 31
Frobenius form, 175

Frobenius, F. G., 168
functions of a matrix, 159
functions of matrices, 159
fundamental matrix for PageRank problem, 63, 202

G matrix, 37, 38
gap technique, 78
Gauss-Seidel method, 97, 108, 166
gaussian elimination, effects of roundoff, 155
generalized eigenvectors, 158
geometric multiplicity, 157
Gmail, 112
Golub, Gene, 90
Google bomb, 54–55, 202
Google brain implant, 143
Google cookie, 147
Google Dance, 99, 112, 202
Google Dance Syndrome, 112
Google Groups, 146
Google Hacks, 73, 97
Google IPO, 86
Google matrix, 202
Google matrix G, 37, 38

spectrum of, 45
Google Toolbar, 28, 147
Google Web Alert, 144
Googlebot, 16
Googleopoly, 54, 112, 202
graph, 169
graph of a matrix, 170
graph, strongly connected, 169
Great Firewall of China, 147
group inverse, 58, 68, 100

H = D−1L decomposition, 76
H matrix, 33, 38, 48–49, 75, 80
Haveliwala, Taher, 50, 51, 79, 90
HITS, 115–129, 202

acceleration, 126
adjacency matrix, 116
advantages and disadvantages of, 122–123
algorithm, 115–117
and bibliometrics, 123–124
computation of

Matlab code, 118–119
convergence, 119–120, 125
example, 120–122
history of, 25
implementation, 117–119
intuition behind, 29
modified HITS, 120, 124–126, 128
original algorithm, 116
original equations, 116
query-dependent, 122
query-independent version, 124–126
sensitivity, 126–128
summary of notation, 118
thesis, 29
ties, 121
uniqueness of vectors, 120

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

INDEX 221

homogeneous Markov chain, 176
HotRank, 137
hub, 29, 202
hub Markov chain, 132
hub matrix, 117, 202
hub score, 115, 202
hub vector, 202
hyperlink, 202

as a recommendation, 27
hyperlink matrix, 177
hyperlink matrix H, 33, 38, 48–49, 75, 80
Hyun, Young, 27

(I − αS)−1, 63
implicit link, 146
impossibility theorem, 136
imprimitive matrices, 173
imprimitivity, index, 174
incidence matrix, 169
index of an eigenvalue, 157
index of imprimitivity, 173, 174
indexer, 202
indexes, 203
indexes, types of, 12
indexing module, 12
indexing wars, 20
induced matrix norm, 154
information retrieval

definition, 1
history of, 1–5
traditional, 205

Boolean model, 5–6, 201
comparing performance, 8
definition, 5
overview of, 5–8
probabilistic model, 5, 7–8
vector space model, 5–7, 49

web, 206
challenges of, 9–13
Deep Web, 9
definition, 5
elements of the search process, 11–13

initial distribution vector, 177
inlink counting tool, 29
inlink ranking, 124
inlinks, 26, 203
intelligent agents, 143–144, 203
intelligent surfer, 48, 61, 76, 123, 125, 138, 203
Internet Archive, 21, 138, 146
Intranet, 73
Intro. to Numerical Solution of Markov Chains, 39
inverted file, 12, 19, 21, 117, 203
IPO, 86
Ipsen, Ilse, 109
iRank, 146
irreducible, 36
irreducible Markov chain, 176
irreducible Markov chain, limits, 181
irreducible matrix, 120, 171
iterative aggregation, 107–109

partition, 109–112
iterative aggregation updating algorithm, 108
iterative methods, 165

Jacobi method, 83, 97
Jacobi’s method, 166
Jeh, Glen, 51
Johnston, George, 55
Jordan chains, 158
Jordan form, 58, 157

k-step transition matrix, 179
Kaltix, 51
Kamvar, Sepandar, 51, 90
KartOO, 143
Keener, James, 129
Kendall, Maurice, 128
Kirkland, Steve, 109
Kleinberg, Jon, 25, 115, 203

Lagrange multipliers, 137
Lanczos method, 126
large-scale issues and PageRank, 75–86
largest connected component, 127
Latent Semantic Indexing (LSI), 6
Lee, Chris, 81
left-hand eigenvector, 156
Lempel, Ronny, 65, 131
library classification and the Web, 147–148
Library of Babel, 3
Library of Congress system, 147
limiting behavior, 179
limits of powers, 162
limits, irreducible Markov chains, 181
limits, reducible Markov chains, 184
linear stationary iterations, 164
linear stationary iterative procedures, 34, 102
linear systems, 154
link analysis, 203

definition, 4
intuition behind, 25

link exchange, 53, 140
link farm, 51, 52, 140, 203
link spam, 10, 52, 64, 123, 139–142, 203
link update, 65
link, implicit, 146
link-updating, 100
Linked: The New Science of Networks, 30

M-matrix, 71, 166
Markov chain, aggregated, 197
Markov chain, aperiodic, 176
Markov chain, irreducible, 176
Markov chain, periodic, 176
Markov chains, 175
Markov chains, absorbing, 185
Markov, Andrei A., 36
Massa, Bob, 53
Mathes, Adam, 54
Matlab code, 150

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

222 INDEX

PageRank power method, 42
PageRank power method with Aitken extrapola-

tion, 92
crawler, 16
HITS power method, 118
PageRank power method with quadratic extrap-

olation, 93
personalized PageRank power method, 51

matrix functions, 159
matrix norms, 154
matrix, hyperlink, 177
matrix, nonnegative, 167
matrix, positive, 167
matrix-free, 40
McCurley, Kevin, 81
memex, 3, 10
meta-search engine, 8, 143, 203
meta-search engines, 135
metatag, 44, 203
miserable failure, 55
modified HITS, 120, 124–126, 128, 203
Moler, Cleve, 40, 77
Moran, Shlomo, 65, 131
Munzner, Tamara, 27

nearly uncoupled, 59, 61, 90, 95, 102, 105, 107,
127

neighborhood graph, 117, 132, 203
netizen, 203
Netlib, 151
Neumann series, 162
node, 203
node update, 65
nondangling node, 203
nonnegative matrix, 119, 167
Norms, 153
Numerical Computing with Matlab, 77

O(n2) notation, 33
outlink ranking, 124
outlinks, 26, 203
overall score, 13, 203

page repository, 12, 204
Page, Larry, 25, 32, 143, 205
page-updating, 100
PageRank, 203

accuracy, 79–80
adjustments to basic model, 36–39

primitivity adjustment, 37
stochasticity adjustment, 37
teleportation, 37

α parameter, 37, 38, 41, 47–48
and bibliometrics, 32
as a linear system, 71–74

proof, 73–74
properties of I − αH, 72
properties of I − αS, 71–72

back button, 84–86
bounce back, 84–86

computation of, 39–43
accelerating, 89–97
back button, 84–86
exploiting dangling nodes, 82–84

convergence, 41, 47
convergence criterion, 79
dangling node issues, 80–84
example, 38
extrapolation, 90–94
fundamental matrix, 63
Google matrix G, 37, 38
history of, 25
hyperlink matrix H, 33, 38, 48–49, 75, 80
intelligent surfer, 48, 61, 76, 123, 125, 138
intuition behind, 27–28
is dead, 140
large-scale issues, 75–86

storage, 75–79
leak, 44
mathematics of, 31–46
notation, 38
original formula, 32–34
parallel processing, 97
patent, 32
personalization vector vT , 49, 51, 54, 75, 82
power method

convergence criterion, 79, 89
Matlab implementation of, 42
Matlab implementation of Aitken extrapola-

tion, 92
Matlab implementation of quadratic extrapo-

lation, 93
Matlab implementation with adjacency list, 77
Matlab implementation with personalization

vector, 51
reasons for use of, 40–42, 126
with decomposition H = D−1L, 76
with personalization vector, 49

problems with original formula, 34–35
random surfer, 36–39, 48, 61, 76, 81, 125
sensitivity, 57–69, 73

example, 60–62
summary, 59
theorems and proofs, 66–69
with respect to α, 57–62
with respect to H, 62–63
with respect to vT , 63

spectrum of Google matrix, 45
stochastic matrix S, 37, 38, 80
subdominant eigenvalue, 41, 45, 59, 90
teleportation matrix, 37, 38, 49–51
thesis, 28
topic-sensitive, 50
updating, see updating PageRank

paid link, 45
Patterson, Anna, 21
pay-for-placement ads, 45
periodic Markov chain, 176
periodicity, 133
permutation matrix, 170

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

INDEX 223

Perron complement, 187
Perron complementation, 186
Perron root, 168, 172
Perron vector, 120, 138, 168, 172
Perron’s Theorem, 168
Perron, O., 167
Perron–Frobenius Theorem, 172
Perron-Frobenius theorem, 120, 129
Perron-Frobenius Theorem, 172
Perron-Frobenius theory, 167
personalization vector vT , 49, 51, 54, 75, 82, 204
personalized search, 51, 142
polysemy, 6, 204
popularity score, 13, 25–30, 204
positive matrix, 167
positive semidefinite matrix, 117, 119
power law, 110
power law distribution, 79
power method, 34, 37, 38, 40, 42, 76, 77, 79, 101–

102, 117, 119, 126, 163
PR0, 28, 35, 53, 54, 204
precision, 8, 10, 204
preference matrix, 128
primal solution, 137
primitive, 36, 37
primitive matrices, 172, 173
primitivity adjustment, 37, 121, 204
primitivity, test, 174
privacy, 146–147
probabilistic model, 5, 7–8, 204
probability distribution vector, 153
probability distribution, censored, 195
probability vector, 176
projector, 160
prolongation operation, 191
pure link, 45, 204
pure links, 141

quadratic extrapolation, 90–94
query, 1, 204
query module, 12
query processing, 204
query-dependent, 12, 30, 122, 126, 131, 135, 204
query-independent, 12, 30, 122, 204

comparison of methods, 124–126

random surfer, 36–39, 48, 61, 76, 81, 125, 204
random walk, 176
Randomized HITS, 120
rank aggregation, 135–136
rank sink, 35, 204
rank-one update, 37, 38
rank-one updates, 155
rank-one updating, 101
rank-stability, 65
ranking by eigenvectors, 128–129
ranking module, 12
ranking scores

content score, 13, 22, 25
overall score, 13

popularity score, 13, 25–30
ranking sports teams, 128
RankPulse, 65–66, 97
real-time, 204
recall, 8, 204
Recall search engine, 21
reciprocal link, 53
reducibility, 120
reducible Markov chain, 176
reducible Markov chain, limits, 184
reducible Markov chains, 181
reducible matrix, 120, 171
reducible matrix, canonical form, 182
reference encoding, 78
relative error, 104
relevance feedback, 6, 205
relevance scoring, 6, 205
reordering, 82, 103
restriction operation, 191
revenue for search engines, 44–45
Ridings, Chris, 44
Robots Exclusion Protocol, 16
robots.txt, 16, 146
roundoff error using gaussian elimination, 155

S matrix, 37, 38, 80
SALSA, 131–135, 205

advantages and disadvantages of, 135
authority Markov chain, 132
example, 131–134
hub and authority vectors, 134
hub Markov chain, 132

Salton, Gerard, 6
scale-free network, 110
Schneider, Hans, 167
Schur complements, 187
search engine optimization (SEO), 43–44, 140, 205
search market share, 4
search pet, 144
search.ch, 15, 148
SearchKing, 51–54
Seefeld, Bernhard, 15
semisimple eigenvalue, 58, 157
sensitivity

HITS, see HITS, sensitivity
PageRank, see PageRank, sensitivity

sensitivity of linear systems, 154
Sherman–Morrison formula, 156
Sherman–Morrison update formula, 100
Silverstein, Craig, 144
similar matrices, 158
similarity transformation, 58
Simon, Herbert A., 110
simple eigenvalue, 157
Smith, Babington, 128
social choice theory, 135–136
SOR method, 166
spam, 10, 43, 55, 122, 135, 139–142, 205

link spam, 10, 52, 64, 123, 139–142
spam identification, 140

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

224 INDEX

sparse matrix, 33
special-purpose index, 12, 205
spectral circle, 156
spectral decomposition, 90
spectral projectors, 160
spectral radius, 156
spectral theorem, 159
spectral theorem for diagonalizable matrices, 161
spectrum, 156
spectrum of Google matrix, 45
spider, 12, 15, 205
Spidering Hacks, 16
splitting, 165
sponsored link, 45, 205
sponsored links, 141
stationary distribution vector, 176, 181
stationary Markov chain, 176
stationary vector, 36, 37
Stewart, Pete, 127
Stewart, William J., 39
stochastic, 34, 36
stochastic complement, 104
stochastic complementation, 186, 192
stochastic matrices, summability, 182
stochastic matrices, unit eigenvalues, 182
stochastic matrix, 175
stochastic matrix S, 37, 38, 80
stochasticity adjustment, 37, 205
storage issues for PageRank, 75–79

adjacency list, 77
decomposition H = D−1L, 76
gap technique, 78
reference encoding, 78

strongly connected graph, 169
structure index, 12, 205
subdominant eigenvalue, 41, 45, 59, 90
Subspace HITS, 128
substochastic, 34
successive overrelaxation, 166
summability, 162, 163
summability, stochastic matrix, 182
symmetric matrix, 117, 119, 126
symmetric permutation, 170
synonymy, 6, 205

talentless hack, 54
Tarjan’s algorithm, 134
Technorati, 145
teleportation, 37, 205
teleportation matrix E, 37, 38, 49–51
teleportation state, 81
Teoma, 5, 26, 29, 115, 142, see HITS
ties, 121
time-sensitive search, 144–146
Tomlin, John, 137
topic drift, 123, 135
topic-sensitive PageRank, 50
TrafficRank, 136–138, 205
transient behavior, 178
transient class, 184

transition matrix, k-step, 179
transition probability, 176
transition probability matrix, 36, 37
triangle inequality, 154
Tsaparas, Panayiotis, 149

uncoupled, see nearly uncoupled
Understanding Search Engines, 7
uniform distribution vector, 177
unit eigenvalues, stochastic matrices, 182
updating PageRank, 99–113

approximate aggregation, 102–104
exact aggregation, 104–105
exact vs. approximate aggregation, 105–107
history of, 100–101
iterative aggregation, 107–109

partition, 109–112
restarting power method, 101–102

vT vector, 49, 51, 54, 75, 82
vector ∞-norm, 154
vector 1-norm, 153
vector 2-norm, 153
vector space model, 5–7, 49, 123, 206
Vigna, Sebastiano, 79
Viv´isimo, 142

Web Frontier, 81
web graph, 26–27, 206
weblog, see blog
Wei, T. H., 129
Wilkinson, James H., 40

Zawodny, Jeremy, 140

 EBSCOhost - printed on 2/10/2023 4:07 PM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Contents
	Preface
	Chapter 1. Introduction to Web Search Engines
	1.1 A Short History of Information Retrieval
	1.2 An Overview of Traditional Information Retrieval
	1.3 Web Information Retrieval

	Chapter 2. Crawling, Indexing, and Query Processing
	2.1 Crawling
	2.2 The Content Index
	2.3 Query Processing

	Chapter 3. Ranking Webpages by Popularity
	3.1 The Scene in 1998
	3.2 Two Theses
	3.3 Query-Independence

	Chapter 4. The Mathematics of Google’s PageRank
	4.1 The Original Summation Formula for PageRank
	4.2 Matrix Representation of the Summation Equations
	4.3 Problems with the Iterative Process
	4.4 A Little Markov Chain Theory
	4.5 Early Adjustments to the Basic Model
	4.6 Computation of the PageRank Vector
	4.7 Theorem and Proof for Spectrum of the Google Matrix

	Chapter 5. Parameters in the PageRank Model
	5.1 The α Factor
	5.2 The Hyperlink Matrix H
	5.3 The Teleportation Matrix E

	Chapter 6. The Sensitivity of PageRank
	6.1 Sensitivity with respect to α
	6.2 Sensitivity with respect to H
	6.3 Sensitivity with respect to v[sup(T)]
	6.4 Other Analyses of Sensitivity
	6.5 Sensitivity Theorems and Proofs

	Chapter 7. The PageRank Problem as a Linear System
	7.1 Properties of (I – αS)
	7.2 Properties of (I – αH)
	7.3 Proof of the PageRank Sparse Linear System

	Chapter 8. Issues in Large-Scale Implementation of PageRank
	8.1 Storage Issues
	8.2 Convergence Criterion
	8.3 Accuracy
	8.4 Dangling Nodes
	8.5 Back Button Modeling

	Chapter 9. Accelerating the Computation of PageRank
	9.1 An Adaptive Power Method
	9.2 Extrapolation
	9.3 Aggregation
	9.4 Other Numerical Methods

	Chapter 10. Updating the PageRank Vector
	10.1 The Two Updating Problems and their History
	10.2 Restarting the Power Method
	10.3 Approximate Updating Using Approximate Aggregation
	10.4 Exact Aggregation
	10.5 Exact vs. Approximate Aggregation
	10.6 Updating with Iterative Aggregation
	10.7 Determining the Partition
	10.8 Conclusions

	Chapter 11. The HITS Method for Ranking Webpages
	11.1 The HITS Algorithm
	11.2 HITS Implementation
	11.3 HITS Convergence
	11.4 HITS Example
	11.5 Strengths and Weaknesses of HITS
	11.6 HITS’s Relationship to Bibliometrics
	11.7 Query-Independent HITS
	11.8 Accelerating HITS
	11.9 HITS Sensitivity

	Chapter 12. Other Link Methods for Ranking Webpages
	12.1 SALSA
	12.2 Hybrid Ranking Methods
	12.3 Rankings based on Traffic Flow

	Chapter 13. The Future of Web Information Retrieval
	13.1 Spam
	13.2 Personalization
	13.3 Clustering
	13.4 Intelligent Agents
	13.5 Trends and Time-Sensitive Search
	13.6 Privacy and Censorship
	13.7 Library Classification Schemes
	13.8 Data Fusion

	Chapter 14. Resources for Web Information Retrieval
	14.1 Resources for Getting Started
	14.2 Resources for Serious Study

	Chapter 15. The Mathematics Guide
	15.1 Linear Algebra
	15.2 Perron–Frobenius Theory
	15.3 Markov Chains
	15.4 Perron Complementation
	15.5 Stochastic Complementation
	15.6 Censoring
	15.7 Aggregation
	15.8 Disaggregation

	Chapter 16. Glossary
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 19.44 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.3600
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 19.4400
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 19
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 33.84 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.3600
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 33.8400
 Left

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 19
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend left edge by 0.72 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.3600
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Bigger
 0.7200
 Left

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 19
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend right edge by 0.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.3600
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Bigger
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 19
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 0.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.3600
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 19
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 0.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.3600
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 19
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 0.36 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Left
 0.3600
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 19
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Right
 7.2000
 0.0000

 Odd
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 20
 234
 232
 117

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 1.44 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Right
 1.4400
 0.0000

 Odd
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 20
 234
 232
 117

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 1.44 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Right
 1.4400
 0.0000

 Odd
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 20
 234
 232
 117

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 1.44 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Right
 1.4400
 0.0000

 Odd
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 20
 234
 232
 117

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 0.07 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Right
 0.0720
 0.0000

 Odd
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 224
 234
 232
 117

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 0.07 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Right
 0.0720
 0.0000

 Odd
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 224
 234
 232
 117

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 0.07 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Right
 0.0720
 0.0000

 Odd
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 224
 234
 232
 117

 1

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 0.07 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Right
 0.0720
 0.0000

 Odd
 160
 AllDoc
 166

 CurrentAVDoc

 None
 0.3600
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 198
 234
 232
 117

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 3.60 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.0720
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 3.6000
 Top

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 15
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 0.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.0720
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 0.3600
 Top

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 21
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 36.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.0720
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 36.0000
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 108
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 14.40 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.0720
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 14.4000
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 108
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend bottom edge by 7.20 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.0720
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Bigger
 7.2000
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 15
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 2.16 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.0720
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 2.1600
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 15
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 0.72 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 None
 Right
 0.0720
 0.0000

 Both
 160
 AllDoc
 166

 CurrentAVDoc

 Smaller
 0.7200
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 15
 234
 233
 234

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 0.03 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Down
 0.0288
 0.0000

 Both
 160
 CurrentPage
 166

 CurrentAVDoc

 None
 0.7200
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 2
 235
 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 0.03 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43
 Fixed
 Down
 0.0288
 0.0000

 Both
 160
 CurrentPage
 166

 CurrentAVDoc

 None
 0.7200
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 2
 235
 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 0.02 points
 Normalise (advanced option): 'original'

 32

 D:20110920125257
 581.0400
 Blank
 354.2400

 Tall
 1
 0
 No
 343
 43

 Fixed
 Right
 0.0216
 0.0000

 Both
 160
 CurrentPage
 166

 CurrentAVDoc

 None
 0.7200
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 2
 235
 2
 1

 1

 HistoryList_V1
 QI2base

