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formofDNAcomputing.Recently,DNAcomputingisgainingacceptanceinthefieldofeco-friendly,
unconventional,nature-inspiredcomputation.Thefutureofcomputingdependsonmakingitrenewable,
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Finally,themodelhasbeenimplementedforaspecificcasestudyinMafraq,Jordan.Thesystemsatisfies
anetpoweroutputof1500kWe.Thedevelopedmodelhasbeenvalidatedusingpublishedresults.In
conclusion, the obtained results reveal that the optimised model of the microgrid can substantially
improvetheoverallefficiencyandreducethelevelisedcostofelectricity.
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Various improvements canbemade toDarrieusvertical axiswind turbines (VAWT) formaximum
performanceinanurbanenvironment.Onesuchimprovementistheinclusionofbio-inspiredleading-
edge tubercles to increase theaerodynamicperformance.These structures, foundon theflippersof
humpbackwhales,arebelievedtoaidthemammalinquickmaneuvering.Theobjectiveofthechapter
istoinvestigateandcomparetheperformanceofaDarrieustypeVAWTwiththeinclusionofleading
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ABSTRACT

The use of artificial intelligence (AI) in various domains has drastically increased during the last decade. 
Nature-inspired computing is a strong computing approach that belongs to AI and covers a wide range 
of techniques. It has successfully tackled many complex problems and outperformed several classical 
techniques. This chapter provides the original ideas behind some nature-inspired computing techniques 
and their applications, such as the genetic algorithms, particle swarm optimization, grey wolf optimizer, 
ant colony optimization, plant propagation algorithm, cuckoo optimization algorithm, and artificial 
neural networks.

1. INTRODUCTION

Nowadays, artificial intelligence (AI) is largely used in almost all domains. It includes various ap-
proaches, notably nature-inspired algorithms. These algorithms involve mathematical models inspired 
by the principles of biology, such as human anatomy and evolution, animals and insects, and by the 
principles of natural phenomena, such as fractals, water cycle, and galaxy gravity. Stochastic models 
are used in this kind of algorithms to explore and exploit the search space for finding the optimal solu-
tions in a reasonable number of iterations and time. Many mathematical and engineering benchmarks 
have been investigated to prove the effectiveness of these algorithms. Despite these algorithms having 
some limitations, the advantages are much more numerous and real-world applications are reaffirming 
this matter, notably in renewable energy systems, such as fuel cells, photovoltaic cells, wind turbines, 
biomass, geothermal, and hybrid systems.

A comprehensive illustration of nature-inspired algorithms may take the whole book; therefore, this 
chapter presents the basic principles and applications of some of them. It is organized as follows. Sec-
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tion 2 includes the definition of some algorithms. Section 3 highlights a listing of applications. Finally, 
the last section concludes the chapter.

2. PRINCIPLES OF SOME NATURE-INSPIRED ALGORITHMS

2.1. Genetic Algorithms

The genetic algorithms (GAs) are one of the most popular, oldest, and pioneer nature-inspired optimi-
zation algorithms. John Henry Holland developed the GAs in 1975 (Holland, 1975) based on genetic 
operators: chromosomes, parents, children, population, selection, crossover, and mutation. Many types 
of each operator can be used to solve a particular problem. The detailed principles can be found in Refs. 
(Holland, 1975; Sivanandam & Deepa, 2008; Sumathi & Paneerselvam, 2010).

2.2. Ant colony Optimization

The ant colony optimization (ACO) was developed by Marco Dorigo in 1992 (M. Dorigo, 1992). It is 
based on the ants’ behavior for foraging. The ants left a pheromone on the ground and based on its in-
tensity and evaporation process, the optimal path will be identified. It allows finding the shortest path. 
The detailed principles can be found in Refs. (M. Dorigo, 1992; Marco Dorigo, Maniezzo, & Colorni, 
1996; M. A. Mellal & Williams, 2018).

2.3. Particle Swarm Optimization

The particle swarm optimization (PSO) is inspired by the principles of the moving style of some spe-
cies, such as birds and fishes. It was developed by Kennedy and Eberhart in 1995 (Kennedy & Eberhart, 
1995). Each element of the swarm, called a particle, has a position and a velocity. The particles move 
randomly and the best positions are computed and updated. Comprehensive details about the PSO can 
be found in Refs. (Clerc, 2006; Kennedy & Eberhart, 1995; M. A. Mellal & Williams, 2018).

2.4. Grey Wolf Optimizer

The grey wolf optimizer (GWO) was developed by Mirjalili et al. in 2014 (Mirjalili, Mirjalili, & Lewis, 
2014) and is inspired by the grey wolves. This algorithm is reputed to be efficient and fast. In the GWO, 
the wolves are divided into four hierarchies, called alpha, beta, delta, and omega. These wolves follow 
some rules to hunt. Details can be found in Refs. (Mohamed Arezki Mellal, Frik, & Boutiche, 2021; 
Mirjalili et al., 2014; Panda & Das, 2019).

2.5. Plant Propagation Algorithm

The plant propagation algorithm (PPA), also called the strawberry algorithm, is inspired by the propa-
gation mechanism of some plants, such as the strawberry plant. It was developed by Salhi and Fraga in 
2011 (Salhi & Fraga, 2011), based on the runners of these plants. This algorithm is characterized by a 
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few parameters to be tuned. A comprehensive presentation on the PPA can be found in Refs. (Salhi & 
Fraga, 2011; Sulaiman, Salhi, Selamoglu, & Kirikchi, 2014).

2.6. Cuckoo Optimization Algorithm

The cuckoo optimization algorithm (COA) was developed by Ramin Rajabioun in 2011 to deal with 
PID tuning in control systems (Rajabioun, 2011). The basic principles are based on the cuckoos’ birds 
in terms of feeding, reproduction, and migration to the best habitat. The cuckoos are particular birds, as 
they don’t build their proposer nests and lay their eggs in the nests of other bird species. The COA has 
been largely and successfully implemented to solve various engineering problems. More information 
about the COA can be found in Refs. (M. A. Mellal & Williams, 2017; Rajabioun, 2011).

Table 1. Some applications of the cited nature-inspired computing techniques.

Technique Applications

GAs

- PV-Wind-Battery Storage (Adefarati et al., 2019). 
- Hybrid wind and solar renewable energy (Geleta & Manshahia, 2021). 
- Design of hybrid renewable energy systems (Ismail, Moghavvemi, & Mahlia, 2014). 
- Design and placement of wind turbines (Grady, Hussaini, & Abdullah, 2005; Mellal & Pecht, 2020). 
- Flow shop scheduling (Umam, Mustafid, & Suryono, 2021). 
- Image processing (Guo, Peng, & Tang, 2016). 
- Replacement of obsolete components (Mellal, Adjerid, Benazzouz, Berrazouane, & Williams, 2013).

ACO

- Energy storage (Deshun, Yumeng, Qiong, Jinhua, & Jelei, 2018). 
- Photovoltaic power forecasting (Pan et al., 2020). 
- Frequency control in hydropower plants (Singh & Verma, 2020). 
- Economic load dispatch (Srivastava & Singh, 2020). 
- Obstacle avoidance (Yang, Yang, Li, Zhang, & Kang, 2021). 
- Maintenance optimization (Zhou, Zhang, Lin, & Ma, 2013). 
- COVID-19 image segmentation (Liu et al., 2021).

PSO

- Sizing of renewable energy systems (Alshammari & Asumadu, 2020). 
- Scheduling in microgrid (Das, De, & Mandal, 2021). 
- Design of PV cells (Fan et al., 2022). 
- Economic load dispatch (Srivastava & Singh, 2020). 
- Machining processes (Quarto, D’Urso, & Giardini, 2022). 
- Camera calibration (Lü, Meng, Long, & Wang, 2021). 
- Reliability optimization (Mellal & Zio, 2019b).

GWO

- Hybrid wind and solar renewable energy (Geleta & Manshahia, 2021). 
- Biomass gasification for electricity generation (Musharavati, Khoshnevisan, Alirahmi, Ahmadi, & Khanmohammadi, 2022). 
- Parameters of PV (Xavier, Pradeep, Premkumar, & Kumar, 2021). 
- Reliability optimization (Mellal, Frik, et al., 2021). 
- Design of car side safety system (Hamadache & Mellal, 2021). 
- Budget allocation (Fu, Xiao, Lee, & Huang, 2021).

PPA
- Distribution network (Waqar et al., 2020). 
- Release management of water from reservoir (Asvini & Amudha, 2016). 
- Reliability and availability optimization (Mellal & Salhi, 2021a, 2021b; Mellal, Salhi, & Márquez, 2021).

COA

- Combined heat and power economic dispatch Mellal & Williams, 2015, 2020). 
- PID controller (Rajabioun, 2011). 
- Machining processes (Mellal & Williams, 2016). 
- Reliability and availability optimization (Mellal & Zio, 2019a; Mellal, Al-Dahidi, & Williams, 2020; Mellal & Zio, 2020). 
- Replacement of obsolete components (Mellal, Adjerid, Benazzouz, 2012; Mellal & Williams, 2019).

ANNs

- Forecasting in renewable energy systems (Azadeh, Babazadeh, & Asadzadeh, 2013; Purwanto, Hermawan, Suherman, 
Widodo, & Iksan, 2021; Wu et al., 2012; Wu, Park, Choi, Cha, & Lee, 2009). 
- Transportation system (Choi & Kim, 2021). 
- Virtual reality (Alkadri et al., 2021).
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2.7. Artificial Neural Networks

The artificial neural networks (ANNs) are one of the oldest nature-inspired computing techniques, inspired 
by the functioning mechanism of the neural networks of the human brain. This technique was initialized 
in 1943 by McCulloch and Pitts (McCulloch & Pitts, 1943). It involves inputs and outputs through lay-
ers for learning from data and it is a very good alternative for problems without a specific mathematical 
model. Details and construction of the ANNs can be found in Refs. (Gurney, 1997; Park & Lek, 2016).

3. SOME APPLICATIONS

During the last decades, the development of computing machines has contributed to the improvement 
and development of nature-inspired computing techniques. These techniques have been applied to a wide 
range of engineering problems and showed their effectiveness. Table 1 illustrates some applications of 
the cited techniques.

4. CONCLUSION

Nature-inspired computing techniques are very diverse and have a great impact on solving various and 
complex engineering problems. Most of these techniques include stochastic models which allow to ex-
plore and exploit the searching space and to find adequate solutions with a reduced computing time and 
cost. The choice of the algorithm depends on the problem and the target of the used. In the literature, 
a daily evolution of these algorithms can be observed to tackle some special problems and to deal with 
their respective limitations.
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ABSTRACT

Seasonal analysis of wind speed includes elements of its evaluation and analysis for wind energy 
production in complex geographical areas. These analyses require wind energy systems to be set up, 
integrated, operated, and designed according to seasonal differences. Istanbul wind speed data were 
collected hourly and analyzed seasonally. When the results of the analysis are examined, no significant 
increase in seasonal transitions was observed, while certain changes were observed between summer 
and winter. Here, statistical analysis, Weibull distribution function, and signal processing-based PSD 
analysis for wind speed is performed. In addition, correlation analysis was made between the seasons. 
Although significant results were obtained in signal-based analyses, results were obtained for seasonal 
transitions in correlation analyses. Seasonal spectral densities were calculated in the spectral analysis of 
wind speed data. This study has important implications in terms of extraction of seasonal characteristics 
of wind speed, resource assessment, operation, investment, and feasibility.
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1. INTRODUCTION

The rise of global warming to high levels in the world, the increase in environmental pollution by indus-
trialization and the inability to meet the energy demand cause fossil fuels to be replaced by renewable 
energy [Akanwa, and Joe-Ikechebelu, 2012). Among the renewable energy sources, there are many types 
of energy, especially wind, solar geothermal, hydrogen and biomass energy (Panwar at al., 2011; Gosun-
pro, 2021). Renewable energy sources and non-renewable energy sources are given in Figure 1 below.

The use of renewable energy resources continues to increase in the world (Gielen at al, 2019; Wueb-
bles, and Sanyal, 2015; Kumar, 2020). The main reasons for preferring renewable energy production 
are; being friendly with nature and being inexhaustible (economical). Even initial investment costs in 
renewable energy sources can often be lower than non-renewable energy generation (Singh, Nyuur, and 
Richmond, 2018). Countries are increasing their investments in renewable energy resources. In Figure 
2, investment statistics for renewable energy generation in the last ten years are given. In addition, gov-
ernments aim to establish 488 gigawatts of hydroelectric capacity by 2030 in their energy investment 
programs (Fs-unep, 2020).

Figure 1. Classification of Energy Resources
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Wind energy is the most widely used type of energy among renewable energy sources (Onar and, 
Khaligh, 2015; Balat, 2005; Ilkilic, 2012). Advantages of wind energy: It reduces foreign dependency 
on energy, contributes to the national economy, is obtained naturally, and turbines cause little damage to 
the environment where they are located, they do not pollute the air since there is no fuel consumption. 
Disadvantages of wind energy: Since energy generation is directly connected to the wind, it changes 
seasonally, the noise generated by wind turbines causes noise pollution, disrupts the natural flight routes 
of birds, may cause electromagnetic pollution, the initial installation costs of the turbines are high, the 
turbines cover large areas in the area where they are installed (Ilkilic, 2011; Kuik, Branger, and Quirion, 
2018; Energy, 2021; Advantages, 2021; Advantages, 2020).

Energy is the key to prosperity, economic development and technological developments in the world. 
In the energy generation process; One of the most important criteria is that it is clean, does not pollute 
the environment and does not harm nature. In addition, energy production centres should not be too 
far from consumption centres, which is important in terms of keeping energy transmission costs and 
maintenance costs at the lowest levels economically (Ghasemian, 2020).

Power Spectral Density (PSD)

Fourier transform is the main technique used in the frequency analysis. Power Spectral Density (PSD) 
is deterministic. Also, PSD is very practical, in the calculation of certain types of random signals and 
Fourier transform implementation. The power spectral density concept is formulated as below (Akinci 
at al, 2016; PSD, 2021; Akinci at al, 2014):

Figure 2. Investment in renewable energy sources (2010-2019) (Fs-unep, 2020).
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Where E is a mathematical operator of expected value, T is also period. In other writing styles, it is 
shown as:
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Here, Rx(τ) is also auto-correlation function which is given with the following relationship:

Rx(𝜏) = E{x(t)x * (t + 𝜏)}	 (3)

Applications

Figure 3 is a map of Turkey’s Global given wind speed. In addition, the statistical and probabilistic dis-
tributions of Istanbul wind speed data were analyzed in detail in the applications. This application area 
is connected with the spectral analysis of seasonal wind speed data, as well as statistical analysis, by 
means of the annual measurement. For this purpose, data is divided into four seasons and power spectral 
density calculation is applied to extract the frequency properties depending on the seasonal behaviour. 
Here the frequency values are used as normalized values. As seen in Figure 4, the wind speed changes 
are presented in the form of the four seasons like spring, summer, autumn and winter times respectively.

Figure 3. Global Wind Atlas Mean Wind Speed Map Turkey (Global, 2021).
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Figure 4. Seasonal Wind Speed Variations.

Figure 5. Power Spectrum Density for Wind Speed Data.
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In terms of the power spectral density application, it is presented in Figure 4. Here the indicated 
frequency components are focused on the 0.26 Hz and 0.6 Hz. Especially, the frequency of 0.26 Hz is 
common property for four seasons but it is more dominant for spring and summer times. The second 
one, which is at 0.6 Hz, is highly related to autumn and winter seasons as seen in Figure 4.

In Figure 6, semi-logarithmic PSD is shown for all four seasons. From here it can be seen that they 
follow each other in all four seasons. This means that the wind frequency does not vary greatly seasonally.

Figure 7 shows the histograms for each season. As known, the statistical distribution of the wind 
speed data is compatible with the Weibull distribution. For this reason, the maximum points of the 
distributions are related to the mean wind speeds. Depending on the figure 5 results, these mean winds 
are 2.4131 m/s, 2.2882 m/s, 2.2429 m/s and 2.4094 m/s for spring, summer, autumn and winter times 
respectively. Details on statistical distributions are given in Table 1.

Table 1. Statistics on Wind Speed

Spring Summer Autumn Winter

Mean 2.4131 2.2882 2.2429 2.4094

Standard 1.4334 1.4874 1.5807 1.5505

Skewness 0.3458 0.5007 0.6196 1.1777

Kurtosis 2.3322 2.7228 2.5607 4.8667

Figure 6. Semi Logarithmic PSD for Wind Speed Data.
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In addition to the statistical distributions, seasonal comparisons of wind speed are given in Figure 8. 
Here, it can be observed that the highest amplitude values occur in the winter season.

Figure 7. Comparison of the Wind Speed Histograms

Figure 8. Seasonal comparison of histograms of Wind Speed
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Figure 9. Seasonal change of rose charts of wind speeds

Figure 10. Seasonal Histogram Changes of Wind Speed
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In Figure 9, the seasonal variation of the rose plot of wind speeds is given. This change is consistent 
with the histogram distributions given in Figure 10.

Figure 11 shows the Probability plot of Normal Distribution in the seasonal variation of Istanbul speed 
speeds. While there is a normal distribution in the summer season, it can be seen that this distribution 
has reached 0.99 values at 9. Very value in winter.

CONCLUSION

Wind speed data of the Istanbul region in Turkey have been analyzed to extract the seasonal wind char-
acteristics for the year 2004. For these purposes Power Spectral Density calculation which is a Fourier 
transform approach was calculated to find the frequency characteristics. As a result of the frequency 
analysis, the joint frequency values for four seasons are at 0.26 Hz as a normalized value. But for winter 
and autumn times, an additional frequency and fluctuations appear. This is an expected value because 
these seasons are the windiest seasons than the summer and spring. Also, from the histograms with the 
Weibull distribution, the number of windy hours in winter times are around twice of the others. In this 
study, detailed statistical analyzes were given with Istanbul wind speed, and it was observed that rose 
charts and histogram graphics were compatible with the Probability plot of Normal Distribution.

Figure 11. Probability plot of Normal Distribution
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ABSTRACT

Due to the rising requirement on energy sources and the global doubts for using fossil fuel because of 
its consequences on the climate changes and the global warming caused by hazardous gases, the scien-
tific research has shifted to the renewable energy. To minimize the usage of thermal power generation 
plants and to meet the rising load demand, a thermal-integrated wind-hydro-system is taking an impor-
tant role in renewable power systems. A proficient nature-inspired optimization is proposed for solving 
economic and emission dispatch for the hydro-thermal-wind (HTW) scheduling problem. Further, the 
opposition-based learning have been incorporated with the chemical reaction optimization for improv-
ing the performance of the algorithm. To investigate the performance of oppositional chemical reaction 
optimization algorithm, the algorithm is tested on two different cases. Along with this, some statistical 
tests have also been performed. The results obtained by the OCRO algorithm are compared with other 
recently proposed methods to establish its robustness.
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I INTRODUCTION

In latest trends, a few factors like rising in the globe residents have led to a spectacular hike in ordered 
of energy all across the every places. Certainly, this energy expenditure creates an extreme utilization of 
fossil fuels to adjust the energy claimed. Although, using fossil fuels such as gas, coal, petroleum, and 
few non-renewable energy sources have been previously used to generate electric energy and it results 
in extraordinary rising in ecological pollutants. In such situations, the energy resources with less emis-
sion generation has seem to be suitable alternatives to alleviate the environmental impacts, particularly 
in the electric power region. To reduce the habit of thermal power generation plants and to meet up 
the growing load demand, thermal integrated wind-hydro-system is delightful system and it plays an 
important task in renewable power system that have been represented by Hazra et al. (2019), and Li et 
al. (2014). In this manuscript, hydro thermal scheduling incorporating wind energy has been discussed 
and successfully been solved using three efficient meta-heuristics algorithms as well as power system 
operation and generation using conventional and non-conventional energy sources has been discussed. 
So, the proposed research work is very significant topic for the power system researchers. Conventional 
algorithms do not perform satisfactorily for non-linear optimization problem. Since, the proposed re-
search work is non-linear in the presence of uncertain wind speed; the conventional algorithms will 
give local optimal solution instead of global optimal solution. The proposed research work is one of the 
promising topics for power system operation because by using the renewable energy sources the society 
can be protected from the effect of dangerous greenhouse gases as well as the power can be generated 
at cheap rate and it helps the consumer to get electricity at affordable price. Moreover, in this research 
work, few efficient meta-heuristics optimization algorithms are used to obtain optimal performance of 
renewable energy based power system.

II BACKGROUND

In a few decades ago, Newton’s method (Lee et al. 1998) and dynamic programming (Farag, et al. 1995) 
etc. are used for the cost minimization. Traditional techniques have the complexities in non-linear con-
straints as well as considerable time-consuming effect. For that reason, previously developed techniques 
do not deal with sufficiently for solving economic optimization problems. The methods mentioned above 
suffer from poor local optimal optimization and slow convergence rate. To overcome this drawback, 
many populations based methods such as chemical reaction optimization (CRO) (Hazra & Roy, 2015), 
krill herd algorithm (Mandal et al. 2014), oppositional moth flame optimization (OMFO) (Hazra & Roy, 
2019), quasi-oppositional chemical reaction optimization (QOCRO) (Hazra & Roy, 2019), grasshopper 
optimisation algorithm (GOA) (Hazra & Roy, 2020) etc. are represented. Chen et al. (1993) proposed 
distribution management-oriented renewable energy generation using novel interval. Aghaei et al. (2013) 
suggested programming framework over the 24hour time span based on wind power in a scenario-based 
stochastic dynamic economic and emission load transmit problem. Hetzer et al. (2008) briefly discussed 
the wind power underestimation cost and overestimation cost of available generation for renewable power. 
Bai et al. (2016) projected an artificial bee colony (ABC) to compact with the uncertainty of wind power 
for solving load dispatch problem. Panigrahi et al. (2010) discuss about wind resources as the stochastic 
nature type and for that reason wind generation output is difficult to predict. Earlier, the problem has 
been measured for several times as the progress of load dispatch, but now a day’s research focuses on 
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wind energy units together with exact cost functions. Most of these works are used as valid statistics 
distribution to characterize the inconsistency of wind and it is known as Weibull distribution (Shi et al. 
2012). Moreover, Yu et al. (2007) explained different PSO techniques to state conditional hydrothermal 
scheduling (HTS) preparation. Hazra & Roy (2021) implemented MFO algorithm for solving the renew-
able energy integrating load transmit and HTS problem (Hazra et al. 2020).

III MAIN FOCUS OF THE ARTICLE

For optimal performance of the system, opposition-based learning (OBL) was planned by Tizhoosh 
(2005). Opposition based learning (OBL) is included with the fundamental CRO algorithm (Lam & 
Li, 2010). OCRO associated with the arrangement and breaking of chemical bonds in a chemical reac-
tion. OCRO trim down the computational trouble and the opposite candidate solution has an advanced 
opportunity to be nearer to the global optimum solution than a random candidate solution. The aim of 
this investigation is to construct entire consumption of the unpredictable capability of wind power using 
hydropower. Optimal generation scheduling has been ensured skillful process of thermal generators and 
to build entire use of green energy by reducing consumption fossil fuel. In this manuscript, complete 
utilization of the changeable capability of hydropower using wind power fluctuations and fabricate op-
timal generation scheduling of thermal power considering single objective economic dispatch are solved 
using CRO and OCRO methods. Furthermore, to endorse the supremacy of the proposed technique, its 
simulation outcome is compared with the recently obtainable diverse optimization techniques and the 
corresponding results have been presented in the literature.

The remaining portions of this paper are prepared as follows. Section IV formulates mathematical 
problem formulation and the mathematical modelling of wind power. Section V presents system constraints 
of wind-based CEED problem. The CRO and QOBL techniques are briefly elaborated in Section VI. 
Section VII describes the algorithm phase of the QOCRO applied to wind oriented HTS problem. Wide 
numerical simulations of the few techniques for different cases are specified in Section VIII. Section IX 
describes the future research directions. The conclusion is summarized in section X.

IV PROBLEM FORMULATIONS

a. Objective Function

By utilizing the available renewable wind and hydro possessions the forecast horizon are considered. The 
novel item of this entire literature is to diminish the effective cost by appropriately substituting thermal 
and the wind power generations. The overall wind power (Younes et al. 2014). and thermal power (Hazra 
et al. 2015; Hazra & Roy 2021) cost can be written using the subsequent equations:
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Where T$ is the whole generation cost. ai bi and ci are fuel cost coefficient. di and ei are the non-smooth 
thermal generating valve point co-efficient of fossil fuel unit. Po,i is the ith thermal generating unit. Po i,min  
is the least amount generation of thermal power. NT is the thermal generating station number count. i is 
the thermal power generation index. fi, gi and hi are the coefficients of emission. 𝜅tx is fuel pollutant 
factor of emission. Twind($) is the total working cost of renewable power. Underestimation and overestima-
tion cost which are related to wind power might be present when the schedule wind power doesn’t 
equivalent to the authentic value. If the genuine wind power is a lesser quantity than the scheduled 
value, then the wind power is termed as overestimated. In such condition, the employee needs to obtain 
a little energy from the separate source to adjust the load necessity. Cost of wind power (Hazra & Roy, 
2021) is considered as follows:
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Where, Pn,j is output power from jth wind Park. Wu is wind power output. Pr,j is rated wind power output. 
Xun,j is underestimation cost coefficient. fw(w) is probability density functions of output power. Xov is 
overestimation cost coefficient.

b. Hourly Wind Speed and Probabilistic Analysis Output Modeling

The Weibull’s pdf (Hetzer et al. 2008) is used for the wind speed estimation and described by the fol-
lowing equations:
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vW is the wind speed which is a random variable. c(c>0) is the scale factor and k (k>0) is the shape fac-
tor. Weibull distribution is followed by the cumulative distribution Function (CDF):
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An easy model has been used to establish the relation between wind speed and wind power (WP). It 
is explained by the following equations:
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vW is the wind speed and it is considered as a random variable. 𝜌 is the air density (kg/m3). As is the 
cross-sectional area. In the interval v V vw

in
W w

rated� � , the probability density function of wind power is 
described using the theory of random variables:
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V SYSTEM CONSTRAINTS

a. Power Balance Constraints

Total load demand (Hetzar et al. 2008) is equal to the summation of entire power generation from ther-
mal generating station, renewable wind power generation and hydro plants. It is represented as follows:

P P P P
o j

thW

o i

wiT H

j

N

i

N

hy m
m

N

d, ,
,

� � �
� � �� � �

1 1 1

 (7)

Po j
th
,  is the output power from jth thermal generating stations. Po i

wi
,  is the output power from ithwind gen-

erating stations. Po m
hy
,  is the output power from mth hydro generating stations. Hydropower output is 

denoted by Phy,m. Hydropower output (Phy) can be represented as:

P m V Q V Q V Qhy m m m m m m m m m m m m, � � � � � � � � � �     1

2

2

2

3 4 5 6  (8)

Where,      1 2 3 4 5 6m m m m m mand, , , ,      are the power generation coefficients of mth hydro power plant. 
Qm and Vm are the water discharge and volumes of reservoir storage of mth hydro power plant.

b. Limitation Constraints

Hydro power, renewable wind and fossil fuel generation output power have to uphold least amount and 
highest range (Yao et al. 2012). It is described by the following form:

P P Po j
th

o j
th

o j
th

,

,min

, ,

,max≤ ≤  j=1,2,……,NT (9)

V V Vm m m
min max≤ ≤  i=1,2,……,NW (10)

P P m Phy hy hy
min max,≤ ≤  m=1,2,……,NH (11)
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c. Reservoir Storage Volumes Limits

V V Vm m m
min max≤ ≤  (12)

Where, V Vm m
min max and  is the range boundary of storage volume of the mth reservoir.

d. Water Discharge Limits

Q Q Qm m m
min max≤ ≤  (13)

Where, Q Qm m
min max and  are the water least and highest discharge limit of the mth hydro power generation 

unit.

e. Water Dynamic Balance Constraints

Inflow, reservoir storage and spillage have been considered at the preceding incident for hydro plant. 
Hydraulic continuity equations at time interval t is represented as follows:

V V I Q S Q Sm
t

m
t

m
t

m
t

m
t

n t nsm n t nsm
n

Nsm
� � � � � �� ��

� �
�
�1

1

, ,� �  (14)

𝜏nsm is the time delay between its upstream plant sm and hydro plant m. I Sm
t

m
t and  are the inflow and 

spillage of the mth hydro unit at the mth interval. Nsm is the level of the upstream unit.

f. Final and Initial Reservoir Reserve Volumes Constraints

Initial and final reservoir storage of every unit should satisfy this constraint.

V Vm m
bn0 =  (15)

V Vm
t

m
end=  (16)

Where V Vm
bn

m
end and  are the opening and ending tank storage restrictions of hydro unit m. V Vm m

t0  and  
are the reservoir storage of hydro unit m at interval 0 and t.

VI CHEMICAL REACTION OPTIMIZATION

Chemical reaction optimization (CRO) is a freshly introduced evolutionary calculation technique. It is 
initiated by Lam et al. (2010). Due to the configuration and breaking of chemical bonds, a chemical 
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reaction has been occurred. So it is concluding that CRO is depended on a chemical change and it is 
occurs by the motion of electrons of the molecules.

a. Single Molecular Effect

In this on-wall ineffective collision, a molecule touches the trunk wall and then spring back. The change 
is allowed only if (Hazra & Roy, 2019):

KE PE PEM M MX X Y� � � � � �� �  (17)

Where, original molecule kinetic and potential energy is expressed by KE MX� �  and Pe MX� � . Recently 
produced molecule potential energy is represented by PE MY� � . The molecular construction of the unique 
molecule is MX and it produced a few resultant molecules MX1 and MX2. A molecule hits the trunk wall 
and then decomposes at least two pieces. It is called chemical reaction decomposition. Decomposition 
occurs if the subsequent circumstance satisfy and it is expressed using the below mentioned equation 
(Hazra & Roy, 2019).

KE PE PE PEM M M MX X X X� � � � � �� � �( )
1 2

 (18)

b. Multiple Molecular Effects

In Inter-molecular ineffective collision exists when two molecules collide with each other and then jump 
away. M M

X X1 2' ' and and have been generated from the original molecules MX1and MX2.
The molecule changes occur if the following condition holds (Hazra & Roy, 2019):

KE PE PE KE PE PEM M M M M MX X X X X X1 1 2 2 1 2� � � � � � � �� � ��
�

�
� � ��� ��( ) ( )' '

 (19)

For synthesis, when two or more reactants combine to enlarge a compound. Formation of a fresh 
molecule M

n'
 from two lively molecules MX1 and MX2 is permitted when the following situation holds 

(Hazra & Roy, 2019):

KE PE PE KE PEM M M M MX X X X n1 1 2 2� � � � � � � � � �� � ��
�

�
� � '

 (20)

c. Opposition-Based Learning

Opposition-based learning (OBL) is a new idea in optimization aptitude, which considers existing ap-
proximation and its opposite estimate. At the similar cases, to get an enhanced estimate for an existing 
candidate resolution, an opposite number is considered by explaining the mirror point of the solution 
from the search space interior. It has been validated that an opposition candidate solution has an improved 
opportunity to be closer to the worldwide optimum result than a random candidate result.
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d. Opposition Number

In an one-dimensional investigation region, if Xr be any actual number between [qom,qon], its opposite 
number Xo is represented as below (Hazra & Roy 2019):

Xo = [qom + qon – Xr] (21)

e. Opposition Point

Similarly, for n-dimensional search space, the opposite point may be scientifically presented as follows 
(Hazra & Roy, 2019):

Do,j= [(qom)j + (qon)j – Dj]; Dj∈[qom, qon];  j=1,2,……,d (22)

VII OCRO APPLIED TO WIND ENERGY INCORPORATING HTS

The course of action for validating the OCRO method in solving wind energy incorporating HTS problem 
can be processed by the subsequent steps:

Step1: Set the system data (hydro, thermal and wind related individual parameter). Population size is 
described as the entire count of molecular organization. Working limits and the active power of the 
orientation unit is scientifically calculated by the power balance using equation (9)- equation (11). 
Re computation has been occurred if any of the generators violates the operating boundary ranges.

Step2: Opposite population O i j
#

,  is shaped using equation (23) and initialize every molecule of a given 
molecule set (Hazra & Roy, 2019).

O F E Pi j j j i j
#

, ,� � �  (23)

Where, Pi, j is the jth independent variables of the ith vector of the population. i=1,2,…,PS and j=1,2,…,PC.

Step3: Access the fitness value (Total generation cost) of the current and opposite populations. The 
fitness value denotes the potential energy PE assessment of every molecule.

Step4: Applying single molecular reaction and multiple molecular reaction and check whether it satisfies 
the equations, described in equation (17) and equation (20), respectively. If satisfied, the indepen-
dent variables of every non-elite solution are customized.

Step5: The infeasible outcomes are replaced by arbitrarily produced innovative solutions set by checking 
the practicability of recently generated solutions.

Step6: The active power generation of the generating units is restructured using jumping rate. Populations 
of CRO algorithm is applied in the single molecular and multiple molecular phases for calculating 
the fitness values of opposite population.

Step7: Stop the search procedure if the executing criteria are maintained, and present the optimum result, 
else continue to the next iteration.
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VIII SIMULATION RESULTS AND DISCUSSION

The projected OCRO method has been introduced to the single and multi-objective transmit for Hy-
dro–Thermal-Wind (HTW) scheduling problem. The proposed algorithm has been tested on four hydro 
plants, three thermal and two wind plants with the economic problem for solving daily hydrothermal 
scheduling. In this study, four hydro and three thermal plants cost co-efficient are taken from (Liao et 
al.2013) and two wind farms parameters are taken from (Yao et al.2012). The agenda is urbanized with 
4 GB RAM personal computer with core i3 processor in MATLAB 12.0.

a. Case A: Fuel Cost Minimization Without Renewable Energy

To minimize the fuel cost, OCRO is implemented. The outcome results for single objective cost mini-
mization particularly the optimal hydropower generation of each unit, and total thermal power genera-
tion using OCRO for each hour for cost minimization without renewable energy are presented in Table 
1. The obtained results in terms of statistical data using CRO and OCRO for fuel cost minimization 
without renewable energy is compared with the former active methods and exposed in Table 2 and it 
is also revealed that the mathematical outcome using OCRO is the best. From the simulation outcome 
it is clearly visible that costs gained using OCRO and CRO is 41517.55 $/day and 41528.90. The cost 
are most outstanding and smallest amount than fuel cost of 41751.15$, 41856.50$, 42032.35$ obtained 
by DGSA (Yu & Li 2015), MHDE (Lakshminarasimman & Subramanian 2008), GSA (Yu & Li 2015), 
and 42187.49$, 42385.88$, 42440.57$, obtained by QTLBO (Roy et al. 2014), TLBO (Roy 2013), CSA 
(Swain et al.2011). Figure 1 displays the cost convergence outline for cost minimization by the proposed 
OCRO and CRO method.

Table 1. Simulation results of without renewable energy systems using OCRO

Hour
Hydro Power generation (MW) Thermal Power 

generation(MW) Hour
Hydro Power generation (MW)

Thermal 
Power 

generation
(MW)

Unit1 Unit2 Unit3 Unit4 All Unit Unit1 Unit2 Unit3 Unit4 All Unit

1 78.18 62.03 57.19 183.87 368.71 13 70.95 47.11 43.99 248.14 699.79

2 96.15 71.21 0 160.16 452.47 14 77.49 48.12 33.19 246.63 624.54

3 80.57 69.22 27.71 148.22 374.26 15 78.08 76.25 52.34 261.98 541.33

4 69.82 65.59 0 146.86 367.71 16 58.21 50.55 47.71 277.88 625.62

5 80.95 68.20 0 149.75 371.08 17 65.88 47.29 52.63 252.33 631.84

6 78.29 60.47 42.53 161.00 457.69 18 80.81 59.24 52.28 300.80 626.85

7 59.05 63.61 36.54 238.41 552.37 19 69.60 47.59 54.81 272.32 625.66

8 52.38 46.98 37.41 250.87 622.33 20 96.79 57.26 55.78 297.95 542.19

9 80.17 48.19 19.95 225.43 716.23 21 67.83 52.37 57.15 283.12 449.51

10 81.32 73.51 48.59 249.68 626.88 22 76.02 57.72 58.03 292.34 375.87

11 91.75 61.01 48.96 259.97 638.29 23 56.03 52.65 59.38 283.31 398.60

12 76.80 56.99 46.80 252.72 716.68 24 57.15 53.40 51.32 271.23 366.88
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b. Case B: Fuel Cost Minimization Incorporating Wind Energy

Responding to environmental problems, two renewable wind plants have been incorporated and new 
system is become more complex. An optimal result obtained by OCRO i.e. total thermal power genera-
tions of three thermal plant, total hydropower generation of four hydropower plant for 24 hours, wind 
power generation of two wind park are listed in Table 3. Statistical results are listed in Table 4 and the 
achieved result is also compared with previous techniques. It is also confirmed that to achieving the 
minimum cost, proposed OCRO method is the best. It is also shown that after considering renewable 
energy, the fuel cost by OCRO are diminished from 41517.55 $/day to 36809.52 $/day respectively. A 
comparison of generation cost without and with using wind energy is shown in Figure 2. Figure 3 and 
Figure 4 indicates the hourly water storage volumes and wind power generation of each unit using OCRO. 
Figure 5 describes the comparison of total thermal, hydro, and wind power generations.

Table 2. Statistical comparison of different algorithms for without renewable energy systems

Methods Best cost ($/day) Mean cost ($/day) Worst cost($/day)

OCRO 41517.55 41531.24 41540.55

CRO 41528.90 41553.95 41577.02

DGSA (Yu & Li 2015) 41751.15 41989.02 41821.49

MHDE (Lakshminarasimman & 
Subramanian 2008) 41856.50 NA NA

GSA (Yu & Li 2015) 42032.35 42561.53 42292.12

QTLBO (Roy et al. 2014) 42187.49 42202.75 42193.46

TLBO (Roy 2013) 42385.88 42441.36 42407.23

CSA (Swain et al.2011) 42440.57 NA NA

Figure 1.  
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Table 3. Simulation results of renewable energy added systems using OCRO

Hour
Wind Power 

Generations (MW)

Hydro Power 
generation 

(MW)

Thermal Power 
generation (MW) Hour

Wind Power 
Generations (MW)

Hydro Power 
generation 

(MW)

Thermal Power 
generation(MW)

Unit1 Unit2 All Unit All Unit Unit1 Unit2 All Unit All Unit

1 87.46 41.33 319.41 196.52 13 80.90 44.69 431.24 628.46

2 68.47 22.38 307.66 367.54 14 75.50 59.85 414.54 453.98

3 42.48 54.46 346.34 294.02 15 89.27 59.51 457.28 454.56

4 68.15 29.43 408.17 196.32 16 70.61 44.08 359.17 540.30

5 74.98 37.28 355.01 279.41 17 64.21 42.84 437.17 537.26

6 89.93 46.81 388.16 293.38 18 76.20 37.26 437.39 543.28

7 81.20 33.42 355.78 451.22 19 77.96 59.76 450.64 541.43

8 73.01 38.43 367.79 545.85 20 60.75 57.95 424.47 545.57

9 88.38 60.00 433.88 539.74 21 88.14 13.12 408.99 362.66

10 87.52 32.58 355.99 625.91 22 85.36 51.96 190.12 277.56

11 83.96 56.42 455.36 537.84 23 85.68 26.98 152.33 286.47

12 45.07 45.74 392.28 631.16 24 1.30 2.12 78.44 366.84

Figure 2.  
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Figure 3.  

Figure 4.  

Table 4. Statistical comparison of algorithms for renewable energy added systems

Methods Best cost ($/day) Mean cost ($/day) Worst cost($/day)

OCRO 36809.5282 36819.6505 36827.5282

CRO 36832.04 36848.0994 36860.0040
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IX FUTURE RESEARCH DIRECTIONS

In future, Geothermal, Ocean, Hydrogen, Biomass will be included in the research. The effectiveness 
of the proposed control algorithms will be examined in large scale system.

X CONCLUSION

Using an influential novel search technique, the hydro-thermal-wind scheduling problem is solved for 
the cost and emission minimization objectives. It is modelled using the chemical reaction of molecule. 
The projected technique depending on opposition criteria handles multifaceted practical constraints very 
effectively. Moreover, a number of statistical analysis have been processed to discover the usefulness 
of OCRO. The proposed OCRO have been tested on three test systems and it has been confirmed that 
OCRO provide better results than DGSA, MHDE, GSA, QTLBO, TLBO, and CSA. It is proved that 
OCRO is more robust than others and it is also best technique in terms of producing quality solution. The 
exploitation of energy due to rising inhabitants, financial development and living standard are increasing 
reasonably at an elevated rate. In the context of current trends in environmental directive and energy 
segment, such revision becomes more relevant to the clean energy sources and green atmosphere. A 
related enhancement is also accepted in the future, for hybrid scheduling with a multiplicity of renewable 
power, unit commitment, e-vehicle charging with the mixture of renewable energy generation. In this 
manuscript, hydro thermal scheduling incorporating wind energy has been discussed and successfully 
been solved using efficient meta-heuristics algorithms as well as power system operation and generation 
using conventional and non-conventional energy sources has been discussed. The proposed research 
work is one of the promising topics for power system operation because by using the renewable energy 

Figure 5.  
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sources the society can be protected from the effect of dangerous greenhouse gases as well as the power 
can be generated at cheap rate and it helps the consumer to get electricity at affordable price.
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ABSTRACT

Optimization has been an active area of research for several decades. As many real-world optimization 
problems become increasingly complex, better optimization algorithms are always needed. Recently, 
meta-heuristic global optimization algorithms have become a popular choice for solving complex and 
intricate problems, which are otherwise difficult to solve by traditional methods. This chapter reviews 
the recent applications of ant colony optimization (ACO) algorithm in the field of electrical power sys-
tems. Also, the progress of the ACO algorithm and its recent developments are discussed. This chapter 
covers the aspects like (1) basics of ACO algorithm, (2) progress of ACO algorithm, (3) classification 
of electrical power system applications, and (4) future of ACO for modern power systems application.
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continued on following page

Box. List of symbols

Symbol Definition

τij pheromone trail deposit ed between city i and j by ant k,

α and β two parameters which influence the relative weight of pheromone trail and heuristic guide function,

ηij visibility or sight and equal to the inverse of the distance or (= 1/dij).

ηij transition cost between city i and j

q cities that will be visited after city i,

Ni
k a tabu list in the memory of ant that recodes the cities visited to avoid stagnations

τij(t+1) pheromone after one tour or iteration

ρ pheromone evaporation

ε elite path weighting constant

τo= 1/ dij incremental value of pheromone of each ant

λ large positive constant

dbest shortest tour distance.

Pgj and Qgj active/reactive power outputs from the generator bus j

Pdj and Qdj active and reactive power demand at bus j,

Vi and Vj voltages at sending end i and receiving end j,

Yij and θij admittance magnitude and angle between buses i and j

δi and δj phase angles of voltages at buses i and j,

PDGj and QDGj active and reactive power injections at location j,

QCj the reactive power injection at location j.

VSIj the voltage stability index of bus j,

Vi, the voltage magnitude of sending end bus i

Pj and Qj the total active and reactive power load fed through bus j,

Rij and Xij the resistance and reactance of the line connected buses i and j, respectively.

w1, w2 and w3 weighting factors.

PLoss the total real power loss

Pi and Qi the net active and reactive power at bus i,

Nb the system buses number.

Rij line resistance between buses i and j,

VD total voltage deviation

VSI voltage stability index

Gij and Bij mutual conductance and susceptance between bus i and j,

NPQ load buses number

P QL Li i
 and  active and reactive power demand at bus i

QCi capacitive or inductive power of existing VAR source installed at bus i.

Npv total number of voltage-controlled buses;

Tk tapping change of a transformer

Nt total number of on-load tap changing transformers.
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1. BASICS OF ANT COLONY OPTIMIZER

At first, the ACO algorithms were proposed in (Dorigo & Gambardella, 1997a; Dorigo & Gambardella, 
1997b). Applications of the ACO to combinatorial optimization problems such as traveling salesman 
problem (TSP) (Jun-man & Yi, 2012) and quadratic assignment problem (QAP). The ACO algorithms 

Symbol Definition

Sflow apparent power flow; NL is all transmission lines in the system;

Ft non-linear objective function of power generation cost

ai, bi and ci coefficients of power generation cost function;

ei and fi and is fuel cost coefficients of the ith unit with valve-points effects

NG number of generation buses.

Fi(x), Fk(x), Fj(x) minimum number of PMU channels, costs and the total fitness function

Nb, number of system buses,

wk the cost of PMUs weighting factor based on the cost of PMU channel,

xi, xj and xk the control variables vector in a binary or logic form [0 or 1],

NC the total number of existing VAR sources;

Ng refers to the total number of generators.

YLL and YLG are sub-matrices of Y-Bus matrix.

PFk and PFk
max power flow in line k and its maximum value in line k

Dk,i sensitivity parameters of the power flows related to the power generations.

F1 refers to the total fuel costs of generators in $/h;

PGi is the power generation at bus i,

PLj the load demand at load bus j,

NL the number of load buses,

Plosses total power losses in the system

min and max 
operator the maximum and minimum limits of power generation

𝜌 is the evaporation rate,

m is the number of ants

∆𝜏ij is the quantity of pheromone laid on edge eij by ant k

Co is a constant

Lk is the length of the tour constructed by ant k.

�ij
ijd

�
1

is the heuristic information

dij is the distance between cities i and j.

Lbest is the length of the tour of the best ant k.

𝜑Î(0,1) is the pheromone decay coefficient

𝜏0 is the initial value of the pheromone.

Box. Continued
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emulate the behavior of real ants that are members of a family of social insects (Dorigo, 2008; Dorigo & 
Blum, 2005). A literature survey on the concept and the formulations of ACO was presented in (Dorigo 
et al., 1999; Dorigo & Stützle, 2009). Ant algorithms for discrete optimization problem were presented 
(Dorigo et al., 1999; Dréo & Siarry, 2002; Mathur et al., 2000) and for continuous function optimization 
were developed in (Dréo & Siarry, 2002; Gomez et al., 2004; Mathur et al., 2000). The mathematical 
model of ACO algorithm involve random number of pheromones that are is placed in each pass after 
each ant finalizes its tour. Other ants attract to the shortest route according to the probabilistic transition 
rule that depends on the amount of pheromone deposited and a heuristic guide function. Therefore, the 
probabilistic transition rule of ant k to go from city i to city j can be expressed as in TSP (Dorigo & 
Gambardella, 1997a; Dorigo & Gambardella, 1997b; Jun-man & Yi, 2012) as:

P t
t t

t t
j qij

k ij ij

iq iqq

( )
( ) ( )

( ) ( )

; ,�
�� �� �� ��
�� �� �� ���
� �

� �

� �

� � ��Ni
k  (1)

After completing each tour, the local pheromone update is resolute for each ant depending on the 
route of each ant as in equation (2).

𝜏ij(t + 1) = (1 – 𝜌)𝜏ij(t) + 𝜌𝜏o (2)

After all ants attracted to the shortest route, a global pheromone update is considered to show the 
influence of the new addition deposits by the other ants that attractive to the best tour as:

𝜏ij(t + 1) = (1 – 𝜌)𝜏ij(t) + 𝜀∆𝜏ij(t) (3)

Then, ∆τij is the amount of pheromone for elite path as:

∆𝜏ij(t) = 𝜆/dbest (4)

2. FAMILY OF ACO ALGORITHMS

In the literature, there are many variants of the ACO algorithm. Samples of these variants which aim 
at improving the performance of the basic version. Hybridizations are the combination of the basic 
algorithm with a local search. The original ant system and the most successful variants are presented. 
Description of these variants is presented in the following subsections.

2.1 Ant System (AS)

The main merits of AS is that the pheromone values are updated at each iteration by all the m ants in 
the iteration. The associated pheromone 𝜏ij with the edge joining cities i and j is computed from Equa-
tion (5) as:
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� � � �ij ij ij
k

k

m

� � �
�
�( ).1

1

�  (5)

�� ij
k k ijCo L k e
�

    if the ant  used  in its tour,

         0     otherwise

�
�
�

 (6)

for the solution construction, ants select the following city to be visited through a stochastic mechanism. 
When ant k is in city i and has so far constructed the partial solution x the probability of going to city j 
is defined by:

p k V v Ta
j V v

ij

ij ij

k ik ik
j� � �

� �
�

� �
� �

� �

� �

.

{ { ,.., }| } .
, { ,..., },

1
1 ��Ta

0                                                    ottherwise

�

�
�

�
�

 (7)

2.2 MAX −MIN Ant System (MMAS)

MAX−MIN AS is an improvement over the original AS. Its characterizing elements are that only the 
best ant updates the pheromone trails and that the value of the pheromone is bound. The pheromone 
update is implemented as follows:

� � � �
�

�

ij ij ij
best� � ��� ��( ). ,

min

max

1 �  (8)

The operator [ ]x b
a  is defined as:

[ ]x
a x a
b x b
x

b
a �

�
�

�

�
�

�
�

    if 

    if 

    otherwise

 (9)

and �� ij
best  is:

�� ij
best best ijL e

�
1

0

/     if  belongs to the best tour,

              otherwise

�
�
�

 (10)

Concerning the lower and upper bounds on the pheromone values that are typically tuned for the 
considered problem. Nonetheless, some guidelines have been provided for defining the upper and lower 
bounds based on analytical considerations.
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2.3 Ant Colony System (ACS)

Each ant applies the pheromone only to the last edge traversed:

𝜏ij = (1 – 𝜑).𝜏ij + 𝜑.𝜏0 (11)

The update is slightly different:

�
� � � �

�ij
ij ij ij

ij

e
�

� �( ). .1 �     if  belongs to best tour

                              otherwise

�
�
�

��
 (12)

As in MMAS, Δ𝜏ij= 1/Lbest, where Lbest can be either Lib or Lbs.
The probability for an ant to move from city i to city j depends on a random variable q uniformly 

distributed over [0, 1] and a parameter q0; if q≤q0, then

j
j V v Ta k V v Tj ik ik k�

� � � � � � �arg max { ,..., }, , . , { { ,.., } |1 1   � �� � aa}

Equation (12) is used                  otherwise

�
�
�

��
 (13)

2.4 Model Induced Max-Min Ant System

In this model, the induced Max-Min AS (MIMMAS) algorithm is applied for asymmetric TSP (ATSP). 
The MIMM-ACO has two aspects.

1.  Adjusted transition probabilities are developed by replacing static biased weighting factors with 
dynamic ones. The dynamic weighting factor is closely dependent on partial solution that ant has 
constructed. Idea behind it is that it favors the choice of edges with small residual cost instead of 
small actual cost. As byproduct, non-optimal arcs will be identified at each step of tour construc-
tion using dual information derived from solving associated assignment problem (AP) and these 
arcs will be discarded from future consideration.

2.  A terminal condition is analytically determined on the basis of the considered pheromone state. 
The result comes with a necessary condition for obtaining one optimal solution.

Algorithm of MIMM-ACO is based on the computation of AP for residual cost and the PATCH 
algorithm repairs the AP solutions below the lower bound. This PATCH algorithm will return first 
candidate solution for MIMM-ACO (s1). Then, the termination criteria minimum pheromone value are 
computed from Equation (14) as:

�
min

*
( )

�
�
�
�

�
�
� � �

�
�

�
�
�

1

1

2

1

2
1

f s ZAP
 (14)

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



43

Ant Colony Optimization Algorithm for Electrical Power Systems Applications
 

Then, the initial minimum pheromone is computed dynamically and chosen. Then, the tour will be 
constructed and then the local search will get used using 2-OPT heuristics.

3. CLASSIFICATION OF ELECTRICAL POWER SYSTEM APPLICATIONS

In power system engineering, researchers found more interests in application of ACO for various power 
system applications. Table 1 summarizes the developments of ACO for transmission and distribution 
grids. Most of the referred problems are characterized by the binary decision variables as distribution 
systems configuration, switching of protective devices and PMU placement for full observability prob-
lem. A number of problems that were solved by ACO algorithm that have the binary and continuous 
variables such as unit commitment, preventive maintenance, Fact’s devices, design problem, generation 
and transmission expansion problem. The main merit of the ACO algorithm is the capability of solving 
discrete and continuous problem. General description of various optimization problems in power system 
is expressed in Table 1 for different non-linear complex power system problems.

Table 1. Applications of ACO variants to power systems problems

Reference Topic Main features

(Annaluru, Das, & Pahwa, 
2004)

Reconfiguration and capacitor 
placement in distribution systems

The considered formulations deal with the binary design variable for the location and 
consider the real representation for sizing of allocated capacitors.

(Song et al., 1999) Combined heat and power 
economic dispatch

In this work, the improved ant colony search algorithm was developed to solve the 
combined heat and power scheduling in power systems.

(Hou, 2003; Hou, 2002; 
Thanathip, 2004) Economic load dispatch The economic load dispatch problem deals with continuous variables that represent 

the scheduling of committed generators to achieve minimum production costs.

(Huang, 2001; Pothiya et al., 
2010; Yu & Song, 2001) Generation scheduling The generation scheduling aims to find the optimal settings of generation units that 

minimize the total operational costs.

(Vlachogiannis et al., 2005) Constrained load flow problem This problem deals with solving equality constraints at certain loading condition.

(Falaghi et al., 
2009; Tippachon & 

Rerkpreedapong, 2009; 
Wang & Singh, 2008)

Switches and protective devices The allocation of switchable and protective devices deal with the binary design 
variable

(Sum-Im, & Ongsakul, 
2003; Simon, Padhy, 

& Anand, 2006; Chen, 
2008; Chandrasekaran, & 
Simon, 2012; Columbus, 

Chandrasekaran, & Simon, 
2012) 

Unit commitment The unit commitment problems deal with the binary design variable for the location 
and consider the real representation for sizing of committed generation scheduling.

(Samrout et al., 2005) Preventive maintenance The problem identifies the maintenance scheduling of generating units and combines 
binary and real variables.

(Abdelaziz & Reham, 
2012; Falaghi & Haghifam, 

2007; Georgilakis & 
Hatziargyriou, 2013; 

Niknam, 2005; Niknam et 
al., 2005; Sheidaei et al., 

2008)

Allocation of distributed generation The allocation of distributed generation has binary design variable for the location 
and real design variables for sizing of the distributed generation.

continued on following page
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4. MATHEMATICAL FORMULATION OF DIFFERENT 
POWER SYSTEMS PROBLEMS

In this section, the main aim is to present the mathematical formulations of number of power system 
problems. At first, the optimization problem is expressed as a constrained optimization problem as:

Minimize f(x) (15)

subject to: g(x)=0 (16)

Reference Topic Main features

(Abbasy & Hosseini, 2007; 
Abou El-Ela et al., 2011; El-
Sehiemy et al., 2012; Gardel, 

2006; Ketabi et al., 2010; 
Lin, 2003; Liu et al., 2010; 

Mouwafi et al., 2014; Ren et 
al., 2003)

Power market and pricing of 
reactive power systems 
Voltage collapse problem

These references deal with the binary design variable for the location and consider 
the real representation for sizing of allocated reactive power resources that prevent 
voltage collapse problem. The pricing of reactive power is also considered an urgent 
topic in power markets.

(Chen & Tang, 2005; Dong, 
2007; Hu et al., 2005; Sun et 

al., 2006)
Distribution network planning The planning of distribution network combines both binary and continuous design 

variables.

(Eroğlu & Seçkiner, 2012; 
Karaboga, 2009) Design problems

The design problem combines between binary and continuous design variable 
to obtain the best control variables that minimize the considered technical and 
economical objective functions such as reduction of total harmonic distortion level 
for the digital filter.

(Gasbaoui & Allaoua, 2009) Optimal power flow

The problem aims at finding the optimal settings of active and reactive control 
variables that minimizing the generation costs as an economical aspect and 
transmission power losses minimization, the voltage profile improvement at 
generation buses and enhancing voltage stability index at load buses.

(Chang et al., 1999; Chen et 
al., 2006; Teng & Liu, 2003) Fault estimation and location In this type of problems, the fault in distribution section is determined.

(Foong et al., 2008) Power plant maintenance 
scheduling

The power plant maintenance problem finds the optimal scheduling for generation/
transmission lines maintenance periods considering the minimum nutriment loads.

(Abdelsalam et al., 2014; 
Abou El-Ela, Kinawy, 

El-Sehiemy, & Mouwafi, 
2014; Abou El-Ela, Kinawy, 

El-Sehiemy, & Mouwafi, 
2014; Abou El-Ela, Kinawy, 

Mouwafi et al, 2014; 
Mouwafi & Ragab, 2016)

PMU placement The PMU placement problem has binary design variables.

(da Silva, 2010; Kannan & 
Mary Raja Slochanal, 2005; 

Rahmani et al., 2013)

Power system planning involving 
generation and Transmission 
expansion planning

The expansion problem identifies additional generation units and transmission lines 
that are needed to meet the expected load over short/long planning time horizon.

(Wang, Chiou, & Liu, 2009) Power system stabilizer This problem is concerned with the optimal design of power system stabilizer to 
preserve the power system transient stability.

(Kefayat et al., 2015) Optimal placement and sizing of 
distributed energy resources

The optimal placement and sizing of distributed energy resources problem constitutes 
both binary and real design variables.

(Lu et al., 2013) FACTS allocation Various FACTS allocation problems have both discrete and real continuous variables.

(Berbaoui, 2010) Shunt active power filter system The ACO algorithm is combined with fuzzy logic to find the optimal configuration 
of shunt active power filter system.

(Nakawiro & Erlich, 2009) Load shedding This problem aims at determining the optimal load to be shed with preserving the 
voltage stability

Table 1. Continued 

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



45

Ant Colony Optimization Algorithm for Electrical Power Systems Applications
 

h(x)≤0 (17)

where, f(x) is the objective function such as generators fuel costs, transmission line losses etc, g(x) 
represents the equality constraints, h(x) represents the inequality constraints, and x is the vector of the 
control variables that may be generator real power outputs, generator voltages, switchable reactive power 
and transformer tap setting.

4.1 Constrained Economic Load Dispatch Problem

The constrained economic load dispatch (CELD) problem is a non-linear problem. It aims at finding 
the optimal power generation outputs. The basic objective function in CEED problem minimizes the 
total fuel costs of the committed generators and preserving all operating requirements Generally, the 
fuel costs are represented by quadratic functions with superimposed sine components that represent the 
rippling of steam valve opening effects produced that can be expressed in (18):

MinF f PG a b PG c PG e f PGt i i
i

NG

i i i i i
i

NG

i i i� � � � � � � � � �
� �
� �

1

2

1

sin
min PPGi� �� �  (18)

The objective function (18) is subjected to the following constraints:

4.1.1 Equality Constraints

(a) Power Balance Constraint

The generators real power output should be cover the total load demand plus transmission line losses as:

PG PD Pi
i

NG

j losses
j

NL

� �
� �� �

1 1
 (19)

4.1.2 Inequality Constraints

(a) Generator Real Power Output Limits

The generator real power output is kept within the feasible limits as:

PG PG PGi i i
min max≤ ≤  (20)

(b) Power Flow Constraints

The power flow in each transmission is bounded by the maximum power flow limits in the line as:

PF D PG PFk k i i k=
,

max
  (21)
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4.2 Optimal Power Flow (OPF) Problem

The objective of the OPF is to optimally identify the power system control variables, while satisfying 
various equality and inequality constraints. This is mathematically stated as follows:

4.2.1 Problem Objectives

Minimization of fuel cost: Fuel cost for any generator is traditionally modeled as polynomial quadratic 
function as:

F a Pg b Pg ci i i i i
i

Ng

1

2

1

� � �
�
� $/h (22)

Minimization of system power losses: The minimization of system real power losses F2 (MW) can 
be calculated as follows:

F g V V VVij i j i j ij
i j Nb

2

2 2
2� � �� �

�
� cos

,

�  (23)

Voltage profile improvement: Load voltage represents important indicators of system security and 
service quality by minimizing the voltage deviation (VD) of the load buses than the flat voltage. The 
VD objective is expressed as:

F VD Vi
i

NLoad

3

1

1� � �
�
�  (24)

Voltage stability enhancement: For heavy stressed power systems, voltage stability becomes a signifi-
cant issue. A specific objective function is considered in this case that aims to minimizing the maximum 
stability index (L-index). The L-index is employed on the basis of static power flow computations every 
load bus. Its range is from Zero to 1 to reflect no load and voltage collapse cases. Computation of L-
index is carried at each load bus as:

L F V
Vj ji
i

j
ij i j

i

Ng

� � � � �
�
�1

1

( )� � �  (25)

Fji = -[YLL]
-1[YLG] (26)

The maximum L-index should be minimized to improve the voltage stability (F4) as:

F4 = Max(Lj) j=1,2,……,Nb (27)
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4.2.2 Constraints

4.2.2.1 Equality Constraints

Two load flow equations are used to represent the equality constraints as:

Q Q Q V V G B igi Li Ci i j
j

N

ij ij ij ij

b

� � � � � �
�
�

1

0 1 2( sin cos ) , , ,..� �     ..NPQ  (28)

P P V V G B igi Li i j
j

N

ij ij ij ij

b

� � � � �
�
�

1

0 1 2( cos sin ) , , ,....      � � ...N slackb �  (29)

4.2.2.2 Inequality Constraints

Furthermore, the power system has to satisfy inequality constraints corresponding to the operational 
variables as:

P P P i Ng i g i g i g   
    

min max
, , ,......� � �1 2  (30)

V V V i Ni i i b
min max

, , ,......� � �    1 2  (31)

T T T k Nk k k t
min max

, , ,......� � �    1 2  (32)

0 1 2� � �Q Q e NC e C e C  
    

max
, , ,......  (33)

Q Q Q i Ng i g i g i pv   
    

min max
, , ,......� � �1 2  (34)

S S L NL
flow

L L� �max
, , ,......  1 2  (35)

4.3 Optimal Placement Problem (OPP) Phasor Measurement Units

The solution of OPP with minimum PMU channels’ number and the cost of PMUs to make the power 
system complete observability can be expressed as constrained multi-objective optimization problem as:

Min F(x) = Min(Fi(x) + Fj(x) + Fk(x)) (36a)

� � �
� � �
� � �w x w x w xi
i

N

i j
j

N

j k
k

N

k

b b b

1 1 1
 (36b)
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Subject to:

g x A x bij
i j i

N

i

b

� � � �
� �
�
1,

 (37)

NPMU < NPMUmax (38)

N NCh Chi i
≤

max

 (39)

If xi equals 0 refers to no existing of PMU at bus i while 1 refers to installing of PMU at that bus, 
which are defined in (40).

x
PMU i

i �
�
�
�

1

0

    if a  installed at bus 

    otherwise
 (40)

In (37), g(x) is the observability constraint which must be verified at each bus in the system. On the 
other hand, if a PMU is installed at bus i, so all the buses connected to it don’t need installing PMU at 
them, because phasors at these buses can be determined using Ohm’s law. Aij is the connectivity matrix 
which can be constructed based on the line data of the system by replacing the values of the line data 
with binary logic, so it can be expressed as:

A
z
zij
ij

ij
�

�
� �

�
�
�

1 0

0
 (41)

The bound b in (37) refers to the minimum limit of measurement redundancy matrix of length Nb 
and may be taken as:

b �
1

2

    for normal operating condition

    for emergency opeerating condition

�
�
�

 (42)

Form (42), if b is 1, which means each bus is observed one time at least and this condition is suitable 
at normal condition. While, if the value of b is 2 that means each bus is observed twice at least. Therefore, 
this condition is suitable at emergency condition such as any single line outage or any single PMU loss.

In (38), NPMU is the number of required PMUs to complete system observability, while NPMUmax is the 
maximum number of PMUs equals to the number of total buses. In (39), NChi is the number of PMU 
channels at bus i, while NChimax is the maximum number of PMU channels at that bus equals to the number 
of lines connected to bus i plus one channel refers to the voltage measurement at that bus.
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4.4 Distributed generation (DG)/Capacitor Placement 
Problem (CPP) in Distribution Systems

The optimal DGs and capacitors placement problem with single and multi-objective functions are based 
on various scenarios of DGs and capacitors placements subject to equality and inequality constraints. 
Mathematical formulation for different objective functions is presented as follows:

4.4.1 Individual Objective Functions

The purpose of optimal DGs and capacitors placement in radial distribution systems is to reduce the 
total power loss, VD and the inverse of total VSI.

The main merit of optimal DGs and capacitors placement in distribution systems is to minimize the 
real power loss. Mathematically, the real power loss can be expressed as:

f Min P PP QQ Q P PQLoss ij i j i j ij i j i j
j

N
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The distribution system suffers from the higher decline in the voltage levels with move away from 
the substation especially for radial distribution system. The objective function for improving the voltage 
profile by minimization of the voltage deviation can be formulated as:

f Min VD V Vi rated
i

N

2

2

1

� � �� �
�
� 

b

 (44)

The flat voltage at each bus that equals 1.0 p.u.
Another important aspect is the maximization the VSI. The weakest voltage bus is identified by VSI 

that can lead to voltage instability and indicate the sensitive buses to voltage collapse under certain 
condition such as load increasing in the future. Therefore, it is necessary to maintain VSI within a spe-
cific limit. When DGs and/or capacitors are connected to distribution system, the VSI will be changed, 
where this index can be calculated at all buses in the distribution system. Consider a two-node radial 
distribution system. Buses i and j are considered as the sending and receiving end buses. After the load 
flow calculation, the VSI for all the receiving end buses in the distribution system can be formulated as:

VSI V V P R Q X P X Q Rj i i j ij j ij j ij j ij� � ��� �� � ��� ��
4 2 2

4 4  (45)
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The objective function for improving the VSI can be expressed as:

f Min
VSI

Min VSI j
j
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�
�
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1

1
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For achieving the voltage stability criteria, the objective function f3 should be minimized.

4.4.2. Multi-Objective Function Formulation

The multi-objective function (F) minimizes the total power loss, the total VD and the inverse of total 
VSI at the same time. Therefore, it can be formulated as:

min

min

F w f w f w f

F w P w VD w
VSILoss

� � �� �

� � � � � ��
�
�

�
�
�

1 1 2 2 3 3

1 2 3

1  (47)

The weighting factors are selected according to the priority of the objective functions.

4.4.3 System Constraints

The above mentioned single and multi-objective functions in equations (48-57). Equations (48) and (49) 
give the power balance constraints. Equation (50) gives the constraint of voltage constraint with the aim 
of preserving the voltage at each bus within their minimum and maximum permissible limits. The ca-
pability of transmission power flow constraint in each line (PFk) is presented in Equation (51). The 
transmission system must be operated below the maximum power flow limit (PFk

max). The overall system 
power factor (pfoverall) must be greater than or equal to the minimum limit of overall power factor (pfmin) 
as presented in (52). The constraints that are presented in (53) and (54) aim to reduce respectively the 
number of DGs and capacitors, Therefore, the optimal number of DGs (NDG) is limited by the maximum 
number of possible locations ( NDG

max ). Also, the optimal number of capacitors (NC) must be is limited by 
their maximum number of possible locations ( NC

max ). The active and reactive power injections by DGs 
and the reactive power injected by capacitors are kept with their boundries as presented in Equations 
(55)-(57).
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V V Vi i i
min max≤ ≤  (50)

PF PFk k< max  (51)

pf pfoverall overall≥ min  (52)

N NDG DG≤ max  (53)

N NC C≤ max  (54)

P P PDGj DGj DGj
min max≤ ≤  (55)

Q Q QDGj DGj DGj
min max≤ ≤  (56)

Q Q QCj Cj Cj
min max≤ ≤  (57)

5. FUTURE OF ACO FOR POWER SYSTEM APPLICATIONS

The future applications of ACO variants to power systems application is rich field especially in the fol-
lowing modern topics:

1.  Integration of distribution generation into distribution systems.
2.  Economic studies in Microgrid.
3.  Design of electrical apparatus.
4.  Transmission switching problem.
5.  Unit commitment problems considering transmission commitment.
6.  Capacitor placement for enhancing the voltage profile with different types of energy renewable 

sources.
7.  Fault location in optimal framework.
8.  Advanced restoration mechanisms.
9.  Power quality problems involving allocation of harmonic meters and allocation of active filters 

into distribution systems.
10.  Congestion management in the open access electricity markets.
11.  Energy hubs
12.  Combined heat and power dispatch problem with renewable energy resources.

In the view point of algorithm improvements, the future is open for hybridization between ACO 
algorithm with a number of information-based algorithm such as:
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1.  Rough theory.
2.  Graph theory.
3.  Neuterosofic.

6. CONCLUSION

This chapter reviews the recent progress of one recent optimization algorithm, namely ant colony optimi-
zation algorithm, to power system applications. It is found that the ACO variants are efficiently applied 
for binary and real design variables’ problems. The future of developing of ACO variants is open to 
add the merits of fuzzy logic, rough theory and Neuterosofic to enhance the routine of ACO algorithm.
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ABSTRACT

The smart grid is the aggregation of emerging technologies in both hardware and software along with 
practices to make the existing power grid more reliable and ultimately more beneficial to consumers. 
The smart grid concept is associated with the production of electricity from renewable energy sources 
(RES). For the distant isolated regions, microgrids (MG) with RES are offering a suitable solution for 
remote and isolated region electrification. The improper sizing would lead to huge investment cost which 
could have been avoided. The objective of this chapter is to review the state-of-the-art studies on the use 
of optimization techniques to renewable energy design and sizing. The chapter reviews the optimization 
techniques employed at different components of the microgrid including the energy sources, storage 
elements, and converters/inverters with their control systems.

INTRODUCTION

The traditional power grid is made up of synchronous machines, power transformers, transmission lines, 
transmission substations, distribution lines, distribution substations, and various types of loads that are 
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interconnected altogether. They are located far from the power consumption area and electric power is 
transmitted through long transmission lines. Traditional power grids have served us for decades because 
they are predictable and reliable however, Due to the growing concern about the climate change caused 
by greenhouse gas emissions and the escalating increase in electricity demand (2% per year until 2040) 
which exceeds the demand for any other form of final energy globally, there is a tendency to replace fossil 
fuels by renewable sources such as wind and solar (Baimel et al., 2016). Figure 1 shows the growth of 
renewable energy penetration into total energy generation over next three decades across the world. The 
Europe will take the maximum share of 44% of renewable generation in their total energy production 
(Ramesh Babu, 2017).

Built on top of an intelligent communications infrastructure, the smart grid is a combination of hard-
ware, management, and reporting software. Consumers and utility corporations alike have capabilities 
to manage, monitor, and respond to energy challenges in the smart grid era. The transfer of electricity 
from the utility to the consumer becomes a two-way conversation, saving consumers money and energy 
while also providing greater transparency in terms of end-user usage and lowering carbon emissions. 
(Ramesh Babu, 2017).

A smart grid is an electricity network monitors and manages the delivery of power from all genera-
tion sources to satisfy the variable electricity demands of end-users using digital and other modern 
technology. Smart grids coordinate the demands and capacities of all generators, grid operators, end-
users, and electrical market stakeholders to run the system as efficiently as possible, reducing costs and 

Figure 1. Percentage growth forecast in renewable energy generation
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environmental consequences while maximizing system reliability, resilience, and stability. (Kingsley, 
Shongwe, & Joseph, 2018).

There are a lot of advantages from setting up Smart Grids (Ekanayaka, J. et al., 2012; Momoh J., 
2012; Bayindir, R. et al., 2016). These include the following:

Technical Advantages

The complete implementation of Smart Grid would result in a number of technical advantages, including:

• Increased energy efficiency: This is accomplished through loss reduction, peak shaving (demand 
control), AMI adoption, and automated energy system operation.

• Increased grid reliability: This is accomplished by minimizing the frequency and duration of 
power outages.

• Increased operational efficiency: Achieved through active control, automation, and management 
services in distribution grids, as well as customer empowerment via home automation and smart 
appliance use.

• Enhanced security and safety: Enhanced security can be achieved through the use of sensors and 
automated operations.

Figure 2. Smart grid illustration diagram
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Environmental Advantages

The following are some of the environmental advantages of Smart Grid deployment:

• Carbon emissions are reduced as a result of reduced grid losses, the integration of renewable and 
distributed generation, and the encouragement of efficient end-use by plug-in electric vehicles.

• Climate change benefits: As previously stated, the reduction in grid losses as a result of Smart 
Grid deployment, combined with the facilitation of electricity generation from renewable energy 
sources such as wind, solar, and hydro, has significant implications for CO2 emission reduction, 
which, in turn, improves climate change prospects.

Advantages to the Electricity Markets

Due to the dynamic interaction of the demand side of the market (consumers) with the power supply 
side (suppliers/providers) in a Smart Grid setting, the electricity price can be reduced compared to a 
conventional grid. Consumers would naturally choose the least expensive electricity source if information 
about electricity prices from various suppliers was made available in such an environment. As a result, 
there is strong competition in the electricity market, which benefits customers and helps to optimize the 
operation of the power system network.

MAIN FOCUS OF THE CHAPTER

Being part of the smart grid, Hybrid Renewable Energy Systems and microgrids constitute a market 
share that is worth investment due to the increasingly lower costs of PV and wind generators. In this 
chapter, it is attempted to present a comprehensive review on optimization of power systems built around 
hybrid renewable multi-source systems and microgrids. For a renewable energy deployment project to 
be economically feasible, correct and accurate sizing and optimization of the hybrid system components 
is needed. The review presented in this chapter would give a reasonably good idea about the tools that 
researchers have been using so far to optimize standalone or grid connected Hybrid Renewable Energy 
Systems. The chapter also stresses microgrid energy management with renewable energies. Two ap-
proaches exist. In its name, the centralized approach uses a computerized control center optimize the 
settings to each microgrid component. The decentralized management system optimizes the microgrid 
operation using partial information with each component evaluating its own optimal settings. Central-
ized management is often deployed via metaheuristics and decentralized management is commonly 
implemented in methods based on multi-agents.

Background

Microgrid is an important part of the smart grid concept. It’s part of a larger grid that includes nearly all 
of the utility grid’s components, but these ones are smaller. Microgrids are smaller size and can operate 
independently from the larger utility grid, whereas smart grids take place at a bigger utility level, such 
as massive transmission and distribution lines. (Han, Y., 2014).
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Microgrids are small, local distribution systems that include a set of micro sources including micro-
turbines, fuel cells, photovoltaic (PV) arrays, and wind turbines, as well as storage devices like flywheels, 
energy capacitors, and batteries, as well as controllable and uncontrollable loads. During faults or other 
external disruptions, it can be connected to the utility grid (grid mode) or operated independently and 
separated from the utility grid (island mode). As a result, they improve supply quality, allowing cus-
tomers to acquire more efficient, less expensive, and cleaner energy. One of the important advantages 
of microgrids is their ability to store energy. Microgrids may also increase local reliability, minimize 
investment costs, reduce emissions, improve power quality, and reduce distribution network power losses. 
(Banerji, A.et al., 2013).

Various organizations have comparable definitions for microgrids, which include the concept of a 
system with numerous loads and generation, as well as the concept of islanding off the grid. Microgrids 
provide a number of advantages, including the ability to modernize the grid and integrate numerous 
Smart Grid technologies.

• Improving the integration of distributed and renewable energy sources, which can assist minimize 
peak load and losses by putting generation closer to demand.

• Meeting end-user needs by assuring energy supply for key loads, controlling power quality and re-
liability at the local level, and encouraging customer participation in the electricity supply through 
demand side management and community involvement.

• Providing auxiliary services to the bulk power system and supporting the microgrid by handling 
sensitive loads and the fluctuation of renewable sources locally. (Ton, Wang, W. M., & Wang, W. 
T. P., 2011).

Figure 3. Basic Microgrid architecture
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Components of Microgrid

A microgrid is made up of a central grid source, distributed generators, energy storage devices, power 
electronics, and a control system for managing the generator power supply.

• In a microgrid, distributed generators (DG) are the primary source of electricity generation. 
Renewable energy DGs and non-renewable energy DGs are two types of DGs that can be classi-
fied based on their technologies (Nojavan & Jermsittiparsert, 2020).

• Microgrids rely heavily on renewable energy sources like wind and solar energy. Due to the rising 
implementation of renewable energy sources and their intermittent nature, energy storage devices 
have become an unavoidable aspect of a microgrid. Batteries, flywheels, and other storage devices 
are examples.

• In microgrid systems, the electrical load is key to their operation and stability because in some 
applications, prioritizing the supply to critical loads is required. Microgrids can be used to power 
both residential and industrial loads, which are divided into sensitive and non-sensitive categories. 
(Sriyakul & Jermsittiparsert, 2020).

• In most DER microgrids, power converters are necessary to convert generated electricity to AC 
power suitable with appliances. (Bevrani, François & Ise, 2017; Jiang, He & Jermsittiparsert, 
2020).

The global community has started to adopt the renewable energy as the primary source of power in 
order to address the issue of global warming and reduce the production of greenhouse gases due to burn-
ing of fossil fuel. Utilization of electrical energy is the key growth of any country economically. Huge 
investments are made by various countries in developing and implementing the renewable energy-based 
power production. Renewable energy also plays a vital role is electrifying the rural and remote areas 
where the transmission of grid power is impossible. The major renewable sources which produce the 
electricity are solar, wind, hydro, tides, geothermal, and biomass. Figure 4 shows the general production 
of electricity at present, worldwide (Ramesh Babu, 2017).

Figure 4. Global production of electricity in 2020 by share (World Energy Data, 2021)
Data: BP Statistical Review of World Energy 2021
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Although the use of renewable energy is increasing, we can distinguish many kinds of challenges. 
These challenges include:

Widespread Unpredictability

The inability to forecast whether the wind and sun will be available for energy generation an hour or a 
day later is known as unpredictability. Because grid operators employ unit commitment to manage the 
majority of electricity on the system, the hour-to-day variability is reduced. Unit commitment is the 
process of planning generation ahead of time, usually a day ahead of time, in order to fulfill the predicted 
load. As a result, when supply falls short of demand, the grid operator turns to ancillary services to 
make up the shortfall. (Kingsley, Shongwe & Joseph, 2018). As a result, when the process of unit com-
mitment and reserve computation is performed based on hypothetical or random data in order to ensure 
reliability, a difficult challenge occurs.

Non-Controllable Variability

Variability refers to a non-consistent production in the context of renewable energy resources. It differs 
from unpredictability in that even if operators are able to accurately estimate wind and solar output, the 
output will still be varied, posing problems to the operator. Grid operators must deal with voltage and 
frequency fluctuations on a second to minute scale that, if left uncontrolled, can cause major damage to 
the system and its associated equipment. (Kingsley, Shongwe & Joseph, 2018).

Dependence on Location

Wind and solar energy resources are frequently found in remote locations far from where they are used. 
As a result, the building of adequate transmission infrastructure is critical for the grid integration of 
renewable energy. Transmission planning regulations vary greatly and are frequently influenced by 
regional politics. Energy production capacity can be found in one condition, then passed via another 
before being used in another. Because of the disparities in generation capacity, transmission capacity 
location, and load size changes between different sites, the development of renewable energy transmis-
sion is complicated, especially in terms of cost allocation.

Capital-Intensive Grid Upgrading

Upgrades to the grid may be necessary to accommodate wind and solar electricity. For example, new 
transmission lines or improvements to existing lines may be required if high-quality wind and solar 
resources are located far from demand centers. At the distribution level, rooftop PV may hasten the 
deterioration of distribution components such as low-voltage transformers, resulting in a higher return 
on RE expenditures. (Ramesh Babu, N., 2017).

Uncertain Renewable Energy Cost and Cash Flow

Smart grid solutions are emerging to address two specific challenges that have harmed RE project eco-
nomics in the past: grid upgrading expenses awarded to renewable energy project developers and energy 

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



67

Application of Optimization to Sizing Renewable Energy Systems and Energy Management in Microgrids
 

curtailment when full renewable energy production cannot be easily integrated into the power system. 
Both of these factors could cause the project’s cash flows to deviate even more from expectations. The 
investment landscape for variable renewable energy becomes more uncertain as improvements grow 
more expensive or curtailments become more common, which can hinder total adoption. (Ramesh Babu, 
N., 2017).
Fortunately, smart solutions exist to mitigate these challenges

• Enhanced Forecasting: System operators can better predict and manage renewable energy vari-
ability and uncertainty thanks to widespread instrumentation and advanced computer models.

• Smart Inverters: Inverters and other power electronics can provide control to system operators as 
well as provide some grid support automatically.

• Incorporated storage: Storage can assist smooth out short-term changes in RE output and man-
age supply and demand mismatches.

• Demand Response: Demand-side contributions to balancing can be made using smart meters, 
intelligent appliances, and even industrial-scale loads.

• Advanced energy management systems: Advanced energy management systems, which give 
real-time, high-resolution visibility and control of power systems, can let grid operators postpone 
more expensive capital expenditures.

• Grid-level storage: Various types of large-scale storage can assist in reducing the demand for 
extra transmission capacity. (Speer, B. et al., 2015).

The AMI and Renewable Energy Grid Integration

AMI stands for advanced metering infrastructure, which is an integrated system of communications net-
works, data management systems, and smart meters that allows utilities and customers to communicate 
in real time. Unlike traditional electricity meters, AMI works in three different ways. They can measure 
energy consumption with improved time resolution and send usage data to the utility on a regular basis. 
AMI enables a variety of smart grid technologies that support renewable energy (Recioui & Bentarzi, 
2021). AMI is distinguished in terms of renewable energy and grid integration by:

• For reparation, regulation, and development, AMI can size renewable resource production, includ-
ing auxiliary infrastructure.

• AMI can be used to incorporate distributed resources into DA systems as a communications setup.
• AMI enables improved electricity rating systems, which can boost distributed PV’s financial 

viability.
• AMI can serve as a communication channel for DR, which works in tandem with PV. (Kingsley, 

Shongwe & Joseph, 2018).

Components of a Typical Hybrid Renewable Energy System

As a subordinate power source, a hybrid setup combining the electricity gathered from both the wind 
and the sun and stored in a battery can be far more reliable and realistic. Even if there is no sun or wind 
due to climate change, the system will be powered by the stored energy in the batteries. Hybrid systems 
are typically designed to provide the lowest feasible cost while simultaneously providing the highest 
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level of reliability by taking into account all of the constraints that may affect the amount of generated 
electricity. Solar PV cells are becoming more expensive, making them unsuitable for larger-capacity 
systems. This is where the wind turbine comes into play, with its key advantage being its lower cost as 
compared to PV cells. The system requires a battery to store solar and wind energy generated during 
the day. The presence of wind during the night is an added benefit that boosts the system’s reliability. A 
wind turbine is a more dynamic source of electricity. A wind turbine added to a system would protect 
batteries from deep discharges, extending their life. (Rajendra & Natarajan, 2006; Shaahid & Elhadidy, 
2008; Khatib, Azah, & Kamaruzzaman, 2012).

Looking at the components of a hybrid renewable energy system shown in Figure 5, a lot of works 
have dealt with the optimization of such a system as a whole or in part depending on the intended in-
vestment and the renewable energy resources in the area of interest. Also, the system optimization may 
be categorized into standalone systems for remote areas or grid connected for smart cities applications 
(Ding et al., 2021). It should be noted that the optimization task is successful provided the renewable 

Figure 5. System components of hybrid wind and PV systems
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resources data are available and accurate. This issue has to be considered whenever a renewable energy 
system is to be deployed and designed for the investment to be worth it.

COMMON PERFORMANCE INDICES IN RENEWABLES SIZING PROBLEMS

In the literature, a number of key performance metrics have been used to analyze the efficiency and 
practicability of hybrid renewable energy systems. The following are the most commonly used metrics:

Loss of Power Supply Probability

The loss of power supply probability (LPSP) is the probability that insufficiency in energy supply oc-
curs when the hybrid system is unable to satisfy the load demand (Mahesh & Sandhu, 2015; Yang, Lu, 
& Burnett, 2003). It indicates the portion of the operating time T in which the energy supplied by the 
energy system Esupplied is insufficient to meet the load demand Eload and may be written as (Mahesh & 
Sandhu, 2015):
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Expected Energy Not Supplied

The expected energy not supplied, EENS, is an indicator to measure the amount of energy not supplied 
by the power system when the load exceeds available generation (Mahesh & Sandhu, 2015, Chauhan & 
Saini, 2014). The EENS at any instant in time is given by the difference between the load level and total 
generation corresponding to that time instant (Khatod, Pant & Sharma, 2010)
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The EENS over the whole operation period is then:
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Energy Index of Reliability

The energy index of reliability (EIR) is the fraction of the demand satisfied by an energy system and is 
directly related to EENS (Tina, Gagliano & Raiti, 2006) as:
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Renewable Energy Fraction

The renewable energy fraction, REF, represents the fraction of the total energy delivered to the load that 
was generated from a renewable resource. It is typically used for renewable-based systems with diesel 
generators as backup to prevent power failure and is given as (Al-Shamma’a & Addoweesh, 2014):
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Where EDG(t) represents the energy supplied from diesel generators and Eload(t) the load demand, re-
spectively.

Loss of Load Probability (LOLP)

Loss of load (LOL) is defined as the HRES inability to meet the daily peak load. A LOL occurs when-
ever the system load exceeds the available generating capacity (Pillai, 2008). The overall probability 
that there will be a shortage of power (loss of power) is called loss of load probability (LOLP) which is 
expressed in terms of days per year, hours per day or percentage of time. The LOLP measure was first 
introduced by Calabrese (Calabrese, 1947). The LOLP is given by the following equations (Yang, Lu 
& Burnett, 2003):
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And Ineeded(t) is the current required for the load at time t, Isupply(t) is the current supplied by HRES at 
time t, T is number of samples. VL is the nominal voltage needed by the system, L(t) is the electrical load 
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requirements at time t, PW(t) is the power generated by the wind turbine at time t, and PPV(t) is the power 
generated by PV modules at time t. If LOLP is low, it results in high cost of the system and vice versa.

Demand Satisfaction Criteria

Generally, the objective of the sizing problem is to determine the minimum cost design which is guarantees 
to meet the load demands throughout the year. A simple energy balance constraint over the entire time 
period of operation (also termed the demand satisfaction criteria (Maleki. & Askarzadeh, 2014; Maleki 
& Pourfayaz, 2015) or demand-supply criteria (Markvart, 1996) can be used to assess the performance. 
For hybrid energy systems, this is given by:

Esupplied(t) + EDF(t) ≥ Eload(t) ∀t (9)

REVIEW ON HYBRID RENEWABLE ENERGY SYSTEM SIZING OPTIMIZATION

The main goals of optimizing a hybrid renewable energy system using any suitable technique are to 
identify system component values, set up an objective function containing variables and components, as 
well as realistic constraints that can affect the function, and satisfy the load demand economically and 
effectively. As a result, the optimization problem’s objective function and its overall system components 
are discovered, subject to the following two points:

1.  Keeping the overall net current cost of the system as low as possible;
2.  Ensuring that the load is served in accordance with specific reliability requirements.

As indicated in Fig. 6, the hybrid renewable energy sizing approaches can be categorized into two main 
classes: optimization based on dedicated software and optimization using computational methods (Ammari 
et al, 2021). Different categorization approaches are suggested by a thorough literature analysis on the 
application of optimization techniques to solve the challenge of scaling renewable energy installations.

Figure 6. Classification of Hybrid Renewable Energy system sizing
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From the philosophical point of view of optimization, the renewable energy sizing works can be 
categorized as:

Graphical Solution

This method works better for situations involving two design variables because it allows you to see 
how one changes in relation to the other graphically. The limitations are shown graphically in the same 
graph. Once the objective function contours are drawn, the optimized point on the graph can be identi-
fied by inspecting the feasible region (Borowy & Salameh, 1996; Markvart, 1996). For a standalone 
hybrid Wind/PV system, Borowy and Salameh (Borowy & Salameh, 1996) devised a methodology for 
calculating the optimum size of a battery bank and PV array. In a hybrid solar/wind system, a graphical 
construction technique was utilized to discover the best battery and PV array combination. The loss of 
power supply probability (LPSP) was calculated using various combinations of PV array and battery 
sizes. The PV array against battery size is plotted using this LPSP, and the optimum option that mini-
mizes the total system cost is obtained. Markvart et al. (Markvart, Fragaki, & Ross, 2006) used a long 
time series of solar radiation to establish the best sizing by superimposing contributions from climatic 
cycles with low daily solar radiation. A method for determining the optimal size of a hybrid PV/wind 
energy system was presented by Ai et al. (Ai et al., 2003). Annual Loss of Load Probability (LOLP) was 
estimated for various PV array and battery bank capacity values, and the best configuration (in terms of 
cost and LPSP) was discovered by drawing a tangent to the trade-off curve.

Probabilistic Approach

On an hourly basis or daily average power per month, the day of minimum PV power per month, and 
the day of minimum wind power per month, the optimal size of a hybrid PV/wind energy system can be 
estimated. The cost and time required to obtain environmental and load data are both minimal with this 
strategy (Tina, Gagliano & Raiti, 2006; Bagul, Salameh & Borowy,1996). Tina et al. (Tina, Gagliano, 
& Raiti, 2006) proposed a probabilistic approach based on the convolution technique to account for 
resource and load fluctuation. This eliminates the requirement for time-series data to evaluate a hybrid 
solar–wind system’s long-term performance for both standalone and grid-connected applications. The 
energy index of reliability (EIR) directly related to energy expected not supplied (EENS) was used in the 
reliability study, with the time-value of energy being included as applicable in economic assessments of 
the system. In another case, the hourly average generation capacity approach was applied (Karaki, Chedid 
& Ramadan, 1999; Kellogg et al., 1996). The hourly average wind, insolation, and power consumption 
are used in this method to optimize system sizing. This computation is based on average annual monthly 
solar and wind statistics. The photovoltaic and wind components’ sizes have been determined. The size of 
the PV and Wind generators was determined using the most unfavorable month technique. Based on the 
provided data, the unfavorable irradiation month and the unfavorable wind speed month are determined 
(El-Khadimi, Bchir & Zeroual, 2004; Kusakana & Vermaak, 2013).

Deterministic Algorithms

Unlike the probabilistic technique, every set of variable states is uniquely defined by model parameters and 
sets of prior states of these variables in the deterministic approach. As a result, there is always a unique 
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solution for given parameters (Bhuiyan, & Ali, 2003). For a PV system installed in Nepal, Bhandari and 
Stadler calculated the system size and cost (Bhandari & Stadler, 2011). Rachid B. et al. (Belfkira, R. et 
al., 2008) developed a new sizing optimization methodology for a stand-alone hybrid renewable energy 
system. They used a deterministic method to reduce the system’s life cycle cost while still ensuring en-
ergy availability. The ideal number of wind turbines, solar panels, and batteries has been found. (Lotfi, 
Farid, and Ghiamy, 2013) employed a deterministic approach technique to determine the best unit size 
for hybrid power generating systems that combine photovoltaic and wind energy. The weighting approach 
is used to create a discrete collection of Pareto optimum solutions numerically.

Classical Optimization Techniques

Iterative technique is a mathematical procedure that generates a series of improving approximation so-
lutions for the optimization problem until a termination requirement is met, usually using a computer. 
When employing this method, the computation time grows exponentially as the number of optimization 
variables grows (Yang, Lu & Burnett, 2003; Yang, Lu & Zhou, 2007; Chedid & Rahman, 1997; Chedid, 
Karaki & Rifai, 2005). This approach was applied by Li et al. (Li, Wei, & Xiang, 2012) to improve PV-
wind-battery HRES based on life cycle cost minimization. Kellogg et al. (Kellogg et al., 1998) employed 
an iterative optimization method to figure out how much generation capacity and storage a stand-alone, 
wind, PV, and hybrid wind/PV system would need. The utilization of renewable energy is compared to 
the construction of a power line extension from the nearest power line. (Diaf et al., 2008) presented an 
iterative optimization technique for the techno-economic optimization of a hybrid PV/wind energy system 
with/without an uninterruptible power supply to provide a certain load. The main optimization goals were 
to find the best HRES component size and the lowest LEC. The authors investigated the performance of 
HRES with and without an uninterruptible power supply, finding that system configuration influences LEC 
and battery state of charge (SOC), particularly at low windy sites. Furthermore, the authors confirmed 
that for the systems under investigation, the hybrid system is the optimum alternative. However, when 
determining the optimal system size, the authors did not use smart grid applications. Using the iterative 
technique, Kaabeche et al. (Kaabeche, Belhamel & Ibtiouen, 2011) and Yang et al. (Yang, Lu & Zhou, 
2007) provided a sizing optimization model for a hybrid PV/wind/battery energy system. The LOLP and 
the LEC are used as optimization objectives in this model to determine the best system configuration. In 
(Hocaolu, Gerek, & Kurban, 2009), an iterative optimization methodology was presented to maximize 
the size of a hybrid PV/wind/battery energy system while keeping the system components’ investment 
costs to a minimum. To find the maximum battery and minimum supply size, this methodology first 
assumes that the battery capacity is infinite, and then determines the optimal number of WT and PV 
arrays to supply the load demand with a specified LOLP. The authors looked at the impact of using real 
meteorological data vs generic analytical meteorological models for estimating system components. In 
(Sukumar et al., 2017), a linear optimization method for determining the appropriate size of an energy 
storage system was given. Many critical limits on the LPSP and REF indices were overlooked by the 
suggested technique. The authors of (Helal et al., 2017) used mixed integer nonlinear programming to 
examine an energy management system for a microgrid in an isolated community. Correa et al. (Correa, 
Marulanda, & Garces, 2016) suggested a virtual power plant-based energy management system. To re-
duce operating costs, they used linear programming to model the parts. The battery size has a significant 
impact on the microgrid’s operational costs.
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Artificial Intelligence Techniques

Artificial intelligence (AI) is a discipline of computer science concerned with the development of intel-
ligent computers and software. Artificial neural networks (ANN), genetic algorithms (GA), fuzzy logic 
(FL), and hybrid systems are examples of AI techniques. Intelligent technologies enable us to create 
systems that are more practical and perform better than traditional approaches (Russell & Norvig, 2003).

Several research papers that use nature-inspired Computational Intelligence Techniques as a solu-
tion to HRES optimization have been published in the literature. The following sub-sections summarize 
these works.

Genetic Algorithms

Many studies have looked into the best design for a hybrid PV/Wind energy system in order to reduce 
the system’s total net present cost and ensure that the load is reliably provided. Satish Kumar R. et al. 
(Ramoji, Bibhuti, & Kumar, 2014) used a genetic algorithm to build a system that took into account 
both economic and environmental factors. improved photovoltaic (PV)-wind hybrid energy house system 
with a storage battery (Nafeh, 2011). The design ensures that the load is properly fed to meet specified 
reliability criteria while keeping the loss of power supply probability (LPSP) below a predetermined 
threshold. (Ko et al., 2015) proposed a hybrid energy system (HES) that included both fossil fuel and 
renewable energy systems in order to bring the cost of renewable energy down to a tolerable level for 
customers. For the simultaneous multi-objective design of three objectives: life cycle cost, renewable 
energy integration, and greenhouse gas emissions reduction, an elitist non-dominated sorting genetic 
algorithm was applied. Koutroulis et al. (Koutroulis, Dionissia, & Kostas, 2006) optimized the kind and 
number of components in order to achieve the lowest cost while meeting the load requirement with zero 
load rejection. They employed a genetic algorithm to optimize the component sizes of a freestanding 
system made up of solar panels, wind turbines, and a battery bank. The authors of (Benatiallah, Kadia, 
& Dakyob, 2010) used the genetic algorithm to size freestanding wind power plants (GA). In the Alge-
rian town of Bechar, the developed approach was used to size a wind system that is expected to supply 
power to a household load. The system is designed for applications that require fluctuating or constant 
power loads. The authors of (Koutroulis et al., 2006) provided an optimal sizing of stand-alone PV/Wind 
systems by selecting the appropriate number and kind of units from a list of commercially accessible 
system devices, guaranteeing that the total system cost is reduced. In compared to traditional methods 
such as dynamic programming and gradient techniques, they used Genetic Algorithm to reduce the cost 
function. (Al-Shamma’a & Addoweesh, 2012) used a Genetic Algorithm to optimize the configuration 
of a hybrid energy system (HES) (GA). The suggested method was used to analyze the HES that supplies 
energy to a distant town in Saudi Arabia’s northern region. The best size is determined by the renewable 
energy fraction (REF) and the system’s reliability (LPSP). The hybrid PV/WT/Bat/DG, hybrid WT/Bat/
DG, and hybrid PV/WT/DG systems are the most cost-effective, as they have a lower COE than the other 
systems. Genetic algorithms were employed by Kamaruzzaman et al. (Sopian et al., 2008) to optimize 
the system components of a hybrid energy system that included a Pico hydro system, solar photovoltaic 
modules, a diesel generator, and battery sets. They want to employ renewable energy as much as pos-
sible while limiting the use of diesel generators. They used genetic algorithms programming to analyze 
both circumstances in order to reduce the overall net present cost for the best configuration. They took 
into account a variety of operating tactics when creating the vectors for the best plan. Satish Kumar 
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Ramoji et al. (Ramoji, 2014) provided a new methodology for sizing a hybrid PV/Wind energy system 
for best performance. The hybrid PV-wind system was designed using Genetic Algorithms (GA) and 
Teaching Learning Based Optimization (TLBO). The application of the Pareto evolutionary algorithm 
to the multi-objective design of isolated hybrid systems was presented by Jose L. et al. (Bernal, José, 
& Rodolfo, 2009). To discover the ideal combinations of components for the hybrid system and control 
method, they applied the approaches of a multi-objective evolutionary algorithm (MOEA) and a genetic 
algorithm (GA). M.S. Ismail et al. (Ismail, Moghavvemi, & Mahlia, 2014) suggested a method for sizing 
a hybrid system that includes photovoltaic (PV) panels, a backup source (microturbine or diesel), and a 
battery system. Their goal was to provide power to a tiny village in the Palestinian Territories. In order 
to optimize the objective function while covering the load demand with a set value for the loss of load 
probability, a Genetic Algorithm was applied to the system (LLP). Hongxing et al. (2008) proposed an 
optimal sizing technique for designing a hybrid solar–wind system with battery backup (Hongxing et al., 
2008). The decision factors were PV module number, wind turbine number, battery number, PV module 
slope angle, and wind turbine installation height, and they used genetic algorithm (GA) Optimization 
approaches. It was possible to get the requisite loss of power supply probability (LPSP) with a minimum 
annualized cost of system (ACS). The authors of (Bao et al., 2013) used a Genetic algorithm to create 
a device that was commercially available. The design ensures that total system costs are reduced over 
a 20-year period, subject to the restriction that all load energy requirements are met. Katsigiannis et al. 
(Katsigiannis, Georgilakis, & Karapidakis, 2010) employed GA to improve hybrid energy systems for 
three remote Japanese islands. Based on the lowest total investment cost, the suggested technique identi-
fies the optimal number of PV panels, WT, and battery banks. The authors of (Yang, Wei, & Chengzhi, 
2009) advocated using GA to create an optimal design model for hybrid PV/wind/battery systems. B. 
Heyrman et al. (Heyrman & Dupré, 2013) provided a generic and efficient model for hybrid renewable-
conventional electrical energy systems that minimizes the annualized cost of the systems while satisfying 
the custom necessary LOLP. The HOMER software was used to successfully validate the simulation 
model. In addition, two control systems for the distribution of electrical power are discussed. The authors 
employed a genetic algorithm technique to reduce the total cost of the system by optimizing the size of 
system components in the specified challenge. With the lowest total cost, improved system dependability, 
robustness, and efficiency were obtained.

In addition to these efforts, some authors combined genetic algorithms with other methodologies. 
When total solar radiation data is unavailable, Adel Mellit (Mellit, 2007) employed neural networks and 
genetic algorithms to forecast the appropriate size coefficient of Photovoltaic Supply (PVS) systems in 
remote places. By reducing the ideal cost (objective function) with the number of PV modules and the 
capacity of the batteries, a genetic algorithm (GA) is utilized to calculate the optimal coefficients for 
each site. Then, using simply geographical coordinates as input, a feed-forward neural network (NN) is 
used to predict the optimal coefficients in remote places. (Jemaa et al., 2013) used fuzzy adaptive Ge-
netic Algorithms to optimize the setup of hybrid energy systems. Using historical data of hourly wind 
speed, solar irradiance, and load data, PV, wind generator, and load were stochastically modeled. The 
overall cost of the hybrid system is reduced thanks to the Hatata et al. paper’s clonal selection technique 
(Hatata, Osmana & Aladla, 2018). By reducing the size of the wind turbine while increasing the size of 
the PV and Battery, the GA-based clonal algorithm provided improved outcomes.
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Particle Swarm Optimization

The authors of (Mohamed et al., 2016) used Particle Swarm optimization to determine the optimal siz-
ing of a hybrid renewable energy system employing a smart grid load management application based on 
available generation (PSO). One of the smart grid applications, load shifting, has been used to acquire 
the dispersed load profile, lower overall system costs, and reduce CO2 emissions. Motaz Amer and his 
co-authors PSO was utilized by (Motaz, Namaane, & M’sirdi, 2013) to calculate the power generated by 
a Hybrid Renewable Energy System to meet a typical load demand. PSO was successful in lowering the 
system’s Levelized Cost of Energy (LCE) and optimizing it. They took into account both the total system 
power loss and the power stored in the standalone with battery storage and standalone with grid storage 
situations. Using Multi Objective Particle Swarm Optimization, (Hanieh et al., 2014) introduced a new 
way for optimizing micro-grid systems (MOPSO). This is accomplished using a hybrid wind/PV system 
with battery storage and a diesel generator. The load is subjected to the power management algorithm, 
and the MOPSO method is utilized to determine the best system configuration and component sizing. 
Using a comparative comparison of particle swarm optimization and ant colony optimization, Saeid 
Lotfi et al. (Lotfi, Farid, & Ghiamy, 2013) proposed a new method for optimal design of a stand-alone 
hybrid solar-wind-diesel power generating system. They employed a mathematical model of the hybrid 
system’s numerous components. (Hameed et al., 2012) proposed an open space particle swarm optimiza-
tion method for determining the optimal sizing of a hybrid renewable energy production system (HRES) 
with storage system (OSPSO). A reliable and cost-effective generation system is achieved by determin-
ing the optimal quantity of PV modules, wind turbines, and batteries. Maleki and Fathollah Pourfayaz 
optimized hybrid photovoltaic (PV)–wind turbine (WT) systems with battery storage for remote places 
(Maleki & Fathollah, 2015). Particle swarm optimization (PSO), tabu search (TS), and simulated anneal-
ing (SA) were used, as well as four variants: improved particle swarm optimization (IPSO), improved 
harmony search (IHS), improved harmony search-based simulated annealing (IHSBSA), and artificial 
bee swarm optimization (ABSO) (ABSO). The optimum sizing of a PV/ WT/battery hybrid system has 
been compared in terms of total annual cost (TAC). ABSO is more promising than the other algorithms, 
according to the results. A hybrid system incorporating wind, PV, and tidal energy with battery storage 
was proposed by (Bashir & Sadeh, 2012). They emphasized the advantages of tidal energy as being 
more predictable than wind and solar. For optimization, they used the PSO algorithm. The particle 
swarm optimization is used in (Kornelakis & Marinakis, 2010) to optimize the sizing of grid-connected 
PV installations. It is presented how to use Complex Mixed Integer Multi Objective Particle Swarm 
Optimization to obtain non-dominated solutions for optimal design, as well as a numerical example for 
a huge hotel (Lingfeng & Singh, 2007). PSO was used by (Boonbumroong et al., 2011) to reduce the 
life-cycle cost of a stand-alone PV/wind/diesel system to feed a certain load. The hourly energy demand 
has to be met by the amount of generated energy, according to the optimization constraint. Hakimi & 
Moghaddas-Tafreshi, 2009) PSO was utilized to reduce the total cost of a stand-alone hybrid energy 
system made up of wind turbines, electrolytes, a reformer, an anaerobic reactor, fuel cells, and hydrogen 
tanks while meeting demand. The stored energy in hydrogen tanks was the optimization restriction. As an 
example study, (Xiao Xu et al., 2020) constructed and investigated a hybrid PV/WT/hydropower/pump 
storage. To respect the maximum Loss of Power Supply Probability (LPSP) and least investment cost, 
they devised a techno-economic index. The problem is solved using MOPSO (Multi-Objective Particle 
Swarm Optimization). An intelligent energy management system for Hybrid Micro-Grid system at three 
stations in Iran is proposed in (Borhanazad et al., 2014). A multiobjective particle swarm optimization 
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approach was used by the authors. In (Abedini, Moradi, & Hosseinian, 2016), the authors developed an 
energy management system for a stand-alone Hybrid Micro-Grid that was optimized utilizing a particle 
swarm method with Gaussian mutation.

Other Techniques

Sharmistha Sharma et al. (Sharma, Bhattacharjee, S., & Bhattacharya, A., 2016) improved the sizing of 
battery energy storage devices to reduce the operational planning of a micro-grid (MG) in terms of low-
ering energy expenses. Various restrictions were evaluated, including distributed generator (DG) power 
capacity, BES power and energy capacity, BES charge/discharge efficiency, operating reserve, and load 
demand satisfaction. To overcome the problem, they employed grey wolf optimization (GWO). In terms 
of solution quality and computing performance, GWO beats numerous optimization techniques such 
as genetic algorithm, particle swarm optimization, tabu search, and differential evolution. Ant Colony 
Optimization (ACO) was utilized by (Khorasaninejad & Fetanat, 2015) to size a hybrid photovoltaic 
(PV) and wind energy system. The findings are encouraging, demonstrating that the authors’ proposed 
approach beats them in terms of finding the best solution and completing it quickly. The Bat algorithm 
is applied for size optimization of grid-connected PV systems by maximizing the specific yield in (Su-
laiman et al., 2012; Othman et al., 2015). Erdinc et al. present a thorough examination of the various 
optimization strategies for sizing the design of hybrid renewable energy systems (Erdinc, & Uzunoglu, 
2012). A brief overview of the advantages and disadvantages of various artificial intelligence approaches 
(GA, PSO, and SA) utilized for efficient and cost-effective hybrid system sizing is presented, as well as 
detailed intelligent techniques for hybrid system sizing. The authors developed a hybrid power system 
that included wind turbines (WT), photovoltaics (PV), and battery energy storage (BESS) technologies 
in (Hemeida et al., 2020). Load satisfaction is considered when evaluating the system’s practicality. To 
determine the optimal solution, the linear TORSCHE optimization technique is utilized. The authors 
of (Alshammari & Asumadu, 2020) implemented and compared three algorithms to discover the best 
hybrid WT/PV/Biomass/BESS energy system design. When compared to the Jaya and PSO optimiza-
tion methods, the Harmony Search Algorithm (HSA) was faster and more efficient at convergence. The 
teaching learning based optimization (TLBO) technique was applied to improve a hybrid renewable 
energy system in (Recioui & Dassa, 2017).

The artificial neural network is used in (Kolawole, 2014) to estimate the best sizing parameters for 
standalone PV systems. For the PV array size coefficient and the battery storage capacity coefficient, the 
ANN provided results. The generalized regression neural network is utilized in (Khatib & Elmenreich, 
2014) to optimize the sizing coefficients and estimate the loss of load probability for freestanding PV 
systems. The ANFIS model is established in (Mellit, 2006) for optimizing the size coefficients of free-
standing PV systems. Based on the costs of a solar panel, the ideal sizing parameters for these calculated 
sites were created. When compared to the site’s known sizing parameters, the proposed adaptive neural 
fuzzy inference system model delivered the most accurate findings of the various network topologies.

Andrea G. Kraj et al. (Kraj, 2015) investigated the simulation of Multi-Renewable Energy Systems 
(MRESs) with the goal of making it easier to optimize multi-functional power systems for distant stand-
alone power generation. They used an evolutionary algorithm technique to evaluate objectives within the 
simulated MRES configuration’s geographical and economic constraints. For electrical energy genera-
tion, the simulated MRES uses real resource data for wind and solar energy, as well as model biomass 
resources, in combination with diesel backup and storage systems. The authors of (Barbaro & Castro, 
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2020) examined how to create an energy system with the highest renewable energy penetration. This 
system is made up of WT, PV, geothermal, diesel, and BESS, and the best system is found while keeping 
technological and cost limits in mind. Katsigiannis et al. (Katsigiannis, Georgilakis, and Karapidakis, 
2010) employed multiobjective optimization approaches to size an A-HMG while minimizing LCOE 
and CO2 emissions at the same time.

Dedicated Software

To study and plan renewable energy systems, there are numerous software packages and tools available. 
HOMER (Hybrid optimization method for electric renewables), HOGA (Hybrid optimization by genetic 
algorithm), and HYBRD2 are the most commonly used software tools. NREL (National Renewable 
Energy Laboratory, USA) created the Hybrid Optimization Model for Electric Renewables (HOMER) 
in 1993. The software can be used to quickly perform prefeasibility, optimization, and sensitivity analy-
sis in a variety of system configurations. Photovoltaic modules, wind turbines, biomass power, hydro 
power, generators, micro turbines, storage batteries, grid connections, fuel cells, and even electrolyz-
ers may all be modelled using the software. It was created for both on-grid and off-grid applications. 
HOGA (Hybrid Optimization by Genetic Algorithm) is a hybrid system optimization tool developed by 
the University of Zaragoza’s Electric Engineering Department (Spain). Genetic Algorithms are used to 
carry out the optimization, which can be single-objective or multi-objective. AC, DC, and/or hydrogen 
loads are all possibilities. The University of Massachusetts’ Renewable Energy Research Laboratory 
(RERL) developed the hybrid system simulation program HYBRID2. The simulation is run at intervals 
ranging from 10 minutes to 1 hour.

In this context, Roy et al. (Roy, Majumder, & Chakraborty, 2010) calculated the ideal sizing for a 
hybrid solar-wind system for distributed power at Sugar, a remote off-grid island. Using HOMER soft-
ware, they optimized the size of the generation units. The best configuration was subjected to a sensitivity 
analysis. A comparison of the hybrid system’s various modes was also investigated. The solar PV-Wind 
Hybrid system was expected to have a lower cost per unit of power. When compared to solar PV DG, the 
capital investment cost was similarly lower when the system used wind DG. Nandi and Ghosh (Nandi 
& Ghosh, 2009) conducted research on the optimization of a hybrid PV/wind/battery system and its 
performance for a typical community load in Bangladesh, utilizing a hybrid optimization model for 
electric renewable energy (HOMER). In Inner Mongolia, Barley et al. (Barley, Lew, & Flowers, 1997) 
investigated a hybrid wind/PV system for generating electricity. They used the HYBRID2 software in 
conjunction with a reduced time-series model to simulate hybrid power systems. HYBRID2 can simulate 
hybrid systems with a surprising level of detail, but it does not optimize the size of the system compo-
nents. The analysis of a stand-alone energy system using HRES was applied using HOMER software 
in Newfoundland, Canada (Khan & Iqbal, 2005). The authors of (Chaouachi et al., 2012) suggested a 
multiobjective optimization-based intelligent energy management of an HMG. To estimate RE generation 
and load demand, they used an artificial neural network. A approach for optimizing an HMG based on 
mixed integer linear programming is provided in (Ahmad et al., 2018). The HMG system’s optimization 
step was carried out using HOMER software. HOMER software was used to optimize a hybrid system 
using solar and wind data in the Adrar region of Algeria (Chellali et al., 2011).
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ENERGY MANAGEMENT IN MICROGRIDS WITH RENEWABLE ENERGIES

A microgrid is a medium- or small-scale distribution grid with distributed generation that includes re-
newable and conventional sources (hybrid systems) as well as storage units that provide electrical energy 
to end customers. The storage units that are used to compensate for the intermittency in PV and wind 
output power improve the microgrid’s reliability (Thirugnanam et al., 2018; Yang et al., 2013; Atcitty 
et al., 2013). These microgrids have the communication systems that are required for real-time energy 
management (Lasseter, 2007). Microgrids can function independently (standalone) or connected to a 
grid. (Hatziargyriou et al., 2007).

Smart grids, which allow information interchange between consumers and dispersed generation, might 
be characterized as microgrids with renewable energies. An energy management system (EMS) is an 
information system that offers the essential functionality to ensure that energy is supplied at a low cost by 
generation, transmission, and distribution (Stanton, Giri & Bose, 2017). Microgrid energy management 
entails the use of control software that allows for the system’s optimal operation (Su & Wang, 2012). 
This is accomplished by taking into account the cost as well as two microgrid operation options (isolated 
and inter-connected). When considering microgrids with renewable energy sources, the intermittence of 
resources such as solar irradiation and wind speed must be taken into account (Gildardo Gómez, 2016).

A comprehensive automated system is used to manage energy in a microgrid, with the primary goal 
of achieving optimal resource scheduling [Khan et al., 2016; Gamarra & Guerrero, 2015; Fathima & 
Palanisamy, 2015]. It is based on cutting-edge information technology and is capable of optimizing the 
administration of distributed energy sources and energy storage systems (Suchetha & Ramprabhakar, 
2018).
The microgrid optimization challenge often seeks to achieve the following goals:

• Maximize generator output power at a specific moment;
• Minimize microgrid operating expenses;
• Maximize the lifetime of energy storage devices; and
• Minimize environmental costs.

A literature review of these approaches and solutions is presented in the following sub-sections. The 
information flow follows the same logic as the categorization and classification described in the section 
on renewable energy sizing review.

Energy Management Based on Classical Techniques

Ahmad et al. (Ahmad et al., 2018) proposed a mixed integer linear programming-based techno-economic 
optimization of an MG (MILP). The goal was to emphasize the benefits of programming distributed-
source generation, regulating the intermittency and volatility of this sort of generation, and lessening load 
peaks. For MG energy management, Sukumar et al. (Sukumar et al., 2017) developed a mixed strategy. 
The utility grid and fuel cell power were combined to achieve this. The on/off states of the utility grid 
are solved using MILP, and the problem is solved using linear optimization methods. The ideal energy 
storage system size was determined using the particle swarm optimization (PSO) approach. Delgado 
and Dominguez-Navarro (Delgado & Dominguez-Navarro, 2014) proposed a linear programming-based 
approach for MG energy management to optimize the operation of generators or controllable/non-con-

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



80

Application of Optimization to Sizing Renewable Energy Systems and Energy Management in Microgrids
 

trollable loads. The optimal dispatch of generators (diesel) while satisfying the operational and economic 
restrictions imposed by the purchase and sale of energy corresponding to each grid component is the goal 
of the optimization issue. Correa et al. (Correa, Marulanda, & Garces, 2016) suggested a virtual power 
plant-based energy management system (VPP). Solar panels and storage systems are integrated on the 
MG. To reduce operating costs, they applied linear programming approaches. A model was created that 
was similar to the Colombian model in terms of energy. Umeozor and Trifkovic (Umeozor & Trifkovic, 
2016) investigated how to manage energy in an MG based on MILP by parameterizing the uncertainty 
of solar and wind energy generation in the MG. The optimization was carried out in two stages: first, the 
parameterization scheme was chosen, and then operational decisions were made while market pricing and 
storage system disposition were taken into account. Tim and his co-authors (Paul et al., 2018) suggested 
a centralized energy management system for an interconnected MG. Quadratic programming was used to 
find the best economic dispatch. The technique was put to the test using a modified IEEE 33 node grid. 
(Xing et al., 2017) introduced a multi-time-scale energy management system. The optimization task was 
split into two parts: static programming and real-time dynamic compensation. The problem was solved 
using a mixed-integer quadratic programming method with optimal load flows and expected battery 
load states based on wind and solar radiation data. Cardoso et al. (Cardoso et al., 2018) studied a novel 
MG battery degradation model. The problem is tackled using stochastic mixed-integer linear program-
ming, which takes into account a variety of parameters including loads and diverse energy generation 
sources, costs, limitations, grid topology, and local energy taxes. (Helal et al., 2017) investigated an 
energy management system for a hybrid MG in a remote hamlet using a photovoltaic desalination system. 
The mixed integer non-linear programming was used to solve the optimization problem. The objective 
function seeks to reduce daily operational costs as much as possible. (Rouholamini & Mohammadian, 
2016) researched optimal energy management for a grid-connected hybrid generation system utilizing 
an interior search method. This system uses real-time electricity pricing based on simulation results to 
provide power to the local grid.

Energy Management Based on Metaheuristic Methods

(Dufo-López et al., 2007) developed an energy management system based on evolutionary algorithms 
for a hybrid system. The goal is to reduce operating expenses by charging the batteries or producing hy-
drogen in the electrolyzer with excess energy generated by renewable sources. (Das et al., 2018) looked 
into incorporating internal combustion engines and gas turbines into stand-alone hybrid MGs with solar 
modules. This system was optimized using a multi-objective genetic algorithm based on energy costs 
and overall efficiency. The load was tracked using both electric and thermal energy. In (Chalise et al., 
2016), evolutionary algorithms were employed for energy supply alternatives via a diesel generator in a 
hybrid MG made of a diesel generator and photovoltaic system, with an economic dispatch with battery 
deterioration model. (Ogunjuyigbe, Ayodele, & Akinola, 2016) suggested a system for locating renew-
able generation and batteries in a stand-alone MG using a genetic algorithm. To optimize the MG, the 
optimization allows for differences in radiation and wind sources and collects data from a load profile. 
For residential and commercial MGs, (Aldaouab, Daniels, & Hallinan, 2017) used genetic algorithms. 
PV solar energy, microturbines, a diesel generator, and an energy storage system are all used in the MG. 
TRNSYS software was used to examine the performance of a hybrid system, and sizing was established 
using genetic algorithms in the HOGA software (formerly termed iHOGA), manual calculations, or 
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HOMER software (Behzadi & Niasati, 2015). For excess energy, three energy management options were 
tested: producing hydrogen, charging the battery, or both.

(Li et al., 2017) published a paper on MG optimization using the particle swarm technique, which 
may operate as a connected or isolated MG. To combat these oscillations, the strategy takes into account 
fluctuations in renewable energy sources and load needs, as well as appropriate 24-hour projections. 
Nivedha et al. (Nivedha, Singh, & Ongsakul, 2018) looked at an MG that included a wind turbine, fuel 
cells, a diesel generator, and an electrolyzer. Using the particle swarm optimization method, the fuel cell 
works to match the high load demand, resulting in cost-effective MG operation. Abedini et al. (Abedini, 
Moradi, & Hosseinian, 2016) provided an energy management system for a hybrid MG that used a particle 
swarm algorithm with Gaussian mutation to optimize capital and fuel expenses. (Wasilewski, 2018) used 
particle swarm algorithms and provide a metaheuristic optimization strategy for optimizing an MG. In a 
publication (Hossain et al., 2019), a particle swarm algorithm for energy management in a grid-connected 
MG is described. With one-hour time intervals, the proposed cost function cuts costs. (Azaza & Wallin, 
2017) looked into how to manage energy in an MG with a hybrid system that included wind turbines, 
solar panels, a diesel generator, and battery storage. The probability of losing energy supply throughout 
6 months during summer and winter is calculated using a multi-objective particle swarm optimization.
(Nikmehr & Najafi-Ravadanegh, 2015) used an imperial competitive algorithm to determine the ideal 
generation for an MG. The goal is to resolve load unpredictability and scattered generators, as well as 
the cost-effective dispatching of generating units. (Marzband et al., 2017) used the artificial bee colony 
algorithm to produce an energy management system for an isolated MG (ABC). Neural networks and 
Markov chains are used to control non-dispatchable generation and load unpredictability. (Kuitaba et al., 
2018) used fuzzy logic and the Grey Wolf algorithm to optimize an interconnected MG. The goal is to 
reduce both the costs of generating units and the amounts of emissions produced by fossil fuel sources. 
Energy management in an MG connected to a direct current electric grid was studied by (Papari et al., 
2017). The crow search method is used for optimization (CSA). (Kumar & Saravanan, 2019) used the 
artificial fish swarm optimization method to develop an algorithm in a hybrid MG. The sources, load, 
and storage elements are all programmed using the algorithm.

Energy Management Using Hybrid and Other Artificial Intelligence Techniques

(Chaouachi et al., 2013) suggested a multi-objective, intelligent energy management system for an MG 
that uses multi-objective linear programming to reduce operating costs and environmental effect. Pho-
tovoltaic and wind power generation, as well as load demand, were predicted using an artificial neural 
network. An energy management model for an MG linked to the main power grid was proposed by 
(Venayagamoorthy et al., 2016). The MG makes the most of renewable energy sources while reducing 
carbon emissions. Two neural networks are used to model the management system, which is based on 
evolutionary adaptive dynamic programming and learning concepts. In a hybrid MG, (Motevasel & 
Seifi, 2014) introduced an expert system for energy management. Wind turbine generation is predicted 
using neural networks. The multi-objective problem is solved using an improved bacterial foraging-based 
fuzzy efficient algorithm.

(Prathyush & Jasmn, 2018) presented a fuzzy logic controller-based energy management system for 
an MG. The goal is to keep the battery state of charge while reducing grid power variation. An adaptive 
neural fuzzy inference system based on an echo state network was proposed by (Leonori et al., 2018). 
The goal was to make the most revenue possible from energy exchange with the grid. (Arcos-Avilés 
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et al., 2017) provided an energy management method for a home grid-connected MG with distributed 
generation and batteries based on low-complexity fuzzy logic control. (Taha & Yasser, 2016) provided a 
method for an isolated MG based on a predictive control model. In the MG, this reduces the cost, energy 
consumption, and gas emissions caused by diesel generation. Luna et al. (2018) proposed a real-time 
energy management system that took into account perfect, poor, and exact forecasts. The optimization 
model was put to the test in both a connected and an isolated MG with large generation and load imbal-
ances. (De Santis, Rizzi, & Sadeghian, 2017) proposed a fuzzy logic-based Mamdani algorithm-based 
energy management system for an interconnected MG. In the MG model, the system makes decisions 
on energy flow management tasks. A combination of fuzzy logic and generic algorithms were used to 
optimize the results. Energy management in an autonomous MG with optimal dispatch of the micro 
and utility grids to meet energy demand was studied by (Elseid et al., 2015). The authors employed an 
IBM-developed CPLEX algorithm.

Based on game theory, (Mondal et al., 2018) proposed a distributed energy management model for a 
smart MG. The MG maximizes its cost and makes efficient use of energy in this model. (Ma et al., 2016) 
investigated an energy management algorithm based on game theory and leaders and followers. The goal 
was to maximize the benefits to active customers while maintaining the Stackelberg balance to ensure 
that benefits were evenly distributed. For energy management in an MG, (Liu et al., 2017) developed a 
Stackelberg game strategy. Based on the MG operator profitability, a management system model for the 
fee for PV energy was introduced, as well as a utility model for PV consumers. (Nnamdi and Xiaohua, 
2017) proposed an incentive-based demand response for grid-connected MG operations. Game theory 
was used to design the demand response program. For the energy management of an interconnected 
MG, (Jia et al., 2017) used an adaptive intelligence technique. The goal was to reduce load fluctuations 
caused by renewable energy generation uncertainty. Storage components and ultra-capacitors control 
the load profile.

REMARKS, TRENDS AND CONCLUSION

Because of the decreasing cost of PV and wind generators in recent years, hybrid renewable energy 
systems and microgrids are being more commonly used for remote and rural electrification. A review 
of power system optimization using hybrid renewable multi-source systems and microgrids has been 
provided in this chapter. Proper sizing and optimization of hybrid system components are essential to 
extract the required energy from renewable sources with an economically viable project over the life of 
the system. This chapter provides a concise but comprehensive overview of the techniques that academics 
have been utilizing for decades to optimize Hybrid Renewable Energy Systems in both independent and 
grid-connected configurations. The chapter’s second section focused on two approaches to microgrid 
energy management using renewable energy sources: There are two approaches: centralized and decen-
tralized. The centralized approach sends the ideal parameters to each microgrid partner via a computer 
center. The second method employs partial information optimization, in which each participant deter-
mines its own optimal parameters. Decentralized administration is widely used in multi-agent systems, 
while centralized management is typically used in metaheuristic approaches.

Despite the fact that a huge number of researchers have worked on improving Hybrid Energy Systems 
through the use of various computational intelligence techniques, there are still some gaps and obstacles 
in terms of their efficiency and optimal utilization. Innovative technology is required to harvest more 
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useful power from renewable energy sources such as solar PV. Solar’s low efficiency is a major impedi-
ment to its widespread adoption. Furthermore, the production cost of renewable energy sources must 
be reduced significantly, as this results in high capital costs and a longer payback period. In addition, 
research should focus on ensuring that power electrical equipment lose as little power as possible. To 
increase the life-cycle of storage technologies through innovative technologies, a lot of work needs to 
be done. Finally, standalone systems are less flexible to load fluctuations since big changes in load can 
cause the entire system to fail.

There has been very little effort reported on comparing simulation tools when it comes to optimiz-
ing hybrid renewable energy systems. In fact, there isn’t a single technique that can solve the problem 
at hand. The time and effort spent applying two or more techniques to maximize the planned problem 
and comparing the results to determine why the applied strategy was favored or, alternatively, under 
what conditions the involved technique is important are significantly reduced. Additionally, efforts to 
develop hybrid methodologies for maximizing renewable energy systems of various resources to fulfill 
energy needs are restricted. So, in addition to determining the variables and parameters appropriate for 
a specific problem, research on these topics is recommended. To improve the quality of the solution and 
the complexity of computation, researchers must look into adopting hybrid nature-inspired technologies.

In terms of microgrids, the literature evaluation focused on energy management techniques. The se-
lection of centralized or decentralized management guarantees that the microgrid designer and operator 
select the most appropriate management strategy for the microgrid. Various authors have tackled the 
issue and offered solutions utilizing approaches such as linear and nonlinear programming, heuristic 
methods, predictive control, dynamic programming, agent-based methods, and artificial intelligence. 
These solutions were adopted for the microgrid context because of their practicality, reliability, and re-
source availability. Data collection systems, supervisory control, human machine interface (HMI), and 
the monitoring and data analysis of meteorological factors are all part of a complete energy management 
model for a microgrid.

Lithium batteries have the potential to be a viable alternative to lead-acid batteries in microgrid 
storage systems. When used in microgrids, lead acid batteries are more cost-effective than lithium bat-
teries, however research into them will result in lower acquisition costs, making them comparable with 
lead-acid batteries. As a result, further study into effective energy management of energy systems, as 
well as lithium battery technology and management, is necessary. In addition, more precise degradation 
models are required to reliably forecast battery lifetime in real-world settings.
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KEY TERMS AND DEFINITIONS

Evolutionary Optimization: An evolutionary algorithm is a population-based optimization algorithm 
that uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, 
and selection. Evolution of the population then takes place after the repeated application of the previous 
mechanisms.

Metaheuristics: A metaheuristic is a higher-level procedure to find, generate, or select a sufficiently 
good solution to an optimization problem. Metaheuristics require a few assumptions about the optimiza-
tion problem being solved and so may be usable for a variety of problems.

Microgrid: A microgrid is a decentralized group of electricity sources and loads that is able to dis-
connect from the interconnected grid and to function autonomously. Microgrids improve the security 
of supply within the microgrid cell, and can supply emergency power, changing between autonomous 
and connected modes.

Optimization: Optimization is the process of choosing the best element from a set of available al-
ternatives under some constraints. This process amounts to minimizing or maximizing the objective or 
cost function of the problem.

Renewable Energy Sources: Renewable energy sources are natural resources which will replace 
the portion depleted by usage and consumption. Common sources of renewable energy include solar, 
geothermal and wind power.

Smart Grid: A smart grid is an electricity network that uses digital and other advanced technolo-
gies to monitor and manage the transport of electricity from all generation sources to meet the varying 
electricity demands of end-users.
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ABSTRACT

The analysis and collection of data is an integral part of all research fields of the modern world. There 
is a need to perform forward mathematical modeling to improve the operations and calculations with 
modern technologies. Artificial neural network signifies the structure of the human brain. They can pro-
vide reasonable solutions quickly for the problems that classical programming cannot solve. An in-depth 
systematic study is presented in this chapter related to artificial neural network applications (ANN) for 
predicting the equilibrium conditions for gas hydrate formation, which can assist in designing future 
dissociation technology for gas hydrate so that this white gold can make world energy free for the future 
generation. This chapter can also help to develop a novel inhibitor for gas hydrate formation and save 
millions of dollars for the oil and gas industry.

INTRODUCTION

Gas hydrates are solid crystalline compounds formed by the physical interaction between water and 
gas molecules (Kumari et al., 2020). The gas molecules are entrapped inside the cages formed by the 
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hydrogen-bonded water molecules. The gas hydrates can be formed as methane (CH4), ethane (C2H6), 
propane (C3H8), and carbon dioxide (CO2), as well as nitrogen (N2), hydrogen sulfide (H2S), and natural 
gas (Kumari et al., 2020). At low temperatures and high pressures, the gas molecules, usually methane, 
react with water molecules and form the gas hydrates. Hydrates can be found within deep-water permafrost 
and oceanic regions. Each gas hydrate volume can contain 184 volumes of gas at STP; hence, hydrates 
can be considered a potential unconventional energy source. The volume of gas recovered from hydrate 
reservoirs is about ten times the volume of all known retrievable gas in the whole world. Hence, this 
makes gas hydrate reservoirs a future energy source to fulfill the world’s future energy requirements. Gas 
hydrate can be formed at approximately 300-800 m water depth depending upon the local temperature 
of bottom water (E. Dendy Sloan & Koh, 1998; Max et al., 2005; Kumari et al., 2021). Most of the Gas 
hydrates are formed with methane gas; hence it is termed methane hydrates. The methane gas present 
in the onshore and offshore gas hydrate reservoir is 3000 times larger than the methane gas present in 
the atmosphere. Hence, the rapid release of methane gas from gas hydrate could significantly impact 
the atmosphere’s composition and can affect the global climate. Methane gas could release slowly in 
the atmosphere to oxidize carbon dioxide by the chemical and microbial processes. The methane gas 
released in the atmosphere should react with the hydroxyl radicals in ten years approximately. Hence, 
the role of methane gas hydrate in global climate change depends on the release rate of methane gas 
from gas hydrates, which is primarily unknown. An example of the slow release of methane gas from 
oceanic sediments is in the Gulf of Mexico, and the rapid release of methane gas is in the Blake Ridge 
(Kvenvolden, 1999).

The natural gas hydrate can form three types of structure: cubic structure I and II (sI, sII), and hex-
agonal structure H (sH). sI structured hydrate is formed with the guest molecules (methane, ethane, 
carbon dioxide) of diameters between 4.2 and 6 Ǻ. The guest molecules of diameters less than 4.2 Ǻ 
(nitrogen and hydrogen) and diameters between 6 to 7 Ǻ (Propane or isobutane) can form sII structures. 
When the guest molecules of larger diameter between 7 to 9 Ǻ (iso-pentane or neohexene) are mixed 
with methane, hydrogen sulfide, or nitrogen, then they will form sH structures (Koh et al., 2009). Based 
on the geologic and reservoir conditions, the natural reservoirs of gas hydrates are classified into three 
classes. Class 1 type contains a hydrate layer followed by a two-phase zone of mobile gas and water. 
Class 2 type consists of a hydrate layer followed by one phase zone of mobile water. Class 3 type consists 
of a hydrate layer with the absence of underlying zones of mobile fluids (Moridis et al., 2009; Xu & 
Li, 2015). Three main methods are available for the dissociation of gas hydrates: thermal stimulation, 
depressurization and chemical injection. In the depressurization method, hydrate is dissociating after 
decreasing the pressure and this method needs a mobile or permeable fluid zone to produce the gas from 
the gas hydrates. In the thermal stimulation method, the additional equipment and costs for the injection 
of hot water or steam are required for the gas hydrate dissociation. Chemical injection requires the inser-
tion of inhibitors such as salts and alcohols and leads to a rapid rate of dissociation and rupturing of the 
reservoirs (S. H. Khan et al., 2020). The production efficiency of these dissociation methods is affected 
because of some drawbacks. The depressurization method is favorable for the widespread gas hydrate 
deposits in a closure. The efficiency of the thermal stimulation method is low due to the high heat loss 
and high energy consumption. The chemical injection method is not suitable for the ocean area and it 
is very expensive and creates environmental pollution. Due to these drawbacks, there is a requirement 
to develop new dissociation techniques for gas hydrates that will be safe and economical (Amit Arora, 
2015; Arora et al., 2015).
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The gas hydrates can partially or entirely chock the pipelines and lead to severe damage to equip-
ment and the environment. The formation of gas hydrates is a severe flow assurance problem in natural 
gas production, transport, and processing. There are three methods to prevent hydrate formation: (1) 
injection of thermodynamic inhibitors, (2) natural gas dehydration, and (3) maintenance of the operat-
ing conditions of pipelines separated from the stability zone of hydrate (Najibi et al., 2009). But these 
above methods are not economically viable, and the inhibitor recovery is complex and detrimental to 
the environment. The cost arises by offshore gas and oil transport process to prevent hydrate and can 
be approximately one million dollars per mile (V. T. John, K. D. Papadopoulos, 1985; Gudmundsson & 
Borrehaug, 1996; Jassim et al., 2008). An accurate estimation of the phase equilibrium conditions for 
the formation of single and mixture gas hydrate is essential for performing the field and experimental 
studies (Kumari et al., 2020).

PHASE EQUILIBRIUM CONDITIONS OF GAS HYDRATES

The phase equilibria of gas hydrates are critical parameters for the thermodynamic and kinetic study of 
the formation of gas hydrates. The phase equilibrium data are an essential parameter to stop the hydrate 
plug agglomeration in subsea gas and oil flow lines. This is also an important factor to understand the 
applications of gas hydrates as a source of energy, in the separation of gas and the desalination of sea-
water. Gas hydrates are formed after the inclusion of small gas molecules (methane) inside the cages of 
water molecules at low temperature and high pressure. The availability of water and light hydrocarbons at 
high pressure and low temperature provide the necessary thermodynamic conditions for the gas hydrates 
formation inside the subsea gas and oil flowlines. The formation of gas hydrates inside the pipelines lead 
to the blockage of flow line. The severe economic and safety risks because of the formation of the gas 
hydrate in oil and gas flowline is the major research area currently (Sloan Jr & Koh, 2007; Zerpa et al., 
2012). The estimated amount of natural gas is more than 1015 m3 available in permafrost and oceanic 
deposits of gas hydrates (Sloan Jr & Koh, 2007; Collett et al., 2014). These guest (gas) molecules and the 
cages of host water are not bonded with each other chemically. They are connected by the weak Vander 
Waals forces between the molecules of guest and host. Hence, the kinetics of gas hydrate formation and 
dissociation can be fast (M. N. Khan et al., 2016). This can make gas hydrates as an attractive source for 
the storage of energy (Collett et al., 2014), transportation of natural gas (E Dendy Sloan, 2003), separa-
tion of gases (Aaron & Tsouris, 2005), desalination of seawater (Park et al., 2011) and sequestration of 
carbon dioxide gas (Park et.al., 2006). The prediction of stability conditions of gas hydrates with good 
accuracy is difficult for these applications. The available models for the prediction of the phase equilib-
rium conditions of gas hydrate does not give results with good accuracy. These models are not favorable 
for the ultra-high pressure conditions of gas hydrates due to the very low availability of experimental 
data at very high pressure (M. N. Khan et al., 2016). Figure 1 shows the phase diagram of gas hydrates.
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METHODS FOR THE ESTIMATION OF PHASE 
EQUILIBRIUM OF GAS HYDRATES

There are three methods available for the estimation of the phase equilibrium conditions of gas hydrates: 
experimental method, dynamic method and static method.

Experimental Method: The phase equilibrium of hydrates can be explained by Gibbs phase rule 
(Gibbs, 1928) and this rule can be applied to predict the number of the independent variable needed for 
the determination of equilibrium point. The Gibbs phase rule gave a relation between the number of 
degrees of freedom or independent variables (F), Number of components (C) and Number of phases (P).

F=C-P+2………. (1)

The independent variables for the experimental method are the pressure and temperature of the system 
and the initial composition of gas hydrates (M. N. Khan et al., 2016).

Dynamic Methods: The most common approach for the dynamic methods is phase recirculation, 
in which the fluid mixture is maintained at the target pressure and temperature in an equilibrium vessel 
and liquid and/or vapor phases are recirculated continuously. A different approach for these methods is 

Figure 1. Phase diagram of gas hydrates
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a single-pass method in which a stream of the gaseous component is circulated by a stationary liquid 
phase continuously in the equilibrium vessel. Different streams of liquid and vapor are mixed and sent to 
the equilibrium vessel. After this the liquid and vapor phases exit from the equilibrium vessel separately 
(Sloan Jr & Koh, 2007; M. N. Khan et al., 2016).

Static Methods: In this method, the components do not flow continuously. The components are fed 
in the equilibrium vessel and then the pressure and temperature of the vessel are managed. The volume 
of the equilibrium vessel is maintained constant frequently. The contents of the equilibrium cell are often 
agitated to decrease the time of equilibration. In this method, the samples of liquid and vapor phases 
are frequently strained and examined by gas chromatography for the determination of phase composi-
tions (Raal & Mühlbauer, 1994). A different approach of this method is called the static total pressure 
method in which known quantities of components are fed to the equilibrium vessel and then the total 
equilibrium pressure of the process is observed for a desired temperature. The compositions of vapor 
and liquid phases are then calculated iteratively (M. N. Khan et al., 2016).

ANN model can be applied for the prediction of formation of pressure of gas hydrates with and without 
thermodynamic inhibitors. (Elgibaly & Elkamel, 1998) applied the ANN model for the estimation of 
formation pressure of the gas hydrate system and observed a 19% average error. They also observed the 
quantity of required thermodynamic inhibitors for different types of gas hydrate systems. (Chapoy et al., 
2007) applied the ANN model to predict the formation conditions of natural gas hydrate system in the 
absence and presence of inhibitors. (Mohammadi, Belandria, et al., 2010; Mohammadi & Richon, 2010) 
predicted the formation conditions of methane and hydrogen hydrates with the promoters by applying the 
ANN models. (Mohammadi, Martínez-López, et al., 2010) applied the ANN model for the prediction of 
hydrate formation conditions of methane, nitrogen or carbon dioxide hydrate (Mohammadi, Martínez-
López, et al., 2010), hydrogen and tetra-n-butyl ammonium bromide hydrate (Mohammadi et al., 2010). 
(Rebai et al., 2019) applied the ANN model for the estimation of thermodynamic properties such as 
viscosity (Rai et al., 2005; Rebai et al., 2019), density, compressibility factor (Bouchard & Granjean, 
1995), vapor pressure (Laugier & Richon, 2003), heat transfer coefficient (Potukuchi & Wexler, 1997) 
and vapor liquid equilibrium (Petersen et al., 1994; Sharma et al., 1999; Sablani et al., 2002; Ganguly, 
2003). Heydari et al., 2006 and Zahedi et al., 2009 applied the ANN model to predict the temperature for 
the hydrate formation. (Mehrizadeh, 2020) estimated the formation conditions of hydrate in the presence 
of thermodynamic inhibitors by applying the ANN model. Souroush and colleagues applied ANNs for 
the estimation of the formation temperature of natural gas hydrate and observed the total mean square 
error of 0.349 only (Soroush et al., 2015).

DISSOCIATION METHODS OF GAS HYDRATES

The gas hydrate dissociation is an important factor for the production of gas from natural gas hydrate 
reservoir and in the prevention of lug formation in gas pipelines. The dissociation of gas hydrates is an 
endothermic reaction in which heat must be provided externally. This supplied heat breaks the hydro-
gen bonds between the molecules of water and weaken the Vander Waals interaction forces between 
the molecules of guest and water. The gas hydrates will be produced water and gas after the dissocia-
tion. There are different methods are available for the dissociation of gas hydrate plug or core such as 
depressurization, thermal stimulation, CO2- CH4 replacement, injection of thermodynamic inhibitor or 
a combination of the above dissociation methods (Kumari et al., 2020).
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Thermal Stimulation: In the thermal stimulation method, the production of gas from the natural 
deposits of gas hydrate is performed by increasing the temperature of the local natural gas hydrate de-
posits by the application of heat, injection of water or steam, microwave radiation and electrical heating 
etc. Thermal stimulation method can be undertaken by three different methods: hot water circulation, 
hot water huff and puff, and wellbore heating. The gas can be produced by two coaxial cylindrical wells 
in the natural gas hydrate deposits. The hot water is transported through the inner wall and the gas and 
water is produced through the outer well. Thermal stimulation can be performed by wellbore heating 
method by using the electric or other heating method. The heat loss due to transmission of heat through the 
wells can be neglected as compared to the hot water injection. The main issue of the thermal stimulation 
through the injection of water or steam is the diffusion and effective permeability of the water/steam in 
the natural gas hydrate reservoirs (E. Dendy Sloan & Koh, 1998; Amit Arora, 2015; Arora et al., 2015).

Depressurization: In depressurization method, the production of gas from the natural deposits of 
gas hydrate is performed by reducing the pressure below the natural gas hydrates equilibrium pressure 
at the local temperature. During the dissociation process, there is continuous drop is observed in the 
local temperature. At a specific pressure, the dissociation of gas hydrates might stop when the local 
temperature decreases to the equilibrium temperature. Hence, a sufficient supply of heat or energy is 
required. The sustainability of production of gas by depressurization method depends upon the diffusion 
of pressure, effective permeability and saturation of gas hydrates in the natural gas hydrate deposits (E. 
Dendy Sloan & Koh, 1998).

Chemical Injection: The inhibitor injection method is performed by shifting the phase equilibrium 
curve of the natural gas hydrate to higher pressure and lower temperature. The natural gas hydrate will 
become unstable in the local pressure and temperature after the injection of inhibitor. Chemical inhibitors 
are of two types such as thermodynamic and kinetic inhibitors. Thermodynamic inhibitor disturbs the 
equilibrium conditions of natural gas hydrates while kinetic inhibitors decrease the rate of formation of 
gas hydrates. The most frequently used thermodynamic inhibitors are ethanol and methanol glycol. The 
main issue of the chemical injection method is the effective permeability and diffusion of the chemicals 
in the natural reservoirs of gas hydrates. The rate of dissociation of gas hydrates through chemical injec-
tion method is depends upon the concentration of inhibitors, injection rate of inhibitors, interfacial area 
of hydrate and inhibitor along with temperature and pressure (E. Dendy Sloan & Koh, 1998).

CO2-CH4 replacement: In this method, the CO2 gas can be sequestrated directly for the recovery of 
CH4 gas from natural gas hydrate reservoirs. Through this method CH4 gas is replaced by CO2 gas by 
forming CO2 hydrates. The CO2 hydrate has more stability than the CH4 hydrate under the same pres-
sure and temperature conditions because the enthalpy of formation of CO2 hydrate is lower than the 
enthalpy of formation of CH4 hydrate. In this method, the CH4 hydrate will dissociate first and then the 
produced water again forms the CO2 hydrate. The molecules of CO2 gas replace the molecules of CH4 
gas directly. The cavities of hydrate remain unchanged during the replacement process (E. Dendy Sloan 
& Koh, 1998; Park et.al., 2006). Figure 2 shows the dissociation methods of gas hydrates.
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ARTIFICIAL INTELLIGENCE

Artificial intelligence consists of several number of neural networks just like a human brain through which 
a computer program is developed to achieve some information (Kutsurelis, 1998). The first computer 
was invented in 1940 and after this, artificial intelligence was established in the world (Bilge, 2007). 
ANNs are used for the development of prediction models and it is a subsegment of artificial intelligence. 
These networks are made up from processing devices as similar to the structure of human brain and its 
data processing (Blackard & Dean, 1999). McCulloch and Pitts performed the first study in 1956 based 
on artificial intelligence by a calculation model related to the logic modeling. They used physiology, 
Turing’s calculation notion and artificial nerve cells for the logical modeling. Hebb (1949) created 
the ANNs for the system by the application of a rule hypothesis and changed the power of connection 
between the nerve cell. McCarthy developed a first computer (SNARC) based on the ANNs. It came 
in use in 1980 for the development of professional systems for the various engineering fields, business 
management and economics (Akın, 1997; Staub et al., 2015).

TECHNIQUES OF ARTIFICIAL INTELLIGENCE

There are some techniques which are available for the development of artificial intelligence such as expert 
systems, fuzzy systems, ANNs, multi-layered detectors and learning algorithms and genetic algorithms.

Expert Systems: Expert systems are those types of computer programs that can solve problems in 
a non-procedural manner by applying the knowledge from human experts for the simulation of human 
reasoning. These systems use knowledge for their processing rather than information. The expert systems 
search for the solutions dependent upon the expertise area of people. The main areas of the application 
of these systems are medicine and biomedical (Detore, 1989).

Fuzzy Systems: These systems deal with incomplete and imprecise sets of data. These systems are 
advantageous in complicated structural control systems. In the fuzzy systems, the membership is indi-
cated by a number between 0 and 1. Fuzzy sets have clearly defined boundaries. The fuzzy logic uses 
the combination of learning and decision-making properties of ANNs (Zadeh, 1996; Tanyildizi et al., 

Figure 2. Dissociation methods of gas hydrates
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2009). It is one of the best tools for predicting time sequence and networks using the back propagation 
approach (Ghiassi et al., 2005; Canan & Yildirim., 2008).

Artificial Neural Networks: The structure of ANNs work resembles the neurons of the human brain. 
The information on systems is collected by the artificial neurons in ANNs. These network structure are 
developed by connecting artificial neurons by various connection geometries (Hopfield, 1988; Ham-
merstrom, 1993; Emel & Taşkın, 2002).

Multi-Layered Detectors and Learning Algorithms Model: In the multi-layered detectors and 
learning algorithms model, the processors in a layer are attached to the processors in another layer. Several 
layers are available in this model containing an input and one or more outputs. Several teaching algorithms 
can be applied during the training process of this network (Chen et al., 2008; Emel & Taşkın, 2002).

Genetic Algorithm (GA): Genetic algorithm is a probabilistic method related to the natural genetics 
and the selection mechanism utilizing the details of purpose function and functions with the help of the 
coding clusters of parameters (Shapiro, 2001; Emel & Taşkın, 2002).

Case Based Reasoning (CBR): A problem is solved by recalling the similar types of previous prob-
lems and assuming that both have similar solutions. Various previous problems are required to adjust the 
methods or solutions according to the new problem. CBR acknowledges these problems and becomes 
easier to solve by the repeated efforts (Aamodt & Plaza, 1994).

Rule Based Systems (RBS): In these systems, the problems are solved by the rules obtained by the 
expert knowledge. Those rules contain the action and condition parts. These systems contain a pattern 
matcher (working memory) and a rule applier. The working memory decides which rules are applicable 
and then the rule applier selects the rule to apply (Hayes-Roth, 1985).

Cellular Automata (CA): These are dynamic models which discrete in the state, time, and space. 
These systems contain a well-organized lattice of cells that can interact with the neighbors. These cell 
states are synchronously improved in time as per the local rules and determine the new state of that cell 
at time t+1 by applying the previous state and neighboring cells at time t (Codd, 1968).

ARTIFICIAL NEURAL NETWORKS (ANN)

The structure of ANNs and the structure of the human brain are remarkably similar. In both structures, 
the information is obtained by networks and the information is stored in the connections between arti-
ficial neurons. ANNs can become functional when the artificial network used as processor to store the 
information (Gelir, 1994). It formed by the integration of constant non-linear functions and the establish-
ment of neural networks shows the extent of neural networks (Kröse et al., 1993; Chenoweth, Obradovic 
& Stephen, 1996). These networks are similar to the biological neural networks and give results with 
good accuracy in spite of the presence of the superficial connections between the ANNs (Emir, 2013; 
Staub et al., 2015).

There are three layers in the ANNs: the input, hidden and output layers. The groups of input data are 
passed through the input layer to the network. The parameters for the input layers must be chosen before 
the analysis (Blackard & Dean, 1999). The number of input data and neurons are same in an input layer. 
Each input neuron is transferred to the hidden layer and the hidden layer is the basic function in the 
network. The number of neurons in the hidden layer should be between the input and output layer’s size 
of the input and output layer, or 2/3 of the combined size, or less than the twice of the size of the input 
layer (Heaton, 2008). Output data obtained through the input layer is processed properly in the hidden 
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layer. Output data obtained through hidden layer is then transferred to the output layer (Dag, 2012). The 
output layer is the last layer of the network, which processes the output data obtained after the hidden 
layer and gives the final output. The number of neurons in the network is same as the number of outputs 
obtained by the network. The data obtained from the output layer is the output for the given problem 
(Haykin, 1994; Abdi, 2003; Dag, 2012; Staub et al., 2015).

ANN is a very efficient technique to obtain the results for the complex non-linear problems. The 
fault tolerance of these networks is sufficiently high because the information is dispersed in a regular 
way around the system. These networks can be rearranged to improve their own values and can modify 
themselves for the required result of the given problem. ANNs have the capability to generate the desired 
results throughout the training process by generalization (Staub et al., 2015).

ANNs comprise conventional network compounds including linear functions and feed-forward con-
nections (Kramer, 1991). The two drawbacks of neural networks are slow learning speed and the local 
minimum convergence (Castillo et al., 2006). The ANNs can be classified as feedback networks, feed 
forward networks, radial and memory-based networks and module ANNs based on the architectural 
structures. The most used structure is feedback networks and feed forward networks. The most crucial 
characteristic of feed-forward network is that it can recognize missing or fake data before the termina-
tion of the process. In these networks, data processed from the input units to the output units (Peterson 
et al., 1994; Bishop, 1995; Ripley, 1996; Bennell & Sutcliffe, 2004; Staub et al., 2015).

For the development of multi-layered perceptron neural networks, an activation function is required 
in the middle layer and the output layer and a linear function representing the input layer. An activation 
function can approximate the arbitrary accuracy of each function. The standard error backpropagation 
method can be applied to train the neural network. The Scaled Conjugate Gradient (SCG), Levenberg–
Marquardt (LM) and Polak-Ribiere Conjugate Gradient (CGP) can be utilized as the learning algorithms 
(Haykin, 1994; Vakil-Baghmisheh, 2002). Early stopping method can be applied to test and train data 
driven models and to stop overfitting (Møller, 1993). For the development of ANN model, all data sets 
are randomly divided in three groups such as training, cross-fitting and testing (Coulibaly et al., 2000). 
The optimal designing for these network structures can be carried out by choosing the optimal number 
of hidden layer and hidden layer neurons by trial and error method (Denai et al., 2004). The best learn-
ing functions and the most applicable number of hidden layer neurons can be achieved from various 
learning functions applied in error backpropagation training algorithm throughout the training phase. 
The criteria for the selection of optimum network in the training phase is the calculation of minimum 
root mean square error (RMSE), maximum coefficient of determination (R2) and coefficient of variation 
(COV) (Mehrizadeh, 2020).

An artificial neural collects the processing elements (neurons) and arranged them in layers and then 
transforms the input set (i) to the desired output set. From every layer, the neurons are linked to all dif-
ferent neurons emerging in the next layer (j). These neurons are joined with different types of synaptic 
weights of neurons (wij). A threshold value (bj) is added as the bias term after the summation of the 
weighted input values (scalar (xi)) at each neuron. At last, a non-linear transfer function (f(.)) is used as 
the activation function. This activation function is applied to this linear combination of inputs and then 
output of the neuron is produced through the linear combiner (oj). The bias term is added to the weights 
depending on the situation. A model for the artificial neuron is represented in Figure 3.
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The output from one neuron will be the input for the neuron of the next layer. The neural network 
utilizes a training algorithm such as backpropagation for the adjustment of its weights on the demon-
stration of a training data set and then minimizes the performance function of the network. The default 
function used to estimate the performance of the neural network is mean square error (MSE). It is the 
average squared error obtained for the output of the network and the desired values for the given inputs. 
MSE is given by following equation:
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In the above equation, n represents the number of training data, the target data and calculated output 
is represented by ti and oi respectively. When the training phase of the network model has been com-
pleted successfully then the validation of the performance of the trained model has been performed by 
an independent testing set.

Figure 4 represents the architecture of an artificial neural network with input branching nodes (I), 
hidden neurons (H) and output neurons (O). The number of hidden neurons H is defined by MSE. The 
value of MSE is the average squared variation between the output and the target. The minimum value of 
MSE denotes the better performance of the neural network (Naderpour et al., 2018). The number of hid-
den neurons can be determined by cross-validating the model with different configurations and observing 
the MSE value by plotting the graph between the MSE value and the number of hidden neurons. The 
cross validation of a model can be performed by dividing all datasets into training and testing data sets 

Figure 3. A model of an artificial neuron j in the hidden layer
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and then train the model using the training data set. Now, the model has to be validated on the test data 
set. After the repetition of the above steps, the MSE value can be minimized (Paneiro & Rafael, 2021).

MODEL EVALUATION CRITERIA

Various statistic parameters such as Classification Accuracy, Logarithmic Loss, Confusion Matrix, Area 
under curve, F1 Score, Mean Squared Error (MSE), COV, RMSE and R2 can be used to check the per-
formance of the function used in the prediction models. These parameters can be applied to obtain the 
best structure of the ANN model. Various other factors such as mean absolute error (MAE) and mean 
absolute percentage of error (MAPE) can be applied to compare the optimum efficiency of the model 
(Mehrizadeh, 2020).

MAIN FOCUS OF THE CHAPTER

This chapter deals with the uses of ANN for the prediction of phase equilibrium conditions of Gas Hy-
drates. The phase equilibrium condition of gas hydrate is an important factor for the gas hydrate forma-
tion and dissociation. The gas hydrate dissociation depends upon the disturbance of phase equilibrium 
conditions of gas hydrates.

Figure 4. Architecture of Artificial Neural Network
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APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR GAS HYDRATES

There are various other methods are available for prediction of phase equilibrium conditions of gas 
hydrates such as thermodynamic modeling, mixing rule modification and interaction coefficient ap-
proximation between molecules (Berecz and Balla-Achs, 1983; Holder et al., 1988; Sloan, 1990; Sloan 
and Koh, 1998; Ballard, 2002). The main drawbacks of these models are that they can be applied for 
particular systems with the restricted constituents. These methods are dependent on the equality of chemi-
cal potentials of different components in distinct phases (Mohammadi & Tohidi, 2005). These methods 
are dependent on the limited data and their limited applications. But the modeling with a sustainable 
uncertainty of temperature-pressure by these available thermodynamic models needs the calculation of 
various parameters. A tedious process can adjust these parameters, and it is not certain that the obtained 
set is the best. The ANNs can constitute within the experimental uncertainties and calculate the phase 
boundaries of gas hydrates accurately (Chapoy et al., 2007).

The wide applicability of ANNs in pharmaceutical and chemical areas has been expanded due of 
their ability and flexibility to model linear and non-linear systems without the previous understanding 
of an empirical model (Jouyban et al., 2004). ANN removes the limitations of the classical approaches 
by extracting the desired information using the input data. The ANNs can be applied to a system that 
requires enough input and output data rather than a mathematical equation. The ANN can be trained 
by utilizing the input and output data to adjust to the system and it can be applied to solve the problems 
with the inaccurate and incomplete input data (Akcayol & Cinar, 2005; Heydari et al., 2006).

Baghban et al. use the Katz Chart Data Points in the Least Square Vector Machine (LSSVM) model 
to predict the hydrate formation temperature. The LSSVM model applied the chemical properties of 
gases and the structure type of hydrates (Baghban et al., 2016).

The SVMs use the kernel functions, and ANNs use the hidden layers to transform the data and send 
these data into a higher-dimensional space. The one advantage of the ANNs is that their size is fixed, 
and they are the parametric models, but the SVMs are the non-parametric models. The ANNs may have 
several outputs, but the SVMs have only one. Hence, ANN train the models in one chance, and SVM 
must train one by one.

ANN is based on the intrinsic relationships between independent and dependent variables (Mehriza-
deh, 2020). The ANN can reproduce any type of a function if adequate examples of that function are 
given. These examples are selected on the basis of behavior of the reproducing function (Rebai et al., 
2019). The ANN models are of data driven models which are very recent models which can be applied 
to estimate the formation conditions of gas hydrates. The data-driven models include direct training of 
model related to the data in which basic assumptions is not needed. Also, the advantages of these models 
are that there is no need of the preliminary understanding of the connection between parameters and 
the capability to set up a connection between a set of input and outputs for the prediction of the output 
(Torrecilla et al., 2004; Kaul et al., 2005; Singh et al., 2007). These types of models can represent any 
nonlinear continuous function and add flexibility to face any potential error (Haykin & Network, 2004; 
Azadeh et al., 2007).

ANNs can be applied for the prediction of formation pressure or temperature of the single, binary 
and natural gas hydrate system in presence of inhibitors and promoters also. The input parameters for the 
different gas hydrate system depend upon the type of the gas hydrate system. For example, for natural 
gas hydrate system the input parameter is specific gravity of the natural gas but it will be changed to 
concentration of inhibitors or promoters for gas hydrate system with inhibitors or promoters. This model 
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can also be applied for the prediction of thermodynamic properties based on hydrate formation such as 
viscosity (Rai et al., 2005; Rebai et al., 2019), density, compressibility factor (Bouchard & Granjean, 
1995), vapor pressure (Laugier & Richon, 2003), heat transfer coefficient (Potukuchi & Wexler, 1997) 
and vapor liquid equilibrium (Petersen et al., 1994; Sharma et al., 1999; Sablani et al., 2002; Azadeh 
et al., 2007).

The neural network will be constructed using the experimental data of the formation process of the 
gas hydrates. The available experimental data are divided into three random subsets such as training, 
validation, and testing sets. The input parameters for the development of ANN depend upon the structure 
of the gas hydrates. The input parameters are mole % of CH4 or C2H6 for gas hydrates of sI structure, 
total mole % of C3H8, C4H10 and N2 for gas hydrates of sII structure and mole % of gases which cannot 
form gas hydrates. The composition of CO2 and H2S gases are taken as the separate parameter because 
they are soluble in water. Specific gravity of gases, pressure and acid gas loading are the remaining 
parameters for the neural network. The output parameter for the developed neural networks of the gas 
hydrates system is the formation temperature of gas hydrates (Heydari et al., 2006; Soroush et al., 2015; 
Hesami et al., 2017).

METHODOLOGY

The gas hydrates can be formed in the different types of gas systems such as gas systems with hydro-
carbon and non-hydrocarbon materials or their mixtures. Gas system can be formed in the absence or 
presence of inhibitors. ANN models are data-driven models which estimate a desired variable dependent 
upon input and output conditions of system or the initial and final conditions of the system. For the de-
velopment of data-driven models, the interrelations between effective parameters in hydrate formation 
conditions were considered. These models consider the dependency of formation pressure of hydrate 
on the characteristics of the gas hydrate systems. The components which can disturb the formation pro-
cess of hydrate are pressure and temperature of hydrate formation, composition or mole fraction of gas 
components, density of gas and the weight percentage of inhibitors. To develop an ANN model for the 
prediction of hydrate formation pressure or temperature, the hydrate formation temperature or pressure 
is assumed to be a function of the remaining variables. ANN models can be developed as three different 
patterns based upon the input variable of the data driven models (Mehrizadeh, 2020). In pattern A, Pres-
sure (P) depends upon the Temperature (T) and the density (γ) of gas such as CH4, C2H6, C3H8, i-C4H10 
and their mixture. In pattern B, Pressure (P) depends upon the temperature (T) and the percentage of 
gas components and their mixtures. Pattern C is similar to the pattern B including the non-hydrocarbon 
components of hydrate such as CO2, N2 and H2S.

The input neurons transmit temperature and specific gravity or concentration of inhibitors or promot-
ers to the neurons of the hidden layer. To determine the inputs of the hidden layer, a weighted summa-
tion of outputs of input layer has been performed. The output from the hidden layer now becomes the 
input of the output layer. This output layer is determined by shifting its input after adding a non-linear 
transfer function. At last, pressure is determined by shifting the input from the output layer by adding 
the linear transfer function.

The ANN model modifies the values of synaptic weights between computing cells according to the 
differences in the output and target values to achieve the targets. An appropriate learning algorithm is 
needed for the training of the network.
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SOLUTIONS AND RECOMMENDATIONS

Application of ANN in the field of gas hydrates is a new and novel idea which can attempt many burn-
ing issues of the current century like energy securities and carbon capture. It is recommended to apply 
ANN for CO2 sequestration of methane hydrates so that methane comes out of hydrates economically 
and hydrate of CO2 gets formed resulting into giving energy at the cost of reducing global warming 
making each cleaner and greener and giving energy in addition. ANN can be applied for determination 
of phase equilibrium conditions of gas hydrates with and without inhibitors or promoters. There is need 
to develop several methods for the prediction of phase equilibrium conditions of gas hydrates formed 
in natural sediments and porous materials. For this system, the pore size of the porous materials can be 
added as the input parameter of the ANN model.

FUTURE RESEARCH DIRECTIONS

The application of an ANN model is being extended for the gas hydrate system with different parameters 
such as gas hydrate formation in porous media, sand and different types of inhibitors and promoters. It 
can be extended for gas hydrates of different compositions based upon the composition of gases.

CONCLUSION

The application of ANN to estimate the phase equilibrium conditions for formation of gas hydrates can 
assist in designing an economic viable technology for the gas hydrate dissociation and can make the 
world energy-independent for many centuries. Moreover, ANN can also help in developing a future 

Figure 5. General block structure of ANN
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economically viable method for the inhibition of gas hydrates in pipelines for which antifreeze proteins 
currently used are very costly. For getting both these benefits to mankind it is necessary to look it into 
various aspects of ANN in detail so that along with above two benefits gas hydrate becomes a technol-
ogy for carbon capture, desalination, gas separation as well as hydrogen storage.

ABBREVIATIONS AND NOTATIONS

ANN- Artificial Neural Network
Genetic Algorithm- GA
Case Based Reasoning- CBR
Rule Bases Systems- RBS
Cellular Automata- CA
Levenberg–Marquardt- LM
Scaled Conjugate Gradient- SCG
Polak-Ribiere Conjugate Gradient- CGP
Root Mean Square Error- RMSE
Mean Squared Error- MSE
Maximum Coefficient of Determination- R2

Coefficient of Variation- COV
Input Ser- i
Next Layer- j
Weights of neurons- wij
Threshold Value- bj
Scalar- xi
Non-Linear Transfer Function- f(.)
Linear Combiner- oj
Target Data- ti
Calculated Output- oi
Input Branching Nodes- I
Hidden Neurons- H
Output Neurons- O
Independent Variables- F
Number of Components- C
Number of Phases- P
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ABSTRACT

The modern era of classical silicon-based computing is at the edge of a number of technological chal-
lenges which include huge energy consumption, requirement of massive memory space, and generation 
of e-waste. The proposed alternative to this pitfall is nanocomputing, which was first exemplified in the 
form of DNA computing. Recently, DNA computing is gaining acceptance in the field of eco-friendly, 
unconventional, nature-inspired computation. The future of computing depends on making it renewable, 
as this can cause a drastic improvement in energy consumption. Thus, to save the natural resources and 
to stop the growing toxicity of the planet, reversibility is being imposed on DNA computing so that it can 
replace the traditional form of computation. This chapter reflects the foundation of DNA computing and 
renewability of this multidisciplinary domain that can be produced optimally and run from available 
natural resources.

1. INTRODUCTION

The history of modern silicon-based computer technology has evolved through a long sequence of changes 
and is heading towards faster analysis and calculation. Literally classical computing is facing several 
technological challenges, like, consumption of large amount of energy, requirement of huge memory 
space and generation of vast e-waste. The massive growth in industrial activities is gradually leading us 
towards the global climate change which is of real concern. To overcome these drawbacks several modes 
of unconventional, nature-inspired computing have been proposed where a handful of atoms are being 
used to perform computation. Here comes the term nano-computing. The concept of nano-computing 
was proposed by Richard P. Feynman.
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On 9th December 1959, Feynman delivered lecture on “There’s Plenty of Room at the Bottom” at 
the annual meeting of the American Physical Society at Caltech (Feynman, 1960). In this seminal talk, 
Feynman accentuated to control and manipulate things on nano-scale to solve computing problems. He 
stated that nano particles like quantum molecules, DNA molecules are capable to perform computation.

Natural biochemical nano computers exist in all living organisms which store, process and retrieve 
all information in form of chemical structures and interactions. But these nano-computers of nature 
are basically uncontrollable by humans. The concept of developing a biochemical nano computer was 
established by Leonard Adleman of University of Southern California in 1994 (Adleman, 1994). He 
first exemplified DNA computing by solving the seven-point Hamiltonian Path Problem, a NP complete 
problem, using DNA strands. This piece of work first explored the idea that computing is possible by 
directly controlling molecules in nano-scale level.

Besides performing computations (Adleman, 1994; Winfree et al., 1998; Benenson et al., 2001; Chang 
et al., 2003; Green et al., 2006; Akerkar and Sajja, 2009), various algorithms have been developed to 
resolve reasoning and classification problems (Yeung and Tsang, 1997; Ray and Mondal, 2011a; Ray 
and Mondal, 2011b; Ray and Mondal, 2016) using DNA strands. Computation using DNA sequences 
requires some operations to handle the DNA strands viz. synthesis, merging, melting and annealing, 
amplification, separation, extraction, cutting, ligation, substituting, marking, destroying, detection and 
reading. By manipulating synthetic DNA strands the mathematical and logical aspects of computation 
have been replaced by unique DNA chemistry.

Different innovative and novel research works are being performed globally to develop renewable smart 
computation systems, where the intelligent eco-friendly molecular arrangement can be reused leading 
to less energy consumption. Recently DNA computing is gaining acceptance in the field of eco-friendly 
unconventional computation. The reversible DNA computing models (Garg et al., 2018; Eshra et al., 
2019) recycles complex structures constructed by single-stranded (ssDNA), partially double-stranded and 
complete double-stranded (dsDNA) DNA sequences forming DNA gate structures and hairpin complexes.

Section 2 of this chapter review the sphere of DNA computing which includes definition, advantages, 
innovative DNA models to perform computation. The renewable or reversible aspect of DNA computation 
is highlighted in section 3 where the restorable models are demonstrated to perform computation and 
construct DNA logic gates. Section 4 contains the conclusion of the chapter with future scope of research.

2. DNA COMPUTING

Before delving deeper into the DNA computing, a recapitulation of basic concepts around DNA is a 
mandate. The next subsection illustrates some of those basic premises of DNA in molecular biology.

DNA in Molecular Biology

Deoxyribonucleic Acid or DNA can be defined as genetic material that carries instructions throughout 
the generations of all the cellular organisms and most of the viruses. This genetic blueprint determines 
all the characteristic of each organism. Generally, DNA molecules are arranged in the chromosomes 
placed in the cell nucleus (Watson and Crick, 1953). The molecular structure of DNA was revealed by 
James D. Watson and Francis Crick in 1953.
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Some unique structural and chemical features of the DNA molecule distinguish it from other biomol-
ecules. The dsDNA molecules are actually in a form of a double-helix where two polynucleotide chains 
are twisted around a common axis (Figure 1). Deoxyribonucleotides (or nucleotides) are the building 
blocks of the long polymeric chain of DNA molecule. The components of this individual monomer i.e., 
nucleotide, are: 2’-deoxyribose (sugar), nitrogen base and phosphate group.

Two structural families of nitrogen bases are, (i) purine (double-ringed structure), (ii) pyrimidine 
(single-ringed structure). The nitrogen bases of DNA, adenine (A) and guanine (G) are in the purine 
group and cytosine (C) and thymine (T) are in the pyrimidine group.

The two double-helical polynucleotide chains of DNA molecule are held together in antiparallel ori-
entation by weak and non-covalent hydrogen-bonds (Figure 1). The adenine base of a strand forms two 
hydrogen bonds only with thymine on the other strand (A = T) and the guanine of a DNA strand forms 
three hydrogen bonds with cytosine on the other strand (G ≡ C). This pairing between two polynucleotide 
strands is termed Watson-Crick pairing or complementary base-pairing, which leads to the self-coding 
characteristics of DNA molecule. The base pairing holds the strands with opposite polarity, i.e., base 
at 5’ end of one strand is paired with the base at 3’ end of the complementary strand. For example, if a 
DNA strand contains sequence 5’-AGATCTA-3’, the opposite strand i.e., complementary strand must 
have the complementary sequence 3’-TCTAGAT-5’. The weak hydrogen bonds between complementary 

Figure 1. Structure of DNA (A) DNA helix (B) Complementary base-pairing
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strands of DNA molecules controls the thermodynamic stability of the helix and induce the fundamental 
property of denaturation and hybridization of the DNA molecule.

The complementary pairing can be represented as follow;

If 𝜎i denotes a single base of a DNA sequence, then σ i  (0 < i < m-1, where m is the length of the 
DNA sequence in base-pair) can be denoted as the complementary base of 𝜎i. Let, alphabet Σ = { 𝜎0, 𝜎1, 
......., � � � �m m� �1 0 1 1

, , ,..., }. A strand is represented by one or more symbols in Σ. dsDNA sequence 
can be formed only if the two ssDNA sequences are complementary to each other. The complete double-

strand is symbolized as 
�
�
i

i

�

�
�

�

�
� .

Computation using DNA sequences requires some operations to manipulate the DNA strings (Adle-
man, 1994; Adleman, 1996; Kari, 1997). Usually, these operations are performed by molecular biologists 
in a wet-laboratory.

1.  Synthesis: For computation with the DNA, oligonucleotides are required. These are short poly-
nucleotide chains with definite chemical structure. Oligonucleotides can be synthesized and purified 
in wet-laboratory environment. One of the popular methods of synthesis is the solid phase method.

2.  Merging: This is the union of two test tubes containing DNA solution into one. For example, if B1 
and B2 are two test tubes with different DNA solutions, a third test tube B3 can be generated where 
merge(B1, B2) = B3 = B1 ⋃ B2.

3.  Melting and Annealing: Melting or denaturation of dsDNA molecules occurs by heating which 
leads to the generation of two single-stranded complementary strands. If the strands are cooled 
again these anneal or hybridize to form dsDNA sequence. If input

B = {𝜎0𝜎1, σ σ
1 2

}, then annealing(B) = 
� �

� �
1 2

1 2

�

�
�

�

�
�  and denaturation(B) = {𝜎0𝜎1, σ σ

1 2
}. 

4.  Amplification: Polymerase chain reaction or PCR is revolutionary method for rapid production of 
huge number of copies of a DNA sequence or a specific portion it. DNA sample, primers, ddNTPs 
and DNA polymerase are needed for amplification. The process of amplification can be illustrated 
as, if input

B = 
� � � �

� � � �
0 1 2 0

0 1 2 0

�

�
�

�

�
� , amplify (B,{𝜎0𝜎1, σ σ

1 2
}) = 

� � � �

� � � �

� �

� �

� �

� �

� �

� �

� �

� �

� �
0 1 2 0

0 1 2 0

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

, , , , , 
�� �

1 2

,��
�

�
�

�

�
� . 

5.  Separation: The gel electrophoresis method is used to separate the DNA sequences according to 
their size i.e., the number of bases. The function separation (B1, I, B2) sorts the DNA sequences of 
test tube B1 and generates a new test tube B2 containing only the sequences having length I (where 
I is an integer).
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6.  Extraction: The DNA sequences having desired pattern can be extracted from a solution using 
affinity purification technique. Another methodology of extraction is the magnetic bead separa-
tion. Extract(B1, P, B2) isolates all DNA strands having pattern P in the solution of test tube B1 and 
generates a new test tube B2 with the extracted sequences.

Input: B1 = {𝛼0𝜎1𝜎2𝛽0, 𝛾0𝜎2𝛼0𝛽0, 𝛽0𝛾0𝜎2}. 

Extract (B1, {𝜎1𝜎2}, B2) generate test tube B2, where B2 = {𝛾0𝜎2𝛼0𝛽0, 𝛽0𝛾0𝜎2}. 

7.  Cutting: Restriction enzyme (or restriction endonuclease) cleaves ssDNA or dsDNA sequence at 
or near a specific site, termed the restriction site. For example, cut(B, 𝜎1𝜎2) cleaves each dsDNA 

sequence in test tube B containing the specific segment 
� �

� �
1 2

1 2

�

�
�

�

�
�  and generates two double-strands 

as, 

� � � �

� � � �

� �

� �

� �

� �
0 1 2 0

0 1 2 0

0 1

0 1

2 0

2 0

�

�
�

�

�
� �

�

�
�

�

�
�

�

�
�

�

�
�,  . 

8.  Ligation: Ligase enzyme can catalyze the ligation of dsDNA molecules with compatible sticky 
ends or even blunt ends of ssDNA molecules producing new chemical bonds. Ligate(T) ligates the 
sticky ends of dsDNA molecules; 

� � �

� �

�

� �

� � � �

� � � �
0 1 2

0 1

0

2 0

0 1 2 0

0 1 2 0

�

�
�

�

�
�

�

�
�

�

�
� �

�

�
�

�

�
�,  . 

9.  Substituting: PCR site-directed mutagenesis is an in vitro technique by which certain bases can be 
inserted, deleted or substituted from a DNA sequence.

10.  Marking: Sequences can be marked by making it dsDNA duplex again unmarked by denaturation.
11.  Destroying: If the marked DNA sequences are treated with restriction enzyme, it can be destroyed 

by generating shorter fragments. The unaffected strands can be separated by performing gel 
electrophoresis.

12.  Detection and Reading: Sequencing method can detect the order of nucleotides in a DNA sequence.

Depending on the backbone of molecular biology and the wet-lab operations on DNA sequences, 
the concept of DNA computing has been developed. The next subsection focuses solely on the domain 
of DNA computation.

DNA Computing and its Advantages

DNA computing is the amalgamation of biological science with computer science where the biomol-
ecule DNA is used to perform computation. The advent of DNA computation is leading the modern 
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world towards the paradigm shift, from silicon to carbon, where, it is expected, DNA computing will be 
capable of replacing classical silicon-based computation in the coming decade. The unique properties 
of the genetic molecule DNA, which stimulate the notion of DNA computing, are the complementary 
base-pairing property and capability of storing, processing and retrieving information. In comparison 
with the traditional computing technology, the precedence of DNA computing is discussed below;

1.  Energy efficiency: The energy consumption of the DNA operations required to perform computation 
is trivial compared to a modern computer. DNA computers can be 109 times more energy-efficient.

2.  Massive parallelism: One of the prominent advantages of DNA computing is its massive parallel-
ism. Though the operations performed in DNA computation are comparatively slow, the speed is 
faster because of the huge parallelism. About 1018 processors can perform in parallel in an in vitro 
assay.

3.  Potential for information storage: DNA requires a trillion times less space than existing silicon-
based storage media due to its durability and density. DNA is said to be approximately 300 times 
more durable and 1000 times more dense than modern storage media.

4.  Speed: As a result of the vast parallelism of DNA computing, in some cases it is 105 times faster 
than the most recent super-computer as certain DNA computing models can perform 330 trillion 
operations per second.

5.  Non-toxicity: Traditional microprocessors are constructed using toxic materials; but DNA biochips 
and other components used in molecular computers are completely biodegradable; thus, massive 
production of e-waste can be avoided.

In the following subsection, the basic models of DNA computing are thoroughly discussed. The first 
highlighted model is by the pioneer of DNA computing, Professor Leonard Adleman. He solved the 
directed Hamiltonian path problem having seven vertices by using DNA molecules in 1994. The next 
discussed model is the path breaking DNA computing model by Richard J. Lipton. He solved a satisfi-
ability (SAT) problem using DNA strands.

Adleman’s Experiment

In mathematical field of graph theory, Hamiltonian path problem is a NP-complete problem in which 
computational complexity combinatorically increases with the linear increase in problem size. The 
problem enquires whether a route can be found in a directed graph from the initial vertex to final vertex, 
visiting each vertex exactly once.

Leonard Adleman solved the seven-vertex instance of Hamiltonian path problem by using DNA 
strands (Adleman, 1994). He employed the directed graph G (Figure 2), where the number of vertices 
is seven. The objective is to find Hamiltonian path in G starting from an initial vertex v0 (i.e., vin) and 
ending at a final vertex v6 (i.e., vout) entering every vertex only once. Adleman determined the path in 
form of DNA sequence which encodes compatible one-way edges.

The nondeterministic steps followed by Adleman to solve the problem are;

Step 1: Generation of random paths through the graph.
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He involved randomly chosen ssDNA sequences to encode the vertices and edges of graph G. Each 
vertex i in G was encoded by 20-mer (i.e., 20 bases long) sequence denoted by vi. To encode each edge 
i → j (i.e., ei→j) in G, the ssDNA string was selected using complement of the 3’-10-mer of vi followed 
by the complement of the 5’-10-mer of vj.

Let v1 is encoded by the sequence,
5’ TATCGGATCGGTATATCCGA 3’

and v2 is encoded by the sequence,
5’ GCTATTCGAGCTTAAAGCTA 3’

then, the DNA sequence representing directed edge e1→2 is,
3’ CATATAGGCTCGATAAGCT 3’

All the ssDNA sequences representing the vertices and directed edges were mixed in a solution and 
allowed to be ligated. The vertices are hybridized with the compatible edges which leads to the genera-
tion of partially double-stranded DNA strings coding random routes through G.

For example, edge e1→2 connects two vertices v1 and v2 respectively. The path formed due to hybrid-
ization and ligation reaction is shown in Figure 3.

Step 2: Only the paths those initiate with vin and terminate with vout are kept.

Figure 2. Directed graph

Figure 3. Directed path connecting two vertices
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The resultant sequences of step 1 is amplified in large scale by PCR using the primers v0 and comple-
mentary sequence of v6. This step results the amplification only the DNA sequences those encode the 
routes initiating with vertex 0 and terminating with vertex 6.

Step 3: The routes those enter exactly n vertices are kept (where n = number of vertices in G).

Gel electrophoresis by agarose gel is performed with the product of step 2. DNA sequences from 140 
base pairs (bp) band of the gel are extracted. As the graph G has seven vertices (n=7) and each vertex is 
encoded by 20-mer DNA sequence, the 140 bp (7 × 20 bp = 140 bp) long resultant sequences of step 2 
represent routes which enter exactly seven vertices. These sequences are again amplified by PCR using 
appropriate primers and purified for several times by gel electrophoresis to enhance purity.

Step 4: The routes those enter all of the vertices at least once are retained.

Affinity purification is conducted with the resultant sequences of step 3. To perform this process, first 
the sequences are denatured into ssDNA and then incubated with magnetic beads which has comple-
mentary sequence of v1 attached to it. As a result, only ssDNA molecules, those contain the sequence 
encoding v1 are retained. This process is repeated successively with complementary oligonucleotides 
representing all vertices vi (2 ≤ i ≤ 5) of G.

Step 5: If any route remains, return “Yes”; otherwise, “No”.

The consequential sequences of step 4 are amplified by PCR and gel electrophoresis is performed. 
The resultant sequence encodes the Hamiltonian path in G (Figure 4).

The DNA computing model proposed by Adleman was semi-autonomous in nature as it require human 
interference. This experiment initiates with a single test-tube and terminates with one or more final tubes.

Lipton’s Experiment

Now we are going to demonstrate the contribution of Richard J. Lipton in the domain of DNA comput-
ing (Lipton, 1995). He proposed DNA model to resolve satisfiability problem (SAT). By using massive 

Figure 4. Hamiltonian path in Adleman’s graph
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parallelism, unusual information density and incomparable energy efficiency of DNA chemistry, Lipton 
solved the first known example of an NP-complete problem i.e., SAT problem.

In computer science, the SAT problem determines whether the variables of a Boolean formula can be 
assigned in such a way that the formula evaluates to true. If yes, truth-value assignment of the variables 
has to be determined. If no such assignment exists, the formula is said to be identically false for all pos-
sible variable assignments, hence unsatisfiable. Otherwise, it is satisfiable.

An instance of SAT problem is a Boolean formula expressed using only Boolean variables, (logical) 
negation (NOT; ~), (logical) conjunction (AND; ˄), (logical) disjunction (OR; ˅) and parentheses.

Now, formula F is considered, expressed using the propositional variables, x1, x2,......, and connectives 
~, ˄, ˅ (i.e., negation, conjunction, disjunction). Thus,

F = (x1 ˅ x2 ˅ ~x3 ˅ x4) ˄ (~x2 ˅ ~x3) ˄ (x3 ˅ x4) ˄ (~ x4) 

As the variables x1, x2, x3, x4 are Boolean, these occur into the set {0, 1} or {false, true}. There are 
four clauses in the given formula F. The general form of the SAT problem involves Boolean formula of 
the form C1 ˄ C2 ˄ .......... ˄ Cm, where Ci is a clause (i = 1, 2, ....., m). If the association of truth-value 
to each variable can be done in such a way that F evaluate to 1, then, F is called to be satisfiable. We 
have to find the set of truth-values for which F is true. On other word, it can be said that the variables 
that make each clause having the value 1, has to be determined.

The fourth clause of F, i.e. (~ x4) =1 implies that x4 should be 0. If x4 is 0, then to make the third clause 
(x3 ˅ x4) true, x3 must be equal to 1. Likewise, we can assign that x1 = 1 and x2 = 0. Thus, it is clear that 
this set of truth-value assignments {x1 = 1, x2 = 0, x3 = 1, x4 = 0} makes F satisfiable.

However, in the general case an exhaustive search method is followed; i.e., if a formula with n vari-
ables is given, then all possible n truth-value assignments have to be searched; thus, the satisfiability 
problem is known to be an NP-complete problem. As the size of instances i.e., the number of variables 
increases, the running time of exhaustive search becomes forbiddingly large.

To solve SAT problem Lipton used DNA sequences and performed some basic operations on the 
sequences. He solved a propositional formula containing two variables, x and y. The formula is,

E = (x ˅ y) ˄ (~x ˅ ~y) 

Figure 5. Graph G2 encoding two-bit number
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To solve the problem, he followed a simple graph G2 (Figure 5). The variable and the possible truth-
value assignments of the above said formula were represented by the vertices and the edges of the above 
said graph G2.

The vertices of the graph are v1, x1, x0, v2, y1, y0, v3. It contains edges from v1 to both x1 and x0 and 
from both x1, x0 to v2; again, from v2 to both y1 and y0 and from both y1, y0 to v3. All the paths of G2 that 
start at v1 and end at v3 encode a 2-bit binary number. For the vertices v1 and v2 the paths have two op-
tions; if it chooses the vertex with suffix 1 (i.e., paths v1x1v2 and v2y1v3) it will encode 1; if it chooses 
the vertex with suffix 0 (i.e. paths v1x0v2 and v2y0v3) it will encode 0. Thus, the path v1x1v2y0v3 encodes 
the binary values 10.

Lipton represented all the vertices and edges of the graph G2 in the form of DNA sequences. Each 
vertex of the graph was encoded by 20 bases (l) long random DNA sequence. The first half of each 
encoded sequence is denoted by pi and the second half is represented by qi. Therefore, piqi is the symbol 
associated with ith vertex. Each directed edge from ith vertex to jth vertex (i.e., i → j) is encoded by DNA 
sequence in 3’ to 5’ direction of the form q pi j

� �  (where, x  denotes the Watson-Crick complement to 
the oligonucleotide x). All the strands representing the vertices and the edges are taken in a test tube 
which is the initial test tube. This starting test tube consists of the following strands:

i.  Many copies of the DNA sequences representing the vertices. These DNA strands are in 5’ to 3’ 
direction.

ii.  Many copies of the edges are also taken which are in 3’ to 5’ direction.
iii.  DNA sequence of length 10 bases (l/2) in 3’ to 5’ direction which is complementary to the first 

half of the initial vertex (i.e. v1) is added. That means p1  is added.
iv.  DNA sequence of length 10 bases (l/2) in 3’ to 5’ direction which is complementary to the last half 

of the final vertex (i.e. v3) is added. That means q 3  is added.

After adding, hybridizations between the appropriate complementary sequences occur in the test 
tube. As each edge contains the complementary sequence of the associated vertices, the newly formed 
hybridized double-stranded DNA sequence represents a path through the graph which is in “vertex, edge, 
vertex, edge,…….” form. Therefore, after hybridization, the DNA sequence representing the vertices 
and the edge of the graph G2 (see Figure 5) forms the path shown in Figure 6.

Figure 6. Path formed through the graph G2
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The top 5’ → 3’ strand of the newly formed dsDNA sequence (Figure 6) comprises of successions 
of vertices and the bottom 3’ → 5’ strand comprises of successions of edges. From the vertex v1 or v2 
the path can go either left or right. If it goes through the left vertex “1” is encoded, otherwise, it will 
encode “0”. Each of the possible four paths through G2 specifies one of the four truth-value assignments 
for the Boolean variables x and y.

To solve SAT problem of the propositional formula E = (x ˅ y) ˄ (~x ˅ ~y), the following steps are 
to be followed;

Step 1: The initial test tube T0 is constructed in such a way that it contains DNA strands encoding each 
path and, thus, represents one of the possible truth-value assignments.

Step 2: From T0 strands with truth-value assignment of x = 1 are separated and kept in another test tube 
T1. This operation is denoted by S(T0, 1, 1). This means, separate the strands from T0 which encode 
1 in the first position.

Step 3: After separation of the selected strands from T0, let the remainder be in the test tube T1’. This 
means, T1’ contains the strands S-(T0, 1, 1).

Step 4: From T1’ separate those strands for which y = 1 i.e. S(T1’, 2, 1). The separated DNA strands are 
kept in the test tube T2.

Step 5: The contents of T1 and T2 are merged to form the test tube T3.
Step 6: From T3 separate those strands which encode 0 in the first position i.e. x = 0 and keep in the 

test tube T4.
Step 7: After separation of the selected strands from T3, let the remainder be in the test tube T4’.
Step 8: From T4’ separate those strands for which y = 0 and form the test tube T5.
Step 9: The contents of T4 and T5 are merged to form the test tube T6.
Step 10: The presence of any DNA strand is detected in the final test tube T6. If yes, it can be concluded 

that the given formula is satisfiable. The satisfying assignments are encoded by the DNA sequence 
present in T6.

The algorithm to solve the SAT problem of given formula, E = (x ˅ y) ˄ (~x ˅ ~y) is summarized 
in Table 1.

Now, we will demonstrate the generalized version of the SAT problem resolved by Lipton by DNA 
computing model. The general form the given formula in a SAT problem is;

Z = C1 ˄ C2 ˄ ……………. ˄ Cm 

Let us assume, this problem has n number of variables and m clauses. Thus, the corresponding di-
rected graph (Gn) is shown in Figure 7.

The generalized form of SAT problem having n variables and m clauses can be solved by at most 
order m extract steps and one detect step. Starting from initial test tube (T0) with n-bit sequences, going 
through all the clauses of Z and retaining desired strands, finally those strands only remain that encode 
truth-value assignments satisfying Z.

The next section illustrates comparatively new and important aspect of DNA computing i.e., renew-
able or reversable DNA computing. This technological advent has taken us nearer towards the paradigm 
shift, from silicon to carbon.
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3. RENEWABLE DNA COMPUTING

Renewable or reversible DNA computing is a smart computation system, where the intelligent eco-
friendly molecular arrangement can be reused resulting in less energy consumption. The reversible 
models recycle complex DNA structures which can be constructed of single-stranded, double-stranded 
or partially double-stranded DNA sequences. The renewability of DNA computing leads to energeti-
cally efficient methodology to perform computation. It can be mentioned as the seed of renewable smart 
computation system with less energy consumption. Reif et al. proposed the DNA models of reversible 
computing using double-stranded gate structures (Garg et al., 2018) and hairpin complexes (Eshra et al., 
2019) which are highlighted in the subsections.

Renewable DNA Computing Presenting Time-Responsive Circuit

Researchers have designed time-responsive asynchronous DNA circuits using renewable theory of DNA 
computing (Garg et al., 2018) based on the toehold mediated strand displacement mechanism (Cardelli, 
2013; Zhang & Winfree 2009; Green & Tibbetts, 1981). The uniqueness of the proposed double-stranded 
gate structured model is that, after running experiment, the model can be restored to its initial state by 

Figure 7. The graph Gn encoding n-bit number

Table 1. Algorithm to solve the SAT problem of given formula E = (x ˅ y) ˄ (~x ˅ ~y)

Step Operation Set of truth-value assignment present in the 
corresponding test tube

1 Input(T0) {00, 01, 10, 11}

2 T1 = S(T0, 1, 1) {10, 11}

3 T1’ = S-(T0, 1, 1) {00, 01}

4 T2= S(T1’, 2, 1) {01}

5 T3 = merge(T1, T2) {10, 11, 01}

6 T4 = S(T3, 1, 0) {01}

7 T4’ = S-(T3, 1, 0) {10, 11}

8 T5 = S(T4’, 2, 0) {10}

9 T6= merge(T4, T5) {01, 10}

10 detect(T6) {01, 10}
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manual addition of DNA strands. The time-responsive property allows the DNA circuit to change its 
computed output depending upon the change in input over time.

The designed DNA logic gates (Figures 8 and 10) are based on Boolean logic circuits which can re-
ceive either single input (i.e., NOT) or double inputs (i.e., AND, NOT, OR, NAND etc.). The input and 
output variables of the of the logic gate are represented by DNA strands consisting five toehold domains. 
At the initial state the output strands are fully hybridized with the gate structure. When the input strand 
is added to the gate structure, it eventually displaces the output strand by toehold mediated DNA strand 
displacement mechanism. The released strand acts as the input to the downstream gate structure. Only 
the three toehold domains at the center of the input strand hybridizes with the gate structure to form 
partially double-stranded intermediate structure as explained in Figures 8 and 10. The output strands 
representing Boolean values 0 and 1 are denoted as Z0 and Z1 respectively.

Single-Input Single-Output Time-Responsive DNA Gate

Figure 8 gives the pictorial representation of single-input single-output time-responsive NOT DNA-gate 
structure. The input strands X0 (representing Boolean value 0) and X1 (representing Boolean value 1) 
having five toehold domains are shown in Figure 8(a). The gates GZ0 and GZ1 are initially hybridized 
with the output strands Z1 and Z0 forming partially double-stranded structures GZ0:Z1 and GZ1:Z0 re-
spectively. When the input strands are added to the gate structures, these displaces the pre-hybridized 
output strands by toehold mediated branch migration and DNA strand displacement. The output strands 
are realized and intermediate structures are formed with gate and input strands, pictorially presented as 
GZ0:X0 and GZ0:X1 in Figure 8(c). The possible output strands are shown in Figure 8(d).

Figure 8. Single-input single-output time-responsive DNA gate: (a) possible input strands, (b) gate struc-
ture attached with output strands, (c) time-responsive intermediate structure, (d) possible output strands
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Figure 10. Double-input single-output time-responsive DNA gate: (a) possible input strands, (b) gate 
structure attached with output strands, (c) time-responsive intermediate structure, (d) possible output 
strands

Figure 9. Renewability of single-input single-output DNA gate
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The renewability of the initial gate structure GZ0:Z1 is illustrated in Figure 9. The DNA circuit model 
can be restored through cascade of reactions by adding of ssDNA and reused again to generate the output 
strand corresponding to the given input DNA strand.

Double-Input Single-Output Time-Responsive DNA Gate

Likewise, the double-input single-output time-responsive OR DNA-gate structure is demonstrated in Fig-
ure 10. Figure 11 illustrates the renewability of one of the four gate conformations of the proposed DNA 
circuit model, GZ00:Z0 through cascade of reaction by addition of two ssDNA sequences, GX00 and Z0.

So far, we have focused on renewable energy efficient DNA model using gate conformations which 
successfully represents logic circuit in the domain of DNA computing. The next subsection demonstrates 
the mechanism of energy efficient, renewable hairpin DNA structures used for computation.

Renewable DNA Hairpin Structures Performing Computation

An intelligent DNA system has been developed using renewable hairpin motifs (Eshra et al., 2019) which 
can efficiently perform computation and generate output. The DNA hairpin or stem-loop structure is 
comparatively stable secondary structure which occurs when two distant domains of the same ssDNA are 
complementary to each other in opposite directions. These two domains hybridize to each other form-
ing the stem region, and the unhybridized single-stranded domain linking the ends of the stem region 
is termed a loop. The proposed stem-loop structure unlocks to perform computation, again reverts back 
to its stable initial form which can be reused for performing further computation and producing more 
output sequences. Thus, the open configuration of the stem-loop structure indicates its ON mode, which 
is competent to perform computation and conversely the OFF mode is specified by its closed configura-
tion. The mechanism of the renewable DNA hairpin structures has three steps listed below:

• Addition of input strand and booster strand

Figure 11. Renewability of double-input single-output DNA gate
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• Generation of detectable output
• Renewability of the DNA hairpin structure and reporter strand

Addition of Input Strand and Booster Strand

The gate structure is constructed by hairpin motif H having an additional toehold domain T1*; T1* denote 
the Watson-Crick complement of T1. Figure 12 represents the interaction of the renewable gate structure 
H with the input strand In and the booster strand Bo. The input strand hybridizes with H through the 
toehold domain T1 and extends the hybridization by the branch migration mechanism. Finally it opens 
the stem (domain D2) to generate H.In complex. The single-stranded loop of H having two toehold do-
mains, T1* and T2, is now open to perform further computation. The booster strand is designed to have 
the domain D2, T1 and an additional domain Db. If Bo is further added to the H.In complex, it replaces 
the pre-hybridized In strand by toehold mediated strand displacement and form the complex H.Bo. The 
released single-stranded In is now available to interact with new gate structure and generate output. Thus, 
the addition of booster strand leads to the renewability of the input strand.

Figure 12. Interaction of hairpin motif with input strand and booster strand
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Generation of Detectable Output

The addition of the partially double-stranded reporter complex with the resultant complexes of the pre-
vious step leads to the release of detectable output molecule which is single-stranded fluorescent DNA 
molecule. The reporter complex Re is designed to have two complementary domains corresponding to 
those of single-stranded loop region of H i.e., T2* and D3*. Re is tagged by fluorophore in shorter strand 
and quencher molecule in longer strand as shown in Figure 13. Quencher decreases the fluorescent 
intensity of the fluorophore, thus, Re emits no light. As Re hybridizes with H.In and H.Bo, new com-
plexes are formed and a single-stranded DNA output molecule is released by the mechanism of strand 
displacement using the toehold domain T2. As the effect of quenching molecule is inversely proportional 
to the distance between fluorophore and quencher, fluorescent emission occurs in this step because of 
the dissociation of these two molecules. The fluorescence indicates the completion of reaction and the 
release of an output strand.

Renewability of DNA Hairpin Structure and Reporter Strand

This step renews the hairpin gate and reporter strand which are utilized in the preceding step to gener-
ate detectable output strand. For restoration of these strands, two hairpin structures are used viz. Exi 
and Exb. The procedure of renewability is pictorially illustrated in Figure 14. Exi and Exb are termed as 
extractors, designed to have toehold domain T1 in the stem region which can hybridize with H.In.Re and 
H.Bo.Re complexes respectively. Figure 14(a) and (b) demonstrate the extraction of the input strand and 
booster strand by the extractor and formation of H.Re complex which is further employed for restoration 
of the initial stem-loop motif H. The extracted input and booster strands turn out to be the waste as these 
cannot be reused further. The development of H.Re leads to the hybridization starting from the edges of 
the complex and formation of double-stranded stem structure as shown in Figure 14 (c). The intensity 
of the stem hybridizations increases which results into opening up the toehold domain (T1) of the pre-
hybridized reporter strand Re. If the output strand is further added, it hybridizes with Re because of their 
complementarity. This reaction ends up in extraction of the complete reporter strand and formation of 
the initial hairpin motif H which can be reused again in further production of output sequence.

Figure 13. Generation of detectable output: (a) Interaction of reporter strand with H.In complex (b) 
Interaction of reporter strand with H.Bo complex
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The researchers have experimentally verified the efficacy of reversible DNA hairpin model and 
successfully applied it to mimic the Boolean logic gates used in classical computation. These research 
works are considerable stages to start a journey towards the future of reversible, energy-efficient, eco-
friendly, minimal-energy computation.

4. CONCLUSION

The contemporary technology of molecular computing is still too inefficient to surpass classical silicon-
based technology. The domain of nanotechnology was first exemplified in the form of DNA computing 
which amalgamates biological science with the computer science. If DNA molecular devices can be 
handled more effectively, this interdisciplinary domain would be able to overcome all drawbacks of 
modern microelectromechanical devices.

The future of computing depends on making it renewable, as this can cause a drastic improvement 
in its energy efficiency. Though reversible computing is not a new domain, but it didn’t get consider-
able attention in the era of silicon-based technology. Today, to save the natural resources and to stop the 

Figure 14. Renewability of the DNA hairpin structure: (a) Formation of H.Re complex from H.In.Re 
complex, (b) Formation of H.Re complex from H.Bo.Re complex, (c) Restoration hairpin structure and 
reporter strand
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growing toxicity of the planet, reversibility should be imposed more successfully into every aspect of 
DNA computing so that it can replace the traditional form of computation. DNA computing is the novel 
smart-computing technology that can be optimally produced and run from available natural resources. 
Along with all the advantages over classical technology, DNA computing ensures environmental cog-
nizance and better management system.
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ABSTRACT

Renewable energy systems are spread all over the world due to the security problems encountered in ac-
cessing fossil fuels, the desire to reduce the environmental damage and to respond to the rapid increase in 
energy demand. However, the problems are experienced in renewable energy technologies in sustainable 
supply and reduction of production costs. Obtaining the optimum power distribution planning between 
photovoltaic, wind, biomass, and other systems depending on the relevant parameters and optimizing the 
distribution of energy supply-demand planning among the same sources can be applied as an effective 
solution by using several single optimization methods or new updated hybrid versions of them. In this 
chapter, common methods were evaluated and an application of crow and particle swarm as a hybrid 
method was examined in a certain region of Libya for a PV/wind hybrid renewable power system.
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INTRODUCTION

Among all the various resources pursued on earth, electrical energy is the most crucial. Fossil fuels in-
cluding coal, crude oil, and natural gas are currently being used to satisfy more than 70% of the planet’s 
overall demand for electrical power (Sinha and Chandel, 2014). As economies and national populations 
simultaneously grow, demands for electricity increase and the consumption of various fossil fuels accord-
ingly increases. Also. the supplies of these traditional fossil fuels are inherently limited, and the available 
quantities are steadily continuing to decrease, necessitating urgent attention and long-term solutions 
to prevent a possible energy crisis. At the same time, these conventional fuels are the direct source of 
various dangerous emissions, such as greenhouse gases, contributing in turn to global warming (Kuang 
et al 2016; Sinha and Chandel 2015). These issues are currently being addressed in a variety of ways. 
One popular strategy is focused on raising public awareness regarding the urgency of decreasing energy 
consumption in residential and industrial sectors and promoting newer technologies that are more energy 
efficient. One other strategy entails the promotion of renewable energy systems (RESs) and other related 
technologies with the goal of increasing their levels of dependability, cost-effectiveness, greenness, and 
accessibility for the broader population for usage at home. Various countries and territories are exerting 
considerable effort to improve renewable energy capacities, which are also receiving increased attention 
from researchers, governments, and many different industries(Menanteau et al., 2010). Alternative energy 
options such as wind, solar, biofuel, biomass, hydro, and geothermal sources of energy, among others, 
have been widely used to produce power in recent years. Considering the simultaneous consideration of 
the reliability, cost, and performance, renewable energy-based hybrid systems (REHSs) are clearly more 
logical and more feasible than systems utilizing a single source of energy in many applications. REHSs 
can run off one or more energy sources and can operate independently or in grid-connected mode. Various 
hybrid system combinations are possible, and these can and should be selected considering the specific 
need and the resources available for each individual location (Sinha and Chandel, 2014).

Most renewable energy sources, including both solar photovoltaic (SPV) systems and wind turbine 
generators (WTGs), are both clean and environmentally. According to these investigations, HRESs will 
provide good efficiency at lower costs in comparison to SPV or WTG systems that stand alone (Dawoud 
et al 2015; Celik, 2002; Beshr 2013).

Hybrid combinations of SPV with WTG may have disadvantages compared to conventional energy 
sources if they are not designed carefully and appropriately. For increased performance, it is critically 
important to address the inconsistent patterns of both wind speed and solar radiation, both of which lead 
to fluctuations in power. This can be easily resolved, for example, with the use of storage units, perhaps 
in the form of storage battery banks. When such batteries are present within hybrid systems, the storage 
of extra power becomes possible and thus the supply of loads in the event of shortages is also possible 
(Barton and Infield, 2004).

The incorporation of storage batteries into such systems also helps prevent oversizing of the SPV 
and WTG sources. Even after storage batteries are charged to their full capacity, however, excess power 
from generation units must still be avoided elsewhere. Reducing the amount of unutilized excess power 
could lower the cost of energy (COE) (Dufo-lo, 2007). As a result, each RES’s optimum capacity must 
be known to confirm the actual load that can be accommodated.

To operate HRESs, it is necessary to maximize their performances; at the same time, it is necessary to 
keep both physical and technical constraints in mind. As a result, optimization methods, techniques, and 
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applications have grown in popularity as means of achieving these objectives (Fathima and Palanisamy, 
2015).

The main issue with operating grid-connected and islanded microgrids is economic dispatch (ED). 
This entails calculating the active power output for various generating units within a given system in 
order to achieve a prespecified objective function and simultaneously satisfy various relevant limita-
tions (Cai et al, 2012). Creative and novel algorithms for the management of such systems are needed to 
handle dynamic behaviors and environmental restrictions of microgrids and subsequently facilitate their 
development into more viable and practical alternatives to conventional power systems (Trivedi et al, 
2018). A key objective shared by all utility operators is to reduce not just total generating costs but also 
emissions. The conflicting realities of these two aims must be addressed to reach this goal. As a result, 
the notion of combined economic emission dispatch (CEED) may be utilized to concurrently reduce both 
operational costs and emissions from all extant generating units. This conversion of the multi-objective 
function of minimizing costs and emission levels into a single-objective function using a price penalty 
factor is one popular technique to tackle CEED problems.

Several optimization strategies designed with the aim of yielding solutions to the CEED problem are 
proposed in the literature (Parvez 2018; Ahmed 2015). In Reference. (Ri et al, 2007), three alternative 
methodologies are used to discuss the CEED problem with transmission losses. These are the genetic 
algorithm, ant colony algorithm, and lambda approach. The gradient method, in contrast, is used in Ref-
erence. (Augustine et al, 2012) with the aim of resolving the CEED problem while utilizing a mixture 
of conventional and renewable energy resources. In Refs. (Trivedi et al, 2018) and (Esmat and Eibakly, 
2013), on the other hand, the interior search method and the ant colony algorithm are respectively used 
with the aim of resolving CEED problems of microgrids.

The harmony search (HS) algorithm, a metaheuristic method, was recently suggested in Reference. 
(Geem and Kim, 2001). This algorithm was designed considering improvisation processes seen in music 
and it has demonstrated effective applications for a variety of optimization issues (Gupta and Jha 2018; 
Sarkhel et al 2018). However, while the HS approach has a high ability to discover higher-performance 
parts of solution spaces in an acceptable amount of time, it has significant limitations (Ouyang et al, 
2017). The first is its sensitivity to control parameter values. Second, due to the selection approach 
used, it may become caught in local optima. Finally, its improvisation mechanism is deficient in terms 
of previous knowledge, which reduces the effectiveness of the new harmony vector, also referred to as 
a solution vector (Ouyang et al, 2017). As a result, these flaws need to be addressed before using the 
original version of the HS algorithm to handle sophisticated or difficult optimization tasks.

This chapter gives an overview of the use of hybrid optimization methods to size and solve economic 
dispatch problems in hybrid renewable energy systems. The first step was to explain and describe hybrid 
renewable energy sources. The CEED (combined economic emission dispatch) model was then evaluated. 
Then, the four commonly used algorithms, to optimize the operation and modelling of hybrid energy 
systems, Classical techniques, Metaheuristic techniques, hybrid algorithms and Optimization computer 
software tools, were described. Finally, the optimization objectives were compared an application was 
evaluated for a PV/Wind HRES in a certain region of Libya by using Crow and Particle Swarm Opti-
mization methods.
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A METHOD TO OPTIMIZE THE SIZE OF RENEWABLE 
ENERGY SYSTEMS IS NEEDED

Due to their remoteness, many villages around the world may never be connected to the national grid, 
or towns may be far from the traditional electrical grid due to natural impediments and environmental 
limits. Remote village electrification using non-conventional energy sources such as solar, micro-hydro, 
and wind systems becomes important. In terms of cost, efficiency, and reliability, isolated operation of 
these power units may not be feasible(Ashok, 2007).

Combining these multiple renewable energy sources to construct a hybrid energy system is a potential 
alternative approach. One ideal sizing technique for the hybrid generation system considering system 
dependability and economic advantage is required in order to efficiently and economically utilize re-
newable energy resources(Wu and Chang, 2016). The size optimization approach entails determining 
the best (or near-best) system for generating a fair amount of renewable energy that matches the load 
demand distribution at the lowest cost(Nadjemi et al., 2017).

OPTIMIZATION TECHNIQUES FOR SIZING OPERATIONS

The algorithms that are utilized for computing the maximum or minimum values of assorted mathemati-
cal functions are known as optimization algorithms. When optimizing a system’s architecture, different 
goals may be taken into consideration. The goals might be increasing system productivity and lowering 
the cost of production. Optimization approaches and techniques can aid in the resolution of difficult 
problems. When designing an HRES, we must always keep in mind the efficiency of its components. The 
key aim is to improve efficiency while lowering costs. These objectives may be successfully fulfilled by 
optimizing the modeling of the system. The three most popular modeling and optimization approaches 
for hybrid renewable energy systems are classical algorithms, metaheuristic approaches, and the com-
bination of two or more different optimization techniques.

Optimization algorithms, often called mathematical programming algorithms, are methods for find-
ing the optimal solutions to optimization problems given a set of constraints. While this explanation 
appears to be simple, it conceals several difficult aspects. For example, a solution could include a range 
of data kinds, non-linear boundaries could limit the search field, a search space could have numerous 
viable solutions, the problem’s features could change over time, or the optimization process could include 
competing aims (Engelbrecht, 2007). Optimization algorithms have applications in research, engineering, 
economics, and business. Optimization is becoming increasingly important in science and technology 
around the world. Possible areas of application include a transportation problem in which a product 
must be shipped in specific quantities from many service points to multiple destinations, the goal being 
minimizing transportation costs; a power circuit state estimation problem; a profit problem involving 
an investment spread over many areas; or an increase in market players causing a rise in competition, 
forcing today’s society to adapt. In all such situations, researchers seek optimal solutions in the most 
efficient and effective manner with the most economical process—in short, they seek the best way to 
do things (Pedregal, 2004).

As stated above, algorithms for computing the maximum or minimum of mathematical functions 
are known as optimization algorithms. When optimizing a system’s architecture, different goals might 
be taken into consideration. Increasing system productivity while also lowering the cost of production 
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are prime examples of such overlapping goals. Optimization approaches and techniques can aid in the 
resolution of seemingly conflicting goals. These objectives may be met by optimizing the system’s 
modeling (Siddaiah and Saini, 2016).

As also suggested above, the main approaches to size optimization can be generalized as classic 
techniques, modern techniques, and software tools. The application of iterative, numerical, probabilis-
tic, logical, or graphical construction approaches is seen in traditional techniques (Sinha and Chandel, 
2015). For identification of the best possible solution for the considered problem, these approaches also 
utilize differential calculus (Siddaiah and Saini, 2016). Artificial and hybrid approaches are applied 
with modern techniques (Sinha and Chandel 2015; Mahesh and Sandhu 2015). The approaches in this 
category offer the promise of finding a range of optimal solutions with greater convergence and accuracy 
while determining global optimum schemes (Upadhyay and Sharma 2014; Mahesh and Sandhu 2015). 
Computer software tools constitute the third category of primary size optimization techniques. The 
Hybrid Optimization Model for Electric Renewables (HOMER) (Upadhyay and Sharma 2014 remains 
the most used software tool for size optimization, although another program called Improved Hybrid 
Optimization by Genetic Algorithm (iHOGA) is also relatively popular. The optimization techniques 
described here are graphically mapped in Figure1.

Figure 1. Commonly used optimization techniques
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Classical Techniques

Differential calculus is used in traditional optimization algorithms to find the best solutions considering 
both continuous and differentiable functions. For systems of objective functions that are not actually 
continuous and/or differentiable, traditional approaches have limitations. For hybrid energy systems, a 
variety of traditional optimization approaches have been used. Classic algorithms for optimizing HRESs 
include dynamic programming (DP), the linear programming model (LPM), and nonlinear program-
ming (NLP).

Among these, the LPM may be adopted to investigate situations where objective functions are linear 
and design variable spaces are defined solely by linear equalities and inequalities. Adoption of the LPM 
to optimize HRESs has been described in many studies in the literature (Ramakumar 1992; Hennet and 
Samarakou 1986; Gupta et al 2006; Saini and Sharma 2010; Jyoti and Raju 2011). These studies make 
use of the LPM’s capabilities in undertaking stochastic reliability and economic analysis. The failure of 
any of the renewable resources, on the other hand, has a negative impact on the overall system’s energy 
delivery capacity (Arabali et al, 2014). In contrast, NLP is usually applied in the investigation of gen-
eral cases where objective functions, constraints, or both include nonlinear components. Some studies 
(Ashok, 2007) have used this model. Doing so allows complex problems to be solved using basic opera-
tions. However, for numerical methods like NLP, large numbers of iterations are performed, raising the 
computational difficulty of the problem (Arabali et al, 2014).

Finally, DP is popularly used to examine situations where the optimization approach is focused on 
breaking the problem down into smaller subproblems. This approach aids in the solution of sequential 
problems or problems with multiple, connected stages. A key benefit of DP lies in its ability to optimize 
each level. As a result, it can deal with the complexities of larger structures. The large number of recur-
sive functions encountered in DP, on the other hand, makes the coding and implementation difficult and 
potentially confusing (Arabali et al, 2014). An example of a study utilizing DP with the goal of HRES 
optimization can be found in Ref. (Chak and Bengal, 1990).

Metaheuristic Techniques

Since they can produce reliable and effective optimal solutions, metaheuristic search techniques are 
very popular in efforts aimed at optimizing complex systems such as HRESs. The algorithms falling 
within this group can be understood as nature-inspired since they focus on natural behaviors. Examples 
of metaheuristic approaches utilized for HRES optimization include particle swarm optimization (PSO), 
simulated annealing (SA), the genetic algorithm (GA), and ant colony (AC) algorithms.

Genetic Algorithm (GA)

As of 1975, Holland was among the first to establish heuristic methods. Selection, crossover, mutation, 
and inheritance are examples of search techniques focused on genetics and natural selection principles 
(Learning and Publishers, 1988). In comparison to other search techniques designed to operate with one 
single solution, GA allows a population to evolve into a state that will be able to maximize “fitness” 
under defined selection rules.

A population of elements would be assimilated to chromosomes, with possible candidates being 
encrypted for them to evolve into a better state. The solutions to these types of problems are tradition-
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ally expressed in binary code. To begin, the initial population is created at random, and the suitability 
of each candidate is assessed over generations. To create a new population, the selected candidates are 
changed by mutation. This will be repeated until the algorithm is seen to be satisfied or until reaching 
the maximum number of iterations.

In the literature, the GA is generally regarded as one of the most widely used optimization strategies 
for placement and sizing decisions related to distributed generation (DG) (Borges and Falca 2006; Singh 
and Goswami 2010; Shaaban et al 2013; Singh et al, 2007; Singh and Goswami 2009). It was used in 
Refs. (Zangeneh et al, 2009) and (Soroudi et al, 2011), for example, with the twofold target of reduced 
system expansion costs and increased system efficiency. Since these two objectives are incompatible, 
Pareto-optimal models were preferred to find the dominant solution in a single run.

To address these DG location and sizing problems, new enhanced methods are being proposed, such 
as that presented in Ref. (Processing, 2007), a study in which the GA was utilized together with the 
multi-attribute decision-making (MADM) approach to consider various parameters of power systems. 
Further improved GA methods include the adaptive genetic algorithm (AGA), shown by Ref. (MA et 
al, 2012) to provide both higher levels of robustness and a higher performance in terms of search abil-
ity, as well as the quantum genetic algorithm (Liao, 2012). Table1 sketches a comparison of the major 
advantages and disadvantages that GAs face.

Particle Swarm Optimization (PSO)

PSO was originally introduced in 1995 as a novel optimization method created by Eberhart and Kennedy. 
This approach to optimization is based on the social actions of flocking birds and schooling fish, whereby 
particles move within multidimensional search space and the single intersection of all dimensions forms a 
particle (Zhu, 2008). The framework can be modified with a collection of arbitrary solutions first and the 
search for optimization is maintained with the updating of subsequent generations. Particles will evalu-
ate their positions based on their fitness levels at each iteration, and neighboring particles will share the 
background of their “best” positions to help tailor the final optimized solution (Zhao 2006; Elbaz 2020).

PSO is quite widely used by researchers to solve DG location and sizing problems (El-Zonkoly AM, 
2011; Lalitha and Reddy, 2010). For example, in Reference. (Pandi et al, 2013), PSO is applied to de-
termine the best position, form, and size for DG units to provide optimal DG integration while keeping 
the relevant harmonic limits and security constraints in mind. PSO was also used in References. (Se-
dighizadeh and Sadighi, 2008) and (Kansal et al, 2013) to boost the voltage profile as well as minimize 
total harmonic distortion, losses, and costs. When compared to GA-based systems, the results showed 

Table 1. Genetic Algorithm’s Benefits and Drawbacks

Benefits Drawbacks

-Have a better chance of finding the global best solution for a large 
range of functions. 
-No derivatives are needed. 
-It is possible to do it for both discrete and continuous variables. 
-can be used to solve problems that are both complex and poorly 
described. 
-Bad strategies have little impact on the result.

-Due to repeated fitness function assessment, it can be time 
consuming for broad and complex problems. 
- It is possible that it will be inaccurate.
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that PSO provided higher solution quality while engaging in fewer iterations. Thus, in real-world set-
tings, PSO has faster computational times than the GA and it can be applied to real-world power network 
scenarios. Table 2 lists the main advantages and disadvantages of PSO-based methods.

Improved PSO (IPSO) (Yustra and Soeprijanto, 2012), binary PSO (BPSO) (Su et al, 2011), social 
learning PSO (SLPSO) (Arasi and Sasiraja, 2015), PSO with inertia weight (PSO-IW), and PSO with 
constriction factor (PSOCF) (Ganguly et al, 2012) are some of the novel methods for enhanced PSO 
application currently being utilized to address DG location and sizing tasks.

Ant Colony Optimization (ACO)

Dorigo et al. published the first ACO algorithms in 1996, which were based on the social actions 
of insects such as ants performed in the quest to find the shortest paths to food (Dorigo et al, 2006). 
Researchers have found pheromone trails physically left by ants. Some ants use this substance to com-
municate knowledge about their paths. This method, similarly, to other metaheuristics, begins with the 
suggestions of random solutions that are assimilated into ants’ searches and the trails left behind by their 
movements. As a result, the shorter the routes, the more trails there are. The subsequent searches will 
take this knowledge into account. ACO was utilized in both References. (Falaghi et al, 2007) and (Wang 
et al, 2008) with the aim of solving the problem of locating and sizing DGs from an RES with radial 
distribution systems together with the simultaneous goal of minimizing total system loss.

A reliability index was selected as the objective function in Reference. (Wang et al, 2008) and the 
ACO algorithm was used for completing various discrete optimization tasks. In comparison to the GA, 

Table 2. Particle Swarm Optimization ‘s Benefits and Drawbacks

Benefits Drawbacks

- It is possible that it will be easy to execute. 
- There are just a few parameters to tweak. 
- Having the ability to run parallel computations. 
- Can be robust 
- Finding the global optima has a higher likelihood and efficiency. 
- Can converge quickly. 
- Avoid overlapping and mutating. 
-Have short computational time 
- Can be useful for solving problems where reliable mathematical 
models are difficult to come by.

- Initial design parameters can be difficult to define. 
- When dealing with complex problems, it is possible for it to 
converge prematurely and become stuck in a local minimum.

Table 3. Ant Colony Optimization’s Benefits and Drawbacks

Benefits Drawbacks

§ Can search among a population in parallel. 
§ Can help you find good solutions quickly. 
§ Can adjust to new distances and other adjustments. 
§ Convergence is assured.

-For each iteration, the probability distribution will shift. 
-Have a challenging theoretical analysis. 
-Have dependent random decision sequences. 
-There should be more experimental research than theoretical 
research.
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the results showed that ACO provided more efficient solutions with shorter computational times. Since 
the solution space to be analyzed is greater, ACO takes longer to converge, but it is still faster than 
analytical methods. In Table 3, the advantages, and disadvantages of the ACO method are highlighted.

Tabu Search (TS)

TS is another popular metaheuristic technique adopted by researchers for solving optimization problems; 
it was first proposed by Glover in 1986. This method is based on principles of adaptive memory and 
receptive exploration, which allow for the cost-effective and efficient searching of the solution space 
until no improvement is found. TS has had a key role in resolving the issue of finding and sizing DGs. 
Golshan et al., for example, utilized it based on DG optimum planning with the aim of minimizing both 
losses and line loadings, but TS does unfortunately have the drawback of requiring the consideration 
of large numbers of iterations and parameters (Esmail et al 2007; Golshan and Arefifar2006). Table 4 
highlights the most important advantages and disadvantages of TS.

Harmony Search (HS)

HS is yet another metaheuristic optimization technique, having been first introduced in 2001. It was 
primarily designed considering techniques employed by musicians to enhance the harmony of their 
instruments. Thus, in contrast to the algorithms described above that are focused on observed natural 
behaviors, HS describes a musical performance process that seeks to improve harmony (Search,2013). In 
Refs. (Rao et al, 2013) and (Piarehzadeh et al, 2012), HS was used in conjunction with a loss sensitivity 
factor approach to find the best DG position. The latter of those studies (Piarehzadeh et al, 2012) con-
cluded that using the HS algorithm rather than the PSO algorithm for allocating DGs improved voltage 
stability. Table 5 highlights the major advantages and disadvantages of this technique.

Table 4. Tabu Search Genetic’s Benefits and Drawbacks

Benefits Drawbacks

-Can be used to solve difficult problems. 
-Have a clear memory. 
-It works for both discrete and continuous variables.

-Depending on the Tabu list manipulation technique, this is 
possible. 
- Can get stuck in local minima. 
- Many parameters should be determined. 
- Have many iterations. 
-To find a global optimum, you can depend on parameter settings.

Table 5. Harmony Search Algorithm’s Benefits and Drawbacks

Benefits Drawbacks

§ There are no initial value settings required. 
§ Can work in both discrete and continuous variables. 
§ It is not possible to diverge. 
§ It is possible that you will be able to get away from local optima.

-The ability to search for local information is weak. 
-It is possible to achieve many iterations. 
-Have a multimodal problem with a high number of dimensions.
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Further Heuristic Methods

In recent years, some authors have introduced new heuristic methods for solving the DGs locating and 
sizing problem, such as:

• Artificial Bee Colony (ABC), an optimization algorithm based on the honeybee swarm’s search-
ing behavior. In Refs. (Abu-mouti and Member, 2011) and (Lalitha et al, 2010), the ABC algo-
rithm was used, and comparing this new method with the older PSO approach revealed that the 
newer method provided higher quality of solutions and faster convergence.

• The Cuckoo Search Algorithm (CSA), which is based on certain cuckoo species’ obligate brood 
parasitism, which is described by the placement of their eggs in the nests of other host species 
(Yang et al, 2009). For both DG biomass and solar-thermal units, the CSA was applied in Ref. 
(Moravej and Akhlaghi, 2013) to improve voltage profile with the simultaneous goal of minimiz-
ing power losses.

• The Shuffled Frog Leaping Algorithm (SFLA) (Eusuff et al, 2007), as another example of 
algorithms reflecting natural behaviors, was inspired by frogs’ actions while looking for food. 
The SFLA method has been used with success to resolve problems of DG allocation and sizing. 
In Ref. (Taghikhani, 2012), for instance, the SFLA was used to optimize device voltage profiles 
while lowering line loss. This strategy helpfully combines the advantages of both the GA and PSO 
algorithms.

• Shuffled Bat Algorithm (SBA), which is based on microbat echolocation behaviors. To demon-
strate its efficacy, this algorithm was applied to a radial distribution system in Ref. (Yammani et 
al., 2016), first with 100% base load conditions and then with 120%

• The Firefly Algorithm (FA), which is based on how fireflies communicate among themselves 
within a courtship system. The flash of a firefly’s bioluminescence is used for attracting other 
fireflies (Yang, 2010). The FA ensured optimum allocation of DG in Ref. (Sulaiman et al, 2012), 
with goals of minimizing actual and reactive power losses as well as line loading.

Hybrid Algorithms

Combining two or more optimization strategies may make it possible to overcome the limits that are faced 
when any of the optimization techniques described above are used alone, resulting in more efficient and 
reliable HRES solutions. Such combinations are referred to as “hybrid” strategies.

Premature convergence is a disadvantage of most evolutionary computational techniques. Significant 
amounts of time may be consumed for these strategies to emerge from local maxima or minima (Khare 
and Rangnekar, 2013). Hybrid techniques, however, may be used for solving diverse optimization prob-
lems by combining helpful benefits of two or more optimization techniques. Research into these hybrid 
techniques has received considerable attention in recent years, largely because individual approaches 
are less efficient and competitive than hybrid strategies.

Many researchers have used hybrid strategies to improve the performances of standalone wind, so-
lar, and solar-wind hybrid systems in recent years. For example, Refs. (Kalogirou, 2004) and (Mellit et 
al, 2010) reported the use of a neural network and GA to size photovoltaic systems, while Reference. 
(Khatib et al, 2012) described the outcome of a case study applied in Malaysia to determine the optimal 
numbers of hybrid device components with key deciding factors being the numbers of wind turbines, 
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PV panels, and batteries. The authors used a mixture of iterative and GA methods in their research. The 
iterative method was used to find a range of possible configurations and the GA was used to find the 
best configuration.

A hybrid technique for sizing a PV-wind-based method was suggested, combining three popular 
algorithms: chaotic search (CS), SA, and HS. It developed DCHSSA, a discrete chaotic harmony search-
based simulated annealing algorithm, by combining those three techniques. The proposed algorithm was 
reported to be superior to the individual techniques. (Askarzadeh, 2013). Using a mixed multiple-criteria 
integer programming problem, Ref. (Xu et al, 2005) proposed an improved approach for optimal sizes 
of the components of a standalone hybrid wind-PV power system. The GA was nominated as a helpful 
candidate for reduction of overall capital costs when adhering to the LPSP constraint. By examining 
the relevance of individual algorithms, Another hybrid TS-SA optimization strategy was suggested 
and the findings showed that the hybrid approach produces better solutions in a shorter amount of time 
(Katsigiannis et al, 2012). Recently presented studies a hybrid big bang-big crunch algorithm intended 
for the design of an optimized hybrid solar, wind, and battery system as well (Ahmadi and Abdi, 2016). 
Ref. (Maleki et al, 2016) proposed a PSO-based Monte Carlo simulation (PSOMCS) for the sizing of 
off-grid hybrid systems incorporating energy from solar, wind, and battery sources.

Optimization Software Tools

To optimize renewable energy systems, a variety of software methods have been used (Connolly et al, 
2010). Hybrid energy systems’ design requirements, evaluation criteria, power, and energy management 
can be better addressed now with the introduction of various software tools:

• HOMER
• HOGA
• HYBRIDS
• MATLAB

The properties of available software tools are summarized in Table 6. When designing an HES, large 
quantities of variables and goals, such as minimization of total device cost, improved efficiency, reduced 
emissions, and so on, are taken into account, and the simulation time may increase accordingly. This 
emphasizes the importance of selecting an appropriate sizing technique.

Among the many software tools available, HOMER program is possibly the most widely used for 
hybrid energy system sizing. It facilitates quick determination of the best size for energy systems and 
can also be used for sensitivity analysis to investigate effects of variability or changes to input variables. 
For example, Hrayshat (Hrayshat, 2009) used HOMER software to perform a comprehensive techno-
economic study to develop the best hybrid PV-diesel-battery system for a house in a remote area of 
Libya (Elbaz and Guneser, 2021).

HOMER Pro is a more advanced version of HOMER that includes features such as an optimizer, a 
multi-year module, monthly demand limits, advanced battery or load profile options, and the ability to 
connect to MATLAB software (Hrayshat, 2009).
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HYBRID RENEWABLE ENERGY SYSTEMS

Because to population growth, suburbanization, and industrial expansion, energy demand is increasing 
every day. Because the rate of energy consumption is high, and the supply from renewable energy sources 
is insufficient to fulfill the load demand, an energy shortfall occurs. Large-scale power generation relies 
on traditional energy sources that are not only scarce but also poorly distributed across the globe. Due to 
the increasing depletion of fossil fuels such as coal, oil, and gas, traditional energy sources have a greater 
influence on the environment, resulting in an increase in CO2 levels, which causes global warming.

The use of renewable energy sources is necessary; however, because renewable energy sources are 
dependent on environmental conditions such as wind speed and solar irradiance, individual energy 
sources cannot provide continuous power supply to the load due to their unpredictable and intermittent 
nature. As a result, renewable energy sources such as wind, solar, hydro, biogas, and fuel cells can be 
combined to create a hybrid system that is more dependable and environmentally benign.

Despite advances in renewable fields, oil, coal, and natural gas remain the primary energy sources 
of our planet now (Paliwal et al 2014; Kaldellis et al 2020).

Renewable energy systems are seen as particularly viable options for remote or isolated locations that 
suffer from limited access to national grids in the presence of problematic technological and economic 
constraints. They are therefore favored in diverse regions and by many countries. PV, wind, and hydro-
power or a combination of the three can be used in such a power system. To meet peak hour demand, 
such a system might include backup devices such as diesel generators or battery banks. Characteristics 
of renewable energy power systems (REPSs) are described in Table 7.

REPSs that are designed well will be cost-effective and dependable and they will inherently have the 
power to improve people’s lives (Enslin and Africa, 1991). In most relevant situations, solar and wind 
energies are complementary, but both are unpredictably variable due to the instantaneous variations that 
occur in the supply of both resources. (Bhandari et al, 2013) reported the development of a new hybrid 
system that combines wind, solar, and hydro resources, and its potential applications in meeting the 
needs of a small Nepalese village (Bhandari et al, 2014). (Ahn et al, 2012) looked at various qualities 
of an off-grid HRES and how they affect system reliability.

Table 6. Selected simulation software tools(Dufo-lo, 2009)

Software 
tools PV Genset Battery Wind Mini-

hydro

Fuel cell; 
electrolyzer 
and H2 tank

Loads simulation Control 
strategies

Multi-
objective 

optimization 
(economical 

and technical)

HOMER √ √ √ √ √ √ √ √ √ √

Hybrid2 √ √ √ √ √ √ √ √

HOGA √ √ √ √ √ √ √ √ √ √

MATLAB √ √ √ √ √ √ √ √ √ √
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Due to the dependency of these sources of energy on unpredictable environmental conditions, however, 
such as wind speeds or levels of solar irradiance, one sole intermittent energy source will not be able 
to sustain the necessary power supplies. To remove this crucial shortcoming, renewable energy sources 
may be utilized in combination to create hybrid systems that are simultaneously more dependable and 
environmentally sustainable. “Distributed energy sources” and “distributed generation” are terms used 
to describe this type of renewable energy (Paliwal et al 2014; Upadhyay and Sharma 2014), as shown 
in Figure 2.

Since the performances of HRESs are so highly dependent on their individual components, careful 
modeling of each component offers tools for better understanding the system’s efficiency and reliabil-
ity, as well as assisting in the optimization of HRESs. The current chapter examines an assortment of 
the available optimum sizing methods together with in-depth requirements for hybrid power systems 
comprising small PV units or hydro, wind, and storage devices. Information on different optimization 
strategies and optimal designs has been given for a clear understanding. Wherever possible, mathemati-
cal models, statistics, or flow charts have been included.

MODELLING OF RENEWABLE ENERGY RESOURCES

Solar Radiation

Positions on the earth’s surface, dates, and times of day all influence the levels of solar radiation that can 
be feasibly utilized by humanity as a sustainable resource. The actual amount of radiation is determined 
by these factors.

Table 7. Characteristics of REPS (Energy, 2017)

Advantages Disadvantages

-Make use of free resources. For example, the sun and wind may 
be used as a source of energy. 
-The cost of operation and maintenance is minimal. 
-There are no emissions or natural resource waste issues.

-Natural cycles govern the production of renewable energy. 
-These systems have a higher initial cost than traditional generators 
of comparable capacity. 
-Without energy storage, it would be difficult to meet peak loads.

Figure 2. Distributed generation models
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In practical settings, other variables including altitude above sea level, atmospheric water vapor or 
contaminants, and cloud cover further reduce those radiation levels and may make them fall below useful 
limits. While solar radiation is not subject to experiencing turbulence like wind energy is, short-term 
variation may still be seen in solar power. Most of the time, such variations are linked to cloud move-
ment (Da Rosa and Ordonez, 2021).

Wind

Wind resources are almost entirely driven by the sun’s energy, resulting in differential surface heat-
ing, but they are also highly location dependent. Average wind speed varies as seasons change across 
most of the globe, and overall weather conditions and time of day are likely to exert their own effects, 
as well. The same location may offer several days with relatively higher winds followed by days with 
lower winds, which will severely interfere in the activity planning of a hybrid system containing wind 
turbines. “Turbulence” is the term for short-term (seconds to minutes) changes in wind speed and direc-
tion (Jevtic et al, 2017).

Hydropower

The volume of non-stagnant water moving through a stream, or a river determines the hydropower re-
sources at a given location, as well as any changes in elevation. The head is normally constant (except 
for higher water levels during storms), but the volume of water that can be used in any one locale may 
change dramatically over time.

Rainfall quantities and the exact size of drainage areas upstream of sites, where rain falls, are factors 
that are effective in determining average discharge. During floods, discharge will be increased, while 
during droughts, it will decrease. Discharge may also be affected by soil conditions and the landscape. 
In most cases, however, short-term variations are negligible (Da Rosa and Ordonez, 2021).

Combined Economic Emission dispatch (CEED) Model

The goal of the combined economic and emission dispatch problem is to find the optimal quantity of 
generated power for the system’s generating units while minimizing fuel costs and emissions levels 
simultaneously while considering various system restrictions.

The emission function is added as a second objective to traditional dispatching issues in the CEED 
problem. As a result, all such high-emission generation units are given less power, and emissions are 
lowered. The electric energy industry’s contribution to pollution raises concerns about environmental 
protection and techniques for removing or lowering pollution from power plants, either through design or 
by operating measures(Taylor et al., 2007). Sulfur dioxide (SO2) and nitrogen oxides (NOx) are the two 
principal power plant emissions from dispatching (NOx). The amount of SO2 produced is proportional 
to the amount of fuel consumed. As part of the fuel, sulfur enters the boiler. Some sulfur combines with 
oxygen from the fuel and combustion air to generate SO2 during the combustion process. The residual 
sulfur is incorporated into the boiler’s bottom ash. The majority of the SO2 is eliminated if stack gas 
cleaning equipment is available. The leftover SO2 is emitted from the stack. NOx emissions are a little 
more complicated. NOx is produced when nitrogen from two sources combines with oxygen from the 
fuel and combustion air. The first source is nitrogen in the air, which creates a thermal NOx emission.
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The second source is nitrogen in the fuel, which causes a fuel NOx emission. There is no clear link 
between the amount of fuel-bound nitrogen and the amount of fuel NOx produced in coal(Lamont, 
1995(El-Keib et al., 1994).

In thermal power plants, among the particularly important tasks encountered in planning and operat-
ing a power system, the task of reducing fuel costs and pollution emissions is virtually universal. The 
CEED problem, as introduced above, is solved as an optimization problem in which we will be mini-
mizing the functions of fuel costs and pollutant emissions. The output powers of generators in thermal 
power plants are adjusted for meeting the device load, which is subject to transmission and operational 
constraints, to minimize these functions. Many stochastic nature-inspired metaheuristic algorithms to 
solve the CEED problem have been presented in the literature (Jevtic et al 2017; Chen and Ding 2015) 
due to the complexity of the objective functions, which take the form of a sum of quadratic, sinusoidal, 
and exponential functions.

In a thermal power plant, the fuel cost feature, Fg(Pg), of generation unit g can be calculated in two 
different ways as seen Eq.1 and Eq.2.

1.  When the valve point loading effect (VPLE) in the thermal power plant is not considered, a qua-
dratic smooth function is obtained via Eq.(1).

F P b P c P g Gg g g g g g g� � � � � � �� 2 1 2, , , .  (1)

2.  When considering VPLE, consider a more complex, nonsmoothed, and nonconvex function can 
be calculated as seen on Eq.(2) (Benasla et al, 2014).

F P b P c P d e P Pg g g g g g g g g g
min

g� � � � � � �� �� �� 2 sin  (2)

where Fg is expressed in $/h; Pg is the real power of generation unit g in megawatts; G is the total num-
ber of generation units; Pg

min is the lower loading limit of generation unit g; cost coefficients ag, bg, and 
cg; and VPLE coefficients dg and eg. And a generation unit’s emission function, Eg(Pg), is defined as a 
sum of quadratic and exponential functions as seen on Eq.(3) (Bhattacharya and Chattopadhyay 2011; 
Güvenç et al 2012).

E P P P Pg g g g g g g g g g� � � � � �� � � � �2 exp( ) (3)

where Eg is expressed in t/h and αg, βg, ηg, ξg, and λg are emission coefficients of the generation unit g . 
To solve the CEED problem, Eq. (1) or (2) is combined with Eq. (3) using the weighted sum method, i.e. 
αg, βg, ηg, ξg and λg are emission coefficients of the generation unit g, and Eg is expressed in t/h. Eq. (1) or 
(2) is combined with Eq. (3) using the weighted sum method to solve the CEED (Özyön and Yas, 2014).

FE P
g G

F P

g G

E
g

g g g� � �� � � ��

� �
�� �� � �1  (4)
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Under device constraints, the combined operation of Eq.(4) is then reduced. In Eq. (4), is the scaling 
factor, and w is the weight factor, all of which have values between 0 and 1. The limit w = 1 corresponds 
to fuel cost minimization only, while the limit w = 0 corresponds to pollutant emission minimization 
only. The objective CEED problem is solved as a single-objective problem using the scaling factor γ. 
Two constraints are fulfilled in this minimization process as seen below. The transmission system’s 
power equality constraint is as seen on Eq.(5) and the generator unit capacity constraint as seen on Eq.(6), 
where Pg

max  and Pg
min are the generator unit g’s maximum and minimum power values. The transmission 

system’s power loss is expressed using B-loss matrices as seen on Eq.(7), where B00, B0g, and Bgj are the 
coefficients of the B-loss matrices (Özyön and Yas, 2014). And one of the generators (e.g., generator 
G) is chosen to be a dependent generator to fulfill the restriction of Eq.(5). (The slack generator). The 
value of PG can be calculated using Eq.(5) as seen on Eq.(8).

g G

P
D loss

g P P
�� � � � 0  (5)

P P Pg
min

g g
max≤ ≤  (6)

P P B P Bloss g G

P B
j g G g g

j G g gj� � � �
� �

�� � 0 00  (7)

P P P PG D loss g

G
g� � �

�

�� 1

1
 (8)

� � �� � �� � � �P Ploss loss
1 0

,  (9)

By using Eq.(7) and Eq.(8), the values of PG and Ploss can be obtained by setting the initial value of 
P Ploss loss� �� �0 0 in Eq.(8) and calculate the initial value PG

0� �  from Eq.(8) for the initial value Ploss
0 0� � � . 

After that the new value Ploss
1� �  can be calculated via Eq.(7). Lastly, it is needed to be checked whether 

the error value ɛ is below the specified error tolerance value 𝜎, as seen on Eq.(9).
While obtain the value PG

1� �  from Eq.(8) for P PLoss Loss� � �1 , the power equality constraint of Eq.(5) is 
met if the condition of Eq.(9) is satisfied. Otherwise, the procedure is repeated. After checking whether 
the calculated PG value satisfies the constraint of Eq.(6), the variable PG

lim  is defined as seen on Eq.(10). 
For P PLoss Loss� � �1 , get the value PG

1� �  via Eq.(8). If the condition of Eq.(9) is fulfilled, the power equal-
ity restriction of Eq.(5) is satisfied. The procedure is then repeated if necessary. The variable PG

lim is 
defined seen on Eq.(10)., whether the measured PG value satisfies the constraint of Eq.(6). PG is a de-
pendent variable in this equation. Eq.(11), where the quadratic penalty word is applied to the objective 
function FE of Eq.(11) with the penalty factor λp, is the new extended objective function to be minimized.
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OPTIMIZATION OBJECTIVES FOR HRES

For the best design and part sizing of HRESs, several factors are considered. Economic and technologi-
cal criteria may be used to categorize these criteria. To keep HRES costs as low as possible, economic 
requirements are considered. Technical requirements include reliability, performance, and environmental 
goals for supplying HRES load demand at optimal reliability levels while maximizing efficiency and 
reducing emissions of greenhouse gases.

Cost Optimization

Larger volumes of capital costs with smaller volumes of operation and maintenance (O&M) costs are 
common features of HRESs, necessitating optimization to find the best balance of costs and benefits. 
Minimizing electricity costs while also considering net present cost (NPC) and all other costs related to 
hybrid renewable energy systems is part of the cost optimization process.

Net Present Value (NPV)

Since it accounts for the time value of money using discounted cash flows, NPV is a reliable budgeting 
tool. It involves projecting net cash flows that may occur at some point in the future, discounting these 
flows with a discount rate, and then subtracting the net start-up investment from the present-day value 
of these net cash flows using the project risk level, as shown in Eq.(12). IRR denotes the internal rate of 
return, which is estimated to be 10% in this case; n denotes the number of years the system is expected 
to operate (an average of 25 years); and Cashin denotes cash inflow, which can be calculated as seen on 
Eq.(13) (Gómez et al, 2010).

NPV Cash
IRR

IRR
C Cin

n

in gp�
� �� ��

�
�
�

�

�
�
�
� �� �

�

*
1 1

 (12)

Cashin = kWhprice * Load (13)
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Payback Period

The payback period is the period over which the cash outflow of the initial start-up investment is assumed 
to have been fully recovered by the inflows that the investment was able to produce. It is a straightforward 
appraisal method that can be measured as follows as seen on Eq.(14) (Drury et al, 2011).

PaybackPeriod
C initialinvestment

Cash
in

in

�
� �

 (14)

Cost of Energy (CoE)

The Measurement of the CoE can be calculated via the Eq.(15) as seen below.

CoE � � �Totalcostofgeneratedenergyforoneyear

Totalenergysuppliiedinoneyear kWh,� �
 (15)

Loss of Power Supply Probability

The LPSP, which can be explained as a load that the system is incapable of fulfilling in the study period 
divided by the total load, is used to measure the system’s reliability in this model. It can be calculated via 
Eq.(16). The LPSP value is in the range [0, 1], confirming the system’s efficiency before the integrated 
grid-connected solar PV system’s total generated power covers the load. A value of 1 indicates that the 
requisite load is completely unmet, while a value of 0 indicates that the load is always fully met. Permis-
sible LPSP values are usually thought to be 0.05 or 5%. The variable to consider when minimizing the 
COE with a stable method is NPV. The proposed limitation is seen on Eq.(17), where NPVmin and NPVmax 
represent the minimum and maximum quantities of PV panels, respectively .

LPSP
P P P

P
load PV GO

load

�
� � �� �

 (16)

NPVmin ≤ NPV ≤ NPVmax (17)

CASE STUDY

An Application With Crow and PSO Algorithms for Sizing 
a Hybrid Renewable Energy System in Libya

The case study presented here involved the design of a hybrid power plant comprising an off-grid wind 
energy and photovoltaic system with the aim of supplying the demand of a residential building in Libya. 
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We selected the crow search algorithm to support the goal of minimization of both installation and op-
erational costs by optimally sizing all individuals’ parts of the hybrid system. Number of photovoltaic 
modules, battery capacity, and wind turbine power values were all optimized accordingly. We then 
conducted a comparison of the performances of the crow algorithm and PSO in consideration of hybrid 
system design. The crow algorithm demonstrated better results in terms of efficiency for the sizing of 
lower-cost hybrid power plants that incorporate photovoltaic and wind systems.

Crow Search Algorithm (CSA)

Crows are commonly understood to be intelligent, an assumption that seems to be supported by their 
brain-to-body mass ratios. They can detect danger, send out warning signals, and recognize faces. Af-
ter watching crows’ behaviors, like living in groups and stealing collectively, the CSA was created. In 
addition to their other mental capabilities alluded to here, crows also demonstrate so-called awareness 
probability (AP). Individuals’ updating mode can be expressed as Eq.18., where the uniform distribution 
of r1 and r occurs within the range 0-1, and mem jt symbolizes a given crow’s memory location, when 
there are n crows in dimensional space and X ‘t denotes the location of crow i. The awareness probability 
(AP) of the crow j is represented by AP jt. The tth iteration of fl it (provided here especially for crow I 
is a crow’s possible range for flying. Figure 3 graphically illustrates the fundamental basics of the CSA. 
Although this algorithm has the benefit of providing substantial global search capabilities, its basic form 
has several restrictions due to the assumption that crow flight is rigid and immobile.
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Figure 3. An Individual Crow’s Movements
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Optimization Problem

A key goal of this investigation is to reduce the device’s annual cost (ACS). The components are main-
tenance costs (Cm), resources (Ca), and substitution costs (Cr), and the mathematical expression for ACS 
is as seen on Eq.(19)-Eq.(23).,where provided the costs of the relevant wind turbines, PV modules, and 
battery banks are respectively signified by Cwt, Cpv, and Cbat, while the lifespan of the total considered 
system is represented by n. Battery life is given by LSbat and CRF stands for capital recovery factor. The 
latter may be expressed as seen on Eq.(24) mathematically.

ACS = Ca + C m + Cr (19)

C CRF C N Ca pv wt battot tot tot
� � �� �*  (20)

C N C Spv pv pvtot
= *  (21)

C N Cwt wt wttot
= *  (22)

C n
LS

N Cbat
bat

bat battot
�
�

�
�

�

�
� *  (23)

Figure 4. Hybrid PV/Wind HRES design
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 (25)

For the case study considered here, a house in Ghiryan, located in a mountainous environment in 
Libya, has been chosen as a model. Figures 5 and 6 provide illustrations of data on solar irradiation and 
wind velocity the reference for data form the Centre for Solar Energy Research and Studies in Tripoli, 
Libya. Table 8 shows the operational expenses of the considered wind turbines, PV panels, and batter-
ies in terms of technical, investment, and maintenance costs. We optimize this system with and without 
considering the reliability model to determine the CSA’s effectiveness for the scale of hybrid renewable 
systems. We compared those results to the calculated values obtained with the aid of PSO software. 
Robustness, performance, and convergence were all calculated. The results obtained using the PSO and 
CSA algorithms are shown in Table 9. The crow algorithm clearly outperformed other optimization 
strategies. Table 10 demonstrates this in more detail. The cost of PV power generation is lower than that 
of wind power generation and the relevant limitation may be expressed as seen on Eq.(25)

As seen on Table 11, The able to conclude that the hybrid system offers considerable advantages for 
both power generation system design and system optimization. Furthermore, the Crow is demonstrated 
to be a more highly effective algorithm that allows us to obtain cost minimization.

Figure 5. Ghiryan’s Annual Average Solar Irradiation Data
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Figure 6. Ghiryan’s Average Wind Speeds

Table 8. Load Estimates for Electrical Equipment in the House

Cost ($) Parameters Maintenance costs ($)

Wind turbine 1690 500 W 16.9

PV panel 260 250 W 2.6

Battery 300 600 Ah 29.6

Table 9. The Performances of CAS and PSO

PSO Crow

Npv 22 22

Nw 0 0

Nbat 12 10

ACS ($) 14881.65 14458

Table 10. The Performances of PSO and CAS Based on Eq.(25)

PSO Crow

Availability (%) 100 95 90 100 95 90

Npv 22 22 22 22 22 22

Nw 0 0 0 0 0 0

Nbat 11 10 10 10 9 9

ACS ($) 14881 14060 13420 14458 13930 13100
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CONCLUSION

This chapter has sought to offer a comprehensive review and thorough comparison of the most important 
size optimization methods being used by researchers for applications in standalone solar and wind-based 
hybrid energy systems. Among various hybrid energy options, the most preferred combination for use 
in the context of islands or remote/rural areas is the type of hybrid system based on solar, wind, diesel 
generator, and battery storage because this combination of resources can provide a continuous power 
supply with high levels of reliability. However, in such a hybrid system, to reduce costs while ensuring 
both reliability and social acceptance, it is imperative to identify the optimum sizing of every element.

To better illustrate these dynamics, a case study was presented here using the Crow algorithm for the 
installation of such a hybrid system in Ghiryan, Libya, in a manner that is simultaneously economically 
and technically viable. For this case study, we gathered long-term data on solar radiation and wind speed, 
and we applied PSO and the Crow algorithm separately in search of optimal numbers of wind turbines, 
batteries, and PV panels. The outcomes of the two techniques were then compared, and it was evident 
that the nature-inspired Crow, which is based on the behavior of crows in the wild, produced higher 
accuracy with simpler computations while lowering expenses. The implementation of a dependability 
model has an impact on prices, appropriate sizes, and loads, according to these studies. Increases in 
inverter efficiency can result in lower system costs while also enhancing the reliability of the provided 
load, as shown in the example. In addition, we’ve shown how the Crow algorithm can help avoid local 
minima and can be used as a dependable optimization tool.

In this chapter, a diverse array of assessment characteristics including economic, reliability, envi-
ronmental, and social criteria have also been presented and summarized for use in efforts to resolve the 
sizing optimization problems of freestanding hybrid solar and wind energy systems. The aim in choosing 
among these various factors is to find the best combination for application in the context of standalone 
solar and wind systems. Furthermore, such size optimization challenges are also influenced by metro-
logical data and load profile. The use of anticipated solar, wind, and load profile data in optimization 
problems will yield improved size optimization results in comparison to a reliance on historical data 
according to the findings presented in this chapter.

ACKNOWLEDGMENT

We would like to thank the Centre for Solar Energy Research and Studies in Tripoli, Libya, for supports 
regarding energy consumption and power data.

Table 11. The compare between of PSO and Crow

PSO Crow

Nw 1 1

Npv 22 22

Nbat 11 9

ACS ($) 25188.12 24571
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ABSTRACT

A new integrated hybrid solar thermal and wind-based microgrid power system is proposed. It consists 
of a concentrated parabolic solar dish Stirling engine, a wind turbine, and a battery bank. The electrical 
power curtailment is diminished, and the levelised cost of energy is significantly reduced. To achieve 
these goals, the present study conducts a dynamic performance analysis over one year of operation. 
Further, a multi-objective optimisation model based on a genetic algorithm is implemented to optimise 
the techno-economic performance. The MATLAB/Simulink® software was used to model the system, 
study the performance under various operating conditions, and optimise the proposed hybrid system. 
Finally, the model has been implemented for a specific case study in Mafraq, Jordan. The system satis-
fies a net power output of 1500 kWe. The developed model has been validated using published results. 
In conclusion, the obtained results reveal that the optimised model of the microgrid can substantially 
improve the overall efficiency and reduce the levelised cost of electricity.
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INTRODUCTION

Nowadays, small-scale decentralised distributed generation systems are on track to become the foundation 
of the worldwide energy network and it is a promising alternative solution to the typical large-scale cen-
tralised power plants. Consequently, microgrid systems comprising of a hybrid renewable energy system 
(HRES) can play a significant role in satisfying the energy demands of remote regions and resolving the 
energy price inflation and environmental problems posed by the use of fossil fuels in energy production 
(Motevasel et al., 2013). Therefore, microgrids with HRES would help to eliminate over a hundred mil-
lion tonnes of CO2 emissions from the atmosphere each year by providing a reliable, sustainable, and 
cost-competitive renewable energy supply, thus meeting the global energy needs without compromising 
the planet’s well-being. For instance, integration of HRES with energy storage systems, such as batteries 
and traditional power systems, such as a boiler or diesel engine into microgrid is considered the popular 
way of increasing the reliability to meet the energy demand (Belfkira et al., 2011; Kumar et al., 2013), 
as depicted in Figure 1 (Kabalci, 2021). In consequence, the HRES microgrids are more reliable and 
economical when compared to the single renewable energy system (Dufo-López et al., 2011).

Solar and wind energy resources are widely used in microgrids. Nevertheless, these resources need 
proper management in order to facilitate their power operations to mitigate the implications of the inter-
mittent output. To fully utilise this process, the sizing optimisation methodologies should be applied by 

Figure 1. Microgrid with its multiple demand and source connections (Kabalci, 2021).
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a suitable selection of the governing parameters to obtain an optimal hybrid system design. Therefore, 
the optimised system will be economical, efficient and reliable.

Generally, it has been found that two generic optimisation techniques have been adopted in the design 
of microgrid systems: heuristic and classical techniques (Singh et al., 2016). The former technique is 
employed once long-term weather data for a given location is known but this is not always available, 
whilst the latter is typically employed in the design of microgrids if sufficient information of long-term 
weather data for the design location is available (Badwawi et al., 2015). Traditional or classical optimisa-
tion methods that are deployed in the microgrids design are an iterative approach, probabilistic approach, 
graphical construction methods, linear programming, trade-off method, and the least square method 
(Khan et al., 2018), (Rojas-Zerpa & Yusta, 2015). Various heuristic approaches have been employed in 
the techno-economic design optimisation of microgrid systems, such as genetic algorithm (GA), particle 
swarm optimisation (PSO), simulated annealing (SA), ant colony algorithms (ACA), bacterial foraging 
algorithm (BFO), artificial bee colony algorithm (ABC), biogeography-based optimisation (BBO), and 
artificial neural networks (ANN) (Bernal-Agustín et al., 2006; Cristóbal-Monreal & Dufo-López, 2016; 
Diaf et al., 2008; Khan et al., 2018; Olatomiwa et al., 2016; Singh et al., 2016). Erdinc and Uzunoglu 
(Erdinc & Uzunoglu, 2012) elaborate various heuristic optimisation techniques reported in the literature 
that contribute significantly to size hybrid microgrid systems, such as GA, PSO, SA.

Numerous studies have been extensively investigated in the literature to design microgrid systems for 
remote regions over the world. Traditionally, developing mathematical models of each subsystem and 
subsequently applying optimisation methods to size the entire system is adopted to design microgrid 
systems. In this regard, Halabi and Mekhilef (Halabi & Mekhilef, 2018) summarised the commonly used 
techniques in optimising HRES. Petrescu et al. (Petrescu et al., 2010) have investigated an optimisation 
method of a solar Stirling engine (SE) power plant to supply the required electrical energy demand for 
residential buildings using two sources, which are the parabolic dish mirror and the hydrogen/oxygen 
fuel cell. In particular, an extensive review of optimisation methods employed in the design of hybrid 
solar-wind systems has been performed but, in particular, the Photovoltaic (PV)/wind system has been 
overlooked in (Singh et al., 2016), (Badwawi et al., 2015). To obtain more reliability, a tri-hybridisation 
was implemented by Su Guo et al. (Guo et al., 2020). They proposed a new hybrid PV/Wind/thermal 
energy storage (TES) power system with an electric heater. The PSO algorithm was utilised to minimise 
the levelised cost of electricity (LCOE) and maximise the utilisation rate of transmission channels. In 
addition, Solar energy-driven multigeneration systems coupled with other renewable energies have been 
investigated comprehensively in Ref. (Mohammadi et al., 2020). They recommended, in the future, an 
investigation for such as the optimisation of solar energy-driven multigeneration systems.

For the hybrid systems that consist of concentrated solar power (CSP) and wind, there have been 
several attempts to optimise the hybrid CSP/wind system with the aim of minimising the power supply 
curtailment as the wind and solar energy usually do not peak simultaneously. To illustrate this isue, Yang 
et al. (Y. Yang et al., 2018) proposed a new hybrid system that includes CSP/wind/electric heater being 
employed with TES. This hybrid system is designed to optimise the profit under technical limitations 
as a mixed-integer linear programming problem. The proposed method has substantially reduced the 
wind curtailment by more than 90% over 151 days. Zeyu Ding et al. (Ding et al., 2019) have developed 
an optimisation technique based on a PSO algorithm to find the optimal design of the hybrid CSP/wind 
system coupled to TES. Such CSP/wind hybridisations are also seen in a recent study in the literature, 
Keyif et al. (Keyif et al., 2020). Keyif (Keyif et al., 2020) performed a non-linear optimisation model 
measuring the critical component investment costs and operational flexibility in the plant configuration.
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The GA method is widely used in microgrid scheduling optimisation to investigate the optimum 
operating parameters. It is essential to combine the entire simulation model with a suitable optimisation 
method. Yang Hongxing et al. (H. Yang et al., 2009), (H. Yang et al., 2008) introduced a multi-objective 
GA method for identifying the stand-alone hybrid PV/wind system optimum configuration with the lowest 
cost based on the power supply probability (LPSP) and the annualised cost of the system (ACS). This 
developed model was implemented to provide electricity for a telecommunication relay station along 
the southeast coast of China. Similarly, Bilal et al. (Ould Bilal et al., 2010) have adopted two principles, 
namely the minimisation of ACS and LPSP with the use of GA on the northern coast of Potou, Senegal. 
Koutroulis et al. (Koutroulis et al., 2006) presented a minimum cost objective optimisation-based GA 
methodology for the optimal sizing of autonomous PV/wind systems to supply power for a residential 
household. For desalination purposes, Koutroulis and Kolokotsa (Koutroulis & Kolokotsa, 2010) have 
applied a GA methodology based on the total cost function minimisation for the optimal sizing of the 
PV/wind generator. Daming Xu et al. (Xu et al., 2005) investigated the GA approach of the sizing stand-
alone hybrid PV/wind power systems. The objective of sizing these systems is to reduce the total capital 
cost, subject to the constraint of the LPSP. Bakir and Kulaksiz (Bakir & Kulaksiz, 2020) optimised the 
gain parameters of four PI controllers for the hybrid microgrid PV/wind system, which was modelled in 
MATLAB/Simulink® to examine the voltage profiles at the output. Two optimal sizing algorithms are 
used in the analyses are the Bacteria Foraging Algorithm (BFA) and GA.

According to Tafreshi et al. (Tafreshi et al., 2010), a GA method was also developed in the MAT-
LAB® toolbox to find the optimum configuration for the hybrid PV/wind/biogas system. Furthermore, 
Kalantar and Mousavi (Kalantar & Mousavi G., 2010) have performed a GA method based on an eco-
nomic analysis, i.e. ACS for decentralised the hybrid PV/ wind/microturbine/lead-acid battery storage 
system. Lagorse et al. (Lagorse et al., 2009) carried out the optimal sizing method for the multisource 
tri-hybrid PV/wind/fuel cell using GA based on the LCOE and meteorological features of the installed 
region and the consumption behaviour.

Other studies have been conducted by using GA to examine the reliability and dispatchability of a 
hybrid PV plant with a CSP plant. Starke et al. (Starke et al., 2018) have implemented a multi-objective 
optimisation approach based on the GA for evaluating the optimal design for hybrid CSP, including 
a central receiver system and parabolic trough collectors, and PV plants in Chile. The three objective 
functions were considered in this analysis: LCOE, overall investment and capacity factor. Moreover, 
four variables were adopted in terms of the design variables, namely: the solar field size, thermal storage 
capacity, PV power ratio and PV tilt angle. In addition, Liu et al. (Liu et al., 2019) utilised GA-PSO to 
obtain a minimised LCOE of the hybrid CSP-PV employing TES.

Based on the literature review, it is clear that there exists a lack in the literature of studies dealing 
with the optimisation analysis of the CPSD-SE/HWT integrated solution. To fill this knowledge gap, 
in this work, a concentrated parabolic solar dish Stirling engine (CPSD-SE) and a horizontal axis wind 
turbine (HWT) are integrated to generate power for a low to medium scale microgrid application. The 
predicted power that is generated by the system is in the range of 100 kWe and 1500 kWe, and the 
system performance throughout one year has been investigated dynamically via rigorous modelling. In 
addition, a techno-economic sensitivity analysis has been carried out to study the performance of the 
integrated hybrid system under the meteorological data for the city of Mafraq, Jordan using MATLAB/
Simulink®. The main aim of the study is to carry out a post-design analysis of the new hybrid CPSD-
SE/HWT system and calculate the generated power and efficiency. Furthermore, a multi-objective 
optimisation-based GA approach has been applied in which the LCOEtot and the energy efficiency of 

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



170

Multi-Objective Optimal Performance of a Hybrid CPSD-SE/HWT System
 

the system are simultaneously optimised. Optimal configuration and operating conditions in dispatch 
strategies are discussed in this work. Therefore, the main contribution of this work is to optimise the 
new hybrid CPSD-SE/HWT for power generation.

METHODOLOGY AND PROCEDURE

In this work, the performance of the system based on the operating conditions is considered in Mafraq, 
Jordan as a case study. The data for the study region in Jordan is provided by the SolargisTM satellite-
driven data. In the performance model, the efficiency and the generated power of the existing system 
are measured depending on the predesign analysis of a published study (Shboul et al., 2021a). Further, 
a battery bank has been used as a recovery source of power to overcome the fluctuations in the solar 
and wind energy generation. The batteries are employed under the control of environmental operating 
conditions. CO2 is used as a primary working gas in the SE and the predicted generated power is in the 
range of 100 kWe and 1500 kWe.

In general, the performance modelling and optimisation of the CPSD-SE/HWT using MATLAB/
Simulink® is used by implementing the following steps:

• Specify the input and outputs variables of each sub-system as well as the assumptions that have 
been considered in this work. Table 1 shows the input and outputs variables of the model as well 
as the assumptions that have been considered in this work.

• The overall mathematical model of each unit has been carried out by implementing the funda-
mental thermodynamic energy balance equations that govern the operation of each investigated 
technology. The mathematical model of the integrated system is presented in Tables 11, 12, and 
13 in the Appendix.

• The models have been applied and solved in the MATLAB/Simulink® software based on the 
operating conditions, namely; the global solar radiation (GSR) and the average wind speed limit 
(AWS).

• The simulation results obtained by the proposed dynamic model of each sub-system is validated 
by comparing with the findings of previous related studies in the literature.

• To test the developed model and measure the dynamic performance of the system, the model has 
been implemented in Mafraq, Jordan, and the meteorological data is obtained from the SolargisTM 
toolbox.

• The multi-objective optimisation using GA methodology will be performed using Multi-objective 
GA Solver, which is built on the optimisation tool. The stepwise procedures for implementation 
of the GA optimisation in the MATLAB/Simulink® is shown in Figure 2.
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Table 1. Data information related to the proposed system units

Input parameters Output parameters Assumptions

Description Value Unit Description Unit Description Value Unit

CPSD-SE

Dish diameter 11 m Top 
temperature °C Ambient 

temperature 25 °C

Receiver diameter 0.3 m Engine 
efficiency % Atmospheric 

pressure 1.0132 bar

Number of dishes 60 - Total 
efficiency % Receiver 

efficiency 80 %

working gas CO2
Engine and 
total powers kWe Solar flux 

limit 500-1000 W/m2

Rim angle 37 degree Compression 
ratio -

Operating 
hours 10 h

Engine piston diameter 5.5 cm Pressure ratio -

Piston stroke 5 cm Mean effective 
pressure, bar

Engine speed 1800 rpm Top 
temperature °C

Number of cylinders 4 - Engine 
efficiency %

Generator efficiency 95 %

Mirrors efficiency 97 %

HWT

Air speed ratio 0.35 - Wind speed at 
blades m/s Ambient 

temperature 25 °C

Rotor diameter 47 m Power 
coefficient

Atmospheric 
pressure 1.0132 bar

Number of modules 15 - Wind power kW Wind speed 
limit 1.5-25 m/s

Generator efficiency 97 % Mechanical 
power kW

Rotational loss 10.1-12 % Generator 
power kWe

Power factor lag 0.9 - Total farm 
power kWe

Battery bank

Depth of 
discharge 0.8 - Total power kWe Operating 

hours 24 h

Battery voltage 80 V Battery storage kWh Load voltage 200 V

Battery current 10 A Number of 
cloudy days 2 day

Battery 
Efficiency 75 %

Number of 
batteries 1900 -
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Figure 2. The GA implementation steps in MATLAB/Simulink®.
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Site Location

The CPSD-SE system has economic feasibilities only for locations with direct normal irradiation (DNI) 
values higher than 5.5 kWh/m2/day or 2000 kWh/m2/year (Hirbodi et al., 2020). Jordan with an estimated 
average DNI of 2700 kWh/m2 and approximately 300 clear sunny days per annum with 3311 hours and 
this is one of the most appropriate regions for the installation of CPSD-SE plants in the MENA region 
(The Middle East and North Africa). In addition, Jordan has a high annual average wind speed and this 
is higher than 7 m/s in some locations (with highs of 10 m/s) (H. H. Ali et al., 2020; Shboul et al., 2021). 
Consequently, the hybrid CPSD-SE/HWT is a suitable option for electricity production in Jordan. As 
shown in Figure 3, the northern region of Jordan, such as Mafraq with a daily average of DNI between 
6.54 and 7.29 kWh/m2 and an annual average wind speed of 4.72 m/s, has abundant wind speed and 
solar irradiations (Global Solar Atlas, 2020; Global Wind Atlas, 2020). Further, based on the study of 
Shboul et al. (Shboul et al., 2021), the city of Mafraq is one of the best regions in Jordan for exploiting 
the wind and solar potential as well as deploying hybrid CSP and wind plants. Thus, the city of Mafraq 
with latitude and longitude of 32.2o N and 36.84o E, respectively, has been selected as the case study 
location to investigate the stand-alone hybrid CPSD-SE/HWT plant in this research work.

Meteorological Data

In general, the climate conditions have a considerable influence on the performance and operation 
of microgrid power plants. The essential meteorological parameters to simulate the CPSD-SE/HWT 
plants in the adopted location by the MATLAB/Simulink® software are solar irradiation, wind speed, air 
temperature, relative humidity, and atmospheric pressure. In this study, these data were obtained from 
a newly developed ANN forecasting model for solar radiation and wind speed prediction based on the 
SolargisTM data (Shboul et al., 2021). This highly accurate model (error less than 3%) covers a wide time 
span of 20 years, and they have been validated to check the reliability and avoid errors in the results. The 
validated data have been used as input parameters in the MATLAB/Simulink® software.

Figure 3. Wind speed and DNI distribution in Mafraq (Global Solar Atlas, 2020; Global Wind Atlas, 2020).

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



174

Multi-Objective Optimal Performance of a Hybrid CPSD-SE/HWT System
 

The monthly average of the meteorological data of Mafraq, including solar radiation, wind speed, 
air temperature, relative humidity, and atmospheric pressure, is indicated in Figures 4 and 5. As shown 
in Figure 4-a, the estimated solar data are the global horizontal irradiation (GHI), the DNI, and the dif-
fuse horizontal irradiance (DIF). According to Figure 4-a, b, Mafraq city has the highest value of solar 
radiation (DNI and GHI) and wind speed and these occur in June and July, respectively. Also, it shows 
the lowest values of solar radiation (DNI and GHI) and the wind speed occur in January and Decem-
ber, respectively. In addition, the DIF meets its maximum and minimum values in June and December, 
respectively.

Based on Figure 5-a, the maximum and minimum values of the air temperature are in July and Janu-
ary, respectively. Figures. 5-b and 5-c illustrate that the relative humidity and atmospheric pressure reach 
their maximum values in December and January and their minimum values in June and July.

Figure 4. Monthly average data of (a) solar radiation and (b) wind speed.
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Figure 5. Monthly average of the meteorological data for Mafraq, Jordan.

Figure 6. Data signal entry for one year in the ANN model – adapted from (Shboul et al., 2021).
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In order to determine the hourly meteorological variables, a signal builder has been developed as the 
input parameter to the ANN model in the MATLAB/Simulink®. For this purpose, it is primarily used to 
analyse the CPSD-SE/HWT plant output variations each hour throughout one year, as shown in Figure 6.

Figure 7-a shows the hourly solar radiation (GHI, DNI, and DIF) and the wind speed recorded for 
the Mafraq City over one year. The annual solar irradiance for GHI, DNI, and DIF at the site varies in 
the range of 200 to 1015 W/m2, 300 to 875 W/m2, and 152 to 189 W/m2, respectively. It should be noted 
that the annual GHI is close to the global maximum of GHI. Therefore, this can be traced back to the 
coordinates of the location in the Sunbelt region. The hourly wind speed recorded at a height of 10 m 
for the selected location is shown in Figure 7-b. According to Figure 7-b, the average wind speed at the 
site is approximately between 2.3 m/s and 5.8 m/s and this wind energy potential is sufficient to generate 
a reasonable amount of electricity.

The ambient temperature, relative humidity, and air pressure are critical climatic parameters and 
these have a direct effect on the characteristics of the CPSD-SE system and power load. Figures 8-a, b, 
and c demonstrate the annual profile of hourly meteorological parameters for Mafraq City. Figures 8-a 
to 8-c show that the mean temperature, humidity, pressure of Mafraq City varies from less than -3.2oC, 
17.73%, and 907.3 mbar by more than 33.3oC, 83.4%, and 916.5 mbar, respectively.

Figure 7. (a) Hourly GHI, DNI, and DIF and (b) average of hourly wind speed during a year for Mafraq, 
Jordan.
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Electric Load Data

The hourly electrical load of the selected case study represents the load power variation for typical 
residential buildings in remote regions. The load demand was obtained at an hourly interval throughout 
the year. Also, the load has been estimated using the random fluctuation mode based on the computa-
tional code to approximate real-time operation. The annual and monthly fluctuations of the hourly load 
consumption is depicted in Figures 9 and 10, respectively. To illustrate this model, an array of random 
floating-point numbers that are drawn from a uniform distribution has been created. By default, “rand” 
returns normalized values (between 0 and 1) that are drawn from a uniform distribution. To change the 
range of the distribution to a new range, (a, b), multiply each value by the width of the new range, (b – a) 
and then shift every value by a. To utilise this proceedure, it should initialise the random number gen-
erator to make the results repeatable with equal probability. In this case, the random number is denoted 
n, which is the number of hours either in the month or during the year. To illustrate, the “n” values in 
the month are 672, 720, and 744, which comes from the multiplication of 24 hours by the number of 
days in that month and thus indicating the total number of hours in a month. Subsequently, the monthly 
average of the hourly electrical load would be calculated by multiplying the random hours’ number 
with the power range from 100 to 1500 kWe. Similarly, the hourly electrical load during a year could be 
calculated by multiplying the adopted power range with 8760 random hours. Table 16 in the Appendix 
shows the numerical code that was used to estimate the electrical load.

Figure 9. Hourly electrical load for the addressed location during a year.
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The Proposed CPSD-SE/HWT System

The designed system is suitable for power generation on a residential scale of arid and semi-arid regions. 
Figure 11 shows a schematic diagram of the proposed hybrid CPSD-SE/HWT stand-alone microgrid 
power system for the residential buildings described herein. The system main units are as follows:

• ANN solar/wind forecasting model.
• CPSD-SE as a prime power source.
• HWT as a recovery unit.
• Battery bank as an energy storage system.
• Control unit for power disruption & application load.

Figure 10. Monthly average of the hourly electrical load for the addressed location.

Figure 11. Schematic diagram of the proposed new hybrid CPSD-SE/HWT system – adapted from (Sh-
boul et al., 2021).
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The CPSD-SE will serve as the main source of power generation, while the batteries bank and HWT 
will provide backup power in case that the primary source of electricity becomes unavailable. This 
maintains power production continuity. The CPSD-SE system consists of a collection of parabolic dish 
collectors and a power conversion unit comprised of a Stirling engine (SE), a thermal receiver and an 
alternator. The primary characteristic that differentiates the CPSD-SE from other solar technologies, 
such as concentrated solar power (CSP) and photovoltaic (PV), is its capacity to directly convert solar 
radiation into electrical and thermal energy. In a typical CPSD-SE, three main forms of energy conver-
sion are produced: solar, thermal, and electrical energy. Figure 12 shows the thermodynamic balance 
diagram of the CPSD-SE diagram (Zayed et al., 2020). In principle, the CPSD-SE mirrors reflect incident 
sunlight to a focal point on a thermal receiver (i.e., the SE’s hot chamber), converting the concentrated 
radiation into thermal energy to generate heat at a high temperature. The absorbed heat is then transferred 
to the SE’s working fluid via the heater driving an electric generator. In three different mechanisms, the 
receiver loses heat by conduction through its walls: convection to the surrounding air, radiation from the 
aperture opening to the atmosphere. In the absence of sunshine, the power demand is provided by the 
HWT. Moreover, the batteries are being discharged when the CPSD-SE and HWT cannot generate the 
electricity. To achieve optimum performance and optimum sizing, GA is used for that purpose.

Figure 12. Thermodynamic balance diagram of the CPSD-SE system (Zayed et al., 2020).
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The ideal Stirling cycle is fundamentally composed of four processes; two isothermal and two isochoric 
processes as can be seen in Figure 13 (Yunus A. Çengel, 2015). These four processes are as follows:

1.  1-2 is an isothermal expansion process. The working fluid is expanded at constant temperature TH, 
and after that heat, qin is absorbed from the external heat source.

2.  2-3 is an isochoric heat removal process. The working fluid releases heat is transferred through to 
the hot side of the engine. The temperature of the working fluid is gradually decreased and this 
causes a pressure drop.

3.  3-4 is an isothermal compression process. The working fluid is compressed at constant temperature 
TL, and then heat qout is released to the heat sink.

4.  4-1 is an isochoric heat addition process. The working fluid absorbs heat and this is transferred 
from the regenerator to the cold side of the engine. The temperature of the working fluid is gradu-
ally increased and this causes an increase in the pressure.

It should be noted that the amount of sunlight incident on the reflectors will be utilised exclusively 
for electricity generation, with no consideration given to thermal output. To summarise, the developed 
thermodynamic model based on energy balance was obtained by adopting the following assumptions: 

• The heat lost by the receiver via conduction is disregarded.
• The optical heat loss is disregarded.
• The dissipated heat from the SE is disregarded.
• The receiver and generator efficiencies are given.

Figure 13. P-v and T-s diagram of the Stirling cycle (Yunus A. Çengel, 2015).
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Simulation Tool Selection

In this research work, the MATLAB/Simulink® software is applied to perform the performance and 
optimisation analysis of the proposed hybrid CPSD-SE/HWT. The main reason for the selection of the 
MATLAB/Simulink®, for hybrid CPSD-SE/HWT modelling and optimisation purposes are: (i) it includes 
Simulink blocks (drag & drop ability) with appropriate connections based on the proposed design; (ii) 
each block contains a variety of MATLAB® command functions, and the system is solved iteratively; 
and (iii) the optimisation ToolboxTM is made up of multiple solvers for the optimisation techniques to 
minimise or maximise the objectives while satisfying the constraints. The friendly graphical user in-
terface is powerful for setting up and running optimisation problems, including parameter estimation, 
component selection, and parameter tuning. This tool has numerous significant applications in the design 
optimisation, such as an energy management system and production planning. Accordingly, these features 
facilitate the user to be able to execute further calculations, such as sizing and economic calculations.

Economic Performance Analysis

The economic considerations are vital for assessing the competitiveness of the electricity production 
from power generation systems. The economic performance model is developed in the MATLAB/Simu-
link® using a set of correlations based on four economic indicators, namely the total levelised costs of 
energy, LCOEtot, $/kWh, total hourly cost, THCtot, $/h, annual electricity savings, AES, $, and the pay-
back period, year. In this regard, the economic parameters of the CPSD-SE/HWT system, these were 
calculated using Eq. (1) to (4). The detailed cost analysis model that has been considered in this study 
and this is described in Table 14 in the Appendix (Shboul et al., 2021a). In this work, the batteries are 
being charged when the electricity production is in surplus from the CPSD-SE and HWT, while on the 
another hand, the batteries bank would deliver electricity to the application load when there is a short-
age in the availability of wind and sunlight. Moreover, the key inputs comprise the following economic 
indicators: the plant lifetime, interest rate, power cost, variable operating cost and fixed charge rate. 
Consequently, the subsequent assumptions have been undertaken: plant lifetime is 25 years, the interest 
rate is 5%, variable operating cost for the solar dish and turbine are 0.06 $/kWh and 0, respectively, the 
fixed charge rate is 0.098, battery lifetime is 5 years, turbine power cost is 1628 $/kWe, battery cost is 
100 $/unit, dish cost is 300 $/m2, engine cost is 370 to 400 $/kWe, receiver cost is 185 $/kWe, and site 
cost is 2.2 $/m2. Table 2 displays the economic assessment variables and assumptions. The LCOEtot is 
calculated using the following expression (Shboul et al., 2021a):

LCOE THC
Loadfactor P

VOCtot
tot

tot
tot�

�
�  (1)

where THCtot is the total hourly costs, $/h, VOCtot is the total variable operating costs, $/kWh, Ptot is the 
total plant power, kWe and the load factor is 0.9.

The THCtot is calculated as follows (Shboul et al., 2021a):

THC ATC
tot

tot=
8760

 (2)
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where ATCtot represents the total annual cost of the power plant, $/y, including the annual cost of the 
batteries, HWT and CPSD-SE.

The AES can be determined according to e following expression (Saffari et al., 2018):

Electricity cost = LCOEtot × Annual electricity generated (3). 

where the annual electricity generated is in kWh.
The payback period is used to estimate the financial competitiveness, which can be calculated by the 

following equation (Wang et al., 2015):

Paybackperiod TCC
Electricitycost

tot=  (4)

where TCCtot is the total capital cost of the system units, $.

Table 2. Economic parameters for all units that have been considered in the cost analysis model

Parameter Value Reference

Input economic parameters
Interest rate, % 5 (Nafey et al., 2010)

Battery lifetime, year 5 (Nafey et al., 2010)

Plant lifetime, year 25 (Nafey et al., 2010)

Fixed charge rate 0.098 (SAM, 2021)

Electricity sale price, $/kWh 0.183 (Helioscsp, 2014)

Annual electricity generation, kWh 22.28 Present model

Direct costs

Battery cost, $ 100 (Shboul et al., 2021a)

Normalised capital cost of the wind turbines, $/kWe 1628 (Shboul et al., 2021a)

Stirling engine cost, $/kWe 370 (Shboul et al., 2021a)

Receiver cost, $/kWe 185 (Shboul et al., 2021a)

Dish concentrator cost, $/m2 300 (Shboul et al., 2021a)

Indirect costs

Site cost, $/m2 2.2 (Shboul et al., 2021a)

Wind turbine cost-share, % 65 (Shboul et al., 2021a)

Construction cost share (civil works), % 16 (Shboul et al., 2021a)

Other capital cost-share, % 5 (Shboul et al., 2021a)

Construction, procurement, and engineering cost-share, % 16 (Shboul et al., 2021a)

Contingency cost-share, % 10 (Shboul et al., 2021a)

Other capital cost-share, % 3 (Shboul, et al., 2021a)

Variable operating costs

Variable operating cost of the batteries, $/kWh 0.07 (Shboul et al., 2021a)

Variable operating cost of the wind turbines, $/kWh 0 (Shboul et al., 2021a)

Variable operating cost of the CPSD-SE, $/kWh 0.06 (Shboul et al., 2021a)
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The Multi-Objective GA Methodology

The GA is an optimisation technique known as the evolutionary algorithm used to solve complex, large-
scale optimisation problems in various fields based on the mechanism of the natural selection process 
that mimics biological evolution. GAs search for the optimum solution from one of the candidate so-
lutions that is an array of decision-variable values. These random solutions that are tested against the 
objective function are called a population. Each individual in the population is called a chromosome. 
Several populations evolve through successive iterations, namely the selection, crossover and mutation 
in a GA run and all of these populations are referred to as a generation. In general, with each newer 
generation, improved solutions (i.e., decision-variable values), which are nearer to the optimal solution 
than the preceding generation are formed. In the GA context, the set of alternative solutions (array of 
decision-variable values) is referred to as a chromosome, and each decision-variable value represent in 
the chromosome is designated by genes (Rani et al., 2013). The size of the population is the number of 
chromosomes present in a population. The GA mechanism is briefly outlined in Figure 14.

The GA offers a number of advantages over traditional optimisation techniques, which can be listed 
as follows:

• The GA can be used with continuous as well as discrete variables.
• The GA is capable of dealing with a high number of variables.
• The GA could deal with numerical, experimental, and analytical objective functions.

Figure 14. Flow diagram of the overall GA process (Dincer et al., 2017).
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• The GA technique does not require derivative information.
• The GA would save the overall computational time.
• The GA used to solve stochastic optimisation problems that could be stuck to the optimum.

In this work, it is particularly important to assign the main multi-objective GA model criteria regard-
ing the main process as shown in Figure 14. Generally, a multi-objective optimisation problem can either 
minimise or maximise the objective function. Unlike single-objective optimisation, multiple objectives 
are being implemented that require different constraints, all of the possible solutions must be accom-
plished at once, including the optimum one. A multi-objective optimisation problem can be formulated 
as follows (Dincer et al., 2017):

Minimise/ maximise: {fn(x)   n=1,2,…N 

Subject to: 
g x j J
h x k K

x x x i n
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In this case, we need to the solve vector of the n decision variables or design parameters to find x, 
with one for each variable. The last set of constraints is called the variable bounds, which restrict the 
searching bound. Any solution exists inside a lower bound ( xi

L� � ) and upper bound xi
U� �� �  of the deci-

sion variables.

Objective Functions

The main purpose of hybridising CPSD-SE/HWT is to minimise the overall plant costs and achieve a 
higher average overall annual plant efficiency (ηtot), thus increasing the competitiveness of solar/wind 
electricity. In this context, the multi-objective GA optimisation procedure for the CPSD-SE/HWT power 
plant proposed herein considers two objective functions: the LCOEtot (to be minimised) and the ηtot (to be 
maximised). The multi-objective function code for the GA related to the CPSD-SE/HWT is performed 
as presented in Table 15 in the Appendix.

Optimisation Framework

For the hybrid CPSD-SE/HWT, the model will consider 6 main inputs and 2 calculated parameters (in-
termediate inputs) for the target optimisation of two outputs. As mentioned earlier in section 2.5.1, the 
main target of this model is to minimise the levelised cost of electricity, LCOEtot, $/kWh and maximise 
the average overall annual efficiency, ηtot, %, as illustrated in Eqs. (1) and (5) (Shboul et al., 2021a). The 
detailed multi-objective GA model that has been considered in this study is presented in Table 15 in the 
Appendix. The main inputs of the optimisation function are the number of dish units, Ndishes, number 
of wind turbines, Nwt, average wind speed, Vwr, m/s, air speed ratio, Vo/V, rotor diameter, Dr, m, and 
top cycle temperature, Th, 

oC. The calculated parameters are the mechanical power, Pmech, kWe, Stirling 
engine power, PSE, kWe. The model assumed that the number of batteries is 1900, collector area, Ac, 
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m2, the normalised capital cost of the wind turbine, $/kW, solar radiation, DNI, W/m2 and lower cycle 
temperature, Tl, 

oC are equal to 95 m2, 1628 $/kW, 875W/m2 and 25 oC, respectively. Also, the genera-
tor efficiency, ηgen, receiver efficiency, ηr, and mirror efficiency, ηc, are equal to 95%, 97%, and 80%, 
respectively. Moreover, the model assumed that air pressure, Pair, bar, is 1.0132, and site elevation, Hs, 
m is 10. Table 3 summarises the parameters related to the optimisation model.

�tot
tot

s c tot w wt

P
I A P N

�
�

�� � � �� �
1000

,

 (5)

where Ptot is the total plant power, kWe (Pmech+PSE), Is is the solar irradiation, W/m2 (equals to the DNI), 
Ac,tot is the total plant power of the CPSD-SE, kW, Pw is the wind power, W and Nwt is the number of 
wind turbines.

SIMULATION RESULTS AND DISCUSSION

In this part of the chapter, first, the validation of each system unit is conducted individually via the 
comparison with actual power plants and both theoretical and actual published works. Also, the dynamic 
performance analysis is performed to obtain the energy yield and efficiency of the CPSD-SE/HWT via 
the MATLAB/Simulink® environment. Steady-state conditions are primarily applied to all runs and the 
design specifications and operating conditions, as presented in Table 1, are entered into the model. The 
MATLAB/Simulink® can be considered an ideal platform for an economic potential assessment of the 

Table 3. The developed GA multi-objective functions related to the entire model optimisation

Parameter Symbol Unit Range

Input parameters and ranges

Number of dishes Ndishes # 20-80

Number of wind turbines Nwt # 1-20

Average wind speed Vwr m/s 2-6

Air speed ratio Vo/V - 0.2-0.6

Rotor diameter Dr m 60-140

Top cycle temperature Th
oC 200-800

Calculated parameters

Wind turbine mechanical power Pmech kWe 1.77-1170.33

Stirling engine power PSE kWe 11.34-22.13

Outputs

Total levelised cost of energy LCOEtot $/kWh

Average overall annual efficiency ηtot %
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plant. Then, a sensitivity analysis of the key parameters, that affect the performance of the system com-
ponents, is carried out. Finally, according to the GA method, the optimum energy system is identified 
based on multi-objective functions.

Mathematical Model Validation

The simulation results, estimated in this analysis for the developed hybrid CPSD-SE/HWT model in 
MATLAB/Simulink®, are compared and validated with both the simulated published data and actual 
power plants. Tables 4 and 7 provide a comparison of the findings evaluated from this study, other com-
mercial models and published results, which indicates reasonable variations. Clearly, the results obtained 
from this research demonstrate that the MATLAB/Simulink® software is very reliable; consequently, it 
may be used to generate realistic findings in additional analyses in the discussion section by simulating 
the CPSD-SE and HWT and optimising the developed model.

As with other models, the model validation is carried out to confirm the model adequacy by compar-
ing the results of data sets provided either independently or experimental, which align with the simulated 
scenario, to those estimated by the present model. Therefore, the operational model validation method 
is selected to determine whether the model findings agree with the observed data. Consequently, a 
deterministic model has been developed in this study using the dynamic programming methodology. 
Furthermore, two distinct aspects are taken into consideration during the model validation involving 
the input parameter and operating condition values and also the assumptions. To illustrate, the design 
specifications of the HWT and CPSD-SE then these are presented in Tables 4 and 6, respectively. In 
addition, two approaches are applied following the various attributes of the model, including theoretical 
results and real system measurements. Nevertheless, in practice, full validation of the entire model would 
be challenging, particularly whether the system is being modelled does not yet exist. In this work, the 
validation will focus on the output of each unit separately.

HWT Model Validation

The specifications of the selected HWT model (The Wind Power, 2020) are listed in Table 4 and is briefly 
described below. The simulation results obtained by the proposed dynamic model of the HWT system 
is validated by using results from other existing models, and the results from this model are compared 
with other types of commercial HWT models. These models include the GAMESA model in the Ma’an 
Part I wind farm in Ma’an, Jordan and the ENCORN model in the Feldheim wind farm in Germany 
(The Wind Power, 2020). The data is obtained by inputting the same geometrical design parameters 
and operating conditions. As shown in Table 5, the comparison reveals an excellent agreement between 
the developed model and the selected wind farms. It is shown that the output power per HWT unit of 
the developed model has errors of approximately 0.55% and 1.99%, compared to the Ma’an Part 1 and 
Feldheim wind farms, respectively.
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CPSD-SE Model Validation

In this study, the proposed mathematical CPSD-SE model was developed using the MATLAB/Simulink® 
toolbox to carry out the performance analysis. Table 6 lists the geometrical and operating parameters 
of the CPSD-SE models used for validation. To validate, the simulation results of the present model 
then these results are compared with the findings of previous related studies from Refs. (v. Siva Reddy, 
2012; Zayed et al., 2020) under the same operating conditions. The comparison shows that the same 
major parameters of the two models have an excellent agreement, as indicated in Table 7. For instance, 
the Stirling efficiency values have a percentage of deviation of approximately 4.98% and 16%, when 
compared with Refs. (v. Siva Reddy, 2012; Zayed et al., 2020), respectively. These deviations in the 
simulation results of the two different systems could be caused by adopting different parameters in 

Table 4. Specifications of the selected models

Description Wind farm Ma’an Part 1 Feldheim

General data

Country/zone Jordan/Ma’an Germany

Manufacturer GAMESA ENCORN

Model G97/2000 E115 3.000

Number of Turbines 33 3

Total nominal power 66000 kW 9000 kW

Operating data

Rated power 2000 kW 3000 kW

Cut-in wind speed 3 m/s 2 m/s

Rated wind speed 14 m/s 11.5 m/s

Cut-out wind speed 25 m/s 25 m/s

Rotor

Rotor diameter 97 m 115.7 m

Swept area 7390 m2 10515.5 m2

Rotational speed 9.6-17.8 rpm 12.8 rpm

Generator
Generator efficiency 0.97 0.97

load factor 0.95 0.95

Tower Hub heights 78-120 m 92,135, and 149 m

Power curve
Wind speed 0-25 m/s 0-25 m/s

Power coefficient 0.18 0.33

Table 5. Data validation results of the HWT model

Description The developed 
model

Ma’an (Gamesa 
G97/2000) Error (%) The developed 

model
Feldheim (Encorn 

E115 3.000) Error (%)

Module power 2011 2000 0.55 3000 3061 1.993

Hub height 121.3 120 1.083 149 144.6 3.043

Rotor swept area 7389.81 7390 0.00257 10515.5 10513.72 0.0169
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the different modelling techniques. Overall, it can be concluded from the high validity of the obtained 
results that this developed model is a reliable tool for simulating the performance of several CPSD-SE 
commercial prototypes.

Table 6. Design specifications of the 25 kWe CPSD-SE system and 50MWe Jodhpur power plant

Specifications Unit Jodhpur power plant Mohamed E. Zayed

Operating conditions

Ambient Temperature oC 25 30

Solar radiation W/m2 1000 900

Stirling engine

Stirling engine power kWe 25 25

Working fluid - H2 He

Receiver gas temperature oC 810 650-900

Engine speed rpm 1800 1800

No. of cylinders - 4 4

Bore and stroke mm 44 × 57 55 × 40

Dish concentrator

Rim angle degree 390 450

Intercept factor - 0.92 0.90

Mirror reflectivity - 0.92 0.92

Un-shading factor - 0.98 0.97

Cavity Receiver

Cavity absorptivity - 0.94 0.96

Receiver efficiency % 93.89 82.336

Optical efficiency % 77.88 66.13

Alternator

Generator efficiency % 92-94 92.5

Table 7.  

Description The developed 
model

Actual published data 
at Jodhpur power plant Error (%) The developed 

model
Simulated published data 

by Mohamed E. Zayed Error (%)

Total plant power, kW 50000 50000 0 25 25 0

Stirling efficiency, % 36.24 38.14 4.982 37.08 31.96 16.020

Aperture diameter, m 10.95 10.57 3.595 12.49 12.5 0.080

Projected area, m2 94.23 91.01 3.538 122.5 122.75 0.204

Concentrator efficiency, % 82.95 82.94 0.012 80.32 80.316 0.00498

Focal length, m 7.485 7.45 0.470 7.511 7.54 0.385

Peak net efðciency, % 26.53 29.68 10.613 22.68 19.55 16.010

Rated output Power, kW 25 24.5 2.041 25 25 0
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Performance Analysis

As aforementioned, to test the developed model and measure the performance of the system, the model 
has been implemented in a specific location, namely Mafraq, Jordan, and the meteorological data is 
obtained from the SolargisTM toolbox (Solargis, 2019). Figures 15-a, b show the annual solar radiation 
and wind speed data variation based on the hourly resolution in Mafraq. The wind speed varies between 
2.3 m/s and 5.8 m/s, while solar radiation values range between 300 W/m2 and 875 W/m2.

The MATLAB/Simulink® signal builder has been developed to represent the dynamic input battery 
model in order to specify the battery capacity as a function of the time throughout the year. The purpose 
of these generated Figures is to understand how 1-hour values spread over the year that assigned the 
battery charging and recharging cycle as depicted in Figure 16.

The control unit is in charge of distributing the load among the system units and the wind speed and 
solar radiation are the key variables that shape the load distribution. Figure 17 is the pseudo-algorithm 
that demonstrates the operation of the load distribution. If radiation from the sun exceeds the solar ir-
radiance limitation (500 W/m2), the signal prompts the CPSD-SE to operate without the assistance of 
wind turbines and/or the batteries bank. In case of the solar radiation is below the assigned solar limit 
and the average wind speed goes up the wind limitation (assumed to be 1.5 m/s), the HWT will enter 
into service instead of the CPSD-SE and/or the battery bank. In addition, the battery bank will serve the 
electrical demand when the charge rate is lower than 1, otherwise, the battery is charging along with 
HWT and CPSD-SE are operating.

Figure 15. Solar and wind profile of Mafraq throughout one year.
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Figure 16. Charge/discharge rate signal of the batteries along (a) one day, (b) one month.

Figure 17. Flow chart of the control unit.
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Figure 18 shows the hourly behaviour across one year (2018-2019) regarding the wind farm perfor-
mance. The power developed was relatively high, depending on the wind speed variation. Therefore, 
the maximum total power generated by the wind farm marginally exceeds 890 kWe during the spring & 
summer times. The power coefficient (CP) is in the range of 0.2 and 0.3, which is considered relatively 
high. The axial force is in the range of 19.3 and 32.4 kN/module and the net power from the module 
generator does not exceed 65 kWe.

Figure 19 shows the results of the CPSD-SE unit. The power range is estimated to be about 1200 kWe. 
As an anticipated reflection of the solar radiation effect, Figure 19-b shows the top engine temperature 
throughout the year. The maximum allowable temperature is recorded during the summertime and it is 
between 590oC and 605oC. During the winter, the temperature drops, and it is between 460oC and 515oC. 
The CPSD-SE efficiency is in the range of 30% to 33% which is considered high when compared to the 
PV or solar gas turbine cycle. The engine compression ratio (CRSE) and the pressure ratio (PRSE) are 
attractive and in the range of 7.5-9.2 and 19-27.2, respectively, and this is because of the use of CO2 
instead of air that is commonly utilised (Sharaf Eldean et al., 2017). In addition, the fluctuations in the 
solar radiation have significantly affected the mean effective pressure, which is relatively high and equal 
to about 10.2, as indicated in Figure 19-f.

Figure 18. Data results related to the wind speed effect throughout one year (Mafraq, Jordan case study).
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To examine the monthly performance, the predicted net average power production and the overall 
efficiency of the integrated power plant are shown in Figure 20. The results demonstrate that the high 
net power and overall efficiency values of the hybrid CPSD-SE/HWT system are obtained in the sum-
mertime between May and September.

Figure 19. Data results related to the solar radiation effect throughout one year (Mafraq, Jordan case 
study).

Figure 20. Monthly net average output power and overall efficiency of the hybrid CPSD-SE/HWT system.
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It can be seen that the monthly peak predicted the output power and the overall efficiency for the 
proposed power plant to be 6113.35 MWh and 24.03% in July and September, respectively. While the 
lowest power and efficiency values are recorded in the wintertime. The lowest output power is found to 
be about 2441.21 MWh in December, and the lowest overall efficiency in February, which is found to 
be 17.07%. Overall, it can be indicated that the average monthly net electricity production and average 
net monthly overall efficiency for the CPSD-SE/HWT plant are found to be about 4612.97 MWh and 
21.45%, respectively.

In addition, Figure 21 shows a typical day in the summertime as an example. According to the fluctua-
tions in the solar and wind energy generation, the Figure shows the variation in load generation across 
the whole day. From Figure 21, it is observed that the electricity demand surpasses the power generated 
from the proposed system that is produced during the day, particularly at night. Most of the day, the 
HWT generated a power range between 380 kWe and 900 kWe. The power generation in the middle of 
the day is dominated by the solar dish operation. The system starts at 5:20 am and provides 610kWe and 
ends with 590kWe at 16:30. In fact, throughout the period from 11:00 am to 01:00 pm, the peak power 
generated by the CPSD-SE is about 1200 kWe, as shown in Figure 21.

Furthermore, it is observed that batteries either produce or consume electricity throughout the day. 
The battery operates when there is no sun or wind, as shown in Figure 21. In this context, the batteries 
are discharging and delivering the electricity in the range of 100 to 375 kWe. Overall, it can be seen that 
the CPSD-SE has the potential to be an attractive system to generate power for residential communities; 
however, it needs a recovery unit such as a battery, and HWT. Table 8 shows some of the important 
calculated results under the Mafraq, Jordan operating conditions.

Figure 21. Power generation result related to 24-hour operation for a typical day in summertime in 
Mafraq, Jordan.
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The MATLAB/Simulink® was run to evaluate the hybrid CPSD-SE/HWT productivity throughout 
the year throughout the 8760 hours. Figure 22 shows the contribution of each sub-system, CPSD-SE, 
HWT, and batteries for power production. The predicted annual electricity generation of an application 
load 1500kWe capacity. Also, it demonstrates the dynamic behaviour of the generating electricity for 
system units during a full year to cover the load demand. The total annual electricity generated by the 
CPSD-SE, HWT, and battery bank varies from less than 700 kWe, 550 kWe, and 400 kWe to more than 
1160 kWe, 900 kWe, and 420 kWe, respectively. As can be seen, despite the large energy output of the 
proposed system, it is not enough to cater for the current load demand, thus making the use of optimisa-
tion techniques an imperative action.

Table 8. Data results according to Mafraq, Jordan

Parameters Unit Value

Solar farm output

Top engine temperature oC 506.50

Stirling efficiency % 30.86

Total solar plant efficiency % 22.75

Stirling engine power kWe 16.86

Total plant power kWe 1011.83

Electricity generation MWh 11.13

Dish concentration ratio, Ad/Ar - 1344.44

Total plant area m2 5702

Dish area m2 95

Stirling engine compression ratio - 7.91

Stirling pressure ratio - 20.73

Wind farm output

Rotor swept area m2 1564.90

Torque N.m 61216.83

Power coefficient - 0.29

Wind power kW 116.98

Mechanical power kW 37.26

Net developed power per module kWe 33.28

Total Farm Power kWe 499.23

Electricity generation MWh 11.98

Farm total area km2 0.54

Batteries bank output

Total battery power kWe 205.69

Electricity generation MWh 4.94

Microgrid output

Average overall efficiency % 23.73

Net electricity production MWh 17.34
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Economic Analysis

The economics of the entire microgrid system includes the total capital cost, total annual cost, total hourly 
cost, total LCOE, annual electricity savings and payback period. Table 9 presents the cost results for the 
investigated location (Mafraq). The cost-effectiveness of the hybrid system was examined based on the 
four economic indices of the whole system, including the total LCOE, LCOEtot, $/kWh, total hourly cost, 
THCtot, $/h, annual electricity savings, AES, $ and payback period, year. These economic indicators are 
evaluated from Eqs. (1) to (4).

Overall, the total capital cost of the CPSE-SE/HWT system, including the total direct and indirect 
cost of the batteries bank, HWT and CPSD-SE is about 912772.84 $. The average LCOE of the hybrid 
system is found to be about 0.18 $/kWh and the average hourly costs are found to be 27.44 $/h. The 
estimated payback period for the integrated system is a year. It is evident that the developed system is 
feasible and competitive.

Figure 22. The power produced by the hybrid system over the year for Mafraq, Jordan.

Table 9. Economic analysis results of the proposed microgrid systems configuration

Parameters Unit CPSD-SE HWT Batteries bank Power plant

Total capital cost $ 18784.82 86527.74 950000 912772.84

Total annual cost $/year 2759.89 10698.34 226875.99 240334.23

Total hourly cost $/hour 0.32 1.22 25.90 27.44

Total LCOE $/kWh - - - 0.18

Annual electricity savings $ - - - 828143.54

Payback period year - - - 1.03
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Sensitivity Analysis

In general, the sensitivity analysis would be utilised to find out the optimal system behaviour related to 
various uncertain parameters. In this investigation, the four input variables are DNI, W/m2, wind speed, 
m/s, rotor diameter, m, and dish diameter, m, that we have been taken to study their effects on the hybrid 
system results along the year. Table 10 shows the sensitivity variables that are used in the analysis. Each 
of the examined input variable impacts on the techno-economic performance results of the power plant, 
which are the LCOEtot and average overall annual efficiency as depicted in Table 10.

Sensitivity to the Solar Radiation and Wind Speed

The average DNI was varied between 500 and 1000 W/m2 and its effect on the LCOEtot, $/kWh and 
total efficiency, %, may be observed (see Figures 23-a,b). The incident DNI has a moderate effect on 
the LCOEtot and average annual electricity generation, as shown in Figures 23-a and b. However, the 
solar radiation has a proportional effect on the average annual efficiency, the higher intensity of solar 
radiation, and the higher the overall efficiency, as depicted in Figures 23-b. In the case of increasing the 
direct solar radiation, the overall efficiency increases from 20.7% to 25.6%.

Table 10. Effect of the sensitivity variables on the proposed hybrid system

Sensitivity input variables values Sensitivity estimated variables

DNI 500-1000 LCOEtot

Wind speed 1.5-6 Average overall annual efficiency

Rotor diameter 20-150

Dish diameter 2-14

Figure 23. 
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In the case of a variation in the wind speed, it has been observed that the wind speed played a key 
role in calculating the LCOEtot. Accordingly, the wind speed was varied between 1.5 and 6 m/s. By con-
sidering Figure 23-a, it can be seen that the cost of electricity decreases with respect to the increase of 
solar radiation and wind speed, the LCOEtot varies between 0.188 $/kWh and 0.146 $/kWh. However, 
the wind speed also has a significant impact on the average net annual efficiency, the higher the wind 
speed, the higher is the overall efficiency, as illustrated in Figure 23-b.

Sensitivity of LCOEtot and Overall Annual Efficiency to the Rotor Diameter

The effect of the rotor variation was analysed by MATLAB/Simulink® and in this study, the expected 
variation in the rotor diameter between 20 m to 150 m was considered. Thus, as the diameter increases 
then this has a significant change in the LCOEtot and the average overall annual efficiency. Figure 24 
depicts the differing diameter variations impact on the economic indices and, as can be seen, the higher 
the diameter, the lower the LCOE. Hence, the increasing in the rotor diameter decreases the LCOE from 
0.5668 $/kWh to 0.1206 $/kWh. As a result of comparing the simulation results with the increasing 
rotor diameter, it was found that the overall efficiency of power plant increases from 20.2% to 24.1%, 
as shown in Figures 24.

Sensitivity of LCOEtot and Overall Efficiency to the Top Cycle Temperature

The MATLAB/Simulink® is performed to investigate the effect of the high cycle temperature on the 
system performance and cost. The top cycle temperature is an important parameter when obtaining the 
most desirable outcome. The expected variation in the top cycle temperature is between 200 oC to 800 

Figure 24. 
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oC. As illustrated in Figure 25, it can be seen that a decrease in LCOEtot and an increase in the average 
overall annual efficiency with the top cycle temperature. Hence, the increasing of high cycle temperature 
decreases the LCOEtot from 0.1792 $/kWh to 0.1744 $/kWh. However, as the top cycle increases, it was 
found that the overall efficiency increases from 20.1% to 23.7%.

Multi-Objective GA Optimisation Analysis

The developed GA model aims to determine the cost and efficiency range over a wide range of data 
related to the CPSD-SE/HWT power plant. Therefore, it would be very interesting to obtain optimised 
data that may help in the design and performance aspects. The optimisation model has been developed 
for two objective functions: LCOEtot (to be minimised) and plant efficiency (to be maximised).

The optimised data results for the entire CPSD-SE/HWT plant are obtained and analysed according 
to the input constraints listed in Table 3. To achieve the two objective functions, the performance con-
straints such as concentrator efficiency, ηc, %, receiver efficiency, ηr, %, and generator efficiency, ηgen, 
% are assumed to have the following values 97%, 80%, and 95%, respectively. These were anticipated 
to give optimal values related to the total efficiency and this is found to be 30.8% and in this case the 
LCOEtot is equal to about 0.248 $/kWh. The obtained results show that the number of dishes should be 
54, the top cycle temperature is about 383 oC, the wind turbine power is 1170 kWe, the number of wind 
turbines is 2 and the rotor diameter is 133 m. These mentioned design values are anticipated to achieve 
a higher total plant efficiency, ηtot, which is 30.8%. In the case of lower LCOEtot, the number of dishes, 
the top cycle temperature, the wind power, the number of turbines, and the rotor diameter are 67, 370oC, 

Figure 25. 
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752 kWe, 4 and 125 m, respectively. For the operating conditions, to achieve the maximum of the total 
plant efficiency and minimum LCOEtot, it is assumed that the lower cycle temperature (sink) should be 
equal to 25 oC. However, solar radiation is assumed to be 875 W/m2, which is considered to be high.

It is quite clear that the GA would give a clear decision on the selection between the optimum LCOE-
tot and the optimum efficiency by specifying the optimum operating conditions and the design aspects 
needed (constraints).

Figure 26 indicates the Pareto front solution for the hybrid CPSD-SE/HWT with two objectives re-
garding the LCOEtot and ηtot. Each point on this Pareto front depicts a potentially optimum solution for 
the minimum LCOEtot and maximum ηtot. In this regard, the Pareto front assists the decision-maker in 
selecting a single ideal solution from a group of optimal solutions depending on the decision maker’s 
preferences and criteria for establishing a microgrid CPSD-SE/HWT power plant with higher annual 
efficiency or a lower LCOEtot. It is also indicated the impact of increasing the system efficiency on the 
Pareto front, dislocating the curves to higher values of efficiency, without significantly changing the 
values of the LCOEtot.

As can be seen in Figure 26, all of the generated solutions occurred between (ηtot = 30.8%, LCOEtot = 
0.248 $/kWh) and (ηtot = 17.08%, LCOEtot = 0.207 $/kWh). Hence, it can be indicated that the designer/
decision maker can adopt various solutions for this case. From the shape of the curve it appears that 
solutions with higher efficiency should be preferred as the increase in the LCOEtot is not as sharp as the 
uplift of the energy efficiency.

Figure 26. 
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CONCLUSION

The aim of this study is to investigate advanced strategies for the integration, performance and opti-
misation of new hybrid CPSD-SE/HWT for stand-alone microgrid power generation. The system aims 
to supply power to arid and semi-arid regions and the system depends on the solar and wind energies. 
The annual simulation of a 1500 kWe hybrid system is performed dynamically for the city of Mafraq 
based on the operating conditions of the satellite-driven data from SolargisTM. The integrated system is 
validated with the simulated and actual data published in the literature in order to ensure the reliability 
and accuracy of the developed model.

The results of the dynamic performance are presented. For the solar part, a CPSDE-SE has been 
considered and for the sun off periods, a HWT and a battery bank have been used. Regarding the CPSD-
SE, CO2 is used as the working fluid instead of air and a total number of 60 dishes are assumed to be 
implemented while the total number of HWTs is 7. For a typical summer day, during the daylight, the 
CPSD-SE is dominant and generates about 1500 kWe with a total high efficiency of about 26%. Most of 
the supplied power throughout the year is dominated by the CPSD-SE with a high cycle temperature that 
reaches up to 850oC. On the other hand, the HWT generates a limited amount of power. However, it is 
considered to be extremely helpful to overcome the uncertainties in the solar radiation throughout the day.

A multi-objective GA method that is based on an evolutionary computation algorithm is applied to 
the CPSD-SE/HWT system for the electricity production to evaluate the optimal design parameters for 
the system. To fully utilise this, computer modelling techniques using the Multi-objective GA Solver in 
MATLAB/Simulink® have been employed. The objective functions, design parameters and constraints, 
and the overall optimisation are elaborated. The results show that the ηtot values are raged between 17.08% 
to 30.8%, where the LCOEtot values are about 0.207 to 0.248 $/kWh, thus, providing a set of optimal 
solutions for both objective functions to the designer. In general, this novel system could be substantially 
utilised as a distributed power generation system for a low to medium scale microgrid application.
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KEY TERMS AND DEFINITIONS

Concentration Ratio: A ratio of the dish area to the receiver area.
Genetic Algorithm: A heuristic optimisation technique, which is biologically inspired using to find 

a set of optimal solutions.
Levelised Cost of Electricity: An economic parameter representing a cost per unit of electricity 

generated.
Microgrid: An autonomous and local energy network integrated with a central control system to 

generate power in multiple scales.
Power Coefficient: A parameter indicates the efficiency of wind turbine to convert the kinematic 

energy in the wind into electrical energy.
Rim Angle: A ratio of the focal length to the concentrator diameter.
Solar Dish: A solar thermal device producing high temperature to generate electricity.
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APPENDIX

Table 11. Battery bank mathematical model

Parameter Equation

Single battery Amber hour, AH AHb × Ib × td

Single Battery storage, Wh Eb = AHb × Vb

Single Battery power, W P E DOD
OH NOCb
b b�
� �
�

�

Total battery bank power, W Pb,tot = Pb × NOB

Load current, A I
P
Vl
b tot

l

= ,

Source: (Shboul et al., 2021a)

Table 12. HWT mathematical model

Parameter Equation

Air temp based on site elevation, oC T H
air

s� �
�

15 5
19 83

3048
.

.

The air density, kg/m3 � �
�

� �� �
P
T
air

air

100

0 287 273 15. .

Air density at sea level, kg/m3
� �air s

H

e
s

,

.

� �
� � ��

�
�

�

�
�

1 0 297

3048

Rotor swept area, m2 A D
r

r� ��
�
�

�
�
��

2

2

Air mass flow rate, kg/s Mair = 𝜌air,s × Ar × Vwr

Wind speed at the blades, m/s V V
V Vu

wr

o

=
/

Power coefficient C V
V

V
Vp

wr

u

wr

u

� � � �
�

�
��

�

�
��4 1

2

2

Required wind power, kW P
A Vw

w

air s r r

�
� � � � ��

�
�

�
�
�

1

2

1000

3�
,

Power delivered by the turbine, kW Pmech = Pw × Cp

Axial force on the turbine wheel, kN F A Vx air s r wr� � � � � �4

9000

2�
,

continued on following page
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Parameter Equation

Rotor speed, rpm RPM V
Dr
u

r

�
�
�

60

�

Rotor speed, rev/s �
�

�
� �� �2

60

RPMr

Rotor torque, N.m T
P

or
mech�

�� �1000

�

Power outlet from generator, kW P P
g

mech

g

�
�

Output current, A I
P

V FPg
g�

�

� �

1000

3

Net power developed, kW Pnet = Pmech – (RL × Pg)

Generator torque, N.m T P
wg

net�
�1000

Total Farm power, kW Pform = Pnet × Nwt

Optimum spacing in a row, m Xs = 12 × Dr

Optimum spacing in cross-wind direction, m Ys = 3 × Dr

total land area, km2 At,tot = 2 × Xs × Ys × Nwt

Source: (Shboul et al., 2021a)

Table 12. Continued

Table 13. CPSD-SE mathematical model

Parameter Equation

Piston volume, cm3: V Stroke Dp p� � �
�
4

2

Dish area, m2 A Ddish c� �
�
4

2

Stirling engine efficiency �SE
l

h

T
T

� � �
�
�

�

�
��

�

�
��

�

�
�
�

�

�
�
�

0 5 1
273

273
.

Total efficiency of the module 𝜂o = 𝜂SE × 𝜂gen × 𝜂c × 𝜂r

Stirling engine compression ratio

CR eSE

C

R

T
T

T

v

h

l

SE

�

�

�

�
�
�

�

�
��

�

�
��

�

�

�
�
�
�
�

�

�

�
�
�
�
��

�

1

1
1

273

273
1

1
1

�

hh

lT
�
�

�

�
��

�

�
��

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�

�
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�

�
�
�
�
�
�
�
�
�
�
�
�
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Table 13. Continued
Parameter Equation

Stirling high pressure, kPa P P CR T
Th atm SE
h� � � �
�
�

�

�
�

�

�
�100

273

273
1

Stirling pressure ratio R P
PPSE

h

atm

�
�100

Maximum specific volumes, m3/kg v
R T

Pmax
atm

�
� �� �

�
1
273

100

Minimum specific volumes, m3/kg v v
CRmin
max

SE

=

Mean pressure, kPa
P

P CR T
T

m

atm SE
h

l�

� �� �� �
�

�

�
�

�

�
� �

�

�
��

�

�
��1

273

273
1

4

Stirling engine power, kW P I A
SE

o s dish�
� ��
1000

Total plant power of CPSD-SE, kW PCPSD-SE = Ndishes × PSE

Top cycle temperature, oC T
P T T

V NOC P V T Th
SE h l

p SE mean SE h l

�
� � �� �

� � � � � �� �
60 10

9



�

Rim angle ratio, ƒ/Dc RAR e e
r r

� � � �
�

��

�
�

�

�
� �

��

�
�

�

1 003 2 186

11 28

13 86

100 2

127 6

2

. .

.

.

.

.

� �

��
�
2

Focal length, m
’ �

� �
�
�

�
�
�

D

tan

c

r
4

2

�

Dish height, m H D
dish

c�
�

2

16 ’

Receiver area m2 A Dr r� �
�
4

2

Concentration ratio CR A
Adish
dish

r

=

Total surface area, m2 Adish,tot = Adish × Ndishes

Source: (Shboul et al., 2021a); (Sharaf Eldean et al., 2017)
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Table 14. Cost analysis

Economic parameters

Interest rate, % i = 5

Battery lifetime, year LTb = 5

Amortization factor, 1/y A
i i

i
f

LT

LT

b

b
�

� �� �
�� � �

1

1 1

Plant lifetime, year LTp = 25

Fixed charge rate FCR = 0.098

Batteries Bank

Battery cost, $ Cb = 100

Variable operating cost of the batteries, $/kWh VOCb = 0.07 (Charging Electricity Price)

Direct capital cost of the batteries bank, $ CCb = 5 × Cb × Nb, where Nb is No. of batteries.

Annual capital cost of the batteries bank, $/yr ACCb = CCb × Af

Fixed operating cost of the batteries bank, $/y FOCb = 0.05 × CCb

Annual total cost of the batteries bank, $/yr ATCb = ACCb + FOCb

Hourly total cost of the batteries bank, $/hr HTC ATC
b

b�
�365 24

Horizontal Axis Wind Turbine (HWT)

Normalised capital cost, $/kWe POC = 1628

Variable operating cost of the turbines, $/kWh VOCt = 0

Direct capital cost of the turbines, $ CCt = POC × Pm

Indirect capital costs of the turbines, $ ICCt = WTC + CTC + OCC or ICCt = 0.86 × CCt

where, the wind turbine cost share: WTC=0.65×CCt, construction cost share (Civil works): CTC=0.16×CCt, and other capital cost share: 
OCC=0.05×CCt

Total capital cost of the turbines, $ TCCt = CCt + ICCt

Annual capital cost of the turbines, $/yr ACCt = TCCt × Af

Fixed operating cost of the turbines, $/yr FOCt = FCR × CCt

Annual total cost of the turbines, $/yr ATCt = ACCt + FOCt

Hourly total cost of the turbines, $/hr HTC ATC
t

t�
�24 365

Solar Dish Stirling Engine (CPSD-SE)

SE cost, $/kWe CSE=370 to 400$/kW

Receiver cost, $/kWe CCR = 185$/kW

Dish concentrator cost, $/m2 CDC = 300$/m2

Site cost is 2.2$/m2 SIC = 2.2$/m2

Variable operating cost of the CPSD-SE, $/kWh VOCdish = 0.06

Direct capital cost of the CPSD-SE, $ CCdish = (COP × PSE) + ([CDC + SIC] × AC)
Where COP = CSE + CCR

Indirect capital costs of the CPSD-SE, $ ICCdish = CPEC + CGC +OCC

continued on following page
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Where, the construction, procurement, and engineering cost share are calculated (H. M. Ali, 2020), (Agency, 2012): CPEC=0.16×CCdish, 
contingency cost share: CGC=0.10×CCdish, other capital cost share: OCC=0.03×CCdish

Total capital cost of the CPSD-SE, $ TCCdish = CCdish + ICCdish

Annual capital cost of the CPSD-SE, $/yr ACCdish = TCCdish × Af

Fixed operating cost of the CPSD-SE, $/yr FOCdish = FCR × CCdish

Annual total cost of the CPSD-SE, $/yr ATCdish = ACCdish + FOCdish

Hourly total cost of the CPSD-SE, $/hr HTC ATC
dish

dish�
�24 365

Total Plant Cost

Total capital cost, $ TCCtot = TCCb + TCCt + TCCdish

Total annual cost, $/y ATCtot = ATCb + ATCt + ATCdish

Total hourly costs, $/h THC ATC
tot

tot=
8760

Total variable operating costs, $/kWh VOCtot = VOCb + VOCt + VOCdish

Total Levelised cost of energy, $/kWh LCOE THC
Loadfactor P

VOCtot
tot

tot
tot�

�
�

Annual electricity savings, $ Electricity cost = LCOEtot × Annual electricity generated

Payback period, year Paybackperiod TCC
Electricitycost

tot=

Source: (Shboul et al., 2021a)

Table 14. Continued

Table 15. The developed GA multi-objective functions

GA function code

• The Power coefficient function: 

C V

V
V V

V
V
V V

p
wr

wr

o

wr
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o

� �
�

�
�

�

�
�

�

�

�
�
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�
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�

�

�
�
�
�
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� �

�

�

�
�
�
�

�

�

4 1

2

2
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��
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

• The mechanical power delivered by the turbine, kW: 

P

P
H

m

air

s�
�

�

� � � ��
�
�

�
�
�

�
�
�

�
�
�

�0 5

100

0 287 15 5 19 83
3048

273 15
.
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�
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�
�
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�
��

�

�

�
��
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�
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�
�

�

�

�
�
�
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�

�
�
�

�
�
�

�� � � � �exp 1 0 297
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3048 4
.

�

��
� � ��
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� � �

�
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�
�
�
�

�
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�
�

�

�

�
�
�
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�

�
�
�
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� �
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D V Cr wr
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2 2

1

1

continued on following page

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



Multi-Objective Optimal Performance of a Hybrid CPSD-SE/HWT System

210

Table 16. Random numbers within a specific range for load calculation

%% Hours: 
% n = 8760 during the year. 
% n = The number of hours (n=24*number of days in each month) 
% n = 744 in Jan, Mar, May, Jul, Aug, Oct, Dec. 
% n = 720 in Apr, Jun, Sep, Nov. 
% n = 672 in Feb.

h1 = 1; 
h2 = n; 
Hour = sort(((h2-h1).*rand(n,1) + h1),’ascend’); 
%% Power, kW: 
p1 = 100; 
p2 = 1500; 
Power = (p2-p1).*rand(n,1) + p1;

GA function code

• The Stirling engine power, kW: 

P

T
T

SE

l

h
gen r c

�

� �
�
�

�

�
�

�

�
�

�

�
��

�

�
��

�

�
��

�

�
��� � �

�

�
� 0 5 1

273

273
. � � �

��

�

�
�
�
� �DNI Ac

1000

• Total levelised cost of energy is obtained as: 
LCOE

NOB POC P

T

T

tot

m

l

h

�

� � � � � �
� �

�

�� � � �140 5 0 230 108 3
0 5 1

273

27. . .
.
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�
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�
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�
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• Average overall annual efficiency is calculated as: 

�
�tot

mech SE
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DNI A N D
�

�� ��

� �� � � � � ��
�
�

�
�

1000

0 5 1 25
4

2
. . ���

�

�

�

�
�

�

�

�
�

�
V

N
w

wt

3

1000

100

Table 15. Continued
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ABSTRACT

Various improvements can be made to Darrieus vertical axis wind turbines (VAWT) for maximum per-
formance in an urban environment. One such improvement is the inclusion of bio-inspired leading-edge 
tubercles to increase the aerodynamic performance. These structures, found on the flippers of hump-
back whales, are believed to aid the mammal in quick maneuvering. The objective of the chapter is to 
investigate and compare the performance of a Darrieus type VAWT with the inclusion of leading edge 
tubercles. The performance of the turbine with leading-edge tubercles on the blades is compared with 
the turbine with normal blade, computationally (with computational fluid dynamics using transition SST 
turbulence model) and experimentally. The focus lies on building an experimental setup to compare the 
performance of leading-edge tubercles with the baseline turbine.
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Numerical and Experimental Investigations on a Bio-Inspired Design
 

1 INTRODUCTION

Easily available to us in one of the greatest quantities as a source of power, the wind is also one of the 
most inexhaustible sources of energy. To harness the potential, of this energy, different kinds of turbines 
are used. Based upon the orientation of their axis of rotation, these turbines can be placed in two clus-
ters – horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). The fact that 
VAWTs can perform, irrespective of the direction of the winds, is what primarily segregates them from 
HAWTs. This is what gives the VAWTs an edge over the HAWTs, as the latter requires orientation in 
the direction of the wind, resulting in a need for additional mechanism, which means enhanced costs, 
in addition to more chances of failure. What makes VAWTs the most suited choice for application in 
urban environments is the fact that these turbines are omnidirectional. The impact of the direction of the 
wind does not affect them and they can support repeated occurrences of changes in wind direction that 
are violent or unsteady. The current designs are considered to be highly effective in comparison to the 
older designs, as has been shown by various proposed designs and testing. (Amano, 2017; Gupta, 2015).

Considering the factors that they can be installed near the ground, do not require a strict operating 
mechanism, and can take-off without high wind speed, are economical, safe for the environment, unaf-
fected by irregular patterns or the direction of the wind, made us choose in VAWTS for our research.

The categories of Darrieus and Savonius in turbines are the two further classifications of VAWTs. 
Because of the high negative torque produced by the returning blade (Alom & Saha, 2018), the ef-
ficiency of the Savonius type turbine is comparatively less. The research is centered on Darrieus type 
turbines which work using the lift forces generated due to the aerofoil geometry of the blade. To create 
a cost-effective model design of a straight blade VAWT for small-scale power generation is the focus 
of the study. Parasitic drag and induced drag are the significant reasons behind the low performance of 
Darrieus turbines (Islam et al., 2008). Tip vortices play center stage in induced drag.

To perceive and advance efficient HAWTs, major work has been carried out in the past few years, 
but not much attention had been laid on VAWTs. Work on many criteria that affect the performance of 
a VAWT were published by Islam et. al (Islam et al., 2008). In-depth research was done on the conse-
quences of the utilization of many numbers of design parameters, which resulted in more cost-effective 
and efficient turbines. We learn from the additional study by Persico et. al (Amato et al., 2013) that 
large-scale vortices have a powerful impact on the tip region of the wake shed by the H-shape turbine. 
As a consequence of the periodic fluctuation of the blade aerodynamic loading, these vortices pulsate 
notably during the period. This resulted in a great advantage in the execution of the present work to 
develop an efficient turbine for carrying out experimental studies. As observed in a recent study done on 
various wingtip devices, namely endplates and winglets, by Mishra et al, it was found that the endplates 
improved the performance of a Darrieus type VAWT significantly (Mishra et al., 2018).

The evolution of all living organisms to a well-adapted structure and material over all these years has 
been through natural selection. New technologies inspired by biological solutions at macro and nanoscales 
have taken off, courtesy of Bio-mimetics. All through the existence of the human race, the species have 
bought from nature the answers to problems and challenges. Nature has provided solutions to engineering 
problems such as self-healing capabilities, tolerance, and resistance to harsh environmental and climatic 
exposures, hydrophobicity, ability to self-assemble and harness solar energy. Scientists, researchers, and 
academicians have been ever enthralled to study nature and take inspiration from it. In the field of wind 
turbines, research has been done on bio-inspired materials for better efficiency. Ryoichi S Amano et al 
introduced a novel concept by using self-healing polymer composites for turbine blades. (Arun et al., 
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2015). This helped the turbine blades to self-heal when the cracks were formed due to fatigue. Further 
investigations into the bio-inspired designs and materials led to another novel idea of self-healing in the 
eventuality of failures due to bending stresses (Matt, 2017). A special issue for the Second International 
Conference on 2016 Next Generation of Wind Energy (ICNGWE) also included research based on bio-
inspiration (Amano et al., 2017).

Biomimetic adds new avenues into engineering design that may otherwise go invalidated. The dif-
ferent structures may propose a method to increase maneuverability and stealth. Taking inspiration from 
nature, another notable research that just came up a few years ago by Watts et. al (Watts & Fish, 2001) 
studies the fins of humpback whales as shown in Figure 1 (Ask Nature, n.d.).

It was shown that the tubercles on the leading edges of humpback whale flippers augment maneuver-
ability while capturing prey. It is thus suggested that tubercles may be used as adaptations that increase 
the functionality of the blades of the turbine. With tubercles on the blades, it was found that there was 
a significant increment in lift and lift to drag ratio while observing a reduction in induced drag. It has 
been shown that leading-edge modifications of streamlined bodies can offer performance enhancements 
(Watts & Fish, 2001).

Work done on understanding the effects of various kinds of tubercle shapes (both sinusoidal and 
spherical) on the performance of an airfoil blade were studied by Aftab et. al (Aftab & Ahmad, 2017). 
It showed that tubercles when added to the leading edge of the blade, reduce the induced drag by short-
ening the wake region. The paper also provides key insights into the computational fluid analysis of the 
tubercle blade and also led the authors to choose the right kind of geometry to work on and implement 
onto the actual turbine to test on.

Figure 1. Leading Edge tubercles on a humpback whale (Ask Nature, n.d.)
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Some experimental studies do provide the quantification of performance enhancement for different 
airfoils. Around 5% enhancement in the lift, 11% decrease in induced drag, and 18% increment in the 
lift to drag ratio for the airfoil NACA634-021 were reported by Watts et. al (Watts & Fish, 2001). Ap-
proximately 41% increment for stall angle, 5% increase in maximum lift coefficient and a reduction in 
total drag in the post-stall regime for airfoil NACA0020 was reported by Miklosovic et. al (Miklosovic 
et al., 2004). A decrease in the maximum lift coefficient and stall angle pre-stall but a 50% increase in 
post-stall regime was reported by Johari et.al (Johari et al., 2009). The tubercle profile can be obtained 
with the formula stated in Equation (1) Seyhan M., and Sarioglu M. (Seyhan et al., 2021)

a xcos 2�
�
� �

 (1)

Where, a is the amplitude and 𝜆 is the wavelength. Aerodynamic post stall was studied by Leknys at. al.
stated the post stall behavior of leading edge tubercle was significantly improved compared to symmetri-
cal blade at low tip-speed ratio (Leknys et al., 2018; Yan et al., 2021). Arunvinthan et. al. observed lift 
characteristics increase with increasing turbulence intensity irrespective of variation of an incremental 
or detrimental AOA values (Arunvinthan et al., 2020). Wang at. al. (Wang et al., 2018; Wang & Zhuang, 
2017) uses taguchi method along with CFD to report the improvement using serration on leading edge of 
a blade, the coefficient of power improved by 18.3%. Suppuration of dynamic stall was observed from 
75° to 160° of azimuth angle. Lositano and Danao published work on three bladed Darrieus VAWT 
with cambered Tubercle blades using CFD with NACA 0025 blades and found the performance to be 
detrimental but states this effect to be specific for the choosed design and operating condition. Lou et 
al. (Lositano & Danao, 2019) applied biomimetic design to a high pressure turbine stage and the loos 
of energy has been reduced.

2 COMPUTATIONAL FLUID DYNAMICS

To create a valid setup to compare our geometries, the setup studied by Aftab et. al (Aftab & Ahmad, 
2017) were replicated. Their work was carried out on an airfoil with a NACA4415 blade profile to which 
sinusoidal and spherical tubercles of various amplitudes and wavelengths were added and compared to 
the normal turbine. Instead of checking the readings for all of the blades, a clean blade and a tubercle 
blade were chosen with amplitude .05c and wavelength as .25c, where c is the chord length. Thus, a 
blade with a NACA4415 blade profile was modeled using SOLIDWORKS. When it comes to tubercles, 
a sinusoidal profile on the leading edge was created as specified in the literature. The chord length (c) for 
both the blades was chosen to be 75mm while the span length (L) of the blades was chosen to be 100mm.

2.1 Domain Details

The CAD models created in SolidWorks were imported as STEP files into ANSYS workbench and an 
enclosing domain was created. This was created across the wing, which had a width equal to the length 
of the aerofoil using the design modeler. A distance of −1.3 times c and 10.3 times c is maintained from 
the aerofoil leading edge for the inlet and outlet. To mitigate confinement effects, the domain is elongated 
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twice times c above and below the aerofoil. Here, two zones were created, the inside one close to the 
aerofoil to get a fine grid as shown in Figure 2 and Figure 3.

Figure 2. Mesh Domain

Figure 3. Meshed Domain (3D view)
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2.2 Computational Aspects

The education license of ANSYS for research in academic institutions was used to carry out the analysis 
of the steady-state simulations. The transition SST turbulence model was considered for the analysis. 
SST turbulence model is a well-established model to provide design solutions for aerodynamic applica-
tions with low Reynolds numbers.

Four transport equations are used in Transition SST to model the transition behavior. The compu-
tation load is substantially is less and the model is found more precise and accurate. Implementation 
of SIMPLE pressure coupling was done, and convergence criteria were set to 10-6 while analysis was 
done for accuracy of second order. The Angle of Attack (AoA) of 0° till 18° was chosen for the analy-
sis. Conditions at sea level were deliberated for the input criterion e.g., pressure, density, and viscosity. 
The input velocity was maintained at 1.8 m/s for a chord based on a Reynolds number of 1.2e5. All the 
data obtained from the simulations were post-processed using Microsoft Excel. A comparison is done 
between our readings and the readings obtained by S. M. A. Aftab et. al (Matt, 2017) and was found to 
be similar within the error limits.

2.3 Simulations on NACA0018

Now, as the setup was ready, simulations were run on the chosen blade profile i.e. NACA0018 for clean 
and tubercles blade turbine. The only difference is in the leading edge profile of the tubercles. Since the 
blades were to be manufactured and tested on an actual turbine, getting a sinusoidal leading edge would 
require manufacturing techniques beyond the scope of those available to the authors. Thus, a simpler 
triangular wave geometry was used and the blade was designed using SOLIDWORKS as shown in Figure 
4, Figure 5 and Figure 6 below.

Figure 4. Blade profile
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A similar domain as used in the previous case was generated around both the blades as shown in 
Figure 7 and Figure 8.

Figure 5. Front view

Figure 6. Side view

Figure 7. Blade Meshing
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Again, the Transition SST turbulence model was used here. The simulation was done at inlet speeds 
varying from 4 m/s to 20 m/s. The drag and lift forces and drag and lift coefficients were calculated and 
compared which is shown in the graphs below as shown in Figure 9, Figure 10 and Figure 11 respectively.

These simulations provide us with enough data on NACA0018 to take this study further into the 
experimentation stage. As the graphs suggest, an average of 1.44 percent and 8.81 percent increase 
in average lift force and maximum lift force was found out respectively. Also, it was found that using 
tubercles on an airfoil blade decreased the average drag force by 2.64 percent, and the maximum reduc-
tion was found out to be 5.24 percent. It is worth noting that the Tubercle effect came into effect after a 
certain inlet velocity threshold was crossed.

3 EXPERIMENTATION

The designing of the blades, shaft, and connecting rod of the turbine was done in SolidWorks. The 
designed files were 3D printed. The total time taken for the printing of each of the base turbine and 
tubercles turbine was about 14 hours. The endplates were printed similarly. PLA material was used to 
print the turbine parts. The blades, shaft, and connecting rod were fixed to each other and the turbine 
was finally ready for testing, as shown in Figure 12, Figure 13, Figure 14 and Figure 15.

The 3D printed turbine was then made to test in the test section of the experimental setup as shown 
in Figure 16. A shaft was made to pass through the hollow shaft of the turbine supported by bearing at 
both ends. The upper part of the free shaft was connected to a dynamo to measure the voltage devel-
oped due to the rotation of the turbine at different inlet wind speeds. The RPM at different wind speeds 
was measured using a tachometer. The wind inlet speed was varied using an autotransformer. The base 

Figure 8. Tubercle Blade Meshing

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



219

Numerical and Experimental Investigations on a Bio-Inspired Design
 

turbine, tubercles turbine, and tubercles turbine with endplates were tested simultaneously in the test 
section and the corresponding observations were recorded.

The graphs in Figure 17 and Figure 18 show that the Tubercle geometry out-performs the normal 
geometry and even more so in the case when end plates are attached to it.

Figure 9. CL v/s Inlet Velocity

Figure 10. CD v/s Inlet Velocity

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



220

Numerical and Experimental Investigations on a Bio-Inspired Design
 

Figure 11. Lift to Drag ratio v/s Inlet Velocity

Figure 12. 3D printed turbine Figure 13. 3D printed tubercle turbine
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Figure 14. 3D Printed tubercle turbine with 
endplates

Figure 15. 3D Printed turbine with endplates

Figure 16. Experimental setup for testing of 3D printed turbine

 EBSCOhost - printed on 2/14/2023 2:48 PM via . All use subject to https://www.ebsco.com/terms-of-use



222

Numerical and Experimental Investigations on a Bio-Inspired Design
 

4 RESULTS

• Leading-edge tubercles show enhancement in efficiency but at lower speeds that enhancement is 
not significant.

• A combination of both, leading-edge tubercles and end plates show a significant increment in the 
turbine efficiency.

Figure 17. RPM vs V (Inlet) -Comparative performance of all the models of the turbine

Figure 18. CP vs V (Inlet) -Comparative performance of all the models of the turbine
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• For all configurations, efficiency increases up to a certain point only and after that, it starts to 
decrease. So to run the turbine most efficiently, that particular point needs to be achieved i.e. that 
particular value of TSR needs to be maintained to have the maximum efficiency.
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ABSTRACT

Vertical axis wind turbine suffers from low performance, and the need for improvement is a challenge. This work addresses this 
problem by using computational fluid dynamics. This chapter aims to analyze and compare symmetric and cambered Darrieus 
turbine. These analyses are usually carried for straight leading-edge blades, and cambered resembles more the natural shape 
of the wing of birds and other aquatic mammals, which helps them generate extra lift during movement. Moreover, recent stud-
ies suggest better performance was observed for NACA0018 symmetric aerofoil blades, and a similar trend has been observed 
for NACA2412 cambered aerofoil profiles. Turbine models having symmetric NACA0018 and cambered NACA2412 profiles 
have been studied. By comparing the symmetric model with cambered blade models, differences in coefficient of torque have 
been presented. OpenFOAM is used for performing the 2D simulation with dynamicOverset-FvMesh for motion solver with 
overset mesh method. Meshed geometry was constructed with GMSH codes and the simulation uses overPimpleDyMFoam 
algorithm as a solver.
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1 INTRODUCTION

The wind energy sector is one of the leading sectors of growth for sustainable development across the 
globe. According to the latest global wind report 2021, the industry showed a 53% increase in instal-
lation globally in 2020 (Global Wind Energy Council, 2021). Wind energy turbines are categorized as 
Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT). HAWTs are the 
traditional three-bladed lift-based turbines whose rotational axis is parallel to the ground and has higher 
acceptability. Vertical axis turbines are less used and have both drag-based like Savonius and lift-based 
like Darrieus. The axis of rotation is perpendicular to the ground for vertical axis wind turbines. How-
ever, Vertical Axis Wind Turbine suffers from low performance, and the need for improvement is a 
challenge. The VAWTs are considered to have lesser efficiency as compared to HAWTs; however, they 
have a wide range of operations. Many works have been published to improve the efficiency of these 
turbines with new design considerations (Ahmad et al., 2016; Mishra et al., 2018; Seeni et al., 2018). 
Hand et al. (Hand et al., 2021) have presented aerodynamic design parameters that influence the lift type 
VAWT. Elsakka et al. (Elsakka et al., 2019) pointed out how the Angle of Attack (AoA) variation can 
enhance performance for Darrieus turbines with a variable pitch by comparing it with the fixed pitch 
model. Bio-inspiration is one of the techniques of mimicking nature to improve the aerodynamics of 
the present models. Fish (Fish, 2020) introduced tubercles to the blade’s leading edge as a bio-inspired 
design inspired by gigantic humpback whale flippers. Yadav (Yadav et al., 2021) implemented a bio-
inspired nose inspired by cetacean marine mammals for flow separation on NACA airfoil for the 4 and 
6 series. Work states for a lower angle of attack, larger perturbation of the nose leads towards multiple 
accelerations on the extended surface, creating a forward-facing step and thus improving the aerody-
namic efficiency. But, at a high angle of attack, it is ineffective due to early flow separation. Lositano & 
Danao (Lositano & Danao, 2019) studied cambered tubercle leading-edge blades for VAWT and stated 
a detrimental effect compared to cambered NACA0025 airfoil. Rezaeiha et al. (Rezaeiha et al., 2018) 
published a work on VAWT CFD study that comprises of tip speed ratio, solidity azimuthal increment 
and simulation convergence. Bai et al. (Wang et al., 2015) worked on computational analysis of VAWt 
with tubercle leading edge on NACA0015 and stated the thrust is lower than the straight blade turbine. 
Howell et al. (Howell et al., 2010) showed 2D results overestimate 3D results and the reason for such 
drop in result in 3D case is due to end tip vortices. Kjellin at el. (Kjellin et al., 2011) conducted experi-
mental study for 12 KW VAWT and got coefficient of performance 0.29 at tip speed ratio of 3.3 using 
NACA0025 airfoil. Mohamed (Mohamed et al., 2015) stated the zero pitch angle gives best performance 
while comparing 25 airfoil profile, LS(1)-0413 airofoil gives 10% extra power compared to NACA0018 
and NACA 63-415 gives a wider operating range than all other airfoil models. Jones(Jones et al., 2018) 
published a computational work for low Reynolds no flow for morphing airfoil the effect of dynamic 
surface around airfoil was explored computationally. Razaeiha et al. (Rezaeiha et al., 2017) performed 
experimental analysis and for increasing the pitch angel to -2° the Cp increases for 6.6% in comparison 
to zero degree pitch angle they stated the change in configuration changes the strength of shed vortices 
and can decrease the wake generation for VAWTs. Rostamzadeh et al. (Rostamzadeh et al., 2013) has 
published an experimental and computational for a new design for tubercle was introduced the result for 
computational and experiment are in good agreements with each other. Khaleghinia et al. (Khaleghinia et 
al., 2021) published a study for NACA0018 with cavity layouts and claimed the performance increased 
by the addition of these cavities, a computational study was performed for shape position size and no. 
of cavities. The greatest value of torque was achieved with a single cavity and a dual cavity result was 
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detrimental. Saha and Siddhart (Saha & Jain, 2020) worked on dynamic stall of H-blade Darrieus ro-
tors variation of Cl and Cd with different phases for dynamic stall is discusses. They observed three 
different stall leading mixed and trailing edge stalls. Mohamed et al. (Mohamed et al., 2019) published 
a paper with different blade shapes effect on turbine performance and stated the J-shaped design with 
wind lens enhance the performance by a factor of 2.24. they also stated using these wind lens is noisy 
still it enhances the performance. Sengupta et al. (Sengupta et al., 2019) worked on high solidity and 
low Reynolds no. with a cambered blade profile, they suggested a better desigh of airforil shape with 
higher blade curvature on inner surface around moment center. Blade profile S815 and EN0005 blades 
are considered better design. Chenet al. (Chen et al., 2015) published a study of novel Darrieus VAWT, 
the effect of opening ratio was analyzed and resulted in increasing torque and decreasing the power, 
the opening ratio of 0.48 and 0.60 was desirable for this design. Dessoky et al. (Dessoky et al., 2019) 
worked on wind lens technology to enhance the aerodynamic performance, they also studied the noise 
generated during the study. They used a DDES approach after 2D URANS computational study. The 
study improves the performance by 82% by using a cycloid diffuser. Scungio et al. (Scungio et al., 2016) 
studied a wind tunnel testing of an auxiliary straight blade Darrieus VAWT and static and dynamic power 
and torque were validated with standard results. Castelli et al. (Castelli et al., 2011) present a new CFD 
code that combines blade elemental theory and dynamic quantities like rotor torque and blade tangential 
and normal force. They run simulation for NACA 0021 three rotor blades and validate with standard 
results. Shukla (Shukla & Kaviti, 2017) studies the effect of gurney flap and dimples independently and 
combined effect on various straight blade profile and find the dimple and Gurney flay combined gives 
best result for NACA0015. In the study NACA0012, NACA0015, NACA0018 and NACA0021 were 
studied. Bangga et al. (Bangga et al., 2020) published a work that used prediction approaches to study 
three VAWTs at various solidity, various models like DMS, IDMS, UBEM, Vortex model and CFD 
method has been used in the study. different rotor solidity 0.23, 0.53 and 1.325 are used and observed 
CFD predictions have discrepancy in showing consistent power prediction still it manages to predict ac-
curate thrust values. Giorgetti et al. (Giorgetti et al., 2015) published a work for setting VAWT in close 
proximity, the turbine selected is micro turbine and has low solidity and low tip speed ratio. The study 
observed the accelerated free stream helps in extraction of more power in closed proximity arrangement.

Wind turbines work on the principle of Betz’s law, which states no turbine can surpass the maximum 
wind efficiency of 0.529. Cp–𝜆 curve is used to measure the performance of a turbine, where Cp is the 
coefficient of power and (𝜆 =TSR(Tip Speed Ratio)) (Giorgetti et al., 2015). VAWTs have a better per-
formance as compared to HAWTs at lower wind speed regimes. Cp is stated as the efficiency of the wind 
turbines, representing the ratio of the power being captured by the turbine blades to the power available 
in wind hitting the blades (Jain, 2016).
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The study comprises of computational flow solution for a wind turbine and uses OpenFoam an open 
source CFD (computational fluid dynamics) solver.
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2 PROBLEM STATEMENT

A comparative parametric study has been performed between symmetric and cambered airfoil turbines, 
symbolized by model A and model B, respectively, as shown in Figure 1 and Figure 2. Model A represents 
a straight blade VAWT with a NACA0018 profile. Model B represents the cambered blade profile with 
the NACA2412 profile. The chord length has been kept constant for both the airfoil. The specifications 
have been presented in Table 1.

Figure 1. Schematic Overview

Table 1. Specification for rotor

   Parameters    Symbols    Dimension

   Chord length (B)    100 mm

   Chord length (A)    100 mm

   Length    L    0.1 m

   Diameter of turbine    D    600 mm

   NACA profile A    0018

   NACA profile B    2412
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3 GOVERNING PHYSICS AND SOLVER DETAILS

This study was performed using OpenFoam a CFD toolbox for computational analysis on a system hav-
ing Intel Xeon Gold-5222 CPU @8 processors with 64 GB 2666 MHz DDR4 RAM. A meshing code 
from Gmsh an Opensource codes have been used, and Open foam is used as a solver for describing 
the governing physics. The geometry was divided into two sets, Rotor (overset) and Domain. Overset 
serves as a boundary for the transfer of cell information between the domain and blades. Domain is the 
stationary portion for the fluid flow interaction. This computation focus on fluid flow analysis, where 
a solid body is treated as a wall with no-slip boundary condition, and only fluid equations need to be 
solved. An angular momentum 𝜔 is provided to the solid body, and change in the fluid is computed
using overPimpleDyM algorithm. The script uses K–𝜔SST to solve Reynolds averaged Navier-Stokes 
equations as a turbulence model, the transport model as Newtonian, and the time scheme as Euler. A 
detailed description has been tabulated in Table 2. The overset method, also known as Chimera mesh, 
is being used for the study. An overlapping of mesh is required for this scheme. The cell information 
of the domain passes to the outer boundary of the blade zones through an overset. The outer cells of 
the blade containing the mesh zone need to be identical to the background domain mesh, as shown in 
Figure 3. A detailed description of the overset method can be found in (Jain, 2016). For simulation of 
the external sub-sonic flow boundary conditions comprise of three velocity components and pressure 
value at the outlet, as shown in Table 2. The inlet is placed at a distance of 3D, and the outlet is at 6D 
from the rotor blades.

Figure 2. Schematic Overview
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4 MESHING

Meshing is the most important aspect of a CFD problem. The domain for fluid flow is shown in Figure 3. 
Overset meshing schemes have been used with all hexahedra cells for meshing. This method is effective 
for dynamic mesh where cell information passes through the overset surface to the zone where a motion 
has been defined. A y+ Value of 0.1 has been used in these simulations, and the domain is kept constant 
along with the no. of cells and only parameter that has changed is the airfoil shape from symmetric to 
cambered, as shown in Figure 4 and Figure 5. The first layer thickness have been kept constant for both 
case as 8.54E-6 as shown in Figure 6 and Fig 7. Mesh statistics have been provided in Table 3, and Table 
4 states domain specifications.

Table 2. Computational details

Constant

Transport model Newtonian Dynamic viscosity 1.42E-5

Simulation type RAS RAS model K–𝜔 SST

Dynamic meshsolver dynamicOversetFvMesh Solver multisolidBodyMotionSolver

Systems

Fvscheme FvSolution

ddt scheme Euler Residuals 10-6

gradScheme Gauss Linear

Div scheme Limited linear

Laplacian Scheme Gauss linear corrected

Interpolation Scheme linear

Boundary condition

Inlet (5,0,0)m/s Patch = zero 
Gradient

Outlet Pr = 0 bar Patch = zero 
Gradient

Table 3. Mesh information

   Model    Cells

   Model A    5928

   Model B    5928
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Figure 3. Domain for analysis

Figure 4. Meshed blade geometry
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Figure 5. Meshed blade geometry

Figure 6. First layer thickness
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5 RESULTS

The Airfoils have been studied, and corresponding pressure and velocity contour at time 1.79s have been 
shown for a uniform time period for both the models. Model A shows a higher pressure profile at the 
tail end of the airfoil than Model B, as shown in Figure 8 and Figure 9. Both airfoil has been studied for 
a transient simulation and the timestep 1.79s has been selected for comparison in as a steady state has 
been reached as can be seen from the coefficient of torque plot. The velocity distribution appears to be 
uniform at this time step, as shown in Figure 10 and Figure 11. The residual plot containing the Ux Uy, 
Omega, k, and P values at each time step for a simulation has been shown in Figure 12 for the simulation 
of NACA0018 at a 2.02 tip speed ratio. Its coefficient of torque is shown in Figure 13.

Figure 7. First layer thickness

Table 4. Specifications for the domain

   Symbol    Dimension

   Overset radius    0.180 m

   Domain size    (-2,-2,0) (4,2,0.1) m

   First layer thickness    8.54E-5
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Figure 8. Pressure contour

Figure 9. Pressure contour
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The simulations are carried out for different values of TSR, and the corresponding coefficients of torque 
vs TSR are shown in Figure 14. Using Eqn. (1) the coefficient of performance values can be easily found 
out. The corresponding Cp vs TSR curve for performance characteristics has been shown in Figure 15.

Figure 10. Velocity contour

Figure 11. Velocity contour
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Figure 12. Residuals for the simulations

Figure 13. Coefficient of Torque vs Time for TSR 2.02 for NACA0018
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6 CONCLUSION

Two turbine configurations represented as Model A and B are compared with uniform chord length. A 
2D CFD numerical study has been performed with different TSR values and has been shown. A Transient 
steady case with the k–𝜔 SST turbulence model has a prerequisite of 10 complete VAWT rotations to
attain converged results. The simulation is allowed to run for 5 seconds to eliminate the transient phase, 
and a stable result can thus be obtained. Coefficients of lift, drag and moment on blades were indepen-

Figure 14. Comparison of Cp vs TSR

Figure 15. Comparison of Cp vs TSR
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dently examined during the study and converged using a MATLAB script to smoothen the curve to get 
a Ct(averaged) value to be presented.

The results clearly indicate a better performance of the cambered blade profile in comparison with 
the symmetric blades. There is still a future scope of 3D study to verify the results obtained in the pres-
ent study.
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ABSTRACT

This chapter explains the parametric accelerated life testing (ALT) to recognize design defects in mechani-
cal products. A life-stress model and a sample size formulation are suggested. A compressor is used to 
demonstrate this method. Compressors were failing in the field. At the first ALT, the compressor failed 
due to a fractured suction reed valve. The failure modes were similar to those valves returned from the 
field. The fatigue of the suction reed valves came from an overlap between the suction reed valve and 
the valve plate. The problematic design was modified by the trespan dimensions, tumbling process, a 
ball peening, and brushing process for the valve plate. At the second ALT, the compressor locked due to 
the intrusion between the crankshaft and thrust washer. The corrective action plan performed the heat 
treatment to the exterior of the crankshaft made of cast iron. After the design modifications, there were 
no troubles during the third ALT. The lifetime of compressor was secured to have a B1 life 10 years.
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1. INTRODUCTION

Because of demands in the global market, refrigerators must be designed to have low energy usage and 
reliability. For those aimed functions, the compressor in the refrigerator often needs to be redesigned to 
enhance its comprehensive energy efficiency on a yearly basis. It involves recently designed features for 
the system, which should be rapidly brought to the end-users. With insufficient testing or no assumption 
of how the new attributes may be utilized, their launching may increase product failures in the marketplace 
and negatively influence the manufacturer’s brand name. These attached features for the product should 
be totally assessed in the design phase before being released into the marketplace. Therefore, reliability 
quantitative (RQ) specifications utilizing an established system of method should be presented (CMMI 
Product Team, 2018; Woo et al., 2021).

A compressor is designed to increase the refrigerant pressure in a refrigeration cycle by several 
mechanical compression mechanisms. One of the key components of the compressor is the crankshaft 
that converts the rotational motion into reciprocating motion by a crank mechanism. A compressor is 
subjected to repeated stresses due to internal pressure loadings over the course of its lifetime. New ro-
tary compressors introduced in 1987 in refrigerators were experiencing large recalls due to the locking 
of the compressor in the field (Magaziner & Patinkin, 1989). Oil metal sludge formed during normal 
refrigeration operations was separating from the sintering crankshaft and plugging the capillary tubes, 
which forced the refrigerator to no longer function. To stop a compressor recall, any flawed components 
needed to be identified and altered using testing methodology such as parametric ALT, which can produce 
reliability quantitative (RQ) specifications before the system launches.

The procedures of robust design, such as the Taguchi approach (Chowdhury & Taguchi, 2016; Rosa 
et al., 2009) and design of experiments (DOE)(Allen, 2020), were developed to help identify the most 
advantageous designs for products. Especially, Taguchi’s method employs design parameters to put it in 
the right location where ‘‘noise” parameters do not have any effect on the output. As a result, the right 
designs of mechanical products can be selected. However, without identifying failure mechanisms such 
as fatigue, this methodology can only pursue system optimization. If there is a design fault, the product 
may fail during its lifetime as loads are exerted on it. Many parameters must be considered to identify 
an optimal design of a mechanical structure. However, the large number of parameters may require huge 
computations unless some options are neglected to reduce computational requirements.

Material faults, such as extremely small voids and contacts when subjected to repeated loads, may 
begin to fail because of fatigue. Fatigue is the chief source of destruction in metallic elements, explaining 
roughly 80%–95% of all constructional failures. Fatigue in ductile metals appears itself in the shape of 
cracks that grow in stress accumulation, such as holes, grooves, etc. Those failures can affect the reli-
ability of mechanical systems such as moving automobiles, airplane wings, marine ships, turbo engines, 
and atomic reactors. The fatigue procedure covers three fluctuating stress/time modes: 1) symmetrical 
about zero stresses, 2) asymmetrical about zero stresses, and 3) random stress cycles. The fatigue may 
also rely on the parameters such as the cyclic stress amplitude, mean stress or stress ratio, R (=σmin/σmax), 
which can be defined as s the proportion of the minimum cyclic stress to the maximum cyclic stress 
(Campbell & Fatigue, 2008). In other words, in periodical shapes, the peaks on both the maximum (high 
side) and the minimum (low side) are crucial. When employing an elevated load which can be stated as 
an accelerated factor (AF), accelerated life testing (ALT) can be examined to discover the design defects 
such as stress raiser in the structure.
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The ALT combined on the reliability block diagram was investigated as another method (Modarres et 
al., 2016). It included a test plan for the system, identifying failure mechanics such as fatigue, and using 
sample size equation, accelerated loads, etc. Elsayed (Elsayed, 2012) categorized statistical, physics/
statistics, and physics/experimental-established prototypes for examination. Meeker (Hahn & Meeker, 
2004) suggested numerous practical ways to organize an ALT. Carrying out an ALT (McPherson, 1989; 
McPherson, 2010) necessitates numerous notions such as the BX life for the system test scheme, a 
simplified life-stress description, sample size formulation, and fracture mechanics because failure may 
happen suddenly from the fragile components in a product. Contemporary test techniques might be hard 
to replicate the design flaws of components in a multi-module system because those procedures evaluate 
insufficient component samples and do not identify the fatigue(s) which actually occur in the marketplace.

To attain the sound design of a mechanical product, designers have employed traditional techniques 
such as fracture mechanics and strength of materials (Hertzberg et al., 2020). As quantum as one of the 
branches of mechanics has developed, engineers identified which failures came from micro-void co-
alescence (MVC) and discovered many metallic alloys or some engineering plastics. To find the fatigue 
source of a mechanical product, a life-stress model can be incorporated with conventional design methods 
and relevant techniques to help identify the failure of electronic parts due to present material flaws or 
small cracks when the parts are subjected to (mechanical) stresses. Finite element methods (FEMs) may 
not identify the source of failure (Zupančič et al., 2021).

To show the effectiveness for identifying and altering the design defects of a mechanical product, 
this research proposes using a parametric ALT as a systematic reliability method that can create the RQ 
specifications—mission cycles. It covers: (1) a system BX lifetime created on the ALT scheme, (2) a 
load examination for ALT, (3) tailored ALTs with the alterations, and (4) an estimation of whether the 
product design(s) accomplishes the objective BX lifetime. The derivation of the sample size equation, 
time-to-failure, and BX lifetime is provided. To confirm ALT results in real life and compare the cur-
rent design with previous one, it would then be necessary to monitor the introduction of the new design 
in the market to ensure it reached the targeted lifetime and failure rate. A newly designed compressor 
in a domestic refrigerator subjected to repeated pressure impact loading is used as an example of this 
methodology.

2. PARAMETRIC ALT FOR MECHANICAL PRODUCT

2.1. BX Lifetime of a Mechanical System

To perform an ALT, the BX life, LB, is needed as a measure of the product lifetime. It can identify the 
accumulative failure rate and meet the market needs for reliability requirements of the product. BX life 
is the elapsed time for which X% of a population of a product fails. Thus, a “BX life Y years” is a way 
for expressing the system lifetime. For example, if a system lifetime has a B20 life of 10 years, then 
20% of the population will fail during 10 years of operation. On the other hand, the mean time to failure 
(MTTF)—the B60 lifetime—is not acceptable for identifying the system lifetime because it takes too 
long for 60% of the population of the product to fail. The BX life is a more suitable measure of a lifetime.

In a mechanical product, movements of power for acquiring mechanical advantages are utilized in 
functions that require forces and movement by accommodating certain system mechanisms. As products 
are subjected to repeated stresses, they should have a proper lifetime for those stresses. For instance, 
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to maintain the freshness of food products, a refrigerator is designed to provide cooled air from a heat 
exchanger such as an evaporator to the refrigerator (or freezer) sections. The refrigerator is made up of 
different modules: the cabinet, door, internal fixtures (shelves and drawers), controls and instruments, 
electric motor, compressor, heat exchangers (evaporator and condenser), water supply device, and nu-
merous dissimilar parts. A refrigerator has approximately 2,000 components (Figure 1a). A target of 
the refrigerator’s lifetime is set to have a B20 life 10 years. If a refrigerator consists of 20 units and each 
unit has 100 components, the lifetime of each unit should be designed to have a B1 life 10 years. The 
required system lifetime of a refrigerator relies on the many components, including the compressor. If 
the compressor has design faults, it impacts the potential life of the refrigerator (Figure 1b).

2.2. Placing an Entire Parametric ALT Scheme

For a stated period of time, the reliability for a compressor can be explained as the capacity needed to 
continue performing the intended function under specified environmental/operational conditions (IEEE 
Standard Glossary of Software Engineering Terminology, 2002). It can be explained using the traditional 
“bathtub curve”, which is composed of three regions, as seen in the top curve of Figure 2. In the first 
region, during the early product life, there is some reduction in the failure rate. In the second region, dur-
ing its middle life, there is a relatively constant failure rate. In the third region, there is a growing failure 
rate until the final life of the product. If a product follows this classic pattern, it might not be successful 
in the marketplace due to the tall initial failure rates and the relatively short lifetime of the product due 
to built-in design flaws. Companies need to upgrade the system design by setting its reliability targets 
to (1) remove premature failures, (2) reduce random failures over the product lifetime, and (3) enlarge 
product lifetime. As the design of a mechanical product improves, its failure rate in the field decreases, 
and the system lifetime can be increased. For such situations, the traditional bathtub curve might be 
altered to the bottom curve in Figure 2, where failure rates are low throughout the life of the product 
except toward the end of its expected life.

Figure 1. Product lifetime decided by newly designed module (a) categorization of multi-module refrig-
erator; (b) product lifetime LB and failure rate λs.
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The failure rate on the bathtub in Figure 2 can be stated as

� � � �
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dF dt
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where λ is the failure rate, f is the failure density function, R is the reliability, and F is the unreliability 
of the product.
If Equation (1) is integrated over time, the X% cumulative failure F(LB) at BX life, LB, can be obtained:
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As a product has a lower failure rate of the straight line that follows an exponential distribution, the 
reliability of a mechanical system could be stated as the product lifetime LB and failure rate λ:

R L F L e LB B
L

B
B� � � � � � � � �1 1

-� �  (4)

This relationship is suitable below about 20% of the cumulative failure (Kreyszig, 2011). After tar-
geting the lifetime, LB, and failure rate, λ, the mechanical product can be redesigned by identifying the 
troublesome structures and altering them by a parametric ALT (Figure 3).

Figure 2. Bathtub curve and straight line.
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To target the lifetime of a mechanical system through a parametric ALT, there are three possible 
system modules: (1) modified independent units, (2) newly designed independent units, and (3) similar 
independent units to the earlier design base on request in the field. The modified compressor in the 
refrigerator inspected here is used as a case study. It was originally redesigned to enhance its energy 
efficiency and make the refrigerator more competitive in the marketplace. However, the redesigned 
compressor had design faults that needed to be altered because of failures in the field.

The altered independent units D from the field data manifested in Table 1 had a failure rate of 0.31% 
per year and a B1 life of 3.2 years. The lifetime of compressors, based on data from the field, indicated 
they had an expected B1 life of 1.6 years because they had a failure rate of 0.62% per year. To satisfy 
consumer demands, a new lifetime target for the mechanical system such as compressor was put to have 
a B1 life of 10 years with 0.1 percent per year.

2.3. Failure Mechanics and Parametric ALT for Redesign

As mentioned in Section 2.1, mechanical products usually transfer power (or energy) from one position 
to another by adapting proper mechanisms. For example, the compressor in a refrigerator, by utilizing the 
vapor-compression cycle, increases the refrigerant pressure using a crankshaft mechanism. It is subjected 

Figure 3. Parameter diagram of compressor (example).

Table 1. Whole ALT scheme of mechanical modules in a refrigerator.

Modules
Field Data Expected Reliability Aimed Reliability

Failure Rate Per 
Year, %/Year

BX Life, 
Year Failure Rate Per Year, %/Year BX Life, 

Year
Failure Rate Per 

Year, %/Year BX Life, Year

A 0.35 2.9 Similar ×1 0.35 2.9 0.10 10(BX = 1.0)

B 0.24 4.2 New ×5 1.20 0.83 0.10 10(BX = 1.0)

C 0.30 3.3 Similar ×1 0.30 3.33 0.10 10(BX = 1.0)

D 0.31 3.2 Altered ×2 0.62 1.61 0.10 10(BX = 1.0)

E 0.15 6.7 Altered ×2 0.30 3.33 0.10 10(BX = 1.0)

Others 0.50 10.0 Similar ×1 0.50 10.0 0.50 10(BX = 5.0)

Product 1.9 2.9 - - 3.27 0.83 1.00 10(BX = 10)
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to repeated stresses because of pressure loading. If there is a design defect in the structure that creates 
an insufficient strength (or stiffness) when the loads are applied, the mechanical product may abruptly 
collapse before its expected lifetime.

Metal fatigue is the familiar word that can be used to express the unanticipated failure of product 
components that develop fractures in their lifetime. It is connected to the number of stress cycles expe-
rienced by a component and the amount of stress exerted on the component. The S-N curve shows that 
an infinite life is possible for a metal component if the stresses in the component remain below a clearly 
defined lower stress boundary. Metal fatigue grows if there is a stress raiser such as notches in a com-
ponent. An engineer should identify these design flaws using appropriate analysis or testing. There is 
also a correlation between a metal component’s ultimate tensile strength and hardness and its capability 
to endure fatigue loads. The loftier the tensile strength and hardness, the more probably it will fatigue 
if subjected to higher fluctuating loads.

Fatigue failure due to design defects can be characterized by two components: (1) the stress due to 
loads on the constructional system and (2) the type of materials (or shape) utilized in the structure. In 
recognizing the product failure by a parametric ALT, an engineer could optimally design parts with 
good forms and proper materials. The system could bear repeated loads over its lifetime so that it could 
fulfill the reliability target (Figure 4).

The main problem for reliability testing is to determine how quickly the potential failure mode can 
be identified. To complete it, it is necessary to successfully formulate a simplified failure description 
and determine the correct coefficients for the model. A life-stress (LS) model can be developed, which 
incorporates stresses and reaction parameters. This model can explain various mechanical failures such 
as fatigue in the structure. Fatigue failures can occur not due to stresses in a perfect part but rather due 
to the present defects or very small cracks on the exterior of a component.

As fatigue originates from material flaws created on a macro or microscopic scale level, the life-
stress model can be defined from such a point of view. For instance, we can utilize the procedures for 
solid-state diffusion of impurities in silicon, which is commonly used as semi-conduct material, such 
as in the following procedure: electro-migration-induced voiding, growth of chloride ions, and catching 

Figure 4. Fatigue failure on the structure created by repetitive loading and design flaws.
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of electrons or holes. As an electric magneto-motive force, ξ, is exerted, the impurities such as voids 
in materials, created by electronic movement, are effortlessly migrated because the barriers of junction 
energy are dropped and distorted/phase-shifted. For solid-state diffusion of impurities in silicon, the 
junction equation J might be expressed as follows (Grove, 1967; Minges, 1989) (Figure 5):

J aC x a q
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where C is the concentration, q is the magnitude of electric charge, ν is the frequency, Φ() is a constant, 
B is a constant, a is the interval between atoms, ξ is the applied field, k is the Boltzmann’s constant, T 
is the temperature, and Q is the energy.

The reaction process, which depends on speed, could be stated as
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Figure 5. Potential exchange in material such as silicon as electrical field is exerted.
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where K is the reaction rate, S is the (chemical) effect, T is the temperature, k is Boltzmann’s constant, 
E is the (activation) energy, and Δ is the difference.
The reaction rate K from Equations (5) and (6) could be simplified as

K B aS E
kT
a� ��

�
�

�
�
�sinh( )exp  (7)

If Equation (7) takes an inverse function, the life-stress (LS) model might be stated as

TF A aS E
kT
a� � � �

�
�

�
�
�

�
sinh( ) exp

1  (8)

The sine hyperbolic expression [sin h(aS)]-1 in Equation (8) can be stated as (Figure 6):

1.  (S)-1 at first has a little linear result;
2.  (S)-n has what is regarded as a medium result;
3.  (eaS)-1 at end is large.

An ALT is usually conducted in the medium scope, and Equation (5) might be stated as

TF A S E
kT

n a� � � �
�
�

�
�
�

�
exp  (9)

Figure 6. Hyperbolic sine stress term versus S-N curve from a standpoint of stress range.
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Because the stress level in a mechanical system may be hard to be computed during ALT, Equation 
(9) must be restated. As the power is stated as the product of flows and effort, stresses may originate 
from effort in a multi-port product (Table 2) (Karnopp et al., 2012).

Stress is a material quantity that specifies the inner forces which adjoining particles of a continuum 
material exert on each other. For a mechanical system, because stress originates from effort, Equation 
(9) might be stated as

TF A S E
kT

B e E
kT

n a a� � � �
�
�

�
�
� � � � �

�
�

�
�
�

� �
exp exp

�  (10)

where A and B are constants.
To obtain the acceleration factor (AF), which can mostly affect the evaluation of fatigue strength in 

a product, AF might be stated as the ratio between the proper elevated stress levels and normal working 
conditions. AF might be modified to integrate the effort notion:
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 (11)

2.4. Parametric ALT for Mechanical Systems

To acquire the mission cycle of parametric ALTs from the targeted BX lifetime on the test plan in Table 1, 
the sample size equation combined with the AF should be attained (Woo et al., 2021) (see Appendix A).

n r
x

L
AF h

rB

a

� �� �� �
�

�

�
�

�

�
� �1

1
*

�

 (12)

If the lifetime of a mechanical system, such as the domestic compressor, is targeted to have a B1 life 
of 10 years, the mission cycles might be acquired for an assigned set of samples subjected to (impact) 

Table 2. Power concept in a multi-port product expressed as effort and flow.

System Effort, e(t) Flow, f(t)

Translation system Force, F(t) Velocity, V(t)

Rotation system Torque, τ(t) Angular velocity, ω(t)

Pump, compressor Pressure difference, ΔP(t) Volume flow rate, Q(t)

Electric system Voltage, V(t) Current, i(t)

Magnetic Magneto-motive force, em Magnetic flux, φ
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loading. In parametric ALTs, the design defects of the new product might be identified to help satisfy 
the lifetime target.

2.5. Case Study—Design of a Recently Designed 
Domestic Compressor in a Refrigerator

Operating with unspecified consumer usage conditions, the suction reed valves in compressors used in 
the field were unsuccessful. The fractured suction reed valve caused the domestic compressor to lock 
and quit functioning. As the primary purpose of the refrigerator, including the compressor, was lost, 
consumers would solicit to have the product exchanged. To address the problem, it was crucial to re-
produce the failure mode(s) of the compressor in simulated conditions in a room or building equipped 
for engineering experiments. Seemingly, the troublesome compressors that came from the field had two 
evident design flaws: (1) the suction reed valve had a quantity of overlap with the valve plate, and (2) 
the valve plate had a sharp edge. As the suction reed valve impacted the valve plate, it would fail before 
its expected lifetime (Figure 7).

To chill the stored products in a refrigerator, the refrigerator supplies cooled air from the evaporator 
heat exchanger to the freezer (or refrigerator) departments. The vapor-compression cycle in a refrigera-
tor covers a compressor, condenser, capillary tube, and evaporator. Electrical energy in the compressor 
motor is converted to work energy in the compressor that is used to elevate the refrigerant pressure. With 

Figure 7. Failed suction reed valve: (a) suction reed valve and valve plate in a compressor. (b) Fractured 
suction reed valve from the marketplace or parametric ALT.
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refrigerant flowing in the system, heat energy absorbed by the evaporator is moved to the condenser, 
where it is rejected to the surrounding air. A capillary tube manages the refrigerant flow and controls the 
flow of refrigerant from the high-pressure refrigerant in the condenser to the low-pressure refrigerant in 
the evaporator. In an ideal vapor-compression refrigeration cycle, the refrigerant enters the compressor as 
a saturated vapor (Processes 1–2) and is cooled to the saturated liquid state in the condenser (Processes 
2–3). It then drops in pressure as it goes through the expansion device to the lower pressure evaporator 
(Processes 3–4). In the evaporator, the refrigerant is vaporized as it absorbs heat from the refrigerated 
space (Processes 4–1) (Figure 8).

During normal operation, refrigerator compressors are subjected to repetitive stresses due to pressure 
loads differences in the compressor. If there is a design fault in a component, such as an insufficiency of 
strength, when the loads are applied in the compressor, the component may abruptly fail and not meet its 
expected lifetime. By identifying the system failure by a parametric ALT, an engineer can select proper 
material and redesign the component using the best or most favorable way so the compressor can sup-
port repeated loads and its lifetime can be increased. It is necessary to analyze the pressure loads in the 
compressor.

In a representative refrigeration cycle, to assess its design, it was required to determine both the 
condensing temperature, Tc, and evaporating temperature, Te. The mass flow rate of refrigerant in a 
compressor can be modeled as

Figure 8. A domestic compressor in the refrigeration cycle: (a) vapor-compression refrigerator cycle, 
(b) P h diagram.
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m PD
v
v

suc

� �
�  (13)

where PD is the piston displacement, ην is the compressor’s volumetric efficiency, and νsuc is the specific 
volume at compressor suction port.

The mass flow rate of the refrigerant at the capillary tube can be modeled as (Whitesel, 1957).
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 (14)

By conservation of mass, the mass flow rate can be stated as:

 m mcap=  (15)

The energy conservation at the condenser can be stated as

Q m h h T T Rc c o c� �� � � �� �

2 3
/  (16)

The energy conservation at the evaporator can be stated as

Q m h h T T Re i e e� �� � � �� �

1 4
/  (17)

Using Equations (15) through (17), it is possible to obtain estimates of the mass flow rate, m , 
evaporator temperature, Te, and condenser temperature, Tc. Because the saturation pressure, Psat, is a 
function of temperature, we can obtain the evaporator pressure, Pe (or condenser pressure Pc).

Pe = f(Te) or Pc = f(Tc) (18)

Both the condensing pressure, Pc, and evaporating pressure, Pe, are important when examining the 
load on the compressor. These pressures depend on the environmental conditions, heat exchanger size, 
and customer usage conditions in the design stage.

During normal compressor operations, it will be subjected to repeated stresses due to the pressure 
differences between the suction and discharge. The internal stress of the compressor relies on the pres-
sure difference between suction pressure, Psuc, and discharge pressure, Pdis.

∆P = Pdish – Psuc≅ Pc - Pe (19)

Under accelerated conditions, the life-stress model (LS model) in Equation (10) can be stated as:
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where A is constant, k is Boltzman’s constant, Ea is the activation energy, T is the absolute temperature, 
n is the quotient, and λ is the cumulative damage exponent in Palmgren–Miner’s rule.
So the acceleration factor (AF) might be stated as:
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 (21)

where S1 (or P1) is mechanical stress (or pressure difference) under accelerated conditions, and S0 (or 
P0) is mechanical stress (or pressure difference) under representative conditions.

For a domestic compressor in a refrigerator, the typical operating conditions were for a customer 
span from 0 °C to 43 °C with a humidity fluctuating from 0% to 95%. Vibration conditions presumed 
for working the compressor were subjected to 0.2 to 0.24g of acceleration.

When the compressor operates, the suction reed valve opens to allow refrigerant to stream into the 
compressor. A compressor is expected to cycle on and off 22 cycles per day. A worst-case scenario was 
also duplicated with on and off of 98 cycles per day. Under the worst cases, the compressor working for 
10 years may incur approximately 357,700 usage cycles.

The compressor is usually made of (carbon, cast, stainless, alloy, etc.) steel. The allowable stresses 
are stated as a function of the yield stress (Fy) or tensile stress (Fu) of the structural material. For steel, 
the ranges of yield strength, Fy, and ultimate or tensile strength, Fu, ordinarily used are 248–345 MPa 
and 400–483 MPa, separately. Refrigerant R134a is the refrigerant utilized in the refrigerant cycle. It 
uses synthetic refrigeration compressor oils that have a high Viscosity Index (VI). They have slight 
viscosity changes in relation to temperature changes. Therefore, the slope of the viscosity of a synthetic 
lubricant with a high VI is flatter with respect to temperature. The viscosity thus remains stable across 
a wide temperature usage range.

In the worst case, the pressure difference was 1.27 MPa, and the compressor dome temperature was 
90 °C. For a parametric ALT, the pressure difference was elevated to be 2.94 MPa, and the compressor 
dome temperature was also elevated to be 120 °C, with an accumulative damage exponent, λ, of 2. The 
total AF computed from Equation (21) was 7.3 (Table 3).

Table 3. Compressor ALT conditions.

System states Worst Case ALT AF

Pressure (MPa)
High-side 
Low-side 

ΔP

1.27 
0.0 
1.27

2.94 
0.0 
2.94

5.36 ①
- 
-

Temperature (°C) Dome 90 120 1.37 ②

Total AF
(=(① × ②)) - - - 7.32
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The test cycles of the ALTs calculated from Equation (12) were 49,000 cycles for 100 samples if the 
shape parameter, β, was presumed to be 2.0. The parametric ALT was designed to reassure a lifetime 
target—B1 life of 10 years—with an approximate 60% level of confidence that it would fail less than 
once during 49,000 cycles. We also exerted the duty cycles of the pressure difference between suction 
pressure, Psuc, and discharge pressure, Pdis.

To assess the design of the compressor, a straightforward refrigeration cycle was established. It 
contained a compressor, condenser, capillary tube, and evaporator. The temperature in the enveloped 
fiberglass package is controlled by two 60 W lamps and a fan. A thermal switch attached to the cover 
of the compressor managed a 51 m3/h axial fan. The test conditions and their borders were set up on the 
control board. As the test started, the high-side and low-side pressures were displayed on the pressure 
gauges or apparatus screen (Figure 9).

3. RESULTS AND DISCUSSION

A sample in the first ALT (n = 100) locked at 3,500 cycles. Another sample continued working but had 
a partially broken suction reed at 7,500 cycles (Figure 10). The shape parameter, β, formed from the first 
ALT, was 2.0 (see Figure 11). The forms and positions of the failure in the samples obtained from the 
first ALT and the field were alike (Figure 10). The fractured suction reed valve originated from three 
design faults: (1) it had a quantity of overlap with the valve plate, (2) it had a sharp edge on the valve 
plate, and (3) it used an insufficiently strong material (see Figures 6 and 12).

When the suction reed valve frequently striked the valve plate, it eventually fractured before its 
expected lifetime. The main failure mode of the compressor was locking due to the failed suction reed 
valve. The ALT methodology was well-suited for recognizing the fatigue failure attained from the units 
in the field. First, the shape of the failed suction reed valves from the marketplace and those in the first 
ALT were very similar in appearance.

Figure 9. Equipment for the ALTs.
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Figure 10. Failed suction reed valves from the field and first ALT: (a) failed products from the field, 
(b) outcome after first parametric ALT, (c) partially broken suction reed valve from the first ALT, (d) 
shattered valve plate.

Figure 11. Market statistics and consequences of ALT on Weibull chart.
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The first ALT failure and market failure data manifested a similar pattern on a Weibull plot (Figure 
11). As the data for the two models had similar gradients on the plot, each loading condition of the first 
ALT and that from the field over the product lifetime were similar. Therefore, it might be anticipated 
that the test samples in the laboratory would break in a similar way to those in the field. For the shape 
parameter, β, the last shape parameter from the chart was confirmed to be 2.0, compared with the ap-
proximated value—2.0. Based on both test outcomes in the Weibull plot, the parametric ALT was suc-
cessful because it recognized the design defects which were responsible for the market failures. In other 
words, as proven by two things—the visual likeness in both photos and similar slopes in the Weibull 
plot—these ALTs were justified in recognizing the design flaws that were judged as the failures from 
the market. These failures determined the product lifetime.

Figure 12. Structural design defects of suction reed and valve plate in a compressor: (a) overlapped 
suction reed valve and valve plate with sharp edge; (b) impact load in combination of design defects 
when compressor is worked.
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Refrigerators that came from the field had a primary failure mode with no cooling because the com-
pressor did not function. Field data suggested that the troublesome compressors may have had design 
flaws. Due to these defects, the repetitive pressure loads could produce unanticipated stresses on the suc-
tion reed valve, causing it to crack and propagate the crack to its end. To reproduce the dominant failure 
mode of the compressor, parametric ALTs were carried out. Based on the first ALT and market data, we 
realized that the AF and β values were 7.3 and 2.0 (see Figure 11). For assigned test samples, the test 
cycles were computed in Equation (12) if the product lifetime was secured to have a B1 life of 10 years.

To investigate a compressor that failed at 3,500 cycles in the first ALT, the troublesome compressors 
came from the marketplace and the first ALT were compared to determine the potential design defects. 
The mode of the compressor failure in the first ALT was very similar to the ones from the field. The 
suction reed valves failed in areas where they were partly covered by the valve plate. The tests stated 
that the compressor was improperly designed to operate with this suction reed valve.

The failed suction reed valve originated from the unsuitable design flaws: (1) an quantity of overlap 
with the valve plate; (2) a sharp edge on the valve plate; and (3) insufficiently strong material (0.178t) 
utilized in the design of suction reed valve. These defects might cause the compressor system to fracture 
abruptly when subjected to repetitive pressure loads (see Figures 7 and 12).

To fix the failed suction reed valve failure that was due to the repetitive pressure stresses in the 
compressor’s lifetime, the valve plate and suction reed valve was modified as follows: (1) trespan size 
from 0.73 mm to 1.25 mm; (2) adding ball peening and brush process (see Figure 13); (3) thickening 
the suction reed valve from 0.178 t to 0.203 t (4) expanding tumbling process.

For the second ALT, three samples locked near 17,000 cycles. The problematic compressor system 
came as follows: (1) erosion of the crankshaft and (2) the intrusion between crank shaft and thrust 
washer. The design modification was provided to the heat treatment on the surface of crank shaft that 
can modify the physical, and sometimes chemical, properties of a material to achieve the desired result, 
such as hardening of a weak crankshaft material (Ductile Iron FCD450 – C ≥ 2.5 wt%, S ≤ 0.02 wt%, 
Mg ≤ 0.09 wt%).

Figure 13. Redesigned valve plate: (a) trespan in valve plate; (b) ball peening process.
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In the third ALT, there were no design problems in the compressor until the parametric ALT was 
carried out to 49,000 cycles. We therefore concluded that the design modifications attained from the 
first and second ALTs were effective. Table 4 summarizes the parametric ALT results. With the modi-
fied design parameters, the compressor samples were ensured to attain the lifetime target—B1 life of 
10 years with about a 60% confidence level.

4. CONCLUSION

To increase the lifespan of a new domestic compressor in a refrigerator, the following reliability meth-
odology was developed: (1) the system BX lifetime created the total parametric ALT scheme, (2) the 
parametric ALT with design modifications, and (3) determine if the product design attains the mission 
cycles. To show the effectiveness of this methodology for identifying and altering the design defects of 
a mechanical product, we derived the sample size equation, time-to-failure equation and acceleration 
method, and BX lifetime. As a test case, we inspected the redesign of a compressor that came from the 
marketplace.

• In the marketplace and the first ALT, we found that the failed suction reed valve in a compres-
sor originated from the following design flaws: (1) a small overlap between the valve with the 
valve plate, (2) a sharp edge on the valve plate, and (3) inadequate width of the suction reed valve 
(SANDVIK20 C0.178t). As design modifications, the trepan on the valve plate was extended from 
0.73 mm to 1.25 mm, and a ball peening technique was secured to eliminate the sharp edge.

• For the second ALT, we found that three samples failed near 17,000 cycles because of the intru-
sion between the crankshaft and thrust washer. As an action plan, the crankshaft was heat-treated.

• During the third ALT, no problems were found. The compressor systems should attain the lifetime 
target—B1 life of 10 years with about a 60% confidence level.

Table 4. Compressor ALT outcomes.

Parametric ALT
First ALT Second ALT Third ALT

Original Design Design Final Design

In 49,000 cycles, there are no issues in the 
compressor

3,500 cycles: 1/100 locking 
7,500 cycles: 1/100 broken 
suction reed valve

17,000 cycles: 3/100 locking 49,000 cycles: 
100/100 OK

Structure

Action plans

C1: Trepan size: 
0.73 mm→1.25 mm 
C2: attaching ball peening and 
brush process 
C3: SANDVIK 20C: 
0.178 t→0.203 t 
C4: expanding tumbling: 
4 h→14 h

C5: FCD500 + no heat treatment 
→ FCD500 + heat treatment on the 
crankshaft
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• By examining problematic products returned from the marketplace and performing parametric 
ALTs with design modifications, it was possible to improve the expected lifetime of the compressor.

This reliability methodology can be applied to other mechanical products such as airplane, automo-
biles, and construction machines. To use this methodology, designers should understand why products 
fail during their lifetime. That is to say, if there are design flaws in the structure that are subjected to 
repetitive loads, the system will fail before its expected lifetime. Engineers would need to identify the 
load characteristics of a mechanical system so that the parametric ALT can be carried out until the re-
quired mission cycles under accelerated stress conditions. Finally, engineers can use parametric ALT to 
identify and alter the design problems of a mechanical product.

Abbreviations

A Cross-sectional area of the capillary tube: cm2

BX Time which is a cumulated failure rate of X%: durability index
Ea Activation energy, eV
e Effort
f Flow
F Impact force, kN
F(t) Unreliability
h Testing cycles (or cycles)
h* Non-dimensional testing cycles, h*=h/LB≥1
J Junction function equation
K Boltzmann’s constant, 8.62 × 10−5 eV/deg
ΔL Capillary tube distance in the two-phase
LB Target BX life and x = 0.01X, on the condition that x ≤ 0.2
n Number of test samples
ΔP Pressure difference between the condenser and evaporator, MPa
PD Volume flow rate in compressor, m3/s
Pc Pressure in the condenser, MPa
Pe Pressure in the evaporator, MPa
Psuc Pressure at compressor suction, MPa
Pdis Pressure at compressor discharge, MPa
Q Amount of energy absorbed or released during the reaction. For the semiconductor, total number of 

dopants per unit area
Qc Heat transfer by temperature difference in the condenser, kW
Qe Heat transfer by temperature difference in the evaporator, kW
R Ratio for minimum stress to maximum stress in stress cycle, σmin/σmax
r Failed numbers
Rc Thermal resistance in the condenser, K/kW
Re Thermal resistance in the evaporator, K/kW
S Stress
T Temperature, K
Tc Absolute temperature in the condenser, K
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Te Absolute temperature in the evaporator, K
ti Test time for each sample
TF Time to failure
X Accumulated failure rate, %
x x = 0.01X, on condition that x ≤ 0.2.
Wc Compressor power, kW
Greek symbols
ξ Electrical field exerted
η Characteristic life
λ Cumulative damage exponent in Palmgren–Miner’s rule
χ2 Chi-square distribution
α Confidence level
νsuc Specific volume of refrigerant at compressor suction, m3/kg
ρ Refrigerant density, kg/m3

ηv Volumetric efficiency
ω Angular velocity, rad/s
Superscripts
β Shape parameter in Weibull distribution

n Stress dependence, n T
S
f

T

� �
�

�
�

�
�

�

�
�

ln( )

ln( )

Subscripts
0 Normal stress conditions
1 Accelerated stress conditions
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APPENDIX

Derivation of Sample Size Equation for Parametric ALT

Presently, many methods have been proposed to resolve issues on sample size. The Weibayes model by 
using Weibull examination is a widely acknowledged method of inspecting reliability data. However, it 
is hard to be straightly used due to the complexity of the mathematical formulation. The entire instances 
as failures (r ≥ 1) and no failures (r = 0) need to be split. As a result, it is feasible to attain a predictable 
sample size equation which might supply the mission cycle after correct presumptions.

In selecting the model parameters to maximize the likelihood function, the maximum likelihood esti-
mation (MLE) statistic is a general way of approximating the parameters of a model. The characteristic 
life hMLE would be stated as:
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where 𝜂MLE is the maximum likelihood estimate for the characteristic life, n is the entire number of 
samples, ti is the experimental time for each sample, and r is the number of failures.

If the failure numbers, r, greater than or equal to 1 and the confidence level is 100 (1–α), then the 
characteristic life, ηα, can be estimated from Equation (A1).
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2 () is the chi-square distribution when the p-value is α.

Presuming there are no failure numbers, ln (1/α) is similar to the chi-square value, 
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where ν is the shape parameter and Γ is the gamma function.
For r = 0, the characteristic life ηα from Equation (A2) might be stated as:
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As Equation (A.2) is demonstrated for all cases r ≥ 0, characteristic life, ηα, might be stated as:
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If the logarithm in the Weibull distribution is used, the relationship between characteristic life and 
BX life, LB, might be stated as:
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If the estimated characteristic life of the p-value α, ηα, in Equation (A5), is substituted into Equation 
(A6), we obtain the BX life equation:
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As whole reliability testing has insufficient sample numbers to assess the lifetime for the designated 
failures, which might be less than that of the sample size, the experiment plan can be stated as:
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If Equation (A8) is changed with Equation (A7), the BX life equation might be restated as:
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If Equation (A9) is reorganized, the sample size equation with the failures can be stated as:
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where the sample size equation can be stated as n ~ (failure numbers + 1)×(1/cumulative failure 
rate)×((target lifetime/(plan testing time)) ^ β + r.
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ABSTRACT

Power is a significant cause of economic growth and crucial to the sustainability of the economy. Energy 
consumption is an indicator of a nation’s economic growth. Economic growth is focused, among other 
aspects, on the long-term acquisition of affordable, existing resources, and their use does not pollute 
the environment. Industrialization serves economic growth and consumes energy. In 2018, 68% of total 
capital power was consumed by largest energy-intensive areas. When fossil fuel is the primary source 
of energy, energy consumption is positively correlated with ecosystem cleanliness. Fossil fuels account 
for more than 70% of the decent energy expectations of India and other economies. In this chapter, 
problems related to non-renewable energy sources are discussed, and emphasis is given to use more 
renewable sources.

1. INTRODUCTION

Electricity is the strength to do work and is crucial for operations of life. An alternative energy source 
can create heat, power life, move objects, or generate power. It is titled as fuel which carries energy. 
Intake of human energy has steadily grown throughout human history. Early humans required limited 
energy, mainly food and fuel to cook and keep warm. (Ministry of New and Renewable Energy, n.d.).

Human absorbs as much as 110 times as much power per person as early humans in today’s age. 
Much of the energy we are using today comes from fossil fuels (solar power stored). But fossil fuels have 
a limitation because on a human time scale they are non-renewable and cause other possibly damaging 
environmental consequences (Ren 21, n.d.).

1.1 Classification of Energy Resources

Energy resources are classified as shown in figure 1:

Energy Resources and 
Their Consumption

Harpreet Kaur Channi
Chandigarh University, India
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It should be indicated that all fossil fuel reserves come from plants and it takes millions of years to 
form a reserve below the earth’s crust through physico-chemical modifications.

1.1.1 Types of Non‐Renewable Sources of Energy

Coal: It is created by the protracted action of geological forces accumulated below the earth’s crust on 
plant and organic matter and is called as “COALIFICATION”. Coalification is dependent on both mo-
ment and force and it leads to modifications in the acquired plant (Ani & Abubakar, 2015).

Almost all physical changes, such as colour, strength, density, and composition; and there is chemical 
change. It is essential to make chemical changes.

• Oxygen is reduced from 40% in timber to 305% in peat, 20% in lignite, 5% in bituminous and 2% 
in anthracite carbon.

• For anthracite coal, volatile matter reduces from about 70% for timber to 5% or less.
• Carbon increase from around 30% for timber and peat to 90-95%

Figure 1. Classification of energy resources(Ren 21, n.d.)
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Petroleum: It is created from metamorphic procedures comparable to coalification in the earth’s crust 
from the accumulated vegetable and animal matter. It is acquired from crude oil petrol, lubricating oil, 
fuel oils, etc. (Ani & Abubakar, 2015).

Natural gas: It is used straightforwardly.

1.1.2 Renewable Sources of Energy

• Geothermal: power acquired by tapping under its surface the heat of the earth. To generate elec-
tricity, hot subterranean water or steam is used.

• Biogas: manufactured from paper and sugar waste, animal, etc. The item is CH4.
• Biofuel: plant-derived biodiesel, ethanol, etc.
• Solid biomass: wood fuel, municipal waste biogenic part, certain crops. Biomass mass can be 

used to generate energy in a variety of ways. Gasification, combustion, fermentation, anaerobic 
digestion are prevalent techniques. India is very wealthy in biomass(Eureka eLearning, n.d.; Nade 
et al., 2018)

• Hydrothermal: water energy in the form of KE, difference in temperature
• Solar Energy: Sunlight energy gathered. It can be used in many ways: using photovoltaic cells, 

3¤4 generate energy. 3¤4 Use concentrated solar energy to generate electricity. 3¤4 Low efficiency 
factor for photovoltaic cells.

1.2 Indian Energy Scenario

• India ranks 6th in the globe in total power usage and needs to accelerate the power sector’s devel-
opment to satisfy the country’s 8-9 percent financial growth.

• India, wealthy in coal and rich in renewable electricity, has very tiny reserves of hydrocarbons 
(0.4% of the world’s reserves).

• India is a net power importer, with more than 25% of main power needs being met through crude 
oil and natural gas exports.

• Coal and oil account for 54 percent and 34 percent in energy production, with the remainder 
contributing to natural gas, hydro and nuclear. In India, the industrial industry consumes 52% of 
electricity. Primary energy consumption in India is 530 kg of petroleum equivalent / person in 
2004 compared to 1240 kg oil equivalent / person in China and 1770 kg oil equivalent / person on 
the world average.

• With development in the economy, primary energy consumption per individual will increase be-
cause energy consumption is an index of economic growth and prosperity in the country (Ren 21, 
n.d.; Shrivastava et al., n.d.).

1.3 World Energy Consumption

The consumption of world energy is the complete energy used by all human civilization. Typically mea-
sured annually, it includes all energy harvested from every source of energy applied to human efforts in 
every single industrial and technological industry, in every nation. as shown in figure 2.
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This doesn’t include food energy, and it is poorly recorded to what extent direct biomass burning was 
accounted for. World energy consumption is the energy source metric of civilization and has profound 
consequences for the socio-economic-political sphere of humanity as shown in figure 3.

Figure 2 Energy harnessed from every energy source(Ren 21, n.d.)

Figure 3. Energy Consumption (Ren 21, n.d.)
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2. ENERGY SUPPLY AND DEMAND

World primary energy supply varies from the world’s final energy consumption because much of the 
energy obtained by humans is lost as other types of energy during the process of its refinement into 
usable forms of energy and its transportation from its original location of production to customers. For 
example, it must be refined into gasoline when oil is extracted from the ground so that it can be used in 
a car and transported to gas stations over long distances where it can be used by consumers. The final 
consumption of world energy relates to the fraction of the primary energy used by humanity in its final 
form. (Dey, 2005; Punjab Energy Development Agency, n.d.; Verma, n.d.).

In 2014, the world primary energy supply amounted to 155,481 terawatt-hour (TWh) or 13,541 Mtoe, 
whereas the world final energy consumption was 109,613 TWh or about 29.5 percent less than the total 
supply as shown in Table 1. World consumption of final energy involves products such as lubricants, 
asphalt and petrochemicals that contain chemical energy but are not used as fuel. This non-energy use 
amounted to 9,404 TWh (809 Mtoe) in 2012.

Table 1. Energy Supply and Consumption (Ministry of New and Renewable Energy, n.d.)
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For most types of primary energy resources, the U.S. Energy Information Administration (EIA) 
regularly publishes a report on world consumption. World energy consumption was estimated at 5,67 
some 1020 joules or 157,481 TWh for 2013. In 2008, the total world energy consumption was 143,851 
TWh, 133,602 TWh in 2005, 117,687 TWh in 2000, and 102,569 TWh in 1990, according to the IEA. 
In 2012, roughly 22% of the world’s electricity was consumed in North America, 5% in South and 
Central America, 23% in Europe and Eurasia, 3% in Africa and 40% in the Asia Pacific area. (National 
Geographic, n.d.).

3. PROBLEM FORMULATION

Fossil fuel is produced by combustion and includes potential energy / chemical energy. Figure 4 dem-
onstrates the following:

The use of fossil fuel power sources thus refers to sustainability of the atmosphere (enhanced use of 
fossil fuel increases carbon emissions) and power safety (restricted reserves of fossil fuel).

Figure 4. Potential energy/chemical energy
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4. MAJOR PROBLEMS RELATED TO FOSSIL FUEL

4.1 Global Warming

An increase in the average temperature of the Earth’s atmosphere and oceans Global temperature on 
both land and sea increased by 0.6 ± 0.2 °C over the past century Volume of atmospheric carbon diox-
ide increased from 280 parts per million in 1800 to 367 in 2000, a 31% increase over 200 years(Earth 
Observatory, n.d.; Srivastava & Misra, 2002).

4.1.1 Our Changing Climate

Since the late 19th century, global mean surface temperatures have increased by 0.5-1.0 ° F.The Northern 
Hemisphere’s snow cover and the Arctic Ocean’s floating ice have decreased. Over the previous decade, 
the global surface temperature has increased by 4-8 inches. Could rise from 1-4.5 ° F (0.6-2.5 ° C) over 
the next fifty years and from 2.2-10 ° F (1.4-5.8 ° C) over the next decade, as shown in figures 5.

4.1.2 Causes

• Human impacts – Atmospheric greenhouse gasses trap some of the power output, maintaining 
heat

• Natural impacts – Change in the power production of the sun Volcanoes Water Vapor Clouds

Figure 5. Global Surface Temperature(Ren 21, n.d.)
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4.1.3 Greenhouse Gases

CO2, methane, oxide nitrous, compounds fluorinated. Since the industrial revolution, atmospheric carbon 
dioxide levels have increased by 30%, methane has more than doubled, nitrous oxide has increased by 
15%. These rises have increased the capacity of the Earth’s atmosphere to catch heat.

4.1.4 Greenhouse Gas Emissions

• Fossil fuel combustion, Coal-fired energy plants, automotive exhausts, smokestacks, other waste 
winds of the human setting add 22 billion tons of carbon dioxide and other greenhouse gasses 
annually.

• Animal farms, manure, natural gas, rice paddies, landfills, coal and other anthropogenic sources 
contribute approximately 450 million tons of methane annually.

• Since 1750, atmospheric CO2 and CH4 concentrations have risen by 31% and 149% respectively 
above pre-industrial levels.

4.1.5 Sources of Green House Gas Emission

• Power Plants
The combustion of fossil fuels for energy generation accounts for 40% of carbon dioxide emissions.

• Cars
Twenty percent of carbon dioxide emissions from petrol in car motors and light trucks with a low 
gas mileage contribute most to global warming.

• Trucks
Another 13% of carbon dioxide emissions are from vehicles that are mainly used for business reasons

• Airplanes
Aviation is responsible for 3.5% of worldwide warming, and by 2050 this figure could increase to 15%

• Carbon Dioxide from Buildings: The design of buildings accounts for around 12% of carbon di-
oxide emissions

• Methane
Methane is more than 20 times as efficient as CO2 at trapping water in the 2004 environment In 
the last 100 years, atmospheric methane levels have increased by 145%. Based on sources such 
as rice paddies, bovine flatulence, fungi in bogs and the manufacturing of fossil fuel. Anaerobic 
conditions grow in flooded areas and the organic matter in the soil breaks down.

• Nitrous oxide
Naturally manufactured by oceans and rainforests, man-made nylon and nitric acid manufacturing, 
fertilizer use in agriculture, catalytic converter vehicles and organic matter burning.

4.2 Deforestation

Deforestation accounts for 25% of all carbon emissions into the environment by burning and cutting 
approximately 34 million acres of forests annually as shown in figure 6.
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5. RESULTS AND DISCUSSIONS

Negative Effects: Rising Sea Level Change of precipitation and local climate ; acid rain Change of trees 
and crops produces Expansion of deserts into current rangelands More intense rainstorms Stabilization 
of ocean currents.

Positive Effects: It can boost plant growth in locations where the limiting factors are CO2 and tem-
perature (preventing photorespiration that can destroy current sugar).

6. SUMMARY OF CHAPTER

Currently, society depends mostly on fossil fuels for electricity (39% natural gas, 24% natural gas, 23% 
coal, 8% nuclear and 6% more). Fossil fuel accounts for more than 70% of India and other countries ‘ 
total power requirements. Future renewable power resources have enormous environmental, political 
and economic consequences that could alter the world order. Nevertheless, a major role will be played 
by the geological elements of energy resources.

Figure 6. Carbon Cycle(Ani & Abubakar, 2015)
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