
C
o
p
y
r
i
g
h
t

2
0
2
2
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 10:21 AM via
AN: 3105944 ; Clinton L. Jeffery.; Build Your Own Programming Language : A Programmer's Guide to Designing Compilers, Interpreters, and DSLs for Solving
Modern Computing Problems
Account: ns335141

Build Your Own
Programming
Language

A programmer's guide to designing compilers,
interpreters, and DSLs for solving modern
computing problems

Clinton L. Jeffery

BIRMINGHAM—MUMBAI

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Build Your Own Programming Language
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Richa Tripathi
Publishing Product Manager: Alok Dhuri
Senior Editor: Storm Mann and Nisha Cleetus
Content Development Editor: Nithya Sadanandan
Technical Editor: Karan Solanki
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Nilesh Mohite

First published: November 2021
Production reference: 1231121

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-480-5
www.packt.com

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com

This book is dedicated to Susie, Curtis, Cary, and everyone who builds their
own programming language.

– Clinton L. Jeffery

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the author
Clinton L. Jeffery is Professor and Chair of the Department of Computer Science and
Engineering at New Mexico Institute of Mining and Technology. He received his B.S.
from the University of Washington, and M.S. and Ph.D. degrees from the University of
Arizona, all in computer science. He has conducted research and written many books and
papers on programming languages, program monitoring, debugging, graphics, virtual
environments, and visualization. With colleagues, he invented the Unicon programming
language, hosted on the Unicon website.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewers
Phillip Lee is a Peace Corps Volunteer in Sarawak, Malaysia. He has a BA from the
University of Oregon, MA, a PhD from the University of Washington, a graduate
degree in Malay/Indonesian literature from Universiti Sains Malaysia, and a graduate
degree in computing from Murdoch University, Perth. He has taught undergraduate
and graduate classes at Auckland University and Murdoch University. Philip has
publications on Latin, Greek, Malay, and Indonesian literatures. He is a co-programmer
of the Library of Congress thomas.loc.gov Congressional search system and a
co-programmer of the National Library of Medicine's toxnet.nlm.nih.gov system.
Additionally, he works as a developer of text analysis programs for the Tun Jugah
Foundation's English-Iban dictionary.

Steve Wampler has a PhD in Computer Science from the University of Arizona. After
which, he was the Associate Prof. of Computer Science from 1981 to 1993. Steve has
worked as a software designer for several major telescope projects, including the Gemini
8m Telescopes Project and the Daniel K Inouye Solar Telescope, under the Association
for Research in Astronomy. Along with that, he was a software reviewer for a number of
major telescopes, including LSST, TMT, GMT, Keck, ESO's VLT, and Spain's GTC. Steve
was the technical reviewer for the first edition of Mark Sobell's A Practical Guide to the
Linux Operating System, 1997.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://thomas.loc.gov
http://toxnet.nlm.nih.gov

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Preface

Section 1: Programming Language
Frontends

1
Why Build Another Programming Language?

So, you want to write your own
programming language… 4
Types of programming language
implementations 5
Organizing a bytecode language
implementation 6
Languages used in the examples 8

Language versus library –
what's the difference? 9
Applicability to other software
engineering tasks 10
Establishing the requirements
for your language 11

Case study – requirements that
inspired the Unicon language 13
Unicon requirement #1 – preserve
what people love about Icon 13
Unicon requirement #2 – support
large-scale programs working on
big data 14
Unicon requirement #3 – high-level
input/output for modern applications 14
Unicon requirement #4 – provide
universally implementable system
interfaces 15

Summary 16
Questions 16

2
Programming Language Design

Determining the kinds of words
and punctuation to provide in
your language 18

Specifying the control flow 21
Deciding on what kinds of
data to support 23

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

viii Table of Contents

Atomic types 23
Composite types 24
Domain-specific types 25

Overall program structure 26
Completing the Jzero
language definition 27

Case study – designing graphics
facilities in Unicon 28
Language support for 2D graphics 29
Adding support for 3D graphics 31

Summary 32
Questions 33

3
Scanning Source Code

Technical requirements 36
Lexemes, lexical categories,
and tokens 37
Regular expressions 38
Regular expression rules 38
Regular expression examples 39

Using UFlex and JFlex 40
Header section 41
Regular expressions section 42
Writing a simple source code scanner 42
Running your scanner 45
Tokens and lexical attributes 47

Expanding our example to
construct tokens 48

Writing a scanner for Jzero 51
The Jzero flex specification 51
Unicon Jzero code 54
Java Jzero code 57
Running the Jzero scanner 62

Regular expressions are not
always enough 63
Summary 67
Questions 68

4
Parsing

Technical requirements 70
Analyzing syntax 71
Understanding context-free
grammars 71
Writing context-free grammar rules 72
Writing rules for programming
constructs 74

Using iyacc and BYACC/J 76
Declaring symbols in the header section 76

Putting together the yacc context-free
grammar section 77
Understanding yacc parsers 78
Fixing conflicts in yacc parsers 81
Syntax error recovery 82
Putting together a toy example 82

Writing a parser for Jzero 88
The Jzero lex specification 88
The Jzero yacc specification 88
Unicon Jzero code 93

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents ix

Java Jzero parser code 96
Running the Jzero parser 97

Improving syntax error
messages 99
Adding detail to Unicon syntax
error messages 99

Adding detail to Java syntax
error messages 100
Using Merr to generate better
syntax error messages 100

Summary 101
Questions 102

5
Syntax Trees

Technical requirements 104
Using GNU make 104
Learning about trees 107
Defining a syntax tree type 108
Parse trees versus syntax trees 110

Creating leaves from
terminal symbols 112
Wrapping tokens in leaves 112
Working with YACC's value stack 113
Wrapping leaves for the parser's
value stack 114
Determining which leaves you need 116

Building internal nodes from
production rules 117
Accessing tree nodes on the value stack 117
Using the tree node factory method 119

Forming syntax trees for the
Jzero language 121
Debugging and testing your
syntax tree 129
Avoiding common syntax tree bugs 129
Printing your tree in a text format 130
Printing your tree using dot 132

Summary 139
Questions 139

Section 2: Syntax Tree Traversals

6
Symbol Tables

Establishing the groundwork
for symbol tables 144
Declarations and scopes 144
Assigning and dereferencing variables 146
Choosing the right tree traversal for
the job 146

Creating and populating
symbol tables for each scope 147
Adding semantic attributes to
syntax trees 148
Defining classes for symbol tables
and symbol table entries 150
Creating symbol tables 152

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

x Table of Contents

Populating symbol tables 154
Synthesizing the isConst attribute 156

Checking for undeclared
variables 158
Identifying the bodies of methods 158
Spotting uses of variables within
method bodies 159

Finding redeclared variables 161
Inserting symbols into the symbol table 161
Reporting semantic errors 162

Handling package and class
scopes in Unicon 163
Mangling names 164
Inserting self for member
variable references 165
Inserting self as the first parameter
in method calls 165

Testing and debugging
symbol tables 166
Summary 169
Questions 169

7
Checking Base Types

Type representation in
the compiler 172
Defining a base class for
representing types 172
Subclassing the base class for
complex types 173

Assigning type information to
declared variables 176
Synthesizing types from
reserved words 178
Inheriting types into a list of variables 180

Determining the type at each
syntax tree node 181
Determining the type at the leaves 182
Calculating and checking the types at
internal nodes 184

Runtime type checks and type
inference in Unicon 190
Summary 191
Questions 191

8
Checking Types on Arrays, Method Calls, and Structure
Accesses

Checking operations on
array types 194
Handling array variable declarations 194
Checking types during array creation 195
Checking types during array accesses 198

Checking method calls 199
Calculating the parameters and return
type information 200
Checking the types at each method
call site 203
Checking the type at return statements 208

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents xi

Checking structured
type accesses 210
Handling instance variable declarations 210
Checking types at instance creation 211

Checking types at instance accesses 214

Summary 217
Questions 218

9
Intermediate Code Generation

Preparing to generate code 220
Why generate intermediate code? 220
Learning about the memory regions in
the generated program 220
Introducing data types for
intermediate code 222
Adding the intermediate code
attributes to the tree 224
Generating labels and temporary
variables 225

An intermediate code
instruction set 228
Instructions 228
Declarations 229

Annotating syntax trees
with labels for control flow 230
Generating code for
expressions 233
Generating code for
control flow 236
Generating label targets for
condition expressions 236
Generating code for loops 240
Generating intermediate code for
method calls 242
Reviewing the generated
intermediate code 244

Summary 245

10
Syntax Coloring in an IDE

Downloading the example
IDEs used in this chapter 249
Integrating a compiler into a
programmer's editor 251
Analyzing source code from within
the IDE 251
Sending compiler output to the IDE 252

Avoiding reparsing the entire
file on every change 253

Using lexical information to
colorize tokens 258
Extending the EditableTextList
component to support color 258
Coloring individual tokens as they are
drawn 258

Highlighting errors using parse
results 259
Adding Java support 261
Summary 264

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

xii Table of Contents

Section 3: Code Generation and Runtime
Systems

11
Bytecode Interpreters

Understanding what
bytecode is 268
Comparing bytecode with
intermediate code 270
Building a bytecode instruction
set for Jzero 273
Defining the Jzero bytecode file format 273
Understanding the basics of stack
machine operation 276

Implementing a bytecode
interpreter 277
Loading bytecode into memory 277
Initializing the interpreter state 279
Fetching instructions and advancing
the instruction pointer 281
Instruction decoding 283

Executing instructions 284
Starting up the Jzero interpreter 288

Writing a runtime system
for Jzero 289
Running a Jzero program 290
Examining iconx, the Unicon
bytecode interpreter 291
Understanding goal-directed bytecode 291
Leaving type information in at runtime 292
Fetching, decoding, and executing
instructions 293
Crafting the rest of the runtime system 293

Summary 293
Questions 294

12
Generating Bytecode

Converting intermediate code
to Jzero bytecode 296
Adding a class for bytecode
instructions 297
Mapping intermediate code
addresses to bytecode addresses 298
Implementing the bytecode
generator method 300
Generating bytecode for
simple expressions 301

Generating code for pointer
manipulation 303
Generating bytecode for branches
and conditional branches 304
Generating code for method calls
and returns 305
Handling labels and other pseudo-
instructions in intermediate code 308

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents xiii

Comparing bytecode assembler
with binary formats 308
Printing bytecode in assembler format 309
Printing bytecode in binary format 311

Linking, loading, and including
the runtime system 312
Unicon example – bytecode
generation in icont 313
Summary 315
Questions 315

13
Native Code Generation

Deciding whether to generate
native code 318
Introducing the x64
instruction set 318
Adding a class for x64 instructions 319
Mapping memory regions to x64
register-based address modes 320

Using registers 321
Starting from a null strategy 322
Assigning registers to speed up the
local region 323

Converting intermediate code
to x64 code 325
Mapping intermediate code addresses
to x64 locations 326
Implementing the x64 code
generator method 330

Generating x64 code for simple
expressions 331
Generating code for pointer
manipulation 333
Generating native code for branches
and conditional branches 334
Generating code for method calls
and returns 335
Handling labels and
pseudo-instructions 338

Generating x64 output 340
Writing the x64 code in assembly
language format 340
Going from native assembler to an
object file 341
Linking, loading, and including the
runtime system 342

Summary 344
Questions 344

14
Implementing Operators and Built-In Functions

Implementing operators 346
Asking whether operators imply
hardware support and vice versa 347
Adding String concatenation to
intermediate code generation 347

Adding String concatenation to the
bytecode interpreter 349
Adding String concatenation to the
native runtime system 352

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

xiv Table of Contents

Writing built-in functions 353
Adding built-in functions to the
bytecode interpreter 354
Writing built-in functions for use with
the native code implementation 355

Integrating built-ins with
control structures 356

Developing operators and
functions for Unicon 357
Writing operators in Unicon 358
Developing Unicon's built-in functions 360

Summary 361
Questions 362

15
Domain Control Structures

Knowing when you need a
new control structure 364
Defining what a control structure is 364
Reducing excessive redundant
parameters 365

Scanning strings in Icon
and Unicon 366
Scanning environments and their
primitive operations 367
Eliminating excessive parameters via
a control structure 369

Rendering regions in Unicon 369
Rendering 3D graphics from a
display list 370
Specifying rendering regions using
built-in functions 370
Varying graphical levels of detail using
nested rendering regions 371
Creating a rendering region
control structure 373

Summary 378
Questions 379

16
Garbage Collection

Appreciating the importance
of garbage collection 382
Counting references to objects 384
Adding reference counting to Jzero 384
Generating code for heap allocation 385
Modifying the generated code for the
assignment operator 388
Considering the drawbacks and
limitations of reference counting 388

Marking live data and
sweeping the rest 389
Organizing heap memory regions 391
Traversing the basis to mark live data 392
Reclaiming live memory and placing it
into contiguous chunks 397

Summary 401
Questions 401

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents xv

17
Final Thoughts

Reflecting on what was learned
from writing this book 403
Deciding where to go from here 404
Studying programming language design 404
Learning about implementing
interpreters and bytecode machines 406
Acquiring expertise in
code optimization 406
Monitoring and debugging
program executions 407
Designing and implementing IDEs
and GUI builders 408

Exploring references for
further reading 408
Studying programming language design 409
Learning about implementing
interpreters and bytecode machines 409
Acquiring expertise in native code
and code optimization 410
Monitoring and debugging
program executions 411
Designing and implementing IDEs
and GUI builders 411

Summary 412

Section 4: Appendix

Appendix
Unicon Essentials

Running Unicon 416
Using Unicon's declarations
and data types 417
Declaring different kinds of
program components 418
Using atomic data types 420
Organizing multiple values using
structure types 421

Evaluating expressions 422
Forming basic expressions
using operators 423

Invoking procedures, functions,
and methods 426
Iterating and selecting what and
how to execute 427
Generators 429

Debugging and environmental
issues 430
Learning the basics of the
UDB debugger 430
Environment variables 430
Preprocessor 431

Function mini-reference 432
Selected keywords 439

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

xvi Table of Contents

Assessments

Chapter 1 441
Chapter 2 442
Chapter 3 442
Chapter 4 443
Chapter 5 443
Chapter 6 443
Chapter 7 444

Chapter 8 445
Chapter 11 445
Chapter 12 446
Chapter 13 446
Chapter 14 447
Chapter 15 447
Chapter 16 448

Other Books You May Enjoy
Index

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
After 60 years of high-level language development, programming is still too difficult. The
demand for software of ever-increasing size and complexity has exploded due to hardware
advances, while programming languages have improved far more slowly. Creating new
languages for specific purposes is one antidote for this software crisis.

This book is about building new programming languages. The topic of programming
language design is introduced, although the primary emphasis is on programming
language implementation. Within this heavily studied subject, the novel aspect of this
book is its fusing of traditional compiler-compiler tools (Flex and Byacc) with two higher-
level implementation languages. A very high-level language (Unicon) plows through a
compiler's data structures and algorithms like butter, while a mainstream modern language
(Java) shows how to implement the same code in a more typical production environment.

One thing I didn't really understand after my college compiler class is that the compiler
is only one part of a programming language implementation. Higher-level languages,
including most newer languages, may have a runtime system that dwarfs their compiler.
For this reason, the second half of this book spends quality time on a variety of aspects of
language runtime systems, ranging from bytecode interpreters to garbage collection.

Who this book is for
This book is for software developers interested in the idea of inventing their own language
or developing a domain-specific language. Computer science students taking compiler
construction courses will also find this book highly useful as a practical guide to language
implementation to supplement more theoretical textbooks. Intermediate-level knowledge
and experience working with a high-level language such as Java or C++ are required in
order to get the most out of this book.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

xviii Preface

What this book covers
Chapter 1, Why Build Another Programming Language?, discusses when to build
a programming language, and when to instead design a function library or a class
library. Many readers of this book will already know that they want to build their own
programming language. Some should design a library instead.

Chapter 2, Programming Language Design, covers how to precisely define a programming
language, which is important to know before trying to build a programming language.
This includes the design of the lexical and syntax features of the language, as well as its
semantics. Good language designs usually use as much familiar syntax as possible.

Chapter 3, Scanning Source Code, presents lexical analysis, including regular expression
notation and the tools Ulex and JFlex. By the end, you will be opening source code files,
reading them character by character, and reporting their contents as a stream of tokens
consisting of the individual words, operators, and punctuation in the source file.

Chapter 4, Parsing, presents syntax analysis, including context-free grammars and the
tools iyacc and byacc/j. You will learn how to debug problems in grammars that prevent
parsing, and report syntax errors when they occur.

Chapter 5, Syntax Trees, covers syntax trees. The main by-product of the parsing process is
the construction of a tree data structure that represents the source code's logical structure.
The construction of tree nodes takes place in the semantic actions that execute on each
grammar rule.

Chapter 6, Symbol Tables, shows you how to construct symbol tables, insert symbols into
them, and use symbol tables to identify two kinds of semantic errors: undeclared and
illegally redeclared variables. In order to understand variable references in executable
code, each variable's scope and lifetime must be tracked. This is accomplished by means of
table data structures that are auxiliary to the syntax tree.

Chapter 7, Checking Base Types, covers type checking, which is a major task required in
most programming languages. Type checking can be performed at compile time or at
runtime. This chapter covers the common case of static compile-time type checking for
base types, also referred to as atomic or scalar types.

Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses, shows you
how to perform type checks for the arrays, parameters, and return types of method calls
in the Jzero subset of Java. The more difficult parts of type checking are when multiple or
composite types are involved. This is the case when functions with multiple parameters'
types must be checked, or when arrays, hash tables, class instances, or other composite
types must be checked.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface xix

Chapter 9, Intermediate Code Generation, shows you how to generate intermediate code
by looking at examples for the Jzero language. Before generating code for execution,
most compilers turn the syntax tree into a list of machine-independent intermediate
code instructions. Key aspects of control flow, such as the generation of labels and goto
instructions, are handled at this point.

Chapter 10, Syntax Coloring in an IDE, addresses the challenge of incorporating
information from syntax analysis into an IDE in order to provide syntax coloring and
visual feedback about syntax errors. A programming language requires more than just a
compiler or interpreter - it requires an ecosystem of tools for developers. This ecosystem
can include debuggers, online help, or an integrated development environment. The
chapter is a Unicon example, drawn from the Unicon IDE.

Chapter 11, Bytecode Interpreters, covers designing the instruction set and the interpreter
that executes bytecode. A new domain-specific language may include high-level domain
programming features that are not supported directly by mainstream CPUs. The most
practical way to generate code for many languages is to generate bytecode for an abstract
machine whose instruction set directly supports the domain, and then execute programs
by interpreting that instruction set.

Chapter 12, Generating Bytecode, continues with code generation, taking the intermediate
code from Chapter 9, Intermediate Code Generation, and generating bytecode from it.
Translation from intermediate code to bytecode is a matter of walking through a giant
linked list, translating each intermediate code instruction into one or more bytecode
instructions. Typically, this is a loop to traverse the linked list, with a different chunk of
code for each intermediate code instruction.

Chapter 13, Native Code Generation, provides an overview of generating native code for
x86_64. Some programming languages require native code to achieve their performance
requirements. Native code generation is like bytecode generation, but more complex,
involving register allocation and memory addressing modes.

Chapter 14, Implementing Operators and Built-In Functions, describes how to support
very high-level and domain-specific language features by adding operators and functions
that are built into the language. Very high-level and domain-specific language features
are often best represented by operators and functions that are built into the language,
rather than library functions. Adding built-ins may simplify your language, improve its
performance, or enable side effects in your language semantics that would otherwise be
difficult or impossible. The examples in this chapter are drawn from Unicon, as it is much
higher level than Java and implements more complex semantics in its built-ins.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

xx Preface

Chapter 15, Domain Control Structures, covers when you need a new control structure,
and provides example control structures that process text using string scanning, and
render graphics regions. The generic code in previous chapters covered basic conditional
and looping control structures, but domain-specific languages often have unique or
customized semantics for which they introduce novel control structures. Adding new
control structures is substantially more difficult than adding a new function or operator,
but it is what makes domain-specific languages worth developing instead of just writing
class libraries.

Chapter 16, Garbage Collection, presents a couple of methods with which you can
implement garbage collection in your language. Memory management is one of the most
important aspects of modern programming languages, and all the cool programming
languages feature automatic memory management via garbage collection. This chapter
provides a couple of options as to how you might implement garbage collection in your
language, including reference counting, and mark-and-sweep garbage collection.

Chapter 17, Final Thoughts, reflects on the main topics presented in the book and gives
you some food for thought. It considers what was learned from writing this book and
gives you many suggestions for further reading.

Appendix, Unicon Essentials, describes enough of the Unicon programming language to
understand those examples in this book that are in Unicon. Most examples are given side
by side in Unicon and Java, but the Unicon versions are usually shorter and easier to read.

To get the most out of this book
In order to understand this book, you should be an intermediate-or-better programmer in
Java or a similar language; a C programmer who knows an object-oriented language will
be fine.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface xxi

Instructions for installing and using the tools are spread out a bit to reduce the startup
effort, appearing in Chapter 3, Scanning Source Code, to Chapter 5, Syntax Trees. If you are
technically gifted, you may be able to get all these tools to run on macOS, but it was not
used or tested during the writing of this book.

Note
If you are using the digital version of this book, we advise you to type the
code yourself or access the code from the book's GitHub repository (a link is
available in the next section). Doing so will help you avoid any potential errors
related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Build-Your-Own-Programming-Language.
If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3njc15D.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800204805_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The corresponding Java main() must be put in a class."

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language
https://github.com/PacktPublishing/
https://bit.ly/3njc15D
https://static.packt-cdn.com/downloads/9781800204805_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800204805_ColorImages.pdf

xxii Preface

A block of code is set as follows:

procedure main(argv)

 simple := simple()

 yyin := open(argv[1])

 while i := yylex() do

 write(yytext, ": ", i)

end

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

MethodHeader: PUBLIC STATIC MethodReturnVal

 MethodDeclarator {

 $$=j0.node("MethodHeader",1070,$3,$4);

 j0.calctype($$);

};

Any command-line input or output is written as follows:

$ jflex nnws.l

$ javac simple .java yylex.java

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select
System info from the Administration panel."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:customercare@packtpub.com

Preface xxiii

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Build Your Own Programming Language, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1800204809

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

In this section, you will create a basic language design and implement the frontend of a
compiler for it, including a lexical analyzer and a parser that builds a syntax tree from an
input source file.

This section comprises the following chapters:

• Chapter 1, Why Build Another Programming Language?

• Chapter 2, Programming Language Design

• Chapter 3, Scanning Source Code

• Chapter 4, Parsing

• Chapter 5, Syntax Trees

Section 1:
Programming

Language Frontends

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

1
Why Build Another

Programming
Language?

This book will show you how to build your own programming language, but first, you
should ask yourself, why would I want to do this? For a few of you, the answer will be
simple: because it is so much fun. However, for the rest of us, it is a lot of work to build a
programming language, and we need to be sure about it before we make a start. Do you
have the patience and persistence that it takes?

This chapter points out a few good reasons for building your own programming language,
as well as some situations where you don't have to build your contemplated language;
after all, designing a class library for your application domain might be simpler and just
as effective. However, libraries have their downsides, and sometimes only a new language
will do.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

4 Why Build Another Programming Language?

After this chapter, the rest of this book will, having considered things carefully, take for
granted that you have decided to build a language. In that case, you should determine
some of the requirements for your language. But first, we're going to cover the following
main topics in this chapter:

• Motivations for writing your own programming language

• The difference between programming languages and libraries

• The applicability of programming language tools to other software projects

• Establishing the requirements for your language

• A case study that discusses the requirements for the Unicon language

Let's start by looking at motivations.

So, you want to write your own programming
language…
Sure, some programming language inventors are rock stars of computer science, such as
Dennis Ritchie or Guido van Rossum! But becoming a rock star of computer science was
easier back then. I heard the following report a long time ago from an attendee of the
second History of Programming Languages Conference: The consensus was that the field
of programming languages is dead. All the important languages have been invented already.
This was proven wildly wrong a year or two later when Java hit the scene, and perhaps a
dozen times since then when languages such as Go emerged. After a mere six decades, it
would be unwise to claim our field is mature and that there's nothing new to invent that
might make you famous.

Still, celebrity is a bad reason for building a programming language. The chances of
acquiring fame or fortune from your programming language invention are slim. Curiosity
and desire to know how things work are valid reasons, so long as you've got the time and
inclination, but perhaps the best reasons for building your own programming language
are need and necessity.

Some folks need to build a new language or a new implementation of an existing
programming language to target a new processor or compete with a rival company.
If that's not you, then perhaps you've looked at the best languages (and compilers or
interpreters) available for some domain that you are developing programs for, and they
are missing some key features for what you are doing, and those missing features are
causing you pain. Every once in a blue moon, someone comes up with a whole new style
of computing that a new programming paradigm requires a new language for.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

So, you want to write your own programming language… 5

While we are discussing your motivations for building a language, let's talk about the
different kinds of languages, organization, and the examples this book will use to guide
you. Each of these topics is worth looking at.

Types of programming language implementations
Whatever your reasons, before you build a programming language, you should pick the
best tools and technologies you can find to do the job. In our case, this book will pick
them for you. First, there is a question of the implementation language that you are
building your language in. Programming language academics like to brag about writing
their language in that language itself, but this is usually only a half-truth (or someone was
being very impractical and showing off at the same time). There is also the question of just
what kind of programming language implementation to build:

• A pure interpreter that executes source code itself

• A native compiler and a runtime system, such as in C

• A transpiler that translates your language into some other high-level language

• A bytecode compiler with an accompanying bytecode machine, such as Java

The first option is fun but usually too slow. The second option is the best, but usually, it's
too labor-intensive; a good native compiler may take many person-years of effort.

While the third option is by far the easiest and probably the most fun, and I have used it
before with success, if it isn't a prototype, then it is sort of cheating. Sure, the first version
of C++ was a transpiler, but that gave way to compilers and not just because it was buggy.
Strangely, generating high-level code seems to make your language even more dependent
on the underlying language than the other options, and languages are moving targets.
Good languages have died because their underlying dependencies disappeared or broke
irreparably on them. It can be the death of a thousand small cuts.

This book chooses the fourth option: we will build a bytecode compiler with an
accompanying bytecode machine because that is a sweet spot that gives the most flexibility
while still offering decent performance. A chapter on native code compilation is included
for those of you who require the fastest possible execution.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

6 Why Build Another Programming Language?

The notion of a bytecode machine is very old; it was made famous by UCSD's Pascal
implementation and the classic SmallTalk-80 implementation, among others. It became
ubiquitous to the point of entering lay English with the promulgation of Java's JVM.
Bytecode machines are abstract processors interpreted by software; they are often called
virtual machines (as in Java Virtual Machine), although I will not use that terminology
because it is also used to refer to software tools that use real hardware instruction sets,
such as IBM's classic platforms or more modern tools such as Virtual Box.

A bytecode machine is typically quite a bit higher level than a piece of hardware, so a
bytecode implementation affords much flexibility. Let's have a quick look at what it will
take to get there…

Organizing a bytecode language implementation
To a large extent, the organization of this book follows the classic organization of a
bytecode compiler and its corresponding virtual machine. These components are defined
here, followed by a diagram to summarize them:

• A lexical analyzer reads in source code characters and figures out how they are
grouped into a sequence of words or tokens.

• A syntax analyzer reads in a sequence of tokens and determines whether that
sequence is legal according to the grammar of the language. If the tokens are in a
legal order, it produces a syntax tree.

• A semantic analyzer checks to ensure that all the names being used are legal for the
operations in which they are being used. It checks their types to determine exactly
what operations are being performed. All this checking makes the syntax tree heavy,
laden with the extra information about where variables are declared and what their
types are.

• An intermediate code generator figures out memory locations for all the variables
and all the places where a program may abruptly change execution flow, such as loops
and function calls. It adds them to the syntax tree and then walks this even fatter tree
before building a list of machine-independent intermediate code instructions.

• A final code generator turns the list of intermediate code instructions into the
actual bytecode in a file format that will be efficient to load and execute.

Independent from the steps of this bytecode virtual machine compiler, a bytecode
interpreter is written to load and execute programs. It is a gigantic loop with a switch
statement in it, but for exotic programming languages, the compiler might be no big deal
and all the magic will happen in the bytecode interpreter. The whole organization can be
summarized by the following diagram:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

So, you want to write your own programming language… 7

Figure 1.1 – Phases and dataflow in a simple programming language

It will take a lot of code to illustrate how to build a bytecode machine implementation of a
programming language. How that code is presented is important and will tell you what you
need to know going in, and much of what you may learn from going through this book.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

8 Why Build Another Programming Language?

Languages used in the examples
This book provides code examples in two languages using a parallel translations model.
The first language is Java, because that language is ubiquitous. Hopefully, you know it
or C++ and will be able to read the examples with intermediate proficiency. The second
example language is the author's own language, Unicon. While reading this book, you
can judge for yourself which language is better suited to building your own programming
language. As many examples as possible will be provided in both languages, and the
examples in the two languages will be written as similarly as possible. Sometimes, this will
be to the advantage of the lesser language.

The differences between Java and Unicon will be obvious, but they are somewhat lessened
in importance by the compiler construction tools we will use. We will use modern
descendants of the venerable Lex and YACC tools to generate our scanner and parser,
and by sticking to tools for Java and Unicon that remain as compatible as possible with
the original Lex and YACC, the frontends of our compiler will be nearly identical in both
languages. Lex and YACC are declarative programming languages that solve some of our
hard problems at an even higher level than Java or Unicon.

While we are using Java and Unicon as our implementation languages, we will need to
talk about one more language: the example language we are building. It is a stand-in
for whatever language you decide to build. Somewhat arbitrarily, I will introduce a
language called Jzero for this purpose. Niklaus Wirth invented a toy language called PL/0
(programming language zero; the name is a riff on the language name PL/1) that was
used in compiler construction courses. Jzero will be a tiny subset of Java that serves a
similar purpose. I looked pretty hard (that is, I googled Jzero and then Jzero compiler) to
see whether someone had already posted a Jzero definition we could use, and did not spot
one by that name, so we will just make it up as we go along.

The Java examples in this book will be tested using OpenJDK 14; maybe other versions
of Java (such as OpenJDK 12 or Oracle Java JDK) will work the same, but maybe not.
You can get OpenJDK from http://openjdk.java.net, or if you are on Linux,
your operating system probably has an OpenJDK package that you can install. Additional
programming language construction tools (Jflex and byacc/j) that are required for the
Java examples will be introduced in subsequent chapters as they are used. The Java
implementations we will support might be more constrained by which versions will run
these language construction tools than anything else.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://openjdk.java.net

Language versus library – what's the difference? 9

The Unicon examples in this book work with Unicon version 13.2, which can be obtained
from http://unicon.org. To install Unicon on Windows, you must download a
.msi file and run the installer. To install on Linux, you usually do a git clone of the
sources and type make. You will then want to add the unicon/bin directory to your PATH:

git clone git://git.code.sf.net/p/unicon/unicon

make

Having gone through our organization and the implementation that this book will use,
perhaps we should take another look at when a programming language is called for, and
when one can be avoided by developing a library instead.

Language versus library – what's the
difference?
Don't make a programming language when a library will do the job. Libraries are by
far the most common way to extend an existing programming language to perform a
new task. A library is a set of functions or classes that can be used together to write
applications for some hardware or software technology. Many languages, including C and
Java, are designed almost completely to revolve around a rich set of libraries. The language
itself is very simple and general, while much of what a developer must learn to develop
applications consists of how to use the various libraries.

The following is what libraries can do:

• Introduce new data types (classes) and provide public functions (an API) for
manipulating them

• Provide a layer of abstraction on top of a set of hardware or operating system calls

The following is what libraries cannot do:

• Introduce new control structures and syntax in support of new application domains

• Embed/support new semantics within the existing language runtime system

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://unicon.org

10 Why Build Another Programming Language?

Libraries do some things badly, in that you might end up preferring to make a
new language:

• Libraries often get larger and more complex than necessary.

• Libraries can have even steeper learning curves and poorer documentation
than languages.

• Every so often, libraries have conflicts with other libraries, and version
incompatibilities often break applications that use libraries.

There is a natural evolutionary path from the library to language. A reasonable approach
to building a new language to support an application domain is to start by making or
buying the best library available for that application domain. If the result does not meet
your requirements in terms of supporting the domain and simplifying the task of writing
programs for that domain, then you have a strong argument for a new language.

This book is about building your own language, not just building your own library. It turns
out that learning about these tools and techniques is useful in other contexts.

Applicability to other software engineering
tasks
The tools and technologies you learn about from building your own programming
language can be applied to a range of other software engineering tasks. For example, you
can sort almost any file or network input processing task into three categories:

• Reading XML data with an XML library

• Reading JSON data with a JSON library

• Reading anything else by writing code to parse it in its native format

The technologies in this book are useful in a wide array of software engineering tasks,
which is where the third of these categories is encountered. Frequently structured data
must be read in a custom file format.

For some of you, the experience of building your own programming language might be
the single largest program you have written thus far. If you persist and finish it, it will
teach you lots of practical software engineering skills, besides whatever you learn about
compilers and interpreters and such. This will include working with large dynamic data
structures, software testing, and debugging complex problems, among other skills.

That's enough of the inspirational motivation. Let's talk about what you should do first:
figure out your requirements.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Establishing the requirements for your language 11

Establishing the requirements for your
language
After you are sure you need a new programming language for what you are doing, take
a few minutes to establish the requirements. This is open-ended. It is you defining what
success for your project will look like. Wise language inventors do not create a whole
new syntax from scratch. Instead, they define it in terms of a set of modifications to
make to a popular existing language. Many great programming languages (Lisp, Forth,
SmallTalk, and many others) had their success significantly limited by the degree to which
their syntax was unnecessarily different from mainstream languages. Still, your language
requirements include what it will look like, and that includes syntax.

More importantly, you must define a set of control structures or semantics where your
programming language needs to go beyond existing language(s). This will sometimes
include special support for an application domain that is not well-served by existing
languages and their libraries. Such domain-specific languages (DSLs) are common
enough that whole books are focused on that topic. Our goal for this book will be to focus
on the nuts and bolts of building the compiler and runtime system for such a language,
independent of whatever domain you may be working in.

In a normal software engineering process, requirements analysis would start with
brainstorming lists of functional and non-functional requirements. Functional
requirements for a programming language involve the specifics of how the end user
developer will interact with it. You might not anticipate all the command-line options for
your language upfront, but you probably know whether interactivity is required, or whether
a separate compile step is OK. The discussion of interpreters and compilers in the previous
section, and this book's presentation of a compiler, might seem to make that choice for
you, but Python is an example of a language that provides a fully interactive interface, even
though the source code you type in it gets crunched into bytecode rather than interpreted.

Non-functional requirements are properties that your programming language must
achieve that are not directly tied to the end user developer's interactions. They include
things such as what operating system(s) it must run on, how fast execution must be, or
how little space the programs written in your language must run within.

The non-functional requirement regarding how fast execution must be usually determines
the answer as to whether you can target a software (bytecode) machine or need to target
native code. Native code is not just faster; it is also considerably more difficult to generate,
and it might make your language considerably less flexible in terms of runtime system
features. You might choose to target bytecode first, and then work on a native code
generator afterward.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

12 Why Build Another Programming Language?

The first language I learned to program on was a BASIC interpreter in which the
programs had to run within 4 KB of RAM. BASIC at the time had a low memory
footprint requirement. But even in modern times, it is not uncommon to find yourself
on a platform where Java won't run by default! For example, on virtual machines with
configured memory limits for user processes, you may have to learn some awkward
command-line options to compile or run even simple Java programs.

Many requirements analysis processes also define a set of use cases and ask the developer
to write descriptions for them. Inventing a programming language is different from your
average software engineering project, but before you are finished, you may want to go
there. A use case is a task that someone performs using a software application. When the
software application is a programming language, if you are not careful, the use cases may
be too general to be useful, such as write my application and run my program. While those
two might not be very useful, you might want to think about whether your programming
language implementation must support program development, debugging, separate
compilation and linking, integration with external languages and libraries, and so forth.
Most of those topics are beyond the scope of this book, but we will consider some of them.

Since this book will present the implementation of a language called Jzero, here are some
requirements for it. Some of these requirements may appear arbitrary. If it is not clear to
you where one of them came from, it either came from our source inspiration language
(plzero) or previous experience teaching compiler construction:

• Jzero should be a strict subset of Java. All legal Jzero programs should be legal Java
programs. This requirement allows us to check the behavior of our test programs
when we are debugging our language implementation.

• Jzero should provide enough features to allow interesting computations. This includes
if statements, while loops, and multiple functions, along with parameters.

• Jzero should support a few data types, including Booleans, integers, arrays, and the
String type. It only needs to support a subset of their functionality, as described
later. These are enough types to allow input and output of interesting values into
a computation.

• Jzero should emit decent error messages, showing the filename and line number,
including messages for attempts to use Java features not in Jzero. We will need
reasonable error messages to debug the implementation.

• Jzero should run fast enough to be practical. This requirement is vague, but it implies
that we won't be doing a pure interpreter. Pure interpreters are a very retro thing,
evocative of the 1960s and 1970s.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case study – requirements that inspired the Unicon language 13

• Jzero should be as simple as possible so that I can explain it. Sadly, this rules out
generating native code or even JVM bytecode; we will provide our own simple
bytecode machine.

Perhaps more requirements will emerge as we go along, but this is a start. Since we are
constrained for time and space, perhaps this requirements list is more important for what
it does not say, rather than for what it does say. By way of comparison, here are some of
the requirements that led to the creation of the Unicon programming language.

Case study – requirements that inspired the
Unicon language
This book will use the Unicon programming language, located at http://unicon.
org, for a running case study. We can start with reasonable questions such as, why
build Unicon, and what are its requirements? To answer the first question, we will work
backward from the second one.

Unicon exists because of an earlier programming language called Icon, from the
University of Arizona (http://www.cs.arizona.edu/icon/). Icon has particularly
good string and list processing abilities and is used for building many scripts and utilities,
as well as both programming language and natural language processing projects. Icon's
fantastic built-in data types, including structure types such as lists and (hash) tables, have
influenced several languages, including Python and Unicon. Icon's signature research
contribution is integrating goal-directed evaluation, including backtracking and automatic
resumption of generators, into a familiar mainstream syntax. Unicon requirement #1 is to
preserve these best bits of Icon.

Unicon requirement #1 – preserve what people love
about Icon
One of the things that people love about Icon is its expression semantics, including its
generators and goal-directed evaluation. Icon also provides a rich set of built-in functions
and data types so that many or most programs can be understood directly from the source
code. Unicon's goal would be 100% compatibility with Icon. In the end, we achieved more
like 99% compatibility.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://unicon.org
http://unicon.org
http://www.cs.arizona.edu/icon/

14 Why Build Another Programming Language?

It is a bit of a leap from preserving the best bits to the immortality goal of ensuring old
source code will run forever, but for Unicon, we include that in requirement #1. We have
placed a harder requirement on backward compatibility than most modern languages.
While C is very backward compatible, C++, Java, Python, and Perl are examples of
languages that have wandered away, in some cases far away, from being compatible with
the programs written in them back in their glory days. In the case of Unicon, perhaps 99%
of Icon programs run unmodified as Unicon programs.

Icon was designed for maximum programmer productivity on small-sized projects; a
typical Icon program is less than 1,000 lines of code, but Icon is very high level and you
can do a lot of computing in a few hundred lines of code! Still, computers keep getting
more capable and users want to write much larger programs than Icon was designed to
handle. Unicon requirement #2 was to support programming in large-scale projects.

Unicon requirement #2 – support large-scale programs
working on big data
For this reason, Unicon adds classes and packages to Icon, much like C++ adds them to
C. Unicon also improved the bytecode object file format and made numerous scalability
improvements to the compiler and runtime system. It also refines Icon's existing
implementation to be more scalable in many specific items, such as adopting a much more
sophisticated hash function.

Icon is designed for classic UNIX pipe-and-filter text processing of local files. Over time,
more and more people were wanting to write with it and required more sophisticated
forms of input/output, such as networking or graphics. Unicon requirement #3 is to
support ubiquitous input/output capabilities at the same high level as the built-in types.

Unicon requirement #3 – high-level input/output for
modern applications
Support for I/O is a moving target. At first, it included networking facilities and GDBM
and ODBC database facilities to accompany Icon's 2D graphics. Then, it grew to include
various popular internet protocols and 3D graphics. The definition of what input/output
capabilities are ubiquitous continues to evolve and varies by platform, but touch input
and gestures or shader programming capabilities are examples of things that have become
rather ubiquitous by this point.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case study – requirements that inspired the Unicon language 15

Arguably, despite billionfold improvements in CPU speed and memory size, the biggest
difference between programming in 1970 and programming in 2020 is that we expect
modern applications to use a myriad of sophisticated forms of I/O: graphics, networking,
databases, and so forth. Libraries can provide access to such I/O, but language-level
support can make it easier and more intuitive.

Icon is pretty portable, having been run on everything from Amigas to Crays to IBM
mainframes with EBCDIC character sets. Although the platforms have changed almost
unbelievably over the years, Unicon still retains Icon's goal of maximum source code
portability: code that gets written in Unicon should continue to run unmodified on all
computing platforms that matter. This leads to Unicon requirement #4.

Unicon requirement #4 – provide universally
implementable system interfaces
For a very long time, portability meant running on PCs, Macs, and UNIX workstations.
But again, the set of computing platforms that matter is a moving target. These days, work
is underway in Unicon to support Android and iOS, in case you count them as computing
platforms. Whether they count might depend on whether they are open enough and used
for general computing tasks, but they are certainly capable of being used as such.

All those juicy I/O facilities that were implemented for requirement #3 must be designed
in such a way that they can be multi-platform portable across all major platforms.

Having given you some of Unicon's primary requirements, here is an answer to the
question, why build Unicon at all? One answer is that after studying many languages,
I concluded that Icon's generators and goal-directed evaluation (requirement #1) were
features that I wanted when writing programs from now on. But after allowing me to add
2D graphics to their language, Icon's inventors were no longer willing to consider further
additions to meet requirements #2 and #3. Another answer is that there was a public
demand for new capabilities, including volunteer partners and some financial support.
Thus, Unicon was born.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

16 Why Build Another Programming Language?

Summary
In this chapter, you learned the difference between inventing a programming language
and inventing a library API to support whatever kinds of computing you want to do.
Several different forms of programming language implementations were considered. This
first chapter allowed you to think about functional and non-functional requirements for
your own language. These requirements might be different from the example requirements
discussed for the Java subset Jzero and the Unicon programming language, which were
both introduced.

Requirements are important because they allow you to set goals and define what success
will look like. In the case of a programming language implementation, the requirements
include what things will look and feel like to the programmers that use your language,
as well as what hardware and software platforms it must run on. The look and feel of a
programming language includes answering both external questions regarding how the
language implementation and the programs written in the language are invoked, as well as
internal issues such as verbosity: how much the programmer must write to accomplish a
given compute task.

You may be keen to get straight to the coding part. Although the classic build and fix
mentality of novice programmers might work on scripts and short programs, for a piece
of software as large as a programming language, we need a bit more planning first. After
this chapter's coverage of the requirements, Chapter 2, Programming Language Design,
will prepare you to construct a detailed plan for the implementation that will occupy our
attention for the remainder of this book!

Questions
1. What are the pros and cons of writing a language transpiler that generates C code,

instead of a traditional compiler that generates assembler or native machine code?
2. What are the major components or phases in a traditional compiler?
3. From your experience, what are some pain points where programming is more

difficult than it should be? What new programming language feature(s) address
these pain points?

4. Write a set of functional requirements for a new programming language.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Programming

Language Design
Before trying to build a programming language, you need to define it. This includes
the design of the features of the language that are visible on its surface, including basic
rules for forming words and punctuation. This also includes higher-level rules, called
syntax, that govern the number and order of words and punctuation in larger chunks of
programs, such as expressions, statements, functions, and programs. Language design also
includes the underlying meaning, also known as semantics.

Programming language design often begins by writing example code to illustrate each of
the important features of your language, as well as show the variations that are possible
for each construct. Writing examples with a critical eye lets you find and fix many possible
inconsistencies in your initial ideas. From these examples, you can then capture the
general rules that each language construct follows. Write down sentences that describe
your rules as you understand them from your examples. Note that there are two kinds
of rules. Lexical rules govern what characters must be treated together, such as words
or multi-character operators, such as ++. Syntax rules, on the other hand, are rules for
combining multiple words or punctuation to form larger meaning; in natural language,
they are often phrases, sentences, or paragraphs, while in a programming language, they
might be expressions, statements, functions, or programs.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

18 Programming Language Design

Once you have come up with examples of everything that you want your language to do,
as well as written down the lexical and syntax rules, write a language design document (or
language specification) that you can refer to while coding your language. You can change
things later, but it helps to have a plan to work from.

In this chapter, we're going to cover the following main topics:

• Determining the kinds of words and punctuation to provide in your language

• Specifying the control flow

• Deciding on what kinds of data to support

• Overall program structure

• Completing the Jzero language definition

• Case study – designing graphics facilities in Unicon

Let's start by identifying the basic elements that are allowed in source code in your language.

Determining the kinds of words and
punctuation to provide in your language
Programming languages have several different categories of words and punctuation. In
natural language, words are categorized into parts of speech – nouns, verbs, adjectives, and
so on. The categories that correspond to parts of speech that you will have to invent for a
programming language can be constructed by doing the following:

• Defining a set of reserved words or keywords

• Specifying characters in identifiers that name variables, functions, and constants

• Creating a format for literal constant values for built-in data types

• Defining single and multi-letter operators and punctuation marks

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Determining the kinds of words and punctuation to provide in your language 19

You should write down precise descriptions of each of these categories as part of your
language design document. In some cases, you might just make lists of particular words or
punctuation to use, but in other cases, you will need patterns or some other way to convey
what is and is not allowed in that category.

For reserved words, a list will do for now. For names of things, a precise description
must include details such as what non-letters symbols are allowed in such names. For
example, in Java, names must begin with a letter and can then include letters and digits;
underscores are allowed and treated as letters. In other languages, hyphens are allowed
within names, so the three symbols a, -, and b make up a valid name, not a subtraction of
b from a. When a precise description fails, a complete set of examples will suffice.

Constant values, also called literals, are a surprising and major source of complexity
in lexical analyzers. Attempting to precisely describe real numbers in Java comes out
something like this: Java has two different kinds of real numbers – floats and doubles – but
they look the same until you get to the end, where there is an optional f (or F) or d (or D)
to distinguish floats from doubles. Before that, real numbers must have either a decimal
point (.) or an exponent (e or E) part, or both. If there is a decimal point, there must be
at least one digit on one side of the decimal or the other. If there is an exponent part, it
must have an e (or E) followed by an optional minus sign and one or more digits. To make
matters worse, Java has a weird hexadecimal real constant format that few programmers
have heard of, consisting of 0x or 0X followed by digits in hex format, with an optional
decimal and mandatory exponent part consisting of a p (or P), followed by digits in
decimal format.

Describing operators and punctuation marks is usually almost as easy as listing the
reserved words. One major difference is that operators usually have precedence rules
that you will need to determine. For example, in numeric processing, the multiplication
operator has almost always higher precedence than the addition operator, so x + y * z
will multiply y * z before it adds x to the product of y and z. In most languages, there
are at least 3-5 levels of precedence, and many popular mainstream languages have from
13 to 20 levels of precedence that must be considered carefully. The following diagram
shows the operator precedence table for Java. We will need it for Jzero:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

20 Programming Language Design

Figure 2.1 – Java operator precedence

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Specifying the control flow 21

The preceding diagram shows that Java has a lot of operators organized into 10 levels of
precedence, though I might be simplifying this a bit. In your language, you might get away
with fewer, but you will have to address the issue of operator precedence if you want to
build a real language.

A similar issue is operator associativity. In many languages, most operators associate
from left to right, but a few strange ones associate from right to left. For example, the x
+ y + z expression is equivalent to (x + y) + z, but the x = y = 0 expression is
equivalent to x = (y = 0).

The principle of least surprise applies to operator precedence and associativity, as well
as to what operators you put in your language in the first place. If you define arithmetic
operators and give them strange precedence or associativity, people will reject your
language out of hand. If you happen to be introducing new, possibly domain-specific data
types in your language, you have way more freedom to define operator precedence and
associativity for any new operators you introduce in your language.

Once you have worked out what the individual words and punctuation in your language
should be, you can work your way up to larger constructs. This is the transition from
lexical analysis to syntax, and syntax is important because it is the level at which bits of
code become large enough to specify some computation to be performed. We will look
at this in more detail in a later chapters, but at the design stage, you should at least think
about how programmers will specify the control flow, declare data, and build entire
programs. First, you must plan for the control flow.

Specifying the control flow
The control flow is how the program's execution proceeds from place to place within the
source code. Most control flow constructs should be familiar to programmers who have
been trained in mainstream programming languages. The innovations in your language
design can then focus on the features that are novel or domain-specific and that motivate
you to create a new language in the first place. Make these novel things as simple and
as readable as possible. Envision how those new features ought to fit into the rest of the
programming language.

Every language must have conditionals and loops, and almost all of them use if and
while to start them. You could invent your own special syntax for an if expression, but
unless you've got a good reason to, you would be shooting yourself in the foot. Here are
some control flow constructs from Java that would certainly be in Jzero:

if (e) s;

if (e) s1 else s2;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

22 Programming Language Design

while (e) s;

for (…) s;

Here are some other less common Java control flow constructs that are not in Jzero. If they
were to appear in a program, what should a Jzero compiler do with them?

switch (e) { … }

do s while (e);

By default, our compiler will print a cryptic message that doesn't explain things very well.
In the next two chapters, we will make our compiler for Jzero print a nice error message
about the Java features that it does not support.

Besides conditionals and loops, languages tend to have a syntax for calling subroutines
and returning afterward. All these ubiquitous forms of control flow are abstractions of the
underlying machine's capability to change the location where instructions are executing –
the GOTO. If you invent a better notation for changing the location where instructions are
executing, it will be a big deal.

The biggest controversy when designing many or most control flow constructs seems
to be whether they are statements or whether you should make them expressions that
produce a result that can be used in a surrounding expression. I have used languages
where the result of if expressions are useful – C/C++/Java even have an operator for that:
the i?t:e conditional operator. I have not found a language that did something very
meaningful in making a while loop an expression; the best they did was have the while
expressions produce a result, telling us whether the loop exited due to the test condition or
due to an internal break.

If you are inventing a new language from scratch, one of the big questions for you is
whether you can come up with some new control structure(s) to support your intended
application domain. For example, suppose you want your language to provide special
support for investing in the stock market. If you manage to come up with a better control
structure for specifying conditions, constraints, or iterative operations within this domain,
you might provide a competitive edge to those who are coding in your language for this
domain. The program will have to run on an underlying von Neuman instruction set, so
you will have to figure out how to map any such new control structure to instructions such
as Boolean logic tests and GOTO instructions.

Whatever control flow constructs you decide to support, you will also need to design a
set of data types and declarations that reflect the information that the programs in your
language will manipulate.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deciding on what kinds of data to support 23

Deciding on what kinds of data to support
There are at least three categories of data types to consider in your language design. The
first one is atomic, scalar primitive types, often called first-class data types. The second is
composite or container types, which are capable of holding and organizing collections of
values. The third (which may be variants of the first or second categories) is application
domain-specific types. You should formulate a plan for each of these categories.

Atomic types
Atomic types are generally built-in and immutable. You don't modify existing values; you
just use operators to create new values. Pretty much all languages have built-in types for
numbers and a few additional types. A Boolean type, null type, and maybe a string type
are common atomics, but there are others.

You decide just how complicated to get with atomics: how many different machine
representations of integers and real numbers do you need? Some languages might provide
a single type for all numbers, while others might provide 5 or 10 (or more) for integers
and another few for real numbers. The more you add, the more flexibility and control you
give to programmers that use your language, but the more difficult your implementation
task will be later.

Similarly, it is impossible to design a single-string data type that is ideal for all applications
that use strings a lot. But how many string types do you want to support? One extreme
is having no string type at all, only a short integer type for holding characters. Such
languages would consider strings to be part of composite types. Maybe strings are
supported only by a library rather than in the language. Strings may be arrays or objects,
but even such languages usually have some special lexical rules that allow string constant
values to be given as double-quoted sequences of characters of some kind. Another
extreme is that, given the importance of strings in many application domains, your
language might want to support multiple string types for various character sets (ASCII,
UTF8, and so on) with auxiliary types (character sets) and special types and control
structures that support analyzing and constructing strings. Many popular languages treat
strings as a special atomic type.

If you are especially clever, you may decide to support only a few built-in types for
numbers and strings but make those types as flexible as possible. Popular existing
programming languages vary widely regarding how many types are used for these classic
built-in types, and for many other possible data types that you might include. Once you go
beyond integers, real numbers, and strings, the only types that are universal are container
types, which allow you to assemble data structures.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

24 Programming Language Design

Some of the things you must think about regarding atomic types include the following:

• How many values do they have?

• How are all those values encoded as literal constants in the source code?

• What kinds of operators or built-in functions use operands or parameters?

The first question will tell you how many bytes the type will require in memory. The
second and third questions tie back to the question of determining the rules for words and
punctuation in the language. The third question may also give insight into how much effort,
in terms of the code generator or runtime system, will be required to implement support
for the type in your language. Atomic types can be more work or less work to implement,
but they are seldom as complicated as composite types. We will discuss these next.

Composite types
Composite types are types that help you allocate and access multiple values in a coordinated
fashion. Languages vary enormously regarding the extent of their syntax support for
composite types. Some only support arrays and structs and require programmers to build
all their own data structures on top of these. Many provide all higher-level composite types
via libraries. However, some higher-level languages provide numerous sophisticated data
structures as built-ins with syntax support.

The most ubiquitous composite type is an array type, where multiple values are accessed
using a numerically contiguous range of integer indices. You will probably have something
like an array in your language. Your main design considerations should be how are the
indices given, and how are changes in the size of the composite value handled? Most
popular languages use indices that start at zero. Zero-based array indexes simplify index
calculations and are easier for a language inventor to implement, but they are less intuitive
for new programmers. Some languages use 1-based indices or allow the programmer to
specify a range of indices starting at an arbitrary integer other than 0.

Regarding changes in size, some languages allow no changes in size at all in their array
types, or they make the programmer jump through hoops to build new arrays of different
sizes based on existing arrays. Other languages are engineered to make adding values to
an array a cheap and easy operation. No one design is perfect for all applications, so you
just pick one and live with the consequences, support multiple array-like data types for
different purposes, or design a very clever type that accommodates a range of common
uses well.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deciding on what kinds of data to support 25

Besides arrays, you should think about what other composite types you need. Almost all
languages support a record, struct, or class type for grouping values of several different
types together and accessing them by names called fields. The more elaborate you get with
this, the more complex your language implementation will be. If you need proper object
orientation in your language, be prepared to pay for it in time spent writing your compiler
and runtime code. As a designer, the warning is to keep it simple, but as a programmer,
I would not want to use a programming language that did not give me this capability in
some form.

You might be able to think of several other composite types that are essential for your
language, which is great, especially if they will be used a lot in the programs that you
care about. I will talk about one more composite type that is of great practical value: the
(hash) table data type, also commonly called a dictionary type. A table type is something
halfway in-between an array and a record type. You index values using names, and these
names are not fixed; new names can be computed while the program runs. Any modern
language that omits this type is just leaving many of its prospective users out. For this
reason, your language may want to include a table type. Composite types are general-
purpose "glue" that's used to assemble complex data structures, but you should also
consider whether some special-purpose types, either atomic or composite, belong in your
language to support applications that are difficult to write in general-purpose languages.

Domain-specific types
Besides whatever general-purpose atomic and composite types you decide to include, you
should think about whether your programming language is aimed at a domain-specific
niche; if so, what data types can your language include to support that domain? There is
a smooth continuum between domain-specific languages that provide domain-specific
types and control structures and general-purpose languages such as C++ and Java, which
provide libraries for everything. Class libraries are powerful, but for some applications
and domains, the library approach may be more complex and bug-prone than a language
expressly designed to support the domain. For example, Java and C++ have string classes,
but they do not support complex text-processing applications better than languages that
have special-purpose types and control structures for string processing. Besides data types,
your language design will need an idea of how programs are assembled and organized.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

26 Programming Language Design

Overall program structure
When looking at the overall program structure, we need to look at how entire programs
are organized and put together, as well as the lightning rod question of how much nesting
is in your language. It almost seems like an afterthought, but how and where will the
source code in programs begin executing? In languages based on C, execution starts from
a main() function, while in scripting languages, the source code is executed as it is read
in, so there is no need for a main() function to start the ball rolling.

Program structure also raises the basic question of whether a whole program must be
translated and run together, or if different packages, classes, or functions can be separately
compiled and then linked and/or loaded together for a program to run. A language
inventor can dodge a lot of implementation complexity by either building things into
the language (if it is built-in, there is no need to figure out linking) requiring the whole
program's source code to be presented at runtime, or by generating code for some well-
known standard execution format where someone else's linker and loader will do all the
hard work.

Perhaps the biggest design question relating to the overall program structure is which
constructs may be nested, and what limits on nesting are present, if any. This is perhaps
best illustrated by an example. Once upon a time, two obscure languages were invented
around 1970 that struggled for dominance: C and Pascal.

The C language was almost flat – a program was a set of functions linked together, and
only relatively small (fine-grained) things could be nested: expressions, statements, and,
reluctantly, struct definitions.

In contrast, the Pascal language was fabulously more nested and recursive. Almost
everything could be nested. Notably, functions could be embedded within functions,
arbitrarily deep. Although C and Pascal were roughly equivalent in power, and Pascal had
a bit of a head start and was by far the most popular in university courses, C eventually
won. Why? It turns out that nesting adds complexity without adding much value. Or
maybe just because of American corporate power.

Because C won, many modern mainstream languages (I am thinking especially of
C++ and Java here) started almost flat. But over time, they have added more and more
nesting. Why is this? Either because hidden Pascal cultists lurk among us, or because it is
natural for programming languages to add features over time until they are grossly over-
engineered. Niklaus Wirth saw this coming and advocated for a return to smallness and
simplicity in software, but his pleas largely fell on deaf ears, and his languages support lots
of nesting in them.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Completing the Jzero language definition 27

What is the practical upshot for you, as a budding language designer? Don't over-engineer
your language. Keep it as simple as possible. Don't nest things unless they need to be nested.
And be prepared to pay (as a language implementor) every time you ignore this advice!

Now, it's time to draw a few language design examples from Jzero and Unicon. In the case
of Jzero, since it is a subset of Java, the design is either a big nothing-burger (we use Java's
design) or it is subtractive: what do we take away from Java to make Jzero, and what will
that look and feel like? Despite early efforts to keep it small, Java is a large language. If, as
part of our design, we make a list of everything that is in Java that is not in Jzero, it will be
a long list.

Due to the constraints of page space and programming time, Jzero must be a pretty tiny
subset of Java. However, ideally, any legal Java program that is input to Jzero would not
fail embarrassingly – it would either compile and run correctly, or it would print a useful
explanatory message explaining what Java feature(s) are being used that Jzero does not
support. So that you can easily understand the rest of this book, as well as to help keep
your expectations to a manageable size, the next section will cover additional details
regarding what is in Jzero and what is not.

Completing the Jzero language definition
In the previous chapter, we listed the requirements for the language that will be
implemented in this book, and the previous section elaborated on some of its design
considerations. For reference purposes, this section will describe additional details
regarding the Jzero language. If you find any discrepancies between this section and our
Jzero compiler, then they are bugs. Programming language designers use more precise
formal tools to define various aspects of a language; notations for describing lexical and
syntax rules will be presented in the next two chapters. This section will describe the
language in layman's terms.

A Jzero program consists of a single class in a single file. This class may consist of multiple
methods and variables, but all of them are static. A Jzero program starts by executing a
static method called main(), which is required. The kinds of statements that are allowed
in Jzero are assignment statements, if statements, while statements, and invocation of void
methods. The kinds of expressions that are allowed in a Jzero program include arithmetic,
relational, and Boolean logic operators, as well as the invocation of non-void methods.

The Jzero language supports the boolean, char, int, and long atomic types. The int
and long types are equivalent 64-bit integer data types.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

28 Programming Language Design

Jzero also supports arrays. Jzero supports the String, InputStream, and
PrintStream class types as built-ins, along with subsets of their usual functionality.
Jzero's String type supports the concatenation operator and the charAt(), equals(),
length(), and substring(b,e) methods. The String class's valueOf() static
method is also supported. Jzero's InputStream type supports read() and close()
methods, while Jzero's PrintStream type supports the print(), println() and
close() methods.

With that, we have defined the minimal features necessary to write basic computations in
a toy language resembling Java. It is not intended to be a real language. However, you are
encouraged to extend the Jzero language with additional features that we didn't have room
for in this book, such as floating-point types and user-defined classes with non-static class
variables. Now, let's see what we can observe about language design by looking at one
aspect of the Unicon language.

Case study – designing graphics facilities in
Unicon
Unicon's graphics are concrete and non-trivial in size. The design of Unicon's graphics
facilities is a real-world example that illustrates some of the trade-offs in programming
language design. Most programming languages don't feature built-in graphics (or any
built-in input/output), instead relegating all input/output to libraries. The C language
certainly performs input/output via libraries, and Unicon's graphics facilities are built on
top of C language APIs. When it comes to libraries, many languages emulate the lower-
level language they are implemented in (such as C or Java) and attempt to provide an exact
1:1 translation of the APIs of the implementation language. When higher-level languages
are implemented on top of lower-level languages, this approach provides full access to the
underlying API, at the cost of lowering the language level when using those facilities.

This wasn't an option for Unicon for several reasons. Unicon's graphics were added via
two separate large additions to the language: first 2D, and then 3D. We will consider their
design issues separately. The next section describes Unicon's 2D graphics facilities.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case study – designing graphics facilities in Unicon 29

Language support for 2D graphics
Unicon's 2D facility was the last major feature to be introduced to the Icon language
before it was frozen. The design emphasized minimizing the surface changes to the
language syntax because a large change would have been rejected. The only surface
changes were the addition of several keywords denoting special values in the graphics
system. Keywords in Unicon look like variable names with an ampersand preceding them.

Adding 19 keywords helps make the graphics facilities feel like they belong in a
language known mainly for its string processing. You might be surprised to learn that
graphics output is the easy part; all but one of the keywords are devoted to simplifying
the processing of input mouse and keyboard events. 10 of them are integer constants
denoting mouse and resize events and are there for convenience; the other eight hold
key information about the last event received, and they are updated automatically for
each event. Thanks to integer constants, no header file or imports are required to process
mouse input. The final, and primary, keyword addition is &window. This keyword holds
the default window; all graphics facility functions use this window unless another window
value is supplied as an optional first argument.

It is interesting to compare Unicon's graphics with those provided by the underlying
implementation. The underlying C APIs at the time were the X Window System's high-level
toolkits (such as HP and Athena widgets) and its lower-level library, Xlib. The high-level
toolkits were rejected during prototyping due to their unpredictable behavior and lack of
portability at the time. The Xlib library met behavioral and portability requirements, but it
was an enormous API calling for many new types (such as a separate struct type for each of
dozens of different kinds of events) and had close to a thousand functions.

Learning Xlib and then programming graphics applications in C using Xlib is an
enormously complex task, and the goal for Unicon was to provide a very high-level
capability that was easy to use. The most direct influence in support of ease of use was
BASIC. Using TRS-80 Extended Color BASIC graphics in the 1970s was far easier than
any of the X Window C APIs. For a very high-level language such as Unicon, graphics
facilities should be as easy as, and more capable than, those provided by Extended Color
BASIC. The requirement to preserve what people love about Icon extends to trying to
keep the graphics facility's design consistent with Icon's existing input and output features.
Icon's input and output facilities include a file type and built-in functions and operators
that perform input and output.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

30 Programming Language Design

For Unicon, a single new type ("window") was introduced as a subtype (and extension) of
Icon's file data type. A window is an abstraction of perhaps a dozen different Xlib entities
in the underlying C code, but it was a single, simple thing for a Unicon programmer to
create and draw on. All the existing (text) input/output operations on files were made
to work on windows, and then graphics output capabilities were added. The following
diagram illustrates some of the underlying C library entities, all rolled into a Unicon
window. The leaves of this structure vary somewhat by platform; platform differences are
minimized or eliminated at the Unicon level:

Figure 2.2 – Internal structure of a Unicon window

Graphics output capabilities in Unicon are comprised of a set of 40 or so built-in functions
for drawing different graphics primitives. The specifics of what gets output depends on
many pieces of state, such as an in-memory copy of the window's contents, and abstractions
of resources such as fonts and fill patterns. Instead of introducing new types for all these
resources, an API for manipulating them using string values was produced. A window was
eventually defined to be a pairing of two underlying entities: a canvas and a context.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case study – designing graphics facilities in Unicon 31

Control structures and program organization are major factors when designing language
features. When writing graphics programs in C, a programmer is immediately taught
(and forced) to give up the control flow to the library and organize their programs as a
set of callback functions. These are functions that are called when various events occur.
It was not an option to rewrite Unicon's bytecode interpreter around this organization;
the bytecode interpreter needs to own the control flow of an instruction's fetch-decode-
execute cycle. A multi-threaded solution could be made to work, but threads posed
unacceptable portability and performance challenges at the time. Instead, a single-
threaded, non-blocking solution was achieved by having the bytecode interpreter check
for graphics events every so often, handle common tasks such as repainting the window's
contents from the backing store and queuing others for later processing at the Unicon
language level, when the application control flow requested it.

It would have been possible to propagate a C library for 2D graphics up to the Unicon
language as-is, but it would not have met language-level and ease-of-use goals. Instead,
a high-level data type was introduced, composed of multiple underlying pieces of the C
library's state. The maintenance and updating operations that supported that high-level
data type were embedded from multiple places within the language's runtime system,
achieving an easy-to-use window type in a manner that would be impossible with a strict
library approach.

After several years, 3D graphics hardware support became ubiquitous. The next section
describes the design issues surrounding adding 3D graphics to the language.

Adding support for 3D graphics
2D graphics were added to Unicon as an extension of the file data type and supported
normal file operations such as open, close, read, and write. The fact that there was an
associated window in which individual pixels and other graphics primitives could be
manipulated was a bonus. Similarly, 3D graphics were added as an extension of 2D graphics.
The 3D windows support camera viewing primitives in a 3D space, but they support the
same attributes (such as color and fonts) in the same notation as the 2D facilities, as well as
provide the same input capabilities and additional graphics output primitives.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

32 Programming Language Design

Internally, an OpenGL implementation was required for portable 3D graphics. The
OpenGL implementation changed things dramatically, and this was eventually propagated
back to the source language level. Where a 2D window's canvas is a 2D array of pixels
that can be read and written, a 3D window's canvas includes a display list that is redrawn
each frame. OpenGL provided a display list, which was essentially a performance speedup
that bundled primitives together for reuse. In Unicon, this display list can be manipulated
directly to cause various animation effects, such as changing the size or position of
individual primitives. The display list is central to both level of detail (LOD) management
and 3D object selection. A control structure was added to mark and name sections of the
display list, which can then be enabled/disabled or selected for user input. The underlying
OpenGL library does not directly support 3D object selection, which is fundamental to
providing users with the ability to interact with objects in a 3D scene.

This discussion of the design of Unicon's graphics facilities is necessarily incomplete due
to space limitations. Initially, in the 2D facilities, the design was intentionally minimalist.
Although the result was successful, you can argue that Unicon's graphics facilities should
do more. It might be possible, for example, to invent new control structures that simplify
graphics output operations even further. In any case, this design discussion should give
you some idea of the issues that may come up when adding support for a new domain to
an existing language.

Summary
This chapter presented some of the issues involved in language design. The skills you
acquired from this chapter include those surrounding lexical design, including creating
literal constant notations for data types; syntax design, including operators and control
structures; and program organization, including deciding how and where to start execution.

The reason you should spend some time on your design is that you will need a good idea
of what your programming language will do in order to implement it. If you defer design
decisions until you must implement them, mistakes will cost you more at that time.
Designing your language includes what data types it supports, ways to declare variables
and introduce values, control structures, and the syntax needed to support code at different
levels of granularity, from individual instructions to whole programs. Once you have
finished or think you have finished, it is time to code, beginning with a function for reading
the source code, which is the focus of the next chapter.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Questions 33

Questions
1. Some programming languages do not have any reserved words at all, but most

popular mainstream languages have several dozen. What are the advantages and
disadvantages of adding more reserved words to a language?

2. The lexical rules for literal constants are often the largest and most complex
rules in a programming language's lexical specification. Give examples of how
even something as simple as integer literals can become quite a challenge to the
language implementer.

3. Semicolons are often used to either terminate statements or separate adjacent
statements from each other. In many popular mainstream languages, the single
most common syntax error is a missing semicolon. Describe one or more ways that
semicolons can be made unnecessary in a programming language's syntax.

4. Many programming languages define a program as starting from a function named
main(). Java is unusual in that although execution starts from main(), every class
can have its own main() procedure that is another way to start the program. Is
there any value to this odd program organization?

5. Most languages feature automatic, pre-opened files for standard input, standard
output, and error messages. On modern computers, however, these pre-opened
files may have no meaningful mapping, and a program is more likely to utilize a
pre-opened standard network, database, or graphics window resource. Explain
whether this proposition is practical and why.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Scanning Source

Code
The first step in any programming language is reading the individual characters of input
source code and figuring out which characters are grouped. In a natural language, this
would include looking at the adjacent sequences of letters to identify the words. In a
programming language, clusters of characters form variable names, reserved words, or
sometimes operators or punctuation marks that are several characters long. This chapter
will teach you how to use pattern matching to read in source code and identify the words
and punctuation from the raw characters.

In this chapter, we're going to cover the following main topics:

• Lexemes, lexical categories, and tokens

• Regular expressions

• Using UFlex and JFlex

• Writing a scanner for Jzero

• Regular expressions are not always enough

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

36 Scanning Source Code

First, let's look at the several kinds of words that appear in program source code. Just as
a natural language reader must distinguish the nouns from the verbs and adjectives to
understand what a sentence means; your programming language must categorize each
entity in the source code to determine how it is to be interpreted.

Technical requirements
This chapter will take you through some real technical content. To follow along, you will
need to install some tools and download the examples. Let's start by taking a look at how
to install UFlex and JFlex.

UFlex comes with Unicon and requires no separate installation. You can download
this book's examples from our GitHub repository: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch3.

The Code in Action video for the chapter can be found here: https://bit.ly/3Fnn2c2

For JFlex, download jflex-1.8.2.tar.gz (or newer) from http://jflex.de/
download.html. You will have to decompress it from a .tar.gz file into a .tar file
with gunzip, and then extract the files from the .tar file with tar. It will extract itself
into a subdirectory under the directory where you run tar.

For example, you will see a subdirectory named jflex-1.8.2. On Windows, wherever
you extract JFlex, if you do not move your JFlex installation into C:\JFLEX, you will need
to set a JFLEX_HOME environment variable to where you install it, and you will also want
to put your JFLEX\bin directory in your PATH. On Linux, you can add your JFLEX/
bin directory to your PATH or create a symbolic link to the JFLEX\bin\jflex script.

If you unpacked JFlex in /home/myname/jflex-1.8.2, you can make a symbolic
link from /usr/bin/jflex to the untarred /home/myname/jflex-1.8.2/bin/
jflex script:

sudo ln -s /home/myname/jflex-1.8.2/bin/jflex /usr/bin/jflex

Previously, we mentioned that the examples in this book will be delivered in both Unicon
and Java in a parallel translations model. There is not enough horizontal space on a
printed page to show the code side by side. Instead, the Unicon example will be given
first, followed by the corresponding Java code. Usually, the Unicon code constitutes good
executable pseudocode that we can base the Java implementation on. Now that you have
UFlex and/or JFlex installed and ready to go, it is time to discuss what we are doing. Then,
we will talk about how to use UFlex and JFlex to generate the scanner code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch3
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch3
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch3
https://bit.ly/3Fnn2c2
http://jflex.de/download.html
http://jflex.de/download.html

Lexemes, lexical categories, and tokens 37

Lexemes, lexical categories, and tokens
Programming languages read characters and group adjacent characters together when
they are part of the same entity in the language. This can be a multi-character name or
reserved word, a constant value, or an operator.

A lexeme is a string of adjacent characters that form a single entity. Most punctuation
marks are lexemes unto themselves, in addition to separating what came before from
what comes after them. In reasonable languages, whitespace characters such as spaces and
tabs are ignored other than to separate lexemes. Almost all languages also have a way of
including comments in the source code, and comments are typically treated the same as
whitespace: they can be the boundary that separates two lexemes, but they are discarded
and not considered further.

Each lexeme has a lexical category. In natural languages, lexical categories are called
parts of speech. In a programming language implementation, the lexical category is
generally represented by integer code and used in parsing. Variable names are a lexical
category. Constants are at least one category; in most languages, there are several different
categories for different constant data types. Most reserved words get their own category
because they are allowed in distinct places in the syntax; in a lot of grammars, they will
all be given their own category. Similarly, operators usually get at least one category
per precedence level, and often, each operator will be given its own category. A typical
programming language has between 50 and 100 different lexical categories, which is a lot
more than the number of parts of speech attributed to most natural languages.

The bundle of information that a programming language gathers for each lexeme that
it reads in the source code is called a token. Tokens are typically represented by a struct
(pointer) or an object. The fields in the token include the following:

• The lexeme (a string)

• The category (an integer)

• Filename (a string)

• Line number (an integer)

• Possibly other data

When reading books about programming languages, you may find that some authors
will use the word token in various ways to mean the string (lexeme), the integer category,
or the struct/object (token), depending on context. With the vocabulary of lexemes,
categories, and tokens in hand, it is time to look at the notation that is used to associate
sets of lexemes with their corresponding categories. Patterns in this notation are called
regular expressions.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

38 Scanning Source Code

Regular expressions
Regular expressions are the most widely used notations for describing patterns of symbols
within files. They are formulated from very simple rules that are easy to understand. The
set of symbols over which a set of regular expressions are written is called the alphabet.
For simplicity, in this book, the values 0-255 that can be held in one byte will be our
alphabet for reading source code.

In some sets of input symbols, regular expressions are patterns that describe sets of strings
using the members of the input symbol set and a few regular expression operators. Since
they are a notation for sets, terminology such as member, union, or intersection applies
when talking about the sets of strings that regular expressions can match. We will look at
the rules for building regular expressions in this section, followed by examples.

Regular expression rules
This book will show only those operators that are needed for examples. This will be a
practical superset of the regular expressions that theory books say are all that is needed;
having a practical subset of the operators found in some tools' regular expression
implementations is overkill. The rules of regular expressions we will consider are as
follows. After the first rule, the rest are all about chaining regular expressions together into
larger regular expressions that match more complicated patterns.

• Any symbol, such as a from the alphabet, is a regular expression that matches that
symbol. The usual escape symbol, the backslash (\), turns an operator into a regular
expression that just matches that operator symbol.

• Parentheses may be placed around a regular expression, (r), so that it matches
the same thing as r. This is used to force operator precedence of the regular
expression operators inside the parenthesis so that they're applied before operators
outside the parentheses.

• When two regular expressions, re1 and re2, are adjacent, the resulting pattern,
re1 re2, matches an instance of the left regular expression, followed by an
instance of the right regular expression. This is called concatenation and it is
sneaky because it is an invisible or implicit operator. An arbitrary string enclosed
in double quotes is that sequence of characters, concatenated. Regular expression
operators do not apply inside double quotes, and the usual escape sequences such as
\n can be used.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regular expressions 39

• Any two regular expressions, re1 and re2, can have a vertical bar placed between
them to create a regular expression, re1 | re2, that matches a member of either
re1 or re2. This is called alternation because it allows either alternative. Square
brackets are used as a special shorthand for regular expressions composed of lots of
vertical bar operators: [abcd] is equivalent to (a|b|c|d), either a or b or c or d.
The shorthand also has shorthand: the [a-d] regular expression is an even shorter
equivalent of (a|b|c|d), while the [^abcd] regular expression means any one
character that is neither a nor b nor c nor d. A useful shorthand for the shorthand
of the shorthand is the period character, or dot (.). The period, or dot character, .,
is equivalent to [^\n] and matches any character except a newline.

• Any regular expression, re, can be followed by an asterisk, or star operator. The
re* regular expression matches zero or more occurrences of the re regular
expression. Similarly, any regular expression can be followed by a plus sign. The re+
regular expression matches one or more occurrences of that regular expression.

These rules do not say anything about whitespace in regular expressions, or comments.
Programming languages have these things, but they are not part of regular expression
notation! If you need a space character as part of the pattern you are matching, sure,
you can escape one, or put it in double-quotes or square brackets. But if you see a
comment or a space that is not escaped in a regular expression, it is a bug. If you want to
insert whitespace into a regular expression just to make it more pretty, you can't. If you
need to write a comment to explain what a regular expression is doing, you are probably
making your regular expression too complicated; regular expressions are supposed to be
self-documenting. If yours are not, you should stop what you are doing, go home, and
rethink your life.

Despite my argument of keeping things simple, the five simple rules for forming regular
expressions can be combined in various ways to form powerful patterns that match very
interesting sets of strings. Before we dive into the lexical analyzer generator tools that use
them, we'll look at some additional examples that will give you a feel for some of the kinds
of patterns that can be described by regular expressions.

Regular expression examples
Regular expressions are easy once you have written a few of them. Here are some that
could conceivably be used in your scanner:

• The while regular expression is a concatenation of five regular expressions, one for
each letter: w, h, i, l, and e. It matches the "while" string.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

40 Scanning Source Code

• The "+"|"-"|"*"|"/" regular expression matches a string of length one that is
either a plus, a minus, an asterisk, or a slash. Double quotes are used to ensure that
none of these punctuation marks are interpreted as a regular expression operator.
You could specify the same pattern as [+\-*/]. Regular expression operators such
as * do not apply inside square brackets, but characters such as minus or caret that
have special interpretations inside square brackets must be escaped with a backslash.

• The [0-9]*\.[0-9]* regular expression matches zero or more digits, followed
by a period, followed by zero or more digits. The dot is escaped because otherwise, it
would mean any character other than a new line. Although this pattern looks like a
good effort at matching real numbers, it allows the dot to be there without any digits
on either side! You will have to do better than this. It is pretty cumbersome, I admit,
to say ([0-9]+\.[0-9]*|[0-9]*\.[0-9]+), but at least you know that token
will be a number of some kind.

• The "\""[^"]*"\"" regular expression matches a double quote character,
followed by zero or more occurrences of any character that is not a double quote
character, followed by a double quote character. This is a typical newbie attempt at
a regular expression for string constants. One thing that is wrong with it is it allows
newlines in the middle of the string, which most programming languages do not
allow. Another problem with it is that it has no way to put a double quote character
inside a string constant. Most programming languages will provide an escape
mechanism that allows this. Once you start allowing escaped characters, you must
be very specific about them. To just allow escaped double quotes, you might write
"\""([^"\\\n]|\\")*"\"" . A more general version for a language such as
C might look closer to "\""([^\\\n]|\\([abfnrtv\\?0]|[0-7][0-7]
[0-7]|x[0-9a-fA-F][0-9a-fA-F]))*"\"".

These examples show that regular expressions range from trivial to gigantic. Regular
expressions are something of a write-only notation – much harder to read than to write.
Sometimes, if you get your regular expression wrong, it may be easier to rewrite it from
scratch than to try and debug it. Having looked at several examples of regular expressions,
it is time to learn about the tools that use regular expression notation to generate scanners
for reading source code, namely UFlex and JFlex.

Using UFlex and JFlex
Writing a scanner by hand is an interesting task for a programmer who wants to know
exactly how everything works, but it will slow down the development of your language
and make it more difficult to maintain the code afterward.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using UFlex and JFlex 41

Good news, everyone! A family of tools descended from UNIX, known as lex, takes regular
expressions and generates a scanner function for you. Lex-compatible tools are available for
most popular programming languages. For C/C++, the most widely used lex-compatible
tool is Flex, hosted at https://github.com/westes/flex/. For Unicon, we use
UFlex, while for Java, you can use JFlex. These tools may have various custom extensions,
but to the extent that they are compatible with UNIX lex, we can present them together as
one language for writing scanners. This book's examples have been crafted carefully so that
we can even use the same lex input for both the Unicon and Java implementation!

The input files for lex are often called (lex) specifications. They use the.l extension
and consist of several sections, separated by %%. This book refers generically to lex
specifications, meaning the input file provided to either UFlex or JFlex, and for the most
part, those files would also be valid input for C Flex.

There are required sections in a lex specification: a header section followed by a regular
expression section, and an optional helper functions section. JFlex adds an imports
section to the front because Java needs imports and needs separate places to insert code
fragments before the class and inside the class definition. The lex header section and the
regular expression section are the sections you need to know about right now. We will
start by looking at the header section.

Header section
Most Flex tools have options you can enable in the header section; they vary, and we will
only cover them if we use them. You can also include bits of host language code there,
such as variable declarations. But the main purpose of the header section is to define
named macros for patterns that may appear multiple times in the regular expression
section. In lex, these named macros are on single lines of the following form:

name regex

On a macro line, name is a sequence of letters, and then there are one or more spaces, and
then there is a regular expression. Later, in the regular expressions section, these macros
may be substituted into a regular expression by surrounding the name with curly braces;
for example, {name}. The most common error newbies make with lex macros is to try
and insert a comment after the regular expression, so don't do that. The lex language does
not support comments on these lines and will try to interpret what you write as part of the
regular expression.

In a kind of epic tragedy, JFlex breaks compatibility and requires an equals sign after the
name, so its macros are like this:

name=regex

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/westes/flex/

42 Scanning Source Code

This incompatibility with UNIX lex is egregious enough that we elected not to use
macros in this book. While writing this book, we extended UFlex to handle macros
with either syntax. If you add some macros, then the code here can be shortened a little.
Without macros, your header section will be almost empty, so let's look at the next part of
the lex specification: the regular expressions section.

Regular expressions section
The primary section of a lex specification is the regular expression section. Each regular
expression is given on a line by itself, followed by some whitespace, followed by a semantic
action consisting of some host language code (in our case, Unicon or Java) to execute when
that regular expression has been matched. Note that although each regular expression rule
starts on a new line, if the semantic action uses curly braces to enclose a statement block in
the usual way, it can span multiple lines of source code and lex will not start looking for
the next regular expression until it finds the matching closing curly brace.

The most common mistake that newbies make in the regular expression section is that
they try to insert spaces or comments in the regular expression to improve readability.
Don't do that; inserting a space into the middle of the regular expression cuts off the
regular expression at the space, and the rest of the regular expression is interpreted as
being host language code. You can get some cryptic error messages when you do this.

When you run UNIX lex, which is a C tool, it generates a function called yylex() that
returns an integer category for each lexeme; global variables are set with other useful bits
of information. An integer, called yychar, holds the category; a string, called yytext,
holds the characters that were matched for the lexeme; and yyleng tells us how many
characters were matched. Lex tools vary in their compatibility with this public interface
and some tools will compute more for you automatically. For example, JFlex must
generate the scanner within a class and provides yytext() using a member function.
Programming languages certainly will want more details, such as what line number the
token came from. Now, it is time to work our way through examples that get us there.

Writing a simple source code scanner
This example lets you check whether you can run UFlex and JFlex. It also helps to
establish to what extent their use is similar or dissimilar. The example scanner just
recognizes names and numbers and whitespace; the nnws.l filename will be used for the
lex specification. The first thing you must do when reading source code is identify the
category of each lexeme and return what category was found. This example returns a 1 for
a name and a 2 for a number. Whitespace is discarded. Anything else is an error.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using UFlex and JFlex 43

The body of nnws.l is given in this section. This specification will work as input for both
UFlex and JFlex. Since the semantic actions for UFlex are Unicon code and for JFlex they
are Java code, this requires some restraint. A semantic action will be legal in both Java and
Unicon, but only if you limit the semantic action code to their common syntax, such as
method calls and return expressions. If you start inserting if statements or assignments
and language-specific syntax, your lex specification will become specific to one host
language, such as Unicon or Java.

Even this short example contains some ideas we will need later. The first two lines are for
JFlex and are ignored by UFlex. The initial %% ends an empty JFlex import section. The
second line is a JFlex option in the header section. By default, JFlex's yylex() function
returns an object of the Yytoken type, and the %int option tells it to return type integer.
The third line that starts with %% transitions us directly into the regular expressions section.
On the fourth line, the [a-zA-Z]+ regular expression matches one or more lowercase
or uppercase letters; it matches as many adjacent letters as it can find and returns a 1. As a
byproduct, the characters matched will be stored in the yytext variable. On the fifth line,
the [0-9]+ regular expression matches as many digits as it can find and returns a 2. On
the sixth line, whitespace is matched by the [\t\r\n]+ regular expression, and nothing
is returned; the scanner keeps on going into the input file looking for its next lexeme by
matching some other regular expression. You probably know the other whitespace besides
the actual space character inside the square brackets, but \t is a tab character, \r is a
carriage return character, and \n is a newline. The dot (.) on the seventh line will match
any character other than the newline, so it will catch any source code that was not allowed
in any of the previous patterns and report an error in that case. Errors are reported using a
function named lexErr() for reporting lexical errors, in an object named simple. We
will need additional error reporting functions for later phases of our compiler:

%%

%int

%%

[a-zA-Z]+ { return 1; }

[0-9]+ { return 2; }

[\t\r\n]+ { }

. { simple.lexErr("unrecognized character"); }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

44 Scanning Source Code

This specification will be called from a main() function, once for each word in the input.
Each time it is called, it will match the current input against all the regular expressions
(four, in this case) and select whichever regular expression will match the most characters
at the current location. If two or more regular expressions tie for the longest match,
whichever one appears first in the specification file wins.

Various lex tools can provide a default main() function, but for full control, you should
write your own. Writing our own main() also allows the sample example to demonstrate
how to call yylex() from a separate file. You will need to be able to do that to hook your
scanner up to the parser in the next chapter.

The main() function varies by language. Unicon has a C++-style program organization
model where main() starts outside of any object, while Java artificially places main()
functions inside of classes, but otherwise, the Unicon and Java code have many similarities.

The Unicon implementation of the main() function can be put in any filename with
Unicon's .icn extension; let's call this one simple.icn. This file contains a main()
procedure and a singleton class called simple that is only needed because in nnws.l,
we called a lexical error helper function in a Java-compatible way; that is, simple.
lexErr(). The main() procedure initializes the simple class by replacing the class
constructor function with a single instance returned by that function. main() then opens
the input file from a name given in the first command-line argument. The lexical analyzer
is informed of what file to read by yyin. The code then calls yylex() in a loop until the
scanner has finished:

procedure main(argv)

 simple := simple()

 yyin := open(argv[1])

 while i := yylex() do

 write(yytext, ": ", i)

end

class simple()

 method lexErr(s)

 stop(s, ": ", yytext)

 end

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using UFlex and JFlex 45

The corresponding Java main() must be put in a class, and the filename must be the class
name with a .java extension appended. We'll call this one simple.java. It opens a
file by creating a FileReader object and attaches it to the lexical analyzer by passing
the FileReader object as a parameter when it creates a lexical analyzer Yylex object.
Because FileReader can fail, we have to declare that main() throws an exception.
After constructing the Yylex object, main() then calls yylex() over and over again
until the input is exhausted, as denoted by the Yylex.YYEOF sentinel value returned
from yylex(). Despite being a bit longer, main() is doing the same thing as in the
Unicon version. Compared to Unicon's simple class, the Java version has an extra
proxy method, yytext(), so that other functions in the simple class or the rest of
the compiler can access the most recent lexeme string without having a reference to the
simple class's Yylex object:

import java.io.FileReader;

public class simple {

 static Yylex lex;

 public static void main(String argv[]) throws Exception{

 lex = new Yylex(new FileReader(argv[0]));

 int i;

 while ((i=lex.yylex()) != Yylex.YYEOF)

 System.out.println("token "+ i +": "+ yytext());

 }

 public static String yytext() {

 return lex.yytext();

 }

 public static void lexErr(String s) {

 System.err.println(s + ": " + yytext());

 System.exit(1);

 }

}

This simple scanner is intended mainly to show you how the plumbing is all wired together.
To ensure that that plumbing works as intended, we had better run it and find out.

Running your scanner
Let's run this example on the following (trivial) input file, named dorrie.in:

Dorrie is 1 fine puppy

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

46 Scanning Source Code

Before you can run this program, you must compile it. UFlex and JFlex write out Unicon
and Java code that is called from the rest of your programming language, which is written
either in Unicon or Java. If you are wondering what the compilation looks like, it is shown
in the following diagram. In Unicon, the two source files are compiled and linked together
into an executable file named simple. In Java, the two files are compiled into separate
.class files; you run Java on the simple.class file where the main() method lives,
and it loads others as needed:

Figure 3.1 – nnws.l used to build both the Unicon (left) and Java (right) programs

You can compile and run the program in either Unicon or Java by using the left column or
the right column, as shown here:

uflex nnws.l jflex nnws.l

unicon simple nnws javac simple.java Yylex.java

simple dorrie.in java simple dorrie.in

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using UFlex and JFlex 47

From either implementation, the output that you should see is the five lines shown here:

token 1: Dorrie

token 1: is

token 2: 1

token 1: fine

token 1: puppy

So far, all the example does is categorize groups of input characters using a regular
expression to identify what kind of lexeme has been found. For the rest of the compiler to
work, we will need more information about that lexeme, which we will store in a token.

Tokens and lexical attributes
In addition to identifying what integer category each lexeme belongs to, the rest of the
programming language implementation (in our case, the compiler) requires the scanner
to allocate an object that holds all the associated information about the lexeme. This object
is called a token.

A token holds a group of named fields, called lexical attributes. The pieces of
information that must be recorded about a given lexeme will depend on the language
and implementation. Tokens will normally track the integer category, the string lexeme,
and what line number the token came from. In a real compiler, tokens usually contain
additional information about the lexeme. This is likely to include the filename and the
column within the line where the lexeme occurred. For some tokens (literal constants), a
compiler or interpreter may find it useful to store the actual binary value represented by
that literal.

You might be wondering why you should store what column a token came from on a line.
Given the lexeme text itself, you can usually see it easily enough by just looking at the line
of source code, and most compilers only give line numbers when they report errors, not
column numbers. In truth, not all programming language implementations store column
numbers in their lexical attributes. The ones that do, however, can disambiguate errors
when the same token appears more than once on a line: is the error at the first closing
parenthesis, or the third? You can leave it to the human to guess, or you can record the
extra details. Whether you elect to store column information or not might also depend
on whether your lexical analyzer will be used in an IDE that jumps the cursor to the
offending token when an error occurs. If that is among your requirements, you will need
column information to ensure that that feature is correct.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

48 Scanning Source Code

Expanding our example to construct tokens
A new token instance is allocated for each call to yylex(). In lex, tokens are transmitted
to the parser by placing a pointer to the new instance in a global variable named yylval
each time yylex() is called. As a transition toward a real programming language scanner,
we will extend the example given previously so that it allocates these token objects. The
most elegant and portable way of doing that is to insert a function called scan() into
the semantic actions; the scan() function allocates the token objects and then (usually)
returns its parameter, which is the integer category code in the previous example.

A lex specification to do this can be found in the nnws-tok.l file. Fascinatingly, in
JFlex, a carriage return character is neither part of a newline, nor part of the anything-but-
newline dot operator, so if you use JFlex, you must account for carriage returns explicitly.
In this example, they are optional in front of new lines:

%%

%int

%%

[a-zA-Z]+ { return simple2.scan(1); }

[0-9]+ { return simple2.scan(2); }

[\t]+ { }

\r?\n { simple2.increment_lineno(); }

. { simple2.lexErr("unrecognized character"); }

The revised main() procedure in Unicon is shown in the following simple2.icn.
The scan() function depends on a global variable called yylineno that is set from
main() and updated in yylex() every time a newline is matched. As per the previous
example, the simple2 class is a singleton class that is here so that the lex specification
can work unchanged for both Unicon and Java. The representation of tokens is defined
by a Unicon record type, which is like a struct in C/C++ or a class with no methods.
So far, it only contains the integer category code, the lexeme string itself, and what line
number it came from:

global yylineno, yylval

procedure main(argv)

 simple2 := simple2()

 yyin := open(argv[1]) | stop("usage: simple2 filename")

 yylineno := 1

 while i := yylex() do

 write(yytext, " (line ",yylval.lineno, "): ", i)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using UFlex and JFlex 49

class simple2()

 method lexErr(s)

 stop(s, ": line ", yylineno, ": ", yytext)

 end

 method scan(cat)

 yylval := token(cat, yytext, yylineno)

 return cat

 end

 method increment_yylineno()

 yylineno +:= 1

 end

end

record token(cat, text, lineno)

The corresponding Java main() in the simple2.java file looks like this:

import java.io.FileReader;

public class simple2 {

 static Yylex lex;

 public static int yylineno;

 public static token yylval;

 public static void main(String argv[]) throws Exception {

 lex = new Yylex(new FileReader(argv[0]));

 yylineno = 1;

 int i;

 while ((i=lex.yylex()) != Yylex.YYEOF)

 System.out.println("token "+ i +
 " (line " +yylval.lineno + "): "+ yytext());

 }

 public static String yytext() {

 return lex.yytext();

 }

 public static void lexErr(String s) {

 System.err.println(s + ": line " + yylineno +
 ": " + yytext());

 System.exit(1);

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

50 Scanning Source Code

 }

 public static int scan(int cat) {

 yylval = new token(cat, yytext, yylineno);

 return cat;

 }

 public static void increment_lineno() {

 yylineno++;

 }

}

Another Java file is required for the simple2 example. The token.java file contains
our representation of the class token. This class token will be expanded in the next section:

public class token {

 public int cat;

 public String text;

 public int lineno;

 public token(int c, String s, int l) {

 cat = c; text = s; lineno = l;

 }

}

The following input file, dorrie2.in, has been extended to multiple lines and has a period
added so that we can see the line number when unrecognized characters are reported:

Dorrie

is 1

fine puppy.

You can run the program in either Unicon or Java, as follows:

uflex nnws-tok.l jflex nnws-tok.l

 javac token.java

unicon simple2 nnws-tok javac simple2.java Yylex.java

simple2 dorrie2.in java simple2 dorrie2.in

From either implementation, the output that you should see is as follows:

token 1 (line 1): Dorrie

token 1 (line 2): is

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a scanner for Jzero 51

token 2 (line 2): 1

token 1 (line 3): fine

token 1 (line 3): puppy

unrecognized character: line 3: .

The output from this example includes line numbers, and the input file includes an
unrecognized character so that we can see that the error message includes a line number
as well.

Writing a scanner for Jzero
In this section, we will build a scanner for Jzero, our subset of the Java language. This
extends the previous simple2 example to a realistic language size and adds column
information, as well as additional lexical attributes for literal constants. The big change is
the introduction of many regular expressions for more complex patterns than what we've
seen previously. The entire Java language is recognized, but a significant fraction of Java
categories cause executions to terminate with an error so that our grammar in the next
chapter, along with the rest of the compiler, does not have to consider them.

The Jzero flex specification
Compared to the previous examples, a real programming language lex specification will
have a lot more, and more complicated, regular expressions. The following file is called
javalex.l and it will be presented in several pieces.

The beginning of javalex.l includes the header and the regular expressions for
comments and whitespace. These regular expressions match and consume characters from
the source code without returning integer code for them; they are invisible to the rest of
the compiler. As a subset of Java, Jzero includes both C-style comments bounded by /*
and */ as well as C++-style comments starting with // that go to the end of the line. The
regular expression for C comments is a whopper; if your language has any patterns like
this, it is very easy and common to get them wrong. It reads as: start with a /* and then
eat chunks of non-asterisk characters or asterisks so long as they don't end the comment,
and finish when you find asterisk(s) followed by a slash:

%%

%int

%%

"/*"([^*]|"*"+[^/*])*"*"+"/" { j0.comment(); }

"//".*\r?\n { j0.comment(); }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

52 Scanning Source Code

[\t\r\f]+ { j0.whitespace(); }

\n { j0.newline(); }

The next part of javalex.l contains the reserved words, whose regular expressions
are trivial. Since these words are common in semantic actions, use double quotes to
emphasize that they are just the characters themselves and that you are not accidentally
looking at some semantic action code. Many of the integer category codes here are
accessed from the parser class, specified in a separate file. In the remaining chapters of
this book, the integer codes are specified by the parser. The lexical analyzer must use the
parser's codes for these two phases of the compiler to communicate successfully.

You might be wondering, why use separate integer category code for each reserved word?
You only need separate category code for each unique role in the syntax. Reserved words
that can be used in the same places may use the same integer category code. If you do so,
your grammar will be shorter, but you defer their differences to later in semantic analysis
and make your grammar a bit vague. An example of this would be true and false;
they are syntactically the same kind of thing, so they are both returned as a BOOLLIT. We
might find other reserved words, such as the names of types, where we could assign them
the same category code. This is a design decision to consider. When in doubt, play it safe
and be un-vague by giving each reserved word its own integer:

"break" { return j0.scan(parser.BREAK); }

"double" { return j0.scan(parser.DOUBLE); }

"else" { return j0.scan(parser.ELSE); }

"false" { return j0.scan(parser.BOOLLIT); }

"for" { return j0.scan(parser.FOR); }

"if" { return j0.scan(parser.IF); }

"int" { return j0.scan(parser.INT); }

"null" { return j0.scan(parser.NULLVAL); }

"return" { return j0.scan(parser.RETURN); }

"string" { return j0.scan(parser.STRING); }

"true" { return j0.scan(parser.BOOLLIT); }

"bool" { return j0.scan(parser.BOOL); }

"void" { return j0.scan(parser.VOID); }

"while" { return j0.scan(parser.WHILE); }

"class" { return j0.scan(parser.CLASS); }

"static" { return j0.scan(parser.STATIC); }

"public" { return j0.scan(parser.PUBLIC); }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a scanner for Jzero 53

The third part of javalex.l consists of the operators and punctuation marks. The
regular expressions are quoted to indicate that they just mean the characters themselves.
As with reserved words, in some cases, operators can be lumped together into a shared
category code if they appear to have the same operator precedence and associativity. This
would make the grammar shorter at the expense of vagueness. Another wrinkle compared
to reserved words is that many operators and punctuation marks are only a single
character. In that case, it is shorter and more readable to use their ASCII code as their
integer category code, so we do. The j0.ord(s) function provides a way to do this that
runs on both Unicon and Java. For multi-character operators, a parser constant is defined,
as per the reserved words:

"(" { return j0.scan(j0.ord("(")); }

")" { return j0.scan(j0.ord(")")); }

"[" { return j0.scan(j0.ord("[")); }

"]" { return j0.scan(j0.ord("]")); }

"{" { return j0.scan(j0.ord("{")); }

"}" { return j0.scan(j0.ord("}")); }

";" { return j0.scan(j0.ord(";")); }

":" { return j0.scan(j0.ord(":")); }

"!" { return j0.scan(j0.ord("!")); }

"*" { return j0.scan(j0.ord("*")); }

"/" { return j0.scan(j0.ord("/")); }

"%" { return j0.scan(j0.ord("%")); }

"+" { return j0.scan(j0.ord("+")); }

"-" { return j0.scan(j0.ord("-")); }

"<" { return j0.scan(j0.ord("<")); }

"<=" { return j0.scan(parser.LESSTHANOREQUAL);}

">" { return j0.scan(j0.ord(">")); }

">=" { return j0.scan(parser.GREATERTHANOREQUAL);}

"==" { return j0.scan(parser.ISEQUALTO); }

"!=" { return j0.scan(parser.NOTEQUALTO); }

"&&" { return j0.scan(parser.LOGICALAND); }

"||" { return j0.scan(parser.LOGICALOR); }

"=" { return j0.scan(j0.ord("=")); }

"+=" { return j0.scan(parser.INCREMENT); }

"-=" { return j0.scan(parser.DECREMENT); }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

54 Scanning Source Code

"," { return j0.scan(j0.ord(",")); }

"." { return j0.scan(j0.ord(".")); }

The fourth and final part of javalex.l contains the more difficult regular expressions.
The rule for variable names, whose integer category is IDENTIFIER, must come after
all the reserved words. The reserved words regular expressions are overriding the far
more general identifier regular expression, but only because lex's semantics breaks ties by
picking whichever regular expression came first in the lex specification.

If it will make your code more readable, you can have as many regular expressions as
you want, all returning the same integer category. This example uses multiple regular
expressions for real numbers, which are numbers with either a decimal point, a scientific
notation, or both. After the last regular expression, a catch-all pattern is used to generate a
lexical error if some binary or other strange characters appear in the source code:

[a-zA-Z_][a-zA-Z0-9_]*{ return j0.scan(parser.IDENTIFIER);}

[0-9]+ { return j0.scan(parser.INTLIT); }

[0-9]+"."[0-9]*([eE][+-]?[0-9]+)? { return j0.scan
 (parser.DOUBLELIT);}

[0-9]*"."[0-9]+([eE][+-]?[0-9]+)? { return j0.scan
 (parser.DOUBLELIT);}

 ([0-9]+)([eE][+-]?([0-9]+)) {return j0.scan
 (parser.DOUBLELIT);}

\"([^\"])|(\\.)*\" { return j0.scan(parser.STRINGLIT); }

. { j0.lexErr("unrecognized character");}

Although it has been split into four portions for presentation here, the javalex.l file is
not very long, at around 58 lines of code. Since it works for both Unicon and Java, this is
a lot of bang for your coding buck. The supporting Unicon and Java code is non-trivial,
but we are letting lex (UFlex and JFlex) do most of the work here.

Unicon Jzero code
The Unicon implementation of the Jzero scanner resides in a file named j0.icn. Unicon
has a pre-processor and normally introduces defined symbolic constants via $include
files. To use the same lex specification in Unicon and Java, this Unicon scanner creates a
parser object whose fields, such as parser.WHILE, contain the integer category code:

global yylineno, yycolno, yylval

procedure main(argv)

 j0 := j0()

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a scanner for Jzero 55

 parser := parser(257,258,259,260,261,262,263,264,265,

 266, 267,268,269,270,273,274,275,276,

 277,278,280,298,300,301,302,303,304,

 306,307,256)

 yyin := open(argv[1]) | stop("usage: simple2 filename")

 yylineno := yycolno := 1

 while i := yylex() do

 write(yytext, ":",yylval.lineno, " ", i)

end

The second part of j0.icn consists of the j0 class. Compared to the simple2 class
from the previous simple2.icn example, additional methods have been added for the
semantic actions to call when various whitespace and comments are encountered. This
allows the current column number to be calculated in a global variable called yycolno:

class j0()

 method lexErr(s)

 stop(s, ": ", yytext)

 end

 method scan(cat)

 yylval := token(cat, yytext, yylineno, yycolno)

 yycolno +:= *yytext

 return cat

 end

 method whitespace()

 yycolno +:= *yytext

 end

 method newline()

 yylineno +:= 1; yycolno := 1

 end

 method comment()

 yytext ? {

 while tab(find("\n")+1) do newline()

 yycolno +:= *tab(0)

 }

 end

 method ord(s)

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

56 Scanning Source Code

 return proc("ord",0)(s[1])

 end

end

In the third part of j0.icn, the token type has been promoted from a record to a class,
because now it has added complexity in its constructor, as well as a method for processing
string escape characters and computing the binary representation of string literal constants.
In Unicon, the constructor code comes at the end of the method in an initially section.

The deEscape() method discards leading and trailing double-quote characters and then
processes a string literal character by character using Unicon string scanning. Inside the
string scanning control structure, s ? { … }, the s string is examined from left to right.
The move(1) function grabs the next character from the string and moves the scanning
position forward by 1. A longer explanation of string scanning is given in Appendix,
Unicon Essentials.

In the deEscape() method, normal characters are copied over from the sin input
string to the sout output string. Escape characters cause one or more characters that
follow to be interpreted differently. The Jzero subset only handles tabs and newlines; Java
has a lot more escapes that you could add. There is something funny about turning a
backslash followed by a "t" into a tab character, but every compiler that you have ever
used has had to do something like that:

class token(cat, text, lineno, colno, ival, dval, sval)

 method deEscape(sin)

 local sout := ""

 sin := sin[2:-1]

 sin ? {

 while c := move(1) do {

 if c == "\\" then {

 if not (c := move(1)) then

 j0.lexErr("malformed string literal")

 else case c of {

 "t":{ sout ||:= "\t" }

 "n":{ sout ||:= "\n" }

 }

 }

 }

 else sout ||:= c

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a scanner for Jzero 57

 }

 return sout

 end

initially

 case cat of {

 parser.INTLIT: { ival := integer(text) }

 parser.DOUBLELIT: { dval := real(text) }

 parser.STRINGLIT: { sval := deEscape(text) }

 }

end

record parser(BREAK,PUBLIC,DOUBLE,ELSE,FOR,IF,INT,RETURN,VOID,

 WHILE,IDENTIFIER,CLASSNAME,CLASS,STATIC,STRING,

 BOOL,INTLIT,DOUBLELIT,STRINGLIT,BOOLLIT,

 NULLVAL,LESSTHANOREQUAL,GREATERTHANOREQUAL,

 ISEQUALTO,NOTEQUALTO,LOGICALAND,LOGICALOR,

 INCREMENT,DECREMENT,YYERRCODE)

The singleton parser record here looks rather silly to an experienced Unicon programmer
who can just $define all these token category names and skip introducing a parser
type. If you are a Unicon programmer, just remind yourself that this is for Java
compatibility – specifically byacc/j compatibility.

Java Jzero code
The Java implementation of the Jzero scanner includes a main class in the j0.java file.
It resembles the simple2.java example. It is presented here in four parts. The first part
includes the main() function and should be familiar, other than the addition of extra
variables such as the yycolno variable, which tracks the current column number:

import java.io.FileReader;

public class j0 {

 static Yylex lex;

 public static int yylineno, yycolno;

 public static token yylval;

 public static void main(String argv[]) throws Exception {

 lex = new Yylex(new FileReader(argv[0]));

 yylineno = yycolno = 1;

 int i;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

58 Scanning Source Code

 while ((i=lex.yylex()) != Yylex.YYEOF) {

 System.out.println("token " + i + ": " +

 yytext());

 }

 }

The j0 class continues with several helper functions that were seen in previous examples:

 public static String yytext() {

 return lex.yytext();

 }

 public static void lexErr(String s) {

 System.err.println(s + ": line " + yylineno +
 ": " + yytext());

 System.exit(1);

 }

 public static int scan(int cat) {

 last_token = yylval =

 new token(cat, yytext(), yylineno, yycolno);

 yycolno += yytext().length();

 return cat;

 }

 public static void whitespace() {

 yycolno += yytext().length();

 }

 public short ord(String s) {return(short)(s.charAt(0));}

The j0 class's function for handling newline characters in the source code is longer than
you might expect. Sure, it increments the line number and sets the column back to 1, but
for semicolon insertion, it now includes a switch statement that determines whether
to insert a semicolon in place of that newline character or not. The comment-handling
method is going character-by-character through the comment to keep the line number
and column number correct:

 public static void newline() {

 yylineno++; yycolno = 1;

 if (last_token != null)

 switch(last_token.cat) {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a scanner for Jzero 59

 case parser.IDENTIFIER: case parser.INTLIT:

 case parser.DOUBLELIT: case parser.STRINGLIT:

 case parser.BREAK: case parser.RETURN:

 case parser.INCREMENT: case parser.DECREMENT:

 case ')': case ']': case '}':

 return true;

 }

 return false;

 }

 public static void comment() {

 int i, len;

 String s = yytext();

 len = s.length();

 for(i=0; i<len; i++)

 if (s.charAt(i) == '\n') {
 yylineno++; yycolno=1;

 }

 else yycolno++;

 }

}

There is a supporting module named parser.java. It provides a set of named
constants, similar to an enumerated type, but it declares the constants directly as short
integers so that they're compatible with the iyacc parser, which will be discussed in the
next chapter. The integers that are chosen start above 256 because that's where iyacc
starts them so that they don't conflict with integer codes of single-byte lexemes that we
produce via calls to j0.ord():

public class parser {

public final static short BREAK=257;

public final static short PUBLIC=258;

public final static short DOUBLE=259;

public final static short ELSE=260;

public final static short FOR=261;

public final static short IF=262;

public final static short INT=263;

public final static short RETURN=264;

public final static short VOID=265;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

60 Scanning Source Code

public final static short WHILE=266;

public final static short IDENTIFIER=267;

public final static short CLASSNAME=268;

public final static short CLASS=269;

public final static short STATIC=270;

public final static short STRING=273;

public final static short BOOL=274;

public final static short INTLIT=275;

public final static short DOUBLELIT=276;

public final static short STRINGLIT=277;

public final static short BOOLLIT=278;

public final static short NULLVAL=280;

public final static short LESSTHANOREQUAL=298;

public final static short GREATERTHANOREQUAL=300;

public final static short ISEQUALTO=301;

public final static short NOTEQUALTO=302;

public final static short LOGICALAND=303;

public final static short LOGICALOR=304;

public final static short INCREMENT=306;

public final static short DECREMENT=307;

public final static short YYERRCODE=256;

}

There is also a supporting module named token.java that contains the token class. It
has grown to include a column number, and for literal constants, their binary representation
is stored in ival, sval, and dval for integers, strings, and doubles, respectively. The
deEscape() method, which is used to construct the binary representation of string
literals, was discussed in the Unicon implementation of this class. Once again, the algorithm
goes character by character and just copies the character unless it is a backslash, in which
case it grabs the following character and interprets it differently. You can see the efficacy of
the Java String class by comparing this code with the Unicon version:

public class token {

 public int cat;

 public String text;

 public int lineno, colno, ival;

 String sval;

 double dval;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a scanner for Jzero 61

 private String deEscape(String sin) {

 String sout = "";

 sin = String.substring(sin,1,sin.length()-1);

 int i = 0;

 while (sin.length() > 0) {

 char c = sin.charAt(0);

 if (c == '\\') {

 sin = String.substring(sin,1);

 if (sin.length() < 1)

 j0.lexErr("malformed string literal");

 else {

 c = sin.charAt(0);

 switch(c) {

 case 't': sout = sout + "\t"; break;

 case 'n': sout = sout + "\n"; break;

 default: j0.lexErr("unrecognized escape");

 }

 }

 else sout = sout + c;

 }

 }

 return sout;

 }

 public token(int c, String s, int ln, int col) {

 cat = c; text = s; lineno = ln; colno = col;

 switch (cat) {

 case parser.INTLIT:

 ival = Integer.parseInt(s);

 break;

 case parser.DOUBLELIT:

 dval = Double.parseDouble(s);

 break;

 case parser.STRINGLIT:

 sval = deEscape(s);

 break;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

62 Scanning Source Code

 }

 }

}

The token constructor performs the same four assignments; that is, initializing the
token fields for all tokens. It then uses a switch statement with branches for three
categories of tokens. For literal constant values only, there is an extra lexical attribute
that must be initialized. Using Java's built-in Integer.parseInt() and Double.
parseDouble() to convert the lexeme is a simplification for Jzero – a real Java
compiler would have to do some more work here. The sval string is constructed by the
deEscape() method because no built-in converter in Java takes a Java source code
string and builds the actual string value for you. There are third-party libraries that you
can find, but for Jzero purposes, it is simpler to provide our own.

Running the Jzero scanner
You can run the program in either Unicon or Java, as follows. This time, let's run the
program on the following sample input file, named hello.java:

public class hello {

 public static void main(String argv[]) {

 System.out.println("hello, jzero!");

 }

}

Remember that, to your scanner, this hello.java program is just a sequence of
lexemes. The commands to compile and run the Jzero scanner are similar to those in
earlier examples, with more Java files creeping in:

uflex javalex.l jflex javalex.l

unicon j0 javalex javac j0.java Yylex.java

 javac token.java parser.java

j0 hello.java java j0 hello.java

From either implementation, the output that you should see should look like this:

token 258: public

token 269: class

token 267: hello

token 123: {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regular expressions are not always enough 63

token 258: public

token 270: static

token 265: void

token 267: main

token 40: (

token 267: String

token 267: argv

token 91: [

token 93:]

token 41:)

token 123: {

token 267: System

token 46: .

token 267: out

token 46: .

token 267: println

token 40: (

token 277: "hello, jzero!"

token 41:)

token 59: ;

token 125: }

token 125: }

The Jzero scanner will make a lot more sense in the next chapter when its output provides
the parser's input. Before we move on, though, we should remind you that regular
expressions can't do everything a programming language lexical analyzer might need.
Sometimes, you must go beyond the lex scanning model. The next section is a real-world
example of that.

Regular expressions are not always enough
If you take a theory of computation course, you'll probably be treated to proof that regular
expressions cannot match some common patterns that occur in programming languages,
particularly patterns that nest instances of the same pattern inside themselves. This
section shows that regular expressions are not always enough in other aspects.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

64 Scanning Source Code

If regular expressions are not always able to handle every lexical analysis task in your
language, what do you do? A lexical analyzer written by hand can handle weird cases that
a lexical analyzer generated from regular expressions can't handle, perhaps at the cost
of an extra day, week, or month of your time. However, in almost all real programming
languages, regular expressions can get you close enough to where you only need a few
extra tricks to produce the finished scanner. Here is a small real-world example.

Unicon and Go are examples of languages that provide semicolon insertion. The language
defines lexical rules under which semicolons are inserted so that programmers don't
have to worry about them for the most part. You may have noticed that the Unicon code
examples tend to contain very few semicolons. Unfortunately, these semicolon insertion
rules are not something that can be described with a regular expression.

In the case of the Go language, you can almost do it by remembering the previously
returned token and doing some checks in the semantic action for a newline character; that
newline can return as a semicolon if the checks are satisfied. But in Unicon, you must scan
further forward and read the next token after the newline to decide whether a semicolon
ought to be inserted! This allows Unicon semicolon insertion to be more precise and
create fewer problems than in the Go language. As an example, in Go, you cannot format
your code in classic C style:

func main()

{

 ...

}

Instead, you must write the curly brace on the function header line:

func main() {

 ...

}

To avoid this laughable limitation, the lexical analyzer must provide one token of look
ahead. It will have to read the first token on the next line to decide whether a semicolon
should be inserted at a new line.

It would be very un-Javalike to implement semicolon insertion in our Jzero scanner. But
if we were going to that, we could do it the Go way, or we could do it the Unicon way. We
will show you a subset of the Go way. For your reference, the Go definition of semicolon
insertion semantics can be found at https://golang.org/ref/spec#Semicolons.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://golang.org/ref/spec#Semicolons

Regular expressions are not always enough 65

This example illustrates rule #1 from the Go semi-colon insertion semantics. OK, so you
see a newline – do you insert a semicolon? Let's just remember the last token we saw,
and if it is an identifier, a literal, a break, continue, return, ++, --,),], or }, then
the newline itself should return a new dummy semicolon token. You can modify the
newline() method so that it returns a boolean true if a semicolon is to be inserted.

This defeats our strategy of using a common lex specification for both Unicon and
Java. We need to write a conditional in the lex specification to say whether to return a
semicolon or not, but the syntax is different in the two languages. In Unicon, our lex
specification would have an if statement that might look like the following line:

\n { if j0.newline() then return j0.semicolon() }

However, in Java, it would require parentheses and not say the then reserved word:

\n { if (j0.newline()) return j0.semicolon(); }

The Unicon version of the modified j0 main module with semicolon insertion code
has been provided in this book's GitHub repository, in the j0go.icn file. It is j0.icn
with a new global variable called last_token, a modification of the scan() and
newline() method, and the addition of a method called semicolon() that constructs
an artificial token. Here are the changed methods. Checking whether the last token
category is one of several that triggers a semicolon shows off Unicon's generators.
The!")]}" expression is a clever way of writing ")"|"]"|"}", which will be fed one at
a time into ord() until all three are tried:

 method scan(cat)

 last_token := yylval := token(cat, yytext, yylineno)

 return cat

 end

 method newline()

 yylineno +:= 1

 if (\last_token).cat ===

 (parser.IDENTIFIER|parser.INTLIT|

 parser.DOUBLELIT|parser.STRINGLIT|

 parser.BREAK|parser.RETURN|

 parser.INCREMENT|parser.DECREMENT|

 ord(!")]}")) then return

 end

 method semicolon()

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

66 Scanning Source Code

 yytext := ";"

 yylineno -:= 1

 return scan(parser.SEMICOLON)

 end

There are two fascinating things here. One is that a given element of source code – a
newline character, which is just whitespace in most languages – will sometimes return
integer code (for an inserted semicolon) and sometimes not. That is why we introduced
an if statement into the lex specification semantic actions for newlines. The other
fascinating thing is the artificial token produced by the semicolon() method. It
produces output that's indistinguishable from if the programmer had typed a semicolon
themselves into the source code input of your programming language.

Important note
The Java implementation of this is too long to present here, so it has been
provided in this book's GitHub repository, in the j0go.java file. The next
paragraph presents the key parts of it.

The Java implementation behaves the same as the Unicon version in j0go.icn, with a
new global variable called last_token, a modification of the scan() and newline()
methods, and the addition of the semicolon() method, which constructs an artificial
token. However, it is a bit longer. In the newline() method within the following block,
a Java switch statement is being used to check if the last token's category triggers a
semicolon insertion:

 public static int scan(int cat) {

 last_token = yylval =

 new token(cat, yytext(), yylineno);

 return cat;

 }

 public static void newline() {

 yylineno++;

 if (last_token != null)

 switch(last_token.cat) {

 case parser.IDENTIFIER: case parser.INTLIT:

 case parser.DOUBLELIT: case parser.STRINGLIT:

 case parser.BREAK: case parser.RETURN:

 case parser.INCREMENT: case parser.DECREMENT:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 67

 case ')': case ']': case '}':

 return true;

 }

 return false;

 }

 public int semicolon() {

 yytext = ";";

 yylineno--;

 return scan(parser.SEMICOLON);

 }

The full Go semicolon insertion semantics are a bit more involved, but inserting a
semicolon when the scanner has seen the regular expression for a newline is rather easy.
If you want to learn how Unicon does better semicolon insertion, check out the Unicon
Implementation Compendium at http://www.unicon.org/book/ib.pdf.

Summary
In this chapter, you learned about the crucial technical skills and tools used in
programming languages when they are reading the characters of program source code.
Thanks to these skills, the rest of your programming language compiler or interpreter has
a much smaller sequence of words/tokens to deal with, instead of the enormous number
of characters that were in the source file. If we were successful, you will have taken away
the following skills that you can use in your programming language or similar projects.

As input characters are read in, they are analyzed and grouped into lexemes. Lexemes are
either discarded (in the case of comments and whitespace) or categorized for subsequent
parsing purposes.

Besides categorizing lexemes, you learned to make tokens from them. A token is an object
instance that is created for each lexeme when it is categorized. The token is a record of that
lexeme, its category, and where it came from.

The lexemes' categories are the main input of the parsing algorithm described in the next
chapter. During parsing, the tokens will eventually be inserted as leaves into an important
data structure called a syntax tree.

You are now ready to start stringing together the words into phrases in your source
code. The next chapter will cover parsing, which checks whether the phrases make sense
according to the grammar of the language.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.unicon.org/book/ib.pdf

68 Scanning Source Code

Questions
1. Write a regular expression to match dates in dd/mm/yyyy format. Is it possible to

write this regular expression so that it only allows legal dates?
2. Explain the difference between the return value that yylex() returns to the caller,

the lexeme that yylex() leaves in yytext, and the token value that yylex()
leaves in yylval.

3. Not all the yylex() regular expressions return an integer category after they
match. When a regular expression does not return a value, what happens?

4. Lexical analysis has to deal with ambiguity and it is entirely possible to write several
regular expressions that all can match at a given point in the input. Describe Flex's
tie-breaking rules for when more than one regular expression can match at the
same place.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Parsing

In this chapter, you will learn how to take individual words and punctuation, the lexemes,
and group them into larger programming constructs, such as expressions, statements,
functions, classes, and packages. This task is called parsing. The code module is called a
parser. You will make a parser by specifying syntax rules using grammars, and then using
a parser generator tool that takes your language grammar and generates a parser for you.
We will also look at writing useful syntax error messages.

This chapter covers the following main topics:

• Syntax analysis

• Context-free grammars

• Using iyacc and BYACC/J

• Writing a parser for Jzero

• Improving syntax error messages

We will review the technical requirements for this chapter, and then it will be time to
refine your ideas of syntax and syntax analysis.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

70 Parsing

Technical requirements
In this chapter, you will need the following tools:

• Iyacc, a parser generator for Unicon. You should use the version on the book's
website (https://github.com/PacktPublishing/Build-Your-Own-
Programming-Language).

• BYACC/J, a parser generator for Java (http://byaccj.sourceforge.net).

• You can download this chapter code from our GitHub repository: https://
github.com/PacktPublishing/Build-Your-Own-Programming-
Language/tree/master/ch4.

The Code in Action video for the chapter can be found here: https://bit.ly/3ClVCSf

At the time of writing, the Windows BYACC/J binary distribution consists of a
byaccj1.15_win32.zip file, which sounds old and contains one file named yacc.
exe. There is no installer. You should unzip and copy the yacc.exe file into a directory
on your path or make a new directory for it and add that directory to your path. Verify
that these packages have been added to your path by opening a new Command Prompt or
Terminal window and trying the iyacc and yacc commands. Note that you may already
have a different program on your computer named yacc! In this case, we recommend
renaming the BYACC/J instance that you install for this book as byaccj or byaccj.
exe instead of yacc or yacc.exe. If you do this, everywhere in this book that it says to
use yacc, you should type byaccj instead. To use this book successfully, you will have to
keep your yaccs straight! You have been warned!

There is one additional technical requirement for this chapter. You must set your
CLASSPATH environment variable. If you are working with the examples in this chapter
in C:\users\Alfrede Newmann\ch4 you may need to set the CLASSPATH to point
at the Alfrede Newmann directory above the ch4 directory. On Windows, it is best to
set this once and for all in the Control Panel or Settings, but you can set it manually if you
have to with a command such as this one:

set CLASSPATH=".;c:\users\Alfrede Newmann"

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language
http://byaccj.sourceforge.net
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch4
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch4
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch4
https://bit.ly/3ClVCSf

Analyzing syntax 71

Adding the directory above us on the CLASSPATH can be achieved with .. on Linux,
while you must supply the full path of the parent directory on Windows. On Linux, this is
best set in ~/.bashrc or similar, but on the command line, it looks like this:

export CLASSPATH=.:..

Before we get into the nuts and bolts of yacc, let's look at the bigger picture of what we
are trying to accomplish by parsing, which is to analyze the syntax of the input program.

Analyzing syntax
As a programmer, you are probably already familiar with syntax error messages and
the general idea of syntax, which is to understand what kinds of words or lexemes must
appear, in what order, for a given communication to be well formed in a language. Most
human languages are picky about this, while a few are more flexible about word order.
Fortunately, most programming languages are far simpler and more restrictive than
natural human languages about what constitutes a legal input.

The input for syntax analysis consists of the output of the previous chapter on lexical
analysis. Communication, such as a message or a program, is broken down into a
sequence of component words and punctuation. This could be an array or list of token
objects, although for parsing, all the algorithm requires is the sequence of integer codes
returned from calls to yylex(), one after another. It is the job of syntax analysis to
determine whether the communication, in a given language, such as English or Java,
is correct or not. The result of syntax analysis is a simple Boolean true or false. In
practice, in order to interpret or translate the message, more is needed than a Boolean
value that tells us whether its syntax is correct. In the next chapter, you will learn how to
build a syntax tree that forms the basis for the subsequent translation of a program into
code. But first, we must check the syntax, so let's look at how programming language
syntax is specified, which is called context-free grammar notation.

Understanding context-free grammars
In this section, we will define the notation used by programming language inventors to
describe the syntax of their language. You will be able to use what you learn in this section
to supply syntax rules as input to the parser generators used in the next section. Let's
begin by understanding what context-free grammars are.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

72 Parsing

Context-free grammars are the most widely used notation for describing the syntax
allowed in a programming language in terms of patterns of lexemes. They are formulated
from very simple rules that are easy to understand. Context-free grammars are built from
the following components:

• Terminal symbols: A set of input symbols are called terminal symbols. Terminal
symbols in a grammar are read in from a scanner such as the one we produced
in the last chapter. Although they are referred to as symbols, terminal symbols
correspond to an entire word, operator, or punctuation mark; a terminal symbol
identifies the category of a lexeme. As you saw in the previous chapter, these symbols'
categories are represented by integer codes that are usually given mnemonic names
such as IDENTIFIER or INTCONST or WHILE. In our grammars, we will also use
character literal notation for the more trivial terminal symbols; a single character
inside apostrophes is just a terminal symbol that consists of that character itself. For
example, ';' is the terminal symbol that consists of just a semi-colon and literally
denotes the integer 59, which is the ASCII code for a semi-colon.

• Non-terminal symbols: Unlike regular expressions, context-free grammar rules
utilize a second set of symbols called non-terminal symbols. Non-terminal symbols
refer to sequences of other symbols that make sense together, such as noun
phrases or sentences (in natural languages), or function or class definitions, or
entire programs (in programming languages). One special non-terminal symbol is
designated as the start symbol of the entire grammar. In a programming language
grammar, the start symbol denotes an entire well-formed source file.

• Production rules: A set of rules called production rules explain how to form
non-terminal symbols from smaller words and component phrases. Because the
production rules control what terminal and non-terminal symbols are used, it is
common to give the grammar by just giving its production rules.

Now it is time to look in more detail at the rules for building context-free grammars,
followed by examples.

Writing context-free grammar rules
Production rules, also called context-free grammar rules, are patterns that describe
legal sequences of lexemes using the terminal symbols and additional non-terminal
symbols that represent other sequences of zero or more symbols. In this book, we will
use yacc notation for writing context-free grammars. Each production rule consists of a
single non-terminal symbol, followed by a colon, followed by zero or more terminal and
non-terminal symbols, ending with a semi-colon, as shown in the following notation:

X : symbols ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding context-free grammars 73

There is only one symbol to the left of the colon and, by definition, it is non-terminal
because the meaning of the grammar rule is as follows: a non-terminal X can be constructed
from a sequence of terminals and non-terminals that appear on the right-hand side.

A context-free grammar can have as many such rules as desired, including multiple rules
that build the same non-terminal by different combinations of symbols on the right-hand
side. In fact, multiple rules for the same non-terminal are so common, they have their
own shorthand consisting of a vertical bar. You can see an example of a vertical bar in the
following code:

X : symbols | other_symbols ;

When the vertical bar (read as or) is used in a grammar, it states that there are different
ways to build a non-terminal X. Using the vertical bar is optional because you could write
the same rules as separate statements of the non-terminal, colon, right-hand side, and
semicolon. For example, here is a statement of different ways to build an X:

X : A | B | C ;

This line is equivalent to the following three lines:

X : A ;

X : B ;

X : C ;

Both of the previous cases describe the same three production rules. The vertical bar is
just a shorthand notation for writing multiple production rules.

So, what does a production rule mean, anyhow? It can be read and used either forward
or backward. If you start from the start symbol and replace a non-terminal with one of its
production rules' right-hand sides (called a derivation step), you work your way down from
the top. If you repeat this process and eventually get to a sequence of terminal symbols with
no non-terminals remaining, you have generated a legal instance of that grammar.

On the other hand, a programming language starts from the other end. The scanner from
the last chapter will produce for you a sequence of terminal symbols. Given a sequence of
terminal symbols, can you find within it the right side of a production rule, and replace it
with its non-terminal? If you can do that repeatedly and make your way back to the start
symbol, you have proved that the input source program is legal according to the grammar.
This is called parsing.

Now it is time to look at some simple grammar examples. Some of the most intuitive
grammars that we can suggest come from natural (human) languages. Other simple
examples show how context-free grammars apply to programming language syntax.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

74 Parsing

Recursion
Are you on top of your recursion? In math and computer science, recursion
is when something is defined in terms of a simpler version of itself; see
https://en.wikipedia.org/wiki/Recursion if you need a
refresher. You will need that concept to build your programming language
syntax. In context-free grammars, a non-terminal X is often used on the right
side of a production rule that builds an X. This is a form of recursion. The one
logical rule that you must learn when you use recursion is this: there must
be another grammar rule (a basis case) that is not recursive. Otherwise, the
recursion never ends, and your grammar doesn't make sense.

Writing rules for programming constructs
Context-free grammars are easy, once you have written a few of them. You should start
with the simplest rules you can think of and work your way up one tiny bit at a time. The
simplest values in a language are its literal constants. Suppose we have two kinds of values
in our language, Booleans and integers:

literal : INTLIT | BOOLLIT ;

The preceding production rule says that there are two kinds of literal values, integers and
Booleans. Some language constructs, such as addition, may be defined only for certain
types, while other constructs, such as assignment, are defined for all types. It is often
best to feature a common syntax for all types, and then ensure that types are correct
later, during semantic analysis. We will cover that in Chapter 7, Checking Base Types, and
Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses. Now consider a
grammar rule that allows either variables or literal constants:

simple_expr : IDENTIFIER | literal ;

As you saw in Chapter 3, Scanning Source Code, IDENTIFIER denotes a name. The
preceding production rule says that both variables and literals are allowed in simple
expressions. Complex expressions are constructed by applying operators or functions to
simple expressions:

expr : expr '+' expr | expr '-' expr | simple_expr ;

The preceding three production rules present a common design question. The first two
rules are recursive, multiple times over. They are also ambiguous. When multiple operators
are chained together, the grammar does not specify which operator is applied first.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Recursion

Understanding context-free grammars 75

Ambiguity
When a grammar can accept the same string two or more different ways, the
grammar is ambiguous. In the preceding example, 1 + 2 – 3 could be
parsed by applying the production rule for the plus sign first, and then the
subtraction, or vice versa. Ambiguity can sometimes force you to rewrite your
grammar so there is only one way to parse the input.

There are a lot more operators in real languages, and there is the issue of operator
precedence to consider. You can look at these topics in the Writing a parser for Jzero
section in this chapter. For now, let's briefly explore larger language structures, such as
statements. A simple representation of an assignment statement is given here:

statement : IDENTIFIER '=' expr ';' ;

This version of assignment allows only a name on the left side of the equals sign. The right
side can take any expression. There are several other fundamental kinds statements found
in many languages. Of these, consider the two most common ones, the IF statement and
the WHILE statement:

statement : IF '(' expr ')' statement ;

statement : WHILE '(' expr ')' statement ;

These statements contain other (sub)statements. Grammars build larger constructs from
smaller ones using recursive rules such as this. IF and WHILE statements have almost
identical syntax for preceding a statement with a conditional expression:

statements : statements statement | statement ;

Multiple statements can be accepted by repeated application of the first rule in this
grammar. Good language designers write recursive rules all the time in order to repeat
a construct. In the case of languages such as Java, semi-colons do not appear in this
grammar rule as a statement separator, but they appear as terminators at the ends of
various grammar rules, like the previous rule for assignment statements.

In this section, you saw that grammar rules for a programming language use reserved
words and punctuation marks as building blocks. Larger expressions and statements
are composed of smaller ones using recursion. Now it is time to learn the tools that use
context-free grammar notation to generate parsers for reading source code, namely iyacc
and BYACC/J.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

76 Parsing

Using iyacc and BYACC/J
The name yacc stands for yet-another-compiler-compiler. This category of tools takes a
context-free grammar as input and generates a parser from it. Yacc-compatible tools are
available for most popular programming languages.

In this book, for Unicon we use iyacc (short for Icon yacc) and for Java you can use
BYACC/J (short for Berkeley YACC extended for Java). They are highly compatible with
UNIX yacc and we can present them together as one language for writing parsers. In
the rest of this chapter, we will just say yacc when we mean both iyacc and BYACC/J
(which is invoked as yacc, at least on Windows). Complete compatibility required a bit
of Kobayashi Maru, mostly when it comes to the semantic actions, which are written in
native Unicon and Java respectively.

Yacc files are often called (yacc) specifications. They use the extension .y and consist
of several sections, separated by %%. This book refers generically to yacc specifications
meaning the input file provided to either iyacc or BYACC/J and, for the most part, those
files would also be valid input for C yacc.

There are required sections in a yacc specification: a header section followed by a
context-free grammar section, and an optional helper functions section. The yacc
header section and the context-free grammar section are the sections you need to know
about for this book. In the following section, you will learn how to declare your terminal
symbols in the yacc header section. Some versions of yacc require these declarations.

Kobayashi Maru?
A Kobayashi Maru scenario is a no-win situation where the best answer is to
change the rules of the game. In this case, I modified iyacc and BYACC/J a
bit so that our no-win situation was winnable.

Declaring symbols in the header section
Most yacc tools have options you can enable in the header section; they vary, and we
will only cover them if we use them. You can also include bits of host language code there,
such as variable declarations, inside %{ … %} blocks. The main purpose of the header
section is to declare the terminal and non-terminal symbols in the grammar. In the
context-free grammar section, these symbols are used in production rules.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using iyacc and BYACC/J 77

Whether a symbol is terminal or non-terminal can be inferred from how the symbol is
used in a grammar, but unless they are ASCII codes, you must declare all your terminal
symbols anyhow. Terminal symbols are declared in the header section using a line
beginning with %token, followed by as many terminal symbol names as you want,
separated by spaces. Non-terminals can be declared by a similar %nonterm line. Among
other things, yacc uses your terminal symbol declarations to generate a file that assigns
integer constants to those names, for use in your scanner.

Advanced yacc declarations
There are other declarations that can be placed in the yacc header section
beyond those used in this book. If you don't want to place your starting non-
terminal at the top of your grammar, you can put it anywhere and then identify
it explicitly in the header via the %start declaration for some non-terminal
symbol. Also, instead of just declaring tokens with %token, you can use
%left, %right, and %nonassoc to specify operator precedence and
associativity in increasing order.

Now that we have learned about the header section, let's have a look at the context-free
grammar section.

Putting together the yacc context-free grammar
section
The primary section of a yacc specification is the context-free grammar section. Each
production rule of the context-free grammar is given, followed by an optional semantic
action consisting of some host language code (in our case, Unicon or Java) to execute
when that production rule has been matched. The yacc syntax is typically like the
following example:

X : symbols { semantic action code } ;

It is also legal to place semantic actions before or in between symbols in addition to the
end of the rule, but if you do that, you are really declaring a new non-terminal with an
empty production rule that just contains that semantic action. We will not do that in this
book, as it is a frequent source of bugs.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

78 Parsing

Yacc is less picky about whitespace than lex was. The following example shows three
equivalent ways to format production rules with different whitespace. Which you prefer
depends on what is best for readability:

A : B | C;

A : B |

 C ;

A : B

 | C

 ;

Although each production rule starts on a new line, it can span multiple lines and is
terminated by one of the following: a semi-colon, a vertical bar indicating another
production rule for the same non-terminal, a %% indicating the start of the helper functions
section, or an end-of-file. Like in lex, if the semantic action uses curly braces to enclose
a statement block in the usual way, the semantic action can span multiple lines of source
code. Yacc will not start looking for the next production rule until it finds the matching
closing curly brace to finish the semantic action, and then goes on to find one of the
terminators listed earlier, such as a semi-colon or vertical bar that ends the production rule.

A common mistake that newbies make in the context-free grammar section is trying to
insert comments in the production rules to improve readability. Don't do that; you can get
some very cryptic error messages when you do this.

When you run classic UNIX yacc, which is a C tool, it generates a function called
yyparse() that returns whether the input sequence of terminal symbols returned from
yylex() was legal according to the grammar. Global variables may be set with other
useful bits of information. You can use such global variables to store anything you want,
such as the root of your syntax tree. Before we progress to some larger examples, take a
look at how yacc parsers work. You will need to know this in order to debug your parser
when things do not go according to plan.

Understanding yacc parsers
The algorithm of the parser generated by yacc is called LALR(1). It comes from a family
of parsing algorithms invented by Donald Knuth of Stanford and made practical by Frank
DeRemer of UC Santa Cruz and others. If you are interested in the theory, you should
check out the Wikipedia page for the LALR parser at https://en.wikipedia.
org/wiki/LALR_parser or consult a serious compiler construction book, such as
Douglas Thain's Introduction to Compilers and Language Design, from https://www3.
nd.edu/~dthain/compilerbook/.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/LALR_parser
https://en.wikipedia.org/wiki/LALR_parser
https://www3.nd.edu/~dthain/compilerbook/
https://www3.nd.edu/~dthain/compilerbook/

Using iyacc and BYACC/J 79

For our purposes, you need to know that the generated algorithm consists of a long
while loop. In each iteration of the loop, the parser takes one tiny step forward. The
algorithm uses a stack of integers to keep track of what it has seen. Each element on
the parse stack is an integer code called a parse state that encodes all the terminal and
non-terminal symbols seen up to that point. The parse state on top of the stack and the
current input symbol, which is an integer terminal symbol obtained from function
yylex(), are the two pieces of information used to decide what to do at each step. For
no intrinsic reason, it is common to visualize this like a horizontal piece of string, with a
string of beads on the right being slid left onto a stack that is depicted horizontally. Figure
4.1 illustrates the yacc parse stack on the left and its input on the right.

Figure 4.1 – yacc's parse stack and its input

The dollar sign on the left denotes the bottom of the stack, while the dollar sign on the
right denotes end-of-file. Yacc generates two big tables, computed from the grammar,
called the action table and the goto table. These tables encode what to do at each step.
The primary table is an action table that looks up the parse state and current input and
returns one of the following possibilities:

• The top few elements on the stack contain a production rule that can be used to get
us (eventually) back to the starting non-terminal. This is called a reduce.

• The algorithm needs to look at the next input symbol. Place the current input onto
the parse stack, and read the next one using yylex(). This is called a shift.

• If neither a shift nor a reduce will work, a syntax error is reported by calling the
yyerror() function that you must write.

• If we are looking at the starting non-terminal and there is no more input pending,
you win! yyparse() returns the code that says there were no errors.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

80 Parsing

In the following list, you can see the Yacc parsing algorithm in pseudocode form. In this
code, there are several key variables and operations, described here:

• parsestk is the parse stack, an array of integer finite automaton parse states.

• index top tracks the subscript of the top of the parse stack.

• current is the current input symbol.

• shift_n means to move the input from the right to the left, pushing parse state n
onto the stack and moving current to the next input symbol.

• reduce_m means to apply production rule m by popping the number of parse
states equal to the right side of production rule m and pushing the new parse state
corresponding to the non-terminal on the left side of production rule m. The goto
table tells what the new parse state is that the reduce is to push.

Here is the parsing algorithm in pseudocode form:

repeat:

 x = action_table[parsestk[top], current]

 if x == shift_n then {

 push(state_n, parsestk)

 current = next

 }

 else if x == reduce_m then {

 pop(parsestk) |m| times

 push(goto_table[parsestk[top],m], parsestk)

 }

 else if x == accept then return 0 // no errors

 else { yyerror("syntax error") }

This pseudocode is a direct embodiment of the preceding bulleted list. A large percentage
of the world's programming languages perform their syntax analysis with this method.
You may find it interesting to compare this pseudocode with the generated .icn or
.java file output by iyacc or BYACC/J.

Importantly, because this parsing algorithm is just a loop with a couple of table lookups, it
runs quite fast.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using iyacc and BYACC/J 81

The point of the yacc tool is to just supply the context-free grammar and get a parser
without having to worry about how it works; yacc is thus a declarative language. The
algorithm works, and you don't have to know a lot about it, but if you change a grammar
or invent a new language using the yacc tool, you might have to know about these shifts
and reduce operations in order to debug your context-free grammar if your parser isn't
doing what you want. The most common way that a yacc programmer encounters this is
when you run yacc and it reports conflicts that you may need to fix.

Fixing conflicts in yacc parsers
Earlier in this chapter, in the section titled Writing rules for programming constructs, you
learned that grammars can be ambiguous. When a grammar is ambiguous, yacc will have
more than one possible action that it can encode for a given (parse state, current input)
lookup in the action table. Yacc reports this as a problem, and in that case the generated
parser will use only one of the possible interpretations of the ambiguity. There are two
kinds of conflicts that yacc reports:

• A shift/reduce is when one production rule says it can shift the current input at this
point, but another production rule says it is all finished and ready to reduce. In this
case, yacc will only shift and you are in trouble if you needed it to reduce.

• A reduce/reduce is even worse. Different production rules are saying they want to
reduce at this point? Which one is correct? Yacc will arbitrarily pick whichever one
appears earlier in your .y file, which is correct 50% of the time.

For shift/reduce conflicts, the default rule is usually correct. I have seen production
language grammars with literally hundreds of shift/reduce conflicts that are ignored with
seemingly no ill effects – they are asymptomatic. But once in a blue moon, and I have seen
it in real life, the default on a shift/reduce conflict is not what the language needs.

For reduce/reduce conflicts, we cannot use the default rule. Part of your grammar will not
be triggered. In any reduce/reduce situation, or if you determine a shift/reduce conflict
is a problem, you will need to modify your grammar to eliminate the conflict. Modifying
your grammar to avoid conflicts is beyond the scope of this book, but it usually involves
refactoring to eliminate redundant bits of grammar or creating new non-terminals and
making production rules pickier. Now we will explore what happens when the parser
encounters an error.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

82 Parsing

Syntax error recovery
Syntax error recovery is when your parser continues after reporting a syntax error. If
recovery is successful, the compiler can go on to find the rest of the errors, if any. In the
days of batch processing, it was important to recover as well as possible. However, error
recovery is known for its spectacular failures! Compilers tend to give numerous cascading
error messages after the first one, because the attempt to recover and continue parsing is
based on wild guesses as to whether tokens were missing, or extra tokens were present, or
the wrong token was used unintentionally…there are just too many possibilities. For this
reason, we will stick to minimal error recovery in this book.

A yacc parser will try to recover if extra production rules are added to the grammar that
depict likely locations of errors using a special token named error where a syntax error
is expected. When an actual syntax error occurs, the shift/reduce parser throws away
parse states from its parse stack and tokens from its input, until it finds a state that has a
rule that allows it to proceed forward on an error. In the Jzero language, we might have
a rule that throws away a syntax error within statements that discards tokens until it sees
a semi-colon. There might be one or two higher-level locations in the grammar where an
error token skips to the end of a function body, or a declaration, and that is it.

Although we are only just touching on the topic, if your programming language becomes
famous and popular, you should probably eventually learn to recover from at least the
simplest and most common errors. Since errors are inevitable, besides recovering and
continue parsing, you need to think about reporting error messages. Error reporting is
covered in the Improving syntax error messages section at the end of this chapter. Now let's
put together some working parsers using the scanners developed in the previous chapter.

Putting together a toy example
This example lets you check whether you can install and run iyacc and BYACC/J. The
example parser just parses sequences of alternating names and numbers. The filename
ns.y (for name sequence) will be used for the yacc specification. The code generated by
yacc from this specification will use two helper functions that, on Java, might motivate a
start to our yacc header section that looks like the following:

%{

import static ch4.lexer.yylex;

import static ch4.yyerror.yyerror;

%}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using iyacc and BYACC/J 83

If you are building the Java implementation using stock BYACC/J 1.15, ns.y should
begin with the preceding four lines. The code inside the %{ … %} consists of two import
static declarations. This is how Java allows generated parser code to call yylex() and
yyerror(), functions that are located in different classes, in different source files.

We want to put yylex() and yyerror() in different classes and source files instead of
the helper functions section of the .y file because they will be different in Unicon and Java.
Another reason is because yylex() and yyerror() may be generated by separate tools:
uflex and jflex from the preceding chapter, and merr described later in this chapter.
Unfortunately, Java cannot to do an import static without placing these classes and
functions inside a package. The package is named ch4 because this chapter's code is in a
directory named ch4, and Java requires package names and directory names to match.
Thanks to packages, code from Chapter 3, Scanning Source Code, must be altered slightly,
and you also can look forward to tricky CLASSPATH issues and cryptic error messages.

Since the import static lines do not work for Unicon, for this book I modified
BYACC/J to add command-line options for static imports that are required. If you are
using a version of these tools from the book's website or other new/current source, you
can skip the four lines from earlier and do them from the command line, allowing the
entire ns.y file to work unmodified as input for both Unicon and Java projects.

In the following ns.y example there is no semantic action code; this chapter focuses
solely on syntax analysis. The next chapter deals with semantic actions extensively.

%token NAME NUMBER

%%

sequence : pair sequence | ;

pair : NAME NUMBER ;

From this specification, yacc will produce a function, yyparse(). It executes the LALR
parsing algorithm with a net effect described as follows:

• yyparse() is called from a main() function.

• yyparse()calls yylex() to get a terminal symbol.

• yyparse() matches each terminal symbol returned from yylex() against all
possible parses using all possible combinations of production rules.

• Parsing eventually selects whichever production rule is correct at the current
location and executes its semantic action (if any).

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

84 Parsing

Steps 2–4 repeat until the entire input is parsed, or a syntax error is found. The yylex()
function is generated from the following lex specification:

package ch4;

%%

%int

%%

[a-zA-Z]+ { return Parser.NAME; }

[0-9]+ { return Parser.NUMBER; }

[\t]+ { }

. { lexer.lexErr("unrecognized character"); }

This is the nnws.l file from the previous chapter, modified in order to be used with this
yacc-generated parser. For one thing, in Java, it must be made a part of the ch4 package.
For another thing, it must return the integers that yacc uses for NAME and NUMBER. As
you may recall from the previous chapter, the Java-compatible way to access those integers
by name is through a Parser object that contains them. The BYACC/J tool generates this
parser object automatically for Java. For Unicon, iyacc's traditional -d option generates
macro definitions in an include file (for ns.y it would be in ns_tab.icn) à la classic
UNIX C yacc. For this book, iyacc was extended with a command-line option, -dd, that
instead generates a Java-compatible Parser object that contains the names and their values.

The main() function necessarily varies by language. By the time you add the yacc
yyparse() module into the program, things are starting to get complicated. For this
reason, the previous chapter's main() functionality is tweaked to pull out lexical analyzer
initialization and lexical error handling in separate files. We will discuss the main()
function first. After initialization, main() calls yyparse() to check the syntax of the
source code. Here is the Unicon version of the main module, in the trivial.icn file:

procedure main(argv)

 yyin := open(argv[1]) | stop("usage: trivial file")

 lexer := lexer()

 Parser := Parser()

 if yyparse() = 0 then write("no errors")

end

procedure yyerror(s)

 stop(s)

end

class lexer()

 method lexErr(s)

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using iyacc and BYACC/J 85

 stop("lexical error: ", s)

 end

end

This Unicon implementation of main()opens the input file from a name given in the
first command-line argument. The lexical analyzer is informed what file to read from
by assignment to the yyin variable. Lexical analyzer and parser objects are initialized;
they are here just for Java compatibility of our flex specification. The code then calls
yyparse() to parse the input file. The following Java code in the trivial.java file
contains a main() function that corresponds with the previous Unicon example:

package ch4;

public class trivial {

 static ch4.j0p par;

 public static void main(String argv[]) throws Exception

 {

 ch4.lexer.init(argv[0]);

 par = new ch4.Parser();

 int i = par.yyparse();

 if (i == 0)

 System.out.println("no errors");

 }

}

This main module is shorter than the simple class in the previous chapter. All it does is
initialize lexical analysis, initialize the parser, and then call yyparse() to see if the input
is legal. In order to call the yylex() function from yyparse() without a reference
to the Yylex object and without a circular reference back to the main class trivial, the
Yylex object and its initialization have been pulled out into a wrapper class named lexer.
The following lexer.java file contains that code:

package ch4;

import java.io.FileReader;

public class lexer {

 public static Yylex yylexer;

 public static void init(String s) throws Exception {

 yylexer = new Yylex(new FileReader(s));

 }

 public static int YYEOF() { return Yylex.YYEOF; }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

86 Parsing

 public static int yylex() {

 int rv = 0;

 try {

 rv = yylexer.yylex();

 } catch(java.io.IOException ioException) {

 rv = -1;

 }

 return rv;

 }

 public static String yytext() {

 return yylexer.yytext();

 }

 public static void lexErr(String s) {

 System.err.println(s);

 System.exit(1);

 }

}

The init() method instantiates a Yylex object for later use by a static method
yylex() that is callable from yyparse(). The yylex() here is just a proxy that turns
around and calls yylexer.yylex().

There is one more piece to the puzzle: yyparse() calls a function named yyerror()
when it encounters a syntax error. The yyerror.java file contains a yyerror class
that has a yyerror() static method, shown here:

package ch4;

public class yyerror {

 public static void yyerror(String s) {

 System.err.println(s);

 System.exit(1);

 }

}

This version of the yyerror() function just calls println() and exits, but we can
modify it as needed. Although you might be willing to do this just for the sake of sharing
a yacc specification file across both Unicon and Java, it will also pay off when we improve
our syntax error messages in the next section.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using iyacc and BYACC/J 87

Now it is time to run our toy program and see what it does. Run it with the following
input file, dorrie3.in:

Dorrie 1 Clint 0

You can build and run the program in either Unicon or Java as follows. The sequence of
commands to execute under Unicon looks like this:

uflex nnws.l

iyacc -dd ns.y

unicon trivial nnws ns ns_tab

trivial dorrie3.in

The sequence of commands to execute under Java is as follows:

jflex nnws.l

yacc -Jpackage=ch4 -Jyylex=ch4.lexer.yylex \

 -Jyyerror=ch4.yyerror.yyerror ns.y

javac trivial.java Yylex.java Parser.java lexer.java \

 yyerror.java ParserVal.java

java ch4.trivial dorrie3.in

From either implementation, the output that you should see is as follows:

no errors

So far, all the example does is categorize groups of input characters using a regular
expression to identify what kind of lexeme has been found. For the rest of the compiler to
work, we will need more information about that lexeme, which we will store in a token.

In this section, you learned how to integrate a yacc-generated parser with a lex-generated
scanner from the previous chapter. The same lex and yacc specifications were used for
Unicon and for Java, after some slight tweaks to iyacc and BYACC/J. The main challenges
were the challenges in integrating these declarative languages into Java, which involved
writing and importing two static methods from helper classes. Happily, we were able
to make these tools work on a toy example. Now it is time to use them on an actual
programming language.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

88 Parsing

Writing a parser for Jzero
The next example is a parser for Jzero, our subset of the Java language. This extends the
previous chapter's Jzero example. The big change is the introduction of many context-free
grammar rules for more complex syntax constructs than have been seen up to this point.
If you wrote a new language not based on an existing one, you would have to come up
with the context-free grammar from scratch. For Jzero this is not the case. The grammar
we use for Jzero was adapted from a Java dialect named Godiva. To work from a real Java
grammar, you can look at https://docs.oracle.com/javase/specs/.

The Jzero lex specification
The Jzero lex specification is as given in the previous chapter, with a one-line package
declaration added to the top. The parser must be generated before the scanner is compiled.
This is because yacc turns j0gram.y into a parser class whose constant values are
referenced from the scanner. Because the static import of yylex() entails using packages,
you must add the following line to the top of javalex.l from the previous chapter:

package ch4;

In order to be compatible with the previous chapter's javalex.l, the module called
lexer in the trivial parser earlier this chapter is called j0 in the Jzero parser.

With the understanding of this slight change to the Jzero Lex specification in order to call it
from the parser, let's move on to the next section to learn about the Jzero yacc specification.

The Jzero yacc specification
Compared with the previous examples, a real(ish) programming language yacc
specification has a lot more, and more complicated, production rules. The following file is
called j0gram.y and it is presented in several parts.

The first section of j0gram.y includes the header and declarations of terminal symbols.
These declarations are the source of the symbolic constants in the parser class used in
the previous chapter. It is not enough for the names to match in the scanner and parser;
the integer codes must be identical for the two tools to talk. The scanner must return the
parser's integer codes for its terminal symbols. Per the preceding description of the yacc
header section, declarations of terminal symbols are made by giving their name on a line
beginning with %token. Jzero declares approximately 27 symbols for reserved words,
different kinds of literal constants, and multi-character operators:

%token BREAK DOUBLE ELSE FOR IF INT RETURN VOID WHILE

%token IDENTIFIER CLASSNAME CLASS STRING BOOL

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.oracle.com/javase/specs/

Writing a parser for Jzero 89

%token INTLIT DOUBLELIT STRINGLIT BOOLLIT NULLVAL

%token LESSTHANOREQUAL GREATERTHANOREQUAL

%token ISEQUALTO NOTEQUALTO LOGICALAND LOGICALOR

%token INCREMENT DECREMENT

%%

After the %% are the production rules of the context-free grammar of the language
we are specifying. By default, the non-terminal on the first rule listed is the starting
non-terminal, which in Jzero denotes one whole source file, module, or compilation unit.
In Jzero this is just one class; this is a severe simplification of Java where there are usually
several declarations such as imports before the class in a given source file.

A class declaration consists of the word class followed by an identifier giving the class
name, followed by a body:

ClassDecl: CLASS IDENTIFIER ClassBody ';' ;

A class body is a sequence of declarations for fields, methods, and constructors. Notice how
the production rules for ClassBody allow for zero or more occurrences of declarations
within the curly braces: one rule requires a list of one or more ClassBodyDecls, while a
second rule explicitly allows the unusual but legal case of an empty class:

ClassBody: '{' ClassBodyDecls '}' | '{' '}' ;

ClassBodyDecls: ClassBodyDecl | ClassBodyDecls

 ClassBodyDecl;

ClassBodyDecl: FieldDecl | MethodDecl | ConstructorDecl ;

Field declarations consist of a type followed by a comma-separated list of variables. The
identifier that follows the word class becomes the name of a type. Some language
implementations make the lexical analyzer report a different integer category code for that
word once it has become a type name instead of a variable name; Jzero does not:

FieldDecl: Type VarDecls ';' ;

Type: INT | DOUBLE | BOOL | STRING | Name ;

Name: IDENTIFIER | QualifiedName ;

QualifiedName: Name '.' IDENTIFIER ;

VarDecls: VarDeclarator | VarDecls ',' VarDeclarator;

VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

90 Parsing

The next part of j0gram.y consists of the syntax rules for the other two kinds of things
that can be declared within a class, which use function syntax: methods and constructors.
To begin with, they have slightly different headers followed by a block of statements.:

MethodDecl: MethodHeader Block ;

ConstructorDecl: FuncDeclarator Block ;

Method headers have a return type, but otherwise methods and constructors share the same
syntax in the form of common uses of non-terminals FuncDeclarator and Block:

MethodHeader: Type FuncDeclarator | VOID FuncDeclarator ;

A function's name (or in the case of a constructor, the class name) is followed by a
parenthesized list of parameters:

FuncDeclarator: IDENTIFIER '(' FormalParmListOpt ')' ;

A parameter list is zero or more parameters. Non-terminal FormalParmListOpt has
two production rules: either there is a (non-empty) FormalParmList or there isn't. The
empty production after the vertical bar is called an epsilon rule:

FormalParmListOpt: FormalParmList | ;

A formal parameter list is a comma-separated list where each formal parameter consists of
a type and a variable name:

FormalParmList: FormalParm | FormalParmList ',' FormalParm;

FormalParm: Type VarDeclarator ;

The next part of j0gram.y contains the statement grammar. A statement is a chunk
of code that does not provide a value for use by the surrounding code. Jzero has several
kinds of statements. A Block (such as the body of a method) is a statement consisting of
a sequence of (sub)statements enclosed in curly braces {}:

Block: '{' BlockStmtsOpt '}' ;

Since a Block may contain zero substatements a non-terminal with an epsilon rule is used:

BlockStmtsOpt: BlockStmts | ;

Having dispensed with the optional case, BlockStmts are chained together
using recursion:

BlockStmts: BlockStmt | BlockStmts BlockStmt ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a parser for Jzero 91

The kinds of statements allowed within a block include variable declarations and ordinary
executable statements:

BlockStmt: LocalVarDeclStmt | Stmt ;

Local variable declarations consist of a type followed by a comma-separated list of variable
names ending with a semi-colon. Non-terminal VarDecls was presented where it was
previously used in class variable declarations:

LocalVarDeclStmt: LocalVarDecl ';' ;

LocalVarDecl: Type VarDecls ;

There are many kinds of ordinary executable statements, including expressions, break
and return statements, if statements, and while and for loops:

Stmt: Block | ';' | ExprStmt | BreakStmt | ReturnStmt

 | IfThenStmt | IfThenElseStmt | IfThenElseIfStmt

 | WhileStmt | ForStmt ;

Most expressions produce a value that must be used in a surrounding expression. Three
kinds of expressions can be turned into a statement by following them with a semi-colon:

ExprStmt: StmtExpr ';' ;

StmtExpr: Assignment | MethodCall | InstantiationExpr ;

Several forms of if statements are provided, allowing for chains of else statements.
If they seem excessive, it is because the Jzero subset of Java generally requires bodies of
conditional and loop constructs to use curly braces, avoiding a common source of bugs:

IfThenStmt: IF '(' Expr ')' Block ;

IfThenElseStmt: IF '(' Expr ')' Block ELSE Block ;

IfThenElseIfStmt: IF '(' Expr ')' Block ElseIfSequence

 | IF '(' Expr ')' Block ElseIfSequence ELSE Block ;

ElseIfSequence: ElseIfStmt | ElseIfSequence ElseIfStmt ;

ElseIfStmt: ELSE IfThenStmt ;

WHILE loops have a simple syntax similar to IF statements:

WhileStmt: WHILE '(' Expr ')' Block ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

92 Parsing

FOR loops, on the other hand, are quite involved:

ForStmt: FOR '(' ForInit ';' ExprOpt ';' ForUpdate ')' Block ;

ForInit: StmtExprList | LocalVarDecl | ;

ExprOpt: Expr | ;

ForUpdate: StmtExprList | ;

StmtExprList: StmtExpr | StmtExprList ',' StmtExpr ;

The BREAK and RETURN statements are very simple, the only difference in their syntax
being that a RETURN can have an optional expression after it. VOID methods return
without this expression, while non-VOID methods must include it; this must be checked
during semantic analysis:

BreakStmt: BREAK ';' ;

ReturnStmt: RETURN ExprOpt ';' ;

The next part of j0gram.y contains the expression grammar. An expression is a
chunk of code that computes a value, typically for use in a surrounding expression. This
expression grammar uses a one non-terminal symbol per level of operator precedence.
For example, the way that multiplication is forced to be higher precedence than addition
is that all multiplications are performed on a MulExpr non-terminal and then MulExpr
instances are chained together using plus (or minus) operators in the AddExpr
production rules:

Primary: Literal | '(' Expr ')' | FieldAccess | MethodCall;

Literal: INTLIT | DOUBLELIT | BOOLLIT | STRINGLIT |NULLVAL;

InstantiationExpr: Name '(' ArgListOpt ')' ;

ArgList: Expr | ArgList ',' Expr ;

ArgListOpt: ArgList | ;

FieldAccess: Primary '.' IDENTIFIER ;

MethodCall: Name '(' ArgListOpt ')'

 | Name '{' ArgListOpt '}'

 | Primary '.' IDENTIFIER '(' ArgListOpt ')'

 | Primary '.' IDENTIFIER '{' ArgListOpt '}' ;

PostFixExpr: Primary | Name ;

UnaryExpr: '-' UnaryExpr | '!' UnaryExpr | PostFixExpr ;

MulExpr: UnaryExpr | MulExpr '*' UnaryExpr

 | MulExpr '/' UnaryExpr | MulExpr '%' UnaryExpr ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a parser for Jzero 93

AddExpr: MulExpr | AddExpr '+' MulExpr | AddExpr '-'

MulExpr ;

RelOp: LESSTHANOREQUAL | GREATERTHANOREQUAL | '<' | '>' ;

RelExpr: AddExpr | RelExpr RelOp AddExpr ;

EqExpr: RelExpr | EqExpr ISEQUALTO RelExpr | EqExpr

NOTEQUALTO RelExpr ;

CondAndExpr: EqExpr | CondAndExpr LOGICALAND EqExpr ;

CondOrExpr: CondAndExpr | CondOrExpr LOGICALOR CondAndExpr;

Expr: CondOrExpr | Assignment ;

Assignment: LeftHandSide AssignOp Expr ;

LeftHandSide: Name | FieldAccess ;

AssignOp: '=' | INCREMENT | DECREMENT ;

Although it is split into five portions for presentation here, the j0gram.y file is not very
long: around 120 lines of code. Since it works for both Unicon and Java, this is a lot of
bang for your coding buck. The supporting Unicon and Java code are non-trivial, but we
are letting yacc (iyacc and BYACC/J) do most of the work here. The j0gram.y file will
get longer in the next chapter when we extend the parser to build syntax trees.

Now it is time to look at the supporting Unicon Jzero code that invokes and works with
the Jzero yacc grammar.

Unicon Jzero code
The Unicon implementation of the Jzero parser uses almost the same organization as in
the previous chapter, starting in a file named j0.icn. Instead of calling yylex() in a
loop, in a yacc-based program the main() procedure calls yyparse(), which calls
yylex() every time it does a shift operation.

As was mentioned in the last chapter, the Unicon scanner uses a parser object whose
fields, such as parser.WHILE, contain the integer category codes. The parser object
is no longer in j0.icn; it is now generated by yacc in a j0gram.icn file that is
monstrous and will not be shown here:

global yylineno, yycolno, yylval, parser

procedure main(argv)

 j0 := j0()

 parser := Parser()

 yyin := open(argv[1]) | stop("usage: j0 filename")

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

94 Parsing

 yylineno := yycolno := 1

 if yyparse()=0 then

 write("no errors, ", j0.count, " tokens parsed")

end

The second part of j0.icn consists of the j0 class. See the explanations in Chapter 3,
Scanning Source Code, in the Unicon Jzero code section:

class j0(count)

 method lexErr(s)

 stop(s, ": ", yytext)

 end

 method scan(cat)

 yylval := token(cat, yytext, yylineno, yycolno)

 yycolno +:= *yytext

 count +:= 1

 return cat

 end

 method whitespace()

 yycolno +:= *yytext

 end

 method newline()

 yylineno +:= 1; yycolno := 1

 end

 method comment()

 yytext ? {

 while tab(find("\n")+1) do newline()

 yycolno +:= *tab(0)

 }

 end

 method ord(s)

 return proc("ord",0)(s[1])

 end

initially

 count := 0

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a parser for Jzero 95

In the third part of j0.icn, the token type with its deEscape() method has been
preserved from the previous chapter:

class token(cat, text, lineno, colno, ival, dval, sval)

 method deEscape(sin)

 local sout := ""

 sin := sin[2:-1]

 sin ? {

 while c := move(1) do {

 if c == "\\" then {

 if not (c := move(1)) then

 j0.lexErr("malformed string literal")

 else case c of {

 "t":{ sout ||:= "\t" }

 "n":{ sout ||:= "\n" }

 }

 }

 }

 else sout ||:= c

 }

 }

 return sout

 end

initially

 case cat of {

 parser.INTLIT: { ival := integer(text) }

 parser.DOUBLELIT: { dval := real(text) }

 parser.STRINGLIT: { sval := deEscape(text) }

 }

end

You might notice that the Unicon Jzero code got a bit shorter in this chapter compared
with the last, thanks to yacc doing some of the work for us. Now let's look at the
corresponding code in Java.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

96 Parsing

Java Jzero parser code
The Java implementation of the Jzero parser includes a main class in the j0.java file.
It resembles the same file in the previous chapter, except its main() function
calls yyparse():

package ch4;

import java.io.FileReader;

public class j0 {

 public static Yylex lex;

 public static parser par;

 public static int yylineno, yycolno, count;

 public static void main(String argv[]) throws Exception

 {

 lex = new Yylex(new FileReader(argv[0]));

 par = new parser();

 yylineno = yycolno = 1;

 count = 0;

 int i = par.yyparse();

 if (i == 0) {

 System.out.println("no errors, " + j0.count +
 " tokens parsed");

 }

 }

 // rest of j0.java methods are the same as in Chapter 3.

}

In order to run the program, you will also have to compile the module named parser.
java that is generated by yacc from our input j0gram.y file. That module provides
the yyparse() function along with a set of named constants declared directly as short
integers. While this book lists j0gram.y instead of the parser.java file that is
generated from it, you can run yacc and look at its output yourself.

There is also a supporting module named token.java that contains the token class. It is
identical to that presented in the previous chapter, so we do not duplicate it here.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a parser for Jzero 97

If you like to plan ahead, it may interest you to know that the instances of class token
contain exactly the information that you need in the leaves of the syntax tree that you will
build in the next chapter. There are different ways that a person could wire up this lexical
information into the tree leaves. We will deal with that in Chapter 5, Syntax Trees.

Running the Jzero parser
You can run the program in either Unicon or Java as follows. This time, let's run the
program on the following sample input file, named hello.java:

public class hello {

 public static void main(String argv[]) {

 System.out.println("hello, jzero!");

 }

}

Remember, to your parser this hello.java program is a sequence of lexemes that must
be checked to see if it follows the grammar of the Jzero language that we gave earlier. The
commands to compile and run the Jzero parser resemble earlier examples, with more files
creeping in. The Unicon commands look like the following example:

uflex javalex.l

iyacc -dd j0gram.y

unicon j0 javalex j0gram j0gram_tab yyerror

j0 hello.java

The machine-generated code output by uflex for javalex.l contains a single function
large enough to cause the stock version of Unicon's code generator (icont) to fail with its
own parse stack overflow! I had to modify the icont yacc grammar to use a larger stack
in order to run this example.

In the next to the last line in the preceding list of commands, compiling the j0 executable
with a single invocation to perform compilation plus linking is a lazy presentation choice
on Unicon. On Java, there is enough of a circular dependency between the lexical analyzer
(which uses parser integer constants) and the parser (which calls yylex()) that you will
find it necessary to continually resort to the big inhale model of compilation. While this
is a sad state of affairs, if that's what it takes for Java to smoothly combine jflex and
BYACC/J, let's just relax and enjoy it.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

98 Parsing

Big inhale model
All serious programming languages, especially object-oriented ones, allow
modules to be compiled separately, and in fact encourage modules to be small,
such that a build consists of many tiny module compilations. When some code
is changed, only a small portion of the whole program needs to be recompiled.
Unfortunately, many programming language features, in this case, classes that use
each other's static members, can cause you to need to compile several or many
modules at once under Java…highly ironic for a language that eschews linking.
Sometimes you can tease out a sequence of single compilations that will work
in Java, and sometimes not. When you must submit many or all the Java source
files on the command line at once, what would be an unwise move for a C/C++
programmer becomes routine and necessary for a Java programmer. Don't sweat
it. That's what fast CPUs and multiple cores and overengineered IDEs are for.

The Java commands to build and run the j0 parser are as follows:

jflex javalex.l

yacc -Jclass=parser -Jpackage=ch4 -Jyylex=ch4.j0.yylex\

 -Jyyerror=ch4.yyerror.yyerror j0gram.y

javac parser.java Yylex.java j0.java parserVal.java \

 token.java yyerror.java

java ch4.j0 hello.java

From either the Unicon or the Java implementation, you should see the output like this:

no errors, 26 tokens parsed

Not a very interesting output. The Jzero parser will become a lot more useful in the next
chapter, when you learn to construct a data structure that is a record of the complete
syntactic structure of the input source program. That data structure is the fundamental
skeleton upon which any interpreter or compiler implementation of a programming
language is based. In the meantime, what if we give an input file that is missing some
required punctuation, or uses some Java constructs that are not in Jzero? We expect an
error message. The following example input file named helloerror.java serves to
motivate our next section:

public class hello {

 public static void main(String argv[]) {

 System.out.println("hello, jzero!")

 }

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Improving syntax error messages 99

Can you see the error? It is the oldest and most common syntax error of all. A semi-colon
is missing at the end of the println() statement.

Based on the parser written so far, running j0 helloerror.java so far prints the
following yacc default error message and exits:

parse error

While no errors was uninteresting, saying parse error when there is a problem is
not user-friendly at all. It is time to consider syntax error reporting and recovery.

Improving syntax error messages
Earlier, we saw a bit about the yacc syntax error reporting mechanism. Yacc just calls
a function named yyerror(s). Very rarely, this function can be called for an internal
error such as a parse stack overflow, but usually when it is called, it is passed the string
"parse error" or "syntax error" as its parameter. Neither is adequate for helping
programmers find and fix their errors in the real world. If you write a function called
yyerror() yourself, you can produce a better error message. The key is to have extra
information available that the programmer can use. Usually, that extra information will
have to be placed in a global or public static variable in order for yyerror() to access it.
Let's look at how to write a better yyerror() function in Unicon, and then in Java.

Adding detail to Unicon syntax error messages
In the Putting together a toy example section earlier in this chapter, you saw a Unicon
implementation of yyerror(s) that just consisted of calling stop(s). It is easy to do
better than this, especially if we have global variables such as yylineno available. In
Unicon, your yyerror() function might look like the following:

procedure yyerror(s)

 write(&errout, "line ", yylineno, " column ", yycolno,

 ", lexeme \"", yytext, "\": ", s)

end

This prints the line and column numbers, as well as the current lexeme at the time that
the syntax error was discovered. Because yylineno, yycolno, and yytext are global
variables, it is no problem to access them from the helper procedure yyerror(). The
main thing that you might want to do even better than this is figure out how to produce a
message that's more helpful than just saying parse error.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

100 Parsing

Adding detail to Java syntax error messages
The corresponding Java yyerror() function is given below. In BYACC/J, you could
place this method in the helper functions section of j0gram.y, where it will be included
within the Parser class where it is called from. Unfortunately, if you do this, you
give up Unicon/Java portability in the yacc specification file. So instead, we place the
yyerror() function in its own class and its own file. This example shows the degree of
pathos inflicted by Java's semi-pure object-oriented model where everything must be in a
class, even when it is inane to do so:

public class yyerror {

 public static void yyerror(String s) {

 System.err.println(" line "+ j0.yylineno +
 " column "+ j0.yycolno +
 ", lexeme \""+ j0.yytext()+ "\": "+ s);

 }

}

As we saw earlier in this chapter, using this yyerror() from another file from within a
parser class generated by BYACC/J requires an import static declaration for which
we added -Jyylex=… and -Jyyerror=… command-line options to BYACC/J.

With either the Unicon or the Java implementation, when you link this yyerror() into
your j0 parser and run j0 helloerror.java, you should see output that looks like
the following:

line 4 column 1, lexeme "end": parse error

Until recently, this was as good as many production compilers such as gcc managed
to do. For an expert programmer, it is enough. Looking before and after the point of
failure, an expert will see a missing semi-colon. But for a novice or an intermediate
programmer having a bad day, even the line number, column, and token at which an error
is discovered are not enough. Good programming language tools must be able to deliver
better error messages.

Using Merr to generate better syntax error messages
How do we write a better message that clearly indicates a parse error? The parse algorithm
was looking at two integers when it realized there was an error: a parse state and a current
input symbol. If you can map those two integers to a set of better error messages, you win.
Unfortunately, it is not trivial to figure out what the integer parse states mean. You can do it
by painful trial and error, but every time you change the grammar, those numbers change.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 101

A tool was created just to solve this problem, called Merr (for Meta error). Merr lives at
http://unicon.org/merr. It takes as input the name of your compiler, a makefile
for building it, and a meta.err specification file that contains a list of error fragments
and their corresponding error messages. In order to generate yyerror(), Merr builds
your compiler and runs it in a mode that causes it to print out the parse state and current
input token on each of the fragment errors. It then writes out a yyerror() that contains
a table showing, for each parse state and error fragment, what the associated error
message is. A sample meta.err file for a few errors, including the missing semi-colon
error shown earlier, is as follows:

public {

::: class expected

public class {

::: missing class name

public class h public

::: { expected

public class h{public static void m(S a[]){S.o.p("h")}}

::: semi-colon expected

You invoke the Merr tool by telling it the name of the compiler you are building; it
uses this name as a target argument when it calls make to build your compiler. Various
command-line options let you specify what yacc version you have and other important
details. The following command lines invoke merr on Unicon (left) or Java (right):

merr -u j0 merr -j j0.class

This command grinds for a while. merr rebuilds your compiler with a modified
yyerror() function to report the parse state and input token at the time of each error.
Merr then runs your compiler on each of the error fragments and records what parse
states they die in. Finally, merr writes out a yyerror() containing a table mapping
parse states to error messages.

As you saw in both the Unicon and Java cases, writing an error message that includes line
numbers or the current input symbol at the time a syntax error is found is easy. On the
other hand, saying something more helpful about it can be challenging.

Summary
In this chapter, you learned the crucial technical skills and tools used in programming
languages when they are parsing the sequence of lexemes from the program source code
in order to check its organization and structure.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://unicon.org/merr

102 Parsing

You learned to write context-free grammars, and to use the iyacc and BYACC/J tools to
take your context-free grammar and generate a parser for it.

When input fails to follow the rules, an error reporting function, yyerror(), is called.
You learned some basics about this error handling mechanism.

You learned how to call a generated parser from a main() function. The parser that yacc
generates is called via the yyparse() function.

You are now ready to learn how to build the syntax tree data structure that reflects the
structure of the input source code. The next chapter will cover the construction of syntax
trees in detail.

Questions
1. What does it really mean to say a grammar symbol is terminal? Is it dying

or something?
2. YACC parsers are called shift/reduce parsers. What exactly is a shift? What is

a reduce?
3. Does the semantic action code in a YACC grammar execute when the parser

performs a shift, or a reduce, or both?
4. How does syntax analysis make use of the lexical analysis described in the

previous chapter?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Syntax Trees

The parser we constructed in the last chapter can detect and report syntax errors, which
is a big, important job. When there is no syntax error, you need to build a data structure
during parsing that represents the whole program logically. This data structure is based on
how the different tokens and larger pieces of the program are grouped together. A syntax
tree is a tree data structure that records the branching structure of the grammar rules
used by the parsing algorithm to check the syntax of an input source file. A branch occurs
whenever two or more symbols are grouped together on the right-hand side of a grammar
rule to build a non-terminal symbol. This chapter will show you how to build syntax trees,
which are the central data structure for your programming language implementation.

This chapter covers the following main topics:

• Learning about trees

• Creating leaves from terminal symbols

• Building internal nodes from production rules

• Forming syntax trees for the Jzero language

• Debugging and testing your syntax tree

It is time to learn about tree data structures and how to build them. But first, let's
learn about some new tools that will make building your language easier for the rest
of this book.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

104 Syntax Trees

Technical requirements
There are two tools for you to install for this chapter, as follows:

• Dot is part of a package called Graphviz that can be downloaded from a downloads
page found at http://graphviz.org. After successfully installing Graphviz,
you should have an executable named dot (or dot.exe) on your path.

• GNU's Not Unix (GNU) make is a tool to help manage large programming projects
that supports both Unicon and Java. It is available for Windows from http://
gnuwin32.sourceforge.net/packages/make.htm. Most programmers
probably get it along with their C/C++ compiler or with a development suite such as
MSYS2 or Cygwin. On Linux, you typically get make from a C development suite,
although it is often also a separate package you can install.

• You can download this book's examples from our GitHub repository:
https://github.com/PacktPublishing/Build-Your-Own-
Programming-Language/tree/master/ch5.

The Code in Action video for the chapter can be found here: https://bit.ly/3DgRcgC

Before we dive into the main topics of this chapter, let's explore the basics of how to use
GNU make and why you need it for developing your language.

Using GNU make
Command lines are growing longer and longer, and you will get very tired of typing the
commands required to build a programming language. We are already using Unicon, Java,
uflex, jflex, iyacc, and BYACC/J. Few tools for building large programs are multi-platform
and multi-language enough for this toolset. We will use the ultimate: GNU make.

Once a make program is installed on your path, you can store the build rules for Unicon
or Java or both in a file named a makefile (or Makefile), and then just run make
whenever you have changed the code and need to rebuild. A full treatment of make is
beyond the scope of this book, but here are the key points.

A makefile is like a lex or yacc specification, except instead of recognizing patterns of
strings, a makefile specifies a graph of build dependencies between files. For each file, the
makefile contains the source files it depends on as well as a list of one or more command
lines needed to build that file. The makefile header just consists of macros defined by
NAME= strings that are used in later lines by writing $(NAME) to replace a name with its
definition. The rest of the makefile lines are dependencies written in the following format:

file: source_file(s)

 build rule

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://graphviz.org
http://gnuwin32.sourceforge.net/packages/make.htm
http://gnuwin32.sourceforge.net/packages/make.htm
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch5
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch5
https://bit.ly/3DgRcgC

Using GNU make 105

In the first line, file is an output file you want to build, also called a target. The first line
specifies that the target depends on current versions of the source file(s). They are required
in order to make the target. build rule is the command line that you execute to make
that output file from those source file(s).

Don't forget the tab!
The make program supports multiple lines of build rules, as long as the lines
continue to start with a tab. The most common newbie mistake in writing
a makefile is that the build rule line(s) must begin with an American
Standard Code for Information Interchange (ASCII) Ctrl-I, also known
as a tab character. Some text editors will totally blow this. If your build rule
lines don't start with a tab, make will probably give you some confusing error
message. Use a real code editor and don't forget the tab.

The following example makefile will build both Unicon and Java if you just say make.
If you run make unicon or make java, then it only builds one or the other. Added to
the commands from the last chapter is a new module (tree.icn or tree.java) for
this chapter. The makefile is presented in two halves, for the Unicon and then the Java
build, respectively.

The target named all specifies what to build if make is invoked without an argument
saying what to build. The rest of the first half is concerned with building Unicon. The U
macros (and IYU for iyacc) list the Unicon modules that are separately compiled into a
machine code format called ucode. The %.u:%.icn strange dependency is called a suffix
rule. It says that all .u files are built from .icn files by running unicon -c on the
.icn file. The executable named j0 is built from the ucode files by running unicon on
all the .u files to link them together. The javalex.icn and j0gram.icn files are built
using uflex and iyacc, respectively. Let's look at the first half of our makefile for this
chapter, as follows:

all: unicon java

LYU=javalex.u j0gram.u j0gram_tab.u

U=j0.u token.u tree.u serial.u yyerror.u $(LYU)

unicon: j0

%.u : %.icn

 unicon -c $<

j0: $(U)

 unicon $(U)

javalex.icn: javalex.l

 uflex javalex.l

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

106 Syntax Trees

j0gram.icn j0gram_tab.icn: j0gram.y

 iyacc -dd j0gram.y

The Java build rules occupy the second half of our makefile. The JSRC macro gives the
names of all the Java files to be compiled. BYSRC macros for BYACC/J-generated sources,
BYJOPTS for BYACC/J options, and IMP and BYJIMPS for BYACC/J static imports
serve to shorten later lines in the makefile so that they fit within this book's formatting
constraints. We are sticking carefully to a makefile that will run on both Windows
and Linux. As a reminder, the Java rules of our makefile depend on a CLASSPATH
environment variable, and the syntax for that varies with your operating system and its
Command Prompt (or shell) syntax. On Windows, you might say the following:

set CLASSPATH=".;c:\users\username\byopl"

Here, username is your username, while on Linux, you might instead say the following:

export CLASSPATH=..

In any case, here is the second half of our makefile:

BYSRC=parser.java parserVal.java Yylex.java

JSRC=j0.java tree.java token.java yyerror.java $(BYSRC)

BYJOPTS= -Jclass=parser -Jpackage=ch5

IMP=importstatic

BYJIMPS= -J$(IMP)=ch5.j0.yylex -J$(IMP)=ch5.yyerror.yyerror

j: java

 java ch5.j0 hello.java

 dot -Tpng foo.dot >foo.png

java: j0.class

j0.class: $(JSRC)

 javac $(JSRC)

parser.java parserVal.java: j0gram.y

 yacc $(BYJOPTS) $(BYJIMPS) j0gram.y

Yylex.java: javalex.l

 jflex javalex.l

In addition to the rules for compiling the Java code, the Java part of the makefile has an
artificial target, make j, that runs the compiler and invokes the dot program to generate
a Portable Network Graphic (PNG) image of your syntax tree.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about trees 107

If you find makefiles strange and scary-looking, don't worry—you are in good company.
This is a red pill/blue pill moment. You can close your eyes and just type make at the
command line. Or, you can dig in and take ownership of this universal multi-language
software development build tool. If you want to read more about make, you might want
to read GNU Make: A Program for Directing Compilation, by Stallman and McGrath,
or one of the other fine books on make. Now, it's time to get on with syntax trees, but
first, you have to know what a tree is and how to define a tree data type for use in a
programming language.

Learning about trees
Mathematically a tree is a kind of graph structure; it consists of nodes and edges that
connect those nodes. All the nodes in a tree are connected. A single node at the top is
called the root. Tree nodes can have zero or more children, and at most one parent. A tree
node with zero children is called a leaf; most trees have a lot of leaves. A tree node that is
not a leaf has one or more children and is called an internal node. The following diagram
shows an example tree with a root, two additional internal nodes, and five leaves:

Figure 5.1 – A tree with a root, internal nodes, and leaves

Trees have a property called arity that says what the maximum number of children a node
can have is. An arity of 1 would give you a linked list. Perhaps the most common kinds
of trees are binary trees (arity = 2). The kind of trees we need has as many children as
there are symbols on the right-hand side of the rules in our grammar; these are so-called
n-ary trees. While there is no arity bound for arbitrary context-free grammars, for any
grammar we can just look and see which production rule has the most symbols on its
right-hand side, and code our tree arity to that number if needed. In j0gram.y from
the last chapter, the arity of Jzero is 9, although most non-leaf nodes will have two to four
children. In the following subsections, we will dive deeper and learn how to define syntax
trees and understand the difference between a parse tree and a syntax tree.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

108 Syntax Trees

Defining a syntax tree type
Every node in a tree has several pieces of information that need to be represented in the
class or data type used for tree nodes. This includes the following information:

• Labels or integer codes that uniquely identify the node and what kind of node it is

• A data payload consisting of whatever information is associated with that node

• Information about that node's children, including how many children it has and
references to those children (if any)

We use a class for this information in order to keep the mapping to Java as simple as
possible. Here is an outline of the tree class with its fields and constructor code; the
methods will be presented in the sections that follow within this chapter. The tree
information can be represented in Unicon in a file named tree.icn, as follows.

class tree(id, sym, rule, nkids, tok, kids)

initially(s,r,x[])

 id := serial.getid(); sym := s; rule := r

 if type(x[1]) == "token__state" then {

 nkids:=0; tok := x[1]

 } else { nkids := *x; kids := x }

end

The tree class has the following fields:

• The id field is a unique integer identity or serial number that is used to distinguish
tree nodes from each other. It is initialized by calling a getid() method in a
singleton class named serial that will be presented later in this section.

• The label string is a human-readable description for debugging purposes.

• The member named rule holds which production rule (or, in the case of a leaf, the
integer category) the node represents. Yacc does not provide a numeric encoding for
production rules, so you will have to make your own, whether you just count rules
starting from 1 or get fancier. If you start at 1,000 or use negative numbers, you will
never confuse a production rule number for a terminal symbol code.

• The member named nkids holds the number of child nodes underneath this
node. Usually, it will be 0, indicating a leaf, or a number 2 or higher, indicating an
internal node.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about trees 109

• The member named tok holds the lexical attributes of a leaf node, which comes to
us via the yylex() function setting the parser's yylval variable, as discussed in
Chapter 2, Programming Language Design.

• The member named kids is an array of tree objects.

The corresponding Java code looks like the following class tree in a file named tree.java.
Its members match the fields in the Unicon tree class given previously:

package ch5;

class tree {

 int id;

 String sym;

 int rule;

 int nkids;

 token tok;

 tree kids[];

The tree.java file continues with two constructors for the tree class: one for leaves,
which takes a token object as an argument, and one for internal nodes, which takes
children. These can be seen in the following code snippet:

 public tree(String s, int r, token t) {

 id = serial.getid();

 sym = s; rule = r; tok = t; }

 public tree(String s, int r, tree[] t) {

 id = serial.getid();

 sym = s; rule = r; nkids = t.length;

 kids = t;

 }

}

The previous pair of constructors initialize a tree's fields in an obvious way. You may be
curious about the identifiers (IDs) initialized from a serial class. These are used to
give each node a unique identity required by the tool that draws the syntax trees for us
graphically at the end of this chapter. Before we proceed with using these constructors,
let's consider two different mindsets regarding the trees we are constructing.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

110 Syntax Trees

Parse trees versus syntax trees
A parse tree is what you get when you allocate an internal node for every production
rule used during the parsing of an input. Parse trees are a complete transcript of how the
parser matched the input using the grammar. They are too large and unwieldy to use in
practice. In real programming languages, there are lots and lots of non-terminal rules that
build a non-terminal from a single non-terminal on their right-hand side. This results in
a weeping tree appearance. The following diagram shows the height and shape of a parse
tree for a trivial "Hello World" program. If you build a full parse tree, it will substantially
slow down the rest of your compiler:

Figure 5.2 – A parse tree for a "Hello World" program (67 nodes, height 27)

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about trees 111

A syntax tree has an internal node whenever a production rule has two or more children
on the right-hand side and the tree needs to branch out. The following diagram shows a
syntax tree for the same hello.java program. Note the differences in size and shape
compared with the parse tree shown in Figure 5.2:

Figure 5.3 – A syntax tree for a "Hello World" program (20 nodes, height 8)

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

112 Syntax Trees

While a parse tree may be useful for studying or debugging a parsing algorithm, a
programming language implementation uses a much simpler tree. You will see this
especially when we present the rules for building tree nodes for our example language, in
the Forming syntax trees for the Jzero language section.

Creating leaves from terminal symbols
Leaves make up a large percentage of the nodes in a syntax tree. The leaves in a syntax
tree built by yacc come from the lexical analyzer. For this reason, this section discusses
modifications to the code from Chapter 2, Programming Language Design. After you create
leaves in the lexical analyzer, the parsing algorithm must pick them up somehow and plug
them into the tree that it builds. This section describes that process in detail. First, you will
learn how to embed token structures into tree leaves, and you will then learn how these
leaves are picked up by the parser in its value stack. For Java, you will need to know about
an extra type that is needed to work with the value stack. Lastly, the section provides some
guidance as to which leaves are really necessary and which can be safely omitted. Here is
how to create leaves containing token information.

Wrapping tokens in leaves
The tree type presented earlier contains a field that is a reference to the token
type introduced in Chapter 2, Programming Language Design. Every leaf will get a
corresponding token and vice versa. Think of this as wrapping up the token inside a tree
leaf. Here is a Unified Modeling Language (UML) diagram that depicts each tree leaf
containing a token:

Figure 5.4 – Diagram of a leaf containing a token

You could instead add the token type's member fields directly into the tree type. However,
the strategy of allocating a token object, and then a separate tree node that contains a
pointer to that token object, is reasonably clean and easy to understand. In Unicon, the
code to create a leaf looks like this:

yylval := tree("token",0, token(cat, yytext, yylineno))

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating leaves from terminal symbols 113

In Java, the creation of a leaf node containing a token almost looks like the following code:

yylval = new tree("token",0,
 new token(cat, yytext(), yylineno));

You could put this code within the j0.scan() method that is called for each token in
the lexical analyzer. In Unicon, we are good at this point. In statically typed languages
such as Java, what data type is yylval? In Chapter 2, Programming Language Design,
yylval was type token; now, it looks like type tree. But yylval is declared in the
generated parser, and yacc doesn't know anything about your token or tree types. For
a Java implementation, you must learn the data type that the code generated by yacc uses
for leaves, but first, you need to learn about the value stack.

Working with YACC's value stack
BYACC/J does not know about your tree class. For this reason, it generates its value
stack as an array of objects whose type is named parserVal. If you rename BYACC/J's
parser class to something else, such as myparse, using the -Jclass= command-line
option, the value stack class will also automatically be renamed to myparseVal.

The yylval variable is part of the public interface of yacc. Every time yacc shifts the next
terminal symbol onto its parse stack, it copies the contents of yylval onto a stack that it
manages in parallel with the parse stack, called the value stack. BYACC/J declares the value
stack elements as well as yylval in the parser class to be of the type parserVal.

Since a parse stack is managed in parallel with a value stack, whenever a new state is
pushed on the parse stack, the value stack sees a corresponding push; the same goes for
pop operations. Value stack entries whose parse state was produced by a shift operation
hold tree leaves. Value stack entries whose parse state was produced by a reduce operation
hold internal syntax tree nodes. The following diagram depicts a value stack in parallel
with a parse stack:

Figure 5.5 – A parse stack and a value stack

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

114 Syntax Trees

In Figure 5.5, $ on the left edge represents the bottom of the two stacks, which grow toward
the right when values are pushed on the stack. The right side of the diagram depicts the
sequence of terminal symbols whose tokens are produced by lexical analysis. Tokens are
processed from left to right, with $ at the right edge of the screen representing the end of
file, also depicted as EOF. The ellipses (…) on the left side represent the room on the two
stacks to process additional push operations during parsing, while those on the right side
represent whatever additional input symbols remain after those that are depicted.

The parserVal type was briefly mentioned in Chapter 4, Parsing. To build syntax trees
in BYACC/J, we must go into this in detail. Here is the parserVal type, as defined
by BYACC/J:

public class parserVal {

 public int ival;

 public double dval;

 public String sval;

 public Object obj;

 public parserVal() { }

 public parserVal(int val){ ival=val; }

 public parserVal(double val) { dval=val; }

 public parserVal(String val) { sval=val; }

 public parserVal(Object val) { obj=val; }

parserVal is a container that holds an int, a double, a String, and an Object, which
can be a reference to any class instance at all. Having four fields here is a waste
of memory for us since we will only use the obj field, but yacc is a generic tool. In any
case, let's look at wrapping tree leaves within a parserVal object in order to place them
in yylval.

Wrapping leaves for the parser's value stack
In terms of mechanics, parserVal is a third data type in the code that builds our syntax
tree. BYACC/J requires that we use this type for the lexical analyzer to communicate
tokens to the parser. For this reason, for the Java implementation, this chapter's class, j0,
has a scan() method that looks like this:

 public static int scan(int cat) {

 ch5.j0.par.yylval =

 new parserVal(

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating leaves from terminal symbols 115

 new tree("token",0,

 new token(cat, yytext(), yylineno)));

 return cat;

 }

In Java, each call to scan() allocates three objects, as shown in Figure 5.6. In Unicon,
scan() allocates two objects, as shown in Figure 5.4:

Figure 5.6 – The three allocated objects: parserVal, leaf, and token

OK—we wrapped tokens inside of tree nodes in order to represent leaf information, and
then for Java, we wrap leaf nodes inside parserVal in order to put them onto the value
stack. Let's consider what putting a leaf on the value stack looks like in slow motion. We
will tell the story as it occurs in Java, recognizing that in Unicon it is a little bit simpler.
Suppose you are at the beginning of your parse, and your first token is the reserved word
PUBLIC. The scenario is shown in the following diagram. See the description of Figure 5.5
if you need a refresher on how this diagram is organized:

Figure 5.7 – The parse stack state at the start of parsing

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

116 Syntax Trees

The first operation is a shift. An integer finite automation state that encodes the fact
that we saw PUBLIC is pushed onto the stack. yylex() calls scan(), which allocates
a leaf wrapped in a parserVal instance and assigns yylval a reference to it, which
yylex() pushes onto the value stack. The stacks are in lock-step, as shown in the
following diagram:

Figure 5.8 – The parse and value stack state after a shift operation

Another of these wrapped leaves gets added to the value stack each time a shift occurs.
Now, it's time to consider how all these leaves get placed into the internal nodes, and how
internal nodes get assembled into higher-level nodes until you get back to the root. This
all happens one node at a time when a production rule in the grammar is matched.

Determining which leaves you need
In most languages, punctuation marks such as semicolons and parentheses are only
necessary for syntax analysis. Maybe they help for human readability or force operator
precedence, or make the grammar parse unambiguously. Once you successfully parse the
input, you will never again need those leaves in your syntax tree for subsequent semantic
analysis or code generation.

You can omit unnecessary leaves from the tree, or you can leave them in so that their
source line number and filename information is in the tree in case it is needed for error
message reporting. I usually omit them by default but add in specific punctuation leaves if
I determine that they are needed for some reason.

The flipside of this equation is this: any leaf that contains a value or a name or other
semantic meaning of some kind in the language needs to be kept around in the syntax
tree. This includes literal constants, IDs, and other reserved words or operators. Now, let's
look at how and when to build internal nodes for your syntax tree.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building internal nodes from production rules 117

Building internal nodes from production rules
In this section, we will learn how to construct the tree, one node at a time, during parsing.
The internal nodes of your syntax tree, all the way back up to the root, are built from the
bottom up, following the sequence of reduce operations with which production rules are
recognized during the parse. The tree nodes used during the construction are accessed
from the value stack.

Accessing tree nodes on the value stack
For every production rule in the grammar, there is a chance to execute some code called a
semantic action when that production rule is used during a parse. As you saw in Chapter 4,
Parsing, in the Putting together the yacc context-free grammar section, semantic action code
comes at the end of a grammar rule, before the semicolon or vertical bar that ends a rule and
starts the next one.

You can put any code you want in a semantic action. For us, the main purpose of a
semantic action is to build a syntax tree node. Use the value stack entries corresponding to
the right side of the production rule to construct the tree node for the symbol on the left
side of the production rule. The left-side non-terminal that has been matched gets a new
entry pushed into the value stack that can hold the newly constructed tree node.

For this purpose, yacc provides macros that refer to each position on the value stack
during a reduce operation. $1, $2, … $N refer to the current value-stack contents
corresponding to the grammar rule's right-hand symbols 1 through N. By the time the
semantic action code executes, these symbols have already been matched at some point
in the recent past. They are the top N symbols on the value stack, and during the reduce
operation they will be popped, and a new value-stack entry pushed in their place. The new
value-stack entry is whatever you assign to $$. By default, it will just be whatever is in
$1; the default semantic action of yacc is $$=$1, and that semantic action is correct for
production rules with one symbol (terminal or non-terminal) that is being reduced to the
non-terminal on the left-hand side of the rule.

All of this is a lot to unpack. Here is a specific example. Suppose you are just finishing
up parsing the hello.java input shown earlier, and where it is at the point where
it is time to reduce the reserved words PUBLIC, CLASS, the class name, and the class
body. The grammar rule that applies at this point is ClassDecl: PUBLIC CLASS
IDENTIFIER ClassBody.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

118 Syntax Trees

The preceding rule has four symbols on the right-hand side. The first three are terminal
symbols, which means that on the value stack, their tree nodes will be leaves. The fourth
symbol on the right side is a non-terminal, whose value stack entry will be an internal node,
a subtree, which happens in this case to have three children. When it is time to reduce all
that down to a ClassDecl production rule, we are going to allocate a new internal node.
Since we are finishing parsing, in this case, it happens to be the root, but in any case, it will
correspond to the class declaration that we have found, and it will have four children. The
following diagram shows the contents of the parse stack and the value stack at the time of
the reduce operation when the entire class is finally to be connected as one big tree:

Figure 5.9 – Parse and value stack right before a reduce operation

The mission of the semantic action for the ClassDecl production rule will be to create
a new node, initialize its four children from $1, $2, $3, and $4, and assign it to $$. The
following diagram shows how this looks after constructing the ClassDecl rule:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building internal nodes from production rules 119

Figure 5.10 – Subtrees are combined on the value stack during reduce operations

The entire tree is constructed very gradually, one node at a time, and the parserVal
objects are removed at the point at which children get removed from the value stack and
inserted into their parent node.

Using the tree node factory method
The tree class contains an important factory method named node(). A factory method
is a method that allocates and returns an object. It is like a constructor, but it allocates
an object of a different type from whatever class it is within. Factory methods are used
heavily in certain design patterns. In our case, the node() method takes a label, a
production rule number, and any number of children, and returns an internal node to
document that production rule having been matched. The Unicon code for the node()
method is shown in the following snippet:

 method node(s,r,p[])

 return tree ! ([s,r] ||| p)

 end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

120 Syntax Trees

The Java code for the node() method is more complex due to the wrapping and
unwrapping of the parserVal types. Wrapping a newly constructed internal node in
a parserVal object is easy enough with a call to create a new parserVal object, but
in order to construct the tree's children, they are first unwrapped by a separate helper
method called unwrap(). The code is shown in the following snippet:

 public static parserVal node(String s,

int

 r,parserVal...p) {

 tree[] t = new tree[p.length];

 for(int i = 0; i < t.length; i++)

 t[i] = (tree)(p[i].obj);

 return new parserVal((Object)new tree(s,r,t));

 }

The preceding Java code takes a variable number of arguments, unwraps them, and passes
them into the constructor of the tree class. The unwrapping consists of selecting the obj
field of the parserVal object and casting it to be of type tree.

Since the semantic actions for iyacc are Unicon code and for BYACC/J they are Java code,
this requires some cheating. A semantic action will be legal in both Java and Unicon only
if you limit it to common syntax such as method calls. If you start inserting other things in
the semantic actions, such as if statements and other language-specific syntax, your yacc
specification will become specific to one host language such as Unicon or Java.

However, it was not quite possible for this book's examples to be crafted to use the same
input file for both iyacc and BYACC/J as is. The reason for this is that semantic actions
in yacc typically assign a value (a reference to a parse tree node) to a special variable
named $$, and Unicon uses a := operator for assignment while Java uses =. This was
addressed during the writing of this book by modifying iyacc so that semantic actions
that start with $$= are accepted as a special operator that generates the Unicon equivalent
assignment of $$:=.

The strategies that you need for building internal nodes in your syntax tree are pretty simple:
for every production rule, count how many children are either one of the following:

• A non-terminal

• A terminal that is not a punctuation mark

If the number of such children is more than one, call the node() factory method to allocate
a tree node, and assign it to be the value stack entry for the production rule. Now, it's time to
demonstrate syntax tree construction in a non-trivial example: the Jzero language.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Forming syntax trees for the Jzero language 121

Forming syntax trees for the Jzero language
This section shows you how to build syntax trees for the Jzero language. The full
j0gram.y file for this chapter is available on the book's GitHub site. The header is
omitted here since the %token declarations are unchanged from how they appear in the
section titled The Jzero Yacc specification in the previous chapter. Although we are again
presenting many of the grammar rules shown in the last chapter, the focus now is on the
construction of new tree nodes associated with each production rule, if any.

As described earlier, the tree's internal nodes are constructed in semantic actions that are
added at the ends of production rules. For each production rule that builds a new node, it
is assigned to $$, the yacc value corresponding to the new non-terminal symbol built by
that production rule.

The starting non-terminal, which in the case of Jzero is a single class declaration, is the
point at which the root of the entire tree is constructed. Its semantic action has extra work
after assigning the constructed node to $$. At this top level, in this chapter, the code prints
out the tree by calling the print() method in order to allow you to check whether it is
correct. Subsequent chapters may assign the topmost tree node to a global variable named
root for subsequent processing or call a different method here to translate the tree to
machine code, or to execute the program directly by interpreting the statements in the tree.

The code is illustrated in the following snippet:

%%

ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

 $$=j0.node("ClassDecl",1000,$3,$4);

 j0.print($$);

 } ;

The non-terminal ClassBody either contains declarations (first production rule) or
is empty. In the empty case, it is an interesting question whether to assign an explicit
leaf node indicating an empty ClassBody, as is done in the following code snippet, or
whether the code should just say $$=null:

ClassBody: '{' ClassBodyDecls '}' {

 $$=j0.node("ClassBody",1010,$2); }

 | '{' '}' { $$=j0.node("ClassBody",1011); };

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

122 Syntax Trees

The non-terminal ClassBodyDecls chains together as many fields, methods, and
constructors as occur within the class. The first production rule terminates the recursions
in the second production rule with a single ClassBodyDecl. Since there is no semantic
action in the first production rule, it executes $$=$1; the subtree for ClassBodyDecl
is promoted instead of creating a node for the parent. The code is illustrated in the
following snippet:

ClassBodyDecls: ClassBodyDecl

 | ClassBodyDecls ClassBodyDecl {

 $$=j0.node("ClassBodyDecls",1020,$1,$2); };

There are three kinds of ClassBodyDecl to choose from. No extra tree node is allocated
at this level as it can be inferred which kind of ClassBodyDecl each subtree is. The
code is illustrated here:

ClassBodyDecl: FieldDecl | MethodDecl | ConstructorDecl ;

A field, or member variable, is declared with a base type followed by a list of variable
declarations, as illustrated in the following code snippet:

FieldDecl: Type VarDecls ';' {

 $$=j0.node("FieldDecl",1030,$1,$2); };

The types in Jzero are very simple and include four built-in type names and a generic rule
for names of classes, as illustrated in the following code snippet. No production rule has
two children, so no new internal nodes are needed at this level. Arguably, String might
be handled using that latter rule and needn't be a special case:

Type: INT | DOUBLE | BOOL | STRING | Name ;

A name is either a single token called IDENTIFIER or a name with one or more periods
in it, called QualifiedName, as illustrated in the following code snippet:

Name: IDENTIFIER | QualifiedName ;

QualifiedName: Name '.' IDENTIFIER {

 $$=j0.node("QualifiedName",1040,$1,$3);};

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Forming syntax trees for the Jzero language 123

Variable declarations are a comma-separated list of one or more variable declarators. In
Jzero, VarDeclarator is just IDENTIFIER unless it has square brackets following it
that denote an array type. As the VarDeclarator internal node implies a set of square
brackets, they are not represented explicitly in the tree. The code is illustrated in the
following snippet:

VarDecls: VarDeclarator | VarDecls ',' VarDeclarator {

 $$=j0.node("VarDecls",1050,$1,$3); };

VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' {

 $$=j0.node("VarDeclarator",1060,$1); };

In Jzero, a method can return a value of some return type or it can return VOID, as
illustrated in the following code snippet:

MethodReturnVal : Type | VOID ;

A method is declared by providing a method header followed by a block of code. All
methods are public static methods. After the return value, the guts of a method header
consisting of the method's name and parameters are MethodDeclarator, as illustrated
in the following code snippet:

MethodDecl: MethodHeader Block {

 $$=j0.node("MethodDecl",1380,$1,$2); };

MethodHeader: PUBLIC STATIC MethodReturnVal

 MethodDeclarator {

 $$=j0.node("MethodHeader",1070,$3,$4); };

MethodDeclarator: IDENTIFIER '(' FormalParmListOpt ')' {

 $$=j0.node("MethodDeclarator",1080,$1,$3); };

An optional formal parameter list is either a non-empty FormalParmList or it is
an empty production rule, the so-called epsilon rule, between the vertical bar and the
semicolon. A formal parameter list is a comma-separated list of formal parameters. This is
a non-empty list and the recursion is terminated by a lone formal parameter. Each formal
parameter has a type followed by a variable name, possibly including square brackets for
array types, as illustrated in the following code snippet:

FormalParmListOpt: FormalParmList | ;

FormalParmList: FormalParm | FormalParmList ',' FormalParm {

 $$=j0.node("FormalParmList",1090,$1,$3); };

FormalParm: Type VarDeclarator {

 $$=j0.node("FormalParm",1100,$1,$2); };

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

124 Syntax Trees

Constructors are declared similarly to methods, although they have no return type, as
illustrated in the following code snippet:

ConstructorDecl: MethodDeclarator Block {

 $$=j0.node("ConstructorDecl",1110,$1,$2); };

A Block is a sequence of zero or more statements. Although many of the tree nodes
introduce the branching of two or more children, a few tree nodes have only one child
because surrounding punctuation is unnecessary. Such nodes might themselves be
unnecessary, but they may also make it easier to understand and process the tree. You can
see an example in the following code snippet:

Block: '{' BlockStmtsOpt '}'{$$=j0.node("Block",1200,$2);};

BlockStmtsOpt: BlockStmts | ;

BlockStmts: BlockStmt | BlockStmts BlockStmt {

 $$=j0.node("BlockStmts",1130,$1,$2); };

BlockStmt: LocalVarDeclStmt | Stmt ;

Block statements can be either local variable declarations or statements. The syntax of
LocalVarDeclStmt is indistinguishable from a FieldDecl rule. It may, in fact,
be better to eliminate duplication by default. Whether you use another set of identical
production rules or factor the common elements of the grammar, this may depend on
whether it will be easier for you to write code that does the correct thing with various
trees if they have recognizably different tree node labels and production rule numbers, or
whether the differences will be recognized and handled properly due to the surrounding
tree context. An example is given in the following code snippet:

LocalVarDeclStmt: LocalVarDecl ';' ;

LocalVarDecl: Type VarDecls {

 $$=j0.node("LocalVarDecl",1140,$1,$2); };

In the preceding case, a LocalVarDecl node is created, making it easy to distinguish
local variables from class member variables in the syntax tree.

The many kinds of statements each result in their own unique tree nodes. Since they
are one-child production rules, introducing another tree node here is unnecessary. The
following code snippet illustrates this:

Stmt: Block | ';' | ExprStmt | BreakStmt | ReturnStmt |

 | IfThenStmt | IfThenElseStmt | IfThenElseIfStmt

 | WhileStmt | ForStmt ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Forming syntax trees for the Jzero language 125

ExprStmt: StmtExpr ';' ;

StmtExpr: Assignment | MethodCall ;

Several non-terminals in Jzero exist in order to allow common variations of if statements.
Blocks are required for bodies of conditionals and loops in Jzero in order to avoid a
common ambiguity when they are nested, as illustrated in the following code snippet:

IfThenStmt: IF '(' Expr ')' Block {

 $$=j0.node("IfThenStmt",1150,$3,$5); };

IfThenElseStmt: IF '(' Expr ')' Block ELSE Block {

 $$=j0.node("IfThenElseStmt",1160,$3,$5,$7); };

IfThenElseIfStmt: IF '(' Expr ')' Block ElseIfSequence {

 $$=j0.node("IfThenElseIfStmt",1170,$3,$5,$6); }

| IF '(' Expr ')' Block ElseIfSequence ELSE Block {

 $$=j0.node("IfThenElseIfStmt",1171,$3,$5,$6,$8); };

ElseIfSequence: ElseIfStmt | ElseIfSequence ElseIfStmt {

 $$=j0.node("ElseIfSequence",1180,$1,$2); };

ElseIfStmt: ELSE IfThenStmt {

 $$=j0.node("ElseIfStmt",1190,$2); };

Tree nodes are generally created for these control structures, and they generally introduce
branching into the tree. Although while loops introduce only a single branch, the node
for a for loop has four children. Did the language designers do that on purpose? You can
see an example in the following code snippet:

WhileStmt: WHILE '(' Expr ')' Stmt {

 $$=j0.node("WhileStmt",1210,$3,$5); };

ForStmt: FOR '(' ForInit ';' ExprOpt ';' ForUpdate ')'

Block {

 $$=j0.node("ForStmt",1220,$3,$5,$7,$9); };

ForInit: StmtExprList | LocalVarDecl | ;

ExprOpt: Expr | ;

ForUpdate: StmtExprList | ;

StmtExprList: StmtExpr | StmtExprList ',' StmtExpr {

 $$=j0.node("StmtExprList",1230,$1,$3); };

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

126 Syntax Trees

A break statement is adequately represented by the leaf that says BREAK, as illustrated here:

BreakStmt: BREAK ';' ;

ReturnStmt: RETURN ExprOpt ';' {

 $$=j0.node("ReturnStmt",1250,$2); };

A return statement needs a new node, since it is followed by an optional expression.
Primary expressions, including literals, do not introduce an additional layer of tree nodes
above the content of their child. The only interesting action here is for parenthesized
expressions, which discard the parentheses that were used for operator precedence and
promote the second child without the need for an additional tree node at this level. Here is
an example of this:

Primary: Literal | FieldAccess | MethodCall |

 '(' Expr ')' { $$=$2; };

Literal: INTLIT | DOUBLELIT | BOOLLIT | STRINGLIT | NULLVAL ;

An argument list is one or more expressions, separated by commas. To allow zero
expressions, a separate non-terminal is used, as illustrated in the following code snippet:

ArgList: Expr | ArgList ',' Expr {

 $$=j0.node("ArgList",1270,$1,$3); };

ArgListOpt: ArgList | ;

Field accesses may be chained together since their left child, a Primary, can be
another field access. When one non-terminal has a production rule that derives another
non-terminal that has a production rule that derives the first non-terminal, the situation
is called mutual recursion and it is normal and healthy. You can see an example of this in
the following code snippet:

FieldAccess: Primary '.' IDENTIFIER {

 $$=j0.node("FieldAccess",1280,$1,$3); };

A method call has defining syntax consisting of a method followed by a parenthesized
list of zero or more arguments. Usually, this is a simple binary node in which the left
child is pretty simple (a method name) and the right child may contain a large subtree of
arguments…or it may be empty. Here is an example of this:

MethodCall: Name '(' ArgListOpt ')' {

 $$=j0.node("MethodCall",1290,$1,$3); }

 | Primary '.' IDENTIFIER '(' ArgListOpt ')' {

 $$=j0.node("MethodCall",1291,$1,$3,$5); } ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Forming syntax trees for the Jzero language 127

As seen in the previous chapter, the expression grammar in Jzero has many recursive
levels of non-terminals that are not all shown here. You should consult the book's website
to see the full grammar with syntax tree construction. In the following code snippet, each
operator introduces a tree node. After the tree is constructed, a simple walk of the tree will
allow correct calculation (or correct code generation) of the expression:

PostFixExpr: Primary | Name ;

UnaryExpr: '-' UnaryExpr {$$=j0.node("UnaryExpr",1300,$1,$2);}

 | '!' UnaryExpr { $$=j0.node("UnaryExpr",1301,$1,$2); }

 | PostFixExpr ;

MulExpr: UnaryExpr

 | MulExpr '*' UnaryExpr {

 $$=j0.node("MulExpr",1310,$1,$3); }

 | MulExpr '/' UnaryExpr {

 $$=j0.node("MulExpr",1311,$1,$3); }

 | MulExpr '%' UnaryExpr {

 $$=j0.node("MulExpr",1312,$1,$3); };

AddExpr: MulExpr

 | AddExpr '+' MulExpr{$$=j0.node("AddExpr",1320,$1,$3); }

 | AddExpr '-' MulExpr{$$=j0.node("AddExpr",1321,$1,$3);

};

In a classic C language grammar, comparison operators, also called relational operators,
are just another level of precedence for integer expressions. Java and Jzero are a bit
more interesting in that the Boolean type is separate from integers and type-checked
as such, but that will happen in the chapters that follow, on semantic analysis and
type checking. For the code shown in the following snippet, there are four relational
operators. LESSTHANOREQUAL is the integer code the lexical analyzer reports for <=,
while GREATERTHANOREQUAL is returned for >=. For the < and > operators, the lexical
analyzer returns their ASCII codes:

RelOp: LESSTHANOREQUAL | GREATERTHANOREQUAL | '<' | '>' ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

128 Syntax Trees

The relational operators are at a slightly higher level of precedence than the comparisons
of whether values are equal or not equal to each other:

RelExpr: AddExpr | RelExpr RelOp AddExpr {

 $$=j0.node("RelExpr",1330,$1,$2,$3); };

EqExpr: RelExpr

 | EqExpr ISEQUALTO RelExpr {

 $$=j0.node("EqExpr",1340,$1,$3); }

 | EqExpr NOTEQUALTO RelExpr {

 $$=j0.node("EqExpr",1341,$1,$3); };

Below the relational and comparison operators, the && and || Boolean operators operate
at different levels of precedence, as illustrated in the following code snippet:

CondAndExpr: EqExpr | CondAndExpr LOGICALAND EqExpr {

 $$=j0.node("CondAndExpr", 1350, $1, $3); };

CondOrExpr: CondAndExpr | CondOrExpr LOGICALOR CondAndExpr {

 $$=j0.node("CondOrExpr", 1360, $1, $3); };

The lowest level of precedence in many languages, as with Jzero, are the assignment
operators. Jzero has += and -= but not ++ and --, which are deemed to be a can of
worms for novice programmers and do not add a lot of value for teaching compiler
construction. You can see these operators in use here:

Expr: CondOrExpr | Assignment ;

Assignment: LeftHandSide AssignOp Expr {

 $$=j0.node("Assignment",1370, $1, $2, $3); };

LeftHandSide: Name | FieldAccess ;

AssignOp: '=' | AUGINCR | AUGDECR ;

This section presented the highlights of Jzero syntax tree construction. Many production
rules require the construction of a new internal node that serves as the parent of several
children on the right-hand side of a production rule. However, the grammar has many
cases where a non-terminal is constructed from only one symbol on the right-hand side,
in which case the allocation of an extra internal node can usually be avoided. Now, let's
look at how to check your tree afterward to make sure that it was assembled correctly.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Debugging and testing your syntax tree 129

Debugging and testing your syntax tree
The trees that you build must be rock solid. What this spectacular mixed metaphor means
is: if your syntax tree structure is not built correctly, you can't expect to be able to build
the rest of your programming language. The most direct way of testing that the tree has
been constructed correctly is to walk back through it and look at the tree that you have
built. This section contains two examples of doing that. You will print your tree first in a
human-readable (more or less) ASCII text format, then you will learn how to print it out
in a format that is easily rendered graphically using the popular open source Graphviz
package, commonly accessed through PlantUML or the classic command-line tool called
dot. First, consider some of the most common causes of problems in syntax trees.

Avoiding common syntax tree bugs
The most common problems with syntax trees result in program crashes when you print
the tree out. Each tree node may hold references (pointers) to other objects, and when
these references are not initialized correctly: boom! Debugging problems with references
is difficult, even in higher-level languages.

The first major case is this: are your leaves being constructed and picked up by the parser?
Suppose you have a lex rule like the one shown here:

";" { return 59; }

The ASCII code is correct. The parse will succeed but your syntax tree will be broken. You
must create a leaf and assign it to yylval whenever you return an integer code in one of
your Flex actions. If you do not, yacc will have garbage sitting around in yylval when
yyparse() puts it on the value stack for later insertion into your tree. You should check
that every semantic action that returns an integer code in your lex file also allocates
a new leaf and assigns it to yylval. You can check each leaf to ensure it is valid on
the receiving end by printing its contents when you first access it as a $1 or $2 rule or
whatever, in the semantic actions for the production rules of yacc.

The second major case is: are you constructing internal nodes correctly for all the
production rules that have two or more children that are significant (and not just
punctuation marks, for example)? If you are paranoid, you can print out each subtree to
make sure it is valid before creating a new parent that stores pointers to the child subtrees.
Then, you can print out the new parent that you've created, including its children, to make
sure it was assembled correctly.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

130 Syntax Trees

One weird special case that comes up in syntax tree construction has to do with epsilon
rules: production rules where a non-terminal is constructed from an empty right-hand
side. An example would be the following rule from the j0gram.y file:

FormalParmListOpt: FormalParmList | ;

For the second production rule in this example, there are no children. The default rule of
yacc, $$=$1, does not look good since there is no $1 rule. You may construct a new leaf
here, as in the following solution:

FormalParmListOpt: FormalParmList | { $$=

 j0.node("FormalParamListOpt",1095); }

But this leaf is different from normal since it has no associated token. Code that traverses
the tree afterward had better not assume that all leaves have tokens. In practice, some
people might just use a null pointer to represent an epsilon rule instead. If you use a
null pointer, you may have to add checks for null pointers everywhere in your later tree
traversal code, including the tree printers in the following subsections. If you allocate
a leaf for every epsilon rule, your tree will be bigger without really adding any new
information. Memory is cheap, so if it simplifies your code it is probably OK to do this.

To sum up, and as a final warning: you may not discover fatal flaws in your tree construction
code unless you write test cases that use every single production rule in your grammar! Such
grammar coverage may be required of any serious language implementation project. Now,
let's look at the actual methods to verify tree correctness by printing them.

Printing your tree in a text format
One way to test your syntax tree is to print out the tree structure as ASCII text. This is
done via a tree traversal in which each node results in one or more lines of text output.
The following print() method in the j0 class just asks the tree to print itself:

 method print(root)

 root.print()

 end

The equivalent code in Java must unpack the parserVal object and cast the Object to
a tree in order to ask it to print itself, as illustrated in the following code snippet:

 public static void print(parserVal root) {

 ((tree)root.obj).print();

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Debugging and testing your syntax tree 131

Trees generally print themselves recursively. A leaf just prints itself out, while an internal
node prints itself and then asks its children to print themselves. For a text printout,
indentation is used to indicate the nesting level or distance of a node from the root. The
indentation level is passed as a parameter and incremented for each level deeper within
the tree. The Unicon version of a tree class's print() method is shown in the following
code snippet:

method print(level:0)

 writes(repl(" ",level))

 if \tok then

 write(id, " ", tok.text, " (",tok.cat,
 "): ",tok.lineno)

 else write(id, " ", sym, " (", rule, "): ", nkids)

 every (!kids).print(level+1);

end

The preceding method indents a number of spaces given in a parameter and then writes a
line of text describing the tree node. It then calls itself recursively, with one higher nesting
level, on each of the node's children, if there are any. The Java-equivalent code for the
tree class text printout looks like this:

 public void print(int level) {

 int i;

 for(i=0;i<level;i++) System.out.print(" ");

 if (tok != null)

 System.out.println(id + " " + tok.text +
 " (" + tok.cat + "): "+tok.lineno);

 else

 System.out.println(id + " " + sym +
 " (" + rule + "): "+nkids);

 for(i=0; i<nkids; i++)

 kids[i].print(level+1);

 }

 public void print() {

 print(0);

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

132 Syntax Trees

When you run the j0 command with this tree print function in place, it produces the
following output:

63 ClassDecl (1000): 2

 6 hello (266): 1

 62 ClassBody (1010): 1

 59 MethodDecl (1380): 2

 32 MethodHeader (1070): 2

 14 void (264): 2

 31 MethodDeclarator (1080): 2

 16 main (266): 2

 30 FormalParm (1100): 2

 20 String (266): 2

 27 VarDeclarator (1060): 1

 22 argv (266): 2

 58 Block (1200): 1

 53 MethodCall (1290): 2

 46 QualifiedName (1040): 2

 41 QualifiedName (1040): 2

 36 System (266): 3

 40 out (266): 3

 45 println (266): 3

 50 "hello, jzero!" (273): 3

no errors

Although the tree structure can be deciphered from studying this output, it is not exactly
transparent. The next section shows a graphic way to depict the tree.

Printing your tree using dot
A fun way to test your syntax tree is to print out the tree in a graphical form. As
mentioned in the Technical requirements section, a tool called dot will draw syntax trees
for us. Writing our tree in the input format of dot is done via another tree traversal in
which each node results in one or more lines of text output. To draw a graphic version
of the tree, change the j0.print() method to call the tree class's print_graph()
method. In Unicon, this is trivial. The code is illustrated in the following snippet:

 method print(root)

 root.print_graph(yyfilename || ".dot")

 end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Debugging and testing your syntax tree 133

The equivalent code in Java must unpack the parserVal object and cast the Object to
a tree in order to ask it to print itself, as illustrated in the following snippet:

 public static void print(parserVal root) {

 ((tree)root.obj).print_graph(yyfilename + ".dot");

 }

As was true for a text-only printout, trees print themselves recursively. The Unicon version
of a tree class's print_graph() method is shown in the following code snippet:

 method print_graph(fw)

 if type(filename) == "string" then {

 fw := open(filename, "w") |

 stop("can't open ", image(filename), " for writing")

 write(fw, "digraph {")

 print_graph(fw)

 write(fw, "}")

 close(fw)

 }

 else if \tok then print_leaf(fw)

 else {

 print_branch(fw)

 every i := 1 to nkids do

 if \kids[i] then {

 write(fw, "N",id," -> N",kids[i].id,";")

 kids[i].print_graph(fw)

 } else {

 write(fw, "N",id," -> N",id,"_",j,";")

 write(fw, "N", id, "_", j,

 " [label=\"Empty rule\"];")

 j +:= 1

 }

 }

 end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

134 Syntax Trees

The Java implementation of print_graph() consists of two methods. The first is a
public method that takes a filename, opens that file for writing, and writes the whole
graph to that file, as illustrated in the following code snippet:

 void print_graph(String filename){

 try {

 PrintWriter pw = new PrintWriter(

 new BufferedWriter(new FileWriter(filename)));

 pw.printf("digraph {\n");

 j = 0;

 print_graph(pw);

 pw.printf("}\n");

 pw.close();

 }

 catch (java.io.IOException ioException) {

 System.err.println("printgraph exception");

 System.exit(1);

 }

 }

In Java, function overloading allows public and private parts of print_graph() to have
the same name. The two methods are distinguished by their different parameters. The
public print_graph() part passes the file that it opens as a parameter to the following
method. This version of print_graph() prints a line or two about the current node,
and calls itself recursively on each child:

 void print_graph(PrintWriter pw) {

 int i;

 if (tok != null) {

 print_leaf(pw);

 return;

 }

 print_branch(pw);

 for(i=0; i<nkids; i++) {

 if (kids[i] != null) {

 pw.printf("N%d -> N%d;\n", id, kids[i].id);

 kids[i].print_graph(pw);

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Debugging and testing your syntax tree 135

 } else {

 pw.printf("N%d -> N%d%d;\n", id, kids[i].id, j);

 pw.printf("N%d%d [label=\"%s\"];\n", id, j,
 "Empty rule");

 j++;

 }

 }

 }

The print_graph() method calls a couple of helper functions: print_leaf() for
leaves and print_branch() for internal nodes. The print_leaf() method prints
a dotted outline box containing the characteristics of a terminal symbol. The Unicon
implementation of print_leaf() is shown here:

 method print_leaf(pw)

 local s := parser.yyname[tok.cat]

 print_branch(pw)

 write(pw,"N",id,

 " [shape=box style=dotted label=\" ",s," \\n ")

 write(pw,"text = ",escape(tok.text)," \\l lineno = ",
 tok.lineno," \\l\"];\n")

 end

The integer code for the token's terminal symbol is used as a subscript in an array
of strings in the parser named yyname. This is generated by iyacc. The Java
implementation of print_leaf() is similar to the Unicon version, as illustrated in the
following code snippet:

 void print_leaf(PrintWriter pw) {

 String s = parser.yyname[tok.cat];

 print_branch(pw);

 pw.printf("N%d [shape=box style=dotted label=\" %s \\n",
 id, s);

 pw.printf("text = %s \\l lineno = %d \\l\"];\n",
 escape(tok.text), tok.lineno);

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

136 Syntax Trees

The print_branch() method prints a solid box for internal nodes, including the
name of the non-terminal represented by that node. The Unicon implementation of
print_branch() is shown here:

 method print_branch(pw)

 write(pw, "N",id," [shape=box label=\"",

 pretty_print_name(),"\"];\n");

 end

The Java implementation of print_branch() is similar to its Unicon counterpart, as
illustrated in the following code snippet:

 void print_branch(PrintWriter pw) {

 pw.printf("N%d [shape=box label=\"%s\"];\n",
 id, pretty_print_name());

 }

The escape() method adds escape characters when needed before double quotes so
that dot will print the double quote marks. The Unicon implementation of escape()
consists of the following code:

 method escape(s)

 if s[1] == "\"" then

 return "\\" || s[1:-1] || "\\\""

 else return s

 end

The Java implementation of escape() is shown here:

 public String escape(String s) {

 if (s.charAt(0) == '\"')

 return "\\"+s.substring(0, s.length()-1)+"\\\"";

 else return s;

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Debugging and testing your syntax tree 137

The pretty_print_name() method prints out the best human-readable name for
a given node. For an internal node, that is its string label, along with a serial number to
distinguish multiple occurrences of the same label. For a terminal symbol, it includes the
lexeme that was matched. The code is illustrated in the following snippet:

 method pretty_print_name() {

 if /tok then return sym || "#" || (rule%10)

 else return escape(tok.text) || ":" || tok.cat

 end

The Java implementation of pretty_print_name() looks similar to the preceding
code, as we can see here:

 public String pretty_print_name() {

 if (tok == null) return sym +"#"+(rule%10);

 else return escape(tok.text)+":"+tok.cat;

 }

Run this program on the sample hello.java input file with the following command:

j0 hello.java java ch5.j0 hello.java

The j0 program writes out a hello.java.dot file that is valid input for the dot
program. Run the dot program with the following command to generate a PNG image:

dot -Tpng hello.java.dot >hello.png

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

138 Syntax Trees

The following diagram shows a syntax tree for hello.java, as written to hello.png:

Figure 5.11 – A diagram of the syntax tree for hello.java

If you do not write your tree construction code correctly, the program will crash when
you run it, or the tree will be obviously bogus when you inspect the image. In order to test
your programming language code, you should run it on a wide variety of input programs
and examine the resulting trees carefully.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 139

In this section, you saw that only a few lines of code were needed to generate textual and
graphical depictions of your syntax trees using tree traversals. The graphical rendering
was provided by an external tool called dot. Tree traversals are a simple but powerful
programming technique that will dominate the next several chapters of this book.

Summary
In this chapter, you learned the crucial technical skills and tools used to build a syntax tree
while the input program is being parsed. A syntax tree is the main data structure used to
represent source code internally to a compiler or interpreter.

You learned how to develop code that identifies which production rule was used to build
each internal node so that we can tell what we are looking at later on. You learned how to
add tree node constructors for each rule in the scanner. You learned how to connect tree
leaves from the scanner into the tree built in the parser. You learned how to check your
trees and debug common tree construction problems.

You are done synthesizing the input source code to a data structure that you can use.
Now, it is time to start analyzing the meaning of the program source code so that you can
determine which computations it specifies. This is done by walking through the parse tree
using tree traversals to perform semantic analysis.

The next chapter will start us off on that journey by walking the tree to build symbol tables
that will enable you to track all the variables in the program and figure out where they
were declared.

Questions
1. Where do the leaves of the syntax tree come from?

2. How are the internal nodes of a syntax tree created?

3. Where are leaves and internal nodes stored while a tree is being constructed?
4. Why are values wrapped and unwrapped when they are pushed and popped on the

value stack?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

The heart of a compiler is the tree traversals. Upon completion of this section, you will
have a compiler that performs semantic analysis and code generation.

This section comprises the following chapters:

• Chapter 6, Symbol Tables

• Chapter 7, Checking Base Types

• Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses

• Chapter 9, Intermediate Code Generation

• Chapter 10, Syntax Coloring in an IDE

Section 2:
Syntax Tree

Traversals

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Symbol Tables

To understand the uses of names in program source code, your compiler must look up
each use of a name and determine what that name refers to. You can look up symbols at
each location they are used by using table data structures that are auxiliary to the syntax
tree. These are called symbol tables. Performing operations to construct and then use
symbol tables is the first step of semantic analysis. Semantic analysis is where you study
the meaning of input source code.

Context-free grammar in the syntax chapters of this book have terminal symbols and
non-terminal symbols, and those are represented in tree nodes and token structures.
When talking about a program's source code, the word symbol is used differently. In this
and later chapters, a symbol refers to the name of a variable, function, class, or package,
for example. In this book, the words symbol, name, variable, and identifier are used
interchangeably.

This chapter will show you how to construct symbol tables, insert symbols into them,
and use symbol tables to identify two kinds of semantic errors: undeclared and illegally
redeclared variables. In later chapters, you will use symbol tables to check the types and
generate code for the input program.

The examples in this chapter demonstrate how to use symbol tables by building them
for the Jzero subset of Java. Symbol tables are important to be able to check types and
generate code for your programming language. In this and the next few chapters, the main
skill you will be learning is the art of recursion by writing many selective and specialized
tree traversal functions.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

144 Symbol Tables

This chapter covers the following main topics:

• Establishing the groundwork for symbol tables

• Creating and populating symbol tables for each scope

• Checking for undeclared variables

• Finding redeclared variables

• Handling class scopes – a Unicon example

It is time to learn about symbol tables and how to build them. First, however, you need to
learn about some conceptual foundations you will use to do this work.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch6

The Code in Action video for the chapter can be found here: https://bit.ly/3ccYTZv

Establishing the groundwork for symbol tables
In software engineering, you must go through requirements analysis and design before
you start coding. Similarly, to build symbol tables, you need to understand what they are
for, and how to go about writing the syntax tree traversals that do the work. For starters,
you should review what kinds of information your compiler must store and recall different
kinds of variables. The information will be stored in symbol tables from declarations in
the program code, so let's take a look at those.

Declarations and scopes
The meaning of a computer program boils down to the meaning of the information being
computed, and the actual computations to be performed. Symbol tables are all about the first
part: defining what information the program is manipulating. We will begin by identifying
what names are being used, what they are referring to, and how they are being used.

Consider a simple assignment statement such as the following:

x = y + 5;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6
https://bit.ly/3ccYTZv

Establishing the groundwork for symbol tables 145

In most languages, names such as x or y must be declared before they are used. A
declaration specifies a name that will be used in the program and usually includes type
information. An example declaration for x might look like this:

int x;

Each variable declaration has a scope that describes the region in the program where
that variable is visible. In Jzero the user-defined scopes are the class scope and the local
(method) scope. Jzero also must support scopes associated with a few predefined system
packages, which is a small subset of the package scope functionality required of a full Java
compiler. Other languages have additional and different kinds of scopes to deal with.

The example program shown in Figure 6.1, which can be found in the xy5.java file in
https://github.com/PacktPublishing/Build-Your-Own-Programming-
Language/tree/master/ch6, expands the preceding example to illustrate scopes.
The light gray class scope surrounds the darker gray local scope:

Figure 6.1 – A local scope nested inside a class scope

For any symbol, such as x or y, the same symbol may be declared in both scopes. A name
that's declared in an inner scope overrides and hides the same name declared in an outer
scope. Such nested scoping requires that a programming language must create multiple
symbol tables. A common newbie mistake is to try and do your whole language with only
a single symbol table because a symbol table sounds big and scary, and compiler books
often talk about the symbol table instead of symbol tables. You must avoid this mistake,
plan on supporting multiple symbol tables, and search for symbols starting from the
innermost applicable symbol table and work outward to enclosing tables. Now, let's think
about the two basic ways that symbols are used in programs to interact with a computer's
memory: assignment and dereferencing.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6

146 Symbol Tables

Assigning and dereferencing variables
Variables are names for memory locations, and memory can be read or written. Writing
a value to a memory location is called assignment. Reading a value from a memory
location is called dereferencing. Most programmers have a rock-solid understanding
of assignment. Assignment is one of the first things they learn about in programming;
for example, the x=0 statement is an assignment to x. A lot of programmers are a bit
fuzzy about dereferencing. Programmers write code that does dereferencing all the time,
but they may not have heard of the term before. For example, the y=x+1 statement
dereferences x to obtain its value before it performs the addition. Similarly, passing a
parameter in a call such as System.out.println(x) deferences x.

Both assignment and dereferencing are acts that use a memory address. They come
into play in semantic analysis and code generation. But under what circumstances do
assignment and dereferencing affect whether the use of a variable is legal in a given
situation? Assignments are not legal for things that were declared to be const, including
names of methods. Are there any symbols that cannot be dereferenced? Undeclared
variables, of course; they cannot be assigned, either. Anything else? Before we can generate
code for an assignment or a dereference, we must be able to understand what memory
location is used, and whether the requested operation is legal and defined in the language
we are implementing.

So far, we have reviewed the concepts of assignment and dereferencing. Checking whether
each assignment or dereference is legal requires storing and retrieving information about
the names used in a program, and that is what symbol tables are for. There is one more
bit of conceptual groundwork you need, and then you will be ready to build your symbol
tables. You will be doing a lot of syntax tree traversal functions in this and the next few
chapters. Let's consider some of the varieties of tree traversal at your disposal.

Choosing the right tree traversal for the job
In the previous chapter, you printed out syntax trees using tree traversals where work at
the current node was done, followed by recursively calling the traversal function on each
child. This is called a pre-order traversal. The pseudocode template for this is as follows:

method preorder()

 do_work_at_this_node()

 every child := !kids do child.preorder()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating and populating symbol tables for each scope 147

Some examples in this chapter will visit the children and have them do their work first,
and then use what they calculate to do the work at the current node. This is called post-
order traversal. The pseudocode template for post-order traversal looks like this:

method postorder()

 every child := !kids do child.postorder()

 do_work_at_this_node()

end

Other traversals exist where the method does some work for the current node in between
each child call – this is known as in-order traversal. Lastly, it is common to write a tree
traversal consisting of several methods that work together and call each other as needed,
possibly as many as one method for each kind of tree node. Although we will try to keep
our tree traversals as simple as possible, the examples in this book will use the best tool for
the job.

In this section, you learned about several important concepts that will be used in the code
examples in this and the following chapters. These included nested scopes, assignment and
dereferencing, and different kinds of tree traversals. Now, it's time to use these concepts to
create symbol tables. After that, you can consider how to populate your symbol tables by
inserting symbols into them.

Creating and populating symbol tables for
each scope
A symbol table contains a record of all the names that are declared for a scope. There is
one symbol table for each scope. A symbol table provides a means of looking up symbols
by their name to obtain information about them. If a variable was declared, the symbol
table lookup returns a record with all the information known about that symbol: where
it was declared, what its data type is, whether it is public or private, and so on. All this
information can be found in the syntax tree. If we also place it in a table, the goal is to
access the information directly, from anywhere else that information is needed.

The traditional implementation of a symbol table is a hash table, which provides a very
fast information lookup. Your compiler could use any data structure that allows you to
store or retrieve information associated with a symbol, even a linked list. But hash tables
are the best for this, and they are standard in Unicon and Java, so we will use hash tables
in this chapter.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

148 Symbol Tables

Unicon provides hash tables with a built-in data type called a table. See Appendix, Unicon
Essentials for a description. Insertion and lookup in the table can be performed by
subscripting; for example, accessing elements in an array. For example, symtable[sym]
looks up information associated with a symbol named sym, while symtable[sym] :=
x associates information about x with sym.

Java provides hash tables in standard library classes. We will use the Java library class known
as HashMap for this. Information is retrieved from a HashMap with a method call such as
symtable.get(sym) and stored in a HashMap via symtable.put(sym, x).

Both Unicon tables and Java HashMap map elements from a domain to an associated
range. In the case of a symbol table, the domain will contain the string names of the
symbols in the program source code. For each symbol in the domain, the range will
contain a corresponding instance of the symtab_entry class, a symbol table entry.
In the Jzero implementations we will be presenting, the hash tables themselves will be
wrapped in a class so that symbol tables can contain additional information about the
entire scope, in addition to the symbols and symbol table entries.

Two major issues are when are symbol tables created for each scope, and how exactly is
information inserted into them? The answer to both questions is: during a syntax tree
traversal. But before we get to that, you need to learn about semantic attributes.

Adding semantic attributes to syntax trees
The tree type in the previous chapter was clean and simple. It contained a label for
printing, a production rule, and some children. In real life, a programming language needs
to compute and store a lot of additional information in various nodes of the tree. This
information is stored in extra fields in tree nodes, commonly called semantic attributes.
The values of these fields can sometimes be computed during parsing when we construct
the tree nodes. More often, it is easier to compute the values of semantic attributes once
the entire tree has been constructed. In that case, the attributes are constructed using a
tree traversal.

There are two kinds of semantic attributes:

• Synthesized attributes are attributes whose values for each node can be constructed
from the semantic attributes of their children.

• Inherited attributes are computed using information that does not come from the
node's children.

The only possible path for information from elsewhere in the tree is through the parent,
which is why the attribute is said to be inherited. In practice, inherited attributes may
come from siblings or from far away in the syntax tree.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating and populating symbol tables for each scope 149

This chapter will add two attributes to the tree.icn and tree.java files from the
previous chapter. The first attribute, the isConst Boolean, is a synthesized attribute that
reports whether a given tree node contains only constant values known at compile time.
The following diagram depicts an expression called x+1. isConst of a parent node (an
addition) is computed from its children's isConst values:

Figure 6.2 – A synthesized attribute computes a node's value from its children

The preceding diagram shows a good example of a synthesized attribute being calculated
from its children. In this example, the leaves for x and 1 already have isConst values,
and those values must come from somewhere. It is easy to guess where the isConst
value for the 1 token comes from: a language's literal constant values should be marked as
isConst=true.

For a name like x, it is not so obvious where the isConst value comes from. As presented
in the previous chapters, the Jzero language does not have Java's final keyword, which
would designate a given symbol as being immutable. Your options are to either set
isConst=false for every IDENTIFIER or extend Jzero to allow the final keyword,
at least for variables. If you choose the latter, whether x is a constant or not should be
found by looking up the symbol table information of x. The symbol table entry for x will
only know whether x is a constant if we place that information there.

The second attribute, stab, is an inherited attribute containing a reference to the symbol
table for the nearest enclosing scope that contains a given tree node. For most nodes, the
stab value is simply copied from its parent; the nodes where this is not the case are those
in which a parent defines a new scope. The following diagram shows the stab attribute
being copied from parents into children:

Figure 6.3 – An inherited attribute computes a node's value from parent information

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

150 Symbol Tables

How will we get attributes pushed up to parents from children? Tree traversals. How will
we get attributes pushed down to children from parents? Tree traversals. But first, we must
make room in the tree nodes to store these attributes. This chapter's tree class header in
Unicon has been revised to include these attributes, as follows:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab)

This code doesn't do anything; the point is to add two fields for semantic attributes at the
end. In Java, these class tree additions result in the following code:

class tree {

 int id, rule, nkids;

 String sym;

 token tok;

 tree kids[];

 Boolean isConst;

 symtab stab;

}

The tree class will have many methods added to it in this and coming chapters since most
aspects of semantic analysis and code generation for your language will be presented as
tree traversals. Now, let's look at the class types you need to render symbol tables and the
symbol table entry class that contains the information that's held in symbol tables.

Defining classes for symbol tables and symbol table
entries
Instances of the symtab class manage the symbols for one scope. For each symbol table,
you will need to know what scope it is associated with, as well as what the enclosing scope
is. The Unicon code for the symtab class, which can be found in the symtab.icn file, is
as follows:

class symtab(scope, parent, t)

 method lookup(s)

 return \ (t[s])

 end

initially

 t := table()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating and populating symbol tables for each scope 151

The symtab class is almost just a wrapper around Unicon's built-in table data type.
Within this class, the scope field is a string beginning with "class" or "local" for
user-declared scopes in Jzero. An important method in this class, insert(), issues a
semantic error if the symbol is already in the table. Otherwise, insert() allocates a
symbol table entry and inserts it. The insert() method will be shown in the Finding
redeclared variables section, later in this chapter. The corresponding Java class consists of
the following code in symtab.java:

package ch6;

import java.util.HashMap;

public class symtab {

 String scope;

 symtab parent;

 HashMap<String,symtab_entry> t;

 symtab(String sc, symtab p) {

 scope = sc; parent = p;

 t = new HashMap<String,symtab_entry>();

 }

 symtab_entry lookup(String s) {

 return t.get(s);

 }

}

Each symbol table associates a name with an instance of the symtab_entry class. The
symtab_entry class will hold all the information that we know about a given variable.
The Unicon implementation of symtab_entry can be found in symtab_entry.icn:

class symtab_entry(sym,parent_st,st,isConst)

end

For now, the symtab_entry class contains no code; it just holds several data fields.
The sym field is a string that holds the symbol that the entry denotes. The parent_st
field is a reference to the enclosing symbol table. The st field is a reference to the new
symbol table associated with this symbol's subscope, used only for symbols that have
subscopes, such as classes and methods. In future chapters, the symtab_entry class will
gain additional fields, both for semantic analysis and code generation purposes. The Java
implementation of symtab_entry in symtab_entry.java looks as follows:

package ch6;

public class symtab_entry {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

152 Symbol Tables

 String sym;

 symtab parent_st, st;

 boolean isConst;

 symtab_entry(String s, symtab p, boolean iC) {

 sym = s; parent_st = p, isConst = iC; }

 symtab_entry(String s, symtab p, boolean iC, symtab t) {

 sym = s; parent_st = p; isConst = iC; st = t; }

}

The preceding class contains no code other than two constructors. One is for regular
variables, while the other is for classes and methods. Classes and method symbol table
entries take a child symbol table as a parameter since they have a subscope. Having
defined the class types for symbol tables and symbol table entries, it is time to look at how
to create the symbol tables for the input program.

Creating symbol tables
You can create a symbol table for every class and every method by writing a tree traversal.
Every node in the syntax tree needs to know what symbol table it belongs to. The brute-force
approach presented here consists of populating the stab field of every tree node. Usually,
the field is inherited from the parent, but nodes that introduce new scopes go ahead and
allocate a new symbol table during the traversal. The following Unicon mkSymTables()
method constructs symbol tables. It is added to the tree class in the tree.icn file:

method mkSymTables(curr)

 stab := curr

 case sym of {

 "ClassDecl": { curr := symtab("class",curr) }

 "MethodDecl": { curr := symtab("method",curr) }

 }

 every (!\kids).mkSymTables(curr)

end

The mkSymTables() method takes an enclosing symbol table named curr as a
parameter. The corresponding Java method, mkSymTables(), in tree.java looks
as follows:

void mkSymTables(symtab curr) {

 stab = curr;

 switch (sym) {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating and populating symbol tables for each scope 153

 case "ClassDecl": curr = new symtab("class", curr);

 break;

 case "MethodDecl": curr = new symtab("method", curr);

 break;

 }

 for (int i=0; i<nkids; i++) kid[i].mkSymTables(curr);

}

The root of the entire parse tree starts with a global symbol table with predefined symbols
such as System and java. That begs the question: when and where is mkSymTables()
called? The answer is after the root of the syntax tree has been constructed. Where the
previous chapter was calling j0.print($$), it should now call j0.semantic($$)
and all semantic analysis will be performed in that method of the j0 class. Therefore, the
semantic action for the first production in j0gram.y becomes the following:

ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

 $$=j0.node("ClassDecl",1000,$3,$4);

 j0.semantic($$);

 } ;

The semantic() method in j0.icn looks as follows:

method semantic(root)

local out_st, System_st

 global_st := symtab("global")

 out_st := symtab("class")

 System_st := symtab("class")

 out_st.insert("println", false)

 System_st.insert("out", false, out_st)

 global_st.insert("System", false, System_st)

 root.mkSymTables(global_st)

 root.populateSymTables()

 root.checkSymTables()

 global_st.print()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

154 Symbol Tables

This code creates a global symbol table and then predefines a symbol for the System
class. System has a subscope in which a name, out, is declared to have a subscope in
which println is defined. The corresponding Java code to initialize predefined symbols
looks like this:

void semantic(tree root) {

symtab out_st, System_st;

 global_st = symtab("global");

 out_st = symtab("class");

 System_st = symtab("class");

 out_st.insert("println", false);

 System_st.insert("out", false, out_st);

 global_st.insert("System", false, System_st);

 root.mkSymTables(global_st);

 root.populateSymTables();

 root.checkSymTables();

 global_st.print();

}

Creating symbol tables was one thing; making use of them is another. Let's look at how
symbols get put into the symbol tables. Then, we can start talking about how those symbol
tables are used.

Populating symbol tables
Populating (inserting symbols into) symbol tables can be done during the same tree
traversal in which those symbol tables are created. However, the code is simpler in a
separate traversal. Every node knows what symbol table it lives within. The challenge is to
identify which nodes introduce symbols.

For a class, the second child of FieldDecl has a list of symbols to be inserted. The first
child of MethodDeclarator is a symbol to be inserted. For a method, the second child
of FormalParm introduces a symbol. The second child of LocalVarDecl has a list of
symbols to be inserted. These actions are shown in the following code:

method populateSymTables()

 case sym of {

 "ClassDecl": {

 stab.insert(kids[1].tok.text, , kids[1].stab)

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating and populating symbol tables for each scope 155

 "FieldDecl" | "LocalVarDecl" : {

 k := kids[2]

 while \k & k.label=="VarDecls" do {

 insert_vardeclarator(k.kids[2])

 k := k.kids[1]

 }

 insert_vardeclarator(k); return

 }

 "MethodDecl": {

 stab.insert(kids[1].kids[2].kids[1].tok.text, ,

 kids[1].stab) }

 "FormalParm": { insert_vardeclarator(kids[2]); return }

 }

 every k := !\kids do k.populateSymTables()

end

The corresponding Java code is as follows:

void populateSymTables() {

 switch(sym) {

 case "ClassDecl": {

 stab.insert(kids[0].tok.text, false, kids[0].stab);

 break;

 }

 case "FieldDecl": case "LocalVarDecl": {

 tree k = kids[1];

 while ((k != null) && k.sym.equals("VarDecls")) {

 insert_vardeclarator(k.kids[1]);

 k = k.kids[0];

 }

 insert_vardeclarator(k); return;

 }

 case "MethodDecl": {

 stab.insert(kids[0].kids[1].kids[0].tok.text, false,

 kids[0].stab); }

 case "FormalParm": {

 insert_vardeclarator(kids[1]); return; }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

156 Symbol Tables

 }

 for(int i = 0; i < nkids; i++) {

 tree k = kids[i];

 k.populateSymTables();

 }

}

The insert_vardeclarator(n) method can be passed one of two possibilities:
either an IDENTIFIER containing the symbol to be inserted or a VarDeclarator tree
node that indicates an array is being declared. The Unicon implementation looks like this:

method insert_vardeclarator(vd)

 if \vd.tok then stab.insert(vd.tok.text)

 else insert_vardeclarator(vd.kids[1])

end

The Java implementation of the code looks as follows:

void insert_vardeclarator(tree vd) {

 if (vd.tok != null) stab.insert(vd.tok.text, false);

 else insert_vardeclarator(vd.kids[0]);

}

Populating symbol tables is necessary for later aspects of your programming language
implementation, such as type checking and code generation. They will not be free to just
skip down the subtree until they find the IDENTIFIER. Even in this first formulation, it is
already good for checking certain common semantic errors such as undeclared variables.
Now, let's look at how to compute a synthesized attribute, a skill you can use both when
populating symbol tables with information and in later parts of semantic analysis and
code generation.

Synthesizing the isConst attribute
isConst is a classic example of a synthesized attribute. Its calculation rules depend
on whether a node is a leaf (following the base case) or an internal node (using the
recursion step):

• Base case: For tokens, literals are isConst=true and everything else is
isConst=false.

• Recursion step: For internal nodes, isConst is computed from children, but only
through the expression grammar, where expressions have values.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating and populating symbol tables for each scope 157

If you are wondering which production rules are referred to by the expression grammar, it
is pretty much those production rules derivable from the non-terminal named Expr. The
Unicon implementation of this method is another traversal in tree.icn, as shown here:

method calc_isConst()

 case sym of {

 "INTLIT" | "DOUBLELIT" | "STRINGLIT" |

 "BOOLFALSE" | "BOOLTRUE": isConst := "true"

 "UnaryExpr": isConst := \kid[2].isConst

 "RelExpr": isConst := \kid[1].isConst &

 \kid[3].isConst

 "CondOrExpr" | "CondAndExpr" | "EqExpr" |

 "MULEXPR"|

 "ADDEXPR": isConst := \kid[1].isConst &

 \kid[2].isConst

 default: isConst := &null

 }

 every(!\kids).calc_isConst()

end

There are a couple of special cases in the preceding code. Whether binary relational
operators such as the less than operator (<) are constant depends on the first and third
children. Most other binary operators do not place the operator in the tree as a middle
leaf; they are calculated from the isConst values of the first and second child. The Java
implementation of the calc_isConst() method looks like this:

void calc_isConst() {

 switch(sym) {

 case "INTLIT": case "DOUBLELIT": case "STRINGLIT":

 case "BOOLFALSE": case "BOOLTRUE": isConst = true;

 break;

 case "UnaryExpr": isConst = kid[1].isConst; break;

 case "RelExpr":

 isConst = kid[0].isConst && kid[2].isConst; break;

 case "CondOrExpr": case "CondAndExpr":

 case "EqExpr": case "MULEXPR": case "ADDEXPR":

 isConst = kid[0].isConst && kid[1].isConst; break;

 default: isConst = false;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

158 Symbol Tables

 }

 for(int i=0; i <nkids; i++)

 kids[i].calc_isConst();

}

The whole method is a switch to handle the base case and set isConst, followed by a
traversal of zero or more children. Java is arguably every bit as good as Unicon, or a bit
better, at calculating the isConst synthesized attribute.

This concludes this section on creating and populating symbol tables. The main skill we
practiced was the art of writing tree traversals, which are recursive functions. A regular
tree traversal visits all the children and treats them identically. A programming language
may traverse a tree selectively. It may ignore some children or do different things with
different children. Now, let's look at an example of how symbol tables can be used to
detect undeclared variables.

Checking for undeclared variables
To find undeclared variables, check the symbol table on each variable that's used for
assignment or dereferencing. These reads and writes of memory occur in the executable
statements and the expressions whose values are computed within those statements. Given
a syntax tree, how do you find them? The answer is to use tree traversals that look for
IDENTIFIER tokens but only when they are in executable statements within blocks of
code. To go about this, start from the top with a tree traversal that just finds the blocks of
code. In Jzero, this is a traversal that finds the bodies of methods.

Identifying the bodies of methods
The check_codeblocks() method traverses the tree from the top to find all the method
bodies, which is where the executable code is in Jzero. For every method declaration it finds,
it calls another method called check_block() on that method's body:

method check_codeblocks()

 if sym == "MethodDecl" then { kids[2].check_block() }

 else every k := !\kids do

 if k.nkids>0 then k.check_codeblocks()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking for undeclared variables 159

The corresponding Java implementation of check_codeblocks() goes in the
tree.java file:

void check_codeblocks() {

tree k;

 if (sym.equals("MethodDecl")) { kids[1].check_block(); }

 else {

 for(int i = 0; i<=nkids; i++){

 k := kids[i];

 if (k.nkids>0) k.check_codeblocks();

 }

 }

}

The preceding method demonstrates the pattern of searching through the syntax tree
while looking for one specific type of tree node. It does not call itself recursively on
MethodDecl. Instead, it calls the more specialized check_block() method, which
implements the work to be done when a method body has been found. This method
knows it is in a method body, where the identifiers that it finds are uses of variables.

Spotting uses of variables within method bodies
Within a method body, any IDENTIFIER that is found is known to be inside a block
of executable code statements. One exception is that new variables introduced by local
variable declarations cannot possibly be undeclared variables:

method check_block()

 case sym of {

 "IDENTIFIER": {

 if not (stab.lookup(tok.text)) then

 j0.semerror("undeclared variable "||tok.text)

 }

 "FieldAccess" | "QualifiedName": kids[1].check_block()

 "MethodCall": {

 kids[1].check_block()

 if rule = 1290 then

 kids[2].check_block()

 else kids[3].check_block()

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

160 Symbol Tables

 }

 "LocalVarDecl": { } # skip

 default: {

 every k := !kids do {

 k.check_block()

 }

 }

 }

end

The preceding check_block() method is handling several special-case tree shapes.
Refer to the j0gram.y grammar file to examine the uses of IDENTIFIER that are
not looked up in the local symbol table due to their syntactic context. In the case of
FieldAccess or QualifiedName, the second child is an IDENTIFIER that is a field
name, not a variable name. It can be checked once type information is added over the next
few chapters. Likewise, rule 1291, the second production rule of MethodCall, skips its
second child. The corresponding Java method is as follows:

void check_block() {

 switch (sym) {

 case "IDENTIFIER": {

 if (stab.lookup(tok.text) == null)

 j0.semerror("undeclared variable " + tok.text);

 break;

 }

 case "FieldAccess": case "QualifiedName":

 kids[0].check_block();

 break;

 case "MethodCall": {

 kids[0].check_block()

 if (rule == 1290)

 kids[1].check_block();

 else kids[2].check_block();

 break;

 }

 case "LocalVarDecl": break;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding redeclared variables 161

 default:

 for(i=0;i<nkids;i++)

 kids[i].check_block();

 }

}

Despite the break statements, the Java implementation is equivalent to the Unicon
version described earlier. The main idea you learned in this section was how to split up an
overall tree traversal task into a general traversal that looks for a node of interest, and then
a specialized traversal that does work at nodes found by the general traversal. Now, let's
look at detecting a variable redeclaration semantic error, which occurs when symbols are
being inserted into the symbol tables.

Finding redeclared variables
When a variable has been declared, most languages report an error if the same variable
is declared again in the same scope. The reason for this is that within a given scope, the
name must have a single, well-defined meaning. Trying to declare a new variable would
entail allocating some new memory and from then on, mentioning that name would be
ambiguous. If the x variable is defined twice, it is unclear which x any given use refers
to. You can identify such redeclared variable errors when you insert symbols into the
symbol table.

Inserting symbols into the symbol table
The insert() method in the symbol table class calls the language's underlying
hash table API. The method takes a symbol, a Boolean isConst flag, and an optional
nested symbol table, for symbols that introduce a new (sub)scope. The Unicon
implementation of the symbol table's insert() method is shown here. If you go to
https://github.com/PacktPublishing/Build-Your-Own-Programming-
Language/tree/master/ch6, this can be found in symtab.icn, along with the
other class symtab methods:

 method insert(s, isConst, sub)

 if \ (t[s]) then j0.semerror("redeclaration of "||s)

 else t[s] := symtab_entry(s, self, sub, isConst)

 end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch6

162 Symbol Tables

A symbol table lookup is performed before insertion. If the symbol is already present, a
redeclaration error is reported. The corresponding Java implementation of the symbol
table's insert() methods looks as follows:

 void insert(String s, Boolean iC, symtab sub) {

 if (t.containsKey(s)) {

 j0.semerror("redeclaration of " + s);

 } else {

 sub.parent = this;

 t.put(s, new symtab_entry(s, this, iC, sub));

 }

 }

 void insert(String s, Boolean iC) {

 if (t.containsKey(s)) {

 j0.semerror("redeclaration of " + s);

 } else {

 t.put(s, new symtab_entry(s, this, iC));

 }

 }

This code is crude but effective. The use of the underlying hash table Java API is long-
winded but readable. Now, let's look at the semerror() method.

Reporting semantic errors
The semerror() method in the j0 class must report the error to the user, as well as
making a note that an error has occurred so that the compiler will not attempt code
generation. The code for reporting semantic errors is similar to reporting lexical or syntax
errors, although sometimes, it is harder to pinpoint what line in what file is to blame. For
now, it is OK to treat these errors as fatal and stop compilation when one occurs. In later
chapters, you will make this error non-fatal and report additional semantic errors after
one is found. The Unicon code for the j0 class's semerror() method is as follows:

method semerror(s)

 stop("semantic error: ", s)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Handling package and class scopes in Unicon 163

The Java code for the j0 class's semerror() method is shown here:

void semerror(String s) {

 System.out.println("semantic error: " + s);

 System.exit(1);

}

Identifying redeclaration errors occurs most naturally while the symbol table is being
populated; that is, when an attempt is being made to insert a declaration. Unlike an
undeclared symbol error, where all nested symbol tables must be checked before an
error can be reported, a redeclaration error is reported immediately, but only if the
symbol has already been declared in the current inner-most scope. Now, let's look at how
a real programming language deals with other symbol table issues that did not come up in
this discussion.

Handling package and class scopes in Unicon
Creating symbol tables for Jzero considers two scopes: class and local. Since Jzero does
not do instances, Jzero's class scope is static and lexical. A larger, real-world language has
to do more work to handle scopes. Java, for example, has to distinguish when a symbol
declared in the class scope is a reference to a variable shared across all instances of the
class, and when the symbol is a normal member variable that's been allocated separately
for each instance of the class. In the case of Jzero, an isMember Boolean can be added to
the symbol table entries to distinguish member variables from class variables, similar to
the isConst flag.

Unicon's implementation is a lot different than Jzero's. A summary of its symbol tables
and class scopes allows for a fruitful comparison. Whatever it does similarly to Jzero
might also be how other languages handle things. What Unicon does differently than
Jzero, each language might do in its own unique way. How Unicon handles these topics
is being presented here for its quirky real-world insights, not because it is somehow
exemplary or ideal.

One basic difference between Unicon and the Jzero example in this chapter is that
Unicon's syntax tree is a heterogeneous mixture of different types of tree node objects. In
addition to a generic tree node type, there are separate tree node types to represent classes,
methods, and a few other semantically significant language constructs. The generic tree
node type lives in a file named tree.icn, while the other classes live in a file named
idol.icn that is descended from Unicon's predecessor, a language called Idol. Now,
let's look at another difference between Unicon and Jzero that comes up in Unicon's
implementation of packages. This is known as name mangling.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

164 Symbol Tables

Mangling names
Scope checks may state that a symbol has been found in a package. A lot of programming
languages – and historic C++ is a prime example – use name mangling in generated code.
In Unicon, some scoping rules are resolved via name mangling. A name such as foo, if it
is found to be in package scope for a package bar, is written out in the generated code
as bar__foo.

The mangle_sym(sym) method from the Unicon implementation has been presented
in its partial form here and has been abstracted a bit for readability. This method takes
a symbol (a string) and mangles it according to which imported package it belongs to,
including the declared package of the current file, which takes precedence over any imports:

procedure mangle_sym(sym)

…

 if member(package_level_syms, sym) then

 return package_mangled_symbol(sym)

 if member(imported, sym) then {

 L := imported[sym]

 if *L > 1 then

 yyerror(sym || " is imported from multiple

 packages")

 else return L[1] || "__" || sym

 }

 return sym

end

In the mangle_sym() method, a Unicon table named package_level_syms stores
entries for symbols declared in the package associated with the current file. Another table,
called imported, tracks all the symbols defined in other packages. This table returns a
list of the other packages in which a symbol is found. The size of that list is given by *L.
If a symbol is defined in two or more imported packages, using that symbol in this file
is ambiguous and generates an error. The use of packages is a relatively simple
compile-time mechanism for making separate namespaces for different scopes. More
difficult scoping rules must be handled at runtime. For example, accessing class members
in Unicon requires the compiler to generate code that uses a reference to a current object
named self.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Handling package and class scopes in Unicon 165

Inserting self for member variable references
Scoping rules can come back with the answer that a symbol is a class member variable.
In Unicon, all methods are non-static and method calls always have an implicit first
parameter named self, which is a reference to the object that the method has been
invoked on. A class scope is implemented by prefixing the name with a dot operator to
reference the variable within the self object. This code, extracted from a method named
scopeck_expr() in Unicon's idol.icn semantic analysis file, illustrates how self.
can be prefixed onto member variable references:

 "token": {

 if node.tok = IDENT then {

 if not member(\local_vars, node.s) then {

 if classfield_member(\self_vars, node.s)then

 node.s := "self." || node.s

 else

 node.s := mangle_sym(node.s)

 }

 }

 }

This code modifies the contents of the existing syntax tree field in place. The use of the
self. string prefix is possible because the code is written out in a source code-like form
and further compiled to C or virtual machine bytecode by a subsequent code generator.
The use of self as a reference to the current object is needed not only to access the
member variables within the object but also to access calls to the object's methods. On
the flip side of that, let's look at how Unicon provides the self variable when methods
are called.

Inserting self as the first parameter in method calls
When an identifier appears in front of parentheses, the syntax indicates that it is the name
of a function or method being called. In this case, additional special handling is required.
The insertion prefix for a method must look up the method name in an auxiliary structure
called the methods vector. The methods vector is referenced via self.__m. For example,
for a method named meth, instead of becoming self.meth, the reference to the
method becomes self.__m.meth.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

166 Symbol Tables

In addition to using the methods vector, __m, a method call requires self to be inserted
as a first parameter into the call. In Unicon's predecessor, this was explicit in the generated
code. A call such as meth(x) would become self.__m.meth(self, x). In the
Unicon implementation, this insertion of the object into the parameter list of the call is
built into the implementation of the dot operator in the runtime system. When the dot
operator is asked to perform self.meth, it looks up meth to see whether it is a regular
member variable. If it finds that it is not, it checks whether self.__m.meth exists, and
if it does, the dot operator both looks up that function and pushes self onto the stack as
its first parameter.

To summarize: the Unicon virtual machine was modified to make code generation for
method calls simpler. Consider the call to o.m() in the following example. The semantics
of the o.m(3,4) call are equivalent to o.__m.m(o,3,4) but the compiler just
generates the instructions for o.m(3,4) and the Unicon dot operator does all the work:

class C(…)

 method m(c,d); … end

end

procedure main()

 o := C(1,2)

 o.m(3,4)

end

One of the nice parts about building a programming language is that you can make the
runtime system that runs your generated code do anything you want. Now, let's consider
how to test and debug your symbol tables to tell whether they are correct and working.

Testing and debugging symbol tables
You can test your symbol tables by writing many test cases and verifying whether they
obtain the expected undeclared or redeclared variable error messages. But nothing says
confidence like an actual visual depiction of your symbol tables. If you have built your
symbol tables correctly by following the guidance in this chapter, then there should be a
tree of symbol tables. You can print out your symbol tables using the same tree printing
techniques that were used to verify your syntax trees in the previous chapter, using either
a textual representation or a graphical one.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and debugging symbol tables 167

Symbol tables are slightly more work to traverse than syntax trees. To output the symbol
table, you need to output information for the table and then visit all the children, not just
look one up by name. Also, there are two classes involved: symtab and symtab_entry.
Suppose you start at the root symbol table. In Unicon, to iterate through all the symbol
tables, use the following method in symtab.icn:

method print(level:0)

 writes(repl(" ",level))

 write(scope, " - ", *t, " symbols")

 every (!t).print(level+1);

end

Notice that although the children are being invoked with a method of the same name, the
print() method in symtab_entry is a different method than the one on symtab.
The Java code for the symbol table's print() method looks like this:

void print() { print(0); }

void print(int level) {

 for(int i=0;i<level;i++) System.out.print(" ");

 System.out.print(scope + " - " + t.size()+" symbols");

 for (symtab_entry : t.values()) se.print(level+1);

}

For the print() method of symtab_entry, an actual symbol is printed out. If that
symbol table entry has a subscope, it is then printed and indented more deeply to show
the nesting of the scopes:

method print(level:0)

 writes(repl(" ",level), sym)

 if \isConst then writes(" (const)")

 write()

 (\st).print(level+1);

end

The mutually recursive call to print the nested symbol table is skipped if it is null. In Java,
the code is longer but more explicit:

void print(level:0) {

 for(int i=0;i<level;i++) System.out.print(" ");

 System.out.print(sym);

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

168 Symbol Tables

 if (isConst) System.out.print(" (const)");

 System.out.println("");

 if (st != null) st.print(level+1);

}

Printing out symbol tables doesn't take many lines of code. You may find that it's worth
adding additional lexical information, such as filenames and line numbers where variables
were declared. In future chapters, it will be logical to also extend these methods with
type information.

To run the Jzero compiler with the symbol table output shown in this chapter, download
the code from this book's GitHub repository, go into the ch6/ subdirectory, and build it
with the make program. By default, make will build both the Unicon and Java versions.
When you run the j0 command with the symbol table output in place, it produces the
following output. In this case, the Java implementation is being shown:

Figure 6.4 – Symbol table output from the Jzero compiler

You must read the hello.java input file pretty carefully to ascertain whether this
symbol table output is correct and complete. The more complicated your language's
scoping and visibility rules, the more complicated your symbol table's output will be. For
example, this output does not print anything for a variable's public and private status, but
for a full Java compiler, we would want that. When you are satisfied that the symbols are
all present and accounted for in the correct scopes, you can move on to the next phase of
semantic analysis.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 169

Summary
In this chapter, you learned about the crucial technical skills and tools used to build
symbol tables that track all the variables in all the scopes in the input program. You create
a symbol table for every scope in the program and insert entries into the correct symbol
table for each variable. All of this is accomplished via traversals of the syntax tree.

You learned how to write tree traversals that create symbol tables for each scope, as well as
how to create an inherited attribute for the symbol table associated with the current scope
for each node in your syntax tree. You then learned how to insert symbol information
into the symbol tables associated with your syntax tree and detect when the same symbol
is redeclared illegally. You learned how to write tree traversals that look up information
in symbol tables and identify any undeclared variable errors. These skills enabled you to
take your first steps in enforcing the semantic rules associated with your programming
language. In the rest of your compiler, both semantic analysis and code generation relied
on and added to the symbol tables that you established in this chapter.

Now that you have built symbol tables by walking through the parse tree using tree
traversals, it is time to start considering how to check the program's use of data types. The
next chapter will start us off on that journey by showing you how to check basic types
such as integers and real numbers.

Questions
1. What is the relationship between the various symbol tables that are created within

the compiler and the syntax tree that was created in the previous chapter?
2. What is the difference between synthesized semantic attributes and those that are

inherited? How are they computed and where are they stored?
3. How many symbol tables do we need in the Jzero language? How are symbol

tables organized?
4. Suppose our Jzero language allowed multiple classes, compiled separately in

separate source files. How would that impact our implementation of symbol tables
in this chapter?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Checking Base Types

This is the first of two chapters about type checking. In most mainstream programming
languages, type checking is a key aspect of semantic analysis that must be performed
before you can generate code.

This chapter will show you how to do simple type checks for the base types included in
the Jzero subset of Java. A byproduct of checking the types is to add type information to
the syntax tree. Knowing the types of operands in the syntax tree enables you to generate
correct instructions for various operations.

This chapter covers the following main topics:

• Type representation in the compiler

• Assigning type information to declared variables

• Determining the type at each syntax tree node

• Runtime type checks and type inference – a Unicon example

It is time to learn about type checking, starting with base types. Some of you may be
wondering, why do type checking at all? If your compiler does not do type checking, it
has to generate code that works, no matter what types of operands are used. Lisp, BASIC,
and Unicon are examples of languages with this design approach. Often, this makes a
language user-friendly, but it runs slower. For this reason, we will cover type checking. We
will begin by looking at how to represent the type information that you extract from the
source code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

172 Checking Base Types

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch7

The Code in Action video for the chapter can be found here: https://bit.ly/3cgvkWT

Type representation in the compiler
Frequently, our compiler will need to do things such as compare the types of two variables
to see whether they are compatible. Program source code represents types with string
data, which is incorporated in our syntax tree. In some languages, it might be possible
to use little syntax subtrees to represent the types that are used in type checking, but in
general, type information does not exactly correspond to a subtree within our syntax tree.
This is because part of the type information is pulled in from elsewhere, such as another
type. For this reason, we need a new data type just to represent the type information
associated with any given value that is declared or computed in the program.

It would be nice if we could just represent types with a single atomic value such as an
integer code or a string type name. For example, we could use 1 for an integer, 2 for a
real number, or 3 for a string. If a language had only a small, fixed set of built-in types, an
atomic value would suffice. However, real language types are more complicated than that.
The type representation of compound types such as an array, a class, or a method is more
involved. You can start with a base class capable of representing atomic types.

Defining a base class for representing types
The type information associated with any name or value in your language can be represented
within a new class named typeinfo. The typeinfo class is not called type because some
programming languages use that as a reserved word or built-in name. In Unicon, it is the
name of a built-in function, so declaring a class by that name would be bad.

The typeinfo class has a basetype member for storing what kind of data type is
represented. Complex types have additional information as needed. For example, a type
whose basetype indicates that it is an array has an additional element_type. With
this extra information, we will be able to distinguish an array of integers from an array of
strings or an array of some class type. In some languages, array types also have an explicit
size or starting and ending indices.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch7
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch7
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch7
https://bit.ly/3cgvkWT

Type representation in the compiler 173

There are many ways that you could handle this variation in the information needed
for different types. A classic object-oriented representation of these differences is to
use subclasses. For Jzero, we will add arraytype, methodtype, and classtype as
subclasses of typeinfo. First, there is the superclass itself, which can be found in the
typeinfo.icn file, as shown in the following code:

class typeinfo(basetype)

 method str()

 return string(basetype)|"unknown"

 end

end

In addition to the basetype member, the typeinfo class has methods to facilitate
debugging. Types need to be able to print themselves in a human-readable format. The
Java version, in the typeinfo.java file, looks like this:

public class typeinfo {

 String basetype;

 public typeinfo() { basetype = "unknown"; }

 public typeinfo(String s) { basetype = s; }

 public String str() { return basetype; }

}

An extra constructor taking no arguments is required for the subclasses to compile
properly in Java. Having a class, and not just an integer, to encode the type information
allows us to represent more complex types by subclassing the base class.

Subclassing the base class for complex types
The Unicon code for the subclasses of typeinfo are also stored in typeinfo.icn
since they are short and closely related. In Jzero, the arraytype class only has an
element_type; in other languages, an array type might require additional fields to hold
the array size or the type and range of valid indices. The Unicon representation of the
array type in Jzero is as follows:

class arraytype : typeinfo(element_type)

initially

 basetype := "array"

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

174 Checking Base Types

The arraytype.java file contains the corresponding Java implementation of the
arraytype class:

public class arraytype extends typeinfo {

 typeinfo element_type;

 public arraytype(typeinfo t) {

 basetype = "array"; element_type = t; }

}

The representation for methods, also called class member functions, includes a signature
consisting of their parameters and return type. For now, all it does is allow methods to be
identified as such. The Unicon implementation of the methodtype class is as follows:

class methodtype : typeinfo(parameters,return_type)

initially

 basetype := "method"

end

Method types contain a list of zero or more parameters and a return type; these will be
used in the next chapter to check the types when methods (functions) are called. The Java
representation of methods look as follows and can be found in the methodtype.java file:

public class methodtype extends typeinfo {

 parameter [] parameters;

 typeinfo return_type;

 methodtype(parameter [] p, typeinfo rt){

 parameters = p; return_type = rt;

 }

}

parameters could be an array of typeinfo. A separate class is defined for
parameters here to allow languages to include parameter names along with their types
to represent methods. The Unicon implementation is as follows:

class parameter(name, param_type)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Type representation in the compiler 175

Some of these classes seem pretty empty. They are placeholders that will include more
code in subsequent chapters or require more substantial treatments in other languages.
The corresponding Java implementation of the parameter class in the parameter.
java file is shown here:

public class parameter {

 String name;

 typeinfo param_type;

 parameter(String s, typeinfo t) { name=s; param_type=t; }

}

The class for representing classes includes a class name, its associated symbol table,
and lists of zero or more fields, methods, and constructors. In some languages, this
might be more complex than Jzero, including superclasses, for example. The Unicon
implementation is shown here:

class classtype : typeinfo(name, st, fields, methods,

 constrs)

 method str()

 return name

 end

initially

 basetype := "class"

end

You might be wondering about the st field, which holds a symbol table. In Chapter 6,
Symbol Tables, symbol tables were constructed and stored in syntax tree nodes, where
they formed a logical tree corresponding to the program's declared scopes. References to
those same symbol tables need to be placed in the types so that we can compute the type
resulting from the use of the dot operator, which references a scope that is not associated
with the syntax tree. The classtype.java file contains the Java implementation of the
classtype class. The following code shows an example of this:

public class classtype extends typeinfo {

 String name;

 symtab st;

 parameter [] methods;

 parameter [] fields;

 typeinfo [] constrs;

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

176 Checking Base Types

Given a typeinfo class, it is appropriate to add a member field of this type to both the
tree class and the symtab_entry class so that type information can be represented for
expressions and variables. We will call it typ in both classes:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,typ)

class symtab_entry(sym,parent_st,st,isConst,typ)

We are not repeating the classes here in their entirety; the code for this can be found in the
ch7/ subdirectory at https://github.com/PacktPublishing/Build-Your-
Own-Programming-Language. In Java, the respective classes are amended as follows:

class tree { . . .

 typeinfo typ; . . . }

class symtab_entry { . . .

 typeinfo typ; . . . }

Given a typ field, it is possible to write the mini tree traversals needed to place type
information in the symbol tables with the variables as they are declared. Let's look at
assigning this type information to declared variables.

Assigning type information to declared
variables
Type information is constructed during a tree traversal and then stored with its associated
variables in the symbol table. This would usually be part of the traversal that populates the
symbol table, as presented in the previous chapter. In this section, we will be traversing the
syntax tree looking for variable declarations, as we did previously, but this time, we need
to propagate type information by using synthesized and/or inherited attributes.

For type information to be available at the time that we are inserting variables into the
symbol table, the type information must be computed at some prior point in time. This
type information is computed either by a preceding tree traversal or during parsing when
the syntax tree is constructed. Consider the following grammar rule and semantic action
from Chapter 5, Building Syntax Trees:

FieldDecl: Type VarDecls ';' {

 $$=j0.node("FieldDecl",1030,$1,$2); };

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language

Assigning type information to declared variables 177

The semantic action builds a tree node connecting a Type with a VarDecls under a new
node called FieldDecl. Your compiler must synthesize type information from Type
and inherit it into VarDecls. The information flowing up from the left subtree and going
down into the right subtree can be seen in the following diagram:

Figure 7.1 – The flow of type information in variable declarations

We can embed this into the syntax tree construction process via mini traversals of the
subtrees. The following code adds a call to a method named calctype(), which is
where this semantic analysis will be conducted within j0gram.y, as shown in the
previous example:

FieldDecl: Type VarDecls ';' {

 $$=j0.node("FieldDecl",1030,$1,$2);

 j0.calctype($$);

};

From examining the grammar, you may note that a similar call to calctype() is
needed for non-terminal FormalParm, and that there are a few additional places in the
grammar where a type is associated with an identifier or list of identifiers. The j0 class's
calctype() method turns around and calls two tree traversals on the two children of
FieldDecl. The Unicon version of this method in j0.icn looks as follows:

method calctype(t)

 t.kids[1].calctype()

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

178 Checking Base Types

 t.kids[2].assigntype(t.kids[1].typ)

end

The j0 class's calctype() method calls the class tree's calctype() method, which
calculates the synthesized typ attribute in the left child. The type is then passed down as
an inherited attribute into the right child. The Java version of this method in j0.java
looks like this:

void calctype(parserVal pv){

 tree t = (tree)pv.obj;

 t.kids[0].calctype();

 t.kids[1].assigntype(t.kids[0].typ);

}

Compared to tree traversals, which we looked at in the previous chapters, class tree
methods, including calctype() and assigntype(), are special cases whose tree
shape and kinds of possible nodes are limited. The traversal code might be specialized to
take advantage of this. We can start by considering the calctype() method.

Synthesizing types from reserved words
The calctype() method calculates the synthesized typ attribute. The recursive work of
calculating the value for the children is done first, followed by the calculation for the current
node. This form of traversal is called a post-order traversal and it is common in compilers.
In Unicon, the calctype() method in the class tree in tree.icn looks like this:

method calctype()

 every (!\kids).calctype()

 case sym of {

 "FieldDecl": typ := kids[1].typ

 "token": {

 case tok.cat of {

 parser.IDENTIFIER:{return typ :=

 classtype(tok.text) }

 parser.INT:{ return typ := typeinfo(tok.text) }

 default:

 stop("can't grok the type of ", image(tok.text))

 }

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assigning type information to declared variables 179

 default:

 stop("can't grok the type of ", image(sym)) }

end

This code constructs the current tree node's typ value using information from its
children; in this case, by directly accessing a child's public typ field. Alternatively,
information obtained from a child could be obtained by calling a method that returns the
child type as its return value, such as the return value of calctype(). In this code, the
number of case branches is small because the Jzero grammar for non-terminal Type is
minimal. In other languages, it would be richer. The corresponding Java code is shown in
the following example's calctype() method in tree.java:

typeinfo calctype() {

 for(int i=0; i<nkids; i++) kids[i].calctype()

 switch (sym) {

 case "FieldDecl": return typ = kids[0].typ;

 case "token": {

 switch (tok.cat) {

 case parser.IDENTIFIER:{

 return typ=new classtype(tok.text); }

 case parser.INT: { return typ=new

 typeinfo(tok.text); }

 default:

 j0.semerror("can't grok the type of " +

 tok.text);

 }

 }

 default:

 j0.semerror("don't know how to calctype " + sym);}

}

Having synthesized the type from the left child of FieldDecl, let's look at how to inherit
that type into the variable nodes in the right child subtree of FieldDecl.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

180 Checking Base Types

Inheriting types into a list of variables
Passing type information into a subtree is performed in the assigntype(t) method.
Inherited attributes are generally coded via a pre-order traversal, in which the current
node does its work and then calls the children with information they are inheriting. The
Unicon implementation of the assigntype(t) method is as follows:

method assigntype(t)

 typ := t

 case sym of {

 "VarDeclarator": {

 kids[1].assigntype(arraytype(t))

 return

 }

 "token": {

 case tok.cat of {

 parser.IDENTIFIER:{

 return

 }

 default: stop("eh? ", image(tok.cat))

 }

 }

 default:

 stop("don't know how to assign the type of ", image(sym))

 }

 every (!\kids).assigntype(t)

end

Since the information is coming down from a parent into children, it is natural to pass this
information as a parameter to the child, who then assigns it as their type via typ := t. It
would also be possible to copy it down via an explicit assignment into a child's public field.
The corresponding Java implementation of the assigntype(t) method is shown here:

void assigntype(typeinfo t) {

 typ = t;

 switch (sym) {

 case "VarDeclarator": {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Determining the type at each syntax tree node 181

 kids[0].assigntype(new arraytype(t));

 return;

 }

 case "token": {

 switch (tok.cat) {

 case parser.IDENTIFIER:{ return; }

 default: j0.semerror("eh? " + tok.cat);

 }

 }

 default:

 j0.semerror("don't know how to assigntype " + sym);

 }

 for(tree k : kids) k.assigntype(t);

 }

Attaching type information to variable names where they are declared is important, and
it is not too difficult, especially for a simple language such as Jzero. Now, it is time to
look at the main task of this chapter: how to calculate and check type information in the
expressions that comprise the executable code in the bodies of functions and methods.

Determining the type at each syntax tree node
Within the syntax tree, the nodes associated with actual code expressions in the method
bodies have a type associated with the value that the expression computes. For example, if a
tree node corresponds to the sum of adding two numbers, the tree node's type is determined
by the types of the operands and the rules of the language for the addition operator. Our
goal for this section is to spell out how this type information can be calculated.

As you saw in the Type representation in the compiler section, the class for syntax tree nodes
has an attribute to store that node's type, if there is one. The type attribute is calculated
bottom-up, during a post-order tree traversal. There is a similarity here to checking
for undeclared variables, which we did in the previous chapter, in that type checking
expressions only occur in the bodies of functions. The call to invoke this type checking tree
traversal, starting at the root of the syntax tree, is added at the end of the semantic()
method, within the j0 class. In Unicon, the invocation consists of the following:

root.checktype()

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

182 Checking Base Types

There isn't a parameter here, but that is the same thing as passing in a null value or a false.
In Java, the following statement is added:

root.checktype(false);

In both cases, the parameter indicates whether a given node is within the body of an
executable statement. At the root, the answer is false. It will turn true when the tree
traversal reaches the bodies of methods that contain code. To perform the tree traversal,
you must consider what to do regarding the leaves of the tree.

Determining the type at the leaves
At the leaves, the types of literal constant values are self-evident from their lexical
category. To begin, we must add a typ field to the class token. For literals, we must
initialize typ in the constructor. In Unicon, the first line and initial section of token.
icn becomes the following:

class token(cat, text, lineno, colno, ival, dval, sval,typ)

 . . .

initially

 case cat of {

 parser.INTLIT:{ ival := integer(text);

 typ:=typeinfo("int")}

 parser.DOUBLELIT:{dval:=real(text);

 typ:=typeinfo("double")}

 parser.STRINGLIT:{

 sval:=deEscape(text); typ := typeinfo("String") }

 parser.BOOLLIT: { typ := typeinfo("boolean") }

 parser.NULLVAL: { typ := typeinfo("null") }

 ord("="|"+"|"-"): { typ := typeinfo("unknown") }

 }

end

The code here assigns the "unknown" type to operators (the code for calculating the
types of expressions using those operators from their operand types will be shown later in
the Calculating and checking the types at internal nodes section). In Java, the corresponding
change to the class token for literal types looks as follows:

package ch7;

public class token {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Determining the type at each syntax tree node 183

 . . .

 public typeinfo typ;

 public token(int c, String s, int l) {

 cat = c; text = s; lineno = l;

 id = serial.getid();

 switch (cat) {

 case parser.INTLIT: typ = new typeinfo("int"); break;

 case parser.DOUBLELIT:typ = new typeinfo("double");

 break;

 case parser.STRINGLIT: typ= new typeinfo("String");

 break;

 case parser.BOOLLIT: typ = new typeinfo("boolean");

 break;

 case parser.NULLVAL: typ = new typeinfo("null"); break;

 case '=': case '+': case '-':

 typ = new typeinfo("unknown"); break;

 }

 }

The types of variables are looked up in the symbol table. This implies that symbol table
population must occur before type checking. The symbol table lookup is performed by a
type() method and added to a class token in token.icn. It takes the symbol table that
the token is scoped within as a parameter:

method type(stab)

 if \typ then return typ

 if cat === parser.IDENTIFIER then

 if rv := stab.lookup(text) then return typ := rv.typ

 stop("cannot check the type of ",image(text))

end

This first line in this method returns the type for this token immediately if it has been
determined previously. If not, the rest of this method just checks whether we have an
identifier, and if so, looks it up in the symbol table. The corresponding addition to
token.java looks as follows:

public typeinfo type(symtab stab) {

 symtab_entry rv;

 if (typ != null) return typ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

184 Checking Base Types

 if (cat == parser.IDENTIFIER)

 if ((rv = stab.lookup(text)) != null)
 return typ=rv.typ;

 j0.semerror("cannot check the type of " + text);

}

Having shown the code to calculate the type of syntax tree leaves, it is now time to
examine how to check the types at the internal nodes. This is the core function of
type checking.

Calculating and checking the types at internal nodes
The internal nodes are only checked within the executable statements and expressions in
the code bodies of the program. This is a pre-order traversal where work at children is
done first and then work is done at the parent node. The process of visiting the children,
which is delegated to the checkkids() helper function, varies depending on the tree
node, and the work that's done at the parent depends on whether it is in a block of code:

method checktype(in_codeblock)

 if checkkids(in_codeblock) then return

 if /in_codeblock then return

 case sym of {

 "Assignment": typ := check_types(kids[1].typ,

 kids[3].typ)

 "AddExpr": typ := check_types(kids[1].typ, kids[2].typ)

 "Block" | "BlockStmts": { typ := &null }

 "MethodCall": { }

 "QualifiedName": {

 if type(kids[1].typ) == "classtype__state" then {

 typ := (kids[1].typ.st.lookup(

 kids[2].tok.text)).typ

 } else stop("illegal . on ",kids[1].typ.str())

 }

 "token": typ := tok.type(stab)

 default: stop("cannot check type of ", image(sym))

 }

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Determining the type at each syntax tree node 185

In addition to the checkkids() helper method, this code relies on a helper function
called check_types(), which determines the result type, given operands. The
corresponding Java implementation of checktype() is shown here:

void checktype(boolean in_codeblock) {

 if (checkkids(in_codeblock)) return;

 if (! in_codeblock) return;

 switch (sym) {

 case "Assignment":

 typ = check_types(kids[0].typ, kids[2].typ); break;

 case "AddExpr":

 typ = check_types(kids[0].typ, kids[1].typ); break;

 case "Block": case "BlockStmts": typ = null; break;

 case "MethodCall": break;

 case "QualifiedName": {

 if (kids[0].typ instanceof classtype) {

 classtype ct = (classtype)(kids[0].typ);

 typ = (ct.st.lookup(kids[1].tok.text)).typ;

 } else j0.semerr("illegal . on " + kids[0].typ.str());

 break;

 }

 case "token": typ = tok.type(stab); break;

 default: j0.semerror("cannot check type of " + sym);

 }

}

By default, the checkkids() helper function calls checktype() on every child, but in
some cases, it does not. On method declaration, for example, the method header has no
executable code expressions and is skipped; only the block of code is visited, and in that
block, the in_codeblock Boolean parameter is set to true. Similarly, within a block of
code where a local variable declaration is encountered, only the list of variables is visited,
and within that list, in_codeblock is turned off (only to be turned back on again in
initializers). As another example, identifiers on the right-hand side of a period operator
are not looked up in the regular symbol table; instead, they are looked up relative to the
type of expression on the left-hand side of the period and thus require special handling.
The Unicon implementation of checkkids() is shown here:

method checkkids(in_codeblock)

 case sym of {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

186 Checking Base Types

 "MethodDecl": { kids[2].checktype(1); return }

 "LocalVarDecl": { kids[2].checktype(); return }

 "FieldAccess": { kids[1].checktype(in_codeblock);

 return }

 "QualifiedName": {

 kids[1].checktype(in_codeblock);

 }

 default: { every (!\kids).checktype(in_codeblock) }

 }

end

The corresponding Java implementation of this helper function is shown here:

public boolean checkkids(boolean in_codeblock) {

 switch (sym) {

 case "MethodDecl": kids[1].checktype(true); return true;

 case "LocalVarDecl": kids[1].checktype(false);
 return true;

 case "FieldAccess": kids[0].checktype(in_codeblock);

 return true;

 case "QualifiedName":

 kids[0].checktype(in_codeblock);

 break;

 default: for (tree k : kids) k.checktype(in_codeblock);

 }

 return false;

}

The check_types() helper method calculates the type of the current node from the
types of up to two operands. Its calculation varies, depending on what operator is being
performed, as well as the rules of the language. Its answer might be that the type is the
same as one or both operands, or it may be some new type or an error. The Unicon
implementation of check_types() in tree.icn is as follows:

method check_types(op1, op2)

 operator := get_op()

 case operator of {

 "="|"+"|"-" : {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Determining the type at each syntax tree node 187

 if tok := findatoken() then

 writes("line ", tok.tok.lineno, ": ")

 if op1.basetype === op2.basetype === "int" then {

 write("typecheck ",operator," on a ",

 op2.str(), " and a ", op1.str(), " -> OK")

 return op1

 }

 else stop("typecheck ",operator," on a ",

 op2.str(), " and a ", op1.str(),
 " -> FAIL")

 }

 default: stop("cannot check ", image(operator))

 }

end

This method relies on two helper methods. The get_op() method reports which
operator is being performed. The findatoken() method seeks out the first token in the
source code represented by a given syntax tree node; it is used to report the line number.
The corresponding Java implementation of check_types() is shown here:

 public typeinfo check_types(typeinfo op1, typeinfo op2) {

 String operator = get_op();

 switch (operator) {

 case "=": case "+": case"-": {

 tree tk;

 if ((tk = findatoken())!=null)

 System.out.print("line " + tk.tok.lineno + ": ");

 if ((op1.basetype.equals(op2.basetype)) &&

 (op1.basetype.equals("int"))) {

 System.out.println("typecheck "+operator+" on a "+

 op2.str() + " and a "+ op1.str()+
 " -> OK");

 return op1;

 }

 else j0.semerror("typecheck "+operator+" on a "+

 op2.str()+ " and a "+ op1.str()+
 " -> FAIL");

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

188 Checking Base Types

 }

 default: j0.semerror("cannot check " + operator);

 }

 return null;

 }

The operator that the current syntax node represents can usually be ascertained from the
node's corresponding non-terminal symbol. In some cases, the actual production rule
must also be used. The Unicon implementation of get_op() is shown here:

 method get_op()

 return case sym of {

 "Assignment" : "="

 "AddExpr": if rule=1320 then "+" else "-"

 default: fail

 }

 end

Unicon allows us to return the result that's produced by a case expression. Additive
expressions designated by "AddExpr" include both addition and subtraction. The
production rule is used to disambiguate. The corresponding Java implementation of get_
op() is similar, as given here:

 public String get_op() {

 switch (sym) {

 case "Assignment" : return "=";

 case "AddExpr": if (rule==1320) return "+";

 else return "-";

 }

 return sym;

 }

The findatoken() method is used from an internal node in the syntax tree to chase
down one of its leaves. It recursively dives into the children until it finds a token. The
Unicon implementation of findatoken() is as follows:

method findatoken()

if sym==="token" then return self

return (!kids).findatoken()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Determining the type at each syntax tree node 189

The corresponding Java implementation of findatoken() is shown here:

 public tree findatoken() {

 tree rv;

 if (sym.equals("token")) return this;

 for (tree t : kids)

 if ((rv=t.findatoken()) != null) return rv;

 return null;

 }

Even the basics of type checking, all of which have been shown in this section, have
required you to learn a lot of new ways to traverse trees. The fact is, building a programming
language or writing a compiler is a big, complex job, and if we showed a complete one for a
mainstream language, this book would be thicker than our page limit allows.

This chapter presented how to add roughly half of a type checker to Jzero. Running
j0 with these additions is not very glamorous; it just lets you see simple type errors
get detected and reported. If you want to see that, download the code from this book's
GitHub site, go into the Chapter07/ subdirectory, and build code with the make
program. By default, make will build both the Unicon and Java versions. When you run
the j0 command with preliminary type checking in place, it produces an output similar to
the following. In this case, the Unicon implementation is shown:

Figure 7.2 – The output from the type checker produces OK or FAIL on various operators

Of course, if the program has no type errors, you will see nothing but lines ending with
OK. Now, let's consider an aspect of type checking that's encountered when implementing
some programming languages, including Unicon: runtime type checks.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

190 Checking Base Types

Runtime type checks and type inference
in Unicon
The Unicon language handles types a lot differently than the Jzero type system described
in this chapter. In Unicon, types are not associated with declarations but with actual
values. The Unicon virtual machine code generator does not place type information in
symbol tables or do compile-time type checking. Instead, types are represented explicitly
at runtime and checked everywhere before a value is used. Explicitly representing type
information at runtime is common in interpreted and object-oriented languages, and
optional in some semi-object-oriented languages such as C++.

Consider the write() Unicon function. Every argument to write() that isn't a file
specifying where to write to must be a string, or be able to be converted into a string. In
the Unicon virtual machine, the type information is created and checked at runtime as
needed. The pseudocode for the Unicon write() function looks like this:

for (n = 0; n < nargs; n++) {

 if (is:file(x[n])) {

 set the current output file

 } else if (cnv:string(x[n])) {

 output the string to the output file

 } else runtime_error("string or file expected")

}

For every argument to write(), the preceding code says to either set the current file,
convert the argument into a string and write it, or stop with a runtime error. Checking
types of things at runtime provides extra flexibility but slows down execution. Keeping
type information around at runtime also consumes memory – potentially a lot of memory.
To perform a runtime type check, every value in the Unicon language is stored in a
descriptor. A descriptor is a struct that contains a value plus an extra word of memory that
encodes its type, called the d-word. A Boolean expression such as is:file(x) on some
Unicon value, x, boils down to performing a check to see whether the d-word says the
value is of the file type.

Unicon also has an optimizing compiler that generates C code. The optimizing compiler
performs type inference, which determines a unique type more than 90% of the time,
eliminating the need for most runtime type checks. Consider the following trivial
Unicon program:

procedure main()

 s := "hello" || read()

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 191

 write(s)

end

The optimizing compiler knows that "hello" is a string, and read() only returns
strings. It can infer that the s variable holds only string values, so this particular call
to write() is passed a value that is already a string and does not need to be checked
or converted. Type inference is beyond the scope of this book, but it is valuable to
know that it exists and that for some languages, it is an important bridge that allows
flexible higher-level languages to run at speeds comparable to those of lower-level
compiled languages.

Summary
In this chapter, you learned how to represent base types and check the type safety of
common operations, such as preventing adding an integer to a function. All of this can be
accomplished by traversing the syntax tree.

You learned how to represent types in a data structure and add an attribute to the syntax
tree nodes to store that information. You also learned how to write tree traversals that
extract type information about variables and store that information in their symbol table
entries. You then learned how to calculate the correct type at each tree node, checking
whether the types are used correctly in the process. Finally, you learned how to report
type errors that you found.

The process of type checking may seem like a thankless job that just results in a lot
of error messages, but really, the type information that you compute at each of the
operators and function calls in the syntax tree will be instrumental in determining what
machine instructions to generate for those tree nodes. Now that you have built a type
representation and implemented simple type checks, it is time to consider some more
complex operations necessary to check compound types, such as function calls and
classes. You will do this in the next chapter.

Questions
1. What purpose does type checking serve, besides just to frustrate tired

programmers?
2. Why is a structure type (in our case, a class) needed to represent type information?

Why can't we just use an integer to represent each type?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

192 Checking Base Types

3. The code in this chapter outputs lines that report every successful type check with
OK. This is very reassuring. Why don't other compilers report successful type
checks like this?

4. Java is pickier about types than its ancestor, the C programming language. What
are the advantages of being pickier about types, instead of automatically converting
them on demand?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Checking Types on

Arrays, Method
Calls, and Structure

Accesses
This is the second of two chapters regarding type checking. The previous chapter
introduced type checking for built-in atomic types. In comparison, this chapter will cover
more complex type checking operations.

This chapter will show you how to perform type checks for the arrays, parameters, and
return types of method calls in the Jzero subset of Java. Additionally, it includes the type
checking of composite types such as classes.

In this chapter, we will cover the following main topics:

• Type checking arrays

• Checking method calls

• Checking structured type accesses

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

194 Checking Types on Arrays, Method Calls, and Structure Accesses

By the end of the chapter, you will be able to write more sophisticated tree traversals to check
types that themselves contain one or more other types. Being able to support such composite
types in your programming language is necessary for you to go beyond toy programming
languages and into the realm of languages that are useful in the real world. It is time to learn
more about type checking. We will begin with the simplest composite type: arrays.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch8

The Code in Action video for the chapter can be found here: https://bit.ly/30w1V8I

Checking operations on array types
An array is a sequence of elements that are all of the same type. Up to this point, the
Jzero language hasn't really supported array types, other than to allow enough syntax for
main() to declare its array of the String parameter. Now, it is time to add support for the
remainder of the Jzero array operations, which are a small subset of what Java arrays can do.
Jzero arrays are limited to single-dimension arrays created without initializers. In order to
check array operations properly, we will modify the code from the previous chapters so that
we can recognize array variables when they are declared, and then check all uses on these
arrays to only allow legal operations. Let's begin with array variable declarations.

Handling array variable declarations
The idea that a variable will hold a reference to an array is attached to the variable's type
in the recursive grammar rule, in j0gram.y, for the non-terminal VarDeclarator.
The rule in question is the second production rule, which appears after the vertical bar,
as follows:

VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' {

 $$=j0.node("VarDeclarator",1060,$1); };

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch8
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch8
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch8
https://bit.ly/30w1V8I

Checking operations on array types 195

For this rule, the corresponding code in the class tree's assigntype() method adds an
arraytype() on top of the type that is being inherited, as assigntype() recurses
into the VarDeclarator child node. The Unicon code for this, in the tree.icn file,
appears as follows:

 method assigntype(t)

 . . .

 "VarDeclarator": {

 kids[1].assigntype(arraytype(t))

 return

 }

The t type being inherited is not discarded. It becomes the element type of the array type
that is constructed here. The corresponding Java code in tree.java is almost identical:

 void assigntype(typeinfo t) {

 . . .

 case "VarDeclarator": {

 kids[0].assigntype(new arraytype(t));

 return;

 }

Because it is recursive, this code works for multiple-dimension arrays represented by a chain
of VarDeclarator nodes in the syntax tree; although for the sake of brevity, the rest of
Jzero will not. Even for single-dimension arrays, things get interesting when you consider
how type information is checked when arrays are used in executable code. The first point
within the code where you will need to check array types is when an array is created.

Checking types during array creation
Arrays in Java are created with the new expression; this is something that, up to this point,
was omitted from Jzero. This entails a new token added to javalex.l for the reserved
new word, as shown in the following code:

"new" { return j0.scan(parser.NEW); }

Additionally, it entails a new kind of primary expression, called an ArrayCreation
expression. This is added in the grammar within j0gram.y, as shown in the following code:

Primary: Literal | FieldAccess | MethodCall |
 '(' Expr ')' { $$=$2;} | ArrayCreation ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

196 Checking Types on Arrays, Method Calls, and Structure Accesses

ArrayCreation: NEW Type '[' Expression ']' {

 $$=j0.node("ArrayCreation", 1260, $2, $4); };

Having added the new reserved word and defined a tree node for it, it is time to consider
how a type is assigned for that expression. Let's consider the creation of an array in the
new int [3] Java expression. The int token is being used in an executable expression
for the first time, and initially, the code that creates the int token inside token.icn
should allocate its type as follows:

class token(cat, text, lineno, colno, ival, dval, sval,

 typ)

 . . .

initially

 case cat of {

 parser.INT: typ := typeinfo("int")

 parser.DOUBLE: typ := typeinfo("double")

 parser.BOOLEAN: typ := typeinfo("boolean")

 parser.VOID: typ := typeinfo("void")

As you can see, the same additions are needed for the other atomic scalar types. The
corresponding Java code in the constructor in token.java is shown here:

 case parser.INT: typ = new typeinfo("int"); break;

 case parser.DOUBLE: typ = new typeinfo("double");

 break;

 case parser.BOOLEAN: typ = new typeinfo("boolean");

 break;

 case parser.VOID: typ = new typeinfo("void"); break;

These additions to the class token take care of the leaves that are providing our base types.
The ArrayCreation node's type is calculated with an addition to the checktype()
method. In tree.icn, the addition to checktype(), which primarily consists of a call
to arraytype(), is shown here:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,typ)

 . . .

 method checktype(in_codeblock)

 . . .

 "ArrayCreation": typ := arraytype(kids[1].typ)

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking operations on array types 197

The Java code that corresponds to this in the tree.java file is as follows:

 case "ArrayCreation":

 typ = new arraytype(kids[0].typ); break;

So, when a newly created array is used, usually, in an assignment, its array type must
match the type that is allowed by the surrounding expression. For example, in the
following two lines, the assignment operator on the second line must allow arrays when its
type is being checked:

 int x[];

 x = new int[3];

The code to allow the assignment of an array variable from an array value is added to the
check_types() method in the tree.icn file, as shown here:

 method check_types(op1, op2)

 . . .

 else if (op1.basetype===op2.basetype==="array") &

 operator==="=" &

 check_types(op1.element_type,

 op2.element_type) then {

 return op1

 }

The code checks that both op1 and op2 are arrays, that we are doing an assignment, and
that the element types are OK. Here, a write() statement in the then part might be
useful for the purposes of testing this chapter's code. However, in a compiler, only type
errors will be shown. The corresponding Java addition to the check_types() method
in the tree.java file is as follows:

 else if (op1.basetype.equals("array") &&

 op2.basetype.equals("array") &&

 operator.equals("=") &&

 (check_types(((arraytype)op1).element_type,

 ((arraytype)op2).element_type) !=

 null)) {

 return op1;

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

198 Checking Types on Arrays, Method Calls, and Structure Accesses

From the examples in this section, it might appear as though type checking is just a
bunch of nitpicky attention to detail. The recursive call to check_types() on the
arrays' element types prevents a program from accidentally assigning an array of string to
a variable of type array of int, for example. Now, it is time to consider type checking for
array element accesses.

Checking types during array accesses
Array accesses consist of read and write operations on an array's elements using the
subscript operator. Here, we need to add syntax support for these operations and build
syntax tree nodes before we can perform any type checking on them. Adding array
accesses to the grammar consists of adding a non-terminal ArrayAccess and then
adding two production rules that use this non-terminal symbol:

• One for assignments that store a value in an array element

• One for expressions that fetch the value from an array element

 The changes to the j0gram.y file will appear as follows. They have been reordered in the
grammar for clarity:

ArrayAccess: Name '[' Expr ']' {

 $$=j0.node("ArrayAccess",1390,$1,$3); };

LeftHandSide: Name | FieldAccess | ArrayAccess ;

Primary: Literal | FieldAccess | MethodCall | ArrayAccess

 |'(' Expr ')' { $$=$2;} | ArrayCreation ;

The square bracket operator that is used to access array elements must check the types
of its operands and use them to calculate the result type. The result of an array subscript
removes one level of array from the type of the left operand, thereby producing its element
type. The addition to the checktype() method in the tree.icn file looks like this:

 method checktype(in_codeblock)

 . . .

 "ArrayAccess": {

 if match("array ", kids[1].typ.str()) then {

 if kids[2].typ.str()=="int" then

 typ := kids[1].typ.element_type

 else stop("subscripting array with ",

 kids[2].typ.str())

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking method calls 199

 else stop("illegal subscript on type ",

 kids[1].typ.str())

 }

The preceding code checks that the type of kids[1] is an array type and the type of
kids[2] is an integer type. If those are good, the value assigned to this node's typ is the
array's element_type. The corresponding Java addition to the checktype() method
in the tree.java file is shown here:

 case "ArrayAccess":

 if (kids[0].typ.str().startsWith("array ")) {

 if (kids[1].typ.str().equals("int"))

 typ = ((arraytype)(kids[0].typ)).element_type;

 else j0.semerror("subscripting array with " +

 kids[1].typ.str());

 }

 else j0.semerror("illegal subscript on type " +

 kids[0].typ.str());

 break;

In this section, we have demonstrated how to type check arrays. Fortunately, non-terminal
symbols in the grammar, and hence in the syntax tree, make it easy to find the spots
where this form of type checking is needed. Now, it is time to look at perhaps the most
challenging part of type checking. We will learn how to check the parameters and return
types of method calls next.

Checking method calls
The function call is the fundamental building block of both imperative and functional
programming paradigms. In object-oriented languages, functions are called methods, but
they can play all of the same roles that functions can. In addition to this, a set of methods
provides an object's public interface. To type check a method call, both the number and
the type of the parameters must be verified along with the return type.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

200 Checking Types on Arrays, Method Calls, and Structure Accesses

Calculating the parameters and return type
information
The type representation introduced in the previous Chapter 7, Checking Base Type,
included a methodtype class that had fields for the parameters and the return type;
however, we haven't yet presented the code to extract that information from the syntax
tree and place it into the type. The parameters and return type of a method are called its
signature. The grammar rule where a method signature is declared is the one that builds
a MethodHeader node. To calculate the return type, we need to synthesize it from
the MethodReturnVal node. To calculate the parameters, we need to walk to the
FormalParmList subtree within MethodDeclarator. You can do this by adding a
call to j0.calctype() to the grammar rule for MethodHeader; this is similar to the
ones we added earlier for variable declarations:

MethodHeader: PUBLIC STATIC MethodReturnVal

 MethodDeclarator {

 $$=j0.node("MethodHeader",1070,$3,$4);

 j0.calctype($$);

 };

The calctype() method in the j0 class has not been modified, but the methods it
calls over in tree.icn have been extended to add more type information, as needed,
to handle method signatures. The calctype() method in the tree class gets a small
upgrade to synthesize a leaf 's type from its contained token type, if present. In Unicon, it
is the following line added to tree.icn that assigns typ from tok.typ:

 method calctype()

 . . .

 "token": {

 if typ := \ (tok.typ) then return

The corresponding Java addition to calctype() in tree.java is shown here:

 if ((typ = tok.typ) != null) return;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking method calls 201

The modifications to the assigntype() method for constructing method signatures are
more substantial. For variable declarations, you are simply passing the type as an inherited
attribute down a list to the individual variables' leaf identifiers. For a method, the type
to be associated with the identifier is constructed from the inherited attribute, which is
the return type, plus the remainder of the method's signature obtained from the subtree
associated with the parameter list:

 method assigntype(t)

 case sym of {

 . . .

 "MethodDeclarator": {

 parmList := (\ (kids[2]).mksig()) | []

 kids[1].typ := typ := methodtype(parmList , t)

 return

 }

In this code, the parmList parameter list is constructed as a list of types. If the
parameter list is not empty, it is constructed by calling the mksignature() method
on that non-empty tree node. If the parameter list is empty, parmList is initialized to
the empty list, []. The parameter list and the return type of t are passed in to construct
the method type that is assigned to the MethodDeclarator node and its first child,
that is, the identifier method name that will be inserted into the class symbol table. The
corresponding Java addition to the assigntype() method in tree.java is shown
here:

 Case "MethodDeclarator":

 typeinfo parmList[];

 if (kids[1] != null) parmList = kids[1].mksig();

 else parmList = new typeinfo [0];

 kids[0].typ = typ = new methodtype(parmList , t);

 return;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

202 Checking Types on Arrays, Method Calls, and Structure Accesses

The mksig() method constructs a list of the types of parameters of a method. The
mksig() method is an example of a very specialized tree method. It is a subtree traversal
that only traverses a very narrow subset of all tree nodes. It is only ever called on a formal
parameter list and only needs to consider the FormalParmList and FormalParm
nodes as it walks down the parameter list, picking up the types of each parameter. The
Unicon code for mksig() in tree.icn is as follows:

 method mksig()

 case sym of {

 "FormalParm": return [kids[1].typ]

 "FormalParmList":

 return kids[1].mksig() ||| kids[2].mksig()

 }

 end

The FormalParm case returns a list of size 1. The FormalParmList case returns the
concatenation of two recursive calls on its children. The corresponding Java code in
tree.java is shown here:

 typeinfo [] mksig() {

 switch (sym) {

 case "FormalParm": return new typeinfo[]{kids[0].typ};

 case "FormalParmList":

 typeinfo ta1[] = kids[0].mksig();

 typeinfo ta2[] = kids[1].mksig();

 typeinfo ta[] = new typeinfo[ta1.length +

 ta2.length];

 for(int i=0; i<ta1.length; i++) ta[i]=ta1[i];

 for(int j=0; j<ta2.length; j++)

 ta[ta1.length+j]=ta2[j];

 return ta;

 }

 return null;

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking method calls 203

The Java implementation uses arrays. The majority of the preceding code concatenates the
two arrays returned from the calls to mksig() on the children. This concatenation could
be performed by importing java.util.Arrays and using utility methods there, but
the Arrays code is not much shorter or clearer. There is one last tweak to the code that
is required to connect all of this method type information and make it usable. When the
method is inserted into the symbol table in the populateSymTables() method, its
type information needs to be stored there. In Unicon, the change in tree.icn is shown
here:

 method populateSymTables()

 case sym of {

 . . .

 "MethodDecl": {

 stab.insert(kids[1].kids[2].kids[1].tok.text, ,

 kids[1].stab, kids[1].kids[2].typ)

Compared to previous chapters, the addition of type information is just one extra
parameter being passed into the symbol table's insert() method. The corresponding
Java code in tree.java is shown here:

stab.insert(s, false, kids[0].stab, kids[0].kids[1].typ);

We have constructed the type information for methods when they are declared and made
that type information available in the symbol table. Now, let's take a look at how to use
type information from various methods to check the types of the actual parameters when
they are called.

Checking the types at each method call site
The method call sites can be found in the syntax tree by looking for the two production
rules that build a non-terminal MethodCall. The rule where a MethodCall is a Name
followed by a parenthesized list of zero or more parameters is shown here. It includes the
classic function syntax, which is primarily used to call methods within the same class, as
well as qualified names with the object.function syntax to invoke a method within
another class. This section focuses on type checking for the classic function syntax. The
object.function syntax is covered in the Checking structured type accesses section.
The code given here has been amended in that section.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

204 Checking Types on Arrays, Method Calls, and Structure Accesses

The code to check the types of method calls is added to the checktype() method. The
Unicon additions to tree.icn appear as follows:

Method checktype(in_codeblock)

 . . .

 "MethodCall": {

 if rule = 1290 then {

 if kids[1].sym ~== "token" then

 stop("can't check type of Name ", kids[1].sym)

 if kids[1].tok.cat == parser.IDENTIFIER then {

 if (\(rv:=stab.lookup(kids[1].tok.text))) then {

 rv := rv.typ

 if not match("method ", rv.str()) then

 stop("method expected, got ", rv.str())

 cksig(rv)

 }

 }

 else stop("can't typecheck token ", kids[1].tok.cat)

 }

 else stop("Jzero does not handle complex calls")

 }

 . . .

In the preceding code, the method is looked up in the symbol table and its type is
retrieved. If there are no parameters, the type is checked to ensure that its parameter list
is empty. If there are actual parameters in the call, they are checked against the formal
parameters via a call to the cksig() method. If that check succeeds, the typ field for
this node is assigned from the return_type, which was specified for the method that
was called. The corresponding Java code in tree.java is shown here:

 case "MethodCall":

 if (rule == 1290) {

 symtab_entry rve;

 methodtype rv;

 if (!kids[0].sym.equals("token"))

 j0.semerror("can't check type of " + kids[0].sym);

 if (kids[0].tok.cat == parser.IDENTIFIER) {

 if ((rve = stab.lookup(kids[0].tok.text)) != null){

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking method calls 205

 if (! (rve.typ instanceof methodtype))

 j0.semerror("method expected, got " +

 rv.str());

 rv = (methodtype)rve.typ;

 cksig(rv);

 }

 }

 else j0.semerror("can't typecheck " + kids[0].tok.cat);

 }

 else j0.semerror("Jzero does not handle complex calls");

 break;

The method that is used to check a function's signature and apply its return type is the
cksig() method. The Unicon implementation of cksig() in tree.icn is shown here:

 method cksig(sig)

 local i:=*sig.parameters, nactual := 1, t := kids[2]

 if /t then {

 if i ~= 0 then stop("0 parameters, expected ", i)

 }

 else {

 while t.sym == "ArgList" do {

 nactual +:= 1; t:=t.kids[1] }

 if nactual ~= i then

 stop(nactual " parameters, expected ", i)

 t := kids[2]

 while t.sym == "ArgList" do {

 check_types(t.kids[-1].typ, sig.parameters[i])

 t := t.kids[1]; i-:=1

 }

 check_types(t.typ, sig.parameters[1])

 }

 typ := sig.return_type

 end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

206 Checking Types on Arrays, Method Calls, and Structure Accesses

This method first handles zero parameters as a special case; however, aside from that, it
checks one parameter at a time in a while loop. For each parameter, it calls ckarg()
to check the formal and actual types. Because of the way the syntax tree is constructed,
parameters are encountered in reverse order during the tree traversal here. The first
parameter is found when you hit a tree node that is not an ArgList. After processing
the arguments, cksig() sets the MethodCall node's type to the type returned by the
method. The corresponding Java code in tree.java appears as follows:

 void cksig(methodtype sig) {

 int i = sig.parameters.length, nactual = 1;

 tree t = kids[1];

 if (t == null) {

 if (i != 0) j0.semerror("0 params, expected ",i);

 }

 else {

 while (t.sym.equals("ArgList")){nactual++;

 t=t.kids[0];}

 if (nactual != i)

 j0.semerror(nactual + " parameters, expected "+ i);

 t = kids[1];

 i--;

 while (t.sym.equals("ArgList")) {

 check_types(t.kids[1].typ, sig.parameters[i--]);

 t = t.kids[0];

 }

 check_types(t.typ, sig.parameters[0]);

 }

 typ = sig.return_type;

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking method calls 207

The check_types() method and its get_op() helper method need to be tweaked in
order to handle parameter type checking. The Unicon implementation of these changes
appears as follows:

 method get_op()

 return case sym of { …

 "MethodCall" : "param"

 . . .

 method check_types(op1, op2)

 operator := get_op()

 case operator of {

 "param"|"return"|"="|"+"|"-" : {

 . . .

The corresponding Java changes to get_op() and check_types() in tree.java are
as follows:

 public String get_op() {

 switch (sym) {

 case "MethodCall" : return "param";

 . . .

 public typeinfo check_types(typeinfo op1, typeinfo op2) {

 String operator = get_op();

 switch (operator) {

 case "param": case "return": case "=": case "+":
 case"-":

So, you have learned how to check the types of parameters passed into method calls,
which is one of the most challenging aspects of type checking. Now it is time to check the
return types that come out of the function call via its return statements.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

208 Checking Types on Arrays, Method Calls, and Structure Accesses

Checking the type at return statements
The type of the expressions in the method's return statements must match the type's
declared return type. These two locations are quite some distance apart in the syntax
tree. There are lots of different ways in which you might connect them. For example, you
could add a return_type attribute to all of the tree nodes and inherit the type from the
MethodHeader into the Block and down through the code into the return statements.
However, that approach is a waste of time for a relatively sparsely used piece of information.
The symbol table is the most convenient way to connect remote locations. We can insert a
dummy symbol into the symbol table that can hold a function's return type. This dummy
symbol can be looked up and checked against the type at every return statement. The
dummy symbol named return is ideal. It is easy to remember and is a reserved word that
will never conflict with a real symbol in user code. The code to insert the return type into
the method's symbol table is an addition to the populateSymTables() method. The
Unicon implementation in tree.icn is as follows:

 method populateSymTables()

 case sym of {

 . . .

 "MethodDecl": {

 stab.insert(kids[1].kids[2].kids[1].tok.text, ,

 kids[1].stab, kids[1].kids[2].typ)

 kids[1].stab.insert("return", , ,

 kids[1].kids[1].typ)

 }

In this code, kids[1] is the MethodHeader node. Its stab field is the local symbol
table being inserted as a subscope inside the enclosing class scope. The kids[1].
kids[1] expression is the MethodReturnVal node, which is usually just the token
denoting the return type. The pair of blank spaces separated by commas between
"return" and the type are null values. They are being passed into the second and third
parameters of the insert() symbol table. The corresponding Java code that is added to
the populateSymTables() method in tree.java is as follows:

 Kids[0].stab.insert("return", false, null,

 kids[0].kids[0].typ);

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking method calls 209

The type checking code that makes use of this return type information within the return
statements is added to the checktype() method, which is also in the tree class. The
Unicon implementation in tree.icn appears as follows:

 Method checktype(in_codeblock)

 . . .

 case sym of {

 "ReturnStmt": {

 if not (rt := (\ (\ stab).lookup("return")).typ)

 then

 stop("stab did not find a returntype")

 if \ (kids[1].typ) then

 typ := check_types(rt, kids[1].typ)

 else {

 if rt.str() ~== "void" then

 stop("void return from non-void method")

 typ = rt;

 }

 }

The corresponding Java code is presented here:

 Case "ReturnStmt":

 symtab_entry ste;

 if ((ste=stab.lookup("return")) == null)

 j0.semerror("stab did not find a returntype");

 typeinfo rt = ste.typ;

 if (kids[0].typ != null)

 typ = check_types(rt, kids[0].typ);

 else {

 if (!rt.str().equals("void"))

 j0.semerror("void return from non-void method");

 typ = rt;

 }

 break;

So, you have learned how to check return statements. Now, it is time to learn how to
check the accesses to the fields and methods of a class instance.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

210 Checking Types on Arrays, Method Calls, and Structure Accesses

Checking structured type accesses
In this book, the phrase structured type will denote composite objects that can hold
a mixture of types whose elements are accessed by name. This contrasts with arrays,
whose elements are accessed by their position and whose elements are of the same type.
In some languages, there are struct or record types for this kind of data. In Jzero and
most object-oriented languages, classes are used as the principal structured type.

This section discusses aspects of how to check the types for operations on classes and,
more specifically, class instances. This organization mirrors the presentation of array types
at the beginning of this chapter, starting with what is needed to process declarations of
class variables.

The original intent of Jzero was to support a tiny Java subset that was somewhat
comparable to Wirth's PL/0 language. Such a language does not require class instances or
object-orientation, and space limitations prevent us from covering many of the bells and
whistles needed for a feature-rich object-oriented language such as Java or C++. However,
we will present some of the highlights. The first thing to consider is how to declare
instance variables for class types.

Handling instance variable declarations
Variables of class types are declared by giving a class name and then a comma-separated
list of one or more identifiers. For example, our compiler needs to handle declarations that
are similar to the following declaration of three strings:

String a, b, c;

Jzero had to handle such declarations from the beginning since the main() procedure
takes an array of strings. Although our Jzero compiler already supports class variable
declarations, a few additional considerations are in order.

In many object-oriented languages, variable declarations will have accompanying visibility
rules such as public and private. In Jzero, all methods are public and all variables
are private, but you could go ahead and implement an isPublic attribute anyway.
A similar consideration applies to static variables. Jzero has no static variables, but
you could implement an isStatic attribute if you decide you want them. Extending our
example to include these two considerations will look like the following:

private static String a, b, c;

To support these Java attributes, you can add them to tokens, tree nodes, and the symbol
table entry type. You can propagate them from the reserved word over to where the
variables are declared, just as we did for type information.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking structured type accesses 211

Checking types at instance creation
Objects, also called class instances, are created using the new reserved word, as was the
case for arrays, which we discussed in the Checking operations on array types section. The
additions to the grammar in j0gram.y are shown here:

Primary: Literal | FieldAccess | MethodCall | ArrayAccess

 |'(' Expr ')' { $$=$2;} | ArrayCreation |

 InstanceCreation;

InstanceCreation: NEW Name '(' ArgListOpt ')' {

 $$=j0.node("InstanceCreation", 1261, $2, $4); };

This added syntax enables instance creation. In order to calculate the type of the
expression so that it can be checked, we need to look up the type of the class in the symbol
table. For that to work, at an earlier point in time, we must construct the corresponding
classtype object and associate it with the class name in the enclosing symbol table.

Instead of embedding code to construct the class type with subtree traversals during
parsing, as we did in the preceding sections to construct the signature for a method, for
a class, it is easier to wait until after parsing and populating the symbol table, that is,
just before type checking. That way, all the information for constructing the class type is
ready for us in the class symbol table. A call to a new mkcls() method is added to the
semantic() method in j0.icn, after the symbol table processing and before type
checking, as follows:

 method semantic(root)

 . . .

 root.checkSymTables()

 root.mkcls()

 root.checktype()

The corresponding Java addition to j0.java is shown here:

 root.mkcls();

The mkcls() method stands for make class. When it sees a class declaration, it looks up
the class name and goes through the class symbol table, putting entries into the correct
category. There is one list for fields, one for methods, and one for constructors. The
Unicon implementation of mkcls() from tree.icn is shown here:

 method mkcls()

 if sym == "ClassDecl" then {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

212 Checking Types on Arrays, Method Calls, and Structure Accesses

 rv := stab.lookup(kids[1].tok.text)

 flds := []; methds := []; constrs := []

 every k := key(rv.st.t) do

 if match("method ", rv.st.t[k].typ.str()) then

 put(methds, [k, rv.st.t[k].typ])

 else put(flds, [k, rv.st.t[k].typ])

 /(rv.typ) := classtype(kids[1].tok.text, rv.st,

 flds, methds, constrs)

 }

 else every k := !kids do

 if k.nkids>0 then k.mkcls()

 end

When this traversal hits a class declaration, it looks up the class name and fetches the
symbol table for that class. Every symbol is checked, and if it is a method, it goes on the
list of methods named methds; otherwise, it goes on the list of fields, named flds. The
class type in the class's symbol table entry is assigned an instance of a classtype that holds
all of this information. You might notice that constructors are not identified and placed
on the constructor list. It is OK for Jzero to not support constructors, but a larger subset of
Java would support at least one constructor for each class. In any case, the corresponding
Java version is shown as follows:

 void mkcls() {

 symtab_entry rv;

 if (sym.equals("ClassDecl")) {

 int ms=0, fs=0;

 rv = stab.lookup(kids[0].tok.text);

 for(String k : rv.st.t.keySet()) {

 symtab_entry ste = rv.st.t.get(k);

 if ((ste.typ.str()).startsWith("method ")) ms++;

 else fs++;

 }

 parameter flds[] = new parameter[fs];

 parameter methds[] = new parameter[ms];

 fs=0; ms=0;

 for(String k : rv.st.t.keySet()) {

 symtab_entry ste = rv.st.t.get(k);

 if ((ste.typ.str()).startsWith("method "))

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking structured type accesses 213

 methds[ms++] = new parameter(k, ste.typ);

 else flds[fs++] = new parameter(k, ste.typ);

 }

 rv.typ = new classtype(kids[0].tok.text,

 rv.st, flds, methds, new typeinfo[0]);

 }

 else for(int i = 0; i<nkids; i++)

 if (kids[i].nkids>0) kids[i].mkcls();

 }

There is one more piece of code that is needed to complete the handling of instance
creation. The type field has to be set for the InstanceCreation nodes in the
checktype() method. After all the work of placing the type of information for the class
in the symbol table, this is a simple lookup. The Unicon implementation in tree.icn
looks like this:

 method checktype(in_codeblock)

 . . .

 "InstanceCreation": {

 if not (rv := stab.lookup(kids[1].tok.text)) then

 stop("unknown type ",kids[1].tok.text)

 if not (typ := \ (rv.typ)) then

 stop(kids[1].tok.text, " has unknown type")

 }

The preceding code is just a symbol table lookup that includes the fetching of the type from
the symbol table entry, plus lots of error checking. The corresponding Java additions in
tree.java appear as follows:

 case "InstanceCreation":

 symtab_entry rv;

 if ((rv = stab.lookup(kids[0].tok.text))==null)

 j0.semerror("unknown type " + kids[0].tok.text);

 if ((typ = rv.typ) == null)

 j0.semerror(kids[0].tok.text + " has unknown

 type");

 break;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

214 Checking Types on Arrays, Method Calls, and Structure Accesses

So, you have learned how to construct type information for classes and use it to produce
the correct type at instance creation. Now, let's explore what it will take to support
accesses to names defined within the instance.

Checking types at instance accesses
Instance accesses refer to references to the fields and methods of an object. There are
implicit accesses, where a field or method of the current object is referenced directly by
name, and explicit accesses, where the dot operator is used to access an object through
its public interface. Implicit accesses are handled by regular symbol table lookups in the
current scope, which will automatically try to enclose scopes, including the class scope
where the current object's class methods and variables can be found. This section is about
explicit accesses using the dot operator. In the j0gram.y grammar, these are called
QualifiedName nodes. Adding support for qualified names begins by modifying the
MethodCall code in the class tree's checktype() method. The code presented earlier
in this chapter for method signature checking on simple names is put into an else clause.
The Unicon implementation in tree.icn adds the following lines:

 method checktype(in_codeblock)

 . . .

 "MethodCall": {

 if rule = 1290 then {

 if kids[1].sym == "QualifiedName" then {

 rv := kids[1].dequalify()

 cksig(rv)

 }

 else {

 if kids[1].sym ~== "token" then

 …

 else stop("can't check type of ",

 kids[1].tok.cat)

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking structured type accesses 215

The code in checktype() recognizes qualified names when used as the name of the
method being called, and it calls a dequalify() method to obtain the type of the dotted
name. It then uses the signature checking method, cksig(), as presented earlier, to
check the types at the call. The corresponding Java code in tree.java is as follows:

 if (kids[0].sym.equals("QualifiedName")) {

 rv = (methodtype)(kids[0].dequalify());

 cksig(rv);

 }

kids[0] is a tree node with two children. The type of the left child contains the symbol
table within which we lookup the right child to find its method type. The dequalify()
method does this dirty work. The Unicon implementation in tree.icn looks like this:

 method dequalify()

 local rv, ste

 if kids[1].sym == "QualifiedName" then

 rv := kids[1].dequalify()

 else if kids[1].sym=="token" &

 kids[1].tok.cat=parser.IDENTIFIER then {

 if not \ (rv := stab.lookup(kids[1].tok.text)) then

 stop("unknown symbol ", kids[1].tok.text)

 rv := rv.typ

 }

 else stop("can't dequalify ", sym)

 if rv.basetype ~== "class" then

 stop("can't dequality ", rv.basetype)

 if \ (ste := rv.st.lookup(kids[2].tok.text)) then

 return ste.typ

 else stop(kids[2].tok.text, " is not in ", rv.str())

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

216 Checking Types on Arrays, Method Calls, and Structure Accesses

This method first calculates the type for the left-hand side operand. This requires a
recursion if the left operand is another qualified name. Otherwise, the left operand must
be an identifier that can be looked up in the symbol table. Either way, the left operand's
type is checked to make sure it is a class, and if so, the identifier on the right-hand side
of the dot is looked up in that class and its type is returned. The corresponding Java
implementation is shown here:

 public typeinfo dequalify() {

 typeinfo rv = null;

 symtab_entry ste;

 if (kids[0].sym.equals("QualifiedName"))

 rv = kids[0].dequalify();

 else if (kids[0].sym.equals("token") &

 (kids[0].tok.cat==parser.IDENTIFIER)) {

 if ((ste = stab.lookup(kids[0].tok.text)) != null)

 j0.semerror("unknown symbol " + kids[0].tok.text);

 rv = ste.typ;

 }

 else j0.semerror("can't dequalify " + sym);

 if (!rv.basetype.equals("class"))

 j0.semerror("can't dequalify " + rv.basetype);

 ste = ((classtype)rv).st.lookup(kids[1].tok.text);

 if (ste != null) return ste.typ;

 j0.semerror("couldn't lookup " + kids[1].tok.text +

 " in " + rv.str());

 return null;

 }

In this section, you learned how to handle structure accesses. We included a type checking
consideration where variables of a class type are declared and instantiated. Then, you
learned how to calculate the types of qualified names within objects.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Checking structured type accesses 217

After all of this type checking, the output is, once again, a bit anticlimactic. You can
download the code from the book's Github site, navigate to the Chapter08/ subdirectory,
and build with the make program. This will build both the Unicon and the Java versions.
As a reminder, you will have to configure installed software and/or set your classpath
to the directory where you unpacked the book examples, as discussed from Chapter 2,
Programming Language Design, to Chapter 5, Syntax Trees. When you run the j0 command
with type checking in place, it produces an output that is similar to the following:

Figure 8.1 – Type checking on parameters and return types

If the program has no type errors, all the lines will end with OK. In later chapters, Jzero
will not bother to output when successful type checks occur, so this will be the last you see
of these OK lines.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

218 Checking Types on Arrays, Method Calls, and Structure Accesses

Summary
This chapter was the second of two chapters covering various aspects of type checking.
You learned how to represent compound types. For example, you learned how to build
method signatures and use them to check method calls. All of this is accomplished via
traversals of the syntax tree, and much of it involves adding minor extensions to the
functions presented in the previous chapter.

This chapter also showed you how to recognize array declarations and build the
appropriate type representations for them. You learned how to check whether correct
types are being used for array creation and access and to build type signatures for method
declarations. You also learned how to check that correct types are being used for method
calls and returns.

While writing fancier tree traversal functions is a valuable skill in its own right,
representing type information and propagating it around the syntax tree to where it is
needed also makes an excellent practice of the skills you will need for the next steps in
your compiler. Now that you have implemented type checking, you are ready to move
on to code generation. This denotes the midpoint in your programming language
implementation. So far, you have been gathering information about the program. The next
chapter begins working toward the translated output of the input program, starting with
intermediate code generation.

Questions
1. What are the main differences between checking the types of array accesses and

checking the types of struct or class member accesses?
2. How do a function's return statements know what type they are returning? They

are often quite far away in the tree from the location where the function's return
type is declared.

3. How are types checked during a function call? How does this compare with type
checking at operators such as plus and minus?

4. Besides accesses via the [] and . operators, what other forms of type checking are
necessary for arrays, structures, or class types?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Intermediate Code

Generation
After the semantic analysis is complete, you can contemplate how to execute the
program. For compilers, the next step is to produce a sequence of machine-independent
instructions called intermediate code. This is usually followed by an optimization phase
and final code generation for a target machine. This chapter will show you how to generate
intermediate code by looking at examples for the Jzero language. After several chapters
where you learned how to write tree traversals that analyze and add information to the
syntax tree constructed from the input, the exciting thing about this chapter is that the
tree traversals in it begin the process of constructing the compiler's output.

This chapter covers the following main topics:

• Preparing to generate code

• Defining an intermediate code instruction set

• Generating code for expressions

• Generating code for control flow

It is time to start by gaining some perspective on why intermediate code is so useful.
You can think of intermediate code generation as the process of preparing for final
code generation.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

220 Intermediate Code Generation

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch9

The Code in Action video for the chapter can be found here: https://bit.ly/30t3gNQ

Preparing to generate code
Generating intermediate code produces enough information to enable the task of
generating the final code that can be run. Like many things in life, a daunting task
becomes possible when you prepare well. Eager developers might want to skip this phase
and jump straight to final code generation, so let's consider why intermediate code
generation is so advantageous. Generating final machine code is a complex task and
most compilers use intermediate code to break the work up into stages to complete it
successfully. This section will show you the details of what and why, starting with some
specific technical motivations to generate intermediate code.

Why generate intermediate code?
The goal of this phase of your compiler is to produce a list of machine-independent
instructions for each method in the program. Generating preliminary machine-neutral code
as an intermediate representation of a program's instructions has the following benefits:

• It allows you to identify the memory regions and byte offsets at which variables
will be stored before worrying about machine-specific details such as registers and
addressing modes.

• It allows you to work out most of the details of control flow, such as identifying
where labels and go-to instructions will be needed.

• Including intermediate code in a compiler reduces the size and scope of the
CPU-specific code, improving the portability of your compiler to new architectures.

• It allows you to check your work up to this point and provides output in a
human-readable format before we get bogged down in low-level machine code.

• Generating intermediate code allows for a wide range of optimizations to be applied
before machine-specific final code generation. Optimizations that are made to
intermediate code benefit all final code generators that you target after this point.

Now, let's look at some data structure additions that will help generate intermediate code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch9
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch9
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch9
https://bit.ly/30t3gNQ

Preparing to generate code 221

Learning about the memory regions in the generated
program
In an interpreter, an address in the user's program refers to memory within the interpreter's
address space and can be manipulated directly. A compiler has the more difficult challenge
of reasoning about addresses that are abstractions of memory locations in future executions
of the generated program. At compile time, the user program's address space does not exist
yet, but when it does, it will be organized in a similar way to the following:

Figure 9.1 – Runtime memory regions

Some addresses will be in static memory, some on the stack, some in the heap, and
some in the code. In the final code, the way these regions are accessed differs, but for
intermediate code addresses, we just need a way to tell what region each address lives in.
We could use integer codes to represent these different memory regions, but in Unicon
and Java, a string name is a direct human-readable way to designate them. So be it. The
regions we will use and their interpretations are shown here:

• "loc": In the local region, the offset is relative to the top of the stack. For example,
it will probably be accessed relative to a stack frame pointer register.

• "glob": The global region holds statically allocated variables. The offset is relative
to the start of some data region that is fixed at load time. Depending on your final
code, it may be resolved to an absolute address.

• "const": The constant region holds statically allocated read-only values. Aside
from being read-only, its properties are like those of the global region. It typically
holds strings and other constant structured data; small constants belong in the
"imm" pseudo region.

• "lab": A unique integer label is used to abstract an offset relative to the start of
the code region, which is usually a read-only static region. Labels are resolved
to an absolute address in the final code, but we let the assembler do the work of
calculating the byte offsets. In intermediate code, as in assembler code, labels are
just names for machine instructions.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

222 Intermediate Code Generation

• "obj": The offset is relative to the start of some object allocated from the heap,
meaning it will be accessed relative to another address. For example, an object-oriented
language might address instance variables as offsets relative to a self or this pointer.

• "imm": The pseudo-region for immediate values denotes that the offset is the actual
value, not an address.

Regions are not very difficult once you are used to them. Now, let's look at how they
are used in the data structure that the compiler uses to represent addresses in the
generated code.

Introducing data types for intermediate code
The most common form of intermediate code used in compilers is three-address code. Each
instruction will contain an opcode and from zero to three operands, which are the values
that are used by that instruction, usually an address. For the Jzero compiler, we will define
a class called address that represents an address as a region and an offset. The Unicon
implementation of the address class begins in the address.icn file, as shown here:

class address(region, offset)

end

The corresponding Java version requires us to decide what types to use for the region
and offset. We are using strings to represent regions, while an offset is typically a distance
in bytes from the start of a region, so it can be represented by an integer. The Java
implementation of the address class in address.java is as follows:

public class address {

 public String region;

 public int offset;

 address(String s, int x) { region = s; offset = x; }

}

We will add methods to this class as needed later. Given this representation of addresses,
we can define our three-address code in a class called tac, which consists of an opcode
and up to three addresses. Not all opcodes will use all three addresses. The Unicon
implementation of the tac class in tac.icn is shown here:

class tac(op, op1, op2, op3)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preparing to generate code 223

One interesting question that comes to mind at this point is whether to use Unicon's
built-in list type and Java's ArrayList class or implement an explicitly linked list
representation. An explicitly linked list representation would keep the Unicon and Java
code closer in sync and facilitate some sharing of sublists. Plus, to be honest, I am a little
bit ashamed at the thought of using Java's ArrayList get() and set(), length
versus length() versus size(), and so forth.

On the other hand, if we roll our own linked lists, we will be wasting space and time on
relatively low-level code for basic operations that the implementation language should
provide. So, we will use the built-in list type in Unicon and ArrayList in Java and see how
well they perform. The corresponding Java implementation in tac.java is as follows:

public class tac {

 String op;

 address op1, op2, op3;

 tac(String s) { op = s; }

 tac(String s, address x) { op = s; op1 = x; }

 tac(String s, address o1, address o2) {

 op = s; op1 = o1; op2 = o2; }

 tac(String s, address o1, address o2, address o3) {

 op = s; op1 = o1; op2 = o2; op3 = o3; }

}

To make it convenient to assemble lists of three-address instructions, we will add a factory
method named gen() to the class tree that creates a single three-address instruction
and returns a new list of size one that contains it. The Unicon implementation in tree.
icn is shown here:

method gen(o, o1, o2, o3)

 return [tac(o, o1, o2, o3)]

end

The Unicon version does not have to do anything to allow arguments to be omitted and
initializes op1…op3 to the null value. The corresponding Java implementation in tree.
java uses variable argument method syntax. It looks like this:

ArrayList<tac> gen(String o, address a) {

 ArrayList<tac> L = new ArrayList<tac>();

 tac t = null;

 switch(a.length) {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

224 Intermediate Code Generation

 case 3: t = new tac(o, a[0], a[1], a[2]); break;

 case 2: t = new tac(o, a[0], a[1]); break;

 case 1: t = new tac(o, a[0]); break;

 case 0: t = new tac(o); break;

 default: j0.semerr("gen(): wrong # of arguments");

 }

 L.add(t);

 return L;

}

The preceding examples demonstrate two ways that Java awkwardly supports methods
with a variable number of arguments. First, there is method overloading: the tac class
has four different constructors to accommodate a different number of arguments. On the
other hand, the gen() method uses Java's variable argument syntax, which provides a
weird array-like thing that is not an array to hold the arguments to the method.

Three address code instructions are easily mapped down into short sequences of 1-2
native instructions, and computers with complex instruction sets have instructions that
have three operands and direct correspondence to three-address code. Now, let's look
at how to augment tree nodes to include information needed for intermediate code,
including these three-address instructions.

Adding the intermediate code attributes to the tree
In the previous two chapters, we added symbol table scope and type information to the
syntax tree nodes. Now, it is time to add representations for several pieces of information
needed for code generation.

For every tree node that contains intermediate code, a field named icode will denote the
list of code instructions that correspond to executing the code for that subtree.

For expressions, a second attribute named addr will denote the address where the
computed value of the expression can be found after that expression executes.

For every tree node that contains intermediate code, the first and follow fields will
denote labels to use as targets when the control flow should execute at the beginning of that
code, or it should execute whatever instruction logically comes immediately after that code.

Lastly, for every tree node that represents a Boolean expression, the onTrue and
onFalse fields will hold labels to use as targets when that Boolean expression is found
to be true or false, respectively. These names were chosen to avoid the reserved words
true and false in Java.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preparing to generate code 225

In Unicon, adding these attributes to the class tree in tree.icn leaves us with
the following:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,

 typ,icode,addr,first,follow,onTrue,onFalse)

Our tree nodes are getting fatter and fatter. While we may have to allocate thousands of
them to compile a program, on a machine with gigabytes of main memory, the memory
cost will not matter. The corresponding Java additions to tree.java look like this:

class tree {

 . . .

 typeinfo typ;

 ArrayList<tac> icode;

 address addr, first, follow, onTrue, onFalse;

At this point, you might be wondering how we plan to calculate these new attributes. The
answer is mostly that they are synthesized via a post-order tree traversal, which we will
look at in the following sections. But there will be a few wrinkles.

Generating labels and temporary variables
A couple of helper methods will prove instrumental during intermediate code generation.
You can think of them as factory methods if you want; a factory method is a method that
constructs an object and returns it. In any case, we need one for labels, to facilitate control
flow, and one for temporary variables. Let's call them genlabel() and genlocal().

The label generator, genlabel(), generates a unique label. A unique integer can be
obtained from serial.getid(), so genlabel() can, for example, concatenate an
"L" with the result from a call to that method. It is an interesting question of whether
genlabel() should return the label as an integer or string, an address, a three-address
instruction, or a list containing a three-address instruction. The right answer is probably
an address. The Unicon code for genlabel() in tree.icn might look like this:

method genlabel()

 return address("lab", serial.getid())

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

226 Intermediate Code Generation

The corresponding Java method in tree.java is as follows:

address genlabel() {

 return new address("lab", serial.getid());

}

The temporary variable generator, genlocal(), needs to reserve a chunk of memory in
the local region. Logically, this entails memory allocation on the top of the stack in some
future address space when the generated program will be run someday. This is heady
stuff. In practice, a stack allocation is made in a big chunk whenever a method is called.
The compiler calculates how big that chunk needs to be for each method, including all
the local variables within the program, as well as the temporary variables that are used
to calculate the partial results during the various operators when the expressions in the
method are executed.

Each local variable requires some number of bytes, but for this book, the units allocated
are full double-aligned 64-bit words. Offsets are reported in bytes, but if you need a
byte, you round up and allocate a word. The symbol table is where Jzero allocates local
variables. In the tree class code, methods can invoke genlocal() from the symbol table
with the stab.genlocal() expression. To implement genlocal(), symbol table
entries are extended to keep track of the address that variable occupies, and the symbol
table itself tracks how many bytes have been allocated in total. Whenever a request for a
new variable comes in, we allocate the number of words it requires and we increment a
counter by that amount.

As given, genlocal() allocates a single word and produces an address for it. For a
language that allocates multi-word entities on the stack, genlocal() can be extended
to take a parameter that specifies the number of words to allocate, but since Jzero
allocates arrays and class instances from the heap, Jzero's genlocal() can get away with
allocating one eight-byte word each call.

Symbol table entries are extended with an address field named addr. The Unicon
addition to symtab_entry.icn is shown here:

class symtab_entry(sym,parent_st,st,isConst,typ,addr)

The Java addition to symtab_entry.java looks like this:

public class symtab_entry {

 . . .

 address addr;

 . . .

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preparing to generate code 227

 symtab_entry(String s, symtab p, boolean iC,

 symtab t, typeinfo ti, address a) {

 sym = s; parent_st = p; isConst = iC;

 st = t; typ = ti; addr = a;

The symbol table class gets a byte counter for how many bytes have been allocated within
the region corresponding to the symbol table. Symbol table insertion places an address in
the symbol table entry and increments the counter. A call to genlocal() inserts a new
variable. The Unicon implementation in symtab.icn is shown here:

class symtab(scope, parent, t, count)

 . . .

 method insert(s, isConst, sub, typ)

 . . .

 t[s] := symtab_entry(s, self, sub, isConst, typ,

 address(scope,count))

 count +:= 8

 . . .

 end

 method genlocal()

 local s := "local$" || count

 insert(s, false, , typeinfo("int"))

 return t[s].address

 end

initially

 t := table()

 count := 0

end

The preceding change to the insert() method passes in the address at the top of the
region to the symtab_entry constructor whenever a variable is allocated, and then
increments the counter to allocate space for it. The addition of the genlocal()method
consists of inserting a new variable and returning its address. The temporary variable
has a dollar symbol in it, $, so that name cannot appear as a regular variable name in the
source code. The Java implementation of this addition to symtab.java consists of the
following changes:

public class symtab {

 . . .

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

228 Intermediate Code Generation

 int count;

 . . .

 void insert(String s, Boolean iC, symtab sub,
 typeinfo typ){

 . . .

 t.put(s, new symtab_entry(s, this, iC, sub, typ,

 new address(scope,count)));

 count += 8;

 }

 }

 address genlocal() {

 String s = "local$" + count;

 insert(s, false, null, new typeinfo("int"));

 return t.get(s).addr;

 }

With the helper methods for generating labels and temporary variables in place, let's look
at an intermediate code instruction set.

An intermediate code instruction set
Intermediate code is like machine-independent assembler code for an abstract CPU. The
instruction set defines a set of opcodes. Each opcode specifies its semantics, including
how many operands it uses and what state changes occur from executing it. Because this
is intermediate code, we do not have to worry about registers or addressing modes – we
can just define state changes in terms of what modifications must occur in main memory.
The intermediate code instruction set includes both regular instructions and pseudo
instructions, as is the case for other assembler languages. Let's look at a set of opcodes for
the Jzero language. There are two categories of opcodes: instructions and declarations.

Instructions
Except for immediate mode, the operands of instructions are addresses and instructions
that implicitly dereference values in memory located at those addresses. On typical
modern machines, units of words are 64 bits. Offsets are given in bytes:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

An intermediate code instruction set 229

Figure 9.2 – Different opcodes, the C equivalents, and their descriptions

Next, we will have a look at some of the declarations.

Declarations
Declarations and other pseudo-instructions typically associate a name with some amount
of memory in one of the memory regions of the program. The following are some
declarations and their descriptions:

Figure 9.3 – Declarations and their descriptions

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

230 Intermediate Code Generation

These instructions and declarations are general and able to express a variety of
computations. Input/output could be modeled by adding instructions or by making
runtime system calls. We will make use of this instruction set substantially later in this
chapter, starting in the Generating code for expressions section. But first, we must compute
some more attributes in our syntax tree that are needed for control flow.

Annotating syntax trees with labels for
control flow
The code at some tree nodes will be sources or targets of control flow. To generate code,
we need a way to generate the labels at the targets and propagate that information to the
instructions that will go to those targets. It makes sense to start with the attribute named
first. The first attribute holds a label to which branch instructions can jump to
execute a given statement or expression. It can be synthesized by brute force if need be; if
you had to, you could just allocate a unique label to each tree node. The result would be
replete with redundant and unused labels, but it would work. For most nodes, the first
label can be synthesized from one of their children, instead of allocating a new one.

Consider the additive expression e1 + e2, which builds a non-terminal named
AddExpr. If there was any code in e1, it would have a first field and that would be the
label to use for the first field of the entire AddExpr. If e1 had no code, e2 might have
some code and supply the first field for the parent. If neither subexpression has any
code, then we need to generate a new label for whatever code we generate in the AddExpr
node that performs the addition. Similar logic applies to other operators. The Unicon
implementation of the genfirst() method in tree.icn looks like this:

method genfirst()

 every (!\kids).genfirst()

 case sym of {

 "UnaryExpr": first := \kids[2].first | genlabel()

 "AddExpr"|"MulExpr": first := \kids[1|2].first |

 genlabel()

 . . .

 default: first := (!\kids).first

 }

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Annotating syntax trees with labels for control flow 231

The case branches in the preceding code rely on Unicon's goal-directed evaluation. A
non-null test is applied to children's first fields for those children that may have code.
If those non-null tests fail, genlabel() is called to assign first if this node will
generate an instruction. The default, which is good for a lot of non-terminals higher up
in the grammar, is to assign first if a child has one, but not to call genlabel(). The
corresponding Java code in tree.java looks like this:

void genfirst() {

 if (kids != null) for(tree k:kids) k.genfirst();

 switch (sym) {

 case "AddExpr": case "MulExpr": {

 if (kids[1].first != null) first = kids[1].first;

 else if (kids[2].first != null)
 first = kids[2].first;

 else first = genlabel();

 }

 . . .

 }

}

In addition to the first attribute, we need an attribute named follow that denotes
the label to jump to for whatever code immediately comes after a given block. This will
help implement statements such as if-then, as well as break statements. The follow
attribute propagates information from ancestors and siblings rather than children. The
implementation must use an inherited attribute, instead of a synthesized one. Instead
of a simple bottom-up post-order traversal, information is copied down in a pre-order
traversal, as was seen previously for copying type information into variable declaration
lists. The follow attribute uses first attribute values and must be computed after
genfirst() has been run.

Consider the most straightforward grammar rule where you might define a follow
attribute. In the Jzero grammar, the basic rule for statements executing in sequence
consists of the following:

BlockStmts : BlockStmts BlockStmt ;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

232 Intermediate Code Generation

For an inherited attribute, the parent (BlockStmts, which is to the left of the colon)
is responsible for providing the follow attribute for the two children. The left child's
follow will be the first instruction in the right child, so the attribute is moved from one
sibling to the other. The right child's follow will be whatever follows the parent, so it is
copied down. Once these values have been set, the parent must have the children do the
same for their children, if any. The Unicon implementation in tree.icn is shown here:

method genfollow()

 case sym of {

 "BlockStmts": {

 kids[1].follow := kids[2].first

 kids[2].follow := follow

 }

 . . .

 }

 every (!\kids).genfollow()

end

The corresponding Java code in tree.java looks like this:

void genfollow() {

 switch (sym) {

 case "BlockStmts": {

 kids[0].follow = kids[1].first;

 kids[1].follow = follow;

 break;

 }

 . . .

 }

 if (kids != null) for(tree k:kids) k.genfollow();

}

Computing these attributes enables the generation of instructions for the control flow
that goes to these various labels. You may have noticed that a lot of these first and follow
labels might never be used. We can either generate them all anyway, or we can devise a
mechanism to only emit them when they are an actual target of a branch instruction.
Before we get on with code generation for the challenging control flow instructions
that use these labels, let's consider the simpler problem of generating code for ordinary
arithmetic and similar expressions.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating code for expressions 233

Generating code for expressions
The easiest code to generate is straight-line code consisting of statements and expressions
that execute in sequence with no control flow. As described earlier in this chapter, there
are two attributes to compute for each node: the attribute for where to find an expression's
value is called addr, while the intermediate code necessary to compute its value is called
icode. The values to be computed for these attributes for a subset of the Jzero expression
grammar are shown in the following table. The ||| operator refers to list concatenation:

Figure 9.4 – Semantic rules for expressions

The main intermediate code generation algorithm is a bottom-up post-order traversal
of the syntax tree. To present it in small chunks, the traversal is broken into the main
method, gencode(), and helper methods for each non-terminal. In Unicon, the
gencode() method in tree.icn looks as follows:

method gencode()

 every (!\kids).gencode()

 case sym of {

 "AddExpr": { genAddExpr() }

 "MulExpr": { genMulExpr() }

 . . .

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

234 Intermediate Code Generation

 "token": { gentoken() }

 default: {

 icode := []

 every icode |||:= (!\kids).icode

 }

 }

end

The default case for tree nodes that do not know how to generate code consists of just
concatenating the code of the children. The corresponding Java looks like this:

void gencode() {

 if (kids != null) for(tree k:kids) k.gencode();

 switch (sym) {

 case "AddExpr": { genAddExpr(); break; }

 case "MulExpr": { genMulExpr(); break; }

 . . .

 case "token": { gentoken(); break; }

 default: {

 icode = new ArrayList<tac>();

 if (kids != null) for(tree k:kids)

 icode.addAll(k.icode);

 }

 }

}

The methods that are used to generate code for specific non-terminals must occasionally
generate different instructions, depending on the production rule. The Unicon code for
genAddExpr() is shown here:

method genAddExpr()

 addr := genlocal()

 icode := kids[1].icode ||| kids[2].icode |||

 gen(if rule=1320 then "ADD" else "SUB",

 addr, kids[1].addr, kids[2].addr)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating code for expressions 235

After generating a temporary variable to hold the result, the code is constructed by adding
the appropriate arithmetic instruction to the end of the children's code. In this method,
rule 1320 refers to an addition, while rule 1321 refers to a subtraction. The corresponding
Java code looks like this:

void genAddExpr() {

 addr = genlocal();

 icode = new ArrayList<tac>();

 icode.addAll(kids[0].icode);

 icode.addAll(kids[1].icode);

 icode.addAll(gen(((rule==1320)?"ADD":"SUB"), addr,

 kids[0].addr, kids[1].addr));

}

The gentoken() method generates code for terminal symbols. The icode attribute is
usually empty. In the case of a variable, the addr attribute is a symbol table lookup, while
in the case of a literal constant, the addr attribute is a reference to a value in the constant
region, or an immediate value. In Unicon, the gentoken() method looks like this:

method gentoken()

 icode := []

 case tok.cat of {

 parser.IDENTIFIER: { addr := stab.lookup(tok.text).addr }

 parser.INTLIT: { addr := address("imm", tok.ival) }

 . . .

 }

end

The i code attribute is an empty list, while the addr attribute is obtained via a symbol
table lookup. In Java, gentoken() looks like this:

void gentoken() {

 icode = new ArrayList<tac>();

 switch (tok.cat) {

 case parser.IDENTIFIER: {

 addr = stab.lookup(tok.text).addr; break; }

 case parser.INTLIT: {

 addr = new address("imm", tok.ival); break; }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

236 Intermediate Code Generation

 . . .

 }

}

You may observe from all this that generating intermediate code for expressions in
straight-line code is mainly a matter of concatenating the operands' code, followed by
adding one or more new instructions per operator. This work is made easier by allocating
space in the form of the addresses of temporary variables ahead of time. The code for
control flow is a bigger challenge.

Generating code for control flow
Generating code for control structures such as conditionals and loops is more challenging
than code for arithmetic expressions, as shown in the preceding section. Instead of
using synthesized attributes in a single bottom-up pass, code for control flow uses label
information that must be moved to where it is needed using inherited attributes. This may
involve multiple passes through the syntax tree. We will start with the condition expression
logic needed for even the most basic control flow, such as if statements, and then show
you how to apply that to loops, followed by considerations needed for method calls.

Generating label targets for condition expressions
We have already set up for control flow by assigning the first and follow attributes,
as described in the Annotating syntax trees with labels for control flow section. Consider
what role the first and follow attributes play, starting with the simplest control flow
statement, the if statement. Consider a code fragment such as the following:

if (x < 0) x = 1;

y = x;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating code for control flow 237

The syntax tree for these two statements is shown here:

Figure 9.5 – Syntax tree illustrating control flow

BlockStmts assigned the follow attribute of the IfThenStmt node to the first
attribute of the y=x assignment. The code that is generated for RelExpr should go to
the first label of the then part, pictured here as Assignment1, if RelExpr is true. It
should go to follow the whole IfThenStmt if RelExpr is false. To implement this,
label values computed from IfThenStmt can be inherited down into two new attributes
of RelExpr. We cannot call them true and false because they are Java reserved
words. Let's call the attribute for where to go when an expression is true onTrue and the
attribute for where to go when an expression is false onFalse. The semantic rules we
want to implement are shown in the following table:

Figure 9.6 – Semantic rules for the if-then and if-then-else statements

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

238 Intermediate Code Generation

As we can see, the condition in IfThenStmt is an Expr that inherits onTrue from
Stmt, which is its then part, and inherits onFalse from the parent's follow attribute
– whatever code follows the whole IfThenStmt. These attributes must be inherited
down into Boolean subexpressions through operators such as logical AND and OR. The
semantic rules for the Boolean operators are shown in the following table:

Figure 9.7 – Semantic rules for Boolean expressions

The code to compute the onTrue and onFalse attributes is placed in a method called
gentargets(). The Unicon implementation in tree.icn looks like this:

method gentargets()

 case sym of {

 "IfThenStmt": {

 kids[1].onTrue := kids[2].first

 kids[1].onFalse := follow

 }

 "CondAndExpr": {

 kids[1].onTrue := kids[2].first

 kids[1].onFalse := onFalse

 kids[2].onTrue := onTrue

 kids[2].onFalse := onFalse

 }

 . . .

 }

 every (!\kids).gentargets()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating code for control flow 239

The corresponding Java method looks like this:

void gentargets() {

 switch (sym) {

 case "IfThenStmt": {

 kids[0].onTrue = kids[1].first;

 kids[0].onFalse = follow;

 }

 case "CondAndExpr": {

 kids[0].onTrue = kids[1].first;

 kids[0].onFalse = onFalse;

 kids[1].onTrue = onTrue;

 kids[1].onFalse = onFalse;

 }

 . . .

 }

 if (kids!=null) for(tree k:kids) k.gentargets();

}

Having seen how the onTrue and onFalse attributes get assigned, perhaps the last piece
of the puzzle is the code that's generated for relational operators, such as the x < y test.
On these operators, it would be possible to generate code that computes a true (1) or false
(0) result and store it in a temporary variable such as an arithmetic operator. However, the
point of computing the onTrue and onFalse labels was to generate code that would jump
directly to the correct label, depending on whether a test was true or false. This is essential to
implement the short-circuit semantics for Boolean operators that Jzero inherits from Java,
and before it, from C. Here is the Unicon implementation of the genRelExpr() method,
which is called from gencode() to generate intermediate code for relational expressions:

method genRelExpr()

 op := case kids[2].tok.cat of {

 ord("<"): "BLT"; ord(">"): "BGT";

 parser.LESSTHANOREQUAL: "BLE"

 parser.GREATERTHANOREQUAL: "BGT" }

 icode := kids[1].icode ||| kids[3].icode |||

 gen(op, onTrue, kids[1].addr, kids[3].addr) |||

 gen("GOTO", onFalse)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

240 Intermediate Code Generation

This code starts by setting the op variable to the three-address opcode that corresponds
to the integer category of the operator, extracted from kids[2].tok.cat. Then, it
constructs code by concatenating the left and right operands, followed by a conditional
branch if the operator evaluates to true, followed by an unconditional branch if the
operator was false. The corresponding Java implementation looks like this:

void genRelExpr() {

 String op = "ERROR";

 switch (kids[1].tok.cat) {

 case '<': op="BLT"; break; case ';': op="BGT"; break;

 case parser.LESSTHANOREQUAL: op="BLE"; break;

 case parser.GREATERTHANOREQUAL: op="BGT";

 }

 icode = new ArrayList<tac>();

 icode.addAll(kids[0].icode); icode.addAll(kids[2].icode);

 icode.addAll(gen(op, onTrue, kids[0].addr,

 kids[2].addr));

 icode.addAll(gen("GOTO", onFalse));

}

Compared to the code that is generated for ordinary arithmetic, the code for control
structures such as if statements pass a lot of label information around. Now, let's look at
what must be added to the code to support loop control structures.

Generating code for loops
This section presents ideas for generating intermediate code for while loops and for
loops. The while loop code should be almost identical to an if-then statement, with
the sole additions of a label at the top, and a goto at the bottom to jump to that label.
A for loop is just a while loop with a couple of additional expressions thrown in. The
following table shows the semantic rules for these two control structures:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating code for control flow 241

Figure 9.8 – Semantic rules for the intermediate code generation of loops

The genWhileStmt() method is representative of similar control flow code generation
methods such as genIfStmt() and genForStmt(). Most of the work is done
while computing the first, follow, onTrue, and onFalse attributes. The Unicon
implementation of genWhileStmt() is as follows:

method genWhileStmt()

 icode := gen("LAB", kids[1].first) ||| kids[1].icode |||

 gen("LAB", kids[1].onTrue) |||

 kids[2].icode ||| gen("GOTO", kids[1].first)

end

The Java implementation of genWhileStmt() is shown here:

void genWhileStmt() {

 icode = new ArrayList<tac>();

 icode.addAll(gen("LAB", kids[0].first));

 icode.addAll(kids[0].icode);

 icode.addAll(gen("LAB", kids[0].onTrue));

 icode.addAll(kids[1].icode);

 icode.addAll(gen("GOTO", kids[0].first));

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

242 Intermediate Code Generation

There is one remaining aspect of control flow to present. Method (or function) calls are
fundamental building blocks in all forms of imperative code and object-oriented code.

Generating intermediate code for method calls
The intermediate code instruction set provides three opcodes related to method calls:
PARM, CALL, and RET. To invoke a method, the generated code executes several PARM
instructions, one for each parameter, followed by a CALL instruction. The called method
then executes until it reaches a RET instruction, at which time it returns to the caller.
This intermediate code is an abstraction of several different ways that hardware supports
method (or function) abstractions.

On some CPUs, parameters are mostly passed in registers, while on others, they are all
passed on the stack. At the intermediate code level, we must worry about whether PARM
instructions occur in the order actual parameters appear in the source code or reverse
order. In object-oriented languages such as Jzero, we also worry about how a reference
to an object is accessible inside a called method. Programming languages have answered
these questions in different ways on different CPUs, but for our purposes, we'll use the
following calling conventions: parameters are given in reverse order, followed by the
object instance (self or this pointer) as an implicit extra parameter, followed by the CALL
instruction.

When gencode() gets to a MethodCall, which is a type of primary expression in our
grammar, it will call genMethodCall(). Its Unicon implementation is shown here:

method genMethodCall()

 local nparms := 0

 if k := \ kids[2] then {

 icode := k.icode

 while k.sym === "ArgList" do {

 icode |||:= gen("PARM", k.kids[2].addr)

 k := k.kids[1]; nparms +:= 1 }

 icode |||:= gen("PARM", k.addr); nparms +:= 1

 }

 else icode := []

 if kids[1].sym === "QualifiedName" then

 icode |||:= gen("PARM", kids[1].kids[1].addr)

 else icode |||:= gen("PARM", "self")

 icode |||:= gen("CALL", kids[1].addr, nparms)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating code for control flow 243

The generated code starts with the code to compute the values of the parameters. Then, it
issues PARM instructions in reverse order, which comes for free from the way the context-
free grammar constructed the syntax tree for argument lists. The trickiest parts of this
method have to do with how the intermediate code knows the address to use for the
current object. The Java implementation of genMethodCall() is shown here:

void genMethodCall() {

 int nparms = 0;

 icode = new ArrayList<tac>();

 if (kids[1] != null) {

 icode.addAll(kids[1].icode);

 tree k = kids[1];

 while (k.sym.equals("ArgList")) {

 icode.addAll(gen("PARM", k.kids[1].addr));

 k = k.kids[0]; nparms++; }

 icode.addAll(gen("PARM", k.addr)); nparms++;

 }

 if (kids[0].sym.equals("QualifiedName"))

 icode.addAll(gen("PARM", kids[0].kids[0].addr));

 else icode.addAll(gen("PARM", "self"));

 icode.addAll(gen("CALL", kids[0].addr,

 new address("imm",nparms)));

}

What this section showed has probably convinced you that code generation for the calling
side is more challenging than code generation for the return instruction, which you can
examine in this chapter's code on GitHub. It is also worth mentioning that every method
body's code might have a ret instruction appended, to ensure that code never executes
past the end of a method body and into whatever comes after it.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

244 Intermediate Code Generation

Reviewing the generated intermediate code
You cannot run intermediate code, but you should check it carefully. Ensure that the logic
looks correct on test cases for every feature that you care about. To check the generated
code for a file such as hello.java, run the following command using either the Unicon
(left-hand side) or Java implementation (right-hand side). As a reminder for Java, on
Windows, you must execute something like set CLASSPATH=".;C:\byopl" first or
the equivalent in your Control Panel or Settings. On Linux, it might look like export
CLASSPATH=.;..:

j0 hello.java java ch9.j0 hello.java

The output should look similar to the following:

.string

L0:

 string "hello, jzero!"

.global

 global global:8,hello

 global global:0,System

.code

proc main,0,0

 ASIZE loc:24,loc:8

 ASN loc:16,loc:24

 ADD loc:32,loc:16,imm:2

 ASN loc:16,loc:32

L138:

 BGT L139,loc:16,imm:3

 GOTO L140

L139:

 PARM strings:0

 PARM loc:40

 CALL PrintStream__println,imm:1

 SUB loc:48,loc:16,imm:1

 ASN loc:16,loc:48

 GOTO L138

L140:

 RET

end

no errors

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 245

Looking over intermediate code is when you start to realize that you may be able to finish
this compiler and translate your source code down into machine code of some kind. If you
are not excited, you should be. A lot of errors can be spotted at this point, such as omitted
features, or branch statements that go to non-existent labels, so check it out before you
rush ahead to generate the final code.

Summary
In this chapter, you learned how to generate intermediate code. Generating intermediate
code is the first vital step in synthesizing the instructions that will eventually allow a
machine to run the user's program. The skills you learned in this chapter build on the
skills that are used in semantic analysis, such as how to add semantic attributes to the
syntax tree nodes, and how to traverse syntax tree nodes in complex ways as needed.

One of the important features of this chapter was an example intermediate code
instruction set that we used for the Jzero language. Since the code is abstract, you can add
new instructions to this instruction set as needed for your language. Building lists of these
instructions was easy using Unicon's list data type, and still fairly straightforward using
Java's ArrayList type.

The chapter showed you how to generate code for straight-line expressions such as
arithmetic calculations. Far more effort in this chapter went into the instructions for
control flow, which often involve goto instructions whose target instructions must have
labels. This entailed computing several attributes for labels, including inherited attributes,
before building the lists of code instructions.

Now that you have generated intermediate code, you are ready to move on to the final
code generation part. However, first, Chapter 10, Syntax Coloring in an IDE, will take you
on a practical diversion consisting of exploring how to use your knowledge to incorporate
syntax coloring in an IDE.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Syntax Coloring

in an IDE
Creating a useful programming language requires more than just a compiler or interpreter
that makes it possible to run programs—it requires an ecosystem of tools for developers.
This ecosystem often includes debuggers, online help, or an integrated development
environment, commonly called an IDE. An IDE can be broadly defined as any
programming environment in which source code editing, compilation, linking steps (if
any), and execution may all be performed within the same user interface (UI).

This chapter addresses some of the challenges of incorporating code from your
programming language implementation into an IDE to provide syntax coloring and
visual feedback about syntax errors. One reason that you want to learn how to do this is
that many programmers will not take your language seriously unless it has an IDE. The
code in this chapter will be a Unicon example since there is no IDE that is implemented
identically in Unicon and Java.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

248 Syntax Coloring in an IDE

This chapter covers the following main topics:

• Downloading the example IDEs used in this chapter

• Integrating a compiler into a programmer's editor

• Avoiding reparsing the entire file on every change

• Using lexical information to colorize tokens

• Highlighting errors using parse results

• Adding Java support

The skills to learn in this chapter revolve around software systems communication and
coordination. Primarily, by bundling the IDE and compiler into a single executable, high-
performance communication is conducted by passing references to shared data, instead of
resorting to file input/output (I/O) or inter-process communication (IPC).

Note
Writing an IDE is a large project and could be the subject of an entire book.
Unlike other chapters of this book where we present the compiler code from
scratch, this chapter describes how syntax coloring was added to the Unicon
IDE. The Unicon IDE was written by Clinton Jeffery and Nolan Clayton, with
contributions from many other people since then. Luis Alvidres did the syntax
coloring work as part of his Master's degree project. Luis's project report can be
found at http://www.unicon.org/reports/alvidres.pdf.

The chapter concludes with a description of how the Unicon IDE code was
later incorporated into a virtual environment application called Collaborative
Virtual Environment (CVE). In CVE, the IDE code was generalized to support
other languages, including Java and C++. Hani Bani-Salameh did this work in
Unicon as part of his Ph.D. research. The description of adding Java support to
the Unicon IDE code is comparable to what we might do to add support for a
new language such as Jzero to an existing IDE. The next section describes how
to obtain the source code of the programs discussed in this chapter.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.unicon.org/reports/alvidres.pdf

Downloading the example IDEs used in this chapter 249

Downloading the example IDEs used in this
chapter
In this chapter, we will be looking at two simple IDEs that illustrate the concepts
presented. The first IDE is a program called ui, which stands for Unicon IDE. The ui
program is included in the Unicon language distribution, where it can be found in a
directory called uni/ide. The program consists of about 10,000 lines of code in 26 files,
not counting code in library modules. The following screenshot shows the ui program:

Figure 10.1 – The ui IDE

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

250 Syntax Coloring in an IDE

The second IDE is called CVE. Among other things, CVE is a piece of research software
that experimentally extends the ui IDE to support C++ and Java. You can download the
source code for CVE from cve.sf.net. The following screenshot shows CVE. If you
compare this screenshot with the preceding one, you can see that the CVE program's IDE
started from the ui code base:

Figure 10.2 – The CVE IDE

The source code for CVE is stored in a version control system called Subversion, available
from subversion.apache.org. Once you have installed Subversion, run the
following command to fetch CVE. The svn checkout command will create a subdirectory
named cve/ under whatever directory you are in when you run this command:

svn checkout https://svn.code.sf.net/p/cve/code/trunk/cve

Now, let's move on to a brief description of the Unicon IDE and how the Unicon compiler
frontend code was integrated into the IDE for the purposes of syntax coloring.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://subversion.apache.org

Integrating a compiler into a programmer's editor 251

Integrating a compiler into a programmer's
editor
The front half of the Unicon compiler—loosely corresponding to Chapter 2, Programming
Language Design, up to Chapter 5, Syntax Trees, in this book—was integrated into the
Unicon IDE, known as ui. The Unicon frontend consists of three major components: a
preprocessor, a lexical analyzer, and a parser. In the Unicon translator, these components
are called from a main() procedure. The translator opens, reads, and writes files in the
filesystem to perform its I/O, and provides feedback to the user by writing text to standard
output or standard error on a console or terminal window. In an IDE, the compiler
components are called from behind the scenes while the user is editing their code in a
graphical UI (GUI). The source code is obtained directly from the memory in the IDE
and the compiler's output is obtained from the memory by the IDE and presented to the
user. Altogether, seven files from the Unicon translator were modified to become library
modules that can be linked in and used from other programs besides unicon. The next
section explores how source code in the IDE is fed into the compiler modules. After that,
we will consider how the compiler output, including error messages, is fed into the IDE.

Analyzing source code from within the IDE
A compiler usually obtains its input by opening and reading from a named file. The
lex-compatible interface used by many compilers specifically designates that input comes
from an opened file handle stored in a global variable named yyin. This is too slow for an
IDE, which performs lexical and syntax analysis frequently and repeatedly as the user is
editing. Instead of reading from a file, the Unicon compiler frontend was modified so that
it could read source code that was already in the main memory.

Consider a file named hello.icn that contains a three-line Hello, World program.
Within the IDE, the source code is stored as a list of three strings. The list of strings is
held in a variable named contents within an editable text list widget. Writing that list of
strings out to disk and invoking the compiler to read it each time is too slow. Modifying
the compiler to explicitly depend on the list of strings in the IDE slightly complicates the
compiler and makes the interface between the two tools a bit fragile. Then again, reading
from a list of strings is not exactly rocket science. The list-of-strings format also makes it
easy to select part of a file to feed into the parser, instead of the whole thing.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

252 Syntax Coloring in an IDE

The Unicon lexical analyzer lives in uni/unicon/unilex.icn in the Unicon
distribution. Prior to integration, the Unicon lexical analyzer code used to pre-read the
entire source file into a big string, in a variable named buffer. Supporting reading from
a list of strings meant placing one line at a time in buffer, and whenever the lexical
analyzer reached the end of a line, executing the following code:

if type(yyin) == "list" then {

 if buffer := pop(yyin) then {

 yylineno +:= 1

 yycolno := 1

 if tokflags < Newline then tokflags +:= Newline

 return yylex(ender)

 }

 }

This code uses pop() to remove the next line from a list of strings instead of calling
read() to read the next line from a file. Since pop() modifies its source list, lexical
analysis is performed on a copy of the list of strings provided by the IDE, rather than on
the IDE's own list of strings. Copying a list (or part of a list) of strings does not require the
allocation and copying of all the string data containing the code; only the list structure is
copied. Now, let's look at how compiler messages are delivered to the GUI of the IDE.

Sending compiler output to the IDE
Instead of directly writing error output, the seven library modules in the compiler were
modified to construct a list of error diagnostics. The regular compiler could then output
these to the console, while the IDE could display messages in a sub-window or depict
them graphically. Consider a possible error message, such as the following:

hello.icn:5: '}' expected

Prior to integration, the compiler could have written that with the following line of code:

write(&errout, filename, ":", lineno, ": ", message)

To integrate such messages into the IDE, the compiler code was modified as follows:

iwrite(filename, ":", lineno, ": ", message)

The iwrite() procedure actually stores the diagnostic on a list named
parsingErrors, which can be read by the IDE or written to &errout, depending on
whether the compiler frontend is linked into the IDE or the Unicon compiler.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Avoiding reparsing the entire file on every change 253

From within the Unicon IDE, these parsing errors are displayed textually from within a
ReparseCode() method. The parser is invoked, and then if errors were encountered,
the following lines execute:

 every errorObject := !parsingErrors do {

 errorObject.lineNumber +:= lineNumberOffset

 if errorObject.lineNumber <= *contents then {

 SetErrorLineNumber(errorObject.lineNumber)

 uidlog.MsgBox.set_contents(

 [errorObject.lineNumber ||": " ||

 errorObject.errorMessage])

 }

 }

The error message text is placed in a GUI component named MsgBox with a call to its
set_contents() method. MsgBox is drawn below the source code. In addition to
displaying the same output text that the compiler would show, in the event of an error,
the IDE highlights the line on which the error occurs. This is discussed later in the
Highlighting errors using parse results section.

This section on integrating a compiler into an IDE or programmer's editor discussed the
nuts and bolts of how to combine two large, complex, pre-existing pieces of software. The
Unicon compiler and IDE are maintained mostly independently. Keeping the connections
between them simple reduces the likelihood of a change in one affecting the other. If you
are writing a new IDE from scratch to go along with a new compiler, a more extensive
integration might enable extra features or better performance, at a cost in complexity,
maintainability, and portability. Now, let's look at how to invoke syntax checks without
parsing the file constantly while the user is editing the code.

Avoiding reparsing the entire file on every
change
The lexical and syntax analysis necessary to parse input and detect and report syntax errors
presented in this book from Chapter 2, Programming Language Design, to Chapter 8,
Checking Types on Arrays, Method Calls, and Structure Accesses, are substantial algorithms.
Although the Flex and Yacc tools we've used are high-performance, if given a large input
file, scanning and parsing become slow enough that users will not want to reparse the
whole file each time a user modifies the file in an IDE text editor. In testing, we found that
reparsing the entire file became a problem on files larger than 1,000 lines.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

254 Syntax Coloring in an IDE

Sophisticated incremental parsing algorithms that minimize the amount that must be
reparsed after changes are the subject of Ph.D. dissertations and research articles. For
the Unicon IDE, a simple approach is taken. Whenever the cursor moves away from
a line that has been changed, a parsing unit is selected, starting with the changed line
and extending above and below to the boundaries of the nearest procedure, method, or
another global declaration unit. That unit is reparsed.

In Unicon, this gives a very good performance. Luis Alvidres found that when an entire
declaration unit is reparsed after a line is changed, 98% of the time, the compiler reparses
fewer than 100 lines of code. Most of the other 2% of cases—namely, procedures or
methods larger than 100 lines—are still not a problem. Only the very largest procedure or
method bodies result in slow reparsing. This is often machine-generated code, such as the
output of Flex or Yacc, that a user seldom edits by hand. For this, the IDE disables syntax
checking to avoid an unacceptable user response time.

The code to select a slice to reparse when the cursor moves off a line is in a method
named GetCode() that can be found in the BuffEditableTextList class, which
is a subclass of Unicon's standard GUI editor component named EditableTextList.
BuffEditableTextList that lives in uni/ide/buffertextlist.icn. The
GetCode() method is implemented as follows. First comes the method header and a set
of local variable declarations:

 method GetCode()

 local codeSubStringList,

 originalPositionY, currentPositionY, token,

 startPositionY := 0, endPositionY := 0,

 inClass := 0, inMethod := 0

Within the GetCode() method, these variables play the following roles:

• codeSubStringList is a list containing the line number to start error reporting
on, followed by the strings to parse for the code that could be affected by changes to
the current line.

• originalPositionY is the text line where the text has been changed.

• currentPositionY is a variable used to walk up and down from the current line.

• Token is an integer category returned by yylex(), as seen in Chapter 2,
Programming Language Design.

• startPositionY and endPositionY are the lines that identify the beginning
and end of the current declaration.

• inClass and inMethod report whether the declaration is in a class or a method.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Avoiding reparsing the entire file on every change 255

Initialization in the GetCode() method consists of resetting the parser and starting the
position variables from the current cursor row, which indicates on which line the cursor is
located. This is illustrated in the following code snippet:

 reinitialize()

 originalPositionY := currentPositionY := cursor_y

A primary loop in this procedure walks backward from the cursor location, using the
compiler's yylex lexical analyzer function to look at the first token on each line and find
the nearest previous line on which an enclosing declaration begins, as illustrated in the
following code snippet:

 while currentPositionY > 0 do {

 yyin := contents[currentPositionY]

 yylex_reinit()

 if (token := yylex()) ~=== EOFX then {

 if token = (PROCEDURE | METHOD | CLASS) then {

 if token=METHOD then inMethod := 1

 if token=CLASS then inClass := 1

 startPositionY := currentPositionY

 }

 }

 if startPositionY ~= 0 then break

 currentPositionY -:= 1

 }

You can see that walking backward is achieved by decrementing the current line index
held in the currentPositionY variable. The preceding while loop terminates when
a line is found that begins with a procedure, method, or class reserved word. When
this while loop terminates without finding an enclosing declaration, parsing starts from
line 1. This is achieved with the following if statement:

 if startPositionY = 0 then startPositionY := 1

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

256 Syntax Coloring in an IDE

The method then searches forward from the cursor to find the enclosing end token.
Lexical features such as multiline continued string contents make this trickier than we
might expect. The following while loop is long enough that it is split into multiple
segments for explanation. The first segment shows that the while loop steps one line at a
time through the code to be displayed, advancing currentPositionY on each line and
fetching contents from the class member variable list of strings named contents. In
Unicon, unterminated string constants can span multiple lines that end in an underscore,
which is handled by an inner while loop:

 currentPositionY := cursor_y

 while currentPositionY < *contents + 1 do {

 yyin := contents[currentPositionY]

 yylex_reinit()

 while countdoublequotes(yyin)%2=1 & yyin[-1]=="_" do {

 currentPositionY +:= 1

 if not (yyin ||:= contents[currentPositionY]) then {

 break break

 }

 }

 yylex_reinit()

The main task of the while loop given in the preceding code snippet is presented in
what is the second half of the loop, shown next. This inner loop uses the compiler's
lexical analyzer to identify tokens that would indicate the boundary of a compilable
unit. The end token indicates the end of a unit that can be compiled, while class and
procedure indicate the beginning of a subsequent unit:

 while (token := yylex()) ~=== EOFX do {

 case token of {

 END: {

 endPositionY := currentPositionY

 break

 }

 CLASS | PROCEDURE: {

 if currentPositionY ~= startPositionY then {

 endPositionY := currentPositionY-1

 break

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Avoiding reparsing the entire file on every change 257

 }

 default : break

 }

 }

The method finishes by constructing a slice of the source code to reparse and returning
it as a list of strings, prefixed by the line number immediately preceding the slice, as
illustrated in the following code snippet:

 if endPositionY = 0 then

 return codeSubStringList := [0] ||| contents

 if startPositionY = 0 then startPositionY := 1

 if inMethod = 1 then

 codeSubStringList := [startPositionY,

 "class __Parse()"] |||

 contents[startPositionY : endPositionY+1]|||

 ["end"]

 else if inClass = 1 then

 codeSubStringList := [startPositionY] |||

 contents[startPositionY : endPositionY+1]|||

 ["end"]

 else

 codeSubStringList := [startPositionY] |||

 contents[startPositionY : endPositionY+1]

 return codeSubStringList

A careful reader might worry about whether the GetCode() function as presented might
sometimes miss a declaration boundary and grab too much code—for example, if the
word procedure or end is not at the beginning of a line. This is true but non-fatal since
it just means that if the source code is written in a very strange manner, the syntax checker
might reparse a larger amount of code than necessary. Now, let's look at how the source
code can be colorized.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

258 Syntax Coloring in an IDE

Using lexical information to colorize tokens
Programmers need all the help they can get with reading, understanding, and debugging
their programs. In Figure 10.1, the source code is presented in many different colors
to enhance the readability of the code. This coloring is based on the lexical categories
of different elements of the text. Although some people consider colored text as mere
eye candy and others are not able to see colors at all, most programmers value it. Many
forms of typos and text-editing bugs are spotted more quickly when a given piece of the
source code is a different color than the programmer expected. For this reason, almost all
modern programmer's editors and IDEs include this feature.

Extending the EditableTextList component to
support color
EditableTextList is a Unicon GUI component that displays the visible portion
of a list of strings using a single font and color selection. EditableTextList does
not allow the setting of a font or foreground and background colors for individual
letters or words. To support syntax coloring, the Unicon IDE extends a subclass
of EditableTextList named BuffEditableTextList to present the user
with source code. BuffEditableTextList is not a full rich-text widget. As
with EditableTextList, it represents the source code as a list of strings, but
BuffEditableTextList knows to apply syntax coloring (and highlighting an error
line, if any) on the fly when it draws the source code.

Coloring individual tokens as they are drawn
To color each token, BuffEditableTextList calls yylex() to obtain the lexical
category for each token when it is drawn. The following code, drawn from the left_
string_unicon() method in the BuffEditableTextList class, sets the color using
a big case expression from five user-customizable colors specified in a preferences
object. Most reserved words are drawn with a special color designated as syntax_
text_color in the preferences. Separate colors are used for global declarations, for
the boundaries of procedures and methods, and for string and cset literals. This simple
set of color designations could be extended by assigning different colors for a few other
important lexical categories, such as comments or preprocessor directives:

 while (token := yylex()) ~=== EOFX do {

 Fg(win, case token of {

 ABSTRACT | BREAK | BY | CASE | CREATE | DEFAULT |

 DO | ELSE | EVERY | FAIL | IF | INITIALLY |

 iconINITIAL | INVOCABLE | NEXT | NOT | OF |RECORD|

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Highlighting errors using parse results 259

 REPEAT | RETURN | SUSPEND | THEN | TO | UNTIL |

 WHILE : prefs.syntax_text_color

 GLOBAL | LINK | STATIC |

 IMPORT | PACKAGE | LOCAL :

 prefs.glob_text_color

 PROCEDURE | CLASS |

 METHOD | END : prefs.procedure_text_color

 STRINGLIT | CSETLIT : prefs.quote_text_color

 default : prefs.default_text_color

 })

 new_s_Position := yytoken["column"] + *yytoken["s"]-1

 DrawString(win, x, y,

 s[last_s_Position : (new_s_Position+1)])

 off := TextWidth(win,

 s[last_s_Position : (new_s_Position

 +1)])

 last_s_Position := new_s_Position + 1

 x +:= off

 }

As can be seen from the preceding code, after the foreground color is set from the token,
the token itself is rendered by a call to DrawString(), and the pixel offset at which
the subsequent text should be drawn is updated using a call to TextWidth(). All of
this when combined together allows different lexical categories of source code to be
drawn in different colors in the IDE. The term used in the industry is syntax coloring,
although the part of our compiler that we brought in was only the lexical analyzer, not the
parser function that performs syntax analysis. Now, let's consider how to draw the user's
attention to the line, should the parser determine that the edits that were made on a line
leave the code with a syntax error.

Highlighting errors using parse results
In a BuffEditableTextList component, the fire() method is called whenever the
content is changed, as well as whenever the cursor moves. When content is changed, it sets
a flag named doReparse indicating that the code should be syntax-checked. The check
does not occur until the cursor is moved. The code for the fire() method is shown here:

 method fire(type, param)

 self$Connectable.fire(type, param)

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

260 Syntax Coloring in an IDE

 if type === CONTENT_CHANGED_EVENT then

 doReparse := 1

 if type === CURSOR_MOVED_EVENT &

 old_cursor_y ~= cursor_y then

 ReparseCode()

 end

In the preceding code, the ReparseCode() method is occasionally called in the Unicon
IDE in response to a cursor move, to see whether editing has resulted in a syntax error.
Only cursor moves that change the current line (old_cursor_y ~= cursor_y)
trigger the ReparseCode() method, as shown here:

 method ReparseCode ()

 local s, rv, x, errorObject, timeElapsed,

 lineNumberOffset

 if doReparse === 1 then {

 timeElapsed := &time

 SetErrorLineNumber (0)

 uni_predefs := predefs()

 x := 1

 s := copy(GetCode()) | []

 lineNumberOffset := pop(s)

 preproc_err_count := 0

 yyin := ""

 every yyin ||:= preprocessor(s, uni_predefs) do

 yyin ||:= "\n"

 if preproc_err_count = 0 then {

 yylex_reinit()

 /yydebug := 0

 parsingErrors := []

 rv := yyparse()

 }

 if errors + (\yynerrs|0) + preproc_err_count > 0 then {

 . . .every loop from Sending compiler output to

 the IDE here

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding Java support 261

 else uidlog.MsgBox.set_contents(["(no errors)"])

 doReparse := 0

 }

 end

The ReparseCode() method does nothing unless the code has changed, indicated
by doReparse having the value 1. If the code has changed, ReparseCode() calls
GetCode(), reinitializes the lexer and parser, calls yyparse(), and sends any error
output to the IDE's message box. The actual line on which the error occurs is also
highlighted when the code is redrawn as follows. Within the draw_line() method in
the BuffEditableTextList class, if the current line being drawn is the one found in
the errorLineNumber variable, the foreground color is set to red:

 if \errorLineNumber then {

 if i = errorLineNumber then {

 Fg(self.cbwin, "red")

 }

 }

You have now seen that setting different colors for different kinds of tokens such as
reserved words is fairly easy and requires only the lexical analyzer to be involved, whereas
checking for syntax errors in the background was a fair bit of work. Now, let's look at what
it would take to generalize this to add support for a new language to the IDE.

Adding Java support
The Unicon IDE only supports Unicon. The CVE collaborative virtual environment
extends the Unicon IDE to include support for Java and C/C++. This section discusses
the issues involved in adding a new language (in our case, Java, standing in for Jzero). In
a perfect world, this would involve replacing various bits of hard-wired Unicon-specific
code with a data structure that handles the language-specific parts. CVE is not perfect but
embodies some of this ideal.

CVE is larger and more complex than the Unicon IDE. The code for the IDE lives in
CVE's src/ide subdirectory, but its GUI is integrated into a larger client application
whose code lives in src/client.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

262 Syntax Coloring in an IDE

In CVE, a variable named projecttype was added that indicates the language that the
user's current program is written in. In some places, the IDE's multi-language support
handles language-specific details with if statements, such as the following example:

if projecttype == "Java" then …

else if projecttype == "CPP" then …

else if projecttype == "Unicon" then …

else

Code of this sort is found mainly in src/client/menubar.icn. It is used to select
the object used to invoke the build process or run the program. In the case of Java, an
object named javaProject has methods such as RunJava(). Manually adding such
if statements in many locations across the IDE is not great. As much as possible, the IDE
encodes language differences in data structures and uses the projecttype variable as
an index to select the correct data out of such structures.

The IDE uses an object-oriented (OO) approach and encapsulates the language that the
user is using within a pair of objects. A Language class contains details such as how
to syntax color the various tokens, while a Project class provides a language-specific
dialog for setting options such as which compiler is to be used and which options are to
be passed when compiling. In our case, the src/ide/jproject.icn file contains
most of the Java-specific code. In addition to the dialog for setting Java options, it contains
CompileJava(), RunJava(), and saveJProject() methods with Java-specific
IDE behavior.

Multi-language syntax coloring in CVE is handled by extending the Unicon lexical
analyzer in src/ide/unilex.icn to know the reserved words for Java (and C/C++).
This is handled in the reswords() procedure and consists of simple additions to the
reserved words table. Instead of coloring tokens in the subclass of EditableTextList,
as described earlier in the Using lexical information to colorize tokens section, in CVE the
token colorization is pulled into a poorly named LanguageAbstract class in src/
ide/langabstract.icn. Within that class, a token_highlighter() method
checks the filename extension of the current file to decide whether to apply Java, C/C++,
or Unicon reserved words and coloring rules. The code for these methods looks like this:

 method token_highlighter(f_name,win,s,

 last_s_Position,x,y,off)

 if find (".java",f_name) then {

 JTok_highlighting(win,s,last_s_Position,x,y,off)

 language := "Java"

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adding Java support 263

 }

 else if find (".cpp"|".c"|".h",f_name) then {

 CTok_highlighting(win,s,last_s_Position,x,y,off)

 language := "C/C++"

 }

 else if find (".icn",f_name) then {

 UTok_highlighting(win,s,last_s_Position,x,y,off)

 language := "Unicon"

 }

 else language := &null

 end

This is some pretty naïve brute-force code. The good part is, if the IDE has several files in
different languages open at any given time, this code will not get confused; it selects the
method to call on the fly every time, based on a parameter that is passed in. It is, however,
performing a lot of redundant checks when this is called repeatedly for every token that
needs to be drawn for a view of the current file. The JTok_highlighting() method
referenced here is not shown, as it is a very similar Java equivalent of the code presented
earlier in the Coloring individual tokens as they are drawn section.

The CVE support for Java is not as complete as the Unicon IDE's support for Unicon.
CVE does not incorporate full compiler frontends for Java (and for C/C++) and therefore
does not do on-the-fly code reparsing for reporting syntax errors while the user is editing
code. The CVE IDE reports syntax errors for Java and C/C++ when the user presses the
Compile or Run buttons and the (external) compiler is invoked.

This section described approaches by which an IDE can support multiple languages, such
as separate treatment for Java, for C/C++, and for Unicon. Programmers can benefit from
this feature if it means they can switch between programming languages easily without
having to learn a new IDE. If you ever have the occasion to invest time or treasure in the
development of an IDE, supporting multiple languages might help maximize the return
on such an investment.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

264 Syntax Coloring in an IDE

Summary
In this chapter, you learned how to use lexical and syntax information to provide coloring
of text in an IDE. Most of the coloring is based on relatively simple lexical analysis,
and much of the work required involved modifying the compiler frontend to provide
a memory-based interface, instead of relying on reading and writing files on disk. In
this chapter, you picked up several skills. You learned how to color reserved words and
other lexical categories in a programmer's editor, communicate information between the
compiler code and the programmer's editor, and highlight syntax errors during editing.

Up to this point, this book has been about analyzing and using the information extracted
from source code. The rest of this book is all about generating code and the runtime
environments in which programs execute. The topic we will explore in the next chapter is
bytecode interpreters.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

After this section, you will finally be able to run programs written in their new
programming language.

This section comprises the following chapters:

• Chapter 11, Bytecode Interpreters

• Chapter 12, Generating Bytecode

• Chapter 13, Native Code Generation

• Chapter 14, Implementing Operators and Built-in Functions

• Chapter 15, Domain Control Structures

• Chapter 16, Garbage Collection

• Chapter 17, Final Thoughts

Section 3:
Code Generation

and Runtime
Systems

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Bytecode

Interpreters
A new programming language may include novel features that are not supported directly
by mainstream CPUs. The most practical way to generate code for many programming
languages is to generate bytecode for an abstract machine whose instruction set directly
supports the language's intended domain. This is important because it sets your language
free from the constraints of what current hardware CPUs know how to do. It also allows it
to generate code that is tied more closely to the types of problems that you want to solve.
If you create your own bytecode instruction set, you can execute programs by writing
a virtual machine that knows how to interpret that instruction set. This chapter covers
how to design an instruction set and an interpreter that executes bytecode. Because this
chapter is tightly connected to Chapter 12, Generating Bytecode, you may want to read
them both before you dive into the code.

This chapter covers the following main topics:

• Understanding what bytecode is

• Comparing bytecode with intermediate code

• Building a bytecode instruction set for Jzero

• Implementing a bytecode interpreter

• Examining iconx, the Unicon bytecode interpreter

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

268 Bytecode Interpreters

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch11

The Code in Action video for the chapter can be found here: https://bit.ly/327bZWn

A bytecode interpreter is a piece of software that executes an abstract machine instruction
set. We are going to learn about bytecode interpreters by looking at a simple bytecode
machine for Jzero and taking a quick peek at the Unicon virtual machine. But first, let's
explore what we mean by bytecode.

Understanding what bytecode is
Bytecode is a sequence of machine instructions encoded in a binary format and written
not for a CPU to execute, but instead for an abstract (or virtual) machine instruction set
that embodies the semantics of a given programming language. Although many bytecode
instruction sets for languages such as Java use a byte as the smallest instruction size,
almost all of them include longer instructions. Such longer instructions have one or more
operands. Since many kinds of operands must be aligned at a word boundary with an
address that is a multiple of four or eight, a better name for many forms of bytecode might
be wordcode. The term bytecode is commonly used for such abstract machines, regardless
of the instruction's size.

The languages that are directly responsible for popularizing bytecode are Pascal and
SmallTalk. These languages adopted bytecode for different reasons that remain important
considerations for programming languages that are defined in terms of their bytecode.
Java took this idea and made it known throughout the computer industry.

For Pascal, bytecode is used to improve the portability of a language implementation
across different hardware and operating systems. It is much easier to port a bytecode
interpreter to a new platform than to write a new compiler code generator for that
platform. If most of a language is written in that language itself, the bytecode interpreter
may be the only part that has to be ported to a new machine.

SmallTalk popularized bytecode for a different reason: to create a layer of abstraction upon
which to implement novel features that were far removed from the hardware at the time.
A bytecode interpreter allows a language developer to design new instructions as needed,
as well as defining runtime system semantics that are present for all the implementations
of that language.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch11
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch11
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch11
https://bit.ly/327bZWn

Understanding what bytecode is 269

To explain what bytecode is, consider the bytecode that's generated from the following
Unicon code:

 write("2 + 2 is ", 2+2)

Bytecode breaks down the execution of this expression into individual machine
instructions. The human-readable representation of the bytecode for this expression might
look like the following Unicon bytecode, called ucode:

 mark L1

 var 0

 str 0

 pnull

 int 1

 int 1

 plus

 invoke 2

 unmark

lab L1

Going line by line, the mark instruction designates the destination label where the
execution should proceed if any instruction fails. In Unicon, control flow is mostly
determined by failure, rather than by Boolean conditions and explicit goto instructions.
The var instruction pushes a reference to variable #0 (write) onto an evaluation stack.
Similarly, the str instruction pushes a reference to string constant #0 (2 + 2 is). The
pnull instruction is pushed to provide a space on the evaluation stack where the result
of an operator (+) may be placed. The int instruction pushes a reference to the integer
constant in constant region location #1, which is the value 2; this is done twice for the two
operands of the addition. The plus instruction pops the top two stack elements and adds
them, placing the result on the top of the stack. The invoke instruction performs a call
with two arguments. When invoke comes back, the arguments will have been popped,
and the top of the stack, where the write() function had been pushed, will hold the
function's return value.

From the preceding example, you can see that bytecode somewhat resembles intermediate
code, and that is intentional. So, what is the difference?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

270 Bytecode Interpreters

Comparing bytecode with intermediate code
In Chapter 9, Intermediate Code Generation, we generated machine-independent
intermediate code using abstract three-address instructions. Bytecode instruction sets
are in between the three-address intermediate code and a real hardware instruction set
in their complexity. A single three-address instruction may map to multiple bytecode
instructions. This refers to both the direct translation of any instance of a three-address
instruction, as well as to the fact that there may be several bytecode instruction opcodes
that handle various special cases of a given three-address opcode. Bytecode is generally
more involved than intermediate code, even if it manages to avoid the complexities of
operand addressing modes found on a lot of CPUs. Many or most bytecode instruction
sets explicitly or implicitly use registers, although bytecode machines are usually far
simpler than CPU hardware in terms of the number of registers and the register allocation
that the compiler must perform to generate code.

Bytecode is generally a binary file format. Binary formats are very difficult for humans
to read. When talking about bytecode in this chapter, we will provide examples in an
assembler-like format, but the bytecode itself is all ones and zeroes.

Comparing a hello world program in intermediate code and bytecode might give you
some idea of their similarities and differences. We will use the following hello.java
program as an example. It just prints a message if you give it command-line arguments,
but it contains arithmetic as well as control flow instructions:

public class hello {

 public static void main(String argv[]) {

 int x = argv.length;

 x = x + 2;

 if (x > 3) {

 System.out.println("hello, jzero!");

 }

 }

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Comparing bytecode with intermediate code 271

The Jzero three-address code for this program looks as follows. Its operands include
several kinds of memory references, ranging from local variables to code region labels.
The main() function consists of 11 instructions and 20 operands, averaging almost two
operands per instruction:

.string

L0: string "\"hello, jzero!\""

.global

 global global:8,hello

 global global:0,System

.code

proc main,0,0

 ASIZE loc:24,loc:8

 ASN loc:16,loc:24

 ADD loc:32,loc:16,imm:2

 ASN loc:16,loc:32

L75: BGT L76,loc:16,imm:3

 GOTO L77

L76: PARM strings:0

 FIELD loc:40,global:0,class:0

 PARM loc:40

 CALL PrintStream__println,1

L77: RET

end

The Java JVM bytecode for this program, as produced by the javap -c command,
is shown here (comments have been removed). The main() function consists of 14
instructions with four operands, which equates to less than a third of an operand per
instruction:

public class hello {

 public hello();

 Code:

 0: aload_0

 1: invokespecial #1

 4: return

 public static void main(java.lang.String[]);

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

272 Bytecode Interpreters

 Code:

 0: aload_0

 1: arraylength

 2: istore_1

 3: iload_1

 4: iconst_2

 5: iadd

 6: istore_1

 7: iload_1

 8: iconst_3

 9: if_icmple 20

 12: getstatic #2

 15: ldc #3

 17: invokevirtual #4

 20: return

}

The instructions in this main() method illustrate some characteristics of their underlying
Java bytecode interpreter virtual machine. It is a stack machine. The load and store
families of instructions push and pop a variable between a numbered slot in the main
memory region and the top of the stack, where expressions are evaluated. This instruction
set is typed, with mnemonic prefixes for each of the built-in scalar atomic types of the
Java language (i for integer, f for float, and so on). It has built-in instructions for special
purposes such as returning the length of an array. Seven integers from -1 through 5 have
opcodes that push those constants. An instruction such as iadd pops two values, adds
them, and then pushes the result.

We will present a simpler bytecode instruction set in this chapter, but it is nice to know
what the most brilliant minds in the industry are churning out. Now, let's look at a simpler
bytecode instruction set that's suitable for Jzero.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a bytecode instruction set for Jzero 273

Building a bytecode instruction set for Jzero
This section describes a simple file format and instruction set for Jzero code, generated
from three-address intermediate code. For the language that you create, you might use
a subset of the Java bytecode instruction set instead. Java bytecode is a complicated
format; if it wasn't, we wouldn't be going to the trouble of presenting something simpler.
The instruction set presented here is slightly more capable than Jzero uses, to allow for
common extensions.

Defining the Jzero bytecode file format
The Jzero format consists of a header, followed by a data section, followed by a sequence
of instructions. Jzero files are interpreted as a sequence of 8-byte words in little-endian
format. The header consists of an optional self-execution script, a magic word, a version
number, and the word offset of the first instruction, relative to the magic word. A self-
execution script is a set of commands written in some platform-dependent language
that invokes the interpreter, feeding the Jzero file to it as a command-line argument. If
present, the self-execution script must be padded if necessary to comprise a multiple of
8 bytes. The magic word is 8 bytes containing the "Jzero!!\0" string. The version
number is another 8 bytes containing a version such as 1.0 padded with zeroes, as in
"1.0\0\0\0\0\0". The word offset of the first instruction would, at its smallest, be 3;
this number is relative to the magic word. A word offset of 3 indicates an empty constant
section of 0 words. After the magic word, the version word, and the word offset, execution
starts at the instruction whose offset is given in the third word.

After the header, there is a static data section, which, in Jzero, has space for static variables
as well as constants, including strings. In a more serious production language, there might
be several kinds of static data sections. For example, there might be one subsection for
read-only data, one for data that starts uninitialized and doesn't need to physically occupy
space in the file on disk, and a third for statically initialized (non-zero) data. For Jzero, we
will just allow one section on disk for all of that.

After the data section, the rest of the file consists of instructions. Every instruction in Jzero
format is a single 64-bit word containing an opcode (8 bits), an operand region (8 bits), and
an operand (48 bits). The operand region and operand are not used in all opcodes.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

274 Bytecode Interpreters

The Jzero format defines the following opcodes:

Table 11.1 – The Jzero instruction set

Compare this with the set of instructions defined for intermediate code. That instruction
set is higher-level, allowing three operands. This instruction set is lower-level and
instructions have zero or one operand.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a bytecode instruction set for Jzero 275

The operand region byte is treated as a signed 8-bit value. For non-negative values, the
Jzero format defines the following operand regions:

• region 0 == no operand (R_NONE).

• region 1 == absolute (R_ABS): The operand is a word offset relative to the
magic word.

• region 2 == immediate (R_IMM): The operand is the value.

• region 3 == stack (R_STACK): The operand is a word offset relative to the current
stack pointer.

• region 4 == heap (R_HEAP): The operand is a word offset relative to the current
heap pointer.

The bytecode interpreter source code needs to be able to refer to these opcodes and
operand regions by name. In Unicon, a set of $define symbols could be used, but instead,
a set of constants in a singleton class called Op is used to keep the code similar in Unicon
and Java. The Op.icn file, which contains the Unicon implementation, is shown here:

class Op(HALT, NOOP, ADD, SUB, MUL, DIV, MOD, NEG, PUSH,

 POP,

 CALL, RETURN, GOTO, BIF, LT, LE, GT, GE, EQ, NEQ, LOCAL,

 LOAD, STORE, R_NONE, R_ABS, R_IMM, R_STACK, R_HEAP)

initially

 HALT := 1; NOOP := 2; ADD := 3; SUB := 4; MUL := 5

 DIV := 6; MOD := 7; NEG := 8; PUSH := 9; POP := 10

 CALL := 11; RETURN := 12; GOTO := 13; BIF := 14; LT := 15

 LE := 16; GT := 17; GE := 18; EQ := 19; NEQ := 20

 LOCAL := 21; LOAD := 22; STORE := 23

 R_NONE := 0; R_ABS := 1; R_IMM := 2

 R_STACK := 3; R_HEAP := 4

 Op := self

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

276 Bytecode Interpreters

The corresponding Java class looks like this:

public class Op {

 public final static short HALT=1, NOOP=2, ADD=3, SUB=4,

 MUL=5, DIV=6, MOD=7, NEG=8, PUSH=9, POP=10, CALL=11,

 RETURN=12, GOTO=13, BIF=14, LT=15, LE=16, GT=17, GE=18,

 EQ=19, NEQ=20, LOCAL=21, LOAD=22, STORE=23;

 public final static short R_NONE=0, R_ABS=1, R_IMM=2,

 R_STACK=3, R_HEAP=4;

}

Having a set of opcodes is all well and good, but the more interesting differences between
the three-address code and bytecode lie in the semantics of the instructions. We will discuss
this later in the Executing instructions section. Before we get to that, you need to know more
about how a stack machine operates, as well as a few other implementation details.

Understanding the basics of stack machine operation
Like Unicon and Java, the Jzero bytecode machine uses a stack machine architecture.
Most of the instructions implicitly read or write values to or from the stack. For example,
consider the ADD instruction. To add two numbers, you push them onto the stack and
execute an ADD instruction. The ADD instruction itself takes no operands; it pops two
numbers, adds them, and pushes the result.

Now, consider a function call with n parameters whose syntax looks like this:

 arg0 (arg1, …, argN)

On a stack machine, this can be implemented by the sequence of instructions shown here:

 push reference to function arg0

 evaluate (compute and push) arg1

 . . .

 evaluate (compute and push) argN

 call n

The function call will use its operand (n) to locate arg0, the address of the function to be
called. When the function call returns, all the arguments will be popped and the function
return value will be on the top of the stack, in the location that previously held arg0.
Now, let's consider some other aspects of how to implement a bytecode interpreter.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing a bytecode interpreter 277

Implementing a bytecode interpreter
A bytecode interpreter runs the following algorithm, which implements a fetch-decode-
execute loop in software. Most bytecode interpreters use at least two registers almost
continuously: an instruction pointer and a stack pointer. The Jzero machine also
includes a base pointer register to track function call frames and a heap pointer register
that holds a reference to a current object.

While the instruction pointer is referenced explicitly in the following fetch-decode-
execute loop pseudocode, the stack pointer is used almost as frequently, but it's more often
used implicitly as a byproduct of the instruction semantics of most opcodes:

load the bytecode into memory

initialize interpreter state

repeat {

 fetch the next instruction,
 advance the instruction pointer

 decode the instruction

 execute the instruction

}

Bytecode interpreters are usually implemented in a low-level systems programming
language such as C, rather than a high-level applications language such as Java or Unicon.
The sample implementations will perhaps feel somewhat iconoclastic to hardened systems
programmers for this reason. Everything in Java is object-oriented, so the bytecode
interpreter is implemented in a class named bytecode. The most native representation of
a raw sequence of bytes in Unicon is a string, while in Java, the most native representation
is an array of bytes.

To implement the bytecode interpreter algorithm, this section presents each of the
pieces of the algorithm in separate subsections. First, let's consider how to load bytecode
into memory.

Loading bytecode into memory
To load bytecode into memory, the bytecode interpreter must obtain the bytecode via an
input/output of some kind. Typically, this will be done by opening and reading from a
named local file. When executable headers are used, a launched program opens itself and
reads itself in as a data file. The Jzero bytecode is defined as a sequence of 64-bit binary
integers, but this representation is more native in some languages than in others.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

278 Bytecode Interpreters

In Unicon, loading a file might look like this:

class j0machine(code, ip, stack, sp, bp, hp, op, opr, opnd)

 method loadbytecode(filename)

 sz := stat(filename).st_size

 f := open(filename) | stop("cannot open program.j0")

 s := reads(f, sz)

 close(f)

 s ? {

 if tab(find("Jzero!!\01.0\0\0\0\0\0")) then {

 return code := tab(0)

 }

 else stop("file ", filename, " is not a Jzero file")

 }

 end

end

The call to reads() in this example reads the entire bytecode file into a single contiguous
sequence of bytes. In Unicon, this is represented as a string. The corresponding Java uses
an array of bytes, with a ByteBuffer wrapper to provide easy access to the words within
the code. The loadbytecode() method within j0machine.java looks like this:

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.nio.charset.StandardCharsets;

import java.nio.ByteBuffer;

public class j0machine {

 public static byte[] code, stack;

 public static ByteBuffer codebuf, stackbuf;

 . . .

 public static boolean loadbytecode(String filename)

 throws IOException {

 code = Files.readAllBytes(Paths.get(filename));

 byte[] magstr = "Jzero!!\01.0\0\0\0\0\0".getBytes(

 StandardCharsets.US_ASCII);

 int i = find(magstr, code);

 if (i>=0) {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing a bytecode interpreter 279

 code = Arrays.copyOfRange(code, i, code.length);

 codebuf = ByteBuffer.wrap(code);

 return true;

 }

 else return false;

 }

}

The copyOfRange() call copies the bytecode into a new array that omits the optional
executable header. This is done to simplify later references to the code and the static
region, which are offsets relative to the magic word. Finding the magic string within a Java
byte array requires the following helper method:

public static int find(byte[]needle, byte[]haystack) {

 for(; i < haystack.length - needle.length+1; ++i) {

 boolean found = true;

 for(int j = 0; j < needle.length; ++j) {

 if (haystack[i+j] != needle[j]) {

 found = false;

 break;

 }

 }

 if (found) return i;

 }

 return-1;

}

In addition to loading bytecode into memory and before starting execution, the bytecode
interpreter must initialize its registers.

Initializing the interpreter state
The bytecode interpreter state includes the memory regions, instruction and stack
pointers, and a small amount of constant or static data used by the interpreter.
The init() method allocates and initializes the code region by calling the
loadbytecode() method and allocates a stack region. The init() method sets the
instruction register to 0, indicating that execution will start at the first instruction in the
code region. The stack is initialized to be empty.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

280 Bytecode Interpreters

In Unicon, initialization consists of the following code. For static variables, Unicon
must allocate a separate static data region because the string type that's used to load the
bytecode is immutable. Both it and the bytecode interpretation stack are implemented as
lists of integers; this exploits the fact that Unicon version 13 and higher implements lists of
integers in a contiguous block of memory:

class j0machine(code, ip, stack, sdr)

 . . .

 method init(filename)

 ip := 0

 if not loadbytecode(filename) then

 stop("cannot open program.j0")

 ip := 16

 ip := finstr := 8*getOpnd()

 data := Data(code[25:ip+1])

 stack := list()

 end

end

The corresponding Java code is as follows. The allocation of a 100,000-word stack is
somewhat arbitrary:

public class j0machine {

 public static byte[] code, stack;

 public static ByteBuffer codebuf, stackbuf;

 public static int ip, sp;

 public static boolean[] hasOpnd = new boolean[22];

 . . .

 public static void init(String filename)

 throws IOexception {

 ip = sp = 0;

 if (! loadbytecode(filename)) {

 System.err.println("cannot open program.j0");

 System.exit(1);

 }

 stack = new byte[800000];

 stackbuf = ByteBuffer.wrap(stack);

 }

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing a bytecode interpreter 281

Program executions in Jzero start with the execution of a function named main(). This is
a function in the Jzero bytecode, not in the Java implementation of the bytecode interpreter.

When the Jzero main() function runs, it expects to have a normal activation record on
the stack, where parameters can be accessed. The easiest way to provide this is to initialize
the instruction pointer to a short sequence of bytecode instructions that call main(),
and exit after it returns. So, you can initialize the stack to contain the main function's
parameters, if any, and initialize the instruction pointer to point at a CALL instruction that
calls main, followed by a HALT instruction.

In the case of Jzero, main() has no parameters and the start sequence will always be
as follows:

 PUSH main

 CALL 0

 HALT

Since the startup sequence is the same for every program, it would be possible to embed
this bytecode sequence into the virtual machine interpreter code itself, and some bytecode
machines do this. The catch is that the code offset (address) of main() will vary from
program to program unless it is hardwired, and the linker is forced to always place
main() in the same location. In the case of Jzero, it is sufficient and acceptable for the
startup sequence to always begin the code section, at the word offset specified in the
header. Now, let's consider how the interpreter fetches the next instruction.

Fetching instructions and advancing the instruction
pointer
A register ip, called the instruction pointer, holds the location of the current instruction.
Bytecode interpreters can represent this as a variable that denotes a pointer into the code,
or an integer index, viewing the code as an array. In Jzero, it is a byte offset from the magic
word. An instruction fetch in bytecode is an operation that reads the next instruction in
the code. This includes the opcode that must be read, as well as any additional bytes or
words that have operands for some instructions. In Unicon, this fetch() method is
located in class j0machine. It looks as follows:

class j0machine(code, ip, stack, op, opnd)

 . . .

 method fetch()

 op := ord(code[1+ip])

 opr := ord(code[2+ip])

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

282 Bytecode Interpreters

 if opr ~= 0 then opnd := getOpnd()

 ip +:= 8

 end

end

The corresponding Java version of the fetch() method looks like this:

public class j0machine {

 public static byte[] code, stack;

 public static int ip, sp, op

 public static long opnd;

 . . .

 public static void fetch() {

 op = code[ip];

 opr = code[ip+1];

 if (opr != 0) { opnd = getOpnd(); }

 ip += 8;

 }

}

The fetch() method depends on the getOpnd() method, which reads the next word
from the code. In Unicon, the getOpnd() method might be implemented as follows:

 method getOpnd()

 return signed(reverse(code[ip+3+:6]))

 end

Now that we've looked at instruction fetching, let's look at how instruction decoding
is performed.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing a bytecode interpreter 283

Instruction decoding
The decoding step is a big deal in hardware CPUs; in a bytecode interpreter, it is no big deal,
but it needs to be fast. You do not want a long chain of if-else-if statements in the main loop
that is going to execute extremely frequently. You want decoding to take a small constant
amount of time, regardless of the number of opcodes in your instruction set, so usually, you
should implement it with either a table lookup or a switch or case control structure. A
Unicon implementation of instruction decoding can be seen in the case expression in the
following interp() method, which implements the fetch-decode-execute loop:

class j0machine(code, ip, stack)

 . . .

 method interp()

 repeat {

 fetch()

 case (op) of {

 Op.HALT: { stop("Execution complete.") }

 Op.NOOP: { . . . }

 . . .

 default: { stop("Illegal opcode " + op) }

 }

 }

 end

end

The corresponding Java code looks like this:

public class j0machine {

 public static byte[] code, stack;

 public static int ip, sp, op, opnd;

 . . .

 public static void interp() {

 for(;;) {

 fetch();

 switch (op) {

 case Op.HALT: { stop("Execution complete."); break; }

 case Op.NOOP: { break; }

 . . .

 default: { stop("Illegal opcode " + op); }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

284 Bytecode Interpreters

 }

 }

 }

}

The key pieces of the interpreter loop that remain to be shown are the implementation
of the various instructions. A couple of examples have been given here that depend on
the stop() method to implement the execution of the HALT instruction. In Unicon,
stop() is a built-in method, but in Java, it can be implemented as follows:

 public static void stop(String s) {

 System.err.println(s);

 System.exit(1);

 }

The next section describes the rest of the execute portion of the fetch-decode-execute cycle.

Executing instructions
For each of the Jzero instructions, their execution consists of filling in the body of the
corresponding case. In Unicon, the add instruction might look like this case branch:

Op.ADD: {

 val1 := pop(stack); val2 := pop(stack)

 push(stack, val1 + val2)

}

The corresponding Java implementation is as follows:

case Op.ADD: {

 long val1 = stackbuf.getLong(sp--);

 long val2 = stackbuf.getLong(sp--);

 stackbuf.putLong(sp++, val1 + val2);

 break;

}

Similar code applies for SUB, MUL, DIV, MOD, LT, and LE.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing a bytecode interpreter 285

The PUSH instruction takes a memory operand and pushes it onto the stack. The challenging
part of this (in Unicon and Java, where pointers are being faked) is the interpretation of
the operand to fetch a value from memory. This is performed by a separate dereferencing
method. Internal helper functions such as deref() are part of the runtime system and will
be covered in the Writing a runtime system for Jzero section. The Unicon implementation of
the PUSH instruction is as follows:

Op.PUSH: {

 val := deref(opr, opnd)

 push(stack, val)

}

The equivalent Java code looks like this:

case Op.PUSH: {

 long val = deref(opr, opnd);

 push(val);

 break;

}

The POP instruction removes a value from the stack and stores it in a memory location
designated by a memory operand. The Unicon implementation of the POP instruction is
as follows:

Op.POP: {

 val := pop(stack)

 assign(opnd, val)

}

The equivalent Java code looks like this:

case Op.POP: {

 long val = pop();

 assign(opnd, val);

 break;

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

286 Bytecode Interpreters

The GOTO instruction sets the instruction pointer register to a new location. In Unicon,
this is just as straightforward as you would expect:

Op.GOTO: {

 ip := opnd

}

The equivalent Java code looks like this:

case Op.GOTO: {

 ip = (int)opnd;

 break;

}

The conditional branch instruction, BIF (branch-if), pops the top of the stack. If it is
non-zero, then it sets the instruction pointer register to a new location, such as a GOTO
instruction. In Unicon, the implementation is as follows:

Op.BIF: {

 if pop(stack)~=0 then

 ip := opnd

}

The equivalent Java code looks like this:

case Op.BIF: {

 if (pop() != 0)

 ip = (int)opnd;

 break;

}

The call instruction is also like GOTO. It saves an address indicating where execution
should resume after a return instruction. The function to call is given in an address just
before the n parameters on the top of the stack. A non-negative address in the function
slot is the location where the instruction pointer must be set. If the function is negative,
it is a call to runtime system function number -n. This is shown in the following Unicon
implementation of the CALL instruction:

Op.CALL: {

 f := stack[1+opnd]

 if f >= 0 then {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing a bytecode interpreter 287

 push(stack, ip)

 push(stack, bp) # save old ip

 bp := *stack # set new bp

 ip := f

 }

 else if f = -1 then do_println()

}

The equivalent Java code looks like this:

case Op.CALL: {

 long f;

 f = stackbuf.getLong(

 sp-8-(int)(8*opnd));

 if (f >= 0) {

 push(ip);

 push(bp);

 bp = sp;

 ip = (int)f;

 }

 else if (f == -1) do_println();

 else { stop("no CALL defined for " + f); }

 break;

}

The return instruction is also a GOTO, except it goes to a location that was previously
stored on the stack:

Op.RETURN: {

 while *stack > bp do pop(stack)

 bp := pop(stack)

 ip := pop(stack)

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

288 Bytecode Interpreters

The equivalent Java code looks like this:

case Op.RETURN: {

 sp = bp;

 bp = (int)pop();

 ip = (int)pop();

 break;

}

The Jzero interpreter's execute operation is pretty short and sweet. Some bytecode
interpreters would have additional instructions for input/output, but we are delegating
those tasks to a small set of functions that can be called from the generated code. We'll
cover those runtime functions shortly, but first, we'll look at the main() method, which
starts the Jzero interpreter from the command line.

Starting up the Jzero interpreter
The main() function that launches the Jzero interpreter lives in a module named j0x.
This launcher is short and sweet. The Unicon code looks like this, and it can be found in
j0x.icn:

procedure main(argv)

 if not (filename := argv[1]) then

 stop("usage: j0x file[.j0]")

 if not (filename[-3:0] == ".j0") then argv[1] ||:= ".j0"

 j0machine := j0machine()

 j0machine.init(filename)

 j0machine.interp()

end

The corresponding Java code in j0x.java looks like this:

public class j0x {

 public static void main(String[] argv) {

 if (argv.length < 1) {

 System.err.println("usage: j0x file[.j0]");

 System.exit(1);

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing a runtime system for Jzero 289

 String filename = argv[0];

 if (! filename.endsWith(".j0"))

 filename = filename + ".j0";

 j0machine.init(filename);

 j0machine.interp();

 }

}

We will see how well this interpreter runs shortly. But first, let's look at how built-in
functions are incorporated into the Jzero runtime system.

Writing a runtime system for Jzero
In a programming language implementation, the runtime system is the code that is
included to provide basic functionalities needed for the generated code to run. Generally,
the higher level the language is and the greater its distance from the underlying hardware,
the larger the runtime system. The Jzero runtime system is as small as possible; it only
supports a few internal helper functions such as deref() and some basic functions for
input and output. These functions are written in the implementation language (in our
case, Unicon or Java), not the Jzero language. Here is the deref() method in Unicon:

 method deref(reg, od)

 case reg of {

 Op.R_ABS: {

 if od < finstr then return data.word(od)

 else return code[od]

 }

 Op.R_IMM: { return od }

 Op.R_STACK: { return stack[bp+od] }

 default: { stop("deref region ", reg) }

 }

 end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

290 Bytecode Interpreters

Each region has different dereferencing code that's appropriate to how that region is
stored. The corresponding Java implementation of deref() looks like this:

 public static long deref(int reg, long od) {

 switch(reg) {

 case Op.R_ABS: { return codebuf.getLong((int)od); }

 case Op.R_IMM: { return od; }

 case Op.R_STACK: { return stackbuf.getLong(bp+(int)od); }

 default: { stop("deref region " + reg); }

 }

 return 0;

 }

In the case of built-in functions, we must be able to call them from the generated Jzero
code. The implementation of built-in functions such as System.out.println()
and how they are called from the bytecode interpreter will be covered in Chapter 14,
Implementing Operators and Built-In Functions. Now, it is finally time to look at how to
run the Jzero bytecode interpreter.

Running a Jzero program
At this point, we need to be able to test our bytecode interpreter, but we haven't presented
the code generator that generates this bytecode yet! For this reason, most of the testing
for this chapter's bytecode interpreter will have to wait until the next chapter, where we
will present the code generator. For now, here is a hello world program. The source code is
as follows:

public class hello {

 public static main(String argv[]) {

 System.out.println("hello");

 }

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Examining iconx, the Unicon bytecode interpreter 291

The corresponding Jzero bytecode might look something like this. One word is shown
per line; the lines in hexadecimal show each byte as two hex digits. The opcode is in the
leftmost byte, then the operand region byte, and then the operand in the remaining 6 bytes:

"Jzero!!\0"

"1.0\0\0\0\0\0"

0x0000040000000000

"hello\0\0\0"

0x0902380000000000 push main

0x0B02000000000000 call 0

0x0100000000000000 halt

0x0902FFFFFFFFFFFF push -1 (println)

0x0902180000000000 push "hello"

0x0B02010000000000 call 1

0x0C02000000000000 return 0

If this is written in binary to a file called hello.j0, then executing the j0x hello
command will write out hello, as expected. This tiny but concrete example should
whet your appetite for the much more interesting examples that we will generate in the
next chapter. In the meantime, compare the simplicity of Jzero with some of the more
interesting features that can be found by examining the Unicon bytecode interpreter.

Examining iconx, the Unicon bytecode
interpreter
The Unicon language and its predecessor, Icon, share a common architecture and
implementation in the form of a bytecode interpreter and runtime system program
named iconx. Compared to the Jzero bytecode interpreter in the previous section,
iconx is large and complex and has the benefit of real-world use over a sustained
period. Compared to the Java virtual machine, iconx is small and simple, and it's
relatively accessible for studying. A thorough description of iconx can be found in
The Implementation of Icon and Unicon: a Compendium. This section can be viewed as
a brief introduction to that work.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

292 Bytecode Interpreters

Understanding goal-directed bytecode
Unicon has an unusual bytecode. A brief example was provided earlier in this chapter
in the Understanding what bytecode is section. The language is goal-directed. All
expressions succeed or fail. Many expressions, called generators, can produce additional
results on demand when a surrounding expression fails. Backtracking is built into the
bytecode interpreter to save the state of such generator expressions, and resume them later
on if needed.

Under the covers, goal-directed expression evaluation can be implemented in many
ways, but Unicon's bytecode instruction set, which it inherits largely from Icon, has very
unusual semantics that mirror the goal direction found in the source language. Chunks
of instructions are marked with information to tell them where to go if they fail. Within
such chunks of instructions, the state of generators is saved on a spaghetti stack, and if an
expression fails, the most recently suspended generator is resumed.

Leaving type information in at runtime
In Unicon, variables can hold any type of value, and values know what type they are.
This contributes to the flexibility of the language and matches polymorphic code, at the
cost of slower execution that requires more memory to run. In the C implementation, all
variables, including ones stored in structures such as lists or records, are represented in a
descriptor, declared to be of the struct descrip type. struct descrip contains
two words: a dword or descriptor word for the type information and a vword or value
word for the value. The C implementation of this struct is shown here:

struct descrip {

 word dword;

 union {

 word integr;

 double realval;

 char *sptr;

 union block *bptr;

 dptr descptr;

 } vword;

 };

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Examining iconx, the Unicon bytecode interpreter 293

Strings are special-cased in dword; for a string, the type information word contains
the string length; the sign bit of that word is a flag that indicates whether the value is
a non-string, which is to say whether a type information code is present. Numbers are
special-cased in vword of a descriptor; for integers and real numbers, the value word
contains the value; for all other types, the value word is a pointer to the value. Three
different kinds of pointers are used, and the pointer to a union block can point at any of a
couple dozen or so different Unicon data types. Which field of the vword union to use is
decided in all cases by inspecting the dword.

Fetching, decoding, and executing instructions
The Unicon bytecode, the fetch-decode-execute loop lives in a C function named
interp(). Consistent with this chapter, this consists of an infinite loop with a switch
statement inside it. One difference between Unicon instructions and Jzero, as described in
this chapter, is that Unicon opcodes are generally a half-word in size, and if they contain
an operand, it is generally a full word following that half-word opcode. Since many
instructions have no operand, this may make the code more compact, and since operands
are full words, they can contain a native C pointer rather than an offset relative to a base
pointer for a given memory region. Unicon bytecode is computed by the compiler and
stored in the executable on disk using offsets, and when they first execute, the offsets are
converted into pointers and the opcode is modified to indicate that they now contain
pointers. This clever self-modifying code poses extra pain for thread safety, but it means
bytecode cannot be executed from constant or read-only memory.

Crafting the rest of the runtime system
Another difference between Iconx and the Jzero interpreter presented in this chapter is that
the Unicon bytecode interpreter has an enormous runtime system consisting of numerous
sophisticated capabilities, such as high-level graphics and networking. Where the Jzero
bytecode interpreter might be 80% of the code, with 20% left to the runtime system, the
interp() function at Unicon's core might be only 5% of the code, with the other 95%
being the implementation of the many built-in functions and operators. This runtime system
is written in a language called RTL, which is a kind of superset of C with special features to
support the Unicon type system, type inferencing, and automatic type conversion rules.

This section presented a brief introduction to the Unicon bytecode interpreter
implementation. You saw that programming language bytecode interpreters are often a lot
more interesting and complex than the Jzero interpreter. They may involve novel control
structures, high-level and/or domain-specific data types, and more.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

294 Bytecode Interpreters

Summary
This chapter presented the essential elements of bytecode interpreters. Knowing how to
implement a bytecode interpreter frees you to generate flexible code, without having to
worry about hardware instruction sets, registers, or addressing modes.

First, you learned that the definition of an instruction set includes the opcodes and rules for
processing any operands in those instructions. You also learned how to implement generic
stack machine semantics, as well as bytecode instructions that correspond to domain-specific
language features. Then, you learned how to read and execute bytecode files, including
interchangeably working with sequences of bytes and words in both Unicon and Java.

Given the existence of a bytecode interpreter, in the next chapter, we will discuss
generating bytecode from intermediate code so that we can run programs that are
compiled using our compiler!

Questions
1. A bytecode interpreter could use an instruction set with up to three addresses

(operands) per instruction, such as three-address code. Instead, the Jzero interpreter
uses zero or one operands per instruction. What are the pros and cons of using
three-address code in the bytecode interpreter, such as in intermediate code?

2. On real CPUs and in many C-based bytecode interpreters, bytecode addresses are
represented by literal machine addresses. However, the bytecode interpreters that
were shown in this chapter implement bytecode addresses as positions or offsets
within allocated blocks of memory. Is a programming language that does not have
a pointer data type at a fatal disadvantage in implementing a bytecode interpreter,
compared to a language that does support pointer data types?

3. If code is represented in memory as an immutable string value, what constraints
does that impose on the implementation of a bytecode interpreter?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

12
Generating Bytecode
In this chapter, we continue with code generation, taking the intermediate code from
Chapter 9, Intermediate Code Generation, and generating bytecode from it. When you
translate from intermediate code into a format that will run, you are generating final code.
Conventionally this happens at compile time, but it could occur later—at link time, load
time, or runtime. We will generate bytecode in the usual way at compile time. This chapter
and the following chapter on generating native code present you with two forms of final
code that you can choose between.

Translation from intermediate code to bytecode is performed by walking through a list of
intermediate instructions, translating each intermediate code instruction into one or more
bytecode instructions. A straightforward loop is used to traverse the list, with a different
chunk of code for each intermediate code instruction. Although the loop used in this
chapter is simple, generating the final code remains very important as the culminating
essential skill you must acquire in order to bring your new programming language to life.

This chapter covers the following main topics:

• Converting intermediate code to Jzero bytecode

• Comparing bytecode assembler with binary formats

• Linking, loading, and including the runtime system

• Unicon example: bytecode generation in icont

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

296 Generating Bytecode

With the functionality that we build in this chapter, we will be able to generate code that
runs on the bytecode interpreter presented in the previous chapter.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch12

The Code in Action video for the chapter can be found here: https://bit.ly/3oR6zGt

Converting intermediate code to Jzero
bytecode
The Jzero intermediate code generator from Chapter 9, Intermediate Code Generation,
traversed a tree and created a list of intermediate code as a synthesized attribute in each
tree node, named icode. The intermediate code for the whole program is the icode
attribute in the root node of the syntax tree. In this section, we will use this list to produce
our output bytecode. To generate bytecode, the gencode() method in the j0 class
calls a new method in this class, named bytecode(), and passes it the intermediate
code in root.icode as its input. The Unicon gencode() method that invokes this
functionality in j0.icn looks like this. The two highlighted lines at the end of the
following code snippet are added for bytecode generation, verified by simple text output:

 method gencode(root)

 root.genfirst()

 root.genfollow()

 root.gentargets()

 root.gencode()

 bcode := bytecode(root.icode)

 every (! (\bcode)).print()

 end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch12
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch12
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch12
https://bit.ly/3oR6zGt

Converting intermediate code to Jzero bytecode 297

The bytecode() method takes in an icode list, and its return value is a list of byc class
objects. In this example, the resulting bytecode is printed out in textual form; in a finished
compiler, a binary format is usually output by default, and the Jzero compiler will support
both formats. The corresponding Java code for the gencode() method is shown in the
following code snippet. Output generation performed in the if statement is a little more
convoluted in this case:

 public static void gencode(root) {

 root.genfirst();

 root.genfollow();

 root.gentargets();

 root.gencode();

 ArrayList<byc> bcode = bytecode(root.icode);

 if (bcode != null) {

 for (int i = 0; i < bcode.size(); i++)

 bcode.get(i).print();

 }

 }

Each element of the bcode list represents a bytecode instruction, for which we need a
class. Call it byc, short for bytecode. Now, let's examine the code for that class.

Adding a class for bytecode instructions
We could represent our bytecode literally, using a 64-bit word in the same format
presented in Chapter 11, Bytecode Interpreters. Representing bytecode instructions as
objects facilitates output in both human-readable text and binary form. The list of objects'
representation also makes analysis for final code optimization more convenient.

The byc class resembles the tac class, but instead of an operation code (opcode) and
fields for up to three operands, it just represents an opcode, an operand region, and—if
present—an operand, as described in Chapter 11, Bytecode Interpreters. The class also
contains several methods, including ones for printing in text and binary forms. The
print() and printb() methods will be presented in the section titled Comparing
bytecode assembler versus binary formats. Here is an outline of the byc Unicon class from
byc.icn:

class byc(op, opreg, opnd)

 method print() … end

 method printb() … end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=b6a74c9d-94a1-f28c-a592-5efae42d49f6
https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=b6a74c9d-94a1-f28c-a592-5efae42d49f6

298 Generating Bytecode

 method addr(a) … end

initially(o, a)

 op := o; addr(a)

end

The corresponding Java class in byc.java looks like this:

public class byc {

 int op, opreg;

 long opnd;

 public byc(int o, address a) {

 op=o; addr(a);

 }

 public void print() { … }

 public void printb() { … }

 public void addr(address a) { … }

}

As a part of this byc class, we need a method named addr() that provides a mapping
from three-address code addresses to bytecode addresses. Let's examine this next.

Mapping intermediate code addresses to bytecode
addresses
Although the instruction sets are quite different, the addresses in the intermediate and
final code denote approximately the same thing. Since we design both the intermediate
code and bytecode, we can define addresses in bytecode to be a lot closer to intermediate
code addresses than will be the case when we are mapping from intermediate code to
native code in the next chapter. In any case, the region and offset from the address
classfrom Chapter 9, Intermediate Code Generation, must be mapped onto opreg and
opnd in the byc class. This is handled by an addr() method in the byc class that takes
an instance of the address class as a parameter and sets opreg and opnd. The Unicon
code in byc.icn looks like this:

method addr(a)

 if /a then opreg := Op.R_NONE

 else case a.region of {

 "loc": { opreg := Op.R_STACK; opnd := a.offset }

 "glob": { opreg := Op.R_ABS; opnd := a.offset }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to Jzero bytecode 299

 "const": { opreg := Op.R_ABS; opnd := a.offset }

 "lab": { opreg := Op.R_ABS; opnd := a.offset }

 "obj": { opreg := Op.R_HEAP; opnd := a.offset }

 "imm": { opreg := Op.R_IMM; opnd := a.offset }

 }

end

The corresponding Java method in byc.java is shown here:

public void addr(address a) {

 if (a == null) opreg = Op.R_NONE;

 else switch (a.region) {

 case "loc": { opreg = Op.R_STACK; opnd = a.offset;

 break; }

 case "glob": { opreg = Op.R_ABS; opnd = a.offset;

 break; }

 case "const": { opreg = Op.R_ABS; opnd = a.offset;

 break; }

 case "lab": { opreg = Op.R_ABS; opnd = a.offset;

 break; }

 case "obj": { opreg = Op.R_HEAP; opnd = a.offset;

 break; }

 case "imm": { opreg = Op.R_IMM; opnd = a.offset;

 break; }

 }

}

Given the byc class, one more helper function is needed in order to formulate the
bytecode() code generator method. We need a convenient factory method for
generating bytecode instructions and attaching them to the bcode list. We will call this
method bgen().

The method bgen() in the j0 class is similar to gen() from the tree class; it produces
a one-element list containing a byc instance. The Unicon code looks like this:

method bgen(o, a)

 return [byc(o, a)]

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

300 Generating Bytecode

The corresponding Java implementation looks like this:

public ArrayList<byc> bgen(int o, address a) {

 ArrayList<byc> L = new ArrayList<byc>();

 byc b = new byc(o, a);

 L.add(b);

 return L;

}

Now, finally, it's time to present the bytecode generator.

Implementing the bytecode generator method
The Unicon implementation of the bytecode() method in the j0 class is shown next.
The implementation must fill in one case branch for each opcode in the three-address
instruction set given in Chapter 9, Intermediate Code Generation. There will be a lot of
cases, so we present each one separately, starting with this one:

method bytecode(icode)

 rv := []

 every i := 1 to *\icode do {

 instr := icode[i]

 case instr.op of {

 "ADD": { ... append translation of ADD to return

 val }

 "SUB": { ... append translation of SUB to return

 val }

 ...

 }

 }

 return rv

end

The Java implementation of bytecode() is shown here:

 public static ArrayList<byc> bytecode(
 ArrayList<tac> icode)

 {

 ArrayList<byc> rv = new ArrayList<byc>();

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to Jzero bytecode 301

 for(int i=0; i<icode.size(); i++) {

 tac instr = icode.get(i);

 switch(instr.op) {

 case "ADD": { ... append translation of ADD to rv }

 case "SUB": { ... append translation of SUB to rv }

 ...

 }

 }

 return rv;

 }

Within the framework of this bytecode() method, we now get to provide translations
for each of the three-address instructions. We will start with simple expressions.

Generating bytecode for simple expressions
The different cases for each three-address opcode have many elements in common, such
as the pushing of values from memory onto the evaluation stack. The case for addition
perhaps shows the most common translation pattern. In Unicon, addition is handled
like this:

"ADD": {

 bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

 j0.bgen(Op.PUSH, instr.op3) ||| j0.bgen(Op.ADD) |||

 j0.bgen(Op.POP, instr.op1)

}

This code reads operand 2 and operand 3 from memory and pushes them onto the stack.
The actual ADD instruction works entirely from the stack. The result is then popped off
the stack and placed into operand 3. In Java, implementation of addition consists of the
following code:

case "ADD": {

 bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

 bcode.addAll(j0.bgen(Op.PUSH, instr.op3));

 bcode.addAll(j0.bgen(Op.ADD, null));

 bcode.addAll(j0.bgen(Op.POP, instr.op1));

 break;

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

302 Generating Bytecode

The intermediate code instruction set presented in Chapter 9, Intermediate Code
Generation, defines 19 three-address instructions that must be translated to final code.
The final code generation pattern illustrated by the preceding ADD instruction is used for
the other arithmetic instructions. For a unary operator such as NEG, the pattern is slightly
simplified, as we can see here:

"NEG": {

 bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

 j0.bgen(Op.NEG) ||| j0.bgen(Op.POP, instr.op1)

}

In Java, implementation of negation consists of the following code:

case "NEG": {

 bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

 bcode.addAll(j0.bgen(Op.NEG, null));

 bcode.addAll(j0.bgen(Op.POP, instr.op1));

 break;

}

An even simpler instruction such as ASN may be worth special-casing when you design
the instruction set of your bytecode machine, but for a stack machine you can stick with
the same script and simplify the preceding pattern further, as illustrated in the following
code snippet:

"ASN": {

 bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

 j0.bgen(Op.POP, instr.op1)

}

In Java, implementation of assignment might look like this:

case "ASN": {

 bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

 bcode.addAll(j0.bgen(Op.POP, instr.op1));

 break;

}

Code consisting of arithmetic expressions and assignments are the core of most
programming languages. Now, it's time to look at code generation for some other
intermediate code instructions, starting with the ones used for manipulating pointers.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to Jzero bytecode 303

Generating code for pointer manipulation
Three of the intermediate code three-address instructions defined in Chapter 9,
Intermediate Code Generation, pertain to the use of pointers: ADDR, LCON, and SCON.
The ADDR instruction turns an address in memory into a piece of data that can be
manipulated to perform operations such as pointer arithmetic. It pushes its operand, an
address reference in one of the memory regions, as if it were an immediate mode value, as
illustrated in the following code snippet:

"ADDR": {

 bcode |||:= j0.bgen(Op.ADDR, instr.op2)

 bcode |||:= j0.bgen(Op.POP, instr.op1)

}

In Java, implementation of the ADDR instruction consists of this code:

case "ADDR": {

 bcode.addAll(j0.bgen(Op.ADDR, instr.op2));

 bcode.addAll(j0.bgen(Op.POP, instr.op1));

 break;

}

The LCON instruction reads from memory pointed at by other memory, as illustrated here:

"LCON": {

 bcode |||:= j0.bgen(Op.LOAD, instr.op2)

 bcode |||:= j0.bgen(Op.POP, instr.op1)

}

In Java, implementation of the LCON instruction consists of the following code:

case "LCON": {

 bcode.addAll(j0.bgen(Op.LOAD, instr.op2));

 bcode.addAll(j0.bgen(Op.POP, instr.op1));

 break;

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

304 Generating Bytecode

The SCON instruction writes to memory pointed at by other memory, as illustrated here:

"SCON": {

 bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

 j0.bgen(Op.STORE, instr.op1)

}

In Java, implementation of the SCON instruction consists of the following code:

case "SCON": {

 bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

 bcode.addAll(j0.bgen(Op.STORE, instr.op1));

 break;

}

These instructions are important for supporting structured data types such as arrays.
Now, let's consider bytecode code generation for control flow, starting with the GOTO
family of instructions.

Generating bytecode for branches and conditional
branches
Seven of the intermediate code instructions pertain to conditional and unconditional
branch instructions. The simplest of these is the unconditional branch or GOTO
instruction. The GOTO instruction assigns a new value to the instruction pointer register.
It should be no surprise that the GOTO bytecode is the implementation of the three-
address GOTO instruction. The Unicon code for translating GOTO intermediate code into
GOTO bytecode is shown here:

"GOTO": {

 bcode |||:= j0.bgen(Op.GOTO, instr.op1)

}

In Java, implementation of the GOTO instruction consists of the following code:

case "GOTO": {

 bcode.addAll(j0.bgen(Op.GOTO, instr.op1));

 break;

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to Jzero bytecode 305

The conditional branch instructions in the three-address code are translated down into
simpler final code instructions. For the instruction set bytecode presented in the previous
chapter, this means pushing operands onto the stack prior to the conditional branch
instruction bytecode. The Unicon implementation of the BLT instruction looks like this:

"BLT": {

 bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

 j0.bgen(Op.PUSH, instr.op3) ||| j0.bgen(Op.LT) |||

 j0.bgen(Op.BIF, instr.op1)

}

In Java, implementation of generating bytecode for the BLT instruction consists of the
following code:

case "BLT": {

 bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

 bcode.addAll(j0.bgen(Op.PUSH, instr.op3));

 bcode.addAll(j0.bgen(Op.LT, null));

 bcode.addAll(j0.bgen(Op.BIF, instr.op1));

 break;

}

This pattern is employed for several of the three-address instructions, with slightly simpler
code used for BIF and BNIF. Now, let's consider the more challenging forms of control
flow transfer that relate to method calls and returns.

Generating code for method calls and returns
Three of the three-address instructions handle the very important topic of function and
method calls and returns. A sequence of zero or more PARM instructions push values
onto the stack, the CALL instruction performs a method call, and the RET instruction
returns from a method to the caller. But this three-address code calling convention must
be mapped down onto the underlying instruction set, which in this chapter is a bytecode
stack machine instruction set that requires the address of the procedure to be called to
be pushed (in a stack slot where the return value will be found), prior to pushing other
parameters. We could go back and modify our three-address code to fit the stack machine
better, but then it would not fit so well for x86_64 native code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

306 Generating Bytecode

The PARM instruction is a simple push, except when it is the first parameter and the
procedure address is needed, as illustrated in the following code snippet:

"PARM": {

 if /methodAddrPushed then {

 every j := i+1 to *icode do

 if icode[j].op == "CALL" then {

 bcode |||:= j0.bgen(Op.PUSH, icode[j].op2)

 break

 }

 methodAddrPushed := 1

 }

 bcode |||:= j0.bgen(Op.PUSH, instr.op1)

}

The every loop looks for the nearest CALL instruction and pushes its method address. In
Java, implementation of the PARM instruction is similar, as we can see here:

case "PARM": {

 if (methodAddrPushed == false) {

 for(int j = i+1; j<icode.length; j++) {

 tac callinstr = icode.get(j);

 if (callinstr.op.equals("CALL")) {

 bcode.addAll(j0.bgen(Op.PUSH, callinstr.op2));

 break;

 }

 }

 }

 bcode.addAll(j0.bgen(Op.PUSH, instr.op1));

 break;

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to Jzero bytecode 307

Having pushed the method address ahead of time, the CALL instruction is
straightforward. After the call, the op1 destination in the three-address code is popped
from the stack, as with other expressions. The op2 source field is the method address that
was used prior to the first PARM instruction. The op3 source field gives the number of
parameters, which is used as-is as the operand in the CALL: bytecode, as illustrated in the
following code snippet:

"CALL": {

 bcode |||:= j0.bgen(Op.CALL, instr.op3)

 bcode |||:= j0.bgen(Op.POP, instr.op1)

 methodAddrPushed := &null

}

In Java, implementation of the CALL instruction consists of the following code:

case "CALL": {

 bcode.addAll(j0.bgen(Op.CALL, instr.op3));

 bcode.addAll(j0.bgen(Op.POP, instr.op1));

 methodAddrPushed = false;

 break;

}

The Unicon implementation of the RETURN instruction looks like this:

"RETURN": {

 bcode |||:= j0.bgen(Op.RETURN, instr.op1)

}

In Java, implementation of the RETURN instruction consists of the following code:

case "RETURN": {

 bcode.addAll(j0.bgen(Op.RETURN, instr.op1));

 break;

}

Generating code for method calls and returns is not too difficult. Now, let's consider how
to handle pseudo-instructions in the three-address code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

308 Generating Bytecode

Handling labels and other pseudo-instructions in
intermediate code
Pseudo-instructions do not translate into code, but they are present in the linked list of
three-address instructions and require consideration in the final code. The most common
and obvious pseudo-instruction is a label. If the final code is being generated in a human-
readable assembler format, labels can be generated as-is. Although LAB and Op.LABEL
are not instructions, they are elements in the lists of intermediate code and the generated
bytecode, respectively. In Unicon, this is expressed in this way:

"LAB": {

 bcode |||:= j0.bgen(Op.LABEL, instr.op1)

}

This is the corresponding code in Java:

case "LAB": {

 bcode.addAll(j0.bgen(Op.LABEL, instr.op1));

 break;

}

For final code generated in a binary format, labels require some additional handling since
they must be replaced by corresponding byte offsets or addresses.

Since a label is really a name or alias for the address of a particular instruction, in a binary
bytecode format it is typically replaced by byte offsets in some form. As the final code is
generated, a table containing the mapping between labels and offsets is constructed.

The past several sections produced a data structure containing a representation of the
bytecode and then showed how various three-address instructions are translated. Now,
let's move on to producing the code in textual and binary formats.

Comparing bytecode assembler with binary
formats
Bytecode machines tend to use simpler formats than native code, where binary object
files are the norm. Some bytecode machines, such as Python, hide their bytecode format
entirely or make it optional. Others, such as Unicon, use a human-readable assembler-like
text format for compiled modules. In the case of Java, they seem to have gone out of their
way to avoid providing an assembler, to make it more difficult for other languages to target
their virtual machine (VM).

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Comparing bytecode assembler with binary formats 309

In the case of Jzero and its machine, we have strong incentives to keep things as simple
as possible. The byc class defines two output methods: print() for text format and
printb() for binary format. You can decide for yourself which one you prefer.

Printing bytecode in assembler format
The print() method in the byc class is similar to the one used in the tac class. One
line of output is produced for each element in the list. The Unicon implementation of
the print() method in the byc class is shown here. Parameter f, which defaults to the
standard output, specifies the name:

method print(f:&output)

 if op === LABEL then write(f, addrof(), ":")

 else write(f, nameof(), " ", addrof())

end

The corresponding Java implementation is shown here. Method overloading is used to
make the parameter optional:

public void print(PrintStream f) {

 if (op == LABEL) f.println(addrof() + ":");

 else f.println("\t" + nameof() + " " + addrof());

}

public void print() { print(System.out); }

The text-based print() methods just punt off most of the work to helper methods that
produce human-readable representations of the opcode and the operand. The Unicon
code for the nameof() method that maps opcode back to strings is shown in the
following example:

method nameof()

 static opnames

 initial opnames := table(Op.HALT, "halt", Op.NOOP,

 "noop",

 Op.ADD, "add", Op.SUB, "sub", Op.MUL, "mul",

 Op.DIV, "div", Op.MOD, "mod", Op.NEG, "neg",

 Op.PUSH, "push", Op.POP, "pop", Op.CALL, "call",

 Op.RETURN, "return", Op.GOTO, "goto", Op.BIF, "bif",

 Op.LT, "lt", Op.LE, "le", Op.GT, "gt", Op.GE, "ge",

 Op.EQ, "eq", Op.NEQ, "neq", Op.LOCAL, "local",

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

310 Generating Bytecode

 Op.LOAD, "load", Op.STORE, "store")

 return opnames[op]

end

The corresponding Java code shown here uses HashMap:

 static HashMap<Short,String> ops;

 static { ops = new HashMap<>();

 ops.put(Op.HALT,"halt"); ops.put(Op.NOOP,"noop");

 ops.put(Op.ADD,"add"); ops.put(Op.SUB,"sub");

 ops.put(Op.MUL,"mul"); ops.put(Op.DIV, "div");

 ops.put(Op.MOD,"mod"); ops.put(Op.NEG, "neg");

 ops.put(Op.PUSH,"push"); ops.put(Op.POP, "pop");

 ops.put(Op.CALL, "call"); ops.put(Op.RETURN, "return");

 ops.put(Op.GOTO, "goto"); ops.put(Op.BIF, "bif");

 ops.put(Op.LT, "lt"); ops.put(Op.LE, "le");

 ops.put(Op.GT, "gt"); ops.put(Op.GE, "ge");

 ops.put(Op.EQ, "eq"); ops.put(Op.NEQ, "neq");

 ops.put(Op.LOCAL, "local"); ops.put(Op.LOAD, "load");

 ops.put(Op.STORE, "store");

}

public String nameof() {

 return opnames.get(op);

}

Another helper function called from the print() method is the addrof() method,
which prints a human-readable representation of an address based on the operand region
and operand fields. Its Unicon implementation is shown here:

method addrof()

 case opreg of {

 Op.R_NONE: return ""

 Op.R_ABS: return "@"+

 java.lang.Long.toHexString(opnd);

 Op.R_IMM: return string(opnd)

 Op.R_STACK: return "stack:" + String.valueof(opnd)

 Op.R_HEAP: return "heap:" + String.valueof(opnd)

 default: return string(opreg) ":" || opnd

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Comparing bytecode assembler with binary formats 311

 }

end

The corresponding Java code for addrof() is shown here:

public String addrof() {

 switch (opreg) {

 case Op.R_NONE: return "";

 case Op.R_ABS: return "@"+

 java.lang.Long.toHexString(opnd);

 case Op.R_IMM: return String.valueOf(opnd);

 case Op.R_STACK: return "stack:" + String.valueOf(opnd);

 case Op.R_HEAP: return "heap:" + String.valueOf(opnd);

 }

 return String.valueOf(opreg)+":"+String.valueOf(opnd);

}

Now, let's look at the corresponding binary output.

Printing bytecode in binary format
The printb() methods are organized similarly, but where print() needs names of
things, printb() needs to put all the bits in a row and output a binary word. Its Unicon
implementation is shown here:

method printb(f:&output)

 writes(f, "\t", char(op), char(opregn))

 x := opnd

 every !6 do {

 writes(f, char(iand(x, 255)))

 x := ishift(x, -8)

 }

end

The corresponding Java implementation of printb() is shown here:

public void printb(PrintStream f) {

 long x = opnd;

 f.print((byte)op);

 f.print((byte)opreg);

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

312 Generating Bytecode

 for(int i = 0; i < 6; i++) {

 f.print((byte)(x & 0xff));

 x = x>>8;

 }

}

public void printb() { printb(System.out); }

In this section, we considered how to output our code to external storage. The contrast
between text and binary formats was stark, with binary formats being a bit more work,
at least from a human perspective. Now, let's look at other issues necessary for program
execution beyond the generated code. This includes linking generated code with other
code, especially the runtime system.

Linking, loading, and including the runtime
system
In a separately compiled native code language, the output binary format from the
compile step is not executable. Machine code is output in an object file that must be
linked together with other modules, and addresses between them resolved, to form an
executable. The runtime system is included at this point, by linking in object files that
come with the compiler, not just other modules written by the user. In the old days,
loading the resulting executable was a trivial operation. In modern systems, it is more
complex due to things such as shared object libraries.

A bytecode implementation often has substantial differences from the traditional model
just described. Java performs no link step, or perhaps you can say that it links code in at
load time. The Java runtime system might be considered sharply divided between a large
amount of functionality that is built into the Java VM (JVM) interpreter and an also-
large amount of functionality that must be loaded, both bytecode and native code, to run
various parts of the standard Java language. From an outsider's perspective, one of the
surprising things in Java is the enormous number of import statements a developer must
place at the top of every file that uses anything in Java's standard libraries.

In the case of Jzero, severe limitations keep all this as simple as possible. There is no
separate compilation or linking. Loading is kept extremely simple and was covered in the
previous chapter. The runtime system is built into the bytecode interpreter, another dodge
to enable the language to avoid linking. Now, let's look at bytecode generation in Unicon,
another real-world bytecode implementation that does things far differently than either
Java or Jzero.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Unicon example – bytecode generation in icont 313

Unicon example – bytecode generation
in icont
Unicon's compiled bytecode output format is human-readable text in ucode files. Such
ucode files are initially generated, and then linked and converted into binary icode
format by a C program named icont that is invoked by the Unicon translator. The
icont program plays the role of code generator, assembler, and linker to form a complete
bytecode program in binary format. Here are some of the details.

The gencode() C function in icont reads lines of ucode text and turns them into
binary format following the outline illustrated here. There is an interesting similarity
between this pseudo-code and the fetch-decode-execute loop used in the bytecode
interpreter. Here, we are fetching text bytecode from input, decoding the opcode, and
writing binary bytecode with slight differences in format depending on the bytecode:

void gencode() {

 while ((op = getopc(&name)) != EOF) {

 switch(op) {

 ...

 case Op_Plus:

 newline();

 lemit(op, name);

 break;

 ...

 }

 }

}

The lemit() function and about seven related functions with the lemit*() prefix
are used to append bytecode within a contiguous array of bytes in binary format. Labels
associated with instructions are turned into byte offsets. Forward references to labels that
have not been encountered yet are placed in linked lists and backpatched later when the
target label is encountered. The C code for lemitl() emits an instruction with a label, as
shown here:

static void lemitl(int op, int lab, char *name)

 {

 misalign();

 if (lab >= maxlabels)

 labels = (word *) trealloc(labels, NULL, &maxlabels,

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

314 Generating Bytecode

 sizeof(word), lab - maxlabels + 1, "labels");

 outop(op);

 if (labels[lab] <= 0) { /* forward reference */

 outword(labels[lab]);

 labels[lab] = WordSize - pc;

 }

 else outword(labels[lab] - (pc + WordSize));

 }

As you may guess from its name, the misalign() function generates no-op instructions
in order to ensure that instructions start on word boundaries. The first if statement
grows the array table if needed. The second if statement handles a label that is a forward
reference to an instruction that does not exist yet, by inserting it onto the front of a linked
list of instructions that will have to be backpatched when the instructions are all present.

The guts of the binary code layout are done by outop() and outword(), to output an
opcode and an operand that are of integer and word length, respectively. These macros
may be defined differently on different platforms, but on most machines, they simply call
functions named intout() and wordout(). Note in the following code snippet that
the binary code is in machine-native format and is different on central processing units
(CPUs) with different word sizes or endianness. This gives good performance at the cost
of bytecode portability:

static void intout(int oint)

 {

 int i;

 union {

 int i;

 char c[IntBits/ByteBits];

 } u;

 CodeCheck(IntBits/ByteBits);

 u.i = oint;

 for (i = 0; i < IntBits/ByteBits; i++)

 codep[i] = u.c[i];

 codep += IntBits/ByteBits;

 pc += IntBits/ByteBits;

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 315

After all this glorious example C code, you will probably be glad to get back to Unicon and
Java. But C really does make lower-level binary manipulation somewhat simpler than it is
in Unicon or Java. The moral of the story is: learn the right tools for each kind of job.

Summary
This chapter showed you how to generate bytecode for software bytecode interpreters. The
skills you learned include how to traverse a linked list of intermediate code and, for each
intermediate code opcode and pseudo-instruction, how to convert it into instructions
in a bytecode instruction set. There were big differences between the semantics of the
three-address machine and the bytecode machine. Many intermediate code instructions
were converted into three or more bytecode machine instructions. The handling of CALL
instructions was a bit hairy, but it is important for you to perform function calls in the
manner required by the underlying machine. While learning all this, you also learned how
to write out bytecode in text and binary formats.

The next chapter presents an alternative that is more attractive for some languages:
generating native code for a mainstream CPU.

Questions
1. Describe how intermediate code instructions with up to three addresses are converted

into a sequence of stack machine instructions that contain at most one address.
2. If a particular instruction (say it is instruction 15, at byte offset 120) is targeted

by five different labels (for example, L2, L3, L5, L8, and L13), how are the labels
processed when generating binary bytecode?

3. In intermediate code, a method call consists of a sequence of PARM instructions
followed by a CALL instruction. Does the described bytecode for doing a method
call in bytecode match up well with the intermediate code? What is similar and
what is different?

4. CALL instructions in object-oriented (OO) languages such as Jzero are always
preceded by a reference to the object (self, or this) on which the methods
are being invoked… or are they? Explain a situation in which the CALL method
instruction may have no object reference, and how the code generator described in
this chapter should handle that situation.

5. Our code for pushing method addresses at the first PARM instruction assumed that
no nested PARM…CALL sequences occur inside a surrounding PARM…CALL sequence.
Can we guarantee that to be the case for examples such as f(0, g(1), 2)?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

13
Native Code
Generation

This chapter shows how to take the intermediate code from Chapter 9, Intermediate Code
Generation, and generate native code. The term native refers to whatever instruction set
is provided in hardware on a given machine. This chapter presents a simple native code
generator for x64, the dominant architecture on laptops and desktops.

This chapter covers the following main topics:

• Deciding whether to generate native code

• Introducing the x64 instruction set

• Using registers

• Converting intermediate code to x64 code

• Generating x64 output

The skills developed here include basic register allocation, instruction selection,
writing assembler files, and invoking the assembler and linker to produce a native
executable. The functionality built into this chapter generates code that runs natively
on typical computers.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

318 Native Code Generation

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch13

The Code in Action video for the chapter can be found here: https://bit.ly/2Zdky0I

Deciding whether to generate native code
Generating native code is more work than bytecode but enables faster execution. Native
code may also use less memory or electricity. Native code pays for itself if end users
save time or money, but targeting a specific central processing unit (CPU) sacrifices
portability. You may want to implement bytecode first, and only generate native code
if the language becomes popular enough to justify the effort. However, there are other
reasons to generate native code. You may be able to write your runtime system using the
facilities provided for another compiler. For example, our Jzero x64 runtime system is
built using the GNU's Not Unix (GNU) C library. Now, let's look at some of the specifics
of the x64 architecture.

Introducing the x64 instruction set
This section provides a brief overview of the x64 instruction set, but you are encouraged
to consult Advanced Micro Devices (AMD) or Intel's architecture programmer's
manuals. Douglas Thain's book Introduction to Compilers and Language Design, available
at http://compilerbook.org, has helpful x64 material.

x64 is a complex instruction set with many backward-compatibility features. This chapter
covers the subset of x64 that is used to build a basic Jzero code generator. We are using
AT&T assembler syntax so that our generated output can be converted into binary object
file format by the GNU assembler. This is for the sake of multiplatform portability.

x64 has hundreds of instructions with names such as ADD for addition or MOV to copy
a value to a new location. When an instruction has two operands, at most one may be a
reference to main memory. x64 instructions can have a suffix to indicate how many bytes
are being read or written, although the name of a register in the instruction often makes
the suffix redundant. Jzero uses two of the x64 instruction suffixes: B for 1-byte operations
on strings and Q for 64-bit quadword operations. A 64-bit word is a quad from the point
of view of the late-1970's Intel 16-bit instruction set. We use the following instructions in
this chapter:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch13
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch13
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch13
https://bit.ly/2Zdky0I

Introducing the x64 instruction set 319

Table 13.1 – Instructions for the examples in this chapter

Now, it's time to define a class to represent these instructions in memory.

Adding a class for x64 instructions
The x64 class represents operation code (opcode) and operands as allowed in x64. An
operand may be a register or a reference to a value in memory. You can see an illustration
of this class in the following code snippet:

class x64(op, opnd1, opnd2)

 method print() ... end

initially(o, o1, o2)

 op := o; opnd1 := o1; opnd2 := o2

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

320 Native Code Generation

The corresponding Java class in x64.java looks like this:

public class x64 {

 String op;

 x64loc opnd1, opnd2;

 public x64(String o, Object src, Object dst) {

 op=o; opnd1 = loc(src); opnd2 = loc(dest); }

 public x64(String o, Object opnd) {

 op=o; opnd1 = loc(opnd); }

 public x64(String o) { op=o; }

 public void print() { ... }

}

As a part of this x64 class, we map from three-address code addresses to x64 addresses.

Mapping memory regions to x64 register-based
address modes
To implement the code, global/static, stack, and heap memory regions on x64, we decide
how to access memory in each memory region. x64 instructions allow operands to be
either a register or a memory address. Jzero adds an offset to a register to compute the
address, as illustrated here:

Table 13.2 – Memory access modes used in this chapter

In immediate mode, the value is in the instruction. In indirect mode, main memory is
relative to an x64 register. The various memory regions are accessed as offsets relative
to different registers. Global and static memory are accessed relative to the instruction
pointer, locals are accessed relative to the base pointer, and heap memory is accessed
relative to a heap pointer register. Let's look more broadly at how registers are used.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using registers 321

Using registers
Main memory access is slow. Performance is heavily impacted by how registers are used.
Optimal register allocation is nondeterministic polynomial-complete (NP-complete):
very difficult. Optimizing compilers expend great effort on register allocation. That is
beyond the scope of this book.

x64 has 16 general-purpose registers, as illustrated in the following table, but many
registers have a special role. Arithmetic is performed on an accumulator register, rax.
Registers have 8- to 64-bit versions. Jzero only uses the 64-bit versions of registers, plus
whichever 8-bit registers are necessary for strings. In AT&T syntax, register names are
preceded by a percentage sign, as in %rax:

Table 13.3 – x64 registers

Many registers are saved as part of a call instruction. The more registers, the slower it
is to perform function calls. These issues are determined by the calling conventions of
the compiler. Jzero only saves modified registers prior to a given call. Before we get to the
actual code generator, let's consider a bit further how native code uses registers.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

322 Native Code Generation

Starting from a null strategy
The minimal register strategy is the null strategy, which maps intermediate code addresses
down to x64 addresses. Values are loaded into the rax accumulator register to perform
operations on them. Results go immediately back to main memory.

The rbp base pointer and the rsp stack pointer manage activation records, which are also
called frames. The current activation record revolves around the rbp base pointer register.
The current local region on the stack lies between the base pointer and the stack pointer.
The following screenshot shows an x64 stack layout:

Figure 13.1 – x64 stack, managed as a sequence of activation records, growing downward

x64 tweaks the classical stack layout slightly. Six rdi registers through r9 are used for
passing the first six parameters. The null strategy stores parameters to memory when a
function call starts. The div instruction uses the rdx register, so besides being used for
passing parameter #3, rdx is also required for div instructions. The null strategy is not
affected by this design flaw.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using registers 323

Assigning registers to speed up the local region
Jzero maps registers rdi-r14 onto the first 88 bytes of the local region. As it walks the
three-address instructions, the code generator tracks for each register if a value is loaded
and if it was modified from the corresponding main memory location. The code generator
uses the value in the register until that register is used for something else.

Here is a class named RegUse that tracks main memory locations' corresponding register,
if any, and whether its value has been modified since it was last loaded in main memory.
The Unicon implementation of RegUse in RegUse.icn is shown here:

class RegUse (reg, offset, loaded, dirty)

 method load()

 if \loaded then fail

 loaded := 1

 return j0.xgen("movq", offset||"(%rbp)", reg)

 end

 method save()

 if /dirty then fail

 dirty := &null

 return j0.xgen("movq", reg, offset||"(%rbp)")

 end

end

The reg field denotes the string register name; offset is the byte offset relative to the
base pointer. loaded and dirty Boolean flags track whether the register contains the
value and whether it has been modified, respectively. The load() and save() methods
do not load and save; they generate instructions to load and save the register and set the
loaded and dirty flags accordingly. The corresponding Java code looks like this:

public class RegUse {

 public String reg;

 int offset;

 public boolean loaded, dirty;

 public RegUse(String s, int i) {

 reg = s; offset=i; loaded=dirty=false; }

 public ArrayList<x64> load() {

 if (loaded) return null;

 loaded = true;

 return j0.xgen("movq", offset+"(%rbp)", reg);

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

324 Native Code Generation

 }

 public ArrayList<x64> save() {

 if (!dirty) return null;

 dirty = false;

 return j0.xgen("movq", reg, offset+"(%rbp)");

 }

}

A list of instances of the RegUse class is held in a variable named regs in the j0 class
so that for each of the first words in the local region, the corresponding register is used
appropriately. The list is constructed in Unicon, as follows:

off := 0

regs := [: RegUse("%rdi"|"%rsi"|"%rdx"|"%rcx"|"%r8"|

 "%r9"|"%r10"|"%r11"|"%r12"|"%r13"|"%r14", off-:=8) :]

This Unicon code is just showing off. The | alternator produces all the register names for
separate calls to RegUse(), triggered and captured by the [: :] list comprehension
operator. One x64 tricky bit is that the offsets are all negative integers, because the stack
grows downward. In Java, this initialization is performed as shown here:

RegUse [] regs = new RegUse[]{ new RegUse("%rdi", -8),

 new RegUse("%rsi", -16), new RegUse("%rdx", -24),

 new RegUse("%rcx", -32), new RegUse("%r8", -40),

 new RegUse("%r9",-48), new RegUse("%r10", -56),

 new RegUse("%r11", -64), new RegUse("%r12", -72),

 new RegUse("%r13", -80), new RegUse("%r14", -88) };

The data structure operates on basic block boundaries, storing modified registers in
memory and clearing loaded flags whenever a label or a branch instruction occurs. At
the top of a called function, the loaded and dirty flags of parameters are set to true,
indicating values that must be saved to the local region before that register can be reused.
Now, it's time to look at how each intermediate code element is converted into x64 code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to x64 code 325

Converting intermediate code to x64 code
The intermediate code generator from Chapter 9, Intermediate Code Generation, placed
the intermediate code for the whole program in the icode attribute in the root of the
syntax tree. A Boolean named isNative says whether to generate bytecode as shown in
the previous chapter, or native x64 code. To generate x64 code, the gencode() method
in the j0 class calls a new method in this class, named x64code(), and passes it the
intermediate code in root.icode as its input. Output x64 code is placed in a j0 list
variable named xcode. The Unicon gencode() method that invokes this functionality
in j0.icn looks like this:

 method gencode(root)

 root.genfirst()

 root.genfollow()

 root.gentargets()

 root.gencode()

 xcode := []

 if \isNative then {

 x64code(root.icode)

 x64print()

 }

 else {

 bcode := bytecode(root.icode)

 every (! (\bcode)).print()

 }

 end

The new highlighted code layers the native alternative around the previous generation
of bytecode, which is still available from the command-line option. The x64code()
method takes in an icode list, and its return value is a list of x64 class objects. In this
example, the resulting x64 code is printed out in textual form; we let an assembler do the
work for us to produce a binary format. The corresponding Java code for the gencode()
method is shown here:

 public static ArrayList<x64> xcode;

 public static void gencode(root) {

 root.genfirst();

 root.genfollow();

 root.gentargets();

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

326 Native Code Generation

 root.gencode();

 xcode = new ArrayList<x64>();

 if (isNative && xcode != null) {

 x64code(root.icode);

 x64print();

 } else {

 ArrayList<byc> bcode = bytecode(root.icode);

 if (bcode != null)

 for (int i = 0; i < bcode.size(); i++)

 bcode.get(i).print();

 }

 }

Now, let's examine how intermediate code addresses become x64 memory references.

Mapping intermediate code addresses to x64 locations
Addresses in intermediate code are abstract (region, offset) pairs represented in the
address class from Chapter 9, Intermediate Code Generation. The corresponding
x64loc class represents x64 locations that include addressing mode information
or a register to use. The Unicon implementation in x64loc.icn looks like this:

class x64loc(reg, offset, mode)

initially(x,y,z)

 if \z then { reg := x; offset := y; mode := z }

 else if \y then {

 if x === "imm" then { offset := y; mode := 5 }

 else if x === "lab" then { offset := y; mode := 6 }

 else {

 reg := x; offset := y

 if integer(y) then mode := 3 else mode := 4

 }

 }

 else {

 if integer(x) then { offset := x; mode := 2 }

 else if string(x) then { reg := x; mode := 1 }

 else stop("bad x64loc ", image(x))

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to x64 code 327

 }

end

The reg field is the string register name. The offset field is either an integer offset or a
string name from which the offset is calculated. mode is 1 for a register, 2 for an absolute
address, and 3 for a register and an integer offset. Mode 4 is for a register and a string
offset name, 5 is for an immediate value, and 6 is for a label. The Java implementation in
x64loc.java looks like this:

public class x64loc {

 public String reg; Object offset;

 public int mode;

 public x64loc(String r) { reg = r; mode = 1; }

 public x64loc(int i) { offset=(Object)Integer(i); mode=2; }

 public x64loc(String r, int off) {

 if (r.equals("imm")) {

 offset=(Object)Integer(off); mode = 5; }

 else if (r.equals("lab")) {

 offset=(Object)Integer(off); mode = 6; }

 else { reg = r; offset = (Object)Integer(off);

 mode = 3; }

 }

 public x64loc(String r, String s) {

 reg = r; offset = (Object)s; mode=4; }

}

The Java code has constructors for different memory types. The region and offset of the
address class must be mapped onto an instance of the x64loc class that is an operand
in the x64 class. This is done by a loc() method in the j0 class that takes an address as
a parameter and returns an x64loc instance. The Unicon code for loc() in j0.icn
looks like this:

method loc(a)

 if /a then return

 case a.region of {

 "loc": { if a.offset <= 88 then return loadreg(a)

 else return x64loc("rbp", -a.offset) }

 "glob": { return x64loc("rip", a.offset) }

 "const": { return x64loc("imm", a.offset) }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

328 Native Code Generation

 "lab": { return x64loc("lab", a.offset) }

 "obj": { return x64loc("r15", a.offset) }

 "imm": { return x64loc("imm", a.offset) }

 }

end

As the code converts an address to an x64loc instance, local region offsets are converted
into negative values since the stack grows down. The Java methods in j0.java are
shown here:

public static x64loc loc(String s) { return new x64loc(s);}

public static x64loc loc(Object o) {

 if (o instanceof String) return loc((String)o);

 if (o instanceof address) return loc((address)o);

 return null;

}

public static x64loc loc(address a) {

 switch (a.region) {

 case "loc": { if (a.offset <= 88) return loadreg(a);

 else return x64loc("rbp", -a.offset); }

 case "glob": { return x64loc("rip", a.offset); }

 case "const": { return x64loc("imm", a.offset); }

 case "lab": { return x64loc("lab", a.offset); }

 case "obj": { return x64loc("r15", a.offset); }

 case "imm": { return x64loc("imm", a.offset); }

 default: { semErr("x64loc unknown region"); return null; }

 }

}

A loadreg() helper method is used for local offsets in the first 88 bytes. If the value
is not already present in its designated register, a movq instruction is emitted to place it
there, as illustrated in the following code snippet:

method loadreg(a)

 r := a.offset/8 + 1

 if / (regs[r].loaded) then {

 every put(xcode,

 !xgen("movq",(-

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to x64 code 329

 a.offset)||"(%rbp)",regs[r].reg))

 regs[r].loaded := "true"

 }

 return x64loc(regs[a.offset/8+1].reg)

end

The Java implementation of loadreg() is shown here:

public static x64loc loadreg(address a) {

 long r = a.offset/8;

 if (!regs[r].loaded) {

 xcode.addAll(xgen("movq",
 String.valueOf(-a.offset)+"(%rbp)", regs[r].reg));

 regs[r].loaded = true;

 }

 return x64loc(regs[a.offset/8+1].reg);

}

Given the x64 class, one more helper function is needed in order to formulate the
x64code() code generator method. We need a convenient factory method for
generating x64 instructions and attaching them to the xcode list. This xgen()method
converts source and destination operands into x64loc instances, which may add movq
instructions to load values into registers. The Unicon code looks like this:

method xgen(o, src, dst)

 return [x64(o, loc(src), loc(dst))]

end

There are many versions of the corresponding Java implementation shown here, to handle
cases where the source or destination are addresses or the string names of registers:

public static ArrayList<x64> l64(x64 x) {

 return new ArrayList<x64>(Arrays.asList(x)); }

public static ArrayList<x64> xgen(String o){

 return l64(new x64(o)); }

public static ArrayList<x64> xgen(String o,

 address src, address dst) {

 return l64(new x64(o, loc(src), loc(dst))); }

public static ArrayList<x64> xgen(String o, address opnd) {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

330 Native Code Generation

 return l64(new x64(o, loc(opnd))); }

public static ArrayList<x64> xgen(String o, address src,
 String dst) {

 return l64(new x64(o, loc(src), loc(dst))); }

public static ArrayList<x64> xgen(String o, String src,
 address dst) {

 return l64(new x64(o,loc(src),loc(dst))); }

public static ArrayList<x64> xgen(String o, String src,
 String dst) {

 return l64(new x64(o,loc(src),loc(dst))); }

public static ArrayList<x64> xgen(String o, String opnd) {

 return l64(new x64(o, loc(opnd))); }

In the preceding code snippet, the l64() method just creates a single ArrayList
element containing an x64 object. The rest are just many implementations of xgen()
that take different parameter types. Now, finally, it's time to present the x64 code
generator method.

Implementing the x64 code generator method
The Unicon implementation of the x64code() method in the j0 class looks like this.
The implementation must fill in one case branch for each opcode in the three-address
instruction set. There will be a lot of cases, so we present each one separately, with the first
one shown here:

method x64code(icode)

 every i := 1 to *\icode do {

 instr := icode[i]

 case instr.op of {

 "ADD": { ... append translation of ADD to xcode }

 "SUB": { ... append translation of SUB to xcode }

 . . .

 }

 }

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to x64 code 331

The Java implementation of x64code() is shown here:

 public static void x64code(ArrayList<tac> icode) {

 int parmCount = -1;

 for(int i=0; i<icode.size(); i++) {

 tac instr = icode.get(i);

 switch(instr.op) {

 case "ADD": { ... append translation of ADD to xcode}

 case "SUB": { ... append translation of SUB to xcode}

 ...

 }

 }

 }

Within the framework of this x64code() method, we now provide translations for each
of the three-address instructions. We will start with simple expressions.

Generating x64 code for simple expressions
The cases for three-address opcode have many elements in common. The code for
addition shows many common elements. In Unicon, the x64 code for addition is created
like this:

"ADD": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

 xgen("addq", instr.op3, "%rax") |||

 xgen("movq", "%rax", instr.op1) }

In this code, operand 2 and operand 3 are read from memory and pushed into the stack.
The actual ADD instruction works entirely from the stack. The result is then popped off
the stack and placed into operand 3. In Java, implementation of addition consists of the
following code:

case "ADD": { xcode.addAll(xgen("movq", instr.op2,

 "%rax"));

 xcode.addAll(xgen("addq", instr.op3,

 "%rax"));

 xcode.addAll(xgen("movq", "%rax",

 instr.op1));

 break; }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

332 Native Code Generation

There are 19 or so three-address instructions. The final code generation pattern illustrated
by the preceding ADD instruction is used for the other arithmetic instructions. For a unary
operator such as NEG, the pattern is slightly simplified, as we can see here:

"NEG": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

 xgen("negq", "%rax") |||

 xgen("movq", "%rax", instr.op1) }

In Java, implementation of negation consists of the following code:

case "NEG": { xcode.addAll(xgen("movq", instr.op2,

 "%rax"));

 xcode.addAll(xgen("negq", "%rax"));

 xcode.addAll(xgen("movq", "%rax",

 instr.op1));

 break; }

An even simpler instruction such as ASN may be worth special-casing since x64 code
features direct memory-to-memory move instructions, but one option is to stick with the
same script and simplify the preceding pattern further, like this:

"ASN": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

 xgen("movq", "%rax", instr.op1) }

In Java, implementation of assignment might look like this:

case "ASN": { xcode.addAll(xgen("movq", instr.op2,

 "%rax"));

 xcode.addAll(xgen("movq", "%rax",

 instr.op1));

 break; }

Expressions are the most common elements in code. The next category is pointers.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to x64 code 333

Generating code for pointer manipulation
Three of the three-address instructions pertain to the use of pointers: ADDR, LCON, and
SCON. The ADDR instruction turns an address in memory into a piece of data that can be
manipulated to perform operations such as pointer arithmetic. It pushes its operand, an
address reference in one of the memory regions, as if it were an immediate mode value.
The code is illustrated in the following snippet:

"ADDR": { xcode |||:= xgen("leaq", instr.op2, "%rax")

 xcode |||:= xgen("%rax", instr.op1) }

In Java, implementation of the ADDR instruction consists of the following code:

case "ADDR": { xcode.addAll(xgen("leaq", instr.op2,

 "%rax"));

 xcode.addAll(xgen("%rax", instr.op1));

 break; }

The LCON instruction reads from memory pointed at by other memory, as follows:

"LCON": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

 xgen("movq", "(%rax)", "%rax") |||

 xgen("movq", "%rax", instr.op1) }

In Java, implementation of the LCON instruction consists of the following code:

case "LCON": { xcode.addAll(xgen("movq", instr.op2,

 "%rax"));

 xcode.addAll(xgen("movq", "(%rax)",

 "%rax"));

 xcode.addAll(xgen("movq", "%rax",

 instr.op1));

 break; }

The SCON instruction writes to memory pointed at by other memory, as follows:

"SCON": { xcode |||:= xgen("movq", instr.op2, "%rbx") |||

 xgen("movq", instr.op1, "%rax")

 xgen("movq", "%rbx", "(%rax)") }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

334 Native Code Generation

In Java, implementation of the SCON instruction consists of the following code:

case "SCON": { xcode.addAll(xgen("movq", instr.op2,

 "%rbx"));

 xcode.addAll(xgen("movq", instr.op1,

 "%rax"));

 xcode.addAll(xgen("movq", "%rbx",

 "(%rax)"));

 break; }

These instructions are important for supporting structured data types such as arrays. Now,
let's consider bytecode code generation for control flow, starting with the GOTO instruction.

Generating native code for branches and conditional
branches
Seven intermediate code instructions pertain to branch instructions. The simplest of these
is the unconditional branch or GOTO instruction. The GOTO instruction assigns a new
value to the instruction pointer register. It should be no surprise that the GOTO bytecode is
the implementation of the three-address GOTO instruction, as illustrated in the following
code snippet:

"GOTO": { xcode |||:= xgen("goto", instr.op1) }

In Java, implementation of the GOTO instruction consists of the following code:

case "GOTO": { xcode.addAll(xgen("goto", instr.op1));

 break; }

The conditional branch instructions in the three-address code are translated down
into simpler final code instructions. For the x64 instruction set, this means executing a
compare instruction that sets condition codes prior to one of the x64 conditional branch
instructions. The Unicon implementation of the BLT instruction looks like this:

"BLT": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

 xgen("cmpq", instr.op3, "%rax") |||

 xgen("jle", instr.op1) }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to x64 code 335

In Java, implementation of generating bytecode for the BLT instruction consists of the
following code:

case "BLT": { xcode.addAll(xgen("movq", instr.op2,

 "%rax"));

 xcode.addAll(xgen("cmpq", instr.op3,

 "%rax"));

 xcode.addAll(xgen("jle", instr.op1));

 break; }

This pattern is employed for several of the three-address instructions. Now, let's consider
the more challenging forms of control flow transfer that relate to method calls and returns.

Generating code for method calls and returns
Three of the intermediate code instructions handle the very important topic of function
and method calls and returns. A sequence of zero or more PARM instructions pushes
values onto the stack, after which the CALL instruction performs a method call. From
inside the called method, the RET instruction returns from a method to the caller.

This three-address code calling convention must be mapped down onto the underlying
x64 instruction set, preferably with the standard calling conventions on that architecture,
which requires the first six parameters to be passed in specific registers.

To pass parameters into correct registers, the PARM instruction must track which parameter
number it is. The Unicon code for the PARM instruction consists of the following:

"PARM": { if /parmCount then {

 parmCount := 1

 every j := i+1 to *icode do

 if icode[j].op == "CALL" then break

 parmCount +:= 1

 }

 else parmCount -:= 1

 genParm(parmCount, instr.op1) }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

336 Native Code Generation

For the first parameter, the every loop counts the number of parameters before the
CALL instruction. The genParm() method is called with the current parameter number
and the operand. In Java, implementation of the PARM instruction is similar, as we can
see here:

case "PARM": { if (parmCount == -1) {

 for(int j = i+1; j<icode.size(); j++) {

 tac callinstr = icode.get(j);

 if (callinstr.op.equals("CALL"))

 break;

 parmCount++;

 }

 }

 else parmCount--;

 genParm(parmCount, instr.op1);

 break; }

The preceding cases for parameters depend on a genParm() method that generates code
depending on the parameter number. Before loading registers for a new function call,
register values that have been modified must be saved to their main memory locations,
as follows:

method genParm(n, addr)

 every (!regs).save()

 if n > 6 then xcode |||:= xgen("pushq", addr)

 else xcode |||:= xgen("movq", addr, case n of {

 1: "%rdi"; 2: "%rsi"; 3: "%rdx";

 4: "%rcx"; 5: "%r8"; 6: "%r9"

 })

end

The corresponding Java implementation of genParm() looks like this:

public static void genParm(int n, address addr) {

 for (RegUse x : regs) x.save();

 if (n > 6) xcode.addAll(xgen("pushq", addr));

 else {

 String s = "error:" + String.valueOf(n);

 switch (n) {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to x64 code 337

 case 1: s = "%rdi"; break; case 2: s = "%rsi"; break;

 case 3: s ="%rdx"; break; case 4: s = "%rcx"; break;

 case 5: s = "%r8"; break; case 6: s = "%r9"; break;

 }

 xcode.addAll(xgen("movq", addr, s));

 }

}

The CALL instruction is next. After the call, the op1 destination in the three-address code
is saved from the rax register. The op2 source field is the method address that was used
prior to the first PARM instruction. The op3 source field gives the number of parameters,
which is not used on x64. The code is illustrated in the following snippet:

"CALL": { xcode |||:= xgen("call", instr.op3)

 xcode |||:= xgen("movq", "%rax", instr.op1)

 parmCount := -1 }

In Java, implementation of the CALL instruction looks like this:

case "CALL": { xcode.addAll(xgen("call", instr.op3));

 xcode.addAll(xgen("movq", "%rax",

 instr.op1));

 parmCount = -1;

 break; }

The Unicon implementation of the RETURN instruction looks like this:

"RETURN": { xcode |||:= xgen("movq", instr.op1, "%rax") |||

 xgen("leave") ||| xgen("ret", instr.op1) }

In Java, implementation of the RETURN instruction looks like this:

case "RETURN":{ xcode.addAll(xgen("movq", instr.op1,

 "%rax"));

 xcode.addAll(xgen("leave"));

 xcode.addAll(xgen("ret", instr.op1));

break; }

Generating code for method calls and returns is not too difficult. Now, let's consider how
to handle the pseudo-instructions in the three-address code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

338 Native Code Generation

Handling labels and pseudo-instructions
Pseudo-instructions such as labels do not translate into code, but they are present in
the linked list of three-address instructions and require consideration in the final code.
The most common and obvious pseudo-instruction is a label. If the final code is being
generated in human-readable assembler format, labels can be generated as-is, modulo
any format differences necessary to make them legal in the assembler file. If we were
generating final code in a binary format, labels would require precise calculation at this
point and would be entirely replaced by actual byte offsets in the generated machine code.
The code is illustrated here:

"LAB": { every (!regs).save()

 xcode |||:= xgen("lab", instr.op1) }

In Java, the equivalent implementation is shown here:

case "LAB": { for (RegUse ru : regs) ru.save();

 xcode.addAll(xgen("lab", instr.op1)); break; }

As a representative of other types of pseudo-instructions, consider which x64 code
to output for the beginnings and ends of methods. At the beginning of a method in
intermediate code, all you've got is the proc x,n1,n2 pseudo-instruction. The Unicon
code for this pseudo-instruction is shown here:

"proc": {

 n := (instr.op1.offset + instr.op2.offset) * 8

 xcode |||:= xgen(".text") |||

 xgen(".globl", instr.op1) |||

 xgen(".type", instr.op1, "@function") |||

 xgen(instr.op1||":") |||

 xgen("pushq", "%rbp") |||

 xgen("movq", "%rsp", "%rbp") |||

 xgen("subq", "$"||n, "%rsp")

 every i := !(instr.op2.offset) do

 regs[i].loaded := regs[i].dirty := "true"

 every j := i+1 to 11 do

 regs[i].loaded := regs[i].dirty := "false"

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Converting intermediate code to x64 code 339

Line by line in the preceding code, the .text directive tells the assembler to write to
the code section. The .globl directive states that the method name should be linkable
from other modules. The .type directive indicates that the symbol is a function.
The directive below the .type directive declares the (mangled) function name as an
assembler label, which is to say that that name can be used as a reference to this function
entry point in the code region. The pushq instruction saves the previous base pointer on
the stack. The movq instruction establishes the base pointer for the new function at the
current stack top.

The assignment to n calculates the total number of local region bytes, including space for
parameters passed in registers but copied into stack memory if the method calls another
method. The subq instruction allocates memory by moving the stack pointer further
down by that amount in the stack. The two loops mark used parameters while noting that
the other registers are clear. In Java, the corresponding code for a method header looks
like this:

case "proc": {

 xcode.addAll(xgen(".text"));

 xcode.addAll(xgen(".globl", instr.op1));

 xcode.addAll(xgen(".type", instr.op1, "@function"));

 xcode.addAll(xgen(instr.op1 + ":"));

 xcode.addAll(xgen("pushq", "%rbp"));

 xcode.addAll(xgen("movq", "%rsp", "%rbp"));

 int n = (instr.op1.offset + instr.op2.offset) * 8;

 xcode.addAll(xgen("subq", "$"+n, "%rsp"));

 int j;

 for (j = 0; j < instr.op2.offset; j++)

 regs[j].loaded = regs[j].dirty = true;

 for (; j < 11; j++)

 regs[j].loaded = regs[j].dirty = false;

 break;

}

The end pseudo-instruction is somewhat simpler, as we can see here. We do not want to
fall off the end of a method, so we emit instructions to restore the old frame pointer and
return, along with assembler directives for the end of a function:

"end": {

 xcode |||:= xgen("leave") ||| xgen("ret")

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

340 Native Code Generation

The matching Java implementation of the end pseudo-instruction is shown here:

case "end": {

 xcode.addAll(xgen("leave"));

 xcode.addAll(xgen("ret"));

 break;

}

The past several sections produced a data structure containing a representation of the
bytecode and then showed how various three-address instructions are translated. Now,
let's move on to producing the output native x64 code from a list of x64 objects.

Generating x64 output
As with many traditional compilers, the native code for Jzero will be produced by
carrying out the following steps. First, we will write out a linked list of x64 objects in
human-readable assembler language with the .s extension. We then invoke the GNU
assembler to turn that into binary object file format with the .o extension. An executable
is constructed by invoking a linker, which combines a set of .o files specified by the
user with a set of .o files containing runtime library code and data referenced from the
generated code. This section presents each of these steps, starting with producing the
assembler code.

Writing the x64 code in assembly language format
This section provides a brief description of the x64 assembler format as supported by the
GNU assembler, which uses AT&T syntax. Instructions and pseudo-instructions occur
on a line by themselves with a tab (or eight spaces) of indentation at the left. Labels are
an exception to this rule as they contain no leading spaces of indentation and consist
of an identifier followed by a colon. Pseudo-instructions begin with a period. After
the mnemonic for the instruction or pseudo-instruction, there may be a tab or spaces
followed by zero, one, or two comma-separated operands depending on the requirements
of the instruction.

As an example of all this, here is a simple x64 assembler file containing a function that
does nothing and returns a value of 42. In the assembler, this is how it might look:

 .text

 .globl two

 .type two, @function

two:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating x64 output 341

.LFB0:

 pushq %rbp

 movq %rsp, %rbp

 movl $42, -4(%rbp)

 movl -4(%rbp), %eax

 popq %rbp

 ret

.LFE0:

 .size two, .-two

The j0 class has a method named x64print() that outputs a list of x64 objects into
a text file in this format. As you can see in its code shown next, it calls the print()
method on each of the x64 objects in the xcode list:

method x64print()

 every (!xcode).print()

end

The Java implementation of x64print() in the j0.java file is shown here:

public static void x64print() {

 for(x64 x : xcode) x.print();

}

Having shown how the assembler code is written, it's time to look at how to invoke the
GNU assembler to produce an object file.

Going from native assembler to an object file
Object files are binary files containing actual machine code. An assembler file written out
in the preceding section is assembled using the as command, as shown here:

as --gstabs+ -o two.o two.s

In this command line, --gstabs+ is a recommended option that includes debugging
information. -o two.o is an option that specifies the output filename.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

342 Native Code Generation

The resulting two.o binary file is not readily understandable by humans as-is but can be
viewed using various tools. Just for fun, the first 102 bytes of ones and zeros from two.o
are shown in the following screenshot; each row shows six bytes, with the American
Standard Code for Information Interchange (ASCII) interpretation shown on the right.
The screenshot shows you the ones and zeros in text form thanks to a tool named xxd
that prints the bits out literally in textual form. Of course, a computer usually processes
them from 8 to 64 bits at a time without first transliterating them into text form:

Figure 13.2 – Binary representations are not human friendly, but computers prefer them

It is not a coincidence that bytes 2-4 of the file say ELF. Executable and Linkable Format
(ELF) is one of the more popular multiplatform object file formats, and the first four bytes
identify the file format. Suffice to say, such binary file formats are important to machines
but difficult for humans. Now, let's consider how object files are combined to form
executable programs.

Linking, loading, and including the runtime system
The task of combining a set of binary files to produce an executable is called linking. This
is another section about which an entire book can be written. For Jzero, it is a very good
thing that we can let the ld GNU linker program do the work. It takes a -o file option to
specify its output filename, and then any number of .o object files. The object files for a
working executable include a startup file that will initialize and call main(), often called
crt1.o, followed by the application files, followed by zero or more runtime library files.
If we build a Jzero runtime library named libjzero.o, the ld command line might
look like this:

ld -o hello /usr/lib64/crt1.o hello.o -ljzero

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating x64 output 343

If your runtime library calls functions in a real C library, you will have to include them
as well. A full ld-based link of a runtime system built on top of the GNU Compiler
Collection's (GCC's) glibc looks like this:

ld -dynamic-linker /lib64/ld-linux-x86-64.so.2 \

 /usr/lib/x86_64-linux-gnu/crt1.o \

 /usr/lib/x86_64-linux-gnu/crti.o \

 /usr/lib/gcc/x86_64-linux-gnu/7/crtbegin.o \

 hello.o -ljzero \

 -lc /usr/lib/gcc/x86_64-linux-gnu/7/crtend.o \

 /usr/lib/x86_64-linux-gnu/crtn.o

Your users would not often have to type this command line itself since it would be boiled
into your compiler's linker invocation code. But it has the fatal flaw of being non-portable
and version-dependent. To use an existing GCC C library from within your runtime
system, you might prefer to let an existing GCC installation perform your linking for you,
like this:

gcc -o hello hello.o

The linker must assemble one big binary code from several binary object code inputs.
In addition to bringing together all the instructions in the object files, the linker's
primary job is to determine the addresses of all the functions and global variables in the
executable. The linker must also provide a mechanism for each object file to find the
addresses of functions and variables from other object files.

For functions and variables that are not defined in user code but are instead part of the
language runtime system, the linker must have a mechanism for searching the runtime
system and incorporating as much of it as is needed. The runtime system includes startup
code that will initialize the runtime system and set things up to call main(). It may
include one or more object files that are always linked to any executable for that language.
Most importantly, the linker provides a way to search and link in only those portions of
the runtime system that are explicitly called from the user code.

In modern systems, things have gotten more complicated over time. It is standard to defer
various aspects of linking and loading to runtime, particularly to allow processes to share
library code that has already been loaded for use by other processes.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

344 Native Code Generation

Summary
This chapter showed you how to generate native code for x64 processors. Among the skills
you learned, the main task was to traverse a linked list of intermediate code and convert it
into instructions in the x64 instruction set. In addition, you learned to write out x64 code
in GNU assembler format. Lastly, you learned how to invoke the assembler and linker to
turn the native code into ELF object and executable file format. The next chapter looks in
more detail at the task of implementing new high-level operators and built-in functions in
your language's runtime system.

Questions
1. What are the main new concepts that become necessary to generate x64 native code,

compared with bytecode?
2. What are the advantages and disadvantages of supplying the addresses of global

variables as offsets relative to the %rip instruction pointer register?
3. One of the big issues affecting the performance of modern computers is the speed

of performing function calls and returns. Why is function call speed important? In
which circumstances is the x64 architecture able to perform fast function calls and
returns? Are there aspects of the x64 architecture that seem likely to slow function
calling down?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

14
Implementing
Operators and

Built-In Functions
New programming languages are invented because occasionally, new ideas and new
computational capabilities are needed to solve problems in new application domains.
Libraries of functions or classes are the basic means of extending mainstream languages
with additional computational capabilities, but if adding a library was always sufficient,
you wouldn't need to build your own language, would you?

This chapter and the next discuss language extensions that go beyond libraries. This
chapter will describe how to support very high-level and domain-specific language
features by adding operators and functions that are built into the language. The following
chapter will discuss adding control structures.

Adding operators and built-in functions may shorten and reduce what programmers
must write to solve certain problems in your language, improve its performance, or enable
language semantics that would otherwise be difficult. This chapter illustrates the ideas
within the context of Jzero, emphasizing the String and array types. By way of comparison,
the later sections describe how operators and functions are implemented in Unicon.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

346 Implementing Operators and Built-In Functions

This chapter will cover the following main topics:

• Implementing operators

• Writing built-in functions

• Integrating built-ins with control structures

• Developing operators and functions for Unicon

Thanks to this chapter, you will learn how to write parts of the runtime system that are
too complex to be instructions in the instruction set. You will also learn how to add
domain-specific capabilities to your language. Let's start with how to implement
high-level operators!

Implementing operators
Operators are expressions that compute a value. Simple operators that compute their
results via a few instructions on the underlying machine were covered in the preceding
chapters. This section describes how to implement an operator that takes many steps. You
can call these operators composite operators. In this case, the underlying generated code
may perform calls to functions in the underlying machine.

The functions called from generated code are written in the implementation language
rather than the source language. They may be lower level and do things that are impossible
in the source language. For example, parameter passing rules might be different in the
implementation language than they are in the programming language that you are creating.

If you are wondering when you should make a new computation into an operator, you
can refer to Chapter 2, Programming Language Design. Rather than repeat that material,
we will just note that operators are generally constrained to operate on, at most, three
operands, and that most operators use two, or one operand.

If you can leverage analogies regarding arithmetic to reuse appropriate familiar operators
for your new computations, great. Otherwise, you are expecting programmers to learn and
memorize new patterns, which is asking a lot of them. You can add hundreds of operators
to your language, but human brains will not memorize that many. If you try to introduce
more operators than we have keyboard keys, for example, your language may get rejected
for the excessive cognitive load. Now, let's consider to what extent adding new operators to
a language leads to or follows as a consequence of adding new hardware capabilities.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing operators 347

Asking whether operators imply hardware support
and vice versa
In the same way that you may discover a common computation of yours might deserve
to be an operator in your language, hardware designers might realize that computers
should support a common computation with native instructions. When language
designers realize a computation should be an operator in their language, that makes
that computation a candidate for hardware implementation. Similarly, when hardware
designers implement a common computation in their hardware, language designers
should ask whether that computation should be supported directly with operators or
another syntax. Here is an example.

Before the 80486 in 1994, most PCs did not come with floating-point hardware; on
some platforms, a floating-point co-processor was an expensive add-on needed only
for scientific computing. If you were implementing a compiler, you implemented a
floating-point data type in software as a set of functions. These runtime system functions
were called from generated code but were transparent to the programmer. A program that
declared two float variables, f1 and f2, and executed the f1 + f2 expression would
compute the floating-point sum without noting that the generated code included function
calls that might be 10x or 100x slower than adding two integers.

Here is another example that may be a sore point for you. After a program called Doom
created enormous demand for 3D graphics in the 1990s, GPUs were developed. They
support computations far beyond their original scope of games and other 3D programs.
However, they are not supported directly in most mainstream languages, and the steep
learning curve and difficult programming for GPUs have lessened their enormous impact.
To summarize: there is a rich juicy gray area in-between operators that should be built
into the programming language to make programming simple, as well as operators that
should be built into the hardware. Now, let's learn how to add compound operators by
adding one to Jzero: concatenation.

Adding String concatenation to intermediate code
generation
For Jzero, the String type is essential but was not implemented in the preceding chapters
on code generation or bytecode interpretation, which focused on integer computation.
The String class has a concatenation operator that we must implement. Some computers
support concatenation in hardware for some string representations. For Jzero, String
is a class and concatenation is comparable to a method – either a factory method or a
constructor since it returns a new string rather than modifying its arguments.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

348 Implementing Operators and Built-In Functions

In any case, it is time to implement s1+s2, where s1 and s2 are strings. For intermediate
code, we can add a new instruction called SADD. If you don't want to, you can generate
code that calls a method for string concatenation, but we are going to run with an
intermediate code instruction here. The code generation rule for the plus operator will
generate different code, depending on the type. Before we can implement that, we must
modify the check_types() method in the tree class so that the s1 string plus the s2
string is legal and computes a string. In the Unicon implementation, change the lines in
tree.icn where addition is type-checked to allow the String type, as follows:

 if op1.str() === op2.str() === ("int"|"double"|"String")

 then return op1

In the Java implementation, add the following OR in tree.java:

 if (op1.str().equals(op2.str()) &&

 (op1.str().equals("int") ||

 op1.str().equals("double") ||

 op1.str().equals("String")))

 return op1;

Having modified the type checker to allow string concatenation, the intermediate code
generation method, genAddExpr(), is similarly extended. The Unicon modifications in
tree.icn are highlighted in the method body shown here:

method genAddExpr()

 addr := genlocal()

 icode := kids[1].icode ||| kids[2].icode

 if typ.str() == "String" then {

 if rule ~= 1320 then

 j0.semErr("subtraction on strings is not defined")

 icode |||:= gen("SADD", addr,

 kids[1].addr, kids[2].addr)

 }

 else icode |||:= gen(if rule=1320 then "ADD" else "SUB",

 addr, kids[1].addr, kids[2].addr)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing operators 349

The check for production rule 1320 is because the String type does not support
subtraction. The corresponding Java modifications in tree.java are as follows:

void genAddExpr() {

 addr = genlocal();

 icode = new ArrayList<tac>();

 icode.addAll(kids[0].icode); icode.addAll(kids[1].icode);

 if (typ.str().equals("String")) {

 if (rule != 1320)

 j0.semErr("subtraction on strings is not defined");

 icode.addAll(gen("SADD", addr,

 kids[0].addr,kids[1].addr);

 }

 else icode.addAll(gen(((rule==1320)?"ADD":"SUB"),

 addr, kids[0].addr, kids[1].addr));

end

At this point, we have added an intermediate code instruction for string concatenation.
Now, it is time to implement it in the runtime system. First, we will consider the
bytecode interpreter.

Adding String concatenation to the bytecode
interpreter
Since the bytecode interpreter is software, we can simply add another bytecode
instruction for string concatenation, as we did for intermediate code. Opcode #22 for
the SADD instruction must be added to Op.icn and Op.java. We must modify the
bytecode generator to generate a bytecode SADD instruction for an intermediate code
SADD instruction. In the bytecode() method in j0.icn, the Unicon implementation
looks as follows:

 "SADD": {

 bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

 j0.bgen(Op.PUSH, instr.op3) |||

 j0.bgen(Op.SADD) |||

 j0.bgen(Op.POP, instr.op1)

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

350 Implementing Operators and Built-In Functions

If this looks like the code for the ADD instruction, that is the point. As with the ADD
instruction, the final code consists mainly of converting a three-address instruction into a
sequence of one-address instructions. The Java implementation in j0.java is shown here:

 case "SADD": {

 rv.addAll(j0.bgen(Op.PUSH, instr.op2));

 rv.addAll(j0.bgen(Op.PUSH, instr.op3));

 rv.addAll(j0.bgen(Op.SADD, null));

 rv.addAll(j0.bgen(Op.POP, instr.op1));

 break;

 }

We must also implement that bytecode instruction, which means we must add it to the
bytecode interpreter. Since the Unicon and Java implementation languages both have
high-level string types with semantics such as Jzero, we can hope that implementation
will be simple. If the Jzero representation of a String in the j0x bytecode interpreter
is an underlying implementation language string, then the implementation of the SADD
instruction will just perform string concatenation. However, in most languages, the source
language semantics differ from the implementation language, so it is usually necessary
to implement a representation of the source language type that models source language
semantics in the underlying implementation language.

Having issued that warning, let's see if we can implement Jzero strings as plain Unicon
and Java strings. In that case, the SADD instruction in the interp() method in
j0machine.icn is almost the same as that of the ADD integer:

Op.SADD: {

 val1 := pop(stack); val2 := pop(stack)

 push(stack, val1 || val2)

}

This Unicon implementation relies on the fact that the Unicon value stack does not
care if you sometimes push integers and if you sometimes push strings. Unicon has an
underlying string region where memory for the strings' underlying contents is stored, and
the bytecode interpreter uses that implicitly.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing operators 351

The corresponding Java implementation in j0machine.java is trickier. The stackbuf
variable that we implemented was a ByteBuffer that was sized for holding a good
number of 64-bit integer values, but now, we must decide how to use it to also hold
strings. If we store the actual string contents in stackbuf, we are not implementing a
stack anymore – we are implementing a heap and it will be a can of worms. Instead, we
will store some integer code in stackbuf that we can use to obtain the string by looking
it up in a string pool:

case Op.SADD: {

 String val1 = stringpool.get(stackbuf.getLong(sp--));

 String val1 = stringpool.get(stackbuf.getLong(sp--));

 long val3 = stringpool.put(val1 + val2);

 stackbuf.putLong(sp++, val3);

}

This code depends on the stringpool class, which uses unique integers to store
and retrieve strings. These unique integers are references to the string data that can
be conveniently stored on stackbuf, but now, the Java implementation requires the
stringpool class, so here it is, in the stringpool.java file. For any string, the way
to retrieve its unique integer is to look it up in the pool. Once it's been issued like this, a
unique integer can be used to retrieve the string later on demand:

public class stringpool {

 static HashMap<String,Long> si;

 static HashMap<Long,String> is;

 static long serial;

 static { si = new HashMap<>(); is = new HashMap<>(); }

 public static long put(String s) { … }

 public static String get(long L) { … }

}

This class requires the following pair of methods. The put() method inserts strings into
the pool. If the string is already in the pool, its existing integer key is returned. If the string
is not already in the pool, the serial number is incremented and that number is associated
with the string:

public static long put(String s) {

 if (si.containsKey(s)) return si.get(s);

 serial++;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

352 Implementing Operators and Built-In Functions

 si.put(s, serial);

 is.put(serial, s);

 return serial;

}

The get() method retrieves a String from stringpool:

public static String get(long L) {

 return is.get(L);

}

Now, it is time to look at how to implement this operator for native code.

Adding String concatenation to the native runtime
system
The Jzero native code is much lower level than the bytecode interpreter. Implementing
the Jzero String class semantics from scratch in C is a big job. Jzero uses an extremely
simplified subset of the Java String class, for which we only have room to describe the
highlights. Here is an underlying C representation of a String class for use in Jzero:

struct String {

 struct Class *cls;

 long len;

 char *buf;

};

Within this struct, cls is a pointer to an as-yet-undefined structure for class information,
len is the length of the string, and buf is a pointer to data. The Jzero string concatenation
might be defined as follows:

struct String *j0concat(struct String *s1,
 struct String *s2){

 struct string *s3 = alloc(sizeof struct String);

 s3->buf = allocstring(s1->len + s2->len);

 strncpy(s3->buf, s1->buf, s1->len);

 strncpy(s3->buf + s1->len, s2->buf, s2->len);

 return s3;

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing built-in functions 353

This code raises as many questions as it answers, such as what the difference is between
alloc() and allocstring(); we will get to those shortly. But it is a function that we
can call from the generated native code via this addition in j0.icn:

 "SADD": {

 bcode |||:= xgen("movq", instr.op2, "%rdi") |||

 xgen("movq", instr.op3, "%rsi") |||

 xgen("call", "j0concat") |||

 xgen("movq", "%rax", instr.op1)

 }

The corresponding Java implementation in j0.java is shown here:

 case "SADD": {

 rv.addAll(xgen("movq", instr.op2, "%rdi"));

 rv.addAll(xgen("movq", instr.op3, "%rsi"));

 rv.addAll(xgen("call", "j0concat"));

 rv.addAll(xgen("movq", "%rax", instr.op1));

 break;

 }

Here, you can see that substituting a function call to implement an immediate code
instruction is straightforward. Let's compare this with the code that is generated for
built-in functions, which we will present next.

Writing built-in functions
Low-level languages such as C have no built-in functions; they have standard libraries
that contain functions available to all programs. Linking a function to your program and
calling it is conceptually the same action, whether it is a library function or a user-defined
function. The higher the language level, the more conspicuous the difference between what
is written for its runtime system in a lower-level implementation language, and what is
written by end users in the language itself. This section uses the words function and method
interchangeably. Let's consider how to implement built-ins in the bytecode interpreter.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

354 Implementing Operators and Built-In Functions

Adding built-in functions to the bytecode interpreter
Let's implement System.out.println() in the bytecode interpreter. One of our
design options is to implement a new bytecode machine instruction for each built-in
function, including println(). This doesn't scale well to thousands of built-in
functions. We could implement a callnative instruction, providing us with a way to
identify which built-in function we want to call. Some languages implement an elaborate
interface for calling native code functions and implement println() (or some lower-
level building block function) as a wrapper function written in Jzero that uses the native
calling interface.

For Jzero, as described in the Running a Jzero program section of Chapter 11, Bytecode
Interpreters, we chose to use the existing call instruction, with special function values to
denote built-in functions. The special values we chose were small negative integers where
a function entry point address would normally go. So, the function call mechanism must
be built to look for small negative integers to distinguish between method types and do
the correct thing for user-defined and built-in methods.

Let's look at the do_println() method, which we suggested in Chapter 11, Bytecode
Interpreters. For Jzero, this runtime system method is hardwired to write to standard
output, much like puts() in C. The string to be written is on the stack; it's no longer
on the top since the call instruction pushed a function return address. In Unicon,
do_println() might be implemented as follows:

method do_println()

 write(stack[2])

end

In Java, the do_println() method would look something like this:

public static do_println() {

 String s = stringpool.get(…);

 System.out.println(s);

}

Built-in functions in bytecode are simple. Now, let's look at writing built-in functions for
native code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing built-in functions 355

Writing built-in functions for use with the native code
implementation
Now, it is time to implement System.out.println() for the native code Jzero
implementation. In a Java compiler, it would be a method of the System.out object,
but for Jzero, we may do whatever is expedient. We can write a native function named
System_out_println() in assembler, or if our generated native code adheres
carefully to the calling conventions of a C compiler on the same platform, we can write it
in C, put it in our Jzero runtime library, and link it to the generated assembler modules
to form our executable. The function takes one string argument, struct String *,
as shown in the previous section. Here is an implementation; you can put it in the
System_out_println.c file:

#include <stdio.h>

void System_out_println(struct String *s) {

 for(int i = 0; i < s->len; i++) putchar(s->buf[i]);

 putchar('\n');

}

The more interesting part of all this is, how does the generated code get access to this
and other built-in native functions? You can compile it via the following command line
for gcc:

gcc -c System_out_println.c

You can add the System_out_println.o output file to an archive library named
libjzero.a with the following command line:

ar cr libjzero.a System_out_println.o

The preceding two command lines are not executed within your compiler at each compile
or link time; instead, they are run when the Jzero compiler itself is being built, alongside
potentially many other bits of the operator or built-in function library code. They create a
library archive file called libjzero.a. This archive file can be linked to Jzero's generated
code using the ld or gcc commands, as described in Chapter 13, Native Code Generation,
in the Linking, loading, and including the runtime system section.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

356 Implementing Operators and Built-In Functions

The -lsomefile command-line option expands to match libsomefile.a so that our
runtime is invoked as -ljzero. Now, how does the Jzero compiler, which presumably
may be installed anywhere, find the runtime library, which presumably may be installed
anywhere? The answer will vary by operating system and some of the convenient options
require administrative privileges. If you can copy libjzero.a into the same directory
that's used by your linker for other system libraries such as C:\Mingw\lib on Windows
or /usr/lib64 on Linux, you may find that everything works great. If that is not an
option, you may resort to environment variables or command-line options, either to
inform the linker where the library is or to inform the Jzero compiler itself on the Jzero
command line where the runtime library can be found. Adding built-in functions like this
is important because not every language addition can be made in the form of an operator.
Similarly, not every language addition is best formulated as a function. Sometimes, such
operators and built-in functions are more effective when they're part of new control
structures that support some new problem domain. Let's consider how these operators
and functions might profit from being integrated with syntactic additions in the form of
control structures.

Integrating built-ins with control structures
Control structures are usually bigger things than expressions, such as loops. They
are often associated with novel programming language semantics or new scopes that
specialized computations can occur in. Control structures provide a context that a
statement (often, this is a compound statement consisting of a whole block of code) is
executed in. This can be whether (or how many times) it is executed, what associated data
the code is to be applied to, or even what semantics the operators should be interpreted
with. Sometimes, these control structures are explicitly and solely used for your new
operators or built-in functions, but often, the interactions are implicit byproducts of the
problem solving that your language enables.

Whether a given block of code is executed, selecting which of several to execute or
executing code repeatedly are the most traditional control structures, such as if
statements and loops. The most likely opportunities for operators or functions to interact
with these constructs include special iterator syntax, to control loops using your domain
values, and special switch syntax, to select block(s) of code to execute.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Developing operators and functions for Unicon 357

The Pascal WITH statement is an old but good example of associating some data with
a chunk of code that uses that data. The syntax is WITH r DO statement. A WITH
statement attaches some record, r, to a statement – usually, this is a compound statement
– within which the record's fields are in scope, and a field named x need not be prefixed
by an accessor expression, such as r.x. This is a low-level building block that object-
orientation (and associated self or this references) is based on, but Pascal allows such
object attachments for individual statements, a finer grain than method calls, and Pascal
allows multiple objects to be associated with the same block of code.

We can illustrate some of the considerations of interacting with control structures by
considering the implementation of a for loop, which iterates over strings. Because Java
is not perfect, you cannot write the syntax – that is, for(char c:s) statement – to
execute statement once for each element of s, but you can write for(char c:s.
toCharArray()) statement

So, Java arrays interact nicely with the for control structure, but the Java String class
is not as nice. There is an Iterable interface, but strings do not work with it without
jumping through extra hoops. When you design your language, try to make common
tasks straightforward. A similar comment would apply to accessing String elements.
Nobody wants to write s.charAt(i) when they could be writing s[i]; this is a good
argument for operator support. An example of integrating a built-in function with a
control structure by providing parameter defaults will be provided in the next section.
Now, let's look at how operators and built-in functions are implemented for Unicon.

Developing operators and functions
for Unicon
Unicon is a very high-level language with many built-in features. For such languages, it
will make sense to do some engineering work to simplify creating its runtime system.
The purpose of this section is to share a bit about how this was done for Unicon, for
comparison purposes. Unicon's operators and built-in functions are implemented using
RTL, which stands for Run Time Language. RTL is a superset of C developed by Ken
Walker to facilitate garbage collection and type inference in the runtime system. RTL
writes out C code, so it is almost a very specialized form of C preprocessor that maintains
a database in support of type inferencing.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

358 Implementing Operators and Built-In Functions

Operators and functions in RTL look like C code, with many pieces of special syntax.
There is syntax support for associating different pieces of C code, depending on the
data type of the operands. To allow for type inferencing, the Unicon result type that's
produced by each chunk of C code is declared. The RTL language also has syntax support,
which makes it easy to specify when an operand type conversion needs to take place. In
addition, each chunk of C code is marked with syntax to specify whether to inline it in the
generated code or execute the specified code via a C function call. First, we will describe
how to write operators in RTL, along with their special considerations. After that, we will
learn how to write Unicon functions in RTL, which are similar to operators but slightly
more general in nature.

Writing operators in Unicon
After various clever macro expansions and omitting #ifdefs, the addition operator
in Unicon looks as follows. The following code shows three different forms of addition
for C (long) integers, arbitrary precision integers, and floating-point. In the actual
implementation, there is a fourth form of addition for array-at-a-time data-parallel addition:

 operator{1} + add(x, y)

 declare { C_integer irslt; }

 arith_case (x, y) of {

 C_integer: { abstract { return integer }

 inline { … }

 }

 integer: { abstract { return integer }

 inline { … }

 }

 C_double: { abstract { return real }

 inline { … }

 }

 }

end

In the preceding code, the special RTL case statement for arithmetic operators, called
arith_case, is performed at compile time by the Unicon optimizing compiler, while in
the bytecode interpreter, it is an actual switch statement that's performed at runtime. Hidden
within arith_case, a set of language-wide standard automatic type conversion rules is
applied; for example, strings are converted into their corresponding numbers if possible.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Developing operators and functions for Unicon 359

The case for regular C integer addition checks the validity of its result and triggers
arbitrary precision addition, as per the middle case on integer overflow. The outline of this
case body looks like this; some #ifdefs have been omitted for the sake of readability. To
summarize, although the RTL syntax inlines this code, the inlined code for a single plus
operator on the integer type involves one, possibly two, function calls:

 irslt = add(x,y, &over_flow);

 if (over_flow) {

 MakeInt(x,&lx);

 MakeInt(y,&ly);

 if (bigadd(&lx, &ly, &result) == RunError)

 runerr(0);

 return result;

 }

 else return C_integer irslt;

The add() function is called to perform regular integer addition. If there is no overflow,
the integer result that's returned by add() is valid and is returned. By default, RTL returns
from Unicon operators functions using a generic Unicon value that can hold any Unicon
type. If a C primitive type is returned instead, it must be specified. In the preceding code,
return at the end is annotated in RTL to indicate that a C integer is being returned.

If the call to add() overflows, the bigadd() function is called to perform arbitrary
precision addition. Here is the Unicon runtime's implementation of the add() function,
which performs integer addition and checks for overflow. There is no more RTL extended
syntax going on here, just references to macros for the 2^63-1 and -2^63 values.
Someone was probably fairly careful when they wrote this code:

word add(word a, word b, int *over_flowp)

{

 if ((a ^ b) >= 0 &&

 (a >= 0 ? b > MaxLong - a : b < MinLong - a)) {

 *over_flowp = 1;

 return 0;

 }

 else {

 *over_flowp = 0;

 return a + b;

 }

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

360 Implementing Operators and Built-In Functions

This is pretty straight C code, except for the (a^b) exclusive or, which is a way of asking
if the values are both positive or both negative. In addition to computing the sum, this
function writes a boolean value to the address given in its third parameter to report
whether an integer overflow has occurred.

Because it does not have to check for overflow, the floating-point real number addition
branch of arith_case, denoted by C_double in RTL, is much simpler. Instead of
calling a helper function, the real number is done inline using the regular C + operator:

return C_double (x + y);

We have omitted the corresponding implementation of the arbitrary precision addition
function, bigadd(), that is called in this operator, which is many pages long. If you want
to add arbitrary precision arithmetic to your language, you should read about the GNU
Multiple Precision (GMP) library, which lives at https://gmplib.org/. Now, let's
consider a few of the issues that come up when writing built-in functions for Unicon.

Developing Unicon's built-in functions
Unicon's built-in functions are also written in RTL (and C) and as in the case of operators,
the code for each function can be designated to be inlined or called as functions. Built-in
functions are longer than operators, on average, but perhaps in most cases, the RTL
function syntax exists as an advanced form of wrapper that enables a C function to be
called from Unicon, with conversions between the type representations of Unicon values
and C values as needed. Unlike operators, many functions have multiple parameters for
which designated default values may be specified via special syntax. As an example, here
is the code for Unicon's string analysis function, any(), which succeeds if the character
at the current position within a string is a member of a set of characters specified in its
first parameter. The RTL reserved word, function, declares a Unicon built-in function
instead of a regular C function. The {0,1} syntax indicates how many results this
function can produce. It may produce as few as zero results (failing) or as many as one; it
is not a generator. The if-then statement specifies that the first parameter must be able
to be converted into a cset (if not, a runtime error occurs), while the body reserved word
specifies that the generated code should call a function here, rather than inline the code:

function{0,1} any(c,s,i,j)

 str_anal(s, i, j)

 if !cnv:tmp_cset(c) then

 runerr(104,c)

 body {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://gmplib.org/

Summary 361

 if (cnv_i == cnv_j)

 fail;

 if (!Testb(StrLoc(s)[cnv_i-1], c))

 fail;

 return C_integer cnv_i+1;

 }

end

In addition to the bits of RTL syntax, macros play a huge role. str_anal is a macro
that sets up a string for analysis, defaulting parameters 2–4 to the current string
scanning environment. str_anal also ensures that s is a string and i and j are
integers, converting them into those types if necessary, and issuing a runtime error if an
incompatible type of value is passed in. String scanning environments are created by the
string scanning control structure; the location under study within the string can be moved
around by other string scanning functions. Adding domain-specific control structures
such as string scanning will be presented in the next chapter. This example serves to
motivate them. One reason to use new control structures is to make operators and built-in
functions more powerful and concise.

In this section, we presented a few highlights that show how Unicon's operators and
built-in functions are implemented. A lot of the issues in the runtime system of a very
high-level language were found to revolve around the big semantic difference between
the source language (Unicon) and the implementation language (in Unicon's case, C).
Depending on the level of the language you are creating, and the language you write its
implementation in, you may find it useful to resort to similar techniques.

Summary
This chapter showed you how to write high-level operators and built-in functions for the
runtime system of your language. One of the main points that you are to take away is that
the implementation of operators and functions can range from completely different, to
almost entirely the same, depending on the language you are inventing.

The examples in this chapter taught you how to write code in your runtime system
that will be called from generated code. You also learned how to decide when to make
something a runtime function instead of just generating the code for it using instructions.

The next chapter will continue the topic of implementing built-in features by exploring
domain control structures.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

362 Implementing Operators and Built-In Functions

Questions
1. It is mathematically provable that every computation that you could implement as

an operator or built-in function can be implemented instead as a library method, so
why bother implementing high-level operators and built-in functions?

2. What factors must you consider if you are deciding between making a new operator
or a new built-in function?

3. There were probably some good reasons why Java decided to give strings only
partial operator and control structure support, despite strings being important and
supported better in languages such as Icon and Unicon (and Python, which was
influenced by Icon). Can you suggest some of the reasons for this?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

15
Domain Control

Structures
The code generation that was presented in the previous chapters covered basic conditional
and loop control structures, but domain-specific languages often have unique or
customized semantics that merit introducing novel control structures. Adding a new
control structure is usually substantially more difficult than adding a new function or
operator. However, when they are effective, the addition of domain control structures is
a large part of what makes domain-specific languages worth developing instead of just
writing class libraries.

This chapter covers the following main topics:

• Knowing when you need a new control structure

• Processing text using string scanning

• Rendering graphics regions

The first section will help you learn how to determine when a domain control structure is
needed. The second and third sections will present two example domain control structures.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

364 Domain Control Structures

This chapter will give you a better idea of when and how to implement new control
structures as needed in your language design. More importantly, you will learn how to
walk the thin line that balances the need to stick with generating familiar code for familiar
structures and the need to reduce programmers' effort in new application domains by
introducing novel semantics.

Java and its Jzero subset do not have comparable domain control structures, so the
examples in this chapter come from Unicon and its predecessor, Icon. While this chapter
outlines their implementation, at times using code examples, you are reading this chapter
for the ideas rather than to type the code in and see it run. First, let's re-examine when a
new control structure is justified.

Knowing when you need a new control
structure
You need a new control structure when it addresses one or more major programming
pain points. Often, pain points arise when people start writing software in support
of a new class of computer hardware, or for a new application domain. Awareness or
knowledge of an application domain's pain points may or may not exist at language design
time, but more often, the awareness of pain points is generated from early substantial
experiences attempting to write software for that domain.

Pain points are often due to complexity, frequent and pernicious bugs, code duplication,
or several other famous bad smells or antipatterns. Some code smells are described in
Refactoring: Improving the Design of Existing Code, by Martin Fowler. Antipatterns are
described at antipatterns.com and in several books referenced on that site.

Individual programmers or programming projects may be able to reduce their code smells
or avoid antipatterns by performing code refactoring, but when the use of application
domain libraries entails that most or all applications in that domain face such problems,
an opportunity for one or more domain control structures arises. Now, let's define what
control structures are so that we understand what we are talking about.

Defining what a control structure is
If you Google the definition of a control structure, it will say something like "control
structures determine the order in which one or more chunks of code execute." This definition
is fine for traditional mainstream languages. It focuses on control flow, and it addresses
two kinds of control structures: choosing which (or whether) to execute and loops
that can repeat under some conditions. The if statements and while loops that we
implemented for Jzero earlier in this book are good examples.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

antipatterns.com

Knowing when you need a new control structure 365

Higher-level languages tend to have a more nuanced view of control structures. For
example, in a language with built-in backtracking, the order in which chunks of code may
execute becomes more complicated. This book will paraphrase Ralph Griswold's definition
of a control structure in the Icon programming language: a control structure is an
expression containing two or more subexpressions in which one subexpression is used to
control the execution of another subexpression. That definition is more general and more
powerful than the traditional mainstream definition provided in the previous paragraph.

The phrase "control the execution" in Griswold's definition can be interpreted as broadly
and as loosely as you want. Instead of just whether a chunk of code executes, or which
chunk of code, or how many times, a control structure can determine how the code
executes. This could mean introducing new scopes where names are interpreted
differently, or adding new operators. We will see interesting examples of control structures
affecting how code executes later in this chapter. Let's start with a simple one.

Reducing excessive redundant parameters
Many general-purpose libraries have an API with the same parameters repeated across
tens or even hundreds of related functions. Applications that use these APIs may feature
many calls where the same sequence of parameters is provided to the library over and
over. The classic Microsoft Windows graphics API is a good example of this. Things
such as windows, device contexts, colors, line styles, and brush patterns are provided
repeatedly to many drawing calls. You can write any code you want, but when you call
GetDC() to acquire a device context, there had better be exactly one corresponding call
to ReleaseDC(). A lot of the code in-between those two points will pass that device
context as a parameter over and over.

For the sake of reducing the network traffic involved, Win32's open source counterpart,
known as Xlib, the C library for writing applications under the X Window System, placed
several common graphic drawing elements into a graphics context object that reduces the
parameter's redundancy. Despite this, the Xlib API remains complex and contains a lot of
parameter redundancy.

The designers of libraries are, in some cases, geniuses, but the APIs may be relatively
hostile to ordinary developers, with steep learning curves and many bugs. Before the
advent of graphical user interface builders that generated this code for us, creating
graphical user interfaces disproportionately slowed down development and increased the
cost of many applications, and it tempted many coders into poor practices such as block
copying and modifying vast swaths of user interface code.

For a language where a new control structure is not an option, the problem of excessive
redundant parameters may be unavoidable. If you build a language, a control structure is a
real option for addressing this issue.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

366 Domain Control Structures

Pain points become a target for a new control structure when they can be solved within
the domain that you are supporting, and a by-product of traditional languages and lack of
support for that domain. If your application domain has existing libraries and applications
written in a mainstream language, you can study that code to look for its pain points
and craft control structures that ameliorate them in your programming language. If
your application domain is quite new and no mainstream language APIs and application
base are available, you might resort to guessing or writing example programs in your
new language to look for pain points. Let's look at a novel control structure where these
principles were applied successfully: string scanning in the Icon and Unicon languages.

Scanning strings in Icon and Unicon
Unicon inherits this domain control structure from its immediate predecessor, Icon.
String scanning is invoked by the s ? expr syntax. Within expr, s is the scanning
subject and referenced by a global keyword called &subject. Within the subject string,
a current analysis position, which is stored in the &pos keyword, denotes the index
location in the subject string where it is being examined. The position starts at the
beginning of the string and can be moved back and forth, typically working its way
toward the end of the string. For example, in the following program, s contains
"For example, suppose string s contains":

procedure main()

 s := "For example, suppose string s contains"

 s ? {

 tab(find("suppose"))

 write("after tab()")

 }

end

Now, let's say we were to add a scanning control structure:

s ? { … }

Here, the &subject and &pos keywords would be in the following state:

Figure 15.1 – Subject and position at the start of a scan

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scanning strings in Icon and Unicon 367

After scanning forward past the comma and the space after the comma, the string's
scanning position would be set to 14. The subsequent analysis would commence from the
word suppose, as shown in the following screenshot:

Figure 15.2 – Subject and position after advancing past the comma and space after it

This mechanism is very general and allows for a variety of pattern matching algorithms.
Now, it is time to dive into the details of how this control structure is utilized through
its operations.

Scanning environments and their primitive operations
A (subject, position) pair is called a scanning environment. Within the string scanning
control structure, there's one operator, two built-in position-moving functions, and six
built-in string analysis functions that perform computations that analyze the subject
string. The six built-in string analysis functions are summarized in the following table.
They are described in more detail in Appendix, Unicon Essentials:

Figure 15.3 – Built-in analysis functions of the string scanning control structure

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

368 Domain Control Structures

The two-position moving built-in functions are move() and tab(). The move(n)
function slides the position index over by n letters relative to the current position. The
tab(n) function is an absolute move, setting the position to an index, n, within the
subject. The position-moving built-in functions are commonly used in combination
with the string analysis functions. For example, since find("suppose") returns
the index at which the "suppose" string may be found, tab(find("suppose"))
sets the position to that location. In the example shown in Figure 15.1, executing
tab(find("suppose")) would be one of many ways that the scanning environment
might be set to the state shown in Figure 15.2. Another way to get there would have been
to execute the following code:

tab(upto(',')) & move(1) & tab(match(" "))

It is typical to combine the string analysis primitives in such a fashion to form larger and
more complex patterns. The language's built-in backtracking process, called goal-directed
evaluation, means that earlier partial matches will undo themselves if a latter part of the
conjunction fails.

The tab(match(s)) combination is deemed so useful that a unary prefix operator, =,
is defined for it. This is not to be confused with the binary = operator, which performs a
numeric comparison. In any case, the =s expression is equivalent to tab(match(s)).
This set of primitives was invented for Icon and preserved in Unicon. Unicon adds
complementary mechanisms here (a SNOBOL-style pattern type, featuring regular
expressions as its literals). You may be wondering whether additional operators for other
common combinations of string analysis and position-moving functions would add
expressive power to string scanning.

Icon and Unicon's string scanning control structure contrasts strongly with the monolithic
pattern matching operations found in other string processing languages. String scanning
is a more general mechanism than regular expressions, in which ordinary code can be
mixed into the middle of the pattern match. The following string scanning example
extracts proper nouns from the S string and stores them in a list, L:

S ? { L := []

 while tab(upto(&ucase)) do

 put(L, tab(many(&letters)))

}

The preceding while loop discards characters until an uppercase letter is found. It treats
each such uppercase letter as the start of a proper name and places the name in a list. This
is not as concise as I might dream, but it's extremely general and flexible. Let's look at how
this control structure reduces the excess redundant parameters for string analysis functions.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Rendering regions in Unicon 369

Eliminating excessive parameters via a control
structure
String scanning provides a standard set of default parameter values for the string analysis
functions that are built into the language. These functions all end with three parameters:
the subject string, the start position, and the end position. These parameters default to
the current scanning environment, which consists of the subject string, &subject,
the current position, &pos, and the end of the subject string. The control structure's
parameter defaulting shortens code and improves readability, addressing one of the pain
points described in the previous section. However, parameter simplification is not the
entirety of the impact and purpose of string scanning.

The current string scanning environment is visible within called functions and has
a dynamic scope. It is common, and simple, to write helper functions that perform a part
of a string analysis task, without having to pass the scanning environment around
as parameters.

Scanning environments may be nested. As part of a scanning expression or helper
function, when a substring requires further analysis, this can be performed by introducing
another string scanning expression. When a new scanning environment is entered,
the enclosing scanning environment must be saved and restored when the nested
sub-environment is exited. This nesting behavior is preserved in Icon and Unicon's novel
goal-directed expression semantics, in which expressions can be suspended and later be
resumed implicitly. The scanning environment is saved and restored on the stack. These
operations are finer-grained but also depend on the procedure activity on the stack such
as procedure calls, suspends, resumes, returns, and failures.

For those who want more details, string scanning has been described extensively in other
venues, such as Griswold and Griswold's The Icon Programming Language, 3rd edition.
The implementation is described in Section 9.6 of The Implementation of Icon and Unicon.
To summarize, in addition to saving and restoring scanning environments on the stack,
two bytecode machine instructions are used to simplify code generation for this control
structure. Now, let's look at another domain control structure that we will introduce into
Unicon as part of its 3D graphics facilities: rendering regions.

Rendering regions in Unicon
This section describes a control structure called rendering regions, which was added to
Unicon while writing this book. Since this feature is new, we will look at it in some detail.
The rendering region control structure has been on Unicon's to-do list for a long time but
adding a control structure can be a bit difficult, especially if the semantics are non-trivial,
so it took writing this chapter to get around to it. First, though, we need to set the scene.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

370 Domain Control Structures

Rendering 3D graphics from a display list
Unicon's 3D graphics facilities specify what is to be drawn via a series of calls to a set
of built-in functions, and an underlying runtime system renders code written in C and
OpenGL that draws the scene as many times per second as possible. The Unicon functions
and C render code communicate using a display list. Mainly, the Unicon functions place
primitives on the end of the display list, and the rendering code traverses the display list
and draws these primitives as quickly as possible.

In OpenGL's C API, there is a similar-sounding display list mechanism that serves to
pre-package and accelerate sets of primitives by placing them on the GPU in advance,
reducing the CPU-GPU bottleneck. However, Unicon is a dynamic language that
prioritizes flexibility over performance. To manipulate the display list at the Unicon
application code level, the Unicon display list is a regular Unicon list rather than a C
OpenGL display list.

When Unicon's 3D facilities were first created, every graphic primitive in the display
list was rendered every frame. This worked well for small scenes. For scenes with many
primitives, it becomes impractical to reconstruct the display list from scratch on each
frame. New capabilities were needed to enable applications to make rapid changes and
be selective about which primitives on the display list will be rendered. Those capabilities'
final form was nonobvious. Now, let's look at how rendering regions started as
a function API.

Specifying rendering regions using built-in functions
Selective rendering was introduced in Unicon initially using a function named
WSection(). The W character in this function stands for window and is a common
prefix for Unicon's built-in functions about graphics and window systems, so this is the
(window) section function. Two successive calls to WSection() define the beginning
and end of a section, typically called a rendering region. Rendering regions make it easy
to turn collections of 3D primitives on the display list on and off between each frame,
without having to reconstruct the display list or insert or delete elements.

The first call to WSection() in a pair introduces a display list record with a skip field
that can be turned on and off; the second call to WSection() is an end marker that helps
determine how many display list primitives are to be skipped. The following example
draws a yellow halo (depicting an available quest) above a character's head as a torus:

 questR := WSection("Joe's halo")

 Fg("diffuse translucent yellow")

 PushMatrix()

 npchaloT := Translate(0, h.headx+h.headr*3, 0)

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Rendering regions in Unicon 371

 ROThalo := Rotate(0.0, 0, 1.0, 0)

 DrawTorus(0, 0, 0, 0.1, h.headr*0.3)

 PopMatrix()

 WSection()

You can't run this example standalone since it has been taken from the middle of a 3D
application that is busy rendering a 3D scene. The missing context includes an open
3D window that these functions all operate on, and a current object within which the h
class variable denotes the character's head. But hopefully, this example illustrates how
WSection() calls are used in pairs that define the beginning and end of a set of
3D operations.

Most Unicon 3D functions return the display list entry that they have added as their
return value. The return value of WSection() is a record on the display list that affects
display list behavior for however many primitives comprise that section.

In the preceding code example, once drawn, the halo remains present on the display list
but it can be made visible or invisible by unsetting or setting the skip flag; assigning
questR.skip := 1 causes the halo to disappear. Effectively, a rendering region
introduces a conditional branch to the display list data structure.

Rendering regions also support 3D object selection. The parameter of a starting
WSection() specifies a string value that is returned when the user touches or mouse
clicks on one of the 3D primitives within that section.

Varying graphical levels of detail using nested
rendering regions
Rendering regions support nesting. In 3D scenes, complex objects may be rendered by
traversing a hierarchical data structure where the largest or most important graphical
elements are at the root. Nested rendering regions support levels of detail, where
secondary and tertiary graphic details can be rendered within subsections and turned on
and off, depending on how near or far the object is from the camera. Levels of detail can
be important for performance, allowing details to be proportional to the approximate
distance between the viewer and the objects being observed. There are fancy data
structures that can be used to implement this level of detail, but rendering regions work
well for it.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

372 Domain Control Structures

The code for rendering a chair, for example, might be organized into three levels of detail
using three nested sections. The Chair class's lod1, lod2, and lod3 variables would be
associated with the three nested sections within the code to fully render the chair:

method full_render()

 lod1 := WSection()

 ... render the big chair primitives

 lod2 := WSection()

 ... render smaller chair primitives

 lod3 := WSection()

 ... render tiny details in the chair

 WSection()

 WSection()

 WSection()

end

After the initial full_render() enters the primitives into the display list, each time the
chair render level changes, the render() method in the chair class updates how much
should be rendered and how much should be skipped by setting the skip flags.
The following code can be read as follows: if the chair hasn't been rendered yet, perform
a full_render(). If it has been rendered, set some skip flags to indicate how much
detail to render based on the render_level parameter, ranging from 0 (invisible) to 3
(full detail):

method render(render_level)

 if /rendered then return full_render()

 case render_level of {

 0: lod1.skip := 1

 1: { lod1.skip := 0; lod2.skip := 1 }

 2: { lod1.skip := lod2.skip := 0; lod3.skip := 1 }

 3: { lod1.skip := lod2.skip := lod3.skip := 0 }

 }

end

This mechanism works marvelously, but some painful bug hunts identified a problem. As
conceived, the section mechanism was fragile and error-prone. Whenever a WSection()
is accidentally placed in the wrong spot or not nested properly, the program misbehaves
or visual aberrations ensue. Introducing a control structure simplifies the use of rendering
regions and reduces the frequency of errors related to the section boundary markers in the
display list.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Rendering regions in Unicon 373

Creating a rendering region control structure
This subsection will describe an implementation of rendering regions in Unicon, to give
you an idea of some of the work involved in introducing novel control structures to support
application domains. This book does not describe the details of the Unicon implementation;
instead, it presents the minimum of what is involved while keeping things readable. For
further details on the Unicon implementation, you can consult The Implementation of Icon
and Unicon. The source files in the implementation that are being modified here live in the
uni/unicon subdirectory within the Unicon language distribution.

To add a control structure, you must define its requirements, syntax, and semantics. Then,
you will have to add any new elements to the lexical analyzer, grammar, trees, and symbol
tables. Compile-time semantic checks may be required. The main work of implementing
a control structure will then proceed, which consists of adding rules to the code generator
to handle whatever new shapes appear in the syntax tree for your control structure.

The addition should be kept as simple as possible. Rendering regions call for a control
structure that will enforce the matching-pairs property of calls to WSection().

Adding a reserved word for rendering regions
For the new control structure, we add a new reserved word, wsection, to Unicon's
lexical analyzer. You learned how to add reserved words to Jzero in Chapter 3, Scanning
Source Code. Adding one to Unicon is similar, in that the lexical analyzer and parser will
both have to agree on a new integer code for the new reserved word, which is defined by
the parser.

Unicon was developed before the uflex tool was created, which was presented in
Chapter 3, Scanning Source Code. In the future, Unicon may be modified to use uflex,
but this section describes how to add a reserved word to Unicon's current, hand-written
lexical analyzer, which is called unilex.icn in the Unicon source code. Reserved
words are stored in a table that contains, for each reserved word, two integers. One
integer contains a pair of Boolean flags for semi-colon insertion rules, stating whether
the reserved word is legal at the beginning (a Beginner) and/or the end (an Ender)
of an expression. The other integer contains the integer terminal symbol category. The
new reserved word, wsection, will be a Beginner of expressions, so semi-colons may
be inserted on new lines that immediately precede it. The table entry for wsection in
unilex.icn looks like this:

 t["wsection"] := [Beginner, WSECTION]

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

374 Domain Control Structures

The reason this lexical analyzer addition is so small is that the pattern and code that are
needed to recognize wsection is the same as for other reserved words and identifiers. For
this lexical analyzer code to work, WSECTION must have been declared in the grammar, as
described in the following section, and the ytab_h.icn file containing #define rules
for the terminal symbols must be regenerated using the -d option to iyacc.

Now, it is time to use this new reserved word in a grammar rule.

Adding a grammar rule
The addition of the wsection reserved word enables the syntax shown here:

wsection expr1 do expr2

This is intended to feel consistent with the rest of the Icon and Unicon syntax. The do
reserved word almost makes it sound too much like a loop; a precedent is the Pascal
language with the statement, which uses do and is not a loop. The addition of this
grammar rule in unigram.y consists of two bits. In the terminal symbol declarations,
the following is added:

%token WSECTION /* wsection */

In the main grammar section, the grammar rules to add this control structure to
unigram.y are as follows:

expr11 : wsection ;

wsection : WSECTION expr DO expr {

 $$:= node("wsection", $2, $4)

 };

Many or most control structures will have semantic requirements, such as the fact that
the first expression in the preceding rule – the section identifier – must be a string. Since
Unicon is a dynamically typed language, the only way that we could enforce such a rule at
compile time would be if we restricted section identifiers to string literals. We elect not to
do that and instead enforce the string requirement for the first expression in the generated
code, but if your language is typed at compile time, you would add that check to the
appropriate point in your tree traversals where other type checks are performed. Now, let's
consider the other semantic checks that are needed.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Rendering regions in Unicon 375

Checking wsection for semantic errors
The purpose of the wsection control structure is to make rendering regions less prone
to errors. In addition to the wsection construct, which makes it impossible to omit a
closing call to WSection() or accidentally write two rendering regions that overlap,
under what other circumstances might rendering regions get messed up? Statements
that transfer the control flow out of the rendering region in an unstructured way are
problematic. In Unicon, these include return, fail, suspend, break, and next.
However, if the rendering region has loops inside it, a break or next expression inside
of such a loop is perfectly reasonable.

So, the Unicon compiler's task is to decide what to do in the event of an abnormal control
flow departure from within a rendering region. For the string scanning control structure,
the correct thing to do was implement saving and restoring scanning environments on the
stack, but rendering regions are different.

A rendering region is used at display list construction time to ensure that the display list
entries are well-formed. The display list is then used later – repeatedly – in the runtime
system whenever the screen is to be redrawn. The original control flow that was used
when the display list was constructed has nothing to do with it. For this reason, in a
wsection, attempting to exit prematurely without reaching the end of the render region
results in an error. If a programmer wants to code a render region in an unstructured
manner, they can call WSection() explicitly in pairs at their peril.

Enforcing these semantic rules requires some logic to be in a (sub)tree traversal whenever
a wsection is encountered in the syntax tree. Tree traversals will look a bit different
in the Unicon translator than they do in Jzero, but overall, they resemble the Unicon
implementation of Jzero. The best place to introduce this check is in the j0 class's
semantic() method, right after the root.check_types() method call, which
performs type checking. The new check at the end of semantic() method would look
like this:

 root.check_wsections();

The following check_wsections() method has been added to Unicon's tree.icn:

method check_wsections()

 if label == "wsection" then check_wsection()

 else every n := !children do

 n.check_wsections()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

376 Domain Control Structures

The helper method called to check that each wsection construct is called check_
wsection(). It is a subtree traversal that looks for tree nodes that could exit a
wsection abnormally and reports a semantic error if the code attempts this. However,
it would be possible to generate code that performs these checks at runtime, providing
lazy enforcement. The check_wsection() method takes an optional parameter, which
tracks nested loops contained within the wsection construct, so that any break or
next expressions nested within a wsection are allowed, so long as they do not break
out of wsection:

method check_wsection(loops:0)

 case label of {

 "return"| "Suspend0"| "Suspend1":

 yyerror(label || " inside wsection")

 "While0"|"While1"|"until"|"until1"|

 "every"|"every1"|"repeat":

 loops +:= 1

 "Next"|"Break":

 if loops = 0 then

 yyerror(label || " inside wsection")

 else loops -:= 1

 "wsection": loops := 0

 }

 every n := !children do {

 if type(n) == "treenode" then

 n.check_wsection(loops)

 else if type(n) == "token" then {

 if n.tok = FAIL then

 yyerror("fail inside wsection")

 }

 }

end

The preceding code performs semantic checks so that the wsection control structure
can enforce its requirement that every opening WSection(id) has a closing
WSection(). Now, let's look at generating the code for wsection.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Rendering regions in Unicon 377

Generating code for a wsection control structure
Code generation for the wsection control structure can be modeled using the
equivalent calls to WSection() function. The following example's use of wsection
would produce code that matches the halo example shown earlier. The difference is that
using this control structure, you cannot forget a closing WSection(), accidentally
attempt to overlap them, and so forth:

 questR := wsection select_id do {

 Fg("diffuse translucent yellow")

 PushMatrix()

 npchaloT := Translate(0, h.headx+h.headr*3, 0)

 ROThalo := Rotate(0.0, 0, 1.0, 0)

 DrawTorus(0, 0, 0, 0.1, h.headr*0.3)

 PopMatrix()

 }

To understand the code generation for wsection, we need a semantic rule for the
wsection syntax that solves the problem in the general case. The following table
shows such a semantic rule. Instead of intermediate code generation instructions, the
code is expressed as a source-to-source transformation. A wsection control structure
is implemented with some semi-fancy Icon code that executes a matching pair of
WSection() calls, producing the result of the opening call to WSection() as the
result of the entire expression. Because of this, the display list record can be assigned to a
variable by a surrounding expression if desired:

Figure 15.4 – Semantic rule for generating code for the wsection control structure

The Icon code in the preceding semantic rule requires some explanation. The {expr2;
WSection(); 1} expression executes expr2, followed by a closing WSection().
The 1 character after the second semi-colon ensures that the whole expression
succeeds, as evaluated by the surrounding expression. The surrounding expression is
1(WSection(…), {…}), which evaluates the opening WSection(…) section first
and then executes the body, but produces the return value of the opening WSection()
section as the result of the entire expression.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

378 Domain Control Structures

To implement the semantic rule shown in the preceding table and make the actual output
of the code happen, the Unicon code yyprint() generator procedure must be modified.
yyprint(n) generates code for syntax tree node n. yyprint() generates code as
string output to a file named yyout. It has a lot of different code branches – pretty much
one for each kind of tree node – and these branches call many helper functions as needed.
For a wsection, the yyprint() function should utilize the following code, which can
be added to the treenode case clause:

else if node.label == "wsection" then {

 writes(yyout, "1(WSection("))

 yyprint(node.children[1])

 writes(yyout,"),{")

 yyprint(node.children[2])

 write(yyout, ";WSection();1})")

 fail

}

The reason this works, where the domain control structure is simply being written out
as an artful arrangement of some underlying function calls, is because the main Unicon
compiler is a semi-transpiler that writes out an intermediate form that looks almost like
source code. Specifically, Unicon's intermediate form is almost Icon source code. A great
many languages can be invented very quickly if the underlying representation is another
very high-level language such as Icon or Python.

All this extending of the Unicon language has probably made you excited to try adding
your domain control structures. Hopefully, as we head into the summary, you have an idea
of how to go about doing that.

Summary
This chapter explored the topic of domain control structures. Domain control structures
go way beyond libraries, or even built-in functions and operators, in terms of supporting
programmers' abilities to solve problems in new application domains. Most of the
time, domain control structures simplify code and reduce the occurrence of bugs in
programming that would be prevalent when programmers develop their code using
generic mainstream language features.

The next chapter will present the challenging topic of garbage collection. Garbage collection
is a major language feature that often distinguishes low-level system programming languages
from higher-level application languages and domain-specific languages.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Questions 379

Questions
Answer the following questions to test your knowledge of this chapter:

1. Control structures are just if statements and loops. What's the big deal?
2. All application domain-specific control structures let you do is provide some default

values for some standard library functions. Why bother using them?
3. What additional primitives or semantics would make the string scanning control

structure more useful to application domain programmers?
4. Would it be a good idea for the wsection control structure to generate code,

including a PushMatrix() and a PopMatrix() that surround its code body?
This would make the example shorter and higher-level.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

16
Garbage Collection

Memory management is one of the most important aspects of modern programming,
and almost any language that you invent should provide automatic memory management
via garbage collection. This chapter presents a couple of methods with which you can
implement garbage collection in your language. The first method, called reference
counting, is easy to implement and has the advantage of freeing memory as you go.
However, reference counting has a fatal flaw. The second method, called mark-and-sweep
collection, is a more robust mechanism that is much more challenging to implement,
and it has the downside that execution pauses periodically for however long the
garbage collection process takes. These are two of many possible approaches to memory
management. Implementing a garbage collector with neither a fatal flaw nor periodic
pauses to collect free memory is liable to have other costs associated with it.

This chapter covers the following main topics:

• Appreciating the importance of garbage collection

• Counting references to objects

• Marking live data and sweeping the rest

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

382 Garbage Collection

The goal of this chapter is to explain to you why garbage collection is important and
show you how you can do it. The skills you'll learn include the following: making objects
track how many references are pointing to them; identifying all the pointers to live data
in programs and including pointers located within other objects; freeing memory and
making it available for reuse. Let's start with a discussion of why you should bother with
all this anyway.

Appreciating the importance of garbage
collection
In the beginning, programs were small, and the static allocation of memory was decided
when a program was designed. The code was not that complicated, and programmers
could lay out all the memory that they were going to use during the entire program as a
set of global variables. Life was good.

Then, Moore's Law happened, and computers got bigger. Customers started demanding that
programs handle arbitrary-sized data instead of accepting the fixed upper limits inherent in
static allocation. Programmers invented structured programming and used function calls
to organize larger programs in which most memory allocation was on the stack.

A stack provides a form of dynamic memory allocation. Stacks are great because you
can allocate a big chunk of memory when a function is called and deallocate memory
automatically when a function returns. The lifetime of a local memory object is tied
strictly to the lifetime of the function call within which it exists.

Eventually, things got complicated enough that folks noticed software advances could
not keep up with hardware advances. We had a software crisis and attempted to wish
software engineering into existence to try and address this crisis. There were occasional
bugs where pointers to memory that had been freed on the stack were left hanging
around, but those were rare and usually just a sign of novice programmers. Life was still
relatively good. Then, Moore's Law happened some more.

Now, even programs running on our wristwatches are too large to understand, and we
have a software environment where at runtime, a program may have billions and billions
of objects. Customers expect you to be able to create as many objects as they want, and
they expect such objects to live for as long as they are needed. The pre-eminent form
of allocated memory is dynamic memory, and it is allocated from the memory region
called the heap. The correct use of the heap region is a primary concern in programming
language design and implementation.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Appreciating the importance of garbage collection 383

In the software engineering literature, it has long been common to see claims that 50%
to 75% (or more) of total software development time is spent debugging. This translates
into a lot of time and money. In my personal experience over several decades of helping
student programmers, in languages where programmers manage their own memory, 75%
or more of debugging time is spent on memory management errors.

This is especially true for novices and non-expert programmers, but it happens to
beginners and experts alike. C and C++, I am looking at you. Now, pretend the concern
is not just how much time or money memory management will take up. As program size
and complexity increase, the probability of developers correctly manually managing a
software project's memory decreases, resulting in a higher probability that the project will
fail outright during development, or fail critically after deployment.

What kinds of memory management errors, you ask? You can start with these: not
allocating enough memory; attempting to use memory beyond the sufficient amount
you allocated; forgetting to allocate memory; not understanding when you need to
allocate memory; forgetting to deallocate memory so that it can be reused; deallocating
deallocated memory; attempting to use memory for a given purpose after it has been
deallocated or repurposed. These are just a few examples.

When programs are only a modest size and the computers involved are terribly expensive,
it makes sense to maximize efficiency by throwing programmer time at manual memory
management as much as necessary. But as programs grow ever longer and computers
become cheaper with larger memory sizes, the practicality of managing memory by hand
decreases. Automatic memory management is inevitable, and doing it all on the stack
went by the wayside long ago, when structured programming gave way to the object-
oriented paradigm.

Now, we have a world in which (for many programs) most of the interesting memory
is allocated out of the heap, where objects live an arbitrary length of time until they are
explicitly freed, or unused memory is automatically reclaimed. This is why garbage collectors
are of paramount importance and deserve your attention as a language implementer.

Having said all this, implementing garbage collection can be difficult, and making it
perform well is even more difficult. If you are overwhelmed, you might get away with
putting this off until the success of your language demands it. Many famous language
implementations (such as Sun's Java) have gotten away with a missing or inadequate
garbage collector for years. But, if you are serious about your language, you will eventually
want a garbage collector for it. Let's start with the simplest approach, which is called
reference counting.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

384 Garbage Collection

Counting references to objects
In reference counting, each object keeps a count of how many pointers refer to it. This
number starts out as 1 when an object is first allocated and a reference to it is provided
to a surrounding expression. The reference count is incremented when the value is stored
in a variable, including when the reference is passed as a parameter or stored in a data
structure. The count is decremented whenever a reference is overwritten by assigning
a variable to refer elsewhere, or when a reference no longer exists (such as when a local
variable ceases to exist because a function returns). If the reference count reaches 0,
the memory for that object is garbage because nothing points to it. It can be reused for
another purpose. This seems pretty reasonable; look at what it would take to add reference
counting to our example language in this book, Jzero.

Adding reference counting to Jzero
Jzero allocates two kinds of things from the heap that could be garbage collected: strings
and arrays. For such heap-allocated memory entities, Jzero's in-memory representation
includes the object's size in a word at the beginning. Under reference counting, a second
word at the beginning can hold the number of references that point at that object. The
representation for a string is shown in Figure 16.1:

Figure 16.1 – An in-memory representation of a string

In the example given, if len and refcount are 8 bytes each and there are 39 bytes of
string data, refcount added 8 to a total size of 55 bytes (perhaps rounded to 56), so
the addition of refcount is only a 14% overhead. But if the average string length were 3
bytes and you had billions of little strings to manage, adding a reference count represents
a significant overhead that might limit the scalability of your language on big data. Given
this representation, reference counting comes into play when objects get created in the first
place, so let's look at example operations whose generated code involves heap allocation.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Counting references to objects 385

Generating code for heap allocation
When an object such as String is created, memory must be allocated for it. In some
languages, objects can be allocated in static memory, on the stack, or on the heap.
However, in Java (and Jzero), all objects are allocated memory out of the heap. For strings,
this can be puzzling, since the Java source code can include string constants that would
generally be resolved at compile-time to statically allocated addresses, but heap objects are
always allocated at runtime. Suppose the code is as follows:

String s = "hello";

On one hand, the memory contents of the hello string can be allocated in the static
memory region. On the other hand, the Jzero String object that we assign to String
s should be a class instance allocated from the heap that contains the length and reference
count along with the reference to the character data. The code we generate in this case
might resemble the following:

String s = new String("hello");

If this code executes a billion times, we don't want to allocate a billion instances of this
String, we only want one. In Java, the runtime system uses a string pool for string
constants, so that it only needs to allocate one instance. Jzero does not implement the
Java String or Stringpool classes, but we will put a static method named pool() in
the Jzero String class that returns a reference to a String, allocating the instance if it is
not already in the string pool. Given this method, the generated code can look more like
the following:

String s = String.pool("hello");

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

386 Garbage Collection

This avoidance of allocating redundant string objects is enabled by the fact that String
objects are immutable. There are many ways that one might generate this code. One easy
option is a tree traversal that replaces string literal leaf nodes with the subtree that invokes
the pool() method. In very concrete terms, just look for STRINGLIT nodes and replace
them with the constructed set of nodes shown in Figure 16.2:

Figure 16.2 – Substituting a STRINGLIT leaf for a call to the pool method

The code for a poolStrings() method that traverses the syntax tree and performs this
substitution is shown below. The Unicon implementation in tree.icn is as follows:

method poolStrings()

 every i := 1 to *\kids do

 if type(\(\kids[i])) == "tree__state" then {

 if kids[i].nkids>0 then kids[i].poolStrings()

 else kids[i] := kids[i].internalize()

 }

end

This method walks through the tree, calling a internalize() method to replace all
leaves. The Java implementation of poolStrings() in tree.java is shown here:

public void poolStrings() {

 if (kids != null)

 for (int i = 0; i < kids.length; i++)

 if ((kids[i] != null) && kids[i] instanceof "tree") {

 if (kids[i].nkids>0) kids[i].poolStrings();

 else kids[i] = kids[i].internalize();

 }

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Counting references to objects 387

The tree method named internalize() in this traversal constructs and returns a
subtree that invokes the String.pool() method if it is invoked on STRINGLIT.
Otherwise, it just returns the node. In Unicon, the code looks as follows:

method internalize()

 if not (sym === "STRINGLIT") return self

 t4 := tree("token",parser.IDENTIFIER,
 token(parser.IDENTIFIER,"pool", tok.lineno, tok.colno))

 t3 := tree("token",parser.IDENTIFIER,
 token(parser.IDENTIFIER,"String", tok.lineno,

 tok.colno))

 t2 := j0.node("QualifiedName", 1040, t3, t4)

 t1 := j0.node("MethodCall",1290,t2,self)

 return t1

end

The corresponding code in Java looks like this:

public tree internalize() {

 if (!sym.equals("STRINGLIT")) return this;

 t4 = tree("token",parser.IDENTIFIER,
 token(parser.IDENTIFIER,"pool", tok.lineno,
 tok.colno));

 t3 = tree("token",parser.IDENTIFIER,
 token(parser.IDENTIFIER,"String", tok.lineno,
 tok.colno));

 t2 = j0.node("QualifiedName", 1040, t3, t4);

 t1 = j0.node("MethodCall",1290,t2,this);

 return t1;

}

This code in the compiler depends upon a runtime system function that implements the
String.pool() method, using a hash table to avoid duplicates. Now, let's look at the
code generation changes that are needed for the assignment operator.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

388 Garbage Collection

Modifying the generated code for the assignment
operator
Reference counting hinges on modifying the behavior of assignment to enable objects
to track the references that point at them. In intermediate code for Jzero, there was an
instruction named ASN that performed such an assignment. Our new reference counting
semantics for the x = y assignment might consist of the following:

• If the old destination (x) points to an object, decrement its counter. If the counter is
zero, free the old object.

• Perform assignment. Variable x now refers to some new destination.

• If the new destination (x) points to an object, increment its counter

It is an interesting question whether this sequence of operations should be implemented
by generating many three-address instructions for an assignment, or whether
the semantics of the ASN instruction should be modified to do the bulleted items
automatically when an ASN instruction executes. Part of the answer may hinge on how
you feel about adding new opcode(s) for ASN when objects are involved, perhaps using
OASN for object assignment.

Considering the drawbacks and limitations of
reference counting
Reference counting has several downsides and a fatal flaw. One downside is that the
assignment operator is made slower to decrement counts of objects held prior to
assignment and increment counts of objects being assigned. This is a serious drawback, as
the assignment is a very frequent operation. Another downside is that the size of objects
becomes larger to hold reference counts, which is unfortunate especially for multitudinous
otherwise-small objects for which an extra counter is a significant overhead.

A fatal flaw occurs if a chain of object references can have a cycle. This is a very common
practice in data structures. In the case of a cycle, objects that point at each other never
reach a reference count of 0, even after they are unreachable from the rest of the program.
The diagram in Figure 16.3 illustrates a circular linked list after it has become garbage.
No outside pointer can ever reach this structure, but according to reference counting, the
memory used by these objects is not reclaimable:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Marking live data and sweeping the rest 389

Figure 16.3 – A circular linked list cannot be collected under reference counting

Despite these flaws, reference counting is relatively simple and easy, and it works well
enough that it was apparently the only garbage collection method for the first version of
Python. Python eventually implemented a real garbage collector in addition to continuing
to use reference counting, although once you implement a real garbage collector, reference
counting is unnecessary and wasteful of time and space. In any case, due to its fatal flaws,
most general-purpose languages will not find reference counting sufficient, so let's look
at an example of a more robust garbage collector, namely the real-world mark-and-sweep
garbage collector used by the Unicon programming language.

Marking live data and sweeping the rest
This section gives an overview of the Unicon garbage collector, which is a mark-and-
sweep style of garbage collector that was developed for the Icon language and then
extended. It is written in (an extended dialect of) C, like the rest of the Icon and Unicon
runtime system. Since Unicon inherited this garbage collector from Icon, much of what
you see here is due to that language. Other aspects of this garbage collector are described
in the book, The Implementation of Icon and Unicon: a Compendium.

In almost all garbage collectors other than reference counting, the approach is to find all
the live pointers that are reachable from all the variables in the program; everything else in
the heap is garbage. In a mark-and-sweep collector, live data is marked when it is found,
and then all the live data is moved up to the top of the heap, leaving a big, beautiful pool
of newly available memory at the bottom. The collect() C function from Unicon's
runtime system is presented in an outline of its form as follows:

int collect(int region) {

 grow_C_stack_if_needed();

 markprogram();

 markthreads();

 reclaim();

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

390 Garbage Collection

Interestingly, the act of garbage collecting the heap begins with making sure we have
enough C stack region memory to perform this task. Unicon has two stacks, the VM
interpreter stack and the stack used by the C implementation of the VM. The necessity
of growing the C stack was discovered the hard way. The reason for this is that the
garbage collection algorithm is recursive, especially the operation of traversing live data
and marking everything it points at. On some C compilers and operating systems, the
C stack might grow automatically as needed, but on others, its size can be explicitly
set. The garbage collector code does so by using an operating system function called
setrlimit(). The code for growing the C stack looks like the following:

void grow_C_stack_if_needed() {

 struct rlimit rl;

 getrlimit(RLIMIT_STACK , &rl);

 if (rl.rlim_cur < curblock->size) {

 rl.rlim_cur = curblock->size;

 if (setrlimit(RLIMIT_STACK , &rl) == -1) {

 if (setrlimit_count != 0) {

 fprintf(stderr,"iconx setrlimit(%lu) failed
 %d\n", (unsigned long)(rl.rlim_cur),errno);

 fflush(stderr);

 setrlimit_count--;

 }

 }

 }

}

The preceding code checks how big the C stack is, and if the current block region is larger,
it requests that the C stack be increased proportionally. This is overkill for most programs
but corresponds roughly to the worst-case requirements. Fortunately, memory is cheap.

The fundamental premise of the Unicon garbage collector is that frequent operations
must be fast, even when that is at the expense of infrequent operations. In my presence,
the famed computer scientist Ralph Griswold repeatedly observed that most programs
never garbage collect; they complete execution before they ever collect. This is true from a
certain point of view. It is true in a variety of application domains, such as text processing
utilities, and untrue in other application domains, such as servers and any other
application that runs for an extended period.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Marking live data and sweeping the rest 391

Under the fast frequent operations doctrine, assignments are extremely frequent and must
be kept as fast as possible – reference counting is a very bad idea for this reason. Similarly,
memory allocations are quite frequent and must be as fast as possible. Garbage collection
is infrequent, and it is OK for its cost to be proportional to the work involved.

To make matters more interesting, Icon and Unicon are specialty string- and text-
processing languages, and the string data type is completely and totally special-cased in
the implementation. Optimum efficiency for the string type might make some programs
that are string-heavy perform extra well in this language, while other programs do not.

Organizing heap memory regions
Due to the important special case of strings, Unicon has two kinds of heaps. A general
heap called the block region allows any data type other than strings to be allocated. A
separate heap called the string region is maintained for string data.

Blocks are self-describing for garbage collection purposes; the layout of the block region is
a sequence of blocks. Each block starts with a title word that identifies its type. Many block
types are of fixed size; block types that are of varying size have a size field in the word after
the title word. Figure 16.4 illustrates a block region. The rectangle on the left is a struct
region that manages the block region (shown as the rectangle on the right). The block region
being managed may be many megabytes in size, containing thousands or millions of blocks:

Figure 16.4 – A block region

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

392 Garbage Collection

Within the block region, allocating is very fast. To allocate a block of size n for a class
instance or other structure such as a list or table, just verify that n is less than the
remaining free space between the pointers named free and end. In that case, the new
block is located at the free pointer, and the region is updated to account for it by adding
n to the free pointer.

In contrast to the block region, the string region is raw unstructured string data. String
regions are organized as shown in Figure 16.4, except that the actual string data has no
titles, sizes, or other structure – it is raw text. By not allocating strings as blocks like
everything else, some common operations on strings, such as slices, are no-ops. Similarly,
the string region can be byte-aligned with no wasted space when many small strings are
allocated, unlike the block region which is word-aligned. Also, data in the string region
never contains any references to other live memory, so separating strings out from the
block region reduces the total amount of memory within which references must be found.

At any given time, there is one current block region and one current string region from
which memory may be allocated. Each program, and each thread, has its current block
and string regions,which are the active regions within a bidirectional linked list of all
heap regions allocated for that program or thread.

When the region is full and more memory is requested, a garbage collection of the current
heaps is triggered. Older regions on the linked list are tenured regions and are only
collected when a garbage collection on the current region fails to free enough memory for
a request. When no region on the list can satisfy a request, a new region must be allocated.
When garbage collection fails to free enough space to satisfy a memory request, a new
current region of the same type is created and added to the linked list, generally twice as
large as the previous one.

Traversing the basis to mark live data
In the first pass of garbage collection, live data is marked. All pointers to heap memory in
the program must be found. This starts from a basis set of variables, consisting of global
and static memory, and includes all local variables on the stack, which must be traversed.
The heap objects pointed to by all these global and local variables are marked.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Marking live data and sweeping the rest 393

The task of marking live data in Unicon's runtime system is presented in an outline of
its form in the following code example. The first two elements of the basis set consist of
variables allocated on a per-program and per-thread basis. In Icon, they were originally
global variables, but as the virtual machine evolved, global variables became struct fields,
and finding all the basis variables in these categories became a series of data structure
traversals to reach them all:

static void markprogram(struct progstate *pstate) {

 struct descrip *dp;

 PostDescrip(pstate->K_main);

 PostDescrip(pstate->parentdesc);

 PostDescrip(pstate->eventmask);

 PostDescrip(pstate->valuemask);

 PostDescrip(pstate->eventcode);

 PostDescrip(pstate->eventval);

 PostDescrip(pstate->eventsource);

 PostDescrip(pstate->AmperPick);

 PostDescrip(pstate->LastEventWin);/* last Event() win */

 PostDescrip(pstate->Kywd_xwin[XKey_Window]);/*&window*/

 postqual(&(pstate->Kywd_prog));

 for (dp = pstate->Globals; dp < pstate->Eglobals; dp++)

 if (Qual(*dp)) postqual(dp);

 else if (Pointer(*dp)) markblock(dp);

 for (dp = pstate->Statics; dp < pstate->Estatics; dp++)

 if (Qual(*dp)) postqual(dp);

 else if (Pointer(*dp)) markblock(dp);

 }

The task of marking all the global variables in a program is straightforward:

static void markthreads() {

 struct threadstate *t;

 markthread(&roottstate);

 for (t = roottstate.next; t != NULL; t = t->next)

 if (t->c && (IS_TS_THREAD(t->c->status))) {

 markthread(t);

 }

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

394 Garbage Collection

Each thread is marked by a call to markthread() as follows. Some of the pieces of the
thread state contain things that are known not to contain references to heap variables, but
those fields that might contain heap pointers must be marked:

static void markthread(struct threadstate *tcp) {

 PostDescrip(tcp->Value_tmp);

 PostDescrip(tcp->Kywd_pos);

 PostDescrip(tcp->ksub);

 PostDescrip(tcp->Kywd_ran);

 PostDescrip(tcp->K_current);

 PostDescrip(tcp->K_errortext);

 PostDescrip(tcp->K_errorvalue);

 PostDescrip(tcp->T_errorvalue);

 PostDescrip(tcp->Eret_tmp);

}

The actual marking process is different for strings and for objects. Since Unicon variables
can hold any type of value, a macro named PostDescrip() is used to determine
whether a value is a string or another sort of pointer, or neither. References to strings are
called qualifiers and they are marked using a function called postqual(). Other types of
pointers are marked using the markblock() function:

#define PostDescrip(d) \

 if (Qual(d)) postqual(&(d)); \

 else if (Pointer(d)) markblock(&(d));

In order to interpret this macro, you need more than the postqual() and
markblock() helper functions; you also need to know what the Qual() and
Pointer() test macros are doing. A short answer would be that they perform a bitwise
AND to check the value of a single bit within the descriptor word of a Unicon value. The
value is a string if the descriptor word's topmost (sign) bit called F_Nqual is 0, but if
that bit is 1 it is not a string and the other flag bits can be used to check other properties,
of which the F_Ptr pointer flag would indicate that the value word contains a pointer,
possibly a pointer to a value in the heap:

#define Qual(d) (!((d).dword & F_Nqual))

#define Pointer(d) ((d).dword & F_Ptr)

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Marking live data and sweeping the rest 395

These tests are fast, but they are performed many times during a garbage collection. If we
came up with a faster way than shown in the PostDescrip() macro to identify values
for the potential marking of live strings and blocks, it might affect the garbage collection
performance significantly.

Marking the block region
For blocks, the mark overwrites part of the object with a pointer back to the variable
that points at the object. If more than one variable points at the object, a linked list of
those live references is constructed as they are found. This linked list is needed so that
all those pointers can be updated to point at the new location if the object is moved. The
markblock() function is over 200 lines of code. It is presented in a summarized form in
the following code example:

void markblock(dptr dp) {

 dptr dp;

 char *block, *endblock;

 word type;

 union block **ptr, **lastptr;

 block = (char *)BlkLoc(*dp);

 if (InRange(blkbase, block, blkfree)) {

 type = BlkType(block);

 if ((uword)type<=MaxType)endblock=

 block+BlkSize(block);

 BlkLoc(*dp) = (union block *)type;

 BlkType(block) = (uword)&BlkLoc(*dp);

 if ((uword)type <= MaxType) {

 ...traverse any pointers in the block

 }

 else ... handle other types of blocks that will not move

}

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

396 Garbage Collection

Traversing pointers within a block depends on how blocks are organized in the language.
Pointers within a block are always a contiguous array. A global table within the garbage
collector named firstp tells at what byte offset for each type of block its nested pointers
can be found. A second global table named firstd tells at what byte offset for each block
type its descriptors (nested values, which can be anything, not just a block pointer) are
found. These are traversed by the following code:

 ptr = (union block **)(block + fdesc);

 numptr = ptrno[type];

 if (numptr > 0) lastptr = ptr + numptr;

 else

 lastptr = (union block **)endblock;

 for (; ptr < lastptr; ptr++)

 if (*ptr != NULL)

 markptr(ptr);

 }

 if ((fdesc = firstd[type]) > 0)

 for (dp1 = (dptr)(block + fdesc);

 (char *)dp1 < endblock; dp1++) {

 if (Qual(*dp1)) postqual(dp1);

 else if (Pointer(*dp1)) markblock(dp1);

 }

The nested block pointers are visited by walking through with the ptr variable and
calling markptr() on each one. The markptr() is similar to markblock() but may
visit other types of pointers besides blocks. The nested descriptors are visited by walking
through with the dp1 variable and calling postqual() for strings and markblock()
for blocks.

For strings, an array name of quallist is constructed of all the live string pointers
(including their lengths) that point into the current string region. The function named
postqual() adds a string to the quallist array:

void postqual(dptr dp) {

 if (InRange(strbase, StrLoc(*dp), strfree)) {

 if (qualfree >= equallist) {

 newqual = (char *)realloc((char *)quallist,

 (msize)(2 * qualsize));

 if (newqual) {

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Marking live data and sweeping the rest 397

 quallist = (dptr *)newqual;

 qualfree = (dptr *)(newqual + qualsize);

 qualsize *= 2;

 equallist = (dptr *)(newqual + qualsize);

 }

 else {

 qualfail = 1;

 return;

 }

 }

 *qualfree++ = dp;

 }

}

Most of the preceding code consists of expanding the size of the array if needed. The array
size is doubled each time additional space is needed.

Furthermore, if the object contains any other pointers, they must be visited, and what they
point at must be marked and traversed, recursively following all pointers to everything
that can be reached.

Reclaiming live memory and placing it into contiguous
chunks
In the second pass of a garbage collection process, the heaps are traversed from top
to bottom, and all live data is moved to the top. The overall reclamation strategy is
shown in the following code. Note that garbage collection is complicated by concurrent
threads – we do not consider concurrency in full detail here:

static void reclaim()

 {

 cofree();

 if (!qualfail)

 scollect((word)0);

 adjust(blkbase,blkbase);

 compact(blkbase);

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

398 Garbage Collection

Reclaiming memory consists of freeing up unreferenced static memory consisting of
co-expressions that have become garbage in a cofree() function, then moving all the
live string data up in the scollect() function, and then moving the block data up by
calling adjust() followed by compact().

The cofree() function walks through each co-expression block. These blocks cannot be
allocated in the block region because they contain variables that cannot be moved. This
consists of the following code:

void cofree() {

 register struct b_coexpr **ep, *xep;

 register struct astkblk *abp, *xabp;

 ep = &stklist;

 while (*ep != NULL) {

 if ((BlkType(*ep) == T_Coexpr)) {

 xep = *ep;

 *ep = (*ep)->nextstk;

 for (abp = xep->es_actstk; abp;) {

 xabp = abp;

 abp = abp->astk_nxt;

 if (xabp->nactivators == 0)

 free((pointer)xabp);

 }

 free((pointer)xep);

 }

 else {

 BlkType(*ep) = T_Coexpr;

 ep = &(*ep)->nextstk;

 }

 }

 }

The preceding code walks through a linked list of co-expression blocks. When the code
visits a co-expression block whose title still says T_Coexpr, that indicates that the block
was not marked as live. In that case, the co-expression and its associated bookkeeping
memory blocks are freed using the standard free() library function.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Marking live data and sweeping the rest 399

The scollect() function collects the string region using the list of all the live pointers
into it. It sorts the quallist array using the standard qsort()library function. Then, it
walks through the list and copies live string data up to the top of the region, updating the
pointers into the string region as the new locations of the strings are determined. Care is
taken for pointers to overlapping strings so that they remain contiguous:

static void scollect(word extra) {

 char *source, *dest, *cend;

 register dptr *qptr;

 if (qualfree <= quallist) { strfree = strbase; return; }

 qsort((char *)quallist,

 (int)(DiffPtrs((char *)qualfree,(char *)quallist)) /

 sizeof(dptr *), sizeof(dptr),

 (QSortFncCast)qlcmp);

 dest = strbase;

 source = cend = StrLoc(**quallist);

 for (qptr = quallist; qptr < qualfree; qptr++) {

 if (StrLoc(**qptr) > cend) {

 while (source < cend) *dest++ = *source++;

 source = cend = StrLoc(**qptr);

 }

 if ((StrLoc(**qptr) + StrLen(**qptr)) > cend)

 cend = StrLoc(**qptr) + StrLen(**qptr);

 StrLoc(**qptr) = StrLoc(**qptr) +

 DiffPtrs(dest,source)+(uword)extra;

 }

 while (source < cend) *dest++ = *source++;

 strfree = dest;

 }

The adjust() function is the first part of collecting the block region. It walks through
the block region, moving pointers into the block region up to where the blocks will point.
During marking, a linked list of all pointers to each block was constructed; this is used to
update all those pointers to the block's new location. The source code for adjust() is
shown next:

void adjust(char *source, char *dest) {

 register union block **nxtptr, **tptr;

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

400 Garbage Collection

 while (source < blkfree) {

 if ((uword)(nxtptr = (union block **)BlkType(source))>

 MaxType) {

 while ((uword)nxtptr > MaxType) {

 tptr = nxtptr;

 nxtptr = (union block **) *nxtptr;

 *tptr = (union block *)dest;

 }

 BlkType(source) = (uword)nxtptr | F_Mark;

 dest += BlkSize(source);

 }

 source += BlkSize(source);

 }

 }

The compact() function is the final step in collecting the block region, as shown in the
following code block. It consists of moving the blocks of memory themselves up into their
new location. The title words of the live blocks are cleared when the block is moved to its
new location:

void compact(char *source) {

 register char *dest;

 register word size;

 dest = source;

 while (source < blkfree) {

 size = BlkSize(source);

 if (BlkType(source) & F_Mark) {

 BlkType(source) &= ~F_Mark;

 if (source != dest)

 mvc((uword)size,source,dest);

 dest += size;

 }

 source += size;

 }

 blkfree = dest;

 }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 401

From this section, you should be able to conclude that a mark and sweep garbage collector
is a non-trivial and relatively low-level undertaking. If you need encouragement, consider
this: the work you do in building a garbage collector is for a good cause – it will save
countless efforts from the programmers who use your language, and they will thank
you for it. Many language inventors before you have implemented garbage collection
successfully, and you can you.

Summary
This chapter showed you a lot about garbage collection. You learned what garbage is, how
it comes about, and saw two very different ways to deal with it. The easy way, popularized
by some early Lisp systems and early versions of Python, is called reference counting.
In reference counting, the allocated objects themselves are made responsible for their
collection. This usually works.

The more difficult form of garbage collection involves finding all the live data in the
program and usually moving it to avoid memory fragmentation. Finding the live data is
generally recursive, requires traversing stacks to find references in parameters and local
variables, and is usually an onerous and low-level task. Many variations on this general
idea have been implemented. One of the primary observations, which some garbage
collectors exploit, is that most allocated objects are used for only a short time and then
become garbage almost immediately.

Any method you employ to save programmers from having to manage their own memory
will likely be greatly appreciated.

In the next chapter, we will conclude the book with some thoughts on what we have learned.

Questions
1. Suppose a specific Unicon value, such as the null value, was particularly common

when marking live data. Under what circumstances would it make sense to modify
the PostDescrip() macro to check for that value to see if the tests in the
Qual() and Pointer() macros can be avoided?

2. What would be the advantages and disadvantages of creating a separate heap region
for each class type?

3. The reclaim() operation of Unicon's mark-and-sweep collector moves all the live
non-garbage memory up to the top of the region. Would it be beneficial to modify
this collector so that live data did not move?

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

17
Final Thoughts

After learning so much about building a programming language, you may want to reflect
on what you have learned and think about areas you might want to study in more depth.
This chapter reflects on the main topics presented in the book and gives you some food
for thought by covering the following topics:

• Reflecting on what was learned from writing this book

• Deciding where to go from here

• Exploring references for further reading

Let's start with what extra bonuses could be learned from this book.

Reflecting on what was learned from writing
this book
We have learned some useful things from writing this book. Among other things, we
concluded that Java is very suitable for writing compilers at this point. Sure, Andrew Appel
might have published Modern Compiler Implementation in Java in 1997, and other compiler
writing books in Java exist. These might be great, but many compiler writers won't consider
using Java if it means giving up lex and YACC. Using a standard lex/YACC toolchain for
Java makes it more interoperable with compiler code bases created for other languages.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

404 Final Thoughts

I want to express my appreciation to the Byacc/J maintainer Tomas Hurka for accepting
and improving my static import patch to make Byacc/J play more nicely with Jflex
and similar tools (including my Merr tool, as covered in Chapter 4, Parsing) that generate
yylex() or yyerror() in separate files. Supporting yylex() and yyerror() in
separate files obviates the need for stupid workarounds, such as writing a stub yylex()
method inside the parser class that turns around and calls yylex() generated in another
file. Also, various small improvements to Java after its initial release, such as being able to
use String values for switch cases, make a difference in terms of the compiler writer's
convenience. At this point, Java's conveniences and advantages, compared to C, almost
outweigh its disadvantages, which are many. Let's not pretend that Java's rigid package-
and-class directory and file structure and lack of #include or #ifdef mechanisms are
without cost.

I didn't write this book to decide whether Java was good for compilers. I wrote this
book to make Unicon great for compilers. This book's small miracle was finding a way
to use the same lexical and syntax specifications for both Unicon and Java. I ended up
really happy that I was able to use both languages in the same way I would traditionally
write a compiler in C. After that great bit of lex/YACC specification sharing, Unicon
didn't provide as much added advantage as I had expected compared to Java. Unicon
skips many of Java's pain points, is somewhat more concise, and has an easier time with
heterogeneous structure types. Ultimately, both languages were great for writing the Jzero
compiler, and I'll let you be the judge of which code was more readable and maintainable.
Now, let's consider where you might go from here.

Deciding where to go from here
You may want to study more advanced work in any number of areas. These include
programming language design, bytecode implementation, code optimization, monitoring
and debugging program executions, programming environments such as IDEs, and GUI
builders. In this section, we will explore just a few of these possibilities in more detail. This
section reflects many of my personal biases and priorities.

Studying programming language design
It is probably more difficult to identify strong works in programming language
design than most of the other technical topics mentioned in this section. Harold
Abelson and Gerald Sussman once wrote a book called Structure and Interpretation of
Computer Programs, which was widely reputed to be useful. Although it is not exactly a
programming language design book, its insights delve into that subject.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deciding where to go from here 405

Browsing casually, you may find many general programming language books. Rafael
Finkel's Advanced Programming Language Design is one, covering a range of advanced
topics. For other sources, language design books and papers written by actual language
inventors have the potential to be more real and useful than books written by third parties.

One of the luminaries of language design, Niklaus Wirth, wrote many influential books.
Algorithms and Data Structures, as well as Project Oberon, provide valuable insights
regarding language design, as well as implementation. As the designer of several successful
languages, including Pascal and Modula-2, Niklaus Wirth has great authority in arguing
for simplicity with language designs that protect programmers from themselves. He is a
giant on whose shoulders you would do well to stand.

The Prolog programming language has produced rich literature describing many of the
design and implementation problems that have been addressed for that language and
logic programming in general. Prolog is important because it features extensive implicit
backtracking. One of the important works on Prolog is The Art of Prolog, by Leon Sterling
and Ehud Shapiro. Another important contribution is the Byrd box model of functions, in
which, instead of understanding a function's public interface as a call followed by a return,
a function is seen as having a call, producing a result, and being resumed repeatedly, until
an eventual failure.

The next great programming language family that deserves attention is SmallTalk.
SmallTalk did not invent the object-oriented paradigm, but it purified it and popularized
it. A summary of some of its design principles was published in Byte magazine in an
article titled Design Principles Behind Smalltalk, by Dan Ingalls. While considering object-
oriented languages, it is also prudent to consider semi-object-oriented languages such as
C++, for which the book Design and Evolution of C++ by Bjarne Stroustrup is of value.

The dramatic rise in popularity of very high-level languages such as Python and Ruby is
one of the most important developments in recent decades. It is depressing how poorly
represented many extremely popular languages are overall in the programming language
design literature. TCL's inventor, John Ousterhout, wrote two important works on topics
related to the design of very high-level languages. Scripting: Higher-Level Programming
for the 21st Century is a good paper, albeit reflecting its author's biases. Ousterhout also
gave an important invited talk, humorously titled Why Threads Are a Bad Idea, arguing for
event-driven programming and synchronous coroutines in preference to threads for most
parallel workloads.

The Icon and Unicon languages are two more heavily documented examples of very high-
level languages. The design of the Icon language is described in Griswold's History of the
Icon Programming Language. Having looked at some fine options for studying language
design further, let's consider options for studying their implementation.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

406 Final Thoughts

Learning about implementing interpreters and
bytecode machines
Advanced programming language implementation topics should include implementing
all types of interpreters and runtime systems for advanced programming languages
with novel semantics. The first very high-level language was Lisp. Lisp inventor John
McCarthy is credited with inventing a mathematical notation that could be executed on
the computer, one of the first interactive interpreters, and arguably the first just-in-time
compiler. Other Lisp implementors have written notable books. One of special note is
John Allen's Anatomy of Lisp.

Any description of bytecode machines would be remiss if it omitted the Pascal bytecode
machines. Many of the seminal works on Pascal's implementation are collected in
PASCAL: The Language and Its Implementation, edited by David Barron. The UCSD Pascal
system that popularized bytecode machines was based on the work of Urs Ammann at
ETH Zurich, which is well-represented in Barron's book. Another significant work on
Pascal is Steven Pemberton and Martin Daniels' Pascal Implementation: Compiler and
Interpreter, which has the virtue of being a publicly available resource.

A collection of books authored by Adele Goldberg and her collaborators document
SmallTalk, a very advanced language, is better than almost any other. This includes
SmallTalk-80: The Language and its Implementation.

In the logic programming world, the Warren Abstract Machine (WAM) is one of the
premier means of reasoning about the underlying semantics of Prolog and how to
implement it. It is described in An Abstract PROLOG Instruction Set.

The implementation of Unicon is described in The Implementation of Icon and Unicon:
a Compendium. This book combines and updates several previous works on the
implementation of the Icon language, plus descriptions of the implementation of various
subsystems that have been added to Unicon.

Acquiring expertise in code optimization
Code optimization is generally a subject of advanced graduate-level textbooks on
compilers. The classic Compilers: Principles, Techniques, and Tools contains substantial
documentation on various optimizations. Cooper and Torczon's Engineering a Compiler is
a more recent treatment.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deciding where to go from here 407

Code optimization for higher-level languages often requires more novel techniques.
Various works on optimizing compilers for very high-level languages seem to suggest
some unknown law that it takes 20 years for people to figure out how to execute such
languages efficiently. For hints of this, I refer to examples such as T: a Dialect of Lisp and
The Design and Implementation of the SELF Compiler, which came out 20 years after
the Lisp and Smalltalk languages. Of course, how long it takes depends on the size and
complexity of the language. I am biased, but one of my favorite works for such languages
is the dissertation The implementation of an optimizing compiler for Icon, which is included
in the Icon and Unicon implementation compendium. It came out only a dozen or so
years after Icon was invented, so maybe more optimizing is possible there.

Monitoring and debugging program executions
There are lots of books about debugging end user code, but there are few books on how
to write program monitors and debuggers. Part of the problem is that the implementation
techniques are low-level and highly platform-dependent, so much of what is written about
debugger implementation might only be true for one particular operating system and may
not remain true in 5 years.

Regarding the big picture, you may want to think about how to design your debugger
and what interface it should provide to the end user. Besides imitating the interface of
mainstream debuggers, you should consider the notion of query-based debugging, as
described in Raimondas Lencevicius' Advanced Debugging Methods. You should also
consider the notions of relative debugging and delta debugging, which were popularized
by the works of David Abramson et al. and Andreas Zeller.

One of the things you may want to read up on if you want to know more about debugger
implementation is executable file formats and, in particular, their debugging symbol
information. The Microsoft Windows portable executable format is documented on the
Microsoft website.

One of the most prominent corresponding UNIX formats is the executable linking
format (ELF), which stores debugging information in a format called Debugging With
Arbitrary Record Formats (DWARF).

The GNU debugger, known as GDB, is prominent enough that it has a GDB Internals
manual, and GDB has frequently been used as the basis upon which research debugging
capabilities are developed. https://aarzilli.github.io/debugger-
bibliography/ lists a few other debugger implementation resources, mainly oriented
toward the Go language.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://aarzilli.github.io/debugger-bibliography/
https://aarzilli.github.io/debugger-bibliography/

408 Final Thoughts

For a substantial discussion of the classic program execution monitoring literature, you
can consult Monitoring Program Execution: A Survey, or the related work chapter in
Program Monitoring and Visualization.

Designing and implementing IDEs and GUI builders
A major element in the success of programming languages is the extent to which their
programming environment supports writing and debugging code. This book only briefly
touches on these topics, and you might want to explore more on how IDEs and their user
interface builders are implemented.

There is good news and bad news here. The bad news is that almost no one has written a
build your own integrated development environment book. If you were going to build one
from scratch, you might start by teaching yourself how to write a text editor, and then add
other features. In that case, you might wish to consult The Craft of Text Editing by Craig
Finseth. That book was written by a person who studied how the Emacs text editor was
implemented for his Bachelor's thesis. There is also a chapter titled GNU Emacs Internals,
written as an appendix to the GNU Emacs Manual.

The good news is that almost no one must write the text editor portion of an integrated
development environment anymore. Each of the major graphical computing platforms
comes with a user interface library that includes a text editor as one of its widgets.
You can assemble the interface of an integrated development environment using a
graphical interface builder tool. Unfortunately, graphic user interface libraries are usually
non-portable and short-lived, which means that work spent programming on them is
almost doomed to be discarded within a decade or two. It takes extraordinary effort to
write code that runs on all platforms and lives forever in internet years.

So, this section should focus on multi-platform portable graphical user interface libraries
and how to use them to write integrated development environments and user interface
builder tools. Java is one of the most portable languages, and even with a few false starts, it
is still likely that some of the best and most multiplatform portable user interface libraries
might be Java libraries.

Exploring references for further reading
Here is a detailed bibliography of the works we discussed in the previous section. Within
each subsection, the works are listed alphabetically by author.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring references for further reading 409

Studying programming language design
In the area of programming language design, you may find the following items to be
of interest:

• Harold Abelson and Gerald Sussman, Structure and Interpretation of Computer
Programs, Second edition, MIT Press, 1996.

• Rafael Finkel, Advanced Programming Language Design, Pearson 1995.

• Ralph Griswold, History of the Icon Programming Language, Proceedings of
HOPL-II, ACM SIGPLAN Notices 28:3 March 1993, pages 53–68.

• Daniel H.H. Ingalls, Design Principles Behind Smalltalk, Byte Magazine August 1981,
pages 286–298.

• John Ousterhout, Scripting: Higher-Level Programming for the 21st Century, IEEE
Computer 31:3, March 1998, pages 23–30.

• John Ousterhout, Why Threads Are a Bad Idea (for most purposes), Invited talk,
USENIX Technical Conference, September 1995 (available at https://web.
stanford.edu/~ouster/cgi-bin/papers/threads.pdf).

• Leon Sterling and Ehud Shapiro, The Art of Prolog, MIT Press, 1986.

• Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994.

• Niklaus Wirth, Algorithms and Data Structures, Prentice Hall 1985.

• Niklaus Wirth, Project Oberon: The Design of an Operating System and Compiler,
Addison Wesley/ACM Press 1992.

This is a tiny sample of the best works in a rich body of literature, and it must bear many
grievous omissions. Now, let's look at a similar list for implementation.

Learning about implementing interpreters and
bytecode machines
In the area of interpreter and bytecode machine implementation, you may find the
following items to be of interest:

• John Allen, Anatomy of Lisp, McGraw Hill, 1978.

• Urs Ammann, On Code Generation in a PASCAL Compiler, Software Practice and
Experience 7(3), 1977, pages 391–423.

• David W. Barron, ed., PASCAL-The Language and Its Implementation,
John Wiley, 1981.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf

410 Final Thoughts

• Adele Goldberg, David Robson, SmallTalk-80: The Language and its Implementation,
Addison-Wesley, 1983.

• Clinton Jeffery and Don Ward, eds., The Implementation of Icon and Unicon: a
Compendium, Unicon Project, 2020 (available at http://unicon.org/book/
ib.pdf).

• A. B. Vijay Kumar, Supercharge Your Applications with GraalVM, Packt, 2021.

• Steven Pemberton and Martin Daniels, Pascal Implementation: The P4 Compiler
and Interpreter, Ellis Horwood, 1982 (available at https://homepages.cwi.
nl/~steven/pascal/).

• David Warren, An Abstract PROLOG Instruction Set, Technical Note 309,
SRI International, 1983 (available at http://www.ai.sri.com/pubs/
files/641.pdf).

Now, let's look at a similar list for native code and code optimization.

Acquiring expertise in native code and code
optimization
Regarding native code and code optimization, you may find the following items to be
of interest:

• Al Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman, Compilers: Principles
Techniques and Tools, Second edition, Addison Wesley, 2006.

• Craig Chambers, The Design and Implementation of the SELF Compiler, an
Optimizing Compiler for Object-Oriented Programming Languages, Stanford
dissertation, 1992.

• Keith Cooper and Linda Torczon, Engineering a Compiler, Second edition, Morgan
Kaufmann, 2011.

• Chris Lattner and Vikram Adve, LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation, in Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO'04), Palo Alto,
California, March 2004. Available at https://llvm.org/pubs/2004-01-30-
CGO-LLVM.html

• Jonathan Rees and Norman Adams, T: a dialect of Lisp, Proceedings of the 1982
ACM symposium on LISP and functional programming, pages 114–122.

• Kenneth Walker, The implementation of an optimizing compiler for Icon, Arizona
dissertation, 1991.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://unicon.org/book/ib.pdf
http://unicon.org/book/ib.pdf
https://homepages.cwi.nl/~steven/pascal/
https://homepages.cwi.nl/~steven/pascal/
http://www.ai.sri.com/pubs/files/641.pdf
http://www.ai.sri.com/pubs/files/641.pdf
https://llvm.org/pubs/2004-01-30-CGO-LLVM.html
https://llvm.org/pubs/2004-01-30-CGO-LLVM.html

Exploring references for further reading 411

After optimization, you might want to look further at the highly specialized area of
program execution monitoring and debugging.

Monitoring and debugging program executions
In the area of monitoring and debugging, you may find the following items to be of interest:

• David Abramson, Ian Foster, John Michalakes, and Roc Sosic, Relative Debugging: A
new methodology for debugging scientific applications, Communications of the ACM
39(11), November 1996, pages 69–77.

• DWARF Debugging Information Format Committee, DWARF Debugging
Information Format Version 5 (http://www.dwarfstd.org), 2017.

• John Gilmore and Stan Shebs, GDB Internals, Cygnus Solutions, 1999. The most
recent copy is in wiki format and available at https://sourceware.org/gdb/
wiki/Internals.

• Clinton Jeffery, Program Monitoring and Visualization, Springer, 1999.

• Raimondas Lencevicius, Advanced Debugging Methods, Kluwer Academic
Publishers, Boston/Dordrecht/London, 2000.

• Microsoft, PE Format, available at https://docs.microsoft.com/en-us/
windows/win32/debug/pe-format.

• Bernd Plattner and J. Nievergelt, Monitoring Program Execution: A Survey. IEEE
Computer, Vol. 14. November 1981, pages 76–93.

• Andreas Zeller, Why Programs Fail: A Guide to Systematic Debugging, Second
edition, Morgan Kaufmann, 2009.

Along with monitoring and debugging, it would be useful to consider integrated
programming tools for your language.

Designing and implementing IDEs and GUI builders
In the area of development environments and user interface builders, you may find the
following items to be of interest:

• Craig Finseth, The Craft of Text Editing: Emacs for the Modern World. Springer, 1990.

• Bill Lewis, Dan LaLiberte, Richard Stallman, the GNU Manual Group, et al., GNU
Emacs Internals, Appendix E within the GNU Emacs Lisp Reference Manual, GNU
Project, 1990–2021, pages 1,208–1,250.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.dwarfstd.org
https://sourceware.org/gdb/wiki/Internals
https://sourceware.org/gdb/wiki/Internals
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

412 Final Thoughts

Honestly, I wish I had more good reading to recommend in the area of IDEs and GUI
builders. If you know of good works on this subject, send me your suggestions. Now, let's
wrap things up with a summary.

Summary
This book showed you a thing or two about building programming languages. We did
this by showing you an implementation of a toy language called Jzero. However, Jzero
is not what is interesting; what is interesting is the tools and techniques used in its
implementation. We even implemented it twice!

If you thought that maybe programming language design and implementation was a
swimming pool to enjoy, your new conclusion might be that it is more like an ocean. If so,
the tools that have been placed at your disposal in this book, including versions of flex and
YACC for use with Unicon or Java, are a luxury cruise liner capable of sailing you about
on that ocean to wherever you want to go.

The first high-level language compiler is said to have taken 18 years to create. Perhaps now
it is a task of a few months, although it is still an open-ended task where you can spend as
much time as you can spare making improvements to any compiler or interpreter that you
care to write.

The holy grail of compilers has long been a high-level declarative specification of the code
generation problem, to match the declarative specification of lexical and syntax rules.
Despite the earnest work of many people far smarter than me, this hoped-for breakthrough
has been resistant. In its place, several crutches have proliferated. The very notion of a
bytecode machine implemented in a portable system language such as C has made many
languages portable to a myriad of processors… once someone ports a C compiler to them.
This has become part of the mainstream due to technologies such as the .NET CLR and the
JVM and GraalVM Java bytecode machines. Similarly, transpilers that generate code in the
form of source code to another high-level language (such as C) have become widespread.

The third form of increased portability that's available to programming language inventors
is the proliferation of intermediate-level target instruction formats such as LLVM. All
of these widely used means of making your programming language portable dodge
the common bullet of generating code for a brand new CPU. Perhaps the fourth form
of increased portability has come from the fact that few new CPU instruction sets are
generated at this point, as the industry has collectively invested so much in the small
number of hardware instruction sets for which optimizing code generators are available.

Thanks for reading this book. I hope that despite its many shortcomings, you were able to
enjoy my book and you found it useful. I look forward to seeing what new programming
languages you invent in the future!

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

This section will include materials that will help the readers to understand the main text.

This section comprises the following chapter:

• Appendix, Unicon Essentials

Section 4:
Appendix

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Appendix
Unicon Essentials

This appendix presents enough of the Unicon language to help you understand the Unicon
code examples in this book. This appendix is intended for skilled programmers and does
not spend time introducing basic programming concepts. Instead, it presents Unicon while
focusing on the interesting or unusual features compared to mainstream languages.

If you know Java, then most of the Unicon code in this book can be understood by
looking at the corresponding Java code to see what is going on. You can look up whatever
is not self-evident or explained by Java comparison here. This appendix is not a complete
Unicon language reference; for that, see Appendix A of Programming with Unicon, which
is available in standalone public domain form in Unicon Technical Report #8. Both
Programming with Unicon and Unicon Technical Report #8 are hosted at unicon.org.

Syntactic Shorthand
The notation in this appendix uses square brackets, [], to denote optional
features and asterisks, *, to denote features that can occur zero or more
times. When square brackets or asterisks are highlighted, this means they are
occurring in the Unicon code rather than as optional or repeated features.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://unicon.org

416 Unicon Essentials

This appendix covers the following topics:

• Running Unicon

• Using Unicon's declarations and data types

• Evaluating expressions

• Debugging and environmental issues

• Function mini-reference

• Selected keywords

To begin, let's provide an expanded discussion of how to run Unicon programs.

Running Unicon
Unicon is invoked to compile and run either from the command line or from within
an IDE. Unicon source files end in the.icn extension, while Unicon object files end in
the.u extension. Here are some example invocations of the Unicon translator:

• unicon mainname [filename(s)]

Compile and link mainname.icn and other filenames to form an executable
named mainname.exe on Windows or just mainname on most other platforms.

• unicon -o exename [filename(s)]

Compile and link an executable named exename, or on Windows, exename.exe.
• unicon -c filename(s)

Compile .icn files into .u files but do not link them.
• unicon -u filename(s)

Warn about undeclared variables.
• unicon -version

Print the Unicon version.
• unicon -features

Print the features of this Unicon build.
• unicon foo -x

Compile and run foo.icn in one step.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Unicon's declarations and data types 417

You can read a longer description on how to run Unicon on Windows at http://
unicon.org/utr/utr7.html. The full list of command-line options can be seen at
http://unicon.org/utr/utr11.html.

If you don't like working from the command line, you may want to try out the Unicon
IDE called ui. The ui program has options to compile and execute programs from inside
a graphical interface. The following screenshot shows an example of this:

Figure A.1 – A screenshot showing ui, the Unicon IDE

The creators of Unicon use many different programming environments, and the Unicon
IDE is more of a technology demo than a production tool, but you may find it useful, if
only for its beloved Help menu. It is written in about 10,000 lines of Unicon, not counting
the GUI class libraries. Now, let's consider the kind of declarations that are allowed in
Unicon and what data types it supports.

Using Unicon's declarations and data types
You can't write a Unicon program without declaring things. Declaring something is
the act of associating a name, visible within some scope and lifetime, with some chunk
of code or memory capable of holding a value. Next, let's learn how different program
components can be declared.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://unicon.org/utr/utr7.html
http://unicon.org/utr/utr7.html
http://unicon.org/utr/utr11.html

418 Unicon Essentials

Declaring different kinds of program components
Unicon programs consist of one or more procedures beginning with main(). Program
structure often also includes classes. Unicon distinguishes user-defined procedures from
functions that are built into the language. The following patterns show the syntax structure
for the primary declarations of bodies of code in Unicon's procedures and methods.

Declare procedure:

procedure X (params) [locals]* [initial] [exprs]* end

Declare method:

method X (params) [locals]* [initial] [exprs]* end

A procedure or method has a name, parameters, and a body ending with the word end.
The body may optionally start with local and static declarations and an initial section,
followed by a sequence of expressions. Methods may only be declared inside classes,
within which they have access to an extra set of names of class fields and other methods.
In Unicon, there are no static methods, and all methods are public.

Declare parameters:

[var [: expr] [, var [: expr]]* [, variable []]]

Declare field names:

[var [, var]*]

Parameters have zero or more names, separated by commas. Each parameter may
optionally include a colon, followed by a default value or the name of a type coercion
function. The final parameter may be followed by square brackets, indicating that
a variable number of arguments will be passed in as a list. Parameters are used for
procedures and methods, including initially methods. The field names that are
declared in the record and class declarations are simpler than a parameter list, consisting
of just a comma-separated list of identifiers.

Declare globals:

global variable [, variable]*

Declare locals:

local variable [:= expr] [, variable [:= expr]]*

Declare statics:

static variable [:= expr] [, variable [:= expr]]*

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Unicon's declarations and data types 419

Variables may be introduced with a comma-separated list of names in one of the three
scopes: global, local, or static. Local names can have an assignment to initialize the
variable. Global variables live for the entirety of the program's execution. Local variables
live for the duration of a single procedure or method call. Static variables live for the
entirety of the program's execution, and one copy of each static variable is shared by all
the calls to that procedure or method.

Declare record type:

record R (fields)

Declare class:

class C [: super]* (fields) [methods]* [initially] end

A record or class is declared by a name, followed by a comma-separated list of field names,
surrounded by parentheses. The record or class name declares a global variable that holds
a constructor function that creates instances. A class may also have a colon-separated list
of superclass names. A class declaration contains zero or more methods and an optional
initially section, followed by a reserved word end.

Declare initially method:

initially [(params)] [locals]* [initial] [exprs]*

An initially section is a special, optional initialization method that's called
automatically by the class constructor. If an initially section is present, it must be after all
other methods, immediately before the end of the class. It is not preceded by the word
method and its parameter list is optional.

Reference library modules:

link module [, module]*

Unicon programs may include multiple files on the command line, but modules that
are used by a file may also be declared in the source code. Modules may either be string
constant filenames or identifiers that are used as filenames.

Use package:

import package [, package]*

Unicon's global namespace may be composed of multiple named packages, which can be
imported by supplying the package name(s). Now, let's look at Unicon's data types.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

420 Unicon Essentials

Using atomic data types
Unicon has a rich set of data types. Atomic types are immutable, while structure types are
mutable. They appear directly in the source code as literal constant values or are computed
and introduced into the program by operators or functions.

Numeric
Integers are signed arbitrary precision whole numbers. Integers are the most common
type and work in an obvious way. There are many literal formats in bases 2 through
36, and a set of suffixes such as K and M multiply numbers by thousands or millions.
For example, the integer literal 4G indicates a value of four billion. Integers in Unicon
mostly just work without us paying much attention. All the usual arithmetic operators
are provided, along with a handy exponentiation operator, x^y. The interesting unary
operator, ?n, produces a random number between 1 and n. The unary operator, !n,
generates integers from 1 to n.

The real data type provides floating-point approximations of numbers. Real constants
must contain either a decimal, an exponent, or both. It is kind of amazing to think how
much trouble real values used to cause programmers, and how they are now taken for
granted: real values are the same size as 64-bit integers, although the binary format
is different. One of the challenges you occasionally face is converting back and forth
between integers and reals. Conversion is performed automatically as needed, but it does
take time if you do it repeatedly and unnecessarily.

Textual
Unicon has multiple built-in types for manipulating text, including strings, character sets
(csets), and an amazing pattern type borrowed from SNOBOL4. This book uses strings and
csets but uses Flex and Yacc instead of patterns because they are more portable. For this
reason, we will not present the pattern type or its regular expression-based literal format.

Strings are ordered sequences of zero or more characters. A string literal is surrounded
by double quotes and may include escape characters. The following table shows these
escape sequences:

Table A.1 – String and cset escape characters

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Unicon's declarations and data types 421

Csets are unordered collections of zero or more non-duplicating characters. A cset literal
is surrounded by single quotes and may include escape characters. Unicon has many
cset keyword constants for the predefined character sets that are found as macros or test
functions in other languages. It turns out that having a full set data type for characters is
useful at times when you're performing text processing. The cset type supports the usual
set operators, such as c1++c2, which computes a union, or c1--c2 for characters in c1
but not in c2. Now, let's move on and look at Unicon's structure types.

Organizing multiple values using structure types
Structure types are values that are composed of multiple values. Structure types are
mutable, which means that values can be modified or replaced. They are generally created
at runtime by an action that allocates memory and initializes it from their component
values. Many structure types are containers that allow values to be inserted or deleted. The
first structure type to consider is the class, which introduces a user-defined structure type.

Classes
If your data is not numeric and not textual, you probably want to write a class for it in
Unicon. Each Unicon class is a new data type. Class data types are used for constructing
things from the application domain. They are usually used for things that contain several
pieces of information, governed by complex behavior.

Unicon defines multiple inheritance semantics in an interesting way called closure-based
inheritance, which allows cycles in the inheritance graph. The fact that Unicon classes are
all public and all virtual keeps things simpler and focuses on expressive power rather than
on protecting programmers from themselves. Now, let's look at Unicon's other structure
types, which are often used to provide the associations between different class types. The
first built-in structure type to consider is the list type.

Lists
I presented classes before lists just to tease you a bit. Lists are the most common structure
type by far. This book only showed a small inkling of what lists can do. Unicon lists
are sort of a cross between a linked list and an array that can grow and shrink and be
used as a stack, queue, or deque. Internally and invisibly, the list type supports different
representations for arrays of integers and arrays of real numbers that optimize their space
representation compatibly with C.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

422 Unicon Essentials

In addition to being used as arrays or stacks and such, lists are commonly used as glue
data structures within classes to implement aggregation and multiplicity. One of the few
warnings for mainstream programmers about Unicon lists is that their first subscript is 1,
not 0. Let's compare the list type with the amazingly useful table data type.

Tables
A table, which is sometimes called an associative array, is an extremely flexible structure
that maps indexes of arbitrary types onto values of arbitrary types. A table is named
after its implementation, which is usually a hash table. A table feels like an array whose
subscripts are not constrained to be contiguous integers starting from 1. A table's keys
may be non-contiguous, sparse, negative, or they may be strings or any other types.

Strings and integers are almost the only types that are used as hash keys. Sure, you can
use real numbers, but round-off errors make subsequent lookups tricky. And you can
use csets as table keys; it is just rare. If you use other structure values as keys in a table,
everything works, but you don't compute their hash from their contents, because the
contents are mutable.

Files
Unicon's file type is what you would expect. Files generally access persistent storage
managed by the operating system. There are handy functions for processing lines at a
time. Most forms of input and output are extensions of the file type, so file functions are
applied to network connections, graphics windows, and so on.

Other types
Unicon has a host of other powerful built-in types for things such as windows, network
connections, and threads. Unlike some languages, it does not have a global interpreter
lock to slow its thread concurrency down. Given values in this rich set of data types, the
bodies of Unicon programs are assembled into computations using various expressions.

Evaluating expressions
Unicon expressions are goal-directed. When they can, they compute a result, and this
is called success. Expressions that have no result are said to fail. Failure will generally
prevent a surrounding expression from being performed, and it may trigger backtracking
into an earlier part of the expression if there is one that can produce additional results.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating expressions 423

This goal-directed evaluation semantics eliminates the need for a Boolean data type,
which is usually found in other languages. It also dramatically increases the expressive
power of the language, eliminating a lot of tedious checking for sentinel values or writing
explicit loops to search for things that can be found by goal-directed evaluation and
backtracking. It takes time to get used to this feature, but once mastered, code is shorter
and quicker to write.

Forming basic expressions using operators
Many of Unicon's operators will be familiar from other languages, while others are unique.
Here is a summary of Unicon's operators. When chained together, the execution order of
operators is determined by their precedence, which is generally as found in mainstream
languages. Unary operators have higher precedence than binary, multiplication comes
before addition, and so forth. When in doubt, force precedence using parentheses.

Force precedence:

(exp)

Parentheses, with no expression in front of them, just force operator precedence and
otherwise have no effect.

Size:

* x : int

A unary asterisk is a size operator that returns how many elements are in a string, cset,
queue, or structure, x.

Is-null:

/ x

Is-nonnull:

\ x

These predicates just produce x if the test is true, but if the test is false, then they fail.

Negate:

- num

Unary plus:

+ num

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

424 Unicon Essentials

To negate a number is to flip its sign from positive to negative or vice versa. A unary
plus operator coerces the operand into becoming a number but does not change its
numeric value.

Negate evaluation result:

not exp

A not converts an expression, exp's, success into a failure and vice versa. When it
succeeds, the result that's produced is a null value.

Tabmat:

= str

When the operand is a string, the unary equals is like tab(match(s)).

Binary arithmetic:

num1 ^ num2

num1 % num2

num1 * num2 num1 + num2

num1 / num2 num1 - num2

The usual binary numeric operators, including caret for exponentiation, may be followed
immediately by a := to perform an augmented assignment; for example, x +:= 1 to
add one to x. Almost all binary operators can be used with := to perform augmented
assignment.

Concatenate:

str1 || str2

List concatenate:

lst1 ||| lst2

To concatenate is to attach the first and second operand, in order, and produce the result.

Assign a value:

variable := expr

In an assignment, the value on the right is stored in the variable on the left-hand side.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating expressions 425

Comparison:

num1 = num2

str1 == str2num1 ~= num2

str1 ~== str2num1 < num2

str1 << str2num1 <= num2

str1 <<= str2num1 > num2

str1 >> str2num1 >= num2

str1 >>= str2ex1 === ex2

ex1 ~=== ex2

The usual numeric comparison operators are provided, along with string versions that
generally repeat the operator character. The tilde means NOT. The equivalent operator,
===, and not-equivalent operator, ~===, do not do any type conversion, while the others
generally coerce operands to numeric or string types as needed. Comparison operators
result in their second operand unless they fail.

And:

ex1 & ex2

A binary ampersand operator tests ex1 and if it succeeds, the result of the whole
expression is the result of ex2. If ex1 fails, ex2 is not evaluated.

Make an empty list:

[]

Make an initialized list:

[ex [, ex]*]

Make an expression results list:

[: ex :]

Make an initialized table:

[ex : ex [; ex : ex]*]

When brackets enclose zero or more elements, lists and tables are created. Initializer
elements are separated by commas. Table elements consist of key-value pairs.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

426 Unicon Essentials

Select subelement:

ex1 [ex2 [, ex]*]

Slice:

ex1 [ex2 : ex3]

Plus slice:

ex1 [ex2 +: ex3]

Minus slice:

ex1 [ex2 -: ex3]

For lists and strings, when brackets have an expression to their left, an element or slice
of that expression is taken. The L[1,2] expression is equivalent to L[1][2]. Regular
element referencing picks out an element from a value, such as a string or a list. The
element may be read and used in a surrounding expression or written into and replaced
with an assignment. Subscripts normally start with a 1 for the first element. List and
string indexes fail on out-of-range indices. Slicing is defined for both lists and strings. A
string slice may be assigned if the original string is a variable. A list slice creates a list that
contains a copy of the selected elements of the base list.

The subscripts for tables are keys and may be of any type. Table indexes result in the table
default value when an unknown key is looked up. Records accept both strings and integer
subscripts as if they were both tables and lists.

Access field:

x . name

The dot operator picks the name field out of a record or class instance, x.

Invoking procedures, functions, and methods
One of the most fundamental abstractions in all programming is the act of asking
another piece of code, somewhere else, to compute a value that is needed in an expression.
In Unicon, you can invoke, or call, a user-written procedure, a built-in function, or a
class method by following its name or reference with parentheses while enclosing zero
or more values.

Call:

f ([expr1 [, [𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒i]]*])

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating expressions 427

Method call:

object . method ([expr1 [, [𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒i]]*])

A procedure or function is called by following it with parentheses enclosing zero or more
argument expressions, separated by commas. Omitting an argument results in passing
a null value in that position. Execution moves to that procedure or function and comes
back when a result is produced or no result is possible. A method is called by accessing the
method name through an object.

Finish call:

return [expr]

return produces expr as the result of a method or procedure. The call cannot resume. If
the result, expr, is not provided, the expression returns null.

Produce a result:

suspend [expr]

suspend produces expr as the result of a method or procedure. The call will be resumed
to try for another result if the expression where the call was made fails. If the result, expr,
is not provided, the expression returns null.

End call without result:

fail

fail terminates a procedure or method call without a result. The call may not
be resumed.

Iterating and selecting what and how to execute
Several Unicon control structures cover traditional control flow operations. These include
sequencing, looping, and selecting pieces of code to execute.

Execute in sequence:

{ expr1 ; expr2 }

Curly brackets denote expressions to be evaluated in sequence. Semi-colons terminate
each expression in the sequence. Unicon features automatic semi-colon insertion, so
semi-colons are rarely needed except for when two or more expressions are on the
same line.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

428 Unicon Essentials

If-then:

if ex1 then ex2 [else ex3]

if executes ex2 when ex1 succeeds; otherwise, it evaluates to ex3.

Evaluate until it fails:

while ex1 [do ex2]

A while loop iterates until ex1 fails.

Consume a generator:

every ex1 [do ex2]

An every loop just fails no matter what. This forces all the results from ex1. This thing
eats generators.

Loop body:

do ex

do is usually optional and provides the body to execute on the iterations of a loop.

Evaluate forever:

repeat ex

The repeat expression is a loop that reevaluates ex over and over. Among other ways, ex
may exit the loop using break, return, fail, or by halting program execution.

Get out of loop:

break [ex]

break terminates a loop in the current procedure or method – always the nearest one.
The ex expression is evaluated after the loop is terminated. You can write break break
to get out of two loops, break break break to get out of three loops, and so on.

Scan string:

str ? ex

This control structure executes ex, setting &subject to str. The &pos keyword is started
at 1. String scanning can be nested. It has a dynamic scope.

Execute one branch:

case ex of { [ex1 : ex2] * ; [default : exN] }

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Evaluating expressions 429

case evaluates an expression and compares the result against a sequence of case
branches, tested in order. If the expression is equal to the definition of ===, which is to say
without type conversions, to one of the expressions to the left of a colon, the expression on
the right of that colon is executed and the case is completed.

Run on first call:

initial ex

initial evaluates an expression at the front of a procedure or method, but only the first
time that procedure or method is called.

Generators
Some expressions in Unicon can produce multiple results. Generators are infectious in
that if a generator is resumed for a second result, or subsequent results, a surrounding
expression may be re-executed and may end up producing multiple results for its enclosing
expression. For example, consider the ord("="|"+"|"-") call. The ord(s) function,
which returns the ASCII code for s, is not a generator, but if its parameter expression is
a generator, the whole ord() expression is a generator. In this case, "="|"+"|"-" is
a generator that can produce three results. If the enclosing expression needs all of them,
ord() may get called three times and yield three results to an enclosing expression. As
another example of this very good feature, consider the following expression:

\kids[1|2].first | genlabel()

This generator can produce the .first field from either kids[1] or kids[2],
provided that kids is not null and not empty, but if those did not occur or did not satisfy
the surrounding expression, this expression would call genlabel() and produce its
result(s) if it has any.

Alternation:

ex1 | ex2

An alternation generates results from ex1 and then ex2.

Generate components:

! ex : any*

A unary exclamation operator produces constituent pieces of a value in some order.
Integers are generated by counting from 1 to the number. Strings, csets, lists, records, and
objects are generated by producing their values one at a time in order. Tables and sets
behave similarly but the order is undefined. Files generate their contents a line at a time.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

430 Unicon Essentials

Finite numeric sequence:

ex1 to ex2 [by ex3]

to generates numbers from ex1 to ex2. The default step is 1, but if by is provided, the
sequence steps by that amount each time.

Debugging and environmental issues
This section contains information you may find useful when programming in Unicon.
This includes a brief introduction to the Unicon debugger, some environment variables
that you can set to modify Unicon runtime behavior, and a simple preprocessor that
Unicon provides.

Learning the basics of the UDB debugger
Unicon's source-level debugger is named udb and is described in UTR 10, which can be
read at http://unicon.org/utr/utr10.html. udb's command set is based on that
of gdb, which lives at https://www.gnu.org/software/gdb/.

When you run udb, you provide the program to debug as a command-line argument.
Alternatively, from within the debugger, you can run the load command to specify the
program to debug. The debugger is normally exited using the quit (or q) command.

The udb prompt recognizes a lot of commands, often with an abbreviated form available.
Perhaps after the quit command, the next most important command is help (or h).

The next most important command is the run (or r) command. It can be used to restart
the program's execution from the beginning.

To set a breakpoint at a line number or procedure, you can use the break (or b)
command, followed by the line number or procedure name. When execution hits that
location, you will return to the udb command prompt. At that point, you can use step
(or s) to execute one line at a time, next (or n) to run to the next line while skipping over
any procedures or methods called, print (or p) to get the values of variables, or cont
(or c) to continue execution at full speed.

Environment variables
Several environment variables control or modify the behavior of Unicon programs or the
Unicon compiler. The most important of these are summarized here. By default, Unicon's
block region heap and string region heap are sized proportional to physical memory, but
you can set several of the runtime memory sizes explicitly:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://unicon.org/utr/utr10.html
https://www.gnu.org/software/gdb/

Debugging and environmental issues 431

Table A.2 – Environment variables and their descriptions

IPATH is also used to look for superclasses and package imports. Now, let's look at
Unicon's preprocessor, which is a bit like a simplified C preprocessor.

Preprocessor
The Unicon preprocessor performs file includes and replaces symbolic constants with
values. The purpose of the preprocessor is to allow chunks of code to be enabled or disabled
at compile time. This facilitates, for example, different code for different operating systems.

Preprocessor commands
The following preprocessor directives are lines beginning with a dollar sign:

• $define sym text

The symbol, sym, is replaced with text. There are no macro parameters in this
construct.

• $include filenam

The file named filenam is incorporated into the source code where $include
was found.

• $ifdef sym

$ifndef sym

$else

$endif

Lines inside $ifdef are passed along to the compiler if sym was introduced by
a previous $define. $ifndef passes along source code if a symbol was not
defined. These two directives take an optional $else, followed by more code, and
are terminated by $endif.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

432 Unicon Essentials

• $line num [filenam]

The next line should be reported as starting at line num from the filenam file.
• $undef sym

The definition, sym, is erased. Subsequent occurrences are not replaced by anything.

Built-in macro definitions
These symbols identify platforms and features that may be present and affect language
capabilities. The built-in macro definitions include the following:

Table A.3 – Built-in macros

These symbols, which you can check at compile time using $ifdef, have corresponding
feature strings that can be checked at runtime using &features. For details, you can
look at Programming with Unicon. Now, let's look at Unicon's built-in functions.

Function mini-reference
This section describes a subset of Unicon's built-in functions deemed most likely to
be relevant to programming language implementers. For a full list, see Appendix A of
Programming with Unicon. The parameters' required types in this section are given by
their names. The names c or cs indicate a character set. The names s or str indicate
a string. The names i or j indicate integers. A name such as x or any indicates that the
parameter may be of any type. Such names may be suffixed with a number to make them
distinct from other parameters of the same type. The colons and types after the parameters
indicate return types, along with the number of returned values. Normally, a function will
have exactly one return value. A question mark indicates that the function is a predicate
that can fail with zero or one return value. An asterisk indicates that the function is a
generator with zero or more return values.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Function mini-reference 433

Many functions also have default values for parameters, indicated in the reference using
a colon and a value after their name. Functions with parameters ending in s, i, and j
are string analysis functions. String analysis functions' last three parameters default to
&subject, &pos, and 0. The i and j parameters are swapped if i is greater than j,
so it does not matter in what order the indices are supplied, and analysis will always be
conducted from left to right:

• abs(n) : num

abs(n) returns -n if n is negative. Otherwise, it returns n.
• any(cs, s, i, j) : integer?

any(cs,s,i,j) produces i+1 when s[i] is a member of cset, cs, and
fails otherwise.

• bal(c1:&cset, c2:'(', c3:')', s, i, j) : integer*

bal(c1,c2,c3,str,i1,i2) produces indices in str where a member of c1
in str[i:j] is balanced as far as opener characters in c2 and closer characters
in c3.

• char(i) : str

char(i) returns the one-letter string encoding of i.
• close(f) : file

close(f) releases operating system resources associated with f and closes it.
• copy(any) : any

copy(y) produces y. For structures, it returns a physical copy. For nested
structures, the copy is one level deep.

• delay(i) : null

delay(i) waits for at least the specified amount of milliseconds.
• delete(y1, y2, …) : y1

delete(y1,y2) removes values at the key location, y2, and subsequent elements
from the y1 structure.

• exit(i:0) :

exit(i) quits the program run and produces i as an exit status.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

434 Unicon Essentials

• find(str1, str2, i, j) : int*

find(str1,str2,i1,i2) produces indices where str1 occurs in str2,
considering only indices between i1 and i2.

• getenv(str) : str?

getenv(str1) produces a value named str1 from the environment.
• iand(i1, i2) : int

iand(i1,i2) returns i1 bitwise-ANDed with i2.
• icom(i) : int

icom(i) flips the ones to zeros and the zeros to ones.
• image(x) : str

image(x) produces a string that represents the contents of x.
• insert(x1, x2, x3:&null) : x1

insert(x1,x2,x3) places x2 in the x1 structure. If x1 is a list, x2 is a position;
otherwise, it is a key. If x1 is a table, the x2 key is associated with the x3 value.
insert() produces the structure.

• integer(x) : int?

integer(x) coerces x into the integer type. It fails when conversion is not possible.
• ior(i1, i2) : int

ior(i1,i2) returns i1 bitwise-ORed with i2.
• ishift(i1, i2) : int

ishift(i1,i2) shifts i2 bit positions over within i1 and returns the result.
The shift goes right if i2<0, or left if i2>0. i2 zeroes come in in the opposite
direction of the shift.

• ixor(i1, i2) : int

ixor(i1,i2) returns i1 bitwise-exclusive-ORed with i2.
• kbhit() : ?

kbhit() returns whether the keyboard has been pressed or not.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Function mini-reference 435

• key(y) : any*

key(y) produces keys/indices with which a structure's y elements may be accessed.
• list(i,x) : list

list(i,x) constructs a list with x elements that each contain x. x is not copied
for each element of the list, so you may have to allocate them all separately if you
want a list of lists, for example.

• many(cs,str,i,j) : int?

many(cs,str,i,j) produces the position in str that follows as many
contiguous members of cs within str[i:j] as possible.

• map(str1,str2,str3) : str

map(str1,str2,str3) returns str1 transformed so that where str1's
characters may be found in str2, they are replaced with the corresponding
characters in str3. str2 and str3 must be of the same length.

• match(str, s, i, j) : int?

match(str1,s,i,j) returns i+*str1 when str1==s[i+:*str1]. The
function fails when there is no match.

• max(num,…) : num

max(…) produces the numeric maximum of its parameters.
• member(y,…) : y?

member(y,…) produces y when the other parameters are in y; otherwise, it fails.
• min(num,…) : num

min(…) produces the numeric minimum of its parameters.
• move(i) : str

move(i) increments or decrements &pos by i and returns a substring from
the old to the new position within &subject. The position is reset if this function
is resumed.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

436 Unicon Essentials

• open(str1, str2, ...) : file?

open(str1,str2,…) asks the operating system to open the str1 filename using
the str2 mode. Subsequent arguments are attributes that may affect special files. The
function recognizes the following modes, which are given in the str2 argument:

Table A.4 – Modes and their descriptions

• ord(s) : integer

ord(s) returns the ordinal (for example, ASCII code) of a one-letter string, s.
• pop(L) : any?

pop(L) returns a value from the front of L and removes it from the list.
• pos(i) : int?

pos(i) returns whether string scanning is at the location, i.
• proc(any, i:1) : procedure?

proc(str,i) produces a procedure that is called s. If i is 0, the built-in function
named s is produced if there is one by that name.

• pull(L, i:1) : any?

pull(L) returns the last element of L and removes it. It can remove i elements.
• push(L, y, ...) : list

push(L,y1,…,yN) pushes one or more elements onto the list, L, at the front.
push() returns its first parameter, with new values added.

• read(f:&input) : str?

read(f) inputs the next line of f and returns it without the newline.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Function mini-reference 437

• reads(f:&input, i:1) : str?

reads(f,i) inputs i bytes from the file, f, failing if no more bytes are there.
reads() returns with available input, even if it is less than i bytes. When -1 bytes are
requested, reads() returns a string that contains all the remaining bytes in the file.

• ready(f:&input, i:0) : str?

ready(f,i) inputs i bytes from the file, f, usually a network connection. It
returns without blocking and if that means less than i bytes are available, so be it.
It fails when no input has arrived yet.

• real(any) : real?

real(x) coerces x into its floating-point equivalent. It fails when no coercion
is possible.

• remove(str) : ?

remove(str) deletes the file named str from the filesystem.
• rename(str1, str2) : ?

rename(str1,str2) changes the str1 file's name to str2.
• repl(y, i) : x

repl(x,i) produces i concatenated instances of x.
• reverse(y) : y

reverse(y) produces a list or string that is in the opposite order of y.
• rmdir(str) : ?

rmdir(str) deletes the folder with the name str or fails if it cannot be deleted.
• serial(y) : int?

serial(y) produces an identifying integer for the structure, y. These numbers
are assigned when structures are allocated. Separate counters are used for each
structure type. The identifying integer provides the chronological order in which
instances of each type were allocated.

• set(y, …) : set

set() allocates a set. Parameters are the initial values of the new set, except if they
are lists. Here, the parameters' contents are the initial values of the new set.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

438 Unicon Essentials

• sort(y, i:1) : list

sort() allocates a list in which elements of y are sorted. When tables are sorted,
keys are sorted when i is one or three, and values are sorted when i is two or four.
When i is one or two, the return list's elements are two-element key-value sublists;
when i is three or four, the return list's elements alternate between keys and values.

• stat(f) : record?

stat(f) produces information about f. The argument may be a string filename
or an open file. Three portable fields are size in bytes, mode access permissions,
and the last modified time, mtime. The mode string resembles the long listing from
ls(1). stat(f) fails when there is no filename or path, f.

• stop(s, ...) :

stop(args) writes its arguments to &errout, followed by a newline, and then
quits the program.

• string(any) : str?

string(y) coerces y into a corresponding string. It fails when no conversion
is possible.

• system(x, f:&input, f:&output, f:&errout, s) : int

system(x) runs a program given as a string command line or a list of command-
line arguments. The program runs as a separate process. Optional arguments supply
the standard I/O files. The process's exit status is returned. If the fifth parameter is
"nowait", the function immediately returns with the new process ID instead of
waiting for it to complete.

• tab(i:0) : str?

tab(i) assigns the location, i, to &pos. It produces a substring between the
new and former locations. The &pos keyword is reset to its former position if the
function resumes.

• table(k,v, ..., x) : table

table(x) builds a table whose values default to x. table(k,v,…x) initializes a
table from alternating key and value arguments.

• trim(str, cs:' ', i:-1) : str

trim(str,cs,i) produces a substring of str with members of cset, cs, deleted
from the front (when i=1), the back (when i=-1), or both (when i=0). By default,
it removes trailing spaces from the end.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Selected keywords 439

• type(x) : str

type(x) produces the type of x as a string.
• upto(cs, str, i, j) : int*

upto(cs,str, i,j) generates the indices in str where a member of cset, cs,
may be found in str[i:j]. It fails otherwise.

• write(s|f, ...) : str|file

write(…) sends one or more string arguments appended by a newline to a file,
defaulting to &output. write() produces the final parameter.

• writes(s|f, ...) : str|file

writes(…) sends one or more string arguments to a file, defaulting to &output.
writes() produces the final parameter.

Selected keywords
Unicon has about 75 keywords. Keywords are global names beginning with an ampersand
with a predefined meaning. Many keywords are constant values that are built into the
language, while others are associated with built-in domain-specific language facilities such
as string scanning or graphics. This section lists the most essential keywords, many of
which appear in the examples in this book:

• &clock : str

The &clock read-only keyword produces the current time of day.
• &cset : cset

The &cset constant keyword denotes the cset containing everything.
• &date : str

The &date read-only keyword produces the current date.
• &digits : cset

The &digits constant keyword denotes the cset containing 0 through 9.
• &errout : file

The &errout constant keyword denotes the standard location for error output.
• &fail :

The &fail keyword is an expression that fails to produce a result.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

440 Unicon Essentials

• &features : str*

The &features read-only keyword produces what this Unicon runtime system
can do as strings. For example, if Unicon is built with graphics facilities, they
are summarized.

• &input : file

The &input constant keyword denotes the standard location for input.
• &lcase : cset

The &lcase constant keyword denotes the cset containing the letters a through z.
• &letters : cset

The &letters constant keyword denotes the cset containing the letters A through
Z and a through z.

• &now : int

The &now read-only keyword produces the seconds since 1/1/1970 GMT.
• &null : null

The &null constant keyword denotes a value that is not any other type. It is the
default value in many language constructs, for things that haven't been initialized
yet or have been omitted.

• &output : file

The &output constant keyword denotes the standard location for the regular output.
• &pos := int

The &pos keyword refers to the position within &subject where string analysis is
performed. It starts at 1 in each string scanning environment and its value is always
a valid index in &subject.

• &subject := str

The &subject keyword refers to the string under analysis in a string scanning
control structure.

• &ucase : cset

The &ucase constant keyword denotes the cset containing letters A through Z.
• &version : str

The &version constant keyword reports the Unicon version as a string.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessments

Chapter 1
1. It is much easier to generate C code than to generate machine code, but the

resulting code may be larger or slower than native code, and a transpiler depends
on an underlying compiler that may be a bit of a moving target.

2. Lexical, syntax, and semantic analysis, followed by intermediate and final
code generation.

3. Classic pain points include input/output being overly difficult, especially on new
kinds of hardware; concurrency; and making a program run across many different
operating systems and CPUs. One feature that languages have used to simplify
input/output has been to reduce the problem of communicating with new hardware
via a set of strings in human-readable formats, for example, to play music or read
touch input. Concurrency has been simplified in languages with built-in threads
and monitors. Portability has been simplified in languages that provide their own
high-level virtual machine implementation.

4. This depends on your application domain of interest, but here is one. The
language will input programs written in a Java-like syntax stored in files with
a .j0 extension, and generate target code in the form of HTML5+JavaScript that
runs on websites. The language will support JDBC and socket communications
via websockets, and 2D and 3D graphics by means of OpenGL. The language
will support an intuitive square-bracket syntax for accessing string elements and
HashMap keys. The language will support JSON syntax natively within the source
code as a HashMap literal.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

442 Assessments

Chapter 2
1. Reserved words contribute both to human readability and ease of parsing for the

language implementation, but they also sometimes preclude the most natural names
for the variables in a program, and too many reserved words can make it more
difficult to learn a programming language.

2. Integers in C or Java, for example, can be expressed as signed or unsigned, in
decimal, octal, hexadecimal, or maybe even binary format, for small, medium, large,
or super-sized words.

3. Several languages implement a semicolon insertion mechanism that makes
semicolons optional. Often, this involves using the newline character to replace the
role of the semicolon as a statement terminator or separator.

4. Although most Java programs do not make use of this capability, putting main() in
several (or all) classes might be very useful in unit testing and integration testing.

5. While it is feasible to provide pre-opened input/output facilities, they can involve
substantial resources and initialization costs that programs should not have to pay
for unless a given input/output facility is going to be used in a program. If you
design a language that specifically targets a domain where one of these forms of
input/output is guaranteed, it makes good sense to consider how to make access as
simple as possible.

Chapter 3
1. A first approximation of the regular expression is [0-3][0-9]"/"[01]

[0-9]"/"[0-9]{4}. While it is possible to write a regular expression that
matches only legal dates, such an expression is impractically long, especially
considering leap years. In such cases, it makes sense to use the regular expression
that provides the simplest close approximation of correctness, and then check
correctness in the semantic action or a subsequent semantic analysis phase.

2. yylex() returns an integer category for use in syntax analysis, while yytext is
a string that contains the symbols matched and yylval holds an object called a
token that contains all the lexical attributes of that lexeme.

3. When a regular expression does not return a value, the characters that it matched
are discarded and the yylex() function continues with a new match, starting with
the next character in the input.

4. Flex matches the longest string that it can; it breaks ties among multiple regular
expressions by selecting whichever one matches the longest string. When two
regular expressions match the same length in a given point, Flex selects whichever
regular expression occurs first in the lex specification file.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4 443

Chapter 4
1. A terminal symbol is not defined by a production rule in terms of other symbols.

This is the opposite of a non-terminal symbol, which can be replaced by or
constructed from the sequence of symbols on the right-hand side of a production
rule that defines that non-terminal symbol.

2. A shift removes the current symbol from the input and pushes it onto the parse
stack. A reduce pops zero or more symbols from the top of the parse stack that
match the right-hand side of a production rule and pushes the corresponding
non-terminal from the left side of the production rule in their place.

3. YACC gives you a chance to execute some semantic action code only when a reduce
operation takes place.

4. The integer categories returned from yylex() in the previous chapter are exactly
the sequence of terminal symbols that the parser sees and shifts on during parsing.
A successful parse shifts all the available input symbols and gradually reduces them
back to the starting non-terminal of the grammar.

Chapter 5
1. The yylex() lexical analyzer allocates a leaf and stores it in yylval for each

terminal symbol that it returns to yyparse().
2. When a production rule in the grammar is reduced, the semantic action code in

the parser allocates an internal node and initializes its children to refer to the
leaves and internal nodes corresponding to symbols on the right-hand side of that
production rule.

3. yyparse() maintains a value stack that grows and shrinks in lock-step with the
parse stack during parsing. Leaves and internal nodes are stored on the value stack
until they are inserted as children into a containing internal node.

4. A value stack is fully generic and can contain any type of value. In C, this is done
using a union type, which is type-unsafe. In Java, it is done using a parserVal
class that contains the tree nodes in a generic way. In Unicon and other dynamic
languages, no wrapping or unwrapping is needed.

Chapter 6
1. Symbol tables allow your semantic analysis and code generation phases to quickly

look up symbols declared far away in the syntax tree, following the scoping rules of
the language.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

444 Assessments

2. Synthesized attributes are computed using the information located immediately
at a node or using information obtained from its children. Inherited attributes are
computed using information from elsewhere in the tree, such as parent or sibling
nodes. Synthesized attributes are typically computed using a bottom-up post-order
traversal of the syntax tree, while inherited attributes are typically computed using
a pre-order traversal. Both kinds of attributes are stored in syntax tree nodes in
variables added to the node's data type.

3. The Jzero language calls for a global scope, a class scope, and one local scope
for each member function. The symbol tables are typically organized in a tree
structure corresponding to the scoping rules of the language, with child symbol
tables attached or associated with the corresponding symbol table entries in the
enclosing scope.

4. If Jzero allowed multiple classes in separate files, the symbol tables would need a
mechanism to be aware of said classes. In Java, this may entail reading other source
files at compile time while compiling a given file. This implies that classes must
be easily found without reference to their filename, hence Java's requirement that
classes be placed in files whose base name is the same as the class name.

Chapter 7
1. Type checking finds many errors that would prevent the program from running

correctly. But it also helps determine how much memory will be needed to hold
variables, and exactly what instructions will be needed to perform the various
operations in the program.

2. A structure type is needed to represent arbitrarily deep composite structures,
including recursive structures such as linked lists. Any given program only has
a finite number of such types, so it would be possible to enumerate them and
represent them using integer subscripts by placing them in a type table, but
references to structures provide a more direct representation.

3. If real compilers reported an OK line for every successful type check, non-toy
programs would emit thousands of such checks on every compile, making it
difficult to notice the occasional errors.

4. Picky type checkers may be a pain for programmers, but they help avoid unintended
type conversions that hide logic errors, and they also reduce the tendency of a
language to run slow due to silently and automatically converting types over and
over again at runtime.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8 445

Chapter 8
1. For any specific array access, the result of a subscript operator will be the array's

element type. With a struct or class access, the name of the (member) field within
the struct must be used to determine the resulting type, via a symbol table lookup or
something equivalent.

2. A function's return type can be stored in the function's symbol table and looked
up from anywhere within the function's body. One easy way to do this is to store
the return type under a symbol that is not a legal variable name, such as return. An
alternative would be to propagate the function's return type down into the function
body as an inherited attribute. This might be relatively straightforward, but it seems
like a waste of space in the parse tree nodes.

3. Generally, operators such as plus and minus have a fixed number of operands and a
fixed number of types for which they are defined; this lends itself to storing the type
checking rules in a table or a switch statement of some kind. Function calls have
to perform type checking over an arbitrary number of arguments that can be of an
arbitrary type. The function's parameters and return type are stored in its symbol
table entry. They are looked up and used to type check each site where that function
is called.

4. Besides member access, type checking occurs when composite types are created,
assigned, passed as parameters, and, in some languages, destroyed.

Chapter 11
1. Complex instruction sets take more time and logic to decode and might make the

implementation of the byte-code interpreter more difficult or less portable. On the
other hand, the closer the final code comes to resembling intermediate code, the
simpler the final code generation stage becomes.

2. Implementing bytecode addresses using hardware addresses provides the best
performance that you might hope for, but it may leave an implementation more
vulnerable to memory safety and security issues. A bytecode interpreter that
implements addresses using offsets within an array of bytes may find it has fewer
memory problems; performance may or may not be a problem.

3. Some bytecode interpreters may benefit from the ability to modify code at runtime.
For example, bytecode that was linked using byte-offset information may be
converted into code that uses pointers. Immutable code makes this type of self-
modifying behavior more difficult or impossible.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

446 Assessments

Chapter 12
1. Operands from multi-operand instructions are pushed onto the stack by push

instructions. The actual operation computes a result. The result is stored in memory
by a pop instruction.

2. A table that maps each of the labels to byte offset 120 is constructed. Uses of labels
encountered after their table entry exists are simply replaced by the value 120. Uses
of labels encountered before their table entry exists are forward references; the table
must contain a linked list of forward references that are backpatched when the label
is encountered.

3. On the Jzero bytecode stack machine, operands might already be on the stack and
PARM instructions might be redundant, allowing for substantial optimization. Also,
on the Jzero machine, the function call sequence calls for a reference/address to the
method being called to be pushed before the operands; this is a very different calling
convention from that used in the three-address intermediate code.

4. Static methods do not get invoked on an object instance. In the case of a static
method with no parameters, you may need to push the procedure address within
the CALL instruction since it is preceded by no PARM instructions.

5. If you determine that your three-address code for nested calls does in fact result in
nested PARM…CALL sequences, you will need a stack of PARM instructions to manage
it and will need to carefully search for the correct CALL instruction, skipping over
any nested CALL instructions whose number of PARM instructions were placed on
the stack after the PARM instruction for which you are searching. Have fun!

Chapter 13
1. There are many new concepts in native code. These include many kinds and sizes of

registers and main memory access modes. Choosing from many possible underlying
instruction sequences is also important.

2. Even with the runtime addition required, addresses that are stored as offsets
relative to the instruction pointer may be more compact and may take advantage
of instruction prefetching in the pipelined architecture, to provide faster access to
global variables than specifying them using absolute addresses.

3. Function call speed is important because modern software is often organized into
many frequently called tiny functions. The x64 architecture performs fast function
calls if functions take advantage of passing the first six parameters in registers.
Several aspects of x64 architecture seem to have the potential to reduce execution
speed, such as a need to save and restore large numbers of registers to memory
before and after a call.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 14 447

Chapter 14
1. Although libraries are great, they have downsides. Libraries tend to have more

version compatibility problems than the features that are built into the language.
Libraries are unable to provide a notation that is concise and readable as built-ins.
Lastly, libraries do not lend themselves to interactions with novel control structures
to support new application domains.

2. If your new computation only needs one or two parameters, appears many times
in typical applications in your domain, and computes a new value without side
effects, it is a good candidate to be made into an operator. An operator is limited to
two operands, or at the most, three; otherwise, it will not provide any readability
advantage over a function.

3. Ultimately, we have to read the books written by the Java language inventors to hear
their reasons, but one answer might be that Java designers wanted to use strings as
a class and decided classes would not be free to implement operators for the sake of
referential transparency.

Chapter 15
1. Control structures in very high-level and domain-specific languages had better be a

lot more powerful than just if statements and loops; otherwise, programmers would
be better off just coding in a mainstream language.

2. We provided some examples in which control structures provided defaults for
0parameters or ensured an open resource was closed afterward. Domain-specific
control structures can certainly provide additional high-level semantics, such as
performing domain-specific input/output or accessing specialty hardware in a way
that is difficult to accomplish within the context of a mainstream control flow.

3. The application domain is string analysis. Maybe some additional operators or
built-in functions would improve Unicon's expressive power for string analysis. Can
you think of any candidates you could add to the six-string analysis functions or the
two position-moving functions? You could easily run some statistics on common
Icon and/or Unicon applications and discover which combinations of tab() or
move() and the six-string analysis functions occurs most frequently in the code
and is a candidate for becoming an operator, besides tab(match()). I doubt that
tab(match()) is the most frequent. But beware: if you add too many primitives,
it makes the control structure more difficult to learn and master. Also, the ideas
from this control structure could be applied to the analysis of other sequential data,
such as arrays/lists of numeric or object instance values.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

448 Assessments

4. It is tempting to bundle as much additional semantics into a domain control
structure as possible so that you make the code more concise. However, if a good
number of wsection constructs are not based on a hierarchical 3D model
and would not make use of the built-in functionality of PushMatrix() and
PopMatrix(), bundling that into wsection might slow down the construct's
execution speed unnecessarily.

Chapter 16
1. You could modify the PostDescrip() macro to check for a null value before

checking whether a value is a qualifier or a pointer. Whether such a check pays for
itself depends on how costly the bitwise AND operator is, and the actual frequency
of different types of data encountered during these checks, which can be measured,
but may well vary depending on the application.

2. If each class type had its own heap region, instances would not need to track their
size, potentially saving memory costs for classes that have many small instances.
The freed garbage instances could be managed on a linked list and compared with a
mark-and-sweep collector, and instances might never need to be moved or pointers
updated, simplifying garbage collection. On the other hand, some program runs
might only use a very few of the various classes, and allocating a dedicated heap
region for such classes might be a waste.

3. While some time might be saved by not moving data during garbage collection,
over time, a substantial amount of memory might be lost to fragmentation. Small
chunks of free memory might go unused because later memory allocation requests,
were for larger amounts.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

450 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Supercharge Your Applications with GraalVM
A B Vijay Kumar
ISBN: 978-1-80056-490-9

• Gain a solid understanding of GraalVM and how it works under the hood

• Work with GraalVM's high performance optimizing compiler and see how it can be
used in both JIT (just-in-time) and AOT (ahead-of-time) modes

• Get to grips with the various optimizations that GraalVM performs at runtime

• Use advanced tools to analyze and diagnose performance issues in the code

• Compile, embed, run, and interoperate between languages using Truffle on GraalVM

• Build optimum microservices using popular frameworks such as Micronaut and
Quarkus to create cloud-native applications

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/supercharge-your-applications-with-graalvm/9781800564909

Other Books You May Enjoy 451

Learn LLVM 12

Kai Nacke

ISBN: 978-1-83921-350-2

• Configure, compile, and install the LLVM framework

• Understand how the LLVM source is organized

• Discover what you need to do to use LLVM in your own projects

• Explore how a compiler is structured, and implement a tiny compiler

• Generate LLVM IR for common source language constructs

• Set up an optimization pipeline and tailor it for your own needs

• Extend LLVM with transformation passes and clang tooling

• Add new machine instructions and a complete backend

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/learn-llvm-12/9781839213502

452

LLVM Techniques, Tips, and Best Practices Clang and Middle-End Libraries

Min-Yih Hsu

ISBN: 978-1-83882-495-2

• Find out how LLVM's build system works and how to reduce the building resource

• Get to grips with running custom testing with LLVM's LIT framework

• Build different types of plugins and extensions for Clang

• Customize Clang's toolchain and compiler flags

• Write LLVM passes for the new PassManager

• Discover how to inspect and modify LLVM IR

• Understand how to use LLVM's profile-guided optimizations (PGO) framework

• Create custom compiler sanitizers

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/llvm-techniques-tips-and-best-practices-clang-and-middle-end-libraries/9781838824952

453

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Build Your Own Programming Language, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800204809
https://packt.link/r/1800204809

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

Symbols
2D graphics

language support for 29-31
3D graphics

rendering, from display list 370
support, adding for 31, 32

 punctuation
categories, determining to

provide in language 18

A
action table 79
Advanced Micro Devices (AMD) 318
alphabet 38
alternation 39
ambiguity 75
American Standard Code for Information

Interchange (ASCII) 105, 342
antipatterns 364
arity 107
array 24, 194
array accesses 198

array operations
array variable declarations,

handling 194, 195
checking 194
types, checking during array

accesses 198, 199
types, checking during array

creation 195-198
assembler format

bytecode, printing 309-311
assembly language format

x64 code, writing 340, 341
assignment 146
assignment operator

generated code, modifying 388
associative array 422
atomic data types

about 23, 24
numeric 420
textual 420, 421
using 420

AT&T assembler syntax 318

B
backtracking 292, 365

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

456 Index

base class
defining, for type

representation 172, 173
subclassing, for complex types 173-175

base pointer register 277
Berkeley YACC extended for

Java (BYACC/J)
toy example 82-87
using 76

big inhale model 98
binary format

bytecode assembler, comparing with 308
bytecode, printing 311, 312

block region
about 391, 392
marking 395-397

branches
native code, generating 334, 335

build dependencies 104
built-in functions

adding, to bytecode interpreter 354
implementing, for Unicon 357
used, for specifying rendering

regions 370, 371
writing 353
writing, for native code 355
writing, issues 360, 361

built-in macro definitions 432
built-in string analysis functions 367
Byrd box model 405
bytecode

about 268, 269
generating, for branches 304, 305
generating, for conditional

branches 304, 305
generating, for expressions 301, 302
loading, into memory 277-279
printing, in assembler format 309-311

printing, in binary format 311, 312
versus intermediate code 270-272

bytecode addresses
intermediate code addresses,

mapping to 298, 299
bytecode assembler

comparing, with binary formats 308
bytecode generation

in icont 313-315
bytecode generator method

implementing 300, 301
bytecode instructions

class, adding for 297, 298
bytecode instruction set

building, for Jzero 273
bytecode interpreter

about 6
built-in functions, adding to 354
implementing 277
string concatenation, adding to 349-351

bytecode interpreter state
initializing 279-281

bytecode machine implementation
learning 406
references 409, 410

C
callback functions 31
cascading error messages 82
central processing unit (CPU) 318
character sets (csets) 420, 421
C language 26
class

about 421
adding, for bytecode

instructions 297, 298
defining, for symbol tables 150, 151

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 457

class instances 211
class member functions 174
closure-based inheritance 421
code

generating, for pointer
manipulation 333, 334

code optimization
about 406
expertise, acquiring 407
references 410

code refactoring 364
code smells 364
common syntax tree bugs

avoiding 129, 130
comparison operators 127
compiler

integrating, into programmer's
editor 251

type representation 172
compiler output

sending, to IDE 252, 253
composite operators 346
composite types 24, 25
concatenation 38
conditional branches

native code, generating 334, 335
condition expressions

label targets, generating for 236-240
conflicts

fixing, in yacc parsers 81
kinds, reduce/reduce 81
kinds, shift/reduce 81

constant values 19
context-free grammar 71
context-free grammar, components

non-terminal symbols 72
production rules 72
terminal symbols 72

context-free grammar rules
about 72
writing 72, 73

context-free grammar section 77, 78
control flow

about 21
specifying 21, 22

control structure
about 356
defining 364, 365
excessive parameters,

eliminating via 369
excessive redundant parameters,

reducing 365, 366
need for 364
used, for integrating built-ins 356

current input symbol 79, 100

D
data types

categories, deciding to support 23
for intermediate code 222-224

Debugging With Arbitrary Record
Formats (DWARF) 407

declarations
about 145
intermediate code 229
parameters 418
record or class name 419
syntax structure 418
variables 419

declared variables
type information, assigning to 176-178

dereferencing 146
derivation step 73
dictionary 25

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

458 Index

display list
3D graphics, rendering from 370
about 32

domain-specific languages (DSLs) 11
domain-specific types 25
dot

used, for printing syntax tree 132-138
d-word descriptor 190
dynamic memory allocation 382

E
EditableTextList component

extending, to support color 258
environment variables 430, 431
epsilon rule 90, 123
errors

highlighting, with parse results 259-261
executable linking format (ELF) 342, 407
expression grammar 92
expressions

about 22
code to execute, iterating 427, 428
code to execute, selecting 427, 428
evaluating 422
forming, with operators 423-426
functions, invoking 426, 427
generators 429
intermediate code, generating

for 233-236
methods, invoking 426, 427
procedures, invoking 426, 427

F
fail expressions 422
fields 25

file
about 422
reparsing, avoidance on every

change 253-257
final code generator 6
first-class data types 23
Flex

reference link 41
function call 199
function mini-reference 432-439
functions

about 360
invoking 426, 427

G
garbage collection

need for 382, 383
GDB 407
generators 292
global variables 419
GNU Compiler Collection's

(GCC) 100, 343
GNU make

using 104-107
GNU Multiple Precision (GMP) 360
GNU Project Debugger

reference link 430
GNU's Not Unix (GNU) 318
Go 64, 407
goal-directed bytecode 292
goal-directed evaluation 368
goto table 79
grammar rule

adding 374
graph 107

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 459

graphical levels of detail
varying, with nested rendering

regions 371, 372
graphical UI (GUI) 251
graphics context 365
graphics facilities

designing, in Unicon 28
groundwork establishment,

for symbol tables
about 144
declarations 144, 145
scopes 145
tree traversal, selecting for job 146, 147
variables, assigning 146
variables, dereferencing 146

GUI builders
designing 408
implementing 408
references 411, 412

H
HashMap 148
hash table 147
heap 382
heap allocation

code, generating for 385-387
heap memory regions

organizing 391, 392
heap pointer register 277

I
Icon

about 389, 405
strings, scanning 366, 367

icont
bytecode generation 313-315

iconx
examining 291

Icon yacc (iyacc)
toy example 82-87
using 76

identifiers (IDs) 18, 109
Idol 163
in-order traversal 147
instance accesses

about 214
types, checking at 214-217

instance creation
types, checking at 211-214

instance variable declarations
handling 210

instruction
decoding 283, 284
fetching 281, 282

instruction pointer
about 277, 281
advancing 281, 282

instruction set, intermediate code 228
integrated development

environment (IDE)
compiler output, sending to 252, 253
designing 408
examples, usage 249, 250
implementing 408
references 411, 412
source code, analyzing from

within 251, 252
intermediate code

about 219
addresses, mapping to x64

location 326-330
attributes, adding to tree 224, 225
benefits 220
converting, to Jzero bytecode 296, 297

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

460 Index

converting, to x64 code 325, 326
data types 222-224
declarations 229
generating 220
generating, for control flow 236
generating, for expressions 233-236
generating, for loops 240-242
generating, for method calls 242, 243
generating, for method calls

and returns 305, 307
generating, for pointer

manipulation 303, 304
generation, need for 220
instruction set 228
labels, generating 225
labels, handling 308
label targets, generating for condition

expressions 236-240
memory regions 221, 222
pseudo-instructions, handling 308
reviewing 244, 245
temporary variables, generating 226, 227
versus bytecode 270-272

intermediate code addresses
mapping, to bytecode addresses 298, 299

intermediate code generation
string concatenation, adding to 347-349

intermediate code generator 6
internal nodes

about 107, 184
building, from production rules 117
types, calculating at 184
types, checking at 184-189

interpreter implementation
learning 406
references 409, 410

intersection 38

isConst attribute
about 149
base case 156
recursion step 156
synthesizing 156-158

J
Java

about 8, 383
for compilers, writing 403

Java HashMap 148
Java Jzero code 57-62
Java Jzero parser code 96
Java SE specifications

reference link 88
Java support

adding 261-263
Java syntax error messages

detail, adding to 100
Java Virtual Machine (JVM) 6, 312
JFlex

using 41
Jzero

about 8, 145, 163, 384
bytecode instruction set, building 273
parser, writing for 88
reference counting, adding to 384
runtime system, writing 289, 290
scanner, writing for 51
syntax trees, forming 121-128

Jzero bytecode
intermediate code, converting

to 296, 297
Jzero bytecode file format

defining 273-276
Jzero flex specification 51-54

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 461

Jzero instruction
executing 284-288

Jzero interpreter
working on 288, 289

Jzero language definition
completing 27

Jzero lex specification 88
Jzero parser

running 97-99
Jzero program

running 290, 291
Jzero scanner

running 62, 63
Jzero yacc specification 88-93

K
key-value pairs 425
keywords

listing 439, 440
Kobayashi Maru 76

L
label

handling 338-340
handling, in intermediate code 308

LALR(1) 78
LALR parser

reference link 78
language

versus library 9, 10
leaves

about 107, 112
creating, from terminal symbols 112
determining for requirement 116
tokens, wrapping 112, 113
type, determining at 182-184

wrapping, for parser's value
stack 114-116

level of detail (LOD) 32
lexeme 37
lexer 85, 88
lexical analysis 71
lexical analyzer 6, 64, 251
lexical attributes 47
lexical category 37
lexical information

using, to colorize tokens 258
lex specification

header section 41
regular expressions section 42

library
about 9
versus language 9, 10

linking 342, 343
Lisp 406
lists 421
literal 18, 19
live memory

placing, into contiguous chunks 397-401
reclaiming 398-401

loading 342, 343
local variables 419
loops

intermediate code, generating
for 240-242

M
mark-and-sweep garbage

collector 389-391
mark live data

traversing 392-395
member 38

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

462 Index

memory regions, intermediate
code 221, 222

Merr
about 101
reference link 101
using, to generate better syntax

error messages 100, 101
Meta error 101
method calls

checking 199
intermediate code, generating

for 242, 243
parameters, calculating 200-203
return type, calculating 200-203
types, checking at method

call site 203-207
types, checking at return

statements 208, 209
method calls and returns

code, generating 335-337
method call sites 203
methods

about 199
invoking 426, 427

Moore's Law 382
mutual recursion 126

N
n-ary trees 107
native assembler

to object file 341, 342
native code

built-in functions, writing 355
generating 318
generating, for branches 334, 335

generating, for conditional branches 334
references 410

native runtime system
string concatenation, adding to 352, 353

nested rendering regions
used, for varying graphical

levels of detail 371, 372
nodes 107
nondeterministic polynomial-

complete (NP-complete) 321
non-terminal symbols 72
null strategy 322
numeric data types 420

O
object-oriented (OO) 262, 383
objects 211
operation code (opcode) 297, 319
operator associativity 21
operator precedence 38
operators

about 18, 346
implementing 346
implementing, for Unicon 357
implying, hardware support 347
string concatenation, adding to

bytecode interpreter 349-351
string concatenation, adding

to intermediate code
generation 347-349

string concatenation, adding to
native runtime system 352, 353

used, for forming basic
expressions 423-426

writing, in Unicon 358-360

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 463

P
package and class scopes

handling, in Unicon
about 163
name mangling 164

package handling, in Unicon
self, inserting as first parameter

in method calls 165, 166
self, inserting for member

variable references 165
pain points 364
parallel translations model 8
parser

about 251
writing, for Jzero 88

parse results
used, for highlighting errors 259-261

parser's value stack
leaves, wrapping for 114-116

parse state 79, 100
parse trees

about 110
versus syntax trees 110-112

parsing 73
Pascal 26
pointer manipulation

code, generating 333, 334
intermediate code, generating

for 303, 304
Portable Network Graphic (PNG) 106
position 366
post-order traversal 147, 178
precedence 19
pre-order traversal 146, 180
preprocessor

about 251, 431
built-in macro definitions 432

commands 431
procedures

invoking 426, 427
production rules

about 72
internal nodes, building from 117

program components
declaring 418, 419

program executions
debugging 407
monitoring 407

program executions debugging
references 411

program executions monitoring
references 411

programmer's editor
compiler, integrating into 251

programming constructs
rules, writing 74, 75

programming language
building 4
bytecode language implementation,

organizing 6, 7
example 8, 9
implementation types 5
requirement 11-13

programming language design
learning 404, 405
references 409

programming language zero (PL/0) 8
program structure 26, 27
Prolog 405
pseudo-instructions

handling 338-340
handling, in intermediate code 308

Python 389

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

464 Index

Q
qualifiers 394

R
recursion

about 74
reference link 74

redeclared variables
identifying 161

reduce 79
reduce/reduce conflicts 81
reference counting

about 384
adding, to Jzero 384
code, generating for heap

allocation 385-387
drawbacks 388, 389
generated code, modifying for

assignment operator 388
to objects 384

registers
assigning, to local region 323, 324
null strategy 322
using 321

regular expressions
about 38
examples 39, 40
rules 38, 39

relational operators 127
rendering region control structure

code, generating for wsection
control structure 377, 378

creating 373
grammar rule, adding 374
reserved word, adding 373

wsection, checking for semantic
errors 375, 376

rendering regions
about 369
specifying, with built-in

functions 370, 371
reserved words

about 18
types, synthesizing from 178, 179

return statements
type, checking at 208, 209

root 107
rules

writing, for programming
constructs 74, 75

Run Time Language (RTL) 293, 357
runtime system

about 342, 343
crafting 293
including 312
linking 312
loading 312
writing, for Jzero 289, 290

runtime type checks
performing, in Unicon 190

S
scanner

writing, for Jzero 51
scanning environment

about 367, 368
primitive operations 368

scope 145
selective rendering 370
semantic action 42, 77, 117
semantic analysis 143
semantic analyzer 6

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 465

semantic attributes
about 148
adding, to syntax trees 148-150
inherited attributes 148
synthesized attributes 148

semantic errors
reporting 162
wsection, checking 375, 376

semantics 17
semicolon insertion

running 64
semicolon insertion semantics, Go

reference link 64
shift 79
shift/reduce conflicts 81
signature 200
singleton class 44
SmallTalk 405
software crisis 382
software engineering 382
software engineering tasks

applicability 10
source code

analyzing, from within IDE 251
analyzing, within IDE 252

source code scanner
running 45-47
writing 42-45

special iterator syntax 356
special switch syntax 356
stab attribute 149
stack 382
stack machine operation

basics 276
stack pointer 277
star operator 39
statement grammar 90
statements 22

static allocation 382
static variables 419
string concatenation

adding, to bytecode interpreter 349-351
adding, to intermediate code

generation 347-349
adding, to native runtime

system 352, 353
string pool 351
string region 391, 392
strings

about 420
scanning, in Icon 366, 367
scanning, in Unicon 366, 367

string scanning 368, 369
structured programming 382
structured type accesses

checking 210
instance variable declarations,

handling 210
types, checking at instance

accesses 214-217
types, checking at instance

creation 211-214
structure types

about 210
classes 421
files 422
lists 421
other types 422
table 422
used, for organizing multiple values 421

subject 366
subject, position pair 367
Subversion 250
success expressions 422
suffix rule 105

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

466 Index

symbols
about 143
declaring, in header section 76, 77

symbol tables
about 143
classes, defining for 150, 151
creating 152-154
creating, for each scope 147
debugging 168
groundwork, establishing 144
issues 148
populating 154-156
populating, for each scope 147
semantic attributes, adding to

syntax trees 148-150
symbols, inserting into 161, 162
testing 166
traditional implementation 147
undeclared variables, checking 158

symtab class 150, 151
symtab_entry class 151
syntax

about 17
analyzing 71

syntax analyzer 6
syntax error messages

about 71
generating, with Merr 100, 101
improving 99

syntax error recovery 82
syntax tree

about 103, 111
annotating, with labels for

control flow 230-232
debugging 129
forming, for Jzero language 121-128
parse trees versus 110-112

printing, in text format 130-132
printing, with dot 132-138
testing 129

syntax tree node
type, determining at 181

syntax tree traversal 148
syntax tree type

defining 108

T
tab character 105
table 148, 422
table data type 25
terminal symbols

about 72
leaves, creating from 112

text format
syntax tree, printing 130-132

textual data types 420, 421
three-address code 222
token

about 37, 47
coloring, as drawn 258, 259
colorizing, with lexical information 258
constructing 48, 50
fields 37
wrapping, in leaves 112, 113

tree class
fields 108, 109

tree node factory method
using 119, 120

tree nodes
accessing, on value stack 117-119

trees 107
tree traversal

selecting, for job 146, 147

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 467

type
calculating, at internal nodes 184
checking, at internal nodes 185-189
determining at leaves 182-184
determining at syntax tree

node 181, 182
inheriting, into variables list 180, 181
synthesizing, from reserved

words 178, 179
type checking

about 171
at instance accesses 214-217
at instance creation 211-213
at method call site 203-207
at return statements 208, 209
during array accesses 198, 199
during array creation 195-198

type inference
performing, in Unicon 190, 191

typeinfo class
about 172
subclasses 173

type information
about 176
assigning, to declared variables 176-178
leaving, at runtime 292

type representation, in compiler
about 172
base class, defining 172, 173
base class, subclassing for

complex types 173-176

U
ucode 105, 269
UDB debugger

basics, learning 430
reference link 430

UFlex
using 41

undeclared variables
bodies of methods, identifying 158, 159
checking 158
variables uses, spotting within

method bodies 159-161
Unicon

2D graphics facilities 29-31
3D graphics, support adding for 31, 32
about 8, 64, 148, 386
built-in functions, implementing 357
class scopes, handling 163
data types, using 417
debugging 430
declarations, using 417
environmental issues 430
graphics facilities, designing 28
operators, implementing 357
operators, writing 358-360
package, handling 163
rendering regions 369
runtime type checks, performing 190
strings, scanning 366, 367
type inference, performing 190, 191

Unicon bytecode instructions
decoding 293
executing 293
fetching 293
goal-directed bytecode 292
type information, leaving at runtime 292

Unicon bytecode interpreter
iconx, examining 291

Unicon garbage collector
heap memory regions,

organizing 391, 392
live memory, placing into

contiguous chunks 397-401

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

468 Index

live memory, reclaiming 397
mark-and-sweep style 389-391
mark live data, traversing 392-395

Unicon IDE (ui) 249
Unicon Implementation Compendium

reference link 67
Unicon Jzero code 54-57, 93-95
Unicon programming language

requirement
about 13
high-level input, for modern

application 14
high-level output, for modern

application 14
Icon 13
large-scale programs, working

on big data 14
universally implementable

system interfaces 15
Unicon programs

running 416, 417
Unicon, running on Windows

reference link 417
Unicon syntax error messages

detail, adding to 99
Unified Modeling Language (UML) 112
uni/ide 249
union 38

V
value stack

about 113
of yacc, working with 113, 114
tree nodes, accessing 117-119

variables
about 146
assigning 146
dereferencing 146

Virtual Box 6
virtual machine (VM) 6, 308

W
Warren Abstract Machine (WAM) 406
while regular expression 39
words

categories, determining to
provide in language 18

wsection
checking, for semantic errors 375, 376

wsection control structure
code, generating 377, 378

X
x64 code

generating, for simple
expressions 331, 332

intermediate code, converting
to 325, 326

writing, in assembly language
format 340, 341

x64 code generator method
implementing 330, 331

x64 instruction set
about 318, 319
class, adding 319, 320
memory regions, mapping to

address modes 320
x64 output

generating 340
Xlib 365

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 469

Y
yacc parsers

about 78-81
conflicts, fixing 81

yet-another-compiler-compiler (yacc)
about 76
advanced yacc declarations 77
context-free grammar section 77, 78
symbols, declaring in header

section 76, 77
syntax error recovery 82
value stack, working with 113, 114

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
Programming Language Frontends
	Chapter 1: Why Build Another Programming Language?
	So, you want to write your own programming language…
	Types of programming language implementations
	Organizing a bytecode language implementation
	Languages used in the examples

	Language versus library – what's the difference?
	Applicability to other software engineering tasks
	Establishing the requirements for your language
	Case study – requirements that inspired the Unicon language
	Unicon requirement #1 – preserve what people love about Icon
	Unicon requirement #2 – support large-scale programs working on big data
	Unicon requirement #3 – high-level input/output for modern applications
	Unicon requirement #4 – provide universally implementable system interfaces

	Summary
	Questions

	Chapter 2: Programming Language Design
	Determining the kinds of words and punctuation to provide in your language
	Specifying the control flow
	Deciding on what kinds of data to support
	Atomic types
	Composite types
	Domain-specific types

	Overall program structure
	Completing the Jzero language definition
	Case study – designing graphics facilities in Unicon
	Language support for 2D graphics
	Adding support for 3D graphics

	Summary
	Questions

	Chapter 3: Scanning Source Code
	Technical requirements
	Lexemes, lexical categories, and tokens
	Regular expressions
	Regular expression rules
	Regular expression examples

	Using UFlex and JFlex
	Header section
	Regular expressions section
	Writing a simple source code scanner
	Running your scanner
	Tokens and lexical attributes
	Expanding our example to construct tokens

	Writing a scanner for Jzero
	The Jzero flex specification
	Unicon Jzero code
	Java Jzero code
	Running the Jzero scanner

	Regular expressions are not always enough
	Summary
	Questions

	Chapter 4: Parsing
	Technical requirements
	Analyzing syntax
	Understanding context-free grammars
	Writing context-free grammar rules
	Writing rules for programming constructs

	Using iyacc and BYACC/J
	Declaring symbols in the header section
	Putting together the yacc context-free grammar section
	Understanding yacc parsers
	Fixing conflicts in yacc parsers
	Syntax error recovery
	Putting together a toy example

	Writing a parser for Jzero
	The Jzero lex specification
	The Jzero yacc specification
	Unicon Jzero code
	Java Jzero parser code
	Running the Jzero parser

	Improving syntax error messages
	Adding detail to Unicon syntax error messages
	Adding detail to Java syntax error messages
	Using Merr to generate better syntax error messages

	Summary
	Questions

	Chapter 5: Syntax Trees
	Technical requirements
	Using GNU make
	Learning about trees
	Defining a syntax tree type
	Parse trees versus syntax trees

	Creating leaves from terminal symbols
	Wrapping tokens in leaves
	Working with YACC's value stack
	Wrapping leaves for the parser's value stack
	Determining which leaves you need

	Building internal nodes from production rules
	Accessing tree nodes on the value stack
	Using the tree node factory method

	Forming syntax trees for the Jzero language
	Debugging and testing your syntax tree
	Avoiding common syntax tree bugs
	Printing your tree in a text format
	Printing your tree using dot

	Summary
	Questions

	Section 2:
Syntax Tree Traversals
	Chapter 6: Symbol Tables
	Establishing the groundwork for symbol tables
	Declarations and scopes
	Assigning and dereferencing variables
	Choosing the right tree traversal for the job

	Creating and populating symbol tables for each scope
	Adding semantic attributes to syntax trees
	Defining classes for symbol tables and symbol table entries
	Creating symbol tables
	Populating symbol tables
	Synthesizing the isConst attribute

	Checking for undeclared variables
	Identifying the bodies of methods
	Spotting uses of variables within method bodies

	Finding redeclared variables
	Inserting symbols into the symbol table
	Reporting semantic errors

	Handling package and class scopes in Unicon
	Mangling names
	Inserting self for member variable references
	Inserting self as the first parameter in method calls

	Testing and debugging symbol tables
	Summary
	Questions

	Chapter 7: Checking Base Types
	Type representation in the compiler
	Defining a base class for representing types
	Subclassing the base class for complex types

	Assigning type information to declared variables
	Synthesizing types from reserved words
	Inheriting types into a list of variables

	Determining the type at each syntax tree node
	Determining the type at the leaves
	Calculating and checking the types at internal nodes

	Runtime type checks and type inference in Unicon
	Summary
	Questions

	Chapter 8: Checking Types on Arrays, Method Calls, and Structure Accesses
	Checking operations on array types
	Handling array variable declarations
	Checking types during array creation
	Checking types during array accesses

	Checking method calls
	Calculating the parameters and return type information
	Checking the types at each method call site
	Checking the type at return statements

	Checking structured type accesses
	Handling instance variable declarations
	Checking types at instance creation
	Checking types at instance accesses

	Summary
	Questions

	Chapter 9: Intermediate Code Generation
	Preparing to generate code
	Why generate intermediate code?
	Learning about the memory regions in the generated program
	Introducing data types for intermediate code
	Adding the intermediate code attributes to the tree
	Generating labels and temporary variables

	An intermediate code instruction set
	Instructions
	Declarations

	Annotating syntax trees with labels for control flow
	Generating code for expressions
	Generating code for control flow
	Generating label targets for condition expressions
	Generating code for loops
	Generating intermediate code for method calls
	Reviewing the generated intermediate code

	Summary

	Chapter 10: Syntax Coloring
in an IDE
	Downloading the example IDEs used in this chapter
	Integrating a compiler into a programmer's editor
	Analyzing source code from within the IDE
	Sending compiler output to the IDE

	Avoiding reparsing the entire file on every change
	Using lexical information to colorize tokens
	Extending the EditableTextList component to
support color
	Coloring individual tokens as they are drawn

	Highlighting errors using parse results
	Adding Java support
	Summary

	Section 3:
Code Generation and Runtime Systems
	Chapter 11: Bytecode Interpreters
	Understanding what bytecode is
	Comparing bytecode with intermediate code
	Building a bytecode instruction set for Jzero
	Defining the Jzero bytecode file format
	Understanding the basics of stack machine operation

	Implementing a bytecode interpreter
	Loading bytecode into memory
	Initializing the interpreter state
	Fetching instructions and advancing the instruction pointer
	Instruction decoding
	Executing instructions
	Starting up the Jzero interpreter

	Writing a runtime system for Jzero
	Running a Jzero program
	Examining iconx, the Unicon bytecode interpreter
	Understanding goal-directed bytecode
	Leaving type information in at runtime
	Fetching, decoding, and executing instructions
	Crafting the rest of the runtime system

	Summary
	Questions

	Chapter 12: Generating Bytecode
	Converting intermediate code to Jzero bytecode
	Adding a class for bytecode instructions
	Mapping intermediate code addresses to bytecode addresses
	Implementing the bytecode generator method
	Generating bytecode for simple expressions
	Generating code for pointer manipulation
	Generating bytecode for branches and conditional branches
	Generating code for method calls and returns
	Handling labels and other pseudo-instructions in intermediate code

	Comparing bytecode assembler with binary formats
	Printing bytecode in assembler format
	Printing bytecode in binary format

	Linking, loading, and including the runtime system
	Unicon example – bytecode generation
in icont
	Summary
	Questions

	Chapter 13: Native Code Generation
	Deciding whether to generate native code
	Introducing the x64 instruction set
	Adding a class for x64 instructions
	Mapping memory regions to x64 register-based address modes

	Using registers
	Starting from a null strategy
	Assigning registers to speed up the local region

	Converting intermediate code to x64 code
	Mapping intermediate code addresses to x64 locations
	Implementing the x64 code generator method
	Generating x64 code for simple expressions
	Generating code for pointer manipulation
	Generating native code for branches and conditional branches
	Generating code for method calls and returns
	Handling labels and pseudo-instructions

	Generating x64 output
	Writing the x64 code in assembly language format
	Going from native assembler to an object file
	Linking, loading, and including the runtime system

	Summary
	Questions

	Chapter 14: Implementing Operators and
Built-In Functions
	Implementing operators
	Asking whether operators imply hardware support and vice versa
	Adding String concatenation to intermediate code generation
	Adding String concatenation to the bytecode interpreter
	Adding String concatenation to the native runtime system

	Writing built-in functions
	Adding built-in functions to the bytecode interpreter
	Writing built-in functions for use with the native code implementation

	Integrating built-ins with control structures
	Developing operators and functions
for Unicon
	Writing operators in Unicon
	Developing Unicon's built-in functions

	Summary
	Questions

	Chapter 15: Domain Control Structures
	Knowing when you need a new control structure
	Defining what a control structure is
	Reducing excessive redundant parameters

	Scanning strings in Icon and Unicon
	Scanning environments and their primitive operations
	Eliminating excessive parameters via a control structure

	Rendering regions in Unicon
	Rendering 3D graphics from a display list
	Specifying rendering regions using built-in functions
	Varying graphical levels of detail using nested rendering regions
	Creating a rendering region control structure

	Summary
	Questions

	Chapter 16: Garbage Collection
	Appreciating the importance of garbage collection
	Counting references to objects
	Adding reference counting to Jzero
	Generating code for heap allocation
	Modifying the generated code for the assignment operator
	Considering the drawbacks and limitations of reference counting

	Marking live data and sweeping the rest
	Organizing heap memory regions
	Traversing the basis to mark live data
	Reclaiming live memory and placing it into contiguous chunks

	Summary
	Questions

	Chapter 17: Final Thoughts
	Reflecting on what was learned from writing this book
	Deciding where to go from here
	Studying programming language design
	Learning about implementing interpreters and bytecode machines
	Acquiring expertise in code optimization
	Monitoring and debugging program executions
	Designing and implementing IDEs and GUI builders

	Exploring references for further reading
	Studying programming language design
	Learning about implementing interpreters and bytecode machines
	Acquiring expertise in native code and code optimization
	Monitoring and debugging program executions
	Designing and implementing IDEs and GUI builders

	Summary

	Section 4:
Appendix
	Appendix: Unicon Essentials
	Running Unicon
	Using Unicon's declarations and data types
	Declaring different kinds of program components
	Using atomic data types
	Organizing multiple values using structure types

	Evaluating expressions
	Forming basic expressions using operators
	Invoking procedures, functions, and methods
	Iterating and selecting what and how to execute
	Generators

	Debugging and environmental issues
	Learning the basics of the UDB debugger
	Environment variables
	Preprocessor

	Function mini-reference
	Selected keywords

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

	Other Books You May Enjoy
	Index

