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Preface
After 60 years of high-level language development, programming is still too difficult. The 
demand for software of ever-increasing size and complexity has exploded due to hardware 
advances, while programming languages have improved far more slowly. Creating new 
languages for specific purposes is one antidote for this software crisis.

This book is about building new programming languages. The topic of programming 
language design is introduced, although the primary emphasis is on programming 
language implementation. Within this heavily studied subject, the novel aspect of this 
book is its fusing of traditional compiler-compiler tools (Flex and Byacc) with two higher-
level implementation languages. A very high-level language (Unicon) plows through a 
compiler's data structures and algorithms like butter, while a mainstream modern language 
(Java) shows how to implement the same code in a more typical production environment.

One thing I didn't really understand after my college compiler class is that the compiler 
is only one part of a programming language implementation. Higher-level languages, 
including most newer languages, may have a runtime system that dwarfs their compiler. 
For this reason, the second half of this book spends quality time on a variety of aspects of 
language runtime systems, ranging from bytecode interpreters to garbage collection.

Who this book is for
This book is for software developers interested in the idea of inventing their own language 
or developing a domain-specific language. Computer science students taking compiler 
construction courses will also find this book highly useful as a practical guide to language 
implementation to supplement more theoretical textbooks. Intermediate-level knowledge 
and experience working with a high-level language such as Java or C++ are required in 
order to get the most out of this book.
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What this book covers
Chapter 1, Why Build Another Programming Language?, discusses when to build 
a programming language, and when to instead design a function library or a class 
library. Many readers of this book will already know that they want to build their own 
programming language. Some should design a library instead.

Chapter 2, Programming Language Design, covers how to precisely define a programming 
language, which is important to know before trying to build a programming language. 
This includes the design of the lexical and syntax features of the language, as well as its 
semantics. Good language designs usually use as much familiar syntax as possible.

Chapter 3, Scanning Source Code, presents lexical analysis, including regular expression 
notation and the tools Ulex and JFlex. By the end, you will be opening source code files, 
reading them character by character, and reporting their contents as a stream of tokens 
consisting of the individual words, operators, and punctuation in the source file.

Chapter 4, Parsing, presents syntax analysis, including context-free grammars and the 
tools iyacc and byacc/j. You will learn how to debug problems in grammars that prevent 
parsing, and report syntax errors when they occur.

Chapter 5, Syntax Trees, covers syntax trees. The main by-product of the parsing process is 
the construction of a tree data structure that represents the source code's logical structure. 
The construction of tree nodes takes place in the semantic actions that execute on each 
grammar rule.

Chapter 6, Symbol Tables, shows you how to construct symbol tables, insert symbols into 
them, and use symbol tables to identify two kinds of semantic errors: undeclared and 
illegally redeclared variables. In order to understand variable references in executable 
code, each variable's scope and lifetime must be tracked. This is accomplished by means of 
table data structures that are auxiliary to the syntax tree.

Chapter 7, Checking Base Types, covers type checking, which is a major task required in 
most programming languages. Type checking can be performed at compile time or at 
runtime. This chapter covers the common case of static compile-time type checking for 
base types, also referred to as atomic or scalar types.

Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses, shows you 
how to perform type checks for the arrays, parameters, and return types of method calls 
in the Jzero subset of Java. The more difficult parts of type checking are when multiple or 
composite types are involved. This is the case when functions with multiple parameters' 
types must be checked, or when arrays, hash tables, class instances, or other composite 
types must be checked.
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Chapter 9, Intermediate Code Generation, shows you how to generate intermediate code 
by looking at examples for the Jzero language. Before generating code for execution, 
most compilers turn the syntax tree into a list of machine-independent intermediate 
code instructions. Key aspects of control flow, such as the generation of labels and goto 
instructions, are handled at this point.

Chapter 10, Syntax Coloring in an IDE, addresses the challenge of incorporating 
information from syntax analysis into an IDE in order to provide syntax coloring and 
visual feedback about syntax errors. A programming language requires more than just a 
compiler or interpreter - it requires an ecosystem of tools for developers. This ecosystem 
can include debuggers, online help, or an integrated development environment. The 
chapter is a Unicon example, drawn from the Unicon IDE.

Chapter 11, Bytecode Interpreters, covers designing the instruction set and the interpreter 
that executes bytecode. A new domain-specific language may include high-level domain 
programming features that are not supported directly by mainstream CPUs. The most 
practical way to generate code for many languages is to generate bytecode for an abstract 
machine whose instruction set directly supports the domain, and then execute programs 
by interpreting that instruction set.

Chapter 12, Generating Bytecode, continues with code generation, taking the intermediate 
code from Chapter 9, Intermediate Code Generation, and generating bytecode from it. 
Translation from intermediate code to bytecode is a matter of walking through a giant 
linked list, translating each intermediate code instruction into one or more bytecode 
instructions. Typically, this is a loop to traverse the linked list, with a different chunk of 
code for each intermediate code instruction.

Chapter 13, Native Code Generation, provides an overview of generating native code for 
x86_64. Some programming languages require native code to achieve their performance 
requirements. Native code generation is like bytecode generation, but more complex, 
involving register allocation and memory addressing modes.

Chapter 14, Implementing Operators and Built-In Functions, describes how to support 
very high-level and domain-specific language features by adding operators and functions 
that are built into the language. Very high-level and domain-specific language features 
are often best represented by operators and functions that are built into the language, 
rather than library functions. Adding built-ins may simplify your language, improve its 
performance, or enable side effects in your language semantics that would otherwise be 
difficult or impossible. The examples in this chapter are drawn from Unicon, as it is much 
higher level than Java and implements more complex semantics in its built-ins.
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Chapter 15, Domain Control Structures, covers when you need a new control structure, 
and provides example control structures that process text using string scanning, and 
render graphics regions. The generic code in previous chapters covered basic conditional 
and looping control structures, but domain-specific languages often have unique or 
customized semantics for which they introduce novel control structures. Adding new 
control structures is substantially more difficult than adding a new function or operator, 
but it is what makes domain-specific languages worth developing instead of just writing 
class libraries.

Chapter 16, Garbage Collection, presents a couple of methods with which you can 
implement garbage collection in your language. Memory management is one of the most 
important aspects of modern programming languages, and all the cool programming 
languages feature automatic memory management via garbage collection. This chapter 
provides a couple of options as to how you might implement garbage collection in your 
language, including reference counting, and mark-and-sweep garbage collection.

Chapter 17, Final Thoughts, reflects on the main topics presented in the book and gives 
you some food for thought. It considers what was learned from writing this book and 
gives you many suggestions for further reading.

Appendix, Unicon Essentials, describes enough of the Unicon programming language to 
understand those examples in this book that are in Unicon. Most examples are given side 
by side in Unicon and Java, but the Unicon versions are usually shorter and easier to read.

To get the most out of this book
In order to understand this book, you should be an intermediate-or-better programmer in 
Java or a similar language; a C programmer who knows an object-oriented language will 
be fine.
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Instructions for installing and using the tools are spread out a bit to reduce the startup 
effort, appearing in Chapter 3, Scanning Source Code, to Chapter 5, Syntax Trees. If you are 
technically gifted, you may be able to get all these tools to run on macOS, but it was not 
used or tested during the writing of this book.

Note
If you are using the digital version of this book, we advise you to type the 
code yourself or access the code from the book's GitHub repository (a link is 
available in the next section). Doing so will help you avoid any potential errors 
related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Build-Your-Own-Programming-Language. 
If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3njc15D.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800204805_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "The corresponding Java main() must be put in a class."
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A block of code is set as follows:

procedure main(argv)

   simple := simple()

   yyin := open(argv[1])

   while i := yylex() do

      write(yytext, ": ", i)

end 

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

MethodHeader: PUBLIC STATIC MethodReturnVal

                               MethodDeclarator {

  $$=j0.node("MethodHeader",1070,$3,$4);

  j0.calctype($$);

}; 

Any command-line input or output is written as follows:

$ jflex nnws.l

$ javac simple  .java yylex.java

Bold: Indicates a new term, an important word, or words that you see on screen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select 
System info from the Administration panel."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of  
your message.
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Errata: Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you have found a mistake in this book, we would be grateful if you 
would report this to us. Please visit www.packtpub.com/support/errata and fill in 
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

Share Your Thoughts
Once you've read Build Your Own Programming Language, we'd love to hear your 
thoughts! Please click here to go straight to the Amazon review page for this book and 
share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.
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In this section, you will create a basic language design and implement the frontend of a 
compiler for it, including a lexical analyzer and a parser that builds a syntax tree from an 
input source file.

This section comprises the following chapters:

• Chapter 1, Why Build Another Programming Language?

• Chapter 2, Programming Language Design

• Chapter 3, Scanning Source Code

• Chapter 4, Parsing

• Chapter 5, Syntax Trees

Section 1:  
Programming 

Language Frontends
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1
Why Build Another 

Programming 
Language?

This book will show you how to build your own programming language, but first, you 
should ask yourself, why would I want to do this? For a few of you, the answer will be 
simple: because it is so much fun. However, for the rest of us, it is a lot of work to build a 
programming language, and we need to be sure about it before we make a start. Do you 
have the patience and persistence that it takes?

This chapter points out a few good reasons for building your own programming language, 
as well as some situations where you don't have to build your contemplated language; 
after all, designing a class library for your application domain might be simpler and just 
as effective. However, libraries have their downsides, and sometimes only a new language 
will do.
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4     Why Build Another Programming Language?

After this chapter, the rest of this book will, having considered things carefully, take for 
granted that you have decided to build a language. In that case, you should determine 
some of the requirements for your language. But first, we're going to cover the following 
main topics in this chapter:

• Motivations for writing your own programming language

• The difference between programming languages and libraries

• The applicability of programming language tools to other software projects

• Establishing the requirements for your language

• A case study that discusses the requirements for the Unicon language

Let's start by looking at motivations.

So, you want to write your own programming 
language…
Sure, some programming language inventors are rock stars of computer science, such as 
Dennis Ritchie or Guido van Rossum! But becoming a rock star of computer science was 
easier back then. I heard the following report a long time ago from an attendee of the 
second History of Programming Languages Conference: The consensus was that the field 
of programming languages is dead. All the important languages have been invented already. 
This was proven wildly wrong a year or two later when Java hit the scene, and perhaps a 
dozen times since then when languages such as Go emerged. After a mere six decades, it 
would be unwise to claim our field is mature and that there's nothing new to invent that 
might make you famous.

Still, celebrity is a bad reason for building a programming language. The chances of 
acquiring fame or fortune from your programming language invention are slim. Curiosity 
and desire to know how things work are valid reasons, so long as you've got the time and 
inclination, but perhaps the best reasons for building your own programming language 
are need and necessity.

Some folks need to build a new language or a new implementation of an existing 
programming language to target a new processor or compete with a rival company. 
If that's not you, then perhaps you've looked at the best languages (and compilers or 
interpreters) available for some domain that you are developing programs for, and they 
are missing some key features for what you are doing, and those missing features are 
causing you pain. Every once in a blue moon, someone comes up with a whole new style 
of computing that a new programming paradigm requires a new language for.
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So, you want to write your own programming language…     5

While we are discussing your motivations for building a language, let's talk about the 
different kinds of languages, organization, and the examples this book will use to guide 
you. Each of these topics is worth looking at.

Types of programming language implementations
Whatever your reasons, before you build a programming language, you should pick the 
best tools and technologies you can find to do the job. In our case, this book will pick 
them for you. First, there is a question of the implementation language that you are 
building your language in. Programming language academics like to brag about writing 
their language in that language itself, but this is usually only a half-truth (or someone was 
being very impractical and showing off at the same time). There is also the question of just 
what kind of programming language implementation to build:

• A pure interpreter that executes source code itself

• A native compiler and a runtime system, such as in C

• A transpiler that translates your language into some other high-level language

• A bytecode compiler with an accompanying bytecode machine, such as Java

The first option is fun but usually too slow. The second option is the best, but usually, it's 
too labor-intensive; a good native compiler may take many person-years of effort.

While the third option is by far the easiest and probably the most fun, and I have used it 
before with success, if it isn't a prototype, then it is sort of cheating. Sure, the first version 
of C++ was a transpiler, but that gave way to compilers and not just because it was buggy. 
Strangely, generating high-level code seems to make your language even more dependent 
on the underlying language than the other options, and languages are moving targets. 
Good languages have died because their underlying dependencies disappeared or broke 
irreparably on them. It can be the death of a thousand small cuts.

This book chooses the fourth option: we will build a bytecode compiler with an 
accompanying bytecode machine because that is a sweet spot that gives the most flexibility 
while still offering decent performance. A chapter on native code compilation is included 
for those of you who require the fastest possible execution.
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6     Why Build Another Programming Language?

The notion of a bytecode machine is very old; it was made famous by UCSD's Pascal 
implementation and the classic SmallTalk-80 implementation, among others. It became 
ubiquitous to the point of entering lay English with the promulgation of Java's JVM. 
Bytecode machines are abstract processors interpreted by software; they are often called 
virtual machines (as in Java Virtual Machine), although I will not use that terminology 
because it is also used to refer to software tools that use real hardware instruction sets, 
such as IBM's classic platforms or more modern tools such as Virtual Box.

A bytecode machine is typically quite a bit higher level than a piece of hardware, so a 
bytecode implementation affords much flexibility. Let's have a quick look at what it will 
take to get there…

Organizing a bytecode language implementation
To a large extent, the organization of this book follows the classic organization of a 
bytecode compiler and its corresponding virtual machine. These components are defined 
here, followed by a diagram to summarize them:

• A lexical analyzer reads in source code characters and figures out how they are 
grouped into a sequence of words or tokens.

• A syntax analyzer reads in a sequence of tokens and determines whether that 
sequence is legal according to the grammar of the language. If the tokens are in a 
legal order, it produces a syntax tree.

• A semantic analyzer checks to ensure that all the names being used are legal for the 
operations in which they are being used. It checks their types to determine exactly 
what operations are being performed. All this checking makes the syntax tree heavy, 
laden with the extra information about where variables are declared and what their 
types are.

• An intermediate code generator figures out memory locations for all the variables 
and all the places where a program may abruptly change execution flow, such as loops 
and function calls. It adds them to the syntax tree and then walks this even fatter tree 
before building a list of machine-independent intermediate code instructions.

• A final code generator turns the list of intermediate code instructions into the 
actual bytecode in a file format that will be efficient to load and execute.

Independent from the steps of this bytecode virtual machine compiler, a bytecode 
interpreter is written to load and execute programs. It is a gigantic loop with a switch 
statement in it, but for exotic programming languages, the compiler might be no big deal 
and all the magic will happen in the bytecode interpreter. The whole organization can be 
summarized by the following diagram:
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Figure 1.1 – Phases and dataflow in a simple programming language

It will take a lot of code to illustrate how to build a bytecode machine implementation of a 
programming language. How that code is presented is important and will tell you what you 
need to know going in, and much of what you may learn from going through this book.
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8     Why Build Another Programming Language?

Languages used in the examples
This book provides code examples in two languages using a parallel translations model. 
The first language is Java, because that language is ubiquitous. Hopefully, you know it 
or C++ and will be able to read the examples with intermediate proficiency. The second 
example language is the author's own language, Unicon. While reading this book, you 
can judge for yourself which language is better suited to building your own programming 
language. As many examples as possible will be provided in both languages, and the 
examples in the two languages will be written as similarly as possible. Sometimes, this will 
be to the advantage of the lesser language.

The differences between Java and Unicon will be obvious, but they are somewhat lessened 
in importance by the compiler construction tools we will use. We will use modern 
descendants of the venerable Lex and YACC tools to generate our scanner and parser, 
and by sticking to tools for Java and Unicon that remain as compatible as possible with 
the original Lex and YACC, the frontends of our compiler will be nearly identical in both 
languages. Lex and YACC are declarative programming languages that solve some of our 
hard problems at an even higher level than Java or Unicon.

While we are using Java and Unicon as our implementation languages, we will need to 
talk about one more language: the example language we are building. It is a stand-in 
for whatever language you decide to build. Somewhat arbitrarily, I will introduce a 
language called Jzero for this purpose. Niklaus Wirth invented a toy language called PL/0 
(programming language zero; the name is a riff on the language name PL/1) that was 
used in compiler construction courses. Jzero will be a tiny subset of Java that serves a 
similar purpose. I looked pretty hard (that is, I googled Jzero and then Jzero compiler) to 
see whether someone had already posted a Jzero definition we could use, and did not spot 
one by that name, so we will just make it up as we go along.

The Java examples in this book will be tested using OpenJDK 14; maybe other versions 
of Java (such as OpenJDK 12 or Oracle Java JDK) will work the same, but maybe not. 
You can get OpenJDK from http://openjdk.java.net, or if you are on Linux, 
your operating system probably has an OpenJDK package that you can install. Additional 
programming language construction tools (Jflex and byacc/j) that are required for the 
Java examples will be introduced in subsequent chapters as they are used. The Java 
implementations we will support might be more constrained by which versions will run 
these language construction tools than anything else.
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The Unicon examples in this book work with Unicon version 13.2, which can be obtained 
from http://unicon.org. To install Unicon on Windows, you must download a 
.msi file and run the installer. To install on Linux, you usually do a git clone of the 
sources and type make. You will then want to add the unicon/bin directory to your PATH:

git clone git://git.code.sf.net/p/unicon/unicon

make

Having gone through our organization and the implementation that this book will use, 
perhaps we should take another look at when a programming language is called for, and 
when one can be avoided by developing a library instead.

Language versus library – what's the 
difference?
Don't make a programming language when a library will do the job. Libraries are by 
far the most common way to extend an existing programming language to perform a 
new task. A library is a set of functions or classes that can be used together to write 
applications for some hardware or software technology. Many languages, including C and 
Java, are designed almost completely to revolve around a rich set of libraries. The language 
itself is very simple and general, while much of what a developer must learn to develop 
applications consists of how to use the various libraries.

The following is what libraries can do:

• Introduce new data types (classes) and provide public functions (an API) for 
manipulating them

• Provide a layer of abstraction on top of a set of hardware or operating system calls

The following is what libraries cannot do:

• Introduce new control structures and syntax in support of new application domains

• Embed/support new semantics within the existing language runtime system
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10     Why Build Another Programming Language?

Libraries do some things badly, in that you might end up preferring to make a  
new language:

• Libraries often get larger and more complex than necessary.

• Libraries can have even steeper learning curves and poorer documentation  
than languages.

• Every so often, libraries have conflicts with other libraries, and version 
incompatibilities often break applications that use libraries.

There is a natural evolutionary path from the library to language. A reasonable approach 
to building a new language to support an application domain is to start by making or 
buying the best library available for that application domain. If the result does not meet 
your requirements in terms of supporting the domain and simplifying the task of writing 
programs for that domain, then you have a strong argument for a new language.

This book is about building your own language, not just building your own library. It turns 
out that learning about these tools and techniques is useful in other contexts.

Applicability to other software engineering 
tasks
The tools and technologies you learn about from building your own programming 
language can be applied to a range of other software engineering tasks. For example, you 
can sort almost any file or network input processing task into three categories:

• Reading XML data with an XML library

• Reading JSON data with a JSON library

• Reading anything else by writing code to parse it in its native format

The technologies in this book are useful in a wide array of software engineering tasks, 
which is where the third of these categories is encountered. Frequently structured data 
must be read in a custom file format.

For some of you, the experience of building your own programming language might be 
the single largest program you have written thus far. If you persist and finish it, it will 
teach you lots of practical software engineering skills, besides whatever you learn about 
compilers and interpreters and such. This will include working with large dynamic data 
structures, software testing, and debugging complex problems, among other skills.

That's enough of the inspirational motivation. Let's talk about what you should do first: 
figure out your requirements.
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Establishing the requirements for your 
language
After you are sure you need a new programming language for what you are doing, take 
a few minutes to establish the requirements. This is open-ended. It is you defining what 
success for your project will look like. Wise language inventors do not create a whole 
new syntax from scratch. Instead, they define it in terms of a set of modifications to 
make to a popular existing language. Many great programming languages (Lisp, Forth, 
SmallTalk, and many others) had their success significantly limited by the degree to which 
their syntax was unnecessarily different from mainstream languages. Still, your language 
requirements include what it will look like, and that includes syntax.

More importantly, you must define a set of control structures or semantics where your 
programming language needs to go beyond existing language(s). This will sometimes 
include special support for an application domain that is not well-served by existing 
languages and their libraries. Such domain-specific languages (DSLs) are common 
enough that whole books are focused on that topic. Our goal for this book will be to focus 
on the nuts and bolts of building the compiler and runtime system for such a language, 
independent of whatever domain you may be working in.

In a normal software engineering process, requirements analysis would start with 
brainstorming lists of functional and non-functional requirements. Functional 
requirements for a programming language involve the specifics of how the end user 
developer will interact with it. You might not anticipate all the command-line options for 
your language upfront, but you probably know whether interactivity is required, or whether 
a separate compile step is OK. The discussion of interpreters and compilers in the previous 
section, and this book's presentation of a compiler, might seem to make that choice for 
you, but Python is an example of a language that provides a fully interactive interface, even 
though the source code you type in it gets crunched into bytecode rather than interpreted.

Non-functional requirements are properties that your programming language must 
achieve that are not directly tied to the end user developer's interactions. They include 
things such as what operating system(s) it must run on, how fast execution must be, or 
how little space the programs written in your language must run within.

The non-functional requirement regarding how fast execution must be usually determines 
the answer as to whether you can target a software (bytecode) machine or need to target 
native code. Native code is not just faster; it is also considerably more difficult to generate, 
and it might make your language considerably less flexible in terms of runtime system 
features. You might choose to target bytecode first, and then work on a native code 
generator afterward.
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12     Why Build Another Programming Language?

The first language I learned to program on was a BASIC interpreter in which the 
programs had to run within 4 KB of RAM. BASIC at the time had a low memory 
footprint requirement. But even in modern times, it is not uncommon to find yourself 
on a platform where Java won't run by default! For example, on virtual machines with 
configured memory limits for user processes, you may have to learn some awkward 
command-line options to compile or run even simple Java programs.

Many requirements analysis processes also define a set of use cases and ask the developer 
to write descriptions for them. Inventing a programming language is different from your 
average software engineering project, but before you are finished, you may want to go 
there. A use case is a task that someone performs using a software application. When the 
software application is a programming language, if you are not careful, the use cases may 
be too general to be useful, such as write my application and run my program. While those 
two might not be very useful, you might want to think about whether your programming 
language implementation must support program development, debugging, separate 
compilation and linking, integration with external languages and libraries, and so forth. 
Most of those topics are beyond the scope of this book, but we will consider some of them.

Since this book will present the implementation of a language called Jzero, here are some 
requirements for it. Some of these requirements may appear arbitrary. If it is not clear to 
you where one of them came from, it either came from our source inspiration language 
(plzero) or previous experience teaching compiler construction:

• Jzero should be a strict subset of Java. All legal Jzero programs should be legal Java 
programs. This requirement allows us to check the behavior of our test programs 
when we are debugging our language implementation.

• Jzero should provide enough features to allow interesting computations. This includes 
if statements, while loops, and multiple functions, along with parameters.

• Jzero should support a few data types, including Booleans, integers, arrays, and the 
String type. It only needs to support a subset of their functionality, as described  
later. These are enough types to allow input and output of interesting values into  
a computation.

• Jzero should emit decent error messages, showing the filename and line number, 
including messages for attempts to use Java features not in Jzero. We will need 
reasonable error messages to debug the implementation.

• Jzero should run fast enough to be practical. This requirement is vague, but it implies 
that we won't be doing a pure interpreter. Pure interpreters are a very retro thing, 
evocative of the 1960s and 1970s.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Case study – requirements that inspired the Unicon language     13

• Jzero should be as simple as possible so that I can explain it. Sadly, this rules out 
generating native code or even JVM bytecode; we will provide our own simple 
bytecode machine.

Perhaps more requirements will emerge as we go along, but this is a start. Since we are 
constrained for time and space, perhaps this requirements list is more important for what 
it does not say, rather than for what it does say. By way of comparison, here are some of 
the requirements that led to the creation of the Unicon programming language.

Case study – requirements that inspired the 
Unicon language
This book will use the Unicon programming language, located at http://unicon.
org, for a running case study. We can start with reasonable questions such as, why 
build Unicon, and what are its requirements? To answer the first question, we will work 
backward from the second one.

Unicon exists because of an earlier programming language called Icon, from the 
University of Arizona (http://www.cs.arizona.edu/icon/). Icon has particularly 
good string and list processing abilities and is used for building many scripts and utilities, 
as well as both programming language and natural language processing projects. Icon's 
fantastic built-in data types, including structure types such as lists and (hash) tables, have 
influenced several languages, including Python and Unicon. Icon's signature research 
contribution is integrating goal-directed evaluation, including backtracking and automatic 
resumption of generators, into a familiar mainstream syntax. Unicon requirement #1 is to 
preserve these best bits of Icon.

Unicon requirement #1 – preserve what people love 
about Icon
One of the things that people love about Icon is its expression semantics, including its 
generators and goal-directed evaluation. Icon also provides a rich set of built-in functions 
and data types so that many or most programs can be understood directly from the source 
code. Unicon's goal would be 100% compatibility with Icon. In the end, we achieved more 
like 99% compatibility.
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14     Why Build Another Programming Language?

It is a bit of a leap from preserving the best bits to the immortality goal of ensuring old 
source code will run forever, but for Unicon, we include that in requirement #1. We have 
placed a harder requirement on backward compatibility than most modern languages. 
While C is very backward compatible, C++, Java, Python, and Perl are examples of 
languages that have wandered away, in some cases far away, from being compatible with 
the programs written in them back in their glory days. In the case of Unicon, perhaps 99% 
of Icon programs run unmodified as Unicon programs.

Icon was designed for maximum programmer productivity on small-sized projects; a 
typical Icon program is less than 1,000 lines of code, but Icon is very high level and you 
can do a lot of computing in a few hundred lines of code! Still, computers keep getting 
more capable and users want to write much larger programs than Icon was designed to 
handle. Unicon requirement #2 was to support programming in large-scale projects.

Unicon requirement #2 – support large-scale programs 
working on big data
For this reason, Unicon adds classes and packages to Icon, much like C++ adds them to 
C. Unicon also improved the bytecode object file format and made numerous scalability 
improvements to the compiler and runtime system. It also refines Icon's existing 
implementation to be more scalable in many specific items, such as adopting a much more 
sophisticated hash function.

Icon is designed for classic UNIX pipe-and-filter text processing of local files. Over time, 
more and more people were wanting to write with it and required more sophisticated 
forms of input/output, such as networking or graphics. Unicon requirement #3 is to 
support ubiquitous input/output capabilities at the same high level as the built-in types.

Unicon requirement #3 – high-level input/output for 
modern applications
Support for I/O is a moving target. At first, it included networking facilities and GDBM 
and ODBC database facilities to accompany Icon's 2D graphics. Then, it grew to include 
various popular internet protocols and 3D graphics. The definition of what input/output 
capabilities are ubiquitous continues to evolve and varies by platform, but touch input 
and gestures or shader programming capabilities are examples of things that have become 
rather ubiquitous by this point.
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Arguably, despite billionfold improvements in CPU speed and memory size, the biggest 
difference between programming in 1970 and programming in 2020 is that we expect 
modern applications to use a myriad of sophisticated forms of I/O: graphics, networking, 
databases, and so forth. Libraries can provide access to such I/O, but language-level 
support can make it easier and more intuitive.

Icon is pretty portable, having been run on everything from Amigas to Crays to IBM 
mainframes with EBCDIC character sets. Although the platforms have changed almost 
unbelievably over the years, Unicon still retains Icon's goal of maximum source code 
portability: code that gets written in Unicon should continue to run unmodified on all 
computing platforms that matter. This leads to Unicon requirement #4.

Unicon requirement #4 – provide universally 
implementable system interfaces
For a very long time, portability meant running on PCs, Macs, and UNIX workstations. 
But again, the set of computing platforms that matter is a moving target. These days, work 
is underway in Unicon to support Android and iOS, in case you count them as computing 
platforms. Whether they count might depend on whether they are open enough and used 
for general computing tasks, but they are certainly capable of being used as such.

All those juicy I/O facilities that were implemented for requirement #3 must be designed 
in such a way that they can be multi-platform portable across all major platforms.

Having given you some of Unicon's primary requirements, here is an answer to the 
question, why build Unicon at all? One answer is that after studying many languages, 
I concluded that Icon's generators and goal-directed evaluation (requirement #1) were 
features that I wanted when writing programs from now on. But after allowing me to add 
2D graphics to their language, Icon's inventors were no longer willing to consider further 
additions to meet requirements #2 and #3. Another answer is that there was a public 
demand for new capabilities, including volunteer partners and some financial support. 
Thus, Unicon was born.
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Summary
In this chapter, you learned the difference between inventing a programming language 
and inventing a library API to support whatever kinds of computing you want to do. 
Several different forms of programming language implementations were considered. This 
first chapter allowed you to think about functional and non-functional requirements for 
your own language. These requirements might be different from the example requirements 
discussed for the Java subset Jzero and the Unicon programming language, which were 
both introduced.

Requirements are important because they allow you to set goals and define what success 
will look like. In the case of a programming language implementation, the requirements 
include what things will look and feel like to the programmers that use your language, 
as well as what hardware and software platforms it must run on. The look and feel of a 
programming language includes answering both external questions regarding how the 
language implementation and the programs written in the language are invoked, as well as 
internal issues such as verbosity: how much the programmer must write to accomplish a 
given compute task.

You may be keen to get straight to the coding part. Although the classic build and fix 
mentality of novice programmers might work on scripts and short programs, for a piece 
of software as large as a programming language, we need a bit more planning first. After 
this chapter's coverage of the requirements, Chapter 2, Programming Language Design, 
will prepare you to construct a detailed plan for the implementation that will occupy our 
attention for the remainder of this book!

Questions
1. What are the pros and cons of writing a language transpiler that generates C code, 

instead of a traditional compiler that generates assembler or native machine code?
2. What are the major components or phases in a traditional compiler?
3. From your experience, what are some pain points where programming is more 

difficult than it should be? What new programming language feature(s) address 
these pain points?

4. Write a set of functional requirements for a new programming language.
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Programming 

Language Design
Before trying to build a programming language, you need to define it. This includes 
the design of the features of the language that are visible on its surface, including basic 
rules for forming words and punctuation. This also includes higher-level rules, called 
syntax, that govern the number and order of words and punctuation in larger chunks of 
programs, such as expressions, statements, functions, and programs. Language design also 
includes the underlying meaning, also known as semantics.

Programming language design often begins by writing example code to illustrate each of 
the important features of your language, as well as show the variations that are possible 
for each construct. Writing examples with a critical eye lets you find and fix many possible 
inconsistencies in your initial ideas. From these examples, you can then capture the 
general rules that each language construct follows. Write down sentences that describe 
your rules as you understand them from your examples. Note that there are two kinds 
of rules. Lexical rules govern what characters must be treated together, such as words 
or multi-character operators, such as ++. Syntax rules, on the other hand, are rules for 
combining multiple words or punctuation to form larger meaning; in natural language, 
they are often phrases, sentences, or paragraphs, while in a programming language, they 
might be expressions, statements, functions, or programs.
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Once you have come up with examples of everything that you want your language to do, 
as well as written down the lexical and syntax rules, write a language design document (or 
language specification) that you can refer to while coding your language. You can change 
things later, but it helps to have a plan to work from.

In this chapter, we're going to cover the following main topics:

• Determining the kinds of words and punctuation to provide in your language

• Specifying the control flow

• Deciding on what kinds of data to support

• Overall program structure

• Completing the Jzero language definition

• Case study – designing graphics facilities in Unicon

Let's start by identifying the basic elements that are allowed in source code in your language.

Determining the kinds of words and 
punctuation to provide in your language
Programming languages have several different categories of words and punctuation. In 
natural language, words are categorized into parts of speech – nouns, verbs, adjectives, and 
so on. The categories that correspond to parts of speech that you will have to invent for a 
programming language can be constructed by doing the following:

• Defining a set of reserved words or keywords

• Specifying characters in identifiers that name variables, functions, and constants

• Creating a format for literal constant values for built-in data types

• Defining single and multi-letter operators and punctuation marks
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You should write down precise descriptions of each of these categories as part of your 
language design document. In some cases, you might just make lists of particular words or 
punctuation to use, but in other cases, you will need patterns or some other way to convey 
what is and is not allowed in that category.

For reserved words, a list will do for now. For names of things, a precise description 
must include details such as what non-letters symbols are allowed in such names. For 
example, in Java, names must begin with a letter and can then include letters and digits; 
underscores are allowed and treated as letters. In other languages, hyphens are allowed 
within names, so the three symbols a, -, and b make up a valid name, not a subtraction of 
b from a. When a precise description fails, a complete set of examples will suffice.

Constant values, also called literals, are a surprising and major source of complexity 
in lexical analyzers. Attempting to precisely describe real numbers in Java comes out 
something like this: Java has two different kinds of real numbers – floats and doubles – but 
they look the same until you get to the end, where there is an optional f (or F) or d (or D) 
to distinguish floats from doubles. Before that, real numbers must have either a decimal 
point (.) or an exponent (e or E) part, or both. If there is a decimal point, there must be 
at least one digit on one side of the decimal or the other. If there is an exponent part, it 
must have an e (or E) followed by an optional minus sign and one or more digits. To make 
matters worse, Java has a weird hexadecimal real constant format that few programmers 
have heard of, consisting of 0x or 0X followed by digits in hex format, with an optional 
decimal and mandatory exponent part consisting of a p (or P), followed by digits in 
decimal format.

Describing operators and punctuation marks is usually almost as easy as listing the 
reserved words. One major difference is that operators usually have precedence rules 
that you will need to determine. For example, in numeric processing, the multiplication 
operator has almost always higher precedence than the addition operator, so x + y * z 
will multiply y * z before it adds x to the product of y and z. In most languages, there 
are at least 3-5 levels of precedence, and many popular mainstream languages have from 
13 to 20 levels of precedence that must be considered carefully. The following diagram 
shows the operator precedence table for Java. We will need it for Jzero:
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Figure 2.1 – Java operator precedence
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The preceding diagram shows that Java has a lot of operators organized into 10 levels of 
precedence, though I might be simplifying this a bit. In your language, you might get away 
with fewer, but you will have to address the issue of operator precedence if you want to 
build a real language.

A similar issue is operator associativity. In many languages, most operators associate 
from left to right, but a few strange ones associate from right to left. For example, the x 
+ y + z expression is equivalent to (x + y) + z, but the x = y = 0 expression is 
equivalent to x = (y = 0).

The principle of least surprise applies to operator precedence and associativity, as well 
as to what operators you put in your language in the first place. If you define arithmetic 
operators and give them strange precedence or associativity, people will reject your 
language out of hand. If you happen to be introducing new, possibly domain-specific data 
types in your language, you have way more freedom to define operator precedence and 
associativity for any new operators you introduce in your language.

Once you have worked out what the individual words and punctuation in your language 
should be, you can work your way up to larger constructs. This is the transition from 
lexical analysis to syntax, and syntax is important because it is the level at which bits of 
code become large enough to specify some computation to be performed. We will look 
at this in more detail in a later chapters, but at the design stage, you should at least think 
about how programmers will specify the control flow, declare data, and build entire 
programs. First, you must plan for the control flow.

Specifying the control flow
The control flow is how the program's execution proceeds from place to place within the 
source code. Most control flow constructs should be familiar to programmers who have 
been trained in mainstream programming languages. The innovations in your language 
design can then focus on the features that are novel or domain-specific and that motivate 
you to create a new language in the first place. Make these novel things as simple and 
as readable as possible. Envision how those new features ought to fit into the rest of the 
programming language.

Every language must have conditionals and loops, and almost all of them use if and 
while to start them. You could invent your own special syntax for an if expression, but 
unless you've got a good reason to, you would be shooting yourself in the foot. Here are 
some control flow constructs from Java that would certainly be in Jzero:

if (e) s;

if (e) s1 else s2;
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while (e) s;

for (…) s;

Here are some other less common Java control flow constructs that are not in Jzero. If they 
were to appear in a program, what should a Jzero compiler do with them?

switch (e) { … }

do s while (e);

By default, our compiler will print a cryptic message that doesn't explain things very well. 
In the next two chapters, we will make our compiler for Jzero print a nice error message 
about the Java features that it does not support.

Besides conditionals and loops, languages tend to have a syntax for calling subroutines 
and returning afterward. All these ubiquitous forms of control flow are abstractions of the 
underlying machine's capability to change the location where instructions are executing – 
the GOTO. If you invent a better notation for changing the location where instructions are 
executing, it will be a big deal.

The biggest controversy when designing many or most control flow constructs seems 
to be whether they are statements or whether you should make them expressions that 
produce a result that can be used in a surrounding expression. I have used languages 
where the result of if expressions are useful – C/C++/Java even have an operator for that: 
the i?t:e conditional operator. I have not found a language that did something very 
meaningful in making a while loop an expression; the best they did was have the while 
expressions produce a result, telling us whether the loop exited due to the test condition or 
due to an internal break.

If you are inventing a new language from scratch, one of the big questions for you is 
whether you can come up with some new control structure(s) to support your intended 
application domain. For example, suppose you want your language to provide special 
support for investing in the stock market. If you manage to come up with a better control 
structure for specifying conditions, constraints, or iterative operations within this domain, 
you might provide a competitive edge to those who are coding in your language for this 
domain. The program will have to run on an underlying von Neuman instruction set, so 
you will have to figure out how to map any such new control structure to instructions such 
as Boolean logic tests and GOTO instructions.

Whatever control flow constructs you decide to support, you will also need to design a 
set of data types and declarations that reflect the information that the programs in your 
language will manipulate.
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Deciding on what kinds of data to support
There are at least three categories of data types to consider in your language design. The 
first one is atomic, scalar primitive types, often called first-class data types. The second is 
composite or container types, which are capable of holding and organizing collections of 
values. The third (which may be variants of the first or second categories) is application 
domain-specific types. You should formulate a plan for each of these categories.

Atomic types
Atomic types are generally built-in and immutable. You don't modify existing values; you 
just use operators to create new values. Pretty much all languages have built-in types for 
numbers and a few additional types. A Boolean type, null type, and maybe a string type 
are common atomics, but there are others.

You decide just how complicated to get with atomics: how many different machine 
representations of integers and real numbers do you need? Some languages might provide 
a single type for all numbers, while others might provide 5 or 10 (or more) for integers 
and another few for real numbers. The more you add, the more flexibility and control you 
give to programmers that use your language, but the more difficult your implementation 
task will be later.

Similarly, it is impossible to design a single-string data type that is ideal for all applications 
that use strings a lot. But how many string types do you want to support? One extreme 
is having no string type at all, only a short integer type for holding characters. Such 
languages would consider strings to be part of composite types. Maybe strings are 
supported only by a library rather than in the language. Strings may be arrays or objects, 
but even such languages usually have some special lexical rules that allow string constant 
values to be given as double-quoted sequences of characters of some kind. Another 
extreme is that, given the importance of strings in many application domains, your 
language might want to support multiple string types for various character sets (ASCII, 
UTF8, and so on) with auxiliary types (character sets) and special types and control 
structures that support analyzing and constructing strings. Many popular languages treat 
strings as a special atomic type.

If you are especially clever, you may decide to support only a few built-in types for 
numbers and strings but make those types as flexible as possible. Popular existing 
programming languages vary widely regarding how many types are used for these classic 
built-in types, and for many other possible data types that you might include. Once you go 
beyond integers, real numbers, and strings, the only types that are universal are container 
types, which allow you to assemble data structures.
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Some of the things you must think about regarding atomic types include the following:

• How many values do they have?

• How are all those values encoded as literal constants in the source code?

• What kinds of operators or built-in functions use operands or parameters?

The first question will tell you how many bytes the type will require in memory. The 
second and third questions tie back to the question of determining the rules for words and 
punctuation in the language. The third question may also give insight into how much effort, 
in terms of the code generator or runtime system, will be required to implement support 
for the type in your language. Atomic types can be more work or less work to implement, 
but they are seldom as complicated as composite types. We will discuss these next.

Composite types
Composite types are types that help you allocate and access multiple values in a coordinated 
fashion. Languages vary enormously regarding the extent of their syntax support for 
composite types. Some only support arrays and structs and require programmers to build 
all their own data structures on top of these. Many provide all higher-level composite types 
via libraries. However, some higher-level languages provide numerous sophisticated data 
structures as built-ins with syntax support.

The most ubiquitous composite type is an array type, where multiple values are accessed 
using a numerically contiguous range of integer indices. You will probably have something 
like an array in your language. Your main design considerations should be how are the 
indices given, and how are changes in the size of the composite value handled? Most 
popular languages use indices that start at zero. Zero-based array indexes simplify index 
calculations and are easier for a language inventor to implement, but they are less intuitive 
for new programmers. Some languages use 1-based indices or allow the programmer to 
specify a range of indices starting at an arbitrary integer other than 0.

Regarding changes in size, some languages allow no changes in size at all in their array 
types, or they make the programmer jump through hoops to build new arrays of different 
sizes based on existing arrays. Other languages are engineered to make adding values to 
an array a cheap and easy operation. No one design is perfect for all applications, so you 
just pick one and live with the consequences, support multiple array-like data types for 
different purposes, or design a very clever type that accommodates a range of common 
uses well.
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Besides arrays, you should think about what other composite types you need. Almost all 
languages support a record, struct, or class type for grouping values of several different 
types together and accessing them by names called fields. The more elaborate you get with 
this, the more complex your language implementation will be. If you need proper object 
orientation in your language, be prepared to pay for it in time spent writing your compiler 
and runtime code. As a designer, the warning is to keep it simple, but as a programmer, 
I would not want to use a programming language that did not give me this capability in 
some form.

You might be able to think of several other composite types that are essential for your 
language, which is great, especially if they will be used a lot in the programs that you 
care about. I will talk about one more composite type that is of great practical value: the 
(hash) table data type, also commonly called a dictionary type. A table type is something 
halfway in-between an array and a record type. You index values using names, and these 
names are not fixed; new names can be computed while the program runs. Any modern 
language that omits this type is just leaving many of its prospective users out. For this 
reason, your language may want to include a table type. Composite types are general-
purpose "glue" that's used to assemble complex data structures, but you should also 
consider whether some special-purpose types, either atomic or composite, belong in your 
language to support applications that are difficult to write in general-purpose languages.

Domain-specific types
Besides whatever general-purpose atomic and composite types you decide to include, you 
should think about whether your programming language is aimed at a domain-specific 
niche; if so, what data types can your language include to support that domain? There is 
a smooth continuum between domain-specific languages that provide domain-specific 
types and control structures and general-purpose languages such as C++ and Java, which 
provide libraries for everything. Class libraries are powerful, but for some applications 
and domains, the library approach may be more complex and bug-prone than a language 
expressly designed to support the domain. For example, Java and C++ have string classes, 
but they do not support complex text-processing applications better than languages that 
have special-purpose types and control structures for string processing. Besides data types, 
your language design will need an idea of how programs are assembled and organized.
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Overall program structure
When looking at the overall program structure, we need to look at how entire programs 
are organized and put together, as well as the lightning rod question of how much nesting 
is in your language. It almost seems like an afterthought, but how and where will the 
source code in programs begin executing? In languages based on C, execution starts from 
a main() function, while in scripting languages, the source code is executed as it is read 
in, so there is no need for a main() function to start the ball rolling.

Program structure also raises the basic question of whether a whole program must be 
translated and run together, or if different packages, classes, or functions can be separately 
compiled and then linked and/or loaded together for a program to run. A language 
inventor can dodge a lot of implementation complexity by either building things into 
the language (if it is built-in, there is no need to figure out linking) requiring the whole 
program's source code to be presented at runtime, or by generating code for some well-
known standard execution format where someone else's linker and loader will do all the 
hard work.

Perhaps the biggest design question relating to the overall program structure is which 
constructs may be nested, and what limits on nesting are present, if any. This is perhaps 
best illustrated by an example. Once upon a time, two obscure languages were invented 
around 1970 that struggled for dominance: C and Pascal.

The C language was almost flat – a program was a set of functions linked together, and 
only relatively small (fine-grained) things could be nested: expressions, statements, and, 
reluctantly, struct definitions.

In contrast, the Pascal language was fabulously more nested and recursive. Almost 
everything could be nested. Notably, functions could be embedded within functions, 
arbitrarily deep. Although C and Pascal were roughly equivalent in power, and Pascal had 
a bit of a head start and was by far the most popular in university courses, C eventually 
won. Why? It turns out that nesting adds complexity without adding much value. Or 
maybe just because of American corporate power.

Because C won, many modern mainstream languages (I am thinking especially of 
C++ and Java here) started almost flat. But over time, they have added more and more 
nesting. Why is this? Either because hidden Pascal cultists lurk among us, or because it is 
natural for programming languages to add features over time until they are grossly over-
engineered. Niklaus Wirth saw this coming and advocated for a return to smallness and 
simplicity in software, but his pleas largely fell on deaf ears, and his languages support lots 
of nesting in them.
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What is the practical upshot for you, as a budding language designer? Don't over-engineer 
your language. Keep it as simple as possible. Don't nest things unless they need to be nested. 
And be prepared to pay (as a language implementor) every time you ignore this advice!

Now, it's time to draw a few language design examples from Jzero and Unicon. In the case 
of Jzero, since it is a subset of Java, the design is either a big nothing-burger (we use Java's 
design) or it is subtractive: what do we take away from Java to make Jzero, and what will 
that look and feel like? Despite early efforts to keep it small, Java is a large language. If, as 
part of our design, we make a list of everything that is in Java that is not in Jzero, it will be 
a long list.

Due to the constraints of page space and programming time, Jzero must be a pretty tiny 
subset of Java. However, ideally, any legal Java program that is input to Jzero would not 
fail embarrassingly – it would either compile and run correctly, or it would print a useful 
explanatory message explaining what Java feature(s) are being used that Jzero does not 
support. So that you can easily understand the rest of this book, as well as to help keep 
your expectations to a manageable size, the next section will cover additional details 
regarding what is in Jzero and what is not.

Completing the Jzero language definition
In the previous chapter, we listed the requirements for the language that will be 
implemented in this book, and the previous section elaborated on some of its design 
considerations. For reference purposes, this section will describe additional details 
regarding the Jzero language. If you find any discrepancies between this section and our 
Jzero compiler, then they are bugs. Programming language designers use more precise 
formal tools to define various aspects of a language; notations for describing lexical and 
syntax rules will be presented in the next two chapters. This section will describe the 
language in layman's terms.

A Jzero program consists of a single class in a single file. This class may consist of multiple 
methods and variables, but all of them are static. A Jzero program starts by executing a 
static method called main(), which is required. The kinds of statements that are allowed 
in Jzero are assignment statements, if statements, while statements, and invocation of void 
methods. The kinds of expressions that are allowed in a Jzero program include arithmetic, 
relational, and Boolean logic operators, as well as the invocation of non-void methods.

The Jzero language supports the boolean, char, int, and long atomic types. The int 
and long types are equivalent 64-bit integer data types.
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Jzero also supports arrays. Jzero supports the String, InputStream, and 
PrintStream class types as built-ins, along with subsets of their usual functionality. 
Jzero's String type supports the concatenation operator and the charAt(), equals(), 
length(), and substring(b,e) methods. The String class's valueOf() static 
method is also supported. Jzero's InputStream type supports read() and close() 
methods, while Jzero's PrintStream type supports the print(), println() and 
close() methods.

With that, we have defined the minimal features necessary to write basic computations in 
a toy language resembling Java. It is not intended to be a real language. However, you are 
encouraged to extend the Jzero language with additional features that we didn't have room 
for in this book, such as floating-point types and user-defined classes with non-static class 
variables. Now, let's see what we can observe about language design by looking at one 
aspect of the Unicon language.

Case study – designing graphics facilities in 
Unicon
Unicon's graphics are concrete and non-trivial in size. The design of Unicon's graphics 
facilities is a real-world example that illustrates some of the trade-offs in programming 
language design. Most programming languages don't feature built-in graphics (or any 
built-in input/output), instead relegating all input/output to libraries. The C language 
certainly performs input/output via libraries, and Unicon's graphics facilities are built on 
top of C language APIs. When it comes to libraries, many languages emulate the lower-
level language they are implemented in (such as C or Java) and attempt to provide an exact 
1:1 translation of the APIs of the implementation language. When higher-level languages 
are implemented on top of lower-level languages, this approach provides full access to the 
underlying API, at the cost of lowering the language level when using those facilities.

This wasn't an option for Unicon for several reasons. Unicon's graphics were added via 
two separate large additions to the language: first 2D, and then 3D. We will consider their 
design issues separately. The next section describes Unicon's 2D graphics facilities.
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Language support for 2D graphics
Unicon's 2D facility was the last major feature to be introduced to the Icon language 
before it was frozen. The design emphasized minimizing the surface changes to the 
language syntax because a large change would have been rejected. The only surface 
changes were the addition of several keywords denoting special values in the graphics 
system. Keywords in Unicon look like variable names with an ampersand preceding them.

Adding 19 keywords helps make the graphics facilities feel like they belong in a 
language known mainly for its string processing. You might be surprised to learn that 
graphics output is the easy part; all but one of the keywords are devoted to simplifying 
the processing of input mouse and keyboard events. 10 of them are integer constants 
denoting mouse and resize events and are there for convenience; the other eight hold 
key information about the last event received, and they are updated automatically for 
each event. Thanks to integer constants, no header file or imports are required to process 
mouse input. The final, and primary, keyword addition is &window. This keyword holds 
the default window; all graphics facility functions use this window unless another window 
value is supplied as an optional first argument.

It is interesting to compare Unicon's graphics with those provided by the underlying 
implementation. The underlying C APIs at the time were the X Window System's high-level 
toolkits (such as HP and Athena widgets) and its lower-level library, Xlib. The high-level 
toolkits were rejected during prototyping due to their unpredictable behavior and lack of 
portability at the time. The Xlib library met behavioral and portability requirements, but it 
was an enormous API calling for many new types (such as a separate struct type for each of 
dozens of different kinds of events) and had close to a thousand functions.

Learning Xlib and then programming graphics applications in C using Xlib is an 
enormously complex task, and the goal for Unicon was to provide a very high-level 
capability that was easy to use. The most direct influence in support of ease of use was 
BASIC. Using TRS-80 Extended Color BASIC graphics in the 1970s was far easier than 
any of the X Window C APIs. For a very high-level language such as Unicon, graphics 
facilities should be as easy as, and more capable than, those provided by Extended Color 
BASIC. The requirement to preserve what people love about Icon extends to trying to 
keep the graphics facility's design consistent with Icon's existing input and output features. 
Icon's input and output facilities include a file type and built-in functions and operators 
that perform input and output.
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For Unicon, a single new type ("window") was introduced as a subtype (and extension) of 
Icon's file data type. A window is an abstraction of perhaps a dozen different Xlib entities 
in the underlying C code, but it was a single, simple thing for a Unicon programmer to 
create and draw on. All the existing (text) input/output operations on files were made 
to work on windows, and then graphics output capabilities were added. The following 
diagram illustrates some of the underlying C library entities, all rolled into a Unicon 
window. The leaves of this structure vary somewhat by platform; platform differences are 
minimized or eliminated at the Unicon level:

Figure 2.2 – Internal structure of a Unicon window

Graphics output capabilities in Unicon are comprised of a set of 40 or so built-in functions 
for drawing different graphics primitives. The specifics of what gets output depends on 
many pieces of state, such as an in-memory copy of the window's contents, and abstractions 
of resources such as fonts and fill patterns. Instead of introducing new types for all these 
resources, an API for manipulating them using string values was produced. A window was 
eventually defined to be a pairing of two underlying entities: a canvas and a context.
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Control structures and program organization are major factors when designing language 
features. When writing graphics programs in C, a programmer is immediately taught 
(and forced) to give up the control flow to the library and organize their programs as a 
set of callback functions. These are functions that are called when various events occur. 
It was not an option to rewrite Unicon's bytecode interpreter around this organization; 
the bytecode interpreter needs to own the control flow of an instruction's fetch-decode-
execute cycle. A multi-threaded solution could be made to work, but threads posed 
unacceptable portability and performance challenges at the time. Instead, a single-
threaded, non-blocking solution was achieved by having the bytecode interpreter check 
for graphics events every so often, handle common tasks such as repainting the window's 
contents from the backing store and queuing others for later processing at the Unicon 
language level, when the application control flow requested it.

It would have been possible to propagate a C library for 2D graphics up to the Unicon 
language as-is, but it would not have met language-level and ease-of-use goals. Instead, 
a high-level data type was introduced, composed of multiple underlying pieces of the C 
library's state. The maintenance and updating operations that supported that high-level 
data type were embedded from multiple places within the language's runtime system, 
achieving an easy-to-use window type in a manner that would be impossible with a strict 
library approach.

After several years, 3D graphics hardware support became ubiquitous. The next section 
describes the design issues surrounding adding 3D graphics to the language.

Adding support for 3D graphics
2D graphics were added to Unicon as an extension of the file data type and supported 
normal file operations such as open, close, read, and write. The fact that there was an 
associated window in which individual pixels and other graphics primitives could be 
manipulated was a bonus. Similarly, 3D graphics were added as an extension of 2D graphics. 
The 3D windows support camera viewing primitives in a 3D space, but they support the 
same attributes (such as color and fonts) in the same notation as the 2D facilities, as well as 
provide the same input capabilities and additional graphics output primitives.
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Internally, an OpenGL implementation was required for portable 3D graphics. The 
OpenGL implementation changed things dramatically, and this was eventually propagated 
back to the source language level. Where a 2D window's canvas is a 2D array of pixels 
that can be read and written, a 3D window's canvas includes a display list that is redrawn 
each frame. OpenGL provided a display list, which was essentially a performance speedup 
that bundled primitives together for reuse. In Unicon, this display list can be manipulated 
directly to cause various animation effects, such as changing the size or position of 
individual primitives. The display list is central to both level of detail (LOD) management 
and 3D object selection. A control structure was added to mark and name sections of the 
display list, which can then be enabled/disabled or selected for user input. The underlying 
OpenGL library does not directly support 3D object selection, which is fundamental to 
providing users with the ability to interact with objects in a 3D scene.

This discussion of the design of Unicon's graphics facilities is necessarily incomplete due 
to space limitations. Initially, in the 2D facilities, the design was intentionally minimalist. 
Although the result was successful, you can argue that Unicon's graphics facilities should 
do more. It might be possible, for example, to invent new control structures that simplify 
graphics output operations even further. In any case, this design discussion should give 
you some idea of the issues that may come up when adding support for a new domain to 
an existing language.

Summary
This chapter presented some of the issues involved in language design. The skills you 
acquired from this chapter include those surrounding lexical design, including creating 
literal constant notations for data types; syntax design, including operators and control 
structures; and program organization, including deciding how and where to start execution.

The reason you should spend some time on your design is that you will need a good idea 
of what your programming language will do in order to implement it. If you defer design 
decisions until you must implement them, mistakes will cost you more at that time. 
Designing your language includes what data types it supports, ways to declare variables 
and introduce values, control structures, and the syntax needed to support code at different 
levels of granularity, from individual instructions to whole programs. Once you have 
finished or think you have finished, it is time to code, beginning with a function for reading 
the source code, which is the focus of the next chapter.
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Questions
1. Some programming languages do not have any reserved words at all, but most 

popular mainstream languages have several dozen. What are the advantages and 
disadvantages of adding more reserved words to a language?

2. The lexical rules for literal constants are often the largest and most complex  
rules in a programming language's lexical specification. Give examples of how  
even something as simple as integer literals can become quite a challenge to the 
language implementer.

3. Semicolons are often used to either terminate statements or separate adjacent 
statements from each other. In many popular mainstream languages, the single 
most common syntax error is a missing semicolon. Describe one or more ways that 
semicolons can be made unnecessary in a programming language's syntax.

4. Many programming languages define a program as starting from a function named 
main(). Java is unusual in that although execution starts from main(), every class 
can have its own main() procedure that is another way to start the program. Is 
there any value to this odd program organization?

5. Most languages feature automatic, pre-opened files for standard input, standard 
output, and error messages. On modern computers, however, these pre-opened 
files may have no meaningful mapping, and a program is more likely to utilize a 
pre-opened standard network, database, or graphics window resource. Explain 
whether this proposition is practical and why.
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3
Scanning Source 

Code
The first step in any programming language is reading the individual characters of input 
source code and figuring out which characters are grouped. In a natural language, this 
would include looking at the adjacent sequences of letters to identify the words. In a 
programming language, clusters of characters form variable names, reserved words, or 
sometimes operators or punctuation marks that are several characters long. This chapter 
will teach you how to use pattern matching to read in source code and identify the words 
and punctuation from the raw characters.

In this chapter, we're going to cover the following main topics:

• Lexemes, lexical categories, and tokens

• Regular expressions

• Using UFlex and JFlex

• Writing a scanner for Jzero

• Regular expressions are not always enough
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First, let's look at the several kinds of words that appear in program source code. Just as 
a natural language reader must distinguish the nouns from the verbs and adjectives to 
understand what a sentence means; your programming language must categorize each 
entity in the source code to determine how it is to be interpreted.

Technical requirements
This chapter will take you through some real technical content. To follow along, you will 
need to install some tools and download the examples. Let's start by taking a look at how 
to install UFlex and JFlex.

UFlex comes with Unicon and requires no separate installation. You can download 
this book's examples from our GitHub repository: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch3.

The Code in Action video for the chapter can be found here: https://bit.ly/3Fnn2c2

For JFlex, download jflex-1.8.2.tar.gz (or newer) from http://jflex.de/
download.html. You will have to decompress it from a .tar.gz file into a .tar file 
with gunzip, and then extract the files from the .tar file with tar. It will extract itself 
into a subdirectory under the directory where you run tar.

For example, you will see a subdirectory named jflex-1.8.2. On Windows, wherever 
you extract JFlex, if you do not move your JFlex installation into C:\JFLEX, you will need 
to set a JFLEX_HOME environment variable to where you install it, and you will also want 
to put your JFLEX\bin directory in your PATH. On Linux, you can add your JFLEX/
bin directory to your PATH or create a symbolic link to the JFLEX\bin\jflex script.

If you unpacked JFlex in /home/myname/jflex-1.8.2, you can make a symbolic 
link from /usr/bin/jflex to the untarred /home/myname/jflex-1.8.2/bin/
jflex script:

sudo ln -s /home/myname/jflex-1.8.2/bin/jflex /usr/bin/jflex

Previously, we mentioned that the examples in this book will be delivered in both Unicon 
and Java in a parallel translations model. There is not enough horizontal space on a 
printed page to show the code side by side. Instead, the Unicon example will be given 
first, followed by the corresponding Java code. Usually, the Unicon code constitutes good 
executable pseudocode that we can base the Java implementation on. Now that you have 
UFlex and/or JFlex installed and ready to go, it is time to discuss what we are doing. Then, 
we will talk about how to use UFlex and JFlex to generate the scanner code.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch3
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch3
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language/tree/master/ch3
https://bit.ly/3Fnn2c2
http://jflex.de/download.html
http://jflex.de/download.html


Lexemes, lexical categories, and tokens     37

Lexemes, lexical categories, and tokens
Programming languages read characters and group adjacent characters together when 
they are part of the same entity in the language. This can be a multi-character name or 
reserved word, a constant value, or an operator.

A lexeme is a string of adjacent characters that form a single entity. Most punctuation 
marks are lexemes unto themselves, in addition to separating what came before from 
what comes after them. In reasonable languages, whitespace characters such as spaces and 
tabs are ignored other than to separate lexemes. Almost all languages also have a way of 
including comments in the source code, and comments are typically treated the same as 
whitespace: they can be the boundary that separates two lexemes, but they are discarded 
and not considered further.

Each lexeme has a lexical category. In natural languages, lexical categories are called 
parts of speech. In a programming language implementation, the lexical category is 
generally represented by integer code and used in parsing. Variable names are a lexical 
category. Constants are at least one category; in most languages, there are several different 
categories for different constant data types. Most reserved words get their own category 
because they are allowed in distinct places in the syntax; in a lot of grammars, they will 
all be given their own category. Similarly, operators usually get at least one category 
per precedence level, and often, each operator will be given its own category. A typical 
programming language has between 50 and 100 different lexical categories, which is a lot 
more than the number of parts of speech attributed to most natural languages.

The bundle of information that a programming language gathers for each lexeme that 
it reads in the source code is called a token. Tokens are typically represented by a struct 
(pointer) or an object. The fields in the token include the following:

• The lexeme (a string)

• The category (an integer)

• Filename (a string)

• Line number (an integer)

• Possibly other data

When reading books about programming languages, you may find that some authors 
will use the word token in various ways to mean the string (lexeme), the integer category, 
or the struct/object (token), depending on context. With the vocabulary of lexemes, 
categories, and tokens in hand, it is time to look at the notation that is used to associate 
sets of lexemes with their corresponding categories. Patterns in this notation are called 
regular expressions.
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Regular expressions
Regular expressions are the most widely used notations for describing patterns of symbols 
within files. They are formulated from very simple rules that are easy to understand. The 
set of symbols over which a set of regular expressions are written is called the alphabet. 
For simplicity, in this book, the values 0-255 that can be held in one byte will be our 
alphabet for reading source code.

In some sets of input symbols, regular expressions are patterns that describe sets of strings 
using the members of the input symbol set and a few regular expression operators. Since 
they are a notation for sets, terminology such as member, union, or intersection applies 
when talking about the sets of strings that regular expressions can match. We will look at 
the rules for building regular expressions in this section, followed by examples.

Regular expression rules
This book will show only those operators that are needed for examples. This will be a 
practical superset of the regular expressions that theory books say are all that is needed; 
having a practical subset of the operators found in some tools' regular expression 
implementations is overkill. The rules of regular expressions we will consider are as 
follows. After the first rule, the rest are all about chaining regular expressions together into 
larger regular expressions that match more complicated patterns.

• Any symbol, such as a from the alphabet, is a regular expression that matches that 
symbol. The usual escape symbol, the backslash (\), turns an operator into a regular 
expression that just matches that operator symbol.

• Parentheses may be placed around a regular expression, (r), so that it matches  
the same thing as r. This is used to force operator precedence of the regular 
expression operators inside the parenthesis so that they're applied before operators 
outside the parentheses.

• When two regular expressions, re1 and re2, are adjacent, the resulting pattern, 
re1 re2, matches an instance of the left regular expression, followed by an 
instance of the right regular expression. This is called concatenation and it is  
sneaky because it is an invisible or implicit operator. An arbitrary string enclosed 
in double quotes is that sequence of characters, concatenated. Regular expression 
operators do not apply inside double quotes, and the usual escape sequences such as 
\n can be used.
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• Any two regular expressions, re1 and re2, can have a vertical bar placed between 
them to create a regular expression, re1 | re2, that matches a member of either 
re1 or re2. This is called alternation because it allows either alternative. Square 
brackets are used as a special shorthand for regular expressions composed of lots of 
vertical bar operators: [abcd] is equivalent to (a|b|c|d), either a or b or c or d. 
The shorthand also has shorthand: the [a-d] regular expression is an even shorter 
equivalent of (a|b|c|d), while the [^abcd] regular expression means any one 
character that is neither a nor b nor c nor d. A useful shorthand for the shorthand 
of the shorthand is the period character, or dot (.). The period, or dot character, ., 
is equivalent to [^\n] and matches any character except a newline.

• Any regular expression, re, can be followed by an asterisk, or star operator. The 
re* regular expression matches zero or more occurrences of the re regular 
expression. Similarly, any regular expression can be followed by a plus sign. The re+ 
regular expression matches one or more occurrences of that regular expression.

These rules do not say anything about whitespace in regular expressions, or comments. 
Programming languages have these things, but they are not part of regular expression 
notation! If you need a space character as part of the pattern you are matching, sure,  
you can escape one, or put it in double-quotes or square brackets. But if you see a 
comment or a space that is not escaped in a regular expression, it is a bug. If you want to 
insert whitespace into a regular expression just to make it more pretty, you can't. If you 
need to write a comment to explain what a regular expression is doing, you are probably 
making your regular expression too complicated; regular expressions are supposed to be 
self-documenting. If yours are not, you should stop what you are doing, go home, and 
rethink your life.

Despite my argument of keeping things simple, the five simple rules for forming regular 
expressions can be combined in various ways to form powerful patterns that match very 
interesting sets of strings. Before we dive into the lexical analyzer generator tools that use 
them, we'll look at some additional examples that will give you a feel for some of the kinds 
of patterns that can be described by regular expressions.

Regular expression examples
Regular expressions are easy once you have written a few of them. Here are some that 
could conceivably be used in your scanner:

• The while regular expression is a concatenation of five regular expressions, one for 
each letter: w, h, i, l, and e. It matches the "while" string.
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• The "+"|"-"|"*"|"/" regular expression matches a string of length one that is 
either a plus, a minus, an asterisk, or a slash. Double quotes are used to ensure that 
none of these punctuation marks are interpreted as a regular expression operator. 
You could specify the same pattern as [+\-*/]. Regular expression operators such 
as * do not apply inside square brackets, but characters such as minus or caret that 
have special interpretations inside square brackets must be escaped with a backslash.

• The [0-9]*\.[0-9]* regular expression matches zero or more digits, followed 
by a period, followed by zero or more digits. The dot is escaped because otherwise, it 
would mean any character other than a new line. Although this pattern looks like a 
good effort at matching real numbers, it allows the dot to be there without any digits 
on either side! You will have to do better than this. It is pretty cumbersome, I admit, 
to say ([0-9]+\.[0-9]*|[0-9]*\.[0-9]+), but at least you know that token 
will be a number of some kind.

• The "\""[^"]*"\"" regular expression matches a double quote character, 
followed by zero or more occurrences of any character that is not a double quote 
character, followed by a double quote character. This is a typical newbie attempt at 
a regular expression for string constants. One thing that is wrong with it is it allows 
newlines in the middle of the string, which most programming languages do not 
allow. Another problem with it is that it has no way to put a double quote character 
inside a string constant. Most programming languages will provide an escape 
mechanism that allows this. Once you start allowing escaped characters, you must 
be very specific about them. To just allow escaped double quotes, you might write 
"\""([^"\\\n]|\\")*"\"" . A more general version for a language such as 
C might look closer to "\""([^\\\n]|\\([abfnrtv\\?0]|[0-7][0-7]
[0-7]|x[0-9a-fA-F][0-9a-fA-F]))*"\"".

These examples show that regular expressions range from trivial to gigantic. Regular 
expressions are something of a write-only notation – much harder to read than to write. 
Sometimes, if you get your regular expression wrong, it may be easier to rewrite it from 
scratch than to try and debug it. Having looked at several examples of regular expressions, 
it is time to learn about the tools that use regular expression notation to generate scanners 
for reading source code, namely UFlex and JFlex.

Using UFlex and JFlex
Writing a scanner by hand is an interesting task for a programmer who wants to know 
exactly how everything works, but it will slow down the development of your language 
and make it more difficult to maintain the code afterward.
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Good news, everyone! A family of tools descended from UNIX, known as lex, takes regular 
expressions and generates a scanner function for you. Lex-compatible tools are available for 
most popular programming languages. For C/C++, the most widely used lex-compatible 
tool is Flex, hosted at https://github.com/westes/flex/. For Unicon, we use 
UFlex, while for Java, you can use JFlex. These tools may have various custom extensions, 
but to the extent that they are compatible with UNIX lex, we can present them together as 
one language for writing scanners. This book's examples have been crafted carefully so that 
we can even use the same lex input for both the Unicon and Java implementation!

The input files for lex are often called (lex) specifications. They use the.l extension 
and consist of several sections, separated by %%. This book refers generically to lex 
specifications, meaning the input file provided to either UFlex or JFlex, and for the most 
part, those files would also be valid input for C Flex.

There are required sections in a lex specification: a header section followed by a regular 
expression section, and an optional helper functions section. JFlex adds an imports 
section to the front because Java needs imports and needs separate places to insert code 
fragments before the class and inside the class definition. The lex header section and the 
regular expression section are the sections you need to know about right now. We will 
start by looking at the header section.

Header section
Most Flex tools have options you can enable in the header section; they vary, and we will 
only cover them if we use them. You can also include bits of host language code there, 
such as variable declarations. But the main purpose of the header section is to define 
named macros for patterns that may appear multiple times in the regular expression 
section. In lex, these named macros are on single lines of the following form:

name        regex

On a macro line, name is a sequence of letters, and then there are one or more spaces, and 
then there is a regular expression. Later, in the regular expressions section, these macros 
may be substituted into a regular expression by surrounding the name with curly braces; 
for example, {name}. The most common error newbies make with lex macros is to try 
and insert a comment after the regular expression, so don't do that. The lex language does 
not support comments on these lines and will try to interpret what you write as part of the 
regular expression.

In a kind of epic tragedy, JFlex breaks compatibility and requires an equals sign after the 
name, so its macros are like this:

name=regex
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This incompatibility with UNIX lex is egregious enough that we elected not to use 
macros in this book. While writing this book, we extended UFlex to handle macros 
with either syntax. If you add some macros, then the code here can be shortened a little. 
Without macros, your header section will be almost empty, so let's look at the next part of 
the lex specification: the regular expressions section.

Regular expressions section
The primary section of a lex specification is the regular expression section. Each regular 
expression is given on a line by itself, followed by some whitespace, followed by a semantic 
action consisting of some host language code (in our case, Unicon or Java) to execute when 
that regular expression has been matched. Note that although each regular expression rule 
starts on a new line, if the semantic action uses curly braces to enclose a statement block in 
the usual way, it can span multiple lines of source code and lex will not start looking for 
the next regular expression until it finds the matching closing curly brace.

The most common mistake that newbies make in the regular expression section is that 
they try to insert spaces or comments in the regular expression to improve readability. 
Don't do that; inserting a space into the middle of the regular expression cuts off the 
regular expression at the space, and the rest of the regular expression is interpreted as 
being host language code. You can get some cryptic error messages when you do this.

When you run UNIX lex, which is a C tool, it generates a function called yylex() that 
returns an integer category for each lexeme; global variables are set with other useful bits 
of information. An integer, called yychar, holds the category; a string, called yytext, 
holds the characters that were matched for the lexeme; and yyleng tells us how many 
characters were matched. Lex tools vary in their compatibility with this public interface 
and some tools will compute more for you automatically. For example, JFlex must 
generate the scanner within a class and provides yytext() using a member function. 
Programming languages certainly will want more details, such as what line number the 
token came from. Now, it is time to work our way through examples that get us there.

Writing a simple source code scanner
This example lets you check whether you can run UFlex and JFlex. It also helps to 
establish to what extent their use is similar or dissimilar. The example scanner just 
recognizes names and numbers and whitespace; the nnws.l filename will be used for the 
lex specification. The first thing you must do when reading source code is identify the 
category of each lexeme and return what category was found. This example returns a 1 for 
a name and a 2 for a number. Whitespace is discarded. Anything else is an error.
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The body of nnws.l is given in this section. This specification will work as input for both 
UFlex and JFlex. Since the semantic actions for UFlex are Unicon code and for JFlex they 
are Java code, this requires some restraint. A semantic action will be legal in both Java and 
Unicon, but only if you limit the semantic action code to their common syntax, such as 
method calls and return expressions. If you start inserting if statements or assignments 
and language-specific syntax, your lex specification will become specific to one host 
language, such as Unicon or Java.

Even this short example contains some ideas we will need later. The first two lines are for 
JFlex and are ignored by UFlex. The initial %% ends an empty JFlex import section. The 
second line is a JFlex option in the header section. By default, JFlex's yylex() function 
returns an object of the Yytoken type, and the %int option tells it to return type integer. 
The third line that starts with %% transitions us directly into the regular expressions section. 
On the fourth line, the [a-zA-Z]+ regular expression matches one or more lowercase 
or uppercase letters; it matches as many adjacent letters as it can find and returns a 1. As a 
byproduct, the characters matched will be stored in the yytext variable. On the fifth line, 
the [0-9]+ regular expression matches as many digits as it can find and returns a 2. On 
the sixth line, whitespace is matched by the [ \t\r\n]+ regular expression, and nothing 
is returned; the scanner keeps on going into the input file looking for its next lexeme by 
matching some other regular expression. You probably know the other whitespace besides 
the actual space character inside the square brackets, but \t is a tab character, \r is a 
carriage return character, and \n is a newline. The dot (.) on the seventh line will match 
any character other than the newline, so it will catch any source code that was not allowed 
in any of the previous patterns and report an error in that case. Errors are reported using a 
function named lexErr() for reporting lexical errors, in an object named simple. We 
will need additional error reporting functions for later phases of our compiler:

%%

%int

%%

[a-zA-Z]+  { return 1; }

[0-9]+     { return 2; }

[ \t\r\n]+ {  }

.          { simple.lexErr("unrecognized character"); }
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This specification will be called from a main() function, once for each word in the input. 
Each time it is called, it will match the current input against all the regular expressions 
(four, in this case) and select whichever regular expression will match the most characters 
at the current location. If two or more regular expressions tie for the longest match, 
whichever one appears first in the specification file wins.

Various lex tools can provide a default main() function, but for full control, you should 
write your own. Writing our own main() also allows the sample example to demonstrate 
how to call yylex() from a separate file. You will need to be able to do that to hook your 
scanner up to the parser in the next chapter.

The main() function varies by language. Unicon has a C++-style program organization 
model where main() starts outside of any object, while Java artificially places main() 
functions inside of classes, but otherwise, the Unicon and Java code have many similarities.

The Unicon implementation of the main() function can be put in any filename with 
Unicon's .icn extension; let's call this one simple.icn. This file contains a main() 
procedure and a singleton class called simple that is only needed because in nnws.l, 
we called a lexical error helper function in a Java-compatible way; that is, simple.
lexErr(). The main() procedure initializes the simple class by replacing the class 
constructor function with a single instance returned by that function. main() then opens 
the input file from a name given in the first command-line argument. The lexical analyzer 
is informed of what file to read by yyin. The code then calls yylex() in a loop until the 
scanner has finished:

procedure main(argv)

   simple := simple()

   yyin := open(argv[1])

   while i := yylex() do

      write(yytext, ": ", i)

end

class simple()

   method lexErr(s)

      stop(s, ": ", yytext)

   end

end
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The corresponding Java main() must be put in a class, and the filename must be the class 
name with a .java extension appended. We'll call this one simple.java. It opens a 
file by creating a FileReader object and attaches it to the lexical analyzer by passing 
the FileReader object as a parameter when it creates a lexical analyzer Yylex object. 
Because FileReader can fail, we have to declare that main() throws an exception. 
After constructing the Yylex object, main() then calls yylex() over and over again 
until the input is exhausted, as denoted by the Yylex.YYEOF sentinel value returned 
from yylex(). Despite being a bit longer, main() is doing the same thing as in the 
Unicon version. Compared to Unicon's simple class, the Java version has an extra 
proxy method, yytext(), so that other functions in the simple class or the rest of 
the compiler can access the most recent lexeme string without having a reference to the 
simple class's Yylex object:

import java.io.FileReader;

public class simple {

   static Yylex lex;

   public static void main(String argv[]) throws Exception{

      lex = new Yylex(new FileReader(argv[0]));

      int i;

      while ((i=lex.yylex()) != Yylex.YYEOF) 

         System.out.println("token "+ i +": "+ yytext());

   }

   public static String yytext() {

      return lex.yytext();

   }

   public static void lexErr(String s) {

      System.err.println(s + ": " + yytext());

      System.exit(1);

   }

}

This simple scanner is intended mainly to show you how the plumbing is all wired together. 
To ensure that that plumbing works as intended, we had better run it and find out.

Running your scanner
Let's run this example on the following (trivial) input file, named dorrie.in:

Dorrie is 1 fine puppy
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Before you can run this program, you must compile it. UFlex and JFlex write out Unicon 
and Java code that is called from the rest of your programming language, which is written 
either in Unicon or Java. If you are wondering what the compilation looks like, it is shown 
in the following diagram. In Unicon, the two source files are compiled and linked together 
into an executable file named simple. In Java, the two files are compiled into separate 
.class files; you run Java on the simple.class file where the main() method lives, 
and it loads others as needed:

Figure 3.1 – nnws.l used to build both the Unicon (left) and Java (right) programs

You can compile and run the program in either Unicon or Java by using the left column or 
the right column, as shown here:

uflex nnws.l                 jflex nnws.l

unicon simple nnws           javac simple.java Yylex.java

simple dorrie.in             java simple dorrie.in
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From either implementation, the output that you should see is the five lines shown here:

token 1: Dorrie

token 1: is

token 2: 1

token 1: fine

token 1: puppy

So far, all the example does is categorize groups of input characters using a regular 
expression to identify what kind of lexeme has been found. For the rest of the compiler to 
work, we will need more information about that lexeme, which we will store in a token.

Tokens and lexical attributes
In addition to identifying what integer category each lexeme belongs to, the rest of the 
programming language implementation (in our case, the compiler) requires the scanner 
to allocate an object that holds all the associated information about the lexeme. This object 
is called a token.

A token holds a group of named fields, called lexical attributes. The pieces of 
information that must be recorded about a given lexeme will depend on the language 
and implementation. Tokens will normally track the integer category, the string lexeme, 
and what line number the token came from. In a real compiler, tokens usually contain 
additional information about the lexeme. This is likely to include the filename and the 
column within the line where the lexeme occurred. For some tokens (literal constants), a 
compiler or interpreter may find it useful to store the actual binary value represented by 
that literal.

You might be wondering why you should store what column a token came from on a line. 
Given the lexeme text itself, you can usually see it easily enough by just looking at the line 
of source code, and most compilers only give line numbers when they report errors, not 
column numbers. In truth, not all programming language implementations store column 
numbers in their lexical attributes. The ones that do, however, can disambiguate errors 
when the same token appears more than once on a line: is the error at the first closing 
parenthesis, or the third? You can leave it to the human to guess, or you can record the 
extra details. Whether you elect to store column information or not might also depend 
on whether your lexical analyzer will be used in an IDE that jumps the cursor to the 
offending token when an error occurs. If that is among your requirements, you will need 
column information to ensure that that feature is correct.
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Expanding our example to construct tokens
A new token instance is allocated for each call to yylex(). In lex, tokens are transmitted 
to the parser by placing a pointer to the new instance in a global variable named yylval 
each time yylex() is called. As a transition toward a real programming language scanner, 
we will extend the example given previously so that it allocates these token objects. The 
most elegant and portable way of doing that is to insert a function called scan() into 
the semantic actions; the scan() function allocates the token objects and then (usually) 
returns its parameter, which is the integer category code in the previous example.

A lex specification to do this can be found in the nnws-tok.l file. Fascinatingly, in 
JFlex, a carriage return character is neither part of a newline, nor part of the anything-but-
newline dot operator, so if you use JFlex, you must account for carriage returns explicitly. 
In this example, they are optional in front of new lines:

%%

%int

%%

[a-zA-Z]+  { return simple2.scan(1); }

[0-9]+     { return simple2.scan(2); }

[ \t]+     {  }

\r?\n      { simple2.increment_lineno(); }

.          { simple2.lexErr("unrecognized character"); }

The revised main() procedure in Unicon is shown in the following simple2.icn.  
The scan() function depends on a global variable called yylineno that is set from 
main() and updated in yylex() every time a newline is matched. As per the previous 
example, the simple2 class is a singleton class that is here so that the lex specification 
can work unchanged for both Unicon and Java. The representation of tokens is defined 
by a Unicon record type, which is like a struct in C/C++ or a class with no methods. 
So far, it only contains the integer category code, the lexeme string itself, and what line 
number it came from:

global yylineno, yylval

procedure main(argv)

   simple2 := simple2()

   yyin := open(argv[1]) | stop("usage: simple2 filename")

   yylineno := 1

   while i := yylex() do

      write(yytext, " (line ",yylval.lineno, "): ", i)

end
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class simple2()

   method lexErr(s)

      stop(s, ": line ", yylineno, ": ", yytext) 

   end

   method scan(cat)

      yylval := token(cat, yytext, yylineno)

      return cat

   end

   method increment_yylineno()

      yylineno +:= 1

   end

end

record token(cat, text, lineno)

The corresponding Java main() in the simple2.java file looks like this:

import java.io.FileReader;

public class simple2 {

   static Yylex lex;

   public static int yylineno;

   public static token yylval;

   public static void main(String argv[]) throws Exception {

      lex = new Yylex(new FileReader(argv[0]));

      yylineno = 1;

      int i;

      while ((i=lex.yylex()) != Yylex.YYEOF) 

         System.out.println("token "+ i + 
                  " (line " +yylval.lineno + "): "+ yytext());

   }

   public static String yytext() {

      return lex.yytext();

   }

   public static void lexErr(String s) {

      System.err.println(s + ": line " + yylineno + 
           ": " + yytext());

      System.exit(1);
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   }

   public static int scan(int cat) {

      yylval = new token(cat, yytext, yylineno);

      return cat;

   }

   public static void increment_lineno() {

      yylineno++;

   }

}

Another Java file is required for the simple2 example. The token.java file contains 
our representation of the class token. This class token will be expanded in the next section:

public class token {

   public int cat;

   public String text;

   public int lineno;

   public token(int c, String s, int l) {

      cat = c; text = s; lineno = l;

   }

}

The following input file, dorrie2.in, has been extended to multiple lines and has a period 
added so that we can see the line number when unrecognized characters are reported:

Dorrie

is 1

fine puppy.

You can run the program in either Unicon or Java, as follows:

uflex nnws-tok.l              jflex nnws-tok.l

                              javac token.java

unicon simple2 nnws-tok       javac simple2.java Yylex.java

simple2 dorrie2.in            java simple2 dorrie2.in

From either implementation, the output that you should see is as follows:

token 1 (line 1): Dorrie

token 1 (line 2): is
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token 2 (line 2): 1

token 1 (line 3): fine

token 1 (line 3): puppy

unrecognized character: line 3: .

The output from this example includes line numbers, and the input file includes an 
unrecognized character so that we can see that the error message includes a line number 
as well.

Writing a scanner for Jzero
In this section, we will build a scanner for Jzero, our subset of the Java language. This 
extends the previous simple2 example to a realistic language size and adds column 
information, as well as additional lexical attributes for literal constants. The big change is 
the introduction of many regular expressions for more complex patterns than what we've 
seen previously. The entire Java language is recognized, but a significant fraction of Java 
categories cause executions to terminate with an error so that our grammar in the next 
chapter, along with the rest of the compiler, does not have to consider them.

The Jzero flex specification
Compared to the previous examples, a real programming language lex specification will 
have a lot more, and more complicated, regular expressions. The following file is called 
javalex.l and it will be presented in several pieces.

The beginning of javalex.l includes the header and the regular expressions for 
comments and whitespace. These regular expressions match and consume characters from 
the source code without returning integer code for them; they are invisible to the rest of 
the compiler. As a subset of Java, Jzero includes both C-style comments bounded by /* 
and */ as well as C++-style comments starting with // that go to the end of the line. The 
regular expression for C comments is a whopper; if your language has any patterns like 
this, it is very easy and common to get them wrong. It reads as: start with a /* and then 
eat chunks of non-asterisk characters or asterisks so long as they don't end the comment, 
and finish when you find asterisk(s) followed by a slash:

%%

%int

%%

"/*"([^*]|"*"+[^/*])*"*"+"/" { j0.comment(); }

"//".*\r?\n                  { j0.comment(); }
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[ \t\r\f]+                   { j0.whitespace(); }

\n                           { j0.newline(); }

The next part of javalex.l contains the reserved words, whose regular expressions 
are trivial. Since these words are common in semantic actions, use double quotes to 
emphasize that they are just the characters themselves and that you are not accidentally 
looking at some semantic action code. Many of the integer category codes here are 
accessed from the parser class, specified in a separate file. In the remaining chapters of 
this book, the integer codes are specified by the parser. The lexical analyzer must use the 
parser's codes for these two phases of the compiler to communicate successfully.

You might be wondering, why use separate integer category code for each reserved word? 
You only need separate category code for each unique role in the syntax. Reserved words 
that can be used in the same places may use the same integer category code. If you do so, 
your grammar will be shorter, but you defer their differences to later in semantic analysis 
and make your grammar a bit vague. An example of this would be true and false; 
they are syntactically the same kind of thing, so they are both returned as a BOOLLIT. We 
might find other reserved words, such as the names of types, where we could assign them 
the same category code. This is a design decision to consider. When in doubt, play it safe 
and be un-vague by giving each reserved word its own integer:

"break"                { return j0.scan(parser.BREAK); }

"double"               { return j0.scan(parser.DOUBLE); } 

"else"                 { return j0.scan(parser.ELSE); }

"false"                { return j0.scan(parser.BOOLLIT); }

"for"                  { return j0.scan(parser.FOR); }

"if"                   { return j0.scan(parser.IF); }

"int"                  { return j0.scan(parser.INT); }

"null"                 { return j0.scan(parser.NULLVAL); }

"return"               { return j0.scan(parser.RETURN); }

"string"               { return j0.scan(parser.STRING); }

"true"                 { return j0.scan(parser.BOOLLIT); }

"bool"                 { return j0.scan(parser.BOOL); }

"void"                 { return j0.scan(parser.VOID); }

"while"                { return j0.scan(parser.WHILE); }

"class"                { return j0.scan(parser.CLASS); }

"static"               { return j0.scan(parser.STATIC); }

"public"               { return j0.scan(parser.PUBLIC); }
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The third part of javalex.l consists of the operators and punctuation marks. The 
regular expressions are quoted to indicate that they just mean the characters themselves. 
As with reserved words, in some cases, operators can be lumped together into a shared 
category code if they appear to have the same operator precedence and associativity. This 
would make the grammar shorter at the expense of vagueness. Another wrinkle compared 
to reserved words is that many operators and punctuation marks are only a single 
character. In that case, it is shorter and more readable to use their ASCII code as their 
integer category code, so we do. The j0.ord(s) function provides a way to do this that 
runs on both Unicon and Java. For multi-character operators, a parser constant is defined, 
as per the reserved words:

"("              { return j0.scan(j0.ord("(")); }

")"              { return j0.scan(j0.ord(")")); }

"["              { return j0.scan(j0.ord("[")); }

"]"              { return j0.scan(j0.ord("]")); }

"{"              { return j0.scan(j0.ord("{")); }

"}"              { return j0.scan(j0.ord("}")); }

";"              { return j0.scan(j0.ord(";")); }

":"              { return j0.scan(j0.ord(":")); }

"!"              { return j0.scan(j0.ord("!")); }

"*"              { return j0.scan(j0.ord("*")); }

"/"              { return j0.scan(j0.ord("/")); }

"%"              { return j0.scan(j0.ord("%")); }

"+"              { return j0.scan(j0.ord("+")); }

"-"              { return j0.scan(j0.ord("-")); }

"<"              { return j0.scan(j0.ord("<")); }

"<="             { return j0.scan(parser.LESSTHANOREQUAL);}

">"              { return j0.scan(j0.ord(">")); }

">="             { return j0.scan(parser.GREATERTHANOREQUAL);}

"=="             { return j0.scan(parser.ISEQUALTO); }

"!="             { return j0.scan(parser.NOTEQUALTO); }

"&&"             { return j0.scan(parser.LOGICALAND); }

"||"             { return j0.scan(parser.LOGICALOR); }

"="              { return j0.scan(j0.ord("=")); }

"+="             { return j0.scan(parser.INCREMENT); }

"-="             { return j0.scan(parser.DECREMENT); }
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","              { return j0.scan(j0.ord(",")); }

"."              { return j0.scan(j0.ord(".")); }

The fourth and final part of javalex.l contains the more difficult regular expressions. 
The rule for variable names, whose integer category is IDENTIFIER, must come after 
all the reserved words. The reserved words regular expressions are overriding the far 
more general identifier regular expression, but only because lex's semantics breaks ties by 
picking whichever regular expression came first in the lex specification.

If it will make your code more readable, you can have as many regular expressions as 
you want, all returning the same integer category. This example uses multiple regular 
expressions for real numbers, which are numbers with either a decimal point, a scientific 
notation, or both. After the last regular expression, a catch-all pattern is used to generate a 
lexical error if some binary or other strange characters appear in the source code:

[a-zA-Z_][a-zA-Z0-9_]*{ return j0.scan(parser.IDENTIFIER);}

[0-9]+                { return j0.scan(parser.INTLIT); }

[0-9]+"."[0-9]*([eE][+-]?[0-9]+)? { return j0.scan 
                                    (parser.DOUBLELIT);}

[0-9]*"."[0-9]+([eE][+-]?[0-9]+)? { return j0.scan 
                                    (parser.DOUBLELIT);}

 ([0-9]+)([eE][+-]?([0-9]+))  {return j0.scan 
                                    (parser.DOUBLELIT);}

\"([^\"])|(\\.)*\"    { return j0.scan(parser.STRINGLIT); }

.                   { j0.lexErr("unrecognized character");}

Although it has been split into four portions for presentation here, the javalex.l file is 
not very long, at around 58 lines of code. Since it works for both Unicon and Java, this is  
a lot of bang for your coding buck. The supporting Unicon and Java code is non-trivial, 
but we are letting lex (UFlex and JFlex) do most of the work here.

Unicon Jzero code
The Unicon implementation of the Jzero scanner resides in a file named j0.icn. Unicon 
has a pre-processor and normally introduces defined symbolic constants via $include 
files. To use the same lex specification in Unicon and Java, this Unicon scanner creates a 
parser object whose fields, such as parser.WHILE, contain the integer category code:

global yylineno, yycolno, yylval

procedure main(argv)

   j0 := j0()
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   parser := parser(257,258,259,260,261,262,263,264,265,

                    266, 267,268,269,270,273,274,275,276,

                    277,278,280,298,300,301,302,303,304,

                    306,307,256)

   yyin := open(argv[1]) | stop("usage: simple2 filename")

   yylineno := yycolno := 1

   while i := yylex() do

      write(yytext, ":",yylval.lineno, " ", i)

end

The second part of j0.icn consists of the j0 class. Compared to the simple2 class 
from the previous simple2.icn example, additional methods have been added for the 
semantic actions to call when various whitespace and comments are encountered. This 
allows the current column number to be calculated in a global variable called yycolno:

class j0()

   method lexErr(s)

      stop(s, ": ", yytext) 

   end

   method scan(cat)

      yylval := token(cat, yytext, yylineno, yycolno)

      yycolno +:= *yytext

      return cat

   end

   method whitespace()

      yycolno +:= *yytext

   end

   method newline()

      yylineno +:= 1; yycolno := 1

   end

   method comment()

      yytext ? {

         while tab(find("\n")+1) do newline()

         yycolno +:= *tab(0)

      }

   end

   method ord(s)
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      return proc("ord",0)(s[1])

   end

end

In the third part of j0.icn, the token type has been promoted from a record to a class, 
because now it has added complexity in its constructor, as well as a method for processing 
string escape characters and computing the binary representation of string literal constants. 
In Unicon, the constructor code comes at the end of the method in an initially section.

The deEscape() method discards leading and trailing double-quote characters and then 
processes a string literal character by character using Unicon string scanning. Inside the 
string scanning control structure, s ? { … }, the s string is examined from left to right. 
The move(1) function grabs the next character from the string and moves the scanning 
position forward by 1. A longer explanation of string scanning is given in Appendix, 
Unicon Essentials.

In the deEscape() method, normal characters are copied over from the sin input 
string to the sout output string. Escape characters cause one or more characters that 
follow to be interpreted differently. The Jzero subset only handles tabs and newlines; Java 
has a lot more escapes that you could add. There is something funny about turning a 
backslash followed by a "t" into a tab character, but every compiler that you have ever 
used has had to do something like that:

class token(cat, text, lineno, colno, ival, dval, sval)

   method deEscape(sin)

      local sout := ""

      sin := sin[2:-1]

      sin ? {

         while c := move(1) do {

            if c == "\\" then {

               if not (c := move(1)) then

                  j0.lexErr("malformed string literal")

               else case c of {

                  "t":{ sout ||:= "\t" }

                  "n":{ sout ||:= "\n" }

                  }

               }

            }

            else sout ||:= c

         }
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      }

      return sout

   end

initially

   case cat of {

     parser.INTLIT:    { ival := integer(text) }

     parser.DOUBLELIT: { dval := real(text) }

     parser.STRINGLIT: { sval := deEscape(text) }

   }

end

record parser(BREAK,PUBLIC,DOUBLE,ELSE,FOR,IF,INT,RETURN,VOID,

            WHILE,IDENTIFIER,CLASSNAME,CLASS,STATIC,STRING,

            BOOL,INTLIT,DOUBLELIT,STRINGLIT,BOOLLIT,

            NULLVAL,LESSTHANOREQUAL,GREATERTHANOREQUAL,

            ISEQUALTO,NOTEQUALTO,LOGICALAND,LOGICALOR,

            INCREMENT,DECREMENT,YYERRCODE)

The singleton parser record here looks rather silly to an experienced Unicon programmer 
who can just $define all these token category names and skip introducing a parser  
type. If you are a Unicon programmer, just remind yourself that this is for Java 
compatibility – specifically byacc/j compatibility.

Java Jzero code
The Java implementation of the Jzero scanner includes a main class in the j0.java file. 
It resembles the simple2.java example. It is presented here in four parts. The first part 
includes the main() function and should be familiar, other than the addition of extra 
variables such as the yycolno variable, which tracks the current column number:

import java.io.FileReader;

public class j0 {

   static Yylex lex;

   public static int yylineno, yycolno;

   public static token yylval;

   public static void main(String argv[]) throws Exception {

      lex = new Yylex(new FileReader(argv[0]));

      yylineno = yycolno = 1;

      int i;
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      while ((i=lex.yylex()) != Yylex.YYEOF) {

         System.out.println("token " + i + ": " + 

             yytext());

      }

   }

The j0 class continues with several helper functions that were seen in previous examples:

   public static String yytext() {

      return lex.yytext();

   }

   public static void lexErr(String s) {

      System.err.println(s + ": line " + yylineno + 
                             ": " + yytext());

      System.exit(1);

   }

   public static int scan(int cat) {

      last_token = yylval =

         new token(cat, yytext(), yylineno, yycolno);

      yycolno += yytext().length();

      return cat;

   }

   public static void whitespace() {

      yycolno += yytext().length();

      }

   public short ord(String s) {return(short)(s.charAt(0));}

The j0 class's function for handling newline characters in the source code is longer than 
you might expect. Sure, it increments the line number and sets the column back to 1, but 
for semicolon insertion, it now includes a switch statement that determines whether 
to insert a semicolon in place of that newline character or not. The comment-handling 
method is going character-by-character through the comment to keep the line number 
and column number correct:

   public static void newline() {

      yylineno++; yycolno = 1;

      if (last_token != null)

         switch(last_token.cat) {
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            case parser.IDENTIFIER: case parser.INTLIT:

            case parser.DOUBLELIT: case parser.STRINGLIT:

            case parser.BREAK: case parser.RETURN:

            case parser.INCREMENT: case parser.DECREMENT:

            case ')': case ']': case '}':

               return true;

         }

      return false;

   }

   public static void comment() {

      int i, len;

      String s = yytext();

      len = s.length();

      for(i=0; i<len; i++)

         if (s.charAt(i) == '\n') {  
            yylineno++; yycolno=1;

         }

         else yycolno++;

   }

}

There is a supporting module named parser.java. It provides a set of named 
constants, similar to an enumerated type, but it declares the constants directly as short 
integers so that they're compatible with the iyacc parser, which will be discussed in the 
next chapter. The integers that are chosen start above 256 because that's where iyacc 
starts them so that they don't conflict with integer codes of single-byte lexemes that we 
produce via calls to j0.ord():

public class parser {

public final static short BREAK=257;

public final static short PUBLIC=258;

public final static short DOUBLE=259;

public final static short ELSE=260;

public final static short FOR=261;

public final static short IF=262;

public final static short INT=263;

public final static short RETURN=264;

public final static short VOID=265;
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public final static short WHILE=266;

public final static short IDENTIFIER=267;

public final static short CLASSNAME=268;

public final static short CLASS=269;

public final static short STATIC=270;

public final static short STRING=273;

public final static short BOOL=274;

public final static short INTLIT=275;

public final static short DOUBLELIT=276;

public final static short STRINGLIT=277;

public final static short BOOLLIT=278;

public final static short NULLVAL=280;

public final static short LESSTHANOREQUAL=298;

public final static short GREATERTHANOREQUAL=300;

public final static short ISEQUALTO=301;

public final static short NOTEQUALTO=302;

public final static short LOGICALAND=303;

public final static short LOGICALOR=304;

public final static short INCREMENT=306;

public final static short DECREMENT=307;

public final static short YYERRCODE=256;

}

There is also a supporting module named token.java that contains the token class. It 
has grown to include a column number, and for literal constants, their binary representation 
is stored in ival, sval, and dval for integers, strings, and doubles, respectively. The 
deEscape() method, which is used to construct the binary representation of string 
literals, was discussed in the Unicon implementation of this class. Once again, the algorithm 
goes character by character and just copies the character unless it is a backslash, in which 
case it grabs the following character and interprets it differently. You can see the efficacy of 
the Java String class by comparing this code with the Unicon version:

public class token {

   public int cat;

   public String text;

   public int lineno, colno, ival;

   String sval;

   double dval;
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   private String deEscape(String sin) {

      String sout = "";

      sin = String.substring(sin,1,sin.length()-1);

      int i = 0;

      while (sin.length() > 0) {

         char c = sin.charAt(0);

         if (c == '\\') {

            sin = String.substring(sin,1);

            if (sin.length() < 1)

               j0.lexErr("malformed string literal");

            else {

               c = sin.charAt(0);

               switch(c) {

               case 't': sout = sout + "\t"; break;

               case 'n': sout = sout + "\n"; break;

               default: j0.lexErr("unrecognized escape");

               }

             }

             else sout = sout + c;

         }

      }

      return sout;

   }

   public token(int c, String s, int ln, int col) {

      cat = c; text = s; lineno = ln; colno = col;

      switch (cat) {

      case parser.INTLIT:

         ival = Integer.parseInt(s);

         break;

      case parser.DOUBLELIT:

         dval = Double.parseDouble(s);

         break;

      case parser.STRINGLIT:

         sval = deEscape(s);

         break;
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      }

   }

}

The token constructor performs the same four assignments; that is, initializing the 
token fields for all tokens. It then uses a switch statement with branches for three 
categories of tokens. For literal constant values only, there is an extra lexical attribute 
that must be initialized. Using Java's built-in Integer.parseInt() and Double.
parseDouble() to convert the lexeme is a simplification for Jzero – a real Java 
compiler would have to do some more work here. The sval string is constructed by the 
deEscape() method because no built-in converter in Java takes a Java source code 
string and builds the actual string value for you. There are third-party libraries that you 
can find, but for Jzero purposes, it is simpler to provide our own.

Running the Jzero scanner
You can run the program in either Unicon or Java, as follows. This time, let's run the 
program on the following sample input file, named hello.java:

public class hello {

   public static void main(String argv[]) {

      System.out.println("hello, jzero!");

   }

}

Remember that, to your scanner, this hello.java program is just a sequence of 
lexemes. The commands to compile and run the Jzero scanner are similar to those in 
earlier examples, with more Java files creeping in:

uflex javalex.l              jflex javalex.l

unicon j0 javalex            javac j0.java Yylex.java

                             javac token.java parser.java

j0 hello.java                java j0 hello.java

From either implementation, the output that you should see should look like this:

token 258: public

token 269: class

token 267: hello

token 123: {
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token 258: public

token 270: static

token 265: void

token 267: main

token 40: (

token 267: String

token 267: argv

token 91: [

token 93: ]

token 41: )

token 123: {

token 267: System

token 46: .

token 267: out

token 46: .

token 267: println

token 40: (

token 277: "hello, jzero!"

token 41: )

token 59: ;

token 125: }

token 125: }

The Jzero scanner will make a lot more sense in the next chapter when its output provides 
the parser's input. Before we move on, though, we should remind you that regular 
expressions can't do everything a programming language lexical analyzer might need. 
Sometimes, you must go beyond the lex scanning model. The next section is a real-world 
example of that.

Regular expressions are not always enough
If you take a theory of computation course, you'll probably be treated to proof that regular 
expressions cannot match some common patterns that occur in programming languages, 
particularly patterns that nest instances of the same pattern inside themselves. This 
section shows that regular expressions are not always enough in other aspects.
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If regular expressions are not always able to handle every lexical analysis task in your 
language, what do you do? A lexical analyzer written by hand can handle weird cases that 
a lexical analyzer generated from regular expressions can't handle, perhaps at the cost 
of an extra day, week, or month of your time. However, in almost all real programming 
languages, regular expressions can get you close enough to where you only need a few 
extra tricks to produce the finished scanner. Here is a small real-world example.

Unicon and Go are examples of languages that provide semicolon insertion. The language 
defines lexical rules under which semicolons are inserted so that programmers don't 
have to worry about them for the most part. You may have noticed that the Unicon code 
examples tend to contain very few semicolons. Unfortunately, these semicolon insertion 
rules are not something that can be described with a regular expression.

In the case of the Go language, you can almost do it by remembering the previously 
returned token and doing some checks in the semantic action for a newline character; that 
newline can return as a semicolon if the checks are satisfied. But in Unicon, you must scan 
further forward and read the next token after the newline to decide whether a semicolon 
ought to be inserted! This allows Unicon semicolon insertion to be more precise and 
create fewer problems than in the Go language. As an example, in Go, you cannot format 
your code in classic C style:

func main()

{

   ...

}

Instead, you must write the curly brace on the function header line:

func main() {

   ...

}

To avoid this laughable limitation, the lexical analyzer must provide one token of look 
ahead. It will have to read the first token on the next line to decide whether a semicolon 
should be inserted at a new line.

It would be very un-Javalike to implement semicolon insertion in our Jzero scanner. But 
if we were going to that, we could do it the Go way, or we could do it the Unicon way. We 
will show you a subset of the Go way. For your reference, the Go definition of semicolon 
insertion semantics can be found at https://golang.org/ref/spec#Semicolons.
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This example illustrates rule #1 from the Go semi-colon insertion semantics. OK, so you 
see a newline – do you insert a semicolon? Let's just remember the last token we saw, 
and if it is an identifier, a literal, a break, continue, return, ++, --, ), ], or }, then 
the newline itself should return a new dummy semicolon token. You can modify the 
newline() method so that it returns a boolean true if a semicolon is to be inserted.

This defeats our strategy of using a common lex specification for both Unicon and 
Java. We need to write a conditional in the lex specification to say whether to return a 
semicolon or not, but the syntax is different in the two languages. In Unicon, our lex 
specification would have an if statement that might look like the following line:

\n         { if j0.newline() then return j0.semicolon() }

However, in Java, it would require parentheses and not say the then reserved word:

\n         { if (j0.newline()) return j0.semicolon(); }

The Unicon version of the modified j0 main module with semicolon insertion code 
has been provided in this book's GitHub repository, in the j0go.icn file. It is j0.icn 
with a new global variable called last_token, a modification of the scan() and 
newline() method, and the addition of a method called semicolon() that constructs 
an artificial token. Here are the changed methods. Checking whether the last token 
category is one of several that triggers a semicolon shows off Unicon's generators. 
The!")]}" expression is a clever way of writing ")"|"]"|"}", which will be fed one at 
a time into ord() until all three are tried:

   method scan(cat)

      last_token := yylval := token(cat, yytext, yylineno)

      return cat

   end

   method newline()

      yylineno +:= 1

      if (\last_token).cat ===

           ( parser.IDENTIFIER|parser.INTLIT|

             parser.DOUBLELIT|parser.STRINGLIT|

             parser.BREAK|parser.RETURN|

             parser.INCREMENT|parser.DECREMENT|

             ord(!")]}") ) then return

   end

   method semicolon()
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      yytext := ";"

      yylineno -:= 1

      return scan(parser.SEMICOLON)

   end

There are two fascinating things here. One is that a given element of source code – a 
newline character, which is just whitespace in most languages – will sometimes return 
integer code (for an inserted semicolon) and sometimes not. That is why we introduced 
an if statement into the lex specification semantic actions for newlines. The other 
fascinating thing is the artificial token produced by the semicolon() method. It 
produces output that's indistinguishable from if the programmer had typed a semicolon 
themselves into the source code input of your programming language.

Important note
The Java implementation of this is too long to present here, so it has been 
provided in this book's GitHub repository, in the j0go.java file. The next 
paragraph presents the key parts of it.

The Java implementation behaves the same as the Unicon version in j0go.icn, with a 
new global variable called last_token, a modification of the scan() and newline() 
methods, and the addition of the semicolon() method, which constructs an artificial 
token. However, it is a bit longer. In the newline() method within the following block, 
a Java switch statement is being used to check if the last token's category triggers a 
semicolon insertion:

   public static int scan(int cat) {

      last_token = yylval =

         new token(cat, yytext(), yylineno);

      return cat;

   }

   public static void newline() {

      yylineno++;

      if (last_token != null)

         switch(last_token.cat) {

            case parser.IDENTIFIER: case parser.INTLIT:

            case parser.DOUBLELIT: case parser.STRINGLIT:

            case parser.BREAK: case parser.RETURN:

            case parser.INCREMENT: case parser.DECREMENT:
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            case ')': case ']': case '}':

               return true;

         }

      return false;

   }

   public int semicolon() {

       yytext = ";";

       yylineno--;

       return scan(parser.SEMICOLON);

   }

The full Go semicolon insertion semantics are a bit more involved, but inserting a 
semicolon when the scanner has seen the regular expression for a newline is rather easy. 
If you want to learn how Unicon does better semicolon insertion, check out the Unicon 
Implementation Compendium at http://www.unicon.org/book/ib.pdf.

Summary
In this chapter, you learned about the crucial technical skills and tools used in 
programming languages when they are reading the characters of program source code. 
Thanks to these skills, the rest of your programming language compiler or interpreter has 
a much smaller sequence of words/tokens to deal with, instead of the enormous number 
of characters that were in the source file. If we were successful, you will have taken away 
the following skills that you can use in your programming language or similar projects.

As input characters are read in, they are analyzed and grouped into lexemes. Lexemes are 
either discarded (in the case of comments and whitespace) or categorized for subsequent 
parsing purposes.

Besides categorizing lexemes, you learned to make tokens from them. A token is an object 
instance that is created for each lexeme when it is categorized. The token is a record of that 
lexeme, its category, and where it came from.

The lexemes' categories are the main input of the parsing algorithm described in the next 
chapter. During parsing, the tokens will eventually be inserted as leaves into an important 
data structure called a syntax tree.

You are now ready to start stringing together the words into phrases in your source 
code. The next chapter will cover parsing, which checks whether the phrases make sense 
according to the grammar of the language.
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Questions
1. Write a regular expression to match dates in dd/mm/yyyy format. Is it possible to 

write this regular expression so that it only allows legal dates?
2. Explain the difference between the return value that yylex() returns to the caller, 

the lexeme that yylex() leaves in yytext, and the token value that yylex() 
leaves in yylval.

3. Not all the yylex() regular expressions return an integer category after they 
match. When a regular expression does not return a value, what happens?

4. Lexical analysis has to deal with ambiguity and it is entirely possible to write several 
regular expressions that all can match at a given point in the input. Describe Flex's 
tie-breaking rules for when more than one regular expression can match at the  
same place.
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Parsing

In this chapter, you will learn how to take individual words and punctuation, the lexemes, 
and group them into larger programming constructs, such as expressions, statements, 
functions, classes, and packages. This task is called parsing. The code module is called a 
parser. You will make a parser by specifying syntax rules using grammars, and then using 
a parser generator tool that takes your language grammar and generates a parser for you. 
We will also look at writing useful syntax error messages.

This chapter covers the following main topics: 

• Syntax analysis

• Context-free grammars

• Using iyacc and BYACC/J

• Writing a parser for Jzero

• Improving syntax error messages

We will review the technical requirements for this chapter, and then it will be time to 
refine your ideas of syntax and syntax analysis.
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Technical requirements
In this chapter, you will need the following tools:

• Iyacc, a parser generator for Unicon. You should use the version on the book's 
website (https://github.com/PacktPublishing/Build-Your-Own-
Programming-Language).

• BYACC/J, a parser generator for Java (http://byaccj.sourceforge.net).

• You can download this chapter code from our GitHub repository: https://
github.com/PacktPublishing/Build-Your-Own-Programming-
Language/tree/master/ch4.

The Code in Action video for the chapter can be found here: https://bit.ly/3ClVCSf

At the time of writing, the Windows BYACC/J binary distribution consists of a 
byaccj1.15_win32.zip file, which sounds old and contains one file named yacc.
exe. There is no installer. You should unzip and copy the yacc.exe file into a directory 
on your path or make a new directory for it and add that directory to your path. Verify 
that these packages have been added to your path by opening a new Command Prompt or 
Terminal window and trying the iyacc and yacc commands. Note that you may already 
have a different program on your computer named yacc! In this case, we recommend 
renaming the BYACC/J instance that you install for this book as byaccj or byaccj.
exe instead of yacc or yacc.exe. If you do this, everywhere in this book that it says to 
use yacc, you should type byaccj instead. To use this book successfully, you will have to 
keep your yaccs straight!  You have been warned!

There is one additional technical requirement for this chapter. You must set your 
CLASSPATH environment variable. If you are working with the examples in this chapter 
in C:\users\Alfrede Newmann\ch4 you may need to set the CLASSPATH to point 
at the Alfrede Newmann directory above the ch4 directory. On Windows, it is best to 
set this once and for all in the Control Panel or Settings, but you can set it manually if you 
have to with a command such as this one:

set CLASSPATH=".;c:\users\Alfrede Newmann"
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Adding the directory above us on the CLASSPATH can be achieved with .. on Linux, 
while you must supply the full path of the parent directory on Windows. On Linux, this is 
best set in ~/.bashrc or similar, but on the command line, it looks like this:

export CLASSPATH=.:..

Before we get into the nuts and bolts of yacc, let's look at the bigger picture of what we 
are trying to accomplish by parsing, which is to analyze the syntax of the input program.

Analyzing syntax
As a programmer, you are probably already familiar with syntax error messages and 
the general idea of syntax, which is to understand what kinds of words or lexemes must 
appear, in what order, for a given communication to be well formed in a language. Most 
human languages are picky about this, while a few are more flexible about word order. 
Fortunately, most programming languages are far simpler and more restrictive than 
natural human languages about what constitutes a legal input.

The input for syntax analysis consists of the output of the previous chapter on lexical 
analysis. Communication, such as a message or a program, is broken down into a 
sequence of component words and punctuation. This could be an array or list of token 
objects, although for parsing, all the algorithm requires is the sequence of integer codes 
returned from calls to yylex(), one after another. It is the job of syntax analysis to 
determine whether the communication, in a given language, such as English or Java, 
is correct or not. The result of syntax analysis is a simple Boolean true or false. In 
practice, in order to interpret or translate the message, more is needed than a Boolean 
value that tells us whether its syntax is correct. In the next chapter, you will learn how to 
build a syntax tree that forms the basis for the subsequent translation of a program into 
code. But first, we must check the syntax, so let's look at how programming language 
syntax is specified, which is called context-free grammar notation.

Understanding context-free grammars
In this section, we will define the notation used by programming language inventors to 
describe the syntax of their language. You will be able to use what you learn in this section 
to supply syntax rules as input to the parser generators used in the next section. Let's 
begin by understanding what context-free grammars are.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



72     Parsing

Context-free grammars are the most widely used notation for describing the syntax 
allowed in a programming language in terms of patterns of lexemes. They are formulated 
from very simple rules that are easy to understand. Context-free grammars are built from 
the following components:

• Terminal symbols: A set of input symbols are called terminal symbols. Terminal 
symbols in a grammar are read in from a scanner such as the one we produced 
in the last chapter. Although they are referred to as symbols, terminal symbols 
correspond to an entire word, operator, or punctuation mark; a terminal symbol 
identifies the category of a lexeme. As you saw in the previous chapter, these symbols' 
categories are represented by integer codes that are usually given mnemonic names 
such as IDENTIFIER or INTCONST or WHILE. In our grammars, we will also use 
character literal notation for the more trivial terminal symbols; a single character 
inside apostrophes is just a terminal symbol that consists of that character itself. For 
example, ';' is the terminal symbol that consists of just a semi-colon and literally 
denotes the integer 59, which is the ASCII code for a semi-colon.

• Non-terminal symbols: Unlike regular expressions, context-free grammar rules 
utilize a second set of symbols called non-terminal symbols. Non-terminal symbols 
refer to sequences of other symbols that make sense together, such as noun 
phrases or sentences (in natural languages), or function or class definitions, or 
entire programs (in programming languages). One special non-terminal symbol is 
designated as the start symbol of the entire grammar. In a programming language 
grammar, the start symbol denotes an entire well-formed source file.

• Production rules: A set of rules called production rules explain how to form 
non-terminal symbols from smaller words and component phrases. Because the 
production rules control what terminal and non-terminal symbols are used, it is 
common to give the grammar by just giving its production rules.

Now it is time to look in more detail at the rules for building context-free grammars, 
followed by examples.

Writing context-free grammar rules
Production rules, also called context-free grammar rules, are patterns that describe 
legal sequences of lexemes using the terminal symbols and additional non-terminal 
symbols that represent other sequences of zero or more symbols. In this book, we will 
use yacc notation for writing context-free grammars. Each production rule consists of a 
single non-terminal symbol, followed by a colon, followed by zero or more terminal and 
non-terminal symbols, ending with a semi-colon, as shown in the following notation:

X : symbols ; 
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There is only one symbol to the left of the colon and, by definition, it is non-terminal 
because the meaning of the grammar rule is as follows: a non-terminal X can be constructed 
from a sequence of terminals and non-terminals that appear on the right-hand side.

A context-free grammar can have as many such rules as desired, including multiple rules 
that build the same non-terminal by different combinations of symbols on the right-hand 
side. In fact, multiple rules for the same non-terminal are so common, they have their 
own shorthand consisting of a vertical bar. You can see an example of a vertical bar in the 
following code:

X : symbols | other_symbols ; 

When the vertical bar (read as or) is used in a grammar, it states that there are different 
ways to build a non-terminal X. Using the vertical bar is optional because you could write 
the same rules as separate statements of the non-terminal, colon, right-hand side, and 
semicolon. For example, here is a statement of different ways to build an X:

X : A | B | C ; 

This line is equivalent to the following three lines:

X : A ;

X : B ;

X : C ;

Both of the previous cases describe the same three production rules. The vertical bar is 
just a shorthand notation for writing multiple production rules.

So, what does a production rule mean, anyhow? It can be read and used either forward 
or backward. If you start from the start symbol and replace a non-terminal with one of its 
production rules' right-hand sides (called a derivation step), you work your way down from 
the top. If you repeat this process and eventually get to a sequence of terminal symbols with 
no non-terminals remaining, you have generated a legal instance of that grammar.

On the other hand, a programming language starts from the other end. The scanner from 
the last chapter will produce for you a sequence of terminal symbols. Given a sequence of 
terminal symbols, can you find within it the right side of a production rule, and replace it 
with its non-terminal? If you can do that repeatedly and make your way back to the start 
symbol, you have proved that the input source program is legal according to the grammar. 
This is called parsing.

Now it is time to look at some simple grammar examples. Some of the most intuitive 
grammars that we can suggest come from natural (human) languages. Other simple 
examples show how context-free grammars apply to programming language syntax.
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Recursion
Are you on top of your recursion? In math and computer science, recursion 
is when something is defined in terms of a simpler version of itself; see 
https://en.wikipedia.org/wiki/Recursion if you need a 
refresher. You will need that concept to build your programming language 
syntax. In context-free grammars, a non-terminal X is often used on the right 
side of a production rule that builds an X. This is a form of recursion. The one 
logical rule that you must learn when you use recursion is this: there must 
be another grammar rule (a basis case) that is not recursive. Otherwise, the 
recursion never ends, and your grammar doesn't make sense.

Writing rules for programming constructs
Context-free grammars are easy, once you have written a few of them. You should start 
with the simplest rules you can think of and work your way up one tiny bit at a time. The 
simplest values in a language are its literal constants. Suppose we have two kinds of values 
in our language, Booleans and integers:

literal : INTLIT | BOOLLIT ;

The preceding production rule says that there are two kinds of literal values, integers and 
Booleans. Some language constructs, such as addition, may be defined only for certain 
types, while other constructs, such as assignment, are defined for all types. It is often 
best to feature a common syntax for all types, and then ensure that types are correct 
later, during semantic analysis. We will cover that in Chapter 7, Checking Base Types, and 
Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses. Now consider a 
grammar rule that allows either variables or literal constants:

simple_expr : IDENTIFIER | literal ;

As you saw in Chapter 3, Scanning Source Code, IDENTIFIER denotes a name. The 
preceding production rule says that both variables and literals are allowed in simple 
expressions. Complex expressions are constructed by applying operators or functions to 
simple expressions:

expr : expr '+' expr | expr '-' expr | simple_expr ;

The preceding three production rules present a common design question. The first two 
rules are recursive, multiple times over. They are also ambiguous. When multiple operators 
are chained together, the grammar does not specify which operator is applied first.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Recursion


Understanding context-free grammars     75

Ambiguity
When a grammar can accept the same string two or more different ways, the 
grammar is ambiguous. In the preceding example, 1 + 2 – 3 could be 
parsed by applying the production rule for the plus sign first, and then the 
subtraction, or vice versa. Ambiguity can sometimes force you to rewrite your 
grammar so there is only one way to parse the input.

There are a lot more operators in real languages, and there is the issue of operator 
precedence to consider. You can look at these topics in the Writing a parser for Jzero 
section in this chapter. For now, let's briefly explore larger language structures, such as 
statements. A simple representation of an assignment statement is given here:

statement : IDENTIFIER '=' expr ';' ;

This version of assignment allows only a name on the left side of the equals sign. The right 
side can take any expression. There are several other fundamental kinds statements found 
in many languages. Of these, consider the two most common ones, the IF statement and 
the WHILE statement:

statement : IF '(' expr ')' statement ;

statement : WHILE '(' expr ')' statement ;

These statements contain other (sub)statements. Grammars build larger constructs from 
smaller ones using recursive rules such as this. IF and WHILE statements have almost 
identical syntax for preceding a statement with a conditional expression:

statements : statements statement | statement ;

Multiple statements can be accepted by repeated application of the first rule in this 
grammar. Good language designers write recursive rules all the time in order to repeat 
a construct. In the case of languages such as Java, semi-colons do not appear in this 
grammar rule as a statement separator, but they appear as terminators at the ends of 
various grammar rules, like the previous rule for assignment statements.

In this section, you saw that grammar rules for a programming language use reserved 
words and punctuation marks as building blocks. Larger expressions and statements 
are composed of smaller ones using recursion. Now it is time to learn the tools that use 
context-free grammar notation to generate parsers for reading source code, namely iyacc 
and BYACC/J.
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Using iyacc and BYACC/J
The name yacc stands for yet-another-compiler-compiler. This category of tools takes a 
context-free grammar as input and generates a parser from it. Yacc-compatible tools are 
available for most popular programming languages.

In this book, for Unicon we use iyacc (short for Icon yacc) and for Java you can use 
BYACC/J (short for Berkeley YACC extended for Java). They are highly compatible with 
UNIX yacc and we can present them together as one language for writing parsers. In 
the rest of this chapter, we will just say yacc when we mean both iyacc and BYACC/J 
(which is invoked as yacc, at least on Windows). Complete compatibility required a bit 
of Kobayashi Maru, mostly when it comes to the semantic actions, which are written in 
native Unicon and Java respectively.

Yacc files are often called (yacc) specifications. They use the extension .y and consist 
of several sections, separated by %%. This book refers generically to yacc specifications 
meaning the input file provided to either iyacc or BYACC/J and, for the most part, those 
files would also be valid input for C yacc.

There are required sections in a yacc specification: a header section followed by a 
context-free grammar section, and an optional helper functions section. The yacc 
header section and the context-free grammar section are the sections you need to know 
about for this book. In the following section, you will learn how to declare your terminal 
symbols in the yacc header section. Some versions of yacc require these declarations.

Kobayashi Maru?
A Kobayashi Maru scenario is a no-win situation where the best answer is to 
change the rules of the game. In this case, I modified iyacc and BYACC/J a 
bit so that our no-win situation was winnable.

Declaring symbols in the header section
Most yacc tools have options you can enable in the header section; they vary, and we 
will only cover them if we use them. You can also include bits of host language code there, 
such as variable declarations, inside %{ … %} blocks. The main purpose of the header 
section is to declare the terminal and non-terminal symbols in the grammar. In the 
context-free grammar section, these symbols are used in production rules.
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Whether a symbol is terminal or non-terminal can be inferred from how the symbol is 
used in a grammar, but unless they are ASCII codes, you must declare all your terminal 
symbols anyhow. Terminal symbols are declared in the header section using a line 
beginning with %token, followed by as many terminal symbol names as you want, 
separated by spaces. Non-terminals can be declared by a similar %nonterm line. Among 
other things, yacc uses your terminal symbol declarations to generate a file that assigns 
integer constants to those names, for use in your scanner.

Advanced yacc declarations
There are other declarations that can be placed in the yacc header section 
beyond those used in this book. If you don't want to place your starting non-
terminal at the top of your grammar, you can put it anywhere and then identify 
it explicitly in the header via the %start declaration for some non-terminal 
symbol. Also, instead of just declaring tokens with %token, you can use 
%left, %right, and %nonassoc to specify operator precedence and 
associativity in increasing order.

Now that we have learned about the header section, let's have a look at the context-free 
grammar section.

Putting together the yacc context-free grammar 
section
The primary section of a yacc specification is the context-free grammar section. Each 
production rule of the context-free grammar is given, followed by an optional semantic 
action consisting of some host language code (in our case, Unicon or Java) to execute 
when that production rule has been matched. The yacc syntax is typically like the 
following example:

X : symbols { semantic action code } ; 

It is also legal to place semantic actions before or in between symbols in addition to the 
end of the rule, but if you do that, you are really declaring a new non-terminal with an 
empty production rule that just contains that semantic action. We will not do that in this 
book, as it is a frequent source of bugs.
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Yacc is less picky about whitespace than lex was. The following example shows three 
equivalent ways to format production rules with different whitespace. Which you prefer 
depends on what is best for readability:

A : B | C;

A : B |

    C ;

A : B

  | C

  ;

Although each production rule starts on a new line, it can span multiple lines and is 
terminated by one of the following: a semi-colon, a vertical bar indicating another 
production rule for the same non-terminal, a %% indicating the start of the helper functions 
section, or an end-of-file. Like in lex, if the semantic action uses curly braces to enclose 
a statement block in the usual way, the semantic action can span multiple lines of source 
code. Yacc will not start looking for the next production rule until it finds the matching 
closing curly brace to finish the semantic action, and then goes on to find one of the 
terminators listed earlier, such as a semi-colon or vertical bar that ends the production rule.

A common mistake that newbies make in the context-free grammar section is trying to 
insert comments in the production rules to improve readability. Don't do that; you can get 
some very cryptic error messages when you do this.

When you run classic UNIX yacc, which is a C tool, it generates a function called 
yyparse() that returns whether the input sequence of terminal symbols returned from 
yylex() was legal according to the grammar. Global variables may be set with other 
useful bits of information. You can use such global variables to store anything you want, 
such as the root of your syntax tree. Before we progress to some larger examples, take a 
look at how yacc parsers work. You will need to know this in order to debug your parser 
when things do not go according to plan.

Understanding yacc parsers
The algorithm of the parser generated by yacc is called LALR(1). It comes from a family 
of parsing algorithms invented by Donald Knuth of Stanford and made practical by Frank 
DeRemer of UC Santa Cruz and others. If you are interested in the theory, you should 
check out the Wikipedia page for the LALR parser at https://en.wikipedia.
org/wiki/LALR_parser or consult a serious compiler construction book, such as 
Douglas Thain's Introduction to Compilers and Language Design, from https://www3.
nd.edu/~dthain/compilerbook/.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/LALR_parser
https://en.wikipedia.org/wiki/LALR_parser
https://www3.nd.edu/~dthain/compilerbook/
https://www3.nd.edu/~dthain/compilerbook/


Using iyacc and BYACC/J     79

For our purposes, you need to know that the generated algorithm consists of a long 
while loop. In each iteration of the loop, the parser takes one tiny step forward. The 
algorithm uses a stack of integers to keep track of what it has seen. Each element on 
the parse stack is an integer code called a parse state that encodes all the terminal and 
non-terminal symbols seen up to that point. The parse state on top of the stack and the 
current input symbol, which is an integer terminal symbol obtained from function 
yylex(), are the two pieces of information used to decide what to do at each step. For 
no intrinsic reason, it is common to visualize this like a horizontal piece of string, with a 
string of beads on the right being slid left onto a stack that is depicted horizontally. Figure 
4.1 illustrates the yacc parse stack on the left and its input on the right.

Figure 4.1 – yacc's parse stack and its input

The dollar sign on the left denotes the bottom of the stack, while the dollar sign on the 
right denotes end-of-file. Yacc generates two big tables, computed from the grammar, 
called the action table and the goto table. These tables encode what to do at each step. 
The primary table is an action table that looks up the parse state and current input and 
returns one of the following possibilities:

• The top few elements on the stack contain a production rule that can be used to get 
us (eventually) back to the starting non-terminal. This is called a reduce.

• The algorithm needs to look at the next input symbol. Place the current input onto 
the parse stack, and read the next one using yylex(). This is called a shift.

• If neither a shift nor a reduce will work, a syntax error is reported by calling the 
yyerror() function that you must write.

• If we are looking at the starting non-terminal and there is no more input pending, 
you win! yyparse() returns the code that says there were no errors.
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In the following list, you can see the Yacc parsing algorithm in pseudocode form. In this 
code, there are several key variables and operations, described here:

• parsestk is the parse stack, an array of integer finite automaton parse states.

• index top tracks the subscript of the top of the parse stack.

• current is the current input symbol.

• shift_n means to move the input from the right to the left, pushing parse state n 
onto the stack and moving current to the next input symbol.

• reduce_m means to apply production rule m by popping the number of parse 
states equal to the right side of production rule m and pushing the new parse state 
corresponding to the non-terminal on the left side of production rule m. The goto 
table tells what the new parse state is that the reduce is to push.

Here is the parsing algorithm in pseudocode form:

repeat:

     x = action_table[parsestk[top], current]

     if x == shift_n then {

        push(state_n, parsestk)

        current = next

        }

     else if x == reduce_m then {

       pop(parsestk) |m| times

       push(goto_table[parsestk[top],m], parsestk)

       }

    else if x == accept then return 0 // no errors

    else { yyerror("syntax error") }

This pseudocode is a direct embodiment of the preceding bulleted list. A large percentage 
of the world's programming languages perform their syntax analysis with this method. 
You may find it interesting to compare this pseudocode with the generated .icn or 
.java file output by iyacc or BYACC/J.

Importantly, because this parsing algorithm is just a loop with a couple of table lookups, it 
runs quite fast.
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The point of the yacc tool is to just supply the context-free grammar and get a parser 
without having to worry about how it works; yacc is thus a declarative language. The 
algorithm works, and you don't have to know a lot about it, but if you change a grammar 
or invent a new language using the yacc tool, you might have to know about these shifts 
and reduce operations in order to debug your context-free grammar if your parser isn't 
doing what you want. The most common way that a yacc programmer encounters this is 
when you run yacc and it reports conflicts that you may need to fix.

Fixing conflicts in yacc parsers
Earlier in this chapter, in the section titled Writing rules for programming constructs, you 
learned that grammars can be ambiguous. When a grammar is ambiguous, yacc will have 
more than one possible action that it can encode for a given (parse state, current input) 
lookup in the action table. Yacc reports this as a problem, and in that case the generated 
parser will use only one of the possible interpretations of the ambiguity. There are two 
kinds of conflicts that yacc reports:

• A shift/reduce is when one production rule says it can shift the current input at this 
point, but another production rule says it is all finished and ready to reduce. In this 
case, yacc will only shift and you are in trouble if you needed it to reduce.

• A reduce/reduce is even worse. Different production rules are saying they want to 
reduce at this point? Which one is correct? Yacc will arbitrarily pick whichever one 
appears earlier in your .y file, which is correct 50% of the time.

For shift/reduce conflicts, the default rule is usually correct. I have seen production 
language grammars with literally hundreds of shift/reduce conflicts that are ignored with 
seemingly no ill effects – they are asymptomatic. But once in a blue moon, and I have seen 
it in real life, the default on a shift/reduce conflict is not what the language needs.

For reduce/reduce conflicts, we cannot use the default rule. Part of your grammar will not 
be triggered. In any reduce/reduce situation, or if you determine a shift/reduce conflict 
is a problem, you will need to modify your grammar to eliminate the conflict. Modifying 
your grammar to avoid conflicts is beyond the scope of this book, but it usually involves 
refactoring to eliminate redundant bits of grammar or creating new non-terminals and 
making production rules pickier. Now we will explore what happens when the parser 
encounters an error.
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Syntax error recovery
Syntax error recovery is when your parser continues after reporting a syntax error. If 
recovery is successful, the compiler can go on to find the rest of the errors, if any. In the 
days of batch processing, it was important to recover as well as possible. However, error 
recovery is known for its spectacular failures! Compilers tend to give numerous cascading 
error messages after the first one, because the attempt to recover and continue parsing is 
based on wild guesses as to whether tokens were missing, or extra tokens were present, or 
the wrong token was used unintentionally…there are just too many possibilities. For this 
reason, we will stick to minimal error recovery in this book.

A yacc parser will try to recover if extra production rules are added to the grammar that 
depict likely locations of errors using a special token named error where a syntax error 
is expected. When an actual syntax error occurs, the shift/reduce parser throws away 
parse states from its parse stack and tokens from its input, until it finds a state that has a 
rule that allows it to proceed forward on an error. In the Jzero language, we might have 
a rule that throws away a syntax error within statements that discards tokens until it sees 
a semi-colon. There might be one or two higher-level locations in the grammar where an 
error token skips to the end of a function body, or a declaration, and that is it.

Although we are only just touching on the topic, if your programming language becomes 
famous and popular, you should probably eventually learn to recover from at least the 
simplest and most common errors. Since errors are inevitable, besides recovering and 
continue parsing, you need to think about reporting error messages. Error reporting is 
covered in the Improving syntax error messages section at the end of this chapter. Now let's 
put together some working parsers using the scanners developed in the previous chapter.

Putting together a toy example
This example lets you check whether you can install and run iyacc and BYACC/J. The 
example parser just parses sequences of alternating names and numbers. The filename 
ns.y (for name sequence) will be used for the yacc specification. The code generated by 
yacc from this specification will use two helper functions that, on Java, might motivate a 
start to our yacc header section that looks like the following:

%{

import static ch4.lexer.yylex;

import static ch4.yyerror.yyerror;

%}
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If you are building the Java implementation using stock BYACC/J 1.15, ns.y should 
begin with the preceding four lines. The code inside the %{ … %} consists of two import 
static declarations. This is how Java allows generated parser code to call yylex() and 
yyerror(), functions that are located in different classes, in different source files.

We want to put yylex() and yyerror() in different classes and source files instead of 
the helper functions section of the .y file because they will be different in Unicon and Java. 
Another reason is because yylex() and yyerror() may be generated by separate tools: 
uflex and jflex from the preceding chapter, and merr described later in this chapter. 
Unfortunately, Java cannot to do an import static without placing these classes and 
functions inside a package. The package is named ch4 because this chapter's code is in a 
directory named ch4, and Java requires package names and directory names to match. 
Thanks to packages, code from Chapter 3, Scanning Source Code, must be altered slightly, 
and you also can look forward to tricky CLASSPATH issues and cryptic error messages.

Since the import static lines do not work for Unicon, for this book I modified 
BYACC/J to add command-line options for static imports that are required. If you are 
using a version of these tools from the book's website or other new/current source, you 
can skip the four lines from earlier and do them from the command line, allowing the 
entire ns.y file to work unmodified as input for both Unicon and Java projects.

In the following ns.y example there is no semantic action code; this chapter focuses 
solely on syntax analysis. The next chapter deals with semantic actions extensively.

%token NAME NUMBER

%%

sequence : pair sequence | ;

pair : NAME NUMBER ;

From this specification, yacc will produce a function, yyparse(). It executes the LALR 
parsing algorithm with a net effect described as follows:

• yyparse() is called from a main() function.

• yyparse()calls yylex() to get a terminal symbol.

• yyparse() matches each terminal symbol returned from yylex() against all 
possible parses using all possible combinations of production rules.

• Parsing eventually selects whichever production rule is correct at the current 
location and executes its semantic action (if any).
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Steps 2–4 repeat until the entire input is parsed, or a syntax error is found. The yylex() 
function is generated from the following lex specification:

package ch4;

%%

%int

%%

[a-zA-Z]+   { return Parser.NAME; }

[0-9]+      { return Parser.NUMBER; }

[ \t]+      { }

.           { lexer.lexErr("unrecognized character"); }

This is the nnws.l file from the previous chapter, modified in order to be used with this 
yacc-generated parser. For one thing, in Java, it must be made a part of the ch4 package. 
For another thing, it must return the integers that yacc uses for NAME and NUMBER. As 
you may recall from the previous chapter, the Java-compatible way to access those integers 
by name is through a Parser object that contains them. The BYACC/J tool generates this 
parser object automatically for Java. For Unicon, iyacc's traditional -d option generates 
macro definitions in an include file (for ns.y it would be in ns_tab.icn) à la classic 
UNIX C yacc. For this book, iyacc was extended with a command-line option, -dd, that 
instead generates a Java-compatible Parser object that contains the names and their values.

The main() function necessarily varies by language. By the time you add the yacc 
yyparse() module into the program, things are starting to get complicated. For this 
reason, the previous chapter's main() functionality is tweaked to pull out lexical analyzer 
initialization and lexical error handling in separate files. We will discuss the main() 
function first. After initialization, main() calls yyparse() to check the syntax of the 
source code. Here is the Unicon version of the main module, in the trivial.icn file:

procedure main(argv)

   yyin := open(argv[1]) | stop("usage: trivial file")

   lexer := lexer()

   Parser := Parser()

   if yyparse() = 0 then write("no errors")

end

procedure yyerror(s)

   stop(s)

end

class lexer()

   method lexErr(s)
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      stop("lexical error: ", s)

   end

end

This Unicon implementation of main()opens the input file from a name given in the 
first command-line argument. The lexical analyzer is informed what file to read from 
by assignment to the yyin variable. Lexical analyzer and parser objects are initialized; 
they are here just for Java compatibility of our flex specification. The code then calls 
yyparse() to parse the input file. The following Java code in the trivial.java file 
contains a main() function that corresponds with the previous Unicon example:

package ch4;

public class trivial {

   static ch4.j0p par;

   public static void main(String argv[]) throws Exception

   {

      ch4.lexer.init(argv[0]);

      par = new ch4.Parser();

      int i = par.yyparse();

      if (i == 0)

         System.out.println("no errors");

   }

}

This main module is shorter than the simple class in the previous chapter. All it does is 
initialize lexical analysis, initialize the parser, and then call yyparse() to see if the input 
is legal. In order to call the yylex() function from yyparse() without a reference 
to the Yylex object and without a circular reference back to the main class trivial, the 
Yylex object and its initialization have been pulled out into a wrapper class named lexer. 
The following lexer.java file contains that code:

package ch4;

import java.io.FileReader;

public class lexer {

   public static Yylex yylexer;

   public static void init(String s) throws Exception {

       yylexer = new Yylex(new FileReader(s));

   }

   public static int YYEOF() { return Yylex.YYEOF; }
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   public static int yylex() {

      int rv = 0;

      try {

        rv = yylexer.yylex();

      } catch(java.io.IOException ioException) {

        rv = -1;

      }

      return rv;

   }

   public static String yytext() {

      return yylexer.yytext();

   }

   public static void lexErr(String s) {

      System.err.println(s);

      System.exit(1);

   }

}

The init() method instantiates a Yylex object for later use by a static method 
yylex() that is callable from yyparse(). The yylex() here is just a proxy that turns 
around and calls yylexer.yylex().

There is one more piece to the puzzle: yyparse() calls a function named yyerror() 
when it encounters a syntax error. The yyerror.java file contains a yyerror class 
that has a yyerror() static method, shown here:

package ch4;

public class yyerror {

    public static void yyerror(String s) {

      System.err.println(s);

      System.exit(1);

    }

}

This version of the yyerror() function just calls println() and exits, but we can 
modify it as needed. Although you might be willing to do this just for the sake of sharing 
a yacc specification file across both Unicon and Java, it will also pay off when we improve 
our syntax error messages in the next section.
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Now it is time to run our toy program and see what it does. Run it with the following 
input file, dorrie3.in:

Dorrie 1 Clint 0

You can build and run the program in either Unicon or Java as follows. The sequence of 
commands to execute under Unicon looks like this:

uflex nnws.l 

iyacc -dd ns.y

unicon trivial nnws ns ns_tab

trivial dorrie3.in

The sequence of commands to execute under Java is as follows:

jflex nnws.l

yacc -Jpackage=ch4 -Jyylex=ch4.lexer.yylex \

                   -Jyyerror=ch4.yyerror.yyerror ns.y

javac trivial.java Yylex.java Parser.java lexer.java \

        yyerror.java ParserVal.java

java ch4.trivial dorrie3.in

From either implementation, the output that you should see is as follows:

no errors

So far, all the example does is categorize groups of input characters using a regular 
expression to identify what kind of lexeme has been found. For the rest of the compiler to 
work, we will need more information about that lexeme, which we will store in a token.

In this section, you learned how to integrate a yacc-generated parser with a lex-generated 
scanner from the previous chapter. The same lex and yacc specifications were used for 
Unicon and for Java, after some slight tweaks to iyacc and BYACC/J. The main challenges 
were the challenges in integrating these declarative languages into Java, which involved 
writing and importing two static methods from helper classes. Happily, we were able 
to make these tools work on a toy example. Now it is time to use them on an actual 
programming language.
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Writing a parser for Jzero
The next example is a parser for Jzero, our subset of the Java language. This extends the 
previous chapter's Jzero example. The big change is the introduction of many context-free 
grammar rules for more complex syntax constructs than have been seen up to this point. 
If you wrote a new language not based on an existing one, you would have to come up 
with the context-free grammar from scratch. For Jzero this is not the case. The grammar 
we use for Jzero was adapted from a Java dialect named Godiva. To work from a real Java 
grammar, you can look at https://docs.oracle.com/javase/specs/.

The Jzero lex specification
The Jzero lex specification is as given in the previous chapter, with a one-line package 
declaration added to the top. The parser must be generated before the scanner is compiled. 
This is because yacc turns j0gram.y into a parser class whose constant values are 
referenced from the scanner. Because the static import of yylex() entails using packages, 
you must add the following line to the top of javalex.l from the previous chapter:

package ch4;

In order to be compatible with the previous chapter's javalex.l, the module called 
lexer in the trivial parser earlier this chapter is called j0 in the Jzero parser.

With the understanding of this slight change to the Jzero Lex specification in order to call it 
from the parser, let's move on to the next section to learn about the Jzero yacc specification.

The Jzero yacc specification
Compared with the previous examples, a real(ish) programming language yacc 
specification has a lot more, and more complicated, production rules. The following file is 
called j0gram.y and it is presented in several parts.

The first section of j0gram.y includes the header and declarations of terminal symbols. 
These declarations are the source of the symbolic constants in the parser class used in 
the previous chapter. It is not enough for the names to match in the scanner and parser; 
the integer codes must be identical for the two tools to talk. The scanner must return the 
parser's integer codes for its terminal symbols. Per the preceding description of the yacc 
header section, declarations of terminal symbols are made by giving their name on a line 
beginning with %token. Jzero declares approximately 27 symbols for reserved words, 
different kinds of literal constants, and multi-character operators:

%token BREAK DOUBLE ELSE FOR IF INT RETURN VOID WHILE

%token IDENTIFIER CLASSNAME CLASS STRING BOOL
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%token INTLIT DOUBLELIT STRINGLIT BOOLLIT NULLVAL

%token LESSTHANOREQUAL GREATERTHANOREQUAL

%token ISEQUALTO NOTEQUALTO LOGICALAND LOGICALOR

%token INCREMENT DECREMENT

%%

After the %% are the production rules of the context-free grammar of the language 
we are specifying. By default, the non-terminal on the first rule listed is the starting 
non-terminal, which in Jzero denotes one whole source file, module, or compilation unit. 
In Jzero this is just one class; this is a severe simplification of Java where there are usually 
several declarations such as imports before the class in a given source file.

A class declaration consists of the word class followed by an identifier giving the class 
name, followed by a body:

ClassDecl:      CLASS IDENTIFIER ClassBody ';' ;

A class body is a sequence of declarations for fields, methods, and constructors. Notice how 
the production rules for ClassBody allow for zero or more occurrences of declarations 
within the curly braces: one rule requires a list of one or more ClassBodyDecls, while a 
second rule explicitly allows the unusual but legal case of an empty class:

ClassBody:      '{' ClassBodyDecls '}' | '{' '}' ;

ClassBodyDecls: ClassBodyDecl | ClassBodyDecls 

                ClassBodyDecl;

ClassBodyDecl:  FieldDecl | MethodDecl | ConstructorDecl ;

Field declarations consist of a type followed by a comma-separated list of variables. The 
identifier that follows the word class becomes the name of a type. Some language 
implementations make the lexical analyzer report a different integer category code for that 
word once it has become a type name instead of a variable name; Jzero does not:

FieldDecl:      Type VarDecls ';' ;

Type:           INT | DOUBLE | BOOL | STRING | Name ;

Name:           IDENTIFIER | QualifiedName ;

QualifiedName:  Name '.' IDENTIFIER ;

VarDecls:       VarDeclarator | VarDecls ',' VarDeclarator;

VarDeclarator:  IDENTIFIER | VarDeclarator '[' ']' ;
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The next part of j0gram.y consists of the syntax rules for the other two kinds of things 
that can be declared within a class, which use function syntax: methods and constructors. 
To begin with, they have slightly different headers followed by a block of statements.:

MethodDecl: MethodHeader Block ;

ConstructorDecl: FuncDeclarator Block ;

Method headers have a return type, but otherwise methods and constructors share the same 
syntax in the form of common uses of non-terminals FuncDeclarator and Block:

MethodHeader: Type FuncDeclarator | VOID FuncDeclarator ;

A function's name (or in the case of a constructor, the class name) is followed by a 
parenthesized list of parameters:

FuncDeclarator: IDENTIFIER '(' FormalParmListOpt ')' ;

A parameter list is zero or more parameters. Non-terminal FormalParmListOpt has 
two production rules: either there is a (non-empty) FormalParmList or there isn't. The 
empty production after the vertical bar is called an epsilon rule:

FormalParmListOpt: FormalParmList | ;

A formal parameter list is a comma-separated list where each formal parameter consists of 
a type and a variable name:

FormalParmList: FormalParm | FormalParmList ',' FormalParm;

FormalParm: Type VarDeclarator ;

The next part of j0gram.y contains the statement grammar. A statement is a chunk 
of code that does not provide a value for use by the surrounding code. Jzero has several 
kinds of statements. A Block (such as the body of a method) is a statement consisting of 
a sequence of (sub)statements enclosed in curly braces {}:

Block: '{' BlockStmtsOpt '}' ;

Since a Block may contain zero substatements a non-terminal with an epsilon rule is used:

BlockStmtsOpt:    BlockStmts | ;

Having dispensed with the optional case, BlockStmts are chained together  
using recursion:

BlockStmts:       BlockStmt | BlockStmts BlockStmt ;
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The kinds of statements allowed within a block include variable declarations and ordinary 
executable statements:

BlockStmt:        LocalVarDeclStmt | Stmt ;

Local variable declarations consist of a type followed by a comma-separated list of variable 
names ending with a semi-colon. Non-terminal VarDecls was presented where it was 
previously used in class variable declarations:

LocalVarDeclStmt: LocalVarDecl ';' ;

LocalVarDecl:     Type VarDecls ;

There are many kinds of ordinary executable statements, including expressions, break 
and return statements, if statements, and while and for loops:

Stmt:   Block | ';' | ExprStmt | BreakStmt | ReturnStmt 

      | IfThenStmt | IfThenElseStmt | IfThenElseIfStmt

      | WhileStmt | ForStmt ;

Most expressions produce a value that must be used in a surrounding expression. Three 
kinds of expressions can be turned into a statement by following them with a semi-colon:

ExprStmt:  StmtExpr ';' ;

StmtExpr:  Assignment | MethodCall | InstantiationExpr ;

Several forms of if statements are provided, allowing for chains of else statements. 
If they seem excessive, it is because the Jzero subset of Java generally requires bodies of 
conditional and loop constructs to use curly braces, avoiding a common source of bugs:

IfThenStmt:       IF '(' Expr ')' Block ;

IfThenElseStmt:   IF '(' Expr ')' Block ELSE Block ;

IfThenElseIfStmt: IF '(' Expr ')' Block ElseIfSequence

       |  IF '(' Expr ')' Block ElseIfSequence ELSE Block ;

ElseIfSequence:   ElseIfStmt | ElseIfSequence ElseIfStmt ;

ElseIfStmt:       ELSE IfThenStmt ;

WHILE loops have a simple syntax similar to IF statements:

WhileStmt:        WHILE '(' Expr ')' Block ;
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FOR loops, on the other hand, are quite involved:

ForStmt: FOR '(' ForInit ';' ExprOpt ';' ForUpdate ')' Block ;

ForInit:          StmtExprList | LocalVarDecl | ;

ExprOpt:          Expr |  ;

ForUpdate:        StmtExprList | ;

StmtExprList:     StmtExpr | StmtExprList ',' StmtExpr ;

The BREAK and RETURN statements are very simple, the only difference in their syntax 
being that a RETURN can have an optional expression after it. VOID methods return 
without this expression, while non-VOID methods must include it; this must be checked 
during semantic analysis:

BreakStmt:        BREAK ';' ;

ReturnStmt:       RETURN ExprOpt ';' ;

The next part of j0gram.y contains the expression grammar. An expression is a 
chunk of code that computes a value, typically for use in a surrounding expression. This 
expression grammar uses a one non-terminal symbol per level of operator precedence. 
For example, the way that multiplication is forced to be higher precedence than addition 
is that all multiplications are performed on a MulExpr non-terminal and then MulExpr 
instances are chained together using plus (or minus) operators in the AddExpr 
production rules:

Primary: Literal | '(' Expr ')' | FieldAccess | MethodCall;

Literal:  INTLIT | DOUBLELIT | BOOLLIT | STRINGLIT |NULLVAL;

InstantiationExpr: Name '(' ArgListOpt ')' ;

ArgList: Expr | ArgList ',' Expr ;

ArgListOpt:  ArgList | ;

FieldAccess: Primary '.' IDENTIFIER ;

MethodCall: Name '(' ArgListOpt ')'

    | Name '{' ArgListOpt '}'

    | Primary '.' IDENTIFIER '(' ArgListOpt ')'

    | Primary '.' IDENTIFIER '{' ArgListOpt '}' ;

PostFixExpr: Primary | Name ;

UnaryExpr:  '-' UnaryExpr | '!' UnaryExpr | PostFixExpr ;

MulExpr: UnaryExpr | MulExpr '*' UnaryExpr

    | MulExpr '/' UnaryExpr | MulExpr '%' UnaryExpr ;
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AddExpr: MulExpr | AddExpr '+' MulExpr | AddExpr '-' 

MulExpr ;

RelOp: LESSTHANOREQUAL | GREATERTHANOREQUAL | '<' | '>' ;

RelExpr: AddExpr | RelExpr RelOp AddExpr ;

EqExpr: RelExpr | EqExpr ISEQUALTO RelExpr | EqExpr 

NOTEQUALTO RelExpr ;

CondAndExpr: EqExpr | CondAndExpr LOGICALAND EqExpr ;

CondOrExpr: CondAndExpr | CondOrExpr LOGICALOR CondAndExpr;

Expr: CondOrExpr | Assignment ;

Assignment: LeftHandSide AssignOp Expr ;

LeftHandSide: Name | FieldAccess ;

AssignOp: '=' | INCREMENT | DECREMENT ;

Although it is split into five portions for presentation here, the j0gram.y file is not very 
long: around 120 lines of code. Since it works for both Unicon and Java, this is a lot of 
bang for your coding buck. The supporting Unicon and Java code are non-trivial, but we 
are letting yacc (iyacc and BYACC/J) do most of the work here. The j0gram.y file will 
get longer in the next chapter when we extend the parser to build syntax trees.

Now it is time to look at the supporting Unicon Jzero code that invokes and works with 
the Jzero yacc grammar.

Unicon Jzero code
The Unicon implementation of the Jzero parser uses almost the same organization as in 
the previous chapter, starting in a file named j0.icn. Instead of calling yylex() in a 
loop, in a yacc-based program the main() procedure calls yyparse(), which calls 
yylex() every time it does a shift operation.

As was mentioned in the last chapter, the Unicon scanner uses a parser object whose 
fields, such as parser.WHILE, contain the integer category codes. The parser object 
is no longer in j0.icn; it is now generated by yacc in a j0gram.icn file that is 
monstrous and will not be shown here:

global yylineno, yycolno, yylval, parser

procedure main(argv)

   j0 := j0()

   parser := Parser()

   yyin := open(argv[1]) | stop("usage: j0 filename")
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   yylineno := yycolno := 1

   if yyparse()=0 then

      write("no errors, ", j0.count, " tokens parsed")

end

The second part of j0.icn consists of the j0 class. See the explanations in Chapter 3, 
Scanning Source Code, in the Unicon Jzero code section:

class j0(count)

   method lexErr(s)

      stop(s, ": ", yytext) 

   end

   method scan(cat)

      yylval := token(cat, yytext, yylineno, yycolno)

      yycolno +:= *yytext

      count +:= 1

      return cat

   end

   method whitespace()

      yycolno +:= *yytext

   end

   method newline()

      yylineno +:= 1; yycolno := 1

   end

   method comment()

      yytext ? {

         while tab(find("\n")+1) do newline()

         yycolno +:= *tab(0)

      }

   end

   method ord(s)

      return proc("ord",0)(s[1])

   end

initially

   count := 0

end
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In the third part of j0.icn, the token type with its deEscape() method has been 
preserved from the previous chapter:

class token(cat, text, lineno, colno, ival, dval, sval)

   method deEscape(sin)

      local sout := ""

      sin := sin[2:-1]

      sin ? {

         while c := move(1) do {

            if c == "\\" then {

               if not (c := move(1)) then

                  j0.lexErr("malformed string literal")

               else case c of {

                  "t":{ sout ||:= "\t" }

                  "n":{ sout ||:= "\n" }

                  }

               }

            }

            else sout ||:= c

         }

      }

      return sout

   end

initially

   case cat of {

     parser.INTLIT:    { ival := integer(text) }

     parser.DOUBLELIT: { dval := real(text) }

     parser.STRINGLIT: { sval := deEscape(text) }

   }

end

You might notice that the Unicon Jzero code got a bit shorter in this chapter compared 
with the last, thanks to yacc doing some of the work for us. Now let's look at the 
corresponding code in Java.
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Java Jzero parser code
The Java implementation of the Jzero parser includes a main class in the j0.java file.  
It resembles the same file in the previous chapter, except its main() function  
calls yyparse():

package ch4;

import java.io.FileReader;

public class j0 {

   public static Yylex lex;

   public static parser par;

   public static int yylineno, yycolno, count;

   public static void main(String argv[]) throws Exception

   {

      lex = new Yylex(new FileReader(argv[0]));

      par = new parser();

      yylineno = yycolno = 1;

      count = 0;

      int i = par.yyparse();

      if (i == 0) {

         System.out.println("no errors, " + j0.count + 
                            " tokens parsed");

      }

   }

   // rest of j0.java methods are the same as in Chapter 3.

}

In order to run the program, you will also have to compile the module named parser.
java that is generated by yacc from our input j0gram.y file. That module provides 
the yyparse() function along with a set of named constants declared directly as short 
integers. While this book lists j0gram.y instead of the parser.java file that is 
generated from it, you can run yacc and look at its output yourself.

There is also a supporting module named token.java that contains the token class. It is 
identical to that presented in the previous chapter, so we do not duplicate it here.
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If you like to plan ahead, it may interest you to know that the instances of class token 
contain exactly the information that you need in the leaves of the syntax tree that you will 
build in the next chapter. There are different ways that a person could wire up this lexical 
information into the tree leaves. We will deal with that in Chapter 5, Syntax Trees.

Running the Jzero parser
You can run the program in either Unicon or Java as follows. This time, let's run the 
program on the following sample input file, named hello.java:

public class hello {

   public static void main(String argv[]) {

      System.out.println("hello, jzero!");

   }

}

Remember, to your parser this hello.java program is a sequence of lexemes that must 
be checked to see if it follows the grammar of the Jzero language that we gave earlier. The 
commands to compile and run the Jzero parser resemble earlier examples, with more files 
creeping in. The Unicon commands look like the following example:

uflex javalex.l

iyacc -dd j0gram.y 

unicon j0 javalex j0gram j0gram_tab yyerror

j0 hello.java

The machine-generated code output by uflex for javalex.l contains a single function 
large enough to cause the stock version of Unicon's code generator (icont) to fail with its 
own parse stack overflow! I had to modify the icont yacc grammar to use a larger stack 
in order to run this example.

In the next to the last line in the preceding list of commands, compiling the j0 executable 
with a single invocation to perform compilation plus linking is a lazy presentation choice 
on Unicon. On Java, there is enough of a circular dependency between the lexical analyzer 
(which uses parser integer constants) and the parser (which calls yylex()) that you will 
find it necessary to continually resort to the big inhale model of compilation. While this 
is a sad state of affairs, if that's what it takes for Java to smoothly combine jflex and 
BYACC/J, let's just relax and enjoy it.
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Big inhale model
All serious programming languages, especially object-oriented ones, allow 
modules to be compiled separately, and in fact encourage modules to be small, 
such that a build consists of many tiny module compilations. When some code 
is changed, only a small portion of the whole program needs to be recompiled. 
Unfortunately, many programming language features, in this case, classes that use 
each other's static members, can cause you to need to compile several or many 
modules at once under Java…highly ironic for a language that eschews linking. 
Sometimes you can tease out a sequence of single compilations that will work 
in Java, and sometimes not. When you must submit many or all the Java source 
files on the command line at once, what would be an unwise move for a C/C++ 
programmer becomes routine and necessary for a Java programmer. Don't sweat 
it. That's what fast CPUs and multiple cores and overengineered IDEs are for.

The Java commands to build and run the j0 parser are as follows:

jflex javalex.l

yacc -Jclass=parser -Jpackage=ch4 -Jyylex=ch4.j0.yylex\

     -Jyyerror=ch4.yyerror.yyerror j0gram.y

javac parser.java Yylex.java j0.java parserVal.java \

         token.java yyerror.java 

java ch4.j0 hello.java

From either the Unicon or the Java implementation, you should see the output like this:

no errors, 26 tokens parsed

Not a very interesting output. The Jzero parser will become a lot more useful in the next 
chapter, when you learn to construct a data structure that is a record of the complete 
syntactic structure of the input source program. That data structure is the fundamental 
skeleton upon which any interpreter or compiler implementation of a programming 
language is based. In the meantime, what if we give an input file that is missing some 
required punctuation, or uses some Java constructs that are not in Jzero? We expect an 
error message. The following example input file named helloerror.java serves to 
motivate our next section:

public class hello {

   public static void main(String argv[]) {

      System.out.println("hello, jzero!")

   }

}
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Can you see the error? It is the oldest and most common syntax error of all. A semi-colon 
is missing at the end of the println() statement.

Based on the parser written so far, running j0 helloerror.java so far prints the 
following yacc default error message and exits:

parse error

While no errors was uninteresting, saying parse error when there is a problem is 
not user-friendly at all. It is time to consider syntax error reporting and recovery.

Improving syntax error messages
Earlier, we saw a bit about the yacc syntax error reporting mechanism. Yacc just calls 
a function named yyerror(s). Very rarely, this function can be called for an internal 
error such as a parse stack overflow, but usually when it is called, it is passed the string 
"parse error" or "syntax error" as its parameter. Neither is adequate for helping 
programmers find and fix their errors in the real world. If you write a function called 
yyerror() yourself, you can produce a better error message. The key is to have extra 
information available that the programmer can use. Usually, that extra information will 
have to be placed in a global or public static variable in order for yyerror() to access it. 
Let's look at how to write a better yyerror() function in Unicon, and then in Java.

Adding detail to Unicon syntax error messages
In the Putting together a toy example section earlier in this chapter, you saw a Unicon 
implementation of yyerror(s) that just consisted of calling stop(s). It is easy to do 
better than this, especially if we have global variables such as yylineno available. In 
Unicon, your yyerror() function might look like the following:

procedure yyerror(s)

   write(&errout, "line ", yylineno, " column ", yycolno,

                  ", lexeme \"", yytext, "\": ", s)

end

This prints the line and column numbers, as well as the current lexeme at the time that 
the syntax error was discovered. Because yylineno, yycolno, and yytext are global 
variables, it is no problem to access them from the helper procedure yyerror(). The 
main thing that you might want to do even better than this is figure out how to produce a 
message that's more helpful than just saying parse error.
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Adding detail to Java syntax error messages
The corresponding Java yyerror() function is given below. In BYACC/J, you could 
place this method in the helper functions section of j0gram.y, where it will be included 
within the Parser class where it is called from. Unfortunately, if you do this, you 
give up Unicon/Java portability in the yacc specification file. So instead, we place the 
yyerror() function in its own class and its own file. This example shows the degree of 
pathos inflicted by Java's semi-pure object-oriented model where everything must be in a 
class, even when it is inane to do so:

public class yyerror {

   public static void yyerror(String s) {

      System.err.println(" line "+ j0.yylineno + 
                    " column "+ j0.yycolno + 
                    ", lexeme \""+ j0.yytext()+ "\": "+ s);

   }

}

As we saw earlier in this chapter, using this yyerror() from another file from within a 
parser class generated by BYACC/J requires an import static declaration for which 
we added -Jyylex=… and -Jyyerror=… command-line options to BYACC/J.

With either the Unicon or the Java implementation, when you link this yyerror() into 
your j0 parser and run j0 helloerror.java, you should see output that looks like 
the following:

line 4 column 1, lexeme "end": parse error

Until recently, this was as good as many production compilers such as gcc managed  
to do. For an expert programmer, it is enough. Looking before and after the point of 
failure, an expert will see a missing semi-colon. But for a novice or an intermediate 
programmer having a bad day, even the line number, column, and token at which an error 
is discovered are not enough. Good programming language tools must be able to deliver 
better error messages.

Using Merr to generate better syntax error messages
How do we write a better message that clearly indicates a parse error? The parse algorithm 
was looking at two integers when it realized there was an error: a parse state and a current 
input symbol. If you can map those two integers to a set of better error messages, you win. 
Unfortunately, it is not trivial to figure out what the integer parse states mean. You can do it 
by painful trial and error, but every time you change the grammar, those numbers change.
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A tool was created just to solve this problem, called Merr (for Meta error). Merr lives at 
http://unicon.org/merr. It takes as input the name of your compiler, a makefile 
for building it, and a meta.err specification file that contains a list of error fragments 
and their corresponding error messages. In order to generate yyerror(), Merr builds 
your compiler and runs it in a mode that causes it to print out the parse state and current 
input token on each of the fragment errors. It then writes out a yyerror() that contains 
a table showing, for each parse state and error fragment, what the associated error 
message is. A sample meta.err file for a few errors, including the missing semi-colon 
error shown earlier, is as follows:

public {

::: class expected 

public class {

::: missing class name 

public class h public

::: { expected 

public class h{public static void m(S a[]){S.o.p("h")}}

::: semi-colon expected

You invoke the Merr tool by telling it the name of the compiler you are building; it 
uses this name as a target argument when it calls make to build your compiler. Various 
command-line options let you specify what yacc version you have and other important 
details. The following command lines invoke merr on Unicon (left) or Java (right):

merr -u j0                   merr -j j0.class

This command grinds for a while. merr rebuilds your compiler with a modified 
yyerror() function to report the parse state and input token at the time of each error. 
Merr then runs your compiler on each of the error fragments and records what parse 
states they die in. Finally, merr writes out a yyerror() containing a table mapping 
parse states to error messages.

As you saw in both the Unicon and Java cases, writing an error message that includes line 
numbers or the current input symbol at the time a syntax error is found is easy. On the 
other hand, saying something more helpful about it can be challenging.

Summary
In this chapter, you learned the crucial technical skills and tools used in programming 
languages when they are parsing the sequence of lexemes from the program source code 
in order to check its organization and structure.
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You learned to write context-free grammars, and to use the iyacc and BYACC/J tools to 
take your context-free grammar and generate a parser for it.

When input fails to follow the rules, an error reporting function, yyerror(), is called. 
You learned some basics about this error handling mechanism.

You learned how to call a generated parser from a main() function. The parser that yacc 
generates is called via the yyparse() function.

You are now ready to learn how to build the syntax tree data structure that reflects the 
structure of the input source code. The next chapter will cover the construction of syntax 
trees in detail.

Questions
1. What does it really mean to say a grammar symbol is terminal? Is it dying  

or something?
2. YACC parsers are called shift/reduce parsers. What exactly is a shift? What is  

a reduce?
3. Does the semantic action code in a YACC grammar execute when the parser 

performs a shift, or a reduce, or both?
4. How does syntax analysis make use of the lexical analysis described in the  

previous chapter?
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The parser we constructed in the last chapter can detect and report syntax errors, which 
is a big, important job. When there is no syntax error, you need to build a data structure 
during parsing that represents the whole program logically. This data structure is based on 
how the different tokens and larger pieces of the program are grouped together. A syntax 
tree is a tree data structure that records the branching structure of the grammar rules 
used by the parsing algorithm to check the syntax of an input source file. A branch occurs 
whenever two or more symbols are grouped together on the right-hand side of a grammar 
rule to build a non-terminal symbol. This chapter will show you how to build syntax trees, 
which are the central data structure for your programming language implementation.

This chapter covers the following main topics: 

• Learning about trees

• Creating leaves from terminal symbols

• Building internal nodes from production rules

• Forming syntax trees for the Jzero language

• Debugging and testing your syntax tree

It is time to learn about tree data structures and how to build them. But first, let's  
learn about some new tools that will make building your language easier for the rest  
of this book.
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Technical requirements
There are two tools for you to install for this chapter, as follows:

• Dot is part of a package called Graphviz that can be downloaded from a downloads 
page found at http://graphviz.org. After successfully installing Graphviz, 
you should have an executable named dot (or dot.exe) on your path.

• GNU's Not Unix (GNU) make is a tool to help manage large programming projects 
that supports both Unicon and Java. It is available for Windows from http://
gnuwin32.sourceforge.net/packages/make.htm. Most programmers 
probably get it along with their C/C++ compiler or with a development suite such as 
MSYS2 or Cygwin. On Linux, you typically get make from a C development suite, 
although it is often also a separate package you can install.

• You can download this book's examples from our GitHub repository:  
https://github.com/PacktPublishing/Build-Your-Own-
Programming-Language/tree/master/ch5.

The Code in Action video for the chapter can be found here: https://bit.ly/3DgRcgC

Before we dive into the main topics of this chapter, let's explore the basics of how to use 
GNU make and why you need it for developing your language.

Using GNU make
Command lines are growing longer and longer, and you will get very tired of typing the 
commands required to build a programming language. We are already using Unicon, Java, 
uflex, jflex, iyacc, and BYACC/J. Few tools for building large programs are multi-platform 
and multi-language enough for this toolset. We will use the ultimate: GNU make.

Once a make program is installed on your path, you can store the build rules for Unicon 
or Java or both in a file named a makefile (or Makefile), and then just run make 
whenever you have changed the code and need to rebuild. A full treatment of make is 
beyond the scope of this book, but here are the key points.

A makefile is like a lex or yacc specification, except instead of recognizing patterns of 
strings, a makefile specifies a graph of build dependencies between files. For each file, the 
makefile contains the source files it depends on as well as a list of one or more command 
lines needed to build that file. The makefile header just consists of macros defined by 
NAME= strings that are used in later lines by writing $(NAME) to replace a name with its 
definition. The rest of the makefile lines are dependencies written in the following format:

file: source_file(s)

    build rule
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In the first line, file is an output file you want to build, also called a target. The first line 
specifies that the target depends on current versions of the source file(s). They are required 
in order to make the target. build rule is the command line that you execute to make 
that output file from those source file(s).

Don't forget the tab!
The make program supports multiple lines of build rules, as long as the lines 
continue to start with a tab. The most common newbie mistake in writing 
a makefile is that the build rule line(s) must begin with an American 
Standard Code for Information Interchange (ASCII) Ctrl-I, also known 
as a tab character. Some text editors will totally blow this. If your build rule 
lines don't start with a tab, make will probably give you some confusing error 
message. Use a real code editor and don't forget the tab.

The following example makefile will build both Unicon and Java if you just say make. 
If you run make unicon or make java, then it only builds one or the other. Added to 
the commands from the last chapter is a new module (tree.icn or tree.java) for 
this chapter. The makefile is presented in two halves, for the Unicon and then the Java 
build, respectively.

The target named all specifies what to build if make is invoked without an argument 
saying what to build. The rest of the first half is concerned with building Unicon. The U 
macros (and IYU for iyacc) list the Unicon modules that are separately compiled into a 
machine code format called ucode. The %.u:%.icn strange dependency is called a suffix 
rule. It says that all .u files are built from .icn files by running unicon -c on the 
.icn file. The executable named j0 is built from the ucode files by running unicon on 
all the .u files to link them together. The javalex.icn and j0gram.icn files are built 
using uflex and iyacc, respectively. Let's look at the first half of our makefile for this 
chapter, as follows:

all: unicon java

LYU=javalex.u j0gram.u j0gram_tab.u

U=j0.u token.u tree.u serial.u yyerror.u $(LYU)

unicon: j0

%.u : %.icn

    unicon -c $<

j0: $(U)

    unicon $(U)

javalex.icn: javalex.l

    uflex javalex.l
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j0gram.icn j0gram_tab.icn: j0gram.y

    iyacc -dd j0gram.y

The Java build rules occupy the second half of our makefile. The JSRC macro gives the 
names of all the Java files to be compiled. BYSRC macros for BYACC/J-generated sources, 
BYJOPTS for BYACC/J options, and IMP and BYJIMPS for BYACC/J static imports 
serve to shorten later lines in the makefile so that they fit within this book's formatting 
constraints. We are sticking carefully to a makefile that will run on both Windows 
and Linux. As a reminder, the Java rules of our makefile depend on a CLASSPATH 
environment variable, and the syntax for that varies with your operating system and its 
Command Prompt (or shell) syntax. On Windows, you might say the following:

set CLASSPATH=".;c:\users\username\byopl"

Here, username is your username, while on Linux, you might instead say the following:

export CLASSPATH=..

In any case, here is the second half of our makefile:

BYSRC=parser.java parserVal.java Yylex.java

JSRC=j0.java tree.java token.java yyerror.java $(BYSRC)

BYJOPTS= -Jclass=parser -Jpackage=ch5

IMP=importstatic

BYJIMPS= -J$(IMP)=ch5.j0.yylex -J$(IMP)=ch5.yyerror.yyerror

j: java

    java ch5.j0 hello.java

    dot -Tpng foo.dot >foo.png

java: j0.class

j0.class: $(JSRC)

    javac $(JSRC)

parser.java parserVal.java: j0gram.y

    yacc $(BYJOPTS) $(BYJIMPS) j0gram.y

Yylex.java: javalex.l

    jflex javalex.l

In addition to the rules for compiling the Java code, the Java part of the makefile has an 
artificial target, make j, that runs the compiler and invokes the dot program to generate 
a Portable Network Graphic (PNG) image of your syntax tree.
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If you find makefiles strange and scary-looking, don't worry—you are in good company. 
This is a red pill/blue pill moment. You can close your eyes and just type make at the 
command line. Or, you can dig in and take ownership of this universal multi-language 
software development build tool. If you want to read more about make, you might want  
to read GNU Make: A Program for Directing Compilation, by Stallman and McGrath, 
or one of the other fine books on make. Now, it's time to get on with syntax trees, but 
first, you have to know what a tree is and how to define a tree data type for use in a 
programming language.

Learning about trees
Mathematically a tree is a kind of graph structure; it consists of nodes and edges that 
connect those nodes. All the nodes in a tree are connected. A single node at the top is 
called the root. Tree nodes can have zero or more children, and at most one parent. A tree 
node with zero children is called a leaf; most trees have a lot of leaves. A tree node that is 
not a leaf has one or more children and is called an internal node. The following diagram 
shows an example tree with a root, two additional internal nodes, and five leaves:

Figure 5.1 – A tree with a root, internal nodes, and leaves

Trees have a property called arity that says what the maximum number of children a node 
can have is. An arity of 1 would give you a linked list. Perhaps the most common kinds 
of trees are binary trees (arity = 2). The kind of trees we need has as many children as 
there are symbols on the right-hand side of the rules in our grammar; these are so-called 
n-ary trees. While there is no arity bound for arbitrary context-free grammars, for any 
grammar we can just look and see which production rule has the most symbols on its 
right-hand side, and code our tree arity to that number if needed. In j0gram.y from 
the last chapter, the arity of Jzero is 9, although most non-leaf nodes will have two to four 
children. In the following subsections, we will dive deeper and learn how to define syntax 
trees and understand the difference between a parse tree and a syntax tree.
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Defining a syntax tree type
Every node in a tree has several pieces of information that need to be represented in the 
class or data type used for tree nodes. This includes the following information:

• Labels or integer codes that uniquely identify the node and what kind of node it is

• A data payload consisting of whatever information is associated with that node

• Information about that node's children, including how many children it has and 
references to those children (if any)

We use a class for this information in order to keep the mapping to Java as simple as 
possible. Here is an outline of the tree class with its fields and constructor code; the 
methods will be presented in the sections that follow within this chapter. The tree 
information can be represented in Unicon in a file named tree.icn, as follows.

class tree(id, sym, rule, nkids, tok, kids)

initially(s,r,x[])

   id := serial.getid(); sym := s; rule := r

   if type(x[1]) == "token__state" then {

      nkids:=0; tok := x[1]

   } else { nkids := *x; kids := x }

end

The tree class has the following fields:

• The id field is a unique integer identity or serial number that is used to distinguish 
tree nodes from each other. It is initialized by calling a getid() method in a 
singleton class named serial that will be presented later in this section.

• The label string is a human-readable description for debugging purposes.

• The member named rule holds which production rule (or, in the case of a leaf, the 
integer category) the node represents. Yacc does not provide a numeric encoding for 
production rules, so you will have to make your own, whether you just count rules 
starting from 1 or get fancier. If you start at 1,000 or use negative numbers, you will 
never confuse a production rule number for a terminal symbol code.

• The member named nkids holds the number of child nodes underneath this  
node. Usually, it will be 0, indicating a leaf, or a number 2 or higher, indicating an 
internal node.
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• The member named tok holds the lexical attributes of a leaf node, which comes to 
us via the yylex() function setting the parser's yylval variable, as discussed in 
Chapter 2, Programming Language Design.

• The member named kids is an array of tree objects.

The corresponding Java code looks like the following class tree in a file named tree.java. 
Its members match the fields in the Unicon tree class given previously: 

package ch5;

class tree {

  int id;

  String sym;

  int rule;

  int nkids;

  token tok;

  tree kids[]; 

The tree.java file continues with two constructors for the tree class: one for leaves, 
which takes a token object as an argument, and one for internal nodes, which takes 
children. These can be seen in the following code snippet:

  public tree(String s, int r, token t) {

    id = serial.getid();

    sym = s; rule = r; tok = t; }

  public tree(String s, int r, tree[] t) {

    id = serial.getid();

    sym = s; rule = r; nkids = t.length;

    kids = t;

  }

}

The previous pair of constructors initialize a tree's fields in an obvious way. You may be 
curious about the identifiers (IDs) initialized from a serial class. These are used to 
give each node a unique identity required by the tool that draws the syntax trees for us 
graphically at the end of this chapter. Before we proceed with using these constructors, 
let's consider two different mindsets regarding the trees we are constructing.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



110     Syntax Trees

Parse trees versus syntax trees
A parse tree is what you get when you allocate an internal node for every production 
rule used during the parsing of an input. Parse trees are a complete transcript of how the 
parser matched the input using the grammar. They are too large and unwieldy to use in 
practice. In real programming languages, there are lots and lots of non-terminal rules that 
build a non-terminal from a single non-terminal on their right-hand side. This results in 
a weeping tree appearance. The following diagram shows the height and shape of a parse 
tree for a trivial "Hello World" program. If you build a full parse tree, it will substantially 
slow down the rest of your compiler:

Figure 5.2 – A parse tree for a "Hello World" program (67 nodes, height 27)
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A syntax tree has an internal node whenever a production rule has two or more children 
on the right-hand side and the tree needs to branch out. The following diagram shows a 
syntax tree for the same hello.java program. Note the differences in size and shape 
compared with the parse tree shown in Figure 5.2:

Figure 5.3 – A syntax tree for a "Hello World" program (20 nodes, height 8)
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While a parse tree may be useful for studying or debugging a parsing algorithm, a 
programming language implementation uses a much simpler tree. You will see this 
especially when we present the rules for building tree nodes for our example language, in 
the Forming syntax trees for the Jzero language section.

Creating leaves from terminal symbols
Leaves make up a large percentage of the nodes in a syntax tree. The leaves in a syntax 
tree built by yacc come from the lexical analyzer. For this reason, this section discusses 
modifications to the code from Chapter 2, Programming Language Design. After you create 
leaves in the lexical analyzer, the parsing algorithm must pick them up somehow and plug 
them into the tree that it builds. This section describes that process in detail. First, you will 
learn how to embed token structures into tree leaves, and you will then learn how these 
leaves are picked up by the parser in its value stack. For Java, you will need to know about 
an extra type that is needed to work with the value stack. Lastly, the section provides some 
guidance as to which leaves are really necessary and which can be safely omitted. Here is 
how to create leaves containing token information.

Wrapping tokens in leaves
The tree type presented earlier contains a field that is a reference to the token 
type introduced in Chapter 2, Programming Language Design. Every leaf will get a 
corresponding token and vice versa. Think of this as wrapping up the token inside a tree 
leaf. Here is a Unified Modeling Language (UML) diagram that depicts each tree leaf 
containing a token:

Figure 5.4 – Diagram of a leaf containing a token

You could instead add the token type's member fields directly into the tree type. However, 
the strategy of allocating a token object, and then a separate tree node that contains a 
pointer to that token object, is reasonably clean and easy to understand. In Unicon, the 
code to create a leaf looks like this:

yylval := tree("token",0, token(cat, yytext, yylineno))
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In Java, the creation of a leaf node containing a token almost looks like the following code:

yylval = new tree("token",0, 
           new token(cat, yytext(), yylineno));

You could put this code within the j0.scan() method that is called for each token in 
the lexical analyzer. In Unicon, we are good at this point. In statically typed languages 
such as Java, what data type is yylval? In Chapter 2, Programming Language Design, 
yylval was type token; now, it looks like type tree. But yylval is declared in the 
generated parser, and yacc doesn't know anything about your token or tree types. For 
a Java implementation, you must learn the data type that the code generated by yacc uses 
for leaves, but first, you need to learn about the value stack.

Working with YACC's value stack
BYACC/J does not know about your tree class. For this reason, it generates its value 
stack as an array of objects whose type is named parserVal. If you rename BYACC/J's 
parser class to something else, such as myparse, using the -Jclass= command-line 
option, the value stack class will also automatically be renamed to myparseVal.

The yylval variable is part of the public interface of yacc. Every time yacc shifts the next 
terminal symbol onto its parse stack, it copies the contents of yylval onto a stack that it 
manages in parallel with the parse stack, called the value stack. BYACC/J declares the value 
stack elements as well as yylval in the parser class to be of the type parserVal.

Since a parse stack is managed in parallel with a value stack, whenever a new state is 
pushed on the parse stack, the value stack sees a corresponding push; the same goes for 
pop operations. Value stack entries whose parse state was produced by a shift operation 
hold tree leaves. Value stack entries whose parse state was produced by a reduce operation 
hold internal syntax tree nodes. The following diagram depicts a value stack in parallel 
with a parse stack:

Figure 5.5 – A parse stack and a value stack
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In Figure 5.5, $ on the left edge represents the bottom of the two stacks, which grow toward 
the right when values are pushed on the stack. The right side of the diagram depicts the 
sequence of terminal symbols whose tokens are produced by lexical analysis. Tokens are 
processed from left to right, with $ at the right edge of the screen representing the end of 
file, also depicted as EOF. The ellipses (…) on the left side represent the room on the two 
stacks to process additional push operations during parsing, while those on the right side 
represent whatever additional input symbols remain after those that are depicted.

The parserVal type was briefly mentioned in Chapter 4, Parsing. To build syntax trees 
in BYACC/J, we must go into this in detail. Here is the parserVal type, as defined  
by BYACC/J:

public class parserVal {

  public int ival;

  public double dval;

  public String sval;

  public Object obj;

  public parserVal() { }

  public parserVal(int val){ ival=val; }

  public parserVal(double val) { dval=val; }

  public parserVal(String val) { sval=val; }

  public parserVal(Object val) { obj=val; }

parserVal is a container that holds an int, a double, a String, and an Object, which 
can be a reference to any class instance at all. Having four fields here is a waste  
of memory for us since we will only use the obj field, but yacc is a generic tool. In any 
case, let's look at wrapping tree leaves within a parserVal object in order to place them 
in yylval.

Wrapping leaves for the parser's value stack
In terms of mechanics, parserVal is a third data type in the code that builds our syntax 
tree. BYACC/J requires that we use this type for the lexical analyzer to communicate 
tokens to the parser. For this reason, for the Java implementation, this chapter's class, j0, 
has a scan() method that looks like this:

   public static int scan(int cat) {

      ch5.j0.par.yylval =

         new parserVal(
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            new tree("token",0,

               new token(cat, yytext(), yylineno)));

      return cat;

   }

In Java, each call to scan() allocates three objects, as shown in Figure 5.6. In Unicon, 
scan() allocates two objects, as shown in Figure 5.4:

Figure 5.6 – The three allocated objects: parserVal, leaf, and token

OK—we wrapped tokens inside of tree nodes in order to represent leaf information, and 
then for Java, we wrap leaf nodes inside parserVal in order to put them onto the value 
stack. Let's consider what putting a leaf on the value stack looks like in slow motion. We 
will tell the story as it occurs in Java, recognizing that in Unicon it is a little bit simpler. 
Suppose you are at the beginning of your parse, and your first token is the reserved word 
PUBLIC. The scenario is shown in the following diagram. See the description of Figure 5.5 
if you need a refresher on how this diagram is organized:

Figure 5.7 – The parse stack state at the start of parsing
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The first operation is a shift. An integer finite automation state that encodes the fact 
that we saw PUBLIC is pushed onto the stack. yylex() calls scan(), which allocates 
a leaf wrapped in a parserVal instance and assigns yylval a reference to it, which 
yylex() pushes onto the value stack. The stacks are in lock-step, as shown in the 
following diagram:

Figure 5.8 – The parse and value stack state after a shift operation

Another of these wrapped leaves gets added to the value stack each time a shift occurs. 
Now, it's time to consider how all these leaves get placed into the internal nodes, and how 
internal nodes get assembled into higher-level nodes until you get back to the root. This 
all happens one node at a time when a production rule in the grammar is matched.

Determining which leaves you need
In most languages, punctuation marks such as semicolons and parentheses are only 
necessary for syntax analysis. Maybe they help for human readability or force operator 
precedence, or make the grammar parse unambiguously. Once you successfully parse the 
input, you will never again need those leaves in your syntax tree for subsequent semantic 
analysis or code generation.

You can omit unnecessary leaves from the tree, or you can leave them in so that their 
source line number and filename information is in the tree in case it is needed for error 
message reporting. I usually omit them by default but add in specific punctuation leaves if 
I determine that they are needed for some reason.

The flipside of this equation is this: any leaf that contains a value or a name or other 
semantic meaning of some kind in the language needs to be kept around in the syntax 
tree. This includes literal constants, IDs, and other reserved words or operators. Now, let's 
look at how and when to build internal nodes for your syntax tree.
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Building internal nodes from production rules
In this section, we will learn how to construct the tree, one node at a time, during parsing. 
The internal nodes of your syntax tree, all the way back up to the root, are built from the 
bottom up, following the sequence of reduce operations with which production rules are 
recognized during the parse. The tree nodes used during the construction are accessed 
from the value stack.

Accessing tree nodes on the value stack
For every production rule in the grammar, there is a chance to execute some code called a 
semantic action when that production rule is used during a parse. As you saw in Chapter 4,  
Parsing, in the Putting together the yacc context-free grammar section, semantic action code 
comes at the end of a grammar rule, before the semicolon or vertical bar that ends a rule and 
starts the next one.

You can put any code you want in a semantic action. For us, the main purpose of a 
semantic action is to build a syntax tree node. Use the value stack entries corresponding to 
the right side of the production rule to construct the tree node for the symbol on the left 
side of the production rule. The left-side non-terminal that has been matched gets a new 
entry pushed into the value stack that can hold the newly constructed tree node.

For this purpose, yacc provides macros that refer to each position on the value stack 
during a reduce operation. $1, $2, … $N refer to the current value-stack contents 
corresponding to the grammar rule's right-hand symbols 1 through N. By the time the 
semantic action code executes, these symbols have already been matched at some point 
in the recent past. They are the top N symbols on the value stack, and during the reduce 
operation they will be popped, and a new value-stack entry pushed in their place. The new 
value-stack entry is whatever you assign to $$. By default, it will just be whatever is in 
$1; the default semantic action of yacc is $$=$1, and that semantic action is correct for 
production rules with one symbol (terminal or non-terminal) that is being reduced to the 
non-terminal on the left-hand side of the rule.

All of this is a lot to unpack. Here is a specific example. Suppose you are just finishing  
up parsing the hello.java input shown earlier, and where it is at the point where 
it is time to reduce the reserved words PUBLIC, CLASS, the class name, and the class 
body. The grammar rule that applies at this point is ClassDecl: PUBLIC CLASS 
IDENTIFIER ClassBody.
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The preceding rule has four symbols on the right-hand side. The first three are terminal 
symbols, which means that on the value stack, their tree nodes will be leaves. The fourth 
symbol on the right side is a non-terminal, whose value stack entry will be an internal node, 
a subtree, which happens in this case to have three children. When it is time to reduce all 
that down to a ClassDecl production rule, we are going to allocate a new internal node. 
Since we are finishing parsing, in this case, it happens to be the root, but in any case, it will 
correspond to the class declaration that we have found, and it will have four children. The 
following diagram shows the contents of the parse stack and the value stack at the time of 
the reduce operation when the entire class is finally to be connected as one big tree:

Figure 5.9 – Parse and value stack right before a reduce operation

The mission of the semantic action for the ClassDecl production rule will be to create 
a new node, initialize its four children from $1, $2, $3, and $4, and assign it to $$. The 
following diagram shows how this looks after constructing the ClassDecl rule:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Building internal nodes from production rules     119

Figure 5.10 – Subtrees are combined on the value stack during reduce operations

The entire tree is constructed very gradually, one node at a time, and the parserVal 
objects are removed at the point at which children get removed from the value stack and 
inserted into their parent node.

Using the tree node factory method
The tree class contains an important factory method named node(). A factory method 
is a method that allocates and returns an object. It is like a constructor, but it allocates 
an object of a different type from whatever class it is within. Factory methods are used 
heavily in certain design patterns. In our case, the node() method takes a label, a 
production rule number, and any number of children, and returns an internal node to 
document that production rule having been matched. The Unicon code for the node() 
method is shown in the following snippet:

  method node(s,r,p[])

    return tree ! ([s,r] ||| p)

  end
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The Java code for the node() method is more complex due to the wrapping and 
unwrapping of the parserVal types. Wrapping a newly constructed internal node in 
a parserVal object is easy enough with a call to create a new parserVal object, but 
in order to construct the tree's children, they are first unwrapped by a separate helper 
method called unwrap(). The code is shown in the following snippet:

  public static parserVal node(String s,

int 

    r,parserVal...p) {

     tree[] t = new tree[p.length];

     for(int i = 0; i < t.length; i++)

     t[i] = (tree)(p[i].obj);

     return new parserVal((Object)new tree(s,r,t));

  }

The preceding Java code takes a variable number of arguments, unwraps them, and passes 
them into the constructor of the tree class. The unwrapping consists of selecting the obj 
field of the parserVal object and casting it to be of type tree.

Since the semantic actions for iyacc are Unicon code and for BYACC/J they are Java code, 
this requires some cheating. A semantic action will be legal in both Java and Unicon only 
if you limit it to common syntax such as method calls. If you start inserting other things in 
the semantic actions, such as if statements and other language-specific syntax, your yacc 
specification will become specific to one host language such as Unicon or Java.

However, it was not quite possible for this book's examples to be crafted to use the same 
input file for both iyacc and BYACC/J as is. The reason for this is that semantic actions 
in yacc typically assign a value (a reference to a parse tree node) to a special variable 
named $$, and Unicon uses a := operator for assignment while Java uses =. This was 
addressed during the writing of this book by modifying iyacc so that semantic actions 
that start with $$= are accepted as a special operator that generates the Unicon equivalent 
assignment of $$:=. 

The strategies that you need for building internal nodes in your syntax tree are pretty simple: 
for every production rule, count how many children are either one of the following:

• A non-terminal

• A terminal that is not a punctuation mark

If the number of such children is more than one, call the node() factory method to allocate 
a tree node, and assign it to be the value stack entry for the production rule. Now, it's time to 
demonstrate syntax tree construction in a non-trivial example: the Jzero language.
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Forming syntax trees for the Jzero language
This section shows you how to build syntax trees for the Jzero language. The full 
j0gram.y file for this chapter is available on the book's GitHub site. The header is 
omitted here since the %token declarations are unchanged from how they appear in the 
section titled The Jzero Yacc specification in the previous chapter. Although we are again 
presenting many of the grammar rules shown in the last chapter, the focus now is on the 
construction of new tree nodes associated with each production rule, if any.

As described earlier, the tree's internal nodes are constructed in semantic actions that are 
added at the ends of production rules. For each production rule that builds a new node, it 
is assigned to $$, the yacc value corresponding to the new non-terminal symbol built by 
that production rule.

The starting non-terminal, which in the case of Jzero is a single class declaration, is the 
point at which the root of the entire tree is constructed. Its semantic action has extra work 
after assigning the constructed node to $$. At this top level, in this chapter, the code prints 
out the tree by calling the print() method in order to allow you to check whether it is 
correct. Subsequent chapters may assign the topmost tree node to a global variable named 
root for subsequent processing or call a different method here to translate the tree to 
machine code, or to execute the program directly by interpreting the statements in the tree.

The code is illustrated in the following snippet:

%%

ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

  $$=j0.node("ClassDecl",1000,$3,$4);

  j0.print($$);

 } ;

The non-terminal ClassBody either contains declarations (first production rule) or 
is empty. In the empty case, it is an interesting question whether to assign an explicit 
leaf node indicating an empty ClassBody, as is done in the following code snippet, or 
whether the code should just say $$=null:

ClassBody: '{' ClassBodyDecls '}' {

              $$=j0.node("ClassBody",1010,$2); }

              | '{' '}' { $$=j0.node("ClassBody",1011); };
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The non-terminal ClassBodyDecls chains together as many fields, methods, and 
constructors as occur within the class. The first production rule terminates the recursions 
in the second production rule with a single ClassBodyDecl. Since there is no semantic 
action in the first production rule, it executes $$=$1; the subtree for ClassBodyDecl  
is promoted instead of creating a node for the parent. The code is illustrated in the 
following snippet:

ClassBodyDecls: ClassBodyDecl

              | ClassBodyDecls ClassBodyDecl {

              $$=j0.node("ClassBodyDecls",1020,$1,$2); };

There are three kinds of ClassBodyDecl to choose from. No extra tree node is allocated 
at this level as it can be inferred which kind of ClassBodyDecl each subtree is. The 
code is illustrated here:

ClassBodyDecl: FieldDecl | MethodDecl | ConstructorDecl ;

A field, or member variable, is declared with a base type followed by a list of variable 
declarations, as illustrated in the following code snippet:

FieldDecl: Type VarDecls ';' {

             $$=j0.node("FieldDecl",1030,$1,$2); };

The types in Jzero are very simple and include four built-in type names and a generic rule 
for names of classes, as illustrated in the following code snippet. No production rule has 
two children, so no new internal nodes are needed at this level. Arguably, String might 
be handled using that latter rule and needn't be a special case:

Type: INT | DOUBLE | BOOL | STRING | Name ;

A name is either a single token called IDENTIFIER or a name with one or more periods 
in it, called QualifiedName, as illustrated in the following code snippet:

Name: IDENTIFIER | QualifiedName ;

QualifiedName: Name '.' IDENTIFIER {

                 $$=j0.node("QualifiedName",1040,$1,$3);};
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Variable declarations are a comma-separated list of one or more variable declarators. In 
Jzero, VarDeclarator is just IDENTIFIER unless it has square brackets following it 
that denote an array type. As the VarDeclarator internal node implies a set of square 
brackets, they are not represented explicitly in the tree. The code is illustrated in the 
following snippet:

VarDecls: VarDeclarator | VarDecls ',' VarDeclarator {

            $$=j0.node("VarDecls",1050,$1,$3); };

VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' {

            $$=j0.node("VarDeclarator",1060,$1); };

In Jzero, a method can return a value of some return type or it can return VOID, as 
illustrated in the following code snippet:

MethodReturnVal : Type | VOID ;

A method is declared by providing a method header followed by a block of code. All 
methods are public static methods. After the return value, the guts of a method header 
consisting of the method's name and parameters are MethodDeclarator, as illustrated 
in the following code snippet:

MethodDecl: MethodHeader Block {

              $$=j0.node("MethodDecl",1380,$1,$2); };

MethodHeader: PUBLIC STATIC MethodReturnVal 

                 MethodDeclarator {

              $$=j0.node("MethodHeader",1070,$3,$4); };

MethodDeclarator: IDENTIFIER '(' FormalParmListOpt ')' {

              $$=j0.node("MethodDeclarator",1080,$1,$3); };

An optional formal parameter list is either a non-empty FormalParmList or it is 
an empty production rule, the so-called epsilon rule, between the vertical bar and the 
semicolon. A formal parameter list is a comma-separated list of formal parameters. This is 
a non-empty list and the recursion is terminated by a lone formal parameter. Each formal 
parameter has a type followed by a variable name, possibly including square brackets for 
array types, as illustrated in the following code snippet:

FormalParmListOpt: FormalParmList | ;

FormalParmList: FormalParm | FormalParmList ',' FormalParm {

               $$=j0.node("FormalParmList",1090,$1,$3); };

FormalParm: Type VarDeclarator {

               $$=j0.node("FormalParm",1100,$1,$2); };
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Constructors are declared similarly to methods, although they have no return type, as 
illustrated in the following code snippet:

ConstructorDecl: MethodDeclarator Block {

               $$=j0.node("ConstructorDecl",1110,$1,$2); };

A Block is a sequence of zero or more statements. Although many of the tree nodes 
introduce the branching of two or more children, a few tree nodes have only one child 
because surrounding punctuation is unnecessary. Such nodes might themselves be 
unnecessary, but they may also make it easier to understand and process the tree. You can 
see an example in the following code snippet:

Block: '{' BlockStmtsOpt '}'{$$=j0.node("Block",1200,$2);};

BlockStmtsOpt: BlockStmts | ;

BlockStmts:  BlockStmt | BlockStmts BlockStmt {

                    $$=j0.node("BlockStmts",1130,$1,$2); };

BlockStmt:   LocalVarDeclStmt | Stmt ;

Block statements can be either local variable declarations or statements. The syntax of 
LocalVarDeclStmt is indistinguishable from a FieldDecl rule. It may, in fact, 
be better to eliminate duplication by default. Whether you use another set of identical 
production rules or factor the common elements of the grammar, this may depend on 
whether it will be easier for you to write code that does the correct thing with various 
trees if they have recognizably different tree node labels and production rule numbers, or 
whether the differences will be recognized and handled properly due to the surrounding 
tree context. An example is given in the following code snippet:

LocalVarDeclStmt: LocalVarDecl ';' ;

LocalVarDecl: Type VarDecls {

                $$=j0.node("LocalVarDecl",1140,$1,$2); };

In the preceding case, a LocalVarDecl node is created, making it easy to distinguish 
local variables from class member variables in the syntax tree.

The many kinds of statements each result in their own unique tree nodes. Since they 
are one-child production rules, introducing another tree node here is unnecessary. The 
following code snippet illustrates this:

Stmt: Block | ';' | ExprStmt | BreakStmt | ReturnStmt |

      | IfThenStmt | IfThenElseStmt | IfThenElseIfStmt

      | WhileStmt | ForStmt ;
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ExprStmt: StmtExpr ';' ;

StmtExpr: Assignment | MethodCall ;

Several non-terminals in Jzero exist in order to allow common variations of if statements. 
Blocks are required for bodies of conditionals and loops in Jzero in order to avoid a 
common ambiguity when they are nested, as illustrated in the following code snippet:

IfThenStmt: IF '(' Expr ')' Block {

     $$=j0.node("IfThenStmt",1150,$3,$5); };

IfThenElseStmt: IF '(' Expr ')' Block ELSE Block {

     $$=j0.node("IfThenElseStmt",1160,$3,$5,$7); };

IfThenElseIfStmt: IF '(' Expr ')' Block ElseIfSequence {

     $$=j0.node("IfThenElseIfStmt",1170,$3,$5,$6); }

|  IF '(' Expr ')' Block ElseIfSequence ELSE Block {

     $$=j0.node("IfThenElseIfStmt",1171,$3,$5,$6,$8); };

ElseIfSequence: ElseIfStmt | ElseIfSequence ElseIfStmt {

     $$=j0.node("ElseIfSequence",1180,$1,$2); };

ElseIfStmt: ELSE IfThenStmt {

     $$=j0.node("ElseIfStmt",1190,$2); };

Tree nodes are generally created for these control structures, and they generally introduce 
branching into the tree. Although while loops introduce only a single branch, the node 
for a for loop has four children. Did the language designers do that on purpose? You can 
see an example in the following code snippet:

WhileStmt: WHILE '(' Expr ')' Stmt {

     $$=j0.node("WhileStmt",1210,$3,$5); };

ForStmt: FOR '(' ForInit ';' ExprOpt ';' ForUpdate ')' 

Block {

     $$=j0.node("ForStmt",1220,$3,$5,$7,$9); };

ForInit: StmtExprList | LocalVarDecl | ;

ExprOpt: Expr |  ;

ForUpdate: StmtExprList | ;

StmtExprList: StmtExpr | StmtExprList ',' StmtExpr {

     $$=j0.node("StmtExprList",1230,$1,$3); };
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A break statement is adequately represented by the leaf that says BREAK, as illustrated here:

BreakStmt: BREAK ';' ;

ReturnStmt: RETURN ExprOpt ';' {

     $$=j0.node("ReturnStmt",1250,$2); }; 

A return statement needs a new node, since it is followed by an optional expression. 
Primary expressions, including literals, do not introduce an additional layer of tree nodes 
above the content of their child. The only interesting action here is for parenthesized 
expressions, which discard the parentheses that were used for operator precedence and 
promote the second child without the need for an additional tree node at this level. Here is 
an example of this:

Primary:  Literal | FieldAccess | MethodCall |

          '(' Expr ')' { $$=$2; };

Literal: INTLIT | DOUBLELIT | BOOLLIT | STRINGLIT | NULLVAL ;

An argument list is one or more expressions, separated by commas. To allow zero 
expressions, a separate non-terminal is used, as illustrated in the following code snippet:

ArgList: Expr | ArgList ',' Expr {

                  $$=j0.node("ArgList",1270,$1,$3); };

ArgListOpt:  ArgList | ;

Field accesses may be chained together since their left child, a Primary, can be 
another field access. When one non-terminal has a production rule that derives another 
non-terminal that has a production rule that derives the first non-terminal, the situation 
is called mutual recursion and it is normal and healthy. You can see an example of this in 
the following code snippet:

FieldAccess: Primary '.' IDENTIFIER {

               $$=j0.node("FieldAccess",1280,$1,$3); };

A method call has defining syntax consisting of a method followed by a parenthesized 
list of zero or more arguments. Usually, this is a simple binary node in which the left 
child is pretty simple (a method name) and the right child may contain a large subtree of 
arguments…or it may be empty. Here is an example of this:

MethodCall: Name '(' ArgListOpt ')' {

              $$=j0.node("MethodCall",1290,$1,$3); }

  | Primary '.' IDENTIFIER '(' ArgListOpt ')' {

    $$=j0.node("MethodCall",1291,$1,$3,$5); } ;
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As seen in the previous chapter, the expression grammar in Jzero has many recursive 
levels of non-terminals that are not all shown here. You should consult the book's website 
to see the full grammar with syntax tree construction. In the following code snippet, each 
operator introduces a tree node. After the tree is constructed, a simple walk of the tree will 
allow correct calculation (or correct code generation) of the expression:

PostFixExpr: Primary | Name ;

UnaryExpr: '-' UnaryExpr {$$=j0.node("UnaryExpr",1300,$1,$2);}

    | '!' UnaryExpr { $$=j0.node("UnaryExpr",1301,$1,$2); }

    | PostFixExpr ;

MulExpr: UnaryExpr

    | MulExpr '*' UnaryExpr {

      $$=j0.node("MulExpr",1310,$1,$3); }

    | MulExpr '/' UnaryExpr {

      $$=j0.node("MulExpr",1311,$1,$3); }

    | MulExpr '%' UnaryExpr {

      $$=j0.node("MulExpr",1312,$1,$3); };

AddExpr: MulExpr

    | AddExpr '+' MulExpr{$$=j0.node("AddExpr",1320,$1,$3); }

    | AddExpr '-' MulExpr{$$=j0.node("AddExpr",1321,$1,$3);

};

In a classic C language grammar, comparison operators, also called relational operators, 
are just another level of precedence for integer expressions. Java and Jzero are a bit 
more interesting in that the Boolean type is separate from integers and type-checked 
as such, but that will happen in the chapters that follow, on semantic analysis and 
type checking. For the code shown in the following snippet, there are four relational 
operators. LESSTHANOREQUAL is the integer code the lexical analyzer reports for <=, 
while GREATERTHANOREQUAL is returned for >=. For the < and > operators, the lexical 
analyzer returns their ASCII codes:

RelOp: LESSTHANOREQUAL | GREATERTHANOREQUAL | '<' | '>' ;
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The relational operators are at a slightly higher level of precedence than the comparisons 
of whether values are equal or not equal to each other:

RelExpr: AddExpr | RelExpr RelOp AddExpr {

  $$=j0.node("RelExpr",1330,$1,$2,$3); };

EqExpr: RelExpr

      | EqExpr ISEQUALTO RelExpr {

        $$=j0.node("EqExpr",1340,$1,$3); }

      | EqExpr NOTEQUALTO RelExpr {

        $$=j0.node("EqExpr",1341,$1,$3); };

Below the relational and comparison operators, the && and || Boolean operators operate 
at different levels of precedence, as illustrated in the following code snippet:

CondAndExpr: EqExpr | CondAndExpr LOGICALAND EqExpr {

  $$=j0.node("CondAndExpr", 1350, $1, $3); };

CondOrExpr: CondAndExpr | CondOrExpr LOGICALOR CondAndExpr {

  $$=j0.node("CondOrExpr", 1360, $1, $3); };

The lowest level of precedence in many languages, as with Jzero, are the assignment 
operators. Jzero has += and -= but not ++ and --, which are deemed to be a can of 
worms for novice programmers and do not add a lot of value for teaching compiler 
construction. You can see these operators in use here:

Expr: CondOrExpr | Assignment ;

Assignment: LeftHandSide AssignOp Expr {

   $$=j0.node("Assignment",1370, $1, $2, $3); };

LeftHandSide: Name | FieldAccess ;

AssignOp: '=' | AUGINCR | AUGDECR ;

This section presented the highlights of Jzero syntax tree construction. Many production 
rules require the construction of a new internal node that serves as the parent of several 
children on the right-hand side of a production rule. However, the grammar has many 
cases where a non-terminal is constructed from only one symbol on the right-hand side, 
in which case the allocation of an extra internal node can usually be avoided. Now, let's 
look at how to check your tree afterward to make sure that it was assembled correctly.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging and testing your syntax tree     129

Debugging and testing your syntax tree
The trees that you build must be rock solid. What this spectacular mixed metaphor means 
is: if your syntax tree structure is not built correctly, you can't expect to be able to build 
the rest of your programming language. The most direct way of testing that the tree has 
been constructed correctly is to walk back through it and look at the tree that you have 
built. This section contains two examples of doing that. You will print your tree first in a 
human-readable (more or less) ASCII text format, then you will learn how to print it out 
in a format that is easily rendered graphically using the popular open source Graphviz 
package, commonly accessed through PlantUML or the classic command-line tool called 
dot. First, consider some of the most common causes of problems in syntax trees.

Avoiding common syntax tree bugs
The most common problems with syntax trees result in program crashes when you print 
the tree out. Each tree node may hold references (pointers) to other objects, and when 
these references are not initialized correctly: boom! Debugging problems with references 
is difficult, even in higher-level languages.

The first major case is this: are your leaves being constructed and picked up by the parser? 
Suppose you have a lex rule like the one shown here:

";"                    { return 59; }

The ASCII code is correct. The parse will succeed but your syntax tree will be broken. You 
must create a leaf and assign it to yylval whenever you return an integer code in one of 
your Flex actions. If you do not, yacc will have garbage sitting around in yylval when 
yyparse() puts it on the value stack for later insertion into your tree. You should check 
that every semantic action that returns an integer code in your lex file also allocates 
a new leaf and assigns it to yylval. You can check each leaf to ensure it is valid on 
the receiving end by printing its contents when you first access it as a $1 or $2 rule or 
whatever, in the semantic actions for the production rules of yacc.

The second major case is: are you constructing internal nodes correctly for all the 
production rules that have two or more children that are significant (and not just 
punctuation marks, for example)? If you are paranoid, you can print out each subtree to 
make sure it is valid before creating a new parent that stores pointers to the child subtrees. 
Then, you can print out the new parent that you've created, including its children, to make 
sure it was assembled correctly.
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One weird special case that comes up in syntax tree construction has to do with epsilon 
rules: production rules where a non-terminal is constructed from an empty right-hand 
side. An example would be the following rule from the j0gram.y file:

FormalParmListOpt: FormalParmList | ;

For the second production rule in this example, there are no children. The default rule of 
yacc, $$=$1, does not look good since there is no $1 rule. You may construct a new leaf 
here, as in the following solution:

FormalParmListOpt: FormalParmList | { $$=

                     j0.node("FormalParamListOpt",1095); }

But this leaf is different from normal since it has no associated token. Code that traverses 
the tree afterward had better not assume that all leaves have tokens. In practice, some 
people might just use a null pointer to represent an epsilon rule instead. If you use a 
null pointer, you may have to add checks for null pointers everywhere in your later tree 
traversal code, including the tree printers in the following subsections. If you allocate 
a leaf for every epsilon rule, your tree will be bigger without really adding any new 
information. Memory is cheap, so if it simplifies your code it is probably OK to do this.

To sum up, and as a final warning: you may not discover fatal flaws in your tree construction 
code unless you write test cases that use every single production rule in your grammar! Such 
grammar coverage may be required of any serious language implementation project. Now, 
let's look at the actual methods to verify tree correctness by printing them.

Printing your tree in a text format
One way to test your syntax tree is to print out the tree structure as ASCII text. This is 
done via a tree traversal in which each node results in one or more lines of text output. 
The following print() method in the j0 class just asks the tree to print itself:

   method print(root)

      root.print()

   end

The equivalent code in Java must unpack the parserVal object and cast the Object to 
a tree in order to ask it to print itself, as illustrated in the following code snippet:

   public static void print(parserVal root) {

       ((tree)root.obj).print();

   }
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Trees generally print themselves recursively. A leaf just prints itself out, while an internal 
node prints itself and then asks its children to print themselves. For a text printout, 
indentation is used to indicate the nesting level or distance of a node from the root. The 
indentation level is passed as a parameter and incremented for each level deeper within 
the tree. The Unicon version of a tree class's print() method is shown in the following 
code snippet:

method print(level:0)

  writes(repl(" ",level))

  if \tok then

    write(id, "  ", tok.text, " (",tok.cat, 
         "): ",tok.lineno)

  else write(id, "  ", sym, " (", rule, "): ", nkids)

  every (!kids).print(level+1);

end

The preceding method indents a number of spaces given in a parameter and then writes a 
line of text describing the tree node. It then calls itself recursively, with one higher nesting 
level, on each of the node's children, if there are any. The Java-equivalent code for the 
tree class text printout looks like this:

  public void print(int level) {

    int i;

    for(i=0;i<level;i++) System.out.print(" ");

    if (tok != null)

      System.out.println(id + "   " + tok.text + 
                         " (" + tok.cat + "): "+tok.lineno);

    else

      System.out.println(id + "   " + sym + 
            " (" + rule + "): "+nkids);

    for(i=0; i<nkids; i++)

      kids[i].print(level+1);

  }

  public void print() {

    print(0);

  }
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When you run the j0 command with this tree print function in place, it produces the 
following output:

63   ClassDecl (1000): 2

 6   hello (266): 1

 62   ClassBody (1010): 1

  59   MethodDecl (1380): 2

   32   MethodHeader (1070): 2

    14   void (264): 2

    31   MethodDeclarator (1080): 2

     16   main (266): 2

     30   FormalParm (1100): 2

      20   String (266): 2

      27   VarDeclarator (1060): 1

       22   argv (266): 2

   58   Block (1200): 1

    53   MethodCall (1290): 2

     46   QualifiedName (1040): 2

      41   QualifiedName (1040): 2

       36   System (266): 3

       40   out (266): 3

      45   println (266): 3

     50   "hello, jzero!" (273): 3

no errors

Although the tree structure can be deciphered from studying this output, it is not exactly 
transparent. The next section shows a graphic way to depict the tree.

Printing your tree using dot
A fun way to test your syntax tree is to print out the tree in a graphical form. As 
mentioned in the Technical requirements section, a tool called dot will draw syntax trees 
for us. Writing our tree in the input format of dot is done via another tree traversal in 
which each node results in one or more lines of text output. To draw a graphic version 
of the tree, change the j0.print() method to call the tree class's print_graph() 
method. In Unicon, this is trivial. The code is illustrated in the following snippet:

   method print(root)

      root.print_graph(yyfilename || ".dot")

   end
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The equivalent code in Java must unpack the parserVal object and cast the Object to 
a tree in order to ask it to print itself, as illustrated in the following snippet:

   public static void print(parserVal root) {

       ((tree)root.obj).print_graph(yyfilename + ".dot");

   }

As was true for a text-only printout, trees print themselves recursively. The Unicon version 
of a tree class's print_graph() method is shown in the following code snippet:

  method print_graph(fw)

    if type(filename) == "string" then {

      fw := open(filename,  "w") |

        stop("can't open ", image(filename), " for writing")

      write(fw, "digraph {")

      print_graph(fw)

      write(fw, "}")

      close(fw)

    }

    else if \tok then print_leaf(fw)

    else { 

      print_branch(fw)

      every i := 1 to nkids do

        if \kids[i] then {

          write(fw, "N",id," -> N",kids[i].id,";")

          kids[i].print_graph(fw)

        } else {

          write(fw, "N",id," -> N",id,"_",j,";")

          write(fw, "N", id, "_", j,

                    " [label=\"Empty rule\"];")

          j +:= 1

        }

    }

  end
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The Java implementation of print_graph() consists of two methods. The first is a 
public method that takes a filename, opens that file for writing, and writes the whole 
graph to that file, as illustrated in the following code snippet:

  void print_graph(String filename){

    try {

      PrintWriter pw = new PrintWriter(

        new BufferedWriter(new FileWriter(filename)));

      pw.printf("digraph {\n");

      j = 0;

      print_graph(pw);

      pw.printf("}\n");

      pw.close();

      }

    catch (java.io.IOException ioException) {

      System.err.println("printgraph exception");

      System.exit(1);

      }

  }

In Java, function overloading allows public and private parts of print_graph() to have 
the same name. The two methods are distinguished by their different parameters. The 
public print_graph() part passes the file that it opens as a parameter to the following 
method. This version of print_graph() prints a line or two about the current node, 
and calls itself recursively on each child:

  void print_graph(PrintWriter pw) {

  int i;

    if (tok != null) {

      print_leaf(pw);

      return;

    }

    print_branch(pw);

    for(i=0; i<nkids; i++) {

        if (kids[i] != null) {

          pw.printf("N%d -> N%d;\n", id, kids[i].id);

          kids[i].print_graph(pw);
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        } else {

          pw.printf("N%d -> N%d%d;\n", id, kids[i].id, j);

          pw.printf("N%d%d [label=\"%s\"];\n", id, j, 
                    "Empty rule");

        j++;

        }

    }

  }

The print_graph() method calls a couple of helper functions: print_leaf() for 
leaves and print_branch() for internal nodes. The print_leaf() method prints 
a dotted outline box containing the characteristics of a terminal symbol. The Unicon 
implementation of print_leaf() is shown here:

  method print_leaf(pw)

    local s := parser.yyname[tok.cat]

    print_branch(pw)

    write(pw,"N",id,

          " [shape=box style=dotted label=\" ",s," \\n ")

    write(pw,"text = ",escape(tok.text)," \\l lineno = ", 
             tok.lineno," \\l\"];\n")

  end

The integer code for the token's terminal symbol is used as a subscript in an array 
of strings in the parser named yyname. This is generated by iyacc. The Java 
implementation of print_leaf() is similar to the Unicon version, as illustrated in the 
following code snippet:

  void print_leaf(PrintWriter pw) {

    String s = parser.yyname[tok.cat];

    print_branch(pw);

    pw.printf("N%d [shape=box style=dotted label=\" %s \\n", 
      id, s);

    pw.printf("text = %s \\l lineno = %d \\l\"];\n", 
              escape(tok.text), tok.lineno);

  }
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The print_branch() method prints a solid box for internal nodes, including the  
name of the non-terminal represented by that node. The Unicon implementation of 
print_branch() is shown here:

  method print_branch(pw)

    write(pw, "N",id," [shape=box label=\"",

          pretty_print_name(),"\"];\n");

  end

The Java implementation of print_branch() is similar to its Unicon counterpart, as 
illustrated in the following code snippet:

  void print_branch(PrintWriter pw) {

    pw.printf("N%d [shape=box label=\"%s\"];\n", 
              id, pretty_print_name());

  }

The escape() method adds escape characters when needed before double quotes so 
that dot will print the double quote marks. The Unicon implementation of escape() 
consists of the following code:

  method escape(s)

    if s[1] == "\"" then

      return "\\" || s[1:-1] || "\\\""

    else return s

  end

The Java implementation of escape() is shown here:

  public String escape(String s) {

    if (s.charAt(0) == '\"')

      return "\\"+s.substring(0, s.length()-1)+"\\\"";

    else return s;

  }
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The pretty_print_name() method prints out the best human-readable name for 
a given node. For an internal node, that is its string label, along with a serial number to 
distinguish multiple occurrences of the same label. For a terminal symbol, it includes the 
lexeme that was matched. The code is illustrated in the following snippet:

  method pretty_print_name() {

    if /tok then return sym || "#" || (rule%10)

    else return escape(tok.text) || ":" || tok.cat

  end

The Java implementation of pretty_print_name() looks similar to the preceding 
code, as we can see here:

  public String pretty_print_name() {

    if (tok == null) return sym +"#"+(rule%10);

    else return escape(tok.text)+":"+tok.cat;

  }

Run this program on the sample hello.java input file with the following command:

j0 hello.java                  java ch5.j0 hello.java

The j0 program writes out a hello.java.dot file that is valid input for the dot 
program. Run the dot program with the following command to generate a PNG image:

dot -Tpng hello.java.dot >hello.png
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The following diagram shows a syntax tree for hello.java, as written to hello.png:

Figure 5.11 – A diagram of the syntax tree for hello.java

If you do not write your tree construction code correctly, the program will crash when 
you run it, or the tree will be obviously bogus when you inspect the image. In order to test 
your programming language code, you should run it on a wide variety of input programs 
and examine the resulting trees carefully.
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In this section, you saw that only a few lines of code were needed to generate textual and 
graphical depictions of your syntax trees using tree traversals. The graphical rendering 
was provided by an external tool called dot. Tree traversals are a simple but powerful 
programming technique that will dominate the next several chapters of this book.

Summary
In this chapter, you learned the crucial technical skills and tools used to build a syntax tree 
while the input program is being parsed. A syntax tree is the main data structure used to 
represent source code internally to a compiler or interpreter.

You learned how to develop code that identifies which production rule was used to build 
each internal node so that we can tell what we are looking at later on. You learned how to 
add tree node constructors for each rule in the scanner. You learned how to connect tree 
leaves from the scanner into the tree built in the parser. You learned how to check your 
trees and debug common tree construction problems.

You are done synthesizing the input source code to a data structure that you can use. 
Now, it is time to start analyzing the meaning of the program source code so that you can 
determine which computations it specifies. This is done by walking through the parse tree 
using tree traversals to perform semantic analysis.

The next chapter will start us off on that journey by walking the tree to build symbol tables 
that will enable you to track all the variables in the program and figure out where they 
were declared.

Questions
1. Where do the leaves of the syntax tree come from?

2. How are the internal nodes of a syntax tree created?

3. Where are leaves and internal nodes stored while a tree is being constructed?
4. Why are values wrapped and unwrapped when they are pushed and popped on the 

value stack?
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The heart of a compiler is the tree traversals. Upon completion of this section, you will 
have a compiler that performs semantic analysis and code generation.

This section comprises the following chapters:

• Chapter 6, Symbol Tables

• Chapter 7, Checking Base Types

• Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses

• Chapter 9, Intermediate Code Generation

• Chapter 10, Syntax Coloring in an IDE

Section 2:  
Syntax Tree 

Traversals
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To understand the uses of names in program source code, your compiler must look up 
each use of a name and determine what that name refers to. You can look up symbols at 
each location they are used by using table data structures that are auxiliary to the syntax 
tree. These are called symbol tables. Performing operations to construct and then use 
symbol tables is the first step of semantic analysis. Semantic analysis is where you study 
the meaning of input source code.

Context-free grammar in the syntax chapters of this book have terminal symbols and 
non-terminal symbols, and those are represented in tree nodes and token structures. 
When talking about a program's source code, the word symbol is used differently. In this 
and later chapters, a symbol refers to the name of a variable, function, class, or package, 
for example. In this book, the words symbol, name, variable, and identifier are used 
interchangeably.

This chapter will show you how to construct symbol tables, insert symbols into them, 
and use symbol tables to identify two kinds of semantic errors: undeclared and illegally 
redeclared variables. In later chapters, you will use symbol tables to check the types and 
generate code for the input program.

The examples in this chapter demonstrate how to use symbol tables by building them 
for the Jzero subset of Java. Symbol tables are important to be able to check types and 
generate code for your programming language. In this and the next few chapters, the main 
skill you will be learning is the art of recursion by writing many selective and specialized 
tree traversal functions.
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This chapter covers the following main topics: 

• Establishing the groundwork for symbol tables

• Creating and populating symbol tables for each scope

• Checking for undeclared variables

• Finding redeclared variables

• Handling class scopes – a Unicon example

It is time to learn about symbol tables and how to build them. First, however, you need to 
learn about some conceptual foundations you will use to do this work.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch6

The Code in Action video for the chapter can be found here: https://bit.ly/3ccYTZv

Establishing the groundwork for symbol tables
In software engineering, you must go through requirements analysis and design before 
you start coding. Similarly, to build symbol tables, you need to understand what they are 
for, and how to go about writing the syntax tree traversals that do the work. For starters, 
you should review what kinds of information your compiler must store and recall different 
kinds of variables. The information will be stored in symbol tables from declarations in 
the program code, so let's take a look at those.

Declarations and scopes
The meaning of a computer program boils down to the meaning of the information being 
computed, and the actual computations to be performed. Symbol tables are all about the first 
part: defining what information the program is manipulating. We will begin by identifying 
what names are being used, what they are referring to, and how they are being used.

Consider a simple assignment statement such as the following:

x = y + 5;
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In most languages, names such as x or y must be declared before they are used. A 
declaration specifies a name that will be used in the program and usually includes type 
information. An example declaration for x might look like this:

int x;

Each variable declaration has a scope that describes the region in the program where 
that variable is visible. In Jzero the user-defined scopes are the class scope and the local 
(method) scope. Jzero also must support scopes associated with a few predefined system 
packages, which is a small subset of the package scope functionality required of a full Java 
compiler. Other languages have additional and different kinds of scopes to deal with.

The example program shown in Figure 6.1, which can be found in the xy5.java file in 
https://github.com/PacktPublishing/Build-Your-Own-Programming-
Language/tree/master/ch6, expands the preceding example to illustrate scopes. 
The light gray class scope surrounds the darker gray local scope:

Figure 6.1 – A local scope nested inside a class scope

For any symbol, such as x or y, the same symbol may be declared in both scopes. A name 
that's declared in an inner scope overrides and hides the same name declared in an outer 
scope. Such nested scoping requires that a programming language must create multiple 
symbol tables. A common newbie mistake is to try and do your whole language with only 
a single symbol table because a symbol table sounds big and scary, and compiler books 
often talk about the symbol table instead of symbol tables. You must avoid this mistake, 
plan on supporting multiple symbol tables, and search for symbols starting from the 
innermost applicable symbol table and work outward to enclosing tables. Now, let's think 
about the two basic ways that symbols are used in programs to interact with a computer's 
memory: assignment and dereferencing.
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Assigning and dereferencing variables
Variables are names for memory locations, and memory can be read or written. Writing 
a value to a memory location is called assignment. Reading a value from a memory 
location is called dereferencing. Most programmers have a rock-solid understanding 
of assignment. Assignment is one of the first things they learn about in programming; 
for example, the x=0 statement is an assignment to x. A lot of programmers are a bit 
fuzzy about dereferencing. Programmers write code that does dereferencing all the time, 
but they may not have heard of the term before. For example, the y=x+1 statement 
dereferences x to obtain its value before it performs the addition. Similarly, passing a 
parameter in a call such as System.out.println(x) deferences x.

Both assignment and dereferencing are acts that use a memory address. They come 
into play in semantic analysis and code generation. But under what circumstances do 
assignment and dereferencing affect whether the use of a variable is legal in a given 
situation? Assignments are not legal for things that were declared to be const, including 
names of methods. Are there any symbols that cannot be dereferenced? Undeclared 
variables, of course; they cannot be assigned, either. Anything else? Before we can generate 
code for an assignment or a dereference, we must be able to understand what memory 
location is used, and whether the requested operation is legal and defined in the language 
we are implementing.

So far, we have reviewed the concepts of assignment and dereferencing. Checking whether 
each assignment or dereference is legal requires storing and retrieving information about 
the names used in a program, and that is what symbol tables are for. There is one more 
bit of conceptual groundwork you need, and then you will be ready to build your symbol 
tables. You will be doing a lot of syntax tree traversal functions in this and the next few 
chapters. Let's consider some of the varieties of tree traversal at your disposal.

Choosing the right tree traversal for the job
In the previous chapter, you printed out syntax trees using tree traversals where work at 
the current node was done, followed by recursively calling the traversal function on each 
child. This is called a pre-order traversal. The pseudocode template for this is as follows:

method preorder()

   do_work_at_this_node()

   every child := !kids do child.preorder()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Creating and populating symbol tables for each scope     147

Some examples in this chapter will visit the children and have them do their work first, 
and then use what they calculate to do the work at the current node. This is called post-
order traversal. The pseudocode template for post-order traversal looks like this:

method postorder()

   every child := !kids do child.postorder()

   do_work_at_this_node()

end

Other traversals exist where the method does some work for the current node in between 
each child call – this is known as in-order traversal. Lastly, it is common to write a tree 
traversal consisting of several methods that work together and call each other as needed, 
possibly as many as one method for each kind of tree node. Although we will try to keep 
our tree traversals as simple as possible, the examples in this book will use the best tool for 
the job.

In this section, you learned about several important concepts that will be used in the code 
examples in this and the following chapters. These included nested scopes, assignment and 
dereferencing, and different kinds of tree traversals. Now, it's time to use these concepts to 
create symbol tables. After that, you can consider how to populate your symbol tables by 
inserting symbols into them.

Creating and populating symbol tables for 
each scope
A symbol table contains a record of all the names that are declared for a scope. There is 
one symbol table for each scope. A symbol table provides a means of looking up symbols 
by their name to obtain information about them. If a variable was declared, the symbol 
table lookup returns a record with all the information known about that symbol: where 
it was declared, what its data type is, whether it is public or private, and so on. All this 
information can be found in the syntax tree. If we also place it in a table, the goal is to 
access the information directly, from anywhere else that information is needed.

The traditional implementation of a symbol table is a hash table, which provides a very 
fast information lookup. Your compiler could use any data structure that allows you to 
store or retrieve information associated with a symbol, even a linked list. But hash tables 
are the best for this, and they are standard in Unicon and Java, so we will use hash tables 
in this chapter.
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Unicon provides hash tables with a built-in data type called a table. See Appendix, Unicon 
Essentials for a description. Insertion and lookup in the table can be performed by 
subscripting; for example, accessing elements in an array. For example, symtable[sym] 
looks up information associated with a symbol named sym, while symtable[sym] := 
x associates information about x with sym.

Java provides hash tables in standard library classes. We will use the Java library class known 
as HashMap for this. Information is retrieved from a HashMap with a method call such as 
symtable.get(sym) and stored in a HashMap via symtable.put(sym, x).

Both Unicon tables and Java HashMap map elements from a domain to an associated 
range. In the case of a symbol table, the domain will contain the string names of the 
symbols in the program source code. For each symbol in the domain, the range will 
contain a corresponding instance of the symtab_entry class, a symbol table entry. 
In the Jzero implementations we will be presenting, the hash tables themselves will be 
wrapped in a class so that symbol tables can contain additional information about the 
entire scope, in addition to the symbols and symbol table entries.

Two major issues are when are symbol tables created for each scope, and how exactly is 
information inserted into them? The answer to both questions is: during a syntax tree 
traversal. But before we get to that, you need to learn about semantic attributes.

Adding semantic attributes to syntax trees
The tree type in the previous chapter was clean and simple. It contained a label for 
printing, a production rule, and some children. In real life, a programming language needs 
to compute and store a lot of additional information in various nodes of the tree. This 
information is stored in extra fields in tree nodes, commonly called semantic attributes. 
The values of these fields can sometimes be computed during parsing when we construct 
the tree nodes. More often, it is easier to compute the values of semantic attributes once 
the entire tree has been constructed. In that case, the attributes are constructed using a 
tree traversal.

There are two kinds of semantic attributes:

• Synthesized attributes are attributes whose values for each node can be constructed 
from the semantic attributes of their children. 

• Inherited attributes are computed using information that does not come from the 
node's children.

The only possible path for information from elsewhere in the tree is through the parent, 
which is why the attribute is said to be inherited. In practice, inherited attributes may 
come from siblings or from far away in the syntax tree.
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This chapter will add two attributes to the tree.icn and tree.java files from the 
previous chapter. The first attribute, the isConst Boolean, is a synthesized attribute that 
reports whether a given tree node contains only constant values known at compile time. 
The following diagram depicts an expression called x+1. isConst of a parent node (an 
addition) is computed from its children's isConst values:

Figure 6.2 – A synthesized attribute computes a node's value from its children

The preceding diagram shows a good example of a synthesized attribute being calculated 
from its children. In this example, the leaves for x and 1 already have isConst values, 
and those values must come from somewhere. It is easy to guess where the isConst 
value for the 1 token comes from: a language's literal constant values should be marked as 
isConst=true.

For a name like x, it is not so obvious where the isConst value comes from. As presented 
in the previous chapters, the Jzero language does not have Java's final keyword, which 
would designate a given symbol as being immutable. Your options are to either set 
isConst=false for every IDENTIFIER or extend Jzero to allow the final keyword, 
at least for variables. If you choose the latter, whether x is a constant or not should be 
found by looking up the symbol table information of x. The symbol table entry for x will 
only know whether x is a constant if we place that information there.

The second attribute, stab, is an inherited attribute containing a reference to the symbol 
table for the nearest enclosing scope that contains a given tree node. For most nodes, the 
stab value is simply copied from its parent; the nodes where this is not the case are those 
in which a parent defines a new scope. The following diagram shows the stab attribute 
being copied from parents into children:

Figure 6.3 – An inherited attribute computes a node's value from parent information
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How will we get attributes pushed up to parents from children? Tree traversals. How will 
we get attributes pushed down to children from parents? Tree traversals. But first, we must 
make room in the tree nodes to store these attributes. This chapter's tree class header in 
Unicon has been revised to include these attributes, as follows:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab)

This code doesn't do anything; the point is to add two fields for semantic attributes at the 
end. In Java, these class tree additions result in the following code:

class tree {

  int id, rule, nkids;

  String sym;

  token tok;

  tree kids[];

  Boolean isConst;

  symtab stab;

}

The tree class will have many methods added to it in this and coming chapters since most 
aspects of semantic analysis and code generation for your language will be presented as 
tree traversals. Now, let's look at the class types you need to render symbol tables and the 
symbol table entry class that contains the information that's held in symbol tables.

Defining classes for symbol tables and symbol table 
entries
Instances of the symtab class manage the symbols for one scope. For each symbol table, 
you will need to know what scope it is associated with, as well as what the enclosing scope 
is. The Unicon code for the symtab class, which can be found in the symtab.icn file, is 
as follows:

class symtab(scope, parent, t)

   method lookup(s)

      return \ (t[s])

   end

initially

   t := table()

end
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The symtab class is almost just a wrapper around Unicon's built-in table data type. 
Within this class, the scope field is a string beginning with "class" or "local" for 
user-declared scopes in Jzero. An important method in this class, insert(), issues a 
semantic error if the symbol is already in the table. Otherwise, insert() allocates a 
symbol table entry and inserts it. The insert() method will be shown in the Finding 
redeclared variables section, later in this chapter. The corresponding Java class consists of 
the following code in symtab.java:

package ch6;

import java.util.HashMap;

public class symtab {

   String scope;

   symtab parent;

   HashMap<String,symtab_entry> t;

   symtab(String sc, symtab p) {

      scope = sc; parent = p;

      t = new HashMap<String,symtab_entry>();

   }

   symtab_entry lookup(String s) {

      return t.get(s);

   }

}

Each symbol table associates a name with an instance of the symtab_entry class. The 
symtab_entry class will hold all the information that we know about a given variable. 
The Unicon implementation of symtab_entry can be found in symtab_entry.icn:

class symtab_entry(sym,parent_st,st,isConst)

end

For now, the symtab_entry class contains no code; it just holds several data fields. 
The sym field is a string that holds the symbol that the entry denotes. The parent_st 
field is a reference to the enclosing symbol table. The st field is a reference to the new 
symbol table associated with this symbol's subscope, used only for symbols that have 
subscopes, such as classes and methods. In future chapters, the symtab_entry class will 
gain additional fields, both for semantic analysis and code generation purposes. The Java 
implementation of symtab_entry in symtab_entry.java looks as follows:

package ch6;

public class symtab_entry {
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   String sym;

   symtab parent_st, st;

   boolean isConst;

   symtab_entry(String s, symtab p, boolean iC) {

     sym = s; parent_st = p, isConst = iC; }

   symtab_entry(String s, symtab p, boolean iC, symtab t) {

     sym = s; parent_st = p; isConst = iC; st = t; }

}

The preceding class contains no code other than two constructors. One is for regular 
variables, while the other is for classes and methods. Classes and method symbol table 
entries take a child symbol table as a parameter since they have a subscope. Having 
defined the class types for symbol tables and symbol table entries, it is time to look at how 
to create the symbol tables for the input program.

Creating symbol tables
You can create a symbol table for every class and every method by writing a tree traversal. 
Every node in the syntax tree needs to know what symbol table it belongs to. The brute-force 
approach presented here consists of populating the stab field of every tree node. Usually, 
the field is inherited from the parent, but nodes that introduce new scopes go ahead and 
allocate a new symbol table during the traversal. The following Unicon mkSymTables() 
method constructs symbol tables. It is added to the tree class in the tree.icn file:

method mkSymTables(curr)

  stab := curr

  case sym of {

    "ClassDecl": { curr := symtab("class",curr) }

    "MethodDecl": { curr := symtab("method",curr) }

  }

  every (!\kids).mkSymTables(curr)

end

The mkSymTables() method takes an enclosing symbol table named curr as a 
parameter. The corresponding Java method, mkSymTables(), in tree.java looks  
as follows:

void mkSymTables(symtab curr) {

   stab = curr;

   switch (sym) {
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   case "ClassDecl": curr = new symtab("class", curr); 

      break;

   case "MethodDecl": curr = new symtab("method", curr);

      break;

   }

   for (int i=0; i<nkids; i++) kid[i].mkSymTables(curr);

}

The root of the entire parse tree starts with a global symbol table with predefined symbols 
such as System and java. That begs the question: when and where is mkSymTables() 
called? The answer is after the root of the syntax tree has been constructed. Where the 
previous chapter was calling j0.print($$), it should now call j0.semantic($$) 
and all semantic analysis will be performed in that method of the j0 class. Therefore, the 
semantic action for the first production in j0gram.y becomes the following:

ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

  $$=j0.node("ClassDecl",1000,$3,$4);

  j0.semantic($$);

 } ;

The semantic() method in j0.icn looks as follows:

method semantic(root)

local out_st, System_st

   global_st := symtab("global")

   out_st := symtab("class")

   System_st := symtab("class")

   out_st.insert("println", false)

   System_st.insert("out", false, out_st)

   global_st.insert("System", false, System_st)

   root.mkSymTables(global_st)

   root.populateSymTables()

   root.checkSymTables()

   global_st.print()

end
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This code creates a global symbol table and then predefines a symbol for the System 
class. System has a subscope in which a name, out, is declared to have a subscope in 
which println is defined. The corresponding Java code to initialize predefined symbols 
looks like this:

void semantic(tree root) {

symtab out_st, System_st;

   global_st = symtab("global");

   out_st = symtab("class");

   System_st = symtab("class");

   out_st.insert("println", false);

   System_st.insert("out", false, out_st);

   global_st.insert("System", false, System_st);

   root.mkSymTables(global_st);

   root.populateSymTables();

   root.checkSymTables();

   global_st.print();

}

Creating symbol tables was one thing; making use of them is another. Let's look at how 
symbols get put into the symbol tables. Then, we can start talking about how those symbol 
tables are used.

Populating symbol tables
Populating (inserting symbols into) symbol tables can be done during the same tree 
traversal in which those symbol tables are created. However, the code is simpler in a 
separate traversal. Every node knows what symbol table it lives within. The challenge is to 
identify which nodes introduce symbols.

For a class, the second child of FieldDecl has a list of symbols to be inserted. The first 
child of MethodDeclarator is a symbol to be inserted. For a method, the second child 
of FormalParm introduces a symbol. The second child of LocalVarDecl has a list of 
symbols to be inserted. These actions are shown in the following code:

method populateSymTables()

  case sym of {

    "ClassDecl": {

       stab.insert(kids[1].tok.text, , kids[1].stab)

       }
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    "FieldDecl" | "LocalVarDecl" : {

       k := kids[2]

       while \k & k.label=="VarDecls" do {

         insert_vardeclarator(k.kids[2])

         k := k.kids[1]

         }

       insert_vardeclarator(k); return

       }

    "MethodDecl": {

      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

                  kids[1].stab) }

    "FormalParm": { insert_vardeclarator(kids[2]); return }

   }

    every k := !\kids do k.populateSymTables()

end

The corresponding Java code is as follows:

void populateSymTables() {

    switch(sym) {

    case "ClassDecl": {

       stab.insert(kids[0].tok.text, false, kids[0].stab);

       break;

    }

    case "FieldDecl": case "LocalVarDecl": {

       tree k = kids[1];

       while ((k != null) && k.sym.equals("VarDecls")) {

         insert_vardeclarator(k.kids[1]);

         k = k.kids[0];

         }

       insert_vardeclarator(k); return;

       }

    case "MethodDecl": {

       stab.insert(kids[0].kids[1].kids[0].tok.text, false,

                   kids[0].stab); }

    case "FormalParm": {

      insert_vardeclarator(kids[1]); return; }
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    }

   for(int i = 0; i < nkids; i++) {

      tree k = kids[i];

      k.populateSymTables();

   }

}

The insert_vardeclarator(n) method can be passed one of two possibilities: 
either an IDENTIFIER containing the symbol to be inserted or a VarDeclarator tree 
node that indicates an array is being declared. The Unicon implementation looks like this:

method insert_vardeclarator(vd)

   if \vd.tok then stab.insert(vd.tok.text)

   else insert_vardeclarator(vd.kids[1])

end

The Java implementation of the code looks as follows:

void insert_vardeclarator(tree vd) {

   if (vd.tok != null) stab.insert(vd.tok.text, false);

   else insert_vardeclarator(vd.kids[0]);

}

Populating symbol tables is necessary for later aspects of your programming language 
implementation, such as type checking and code generation. They will not be free to just 
skip down the subtree until they find the IDENTIFIER. Even in this first formulation, it is 
already good for checking certain common semantic errors such as undeclared variables. 
Now, let's look at how to compute a synthesized attribute, a skill you can use both when 
populating symbol tables with information and in later parts of semantic analysis and 
code generation. 

Synthesizing the isConst attribute
isConst is a classic example of a synthesized attribute. Its calculation rules depend  
on whether a node is a leaf (following the base case) or an internal node (using the 
recursion step):

• Base case: For tokens, literals are isConst=true and everything else is 
isConst=false.

• Recursion step: For internal nodes, isConst is computed from children, but only 
through the expression grammar, where expressions have values.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Creating and populating symbol tables for each scope     157

If you are wondering which production rules are referred to by the expression grammar, it 
is pretty much those production rules derivable from the non-terminal named Expr. The 
Unicon implementation of this method is another traversal in tree.icn, as shown here:

method calc_isConst()

   case sym of {

      "INTLIT" | "DOUBLELIT" | "STRINGLIT" |

      "BOOLFALSE" | "BOOLTRUE": isConst := "true"

      "UnaryExpr": isConst := \kid[2].isConst

      "RelExpr": isConst := \kid[1].isConst & 

        \kid[3].isConst

      "CondOrExpr" | "CondAndExpr" | "EqExpr" |

      "MULEXPR"|

      "ADDEXPR": isConst := \kid[1].isConst & 

        \kid[2].isConst

      default: isConst := &null

   }

   every(!\kids).calc_isConst()

end

There are a couple of special cases in the preceding code. Whether binary relational 
operators such as the less than operator (<) are constant depends on the first and third 
children. Most other binary operators do not place the operator in the tree as a middle 
leaf; they are calculated from the isConst values of the first and second child. The Java 
implementation of the calc_isConst() method looks like this:

void calc_isConst() {

   switch(sym) {

   case "INTLIT": case "DOUBLELIT": case "STRINGLIT":

   case "BOOLFALSE": case "BOOLTRUE": isConst = true; 

      break;

   case "UnaryExpr": isConst = kid[1].isConst; break;

   case "RelExpr":

      isConst = kid[0].isConst && kid[2].isConst; break;

   case "CondOrExpr": case "CondAndExpr":

   case "EqExpr": case "MULEXPR": case "ADDEXPR":

      isConst = kid[0].isConst && kid[1].isConst; break;

   default: isConst = false;
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   }

   for(int i=0; i <nkids; i++)

      kids[i].calc_isConst();

}

The whole method is a switch to handle the base case and set isConst, followed by a 
traversal of zero or more children. Java is arguably every bit as good as Unicon, or a bit 
better, at calculating the isConst synthesized attribute.

This concludes this section on creating and populating symbol tables. The main skill we 
practiced was the art of writing tree traversals, which are recursive functions. A regular 
tree traversal visits all the children and treats them identically. A programming language 
may traverse a tree selectively. It may ignore some children or do different things with 
different children. Now, let's look at an example of how symbol tables can be used to 
detect undeclared variables.

Checking for undeclared variables
To find undeclared variables, check the symbol table on each variable that's used for 
assignment or dereferencing. These reads and writes of memory occur in the executable 
statements and the expressions whose values are computed within those statements. Given 
a syntax tree, how do you find them? The answer is to use tree traversals that look for 
IDENTIFIER tokens but only when they are in executable statements within blocks of 
code. To go about this, start from the top with a tree traversal that just finds the blocks of 
code. In Jzero, this is a traversal that finds the bodies of methods.

Identifying the bodies of methods
The check_codeblocks() method traverses the tree from the top to find all the method 
bodies, which is where the executable code is in Jzero. For every method declaration it finds, 
it calls another method called check_block() on that method's body:

method check_codeblocks()

   if sym == "MethodDecl" then { kids[2].check_block() }

   else every k := !\kids do

         if k.nkids>0 then k.check_codeblocks()

end
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The corresponding Java implementation of check_codeblocks() goes in the  
tree.java file:

void check_codeblocks() {

tree k;

   if (sym.equals("MethodDecl")) { kids[1].check_block(); }

   else {

      for(int i = 0; i<=nkids; i++){

         k := kids[i];

         if (k.nkids>0) k.check_codeblocks();

      }

   }

}

The preceding method demonstrates the pattern of searching through the syntax tree 
while looking for one specific type of tree node. It does not call itself recursively on 
MethodDecl. Instead, it calls the more specialized check_block() method, which 
implements the work to be done when a method body has been found. This method 
knows it is in a method body, where the identifiers that it finds are uses of variables.

Spotting uses of variables within method bodies
Within a method body, any IDENTIFIER that is found is known to be inside a block 
of executable code statements. One exception is that new variables introduced by local 
variable declarations cannot possibly be undeclared variables:

method check_block()

   case sym of {

   "IDENTIFIER": {

     if not (stab.lookup(tok.text)) then

        j0.semerror("undeclared variable "||tok.text)

     }

   "FieldAccess" | "QualifiedName": kids[1].check_block()

   "MethodCall": {

      kids[1].check_block()

      if rule = 1290 then

         kids[2].check_block()

      else kids[3].check_block()
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     }

   "LocalVarDecl": { } # skip

   default:  {

      every k := !kids do {

            k.check_block()

         }

      }

   }

end

The preceding check_block() method is handling several special-case tree shapes. 
Refer to the j0gram.y grammar file to examine the uses of IDENTIFIER that are 
not looked up in the local symbol table due to their syntactic context. In the case of 
FieldAccess or QualifiedName, the second child is an IDENTIFIER that is a field 
name, not a variable name. It can be checked once type information is added over the next 
few chapters. Likewise, rule 1291, the second production rule of MethodCall, skips its 
second child. The corresponding Java method is as follows:

void check_block() {

   switch (sym) {

   case "IDENTIFIER": {

     if (stab.lookup(tok.text) == null)

        j0.semerror("undeclared variable " + tok.text);

     break;

     }

   case "FieldAccess": case "QualifiedName":

     kids[0].check_block();

     break;

  case "MethodCall": {

      kids[0].check_block()

      if (rule == 1290)

         kids[1].check_block();

      else kids[2].check_block();

      break;

     }

   case "LocalVarDecl": break;
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   default:

      for(i=0;i<nkids;i++)

            kids[i].check_block();

   }

}

Despite the break statements, the Java implementation is equivalent to the Unicon 
version described earlier. The main idea you learned in this section was how to split up an 
overall tree traversal task into a general traversal that looks for a node of interest, and then 
a specialized traversal that does work at nodes found by the general traversal. Now, let's 
look at detecting a variable redeclaration semantic error, which occurs when symbols are 
being inserted into the symbol tables.

Finding redeclared variables
When a variable has been declared, most languages report an error if the same variable 
is declared again in the same scope. The reason for this is that within a given scope, the 
name must have a single, well-defined meaning. Trying to declare a new variable would 
entail allocating some new memory and from then on, mentioning that name would be 
ambiguous. If the x variable is defined twice, it is unclear which x any given use refers  
to. You can identify such redeclared variable errors when you insert symbols into the 
symbol table.

Inserting symbols into the symbol table
The insert() method in the symbol table class calls the language's underlying  
hash table API. The method takes a symbol, a Boolean isConst flag, and an optional 
nested symbol table, for symbols that introduce a new (sub)scope. The Unicon 
implementation of the symbol table's insert() method is shown here. If you go to 
https://github.com/PacktPublishing/Build-Your-Own-Programming-
Language/tree/master/ch6, this can be found in symtab.icn, along with the 
other class symtab methods:

   method insert(s, isConst, sub)

      if \ (t[s]) then j0.semerror("redeclaration of "||s)

      else t[s] := symtab_entry(s, self, sub, isConst)

   end
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A symbol table lookup is performed before insertion. If the symbol is already present, a 
redeclaration error is reported. The corresponding Java implementation of the symbol 
table's insert() methods looks as follows:

   void insert(String s, Boolean iC, symtab sub) {

      if (t.containsKey(s)) {

         j0.semerror("redeclaration of " + s);

      } else {

         sub.parent = this;

         t.put(s, new symtab_entry(s, this, iC, sub));

      }

   }

   void insert(String s, Boolean iC) {

      if (t.containsKey(s)) {

         j0.semerror("redeclaration of " + s);

      } else {

         t.put(s, new symtab_entry(s, this, iC));

      }

   }

This code is crude but effective. The use of the underlying hash table Java API is long-
winded but readable. Now, let's look at the semerror() method.

Reporting semantic errors
The semerror() method in the j0 class must report the error to the user, as well as 
making a note that an error has occurred so that the compiler will not attempt code 
generation. The code for reporting semantic errors is similar to reporting lexical or syntax 
errors, although sometimes, it is harder to pinpoint what line in what file is to blame. For 
now, it is OK to treat these errors as fatal and stop compilation when one occurs. In later 
chapters, you will make this error non-fatal and report additional semantic errors after 
one is found. The Unicon code for the j0 class's semerror() method is as follows:

method semerror(s)

   stop("semantic error: ", s)

end
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The Java code for the j0 class's semerror() method is shown here:

void semerror(String s) {

   System.out.println("semantic error: " + s);

   System.exit(1);

}

Identifying redeclaration errors occurs most naturally while the symbol table is being 
populated; that is, when an attempt is being made to insert a declaration. Unlike an 
undeclared symbol error, where all nested symbol tables must be checked before an  
error can be reported, a redeclaration error is reported immediately, but only if the  
symbol has already been declared in the current inner-most scope. Now, let's look at how 
a real programming language deals with other symbol table issues that did not come up in 
this discussion.

Handling package and class scopes in Unicon 
Creating symbol tables for Jzero considers two scopes: class and local. Since Jzero does 
not do instances, Jzero's class scope is static and lexical. A larger, real-world language has 
to do more work to handle scopes. Java, for example, has to distinguish when a symbol 
declared in the class scope is a reference to a variable shared across all instances of the 
class, and when the symbol is a normal member variable that's been allocated separately 
for each instance of the class. In the case of Jzero, an isMember Boolean can be added to 
the symbol table entries to distinguish member variables from class variables, similar to 
the isConst flag.

Unicon's implementation is a lot different than Jzero's. A summary of its symbol tables 
and class scopes allows for a fruitful comparison. Whatever it does similarly to Jzero 
might also be how other languages handle things. What Unicon does differently than 
Jzero, each language might do in its own unique way. How Unicon handles these topics 
is being presented here for its quirky real-world insights, not because it is somehow 
exemplary or ideal.

One basic difference between Unicon and the Jzero example in this chapter is that 
Unicon's syntax tree is a heterogeneous mixture of different types of tree node objects. In 
addition to a generic tree node type, there are separate tree node types to represent classes, 
methods, and a few other semantically significant language constructs. The generic tree 
node type lives in a file named tree.icn, while the other classes live in a file named 
idol.icn that is descended from Unicon's predecessor, a language called Idol. Now, 
let's look at another difference between Unicon and Jzero that comes up in Unicon's 
implementation of packages. This is known as name mangling.
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Mangling names
Scope checks may state that a symbol has been found in a package. A lot of programming 
languages – and historic C++ is a prime example – use name mangling in generated code. 
In Unicon, some scoping rules are resolved via name mangling. A name such as foo, if it 
is found to be in package scope for a package bar, is written out in the generated code 
as bar__foo.

The mangle_sym(sym) method from the Unicon implementation has been presented 
in its partial form here and has been abstracted a bit for readability. This method takes 
a symbol (a string) and mangles it according to which imported package it belongs to, 
including the declared package of the current file, which takes precedence over any imports:

procedure mangle_sym(sym)

…

   if member(package_level_syms, sym) then

      return package_mangled_symbol(sym)

   if member(imported, sym) then {

      L := imported[sym]

      if *L > 1 then

         yyerror(sym || " is imported from multiple 

             packages")

      else return L[1] || "__" || sym

   }

   return sym

end

In the mangle_sym() method, a Unicon table named package_level_syms stores 
entries for symbols declared in the package associated with the current file. Another table, 
called imported, tracks all the symbols defined in other packages. This table returns a 
list of the other packages in which a symbol is found. The size of that list is given by *L. 
If a symbol is defined in two or more imported packages, using that symbol in this file 
is ambiguous and generates an error. The use of packages is a relatively simple 
compile-time mechanism for making separate namespaces for different scopes. More 
difficult scoping rules must be handled at runtime. For example, accessing class members 
in Unicon requires the compiler to generate code that uses a reference to a current object 
named self.
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Inserting self for member variable references
Scoping rules can come back with the answer that a symbol is a class member variable. 
In Unicon, all methods are non-static and method calls always have an implicit first 
parameter named self, which is a reference to the object that the method has been 
invoked on. A class scope is implemented by prefixing the name with a dot operator to 
reference the variable within the self object. This code, extracted from a method named 
scopeck_expr() in Unicon's idol.icn semantic analysis file, illustrates how self. 
can be prefixed onto member variable references:

      "token": {

         if node.tok = IDENT then {

            if not member(\local_vars, node.s) then {

               if classfield_member(\self_vars, node.s)then

                  node.s := "self." || node.s

               else

                  node.s := mangle_sym(node.s)

            }

         }

      }

This code modifies the contents of the existing syntax tree field in place. The use of the 
self. string prefix is possible because the code is written out in a source code-like form 
and further compiled to C or virtual machine bytecode by a subsequent code generator. 
The use of self as a reference to the current object is needed not only to access the 
member variables within the object but also to access calls to the object's methods. On  
the flip side of that, let's look at how Unicon provides the self variable when methods 
are called.

Inserting self as the first parameter in method calls
When an identifier appears in front of parentheses, the syntax indicates that it is the name 
of a function or method being called. In this case, additional special handling is required. 
The insertion prefix for a method must look up the method name in an auxiliary structure 
called the methods vector. The methods vector is referenced via self.__m. For example, 
for a method named meth, instead of becoming self.meth, the reference to the 
method becomes self.__m.meth.
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In addition to using the methods vector, __m, a method call requires self to be inserted 
as a first parameter into the call. In Unicon's predecessor, this was explicit in the generated 
code. A call such as meth(x) would become self.__m.meth(self, x). In the 
Unicon implementation, this insertion of the object into the parameter list of the call is 
built into the implementation of the dot operator in the runtime system. When the dot 
operator is asked to perform self.meth, it looks up meth to see whether it is a regular 
member variable. If it finds that it is not, it checks whether self.__m.meth exists, and 
if it does, the dot operator both looks up that function and pushes self onto the stack as 
its first parameter.

To summarize: the Unicon virtual machine was modified to make code generation for 
method calls simpler. Consider the call to o.m() in the following example. The semantics 
of the o.m(3,4) call are equivalent to o.__m.m(o,3,4) but the compiler just 
generates the instructions for o.m(3,4) and the Unicon dot operator does all the work:

class C(…)

   method m(c,d); … end

end

procedure main()

   o := C(1,2)

   o.m(3,4)

end

One of the nice parts about building a programming language is that you can make the 
runtime system that runs your generated code do anything you want. Now, let's consider 
how to test and debug your symbol tables to tell whether they are correct and working.

Testing and debugging symbol tables
You can test your symbol tables by writing many test cases and verifying whether they 
obtain the expected undeclared or redeclared variable error messages. But nothing says 
confidence like an actual visual depiction of your symbol tables. If you have built your 
symbol tables correctly by following the guidance in this chapter, then there should be a 
tree of symbol tables. You can print out your symbol tables using the same tree printing 
techniques that were used to verify your syntax trees in the previous chapter, using either 
a textual representation or a graphical one.
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Symbol tables are slightly more work to traverse than syntax trees. To output the symbol 
table, you need to output information for the table and then visit all the children, not just 
look one up by name. Also, there are two classes involved: symtab and symtab_entry. 
Suppose you start at the root symbol table. In Unicon, to iterate through all the symbol 
tables, use the following method in symtab.icn:

method print(level:0)

  writes(repl(" ",level))

  write(scope, " - ", *t, " symbols")

  every (!t).print(level+1);

end

Notice that although the children are being invoked with a method of the same name, the 
print() method in symtab_entry is a different method than the one on symtab. 
The Java code for the symbol table's print() method looks like this:

void print() { print(0); }

void print(int level) {

   for(int i=0;i<level;i++) System.out.print(" ");

   System.out.print(scope + " - " + t.size()+" symbols");

   for (symtab_entry : t.values()) se.print(level+1);

}

For the print() method of symtab_entry, an actual symbol is printed out. If that 
symbol table entry has a subscope, it is then printed and indented more deeply to show 
the nesting of the scopes:

method print(level:0)

  writes(repl(" ",level), sym)

  if \isConst then writes(" (const)")

  write()

  (\st).print(level+1);

end

The mutually recursive call to print the nested symbol table is skipped if it is null. In Java, 
the code is longer but more explicit:

void print(level:0) {

   for(int i=0;i<level;i++) System.out.print(" ");

   System.out.print(sym);
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   if (isConst) System.out.print(" (const)");

   System.out.println("");

   if (st != null) st.print(level+1);

}

Printing out symbol tables doesn't take many lines of code. You may find that it's worth 
adding additional lexical information, such as filenames and line numbers where variables 
were declared. In future chapters, it will be logical to also extend these methods with  
type information.

To run the Jzero compiler with the symbol table output shown in this chapter, download 
the code from this book's GitHub repository, go into the ch6/ subdirectory, and build it 
with the make program. By default, make will build both the Unicon and Java versions. 
When you run the j0 command with the symbol table output in place, it produces the 
following output. In this case, the Java implementation is being shown:

Figure 6.4 – Symbol table output from the Jzero compiler

You must read the hello.java input file pretty carefully to ascertain whether this 
symbol table output is correct and complete. The more complicated your language's 
scoping and visibility rules, the more complicated your symbol table's output will be. For 
example, this output does not print anything for a variable's public and private status, but 
for a full Java compiler, we would want that. When you are satisfied that the symbols are 
all present and accounted for in the correct scopes, you can move on to the next phase of 
semantic analysis.
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Summary
In this chapter, you learned about the crucial technical skills and tools used to build 
symbol tables that track all the variables in all the scopes in the input program. You create 
a symbol table for every scope in the program and insert entries into the correct symbol 
table for each variable. All of this is accomplished via traversals of the syntax tree.

You learned how to write tree traversals that create symbol tables for each scope, as well as 
how to create an inherited attribute for the symbol table associated with the current scope 
for each node in your syntax tree. You then learned how to insert symbol information 
into the symbol tables associated with your syntax tree and detect when the same symbol 
is redeclared illegally. You learned how to write tree traversals that look up information 
in symbol tables and identify any undeclared variable errors. These skills enabled you to 
take your first steps in enforcing the semantic rules associated with your programming 
language. In the rest of your compiler, both semantic analysis and code generation relied 
on and added to the symbol tables that you established in this chapter.

Now that you have built symbol tables by walking through the parse tree using tree 
traversals, it is time to start considering how to check the program's use of data types. The 
next chapter will start us off on that journey by showing you how to check basic types 
such as integers and real numbers.

Questions
1. What is the relationship between the various symbol tables that are created within 

the compiler and the syntax tree that was created in the previous chapter?
2. What is the difference between synthesized semantic attributes and those that are 

inherited? How are they computed and where are they stored?
3. How many symbol tables do we need in the Jzero language? How are symbol  

tables organized?
4. Suppose our Jzero language allowed multiple classes, compiled separately in 

separate source files. How would that impact our implementation of symbol tables 
in this chapter?
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This is the first of two chapters about type checking. In most mainstream programming 
languages, type checking is a key aspect of semantic analysis that must be performed 
before you can generate code.

This chapter will show you how to do simple type checks for the base types included in 
the Jzero subset of Java. A byproduct of checking the types is to add type information to 
the syntax tree. Knowing the types of operands in the syntax tree enables you to generate 
correct instructions for various operations.

This chapter covers the following main topics: 

• Type representation in the compiler

• Assigning type information to declared variables

• Determining the type at each syntax tree node

• Runtime type checks and type inference – a Unicon example

It is time to learn about type checking, starting with base types. Some of you may be 
wondering, why do type checking at all? If your compiler does not do type checking, it 
has to generate code that works, no matter what types of operands are used. Lisp, BASIC, 
and Unicon are examples of languages with this design approach. Often, this makes a 
language user-friendly, but it runs slower. For this reason, we will cover type checking. We 
will begin by looking at how to represent the type information that you extract from the 
source code.
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Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch7

The Code in Action video for the chapter can be found here: https://bit.ly/3cgvkWT

Type representation in the compiler
Frequently, our compiler will need to do things such as compare the types of two variables 
to see whether they are compatible. Program source code represents types with string 
data, which is incorporated in our syntax tree. In some languages, it might be possible 
to use little syntax subtrees to represent the types that are used in type checking, but in 
general, type information does not exactly correspond to a subtree within our syntax tree. 
This is because part of the type information is pulled in from elsewhere, such as another 
type. For this reason, we need a new data type just to represent the type information 
associated with any given value that is declared or computed in the program.

It would be nice if we could just represent types with a single atomic value such as an 
integer code or a string type name. For example, we could use 1 for an integer, 2 for a 
real number, or 3 for a string. If a language had only a small, fixed set of built-in types, an 
atomic value would suffice. However, real language types are more complicated than that. 
The type representation of compound types such as an array, a class, or a method is more 
involved. You can start with a base class capable of representing atomic types.

Defining a base class for representing types
The type information associated with any name or value in your language can be represented 
within a new class named typeinfo. The typeinfo class is not called type because some 
programming languages use that as a reserved word or built-in name. In Unicon, it is the 
name of a built-in function, so declaring a class by that name would be bad.

The typeinfo class has a basetype member for storing what kind of data type is 
represented. Complex types have additional information as needed. For example, a type 
whose basetype indicates that it is an array has an additional element_type. With 
this extra information, we will be able to distinguish an array of integers from an array of 
strings or an array of some class type. In some languages, array types also have an explicit 
size or starting and ending indices.
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There are many ways that you could handle this variation in the information needed 
for different types. A classic object-oriented representation of these differences is to 
use subclasses. For Jzero, we will add arraytype, methodtype, and classtype as 
subclasses of typeinfo. First, there is the superclass itself, which can be found in the 
typeinfo.icn file, as shown in the following code:

class typeinfo(basetype)

   method str()

      return string(basetype)|"unknown"

   end

end

In addition to the basetype member, the typeinfo class has methods to facilitate 
debugging. Types need to be able to print themselves in a human-readable format. The 
Java version, in the typeinfo.java file, looks like this:

public class typeinfo {

   String basetype;

   public typeinfo() { basetype = "unknown"; }

   public typeinfo(String s) { basetype = s; }

   public String str() { return basetype; }

}

An extra constructor taking no arguments is required for the subclasses to compile 
properly in Java. Having a class, and not just an integer, to encode the type information 
allows us to represent more complex types by subclassing the base class.

Subclassing the base class for complex types
The Unicon code for the subclasses of typeinfo are also stored in typeinfo.icn 
since they are short and closely related. In Jzero, the arraytype class only has an 
element_type; in other languages, an array type might require additional fields to hold 
the array size or the type and range of valid indices. The Unicon representation of the 
array type in Jzero is as follows:

class arraytype : typeinfo(element_type)

initially

   basetype := "array"

end
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The arraytype.java file contains the corresponding Java implementation of the 
arraytype class:

public class arraytype extends typeinfo {

   typeinfo element_type;

   public arraytype(typeinfo t) {

      basetype = "array"; element_type = t; }

}

The representation for methods, also called class member functions, includes a signature 
consisting of their parameters and return type. For now, all it does is allow methods to be 
identified as such. The Unicon implementation of the methodtype class is as follows:

class methodtype : typeinfo(parameters,return_type)

initially

   basetype := "method"

end

Method types contain a list of zero or more parameters and a return type; these will be 
used in the next chapter to check the types when methods (functions) are called. The Java 
representation of methods look as follows and can be found in the methodtype.java file:

public class methodtype extends typeinfo {

   parameter [] parameters;

   typeinfo return_type;

   methodtype(parameter [] p, typeinfo rt){

      parameters = p; return_type = rt;

   }

}

parameters could be an array of typeinfo. A separate class is defined for 
parameters here to allow languages to include parameter names along with their types 
to represent methods. The Unicon implementation is as follows:

class parameter(name, param_type)

end
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Some of these classes seem pretty empty. They are placeholders that will include more 
code in subsequent chapters or require more substantial treatments in other languages. 
The corresponding Java implementation of the parameter class in the parameter.
java file is shown here:

public class parameter {

   String name;

   typeinfo param_type;

   parameter(String s, typeinfo t) { name=s; param_type=t; }

}

The class for representing classes includes a class name, its associated symbol table, 
and lists of zero or more fields, methods, and constructors. In some languages, this 
might be more complex than Jzero, including superclasses, for example. The Unicon 
implementation is shown here:

class classtype : typeinfo(name, st, fields, methods, 

      constrs)

   method str()

      return name

   end

initially

   basetype := "class"

end

You might be wondering about the st field, which holds a symbol table. In Chapter 6, 
Symbol Tables, symbol tables were constructed and stored in syntax tree nodes, where 
they formed a logical tree corresponding to the program's declared scopes. References to 
those same symbol tables need to be placed in the types so that we can compute the type 
resulting from the use of the dot operator, which references a scope that is not associated 
with the syntax tree. The classtype.java file contains the Java implementation of the 
classtype class. The following code shows an example of this:

public class classtype extends typeinfo {

   String name;

   symtab st;

   parameter [] methods;

   parameter [] fields;

   typeinfo [] constrs;

}
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Given a typeinfo class, it is appropriate to add a member field of this type to both the 
tree class and the symtab_entry class so that type information can be represented for 
expressions and variables. We will call it typ in both classes:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,typ)

class symtab_entry(sym,parent_st,st,isConst,typ)

We are not repeating the classes here in their entirety; the code for this can be found in the 
ch7/ subdirectory at https://github.com/PacktPublishing/Build-Your-
Own-Programming-Language. In Java, the respective classes are amended as follows:

class tree { . . .

   typeinfo typ; . . . }

class symtab_entry { . . .

   typeinfo typ; . . . }

Given a typ field, it is possible to write the mini tree traversals needed to place type 
information in the symbol tables with the variables as they are declared. Let's look at 
assigning this type information to declared variables.

Assigning type information to declared 
variables
Type information is constructed during a tree traversal and then stored with its associated 
variables in the symbol table. This would usually be part of the traversal that populates the 
symbol table, as presented in the previous chapter. In this section, we will be traversing the 
syntax tree looking for variable declarations, as we did previously, but this time, we need 
to propagate type information by using synthesized and/or inherited attributes.

For type information to be available at the time that we are inserting variables into the 
symbol table, the type information must be computed at some prior point in time. This 
type information is computed either by a preceding tree traversal or during parsing when 
the syntax tree is constructed. Consider the following grammar rule and semantic action 
from Chapter 5, Building Syntax Trees: 

FieldDecl: Type VarDecls ';' {

  $$=j0.node("FieldDecl",1030,$1,$2); };
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The semantic action builds a tree node connecting a Type with a VarDecls under a new 
node called FieldDecl. Your compiler must synthesize type information from Type 
and inherit it into VarDecls. The information flowing up from the left subtree and going 
down into the right subtree can be seen in the following diagram:

Figure 7.1 – The flow of type information in variable declarations

We can embed this into the syntax tree construction process via mini traversals of the 
subtrees. The following code adds a call to a method named calctype(), which is 
where this semantic analysis will be conducted within j0gram.y, as shown in the 
previous example:

FieldDecl: Type VarDecls ';' {

  $$=j0.node("FieldDecl",1030,$1,$2);

  j0.calctype($$);

};

From examining the grammar, you may note that a similar call to calctype() is 
needed for non-terminal FormalParm, and that there are a few additional places in the 
grammar where a type is associated with an identifier or list of identifiers. The j0 class's 
calctype() method turns around and calls two tree traversals on the two children of 
FieldDecl. The Unicon version of this method in j0.icn looks as follows:

method calctype(t)

   t.kids[1].calctype()

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



178     Checking Base Types

   t.kids[2].assigntype(t.kids[1].typ)

end

The j0 class's calctype() method calls the class tree's calctype() method, which 
calculates the synthesized typ attribute in the left child. The type is then passed down as 
an inherited attribute into the right child. The Java version of this method in j0.java 
looks like this:

void calctype(parserVal pv){

   tree t = (tree)pv.obj;

   t.kids[0].calctype();

   t.kids[1].assigntype(t.kids[0].typ);

}

Compared to tree traversals, which we looked at in the previous chapters, class tree 
methods, including calctype() and assigntype(), are special cases whose tree 
shape and kinds of possible nodes are limited. The traversal code might be specialized to 
take advantage of this. We can start by considering the calctype() method.

Synthesizing types from reserved words
The calctype() method calculates the synthesized typ attribute. The recursive work of 
calculating the value for the children is done first, followed by the calculation for the current 
node. This form of traversal is called a post-order traversal and it is common in compilers. 
In Unicon, the calctype() method in the class tree in tree.icn looks like this:

method calctype()

  every (!\kids).calctype()

  case sym of {

    "FieldDecl": typ := kids[1].typ

    "token": {

      case tok.cat of {

        parser.IDENTIFIER:{return typ := 

            classtype(tok.text) }

        parser.INT:{ return typ := typeinfo(tok.text) }

        default:

          stop("can't grok the type of ", image(tok.text))

        }

      }
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    default:

      stop("can't grok the type of ", image(sym))  }

end

This code constructs the current tree node's typ value using information from its 
children; in this case, by directly accessing a child's public typ field. Alternatively, 
information obtained from a child could be obtained by calling a method that returns the 
child type as its return value, such as the return value of calctype(). In this code, the 
number of case branches is small because the Jzero grammar for non-terminal Type is 
minimal. In other languages, it would be richer. The corresponding Java code is shown in 
the following example's calctype() method in tree.java:

typeinfo calctype() {

  for(int i=0; i<nkids; i++) kids[i].calctype()

  switch (sym) {

    case "FieldDecl": return typ = kids[0].typ;

    case "token": {

      switch (tok.cat) {

       case parser.IDENTIFIER:{

          return typ=new classtype(tok.text); }

       case parser.INT: { return typ=new 

           typeinfo(tok.text); }

       default:

          j0.semerror("can't grok the type of " + 

              tok.text);

      }

   }

    default:

      j0.semerror("don't know how to calctype " + sym);}

}

Having synthesized the type from the left child of FieldDecl, let's look at how to inherit 
that type into the variable nodes in the right child subtree of FieldDecl.
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Inheriting types into a list of variables
Passing type information into a subtree is performed in the assigntype(t) method. 
Inherited attributes are generally coded via a pre-order traversal, in which the current 
node does its work and then calls the children with information they are inheriting. The 
Unicon implementation of the assigntype(t) method is as follows:

method assigntype(t)

  typ := t

  case sym of {

  "VarDeclarator": {

    kids[1].assigntype(arraytype(t))

    return

    }

  "token": {

    case tok.cat of {

      parser.IDENTIFIER:{

        return

        }

      default: stop("eh? ", image(tok.cat))

      }

    }

  default:

     stop("don't know how to assign the type of ", image(sym))

    }

  every (!\kids).assigntype(t)

end

Since the information is coming down from a parent into children, it is natural to pass this 
information as a parameter to the child, who then assigns it as their type via typ := t. It 
would also be possible to copy it down via an explicit assignment into a child's public field. 
The corresponding Java implementation of the assigntype(t) method is shown here:

void assigntype(typeinfo t) {

    typ = t;

    switch (sym) {

    case "VarDeclarator": {
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      kids[0].assigntype(new arraytype(t));

      return;

    }

    case "token": {

      switch (tok.cat) {

        case parser.IDENTIFIER:{ return; }

        default: j0.semerror("eh? " + tok.cat);

      }

   }

    default:

        j0.semerror("don't know how to assigntype " + sym);

    }

    for(tree k : kids) k.assigntype(t);

  }

Attaching type information to variable names where they are declared is important, and 
it is not too difficult, especially for a simple language such as Jzero. Now, it is time to 
look at the main task of this chapter: how to calculate and check type information in the 
expressions that comprise the executable code in the bodies of functions and methods.

Determining the type at each syntax tree node
Within the syntax tree, the nodes associated with actual code expressions in the method 
bodies have a type associated with the value that the expression computes. For example, if a 
tree node corresponds to the sum of adding two numbers, the tree node's type is determined 
by the types of the operands and the rules of the language for the addition operator. Our 
goal for this section is to spell out how this type information can be calculated.

As you saw in the Type representation in the compiler section, the class for syntax tree nodes 
has an attribute to store that node's type, if there is one. The type attribute is calculated 
bottom-up, during a post-order tree traversal. There is a similarity here to checking 
for undeclared variables, which we did in the previous chapter, in that type checking 
expressions only occur in the bodies of functions. The call to invoke this type checking tree 
traversal, starting at the root of the syntax tree, is added at the end of the semantic() 
method, within the j0 class. In Unicon, the invocation consists of the following:

root.checktype()
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There isn't a parameter here, but that is the same thing as passing in a null value or a false. 
In Java, the following statement is added:

root.checktype(false); 

In both cases, the parameter indicates whether a given node is within the body of an 
executable statement. At the root, the answer is false. It will turn true when the tree 
traversal reaches the bodies of methods that contain code. To perform the tree traversal, 
you must consider what to do regarding the leaves of the tree.

Determining the type at the leaves
At the leaves, the types of literal constant values are self-evident from their lexical 
category. To begin, we must add a typ field to the class token. For literals, we must 
initialize typ in the constructor. In Unicon, the first line and initial section of token.
icn becomes the following:

class token(cat, text, lineno, colno, ival, dval, sval,typ)

   . . .

initially

  case cat of {

  parser.INTLIT:{ ival := integer(text); 

    typ:=typeinfo("int")}

  parser.DOUBLELIT:{dval:=real(text); 

    typ:=typeinfo("double")}

  parser.STRINGLIT:{

    sval:=deEscape(text); typ := typeinfo("String") }

  parser.BOOLLIT: { typ := typeinfo("boolean") }

  parser.NULLVAL: { typ :=  typeinfo("null") }

  ord("="|"+"|"-"): { typ := typeinfo("unknown") }

  }

end

The code here assigns the "unknown" type to operators (the code for calculating the 
types of expressions using those operators from their operand types will be shown later in 
the Calculating and checking the types at internal nodes section). In Java, the corresponding 
change to the class token for literal types looks as follows:

package ch7;

public class token {
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  . . .

  public typeinfo typ;

  public token(int c, String s, int l) {

    cat = c; text = s; lineno = l;

    id = serial.getid();

    switch (cat) {

    case parser.INTLIT: typ = new typeinfo("int"); break;

    case parser.DOUBLELIT:typ = new typeinfo("double"); 

        break;

    case parser.STRINGLIT: typ= new typeinfo("String"); 

        break;

    case parser.BOOLLIT: typ = new typeinfo("boolean"); 

        break;

    case parser.NULLVAL: typ = new typeinfo("null"); break;

    case '=': case '+': case '-':

       typ = new typeinfo("unknown"); break;

    }

   }

The types of variables are looked up in the symbol table. This implies that symbol table 
population must occur before type checking. The symbol table lookup is performed by a 
type() method and added to a class token in token.icn. It takes the symbol table that 
the token is scoped within as a parameter:

method type(stab)

  if \typ then return typ

  if cat === parser.IDENTIFIER then

    if rv := stab.lookup(text) then return typ := rv.typ

  stop("cannot check the type of ",image(text))

end

This first line in this method returns the type for this token immediately if it has been 
determined previously. If not, the rest of this method just checks whether we have an 
identifier, and if so, looks it up in the symbol table. The corresponding addition to 
token.java looks as follows:

public typeinfo type(symtab stab) {

  symtab_entry rv;

  if (typ != null) return typ;
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  if (cat == parser.IDENTIFIER)

      if ((rv = stab.lookup(text)) != null)  
         return typ=rv.typ;

  j0.semerror("cannot check the type of " + text);

}

Having shown the code to calculate the type of syntax tree leaves, it is now time to 
examine how to check the types at the internal nodes. This is the core function of  
type checking.

Calculating and checking the types at internal nodes
The internal nodes are only checked within the executable statements and expressions in 
the code bodies of the program. This is a pre-order traversal where work at children is 
done first and then work is done at the parent node. The process of visiting the children, 
which is delegated to the checkkids() helper function, varies depending on the tree 
node, and the work that's done at the parent depends on whether it is in a block of code:

method checktype(in_codeblock)

  if checkkids(in_codeblock) then return

  if /in_codeblock then return

  case sym of {

    "Assignment": typ := check_types(kids[1].typ, 

                                     kids[3].typ)

    "AddExpr": typ := check_types(kids[1].typ, kids[2].typ)

    "Block" | "BlockStmts": { typ := &null }

    "MethodCall": { }

    "QualifiedName": {

       if type(kids[1].typ) == "classtype__state" then {

         typ := (kids[1].typ.st.lookup(

                 kids[2].tok.text)).typ

         } else stop("illegal . on ",kids[1].typ.str())

    }

    "token": typ := tok.type(stab)

    default: stop("cannot check type of ", image(sym))

    } 

end
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In addition to the checkkids() helper method, this code relies on a helper function 
called check_types(), which determines the result type, given operands. The 
corresponding Java implementation of checktype() is shown here:

void checktype(boolean in_codeblock) {

  if (checkkids(in_codeblock)) return;

  if (! in_codeblock) return;

  switch (sym) {

  case "Assignment":

    typ = check_types(kids[0].typ, kids[2].typ); break;

  case "AddExpr":

    typ = check_types(kids[0].typ, kids[1].typ); break;

  case "Block": case "BlockStmts": typ = null; break;

  case "MethodCall": break;

  case "QualifiedName": {

    if (kids[0].typ instanceof classtype) {

      classtype ct = (classtype)(kids[0].typ);

      typ = (ct.st.lookup(kids[1].tok.text)).typ;

    } else j0.semerr("illegal . on  " + kids[0].typ.str());

    break;

    }

  case "token": typ = tok.type(stab); break;

  default: j0.semerror("cannot check type of " + sym);

  }

}

By default, the checkkids() helper function calls checktype() on every child, but in 
some cases, it does not. On method declaration, for example, the method header has no 
executable code expressions and is skipped; only the block of code is visited, and in that 
block, the in_codeblock Boolean parameter is set to true. Similarly, within a block of 
code where a local variable declaration is encountered, only the list of variables is visited, 
and within that list, in_codeblock is turned off (only to be turned back on again in 
initializers). As another example, identifiers on the right-hand side of a period operator 
are not looked up in the regular symbol table; instead, they are looked up relative to the 
type of expression on the left-hand side of the period and thus require special handling. 
The Unicon implementation of checkkids() is shown here:

method checkkids(in_codeblock)

  case sym of {
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    "MethodDecl": { kids[2].checktype(1); return }

    "LocalVarDecl": { kids[2].checktype(); return }

    "FieldAccess": { kids[1].checktype(in_codeblock); 

        return }

    "QualifiedName": {

      kids[1].checktype(in_codeblock);

      }

    default: { every (!\kids).checktype(in_codeblock) }

    }

end

The corresponding Java implementation of this helper function is shown here:

public boolean checkkids(boolean in_codeblock) {

  switch (sym) {

  case "MethodDecl": kids[1].checktype(true); return true;

  case "LocalVarDecl": kids[1].checktype(false);  
                       return true;

  case "FieldAccess": kids[0].checktype(in_codeblock);

                      return true;

  case "QualifiedName":

                      kids[0].checktype(in_codeblock); 

                      break;

  default: for (tree k : kids) k.checktype(in_codeblock);

  }

  return false;

}

The check_types() helper method calculates the type of the current node from the 
types of up to two operands. Its calculation varies, depending on what operator is being 
performed, as well as the rules of the language. Its answer might be that the type is the 
same as one or both operands, or it may be some new type or an error. The Unicon 
implementation of check_types() in tree.icn is as follows:

method check_types(op1, op2)

  operator := get_op()

  case operator of {

     "="|"+"|"-" : {
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        if tok := findatoken() then

           writes("line ", tok.tok.lineno, ": ")

        if op1.basetype === op2.basetype === "int" then {

           write("typecheck ",operator," on a ",

                 op2.str(), " and a ", op1.str(), " -> OK")

           return op1

           }

        else stop("typecheck ",operator," on a ",

                  op2.str(), " and a ", op1.str(),  
                  " -> FAIL")

        }

     default: stop("cannot check ", image(operator))

    }

end

This method relies on two helper methods. The get_op() method reports which 
operator is being performed. The findatoken() method seeks out the first token in the 
source code represented by a given syntax tree node; it is used to report the line number. 
The corresponding Java implementation of check_types() is shown here:

   public typeinfo check_types(typeinfo op1, typeinfo op2) {

     String operator = get_op();

     switch (operator) {

     case "=": case "+": case"-": {

       tree tk;

       if ((tk = findatoken())!=null)

         System.out.print("line " + tk.tok.lineno + ": ");

       if ((op1.basetype.equals(op2.basetype)) &&

           (op1.basetype.equals("int"))) {

         System.out.println("typecheck "+operator+" on a "+

                  op2.str() + " and a "+ op1.str()+  
                  " -> OK");

       return op1;

    }

       else j0.semerror("typecheck "+operator+" on a "+

                op2.str()+ " and a "+ op1.str()+  
                " -> FAIL");
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       }

     default: j0.semerror("cannot check " + operator);

     }

   return null;

   }

The operator that the current syntax node represents can usually be ascertained from the 
node's corresponding non-terminal symbol. In some cases, the actual production rule 
must also be used. The Unicon implementation of get_op() is shown here:

   method get_op()

      return case sym of {

          "Assignment" : "="

          "AddExpr": if rule=1320 then "+" else "-"

          default: fail

      }

   end

Unicon allows us to return the result that's produced by a case expression. Additive 
expressions designated by "AddExpr" include both addition and subtraction. The 
production rule is used to disambiguate. The corresponding Java implementation of get_
op() is similar, as given here:

   public String get_op() {

     switch (sym) {

     case "Assignment" : return "=";

     case "AddExpr": if (rule==1320) return "+";

                     else return "-";

     }

     return sym;

   }

The findatoken() method is used from an internal node in the syntax tree to chase 
down one of its leaves. It recursively dives into the children until it finds a token. The 
Unicon implementation of findatoken() is as follows:

method findatoken()

if sym==="token" then return self

return (!kids).findatoken()

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Determining the type at each syntax tree node     189

The corresponding Java implementation of findatoken() is shown here:

   public tree findatoken() {

     tree rv;

     if (sym.equals("token")) return this;

     for (tree t : kids)

        if ((rv=t.findatoken()) != null) return rv;

     return null;

   }

Even the basics of type checking, all of which have been shown in this section, have 
required you to learn a lot of new ways to traverse trees. The fact is, building a programming 
language or writing a compiler is a big, complex job, and if we showed a complete one for a 
mainstream language, this book would be thicker than our page limit allows.

This chapter presented how to add roughly half of a type checker to Jzero. Running 
j0 with these additions is not very glamorous; it just lets you see simple type errors 
get detected and reported. If you want to see that, download the code from this book's 
GitHub site, go into the Chapter07/ subdirectory, and build code with the make 
program. By default, make will build both the Unicon and Java versions. When you run 
the j0 command with preliminary type checking in place, it produces an output similar to 
the following. In this case, the Unicon implementation is shown:

Figure 7.2 – The output from the type checker produces OK or FAIL on various operators

Of course, if the program has no type errors, you will see nothing but lines ending with 
OK. Now, let's consider an aspect of type checking that's encountered when implementing 
some programming languages, including Unicon: runtime type checks.
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Runtime type checks and type inference  
in Unicon
The Unicon language handles types a lot differently than the Jzero type system described 
in this chapter. In Unicon, types are not associated with declarations but with actual 
values. The Unicon virtual machine code generator does not place type information in 
symbol tables or do compile-time type checking. Instead, types are represented explicitly 
at runtime and checked everywhere before a value is used. Explicitly representing type 
information at runtime is common in interpreted and object-oriented languages, and 
optional in some semi-object-oriented languages such as C++.

Consider the write() Unicon function. Every argument to write() that isn't a file 
specifying where to write to must be a string, or be able to be converted into a string. In 
the Unicon virtual machine, the type information is created and checked at runtime as 
needed. The pseudocode for the Unicon write() function looks like this:

for (n = 0; n < nargs; n++) {

   if (is:file(x[n])) {

       set the current output file

   } else if (cnv:string(x[n])) {

       output the string to the output file

   } else runtime_error("string or file expected")

}

For every argument to write(), the preceding code says to either set the current file, 
convert the argument into a string and write it, or stop with a runtime error. Checking 
types of things at runtime provides extra flexibility but slows down execution. Keeping 
type information around at runtime also consumes memory – potentially a lot of memory. 
To perform a runtime type check, every value in the Unicon language is stored in a 
descriptor. A descriptor is a struct that contains a value plus an extra word of memory that 
encodes its type, called the d-word. A Boolean expression such as is:file(x) on some 
Unicon value, x, boils down to performing a check to see whether the d-word says the 
value is of the file type.

Unicon also has an optimizing compiler that generates C code. The optimizing compiler 
performs type inference, which determines a unique type more than 90% of the time, 
eliminating the need for most runtime type checks. Consider the following trivial  
Unicon program:

procedure main()

   s := "hello" || read()

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Summary     191

   write(s)

end

The optimizing compiler knows that "hello" is a string, and read() only returns 
strings. It can infer that the s variable holds only string values, so this particular call  
to write() is passed a value that is already a string and does not need to be checked  
or converted. Type inference is beyond the scope of this book, but it is valuable to  
know that it exists and that for some languages, it is an important bridge that allows 
flexible higher-level languages to run at speeds comparable to those of lower-level 
compiled languages.

Summary
In this chapter, you learned how to represent base types and check the type safety of 
common operations, such as preventing adding an integer to a function. All of this can be 
accomplished by traversing the syntax tree.

You learned how to represent types in a data structure and add an attribute to the syntax 
tree nodes to store that information. You also learned how to write tree traversals that 
extract type information about variables and store that information in their symbol table 
entries. You then learned how to calculate the correct type at each tree node, checking 
whether the types are used correctly in the process. Finally, you learned how to report 
type errors that you found.

The process of type checking may seem like a thankless job that just results in a lot 
of error messages, but really, the type information that you compute at each of the 
operators and function calls in the syntax tree will be instrumental in determining what 
machine instructions to generate for those tree nodes. Now that you have built a type 
representation and implemented simple type checks, it is time to consider some more 
complex operations necessary to check compound types, such as function calls and 
classes. You will do this in the next chapter.

Questions
1. What purpose does type checking serve, besides just to frustrate tired 

programmers?
2. Why is a structure type (in our case, a class) needed to represent type information? 

Why can't we just use an integer to represent each type?
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3. The code in this chapter outputs lines that report every successful type check with 
OK. This is very reassuring. Why don't other compilers report successful type 
checks like this?

4. Java is pickier about types than its ancestor, the C programming language. What 
are the advantages of being pickier about types, instead of automatically converting 
them on demand?
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Checking Types on 

Arrays, Method 
Calls, and Structure 

Accesses
This is the second of two chapters regarding type checking. The previous chapter 
introduced type checking for built-in atomic types. In comparison, this chapter will cover 
more complex type checking operations.

This chapter will show you how to perform type checks for the arrays, parameters, and 
return types of method calls in the Jzero subset of Java. Additionally, it includes the type 
checking of composite types such as classes.

In this chapter, we will cover the following main topics:

• Type checking arrays

• Checking method calls

• Checking structured type accesses
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By the end of the chapter, you will be able to write more sophisticated tree traversals to check 
types that themselves contain one or more other types. Being able to support such composite 
types in your programming language is necessary for you to go beyond toy programming 
languages and into the realm of languages that are useful in the real world. It is time to learn 
more about type checking. We will begin with the simplest composite type: arrays.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch8

The Code in Action video for the chapter can be found here: https://bit.ly/30w1V8I

Checking operations on array types
An array is a sequence of elements that are all of the same type. Up to this point, the 
Jzero language hasn't really supported array types, other than to allow enough syntax for 
main() to declare its array of the String parameter. Now, it is time to add support for the 
remainder of the Jzero array operations, which are a small subset of what Java arrays can do. 
Jzero arrays are limited to single-dimension arrays created without initializers. In order to 
check array operations properly, we will modify the code from the previous chapters so that 
we can recognize array variables when they are declared, and then check all uses on these 
arrays to only allow legal operations. Let's begin with array variable declarations.

Handling array variable declarations
The idea that a variable will hold a reference to an array is attached to the variable's type  
in the recursive grammar rule, in j0gram.y, for the non-terminal VarDeclarator. 
The rule in question is the second production rule, which appears after the vertical bar,  
as follows:

VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' {

  $$=j0.node("VarDeclarator",1060,$1); };
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For this rule, the corresponding code in the class tree's assigntype() method adds an 
arraytype() on top of the type that is being inherited, as assigntype() recurses 
into the VarDeclarator child node. The Unicon code for this, in the tree.icn file, 
appears as follows:

  method assigntype(t)

   . . .

    "VarDeclarator": {

      kids[1].assigntype(arraytype(t))

      return

    }

The t type being inherited is not discarded. It becomes the element type of the array type 
that is constructed here. The corresponding Java code in tree.java is almost identical:

  void assigntype(typeinfo t) {

    . . .

    case "VarDeclarator": {

      kids[0].assigntype(new arraytype(t));

      return;

    }

Because it is recursive, this code works for multiple-dimension arrays represented by a chain 
of VarDeclarator nodes in the syntax tree; although for the sake of brevity, the rest of 
Jzero will not. Even for single-dimension arrays, things get interesting when you consider 
how type information is checked when arrays are used in executable code. The first point 
within the code where you will need to check array types is when an array is created.

Checking types during array creation
Arrays in Java are created with the new expression; this is something that, up to this point, 
was omitted from Jzero. This entails a new token added to javalex.l for the reserved 
new word, as shown in the following code:

"new"    { return j0.scan(parser.NEW); }

Additionally, it entails a new kind of primary expression, called an ArrayCreation 
expression. This is added in the grammar within j0gram.y, as shown in the following code:

Primary:  Literal | FieldAccess | MethodCall | 
         '(' Expr ')' { $$=$2;} | ArrayCreation ;
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ArrayCreation: NEW Type '[' Expression ']' {

  $$=j0.node("ArrayCreation", 1260, $2, $4); };

Having added the new reserved word and defined a tree node for it, it is time to consider 
how a type is assigned for that expression. Let's consider the creation of an array in the 
new int [3] Java expression. The int token is being used in an executable expression 
for the first time, and initially, the code that creates the int token inside token.icn 
should allocate its type as follows:

class token(cat, text, lineno, colno, ival, dval, sval, 

  typ)

   . . .

initially

  case cat of {

     parser.INT:     typ := typeinfo("int")

     parser.DOUBLE:  typ := typeinfo("double")

     parser.BOOLEAN: typ := typeinfo("boolean")

     parser.VOID:    typ := typeinfo("void")

As you can see, the same additions are needed for the other atomic scalar types. The 
corresponding Java code in the constructor in token.java is shown here:

    case parser.INT: typ = new typeinfo("int"); break;

    case parser.DOUBLE: typ = new typeinfo("double"); 

        break;

    case parser.BOOLEAN: typ = new typeinfo("boolean"); 

        break;

    case parser.VOID: typ = new typeinfo("void"); break;

These additions to the class token take care of the leaves that are providing our base types. 
The ArrayCreation node's type is calculated with an addition to the checktype() 
method. In tree.icn, the addition to checktype(), which primarily consists of a call 
to arraytype(), is shown here:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,typ)

   . . .

   method checktype(in_codeblock)

   . . .

    "ArrayCreation": typ := arraytype(kids[1].typ)
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The Java code that corresponds to this in the tree.java file is as follows:

    case "ArrayCreation":

       typ = new arraytype(kids[0].typ); break;

So, when a newly created array is used, usually, in an assignment, its array type must 
match the type that is allowed by the surrounding expression. For example, in the 
following two lines, the assignment operator on the second line must allow arrays when its 
type is being checked:

      int x[];

      x = new int[3];

The code to allow the assignment of an array variable from an array value is added to the 
check_types() method in the tree.icn file, as shown here:

   method check_types(op1, op2)

      . . .

      else if (op1.basetype===op2.basetype==="array") &

               operator==="=" &

               check_types(op1.element_type,

                           op2.element_type) then {

               return op1

               }

The code checks that both op1 and op2 are arrays, that we are doing an assignment, and 
that the element types are OK. Here, a write() statement in the then part might be 
useful for the purposes of testing this chapter's code. However, in a compiler, only type 
errors will be shown. The corresponding Java addition to the check_types() method 
in the tree.java file is as follows:

       else if (op1.basetype.equals("array") &&

                op2.basetype.equals("array") &&

                operator.equals("=") &&

                (check_types(((arraytype)op1).element_type,

                    ((arraytype)op2).element_type) != 

                        null)) {

                return op1;

               }
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From the examples in this section, it might appear as though type checking is just a 
bunch of nitpicky attention to detail. The recursive call to check_types() on the 
arrays' element types prevents a program from accidentally assigning an array of string to 
a variable of type array of int, for example. Now, it is time to consider type checking for 
array element accesses.

Checking types during array accesses
Array accesses consist of read and write operations on an array's elements using the 
subscript operator. Here, we need to add syntax support for these operations and build 
syntax tree nodes before we can perform any type checking on them. Adding array 
accesses to the grammar consists of adding a non-terminal ArrayAccess and then 
adding two production rules that use this non-terminal symbol: 

• One for assignments that store a value in an array element 

• One for expressions that fetch the value from an array element

 The changes to the j0gram.y file will appear as follows. They have been reordered in the 
grammar for clarity:

ArrayAccess: Name '[' Expr ']' {

  $$=j0.node("ArrayAccess",1390,$1,$3); };

LeftHandSide: Name | FieldAccess | ArrayAccess ;

Primary:  Literal | FieldAccess | MethodCall | ArrayAccess

    |'(' Expr ')' { $$=$2;} | ArrayCreation ;

The square bracket operator that is used to access array elements must check the types 
of its operands and use them to calculate the result type. The result of an array subscript 
removes one level of array from the type of the left operand, thereby producing its element 
type. The addition to the checktype() method in the tree.icn file looks like this:

  method checktype(in_codeblock)

   . . .

    "ArrayAccess": {

       if match("array ", kids[1].typ.str()) then {

          if kids[2].typ.str()=="int" then

             typ := kids[1].typ.element_type

          else stop("subscripting array with ",

                    kids[2].typ.str())

          }
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       else stop("illegal subscript on type ",

                 kids[1].typ.str())

       }

The preceding code checks that the type of kids[1] is an array type and the type of 
kids[2] is an integer type. If those are good, the value assigned to this node's typ is the 
array's element_type. The corresponding Java addition to the checktype() method 
in the tree.java file is shown here:

    case "ArrayAccess":

    if (kids[0].typ.str().startsWith("array ")) {

        if (kids[1].typ.str().equals("int"))

        typ = ((arraytype)(kids[0].typ)).element_type;

        else j0.semerror("subscripting array with " + 

                          kids[1].typ.str());

        }

    else j0.semerror("illegal subscript on type " +

                       kids[0].typ.str());

    break;

In this section, we have demonstrated how to type check arrays. Fortunately, non-terminal 
symbols in the grammar, and hence in the syntax tree, make it easy to find the spots 
where this form of type checking is needed. Now, it is time to look at perhaps the most 
challenging part of type checking. We will learn how to check the parameters and return 
types of method calls next.

Checking method calls
The function call is the fundamental building block of both imperative and functional 
programming paradigms. In object-oriented languages, functions are called methods, but 
they can play all of the same roles that functions can. In addition to this, a set of methods 
provides an object's public interface. To type check a method call, both the number and 
the type of the parameters must be verified along with the return type.
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Calculating the parameters and return type 
information
The type representation introduced in the previous Chapter 7, Checking Base Type, 
included a methodtype class that had fields for the parameters and the return type; 
however, we haven't yet presented the code to extract that information from the syntax 
tree and place it into the type. The parameters and return type of a method are called its 
signature. The grammar rule where a method signature is declared is the one that builds 
a  MethodHeader node. To calculate the return type, we need to synthesize it from 
the MethodReturnVal node. To calculate the parameters, we need to walk to the 
FormalParmList subtree within MethodDeclarator. You can do this by adding a 
call to j0.calctype() to the grammar rule for MethodHeader; this is similar to the 
ones we added earlier for variable declarations:

MethodHeader: PUBLIC STATIC MethodReturnVal 

    MethodDeclarator {

  $$=j0.node("MethodHeader",1070,$3,$4);

  j0.calctype($$);

  };

The calctype() method in the j0 class has not been modified, but the methods it 
calls over in tree.icn have been extended to add more type information, as needed, 
to handle method signatures. The calctype() method in the tree class gets a small 
upgrade to synthesize a leaf 's type from its contained token type, if present. In Unicon, it 
is the following line added to tree.icn that assigns typ from tok.typ:

  method calctype()

      . . .

      "token": {

         if typ := \ (tok.typ) then return

The corresponding Java addition to calctype() in tree.java is shown here:

          if ((typ = tok.typ) != null) return;
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The modifications to the assigntype() method for constructing method signatures are 
more substantial. For variable declarations, you are simply passing the type as an inherited 
attribute down a list to the individual variables' leaf identifiers. For a method, the type 
to be associated with the identifier is constructed from the inherited attribute, which is 
the return type, plus the remainder of the method's signature obtained from the subtree 
associated with the parameter list:

  method assigntype(t)

    case sym of {

    . . .

    "MethodDeclarator": {

       parmList := (\ (kids[2]).mksig()) | []

       kids[1].typ := typ := methodtype(parmList , t)

      return

    }

In this code, the parmList parameter list is constructed as a list of types. If the 
parameter list is not empty, it is constructed by calling the mksignature() method 
on that non-empty tree node. If the parameter list is empty, parmList is initialized to 
the empty list, []. The parameter list and the return type of t are passed in to construct 
the method type that is assigned to the MethodDeclarator node and its first child, 
that is, the identifier method name that will be inserted into the class symbol table. The 
corresponding Java addition to the assigntype() method in tree.java is shown 
here:

   Case "MethodDeclarator":

   typeinfo parmList[];

    if (kids[1] != null) parmList = kids[1].mksig();

    else parmList = new typeinfo [0];

    kids[0].typ = typ = new methodtype(parmList , t);

    return;
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The mksig() method constructs a list of the types of parameters of a method. The 
mksig() method is an example of a very specialized tree method. It is a subtree traversal 
that only traverses a very narrow subset of all tree nodes. It is only ever called on a formal 
parameter list and only needs to consider the FormalParmList and FormalParm 
nodes as it walks down the parameter list, picking up the types of each parameter. The 
Unicon code for mksig() in tree.icn is as follows:

  method mksig()

     case sym of {

        "FormalParm": return [ kids[1].typ ]

        "FormalParmList":

           return kids[1].mksig() ||| kids[2].mksig()

        }

  end

The FormalParm case returns a list of size 1. The FormalParmList case returns the 
concatenation of two recursive calls on its children. The corresponding Java code in 
tree.java is shown here:

  typeinfo [] mksig() {

    switch (sym) {

    case "FormalParm": return new typeinfo[]{kids[0].typ};

    case "FormalParmList":

      typeinfo ta1[] = kids[0].mksig();

      typeinfo ta2[] = kids[1].mksig();

      typeinfo ta[] = new typeinfo[ta1.length + 

            ta2.length];

      for(int i=0; i<ta1.length; i++) ta[i]=ta1[i];

      for(int j=0; j<ta2.length; j++)

        ta[ta1.length+j]=ta2[j];

      return ta;

    }

    return null;

  }
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The Java implementation uses arrays. The majority of the preceding code concatenates the 
two arrays returned from the calls to mksig() on the children. This concatenation could 
be performed by importing java.util.Arrays and using utility methods there, but 
the Arrays code is not much shorter or clearer. There is one last tweak to the code that 
is required to connect all of this method type information and make it usable. When the 
method is inserted into the symbol table in the populateSymTables() method, its 
type information needs to be stored there. In Unicon, the change in tree.icn is shown 
here:

  method populateSymTables()

    case sym of {

    . . .

   "MethodDecl": {

      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

                  kids[1].stab, kids[1].kids[2].typ)

Compared to previous chapters, the addition of type information is just one extra 
parameter being passed into the symbol table's insert() method. The corresponding 
Java code in tree.java is shown here:

stab.insert(s, false, kids[0].stab, kids[0].kids[1].typ);

We have constructed the type information for methods when they are declared and made 
that type information available in the symbol table. Now, let's take a look at how to use 
type information from various methods to check the types of the actual parameters when 
they are called.

Checking the types at each method call site
The method call sites can be found in the syntax tree by looking for the two production 
rules that build a non-terminal MethodCall. The rule where a MethodCall is a Name 
followed by a parenthesized list of zero or more parameters is shown here. It includes the 
classic function syntax, which is primarily used to call methods within the same class, as 
well as qualified names with the object.function syntax to invoke a method within 
another class. This section focuses on type checking for the classic function syntax. The 
object.function syntax is covered in the Checking structured type accesses section. 
The code given here has been amended in that section.
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The code to check the types of method calls is added to the checktype() method. The 
Unicon additions to tree.icn appear as follows:

Method checktype(in_codeblock)

  . . .

  "MethodCall": {

    if rule = 1290 then {

      if kids[1].sym ~== "token" then

        stop("can't check type of Name ", kids[1].sym)

      if kids[1].tok.cat == parser.IDENTIFIER then {

        if (\(rv:=stab.lookup(kids[1].tok.text))) then {

          rv := rv.typ

          if not match("method ", rv.str()) then

            stop("method expected, got ", rv.str())

            cksig(rv)

          }

        }

      else stop("can't typecheck token ", kids[1].tok.cat)

    }

    else stop("Jzero does not handle complex calls")

  }

  . . .

In the preceding code, the method is looked up in the symbol table and its type is 
retrieved. If there are no parameters, the type is checked to ensure that its parameter list 
is empty. If there are actual parameters in the call, they are checked against the formal 
parameters via a call to the cksig() method. If that check succeeds, the typ field for 
this node is assigned from the return_type, which was specified for the method that 
was called. The corresponding Java code in tree.java is shown here:

  case "MethodCall":

    if (rule == 1290) {

      symtab_entry rve;

      methodtype rv;

      if (!kids[0].sym.equals("token"))

        j0.semerror("can't check type of " + kids[0].sym);

      if (kids[0].tok.cat == parser.IDENTIFIER) {

        if ((rve = stab.lookup(kids[0].tok.text)) != null){
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          if (! (rve.typ instanceof methodtype))

            j0.semerror("method expected, got " + 

                        rv.str());

          rv = (methodtype)rve.typ;

          cksig(rv);

        }

      }

    else j0.semerror("can't typecheck " + kids[0].tok.cat);

    }

  else j0.semerror("Jzero does not handle complex calls");

  break;

The method that is used to check a function's signature and apply its return type is the 
cksig() method. The Unicon implementation of cksig() in tree.icn is shown here:

   method cksig(sig)

   local i:=*sig.parameters, nactual := 1, t := kids[2]

     if /t then {

       if i ~= 0 then stop("0 parameters, expected ", i)

       }

     else {

       while t.sym == "ArgList" do {

         nactual +:= 1; t:=t.kids[1] }

       if nactual ~= i then

         stop(nactual " parameters, expected ", i)

       t := kids[2]

       while t.sym == "ArgList" do {

         check_types(t.kids[-1].typ, sig.parameters[i])

         t := t.kids[1]; i-:=1

         }

       check_types(t.typ, sig.parameters[1])

     }

     typ := sig.return_type

   end
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This method first handles zero parameters as a special case; however, aside from that, it 
checks one parameter at a time in a while loop. For each parameter, it calls ckarg() 
to check the formal and actual types. Because of the way the syntax tree is constructed, 
parameters are encountered in reverse order during the tree traversal here. The first 
parameter is found when you hit a tree node that is not an ArgList. After processing 
the arguments, cksig() sets the MethodCall node's type to the type returned by the 
method. The corresponding Java code in tree.java appears as follows:

  void cksig(methodtype sig) {

    int i = sig.parameters.length, nactual = 1;

    tree t = kids[1];

    if (t == null) {

      if (i != 0) j0.semerror("0 params, expected ",i);

    }

    else {

      while (t.sym.equals("ArgList")){nactual++; 

      t=t.kids[0];}

      if (nactual != i)

        j0.semerror(nactual + " parameters, expected "+ i);

      t = kids[1];

      i--;

      while (t.sym.equals("ArgList")) {

        check_types(t.kids[1].typ, sig.parameters[i--]);

        t = t.kids[0];

      }

    check_types(t.typ, sig.parameters[0]);

  }

    typ = sig.return_type;

  }
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The check_types() method and its get_op() helper method need to be tweaked in 
order to handle parameter type checking. The Unicon implementation of these changes 
appears as follows:

   method get_op()

     return case sym of { …

      "MethodCall" : "param"

   . . .

   method check_types(op1, op2)

      operator := get_op()

      case operator of {

         "param"|"return"|"="|"+"|"-" : {

          . . .

The corresponding Java changes to get_op() and check_types() in tree.java are 
as follows:

  public String get_op() {

    switch (sym) {

    case "MethodCall" : return "param";

    . . .

  public typeinfo check_types(typeinfo op1, typeinfo op2) {

    String operator = get_op();

    switch (operator) {

    case "param": case "return": case "=": case "+":  
    case"-":

So, you have learned how to check the types of parameters passed into method calls, 
which is one of the most challenging aspects of type checking. Now it is time to check the 
return types that come out of the function call via its return statements.
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Checking the type at return statements
The type of the expressions in the method's return statements must match the type's 
declared return type. These two locations are quite some distance apart in the syntax 
tree. There are lots of different ways in which you might connect them. For example, you 
could add a return_type attribute to all of the tree nodes and inherit the type from the 
MethodHeader into the Block and down through the code into the return statements. 
However, that approach is a waste of time for a relatively sparsely used piece of information. 
The symbol table is the most convenient way to connect remote locations. We can insert a 
dummy symbol into the symbol table that can hold a function's return type. This dummy 
symbol can be looked up and checked against the type at every return statement. The 
dummy symbol named return is ideal. It is easy to remember and is a reserved word that 
will never conflict with a real symbol in user code. The code to insert the return type into 
the method's symbol table is an addition to the populateSymTables() method. The 
Unicon implementation in tree.icn is as follows:

  method populateSymTables()

  case sym of {

  . . .

    "MethodDecl": {

      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

                  kids[1].stab, kids[1].kids[2].typ)

      kids[1].stab.insert("return", , , 

            kids[1].kids[1].typ)

      }

In this code, kids[1] is the MethodHeader node. Its stab field is the local symbol 
table being inserted as a subscope inside the enclosing class scope. The kids[1].
kids[1] expression is the MethodReturnVal node, which is usually just the token 
denoting the return type. The pair of blank spaces separated by commas between 
"return" and the type are null values. They are being passed into the second and third 
parameters of the insert() symbol table. The corresponding Java code that is added to 
the populateSymTables() method in tree.java is as follows:

    Kids[0].stab.insert("return", false, null,

                         kids[0].kids[0].typ);

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Checking method calls     209

The type checking code that makes use of this return type information within the return 
statements is added to the checktype() method, which is also in the tree class. The 
Unicon implementation in tree.icn appears as follows:

  Method checktype(in_codeblock)

  . . .

    case sym of {

    "ReturnStmt": {

      if not (rt := ( \ ( \ stab).lookup("return")).typ) 

            then

         stop("stab did not find a returntype")

      if \ (kids[1].typ) then

          typ := check_types(rt, kids[1].typ)

      else {

        if rt.str() ~== "void" then

          stop("void return from non-void method")

        typ = rt;

       }

    }

The corresponding Java code is presented here:

    Case "ReturnStmt":

      symtab_entry ste;

      if ((ste=stab.lookup("return")) == null)

         j0.semerror("stab did not find a returntype");

      typeinfo rt = ste.typ;

      if (kids[0].typ != null)

        typ = check_types(rt, kids[0].typ);

      else {

        if (!rt.str().equals("void"))

          j0.semerror("void return from non-void method");

      typ = rt;

       }

     break;

So, you have learned how to check return statements. Now, it is time to learn how to 
check the accesses to the fields and methods of a class instance.
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Checking structured type accesses
In this book, the phrase structured type will denote composite objects that can hold  
a mixture of types whose elements are accessed by name. This contrasts with arrays,  
whose elements are accessed by their position and whose elements are of the same type.  
In some languages, there are struct or record types for this kind of data. In Jzero and  
most object-oriented languages, classes are used as the principal structured type.

This section discusses aspects of how to check the types for operations on classes and, 
more specifically, class instances. This organization mirrors the presentation of array types 
at the beginning of this chapter, starting with what is needed to process declarations of 
class variables.

The original intent of Jzero was to support a tiny Java subset that was somewhat 
comparable to Wirth's PL/0 language. Such a language does not require class instances or 
object-orientation, and space limitations prevent us from covering many of the bells and 
whistles needed for a feature-rich object-oriented language such as Java or C++. However, 
we will present some of the highlights. The first thing to consider is how to declare 
instance variables for class types.

Handling instance variable declarations
Variables of class types are declared by giving a class name and then a comma-separated 
list of one or more identifiers. For example, our compiler needs to handle declarations that 
are similar to the following declaration of three strings:

String a, b, c;

Jzero had to handle such declarations from the beginning since the main() procedure 
takes an array of strings. Although our Jzero compiler already supports class variable 
declarations, a few additional considerations are in order.

In many object-oriented languages, variable declarations will have accompanying visibility 
rules such as public and private. In Jzero, all methods are public and all variables 
are private, but you could go ahead and implement an isPublic attribute anyway. 
A similar consideration applies to static variables. Jzero has no static variables, but 
you could implement an isStatic attribute if you decide you want them. Extending our 
example to include these two considerations will look like the following:

private static String a, b, c;

To support these Java attributes, you can add them to tokens, tree nodes, and the symbol 
table entry type. You can propagate them from the reserved word over to where the 
variables are declared, just as we did for type information.
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Checking types at instance creation
Objects, also called class instances, are created using the new reserved word, as was the 
case for arrays, which we discussed in the Checking operations on array types section. The 
additions to the grammar in j0gram.y are shown here:

Primary:  Literal | FieldAccess | MethodCall | ArrayAccess

   |'(' Expr ')' { $$=$2;} | ArrayCreation | 

      InstanceCreation;

InstanceCreation: NEW Name '(' ArgListOpt ')' {

  $$=j0.node("InstanceCreation", 1261, $2, $4); };

This added syntax enables instance creation. In order to calculate the type of the 
expression so that it can be checked, we need to look up the type of the class in the symbol 
table. For that to work, at an earlier point in time, we must construct the corresponding 
classtype object and associate it with the class name in the enclosing symbol table.

Instead of embedding code to construct the class type with subtree traversals during 
parsing, as we did in the preceding sections to construct the signature for a method, for 
a class, it is easier to wait until after parsing and populating the symbol table, that is, 
just before type checking. That way, all the information for constructing the class type is 
ready for us in the class symbol table. A call to a new mkcls() method is added to the 
semantic() method in j0.icn, after the symbol table processing and before type 
checking, as follows:

   method semantic(root)

   . . .

     root.checkSymTables()

     root.mkcls()

     root.checktype()

The corresponding Java addition to j0.java is shown here:

   root.mkcls();

The mkcls() method stands for make class. When it sees a class declaration, it looks up 
the class name and goes through the class symbol table, putting entries into the correct 
category. There is one list for fields, one for methods, and one for constructors. The 
Unicon implementation of mkcls() from tree.icn is shown here:

  method mkcls()

    if sym == "ClassDecl" then {
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        rv := stab.lookup(kids[1].tok.text)

        flds := []; methds := []; constrs := []

        every k := key(rv.st.t) do

           if match("method ", rv.st.t[k].typ.str()) then

             put(methds, [k, rv.st.t[k].typ])

           else put(flds, [k, rv.st.t[k].typ])

       /(rv.typ) := classtype(kids[1].tok.text, rv.st,

                              flds, methds, constrs)

    }

    else every k := !kids do

      if k.nkids>0 then k.mkcls()

  end

When this traversal hits a class declaration, it looks up the class name and fetches the 
symbol table for that class. Every symbol is checked, and if it is a method, it goes on the 
list of methods named methds; otherwise, it goes on the list of fields, named flds. The 
class type in the class's symbol table entry is assigned an instance of a classtype that holds 
all of this information. You might notice that constructors are not identified and placed 
on the constructor list. It is OK for Jzero to not support constructors, but a larger subset of 
Java would support at least one constructor for each class. In any case, the corresponding 
Java version is shown as follows:

  void mkcls() {

    symtab_entry rv;

    if (sym.equals("ClassDecl")) {

      int ms=0, fs=0;

      rv = stab.lookup(kids[0].tok.text);

      for(String k : rv.st.t.keySet()) {

        symtab_entry ste = rv.st.t.get(k);

        if ((ste.typ.str()).startsWith("method ")) ms++;

        else fs++;

      }

      parameter flds[] = new parameter[fs];

      parameter methds[] = new parameter[ms];

      fs=0; ms=0;

      for(String k : rv.st.t.keySet()) {

      symtab_entry ste = rv.st.t.get(k);

      if ((ste.typ.str()).startsWith("method "))
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         methds[ms++] = new parameter(k, ste.typ);

      else flds[fs++] = new parameter(k, ste.typ);

      }

      rv.typ = new classtype(kids[0].tok.text,

                     rv.st, flds, methds, new typeinfo[0]);

    }

    else for(int i = 0; i<nkids; i++)

      if (kids[i].nkids>0) kids[i].mkcls();

  }

There is one more piece of code that is needed to complete the handling of instance 
creation. The type field has to be set for the InstanceCreation nodes in the 
checktype() method. After all the work of placing the type of information for the class 
in the symbol table, this is a simple lookup. The Unicon implementation in tree.icn 
looks like this:

  method checktype(in_codeblock)

   . . .

    "InstanceCreation": {

      if not (rv := stab.lookup(kids[1].tok.text)) then

        stop("unknown type ",kids[1].tok.text)

      if not (typ := \ (rv.typ)) then

        stop(kids[1].tok.text, " has unknown type")

    }

The preceding code is just a symbol table lookup that includes the fetching of the type from 
the symbol table entry, plus lots of error checking. The corresponding Java additions in 
tree.java appear as follows:

    case "InstanceCreation":

      symtab_entry rv;

      if ((rv = stab.lookup(kids[0].tok.text))==null)

        j0.semerror("unknown type " + kids[0].tok.text);

      if ((typ = rv.typ) == null)

        j0.semerror(kids[0].tok.text + " has unknown 

                type");

      break;
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So, you have learned how to construct type information for classes and use it to produce 
the correct type at instance creation. Now, let's explore what it will take to support 
accesses to names defined within the instance.

Checking types at instance accesses
Instance accesses refer to references to the fields and methods of an object. There are 
implicit accesses, where a field or method of the current object is referenced directly by 
name, and explicit accesses, where the dot operator is used to access an object through 
its public interface. Implicit accesses are handled by regular symbol table lookups in the 
current scope, which will automatically try to enclose scopes, including the class scope 
where the current object's class methods and variables can be found. This section is about 
explicit accesses using the dot operator. In the j0gram.y grammar, these are called 
QualifiedName nodes. Adding support for qualified names begins by modifying the 
MethodCall code in the class tree's checktype() method. The code presented earlier 
in this chapter for method signature checking on simple names is put into an else clause. 
The Unicon implementation in tree.icn adds the following lines:

  method checktype(in_codeblock)

   . . .

    "MethodCall": {

      if rule = 1290 then {

        if kids[1].sym == "QualifiedName" then {

          rv := kids[1].dequalify()

          cksig(rv)

          }

        else {

           if kids[1].sym ~== "token" then

             …

           else stop("can't check type of ", 

                      kids[1].tok.cat)

        }
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The code in checktype() recognizes qualified names when used as the name of the 
method being called, and it calls a dequalify() method to obtain the type of the dotted 
name. It then uses the signature checking method, cksig(), as presented earlier, to 
check the types at the call. The corresponding Java code in tree.java is as follows:

        if (kids[0].sym.equals("QualifiedName")) {

          rv = (methodtype)(kids[0].dequalify());

          cksig(rv);

          }

kids[0] is a tree node with two children. The type of the left child contains the symbol 
table within which we lookup the right child to find its method type. The dequalify() 
method does this dirty work. The Unicon implementation in tree.icn looks like this:

  method dequalify()

  local rv, ste

    if kids[1].sym == "QualifiedName" then

      rv := kids[1].dequalify()

    else if kids[1].sym=="token" &

            kids[1].tok.cat=parser.IDENTIFIER then {

      if not \ (rv := stab.lookup(kids[1].tok.text)) then

         stop("unknown symbol ", kids[1].tok.text)

      rv := rv.typ

    }

    else stop("can't dequalify ", sym)

    if rv.basetype ~== "class" then

      stop("can't dequality ", rv.basetype)

    if \ (ste := rv.st.lookup(kids[2].tok.text)) then

      return ste.typ

    else stop(kids[2].tok.text, " is not in ", rv.str())

end
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This method first calculates the type for the left-hand side operand. This requires a 
recursion if the left operand is another qualified name. Otherwise, the left operand must 
be an identifier that can be looked up in the symbol table. Either way, the left operand's 
type is checked to make sure it is a class, and if so, the identifier on the right-hand side 
of the dot is looked up in that class and its type is returned. The corresponding Java 
implementation is shown here:

  public typeinfo dequalify() {

      typeinfo rv = null;

      symtab_entry ste;

      if (kids[0].sym.equals("QualifiedName"))

        rv = kids[0].dequalify();

      else if (kids[0].sym.equals("token") &

           (kids[0].tok.cat==parser.IDENTIFIER)) {

      if ((ste = stab.lookup(kids[0].tok.text)) != null)

        j0.semerror("unknown symbol " + kids[0].tok.text);

      rv = ste.typ;

      }

      else j0.semerror("can't dequalify " + sym);

      if (!rv.basetype.equals("class"))

        j0.semerror("can't dequalify " + rv.basetype);

      ste = ((classtype)rv).st.lookup(kids[1].tok.text);

      if (ste != null) return ste.typ;

      j0.semerror("couldn't lookup " + kids[1].tok.text +

          " in " + rv.str());

      return null;

  }

In this section, you learned how to handle structure accesses. We included a type checking 
consideration where variables of a class type are declared and instantiated. Then, you 
learned how to calculate the types of qualified names within objects.
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After all of this type checking, the output is, once again, a bit anticlimactic. You can 
download the code from the book's Github site, navigate to the Chapter08/ subdirectory, 
and build with the make program. This will build both the Unicon and the Java versions. 
As a reminder, you will have to configure installed software and/or set your classpath 
to the directory where you unpacked the book examples, as discussed from Chapter 2, 
Programming Language Design, to Chapter 5, Syntax Trees. When you run the j0 command 
with type checking in place, it produces an output that is similar to the following:

Figure 8.1 – Type checking on parameters and return types

If the program has no type errors, all the lines will end with OK. In later chapters, Jzero 
will not bother to output when successful type checks occur, so this will be the last you see 
of these OK lines.
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Summary
This chapter was the second of two chapters covering various aspects of type checking. 
You learned how to represent compound types. For example, you learned how to build 
method signatures and use them to check method calls. All of this is accomplished via 
traversals of the syntax tree, and much of it involves adding minor extensions to the 
functions presented in the previous chapter.

This chapter also showed you how to recognize array declarations and build the 
appropriate type representations for them. You learned how to check whether correct 
types are being used for array creation and access and to build type signatures for method 
declarations. You also learned how to check that correct types are being used for method 
calls and returns.

While writing fancier tree traversal functions is a valuable skill in its own right, 
representing type information and propagating it around the syntax tree to where it is 
needed also makes an excellent practice of the skills you will need for the next steps in 
your compiler. Now that you have implemented type checking, you are ready to move 
on to code generation. This denotes the midpoint in your programming language 
implementation. So far, you have been gathering information about the program. The next 
chapter begins working toward the translated output of the input program, starting with 
intermediate code generation.

Questions
1. What are the main differences between checking the types of array accesses and 

checking the types of struct or class member accesses?
2. How do a function's return statements know what type they are returning? They  

are often quite far away in the tree from the location where the function's return 
type is declared.

3. How are types checked during a function call?  How does this compare with type 
checking at operators such as plus and minus?

4. Besides accesses via the [ ] and . operators, what other forms of type checking are 
necessary for arrays, structures, or class types?
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Generation
After the semantic analysis is complete, you can contemplate how to execute the 
program. For compilers, the next step is to produce a sequence of machine-independent 
instructions called intermediate code. This is usually followed by an optimization phase 
and final code generation for a target machine. This chapter will show you how to generate 
intermediate code by looking at examples for the Jzero language. After several chapters 
where you learned how to write tree traversals that analyze and add information to the 
syntax tree constructed from the input, the exciting thing about this chapter is that the 
tree traversals in it begin the process of constructing the compiler's output.

This chapter covers the following main topics: 

• Preparing to generate code

• Defining an intermediate code instruction set

• Generating code for expressions

• Generating code for control flow

It is time to start by gaining some perspective on why intermediate code is so useful.  
You can think of intermediate code generation as the process of preparing for final  
code generation.
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Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch9

The Code in Action video for the chapter can be found here: https://bit.ly/30t3gNQ

Preparing to generate code
Generating intermediate code produces enough information to enable the task of 
generating the final code that can be run. Like many things in life, a daunting task 
becomes possible when you prepare well. Eager developers might want to skip this phase 
and jump straight to final code generation, so let's consider why intermediate code 
generation is so advantageous. Generating final machine code is a complex task and 
most compilers use intermediate code to break the work up into stages to complete it 
successfully. This section will show you the details of what and why, starting with some 
specific technical motivations to generate intermediate code.

Why generate intermediate code?
The goal of this phase of your compiler is to produce a list of machine-independent 
instructions for each method in the program. Generating preliminary machine-neutral code 
as an intermediate representation of a program's instructions has the following benefits:

• It allows you to identify the memory regions and byte offsets at which variables 
will be stored before worrying about machine-specific details such as registers and 
addressing modes.

• It allows you to work out most of the details of control flow, such as identifying 
where labels and go-to instructions will be needed.

• Including intermediate code in a compiler reduces the size and scope of the 
CPU-specific code, improving the portability of your compiler to new architectures.

• It allows you to check your work up to this point and provides output in a  
human-readable format before we get bogged down in low-level machine code.

• Generating intermediate code allows for a wide range of optimizations to be applied 
before machine-specific final code generation. Optimizations that are made to 
intermediate code benefit all final code generators that you target after this point.

Now, let's look at some data structure additions that will help generate intermediate code.
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Learning about the memory regions in the generated 
program
In an interpreter, an address in the user's program refers to memory within the interpreter's 
address space and can be manipulated directly. A compiler has the more difficult challenge 
of reasoning about addresses that are abstractions of memory locations in future executions 
of the generated program. At compile time, the user program's address space does not exist 
yet, but when it does, it will be organized in a similar way to the following:

Figure 9.1 – Runtime memory regions

Some addresses will be in static memory, some on the stack, some in the heap, and 
some in the code. In the final code, the way these regions are accessed differs, but for 
intermediate code addresses, we just need a way to tell what region each address lives in. 
We could use integer codes to represent these different memory regions, but in Unicon 
and Java, a string name is a direct human-readable way to designate them. So be it. The 
regions we will use and their interpretations are shown here:

• "loc": In the local region, the offset is relative to the top of the stack. For example, 
it will probably be accessed relative to a stack frame pointer register.

• "glob": The global region holds statically allocated variables. The offset is relative 
to the start of some data region that is fixed at load time. Depending on your final 
code, it may be resolved to an absolute address.

• "const": The constant region holds statically allocated read-only values. Aside 
from being read-only, its properties are like those of the global region. It typically 
holds strings and other constant structured data; small constants belong in the 
"imm" pseudo region.

• "lab": A unique integer label is used to abstract an offset relative to the start of 
the code region, which is usually a read-only static region. Labels are resolved 
to an absolute address in the final code, but we let the assembler do the work of 
calculating the byte offsets. In intermediate code, as in assembler code, labels are 
just names for machine instructions.
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• "obj": The offset is relative to the start of some object allocated from the heap, 
meaning it will be accessed relative to another address. For example, an object-oriented 
language might address instance variables as offsets relative to a self or this pointer.

• "imm": The pseudo-region for immediate values denotes that the offset is the actual 
value, not an address.

Regions are not very difficult once you are used to them. Now, let's look at how they  
are used in the data structure that the compiler uses to represent addresses in the 
generated code.

Introducing data types for intermediate code
The most common form of intermediate code used in compilers is three-address code. Each 
instruction will contain an opcode and from zero to three operands, which are the values 
that are used by that instruction, usually an address. For the Jzero compiler, we will define 
a class called address that represents an address as a region and an offset. The Unicon 
implementation of the address class begins in the address.icn file, as shown here:

class address(region, offset)

end

The corresponding Java version requires us to decide what types to use for the region 
and offset. We are using strings to represent regions, while an offset is typically a distance 
in bytes from the start of a region, so it can be represented by an integer. The Java 
implementation of the address class in address.java is as follows:

public class address {

   public String region;

   public int offset;

   address(String s, int x) { region = s; offset = x; }

}

We will add methods to this class as needed later. Given this representation of addresses, 
we can define our three-address code in a class called tac, which consists of an opcode 
and up to three addresses. Not all opcodes will use all three addresses. The Unicon 
implementation of the tac class in tac.icn is shown here:

class tac(op, op1, op2, op3)

end
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One interesting question that comes to mind at this point is whether to use Unicon's 
built-in list type and Java's ArrayList class or implement an explicitly linked list 
representation. An explicitly linked list representation would keep the Unicon and Java 
code closer in sync and facilitate some sharing of sublists. Plus, to be honest, I am a little 
bit ashamed at the thought of using Java's ArrayList get() and set(), length 
versus length() versus size(), and so forth.

On the other hand, if we roll our own linked lists, we will be wasting space and time on 
relatively low-level code for basic operations that the implementation language should 
provide. So, we will use the built-in list type in Unicon and ArrayList in Java and see how 
well they perform. The corresponding Java implementation in tac.java is as follows:

public class tac {

  String op;

  address op1, op2, op3;

   tac(String s) { op = s; }

   tac(String s, address x) { op = s; op1 = x; }

   tac(String s, address o1, address o2) {

      op = s; op1 = o1; op2 = o2; }

   tac(String s, address o1, address o2, address o3) {

      op = s; op1 = o1; op2 = o2; op3 = o3; }

}

To make it convenient to assemble lists of three-address instructions, we will add a factory 
method named gen() to the class tree that creates a single three-address instruction 
and returns a new list of size one that contains it. The Unicon implementation in tree.
icn is shown here:

method gen(o, o1, o2, o3)

   return [ tac(o, o1, o2, o3) ]

end

The Unicon version does not have to do anything to allow arguments to be omitted and 
initializes op1…op3 to the null value. The corresponding Java implementation in tree.
java uses variable argument method syntax. It looks like this:

ArrayList<tac> gen(String o, address a) {

  ArrayList<tac> L = new ArrayList<tac>();

  tac t = null;

  switch(a.length) {
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    case 3: t = new tac(o, a[0], a[1], a[2]); break;

    case 2: t = new tac(o, a[0], a[1]); break;

    case 1: t = new tac(o, a[0]); break;

    case 0: t = new tac(o); break;

    default: j0.semerr("gen(): wrong # of arguments");

  }

  L.add(t);

  return L;

}

The preceding examples demonstrate two ways that Java awkwardly supports methods 
with a variable number of arguments. First, there is method overloading: the tac class 
has four different constructors to accommodate a different number of arguments. On the 
other hand, the gen() method uses Java's variable argument syntax, which provides a 
weird array-like thing that is not an array to hold the arguments to the method.

Three address code instructions are easily mapped down into short sequences of 1-2 
native instructions, and computers with complex instruction sets have instructions that 
have three operands and direct correspondence to three-address code. Now, let's look 
at how to augment tree nodes to include information needed for intermediate code, 
including these three-address instructions.

Adding the intermediate code attributes to the tree
In the previous two chapters, we added symbol table scope and type information to the 
syntax tree nodes. Now, it is time to add representations for several pieces of information 
needed for code generation.

For every tree node that contains intermediate code, a field named icode will denote the 
list of code instructions that correspond to executing the code for that subtree.

For expressions, a second attribute named addr will denote the address where the 
computed value of the expression can be found after that expression executes.

For every tree node that contains intermediate code, the first and follow fields will 
denote labels to use as targets when the control flow should execute at the beginning of that 
code, or it should execute whatever instruction logically comes immediately after that code.

Lastly, for every tree node that represents a Boolean expression, the onTrue and 
onFalse fields will hold labels to use as targets when that Boolean expression is found  
to be true or false, respectively. These names were chosen to avoid the reserved words 
true and false in Java.
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In Unicon, adding these attributes to the class tree in tree.icn leaves us with  
the following:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,

            typ,icode,addr,first,follow,onTrue,onFalse)

Our tree nodes are getting fatter and fatter. While we may have to allocate thousands of 
them to compile a program, on a machine with gigabytes of main memory, the memory 
cost will not matter. The corresponding Java additions to tree.java look like this:

class tree {

   . . .

  typeinfo typ;

  ArrayList<tac> icode;

  address addr, first, follow, onTrue, onFalse;

At this point, you might be wondering how we plan to calculate these new attributes. The 
answer is mostly that they are synthesized via a post-order tree traversal, which we will 
look at in the following sections. But there will be a few wrinkles.

Generating labels and temporary variables
A couple of helper methods will prove instrumental during intermediate code generation. 
You can think of them as factory methods if you want; a factory method is a method that 
constructs an object and returns it. In any case, we need one for labels, to facilitate control 
flow, and one for temporary variables. Let's call them genlabel() and genlocal().

The label generator, genlabel(), generates a unique label. A unique integer can be 
obtained from serial.getid(), so genlabel() can, for example, concatenate an 
"L" with the result from a call to that method. It is an interesting question of whether 
genlabel() should return the label as an integer or string, an address, a three-address 
instruction, or a list containing a three-address instruction. The right answer is probably 
an address. The Unicon code for genlabel() in tree.icn might look like this:

method genlabel()

   return address("lab", serial.getid())

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



226     Intermediate Code Generation

The corresponding Java method in tree.java is as follows:

address genlabel() {

   return new address("lab", serial.getid());

}

The temporary variable generator, genlocal(), needs to reserve a chunk of memory in 
the local region. Logically, this entails memory allocation on the top of the stack in some 
future address space when the generated program will be run someday. This is heady 
stuff. In practice, a stack allocation is made in a big chunk whenever a method is called. 
The compiler calculates how big that chunk needs to be for each method, including all 
the local variables within the program, as well as the temporary variables that are used 
to calculate the partial results during the various operators when the expressions in the 
method are executed.

Each local variable requires some number of bytes, but for this book, the units allocated 
are full double-aligned 64-bit words. Offsets are reported in bytes, but if you need a 
byte, you round up and allocate a word. The symbol table is where Jzero allocates local 
variables. In the tree class code, methods can invoke genlocal() from the symbol table 
with the stab.genlocal() expression. To implement genlocal(), symbol table 
entries are extended to keep track of the address that variable occupies, and the symbol 
table itself tracks how many bytes have been allocated in total. Whenever a request for a 
new variable comes in, we allocate the number of words it requires and we increment a 
counter by that amount.

As given, genlocal() allocates a single word and produces an address for it. For a 
language that allocates multi-word entities on the stack, genlocal() can be extended 
to take a parameter that specifies the number of words to allocate, but since Jzero 
allocates arrays and class instances from the heap, Jzero's genlocal() can get away with 
allocating one eight-byte word each call.

Symbol table entries are extended with an address field named addr. The Unicon 
addition to symtab_entry.icn is shown here:

class symtab_entry(sym,parent_st,st,isConst,typ,addr)

The Java addition to symtab_entry.java looks like this:

public class symtab_entry {

   . . .

   address addr;

   . . .
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   symtab_entry(String s, symtab p, boolean iC,

        symtab t, typeinfo ti, address a) {

      sym = s; parent_st = p; isConst = iC;

      st = t; typ = ti; addr = a;

The symbol table class gets a byte counter for how many bytes have been allocated within 
the region corresponding to the symbol table. Symbol table insertion places an address in 
the symbol table entry and increments the counter. A call to genlocal() inserts a new 
variable. The Unicon implementation in symtab.icn is shown here:

class symtab(scope, parent, t, count)

   . . .

  method insert(s, isConst, sub, typ)

      . . .

      t[s] := symtab_entry(s, self, sub, isConst, typ,

                           address(scope,count))

      count +:= 8

      . . .

  end

  method genlocal()

  local s := "local$" || count

    insert(s, false, , typeinfo("int"))

    return t[s].address

  end

initially

  t := table()

  count := 0

end

The preceding change to the insert() method passes in the address at the top of the 
region to the symtab_entry constructor whenever a variable is allocated, and then 
increments the counter to allocate space for it. The addition of the genlocal()method 
consists of inserting a new variable and returning its address. The temporary variable 
has a dollar symbol in it, $, so that name cannot appear as a regular variable name in the 
source code. The Java implementation of this addition to symtab.java consists of the 
following changes:

public class symtab {

  . . .
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  int count;

  . . .

  void insert(String s, Boolean iC, symtab sub,  
              typeinfo typ){

   . . .

         t.put(s, new symtab_entry(s, this, iC, sub, typ,

                      new address(scope,count)));

    count += 8;

      }

   }

   address genlocal() {

      String s = "local$" + count;

      insert(s, false, null, new typeinfo("int"));

      return t.get(s).addr;

   }

With the helper methods for generating labels and temporary variables in place, let's look 
at an intermediate code instruction set.

An intermediate code instruction set
Intermediate code is like machine-independent assembler code for an abstract CPU. The 
instruction set defines a set of opcodes. Each opcode specifies its semantics, including 
how many operands it uses and what state changes occur from executing it. Because this 
is intermediate code, we do not have to worry about registers or addressing modes – we 
can just define state changes in terms of what modifications must occur in main memory. 
The intermediate code instruction set includes both regular instructions and pseudo 
instructions, as is the case for other assembler languages. Let's look at a set of opcodes for 
the Jzero language. There are two categories of opcodes: instructions and declarations.

Instructions
Except for immediate mode, the operands of instructions are addresses and instructions 
that implicitly dereference values in memory located at those addresses. On typical 
modern machines, units of words are 64 bits. Offsets are given in bytes:
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Figure 9.2 – Different opcodes, the C equivalents, and their descriptions

Next, we will have a look at some of the declarations.

Declarations
Declarations and other pseudo-instructions typically associate a name with some amount 
of memory in one of the memory regions of the program. The following are some 
declarations and their descriptions:

Figure 9.3 – Declarations and their descriptions
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These instructions and declarations are general and able to express a variety of 
computations. Input/output could be modeled by adding instructions or by making 
runtime system calls. We will make use of this instruction set substantially later in this 
chapter, starting in the Generating code for expressions section. But first, we must compute 
some more attributes in our syntax tree that are needed for control flow.

Annotating syntax trees with labels for 
control flow
The code at some tree nodes will be sources or targets of control flow. To generate code, 
we need a way to generate the labels at the targets and propagate that information to the 
instructions that will go to those targets. It makes sense to start with the attribute named 
first. The first attribute holds a label to which branch instructions can jump to 
execute a given statement or expression. It can be synthesized by brute force if need be; if 
you had to, you could just allocate a unique label to each tree node. The result would be 
replete with redundant and unused labels, but it would work. For most nodes, the first 
label can be synthesized from one of their children, instead of allocating a new one.

Consider the additive expression e1 + e2, which builds a non-terminal named 
AddExpr. If there was any code in e1, it would have a first field and that would be the 
label to use for the first field of the entire AddExpr. If e1 had no code, e2 might have 
some code and supply the first field for the parent. If neither subexpression has any 
code, then we need to generate a new label for whatever code we generate in the AddExpr 
node that performs the addition. Similar logic applies to other operators. The Unicon 
implementation of the genfirst() method in tree.icn looks like this:

method genfirst()

  every (!\kids).genfirst()

  case sym of {

  "UnaryExpr": first := \kids[2].first | genlabel()

  "AddExpr"|"MulExpr": first := \kids[1|2].first | 

    genlabel()

  . . .

  default: first := (!\kids).first

  }

end
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The case branches in the preceding code rely on Unicon's goal-directed evaluation. A 
non-null test is applied to children's first fields for those children that may have code. 
If those non-null tests fail, genlabel() is called to assign first if this node will 
generate an instruction. The default, which is good for a lot of non-terminals higher up 
in the grammar, is to assign first if a child has one, but not to call genlabel(). The 
corresponding Java code in tree.java looks like this:

void genfirst() {

  if (kids != null) for(tree k:kids) k.genfirst();

  switch (sym) {

    case "AddExpr": case "MulExpr": {

      if (kids[1].first != null) first = kids[1].first;

      else if (kids[2].first != null)  
               first = kids[2].first;

      else first = genlabel();

      }

   . . .

   }

}

In addition to the first attribute, we need an attribute named follow that denotes 
the label to jump to for whatever code immediately comes after a given block. This will 
help implement statements such as if-then, as well as break statements. The follow 
attribute propagates information from ancestors and siblings rather than children. The 
implementation must use an inherited attribute, instead of a synthesized one. Instead 
of a simple bottom-up post-order traversal, information is copied down in a pre-order 
traversal, as was seen previously for copying type information into variable declaration 
lists. The follow attribute uses first attribute values and must be computed after 
genfirst() has been run.

Consider the most straightforward grammar rule where you might define a follow 
attribute. In the Jzero grammar, the basic rule for statements executing in sequence 
consists of the following:

BlockStmts : BlockStmts BlockStmt ;
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For an inherited attribute, the parent (BlockStmts, which is to the left of the colon) 
is responsible for providing the follow attribute for the two children. The left child's 
follow will be the first instruction in the right child, so the attribute is moved from one 
sibling to the other. The right child's follow will be whatever follows the parent, so it is 
copied down. Once these values have been set, the parent must have the children do the 
same for their children, if any. The Unicon implementation in tree.icn is shown here:

method genfollow()

   case sym of {

   "BlockStmts": {

      kids[1].follow := kids[2].first

      kids[2].follow := follow

      }

   . . .

   }

   every (!\kids).genfollow()

end

The corresponding Java code in tree.java looks like this:

void genfollow() {

  switch (sym) {

   case "BlockStmts": {

      kids[0].follow = kids[1].first;

      kids[1].follow = follow;

      break;

      }

   . . .

  }

  if (kids != null) for(tree k:kids) k.genfollow();

}

Computing these attributes enables the generation of instructions for the control flow 
that goes to these various labels. You may have noticed that a lot of these first and follow 
labels might never be used. We can either generate them all anyway, or we can devise a 
mechanism to only emit them when they are an actual target of a branch instruction. 
Before we get on with code generation for the challenging control flow instructions 
that use these labels, let's consider the simpler problem of generating code for ordinary 
arithmetic and similar expressions.
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Generating code for expressions
The easiest code to generate is straight-line code consisting of statements and expressions 
that execute in sequence with no control flow. As described earlier in this chapter, there 
are two attributes to compute for each node: the attribute for where to find an expression's 
value is called addr, while the intermediate code necessary to compute its value is called 
icode. The values to be computed for these attributes for a subset of the Jzero expression 
grammar are shown in the following table. The ||| operator refers to list concatenation:

Figure 9.4 – Semantic rules for expressions

The main intermediate code generation algorithm is a bottom-up post-order traversal 
of the syntax tree. To present it in small chunks, the traversal is broken into the main 
method, gencode(), and helper methods for each non-terminal. In Unicon, the 
gencode() method in tree.icn looks as follows:

method gencode()

  every (!\kids).gencode()

  case sym of {

    "AddExpr": { genAddExpr() }

    "MulExpr": { genMulExpr() }

    . . .
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    "token":   { gentoken() }

    default: {

       icode := []

       every icode |||:= (!\kids).icode

       }

   }

end

The default case for tree nodes that do not know how to generate code consists of just 
concatenating the code of the children. The corresponding Java looks like this:

void gencode() {

  if (kids != null) for(tree k:kids) k.gencode();

  switch (sym) {

  case "AddExpr": { genAddExpr(); break; }

  case "MulExpr": { genMulExpr(); break; }

  . . .

  case "token": { gentoken(); break; }

  default: {

    icode = new ArrayList<tac>();

    if (kids != null) for(tree k:kids) 

        icode.addAll(k.icode);

    }

  }

}

The methods that are used to generate code for specific non-terminals must occasionally 
generate different instructions, depending on the production rule. The Unicon code for 
genAddExpr() is shown here:

method genAddExpr()

      addr := genlocal()

      icode := kids[1].icode ||| kids[2].icode |||

              gen(if rule=1320 then "ADD" else "SUB",

                  addr, kids[1].addr, kids[2].addr)

end

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Generating code for expressions     235

After generating a temporary variable to hold the result, the code is constructed by adding 
the appropriate arithmetic instruction to the end of the children's code. In this method, 
rule 1320 refers to an addition, while rule 1321 refers to a subtraction. The corresponding 
Java code looks like this:

void genAddExpr() {

    addr = genlocal();

    icode = new ArrayList<tac>();

    icode.addAll(kids[0].icode); 

    icode.addAll(kids[1].icode);

    icode.addAll(gen(((rule==1320)?"ADD":"SUB"), addr,

                    kids[0].addr, kids[1].addr));

}

The gentoken() method generates code for terminal symbols. The icode attribute is 
usually empty. In the case of a variable, the addr attribute is a symbol table lookup, while 
in the case of a literal constant, the addr attribute is a reference to a value in the constant 
region, or an immediate value. In Unicon, the gentoken() method looks like this:

method gentoken()

  icode := []

  case tok.cat of {

    parser.IDENTIFIER: { addr := stab.lookup(tok.text).addr }

    parser.INTLIT: { addr := address("imm", tok.ival) }

    . . .

    }

end

The i code attribute is an empty list, while the addr attribute is obtained via a symbol 
table lookup. In Java, gentoken() looks like this:

void gentoken() {

  icode = new ArrayList<tac>();

  switch (tok.cat) {

    case parser.IDENTIFIER: {

      addr = stab.lookup(tok.text).addr; break; }

    case parser.INTLIT: {

      addr = new address("imm", tok.ival); break; }
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    . . .

    }

}

You may observe from all this that generating intermediate code for expressions in 
straight-line code is mainly a matter of concatenating the operands' code, followed by 
adding one or more new instructions per operator. This work is made easier by allocating 
space in the form of the addresses of temporary variables ahead of time. The code for 
control flow is a bigger challenge.

Generating code for control flow
Generating code for control structures such as conditionals and loops is more challenging 
than code for arithmetic expressions, as shown in the preceding section. Instead of 
using synthesized attributes in a single bottom-up pass, code for control flow uses label 
information that must be moved to where it is needed using inherited attributes. This may 
involve multiple passes through the syntax tree. We will start with the condition expression 
logic needed for even the most basic control flow, such as if statements, and then show 
you how to apply that to loops, followed by considerations needed for method calls.

Generating label targets for condition expressions
We have already set up for control flow by assigning the first and follow attributes, 
as described in the Annotating syntax trees with labels for control flow section. Consider 
what role the first and follow attributes play, starting with the simplest control flow 
statement, the if statement. Consider a code fragment such as the following:

if (x < 0) x = 1;

y = x;
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The syntax tree for these two statements is shown here:

Figure 9.5 – Syntax tree illustrating control flow

BlockStmts assigned the follow attribute of the IfThenStmt node to the first 
attribute of the y=x assignment. The code that is generated for RelExpr should go to 
the first label of the then part, pictured here as Assignment1, if RelExpr is true. It 
should go to follow the whole IfThenStmt if RelExpr is false. To implement this, 
label values computed from IfThenStmt can be inherited down into two new attributes 
of RelExpr. We cannot call them true and false because they are Java reserved 
words. Let's call the attribute for where to go when an expression is true onTrue and the 
attribute for where to go when an expression is false onFalse. The semantic rules we 
want to implement are shown in the following table:

Figure 9.6 – Semantic rules for the if-then and if-then-else statements
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As we can see, the condition in IfThenStmt is an Expr that inherits onTrue from 
Stmt, which is its then part, and inherits onFalse from the parent's follow attribute 
– whatever code follows the whole IfThenStmt. These attributes must be inherited 
down into Boolean subexpressions through operators such as logical AND and OR. The 
semantic rules for the Boolean operators are shown in the following table:

Figure 9.7 – Semantic rules for Boolean expressions

The code to compute the onTrue and onFalse attributes is placed in a method called 
gentargets(). The Unicon implementation in tree.icn looks like this:

method gentargets()

   case sym of {

   "IfThenStmt": {

      kids[1].onTrue := kids[2].first

      kids[1].onFalse := follow

      }

   "CondAndExpr": {

      kids[1].onTrue := kids[2].first

      kids[1].onFalse := onFalse

      kids[2].onTrue := onTrue

      kids[2].onFalse := onFalse

      }    

   . . .

   }

   every (!\kids).gentargets()

end
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The corresponding Java method looks like this:

void gentargets() {

   switch (sym) {

   case "IfThenStmt": {

      kids[0].onTrue = kids[1].first;

      kids[0].onFalse = follow;

      }

   case "CondAndExpr": {

      kids[0].onTrue = kids[1].first;

      kids[0].onFalse = onFalse;

      kids[1].onTrue = onTrue;

      kids[1].onFalse = onFalse;

      }    

   . . .

   }

   if (kids!=null) for(tree k:kids) k.gentargets();

}

Having seen how the onTrue and onFalse attributes get assigned, perhaps the last piece 
of the puzzle is the code that's generated for relational operators, such as the x < y test. 
On these operators, it would be possible to generate code that computes a true (1) or false 
(0) result and store it in a temporary variable such as an arithmetic operator. However, the 
point of computing the onTrue and onFalse labels was to generate code that would jump 
directly to the correct label, depending on whether a test was true or false. This is essential to 
implement the short-circuit semantics for Boolean operators that Jzero inherits from Java, 
and before it, from C. Here is the Unicon implementation of the genRelExpr() method, 
which is called from gencode() to generate intermediate code for relational expressions:

method genRelExpr()

  op :=  case kids[2].tok.cat of {

    ord("<"): "BLT"; ord(">"): "BGT";

    parser.LESSTHANOREQUAL: "BLE"

    parser.GREATERTHANOREQUAL: "BGT" }

  icode := kids[1].icode ||| kids[3].icode |||

            gen(op, onTrue, kids[1].addr, kids[3].addr) |||

            gen("GOTO", onFalse)

end
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This code starts by setting the op variable to the three-address opcode that corresponds 
to the integer category of the operator, extracted from kids[2].tok.cat. Then, it 
constructs code by concatenating the left and right operands, followed by a conditional 
branch if the operator evaluates to true, followed by an unconditional branch if the 
operator was false. The corresponding Java implementation looks like this:

void genRelExpr() {

  String op = "ERROR";

  switch (kids[1].tok.cat) {

    case '<': op="BLT"; break; case ';': op="BGT"; break;

    case parser.LESSTHANOREQUAL: op="BLE"; break;

    case parser.GREATERTHANOREQUAL: op="BGT";

    }

  icode = new ArrayList<tac>();

  icode.addAll(kids[0].icode); icode.addAll(kids[2].icode);

  icode.addAll(gen(op, onTrue, kids[0].addr,

                   kids[2].addr));

  icode.addAll(gen("GOTO", onFalse));

}

Compared to the code that is generated for ordinary arithmetic, the code for control 
structures such as if statements pass a lot of label information around. Now, let's look at 
what must be added to the code to support loop control structures.

Generating code for loops
This section presents ideas for generating intermediate code for while loops and for 
loops. The while loop code should be almost identical to an if-then statement, with 
the sole additions of a label at the top, and a goto at the bottom to jump to that label. 
A for loop is just a while loop with a couple of additional expressions thrown in. The 
following table shows the semantic rules for these two control structures:

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Generating code for control flow     241

Figure 9.8 – Semantic rules for the intermediate code generation of loops

The genWhileStmt() method is representative of similar control flow code generation 
methods such as genIfStmt() and genForStmt(). Most of the work is done 
while computing the first, follow, onTrue, and onFalse attributes. The Unicon 
implementation of genWhileStmt() is as follows:

method genWhileStmt()

  icode := gen("LAB", kids[1].first) ||| kids[1].icode |||

           gen("LAB", kids[1].onTrue) |||

           kids[2].icode ||| gen("GOTO", kids[1].first)

end

The Java implementation of genWhileStmt() is shown here:

void genWhileStmt() {

  icode = new ArrayList<tac>();

  icode.addAll(gen("LAB", kids[0].first));

  icode.addAll(kids[0].icode);

  icode.addAll(gen("LAB", kids[0].onTrue));

  icode.addAll(kids[1].icode);

  icode.addAll(gen("GOTO", kids[0].first));

}
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There is one remaining aspect of control flow to present. Method (or function) calls are 
fundamental building blocks in all forms of imperative code and object-oriented code.

Generating intermediate code for method calls
The intermediate code instruction set provides three opcodes related to method calls: 
PARM, CALL, and RET. To invoke a method, the generated code executes several PARM 
instructions, one for each parameter, followed by a CALL instruction. The called method 
then executes until it reaches a RET instruction, at which time it returns to the caller. 
This intermediate code is an abstraction of several different ways that hardware supports 
method (or function) abstractions.

On some CPUs, parameters are mostly passed in registers, while on others, they are all 
passed on the stack. At the intermediate code level, we must worry about whether PARM 
instructions occur in the order actual parameters appear in the source code or reverse 
order. In object-oriented languages such as Jzero, we also worry about how a reference 
to an object is accessible inside a called method. Programming languages have answered 
these questions in different ways on different CPUs, but for our purposes, we'll use the 
following calling conventions: parameters are given in reverse order, followed by the 
object instance (self or this pointer) as an implicit extra parameter, followed by the CALL 
instruction.

When gencode() gets to a MethodCall, which is a type of primary expression in our 
grammar, it will call genMethodCall(). Its Unicon implementation is shown here:

method genMethodCall()

  local nparms := 0

  if k := \ kids[2] then {

    icode := k.icode

    while k.sym === "ArgList" do {

      icode |||:= gen("PARM", k.kids[2].addr)

      k := k.kids[1]; nparms +:= 1 }

    icode |||:= gen("PARM", k.addr); nparms +:= 1

    }

  else icode := [ ]

  if kids[1].sym === "QualifiedName" then

    icode |||:= gen("PARM", kids[1].kids[1].addr)

  else icode |||:= gen("PARM", "self")

  icode |||:= gen("CALL", kids[1].addr, nparms)

end
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The generated code starts with the code to compute the values of the parameters. Then, it 
issues PARM instructions in reverse order, which comes for free from the way the context-
free grammar constructed the syntax tree for argument lists. The trickiest parts of this 
method have to do with how the intermediate code knows the address to use for the 
current object. The Java implementation of genMethodCall() is shown here:

void genMethodCall() {

  int nparms = 0;

  icode = new ArrayList<tac>();

  if (kids[1] != null) {

    icode.addAll(kids[1].icode);

    tree k = kids[1];

    while (k.sym.equals("ArgList")) {

      icode.addAll(gen("PARM", k.kids[1].addr));

      k = k.kids[0]; nparms++; }

    icode.addAll(gen("PARM", k.addr)); nparms++;

    }

  if (kids[0].sym.equals("QualifiedName"))

    icode.addAll(gen("PARM", kids[0].kids[0].addr));

  else icode.addAll(gen("PARM", "self"));

  icode.addAll(gen("CALL", kids[0].addr,

                   new address("imm",nparms)));

}

What this section showed has probably convinced you that code generation for the calling 
side is more challenging than code generation for the return instruction, which you can 
examine in this chapter's code on GitHub. It is also worth mentioning that every method 
body's code might have a ret instruction appended, to ensure that code never executes 
past the end of a method body and into whatever comes after it.
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Reviewing the generated intermediate code
You cannot run intermediate code, but you should check it carefully. Ensure that the logic 
looks correct on test cases for every feature that you care about. To check the generated 
code for a file such as hello.java, run the following command using either the Unicon 
(left-hand side) or Java implementation (right-hand side). As a reminder for Java, on 
Windows, you must execute something like set CLASSPATH=".;C:\byopl" first or 
the equivalent in your Control Panel or Settings. On Linux, it might look like export 
CLASSPATH=.;..:

j0 hello.java               java ch9.j0 hello.java

The output should look similar to the following:

.string

L0:

        string  "hello, jzero!"

.global

        global  global:8,hello

        global  global:0,System

.code

proc    main,0,0

        ASIZE   loc:24,loc:8

        ASN     loc:16,loc:24

        ADD     loc:32,loc:16,imm:2

        ASN     loc:16,loc:32

L138:

        BGT     L139,loc:16,imm:3

        GOTO    L140

L139:

        PARM    strings:0

        PARM    loc:40

        CALL    PrintStream__println,imm:1

        SUB     loc:48,loc:16,imm:1

        ASN     loc:16,loc:48

        GOTO    L138

L140:

        RET

end

no errors
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Looking over intermediate code is when you start to realize that you may be able to finish 
this compiler and translate your source code down into machine code of some kind. If you 
are not excited, you should be. A lot of errors can be spotted at this point, such as omitted 
features, or branch statements that go to non-existent labels, so check it out before you 
rush ahead to generate the final code.

Summary
In this chapter, you learned how to generate intermediate code. Generating intermediate 
code is the first vital step in synthesizing the instructions that will eventually allow a 
machine to run the user's program. The skills you learned in this chapter build on the 
skills that are used in semantic analysis, such as how to add semantic attributes to the 
syntax tree nodes, and how to traverse syntax tree nodes in complex ways as needed.

One of the important features of this chapter was an example intermediate code 
instruction set that we used for the Jzero language. Since the code is abstract, you can add 
new instructions to this instruction set as needed for your language. Building lists of these 
instructions was easy using Unicon's list data type, and still fairly straightforward using 
Java's ArrayList type.

The chapter showed you how to generate code for straight-line expressions such as 
arithmetic calculations. Far more effort in this chapter went into the instructions for 
control flow, which often involve goto instructions whose target instructions must have 
labels. This entailed computing several attributes for labels, including inherited attributes, 
before building the lists of code instructions.

Now that you have generated intermediate code, you are ready to move on to the final 
code generation part. However, first, Chapter 10, Syntax Coloring in an IDE, will take you 
on a practical diversion consisting of exploring how to use your knowledge to incorporate 
syntax coloring in an IDE.
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Syntax Coloring  

in an IDE
Creating a useful programming language requires more than just a compiler or interpreter 
that makes it possible to run programs—it requires an ecosystem of tools for developers. 
This ecosystem often includes debuggers, online help, or an integrated development 
environment, commonly called an IDE. An IDE can be broadly defined as any 
programming environment in which source code editing, compilation, linking steps (if 
any), and execution may all be performed within the same user interface (UI).

This chapter addresses some of the challenges of incorporating code from your 
programming language implementation into an IDE to provide syntax coloring and 
visual feedback about syntax errors. One reason that you want to learn how to do this is 
that many programmers will not take your language seriously unless it has an IDE. The 
code in this chapter will be a Unicon example since there is no IDE that is implemented 
identically in Unicon and Java.
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This chapter covers the following main topics:

• Downloading the example IDEs used in this chapter

• Integrating a compiler into a programmer's editor

• Avoiding reparsing the entire file on every change

• Using lexical information to colorize tokens

• Highlighting errors using parse results

• Adding Java support

The skills to learn in this chapter revolve around software systems communication and 
coordination. Primarily, by bundling the IDE and compiler into a single executable, high-
performance communication is conducted by passing references to shared data, instead of 
resorting to file input/output (I/O) or inter-process communication (IPC).

Note
Writing an IDE is a large project and could be the subject of an entire book. 
Unlike other chapters of this book where we present the compiler code from 
scratch, this chapter describes how syntax coloring was added to the Unicon 
IDE. The Unicon IDE was written by Clinton Jeffery and Nolan Clayton, with 
contributions from many other people since then. Luis Alvidres did the syntax 
coloring work as part of his Master's degree project. Luis's project report can be 
found at http://www.unicon.org/reports/alvidres.pdf.

The chapter concludes with a description of how the Unicon IDE code was 
later incorporated into a virtual environment application called Collaborative 
Virtual Environment (CVE). In CVE, the IDE code was generalized to support 
other languages, including Java and C++. Hani Bani-Salameh did this work in 
Unicon as part of his Ph.D. research. The description of adding Java support to 
the Unicon IDE code is comparable to what we might do to add support for a 
new language such as Jzero to an existing IDE. The next section describes how 
to obtain the source code of the programs discussed in this chapter.
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Downloading the example IDEs used in this 
chapter
In this chapter, we will be looking at two simple IDEs that illustrate the concepts 
presented. The first IDE is a program called ui, which stands for Unicon IDE. The ui 
program is included in the Unicon language distribution, where it can be found in a 
directory called uni/ide. The program consists of about 10,000 lines of code in 26 files, 
not counting code in library modules. The following screenshot shows the ui program:

Figure 10.1 – The ui IDE
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The second IDE is called CVE. Among other things, CVE is a piece of research software 
that experimentally extends the ui IDE to support C++ and Java. You can download the 
source code for CVE from cve.sf.net. The following screenshot shows CVE. If you 
compare this screenshot with the preceding one, you can see that the CVE program's IDE 
started from the ui code base: 

Figure 10.2 – The CVE IDE

The source code for CVE is stored in a version control system called Subversion, available 
from subversion.apache.org. Once you have installed Subversion, run the 
following command to fetch CVE. The svn checkout command will create a subdirectory 
named cve/ under whatever directory you are in when you run this command:

svn checkout https://svn.code.sf.net/p/cve/code/trunk/cve

Now, let's move on to a brief description of the Unicon IDE and how the Unicon compiler 
frontend code was integrated into the IDE for the purposes of syntax coloring.
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Integrating a compiler into a programmer's 
editor
The front half of the Unicon compiler—loosely corresponding to Chapter 2, Programming 
Language Design, up to Chapter 5, Syntax Trees, in this book—was integrated into the 
Unicon IDE, known as ui. The Unicon frontend consists of three major components: a 
preprocessor, a lexical analyzer, and a parser. In the Unicon translator, these components 
are called from a main() procedure. The translator opens, reads, and writes files in the 
filesystem to perform its I/O, and provides feedback to the user by writing text to standard 
output or standard error on a console or terminal window. In an IDE, the compiler 
components are called from behind the scenes while the user is editing their code in a 
graphical UI (GUI). The source code is obtained directly from the memory in the IDE 
and the compiler's output is obtained from the memory by the IDE and presented to the 
user. Altogether, seven files from the Unicon translator were modified to become library 
modules that can be linked in and used from other programs besides unicon. The next 
section explores how source code in the IDE is fed into the compiler modules. After that, 
we will consider how the compiler output, including error messages, is fed into the IDE.

Analyzing source code from within the IDE
A compiler usually obtains its input by opening and reading from a named file. The 
lex-compatible interface used by many compilers specifically designates that input comes 
from an opened file handle stored in a global variable named yyin. This is too slow for an 
IDE, which performs lexical and syntax analysis frequently and repeatedly as the user is 
editing. Instead of reading from a file, the Unicon compiler frontend was modified so that 
it could read source code that was already in the main memory.

Consider a file named hello.icn that contains a three-line Hello, World program. 
Within the IDE, the source code is stored as a list of three strings. The list of strings is 
held in a variable named contents within an editable text list widget. Writing that list of 
strings out to disk and invoking the compiler to read it each time is too slow. Modifying 
the compiler to explicitly depend on the list of strings in the IDE slightly complicates the 
compiler and makes the interface between the two tools a bit fragile. Then again, reading 
from a list of strings is not exactly rocket science. The list-of-strings format also makes it 
easy to select part of a file to feed into the parser, instead of the whole thing.
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The Unicon lexical analyzer lives in uni/unicon/unilex.icn in the Unicon 
distribution. Prior to integration, the Unicon lexical analyzer code used to pre-read the 
entire source file into a big string, in a variable named buffer. Supporting reading from 
a list of strings meant placing one line at a time in buffer, and whenever the lexical 
analyzer reached the end of a line, executing the following code:

if type(yyin) == "list" then {

  if buffer := pop(yyin) then {

    yylineno +:= 1

    yycolno := 1

    if tokflags < Newline then tokflags +:= Newline

    return yylex(ender)

    }

  }

This code uses pop() to remove the next line from a list of strings instead of calling 
read() to read the next line from a file. Since pop() modifies its source list, lexical 
analysis is performed on a copy of the list of strings provided by the IDE, rather than on 
the IDE's own list of strings. Copying a list (or part of a list) of strings does not require the 
allocation and copying of all the string data containing the code; only the list structure is 
copied. Now, let's look at how compiler messages are delivered to the GUI of the IDE.

Sending compiler output to the IDE
Instead of directly writing error output, the seven library modules in the compiler were 
modified to construct a list of error diagnostics. The regular compiler could then output 
these to the console, while the IDE could display messages in a sub-window or depict 
them graphically. Consider a possible error message, such as the following:

hello.icn:5: '}' expected

Prior to integration, the compiler could have written that with the following line of code:

write(&errout, filename, ":", lineno, ": ", message)

To integrate such messages into the IDE, the compiler code was modified as follows:

iwrite( filename, ":", lineno, ": ", message)

The iwrite() procedure actually stores the diagnostic on a list named 
parsingErrors, which can be read by the IDE or written to &errout, depending on 
whether the compiler frontend is linked into the IDE or the Unicon compiler.
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From within the Unicon IDE, these parsing errors are displayed textually from within a 
ReparseCode() method. The parser is invoked, and then if errors were encountered, 
the following lines execute:

  every errorObject := !parsingErrors do {

    errorObject.lineNumber +:= lineNumberOffset

    if errorObject.lineNumber <= *contents then {

      SetErrorLineNumber(errorObject.lineNumber)

      uidlog.MsgBox.set_contents(

        [errorObject.lineNumber ||": " ||

          errorObject.errorMessage])

      }

    }

The error message text is placed in a GUI component named MsgBox with a call to its 
set_contents() method. MsgBox is drawn below the source code. In addition to 
displaying the same output text that the compiler would show, in the event of an error, 
the IDE highlights the line on which the error occurs. This is discussed later in the 
Highlighting errors using parse results section.

This section on integrating a compiler into an IDE or programmer's editor discussed the 
nuts and bolts of how to combine two large, complex, pre-existing pieces of software. The 
Unicon compiler and IDE are maintained mostly independently. Keeping the connections 
between them simple reduces the likelihood of a change in one affecting the other. If you 
are writing a new IDE from scratch to go along with a new compiler, a more extensive 
integration might enable extra features or better performance, at a cost in complexity, 
maintainability, and portability. Now, let's look at how to invoke syntax checks without 
parsing the file constantly while the user is editing the code.

Avoiding reparsing the entire file on every 
change
The lexical and syntax analysis necessary to parse input and detect and report syntax errors 
presented in this book from Chapter 2, Programming Language Design, to Chapter 8,  
Checking Types on Arrays, Method Calls, and Structure Accesses, are substantial algorithms. 
Although the Flex and Yacc tools we've used are high-performance, if given a large input 
file, scanning and parsing become slow enough that users will not want to reparse the 
whole file each time a user modifies the file in an IDE text editor. In testing, we found that 
reparsing the entire file became a problem on files larger than 1,000 lines.
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Sophisticated incremental parsing algorithms that minimize the amount that must be 
reparsed after changes are the subject of Ph.D. dissertations and research articles. For 
the Unicon IDE, a simple approach is taken. Whenever the cursor moves away from 
a line that has been changed, a parsing unit is selected, starting with the changed line 
and extending above and below to the boundaries of the nearest procedure, method, or 
another global declaration unit. That unit is reparsed.

In Unicon, this gives a very good performance. Luis Alvidres found that when an entire 
declaration unit is reparsed after a line is changed, 98% of the time, the compiler reparses 
fewer than 100 lines of code. Most of the other 2% of cases—namely, procedures or 
methods larger than 100 lines—are still not a problem. Only the very largest procedure or 
method bodies result in slow reparsing. This is often machine-generated code, such as the 
output of Flex or Yacc, that a user seldom edits by hand. For this, the IDE disables syntax 
checking to avoid an unacceptable user response time.

The code to select a slice to reparse when the cursor moves off a line is in a method 
named GetCode() that can be found in the BuffEditableTextList class, which 
is a subclass of Unicon's standard GUI editor component named EditableTextList. 
BuffEditableTextList that lives in uni/ide/buffertextlist.icn. The 
GetCode() method is implemented as follows. First comes the method header and a set 
of local variable declarations:

   method GetCode()

      local codeSubStringList,

            originalPositionY, currentPositionY, token,

            startPositionY := 0, endPositionY := 0,

            inClass := 0, inMethod := 0

Within the GetCode() method, these variables play the following roles:

• codeSubStringList is a list containing the line number to start error reporting 
on, followed by the strings to parse for the code that could be affected by changes to 
the current line.

• originalPositionY is the text line where the text has been changed.

• currentPositionY is a variable used to walk up and down from the current line.

• Token is an integer category returned by yylex(), as seen in Chapter 2, 
Programming Language Design.

• startPositionY and endPositionY are the lines that identify the beginning 
and end of the current declaration.

• inClass and inMethod report whether the declaration is in a class or a method.
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Initialization in the GetCode() method consists of resetting the parser and starting the 
position variables from the current cursor row, which indicates on which line the cursor is 
located. This is illustrated in the following code snippet:

      reinitialize()

      originalPositionY := currentPositionY := cursor_y

A primary loop in this procedure walks backward from the cursor location, using the 
compiler's yylex lexical analyzer function to look at the first token on each line and find 
the nearest previous line on which an enclosing declaration begins, as illustrated in the 
following code snippet:

      while currentPositionY > 0 do {

         yyin := contents[currentPositionY]

         yylex_reinit()

         if (token := yylex()) ~=== EOFX then {

            if token = (PROCEDURE | METHOD | CLASS) then {

               if token=METHOD then inMethod := 1

               if token=CLASS then inClass := 1

               startPositionY := currentPositionY

               }

            }

         if startPositionY ~= 0 then break

         currentPositionY -:= 1

         }

You can see that walking backward is achieved by decrementing the current line index 
held in the currentPositionY variable. The preceding while loop terminates when 
a line is found that begins with a procedure, method, or class reserved word. When 
this while loop terminates without finding an enclosing declaration, parsing starts from 
line 1. This is achieved with the following if statement:

   if startPositionY = 0 then startPositionY := 1
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The method then searches forward from the cursor to find the enclosing end token. 
Lexical features such as multiline continued string contents make this trickier than we 
might expect. The following while loop is long enough that it is split into multiple 
segments for explanation. The first segment shows that the while loop steps one line at a 
time through the code to be displayed, advancing currentPositionY on each line and 
fetching contents from the class member variable list of strings named contents. In 
Unicon, unterminated string constants can span multiple lines that end in an underscore, 
which is handled by an inner while loop:

   currentPositionY := cursor_y

   while currentPositionY < *contents + 1 do {

      yyin := contents[ currentPositionY ]

      yylex_reinit()

      while countdoublequotes(yyin)%2=1 & yyin[-1]=="_" do {

         currentPositionY +:= 1

         if not (yyin ||:= contents[currentPositionY]) then {

            break break

            }

         }

      yylex_reinit()

The main task of the while loop given in the preceding code snippet is presented in 
what is the second half of the loop, shown next. This inner loop uses the compiler's 
lexical analyzer to identify tokens that would indicate the boundary of a compilable 
unit. The end token indicates the end of a unit that can be compiled, while class and 
procedure indicate the beginning of a subsequent unit:

      while ( token := yylex() ) ~=== EOFX do {

         case token of {

         END: {

            endPositionY := currentPositionY

            break

            }

         CLASS | PROCEDURE: {

            if currentPositionY ~= startPositionY then {

               endPositionY := currentPositionY-1

               break

               }
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            }

         default : break

         }

      }

The method finishes by constructing a slice of the source code to reparse and returning 
it as a list of strings, prefixed by the line number immediately preceding the slice, as 
illustrated in the following code snippet:

      if endPositionY = 0 then

         return codeSubStringList := [ 0 ] ||| contents    

      if startPositionY = 0 then startPositionY := 1

      if inMethod = 1 then

         codeSubStringList := [ startPositionY,

            "class __Parse()" ] ||| 

            contents[ startPositionY : endPositionY+1 ]|||

            ["end"]

      else if inClass = 1 then

         codeSubStringList := [ startPositionY ] ||| 

            contents[ startPositionY : endPositionY+1 ]|||

            ["end"]

      else

         codeSubStringList := [ startPositionY ] ||| 

            contents[ startPositionY : endPositionY+1 ]

      return codeSubStringList

A careful reader might worry about whether the GetCode() function as presented might 
sometimes miss a declaration boundary and grab too much code—for example, if the 
word procedure or end is not at the beginning of a line. This is true but non-fatal since 
it just means that if the source code is written in a very strange manner, the syntax checker 
might reparse a larger amount of code than necessary. Now, let's look at how the source 
code can be colorized.
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Using lexical information to colorize tokens
Programmers need all the help they can get with reading, understanding, and debugging 
their programs. In Figure 10.1, the source code is presented in many different colors 
to enhance the readability of the code. This coloring is based on the lexical categories 
of different elements of the text. Although some people consider colored text as mere 
eye candy and others are not able to see colors at all, most programmers value it. Many 
forms of typos and text-editing bugs are spotted more quickly when a given piece of the 
source code is a different color than the programmer expected. For this reason, almost all 
modern programmer's editors and IDEs include this feature.

Extending the EditableTextList component to  
support color
EditableTextList is a Unicon GUI component that displays the visible portion  
of a list of strings using a single font and color selection. EditableTextList does 
not allow the setting of a font or foreground and background colors for individual 
letters or words. To support syntax coloring, the Unicon IDE extends a subclass 
of EditableTextList named BuffEditableTextList to present the user 
with source code. BuffEditableTextList is not a full rich-text widget. As 
with EditableTextList, it represents the source code as a list of strings, but 
BuffEditableTextList knows to apply syntax coloring (and highlighting an error 
line, if any) on the fly when it draws the source code.

Coloring individual tokens as they are drawn
To color each token, BuffEditableTextList calls yylex() to obtain the lexical 
category for each token when it is drawn. The following code, drawn from the left_
string_unicon() method in the BuffEditableTextList class, sets the color using 
a big case expression from five user-customizable colors specified in a preferences 
object. Most reserved words are drawn with a special color designated as syntax_
text_color in the preferences. Separate colors are used for global declarations, for 
the boundaries of procedures and methods, and for string and cset literals. This simple 
set of color designations could be extended by assigning different colors for a few other 
important lexical categories, such as comments or preprocessor directives:

   while (token := yylex()) ~=== EOFX do {

      Fg(win, case token of {

         ABSTRACT | BREAK | BY | CASE | CREATE | DEFAULT |

         DO | ELSE | EVERY | FAIL | IF | INITIALLY |

         iconINITIAL | INVOCABLE | NEXT | NOT | OF |RECORD|
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         REPEAT | RETURN | SUSPEND | THEN | TO | UNTIL |

            WHILE : prefs.syntax_text_color

         GLOBAL | LINK | STATIC |

            IMPORT | PACKAGE | LOCAL : 

                prefs.glob_text_color

         PROCEDURE | CLASS |

            METHOD | END     : prefs.procedure_text_color

         STRINGLIT | CSETLIT : prefs.quote_text_color

         default             : prefs.default_text_color

         })

      new_s_Position := yytoken["column"] + *yytoken["s"]-1

      DrawString(win, x, y,

                 s[ last_s_Position : (new_s_Position+1)])

      off := TextWidth(win,

                   s[ last_s_Position : (new_s_Position

                       +1)])

      last_s_Position := new_s_Position + 1

      x +:= off

      }

As can be seen from the preceding code, after the foreground color is set from the token, 
the token itself is rendered by a call to DrawString(), and the pixel offset at which 
the subsequent text should be drawn is updated using a call to TextWidth(). All of 
this when combined together allows different lexical categories of source code to be 
drawn in different colors in the IDE. The term used in the industry is syntax coloring, 
although the part of our compiler that we brought in was only the lexical analyzer, not the 
parser function that performs syntax analysis. Now, let's consider how to draw the user's 
attention to the line, should the parser determine that the edits that were made on a line 
leave the code with a syntax error.

Highlighting errors using parse results
In a BuffEditableTextList component, the fire() method is called whenever the 
content is changed, as well as whenever the cursor moves. When content is changed, it sets 
a flag named doReparse indicating that the code should be syntax-checked. The check 
does not occur until the cursor is moved. The code for the fire() method is shown here:

   method fire(type, param)

      self$Connectable.fire(type, param)
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      if type === CONTENT_CHANGED_EVENT then

         doReparse := 1

      if type === CURSOR_MOVED_EVENT &

           old_cursor_y ~= cursor_y then

         ReparseCode()

   end

In the preceding code, the ReparseCode() method is occasionally called in the Unicon 
IDE in response to a cursor move, to see whether editing has resulted in a syntax error. 
Only cursor moves that change the current line (old_cursor_y ~= cursor_y) 
trigger the ReparseCode() method, as shown here:

  method ReparseCode ()

    local s, rv, x, errorObject, timeElapsed, 

        lineNumberOffset

    if doReparse === 1 then {

      timeElapsed := &time

      SetErrorLineNumber ( 0 )

      uni_predefs := predefs()

      x := 1

      s := copy(GetCode()) | []

      lineNumberOffset := pop(s)

      preproc_err_count := 0

      yyin := ""

      every yyin ||:= preprocessor(s, uni_predefs) do

        yyin ||:= "\n"

      if preproc_err_count = 0 then {

        yylex_reinit()

        /yydebug := 0

        parsingErrors := []

        rv := yyparse()

        }

      if errors + (\yynerrs|0) + preproc_err_count > 0 then {

         . . .every loop from Sending compiler output to 

             the IDE here

         }
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      else uidlog.MsgBox.set_contents(["(no errors)"])

    doReparse := 0

    }

  end

The ReparseCode() method does nothing unless the code has changed, indicated 
by doReparse having the value 1. If the code has changed, ReparseCode() calls 
GetCode(), reinitializes the lexer and parser, calls yyparse(), and sends any error 
output to the IDE's message box. The actual line on which the error occurs is also 
highlighted when the code is redrawn as follows. Within the draw_line() method in 
the BuffEditableTextList class, if the current line being drawn is the one found in 
the errorLineNumber variable, the foreground color is set to red:

      if \errorLineNumber then {

         if i = errorLineNumber then {

            Fg(self.cbwin, "red")

            }

         }

You have now seen that setting different colors for different kinds of tokens such as 
reserved words is fairly easy and requires only the lexical analyzer to be involved, whereas 
checking for syntax errors in the background was a fair bit of work. Now, let's look at what 
it would take to generalize this to add support for a new language to the IDE.

Adding Java support
The Unicon IDE only supports Unicon. The CVE collaborative virtual environment 
extends the Unicon IDE to include support for Java and C/C++. This section discusses 
the issues involved in adding a new language (in our case, Java, standing in for Jzero). In 
a perfect world, this would involve replacing various bits of hard-wired Unicon-specific 
code with a data structure that handles the language-specific parts. CVE is not perfect but 
embodies some of this ideal.

CVE is larger and more complex than the Unicon IDE. The code for the IDE lives in 
CVE's src/ide subdirectory, but its GUI is integrated into a larger client application 
whose code lives in src/client.
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In CVE, a variable named projecttype was added that indicates the language that the 
user's current program is written in. In some places, the IDE's multi-language support 
handles language-specific details with if statements, such as the following example:

if projecttype == "Java" then …

else if projecttype == "CPP" then …

else if projecttype == "Unicon" then …

else 

Code of this sort is found mainly in src/client/menubar.icn. It is used to select 
the object used to invoke the build process or run the program. In the case of Java, an 
object named javaProject has methods such as RunJava(). Manually adding such 
if statements in many locations across the IDE is not great. As much as possible, the IDE 
encodes language differences in data structures and uses the projecttype variable as 
an index to select the correct data out of such structures.

The IDE uses an object-oriented (OO) approach and encapsulates the language that the 
user is using within a pair of objects. A Language class contains details such as how 
to syntax color the various tokens, while a Project class provides a language-specific 
dialog for setting options such as which compiler is to be used and which options are to 
be passed when compiling. In our case, the src/ide/jproject.icn file contains 
most of the Java-specific code. In addition to the dialog for setting Java options, it contains 
CompileJava(), RunJava(), and saveJProject() methods with Java-specific 
IDE behavior.

Multi-language syntax coloring in CVE is handled by extending the Unicon lexical 
analyzer in src/ide/unilex.icn to know the reserved words for Java (and C/C++). 
This is handled in the reswords() procedure and consists of simple additions to the 
reserved words table. Instead of coloring tokens in the subclass of EditableTextList, 
as described earlier in the Using lexical information to colorize tokens section, in CVE the 
token colorization is pulled into a poorly named LanguageAbstract class in src/
ide/langabstract.icn. Within that class, a token_highlighter() method 
checks the filename extension of the current file to decide whether to apply Java, C/C++, 
or Unicon reserved words and coloring rules. The code for these methods looks like this:

  method token_highlighter(f_name,win,s,

                           last_s_Position,x,y,off)

     if find (".java",f_name) then {

        JTok_highlighting(win,s,last_s_Position,x,y,off)

        language := "Java"
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        }

     else if find (".cpp"|".c"|".h",f_name) then {

        CTok_highlighting(win,s,last_s_Position,x,y,off)

        language := "C/C++"

        }

     else if find (".icn",f_name) then {

        UTok_highlighting(win,s,last_s_Position,x,y,off)

        language := "Unicon"

        }

     else language := &null

  end

This is some pretty naïve brute-force code. The good part is, if the IDE has several files in 
different languages open at any given time, this code will not get confused; it selects the 
method to call on the fly every time, based on a parameter that is passed in. It is, however, 
performing a lot of redundant checks when this is called repeatedly for every token that 
needs to be drawn for a view of the current file.  The JTok_highlighting() method 
referenced here is not shown, as it is a very similar Java equivalent of the code presented 
earlier in the Coloring individual tokens as they are drawn section.

The CVE support for Java is not as complete as the Unicon IDE's support for Unicon. 
CVE does not incorporate full compiler frontends for Java (and for C/C++) and therefore 
does not do on-the-fly code reparsing for reporting syntax errors while the user is editing 
code. The CVE IDE reports syntax errors for Java and C/C++ when the user presses the 
Compile or Run buttons and the (external) compiler is invoked.

This section described approaches by which an IDE can support multiple languages, such 
as separate treatment for Java, for C/C++, and for Unicon. Programmers can benefit from 
this feature if it means they can switch between programming languages easily without 
having to learn a new IDE. If you ever have the occasion to invest time or treasure in the 
development of an IDE, supporting multiple languages might help maximize the return 
on such an investment.
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Summary
In this chapter, you learned how to use lexical and syntax information to provide coloring 
of text in an IDE. Most of the coloring is based on relatively simple lexical analysis, 
and much of the work required involved modifying the compiler frontend to provide 
a memory-based interface, instead of relying on reading and writing files on disk. In 
this chapter, you picked up several skills. You learned how to color reserved words and 
other lexical categories in a programmer's editor, communicate information between the 
compiler code and the programmer's editor, and highlight syntax errors during editing.

Up to this point, this book has been about analyzing and using the information extracted 
from source code. The rest of this book is all about generating code and the runtime 
environments in which programs execute. The topic we will explore in the next chapter is 
bytecode interpreters.
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After this section, you will finally be able to run programs written in their new 
programming language.

This section comprises the following chapters:

• Chapter 11, Bytecode Interpreters

• Chapter 12, Generating Bytecode

• Chapter 13, Native Code Generation

• Chapter 14, Implementing Operators and Built-in Functions

• Chapter 15, Domain Control Structures

• Chapter 16, Garbage Collection

• Chapter 17, Final Thoughts

Section 3:  
Code Generation 

and Runtime 
Systems
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Bytecode 

Interpreters
A new programming language may include novel features that are not supported directly 
by mainstream CPUs. The most practical way to generate code for many programming 
languages is to generate bytecode for an abstract machine whose instruction set directly 
supports the language's intended domain. This is important because it sets your language 
free from the constraints of what current hardware CPUs know how to do. It also allows it 
to generate code that is tied more closely to the types of problems that you want to solve. 
If you create your own bytecode instruction set, you can execute programs by writing 
a virtual machine that knows how to interpret that instruction set. This chapter covers 
how to design an instruction set and an interpreter that executes bytecode. Because this 
chapter is tightly connected to Chapter 12, Generating Bytecode, you may want to read 
them both before you dive into the code.

This chapter covers the following main topics: 

• Understanding what bytecode is

• Comparing bytecode with intermediate code

• Building a bytecode instruction set for Jzero

• Implementing a bytecode interpreter

• Examining iconx, the Unicon bytecode interpreter
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Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch11

The Code in Action video for the chapter can be found here: https://bit.ly/327bZWn

A bytecode interpreter is a piece of software that executes an abstract machine instruction 
set. We are going to learn about bytecode interpreters by looking at a simple bytecode 
machine for Jzero and taking a quick peek at the Unicon virtual machine. But first, let's 
explore what we mean by bytecode.

Understanding what bytecode is
Bytecode is a sequence of machine instructions encoded in a binary format and written 
not for a CPU to execute, but instead for an abstract (or virtual) machine instruction set 
that embodies the semantics of a given programming language. Although many bytecode 
instruction sets for languages such as Java use a byte as the smallest instruction size, 
almost all of them include longer instructions. Such longer instructions have one or more 
operands. Since many kinds of operands must be aligned at a word boundary with an 
address that is a multiple of four or eight, a better name for many forms of bytecode might 
be wordcode. The term bytecode is commonly used for such abstract machines, regardless 
of the instruction's size.

The languages that are directly responsible for popularizing bytecode are Pascal and 
SmallTalk. These languages adopted bytecode for different reasons that remain important 
considerations for programming languages that are defined in terms of their bytecode. 
Java took this idea and made it known throughout the computer industry.

For Pascal, bytecode is used to improve the portability of a language implementation 
across different hardware and operating systems. It is much easier to port a bytecode 
interpreter to a new platform than to write a new compiler code generator for that 
platform. If most of a language is written in that language itself, the bytecode interpreter 
may be the only part that has to be ported to a new machine.

SmallTalk popularized bytecode for a different reason: to create a layer of abstraction upon 
which to implement novel features that were far removed from the hardware at the time. 
A bytecode interpreter allows a language developer to design new instructions as needed, 
as well as defining runtime system semantics that are present for all the implementations 
of that language.
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To explain what bytecode is, consider the bytecode that's generated from the following 
Unicon code:

   write("2 + 2 is ", 2+2)

Bytecode breaks down the execution of this expression into individual machine 
instructions. The human-readable representation of the bytecode for this expression might 
look like the following Unicon bytecode, called ucode:

    mark    L1

    var    0

    str    0

    pnull

    int    1

    int    1

    plus

    invoke    2

    unmark

lab L1

Going line by line, the mark instruction designates the destination label where the 
execution should proceed if any instruction fails. In Unicon, control flow is mostly 
determined by failure, rather than by Boolean conditions and explicit goto instructions. 
The var instruction pushes a reference to variable #0 (write) onto an evaluation stack. 
Similarly, the str instruction pushes a reference to string constant #0 (2 + 2 is). The 
pnull instruction is pushed to provide a space on the evaluation stack where the result 
of an operator (+) may be placed. The int instruction pushes a reference to the integer 
constant in constant region location #1, which is the value 2; this is done twice for the two 
operands of the addition. The plus instruction pops the top two stack elements and adds 
them, placing the result on the top of the stack. The invoke instruction performs a call 
with two arguments. When invoke comes back, the arguments will have been popped, 
and the top of the stack, where the write() function had been pushed, will hold the 
function's return value.

From the preceding example, you can see that bytecode somewhat resembles intermediate 
code, and that is intentional. So, what is the difference?
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Comparing bytecode with intermediate code
In Chapter 9, Intermediate Code Generation, we generated machine-independent 
intermediate code using abstract three-address instructions. Bytecode instruction sets 
are in between the three-address intermediate code and a real hardware instruction set 
in their complexity. A single three-address instruction may map to multiple bytecode 
instructions. This refers to both the direct translation of any instance of a three-address 
instruction, as well as to the fact that there may be several bytecode instruction opcodes 
that handle various special cases of a given three-address opcode. Bytecode is generally 
more involved than intermediate code, even if it manages to avoid the complexities of 
operand addressing modes found on a lot of CPUs. Many or most bytecode instruction 
sets explicitly or implicitly use registers, although bytecode machines are usually far 
simpler than CPU hardware in terms of the number of registers and the register allocation 
that the compiler must perform to generate code.

Bytecode is generally a binary file format. Binary formats are very difficult for humans 
to read. When talking about bytecode in this chapter, we will provide examples in an 
assembler-like format, but the bytecode itself is all ones and zeroes.

Comparing a hello world program in intermediate code and bytecode might give you 
some idea of their similarities and differences. We will use the following hello.java 
program as an example. It just prints a message if you give it command-line arguments, 
but it contains arithmetic as well as control flow instructions:

public class hello {

   public static void main(String argv[]) {

      int x = argv.length;

      x = x + 2;

      if (x > 3) {

         System.out.println("hello, jzero!");

      }

   }

}
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The Jzero three-address code for this program looks as follows. Its operands include 
several kinds of memory references, ranging from local variables to code region labels. 
The main() function consists of 11 instructions and 20 operands, averaging almost two 
operands per instruction:

.string

L0:     string  "\"hello, jzero!\""

.global

        global  global:8,hello

        global  global:0,System

.code

proc    main,0,0

        ASIZE   loc:24,loc:8

        ASN     loc:16,loc:24

        ADD     loc:32,loc:16,imm:2

        ASN     loc:16,loc:32

L75:    BGT     L76,loc:16,imm:3

        GOTO    L77

L76:    PARM    strings:0

        FIELD   loc:40,global:0,class:0

        PARM    loc:40

        CALL    PrintStream__println,1

L77:    RET

end

The Java JVM bytecode for this program, as produced by the javap -c command, 
is shown here (comments have been removed). The main() function consists of 14 
instructions with four operands, which equates to less than a third of an operand per 
instruction:

public class hello {

  public hello();

    Code:

       0: aload_0

       1: invokespecial #1

       4: return

  public static void main(java.lang.String[]);
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    Code:

       0: aload_0

       1: arraylength

       2: istore_1

       3: iload_1

       4: iconst_2

       5: iadd

       6: istore_1

       7: iload_1

       8: iconst_3

       9: if_icmple     20

      12: getstatic     #2

      15: ldc           #3

      17: invokevirtual #4

      20: return

}

The instructions in this main() method illustrate some characteristics of their underlying 
Java bytecode interpreter virtual machine. It is a stack machine. The load and store 
families of instructions push and pop a variable between a numbered slot in the main 
memory region and the top of the stack, where expressions are evaluated. This instruction 
set is typed, with mnemonic prefixes for each of the built-in scalar atomic types of the 
Java language (i for integer, f for float, and so on). It has built-in instructions for special 
purposes such as returning the length of an array. Seven integers from -1 through 5 have 
opcodes that push those constants. An instruction such as iadd pops two values, adds 
them, and then pushes the result.

We will present a simpler bytecode instruction set in this chapter, but it is nice to know 
what the most brilliant minds in the industry are churning out. Now, let's look at a simpler 
bytecode instruction set that's suitable for Jzero.
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Building a bytecode instruction set for Jzero
This section describes a simple file format and instruction set for Jzero code, generated 
from three-address intermediate code. For the language that you create, you might use 
a subset of the Java bytecode instruction set instead. Java bytecode is a complicated 
format; if it wasn't, we wouldn't be going to the trouble of presenting something simpler. 
The instruction set presented here is slightly more capable than Jzero uses, to allow for 
common extensions.

Defining the Jzero bytecode file format
The Jzero format consists of a header, followed by a data section, followed by a sequence 
of instructions. Jzero files are interpreted as a sequence of 8-byte words in little-endian 
format. The header consists of an optional self-execution script, a magic word, a version 
number, and the word offset of the first instruction, relative to the magic word. A self-
execution script is a set of commands written in some platform-dependent language 
that invokes the interpreter, feeding the Jzero file to it as a command-line argument. If 
present, the self-execution script must be padded if necessary to comprise a multiple of 
8 bytes. The magic word is 8 bytes containing the "Jzero!!\0" string. The version 
number is another 8 bytes containing a version such as 1.0 padded with zeroes, as in 
"1.0\0\0\0\0\0". The word offset of the first instruction would, at its smallest, be 3; 
this number is relative to the magic word. A word offset of 3 indicates an empty constant 
section of 0 words. After the magic word, the version word, and the word offset, execution 
starts at the instruction whose offset is given in the third word.

After the header, there is a static data section, which, in Jzero, has space for static variables 
as well as constants, including strings. In a more serious production language, there might 
be several kinds of static data sections. For example, there might be one subsection for 
read-only data, one for data that starts uninitialized and doesn't need to physically occupy 
space in the file on disk, and a third for statically initialized (non-zero) data. For Jzero, we 
will just allow one section on disk for all of that.

After the data section, the rest of the file consists of instructions. Every instruction in Jzero 
format is a single 64-bit word containing an opcode (8 bits), an operand region (8 bits), and 
an operand (48 bits). The operand region and operand are not used in all opcodes.
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The Jzero format defines the following opcodes:

Table 11.1 – The Jzero instruction set

Compare this with the set of instructions defined for intermediate code. That instruction 
set is higher-level, allowing three operands. This instruction set is lower-level and 
instructions have zero or one operand.
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The operand region byte is treated as a signed 8-bit value. For non-negative values, the 
Jzero format defines the following operand regions:

• region 0 == no operand (R_NONE).

• region 1 == absolute (R_ABS): The operand is a word offset relative to the  
magic word.

• region 2 == immediate (R_IMM): The operand is the value.

• region 3 == stack (R_STACK): The operand is a word offset relative to the current 
stack pointer.

• region 4 == heap (R_HEAP): The operand is a word offset relative to the current 
heap pointer.

The bytecode interpreter source code needs to be able to refer to these opcodes and 
operand regions by name. In Unicon, a set of $define symbols could be used, but instead, 
a set of constants in a singleton class called Op is used to keep the code similar in Unicon 
and Java. The Op.icn file, which contains the Unicon implementation, is shown here:

class Op(HALT, NOOP, ADD, SUB, MUL, DIV, MOD, NEG, PUSH,

  POP,

  CALL, RETURN, GOTO, BIF, LT, LE, GT, GE, EQ, NEQ, LOCAL,

  LOAD, STORE, R_NONE, R_ABS, R_IMM, R_STACK, R_HEAP)

initially

  HALT := 1;  NOOP := 2; ADD := 3; SUB := 4; MUL := 5

  DIV := 6; MOD := 7; NEG := 8; PUSH := 9; POP := 10

  CALL := 11; RETURN := 12; GOTO := 13; BIF := 14; LT := 15

  LE := 16; GT := 17; GE := 18; EQ := 19; NEQ := 20

  LOCAL := 21; LOAD := 22; STORE := 23

  R_NONE := 0; R_ABS := 1; R_IMM := 2

  R_STACK := 3; R_HEAP := 4

  Op := self

end
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The corresponding Java class looks like this:

public class Op {

  public final static short HALT=1, NOOP=2, ADD=3, SUB=4,

    MUL=5, DIV=6, MOD=7, NEG=8, PUSH=9, POP=10, CALL=11,

    RETURN=12, GOTO=13, BIF=14, LT=15, LE=16, GT=17, GE=18,

    EQ=19, NEQ=20, LOCAL=21, LOAD=22, STORE=23;

  public final static short R_NONE=0, R_ABS=1, R_IMM=2,

    R_STACK=3, R_HEAP=4;

}

Having a set of opcodes is all well and good, but the more interesting differences between 
the three-address code and bytecode lie in the semantics of the instructions. We will discuss 
this later in the Executing instructions section. Before we get to that, you need to know more 
about how a stack machine operates, as well as a few other implementation details.

Understanding the basics of stack machine operation
Like Unicon and Java, the Jzero bytecode machine uses a stack machine architecture. 
Most of the instructions implicitly read or write values to or from the stack. For example, 
consider the ADD instruction. To add two numbers, you push them onto the stack and 
execute an ADD instruction. The ADD instruction itself takes no operands; it pops two 
numbers, adds them, and pushes the result.

Now, consider a function call with n parameters whose syntax looks like this:

    arg0 (arg1, …, argN)

On a stack machine, this can be implemented by the sequence of instructions shown here:

    push reference to function arg0

    evaluate (compute and push) arg1

    . . .

    evaluate (compute and push) argN

    call n

The function call will use its operand (n) to locate arg0, the address of the function to be 
called. When the function call returns, all the arguments will be popped and the function 
return value will be on the top of the stack, in the location that previously held arg0. 
Now, let's consider some other aspects of how to implement a bytecode interpreter.
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Implementing a bytecode interpreter
A bytecode interpreter runs the following algorithm, which implements a fetch-decode-
execute loop in software. Most bytecode interpreters use at least two registers almost 
continuously: an instruction pointer and a stack pointer. The Jzero machine also 
includes a base pointer register to track function call frames and a heap pointer register 
that holds a reference to a current object.

While the instruction pointer is referenced explicitly in the following fetch-decode-
execute loop pseudocode, the stack pointer is used almost as frequently, but it's more often 
used implicitly as a byproduct of the instruction semantics of most opcodes:

load the bytecode into memory

initialize interpreter state

repeat {

   fetch the next instruction,  
   advance the instruction pointer

   decode the instruction 

   execute the instruction

}

Bytecode interpreters are usually implemented in a low-level systems programming 
language such as C, rather than a high-level applications language such as Java or Unicon. 
The sample implementations will perhaps feel somewhat iconoclastic to hardened systems 
programmers for this reason. Everything in Java is object-oriented, so the bytecode 
interpreter is implemented in a class named bytecode. The most native representation of 
a raw sequence of bytes in Unicon is a string, while in Java, the most native representation 
is an array of bytes.

To implement the bytecode interpreter algorithm, this section presents each of the  
pieces of the algorithm in separate subsections. First, let's consider how to load bytecode 
into memory.

Loading bytecode into memory
To load bytecode into memory, the bytecode interpreter must obtain the bytecode via an 
input/output of some kind. Typically, this will be done by opening and reading from a 
named local file. When executable headers are used, a launched program opens itself and 
reads itself in as a data file. The Jzero bytecode is defined as a sequence of 64-bit binary 
integers, but this representation is more native in some languages than in others.
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In Unicon, loading a file might look like this:

class j0machine(code, ip, stack, sp, bp, hp, op, opr, opnd)

  method loadbytecode(filename)

    sz := stat(filename).st_size

    f := open(filename) | stop("cannot open program.j0")

    s := reads(f, sz)

    close(f)

    s ? {

      if tab(find("Jzero!!\01.0\0\0\0\0\0")) then {

        return code := tab(0)

        }

      else stop("file ", filename, " is not a Jzero file")

      }

  end

end

The call to reads() in this example reads the entire bytecode file into a single contiguous 
sequence of bytes. In Unicon, this is represented as a string. The corresponding Java uses 
an array of bytes, with a ByteBuffer wrapper to provide easy access to the words within 
the code. The loadbytecode() method within j0machine.java looks like this:

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.nio.charset.StandardCharsets;

import java.nio.ByteBuffer;

public class j0machine {

  public static byte[] code, stack;

  public static ByteBuffer codebuf, stackbuf;

  . . .

  public static boolean loadbytecode(String filename)

    throws IOException {

      code = Files.readAllBytes(Paths.get(filename));

      byte[] magstr = "Jzero!!\01.0\0\0\0\0\0".getBytes(

                          StandardCharsets.US_ASCII);

      int i = find(magstr, code);

      if (i>=0) {
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        code = Arrays.copyOfRange(code, i, code.length);

        codebuf = ByteBuffer.wrap(code);

        return true;

      }

      else return false;

    }

}

The copyOfRange() call copies the bytecode into a new array that omits the optional 
executable header. This is done to simplify later references to the code and the static 
region, which are offsets relative to the magic word. Finding the magic string within a Java 
byte array requires the following helper method:

public static int find(byte[]needle, byte[]haystack) {

   for( ; i < haystack.length - needle.length+1; ++i) {

        boolean found = true;

        for(int j = 0; j < needle.length; ++j) {

           if (haystack[i+j] != needle[j]) {

               found = false;

               break;

           }

        }

        if (found) return i;

     }

   return-1;

}

In addition to loading bytecode into memory and before starting execution, the bytecode 
interpreter must initialize its registers.

Initializing the interpreter state
The bytecode interpreter state includes the memory regions, instruction and stack 
pointers, and a small amount of constant or static data used by the interpreter. 
The init() method allocates and initializes the code region by calling the 
loadbytecode() method and allocates a stack region. The init() method sets the 
instruction register to 0, indicating that execution will start at the first instruction in the 
code region. The stack is initialized to be empty.
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In Unicon, initialization consists of the following code. For static variables, Unicon 
must allocate a separate static data region because the string type that's used to load the 
bytecode is immutable. Both it and the bytecode interpretation stack are implemented as 
lists of integers; this exploits the fact that Unicon version 13 and higher implements lists of 
integers in a contiguous block of memory:

class j0machine(code, ip, stack, sdr)

  . . .

  method init(filename)

    ip := 0

    if not loadbytecode(filename) then

      stop("cannot open program.j0")

    ip := 16

    ip := finstr := 8*getOpnd()

    data := Data(code[25:ip+1])

    stack := list()

  end

end

The corresponding Java code is as follows. The allocation of a 100,000-word stack is 
somewhat arbitrary:

public class j0machine {

  public static byte[] code, stack;

  public static ByteBuffer codebuf, stackbuf;

  public static int ip, sp;

  public static boolean[] hasOpnd = new boolean[22];

  . . .

  public static void init(String filename)

    throws IOexception {

      ip = sp = 0;

      if (! loadbytecode(filename)) {

         System.err.println("cannot open program.j0");

         System.exit(1);

         }

      stack = new byte[800000];

      stackbuf = ByteBuffer.wrap(stack);

    }

}
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Program executions in Jzero start with the execution of a function named main(). This is 
a function in the Jzero bytecode, not in the Java implementation of the bytecode interpreter.

When the Jzero main() function runs, it expects to have a normal activation record on 
the stack, where parameters can be accessed. The easiest way to provide this is to initialize 
the instruction pointer to a short sequence of bytecode instructions that call main(), 
and exit after it returns. So, you can initialize the stack to contain the main function's 
parameters, if any, and initialize the instruction pointer to point at a CALL instruction that 
calls main, followed by a HALT instruction.

In the case of Jzero, main() has no parameters and the start sequence will always be  
as follows:

    PUSH main

    CALL    0

    HALT

Since the startup sequence is the same for every program, it would be possible to embed 
this bytecode sequence into the virtual machine interpreter code itself, and some bytecode 
machines do this. The catch is that the code offset (address) of main() will vary from 
program to program unless it is hardwired, and the linker is forced to always place 
main() in the same location. In the case of Jzero, it is sufficient and acceptable for the 
startup sequence to always begin the code section, at the word offset specified in the 
header. Now, let's consider how the interpreter fetches the next instruction.

Fetching instructions and advancing the instruction 
pointer
A register ip, called the instruction pointer, holds the location of the current instruction. 
Bytecode interpreters can represent this as a variable that denotes a pointer into the code, 
or an integer index, viewing the code as an array. In Jzero, it is a byte offset from the magic 
word. An instruction fetch in bytecode is an operation that reads the next instruction in 
the code. This includes the opcode that must be read, as well as any additional bytes or 
words that have operands for some instructions. In Unicon, this fetch() method is 
located in class j0machine. It looks as follows:

class j0machine(code, ip, stack, op, opnd)

   . . .

   method fetch()

      op := ord(code[1+ip])

      opr := ord(code[2+ip])
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      if opr ~= 0 then opnd := getOpnd()

      ip +:= 8

   end

end

The corresponding Java version of the fetch() method looks like this:

public class j0machine {

  public static byte[] code, stack;

  public static int ip, sp, op

  public static long opnd;

  . . .

  public static void fetch() {

      op = code[ip];

      opr = code[ip+1];

      if (opr != 0) { opnd = getOpnd(); }

      ip += 8;

    }

}

The fetch() method depends on the getOpnd() method, which reads the next word 
from the code. In Unicon, the getOpnd() method might be implemented as follows:

  method getOpnd()

    return signed(reverse(code[ip+3+:6]))

  end

Now that we've looked at instruction fetching, let's look at how instruction decoding  
is performed.
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Instruction decoding
The decoding step is a big deal in hardware CPUs; in a bytecode interpreter, it is no big deal, 
but it needs to be fast. You do not want a long chain of if-else-if statements in the main loop 
that is going to execute extremely frequently. You want decoding to take a small constant 
amount of time, regardless of the number of opcodes in your instruction set, so usually, you 
should implement it with either a table lookup or a switch or case control structure. A 
Unicon implementation of instruction decoding can be seen in the case expression in the 
following interp() method, which implements the fetch-decode-execute loop:

class j0machine(code, ip, stack)

  . . .

  method interp()

    repeat {

      fetch()

      case (op) of {

         Op.HALT: { stop("Execution complete.") }

         Op.NOOP: { . . .  }

         . . .

         default: { stop("Illegal opcode " + op) }

         }

      }

  end

end

The corresponding Java code looks like this:

public class j0machine {

  public static byte[] code, stack;

  public static int ip, sp, op, opnd;

  . . .

  public static void interp() {

    for(;;) {

      fetch();

      switch (op) {

        case Op.HALT: { stop("Execution complete."); break; }

        case Op.NOOP: { break; }

        . . .

        default: { stop("Illegal opcode " + op); }
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        }

      }

  }

}

The key pieces of the interpreter loop that remain to be shown are the implementation 
of the various instructions. A couple of examples have been given here that depend on 
the stop() method to implement the execution of the HALT instruction. In Unicon, 
stop() is a built-in method, but in Java, it can be implemented as follows:

  public static void stop(String s) {

    System.err.println(s);

    System.exit(1);

    }

The next section describes the rest of the execute portion of the fetch-decode-execute cycle.

Executing instructions
For each of the Jzero instructions, their execution consists of filling in the body of the 
corresponding case. In Unicon, the add instruction might look like this case branch:

Op.ADD: {

   val1 := pop(stack); val2 := pop(stack)

   push(stack, val1 + val2)

}

The corresponding Java implementation is as follows:

case Op.ADD: {

   long val1 = stackbuf.getLong(sp--);

   long val2 = stackbuf.getLong(sp--);

   stackbuf.putLong(sp++, val1 + val2);

   break;

}

Similar code applies for SUB, MUL, DIV, MOD, LT, and LE.
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The PUSH instruction takes a memory operand and pushes it onto the stack. The challenging 
part of this (in Unicon and Java, where pointers are being faked) is the interpretation of 
the operand to fetch a value from memory. This is performed by a separate dereferencing 
method. Internal helper functions such as deref() are part of the runtime system and will 
be covered in the Writing a runtime system for Jzero section. The Unicon implementation of 
the PUSH instruction is as follows:

Op.PUSH: {

   val := deref(opr, opnd)

   push(stack, val)

}

The equivalent Java code looks like this:

case Op.PUSH: {

  long val = deref(opr, opnd);

  push(val);

   break;

}

The POP instruction removes a value from the stack and stores it in a memory location 
designated by a memory operand. The Unicon implementation of the POP instruction is 
as follows:

Op.POP: {

   val := pop(stack)

   assign(opnd, val)

}

The equivalent Java code looks like this:

case Op.POP: {

   long val = pop();

   assign(opnd, val);

   break;

}
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The GOTO instruction sets the instruction pointer register to a new location. In Unicon, 
this is just as straightforward as you would expect:

Op.GOTO: {

   ip := opnd

}

The equivalent Java code looks like this:

case Op.GOTO: {

   ip = (int)opnd;

   break;

}

The conditional branch instruction, BIF (branch-if), pops the top of the stack. If it is 
non-zero, then it sets the instruction pointer register to a new location, such as a GOTO 
instruction. In Unicon, the implementation is as follows:

Op.BIF: {

   if pop(stack)~=0 then

      ip := opnd

}

The equivalent Java code looks like this:

case Op.BIF: {

   if (pop() != 0)

       ip = (int)opnd;

   break;

}

The call instruction is also like GOTO. It saves an address indicating where execution 
should resume after a return instruction. The function to call is given in an address just 
before the n parameters on the top of the stack. A non-negative address in the function 
slot is the location where the instruction pointer must be set. If the function is negative, 
it is a call to runtime system function number -n. This is shown in the following Unicon 
implementation of the CALL instruction:

Op.CALL: {

   f := stack[1+opnd]

   if f >= 0 then {
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     push(stack, ip)

             push( stack, bp) # save old ip

             bp := *stack     # set new bp

             ip := f

     }

   else if f = -1 then do_println()

}

The equivalent Java code looks like this:

case Op.CALL: {

  long f;

  f = stackbuf.getLong(

                     sp-8-(int)(8*opnd));

  if (f >= 0) {

      push( ip);

      push( bp);

      bp = sp;

      ip = (int)f;

      }

  else if (f == -1) do_println();

  else { stop("no CALL defined for " + f); }

   break;

}

The return instruction is also a GOTO, except it goes to a location that was previously 
stored on the stack:

Op.RETURN: {

           while *stack > bp do pop(stack)

           bp := pop(stack)

           ip := pop( stack )

}
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The equivalent Java code looks like this:

case Op.RETURN: {

           sp = bp;

           bp = (int)pop();

           ip = (int)pop();

   break;

}

The Jzero interpreter's execute operation is pretty short and sweet. Some bytecode 
interpreters would have additional instructions for input/output, but we are delegating 
those tasks to a small set of functions that can be called from the generated code. We'll 
cover those runtime functions shortly, but first, we'll look at the main() method, which 
starts the Jzero interpreter from the command line.

Starting up the Jzero interpreter
The main() function that launches the Jzero interpreter lives in a module named j0x. 
This launcher is short and sweet. The Unicon code looks like this, and it can be found in 
j0x.icn:

procedure main(argv)

  if not (filename := argv[1]) then

    stop("usage: j0x file[.j0]")

  if not (filename[-3:0] == ".j0") then argv[1] ||:= ".j0"

  j0machine := j0machine()

  j0machine.init(filename)

  j0machine.interp()

end

The corresponding Java code in j0x.java looks like this:

public class j0x {

  public static void main(String[] argv) {

    if (argv.length < 1) {

      System.err.println("usage: j0x file[.j0]");

      System.exit(1);

      }
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    String filename = argv[0];

    if (! filename.endsWith(".j0"))

      filename = filename + ".j0";

    j0machine.init(filename);

    j0machine.interp();

  }

}

We will see how well this interpreter runs shortly. But first, let's look at how built-in 
functions are incorporated into the Jzero runtime system.

Writing a runtime system for Jzero
In a programming language implementation, the runtime system is the code that is 
included to provide basic functionalities needed for the generated code to run. Generally, 
the higher level the language is and the greater its distance from the underlying hardware, 
the larger the runtime system. The Jzero runtime system is as small as possible; it only 
supports a few internal helper functions such as deref() and some basic functions for 
input and output. These functions are written in the implementation language (in our 
case, Unicon or Java), not the Jzero language. Here is the deref() method in Unicon:

  method deref(reg, od)

    case reg of {

      Op.R_ABS: {

        if od < finstr then return data.word(od)

        else return code[od]

        }

      Op.R_IMM: { return od }

      Op.R_STACK: { return stack[bp+od] }

      default: { stop("deref region ", reg) }

    }

  end
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Each region has different dereferencing code that's appropriate to how that region is 
stored. The corresponding Java implementation of deref() looks like this:

    public static long deref(int reg, long od) {

    switch(reg) {

    case Op.R_ABS: { return codebuf.getLong((int)od); }

    case Op.R_IMM: { return od; }

    case Op.R_STACK: { return stackbuf.getLong(bp+(int)od); }

    default: { stop("deref region " + reg); }

    }

    return 0;

    }

In the case of built-in functions, we must be able to call them from the generated Jzero 
code. The implementation of built-in functions such as System.out.println() 
and how they are called from the bytecode interpreter will be covered in Chapter 14, 
Implementing Operators and Built-In Functions. Now, it is finally time to look at how to 
run the Jzero bytecode interpreter.

Running a Jzero program
At this point, we need to be able to test our bytecode interpreter, but we haven't presented 
the code generator that generates this bytecode yet! For this reason, most of the testing  
for this chapter's bytecode interpreter will have to wait until the next chapter, where we 
will present the code generator. For now, here is a hello world program. The source code is 
as follows:

public class hello {

   public static main(String argv[]) {

      System.out.println("hello");

   }

}
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The corresponding Jzero bytecode might look something like this. One word is shown 
per line; the lines in hexadecimal show each byte as two hex digits. The opcode is in the 
leftmost byte, then the operand region byte, and then the operand in the remaining 6 bytes:

"Jzero!!\0"

"1.0\0\0\0\0\0"

0x0000040000000000

"hello\0\0\0"

0x0902380000000000                push main

0x0B02000000000000                call 0

0x0100000000000000                halt

0x0902FFFFFFFFFFFF                push -1 (println)

0x0902180000000000                push "hello"

0x0B02010000000000                call 1

0x0C02000000000000                return 0

If this is written in binary to a file called hello.j0, then executing the j0x hello 
command will write out hello, as expected. This tiny but concrete example should 
whet your appetite for the much more interesting examples that we will generate in the 
next chapter. In the meantime, compare the simplicity of Jzero with some of the more 
interesting features that can be found by examining the Unicon bytecode interpreter.

Examining iconx, the Unicon bytecode 
interpreter
The Unicon language and its predecessor, Icon, share a common architecture and 
implementation in the form of a bytecode interpreter and runtime system program  
named iconx. Compared to the Jzero bytecode interpreter in the previous section, 
iconx is large and complex and has the benefit of real-world use over a sustained  
period. Compared to the Java virtual machine, iconx is small and simple, and it's 
relatively accessible for studying. A thorough description of iconx can be found in  
The Implementation of Icon and Unicon: a Compendium. This section can be viewed as  
a brief introduction to that work.
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Understanding goal-directed bytecode
Unicon has an unusual bytecode. A brief example was provided earlier in this chapter  
in the Understanding what bytecode is section. The language is goal-directed. All 
expressions succeed or fail. Many expressions, called generators, can produce additional 
results on demand when a surrounding expression fails. Backtracking is built into the 
bytecode interpreter to save the state of such generator expressions, and resume them later 
on if needed.

Under the covers, goal-directed expression evaluation can be implemented in many 
ways, but Unicon's bytecode instruction set, which it inherits largely from Icon, has very 
unusual semantics that mirror the goal direction found in the source language. Chunks 
of instructions are marked with information to tell them where to go if they fail. Within 
such chunks of instructions, the state of generators is saved on a spaghetti stack, and if an 
expression fails, the most recently suspended generator is resumed.

Leaving type information in at runtime
In Unicon, variables can hold any type of value, and values know what type they are. 
This contributes to the flexibility of the language and matches polymorphic code, at the 
cost of slower execution that requires more memory to run. In the C implementation, all 
variables, including ones stored in structures such as lists or records, are represented in a 
descriptor, declared to be of the struct descrip type. struct descrip contains 
two words: a dword or descriptor word for the type information and a vword or value 
word for the value. The C implementation of this struct is shown here:

struct descrip {

   word dword;

   union {

      word integr;

      double realval;

      char *sptr;

      union block *bptr;

      dptr descptr;

      } vword;

   };
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Strings are special-cased in dword; for a string, the type information word contains 
the string length; the sign bit of that word is a flag that indicates whether the value is 
a non-string, which is to say whether a type information code is present. Numbers are 
special-cased in vword of a descriptor; for integers and real numbers, the value word 
contains the value; for all other types, the value word is a pointer to the value. Three 
different kinds of pointers are used, and the pointer to a union block can point at any of a 
couple dozen or so different Unicon data types. Which field of the vword union to use is 
decided in all cases by inspecting the dword.

Fetching, decoding, and executing instructions
The Unicon bytecode, the fetch-decode-execute loop lives in a C function named 
interp(). Consistent with this chapter, this consists of an infinite loop with a switch 
statement inside it. One difference between Unicon instructions and Jzero, as described in 
this chapter, is that Unicon opcodes are generally a half-word in size, and if they contain 
an operand, it is generally a full word following that half-word opcode. Since many 
instructions have no operand, this may make the code more compact, and since operands 
are full words, they can contain a native C pointer rather than an offset relative to a base 
pointer for a given memory region. Unicon bytecode is computed by the compiler and 
stored in the executable on disk using offsets, and when they first execute, the offsets are 
converted into pointers and the opcode is modified to indicate that they now contain 
pointers. This clever self-modifying code poses extra pain for thread safety, but it means 
bytecode cannot be executed from constant or read-only memory.

Crafting the rest of the runtime system
Another difference between Iconx and the Jzero interpreter presented in this chapter is that 
the Unicon bytecode interpreter has an enormous runtime system consisting of numerous 
sophisticated capabilities, such as high-level graphics and networking. Where the Jzero 
bytecode interpreter might be 80% of the code, with 20% left to the runtime system, the 
interp() function at Unicon's core might be only 5% of the code, with the other 95% 
being the implementation of the many built-in functions and operators. This runtime system 
is written in a language called RTL, which is a kind of superset of C with special features to 
support the Unicon type system, type inferencing, and automatic type conversion rules.

This section presented a brief introduction to the Unicon bytecode interpreter 
implementation. You saw that programming language bytecode interpreters are often a lot 
more interesting and complex than the Jzero interpreter. They may involve novel control 
structures, high-level and/or domain-specific data types, and more.
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Summary
This chapter presented the essential elements of bytecode interpreters. Knowing how to 
implement a bytecode interpreter frees you to generate flexible code, without having to 
worry about hardware instruction sets, registers, or addressing modes.

First, you learned that the definition of an instruction set includes the opcodes and rules for 
processing any operands in those instructions. You also learned how to implement generic 
stack machine semantics, as well as bytecode instructions that correspond to domain-specific 
language features. Then, you learned how to read and execute bytecode files, including 
interchangeably working with sequences of bytes and words in both Unicon and Java.

Given the existence of a bytecode interpreter, in the next chapter, we will discuss 
generating bytecode from intermediate code so that we can run programs that are 
compiled using our compiler!

Questions
1. A bytecode interpreter could use an instruction set with up to three addresses 

(operands) per instruction, such as three-address code. Instead, the Jzero interpreter 
uses zero or one operands per instruction. What are the pros and cons of using 
three-address code in the bytecode interpreter, such as in intermediate code?

2. On real CPUs and in many C-based bytecode interpreters, bytecode addresses are 
represented by literal machine addresses. However, the bytecode interpreters that 
were shown in this chapter implement bytecode addresses as positions or offsets 
within allocated blocks of memory. Is a programming language that does not have 
a pointer data type at a fatal disadvantage in implementing a bytecode interpreter, 
compared to a language that does support pointer data types?

3. If code is represented in memory as an immutable string value, what constraints 
does that impose on the implementation of a bytecode interpreter?
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Generating Bytecode
In this chapter, we continue with code generation, taking the intermediate code from 
Chapter 9, Intermediate Code Generation, and generating bytecode from it. When you 
translate from intermediate code into a format that will run, you are generating final code. 
Conventionally this happens at compile time, but it could occur later—at link time, load 
time, or runtime. We will generate bytecode in the usual way at compile time. This chapter 
and the following chapter on generating native code present you with two forms of final 
code that you can choose between.

Translation from intermediate code to bytecode is performed by walking through a list of 
intermediate instructions, translating each intermediate code instruction into one or more 
bytecode instructions. A straightforward loop is used to traverse the list, with a different 
chunk of code for each intermediate code instruction. Although the loop used in this 
chapter is simple, generating the final code remains very important as the culminating 
essential skill you must acquire in order to bring your new programming language to life.

This chapter covers the following main topics: 

• Converting intermediate code to Jzero bytecode

• Comparing bytecode assembler with binary formats

• Linking, loading, and including the runtime system

• Unicon example: bytecode generation in icont
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With the functionality that we build in this chapter, we will be able to generate code that 
runs on the bytecode interpreter presented in the previous chapter.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch12

The Code in Action video for the chapter can be found here: https://bit.ly/3oR6zGt

Converting intermediate code to Jzero 
bytecode
The Jzero intermediate code generator from Chapter 9, Intermediate Code Generation, 
traversed a tree and created a list of intermediate code as a synthesized attribute in each 
tree node, named icode. The intermediate code for the whole program is the icode 
attribute in the root node of the syntax tree. In this section, we will use this list to produce 
our output bytecode. To generate bytecode, the gencode() method in the j0 class 
calls a new method in this class, named bytecode(), and passes it the intermediate 
code in root.icode as its input. The Unicon gencode() method that invokes this 
functionality in j0.icn looks like this. The two highlighted lines at the end of the 
following code snippet are added for bytecode generation, verified by simple text output:

   method gencode(root)

      root.genfirst()

      root.genfollow()

      root.gentargets()

      root.gencode()

      bcode := bytecode(root.icode)

      every (! (\bcode)).print()

   end
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The bytecode() method takes in an icode list, and its return value is a list of byc class 
objects. In this example, the resulting bytecode is printed out in textual form; in a finished 
compiler, a binary format is usually output by default, and the Jzero compiler will support 
both formats. The corresponding Java code for the gencode() method is shown in the 
following code snippet. Output generation performed in the if statement is a little more 
convoluted in this case:

   public static void gencode(root) {

      root.genfirst();

      root.genfollow();

      root.gentargets();

      root.gencode();

      ArrayList<byc> bcode = bytecode(root.icode);

      if (bcode != null) {

        for (int i = 0; i < bcode.size(); i++)

          bcode.get(i).print();

        }

   }

Each element of the bcode list represents a bytecode instruction, for which we need a 
class. Call it byc, short for bytecode. Now, let's examine the code for that class.

Adding a class for bytecode instructions
We could represent our bytecode literally, using a 64-bit word in the same format 
presented in Chapter 11, Bytecode Interpreters. Representing bytecode instructions as 
objects facilitates output in both human-readable text and binary form. The list of objects' 
representation also makes analysis for final code optimization more convenient.

The byc class resembles the tac class, but instead of an operation code (opcode) and 
fields for up to three operands, it just represents an opcode, an operand region, and—if 
present—an operand, as described in Chapter 11, Bytecode Interpreters. The class also 
contains several methods, including ones for printing in text and binary forms. The 
print() and printb() methods will be presented in the section titled Comparing 
bytecode assembler versus binary formats. Here is an outline of the byc Unicon class from 
byc.icn:

class byc(op, opreg, opnd)

   method print() … end

   method printb() … end
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   method addr(a) … end

initially(o, a)

   op := o; addr(a)

end

The corresponding Java class in byc.java looks like this:

public class byc {

   int op, opreg;

   long opnd;

   public byc(int o, address a) {

      op=o; addr(a);

   }

   public void print() { … }

   public void printb() { … }

   public void addr(address a) { … }

}

As a part of this byc class, we need a method named addr() that provides a mapping 
from three-address code addresses to bytecode addresses. Let's examine this next.

Mapping intermediate code addresses to bytecode 
addresses
Although the instruction sets are quite different, the addresses in the intermediate and 
final code denote approximately the same thing. Since we design both the intermediate 
code and bytecode, we can define addresses in bytecode to be a lot closer to intermediate 
code addresses than will be the case when we are mapping from intermediate code to 
native code in the next chapter. In any case, the region and offset from the address 
classfrom Chapter 9, Intermediate Code Generation, must be mapped onto opreg and 
opnd in the byc class. This is handled by an addr() method in the byc class that takes 
an instance of the address class as a parameter and sets opreg and opnd. The Unicon 
code in byc.icn looks like this:

method addr(a)

   if /a then opreg := Op.R_NONE

   else case a.region of {

   "loc": { opreg := Op.R_STACK; opnd := a.offset }

   "glob": { opreg := Op.R_ABS; opnd := a.offset }
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   "const": { opreg := Op.R_ABS; opnd := a.offset }

   "lab": { opreg := Op.R_ABS; opnd := a.offset }

   "obj": { opreg := Op.R_HEAP; opnd := a.offset }

   "imm": { opreg := Op.R_IMM; opnd := a.offset }

   }

end

The corresponding Java method in byc.java is shown here:

public void addr(address a) {

   if (a == null) opreg = Op.R_NONE;

   else switch (a.region) {

   case "loc": { opreg = Op.R_STACK; opnd = a.offset;

              break; }

   case "glob": { opreg = Op.R_ABS; opnd = a.offset;

              break; }

   case "const": { opreg = Op.R_ABS; opnd = a.offset;

              break; }

   case "lab": { opreg = Op.R_ABS; opnd = a.offset; 

              break; }

   case "obj": { opreg = Op.R_HEAP; opnd = a.offset;

              break; }

   case "imm": { opreg = Op.R_IMM; opnd = a.offset;

              break; }

   }

}

Given the byc class, one more helper function is needed in order to formulate the 
bytecode() code generator method. We need a convenient factory method for 
generating bytecode instructions and attaching them to the bcode list.  We will call this 
method bgen().

The method bgen() in the j0 class is similar to gen() from the tree class; it produces 
a one-element list containing a byc instance. The Unicon code looks like this:

method bgen(o, a)

   return [byc(o, a)]

end
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The corresponding Java implementation looks like this:

public ArrayList<byc> bgen(int o, address a) {

   ArrayList<byc> L = new ArrayList<byc>();

   byc b = new byc(o, a);

   L.add(b);

   return L;

}

Now, finally, it's time to present the bytecode generator.

Implementing the bytecode generator method
The Unicon implementation of the bytecode() method in the j0 class is shown next. 
The implementation must fill in one case branch for each opcode in the three-address 
instruction set given in Chapter 9, Intermediate Code Generation. There will be a lot of 
cases, so we present each one separately, starting with this one:

method bytecode(icode)

    rv := []

    every i := 1 to *\icode do {

       instr := icode[i]

       case instr.op of {

          "ADD": { ... append translation of ADD to return 

                  val }

          "SUB": { ... append translation of SUB to return 

                  val }

          ...

         }

      }

   return rv

end

The Java implementation of bytecode() is shown here:

  public static ArrayList<byc> bytecode( 
                ArrayList<tac> icode)

  {

    ArrayList<byc> rv = new ArrayList<byc>();
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    for(int i=0; i<icode.size(); i++) {

      tac instr = icode.get(i);

      switch(instr.op) {

      case "ADD": { ... append translation of ADD to rv }

      case "SUB": { ... append translation of SUB to rv }

        ...

        }

      }

    return rv;

   }

Within the framework of this bytecode() method, we now get to provide translations 
for each of the three-address instructions. We will start with simple expressions.

Generating bytecode for simple expressions
The different cases for each three-address opcode have many elements in common, such 
as the pushing of values from memory onto the evaluation stack. The case for addition 
perhaps shows the most common translation pattern. In Unicon, addition is handled  
like this:

"ADD": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

     j0.bgen(Op.PUSH, instr.op3) ||| j0.bgen(Op.ADD) |||

     j0.bgen(Op.POP, instr.op1)

}

This code reads operand 2 and operand 3 from memory and pushes them onto the stack. 
The actual ADD instruction works entirely from the stack. The result is then popped off 
the stack and placed into operand 3. In Java, implementation of addition consists of the 
following code:

case "ADD": {

   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

   bcode.addAll(j0.bgen(Op.PUSH, instr.op3));

   bcode.addAll(j0.bgen(Op.ADD, null));

   bcode.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}
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The intermediate code instruction set presented in Chapter 9, Intermediate Code 
Generation, defines 19 three-address instructions that must be translated to final code. 
The final code generation pattern illustrated by the preceding ADD instruction is used for 
the other arithmetic instructions. For a unary operator such as NEG, the pattern is slightly 
simplified, as we can see here:

"NEG": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

     j0.bgen(Op.NEG) ||| j0.bgen(Op.POP, instr.op1)

}

In Java, implementation of negation consists of the following code:

case "NEG": {

   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

   bcode.addAll(j0.bgen(Op.NEG, null));

   bcode.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}

An even simpler instruction such as ASN may be worth special-casing when you design 
the instruction set of your bytecode machine, but for a stack machine you can stick with 
the same script and simplify the preceding pattern further, as illustrated in the following 
code snippet:

"ASN": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

     j0.bgen(Op.POP, instr.op1)

}

In Java, implementation of assignment might look like this:

case "ASN": {

   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

   bcode.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}

Code consisting of arithmetic expressions and assignments are the core of most 
programming languages. Now, it's time to look at code generation for some other 
intermediate code instructions, starting with the ones used for manipulating pointers.
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Generating code for pointer manipulation
Three of the intermediate code three-address instructions defined in Chapter 9, 
Intermediate Code Generation, pertain to the use of pointers: ADDR, LCON, and SCON. 
The ADDR instruction turns an address in memory into a piece of data that can be 
manipulated to perform operations such as pointer arithmetic. It pushes its operand, an 
address reference in one of the memory regions, as if it were an immediate mode value, as 
illustrated in the following code snippet:

"ADDR": {

   bcode |||:= j0.bgen(Op.ADDR, instr.op2)

   bcode |||:= j0.bgen(Op.POP, instr.op1)

}

In Java, implementation of the ADDR instruction consists of this code:

case "ADDR": {

   bcode.addAll(j0.bgen(Op.ADDR, instr.op2));

   bcode.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}

The LCON instruction reads from memory pointed at by other memory, as illustrated here:

"LCON": {

   bcode |||:= j0.bgen(Op.LOAD, instr.op2)

   bcode |||:= j0.bgen(Op.POP, instr.op1)

}

In Java, implementation of the LCON instruction consists of the following code:

case "LCON": {

   bcode.addAll(j0.bgen(Op.LOAD, instr.op2));

   bcode.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}
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The SCON instruction writes to memory pointed at by other memory, as illustrated here:

"SCON": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

               j0.bgen(Op.STORE, instr.op1)

}

In Java, implementation of the SCON instruction consists of the following code:

case "SCON": {

   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

   bcode.addAll(j0.bgen(Op.STORE, instr.op1));

   break;

}

These instructions are important for supporting structured data types such as arrays.  
Now, let's consider bytecode code generation for control flow, starting with the GOTO 
family of instructions.

Generating bytecode for branches and conditional 
branches
Seven of the intermediate code instructions pertain to conditional and unconditional 
branch instructions. The simplest of these is the unconditional branch or GOTO 
instruction. The GOTO instruction assigns a new value to the instruction pointer register. 
It should be no surprise that the GOTO bytecode is the implementation of the three-
address GOTO instruction. The Unicon code for translating GOTO intermediate code into 
GOTO bytecode is shown here:

"GOTO": {

   bcode |||:= j0.bgen(Op.GOTO, instr.op1)

}

In Java, implementation of the GOTO instruction consists of the following code:

case "GOTO": {

   bcode.addAll(j0.bgen(Op.GOTO, instr.op1));

   break;

}
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The conditional branch instructions in the three-address code are translated down into 
simpler final code instructions. For the instruction set bytecode presented in the previous 
chapter, this means pushing operands onto the stack prior to the conditional branch 
instruction bytecode. The Unicon implementation of the BLT instruction looks like this:

"BLT": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

     j0.bgen(Op.PUSH, instr.op3) ||| j0.bgen(Op.LT) |||

     j0.bgen(Op.BIF, instr.op1)

}

In Java, implementation of generating bytecode for the BLT instruction consists of the 
following code:

case "BLT": {

   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

   bcode.addAll(j0.bgen(Op.PUSH, instr.op3));

   bcode.addAll(j0.bgen(Op.LT, null));

   bcode.addAll(j0.bgen(Op.BIF, instr.op1));

   break;

}

This pattern is employed for several of the three-address instructions, with slightly simpler 
code used for BIF and BNIF. Now, let's consider the more challenging forms of control 
flow transfer that relate to method calls and returns.

Generating code for method calls and returns
Three of the three-address instructions handle the very important topic of function and 
method calls and returns. A sequence of zero or more PARM instructions push values 
onto the stack, the CALL instruction performs a method call, and the RET instruction 
returns from a method to the caller. But this three-address code calling convention must 
be mapped down onto the underlying instruction set, which in this chapter is a bytecode 
stack machine instruction set that requires the address of the procedure to be called to 
be pushed (in a stack slot where the return value will be found), prior to pushing other 
parameters. We could go back and modify our three-address code to fit the stack machine 
better, but then it would not fit so well for x86_64 native code.
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The PARM instruction is a simple push, except when it is the first parameter and the 
procedure address is needed, as illustrated in the following code snippet:

"PARM": {

   if /methodAddrPushed then {

      every j := i+1 to *icode do

         if icode[j].op == "CALL" then {

            bcode |||:= j0.bgen(Op.PUSH, icode[j].op2)

            break

         }

      methodAddrPushed := 1

      }

   bcode |||:= j0.bgen(Op.PUSH, instr.op1)

}

The every loop looks for the nearest CALL instruction and pushes its method address. In 
Java, implementation of the PARM instruction is similar, as we can see here:

case "PARM": {

   if (methodAddrPushed == false) {

      for(int j = i+1; j<icode.length; j++) {

         tac callinstr = icode.get(j);

         if (callinstr.op.equals("CALL")) {

            bcode.addAll(j0.bgen(Op.PUSH, callinstr.op2));

            break;

         }

      }

   }

   bcode.addAll(j0.bgen(Op.PUSH, instr.op1));

   break;

}
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Having pushed the method address ahead of time, the CALL instruction is 
straightforward. After the call, the op1 destination in the three-address code is popped 
from the stack, as with other expressions. The op2 source field is the method address that 
was used prior to the first PARM instruction. The op3 source field gives the number of 
parameters, which is used as-is as the operand in the CALL: bytecode, as illustrated in the 
following code snippet:

"CALL": {

   bcode |||:= j0.bgen(Op.CALL, instr.op3)

   bcode |||:= j0.bgen(Op.POP, instr.op1)

   methodAddrPushed := &null

}

In Java, implementation of the CALL instruction consists of the following code:

case "CALL": {

   bcode.addAll(j0.bgen(Op.CALL, instr.op3));

   bcode.addAll(j0.bgen(Op.POP, instr.op1));

   methodAddrPushed = false;

   break;

}

The Unicon implementation of the RETURN instruction looks like this:

"RETURN": {

   bcode |||:= j0.bgen(Op.RETURN, instr.op1)

}

In Java, implementation of the RETURN instruction consists of the following code:

case "RETURN": {

   bcode.addAll(j0.bgen(Op.RETURN, instr.op1));

   break;

}

Generating code for method calls and returns is not too difficult. Now, let's consider how 
to handle pseudo-instructions in the three-address code.
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Handling labels and other pseudo-instructions in 
intermediate code
Pseudo-instructions do not translate into code, but they are present in the linked list of 
three-address instructions and require consideration in the final code. The most common 
and obvious pseudo-instruction is a label. If the final code is being generated in a human-
readable assembler format, labels can be generated as-is. Although LAB and Op.LABEL 
are not instructions, they are elements in the lists of intermediate code and the generated 
bytecode, respectively. In Unicon, this is expressed in this way:

"LAB": {

   bcode |||:= j0.bgen(Op.LABEL, instr.op1)

}

This is the corresponding code in Java:

case "LAB": {

   bcode.addAll(j0.bgen(Op.LABEL, instr.op1));

   break;

}

For final code generated in a binary format, labels require some additional handling since 
they must be replaced by corresponding byte offsets or addresses.

Since a label is really a name or alias for the address of a particular instruction, in a binary 
bytecode format it is typically replaced by byte offsets in some form. As the final code is 
generated, a table containing the mapping between labels and offsets is constructed.

The past several sections produced a data structure containing a representation of the 
bytecode and then showed how various three-address instructions are translated. Now, 
let's move on to producing the code in textual and binary formats.

Comparing bytecode assembler with binary 
formats
Bytecode machines tend to use simpler formats than native code, where binary object 
files are the norm. Some bytecode machines, such as Python, hide their bytecode format 
entirely or make it optional. Others, such as Unicon, use a human-readable assembler-like 
text format for compiled modules. In the case of Java, they seem to have gone out of their 
way to avoid providing an assembler, to make it more difficult for other languages to target 
their virtual machine (VM).

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Comparing bytecode assembler with binary formats     309

In the case of Jzero and its machine, we have strong incentives to keep things as simple 
as possible. The byc class defines two output methods: print() for text format and 
printb() for binary format. You can decide for yourself which one you prefer.

Printing bytecode in assembler format
The print() method in the byc class is similar to the one used in the tac class. One 
line of output is produced for each element in the list. The Unicon implementation of 
the print() method in the byc class is shown here. Parameter f, which defaults to the 
standard output, specifies the name:

method print(f:&output)

   if op === LABEL then write(f, addrof(), ":")

   else write(f, nameof(), " ", addrof())

end

The corresponding Java implementation is shown here. Method overloading is used to 
make the parameter optional:

public void print(PrintStream f) {

   if (op == LABEL) f.println(addrof() + ":");

   else f.println("\t" + nameof() + " " + addrof());

}

public void print() { print(System.out); }

The text-based print() methods just punt off most of the work to helper methods that 
produce human-readable representations of the opcode and the operand. The Unicon 
code for the nameof() method that maps opcode back to strings is shown in the 
following example:

method nameof()

   static opnames

   initial opnames := table(Op.HALT, "halt", Op.NOOP,

      "noop",

      Op.ADD, "add", Op.SUB, "sub", Op.MUL, "mul",

      Op.DIV, "div", Op.MOD, "mod", Op.NEG, "neg",

      Op.PUSH, "push", Op.POP, "pop", Op.CALL, "call",

      Op.RETURN, "return", Op.GOTO, "goto", Op.BIF, "bif",

      Op.LT, "lt", Op.LE, "le", Op.GT, "gt", Op.GE, "ge",

      Op.EQ, "eq", Op.NEQ, "neq", Op.LOCAL, "local",
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      Op.LOAD, "load", Op.STORE, "store")

   return opnames[op]

end

The corresponding Java code shown here uses HashMap:

  static HashMap<Short,String> ops;

  static { ops = new HashMap<>();

    ops.put(Op.HALT,"halt"); ops.put(Op.NOOP,"noop");

    ops.put(Op.ADD,"add"); ops.put(Op.SUB,"sub");

    ops.put(Op.MUL,"mul"); ops.put(Op.DIV, "div");

    ops.put(Op.MOD,"mod"); ops.put(Op.NEG, "neg");

    ops.put(Op.PUSH,"push"); ops.put(Op.POP, "pop");

    ops.put(Op.CALL, "call"); ops.put(Op.RETURN, "return");

    ops.put(Op.GOTO, "goto"); ops.put(Op.BIF, "bif");

    ops.put(Op.LT, "lt"); ops.put(Op.LE, "le");

    ops.put(Op.GT, "gt"); ops.put(Op.GE, "ge");

    ops.put(Op.EQ, "eq"); ops.put(Op.NEQ, "neq");

    ops.put(Op.LOCAL, "local"); ops.put(Op.LOAD, "load");

    ops.put(Op.STORE, "store");

}

public String nameof() {

   return opnames.get(op);

}

Another helper function called from the print() method is the addrof() method, 
which prints a human-readable representation of an address based on the operand region 
and operand fields. Its Unicon implementation is shown here:

method addrof()

   case opreg of {

      Op.R_NONE: return ""

      Op.R_ABS: return "@"+ 

            java.lang.Long.toHexString(opnd);

      Op.R_IMM: return string(opnd)

      Op.R_STACK: return "stack:" + String.valueof(opnd)

      Op.R_HEAP: return "heap:" + String.valueof(opnd)

      default: return string(opreg) ":" || opnd
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      }

end

The corresponding Java code for addrof() is shown here:

public String addrof() {

  switch (opreg) {

  case Op.R_NONE: return "";

  case Op.R_ABS: return "@"+ 

    java.lang.Long.toHexString(opnd);

  case Op.R_IMM: return String.valueOf(opnd);

  case Op.R_STACK: return "stack:" + String.valueOf(opnd);

  case Op.R_HEAP: return "heap:" + String.valueOf(opnd);

  }

  return String.valueOf(opreg)+":"+String.valueOf(opnd);

}

Now, let's look at the corresponding binary output.

Printing bytecode in binary format
The printb() methods are organized similarly, but where print() needs names of 
things, printb() needs to put all the bits in a row and output a binary word. Its Unicon 
implementation is shown here:

method printb(f:&output)

   writes(f, "\t", char(op), char(opregn))

   x := opnd

   every !6 do {

     writes(f, char(iand(x, 255)))

     x := ishift(x, -8)

     }

end

The corresponding Java implementation of printb() is shown here:

public void printb(PrintStream f) {

   long x = opnd;

   f.print((byte)op);

   f.print((byte)opreg);
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   for(int i = 0; i < 6; i++) {

      f.print((byte)(x & 0xff));

      x = x>>8;

      }

}

public void printb() { printb(System.out); }

In this section, we considered how to output our code to external storage. The contrast 
between text and binary formats was stark, with binary formats being a bit more work, 
at least from a human perspective. Now, let's look at other issues necessary for program 
execution beyond the generated code. This includes linking generated code with other 
code, especially the runtime system.

Linking, loading, and including the runtime 
system
In a separately compiled native code language, the output binary format from the 
compile step is not executable. Machine code is output in an object file that must be 
linked together with other modules, and addresses between them resolved, to form an 
executable. The runtime system is included at this point, by linking in object files that 
come with the compiler, not just other modules written by the user. In the old days, 
loading the resulting executable was a trivial operation. In modern systems, it is more 
complex due to things such as shared object libraries.

A bytecode implementation often has substantial differences from the traditional model 
just described. Java performs no link step, or perhaps you can say that it links code in at 
load time. The Java runtime system might be considered sharply divided between a large 
amount of functionality that is built into the Java VM (JVM) interpreter and an also-
large amount of functionality that must be loaded, both bytecode and native code, to run 
various parts of the standard Java language. From an outsider's perspective, one of the 
surprising things in Java is the enormous number of import statements a developer must 
place at the top of every file that uses anything in Java's standard libraries.

In the case of Jzero, severe limitations keep all this as simple as possible. There is no 
separate compilation or linking. Loading is kept extremely simple and was covered in the 
previous chapter. The runtime system is built into the bytecode interpreter, another dodge 
to enable the language to avoid linking. Now, let's look at bytecode generation in Unicon, 
another real-world bytecode implementation that does things far differently than either 
Java or Jzero.
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Unicon example – bytecode generation  
in icont
Unicon's compiled bytecode output format is human-readable text in ucode files. Such 
ucode files are initially generated, and then linked and converted into binary icode 
format by a C program named icont that is invoked by the Unicon translator. The 
icont program plays the role of code generator, assembler, and linker to form a complete 
bytecode program in binary format. Here are some of the details.

The gencode() C function in icont reads lines of ucode text and turns them into 
binary format following the outline illustrated here. There is an interesting similarity 
between this pseudo-code and the fetch-decode-execute loop used in the bytecode 
interpreter. Here, we are fetching text bytecode from input, decoding the opcode, and 
writing binary bytecode with slight differences in format depending on the bytecode:

void gencode() {

    while ((op = getopc(&name)) != EOF) {

      switch(op) {

      ...

      case Op_Plus:

         newline();

         lemit(op, name);

         break;

      ...

      }

   }

}

The lemit() function and about seven related functions with the lemit*() prefix 
are used to append bytecode within a contiguous array of bytes in binary format. Labels 
associated with instructions are turned into byte offsets. Forward references to labels that 
have not been encountered yet are placed in linked lists and backpatched later when the 
target label is encountered. The C code for lemitl() emits an instruction with a label, as 
shown here:

static void lemitl(int op, int lab, char *name)

   {

   misalign();

   if (lab >= maxlabels)

      labels  = (word *) trealloc(labels, NULL, &maxlabels, 
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        sizeof(word), lab - maxlabels + 1, "labels");

   outop(op);

   if (labels[lab] <= 0) {      /* forward reference */

      outword(labels[lab]);

      labels[lab] = WordSize - pc;

      }

   else outword(labels[lab] - (pc + WordSize));

   }

As you may guess from its name, the misalign() function generates no-op instructions 
in order to ensure that instructions start on word boundaries. The first if statement 
grows the array table if needed. The second if statement handles a label that is a forward 
reference to an instruction that does not exist yet, by inserting it onto the front of a linked 
list of instructions that will have to be backpatched when the instructions are all present.

The guts of the binary code layout are done by outop() and outword(), to output an 
opcode and an operand that are of integer and word length, respectively. These macros 
may be defined differently on different platforms, but on most machines, they simply call 
functions named intout() and wordout(). Note in the following code snippet that 
the binary code is in machine-native format and is different on central processing units 
(CPUs) with different word sizes or endianness. This gives good performance at the cost 
of bytecode portability:

static void intout(int oint)

   {

   int i;

   union {

      int i;

      char c[IntBits/ByteBits];

      } u;

   CodeCheck(IntBits/ByteBits);

   u.i = oint;

   for (i = 0; i < IntBits/ByteBits; i++)

      codep[i] = u.c[i];

   codep += IntBits/ByteBits;

   pc += IntBits/ByteBits;

   }
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After all this glorious example C code, you will probably be glad to get back to Unicon and 
Java. But C really does make lower-level binary manipulation somewhat simpler than it is 
in Unicon or Java. The moral of the story is: learn the right tools for each kind of job.

Summary
This chapter showed you how to generate bytecode for software bytecode interpreters. The 
skills you learned include how to traverse a linked list of intermediate code and, for each 
intermediate code opcode and pseudo-instruction, how to convert it into instructions 
in a bytecode instruction set. There were big differences between the semantics of the 
three-address machine and the bytecode machine. Many intermediate code instructions 
were converted into three or more bytecode machine instructions. The handling of CALL 
instructions was a bit hairy, but it is important for you to perform function calls in the 
manner required by the underlying machine. While learning all this, you also learned how 
to write out bytecode in text and binary formats.

The next chapter presents an alternative that is more attractive for some languages: 
generating native code for a mainstream CPU.

Questions
1. Describe how intermediate code instructions with up to three addresses are converted 

into a sequence of stack machine instructions that contain at most one address.
2. If a particular instruction (say it is instruction 15, at byte offset 120) is targeted 

by five different labels (for example, L2, L3, L5, L8, and L13), how are the labels 
processed when generating binary bytecode?

3. In intermediate code, a method call consists of a sequence of PARM instructions 
followed by a CALL instruction. Does the described bytecode for doing a method 
call in bytecode match up well with the intermediate code? What is similar and 
what is different?

4. CALL instructions in object-oriented (OO) languages such as Jzero are always 
preceded by a reference to the object (self, or this) on which the methods 
are being invoked… or are they? Explain a situation in which the CALL method 
instruction may have no object reference, and how the code generator described in 
this chapter should handle that situation.

5. Our code for pushing method addresses at the first PARM instruction assumed that 
no nested PARM…CALL sequences occur inside a surrounding PARM…CALL sequence. 
Can we guarantee that to be the case for examples such as f(0, g(1), 2)?
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Native Code 
Generation

This chapter shows how to take the intermediate code from Chapter 9, Intermediate Code 
Generation, and generate native code. The term native refers to whatever instruction set 
is provided in hardware on a given machine. This chapter presents a simple native code 
generator for x64, the dominant architecture on laptops and desktops.

This chapter covers the following main topics:

• Deciding whether to generate native code

• Introducing the x64 instruction set

• Using registers

• Converting intermediate code to x64 code

• Generating x64 output

The skills developed here include basic register allocation, instruction selection,  
writing assembler files, and invoking the assembler and linker to produce a native 
executable. The functionality built into this chapter generates code that runs natively  
on typical computers.
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Technical requirements
The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Build-Your-Own-Programming-Language/tree/
master/ch13

The Code in Action video for the chapter can be found here: https://bit.ly/2Zdky0I

Deciding whether to generate native code
Generating native code is more work than bytecode but enables faster execution. Native 
code may also use less memory or electricity. Native code pays for itself if end users 
save time or money, but targeting a specific central processing unit (CPU) sacrifices 
portability. You may want to implement bytecode first, and only generate native code  
if the language becomes popular enough to justify the effort. However, there are other 
reasons to generate native code. You may be able to write your runtime system using the 
facilities provided for another compiler. For example, our Jzero x64 runtime system is 
built using the GNU's Not Unix (GNU) C library. Now, let's look at some of the specifics 
of the x64 architecture.

Introducing the x64 instruction set
This section provides a brief overview of the x64 instruction set, but you are encouraged 
to consult Advanced Micro Devices (AMD) or Intel's architecture programmer's 
manuals. Douglas Thain's book Introduction to Compilers and Language Design, available 
at http://compilerbook.org, has helpful x64 material.

x64 is a complex instruction set with many backward-compatibility features. This chapter 
covers the subset of x64 that is used to build a basic Jzero code generator. We are using 
AT&T assembler syntax so that our generated output can be converted into binary object 
file format by the GNU assembler. This is for the sake of multiplatform portability.

x64 has hundreds of instructions with names such as ADD for addition or MOV to copy 
a value to a new location. When an instruction has two operands, at most one may be a 
reference to main memory. x64 instructions can have a suffix to indicate how many bytes 
are being read or written, although the name of a register in the instruction often makes 
the suffix redundant. Jzero uses two of the x64 instruction suffixes: B for 1-byte operations 
on strings and Q for 64-bit quadword operations. A 64-bit word is a quad from the point 
of view of the late-1970's Intel 16-bit instruction set. We use the following instructions in 
this chapter:
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Table 13.1 – Instructions for the examples in this chapter

Now, it's time to define a class to represent these instructions in memory.

Adding a class for x64 instructions
The x64 class represents operation code (opcode) and operands as allowed in x64. An 
operand may be a register or a reference to a value in memory. You can see an illustration 
of this class in the following code snippet:

class x64(op, opnd1, opnd2)

   method print() ... end

initially(o, o1, o2)

   op := o; opnd1 := o1; opnd2 := o2

end
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The corresponding Java class in x64.java looks like this:

public class x64 {

   String op;

   x64loc opnd1, opnd2;

   public x64(String o, Object src, Object dst) {

      op=o; opnd1 = loc(src); opnd2 = loc(dest); }

   public x64(String o, Object opnd) {

      op=o; opnd1 = loc(opnd); }

   public x64(String o) { op=o; }

   public void print() { ... }

}

As a part of this x64 class, we map from three-address code addresses to x64 addresses.

Mapping memory regions to x64 register-based 
address modes
To implement the code, global/static, stack, and heap memory regions on x64, we decide 
how to access memory in each memory region. x64 instructions allow operands to be 
either a register or a memory address. Jzero adds an offset to a register to compute the 
address, as illustrated here:

Table 13.2 – Memory access modes used in this chapter

In immediate mode, the value is in the instruction. In indirect mode, main memory is 
relative to an x64 register. The various memory regions are accessed as offsets relative 
to different registers. Global and static memory are accessed relative to the instruction 
pointer, locals are accessed relative to the base pointer, and heap memory is accessed 
relative to a heap pointer register. Let's look more broadly at how registers are used.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Using registers     321

Using registers
Main memory access is slow. Performance is heavily impacted by how registers are used. 
Optimal register allocation is nondeterministic polynomial-complete (NP-complete): 
very difficult. Optimizing compilers expend great effort on register allocation. That is 
beyond the scope of this book.

x64 has 16 general-purpose registers, as illustrated in the following table, but many 
registers have a special role. Arithmetic is performed on an accumulator register, rax. 
Registers have 8- to 64-bit versions. Jzero only uses the 64-bit versions of registers, plus 
whichever 8-bit registers are necessary for strings. In AT&T syntax, register names are 
preceded by a percentage sign, as in %rax:

Table 13.3 – x64 registers

Many registers are saved as part of a call instruction. The more registers, the slower it 
is to perform function calls. These issues are determined by the calling conventions of 
the compiler. Jzero only saves modified registers prior to a given call. Before we get to the 
actual code generator, let's consider a bit further how native code uses registers.
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Starting from a null strategy
The minimal register strategy is the null strategy, which maps intermediate code addresses 
down to x64 addresses. Values are loaded into the rax accumulator register to perform 
operations on them. Results go immediately back to main memory.

The rbp base pointer and the rsp stack pointer manage activation records, which are also 
called frames. The current activation record revolves around the rbp base pointer register. 
The current local region on the stack lies between the base pointer and the stack pointer. 
The following screenshot shows an x64 stack layout:

Figure 13.1 – x64 stack, managed as a sequence of activation records, growing downward

x64 tweaks the classical stack layout slightly. Six rdi registers through r9 are used for 
passing the first six parameters. The null strategy stores parameters to memory when a 
function call starts. The div instruction uses the rdx register, so besides being used for 
passing parameter #3, rdx is also required for div instructions. The null strategy is not 
affected by this design flaw.
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Assigning registers to speed up the local region
Jzero maps registers rdi-r14 onto the first 88 bytes of the local region. As it walks the 
three-address instructions, the code generator tracks for each register if a value is loaded 
and if it was modified from the corresponding main memory location. The code generator 
uses the value in the register until that register is used for something else.

Here is a class named RegUse that tracks main memory locations' corresponding register, 
if any, and whether its value has been modified since it was last loaded in main memory. 
The Unicon implementation of RegUse in RegUse.icn is shown here:

class RegUse (reg, offset, loaded, dirty)

   method load()

      if \loaded then fail

      loaded := 1

      return j0.xgen("movq", offset||"(%rbp)", reg)

   end

   method save()

      if /dirty then fail

      dirty := &null

      return j0.xgen("movq", reg, offset||"(%rbp)")

   end

end

The reg field denotes the string register name; offset is the byte offset relative to the 
base pointer. loaded and dirty Boolean flags track whether the register contains the 
value and whether it has been modified, respectively. The load() and save() methods 
do not load and save; they generate instructions to load and save the register and set the 
loaded and dirty flags accordingly. The corresponding Java code looks like this:

public class RegUse {

   public String reg;

   int offset;

   public boolean loaded, dirty;

   public RegUse(String s, int i) {

     reg = s; offset=i; loaded=dirty=false; }

   public ArrayList<x64> load() {

      if (loaded) return null;

      loaded = true;

      return j0.xgen("movq", offset+"(%rbp)", reg);
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   }

   public ArrayList<x64> save() {

      if (!dirty) return null;

      dirty = false;

      return j0.xgen("movq", reg, offset+"(%rbp)");

   }

}

A list of instances of the RegUse class is held in a variable named regs in the j0 class 
so that for each of the first words in the local region, the corresponding register is used 
appropriately. The list is constructed in Unicon, as follows:

off := 0

regs := [: RegUse("%rdi"|"%rsi"|"%rdx"|"%rcx"|"%r8"|

         "%r9"|"%r10"|"%r11"|"%r12"|"%r13"|"%r14", off-:=8) :]

This Unicon code is just showing off. The | alternator produces all the register names for 
separate calls to RegUse(), triggered and captured by the [: :] list comprehension 
operator. One x64 tricky bit is that the offsets are all negative integers, because the stack 
grows downward. In Java, this initialization is performed as shown here:

RegUse [] regs = new RegUse[]{ new RegUse("%rdi", -8),

   new RegUse("%rsi", -16), new RegUse("%rdx", -24),

   new RegUse("%rcx", -32), new RegUse("%r8", -40),

   new RegUse("%r9",-48), new RegUse("%r10", -56),

   new RegUse("%r11", -64), new RegUse("%r12", -72),

   new RegUse("%r13", -80), new RegUse("%r14", -88) };

The data structure operates on basic block boundaries, storing modified registers in 
memory and clearing loaded flags whenever a label or a branch instruction occurs. At 
the top of a called function, the loaded and dirty flags of parameters are set to true, 
indicating values that must be saved to the local region before that register can be reused. 
Now, it's time to look at how each intermediate code element is converted into x64 code.
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Converting intermediate code to x64 code
The intermediate code generator from Chapter 9, Intermediate Code Generation, placed 
the intermediate code for the whole program in the icode attribute in the root of the 
syntax tree. A Boolean named isNative says whether to generate bytecode as shown in 
the previous chapter, or native x64 code. To generate x64 code, the gencode() method 
in the j0 class calls a new method in this class, named x64code(), and passes it the 
intermediate code in root.icode as its input. Output x64 code is placed in a j0 list 
variable named xcode. The Unicon gencode() method that invokes this functionality 
in j0.icn looks like this:

   method gencode(root)

      root.genfirst()

      root.genfollow()

      root.gentargets()

      root.gencode()

      xcode := []

      if \isNative then {

         x64code(root.icode)

         x64print()

         }

      else {

         bcode := bytecode(root.icode)

         every (! (\bcode)).print()

       }

   end

The new highlighted code layers the native alternative around the previous generation 
of bytecode, which is still available from the command-line option. The x64code() 
method takes in an icode list, and its return value is a list of x64 class objects. In this 
example, the resulting x64 code is printed out in textual form; we let an assembler do the 
work for us to produce a binary format. The corresponding Java code for the gencode() 
method is shown here:

   public static ArrayList<x64> xcode;

   public static void gencode(root) {

      root.genfirst();

      root.genfollow();

      root.gentargets();
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      root.gencode();

      xcode = new ArrayList<x64>();

      if (isNative && xcode != null) {

         x64code(root.icode);

         x64print();

      } else {

         ArrayList<byc> bcode = bytecode(root.icode);

         if (bcode != null)

           for (int i = 0; i < bcode.size(); i++)

             bcode.get(i).print();

      }

   }

Now, let's examine how intermediate code addresses become x64 memory references.

Mapping intermediate code addresses to x64 locations
Addresses in intermediate code are abstract (region, offset) pairs represented in the 
address class from Chapter 9, Intermediate Code Generation. The corresponding 
x64loc class represents x64 locations that include addressing mode information  
or a register to use. The Unicon implementation in x64loc.icn looks like this:

class x64loc(reg, offset, mode)

initially(x,y,z)

   if \z then { reg := x; offset := y; mode := z }

   else if \y then {

      if x === "imm" then { offset := y; mode := 5 }

      else if x === "lab" then { offset := y; mode := 6 }

      else {

         reg := x; offset := y

         if integer(y) then mode := 3 else mode := 4

         }

      }

   else {

      if integer(x) then { offset := x; mode := 2 }

      else if string(x) then { reg := x; mode := 1 }

      else stop("bad x64loc ", image(x))
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   }

end

The reg field is the string register name. The offset field is either an integer offset or a 
string name from which the offset is calculated. mode is 1 for a register, 2 for an absolute 
address, and 3 for a register and an integer offset. Mode 4 is for a register and a string 
offset name, 5 is for an immediate value, and 6 is for a label. The Java implementation in 
x64loc.java looks like this:

public class x64loc {

  public String reg;  Object offset;

  public int mode;

  public x64loc(String r) { reg = r; mode = 1; }

  public x64loc(int i) { offset=(Object)Integer(i); mode=2; }

  public x64loc(String r, int off) {

    if (r.equals("imm")) {

      offset=(Object)Integer(off); mode = 5; }

    else if (r.equals("lab")) {

      offset=(Object)Integer(off); mode = 6; }

    else { reg = r; offset = (Object)Integer(off); 

      mode = 3; }

  }

  public x64loc(String r, String s) {

    reg = r; offset = (Object)s; mode=4; }

}

The Java code has constructors for different memory types. The region and offset of the 
address class must be mapped onto an instance of the x64loc class that is an operand 
in the x64 class. This is done by a loc() method in the j0 class that takes an address as 
a parameter and returns an x64loc instance. The Unicon code for loc() in j0.icn 
looks like this:

method loc(a)

   if /a then return

   case a.region of {

   "loc": { if a.offset <= 88 then return loadreg(a)

            else return x64loc("rbp", -a.offset) }

   "glob": { return x64loc("rip", a.offset) }

   "const": { return x64loc("imm", a.offset) }
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   "lab": { return x64loc("lab", a.offset) }

   "obj": { return x64loc("r15", a.offset) }

   "imm": { return x64loc("imm", a.offset) }

   }

end

As the code converts an address to an x64loc instance, local region offsets are converted 
into negative values since the stack grows down. The Java methods in j0.java are  
shown here:

public static x64loc loc(String s) { return new x64loc(s);}

public static x64loc loc(Object o) {

   if (o instanceof String) return loc((String)o);

   if (o instanceof address) return loc((address)o);

   return null;

}

public static x64loc loc(address a) {

   switch (a.region) {

   case "loc": { if (a.offset <= 88) return loadreg(a);

                else return x64loc("rbp", -a.offset); }

   case "glob": { return x64loc("rip", a.offset); }

   case "const": { return x64loc("imm", a.offset); }

   case "lab": { return x64loc("lab", a.offset); }

   case "obj": { return x64loc("r15", a.offset); }

   case "imm": { return x64loc("imm", a.offset); }

   default: { semErr("x64loc unknown region"); return null; }

   }

}

A loadreg() helper method is used for local offsets in the first 88 bytes. If the value 
is not already present in its designated register, a movq instruction is emitted to place it 
there, as illustrated in the following code snippet:

method loadreg(a)

  r := a.offset/8 + 1

  if / (regs[r].loaded) then {

    every put(xcode,

             !xgen("movq",(-
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                a.offset)||"(%rbp)",regs[r].reg))

    regs[r].loaded := "true"

    }

  return x64loc(regs[a.offset/8+1].reg)

end

The Java implementation of loadreg() is shown here:

public static x64loc loadreg(address a) {

  long r = a.offset/8;

  if (!regs[r].loaded) {

    xcode.addAll(xgen("movq", 
            String.valueOf(-a.offset)+"(%rbp)", regs[r].reg));

    regs[r].loaded = true;

    }

    return x64loc(regs[a.offset/8+1].reg);

}

Given the x64 class, one more helper function is needed in order to formulate the 
x64code() code generator method. We need a convenient factory method for 
generating x64 instructions and attaching them to the xcode list. This xgen()method 
converts source and destination operands into x64loc instances, which may add movq 
instructions to load values into registers. The Unicon code looks like this:

method xgen(o, src, dst)

   return [x64(o, loc(src), loc(dst))]

end

There are many versions of the corresponding Java implementation shown here, to handle 
cases where the source or destination are addresses or the string names of registers:

public static ArrayList<x64> l64(x64 x) {

   return new ArrayList<x64>(Arrays.asList(x)); }

public static ArrayList<x64> xgen(String o){

    return l64(new x64(o)); }

public static ArrayList<x64> xgen(String o,

    address src, address dst) {

    return l64(new x64(o, loc(src), loc(dst))); }

public static ArrayList<x64> xgen(String o, address opnd) {
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    return l64(new x64(o, loc(opnd))); }

public static ArrayList<x64> xgen(String o, address src, 
                                  String dst) {

    return l64(new x64(o, loc(src), loc(dst))); }

public static ArrayList<x64> xgen(String o, String src, 
                                  address dst) {

    return l64(new x64(o,loc(src),loc(dst))); }

public static ArrayList<x64> xgen(String o, String src, 
                                  String dst) {

    return l64(new x64(o,loc(src),loc(dst))); }

public static ArrayList<x64> xgen(String o, String opnd) {

    return l64(new x64(o, loc(opnd))); }

In the preceding code snippet, the l64() method just creates a single ArrayList 
element containing an x64 object. The rest are just many implementations of xgen() 
that take different parameter types. Now, finally, it's time to present the x64 code  
generator method.

Implementing the x64 code generator method
The Unicon implementation of the x64code() method in the j0 class looks like this. 
The implementation must fill in one case branch for each opcode in the three-address 
instruction set. There will be a lot of cases, so we present each one separately, with the first 
one shown here:

method x64code(icode)

    every i := 1 to *\icode do {

       instr := icode[i]

       case instr.op of {

          "ADD": { ... append translation of ADD to xcode }

          "SUB": { ... append translation of SUB to xcode }

          . . .

         }

      }

end
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The Java implementation of x64code() is shown here:

 public static void x64code(ArrayList<tac> icode) {

   int parmCount = -1;

    for(int i=0; i<icode.size(); i++) {

      tac instr = icode.get(i);

      switch(instr.op) {

      case "ADD": { ... append translation of ADD to xcode}

      case "SUB": { ... append translation of SUB to xcode}

        ...

        }

      }

   }

Within the framework of this x64code() method, we now provide translations for each 
of the three-address instructions. We will start with simple expressions.

Generating x64 code for simple expressions
The cases for three-address opcode have many elements in common. The code for 
addition shows many common elements. In Unicon, the x64 code for addition is created 
like this:

"ADD": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

                     xgen("addq", instr.op3, "%rax") |||

                     xgen("movq", "%rax", instr.op1) }

In this code, operand 2 and operand 3 are read from memory and pushed into the stack. 
The actual ADD instruction works entirely from the stack. The result is then popped off 
the stack and placed into operand 3. In Java, implementation of addition consists of the 
following code:

case "ADD": { xcode.addAll(xgen("movq", instr.op2, 

              "%rax"));

              xcode.addAll(xgen("addq", instr.op3, 

                  "%rax"));

              xcode.addAll(xgen("movq", "%rax", 

                  instr.op1));

              break; }
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There are 19 or so three-address instructions. The final code generation pattern illustrated 
by the preceding ADD instruction is used for the other arithmetic instructions. For a unary 
operator such as NEG, the pattern is slightly simplified, as we can see here:

"NEG": {  xcode |||:= xgen("movq", instr.op2, "%rax") |||

              xgen("negq", "%rax") |||

              xgen("movq", "%rax", instr.op1) }

In Java, implementation of negation consists of the following code:

case "NEG": { xcode.addAll(xgen("movq", instr.op2, 

              "%rax"));

              xcode.addAll(xgen("negq", "%rax"));

              xcode.addAll(xgen("movq", "%rax", 

                  instr.op1));

              break; }

An even simpler instruction such as ASN may be worth special-casing since x64 code 
features direct memory-to-memory move instructions, but one option is to stick with the 
same script and simplify the preceding pattern further, like this:

"ASN": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

                     xgen("movq", "%rax", instr.op1) }

In Java, implementation of assignment might look like this:

case "ASN": { xcode.addAll(xgen("movq", instr.op2, 

    "%rax"));

              xcode.addAll(xgen("movq", "%rax", 

                  instr.op1));

              break; }

Expressions are the most common elements in code. The next category is pointers.
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Generating code for pointer manipulation
Three of the three-address instructions pertain to the use of pointers: ADDR, LCON, and 
SCON. The ADDR instruction turns an address in memory into a piece of data that can be 
manipulated to perform operations such as pointer arithmetic. It pushes its operand, an 
address reference in one of the memory regions, as if it were an immediate mode value. 
The code is illustrated in the following snippet:

"ADDR": { xcode |||:= xgen("leaq", instr.op2, "%rax")

          xcode |||:= xgen("%rax", instr.op1) }

In Java, implementation of the ADDR instruction consists of the following code:

case "ADDR": { xcode.addAll(xgen("leaq", instr.op2, 

    "%rax"));

               xcode.addAll(xgen("%rax", instr.op1));

               break; }

The LCON instruction reads from memory pointed at by other memory, as follows:

"LCON": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

                      xgen("movq", "(%rax)", "%rax") |||

                      xgen("movq", "%rax", instr.op1) }

In Java, implementation of the LCON instruction consists of the following code:

case "LCON": { xcode.addAll(xgen("movq", instr.op2, 

    "%rax"));

               xcode.addAll(xgen("movq", "(%rax)", 

                   "%rax"));

               xcode.addAll(xgen("movq", "%rax", 

                   instr.op1));

               break; }

The SCON instruction writes to memory pointed at by other memory, as follows:

"SCON": { xcode |||:= xgen("movq", instr.op2, "%rbx") |||

                      xgen("movq", instr.op1, "%rax")

                      xgen("movq", "%rbx", "(%rax)") }
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In Java, implementation of the SCON instruction consists of the following code:

case "SCON": { xcode.addAll(xgen("movq", instr.op2, 

    "%rbx"));

               xcode.addAll(xgen("movq", instr.op1, 

    "%rax"));

               xcode.addAll(xgen("movq", "%rbx", 

    "(%rax)"));

               break; }

These instructions are important for supporting structured data types such as arrays. Now, 
let's consider bytecode code generation for control flow, starting with the GOTO instruction.

Generating native code for branches and conditional 
branches
Seven intermediate code instructions pertain to branch instructions. The simplest of these 
is the unconditional branch or GOTO instruction. The GOTO instruction assigns a new 
value to the instruction pointer register. It should be no surprise that the GOTO bytecode is 
the implementation of the three-address GOTO instruction, as illustrated in the following 
code snippet:

"GOTO": {  xcode |||:= xgen("goto", instr.op1) }

In Java, implementation of the GOTO instruction consists of the following code:

case "GOTO": { xcode.addAll(xgen("goto", instr.op1)); 

               break; }

The conditional branch instructions in the three-address code are translated down 
into simpler final code instructions. For the x64 instruction set, this means executing a 
compare instruction that sets condition codes prior to one of the x64 conditional branch 
instructions. The Unicon implementation of the BLT instruction looks like this:

"BLT": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

                     xgen("cmpq", instr.op3, "%rax") |||

                     xgen("jle", instr.op1) }
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In Java, implementation of generating bytecode for the BLT instruction consists of the 
following code:

case "BLT": { xcode.addAll(xgen("movq", instr.op2, 

    "%rax"));

              xcode.addAll(xgen("cmpq", instr.op3, 

    "%rax"));

              xcode.addAll(xgen("jle", instr.op1));

              break; }

This pattern is employed for several of the three-address instructions. Now, let's consider 
the more challenging forms of control flow transfer that relate to method calls and returns.

Generating code for method calls and returns
Three of the intermediate code instructions handle the very important topic of function 
and method calls and returns. A sequence of zero or more PARM instructions pushes 
values onto the stack, after which the CALL instruction performs a method call. From 
inside the called method, the RET instruction returns from a method to the caller.

This three-address code calling convention must be mapped down onto the underlying 
x64 instruction set, preferably with the standard calling conventions on that architecture, 
which requires the first six parameters to be passed in specific registers.

To pass parameters into correct registers, the PARM instruction must track which parameter 
number it is. The Unicon code for the PARM instruction consists of the following:

"PARM": { if /parmCount then {

             parmCount := 1

             every j := i+1 to *icode do

                if icode[j].op == "CALL" then break

                parmCount +:= 1

             }

          else parmCount -:= 1

          genParm(parmCount, instr.op1) }
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For the first parameter, the every loop counts the number of parameters before the  
CALL instruction. The genParm() method is called with the current parameter number 
and the operand. In Java, implementation of the PARM instruction is similar, as we can  
see here:

case "PARM": { if (parmCount == -1) {

                  for(int j = i+1; j<icode.size(); j++) {

                     tac callinstr = icode.get(j);

                     if (callinstr.op.equals("CALL"))

                      break;

                     parmCount++;

                     }

                  }

               else parmCount--;

               genParm(parmCount, instr.op1);

               break; }

The preceding cases for parameters depend on a genParm() method that generates code 
depending on the parameter number. Before loading registers for a new function call, 
register values that have been modified must be saved to their main memory locations,  
as follows:

method genParm(n, addr)

   every (!regs).save() 

   if n > 6 then xcode |||:= xgen("pushq", addr)

   else xcode |||:= xgen("movq", addr, case n of {

      1: "%rdi"; 2: "%rsi"; 3: "%rdx";

      4: "%rcx"; 5: "%r8";   6: "%r9"

   })

end

The corresponding Java implementation of genParm() looks like this:

public static void genParm(int n, address addr) {

   for (RegUse x : regs) x.save();

   if (n > 6) xcode.addAll(xgen("pushq", addr));

   else {

      String s = "error:" + String.valueOf(n);

      switch (n) {
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      case 1: s = "%rdi"; break; case 2: s = "%rsi"; break;

      case 3: s ="%rdx"; break; case 4: s = "%rcx"; break;

      case 5: s = "%r8"; break; case 6: s = "%r9"; break;

      }

      xcode.addAll(xgen("movq", addr, s));

   }

}

The CALL instruction is next. After the call, the op1 destination in the three-address code 
is saved from the rax register. The op2 source field is the method address that was used 
prior to the first PARM instruction. The op3 source field gives the number of parameters, 
which is not used on x64. The code is illustrated in the following snippet:

"CALL": { xcode |||:= xgen("call", instr.op3)

          xcode |||:= xgen("movq", "%rax", instr.op1)

          parmCount := -1 }

In Java, implementation of the CALL instruction looks like this:

case "CALL": { xcode.addAll(xgen("call", instr.op3));

               xcode.addAll(xgen("movq", "%rax",

                   instr.op1));

               parmCount = -1;

               break; }

The Unicon implementation of the RETURN instruction looks like this:

"RETURN": { xcode |||:= xgen("movq", instr.op1, "%rax") |||

                 xgen("leave") ||| xgen("ret", instr.op1) }

In Java, implementation of the RETURN instruction looks like this:

case "RETURN":{ xcode.addAll(xgen("movq", instr.op1, 

    "%rax"));

                xcode.addAll(xgen("leave"));

                xcode.addAll(xgen("ret", instr.op1)); 

break; }

Generating code for method calls and returns is not too difficult. Now, let's consider how 
to handle the pseudo-instructions in the three-address code.
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Handling labels and pseudo-instructions
Pseudo-instructions such as labels do not translate into code, but they are present in 
the linked list of three-address instructions and require consideration in the final code. 
The most common and obvious pseudo-instruction is a label. If the final code is being 
generated in human-readable assembler format, labels can be generated as-is, modulo 
any format differences necessary to make them legal in the assembler file. If we were 
generating final code in a binary format, labels would require precise calculation at this 
point and would be entirely replaced by actual byte offsets in the generated machine code. 
The code is illustrated here:

"LAB": { every (!regs).save()

         xcode |||:= xgen("lab", instr.op1) }

In Java, the equivalent implementation is shown here:

case "LAB": { for (RegUse ru : regs) ru.save();

              xcode.addAll(xgen("lab", instr.op1)); break; }

As a representative of other types of pseudo-instructions, consider which x64 code 
to output for the beginnings and ends of methods. At the beginning of a method in 
intermediate code, all you've got is the proc x,n1,n2 pseudo-instruction. The Unicon 
code for this pseudo-instruction is shown here:

"proc": {

   n := (instr.op1.offset + instr.op2.offset) * 8

   xcode |||:= xgen(".text") |||

               xgen(".globl", instr.op1) |||

               xgen(".type", instr.op1, "@function") |||

               xgen(instr.op1||":") |||

               xgen("pushq", "%rbp") |||

               xgen("movq", "%rsp", "%rbp") |||

               xgen("subq", "$"||n, "%rsp")

   every i := !(instr.op2.offset) do

      regs[i].loaded := regs[i].dirty := "true"

   every j := i+1 to 11 do

      regs[i].loaded := regs[i].dirty := "false"

}
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Line by line in the preceding code, the .text directive tells the assembler to write to  
the code section. The .globl directive states that the method name should be linkable 
from other modules. The .type directive indicates that the symbol is a function. 
The directive below the .type directive declares the (mangled) function name as an 
assembler label, which is to say that that name can be used as a reference to this function 
entry point in the code region. The pushq instruction saves the previous base pointer on 
the stack. The movq instruction establishes the base pointer for the new function at the 
current stack top.

The assignment to n calculates the total number of local region bytes, including space for 
parameters passed in registers but copied into stack memory if the method calls another 
method. The subq instruction allocates memory by moving the stack pointer further 
down by that amount in the stack. The two loops mark used parameters while noting that 
the other registers are clear. In Java, the corresponding code for a method header looks 
like this:

case "proc": {

   xcode.addAll(xgen(".text"));

   xcode.addAll(xgen(".globl", instr.op1));

   xcode.addAll(xgen(".type", instr.op1, "@function"));

   xcode.addAll(xgen(instr.op1 + ":"));

   xcode.addAll(xgen("pushq", "%rbp"));

   xcode.addAll(xgen("movq", "%rsp", "%rbp"));

   int n = (instr.op1.offset + instr.op2.offset) * 8;

   xcode.addAll(xgen("subq", "$"+n, "%rsp"));

   int j;

   for (j = 0; j < instr.op2.offset; j++)

      regs[j].loaded = regs[j].dirty = true;

   for (; j < 11; j++)

      regs[j].loaded = regs[j].dirty = false;

   break;

}

The end pseudo-instruction is somewhat simpler, as we can see here. We do not want to 
fall off the end of a method, so we emit instructions to restore the old frame pointer and 
return, along with assembler directives for the end of a function:

"end": {

   xcode |||:= xgen("leave") ||| xgen("ret")

}
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The matching Java implementation of the end pseudo-instruction is shown here:

case "end": {

   xcode.addAll(xgen("leave"));

   xcode.addAll(xgen("ret"));

   break;

}

The past several sections produced a data structure containing a representation of the 
bytecode and then showed how various three-address instructions are translated. Now, 
let's move on to producing the output native x64 code from a list of x64 objects.

Generating x64 output
As with many traditional compilers, the native code for Jzero will be produced by 
carrying out the following steps. First, we will write out a linked list of x64 objects in 
human-readable assembler language with the .s extension. We then invoke the GNU 
assembler to turn that into binary object file format with the .o extension. An executable 
is constructed by invoking a linker, which combines a set of .o files specified by the 
user with a set of .o files containing runtime library code and data referenced from the 
generated code. This section presents each of these steps, starting with producing the 
assembler code.

Writing the x64 code in assembly language format
This section provides a brief description of the x64 assembler format as supported by the 
GNU assembler, which uses AT&T syntax. Instructions and pseudo-instructions occur 
on a line by themselves with a tab (or eight spaces) of indentation at the left. Labels are 
an exception to this rule as they contain no leading spaces of indentation and consist 
of an identifier followed by a colon. Pseudo-instructions begin with a period. After 
the mnemonic for the instruction or pseudo-instruction, there may be a tab or spaces 
followed by zero, one, or two comma-separated operands depending on the requirements 
of the instruction.

As an example of all this, here is a simple x64 assembler file containing a function that 
does nothing and returns a value of 42. In the assembler, this is how it might look:

        .text

        .globl  two

        .type   two, @function

two:
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.LFB0:

        pushq   %rbp

        movq    %rsp, %rbp

        movl    $42, -4(%rbp)

        movl    -4(%rbp), %eax

        popq    %rbp

        ret

.LFE0:

        .size   two, .-two

The j0 class has a method named x64print() that outputs a list of x64 objects into 
a text file in this format. As you can see in its code shown next, it calls the print() 
method on each of the x64 objects in the xcode list:

method x64print()

   every (!xcode).print()

end

The Java implementation of x64print() in the j0.java file is shown here:

public static void x64print() {

   for(x64 x : xcode) x.print();

}

Having shown how the assembler code is written, it's time to look at how to invoke the 
GNU assembler to produce an object file.

Going from native assembler to an object file
Object files are binary files containing actual machine code. An assembler file written out 
in the preceding section is assembled using the as command, as shown here:

as --gstabs+ -o two.o two.s

In this command line, --gstabs+ is a recommended option that includes debugging 
information. -o two.o is an option that specifies the output filename.
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The resulting two.o binary file is not readily understandable by humans as-is but can be 
viewed using various tools. Just for fun, the first 102 bytes of ones and zeros from two.o 
are shown in the following screenshot; each row shows six bytes, with the American 
Standard Code for Information Interchange (ASCII) interpretation shown on the right. 
The screenshot shows you the ones and zeros in text form thanks to a tool named xxd 
that prints the bits out literally in textual form. Of course, a computer usually processes 
them from 8 to 64 bits at a time without first transliterating them into text form:

Figure 13.2 – Binary representations are not human friendly, but computers prefer them

It is not a coincidence that bytes 2-4 of the file say ELF. Executable and Linkable Format 
(ELF) is one of the more popular multiplatform object file formats, and the first four bytes 
identify the file format. Suffice to say, such binary file formats are important to machines 
but difficult for humans. Now, let's consider how object files are combined to form 
executable programs.

Linking, loading, and including the runtime system
The task of combining a set of binary files to produce an executable is called linking. This 
is another section about which an entire book can be written. For Jzero, it is a very good 
thing that we can let the ld GNU linker program do the work. It takes a -o file option to 
specify its output filename, and then any number of .o object files. The object files for a 
working executable include a startup file that will initialize and call main(), often called 
crt1.o, followed by the application files, followed by zero or more runtime library files. 
If we build a Jzero runtime library named libjzero.o, the ld command line might 
look like this:

ld -o hello /usr/lib64/crt1.o hello.o -ljzero
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If your runtime library calls functions in a real C library, you will have to include them 
as well. A full ld-based link of a runtime system built on top of the GNU Compiler 
Collection's (GCC's) glibc looks like this:

ld -dynamic-linker /lib64/ld-linux-x86-64.so.2 \

   /usr/lib/x86_64-linux-gnu/crt1.o \

   /usr/lib/x86_64-linux-gnu/crti.o \

   /usr/lib/gcc/x86_64-linux-gnu/7/crtbegin.o \

   hello.o -ljzero \

   -lc /usr/lib/gcc/x86_64-linux-gnu/7/crtend.o \

   /usr/lib/x86_64-linux-gnu/crtn.o

Your users would not often have to type this command line itself since it would be boiled 
into your compiler's linker invocation code. But it has the fatal flaw of being non-portable 
and version-dependent. To use an existing GCC C library from within your runtime 
system, you might prefer to let an existing GCC installation perform your linking for you, 
like this:

gcc -o hello hello.o

The linker must assemble one big binary code from several binary object code inputs. 
In addition to bringing together all the instructions in the object files, the linker's 
primary job is to determine the addresses of all the functions and global variables in the 
executable. The linker must also provide a mechanism for each object file to find the 
addresses of functions and variables from other object files.

For functions and variables that are not defined in user code but are instead part of the 
language runtime system, the linker must have a mechanism for searching the runtime 
system and incorporating as much of it as is needed. The runtime system includes startup 
code that will initialize the runtime system and set things up to call main(). It may 
include one or more object files that are always linked to any executable for that language. 
Most importantly, the linker provides a way to search and link in only those portions of 
the runtime system that are explicitly called from the user code.

In modern systems, things have gotten more complicated over time. It is standard to defer 
various aspects of linking and loading to runtime, particularly to allow processes to share 
library code that has already been loaded for use by other processes.
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Summary
This chapter showed you how to generate native code for x64 processors. Among the skills 
you learned, the main task was to traverse a linked list of intermediate code and convert it 
into instructions in the x64 instruction set. In addition, you learned to write out x64 code 
in GNU assembler format. Lastly, you learned how to invoke the assembler and linker to 
turn the native code into ELF object and executable file format. The next chapter looks in 
more detail at the task of implementing new high-level operators and built-in functions in 
your language's runtime system.

Questions
1. What are the main new concepts that become necessary to generate x64 native code, 

compared with bytecode?
2. What are the advantages and disadvantages of supplying the addresses of global 

variables as offsets relative to the %rip instruction pointer register?
3. One of the big issues affecting the performance of modern computers is the speed 

of performing function calls and returns. Why is function call speed important? In 
which circumstances is the x64 architecture able to perform fast function calls and 
returns? Are there aspects of the x64 architecture that seem likely to slow function 
calling down?
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Implementing 
Operators and  

Built-In Functions
New programming languages are invented because occasionally, new ideas and new 
computational capabilities are needed to solve problems in new application domains. 
Libraries of functions or classes are the basic means of extending mainstream languages 
with additional computational capabilities, but if adding a library was always sufficient, 
you wouldn't need to build your own language, would you?

This chapter and the next discuss language extensions that go beyond libraries. This 
chapter will describe how to support very high-level and domain-specific language 
features by adding operators and functions that are built into the language. The following 
chapter will discuss adding control structures.

Adding operators and built-in functions may shorten and reduce what programmers 
must write to solve certain problems in your language, improve its performance, or enable 
language semantics that would otherwise be difficult. This chapter illustrates the ideas 
within the context of Jzero, emphasizing the String and array types. By way of comparison, 
the later sections describe how operators and functions are implemented in Unicon.
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This chapter will cover the following main topics:

• Implementing operators

• Writing built-in functions

• Integrating built-ins with control structures

• Developing operators and functions for Unicon

Thanks to this chapter, you will learn how to write parts of the runtime system that are  
too complex to be instructions in the instruction set. You will also learn how to add 
domain-specific capabilities to your language. Let's start with how to implement  
high-level operators!

Implementing operators
Operators are expressions that compute a value. Simple operators that compute their 
results via a few instructions on the underlying machine were covered in the preceding 
chapters. This section describes how to implement an operator that takes many steps. You 
can call these operators composite operators. In this case, the underlying generated code 
may perform calls to functions in the underlying machine.

The functions called from generated code are written in the implementation language 
rather than the source language. They may be lower level and do things that are impossible 
in the source language. For example, parameter passing rules might be different in the 
implementation language than they are in the programming language that you are creating.

If you are wondering when you should make a new computation into an operator, you 
can refer to Chapter 2, Programming Language Design. Rather than repeat that material, 
we will just note that operators are generally constrained to operate on, at most, three 
operands, and that most operators use two, or one operand.

If you can leverage analogies regarding arithmetic to reuse appropriate familiar operators 
for your new computations, great. Otherwise, you are expecting programmers to learn and 
memorize new patterns, which is asking a lot of them. You can add hundreds of operators 
to your language, but human brains will not memorize that many. If you try to introduce 
more operators than we have keyboard keys, for example, your language may get rejected 
for the excessive cognitive load. Now, let's consider to what extent adding new operators to 
a language leads to or follows as a consequence of adding new hardware capabilities.
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Asking whether operators imply hardware support 
and vice versa
In the same way that you may discover a common computation of yours might deserve 
to be an operator in your language, hardware designers might realize that computers 
should support a common computation with native instructions. When language 
designers realize a computation should be an operator in their language, that makes 
that computation a candidate for hardware implementation. Similarly, when hardware 
designers implement a common computation in their hardware, language designers 
should ask whether that computation should be supported directly with operators or 
another syntax. Here is an example.

Before the 80486 in 1994, most PCs did not come with floating-point hardware; on  
some platforms, a floating-point co-processor was an expensive add-on needed only  
for scientific computing. If you were implementing a compiler, you implemented a 
floating-point data type in software as a set of functions. These runtime system functions 
were called from generated code but were transparent to the programmer. A program that 
declared two float variables, f1 and f2, and executed the f1 + f2 expression would 
compute the floating-point sum without noting that the generated code included function 
calls that might be 10x or 100x slower than adding two integers.

Here is another example that may be a sore point for you. After a program called Doom 
created enormous demand for 3D graphics in the 1990s, GPUs were developed. They 
support computations far beyond their original scope of games and other 3D programs. 
However, they are not supported directly in most mainstream languages, and the steep 
learning curve and difficult programming for GPUs have lessened their enormous impact. 
To summarize: there is a rich juicy gray area in-between operators that should be built 
into the programming language to make programming simple, as well as operators that 
should be built into the hardware. Now, let's learn how to add compound operators by 
adding one to Jzero: concatenation.

Adding String concatenation to intermediate code 
generation
For Jzero, the String type is essential but was not implemented in the preceding chapters 
on code generation or bytecode interpretation, which focused on integer computation. 
The String class has a concatenation operator that we must implement. Some computers 
support concatenation in hardware for some string representations. For Jzero, String 
is a class and concatenation is comparable to a method – either a factory method or a 
constructor since it returns a new string rather than modifying its arguments.
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In any case, it is time to implement s1+s2, where s1 and s2 are strings. For intermediate 
code, we can add a new instruction called SADD. If you don't want to, you can generate 
code that calls a method for string concatenation, but we are going to run with an 
intermediate code instruction here. The code generation rule for the plus operator will 
generate different code, depending on the type. Before we can implement that, we must 
modify the check_types() method in the tree class so that the s1 string plus the s2 
string is legal and computes a string. In the Unicon implementation, change the lines in 
tree.icn where addition is type-checked to allow the String type, as follows:

   if op1.str() === op2.str() === ("int"|"double"|"String")

      then return op1

In the Java implementation, add the following OR in tree.java:

   if (op1.str().equals(op2.str()) &&

       (op1.str().equals("int") ||

        op1.str().equals("double") ||

        op1.str().equals("String")))

      return op1;

Having modified the type checker to allow string concatenation, the intermediate code 
generation method, genAddExpr(), is similarly extended. The Unicon modifications in 
tree.icn are highlighted in the method body shown here:

method genAddExpr()

  addr := genlocal()

  icode := kids[1].icode ||| kids[2].icode

  if typ.str() == "String" then {

    if rule ~= 1320 then

      j0.semErr("subtraction on strings is not defined")

    icode |||:= gen("SADD", addr,

        kids[1].addr, kids[2].addr)

    }

  else icode |||:= gen(if rule=1320 then "ADD" else "SUB",

      addr, kids[1].addr, kids[2].addr)

end
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The check for production rule 1320 is because the String type does not support 
subtraction. The corresponding Java modifications in tree.java are as follows:

void genAddExpr() {

  addr = genlocal();

  icode = new ArrayList<tac>();

  icode.addAll(kids[0].icode); icode.addAll(kids[1].icode);

  if (typ.str().equals("String")) {

    if (rule != 1320)

      j0.semErr("subtraction on strings is not defined");

    icode.addAll(gen("SADD", addr,

                      kids[0].addr,kids[1].addr);

    }

  else icode.addAll(gen(((rule==1320)?"ADD":"SUB"),

                        addr, kids[0].addr, kids[1].addr));

end

At this point, we have added an intermediate code instruction for string concatenation. 
Now, it is time to implement it in the runtime system. First, we will consider the  
bytecode interpreter.

Adding String concatenation to the bytecode 
interpreter
Since the bytecode interpreter is software, we can simply add another bytecode  
instruction for string concatenation, as we did for intermediate code. Opcode #22 for 
the SADD instruction must be added to Op.icn and Op.java. We must modify the 
bytecode generator to generate a bytecode SADD instruction for an intermediate code 
SADD instruction. In the bytecode() method in j0.icn, the Unicon implementation 
looks as follows:

  "SADD": {

    bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

                j0.bgen(Op.PUSH, instr.op3) |||

                j0.bgen(Op.SADD) |||

                j0.bgen(Op.POP, instr.op1)

    }
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If this looks like the code for the ADD instruction, that is the point. As with the ADD 
instruction, the final code consists mainly of converting a three-address instruction into a 
sequence of one-address instructions. The Java implementation in j0.java is shown here:

  case "SADD": {

    rv.addAll(j0.bgen(Op.PUSH, instr.op2));

    rv.addAll(j0.bgen(Op.PUSH, instr.op3));

    rv.addAll(j0.bgen(Op.SADD, null));

    rv.addAll(j0.bgen(Op.POP, instr.op1));

    break;

    }

We must also implement that bytecode instruction, which means we must add it to the 
bytecode interpreter. Since the Unicon and Java implementation languages both have 
high-level string types with semantics such as Jzero, we can hope that implementation 
will be simple. If the Jzero representation of a String in the j0x bytecode interpreter 
is an underlying implementation language string, then the implementation of the SADD 
instruction will just perform string concatenation. However, in most languages, the source 
language semantics differ from the implementation language, so it is usually necessary 
to implement a representation of the source language type that models source language 
semantics in the underlying implementation language.

Having issued that warning, let's see if we can implement Jzero strings as plain Unicon 
and Java strings. In that case, the SADD instruction in the interp() method in 
j0machine.icn is almost the same as that of the ADD integer:

Op.SADD: {

   val1 := pop(stack); val2 := pop(stack)

   push(stack, val1 || val2)

}

This Unicon implementation relies on the fact that the Unicon value stack does not 
care if you sometimes push integers and if you sometimes push strings. Unicon has an 
underlying string region where memory for the strings' underlying contents is stored, and 
the bytecode interpreter uses that implicitly.
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The corresponding Java implementation in j0machine.java is trickier. The stackbuf 
variable that we implemented was a ByteBuffer that was sized for holding a good 
number of 64-bit integer values, but now, we must decide how to use it to also hold 
strings. If we store the actual string contents in stackbuf, we are not implementing a 
stack anymore – we are implementing a heap and it will be a can of worms. Instead, we 
will store some integer code in stackbuf that we can use to obtain the string by looking 
it up in a string pool:

case Op.SADD: {

   String val1 = stringpool.get(stackbuf.getLong(sp--));

   String val1 = stringpool.get(stackbuf.getLong(sp--));

   long val3 = stringpool.put(val1 + val2);

   stackbuf.putLong(sp++, val3);

}

This code depends on the stringpool class, which uses unique integers to store 
and retrieve strings. These unique integers are references to the string data that can 
be conveniently stored on stackbuf, but now, the Java implementation requires the 
stringpool class, so here it is, in the stringpool.java file. For any string, the way 
to retrieve its unique integer is to look it up in the pool. Once it's been issued like this, a 
unique integer can be used to retrieve the string later on demand:

public class stringpool {

   static HashMap<String,Long> si;

   static HashMap<Long,String> is;

   static long serial;

   static { si = new HashMap<>(); is = new HashMap<>(); }

   public static long put(String s) { … }

   public static String get(long L) { … }

}

This class requires the following pair of methods. The put() method inserts strings into 
the pool. If the string is already in the pool, its existing integer key is returned. If the string 
is not already in the pool, the serial number is incremented and that number is associated 
with the string:

public static long put(String s) {

   if (si.containsKey(s)) return si.get(s);

   serial++;
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   si.put(s, serial);

   is.put(serial, s);

   return serial;

}

The get() method retrieves a String from stringpool:

public static String get(long L) {

   return is.get(L);

}

Now, it is time to look at how to implement this operator for native code.

Adding String concatenation to the native runtime 
system
The Jzero native code is much lower level than the bytecode interpreter. Implementing 
the Jzero String class semantics from scratch in C is a big job. Jzero uses an extremely 
simplified subset of the Java String class, for which we only have room to describe the 
highlights. Here is an underlying C representation of a String class for use in Jzero:

struct String {

   struct Class *cls;

   long len;

   char *buf;

};

Within this struct, cls is a pointer to an as-yet-undefined structure for class information, 
len is the length of the string, and buf is a pointer to data. The Jzero string concatenation 
might be defined as follows:

struct String *j0concat(struct String *s1,  
                        struct String *s2){

   struct string *s3 = alloc(sizeof struct String);

   s3->buf = allocstring(s1->len + s2->len);

   strncpy(s3->buf, s1->buf, s1->len);

   strncpy(s3->buf + s1->len, s2->buf, s2->len);

   return s3;

}
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This code raises as many questions as it answers, such as what the difference is between 
alloc() and allocstring(); we will get to those shortly. But it is a function that we 
can call from the generated native code via this addition in j0.icn:

  "SADD": {

    bcode |||:= xgen("movq", instr.op2, "%rdi") |||

                xgen("movq", instr.op3, "%rsi") |||

                xgen("call", "j0concat") |||

                xgen("movq", "%rax", instr.op1)

    }

The corresponding Java implementation in j0.java is shown here:

  case "SADD": {

    rv.addAll(xgen("movq", instr.op2, "%rdi"));

    rv.addAll(xgen("movq", instr.op3, "%rsi"));

    rv.addAll(xgen("call", "j0concat"));

    rv.addAll(xgen("movq", "%rax", instr.op1));

    break;

    }

Here, you can see that substituting a function call to implement an immediate code 
instruction is straightforward. Let's compare this with the code that is generated for 
built-in functions, which we will present next.

Writing built-in functions
Low-level languages such as C have no built-in functions; they have standard libraries 
that contain functions available to all programs. Linking a function to your program and 
calling it is conceptually the same action, whether it is a library function or a user-defined 
function. The higher the language level, the more conspicuous the difference between what 
is written for its runtime system in a lower-level implementation language, and what is 
written by end users in the language itself. This section uses the words function and method 
interchangeably. Let's consider how to implement built-ins in the bytecode interpreter.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



354     Implementing Operators and Built-In Functions 

Adding built-in functions to the bytecode interpreter
Let's implement System.out.println() in the bytecode interpreter. One of our 
design options is to implement a new bytecode machine instruction for each built-in 
function, including println(). This doesn't scale well to thousands of built-in 
functions. We could implement a callnative instruction, providing us with a way to 
identify which built-in function we want to call. Some languages implement an elaborate 
interface for calling native code functions and implement println() (or some lower-
level building block function) as a wrapper function written in Jzero that uses the native 
calling interface.

For Jzero, as described in the Running a Jzero program section of Chapter 11, Bytecode 
Interpreters, we chose to use the existing call instruction, with special function values to 
denote built-in functions. The special values we chose were small negative integers where 
a function entry point address would normally go. So, the function call mechanism must 
be built to look for small negative integers to distinguish between method types and do 
the correct thing for user-defined and built-in methods.

Let's look at the do_println() method, which we suggested in Chapter 11, Bytecode 
Interpreters. For Jzero, this runtime system method is hardwired to write to standard 
output, much like puts() in C. The string to be written is on the stack; it's no longer  
on the top since the call instruction pushed a function return address. In Unicon,  
do_println() might be implemented as follows:

method do_println()

   write(stack[2])

end

In Java, the do_println() method would look something like this:

public static do_println() {

   String s = stringpool.get(…);

   System.out.println(s);

}

Built-in functions in bytecode are simple. Now, let's look at writing built-in functions for 
native code.
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Writing built-in functions for use with the native code 
implementation
Now, it is time to implement System.out.println() for the native code Jzero 
implementation. In a Java compiler, it would be a method of the System.out object, 
but for Jzero, we may do whatever is expedient. We can write a native function named 
System_out_println() in assembler, or if our generated native code adheres 
carefully to the calling conventions of a C compiler on the same platform, we can write it 
in C, put it in our Jzero runtime library, and link it to the generated assembler modules  
to form our executable. The function takes one string argument, struct String *,  
as shown in the previous section. Here is an implementation; you can put it in the 
System_out_println.c file:

#include <stdio.h>

void System_out_println(struct String *s) {

   for(int i = 0; i < s->len; i++) putchar(s->buf[i]);

   putchar('\n');

}

The more interesting part of all this is, how does the generated code get access to this  
and other built-in native functions? You can compile it via the following command line  
for gcc:

gcc -c System_out_println.c

You can add the System_out_println.o output file to an archive library named 
libjzero.a with the following command line:

ar cr libjzero.a System_out_println.o

The preceding two command lines are not executed within your compiler at each compile 
or link time; instead, they are run when the Jzero compiler itself is being built, alongside 
potentially many other bits of the operator or built-in function library code. They create a 
library archive file called libjzero.a. This archive file can be linked to Jzero's generated 
code using the ld or gcc commands, as described in Chapter 13, Native Code Generation, 
in the Linking, loading, and including the runtime system section.
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The -lsomefile command-line option expands to match libsomefile.a so that our 
runtime is invoked as -ljzero. Now, how does the Jzero compiler, which presumably 
may be installed anywhere, find the runtime library, which presumably may be installed 
anywhere? The answer will vary by operating system and some of the convenient options 
require administrative privileges. If you can copy libjzero.a into the same directory 
that's used by your linker for other system libraries such as C:\Mingw\lib on Windows 
or /usr/lib64 on Linux, you may find that everything works great. If that is not an 
option, you may resort to environment variables or command-line options, either to 
inform the linker where the library is or to inform the Jzero compiler itself on the Jzero 
command line where the runtime library can be found. Adding built-in functions like this 
is important because not every language addition can be made in the form of an operator. 
Similarly, not every language addition is best formulated as a function. Sometimes, such 
operators and built-in functions are more effective when they're part of new control 
structures that support some new problem domain. Let's consider how these operators 
and functions might profit from being integrated with syntactic additions in the form of 
control structures.

Integrating built-ins with control structures
Control structures are usually bigger things than expressions, such as loops. They 
are often associated with novel programming language semantics or new scopes that 
specialized computations can occur in. Control structures provide a context that a 
statement (often, this is a compound statement consisting of a whole block of code) is 
executed in. This can be whether (or how many times) it is executed, what associated data 
the code is to be applied to, or even what semantics the operators should be interpreted 
with. Sometimes, these control structures are explicitly and solely used for your new 
operators or built-in functions, but often, the interactions are implicit byproducts of the 
problem solving that your language enables.

Whether a given block of code is executed, selecting which of several to execute or 
executing code repeatedly are the most traditional control structures, such as if 
statements and loops. The most likely opportunities for operators or functions to interact 
with these constructs include special iterator syntax, to control loops using your domain 
values, and special switch syntax, to select block(s) of code to execute.
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The Pascal WITH statement is an old but good example of associating some data with 
a chunk of code that uses that data. The syntax is WITH r DO statement. A WITH 
statement attaches some record, r, to a statement – usually, this is a compound statement 
– within which the record's fields are in scope, and a field named x need not be prefixed 
by an accessor expression, such as r.x. This is a low-level building block that object-
orientation (and associated self or this references) is based on, but Pascal allows such 
object attachments for individual statements, a finer grain than method calls, and Pascal 
allows multiple objects to be associated with the same block of code.

We can illustrate some of the considerations of interacting with control structures by 
considering the implementation of a for loop, which iterates over strings. Because Java 
is not perfect, you cannot write the syntax – that is, for(char c:s) statement – to 
execute statement once for each element of s, but you can write for(char c:s.
toCharArray()) statement

So, Java arrays interact nicely with the for control structure, but the Java String class 
is not as nice. There is an Iterable interface, but strings do not work with it without 
jumping through extra hoops. When you design your language, try to make common 
tasks straightforward. A similar comment would apply to accessing String elements. 
Nobody wants to write s.charAt(i) when they could be writing s[i]; this is a good 
argument for operator support. An example of integrating a built-in function with a 
control structure by providing parameter defaults will be provided in the next section. 
Now, let's look at how operators and built-in functions are implemented for Unicon.

Developing operators and functions  
for Unicon
Unicon is a very high-level language with many built-in features. For such languages, it 
will make sense to do some engineering work to simplify creating its runtime system. 
The purpose of this section is to share a bit about how this was done for Unicon, for 
comparison purposes. Unicon's operators and built-in functions are implemented using 
RTL, which stands for Run Time Language. RTL is a superset of C developed by Ken 
Walker to facilitate garbage collection and type inference in the runtime system. RTL 
writes out C code, so it is almost a very specialized form of C preprocessor that maintains 
a database in support of type inferencing.
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Operators and functions in RTL look like C code, with many pieces of special syntax. 
There is syntax support for associating different pieces of C code, depending on the 
data type of the operands. To allow for type inferencing, the Unicon result type that's 
produced by each chunk of C code is declared. The RTL language also has syntax support, 
which makes it easy to specify when an operand type conversion needs to take place. In 
addition, each chunk of C code is marked with syntax to specify whether to inline it in the 
generated code or execute the specified code via a C function call. First, we will describe 
how to write operators in RTL, along with their special considerations. After that, we will 
learn how to write Unicon functions in RTL, which are similar to operators but slightly 
more general in nature.

Writing operators in Unicon
After various clever macro expansions and omitting #ifdefs, the addition operator 
in Unicon looks as follows. The following code shows three different forms of addition 
for C (long) integers, arbitrary precision integers, and floating-point. In the actual 
implementation, there is a fourth form of addition for array-at-a-time data-parallel addition:

   operator{1} + add(x, y)

      declare { C_integer irslt; }

      arith_case (x, y) of {

         C_integer: { abstract { return integer }

            inline { … }

            }

         integer: { abstract { return integer }

            inline { … }

            }

         C_double: { abstract { return real }

            inline { … }

            }

         }

end

In the preceding code, the special RTL case statement for arithmetic operators, called 
arith_case, is performed at compile time by the Unicon optimizing compiler, while in 
the bytecode interpreter, it is an actual switch statement that's performed at runtime. Hidden 
within arith_case, a set of language-wide standard automatic type conversion rules is 
applied; for example, strings are converted into their corresponding numbers if possible.
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The case for regular C integer addition checks the validity of its result and triggers 
arbitrary precision addition, as per the middle case on integer overflow. The outline of this 
case body looks like this; some #ifdefs have been omitted for the sake of readability. To 
summarize, although the RTL syntax inlines this code, the inlined code for a single plus 
operator on the integer type involves one, possibly two, function calls:

   irslt = add(x,y, &over_flow);

   if (over_flow) {

      MakeInt(x,&lx);

      MakeInt(y,&ly);

      if (bigadd(&lx, &ly, &result) == RunError)

          runerr(0);

      return result;

      }

   else return C_integer irslt;

The add() function is called to perform regular integer addition. If there is no overflow, 
the integer result that's returned by add() is valid and is returned. By default, RTL returns 
from Unicon operators functions using a generic Unicon value that can hold any Unicon 
type. If a C primitive type is returned instead, it must be specified. In the preceding code, 
return at the end is annotated in RTL to indicate that a C integer is being returned.

If the call to add() overflows, the bigadd() function is called to perform arbitrary 
precision addition. Here is the Unicon runtime's implementation of the add() function, 
which performs integer addition and checks for overflow. There is no more RTL extended 
syntax going on here, just references to macros for the 2^63-1 and -2^63 values. 
Someone was probably fairly careful when they wrote this code:

word add(word a, word b, int *over_flowp)

{

   if ((a ^ b) >= 0 &&

       (a >= 0 ? b > MaxLong - a : b < MinLong - a)) {

      *over_flowp = 1;

      return 0;

      }

   else {

     *over_flowp = 0;

     return a + b;

     }

}
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This is pretty straight C code, except for the (a^b) exclusive or, which is a way of asking 
if the values are both positive or both negative. In addition to computing the sum, this 
function writes a boolean value to the address given in its third parameter to report 
whether an integer overflow has occurred.

Because it does not have to check for overflow, the floating-point real number addition 
branch of arith_case, denoted by C_double in RTL, is much simpler. Instead of 
calling a helper function, the real number is done inline using the regular C + operator:

return C_double (x + y);

We have omitted the corresponding implementation of the arbitrary precision addition 
function, bigadd(), that is called in this operator, which is many pages long. If you want 
to add arbitrary precision arithmetic to your language, you should read about the GNU 
Multiple Precision (GMP) library, which lives at https://gmplib.org/. Now, let's 
consider a few of the issues that come up when writing built-in functions for Unicon.

Developing Unicon's built-in functions
Unicon's built-in functions are also written in RTL (and C) and as in the case of operators, 
the code for each function can be designated to be inlined or called as functions. Built-in 
functions are longer than operators, on average, but perhaps in most cases, the RTL 
function syntax exists as an advanced form of wrapper that enables a C function to be 
called from Unicon, with conversions between the type representations of Unicon values 
and C values as needed. Unlike operators, many functions have multiple parameters for 
which designated default values may be specified via special syntax. As an example, here 
is the code for Unicon's string analysis function, any(), which succeeds if the character 
at the current position within a string is a member of a set of characters specified in its 
first parameter. The RTL reserved word, function, declares a Unicon built-in function 
instead of a regular C function. The {0,1} syntax indicates how many results this 
function can produce. It may produce as few as zero results (failing) or as many as one; it 
is not a generator. The if-then statement specifies that the first parameter must be able 
to be converted into a cset (if not, a runtime error occurs), while the body reserved word 
specifies that the generated code should call a function here, rather than inline the code:

function{0,1} any(c,s,i,j)

   str_anal( s, i, j )

   if !cnv:tmp_cset(c) then

      runerr(104,c)

   body {
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      if (cnv_i == cnv_j)

         fail;

      if (!Testb(StrLoc(s)[cnv_i-1], c))

         fail;

      return C_integer cnv_i+1;

      }

end

In addition to the bits of RTL syntax, macros play a huge role. str_anal is a macro 
that sets up a string for analysis, defaulting parameters 2–4 to the current string 
scanning environment. str_anal also ensures that s is a string and i and j are 
integers, converting them into those types if necessary, and issuing a runtime error if an 
incompatible type of value is passed in. String scanning environments are created by the 
string scanning control structure; the location under study within the string can be moved 
around by other string scanning functions. Adding domain-specific control structures 
such as string scanning will be presented in the next chapter. This example serves to 
motivate them. One reason to use new control structures is to make operators and built-in 
functions more powerful and concise.

In this section, we presented a few highlights that show how Unicon's operators and 
built-in functions are implemented. A lot of the issues in the runtime system of a very 
high-level language were found to revolve around the big semantic difference between 
the source language (Unicon) and the implementation language (in Unicon's case, C). 
Depending on the level of the language you are creating, and the language you write its 
implementation in, you may find it useful to resort to similar techniques.

Summary
This chapter showed you how to write high-level operators and built-in functions for the 
runtime system of your language. One of the main points that you are to take away is that 
the implementation of operators and functions can range from completely different, to 
almost entirely the same, depending on the language you are inventing.

The examples in this chapter taught you how to write code in your runtime system 
that will be called from generated code. You also learned how to decide when to make 
something a runtime function instead of just generating the code for it using instructions. 

The next chapter will continue the topic of implementing built-in features by exploring 
domain control structures.
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Questions
1. It is mathematically provable that every computation that you could implement as 

an operator or built-in function can be implemented instead as a library method, so 
why bother implementing high-level operators and built-in functions?

2. What factors must you consider if you are deciding between making a new operator 
or a new built-in function?

3. There were probably some good reasons why Java decided to give strings only 
partial operator and control structure support, despite strings being important and 
supported better in languages such as Icon and Unicon (and Python, which was 
influenced by Icon). Can you suggest some of the reasons for this?
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Structures
The code generation that was presented in the previous chapters covered basic conditional 
and loop control structures, but domain-specific languages often have unique or 
customized semantics that merit introducing novel control structures. Adding a new 
control structure is usually substantially more difficult than adding a new function or 
operator. However, when they are effective, the addition of domain control structures is 
a large part of what makes domain-specific languages worth developing instead of just 
writing class libraries.

This chapter covers the following main topics:

• Knowing when you need a new control structure

• Processing text using string scanning

• Rendering graphics regions

The first section will help you learn how to determine when a domain control structure is 
needed. The second and third sections will present two example domain control structures.
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This chapter will give you a better idea of when and how to implement new control 
structures as needed in your language design. More importantly, you will learn how to 
walk the thin line that balances the need to stick with generating familiar code for familiar 
structures and the need to reduce programmers' effort in new application domains by 
introducing novel semantics.

Java and its Jzero subset do not have comparable domain control structures, so the 
examples in this chapter come from Unicon and its predecessor, Icon. While this chapter 
outlines their implementation, at times using code examples, you are reading this chapter 
for the ideas rather than to type the code in and see it run. First, let's re-examine when a 
new control structure is justified.

Knowing when you need a new control 
structure
You need a new control structure when it addresses one or more major programming 
pain points. Often, pain points arise when people start writing software in support 
of a new class of computer hardware, or for a new application domain. Awareness or 
knowledge of an application domain's pain points may or may not exist at language design 
time, but more often, the awareness of pain points is generated from early substantial 
experiences attempting to write software for that domain.

Pain points are often due to complexity, frequent and pernicious bugs, code duplication, 
or several other famous bad smells or antipatterns. Some code smells are described in 
Refactoring: Improving the Design of Existing Code, by Martin Fowler. Antipatterns are 
described at antipatterns.com and in several books referenced on that site.

Individual programmers or programming projects may be able to reduce their code smells 
or avoid antipatterns by performing code refactoring, but when the use of application 
domain libraries entails that most or all applications in that domain face such problems, 
an opportunity for one or more domain control structures arises. Now, let's define what 
control structures are so that we understand what we are talking about.

Defining what a control structure is
If you Google the definition of a control structure, it will say something like "control 
structures determine the order in which one or more chunks of code execute." This definition 
is fine for traditional mainstream languages. It focuses on control flow, and it addresses 
two kinds of control structures: choosing which (or whether) to execute and loops 
that can repeat under some conditions. The if statements and while loops that we 
implemented for Jzero earlier in this book are good examples.
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Higher-level languages tend to have a more nuanced view of control structures. For 
example, in a language with built-in backtracking, the order in which chunks of code may 
execute becomes more complicated. This book will paraphrase Ralph Griswold's definition 
of a control structure in the Icon programming language: a control structure is an 
expression containing two or more subexpressions in which one subexpression is used to 
control the execution of another subexpression. That definition is more general and more 
powerful than the traditional mainstream definition provided in the previous paragraph.

The phrase "control the execution" in Griswold's definition can be interpreted as broadly 
and as loosely as you want. Instead of just whether a chunk of code executes, or which 
chunk of code, or how many times, a control structure can determine how the code 
executes. This could mean introducing new scopes where names are interpreted 
differently, or adding new operators. We will see interesting examples of control structures 
affecting how code executes later in this chapter. Let's start with a simple one.

Reducing excessive redundant parameters
Many general-purpose libraries have an API with the same parameters repeated across 
tens or even hundreds of related functions. Applications that use these APIs may feature 
many calls where the same sequence of parameters is provided to the library over and 
over. The classic Microsoft Windows graphics API is a good example of this. Things 
such as windows, device contexts, colors, line styles, and brush patterns are provided 
repeatedly to many drawing calls. You can write any code you want, but when you call 
GetDC() to acquire a device context, there had better be exactly one corresponding call 
to ReleaseDC(). A lot of the code in-between those two points will pass that device 
context as a parameter over and over.

For the sake of reducing the network traffic involved, Win32's open source counterpart, 
known as Xlib, the C library for writing applications under the X Window System, placed 
several common graphic drawing elements into a graphics context object that reduces the 
parameter's redundancy. Despite this, the Xlib API remains complex and contains a lot of 
parameter redundancy.

The designers of libraries are, in some cases, geniuses, but the APIs may be relatively 
hostile to ordinary developers, with steep learning curves and many bugs. Before the 
advent of graphical user interface builders that generated this code for us, creating 
graphical user interfaces disproportionately slowed down development and increased the 
cost of many applications, and it tempted many coders into poor practices such as block 
copying and modifying vast swaths of user interface code.

For a language where a new control structure is not an option, the problem of excessive 
redundant parameters may be unavoidable. If you build a language, a control structure is a 
real option for addressing this issue.
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Pain points become a target for a new control structure when they can be solved within 
the domain that you are supporting, and a by-product of traditional languages and lack of 
support for that domain. If your application domain has existing libraries and applications 
written in a mainstream language, you can study that code to look for its pain points 
and craft control structures that ameliorate them in your programming language. If 
your application domain is quite new and no mainstream language APIs and application 
base are available, you might resort to guessing or writing example programs in your 
new language to look for pain points. Let's look at a novel control structure where these 
principles were applied successfully: string scanning in the Icon and Unicon languages.

Scanning strings in Icon and Unicon
Unicon inherits this domain control structure from its immediate predecessor, Icon. 
String scanning is invoked by the s ? expr syntax. Within expr, s is the scanning 
subject and referenced by a global keyword called &subject. Within the subject string,  
a current analysis position, which is stored in the &pos keyword, denotes the index 
location in the subject string where it is being examined. The position starts at the 
beginning of the string and can be moved back and forth, typically working its way  
toward the end of the string. For example, in the following program, s contains  
"For example, suppose string s contains":

procedure main()

   s := "For example, suppose string s contains"

   s ? {

      tab(find("suppose"))

      write("after tab()")

   }

end

Now, let's say we were to add a scanning control structure:

s ? { … }

Here, the &subject and &pos keywords would be in the following state:

Figure 15.1 – Subject and position at the start of a scan
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After scanning forward past the comma and the space after the comma, the string's 
scanning position would be set to 14. The subsequent analysis would commence from the 
word suppose, as shown in the following screenshot:

Figure 15.2 – Subject and position after advancing past the comma and space after it

This mechanism is very general and allows for a variety of pattern matching algorithms. 
Now, it is time to dive into the details of how this control structure is utilized through  
its operations.

Scanning environments and their primitive operations
A (subject, position) pair is called a scanning environment. Within the string scanning 
control structure, there's one operator, two built-in position-moving functions, and six 
built-in string analysis functions that perform computations that analyze the subject 
string. The six built-in string analysis functions are summarized in the following table. 
They are described in more detail in Appendix, Unicon Essentials:

Figure 15.3 – Built-in analysis functions of the string scanning control structure
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The two-position moving built-in functions are move() and tab(). The move(n) 
function slides the position index over by n letters relative to the current position. The 
tab(n) function is an absolute move, setting the position to an index, n, within the 
subject. The position-moving built-in functions are commonly used in combination 
with the string analysis functions. For example, since find("suppose") returns 
the index at which the "suppose" string may be found, tab(find("suppose")) 
sets the position to that location. In the example shown in Figure 15.1, executing 
tab(find("suppose")) would be one of many ways that the scanning environment 
might be set to the state shown in Figure 15.2. Another way to get there would have been 
to execute the following code:

tab(upto(',')) & move(1) & tab(match(" "))

It is typical to combine the string analysis primitives in such a fashion to form larger and 
more complex patterns. The language's built-in backtracking process, called goal-directed 
evaluation, means that earlier partial matches will undo themselves if a latter part of the 
conjunction fails.

The tab(match(s)) combination is deemed so useful that a unary prefix operator, =, 
is defined for it. This is not to be confused with the binary = operator, which performs a 
numeric comparison. In any case, the =s expression is equivalent to tab(match(s)). 
This set of primitives was invented for Icon and preserved in Unicon. Unicon adds 
complementary mechanisms here (a SNOBOL-style pattern type, featuring regular 
expressions as its literals). You may be wondering whether additional operators for other 
common combinations of string analysis and position-moving functions would add 
expressive power to string scanning.

Icon and Unicon's string scanning control structure contrasts strongly with the monolithic 
pattern matching operations found in other string processing languages. String scanning 
is a more general mechanism than regular expressions, in which ordinary code can be 
mixed into the middle of the pattern match. The following string scanning example 
extracts proper nouns from the S string and stores them in a list, L:

S ? { L := []

   while tab(upto(&ucase)) do

      put(L, tab(many(&letters)))

}

The preceding while loop discards characters until an uppercase letter is found. It treats 
each such uppercase letter as the start of a proper name and places the name in a list. This 
is not as concise as I might dream, but it's extremely general and flexible. Let's look at how 
this control structure reduces the excess redundant parameters for string analysis functions.
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Eliminating excessive parameters via a control 
structure
String scanning provides a standard set of default parameter values for the string analysis 
functions that are built into the language. These functions all end with three parameters: 
the subject string, the start position, and the end position. These parameters default to 
the current scanning environment, which consists of the subject string, &subject, 
the current position, &pos, and the end of the subject string. The control structure's 
parameter defaulting shortens code and improves readability, addressing one of the pain 
points described in the previous section. However, parameter simplification is not the 
entirety of the impact and purpose of string scanning.

The current string scanning environment is visible within called functions and has  
a dynamic scope. It is common, and simple, to write helper functions that perform a part 
of a string analysis task, without having to pass the scanning environment around  
as parameters.

Scanning environments may be nested. As part of a scanning expression or helper 
function, when a substring requires further analysis, this can be performed by introducing 
another string scanning expression. When a new scanning environment is entered, 
the enclosing scanning environment must be saved and restored when the nested 
sub-environment is exited. This nesting behavior is preserved in Icon and Unicon's novel 
goal-directed expression semantics, in which expressions can be suspended and later be 
resumed implicitly. The scanning environment is saved and restored on the stack. These 
operations are finer-grained but also depend on the procedure activity on the stack such 
as procedure calls, suspends, resumes, returns, and failures.

For those who want more details, string scanning has been described extensively in other 
venues, such as Griswold and Griswold's The Icon Programming Language, 3rd edition. 
The implementation is described in Section 9.6 of The Implementation of Icon and Unicon. 
To summarize, in addition to saving and restoring scanning environments on the stack, 
two bytecode machine instructions are used to simplify code generation for this control 
structure. Now, let's look at another domain control structure that we will introduce into 
Unicon as part of its 3D graphics facilities: rendering regions.

Rendering regions in Unicon
This section describes a control structure called rendering regions, which was added to 
Unicon while writing this book. Since this feature is new, we will look at it in some detail. 
The rendering region control structure has been on Unicon's to-do list for a long time but 
adding a control structure can be a bit difficult, especially if the semantics are non-trivial, 
so it took writing this chapter to get around to it. First, though, we need to set the scene.
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Rendering 3D graphics from a display list
Unicon's 3D graphics facilities specify what is to be drawn via a series of calls to a set 
of built-in functions, and an underlying runtime system renders code written in C and 
OpenGL that draws the scene as many times per second as possible. The Unicon functions 
and C render code communicate using a display list. Mainly, the Unicon functions place 
primitives on the end of the display list, and the rendering code traverses the display list 
and draws these primitives as quickly as possible.

In OpenGL's C API, there is a similar-sounding display list mechanism that serves to 
pre-package and accelerate sets of primitives by placing them on the GPU in advance, 
reducing the CPU-GPU bottleneck. However, Unicon is a dynamic language that 
prioritizes flexibility over performance. To manipulate the display list at the Unicon 
application code level, the Unicon display list is a regular Unicon list rather than a C 
OpenGL display list.

When Unicon's 3D facilities were first created, every graphic primitive in the display 
list was rendered every frame. This worked well for small scenes. For scenes with many 
primitives, it becomes impractical to reconstruct the display list from scratch on each 
frame. New capabilities were needed to enable applications to make rapid changes and  
be selective about which primitives on the display list will be rendered. Those capabilities' 
final form was nonobvious. Now, let's look at how rendering regions started as  
a function API.

Specifying rendering regions using built-in functions
Selective rendering was introduced in Unicon initially using a function named 
WSection(). The W character in this function stands for window and is a common 
prefix for Unicon's built-in functions about graphics and window systems, so this is the 
(window) section function. Two successive calls to WSection() define the beginning 
and end of a section, typically called a rendering region. Rendering regions make it easy 
to turn collections of 3D primitives on the display list on and off between each frame, 
without having to reconstruct the display list or insert or delete elements.

The first call to WSection() in a pair introduces a display list record with a skip field 
that can be turned on and off; the second call to WSection() is an end marker that helps 
determine how many display list primitives are to be skipped. The following example 
draws a yellow halo (depicting an available quest) above a character's head as a torus:

  questR := WSection("Joe's halo")

      Fg("diffuse translucent yellow")

      PushMatrix()

      npchaloT := Translate(0, h.headx+h.headr*3, 0)
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      ROThalo := Rotate(0.0, 0, 1.0, 0)

      DrawTorus(0, 0, 0, 0.1, h.headr*0.3)

      PopMatrix()

  WSection()

You can't run this example standalone since it has been taken from the middle of a 3D 
application that is busy rendering a 3D scene. The missing context includes an open 
3D window that these functions all operate on, and a current object within which the h 
class variable denotes the character's head. But hopefully, this example illustrates how 
WSection() calls are used in pairs that define the beginning and end of a set of  
3D operations.

Most Unicon 3D functions return the display list entry that they have added as their 
return value. The return value of WSection() is a record on the display list that affects 
display list behavior for however many primitives comprise that section.

In the preceding code example, once drawn, the halo remains present on the display list 
but it can be made visible or invisible by unsetting or setting the skip flag; assigning 
questR.skip := 1 causes the halo to disappear. Effectively, a rendering region 
introduces a conditional branch to the display list data structure.

Rendering regions also support 3D object selection. The parameter of a starting 
WSection() specifies a string value that is returned when the user touches or mouse 
clicks on one of the 3D primitives within that section.

Varying graphical levels of detail using nested 
rendering regions
Rendering regions support nesting. In 3D scenes, complex objects may be rendered by 
traversing a hierarchical data structure where the largest or most important graphical 
elements are at the root. Nested rendering regions support levels of detail, where 
secondary and tertiary graphic details can be rendered within subsections and turned on 
and off, depending on how near or far the object is from the camera. Levels of detail can 
be important for performance, allowing details to be proportional to the approximate 
distance between the viewer and the objects being observed. There are fancy data 
structures that can be used to implement this level of detail, but rendering regions work 
well for it.
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The code for rendering a chair, for example, might be organized into three levels of detail 
using three nested sections. The Chair class's lod1, lod2, and lod3 variables would be 
associated with the three nested sections within the code to fully render the chair:

method full_render()

   lod1 := WSection()

      ... render the big chair primitives

      lod2 := WSection()

         ... render smaller chair primitives

         lod3 := WSection()

            ... render tiny details in the chair

         WSection()

      WSection()

   WSection()

end

After the initial full_render() enters the primitives into the display list, each time the 
chair render level changes, the render() method in the chair class updates how much 
should be rendered and how much should be skipped by setting the skip flags.  
The following code can be read as follows: if the chair hasn't been rendered yet, perform  
a full_render(). If it has been rendered, set some skip flags to indicate how much 
detail to render based on the render_level parameter, ranging from 0 (invisible) to 3 
(full detail):

method render(render_level)

   if /rendered then return full_render()

   case render_level of {

      0: lod1.skip := 1

      1: { lod1.skip := 0; lod2.skip := 1 }

      2: { lod1.skip := lod2.skip := 0; lod3.skip := 1 }

      3: { lod1.skip := lod2.skip := lod3.skip := 0 }

      }

end

This mechanism works marvelously, but some painful bug hunts identified a problem. As 
conceived, the section mechanism was fragile and error-prone. Whenever a WSection() 
is accidentally placed in the wrong spot or not nested properly, the program misbehaves 
or visual aberrations ensue. Introducing a control structure simplifies the use of rendering 
regions and reduces the frequency of errors related to the section boundary markers in the 
display list.
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Creating a rendering region control structure
This subsection will describe an implementation of rendering regions in Unicon, to give 
you an idea of some of the work involved in introducing novel control structures to support 
application domains. This book does not describe the details of the Unicon implementation; 
instead, it presents the minimum of what is involved while keeping things readable. For 
further details on the Unicon implementation, you can consult The Implementation of Icon 
and Unicon. The source files in the implementation that are being modified here live in the 
uni/unicon subdirectory within the Unicon language distribution.

To add a control structure, you must define its requirements, syntax, and semantics. Then, 
you will have to add any new elements to the lexical analyzer, grammar, trees, and symbol 
tables. Compile-time semantic checks may be required. The main work of implementing 
a control structure will then proceed, which consists of adding rules to the code generator 
to handle whatever new shapes appear in the syntax tree for your control structure.

The addition should be kept as simple as possible. Rendering regions call for a control 
structure that will enforce the matching-pairs property of calls to WSection().

Adding a reserved word for rendering regions
For the new control structure, we add a new reserved word, wsection, to Unicon's 
lexical analyzer. You learned how to add reserved words to Jzero in Chapter 3, Scanning 
Source Code. Adding one to Unicon is similar, in that the lexical analyzer and parser will 
both have to agree on a new integer code for the new reserved word, which is defined by 
the parser.

Unicon was developed before the uflex tool was created, which was presented in 
Chapter 3, Scanning Source Code. In the future, Unicon may be modified to use uflex, 
but this section describes how to add a reserved word to Unicon's current, hand-written 
lexical analyzer, which is called unilex.icn in the Unicon source code. Reserved 
words are stored in a table that contains, for each reserved word, two integers. One 
integer contains a pair of Boolean flags for semi-colon insertion rules, stating whether 
the reserved word is legal at the beginning (a Beginner) and/or the end (an Ender) 
of an expression. The other integer contains the integer terminal symbol category. The 
new reserved word, wsection, will be a Beginner of expressions, so semi-colons may 
be inserted on new lines that immediately precede it. The table entry for wsection in 
unilex.icn looks like this:

   t["wsection"] := [Beginner, WSECTION]
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The reason this lexical analyzer addition is so small is that the pattern and code that are 
needed to recognize wsection is the same as for other reserved words and identifiers. For 
this lexical analyzer code to work, WSECTION must have been declared in the grammar, as 
described in the following section, and the ytab_h.icn file containing #define rules 
for the terminal symbols must be regenerated using the -d option to iyacc.

Now, it is time to use this new reserved word in a grammar rule.

Adding a grammar rule
The addition of the wsection reserved word enables the syntax shown here:

wsection expr1 do expr2

This is intended to feel consistent with the rest of the Icon and Unicon syntax. The do 
reserved word almost makes it sound too much like a loop; a precedent is the Pascal 
language with the statement, which uses do and is not a loop. The addition of this 
grammar rule in unigram.y consists of two bits. In the terminal symbol declarations, 
the following is added:

%token  WSECTION    /* wsection  */

In the main grammar section, the grammar rules to add this control structure to 
unigram.y are as follows:

expr11 : wsection ;

wsection : WSECTION expr DO expr {

         $$ := node("wsection", $2, $4)

    };

Many or most control structures will have semantic requirements, such as the fact that 
the first expression in the preceding rule – the section identifier – must be a string. Since 
Unicon is a dynamically typed language, the only way that we could enforce such a rule at 
compile time would be if we restricted section identifiers to string literals. We elect not to 
do that and instead enforce the string requirement for the first expression in the generated 
code, but if your language is typed at compile time, you would add that check to the 
appropriate point in your tree traversals where other type checks are performed. Now, let's 
consider the other semantic checks that are needed.
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Checking wsection for semantic errors
The purpose of the wsection control structure is to make rendering regions less prone 
to errors. In addition to the wsection construct, which makes it impossible to omit a 
closing call to WSection() or accidentally write two rendering regions that overlap, 
under what other circumstances might rendering regions get messed up? Statements 
that transfer the control flow out of the rendering region in an unstructured way are 
problematic. In Unicon, these include return, fail, suspend, break, and next. 
However, if the rendering region has loops inside it, a break or next expression inside 
of such a loop is perfectly reasonable.

So, the Unicon compiler's task is to decide what to do in the event of an abnormal control 
flow departure from within a rendering region. For the string scanning control structure, 
the correct thing to do was implement saving and restoring scanning environments on the 
stack, but rendering regions are different.

A rendering region is used at display list construction time to ensure that the display list 
entries are well-formed. The display list is then used later – repeatedly – in the runtime 
system whenever the screen is to be redrawn. The original control flow that was used 
when the display list was constructed has nothing to do with it. For this reason, in a 
wsection, attempting to exit prematurely without reaching the end of the render region 
results in an error. If a programmer wants to code a render region in an unstructured 
manner, they can call WSection() explicitly in pairs at their peril.

Enforcing these semantic rules requires some logic to be in a (sub)tree traversal whenever 
a wsection is encountered in the syntax tree. Tree traversals will look a bit different 
in the Unicon translator than they do in Jzero, but overall, they resemble the Unicon 
implementation of Jzero. The best place to introduce this check is in the j0 class's 
semantic() method, right after the root.check_types() method call, which 
performs type checking. The new check at the end of semantic() method would look 
like this:

   root.check_wsections();

The following check_wsections() method has been added to Unicon's tree.icn:

method check_wsections()

    if label == "wsection" then check_wsection()

    else every n := !children do

            n.check_wsections()

end
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The helper method called to check that each wsection construct is called check_
wsection(). It is a subtree traversal that looks for tree nodes that could exit a 
wsection abnormally and reports a semantic error if the code attempts this. However, 
it would be possible to generate code that performs these checks at runtime, providing 
lazy enforcement. The check_wsection() method takes an optional parameter, which 
tracks nested loops contained within the wsection construct, so that any break or 
next expressions nested within a wsection are allowed, so long as they do not break 
out of wsection:

method check_wsection(loops:0)

      case label of {

         "return"| "Suspend0"| "Suspend1":

            yyerror(label || " inside wsection")

         "While0"|"While1"|"until"|"until1"|

         "every"|"every1"|"repeat":

            loops +:= 1

         "Next"|"Break":

            if loops = 0 then

               yyerror(label || " inside wsection")

            else loops -:= 1

         "wsection": loops := 0

         }

      every n := !children do {

         if type(n) == "treenode" then

            n.check_wsection(loops)

         else if type(n) == "token" then {

            if n.tok = FAIL then

               yyerror("fail inside wsection")

         }

      }

end

The preceding code performs semantic checks so that the wsection control structure 
can enforce its requirement that every opening WSection(id) has a closing 
WSection(). Now, let's look at generating the code for wsection.
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Generating code for a wsection control structure
Code generation for the wsection control structure can be modeled using the 
equivalent calls to WSection() function. The following example's use of wsection 
would produce code that matches the halo example shown earlier. The difference is that 
using this control structure, you cannot forget a closing WSection(), accidentally 
attempt to overlap them, and so forth:

         questR := wsection select_id do {

            Fg("diffuse translucent yellow")

            PushMatrix()

            npchaloT := Translate(0, h.headx+h.headr*3, 0)

            ROThalo := Rotate(0.0, 0, 1.0, 0)

            DrawTorus(0, 0, 0, 0.1, h.headr*0.3)

            PopMatrix()

         }

To understand the code generation for wsection, we need a semantic rule for the 
wsection syntax that solves the problem in the general case. The following table 
shows such a semantic rule. Instead of intermediate code generation instructions, the 
code is expressed as a source-to-source transformation. A wsection control structure 
is implemented with some semi-fancy Icon code that executes a matching pair of 
WSection() calls, producing the result of the opening call to WSection() as the 
result of the entire expression. Because of this, the display list record can be assigned to a 
variable by a surrounding expression if desired:

Figure 15.4 – Semantic rule for generating code for the wsection control structure

The Icon code in the preceding semantic rule requires some explanation. The {expr2; 
WSection(); 1} expression executes expr2, followed by a closing WSection(). 
The 1 character after the second semi-colon ensures that the whole expression 
succeeds, as evaluated by the surrounding expression. The surrounding expression is 
1(WSection(…), {…}), which evaluates the opening WSection(…) section first 
and then executes the body, but produces the return value of the opening WSection() 
section as the result of the entire expression.
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To implement the semantic rule shown in the preceding table and make the actual output 
of the code happen, the Unicon code yyprint() generator procedure must be modified. 
yyprint(n) generates code for syntax tree node n. yyprint() generates code as 
string output to a file named yyout. It has a lot of different code branches – pretty much 
one for each kind of tree node – and these branches call many helper functions as needed. 
For a wsection, the yyprint() function should utilize the following code, which can 
be added to the treenode case clause:

else if node.label == "wsection" then {

   writes(yyout, "1(WSection("))

   yyprint(node.children[1])

   writes(yyout,"),{")

   yyprint(node.children[2])

   write(yyout, ";WSection();1})")

   fail

}

The reason this works, where the domain control structure is simply being written out 
as an artful arrangement of some underlying function calls, is because the main Unicon 
compiler is a semi-transpiler that writes out an intermediate form that looks almost like 
source code. Specifically, Unicon's intermediate form is almost Icon source code. A great 
many languages can be invented very quickly if the underlying representation is another 
very high-level language such as Icon or Python.

All this extending of the Unicon language has probably made you excited to try adding 
your domain control structures. Hopefully, as we head into the summary, you have an idea 
of how to go about doing that.

Summary
This chapter explored the topic of domain control structures. Domain control structures 
go way beyond libraries, or even built-in functions and operators, in terms of supporting 
programmers' abilities to solve problems in new application domains. Most of the 
time, domain control structures simplify code and reduce the occurrence of bugs in 
programming that would be prevalent when programmers develop their code using 
generic mainstream language features.

The next chapter will present the challenging topic of garbage collection. Garbage collection 
is a major language feature that often distinguishes low-level system programming languages 
from higher-level application languages and domain-specific languages.
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Questions
Answer the following questions to test your knowledge of this chapter:

1. Control structures are just if statements and loops. What's the big deal?
2. All application domain-specific control structures let you do is provide some default 

values for some standard library functions. Why bother using them?
3. What additional primitives or semantics would make the string scanning control 

structure more useful to application domain programmers?
4. Would it be a good idea for the wsection control structure to generate code, 

including a PushMatrix() and a PopMatrix() that surround its code body? 
This would make the example shorter and higher-level.
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Garbage Collection

Memory management is one of the most important aspects of modern programming, 
and almost any language that you invent should provide automatic memory management 
via garbage collection. This chapter presents a couple of methods with which you can 
implement garbage collection in your language. The first method, called reference 
counting, is easy to implement and has the advantage of freeing memory as you go. 
However, reference counting has a fatal flaw. The second method, called mark-and-sweep 
collection, is a more robust mechanism that is much more challenging to implement, 
and it has the downside that execution pauses periodically for however long the 
garbage collection process takes. These are two of many possible approaches to memory 
management. Implementing a garbage collector with neither a fatal flaw nor periodic 
pauses to collect free memory is liable to have other costs associated with it.

This chapter covers the following main topics:

• Appreciating the importance of garbage collection

• Counting references to objects

• Marking live data and sweeping the rest
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The goal of this chapter is to explain to you why garbage collection is important and 
show you how you can do it. The skills you'll learn include the following: making objects 
track how many references are pointing to them; identifying all the pointers to live data 
in programs and including pointers located within other objects; freeing memory and 
making it available for reuse. Let's start with a discussion of why you should bother with 
all this anyway.

Appreciating the importance of garbage 
collection
In the beginning, programs were small, and the static allocation of memory was decided 
when a program was designed. The code was not that complicated, and programmers 
could lay out all the memory that they were going to use during the entire program as a 
set of global variables. Life was good.

Then, Moore's Law happened, and computers got bigger. Customers started demanding that 
programs handle arbitrary-sized data instead of accepting the fixed upper limits inherent in 
static allocation. Programmers invented structured programming and used function calls 
to organize larger programs in which most memory allocation was on the stack.

A stack provides a form of dynamic memory allocation. Stacks are great because you 
can allocate a big chunk of memory when a function is called and deallocate memory 
automatically when a function returns. The lifetime of a local memory object is tied 
strictly to the lifetime of the function call within which it exists.

Eventually, things got complicated enough that folks noticed software advances could 
not keep up with hardware advances. We had a software crisis and attempted to wish 
software engineering into existence to try and address this crisis. There were occasional 
bugs where pointers to memory that had been freed on the stack were left hanging 
around, but those were rare and usually just a sign of novice programmers. Life was still 
relatively good. Then, Moore's Law happened some more.

Now, even programs running on our wristwatches are too large to understand, and we 
have a software environment where at runtime, a program may have billions and billions 
of objects. Customers expect you to be able to create as many objects as they want, and 
they expect such objects to live for as long as they are needed. The pre-eminent form 
of allocated memory is dynamic memory, and it is allocated from the memory region 
called the heap. The correct use of the heap region is a primary concern in programming 
language design and implementation.
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In the software engineering literature, it has long been common to see claims that 50% 
to 75% (or more) of total software development time is spent debugging. This translates 
into a lot of time and money. In my personal experience over several decades of helping 
student programmers, in languages where programmers manage their own memory, 75% 
or more of debugging time is spent on memory management errors.

This is especially true for novices and non-expert programmers, but it happens to 
beginners and experts alike. C and C++, I am looking at you. Now, pretend the concern 
is not just how much time or money memory management will take up. As program size 
and complexity increase, the probability of developers correctly manually managing a 
software project's memory decreases, resulting in a higher probability that the project will 
fail outright during development, or fail critically after deployment.

What kinds of memory management errors, you ask? You can start with these: not 
allocating enough memory; attempting to use memory beyond the sufficient amount 
you allocated; forgetting to allocate memory; not understanding when you need to 
allocate memory; forgetting to deallocate memory so that it can be reused; deallocating 
deallocated memory; attempting to use memory for a given purpose after it has been 
deallocated or repurposed. These are just a few examples.

When programs are only a modest size and the computers involved are terribly expensive, 
it makes sense to maximize efficiency by throwing programmer time at manual memory 
management as much as necessary. But as programs grow ever longer and computers 
become cheaper with larger memory sizes, the practicality of managing memory by hand 
decreases. Automatic memory management is inevitable, and doing it all on the stack 
went by the wayside long ago, when structured programming gave way to the object-
oriented paradigm.

Now, we have a world in which (for many programs) most of the interesting memory 
is allocated out of the heap, where objects live an arbitrary length of time until they are 
explicitly freed, or unused memory is automatically reclaimed. This is why garbage collectors 
are of paramount importance and deserve your attention as a language implementer.

Having said all this, implementing garbage collection can be difficult, and making it 
perform well is even more difficult. If you are overwhelmed, you might get away with 
putting this off until the success of your language demands it. Many famous language 
implementations (such as Sun's Java) have gotten away with a missing or inadequate 
garbage collector for years. But, if you are serious about your language, you will eventually 
want a garbage collector for it. Let's start with the simplest approach, which is called 
reference counting.
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Counting references to objects
In reference counting, each object keeps a count of how many pointers refer to it. This 
number starts out as 1 when an object is first allocated and a reference to it is provided 
to a surrounding expression. The reference count is incremented when the value is stored 
in a variable, including when the reference is passed as a parameter or stored in a data 
structure. The count is decremented whenever a reference is overwritten by assigning 
a variable to refer elsewhere, or when a reference no longer exists (such as when a local 
variable ceases to exist because a function returns). If the reference count reaches 0, 
the memory for that object is garbage because nothing points to it. It can be reused for 
another purpose. This seems pretty reasonable; look at what it would take to add reference 
counting to our example language in this book, Jzero.

Adding reference counting to Jzero
Jzero allocates two kinds of things from the heap that could be garbage collected: strings 
and arrays. For such heap-allocated memory entities, Jzero's in-memory representation 
includes the object's size in a word at the beginning. Under reference counting, a second 
word at the beginning can hold the number of references that point at that object. The 
representation for a string is shown in Figure 16.1:

Figure 16.1 – An in-memory representation of a string

In the example given, if len and refcount are 8 bytes each and there are 39 bytes of 
string data, refcount added 8 to a total size of 55 bytes (perhaps rounded to 56), so 
the addition of refcount is only a 14% overhead. But if the average string length were 3 
bytes and you had billions of little strings to manage, adding a reference count represents 
a significant overhead that might limit the scalability of your language on big data. Given 
this representation, reference counting comes into play when objects get created in the first 
place, so let's look at example operations whose generated code involves heap allocation.
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Generating code for heap allocation
When an object such as String is created, memory must be allocated for it. In some 
languages, objects can be allocated in static memory, on the stack, or on the heap. 
However, in Java (and Jzero), all objects are allocated memory out of the heap. For strings, 
this can be puzzling, since the Java source code can include string constants that would 
generally be resolved at compile-time to statically allocated addresses, but heap objects are 
always allocated at runtime. Suppose the code is as follows:

String s = "hello";

On one hand, the memory contents of the hello string can be allocated in the static 
memory region. On the other hand, the Jzero String object that we assign to String 
s should be a class instance allocated from the heap that contains the length and reference 
count along with the reference to the character data. The code we generate in this case 
might resemble the following:

String s = new String("hello");

If this code executes a billion times, we don't want to allocate a billion instances of this 
String, we only want one. In Java, the runtime system uses a string pool for string 
constants, so that it only needs to allocate one instance. Jzero does not implement the  
Java String or Stringpool classes, but we will put a static method named pool() in 
the Jzero String class that returns a reference to a String, allocating the instance if it is 
not already in the string pool. Given this method, the generated code can look more like 
the following:

String s = String.pool("hello");
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This avoidance of allocating redundant string objects is enabled by the fact that String 
objects are immutable. There are many ways that one might generate this code. One easy 
option is a tree traversal that replaces string literal leaf nodes with the subtree that invokes 
the pool() method. In very concrete terms, just look for STRINGLIT nodes and replace 
them with the constructed set of nodes shown in Figure 16.2:

Figure 16.2 – Substituting a STRINGLIT leaf for a call to the pool method

The code for a poolStrings() method that traverses the syntax tree and performs this 
substitution is shown below. The Unicon implementation in tree.icn is as follows:

method poolStrings()

   every i := 1 to *\kids do

      if type(\(\kids[i])) == "tree__state" then {

         if kids[i].nkids>0 then kids[i].poolStrings()

         else kids[i] := kids[i].internalize()

      }

end

This method walks through the tree, calling a internalize() method to replace all 
leaves. The Java implementation of poolStrings() in tree.java is shown here:

public void poolStrings() {

   if (kids != null)

   for (int i = 0; i < kids.length; i++)

      if ((kids[i] != null) && kids[i] instanceof "tree") {

         if (kids[i].nkids>0) kids[i].poolStrings();

         else kids[i] = kids[i].internalize();

      }

}
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The tree method named internalize() in this traversal constructs and returns a 
subtree that invokes the String.pool() method if it is invoked on STRINGLIT. 
Otherwise, it just returns the node. In Unicon, the code looks as follows:

method internalize()

  if not (sym === "STRINGLIT") return self

  t4 := tree("token",parser.IDENTIFIER, 
    token(parser.IDENTIFIER,"pool", tok.lineno, tok.colno))

  t3 := tree("token",parser.IDENTIFIER, 
    token(parser.IDENTIFIER,"String", tok.lineno,

        tok.colno))

  t2 := j0.node("QualifiedName", 1040, t3, t4)

  t1 := j0.node("MethodCall",1290,t2,self)

  return t1

end

The corresponding code in Java looks like this:

public tree internalize() {

  if (!sym.equals("STRINGLIT")) return this;

  t4 = tree("token",parser.IDENTIFIER, 
    token(parser.IDENTIFIER,"pool", tok.lineno,  
        tok.colno));

  t3 = tree("token",parser.IDENTIFIER, 
    token(parser.IDENTIFIER,"String", tok.lineno,  
        tok.colno));

  t2 = j0.node("QualifiedName", 1040, t3, t4);

  t1 = j0.node("MethodCall",1290,t2,this);

  return t1;

}

This code in the compiler depends upon a runtime system function that implements the 
String.pool() method, using a hash table to avoid duplicates. Now, let's look at the 
code generation changes that are needed for the assignment operator.
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Modifying the generated code for the assignment 
operator
Reference counting hinges on modifying the behavior of assignment to enable objects 
to track the references that point at them. In intermediate code for Jzero, there was an 
instruction named ASN that performed such an assignment. Our new reference counting 
semantics for the x = y assignment might consist of the following:

• If the old destination (x) points to an object, decrement its counter. If the counter is 
zero, free the old object.

• Perform assignment. Variable x now refers to some new destination.

• If the new destination (x) points to an object, increment its counter

It is an interesting question whether this sequence of operations should be implemented 
by generating many three-address instructions for an assignment, or whether 
the semantics of the ASN instruction should be modified to do the bulleted items 
automatically when an ASN instruction executes. Part of the answer may hinge on how 
you feel about adding new opcode(s) for ASN when objects are involved, perhaps using 
OASN for object assignment.

Considering the drawbacks and limitations of 
reference counting
Reference counting has several downsides and a fatal flaw. One downside is that the 
assignment operator is made slower to decrement counts of objects held prior to 
assignment and increment counts of objects being assigned. This is a serious drawback, as 
the assignment is a very frequent operation. Another downside is that the size of objects 
becomes larger to hold reference counts, which is unfortunate especially for multitudinous 
otherwise-small objects for which an extra counter is a significant overhead.

A fatal flaw occurs if a chain of object references can have a cycle. This is a very common 
practice in data structures. In the case of a cycle, objects that point at each other never 
reach a reference count of 0, even after they are unreachable from the rest of the program. 
The diagram in Figure 16.3 illustrates a circular linked list after it has become garbage. 
No outside pointer can ever reach this structure, but according to reference counting, the 
memory used by these objects is not reclaimable:
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Figure 16.3 – A circular linked list cannot be collected under reference counting

Despite these flaws, reference counting is relatively simple and easy, and it works well 
enough that it was apparently the only garbage collection method for the first version of 
Python. Python eventually implemented a real garbage collector in addition to continuing 
to use reference counting, although once you implement a real garbage collector, reference 
counting is unnecessary and wasteful of time and space. In any case, due to its fatal flaws, 
most general-purpose languages will not find reference counting sufficient, so let's look 
at an example of a more robust garbage collector, namely the real-world mark-and-sweep 
garbage collector used by the Unicon programming language.

Marking live data and sweeping the rest
This section gives an overview of the Unicon garbage collector, which is a mark-and-
sweep style of garbage collector that was developed for the Icon language and then 
extended. It is written in (an extended dialect of) C, like the rest of the Icon and Unicon 
runtime system. Since Unicon inherited this garbage collector from Icon, much of what 
you see here is due to that language. Other aspects of this garbage collector are described 
in the book, The Implementation of Icon and Unicon: a Compendium.

In almost all garbage collectors other than reference counting, the approach is to find all 
the live pointers that are reachable from all the variables in the program; everything else in 
the heap is garbage. In a mark-and-sweep collector, live data is marked when it is found, 
and then all the live data is moved up to the top of the heap, leaving a big, beautiful pool 
of newly available memory at the bottom. The collect() C function from Unicon's 
runtime system is presented in an outline of its form as follows:

int collect(int region) {

   grow_C_stack_if_needed();

   markprogram();

   markthreads();

   reclaim();

}
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Interestingly, the act of garbage collecting the heap begins with making sure we have 
enough C stack region memory to perform this task. Unicon has two stacks, the VM 
interpreter stack and the stack used by the C implementation of the VM. The necessity 
of growing the C stack was discovered the hard way. The reason for this is that the 
garbage collection algorithm is recursive, especially the operation of traversing live data 
and marking everything it points at. On some C compilers and operating systems, the 
C stack might grow automatically as needed, but on others, its size can be explicitly 
set. The garbage collector code does so by using an operating system function called 
setrlimit(). The code for growing the C stack looks like the following:

void grow_C_stack_if_needed() {

   struct rlimit rl;

   getrlimit(RLIMIT_STACK , &rl);

   if (rl.rlim_cur < curblock->size) {

      rl.rlim_cur = curblock->size;

      if (setrlimit(RLIMIT_STACK , &rl) == -1) {

         if (setrlimit_count != 0) {

            fprintf(stderr,"iconx setrlimit(%lu) failed  
                %d\n", (unsigned long)(rl.rlim_cur),errno);

            fflush(stderr);

            setrlimit_count--;

            }

         }

      }

}

The preceding code checks how big the C stack is, and if the current block region is larger, 
it requests that the C stack be increased proportionally. This is overkill for most programs 
but corresponds roughly to the worst-case requirements. Fortunately, memory is cheap.

The fundamental premise of the Unicon garbage collector is that frequent operations 
must be fast, even when that is at the expense of infrequent operations. In my presence, 
the famed computer scientist Ralph Griswold repeatedly observed that most programs 
never garbage collect; they complete execution before they ever collect. This is true from a 
certain point of view. It is true in a variety of application domains, such as text processing 
utilities, and untrue in other application domains, such as servers and any other 
application that runs for an extended period.
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Under the fast frequent operations doctrine, assignments are extremely frequent and must 
be kept as fast as possible – reference counting is a very bad idea for this reason. Similarly, 
memory allocations are quite frequent and must be as fast as possible. Garbage collection 
is infrequent, and it is OK for its cost to be proportional to the work involved.

To make matters more interesting, Icon and Unicon are specialty string- and text-
processing languages, and the string data type is completely and totally special-cased in 
the implementation. Optimum efficiency for the string type might make some programs 
that are string-heavy perform extra well in this language, while other programs do not.

Organizing heap memory regions
Due to the important special case of strings, Unicon has two kinds of heaps. A general 
heap called the block region allows any data type other than strings to be allocated. A 
separate heap called the string region is maintained for string data.

Blocks are self-describing for garbage collection purposes; the layout of the block region is 
a sequence of blocks. Each block starts with a title word that identifies its type. Many block 
types are of fixed size; block types that are of varying size have a size field in the word after 
the title word. Figure 16.4 illustrates a block region. The rectangle on the left is a struct 
region that manages the block region (shown as the rectangle on the right). The block region 
being managed may be many megabytes in size, containing thousands or millions of blocks:

Figure 16.4 – A block region
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Within the block region, allocating is very fast. To allocate a block of size n for a class 
instance or other structure such as a list or table, just verify that n is less than the 
remaining free space between the pointers named free and end. In that case, the new 
block is located at the free pointer, and the region is updated to account for it by adding 
n to the free pointer.

In contrast to the block region, the string region is raw unstructured string data. String 
regions are organized as shown in Figure 16.4, except that the actual string data has no 
titles, sizes, or other structure – it is raw text. By not allocating strings as blocks like 
everything else, some common operations on strings, such as slices, are no-ops. Similarly, 
the string region can be byte-aligned with no wasted space when many small strings are 
allocated, unlike the block region which is word-aligned. Also, data in the string region 
never contains any references to other live memory, so separating strings out from the 
block region reduces the total amount of memory within which references must be found.

At any given time, there is one current block region and one current string region from 
which memory may be allocated. Each program, and each thread, has its current block 
and string regions,which are  the active regions within a bidirectional linked list of all 
heap regions allocated for that program or thread.

When the region is full and more memory is requested, a garbage collection of the current 
heaps is triggered. Older regions on the linked list are tenured regions and are only 
collected when a garbage collection on the current region fails to free enough memory for 
a request. When no region on the list can satisfy a request, a new region must be allocated. 
When garbage collection fails to free enough space to satisfy a memory request, a new 
current region of the same type is created and added to the linked list, generally twice as 
large as the previous one.

Traversing the basis to mark live data
In the first pass of garbage collection, live data is marked.  All pointers to heap memory in 
the program must be found. This starts from a basis set of variables, consisting of global 
and static memory, and includes all local variables on the stack, which must be traversed. 
The heap objects pointed to by all these global and local variables are marked.
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The task of marking live data in Unicon's runtime system is presented in an outline of 
its form in the following code example. The first two elements of the basis set consist of 
variables allocated on a per-program and per-thread basis. In Icon, they were originally 
global variables, but as the virtual machine evolved, global variables became struct fields, 
and finding all the basis variables in these categories became a series of data structure 
traversals to reach them all:

static void markprogram(struct progstate *pstate) {

   struct descrip *dp;

   PostDescrip(pstate->K_main);

   PostDescrip(pstate->parentdesc);

   PostDescrip(pstate->eventmask);

   PostDescrip(pstate->valuemask);

   PostDescrip(pstate->eventcode);

   PostDescrip(pstate->eventval);

   PostDescrip(pstate->eventsource);

   PostDescrip(pstate->AmperPick);

   PostDescrip(pstate->LastEventWin);/* last Event() win */

   PostDescrip(pstate->Kywd_xwin[XKey_Window]);/*&window*/

   postqual(&(pstate->Kywd_prog));

   for (dp = pstate->Globals; dp < pstate->Eglobals; dp++)

      if (Qual(*dp)) postqual(dp);

      else if (Pointer(*dp)) markblock(dp);

   for (dp = pstate->Statics; dp < pstate->Estatics; dp++)

      if (Qual(*dp)) postqual(dp);

      else if (Pointer(*dp)) markblock(dp);

   }

The task of marking all the global variables in a program is straightforward:

static void markthreads() {

   struct threadstate *t;

   markthread(&roottstate);

   for (t = roottstate.next; t != NULL; t = t->next)

      if (t->c && (IS_TS_THREAD(t->c->status))) {

          markthread(t);

      }

}
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Each thread is marked by a call to markthread() as follows. Some of the pieces of the 
thread state contain things that are known not to contain references to heap variables, but 
those fields that might contain heap pointers must be marked:

static void markthread(struct threadstate *tcp) {

   PostDescrip(tcp->Value_tmp);

   PostDescrip(tcp->Kywd_pos);

   PostDescrip(tcp->ksub);

   PostDescrip(tcp->Kywd_ran);

   PostDescrip(tcp->K_current);

   PostDescrip(tcp->K_errortext);

   PostDescrip(tcp->K_errorvalue);

   PostDescrip(tcp->T_errorvalue);

   PostDescrip(tcp->Eret_tmp);

}

The actual marking process is different for strings and for objects. Since Unicon variables 
can hold any type of value, a macro named PostDescrip() is used to determine 
whether a value is a string or another sort of pointer, or neither. References to strings are 
called qualifiers and they are marked using a function called postqual(). Other types of 
pointers are marked using the markblock() function:

#define PostDescrip(d) \

   if (Qual(d)) postqual(&(d)); \

   else if (Pointer(d)) markblock(&(d));

In order to interpret this macro, you need more than the postqual() and 
markblock() helper functions; you also need to know what the Qual() and 
Pointer() test macros are doing. A short answer would be that they perform a bitwise 
AND to check the value of a single bit within the descriptor word of a Unicon value. The 
value is a string if the descriptor word's topmost (sign) bit called F_Nqual is 0, but if 
that bit is 1 it is not a string and the other flag bits can be used to check other properties, 
of which the F_Ptr pointer flag would indicate that the value word contains a pointer, 
possibly a pointer to a value in the heap:

#define Qual(d) (!((d).dword & F_Nqual))

#define Pointer(d) ((d).dword & F_Ptr)
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These tests are fast, but they are performed many times during a garbage collection. If we 
came up with a faster way than shown in the PostDescrip() macro to identify values 
for the potential marking of live strings and blocks, it might affect the garbage collection 
performance significantly.

Marking the block region
For blocks, the mark overwrites part of the object with a pointer back to the variable 
that points at the object. If more than one variable points at the object, a linked list of 
those live references is constructed as they are found. This linked list is needed so that 
all those pointers can be updated to point at the new location if the object is moved. The 
markblock() function is over 200 lines of code. It is presented in a summarized form in 
the following code example:

void markblock(dptr dp) {

   dptr dp;

   char *block, *endblock;

   word type;

   union block **ptr, **lastptr;

   block = (char *)BlkLoc(*dp);

   if (InRange(blkbase, block, blkfree)) {

      type = BlkType(block);

      if ((uword)type<=MaxType)endblock= 

            block+BlkSize(block);

      BlkLoc(*dp) = (union block *)type;

      BlkType(block) = (uword)&BlkLoc(*dp);

      if ((uword)type <= MaxType) {

          ...traverse any pointers in the block

         }

   else ... handle other types of blocks that will not move

}
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Traversing pointers within a block depends on how blocks are organized in the language. 
Pointers within a block are always a contiguous array. A global table within the garbage 
collector named firstp tells at what byte offset for each type of block its nested pointers 
can be found. A second global table named firstd tells at what byte offset for each block 
type its descriptors (nested values, which can be anything, not just a block pointer) are 
found. These are traversed by the following code:

            ptr = (union block **)(block + fdesc);

            numptr = ptrno[type];

            if (numptr > 0) lastptr = ptr + numptr;

            else

               lastptr = (union block **)endblock;

            for (; ptr < lastptr; ptr++)

               if (*ptr != NULL)

                  markptr(ptr);

            }

         if ((fdesc = firstd[type]) > 0)

            for (dp1 = (dptr)(block + fdesc);

                 (char *)dp1 < endblock; dp1++) {

               if (Qual(*dp1)) postqual(dp1);

               else if (Pointer(*dp1)) markblock(dp1);

               }

The nested block pointers are visited by walking through with the ptr variable and 
calling markptr() on each one. The markptr() is similar to markblock() but may 
visit other types of pointers besides blocks. The nested descriptors are visited by walking 
through with the dp1 variable and calling postqual() for strings and markblock() 
for blocks.

For strings, an array name of quallist is constructed of all the live string pointers 
(including their lengths) that point into the current string region. The function named 
postqual() adds a string to the quallist array: 

void postqual(dptr dp) {

   if (InRange(strbase, StrLoc(*dp), strfree)) {

      if (qualfree >= equallist) {

         newqual = (char *)realloc((char *)quallist,

              (msize)(2 * qualsize));

         if (newqual) {
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            quallist = (dptr *)newqual;

            qualfree = (dptr *)(newqual + qualsize);

            qualsize *= 2;

            equallist = (dptr *)(newqual + qualsize);

            }

         else {

            qualfail = 1;

            return;

            }

         }

      *qualfree++ = dp;

   }

}

Most of the preceding code consists of expanding the size of the array if needed. The array 
size is doubled each time additional space is needed.

Furthermore, if the object contains any other pointers, they must be visited, and what they 
point at must be marked and traversed, recursively following all pointers to everything 
that can be reached.

Reclaiming live memory and placing it into contiguous 
chunks
In the second pass of a garbage collection process, the heaps are traversed from top  
to bottom, and all live data is moved to the top. The overall reclamation strategy is  
shown in the following code. Note that garbage collection is complicated by concurrent 
threads – we do not consider concurrency in full detail here:

static void reclaim()

   {

   cofree();

   if (!qualfail)

      scollect((word)0);

   adjust(blkbase,blkbase);

   compact(blkbase);

   }
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Reclaiming memory consists of freeing up unreferenced static memory consisting of 
co-expressions that have become garbage in a cofree() function, then moving all the 
live string data up in the scollect() function, and then moving the block data up by 
calling adjust() followed by compact().

The cofree() function walks through each co-expression block. These blocks cannot be 
allocated in the block region because they contain variables that cannot be moved. This 
consists of the following code:

void cofree() {

   register struct b_coexpr **ep, *xep;

   register struct astkblk *abp, *xabp;

   ep = &stklist;

   while (*ep != NULL) {

      if ((BlkType(*ep) == T_Coexpr)) {

         xep = *ep;

         *ep = (*ep)->nextstk;

         for (abp = xep->es_actstk; abp; ) {

            xabp = abp;

            abp = abp->astk_nxt;

            if ( xabp->nactivators == 0 )

               free((pointer)xabp);

            }

         free((pointer)xep);

         }

      else {

         BlkType(*ep) = T_Coexpr;

         ep = &(*ep)->nextstk;

         }

      }

   }

The preceding code walks through a linked list of co-expression blocks. When the code 
visits a co-expression block whose title still says T_Coexpr, that indicates that the block 
was not marked as live. In that case, the co-expression and its associated bookkeeping 
memory blocks are freed using the standard free() library function.
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The scollect() function collects the string region using the list of all the live pointers 
into it. It sorts the quallist array using the standard qsort()library function. Then, it 
walks through the list and copies live string data up to the top of the region, updating the 
pointers into the string region as the new locations of the strings are determined. Care is 
taken for pointers to overlapping strings so that they remain contiguous:

static void scollect(word extra) {

   char *source, *dest, *cend;

   register dptr *qptr;

   if (qualfree <= quallist) { strfree = strbase; return; }

   qsort((char *)quallist,

      (int)(DiffPtrs((char *)qualfree,(char *)quallist)) /

           sizeof(dptr *), sizeof(dptr), 

               (QSortFncCast)qlcmp);

   dest = strbase;

   source = cend = StrLoc(**quallist);

   for (qptr = quallist; qptr < qualfree; qptr++) {

      if (StrLoc(**qptr) > cend) {

         while (source < cend) *dest++ = *source++;

         source = cend = StrLoc(**qptr);

         }

      if ((StrLoc(**qptr) + StrLen(**qptr)) > cend)

         cend = StrLoc(**qptr) + StrLen(**qptr);

      StrLoc(**qptr) = StrLoc(**qptr) +

                       DiffPtrs(dest,source)+(uword)extra;

      }

   while (source < cend) *dest++ = *source++;

   strfree = dest;

   }

The adjust() function is the first part of collecting the block region. It walks through 
the block region, moving pointers into the block region up to where the blocks will point. 
During marking, a linked list of all pointers to each block was constructed; this is used to 
update all those pointers to the block's new location. The source code for adjust() is 
shown next:

void adjust(char *source, char *dest) {

   register union block **nxtptr, **tptr;
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   while (source < blkfree) {

     if ((uword)(nxtptr = (union block **)BlkType(source))>

         MaxType) {

         while ((uword)nxtptr > MaxType) {

            tptr = nxtptr;

            nxtptr = (union block **) *nxtptr;

            *tptr = (union block *)dest;

            }

         BlkType(source) = (uword)nxtptr | F_Mark;

         dest += BlkSize(source);

         }

      source += BlkSize(source);

      }

   }

The compact() function is the final step in collecting the block region, as shown in the 
following code block. It consists of moving the blocks of memory themselves up into their 
new location. The title words of the live blocks are cleared when the block is moved to its 
new location:

void compact(char *source) {

   register char *dest;

   register word size;

   dest = source;

   while (source < blkfree) {

      size = BlkSize(source);

      if (BlkType(source) & F_Mark) {

         BlkType(source) &= ~F_Mark;

         if (source != dest)

            mvc((uword)size,source,dest);

         dest += size;

         }

      source += size;

      }

   blkfree = dest;

   }
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From this section, you should be able to conclude that a mark and sweep garbage collector 
is a non-trivial and relatively low-level undertaking. If you need encouragement, consider 
this: the work you do in building a garbage collector is for a good cause – it will save 
countless efforts from the programmers who use your language, and they will thank 
you for it. Many language inventors before you have implemented garbage collection 
successfully, and you can you.

Summary
This chapter showed you a lot about garbage collection. You learned what garbage is, how 
it comes about, and saw two very different ways to deal with it. The easy way, popularized 
by some early Lisp systems and early versions of Python, is called reference counting. 
In reference counting, the allocated objects themselves are made responsible for their 
collection. This usually works.

The more difficult form of garbage collection involves finding all the live data in the 
program and usually moving it to avoid memory fragmentation. Finding the live data is 
generally recursive, requires traversing stacks to find references in parameters and local 
variables, and is usually an onerous and low-level task. Many variations on this general 
idea have been implemented. One of the primary observations, which some garbage 
collectors exploit, is that most allocated objects are used for only a short time and then 
become garbage almost immediately.

Any method you employ to save programmers from having to manage their own memory 
will likely be greatly appreciated.

In the next chapter, we will conclude the book with some thoughts on what we have learned.

Questions
1. Suppose a specific Unicon value, such as the null value, was particularly common 

when marking live data. Under what circumstances would it make sense to modify 
the PostDescrip() macro to check for that value to see if the tests in the 
Qual() and Pointer() macros can be avoided?

2. What would be the advantages and disadvantages of creating a separate heap region 
for each class type?

3. The reclaim() operation of Unicon's mark-and-sweep collector moves all the live 
non-garbage memory up to the top of the region. Would it be beneficial to modify 
this collector so that live data did not move?
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Final Thoughts

After learning so much about building a programming language, you may want to reflect 
on what you have learned and think about areas you might want to study in more depth. 
This chapter reflects on the main topics presented in the book and gives you some food  
for thought by covering the following topics:

• Reflecting on what was learned from writing this book

• Deciding where to go from here

• Exploring references for further reading

Let's start with what extra bonuses could be learned from this book.

Reflecting on what was learned from writing 
this book
We have learned some useful things from writing this book. Among other things, we 
concluded that Java is very suitable for writing compilers at this point. Sure, Andrew Appel 
might have published Modern Compiler Implementation in Java in 1997, and other compiler 
writing books in Java exist. These might be great, but many compiler writers won't consider 
using Java if it means giving up lex and YACC. Using a standard lex/YACC toolchain for 
Java makes it more interoperable with compiler code bases created for other languages.
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I want to express my appreciation to the Byacc/J maintainer Tomas Hurka for accepting 
and improving my static import patch to make Byacc/J play more nicely with Jflex 
and similar tools (including my Merr tool, as covered in Chapter 4, Parsing) that generate 
yylex() or yyerror() in separate files. Supporting yylex() and yyerror() in 
separate files obviates the need for stupid workarounds, such as writing a stub yylex() 
method inside the parser class that turns around and calls yylex() generated in another 
file. Also, various small improvements to Java after its initial release, such as being able to 
use String values for switch cases, make a difference in terms of the compiler writer's 
convenience. At this point, Java's conveniences and advantages, compared to C, almost 
outweigh its disadvantages, which are many. Let's not pretend that Java's rigid package-
and-class directory and file structure and lack of #include or #ifdef mechanisms are 
without cost.

I didn't write this book to decide whether Java was good for compilers. I wrote this 
book to make Unicon great for compilers. This book's small miracle was finding a way 
to use the same lexical and syntax specifications for both Unicon and Java. I ended up 
really happy that I was able to use both languages in the same way I would traditionally 
write a compiler in C. After that great bit of lex/YACC specification sharing, Unicon 
didn't provide as much added advantage as I had expected compared to Java. Unicon 
skips many of Java's pain points, is somewhat more concise, and has an easier time with 
heterogeneous structure types. Ultimately, both languages were great for writing the Jzero 
compiler, and I'll let you be the judge of which code was more readable and maintainable. 
Now, let's consider where you might go from here.

Deciding where to go from here
You may want to study more advanced work in any number of areas. These include 
programming language design, bytecode implementation, code optimization, monitoring 
and debugging program executions, programming environments such as IDEs, and GUI 
builders. In this section, we will explore just a few of these possibilities in more detail. This 
section reflects many of my personal biases and priorities.

Studying programming language design
It is probably more difficult to identify strong works in programming language 
design than most of the other technical topics mentioned in this section. Harold 
Abelson and Gerald Sussman once wrote a book called Structure and Interpretation of 
Computer Programs, which was widely reputed to be useful. Although it is not exactly a 
programming language design book, its insights delve into that subject.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



Deciding where to go from here     405

Browsing casually, you may find many general programming language books. Rafael 
Finkel's Advanced Programming Language Design is one, covering a range of advanced 
topics. For other sources, language design books and papers written by actual language 
inventors have the potential to be more real and useful than books written by third parties.

One of the luminaries of language design, Niklaus Wirth, wrote many influential books. 
Algorithms and Data Structures, as well as Project Oberon, provide valuable insights 
regarding language design, as well as implementation. As the designer of several successful 
languages, including Pascal and Modula-2, Niklaus Wirth has great authority in arguing 
for simplicity with language designs that protect programmers from themselves. He is a 
giant on whose shoulders you would do well to stand.

The Prolog programming language has produced rich literature describing many of the 
design and implementation problems that have been addressed for that language and 
logic programming in general. Prolog is important because it features extensive implicit 
backtracking. One of the important works on Prolog is The Art of Prolog, by Leon Sterling 
and Ehud Shapiro. Another important contribution is the Byrd box model of functions, in 
which, instead of understanding a function's public interface as a call followed by a return, 
a function is seen as having a call, producing a result, and being resumed repeatedly, until 
an eventual failure.

The next great programming language family that deserves attention is SmallTalk. 
SmallTalk did not invent the object-oriented paradigm, but it purified it and popularized 
it. A summary of some of its design principles was published in Byte magazine in an 
article titled Design Principles Behind Smalltalk, by Dan Ingalls. While considering object-
oriented languages, it is also prudent to consider semi-object-oriented languages such as 
C++, for which the book Design and Evolution of C++ by Bjarne Stroustrup is of value.

The dramatic rise in popularity of very high-level languages such as Python and Ruby is 
one of the most important developments in recent decades. It is depressing how poorly 
represented many extremely popular languages are overall in the programming language 
design literature. TCL's inventor, John Ousterhout, wrote two important works on topics 
related to the design of very high-level languages. Scripting: Higher-Level Programming 
for the 21st Century is a good paper, albeit reflecting its author's biases. Ousterhout also 
gave an important invited talk, humorously titled Why Threads Are a Bad Idea, arguing for 
event-driven programming and synchronous coroutines in preference to threads for most 
parallel workloads.

The Icon and Unicon languages are two more heavily documented examples of very high-
level languages. The design of the Icon language is described in Griswold's History of the 
Icon Programming Language. Having looked at some fine options for studying language 
design further, let's consider options for studying their implementation.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



406     Final Thoughts

Learning about implementing interpreters and 
bytecode machines
Advanced programming language implementation topics should include implementing 
all types of interpreters and runtime systems for advanced programming languages 
with novel semantics. The first very high-level language was Lisp. Lisp inventor John 
McCarthy is credited with inventing a mathematical notation that could be executed on 
the computer, one of the first interactive interpreters, and arguably the first just-in-time 
compiler. Other Lisp implementors have written notable books. One of special note is 
John Allen's Anatomy of Lisp.

Any description of bytecode machines would be remiss if it omitted the Pascal bytecode 
machines. Many of the seminal works on Pascal's implementation are collected in 
PASCAL: The Language and Its Implementation, edited by David Barron. The UCSD Pascal 
system that popularized bytecode machines was based on the work of Urs Ammann at 
ETH Zurich, which is well-represented in Barron's book. Another significant work on 
Pascal is Steven Pemberton and Martin Daniels' Pascal Implementation: Compiler and 
Interpreter, which has the virtue of being a publicly available resource.

A collection of books authored by Adele Goldberg and her collaborators document 
SmallTalk, a very advanced language, is better than almost any other. This includes 
SmallTalk-80: The Language and its Implementation.

In the logic programming world, the Warren Abstract Machine (WAM) is one of the 
premier means of reasoning about the underlying semantics of Prolog and how to 
implement it. It is described in An Abstract PROLOG Instruction Set.

The implementation of Unicon is described in The Implementation of Icon and Unicon: 
a Compendium. This book combines and updates several previous works on the 
implementation of the Icon language, plus descriptions of the implementation of various 
subsystems that have been added to Unicon.

Acquiring expertise in code optimization
Code optimization is generally a subject of advanced graduate-level textbooks on 
compilers. The classic Compilers: Principles, Techniques, and Tools contains substantial 
documentation on various optimizations. Cooper and Torczon's Engineering a Compiler is 
a more recent treatment.
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Code optimization for higher-level languages often requires more novel techniques. 
Various works on optimizing compilers for very high-level languages seem to suggest 
some unknown law that it takes 20 years for people to figure out how to execute such 
languages efficiently. For hints of this, I refer to examples such as T: a Dialect of Lisp and 
The Design and Implementation of the SELF Compiler, which came out 20 years after 
the Lisp and Smalltalk languages. Of course, how long it takes depends on the size and 
complexity of the language. I am biased, but one of my favorite works for such languages 
is the dissertation The implementation of an optimizing compiler for Icon, which is included 
in the Icon and Unicon implementation compendium. It came out only a dozen or so 
years after Icon was invented, so maybe more optimizing is possible there.

Monitoring and debugging program executions
There are lots of books about debugging end user code, but there are few books on how 
to write program monitors and debuggers. Part of the problem is that the implementation 
techniques are low-level and highly platform-dependent, so much of what is written about 
debugger implementation might only be true for one particular operating system and may 
not remain true in 5 years.

Regarding the big picture, you may want to think about how to design your debugger 
and what interface it should provide to the end user. Besides imitating the interface of 
mainstream debuggers, you should consider the notion of query-based debugging, as 
described in Raimondas Lencevicius' Advanced Debugging Methods. You should also 
consider the notions of relative debugging and delta debugging, which were popularized 
by the works of David Abramson et al. and Andreas Zeller.

One of the things you may want to read up on if you want to know more about debugger 
implementation is executable file formats and, in particular, their debugging symbol 
information. The Microsoft Windows portable executable format is documented on the 
Microsoft website.

One of the most prominent corresponding UNIX formats is the executable linking 
format (ELF), which stores debugging information in a format called Debugging With 
Arbitrary Record Formats (DWARF).

The GNU debugger, known as GDB, is prominent enough that it has a GDB Internals 
manual, and GDB has frequently been used as the basis upon which research debugging 
capabilities are developed. https://aarzilli.github.io/debugger-
bibliography/ lists a few other debugger implementation resources, mainly oriented 
toward the Go language.
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For a substantial discussion of the classic program execution monitoring literature, you 
can consult Monitoring Program Execution: A Survey, or the related work chapter in 
Program Monitoring and Visualization.

Designing and implementing IDEs and GUI builders
A major element in the success of programming languages is the extent to which their 
programming environment supports writing and debugging code. This book only briefly 
touches on these topics, and you might want to explore more on how IDEs and their user 
interface builders are implemented.

There is good news and bad news here. The bad news is that almost no one has written a 
build your own integrated development environment book. If you were going to build one 
from scratch, you might start by teaching yourself how to write a text editor, and then add 
other features. In that case, you might wish to consult The Craft of Text Editing by Craig 
Finseth. That book was written by a person who studied how the Emacs text editor was 
implemented for his Bachelor's thesis. There is also a chapter titled GNU Emacs Internals, 
written as an appendix to the GNU Emacs Manual.

The good news is that almost no one must write the text editor portion of an integrated 
development environment anymore. Each of the major graphical computing platforms 
comes with a user interface library that includes a text editor as one of its widgets. 
You can assemble the interface of an integrated development environment using a 
graphical interface builder tool. Unfortunately, graphic user interface libraries are usually 
non-portable and short-lived, which means that work spent programming on them is 
almost doomed to be discarded within a decade or two. It takes extraordinary effort to 
write code that runs on all platforms and lives forever in internet years.

So, this section should focus on multi-platform portable graphical user interface libraries 
and how to use them to write integrated development environments and user interface 
builder tools. Java is one of the most portable languages, and even with a few false starts, it 
is still likely that some of the best and most multiplatform portable user interface libraries 
might be Java libraries.

Exploring references for further reading
Here is a detailed bibliography of the works we discussed in the previous section. Within 
each subsection, the works are listed alphabetically by author.
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Studying programming language design
In the area of programming language design, you may find the following items to be  
of interest:

• Harold Abelson and Gerald Sussman, Structure and Interpretation of Computer 
Programs, Second edition, MIT Press, 1996.

• Rafael Finkel, Advanced Programming Language Design, Pearson 1995.

• Ralph Griswold, History of the Icon Programming Language, Proceedings of  
HOPL-II, ACM SIGPLAN Notices 28:3 March 1993, pages 53–68.

• Daniel H.H. Ingalls, Design Principles Behind Smalltalk, Byte Magazine August 1981, 
pages 286–298.

• John Ousterhout, Scripting: Higher-Level Programming for the 21st Century, IEEE 
Computer 31:3, March 1998, pages 23–30.

• John Ousterhout, Why Threads Are a Bad Idea (for most purposes), Invited talk, 
USENIX Technical Conference, September 1995 (available at https://web.
stanford.edu/~ouster/cgi-bin/papers/threads.pdf).

• Leon Sterling and Ehud Shapiro, The Art of Prolog, MIT Press, 1986.

• Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994.

• Niklaus Wirth, Algorithms and Data Structures, Prentice Hall 1985.

• Niklaus Wirth, Project Oberon: The Design of an Operating System and Compiler, 
Addison Wesley/ACM Press 1992.

This is a tiny sample of the best works in a rich body of literature, and it must bear many 
grievous omissions. Now, let's look at a similar list for implementation.

Learning about implementing interpreters and 
bytecode machines
In the area of interpreter and bytecode machine implementation, you may find the 
following items to be of interest:

• John Allen, Anatomy of Lisp, McGraw Hill, 1978.

• Urs Ammann, On Code Generation in a PASCAL Compiler, Software Practice and 
Experience 7(3), 1977, pages 391–423.

• David W. Barron, ed., PASCAL-The Language and Its Implementation,  
John Wiley, 1981.
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• Adele Goldberg, David Robson, SmallTalk-80: The Language and its Implementation, 
Addison-Wesley, 1983.

• Clinton Jeffery and Don Ward, eds., The Implementation of Icon and Unicon: a 
Compendium, Unicon Project, 2020 (available at http://unicon.org/book/
ib.pdf).

• A. B. Vijay Kumar, Supercharge Your Applications with GraalVM, Packt, 2021.

• Steven Pemberton and Martin Daniels, Pascal Implementation: The P4 Compiler 
and Interpreter, Ellis Horwood, 1982 (available at https://homepages.cwi.
nl/~steven/pascal/).

• David Warren, An Abstract PROLOG Instruction Set, Technical Note 309, 
SRI International, 1983 (available at http://www.ai.sri.com/pubs/
files/641.pdf).

Now, let's look at a similar list for native code and code optimization.

Acquiring expertise in native code and code 
optimization
Regarding native code and code optimization, you may find the following items to be  
of interest:

• Al Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman, Compilers: Principles 
Techniques and Tools, Second edition, Addison Wesley, 2006.

• Craig Chambers, The Design and Implementation of the SELF Compiler, an 
Optimizing Compiler for Object-Oriented Programming Languages, Stanford 
dissertation, 1992.

• Keith Cooper and Linda Torczon, Engineering a Compiler, Second edition, Morgan 
Kaufmann, 2011.

• Chris Lattner and Vikram Adve, LLVM: A Compilation Framework for Lifelong 
Program Analysis & Transformation, in Proceedings of the 2004 International 
Symposium on Code Generation and Optimization (CGO'04), Palo Alto,  
California, March 2004. Available at https://llvm.org/pubs/2004-01-30-
CGO-LLVM.html

• Jonathan Rees and Norman Adams, T: a dialect of Lisp, Proceedings of the 1982 
ACM symposium on LISP and functional programming, pages 114–122.

• Kenneth Walker, The implementation of an optimizing compiler for Icon, Arizona 
dissertation, 1991.
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After optimization, you might want to look further at the highly specialized area of 
program execution monitoring and debugging.

Monitoring and debugging program executions
In the area of monitoring and debugging, you may find the following items to be of interest:

• David Abramson, Ian Foster, John Michalakes, and Roc Sosic, Relative Debugging: A 
new methodology for debugging scientific applications, Communications of the ACM 
39(11), November 1996, pages 69–77.

• DWARF Debugging Information Format Committee, DWARF Debugging 
Information Format Version 5 (http://www.dwarfstd.org), 2017.

• John Gilmore and Stan Shebs, GDB Internals, Cygnus Solutions, 1999. The most 
recent copy is in wiki format and available at https://sourceware.org/gdb/
wiki/Internals.

• Clinton Jeffery, Program Monitoring and Visualization, Springer, 1999.

• Raimondas Lencevicius, Advanced Debugging Methods, Kluwer Academic 
Publishers, Boston/Dordrecht/London, 2000.

• Microsoft, PE Format, available at https://docs.microsoft.com/en-us/
windows/win32/debug/pe-format.

• Bernd Plattner and J. Nievergelt, Monitoring Program Execution: A Survey. IEEE 
Computer, Vol. 14. November 1981, pages 76–93.

• Andreas Zeller, Why Programs Fail: A Guide to Systematic Debugging, Second 
edition, Morgan Kaufmann, 2009.

Along with monitoring and debugging, it would be useful to consider integrated 
programming tools for your language.

Designing and implementing IDEs and GUI builders
In the area of development environments and user interface builders, you may find the 
following items to be of interest:

• Craig Finseth, The Craft of Text Editing: Emacs for the Modern World. Springer, 1990.

• Bill Lewis, Dan LaLiberte, Richard Stallman, the GNU Manual Group, et al., GNU 
Emacs Internals, Appendix E within the GNU Emacs Lisp Reference Manual, GNU 
Project, 1990–2021, pages 1,208–1,250.
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Honestly, I wish I had more good reading to recommend in the area of IDEs and GUI 
builders. If you know of good works on this subject, send me your suggestions. Now, let's 
wrap things up with a summary.

Summary
This book showed you a thing or two about building programming languages. We did 
this by showing you an implementation of a toy language called Jzero. However, Jzero 
is not what is interesting; what is interesting is the tools and techniques used in its 
implementation. We even implemented it twice!

If you thought that maybe programming language design and implementation was a 
swimming pool to enjoy, your new conclusion might be that it is more like an ocean. If so, 
the tools that have been placed at your disposal in this book, including versions of flex and 
YACC for use with Unicon or Java, are a luxury cruise liner capable of sailing you about 
on that ocean to wherever you want to go.

The first high-level language compiler is said to have taken 18 years to create. Perhaps now 
it is a task of a few months, although it is still an open-ended task where you can spend as 
much time as you can spare making improvements to any compiler or interpreter that you 
care to write.

The holy grail of compilers has long been a high-level declarative specification of the code 
generation problem, to match the declarative specification of lexical and syntax rules. 
Despite the earnest work of many people far smarter than me, this hoped-for breakthrough 
has been resistant. In its place, several crutches have proliferated. The very notion of a 
bytecode machine implemented in a portable system language such as C has made many 
languages portable to a myriad of processors… once someone ports a C compiler to them. 
This has become part of the mainstream due to technologies such as the .NET CLR and the 
JVM and GraalVM Java bytecode machines. Similarly, transpilers that generate code in the 
form of source code to another high-level language (such as C) have become widespread.

The third form of increased portability that's available to programming language inventors 
is the proliferation of intermediate-level target instruction formats such as LLVM. All 
of these widely used means of making your programming language portable dodge 
the common bullet of generating code for a brand new CPU. Perhaps the fourth form 
of increased portability has come from the fact that few new CPU instruction sets are 
generated at this point, as the industry has collectively invested so much in the small 
number of hardware instruction sets for which optimizing code generators are available.

Thanks for reading this book. I hope that despite its many shortcomings, you were able to 
enjoy my book and you found it useful. I look forward to seeing what new programming 
languages you invent in the future!
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This section will include materials that will help the readers to understand the main text.

This section comprises the following chapter:

• Appendix, Unicon Essentials

Section 4:  
Appendix
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Appendix
Unicon Essentials

This appendix presents enough of the Unicon language to help you understand the Unicon 
code examples in this book. This appendix is intended for skilled programmers and does 
not spend time introducing basic programming concepts. Instead, it presents Unicon while 
focusing on the interesting or unusual features compared to mainstream languages.

If you know Java, then most of the Unicon code in this book can be understood by 
looking at the corresponding Java code to see what is going on. You can look up whatever 
is not self-evident or explained by Java comparison here. This appendix is not a complete 
Unicon language reference; for that, see Appendix A of Programming with Unicon, which 
is available in standalone public domain form in Unicon Technical Report #8. Both 
Programming with Unicon and Unicon Technical Report #8 are hosted at unicon.org.

Syntactic Shorthand
The notation in this appendix uses square brackets, [], to denote optional 
features and asterisks, *, to denote features that can occur zero or more 
times. When square brackets or asterisks are highlighted, this means they are 
occurring in the Unicon code rather than as optional or repeated features.
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This appendix covers the following topics:

• Running Unicon

• Using Unicon's declarations and data types

• Evaluating expressions

• Debugging and environmental issues

• Function mini-reference

• Selected keywords

To begin, let's provide an expanded discussion of how to run Unicon programs.

Running Unicon
Unicon is invoked to compile and run either from the command line or from within 
an IDE. Unicon source files end in the.icn extension, while Unicon object files end in 
the.u extension. Here are some example invocations of the Unicon translator:

• unicon mainname [ filename(s) ]   

Compile and link mainname.icn and other filenames to form an executable 
named mainname.exe on Windows or just mainname on most other platforms.

• unicon -o exename [ filename(s) ] 

Compile and link an executable named exename, or on Windows, exename.exe.
• unicon -c filename(s)             

Compile .icn files into .u files but do not link them.
• unicon -u filename(s)             

Warn about undeclared variables.
• unicon -version                   

Print the Unicon version.
• unicon -features                  

Print the features of this Unicon build.
• unicon foo -x                     

Compile and run foo.icn in one step.
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You can read a longer description on how to run Unicon on Windows at http://
unicon.org/utr/utr7.html. The full list of command-line options can be seen at 
http://unicon.org/utr/utr11.html.

If you don't like working from the command line, you may want to try out the Unicon 
IDE called ui. The ui program has options to compile and execute programs from inside 
a graphical interface. The following screenshot shows an example of this:

Figure A.1 – A screenshot showing ui, the Unicon IDE

The creators of Unicon use many different programming environments, and the Unicon 
IDE is more of a technology demo than a production tool, but you may find it useful, if 
only for its beloved Help menu. It is written in about 10,000 lines of Unicon, not counting 
the GUI class libraries. Now, let's consider the kind of declarations that are allowed in 
Unicon and what data types it supports.

Using Unicon's declarations and data types
You can't write a Unicon program without declaring things. Declaring something is 
the act of associating a name, visible within some scope and lifetime, with some chunk 
of code or memory capable of holding a value. Next, let's learn how different program 
components can be declared.
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Declaring different kinds of program components
Unicon programs consist of one or more procedures beginning with main(). Program 
structure often also includes classes. Unicon distinguishes user-defined procedures from 
functions that are built into the language. The following patterns show the syntax structure 
for the primary declarations of bodies of code in Unicon's procedures and methods.

Declare procedure:

procedure X ( params ) [locals]* [initial] [exprs]* end

Declare method:

method X ( params ) [locals]* [initial] [exprs]* end

A procedure or method has a name, parameters, and a body ending with the word end. 
The body may optionally start with local and static declarations and an initial section, 
followed by a sequence of expressions. Methods may only be declared inside classes, 
within which they have access to an extra set of names of class fields and other methods. 
In Unicon, there are no static methods, and all methods are public.

Declare parameters:

[ var [ : expr ]  [ , var [ : expr] ]* [ , variable [] ] ]

Declare field names:

[ var  [ , var  ]* ]

Parameters have zero or more names, separated by commas. Each parameter may 
optionally include a colon, followed by a default value or the name of a type coercion 
function. The final parameter may be followed by square brackets, indicating that 
a variable number of arguments will be passed in as a list. Parameters are used for 
procedures and methods, including initially methods. The field names that are 
declared in the record and class declarations are simpler than a parameter list, consisting 
of just a comma-separated list of identifiers.

Declare globals:

global variable [ , variable ]*                                                               

Declare locals:

local variable [ := expr ] [ , variable [ := expr ]]*                                     

Declare statics:

static variable [ := expr ] [ , variable [ := expr ]]*                                   
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Variables may be introduced with a comma-separated list of names in one of the three 
scopes: global, local, or static. Local names can have an assignment to initialize the 
variable. Global variables live for the entirety of the program's execution. Local variables 
live for the duration of a single procedure or method call. Static variables live for the 
entirety of the program's execution, and one copy of each static variable is shared by all 
the calls to that procedure or method.

Declare record type:

record R ( fields )

Declare class:

class C [ : super ]* ( fields ) [ methods ]* [ initially ] end

A record or class is declared by a name, followed by a comma-separated list of field names, 
surrounded by parentheses. The record or class name declares a global variable that holds 
a constructor function that creates instances. A class may also have a colon-separated list 
of superclass names. A class declaration contains zero or more methods and an optional 
initially section, followed by a reserved word end.

Declare initially method:

initially [ ( params) ] [locals]* [initial] [exprs]* 

An initially section is a special, optional initialization method that's called 
automatically by the class constructor. If an initially section is present, it must be after all 
other methods, immediately before the end of the class. It is not preceded by the word 
method and its parameter list is optional.

Reference library modules:

link module [ , module ]*

Unicon programs may include multiple files on the command line, but modules that 
are used by a file may also be declared in the source code. Modules may either be string 
constant filenames or identifiers that are used as filenames.

Use package:

import package [ , package ]*

Unicon's global namespace may be composed of multiple named packages, which can be 
imported by supplying the package name(s). Now, let's look at Unicon's data types.
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Using atomic data types
Unicon has a rich set of data types. Atomic types are immutable, while structure types are 
mutable. They appear directly in the source code as literal constant values or are computed 
and introduced into the program by operators or functions.

Numeric
Integers are signed arbitrary precision whole numbers. Integers are the most common 
type and work in an obvious way. There are many literal formats in bases 2 through 
36, and a set of suffixes such as K and M multiply numbers by thousands or millions. 
For example, the integer literal 4G indicates a value of four billion. Integers in Unicon 
mostly just work without us paying much attention. All the usual arithmetic operators 
are provided, along with a handy exponentiation operator, x^y. The interesting unary 
operator, ?n, produces a random number between 1 and n. The unary operator, !n, 
generates integers from 1 to n.

The real data type provides floating-point approximations of numbers. Real constants 
must contain either a decimal, an exponent, or both. It is kind of amazing to think how 
much trouble real values used to cause programmers, and how they are now taken for 
granted: real values are the same size as 64-bit integers, although the binary format 
is different. One of the challenges you occasionally face is converting back and forth 
between integers and reals. Conversion is performed automatically as needed, but it does 
take time if you do it repeatedly and unnecessarily.

Textual
Unicon has multiple built-in types for manipulating text, including strings, character sets 
(csets), and an amazing pattern type borrowed from SNOBOL4. This book uses strings and 
csets but uses Flex and Yacc instead of patterns because they are more portable. For this 
reason, we will not present the pattern type or its regular expression-based literal format.

Strings are ordered sequences of zero or more characters. A string literal is surrounded  
by double quotes and may include escape characters. The following table shows these 
escape sequences:

Table A.1 – String and cset escape characters
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Csets are unordered collections of zero or more non-duplicating characters. A cset literal 
is surrounded by single quotes and may include escape characters. Unicon has many 
cset keyword constants for the predefined character sets that are found as macros or test 
functions in other languages. It turns out that having a full set data type for characters is 
useful at times when you're performing text processing. The cset type supports the usual 
set operators, such as c1++c2, which computes a union, or c1--c2 for characters in c1 
but not in c2. Now, let's move on and look at Unicon's structure types.

Organizing multiple values using structure types
Structure types are values that are composed of multiple values. Structure types are 
mutable, which means that values can be modified or replaced. They are generally created 
at runtime by an action that allocates memory and initializes it from their component 
values. Many structure types are containers that allow values to be inserted or deleted. The 
first structure type to consider is the class, which introduces a user-defined structure type.

Classes
If your data is not numeric and not textual, you probably want to write a class for it in 
Unicon. Each Unicon class is a new data type. Class data types are used for constructing 
things from the application domain. They are usually used for things that contain several 
pieces of information, governed by complex behavior.

Unicon defines multiple inheritance semantics in an interesting way called closure-based 
inheritance, which allows cycles in the inheritance graph. The fact that Unicon classes are 
all public and all virtual keeps things simpler and focuses on expressive power rather than 
on protecting programmers from themselves. Now, let's look at Unicon's other structure 
types, which are often used to provide the associations between different class types. The 
first built-in structure type to consider is the list type.

Lists
I presented classes before lists just to tease you a bit. Lists are the most common structure 
type by far. This book only showed a small inkling of what lists can do. Unicon lists 
are sort of a cross between a linked list and an array that can grow and shrink and be 
used as a stack, queue, or deque. Internally and invisibly, the list type supports different 
representations for arrays of integers and arrays of real numbers that optimize their space 
representation compatibly with C.
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In addition to being used as arrays or stacks and such, lists are commonly used as glue 
data structures within classes to implement aggregation and multiplicity. One of the few 
warnings for mainstream programmers about Unicon lists is that their first subscript is 1, 
not 0. Let's compare the list type with the amazingly useful table data type.

Tables
A table, which is sometimes called an associative array, is an extremely flexible structure 
that maps indexes of arbitrary types onto values of arbitrary types. A table is named 
after its implementation, which is usually a hash table. A table feels like an array whose 
subscripts are not constrained to be contiguous integers starting from 1. A table's keys 
may be non-contiguous, sparse, negative, or they may be strings or any other types.

Strings and integers are almost the only types that are used as hash keys. Sure, you can  
use real numbers, but round-off errors make subsequent lookups tricky. And you can 
use csets as table keys; it is just rare. If you use other structure values as keys in a table, 
everything works, but you don't compute their hash from their contents, because the 
contents are mutable.

Files
Unicon's file type is what you would expect. Files generally access persistent storage 
managed by the operating system. There are handy functions for processing lines at a 
time. Most forms of input and output are extensions of the file type, so file functions are 
applied to network connections, graphics windows, and so on.

Other types
Unicon has a host of other powerful built-in types for things such as windows, network 
connections, and threads. Unlike some languages, it does not have a global interpreter 
lock to slow its thread concurrency down. Given values in this rich set of data types, the 
bodies of Unicon programs are assembled into computations using various expressions.

Evaluating expressions
Unicon expressions are goal-directed. When they can, they compute a result, and this 
is called success. Expressions that have no result are said to fail. Failure will generally 
prevent a surrounding expression from being performed, and it may trigger backtracking 
into an earlier part of the expression if there is one that can produce additional results.
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This goal-directed evaluation semantics eliminates the need for a Boolean data type, 
which is usually found in other languages. It also dramatically increases the expressive 
power of the language, eliminating a lot of tedious checking for sentinel values or writing 
explicit loops to search for things that can be found by goal-directed evaluation and 
backtracking. It takes time to get used to this feature, but once mastered, code is shorter 
and quicker to write.

Forming basic expressions using operators
Many of Unicon's operators will be familiar from other languages, while others are unique. 
Here is a summary of Unicon's operators. When chained together, the execution order of 
operators is determined by their precedence, which is generally as found in mainstream 
languages. Unary operators have higher precedence than binary, multiplication comes 
before addition, and so forth. When in doubt, force precedence using parentheses.

Force precedence:

( exp )

Parentheses, with no expression in front of them, just force operator precedence and 
otherwise have no effect.

Size:

* x : int

A unary asterisk is a size operator that returns how many elements are in a string, cset, 
queue, or structure, x.

Is-null:

/ x

Is-nonnull:

\ x

These predicates just produce x if the test is true, but if the test is false, then they fail.

Negate:

- num

Unary plus:

+ num 
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To negate a number is to flip its sign from positive to negative or vice versa. A unary  
plus operator coerces the operand into becoming a number but does not change its 
numeric value.

Negate evaluation result:

not exp

A not converts an expression, exp's, success into a failure and vice versa. When it 
succeeds, the result that's produced is a null value.

Tabmat:

= str

When the operand is a string, the unary equals is like tab(match(s)).

Binary arithmetic:

num1 ^ num2

num1 % num2 

num1 * num2    num1 + num2 

num1 / num2    num1 - num2

The usual binary numeric operators, including caret for exponentiation, may be followed 
immediately by a := to perform an augmented assignment; for example, x +:= 1 to 
add one to x. Almost all binary operators can be used with := to perform augmented 
assignment.

Concatenate:

str1 || str2

List concatenate:

lst1 ||| lst2

To concatenate is to attach the first and second operand, in order, and produce the result.

Assign a value:

variable := expr

In an assignment, the value on the right is stored in the variable on the left-hand side.
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Comparison:

num1 = num2

str1 == str2num1 ~= num2

str1 ~== str2num1 < num2

str1 << str2num1 <= num2

str1 <<= str2num1 > num2

str1 >> str2num1 >= num2

str1 >>= str2ex1 === ex2

ex1 ~=== ex2

The usual numeric comparison operators are provided, along with string versions that 
generally repeat the operator character. The tilde means NOT. The equivalent operator, 
===, and not-equivalent operator, ~===, do not do any type conversion, while the others 
generally coerce operands to numeric or string types as needed. Comparison operators 
result in their second operand unless they fail.

And:

ex1 & ex2                                                                                                                                          

A binary ampersand operator tests ex1 and if it succeeds, the result of the whole 
expression is the result of ex2. If ex1 fails, ex2 is not evaluated. 

Make an empty list:

[ ]

Make an initialized list:

[ ex [ , ex ]* ]

Make an expression results list:

[: ex :]

Make an initialized table:

[ ex : ex [ ; ex : ex ]* ]                                                          

When brackets enclose zero or more elements, lists and tables are created. Initializer 
elements are separated by commas. Table elements consist of key-value pairs.

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



426     Unicon Essentials

Select subelement:

ex1 [ ex2 [ , ex]* ]  

Slice:

ex1 [ ex2 : ex3 ]      

Plus slice:

ex1 [ ex2 +: ex3 ]     

Minus slice:

ex1 [ ex2 -: ex3 ]    

For lists and strings, when brackets have an expression to their left, an element or slice 
of that expression is taken. The L[1,2] expression is equivalent to L[1][2]. Regular 
element referencing picks out an element from a value, such as a string or a list. The 
element may be read and used in a surrounding expression or written into and replaced 
with an assignment. Subscripts normally start with a 1 for the first element. List and 
string indexes fail on out-of-range indices. Slicing is defined for both lists and strings. A 
string slice may be assigned if the original string is a variable. A list slice creates a list that 
contains a copy of the selected elements of the base list.

The subscripts for tables are keys and may be of any type. Table indexes result in the table 
default value when an unknown key is looked up. Records accept both strings and integer 
subscripts as if they were both tables and lists.

Access field:

x . name

The dot operator picks the name field out of a record or class instance, x. 

Invoking procedures, functions, and methods
One of the most fundamental abstractions in all programming is the act of asking  
another piece of code, somewhere else, to compute a value that is needed in an expression. 
In Unicon, you can invoke, or call, a user-written procedure, a built-in function, or a  
class method by following its name or reference with parentheses while enclosing zero  
or more values.

Call:

f ( [expr1 [ , [ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒i  ] ]* ] ) 
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Method call:

object . method ( [expr1 [ , [ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒i  ] ]* ] ) 

A procedure or function is called by following it with parentheses enclosing zero or more 
argument expressions, separated by commas. Omitting an argument results in passing 
a null value in that position. Execution moves to that procedure or function and comes 
back when a result is produced or no result is possible. A method is called by accessing the 
method name through an object. 

Finish call:

return [ expr ]

return produces expr as the result of a method or procedure. The call cannot resume. If 
the result, expr, is not provided, the expression returns null.

Produce a result:

suspend [ expr ]

suspend produces expr as the result of a method or procedure. The call will be resumed 
to try for another result if the expression where the call was made fails. If the result, expr, 
is not provided, the expression returns null.

End call without result:

fail

fail terminates a procedure or method call without a result. The call may not  
be resumed.

Iterating and selecting what and how to execute
Several Unicon control structures cover traditional control flow operations. These include 
sequencing, looping, and selecting pieces of code to execute.

Execute in sequence:

{ expr1 ; expr2 }

Curly brackets denote expressions to be evaluated in sequence. Semi-colons terminate 
each expression in the sequence. Unicon features automatic semi-colon insertion, so  
semi-colons are rarely needed except for when two or more expressions are on the  
same line.
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If-then:

if ex1 then ex2 [else ex3]

if executes ex2 when ex1 succeeds; otherwise, it evaluates to ex3.

Evaluate until it fails:

while ex1 [ do ex2 ] 

A while loop iterates until ex1 fails.

Consume a generator:

every ex1 [do ex2]

An every loop just fails no matter what. This forces all the results from ex1. This thing 
eats generators.

Loop body:

do ex

do is usually optional and provides the body to execute on the iterations of a loop.

Evaluate forever:

repeat ex

The repeat expression is a loop that reevaluates ex over and over. Among other ways, ex 
may exit the loop using break, return, fail, or by halting program execution.

Get out of loop:

break [ ex ]

break terminates a loop in the current procedure or method – always the nearest one. 
The ex expression is evaluated after the loop is terminated. You can write break break 
to get out of two loops, break break break to get out of three loops, and so on.

Scan string:

str ? ex

This control structure executes ex, setting &subject to str. The &pos keyword is started 
at 1. String scanning can be nested. It has a dynamic scope.

Execute one branch:

case ex of { [ ex1 : ex2 ] * ; [default : exN ] }
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case evaluates an expression and compares the result against a sequence of case 
branches, tested in order. If the expression is equal to the definition of ===, which is to say 
without type conversions, to one of the expressions to the left of a colon, the expression on 
the right of that colon is executed and the case is completed.

Run on first call:

initial ex

initial evaluates an expression at the front of a procedure or method, but only the first 
time that procedure or method is called.

Generators
Some expressions in Unicon can produce multiple results. Generators are infectious in 
that if a generator is resumed for a second result, or subsequent results, a surrounding 
expression may be re-executed and may end up producing multiple results for its enclosing 
expression. For example, consider the ord("="|"+"|"-") call. The ord(s) function, 
which returns the ASCII code for s, is not a generator, but if its parameter expression is 
a generator, the whole ord() expression is a generator. In this case, "="|"+"|"-" is 
a generator that can produce three results. If the enclosing expression needs all of them, 
ord() may get called three times and yield three results to an enclosing expression. As 
another example of this very good feature, consider the following expression:

\kids[1|2].first | genlabel()

This generator can produce the .first field from either kids[1] or kids[2], 
provided that kids is not null and not empty, but if those did not occur or did not satisfy 
the surrounding expression, this expression would call genlabel() and produce its 
result(s) if it has any.

Alternation:

ex1 | ex2

An alternation generates results from ex1 and then ex2.

Generate components:

! ex : any*

A unary exclamation operator produces constituent pieces of a value in some order. 
Integers are generated by counting from 1 to the number. Strings, csets, lists, records, and 
objects are generated by producing their values one at a time in order. Tables and sets 
behave similarly but the order is undefined. Files generate their contents a line at a time.
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Finite numeric sequence:

ex1 to ex2 [by ex3]

to generates numbers from ex1 to ex2. The default step is 1, but if by is provided, the 
sequence steps by that amount each time.

Debugging and environmental issues
This section contains information you may find useful when programming in Unicon. 
This includes a brief introduction to the Unicon debugger, some environment variables 
that you can set to modify Unicon runtime behavior, and a simple preprocessor that 
Unicon provides.

Learning the basics of the UDB debugger
Unicon's source-level debugger is named udb and is described in UTR 10, which can be 
read at http://unicon.org/utr/utr10.html. udb's command set is based on that 
of gdb, which lives at https://www.gnu.org/software/gdb/.

When you run udb, you provide the program to debug as a command-line argument. 
Alternatively, from within the debugger, you can run the load command to specify the 
program to debug. The debugger is normally exited using the quit (or q) command.

The udb prompt recognizes a lot of commands, often with an abbreviated form available. 
Perhaps after the quit command, the next most important command is help (or h).

The next most important command is the run (or r) command. It can be used to restart 
the program's execution from the beginning.

To set a breakpoint at a line number or procedure, you can use the break (or b) 
command, followed by the line number or procedure name. When execution hits that 
location, you will return to the udb command prompt. At that point, you can use step 
(or s) to execute one line at a time, next (or n) to run to the next line while skipping over 
any procedures or methods called, print (or p) to get the values of variables, or cont 
(or c) to continue execution at full speed.

Environment variables
Several environment variables control or modify the behavior of Unicon programs or the 
Unicon compiler. The most important of these are summarized here. By default, Unicon's 
block region heap and string region heap are sized proportional to physical memory, but 
you can set several of the runtime memory sizes explicitly:
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Table A.2 – Environment variables and their descriptions

IPATH is also used to look for superclasses and package imports. Now, let's look at 
Unicon's preprocessor, which is a bit like a simplified C preprocessor.

Preprocessor
The Unicon preprocessor performs file includes and replaces symbolic constants with 
values. The purpose of the preprocessor is to allow chunks of code to be enabled or disabled 
at compile time. This facilitates, for example, different code for different operating systems.

Preprocessor commands
The following preprocessor directives are lines beginning with a dollar sign:

• $define sym text

The symbol, sym, is replaced with text. There are no macro parameters in this 
construct.

• $include filenam

The file named filenam is incorporated into the source code where $include  
was found.

• $ifdef sym

$ifndef sym

$else

$endif

Lines inside $ifdef are passed along to the compiler if sym was introduced by 
a previous $define. $ifndef passes along source code if a symbol was not 
defined. These two directives take an optional $else, followed by more code, and 
are terminated by $endif.
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• $line num [ filenam ]

The next line should be reported as starting at line num from the filenam file.
• $undef sym

The definition, sym, is erased. Subsequent occurrences are not replaced by anything.

Built-in macro definitions
These symbols identify platforms and features that may be present and affect language 
capabilities. The built-in macro definitions include the following:

Table A.3 – Built-in macros

These symbols, which you can check at compile time using $ifdef, have corresponding 
feature strings that can be checked at runtime using &features. For details, you can 
look at Programming with Unicon. Now, let's look at Unicon's built-in functions.

Function mini-reference
This section describes a subset of Unicon's built-in functions deemed most likely to 
be relevant to programming language implementers. For a full list, see Appendix A of 
Programming with Unicon. The parameters' required types in this section are given by 
their names. The names c or cs indicate a character set. The names s or str indicate 
a string. The names i or j indicate integers. A name such as x or any indicates that the 
parameter may be of any type. Such names may be suffixed with a number to make them 
distinct from other parameters of the same type. The colons and types after the parameters 
indicate return types, along with the number of returned values. Normally, a function will 
have exactly one return value. A question mark indicates that the function is a predicate 
that can fail with zero or one return value. An asterisk indicates that the function is a 
generator with zero or more return values.
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Many functions also have default values for parameters, indicated in the reference using 
a colon and a value after their name. Functions with parameters ending in s, i, and j 
are string analysis functions. String analysis functions' last three parameters default to 
&subject, &pos, and 0. The i and j parameters are swapped if i is greater than j, 
so it does not matter in what order the indices are supplied, and analysis will always be 
conducted from left to right:

• abs(n) : num

abs(n) returns -n if n is negative. Otherwise, it returns n.
• any(cs, s, i, j) : integer?

any(cs,s,i,j) produces i+1 when s[i] is a member of cset, cs, and  
fails otherwise.

• bal(c1:&cset, c2:'(', c3:')', s, i, j) : integer*

bal(c1,c2,c3,str,i1,i2) produces indices in str where a member of c1  
in str[i:j] is balanced as far as opener characters in c2 and closer characters  
in c3.

• char(i) : str

char(i) returns the one-letter string encoding of i.
• close(f) : file

close(f) releases operating system resources associated with f and closes it.
• copy(any) : any

copy(y) produces y. For structures, it returns a physical copy. For nested 
structures, the copy is one level deep.

• delay(i) : null

delay(i) waits for at least the specified amount of milliseconds.
• delete(y1, y2, …) : y1

delete(y1,y2) removes values at the key location, y2, and subsequent elements 
from the y1 structure.

• exit(i:0) :

exit(i) quits the program run and produces i as an exit status.
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• find(str1, str2, i, j) : int*

find(str1,str2,i1,i2) produces indices where str1 occurs in str2, 
considering only indices between i1 and i2.

• getenv(str) : str?

getenv(str1) produces a value named str1 from the environment.
• iand(i1, i2) : int

iand(i1,i2) returns i1 bitwise-ANDed with i2.
• icom(i) : int

icom(i) flips the ones to zeros and the zeros to ones.
• image(x) : str

image(x) produces a string that represents the contents of x.
• insert(x1, x2, x3:&null) : x1

insert(x1,x2,x3) places x2 in the x1 structure. If x1 is a list, x2 is a position; 
otherwise, it is a key. If x1 is a table, the x2 key is associated with the x3 value. 
insert() produces the structure.

• integer(x) : int?

integer(x) coerces x into the integer type. It fails when conversion is not possible.
• ior(i1, i2) : int

ior(i1,i2) returns i1 bitwise-ORed with i2.
• ishift(i1, i2) : int

ishift(i1,i2) shifts i2 bit positions over within i1 and returns the result.  
The shift goes right if i2<0, or left if i2>0. i2 zeroes come in in the opposite 
direction of the shift.

• ixor(i1, i2) : int

ixor(i1,i2) returns i1 bitwise-exclusive-ORed with i2.
• kbhit() : ?

kbhit() returns whether the keyboard has been pressed or not.
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• key(y) : any*

key(y) produces keys/indices with which a structure's y elements may be accessed.
• list(i,x) : list

list(i,x) constructs a list with x elements that each contain x. x is not copied 
for each element of the list, so you may have to allocate them all separately if you 
want a list of lists, for example.

• many(cs,str,i,j) : int?

many(cs,str,i,j) produces the position in str that follows as many 
contiguous members of cs within str[i:j] as possible.

• map(str1,str2,str3) : str

map(str1,str2,str3) returns str1 transformed so that where str1's 
characters may be found in str2, they are replaced with the corresponding 
characters in str3. str2 and str3 must be of the same length.

• match(str, s, i, j) : int?

match(str1,s,i,j) returns i+*str1 when str1==s[i+:*str1]. The 
function fails when there is no match.

• max(num,…) : num

max(…) produces the numeric maximum of its parameters.
• member(y,…) : y?

member(y,…) produces y when the other parameters are in y; otherwise, it fails.
• min(num,…) : num

min(…) produces the numeric minimum of its parameters.
• move(i) : str

move(i) increments or decrements &pos by i and returns a substring from  
the old to the new position within &subject. The position is reset if this function 
is resumed.
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• open(str1, str2, ...) : file?

open(str1,str2,…) asks the operating system to open the str1 filename using 
the str2 mode. Subsequent arguments are attributes that may affect special files. The 
function recognizes the following modes, which are given in the str2 argument: 

Table A.4 – Modes and their descriptions

• ord(s) : integer

ord(s) returns the ordinal (for example, ASCII code) of a one-letter string, s.
• pop(L) : any?

pop(L) returns a value from the front of L and removes it from the list.
• pos(i) : int?

pos(i) returns whether string scanning is at the location, i.
• proc(any, i:1) : procedure?

proc(str,i) produces a procedure that is called s. If i is 0, the built-in function 
named s is produced if there is one by that name.

• pull(L, i:1) : any?

pull(L) returns the last element of L and removes it. It can remove i elements.
• push(L, y, ...) : list

push(L,y1,…,yN) pushes one or more elements onto the list, L, at the front. 
push() returns its first parameter, with new values added.

• read(f:&input) : str?

read(f) inputs the next line of f and returns it without the newline.
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• reads(f:&input, i:1) : str?

reads(f,i) inputs i bytes from the file, f, failing if no more bytes are there. 
reads() returns with available input, even if it is less than i bytes. When -1 bytes are 
requested, reads() returns a string that contains all the remaining bytes in the file.

• ready(f:&input, i:0) : str?

ready(f,i) inputs i bytes from the file, f, usually a network connection. It 
returns without blocking and if that means less than i bytes are available, so be it.  
It fails when no input has arrived yet.

• real(any) : real?

real(x) coerces x into its floating-point equivalent. It fails when no coercion  
is possible.

• remove(str) : ?

remove(str) deletes the file named str from the filesystem.
• rename(str1, str2) : ?

rename(str1,str2) changes the str1 file's name to str2.
• repl(y, i) : x

repl(x,i) produces i concatenated instances of x.
• reverse(y) : y

reverse(y) produces a list or string that is in the opposite order of y.
• rmdir(str) : ?

rmdir(str) deletes the folder with the name str or fails if it cannot be deleted.
• serial(y) : int?

serial(y) produces an identifying integer for the structure, y. These numbers 
are assigned when structures are allocated. Separate counters are used for each 
structure type. The identifying integer provides the chronological order in which 
instances of each type were allocated.

• set(y, …) : set

set() allocates a set. Parameters are the initial values of the new set, except if they 
are lists. Here, the parameters' contents are the initial values of the new set.
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• sort(y, i:1) : list

sort() allocates a list in which elements of y are sorted. When tables are sorted, 
keys are sorted when i is one or three, and values are sorted when i is two or four. 
When i is one or two, the return list's elements are two-element key-value sublists; 
when i is three or four, the return list's elements alternate between keys and values.

• stat(f) : record?

stat(f) produces information about f. The argument may be a string filename 
or an open file. Three portable fields are size in bytes, mode access permissions, 
and the last modified time, mtime. The mode string resembles the long listing from 
ls(1). stat(f) fails when there is no filename or path, f.

• stop(s, ...) :

stop(args) writes its arguments to &errout, followed by a newline, and then 
quits the program.

• string(any) : str?

string(y) coerces y into a corresponding string. It fails when no conversion  
is possible.

• system(x, f:&input, f:&output, f:&errout, s) : int

system(x) runs a program given as a string command line or a list of command-
line arguments. The program runs as a separate process. Optional arguments supply 
the standard I/O files. The process's exit status is returned. If the fifth parameter is 
"nowait", the function immediately returns with the new process ID instead of 
waiting for it to complete.

• tab(i:0) : str?

tab(i) assigns the location, i, to &pos. It produces a substring between the 
new and former locations. The &pos keyword is reset to its former position if the 
function resumes.

• table(k,v, ..., x) : table

table(x) builds a table whose values default to x. table(k,v,…x) initializes a 
table from alternating key and value arguments.

• trim(str, cs:' ', i:-1) : str

trim(str,cs,i) produces a substring of str with members of cset, cs, deleted 
from the front (when i=1), the back (when i=-1), or both (when i=0). By default, 
it removes trailing spaces from the end.
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• type(x) : str

type(x) produces the type of x as a string.
• upto(cs, str, i, j) : int*

upto(cs,str, i,j) generates the indices in str where a member of cset, cs, 
may be found in str[i:j]. It fails otherwise.

• write(s|f, ...) : str|file

write(…) sends one or more string arguments appended by a newline to a file, 
defaulting to &output. write() produces the final parameter.

• writes(s|f, ...) : str|file

writes(…) sends one or more string arguments to a file, defaulting to &output. 
writes() produces the final parameter.

Selected keywords
Unicon has about 75 keywords. Keywords are global names beginning with an ampersand 
with a predefined meaning. Many keywords are constant values that are built into the 
language, while others are associated with built-in domain-specific language facilities such 
as string scanning or graphics. This section lists the most essential keywords, many of 
which appear in the examples in this book:

• &clock : str

The &clock read-only keyword produces the current time of day.
• &cset : cset

The &cset constant keyword denotes the cset containing everything.
• &date : str

The &date read-only keyword produces the current date.
• &digits : cset

The &digits constant keyword denotes the cset containing 0 through 9.
• &errout : file

The &errout constant keyword denotes the standard location for error output.
• &fail :

The &fail keyword is an expression that fails to produce a result.
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• &features : str*

The &features read-only keyword produces what this Unicon runtime system 
can do as strings. For example, if Unicon is built with graphics facilities, they  
are summarized. 

• &input : file

The &input constant keyword denotes the standard location for input.
• &lcase : cset

The &lcase constant keyword denotes the cset containing the letters a through z.
• &letters : cset

The &letters constant keyword denotes the cset containing the letters A through 
Z and a through z.

• &now : int

The &now read-only keyword produces the seconds since 1/1/1970 GMT.
• &null : null

The &null constant keyword denotes a value that is not any other type. It is the 
default value in many language constructs, for things that haven't been initialized 
yet or have been omitted.

• &output : file

The &output constant keyword denotes the standard location for the regular output.
• &pos := int

The &pos keyword refers to the position within &subject where string analysis is 
performed. It starts at 1 in each string scanning environment and its value is always 
a valid index in &subject.

• &subject := str

The &subject keyword refers to the string under analysis in a string scanning 
control structure.

• &ucase : cset

The &ucase constant keyword denotes the cset containing letters A through Z.
• &version : str

The &version constant keyword reports the Unicon version as a string.
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Chapter 1
1. It is much easier to generate C code than to generate machine code, but the 

resulting code may be larger or slower than native code, and a transpiler depends  
on an underlying compiler that may be a bit of a moving target.

2. Lexical, syntax, and semantic analysis, followed by intermediate and final  
code generation.

3. Classic pain points include input/output being overly difficult, especially on new 
kinds of hardware; concurrency; and making a program run across many different 
operating systems and CPUs. One feature that languages have used to simplify 
input/output has been to reduce the problem of communicating with new hardware 
via a set of strings in human-readable formats, for example, to play music or read 
touch input. Concurrency has been simplified in languages with built-in threads 
and monitors. Portability has been simplified in languages that provide their own 
high-level virtual machine implementation.

4. This depends on your application domain of interest, but here is one. The  
language will input programs written in a Java-like syntax stored in files with  
a .j0 extension, and generate target code in the form of HTML5+JavaScript that 
runs on websites. The language will support JDBC and socket communications 
via websockets, and 2D and 3D graphics by means of OpenGL. The language 
will support an intuitive square-bracket syntax for accessing string elements and 
HashMap keys. The language will support JSON syntax natively within the source 
code as a HashMap literal.
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Chapter 2
1. Reserved words contribute both to human readability and ease of parsing for the 

language implementation, but they also sometimes preclude the most natural names 
for the variables in a program, and too many reserved words can make it more 
difficult to learn a programming language.

2. Integers in C or Java, for example, can be expressed as signed or unsigned, in 
decimal, octal, hexadecimal, or maybe even binary format, for small, medium, large, 
or super-sized words.

3. Several languages implement a semicolon insertion mechanism that makes 
semicolons optional. Often, this involves using the newline character to replace the 
role of the semicolon as a statement terminator or separator.

4. Although most Java programs do not make use of this capability, putting main() in 
several (or all) classes might be very useful in unit testing and integration testing.

5. While it is feasible to provide pre-opened input/output facilities, they can involve 
substantial resources and initialization costs that programs should not have to pay 
for unless a given input/output facility is going to be used in a program. If you 
design a language that specifically targets a domain where one of these forms of 
input/output is guaranteed, it makes good sense to consider how to make access as 
simple as possible.

Chapter 3
1. A first approximation of the regular expression is [0-3][0-9]"/"[01]

[0-9]"/"[0-9]{4}. While it is possible to write a regular expression that 
matches only legal dates, such an expression is impractically long, especially 
considering leap years. In such cases, it makes sense to use the regular expression 
that provides the simplest close approximation of correctness, and then check 
correctness in the semantic action or a subsequent semantic analysis phase.

2. yylex() returns an integer category for use in syntax analysis, while yytext is 
a string that contains the symbols matched and yylval holds an object called a 
token that contains all the lexical attributes of that lexeme.

3. When a regular expression does not return a value, the characters that it matched 
are discarded and the yylex() function continues with a new match, starting with 
the next character in the input.

4. Flex matches the longest string that it can; it breaks ties among multiple regular 
expressions by selecting whichever one matches the longest string. When two 
regular expressions match the same length in a given point, Flex selects whichever 
regular expression occurs first in the lex specification file.
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Chapter 4
1. A terminal symbol is not defined by a production rule in terms of other symbols. 

This is the opposite of a non-terminal symbol, which can be replaced by or 
constructed from the sequence of symbols on the right-hand side of a production 
rule that defines that non-terminal symbol.

2. A shift removes the current symbol from the input and pushes it onto the parse 
stack. A reduce pops zero or more symbols from the top of the parse stack that 
match the right-hand side of a production rule and pushes the corresponding 
non-terminal from the left side of the production rule in their place.

3. YACC gives you a chance to execute some semantic action code only when a reduce 
operation takes place.

4. The integer categories returned from yylex() in the previous chapter are exactly 
the sequence of terminal symbols that the parser sees and shifts on during parsing. 
A successful parse shifts all the available input symbols and gradually reduces them 
back to the starting non-terminal of the grammar.

Chapter 5
1. The yylex() lexical analyzer allocates a leaf and stores it in yylval for each 

terminal symbol that it returns to yyparse().
2. When a production rule in the grammar is reduced, the semantic action code in  

the parser allocates an internal node and initializes its children to refer to the 
leaves and internal nodes corresponding to symbols on the right-hand side of that 
production rule.

3. yyparse() maintains a value stack that grows and shrinks in lock-step with the 
parse stack during parsing. Leaves and internal nodes are stored on the value stack 
until they are inserted as children into a containing internal node.

4. A value stack is fully generic and can contain any type of value. In C, this is done 
using a union type, which is type-unsafe. In Java, it is done using a parserVal 
class that contains the tree nodes in a generic way. In Unicon and other dynamic 
languages, no wrapping or unwrapping is needed.

Chapter 6
1. Symbol tables allow your semantic analysis and code generation phases to quickly 

look up symbols declared far away in the syntax tree, following the scoping rules of 
the language.
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2. Synthesized attributes are computed using the information located immediately 
at a node or using information obtained from its children. Inherited attributes are 
computed using information from elsewhere in the tree, such as parent or sibling 
nodes. Synthesized attributes are typically computed using a bottom-up post-order 
traversal of the syntax tree, while inherited attributes are typically computed using 
a pre-order traversal. Both kinds of attributes are stored in syntax tree nodes in 
variables added to the node's data type.

3. The Jzero language calls for a global scope, a class scope, and one local scope  
for each member function. The symbol tables are typically organized in a tree 
structure corresponding to the scoping rules of the language, with child symbol 
tables attached or associated with the corresponding symbol table entries in the 
enclosing scope.

4. If Jzero allowed multiple classes in separate files, the symbol tables would need a 
mechanism to be aware of said classes. In Java, this may entail reading other source 
files at compile time while compiling a given file. This implies that classes must 
be easily found without reference to their filename, hence Java's requirement that 
classes be placed in files whose base name is the same as the class name.

Chapter 7
1. Type checking finds many errors that would prevent the program from running 

correctly. But it also helps determine how much memory will be needed to hold 
variables, and exactly what instructions will be needed to perform the various 
operations in the program.

2. A structure type is needed to represent arbitrarily deep composite structures, 
including recursive structures such as linked lists. Any given program only has 
a finite number of such types, so it would be possible to enumerate them and 
represent them using integer subscripts by placing them in a type table, but 
references to structures provide a more direct representation.

3. If real compilers reported an OK line for every successful type check, non-toy 
programs would emit thousands of such checks on every compile, making it 
difficult to notice the occasional errors.

4. Picky type checkers may be a pain for programmers, but they help avoid unintended 
type conversions that hide logic errors, and they also reduce the tendency of a 
language to run slow due to silently and automatically converting types over and 
over again at runtime.
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Chapter 8
1. For any specific array access, the result of a subscript operator will be the array's 

element type. With a struct or class access, the name of the (member) field within 
the struct must be used to determine the resulting type, via a symbol table lookup or 
something equivalent.

2. A function's return type can be stored in the function's symbol table and looked 
up from anywhere within the function's body. One easy way to do this is to store 
the return type under a symbol that is not a legal variable name, such as return. An 
alternative would be to propagate the function's return type down into the function 
body as an inherited attribute. This might be relatively straightforward, but it seems 
like a waste of space in the parse tree nodes.

3. Generally, operators such as plus and minus have a fixed number of operands and a 
fixed number of types for which they are defined; this lends itself to storing the type 
checking rules in a table or a switch statement of some kind. Function calls have 
to perform type checking over an arbitrary number of arguments that can be of an 
arbitrary type. The function's parameters and return type are stored in its symbol 
table entry. They are looked up and used to type check each site where that function 
is called.

4. Besides member access, type checking occurs when composite types are created, 
assigned, passed as parameters, and, in some languages, destroyed.

Chapter 11
1. Complex instruction sets take more time and logic to decode and might make the 

implementation of the byte-code interpreter more difficult or less portable. On the 
other hand, the closer the final code comes to resembling intermediate code, the 
simpler the final code generation stage becomes.

2. Implementing bytecode addresses using hardware addresses provides the best 
performance that you might hope for, but it may leave an implementation more 
vulnerable to memory safety and security issues. A bytecode interpreter that 
implements addresses using offsets within an array of bytes may find it has fewer 
memory problems; performance may or may not be a problem.

3. Some bytecode interpreters may benefit from the ability to modify code at runtime. 
For example, bytecode that was linked using byte-offset information may be 
converted into code that uses pointers. Immutable code makes this type of self-
modifying behavior more difficult or impossible.
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Chapter 12
1. Operands from multi-operand instructions are pushed onto the stack by push 

instructions. The actual operation computes a result. The result is stored in memory 
by a pop instruction.

2. A table that maps each of the labels to byte offset 120 is constructed. Uses of labels 
encountered after their table entry exists are simply replaced by the value 120. Uses 
of labels encountered before their table entry exists are forward references; the table 
must contain a linked list of forward references that are backpatched when the label 
is encountered.

3. On the Jzero bytecode stack machine, operands might already be on the stack and 
PARM instructions might be redundant, allowing for substantial optimization. Also, 
on the Jzero machine, the function call sequence calls for a reference/address to the 
method being called to be pushed before the operands; this is a very different calling 
convention from that used in the three-address intermediate code.

4. Static methods do not get invoked on an object instance. In the case of a static 
method with no parameters, you may need to push the procedure address within 
the CALL instruction since it is preceded by no PARM instructions.

5. If you determine that your three-address code for nested calls does in fact result in 
nested PARM…CALL sequences, you will need a stack of PARM instructions to manage 
it and will need to carefully search for the correct CALL instruction, skipping over 
any nested CALL instructions whose number of PARM instructions were placed on 
the stack after the PARM instruction for which you are searching. Have fun!

Chapter 13
1. There are many new concepts in native code. These include many kinds and sizes of 

registers and main memory access modes. Choosing from many possible underlying 
instruction sequences is also important.

2. Even with the runtime addition required, addresses that are stored as offsets 
relative to the instruction pointer may be more compact and may take advantage 
of instruction prefetching in the pipelined architecture, to provide faster access to 
global variables than specifying them using absolute addresses.

3. Function call speed is important because modern software is often organized into 
many frequently called tiny functions. The x64 architecture performs fast function 
calls if functions take advantage of passing the first six parameters in registers. 
Several aspects of x64 architecture seem to have the potential to reduce execution 
speed, such as a need to save and restore large numbers of registers to memory 
before and after a call.
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Chapter 14
1. Although libraries are great, they have downsides. Libraries tend to have more 

version compatibility problems than the features that are built into the language. 
Libraries are unable to provide a notation that is concise and readable as built-ins. 
Lastly, libraries do not lend themselves to interactions with novel control structures 
to support new application domains.

2. If your new computation only needs one or two parameters, appears many times 
in typical applications in your domain, and computes a new value without side 
effects, it is a good candidate to be made into an operator. An operator is limited to 
two operands, or at the most, three; otherwise, it will not provide any readability 
advantage over a function.

3. Ultimately, we have to read the books written by the Java language inventors to hear 
their reasons, but one answer might be that Java designers wanted to use strings as 
a class and decided classes would not be free to implement operators for the sake of 
referential transparency.

Chapter 15
1. Control structures in very high-level and domain-specific languages had better be a 

lot more powerful than just if statements and loops; otherwise, programmers would 
be better off just coding in a mainstream language.

2. We provided some examples in which control structures provided defaults for 
0parameters or ensured an open resource was closed afterward. Domain-specific 
control structures can certainly provide additional high-level semantics, such as 
performing domain-specific input/output or accessing specialty hardware in a way 
that is difficult to accomplish within the context of a mainstream control flow.

3. The application domain is string analysis. Maybe some additional operators or 
built-in functions would improve Unicon's expressive power for string analysis. Can 
you think of any candidates you could add to the six-string analysis functions or the 
two position-moving functions? You could easily run some statistics on common 
Icon and/or Unicon applications and discover which combinations of tab() or 
move() and the six-string analysis functions occurs most frequently in the code 
and is a candidate for becoming an operator, besides tab(match()). I doubt that 
tab(match()) is the most frequent. But beware: if you add too many primitives, 
it makes the control structure more difficult to learn and master. Also, the ideas 
from this control structure could be applied to the analysis of other sequential data, 
such as arrays/lists of numeric or object instance values.
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4. It is tempting to bundle as much additional semantics into a domain control 
structure as possible so that you make the code more concise. However, if a good 
number of wsection constructs are not based on a hierarchical 3D model 
and would not make use of the built-in functionality of PushMatrix() and 
PopMatrix(), bundling that into wsection might slow down the construct's 
execution speed unnecessarily.

Chapter 16
1. You could modify the PostDescrip() macro to check for a null value before 

checking whether a value is a qualifier or a pointer. Whether such a check pays for 
itself depends on how costly the bitwise AND operator is, and the actual frequency 
of different types of data encountered during these checks, which can be measured, 
but may well vary depending on the application.

2. If each class type had its own heap region, instances would not need to track their 
size, potentially saving memory costs for classes that have many small instances. 
The freed garbage instances could be managed on a linked list and compared with a 
mark-and-sweep collector, and instances might never need to be moved or pointers 
updated, simplifying garbage collection. On the other hand, some program runs 
might only use a very few of the various classes, and allocating a dedicated heap 
region for such classes might be a waste.

3. While some time might be saved by not moving data during garbage collection, 
over time, a substantial amount of memory might be lost to fragmentation. Small 
chunks of free memory might go unused because later memory allocation requests, 
were for larger amounts.
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block region
about  391, 392
marking  395-397

branches
native code, generating  334, 335

build dependencies  104
built-in functions

adding, to bytecode interpreter  354
implementing, for Unicon  357
used, for specifying rendering 

regions  370, 371
writing  353
writing, for native code  355
writing, issues  360, 361

built-in macro definitions  432
built-in string analysis functions  367
Byrd box model  405
bytecode

about  268, 269
generating, for branches  304, 305
generating, for conditional 

branches  304, 305
generating, for expressions  301, 302
loading, into memory  277-279
printing, in assembler format  309-311

printing, in binary format  311, 312
versus intermediate code  270-272

bytecode addresses
intermediate code addresses, 

mapping to  298, 299
bytecode assembler

comparing, with binary formats  308
bytecode generation

in icont  313-315
bytecode generator method

implementing  300, 301
bytecode instructions

class, adding for  297, 298
bytecode instruction set

building, for Jzero  273
bytecode interpreter

about  6
built-in functions, adding to  354
implementing  277
string concatenation, adding to  349-351

bytecode interpreter state
initializing  279-281

bytecode machine implementation
learning  406
references  409, 410

C
callback functions  31
cascading error messages  82
central processing unit (CPU)  318
character sets (csets)  420, 421
C language  26
class

about  421
adding, for bytecode 

instructions  297, 298
defining, for symbol tables  150, 151
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class instances  211
class member functions  174
closure-based inheritance  421
code

generating, for pointer 
manipulation  333, 334

code optimization
about  406
expertise, acquiring  407
references  410

code refactoring  364
code smells  364
common syntax tree bugs

avoiding  129, 130
comparison operators  127
compiler

integrating, into programmer's 
editor  251

type representation  172
compiler output

sending, to IDE  252, 253
composite operators  346
composite types  24, 25
concatenation  38
conditional branches

native code, generating  334, 335
condition expressions

label targets, generating for  236-240
conflicts

fixing, in yacc parsers  81
kinds, reduce/reduce  81
kinds, shift/reduce  81

constant values  19
context-free grammar  71
context-free grammar, components

non-terminal symbols  72
production rules  72
terminal symbols  72

context-free grammar rules
about  72
writing  72, 73

context-free grammar section  77, 78
control flow

about  21
specifying  21, 22

control structure
about  356
defining  364, 365
excessive parameters, 

eliminating via  369
excessive redundant parameters, 

reducing  365, 366
need for  364
used, for integrating built-ins  356

current input symbol  79, 100

D
data types

categories, deciding to support  23
for intermediate code  222-224

Debugging With Arbitrary Record 
Formats (DWARF)  407

declarations
about  145
intermediate code  229
parameters  418
record or class name  419
syntax structure  418
variables  419

declared variables
type information, assigning to  176-178

dereferencing  146
derivation step  73
dictionary  25
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display list
3D graphics, rendering from  370
about  32

domain-specific languages (DSLs)  11
domain-specific types  25
dot

used, for printing syntax tree  132-138
d-word descriptor  190
dynamic memory allocation  382

E
EditableTextList component

extending, to support color  258
environment variables  430, 431
epsilon rule  90, 123
errors

highlighting, with parse results  259-261
executable linking format (ELF)  342, 407
expression grammar  92
expressions

about  22
code to execute, iterating  427, 428
code to execute, selecting  427, 428
evaluating  422
forming, with operators  423-426
functions, invoking  426, 427
generators  429
intermediate code, generating 

for  233-236
methods, invoking  426, 427
procedures, invoking  426, 427

F
fail expressions  422
fields  25

file
about  422
reparsing, avoidance on every 

change  253-257
final code generator  6
first-class data types  23
Flex

reference link  41
function call  199
function mini-reference  432-439
functions

about  360
invoking  426, 427

G
garbage collection

need for  382, 383
GDB  407
generators  292
global variables  419
GNU Compiler Collection's 

(GCC)  100, 343
GNU make

using  104-107
GNU Multiple Precision (GMP)  360
GNU Project Debugger

reference link  430
GNU's Not Unix (GNU)  318
Go  64, 407
goal-directed bytecode  292
goal-directed evaluation  368
goto table  79
grammar rule

adding  374
graph  107
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graphical levels of detail
varying, with nested rendering 

regions  371, 372
graphical UI (GUI)  251
graphics context  365
graphics facilities

designing, in Unicon  28
groundwork establishment, 

for symbol tables
about  144
declarations  144, 145
scopes  145
tree traversal, selecting for job  146, 147
variables, assigning  146
variables, dereferencing  146

GUI builders
designing  408
implementing  408
references  411, 412

H
HashMap  148
hash table  147
heap  382
heap allocation

code, generating for  385-387
heap memory regions

organizing  391, 392
heap pointer register  277

I
Icon

about  389, 405
strings, scanning  366, 367

icont
bytecode generation  313-315

iconx
examining  291

Icon yacc (iyacc)
toy example  82-87
using  76

identifiers (IDs)  18, 109
Idol  163
in-order traversal  147
instance accesses

about  214
types, checking at  214-217

instance creation
types, checking at  211-214

instance variable declarations
handling  210

instruction
decoding  283, 284
fetching  281, 282

instruction pointer
about  277, 281
advancing  281, 282

instruction set, intermediate code  228
integrated development 

environment (IDE)
compiler output, sending to  252, 253
designing  408
examples, usage  249, 250
implementing  408
references  411, 412
source code, analyzing from 

within  251, 252
intermediate code

about  219
addresses, mapping to x64 

location  326-330
attributes, adding to tree  224, 225
benefits  220
converting, to Jzero bytecode  296, 297
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converting, to x64 code  325, 326
data types  222-224
declarations  229
generating  220
generating, for control flow  236
generating, for expressions  233-236
generating, for loops  240-242
generating, for method calls  242, 243
generating, for method calls 

and returns  305, 307
generating, for pointer 

manipulation  303, 304
generation, need for  220
instruction set  228
labels, generating  225
labels, handling  308
label targets, generating for condition 

expressions  236-240
memory regions  221, 222
pseudo-instructions, handling  308
reviewing  244, 245
temporary variables, generating  226, 227
versus bytecode  270-272

intermediate code addresses
mapping, to bytecode addresses  298, 299

intermediate code generation
string concatenation, adding to  347-349

intermediate code generator  6
internal nodes

about  107, 184
building, from production rules  117
types, calculating at  184
types, checking at  184-189

interpreter implementation
learning  406
references  409, 410

intersection  38

isConst attribute
about  149
base case  156
recursion step  156
synthesizing  156-158

J
Java

about  8, 383
for compilers, writing  403

Java HashMap  148
Java Jzero code  57-62
Java Jzero parser code  96
Java SE specifications

reference link  88
Java support

adding  261-263
Java syntax error messages

detail, adding to  100
Java Virtual Machine (JVM)  6, 312
JFlex

using  41
Jzero

about  8, 145, 163, 384
bytecode instruction set, building  273
parser, writing for  88
reference counting, adding to  384
runtime system, writing  289, 290
scanner, writing for  51
syntax trees, forming  121-128

Jzero bytecode
intermediate code, converting 

to  296, 297
Jzero bytecode file format

defining  273-276
Jzero flex specification  51-54
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Jzero instruction
executing  284-288

Jzero interpreter
working on  288, 289

Jzero language definition
completing  27

Jzero lex specification  88
Jzero parser

running  97-99
Jzero program

running  290, 291
Jzero scanner

running  62, 63
Jzero yacc specification  88-93

K
key-value pairs  425
keywords

listing  439, 440
Kobayashi Maru  76

L
label

handling  338-340
handling, in intermediate code  308

LALR(1)  78
LALR parser

reference link  78
language

versus library  9, 10
leaves

about  107, 112
creating, from terminal symbols  112
determining for requirement  116
tokens, wrapping  112, 113
type, determining at  182-184

wrapping, for parser's value 
stack  114-116

level of detail (LOD)  32
lexeme  37
lexer  85, 88
lexical analysis  71
lexical analyzer  6, 64, 251
lexical attributes  47
lexical category  37
lexical information

using, to colorize tokens  258
lex specification

header section  41
regular expressions section  42

library
about  9
versus language  9, 10

linking  342, 343
Lisp  406
lists  421
literal  18, 19
live memory

placing, into contiguous chunks  397-401
reclaiming  398-401

loading  342, 343
local variables  419
loops

intermediate code, generating 
for  240-242

M
mark-and-sweep garbage 

collector  389-391
mark live data

traversing  392-395
member  38
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memory regions, intermediate 
code  221, 222

Merr
about  101
reference link  101
using, to generate better syntax 

error messages  100, 101
Meta error  101
method calls

checking  199
intermediate code, generating 

for  242, 243
parameters, calculating  200-203
return type, calculating  200-203
types, checking at method 

call site  203-207
types, checking at return 

statements  208, 209
method calls and returns

code, generating  335-337
method call sites  203
methods

about  199
invoking  426, 427

Moore's Law  382
mutual recursion  126

N
n-ary trees  107
native assembler

to object file  341, 342
native code

built-in functions, writing  355
generating  318
generating, for branches  334, 335

generating, for conditional branches  334
references  410

native runtime system
string concatenation, adding to  352, 353

nested rendering regions
used, for varying graphical 

levels of detail  371, 372
nodes  107
nondeterministic polynomial-

complete (NP-complete)  321
non-terminal symbols  72
null strategy  322
numeric data types  420

O
object-oriented (OO)  262, 383
objects  211
operation code (opcode)  297, 319
operator associativity  21
operator precedence  38
operators

about  18, 346
implementing  346
implementing, for Unicon  357
implying, hardware support  347
string concatenation, adding to 

bytecode interpreter  349-351
string concatenation, adding 

to intermediate code 
generation  347-349

string concatenation, adding to 
native runtime system  352, 353

used, for forming basic 
expressions  423-426

writing, in Unicon  358-360
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P
package and class scopes 

handling, in Unicon
about  163
name mangling  164

package handling, in Unicon
self, inserting as first parameter 

in method calls  165, 166
self, inserting for member 

variable references  165
pain points  364
parallel translations model  8
parser

about  251
writing, for Jzero  88

parse results
used, for highlighting errors  259-261

parser's value stack
leaves, wrapping for  114-116

parse state  79, 100
parse trees

about  110
versus syntax trees  110-112

parsing  73
Pascal  26
pointer manipulation

code, generating  333, 334
intermediate code, generating 

for  303, 304
Portable Network Graphic (PNG)  106
position  366
post-order traversal  147, 178
precedence  19
pre-order traversal  146, 180
preprocessor

about  251, 431
built-in macro definitions  432

commands  431
procedures

invoking  426, 427
production rules

about  72
internal nodes, building from  117

program components
declaring  418, 419

program executions
debugging  407
monitoring  407

program executions debugging
references  411

program executions monitoring
references  411

programmer's editor
compiler, integrating into  251

programming constructs
rules, writing  74, 75

programming language
building  4
bytecode language implementation, 

organizing  6, 7
example  8, 9
implementation types  5
requirement  11-13

programming language design
learning  404, 405
references  409

programming language zero (PL/0)  8
program structure  26, 27
Prolog  405
pseudo-instructions

handling  338-340
handling, in intermediate code  308

Python  389
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Q
qualifiers  394

R
recursion

about  74
reference link  74

redeclared variables
identifying  161

reduce  79
reduce/reduce conflicts  81
reference counting

about  384
adding, to Jzero  384
code, generating for heap 

allocation  385-387
drawbacks  388, 389
generated code, modifying for 

assignment operator  388
to objects  384

registers
assigning, to local region  323, 324
null strategy  322
using  321

regular expressions
about  38
examples  39, 40
rules  38, 39

relational operators  127
rendering region control structure

code, generating for wsection 
control structure  377, 378

creating  373
grammar rule, adding  374
reserved word, adding  373

wsection, checking for semantic 
errors  375, 376

rendering regions
about  369
specifying, with built-in 

functions  370, 371
reserved words

about  18
types, synthesizing from  178, 179

return statements
type, checking at  208, 209

root  107
rules

writing, for programming 
constructs  74, 75

Run Time Language (RTL)  293, 357
runtime system

about  342, 343
crafting  293
including  312
linking  312
loading  312
writing, for Jzero  289, 290

runtime type checks
performing, in Unicon  190

S
scanner

writing, for Jzero  51
scanning environment

about  367, 368
primitive operations  368

scope  145
selective rendering  370
semantic action  42, 77, 117
semantic analysis  143
semantic analyzer  6
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semantic attributes
about  148
adding, to syntax trees  148-150
inherited attributes  148
synthesized attributes  148

semantic errors
reporting  162
wsection, checking  375, 376

semantics  17
semicolon insertion

running  64
semicolon insertion semantics, Go

reference link  64
shift  79
shift/reduce conflicts  81
signature  200
singleton class  44
SmallTalk  405
software crisis  382
software engineering  382
software engineering tasks

applicability  10
source code

analyzing, from within IDE  251
analyzing, within IDE  252

source code scanner
running  45-47
writing  42-45

special iterator syntax  356
special switch syntax  356
stab attribute  149
stack  382
stack machine operation

basics  276
stack pointer  277
star operator  39
statement grammar  90
statements  22

static allocation  382
static variables  419
string concatenation

adding, to bytecode interpreter  349-351
adding, to intermediate code 

generation  347-349
adding, to native runtime 

system  352, 353
string pool  351
string region  391, 392
strings

about  420
scanning, in Icon  366, 367
scanning, in Unicon  366, 367

string scanning  368, 369
structured programming  382
structured type accesses

checking  210
instance variable declarations, 

handling  210
types, checking at instance 

accesses  214-217
types, checking at instance 

creation  211-214
structure types

about  210
classes  421
files  422
lists  421
other types  422
table  422
used, for organizing multiple values  421

subject  366
subject, position pair  367
Subversion  250
success expressions  422
suffix rule  105

 EBSCOhost - printed on 2/9/2023 10:21 AM via . All use subject to https://www.ebsco.com/terms-of-use



466     Index

symbols
about  143
declaring, in header section  76, 77

symbol tables
about  143
classes, defining for  150, 151
creating  152-154
creating, for each scope  147
debugging  168
groundwork, establishing  144
issues  148
populating  154-156
populating, for each scope  147
semantic attributes, adding to 

syntax trees  148-150
symbols, inserting into  161, 162
testing  166
traditional implementation  147
undeclared variables, checking  158

symtab class  150, 151
symtab_entry class  151
syntax

about  17
analyzing  71

syntax analyzer  6
syntax error messages

about  71
generating, with Merr  100, 101
improving  99

syntax error recovery  82
syntax tree

about  103, 111
annotating, with labels for 

control flow  230-232
debugging  129
forming, for Jzero language  121-128
parse trees versus  110-112

printing, in text format  130-132
printing, with dot  132-138
testing  129

syntax tree node
type, determining at  181

syntax tree traversal  148
syntax tree type

defining  108

T
tab character  105
table  148, 422
table data type  25
terminal symbols

about  72
leaves, creating from  112

text format
syntax tree, printing  130-132

textual data types  420, 421
three-address code  222
token

about  37, 47
coloring, as drawn  258, 259
colorizing, with lexical information  258
constructing  48, 50
fields  37
wrapping, in leaves  112, 113

tree class
fields  108, 109

tree node factory method
using  119, 120

tree nodes
accessing, on value stack  117-119

trees  107
tree traversal

selecting, for job  146, 147
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type
calculating, at internal nodes  184
checking, at internal nodes  185-189
determining at leaves  182-184
determining at syntax tree 

node  181, 182
inheriting, into variables list  180, 181
synthesizing, from reserved 

words  178, 179
type checking

about  171
at instance accesses  214-217
at instance creation  211-213
at method call site  203-207
at return statements  208, 209
during array accesses  198, 199
during array creation  195-198

type inference
performing, in Unicon  190, 191

typeinfo class
about  172
subclasses  173

type information
about  176
assigning, to declared variables  176-178
leaving, at runtime  292

type representation, in compiler
about  172
base class, defining  172, 173
base class, subclassing for 

complex types  173-176

U
ucode  105, 269
UDB debugger

basics, learning  430
reference link  430

UFlex
using  41

undeclared variables
bodies of methods, identifying  158, 159
checking  158
variables uses, spotting within 

method bodies  159-161
Unicon

2D graphics facilities  29-31
3D graphics, support adding for  31, 32
about  8, 64, 148, 386
built-in functions, implementing  357
class scopes, handling  163
data types, using  417
debugging  430
declarations, using  417
environmental issues  430
graphics facilities, designing  28
operators, implementing  357
operators, writing  358-360
package, handling  163
rendering regions  369
runtime type checks, performing  190
strings, scanning  366, 367
type inference, performing  190, 191

Unicon bytecode instructions
decoding  293
executing  293
fetching  293
goal-directed bytecode  292
type information, leaving at runtime  292

Unicon bytecode interpreter
iconx, examining  291

Unicon garbage collector
heap memory regions, 

organizing  391, 392
live memory, placing into 

contiguous chunks  397-401
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live memory, reclaiming  397
mark-and-sweep style  389-391
mark live data, traversing  392-395

Unicon IDE (ui)  249
Unicon Implementation Compendium

reference link  67
Unicon Jzero code  54-57, 93-95
Unicon programming language 

requirement
about  13
high-level input, for modern 

application  14
high-level output, for modern 

application  14
Icon  13
large-scale programs, working 

on big data  14
universally implementable 

system interfaces  15
Unicon programs

running  416, 417
Unicon, running on Windows

reference link  417
Unicon syntax error messages

detail, adding to  99
Unified Modeling Language (UML)  112
uni/ide  249
union  38

V
value stack

about  113
of yacc, working with  113, 114
tree nodes, accessing  117-119

variables
about  146
assigning  146
dereferencing  146

Virtual Box  6
virtual machine (VM)  6, 308

W
Warren Abstract Machine (WAM)  406
while regular expression  39
words

categories, determining to 
provide in language  18

wsection
checking, for semantic errors  375, 376

wsection control structure
code, generating  377, 378

X
x64 code

generating, for simple 
expressions  331, 332

intermediate code, converting 
to  325, 326

writing, in assembly language 
format  340, 341

x64 code generator method
implementing  330, 331

x64 instruction set
about  318, 319
class, adding  319, 320
memory regions, mapping to 

address modes  320
x64 output

generating  340
Xlib  365
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Y
yacc parsers

about  78-81
conflicts, fixing  81

yet-another-compiler-compiler (yacc)
about  76
advanced yacc declarations  77
context-free grammar section  77, 78
symbols, declaring in header 

section  76, 77
syntax error recovery  82
value stack, working with  113, 114
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