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Preface

Acquiring information, processing data, assessing risk, and projecting forecasts in
space and time have always paralleled human evolution and the ever-changing social
dynamics that accompany it. The need for reliable accounting, robust record keeping,
common time, space and celestial referencing, and building of useful tools, weapons,
and structures emerged with the dawn of mankind’s scientific quest to understand
nature. Object coding, canonical representations, and mathematical operations arise
in many of man’s early earthly activities, e.g., tracking numerical data (Mesopotamia,
c. 3500 BC), fractional arithmetic (Old Egypt Kingdom, c. 2500 BC), medical texts (an-
cient Egypt, c. 1600 BC), empirical astronomy (Babylonia, c. 700 BC), exploring geo-
metric properties (ancient Greece, c. 550 BC), natural philosophy (Plato’s Academy,
c. 380 BC), etc. [1, 2]. Although all of these ingenious advances were based on real,
tangible, and physical observations, a very basic level of information gathering, cal-
culation, and communication was also required to establish an early scientific epis-
temology. Historical records indicate that many discoveries were lost, rediscovered,
or reformulated over the centuries. However, during the Renaissance (c. 1400 AD)
and the Enlightenment (c. 1600 AD) periods, a rapid acceleration of knowledge accu-
mulation led to developing a more solid foundation for all contemporary scientific ad-
vances. As a result of this chain-reaction and trackable discovery provenance, most
contemporary scholars can reliably trace their academic genealogy to Sharaf al-Dīn
al-Ṭūsī (Mesopotamia, c. 1160 AD, https://mathgenealogy.org/extrema.php, accessed
January 29, 2021) [3, 4].

Over the past 5,000 years, the scientific rise of humanity reflected the trans-
formation of human civilization from a hunter-gatherer (c. 10000 BC), to pastoral
(c. 7500 BC), agricultural (c. 3000 BC), feudal (c. 900 AD), industrial (c. 1700 AD),
and digital information (c. 1980) societies. The 21st century represents a new era
where information generation, processing, transmission, and rapid interpretation
become fundamental sources of productivity, power, wealth, and affluence. This
shift from industrialism to data-informationalism directly ties to current and prospec-
tive global, cultural, environmental, and socioeconomic dynamics.

Since 2010, there has been compelling evidence illustrating extremely rapid, ubiq-
uitous, and disruptive quantization of all human experiences. The rate of increase of
the amount of data we collect doubles every 12–14 months (Kryder’s law) [5–7], the
rate of expansion of computational power also grows exponentially (Moore’s law) [8],
and the universal proliferation of information digitalization (digital transformation) [9]
now covers all facets of life. This digital transformation represents the natural progres-
sion from continuous analogue communication to exchanges of discrete information
bits. All life forms, including humans, have perfectly evolved to interpret intrinsically
discrete processes as continuous patterns. Now, human civilization is swinging the
pendulum in the opposite direction, toward quantizing information detection, ag-
gregation, communication, and interpretation. This leads to interesting and disruptive
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human-machine interfaces that promise to pool the exceptional human capabilities
of reason, emotion, intelligence, and creativity, with the unique computer ability
for rapid en masse processing of data, algorithmic precision, and impassive treat-
ment of complex information. The result of this is an explosion of new machine
learning techniques, artificial intelligence tools, augmented reality experiences,
and human-machine interfaces. Most of these advances require novel data science
methods, computational algorithms, and inferential strategies.

Today, contemporary digital transformation is now seamlessly blending techno-
logical advances within all human experiences; impacting how we perceive the envi-
ronment, transforming our value system, and disrupting traditional daily interactions.
Beyond that, a cultural change is also taking place requiring individual, social, govern-
mental, public, and private organizations to continually challenge the status quo,
explore alternatives, and get comfortable with some degree of failure in the relent-
less march toward digitalization.

The momentum of volume and complexity growth of digital information ap-
pears to be exceeding the increase in our ability to interpret it holistically. This im-
balance between the natural progression of digital transformation and mankind’s
capacity to derive value from this information stresses resources and inhibits knowl-
edge-driven actions. As an example, it’s now common for scientists to gather hetero-
geneous data on the order of a petabyte, 1PB= 1015 bytes. To grasp the enormity and
the complexity of handling such voluminous information, consider it in relation to
the Milky Way galaxy, which has approximately 2× 1011 stars. If each star represents
a byte, then one petabyte of data corresponds to 5,000 Milky Way galaxies. Just as
the spatial location, luminosity, chemical composition, and momentum of each star
in the galaxy changes with time, and in relation to other galactic bodies, the scien-
tific information collected by researchers has longitudinal patterns and spatial asso-
ciations that further complicate the interpretation of such complex data archives.

There is a scientific revolution underway to develop adaptive, semi-supervised,
self-reinforced, and reliable computational and data science methods capable of
transfer-learning supporting effective data-driven decision support systems. All of
the efforts to design, implement, and validate such new techniques require an in-
depth basic scientific knowledge across many applied, experimental, and theoreti-
cal disciplines, as well as transdisciplinary team-based open-science collaborations
with amalgamation of exploratory and confirmatory scientific discoveries.

This book provides motivation along with substantial mathematical background,
examples of promising approaches, and a new methodological foundation for data
science that extends the concept of event order (time) to the complex plane. It also
includes hands-on demonstrations of several biomedical and econometric case stud-
ies, implementation protocols, and applications. Supplementary online materials
include datasets; an R package with a suite of libraries for managing and interro-
gating raw, derived, observed, experimental, and simulated big healthcare datasets;
and other web-based services for data visualization and processing. The supporting
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websites provide additional interactive content, learning modules, case studies, and
demonstrations (https://spacekime.org, accessed January 29, 2021 and https://tciu.
predictive.space, accessed January 29, 2021).

The content of this book may be appropriate for a variety of upper-division un-
dergraduate or graduate science, technology, engineering, and mathematics (STEM)
courses. To address the specific needs of their students, instructors can reshuffle
and present the materials in alternative ways. The book’s chapters are organized se-
quentially illustrating one intuitive way of covering the topics; however, the content
can be restructured and tailored to fit specific curricular objectives or audience re-
quirements. This is not a general textbook for learning the foundations of computa-
tional and data sciences. As of 2021, there are many other textbooks that cover the
breadth and depth of data science and predictive analytics. Capitalizing on the ex-
isting wealth of knowledge, this book develops the spacekime analytics technique
and includes illustrative examples of data science applications; inferential uncer-
tainty; complex-time representation of large, high-dimensional, and longitudinal
datasets.

This book utilizes the constructive definition of “Big Data” provided in Data Sci-
ence and Predictive Analytics (https://DSPA.predictive.space, accessed January 29,
2021) [10], which is based on examining the common characteristics of many bio-
medical, social-science, and healthcare case studies. The seven key “Big Data” charac-
teristics identified from such studies include large size, heterogeneity, incongruency,
incompleteness, multiscale format, time-varying nature, and multisource origins.
These properties play a critical role in many scientific inference processes repre-
senting compound systematic investigations. Specifically, many scientific work-
flows include critical steps to hand each of the Big Data characteristics from the initial
study-design, to subsequent data collections, wrangling, and management; model-
based statistical analyses, model-free machine learning methods, outcome predictions,
trend forecasting, derived computed phenotyping, algorithm fine-tuning, assessments,
comparisons; and scientific validations.

The authors are profoundly indebted to all of their students, mentors, advisors,
and collaborators for inspiring this study, guiding the courses of their careers, nurtur-
ing their curiosity, and providing constructive and critical research feedback. Among
these scholars are Guentcho Skordev (Sofia University); Kenneth Kuttler and Anant
Godbole (Michigan Tech University); De Witt L. Sumners and Fred Huffer (Florida
State University); Jan de Leeuw, Nicolas Christou, and Michael Mega (UCLA); Arthur
Toga (USC); Brian Athey, H.V. Jagadish, Kathleen Potempa, Janet Larson, Patricia
Hurn, Gilbert Omenn, and Eric Michielssen (University of Michigan).

Particularly useful feedback and constructive recommendations were provided by
Yueyang Shen, Yuxin Wang, Zijing Li, Daxuan Deng, Yufei Yang, Christopher Hale,
and Yupeng Zhang. Many other colleagues, students, researchers, and fellows have
shared their expertise, creativity, valuable time, and critical assessment for generating,
validating, and enhancing these open-science resources. Among these are Yongkai
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Qiu, Zhe Yin, Rongqian Zhang, Yuyao Liu, Yunjie Guo, Jinwen Cao, Reza Soroush-
mehr, Yuming Sun, Lingcong Xu, Simeone Marino, Alexandr Kalinin, Kalyani Desi-
kan, Christoph Köhn, Vimal Rathee, Daniel Rowe, Manthan Mehta, Hristo Pavlov
Pavlov, Vesselin Gueorguiev, and many others.

In addition, students and colleagues from the Statistics Online Computational
Resource (SOCR), the Michigan Institute for Data Science (MIDAS), and “Prof. Dr.
Asen Zlatarov” University in Burgas provided encouragement, support, and valu-
able suggestions. Insightful comments, suggestions, corrections, and constructive
critiques from many anonymous reviewers significantly improved and clarified the
material. We welcome broader contributions, comments, feedback, and input from
the entire scientific community via an online webform (https://tciu.predictive.space,
accessed January 29, 2021) and through an open-source software version control plat-
form (https://github.com/SOCR/TCIU, accessed January 29, 2021).

The research methods, computational developments, and scientific applica-
tions reported in this book were partially supported by the US National Science
Foundation (grants 1916425, 1734853, 1636840, 1416953, 0716055 and 1023115), US
National Institutes of Health (grants P20 NR015331, U54 EB020406, UL1TR002240,
P30 DK089503, R01 CA233487, R01 MH121079, R01 MH126137, T32 GM141746),
“Prof. Dr. Asen Zlatarov” University in Burgas, and the University of Michigan.

Ivo D. Dinov
(Ann Arbor, Michigan, USA)

Milen V. Velev
(Burgas, Bulgaria, EU)
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Foreword

Before diving into this book, all readers, scholars, instructors, formal and informal
learners, and working professionals are encouraged to review the basics of mathemat-
ical modeling, statistical inference, computational data science, and scientific visuali-
zation. This book assumes no deep expertise in these disciplines, but some basic
scientific exposure will certainly be helpful to all audiences. The chapters of this
book were organized in a way that was intuitive for the authors; however, the mate-
rial may be read and/or covered in an alternative order that fits the audience’s needs.

The introductory Chapter 1 (Motivation) presents the mission and objectives of
this book and provides some basic definitions, driving motivational problems, and
issues with the classical definition of time as a non-negative univariate measure of
event order. Here, we also define the seven characteristics of Big Datasets and ex-
plain the synergies between data science, predictive analytics, and scientific infer-
ence. This chapter provides a simple yet illustrative example of the core idea of
utilizing complex time for data analytics. We demonstrate prospective forecasting
of the Michigan Consumer Sentiment Index (MCSI) and contrast the complex-time
analytics to traditional model-based multivariate longitudinal statistical analyses.

Chapter 2 (Mathematics and Physics Foundations) provides some basic the-
oretical formulations necessary to illustrate the concepts of data representation,
mathematical operators, and statistical inference. This chapter starts with some fun-
damental quantum physics definitions such as wavefunctions, Dirac bra-ket nota-
tion, and commutator operators. It covers some well-known properties of position,
momentum, and energy operators. Some of these mathematical formalisms relate to
partial differential equations (PDE), functional analysis, and quantum mechanics
operators.

In Chapter 3 (Time Complexity), we will build on the earlier mathematical
foundation to extend various quantum physics concepts to data science. For instance,
inference-functions in data science correspond to the quantum mechanics notion of
wavefunctions. This translation will facilitate lifting the 4D Minkowski spacetime to
5D spacekime by extending time to the complex plane. Specifically, we will define the
notions of complex time (kime) and complex events (kevents). We review the Kaluza-
Klein theory, formulate kime-velocity, define the spacekime metric tensor, and show
its invariance under Lorentz transformations of spacekime inertial frames. The no-
tions of amplitudes and phases of the forward and reversed Fourier transformation
will play an important role in this spacekime data analytic process. This chapter also
presents the Heisenberg’s uncertainty principle in spacekime and the dichotomy be-
tween the Copenhagen and spacekime interpretations of the observed collapse of the
wave, or inference, functions in real experiments. Finally, we discuss the philosophy
of data science analytics using complex time and the causal structure of the space-
kime manifold.
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Chapter 4 (Kime-series Modeling and Spacekime Analytics) illustrates strate-
gies to transform classical time-series into complex-time-indexed kime-series (or kime-
surfaces). It also derives the generalized likelihood ratio test for complex-valued
kime-indexed univariate processes. The intensities of these complex-valued pro-
cesses over kime are called kintensities, or complex-intensities over complex-time. In
this chapter, complex-valued functional magnetic resonance imaging (fMRI) data pro-
vide a key motivational challenge driving the theoretical developments and the prac-
tical demonstrations. We also discuss the Laplace transform of longitudinal data,
which supports the analytic duality between longitudinal spacetime processes (time-
series) and their spacekime counterparts (kime-surfaces).

Chapter 5 (Inferential Uncertainty) defines the data-to-inference duality princi-
ple where inference functions map pairs of observables and analytical strategies into
probabilistic decision spaces. Rather than yielding a specific analytical decision or
practical action based on the data, inference functions effectively encode and rep-
resent problem systems in a probabilistic sense. This chapter explicates the parallels
between various core quantum mechanics concepts and their data science counter-
parts. We provide several alternative formulations of uncertainty in data science and
derive an embedding of classical 4D spacetime into the 5D spacekime manifold, which
yields an extra force that is parallel to the 4-velocity. We explore synergies between
random sampling in spacetime and spacekime and present a Bayesian formulation of
spacekime analytics. The chapter appendix includes bra-ket formulations of multivari-
ate random vectors, time-varying processes, conditional probability, linear modeling,
and the derivation of the cosmological constant (Λ) in the 5D Ricci-flat spacekime.

The final Chapter 6 (Applications) illustrates several examples of applying the
spacekime transformation to analyze complex multivariate data. The differences be-
tween spacekime data analytics and spacetime data modeling and inference are
driven by the choice of sampling strategy. In spacetime, independent and identi-
cally distributed (IID) samples intend to cover the underlying probability distribu-
tion, whereas in spacekime inference, the sampling of the kime-phases requires an
effective kime-phase representation to approximate the population characteristics
of interest. When the exact kime-phase distribution is known, or can be accurately
estimated, reliable spacekime inference may be obtained based on only a few space-
time samples. We demonstrate the process of spacekime data analytics based on
case studies involving functional magnetic resonance imaging (fMRI) data, multi-
source brain data, and financial market and economics indices.
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Throughout the book, there are statements of open prob-
lems and suggested challenges, which are indicated by
this puzzle-piece icon. Some of these problems may be
easy to prove or disprove and some may be hard. Differ-
ent types of readers may consider these problems conjec-
tures that may or may not be true. Readers may wish to
explore, reformulate, validate, or search for counter ex-
amples of these challenges, some of which may be only
partially known or not yet fully understood.

The book’s online appendices (https://SpaceKime.org, accessed January 29, 2021)
contain continuously updated and expanded additional content, datasets, case study
references, source-code, and scripts used to generate the demonstrated analytics,
graphs, and example applications. Throughout the book, there are cross-references
to appropriate chapters, sections, datasets, web services and live demonstrations,
and other peer-reviewed scholarly work. The sequential arrangement of the chapters
provides a suggested reading order. However, readers and instructors are encouraged
to explore alternative material presentations and customized coverage pathways to fit
their specific intellectual interests or particular curricular needs.
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Use and Disclaimer

The methods, techniques, software, and other resources presented in this book are
designed to help scientists, trainees, students, and professionals learn, experiment
with, extend existing, and build novel computational and data science instruments.
They also provide some pedagogically relevant practical applications and protocols
for dealing with complex datasets. Neither the authors nor the publisher has control
over, or can make any representation or warranties, expressed or implied, regarding
the use of these resources by educators, researchers, users, patients, or their repre-
sentatives or service provider(s), or the use or interpretation of any information stored
on, derived from, computed with, suggested by, or received through any of the materi-
als, code, scripts, or applications demonstrated in this book. All users are solely
responsible for the results of deriving, interpreting, and communicating any infor-
mation using these techniques and the supporting resources.

Users, their proxies or representatives (e.g., clinicians) are solely responsible
for reviewing and evaluating the accuracy, relevance, and meaning of any informa-
tion stored on, derived by, generated by, or received through the application of any
of the software, protocols, or techniques. The authors and the publisher cannot and
do not guarantee said accuracy. These resources, their applications, and any infor-
mation stored on, generated by, or received through them, are not intended to be a
substitute for professional or expert advice, diagnosis, or treatment. Always seek
the advice of an appropriate service provider (e.g., physician) or other qualified pro-
fessional with any questions regarding any real case study (e.g., medical diagnosis,
conditions, prediction, and prognostication). Never disregard professional advice or
delay seeking it because of something read in this book or learned through the use of
the material or any information stored on, generated by, or received through SOCR or
other referenced resources.

All readers and users acknowledge that the copyright owners or licensors, in
their sole discretion, may from time to time make modifications to these materials
and resources. Such modifications may require corresponding changes to be made
in the mathematical models, algorithmic code, computational protocols, learning
modules, interactive activities, case studies, etc. Neither the authors and pub-
lisher, nor licensors shall have any obligation to furnish any maintenance, sup-
port, or expansion services with respect to these resources. These resources are
intended for education and scholarly research purposes only. They are neither in-
tended to offer or replace any professional advice nor to provide expert opinion.
Please contact qualified professional service providers if you have any specific
concerns, case studies, or questions. Persons using any of these resources (e.g., data,
models, algorithms, tools, or services) for any medical, social, healthcare, or environ-
mental purposes should not rely on accuracy, precision, or significance of the re-
ported results. While the materials and resources may be updated periodically, users
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should independently check against other sources, latest advances, and most accu-
rate peer-reviewed scientific information.

Please consult appropriate professional providers prior to making any lifestyle
changes or any actions that may impact you, those around you, your community, or
various real, social, and virtual environments. Qualified and appropriate professio-
nals represent the single best source of information regarding any biomedical, bio-
social, environmental, and health decisions. None of these resources have either
explicit or implicit indication of approval by the US Food and Drug Administration
(FDA)! Any and all liability arising directly or indirectly from the use of these resour-
ces is hereby disclaimed. These resources are provided “as is” and without any war-
ranty expressed or implied. All direct, indirect, special, incidental, consequential,
or punitive damages arising from any use of these resources or materials contained
herein are disclaimed and excluded.

XX Use and Disclaimer
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Glossary, Common Notations, and Abbreviations

The table below includes some of the common notations used throughout this book.

Notation Description

Common terms and abbreviations

D, D, D, D, . . . One, two, three, four, and higher-dimensions. Typically used to
denote the dimension of a manifold or the complexity of a dataset

df (DOF) Degrees of freedom

[], [], [], . . . In-text citations to bibliographical references provided in the end

°C, ° F Temperature in Celsius or Fahrenheit

a.k.a. Also known as

w.r.t. With respect to

AD, ADNI Alzheimer’s disease, Alzheimer’s disease neuroimaging initiative

AR, ARMA, ARIMA Auto-regressive integrated moving average models of longitudinal
data with and without exogenous variables (invariant with time)

ARIMAX Auto-regressive integrated moving average with eXogenous variables,
referring to specific model-based statistical method for longitudinal
data analysis

CBDA Compressive Big Data Analytic, a meta-learning algorithm

CO, CH, . . . Various chemical formulas, e.g., carbon dioxide and methane

CPU/GPU Central or Graphics Processing Unit (referring to computer chipsets)

CSI and MCSI (Michigan) consumer sentiment index

DSPA Data science and predictive analytics

Fed US Central Bank, the Federal Reserve

FT, IFT The forward Fourier transform and its counterpart, the inverse Fourier
transform, used for analysis and synthesis of analytical functions,
discrete signal, or multivariate datasets

GDP Gross domestic product, a measure of the total economic output of
countries, typically annualized

GLM Generalized linear model

gLRT, LRT (Generalized) likelihood ratio test

GTR General theory of relativity

ICS Index of consumer sentiment
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(continued)

Notation Description

IID (iid) Independent and identically distributed, typically referring to random
variables, observations, or samples

IoT Internet of Things

Kevent [keivent] Complex-event, an extension of the concept of linearly ordered events

Kime [kaim] D complex-plane extension of time in terms of kime-order (time) and
kime-direction (phase). It is used to provide a framework for advanced
predictive analytics and scientific inference

Kimesurface A D complex-time surface parameterized by D kime, extends D
longitudinally (time-indexed) time-series

Kintensity Complex-valued and kime-indexed intensity, e.g., of an image or a
volume

LT, ILT The forward and inverse Laplace transforms

Manifold A space with a topology that locally resembles flat Euclidean spaces,
but globally may be significantly curved, e.g., circles, spheres, tori,
etc.

MAP Maximum a posteriori, an estimation technique for approximating a
quantity by the mode of the posterior distribution

MCMC Markov Chain Monte Carlo, an empirical approach for sampling from a
process or a probability distribution

MRI Magnetic resonance imaging, including structural (sMRI), functional
(fMRI), spectral MRI, and diffusion (dMRI)

Neural Networks Deep learning (DL), deep neural networks (DNN), artificial neural
networks (ANN), multilayer perceptrons (MLP), unsupervised auto
encoding-decoding, convolutional (CNN), recurrent (RNN), long short-
term memory (LSTM), and so on

NIH National Institutes of Health

ODE and PDE Ordinary and partial differential equations

OLS Ordinary least squares, a method for parameter estimation

PCA, ICA Principal component analysis, independent component analysis,
linear dimensionality reduction techniques

PDF, CDF Probability and cumulative distribution functions

QM Quantum mechanics
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(continued)

Notation Description

QR code Quick response code which extends the common product barcode to a
D matrix code that is a machine-readable optical label that can store
complex product meta-data

RFID Radio-frequency identification tagging, which utilizes electromagnetic
fields to automatically codify and identify object characteristics

SOCR Statistic online computational resource, a multi-institutional research
laboratory based at the University of California, Los Angeles, and the
University of Michigan, Ann Arbor

Spacekime The D extension of D Minkowski spacetime to complex time

STR, GTR Special (and general) theory of relativity

SVM Support vector machine(s), a class of supervised machine learning
algorithms for classification and regression analyses

TCIU Time complexity and inferential uncertainty, referring to the subtitle of
this textbook and the corresponding R package

t-SNE t-distributed stochastic neighbor embedding, a non-linear
dimensionality reduction technique

TSV Tab separated value, a data file format structure

UK, BG, US, . . . Standard -character references to countries (country codes), e.g.,
United Kingdom, Bulgaria, United States of America, etc.

Mathematical notations

XK
k = 1

xk

The sum of K elements, xk , 1≤ k ≤K, which may be numeric, vectors,
matrices, tensors, or other objects for which the addition operation is
well defined

YK
k = 1

xk

The product of K elements, xk , 1≤ k ≤K, which may be numeric,
vectors, matrices, tensors, or other objects for which the
multiplicative operation is well defined

d e, b c The ceiling and floor functions

Rd, Cd The flat Euclidean real and complex spaces of dimension d

hj and ji Dirac bra-ket notation

f ′, f ′′, f ′′′ Function (f ) derivatives of orders 1 (prime), 2 (double-prime), 3 (triple
prime), etc.

∂f
∂x

, ∂
2f

∂x2
, ∂

kf
∂xk

First, second, and higher order partial derivative of a function
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(continued)

Notation Description

∇f = ∂f
∂x1

, . . . , ∂f
∂xk

� � The gradient of a function (f ), which evaluated at a point
p= x1, x2, . . . , xkð Þ represents the direction of the greatest rate of
increase of the function (∇f pð Þ). The magnitude of the gradient
represents the maximum rate of change of the function at a given
point

Δf =∇2f =
Xk
j = 1

∂2f
∂x2j

The Laplacian of a function. Evaluated at a point p, the Laplacian
represents the rate at which the average value of f , over spheres
centered at p, deviates from f pð Þ as the radius of the sphere grows

i The imaginary unit (i2 = − 1Þ
∀, 9, 2 Mathematical symbols – for all, exists, and belongs to (element of)

�· , · * Complex conjugate, e.g., a+ ib= a− ib; a,b 2 Rðb
a

ψ xð Þdx ≡
ðb
a

dx ψ xð Þ
Integral of a function over a specified interval a,b½ �

þz2
z1

f zð Þdz
Path integral

a.b= ajbh i Vector inner product

· T , · t , · ′ Transpose operator

· † The adjoint operator, which is the transposed conjugate

·̂ Operators associated with observables, or estimated quantities, or
the forward or the inverse Fourier transforms

□*□ The convolution operator, or product, depends on context

· ;̆ · ;̃ · ;̌ b· Parameter estimates (for scalars, vectors, matrices, or tensors)

□
− 1 Multiplicative inverse operator, associated with object products

H*

The dual space, H* = f :H!continuous C
n o

δ xð Þ Point source, Dirac delta function

Ψ,Φ, φ,ψ Wavefunctions or inference functions, depending on context

φ, ϕ, ν, θ Kime-phases or complex-intensity value phases, context dependent

h, �h Planck constant h=6.62607015× 10− 34 J·s
� �

, and the reduced Planck
constant

�
�h= h

2π

�
, measured in Joule by second

k · k, ·j j (Various) norms, functions satisfying scalability, additivity, and
inequality properties, that assign positive real numbers to each
argument that is an element in a vector space over a field
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(continued)

Notation Description

hAi Expectation of an operator, typically a linear self-adjoint (Hermitian)
operator corresponding to an observable, like position, momentum,
energy, spin, etc.

A,B½ �=AB−BA The commutator operator

ΔA=A− hAi Uncertainty, or deviance, of an operator A

σ2
A Mean square uncertainty of an operator A

Re ·ð Þ, Im ·ð Þ Functions returning the real and imaginary part of the argument

sgn ·ð Þ The sign function

V=Q Quotient space, V moduloQ

HankelH1 · ·ð Þ and
HankelH2 · ·ð Þ

The Hankel function of the first and second kinds

Jn ·ð Þ, Yn ·ð Þ Order n Bessel functions of the first and second kind

In ·ð Þ, Kn ·ð Þ Order n modified Bessel functions of the first and second kind

AiryAiðÞ The Airy function, represents a solution an ODE y′′− xy =0

□×□ Context-specific multiplication (product operator)

□ �□ Operator composition, or outer product operator

□.□= h□,□i Inner product for appropriate objects like vectors, matrices, and
tensors

□#□ Kronecker product

□�□ Khatri-Rao tensor dot product

≡ ,: = Definition

Λ#!− Orthochronous transformation notations

O · ·ð Þ, SO · ·ð Þ The orthogonal and special orthogonal groups of distance-preserving
transformations of a Euclidean space that preserve a fixed point

□?□ Orthogonal, independent components

erf ·ð Þ, erfi ·ð Þ Real and imaginary error functions

l=Λ and ll= logΛ Likelihood and log-likelihood functions.
Λ may also refer to the cosmological constant representing the energy
density of space (vacuum energy)

Ho and H1 The null and alternative research hypotheses, associated with
statistical tests and inference problems

V ·ð Þ The tensor vectorization operator
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(continued)

Notation Description

E ·ð Þ or h · i Expectation (of a random variable, vector, matrix, or operator)

argminCF , argmaxCF The argument optimizing (minimizing or maximizing) the objective
function F over the constrained space C

gμα, gαβ The contravariant and covariantmetric tensors, which are inverse to
each other, i.e., δμβ =gμαgαβ =gβαgαμ = δβμ

∝ Proportional, e.g., a∝b suggests that a= k b, for some constant k

k : l A sequence of consecutive numbers (typically integers indexing
arguments) from k to l, i.e,. k,k+1,k+2, · · · , l 2 Z.
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Chapter 1
Motivation

This book is about data science, inferential uncertainty, and the enigmatic concept
of complex time (kime), an extension of the common notion of event order (time) to
the complex plane. It includes a mathematical–physics treatise of data science, a
recently established scientific discipline that complements the three other pillars of
scientific discovery – experimental, theoretical, and computational sciences [11].
Specifically, we present the concepts of time complexity and inference uncertainty
in the context of data-driven scientific inquiry.

In broad terms, most scientific investigations that are based on large-scale datasets
utilize advanced analytic strategies, which can be classified into inferential (retrodic-
tive) or forecasting (predictive) subtypes. In both cases, uncertainty and time consider-
ations play vital roles in the derivation of the final results, the scientific discovery, and
the phenomenological interpretation of the data analytics [12]. For instance, uncer-
tainty is always present in the processes of prediction, resolving power of instruments,
or assessing reliability of modeling techniques. Intrinsically, all quantitative measures
always include uncertainties and many data analytic methods either rely significantly
on stochasticity or introduce uncertainties during various data interrogation steps. As
we will present later in this book, the uncertainty of the time direction (phase angle of
time) also contributes to the uncertainty of classical inferential models and impacts
the reliability of forecasting approaches. Around 500 BCE, the Greek philosopher Hera-
clitus noted [13] that “No man ever steps in the same river twice, for it is not the same
river and he is not the same man.” Similarly, contemporary data scientists can’t expect
to always get perfectly identical outcomes by repeating a modern large-scale study,
“for it is not the same data and the analytic processes are not necessarily deterministic.”

We will provide a constructive definition of Big Datasets and show biomedical,
health and economic examples of the challenges, algorithms, processes, and tools nec-
essary to manage, aggregate, harmonize, process, and interpret such data. In data sci-
ence, time complexity frequently manifests as sampling incongruence, heterogeneous
scales, or intricate interdependencies. We will present the concept of 2D complex time
(kime) and illustrate how the kime-order (time) and kime-direction (phase) affect ad-
vanced predictive analytics and the corresponding derived scientific inference. The
kime-representation provides a mechanism to develop novel spacekime analytics that
increase the power of data-driven inference. It also solves some of the unidirectional
arrow-of-time problems, e.g., psychological arrow of time (which reflects the irrevoca-
ble past-to-future flow) and thermodynamic arrow of time (which reflects the closed
systems’ relentless growth of entropy). While kime-phase angles may not always
be directly observable, we will illustrate how they can be estimated and used to
improve the resulting space-kime modeling, boost trend forecasting, and perform
enhanced predictive data analytics. We will use simulated data, clinical observations
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(e.g., neurodegenerative disorders), multisource census-like datasets (e.g., UK Bio-
bank), and European economic market data to demonstrate time complexity, infer-
ential uncertainty, and spacekime analytics.

1.1 Mission and Objectives

The mathematical foundations of data science are not yet fully developed. There are
a number of efforts underway to propose a canonical mathematical formulation of
data science that will allow reliable, reproducible, verifiable, consistent, and com-
plete treatment of a wide array of data science problems. Despite the complexities
associated with developing uniform data representation, homogeneous modeling,
and inferential concordancy, there are some recent fruitful directions. Examples of
recent advances include topological data analyses [14], compressive Big data ana-
lytics [15], tensor representations [16], neural networks (NNs) [17], and deep learning
(DL)[18, 19], to name but a few.

One-dimensional time is in the core for all of these methods and other classical
statistics including model-based and data-driven inductive inference techniques. This
type of scientific reasoning is extremely well understood for random samples from
specific families of distributions and performs quite well on empirical (traditional) ob-
servations. One of the key benefits of utilizing a classical statistical model is the abil-
ity to reliably assess uncertainties, for either Bayesian or frequentist statistics, and
provide theoretically consistent and unbiased estimates along with replicable practi-
cal conclusions. However, their applications are somewhat limited for massive, multi-
source, multi-scale, and heterogeneous datasets. Extending the notion of positive real
time to complex time provides a mechanism to effectively embed prior knowledge
into the analytic process, compress information, and obtain reliable inference. Mathe-
matically, classical time represents a positive cone over the field of the real numbers,
i.e., time forms a subgroup of the multiplicative group of the reals, whereas complex
time (kime) describes an algebraic prime field that naturally extends time. Although
time is ordered and kime is not, the intrinsic time ordering is preserved by the kime
magnitude.

In data science, algorithmic result reproducibility implies that the same numerical
output is generated for the same input data. For analytical function definitions, the
functional values yo = f xoð Þ are always the same for the same input xo. However, in
practice, many model-based and mode-free techniques utilize stochastic algorithms
and their outputs depend on extrinsic (environmental) or intrinsic (methodological)
conditions. Hence, the corresponding algorithmic outputs and numerical results may
vary for repeated invocations of the same process using the same input data. Of
course, reproducibility suggests stability and robustness of the algorithm or method.

On the other hand, result replicability represents a stronger declaration where the
essence of the conclusion of the inference remains the same when a new (random)
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sample drawn from a specific (joint) distribution, i.e., input data, is fed into the
algorithm, under the same conditions, to generate the output result. Replicability
of findings does not demand reproducibility of the numerical outputs. It suggests
that in an independent experiment, using the same conditions but different sample
observations from the same phenomena or process, the study findings are expected
to be successfully replicated, up to some quantifiable statistical error. Statistical infer-
ence, analysis, and forecasting assume the availability of appropriate models and
their efficient algorithmic implementations that provide closed-form parameter es-
timates as well as quantify the variability of these estimates, i.e., provide upper
bounds on the statistical errors.

Method replicability depends on some assumptions such as sample homogeneity
(identical distribution) and independence. Thus, classical inference requires that sub-
sets and supersets follow the same distributions and include independent observations.
Often, in practical big data analytics, we deal with samples including heterogeneous,
associated, or correlated observations. This violates the parametric (homogeneity and
independence) assumptions. In such situations, statistical error estimates may be bi-
ased (incorrect) and imprecise (widely varying), which affects the finding replicability
and the stability of the ultimate scientific conclusions.

A common example illustrating the importance of replicability is the stability of
the final inference obtained from sub-samples of a large dataset or super-samples
augmenting or appending the original dataset. When the research findings using
subsets or supersets of the data agree with the inference based on the original data-
set, this successful replication suggests the method’s stability and validates the
technique’s power to study the underlying phenomenon. However, statistical ro-
bustness and result replicability often require either very large datasets or rely on
tenuous assumptions about smaller datasets.

In this book, we attempt to address some of these big data challenges by trans-
forming the notion of multiple samples acquired in the 4D Minkowski spacetime
into a 5D spacekime extension manifold. This embedding of the 4D space into a 5D
spacekime manifold will facilitate a new kind of data analytics, which naturally re-
duce to their classical 4D spacetime analogues associated with unobserved kime-
phases (time-directions).

A simple example may provide motivation, explain the basic idea, and contextual-
ize the process of 5D spacekime inference. While there is no common definition of in-
telligence, nor is there a direct way to observe it, attempts to measure it and explain its
origin still captivate human imagination. In general, intelligence is a cognitive capacity
for rational, logical, and pragmatic understanding of the environment including self-
awareness, ability to learn, adapt, and interpret emotional cues, reflect on the past,
reason for the future, organize or create structure, and solve challenges. Intelligence is
a latent process that cannot be natively and holistically observed. It’s tracked mostly
qualitatively as abilities to perceive events, memorize or retain knowledge, infer
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conclusions that can be applied to adapt behaviors, plan for expected events, or pre-
dict future conditions in a specific environment. Figure 1.1 includes the generic process
of scientific inference with a specific example of studying intelligence across species.

Suppose the evidence we collect about cross-species intelligence is in the form
of a complex dataset D:

D= ds, k, f , tjs= species, k = case, f = feature, t = time
� 	

,

where ds, k, f , t is a univariate or multivariate, real or complex, discrete or continuous,
binary or categorical observation indexed across time by the species, case, and fea-
ture identifiers.

If we have a mechanism to understand the process within one species, the between-
species effects can be interpreted by contrasting the quantitative characterizations
across species. Let us focus on one species, humans, and assume we apply model-
free clustering to obtain automated computed phenotypes that can be interpreted in
relation to human intelligence.

Let D 0ð Þ = dhuman, k, f , tjk = case, f = feature, t = time
� 	

represent the raw human
data and I D 0ð Þ� �

be the resulting inference, e.g., derived cluster labels that may be
associated with human intelligence. Let FT D 0ð Þ� �

= D̂ 0ð Þ be the Fourier transforma-
tion (FT) of the data into k-space [20]. Clearly, we are assuming the data is quantita-
tive. If not, we can preprocess and quantize the data in advance. Preprocessing
steps transforming unstructured data into quantitative elements may be accom-
plished in many different ways, including mapping elements to structured tensors
(e.g., using text mining, natural language processing (NLP), image processing), in-
troducing dummy variable coding, and by other methods.

As we will show later, the Fourier representation of the data
�
D̂ 0ð Þ = D̂ 0ð Þ δ, ωð Þ�

is complex-valued in terms of the wavenumbers δ, ωð Þ representing the spatial
and temporal frequencies. We can consider the time-frequency feature transfor-
mation as a complex-time (kime) variable ω = reiθ 2 C, whereω= ω1, ω2, ω3, . . . , ωKð Þ,
r = r1, r2, r3, . . . , rKð Þ, and θ= θ1, θ2, θ3, . . . , θKð Þ. By pooling the kime-phases (θ) across

Figure 1.1: The general process of scientific inference with a heuristic example examining
intelligence.
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all cases, we can obtain an estimate θ̂, representing an aggregate univariate kime-phase
for D 0ð Þ. This aggregation can be accomplished in many different ways, e.g., via
the arithmetic-mean aggregator θ̂1 = 1

K

PK
k = 1 θk, the geometric-mean aggregator

θ̂2 =
QK

k = 1 θk

� �1=K
, the median aggregator1 θ̂3 =

θ 
 K + 1ð Þ
2

�� � + θ��K + 1
2

�
2 , the kurtosis aggre-

gator θ̂4 =
1
K

PK
k = 1 θk − θ̂1ð Þ4

1
K

PK
k = 1 θk − θ̂1ð Þ2

� �2 − 3, the scrambling phase aggregator θ̂5 = θπ kð Þ, where π ·ð Þ

is a random permutation of the phase indices, etc.

We can substitute the phase aggregator estimate θ̂ for the phases of the individual
cases (θk) in ω′

k = rkeiθ̂, and denote the pooled-phase data in k-space by D̂′ 0ð Þ=
D̂ 0ð Þ ω′

� �
. Next, we can invert the FT synthesizing the morphed data back into the

native space. Let’s denote the reconstructed data by ^̂D
0ð Þ= IFTðD̂′ 0ð ÞÞ. In addition to

using statistical phase aggregators, we can use model-based phase estimation using
specific probability density or distribution functions. We will also show an analytical
strategy to derive the enigmatic phases. For instance, we will show that the Laplace
transform can be applied to any longitudinal signal, i.e., time series, to obtain its Lap-
lace analytic dual kimesurface.

Now, note that in the native space, the original data (D 0ð Þ) and the corresponding
morphed reconstruction (^̂D

0ð Þ
) may be similar, but generally not identical, D 0ð Þ≠ ^̂D

0ð Þ
.

We now can apply the same (model-based or model-free) data analytic strategy to the
original and the reconstructed datasets and compare the results. There are obviously
many alternative analytical strategies that may be appropriate to use for the specific
case study. As we indicated earlier, in this illustration, we can apply model-free clus-
tering to obtain automated computed phenotypes that can be interpreted in relation
to human intelligence. In general, D 0ð Þ≠ ^̂D

0ð Þ
and we can expect the resulting clusters

derived from the original and morphed data to be somewhat distinct. Later, in Chap-
ter 6, we will demonstrate that applying and validating this spacekime analytics pro-
tocol to real datasets yields different results, which in some cases may be better than
the corresponding results based on the initial spacetime data.

In other words, different inference methods, such as identifying salient features
associated with intelligence, forecasting human intelligence based on other obser-
vational traits, or quantifying the cross-species intelligence characteristics, may all
be improved by transforming the data into spacekime. This process approximates
the unobserved time-directions by aggregating the estimated kime-phases and mod-
els the morphed reconstructed data in the native (spacetime) domain.

In this book, we will provide the technical details and the mathematical founda-
tion for this data-analytic approach which utilizes a generalization of the concept of

1 Median aggregator is defined in terms of the ceiling and the floor integer functions, d□e and b□c,
and the order statistics θ kð Þ.
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time to obtain parameter estimates that yield more accurate and replicable scientific
findings.

1.2 Internet of Things

Since 2010, there has been a relentless push to embed digital tracking (e.g., chips, bar
or QR codes, wearables) in all objects (including animals and humans) and central
processing units (CPUs) in all devices, no matter how small, insignificant, or impactful
these entities may be. Even a basic refrigerator model sold in 2013 has a motherboard
and a pair of CPUs. This trend is spurred by accelerated automation, rapid information
and communication technology advances, and manufacturing cost reductions. The in-
ternet of things (IoT) is a virtual network of connected devices (e.g., phones, vehicles,
and home appliances) having core electronics components and supporting common
communication protocols. IoT connectivity enables instantaneous, efficient, and reli-
able data connection that can be used for effective decision-making, resource optimi-
zation, information exchange, and predictive forecasting [21, 22].

IoT systems connect billions of devices (some standard like phones, laptops, and
high performance computing systems, and some less common like radio frequency
identification microchips) that are in constant flux in space, time, and state. Aside from
security, privacy, and policy issues, this avalanche of information presents massive
challenges related to the seven characteristics of Big Data and their handling, manage-
ment, processing, interpretation, and utilization. The Kryder law (doubling of storage
in 12–14 months) overtakes Moore’s law (doubling computing power each 18 months)
reflecting the faster rate of data collection compared to the rate of increase of our
computational capabilities [6]. Going forward, all of the generated digital information
cannot be physically processed or analyzed with current technologies. The breadth of
coverage and the depth of penetration of IoT will certainly change all aspects of human
life. However, to extract meaningful information, derive new knowledge and sup-
ply effective decision support systems based on the wealth of IoT information will
demand radically different data science methods and truly innovative predictive
analytic techniques.

1.3 Defining Characteristics of Big Datasets

Many large and complex datasets share a set of seven common properties that are
referred to as the seven dimensions characterizing big data [10]. Table 1.1 summa-
rizes each of these aspects and provides hints to their importance.

These characteristics of big data can be observed in virtually all application do-
mains, e.g., all contemporary environmental, physical, medical, social, economic,
and biological studies collect and interpret multiplex, voluminous, inharmonious,
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and impure observations. Of course, in practice, for each specific study, the data
characterization loadings on each of these dimensions may vary substantially.

1.4 High-Dimensional Data

There is no generic, canonical, and consistent representation theory of Big Data that
facilitates the management, modeling, analysis, and visualization of all observable
datasets. In the light of Gödel’s incompleteness theorem [23], it is not even clear if
such a theory exists. At the same time, there are algebraic, topological, probabilis-
tic, and functional analytic strategies that are being developed and tested to interro-
gate specific types of big data challenges. Some examples are summarized below,
but there are many others and the scientific community is constantly introducing
and validating new techniques.

Topological data analysis (TDA) employs geometric, topological and computa-
tional techniques to analyze high-dimensional datasets [14]. It is based on informa-
tion extraction from incomplete and noisy multivariate observations. The general
TDA framework captures the intrinsic structural information in the data and enables
dimensionality reduction and analysis irrespective of the particular metric chosen
to quantify distances between data points. The foundation of TDA exploits the to-
pological nature of the complete dataset via effective algebraic and computational

Table 1.1: Common characteristics of complex big data.

Big Data
Dimensions

Specific Challenges

Size Harvesting and management of vast amounts of information reflecting the
complete digitalization of all human experiences

Complexity Need for data wranglers for processing of heterogeneous data and dealing with
varying file formats, modalities, and representations

Incongruency Data harmonization and aggregation are paramount; these require new generic
protocols for consistent data homology and metadata matching

Multisource Ability to transfer and jointly model disparate data elements is critical

Multiscale A process may be observed via different lenses, which generates multiple proxy
characteristics of the phenomenon. It’s important to have a holistic
interpretation of multiresolution views of the process of interest (from macro to
meso, micro, and nano scale observations)

Time Data analytical methods need to appropriately account for longitudinal patterns
in the data (e.g., seasonality, autocorrelation)

Incomplete Big Data are never complete, exploring missing patterns and effectively
imputing incomplete cases are vital for the subsequent data analytics
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manipulations that preserve the topological and shape characteristics of the original
data structure. In practice, TDA connects geometric and topological techniques to es-
timate the persistent homology of the dataset considered as a point cloud.

In Chapter 4, we will see that tensors represent a very useful mathematical frame-
work for formulating and solving many types of problems via algebraic manipulations
of geometric operators [24, 25]. In practice, a tensor of order n is an n-way array
X 2 R I1 × I2 × I3 × . . . × In with elements xi1 , i2 , i3 , . . .in , indexed by ij 2 1, 2, 3, . . . , Ij

� 	
, 1≤ j≤ n.

Tensors extend the notions of scalars (zeroth-order tensors), vectors (first-order ten-
sors), matrices (second-order tensors), and so on to higher orders. Later on, we will
define mathematical operators on tensors, like inner, outer and Kronecker products,
Frobenius norm, and others. They allow tensor algebraic manipulations that lead to
functional and analytic representations used for mathematical modeling, statistical in-
ference, and machine learning-based forecasting based on observed data.

Manifold embedding methods, e.g., locally linear embedding or non-linear t-dis-
tributed stochastic neighbor embedding (t-SNE) [26, 27] and uniform manifold approxi-
mation and projection (UMAP) [28], assist with analyzing large amounts of multivariate
data by reducing the problem dimensionality. These techniques effectively allow
discovery-driven exploration of compact proxy representations of the original high-
dimensional data. Such reductions of complexity can be paired with both supervised
and unsupervised learning algorithms; however, they are distinct from other cluster-
ing methods that also facilitate local dimensionality reduction, but some embedding
methods do not rely on local minima optimizations, which may be suboptimal. Many
embedding methods encode, learn, and exploit the local and global symmetries of
linear reconstructions of the geodesic metric distances between data points in the
manifold.

A Statistic Online Computational Resource (SOCR) t-SNE/UMAP interactive we-
bapp, based on TensorBoardJS, provides a dynamic mechanism to ingest complex
data (e.g., thousands of cases and thousands of features) directly in the browser, see
Figure 1.2. The app defaults to embedding 10,000 cases of the UKBB archive (https://
socr.umich.edu/HTML5/SOCR_TensorBoard_UKBB, accessed January 29, 2021). Each
case has 5,000 clinical, demographic, and phenotypic structural data elements as
well as structural magnetic resonance imaging 3D brain volumes, which yield over
3,000 derived neuroimaging morphometric measures. At the start, the webapp spher-
izes the 3D linear embedding using principal component analysis (PCA), but also allows
2D and 3D linear and non-linear (e.g., t-SNE) embeddings of the 8,000-dimensional
UKBB dataset. This specific web-demonstration allows users to import their own high-
dimensional data (TSV format) and dynamically interrogate it directly into the client
browser.

Ensemble methods for modeling high-dimensional data with a large number of
features tend to be more robust with respect to noise as they aggregate families of
independent, possibly weak, learning algorithms to reduce the dimension com-
plexity, select salient features, and provide reliable predictions. Integrating many
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different feature selection algorithms yields stable feature subsets that represent
local or global optima in the feature spaces [29]. Ensemble methods select salient
independent features approximating the optimal subset of variables that may be
highly informative to forecast specific outcomes. Many regression, clustering, and clas-
sification algorithms address big data challenges due to either a very large sample
size or very high number of dimensions, but are impractical when both conditions
are present [30, 31].

There are many alternative approaches to employ graph representation of high-
dimensional data. Most of these techniques rely on graph formulation of supervised or
semi-supervised learning methods [32]. For example, probit classification [33] general-
izes level-set methods for Bayesian inverse problems with graph-theoretic approaches
and general optimization-based classification into a Bayesian framework. This strategy
capitalizes on efficient numerical methods tuned to handle large datasets, for stochas-
tic Markov chain Monte Carlo-based sampling as well as gradient-based Maximum a
posteriori (MAP) estimation. Graph-based semi-supervised learning methods tend to
be computationally intensive, but yield high classification accuracy and provide a
means to quantize uncertainty of the forecasting models.

Partial differential equations and various operators, like linear Laplacian or
quadratic Hessian eigenmaps [34], provide low-dimensional representations of com-
plex high-dimensional data that preserve local geometric characteristics and distan-
ces between data elements [35]. Such methods have a solid mathematical manifold
foundation, but may not be practical for some real-world data that exhibit uneven
data sampling, out-of-sample problems, or extreme heterogeneity.

1.5 Scientific Inference and Forecasting

Scientists often aim to predict what might happen in the future state of a process,
guide the knowledge discovery, and recommend appropriate actions by examining
what happened in the past and bring that knowledge to the present. The two distinct
tasks of data-driven retrodiction and prediction require using information about the
present to infer possibilities about different periods of time. However, these tasks dif-
fer in the direction of time they try to explain. Retrodiction aims to describe the past,
whereas prediction attempts to forecast the future.

There is some evidence suggesting that for humans, the task of prediction is
constantly and automatically in play. We always try to estimate prospective out-
comes based on present knowledge (e.g., balance risk and benefits in planning for
intrinsically stochastic events, determine when to buy and sell products, securities,
or real estate). Predicting the near future allows us to plan our subsequent actions.

Both human mental models as well as artificial machine intelligence algorithms
base these predictions on specific prior experience, artificial intelligence (AI), ma-
chine learning and training, and specific model states (e.g., complexity, parameters).
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These a priori assumptions allow us to extrapolate, simulate and foresee possible fu-
ture states of the phenomenon. Forward-looking prospective models are based on
how we, or algorithms, expect the process to evolve, unfold or change across time,
space, and conditions. Prior research on human prospection (elaborative prediction)
suggests that the task of predicting future trends (extrapolating the world forward)
relies on various cognitive mechanisms including remembering the past, understand-
ing the present, and dreaming about the impending unknown [36].

1.6 Data Science

Data science is truly a twenty-first century scientific discipline that grew organically in
response to the rapid, precipitous, and ubiquitous immersion of digital information in
all aspects of human experience [10, 37–41]. Data science is an extremely transdisci-
plinary area bridging between the theoretical, computational, experimental, and bio-
social areas. It provides techniques for interrogating enormous amounts of complex,
incongruent, and dynamically changing data from multiple sources. Most data science
efforts are focused on generating semi-automated decision support systems based on
novel algorithms, methods, tools, and services for ingesting and manipulating com-
plex datasets. Data science techniques are used for mining data patterns or motifs,
predicting expected outcomes, deriving clusters, or computed phenotypes using retro-
spective data or labeling of prospective observations, computing data signatures or
fingerprints, extracting valuable information, and providing evidence-based action-
able knowledge. Data science protocols integrate techniques for data manipulation
(wrangling), data harmonization and aggregation strategies, exploratory or confirma-
tory data analyses, predictive analytics, fine-tuning, and validation of results.

Predictive analytics is the process of utilizing data science along with advanced
mathematical formulations, statistical computing, and software tools to represent,
interrogate, and interpret complex data. For instance, predictive analytics processes
aim to forecast future trends, predict prospective behavior, or prognosticate the for-
ward process characteristics by examining large and heterogeneous data as a proxy
of the underlying phenomenon.

By identifying intervariable relationships, associations, arrangements, or motifs in
the dataset, predictive analytics can determine the entanglement of space, time, and
other features, exploit the predicament duality of information compression and reduc-
tion of the dimensionality of the data, as well as generate derived phenotypic clusters.
Data science and predictive analytics help uncover unknown effects, provide parame-
ter, and error estimates, generate classification labels, or contribute other aggregate or
individualized forecasts. The varying assumptions of each specific predictive analytics
technique determine its usability, affect its expected accuracy, and guide the actions
resulting from the derived forecasts. To facilitate the predictive analytics process,
data science relies on supervised and unsupervised, model-based and model-free,
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classification and regression, deterministic, stochastic, classical inference, and
machine learning-based techniques. Often, the expected inferential outcome type (e.g.,
binary, polytomous, probability, scalar, vector, tensor, etc.) determines which techni-
ques may be most appropriate and controls the resulting prediction, forecasting, label-
ing, likelihoods categorization, or grouping conclusion.

1.7 Artificial Intelligence

Human intelligence is commonly understood as the individual or collective intellectual
ability of people or mankind that is uniquely enabling us to construct, interpret, ex-
press, communicate, and react to complex stimuli [42]. Across species, (natural) intelli-
gent behavior depends on multiple intrinsic and extrinsic factors, such as genetics,
environment, and evolutional serendipity. The degree of intelligence may be associ-
ated with cognitive acuity, learning style, concept formation and understanding, ca-
pacity for logical abstraction, rational reasoning, pattern recognition and perception,
ideation, planning, effective decision-making, formation and retrieval of short and
long-term memory, information synthesis, and effective communication.

AI, also known as synthetic or machine intelligence, goes farther than simple au-
tomation, high-throughput computation (e.g., brute-force solutions), and determin-
istic algorithmization. At the same time, the line between automation and AI appears
to be fluid. As the relentless embedding of AI in all aspects of human experiences
continues to grow, prior AI successes tend to be discounted as basic automations. We
tend to refer to contemporary AI as proposed solutions to challenging tasks that are
difficult or impossible to solve at the present time via state-of-the-art technologies.
For instance, recall the exceptional AI solutions such as the Apollo Guidance Com-
puter that led to the Apollo’s successful landing on the Moon in 1969 [43, 44], the AI
clinical decision support system that advised physicians in antimicrobial therapy in
1973 [45], the Deep Blue’s defeat of Garry Kasparov in 1997 [46], and Google DeepMind
AI network (AlphaFold), which leaped forward in solving grand structural biology
problem to determine a protein’s 3D shape from its amino-acid sequence [47]. At their
times, each of these success stories represented enormous AI breakthroughs. Present
computational, machine learning, and AI advances dwarf each of these prior feats of
ingenuity. Many consider the moment of successfully conquering a previously diffi-
cult challenge as the dynamic boundary where prior AI innovations lose their intelli-
gent status to become more routine human-driven inventions [48].

Broadly speaking, AI deals with non-trivial reasoning problems, information ex-
traction, representation of knowledge, effective planning, forecasting, structure under-
standing, NLP, perception, temporal dynamics, etc. AI relies on numerical methods,
optimization theory, logic, probabilistic reasoning, classification and regression tech-
niques, statistical and DL methods, artificial NNs, and engineering tools. Its applica-
tions are virtually ubiquitous.
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Some AI methods are model-based and some are model-free [49–52]. Some are su-
pervised and some are unsupervised. Some are applicable for structured or unstructured
data elements, low or high dimensional data, Figure 1.3. AI algorithms may demand
substantial backend computational support infrastructure (storage, computing and net-
work) that make them uniquely tailored to specific challenges and dependent on high-
end services. For instance, DL extends classical feedforward artificial NN and multilayer
perceptrons to more elaborate networks such as unsupervised auto encoding–decoding,
convolutional, recurrent, and long short-term memory [53–55]. The pragmatics of these
complex graph network topologies and their model-free structure typically demand ex-
ceptional computational foundation, substantial memory capacity, and high band-
width network resources to complete the optimization problem and generate the final
classification, prediction, recommendation, decision, or forecast. The extremely large
number of unknowns in such deep neural networks (DNNs) leads to difficult compu-
tational challenges. For instance, a substantial stumbling block in DNN prediction
is the process of hyperparameter optimization. It typically involves initializing, nor-
malizing, learning (estimating), and tuning a vast number of free parameters that are
possibly interdependent and collectively have non-linear effects on the final DL results.
Recent advances in graphics processing unit computing, scalable Cloud services, and
increases in channel communication bandwidth facilitate the proliferation of com-
plex DNN modeling, analytics, and applications.

1.8 Examples of Driving Motivational Challenges

All sectors of the economy are beginning to be affected by the IoT information wave
and the data science disruptive revolution. Even traditionally labor-intensive areas
such as agriculture, construction, the humanities, and the arts are deeply impacted
by digital sensors, IoT instruments, and data-driven forecasts to improve crop yield,
reduce transportation costs, source commodities, improve material properties, and
optimize scheduling. Figure 1.4 shows estimates of (1) big data potential index, (2) ex-
pected annual growth, and (3) the relative GDP contributions for a number of industry
sectors, based on 2016 data from the US Bureau of Labor Statistics and the McKinsey
Global Institute.

Below we will summarize several specific examples illustrating the role and im-
pact of big data in biomedical, environmental, and socioeconomic applications.

1.8.1 Neuroimaging-Genetics

A recent Alzheimer’s disease (AD) study [15] utilized multiplex data from the Alz-
heimer’s Disease Neuroimaging Initiative [56] to formulate a generic big data re-
presentation that facilitates the mathematical modeling, statistical inference, and
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machine-learning forecasting of clinical phenotypes. The data consisted of clinical
measurements, brain images, and genetic markers for a large sample of elderly
volunteers representing three cohorts of patients: early onset Alzheimer disease
(EO-AD, of size 406), normal controls (of size 747), and early onset mild cognitive
impairment (EO-MCI of size 1, 347).

Employing global and local shape analyses of the neuroimaging data, the authors
derived imaging-biomarkers based on 56 regions of interest. Then, they used a com-
pressive big data analytic technique to forecast the participant clinical diagnosis and
validate the prediction accuracy. This problem was particularly challenging because
of normal variations in cognitive aging and the heterogeneity of dementia. In addi-
tion, the complexity of the data with most data elements being represented in dif-
ferent incongruent spaces required special data science wrangling methods and
advanced machine learning classifiers to jointly model and holistically interpret
the wealth of information.

The reported results identified the 10 most salient features including a blend of
clinical, demographic and derived imaging covariates (clinical dementia rating global
score, weight, sex, age, right cingulate gyrus, functional assessment questionnaire
total score, left gyrus rectus, right putamen, cerebellum and left middle orbitofrontal
gyrus) that affected the diagnostic prediction of the clinical phenotypes of the partic-
ipants. An internal statistical cross-validation confirmed a high accuracy of predicting
the correct diagnosis, accuracy= 90% with confidence interval CI: 87%, 93%½ �.

1.8.2 Census-Like Population Studies

From an individual or family perspective, human health and well-being are very per-
sonal issues. However, as the 2018 measles outbreak among communities with low
child vaccination rates within the US State of Washington shows, assuring the health of
the public goes beyond focusing on the health status of individuals and demands popu-
lation-wide epidemiological approaches. Strategies to holistically understand the tem-
poral patterns of health and disease across location, demographics, and socioeconomic
status are vital to understanding the factors that influence population well-being.

The United Kingdom Biobank (UKBB) is a unique and powerful open-access health
resource enabling international researchers and scholars to examine, model, and ana-
lyze census-like multisource healthcare data. UKBB presents a number of Big Data
challenges related to aggregation and harmonization of complex information, feature
heterogeneity and salience, and predictive health analytics. Investigators at the Uni-
versity of Michigan SOCR recently used UKBB to examine mental health in a general
population [57]. By using 7,614 imaging, clinical, and phenotypic features of 9,914 par-
ticipants the researchers performed deep computed phenotyping using unsupervised
clustering and derived two distinct sub-cohorts. Parametric and nonparametric tests
identified the top 20 most salient features contributing to the AI-based clustering of
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participants. This approach generated decision rules predicting the presence and pro-
gression of depression, anxiety, and other mental illnesses by jointly representing
and modeling the significant clinical and demographic variables along with the de-
rived salient neuroimaging features. Table 1.2 shows the results of an internal statisti-
cal cross-validation for a random forest classifier for a set of four clinical outcomes:
sensitivity/hurt feelings, ever depressed for a whole week, worrier/anxious feelings, and
miserableness.

While not perfect, these results illustrate how completely automated methods can
derive complex phenotypic traits in large populations and identify the salient data
elements that provide important contextual information about clinically relevant
idiosyncrasies.

The study reported high consistency and reliability of the automatically-derived
computed phenotypes and the top salient imaging biomarkers that contributed to
the unsupervised cohort separation, Figure 1.5. The outcome of the study is a clini-
cal decision support system that utilizes all available information and identifies the
most critical biomarkers for predicting mental health, e.g., anxiety. Applications of
this technique on different populations may lead to reducing healthcare expenses
and improving the processes of diagnosis, forecasting, and tracking of normal and
pathological aging.

1.8.3 4D Nucleome

In 2015, the National Institutes of Health launched the 4D Nucleome initiative [58],
which aims to understand the fundamental principles of 3D special organization and
1D temporal morphogenesis of the cell nucleus. To untangle this complex problem, in-
vestigators examine gene expression, imaging, and cellular recordings data, and track
the observed changes of shape, size, form, function, and physiology of multiple cellu-
lar and subcellular structures.

Table 1.2: Results of a population-wide exploratory analytics study using random forest classifier
applied to the UKBB data.

Clinical outcomes Accuracy % CI of accuracy Sensitivity Specificity

Sensitivity/hurt feelings . (., .) . .

Ever depressed (≥ 1 week) . (., .) . .

Worrier/anxious feelings . (., .) . .

Miserableness . (., .) . .
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Two recent studies illustrate some of the data-complexity intricacies and analyti-
cal opportunities to enhance our basic knowledge about cellular growth, maturation
and aging in both health and disease (e.g., cancer). The first study performed experi-
ments, collected multimodal heterogeneous data, and applied data and computa-
tional science techniques to measure genome conformation and nuclear organization
[59]. The authors combined biophysical approaches to generate quantitative models
of spatial genome organization in different biological states for individual cells and
cell populations, and investigated the relations between gene regulation and other
genome functions. This research demonstrated that advanced mathematical model-
ling and computational statistics applied to complex genomics data provide mecha-
nisms for precision health and biomedical forecasting.

Another study [60], proposed a new approach to integrate data modeling, analy-
sis, and interpretation with the intrinsic 3D morphometric characteristics of cell nuclei
and nucleoli. This study required a substantial preprocessing of high-volume of 3D tis-
sue imaging data to generate (1) volumetric masks of cells and sub-cellular organelles,
and (2) robust surface reconstruction that allows accurate parametric approximation
of the intrinsic 3D object boundaries. A number of computed geometric morphological
measures were utilized to characterize the shape, form and size of cell nuclei and nu-
cleoli. Augmenting the phenotypic and experimental conditions data with these imag-
ing-derived features allowed the modeling, comparison, and analysis of nuclei and
nucleoli of epithelial and mesenchymal prostate cancer cells as well as serum-starved
and proliferating fibroblast cells.

The study developed an end-to-end computational protocol that starts with the
multisource raw data and images, goes through the data harmonization and model-
ing, learns the affinities of the relations among imaging, structural organization and
experimental phenotypes on training data, and applies the automated decision sup-
port system to predict cell types on independent (testing) data. The excellent classifi-
cation results report accuracy of 95.4% and 98% for discriminating between normal
and cancer cells using sets of 9 and 15 cells, respectively, Figure 1.6. This was one of
the first attempts to completely automatically process multisource cellular data, com-
bine 3D nuclear shape modeling methods, apply morphometry measures, and build a
highly parallel pipeline workflow that forecasts the cell phenotypes.

1.8.4 Climate Change

It is common to confuse shifting weather patterns and climate change in casual conver-
sations. In short time periods, the former does cause a lot of anxiety in local geographic
regions under specific conditions. Dynamic and extreme weather patterns typically
have counterbalancing effects at different spacetime locations. However, alterations in
the Earth’s climate represent global, lasting, compounding, and inertial effects with
prolonged periodicity that typically result in drastic environmental perturbations.
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Mastering the forecasting of weather patterns represents perhaps the greatest
accomplishment of human ingenuity. Annually, across the globe, extreme weather
kills approximately 500,000 people and injures tens of millions. Despite that, mil-
lions of lives are saved each year by accurate forecasts of extreme weather events.
As of 2019, the costliest weather disaster in the US was the 2017 Hurricane Harvey,
which reduced the GDP by over $190B. Reliable forecasting of the trajectory, sever-
ity, and impact of such weather systems is critical. It enables advance warnings, ac-
curate projections of their paths, and appropriate road condition advisories. Such
models also facilitate governmental planning, emergency response coordination,
and organizational management to mitigate many types of natural disasters.

Climate change is much more enigmatic. Most climate-change models agree
that the Earth is warming rapidly, most likely due to human causes (e.g., extreme
fossil fuel consumption and increase of CO2 or CH4 emissions in the atmosphere).
Predicting a category 3 hurricane when a category 5 storm makes landfall will have
a devastating, yet very localized effect. Forecasting a global average temperature in-
crease of 2 °C by 2100, but observing an actual 3 °C change in 2100 will be cata-
strophic to all life on Earth. The effect of such “moderate” change of 1 °C may result
in a similar climate to the last epoch of the Tertiary period, the Pliocene, 3 million
years ago. Permafrost will melt, trees will grow in the Arctic, all continental glaciers
will disappear, and sea levels will rise by 25 meters displacing billions of people.

Global climate change and its impact on life may be the greatest challenge in the
twenty-first century. It requires an urgent response, massive amounts of historical,
contemporary and prospective data, innovative model-based statistical and model-free
machine learning techniques to understand the interactions of the many terrestrial
(e.g., energy use, agriculture), and extraterrestrial (e.g., Sun radiation) factors. There is
a stark contrast between the enormous success of weather prediction and detailed fore-
casting of climate change using big data. The root cause of this discrepancy lies in the
complex nature of climate data (e.g., extremely long periodicity and extremely com-
plex interdependencies) and the existential nature of the climate science challenges.

The Howard Hughes Medical Institute BioInteractive resource includes an Earth
Viewer that dynamically illustrates the longitudinal climate change relative to tem-
perature, atmospheric greenhouse particles (e.g., CO2 and CH4), and other factors,
Figure 1.7. It demonstrates unmistakably the effects of climate change, as well as
represents an oversimplified version of a big data-driven model for estimating retro-
spective relations and forward prediction of the complex longitudinal interrelations
between multiple factors affecting and characterizing the Earth’s climate.
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1.9 Problems of Time

The concept of time is a bit mysterious. In general, time refers to the continuous prog-
ress of existence where observable events occur in an irreversible succession from the
past, to the present, and further into the future [61]. In essence, time is the positive
continuous univariate measure we associate with the ordering of all observable
phenomena. Time-derivative measures allow us to compare events, quantify vari-
ous phenomenological measurements like time duration (distance in time, inter-
val) and rates of change of other measurable physical quantities, e.g., speed and
acceleration, and interpret conscious experiences. As the fourth dimension of the
Minkowski spacetime manifold, time plays a key role in the special and general theo-
ries of relativity. At present, precise measurement of time is critical in all aspects of
human life as it underpins virtually all human communications, spatial–temporal lo-
calizations, and all computing processes including the basic read and write of a sin-
gle bit of information.

The contemporary interpretation of time is based on the early 1900s idea of Ein-
stein to axiomatically define the speed of light as a constant value for all observers,
which effectively allows intrinsic measurements of distances in 4D spacetime. This
notion extended the Newtonian interpretation of classical mechanics. According to
the special theory of relativity, two events in separate inertial frames can be simul-
taneous yet the spatial-distances may appear compressed and time-intervals may
appear lengthened to observers in these frames.

Distances in space can be measured by the length of time light travels that dis-
tance, which leads to an intrinsic definition of a spatial yardstick, a meter, as the
distance traveled by light (in vacuum without distortions) in a small fraction of time
(the constant speed of light = 299,792,458 meters/second). In Minkowski 4D space-
time, a pair of events can be separated by a spacelike, lightlike, or timelike invariant
interval. The timelike separated events cannot occur simultaneously in any frame of
reference, as their order of occurrence has a non-trivial temporal component. Space-
like separated events may occur simultaneously in time in some frame of reference,
but the events will be observed at different spatial locations. In different inertial
frames of reference, local observers may estimate different distances and different
time intervals between two events, however, invariant intervals between events do
not depend on the observer frame of reference or the inertia velocity.

In its most general form, the problem of time conceptualizes a conflict between
general relativity, which considers the flow of time as malleable and relative, and
quantum mechanics, which regards the flow of time as universal and absolute. In sim-
ple terms, the problem of time relates to the paradox of time as being a real, measur-
able, distinctly interpretable, and reversible phenomenon. In fact, general relativity
hints to the illusive nature of time as a uniform and absolute quantity. According to the
general theory of relativity, the dynamic nature of spacetime breaks the uniformity and
immutability of time by suggesting that gravity morphs the 4D spacetime geometry.
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The limited scope of the definition of time yields characterization of event locali-
zation purely in terms of their “order of occurrence,”which leads to some paradoxical
results. To circumvent some of these intrinsic limitations of a univariate positive time,
we will extend the notions of events and their order (time) to complex events (kevents)
and their corresponding 2D complex time (kime). This generalization will capture both
order and direction of kevent appearances and resolve many of the problems of time.
This 2D kime representation naturally reduces to the standard 1D concept of time ex-
pressing the traditional event longitudinal order (time). However, kime also reflects
more accurately the general states of kevents in terms of their sequential arrangement
(kime-time), as well as their orientation (kime-phase). Of course, the key part of this
generalization will be the extension from time-dependence to kime-dependence of var-
ious fundamental concepts, mathematical functions, linear operators, and physical
properties. Examples of such spacekime generalizations that we will derive include
the concepts of rate of change, intervals, velocity, derivatives, integrals, Newton’s
equations of motion, Lorentz transformations, etc., which will be defined in the space-
kime manifold. Finally, we will demonstrate the impact of the spacekime generaliza-
tion to data science problems.

1.10 Definition of Kime

At a given spatial location, complex time (kime) κ = reiφ 2 C, where the magnitude
represents the dual nature of the event order (r >0, kime order) and characterizes the
longitudinal displacement in time, and the event phase (− π ≤ φ < π, kime phase) that
can be interpreted as an angular displacement or event direction. Later we will show
that there are multiple alternative parameterizations of the complex plane that can be
used to represent kime. Figure 1.8 schematically illustrates the spacekime universe
(R3 ×C). Readers should examine the similarities and differences between various
pairs of spacekime points. For instance, x, k1ð Þ and x, k4ð Þ have the same spacetime
representation, but different spacekime coordinates, x, k1ð Þ and y, k1ð Þ share the same
kime, but represent different spatial locations, and x, k2ð Þ and x, k3ð Þ have the same
spatial-locations and kime-directions, but appear sequentially in order.

For a pair of events separated by a negative spacetime interval (i.e., the invariant
Minkowski metric tensor is less than zero) the spatial distance between the events is
less than the distance that can be traveled by a photon in the time interval separating
the two events. Such events are called timelike separated, as it is possible to send a
causal signal (e.g., physical particle carrying information) from the early to the later
events. Conversely, when the spacetime metric is positive, the spatial distance separat-
ing the two events is larger than the distance that can be traveled by a causal signal
(whose speed is less than or equal to the speed of light) during the corresponding time
interval. Such a pair of events is said to be spacelike separated, as no conventional
causal signal can travel from one event to the other, and thus, it is impossible for the
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earlier event to be the “cause” of the latter one. A trivial metric value suggests that the
two events are lightlike separated, and the two events are a spatial distance apart that
equals the exact distance light can travel in the given time period.

Multiple time dimensions have been previously proposed and applied in phys-
ics [62–64], music [65], performing arts [66], engineering [67], and economics [68].
There is a difference between “complex-valued” processes, e.g., complex time se-
ries, purely imaginary time, e.g., Wick rotation [69], and complex time (kime) in-
dexed processes. It is important to draw early this distinction between imaginary
time, complexifying the domain of a process (kime), and complex representation of
the range of a process. Most prior work has been focused on complex-valued (range)
processes. However, Bars [62], Wesson [70], Overduin [63], and Köhn [64] have each
formulated alternative approaches to account for 2D time in physics.

In Chapter 3, we will see how this kime-manifold definition leads to the extension
of the concept of an event in time to a complex event (kevents) in kime, as well as the
remediation of some of the problems of time by the extension of Minkowski 4D space-
time to the 5D spacekime manifold. Since there are infinitely many distinct differential
structures on the Minkowski 4D spacetime [71, 72], differential topology provides an-
other justification for the 5D spacekime manifold extension. Topologically, the

Figure 1.8: A schematic of the 5D spacekime manifold. The graphic pictorially illustrates kevent
separation by a kimelike interval, ds2 <0 (e.g., x, k1ð Þ and x, k2ð Þ), a spacelike interval, ds2 >0
(e.g., x, k1ð Þ and y, k1ð Þ), or a lightlike interval, ds2 =0 (e.g., x, k2ð Þ and some y, k3ð Þ, where the time
difference c r1 − r2k k is chosen to be equal to the spatial interval x − yk k).
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uncountably many incompatible calculus-of-differentiation possibilities on 4D (i.e.,
infinitely many ways to measure rate of change) are reduced to a finite number of
distinct differentiable structures on 5D+ (multiple time and space) dimensions [73].
Under certain conditions, e.g., the 5D+manifold is a flat Euclidian space, there is
actually a unique rate-of-change structure on the manifold [71, 74]. In other words,
there are nice 4D manifolds with distinct smooth structures, e.g., there are uncount-
ably many manifolds homeomorphic to R4 (i.e., each neighborhood in the space is
locally flat and Euclidean) that are not diffeomorphic (i.e., the local neighborhood
isomorphism maps are not necessarily smooth) [75].

1.11 Economic Forecasting via Spacekime Analytics

Deep market analytics and continuous economic forecasting involve a blend of theoret-
ical models of how the economy works (e.g., cause and effect relations), practical ob-
servations of market conditions and the state of the economy (e.g., surveys of experts,
balance of supply and demand), and data-driven modeling of various economic met-
rics (e.g., fiscal and monetary policies in relation to the rate of GDP growth and general
business activity). In the developed world, where consumer spending accounts for a
large share of economic activity, consumer purchasing, investment, and saving deci-
sions determine the principal trends of future economic conditions. Data from experts,
observations of the state of markets and economic conditions (e.g., employment, jobs
growth, interest and inflation rates), and numerous private and government indicators
all play critical roles in prognosticating the future state of the economy. Central banks
(e.g., US Federal Reserve and the European Central Bank) use a wealth of indicators to
set interest rates, and government financial departments (like the US Treasury) deter-
mine the optimal fiscal policies (e.g., taxes, budget spending, money in circulation) to
influence short- and long-term unemployment, inflation rates, and the liquidity bal-
ance between monetary supply and demand.

The University of Michigan provides several economic indices, like the Michigan
Consumer Sentiment Index (MCSI), normalized to 1966, which capture the current
sentiment and forecast the future consumer confidence. These monthly economic
forecasts are derived by conducting hundreds of telephone interviews with expert
panelists covering 50 core questions [76]. MCSI plays a key role in the market reviews
and policy decisions of the Federal Reserve Eighth District Bank of St. Louis, which is
part of the US Federal Reserve System (Fed). The Fed open market committee makes
quarterly monetary decisions by tracking indices like MCSI, the circulation of money,
the state of banking, the trends of various financial indicators, and the broader eco-
nomic activity in the US.

Data collected for computing the MCSI is openly available via the Michigan Sur-
veys of Consumers website (https://data.sca.isr.umich.edu, accessed January 29,
2021). It contains longitudinal data of consumer sentiment since 1966, comprising
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over n= 280,000 cases and more than p= 110 features. The archive includes demo-
graphics (e.g., age, gender, marital status, family size, level of education, home
ownership, and employment status), personal micro-economic indicators (e.g., fam-
ily income, personal finances, investments), macro-economic measures (e.g., senti-
ment of economic conditions, expected unemployment, home ownership sentiment),
and consumer trends (e.g., consumer price index, purchases of durable goods, and
home price index).

Figure 1.9 depicts the trajectories of several MCSI demographic, economic, and
sentiment indicators over the past 41 years. In this graph, the data is smoothed over
time and across participants to show the global macroeconomic trends. The MCSI ar-
chive includes index of consumer sentiment (ICS), index of current economic condi-
tions (ICC), GOVT (government economic policy), durables buying attitudes (DUR),
home buying attitudes (HOM), vehicle buying attitudes (CAR), AGE (age of respondent),
and EDUC (education of respondent). Much like other large, complex, and longitudinal
economic sentiment and market index datasets, this archive is continuously expanded,
and provides interesting computational and data-analytic challenges. Solutions to such
forecasting problems require novel approaches for extraction of useful information that
can be translated to actionable knowledge driving effective monetary policies and re-
sponsible fiscal regulations.

Let us use this case study to illustrate the basic idea behind complex time and
kime-phase estimation and draw the parallels between traditional statistical longitudi-
nal modeling and data analytics in the spacekime manifold. In the interest of providing
a very specific driving motivational example that illustrates the end-to-end spacekime
data analytic protocol, we are suppressing the technical details of this experiment and
only showing the idea and results. The mathematical foundations of spacekime analyt-
ics will be provided in the coming chapters, along with additional examples elucidat-
ing the power of time-complexity modeling to explicate inferential uncertainty.

Fluctuations in the US Index of Consumer Sentiment are closely monitored by
investors, policy makers, economists, private corporations, mutual and hedge funds
managers, and public organizations. For example, between January and February
2019, University of Michigan scholars reported that the US consumer sentiment rose
to 95.5 in February of 2019 compared to 91.2 in January of 2019. A deeper inspection
of this sudden monthly ICS increase in February 2019 reflected the end of the partial
US government shutdown coupled with a shift in consumer expectations about the
US Central Bank (Federal Reserve) halting short-term interest rate hikes.

Accurate, timely, and reliable ICS estimates have significant impact on invest-
ment and broader market activity. ICS is a derived measure; it is entangled with many
other macro socioeconomic conditions and macroeconomic financial benchmarks.
This interdependence suggests that ICS can be (1) modeled and predicted using avail-
able economic data and information on other consumer trends, (2) used along with
other covariates to predict higher-order derivative measures, and (3) used to validate
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other fiscal measures, calibrate monetary conditions, or support or hinder specific
market expectations.

With this in mind, let us use the MCSI dataset to forecast ICS using exogenous
variables autoregressive integrated moving average (ARIMAX) modeling [77]. We will
derive ICS forecasts based on traditional spacetime prediction methods and compare
these against new spacekime analytical strategies. Specifically, we will estimate the
best ARIMAX longitudinal model of the consumer sentiment indicator using six ob-
served covariates: GOVT, DUR, HOM, CAR, current total household income (income),
and education level (Educ). For validation purposes, we will split the multivariate lon-
gitudinal data into two sets: (1) a training set (covering the period from 1978 to 2016)
that will be the base for estimating the ARIMA and the regression parameters of the
ARIMAX model, and (2) an independent testing dataset that will be used for validation
of the resulting forecasts (covering the last two years, 2017–2018). The optimal ARI-
MAX model of ICS using the above covariates is shown in Figure 1.10.

The ARIMAX model is trained on a span of 39 years (1978–2016), and then its effect
to predict the prospective ICS is assessed on the last 2 years (2017–2018). Figure 1.10
graphically depicts the process of traditional statistical model-based inference – from
training data (green), to parameter estimation (top panel), statistical significance of ef-
fect sizes, model-based prediction (red), and the prospective MICS-reported consumer
sentiment index (gray). The 24-month period on the right also shows the 80% and 90%
confidence bands around the mean ARIMAX ICS-model prediction. Clearly, this type of
statistical inference is appealing, as it has nice theoretical properties, provides an effi-
cient algorithmic strategy for computing the forecast, and is adaptive to variations in
the exogenous covariates. The computed ARIMAX model slightly underestimates the
ICS that is reported prospectively by MCSI. However, this observed versus predicted
difference is not statistically significant as the 2017–2018 ICS trajectory is enclosed
completely within the ARIMAX model confidence bands (see top-right in Figure 1.10).

We will now demonstrate the process and results of applying a spacekime ana-
lytics strategy to the same challenge – prospective prognostication of the consumer
sentiment index. To ensure a fair comparison of the alternative ICS forecasts and
direct compatibility of the corresponding inference or decision-making, we will still
rely on ARIMAX modeling. For simplicity, we will denote the training and testing
outcomes by Ytrain = ICS, over 1978–2016, and Ytest = ICS, over 2017–2018, respec-
tively. Similarly, we will denote the covariate features used to predict the corre-
sponding training and testing outcomes by:

Xtrain = GOVT,DUR,HOM,CAR, INCOME,EDUCf g over 1978− 2016, and

Xtest = GOVT,DUR,HOM,CAR, INCOME,EDUCf g over 2017− 2018.

Arima_Train <- auto.arima(MCSI_ Y_train, xreg = X_train)

Coefficients of regression with ARIMAX(2,0,1)(1,0,1)[12]
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Model diagnostics: σ̂2 = 8.564, log-likelihood = − 1161, AIC = 2348.6, AICc =
2349.4, BIC = 2402.5.

The FT allows us to analyze the training data by mapping it to the frequency k-space,
where we can employ alternative kime-aggregators (K ) to estimate the missing
kime-phases. Then, we will use the inverse Fourier transform (IFT) to synthesize new
reconstructions of the training data back in spacetime. Based on alternative kime-
aggregators, the IFT will generate different training data reconstructions that will be
used to refit the ARIMAX model.

Figure 1.10: (Traditional statistical modeling and prediction) Estimation of the optimal ARIMAX
model of ICS. The top panel shows the analytical ARIMAX model description (results are rounded
to 10− 1). The bottom graph visually illustrates the performance of the ARIMAX model trained on the
39-year span (1978–2016) and tested on 2-year prospective longitudinal data (2017–2018). The
training data (green) covers 39 years, and the 24-month period on the right side shows the official
MCSI prospective ICS index (gray), the model prediction (red), and the 80% and 90% confidence
bands around the ARIMAX model mean prediction. Although the ARIMAX model appears to
somewhat underestimate the actual reported ICS, the model confidence interval does contain the
prospective ICS value for all 24 months (2017–2018).

Parameter ar ar ma sar sma intercept GOVT DUR HOM CAR INCOME EDUC

mean . −. −. . −. . − − −. −. . .

SE . . . . . . .  .  . .
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These spacekime-derived data analytics can be compared against the results of the
traditional spacetime statistical inference we saw in Figure 1.10. Symbolically, we will be
comparing ICS predictions based on the classical ARIMAX Xtrain,Ytrainf gð Þ model and the
results of various ARIMAX Xkime

train ,Ykime
train

� 	� �
models, using alternative kime-aggregators.

Symbolically, the spacekime-reconstructed data, Xkime
train ,Ykime

train

� 	
, represents the fol-

lowing composite transformation of the native training data, Xtrain,Ytrainf g:

�
Xkime
train ,Ykime

train

�
= IFT|{z}

Fourier
synthesis

K|{z}
spacekime
phase

aggregation

FT|{z}
Fourier
analysis

�
Xtrain,Ytrainf g

�0BB@
1CCA

0BBBB@
1CCCCA.

Figure 1.11 shows schematically the design of the spacetime and spacekime analytics
for this ICS predictive forecasting demonstration. The observed, computed, and derived
labels reference raw datasets, kime-transformed datasets, and analytically forecasted
outcomes, respectively. While this example illustrates the use of a model-based infer-
ential strategy (ARIMAX modeling), this framework allows any supervised or unsuper-
vised, model-based or model-free, parametric or non-parametric approach to obtain
the desired inference in terms of specific predictions, forecasts, classification, regres-
sion, or clustering.

Figure 1.12 shows the distributions of the kime-phase angles for each of the seven co-
variates (6 predictors and one outcome, ICS). Note the following three properties of the
distributions of different features: (1) all features have different phase distributions,

Figure 1.11: Schematic illustration of the observed data, computed information, and derived
predictions for the consumer sentiment indicator study using traditional spacetime forecasting
and spacekime analytics.
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(2) as expected, all phases are in the range − π, + π½ Þ, and (3) the phase distributions
appear to be zero-mean and symmetric. This is not really surprising, as kime-phases
are not observed and the FT is synthetically generating unbiased directional phase
estimates.

For each covariate feature, we can investigate the results on the subsequent data
analytics following the spacekime phase manipulations. Examples of such phase
manipulations include (1) scrambling (for each feature, we randomly sample from
the corresponding phase distribution), (2) aggregating the phases (e.g., replacing the
phases by a constant value like zero or the phase sample mean), and (3) loading the
phases (e.g., by introducing a random positive offset).

Figure 1.13 illustrates the effects of several alternative kime-phase estimation strat-
egies on the reconstruction of the training data and, subsequently, their direct effect on
the ultimate ICS forecasts. The figure shows the official (prospectively reported) MCSI
index (red curve) along with four ICS forecasting models including the classical space-
time ARIMAX (2,0,1) statistical model (blue, with 80% and 90% confidence limits), and
three spacekime manifold models based on different kime-phase estimators. The latter
include: (1) ARIMAX(1,0,0) model estimated from spacetime covariate reconstructions
using nil-phase estimates (green); (2) ARIMAX(1,0,2) model derived by using scrambled
kime-phases, randomly sampled from the distributions of the corresponding 7 covari-
ates (purple); (3) ARIMAX(2,0,1) model fit using loaded phases loading factor = π

8

� �
off-

setting the phase centrality (brown), which we earlier observed empirically, see the
phase distributions in Figure 1.12; and (4) ARIMAX(1,0,2) offset scrambled kime-phase
reconstructed data (orange).

More details about strategies to construct kime-aggregators are shown in later
chapters. This example is included early on to provide a flavor of the spacekime an-
alytical protocol and motivate the subsequent mathematical formulations, compu-
tational inference, and experimental applications that will be presented later.

The first motivational examples, including neuroimaging-genetics, 4D nucleome,
and climate change studies illustrate the need for novel predictive Big Data analytical
strategies to interrogate large, multiplex, and heterogeneous datasets. The last exam-
ple of economic forecasting of consumer sentiment showed a concrete demonstration
of interrogating Big Data using spacekime analytics. The latter approach relies on a
commonly used mathematical trick of lifting the space of a problem to identify solu-
tion paths that are not clearly visible in lower dimensional spaces. Specifically, we
are lifting the time dimension to the complex plane where the use of complex time
allows us to derive spacekime-based forecasts for the original analytical problem.
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Chapter 2
Mathematics and Physics Foundations

In this chapter, we introduce all fundamental concepts that will play important
roles in the subsequent mathematical formulations extending Minkowski 4D space-
time to 5D spacekime. These represent classical mathematical abstractions, impor-
tant analytical expressions, and well-known physics constructs like wavefunctions,
function inner products, Dirac bra-ket notation, linear operators, commutators, etc.
Their relevance to spacekime analytics and the uncertainty of scientific inference
will become apparent in Chapters 3 and 4 when we present their analogous data
science counterparts.

2.1 Wavefunctions

Physicists have very cleverly defined the fundamentals of quantum mechanics using
two complementary approaches, each with its advantages and disadvantages [78]. The
first one is an analytic strategy (a.k.a. Schrödinger picture) that relies on differential
equations. The other one is based on linear algebra on vector spaces (a.k.a. Heisenberg
picture). The agreement of both of these formulations and their cross-sectional rein-
forcement of each other into a valid, coherent, compelling, and highly applicable the-
ory is an incredible feat of human ingenuity.

The mathematical description of wave motion can be derived in multiple ways.
For a particle of mass m, one approach is based on the relation between the par-
ticle’s energy (E) and its momentum (p): E = p2

2m. The Planck constant and the re-
duced Planck constant are defined by h= 6.6× 10− 34 m2 kg s− 1ð Þ and �h= h

2π. A dual
representation of the same wave motion can be expressed as a frequency-based dis-
persion relation ω = �h

2m k2, where E = �hω, p= �hk, and the wave number k = 2π
λ and the

angular frequency ω = 2π ν are related to the wavelength λ and the frequency ν, re-
spectively. The dispersion relation expresses the dependence of the wave propaga-
tion velocity as a function of its wavelength or frequency where a wave packet
consists of different wavelengths diverging (dispersing) over time.

If ψ x, tð Þ denotes the complex-valued amplitude and phase of a wave, the classi-
cal partial differential equation (PDE) approach for describing light, surface, acous-
tic, elastic, and spring waves is expressed by these wave equations (in 1D and 3D,
respectively):

1D: ∂2ψ x, tð Þ
∂t2

=c2 ∂2

∂x2
ψ x, tð Þ,x 2 R , t 2 R +

3D: ∂2ψ x, tð Þ
∂2t

=c2∇2ψ x, tð Þ=c2 ∂2

∂x2
ψ x, tð Þ+ ∂2

∂y2
ψ x, tð Þ+ ∂2

∂z2
ψ x, tð Þ

� �
,x= x,y, zð Þ 2 R3, t 2 R +

.

�������
https://doi.org/10.1515/9783110697827-002
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The linearity of the wave equations yields the superposition principle that guaran-
tees that a linear combination of potential functions (wave PDE solutions) is also a
solution. That is, if ψ1 and ψ2 are two wavefunctions satisfying the PDE, then any
linear combination ψ = αψ1 + βψ2 is another wave solution of the same PDE.

Note also that if the wavefunction is separable, ψ x, tð Þ= f tð Þg xð Þ, then the deriva-
tion of solutions to linear PDEs is much easier. For instance, ψ x, tð Þ= ψoe

i kx− ωtð Þ is a
separable function, which represents a potential function satisfying the wave equa-
tion, for all constants ψo, k, ω. This is because plugging in a separable solution into
the wave equation yields f ′′ tð Þg xð Þ= c2f tð Þg′′ xð Þ, i.e., f ′′ tð Þf tð Þ = c2 g′′ xð Þ

g xð Þ . Since both sides of
the equation must be constants (each depends only on one variable, but not the
other), g xð Þ= e± 1

c αx and f tð Þ= e± αt, for any constant α 2 C. As all solutions must be
bounded for each x, t, α = iω, for ω 2 R . Thus, defining k= ω

c yields g xð Þ ffi e± ikx and
f tð Þ ffi e± iωt, and the superposition of constant multiples of these functions, ψ x, tð Þ=
ψoe

± ikxe∓ iωt, are (traveling wave) solutions to the wave equation.
A wavefunction is a mathematical representation describing the quantum state

of an isolated quantum system. The wavefunction is a complex-valued probability
amplitude, which allows the derivation of the probabilities of all possible outcomes
or measurements made on the system.

The simple case of harmonic traveling waves that propagate linearly may be
represented as ψ x, tð Þ= ψoe

i kx− ωtð Þ, where ψ is the wave position, ψo is the constant
wave amplitude, x is the spatial location, λ is the wavelength of the wave, ω is the
frequency of the wave, t is time, k = 2π

λ , and ω = 2πv is the angular frequency (in
Hertz). The harmonic periodicity of such waves is the result of the oscillatory prop-
erties of the trigonometric functions. In other words, ψ x, tð Þ is a periodic function in
both, space and time; periodicity in time is Δt = 2π

ω , as ωΔt = 2π, and periodicity in
space is driven by the wavelength, Δx= 2π

k (Figure 2.1).
In quantum mechanics, the particle’s position (x) at time order (t) may again be

represented via square integrable, twice differentiable, and complex-valued posi-
tion-space wavefunctions ψ x, tð Þ 2 L2, which rapidly decay to zero as x tends to in-
finity. Let us look at an example of a particle with energy E, which is spatially
moving along the x-axis subject to being constrained in the region 0≤ x≤ u. We can
estimate the normalization constant of a wavefunction that describes the spatial lo-
cation of the particle at a given time:

ψ x; tð Þ ¼ Ae�
iEt
�h sin πx

u ; 0≤ x≤ u

0; x 2 Rn 0; u½ �

(
.

To ensure the probabilistic (measure-theoretic) interpretation of the wavefunction,
we can set:
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1≡
ð∞
−∞

��ψ x, tð Þ��2dx= ðu
0

ψ x, tð Þψ x, tð Þdx=
ðu
0

Ae+ iEt
�h sin

πx
u|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ψ x, tð Þ

Ae− iEt
�h sin

πx
u
dx=

A2
ðU
0

sin
πx
u
sin

πx
u
dx=A2

ðU
0

sin2 πx
u
dx=A2 u

2
.

and determine the wavefunction normalization constant, A=
ffiffiffiffiffi
2
u

q
.

This intuitive probabilistic interpretation of the wavefunction for a particle in
1D space is based on its square modulus, i.e., the probability amplitude, which is
always a positive real number:��ψ x, tð Þ��2dx= ψ x, tð Þψ x, tð Þdx= ρ x, tð Þdx.

The amplitude represents the probability density at time t that the particle is at spa-
tial position x, where the complex conjugate is denoted by �□. In quantum mechan-
ics, when measuring the particle’s position at time t, the wavefunction does not
provide one unique spatial location. Rather, it describes the particle’s location as a
probability distribution, ρ x, tð Þdx. For instance, the likelihood that the particle posi-
tion x, measured at time t, will be in the interval a≤ x≤b can be computed using the
magnitude of the wavefunction, i.e., by integrating the density over the interval:

P a≤ x≤ bf g tð Þ=
ðb
a

��ψ x, tð Þ��2dx.

Figure 2.1: Schematic illustration of the propagation of a 1D wave as a complex amplitude, in terms
of its real and imaginary parts. The wavefunction magnitude represents the probability of finding
the particle at a given point x is spread out like a waveform. There is no unique definite position of
the particle along space (x). As the amplitude oscillates (increases and decreases), the result is a
wave with an alternating amplitude.
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As at any point in time when we measure the particle, the probability that it will be
somewhere in space must be 1, therefore, we have to have a wavefunction normali-
zation condition: ð∞

−∞

ψ x, tð Þk k2dx= 1.

2.2 Dirac bra-ket Notation

Dirac bra-ket notation [78] expresses the inner product hφjψi as a pair of compo-
nents. The right component, ket, jψi, is a vector, e.g., a column vector, and the left
part bra, hφj, is the Hermitian conjugate of the ket, e.g., a row vector. When the ket
part jψi is an element of a vector space V, the bra part hφj is an element of its dual
space V* (see Riesz representation theorem [79]).

More details will be provided later, but for now, we will just point out that
wavefunctions are defined in Hilbert spaces, where the (finite dimensional) notion
of vector dot product is generalized to (infinite dimensional) function inner product,
as will be explained below. We will use Dirac bra-ket notation to define a canonical
representation of inner-product for either finite dimensional vectors or infinite di-
mensional function spaces. Let us see an example of the dot product as an inner
product of finite dimensional vectors. The inner product of a pair of arbitrary vectors
(a, b 2 Rn), haj|{z}

bra

= a*1, a*2, . . . , a*n
� �

and jbi|{z}
ket

= b1, b2, . . . , bnð ÞT can be expressed as:

a*. b= ajbh i=
Xn
i= 1

a*i bi,

where □
T denotes the transpose and □

* denotes the complex conjugate of a vector.
For instance, in R3 3 a, b, if a= 3, − i,

ffiffiffi
5
p

− i
� �T

and b= 2, − i,
ffiffiffi
5
p

− i
� �T

, then:

a*. b|ffl{zffl}
dot product

= hajbi=
X3
i= 1

a*i bi = 3, + i,
ffiffiffi
5
p

+ i
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

a*
i

*
2

− iffiffiffi
5
p

− i

0B@
1CA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
b

=

3*2Þ+ i* − ið Þð Þ+ ð5− i2
� �

= 6+ 1+ 5+ 1= 13.

In quantum mechanics, the possible atomic states of a particle are represented by
unitary state vectors in a complex separable Hilbert state space. For particle position
or momentum state types, the Hilbert state space represents the space of all square-
integrable functions (f 2 L2). Each observable position or momentummeasurement rep-
resents a self-adjoint linear operator acting on the corresponding position or momentum
Hilbert state space. The corresponding eigenstates of observables are eigenvectors of the
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respective linear operators associated with eigenvalues representing the observed mea-
surement in that eigenstate.

For infinite-dimensional Hilbert function spaces, we use □
† and b□ to represent

the adjoint of a state (i.e., the complex conjugate of the corresponding function)
and the adjoint of an operator (i.e., its conjugate transpose). The inner product of
two functions f and g, over a given interval c, d½ �, is defined by:

f †.g ≡ f jgh i=
ðd
c

f * xð Þg xð Þdx.

Note the morphing of the summation operator in the finite dimensional space into
integration in the infinite dimensional functional space. For instance, if f = sin kxð Þ
and g = cos mxð Þ, their inner product over 0, 2π½ � is:

f jgh i=
ð2π

o

f * xð Þg xð Þdx=
ð2π

o

sin* kxð Þ cos mxð Þdx=

1
2

ð2π

o

sin k +mð Þxð Þ+ sin k −mð Þxð Þð Þdx=0,∀k,m 2 Z.

The last equality confirms that the (trigonometric functions) sine and cosine are or-
thogonal. They actually represent the base functions of the Fourier representation.

The bra-ket notation is the same for both finite and infinite dimensional spaces.
For a finite-dimensional vector space V with a fixed orthonormal basis, the bra-ket is
just the inner product of a row vector with a column vector:

hφjψi≡ φ*
1 ψ1 + φ*

2 ψ2 + � � � + φ*
n ψn = φ*

1, φ*
2, � � � , φ*

n

� � ψ1

ψ2

. . .

ψn

0BBBB@
1CCCCA= hφjψi ,

where concatenating bra φ*
1, φ*

2, � � � , φ*
n

� �
and ket j ψi=

ψ1
ψ2
. . .

ψn

0BB@
1CCA, i.e., bra next to a

ket notation, signifies matrix multiplication. We also define the Hermitian conjugate

(complex-conjugate transpose) connecting the bra to the ket by: hφ j† = j φi and
j ψ i† = hψj. This is because hφ j† ≡ hφj

� �t
= hφ jt� �

= j φi, which can be explicated in

the simplest situation of any matrices Am× n and Bn×m, and any complex vectors

x 2 Cn and y 2 C
m : Hermitian conjugation means hAxjyi= hx �� A†yi, and similarly

hx Byi= hB†x
�� ��yi, i.e.,

2.2 Dirac bra-ket Notation 39
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hA��= ��A†i and ��Bi= hB†
��.

For infinite dimensional spaces, the bra term represents linear functionals on the space
of kets – the quantum state vector. A Hilbert space is a generic vector space where the
distance measure (norm) is derived from an inner product. Many infinite dimensional
function spaces are Hilbert spaces, e.g., flat manifolds (Euclidean spaces), and the
space of square-integrable functions.

IfH is a Hilbert space of quantum states and its dual space is H* =ff :H!continuous Cg,
then ∀ x, y 2 H, the function φx yð Þ≡ hxjyi, φx ·ð Þ 2 H*, where the operator h · j · i repre-
sents the inner product in H. By the Riesz representation theorem, all f 2 H* can be
uniquely represented as inner products for some specific bra hxf j terms.

The bra-ket notation represents linear transformations (bra) acting on quan-
tum-state-vector inputs (ket) and outputting complex numbers. If the linear func-
tional hBj is the bra Riesz representation of the ket jBi, then hAjBi= hBj jAið Þ. Thus,
the bra-ket yields the same complex number output as the inner product. The Riesz
representation theorem states that the vector space of the bras is the dual space (H*)
to the vector space of the kets (H), establishing explicit correspondence between the
bra and ket terms.

Position-space wavefunctions describe particle states by Ψ :R3 ×R ! C, where
x 2 R3 and t 2 R represent the particle position x at time t. The wavefunction may be
interpreted as a probability amplitude and its magnitude, i.e., square modulus, is:

jjΨ x, tð Þk2 =Ψ† x, tð ÞΨ x, tð Þ= hΨ x, tð ÞjΨ x, tð Þi= ρ x, tð Þ≥0.

In other words, the magnitude is the probability density of the particle being at po-
sition x. The wavefunction does not precisely determine the particle’s position, rather
it describes its spatial probability distribution. For instance, the probability that the
particle is in a region Ω � R3 at time t, is computed by integrating the density over
the region:

Px2Ω tð Þ=
ð
Ω

kΨ x, tð Þk2dx =
ð
Ω

hΨjΨidx ≡
ð
Ω

Ψ†Ψdx.

Wavefunctions form an infinite-dimensional space H, as there is no finite set of base
functions whose linear combinations would yield every possible wavefunction. The
norm in this Hilbert space is derived from the inner product h · j · i. In other words, for
a pair of wavefunctions Ψ1 and Ψ2 the bra-ket operator at time t represents the inner
product, which leads to the norm, or modulus, i.e., the probability amplitude:

Ψ1 x; tð Þ Ψ2 x; tð Þjh i ¼
ð
R3

Ψ†
1 x; tð ÞΨ2 x; tð Þdx:
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The inner product of a wavefunction Ψ with itself is always a positive real number,
Ψ† x, tð Þ Ψ x, tð Þ= hΨ x, tð Þ j Ψ x, tð Þi= ρ x, tð Þ≥0. However, in general, the bra-ket of a
pair of wavefunctions is a complex number, hΨ1 x, tð ÞjΨ2 x, tð Þi 2 C.

When a wavefunction Ψ is represented as a linear combination of a finite num-

ber of orthonormal (base) wavefunctions fΨigni= 1, then Ψ x, tð Þ= Pn
i= 1

aiΨi x, tð Þ. In this

expression, the linear term coefficients (weights) are defined by:

ai =
1

hΨi · , tð ÞjΨi · , tð Þi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
normalization constant

× hΨi · , tð ÞjΨ · , tð Þi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
inner product

Ψprojection into the base functionΨið Þ

At a fixed moment in time, to, the values of the wavefunction Ψ x, toð Þ represent un-
countably many components of a vector in the infinite dimensional Hilbert state-
space, which can be expressed in bra-ket notation as:��Ψ tð Þi=

ð
R3

Ψ x, tð Þjxidx.

This vector of components represents the particle quantum-state vector. Notice that
to simplify the notation, we can drop the time parameter t. Then, the ket jxi repre-
sents an orthonormal basis of H :

hx′j xi= δ x′− x
� �

= 0, x′≠ x

1, x′= x
,

(

hx′jΨi=
ð
R3

Ψ xð Þhx′jxidx =Ψ x′
� �

,

jΨi=
ð
R3

xihxj jΨidx =
ð
R3

xihxj jdx
0@ 1A
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
identity operator

jΨi.

The identity operator I =
Ð
R3 xihxj j dx in the space H expresses the abstract state ex-

plicitly as the inner product between two quantum-state vectors.
This interpretation of the wavefunction description of the particle state starts with

any ket jΨi in the Hilbert space of square integrable functions and the definition of a
complex-valued scalar function of the state (e.g., position), x, Ψ xð Þ≡ hxjΨi :R3 ! C,
where the ket jΨi represents a superposition of kets, jxi, with relative coefficients
specified by hxjΨi.

The representation of wavefunctions as quantum state vectors in the Hilbert
space allows capturing the particle states as jΨi, i.e., as quantum superpositions or
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vector sums of the constituent states. For instance, an electron superposition of
states jai, and jbimay be expressed as the quantum state jai+ ijbi.

Wave equation system measurements and dynamics are directly associated with
linear operators (also known as observables) on the Hilbert space of quantum states.
For example, in the Schrödinger picture representation, there is a linear time evolution
operator U specifying the future state of an electron that is currently in state jψi, as
Ujψi, for each possible current state jψi. The time evolution of a closed quantum sys-
tem is unitary and reversible. This implies that the state of the system at a later
point in time, t, is given by jψ tð Þi=U tð Þ ψðtoÞj i, where U tð Þ is a unitary operator,
i.e., its adjoint U† ≡ U*ð ÞT operator is the inverse: U† =U − 1. The integral equation
jψ tð Þi=U tð Þ ψðtoÞj i relates the state of the particle at the initial time to with its state
at time t. Locally, we can express the position of a inertia particle at time t is
x tð Þ= x toð Þ+ v× t − toð Þ, where v is the constant speed and x toð Þ is the initial posi-
tion, i.e., dx

dt = v. The (time-dependent) Schrödinger equation, i�h ∂
∂t ψ x, tð Þ=Hψ x, tð Þ,

represents a generalization of this (ordinary) differential equation, where the par-
ticle system Hamiltonian is H and the PDE solution is the particle wavefunction
ψ x, tð Þ, which describes the particle state (e.g., position) at time t ≥ to, given its ini-
tial position ψ x, toð Þ.

The wavefunction definition requires that it vanishes at infinity sufficiently fast to
ensure square integrability. It may naturally be extended on the spacekime manifold,
Ψ :R3 ×R 2 ! C. It still expresses the system states, i.e., particle position x at kime
k = t, ϕð Þ. Again, the spacekime wavefunction is interpreted as a probability amplitude
and its square modulus, jjΨ x, kð Þk2 =Ψ† x, kð ÞΨ x, kð Þ= hΨ† x, kð ÞjΨ x, kð Þi= ρ x, kð Þ≥0,
representing the probability density that the particle is at position x. The spacekime
wavefunction describes the spatial probability distribution of the particle’s position
and specific kime order and phase. As an example, the probability that the particle is
at position x 2 Ω � R3 at kime k, is computed by the integral of the density over the
spatial region Ω:

Px2Ω kð Þ=
ð
Ω

ΨjΨh idx =
ð
Ω

Ψ†Ψdx =
ð
Ω

Ψ x, kð Þj j2dx.

2.3 Operators

Next, we will clarify the synergies between classical and quantum physics. There is
a one-to-one correspondence between physical observables and linear operators in
the dual of the Hilbert space of functions. This will be explained in more detail
below. As a result, the measured value of each physical observable can be obtained
from the corresponding wavefunction by taking the expectation value of the opera-
tor associated to the specific observable and acting on the wavefunction.
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Let us start with a simple illustration of the observable-to-operator correspon-
dence, using a simple wave equation that can be expressed as

ψ =Ae− i Et − pxð Þ=�h,

where the observables E and p are the energy and momentum of the particle. If we
differentiate the wavefunction ψ with respect to space (x) and time (t), respectively,
we will obtain

observablesð Þj ∂ψ
∂x = i

�h pψ

∂ψ
∂t = − i

�h Eψ
) j �hi ∂ψ

∂x = pψ

i�h ∂ψ
∂t = Eψ

) operatorsð Þj p̂= �h
i
∂
∂x

Ê = i�h ∂
∂t

.

Observables are the results of specific measurements. Their connection (one-to-one
mapping) with their operator counterparts is expressed in linear operator form. Spe-
cifically, the observable quantities are the eigenvalues, and the wavefunctions are the
eigenfunctions, of the corresponding self-adjoint operators. A measurable observed
quantity is not equal to the operator itself; rather, it is equivalent to it in terms of the
measurable$ operator correspondence. The act of measuring an observable for some
state is characterized mathematically as the action of the corresponding operator on
the state vector. The recorded value associated with this operator action is one of the
eigenvalues of the operator, i.e., the actual measured experimental value is an eigen-
value of the operator.

Occasionally, this equivalence relation may be slightly abused by short-hand
notations equating an operator b□ to an observable quantity □, e.g., p̂= p and Ê =E.
However, such notations are most of the time clear from the context as an observed
number (measurement) does not actually equal, but it is equivalent, to its corre-
sponding operator. These operators can be thought of as functors mapping objects
from one space of physical states, e.g., wavefunction states, onto another.

In Chapter 5, the concepts of observables, states, and wavefunctions will be trans-
lated to their corresponding data science counterparts – features, data, and inference
functions, respectively. However, it may be useful to work out a very simple, yet, illus-
trative data analytic example previewing this translation of the concepts of states,
inner products, linear operators, and wavefunctions, into functional inference spaces.

Suppose the observed data is O= X1,Yf g:

O=
X1 = − 2, − 1,0, 1, 2f g
Y = − 3, − 2, 1, 2, 4f g .

(

In general, we are looking for an analytical description of an inferential state rep-
resenting the observed data, i.e., the evidence (O), e.g., a simple linear model
Y =Y X1ð Þ= βo + β1X1 + ε. In the simplest case, we may have closed-form analytical
solutions (via least squares) to the problem of predicting the outcome (Y) based on
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a specific analytical strategy using the independent feature X1. In general, there
may be several covariate features, X1,X2, � � � , Xkð Þ, that jointly explain the out-
come Y.

Specifically, the inference function, ψ = ψ X,Yj LinearModel|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
analytical strategy

 !
, quantifies the

effects of all independent features (X) on the outcome (Y) via the ordinary least
squares (OLS) estimate:

β̂ = β̂OLS = XjXh i− 1 XjYh i≡ XTX
� �− 1

XTY.

In our simple example, we can translate the modeling problem (Y = βo + β1X1 + ε)
into a set of linear equations reflecting the observations, O:

j βo � 2β1 þ ε1 ¼ �3
βo � β1 þ ε2 ¼ �2

βo þ 0× β1 þ ε3 ¼ 1

βo þ β1 þ ε4 ¼ 2

βo þ 2β1 þ ε5 ¼ 4

) Xβþ ε ¼ Y|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
linearmodel

; where β ¼ βo

β1

 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

model parameter vector

;

X ¼ 1;X1ð Þ ¼

1� 2

1� 1

1 0

1 1

1 2

0BBBBBB@

1CCCCCCA; Y ¼

�3
�2
1

2

4

0BBBBBB@

1CCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

evidence

; and ε ¼

ε1

ε2

ε3

ε4

ε5

0BBBBBB@

1CCCCCCA
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

error

:

From the given observed data, the OLS solution of Xβ + ε = y for β is

β̂ = β̂
OLS = XTX

� �− 1XTY

XTXβ̂ =XTY
,

������

1 1 1 1 1

�2� 1 0 1 2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

XT

1 � 2

1 � 1

1 0

1 1

1 2

0BBBBBB@

1CCCCCCA
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

X

β̂ ¼ 1 1 1 1 1

�2� 1 0 1 2

 ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

XT

�3
�2
1

2

4

0BBBBBB@

1CCCCCCA
|fflfflfflffl{zfflfflfflffl}

Y

;

5 0

0 10

 !
βo

β1

 !
=

2

18

 !
) β̂ =

βo

β1

 !
=

0.4
1.8

 !
.
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Hence, (part of) the inference is captured by the derived linear relation Y =0.4+ 1.8
X1 = 1,X1ð Þβ̂ =Xβ̂. Therefore, this linear operator represents the model correspon-
dence between the observable data O= X1,Yf g and the state space of the inference
function.

Before we generalize the action of the observable-related operators in infinite
dimensional spaces, let us consider their finite-dimensional counterparts – matri-
ces, i.e., second-order tensors. Square matrices are special cases of linear trans-
formations acting on vectors by “matrix-multiplication.” Again, let us assume
jbi= b1, b2, . . . , bnð ÞT 2 H and A=An× n. Then, the action of the linear operator
A :H ! H, i.e., A 2 H* (the dual space), is defined by:

Ajbi ¼ An× nbn× 1 ¼
a1;1 . . . a1;n

. . . . . . . . .

an;1 . . . an;n

0B@
1CA b1

. . .

bn

0B@
1CA ¼ b

0
1; b

0
2; . . . ; b

0
n

� �T
;

where b
0
i =
Pn

j= 1 ai, jbj, ∀1≤ i≤ n.
If the Hilbert space is infinite dimensional, all linear transformations are part of

the dual space and act on Hilbert space functions. Thus, each operator acts on, or
maps, functions (inputs) assigning new functions (outputs). An example of an infi-
nite dimensional operator is the derivative operator, d

dx, which is a linear operator on
differentiable functions:

d
dx

f|{z}
input

0@ 1A= df
dx

= f ′ xð Þ|ffl{zffl}
output

.

Recall that multiplication by a constant (e.g., the weights hψijϕi) is commutative.
Thus, if ψi

� 	
i is a complete orthonormal basis of H, i.e., hψij ψji= δi, j, then for each

ϕ 2 H:

jϕi=
X
i

hψijϕi|fflfflffl{zfflfflffl}
projection of ϕ

onto ψi

jψii|{z}
base

=
X
i

jψiihψijϕi=
X
i

jψiihψij
� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

1̂

jϕi

The expectation of the position, in either finite or infinite dimensional state spaces,
is defined by:

�x= hxi= Pl
i= 1 ~n ixi, finite dimensional spacesð Þ

hxi= Ð x ρ xð Þ dx infinite dimensional spacesð Þ.
In the discrete case, ni represents the observed (raw) frequencies of outcome xi in l
repeated experiments measuring the system state, and ~ni = ni

N are the relative frequen-
cies, which, according to the law of large numbers, in the limit (l! ∞) become the
(theoretical) probabilities of the chances of observing the outcome states xi.
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In the continuous case, the probability density function is ρ xð Þ. In both cases, the
expectation represents the weighted average of all possible outcome states according to
either observed frequencies or theoretical probability distribution weights. For instance,
if ψ x, tð Þ represents the wave motion of a particle, or a solution to the Schrödinger’s
time-dependent equation, then the probability density representing the likelihoods of
all spacetime states ρ x, tð Þ= ψ x, tð Þk k2. Furthermore, the mean position of the particle
in the y-direction is defined by:

hyi=
ð

ρ x, tð ÞydV =
ð
kψ x, tð Þk2ydV =

ð
ψ* x, tð Þψ x, tð ÞydV, where

ð
ρ x, tð ÞdV = 1.

Similarly, the expectation of a linear operator Â is defined in terms of the bra-ket
notation:

hÂi= hψ Â
�� ��ψi=

ð∞
−∞

ψ* xð Þ Âψ xð Þdx.

Analogously to matrix complex conjugate transposing, when Â is self-adjoint (Her-
mitian), its expectation can also be expressed as:

hÂi= hψ Â
�� ��ψi=

ð∞
−∞

ψ* xð ÞÂ ψ xð Þdx=
ð∞
−∞

Â
†

ψ
� �*

xð Þψ xð Þdx= hÂ†
ψjψi= hÂ†i.

We noted earlier that all observables, like position, momentum, energy, etc., are in
one-to-one correspondence with Hermitian (self-adjoint) operators, i.e., operators
that are equal to their conjugate transpose operators. Since the expected values of
Hermitian operators are always real, these Hermitian operators conveniently de-
scribe the expectation values of all observable quantities. The spectral theorem
yields that the eigenvectors of Hermitian operators, which are called eigenfunctions
in general Hilbert spaces, form a complete set [81].

Given a (finite or infinite dimensional) vector space, V, any linear operator

A :V ! V is also a linear operator on the algebraic dual space, V	 ¼ φ : V!linearC� �
,

i.e., A :V* ! V*. This is because:
∀ hcj|{z}

ket vector

2 V,A jcið Þ≡A ci≡j jAci 2 V,

∀ hbj|{z}
bra

linear operator

2 V*,A hbjð Þ≡ hbjA 2 V*,

∀jci 2 V, hbjA|ffl{zffl}
operator

ðjciÞ|ffl{zffl}
argument

≡ hb Aj jci≡ hbjAci≡ hA†bjci 2 C .

For a given pair of a ket jci 2 V and a bra bh j 2 V*, the linear operator A≡ cj i bh j acts
on vectors in V and on other operators in V*. Clearly, A :V ! V, as ∀jvi 2 V,
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A jvið Þ≡ jcihbjjvi≡ jci hbjvi|ffl{zffl}
C

= hbjvijci 2 V.

And similarly, A :V* ! V*, as ∀ hwj 2 V*,

A hwjð Þ≡ hwjA= hwjjci hbj= hwjci|ffl{zffl}
C

hbj 2 V*.

This extends to all linear operators on the vectors space, as each linear operator
may be expressed as a combination of scalar multiples of such base kets in V and
bras in V*. For a finite orthonormal basis of kets jiif gni= 12 V, linear operators are
square matrices A= Ai, j

� � 2 V*:

A=
X
i, j

ij iAi, j jh j, Ai, j = ih jA jj i,

∀1≤ i′, j′≤ n, i′
� ��A j′

�� �= X
i, j

i′ki� �
Ai, j jkj′� �

=
X
i, j

Ai, j i′
� ��ii jjj′� �

=
P
i, j

Ai, jδi′, iδj′, j =Ai′, j′.

The unitary operator, 1̂, mapping each element in the Hilbert space to itself is called
resolution of the identity:

1̂|{z}
I

=
X
i

ii ih j,j

where

kjlh i= kjIjlh i=
X
i, j

kjih iδi, j jjlh i=
X
i

kjih i ijlh i=
X
i

δk, iδi, l = δk, l.

For uncountably many eigenfunctions, consider an orthonormal basis of eigenfunc-
tions, φf g. The resolution of identity is naturally transformed from a sum into an
integral:

1̂=
ð

φi φh jdx.j

In an infinite dimensional Hilbert space with a basis, jφif g, applying the identity
operator to any state ψ yields:

jψi= 1̂jψi=
ð
jφi|{z}
base

functions

φjψh i|fflffl{zfflffl}
ψ projections
onto the bases

dx.

For instance, we can express the eigenfunctions of the position operator in the mo-
mentum basis and vice versa, the momentum operator in terms of the position basis.
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This dichotomy reflects state representation in terms of either sharp positions (space-
time) or sharp momenta (Fourier frequency). The position representation of ψj i is
ψ xð Þ= xjψh i, in particular, φ xð Þ= xjφh i, and ψ* xð Þ= hxjψi* = hxjψi† = ψjxh i. Thus, x′

�� �
has the following position representation xjx′� �

= δ x− x′
� �

, sharp in space representa-
tion of each precisely localized state, i.e., point-mass distribution of the spatial mea-
surement of a quantum object.

In the other extreme, the momentum representation kj i, characterized by sharp
localization of the momentum (p= k�h) is expressed by xjkh i= 1ffiffiffiffi

2π
p eikx, and its ad-

joint yields the momentum representation of a state defined by a sharp position

kjxh i= xjkh i† = 1ffiffiffiffi
2π
p eikx
� �* = 1ffiffiffiffi

2π
p e− ikx.

Before we explore various uncertainty relations, e.g., time-energy, momentum-
position, we need to review different interpretations of time in quantum theory [82].
First, (external) time may simply be considered as a free parameter in the Schrödinger
equation that can be measured by some external experimental clock. Second, (intrin-
sic) time can be considered as a dynamic duration lapse defined by the behavior of
the quantum particles themselves. Third, (observable) time may reflect a standalone
measurable characteristic of event ordering. Depending on the specific meaning of
time, Hamiltonian mechanics may or may not be extended to include a time operator,
which would lead to interpretation of a time-energy uncertainty relation.

If time is assumed to be an observed measurable quantity, we can define time
to be the eigenvalue of the time operator, t̂. In this case, both the classical position x
and time t remain unaffected when they are transformed to operators:���� x! x̂= x

t ! t̂ = t
. (2:1)

This is because for each specific realization of a position (x) and a time (t), the corre-
sponding operators (denoted by b) on the Hilbert space determined by the wave-
functions, act as:

x̂ ψ x, tð Þð Þ= xψ x, tð Þ
and

t̂ ψ x, tð Þð Þ= tψ x, tð Þ.

In other words, the position operator, x̂, and the time operator, t̂, act on a wavefunc-
tion by multiplying it by x and by t, respectively.

However, classical energy and momentum are transformed in quantum terms to
non-identical differential operators:
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E! Ê ≡ Ĥ|{z}
Hamiltonian

= i�h ∂
∂t

px ! p̂= − i�h ∂
∂x

.

������ (2:2)

The derivation of the momentum operator in a quantum setting is based on a transla-
tion operator T̂, shifting the position ψ x, tð Þ to the right by a small amount Δx :

ψ x−Δx, tð Þ= T̂ x+Δx, xð Þψ x, tð Þ.

Around Δx=0, T̂ = 1̂, the identity operator, and we can expand the position function
ψ, using a first-order Taylor expansion in the neighborhood of x :

ψ x−Δx, tð Þ ffi ψ x, tð Þ− Â|{z}
operator
unknownð Þ

ψ x, tð ÞΔx ) ψ x, tð Þ− ψ x−Δx, tð Þ ffi Âψ x, tð ÞΔx.

Let us see why the unknown operator (Â) is a multiple of the momentum operator,
p̂, Â≡ i

�h p̂
� �

where the factor i
�h ensures that the p̂ operator is Hermitian. Denoting

p̂= − i�h ∂
∂x, i.e.,

i
�h p̂
� �

ψ = − i2�h
�h

∂
∂x ψ = ∂ψ

∂x, then:

i
�h p̂
� �

ψ x, tð Þ := ∂ψ
∂x = lim

Δx!o

ψ x, tð Þ− ψ x−Δx, tð Þ
Δx

i
�h p̂
� �

ψ x, tð ÞΔx ffi ψ x, tð Þ− ψ x−Δx, tð Þ
. (2:3)

Thus, as indicated in (2.3), the momentum operator is p̂= − i�h ∂
dx and its action is to

move the wavefunction, ψ, by an infinitesimal amount in x space, just like its classi-
cal counterpart does.

Similarly, we can explicitly identify the mapping of the three types of angular
momenta observables into their corresponding quantum mechanical operators –
orbital L̂

� �
, spin Ŝ

� �
and total Ĵ = L̂+ Ŝ

� �
angular momenta:

spatial quantizationð Þ L≡ r × p ! L̂= − i�h r ×∇ð Þ
spin quantizationð Þ S≡ n

2
! Ŝ= − �hσ, σ 2 − s, − s− 1ð Þ, . . . , 0, . . . , + s− 1ð Þ, + sf g:

total quantizationð Þ J ≡ L+ S ! Ĵ = L̂+ Ŝ = �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σj j σj j+ 1ð Þp
���������
Note that the angular momenta operators also have nice compact representations
in spherical coordinates. For instance, the orbital angular momentum L̂= − i�h

ϕ̂ ∂
∂θ − θ̂

sinðθÞ
∂
∂ϕ

� �
, where 0≤ ϕ < π and 0≤ θ < 2π are the angular parameters of the spher-

ical coordinate system, and ϕ̂ = ð− sin ϕ, cos ϕ,0Þ and θ̂ = ðcos θ cos ϕ, cos θ sin ϕ,
− sin θÞ. Also, for an arbitrary unit vector, ~u= ux, uy, uz

� �
, the spin angular momen-

tum operator, which measures the spin along ~u, relies on the Pauli spin matrices
Ŝu = �h

2 uxσx + uyσy + uzσz
� �

. The parity between measurable values of observables and
their corresponding linear quantization operators suggests that the eigenvalues of Ŝu
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are ± �h
2, which correspond to the usual spin matrices. Of course, computing the spin

operator in an arbitrary direction generalizes to higher spin states by using the dot
product of the spin direction and a 3D vector for each of the coordinate axis directions
x, y, z.

The quantum mechanical operators in equation (2.2) act on wavefunctions ψ x, tð Þ,
which represent complex-valued probability amplitudes describing the likelihoods for
all possible results of measurements made on the system. A 1D classical physics spring-
mass system represents a simplified demonstration of this dichotomy between measur-
able quantities and operators. Given a fixed spring constant k, the total energy of an
object attached to a spring, with massm, oscillating up-and-down is:

E|{z}
total energy

= 1
2
mv2|fflffl{zfflffl}

kinetic energy

+ 1
2
kx2|ffl{zffl}

potential energy

= p2x
2m

+ 1
2
kx2. (2:4)

In quantum mechanical terms, this equation is converted to the time-dependent
Schrödinger equation, i�h ∂

∂t jψ x, tð Þi= Ĥjψ x, tð Þi, describing a quantum mechanical
oscillator. This equation represents a PDE operator modeling an oscillating spring:

i�h
∂

∂t|ffl{zffl}
Ê

ψ x, tð Þ= 1
2m

− i�h
∂

∂x|fflfflffl{zfflfflffl}
p̂

0BB@
1CCA

2

+ 1
2
k x|{z}

x̂

2

2664
3775ψ x, tð Þ= −

�h2

2m
∂2

∂x2
ψ x, tð Þ+ 1

2
kx2ψ x, tð Þ.

(2:5)

More generally, the Schrödinger equation whose solution (a wavefunction, ψ x, tð Þ)
describes the motion of a single particle in 3D, e.g., modeling the vibrating motion
of an electron around an atomic nucleus, may be expressed in the position basis as:

i�h
∂

∂t
ψ x, tð Þ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Total Energy

= −
�h2

2m
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Laplacian, Δ=∇2

0BBB@
1CCCAψ x, tð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Kinetic Energy

+ 1
2
kx2ψ x, tð Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Potential Energy

.

This vector operator equation permits a valid representation in any other complete
basis of kets in the Hilbert space. Using the notations pjψh i=Ψ p, tð Þ= Ð ψ x, tð Þe− ipxdx,
v x, tð Þ= 1

2 kx
2, and V p, tð Þ= Ð v x, tð Þe− ipxdx, and the convolution V*Ψð Þ p, tð Þ=Ð∞

−∞
V y, tð ÞΨ p− y, tð Þdy, the Schrödinger equation can also be represented in the

momentum space basis:

i�h
∂

∂t
Ψ p, tð Þ= p2

2m
Ψ p, tð Þ+ V*Ψð Þ p, tð Þ.
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This momentum representation of the equation can be derived from first principles
by multiplying both hand sides of the position formulation of Schrödinger equation
by e− ipx, integrating over space, applying integration by parts twice, and interchang-
ing the order of integration.

2.4 Commutator

In this section, for simplicity we are suppressing the operator hat b□ notation and
using capital letters to denote operators. The commutator of two operators (A and B,),
e.g., the PDE operators in (2.2), is defined by:

A,B½ �=AB−BA. (2:6)

Trivial commutators, A,B½ �=0, correspond to commutative (Abelian) operators and
tell us what pairs of physical observables are potentially simultaneously measurable
with infinite precision, see examples below. Conversely, non-trivial commutators,
A,B½ �≠0, correspond to pairs of physical observables that can’t be simultaneously
measured with infinite precision. This latter type of commutator exemplifies Heisen-
berg’s uncertainty principle.

The mathematical abstraction of (operator) commutator is directly related to the
statistical concept of independence and the quantum theory notion of kinematic inde-
pendence of observables [83]. These concepts reflect the properties of coexistence,
compatibility, and inter-relations between two, or more, observables. Statistical and
kinematic independence are logically distinct [84]. The former notion suggests that a
pair of quantum systems are independent when each of them can be prepared in any
state irrespective of how the other system is prepared. Kinematic independence of two
observables (or two quantum systems) requires that as members of the corresponding
C*-algebras their elements commute [83]. Bell’s inequalities provide an upper bound on
the strength of expected correlations between systems that are not presently interact-
ing, although they may have interacted in the past [85]. These relations quantify the
degree of independence of observables, or the commutation of their correspond-
ing operators [86].

The dispersion measures the uncertainty in the state of the particle. Let us as-
sume we have two non-commuting operators A and B. The expectation of an opera-
tor, Ah i, is defined by:

hAi≡ hψ Aj jψi=
ð
R

ψ* xð ÞAψ xð Þdx=
ð
R

hψjAψi dx. (2:7)

The uncertainty operators, or deviances, ΔA=A− Ah i and ΔB=B− Bh i, and the mean
square uncertainty values σAð Þ2 and σBð Þ2 are generally defined for a given state, ψ, by:
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ΔA≡A− hAi=A− hψjAjψi
ΔB≡B− hBi= B− hψjBjψi

σAð Þ2 ≡ hψj ΔAð Þ2jψi= hψj A− hAið Þ2jψi
σBð Þ2 ≡ hψj ΔBð Þ2jψi= hψj B− hBið Þ2jψi

.

����������
(2:8)

As the expectation is always a number, not a random variable, commutators of op-
erators with constants are trivial. Thus, the commutator of the operators A and B
and their uncertainties (dispersions or deviances) ΔA and ΔB are identical. That is,

ΔA,ΔB½ �= A− hAi,B− hBi½ �= A,B½ �− hAi,B½ �− A, hBi½ �+ hAi, hBi½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
trivial commutators

= A,B½ �. (2:9)

Let us look at the inner product of ΔAψ + iλΔBψ with itself:

0≤ kΔAψ + iλΔBψk2 = hΔAψ − iλΔBψjΔAψ + iλΔBψi=

hψj ΔAð Þ2ψi+ λ2hψj ΔBð Þ2ψi+ iλhΔAψjΔBψi− iλhΔBψjΔAψi= (2:10)

hψj ΔAð Þ2ψi+ λ2hψj ΔBð Þ2ψi+ iλ hΔAψjΔBψi− hΔBψjΔAψið Þ=

σAð Þ2 + λ2 σBð Þ2 + iλhψj ΔA,ΔB½ � ψi.
The minimal value of (2.10) with respect to λ can be obtained by setting the partial
derivative to zero:

0= ∂

∂λ
σAð Þ2 + λ2 σBð Þ2 + iλhψ j ΔA,ΔB½ � ψi

� �
= 2λ σBð Þ2 + ihψ j ΔA,ΔB½ � ψi.

This minimum is attained at λ = − ihψ j ΔA,ΔB½ � ψi
2 σBð Þ2

, and we can plug it into (2.10) to get:

0≤ σAð Þ2 − 1
4
hψj ΔA,ΔB½ �ψið Þ2

σBð Þ4
σBð Þ2 + hψ j ΔA,ΔB½ �ψi

2 σBð Þ2
hψ j ΔA,ΔB½ �ψi=

σAð Þ2 − 1
4
hψj ΔA,ΔB½ �ψið Þ2

σBð Þ2
+ hψj ΔA,ΔB½ �ψið Þ2

2 σBð Þ2
.

Rearranging the terms, we obtain the uncertainty principle in terms of the commu-
tator of the pair of uncertainties, ΔA,ΔB:

σAð Þ2 σBð Þ2 ≥ −
1
4
hψj A,B½ � ψið Þ2 = −

1
4
h A,B½ �i2 = 1

2i
h A,B½ �i

� �2

. (2:11)

In other words, σAσB ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σAð Þ2 σBð Þ2
q

≥ i
2 A,B½ �h i. The next section presents uncertainty

in terms of the special case of the position and momentum operators, where
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σAσB ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σAð Þ2 σBð Þ2
q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1
4
h x̂, p̂½ �i2

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1
4

x,− i�h
∂

∂x

� �2s
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
1
4

i�hð Þ2
r

=
ffiffiffiffiffiffiffiffi
1
4
�h2

r
= 1
2
�h>0.

2.4.1 Example 1: Non-Trivial Commutator (Position/Momentum)

Let us revisit the specific example of a non-trivial commutator that corresponds to the
quantum transformations of the position and momentum operators. We will show that
A,B½ �= x, − i�h ∂

∂x

� �
, and thus, using equation (2.11), σAσB ≥ i

2 A,B½ �h i. Of course, when
the commutator is constant, like in the position-momentum case, A,B½ �h i= p, x½ �h i=
p, x½ �:

σAσB ≥
i
2
h A,B½ �i= i

2
x, p½ �= i

2
x|{z}
A

, − i�h
∂

∂x|ffl{zffl}
B

264
375= �h

2
>0.

Using the chain rule for differentiation we can exactly compute the commutator
A= position, B=momentum½ �=AB−BA, and derive Heisenberg’s principle, for posi-
tion and momentum of a particle whose motion is described by the wavefunction
ψ x, tð Þ:

A,B½ �ψ x, tð Þ= x, − i�h
∂

∂x

� �
ψ x, tð Þ=

− i x �h
∂

∂x
ψ x, tð Þð Þ− − i�h

∂

∂x

� �
xψ x, tð Þð Þ= (2:12)

− i�hx
∂ψ x, tð Þ

∂x
− − i�hψ x, tð Þ− i�hx

∂ψ x, tð Þ
∂x

� �
= i�hψ x, tð Þ.

In other words, x, − i�h ∂
∂x

� �
= i�h, where �h is the reduced Planck constant, suggesting that

position and momentum operators do not commute. Therefore, the uncertainty prin-
ciple applies to position and momentum. Specifically, the uncertainty in position,
Δx= σx, and in momentum, Δp= σp, satisfies this lower bound:

Δx|{z}
σx

Δp|{z}
σp

≥
�h
2
. (2:13)

The more precisely we measure one of these observables, the higher the uncertainty
about the other will be.
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2.4.2 Example 2: Trivial Commutator (Energy/Momentum)

On the flip side, by the commutative property of partial differentiation, the commutator
between two other observables, energy andmomentum, is trivial. Thus, in principle, we
could simultaneously measure the energy and the momentum with infinite precision:

AB−BAð Þψ x, tð Þ≡ A,B½ �ψ x, tð Þ= i�h
∂

∂t
, − i�h

∂

∂x

� �
ψ x, tð Þ=

i�h
∂

∂t
− i�h

∂

∂x

� �
ψ x, tð Þ− − i�h

∂

∂x

� �
i�h

∂

∂t

� �
ψ x, tð Þ= (2:14)

�h2
∂

∂t
∂

∂x
ψ x, tð Þð Þ− �h2

∂

∂x
∂

∂t
ψ x, tð Þð Þ=0.

Later on, in Chapter 5, we will explore the “data science” inferential analogues to the
quantum mechanics concepts of wavefunctions, transformations, operators, commu-
tators, etc.
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Chapter 3
Time Complexity

This chapter illustrates the fundamentals of the complex-time extension of time, ex-
plains how some of the problems of time may be resolved in the 5D spacekime mani-
fold, and sets the stage for spacekime data-driven analytics. We begin this chapter by
reviewing the basics of Fourier space-frequency function transformations, Minkowski
spacetime, types of variance, and Kaluza-Klein theory. Then we define the concepts
of complex time (kime), complex events (kevents), and the spacekime metric tensor.

We will also generalize the kime extensions of rate of change, velocity, equations
of forward and backward motion, Lorentz transformations, the spacekime velocity ad-
dition law, and the Doppler effect. The kime-specific derivations of the Wirtinger de-
rivative and kime-calculus are presented along with several kime parameterizations
and the causal structure of spacekime. The chapter concludes with a formulation of a
spacekime analogue of the Copenhagen interpretation and some spacekime Data
Science applications.

3.1 Introduction

Classical definitions of time involve measurements of oscillatory, regular-frequency
occurrences, or events of a periodic nature, e.g., hourly, daily, monthly, seasonal,
or annual recurrences driven by stellar motions, geophysical processes, chemical
reactions, or physical observations such as radioactive decay. There are interesting
synergies between time and gravity. For instance, just like gravity, time is entangled
with space, it’s mostly detected, effective, and interpreted locally, and the up and
down directions of gravity parallel the forward/future and back/past orientations in
time (both are isometric to R +).

Even Richard Feynman was perplexed about various time-related quantum me-
chanics paradoxes, “I cannot define the real problem, therefore I suspect there’s no
real problem, but I’m not sure there’s no real problem.” [87] To date, there is no phys-
ical explanation of a separate “time-direction,” or kime-phase, although there is
some indirect evidence of alternative and complementary spacetime foci, which
may be altered for a fixed point in Minkowski spacetime, e.g., consciousness states,
illusions, imaginations, creativity, and virtualization. Time-direction, a separate di-
mension in the 5D spacekime, can be experienced differently by separate observers.
For instance, pairs of novel writers and readers, performing musicians and listeners,
artists and dilettantes, idealists and materialists, dreamers and psychologists, and
many others reflecting on the same 4D spacetime phenomena always internalize
their experiences differently, subjected to their unique idiosyncratic kime-phase

https://doi.org/10.1515/9783110697827-003
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interpretations. Groups of individuals immersed in a virtual environment, simula-
tion, or augmented reality may also differentially experience shared stimuli, which
by design can be deterministic or stochastic in the intrinsic nature of spacetime.

In a closed system, most observers jointly experiencing a common spacetime
phenomenon may perceive the encounter through similar time-directions (i.e., kime-
phases). However, in reality, while the kime-phases may be drawn from one common
distribution, they are not identical; each individual in the group will discern the expe-
rience in a slightly different and unique spacekime. Paraphrasing the two-and-a-half-
millennia old Heraclitus observation, which we saw in Chapter 1, “No two people
can ever perceive the exact same experiences, for they can’t share the same space-
kime location and they do not represent the same observer.” Often, the slight varia-
tions of different kime-phase experiences become clear in post-hoc discussions of
joint group experiences, reflections, of shared encounters. Results of common shared
experiences reflect the perceptions of the stimuli. The information content interpreted
by different people in most evidence-based decision making situations will vary, some-
times widely.

3.1.1 Wavefunctions and the Fourier Transformation

Figure 3.1 shows the extension of the representation of a 1D constant-wavelength
varying-amplitude wave to the 2D space of constant-amplitude and complex phase.
This provides a striking parallel to the extension of the longitudinal 1D event time
order into 2D kime space representing the complex structure of events in terms of
their order and phase. Figure 3.1.B shows the 2D projections of the 3D fixed-
amplitude complex-phase representation of the wavefunction onto the 2D planes
y+ 3=0 and x+ 3=0. These projections resemble exactly the oversimplified repre-
sentation of the wavefunction as a varying amplitude over space (vertical z-axis),
Figure 3.1.A. The 2D wavefunction representation gives an illusion of the oscil-
latory wave repeatedly losing its amplitude at regular points in space, which are
associated with the wave period and its frequency.

The more realistic complex amplitude wave representation in 3D enables multi-
plication by a constant, which represents the time evolution of waves. For instance,
multiplying the wave curve by the imaginary unit i pushes the amplitudes forward
and suggests direct wave propagation in space, which characterizes the basic princi-
ple of time evolution of quantum theory. This multiplication by i has the effect of heli-
cal rotation of the wave amplitude by one quarter turn π

2 radians
� �

around the space
axis. Therefore, mathematical multiplication by i is equivalent to the physical motion
of turning a quarter of the wavelength in the direction of the wave propagation. Each
complex-number multiplication affects only the amplitude at one fixed point. Cumu-
latively aggregating these effects across 3D space results in the entire wave advancing
forward along the depth axis.
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For waves with fixed wavelengths, this dimension-lifting approach resolves the
problems with interpreting addition, constant-multiplication, and interference of wave
amplitudes in 2D projections. A similar approach for lifting the longitudinal order of
events (time dimension) into complex-time (kime manifold) aims to resolve some of
the problems of time (as uni-directional positive real event order).

To explicate the directional kime-phase component of spacekime as an observ-
able quantity, we can borrow ideas from Röntgen (X-ray) crystallography. Just like
magnetic resonance imaging (MRI), X-ray crystallography tries to indirectly resolve sub-
strate atomic structure by capturing spectral frequency motifs. In MRI, these motifs
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Figure 3.1:Wavefunction representations. Panel A: 2D representation of wavefunctions by varying
amplitudes over space (horizontal x-axis). Panel B: 3D fixed-amplitude complex-phase
representation of the wavefunction, whose 2D cardinal planar projections coincide with the
oscillatory patterns on Panel A. The position of the particle is along the depth axis, the phase of the
wave is color coded, − π redð Þ, π blueð Þ½ �, and the colored wave projections on the 2D planes and
the space-axis illustrate the corresponding phases.
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represent resonance frequencies (typically of hydrogen atoms) resulting from radio
frequency pulses disrupting high-strength homogeneous magnetic fields. In Röntgen
X-ray crystallography, the structure of crystals is observed indirectly using diffraction
patterns resulting from substrate excitation by high-energy X-ray beams. The forward
and inverse Fourier transforms (FT/IFT) are used for spacetime reconstruction of both
MRI signals and X-ray crystal structures. These transformations are also referred to as
Fourier analysis (decomposing a spacetime signal into its corresponding harmonics in
the frequency space, k-space) and Fourier synthesis (using the frequency magnitudes
and phases to reconstruct the spacetime representation of the signal), respectively.

For instance, the FT of a 2D image (a.k.a. picture), which represents explicitly a
sample of a waveform signal (e.g., brain MRI scan), decomposes or breaks down the
waveform signal into a superposition of harmonics (pure trigonometric sine waves) of
different frequencies. Each sine wave is characterized by (1) its magnitude measuring
how much that particular frequency participates in the image, and (2) its phase, re-
cording the starting point of each sine wave. Figure 3.2 shows a screenshot of a SOCR
Java Applet that provides an interactive example of the space-frequency correspon-
dence for 1D oscillatory functions. This Fourier game Java applet requires a Java-
enabled browser (http://www.socr.ucla.edu/htmls/game, accessed January 29, 2021).

Before we formally define the Fourier transform (FT), let’s review some of the im-
portant FT characteristics: (1) the highest meaningful sine wave frequency of the signal
analysis is half the data acquisition frequency, i.e., FT yields a list of frequencies up to
the acquisition frequency, with only the first half of the sequence being useful, and (2)
the FT frequency resolution depends on the sampling time, i.e., the longer the sam-
pling (analysis) interval, the finer the resolution, where the frequency resolution is

1
sampling rate secð Þ.

The (hat) notation, b□, indicates applying the Fourier transform, or its inverse,
on the argument, depending on the context. So, if FT fð Þ= f̂ , then f = IFTðf̂ Þ= ^̂f . As
an example, let’s consider the states of a pair of 2D images representing a square and a
circle, Figure 3.3. The information content (energy) of each image is identical to that of
its FT, i.e., f 2

�� ��= kf̂k2. Hence, we can consider having the observed images in the k-
space (a.k.a. Fourier domain). Just as in the case of X-ray crystallography, assume only

themagnitude of the FT is observable
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i, j Re
�
f̂
�2 + Im

�
f̂
�2� �r

, where the 2D image coor-

dinates are indexed by i, j, but the phases φ = arctan
Im
�
f̂
�

Re
�
f̂
�� �

are not observable. In the

2D kime manifold, the observed 2D FT magnitude corresponds to kime order rð Þ, i.e.,
the usual time in Minkowski spacetime, and the phase-angle of the FT corresponds to
the kime direction φð Þ.

It helps to keep in mind that the Fourier transform maps spacetime functions,
f x, tð Þ, into k-frequency functions, i.e., functions of the wavenumber (spatial frequency)
and the angular frequency. Of course, the inverse Fourier transform maps in exactly
the opposite direction, i.e., it recasts k-frequency functions into spacetime functions.
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Symbolically, the spatial frequency k is a vector, also called the wavenumber, whose
components are related to wavelengths in the different spatial directions, x = x, y, zð Þ,
the same way the function period is related to the corresponding angular frequency.

R-code illustrating some of the above experiments is provided in the Supplemen-
tary Materials. In Chapter 6 (Applications), we will present supporting evidence, and
several examples, of the impact of knowing the kime direction to obtain data-driven
scientific inference.

By the separability property, the 4D spacetime Fourier transform may be repre-
sented as four separate 1D Fourier transforms, one for each of the four spacetime
dimensions, x, y, z, tð Þ. Although the FT sign may be chosen either way, traditionally
the sign convention represents a wave with angular frequency ω that propagates in
the wavenumber direction k. i.e., the frequency argument k = kð Þ. Let’s use the Min-
kowski spacetime metric signature ð+ , + , +|fflfflfflfflffl{zfflfflfflfflffl}

space

, −|{z}
time

Þ and the corresponding Minkow-

ski metric tensor η = diag + 1, + 1, + 1, − 1ð Þ. Then, k · x≡ k′ηx= k · x. Below we show
three equivalent definitions of the forward and inverse Fourier transforms for a 4D

(n= 4) spacetime function f : x= x, tð Þ 2 R3 ×R +� 	! C.

– Classical representation (engineering):

FT fð Þ= f̂ kð Þ=
ð
f xð Þe− i k · xdx=

ð
f x, tð Þ ei ωt −k · xð Þ|fflfflfflfflffl{zfflfflfflfflffl}

e− i k · x

dtd3x|fflffl{zfflffl}
dx

,

IFT
�
f̂
�
= ^̂f xð Þ= ^̂f x, tð Þ= 1

2πð Þn
ð
f̂ xð Þei k · xdk = 1

2πð Þn
ð
f̂ k, ωð Þe− i ωt −k · xð Þdωd3k.

– Radian frequency unitary representation (mathematics):

FT fð Þ= f̂ k, ωð Þ= 1

2πð Þn2
ð
f x, tð Þ ei ωt −k · xð Þ|fflfflfflfflffl{zfflfflfflfflffl}

e− i k · x

dtd3x|fflffl{zfflffl}
dx

,

IFT
�
f̂
�
= ^̂f x, tð Þ= 1

2πð Þn2
ð
f̂ k, ωð Þe− i ωt − k · xð Þdωd3k.

– Symmetric Hertz frequency unitary representation (signal processing):

FT fð Þ= f̂ kð Þ=
ð
f xð Þe− i2π k · xdx=

ð
f x, tð Þ ei2π ωt −k · xð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

e− i2π k · x

dtd3x|fflffl{zfflffl}
dx

,

IFT
�
f̂
�
= ^̂f xð Þ= ^̂f x, tð Þ=

ð
f̂ xð Þei2π k · xdk =

ð
f̂ k, ωð Þe− i2π ωt −k · xð Þdωd3k.

Figure 3.3 illustrates the relevance of the phase-angle directions in correctly inter-
preting the signal energy. Clearly, using only the FT magnitudes captures some of
the image energy; however, no phase information, or incorrect phase angles, would
distort the representation of the imaging data in spacetime. This observation applies
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directly to spacekime, where knowledge of the event order (kime-magnitude, time, t)
only provides partial information about the kevent state. At the same time, when the
kime direction (φ) is not directly observable, we need to indirectly estimate it, just
like we do in X-ray crystallography for solving viral crystal structures on the Ang-
strom scale, by only using the magnitudes of the observed diffraction patterns [88].

In its most general form, the Fourier transformation of an integrable function
f :R ! C, and its inverse, is analytically represented by:

FT fð Þ= f̂ ωð Þ=
ð∞
−∞

f xð Þe− 2π i ωxdx,

IFT f̂
� �

= ^̂f xð Þ=
ð∞
−∞

f̂ ωð Þe2π i ωxdω.

This directly generalizes to multivariate functions g:Cn ! C
n:

FT gð Þ= ĝ ωð Þ=
ð
Cn

g xð Þe− 2π i hx,widx.

Some of the basic properties of the Fourier transformation are included below:
– Linearity: The Fourier transformation is a linear functional:

FT αf + βgð Þ = αFT fð Þ+ βFT gð Þ.
– Translation/offset property: if a is a constant and h xð Þ= f x− að Þ, then

FT hð Þ= ĥ ωð Þ= e− 2π i aω f̂ ωð Þ= e− 2π i aωFT fð Þ.

– Scaling property: if a is a non-zero constant and h xð Þ= f axð Þ, then

FT hð Þ= ĥ ωð Þ= 1
aj j f̂

ω
a

� �
.

– Differentiation property:

FT
df tð Þ
dt

� �
ωð Þ = 2π i ω × FT fð Þ ωð Þ.

And more generally, the Fourier transform of the kth derivative is

df kð Þð Þ ωð Þ= 2π i ωð Þk × f̂ ωð Þ.

– Convolution ð f * gð Þ xð Þ= Ð f yð Þg x− yð ÞdyÞ and multiplication ðf × gð Þ xð Þ= f xð Þ g xð ÞÞ
are dual operations:
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df × gð Þ ωð Þ= f̂ ωð Þ * ĝ ωð Þ,
df *gð Þ ωð Þ= f̂ ωð Þ× ĝ ωð Þ.

– Energy preservation: The Fourier transform contains all information of the original
function: ð

Rn

f xð Þk k2dx =
ð
Rn

kf̂ ωð Þ2kdω.

– Duality: FT FT fð Þð Þ ωð Þ= f − ωð Þ.
– Impulse functions: The Fourier transform of a shifted impulse function δ x+ λð Þ is a

complex exponential function d ωð Þ= Ð +∞−∞ δ x+ λð Þe− i xωdx= eiλω. And conversely,
the inverse Fourier transformation of a complex exponential function d ωð Þ= eiλω

is an impulse function d̂ xð Þ= 1
2π
Ð +∞
−∞ eiλωe i xωdω = δ x+ λð Þ.

3.1.2 Fourier Amplitudes and Phases

Let’s try to examine the importance of the Fourier spectra, i.e., the amplitudes (mag-
nitudes) and the phases. Suppose we have a 2D image with intensities stored as
a second-order tensor (array) of dimensions n× k, x= xa,bf g, 1≤ a≤ n, 1≤b≤ k. Then,
the 2D discrete Fourier transform of the image will be

FT xð Þ=X = Xp, q
� 	n, k

p= 1, q= 1 =
Xn
a= 1

Xk
b= 1

xa,b e
− 2π i

ap
n

+ bq
k

� �8><>:
9>=>;

n, k

p= 1, q= 1

= Ap, q|{z}
magnitudes

× e

i φp, q|{z}
phases

0B@
1CA

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;

n, k

p= 1, q= 1

.

The phase tensor fφp, qg contains significant information about the image that can
be used to explore the distribution of the underlying process that generated the ob-
served image instance, fxi, jg. Let’s try to explicate the properties of two images,
x= xi, j
� 	

and y= yi, j
� 	

, that have identical phase tensors φx =
�

φx
p, q = φy

p, q
	
= φy.

Any phase differences won’t explain scaling of the images since the phases are
invariant to positive rescaling of the images, as scaling only affects the magnitudes.
For instance, for λ >0,
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FT λ × xð Þ= λ ×Ap, q|fflfflfflffl{zfflfflfflffl}
magnitudes

× e

 
i φp, q|{z}
phases

!8>>>>><>>>>>:

9>>>>>=>>>>>;

n, k

p= 1, q= 1

.

However, the phase moments can be used as signatures quantifying the similarity, or
the level of difference, between two images based on their observed, or estimated,
phase tensors.

3.1.3 Phase Equivalence

Let’s assume the equivalence of the phases of a pair of continuous real-valued signals,
f1, f2:R ! R , φf1

ωð Þ= φf2
ωð Þ,∀ω. This implies that

FT f1ð Þ ωð Þ= f̂1 ωð Þ= af1 ωð Þe
�
iφf1

�
= af1 ωð Þe

�
iφf2

�
=

= af1 ωð Þ
af2 ωð Þ|fflfflffl{zfflfflffl}
s ωð Þ

af2 ωð Þe
�
iφf2

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

FT f2ð Þ

= s ωð Þf̂2 ωð Þ= s ωð ÞFT f2ð Þ ωð Þ,

where s ωð Þ is a real-valued magnitude-scaling function. As ŝ xð Þ is the inverse Fourier
transform of a real-valued scaling function, s ωð Þ, it must be Hermitian, i.e., its com-
plex-conjugate ŝ xð Þ = ŝ − xð Þ and it’s real and imaginary parts are respectively even
(the graph of the real part is symmetric with respect to the vertical axis) and odd (the
graph of the imaginary part is symmetric with respect to the origin) functions:

ŝ xð Þ= 1
2π

ð
s ωð Þe i xωð Þdω = 1

2π

ð
s ωð Þ|ffl{zffl}
real

e− i xωð Þdω =

= 1
2π

ð
s ωð Þe i − xωð Þdω = ŝ − xð Þ.

Applying the inverse Fourier transform and using the convolution-multiplication
property we obtain:

f1 xð Þ= IFT f̂ 1
� �

xð Þ= IFT sð Þ * IFT FT f2ð Þð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
f2

0@ 1A xð Þ= ŝ * f2
� �

xð Þ.

Therefore, ŝ xð Þ= e xð Þ|{z}
even

+ i o xð Þ|{z}
odd

and we can plug in the relation f1 xð Þ= ŝ * f2
� �

xð Þ to

obtain:
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f1 xð Þ= e * f2
� �

xð Þ+ i o * f2
� �

xð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
trivial

.

As the spacetime functions f1 xð Þ and f2 xð Þ are real-valued, the imaginary part above
is trivial, and the pair of original (signals) functions are related by convolution (*)
with an even real function e xð Þ:

f1 xð Þ= e * f2ð Þ xð Þ,∀x.
Therefore, the real function ŝ xð Þ= e xð Þ being even and positive is a necessary and
sufficient condition for the equivalence of the Fourier phases of the corresponding
signals. An additional constraint for the even function to be positive is required to
avoid problems with counter examples like the real even function, s ωð Þ= cos ωð Þ,
e xð Þ= ŝ ωð Þ= IFT cos ωð Þð Þ= 1

2 δ x− 1ð Þ+ δ x+ 1ð Þð Þ, which is not always positive, where
ê ωð Þ= FT e xð Þð Þ= cos ωð Þ≡ cos − ωð Þ, bf1 ωð Þ= ê ωð Þ× bf2 ωð Þ= cos ωð Þbf2 ωð Þ, however, the
phase of f1 may not always be equal to the phase of f2.

As a corollary, in certain cases, we can infer signal properties based purely on
knowing the Fourier phases but not the corresponding magnitudes, and vice-versa,
knowing the magnitudes, but not the phases. Specifically, when we know the phases,
we can discern signal characteristics that are preserved when convolving with an
even function. For instance:
– If one of f1 and f2 is even, so is the other,
– If the distribution of f1 is heavy-tail, so will be the distribution of f2, and
– If f1 is positively skewed, as f2 is convolved with an even function, f2 will also be

positively skewed.

Prior reports have documented that distribution reconstructions using only the phases
and ignoring the magnitudes (amplitudes) are highly correlated with the original distri-
butions [89].

3.1.4 Amplitude Equivalence

Similarly, we can investigate the effect of equivalence of the amplitudes (magnitudes).
This time, we’ll assume the amplitudes of a pair of continuous real-valued signals are
equal, f1, f2:R ! R , af1 ωð Þ= af2 ωð Þ,∀ω. This is important, as most of the time, the
amplitudes are observed, yet the phases are not known. Then,

FT f1ð Þ ωð Þ= f̂1 ωð Þ= af1 ωð Þe
�
iφf1

�
= af2 ωð Þe

�
iφf1

�
=

= af2 ωð Þe
�
iφf1

+ iφf2
− iφf2

�
= af2 ωð Þe

�
iφf2

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

FT f2ð Þ

× ei
�

φf1
− φf2

�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
d

= f̂2 ωð Þd ωð Þ=d ωð ÞFT f2ð Þ ωð Þ,
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where the phase difference is Δφ ωð Þ= φf1
ωð Þ− φf2

ωð Þ and

d ωð Þ= ei
�

φf1
ωð Þ− φf2

ωð Þ
�
= eiΔφ ωð Þ = cos Δφð Þ+ i sin Δφð Þ

is a complex-exponential function of the phase differential.
The convolution theorem connecting function multiplication and convolution

through the Fourier transform yields:

FT f1ð Þ ωð Þ= d ωð ÞFT f2ð Þ ωð Þ,∀ω,
if and only if

f1 xð Þ= d̂ * f2
� �

xð Þ,∀x.

Given that f1 and f2 have the same Fourier amplitudes, we can infer some informa-
tion about the relation between their Fourier phases. Each function f :C ! C can be
expressed as a sum of real (Re) and imaginary (Im) parts of even (fe) and odd (fo)
components:

f xð Þ= fe xð Þ+ fo xð Þ=Re feðx½ Þ�+ i× Im fe xð Þ½ �+Re fo tð Þ½ �+ i× Im fo tð Þ½ �.
The Fourier transformation of each part is:

FT Re fe xð Þ½ �f g= Ð∞
−∞

Re feðx½ Þ�e− iωxdx= 2
Ð∞
0
Re feðx½ Þ� cos ωxð Þdx .

real and even!FT real and even,

FT i Im fe xð Þ½ �f g= i
Ð∞
−∞

Im fe xð Þ½ �e− iωxdx= 2i
Ð∞
0
Im fe xð Þ½ � cos ωxð Þdx.

imaginary and even!FT imaginary and even,

FT Re fo tð Þ½ �f g= Ð∞
−∞

Re fo tð Þ½ �e− iωxdx= − 2 i×
Ð∞
0
Re fo tð Þ½ � sin ωxð Þdx.

real and odd!FT imaginary and odd,

FT i Im fo tð Þ½ �f g= i
Ð∞
−∞

Im fo tð Þ½ �e− iωxdx= 2
Ð∞
0
Im fo tð Þ½ � sin ωxð Þdx.

imaginary and odd!FT real and odd.

3.1.5 Fourier Transform Effects on Phases and Magnitudes

If we denote the Fourier transformation of f xð Þ by f̂ ωð Þ=R ωð Þ+ i X ωð Þ=A ωð Þeiφ ωð Þ,
then Table 3.1 shows some of the properties of the Fourier transform (f̂ ), based on
the type of the original function (f ).
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In most cases, when f1 xð Þ and f2 xð Þ are both real-valued functions, we know that
φ1 ωð Þ and φ2 ωð Þ are odd functions, which imply that the corresponding phase distri-
butions Φ1 and Φ2 are symmetric and zero-mean. Thus, the inverse Fourier trans-
formation of d ωð Þ= ei

�
φf1

ωð Þ− φf2
ωð Þ
�
, h xð Þ= d̂ðxÞ is a real function. In summary, given

that the amplitudes are identical, the two real-valued functions f1 and f2 are re-
lated by:

f1 xð Þ= h * f2ð Þ xð Þ,∀x.
f̂1 ωð Þ= ĥ ωð Þf̂2 ωð Þ=d ωð Þf̂2 ωð Þ,∀ω.

Let’s look at some examples of phase difference functions, under the assumption of
equivalent amplitudes.
– When the phase differential is a linear function, Δφ = φf1

ωð Þ− φf2
ωð Þ= λ ω, λ 2 R ,

then the inverse Fourier transformation of d ωð Þ= eiΔφ = eiλω is an impulse function

h xð Þ= d̂ xð Þ= 1
2π

ð+∞

−∞

eiλωe ixωdω = δ x+ λð Þ.

In spacetime, f1 xð Þ= h * f2
� �

xð Þ= f2 x+ λð Þ. Thus, f1 xð Þ is derived by shifting f2 xð Þ
by λ units along the x-axis.

Table 3.1: Properties of real and imaginary, even and odd functions.

Function
type (f )

Even Odd In general

Purely
Real-Valued

f̂ ωð Þ is real & even
f̂ ωð Þ= f̂ −ωð Þ
R ωð Þ=R −ωð Þ
X ωð Þ=0
A ωð Þ=A −ωð Þ
φ ωð Þ=φ −ωð Þ=0or± π

f̂ ωð Þ is imaginary & odd
f̂ ωð Þ= − f̂ −ωð Þ
R ωð Þ=0
X ωð Þ= − X −ωð Þ
A ωð Þ=A −ωð Þ
φ ωð Þ= −φ −ωð Þ= ± π

2

When f xð Þ is real,
f̂ ωð Þ is Hermitian
f̂ ωð Þ= f̂ * −ωð Þ
R ωð Þ= R −ωð Þ
X ωð Þ= − X −ωð Þ
A ωð Þ=A −ωð Þ
φ ωð Þ= −φ −ωð Þ
A ωð Þ is even
φ ωð Þ is odd

Purely
Imaginary

f̂ ωð Þ is imaginary &
even
f̂ ωð Þ= f̂ −ωð Þ
R ωð Þ=0
X ωð Þ= X −ωð Þ
A ωð Þ=A −ωð Þ
φ ωð Þ=φ −ωð Þ= ± π

2

f̂ ωð Þ is a real & odd
f̂ ωð Þ= − f̂ −ωð Þ
R ωð Þ= − R −ωð Þ
X ωð Þ=0
A ωð Þ=A −ωð Þ
φ ωð Þ= − π ∪ 0 and
φ ωð Þ+φ −ωð Þ= − π

When f xð Þ is imaginary,
f̂ ωð Þ is anti-Hermitian
f̂ ωð Þ= − f̂ * −ωð Þ
R ωð Þ= − R −ωð Þ
X ωð Þ= X −ωð Þ
A ωð Þ=A −ωð Þ
φ ωð Þ+φ −ωð Þ= π
A ωð Þ is even

3.1 Introduction 67

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



In frequency space, FT f1ð Þ ωð Þ= eiλωFT f2ð Þ ωð Þ. In other words, FT f1ð Þ ωð Þ is
derived by counterclockwise rotation of FT f2ð Þ ωð Þ by λω. Of course, this confirms
the Fourier transformation property that a shift by λ in spacetime corresponds
with multiplication by eiλω in frequency space, i.e., FT f x− λð Þð Þ= e− iλωFT f xð Þð Þ.

– When the phase differential is constant, up to a sign, φf1
ωð Þ− φf2

ωð Þ=
λ sgn ωð Þ, λ 2 R= − π, π½ �. Recall that h= d̂=deiΔφ is the inverse Fourier transform
of the complex exponential differential. Then,

h xð Þ=
ffiffiffiffiffi
2π
p

cos λð Þδ xð Þ
� �

−

ffiffi
2

π

q
sin λð Þ
x

0@ 1A.

In spacetime, f1 xð Þ= h * f2ð Þ xð Þ= ffiffiffiffiffi
2π
p

cos λð Þf2 xð Þ−
ffiffi
2

π

p
sin λð Þ
x *f2 xð Þ

� �
. Therefore,

f1 xð Þ is derived from f2 xð Þ by subtracting from f2 xð Þ a multiple of a reciprocal func-
tion convolved with f2 xð Þ.

In frequency space, FT f1ð Þ ωð Þ= ei λ sgn ωð ÞFT f2ð Þ ωð Þ. When ω >0, FT f1ð Þ ωð Þ is
derived by counterclockwise rotation of FT f2ð Þ ωð Þ by λ. In the other case, when
ω <0, FT f1ð Þ ωð Þ is derived by clockwise rotation of FT f2ð Þ ωð Þ by λ.

– When the phase differential is a cubic (an example of an odd degree polynomial),
φf1

ωð Þ− φf2
ωð Þ= λ ω3. Then, the inverse Fourier transformation of d ωð Þ= eλω3

is

h xð Þ=
− x+ xj jð ÞAiryAi − xj j

3λ1=3

� �
+ x+ xj jð ÞAiryAi xj j

3λ1=3

� �
2× 3λ1=3 xj j

=
AiryAi x

3λ1=3

� �
3λ1=3

,

where the Airy function of the first kind, AiryAi xð Þ, is a solution of the Stokes ordi-
nary differential equation y′′− xy=0 and AiryAi xð Þ!

x!∞
0. An interesting relation

to quantum mechanics is that the Airy function is also a solution to the Schrö-
dinger‘s equation (Chapter 2) describing the dynamics of particles confined
within a triangular potential well and particles restricted to a 1D constant force
field. The Airy function can also be represented as a Riemann or a path integral:

AiryAi xð Þ= 1
π

lim
u!∞

ðu
0

cos
t3

3
+ x t

� �
dt, ∀x 2 R

AiryAi zð Þ= 1
2πi

ð
P

e
t3
3 − z t
� �

dt, ∀z 2 C ,

where the latter path integral is over a curve P with starting and ending points
at infinity corresponding to initial and terminal path-parameter arguments of
− π

3 and + π
3.
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– When the phase differential is the multiplicative inverse (reciprocal) function,
φf1

ωð Þ− φf2
ωð Þ= λ

ω. Then, the inverse Fourier transform d ωð Þ= e
iλ

ω is

h xð Þ= 2π δ xð Þ−
ffiffiffiffiffiffiffiffi
λ xj jp

x+ xj jð Þ HankelH1 1, 2
ffiffiffiffiffiffiffiffi
λ xj jp� �

+HankelH2 1, 2
ffiffiffiffiffiffiffiffi
λ xj jp� �� �

4x2

= 2π δ xð Þ−
ffiffiffiffiffiffiffiffi
λ xj jp

x+ xj jð ÞY1 2
ffiffiffiffiffiffiffiffi
λ xj jp� �

2x2

= 2π δ xð Þ−
ffiffiffi
λ
p

Y1 2
ffiffiffiffiffi
λx
p� �
ffiffiffi
x
p , x>0

0, x≤0

,

8>><>>:
where the Hankel function of the first kind is defined by H 1ð Þ

n zð Þ= Jn zð Þ+ i Yn zð Þ,
and the Hankel function of the second kind is defined by H 2ð Þ

n zð Þ= Jn zð Þ− i Yn zð Þ,
where Jn zð Þ is a Bessel function of the first kind and Yn zð Þ is a Bessel function of
the second kind.

– When the phase differential is a square-integrable odd function Δφ ωð Þ 2 L2, it
can be expressed as a Taylor series of odd-power terms

Δφ ωð Þ=
X∞
k = 1

akω 2k − 1ð Þ =
Xn
k = 1

akω 2k − 1ð Þ + εn ≈
Xn
k = 1

akω 2k − 1ð Þ,

Hence,

d ωð Þ= e
i
Pn
k= 1

akω 2k− 1ð Þ
=
Yn
k = 1

eiakω 2k − 1ð Þ .

Therefore,

FT f1ð Þ ωð Þ= d ωð ÞFT f2ð Þ ωð Þ=
Yn
k = 1

eiakω 2k− 1ð Þ · FT f2ð Þ ωð Þ

= eia1ω · eia3ω3 � � � · · eia2n− 1ω2n− 1 ·FT f2ð Þ ωð Þ.
This allows us to explicate the relation between f1 and f2 in spacetime as

f1 xð Þ= h1 * h3 * � � � * h2n− 1 * f2ð Þ xð Þ,
where hk xð Þ is the inverse Fourier transform of eiakωk

, i.e., hk xð Þ= IFT
�
eiakωk�

.
This implies that in the frequency domain, FT f1ð Þ ωð Þ is derived by counterclock-

wise rotating FT f2ð Þ ωð Þ sequentially by a2n− 1ω2n− 1, a2n− 3ω2n− 3, � � �, a3ω3, a1ω.
Similarly, in spacetime, f1 xð Þ is derived by iterative nested convolution by the

kernels h2n− 1 xð Þ, h2n− 3 xð Þ, � � �, h3 xð Þ, h1 xð Þ. For instance, for a simple odd cubic,
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φf1
ωð Þ− φf2

ωð Þ= ω + ω3, d ωð Þ= ei ω + ω3ð Þ,

FT f1ð Þ ωð Þ= ei ω + ω3ð ÞFT f2ð Þ ωð Þ= eiω · eiω3 · FT f2ð Þ ωð Þ
f1 xð Þ= h1 * h3 * f2ð Þ xð Þ

= δ x+ 1ð Þ*
AiryAi

x

3λ
1
3

 !
3λ

1
3

* f2 xð Þ

=
AiryAi

x+ 1

3λ1=3

� �
3λ1=3 * f2 xð Þ.

Figure 3.4 shows the graphs of d ωð Þ= ei ω + ω3ð Þ and h xð Þ= h1 * h3ð Þ xð Þ and we can

see that h xð Þ is derived by shifting
AiryAi x

3λ1=3

� �
3λ1=3

by λ = 1 along the x-axis.

In the most general case, given an explicit form of the phase difference d ωð Þ
function, we may be able to compute h xð Þ, the inverse Fourier transformation of
d ωð Þ= eiΔφ, and then derive f1 xð Þ or FT f1ð Þ ωð Þ based on f2 xð Þ or FT f2ð Þ ωð Þ, respec-
tively, according to the following formulas:

f1 xð Þ= h * f2ð Þ xð Þ, ∀x spacetimeð Þ

FT f1ð Þ ωð Þ=d ωð ÞFT f2ð Þ ωð Þ= ei
�

φf1
ωð Þ− φf2

ωð Þ
�
FT f2ð Þ ωð Þ,∀ω frequency spaceð Þ.

For any pair of real-valued signals (functions), the above expressions provide the
necessary and sufficient conditions for the equivalence of their Fourier amplitudes.

Finally, we can examine the effects of linear transformations of continu-
ous real-valued signals f1, f2 :R ! R . Suppose their phases are linearly re-
lated, φf1

ωð Þ= λφf2
ωð Þ+ b,∀ω.

This implies that:

FT f1ð Þ ωð Þ= f̂1 ωð Þ= af1 ωð Þe
�
iφf1

�
= af1 ωð Þe

�
i
�

λφf2
+ b
��

=

= af1 ωð Þ
af2 ωð Þλ|fflfflfflffl{zfflfflfflffl}

s ωð Þ

af2 ωð Þe
�
iφf2

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

FT f2ð Þ

0B@
1CA

λ

eib = s ωð Þ f̂ 2 ωð Þ
� �λ

eib = s ωð Þ FT f2ð Þ ωð Þð Þλeib,

where s ωð Þ= af1
ωð Þ

af2
ωð Þλ is a real-valued magnitude scaling function.

Applying the inverse Fourier transform and using the convolution-multiplication
property we obtain:
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f1 xð Þ= IFT f̂ 1
� �

xð Þ= eib IFT sð Þ * IFT FT f2ð Þð Þλ
� �� �

xð Þ= eib ŝ * h2ð Þ xð Þ.

where h2 xð Þ= IFT FT f2ð Þð Þλ
� �

. As the conjugation and exponentiation-by-λ opera-
tions can be swapped, if f2 xð Þ is a real function, Table 3.1 suggests that FT f2ð Þ is
Hermitian, FT * f2ð Þ ωð Þ= FT f2ð Þ − ωð Þ, and FT f2ð Þð Þλ is Hermitian:

FT* f2ð Þð Þλ ωð Þ= FT f2ð Þð Þλ
� �* − ωð Þ.

Therefore, h2 xð Þ= IFT FT f2ð Þð Þλ
� �

is real valued.
As g xð Þ= ŝ xð Þ is the inverse transform of a real-valued scaling function, s ωð Þ,

g xð Þ must be Hermitian, i.e., its complex-conjugate g xð Þ= g − xð Þ, and it’s real and
imaginary parts are even and odd functions, respectively.

Therefore, g xð Þ= e xð Þ|{z}
even

+ i o xð Þ|{z}
odd

and we can plug in the relation f1 xð Þ= eib ŝ * h2ð Þ xð Þ

to get:

f1 xð Þ= eib e * h2ð Þ xð Þ+ eib · i o * h2ð Þ xð Þ.
Given that h2 xð Þ is real we have:
f1 xð Þ= cos bð Þ e * h2ð Þ xð Þ− sin bð Þ o * h2ð Þ xð Þ½ �+ i sin bð Þ e * h2ð Þ xð Þ+ cos bð Þ o * h2ð Þ xð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

trivial

.

As the spacetime functions f1 xð Þ and f2 xð Þ are real valued, the imaginary part above
is trivial, and the pair of functions are related by:

f1 xð Þ= cos bð Þ e * h2ð Þ xð Þ− sin bð Þ o * h2ð Þ xð Þ,∀x.
Similarly, assuming that h2 xð Þ is purely imaginary, i.e. h2 xð Þ= il2 xð Þ where l2 xð Þ is a
real function, we obtain:

f1 xð Þ= ieib e * l2ð Þ xð Þ− eib o * l2ð Þ xð Þ=

− sin bð Þ e * l2ð Þ xð Þ− cos bð Þ o * l2ð Þ xð Þ½ �+ i cos bð Þ e * l2ð Þ xð Þ− sin bð Þ o * l2ð Þ xð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
trivial

=

− sin bð Þ e * l2ð Þ xð Þ− cos bð Þ o * l2ð Þ xð Þ.

However, the value of the power exponent λ, which is the scaling factor of the origi-
nal linear phase transformation, may also cause FT f2ð Þð Þλ to be an arbitrary func-
tion, e.g., non-odd and non-even function, which makes the general case more
complex.
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Similarly we can explore continuous real-valued signals f1, f2:R ! R that have
linearly related amplitudes, i.e., af1 ωð Þ= λaf2 ωð Þ+b,∀ω. Then,

FT f1ð Þ ωð Þ= f̂ 1 ωð Þ= af1 ωð Þe
�
iφf1

�
= λaf2 ωð Þ+ b
� �

e
�
iφf1

�
=

λaf2 ωð Þe
�
iφf1

�
+be

�
iφf1

�
= λaf2 ωð Þe

�
iφf1

+ iφf2
− iφf2

�
+be

�
iφf1

�
=

λ af2 ωð Þe
�
iφf2

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

FT f2ð Þ

ei
�

φf1
− φf2

�
+be

�
iφf1

�
=

λf̂ 2 ωð Þd ωð Þ+ be
�
iφf1

�
= λd ωð ÞFT f2ð Þ ωð Þ+ be

�
iφf1

�
,

where d ωð Þ= ei
�

φf1
ωð Þ− φf2

ωð Þ
�
= cos Δφð Þ+ i sin Δφð Þ. Inverting the Fourier transform

yields:

f1 xð Þ= IFT
�
f̂ 1Þ xð Þ= λ IFT dð Þ * IFT FT f2ð Þð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

f2

0@ 1A xð Þ+b IFT e
�
iφf1

�� �
=

λ
�
d̂ * f2Þ xð Þ+b IFT e

�
iφf1

�� �
.

Since f1, f2:R ! R are both real functions, φf1
− ωð Þ= − φf1

ωð Þ and φf2
− ωð Þ=

− φf2
ωð Þ are odd functions, then Δφ = φf1

�
ωÞ− φf2

ωð Þ is an odd function.

Therefore, both d̂= IFT dð Þ= IFT
�
ei
�

φf1
ωð Þ− φf2

ωð Þ
��

and IFT
�
e
�
iφf1

ωð Þ
��

are the in-
verse Fourier transformation of the form e i× odd functionð Þ, the result of which was discussed
above.

In summary, an amplitude, A ωð Þ, is always an even function, but we can’t infer
all properties of the corresponding phase function φ ωð Þ simply based on knowing the
amplitude. The characterizations above show that if we have information about the
type of the function f1 xð Þ (spacetime observation) along with some additional evi-
dence, then we can make reliable spacekime inference, prediction, classification, and
clustering. For instance, we can use phase-aggregation to model the expected dis-
crepancy between the unobserved kime phases ðφ1 ωð ÞÞ and their model-based kime-
phase estimates ðφ2 ωð ÞÞ. This will allow subsequent spacekime inference about f1,
based on a spacekime reconstruction (f2) obtained using the inverse Fourier transform
of the observed amplitude (A1 ωð Þ) and the approximate phases ðφ2 ωð ÞÞ.

Our results, and prior reports [89], also empirically document the symmetry of
the phase distributions and the fact that reconstructions using only the phases, i.e.,
ignoring the magnitudes (amplitudes), are highly correlated with the original signals.
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3.1.6 Minkowski Spacetime

At the turn of the twentieth century, the mathematician Henri Poincaré suggested
that space and time can be integrated into a contiguous 4D spacetime by augment-
ing the 3D space metric with time represented as an imaginary fourth coordinate
i · c · t [90, 91]. Poincaré used the speed of light (c) and the imaginary unit i to apply
a Lorentz transformation rotating the 4D x, tð Þ coordinates. This process obviously
requires arithmetic operations jointly on space and time values, which become unit-
less (actually adopts the spatial distance unit) under the time transform:

τ = i · c · t.

This idea led to the special relativity definition of a metric tensor d that is invariant
under Lorentz transformations of inertial frames:

d= x2 + y2 + z2 + τ2 = x2 + y2 + z2 − c2t2.

In this 4D spacetime, Lorentz transformations appear as ordinary rotations preserv-
ing the quadratic form:

x2 + y2 + z2 + τ2,

where the time t in an inertial system is measured by a clock stationary in that sys-
tem, and τ = ict. Suppose X = x, y, z, ctð ÞT and X′= x′, y′, z′, ct′ð ÞT represent two in-
ertial frames of reference in a flat Minkowski 4D spacetime and the Minkowski’s
square metric tensor is:

η =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1

0BBBB@
1CCCCA.

Then, the spacetime interval is represented by a (3,1)-signature quadratic form

hXjXi= XT η X =|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lorentz Transform

invariance

X′T η X′.

A few years later, Hermann Minkowski used Henri Poincaré’s idea to illustrate the
invariance of the Maxwell equations in 4D spacetime under the Lorentz transforma-
tion and represented Einstein‘s special theory of relativity in this new 4D Minkowski
spacetime [92]. Poincaré’s and Minkowski’s ideas of converting between spatial and
temporal measuring units unified the 4D spacetime continuum and ultimately led
to Einstein’s special and general theories of relativity.
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3.1.7 Events

Events are points (i.e., states) in the 4D Euclidean Minkowski spacetime universe. Ac-
cording to particle physics, events are quantum-mechanically the instantaneous re-
sults immediately following a fundamental interaction of subatomic particles. These
results occur in a very short time interval at a specific spatial location. Various quan-
tum mechanical calculations utilize commonly employed quantities as event-proxies
to analyze the events. Such proxy measures include differential cross section, flux
of beams, rates, particle numbers, characteristics, distributions, and luminosity or
intensity of the experiment that generated the observed event.

According to the theory of relativity, each event is relativistically defined by
where and when it occurs, i.e., its precise spatial location position, x= x, y, zð Þ, and
its exact time, t. Both the spatial location and the longitudinal order are relative to a
certain reference frame. The theory of relativity aims to explain the likelihood and
intensity of one event influencing another. Metric tensor calculations facilitate the
exploration of such event interactions and the determination of the causal structure
of spacetime. Specifically, the metric tensor quantifies the interval between two
events, i.e., the event difference, and classifies these intervals into spacelike, light-
like, or timelike event-separations. Two events may be causally related, or influence
one another, if and only if they are separated by a lightlike or a timelike interval.

3.1.8 Kaluza-Klein Theory

In 1921, Theodor Kaluza developed an extension of the classical general relativity the-
ory to 5D [93]. This included the metric, the field equations, the equations of motion,
the stress-energy tensor, and the cylinder condition. In 1926, after the reports of the
work of Heisenberg and Schrödinger, Oskar Klein interpreted Kaluza’s five-dimensional
theory in quantum mechanical space and proposed that the fifth dimension was curled
up and microscopic, i.e., the cylinder condition [94]. Klein suggested a circular geome-
try for the extra fifth dimension with a radius of 10− 30cm and calculated a scale for the
fifth dimension based on the quantum of charge. The small size of the fifth dimension
ensures that it is below the Planck resolution and therefore cannot be traversed, albeit,
the angular direction of S1 (unit circle) still provides a compass indication of time
orientation.

Thus, the topology of the 5D Kaluza-Klein spacetime is K2 ffi M4 × S1, where
M4 is a 4D Minkowski spacetime and S1 is a circle. Figure 3.5 geometrically shows a
way to imagine the 5D K2 space that has one extra dimension representing small
circles at each 4D spacetime coordinate. Note that the S1 dimension is directional
only, it’s physically so small as to prohibit spatial traversal. More recently, complex
time has been employed in electromagnetism for modeling, representation, and cal-
culus of complex-valued functions. For instance, McLaughlin used complex time to
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represent contour-independent path integrals and calculate ray barrier penetration
[95]. However, there is a distinct difference between a 1D complex time (0± it) [96]
and 2D kime (r, φ).

Czajko [97, 98] suggested another geometric interpretation of the existence of
a second dimension of time as a corollary of the inverse Lorentz transformation of
time rate, which may imply the presence of a tangential gravitational potential. An-
other interesting analogy of generalizing time to 2D is presented by Haddad and col-
leagues [99]. It is used for calculation of the spatial Green’s functions for a horizontal
electric dipole over a multilayer medium. This method relies on exponential series to
estimate the spectral Green’s function. Applying the inverse Hankel’s transform along
with Sommerfeld’s identity to the resulting exponential expansion yields a series con-
sisting of a number of complex images that can be used to approximate the spatial
Green’s function.

3.1.9 Coordinate Transformations, Covariance, Contravariance, and Invariance

Before we define complex time (kime), complex events (kevents), and the spacekime
manifold, we will briefly summarize the basic ideas underlying coordinate transfor-
mations, covariance, contravariance, invariance, and tensor arithmetic.

Coordinate transformations allow us to describe quantitatively various changes
of the bases used to localize objects in a topological manifold or a linear vector
space. For instance, a basis for a 5D real vector space is a set of 5 (basis) vectors
~α1,~α2, . . . , ~α5ð Þ that have the property that

Figure 3.5: Graphical representation of 5D Kaluza-Klein spacetime, K2 ffi M4 ×S1, whereM4 is a 4D
Minkowski spacetime and S1 is a non–traversable circle (below Planck resolution scale),
representing a curled orientations dimension.
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∀α 2 R5, 9unique 5− tuple λif g5i= 1 2 R , such that α =
X5
i= 1

λi~αi

� �
.

In other words, every location in the manifold has a unique representation as a linear
combination of the basis vectors, ~αif g5i= 1. More generally, a set of B elements of a
B-dimensional vector space βi

� 	B
i= 12 V is called a basis, if all elements ν 2 V have

unique representations as a finite linear combination of the B elements, ν =
PB

i= 1 λiβi.
The coefficients λi of this linear combination represent the coordinates of ν in the basis

βi

� 	B
i= 1 and the elements of the basis are called basis vectors. A vector space V may

have multiple alternative bases, each representing linearly independent spanning sets;
however all the bases of V have an equal number of elements that define the dimension
of the vector space. The more general manifolds are topological spaces that are locally
homeomorphic to a topological vector space over the reals.

Different analytical, modeling, and computational operations on vector spaces
and manifolds may be simplified by utilizing specific alternative bases. Hence, it is
very important to formalize the algebraic manipulations necessary to transform dif-
ferent coordinate-wise representations of vectors, locations, and operators from one
set of basis vectors to another – this transformation of the basis is called change of
basis.

Suppose we have a linear transformation T: Vn ! Wm between a pair of vector
spaces, Vn, Wm, and we introduce changes of bases in both spaces from the initial
bases ν1, . . . , νnf g of Vn and ω1, . . . , ωmf g ofWm to some new bases fν′1, . . . , ν′ng and
fω′1, . . . , ω′mg. Let γν and γ′ν be the coordinate isomorphisms transforming the usual
Rn basis to the first νif gni= 1 and second

�
ν′igni= 1 bases for Vn. Similarly, we will de-

note γω and γ′ω to be the coordinate isomorphisms transforming the usual Rm basis
to the first ωj

� 	m
j= 1 and second

�
ω′jgmj= 1 bases for Wm. Then, we can define a pair of

mappings T1 = γ− 1
ω � T � γν:Rn ! Rm and T2 =

�
γ′ω
�− 1 � T � γ′ν:Rn ! Rm, both have

matrix representations, that express the change-of-coordinates automorphisms�
γ′ν
�− 1 � γν:Rn ! Rn and

�
γ′ω
�− 1 � γω:Rm ! Rm, see Figure 3.6.

The commutative properties of this mapping diagram illustrate the corresponding
relationships between the transformations and we have the following relation:

Figure 3.6: Commutative diagram of change of coordinates.
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T2 =
�
γ′ωÞ− 1 � T � γ′ν = γ′ωð Þ− 1 � γω � T1 � γν

� �− 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
T

� γ′ν.

A composition of linear coordinate transformation maps corresponds to matrix mul-
tiplication and we have:

T2 = Q|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
γ′ωð Þ− 1�γω

× T1 × P − 1|fflfflfflfflffl{zfflfflfflfflffl}
γνð Þ− 1� γ′ν

.

When Vn ≡ Wm =V and the same change of basis is applied, γν = γω and γ′ν = γ′ω, then
there is one change-of-basis matrix for the vector space V, Q≡ P, T2 =P × T1 × P− 1, and
matrices T1 and T2 are similar.

For each point on a differentiable manifold, p 2 M, there are two derived vector
spaces:
(1) the tangent space, TpM, representing the space of contravariant vectors (kets)
jxi 2 TpM, derived by taking directional derivatives at the point p 2 M, and

(2) the cotangent space, T*
pM, this is the dual to the tangent space consisting of the

covariant vectors (bras) hxj 2 T*
pM, which are linear functions hxj:TpM ! R .

More specifically, for a real vector space V, the set of all linear functions L:V ! R is
the dual space to V, which is a vector space denoted by V*. When V is finite dimen-
sional, then V* has the same dimension as V. This pairing of all vector spaces with
their duals requires disambiguation of elements or vectors in V and those in V*. Vec-
tors in V are called contravariant vectors or kets, whereas vectors in V* are called
dual vectors, covectors, covariant vectors, or bras.

This terminology conveys that covariant components transform synergistically
(“co”) in the same way as the basis vectors, but contravariant components trans-
form anti-synergistically (“contra”) in the opposite way to basis vectors. Transfor-
mation of basis vectors refers to the conversion of the basis vectors in the original
coordinate system into new basis vectors, whereas transformation of vector compo-
nents refers to the change in the vector components (coefficients) relative to two dif-
ferent sets of coordinate axes. More succinctly:

New
basis vectors, ν′

 !
= Transform

matrix, T

 !
× Original

basis vectors, ν

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

components covary

,

Vector components

in the new coordinate system, uν′

 !
=

Inverse Transpose

Transformmatrix, Ttð Þ− 1

 !
×

vector components

in the original coordinate system, uν

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}.

components contravary
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In 2D, suppose the initial basis ν = ν1, ν2f g and the new basis ν′= fν′
1, ν′

2g are related
by the change of basis matrix:

T =
T1
1 T2

1

T1
2 T2

2

" #
.

Then,

ν′=Tν,

ν′
1 = T1

1 ν1 +T2
1 ν2

ν′
2 =T1

2ν1 +T2
2 ν2

.
�����

Using Einstein summation notation we see that the pair of bases covary, ν′
i = Ts

i νs.
Transposition of the transform matrix (T) is necessary when we move between

mapping of the bases and mapping of the components (coordinates) since:

u1

u2

 !
|fflfflffl{zfflfflffl}

coordinates

�����T ν1

ν2

 !
|fflfflffl{zfflfflffl}
basis

* +
= Tt u1

u2

 !
ν1

ν2

 !�����
+
= u1, u2

� �
T

� �t ν1

ν2

 !�����
+
.

**

The transposed basis transformation matrix

Tt =
T1
1 T1

2

T2
1 T2

2

" #

can be used to transform the coefficient components of a vector uν = u1ν1 + u2ν2 from
the old coordinate system, ν, to components in the new basis, ν′:

uν′ = Tt� �− 1
uν , uν =Ttuν′.

Again, this shows that the coefficient components of vectors in the old and new co-
ordinate systems contravary as they are related by the inverse coordinate transfor-
mation matrix, Ttð Þ− 1. The last matrix equation expresses the vector components in
the new coordinate system in terms of a product of the inverse transpose base trans-
formation and the vector components in the original (old) coordinate system. That
is, a vector u may be represented by the column vectors uν and uν′ in the two bases,
ν and ν′:

uν′ = Tt� �− 1
uν ,

u1ν′
u2ν′

" #
=

T1
1 T1

2

T2
1 T2

2

" #− 1
u1ν
u2ν

" #
,
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uν =Ttuν′ ,
u1ν
u2ν

" #
=

T1
1 T1

2

T2
1 T2

2

" #
u1ν′
u2ν′

" #
.

Let’s look at one specific example where the change of basis transformation is:

ν′
1 = ν1 + 2ν2

ν′
2 = ν1 + 3ν2

,
�����

T =
T1
1 T2

1

T1
2 T2

2

" #
=

1 2

1 3

" #
, T − 1 =

3 − 2

− 1 1

" #
, Tt =

T1
1 T1

2

T2
1 T2

2

" #
=

1 1

2 3

" #
, Tt� �− 1 =

3 − 1

− 2 1

" #
,

ν′=Tν, i.e.,
ν′
1 = ν1 + 2ν2

ν′
2 = ν1 + 3ν2

, ν =T − 1ν′, i.e.,
ν1 = 3ν′

1 − 2ν′
2

ν2 = − ν′
1 + ν′

2

.
�����

�����
Substituting ν1 and ν2 in the old components of the vectors uν = u1ν1 + u2ν2 yields the
following expression for the components of a vector u in the new coordinate system,
uν′ = u1ν′ν′

1 + u2ν′ν′
2:

uν = u1|{z}
u1ν

ν1 + u2|{z}
u2ν

ν2 =
u1

u2

 !
ν1

ν2

 !�����
+
= u1ν1 + u2ν2 = u1 3ν′

1 − 2ν′
2Þ+ u2 − ν′

1 + ν′
2Þ=

��*

u1

u2

 ! ����� 3 − 2

− 1 1

 !
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T − 1

ν′
1

ν′
2

 !* +
=

3 − 1

− 2 1

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

T − 1ð Þt

u1

u2

 !����� ν′
1

ν′
2

 !* +
=

u1, u2
� � 3 − 2

− 1 1

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T − 1

24 35tj ν′
1

ν′
2

� �* +
=

3u1 − u2

− 2u1 + u2

 !
ν′
1

ν′
2

 !�����
+
= 3u1 − u2
� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

u1ν′

ν′
1 + − 2u1 + u2
� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

u2ν′

ν′
2 = uν′.

*

Recall from Chapter 2 that for any matrix A=Am× n and any complex vectors x, y 2 C
n

the bra-ket notation · ·j ih and the use of Hermitian conjugation †, which in the real
value case is just the matrix transpose, to move the matrix between the bra and the ket:
hA†x yi= hxj jAyi. Thus, it can be expressed in matrix form representing the components
of the vector u from the new basis, ν′, into components in the old basis, ν, and vise-
versa.
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Invariance is another property indicating that a quantity does not change with
a linear transformation of the reference axes. For a particle of mass m moving at
a constant speed v, the four-velocity is u= u1, u2, u3, u4ð Þ= γ vx, vy, vz, c

� �
, where

γ= 1ffiffiffiffiffiffiffiffi
1− v2

c2

q is the Lorentz factor associated with v, c is the speed of light, and the

contravariant four-momentum pμ =muμ = γm vx, vy, vz, c
� �

. Thus, the particle rest
mass is the ratio of 4-momentum to 4-velocity

�
m= pμ

ν μ

�
and is measured in mass

units that do not depend on distance. Hence, mass is a distance measuring unit
invariant. Direction or velocity vectors are basis-independent when their compo-
nents contravary with a change of basis to compensate, i.e., the transform matrix
that maps the vector components must be the inverse of the matrix that transforms
the basis vectors (contravariance). Position of an object relative to an observer
and derivatives of position with respect to time represent vectors with contravar-
iant components and are denoted in Einstein‘s notation by upper indices. Covec-
tors are basis-independent when their components covary with a change of basis
to remain representing the same convector, i.e., the components are transformed
by the same matrix as the change of basis matrix (covariance) and the covariant
components are denoted with lower indices.

During change of basis, a basis-independent vector has components that con-
travary with a change of basis, i.e., the matrix transforming the vector components
is the inverse of the matrix transforming the basis vectors. Thus, the component co-
ordinates of basis-invariant vectors are contravariant and denoted with upper indi-
ces. For instance, the position of an object relative to a basis ν = eμ

� 	
μ is x = xμeμ in

Einstein’s summation notation, or more explicitly xν =
P

μ x
μeμ. Similarly, compo-

nent coordinates of basis-independent covectors covary with a change of the basis
and are transformed by the same matrix as the change of basis matrix. In Einstein
notation, x = xμeμ = Pμ xμeμ, where the gradient of a function represents an example of
such a covector whose covariant components xμ are denoted with lower indices relative
to the partial derivative basis eμ = ∂

∂xμ
� 	

μ. To summarize, the components of the position
x and the gradient ∇= ∂

∂xμ represent a contravariant 1-tensor (vector) and a covariant 1-
tensor (covector), respectively.

Raising and lowering indices tensors are just a form of index manipulation in
tensor arithmetic. These operations change the type of the tensor and are per-
formed by multiplying by the covariant or contravariant metric tensor and then
contracting indices by setting a pair of indices to be equal and then summing over
the repeated indices (Einstein notation). For instance, if we multiply a (nonsingular)
contravariantmetric tensor (upper indices) gij with a vector A and then contracting indi-
ces yields a new upper index covariant (covector), gijAj =Ai. Analogously, multiplying
the covariant metric tensor and a covector with contracting lowers an index, gijAj =Ai.
As raising and lowering the same index are inverse operations corresponding to the co-
variant and contravariant metric tensors, δk

i = gkjgji = gkjgji = δi
k,∀i, k, which represents

the identity metric tensor.
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In 4D Minkowski spacetime, we can show a concrete example using the 4-position
vector:

Xμ =
 

x|{z}
X1

, y|{z}
X2

, z|{z}
X3

, − ct|{z}
X4

!
.

For this specific tensor signature:

+ , + , +|fflfflfflfflffl{zfflfflfflfflffl}
i

, −
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{μ !

, the flat Minkowski metric tensor is gμν = gμνð Þ− 1 ≡ gμν =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

0B@
1CA.

Then to raise the index of the position vector (first-order tensor) we multiply

the vector by the tensor and contract indices Xμ = gμνXν = gμiXi + gμ4X4, for μ = 4 we

have the time component X4 = g4iXi + g44X4 = −X4 and for the corresponding

space components Xj = gjiXi + gj4X4 = δi
jXi =Xj,∀1≤ j≤ 3. Therefore, Xμ = gμνXν = 

x|{z}
X1

, y|{z}
X2

, z|{z}
X3

, ct|{z}
X4

!
.

Raising and lowering the indices works similarly for second-order tensors (ma-
trices) by multiplying by the covariant metric tensor gμν and contracting appropri-
ately the indices:

Aμν = gμγgνδAγδ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
index raising

and Aμν = gμγgνδA
γδ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

index lowering

.

3.2 Kime, Kevents and the Spacekime Metric

In Chapter 1, we defined kime for a given spatial location as complex time, k = reiφ,
representing the dual nature of kevents order (r >0), characterizing the kevent longi-
tudinal displacement in time, and kevent momentum, reflecting the direction of
change (− π ≤ φ < π), see Figure 1.7. This leads naturally to the 5D spacekime mani-
fold (R3 ×C). There are several complementary representations of the kime mani-
fold that use different coordinate descriptions of the same two kime degrees of
freedom, Figure 3.7. Having alternative isomorphic ways to represent complex time
is useful for symbolic computing and analytical representations. For example, the
ability to easily transition between (Descartes) Cartesian and polar coordinates de-
scribing the same particle state or kevent helps to simplify notations, utilize known
multivariate properties, or employ various physical laws.
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Let’s extend the relativistic and particle physics definitions of events to complex
time. Kevents (complex-time events) are points (or states) in the spacekime manifold X.
Relativistically, each kevent is defined by where it occurs in space (x = x, y, zð Þ), what is
its causal longitudinal order (r), and in what kime-direction it takes place in (φ).

The scaled polar coordinate transformation maps kime order (r) and phase di-
rection φð Þ into meters:

r = t

k1 = r cos φð Þ
k2 = r sin φð Þ

.

�������
Note that the trigonometric functions transform the kime phase (φ) into scalars and
the speed of light (c) transforms kevent longitudinal order (in seconds) into meters.
Thus, we can do 5D spacekime arithmetic (in meters).

In relativistic terms, kevents are characterized by their spacekime (SK) coordinates:

x, ckð Þ= x1, x2, x3|fflfflfflffl{zfflfflfflffl}
space

, ck1 = x4, ck2 = x5|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
kime

 !
2 SK.

To extend the particle-physics notion of event, referring to fundamental instanta-
neous particle interactions, to kevent, we need to generalize the Minkowski 4D ten-
sor metric to the 5D spacekime manifold.

Figure 3.7: Examples of isomorphic kime manifold parameterizations.
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An invariant interval between two kevents, a, b 2 SK, is defined by:

ds2 = x1a − x1b
� �2 + x2a − x2b

� �2 + x3a − x3b
� �2 − x4a − x4b

� �2 − x5a − x5b
� �2,

ds2 = dx1
� �2 + dx2

� �2 + dx3
� �2 − dx4

� �2 − dx5
� �2,

where each term represents a classical 1D interval in R 1. These intervals are invari-
ant because other observers using the same metric but different coordinate systems,
e.g., x1′, x2′, x3′, x4′, x5′

� �
, would measure the same interval independent of the coor-

dinate system:

ds′ð Þ2 = dx1′
� �2 + dx2′

� �2 + dx3′
� �2 − dx4′

� �2 − dx5′
� �2 =ds2.

The general spacekime metric tensor may also be expressed more concisely as:

ds2 =
X5
i= 1

X5
j= 1

λijdxidxj = λijdxidxj,

where the 3+ 2 indices 1, 2, 3, 4, 5ð Þ correspond to the space + kime basis, and the im-
plicit summation notation on the right-hand side implies that if an index is repeated
as a subscript and superscript, then it represents a summation over all its possible
values. The general Minkowski 5× 5 metric tensor λij

� �5, 5
i= 1, j= 1 characterizes the ge-

ometry of the curved spacekime manifold. However, in Euclidean (flat) spacekime,
the spacekime metric permits a simpler tensor representation:

λij
� �

=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 − 1 0

0 0 0 0 − 1

26666664

37777775= diag 1, 1, 1|ffl{zffl}
space

, − 1, − 1|fflfflfflffl{zfflfflfflffl}
kime

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tensor signature + + + − −ð Þ

.

The invariant intervals are analogous to distances in flat 3D spaces. As the delta
change in kime can exceed the aggregate delta change in space, the interval distan-
ces can be positive, trivial, or even negative:
– Spacelike intervals correspond to ds2 >0, where an inertial frame can be found

such that two kevents a, b 2 SK occur simultaneously in kime. An object cannot
be present at two kevents which are separated by a spacelike interval.

– Lightlike intervals correspond to ds2 =0. If two kevents are on the line of a pho-
ton, then they are separated by a lightlike interval and a ray of light could travel
between the two kevents.

– Kimelike intervals correspond to ds2 <0. An object can be present at two different
kevents, which are separated by a kimelike interval.
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The concept of multidimensional time is not new [62, 100, 101]. The real, imaginary,
and psychological aspects of multiple time dimensions were debated by Dobb,
Chari, Bunge, and others [102–104]. In the early 1980’s, Hartle and Hawking inves-
tigated the effect of an isometric transformation of time into purely imaginary
time (t ! iτ). This approach solves some problems related to singularities of Ein-
stein’s equations [105].

From a topological point of view, Chari contrasted the idea of extending unidi-
mensional to multi-dimensional time to the extension of finite dimensional Euclid-
ean spaces to infinite dimensional Hilbert spaces [104]. The major drawback of
lifting time to higher dimensions comes from the fact that such extensions may
break classical probability axioms, e.g., certain events may have negative likeli-
hoods as higher-dimensional temporal spaces may permit multidirectional “time”
travel. However, imposing certain symmetry conditions on the position and momen-
tum of particles may resolve the negative likelihoods problem [62, 101].

Bars connected 2D-time field theory directly to the physical world by extending
the standard 4D spacetime model to 6D and resolving the strong charge conjugation
parity (CP) symmetry violation problem [106]. In this work, the underlying 2D time
reflects the local symmetry of the symplectic group Sp 2,Rð Þ, a non-compact, simply-
connected Lie group, where position and momentum are indistinguishable at any
instant. As we are not equipped to directly perceive higher-dimensional spacetime,
we can interpret the ambient 4D spacetime environment as a mere silhouette of an
actual higher-dimensional world with multidimensional time.

3.3 Some Problems of Time

In Chapter 1 (Motivation), we already discussed the mysterious nature of time and
pointed out some of the paradoxes associated with time. Some of the key problems
of time are summarized below.
– Speed of light phenomenon; relativistically time is a local characterization of

phenomena, there is no global universal time.
– The unidirectional arrows of time (psychological arrow of time representing in-

exorable past to future flow; thermodynamic arrow of time reflecting the growth
of entropy; and cosmological arrow of time representing the expansion of the
universe) [107].

– “The problem of time” concept has different meanings in quantum mechanics
(flow of time as universal and absolute) and general relativity (flow of time as
malleable and relative). In 1960, the physicist Bryce DeWitt described the quan-
tum concept of time by “different times are special cases of different universes”
[108]. The Wheeler-DeWitt equation predicts that time is an emergent phenome-
non for internal observers, which is absent for external observers of the uni-
verse. Evidence in support of this was provided in 2013 by researchers at the
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Istituto Nazionale di Ricerca Metrologica (INRIM) in Turin, Italy, via the Page
and Wootters experimental test [109, 110].

– Time dilation, i.e., the action of moving objects affects (slows) passage of time [111].

3.4 Kime-Solutions to Time-Problems

If we pick (any) point ko 2 C as a kime-origin serving as a reference, then the kime,
k, is a universal characteristic (relative to ko) just like space (R3) is universal, rela-
tive to a specific spatial origin (0 2 R3). However, the spacekime manifold is still
only locally Euclidean (flat) and globally curved. Just like time is always a local ob-
servable, there is no global and canonical universal kime.

Kime resolves the problem with the unidirectionality of time, as all kimelike in-
tervals connecting a pair of kevents in the complete 2D kime space can be traversed
by uncountably many trajectories (e.g., parametric curves). Furthermore, using ap-
propriate gauge symmetries, the 2D kime extension resolves all problems with uni-
tarity (time-evolution of a physical system is equivalent to a unitary operator, i.e.,
relative to the present, a past point and a future point are unique) and causality (in
the light cone of an event, an effect always occurs after its cause) [112]. Using the 2D
time-lifting framework, the classical 4D Minkowski spacetime is naturally and con-
sistently embedded in the 5D spacekime manifold.

The concept of multidimensional time is beginning to gather support and play
an increasingly important role in modern theories of physical systems [62, 113–115].
According to the Big Bang inflation theory, the visible universe is only a small part
of a larger multiverse, possibly an uncountable collection of many loosely con-
nected individual universes governed by distinct physical laws, different ambient-
conditions, and weak interactions between them [116]. So far, no physical principle
has been identified that determines the possible number of spatial or temporal di-
mensions. Therefore, there is no specific law that dictates a precise number of dimen-
sions or limits the possibilities to only what is perceived in the human-observable
universe. The number of spatial and temporal dimensions in our universe is more
likely to be a result of chance, coupled with our intrinsic understanding, which is
shaped by our perceptions, observations, operations, and immersive experiences into
the known universe.

As shown in some studies, it is possible to formulate physically significant theo-
ries using two, three, and higher temporal dimensions [62, 101, 113]. As the physicist
Itzhak Bars noted, “the physics of two-dimensional time can be seen as a means of bet-
ter understanding the physics of one-dimensional time; moreover, the physics of two-
dimensional time offers new perspectives in the quest for unified theory, raising deep
questions about the meaning of space-time” [106]. For theoretical systems that are not
yet fully constructed or understood, e.g., membrane (a.k.a. brane) theory, the physics
of two-dimensional time suggests a possible approach to a more symmetric and more

86 Chapter 3 Time Complexity

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



meaningful formulation. For instance, constructing universal representations using 11
spatial and 2 temporal dimensions may lead to deeper insights into the nature of
space and time and the implications for long-distance communication and travel. In
addition, such lifting of dimensionality may facilitate one possible way of constructing
the most symmetrical version of a fundamental theory [62, 106].

Intuitively, time is the fourth dimension of the unified Minkowski spacetime.
There are common characteristics of space and time, but time, as a positive real
event-ordering characteristic, has some specific properties that distinguish it from
space. First, time is constantly “running,” i.e., it is advancing and diffusing inde-
pendently of being observed. We perceive the world as naturally and dynamically
changing over time. Second, the time is unidirectional and, relative to the illusive
present, there is a clear asymmetry between the past and the future. This “arrow of
time” contrasts the observed space isotropicity of various geometric and topological
characteristics. Third, the 3 + 1 spacetime dimensions are somewhat imbalanced as
space covers a field of three dimensions without boundary, whereas time occupies a
one-dimensional space with a clearly delineated boundary.

If the concept of two-dimensional complex time (kime) does represent a more
general and realistic universal description, these differences between space and kime
mostly disappear, restoring a global 5D spacekime symmetry. Two-dimensional time
may explain the possibility of smooth traversal of the spacekime manifold and thus
resolve the time-travel paradoxes. Instead of simply marching relentlessly forward,
kime traversal explains the natural trajectories of spacekime motion, including kime-
travel as simple closed 2D curves. By varying kime-phases (directions of time), kime
arcs can describe perceptions of traveling back or forth in time.

Complex time can also solve the “grandfather paradox.” If one goes back in
time and kills their grandfather, before the time the latter met the traveler’s grand-
mother, then one of the traveler’s parents would not be born and by consequence,
the traveler themselves would have never been born. That logical impossibility is
driven by the fact that all events in spacetime are assumed to take place in the same
kime direction.

Complex time allows for multiple event trajectories, e.g., multiple story lines,
alternative narratives, complementary experiences at the same spacetime locations.
In a measure-theoretic sense, traveling through the 2D kime manifold has trivial
likelihood of revisiting an exact same point in the past. This is clear as passing
through one fixed kime point, κ 2 C, is as likely as randomly choosing one specific
real number (cf. Axiom of Choice [117]), an event of trivial measure.

In the 5D Minkowski spacekime dimensional lift, the classical four spacetime di-
mensions are familiar and are associated with common and intuitive interpretations.
However, the spacekime theory suggests that these four dimensions represent a uni-
versal silhouette, a “shadow” of reality. Clearly, all fundamental physical laws and
concepts may need to be reviewed and extended as lower dimensional projections of
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complex manifolds do exhibit similar characteristics, but also have unnatural con-
straints that make the simplified lower-dimensional representations of reality differ-
ent from their native counterparts. For instance, the Heisenberg principle states that
it may be possible to measure precisely either the momentum or the position of a par-
ticle, but not both at the same time.

What is the mysterious theoretical limitation that restricts this possibility? Would
lifting the concept of time to 2D complex time allow us to jointly and perfectly record
both the particle position and momentum? This clearly requires redefining the mo-
mentum (p) as p=m v, where m is the particle mass and the velocity (v) is defined in
terms of kime, not time. Itzhak Bars suggests that the position and momentum of a
particle are indistinguishable at any given kime moment [118]. When swapping the
momentum and position, physics remains the same. But if the momentum and the
position are interchangeable, it implies that everyone (universal observer) can get
their own unique direction of time. Perhaps a hidden treasure of the universe is
wrapped in the extra time-direction (kime-phase) dimension. Understanding this ad-
ditional time dimension may help us answer the question “Why, after a thorough
search, have we still not been able to find the composites of dark matter?” and, per-
haps, enhance our data science and analytical inference abilities based on spacetime-
observed evidence.

Open Problems

1) Does kime have the same interpretation in quantum
mechanics and in general relativity (relative to a speci-
fied origin), just like the spatial coordinate references?
In other words, is kime universal and absolute?

2) We know time, by itself, is excluded from the Wheeler-
DeWitt equation. Is this true for kime as well? That is,
does the Wheeler-DeWitt equation depend on kime the
same way it depends on the particle location?

3) Is there kime-dilation, reminiscent of time-dilation? In other words, does the ac-
tion of moving objects affect (e.g., slow) kime? How? Some suggestions are
made below.

4) Explore the relations between various spacekime principles (e.g., space-kime
motion and PDEs with respect to kime) and Painlevé equations in the complex
plane [119, 120].

5) Explore the relation of kime to the four arrows of time (epistemological, mutability,
psychological, and explanation-causation-counterfactual). How does the arrow of
time relate to increasing the kime magnitude (time) and the corresponding growth
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of the kime arc-length associated with a fixed kime-phase range? As the kime
magnitude increases, there is a perception of a natural spacekime inflation (lin-
ear in terms of time) of the kime arc-length and the corresponding spacekime vol-
ume. This is related to the second law of thermodynamics and the observed time-
dependent increase of the entropy of closed systems in spacetime. Is there a relation
between the spacekime volume rate of change, d

dt V tð Þ=ΔxΔφ, and the accelerating
expansion of the universe? The accelerating expansion [121] is defined in terms of
the second time derivative of the cosmic scale factor, a′′ tð Þ, and the increasing with
time Hubble parameter defined along with its derivative by:

H tð Þ= a′ tð Þ
a tð Þ ,

dH
dt

= a′′ tð Þ
a tð Þ −

a′ tð Þ
a tð Þ

� �2

= −H2 tð Þ 1+ qð Þ,

q≡ −
a′′ tð Þ

a tð ÞH2 tð Þ = −
a tð Þ a′′ tð Þ
a′ tð Þð Þ2 .

Some empirical observations suggest q ffi −0.55, implying the acceleration is

a′′ tð Þ>0 and dH
dt <0.

3.5 The Kime-Phase Problem

The kime-phase problem in data science is analogous to the crystallographic phase
problem. X-ray crystallography uses a detector to measure the diffraction intensi-
ties, which are the scattering amplitudes losing all information about the phases of
the scattered wavefield. Similarly, in data science we use observed spacetime infor-
mation without recording the crucial kime-directions needed to successfully recon-
struct the data object in spacekime. This “data science kime-phase problem,” which
is due to a lack of explicit mechanisms to directly measure the kime-direction, may
be tackled using the same phase-estimation strategies applied in many other crys-
tallographic and non-crystallographic, imaging and signal processing techniques.
The simple strategy, which reflects the current state-of-the-art approaches in all
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spacetime data analytics, ignores the kime-phases. In other words, spacetime ana-
lytics assume φ =0 (or a constant) and correspond to utilizing only the Fourier mag-
nitudes, which as we saw in Chapter 1 generate oversimplifications of the real data
objects. In fact, discarding the Fourier magnitudes and utilizing solely the kime-
phases lead to more recognizable representations of the original data objects. Thus,
recovery or estimation of the unknown kime-phase is expected to boost the informa-
tion content in the data and hence improve the resulting data analytics. The quality
of the data-analytic results (e.g., prediction strength, reproducibility, replicability,
and forecasting variability) depends on the spacekime reconstruction of the data ob-
ject, i.e., robust kime-phase retrieval. There are many kime phase-aggregator meth-
ods for phase-estimation that can be constructed, implemented, and validated.

In practice, these data science techniques for kime-phase estimation may re-
semble some of the iterative X-ray diffraction imaging approaches used for phase
retrieval. The simplest of all algorithms would reconstruct data objects simply by
synthesizing the data in spacekime using the observed Fourier intensity measure-
ments (k-space transformed data) along with some fixed-phase value, − π ≤ φo < π.
Alternatively, we can solve this inverse problem using the Gerchberg-Saxton algo-
rithm applied to the intensity measurements in the Fourier domain and the real
spacetime [122]. More complex schemas may be based on iteratively enforcing con-
straints in spacetime and Fourier domain [123–125]. Alternative types of constraints
may be necessary to reflect the characteristics of the observed data object and the
specific analytical strategy.

Using the same notation we employed earlier, suppose the observed data object
is an n× k tensor of cases and features. Then, there will be a set of n× k equations
that can be used to solve the inverse constrained problem of recovering the space-
kime representation of the data object. However, due to time complexity, the space-
kime data object representation consists of n2k unknowns, accounting for k features
for each of the 2 independent time dimensions. One can include additional con-
straints to reduce the number of unknowns to the number of equations, which may
eventually lead to solving for the missing kime-phases. These constraints can be de-
signed so that some are specified on the Fourier-transformed (analyzed) data, e.g., a
Fourier modulus constraint in inverse domain, and some are formulated on the
spacekime (synthesized) data, e.g., support or overlap constraints. Other types of
constraints, like the X-ray crystallographic atomicity constraint and the object histo-
gram constraint [126], may also be useful.

3.5.1 The Effects of Kime-Magnitudes and Kime-Phases

Jointly, the amplitude spectrum (magnitudes) and the phase spectrum (phases) uniquely
describe the spacetime representation of a signal. However, the importance of each of
these two spectra is not equivalent. In general, the effect of the phase spectrum is more
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important compared to the corresponding effects of the amplitude spectrum. In other
words, the magnitudes are less susceptible to noise or the accuracy of their estimations.
The effects of magnitude perturbations are less critical relative to proportional changes
in the phase spectrum. For instance, the zero-level-set of spacetime locations where the
signal is zero, the information can be reconstructed (by the IFT) relatively accurately
using incorrect magnitudes solely by using the correct phases [127]. For a real-valued sig-
nal f , suppose the amplitude of its Fourier transform, FT fð Þ= f̂ , is A ωð Þ>0,∀ω, then:

f xð Þ= IFT f̂
� �

=Re 1
2π

Ð
R
A ωð Þeiϕ ωð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

f̂ ωð Þ

eiωxdω

0B@
1CA=Re

�
1
2π

Ð
R
A ωð Þei ϕ ωð Þ+ ωxð Þdω

�
=

= 1
2π

ð
R

A ωð Þcos ϕ ωð Þ+ ωxð Þdω.

Thus, the roots of f , f xð Þ=0, occur for ωx+ ϕ ωð Þ= ± 2k − 1ð Þ π
2, k= 1, 2, 3, � � � ·

A solely amplitude-driven reconstruction would preserve the total signal energy
but yield worse results:

fA xð Þ= IFT f̂
� �

= 1
2π

ð
R

A ωð Þ|ffl{zffl}
no phase

eiωxdω.

Whereas a solely phase-based reconstruction would change the total signal energy
however it may generate better reconstruction results:

fϕ xð Þ= IFT f̂
� �

= 1
2π

ð
R

eiϕ ωð Þ|fflffl{zfflffl}
unitary

amplitude

eiωxdω.

The latter would include some signal-recognizable features, e.g., contours, as the
zero-level-curves of the original f preserved by the phase-only reconstruction fϕ.
This suggests that the Fourier phase of a signal is more informative than the Fourier
amplitude, i.e., the magnitudes are robust and the phases are more susceptible to
errors or perturbations. Figure 3.8 shows example reconstructions of the 2D square
image using different amplitude and phase estimates.

To resolve the 3D structure of small proteins using X-ray crystallography, crys-
tal structures are bombarded by particles/waves, which are diffracted by the crystal
to yield the observed diffraction spots or patterns. Each diffraction spot corresponds
to a point in the reciprocal lattice and represents a particle wave with some specific
amplitude and a relative phase. Probabilistically, as the particles (e.g., gamma-rays
or photons) are reflected from the crystal, their scatter directions are proportional to
the square of the wave amplitude, i.e., the square of the wave Fourier magnitude.
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X-rays capture these amplitudes as counts of particle directions, but miss all infor-
mation about the relative phases of different diffraction patterns.

Spacekime analytics are analogous to X-ray crystallography, DNA helix model-
ing, and other applications, where only the Fourier magnitudes (power spectra) are
observed, but not the phases (kime-directions). Thus, the phases need to be esti-
mated to correctly reconstruct the intrinsic 3D object structure, in our case, the cor-
rect spacekime analytical inference. Clearly, signal reconstruction based solely on
either the amplitudes or the phases is an ill-posed problem, i.e., there will be many
alternative solutions. In practice, such signal or inference reconstructions are always
application-specific, rely on some a priori knowledge of the process (or objective
function), or depend on information-theoretic criteria to derive conditional solutions.
Frequently, such solutions are obtained via least squares, maximum entropy criteria,
maximum a posteriori distributions, Bayesian estimations, or simply by approximat-
ing the unknown amplitudes or phases using prior observations, similar processes, or
theoretical models.

Original Signal (IFT) Reconstructions

Square

Phase distributions Magnitude distributions

Correlation between raw and noisy phases
ρ = 0.73; CI = (0.66,0.78)

Correlation between raw and noisy 
magnitudes

ρ = 0.461; CI = (0.35,0.56)

Figure 3.8: Examples of square image reconstructions illustrating the noise robustness and
susceptibility of the Fourier magnitudes and phases. Note that relative to the ranges of the phases,
(− π, π), and magnitudes, (0, 200), the synthesized signals are subjected to substantial noise levels,
σ1 = 3

2Þ
�

and σ2 = 503
2, respectively. Therefore, the phase may encode more of the energy in a signal

than the magnitude of the signal.
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3.5.2 Strategies for Solving the Missing Kime-Phase Problem

There are many alternative solutions to the problem of estimating the unobserved
kime-phases. All solutions depend on the quality of the data (e.g., noise), the signal
energy (e.g., strength of association between covariates and outcomes), and the
general experimental design. There can be rather large errors in the phase recon-
structions, which will in turn affect the final spacekime analytic results. Most
phase-problem solutions rely on using some prior knowledge about the character-
istics of the experimental design (case-study phenomenon) and the desired inference
(spacekime analytics). For instance, if we artificially load the energy of the case-study
(e.g., by lowering the noise, increasing the signal-to-noise ratio, or increasing the
strength of the relation between explanatory and outcome variables), the phases com-
puted from such stronger-signal dataset will be more accurate representations than
the original phase estimates. Examples of phase-problem solutions include energy
modification and fitting and refinementmethods.

3.5.2.1 Energy Modification Strategies
In general, energy modification techniques rely on prior knowledge, testable hypoth-
eses, or intuition to modify the dataset by strengthening the expected relation we
are trying to uncover using spacekime analytics.

Kime-Phase Noise Distribution Flattening: In many practical applications, only
a portion of the dataset (including both cases and features) may include valuable
information. The remaining part of the data may include irrelevant, noisy, or disrup-
tive information. Clearly, we can’t explicitly untangle these two components, however,
we do expect that the irrelevant data portion would yield uninformative/unimportant
kime-phases, which may be used to estimate the kime-phase noise-level and noise-
distribution. Intuitively, if we modify the dataset to flatten the irrelevant kime-phases,
the estimates of the corresponding true-signal kime-phases may be more accurate or
more representative. We can think of this process as using kime-phase information
from some known strong features to improve the kime-phase information of other
particular features. Kime-phase noise distribution flattening requires that the kime-
phases be good enough to detect the boundaries between the strong and the weakly-
informative features.

Multi-Sample Kime-Phase Averaging: It’s natural to assume that multiple instan-
ces of the same process would yield similar analytics and inference results. For
large datasets, we can use ensemble methods (e.g., SuperLearner [128], and CBDA
[15, 129]) to iteratively generate independent samples, which would be expected to
lead to analogous kime-phase estimated and analytical results. Hence, we expect that
when salient features are extracted by spacekime analytics based on independent
samples, their kime-phase estimates should be highly associated, albeit perhaps not
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identical. However, weak features would exhibit exactly the opposite effect – their
kime-phases may be highly variable (noisy). By averaging the kime-phases, noisy-
areas in the dataset may cancel out, whereas, patches of strong-signal may preserve
important kime-phase details, which would lead to increased kime-forecasting accu-
racy and improve the reproducibility of kime-analytics.

Histogram Equalization: As common experimental designs and similar datasets
exhibit analogous characteristics, the corresponding spacekime analytics are also
expected to be synergistic. Spacekime inference that does not yield results in some
controlled or expected range may be indicative of incorrect kime-phase estimation.
We can use histogram equalization methods [130] to improve the kime-phase esti-
mates. This may be accomplished by altering the distribution of kime-phases either
to match the phase distribution of other similar experimental designs or to generate
more expected spacekime analytical results.

3.5.2.2 Fitting and Refinement
Related to energy modification strategies, the fitting and refinement technique capi-
talizes on the fact that strong energy datasets tend to have a smaller set of salient
features. So, if we construct case studies with some strong features, the correspond-
ing kime-phases will be more accurate, and the resulting inference/analytics will be
more powerful and highly reproducible.

Various classification, regression, supervised and unsupervised methods, and
other model-based techniques allow us to both fit a model (estimate coefficients
and structure) and apply the model for outcome predictions and forecasting. Such
models permit control over the characteristics of individual features and multivari-
ate interrelations that can be exploited to gather valuable kime-phase information.
Starting with a reasonable initial guess (kime-phase prior), the fitting and refinement
technique is an iterative process involving:
1) Reconstructing the data into spacetime using the current iteration kime-phase

estimates,
2) (Re)fitting or (re)estimating the spacekime analytical model,
3) Comparing the analytical results or evaluating the inference to expected out-

comes, and
4) Refining the kime-phase estimator aiming to gain better outcomes (#3).

Indeed, at each new iteration, alternative energy modification strategies (e.g., aver-
aging or flattening) can be applied before building a new model (#1 and #2).

This is a very active research area and for brevity and simplicity of the presenta-
tion, our examples in Chapter 6 show applications on several alternative kime-phase
estimators – phase-aggregators. These include constant phases, like the nil-phase
(assuming trivial phases, φo =0), swap-phases which use the observed phases
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from other analogous datasets, and random-phases, where we randomly sample
the phases from the synthetically generated Fourier-transformation (analyzed)
phase distribution.

3.6 Common Use of Time

In this section, we will describe some of the common roles of time, which we will
try to extend later to complex-time.

3.6.1 Rate of Change

The average rate of change around a value x= a is a generic difference quotient for a
function y= f xð Þ that represents the average rate of change at a for that function rel-
ative to the change of the argument:

Avg Rate Change að Þ= Δy
Δx

= f a+Δxð Þ− f að Þ
Δx

.

Instantaneous Rate Change að Þ= lim
Δx!0

Δy
Δx

� �
= lim

Δx!0

f a+Δxð Þ− f að Þ
Δx

= f ′ að Þ.

3.6.2 Velocity

The velocity is the rate of spatial position change over time,

ν= dx
dt

, x 2 R3 spatial position x = x, y, zð Þð Þ, t = time.

Motion is a change in position of an object over time. Suppose xo and x are the par-
ticle’s initial (xo = x 0ð Þ) and final (x = x tð Þ) positions, vo and v are the particle’s ini-
tial vo = dx

dt jt =0 and final v = dx
dt velocities, respectively, a= dv

dt is the particle’s
acceleration, and t is the time interval. Then, for a 3D particle moving linearly along
a straight line with a constant acceleration, the equations of motion are provided
below.
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3.6.3 Newton’s Equations of Motion

3.6.4 Position (x) and Momentum (p)

Position and momentum represent finite dimensional vector spaces. The n-dimensional
position space includes position vectors, spatial locations, or points, x 2 S≡Rn. When
the position vector of a point particle changes with time, its trace is a path (trajectory)
in S. Momentum space represents all possible momenta vectors p=mv in the system,

describing the particle’s momentum, measured in units of mass kgð Þ× length mð Þ
time sð Þ , correspond-

ing to its motion over time.

The mathematical duality between position and momentum is explained by the
Fourier transform. For an integrable function f xð Þ: S! C

n, its Fourier transform f̂ rep-
resents the wavefunction in momentum space, f̂ pð Þ. Conversely, the inverse trans-
form of a momentum space function is a position space function, f xð Þ. The position
(x) and momentum pð Þ are complementary (or conjugate) variables, connected by the
Heisenberg uncertainty principle, σx × σp ≥ h

4π, where σx and σp represent the stan-
dard deviations of the position and momentum, respectively, and h is the Planck con-
stant. A non-zero function and its Fourier transform cannot both be sharply localized
in both space and frequency. For example, compare trigonometric functions and
polynomial functions; the trigonometric functions are perfectly localized in the fre-
quency domain, but infinitely supported in the spatial domain. Their counterparts,
the polynomial functions, exhibit exactly the opposite property – they are perfectly

Newton’s Equations
of Motion

Derivation

ν = at + νo
x = xo + vot + 1

2 at
2

ν2 = 2a x − xoð Þ+ ν2o

������
The equations on the left are derived from the definition of velocity and
acceleration:
– Equ 1: As a= dν

dt , integrating both sides yields
Ð
adt =

Ð
dν. Since the

acceleration is constant in time, ν = a
Ð
dt = at + νo, where νo is a

constant representing the initial velocity.
– Equ 2: ν = dx

dt = at + νo (from equ 1), integrating both sides of the equation
we getÐ
dx =

Ð
atdt + νo

Ð
dt.

As a is constant, this yields:

x = a
Ð
d t2

2 + νot = a t2
2 + νot + C,

where the constant C = xo by setting t =0.
– Equ 3: a= dv

dt = dv
dx × dx

dt = dv
dx × ν = ν dv

dx. Again integrating over 0, t½ �, we getÐ t
0 adx =

Ð t
0 νdν and under the initial condition (vo = v 0ð Þ) this becomes

2a x − xoð Þ+ ν2o = ν2.
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localized in space (polynomial basis) and permit infinite series expansion using the
trigonometric basis in the frequency domain.

Thus, the physical state of the particle can either be described by a position
(wave) function of x or by the momentum function of p, but not by a function of
both variables. In the special 1D case, the spatial displacement is a function of time

(in seconds), f = f tð Þ, the velocity v= df
dt is measured in length mð Þ

time sð Þ
� �

, the displacement

vector is f =
Ð
vdt =

Ð df
dt dt, and the Fourier transform f̂ = f̂ ξð Þ is a function of the var-

iable ξ , frequency in Hertz, 1Hz = 1 ξ s− 1.

3.6.5 Wavefunctions

All wavefunctions (ψ orΨ: S! C) are integrals over the entire universe S=R3 ×R + or
S=R5 ffi R3 ×C, depending if they are defined over spacetime or spacekime. Quantum
theory implies that every particle in the universe exists probabilistically, i.e., simulta-
neously in all points (locations) in S. It may be extremely unlikely to find it in most loca-
tions as the probability could be extremely small, albeit rarely absolutely zero in a
mathematical sense. The wavefunction defines the state of the wave at each spatial posi-
tion and each time point.

The degree of freedom (DoF), i.e., the number of independent parameters that
define the wavefunction, ψ, and determine the state of the particle, corresponds to

a set of commuting observables, e.g., x, kð Þ=
�
x, y, z|ffl{zffl}
space

, r, φ|{z}
kime

�
. Once such a representa-

tion is chosen, the wavefunction can be derived from the quantum state.
For a given system, the choice of which commuting degrees of freedom to use is

not unique, and correspondingly the domain of the wavefunction cannot be uniquely
specified. For instance, it may be taken to be a function of all the position coordinates
of the particles over position space, or the momenta of all the particles over momen-
tum space; the two are related by a Fourier transform.

The inner product between two wavefunctions measures the overlap between
the corresponding physical states. The relation between state-transition probabili-
ties and inner product represents the probabilistic interpretation of quantum me-
chanics, the Born rule [131]. In essence, at a fixed time the squared modulus of a
wavefunction, ψk k2 = hψjψi, is a real number representing the likelihood (probabil-
ity density) of observing the particle at a specific place, either in space or in fre-
quency. Probability axioms dictate the normalization condition on the integral of
the wave magnitude over all the system’s degrees of freedom,

Ð
Ω ψk k2 = 1, e.g., in

4D, Ω � R3 ×R + .
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3.6.6 Schrödinger Equation

Self-adjoint “Hermitian” linear operators (A) on Hilbert spaces: A is self adjoint if its
conjugate transpose invariant (i.e., A* =A):

hA xjyi≡ hx jA*yi= hxjA yi, for all x, y 2 H.

The Schrödinger equation describes the evolution of wavefunctions over time [132].
Specifically, the Schrödinger equation explains the changes of a quantum mechani-
cal system over time, as a first-order PDE in time (t) and a second-order in space (x).
Its solution, the wave-function ψ, is a function of all the particle coordinates and
time, and delineates the time evolution of a quantum state. Thus, the solution de-
scribes the future wave amplitude (ψ tð Þ) from the present value (ψ toð Þ). In 3D, the
position-basis form of the Schrödinger equation for one particle is:

i�h
∂ψ x, tð Þ

∂t
= −

�h2

2m
∇2ψ x, tð Þ+V x, tð Þψ x, tð Þ

or

i�h
∂ψ
∂t

= −
�h2

2m
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
∇2 =Δ

0BB@
1CCAψ + V x, y, z, tð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

potential

ψ.

In this equation, h and �h= 1
2π h represent the Planck constant and the reduced Planck

constant, m is the particle’s mass, V x, tð Þ is the potential energy, and ∇2 is the Lap-
lacian, a second-order differential operator.

In 1D, the Schrödinger‘s equation for a time-varying wavefunction, ψ x, tð Þ, which
is not subject to external forces V x, tð Þ=0ð Þ, is given by:

i�h
∂ψ x, tð Þ

∂t
= − �h2

2m
∂2ψ x, tð Þ

∂x2
.

More generally,

i�h
∂ψ
∂t

= bHψ,

i�h
∂

∂t
jψ x, tð Þi= bH jψ x, tð Þi,

where bH = p̂.p̂
2m|{z}

kinetic

+ V x, tð Þ|fflfflffl{zfflfflffl}
potential

is the Hamiltonian operator characterizing the total en-

ergy of the system, and p̂= − i�h∇ is the momentum operator. Also note that the Schrö-
dinger equation is vector-based and has a valid representation in any complete basis
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of kets in a Hilbert state space. For instance, in the momentum-space basis, the
Schrödinger’s equation is:

i�h
∂f pð Þ
∂t

= p2

2m
f pð Þ+ V̂*f

� �
pð Þ,

where jpi represents the plane wave of momentum p, hpjψi≡ f pð Þ= Ð
R3 ψ xð Þe− ipxdx,

V̂ is the Fourier transform of V, and * denotes the convolution operator.

3.6.6.1 Derivation of Schrödinger Equation
Schrödinger’s equation cannot be exactly derived, as it was postulated using logical
arguments with its core principle supported by many experimental observations. The
rationale of the equations is related to the law of conservation of energy: E =K +P,
where K and P are the kinetic and potential energies. An intuitive explanation of the
equation may be obtained by linear algebra.

Let ψ tð Þ represent a wavefunction at time t. By the linearity of quantum me-
chanics, relative to time t, the wavefunction at time t′ must be ψ t′ð Þ=U t′, tð Þψ tð Þ,
where Û t′, tð Þ is a linear operator. By the law of preservation of energy, time-
evolution must preserve the energy (i.e., the norm) of the wavefunction. Thus,
the time-evolution operator Û t′, tð Þ must belong to the unitary group of operators
acting on wavefunctions:

ψ t′ð Þk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD
Û t′, tð Þψ tð Þ Û t′, tð Þψ tð Þ�� Er

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD

ψ Û*Ûψ
��� Er

= Û
�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ψ ψ
��� E= Û

�� �� ψ tð Þk k.
Dr

Note that if t′= t, we must have Û t, tð Þ= 1̂, and Û is a unitary operator. Since
the Lie algebra corresponding to the unitary group of operators is generated by
skew-Hermitian operators, if bH* = bH is Hermitian, then − ibH is skew-Hermitian,�
− ibH�* = ibH* = ibH. Hence, we can express it as an exponential map, Û tð Þ= e− i

�hbH tð Þ

for some Hermitian operator bH = bH* [133].
Thus, for small time increments near t, (Δt = t′− t), we can use the first-order

Taylor expansion of the linear operator at time t:

Û t′, tð Þ ffi Û t, tð Þ− i
�h
× bH × t′− tð Þ= 1̂−

i
�h
× bH × t′− tð Þ,

where bH is a self-adjoint Hermitian operator (whose expectation represents the Ham-
iltonian total energy of the system) [134].

Then,ψ t′ð Þ=U t′, tð Þψ tð Þ= 1− i
�h × bH × t′− tð Þ

���ψ tð Þ
D E

= ψ tð Þ− i
�h × t′− tð Þ× bHjψ tð Þ

D E
.

Rearranging the terms, the previous equation simplifies to i�h ψ t′ð Þ− ψ tð Þ
t′− t = bHjψ tð Þ

D E
.
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Letting t′! t (i.e., Δt! 0) yields the Schrödinger equation:

i�h
∂

∂t
ψ tð Þ= i�h lim

t′!t

ψ t′ð Þ− ψ tð Þ
t′− t

= bH ψ tð Þ.

3.6.7 Wave Equation

The 1D wave equation is a second-order PDE: ∂2f x, tð Þ
∂2x

= ∂2f x, tð Þ
∂2t

. There are infinitely

many solutions, e.g., cos 2π ξ x± tð Þð Þ, sin 2π ξ x± tð Þð Þ and the more general

Aei ξ × x−w× tð Þ. Thus, the main challenge in solving the wave equation is “solving the
fixed boundary conditions equation.” In other words, given some known functions
g xð Þ and h xð Þ, we need to find a solution, which satisfies specific boundary condi-
tions like:

f x,0ð Þ= g xð Þ, initial location
∂f x,0ð Þ

dt = h xð Þ, initial velocity .
�����

In these situations, rather than finding the solution f directly, it is often easier to
find the Fourier transform f̂ of the solution [135]. The second-order partial differen-
tial wave equation in f is mapped (by the Fourier transform) into an algebraic equa-
tion in f̂ : ξ 2 f̂ ξ , θð Þ= θ2 f̂ ξ , θð Þ. This spectral method approach effectively employs the
Fourier transform to map differentiation in x to multiplication by 2πiξ , and differenti-
ation with respect to t to multiplication by 2πiθ, where θ is the frequency.

3.6.8 Lorentz Transformation

Hyperbolic spatial frames rotation may be expressed via the Lorentz transformation
[136]. The Lorentz transformation illustrates the relationship between two reference
frames, x, tð Þ and x′, t′ð Þ 2 R4, in relative motion, whose x axis points in the direc-
tion of the relative velocity [137]. The transformation mixes space (x = x, y, zð Þ 2 R3)
and time (t 2 R +) the same way a planar Euclidean rotation around the z axis
blends the x and y coordinates in R 2. In the Lorentz transformation, the speed of
light c= 299, 792, 458 m=s represents a measuring-unit conversion factor that enables
blended arithmetic of space and time variables. That is, since length in space is mea-
sured in meters (m) and length in time is measured in seconds (s), the speed of light
converts between length in space and length in time. Denote v= v tð Þ to be the veloc-
ity between the two frames and the Lorenz factor γ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1− v2=c2
p , where v=c is the rela-

tive velocity of the two reference frames normalized to the speed of light. Then, the
Lorentz transformation is defined by:
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x′= γ x− v× tð Þ
y′= y

z′= z

t′= γ t − v× xð Þ=c2ð Þ

.

����������
The Lorenz transformation suggests that the (local) time in the moving reference
frame x′, t′ð Þ runs slower compared with the time in the stationary reference frame
x, tð Þ. This time-dilation phenomenon can be quantified by substituting Δx′=0 and
determining the relation between x, tð Þ frame time change, Δt, and the correspond-
ing x′, t′ð Þ frame time change, Δt′, according to the Lorentz transformation. If Δt is
the measure of time between the events A and B in the stationary reference frame
x, tð Þ, v is the speed of the moving frame x′, t′ð Þ relative to x, tð Þ, and c is the speed of

light, then, Δt
Δt′ = γ, i.e.,

Δt = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2=c2

p !
Δt′.

The Lorentz transformation expands and generalizes the Newtonian science Gali-
lean transformation, which effectively assumes an infinite speed of light (c=∞),
i.e., Δt =Δt′ [138].

3.6.9 Euler–Lagrange Equation

Newton’s second law of motion may be symbolically expressed as F =ma, where F
is the force, m is the mass, and a is the acceleration. In the simplest example of
modeling the motion of a mass attached to the end of a spring where f tð Þ is the posi-
tion of the mass at time t, the kinetic energy (due to the motion of the mass),

K = m f ′ tð Þð Þ2
2 , and the potential (stored) energy, P= kf2 tð Þ

2 , where k is the spring con-

stant accounts for the spring stiffness. The law of total energy preservation suggests

that T =K + P= const, i.e., d
dt K +Pð Þ=0. The Lagrangian is the difference of the ki-

netic and potential energies, L=K − P= m f ′ tð Þð Þ2
2 − kf 2 tð Þ

2 . This leads to the simplest

(spring) form of the second-order Euler–Lagrange differential equation:

d
dt

∂

∂f ′
L|ffl{zffl}

mf ′ tð Þ

0BB@
1CCA

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mf ′′ tð Þ

= ∂

∂f
L|{z}

− kf tð Þ

.
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The more general Euler–Lagrange (EL) equation [139, 140] represents a second-order
PDE with solutions that are the functions (f 2 C1) optimizing (minimizing or maximiz-
ing) a differentiable operator (L). As differentiable operators are stationary at their
local extrema (maxima or minima), the EL equation provides a mechanism for solving
optimization problems in which the operator (L) is known and we are looking for
smooth functions (f ) that minimize or maximize L. This directly parallels the funda-
mental theorem of calculus, which guarantees that points xð Þ where differentiable
functions fð Þ attain a local extremum correspond to trivial derivatives (f ′ xð Þ=0).

Let f :Ω � R 1 ! R 1 be a real-valued and differentiable function, and its derivative
is f ′ tð Þ. Then f is a stationary point of (optimizing) an operator called action functional
S fð Þ= ÐΩ L t, f tð Þ, f ′ tð Þð Þ dt, provided that f is a solution to the EL equation:

L2 t, f tð Þ, f ′ tð Þð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
∂
∂fL t, f tð Þ, f ′ tð Þð Þ

−
d
dt

L3 t, f tð Þ, f ′ tð Þð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
∂

∂
df
dt

� �L t, f tð Þ, f ′ tð Þð Þ

=0,

where L2 = ∂
∂y L t, y, zð Þ and L3 = ∂

∂z L t, y, zð Þ represent the second- and third-
parameter partial derivatives of L t, f tð Þ, f ′ tð Þð Þ.

This real-valued function formulation of the EL equations may be generalized to
multivariate functions f :Ω � Rn ! R 1, which represent high-dimensional surfaces.
Then, f solves the EL-equations below when it is a stationary (optimizing) point of
this operator:

S fð Þ=
ð
Ω

L x1, x2, . . . , xn; f xð Þ; ∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

� �
dx:

∂L
∂f

−
Xn
i= 1

∂

∂xi

∂L
∂zi

� �
=0,

where x = x1, x2, . . . , xnð Þ, zk = ∂f
∂xk

, and ∂L
∂zi

= ∂
∂zi

L x1, x2, . . . , xn; f xð Þ; z1, z2, . . . , znð Þð Þ.
The EL optimization strategy may be further generalized to more complex functions
f :Ω � Rn ! Rm.

3.6.10 Wheeler-DeWitt Equation

Wheeler-DeWitt equation [141] is a functional differential equation providing a unify-
ing framework for relativity and quantum mechanics. It includes no time reference,
suggesting time may not be a universal intrinsic characteristic. The Wheeler-DeWitt
equation only depends on the particle‘s position and a universal wavefunctional:

bH xð Þjψi=0,
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where jψi is a wavefunctional and bH xð Þ is the Hamiltonian constraint. There is a
difference in this notation relative to the Schrödinger equation, presented earlier. The
Wheeler‐DeWitt equation expresses timelessness, where jψi is not a spatial complex-
valued wavefunction defined on a 3D space, but a functional of field configurations
on the entire spacetime, which contains all of the information about the geometry
and matter content of the universe. While the Hamiltonian bH is still an operator act-
ing on the Hilbert space of wavefunctions, it is not the same Hilbert space as in the
Schrödinger’s equation, and the Hamiltonian no longer determines the evolution of
the system.

The potential function in the Wheeler-DeWitt equation, i.e., the wavefunction
that solves this functional differential equation, doesn’t evolve in time! In Einstein’s
special theory of relativity, spacetime is one 4D whole with no “universal time”.
This reflects that something that is happening to one observer now that can be si-
multaneously observed by all others.

The connection between spacekime and the Wheeler-DeWitt equation is linked
to the quantum gravity interpretation of this timeless equation, which suggests that
the wavefunction of the entire universe doesn’t change. As illustrated by DeWitt
[142], the strong operational foundation of quantum theory and general relativity
represents an “extraordinarily economical” theoretical framework that offers very
specific answers to exact questions and nothing more. For instance, quantum physics
will not provide answers about time, unless a specific clock tracking longitudinal pro-
gression mechanism is provided, nor will it answer geometric questions about the
universe unless a specific device (e.g., a material object, gravitational waves, or some
other form of radiation) is specified to inform when and where the geometry is to be
measured. Considering the kime-phase as an independent quantum variable leads to
a non-local property of quantum physics, where a single particle can occupy two sep-
arate spatial locations at the same time and the de Broglie wavelength is directly
linked to the existence of a second time dimension [64, 143].

3.7 Analogous Kime Extensions

Next, we will generalize to complex time some of the common principles, time-
varying equations, and physical concepts that we discussed above.

3.7.1 Rate of Change

The domain of the kime variable (k) is the complex plane parameterized by pairs of
Descartes Cartesian coordinates, conjugate-pairs coordinates, or polar coordinates:
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C ≡R 2 = z = x, yð Þ x, y 2 Rj g≡ z,�zð Þ z 2 C , z = x+ iy, �z = x− iy, x, y 2 Rj gff
≡ f k= r eiφ = r cos φ + i sin φð Þ j r ≥0, − π ≤ φ < πg.

The Wirtinger derivative of a continuously differentiable function (f ) of kime (k),
f kð Þ, and its conjugate are defined as first-order linear partial differential operators:
– In Cartesian coordinates:

f ′ zð Þ= ∂f zð Þ
∂z = 1

2
∂f
∂x − i ∂f

∂y

� �
and f ′ �zð Þ= ∂f �zð Þ

∂�z = 1
2

∂f
∂x + i ∂f

∂y

� �
.

– In conjugate-pair basis: df = ∂f + �∂f = ∂f
∂z dz +

∂f
∂�z d�z.

– In polar kime coordinates:

f ′ kð Þ= ∂f kð Þ
∂k

= 1
2

cos φ
∂f
∂r

−
1
r
sin φ

∂f
∂φ

− i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� �� �

= e− iφ

2
∂f
∂r

−
i
r

∂f
∂φ

� �
and

f ′ �k
� �

= ∂f �k
� �
∂�k

= 1
2

cos φ
∂f
∂r

−
1
r
sin φ

∂f
∂φ

+ i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� �� �

= eiφ

2
∂f
∂r

+ i
r

∂f
∂φ

� �
.

Notes:
– The derivatives in terms of the polar coordinates are obtained by transforming

the Cartesian complex variable z = x, yð Þ into the complex-time (kime) variable
k = r, φð Þ using polar transformations:

x= r cosφ
y= r sinφ

, r =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
φ = arctan y

x

� �
= arctan y, xð Þ ,

∂
∂x = cosφ ∂

∂r −
1
r sinφ ∂

∂φ

∂
∂y = sinφ ∂

∂r + 1
r cosφ ∂

∂φ

, see 143½ �.
�����

�����
�����

– Using the chain-rule of differentiation, we can derive the Cartesian coordinate
derivatives by transforming the conjugate-pairs basis

x, yð Þ ! 1
2
z +�zð Þ, 1

2i
z −�zð Þ

� �
,

∂

∂z
= ∂

∂x
∂x
∂z

+ ∂

∂y
∂y
∂z

.
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Therefore,
∂x
∂z

= 1
2
∂ z +�zð Þ

∂z
= 1
2
and

∂y
∂z

= 1
2i
∂ z −�zð Þ

∂z
= 1
2i

= −
i
2
.

Similarly,

∂x
∂�z

= 1
2
∂ z +�zð Þ

∂�z
= 1
2
and

∂y
∂�z

= 1
2i
∂ z −�zð Þ

∂�z
= −

1
2i

= i
2
.

This explains the Cartesian coordinate derivatives:

f ′ zð Þ= ∂f zð Þ
∂z

= 1
2

∂f
∂x

− i
∂f
∂y

� �
and f ′ �zð Þ= ∂f �zð Þ

∂�z
= 1
2

∂f
∂x

+ i
∂f
∂y

� �
.

Below, we present the core principles ofWirtinger differentiation and integration:
– Complex conjugation (�z 2 C) for z = x+ iyð Þ 2 C is defined by �z = x− iy, so that

the square norm of z is: z�z = x+ iyð Þ x− iyð Þ= x2 + y2 − ixy+ ixy= x2 + y2 = zk k2. Solv-
ing for x and y, in terms of z and �z we get:

x= 1
2 z +�zð Þ

y= 1
2i z −�zð Þ .

�����
– We can effectively change the variables: x, yð Þ ! z,�zð Þ. Thus, all complex func-

tions f :C ! C can be thought of as f = f x, yð Þ or as f = f z,�zð Þ.
– Wirtinger differentiation: The Wirtinger derivative of f , dfz is an R-linear operator

on the tangent space TzC ffi C, i.e., dfz is a differential 1-form on C. However, any
such R -linear operator (A) on C can be uniquely decomposed as A=B+C, where
B is its complex-linear part (i.e., B izð Þ= iBz), and C is its complex-antilinear part
(i.e., C izð Þ= − iCz). The reverse (composition) mapping is Bz = 1

2 Az − iA izð Þð Þ and
Cz = 1

2 Az + iA izð Þð Þ.
– For the Wirtinger derivative, this duality of the decomposition of R -linear opera-

tors characterizes the conjugate partial differential operators ∂ and �∂. That is, for
all differentiable complex functions f :C ! C, the derivative can be uniquely de-
composed as dfz = ∂f + �∂f , where ∂ is its complex-linear part (∂iz = i∂z), and �∂ is
its complex-antilinear part (�∂iz = − i�∂z).

– Applying the operators ∂
∂z and

∂
∂z to the identify function (z! z = x+ iy) and its

complex-conjugate (z! �z = x− iy) yields the natural derivatives: dz =dx+ idy
and d�z = dx− idy. For each point in C, dz, d�zf g represents a conjugate-pair basis
for the C cotangent space, with a dual basis of the partial differential operators:

∂

∂z
, ∂

∂�z

� �
.

– Thus, for any smooth complex functions f :C ! C,
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df = ∂f + �∂f = ∂f
∂z

dz + ∂f
∂�z

d�z.

– Wirtinger calculus: The path-integral is the simplest way to integrate a complex
function f :C ! C on a specific path connecting za 2 C to zb 2 C. Generalizing
Riemann sums:

lim
zi+ 1 − zij j!0

Xn− 1

i= 1

f zið Þ zi+ 1 − zið Þð Þ ffi
þzb
za

f zið Þdz.

This assumes the path is a polygonal arc joining za to zb, via z1 = za, z2, z3, . . . , zn = zb,
and we integrate the piecewise constant function f zið Þ on the arc joining zi ! zi+ 1.
Clearly the path za ! zb needs to be defined and the limit of the generalized Riemann
sums, as n!∞, will yield a complex number representing the Wirtinger integral of the
function over the path. Similarly, we can extend the classical area integrals, indefinite
integral, and Laplacian:
– Definite area integral: for Ω � C,

Ð
Ω f zð Þdzd�z.

– Indefinite integral:
Ð
f zð Þdzd�z, df = ∂f

∂z dz +
∂f
∂�z d�z,

– The Laplacian in terms of conjugate pair coordinates is ∇2f ≡Δf = 4 ∂
dz

∂f
d�z =

4 ∂
d�z

∂f
dz .

More details about Wirtinger calculus of differentiation and integration are provided
later.

3.7.2 Kime Motion Equations

Prior work by Wesson, Ponce De Leon, Overduin, and others described the equations
of motion in 5D space-time-matter, which is an unrestricted 5D manifold theory that
uses the extra (induced matter) dimension to geometrically explain the origin of 4D
spacetime [63, 70, 100, 145]. The kime equations of motion describe the behavior of a
physical system in terms of its motion as a function of kime. In this section, we will
start by defining the kime velocity and acceleration, the Newtonian equations of
motion, the most general spacekime motion equations, and connect the Lagrang-
ian and Eulerian frames of reference. In Chapter 5, Section 5.4, we will consider
the 5D Space-Time-Matter theory, which extends Einstein’s theory of General Rela-
tivity to five dimensions. As part of their 5D space-time-energy Riemannian space
formulation (Deformed Relativity in Five Dimensions, DR5), Cardone and Mignani
also defined the geodesic equation of motion in a general Kaluza-Klein model [146].
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3.7.2.1 K-velocities
In the case of a two-dimensional kime, the velocities of a particle according to different
kime dimensions cannot be defined as a set of partial derivatives of the independent
variables k1, k2. Indeed, the movement of a point-like particle in the general case can
be presented as a one-dimensional (time-like) world line in the 3+ 2ð Þ-dimensional
spacekime. Let us set x= x k1, k2ð Þ, where x= x1, x2, x3ð Þ, define the spatial position of
the particle (x1 = x, x2 = y, x3 = z) and, accordingly, dx = ∂x

∂k1
dk1 + ∂x

∂k2
dk2. Then, using the

special indexing η = 1, 2, 3, we have xη = xη k1, k2ð Þ and dxη = ∂xη
∂k1

dk1 + ∂xη
∂k2

dk2.
In the general case, each one of the spatial coordinate functions xη = xη k1, k2ð Þ

must be represented by a two-dimensional surface in the 3+ 2ð Þ-dimensional space-
kime xη, k1, k2, i.e., it will not present a simple one-dimensional world line. Therefore,
the functions xη = xη k1, k2ð Þ could not describe the movement of a point-like particle
in the spacekime, but rather a radial wave ripple through the 2D kime manifold. Each
one-dimensional world line in the 3+ 2ð Þ-dimensional spacekime xη, k1, k2 is de-
scribed as a path on the kime-surface via a system of 6 implicit equations:

F1η xη, k1, k2
� �

=0

F2η xη, k1, k2
� �

=0
.

Uniform and rectilinear movement of the particle through a straight world line can be
described by the implicit linear functions F1η, F2η. From here, we can derive the ex-
plicit equalities: xη = f1ηðk1Þ= f2η k2ð Þ, where f1η, f2η are different explicit (linear) func-
tions of the variables k1, k2 accordingly. Thus, we have:

dxη = f ′1ηðk1Þdk1

dxη = f ′2ηðk2Þdk2.

When the particle moves along a straight world line, the derivatives f1η′ and f2η′ are
constants defining the velocities of the particle in relation to k1 and k2, respectively.

Note that the vector representation of time-velocity in spacetime is extended
in spacekime to a second-order tensor representing the Jacobian matrix of the po-
sition-change (dx) relative to kime-change (dk), i.e., ν = νu, j

� �
= dx kð Þ

dk , u 2 x, y, zf g
and j 2 1, 2f g. We can express the directional velocities in terms of u 2 x, y, zf g
and j 2 1, 2f g:

x–velocities: vx, 1 =
dx
dk1

; vx, 2 =
dx
dk2
) dx= vx, 1dk1 = vx, 2dk2;

y-velocities: vy, 1 =
dy
dk1

; vy, 2 =
dy
dk2
) dy= vy, 1dk1 = vy, 2dk2;
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z-velocities: vz, 1 =
dz
dk1

; vz, 2 =
dz
dk2
) dz = vz, 1dk1 = vz, 2dk2.

In a flat Euclidean kime manifold, the square of the kime change can be expressed
in Cartesian coordinates as a sum of squares of the individual (directional) kime
changes:

dkð Þ2 = dk1ð Þ2 + dk2ð Þ2.

By definition, the total kime-velocity is

vk =
dx
dk

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 +dy2 +dz2

p
dk|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

magnitude

e|{z}
unit vector of spatial

direction change

and the directional kime-velocities with respect to k1 and k2 can be expressed as

v1 =
dx
dk1

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2 +dz2

p
dk1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

magnitude

e|{z}
unit vector of spatial

direction change

,

v2 =
dx
dk2

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 +dy2 +dz2

p
dk2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

magnitude

e|{z}
unit vector of spatial

direction change

.

Thus, we can connect the total kime velocity, vk = vkk k, with the corresponding
kime velocities:

1
v2k

= dkð Þ2
dx2 +dy2 +dz2

= dk1ð Þ2 + dk2ð Þ2
dx2 + dy2 +dz2

= dk1ð Þ2
dx2 +dy2 + dz2

+ dk2ð Þ2
dx2 +dy2 +dz2

= 1
v21

+ 1
v22
.

Therefore, 1
v2
k
= 1

v21
+ 1

v22
, where v1 = v1k k and v2 = v2k k.

However, we can also express the relation between the standard time-velocity
and the kime-velocity in polar coordinates. Let’s consider a kime point k. As complex-
time (kime) is two-dimensional (2D), then the quantity k can be presented in vector
form: k= k1, k2ð Þ. In polar coordinates, k1 = t cos φ and k2 = t sin φ, where the kime-
magnitude t measures time and φ represents the phase direction of kime. Inverting
these relations, we have:
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t =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 + k22

p
, and φ = atan2 k2, k1ð Þ=

arctan k2
k1

� �
, if k1 > 0,

arctan k2
k1

� �
+ π, if k1 <0∩ k2 ≥0

arctan k2
k1

� �
− π, if k1 <0∩ k2 <0

π
2
, if k1 =0∩ k2 >0

−
π
2
, if k1 =0∩ k2 <0

undefined, if k1 =0∩ k2 =0

=

2 arctan k2
k1 +

ffiffiffiffiffiffiffiffiffiffi
k21 + k

2
2

p !
, if k1 > 0,

2 arctan

ffiffiffiffiffiffiffiffiffiffi
k21 + k22

p
− k1

k2

� �
, if k1 ≤0∩ k2≠0

− π, if k1 <0∩ k2 =0

undefined, if k1 =0∩ k2 =0

.

8>>>>>>>>><>>>>>>>>>:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
Therefore, k = k t, φð Þ, i.e., k is a function of both independent variables t, φ. (In com-
plex form: k = k t, φð Þ= teiφ.) Actually, t =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 + k22

p
is a scalar value and represents

the length of the vector k, i.e. t = kj j. It is clear that t is the radius of the circle de-
scribed with the equation k1ð Þ2 + k2ð Þ2 = t2. The point k = k1, k2ð Þ also lies on this cir-
cle. Therefore, k is only one of all possible points that lie on the circle centered at
the origin of the coordinate system and a radius equal to t, Figure 3.9.

It may be worth clarifying that the atan2ðÞ function calculates the arctangent over
the entire plane (in all four quadrants), whereas arctanðÞ only computes in the first
and fourth quadrants. For instance, when tan φð Þ is positive, we cannot distinguish
between the first and third quadrant, i.e., if 0≤ φ ≤ π

2 or − π ≤ φ ≤ − π
2. Conversely,

when tan φð Þ is negative, the phase could be in either of the complementary, second
or fourth, quadrants. The definition of arctanðÞ yields a phase in the first or fourth
quadrant, − π

2 ≤ φ ≤ π
2. Whereas atan2ðÞ retrieves the full phase information, by sep-

arately utilizing the values of the sine and cosine functions, instead of their fraction
sin φ
cos φ

� �
, to resolve all four quadrants by adding (or subtracting) π to the result of

arctanðÞ when the cosine denominator is negative.
The directional kime changes can be expressed as:

dk1 = dðt cos φÞ= cos φdt + t d cos φ = cos φdt − t sin φdφ,

dk2 =dðt sin φÞ= sin φdt + t d sin φ = sin φdt + t cos φdφ.

Figure 3.9: The relation between time (t) and kime (k).
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Substituting these in the formulas above we obtain the polar expressions for the di-
rectional kime derivatives v1 and v2:

v1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 +dy2 +dz2

p
dk1

e=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 +dy2 +dz2

p
cos φdt − t sin φdφ

e,

v2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2 +dz2

p
dk2

e=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2 +dz2

p
sin φdt + t cos φdφ

e.

Therefore, the kime metric tensor in polar coordinates is:

dkð Þ2 = dk1ð Þ2 + dk2ð Þ2 =

= cos φ dt − t sin φ dφð Þ2 + sin φ dt + t cos φ dφð Þ2 = dtð Þ2 + t2 dφð Þ2.

In general, dk ≠ dt. Only if dφ =0, then φ = const and dk =dt.
We can explore the relation between the (spacekime) kime-velocities ν1 = dx

dκ1
and

�
ν2 = dx

dκ2

�
and the classical (spacetime) time-velocity v= vt =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2 + dz2
p

dt

� �
. Let’s

start by considering the path-based kime-velocity defined on a curve in the kime mani-
fold. In other words, suppose we have a parametric description of a path (curve, world
line) in 2D where the kime order (magnitude) t = t sð Þ: 0,∞½ Þ ! R + and the kime-phase
φ = φ sð Þ: 0,∞½ Þ ! − π, π½ Þ. The kime-velocity along the parametric curve is defined in

terms of the change of radial distance t′= dt
ds

� �
and the change of phase φ′= dφ

ds

� �
with respect to the path parameter, s, which may correspond to the length of the
curve up to the current location. Then, the square reciprocal of the classical time-
velocity is

1
v2

= 1
v2t

= dtð Þ2
dx2 +dy2 + dz2

.

On the other hand, the sum of the square reciprocals of the k1 and k2 directional kime-
velocities is:

1
v2k

= 1
v21

+ 1
v22

= cos φ dt − t sin φ dφð Þ2
dx2 +dy2 + dz2

+ sin φ dt + t cos φ dφð Þ2
dx2 + dy2 +dz2

= dtð Þ2 + t2 dφð Þ2
dx2 + dy2 +dz2

.

Therefore,

1
v2k

= 1
v21

+ 1
v22

= dtð Þ2
dx2 +dy2 +dz2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

v2tð Þ− 1

+ t2
dφð Þ2

dx2 +dy2 + dz2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}�
v2φ

�− 1

= 1
v2t

+ t2
1
v2φ

.
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This relation provides a mechanism to solve for either the classical time-velocity
(v= vt), or the kime-velocities in either Cartesian (vk, v1 = vκ1 and v2 = vκ2 ) or polar co-
ordinates (vt and vφ). For instance, the time-velocity may be expressed as:

1
v2t

= 1
v21

+ 1
v22

− t2
1
v2φ

= 1
v2k

− t2
1
v2φ

.

We can also express the general kime-velocity in polar coordinates k = t, φð Þð Þ using
the Wirtinger derivative of the position with respect to kime:

ν kð Þ= ∂x
∂k

= 1
2

cos φ
∂x
∂t

−
1
t
sin φ

∂x
∂φ

− i sin φ
∂x
∂t

+ 1
t
cos φ

∂x
∂φ

� �� �
.

3.7.2.2 Newton’s Equations of Motion in Kime

In a simple Euclidean spacekime manifold with a diagonal metric tensor, the kime-
motion is a change in position of an object over kime. Suppose xo and x are the par-
ticle’s initial (xo = x k =0ð Þ) and final (x = f 1 k1ð Þ= f 2 k2ð Þ) positions, νo1, νo2 and ν1, ν2
are the particle’s initial νo1 = df 1

dk1
jk1 =0, νo2 =

df 2
dk2
jk2 =0 and final ν1 = df 1

dk1
, v2 = df 2

dk2
veloci-

ties, a1 = dv1
dk1

, a2 = dv2
dk2

are the particle’s accelerations, and kime is represented as

Newton’s Equations
of Motion

Derivation

ν1 = a1k1 + vo1
v2 = a2k2 + vo2
x = xo1 + vo1k1 + 1

2 a1k
2
1 =

= xo2 + vo2k2 + 1
2 a2k

2
2 ,

2a1ðx − xo1Þ+ v2o1 = v21 ,
2a2ðx − xo2Þ+ v2o2 = v22 ,

�������������

The equations on the left can again be derived from the definitions of
velocity and acceleration:
– Equ 1: As a1 = dv1

dk1
and a2 = dv2

dk2
, integrating both sides yieldsÐ

a1 dk1 =
Ð
dν1 and

Ð
a2 dk2 =

Ð
dν2. Since the acceleration is

constant in kime, ν1 = a1
Ð
dk1 = a1k1 + νo1 and

ν2 = a2
Ð
dk2 = a2k2 + νo2, where νo1 and νo2 are constants

representing the initial k-velocities, defined in relation to the kime
dimensions k1 and k2, respectively.

– Equ 2: ν1 = df 1
dk1

= a1k1 + νo1 and ν2 = df2
dk2

= a2k2 + νo2 (from equ 1),
integrating we getÐ
df 1 =

Ð
a1k1dk1 + νo1

Ð
dk1 and

Ð
df 2 =

Ð
a2k2dk2 + νo2

Ð
dk2. As a1

and a2 are constants, we have
x = a1

Ð
d k1

2

2 + νo1k1 = a1
k1

2

2 + νo1k1 +C1 and we can compute the
constant C1 = xo1 by setting k1 =0. Analogously, we will have

x = a2
Ð
d k2

2

2 + νo2k2 = a2
k2

2

2 + νo2k2 +C2, and we estimate the

constant C2 = xo2 by setting k2 =0.
– Equ 3: a1 = dv1

dk1
= dv1

dx
dx
dk1

= dv1
dx ν1 = ν1 dv1dx . Again integrating, we getÐ

a1dx =
Ð
ν1dν1 and under the initial condition (vo1 = v1 0ð Þ) this

becomes 2a1 x − xo1ð Þ+ ν2o1 = ν21 .
Equ 4: Analogously, we will have 2a2 x − xo2ð Þ+ v2o2 = v22.
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k = k1, k2ð Þ|fflfflffl{zfflfflffl}
Cartesian

or k = reiφ|{z}
Polar

. Below, we introduce the kime-motion equations for a 3D parti-

cle moving linearly, along a straight line, with a constant kime acceleration.
Later, in Chapter 5, Section 5.4 (Uncertainty in 5D Spacekime), we will also for-

mulate the Lagrangian framework of the spacekime equations of motion, which de-
scribe particle trajectories as functions of kime (k) and a kime-independent vector
field (e.g., 4D spacetime momenta) relative to some initial kime (ko).

In the Eulerian framework, the 4-velocity field is represented as a function of
the position x and time t, ν= ∂x tð Þ

∂t = ν x, tð Þ. The Lagrangian framework represents the
particle motion by some (time-independent) vector field xo at some initial time to,
accounting for the possible changes of the trajectory curve over time and parameter-
izing the 4-velocity field. That is, F xo, tð Þ expresses the position of the particle la-
beled xo at time t.

Both the Eulerian and the Lagrangian representations describe the velocity of
the particle labeled xo at time t and are related by the Lagrange derivative:

ν F xo, tð Þ, tð Þ= ∂F
∂t

xo, tð Þ.

The pair of reference coordinate frames, xo and x, are also called the Lagrangian and
the Eulerian coordinates of the flow motion. The total rate of change of the function F
with respect to time may be computed by:

dF
dt|{z}

total rate
of change

= ∂F
∂t|{z}

local rate
of change

+ ν ·∇ð ÞF|fflfflfflffl{zfflfflfflffl}
convective

rate of change

,

where ∇ is the gradient with respect to x, and the inner-product ν ·∇ð Þ represents an
operator applied to each component of F. The left-hand side represents the total
rate of change of F as the particle moves through a flow field described by its Euler-
ian specification ν x, tð Þ. The right-hand side represents the sum of the local (time)
and the convective rates of change of F:

ν ·∇ð ÞF = ν1
∂F
∂x1

+ ν2
∂F
∂x2

+ ν3
∂F
∂x3

.

This specific decomposition of the total rate of change follows from differentiating
the composite function F x xo, tð Þ, tð Þ with respect to time (t), which requires the use
of the chain rule.

In their most general form and using Einstein summation indexing, the high-
dimensional equations of motion of a particle are described in terms of the position
x, (n+ 2)-velocity u, and F is the acceleration subject to some non-gravitational
force [147–149]:
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FB = uA∇AuB

κ = gABuαuβ = u · u= hujui
uA = _xA

.

�������
The (n+ 2)-dimensional manifold M, gABð Þ has a coordinate system x≡ xA

� 	
and ten-

sor metric gAB, with uppercase Latin indices 0≤A≤ n. The velocity and the accelera-
tion are orthogonal, u ·F = ujFh i=0, ∇A is the covariant derivative on M defined
with respect to the metric tensor gAB. For a scalar function l= l xð Þ, the normal vector
to the manifold foliation Σl (see Chapter 5) is given by nA = ϵ Φ∂Al, where ϵ = + 1
when the fifth dimension is time-like (like in spacekime) or ϵ = − 1, when it’s space-
like, and the lapse function Φ is a scalar normalizing nA, Φ2 ∂lð Þ2 = hnjni= ϵ = + 1 (in
spacekime). The symmetric projection metric tensor hAB = gAB − ϵ nAnB is orthogonal
to nA. Define the n-D coordinate system on the hypersurfaces Σl be y≡ yαf g, with
lowercase Greek indices 0≤ α ≤ n− 1. Then the n-holonomic basis vectors will be or-
thogonal to nA and tangent to the hypersurfaces Σl:

eAα = ∂xA

∂yα , n · eα = hnjeαi=0.

Note that eAα allows us to project objects inM onto the hypersurfaces Σl, e.g., a 1-form
T can be represented as Tα = eAαTA = eαjTh i, where Tα is the projection of TA onto Σl.
This induces a metric tensor (hαβ) and its inverse (hαγhγβ = δα

β) on Σl:

hαβ = eAα eBβ gAB = eAα eBβ hAB.

These equations can be expanded to the following system of PDEs:

αβ uð Þ= − ϵ un Kαβuα + eβ
Bn

A∇AuB
� �

+Fβ

_un =Kαβuαuβ + ϵ unnAuB∇AnB +Fn

κ = hαβuαuβ + ϵ u2n

.

���������
This system of equations depends on: the acceleration, αβ uð Þ= uα∇αuβ; the tensor
gAB = hαβeα

Ae
β
B + ϵ nAnB; the index κ = gABuαuβ = + 1, 0, − 1 corresponding to spacelike,

lightlike, and timelike intervals; the velocity _un = dun
dλ = uA∇Aun; the acceleration field

projections Fn =F · n; the curvature Kαβ = 1
2Φ ∂l −LNð Þhαβ; the Lie derivative in the di-

rection of the shift vector, LN; and the acceleration per unit mass, Fβ.

3.7.2.3 Wave Equation in Spacekime
The wave equation models the vibrations of strings (1D), thin plate membranes
(2D), pressure or density in gasses, liquids or solids (3D), and so forth for higher
dimensions [150]. In its most general form, the extension of the wave equation in
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higher dimensions is a natural generalization of its spacetime analogue and still
represents a second-order linear PDE:

Δxu x,κð Þ|fflfflfflfflffl{zfflfflfflfflffl}
spatial Laplacian

= Δκu x, κð Þ|fflfflfflfflffl{zfflfflfflfflffl}
temporal Laplacian

,

Δxu=
Xds
i= 1

∂2xi
u; Δκu=

Xdt
i= 1

∂2κi
u ,

where x = x1, x2, . . . , xds
� � 2 Rds and κ= κ1, κ2, . . . , κdt

� � 2 Rdt are the Cartesian coor-
dinates in the ds space and dt time dimensions. Of course, there may also be differ-
ent weights, αif gdsi= 1 ≥0 and fβjgdtj= 1 ≥0, that can be introduced with each space or
time dimension:

Xds
i= 1

αi∂
2
xi
u|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Δα
xu x,κð Þ

=
Xdt
j= 1

βj∂
2
κj
u|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Δβ
κu x,κð Þ

.

Under the metric signature + , + , + , − , −ð Þ, the special case involving the smallest
flat 5D spacekime manifold has ds = 3 spacelike (spatial) and dt = 2 timelike (tempo-
ral) variables, x = x1, x2, x3ð Þ 2 R3 and κ= κ1, κ2ð Þ 2 C ffi R 2, respectively.

Next, we will derive solutions to the wave equation in spacekime, or in higher
dimensions, and explore their local and global existence, validity, and stability.
Let’s start with a simpler problem of functions defined with periodic boundary con-
ditions. The ds-dimensional spatial cube is

x = x1, x2, . . . , xds
� � 2 Ds ≡ −

1
2
, 1
2

� �
× −

1
2
, 1
2

� �
× . . . × −

1
2
, 1
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ds

≡ −
1
2
, 1
2

� �ds

 Rds

and dt-dimensional temporal hypercube is

t = κ1, κ2, . . . , κdt

� � 2 Dt ≡ −
1
2
, 1
2

� �
× −

1
2
, 1
2

� �
× . . . × −

1
2
, 1
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dt

≡ −
1
2
, 1
2

� �dt

 Rdt .

Depending on the exact normalization of the Fourier transform, a number of alterna-
tive configurations of the cubic domains are possible, e.g., − 1, 1½ �d or − π, π½ �d. Func-
tions defined on such finite domains should be periodic, where the corresponding
(spatial or temporal) frequencies are integer multiples of 2π, π, 1, etc.

Let η= ðη1, η2, . . . , ηdt
Þ′ and ξ = ðξ 1, ξ 2, . . . , ξ dsÞ′ represent respectively the wave-

numbers; frequencies vectors of integers corresponding to the temporal and spatial
frequencies of the Fourier-transformed periodic solution of the wave equation. In
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general, when dealing with non-periodic functions, the spatial and temporal frequen-
cies are real numbers, but for our periodic boundary condition case, the frequencies
are integers. Assuming that the solution is twice differentiable, i.e., u 2 C2 Dt ×Dsð Þ
� L2, we will use the Fourier transform, F : L2 ! L2:

U η, ξð Þ=F uð Þ η, ξð Þ=
ð

Ds , Dt

u x,κð Þ× e− 2πihη, κi × e− 2πihξ , xidxdκ,

u x,κð Þ=F − 1 Uð Þ x,κð Þ=
ð

Dη , Dξ

U η, ξð Þ× e2πihη, κi × e2πihξ , xidηdξ .

In general, there is no direct algebraic relation between an arbitrary function
f = f yð Þ and its Laplacian Δf = Pd

i= 1 ∂
2
yi
f . However, in the special case of a planar

wave, f yð Þ= e2πihy, ξi , the Laplacian has the following interesting property:

Δf =Δe2πihy, ξi = − 4π2 ξj j2|fflfflfflfflffl{zfflfflfflfflffl}
λ

× e2πihy, ξi|fflfflffl{zfflfflffl}
f

.

In other words, plane waves, f yð Þ= e2πihy, ξi, are eigenfunctions of the Laplacian oper-
ator, i.e., Δf = λf , corresponding to the eigenvalue λ = − 4π2 ξj j2. Plane waves are
base functions that allow us to represent any L2 function as a superposition of plane
waves, potentially infinitely many plane waves. As the Laplacian is a linear operator,
any periodic square-integrable function with a smooth second derivative (necessary
to justify integration by parts) u yð Þ: − 1, 1½ �d ! C, including Δu yð Þ, can be expressed
in terms of its Fourier transform, U ξð Þ=F uð Þ ξð Þ:

Δyu yð Þ=Δu yð Þ=Δ
ð
D

U ξð Þ× e2πihy, ξidξ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u yð Þ=F − 1 Uð Þ yð Þ

0BBBB@
1CCCCA=

ð
D

U ξð ÞΔ e2πihy, ξi
� �

dξ =

ð
D

U ξð Þ − 4π2 ξj j2
� �

e2πihy, ξi
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δ e2πihy, ξið Þ

dξ =
ð
D

− 4π2 ξj j2
� �

×U ξð Þ
h i

e2πihy, ξidξ .

In the above equation, the integrand U ξð ÞΔ e2πihy, ξi� � 2 L1 and we can interchange
the integration and differentiation operators.

Shortly, we will prove Green’s first identity that allows us to integrate by parts the
Fourier transform of the potential function’s partial derivatives. Suppose the twice
differentiable potential function u x,κð Þ 2 C2 Ds ×Dtð Þ is periodic in time, κ 2 Dt ≡
− 1

2 , 1
2

� �dt . Then, ∀1≤ j≤dt the Fourier transforms of the function’s temporal partial
derivatives are:
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F ∂κj u
� �

η, ξð Þ=
ð

Ds , Dt

∂κj u x, κð Þ× e− 2πihη,κi × e− 2πihξ , xidxdκ=

ð
Ds

ð
Dt

∂κju x,κð Þ× e− 2πihη, κi × e− 2πihξ , xidxdκ =z}|{Green’s identity

ð
Ds

ð
∂Dt

u x,κð Þ× e− 2πihη,κi × e− 2πihξ , xidκ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0, periodic u function on κ2Dt ≡ − 1

2,
1
2½ �dt

−
ð
Dt

u x,κð Þ× ∂κj e
− 2πihη,κi × e− 2πihξ , xidκ

26666664

37777775dx =

ð
Ds

−
ð
Dt

u x,κð Þ× − 2π i ηj

� �
× e− 2πihη,κi × e− 2πihξ , xidκ

24 35dx =

2π i ηj

ð
Ds , Dt

u x,κð Þe− 2πihη, κie− 2πihξ , xidxdκ= 2π i ηj F uð Þ η, ξð Þ,∀1≤ j≤dt.

Similarly, the Fourier transform of the potential function’s spatial partial deriva-
tives are:

F ∂xlu
� �

η, ξð Þ= 2π i ξ l F uð Þ η, ξð Þ,∀1≤ l≤ds.

These relations between the Fourier transform and the first-order partial derivatives
can be extended to the Fourier transform of the second-order partial derivatives
∂2xl

u= ∂xl ∂xl

� �
uð Þ and ∂2κj

u= ∂κj ∂κj

� �
uð Þ:

F
�
∂2κj

u
��
η, ξ
�
= 2πi ηj F

�
∂κj u

��
η, ξ
�
=
�
2πiηj

�2
F uð Þ η, ξð Þ=

−
�
2π ηj

�2
F uð Þ η, ξð Þ,∀1≤ j≤dt,

F
�
∂2xl

u
�
η, ξð Þ= 2π i ξ l F

�
∂xlu

�
η, ξð Þ= 2πiξ l

� �2
F uð Þ η, ξð Þ=

− 2π ξ lð Þ2 F uð Þ η, ξð Þ,∀1≤ l≤ds.

As the spatial and temporal Fourier transforms are linear, the Fourier transforms of
the spatial and temporal Laplacians are:

F Δxuð Þ η, ξð Þ=F
Xds
l= 1

∂2xl
u

� �
η, ξð Þ=

Xds
l= 1

F ∂2xl
u

� �
η, ξð Þ= − 4π2 ξj j2 F uð Þ η, ξð Þ,
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F Δκuð Þ η, ξð Þ=F
Xdt
j= 1

∂2κj
u

 !
η, ξð Þ=

Xdt
j= 1

F ∂2κj
u

� �
η, ξð Þ= − 4π2 ηj j2 F uð Þ η, ξð Þ.

Therefore, F Δuð Þ|fflffl{zfflffl}bΔu
ξð Þ= − 4π2 ξj j2

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

multiplier

× F uð Þ|ffl{zffl}
U = û

ξð Þ and the Laplacian operator can be

considered as a Fourier multiplier operator. That is, the Fourier transform of the
Laplacian (Δu) at a frequency ξ is given by the Fourier transform of the original
function (u) evaluated at the same frequency, multiplied by the value of the multi-
plier at that frequency, − 4π2 ξj j2. Utilizing the inverse Fourier transform:

Δu yð Þ|fflffl{zfflffl}
f yð Þ

=F − 1 F|{z}
F fð Þ

0@ 1A yð Þ=
ð
D

F Δuð Þ ξð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
F fð Þ ξð Þ

× e2πihy, ξidξ =
ð
D

− 4π2 ξj j2
� �

×U ξð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F Δuð Þ ξð Þ

e2πihy, ξidξ .

Of course, this general property for any (spatial and temporal) periodic function
with continuous second derivatives holds in our case for (periodic) potential func-
tions u of this type:

u x,κð Þ= e2πihη, κi × e2πihx, ξi 2 C2 Dt ×Dsð Þ, subject to ηj j2 ≡ ξj j2,

which solves the wave equation Δxu x,κð Þ=Δκu x,κð Þ. Applying the Fourier trans-
form to the wave equation Δxu x,κð Þ=Δκu x,κð Þ yields:

− 4π2 ξj j2 F uð Þ η, ξð Þ= F Δxuð Þ η, ξð Þ≡F Δκuð Þ η, ξð Þ= − 4π2 ηj j2 F uð Þ η, ξð Þ.

This suggests a non-local necessary and sufficient wavenumbers condition ξj j2 = ηj j2
for the relation between the integer spatial (ξ ) and integer temporal (η) frequencies
that guarantees the potential function u x,κð Þ= e2πihη,κi × e2πihx, ξi represents a wave
equation solution.

Since the wave equation is a linear PDE, any finite linear combination of M
such basic potential functions will also represent a (composite) solution:

u x,κð Þ=
XM

m= 1

ξm,ηm j ξm
�� ��2 = ηm

�� ��2n o Cm × e2πihηm , κi × e2πihx, ξmi.

In spacekime, using polar coordinate representation of kime, the Laplacian defines
a non-linear PDE for the wave equation:

Δu κ1, κ2ð Þ= ∂2u
∂κ2

1
+ ∂2u
∂κ2

2
= 1
r
∂u
∂r

r
∂u
∂r

� �
+ 1
r2
∂2u
∂φ2 =

∂2u
∂r2

+ 1
r
∂u
∂r

+ 1
r2
∂2u
∂φ2 =Δu r, φð Þ.
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In the simple case when M = 1, separable solutions of the wave equation can be ex-
pressed via:

κ= teiφ = t cos φ + i sin φð Þ= t cos φð Þ|fflfflfflfflffl{zfflfflfflfflffl}
κ1

+ i t sin φð Þ|fflfflfflffl{zfflfflfflffl}
κ2

,

u x,κð Þ= e2πihη,κi × e2πihx, ξi = e
2πi
Pdt = 2

j= 1
κjηj

× e
2πi
Pds = 3

l= 1
xlξ l =

e2πi η1t cos φ + η2t sin φð Þ × e2πi x1ξ1 + x2ξ2 + x3ξ3ð Þ.
Figure 3.10 shows alternative views of one specific solution to the spacekime wave
equation, which is given by:

u x,κð Þ= u x1, x2, x3, t, φð Þ= e2πt i − 2 cos φ + 3 sin φð Þ × e2πi − 3x1 + 2x2ð Þ,

where η= η1, η2ð Þ= − 2, 3ð Þ and ξ = ξ 1, ξ 2, ξ 3

� �
= − 3, 2,0ð Þ, ξj j2 = ηj j2 = 13.

Note the oscillatory patterns of the 2D kime dynamics, where the 2D spatial co-
ordinates are along the horizontal (transverse) plane, the kime-phase (directions)
and kime-magnitude (time) represent the vertical axis and the longitudinal snap-
shot of the dynamics, and different cross-sectional, volume and surface renderings
depict the wave motion in the (reduced) 2D + 2D spacekime manifold.

A mathematical problem, like solving a PDE, is called well-posed when the follow-
ing three properties are guaranteed: (1) existence, i.e., there exists at least one solution
to the problem; (2) uniqueness, i.e., there is at most one solution; and (3) stability, i.e.,
the solution continuously depends on the data of the problem, e.g., Cauchy data for
the wave equation, suggesting that a small change in the data (e.g., initial conditions)
leads only to a small proportional change in the solution.

Non-temporally periodic solutions to the wave equation Cauchy initial value
problem, correspond to non-integer (real) spatial and temporal frequency vectors
that satisfy the same regularization condition, ξj j2 = ηj j2. This represents a strong as-
sumption restricting the allowed wavenumbers that leads to a non-local constraint
on the Cauchy initial data problem. An example of this non-local constraint ensur-
ing the well-posedness of the initial value problem is:

η= η1, η2ð Þ= π
ffiffiffi
2
p

, π
ffiffiffi
2
p� �

and ξ = ξ 1, ξ 2, ξ 3

� �
= π, π

ffiffiffi
3
p

,0
� �

, ξj j2 = ηj j2 = 4π2.

Let’s dive deeper in the existence, stability, determinism, and uniqueness of local
and global solutions to the wave equation with Cauchy initial data [151, 152]. The
classical spacetime Cauchy initial value problem on co-dimension 1 hypersurfaces is
well-posed and has global unique solutions in Sobolev spaces Hm. The Cauchy initial
value problem, formulated on higher co-dimension hypersurfaces in terms of a finite
number of derivatives of the data, is globally ill-posed and does not permit (global)

118 Chapter 3 Time Complexity

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



unique solutions. However, imposing some specific Cauchy-type constraints in terms
of the initial data rectifies this problem and leads to a well-posed problem with locally
unique solutions in neighborhoods of the initial hypersurfaces.

In essence, the general lack of global stability and uniqueness for the ultrahy-
perbolic wave equation, with Cauchy initial value formulation, can be resolved by
imposing non-local constraints that arise naturally from the field equations. Such
non-local constraints may preserve stability of the solutions but not their determinism
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Figure 3.10: Example of the existence of a locally stable solution to the ultrahyperbolic wave
equation in spacekime. The left and right columns illustrate alternative views and foliations of
the 2D kime dynamics of the 4D (reduced) spacekime wave projected onto a flat 2D x, yð Þ spatial
domain.

3.7 Analogous Kime Extensions 119

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



or uniqueness. The Cauchy initial value problem associated with the ultrahyperbolic
wave equation can be formulated as a linear constraint representing a hypersurface of
co-dimension 1. Co-dimension 1 refers to a time variable (e.g., κ= κ1, κ2ð Þ= teiφ) split
of the temporal domain in two subspaces Rdt � Dt =Dt1⊍ Dt− 1 .

The 1D subspace Dt1 represents κ1, the dynamic evolution time dimension (e.g., t),
and the complementary dt − 1ð Þ dimensional subspace Dt− 1 consists of the remaining

independent time-like dimensions (e.g., κ− 1f g or φ), where κ=
 

κ1, κ2, . . . , κdt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
κ − 1

!
2 Dt.

Then, the ultrahyperbolic wave equation with Cauchy initial conditions and evolution
along the first time-like coordinate, κ1, is:

Xds
i= 1

∂2xi
u≡Δxu=Δκu≡

Xdt
j= 1

∂2κj
u,

u x|{z}
x2Ds

, 0,κ− 1|fflffl{zfflffl}
κ2Dt

0@ 1A= f x,κ− 1ð Þ

∂κ1u x,0,κ− 1ð Þ= g x,κ− 1ð Þ
.

��������
Typically, the initial constraints are formulated in terms of κ1, a.k.a. the direction of
(temporal) evolution, as restrictions over the neighborhood N = x,κð Þ 2 Ds ×Dtjκ1 =0f g
representing hypersurface subspaces of dimension one less than that of the entire
space, Ds ×Dt. Higher co-dimensional constraints are defined analogously using two or
more time dimensions to represent the temporal dynamics.

The Cauchy initial value problem depends on how much data (initial restric-
tions) are assumed or given a priori. For instance, one may fix the value of the po-
tential function (zeroth derivative) and the first partial derivatives, or alternatively
fix a finite number of partial derivatives of u x, κð Þ, on the neighborhood N, and re-
quire compatibility of the imposed constraints with the general solutions of the
wave equation, Δxu=Δκu.

The standard Sobolev space of functions is defined as the closure, Hm, of the
function space:

Hm =closure f x,κ− 1ð Þ 2 C∞
o Rds ×Rdt − 1
� �

fk k2m ≡
X

αj j+ βj j≤m

ð
∂α
x∂

β
κ − 1

f x,κ− 1ð Þ
��� ���2dxdκ− 1

�����
)
.

(

As the spacekime wave equation can be expressed as ∂2κ1
u=Δxu−Δκ − 1u, we can

define the energy functional, associated with potential function solutions, as:
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E uð Þ= 1
2

ð
∂κ1u
�� ��2|fflfflffl{zfflfflffl}
kinetic

+ ∇xuj j2 − ∇κ − 1u
�� ��2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

potential

264
375dxdκ− 1,

where the kinetic energy term ∂κ1u
�� ��2 relates to the velocity in the dynamics temporal

direction κ1 and the potential energy term represents the spatio-temporal gradient
∇xuj j2 − ∇κ− 1u

�� ��2, i.e., the spacekime displacement, reflecting the stored energy. This
total energy indicates whether the wave-equation with Cauchy data (initial value
problem) has unique solutions.

For non-temporally periodic potential functions that vanish at infinity, deriving
their stability as solutions of the Cauchy initial value wave equation problem re-
quires energy preservation, i.e., ∂κ1E uð Þ=0. This can be accomplished by using the
Gauss-Ostrogradsky theorem [153], which generalizes the univariate integration by
parts to multiple dimensions. In particular, the Gauss-Ostrogradsky theorem relates
a k-dimensional integral over a hypervolume to a k − 1ð Þ-dimensional integral over
the surface boundary of the hypervolume domain.

Recall that if U yð Þ and V yð Þ are continuously differentiable scalar functions, inte-
gration by parts yields

Ð
UV′dy=UV −

Ð
U′Vdy. For a continuously differentiable vec-

tor field F:V ! Rn, where V = ν 2 Rnf g is compact with a piecewise smooth boundary
∂V, let’s denote by~n the outward pointing unit normal vector on the closed and orient-
able boundary manifold S= ∂V. For the given vector field (F), the flux (F ·~n) describes
the magnitude of the flow over the closed surface boundary (∂V), and the divergence
(∇ · F) is a scalar field representing the aggregate of the input vector field. In Cartesian
coordinates, the divergence of the field F = F1, F2, . . . , Fnð Þ at a given spatial posi-
tion, v= x1, x2, . . . , xnð Þ 2 V represents the sum of the field partial derivatives at
the location v:

∇ ·F vð Þ= h∇ jF vð Þi= ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn

� �
jðF1,F2, . . . , FnÞ

� �
=
Xn
i= 1

∂Fi x1,x2, . . . , xnð Þ
∂xi

.

The flux of the field F across the boundary surface S= ∂V measures the amount of
flow passing through the boundary surface manifold per unit time. For a given
small boundary patch with surface area ΔS, the relative flux is F ·~nΔS.

Connecting definite and indefinite integrals, the fundamental theorem of calculus
states that integrating the derivative of a function over an interval can be expressed in
terms of the functional values at the boundary of the interval. The higher-dimensional
analog of the fundamental theorem of calculus is the Gauss-Ostrogradsky divergence
theorem [153], which expresses the relation between the flux and divergence of the vec-
tor field F:
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ð
V

∇ · Fð Þ|fflffl{zfflffl}
divergence

νð Þdν =
þ
∂V

F ·~n ds|fflfflfflfflfflffl{zfflfflfflfflfflffl}
flux

.

For example, suppose V � R3, is a 3D solid circular cone with height h= 1 and base-
radius r = 1. Let’s define F:V ! R3 by F = F1 = x− y, F2 = x+ z, F3 = z − yð Þ. The posi-
tively oriented cone surface boundary is expressed by:

S= ∂V :
ν= x; y; zð Þ 2 R3j

fx2 + y2 − z2 = 0 g∩ 0≤ z ≤ 1f g

)
:

(

We can verify the divergence theorem by independently computing and comparing
both hand sides representing the volume and surface integrals of the divergence
and the flux, respectively.

Figure 3.11 shows a 3D rendering of the vector field F = x− y, x+ z, z − yð Þ, the
solid cone and its boundary, the surface normal (~n), the flux density (hot-metal
color) (F ·~n), and the field magnitude (spectral color).

Figure 3.11: Conic domain flux density and field magnitude.
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The divergence of this linear field at any point v 2 R3 is constant:

∇ · F vð Þ= ∂

∂x
, ∂

∂y
, ∂

∂z

� �
j x− y, x+ z, z − yð Þ

� �
vð Þ= 1+0+ 1= 2.

The volume of a right circular cone of height h and base-radius r is obtained by inte-
grating the area of a circle (π ρ2) of radius ρ = r

h x, over 0≤ x≤ h:

ðh
0

π ρ2dx=
ðh
0

π
r2

h2
x2dx= π

r2

h2

ðh
0

x2dx= π
r2

h2
x3

3

� �h
0
= πr2

h
3
.

Hence, the volume integral of the divergence over the solid unitary cone (h= 1, r = 1)
is: ð

V

∇ · Fð Þ vð Þdv=
ð
V

2 dv= 2 π 12
1
3

� �
= 2π

3
.

As the piecewise smooth cone surface boundary S= ∂V consists of the base disc (Sd)
and the attached cone surface (Sc), we can break the surface integral over the closed
surface S in two pieces:þ

S

F ·~nds=
þ

Sd _∪ Sc

F ·~nds=
þ
Sd

F ·~nds+
þ
Sc

F ·~nds.

To compute the first surface integral we will parameterize the disc surface (Sd):

rd ρ, vð Þ=
ρ cos v

ρ sin v
1

0B@
1CA, 0≤ ρ ≤ 1, 0≤ v≤ 2π, ∂rd

∂ρ
=

cos v

sin v
0

0B@
1CA, ∂rd

∂v
=

− ρ sin v

ρ cos v
0

0B@
1CA,

∂rd
∂ρ

× ∂rd
∂v

� �
=

sin v×0−0× ρ cos v

0× − ρ sin vð Þ− cos v×0

cos v ρ cos v− sin v − ρ sin vð Þ

0B@
1CA=

0

0

ρ

0B@
1CA,

Jk k|{z}
Jacobian

= ∂rd
∂ρ

× ∂rd
∂v

���� ����, ~n=
∂rd
∂ρ × ∂rd

∂v

� �
Jk k ,

F = x− y, x+ z, z − yð Þ= ρ cos v− ρ sin v, ρ cos v+ 1, 1− ρ sin vð Þ.

Therefore, the flux over the disc Sd is

þ
Sd

F ·~nds=
ð1

ρ =0

ð2π

v=0

F rd ρ, vð Þð Þ ·
∂rd
∂ρ × ∂rd

∂v

� �
Jk k|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
~n

dA=
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ð1
ρ =0

ð2π

v=0

ρ cos v− ρ sin v

ρ cos v+ 1

1− ρ sin v

0B@
1CA

′

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

·
0

0

ρ

0B@
1CA 1

Jk k|fflfflfflfflfflffl{zfflfflfflfflfflffl}
~n

Jk kdv dρ|fflfflfflfflffl{zfflfflfflfflffl}
dA

=

ð1
ρ =0

ð2π

v=0

ρ 1− ρ sin vð Þdv dρ =
ð2π

v=0

ð1
ρ =0

ρ − ρ2 sin v
� �

dρ dv=
ð2π

v=0

ρ2

2
−

ρ3

3
sin v

� ������
1

ρ =0

!
dv=

0@
ð2π

v=0

1
2
−
1
3
sin v

� �
dv= 2π

2
= π.

Similarly, we can parameterize the conic surface component (Sc) and compute the
flux over the complementary surface. The only difference in this case is that the nor-
mal vector needs to point down (not up, as in the case of the flux over the disc).
This is because~n pointing up suggests an inward (not outward) flow. Thus, we use

the flipped cross-product~n= − ∂rc
∂ρ × ∂rc

∂v

� �
= ∂rc

∂v × ∂rc
∂ρ

� �
.

rc ρ, vð Þ=
ρ cos v

ρ sin v
ρ

0@ 1A, 0≤ ρ ≤ 1, 0≤ v≤ 2π, ∂rc
∂ρ

=
cos v

sin v
1

0B@
1CA, ∂rc

∂v
=

− ρ sin v

ρ cos v
0

0B@
1CA,

∂rc
∂ρ

× ∂rc
∂v

� �
=

sin v×0− 1× ρ cos v

1× − ρ sin vð Þ− cos v×0

cos v ρ cos v− sin v − ρ sin vð Þ

0B@
1CA=

− ρ cos v

− ρ sin v

ρ

0B@
1CA,

−
∂rc
∂ρ

× ∂rc
∂v

� �
= ∂rc

∂v
× ∂rc

∂ρ

� �
=

ρ cos v

ρ sin v

− ρ

0B@
1CA, Jk k|{z}

Jacobian

= ∂rc
∂v

× ∂rc
∂ρ

���� ����, ~n= ∂rc
∂v × ∂rc

∂ρ

� �
Jk k ,

F = x− y, x+ z, z − yð Þ= ρ cos v− ρ sin v, ρ cos v+ ρ, ρ − ρ sin vð Þ.
þ
Sc

F ·~nds=
ð1

ρ =0

ð2π

v=0

F rc ρ, vð Þð Þ ·
∂rc
∂v × ∂rc

∂ρ

� �
Jk k|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
~n

dA=

ð1
ρ =0

ð2π

v=0

ρ cos v− ρ sin v

ρ cos v+ ρ
ρ − ρ sin v

0B@
1CA

′

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

·
ρ cos v

ρ sin v

− ρ

0B@
1CA 1

Jk k|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
~n

Jk kdv dρ|fflfflfflfflffl{zfflfflfflfflffl}
dA

=
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ð1
ρ =0

ð2π

v=0

ρ cos v− ρ sin vð Þ ρ cos vð Þ+ ρ cos v+ ρð Þ ρ sin vð Þ− ρ − ρ sin vð Þρ½ �dv dρ =

−
ð1

ρ =0

ð2π

v=0

ρ2sin2v− 2ρ2 sin v
� �

dv dρ = −
π
3
.

This validates the divergence theorem:

2π
3
= π −

π
3
=
þ
Sd

F ·~nds+
þ
Sc
F ·~nds≡

þ
S
F ·~nds =z}|{? ð

V
∇ · Fð Þ vð Þdv ≡

ð
V
2 dv = 2 π 12

1
3

� �
= 2π

3
.

Let’s explore the special cases over the temporal domain V =Dt − 1 � Rdt− 1 (exclud-
ing the first dynamics temporal variable, κ1) and the spatial domain V =Dx � Rdx .
For a pair of twice continuously differentiable scalar functions ψ, φ :Rd ! R , the re-
lations between the flux and divergence of the vector field F = ψ∇φ can be expressed
in space and time domains by:ð

Dt− 1

∇κ · ψ∇φ|ffl{zffl}
F

dκ− 1 =
þ

s− 12∂Dt− 1

ψ ∇φ ·~nð Þds− 1, and

ð
Dx

∇x · ψ∇φ|ffl{zffl}
F

dx =
þ

s2∂Dx

ψ ∇φ ·~nð Þds.

The multivariate product rule of differentiation (∇) allows us to simplify the follow-
ing inner product in either the space (∇x) or the time ∇κ− 1

� �
domain:

∇ · F ≡∇ · ψ∇φð Þ=∇ψ · ∇φð Þ+ ψ∇ · ∇φð Þ=∇ψ · ∇φð Þ+ ψ∇2φ =∇ψ · ∇φð Þ+ ψΔφ.

This leads to the Green’s first identity, which actually generalizes the univariate in-
tegration by parts to higher dimensions:ð

V

∇ψ ·∇φ + ψΔφð Þdv ≡
ð
V

∇ · Fð Þ vð Þdv =|{z}
Gauss

Ostrogradsky

þ
∂V

F ·~n ds≡
þ
∂V

ψ ∇φ · n̂ð Þds.

Therefore:

generalð Þ
ð
V

ψ∇2φ dv ≡
ð
V

ψΔφ dv =
þ
∂V

ψ ∇φ · n̂ð Þds−
ð
V

∇ψ ·∇φ dv,

spatialð Þ
ð
Dx

ψ∇2
xφ dv ≡

ð
Dx

ψΔxφ dv =
þ

∂Dx

ψ ∇xφ · n̂ð Þds−
ð
Dx

∇xψ ·∇xφ dv,
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temporalð Þ
ð

Dt − 1

ψ∇2
κ− 1

φ dκ− 1 ≡
ð

Dt − 1

ψΔκ− 1 φ dκ− 1 =
þ

∂Dt − 1

ψ ∇κ− 1 φ · n̂
� �

ds−

ð
Dt − 1

∇κ− 1 ψ ·∇κ− 1 φ dκ− 1.

Applying these equations to ψ = ∂κ1u, φ = u, we have:ð
∇xu · ∂κ1∇x uð Þ dκ− 1dx =

ð
∇xu ·∇xð∂κ1uÞ dκ− 1dx =

ð ð
Dx , Dt − 1

∇xð∂κ1uÞ ·∇xu dκ− 1dx =

ð
Dt − 1

þ
∂Dx

∂κ1u · ∇xu · n̂ð Þds

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0, u vanishes at infinity

dκ − 1 −
ð ð
Dx , Dt − 1

∂κ1u ·∇2
xu dκ− 1dx =

= −
ð ð
Dx , Dt − 1

∂κ1u ·Δxu dκ− 1dx = −
ð
∂κ1u ·Δxu dxdκ− 1.

Similarly,ð
∇κ − 1u ·∂κ1∇κ − 1 uð Þ dκ− 1dx=

ð ð
Dx , Dt− 1

∇κ − 1ð∂κ1uÞ ·∇κ − 1u dκ− 1dx= −
ð
∂κ1u ·Δκ − 1u dxdκ− 1.

The initial conditions
uo x,κ− 1ð Þ
u1 x,κ− 1ð Þ

� �
=

u x, 0|{z}
κ1

,κ− 1

 !

∂κ1u x, 0|{z}
κ1

,κ− 1

 !
0BBBB@

1CCCCA anchor the wave

equation solution and its partial derivative at the starting value of the dynamics pa-

rameter (κ1). When the dynamic evolution mapping κ1!
M

u x, κ1,κ− 1ð Þ
∂κ1u x, κ1,κ− 1ð Þ

� �
has a

smooth first order derivative, i.e., M 2 C1 Rκ1 ! H1 ×Ho
� �

, then the energy func-

tional is conserved along the solution path u |{z}
x

, κ1, |{z}
κ − 1

 !
and the Cauchy initial

value problem is well-posed ∂κ1E uð Þ=0
� �

. This uses the divergence theorem (DT) as

shown below:

∂κ1E uð Þ= 1
2
∂κ1

ð
∂κ1u
�� ��2 + ∇xuj j2 − ∇κ− 1u

�� ��2h i
dxdκ− 1 =
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1
2

ð
2 ∂κ1u · ∂

2
κ1
u+∇xu · ∂κ1∇x uð Þ−∇κ− 1u · ∂κ1∇κ− 1 uð Þ

h i
dxdκ− 1 =ð ð

∂κ1u · ∂
2
κ1
u dκ− 1

� �
+
ð
∇xu · ∂κ1∇x uð Þ−∇κ− 1u · ∂κ1∇κ− 1 uð Þ� �

dκ− 1

� �� �
dx =|{z}

DTð ð
∂κ1u · ∂

2
κ1
u dκ− 1

� �
+
ð
∇2
κ− 1

u · ∂κ1 uð Þdκ− 1 −
ð
∇2
xu · ∂κ1 uð Þdκ − 1

� �
dx =

ð
∂κ1u · ∂

2
κ1
u+ ∇2

κ− 1
u−∇2

xu
h i

· ∂κ1 uð Þ
h i

dκ− 1dx =

ð"
∂2κ1

u+Δκ− 1u−Δxu|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0, wave equation

#
· ∂κ1u dκ− 1dx =0.

Therefore, E u , κ1,ð Þð Þ=E u , 0,ð Þð Þ, and the energy is preserved along the (uni-
variate, κ1) temporal evolution trajectory. However, by itself, energy preservation/con-
servation along κ1 does not imply that the wave equation is well-posed in spacekime,
since the negative sign of this component − ∇κ − 1u

�� �� in the energy allows for mixing
unbounded positive and negative energy components while preserving the total con-
stant energy. All three complementary energy components, ∂κ1u

�� ��, ∇κ − 1u
�� ��, ∇xuj j� 	

may each be large while the energy still remains constant. Therefore, the above energy
functional, E uð Þ, does not control the H1-norm of the solution, uk k2m= 1. In fact, the
Cauchy initial value problem for the ultrahyperbolic wave equation is in general ill-
posed [151].

However, these solution uniqueness and stability problems for the ultrahyperbolic
wave equation, with Cauchy initial value formulation, can be resolved by imposing
non-local constraints. For this Cauchy initial value problem, the Fourier transform
maps the spatio-temporal variables x,κ− 1ð Þ 2 Ds ×Dt− 1 � Rds + dt − 1 to their frequency
counterparts, the wavenumbers ξ ,η− 1ð Þ 2 D̂s × D̂t− 1 � Rds +dt − 1 . We can examine the
evolution operator defining the κ1 dynamics subject to the initial constraints:

uo x, κ− 1ð Þ
u1 x,κ− 1ð Þ

 !
=

u x, 0|{z}
κ1

,κ− 1

 !

∂κ1u x, 0|{z}
κ1

,κ− 1

 !
0BBBBB@

1CCCCCA 2 Hm+ 1 ×Hm,

F
uo

u1

 !
=
duo
u1

 !
=

ûo ξ ,η− 1ð Þ
û1 ξ ,η− 1ð Þ

 !
=

ð
Ds , Dt − 1

uo x,κ− 1ð Þ
u1 x, κ − 1ð Þ

 !
e− 2πihη− 1 ,κ− 1i × e− 2πihξ , xidxdκ− 1.
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Then, the wave equation becomes:

Xds
i= 1

∂2xi
u≡Δxu=Δκu≡

Xdt
i= 1

∂2κi
u,

Δxu−Δκ− 1u= ∂2κ1
u,

F Δxu−Δκ− 1uÞ=F ∂2κ1
u

� �
,

�
F Δx uð Þ η− 1, ξð Þ−F Δκ− 1 u

� �
η− 1, ξð Þ≡F ∂2κ1

u
� �

,

− 4π2 ξj j2 F uð Þ η− 1, ξð Þ− − 4π2 η− 1

�� ��2 F uð Þ η− 1, ξð Þ
� �

= ∂2κ1
F uð Þ η− 1, ξð Þ,

− 4π2 ξj j2 û η− 1, ξð Þ+ 4π2 η− 1

�� ��2 û η− 1, ξð Þ= ∂2κ1
û η− 1, ξð Þ,

4π2 − ξj j2 + η− 1

�� ��2� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

independent of κ1

û= ∂2κ1
û.

Observe that the FT is applied to all spatial (x) and all temporal (κ− 1) variables except
the time dynamics parameter (κ1). This Fourier analysis allows us to convert the wave
equation (PDE) to a simpler ordinary differential equation (ODE), in terms of κ1, whose
solution is the Fourier transform of the solution of the original PDE. By transforming
the original Cauchy initial value problem to the Fourier domain, we get:

ûo

û1

 !
=

ûo ξ ,η− 1ð Þ
û1 ξ ,η− 1ð Þ

 !
=

û ξ ,η− 1ð Þ
∂κ1 û ξ ,η− 1ð Þ

 !
2 Hm+ 1 ×Hm.

Therefore, the Fourier space solution to the wave equation for Cauchy data is ex-
pressed as a piecewise smooth function:

û ξ , κ1,η− 1ð Þ=

cos 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� �
ûo ξ ,η− 1ð Þ+

sin 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1j j2

q� �
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1j j2

q û1 ξ ,η− 1ð Þ, ξj j≥ η− 1

�� ��
cosh 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q� �

ûo ξ ,η− 1ð Þ+
sinh 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1j j2 − ξj j2

q� �
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1j j2 − ξj j2

q û1 ξ ,η− 1ð Þ, ξj j< η− 1

�� ��
.

8>>>>>>>><>>>>>>>>:
This solution is easily confirmed by examining a simpler second-order ODE problem:

∂2sw sð Þ= a2w sð Þ,
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a= 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
constantw.r.t. s

, a2 = 4π2 − ξj j2 + η− 1

�� ��2� �
.

This ODE is solved by:

w sð Þ= c1e
2π s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1j j2 − ξj j2

q
+ c2e

− 2π s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1j j2 − ξj j2

q
, c1, c2 2 C .

In this problem simplification, s and w play the roles of κ1 and û in the original
ultrahyperbolic wave equation.

Since

cos ϕ = 1
2

eiϕ + e− iϕ� �
, sin ϕ = −

i
2

eiϕ − e− iϕ� �
, and

cosh ϕ = 1
2

eϕ + e− ϕ� �
= cos iϕð Þ, sinh ϕ = 1

2
eϕ − e− ϕ� �

= − i sin iϕð Þ,

the circular and hyperbolic functions û ξ ,ηð Þ= û ξ , κ1,η− 1ð Þ defined above indeed rep-
resent solutions to the ∂2κ1

û= 4π2�− ξj j2 + η− 1

�� ��2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a2

û equation that obey the Cauchy
initial value constraints:

û ξ , 0|{z}
κ1

,η− 1

 !

∂κ1 û ξ , 0|{z}
κ1

,η− 1

 !
0BBBBB@

1CCCCCA=
ûo ξ ,η− 1ð Þ
û1 ξ ,η− 1ð Þ

 !
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Cauchy data

.

Case 1: For a Fourier frequency region defined by ξj j≥ η− 1

�� ��, the Cauchy data value

problem
ûo
û1

� �
is well-posed and yields a stable local solution, û. Given also

that the initial value problem
ûo
û1

� �
is analytic and of exponential type, the

solution is global and stable. This follows from the Paley-Wiener theorem

[154], which states that the IFT of the Cauchy data
uo
u1

� �
=F − 1 ûo

û1

� �
will be

smooth and compactly supported if and only if its FT, F
uo
u1

� �
=
duo
u1

� �
, is an

entire function, i.e., analytic and of exponential type, rapidly decreasing with
the frequency magnitude. In this case, for a pair c1, c2ð Þ independent of κ1, the

general solution to the unconstrained ODE ∂2κ1
û= 4π2 − ξj j2 + η− 1

�� ��2� �
û is:

û= c1 cos 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� �
+ c2 sin 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� �
.
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This leads to a solution of the corresponding constrained problem (Cauchy
data):

û ξ , κ1,η− 1|fflfflffl{zfflfflffl}
η

0@ 1A=

cos 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� �
ûo ξ ,η− 1ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

c1

+ sin 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� �
û1 ξ ,η− 1ð Þ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

c2

.

Case 2: However, over the complementary region, ξj j< η− 1

�� ��, given a non-trivial κ1

value, the initial value problem
ûo
û1

� �
= û ξ , κ1,η− 1ð Þ

∂κ1 û ξ , κ1,η− 1ð Þ
� �

= ûo ξ ,η− 1ð Þ
û1 ξ ,η− 1ð Þ

� �
2 Hm+ 1 ×Hm is ill-posed and the solutions are not bounded, unique, or stable
with respect to the dynamic parameter κ1, as the hyperbolic functions are not
bandlimited. Thus, the spacekime-domain Cauchy initial value problem

uo
u1

� �
=F − 1 ûo

û1

� �
would not be well-posed with respect to κ1, and any

spacekime solutions to the boundary value wave equation would not be well-
defined, unique, or stable.

In this case, for a pair c3, c4ð Þ independent of κ1, the general solution of the
unconstrained ODE ∂2κ1

û= 4π2 − ξj j2 + η− 1

�� ��2� �
û, representing the Fourier

dual to the original wave equation, is:

û= c3e
2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1j j2 − ξj j2

q� �
+ c4e

− 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1j j2 − ξj j2

q� �
.

The solution to the initial value problem is therefore:

û ξ , κ1,η− 1ð Þ=

cosh 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q� �

ûo ξ ,η− 1ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
c3

+ sinh 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q� �

û1 ξ ,η− 1ð Þ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
c4

.

When ξj j< η− 1

�� ��, there are no globally stable solutions as coshðÞ and sinhðÞ are un-

bounded and cosh 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q� �

and sinh 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q� �

grow expo-

nentially with κ1.

However, in the complementary domain, when ξj j≥ η− 1

�� ��, the magnitudes of
their circular counterparts are bounded for any κ1:
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cos 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� ����� ����≤ 1 and
sin 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1j j2

q� �
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1j j2

q
������

������≤ 1,

which guarantees the global existence and stability of the solutions of the Cauchy
initial value problem.

Fourier synthesis provides the connection between the Fourier solution,
û ξ ,ηð Þ=F uð Þ ξ ,ηð Þ, of the ODE, and the corresponding spacekime solution, u x, κð Þ=
F − 1 ûð Þ x,κð Þ, under Cauchy initial value constraints. Since û ξ , κ1,η− 1ð Þ 2 L2 dξ ,ð
dη− 1Þ, we can employ the inverse Fourier transform to obtain an analytic representa-
tion of the spacekime solution:

u x, κ1,κ− 1|fflfflffl{zfflfflffl}
κ

 !
=F − 1 ûð Þ x,κð Þ=

ð
D̂s × D̂t− 1

û ξ , κ1,η− 1ð Þ× e2πihx, ξi × e2πihκ− 1 ,η− 1idξ dη− 1.

In the simple case where η1j j2 ≡ ξj j2 − η− 1

�� ��2 ≥0, the FT of the solution to the Cauchy
initial value problem:

û ξ , η1,η− 1ð Þ= cos 2π η1j j κ1ð Þ× ûo ξ ,η− 1ð Þ+ sin 2π η1j j κ1ð Þ
2π η1j j

× û1 ξ ,η− 1ð Þ

can be represented explicitly as a sum of a pair of convolutions (*):

u x, κ1,κ− 1ð Þ=F − 1 ûð Þ x, κð Þ=C κ1ð Þ*uo x,κ− 1ð Þ+ S κ1ð Þ*u1 x,κ− 1ð Þ,

where

C κ1ð Þ=F − 1
ξ , η − 1ð Þ cos 2π η1j j κ1ð Þð Þ,

S κ1ð Þ=F − 1
ξ , η − 1ð Þ

sin 2π η1j j κ1ð Þ
2π η1j j

� �
,

∂

∂κ1
S κ1ð Þ=F − 1

ξ , η − 1ð Þ
∂
∂κ1

sin 2π η1j j κ1ð Þ
2π η1j j

 !
=F − 1

ξ , η − 1ð Þ 2π η1j j
cos 2π η1j j κ1ð Þ

2π η1j j
� �

=C κ1ð Þ,

η1j j≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q
, ξj j2 ≥ η− 1

�� ��2.
Also note that the initial conditions (Cauchy data) may be specified by:

uo x,κ− 1ð Þ
u1 x,κ− 1ð Þ

 !
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Cauchy data

=
u x, κ1 =0, κ− 1ð Þ

∂κ1u x, κ1 =0, κ− 1ð Þ

 !
,
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u x, κ1, κ− 1|fflfflffl{zfflfflffl}
κ

 !
= e2πihη,κi × e2πihx, ξi, ξj j2 = η1j j2 + η− 1

�� ��2.
The Asgeirsson’s mean value theorem [155, 156] states that the average of the poten-
tial function over the spatial domain, for a fixed kime location, is the same as its
average over the temporal domain, for a fixed spatial location:ð

xj j= ρ

u x,κ=0ð ÞdS xð Þ=
ð

κj j= ρ

u x =0,κð ÞdS κð Þ,

where ρ >0 is the radius of a Euclidean sphere in Rd, d 2 ds, dtf g, with surface area
dS, and the potential function u represents a solution of the wave equation ∇2

xu=
∇2

κu over a neighborhood N = x,κð Þ 2 Ds ×Dt � Rds +dt j xj j+ κj j≤ ρ
n o

. The mean
value theorem suggests that the existence and stability of solutions of the ultrahy-
perbolic wave equation require some additional non-local constraints [151, 152]. The
added restrictions may derived by Fourier synthesis (IFT) using the closed-form for-
mulation of the Cauchy data problem in the Fourier frequency domain.

Earlier, we noted that the energy functional,
E uð Þ= 1

2

Ð
∂κ1u
�� ��2 + ∇xuj j2 −
h

∇κ− 1u
�� ��2idxdκ − 1, is indefinite and does not lead to a pro-

per norm on the Sobolev space of solutions of the Cauchy data problem.

However, the Cauchy initial value evolution operator v=
�
vo
v1

�
2 X ≡Hm+ 1 ×Hm|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

phase space

may be used to naturally define a modified energy norm by parcellating the phase
space:

vk k2X ≡
ð

η− 1j j≤ ξj j

ξj j2 − η− 1

�� ��2h i
v̂o ξ ,η− 1ð Þ�� ��2 dξdη− 1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≥0

+

ð
ξj j< η− 1j j

η− 1

�� ��2 − ξj j2
h i

v̂o ξ ,η− 1ð Þ�� ��2 dξdη− 1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
condition v to ensure ≥ 0

+
ð
v̂1 ξ ,η− 1ð Þ�� ��2 dξdη− 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≥0

.

This modified-energy norm, vk k2X, rectifies the problems with the original energy, and
satisfies the three norm conditions; scalability, sub-additivity, and point-separability.
Using this modified energy, we can split the phase space into three complementary
components:

X ≡Hm+ 1 ×Hm = XσnXτð Þ|fflfflfflffl{zfflfflfflffl}
center stable

∪ XτnXσð Þ|fflfflfflffl{zfflfflfflffl}
center unstable

∪ Xτ ∩ Xσð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
center

...
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The entire domain of the evolution in terms of the temporal dynamics of κ1 2 R + is
partitioned into three subspaces: center stable space, Xσ, the center unstable space,
Xτ, and the center space, Xc =Xτ ∩Xσ, which are defined by:

Xσ = v=
vo

v1

 !
2 X

1
2

v̂o ξ ,η− 1ð Þ+ v̂1 ξ ,η− 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q

0B@
1CA=0,∀ ξj j< η− 1

�� ��
�������

9>=>;,

8><>:
Xτ = v=

vo

v1

 !
2 X

1
2

v̂o ξ ,η− 1ð Þ− v̂1 ξ ,η− 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η− 1

�� ��2 − ξj j2
q

0B@
1CA=0,∀ ξj j< η− 1

�� ��
�������

9>=>;,

8><>:
Xc = v=

vo

v1

 !
2 X support

v̂o

v̂1

 !
� η− 1

�� ��≤ ξj j� 	�����
)
=Xσ ∩Xτ.

(

These three subdomains determine the corresponding three types of ultrahyperbolic
wave equation solutions [152]: (1) For constraints in the central stable space,

v= vo
v1

� �
2 Xσ, the Cauchy initial value problem has a unique local solution u 2 X,

for all κ1 2 R + ; (2) For constraints in the central unstable space, v= vo
v1

� �
2 Xτ, the

Cauchy initial value problem has a unique solution u 2 X, only for all κ1 2 R − ; and

(3) For constraints in the central space, v= vo
v1

� �
2 Xc, the Cauchy initial value

problem has a unique global solution u 2 X, for all κ1 2 R .
Let’s next expand the derivation to non-periodic temporal functions. The ratio-

nale for considering spatially periodic (x) and kime non-periodic temporal (κ) do-
main is to generalize the very restrictive constraint for integer spatial and temporal

frequencies, ξj j2 ≡ ηj j2, where ξ 2 Zds and η 2 Rdt . Extending the spatio-temporal

domain over a non-periodic temporal space x 2 − 1
2 , 1

2

� �ds and κ= κ1, κ− 1ð Þ 2 Rdt al-

lows for non-integer temporal frequencies, which yield a wider spectrum of solutions.
To generalize the Fourier transform solution from the case of periodic temporal do-
main, we observe that linear combinations of solutions of the form:

e2πihη, κi × e2πihx, ξi, ηj j2 = ξj j2

still solve the wave equation, since:

Δκ e2πihη,κi × e2πihx, ξi
� �

=

− 4π2 ηj j2e2πihη,κie2πihx, ξi = − 4π2 ξj j2e2πihη,κie2πihx, ξi =Δx e2πihη,κi × e2πihx, ξi
� �

.

3.7 Analogous Kime Extensions 133

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



The Cauchy initial value problem is well-posed when these solutions are in the

central space, v= vo
v1

� �
2 Xc, and the solution u 2 X is unique, global, and stable

for all κ1 2 R , since
��η− 1j2 ≤ η1

�� ��2|ffl{zffl}
κ1j j2

+ jη− 1j2 = ηj j2 = ξj j2, which implies that the support

v̂o
v̂1

� �
� η− 1

�� ��≤ ξj j� 	
.

Conversely, given initial conditions
� v0
v1

�
2 Xc, the global and unique solutions

of the well-posed ultrahyperbolic wave equation are derived by Fourier synthesis as
follows:

û ξ , κ1,η− 1ð Þ= cos 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� �
v̂o ξ ,η− 1ð Þ

+
sin 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� �
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q v̂1 ξ ,η− 1ð Þ.

Since v= vo
v1

� �
2 Xc, 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q
2 R and:

cos 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� ����� ����≤ 1 and
sin 2π κ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q� �
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξj j2 − η− 1

�� ��2q
��������

��������≤ 1.

This implies that:

û ξ , κ1,η− 1ð Þ�� ��
L2 ≤ v̂o ξ ,η− 1ð Þ�� ��

L2 + v̂1 ξ ,η− 1ð Þ�� ��
L2 = v0k kL2 + v1k kL2 ,

where the last equality follows from Plancherel’s Theorem. Therefore, we may invert
the Fourier transform to obtain solution formula for u x, κ1, κ− 1ð Þ:

u x, κ1, κ− 1ð Þ: =F − 1 ûð Þ x,κð Þ=
X

ξ2Zds

ð
Rdt − 1

û ξ , κ1,η− 1ð Þ e2πihη− 1 ,κ− 1ie2πihx, ξi dη− 1.

The special solutions

u x,κð Þ=
XM

m= 1

ξm,ηmj jξmj2 = ηm

�� ��2n o Cm × e2πihηm ,κi × e2πihx, ξmi
� �

represent instances of the general solution formula where only finitely many coeffi-
cients in the infinite sum are non-trivial.
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In the reduced spacekime domain (2D space), the basic (constrained) solutions
can be explicated as:

u x1x2, κ1, κ2ð Þ= e2πi η1κ1 + η2κ2ð Þ × e2πi ξ1x1 + ξ2x2ð Þ, ξ 1j j2 + ξ 2j j2 = η1j j2 + η2j j2, s.t.

uo x1x2, κ2ð Þ
u1 x1x2, κ2ð Þ

 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Cauchy data

=
u x1x2, κ1 =0, κ2ð Þ

∂κ1u x1x2, κ1 =0, κ2ð Þ

 !
= e2πiη2κ2e2πi ξ1x1 + ξ2x2ð Þ

2πiη1e
2πiη2κ2e2πi ξ1x1 + ξ2x2ð Þ

 !
.

3.7.3 Lorentz Transformation in Spacekime

Let’s consider the two inertial frames K and K′ moving uniformly and rectilinearly
to each other. We assume that the velocity of the frame K′ against K, defined in rela-
tion to the first kime dimension k1, is equal to the vector v1. Similarly, the velocity of
the frame K′ against K, defined in relation to the second kime dimension k2, is equal
to the vector v2. (Here v1 and v2 are the two components of the velocity of the frame
K′ against K.) Denote by x, y and z the axes of frame K and similarly, by x′, y′ and z′
the axes of frame K′. The two kime dimensions, defined in the frame K, we will de-
note with k1 and k2 and in the frame K′ with k′1 and k′2. Let the point (p.) Q denote
the origin of the spatial frame of reference K (i.e., x=0, y=0, z =0) and p. Q′ repre-
sents the origin of the second spatial frame of reference K′ (i.e., x′=0, y′=0, z′=0).
The systems K and K′ are chosen in such a way that p. Q′ is moving along the axis x,
in the direction of increasing the values along the axis x.

Further, we can choose the axes of the reference frames K and K′ so that for an
observer in K, the axis x coincides with the axis x′, whereas the axes y and z are
parallel to the axes y′ and z′ and all corresponding pairs of axes (e.g., x and x′) have
the same directions. At the initial moment, k1 = k′1 =0 and k2 = k′2 =0, as p. Q′ coin-
cides with p. Q (p.Q′≡ p.Q). Under these conditions, the reference frames K and K′
are in a standard configuration. Let’s set: v1 = v1,0,0ð Þ and v2 = v2,0,0ð Þ, where
v1,0,0 are the projections of the velocity vector v2 onto the axes x, y, z of frame K
and similarly, v2,0,0 are the projections of the velocity vector v2 onto the axes x, y,
z. Also, assume that a particle’s coordinates in K and K′ are x, y, z, k1, k2ð Þ and�
x′, y′, z′, k′1, k′2Þ, respectively.

For simplicity, we will denote: x1 = x, x2 = y, x3 = z, x4 = ick1, x5 = ick2 and x′1 = x′,
x2′= y′, x3′= z′, x4′= ick′1, x5′= ick′2 in the two reference frames, K and K′. In order to
derive the transformations between K and K′, we will use Lorentz boosting in an
arbitrary direction. It generalizes the transformations between two inertial frames of
reference, with parallel x,y and z axes and whose space-time origins coincide; these
are the Lorentz transformations without rotation. First, let’s consider a proper rota-
tion angle α in the plane x4, x5ð Þ, while the other three dimensions x1, x2, x3ð Þ remain
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invariant. This transformation is described by a circular rotation matrix (rotating ei-
ther the spatial or the temporal dimensions, but not both):

R=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cos α sin α
0 0 0 − sin α cos α

0BBBBBB@

1CCCCCCA.

Let x4R and x5R denote the new axes, which arise from the rotation R of the x4 and x5
axes.

Then, an angle γ proper rotation in the plane x1, x4Rð Þ preserving the other three
dimensions x2, x3, x5Rð Þ is described by hyperbolic (boosting) rotation matrix (blend-
ing spatial and temporal dimensions):

L=

cos γ 0 0 − sin γ 0

0 1 0 0 0

0 0 1 0 0

sin γ 0 0 cos γ 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA.

To derive the transformations between K and K′, we will sequentially apply the opera-
tions R, L and R− 1, each of which preserves the spacetime interval ds2, extending the
classical Euclidean length. First, we will apply the R-transformation. As tan α = x5

x4
, if

x′1 =0, then x1 = − i v1c x4 = − i v2c x5 and thus tan α = v1
v2
. Here the angle α is a real number.

Denote β = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
v1

� �2
+ c

v2

� �2r and ζ = 1ffiffiffiffiffiffiffiffi
1− β2
p . Observing that 0≤ β ≤ 1 and ζ ≥ 1, we will

then have:

cos α = cβ
v1

and sin α = cβ
v2

.

Next, we apply the transformation L. As tan γ= x1
x4R

= x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4ð Þ2 + x5ð Þ2

q , if x′1 =0, then

x1 = − i v1c x4 = − i v2c x5 >0. Therefore, the angle γ is an imaginary number and

tan γ= − iβ,

sin γ= − iβζ , cos γ= ζ , and tan γ= − iβ.

The signs in the above expressions are chosen to ensure that when v1 ! 0 and
v2 ! 0, we will have:
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x′! x, y′! y, z′! z, k′1 ! k1, k′2 ! k2.

Finally, we apply the transformation, R− 1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cos α − sin α
0 0 0 sin α cos α

0BBBB@
1CCCCA, the

inverse of the initial transformation R. The final transformation matrix from the co-
ordinates x1, x2, x3, x4, x5 in K onto x′1, x′2, x′3, x′4, x′5 in K′ can be represented as the
product R− 1 × L×R:

R− 1 ×L×R=

cos γ 0 0 − cos α sin γ − sin α sin γ

0 1 0 0 0

0 0 1 0 0

cos α sin γ 0 0 1+ ðcos γ− 1Þcos2α ðcos γ− 1Þsin α cos α
sin α sin γ 0 0 ðcos γ− 1Þsin α cos α 1+ ðcos γ− 1Þsin2α

0BBBBBB@

1CCCCCCA.

Therefore,

x′1
x′2
x′3
x′4
x′5

0BBBBBB@

1CCCCCCA=

cos γ 0 0 − cos α sin γ − sin α sin γ

0 1 0 0 0

0 0 1 0 0

cos α sin γ 0 0 1+ ðcos γ− 1Þcos2α ðcos γ− 1Þsin α cos α
sin α sin γ 0 0 ðcos γ− 1Þsin α cos α 1+ ðcos γ− 1Þsin2α

0BBBBBB@

1CCCCCCA
x1
x2
x3
x4
x5

0BBBBB@

1CCCCCA.

Using the trigonometric relations above to substitute sin α, cos α, sin γ, cos γ by β
and ζ we obtain the following spacekime Lorentz transformation:

x0

y0

z0

k′1
k′2

0BBBBBB@

1CCCCCCA=

ζ 0 0 − c2
v1

β2ζ − c2
v2

β2ζ

0 0 0 0 0

0 0 1 0 0

− 1
v1

β2ζ 0 0 1+ ζ − 1ð Þ c2

v1ð Þ2
β2 ζ − 1ð Þ c2

v1v2
β2

− 1
v2

β2ζ 0 0 ζ − 1ð Þ c2
v1v2

β2 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

0BBBBBBBBB@

1CCCCCCCCCA

x

y

z

k1

k2

0BBBBBB@

1CCCCCCA:

As x′4 = ick′1 and x′5 = ick′2, the kime transformation coefficients include an extra ic fac-
tor. If v1 =0 and v2 =0, then β =0, ζ = 1 and x′= x, y′= y, z′= z, k′1 = k1, k′2 = k2. These
transformations belong to the group of proper orthochronous transformations, Lor-
entz group, SO+ 1, 3ð Þ, that preserve both kime coordinates. The transformation is
equivalent to its Minkowski spacetime counterpart, the 4D Lorentz transformation at
k2 ! 0 and accordingly v2 ! ±∞. These transformations are applicable in the case
of a Cartesian coordinate system.
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The Lorentz transformation between the two inertial frames of reference,

x, kð Þ= x, y, z|ffl{zffl}
x

, k1, k2|ffl{zffl}
k

 !
and x′, k′ð Þ= x′, y′, z′|fflfflffl{zfflfflffl}

x′

, k′1, k′2|ffl{zffl}
k′

0@ 1A 2 R3 ×R 2,

that are in a standard configuration (i.e., transformations without translations and/
or rotations of the space-axis, in the space hyperplane, and of the kime-axis in the
hyperplane of kime) can be expressed as follows:

k′1 = 1+ ζ − 1ð Þ c2

v1ð Þ2
β2

� �
k1 + ζ − 1ð Þ c2

v1v2
β2k2 − 1

v1
β2ζ x

k′2 = ζ − 1ð Þ c2
v1v2

β2k1 + 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

� �
k2 − 1

v2
β2ζx

x′= − c2β2ζ k1
v1
+ k2

v2

� �
+ ζ x

y′= y

z′= z ðy and z dimensions remainunchangedÞ.

����������������
(3:1)

In the above expression:
– k = k1, k2ð Þ, x = x, y, zð Þ, and k′= k′1, k′2ð Þ, x′= x′, y′, z′ð Þ are the initial and the trans-

formed spacekime coordinates,
– v1 = v1,0,0ð Þ and v2 = v2,0,0ð Þ are the vectors of the kime velocities of x′ against

x, defined with respect to k1, k2,
– β = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
v1

� �2
+ c

v2

� �2r , and

– ζ = 1ffiffiffiffiffiffiffiffi
1− β2
p .

These transformations are a generalization of the classical Lorentz transformation
representing a fixed space direction (x) to the 5D spacekime manifold.

Using the equation (3.1) we will get:

Δk′1 = 1+ ζ − 1ð Þ c2

v1ð Þ2
β2

 !
Δk1 + ζ − 1ð Þ c2

v1v2
β2Δk2 −

1
v1

β2ζ Δx,

Δk′1 = ζ − 1ð Þ c2

v1v2
β2Δk1 + 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

 !
Δk2 −

1
v2

β2ζ Δx

and
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Δx′= − c2β2ζ
Δk1
v1

+ Δk2
v2

� �
+ ζ Δx.

For a pair of causally connected kevents, Δs2 =Δx2 +Δy2 +Δz2 − c2 Δk1ð Þ2 − c2 Δk2ð Þ2 ≤0
(see Section 3.9), equation (3.1) implies that if Δk1 =0, Δx=0, Δy=0, and Δz =0, then
Δk′1 = ζ − 1ð Þ c2

v1v2
β2Δk2 and Δx′= − c2

v2
β2ζ Δk2.

Suppose two kevents are causally connected and in one inertial reference frame
K their first four coordinates x, y, z, k1 coincide, but the fifth (k2) coordinates are
distinct Δk2 ≠0. Then, in a different inertial frame K′ the kevents coordinates x′, k′1
must be distinct. In other words, when Δk2 ≠0 and v2 ≠±∞ (v2 is finite), it is possible
that Δk′1 ≠0 and Δx′≠0.

In polar coordinates r, φð Þ 2 R + × − π, π½ Þf g, the transformations are given by
the following equations:
– Frame of reference K:

k1 = t cos φ = r
c
cos φ, k2 = t sin φ = r

c
sin φ,

rð Þ2 = ctð Þ2 = ck1ð Þ2 + ck2ð Þ2,

φ = atan2 k2, k1ð Þ=

2 arctan k2
k1 +

ffiffiffiffiffiffiffiffiffiffi
k21 + k22

p !
, if k1 >0

2 arctan

ffiffiffiffiffiffiffiffiffiffi
k21 + k22

p
− k1

k2

� �
, if k1 ≤0 ∩ k2 ≠0

− π, k1 <0 ∩ k2 =0

undefined, k1 =0 ∩ k2 =0

.

8>>>>>>>>><>>>>>>>>>:
– Frame of reference K′:

r′ð Þ2 = ct′ð Þ2 = ck′1
� �2 + ck′2

� �2 =
= 1+ ζ − 1ð Þ c2

v1ð Þ2
β2

� �
r cos φ + ζ − 1ð Þ c2

v1v2
β2r sin φ − c

v1
β2ζ x

� �2
+ ζ − 1ð Þ c2

v1v2
β2r cos φ + 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

� �
r sin φ − c

v2
β2ζ x

� �2
,
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φ = atan2 k′2, k′1ð Þ=

2 arctan
k′2

k′1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k′1ð Þ2 + k′2ð Þ2

q
0B@

1CA, if k′1 > 0

2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k′1ð Þ2 + k′2ð Þ2

q
− k′1

k′2

0@ 1A, if k′1 ≤0 ∩ k′2 ≠0

− π, k′1 <0 ∩ k′2 =0

undefined, k′1 =0 ∩ k′2 =0

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

3.7.4 Properties of the General Spacekime Transformations

Next, we are going to examine some of the properties of the general transformations
between two reference frames, K and K′. Again, x1, x2, x3 and x4, x5 denote the 3
space dimensions and the 2 kime dimensions, respectively, i.e., x1 = x, x2 = y, x3 = z,
x4 = ck1, x5 = ck2. Then, the Euclidean spacekime metric tensor dictates that the fol-
lowing equality is satisfied for the coordinates in the two frames:

X3
η = 1

xηð Þ2
 !

− x4
� �2 − x5

� �2 = X3
η = 1

xη′
� �2 !

− x4
′

� �2
− x5

′
� �2

. (3:2)

In general, this relation extends to the non-Euclidean spacekime manifold:

xμ ′ = aμ
ρ xρ +bμ, (3:3)

where μ, ρ = 1, 2, 3, 4, 5.2 Here bμ are five constant values, which are equal to the val-
ues of xμ′ for the case when xμ =0 (μ = 1, 2, 3, 4, 5), i.e., bμ is a 5-dimensional vector of
translation (offset) in the spacekime. If the origins of both reference systems coin-
cide, then bμ =0 (μ = 1, 2, 3, 4, 5). Furthermore, we will examine spacekime affine
transformations, excluding translations, i.e.,

xμ ′ = aμ
ρ xρ. (3:4)

Let’s introduce the following notation:

2 In this, and the following formulae, we use Einstein’s summation convention for repeating indices.

140 Chapter 3 Time Complexity

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



gμρ = gρμ =
1, at μ = ρ = 1, 2, 3

− 1, at μ = ρ = 4, 5
0, at μ ≠ ρ

.

8><>:
Then the condition (3.2) expressing the relation between two inertial frames can be
presented in the form:

gμρxμxρ = gμρxμ′xρ′. (3:5)

If we substitute equality (3.4) on the right-hand side of the equation (3.5) and then
compare the coefficients of x, we obtain:

gμρ = gλϑ aλ
μ aϑ

ρ, (3:6)

where λ, ϑ = 1, 2, 3, 4, 5. Let us define a 5× 5 matrix Að Þμρ, with elements aμ
ρ: Að Þμρ ≡ aμ

ρ.
Similarly, let us define the elements of the matrix Gð Þμρ ≡ gμρ. The matrix presenta-
tion in equation (3.6) can be written as Gð Þμρ = AtGAð Þμρ, and its determinant is:

detðGÞ= det AtGA
� �

= det At� �
det Gð ÞdetðAÞ.

As det Atð Þ= det Að Þ and det Gð Þ= 1, we obtain:

det Að Þ= ± 1. (3:7)

In equation (3.6), to solve for the coefficient a44, we set μ = ρ = 4 to obtain:

− 1=
X3

η = 1

aη
4

� �2 − a44
� �2 − a54

� �2, i.e., a44 = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+
X3

η = 1
aη
4

� �2 − a54
� �2s

.

To solve for the coefficient a55, we set μ = ρ = 5:

− 1=
X3

η = 1

aη
5

� �2 − a45
� �2 − a55

� �2, i.e., a55 = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+
X3

η = 1
aη
5

� �2 − a45
� �2s

.

Therefore, we can identify the following 9 possible situations:

a44 >0 and fa55 >0 or a55 <0 or a55 =0g;
a44 <0 and fa55 >0 or a55 <0 or a55 =0g;
a44 =0 and fa55 >0 or a55 <0 or a55 =0g;

(3:8)

The additional binary condition (3.7) yields doubling of the possibilities, i.e., we
have a total of 18 possible cases. In the case of two-dimensional kime, it is possible
that a44 =0 and a55 =0. For instance, if x1 = x, x2 = y, x3 = z, x4 = ck1, x5 = ck2 and the
frame transformation is x1′ = x, x2′ = y, x3′ = z, x4′ = ck2, x5′ = − ck1, then a44 =0 and
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a55 =0. The transformations corresponding with a44 ≠0 and a55 ≠0 are called non-
zero transformations.

Now let’s focus only on these non-zero transformations. In general, there are 8
non-zero transformations (see Table 3.2). The transformations that preserve the frame
orientation ("!) are called proper orthochronous transformations. In this case, there is
one proper orthochronous transformation, denoted by Λ"!+ , corresponding to det Að Þ=
+ 1, a44 >0 and a55 >0 (+ ).

The more general transformations that just preserve the signs of k1 and k2, (e.g.,
a44 >0 and a55 >0) are called orthochronous in relation to k1 and k2, and are denoted
by Λ"!, e.g., Λ"! = Λ"!+ ∪ Λ"!−

� 	
.

Transformations preserving just the sign of k1, (e.g., a44 >0) are called orthochro-
nous in relation to k1 and are denoted by Λ! = Λ"!+ ∪ Λ#!+ ∪ Λ"!− ∪ Λ#!−

� 	
. And

similarly the sign-preserving transformations of k2, (i.e., a55 >0), are called ortho-
chronous in relation to k2 and denoted by Λ" = Λ"!+ ∪ Λ" + ∪ Λ"!− ∪ Λ" −

� 	
.

The respective transformations that change the signs of the time dimensions, k1
and k2, are called non-orthochronous transformations and are denoted by Λ# =

Λ# + ∪ Λ# −
� 	

. It is clear that a transformation can be simultaneously orthochro-
nous in relation to a given kime dimension and non-orthochronous in relation to
the other kime dimension (e.g., the transformation Λ#!+ ). Proper and non-proper
transformations are denoted by Λ + = Λ"!+ ∪ Λ#!+ ∪ Λ" + ∪ Λ# +

� 	
, corresponding to

det Að Þ= + 1, and Λ − = Λ"!− ∪ Λ#!− ∪ Λ" − ∪ Λ# −
� 	

, corresponding to det Að Þ= − 1,
respectively.

Next, we will define the following discrete operations that represent spatial or
temporal reflection:

xμ′ =Πμ
ρ xρ, xμ′′ =Γμ

ρx
ρ, xμ′′′ =Ωμ

ρx
ρ, xμiv =Ξμ

ρx
ρ,

where

Πμ
ρ = diag − 1, − 1, − 1, + 1, + 1ð Þ, Γμ

ρ =diag + 1, + 1, + 1, − 1, − 1ð Þ,

Ωμ
ρ =diag + 1, + 1, + 1, − 1, + 1ð Þ, Ξμ

ρ = diag + 1, + 1, + 1, + 1, − 1ð Þ.

Note that scalar products are invariant under such spatial and temporal reflections
in the full group of transformations. Table 3.2 provides a mapping that connects
spatial and temporal operations to the 8 non-zero transformations we described
above, equation (3.8).
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3.7.5 Backwards Motion in the Two-Dimensional Kime

In the special theory of relativity, positive timelike intervals, s2 = x2 + y2 + z2 − c2t2 <0,
t >0, cannot be mapped via proper orthochronous Lorentz transformations into nega-
tive timelike intervals, s2 <0, t <0. If this was possible, then by continuity, this would
also be true for t =0, which yields a contradiction when s2 <0. Thus, relative to t =0,
the spacetime region s2 <0, t >0 (inside of the positive light cone) is called “absolute
future” and similarly the region s2 <0, t <0 (the inside of the negative light cone) is
called the “absolute past”.

This property does not extend to the case of two-dimensional kime. For exam-
ple, positive kimelike intervals s2 = x2 + y2 + z2 − c2 k1ð Þ2 − c2 k2ð Þ2 <0, k1 >0, k2 >0 can
be mapped through proper orthochronous transformations Λ"!+ (see Section 3.7.4
above) into negative or mixed kimelike intervals like s2 <0, k1 ≤0, k2 ≤0 or
s2 <0, k1 ≤0, k2 ≥0 or s2 <0, k1 ≥0, k2 ≤0. Indeed, since k1 and k2 are independent
components, it is possible to simultaneously satisfy the following conditions:
k1 =0, k2 ≠0 and x2 + y2 + z2 − c2 k2ð Þ2 <0. Thus, the equality k1 =0 does not contra-
dict the inequality s2 <0. Similarly, there is no contradiction between the equality
k2 =0 and the inequality s2 <0.

We will show that under certain conditions, applying proper orthochronous
transformations Λ"!+ , see equation (3.1) and Section 3.7.3, leads to backwards
movement in the kime manifold spanned by k1 and k2. Let us assume that
Δs2 =Δx2 +Δy2 +Δz2 − c2 Δk1ð Þ2 − c2 Δk2ð Þ2 ≤0, Δx>0, Δy=0, Δz =0, Δk1 >0, and
Δk2 ≥0. From equation (3.1), see Section 3.7.3, we have the following equality:

Table 3.2: Decomposition of the group of non-zero transformations.

Transformations
between K and K ′

det Að Þ sign a44 sign a55 Operations applied on Λ"!+ :

Λ"!+ + + + 1 unitmatrixð Þ=diag + 1, + 1, + 1, + 1, + 1ð Þ
Λ#!+ + + − ΠΞ = diag − 1, − 1, − 1, + 1, − 1ð Þ
Λ" + + − + ΠΩ=diag − 1, − 1, − 1, − 1, + 1ð Þ
Λ# + + − − Γ =diag + 1, + 1, + 1, − 1, − 1ð Þ

Λ"!− − + + Π = diag − 1, − 1, − 1, + 1, + 1ð Þ
Λ#!− − + − Ξ =diag + 1; + 1; + 1; + 1; − 1ð Þ

Λ" − − − + Ω= diag + 1; + 1; + 1; − 1; + 1ð Þ
Λ# − − − − ΠΓ total inversionð Þ=diag − 1, − 1, − 1, − 1, − 1ð Þ
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Δk′1 = 1+ ζ − 1ð Þ c2

v1ð Þ2
β2

 !
Δk1 + ζ − 1ð Þ c2

v1v2
β2Δk2 −

1
v1

β2ζΔx (3:9)

Assuming that v1 >0, we can examine the conditions on the velocities v1 and v2 that
guarantee Δk′1 <0. That is, we will explore the kime-velocity (v1 and v2) conditions
for backwards kime motion in the k1 direction, which does not have a direct ana-
logue in the standard theory of relativity.

First, take Δk2 =0 and set Δx= cΔk1. Since Δs2 ≤0, we have Δx≤ cΔk1. In this
case, the inequality Δk′1 <0 is equivalent to the inequality:

Δk′1
Δk1

= 1+ ζ − 1ð Þ c2

v1ð Þ2
β2 −

c
v1

β2ζ <0. (3:10)

If we set p= c
v1
, then we will obtain a quadratic inequality in relation to the parame-

ter p. The expressions for β and ζ contain two independent variables c
v1
and c

v2
, sub-

ject to a single restriction c
v1

� �2
+ c

v2

� �2
≥ 1, see Section 3.7.3 and Section 3.11. Let’s

set c
v1

� �2
+ c

v2

� �2
= const≥ 1, β = const≤ 1, and ζ = const≥ 1. Computing the first

and second derivatives of the function

f pð Þ= ζ − 1ð Þβ2p2 − β2ζ p+ 1

allow us to compute the minimum of f pð Þ, which is attained at p= ζ
2 ζ − 1ð Þ and ζ > 1.

Thus, for 1≥ β >0 and ζ > 1, the function f pð Þ reaches its minimum at p= ζ
2 ζ − 1ð Þ.

Therefore, setting p= c
v1
= ζ

2 ζ − 1ð Þ and ζ > 1 and using inequality (3.10) we obtain:

− β2ζ 2 + 4ζ − 4<0. (3:11)

As β ! 1, ζ = 1ffiffiffiffiffiffiffiffi
1− β2
p !∞, p= c

v1
= ζ

2 ζ − 1ð Þ ! 1
2, and

Δk′1
Δk1
! −∞. Further, if β = 2

ffiffi
2
p
3 (i.e.,

ζ = 3 and p= 3
4), then the expression (3.11) becomes equal to zero. Hence, if

p 2 ½12 , 3
4Þ, then condition (3.10) is satisfied and therefore Δk′1

Δk1
<0. In this case Δk′1 <0,

i.e., the particle will move backwards in kime dimension k′1, which we wanted to
derive. At the two extremes, when p= 3

4, then
Δk′1
Δk1

=0, i.e., Δk′1=0, and when p! 1
2,

then Δk′1
Δk1
! −∞, i.e. Δk′1 ! −∞. Using equation (3.1), see Section 3.7.3, we obtain

the following equality:

Δk′2 = ζ − 1ð Þ c2

v1v2
β2Δk1 + 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

 !
Δk2 −

1
v2

β2ζ Δx. (3:12)
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Since Δk2 =0 and x= cΔk1, we will have: Δk′2 = ζ − 1ð Þ c2
v1v2

β2 − c
v2

β2ζ
� �

Δk1. Let us as-

sume that v2 >0 and c
v1
= ζ

2 ζ − 1ð Þ. Then ζ − 1ð Þ c2
v1v2

β2 − c
v2

β2ζ <0 and hence, Δk′2 <0. If

β ! 1, ζ ! ∞, and p! 1
2, then

Δk′2
Δk1
! −∞, i.e., Δk′2 ! −∞.

Suppose now that Δk2 >0, Δk′1 is governed by the equation (3.9) and Δk′2 by equation

(3.12). The condition Δs2 ≤0 (and Δy=0, Δz =0) implies that Δx≤ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δk1ð Þ2 + Δk2ð Þ2

q
.

Let’s set Δx= χc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δk1ð Þ2 + Δk1ð Þ2

q
, where 0≤ χ ≤ 1. We will examine the conditions on the

kime velocities v1 and v2 that yield backwards kime motion in both kime dimensions
Δk′1 <0 and Δk′2 <0.

Let p= c
v1
= ζ

2 ζ − 1ð Þ and p 2 1
2 ; 34
�h
. Then, the following inequalities are satisfied

1+ ζ − 1ð Þ c2

v1ð Þ2
β2 − c

v1
β2ζ <0 and ζ − 1ð Þ c2

v1v2
β2 − c

v2
β2ζ <0.

These two expressions tend to −∞ð Þ as β ! 1 and accordingly ζ !∞, p! 1
2.

Since Δk1, Δk2 and Δx are independent spacekime characteristics, we can
choose the value Δk1 to be large enough, the value Δk2 to be small enough, and
the value χ to be close to 1. This yields that the expressions ζ − 1ð Þ c2

v1v2
β2 Δk2

Δk1
,

c
v1

β2ζ 1− χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ Δk2

Δk1

� �2r !
, 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

� �
Δk2
Δk1

, and c
v2

β2ζ 1− χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ Δk2

Δk1

� �2r !
may

by arbitrarily small.
When p 2 � 12 ; 34 �, appropriate values of Δk1, Δk2, and x would guarantee the fol-

lowing inequalities:

1+ ζ − 1ð Þ c2

v1ð Þ2
β2

 !
−

c
v1

β2ζ

 !
+ ζ − 1ð Þ c2

v1v2
β2 Δk2

Δk1
+ c
v1

β2ζ 1− χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ Δk2

Δk1

� �2
s0@ 1A<0,

ζ − 1ð Þ c2

v1v2
β2 −

c
v2

β2ζ
� �

+ 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

 !
Δk2
Δk1

+ c
v2

β2ζ 1− χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ Δk2

Δk1

� �2
s0@ 1A<0.

In other words,

Δk′1 = 1+ ζ − 1ð Þ c2

v1ð Þ2
β2

 !
Δk1 + ζ − 1ð Þ c2

v1v2
β2Δk2 −

c
v1

β2ζ χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δk1ð Þ2 + Δk1ð Þ2

q
<0 and

Δk′2 = ζ − 1ð Þ c2

v1v2
β2Δk1 + 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

 !
Δk2 −

c
v2

β2ζ χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δk1ð Þ2 + Δk1ð Þ2

q
<0.

Examples of these situations are shown in Table 3.3.
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Table 3.3 illustrates that when β <0.800, the value c
v2

is purely an imaginary
number and Δk′1 and Δk′2 are complex numbers. Similarly, when β =0.800, Δk′1 >0,
Δk′2 >0; when β ≈0.841649, Δk′1 >0, Δk′2 =0; when β =0.950, Δk′1 >0, Δk′2 <0; when
β ≈0.976556, Δk′1 =0, Δk′2 <0; and when β =0.999, Δk′1 <0, Δk′2 <0.

These results for complex-time (2D kime) suggest that it is possible to simulta-
neously fulfill the following conditions v1 > c and Δk′1 >0. For instance, if p= c

v1
=

0.694, then Δk′1 =0.142>0. This is quite different from the special theory of relativity
(STR) case corresponding to one-dimensional time.

3.7.6 Rotations in Kime and Space Hyperplanes

Suppose a particle moving in the 5D spacekime manifold is indexed by a pair of
kime coordinates (k1, k2) and three spatial dimensions x, y, zð Þ. We can separately
and independently apply kime-axes rotations in the kime hyperplane, and space-
axis rotations in the spatial hyperplane. These (passive) linear transformations can be
expressed as changes of the kime or space bases in a frame of reference. The
group of all proper and improper rotations in the kime hyperplane is isomorphic
to the orthogonal group O 2, Rð Þ. Similarly, the group of all proper and improper
rotations in the spatial hyperplane is isomorphic to the orthogonal group O 3,Rð Þ,
where R denotes the field of real numbers. The kime and space intervals, dk2 =

Table 3.3: Some of the values of Δk′1 and Δk′2 provided that Δk1 = 1, Δk2 =0.3, χ =0.999.

β ζ p =
c
v1

c
v2

Δk′1 Δk′2

. . . Imaginary number Complex number Complex number

. . . . . .

. . . . . .

. . . . . .

. . . . . −.

. . . . . −.

. . . . . −.

. . . . . −.

. . . . −. −.

. . . . −. −.

. . . . −. −.

. . . . −. −.
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ðdk1Þ2 + dk2ð Þ2 and dx2 =dx2 +dy2 +dz2, as well as the 5D spacekime interval
ds2 = dx2 + dy2 +dz2 − c2 dk1ð Þ2 − c2 dk2ð Þ2, are invariant under such rotation operations.

Let’s examine a kime hyperplane rotation that maps the (k1, k2) axes onto a pair
of new kime axes, ðk′1, k′2Þ. We’ll denote the kime intervals by dk = ðdk1, dk2Þ and
dk′= ðdk′1, dk′2Þ, representing the vector components of dk (kime change) before and
after applying of the rotation transformation. As rotations preserve distances, we
have

�
dk′1
�2 + �dk′2�2 = dk1ð Þ2 + dk2ð Þ2. The transformation under consideration can

be presented as an orthogonal matrix A= ½aμσ�2× 2, a member of the orthogonal group
O 2, Rð Þ, where μ, σ 2 1, 2f g, At =A− 1, and det Að Þ= + 1, for proper rotation, A 2
SO 2,Rð Þ, or det Að Þ= − 1, for improper rotation. The relation between the components
ðdk′1, dk′2Þ and their counterparts ðdk1, dk2Þ is given by the following equality:

dk′= dk ×A.

More explicitly, dk′σ = dk1a1σ + dk2a2σ, σ 2 1, 2f g. For example, in the new kime rota-
tion space, the feasibility of dk′1 =dk′2 = dtffiffi

2
p >0 is guaranteed by choosing an appro-

priate angle between the vector dk and the kime axes k′1, k′2 to be π
4.

Very similarly, we can define proper and improper spatial rotation of the space
axes in the space hyperplane.

3.7.7 Velocity-addition Law

The velocity-addition law represents a 3D equation expressing the velocities of ob-
jects in different reference frames. The STR suggests that velocity-addition may not
behave as a simple vector summation. If we have a transformation between two
spacekime frames, K and K′, we can derive the velocity-addition formulae. Let’s de-
note the velocities in each spacekime frame by Vσ η = dxη

dkσ
and V′σ η = dxη′

dkσ′
, indexed by

σ = 1, 2 (in kime) and η = 1, 2, 3 (in space). Then, the velocity-addition formulae are
given by:

V′σ1 =
Vσ1ζ 1− β2 c2

v1V11
+ c2

v2V21

� �� �
1+ Vσ1

vσ
β2 ζ − 1ð Þ c2

v1V11
+ c2

v2V21

� �
− ζ

� � ,
V′σ ϑ =

Vσ ϑ

1+ Vσ1
vσ

β2 ζ − 1ð Þ c2
v1V11

+ c2
v2V21

� �
− ζ

� � .
In the above expressions, the indices σ = 1, 2; ϑ = 2, 3, v1 = v1,0,0ð Þ and v2 = v2,0,0ð Þ
are the projections of the velocity vector v1 onto the spatial axes x, y, z of the frame K,
and correspondingly, the velocity vector v2 onto the same spatial axes x, y, z of K.
Also, we used the equalities dkθ

dkσ
= dxη

dkσ
dkθ
dxη

= Vσ η
Vθη

,
V1η
V1π

= V2η
V2π

, where η, π = 1, 2, 3, Vσ η
Vσ π

= dxη
dxπ

,
and σ = 1, 2.
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3.7.8 Generalization of the Principle of Invariance of the Speed of Light

As a result of the 2D generalization of time in 5D spacekime, the principle of invari-
ance of the speed of light, as stipulated in the Special Theory of Relativity, requires a
new fresh look.

Let us assume that a particle moves in 5D spacekime relative to the kime di-
mensions, k1, k2, and space dimensions, x, y, z in a frame of reference K. The
3+ 2ð Þ-dimensional interval in this case is expressed as follows: ds2 =dx2 +dy2 +

dz2 − c2dk21 − c2dk22 . Let us set: Vθ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 +dy2 +dz2
p

dkθj j , where θ = 1, 2. Then, the total ve-

locity in this case is equal to

u=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 +dy2 +dz2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dk21 +dk22

p =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2 +dz2

p
dkj j >0.

For lightlike intervals, i.e., ds2 =0, we will have:

u= c, i.e., c2

V1
2 +

c2

V2
2 = 1. (3:13)

Note that V1 =V2 corresponds to an appropriate rotation in the kime hyperplane, so
that dk1 =dk2. This implies that

V1 =V2 = c
ffiffiffi
2
p

. (3:14)

Now consider the motion of the particle in the reference frame K′, which is moving
uniformly and rectilinearly in relation to K. The 3+ 2ð Þ-dimensional spacekime inter-
val in this case is given by the expression: ðds′Þ2 = dx′ð Þ2 + dy′ð Þ2 + dz′ð Þ2 − c2 dk′1ð Þ2
− c2 dk′2ð Þ2. We utilize analogous notation for the relative velocity in K′:

V′θ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx′ð Þ2 + dy′ð Þ2 + dz′ð Þ2

q
dk′θ
�� �� , θ = 1, 2ð Þ and

u′=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx′ð Þ2 + dy′ð Þ2 + dz′ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dk′1
� �2 + dk′2

� �2q =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx′ð Þ2 + dy′ð Þ2 + dz′ð Þ2

q
dκ′j j .

Since the interval ds is invariant, we have ds=ds′=0, and therefore

u′= c, i.e., c2

V ′
1

� �2 + c2

V ′
2

� �2 = 1. (3:15)

Again, an appropriate K′ rotation in the kime hyperplane would yield V′1 =V′2,
dk′1 =dk′2, and
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V′1 =V′2 = c
ffiffiffi
2
p

. (3:16)

Consequently, there exist a pair of equivalence relations. The first one suggests that
if the velocities u and Vθ of a particle in reference frame K satisfy equation (3.13),
then the velocities u′ and V′θ of the particle in the other frame, K′, would satisfy
equation (3.15). The second equivalent relation is that when the velocities Vθ of a
particle in K satisfy equation (3.14), then the corresponding velocities V′θ of the par-
ticle in will satisfy equation (3.16).

3.7.9 Heisenberg’s Uncertainty Principle

A freely moving microparticle in spacekime can be described with a flat wave of de
Broglie [157]:

ψ xð Þ= ψpx =
1ffiffiffiffiffiffiffiffi
2π�h
p exp −

i
�h

e1k1 + e2k2 − pxxð Þ
� �

,

where e1 = �hω1, e2 = �hω2 represent the particle energy, defined in relation to the
kime dimensions k1 and k2, respectively, and px = �h

γ. The angular frequencies of the
wave, ω1 and ω2, are defined in relation to the kime dimensions k1 and k2, respec-
tively, and γ is the angular wavenumber. In Chapter 5, we will show that the classical
Heisenberg 4D spacetime uncertainty may be explained as a reduction of Einstein-like
5D deterministic dynamics. In other words, the common spacetime uncertainty princi-
ple could be understood as a consequence of deterministic laws in 5D spacekime.

3.7.10 5D Spacekime Manifold Waves and the Doppler Effect

The d’Alembert wave operator represents the generalization of the Laplace operator
to the 5D Minkowski spacekime

□1, 2 ≡ gμρ ∂

∂xμ
∂

∂xρ =
X3

η = 1

∂

∂xη

� �2

−
∂

c∂k1

� �2

−
∂

c∂k2

� �2

,

where gμρ =
1, at μ = ρ = 1, 2, 3

− 1, at μ = ρ = 4, 5
0, at μ≠ρ

8<: , x4 = ck1, and x5 = ck2.

As the 5D Minkowski spacekime metric is invariant to Lorentz transformations, the
d’Alembert wave operator□1, 2 is a Lorentz scalar:

□1, 2 =□′1, 2 =
X3

η = 1

∂

∂xη′

� �2

−
∂

c∂k′1

� �2

−
∂

c∂k′2

� �2

.
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Therefore, these expressions are valid for all standard 5D spacekime coordinates in
every inertial frame.

For simplicity, let’s denote x1 = x, x2 = y, x3 = z. In the 5D spacekime manifold,
the wave equation may be expressed as ultrahyperbolic partial differential equation

∂2F
∂x2

+ ∂2F
∂y2

+ ∂2F
∂z2

= γ

ω1

� �2
∂2F
∂k21

+ γ

ω2

� �2
∂2F
∂k22

,

where ω1 and ω2 are the angular frequencies of the wave defined in relation to the
kime dimensions k1 and k2, respectively, γ is the angular wavenumber, and u1 = ω1

γ

and u2 = ω2
γ represent the phase velocities relative to k1 and k2.

We will examine the Doppler effect in the 5D spacekime manifold where it is
possible that certain waves have properties depending only on one or both of the
two kime dimensions. We will consider the general case, when a wave is moving in
the two kime dimensions k1, k2, as well as in the three spatial dimensions x, y, z.

Let ω1 and ω2 represent the angular frequencies of the wave in the frame K, in-
dexed by the kime dimensions k1 and k2, and γ=

�
γx, γy, γz

�
be the wave vector of this

wave in K. The phase of the wave in K will be given by the following expression:

ω1k1 + ω2k2 − γx, where x = x, y, zð ÞT .
Suppose ω′

1 and ω′
2 are the angular frequencies of the wave in another reference

frame, K′, indexed by k′1 and k′2, and γ′= γ′x, γ′y, γ′z
� �

is the wave vector of the wave in
K′. Then, the phase of the same wave in K′ will be ω1′k′1 + ω2′k′2 − γ′x′, where
x′= x′, y′, z′ð ÞT . To derive the Doppler effect for the wave, let’s assume the wave
phase is invariant, i.e.,

ω1k1 + ω2k2 − γx = ω1′k′1 + ω2′k′2 − γ′x′.

We also label the angular wavenumber γ′= γ′>0, the phase velocities, relative to k′1
and k′2, respectively, u′1 = ω′1

γ′ , u
′
2 =

ω′1
γ′ , and

γ′x
γ′ = cos ϕ′. Applying the earlier transforma-

tions (3.1), from K to K′ (see Section 3.7.3) we can express the relation between
ω1, ω2, γx, γy, γz and, ω′1, ω′2, γ′x, γ′y, γ′z:

ω1 = ω′1 1+ ζ − 1ð Þ c
2

v12
β2 + c2

v1u′1
β2ζ cos ϕ′

� �
+ ω′2 ζ − 1ð Þ c2

v1v2
β2,

ω2 = ω′2 1+ ζ − 1ð Þ c
2

v22
β2 + c2

v2u′2
β2ζ cos ϕ′

� �
+ ω′2 ζ − 1ð Þ c2

v1v2
β2,

γx = γ′xζ 1+ u′1
v1 cos ϕ′

β2
� �

+ γ′xζ β2 u′2
v2 cos ϕ′

,
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γy = γ′y,

γz = γ′z.

These are derived from the invariance relation ω1k1 + ω2k2 − γx = ω′1k′1 + ω′2k′2 − γ′x′,

ω1, ω2, − γx, − γy, − γz

� �
k1

k2

x

y

z

0BBBBBB@

1CCCCCCA =

ω′1, ω′2, − γ′x, − γ′y, − γ′z
� � k′1

k′2
x′
y′
z′

0BBBB@
1CCCCA =|fflfflfflfflffl{zfflfflfflfflffl}

transformation
3.1ð Þ, swap 4th , 5th

columns and rows
with 1st , 2nd , 3rd

ω′1, ω′2, − γ′x, − γ′y, − γ′z
� �

1+ ζ − 1ð Þ c2

v1ð Þ2
β2 ζ − 1ð Þ c2

v1v2
β2 − 1

v1
β2ζ 0 0

ζ − 1ð Þ c2
v1v2

β2 1+ ζ − 1ð Þ c2

v2ð Þ2
β2 − 1

v2
β2ζ 0 0

− c2
v1

β2ζ − c2
v2

β2ζ ζ 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBBBBB@

1CCCCCCCCCA

k1

k2

x

y

z

0BBBBBB@

1CCCCCCA,

x′

y′

z′
k′1
k′2

0BBBBBB@

1CCCCCCA=

ζ 0 0 − c2
v1

β2ζ − c2
v2

β2ζ

0 1 0 0 0

0 0 1 0 0

− 1
v1

β2ζ 0 0 1+ ζ − 1ð Þ c2

v1ð Þ2
β2 ζ − 1ð Þ c2

v1v2
β2

− 1
v2

β2ζ 0 0 ζ − 1ð Þ c2
v1v2

β2 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

0BBBBBBBBB@

1CCCCCCCCCA

x

y

z

k1

k2

0BBBBBB@

1CCCCCCA,

from equation (3.1).

Therefore,

ω1 = ω′1 1+ ζ − 1ð Þ c
2

v12
β2 + c2

v1u′1
β2ζ cos ϕ′

� �
+ ω′2 ζ − 1ð Þ c2

v1v2
β2,
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ω2 = ω′2 1+ ζ − 1ð Þ c
2

v22
β2 + c2

v2u′2
β2ζ cos ϕ′

� �
+ ω′1 ζ − 1ð Þ c2

v1v2
β2,

γx = γ′xζ 1+ u′1
v1 cos ϕ′

β2
� �

+ γ′xζ β2 u′2
v2 cos ϕ′

,

γy = γ′y,

γz = γ′z.

The expressions ω′2 ζ − 1ð Þ c2
v1v2

β2 and γ′xζ β2 u′2
v2 cos ϕ′ that are included in the angular fre-

quency ω1 and the wave vector γx, respectively, can be regarded as 2D kime-corrections
of the Doppler effect formula in the spacekime manifold. Notice that setting ω′2 =0
yields a formula for the Doppler effect that reflects a wave moving only in one kime
dimension k1, which corresponds to the classical time Doppler effect. Still, in this case,
the expressions for ω1 and γx differ from the relativistic formulation of the Doppler ef-
fect in the Special Theory of Relativity.

3.7.11 Kime Calculus of Differentiation and Integration

Wirtinger derivatives are first-order partial differential operators that extend the ordi-
nary univariate derivatives (defined with respect to a single real variable) to deriv-
atives of differentiable functions defined on complex arguments. The Wirtinger
derivative naturally leads to a differential calculus for functions defined on several
complex variables that resembles the familiar ordinary differential calculus of uni-
variate real functions [158, 160]. Below, we will derive the formulation of the first
and second order Wirtinger derivatives.

Earlier in Section 3.7.1, we saw the first order Wirtinger derivative of a function of
a complex variable defined in terms of the three common C plane parametrizations:
– in Cartesian coordinates: f ′ zð Þ= ∂f zð Þ

∂z = 1
2

∂f
∂x − i ∂f

∂y

� �
and f ′ �zð Þ= ∂f �zð Þ

∂�z = 1
2

∂f
∂x + i ∂f

∂y

� �
;

– in conjugate-pair coordinates: df = ∂f + �∂f = ∂f
∂z dz +

∂f
∂�z d�z ; and

– in polar kime coordinates:

f ′ kð Þ= ∂f kð Þ
∂k

= 1
2

cos φ
∂f
∂r

−
1
r
sin φ

∂f
∂φ

− i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� �� �
and

f ′ �k
� �

= ∂f �k
� �
∂�k

= 1
2

cos φ
∂f
∂r

−
1
r
sin φ

∂f
∂φ

+ i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� �� �
.

The second order Wirtinger derivative with respect to kime k = r, φð Þð Þ is:
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f ′′ kð Þ= ∂

∂k
∂f kð Þ
∂k

� �
= 1
2

∂

∂k
cos φ

∂f
∂r

−
1
r
sin φ

∂f
∂φ

− i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� �� �

= 1
4

cos φ
∂

∂r
cos φ

∂f
∂r

−
1
r
sin φ

∂f
∂φ

− i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� �� ��

−
1
r
sin φ

∂

∂φ
cos φ

∂f
∂r

−
1
r
sin φ

∂f
∂φ

− i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� �� �� �

− i sin φ
∂

∂r
cos φ

∂f
∂r

−
1
r
sin φ

∂f
∂φ

− i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� �� ��

+ 1
r
cos φ

∂

∂φ
cos φ

∂f
∂r

−
1
r
sin φ

∂f
∂φ

− i sin φ
∂f
∂r

+ 1
r
cos φ

∂f
∂φ

� ���� �
=

1
4r2

4 cos φ sin φ ∂f
∂φ − cos2φ ∂2f

∂φ2 + sin2φ ∂2f
∂φ2 − rcos2φ ∂f

∂r + rsin2φ ∂f
∂r −

4r cos φ sin φ ∂2f
∂r∂φ + r2cos2φ ∂2f

∂r2
− r2sin2φ ∂2f

∂r2

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Real part

+ i
2cos2φ ∂f

∂φ − 2sin2φ ∂f
∂φ + 2 cos φ sin φ ∂2f

∂φ2 + 2r cos φ sin φ ∂f
∂r −

2rcos2φ ∂2f
∂r∂φ + 2rsin2φ ∂2f

∂r∂φ − 2r2 cos φ sin φ ∂2f
∂r2

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Imaginary part

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
.

Thus, the kime-acceleration (second order kime-derivative at k = r, φð Þ) can be ex-
pressed more compactly as:

f ′′= 1
4r2

cos φ − i sin φð Þ2 2i
∂f
∂φ

−
∂2f
∂φ2 + r −

∂f
∂r

− 2i
∂2f
∂r∂φ

+ r
∂2f
∂r2

� �� �� �
.

In conjugate-pair coordinate space, the Laplacian is the divergence (∇ · ≡ h∇j) of the
gradient (∇) operator:

∇ ·∇|ffl{zffl}
inner− product
h∇j∇i≡∇′∇

≡∇2 ≡Δ= 4
∂

dz
∂

d�z
≡ 4

∂

d�z
∂

dz
.

Using first principles, we can derive that Δ≡ 4 ∂
∂z

∂
∂�z = ∂2

∂x2
+ ∂2

∂y2
:

∂

∂z
∂

∂�z
f = ∂

∂z
1
2

∂f
∂x

+ i
∂f
∂y

� �� �
= 1
2

1
2
∂

∂x
∂f
∂x

+ i
∂f
∂y

� �
−
1
2
i
∂

∂y
∂f
∂x

+ i
∂f
∂y

� �� �
=

1
4

∂2f
∂x2

+ i
∂2f
∂x∂y

− i
∂2f
∂y∂x|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

+ ∂2f
∂y2

0BB@
1CCA= 1

4
∂2

∂x2
+ ∂2

∂y2

� �
f .
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Smooth complex-valued functions over open sets in C are called analytic, or holo-
morphic, if they have well-defined complex derivatives at each point in their do-
mains. When such functions satisfy the Laplace equation, Δf =0, they are called
harmonic and can typically be expressed as mixtures of trigonometric sine and co-
sine functions.

These linear operators with constant coefficients may be extended to any space
of generalized functions. The classical properties of differentiation apply to the Wir-
tinger derivatives, as well. For a pair of complex-valued multivariate functions, f
and g, and two constants u, v 2 C, we have the following properties:
– Linearity:

∂

∂κ
uf + vgð Þ= u

∂f
∂κ

+ v
∂g
∂κ

.

– Product rule:

∂

∂κ
f × gð Þ= g

∂f
∂κ

+ f
∂g
∂κ

.

– Chain rule:

∂

∂κ
f � gð Þ= ∂f

∂κ
� g

� �
∂g
∂κ

+ ∂f
∂�κ
� g

� �
∂�g
∂κ

.

– Conjugation:

∂f κð Þ
∂κ

� �
= ∂�f κð Þ

∂�κ
= 1
2

cos φ
∂�f
∂r

−
1
r
sin φ

∂�f
∂φ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

real part

+ i sin φ
∂�f
∂r

+ 1
r
cos φ

∂�f
∂φ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

imaginary part

0BB@
1CCA

0BB@
1CCA:

It is common practice to pair calculus of differentiation and integration via the first
fundamental theorem of calculus. For a real-valued function g xð Þ:R ! R the funda-
mental theorem of calculus states that if G′ xð Þ= g xð Þ,∀x 2 a, b½ � 
 R , i.e., G is the
antiderivative of g, then

ðb
a

g xð Þdx=G bð Þ−G að Þ.

Now that we have kime-differentiation, we can explore the corresponding kime
path integration and the fundamental theorem of (kime) calculus. Let’s define a
function f :Ω 
 C ! C to be holomorphic (complex-analytic) in an open kime do-
main Ω if for any ∀zo 2 Ω the function can be expressed as an infinite Taylor series:
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X∞
k =0

αk z − zoð Þk = αo + α1 z − zoð Þ+ α2 z − zoð Þ2 + α3 z − zoð Þ3 + · · · + αn z − zoð Þn + · · · .

where the series coefficients αk 2 C ,∀k, and this expansion converges to f zð Þ in a
neighborhood of zo, Nzo = fz 2 Ωjkz − zok< δg. More specifically, a complex holo-
morphic function is infinitely differentiable and within a neighborhood of zo its Tay-
lor series expansion

Tn zð Þ=
Xn
k =0

f kð Þ zoð Þ
k!

z − zoð Þk

converges pointwise to the corresponding functional value, Tn zð Þ !
n!∞

f zð Þ,
∀z 2 Nzo 
 Ω 
 C.

Next we will focus on functions of kime, κ 2 Ω 
 C, over an open and simply
connected kime domain Ω. Suppose f : Ω ! C is an analytical holomorphic function
and ζ is a rectifiable simple closed curve in Ω, i.e., the path ζ is not self-intersecting,
permits a close approximation by a finite number of linear segments, and its start-
ing and ending points coincide. Then the Cauchy-Goursat integral theorem [160]
yields that the path integral of the holomorphic function over ζ is trivial:þ

ζ

f κð Þdκ =0.

The proof of this resembles closely the classical complex analysis derivation in
terms of kime, k= reiφ and f κð Þ= u κð Þ|ffl{zffl}

Re fð Þ

+ i v κð Þ|{z}
Im fð Þ

, where the pair of Cauchy-Riemann
equations:

∂u
∂κ1

= ∂v
∂κ2

∂u
∂κ2

= − ∂v
∂κ1

������
provide the necessary and sufficient conditions for f to be a complex differentiable
(holomorphic) function:

∂u
∂r = 1

r
∂v
∂φ

∂v
∂r = − 1

r
∂u
∂φ

,

Cartesian coord

change of variables

κ1 = r cos φ
κ2 = r sin φ

0BBBB@
1CCCCA ,

∂κ1
∂r

∂κ1
∂φ

∂κ2
∂r

∂κ2
∂φ

������
������= cos φ − r sin φ

sin φ r cos φ

���� ����|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Jacobian of Transform

,

����������
∂u
∂κ1

= ∂v
∂κ2

∂v
∂κ1

= −
∂u
∂κ2

,
∂u
∂r

= ∂u
∂κ1

∂κ1

∂r
+ ∂u
∂κ2

∂κ2

∂r
∂u
∂φ

= ∂u
∂κ1

∂κ1

∂φ
+ ∂u
∂κ2

∂κ2

∂φ

.

��������
��������
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Hence,þ
ζ

f κð Þdκ =
þ

ζ

u κð Þ+ i v κð Þð Þ dκ1 + i dκ2ð Þ=
þ

ζ

u dκ1 − v dκ2ð Þ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Reð Þ

+ i
þ

ζ

v dκ1 + u dκ2ð Þ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Imð Þ

=|{z}
Green’s
Theorem

ðð
Ω

−
∂v
∂κ1

−
∂u
∂κ2

� �
dκ1dκ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0, since ∂v
∂κ1

= − ∂u
∂κ2

+ i
ðð
Ω

∂u
∂κ1

−
∂v
∂κ2

� �
dκ1dκ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0, since ∂v
∂κ2

= ∂u
∂κ1

=0.

Notice that the equality above uses the relation between double area integral and
path integral calculations over simple closed curves (Green’s theorem). The Carte-
sian coordinate formulation of the path integral representing the area inside the
closed curve ζ , whose inside is the open simply connected set Ω, can first be trans-
formed to kime coordinates and then related to the area integral by:

Area=
þ

ζ

κ1dκ2 =
þ

ζ

r cos φd r sin φð Þ=
þ

ζ

r cos φ r d sin φ + sin φ drð Þ

=
þ

ζ

r2cos2φ|fflfflfflffl{zfflfflfflffl}
U r, φð Þ

dφ +
þ

ζ

r cos φ sin φ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
V r, φð Þ

dr =
þ

ζ

U r, φð Þdφ +V r, φð Þdr = Green’s theoremð Þ

=
ðð
Ω

∂U
∂r

−
∂V
∂φ

� �
dr dφ =

ðð
Ω

2rcos2φ|fflfflfflffl{zfflfflfflffl}
∂U
∂r

+ r sin2φ − rcos2φ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
∂V
∂φ

0BB@
1CCAdr dφ =

ðð
Ω

rdr dφ.

In the middle of this calculation, we used the standard Green’s theorem, which is
valid in any coordinate reference frame, including kime and Cartesian.

Therefore, integrals of holomorphic functions over paths in a simply connected do-
main are connected with the kime derivatives. A corollary of the Cauchy-Goursat theo-
rem is an extension of the real-valued fundamental theorem of calculus to complex-
valued functions. That is, over simply connected domains, path integrals of holomor-
phic complex-valued functions can be computed using antiderivatives. More precisely,
let Ω 
 C be an open and simply connected kime region, f : Ω ! C be an analytical
holomorphic function which is the kime-derivative of F, i.e., f = F′, and ζ be a piecewise
continuously differentiable path (not necessarily closed) in the domain Ω that starts
and ends at κ1, κ2 2 Ω, i.e., ζ : 0, 1½ � ! κ1, κ2½ �. Then,þ

ζ

f κð Þdκ = F κ2ð Þ− F κ1ð Þ.
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Path parameterization independence follows directly from Cauchy-Goursat integral
theorem, as connecting in reverse the pair of paths, ζ 1 and ζ 2 that have the same
starting and ending points, ζ 1, ζ 2: 0, 1½ � ! κ1, κ2½ � yields a closed curve ζ = ζ 1 − ζ 2:

0=
þ

ζ

f κð Þdκ =
þ

ζ 1 − ζ 2

f κð Þdκ =
þ

ζ 1

f κð Þdκ −
þ

ζ 2

f κð Þdκ )
þ

ζ 1

f κð Þdκ =
þ

ζ 2

f κð Þdκ.

Thus, expanding the path integral over the (open) path ζ yields:þ
ζ

f κð Þdκ =
þ

ζ

F′ κð Þdκ =|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
path parameterization

independence

ð1
0

F′ ζ tð Þð Þdζ =
ð1
0

F′ ζ tð Þð Þ ζ ′ tð Þ dt =

ð1
0

F � ζð Þ′ tð Þdt =
ð1
0

d F � ζð Þ= F � ζð Þ 1ð Þ− F � ζð Þ 0ð Þ= F ζ 1ð Þð Þ− F ζ 0ð Þð Þ= F κ2ð Þ− F κ1ð Þ.

It’s important to note that the function needs to be holomorphic over an open and sim-
ply connected kime domain. If this requirement is violated (e.g., f is not differentiable
or the kime region is closed or has holes), then this relation between the kime deriva-
tive and the kime path integral may be broken. Here is a simple counter example of a
holomorphic function f κð Þ= 1

κ − 1 over the kime domain Ω= fκ 2 Cj0< kκ − 1k< 1g
(mind the singularity of f at κ = 1). We can define a simple closed path ζ to be just the
unitary circle centered at κ = 1,

ζ tð Þ= 1+ ei 2πtð Þ: 0, 1½ � ! Ω.

Then, the kime path integral is non-trivial despite the fact that the curve starts and
ends at the same kime point, ζ 0ð Þ= ζ 1ð Þ= 2+ i0 2 C:þ

ζ

f κð Þdκ =
ð1
0

1
1+ ei 2πtð Þ − 1

d 1+ ei 2πtð Þ
� �

=
ð1
0

i2πð Þei 2πtð Þ

ei 2πtð Þ dt =
ð1
0

i2π dt = i2π ≠0.

3.8 The Copenhagen vs. Spacekime Interpretations

As shown earlier in Section 3.6, numerical Newtonian physics measurable quanti-
ties like the particle’s position, momenta, spin, and energy, represent in quantum-
mechanical sense silhouettes of their corresponding operators. For example, the
total energy (Hamiltonian operator) Ĥ = T̂ + V̂ is a linear mixture of the kinetic energy
operator, T̂ = − �h2

2m∇2, where ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplacian, and the potential en-

ergy operator, V̂, which depends on the specific type of force acting on the system, e.g.,
elastic, gravitational, Coulomb, and other conservative forces. In the special case of
spherically symmetric energy potentials, the potential energy operator V̂ = V̂ rð Þ= m

2 ω2r2
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depends only the magnitude of the radius vector, r, the particle mass, m, the oscillator
force constant, k, and the angular frequency of the oscillator, ω =

ffiffiffi
k
m

q
.

Thus, the eigenvalues, Eα, which capture all possible total energy states (observ-
able energy values), and the eigenfunctions, ψα, which describe the particle’s motion,
represent the eigen solutions of the total energy Hamiltonian operator Ĥψ α = Eα ψα.

The quantized measurable values including position and momenta represent the
eigenvalues of the corresponding operator with which they are paired. Therefore,
measuring the total energy of a particle would only yield numbers that can be eigen-
values of the Hamiltonian operator. To understand the bijective correspondence
between eigenvalues and observable measures, we need to acknowledge that the parti-
cle wavefunctions are linear combinations of (base) eigenfunctions, and rarely a single
wave eigenfunction. Even a base eigenfunction for one operator may actually be a lin-
ear combination of multiple wave eigenfunctions of another operator.

An interesting phenomenon arises in the process of taking a spacetime measure-
ment and recording an observation. Despite the fact that the wavefunction is generally
a combination of eigenfunctions, the actual measured value is always a singleton, and
not a combination of eigenvalues. This apparent paradox is resolved by a quantum
mechanics orthodoxy known as the Copenhagen Interpretation [161]. The latter states
that a quantum particle doesn’t exist in one unique state, but rather probabilistically
occupies all of its possible states at the same time and the act of its observation cap-
tures a unique freeze-frame of its momentous state. This effectively answers axiomati-
cally what happens to the eigenvalues in the linear combination that do not come out
as measured values during the instantaneous snapshot of the system state:

An instant measurement causes the wavefunction Ψ to randomly collapse only into one of the
eigenfunctions of the quantity that is being measured.

Let’s look at an example trying to measure the total energy of a particle. This instan-
taneous observation causes the wavefunction to collapse into one unique eigen-
function ψ αo of the total energy (Hamiltonian) operator. The observed total energy
corresponds to an eigenvalue:
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Ψ =
X

α
cα ψ α wavefunctionð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Probabilistic state of the system

Energy is unknown|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Natural, intrinsic, fuzzy

g!Copenhagen InterpretationMeasurement process|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
observe the total energy

Ψ = cαo ψαo , for some index αo,
cαo 2 C

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Wave function collapse

Total Energy=Eαo|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Instance of the observed state of the system

8>>>><>>>>: .

This is just a philosophical perspective discriminating between the (unobserved
and theoretical) natural phenomena (prior to the act of observation) and an in-
stantaneous measurement value generated by a device, which may itself be uncer-
tain. Physical measurements are most commonly defined as interactions between
macroscopic systems that produce the observed collapse of the native wavefunction
into one unique eigenfunction.

Prior to a physical measurement, the wavefunction is a linear mixture of many dif-
ferent eigenfunctions, Ψ = Pα cα ψα 2 C and cα 2 C. The determination about which
eigenfunction projection will yield the observed measurement value is probabilistic,
based on random sampling using the proportional square-magnitudes of the weights
cαj j2. For instance, if cαj j2 = 2 cβ

�� ��2, then a wavefunction collapse on the base eigenfunc-
tion ψ α is expected to be twice as likely as a collapse on the other base eigenfunction
ψ β. In principle, these eigenfunction projections in spacetime may be random, non-
random reflecting unobserved lurking variables, or they may be associated with higher
dimensions that are hidden, undetectable, or non-traversable. However, Bell’s theorem
suggests that under certain conditions, quantum physics theory and experimental ob-
servations suggest that the eigenfunction projections must be random [85, 162].

There are several alternative interpretations of quantum mechanics (QM) reality
including many-worlds, transactional, relational QM, ensemble, and de Broglie-Bohm
theoretic interpretations [163, 164]. There are two philosophical constructs leading to
different interpretations: (1) ontology, categorizing the existence of real things and
world entities, and (2) epistemology, describing the state of knowledge, observable
possibilities, and scope.

The spacekime generalization of spacetime leads to another interpretation of
the dichotomy between the theoretical existence of wavefunctions as linear mix-
tures of base eigenfunctions and the reliable practical observation that real meas-
urements always collapse the state of the system into only one (albeit random) base
eigenfunction. The Spacekime Interpretations represent plausible elucidations of this
eigenfunction collapse of the natural state of the system. Such more general interpre-
tations may resolve the peculiar problem of the choice of one specific eigenfunction
as a projection of the system state, i.e., explicate alternative views of the uncertainty
of this projection-selection process.
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By definition, spacekime measurements, samples, and observations are intrinsi-
cally instantaneous, anchored at specific spatial locations and kime moments. Such
measurements represent discrete values, vectors, or tensors, limited simulations, finite
experimental results, or countable interactions arising from known models, unknown
distributions, or partially understood state-spaces. In a probabilistic sense, for any sto-
chastic process, we can only observe discrete random samples or detect a finite number
of instances. For some processes, it is mathematically feasible to (analytically) repre-
sent the entire (joint) probability process distribution holistically. However, in general,
it’s not possible to instantaneously sample (observationally) the entire probability dis-
tribution or measure the total wavefunction representing the complete state-space.

Some alternative Spacekime Interpretations include:
Option 1:
A fixed-time instantaneous measurement of the system at t = to, yields a complete
eigenfunction decomposition of the wavefunction Ψ κð Þ= Ψ to, φð Þ where the kime-
phase spans the range − π ≤ φ < π. However, as the entire distribution of kime
phases ðΦÞ may not be directly, instantaneously, and holistically observed, the ac-
tual measurement only reflects a random phase draw, which yields a wavefunction
value Ψ κð Þ≡ Ψ to, φð Þ= Pα cα ψ α to, φð Þ for some fixed random phase, φ = φo. Thus,
each observation manifests as an immutable instantaneous measurement value,
Ψ to, φo

� �
=
P

α cα ψ α to, φo

� �
, where ψα toð Þ= ψ α to, φo

� �
are just the classical space-

time eigenfunctions of the corresponding operator. In a measure-theoretic sense, a
pair of repeated independent measurements of the exact same spacekime system
would naturally yield two distinct observed values: Ψ ′≡ Ψ to, φ′oð Þ= Pα cα ψ α
to, φ′

o

� �
and Ψ ′′≡ Ψ to, φ″oð Þ= Pα cα ψα to, φ″1ð Þ, where the two phases are indepen-

dently sampled from the circular phase distribution, i.e., φ′o, φ″1 ⁓Φ − π, π½ Þ.
Option 2:
For a fixed-time instantaneous measurement of the system at t = to, the wavefunction,
or inference-function, Ψ κð Þ= Ψ to, φð Þ is naturally an aggregate measure over the en-
tire kime-phase distribution with a range − π ≤ φ < π. However, as the entire kime
phases distribution Φð Þ may not be directly, holistically, and instantaneously ob-
served, the actual measurement, or inference, only reflects a measurement Ψ to, φð Þ
for one random phase, φo. In other words, the natural state of the system is theoreti-
cally described by a wavefunction, or inference-function,

Ψ tð Þ|ffl{zffl}
Observed

Spacetime
wavefunction

=
ðπ
− π

Ψ t, φð Þ|fflfflffl{zfflfflffl}
Spacekime
wavefunction

dΦ,

however, the actual observation reflects the value at a given time point toð Þ for some
fixed but randomly chosen phase, φ = φo. Thus, each observation manifests as an
immutable instantaneous measurement value, Ψ toð Þ= Ψ to, φo

� �
. In a measure-
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theoretic sense, a pair of simultaneous t = toð Þ independent measurements of the
exact same spacekime system would naturally yield two distinct observed values:
Ψ ′≡ Ψ to, φ′oð Þ and Ψ ′′≡ Ψ to, φ″oð Þ, where the two phases are independently sam-
pled from the circular phase distribution, i.e., φ′o, φ″o ⁓Φ − π, π½ Þ.

Note that both spacekime interpretations explain the common practice of taking inde-
pendent and identically distributed (IID) samples of the same process (e.g., population
polling, large sampling) to estimate a specific population characteristic, Ψ toð Þ, like the
mean, dispersion, quantiles, etc. The implicit fix of the spatial location (xo = xo, yo, z0ð Þ)
and temporal moment (to) coordinates specifically indicates the spacetime localization
of this characterization. Suppose we measure repeatedly the state of the system under
controlled environment (to ensure IID sampling) and obtain a series of observations,

Ψ ið Þ ≡ Ψ to, φ ið Þ
o

� �n on

i= 1
. By the law of large numbers (LLN) [165, 166], all sample-driven

estimates would converge to their theoretical counterparts. For instance, if we want to

estimate the population mean at time to, Ψ toð Þ=
Ð π
− π Ψ to, φð Þ|fflfflfflffl{zfflfflfflffl}

Spacekime
wavefunction

dΦ, we can compute

the arithmetic average of the observed values,

�Ψn =
1
n

Xn
i= 1

Ψ ið Þ ≡
1
n

Xn
i= 1

Ψ to, φ ið Þ
o

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
spacetime
observables

.

By LLN, these sample-means will converge to the corresponding theoretical popula-
tion mean, which is not directly observable (cf. Spacekime interpretation):

�Ψn|{z}
spacetime
observables

!
n!∞

Ψ toð Þ|fflffl{zfflffl}
spacekime

unobservables

.

This process of random sampling and measure aggregation illustrates exactly how
we cleverly interpret our limited 4D spacetime perceptions of reality to accurately
represent the more enigmatic 5D spacekime, in which the obscure kime-phases may
or may not be directly measurable.

Let’s examine the extended notion of wavefunctions in spacekime. If ψ x, kð Þ de-
notes the complex-valued amplitude and phase of a wave describing the spacekime
motion of a particle, then the spatial 1D (special case) and 3D (general case) wave
equations are:
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1D: ∂2ψ x, kð Þ
∂k2

= c2 ∂2

∂x2
ψ x, kð Þ, x 2 R , k 2 C .

3D: ∂2ψ x, kð Þ
∂2k

= c2∇2ψ x, kð Þ= c2 ∂2

∂x2
ψ x, kð Þ+ ∂2

∂y2
ψ x, kð Þ+ ∂2

∂z2
ψ x, kð Þ

� �
, x 2 R3, k 2 C .

�������
The second order Wirtinger derivative of the wavefunction with respect to kime,
∂2ψ x, kð Þ

∂2k
, was defined earlier, see Section 3.7.10.

Next, we can try to explicate the Spacekime Interpretation for measuring the
total energy of a particle whose motion is described by a 1D spatial spacekime wave-
function, representing a solution to this partial differential equation:

∂2

∂k2
Ψ x, kð Þ= c2

∂2

∂x2
Ψ x, kð Þ, x 2 R , k 2 C .

In 4D Minkowski spacetime, an instantaneous (t = to) observation of the total energy
of this system, Eφ, would represent an eigenvalue of corresponding Hamiltonian op-
erator, Ĥ, i.e.,

Ĥ Ψ φð Þ|fflffl{zfflffl}
eigenfunction

= Eφ|{z}
eigenvalue

Ψ φð Þ|fflffl{zfflffl}
eigenfunction

.

In 5D Minkowski spacekime, the observed total energy corresponds to a wavefunc-
tion density value:

Ψ tð Þ|ffl{zffl}
Spacetime
wavefunction

=
Ðπ
− π

Ψ t, φð Þ|fflfflffl{zfflfflffl}
Spacekime

wavefunction

dΦ

Unknown Total Energy|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural, intrinsic, fuzzy, probabilistic

state of the system

Spacekime Interpretation
Measurement process
!|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

observe energy
at time to

9>>>>>>=>>>>>>;
Ψ toð Þ= Ψ to, φ′

o

� �
≡ Ψ φ′

o

� ��wavefunction
density

φ′
o ⁓ Φ − π, π½ Þ

n kime−phase
distribution

Observed Total Energy= Eφ′o ,which
still represents an Ĥ eigenvalue|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

observable state of the system

.

8>>>>>>>><>>>>>>>>:
Note that the observed spacetime total energy can be expressed as a function of the
square magnitude of the spacekime velocity. For instance, let’s consider the simple
case of spacekime energy of a linear spring, where the kime velocity is the Jacobian
ν = νx, j
� �

= dx
dκ1

, dx
dκ2

� �
.

162 Chapter 3 Time Complexity

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



The total energy of the particle moving in spacekime is defined by m0c
2ffiffiffiffiffiffiffiffi

1− β2
p , where

m0 is the particle mass at rest and β = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
v1

� �2
+ c

v2

� �2r , see Chapter 5, Section 5.7. At

low speeds, when β � 1, i.e., v1 � c or v2 � c, then E ≈m0c2 1+ 1
2 β2� �

. Earlier in

Chapter 3, Section 3.7.2, we showed for each constant φ′o ⁓Φ − π, π½ Þ, the relation
between the classical time-velocity, v= vt, and the directional kime-velocities, v1, v2,

1
v2t

= 1

v1ð Þ2
+ 1

v2ð Þ2
= v21 + v22
� �
v1v2ð Þ2 .

Therefore,

E ≈m0c2 +
m0c2

2 c
v1

� �2
+ c

v2

� �2� � =m0c2 +
m0

2
v1v2ð Þ2
v21 + v22
� � =m0c2 +

m0

2
v2|{z}
v2t

.

This decomposes the total energy E in terms of the rest-mass (potential) energy,
m0c2, and the low-speed kinetic energy m0

2
v1v2ð Þ2
v21 + v22ð Þ.

E|{z}
spacetime
total energy

= 1
2

m0|{z}
restmass

v2t|{z}
total time velocity|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kinetic energy

+ 1
2

k|{z}
spring constant

x2|{z}
distance|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

potential energy

=

= 1
2

m0|{z}
restmass

v1v2ð Þ2
v21 + v22
� �|fflfflfflffl{zfflfflfflffl}
kime velocity

+ 1
2
kx2 = 1

2
m0|{z}

restmass

v2κ|{z}
kime velocity

+ 1
2
kx2 = E|{z}

spacekime
total energy

.

Using the relation between the time-velocity and the kime-velocity in polar coordi-
nates

1
v2κ

= 1
v21

+ 1
v22

= dtð Þ2
dx2 +dy2 + dz2

+ t2 dφð Þ2
dx2 + dy2 +dz2

= 1
v2t

+ t2
dφð Þ2

dx2 +dy2 +dz2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
=0, as φ = φ′o is constant

= 1
v2t
.

Plugging in the spring energy equation we again see that the total spacetime ob-
served energy equals the total spacekime energy
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E|{z}
spacetime
total energy

= 1
2

m|{z}
mass

v2t|{z}
time velocity|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

kinetic energy

+ 1
2

k|{z}
spring constant

x2|{z}
distance|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

potential energy

=

= 1
2

m|{z}
restmass

v2κ +
1
2
kx2 = Eφ′o|{z}

spacekime
total energy

.

Open Problems

– Ergodicity: Let’s look at the particle velocities in the
4D Minkowski spacetime (X), representing a mea-
sure space where gas particles move spatially and
evolve longitudinally in time. Let μ = μx be a measure
on X, f x, tð Þ 2 L1 X, μð Þ be an integrable function
(e.g., velocity of a particle), and T :X ! X be a mea-
sure-preserving transformation at position x 2 R3 at
time t 2 R + . Then, the pointwise ergodic theorem

states that in a measure theoretic sense, the average of f over all particles in the gas

system at a fixed time, �f =Et fð Þ= Ð
R3 f x, tð Þdμx, will be equal to the average velocity of

just one particle estimated over the entire time span, f̂ = lim
n!∞

1
n

Pn
i=0 f ðTixÞ� �

[167, 168].

That is, �f ≡ f̂ . In the above example, the spatial probability measure is denoted by μx

and the transformation Tix represents the dynamics (time evolution) of the particle
starting with an initial spatial location Tox = x. Investigate the ergodic properties of
various transformations in the 5D Minkowski spacekime. A starting point may be a for-
mulation such as:

�f =Eκ fð Þ= 1
μx Xð Þ

ð
f x, t, ϕ|{z}

κ

 !
dμx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

space averaging

=z}|{? lim
t!∞

1
t

Xt
i=0

ð+ π

− π

f Tix, t, ϕ
� �

dΦ

 ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kime averaging

= f̂ .

– Duality: It may be interesting to investigate deeper the Hamiltonian operator, Ĥ,
as a member of the dual space, as described below.

Spacekime wavefunctions describe particle states by complex-valued functions
Ψ :R3 ×C ! C of spatial x 2 R3 and kime κ 2 C arguments. Then, the wavefunction
may be interpreted as a probability amplitude and the magnitude of its square mod-
ulus as ρ x,κð Þ:
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Ψ x, κð Þj j2 = Ψ† x, κð ÞΨ x, κð Þ= hΨ x, κð Þ j Ψ x, κð Þ= ρ x, κð Þ≥0.

This magnitude is the 2D kime probability density of the particle at position x. Effec-
tively, the wavefunction describes the particle spatial probability distribution in
kime, rather than a specific particle position in time. To quantify the likelihood that
at a fixed time t, the particle is in a region Ω � R3, we can integrate the 2D kime
probability density over this region:

Px2Ω tð Þ=
ðπ
− π

Px2Ω κð Þdφ =
ðπ
− π

Px2Ω t, φð ÞdΦ=
ðπ
− π

ð
Ω

ΨjΨh idxdΦ=

ð
Ω

ðπ
− π

ΨjΨh idΦdx =
ð
Ω

Ψ†Ψ
ðπ
− π

dΦ

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

1

dx =
ð
Ω

Ψ x, tð Þj j2dx.

As spacekime wavefunctions form an infinite-dimensional space H, there is no finite
set of base eigenfunctions for H. The norm in this Hilbert space of wavefunctions is
derived by the inner product h · j · i. Recall that the inner product of two wavefunc-
tions Ψ1 and Ψ2 can be expressed using the bra-ket operator at kime κ = t, φð Þ:

hΨ1 x, κð ÞjΨ2 x, κð Þi=
ð
R3

Ψ†
1 x, κð ÞΨ2 x, κð Þdx.

In general, the inner product of a pair of wavefunctions is always a complex num-
ber, hΨ1 x, κð ÞjΨ2 x, κð Þi 2 C. However, for the special case of an inner product of a
wavefunction Ψ with itself, it’s a positive real number,

Ψ† x, κð Þ Ψ x, κð Þ= hΨ x, κð Þ j Ψ x, κð Þi= ρ x, κð Þ≥0.

At a fixed moment in time, to, the values of the spacekime wavefunction Ψ x, κð Þ rep-
resent uncountably many components of a vector in the infinite dimensional Hilbert
state space:

jΨ toð Þi=
ð
R3

ðπ
− π

Ψ x, κð ÞjxidxdΦ =
ð
R3

Ψ x, toð Þjxidx.

3.9 Space-Kime Formalism

In this section, we will summarize the special case of the Velev theory [169] of the
causal structure of 5D spacekime. Specifically, we will present a description of parti-
cle motion in spacekime, formulate the Lorentz transformations between two inertial
reference frames, as well as explain charge, parity, and time-reversal (CPT) symmetry,
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the invariance of the speed of light principle, the law of addition of velocities, and the
energy-momentum conservation law. We will also derive the spacekime relations be-
tween energy, mass, and momentum of particles, determine the stability conditions
for particles moving in space-kime, derive conditions for nonzero rest particle mass in
space-kime, and examine the causal structure of space-kime by exploring causal
regions.

3.9.1 Antiparticle in Spacekime

In the case of two-dimensional kime, the CPT-symmetry will be violated. Special rel-
ativity and the Lorentz covariance are in the base of the CPT-symmetry. Indeed, the
even number of reflections of the coordinates in the Minkowski space-time is for-
mally reduced to a rotation by an imaginary angle. Due to this fact, the existing
physical theories, which are invariant relating to the Lorentz transformations (i.e.
rotations in the Minkowski space-time) turn out to be automatically CPT-invariant.
In the case of multidimensional time, the CPT-symmetry must be exchanged with
another generalized symmetry.

If the number of the time dimensions where a particle is moving is greater than
one, then this particle may have more than one antiparticle. If the number of the time
dimensions is equal to m, then the number of the different antiparticles is equal to
3m − 2mð Þ [169]. For the casem= 2 we obtain 32 − 22ð Þ= 5 different antiparticles.

In the case of two-dimensional kime, the antiparticles can be defined as par-
ticles with a negative rest mass moving backward in at least one of the kime dimen-
sions. Figure 3.12 represents the different types of antiparticles of the particle M++ ,
moving forward in both kime dimensions k1 and k2. The different types of antipar-
ticles in two-dimensional kime are marked with

A− + , A−0 , A− − , A0− , A+ − .

For example, the antiparticle A−+ is moving backwards in the kime dimension k1, and
forwards in the kime dimension k2 (i.e., dk1 <0 and dk2 >0). The antiparticle A−0 is
moving backwards in the kime dimension k1 but does not move in the kime dimension
k2 (i.e., dk1 <0 and dk2 =0), etc.

Figure 3.12: Antiparticles in two-dimensional kime.
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If a rotation of the kime axes (k1, k2) is applied in the plane of kime, one particle can
be converted to the corresponding type of antiparticle and vice-versa.

3.9.2 The Causal Structure of Spacekime

A number of authors discuss the issue of causality in higher dimensions [114, 115, 170].
Just like in the classical one-dimensional time, in the multidimensional time every lo-
calized object is moving along a one-dimensional time-like world line representing the
kime-magnitude. Tegmark pointed out that whenm> 1, there is no obvious reason why
an observer could not perceive time as a one-dimensional construct to characterize and
interpret reality as patterns of events ordered in 1D succession [115]. As all observers
are intrinsically localized, the travel of each observer may be projected along an essen-
tially one-dimensional (time-like) world line through the general n+mð Þ-dimensional3

spacekime manifold. Therefore, even in two or more longitudinal dimensions,
time may be perceived as one-dimensional because most observable physical pro-
cesses have strong event-order characteristics allowing us to model them as linear
consequences, which simplifies interpretation of reality. Regular clocks work in their
usual manner in spacekime where every localized object will have one single “his-
tory” reflecting its kime-order. In this sense, the multidimensional kime notion does
not differ philosophically from the well-known notion of time. However, in the case
of multidimensional time there are problems concerning well-posed causality [115].

In higher-dimensional spacekime, it is always possible to construct closed
kime-like curves [171].4 Let us consider the case of two-dimensional kime and

three-dimensional space. In the space-kime coordinates

 
x, y, z|ffl{zffl}
space

, k1, k2|ffl{zffl}
kime

!
we can

consider a “motion” in the causal region in the plane ðk1, k2Þ, which begins and
ends at the same kime location (k1 = ko1 , k2 = ko2 ). Assume Ω = const; θ 2 Θ = − π: π½ Þ
and define k1 =Ω sin θ, k2 =Ω 1− cos θð Þ, and x, y, z = const. Then, worldlines are
kimelike everywhere [171] and we will have:

ds2 = dx2 + dy2 +dz2 − cdk1ð Þ2 − cdk2ð Þ2 = − c2Ω2dθ2 <0.

The 2D-kime causal structure of a spacekime is different from the 1D-time causal struc-
ture in spacetime. Let us start with a 5D vector Aμ in spacekime, μ = n,mð Þ= 3, 2ð Þ. The
scalar product of the vector Aμ with itself will be5:

3 Herem is the number of the time dimensions; n is the number of the spatial dimensions.
4 This is different from the case of curved manifolds, where closed time-like curves may arise
under certain circumstances.
5 In this formula, Einstein summation convention is used.
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ðAÞ2 = AjAh i=AμAμ = gμρAμAρ =
X3

η = 1

Aηð Þ2 − A4� �2 − A5� �2,
where μ, ρ = 1, 2, 3, 4, 5, and gμρ =

1, at μ = ρ = 1, 2, 3
− 1, at μ = ρ = 4, 5
0, at μ ≠ ρ

.

8<:
If we denote ðA3, 1Þ2 =

P3
η = 1 Aηð Þ2 − A4ð Þ2, then we have ðAÞ2 = ðA3, 1Þ2 − A5ð Þ2. While

in the 4D Minkowski spacetime, n,mð Þ= 3, 1ð Þ, the value ðA3, 1Þ2 is invariant, in the
5D spacekime manifold indexed by n,mð Þ= 3, 2ð Þ, the value ðA3, 1Þ2 is not invariant,
however, AjAh i= ðAÞ2 is invariant.

For example, in spacekime, if the value ðA3, 1Þ2 is spacelike in one frame of refer-
ence K (i.e., ðA3, 1Þ2 >0), in another frame of reference, K′, it can also be lightlike
(i.e., ðA′

3, 1Þ2 =0) or kimelike (i.e., ðA′
3, 1Þ2 <0). The spacekime causal region indexed

by n,mð Þ= 3, 2ð Þ encompasses the region ðAÞ2 ≤0, and the spacetime causal region
indexed by n,mð Þ= 3, 1ð Þ encompasses the region ðA3, 1Þ2 ≤0.

Let’s set A1 = dx, A2 =dy, A3 =dz, A4 = cdk1, A5 = cdk2, dx2 +dy2 + dz2 > 0,

q1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 +dy2 +dz2
p

c dk1j j = V1
c >0, q2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 +dy2 +dz2
p

c dk2j j = V2
c >0, ds= Ak k=

ffiffiffiffiffiffiffiffiffi
Að Þ2

q
. We will con-

sider following three cases, depending on the inner product AjA = Að Þ2��
:

First (spacelike) case: Að Þ2 >0, i.e., ds2 >0. We have ðA3, 1Þ2 >0 and it is not pos-
sible that ðA3, 1Þ2 <0 or ðA3, 1Þ2 =0. The condition Að Þ2 >0 is equivalent to the fol-
lowing inequalities:

Að Þ2 = dx2 +dy2 +dz2 − c2dk21 − c2dk22 >0,

dx2 +dy2 +dz2 > c2dk21 + c2dk22,
c2dk21

dx2 + dy2 + dz2
+ c2dk22

dx2 +dy2 + dz2
< 1, i.e.,

1
q21

+ 1
q22

< 1. (3:17)

(Here dx2 +dy2 +dz2 ≠0.) The inequality (3.17) is satisfied if and only if the fol-
lowing inequalities are jointly satisfied:

q1 > 1 and q2 > 1, (i.e., V1 > c and V2 > c).

Second (lightlike) case: Að Þ2 =0, i.e., ds2 =0. In this situation, ðA3, 1Þ2 = c2dk2
2

and it is therefore not possible that ðA3, 1Þ2 <0. If A5 = cdk2 =0, then ðA3, 1Þ2 =0. If
A5 = cdk2 ≠0, then we have: ðA3, 1Þ2 >0. The condition Að Þ2 =0 is equivalent to
the following equality:

1
q21

+ 1
q22

= 1. (3:18)
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If q1 < 1 (i.e., V1 < c) or q2 < 1 (i.e., V2 < c), then equality (3.18) is violated. As
q1 ! 1 (i.e., V1 ! c), then equality (3.18) is satisfied provided that q2 ! ∞ (i.e.,
V2 ! ∞).

This means that dx2 +dy2 +dz2 >0, dk21 >0, and dk22 =0, i.e., the particle
moves in space and in kime dimension k1, but its location in k2 remains
unchanged.

The same argument applies for the case q2 = 1 (i.e., V2 = c). Equation (3.18)
yields the equality c2

V21
+ c2

V22
= 1. Therefore, if the particle is moving with velocity

V1 = cffiffiffiffiffiffiffiffiffi
1− c2

V22

q , then

Að Þ2 =ds2 =0. As we showed in Section 3.7.8, when the velocities V1,V2 of a

particle in the frame of reference K satisfy c2

V2
1
+ c2

V2
2
= 1, then for the corresponding

velocities V′1,V′2 in the second reference frame K′ will also satisfy this equation,
c2

V′21
+ c2

V′22
= 1.

Third (kimelike) case: Að Þ2 <0, i.e., ds2 <0. If A5 = cdk2 ≠0, then in this case there
are three possible situations: ðA3, 1Þ2 <0, ðA3, 1Þ2 =0, ðA3, 1Þ2 >0. If A5 = cdk2 =0,
then ðA3, 1Þ2 <0. Let us assume that in the frame of reference K, A5 = cdk2 ≠0 and
ðA3, 1Þ2 >0. Then, it is clear that in the K′ frame, which moves uniformly and recti-
linearly in relation to K, we have ðA′Þ2 = ðA′3, 1Þ2 − ðA5′Þ2 = Að Þ2 <0.

If we assume that A5′ = cdk2′=0, then we have ðA′3, 1Þ2 <0. Hence, we see
that in the frame K, the value A3, 1 is spacelike, ðA3, 1Þ2 >0, and in frame K′, the
value A′3, 1 is timelike, ðA′

3, 1Þ2 <0. Similar to case one above, we can show that
the condition Að Þ2 <0 is equivalent to following inequality:

1
q21

+ 1
q22

> 1. (3:19)

If 0< q1 ≤ 1 (i.e., 0<V1 ≤ c), then inequality (3.19) is satisfied for all real values of
q2 2 R (i.e., for all values of V2). Recall that when referring to the velocities in K′
relative to the first frame, K, we use lower-case letters (e.g., v1, v2) and when re-
ferring to particle velocities within K, we use capital-letters (e.g., V1,V2).

Similar arguments hold for the velocity V2 in terms of q2. Therefore, if the absolute
value of the velocity of a particle, defined relative to one kime dimension, is less
than or equal to the speed of light in vacuum, then the velocity of this particle, de-
fined relative to the other kime dimension can be arbitrary large without violating
the causality principle.

When q1 > 1 and q2 > 1, inequality (3.19) is satisfied for an appropriate choice of
the parameters q1 and q2 (e.g., q1 = 10

9 , q2 = 2). It is clear that the kimelike condition
ðA3, 1Þ2 <0 is equivalent to the inequality V1 < c, the lightlike condition ðA3, 1Þ2 =0 is
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equivalent to the equality V1 = c, and the spacelike condition ðA3, 1Þ2 >0 is equivalent
to the inequality V1 > c.

This leads to the conclusion that the causal region of the 5D spacekime is larger
and properly contains the 4D spacetime causal region.

Figure 3.13 shows the graph of the implicit function c2

V21
+ c2

V22
= 1 only for non-

negative values of V1 and V2.

Therefore, in 5D spacekime particles can move in the causal region with velocities
that are greater than, less than, or equal to the speed of light in vacuum.

Let’s assume a kevent E occurs at a point O= x, y=0, z =0, k1 =0, k2 =0ð Þ and
an infinitesimal kime interval dk >0 has passed since the kevent E occurred. Since
the kime is two-dimensional, all possible combinations of coordinates ck1, ck2, for
which the inequality ck1ð Þ2 + ck2ð Þ2 ≤ c2dk2 is valid, form a circle in the plane ck1 − ck2
with center the point O and radius equal to cdk. Let us add the spatial dimensions
x, y, z in a way that at arbitrary values of x, y, z, the inequality x2 + y2 + z2 ≤ c2dk2

is satisfied. The causal region includes all points x, y, z, k1, k2ð Þ, where one of
these three conditions is satisfied:

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Causal region 

Non-causal region 2

1

Figure 3.13: The values of the velocities V1 and V2 where the particle moves in the causal region of
the spacekime x, y, z, k1, k2ð Þ.
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x2 + y2 + z2 − ck1ð Þ2 − ck2ð Þ2 =0 and x2 + y2 + z2 ≤ c2dk2
n o

, or

ck1ð Þ2 + ck2ð Þ2 = c2dk2 and x2 + y2 + z2 ≤ c2dk2
n o

, or

x2 + y2 + z2 − ck1ð Þ2 − ck2ð Þ2 <0 and x2 + y2 + z2 < c2dk2
n o

.

For simplicity, let’s consider only one spatial dimension x and the two kime dimen-
sions k1 and k2. The causal region connected to the event E includes the lateral surface
of the right circular cone ck1ð Þ2 + ck2ð Þ2 = x2 ≤ c2dk2, the lateral surface of the right cir-
cular cylinder ck1ð Þ2 + ck2ð Þ2 = c2dk2, x2 ≤ c2dk2 and the inner region bounded by these
surfaces

�
x2 − ck1ð Þ2 − ck2ð Þ2 <0 and x2 < c2dk2

	
, Figure 3.14.

One can say that two-dimensional kime “flows” from the origin O in all direc-
tions in the kime plane ck1, ck2ð Þ and yields the outer simultaneity circle shown in
Figure 3.14(b).

Let us look at three time moments t0 < t1 < t2. In Figure 3.15, the present “is mov-
ing” from moment t0 to t1 and then towards t2. At time t0, t0 is the present and t1 and
t2 represent future moments; at time t1, t1 becomes the present, t0 the past, and t2 the
future; and at time t2, t2 is the present with t0 and t1 both representing past moments.

Figure 3.15 resembles Barry Dainton’s idea of the meta-time [172], which was
proposed as a solution to the so-called overdetermination problem. This problem
arises if we assume that the properties of the “running” time are not relational but
rather inherent in the events which possess them. For example, the property of
“presentness” may be inherent in a particular object at a fixed moment of time as
well as a transient property, disappearing with the moment of “now” flying by,
which leads to the paradoxical situation of overdetermination. If it is quite normal
for an object to have two contrary properties at different times, it seems impossible
for a given fixed time to combine (or the event at this moment of time to possess)
contrary properties. A possible solution of overdetermination is the existence of an
additional time dimension, the so-called meta-time, or kime-phase.

Dainton [172] identified two major objections against the hypothesis of meta-time.
The first one is related to the fact that the concept of meta-time complicates the pic-
ture of the world by introducing an unobservable entity, i.e., kime-phase. The second
objection comes down to the argument that the proposed two-dimensional model of
time aims to save the dynamic aspect of time (the ever changing, moving present),
but in fact the introduced two-dimensional model is entirely static. If meta-time is
also flying by and the moment of “now” in it is moveable, then in order to rationalize
the flow of meta-time requires introduction of a higher-order meta-meta-time. Clearly,
this process leads into a continuously increasing time-dimensionality.

The concept of kime actually solves the overdetermination problem, circumvent-
ing the specified counter-arguments. Figure 3.15 shows how one (ordinary) event
time can have different inherent kime properties. The introduction of kime-phase
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makes it possible for each single moment of which we are aware to be called “pres-
ent,” with the successive change of these moments, outlining the current present.
The concept of kime is not an unnecessary complication of the world, and is con-
nected with the explanation of experimentally observable things. The objection that
the model of kime is also static and has to be constantly completed with additional
measurements is valid only if it is (unjustifiably) assumed, that kime is again time
and as such it also flies by. In fact, the model of kime is a useful instrument of clarify-
ing the connection between the dynamic and static aspects of time.

In a universe with two-dimensional kime, other unexpected properties arise.
Let us consider two non-relativistic observers, moving in different kime directions.
In this case, the relativistic effects are neglected and observers can meet in space-
kime and synchronize their clocks only if their directions of movements are crossing
the same time foliation leaf (see Chapter 5). Then the observers may diverge again

(a) (b)

(c) (d)

Figure 3.14: (a) Causal structure of a reduced spacekime manifold (1D space and 2D kime
dimensions): (b) Causal region in the plane l1; (c) causal region in the plane l2; plane l1 is parallel
to the plane cκ1 − cκ2 and plane l2 is perpendicular to the plane cκ1 − cκ2; and (d) shows the space-
like, kime-like and light-like regions in spacekime, where 3D space is compressed into a 1D
horizontal axis.
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and continue to traverse separate kime directions possibly without opportunities to
converse and meet repeatedly [115].

When two observers are not moving in spacetime relative to one another, they
may still move in different directions in the kime plane even if their time-clocks are
synchronized. For instance, such pairs of observers may move in orthogonal or op-
posite kime-directions to each other, then they would naturally share the same
kime foliation leaf and perceive each other as static with a common “nowness”.
However, when the observers move in spacetime relative to each other, then one
observer may perceive the other as moving with unlimitedly large kime-velocity.

In that context, despite the theoretical possibility of time-travel in the space-
kime manifold, time-travel is not feasible as it is as practical as matching a specific
real number in a countable experiment of randomly choosing real numbers; the
measure of the set of such successful experiments is trivial.

3.10 Kime Applications in Data Science

Now that we have established the mathematical foundations of spacekime, we can
return to our interpretation of the 2D kime manifold as a Fourier dual. Effectively, we
cannot directly observe kime in spacekime, however, we can measure quite accurately

Figure 3.15: Pattern of “movement” (“running”) of the present in kime. For instance, time is the
radius of the outer circle and it equals r = t2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21, 2 + κ22, 2

q
.
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the event orders as kime-magnitudes (r) in k-space, which we call “time”. To be able
to reconstruct the 2D spatial structure of kime, we will use the same trick used by
crystallographers when they resolve the structure of atomic particles by only ob-
serving the magnitudes of their X-ray diffraction pattern in k-space. This approach
heavily relies on (1) prior information about the kime-phase directional orientation,
which may be obtained from using similar datasets, provided by an oracle, or esti-
mated via some analytical strategies, and (2) experimental reproducibility by re-
peated confirmations of the data analytic results using alternative (longitudinal
datasets). Figure 3.16 shows schematically the parallels between the experimental
design space associated with planning an experiment and estimation (right) and
the data science analytic space related with the scientific inference about a data-
driven problem (left).

Let’s look at one specific example where the observed data can be symbolically rep-
resented as:

h x,κð Þ= h x, y|{z}
space component

, r = time, φ = phase|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kime component

0@ 1A.

To keep this example realistic, let’s assume the observed data is an fMRI time-series,
which consists of measurements of hydrogen atom densities over a 2D lattice of spatial
locations (1≤ x, y≤ 64 pixels), about 3× 3 millimeters2 apart, recorded longitudinally
over time (1≤ t ≤ 180) in increments of about 3 seconds, Figure 3.17. Albeit the general
fMRI time-series are recorded on 3D spatial voxels, we will simplify the problem and
consider just 2D spatial pixel intensities. This figure shows the temporal fMRI courses

Figure 3.16: Diagrammatic depiction of the interplay between the data science analytic space and
its experimental science counterpart.
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at some 2D pixels in the middle of the brain. These cylindrical tunnels represent the
2D spatial anatomical constraints of the fMRI intensities across time.

Assume only the three k-space frequency-time dimensions are observed (x, y, r = t)
and the time-direction (phase-angle, φ) is not measured or recorded. Figure 3.17 illus-
trates the process of the 4D pseudo-spacekime reconstructing for this real dataset. Let’s
clarify again that for simplicity of the presentation and visualization, we are working in a
lower dimensional 4D space, i.e., pseudo-spacekime, where there are only two space di-
mensions x= x, yð Þ, instead of the usual three spatial components x = x, y, zð Þ of the com-
plete 5D spacekime. One can reduce the complexity of this experiment even further by
only working with a single spatial component (x) and a time dimension, however, this
may hide some of the intrinsic complexities of higher-dimensional multi-feature data.

Note the parallels and differences between the reconstructions of the data in
spacekime using the correct kime= magnitude, phaseð Þ and trivial phase-angle
kime= magnitude, 0ð Þ estimates, Figure 3.18, panels C and D. Indeed, working
with the lower dimensional time, instead of kime, has the benefits of being more
computationally efficient, but suffers from artifacts which may affect the final
scientific inference based on the fMRI data reconstruction. The 5D spacekime
data reconstructions that rely on correct kime-phase estimates provide more ac-
curate representations of the underlying phenomena proxy-imaged by the fMRI
data. However, the kime phase-angle directions may not always be directly avail-
able, accurately measured, or precisely estimated, which may lead to inaccurate
result interpretation or complicated inference.

Many additional spacekime data-driven examples are provided in Chapter 6
(Applications).

Figure 3.17: fMRI example: The 2D end-planes show the (thresholded) fMRI time-series at time = 1
and time = 180. In the middle, the perspective cylindrical view shows the temporal courses
(intensities) at some pixels (or voxels). The colors illustrate the temporal intensities (fMRI blood
oxygen-level dependent responses), which are constrained along cylindrical tunnels representing
the 2D brain spatial anatomical structures.
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3.11 Kime Philosophy

Just like an ant that lives in a 2D plane, or more generally in a 2D manifold like
a Möbius band surface, cannot see or interpret the z-direction (z? x, yð Þ 2 R3), it’s im-
possible to directly perceive the universe beyond the 4D spacetime R3 ×R + . The reader
may find the appendix of the Data Science and Predictive Analytics textbook [10] use-
ful, as it provides many interactive visualizations of 2-manifolds and 3-manifolds, see
https://dspa.predictive.space, accessed January 29, 2021. We can discern differences
between events that occur in exactly the same spacetime but have different direc-
tions (kime-phases), e.g., multiple independent factual and fictional reports about the
same kevent encounters. Despite the unsettling modern contradictions of “alternative
facts”, there are multiple historical accounts of seemingly contradictory facts [173, 174].
The basic reason for these recorded variations of perceived reality is due to multiple
alternative points of view, which represent different kime direction states experienced
by multiple observers during and after the actual kevents. Various phenomena can be
compared whether they co-occur in time or not, however, contrasting such observa-
tions needs to contextualize kime and take into account the phase-direction. For ex-
ample, paleontological specimens, archaeological artifacts, and genetic sequencing
endure natural decay, memory amnesia, and mutation. As such observations are indi-
rect, circumstantial, or subjective, their reliable reproduction and use as evidence
need to be supported by independently acquired information [175].

The event-related kime-order (r) and kime-direction (φ) characterizations are in-
directly observed and interpreted. Initially, this may be unsettling since it suggests
there may be alternative interpretations of complex events (kime states). However, we
can illustrate many instances in which, we, as humans, experience alternative kime
directions that may be complementary to other personal or collective interpretations
of kevents, characterized by ðx, r, φ), that may correspond to the same spacetime
events (x, t). For instance, all of these experiences – watching movies, reading books,
listening to science talks, or learning a new concept – yield rather different outcomes,
interpretations, responses, and actions from different people. In addition, brain matu-
ration, cultural norms, balance between individual and collective benefits, alter our
perceptions of events (specifically their kime-phase characteristics).

The location and momentum of a particle in a quantum mechanical system is
described by a probability density function. The Heisenberg’s principle provides a
lower limit on the precise identification of the particle’s spatial position, energy,
motion direction, and state. Similarly, for spacekime kevents, i.e., events described
in 2D kime terms where kevent likelihoods are delineated as densities over kime.
The event-analogue of Heisenberg’s principle is that kevent characteristics may never
be jointly, precisely, and accurately known. In other words, the more precisely we lo-
calize the event-related order (r) the less certain we are about its kime-direction (φ).
Conversely, the more certain we are about the kime direction, the less accurate we
can estimate its kime order. In principle, life, and by extension humans, have more
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affinity towards the event-related order, and much less intuition about kime direction.
More details are provided later in Chapter 5.

Previously, we showed that there are several complementary representations of
kime that provide alternative strategies, each with its specific advantages and dis-
advantages. These re-parameterizations simply illustrate different coordinate de-
scriptions of the same two kime degrees of freedom, see Figure 3.7.

Appendix: Dirac Equation in Spacekime

Quantum mechanics is based on the correspondence principle, which associates
physical quantities (e.g., particle measurements) to linear Hermitian operators that
act as functions on the Hilbert space of wave functions. The wave equation in quantum
mechanics is derived from the classical equation of motion of a given object by replac-
ing the physical quantities with the corresponding operators and then treating the
resulting expression as a differential operator on the wavefunction of the object.

There are multiple approaches to the generalization of the Dirac equation from
four to five dimensions [176–187]. An extra dimension naturally emerges on the
Dirac theory if we take into account the fact that the ordinary Minkowski complex
Clifford algebra can be obtained as a real algebra with an extra time-like dimension
[188]. Similar to the approaches of Dirac [189] and Bars and colleagues [190–192],
Redington and Lodhi [193] chose the extra dimension to be timelike. To obtain Dirac
equation in five dimensions (5D), the authors replaced the gamma matrices in the
conventional Dirac equation by their spacetime algebra equivalents for the case
with two time-like dimensions and three space-like dimensions. This leads to the
so-called “Hestenes form” formulation of the Dirac equation [194]. Its solutions
are eight-component spinors, which are interpreted as single-particle fermion
wave functions in 4D Minkowski spacetime. Use of a “cylinder condition” allows
the removal of explicit dependence on the fifth coordinate. This reduces each
eight-component solution to a pair of degenerate four-component spinors obey-
ing the classical Dirac equation [193]. When the cylinder condition is not applied
or is treated like an approximation the dependence on the fifth dimension is re-
tained. In this case, the number of spinor degrees of freedom is doubled, suggest-
ing the possible existence of a new quantum number. This implies new physics
beyond the classical Dirac equation.

We will apply a different approach to the generalization of the Dirac equation in
5D spacekime where the fifth dimension is also time-like and the energy of the parti-
cle has two components corresponding to each of the two time-like kime dimen-
sions. We will use the Clifford algebra C,3, 2 Rð Þ [195, 196], which is formed by the
five gamma matrices: γ1, γ2, γ3, γ4, γ5

� 	
. In conventional settings, the matrix γ5 is

connected with the property of chirality. In the spacekime representation, the
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matrix γ5 is connected with the existence of the second kime dimension and
the second component of the particle’s energy, respectively. Below, we suggest an
approach to derive the Dirac equation in 5D spacekime.

The relativistic relation between energy and momentum is expressed by the fol-
lowing formula:

E2 − pk k2c2 =m2
0c

4, (3:20)

where E is the total energy of the particle, p= px, py, pz
� �

is the momentum vector,
m0 is the rest mass of the particle, and c is the constant speed of light.

In spacekime, the total energy of the particle has two components and is repre-
sented as an energy magnitude:

E =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ð Þ2 + E2ð Þ2

q
, (3:21)

where E1 and E2 are the two energy components of the particle defined with re-
spect to kime dimensions k1 and k2, respectively. Here El = c2m0

dkl
dk0

, l 2 1, 2f g,
dk0 = dk0k k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dk0, 1ð Þ2 + dk0, 2ð Þ2

q
≥0 (See Chapter 5, Section 5.7.)

Combining equations (3.20) and (3.21), we will obtain the relations between the
total energy and the momentum in spacekime:

E1ð Þ2 + E2ð Þ2 − pk k2c2 −m2
0c

4 =0. (3:22)

Then, the spacekime energy and momentum operators are expressed as:

p̂1 = − i�h
∂

∂x
, p̂2 = − i�h

∂

∂y
, p̂3 = − i�h

∂

∂z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Momentum

, p̂4 =
i�h
c

∂

∂k1
, p̂5 =

i�h
c

∂

∂k2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Energy

, (3:23)

where h is the reduced Planck constant and

p̂1ψ = pxψ, p̂2ψ = pyψ, p̂3ψ = pzψ, p̂4ψ = E1

c
ψ, p̂5ψ = E2

c
ψ. (3:24)

Then, equation (3.22) may be expressed in operator form:

− p̂21 − p̂22 − p̂23|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
space

+ p̂24 + p̂25|fflfflffl{zfflfflffl}
kime

0@ 1Aψ =m2
0c

2ψ.

Following Dirac’s approach, we can express this in terms of the gamma matrices:

− p̂21 − p̂22 − p̂23 + p̂24 + p̂25
� �

=

γ1p̂1 + γ2p̂2 + γ3p̂3 + γ4p̂4 + γ5p̂5
� �

γ1p̂1 + γ2p̂2 + γ3p̂3 + γ4p̂4 + γ5p̂5
� �

,
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where

γμð Þ2 = − 1, μ = 1, 2, 3
γμð Þ2 = 1, μ = 4, 5

γμγρ + γργμ =0, μ ≠ ρ

.

8><>:
In short, using Einstein summation convention, these conditions can be written in
the following way:

γμp̂μ −m0c
� �

ψ =0 or γμp̂μ +m0c
� �

ψ =0, (3:25)

where

γμ, γρf g= γμγρ + γργμ = 2ημρI4. (3:26)

Here ,f g is thе anticommutator, I4 = diag 1, 1, 1, 1ð Þ is the 4× 4 identity matrix, and η μρ

is the metric tensor with components:

η μρ = η μρ =
− 1, μ = ρ = 1, 2, 3
1, μ = ρ = 4, 5
0, μ ≠ ρ.

8><>:
The anticommutation relations can be encoded using gamma matrices in terms of
the Weyl (chiral) basis:

space

γ1 =

0 0 0 1

0 0 1 0

0

− 1

− 1

0

0

0

0

0

0BBB@
1CCCA=

0 σ1

− σ1 0

 !
,

γ2 =

0 0 0 − i

0 0 i 0

0

− i

i

0

0

0

0

0

0BBB@
1CCCA=

0 σ2

− σ2 0

 !
,

γ3 =

0 0 1 0

0 0 0 − 1

− 1

0

0

1

0

0

0

0

0BBB@
1CCCA=

0 σ3

− σ3 0

 !
,

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
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γ4 =

0 0 1 0

0 0 0 1

1

0

0

1

0

0

0

0

0BBB@
1CCCA=

0 I2

I2 0

 !
, γ5 =

− 1 0 0 0

0 − 1 0 0

0

0

0

0

1

0

0

1

0BBB@
1CCCA=

− I2 0

0 I2

 !
.

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kime

The chiral Weyl basis does not represent a unique set of matrices and more general
gamma (Dirac) matrices may also be used.

Since 4× 4 matrices operate on the wavefunction, it has to be four-component:

ψ =

ψ1

ψ2

ψ3

ψ4

0BBBB@
1CCCCA=

ψA

ψB

 !
,where ψA =

ψ1

ψ2

 !
, ψB =

ψ3

ψ4

 !
.

Again, employing Einstein summation convention, the γμ matrices operate on the
wavefunction components ψ1, ψ2, ψ3, ψ4 by:

γμ ψ θ = γμð Þθν ψν, μ, θ, ν = 1, 2, 3, 4.

On the one hand, according to formula (3.26), the matrices γ1, γ2, γ3, γ4, γ5
� 	

form a
Clifford algebra C,3, 2 Rð Þ in spacekime with signature − − − + +ð Þ. On the other
hand, in spacetime with signature − − − +ð Þ, the matrix γ5 = i γ1γ2γ3γ4 reflects chi-
rality, a quantum-mechanical property in the Clifford algebra C,3, 1 Rð Þ.

Since the number of dimensions of spacetime is even, 3+ 1ð ÞD, the spinor space
splits into two independent 2D spaces; one of which contains ‘right-handed’ objects,
and the other ‘left-handed’ ones.

The chirality for Dirac fermion is determined through the operator γ5, whose ei-
genvalues are ± 1, i.e., γ5ð Þ2 = 1. Thus, а Dirac field can be projected onto its left-
handed and right-handed components by:

ψL =
1− γ5

2
ψ =

I2 0

0 0

 !
ψ, ψR =

1+ γ5

2
ψ =

0 0

0 I2

 !
ψ.

In fact, ψL and ψR represent the eigenvectors of γ5:

γ5ψL =
γ5 − γ5ð Þ2

2
ψ = − ψL,

γ5ψR =
γ5 + γ5ð Þ2

2
ψ = ψR.

Therefore, there may be a deeper connection between the chirality property in
3+ 1ð ÞD spacetime and 3+ 2ð ÞD spacekime. The matrix γ5 may represent a connecting
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link between the two chirality properties. If we look only at 3+ 1ð ÞD spacetime, the
chirality property is defined by the matrix γ5. Examining 3+ 2ð ÞD spacekime, the chi-
rality can’t be directly defined because of the odd number of dimensions 5ð Þ. How-
ever, in 3+ 2ð ÞD spacekime, the matrix γ5 appears as a left-hand-side multiple of the
operator p̂5 = i�h

c
∂
∂k2

, corresponding to the second kime dimension k2.
Now, let’s look at the solutions of the Dirac equation in spacekime in the ab-

sence of an external electromagnetic field. For a given free particle, the Dirac equa-
tion in spacekime is represented in equation (3.25). By analogy with the well-known
case in spacetime, we focus on the expression involving a negative sign in front of
the rest mass:

i�hγμp̂μ −m0c
� �

ψ =0. (3:27)

We can examine the basic solutions of the plane-wave equation:

ψ = u× e

i
�h
ð−E1k1 −E2k2 +p.xÞ

�
,

�
(3:28)

where x = x, y, zð Þ and u is the constant amplitude that can be expressed as a column
matrix:

u=
uA

uB

 !
, uA =

u1

u2

 !
, uB =

u3

u4

 !
, (3:29)

where u1, u2, u3, u4 are constants. From equations (3.27), (3.28) and (3.29), we
obtain:

0 I2

I2 0

 !
i�h

∂

∂k1
+

− I2 0

0 I2

 !
i�h

∂

∂k2
−c

0 ~σ
−~σ 0

 !
p̂−

I2 0

0 I2

 !
m0c2

" #
4×4

×

uA
uB

� �
e

i
�h −E1k1 −E2k2 +p.xð Þ
� �

=0,

(3:30)

where~σ ≡ σ1, σ2, σ3ð Þ, p̂≡ p̂1, p̂2, p̂3ð Þ, and I2 =diag 1, 1ð Þ is the 2× 2 identity matrix.
Recall that the component corresponding, to the momentum operator (p̂) in

equation (3.30) can be expanded to:

0 ~σ
−~σ 0

 !
p̂≡

X3
ϑ = 1

0 σ ϑ

− σ ϑ 0

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

4× 4

p̂ϑ =
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0 0 0 p̂1
0 0 p̂1 0

0

− p̂1

− p̂1
0

0

0

0

0

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p̂1γ1

+

0 0 0 − ip̂2
0 0 i p̂2 0

0

− ip̂2

ip̂2
0

0

0

0

0

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p̂2γ2

+

0 0 p̂3 0

0 0 0 − p̂3
− p̂3
0

0

p̂3

0

0

0

0

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p̂3γ3

.

Differentiating equation (3.30) with respect to the space and kime coordinates is
equivalent to multiplying by the wavefunction and applying equations (3.24):

0 I2

I2 0

 !
E1 +

− I2 0

0 I2

 !
E2 − c

0 ~σ
−~σ 0

 !
p−

I2 0

0 I2

 !
m0c2

" #
uA

uB

 !
=0.

Here,

~σp=
P3

ϑ = 1
σ ϑ p̂ϑ =

0 p̂1
p̂1 0

� �
+ 0 − ip̂2

ip̂2 0

� �
+ p̂3 0

0 − p̂3

� �
= p̂3 p̂1 − ip̂2

p̂1 + ip̂2 − p̂3

� �
.

Thus, we can express this in a closed-form as:

− E2 +m0c2ð ÞI2 E1I2 − c~σp
E1I2 + c~σp E2 −m0c2ð ÞI2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

uA

uB

 !
=B4× 4

uA

uB

 !
|fflfflffl{zfflfflffl}

4× 1

=0.

In the above equation, the 4× 4 matrix B is written in terms of four 2× 2 sub-matrices.
This matrix equation can also be expressed as a pair of linear homogeneous equa-
tions in terms of the unknown two-dimensional constants uA and uB:

− E2 +m0c2
� �

I2uA + E1I2 − c~σpð ÞuB =0, (3:31)

E1I2 + c~σpð ÞuA + E2 −m0c2
� �

I2uB =0. (3:32)

A necessary and sufficient condition for nonzero solutions of this system of equa-
tions is the determinant in front of the unknown vectors uA and uB to be trivial.
Then,

− E2 +m0c2
� �

E2 −m0c2
� �

I2 − E1I2 − c~σpð Þ E1I2 + c~σpð Þ=0. (3:33)

The properties of the Pauli matrices suggest that~σp~σp=p2I2 and we can obtain the
following connection: E1ð Þ2 + E2ð Þ2 −p2c2 −m2

0c
4 =0 indicating that E1 and E2 can ei-

ther be positive or negative values.
Equations (3.31), (3.32), and (3.33) show that uA and uB are not independent,

since given a solution for uA, we can calculate uB, and vice-versa. Besides, compar-
ing equations (3.31) and (3.32), we can see that uA and uB are symmetrical except for
the reversals of the signs of the Pauli spin matrices and of the energy E2. Thus, a
particle described by the Dirac equation in spacekime has just two possible intrinsic
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states relative to a given basis, corresponding to the defined spin states and to the
positive or negative energy values of E2.

Let’s first explore the simple solutions of equation (3.30) when p=0, i.e., when
the particle is at rest:

0 I2

I2 0

 !
E0, 1 +

− I2 0

0 I2

 !
E0, 2

" #
uA

uB

 !
=

I2 0

0 I2

 !
m0c2

uA

uB

 !
. (3:34)

The energy of the particle at rest is expressed by the following formula:

E0ð Þ2 = E0, 1ð Þ2 + E0, 2ð Þ2 =m2
0c

4,

where E0, l = c2m0
dk0, l
dk0

, l 2 1, 2f g, see Chapter 5, Section 5.7.
Similarly to the approach in Chapter 3, Section 3.7.6, applying the appropriate

kime hyperplane rotations of the kime axes k0, 1, k0, 2, we can identify the following
cases:

dk0, 1 =0, dk0, 2 >0, E0, 1 =0, E0, 2j j>0,

or

dk0, 1 >0, dk0, 2 =0, E0, 1j j>0, E0, 2 =0,

or

dk0, 1 = dk0, 2 =
dk0ffiffiffi
2
p >0, E0, 1j j= E0, 2j j= m0c2ffiffiffi

2
p .

Let’s explore each of these cases individually.
1) Let’s assume that E0, 1 =0, then E0, 2 = ±m0c2. Positive solutions E0, 2 = +m0c2

correspond to ordinary particles with a positive rest mass. From equation (3.34)
we get:

m0c2

− 1 0 0 0

0 − 1 0 0

0

0

0

0

1

0

0

1

0BBB@
1CCCA

u1

u2
u3

u4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
γ5

= m0c2

1 0 0 0

0 1 0 0

0

0

0

0

1

0

0

1

0BBB@
1CCCA

u1

u2
u3

u4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4× 4

.

This yields:

u1 =0, u2 =0, u=

0

0
u3

u4

0BBB@
1CCCA=

0

uB

 !
.
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Analogously, we can also consider the negative solutions corresponding to an anti-
particle with negative rest mass: E0, 2 = −m0c2:

u3 =0, u4 =0, u=

u1

u2
0

0

0BBB@
1CCCA=

uA

0

 !
.

2) Next we consider E0, 2 =0 and E0, 1 = ±m0c2. First, the positive solutions for ordi-
nary particles yield E0, 1 = +m0c2. From equation (3.34) we get:

m0c2

0 0 1 0

0 0 0 1

1

0

0

1

0

0

0

0

0BBB@
1CCCA

u1

u2
u3

u4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
γ4

= m0c2

1 0 0 0

0 1 0 0

0

0

0

0

1

0

0

1

0BBB@
1CCCA

u1

u2
u3

u4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4× 4

,

i.e.,

m0c2u3

m0c2u4
m0c2u1

m0c2u2

0BBBB@
1CCCCA=

m0c2u1

m0c2u2
m0c2u3

m0c2u4

0BBBB@
1CCCCA.

Therefore, in this case we obtain:

u1 = u3, u2 = u4, u=

u3

u4
u3

u4

0BBB@
1CCCA.

Second, the negative solutions similarly correspond to an antiparticle with negative
rest mass: E0, 2 = −m0c2:

u3 = − u1, u4 = − u2, u=

u1

u2
− u1

− u2

0BBB@
1CCCA.

Assuming E0, 1j j= E0, 2j j= m0c
2ffiffi
2
p , there are four unique possibilities:
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Case 1: E0, 1 >0, E0, 2 >0, where equation (3.34) yields:

m0c2ffiffiffi
2
p

− 1 0 1 0

0 − 1 0 1

1

0

0

1

1

0

0

1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
γ4 + γ5

u1

u2
u3

u4

0BBB@
1CCCA=m0c2

1 0 0 0

0 1 0 0

0

0

0

0

1

0

0

1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4× 4

u1

u2
u3

u4

0BBB@
1CCCA.

In this case, u1 = u3
ffiffiffi
2
p

− 1
� �

, u2 = u4
ffiffiffi
2
p

− 1
� �

.

Case 2: E0, 1 >0, E0, 2 <0, where equation (3.34) is reduced to:

m0c2ffiffiffi
2
p

1 0 1 0

0 1 0 1

1

0

0

1

− 1

0

0

− 1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
γ4 − γ5

u1

u2
u3

u4

0BBB@
1CCCA=m0c2

1 0 0 0

0 1 0 0

0

0

0

0

1

0

0

1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4× 4

u1

u2
u3

u4

0BBB@
1CCCA.

Therefore, u3 = u1
ffiffiffi
2
p

− 1
� �

, u4 = u2
ffiffiffi
2
p

− 1
� �

.

Case 3: E0, 1 <0, E0, 2 >0, where equation (3.34) simplifies to:

m0c2ffiffiffi
2
p

− 1 0 − 1 0

0 − 1 0 − 1

− 1

0

0

− 1

1

0

0

1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
− γ4 + γ5

u1

u2
u3

u4

0BBB@
1CCCA=m0c2

1 0 0 0

0 1 0 0

0

0

0

0

1

0

0

1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4× 4

u1

u2
u3

u4

0BBB@
1CCCA.

Hence, u3 =-u1 1þ ffiffiffi
2
p� �

, u4 = -u2 1þ ffiffiffi
2
p� �

.

Case 4: E0, 1 <0, E0, 2 <0, and equation (3.34) becomes:

m0c2ffiffiffi
2
p

1 0 − 1 0

0 1 0 − 1

− 1

0

0

− 1

− 1

0

0

− 1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
− γ4 − γ5

u1

u2
u3

u4

0BBB@
1CCCA=m0c2

1 0 0 0

0 1 0 0

0

0

0

0

1

0

0

1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4× 4

u1

u2
u3

u4

0BBB@
1CCCA.

And therefore, u3 = − u1
ffiffiffi
2
p

− 1
� �

, u4 = − u2
ffiffiffi
2
p

− 1
� �

.

By analogy with the case of p=0 and E0, 1 =0, we can identify u3 and u4 as solutions
for particles with positive rest mass (m0 >0), and u1 and u2 as solutions for antipar-
ticles with negative rest mass (−m0 <0). This follows analogously to the classical
case of the Dirac equation in spacetime.
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In the most general case, to obtain the solutions of the free Dirac equation for
particles in spacekime (m0 >0), we can we express uA in terms of uB in the first
equation (3.35):

uA =
1

E2 +m0c2
E1 − c~σpð ÞuB|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

2× 1

.

Therefore,

ψ =
1

E2 +m0c2
E1 − c~σpð ÞuB
uB

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4× 1

e
i
�h − E1k1 − E2k2 +p.xð Þ
� �

. (3:35)

Note that, p=0 and E0, 1 =0 correspond to the solutions we found for a particle at
rest for E0, 2 >0. Here, uB is a constant two-component vector characterizing the am-
plitudes of the two possible projections of the spin �h

2 and − �h
2 along the z axis. It can

be expressed in terms of the eigenfunctions of the operator of the third projection of
the spin:

uB =
u3

u4

 !
=

1

0

 !
u3 +

0

1

 !
u4.

Therefore, we have two linearly independent solutions corresponding to the two
projections of the spin along the axis z, where u3 and u4 are the amplitudes of the
states with a different projection of the spin, respectively.

In the general case of antiparticles (−m0 <0), the solutions of the free Dirac
equation in spacekime is derived from the second equation (3.32):

uB = −
1

E2 −m0c2
E1 + c~σpð ÞuA|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

2× 1

.

In other words:

ψ =
uA

− 1
E2 −m0c2

E1 + c~σpð ÞuA

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4× 1

e
i
�h −E1k1 −E2k2 +p.xð Þ
� �

. (3:36)

Again, uA is a constant two-component vector characterizing the amplitudes of the
two possible projections of the spin angular momentum �h

2 and − �h
2 along the z axis.

It can be expressed in terms of the eigenfunctions of the operator of the third projec-
tion of the spin:

uA =
u1

u2

 !
=

1

0

 !
u1 +

0

1

 !
u2.
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Thus, we have two linearly independent solutions that correspond to the two projec-
tions of the spin.

We define antiparticle states by just flipping the signs of E1,E2, and p following
the Feynman-Stückelberg convention:

ν3 −E1, −E2, −pð Þe − i
�h −E1k1 −E2k2 +p.xð Þ

� �
= u2 E1,E2,pð Þe i

�h −E1k1 − E2k2 +p.xð Þ
� �

,

ν4 −E1, −E2, −pð Þe − i
�h − E1k1 − E2k2 +p.xð Þ

� �
= u1 E1,E2,pð Þe i

�h −E1k1 − E2k2 +p.xð Þ
� �

.

As the spin matrix, Santiparticle , for antiparticles is equal to − Sparticle , ν3 and ν4 are
the components of antiparticle spinors, associated with the u2 and u1, respectively.
We can formulate Feynman-Stückelberg interpretation in the following way: Par-
ticles with negative rest mass, moving backward in spacekime can be seen as anti-
particles with positive rest mass, moving forward in spacekime. Recami and Ziino
[197, 198] formulated the so called strong CPT symmetry”: the physical world is sym-
metric (i.e. the physical laws are invariant) during total 5-dimensional inversion of
the axes x, y, z, ct0 (where t0 is the proper time).

It is possible to make a generalization of the strong CPT symmetry in the case of
two dimensional kime: the physical world is symmetric (i.e. the physical laws are
invariant) for inversion of the axes x, y, z, ck0, 1, ck0, 2 (where k0, 1, k0, 2 are the compo-
nents of the proper kime dk0 – see Chapter 5, Sections 5.7 and 5.10.1.

Depending on the values of the components of energy E1 and E2 and the direc-
tion of motion in spacekime, we can distinguish 5 kinds of antiparticles:
– antiparticle A− − (E1 <0 and E2 <0);
– antiparticle A− + (E1 <0 and E2 >0);
– antiparticle A+ − (E1 >0 and E2 <0);
– antiparticle A−0 (E1 <0 and E2 =0);
– antiparticle A0− (E1 =0 and E2 <0).

We will consider the Dirac equation for a charged particle interacting with an elec-
tromagnetic field. In spacekime, the electric potential will not be a scalar, but a two-
component vector ϕ = ϕ4, ϕ5

� �
defined with respect to kime dimensions k1 and k2.

By the substitution in the free Dirac equation (3.31), the spacekime Dirac equa-
tions for a particle with charge e, which interacts with an electromagnetic field in
the standard way, may be expressed as:

p̂k ! p̂k − e ϕ x, k1, k2ð Þ,

p̂! p̂−
e
c
A x, k1, k2ð Þ.

This formulation relies on ϕ = ϕ4, ϕ5

� �
, the electric potential vector, A= A1,A2,A3ð Þ

the magnetic potential vector defined with respect to space dimensions x, y, z, and
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bpk = p̂4, p̂5ð Þ= i�h
c

∂
∂k1

, i�hc ∂
∂k2

� �
, the kime energy operator. Indeed, this formulation of

Dirac equations agrees with the principle of gauge symmetry [71].
More explicitly, the Dirac equation in spacekime is:

~γk p̂k − e ϕ x, k1, k2ð Þð Þ− c
0 ~σ
−~σ 0

 !
p̂−

e
c
A x, k1, k2ð Þ

� �
−m0c2I4× 4

" #
ψ =0, (3:37)

where:

~γk = γ4, γ5
� �

,

~γk p̂k − eϕ x, k1, k2ð Þð Þ=
X5

τ = 4

γτ|{z}
4× 4

p̂τ − eϕ τ x, k1, k2ð Þð Þ.

0 ~σ
−~σ 0

 !
p̂−

e
c
A x, k1, k2ð Þ

� �
=
X3

ϑ = 1

0 σ ϑ

− σ ϑ 0

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

4× 4

p̂ϑ −
e
c
Aϑ x, k1, k2ð Þ

� �
.
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Chapter 4
Kime-series Modeling and Spacekime Analytics

In this chapter, we examine strategies to statistically model kime-varying data, derive
scientific information, or obtain statistical inference of spacekime signals. We start by
reviewing the general formulation of functional magnetic resonance imaging (fMRI)
activation analysis and the modern model-based likelihood-based inference tech-
nique. Then, we derive the magnitude-only inference on real-valued, longitudinal
(time-varying) data, such as fMRI time-series defined on a 3D spatial lattice. We
derive generalizations of analogous statistical inference for complex-valued space-
time signals and complex-valued spacekime data.

Various discrete and continuous strategies for mapping longitudinal time-varying
data to kime-indexed kimesurfaces and spacekime analytics using tensor-based linear
modeling are presented later in the chapter. Further alternative techniques, such as
topological kime-series analysis, may need to be developed to enhance spacekime
data modeling, inference, prediction, and forecasting.

4.1 General Formulation of fMRI Inference

Expanding some prior complex-valued longitudinal models [199–202], we can for-
mulate some spacetime analytical models of complex-valued fMRI across time. Such
spacetime models aim to understand, classify, and predict the state of an observed
real- or complex-valued time-varying physical object ρ x, tð Þ:R3 ×R +! C. In general,
we start with an observed object ρ x, tð Þ generated by measuring and transforming a 3D
complex-valued signal om kð Þ, evaluated at 3D spatial frequency k = kx, ky, kz

� �
. In k-

space, om kð Þ= o kð Þ|ffl{zffl}
true signal

+ e kð Þ|ffl{zffl}
noise

, where o, e:R3! C are respectively the (original) com-

plex-valued true MRI signal and some random noise (error). The independent and
identically distributed (IID) complex noise can be assumed to be normal. As both,
the signal and the noise, are complex-valued, volume reconstructions in space-
time will utilize both their real and imaginary parts. The resulting volume recon-
struction of the native Fourier space measurements will also be a complex-valued
observed object mixed with some complex-valued noise.

Before we dive into the analytics in the kime domain indexed by kappa, κ = t, φð Þ
2 K ffi C 3 κ = ðκ1, κ2Þ, we will examine the statistical inference using real- and com-
plex-valued spacetime fMRI blood oxygenation level dependent (BOLD) signals in-
dexed by time, t. Let’s suppress the spatial indices and denote the complex-valued
voxel intensity by ρt. This signal is defined for each time point by inverting the Four-
ier transform (FT) of the raw complex measurement om kð Þ recorded in the Fourier
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domain (k-space). Geometrically, the time-indexed intensities represent a complex-
valued time-series that can be expressed as:

ρt = ρR, t + eR, t
� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Re ρm, tð Þ
+ i ρI, t + eI, t
� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Im ρm, tð Þ

, or equivalently,

ρt =
ρR, t

ρI, t

 !
+

eR, t

eI, t

 !
.

We denote the real and imaginary parts of the volume intensities by ρR, t, ρI, t
� �′, the

bivariate normal distribution noise by e= eR, t, eI, tð Þ′⁓N 0, Σð Þ, and the transpose of a
vector or a matrix by□′. The bivariate noise may be assumed to have a simpler scaled
standard variance-covariance matrix, Σ= σ2I.

Following the notation in [199], we will express the fMRI time-series at a fixed
voxel location as n complex-valued temporal intensities ρt

� 	
t indexed by 1≤ t ≤ n:

ρ = b1|{z}
baseline

+ ar|{z}
activation

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

magnitude

× eiθ|{z}
phase coupling

+ e|{z}
error

. (4:1)

The baseline component (b1) represents the longitudinal average of the time-series and

is expressed as the product of the unitary vector of ones, 1=
�
1, 1, . . . , 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n

�′, representing
the static background signal at all spacetime locations, and the baseline magnitude
(b>0), a constant. A more flexible (non-constant) baseline model, e.g., polynomial,
may also be used to account for drifts, trends, or habituation effects in the baseline.

The activation component (ar) typically represents a periodically repeating ex-
periment consisting of a response vector (r) such as a known reference to the spe-
cific expected response characteristic function. For instance, in an “on-off” fMRI
finger-tapping experiment, the response is an oscillatory step-wise characteristic
function of the on-off stimulus paradigm. The second part of the activation is the
amplitude (a), which characterizes the strength of the brain response, as measured
by fMRI BOLD signal, due to the specific response function. Voxels that are not in-
volved in brain function associated with specific stimulus will exhibit trivial activa-
tion amplitude, a=0. Similarly, brain locations involved in processing a specific
stimulus will have non-trivial activation responses, a>0.

In equation (4.1), the parameter θ represents the phase of the complex-valued
fMRI signal. The baseline (b1) and activation (ar) components of the native complex-
valued fMRI data signal depend on a common phase (θ). This blend can be thought of
as phase imperfection, or correction, of the raw magnitude (real-valued) signal. The
final component in equation (4.1) represents the scaled additive model complex-valued
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Gaussian noise vector (e). Later, we will see that this Gaussian noise model assumption
can also be relaxed by incorporating Rician distribution noise (for modeling the magni-
tude of complex-valued MRI signal), Rayleigh distribution (for no-signal MRI back-
ground noise), or any other noise distribution [203, 204]. Clearly, all three components
of model (4.1), magnitude, phase, and error, are indexed by time, 1≤ t ≤ n. The phase
component (θ) may be assumed to be fixed with time, but may still vary across space
(voxel locations).

In model (4.1), both the baseline and activation signals share a common phase θ,
i.e., both components of the intensity are phase-coupled. Experimental evidence sup-
ports the additive phase-coupling between the constant and response components
[199]. Also, the parameters Θ = b, a, θ, σf g in model (4.1) are unknown and need to
be estimated at all voxel spatial locations. Various assumptions about these parame-
ters, e.g., b could be assumed to be constant across space and time, may lead to dif-
ferent models and subsequently to resulting inference variations.

A matrix representation of model (4.1) would facilitate the mathematical analysis
and statistical formulation of test-statistics to identify spatial locations significantly
associated with the stimulus conditions and specific brain activation. Unwinding the
complex-valued representation from a wide (complex number) to a long (vector) for-
mat yields the following formulation of the fMRI intensity model:

ρ =
ρR

ρI

 !
=

1 0

0 1

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

S

b cos θ
b sin θ

 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

γ

+ a
b|{z}
q

r 0

0 r

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

H

b cos θ
b sin θ

 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

γ

+ σe,

ρ = S+ qHð Þ|fflfflfflffl{zfflfflfflffl}
Y

γ+ σe,
(4:2)

where e⁓N 0, Ið Þ, γ represents the complex baseline signal, and the activation to
baseline ratio q relates to the signal-to-noise ratio (SNR) attributed to the actual
fMRI activation. It may be informative to explicate the tensor dimensions of all
terms in model (4.2):

ρ =
ρR

ρI

 !
2n× 1

= S2n× 2γ2× 1 + q1× 1H2n× 2γ2× 1 + σe2n× 1 = S+ qHð Þ|fflfflfflffl{zfflfflfflffl}
Y2n× 2

γ+ σe: (4:3)

In the complex model (4.3), the multiplicative term (qHγ) represents the non-linear
phase-coupling between the SNR (q) parameter and the complex baseline signal (γ).
This is one of the substantive differences between the complex-valued model (4.3)
and a classical linear regression model using magnitude-only (real-valued) fMRI sig-
nal where the baseline b and the activation a are assumed to be independent and
linearly mixed:

ρ xð Þ=b1+ ar + σ e.
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The spatial location, x, will generally be suppressed. Matrix representation of or-
thogonal projections provides a useful contextualization of matrix manipulation for
the purpose of orthogonal projection of an arbitrary vector a 2 Rn onto a subspace
V � Rn. Let dimV =m≤ n and the vectors v1, v2, . . . , vmf g 2 V represent any basis of
V. If A is the matrix of column vectors vif gmi= 1, we can find an orthonormal basis
u1, u2, . . . , umf g 2 V, ui′ uj = δi, j, and the orthogonal projection onto V is represented

by the n× nmatrix:

PV =
P
i
uiui′=A A′A

� �− 1
A′, where An×m = v1, v2, . . . , vmð Þ.

Note that the square cross-product matrix A′A
� �

m×m is invertible, since ∀c=
c1, c2, . . . , cmð Þ 2 Vn 0f g, if we assume c 2 kernel A′A

� �
, then 0=A′Ac yields that

0= c′A′ Ac= Acð Þ′ Acð Þ= Ack k2 and Ac=0. Since vif gmi= 1 2 V represents any basis of V,
then 0=Ac=

P
i civi introduces a trivial linear combination of the basis, which is

only possible, when ci =0,∀i. Therefore the kernel of A′A is trivial, kernel
A′A
� �

= 0f g, and A′A is invertible.
Next we can validate that the projection matrix P =

P
i uiui′=A A′A

� �− 1
A′ works as

expected on all vectors a 2 Rn, for elements in V and V? =RnnV. Suppose a= av + a?,
where av 2 V and a? 2 V?, first consider a?, since V =Range Að Þ, V? =Range Að Þ? =
kernel A′

� �
, hence if a? 2 V?, thenA′a? =0. Next, consider av 2 V, 9c= cif gmi= 1 such that

av is a linear combination of the basis vectors v1, v2, . . . , vmf g 2 V, and av =Ac.
Therefore:

PVa=PVav +PVa? =A A′A
� �− 1

A′av +A A′A
� �− 1

A′a?|ffl{zffl}
0

=

A A′A
� �− 1

A′ Ac|{z}
av

+ A A′A
� �− 1

0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

=A A′A
� �− 1

A′A
� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

I

c=Ac= av.

This validates that the matrix operator PV =A A′A
� �− 1

A′ orthogonally projects onto
the subspace V � Rn. Similarly, the matrix operator projecting onto V? is P? =
I −A A′A

� �− 1
A′

� �
:

P?a=P?aν +P?a? = a?.

The kernel of the projection P? = I −A A′A
� �− 1

A′
� �

and the range of the projection
PV =A A′A

� �− 1
A′ are both equal to V.

Without loss of generality, let’s assume a trivial sum of the response vector com-
ponents, A′r ≡ 1′r =0. Otherwise, this property can be enforced by orthogonalizing
the response states relative to the constant signal vector A≡ 1 by projecting r into
the complementary subspace spanned by the columns of 1. This corresponds to gen-
erating a new response:

br ≡P?r ≡ I −A A′A
� �− 1

A′
� �

r = I − 1 1′1
� �− 1

1′
� �

r,
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where I is the identity matrix. Another observation is that we can always assume
the normalization condition r′r = n (the number of samples), otherwise, we can just
renormalize the reference condition.

To account for varying, drifting, or nonstationary baseline, a more general model
using non-constant baseline intensities component can also be fit. The multiple model
parameters may still be estimated via linear or polynomial regression. In other
words, we can extend the constant-baseline and activation model that relies on
b1|{z}

baseline

+ ar|{z}
activation

to a more flexible (non-constant-baseline) model using a design

matrix, Xn× d+ 1ð Þ = 1 x1 x2 . . . xdð Þ, composed of d feature vectors xif gdi= 1, each of

which is assumed to be an observed time-series, and the baseline magnitude vec-

tor β = βo, β1, . . . , βd

� �′:
Xβ|{z}

baselinemodel

= βo1|{z}
βo

+ β1x1 + β2x2 + . . . + βdxd.

The observations for feature i across the n cases represent a vector xi = x1, i, x2, i, . . . ,ð
xn, iÞ′, ∀1≤ i≤d, and for a given case identifier (subject or time t), the observed feature
values include xt′= 1, xt, 1, xt, 2, . . . , xt,dð Þ,∀1≤ t ≤ n. In the special case of fMRI intensi-
ties, which indirectly measure the effective proton spin density at time t, the observa-
tions can be indexed by time xt′= 1, xt, 1, xt, 2, . . . , xt,dð Þ,∀1≤ t ≤ n, and the fitted linear
model-based value of the fMRI magnitude response at time t is represented as ŷt = xt′β.

For instance, one can jointly fit a multi-term linear model that includes an inter-
cept (βo) and some multi-source components, e.g., a linear drift over time (β1) represent-
ing brain habituation effect over time, a BOLD hemodynamic effect of a stimulus S1 (β2),
a quadratic effect of S1 or another stimulus S2 (β3), and so on.

Such a multivariate parameter model of the reference (baseline) signal incorpo-
rates fMRI signal uncertainties and can be used to account for other factors like the
commonly observed habituation reflecting brain plasticity and adaptation to per-
forming repetitive tasks. Thus, the multi-feature expansion of the complex-valued
model (4.3) can be presented as:

ρ|{z}
2n× 1

=
ρR

ρI

 !
=

1 0

0 1

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2n× 2 d+ 1ð Þð Þ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{S

β 0

0 β

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2 d+ 1ð Þð Þ× 2

cos θ

sin θ

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2× 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
γ

+ M|fflfflfflffl{zfflfflfflffl}
2n× 2 d+ 1ð Þ

zfflfflfflfflffl}|fflfflfflfflffl{qH
β 0

0 β

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2 d+ 1ð Þð Þ× 2

cos θ

sin θ

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2× 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
γ

e|{z}
2n× 1

=

S+qHð Þγ+ σe=
X 0

0 X

 !
β 0

0 β

 !
cos θ

sin θ

 !
+

eR, t

eI, t

 !
,

(4:4)
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where the phase location parameter θ is assumed to be constant, the matrixM2n× 2 d+ 1ð Þ
depends on the SNR of activation to baseline and the response matrix H, the effect-size
vector is β = βo, β1, . . . , βd

� �′, and the design matrix X consists of the constant intercept,
the baseline signal, and the expected fMRI BOLD response columns.

In general, if we define A 2 d+ 1ð Þð Þ× 2 =
β 0
0 β

� �
, then the left inverse of A, i.e.,

A− 1 =A− 1
L , is defined by:

A− 1
L = A′A

� �− 1|fflfflfflffl{zfflfflfflffl}
2× 2

A′|{z}
2× 2 d+ 1ð Þð Þ

,

where A′2× 2 d+ 1ð Þð Þ = β′ 0
0 β′

� �
, A′A|{z}

2× 2

=
Pd
i=0

β2
i 0

0
Pd
i=0

β2
i

0B@
1CA,

A′A
� �− 1|fflfflfflffl{zfflfflfflffl}

2× 2

=

Pd
i=0

β2
i

� �− 1

0

0
Pd
i=0

β2
i

� �− 1

0BBB@
1CCCA, and A− 1A= A′A

� �− 1
A′A= 1 0

0 1

� �
= I2× 2.

Therefore,

a
r 0

0 r

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

H

cos θ
sin θ

 !
= a

r 0

0 r

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

H

A′A
� �− 1

A′|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
A− 1
L

A
cos θ
sin θ

 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

γ

=

a
r 0
0 r

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

H

A′A
� �− 1

A′|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
A− 1
L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

β 0
0 β

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2 d+ 1ð Þð Þ× 2

cos θ
sin θ

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2× 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
γ

.

Analyzing the fMRI signal involves aggregating the repeated experimental condition
measurements over time, e.g., event-related or task-driven performance design, and
determining the “statistical significance” measuring some association between the
observed fMRI intensity time course and the underlying experimenter-controlled
reference function characterizing the stimulus conditions.

For instance, given a fixed spatial location v= x, y, zð Þ and a specific contrast
vector c= c0, c1, c2, . . . , cdð Þ′, we can statistically analyze the likelihood of any linear
association between the covariates (X) in terms of their effects (β). In other words,
we can represent any concrete linear combination of the effects β = βo, β1, . . ., βd

� �′
via their inner product with the contrast c′β = cjβh i. This allows us to statistically
evaluate the data-driven strength of the hypothesized linear association of the fac-
tors by contrasting a pair of hypotheses, e.g.,

null hypothesis Ho : c′β =0 vs. alternative research hypothesis H1 : c′β ≠0.
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The generalized likelihood ratio test (gLRT) [205] evaluates the strength of the
data-driven evidence to reject the null hypothesis (Ho) and therefore accept the al-
ternative research hypothesis (H1). gLRT relies on maximizing the likelihood con-
strained by the null hypothesis.

4.2 Likelihood Based Inference

Next we will briefly introduce the method of maximum likelihood estimation (MLE)
and the subsequent hypothesis-based inference using likelihood ratio testing (LRT).
Given an a priori hypothesis in terms of a specific parameter vector, like the effect-
size, β, e.g., Ho : β =0 (no effect), the idea of likelihood inference involves three steps.
It starts with computing the MLE parameter estimates, applying the central limit theo-
rem (CLT) and the delta method to determine the sampling distributions for the statis-
tics we are interested in, and finally using an appropriate statistical test (e.g., LRT) to
quantify the data-driven evidence to reject the a priori hypothesis.

Having an observed data X and a set of candidate probability distribution models
Pθ:θ 2 Ωf g allows us to perform likelihood based inference using the likelihood func-

tion. In general, we start with a statistical model in which each probability distribution
model (Pθ) is specified by a corresponding probability function fθ. Assuming we have
observed the data X = xo, we can consider the likelihood function L · jxoð Þ: θ 2 Ωf g ! R

mapping the parameter space onto the reals, L θjxoð Þ= fθ xoð Þ, which explicitly depends
on the data, xo, and the set of probability models, Pθf g.

For any specific observation X = xo, the value L θjxoð Þ= fθ xoð Þ is the likelihood of
the (unknown) parameter θ. In this setting, the usual roles of a fixed (known) parame-
ter and unobserved (unknown) data are reversed, as the likelihood function considers
the data to be known (fixed) and the model parameter to be unknown and requiring
estimation. In essence, fθ xð Þ quantifies the chance (probability) of observing the data
X = x given a known value of the parameter θ. Quantifying this probability imposes a
natural likely ordering “θ1 � θ2|fflfflfflffl{zfflfflfflffl}

likely

” on the parameter set θ 2 Ωf g, indicating the parame-

ter θ2 is more likely than the parameter θ1 if and only if fθ1 xð Þ< fθ2 xð Þ. This likely order-
ing is different from comparing the actual values of the parameters, θ1 <�

> θ2. In other
words, given the data X = x is already observed, the parameter with higher likelihood
is more likely to be associated with the source process of the observed data than an-
other process associated with a different parameter whose likelihood is lower than the
first. Of course, if fθ1 xð Þ= fθ2 xð Þ, then “θ1 ≡ θ2|fflffl{zfflffl}

likely

”, but again, they may not necessarily be

different as values. To reiterate, the likelihood value L θjxð Þ= fθ xð Þ is the probability of
observing the data X = x given that θ is the true value of the process generating the
data. Whereas probability density functions are restricted to be positive, fθ xð Þ≥0 andÐ
fθ xð Þdx= 1, all probability values are within the range 0, 1½ � and often the likelihood
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values may be very small over the entire parameter space θ 2 Ωf g. In principle, it is
not the raw likelihood value that is informative about the characteristics of the process
we are studying. Of interest is the relative likelihood value contrasted to other likeli-
hoods corresponding to other parameters in the model set θ 2 Ωf g.

Let’s start by examining one discrete and one continuous example of using LRT
inference. The first example models an experiment of tossing a coin n= 100 times and
observing X = 60 heads turn up. Solely based on this information, suppose the proba-
bility of getting a Head in a single toss is P Hð Þ= θ. Then, the Binomial distribution
Binomial 100, θð Þ represents the appropriate statistical model for the entire experiment
where Pθ =Binomial 100, θð Þ : θ 2 Ω= 0, 1½ �f g. The Binomial likelihood function is:

L θjX = 60ð Þ= fθ 60ð Þ= 100

60

 !
θ60 1− θð Þ40.

Let’s try to infer if a fair coin (θ1 =0.50) or a slightly biased coin, loaded for Heads
(θ2 =0.55), is more likely to have generated the observed X = 60 heads. Using the
Distributome Binomial calculator (http://www.distributome.org/V3/calc/Binomial
Calculator.html, accessed January 29, 2021), we can compute L θ1 =0.5jX = 60ð Þ=
0.982−0.972=0.01 and L θ2 =0.55jX = 60ð Þ=0.866−0.817=0.049. This suggests that
a coin loaded for heads (θ2) is more likely to have generated the relatively larger num-
ber of heads, X = 60, compared to a fair coin (θ1), which would be expected to yield 50
heads on average. A more relativized representation of the evidence in favor of a
loaded coin is provided by the ratio of the pair of likelihoods:

L θ2 =0.55jX = 60ð Þ
L θ1 =0.5jX = 60ð Þ = 0.049

0.01 ffi 5.

Later, we will illustrate the use of the likelihood function, and it’s close counterpart,
the log-likelihood function ll θjxð Þ= ln L θjxð Þð Þð Þ to estimate unknown parameter vec-
tors θ.

Let’s look at another (continuous distribution) example based on a sample of n
IID normal observations xif gni= 12 N θ, σ2

o

� �
, over the parameter space θ 2 Ω=Rf g and

assuming σ2
o >0 is known. Denoting the sample mean and sample variance by �x and

s2, we have:

n− 1ð Þs2 =
Xn
i= 1

xi − �xð Þ2 =
Xn
i= 1

x2i − 2�x
Xn
i= 1

�x+ n�x2 =
Xn
i= 1

x2i − 2n�x2 + n�x2 =
Xn
i= 1

x2i − n�x2,
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Xn
i= 1

xi − θð Þ2 =
Xn
i= 1

x2i − 2θ
Xn
i= 1

xi|fflffl{zfflffl}
n�x

+ nθ2 =
Xn
i= 1

x2i − 2θn�x+ nθ2 =

Xn
i= 1

x2i − n�x2 + n�x2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

− 2θn�x+ nθ2 =
Xn
i= 1

x2i − n�x2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n− 1ð Þs2

+ n �x2 − 2θ�x+ θ2� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�x− θð Þ2

= n− 1ð Þs2 + n �x− θð Þ2.

Then the likelihood function is:

L θjX = xif gni= 1

� �
=|{z}
by

independence

Qn
i= 1

fθ xið Þ|ffl{zffl}
univariate
normal
density

= 1

2π σ2oð Þn2
Qn
i= 1

e
− xi − θð Þ2

2σ2o =

1

2π σ2
o

� �n
2
e
−

Pn
i= 1 xi − θð Þ2

2σ2o = 1

2π σ2
o

� �n
2
e
− n− 1ð Þs2

2σ2o

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
independent of θ

× e
− n �x− θð Þ2

2σ2o|fflfflfflfflffl{zfflfflfflfflffl}
θ dependent

∝ e
− n �x− θð Þ2

2σ2o .

Remember that we are interested in the relative size of the likelihood function, ignoring
any constant multipliers. Thus, we are using the “proportional” sign (∝ ) to indicate
the important relative-size component of the likelihood value. Then, the log-likelihood
function llðθjXÞ is:

ll θjX = xif gni= 1

� �
= log L θjX = xif gni= 1

� �
∝ −

n �x− θð Þ2
2σ2

o
.

Since the log ·ð Þ function is monotonically increasing, LðθjXÞ and llðθjXÞ share the
same maxima and minima, which are obtained by setting to zero the first derivative(s)
with respect to the unknown parameter θ:

θ̂ = argmax
θ2Ω

LðθjXÞ= argmax
θ2Ω

llðθjXÞ= �x.

Since the second derivative in negative, the maximum likelihood is attained for:

0= d
dθ

ll θjXð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
score function

∝ 2n �x− θð Þ, or θ̂ = �x, since d2

dθ2
ll θjXð Þ∝ − 2n<0.

In other words, the sample average �x represents the MLE parameter estimate θ̂. The
score function is the gradient of the log-likelihood with respect to the parameter. For
multidimensional parameter vectors, the score function is the corresponding vector
of partial derivatives of the log-likelihood. Evaluating the score at a particular param-
eter vector yields a score vector encoding the direction of change of the log-likelihood
function with respect to changes of the values of the parameter vector.
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If we are observing a normal distribution process with a known variance (σ2
o) and

unknown mean (μ), we can collect IID samples and estimate the most likely value of
the unknown mean parameter μ. To formalize the inference process, we start with
Pθ:θ 2 Ωf g= Φθ:θ = μ 2 Rf g and we take a random sample xif gni= 12 N μ, σ2

o

� �
. We de-

rived that the MLE of the population mean parameter is μ̂ = �x. Now, we would like to
understand the distribution of this estimate, i.e., the sampling distribution of the
mean. The CLT provides a mechanism to track the asymptotics of the MLE estimate
for large sample sizes [165, 206]. Clearly, prior to observing the Xi = xif gni= 1, the arith-
metic average �X = 1

n

Pn
i= 1 Xi is a random variable. The CLT provides explicit form of

the sampling distribution of the mean:

�X~N μ, σ2
o

n

� �
, E �X
� �

= μ, MSEμ �X
� �

≡Varμ �X
� �

= σ2
o

n
, SDμ �X

� �
= σoffiffiffi

n
p .

A CLT generalization referred to as the “delta method” provides a mechanism to approx-
imate the probability distribution for a function of an asymptotically normal statistical
estimator given that the variance of that estimator is bounded [207]. As an example, we
can think of asking what would be the distribution of a function of the sample mean.
Again, we start with an IID sample Xif gni= 12 D, from an arbitrary distribution D. As-
suming that θ and σ >0 are well-defined constants and X̆ = X̆ X1,X2, . . . ,Xnð Þ is an esti-
mate of a parameter θ that is asymptotically normal:ffiffiffi

n
p �

X̆ − θ
�
!d N 0, σ2� �

.

The notation!d means convergence in distribution, with n!∞. Then, any smooth
function gðÞ whose first derivative at θ exists and is non-trivial (g′ θð Þ≠0), satisfies
an analogous asymptotic property:ffiffiffi

n
p

g X̆
� �

− g θð Þ� �!d N 0, σ2 g′ θð Þ� �2� �
.

The delta method allows us to obtain closed-form analytical expressions for the as-
ymptotic distributions of functions of parameter estimates. For instance, it is used
to show that chi-square (χ2

df ) is the asymptotic distribution of the LRT statistic. More
specifically, if we are trying to compare and contrast a pair of hypotheses, (null)
Ho:θ = θo and (alternative) H1:θ≠θo, the LRT statistics (λn Xð Þ) is defined as:

λn Xð Þ=
sup

θ = θo
LðθjXÞ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{RestrictedMLE

sup
θ

LðθjXÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Global MLE

= Lðθ̆jXÞ
Lðθ̂jXÞ

= LðθojXÞ
Lðθ̂jXÞ

.

The asymptotic distribution of the log-likelihood ratio test statistics, Λn Xð Þ, as
n! ∞, is − 2 log λn Xð Þð Þ!d χ2

df . The chi-square degrees of freedom dfð Þ represents
the difference between the number of free parameters in Ω and Ωo, e.g., for our
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mean example above θ̂ = �x, df = 1. This is because, ll θjXð Þ: = log LðθjXÞð Þ and we can
expand its Taylor series around θ̂:

Λn Xð Þ≡ − 2 log λn Xð Þ= 2 ll θ̂jX
� �

− ll θojXð Þ
� �

ll θoð Þ ffi ll θ̂
� �

+ θ̂ − θo

� �
ll′ θ̂
� �

+ 1
2

θ̂ − θo

� �2
ll′′ θ̂
� �

.

Note that ll θ̂
� �

does not depend upon θo and

θ̂ = argmaxθ2Ω LðθjXÞ= argmaxθ2Ω θ̂ = argmaxθ2Ω LðθjXÞ= argmaxθ2Ω llðθjXÞ
is the extremum of the (log) likelihood, i.e., ll′ θ̂

� �
=0. Therefore,

Λn Xð Þ ffi − θ̂ − θo

� �2
ll′′ θ̂
� �

= θ̂ − θo

� �2
J θ̂
� �

=

θ̂ − θo

� �2
I θoð Þ

J θ̂
� �
I θoð Þ = n θ̂ − θ

� �2
I θoð Þ×

J θ̂
� �

n I θoð Þ ,

where I θð Þ= −E d2

dθ2
log f Xjθð Þ

� �
is the Fisher information, J θð Þ= − ll′′ θð Þ≡ − d2

dθ2
ll θð Þ is

the observed information function, and I θð Þ=E ðJðθÞÞ.
By the delta method and the CLT,

ffiffiffi
n
p

θ̂ − θ
� � ffiffiffiffiffiffiffiffi

I θð Þp !d N 0, 1ð Þ. Note the depen-
dence of the parameter estimate on the sample size, θ̂ = θ̂n. Also by the law of large

numbers,
J θ̂ð Þ
n I θð Þ!

p
1.

To understand this convergence in probability, !p , assume we are given a ran-
dom (IID) sample, xif gni= 1, drawn from a probability distribution with a density func-
tion that is sufficiently regular [208, 209]. This regularity condition will guarantee
smoothness, series convergence, and commutativity of differentiation and integration
operators, i.e., we can interchange the expectation and the partial derivatives of the
log-likelihood. Then, the average of the observed Fisher information across all terms
converges to the expectation for a single term, which is just the Fisher information:

lim
n!∞

J θ̂ð Þ
n

� �
= − lim

n!∞

1
n

Pn
i= 1

d2

dθ2 log f xijθð Þ
� �� �

= −E
d2

dθ2 log f xjθð Þ
� �

= I θð Þ.

In other words,
J θ̂ð Þ
n !

p
I θð Þ. Therefore, as convergence in probability implies conver-

gence in distribution [210, 211], the distribution of the log-likelihood test statistics is:

Λn Xð Þ ffi n θ̂ − θ
� �2

I θð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
!d χ21

×
J θ̂
� �
nI θð Þ|ffl{zffl}
!p 1

!d χ2
1 .
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4.3 Magnitude-Only fMRI Intensity Inference

Let’s first review the basics of the classical magnitude-only fMRI inference. For each
fixed voxel location (spatial indexing is suppressed) and a given time t, ρR, t and ρI, t
are the real and imaginary parts of the fMRI signal, and ρt

�� �� is the spacetime recon-
struction of the real-valued magnitude-only fMRI intensity at time t:

ρt

�� ��|ffl{zffl}
R value

= ρR, t + eR, t
� �2 + ρI, t + eI, t

� �2h i1
2 =

xt′β cos θ + eR, t
� �2 + xt′β sin θ + eI, t

� �2h i1
2 = xt′β cos θ + eR, t

xt ′β

� �2
+ sin θ + eI, t

xt ′β

� �2� �1
2
=

xt′β 1+ 1

xt ′βð Þ2 e2R, t + e2I, t
� �

+ 2
xt ′β

cos θeR, t + sin θeI, tð Þ
� �1

2
≈ xt′β + et . ð4:5Þ

As e2R, t + e2I, t⁓χ2
2 and et = eR, t cos θ + eI, t sin θ⁓N 0, σ2ð Þ, the last approximation in

equation (4.5) is valid for high SNR
xt ′βð Þ2

e2R, t + e2I, t

� �
[199]. Therefore, the purely magni-

tude-based inference may be derived approximately from a linear model:

k ρ k|ffl{zffl}
n× 1

ffi X|{z}
n× d+ 1ð Þ

β|{z}
d+ 1ð Þ× 1

+ e|{z}
n× 1

,

where X = 1 x1 x2 � � � xdð Þ is the design matrix containing vectors of feature i obser-
vations denoted by xi = x1, i, x2, i, � � � , xn, ið Þ′,∀1≤ i≤d.

In general, without regard to the testable hypotheses, this unconstrained linear
model, without any boundary conditions, can be solved by ordinary least squares
(OLS) [212] and the solution is given by:

β̂OLS|{z}
d+ 1ð Þ× 1

= X′X
� �− 1

X′|fflfflfflfflfflffl{zfflfflfflfflfflffl}
X − 1
L|{z}

d+ 1ð Þ× n

ρk k.

The corresponding variability of the OLS estimate is:

σ̂2
OLS =

1
n

ρk k−Xβ̂OLS

� �
′ ρk k−Xβ̂OLS

� �
.

These estimates are derived using the matrix differentiation operator property [213].
Given a symmetric matrix A=A′, like the cross-product matrix A=X′X, and a column
vector a, like a=X′ ρk k= ρk k′X� �′, then ∂a′β

∂β = a and ∂β′Aβ
∂β = A+A′

� �
β = 2Aβ. These ma-

trix-differentiation formulations are derived from the definition of the derivative (Jaco-
bian matrix) of a vector transformation ym× 1 =Ψ xn× 1ð Þ:
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∂y
∂x

=

∂y1
∂x1

� � � ∂y1
∂xn

� � � ∂yk
∂xl

� � �
∂ym
∂x1

� � � ∂ym
∂xn

266666664

377777775
m× n

.

For an affine transformation x!Ψ y, y=Ψ xð Þ=Ax+b, where Am× n and b are the
linear and offset parts of Ψ, ∂y

∂x =A= ai, j
� �

, as x= x1, x2, � � � , xnð Þ′, y= y1, y2, � � � , ymð Þ′,
yk =

Pn
l= 1 ak, lxl +bk, and

∂yk
∂xl

= ak, l. Also, the derivative of a scalar (α ≡ α′) representing

the vector inner product hyjAxi≡ y′Ax= α ≡ α′= Axð Þ′y≡ hAxjyi= hxjA′yi 2 R is given
by:

∂α
∂y

= Axð Þ′= x′A′, ∂α
∂x

= y′A= A′y
� �′,

since α = y′Ax= y′A
� �

x≡ α′= y′Ax
� �′= x′A′y= x′A′

� �
y. The special case of m= n and

x= y leads to square matrix An× n and a quadratic form

α = x′Ax=
Xn
l= 1

xl
Xn
k = 1

al, kxk =
Xn
l= 1

Xn
k = 1

al, kxkxl.

When α = x′Ax,
∂α
∂xr

=
Xn
k = 1

ar, kxk|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Axð Þr

+
Xn
l= 1

al, rxl|fflfflfflfflffl{zfflfflfflfflffl}
A′xð Þr

,∀1≤ r ≤ n, and
∂α
∂x

=Ax+A′x= A+A′
� �

x.

4.3.1 Likelihood Ratio Test (LRT) Inference

In repeated event-related fMRI, subject to a hemodynamic response function (HRF)
delay, temporal intensity-magnitude measurements are associated with specific stim-
ulations or tasks [214]. To identify the brain regions associated with processing the
specific stimuli requires spatial voxel-by-voxel assessments of the statistical associa-
tion between the observed fMRI magnitude and the corresponding stimuli presented
as a characteristic reference function (e.g., on vs. off stimulation). As the fMRI inten-
sity magnitude follows Rician distribution [201], under the general linear model in
equation (4.5), the magnitude value and the corresponding probability density func-
tion (PDF) are defined by:
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ρt

�� ��|ffl{zffl}
magnitude

= xt′β cos θð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ρR, t

+ eR, t

0@ 1A2

+ xt′βsin θð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ρI, t

+ eI, t

0@ 1A224 35
1
2

,

p ρt

�� ��jxt, β, σ2� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Rician PDF ν = xt ′β, σð Þ

= ρt

�� ��
σ2 e

− 1
2σ2

ρtk k2 + xt′β|{z}
ν

 !2 !
× 1
2π

ðπ
θt = − π

e
1

σ2
xt ′β ρtk k cos θt − θð Þð Þdθt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

modified Bessel function Io
xt ′β ρtk k

σ2

� �
.

(4:6)

The integral in equation (4.6) is the zeroth-order (α =0) modified Bessel function of
the first kind [215], Io zð Þ= 1

2π

Ð π
− π ez cos θð Þdθ, evaluated at z = xt ′βkρtk

σ2 :

Io
xt′β ρt

�� ��
σ2

 !
= 1
2π

ðπ
θt = − π

e
1

σ2
xt ′β ρtk k cos θt − θð Þð Þdθt!

xt ′β!0
1.

The rationale for using a Rician distribution to model the fMRI data is based on the
need to fuse the real and the imaginary parts of the observed signal into a univariate
quantity, model the random noise using bivariate normal distribution, and repre-
sent the complex bivariate process ( ρR, t + eR, t, ρI, t + eI, t) via a univariate distribution
in terms of a magnitude r = ρt

�� ��� �
and a phase φ = θt = arctan

ρI, t + eI, t
ρR, t + eR, t

� �� �
. The

role of the phase may be explicated by deriving the Rician distribution from bivari-
ate normal model:

X~N μ = xt′β cos θð Þ, σ2� �
, Y~N μ = xt′β sin θð Þ, σ2� �

.

Following a Cartesian-to-polar change of variables transformation, the bivariate prob-
ability density can be expressed as:

pr;φ r|{z}
ρtk k

; φ|{z}
θt

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bivariate polar

¼ det
∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

������
������|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Jacobian

pXY x; yð Þ|fflfflfflfflffl{zfflfflfflfflffl}
normal
ðCartesianÞ

¼ rpXY x|{z}
rcos φð Þ

; y|{z}
rsin φð Þ

0@ 1A=

r
2π σ2 e

− 1
2σ2

x− ρR;tð Þ2 + y− ρI;tð Þ2
� �

=

1
2π σ2 r|{z}

ρtk k
e

− 1
2σ2

x2 + y2|fflffl{zfflffl}
r2

+ ρR;t
2 + ρI;t

2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x
0
tβ

� �2 − 2rcos φ|{z}
θt

0@ 1AρR;t − 2rsin φ|{z}
θt

0@ 1AρI;t

0BBB@
1CCCA

=
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1
2π σ2 ρt

�� ��e− 1
2σ2

ρtk k2 + x
0
tβ

� �2
− 2 ρtk kx0tβcos φ − θð Þ

� �
:

Another way to explicate the distribution of the time-indexed magnitude-only (real-
valued) fMRI signal is to use the linear model:

m|{z}
modelmagnitude

= xt′β = βo + β1x1, t + β2x2, t + . . . + βqxq, t

and express the magnitude in terms of the complex-valued signal:

ρt = xt′β cos θ|fflfflfflfflffl{zfflfflfflfflffl}
ρR, t

+ eR, t

0@ 1A+ i xt′β sin θ|fflfflfflfflffl{zfflfflfflfflffl}
ρI, t

+ eI, t

0@ 1A= ρR, t + eR, t
� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

yR

+ i ρI, t + eI, t
� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

yI

,

ρt

�� ��|ffl{zffl}
magnitude

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yR2 + yI2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR, t + eR, t
� �2 + ρI, t + eI, t

� �2q
.

Assume that at each voxel location the fixed phase imperfection is generally not
known and needs to be estimated, subject to Gaussian noise, eR, t, eI, tð Þ⁓N 0, σ2I2ð Þ.
Note that the magnitude-only model, ρt

�� ��, ignores the information contained in the
complex intensity-phases at time t:

φ ≡ θt = arctan
ρI, t + eI, t

ρR, t + eR, t

� �
= arctan

yI
yR

� �
.

Again, we use Cartesian (x= eR, t, y= eI, t) to polar coordinate (r, φ) transformations,
P and P − 1, on the range-space complex values:

R 2 3 eR, t , eI, tð Þ
P

$|{z}z}|{
P − 1

r, φð Þ 2 R + × − π:π½ Þ, P :
���� eR, t = r cos φ
eI, t = r sin φ , P − 1:

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2R, t + e2I, t

q
φ = arctan

eI, t
eR, t

� �
������ .

As ρt =
yR
yI

� �
= xt′β cos θ

xt′β sin θ

� �
+ eR, t

eI, t

� �
, and the error is assumed to be bivariate

normally distributed, e= eR, t
eI, t

� �
= yR − xt′β cos θ

yI − xt′β sin θ

� �
= yR −m cos θ

yI −m sin θ

� �
⁓N 0, σ2I2ð Þ and

the likelihood function is:

p
eR, t

eI, t

 !
jm, θ, σ2

 !
= 1
2π σ2 e

− e′e
2σ2 = 1

2π σ2 e
−

e2R, t + e2I, t
2σ2 .

Using the Jacobian of the polar transformation J Pð Þ= r, we can express the likeli-
hood, i.e., the joint distribution of the complex-valued fMRI intensities, in polar
coordinates:
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∂eR, t∂eI, t = r∂r∂φ,

ejeh i= e′e= e2R, t + e2I, t = ρR, t − xt′β cos θ
� �2 + ρI, t − xt′β sin θ

� �2 =
r cos φ −m cos θð Þ2 + r sin φ −m sin θð Þ2 =

r2 cos2φ + sin2φ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1

 !
− 2rm cos φ cos θ + sin φ sin θ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cos φ − θð Þ

0@ 1A+m2 cos2θ + sin2θ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1

 !
=

r2 +m2 − 2 r m cos φ − θð Þ.

For a general parameter space θ 2 Θ, the Cartesian- and polar-based likelihoods are:

p eR, t ,eI, tjΘð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Cartesian

= 1
2π σ2 e

−
e2R, t +e

2
I, t

2σ2 ∂eR, t∂eI, t =
r

2π σ2 e
− 1
2σ2

r2 +m2 − 2r mcos φ − θð Þð Þ
∂r∂θ = p r, φjΘð Þ|fflfflfflfflffl{zfflfflfflfflffl}

polar

.

In polar coordinates (bivariate kime), this estimate of the fMRI intensity distribution
will be used in the section below to obtain the MLE estimate of the parameter vector
θ = βo, β1, � � � , βq, σ2
� �

.

Integrating along the phase space yields the two-parameter univariate Rician dis-
tribution depending on the fMRI signal magnitude; ρt

�� ��~Rice υ, σð Þ where the param-
eter υ = xt′β models the noise-free (deterministic) baseline fMRI magnitude:

p ρt

�� �� ��xt, β, σ2� �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rician PDF υ = x′t β, σð Þ

= p r|{z}
ρtk k

0@ 1A=
Ðπ
− π

pr, φ r|{z}
ρtk k

, φ

0@ 1Adφ =

ðπ
− π

1
2π σ2 ρt

�� ��e− 1
2σ2

ρtk k2 + xt ′βð Þ2 − 2 ρtk kx′t βcos φ − θð Þ
� �

dφ =

ρtk k
σ2 e

− 1
2σ2

ρtk k2 + x′t β|{z}
υ

 !2 !
× 1

2π

ðπ
− π

e
1

σ2
x′t β ρtk kcos φ − θð Þð Þdφ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

modified Bessel function I0
x′t β ρtk k

σ2

� �
.

Let’s define the maximum likelihood estimates (MLE’s) of β and σ for both the re-
stricted null hypothesis (no activation) Ho :Cβ = τ (note that τ could be 0) and the
complementary alternative hypotheses H1 :Cβ ≠ τ, where C=Cq× d+ 1ð Þ is a full row-
rank contrast matrix representing the constraint rows, and τ = τq× 1 is a vector of
size equal to the full rank of the contrast matrix C. The rows in the contrast matrix C
correspond to all voxel locations in the spacetime domain. For a single voxel location,
the matrix C is just a row vector (linear contrast) c′. Assuming temporal independence

4.3 Magnitude-Only fMRI Intensity Inference 205

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



1≤ t ≤ nð Þ, the likelihood (l) and the log-likelihood (ll) functions corresponding to
model (4.6) are:

l= p ρk k jx, β, σ2� �
=
Y
t

p ρt

�� �� jxt, β, σ2� �
=

1
σ2

� �n

×
Y
t

ρt

�� ��� �
× e

− 1
2σ2

P
t

ρtk k2 +
P
t

xt ′βð Þ2
� �

×
Y
t

Io
xt′β ρt

�� ��
σ2

 !
.

(4:7)

ll= ln lð Þ= −n ln σ2� �
+
X
t

ln ρt

�� ��− 1
2σ2

X
t

ρt

�� ��2 +X
t

xt′β
� �2� �

+
X
t

ln Io
xt′β ρt

�� ��
σ2

 !
.

By maximizing the log-likelihood function, ll, we find the optimal (MLE) β and σ pa-
rameter estimates. As shown above, the MLE parameter estimates, β̂, σ̂

� �
, of the un-

constrained problem may be obtained by optimizing ll or by OLS.
Under the null hypothesis, Ho:c′β = τ (for single contrast) or Ho:Cβ = τ (for multiple

contrast equations), we will denote the constrained-problem MLE estimates by β̆, σ̆
� �

.
These are obtained by maximizing the constrained problem and including an ad-
ditional Lagrange-multiplier term γ′ c′β − τ

� �� �
in the exponent term of the objec-

tive function. This additional term includes a vector of coefficients γ′ and accounts
for the joint optimization relative to the main parameters, β and σ, and the addi-
tional constraint-derived term, γ′.

Using equation (4.7), the LRT statistic for Ho:c′β = τ is the log-transformed frac-
tion of the optimized constrained and unconstrained log-likelihoods:

LRT = − 2 ln
optimal constrained ll

optimal unconstrained ll

� �
= − 2 ln

max
Ho

ll

max ll

 !
=

2 ln
max ll
max
Ho

ll

 !
= 2 ln

ll β̂, σ̂
� �
ll β̆, σ̆
� �

0@ 1A= 2 ln ll β̂, σ̂
� �� �

− 2 ln ll β̆, σ̆
� �� �

=

2n ln
σ̆2

σ̂2

 !
+ 1

σ̆2

X
t

ρt

�� ��2 + X
t

xt′β̆
� �2� �

−
1

σ̂2

X
t

ρt

�� ��2 + X
t

xt′β̂
� �2� �

+

2
X
t

ln Io
xt′β̂ ρt

�� ��
σ̂2

 !
− ln Io

xt′β̆ ρt

�� ��
σ̆2

 ! !
.

(4:8)

By Wilks’ theorem [216], if the full row-rank of the contrast matrix C is df , then
LRT⁓χ2

df , as n! ∞. More generally, the contrast matrix C is specified by a null hy-
pothesis Ho :Cβ = τ and restricts the parameter region Ω0 to be s dimensional, whereas
the original unconstrained parameter region Ω is t dimensional. Then, LRT⁓χ2

t − s, as
n! ∞. In other words, for a full row-rank contrast matrix C with the number of
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independent constraint rows equal to t − s=df the asymptotic distribution of the test
statistics is LRT⁓χ2

df , as n!∞.

4.3.2 Rician and Normal Distributions of the Magnitude

Before we compute and compare the general and the constrained model parameter
estimates, β̂, σ̂

� �
and β̆, σ̆

� �
, let’s first derive the probability distribution density.

We will show that asymptotically, for large signal-to-noise ratio (SNR), ν = xt′β !∞

and low noise corresponding to activated brain regions, the magnitude is Rician dis-
tributed, equation (4.6), can be approximated by normal distribution [201]:

p ρt

�� ��jxt, β, σ2� �
⁓N xt′β|{z}

mean

, σ2|{z}
variance

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

normal

.

We will need the following two simple facts using the Bachmann-Landau asymp-
totic big-O function OðÞ notation [217]:
– A second-order Taylor-series expansion near the origin of the cosine function in

the exponent of the Bessel function in equation (4.6) is given by:

cos θt − θð Þ= 1−
θt − θð Þ2

2
+O
�

θt − θð Þ4�.
– A first-order Maclaurin series expansion of the imaginary error function (erfi)

[218]:

erfi zð Þ= − i× erf izð Þ|fflfflffl{zfflfflffl}
error function

= − i× 1ffiffi
π
p
Ðiz
− iz

e− t2dt ffi 2ffiffi
π
p z +O z3ð Þð Þ.

Let’s examine the asymptotics of the zeroth-order modified Bessel function of the first
kind as the argument increases, x! ∞, which models the situation of a large SNR in
fMRI signals. Over the real domain, z ≡ x 2 R , the Bessel function (Jν xð Þ) and modified
Bessel function (Iν xð Þ) of the first kind and of order ν 2 R represent the canonical solu-
tions y= y xð Þ of the second-order (standard) Bessel differential equation and its modi-
fied counterpart, which naturally have two linearly independent solutions – the order ν
Bessel functions (Jν,Yν) of the first and second kinds, respectively, which are paired
with their modified Bessel function counterparts (Iν,Kν) of the first and second kinds
[215, 219, 220]. Here, we are only concerned with the Bessel functions of the first kind
that are solutions of:

Bessel equationð Þ x2 d
2y

dx2
+ x

dy
dx

+ x2 − ν2� �
y=0,

modified Bessel equationð Þ x2 d
2y

dx2
+ x

dy
dx

− x2 + ν2� �
y=0.

For integer orders, ν ≡ n 2 N, the Bessel functions of the first kind are reduced to:
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Jn zð Þ= 1
2π

Ðπ
− π

ei z · sin θð Þ− nθð Þdθ = 1
2π

Ðπ
− π

cos nθ − z sin θð Þð Þdθ + i
2π

ðπ
− π

sin z sin θð Þ− nθð Þdθ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

≡

1
π

Ðπ
0
cos nθ − z sin θð Þð Þdθ, z 2 C , n 2 N .

Recall that when integrating a periodic function, shifting the limits of the definite
integral by a multiple of the period does not alter the integral value. A special case
of the general Bessel function of the first kind for integer orders n 2 N and real argu-
ments n 2 R is themodified Bessel functions of the first kind:

modifiedð ÞIn xð Þ≡ i−nJn ix|{z}
z

 !
= e−

π
2ni

2π

ðπ
−π

e−x · sin θð Þ− inθdθ= 1
2π

ðπ
−π

e−x · sin θð Þ− in θ+π
2ð Þdθ=

θ+ π
2 =a

− sin θð Þ= − sin a− π
2

� �
= cos að Þ

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

integral change of variables

= 1
2π

ð3π
2

−π
2

ex · cos að Þ− inada=

1
2π

ð3π
2

−π
2

ex · cos að Þ cos nað Þda

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

−
i
2π

ð3π
2

−π
2

ex · cos að Þ sin nað Þda

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

= 1
π

ðπ
0

ex · cos θð Þ cos nθð Þdθ, x2R , n2N .

The periods of both integrands in A and B are 2π and the integral range can be split
in half:

A= 1
2π

ð3π
2

− π
2

ex · cos að Þ cos nað Þda= 1
2π

ðπ2
− π

2

ex · cos að Þ cos nað Þda+ 1
2π

ð3π
2

π
2

ex · cos að Þ cos nað Þda.

Note that ∀x 2 R , cos a+ πð Þ= cos a− πð Þ, and the integrand ex · cos að Þ cos nað Þ is sym-
metric with respect to the mid-points 0 and π of the corresponding intervals − π

2 , π
2

� �
and π

2 , 3π
2

� �
. In other words:

ðπ2
− π

2

ex · cos að Þ cos nað Þda= 2
ðπ2
0

ex · cos að Þ cos nað Þda and

ð3π
2

π
2

ex · cos að Þ cos nað Þda= 2
ðπ

π
2

ex · cos að Þ cos nað Þda.
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These equalities can be validated by mirroring the integration over π, 3π
2

� �
, utilizing

the 2π trigonometric periodicity, and showing that the integrals along the ranges
π, 3π

2

� �
and π

2 , π
� �

are equal. Therefore:

A= 1
2π

ð3π
2

− π
2

ex·cos að Þ cos nað Þda=

1
π

ðπ2
0

ex·cos að Þ cos nað Þda+ 1
π

ðπ
π
2

ex·cos að Þ cos nað Þda= 1
π

ðπ
0

ex·cos að Þ cos nað Þda.

The second term, B, is trivial since

B=
ð3π
2

− π
2

ex·cos að Þ sin nað Þda=
ðπ2
− π
2

ex·cos að Þ sin nað Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{f að Þ

da

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

f að Þ+ f −að Þ=0

+
ð3π
2

π
2

ex·cos að Þ sin nað Þda

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

=0.

The triviality of the second term can be derived similarly to the derivation of term
A above:

ð3π
2

π

ex·cos að Þ sin nað Þda= −
ð− π

− 3π
2

ex·cos að Þ sin nað Þda= −
ðπ

π
2

ex·cos að Þ sin nað Þda.

Thus, for integer orders, In xð Þ=A+B= 1
π

Ð π
0 ex·cos θð Þ cos nθð Þdθ and the special case of

the zeroth-order modified Bessel functions of the first kind is:

modified zeroth order Bessel functionð Þ Io xð Þ= 1
π

Ðπ
0
ex· cos θð Þdθ.

An interesting property of the Bessel functions is that they are orthonormal:ð∞
0

Jn xð Þdx= 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
normalization

and
ða
0

Jn an, l
x
a

� �
× Jn an, k

x
a

� �
xdx= 1

2
a2 Jn+ 1 an, lð Þ½ �2δl, k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

orthogonality in 0,a½ �

,

where a>0 is a constant, an, l and an, k are the lth and kth zeros of Jn (there are infi-

nitely many roots that extend to infinity) and the Kronecker delta δl, k =
1, l= k
0, l≠k

�
.

The special case of the real-valued zeroth-order modified Bessel function is:
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I0 xð Þ= 1
2π

ðπ
− π

ex·cos θð Þdθ ≡
1

π

ðπ
0

ex · cos θð Þdθ =
X∞
k =0

x2k

4k k!ð Þ2 ,∀x 2 R .

Recall that the Gauss integral provides the normalization coefficient of the normal
distribution:

2
ð∞
0

e− aθ2dθ =
ð∞
−∞

e−aθ2dθ =
ffiffiffi
π
a

r
, or for a= 1

2σ2 ,
1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p

ð∞
−∞

e
− θ2
2σ2dθ = 1.

We will provide three alternative derivations of the normal approximation to the Ri-
cian distribution of the fMRI intensities for high SNR by examining the asymptotic
behavior of the zeroth-order modified Bessel function of the first kind when the ar-
gument increases, x!∞.

The first approach uses the Laplace method for analyzing integral convergence
[221, 222]. For a pair of functions g θð Þ>0 and f θð Þ 2 C2 a, bð Þ � Rð Þ, if there is a

unique maximum of f attained at θo 2 a, bð Þ, f θoð Þ= maxθ2 a, bð Þ f θð Þ, and if f ′′ θoð Þ<0,

then the Laplace method allows us to approximate the integral as follows:

F xð Þ=
ðb
a

g θð Þex · f θð Þdθ, lim
x!∞

F xð Þ ffi lim
x!∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

x f ′′ θoð Þ
�� ��

s
g θoð Þex · f θoð Þ

 !
.

For such integrals, the Laplace method yields a valid approximation by considering
a neighborhood where f θð Þ attains its maximum.

In our specific case of the zeroth-order modified Bessel function, I0 xð Þ, we have

a= − π, b= π, g θð Þ= 1, f θð Þ= cos θð Þ, f θoð Þ= maxθ2 a,bð Þ f θð Þ= 1, θo =0, and f ′′ θoð Þ=
− cos 0= − 1<0. Therefore, for large SNR (x!∞), the Laplace approximation method
suggests:

lim
x!∞

I0 xð Þ= 1
2π

lim
x!∞

ðπ
− π

ex · cos θð Þdθ = 1
2π

lim
x!∞

ffiffiffiffiffi
2π
x

r
ex · cos θoð Þ

 !
= lim

x!∞

exffiffiffiffiffiffiffiffi
2πx
p
� �

.

This argument assumes that f θoð Þ≡ cos θoð Þ= maxθ2 a,bð Þ f θð Þ= 1, which is only true
in a limiting sense, cos θo ≡0ð Þ= supθ2 − π, πð Þ cos θð Þ= 1.

The second alternative derivation proves the asymptotic behavior of I0 xð Þ for
large arguments using first principles. This approach examines the lower and upper
bounds of the modified Bessel function as x!∞:
Case 1 (Lower Bound): Note that cos θð Þ≥ 1− 1

2 θ2,∀θ 2 − π, π½ �. This can be derived
by letting h θð Þ= cos θð Þ− 1+ 1

2 θ2 be the difference of the two hand sides
and observing that h is a positive and monotonically increasing function
that attains its minimum at θ =0:
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h 0ð Þ=0, h′′ θð Þ= 1− cos θð Þ≥0.

Applying a change of variables transformation,
ffiffiffi
x
p

θ = yffiffiffi
x
p

dθ =dy

� �
, the modi-

fied Bessel function integral becomes:

ðπ
0

ex · cos θð Þdθ ≥
ðπ
0

ex · 1− 1
2θ2ð Þdθ = ex

ðπ
0

e− x · 1
2θ2ð Þdθ = ex

1ffiffiffi
x
p

ðffiffixp π

0

e− 1
2y
2ð Þdy.

Thus, the limit of the zeroth-order modified Bessel function of the first kind
is bounded below:

lim
x!∞

I0 xð Þ= 1
2π

lim
x!∞

ðπ
− π

ex · cos θð Þdθ = 1
π
lim
x!∞

ðπ
0

ex · cos θð Þdθ ≥

lim
x!∞

1
π e

x 1ffiffi
x
p
Ð∞
0
e− 1

2y
2ð Þdy

� �
= lim

x!∞
ex 1

π
ffiffi
x
p

ffiffiπ
2

p� �
= lim

x!∞

exffiffiffiffiffiffi
2πx
p
� �

.

Case 2 (Upper Bound): For each π
4 > εj j> θj j>0, cos θð Þ≤ 1− 1

2 cos εð Þθ2,∀ θj j>0. This
can be derived again by examining the difference of the two terms, h θð Þ=
cos θð Þ− 1+ 1

2 cos εð Þθ2, and observing that h is a negative monotonically de-
creasing function that attains its maximum at θ =0:

h 0ð Þ=0, h′′ θð Þ= − cos θð Þ+ cos εð Þ≤0.

Therefore, modified Bessel function integral in this case is bounded above by:ðπ
0

ex · cos θð Þdθ =
ðε
0

ex · cos θð Þdθ +
ðπ

ε

ex·cos θð Þdθ ≤

ðε
0

ex 1− 1
2 cos εð Þθ2ð Þdθ + πex cos εð Þð Þ =

ex
ðε
0

e − x
2 cos εð Þθ2ð Þdθ + πex cos εð Þ− 1ð Þ

 !
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x cos εð Þp

θ = yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x cos εð Þp

dθ =dy

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
integral change of variables

=

exffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x cos εð Þp ðffiffiffiffiffiffiffiffiffiffiffiffix cos εð Þ

p
ε

0

e− y2
2 dy+ πe− x 1− cos εð Þð Þ

0B@
1CA.

Now we can put together these two cases, for any small ε >0, the limit of the modi-
fied Bessel function of the first kind is bounded by:
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lim
x!∞

exffiffiffiffiffiffiffiffi
2πx
p
� �

≤|{z}
Case 1

lim
x!∞

I0 xð Þ ≤|{z}
Case 2

lim
x!∞

1
π

exffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xcos εð Þp ðffiffiffiffiffiffiffiffiffiffiffixcos εð Þ

p
ε

0

e�
y2
2 dy|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

finite

þπe

�x 1�cos εð Þ
 !

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≥0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!0

0BBBBBBB@

1CCCCCCCA

0BBBBBBB@

1CCCCCCCA

≤ lim
x!∞

1
π

exffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x cos εð Þp ð∞

0

e− y2
2 dy

 !
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}ffiffiπ

2

p

0BBBB@
1CCCCA= lim

x!∞

exffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πx cos εð Þp !

.

For large SNR (as x! ∞), the dominating term of the limit on the right is effectively
exffiffiffiffiffiffi
2πx
p . Therefore, for large arguments, the zeroth-order modified Bessel function of
the first kind can be approximated by:

I0 xð Þ= 1
2π

ðπ
− π

ex · cos θð Þdθ ≡
1

π

ðπ
0

ex · cos θð Þdθ ffi exffiffiffiffiffiffiffiffi
2πx
p .

Next, we recall that in equation (4.5), we have

kρtk≈ xt′β +N 0, σ2� �
, xt′β

σ
!∞)

ffiffiffiffiffiffiffiffiffi
kρtk
xt′β

s
!p 1,

p kρtk jxt, β, σ2� �
~N xt′β, σ2� �

.

To connect the Rician distribution of the fMRI magnitude to a normal distribution
density in the case of large SNR, recall equation (4.6):

p kρtk jxt , β, σ2� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Rician PDF ν = xt ′β, σð Þ

= kρtk
σ2 e

− 1
2σ2

kρtk2 + xt′β|{z}
ν

 !2 !
× 1

2π

ðπ
θt = − π

e
1

σ2
xt ′βkρtk cos θt − θð Þð Þdθt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

modified Bessel function Io
xt ′βkρtk

σ2

� �
.

p kρtk jxt, β, σ2� �
≈
kρtk

σ2 e
− 1
2σ2

kρtk2 + xt′β|{z}
ν

 !2 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π xt ′βkρtk
σ2

q e
xt ′βkρtk

σ2 =
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt ′βð Þ
kρtk 2π σ2

r e
− 1
2σ2

kρtk2 + xt′β|{z}
ν

 !2 !
e
2
xt ′βkρtk

2σ2 =

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt ′βð Þ
kρtk 2π σ2

r e
− 1
2σ2

kρtk2 + xt′β|{z}
ν

 !2

− 2xt ′βkρtk

 !
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt ′βð Þ
kρtk 2π σ2

r e
− 1
2σ2
kρtk− xt ′βð Þ2 =

ffiffiffiffiffiffiffiffiffi
kρtk
xt′β

s
|fflfflffl{zfflfflffl}
ffi 1

for high SNR,
due to equ 4.5ð Þ

1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− 1
2σ2
kρtk− xt ′βð Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N xt ′β, σ2ð Þ

0BBB@
1CCCA.

The final third approach relies on algebraic derivation of the normal approximation
to fMRI magnitude Rician distribution for large SNR. The zeroth-order modified Bes-
sel Function of the first kind can be approximated as x!∞ by:

I0 xð Þ= e− x+O 1
xð Þ2

� � i
ffiffi
1
x

q
ffiffiffiffiffi
2π
p +O

1
z

� �3
2

 !0@ 1A+ ex+O 1
xð Þ2

� � ffiffi
1
x

q
ffiffiffiffiffi
2π
p +O

1
x

� �3
2

 !0@ 1A.

We will derive this approximation up to a constant coefficient 1ffiffiffiffi
2π
p . By definition,

I0 xð Þ is a solution of this second-order differential equation (where ν =0):

x2 d2y
dx2

+ x dy
dx − x2 + ν2ð Þy=0,

which is equivalent to:

d2y
dx2

+ 1
x
dy
dx

− y=0.

As x is a large positive real argument, we can make a change of variables transfor-
mation u= u xð Þ≡ y

ffiffiffi
x
p

and rewrite the equation in terms of u xð Þ:
d2u
dx2

= 1−
1
4x2

� �
u.
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An additional variable transformation u= v xð Þex yields another second-order differ-
ential equation in terms of the new function v= v xð Þ= ue− x:

d2v
dx2

+ 2
dv
dx

+ v
4x2

=0.

Let’s assume a solution to this differential equation exists and can be expanded as
an infinite series:

v=A 1+ c1
x
+ c2
x2

+ c3
x3

+ � � �
� �

,

for some global normalizing constant A, which in practice is 1ffiffiffiffi
2π
p , and some series of

constants ckf g∞k = 1 as multipliers of the power terms in the series expansion.
Plugging in this infinite series representation of the solution into the differential

equation, we obtain:

2c1 −
1
4

� �
1
x2

+ 4c2 −
3
2

� �2

c1

 !
1
x3

+ 6c3 −
5
2

� �2

c2

 !
1
x4

+ � � � =0.

Note that the global constant A cancels out and we can set to zero the coefficients of
all power terms 1

xk

n o∞

k = 2
. These coefficients can be explicitly computed to be:

c1 =
12

8
, c2 =

12 · 32
2!82

, c3 =
12 · 32 · 52
3!83

, � � � , ck =
Qk − 1

l=0 2l+ 1ð Þ2
k!8k

, � � � .

Plugging the constant terms back into the series expansion of the solution v xð Þ, we
obtain:

v=A 1+ 12

8
1
x
+ 12 · 32

2!82
1
x2

+ 12 · 32 · 52
3!83

1
x3

+ � � � +
Qk − 1

l=0 2l+ 1ð Þ2
k!8k

1
xk

+ � � �
 !

.

By inverting the transformations, y xð Þ= exffiffi
x
p v xð Þ and letting x!∞, we can expand

the zeroth-order modified Bessel function of the first kind as:

y xð Þ≡ I0 xð Þ= Aexffiffiffi
x
p 1+ 12

8
1
x
+ 12 · 32

2!82
1
x2

+ 12 · 32 · 52
3!83

1
x3

+ � � � +
Qk − 1

l=0 2l+ 1ð Þ2
k!8k

1
xk

+ � � �
 !

.

(4:9)

To estimate the exact value of the global constant, A= 1ffiffiffiffi
2π
p , one can use the Bessel

function of the third kind (Hankel function) [223] and the integral expression of the
modified Bessel function of the second kind. As the argument increases,
xt ′β ρtk k

σ2 ! ∞, the dominant term in the function expansion (4.9) is Aexffiffi
x
p and there-

fore, I0
xt ′β ρtk k

σ2

� �
ffi 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πxt ′β ρtk k
σ2

q e
xt ′β ρtk k

σ2 .
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The above derivations allow us to approximate the probability distribution of
the magnitude and its likelihood function for small, medium, and large SNRs as
follows:
1. For small SNR, xt′β ! 0, Io

xt ′β ρtk k
σ2

� �
! Io 0ð Þ= 1:

p kρtk jxt , β, σ2� � ffi ρt

�� ��
σ2 e

− ρtk k2
2σ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Rayleigh distribution

,

L k ρ k jX, β, σ2� �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
likelihood

=
Y
t

p ρt

�� ��jxt, β, σ2� �
= 1

σ2n

Y
t

ρt

�� ��� �
e
−

P
t

ρtk k− xt ′βð Þ ρtk k− xt ′βð Þ
2σ2 ,

ll= ln L= − 2n ln σ +
X
t

ln kρtk−
1
2σ2 k ρ k −Xβð Þ′ k ρ k −Xβð Þ ffi

− n ln σ2 +
X
t

ln ρt

�� ��− 1
2σ2

X
t

ρt

�� ��2 + X
t

xt′β
� �2� �

+
X
t

ln Io
xt′β ρt

�� ��
σ2

 !
,

where the Rician density can be expressed as before

p ρt

�� ��jxt , β, σ2� � ffi ρt

�� ��
σ2 e

− 1
2σ2

ρtk k2 + xt′β|{z}
ν

0B@
1CA

20B@
1CA

× Io
xt′β ρt

�� ��
σ2

 !
,

and Io
xt ′β ρtk k

σ2

� �
= 1

2π

Ðπ
− π

e
− 1

σ2
xt ′β ρtk k cos φ − θð Þð Þdφ is a zeroth-order modified Bessel

function of the first kind.

2. For intermediate SNR levels, we can use any order of the Taylor series in equa-
tion (4.9) and Markov Chain Monte Carlo techniques to numerically estimate
the likelihood function.

3. For large SNR, xt′β !∞, a first-order Taylor series approximation yields:

p jjρtjj jxt , β, σ2� �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rician PDF ν = xt ′β, σð Þ

=

jjρtjj
σ2 e

− 1
2σ2

jjρt jj2 + xt′β|{z}
ν

 !2 !
× 1

2π

ðπ
− π

e
1

σ2
xt ′βjjρt jj cos φ − θð Þð Þdφ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

modified Bessel function Io
xt ′βjjρt jj

σ2

� �
.
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p jjρtjj jxt ,β,σ2� �
=

ffiffiffiffiffiffiffiffiffiffi
jjρtjj
xt′β

s
|fflfflffl{zfflfflffl}
ffi1

1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− 1
2σ2
jjρt jj−xt ′βð Þ2

� �
ffi 1ffiffiffiffiffiffiffiffiffiffi

2π σ2
p e

− 1
2σ2
jjρt jj−xt ′βð Þ2~N xt′β,σ2� �

.

lðk ρ k jX, β, σ2Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
likelihood

=
Y
t

p jjρtjj jxt , β, σ2� �
= 1

σn

1
2π

� �n
2
e
− kρk−Xβð Þ′ kρk−Xβð Þ

2σ2 =

σ − n 2πð Þ− n
2e

− ρk k−Xβð Þ′ ρk k−Xβð Þ
2σ2 , (4:10)

ll|{z}
log− likelihood

= ln l= −
n
2
ln σ2 −

n
2
ln 2πð Þ|fflfflfflffl{zfflfflfflffl}
constant

−
k ρ k −Xβð Þ′ k ρ k −Xβð Þ

2σ2 ∝

− n ln σ2 −
1

σ2

X
t

kρtk− xt′β
� � kρtk− xt′β

� �
.

In the next section, we will illustrate how to use this approximation of the log-
likelihood function to compute the maximum likelihood estimates (MLE) of the pa-
rameters. For instance, we will show that the MLE of the variance, σ̂2, is obtained by
setting to zero the partial derivative of the ll function w.r.t. σ2:

0= ∂ll
∂σ2 = −

n
σ2 +

1
2σ4 ρk k−Xβ̂

� �
′ ρk k−Xβ̂
� �

) σ̂2 = 1
2n

ρk k−Xβ̂
� �

′ ρk k−Xβ̂
� �

.

4.3.3 Parameter Estimation

In various brain regions, different SNR levels may correspond to different statistical
inference. To estimate the parameters, β, σ, we can use alternative strategies such
as least squares, the method of moments, or maximum likelihood estimation (MLE).

Assume we have a specific contrast matrix C=Cq× d+ 1ð Þ, where q=number of con-
tract constraints (e.g., voxel locations) and d=number of covariate features in the
linear model (e.g., linear and quadratic BOLD hemodynamic response effects, lin-
ear habituation effects). To represent a realistic inference problem, C should be a
full row-rank and correspond to the boundary-constrained optimization under a
null hypothesis Ho :Cβ = τ (τq× 1 could be 0) vs. an alternative H1 :Cβ ≠ τ. It may be use-
ful to keep in mind the following two pragmatic examples of constrained problems.

First, assume that Cq× d+ 1ð Þ =
Ip×p 0p× r

0 q−pð Þ× p 0 q−pð Þ× r

� �
, where Ip×p is the identity matrix,

0 is a matrix of zeros, and p+ r = d+ 1ð Þ. Then the constraint Cq× d+ 1ð Þβ d+ 1ð Þ× 1 = τq× 1
implies that p elements of the parameter vector β are preset to be exactly equal to the
corresponding values provided in the constant vector τ, whereas the remaining
r = d+ 1ð Þ− p elements of β are to be estimated. This constrained problem example
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simply reduces the dimension of the parameter estimation space. The second ex-

ample involves a contrast matrix where q= 1, τ =0, and C1× d+ 1ð Þ = 1′ is a row vector

of 1’s. This special constraint forces a model solution requiring a zero-sum of the
regression parameters.

111 � � � 01p

..

. . .
. ..

.

0p1 � � � 1pp

2664
3775

01 p+1ð Þ � � � 01 d+1ð Þ

..

. . .
. ..

.

0p p+1ð Þ � � � 0p d+1ð Þ

2664
3775

0 p+1ð Þ1 � � � 0 p+1ð Þp

..

. . .
. ..

.

0q1 � � � 0qp

2664
3775

0 p+1ð Þ p+1ð Þ � � � 0q d+1ð Þ

..

. . .
. ..

.

0q p+1ð Þ � � � 0q d+1ð Þ

2664
3775

26666666666664

37777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cq× d+1ð Þ

β1

..

.

βp

2664
3775gfixed

βp+1

..

.

βd+1

2664
3775gestimated

26666666666664

37777777777775
=

τ1

..

.

τp

τp+1

..

.

τd+1

2666666666664

3777777777775
.

This constrained problem may be solved by maximizing the log-likelihood function
(ll) and computing the ratio of the general and the constrained optimized likeli-
hoods [224]. Again, β̆, σ̆

� �
and β̂, σ̂

� �
denote the corresponding argmax llð Þ of the

constrained and unconstrained problems, respectively.
For large SNR, we can use equation (4.10) for unconstrained maximization of

the likelihood function l with respect to the parameters, β, σ. This optimization is
equivalent to minimization of the negative log-likelihood ll, which in turn is equiva-
lent to minimizing the exponent term:

β̂ = argmin
X
t

ρt

�� ��−xt′β
� �2� �

= argmin
X
t

ρt

�� ��−xt′β
� �

ρt

�� ��−xt′β
� �� �

= X′X
� �−1

X′kρk

σ̂2 = 1
n

ρk k−Xβ̂
� �

′ ρk k−Xβ̂
� �

. (4:11)

For the slightly more general model with non-identity (positive definite) variance-
covariance matrix, W, the signal distribution is p ρk kjX, β, σ2ð Þ⁓N Xβ, σ2Wð Þ and the
least-square parameter estimates are:

β̂ = X′W − 1X
� �− 1

X′W − 1 ρk k

σ̂2 = 1
n

ρk k−Xβ̂
� �

′W − 1 ρk k−Xβ̂
� �

.

Recall that for a column vector a, like a=X′ ρk k= ρk k′X� �′, and a symmetric matrix
A=A′, like the cross-product matrix A=X′X, the differentiation operator has the fol-
lowing properties [213]:

∂a′β
∂β = a and ∂β′Aβ

∂β = A+A′
� �

β = 2Aβ.
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Under Ho:Cβ = τ, the constrained problem is optimized using an additional Lagrange
multiplier term [201, 224–226]. The parameter estimates are obtained by minimizing
the residual sum square error (SSE):

β̆ = arg min
Cβ = τ

SSE βð Þ= arg min
Cβ = τ

ρk k−Xβð Þ′ ρk k−Xβð Þ� �
=

arg min
Cβ = τ

ρk k′ ρk k− 2 ρk k′Xβ + β′X′Xβ
� �

,

β̆ = β̂ − X′X
� �− 1

C′ C X′X
� �− 1

C′
� �− 1

Cβ̂ − τ
� �

= (4:12)

I − X′X
� �− 1

C′ C X′X
� �− 1

C′
� �− 1

C
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

β̂ + X′X
� �− 1

C′ C X′X
� �− 1

C′
� �− 1

τ,

σ̆
2 = 1

n
ρk k−X β̆

� �′ ρk k−X β̆
� �

.

The Lagrange dual problem connects the solutions of the regular unconstrained
and the constrained optimization problems:

L β; λð Þ ¼ kρk′kρk�2kρk′Xβþ β′X′Xβþ λ′ Cβ� τð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
depend on β

:

The solutions to the dual problem are obtained by setting to zero the partial deriva-
tive of the objective function

∂

∂β
L β, λð Þ= − 2X′kρk|fflfflfflfflffl{zfflfflfflfflffl}

∂a′β
∂β =a

+ 2X′Xβ|fflffl{zfflffl}
∂β′Aβ
∂β = 2Aβ

+ C′λ|{z}
∂a′β
∂β = a

=0

) β̆ = 1
2

X′X
� �− 1

2X′ ρk k−C′λ
� �

.

As the estimator β̆ is constrained, Cβ̆ = τ, the Lagrange multiplier estimate λ̂ is com-
puted by:

C
1
2

X′X
� �− 1

2X′ k ρ k −C′λ
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
β̂

=C
X′X
� �− 1

X′ k ρ k|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
β̂

2664
3775−C

1
2

X′X
� �− 1

C′λ = τ,

) λ̂ = 2 C X′X
� �

C′
� �− 1

Cβ̂ − τ
� �

.
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Using these two formulations of the optimization problem solutions, we can expend
the constrained-parameter-estimate:

β̆ = 1
2

X′X
� �− 1

2X′ ρk k−C′λ
� �

= 1
2

X′X
� �− 1

2X′ ρk k− 2C′ C X′X
� �

C′
� �− 1

Cβ̂ − τ
� �� �

=

β̂ − X′X
� �− 1

C′ C X′X
� �− 1

C′
� �− 1

Cβ̂ − τ
� �

.

In the original unconstrained OLS problem presented in equation (4.11), the estima-
tion of the effect-size parameter vector is only valid when the variance-covariance
matrix X′X is invertible, i.e., a square matrix with non-trivial determinant. Con-
straining the problem by introducing the additional restriction, Ho: Cβ = τ, suggests
a more generalized (perhaps not unique) solution to the optimization problem when
the variance-covariance matrix X′X is not necessarily invertible. In this case, the pa-
rameter vector β may be identifiable and its estimate computed using the following
more general equation [224]:

β̆ =R XRð Þ′XR� �− 1
XRð Þ′Y + I d+ 1ð Þ× d+ 1ð Þ −R XRð Þ′XR� �− 1

XRð Þ′X
h i

C′ CC′
� �− 1τ, 4.12Að Þ

We can always define a new matrix R d+ 1ð Þ× d+ 1− qð Þ that may not be unique, as there
may be multiple alternative solutions, which satisfies the following pair of conditions:

det C′ d+ 1ð Þ× q, R d+ 1ð Þ× d+ 1− qð Þ
� �

d+ 1ð Þ× d+ 1ð Þ ≠0, and CRð Þ′=R′ d+ 1− qð Þ× d+ 1ð ÞC′ d+ 1ð Þ× q =0.

Then, we can reformulate the linear model using the square invertible matrix A

A′= C′ d+ 1ð Þ× q, R d+ 1ð Þ× d+ 1− qð Þ
� �

d+ 1ð Þ× d+ 1ð Þ and ZN × d+ 1ð Þ =XA− 1,

Y =Xβ + e=XA− 1 Aβ|{z}
γ

+ e=Zγ+ e,

where the modified parameter vector γ can be partitioned into γ= γ1′, γ2′
� �′, repre-

senting q specified constraints (γ1 =Cβ = τ) and the remaining d+ 1− qð Þ unspeci-
fied constraints (γ2 =R′β), free parameters. Similar to the Lagrange multipliers
approach for solving constrained optimization problems, this transformation

X ! ZN × d+ 1ð Þ ≡XA− 1

β ! γ≡Aβ

� �
translates the initial problem of estimating d+ 1 parame-

ters (β) subject to q constraints (C) to another optimization problem of estimating
d+ 1− qð Þ free parameters (γ2) without any constraints (remember that the con-
stant vector γ1 = τ is known).

The OLS estimate of γ2 is:

γ̂2 =R′R XRð Þ′XR� �− 1
XRð Þ′ Y −XC′ CC′

� �− 1τ
� �

.
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The invertibility of the variance-covariance X′X condition of the original problem
(Y =Xβ + e) is replaced in the new model (Y =Zγ+ e) by invertibility of the modified
covariance matrix XRð Þ′XR, whose non-singularity is ensured by the definition of
R d+ 1ð Þ× d+ 1− qð Þ. This parameter estimation formula, equation (4.12A) naturally agrees
with the classical OLS formula when X′X is invertible, equation (4.12).

For the constrained problem, the parameter estimates are obtained by minimiz-
ing the Lagrangian objective function:

L β, σ, λð Þ= 1
2
SSE β, σð Þ+ λ′ Cβ − τð Þ.

The minima of L β, σ, λð Þ are obtained by solving the following system of equations:

∂L
∂β = −X′ k ρ k +X′Xβ +C′λ =0

∂L
∂σ2 = − n

σ2 +
kρk−Xβð Þ′ kρk−Xβð Þ

σ2ð Þ2 =0

∂L
∂λ =Cβ − τ =0

.

����������
(4:13)

Left-multiplication by C X′X
� �− 1

on both sides of the equation ∂L
∂β = −X′ ρk k+X′ Xβ +

C′λ =0 yields:

−C X′X
� �− 1

X′ k ρ k|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
β̂ = β̂OLS

+Cβ̆ +C X′X
� �− 1

C′λ̆ = −Cβ̂ +Cβ̆ +C X′X
� �− 1

C′λ̆ =0,

where the unrestricted (OLS) estimates are denoted by b□ and the restricted model
estimates are denoted by □̆ (breve notation). Solving for λ̆ using the third equation
Cβ̆ − τ =0 we obtain C X′X

� �− 1
C′λ̆ =Cβ̂ − τ, and therefore:

λ̆ = C X′X
� �− 1

C′
h i− 1

Cβ̂ − τ
� �

.

Note that the square matrix R=C X′X
� �− 1

C′ is positive definite, full rank, and invert-
ible, i.e., R>0 and a′Ra>0,∀a>0.

Plugging in the unrestricted estimate λ̆ in the first equation ∂L
∂β =0 yields the un-

restricted β̆ estimate:

−X′ ρk k+X′X β̆ +C′ C X′X
� �− 1

C′
h i− 1

Cβ̂ − τ
� �

=0,

X′X β̆ =X′ ρk k−C′ C X′X
� �− 1

C′
h i− 1

Cβ̂ − τ
� �

,

β̆ = X′X
� �− 1

X′ ρk k− X′X
� �− 1

C′ C X′X
� �− 1

C′
h i− 1

Cβ̂ − τ
� �

β̆ = β̂ − X′X
� �− 1

C′ C X′X
� �− 1

C′
� �− 1

Cβ̂ − τ
� �

.
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If τ =0, we have β̆ =Dβ̂OLS, where D= Id+ 1 − X′X
� �− 1

C′ C X′X
� �− 1

C′
� �− 1

C, as shown in
[201]. The last (variance) parameter estimate in equation (4.13) is obtained by solv-
ing the equation ∂L

∂σ2 =0, which yields:

σ̆2 = 1
n

ρk k−X β̆
� �′ ρk k−X β̆

� �
.

Under the high SNR assumption, we have the log-likelihood approximation equa-
tion (4.10) and we can compute the maximum likelihood parameter estimates and
their variability. Then, equation (4.8) suggests how we can conduct contrast-based
magnitude-model inference by using the magnitude-only log-likelihood ratio test
statistics (Λm):

Λm Xð Þ≡ − 2 log λm Xð Þ= n log
σ̆2

σ̂2
OLS

 !
⁓χ2

r ,

where the degree of freedom of the chi-square distribution (χ2
df ) is df = r, the full

rank of the contrast matrix C.
As an example, suppose we are fitting a three-term linear model using (i) an inter-

cept, βo, (ii) a longitudinal linear drift (habituation effect), β1, and (iii) a contrast effect
of a stimulus (BOLD hemodynamic response effect), β2. Then, just testing for the effect
of the stimulus at one spatial voxel location requires statistical quantification of the cor-
responding effect-size under a null hypothesis Ho:Cβ =0. For instance, to solely test for
a stimulus effect (β2) in the general effect vector β = βo, β1, β2

� �′, we can use the contrast
C1× 1+ 2ð Þ = 0,0, 1ð Þ, since 0= C′jβ

� �
=Cβ = β2. In this case, the LRT will asymptotically

follow χ2
1 distribution. Note that the chi-square degree of freedom df = 1 as we have just

one additional alternative model parameter, β2, compared to the trivial null model cor-
responding to the nil contrast c= 0,0,0ð Þ′. By Wilk’s theorem [216], as the sample size
(time) increases, i.e., n! ∞, the LRT statistic − 2 log Λm approaches asymptotically χ2

1,
as the degrees of freedom reflect the difference in the parameters between the alterna-
tive and the research hypotheses. In general, if the full rank of the contrast C is r, then
the distribution of the log LRT is asymptotically approximated by χ2

df = r distribution.
In the simpler univariate case Ho:β2 = 0 vs. H1 : β2 ≠ 0, and subject to common

parametric assumptions, e.g., IID samples of a normal distribution population, the
likelihood ratio may also be expressed approximately as:

Λm = 1+ t2

n− 1

� �− n
2
,

where t⁓tn− 1, see [227]. This explains the relation with the familiar t test, the corre-
sponding variance estimate SE β̂2

� �
= σ̂ β̂2

, and the test statistic:

t2 =
β̂2

SE β̂2

� �⁓tdf .
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4.3.4 Marginal Distribution of the Phase

For each variable, r (intensity-magnitude) and φ (intensity-phase), the corresponding
marginal distributions are obtained by integrating the joint distribution over the range
of the other variable. For instance, the marginal distribution of the magnitude (r) is
computed by integrating the joint distribution over the intensity phase space (φ).

In the previous sections we estimated the marginal distribution of the intensity
magnitude, r:

p rjΘð Þ≈

r
σ2 e

− r2

2σ2~Rice 0, σð Þ≡Rayleigh σð Þ, for lowSNR, underHo: β =0,m= xt′β =0,

e
− r −mð Þ2

2σ2ffiffiffiffiffiffiffi
2π σ2
p ~N m, σ2ð Þ, for high SNR,whenm= xt′β !∞

8>>>>><>>>>>:
(4:14)

This approximation relied on estimating the asymptotic behavior of the zeroth-order
modified Bessel function of the first kind, I0 xð Þ [228]. Using equations (4.10)–(4.13), we
can denote the parameters maximizing the log-likelihood function, for the uncon-
strained and constrained (Ho:Cβ = τ) problems by

�
β̂, σ̂
�
and

�
β̆, σ̆
�
, respectively.

Setting to zero the partial derivatives of the log-likelihoods, with and without con-
straining the magnitude-only problem, yields the maxima of the likelihood, which
are attained at:

β̂ = X′X
� �− 1

X′r, σ̂ = 1
n r −Xβ̂
� �

′ r −Xβ̂
� �

β̆ =D X′X
� �− 1

X′r, σ̆ = 1
n r −X β̆
� �′ r −X β̆

� �
·

������
D= Id+ 1 − X′X

� �− 1
C′ C X′X

� �− 1
C′

� �− 1
C

����
The marginal distribution of the intensity-value phase, φ, may be computed in terms

of the error function erf zð Þ= 1ffiffi
π
p
Ð z
− z e

− ω2
dω by integrating the joint density over the

polar radius space, r 2 0: ∞½ Þ:

p φjΘð Þ=
ð∞
0

r
2π σ2 e

− 1
2σ2

r2 +m2 − 2r m cos φ − θð Þð Þdr =

e
− m2

2σ2

4π σ2 2σ2 +
ffiffiffiffiffiffiffiffiffiffi
2π σ2
p

m cos φ − θð Þ e
m2cos2 φ − θð Þ

2σ2 1+ erf
m cos φ − θð Þffiffiffiffiffiffiffi

2σ2
p

� �� � !
.

To derive this equation, we let a=m cos φ − θð Þ and expand the marginal distribution:
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p φjΘð Þ=
ð∞
0

r
2π σ2 e

− 1
2σ2

r2 +m2 − 2r m cos φ − θð Þð Þdr = e
− m2

2σ2

2π σ2

ð∞
0

re
− 1
2σ2

r − að Þ2 −a2ð Þdr =

e
− m2

2σ2

2π σ2 e
a2

2σ2
ð∞
0

r − a+ að Þe− r − að Þ2
2σ2 dr =

e
− m2

2σ2

2π σ2 e
a2

2σ2

ð∞
0

r − að Þe− r − að Þ2
2σ2 dr + a

e
− m2

2σ2

2π σ2 e
a2

2σ2

ð∞
0

e
− r − að Þ2

2σ2 dr.

As the integrand of the error function, e− ω2
, is an even function, we can rearrange

the components in the first term and substitute r − affiffiffiffiffiffi
2σ2
p = ω in the second term to

obtain:

p φjΘð Þ= e
− m2

2σ2

2π
e
a2

2σ2

ð∞
0

2 r − að Þ
2σ2 e

− r − að Þ2
2σ2 dr

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

+ a
e
− m2

2σ2

2π σ2 e
a2

2σ2
ffiffiffiffiffiffiffi
2σ2
p ð∞

− affiffiffiffiffi
2σ2
p

e− ω2
dω =

e
− m2

2σ2

2π
+ e

− m2

2σ2

2π σ2 e
a2

2σ2
ffiffiffiffiffiffiffi
2σ2
p

a
ð0

− affiffiffiffiffi
2σ2
p

e− ω2
dω + a

ð∞
0

e− ω2
dω

0BB@
1CCA=

e
− m2

2σ2

2π
+ e

− m2

2σ2

2π σ2 e
a2

2σ2
ffiffiffiffiffiffiffi
2σ2
p 1

2
a

ðaffiffiffiffiffi2σ2
p

− affiffiffiffiffi
2σ2
p

e− k2dω

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
a
ffiffi
π
p

erf affiffiffiffiffi
2σ2
p
� �

+ a
ð∞
−∞

e− k2dω|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
a
ffiffi
π
p

0BBBBBBBBBBB@

1CCCCCCCCCCCA
=

e
− m2

2σ2

4π σ2 2σ2 +
ffiffiffiffiffiffiffiffiffiffi
2π σ2
p

m cos φ − θð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
a

e
m2cos2 φ − θð Þ

2σ2 1+ erf
m cos φ − θð Þffiffiffiffiffiffiffi

2σ2
p

� �� �0BB@
1CCA.

Therefore:
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p φjΘð Þ≈

Ð∞
0

r
2π σ2 e

− r2

2σ2dr = − 1
2π

Ð∞
0
e
− r2

2σ2d − r2

2σ2

� �
= 1

2π ~Uniform − π, πð Þ,
UnderHo : β =0,m=0, for lowSNR,

e

− φ − θð Þ2
2 σ

mð Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
2π σ

mð Þ2
q

0B@
1CA ~N θ, σ

m

� �2� �
, when m= xt′β !∞, for high SNR.

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(4:15)

Recall the Taylor series expansions of the trigonometric functions:

sin2 φ − θð Þ= φ − θð Þ2 − φ − θð Þ4
3

+ 2 φ − θð Þ6
45

+O φ − θð Þ8
� �

and

cos φ − θð Þ= 1−
φ − θð Þ2

2
+ φ − θð Þ4

24
+O φ − θð Þ6
� �

.

The last approximation in equation (4.15) is valid asymptotically as the SNR in-
creases, i.e., as m= xt′β ! ∞, [228]. More specifically, for large SNR (m!∞), the
first-order Taylor series expansion of p ϑjΘð Þ at m=∞ is:

p φjΘð Þ ffi e
− m2

2σ2
−O 1

mð Þ4
� �

2σ2

4πm2cos2 φ − θð Þ +O
1
m

� �3
 !

+

e
− sin2 φ − θð Þ m2

2σ2
+O 1

mð Þ4
� �

m cos φ − θð Þffiffiffiffiffiffiffiffiffiffi
2π σ2
p +O

1
m

� �3
 !

.

Using only the first-order series expansions of sine and cosine near the origin, we
can approximate the marginal phase distribution:

p φjΘð Þ ffi e
− m2

2σ2

� �
2σ2

4πm2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

decays rapidly

+ e
− φ − θð Þ2m2

2σ2

� �
mffiffiffiffiffiffiffiffiffiffi
2π σ2
p
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dominating term

,

p φjΘð Þ ffi e
− φ − θð Þ2

2 σ
mð Þ2

 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π σ
m

� �2q
0B@

1CA~N θ, σ
m

� �2� �
.

Recall the discussion in Chapter 3 (see Table 3.1) about the symmetry of phase dis-
tributions of Fourier transformed real-valued functions. The derivations above show
that in both cases (small or large SNR), the marginal phase distributions are sym-
metric. For small SNR, the uniform distribution is also zero-mean. Using the polar
coordinate transformation, we often approximate the raw observed complex-valued
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fMRI signal using only the real part, which ignores the dependence on the phase im-
perfection θð Þ of the original signal. Hence, in the case of large SNR, the normal ap-
proximation to the marginal phase distribution may potentially be non-zero-mean,
although θ =0 corresponds to equivalence of the complex and real fMRI intensities,
m≡ r cos θ + i r sin θ.

4.4 Complex-Valued fMRI Time-Series Inference

Let’s return now to the MLE solution of the unconstrained likelihood optimization
problem involving complex-valued signals, see equations (4.1)–(4.3). To simplify the
analytical expressions of the MLE solutions, we’ll make the following short-hand
notations:

β̂R: = X′X
� �− 1

X′ρR, β̂I : = X′X
� �− 1

X′ρI .

Below we will show that the MLE model parameter estimates are:

θ̂ = 1
2
artctan

2β̂R
′ X′X
� �

β̂I

β̂R
′ X′X
� �

β̂R − β̂I
′ X′X
� �

β̂I

 !
, (4:16)

β̂ = β̂R cos θ̂
� �

+ β̂I sin θ̂
� �

, (weight-averaging real and imaginary parts)

σ̂2 = 1
2n
hϵjϵi|fflfflfflffl{zfflfflfflffl}
MSE

= 1
2n

ρ −
X 0

0 X

 !
β̂ 0

0 β̂

 !
cos θ̂
sin θ̂

 ! !′
ρ −

X 0

0 X

 !
β̂ 0

0 β̂

 !
cos θ̂
sin θ̂

 ! !
.

Note that these estimates for the (bivariate normal) complex-valued model are dif-
ferent from the magnitude-only model we discussed earlier in Section 4.3 where we
used (univariate normal) approximation to Rician distribution for the magnitude.

The gLRT comparing Ho :Cβ =0 against Ha :Cβ ≠0 is computed by maximizing
the constrained likelihood under Ho:

unchangedð Þβ̆R ≡ β̂R = X′X
� �− 1

X′ρR, β̆I ≡ β̂I = X′X
� �− 1

X′ρI ,

D|{z}
d+ 1ð Þ× d+ 1ð Þ

= Id+ 1 − X′X
� �− 1

C′ C X′X
� �− 1

C′
� �− 1

C,

θ̆ = 1
2
artctan

2β̂R
′D X′X
� �

β̂I

β̂R
′D X′X
� �

β̂R − β̂I
′D X′X
� �

β̂I

 !
, (4:17)

β̆ =D
�

β̂R
′ cos θ̆ + β̂I sin θ̆

�
,
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σ̆
2 = 1

2n
Y −

X 0

0 X

 !
β̆ X

X β̆

 !
cos θ̆
sin θ̆

 ! !′
Y|{z}

2n× 1
−

X 0

0 X

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2n× 2 d+ 1ð Þ

β̆ X

X β̆

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2 d+ 1ð Þ× 2

cos θ̆
sin θ̆

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2× 1

0BBBBBB@

1CCCCCCA:

Earlier, in the magnitude-only case, we ignored the complex-valued intensity phases
and worked exclusively with the fMRI amplitudes kρtk. Now, we consider spacetime
analytics based on the complex-valued fMRI signal (ρ ≡ ρt). At time t, we now have a
bivariate measurement with real and imaginary components:

ρ ≡ ρt =
ρR, t

ρI, t

 !
+

εR, t

εI, t

 !
= xt′βcos θð Þ

xt′βsin θð Þ

 !
+

εR, t

εI, t

 !
, 1≤ t ≤ n. (4:18)

The observed (spacetime) complex-valued fMRI signal can be expressed in matrix form
as:

ρ|{z}
2n× 1

zffl}|ffl{Y

=
ρR

ρI

 !
=

X 0

0 X

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2n× 2 d+ 1ð Þ

β 0

0 β

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2 d+ 1ð Þ× 2

cos θ
sin θ

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2× 1

+ ε|{z}
2n× 1

, ε⁓N μ =0, Σ= σ2I2n
� �

.

Similar to the derivations in [199, 201], the unconstrained MLE estimates of the gen-
eral parameter vector Θ = θ, β, σð Þ, representing the intensity phase (θ), the effects
(β = βR, βIð Þ′), and the variance (σ) may be derived as follows.

l ρjX, θ, β, σ2� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
likelihood

=
Y
t

p ρjxt , θ, β, σ2� �
= 1

σ2n 2πð Þn
Y
t

� ρR

ρI

� !
×

e
−

 � ρR

ρI

�
−

�
X 0

0 X

�� β 0

0 β

��
cos θ
sin θ

�!′ � ρR

ρI

�
−

�
X 0

0 X

�� β 0

0 β

��
cos θ
sin θ

�!
2σ2 ,

ll ρð Þ= ln l∝ − n ln σ2

−

 �
ρR

ρI

�
−
�
X 0
0 X

��
β 0
0 β

��
cos θ
sin θ

�!′ � ρR
ρI

�
−
�
X 0
0 X

��
β 0
0 β

��
cos θ
sin θ

�!
2σ2

= − n ln σ2 −
1
2σ2 kρR −Xβ cos θk2 + kρI −Xβ sin θk2
h i

.
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Putting together these constrained and unconstrained likelihoods, we can estimate
the LRT statistic for the (bivariate normal) complex-valued model in equation (4.4):

LRT = − 2 log Λc = − 2 ln
sup

θ2Θo

p ρjβ, θ, σ2,Xð Þ
sup

θ2Θ
p ρjβ, θ, σ2,Xð Þ

0@ 1A= − 2 ln
p ρjΘ̆,X
� �

p ρjΘ̂,X
� �

0@ 1A

= 2 n ln σ̆2 + 1

2σ ̆2
jjρR −Xβ ̆ cos θ̆jj2 + jjρI −Xβ ̆ sin θ̆jj2
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n, since σ ̆2 = σ ̆2

MLE

− n ln σ̂2

0BBB@
−

1

2σ̂2 jjρR −Xβ̂ cos θ̂jj2 + jjρI −Xβ̂ sin θ̂jj2
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n, since σ̂2 = σ̂2MLE

!
= 2n ln

σ̆2

σ̂2

 !
.

The MLE estimates for the three model parameters (β, θ, σ2) are obtained by solving
the score equations involving the partial derivatives of the log-likelihood:

0= ∂
∂β ll∝ cos θX′ ρR −Xβ cos θð Þ+ sin θX′ ρI −Xβ sin θð Þ)X′Xβ = cos θX′ρR + sin θX′ρI

0= ∂
∂θ ll∝ sin θ Xβð Þ′ρR − cos θ Xβð Þ′ρI

0= ∂
∂σ ll∝ − 2n 1

σ + 1
σ3

ρR

ρI

 !
−

X 0

0 X

 !
β 0

0 β

 !
cos θ
sin θ

 ! !′
×

ρR

ρI

 !
−

X 0

0 X

 !
β 0

0 β

 !
cos θ
sin θ

 ! !
.

0= ∂

∂σ2 ll∝ −n 1
σ2 +

1
2σ4

ρR

ρI

 !
−

X 0

0 X

 !
β 0

0 β

 !
cos θ
sin θ

 ! !′
×

ρR

ρI

 !
−

X 0

0 X

 !
β 0

0 β

 !
cos θ
sin θ

 ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kρR −Xβ cos θk2 + kρI −Xβ sin θk2½ �

���������������������������������
From the first score function equation:

β̂ = β̂MLE = X′X
� �− 1

X′ρR|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
β̂R

cos θ + X′X
� �− 1

X′ρI|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
β̂I

sin θ = β̂R cos θ + β̂I sin θ.

Plugging this β̂ estimate in the second score equation leads to the MLE of the param-
eter θ:

0= sin θ Xβ̂
� �

′ρR − cos θ Xβ̂
� �

′ρI =
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sin θ Xβ̂R cos θ +Xβ̂I sin θ
� �

′ ρR − cos θ Xβ̂R cos θ +Xβ̂I sin θ
� �

′ρI .

Therefore,

0=0× 1
cos2θ|fflffl{zfflffl}

≠0

=

sin θ cos θ Xβ̂R

� �
′ρR + sin2θ Xβ̂I

� �
′ρR −cos

2θ Xβ̂R

� �
′ρI − sin θ cos θ Xβ̂I

� �
′ρI

� �
× 1
cos2θ|fflffl{zfflffl}

≠0

=

sin θ
cos θ

Xβ̂R

� �
′ρR +

sin2θ
cos2θ

Xβ̂I

� �
′ρR − Xβ̂R

� �
′ρI −

sin θ
cos θ

Xβ̂I

� �
′ρI =

tan θ Xβ̂R

� �
′ρR − Xβ̂I

� �
′ρI

� �
+ tan2θ Xβ̂I

� �
′ρR − Xβ̂R

� �
′ρI .

As β̂R = X′X
� �− 1

X′ρR and β̂I = X′X
� �− 1

X′ρI we have X′X
� �

β̂R =X′ρR and X′X
� �

β̂I =X′ρI:

0= tan θ Xβ̂R

� �
′ρR − Xβ̂I

� �
′ρI

� �
+ tan2θ Xβ̂I

� �
′ρR − Xβ̂R

� �
′ρI =

tan θ β̂R
′ X′X
� �

β̂R − β̂I
′ X′X
� �

β̂I

� �
+ tan2θ β̂I

′ X′X
� �

β̂R − β̂R
′ X′X
� �

β̂I|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
β̂R ′ X′Xð Þβ̂Ið Þ′

=

tan θ β̂R
′ X′X
� �

β̂R − β̂I
′ X′X
� �

β̂I

� �
+ tan2θ − 1
� �

β̂I
′ X′X
� �

β̂R =

tan θ β̂R
′ X′X
� �

β̂R − β̂I
′ X′X
� �

β̂I

� �
+ tan2θ − 1
� �

β̂R
′ X′X
� �

β̂I .

As tan 2θ = 2 tan θ
1− tan2θ,

tan 2θ
2

= tan θ
1− tan2θ

= β̂R
′ X′X
� �

β̂I

β̂R
′ X′X
� �

β̂R − β̂I
′ X′X
� �

β̂I

.

Hence, we can solve for the parameter θ by using the inverse tangent function
arctanðÞ:

θ̂ = θ̂MLE =
1
2
arctan

2β̂R
′ X′X
� �

β̂I

β̂R
′ X′X
� �

β̂R − β̂I
′ X′X
� �

β̂I

 !
.

To summarize

β̂R = X′X
� �− 1

X′ρR, β̂I = X′X
� �− 1

X′ρI ,
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θ̂ = 1
2

arctan
2β̂R

′ X′X
� �

β̂I

β̂R
′ X′X
� �

β̂R − β̂I
′ X′X
� �

β̂I

 !
,

β̂ = β̂R cos θ̂
� �

+ β̂I sin θ̂
� �

, (weight-averaging the real and imaginary parts)

σ̂2 = 1
2n
hϵjϵi|fflfflffl{zfflfflffl}
MSE

= 1
2n

ρ −
X 0

0 X

 !
β̂ 0

0 β̂

 !
cos θ̂
sin θ̂

 ! !′
ρ −

X 0

0 X

 !
β̂ 0

0 β̂

 !
cos θ̂
sin θ̂

 ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

jjρR −Xβ̂ cos θ̂ jj 2 + jjρI −Xβ̂ sin θ̂ jj 2
� �

.

(4:19)

The variance estimate, σ̂2, is slightly biased since E σ̂2
� �

= 2n− d+ 1ð Þ
2n σ2 < σ2. Under the

bivariate normal model, equation (4.18), we have:

ε⁓N μ =0, Σ= σ2I2n
� �

, ρ⁓N
X 0

0 X

 !
β cos θ

β sin θ

 !
, Σ= σ2I2n

 !
)

1
σ2 hϵjϵi ⁓ χ2

df = 2n− d+ 1ð Þ )

E hϵjϵið Þ|fflfflfflffl{zfflfflfflffl}
expectation of
residual SSE

= 2n−d− 1ð Þσ2 ) E MSEð Þ≡E
�

σ̂2�=E
�

1
2n hϵjϵi

�
= 2n−d− 1ð Þ

2n σ2.

This can be explicated as follows:

ρ̂ =
ρ̂R

ρ̂I

 !
=

X β̂R

X β̂I

 !
=

X 0

0 X

 !
β̂ cos θ̂

β̂ sin θ̂

 !
,

X′Xβ̂ cos θ̂

X′Xβ̂ sin θ̂

 !
= X′ρ̂R

X′ρ̂I

 !
,

ϵ= ρ− ρ̂ð Þ= ρR− ρ̂R

ρI − ρ̂I

 !
=

ρR−Xβ̂R

ρI −Xβ̂I

 !
=

ρR

ρI

 !
−

X X′X
� �−1

X′ 0

0 X X′X
� �−1

X′

0@ 1A ρR

ρI

 !
=

I2n −
X X′X
� �− 1

X′ 0

0 X X′X
� �− 1

X′

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hatmatrix, H|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I −H

0BBBBBBB@

1CCCCCCCA
ρR

ρI

 !
,
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hϵjϵi= ρR−Xβ̂R

ρI−Xβ̂I

 !′ ρR−Xβ̂R

ρI−Xβ̂I

 !
=

ρR

ρI

 !′
I2n−Hð Þ I2n−Hð Þ ρR

ρI

 !
=

ρR

ρI

 !′
|fflfflffl{zfflfflffl}

ρ′

I2n−Hð Þ ρR

ρI

 !
|fflfflffl{zfflfflffl}

ρ

,

where the symmetric (H =H′) and idempotent (H′H =HH =H) hatmatrix is

H =
X X′X
� �− 1

X′ 0

0 X X′X
� �− 1

X′

0@ 1A.

Note that I2n −Hð Þ is also idempotent, I2n −Hð Þ I2n −Hð Þ= I2n −Hð Þ, and

(I2n–H)
X 0
0 X

� �
= 0 0

0 0

� �
. Since the linear model is

ρ =
X 0

0 X

 !
β 0

0 β

 !
cosθ
sin θ

 !
+ ε, ε⁓N μ=0,Σ=σ2I2n

� �) ρ′ I2n−Hð Þρ⁓σ2χ2
df =2n− d+ 1ð Þ.

Hence, E hϵjϵið Þ=E ρ′ I2n −Hð Þρ
� �

= 2n−d− 1ð Þσ2 and E σ̂2
� �

= 2n− d+ 1ð Þ
2n σ2 < σ2.

In practice, this slight bias is not critical as the time (n) is generally much larger
than d+ 1, the number of multi-source components (an intercept and feature covari-
ates). Hence, the variance estimate σ̂2 may only be slightly underestimating the un-
known theoretical variance σ2.

The likelihood function of the complex-valued model is:

pðρjX, β, θ, σ2Þ= 1
2π σ2ð Þn e

− 1
2σ2

Y−
X 0

0 X

 !
β 0

0 β

 !
cosθ
sinθ

 ! !
′

Y−
X 0

0 X

 !
β 0

0 β

 !
cosθ
sinθ

 ! !
.

The effects (β̂) are estimated by phase-dependent weight-averaging of the real and
imaginary parts of the classical regression coefficients (β̂R, β̂I), see equation (4.19).

Similar to the first case of inference based on real-valued magnitude-only sig-
nals, under the null hypothesis, Ho : Cβ =0, the corresponding constrainedMLE esti-
mates can be expressed by:

ðunchangedÞ β̆R ¼ X′X
� ��1

X′ρR ¼ β̂R; β̆1 ¼ X′X
� �

X′ρI ≡ β̂R,

D|{z}
d+ 1ð Þ× d+ 1ð Þ

= Id+ 1 − X′X
� �− 1

C′ C X′X
� �− 1

C′
� �− 1

C,

θ̆ = 1
2
arctan

2β̂R
′D X′X
� �

β̂I

β̂R
′D X′X
� �

β̂R − β̂I
′D X′X
� �

β̂I

 !
, (4:20)
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β̆ =D β̂R cos θ̆
� �

+ β̂I sin θ̆
� �� �

,

σ̆2 = 1
2n

ρ −
X 0

0 X

 !
β̆ 0

0 β ̆

 !
cos θ̆

sin θ ̆

 ! !′ ρ|{z}
2n× 1

−
X 0

0 X

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2n× 2 d+ 1ð Þ

β ̆ 0

0 β ̆

 !
|fflfflfflfflffl{zfflfflfflfflffl}
2 d+ 1ð Þ× 2

cos θ̆

sin θ̆

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2× 1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kρR −Xβ ̆ cos θ̆k2 +kρI −Xβ̆ sin θ̆k2
� �

.

Under the same parametric assumptions as in the real-valued case, these MLE esti-
mates naturally lead to the gLRT for spacetime complex-valued fMRI signal activation:

− 2 log Λc = 2n log
σ̆2

σ̂2

 !
⁓χ2

r ,

where r is the full rank of the contrast vector c specifying the null hypothesis.

4.5 Complex-Valued Kime-Indexed fMRI Kintensity Inference

Finally, let’s consider an extension of the prior spacetime analytics approach, based
on the complex-valued fMRI signals, to spacekime inference.

Spacekime analytics depend jointly on kime domain indexing, κ = (t,φ)
2 K ffi C 3 κ = κ1, κ2ð Þ, and spatial voxel indexing, ν = x, y, zð Þ 2 R3. For simplicity,
at a given voxel we will still consider fMRI signals whose spacekime complex-
intensities (kintensities) depend on the kime-magnitude (r = t) and kime-phase
(φ) and are defined for each kime by inverting the FT of the complex measurement
om kð Þ. Geometrically, at each spatial location, ρ κ are the observed complex-valued
kime-indexed intensities (kintensities) representing a kimesurface that can be ex-
pressed as:

ρ κ = ρR, κ + eR, κ
� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Re ρκð Þ
+ i ρI, κ + eI, κ
� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Im ρκð Þ

, or equivalently,

ρ κ =
ρR, κ

ρI, κ

 !
+

eR, κ

eI, κ

 !
≡

ρR, κ1 , κ2
ρI, κ1 , κ2

 !
+

eR, κ1 , κ2

eI, κ1 , κ2

 !
,

where κ = κ1, κ2ð Þ, and the real and imaginary parts of the volume kintensities are
ρR, κ, ρI, κ
� �′. While more elaborate and higher-order models can certainly be ex-
plored, we will assume multivariate normal distribution noise eR, κ, eI, κð Þ′⁓N 0, Σð Þ
with a scaled standard variance-covariance matrix, Σ= σ2I, where I = I2× 2 is the iden-
tity matrix of rank 2, and ′ denotes the transpose of a vector or a matrix. A more ex-
plicit representation of the residual error of the linear model is:
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e= eR, κ, eI, κð Þ′⁓N 0, Σ#In2 × n2
� �

,

where # denotes the matrix tensor product and Σ= σ2I2× 2. In Chapter 5, we will
prove that the observed uncertainty in 4D Minkowski spacetime is the result of a
natural one degree of freedom resulting from the projection (lossy-compression) of
the 5D spacekime process into spacetime. Repeated random sampling in spacetime
is analogous to coupling a single spacetime observation with a prior kime-phase
distribution. However, the spacekime error term may not be completely eliminated
since some errors may be unavoidable, e.g., measurement errors and discrepancy
between the true process and a particular modeling strategy. That is why, space-
kime linear modeling may still need to include a residual error term e⁓N 0, Σð Þ.

The simplest model has variance-covariance tensor expressed as:

Σ#In2 × n2 =
σ2

σ2

 !
2× 2

#

1 � � �
..
. . .

. ..
.

� � � 1

0BB@
1CCA

n2 × n2

=

σ2
1

1

 !
. . .

. . .

σ2
1

1

 !

0BBBBBBBB@

1CCCCCCCCA
2n2 × 2n2

.

In certain situations, it may be appropriate or necessary to introduce and derive
more advanced models accounting for different centrality, variation, and/or correla-
tion in the kime-magnitude and kime-phase subspaces.

It’s worth clarifying some of the notations. First, note that there is a difference
between (kappa) κ = t, φð Þ 2 K , which represents the complex-time (kime) domain
indexing, and the wave spatial-frequency vector k 2 R3, which represents the Four-
ier domain (k-space) indexing of the fMRI signal kintensities. The second clarifica-
tion is about the pair of independent phases playing complementary roles in this
model – kime-phases (domain indexing), φ, and range-phases (related to the com-
plex values of the kintensities), θ. Although we will discuss “tensors” in the next
section, it is important to realize that spacekime observations, or data, are intrinsi-
cally higher-dimensional manifolds that are represented as complex-valued kimesur-
faces. Additional details will be provided later. For the time being, the components of
the kintensities linear model are defined on the 2D kime domain, 1≤ κ1, κ2 ≤ n, and
can be represented as fourth-order tensors (κ1 × κ2 × effects× value). The effects en-
code the specific linear modeling terms, e.g., intercepts, BOLD signal, linear trends,
quadratic trends, etc., and value corresponds to the real and imaginary (range) com-
ponents of the outcome. For instance, the design tensor for the tensor-based linear
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model may be represented as a 2n2 × d+ 1ð Þ matrix, where rows are the possible kime
domain grid vertices for both the real and imaginary range values and the columns
represent the effects in the linear model.

For complex-time, we need to extend the fMRI signal from time-series longitudinal
indexing (t) to the corresponding (complex kime) kime-series, or kimesurfaces, which
are parameterized by t, φð Þ 2 K ffi C 3 κ = κ1, κ2ð Þ. Note that in spacetime, there is only
one unique longitudinal event order (the time index runs from small to large). How-
ever, spacekime observations represent kime-surfaces, not just time-series, which allow
for many different paths, trajectories, or simple closed contours throughout the com-
plex-plane.

For a fixed voxel location, the spacetime analytical models of complex-valued
fMRI signals, equations (4.4), (4.5), and (4.6) can be translated to their spacekime
counterparts as follows:

ρ κ|{z}
2n2ð Þ× 1

=
ρR

ρI

 !
|fflfflffl{zfflfflffl}
2n2ð Þ× 1

=
I2× 2# Xκ|{z}

n2 × d+ 1ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
2n2ð Þ× 2 d+ 1ð Þð Þ

0BBB@
1CCCA × I2#βð Þ|fflfflffl{zfflfflffl}

2 d+ 1ð Þð Þ× 2

×
cos θ
sin θ

 !
2× 1

+ e=

Xκ 0

0 Xκ

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2n2ð Þ× 2 d+ 1ð Þð Þ

β 0

0 β

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2 d+ 1ð Þð Þ× 2

cos θ
sin θ

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2× 1

+
eR

eI

 !
|fflfflffl{zfflfflffl}
2n2ð Þ× 1

, (4:21)

where β ≡ β κ =
βR

βI

� �
is the effect vector of length d+ 1ð Þ defined over the kime do-

main, and Xκ represents the design-matrix, 2n2 × d+ 1ð Þ, as a matricized version of
the third-order tensor of dimension ð2× n× n|ffl{zffl}Þ

kime
domain

× dþ 1ð Þ.

If E2 = e2R, κ + e2I, κ~χ2
df = 2n2

, using the Taylor series expansion of
ffiffiffi
x
p

≈ 1+ x
2 around

x= 1, we can approximate the kime-indexed real-valued and complex-valued magni-
tude-only kintensities, ρ κ

�� ��. The most general case of complex-valued kintensities
defined over the kime domain requires the more general tensor-linear modeling ap-
proach [16, 229, 230]. However, the unwind long matrix representations (concatenating
rows of κ1 indexed values corresponding to independent κ2 values) would be analo-
gous to equations (4.16) and (4.17):

β̂R: = Xκ′Xκ
� �− 1

Xκ′ ρR, β̂I : = Xκ′ Xκ
� �− 1

Xκ′ ρI .

Then, the MLE model parameter estimates are:

4.5 Complex-Valued Kime-Indexed fMRI Kintensity Inference 233

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



θ̂ = 1
2
artctan

2β̂R
′ Xκ′Xκ
� �

β̂I

β̂R
′ Xκ′Xκ
� �

β̂R − β̂I
′ Xκ′Xκ
� �

β̂I

 !
,

β̂ = β̂R cos θ̂
� �

+ β̂I sin θ̂
� �

, (weight-averaging real and imaginary parts)

σ̂2= 1
2n2
heje|fflfflffl{zfflfflffl}

MSE

i= 1
2n2

ρκ −
Xκ 0

0 Xκ

 !
β̂ 0

0 β̂

 !
cos θ̂
sin θ̂

 ! !′
ρ κ −

Xκ 0

0 Xκ

 !
β̂ 0

0 β̂

 !
cos θ̂
sin θ̂

 ! !
.

4.6 Spacekime Tensor-Based Linear Modeling

Now we will formulate spacekime inference using tensor representation of the data.
Following a brief review of the basic tensor definitions, representation, and opera-
tions, we will define tensor-based linear models for inputs and outputs and illustrate
how these enable linear modeling, statistical inference, and more general analytics.

4.6.1 Tensor Representation and Basic Operations

We will follow the vector, matrix, and tensor notation and the corresponding product
definitions presented in [229, 231, 232], to define a tensor of order Q as a real (or complex)
valued multi-dimensional array with dimension lengths given by Jj 2 N ,∀1≤ j≤Q:

A= aj1 , j1 , ..., jQ

� �
2 R J1 × J2 × ���× JQ .

Tensors are multidimensional arrays extending to higher dimensions the classical
vector-based outcomes and two-way (design) input data matrices (e.g., samples by
features) [16, 233]. For example, a multi-subject study of aging and dementia using
3D MRI neuroimaging may be represented as a multi-way array of dimensions stor-
ing subjects, time points, brain voxel locations, regions of interest, clinical pheno-
types, and so on. Another example involves observing a collection of 13,000 labeled
facial images, faces in a large database [234, 235], that contains RGB image intensi-
ties on a 90× 90 spatial pixel grid. This dataset can be represented as a fourth-order
tensor indexed by FaceLabel× X ×Y|ffl{zffl}

pixel

×RGBColor.

In general, given N training data observations, inference, forecasting, or predic-
tion of an outcome tensor Y of order M, dim Yð Þ=N ×DY

1 ×DY
2 × � � � ×DY

M, may be de-
rived under certain conditions using an observed input (design) tensor X of order L,
dim Xð Þ=N ×DX +

1 ×DX +
2 × � � � ×DX +

L . Linear modeling of the input-output tensor re-
lation involves estimating a parameter coefficient tensor B of order:
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dim Bð Þ= DX +
1 ×DX +

2 × � � � ×DX +
L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dim Xð Þ

× DY
1 ×DY

2 × � � � ×DY
M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dim Yð Þ

.

This linear tensor model may be represented as Y = hX,Bi+E, where the order M
error (residual) tensor E has dim Eð Þ=N ×DY

1 ×DY
2 × � � � ×DY

M and the tensor product
hX,Bi is defined below. The plus dimension notation, DX +

1 , represents DX +
1 =DX

1 , for
purely linear model with no intercepts, and DX +

1 =DX + 1
1 for affine model with inter-

cepts. For simplicity, we often write DX
1 for DX +

1 . Having the model tensor estimates
(effects) B̂, the linear model (Y = hX,Bi+E) predicts outcomes as vectors indexed by
dY1 , dY2 , � � � , dYM
� �

, Ŷ = hX, B̂i, by:

Ŷ N, dY1 ,dY2 , ��� ,dYM
� �

=
XDX+1
dX1 =1

XDX+2
dX2 =1
���
XDX+L
dXL =1

X N,dX1 ,dX2 , ��� ,dXL
� �

B̂ dX1 ,dX2 , ��� ,dXL ;dY1 ,dY2 , ��� ,dYM
� �h i

.

The upper limit indexing of each sum DX +
j

� �
reflects the presence or absence of in-

tercepts, which may be necessary when the input X and output Y tensors are not
centered to be zero-mean. The special case of a magnitude only (real-valued) uni-
variate model with spacekime indexing corresponds to M = 1, L= 2, as we have two
kime degrees of freedom, one for the kime magnitude (time) and one for the kime
direction (phase).

An Mth-order tensor A is an array of dimensions DA
1 ×DA

2 × � � � ×DA
M, where DA

j is
the size of the jth mode dimension, 1≤ j≤M. The tensor elements are indexed as
A i1, i2, � � � , iM½ �, 1≤ ij ≤DA

j ,∀1≤ j≤M. For a pair of vectors, i.e., first order tensors,
a= aj1
� � 2 R J1 and b= bj2

� � 2 R J2 , the outer product is defined as a J1 × J2 matrixM:

M = a°b= mj1 , j2
� � 2 R J1 × J2 ,

whose entries mj1 , j2 = aj1 ×bj2 .
Each tensor A may be expressed as an outer product (°) of vectors a1, a2, � � � , aMð Þ

that are each of length DA
1 ,DA

2 , . . . ,DA
M, respectively:

a°b= a°bð Þi, j = aibj
n o

≡ ab′,

A= a1°a2° � � � °aM .

Then, the tensor elements are A i1, i2, � � � , iM½ �= QM
j= 1

aj ij
� �

, where aj ij
� �

is the ithj ele-

ment of the jth vector in the outer product defining the tensor A.
In general, the inner product of a pair of tensors:

A= aj1 , j2 , ..., jQ

� �
and B= bj1 , j2 , ..., jQ

� �
2 R J1 × J2 × ���× JQ
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of order Q is defined by:

A.B= hA,Bi=
XJ1
j1 = 1

XJ2
j2 = 1

� � �
XJQ
jQ = 1

aj1 , j2 , ..., jQ ×bj1 , j2 , ..., jQ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
numericmultiplication

0B@
1CA.

Of course, the inner product of matrices, i.e., second-order tensors, is just a special
case corresponding to Q= 2. If Am× n and Bk × l are a pair of matrices (not necessarily
of congruent dimensions), then the Kronecker product is defined as a km× lnmatrix:

A#Bð Þkm× ln =

a1, 1B a1, 2B . . . a1, nB

a2, 1B a2, 2B . . . a2, nB

. . . . . . . . . . . .

am, 1B am, 2B . . . am, nB

26664
37775.

An order Q tensor A= aj1 , j2 , ..., jQ

� �
2 R J1 × J2 × ���× JQ is called rank-one tensor when it

has the special property that it can be expressed as an outer product of Q order 1
tensors, i.e., vectors, a jð Þ 2 R

Jj ,∀1≤ j≤Q:

A= a 1ð Þ°a 2ð Þ° � � � °a Qð Þ.
Not every tensor is a rank-one tensor, however, every tensor may be factorized via
canonical polyadic decomposition (CP decomposition) into a weighted sum of R
rank-one tensors. Therefore, each tensor A can modeled as the weighted sum of
rank-one tensors plus some additive residual (error) term:

A=
XR
r = 1

λr a 1ð Þ
r °a 2ð Þ

r ° � � � °a Qð Þ
r|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rank− one tensors

0@ 1A+ ϵ.

In this representation, the tensor rank is R 2 N, λrf gRr = 1 are the scalar weights of the
different rank-one tensor components a jð Þ

r = a jð Þ
ij , r

� �
2 R

Jj , 1≤ j≤Q, 1≤ r ≤R, and the
residual tensor ϵ has the same size (order and dimension lengths) as the original
tensor A. Figure 4.1 shows an illustration of the R= 4 CP decomposition of a third-
order tensor, which may represent the intensities of a 3D sMRI volume, or the 2D
kime indexed 1D line of an fMRI series, or a location by time by phenotype dataset.

For computational purposes, we can transform long vectors into tensors and
vice-versa, and high-order tensors into second-order tensors (matrices) or linear vec-
tors. This is accomplished via the vectorization operator, which allows us to unfold a
tensor into long vectors. An example to keep in mind is storing third-order tensors
representing 3D sMRI volumes in computer memory as linear arrays or linked lists.
These linear memory vectors can be conversely used to reconstruct the native 3D vol-
ume structures that can be visualized, Figure 4.2:
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Figure 4.1: Schematic of a CP decomposition of a third-order tensor A using r =4 components. In this

CP decomposition, the rank-one tensor components, a jð Þ
r = a jð Þ

ij , r

� �
2 R

Jj , 1≤ j ≤ 3, 1≤ r ≤4, represent

the rth column of the factor matrix A jð Þ = a jð Þ
1 , a jð Þ

2 , a jð Þ
3 , a jð Þ

4

h i
2 R

Jj × R from the jth mode dimension.
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A , ,½ � ! vec Að Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
forward:3D!1D

: A x, y, z½ � ! vec Að Þ Dx ×Dy × z +Dx × y+ x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i

24 35,

vec Að Þ½ � ! A , ,½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reverse:1D!3D

: vec Að Þ i½ � ! A x, y, z½ �, where

x= i modDx

y= i− x
Dx

� �
mod Dy

� �
.

z = i− x−Dxy
Dx ×Dy

� �
���������

In general, the tensor vectorization operator V ·ð Þ= vec ·ð Þ transforming a higher-
order tensor A to a first-order tensor (vector) is defined by:

V Að Þ i1 +
XM
j= 2

Yj− 1

l= 1

DA
l

� �
ij − 1
� �� �" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vectorization index

= A i1, i2, � � � , iM½ �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
tensor element

.

Similarly, it’s often useful to represent high-order tensors as matrices (second-order
tensors). This tensor-to-matrix (tenmat) operation unfolds a tensor along a given
mode dimension (ko) and allows the application of classical matrix manipulations
to the resulting matrix. For instance, denoting the rows of the resulting tenmat re-
presentation of the tensor A by A kð Þ, these rows will unfold to give the vectorized
versions of each subarray (lower-order sub-tensor) in the ktho mode dimension:

dim tenmat A, koð Þð Þ= DA
ko|{z}

rows

×
Y
j≠ko

DA
j

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

columns

.

The contracted tensor product [230, 234, 235] extends the usual matrix multiplication
to a higher-order tensor product. For a pair of tensors U and V,

dim Uð Þ= DU
1 ×DU

2 × � � � ×DU
M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U specific

× D1 ×D2 × � � � ×DL|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U &V common

and

dim Vð Þ= D1 ×D2 × � � � ×DL|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U &V common

× DV
1 ×DV

2 × � � � ×DV
K|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V specific

.

Then, contracted tensor product (L) of dimension:

dim hU,ViLð Þ= DU
1 ×DU

2 × � � � ×DU
M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U specific

× DV
1 ×DV

2 × � � � ×DV
K|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V specific

is defined by:
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hU,ViL i1, i2, � � � , iM|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
U specific

, j1, j2, � � � , jK|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
V specific

26664
37775=

XD1
d1 = 1

XD2
d2 = 1

� � �
XDL
dL = 1

U i1, i2, � � � , iM|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
U specific

, d1, d2, � � � , dL|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
common

24 35×V d1, d2, � � � , dL|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
common

, j1, j2, � � � , jK|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
V specific

24 350@ 1A.

Note that the contracted tensor product agrees with classical matrix multiplication for
the special case of second-order tensors (matrices), i.e., M = L=K = 1. Suppose UDU1 ×D
and VD×DV1

, then:

UDU1 ×D,VD×DV1

D E
L= 1

i, j½ �=
XD
d= 1

ðU i, d½ �V d, j½ �Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
row by column

=UV i, j½ �,

UDU1 ×D, VD×DV1

D E
L= 1

= U V.

It may be helpful to illustrate one simple and specific formulation of tensor-based linear
modeling for fMRI data. Let’s denote all the fMRI brain spatial locations by the voxels

v= x, y, zð Þ 2 1:64, 1:64, 1:40½ � 
 R3.

Typical MRI scans have (higher) isotropic resolution within the axial (transverse)
plane (for a fixed z = zo) and the between plane slices are thicker (lower resolution).
The observed (complex) outcome that will be modeled will be a tensor Y t, x, y, z, 2ð Þ in-
dexed by time t 2 1:160½ � 
 R 1, voxel v= x, y, zð Þ, and the Real (1) and Imaginary (2)
indices corresponding to the observed complex-valued fMRI signal at (v, tÞ. In this
simple example, the tensor-model design matrix, X, representing the experimental
design, may include three components: (a) intercept vector of ones, (b) the HRF,
which transforms the original stimulus (ON/OFF) into the observed fMRI BOLD sig-
nal, and (c) the linear model signal (brain habituation linear trend):

X
�
xo = 1|fflffl{zfflffl}
intercept

, x1|{z}
BOLD signal

, x2|{z}
linear signal

�
160× 3× 1

If the effect-size tensor is B feature, 1, x, y, z, 2½ � and the residual error tensor is
e t, x, y, z, 2ð Þ, then the tensor-based linear model is represented as:

Y 160, 64, 64, 40, 2ð Þ =X 160, 3, 1ð Þ × B 3, 1, 64, 64, 40, 2ð Þ + e 160, 64, 64, 40, 2ð Þ.
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Often it is convenient to represent a tensor X of an arbitrary order as a second-order
tensor, or a matrix. These lower-order representations are not unique and there are
multiple ways to arrange the tensor elements into matrix format. A mode-d dimen-
sion matricization of X [231] is formulated by:

X dð Þ = A dð Þ|{z}
Jd ×R

Λ|{z}
R×R

A Lð Þ � A L− 1ð Þ � � � � � A d+ 1ð Þ � A d− 1ð Þ � � � � � A 2ð Þ � A 1ð Þ
� �

′|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R×
Q
i≠d

Ji

,

where the Khatri-Rao dot product � of A= a1, a2, � � � , aJ½ � 2 R I × J and B = b1, b2,½
� � � , bJ � 2 RK × J is defined as column-wise Kronecker product of matrices A�B=
a1#b1,a2#b2, � � � ,aJ#bJ½ � 2R IK×J, A dð Þ represents the R components of the corre-
sponding dth component rank-one tensor stacked together, Λ = diag λð Þ, λ = λ1, λ2, � � � ,ð
λRÞ 2 RR is a vector of normalization weights that ensures that the CP-decomposition
factor matrices A lð Þ are composed of unitary column vectors, and R is the tensor rank. In
the special case of the third-order fMRI BOLD tensor X 2 R 160× 3× 1, the CP decomposi-
tion factorizes the fMRI tensor into a sum of rank-one tensor components (which in this
case are vectors, xo = xo, 1 xo, 2 � � � xo,R½ �, x1 = x1, 1 x1, 2 � � � x1,R½ �, x2 = x2, 1 x2, 2 � � � x2,R½ � ):

X=
XR
r= 1

xo, r°x1, r°x2, r = xi, j,k
� �

=
XR
r= 1

xo, i, r°x1, j, r°x2, k, r

� �
,∀1≤ i≤ 160, 1≤ j≤3, 1≤k≤ 1.

Thus, there are alternative matricized representations (one for each of the 3 modes)
of the fMRI tensor:

X 1ð Þ = xo x1 � x2ð Þ′, X 2ð Þ = x1 x2 � xoð Þ′, X 3ð Þ = x2 x1 � xoð Þ′.
By introducing the weights Λ =diag λð Þ, λ = λ1, λ2, . . . , λRð Þ 2 RR, we can assure the
CP-decomposition factor matrices A lð Þ = xl are composed of unitary column vectors:

X = ½½λ; xo, x1, x2��=
XR
r = 1

λrxo, r°x1, r°x2, r.

Finally, tensor inner, outer, and contracted products lead to the Frobenius tensor
norm.
1. Inner tensor product of a pair of congruent (same orders and dimension sizes)

tensors A,B 2 R J1 × J2 × ...× JD is a scalar defined by:

hA,Bi= hvec Að Þ, vec Bð Þi 2 R ,

hA,Bi=
XJ1
j1 = 1

XJ2
j2 = 1

. . .
XJD
jD = 1

aj1 , j2 , ..., jD ×bj1 , j2 , ..., jD .

2. Outer tensor product of a general pair of tensors A 2 R J1 × J2 × ���× JP and B 2
RK1 ×K2 × ���×KO is defined by:
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A°B= zj1 , j2 , . . ., jP , k1 , k2 , . . ., kO

� �
= aj1 , j2 , . . ., jP ×bk1 , k2 , . . ., kO

� �
2 R J1 × J2 × . . . × JP ×K1 ×K2 × . . . ×KO .

3. Frobenius tensor norm (derived from Frobenius inner product) of a general ten-
sor A 2 R J1 × J2 × ...× JP is defined by:

jjAjj= jjAjjF =
ffiffiffiffiffiffiffiffiffiffiffiffi
hA,Ai

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ1
j1 = 1

XJ2
j2 = 1

� � �
XJP
jP = 1

A2
j1 , j2 , ..., jP

s
.

Observe that the tensor inner product is a special case of the tensor contracted product
when all the modes are in common between the two tensor multipliers, i.e., if
A,B 2 R J1 × J2 × . . . × JD , then the constant z = hA,Bi= hA,Bi j1 , j2 , . . ., jD ; j1 , j2 , . . ., jDf g. At the
other extreme, when there are no common indices between two tensors (L=0), the
contracted tensor product is the tensor outer product, i.e., Z =A°B= hA,Bi 0;0f g.

4.6.2 Linear Modeling Using Tensors

Tensor algebra naturally leads to linear modeling and least-squares parameter estima-
tion for high-order tensors. In the most general setting, the dimension of the outcome
tensor is dim Yð Þ=N ×DY

1 ×DY
2 × � � � ×DY

M, the dimension of the observed input (design)
tensor is dim Xð Þ=N ×DX +

1 ×DX +
2 × � � � ×DX +

L , the dimension of the model effects is
dim Bð Þ=DX +

1 ×DX +
2 × � � � ×DX +

L ×DY
1 ×DY

2 × � � � ×DY
M, and the residual (error) tensor

dimension is congruent to that of the output, i.e., dim Eð Þ=N ×DY
1 ×DY

2 × � � � ×DY
M.

Note that for notation brevity, we will write DX
l for DX +

l . Then the tensor linear model is:

Y = hX, BiL +E.

And the model-driven predictions are:

Ŷ n, dY1 , dY2 , � � � , dYM
� �

= hX, B̂iL =

XDX +
1

dX1 = 1

XDX +
2

dX2 = 1

� � �
XDX +
L

dXL = 1

X N, dX1 , dX2 , � � � , dXL
� �

B̂ dX1 , dX2 , � � � , dXL ;dY1 , dY2 , � � � , dYM
� �h i

.

Denote by N the total number of observations, P = QL
l= 1 D

X
l the total number of pre-

dictors for each outcome, and O=
QM

m= 1 D
Y
m the total number of outcomes for each

observation. Then the tensor-linear model is equivalent to a classical matrix formu-
lation of a linear model:

Y 1ð Þ =X 1ð ÞB 1ð Þ +E 1ð Þ.
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This vectorized tenmat representation of the linear model relies on unfolding each of
the tensors along the first mode dimension, Y 1ð Þ,X 1ð Þ,B 1ð Þ, E 1ð Þ� �

, where the resulting
matrix dimensions are dim Y 1ð Þ� �

=N ×O, dim X 1ð Þ� �
=N ×P, dim B 1ð Þ� �

=P ×O, and
dim E 1ð Þ� �

=N ×O. Explicitly, the relation between the tensor effects and their vec-
torized tenmat representations is:

tenmat Bð Þ dX1 +
XL
j= 2

Yj− 1

l= 1

DX
l

� �
dXl − 1
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
row index

, dY1 +
XM
j= 2

Yj− 1
l= 1

DY
l

� �
dYl − 1
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
column index

2666664

3777775=

B dX1 , dX2 , � � � , dXL|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl} , dY1 , dY2 , � � � , dYM|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tensor indexing

26666664

37777775.

Having the (tenmat) matrix representation of general tensors suggests a strategy to
estimate the parameter coefficient tensor B by minimizing the squared residuals
based on the Frobenius norm:

B̂= argmin
B
kY − hX,BiLk2 = argmin

B
Y − hX,Bik k2F .

The unrestricted solution for B over the entire (high-dimensional) parameter space

may be computed by OLS regressions for each of the O= QM
i= 1 D

Y
i outcomes consti-

tuting the multivariate output Y. The input design matrix X 1ð Þ corresponds to the
first of M mode dimensions and the B columns are individually estimated by OLS
regressions of X 1ð Þ on each column of Y 1ð Þ. The existence of this unrestricted problem
solution requires that P ≤N and X 1ð Þ be a full column rank matrix. This OLS solution
may not be optimal as the unfolding of the tensor into a matrix operation ignores
the multidimensional (multi-way) structure of the tensors X and Y. In practice, the
OLS parameter estimation of the coefficient tensor B fits a large number of parame-

ters, PO= QL
l= 1 D

X
l

� � QM
m= 1 D

Y
m

� �
. Schematically, N is the number of linear equations

and P is the number of features whose effects are the parameters we need to esti-

mate in the matrix B 1ð Þ:
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N

(
□ □ □

□ X 1ð Þ □

□ □ □

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
P

, P

(
□ □ □

□ B 1ð Þ □

□ □ □

264
375

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
O

.

Regularized tensor linear modeling using orthogonal matching pursuit (OMP), least
absolute shrinkage and selection operator (LASSO), ridge, or elastic net [10, 238]
may be employed to tamper this problem of extremely large number of parameters.
Regularization properties include (1) blending the coefficient estimation with fea-
ture selection, (2) preserving some of the multidimensional tensor structure into the
tenmat representation, and (3) reducing the chance for overfitting. The regularized
linear tensor model can be expressed as:

B̆= arg min
rank Bð Þ≤R

Y − hX,BiL
�� ��|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

fidelity

2 + λo kBko + λ1 kBk1 + λ2 kBk22|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
regularizer

0BBB@
1CCCA,

where R is the desired solution tensor rank, for l 2 0, 1, 2f g, λlf g are the weights of
the elastic net regularization penalty, and the lth norm Bk kl corresponds to Bk ko =
the number of non-trivial components (OMP), Bk k1 =

PP
j= 1 bj
�� ��, for LASSO, and

Bk k22 =
PP

j= 1 bj
�� ��2, for ridge regularization, respectively. Some special cases of this

model for various O, Pð Þ combinations are discussed in [230]. Solutions to the un-
regularized OLS model and regularized ridge, LASSO and elastic net regularized
models are provided in [230, 239–241]. Below, we will illustrate some special cases
of specific tensor linear models and their solutions.

4.6.3 Unregularized OLS Model Solutions

The general alternating least squares (ALS) approach for model estimation relies on
fixing the outcome Y and optimizing X followed by fixing X and optimizing Y, itera-
tively repeating the process until convergence is achieved. Similar to ALS, tensor-
based linear model solutions may be obtained by an iterative algorithm sequentially
updating each vector component of B dX1 , dX2 , . . . , dXL ; dY1 , dY2 , . . . , dYM

� �
, while keep-

ing the remaining components fixed. This is applicable for

dim B = R|{z}
tensor rank Bð Þ

× DX
1 +DX

2 + . . . +DX
L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

shared dimensions
with predictor tensor X

+ DY
1 +DY

2 + . . . +DY
M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

shared dimensions
with outcome tensor Y

0BB@
1CCA,
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B=
XR
i= 1

u1, i|{z}
DX1

° u2, i|{z}
DX2

° � � � ° uL, i|{z}
DXL

0B@
1CA° v1, i|{z}

DY1

° v2, i|{z}
DY2

° � � � ° vM, i|{z}
DYM

0B@
1CA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{rank 1 tensor2666664

3777775.

As the objective function is invariant to indexing permutations of the L dimension
modes of the design matrix tensor, the protocol for estimating the first component DX

1

� �
with the other components remaining fixed, provides a generic solution for estimating
all components of the effects B. The coefficient estimation problem permits solutions
under certain conditions on the identifiability of the B effects, e.g., the resulting compo-
nents can be uniquely factorized using tensor rank canonical polyadic decomposition
(CP) [242–244].

This iterative estimation protocol uses the (aggregate) matrix C= C1,C2, � � � , CR½ �,
dimC= N ×Oð Þ× R×DX

1

� �
, composed of Cr defined as the contracted tensor products

of the input design matrix X and the rth component of the CP tensor factorization (ex-
cept the first one, which is being currently estimated) in each mode dimension k.
Then, dimCr = N ×Oð Þ× DX

1

� �
,∀1≤ r ≤R and Cr can be expressed as:

Cr = hX, u2, r°u3, r° � � � °uL, r°v1, r°v1, r° � � � °vM, riL− 1.
By unfolding the CP factorization component in the dimension corresponding to P1,
we can obtain a tenmat input design matrix, Cr, that can be used to predict the vec-
torized outcome (Y 1ð Þ) corresponding to the rth column of the first mode direction
(DX

1 ). Aggregating all Cr matrices ∀1≤ r ≤R, yields the master design input matrix
C= C1,C2, . . . , CR½ �, for all elements of the first component, U 1ð Þ. Specifically, the
vectorized estimates of the effects in the first component DX

1 can be obtained using:

vec U 1ð Þ
� �

= C′C
� �− 1

C′ vec Y 1ð Þ
� �

.

A more explicit formulation of the CP tensor factorization can be formulated by flat-
tening higher order tensors as vectors and matrices:

Cr ¼ X; u2;i° � � � °uL;i°v1;i° � � � °vM;i
� �

L�1;
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N ×DX

1 × DY
1 ×DY

2 × � � � ×DY
M

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{O

1≤ r ≤R;
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Y1

..

.

YNO

2664
3775

|fflfflffl{zfflfflffl}
Y 1ð Þ

=

C1, 1,1ð Þ ��� C1, 1,DX1ð Þ
..
. ..

. ..
.

C1, NO,1ð Þ���C1, NO,DX1ð Þ

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C1

C2, 1,1ð Þ ��� C2, 1,DX1ð Þ
..
. ..

. ..
.

C2, NO,1ð Þ���C2, NO,DX1ð Þ

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C2

...

CR, 1,1ð Þ ��� CR, 1,DX1ð Þ
..
. ..

. ..
.

CR, NO,1ð Þ���CR, NO,DX1ð Þ

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CR

2666666664

3777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

..

.

u1,1

..

.

26664
37775

..

.

u2,1

..

.

26664
37775

..

.

..

.

uR,1

..

.

26664
37775

266666666666666666666666666664

377777777777777777777777777775
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

U 1ð Þ|{z}
DX1 Rð Þ×1

In matrix equation form, the tensor linear model may be expressed by:

vec Y 1ð Þ
� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
NO× 1

= C|{z}
NO×DX1 R

× vec U 1ð Þ
� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
DX1 R× 1

) vec U 1ð Þ
� �

= C′C
� �− 1

C′vec Y 1ð Þ
� �

.

This can be derived from first principles as follows. For a given data, X, the predic-
tion from a tensor linear model

Y = hX,BiL + E
is expressed as

Ŷ N,dY1 ,dY2 , ��� ,dYM
� �

=
XDX+1
dX1 =1

XDX+2
dX2 =1
���
XDX+L
dXL =1

X N,dX1 ,dX2 , ��� ,dXM
� �

B̂ dX1 ,dX2 , ��� ,dXM ;dY1 ,dY2 , ��� ,dYM
� �h i

.

Assuming that the effect tensor B is of rank R, it can be expanded as a sum of R
simple tensors Bi that are completely factorizable in terms of vector outer products:

B=
XR
i= 1

u1, i°u2, i° � � � °uL, ið Þ° v1, i°v2, i° � � � °vM, ið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bi

.

For a fixed index i, the R vector components, ul, if gLl= 1 and vm, if gMm= 1, correspond to
stacking the R dimension to form the U jð Þ and V jð Þ matrices. Specifically,
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U jð Þ =

..

. ..
. ..

.

uj, 1 � � � uj,R

..

. ..
. ..

.

26664
37775, V jð Þ =

..

. ..
. ..

.

vj, 1 � � � vj,R

..

. ..
. ..

.

26664
37775.

Expanding the tensor linear model in terms of the outer products, we obtain:

Y N, dY1 , dY2 , � � � , dYM|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
index mapping to
a single number dY

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{flattening onN

0BBB@
1CCCA= Y

N|{z}
row
index

, dY|{z}
column
index

 !
=

XR
i= 1

X, u1, i°u2, i° � � � °uL, i°v1, i° � � � °vM, i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bi

* +
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X,Bh iL

=

XR
i= 1

XDX1
dX1 = 1

XDX2
dX2 = 1

� � �
XDXL
dXL = 1

X N, dX1 , dX2 , � � � , dXM
� �

Bi dX1 , dX2 , � � � , dXM ; dY1 , dY2 , � � � , dYM|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
index mapping to
a single number dY

0BBB@
1CCCA

26664
37775=

XR
i=1

XDX1
dX1 =1

XDX2
dX2 =1

...
XDXL
dXL =1

X N,dX1 , dX2 , ���,dXM|fflfflfflfflffl{zfflfflfflfflffl}
indexmapping to
a single numberdX−1

0BBBB@
1CCCCABi dX1 , dX2 , ���,dXM|fflfflfflfflffl{zfflfflfflfflffl}

indexmapping to
a single numberdX−1

;dY

0BBBB@
1CCCCA

266664
377775.

Multiplying the numerator and the denominator by u1, i dX1
� �

we get:

Y
N|{z}
row
index

, dY|{z}
column
index

 !
=
XR
i= 1

XDX1
dX1 = 1

XQLl= 2
DX
l

dX− 1 = 1

X N, dX1 , dX− 1

� �
u1, i dX1
� �Bi dX1 , dX− 1;dY

� �
u1, i dX1ð Þ

� �
=

XR
i= 1

XDX1
dX1 = 1

u1, i dX1
� � XQ

L

l= 2
DX
l

dX− 1 = 1

X N, dX1 , dX− 1

� �Bi dX1 , dX− 1;dY
� �
u1, i dX1ð Þ

� �
=

XR
i=1

XQLl=2DXl
dX−1=1

X N,1,dX−1
� �Bi 1,dX−1;dY

� �
u1,i 1ð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

scalar

, ... ,
XQLl=2DXl
dX−1=1

X N,DX
1 ,dX−1

� �Bi DX
1 ,dX−1;dY

� �
u1,i DX

1ð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scalar

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ci with row specified indexing N,dYð Þ

u1,i 1ð Þ
u1,i 2ð Þ

..

.

u1,i DX
1

� �

2666664

3777775
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

DX1ð Þ×1

.
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If we stack in N ×O rows as a column vector the predicted outcome, Y 1ð Þ, and hori-
zontally stack the R matrices, we obtain the matrix C (this can be thought of as a
design tenmat object) and the vectorization of the outcome prediction of the tensor
linear model becomes:

vec Y 1ð Þ
� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
NO× 1

=

Y1

..

.

YNO

2664
3775

|fflfflfflffl{zfflfflfflffl}
Y 1ð Þ

= C|{z}
NO×DX1 R

× vec U 1ð Þ
� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
DX1 R× 1

) vec U 1ð Þ
� �

= C′C
� �− 1

C′vec Y 1ð Þ
� �

.

As the objective cost function is independent of the ordering of the M mode dimen-
sions of the outcome Y, the computational procedure to update the DY components
(vi, r) is similar to the one above for estimating the DX components ui, r. Having fixed
all components DX

1 ,DX
2 , � � � , DX

L , DY
1 ,DY

2 , � � � , DY
M − 1

� �
, except the last one, DY

M, we
can update the components of the last outcome mode dimension. If we unfold the

outcome tensor Y along the mode dimension corresponding to DY
M and denote it by

YM, then dimYM =DY
M ×N ×

QM − 1
l= 1 DY

l . Let D be the contracted tensor product of the

input data X and the R CP factorization component excluding DY
M:

dimD=N ×
YM − 1

l= 1

DY
l ×R

� �
, D= d1, d2, � � � , dR½ �

dr = vec X, u1, r°u2, r° � � � °uL, r°v1, r°v2, r° � � � °v M − 1ð Þ, r
� �

L

� �
.

Then, the DY
M elements V can be estimated as a vector of independent OLS estima-

tions of size DY
M:

VY
M|{z}

R×DYM

= D′D|{z}
R×R

0BB@
1CCA

− 1

× D′|{z}
R×N

QM − 1
l= 1 DY

l

× YM′|{z}
N
QM − 1

l= 1 DY
l

� �
×DYM

.

Having the matrix estimates of U and V, we can reconstruct the parameter-tensor,
i.e., effect-tensor, B, using the recursively computed U 1ð Þ,U 2ð Þ, � � � , U Lð Þ and VY

1 =
V 1ð Þ,VY

2 =V 2ð Þ, � � � ,VY
M =V Mð Þ matrices:

B̂=
XR
i= 1

u1, i|{z}
DX1

° u2, i|{z}
DX2

° � � � ° uL, i|{z}
DXL

0B@
1CA° v1, i|{z}

DY1

° v2, i|{z}
DY2

° � � � ° vM, i|{z}
DYM

0B@
1CA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{rank 1 tensor2666664

3777775.
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To obtain the dr and Cr estimates

Cr = hX, u2, r°u3, r° � � � °uL, r°v1, r°v1, r° � � � °vM, riL− 1,

dr = vec hX, u1, r°u2, r° � � � °uL, r°v1, r°v2, r° � � � °v M − 1ð Þ, riL
� �

we use the vectorizing operator on hX, u1, r°u2, r° � � � °uL, r°v1, r°v2, r° � � � °v M − 1ð Þ, riL,
where all the entries following the contraction are all unique to Y. Contrast this
to the general inner-product hX, u2, r°u3, r° � � � °uL, r°v1, r°v1, r° � � � °vM, riL− 1 where the
last term has dimension that belongs to X. We address this inability to flatten out
this exclusive dimension by flattening the predicted outcome tensor vec U 1ð Þ� �

=
C′C
� �− 1

C′vec Y 1ð Þ� �
.

4.6.4 Regularized Linear Model Solutions

Analogous solutions to regularized tensor-based linear models may be derived using
alternative penalty terms, e.g., OMP, LASSO, and ridge. These solutions can be expli-
cated by completing the squares and transforming the regularized model to a dual
unregularized optimization problem with modified input and output tensors, ~X, ~Y.
For instance, the ridge penalty model can be expressed as:

B̆= argmin kY − hX,BiL k|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fidelity

2 + λ1 kBk21|fflfflfflffl{zfflfflfflffl}
regularizer

0BBB@
1CCCA= arg min

rank Bð Þ≤R
k ~Y − h~X,BiL k2
� �

,

where ~X is the concatenated tensor product of X with a tensor where each slice of
dimension DX

1 ×DX
2 × � � � ×DX

L has a single entry equal to
ffiffiffi
λ
p

, and all other entries
are trivial (0). And similarly, ~Y is the concatenated tensor products of Y with a ten-
sor of dimension P ×O, where P=

QL
l= 1 D

X
l the total number of predictors for each

outcome and O=
QM

m= 1 D
Y
m. To explicate these derived input and output tensors, we

can unfold them along the first dimension and express them as tenmats:

~X 1ð Þ = X 1ð Þffiffiffi
λ
p

IP×P

" #
and ~Y 1ð Þ = Y 1ð Þ

0P×O

" #
.

Thus, the ridge regularized optimization problem (left-hand size) may be solved by
alternating least squares and swapping ~X and ~Y for X and Y, respectively, and solv-
ing the non-regularized linear model problem (right-hand side of the ridge regular-
ized tensor linear model above).
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In practice, for high-dimensional data, the tenmat representations ~X and ~Y may
be quite large and computationally intractable. Some algorithmic approaches have
been proposed to make these calculations feasible by modifying the OLS updating
steps for vec U 1ð Þ� �

and VY
M:

Unregularized: vec U 1ð Þ
� �

= C′C
� �− 1

C′vec Yð Þ )

Regularized: vec U 1ð Þ
� �

=

C′C+ λ U 2ð Þ′U 2ð Þ � U 3ð Þ′U 3ð Þ � . . .� U Lð Þ′U Lð Þ � V1′V1 � V2′V2 � . . .� V′M − 1VM − 1

� ��
#IP1 × P1Þ− 1C′vec Yð Þ,

Unregularized: VY
M = D′D

� �− 1
D′ Y′M )

Regularized: VY
M =

D′D+λ U 1ð Þ′U 1ð Þ�U 2ð Þ′U 2ð Þ�...�U Lð Þ′U Lð Þ�V1′V1�V2′V2�...�V′M−1VM−1

� �� �−1
D′Y′M ,

where the Khatri-Rao dot product and the Kronecker product are denoted by � and
# [229, 232].

This iterative updating algorithm sequentially improves the regularized least
squares estimates by step-wise minimizing the objective function. Even though the
objective function and the parameter space are both convex, the full space of low-
rank tensors is not a convex space in this iteratively optimization process. Thus,
there are no guarantees of convergence to a global minimum and the algorithm may
be trapped in local minima [245]. In practice, the algorithm generally tends to con-
verge to coordinate-wise minima where the solution cannot be improved by iterative
unidimensional perturbations of the parameters. As with all regularized linear mod-
els, the regularization penalty weight (λ) affects the speed of convergence [239].

This generic tensor-based linear model formulation can be tailored for the spe-
cific 2D kime indexing of the fMRI data (L= 2). This may lead to effective algorithmic
implementations to obtain linear model based inference using the corresponding
spacekime signal reconstructions – kimesurfaces.

4.7 Mapping Longitudinal Data to Kimesurfaces

There are many alternative strategies to estimate the missing kime-phases and trans-
late longitudinally indexed time-series observations to kime-indexed kimesurfaces.
Some of these approaches involve using kime-phase estimates from analogous prob-
lems or prior studies, utilizing phase-aggregators based on various statistics (e.g.,
mean, median, order, etc.) that yield unique values or a finite number of phases,

250 Chapter 4 Kime-series Modeling and Spacekime Analytics

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



random sampling from a prior kime-phase model-distribution, or kime-magnitude
and kime-phase indexing operators. The properties of different phase-estimation
techniques are not yet fully understood, e.g., their optimality, asymptotics, bias,
and precision need to be investigated further.

Let’s try to explicate one specific strategy (direct-mapping) to translating the ob-
served spacetime fMRI series into spacekime fMRI kime-surface. In this direct-mapping
approach, the longitudinal (time) indexing, x tð Þ, in the spacekime model (9) only in-
cludes one epoch of the event-related fMRI design. This is illustrated by the kime-
magnitude time-indices x tð Þ 2 1, 2, 3, . . . , 10f g shown in Figure 4.3. This indexing
map notation, x tð Þ, should not be confused with the previous spacetime indexing no-
tation, x, y, z, tð Þ.

Also, the number of epochs of one specific stimulus (e.g., finger-tapping) indi-
cates the number of kime-phases that need to be drawn (or estimated) from the ap-
propriate kime-phase distribution for the specific stimulus condition. In the same
Figure 4.3 example, this corresponds to the kime-magnitude epoch-based phase-
indices x φð Þ 2 1, 2, 3, . . . , 8f g.

Note that the most general kintensities, corresponding to complex-valued and
kime-indexed data, are somewhat difficult to visualize as they are intrinsically 4-
dimensional structures. However, there are 3D complex-plot methods rendering
the kimesurfaces as 2-manifolds embedded in 3D. At each voxel spatial location,
the triangulated kime surface intensity-height and surface-color correspond re-
spectively to the magnitude and the phase of the complex value.

There is a need to clarify a couple of important points:
1. There is a difference between the kime-phases (φ), which are indirectly esti-

mated, and the phases of the complex-valued fMRI signal (θ), which are ob-
served and obtained via the IFT of the k-space acquired complex-valued BOLD
signal.

2. Effectively, we may consider each repeated stimulus (e.g., activation or rest
state) of the (temporally long) longitudinal fMRI time-series, as an instance of a
(temporally short) kimesurface over one time-epoch and across the kime-phase
spectrum.

Let’s apply spacekime inference to a complex-valued fMRI dataset representing a
dichotomous finger-tapping “on-off” (activation vs. rest) event-related experiment
[246, 247]. A k-space signal over a period of 8-minutes tracking the functional BOLD
signal of a normal volunteer was acquired performing a standard finger-tapping
“on-off” task. The data was Fourier transformed into spacetime and stored as a 4D
double-precision array of complex-valued intensities. The size of the data is about
½ GB (gigabytes) and the dimensions of the data are 64x× 64y× 40z|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

voxel, ν

× 160t|ffl{zffl}
time

. The
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longitudinal (time) finger-tapping task associated with the data has a basic pattern
of 10 ON (activation) time-points followed by 10 OFF (rest) time-points. The ON and
OFF epochs of 10 are intertwined and repeated 8 times for a total of 160 time-points,
each of about 3 seconds. A more accurate representation of the task activation vec-
tor may need to account for the natural hemodynamic delay, which is about 5–8
seconds, or approximately two time instances.

Standard fMRI data preprocessing can be applied, e.g., using the R package fmri, to
motion-correct, skull-strip, register, and normalize the fMRI signal [248, 249]. Figure 4.4
shows some of the raw complex-valued fMRI data, a model of the spacekime kime-
series, and reconstructions of the real spacetime time-series as spacekime kimesurfaces.

Figure 4.5 shows some of the raw data and the corresponding statistical maps
identifying the voxel locations highly associated with the underlying event-related
on-off stimulus paradigm.

In Chapter 6, we will apply spacekime tensor-based linear modeling, which we
presented in the previous Section 4.6.4, to expand this fMRI data analytics example
and shown 3D voxel-based as well as region-of-interest based statistical maps.

4.8 The Laplace Transform of Longitudinal Data: Analytic Duality
of Time-Series and Kimesurfaces

By using the Laplace transformation, we can explore interesting properties between
the space-time and space-kime representations of longitudinal data. In Chapter 3,
we showed that the Fourier transformation is a separable linear operator that maps
complex-valued functions of real variables (e.g., space and time domains) to com-
plex-valued functions of real harmonic variables in k-space (e.g., spatial and angular
frequencies). The Laplace transform is similar, however, it sends complex-valued
functions of positive real variables (e.g., time) to complex-valued functions defined
on complex variables (e.g., kime). The linearity and separability properties of the Lap-
lace transform ensure that it can be applied to linear mixtures of higher dimensional
signals by applying it to each component and each dimension separately and then
reconstructing the multidimensional linear combination.

More specifically, the Laplace transform (LT), L, of a time-based complex-valued
function f tð Þ: R + ! C, is another complex-valued function F zð Þ: C ! C defined by:

L fð Þ zð Þ≡ F zð Þ=
ð∞
0

f tð Þe− ztdt.
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Figure 4.4: fMRI signal. Panel A: Raw complex-valued fMRI data (real, imaginary, phase, magnitude,
stimulus characteristics function, and HRF); Panel B: Kime-surface model of an idealized spacekime
kime-series; Panel C: Reconstructions of the real spacetime time-series as spacekime kimesurfaces
and ON-OFF kime-surface differences; Panel D: A couple of 3D scenes showing the ON-OFF fMRI
kime-surface, which is ultimately used to identify statistical significance associated with the event-
related fMRI activation paradigm.
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Figure 4.4 (continued)
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4.8.1 Continuous Laplace Transform

Just like the FT is invertible and acts as a linear operator on functions, the Laplace
transform has linear properties and has an inverse, L− 1. In the most general case,
the LT is invertible in a measure-theoretic sense. That is, if the LTs of a pair of inte-
grable functions f and g are identical, i.e., L fð Þ=L gð Þ, then the Lebesgue measure
of the set t : f tð Þ≠ g tð Þf g is zero. Thus, the inverse Laplace transform (ILT) is well
defined and L L− 1ð Þ≡L− 1 Lð Þ≡ I, the identity operator. Also, the result of the Laplace
transform, i.e., the LT image, is the space of the complex analytic (holomorphic)
functions. For a complex holomorphic function, F (typically F =L fð Þ), the ILT of F is
defined as a complex path integral:

A. B. Modeling the fMRI time-series (1 ≤ ≤ 140) and 
predicting the prospectivetime course(141 ≤ ≤ 160). 
The shaded areas correspond to and 
confidence ranges.

C.

.

D.

A 3D snapshot of the fMRIsignal with an 
extraction of the original time course of a 
specific voxel intensity anchored at the cross-
hairs.

Cross-sectional views of the statistical 
maps identifying brain regions 
associated with finger-tapping

3D volume and voxel renderings showing the brain regions 
highly associated with the activation paradigm (finger-tapping
task). 

Figure 4.5: Spacekime fMRI analysis. Panel A: Stereotaxic representation of the data; Panel B:
Longitudinal modeling and prediction of the fMRI time-course; Panel C: Statistical maps illustrating
the highly significant voxel locations associated with the on-off finger-tapping task; Panel D: 3D
scenes showing the fMRI statistical maps.
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f tð Þ=L− 1 Fð Þ tð Þ= 1
2π i

lim
T!∞

þγ+ i T
γ− i T

eztF zð Þdz.

In the last equation, γ is any real number ensuring that the contour path of integra-
tion (γ− i T ! γ+ i T) is entirely within the region of convergence of the initial com-
plex function F zð Þ.

The LT and ILT have many connections and applications to probability and sta-
tistics. For instance, the LT of a random variable X, with a given probability density
function f , is the expectation (E), which directly relates to the moment generating
function (MGF) of the process:

L fð Þ zð Þ=E e− zX� �
=MGF − zð Þ=

ð∞
0

e− ztf tð Þdt.

Also, the ILT of the scaled expectation allows us to compute the cumulative distribu-
tion function (CDF) of the process, L CDFð Þ zð Þ= 1

z L fð Þ zð Þ, i.e.,

CDF tð Þ=
ðt
−∞

f xð Þdx=L− 1 1
z
E e− zX� �� �

tð Þ=L− 1 1
z
L fð Þ zð Þ

� �
tð Þ.

For some random variables and their corresponding probability density functions,
this direct connection between the CDF, MGF, and ILT provides an indirect method
for estimating the cumulative distributions or the quantile functions. The above equa-
tion is valid over the region of convergence of the density f and over the half plane
Re zð Þ>0. These conditions ensure that the 2D domain f t, τð Þjt 2 R ∩ τ < tg can be
reparameterized as f t, τð Þjt 2 R ∩ t > τg and the double integral converges
absolutely: ð

R

e− zt
ðt
−∞

f τð Þdτ

�����
�����dt <∞.

To explicate thatð
R

e− ztF tð Þdt|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
L CDFð Þ zð Þ

≡
ð
R

e− zt
ðt
−∞

f τð Þdτ

 !
dt =z}|{? ð

R

f τð Þ
ð−∞

τ

e− ztdt

 !
dτ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
zL fð Þ zð Þ

,

we expand the left-hand side
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L CDFð Þ zð Þ=
ð
R

e− zt
ðt
−∞

f τð Þdτ

 !
dt = −

1
z

ð
R

− ze− zt� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
v′ tð Þ

ðt
−∞

f τð Þdτ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
u tð Þ

0BBBBBB@

1CCCCCCAdt =|{z}
integration by parts

−
1
z

e− zt|{z}
v tð Þ

ðt
−∞

f τð Þdτ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
u tð Þ

0BBBBBB@

1CCCCCCAj ∞

−∞

+ 1
z

ð
R

e− zt|{z}
v tð Þ

f tð Þ|{z}
u′ tð Þ

dt =

1
z

lim
t!−∞

e− zt
ðt
−∞

f τð Þdτ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
A t, zð Þ

0BBBBBB@

1CCCCCCA−
1
z
lim
t!∞

e− zt
ðt
−∞

f τð Þdτ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{CDF ≤ 10BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

+ 1
z

ð
R

f tð Þe− ztdt = L fð Þ zð Þ
z

.

To verify that the first term is trivial, lim
t!−∞

A t, zð Þð Þ=0, let’s denote the CDF of the
random variable X by

F tð Þ=
ðt
−∞

f τð Þdτ:R ! 0, 1½ �,

and let z 2 u+ iv u=Re zð Þ>0j g 
 Cf . A proof by contrapositive shows that the limit
of A t, zð Þ as t! −∞ is trivial. Assume that A t, zð Þ does not tend to zero as t de-
creases. Then, there exists ε >0 such that ∀t 2 R :

A t, zð Þj j= e− ztF tð Þ�� ��= e− zt
ðt
−∞

f τð Þdτ

�����
�����> ε.

Then for a fixed zo = uo + ivo, 9t′< t′′< t such that

ðt′′
t′

e− zotF tð Þ�� ��dt ≥ ðt′′
t′

ε e− zo t − t′ð Þ��� ���dt = ε
ðt′′
t′

e− uo t − t′ð Þdt = ε
uo

1− e− uo t′′− t′ð Þ� �
.

There exists a monotonically decreasing sequence akf g∞k = 1, such that ao =0,
ak + 1 < ak − 1,∀k ≥0, with limk!∞ ak = −∞ for which

e− zoakF akð Þj j> ε.
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This leads to

ðao
an+ 1

e− zotF tð Þ�� ��dt = Xn
k =0

ðak
ak + 1

e− zotF tð Þ�� ��dt ≥ Xn
k =0

ε
uo

1− e− uo ak −ak + 1ð Þ� �
≥

Xn
k =0

ε
uo

1− e− uoð Þ= ε n+ 1ð Þ
uo

1− e− uoð Þ !
n!∞

∞.

Because limn!∞

Ð ao
an+ 1

e− zotF tð Þj jdt ≤ Ð∞−∞
e− zotF tð Þj jdt, we obtain a contradiction with

the a priori assumption of the absolute convergence of the double integralð∞
−∞

e− zotF tð Þ�� ��dt ≡ ð
R

e− zot
ðt
−∞

f τð Þdτ

�����
�����dt <∞.

This implies that there is no such lower limit A t, zð Þj j> ε >0, and hence,

lim
t!−∞

e− zt
ðt
−∞

f τð Þdτ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
A t, zð Þ

0BBBBBB@

1CCCCCCA=0.

We are mostly interested in the LT and ILT to map between time-domain data, repre-
sented as classical longitudinal time-series processes, and kime-domain functions.
This mapping transformation results in kimesurfaces that can be subsequently space-
kime analyzed using appropriate exploratory, classification, regression, clustering,
ensemble, or other AI methods.

Let’s start by cataloguing some of the LT properties. The following notation will be
useful, lowercase letters denote functions of time (f , g), whereas capital letters (F, G)
denote their LTs, which are functions of complex time (kime):

L fð Þ zð Þ≡ F zð Þ, f tð Þ=L− 1 Fð Þ tð Þ,
L gð Þ zð Þ≡G zð Þ, g tð Þ=L− 1 Gð Þ tð Þ.

Many of the LT properties listed in Table 4.1 are derived similarly to this derivation
of the LT differentiation property [250, 251]:
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L fð Þ zð Þ=
ð∞
0

f tð Þe− ztdt =
ð∞
0

1
− z

f tð Þde− zt =|{z}
integration
by parts

f tð Þe− zt

− z

� �∞
t =0

−
ð∞
0

1
− z

e− ztf ′ tð Þdt = −
f 0ð Þ
− z

+ 1
z
L f ′
� �

zð Þ.

Therefore, z L fð Þ zð Þ= f 0ð Þ+L f ′
� �

zð Þ and

L f ′
� �

zð Þ= z L fð Þ zð Þ− f 0ð Þ= zF zð Þ− f 0ð Þ.

For example, a complex-valued fMRI time-series signal f tð Þ: R + ! C can be repre-
sented as an ordered (discrete) sequence of complex fMRI BOLD intensities:

f tð Þ= at + i bt: 1≤ t ≤ Tf g.
Then, the discrete LT of f will be represented as an infinite series corresponding to
the discretized LT integral above. For a specified step-size η >0, the discrete Laplace
transform L fð Þ is defined by:

Lη fð Þ zð Þ= η
X∞
k =0

e− zkηf kηð Þ.

There is a difference between the discrete Laplace and the discrete FTs. In the case
of the fMRI time-series, the discrete FT takes a finite sequence of (real or complex)
numbers and returns another finite sequence of complex numbers. The discrete LT
evaluates the input function, f , at an infinite number of time points (k 2 R +), and
derives another analytic (holographic) function, F =Lη fð Þ, as an infinite series.

Let’s look at three examples, Figure 4.6. In the first case, applying the LT we
will explicitly reconstruct the Laplace-dual kimesurface, F̂ =L fð Þ, that corresponds
to the observed time-series f tð Þ= sin w tð Þ H tð Þ, where H tð Þ is the Heaviside function
defined below. In the second case, applying the ILT we will recover the Laplace-
dual time-series, f̂ =L− 1 Fð Þ, that corresponds to the original kimesurface,

F zð Þ= 1
z + 1

+ 1
z2 + 1

� �
× z

z2 + 1

� �
+ 1
z2
.

The last third example shows the result of applying the Laplace transform to a
smoothed version, ~f tð Þ, of a (noisy) real fMRI time-series, f tð Þ. Gaussian convolution
smoothness may be required for some observed fMRI signals to ensure the numeri-
cal estimates (e.g., integrals, derivatives, limits, convergence) are stable despite the
presence of significant white noise or for non-smooth functions. In this situation,
the Laplace-dual kimesurface, F̂ =L fð Þ, is a complex-valued function over kime.
The kimesurface can be rendered in 3D as a 2D manifold whose altitude (height in
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the z-axis) and color (RGBA value) may represent the Real, Imaginary, Magnitude, or
Phase values of the kimesurface kintensity, F̂ zð Þ= F̂ κ1, κ2ð Þ=F̌ t, φð Þ.

The first example starts with a known time-series:

f tð Þ= sin w tð Þ H tð Þ, where w= 2 and H tð Þ=
0, t <0
1
2
, t =0

1, t >0

8><>: is the Heaviside step function.

For this specific model-based time-series, the Laplace-dual has a closed form
analytical expression, Table 4.1:

F zð Þ=L fð Þ zð Þ= w
z2 +w2 .

The second example starts a known kimesurface F zð Þ= 1
z + 1 + 1

z2 + 1

� �
z

z2 + 1

� �
+ 1

z2
. We

can compute the Laplace-dual time-series, f tð Þ=L− 1 Fð Þ tð Þ by decomposing the orig-
inal kimesurface into its building blocks and using the linear properties of the Lap-
lace transform:

F zð Þ=L fð Þ= 1
z + 1|{z}

F1 zð Þ=L f1 tð Þ= e− tð Þ

+ 1
z2 + 1|ffl{zffl}

F2 zð Þ=L f2 tð Þ= sin tð Þð Þ

× z
z2 + 1|ffl{zffl}

F3 zð Þ=L f3 tð Þ= cos tð Þð Þ

+ 1
z2|{z}

F4 zð Þ=L f4 tð Þ= tð Þ

.

Decomposition of compound (time or kime domain) functions in terms their building
blocks provides a mechanism to use the linearity and convolution-to-product proper-
ties of the Laplace transform to analytically simplify the corresponding duals:

F zð Þ= F1 zð Þ+ F2 zð Þ× F3 zð Þ+ F4 zð Þ
Therefore,

f tð Þ=L− 1 Fð Þ=L− 1 F1 + F2 × F3 + F4Þð Þ=

L− 1 F1ð Þ+ L− 1 F2ð Þ*L− 1 F3ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
convolution

0BBB@
1CCCA tð Þ+L− 1 F4ð Þ=

L− 1 L f1ð Þð Þ tð Þ+ L− 1 L f2ð Þð Þ*L− 1 L f3ð Þð Þ� �
tð Þ+L− 1 L f4ð Þð Þ tð Þ.

Finally,

f tð Þ=L− 1 Fð Þ tð Þ= f1 tð Þ+ f2*f3ð Þ tð Þ+ f4 tð Þ= e− t +
ðt
0

sin τð Þ× cos t − τð Þdτ + t =

t + e− t + t sin tð Þ
2

.

4.8 The Laplace Transform of Longitudinal Data 263

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Many other examples of analytical function can be similarly transformed into kime-
surfaces, e.g.,

f1 tð Þ= t , F1 zð Þ=L f1ð Þ zð Þ= 1
z2

and f2 tð Þ= e− 5t , F2 zð Þ=L f2ð Þ zð Þ= 1
z + 5

.

The third example shows a raw fMRI time-series, f xo , yo , zoð Þ tð Þ, at a fixed spatial voxel
location, vo = xo, yo, zoð Þ 2 R3, a corresponding spline smoothed time curve, f̂ xo , yo , zoð Þ
tð Þ, and the Laplace-dual, F xo , yo , zoð Þ zð Þ=Lð f̂ xo , yo , zoð ÞÞ zð Þ. The intermediate smoothing
operation is applied to temper the extreme noise of the original fMRI time-series,
which hampers function calculations involving numerical integration, differentia-
tion, and optimization. The resulting kimesurface is a complex-valued analytic (hol-
omorphic) function over complex-time.

Laplace
Transform 
Duality

Time-series
( + domain)

Kimesurfaces
( domain)

Example 1

(analytic 
function)

special case,

=

( ) = sin( ) ( )

(Laplace-dual)
( ) = ( )( )

2 + 2

( ) =
1

+ 1
+ (

1
2 + 1

) × (
2 + 1

) +
1
2

(surface height=Real part, color=Imaginary part)

(Laplace-dual)

f (t) = (F ) (t) = t + e–t +
t sin (t)

2
−1

Figure 4.6: Examples of Laplace transform duality between the time and kime domain
representations of complex-valued signals. These three examples illustrate the direct analytical
correspondence between complex-valued, signals defined over R + (time), and their counterparts,
defined over the complex plane (kime). The first two examples start with either knowing the
time-series (example one) or the kimesurface (example 2) and then reconstructing its counterpart as
a Laplace dual. The surface-height and the surface-color correspond to the real and the imaginary
parts, respectively, of the complex-valued kimesurfaces. For the second example, the kimesurface in
the bottom shows themagnitude and the phase of the kintensity as height and color, respectively.
Example 3 shows the duality between a real fMRI time-series and its corresponding kime-surface.
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Figure 4.6 illustrates the three pairs of time-series $ kimesurfaces dualities via
the Laplace transformation. The first two examples involve analytic functions whose
Laplace-duals can be directly computed in closed-form using the LT and ILT formula-
tions. The last example involves a discretely sampled fMRI time-series whose Laplace
dual kimesurface is numerically estimated using a discrete implementation of the for-
ward Laplace transform.

The spacekime representation of complex-valued and kime-indexed longitudinal
data as kimesurfaces has some advantages to their real-valued and time-indexed
time-series counterparts. Analyticity of kimesurfaces makes them theoretically more
interesting than their 1D time-series counterparts. All first-order differentiable com-
plex-valued functions f κð Þ are analytic. They have local representations as conver-
gent power series (Taylor series) and are infinitely differentiable. More specifically,
for all κo 2 K 
 C, in some κo neighborhood N κoð Þ, their Taylor series expansions,
T κð Þ, are convergent to the functional value f κoð Þ:

Example 2

(analytic 
function)

( ) =
1

+ 1
+

1
2 + 1

×
2 + 1

+
1
2

(surface height=magnitude, color=phase)

Example 3

(fMRI)

(original and smooth fMRI signal)

(Laplace-dual)

Figure 4.6 (continued)
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T κð Þ= lim
N!∞

XN
n=0

f n κoð Þ
n!

κ − κoð Þn !|{z}
∀κ2N κoð Þ
K

f κð Þ.

As kimesurfaces are complex-valued functions defined on complex domains (open
kime-space regions, e.g., K = κj kκk< 1f g 
 C), if a kimesurface is differentiable on K ,
then it is holomorphic (infinitely differentiable) on K and analytic. This analytic prop-
erty is unique for all complex-valued functions, including kimesurfaces; however, it is
not true for real-valued time-series [154]. For complex-valued functions, analyticity re-
sults from the much stronger condition of existence of the first-order derivative,

f ′ κoð Þ= lim
κ !|{z}

κγf g
κo

f κð Þ− f κoð Þ
κ − κo

� �
, where the difference quotient value must approach the

same complex number, for all paths κ !|{z}
κγf g

κo, κγ, κo 2 K in the complex plane.

This analytic property of complex-valued kimesurfaces has much stronger impli-
cations than real-valued time-series differentiability. For instance, all holomorphic ki-
mesurfaces are infinitely differentiable, whereas for time-series, the existence of the
nth order derivative does not guarantee the existence of the next n+ 1ð Þth order deriva-
tive. In addition, at every kime point the kimesurface may be locally represented as a
convergent Taylor series. This highly accurate polynomial approximation of kime-
surfaces in every kime neighborhood could suggest powerful inferential strate-
gies, which have no parallels in the general real-valued time-series. For instance,
even if a time-series is known to be infinitely differentiable, it’s not guaranteed to
be analytic anywhere.

4.8.2 Discrete Signal Laplace Transform

In the previous section we considered the Laplace transform for analytical and con-
tinuous signals. In practice, many observed signals represent windowed versions of
discrete processes with restricted domains (finite support). Such discrete signals can
be approximated by continuous analytical functions, splines, polynomials, Taylor,
or Fourier series expansions. Some of these interpolations are based on power func-
tions like fn tð Þ= tn.

In such analytical expansions, reducing the support of power functions is nec-
essary to control the (model or base function) extreme growth, or decay, as the argu-
ment tends to infinity. The characteristic function, a.k.a. indicator function, of a
half-open real interval a, b½ Þ, χ a, b½ Þ tð Þ, may be expressed in terms of the Heaviside
function, Ha tð Þ:
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χ a,b½ Þ|ffl{zffl}
indicator

tð Þ=H t − að Þ−H t − b− að Þð Þ=
0, t < a

1,0≤ t <b

0, t ≥b

,

8><>:
H|{z}

Heaviside

tð Þ= 0, t <0

1, t ≥0
.

(

For instance, to constrain the support of the power function fn tð Þ= tn to the interval
0, 2π½ Þ, we can multiply it by χ 0, 2π½ Þ tð Þ, i.e.,

fn, supp 0, 2π½ Þ tð Þ= fn tð Þ× χ 0, 2π½ Þ tð Þ=
fn tð Þ= tn, 0≤ t < 2π

0, otherwise
.

(

As a linear operator, the Laplace transform of the power function, compactly sup-
ported over the interval a, b½ Þ, will be:

L fn, supp a,b½ Þ
� �

zð Þ=L fnχ a,b½ Þ
� �

zð Þ= L fnH t − að Þð Þ zð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Aa, n zð Þ

− L fnH t −bð Þð Þ zð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Ab, n zð Þ

.

We need three derivations to explicate this Laplace transform of the windowed
power function.

First, let’s validate that the Laplace transform of the power function is
L fn ·ð ÞH ·ð Þð Þ zð Þ= n!

zn+ 1. This is based on Cauchy-Goursat theorem [252], which states
that for a simply connected open set D � C with a boundary ∂D representing the closed
contour bounding D, a function f :D! C that is holomorphic everywhere in D:þ

∂D

f zð Þdz =0 .

This is the case since all holomorphic functions

f zð Þ= u zð Þ+ iv zð Þ
z = x+ iy

dz = dx+ idy

�������
satisfy the Cauchy-Riemann equations:

∂v
∂x + ∂u

∂x =0
∂v
∂x −

∂u
∂x =0

.
�����
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Thus, þ
∂D

f zð Þdz =
þ
∂D

u+ ivð Þ dx+ idyð Þ=
þ
∂D

udx− vdyð Þ+ i
þ
∂D

vdx+ udyð Þ =|{z}
Green′s
theoremðð

D

−
∂v
∂x

−
∂u
∂x

� �
dxdy+

ðð
D

∂u
∂x

−
∂v
∂x

� �
dxdy=0.

Let’s use the following change of variables transformation to show that
L fn ·ð ÞH ·ð Þð Þ zð Þ= n!

zn+ 1.

u= zt = x+ iyð Þt
ϵ ≤ t = u

z ≤ L

zdt =du

.

�������
Then, ðL

ϵ

tne− ztdt =
þ
C3

u
z

� �n
e− ud

u
z
=

þxL+ iyL

x ϵ + iy

u
z

� �n
e− ud

u
z
= 1
zn+ 1

þxL+ iyL

x ϵ + iy

une− udu.

Let’s denote the general path line integral in the complex plane by IC =
Ð
C u

ne− udu
and consider the closed (boundary) contour C=C1 +C2 −C3 +C4, as in Figure 4.7. We
will apply the Cauchy-Goursat theorem over the entire boundary ∂D=C1 +C2 −C3 +C4

of the open set D.

Figure 4.7: Line path integral avoiding the singularity at the origin.

268 Chapter 4 Kime-series Modeling and Spacekime Analytics

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



þ
C
une− udu|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

IC

=
þ
C1

une− udu|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
IC1

+
þ
C2

une− udu|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
IC2

−
þ
C3

une− udu|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
IC3

+
þ
C4

une− udu|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
IC4

=0.

Let’s show that lim
L!∞

IC2 = lim
ϵ!0

IC4 =0:

IC2
�� ��= þ

C2

une−udu

������
������=

þLx+ iLy

Lx

une−udu

������
������≤max

u2C2
L une−uj j=max

u2C2
L unj je−Re uð Þ ffiL Lnj je−L!

L!∞
0.

IC4
�� ��= þ

C4

une− udu

������
������=

þx
ϵx+ iϵy

une− udu

������
������≤ max

u2C4
une− uj jϵ = max

u2C4
unj je−Re uð Þ ϵ ffi ϵnj je− ϵ !

ϵ!0
0.

Hence, in the limit, IC = IC1 − IC3 =0, IC1 = IC3 , and

lim
ϵ!0+

lim
L!∞

IC1 imn,Lð Þ= lim
ϵ!0+

lim
L!∞

þLx
e imx

une−udu =|{z}
IC1 = IC3

ð∞
0

une−udu =|{z}
zt=u

1
zn+ 1

þ!+∞

0

t n+ 1ð Þ− 1e− tdt.

Therefore,

L fn ·ð ÞH ·ð Þð Þ zð Þ= lim
ϵ!0+ lim

L!∞
I ϵ,Lð Þ= 1

zn+ 1

ð!+∞

0

t n+ 1ð Þ− 1e− tdt= Γ n+ 1ð Þ
zn+ 1

=
n!

zn+ 1 ,n= integer
Γ n+ 1ð Þ
zn+ 1 ,n>0

.
(

Next, to estimate the term Aa, n zð Þ=L fn tð ÞH t − að Þð Þ zð Þ, we will make a transformation:

s= t − a,

Aa, n zð Þ=L fn tð ÞH t − að Þð Þ zð Þ= e−azL fn s+ að ÞH sð Þð Þ zð Þ= e− azL s+ að ÞnH sð Þð Þ zð Þ=

e−az
ð∞
0

s+ að Þne− zsds= e−az
ð∞
0

Xn
k = 1

n

k

 !
skan− k

 !
e− zsds=

e−az
Xn
k = 1

n

k

 !
an− k

ð∞
0

sne− zsds

" #
= e−az

Xn
k =0

n

k

 !
an− k

k!
zk + 1|{z}

L snH sð Þð Þ zð Þ

266664
377775.

Finally, following the same argument as we used above to compute Aa, n zð Þ, we can
compute

Ab, n zð Þ= L fnH t − bð Þð Þ zð Þ= e−bz
Xn
k =0

n

k

 !
bn− k

k!
zk + 1

" #
.
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Therefore, the windowed he Laplace transform power function is:

L fn, supp a, b½ Þ
� �

zð Þ=L fn χ a,b½ Þ
� �

zð Þ=Aa, n zð Þ−Ab, n zð Þ=

e−az
Xn
k =0

n

k

 !
an− k k!

zk + 1

" #
− e−bz

Xn
k =0

n

k

 !
bn− k k!

zk + 1

" #
.

In practice, integration by partsð
tne− ztdt = −

tn

z
e− zt + n

z

ð
tn− 1e− ztdt

may be used to implement the Laplace transform in a closed-form analytical
expression: ð

tne− ztdt = 1
zn+ 1 e

− zt
Xn
k =0

cktk
� �

,

where we need to estimate the coefficients ck and we can transform the indefinite to
definite integral over the support a, b½ Þ.

Now, suppose we are dealing with discrete data sampled over a finite time inter-
val a, b½ �. One strategy to compute the Laplace transform of the discrete signal is by
direct numerical integration. Alternatively, we can first approximate the data using
some base-functions that permit a closed-form Laplace transform analytical repre-
sentations, see Table 4.1. Then, we can aggregate the piecewise linear transforms
of all the base functions to derive an analytical approximation to the Laplace trans-
form of the complete discrete dataset without explicit integration. The Inverse Lap-
lace transform may be computed similarly by transforming and aggregating the
analytical counterparts of the base functions.

For instance, suppose we decide to preprocess the discrete signal by using a
fourth-order spline interpolation of the discrete dataset to model the observations.
Thus, we will numerically obtain a finitely supported spline model f tð Þ=
fn= 4, supp a,b½ Þ tð Þ of the data over the time interval t 2 a, b½ Þ [253]. The Laplace trans-
form for this spline model may be computed exactly as an analytical function, by
integrating it against the exponential term:

L fn= 4, supp a,b½ Þ
� �

zð Þ=
ð∞
0

fn= 4, supp a, b½ Þ tð Þ e− ztdt =
ðb
a

fn= 4 tð Þ e− ztdt.

For simplicity, assume that the fourth-order spline model smoothly concatenates d

4-order polynomial functions, fn= 4, supp a,b½ Þ ≡ fk, n= 4, supp ak ,ak+ 1½ Þ
n od− 1

k =0
, defined over

the domain support on the corresponding partition:
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a, b½ Þ|ffl{zffl}
support

= ∪d
k =0

ak, ak + 1½ Þ|fflfflfflfflffl{zfflfflfflfflffl}
partition interval

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
support of

f
k, n= 4, supp ak , ak + 1½ Þ

, a≡ ao < a1 < � � � < ad ≡b,

fk, n= 4, supp ak , ak+ 1½ Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
splinemodel component

=
X4
n=0

qn, ktnχ ak ,ak+ 1½ Þ tð Þ,∀0≤ k ≤d− 1,

fn= 4, supp a, b½ Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
splinemodel

=
Xd− 1

k =0

X4
n=0

qn, ktnχ ak , ak+ 1½ Þ tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f
k, n= 4, supp ak , ak + 1½ Þ

266664
377775.

Then, the closed-form analytical expression of the Laplace transform of the (approx-
imate) dataset can be derived:

L datasetð Þ zð Þ ffi L fn= 4, supp a,b½ Þ
� �

zð Þ=
ð∞
0

fn= 4, supp a,b½ Þ tð Þe− ztdt =

Xd− 1

k =0|{z}
spline

X4
n=0|{z}

polynomial

qn, k|{z}
poly coef

ðak + 1

ak

tne− ztdt

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
L f

n, supp ak , ak + 1½ Þ
� �

zð Þ

0BBBBBBBB@

1CCCCCCCCA

2666666664

3777777775
=
Xd− 1

k =0

X4
n=0

qn, k Aak , n zð Þ−Aak+ 1 , n zð Þ
� �� �� �

,

where

Aak , n zð Þ−Aak + 1 , n zð Þ= e−akz
Xn
l=0

n

l

 !
an− l
k

l!
zl+ 1

" #
− e−ak + 1z

Xn
l=0

n

l

 !
an− lk + 1

l!
zl+ 1

" #
.

Hence, the strategy of first spline-interpolating the discrete dataset, followed by exact
integration of these analytical functions, represents an alternative approach to nu-
merically integrating the (possibly noisy) observed signals. This method circumvents
potential instabilities and extremely time-consuming numerical integrations. To
obtain the Laplace transform of the dataset, we effectively sum up the integrals of
the Laplace transformed power functions, across the range of polynomial powers
and across the spline partition of the signal time-domain support.
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For time-varying functions, f tð ÞH tð Þ:R + ! C, there is also a direct connection
between the Laplace and the Fourier transforms:

L f ·ð ÞH ·ð Þð Þ zð Þ≡
ð∞
0

f tð ÞH tð Þe− ztdt =|{z}
z = iω
− iz = ω

ð∞
0

f tð ÞH tð Þe− iωtdt ≡F f ·ð ÞH ·ð Þð Þ − izð Þ.

Suppose w 2 C and we consider the Laplace transform of the exponential decay
function

f tð Þ= e−wtH tð Þ, t ≥0,

L fð Þ zð Þ=L e−wtH tð Þ� �
zð Þ= 1

z +w
.

The Laplace transform of the shifted function f tð Þ= e−w t +að Þ will be

L fð Þ zð Þ=L e−w t +að ÞH tð Þ
� �

zð Þ= e−waL e−wtH tð Þ� �
zð Þ= e−wa

z +w
.

Alternative Laplace transform approximations may be obtained for discrete data
using other base functions. For instance, the Laplace transforms of the windowed
trigonometric functions may be obtained as follows.

L sinðwtÞH tð Þð Þ zð Þ= w
z2 +w2 , L cosðwtÞ H tð Þð Þ zð Þ= z

z2 +w2 ,

L sin w t + að Þð ÞH tð Þð Þ zð Þ= sin wað Þ z
z2 +w2 + cos wað Þ w

z2 +w2 ,

L sinðwtÞ H t − að Þð Þ zð Þ= e− az z sin wað Þ+w cos wað Þ
z2 +w2 ,

L cosðwtÞ H t − að Þð Þ zð Þ= e−az z cos wað Þ+w sin wað Þ
z2 +w2 ,

L sin ðwtÞsupp a,b½ Þ
� �

zð Þ=L sinðwtÞ H t − að Þð Þ zð Þ−L sinðwtÞ H t −bð Þð Þ zð Þ.
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Open Problems

1. Expand the derivations of the magni-
tude-only model in equation (4.5) for
a more general non-constant baseline
component in equation (4.1).

2. Derive the distribution, likelihood,
and log-likelihood functions for the
magnitude-only model (4.6) under in-
termediate SNR conditions? Perhaps
use higher order Taylor or Maclaurin
series expansions.

3. Expand the complex-valued and Kime-
indexed fMRI kintensity inference.

For instance, what assumptions may be necessary to derive a more accurate esti-
mate of the magnitude-only intensity? For the fully complex-valued kintensities,
derive explicit and tractable closed-form representation of the constrained and
unconstrained log-likelihood functions. In both cases, determine the appropriate
conditions to estimate or approximate the LRT statistics.

4. Expand the tensor-based spacekime analytics formulation presented in Section 4.6.
5. Explore alternative strategies for transforming time-series to kimesurfaces.
6. Propose effective approaches to estimate the enigmatic kime phases.
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Chapter 5
Inferential Uncertainty

In the mid-1920’s, the German physicist Werner Heisenberg was working on the
mathematical foundations of quantum mechanics. Heisenberg realized that atomic
particles do not travel on static orbits, which leads to the discrepancy between
the classical description of motion and the quantum level motion. As we saw in
Chapter 2, observables in all physical experiments are measurable quantities as-
sociated with self-adjoint linear operators on the state space (Hilbert space). Eigenvec-
tors of operators represent results of specific physical measurements. What led to the
discovery of one of the most important scientific principles was the understanding that
some pairs of observables can be simultaneously measured with infinite precision and
some cannot. In technical terms, if the commutator of a pair of functional operators
has a zero-dimensional null-space, then the operators cannot share eigenvectors. Hei-
senberg formulated the uncertainty principle asserting a fundamental limit to the pre-
cision of knowledge of pairs of complementary physical properties, such as position,
momentum, and energy.

As we pointed out earlier in Chapter 2, in the field of data science, the physical
concepts of observables, states, and wavefunctions correspond to data, features, and
inference functions, respectively. We will start by defining some important terminolo-
gies and then illustrate their practical applications in data analytics. Then, we will go
deeper into understanding uncertainty by considering an embedding of classical 4D
spacetime into the 5D spacekime manifold. This Campbell embedding suggests a cou-
pling between 4D spacetime and fifth spacekime dimension as well as the existence
of an extra force that is parallel to the 4-velocity. The core of this derivation is based
on extending the 4D solutions of Einstein‘s equations to their corresponding 5D solu-
tions of the Ricci-flat field equations and explicating the Ricci tensor.

In this chapter, we draw parallels between quantum mechanics concepts and
their corresponding data science counterparts. After extending velocity, momen-
tum, and Lorentz transformations in 5D spacekime, we discuss synergies between
random sampling in spacetime and spacekime and present a Bayesian formulation
of spacekime analytics. Alternative representations of uncertainty in data science
are shown at the end. The extensive chapter appendix includes bra-ket formulations
of multivariate random vectors, time-varying processes, conditional probability, lin-
ear modeling, and the derivation of the cosmological constant (Λ) in the 5D Ricci-
flat spacekime.

https://doi.org/10.1515/9783110697827-005
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5.1 Core Definitions

5.1.1 Observables (Datasets)

In data science, observables are dynamic datasets consisting of collections of measur-
able features. For instance, clinical observables may include various measurements
of human health that are acquired by clinicians, physicians, or technicians. Imaging
observables are sets of raw time, space, spacetime, or hyper-volume records repre-
senting the anatomical, functional, or physiological states of living organisms, mole-
cules, cells, organs, systems, networks, or other biological specimens. There are also
multiple endogenous (e.g., omics, biome, hereditary), exogenous (e.g., environmen-
tal, epigenetics, diet), and stochastic (e.g., known and unknown variability) observ-
ables that are recorded under various experimental conditions.

Most often, observables are structured real-valued functions on the combina-
tions of all possible system states. That is, for a given set of data features, measur-
able observables represent data collections (datasets) that include instances of data
elements (e.g., numbers, strings, class labels, intensities, “NA”, etc.) for each fea-
ture and each case. Observables may also be thought of as operators, or gauges,
where properties of the data state can be determined by some sequences of such
operations. For example, these operations might involve applying physical, chemi-
cal, biological, mechanical, or other processes to eventually obtain, or read, the val-
ues for all features (i.e., the set of observables) in the specific problem scope.

Problem-context meaningful observables must satisfy transformation laws, which
relate datasets recorded by different investigators (observers) at different frames of
reference (e.g., site, time, location, condition). These transformation laws are auto-
morphisms of the state space suggesting that they transform bijectively the inferential
states while preserving some specific mathematical properties.

5.1.2 Inference Function

In data science, an inference function represents a mathematical description of the
outcome states of a specific data analytic system (problem). These inferential (out-
come) states are paired with a specific analytical strategy and a specific probability
distribution for the corresponding inference estimates based on all observables (in-
stances of datasets or data archives). The resulting inference outcomes (states) cor-
respond to each possible measurement of the process phenomenon (i.e., dataset).
Knowledge of the inference states, their likelihoods, and the rules for the system’s
time evolution (data augmentation, aggregation, expansion, etc.), provides com-
plete data science description of the analytical problems and shows what and how
it can be modeled, predicted, inferred, or concluded about the system’s behavior
based on input data.
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In general, as a mathematical description of a solution to a specific data ana-
lytic system (problem), the inference function is a real multivariate function quanti-
fying likelihoods, kevent probabilities, odds of discrete classes or categorical labels,
or yielding regression quantization. A problem inference represents the possible
outcome conclusions that can be obtained, or derived, from the system measure-
ments, i.e., observed datasets. To keep notation synergistic with quantum physics’
wavefunctions, we denote inference functions by Greek letters like ψ, ϕ, Ψ, or Φ.

In physics, the state of a particle is always identical to the system wavefunction,
which represents the probability amplitude of finding the system in that state. How-
ever, in data science, for a given data system, the inference function does not have
the same relation to the dataset. Albeit the inference always depends on the (input)
data, the resulting scientific conclusion may substantially change or differ across
different (model-based and model-free) analytical strategies, and often may be com-
puted using estimation that relies on stochastic optimization algorithms.

Example: To clarify the relations between these concepts, it helps to keep some simple examples in
mind. For instance, let’s review a couple of inference functions on this specific data system (problem):
– Context: Predict the binary disease state of patients using clinical data.
– Observables (Data): predictors = Xi, j

� 	n,m
i = 1, j = 1, n = number of patients we have data for, and

m = number of features, and the clinical outcomes Yi represent binary labels, e.g., 0 (alive,
control, or baseline) or 1 (dead, patient, or treatment).

– Transformation laws: Two examples of transformation laws include (1) the logit transformation
of the outcome (Y ), which may be used to transform between binary outcomes and probability
values, and (2) variance-stabilizing transforms, which may be employed to “normalize” or stan-
dardize the predictors (X).

– Analytical strategy: There are model-based and model-free approaches that can be used in this
analytical problem setting. Let’s look at some examples of each type of inference.

A linear model (Y ffi Xβ+ ε) may be fitted on the observables (O= X , Yf g) to predict the outcome (Y )
using the independent features (X). Alternatively, a model-free machine learning technique may be em-
ployed to generate estimates Ŷ = Ŷ Xð Þ

� �
of the likelihood, probability, or state of the outcome based

on the observed covariates. If the outcome is binary, we will be suppressing some of the technical de-
tails of the formulation of the generalized linear model and the corresponding logit parameter estima-
tion as an equation root-finding problem 0= XT Y − Xβð Þ. In this situation, maximizing the likelihood of
the linear logistic regression model is equivalent to obtaining solutions of the score (vector) equation:

0= ∂

∂β
log L β, X ,Yð Þ= XT Y −g− 1 Xβð Þ� �

,

where Z = g μð Þ= log μ
1− μ is the link function, its inverse is the likelihood, and for Y = 1, g− 1 Zð Þ= eZ

1+ eZ
=

1
1+ e− Z

=PðY = 1jX ,βÞ, Z = Xβ is the linear predictor of the binary outcome vector Y = y1, y2,ð . . . , ynÞT ,
and the expected value of Yi is the likelihood for yi = 1, g− 1 xiβð Þ=μi. As the logit model can be ex-
pressed in terms of a multivariate linear model:

276 Chapter 5 Inferential Uncertainty

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



logit E yi xi, 1, xi, 2, . . . , xi,m|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
xi

������
3524 1A= yi =βo +

Xm
j = 1

xi, jβj = xiβ,

0@
we can assume that we are working with a general linear model of a continuous outcome Y .

As the binary independent and identically distributed (IID) observations represent a Bernoulli pro-
cess, the likelihood and the log-likelihood functions are expressed in terms of the observations ( yif g)
and the parameter vector (β):

L β, X , Yð Þ=
Yn
i = 1

μyii 1−μið Þ1− yi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Bernoulli μið Þ

, μi = g− 1 xiβð Þ,

ll= log L=
Xn
i = 1

log 1− g− 1 xiβð Þ|fflfflfflfflffl{zfflfflfflfflffl}
μi

0@ 1A+ yi log
g− 1 xiβð Þ

1− g− 1 xiβð Þ
� �24 35.

As μi ≡g− 1 xiβð Þ, its partial derivative with respect to the parameter βj is:

μ′i, j =
∂

∂βj
g− 1 xi,μβμ|fflffl{zfflffl}

zi

0B@
1CA= ∂

∂zi
g− 1 xi,μβμ|fflffl{zfflffl}

zi

0B@
1CA

0B@
1CA ∂

∂βj
zi =

∂

∂zi

1
1+ e− zi

� �
xi, j =

e− zi

1+ e− zið Þ2 xi, j = g− 1 zið Þ 1−g− 1 zið Þ
� �

xi, j =μi 1−μið Þxi, j .

Then, the partial derivative of the log-likelihood function is:

∂

∂βj
ll|ffl{zffl}

1× 1

= ∂

∂βj
log L=

Xn
i = 1

−
μ′i, j
1−μi

+
yiμ′i, j

μi 1− μið Þ

!
=

 

Xn
i = 1

yi −μið Þ
μ′i, j

μi 1−μið Þ|fflfflfflfflffl{zfflfflfflfflffl}
xi, j

0BBB@
1CCCA= sTj|{z}

1× n

Y − g− 1 Xβð Þ|fflfflfflfflffl{zfflfflfflfflffl}
n× 1

0@ 1A,

where Y = y1, y2, . . . , ynð ÞT , g− 1 Xβð Þ= g− 1 x1βð Þ, g− 1 x2βð Þ, . . . , g− 1 xnβð Þ� �T, Xn×m = s1, s2, . . . , smð Þ,
and the m column vectors sj represent the observed features, as vectors of dimension n× 1. There-
fore, the score vector is:

∂

∂β
ll|ffl{zffl}

m× 1

= ∂

∂β1
, ∂

∂β2
, . . . , ∂

∂βm

� �T

= XT|{z}
m×n

Y − g− 1 Xβð Þ� �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n× 1

.

To illustrate an example of an inference function, let’s first focus on the simpler logit model where
we have a closed-form analytical solution (via least squares) to the problem of predicting the out-
come (Y ) using the independent features (X).

Specifically, the inference function, ψ =ψ X , Y j linearmodel|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
analytical strategy

0@ 1A, quantifies the effects of all inde-
pendent features (X) on the outcome (Y ). The linear model has a closed-form analytical representa-
tion where the predicted outcomes are expressed as Ŷ = Xβ̂. Ordinary least squares (OLS) can be
used to compute an estimate of the parameter vector:

β̂= β̂OLS = hXjXi− 1hXjYi≡ XT X
� �− 1

XT Y .
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The resulting inference includes three complementary components:

(1) the actual effect-size estimates β̂= β̂1, β̂2, β̂3, . . . , β̂m

� �′� �
,

(2) their variability (σ2
β̂i
), and

(3) their associated probabilities relative to some a priori null and research hypotheses, e.g.,

P tn−m− 1j j< tβi, o

��� ���� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tail probability

, where tβi, o|{z}
test

statistics

= β̂i −βi

σβ̂i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ′Xð Þ− 1ð Þi, i

q ⁓ tn−m− 1
zfflfflfflffl}|fflfflfflffl{df = n−m− 1

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Student′s t
distribution

.

Thus, the basic model-based inference for the generalized linear model (GLM) represents solutions
to a prediction inference problem. The corresponding inference function, which quantifies the effects
for all independent features (X) on the dependent outcome (Y), can be expressed as:

ψ Oð Þ=ψ X , Yð Þ= β̂= β̂OLS = hXjXi− 1hXjYi= XT X
� �− 1

XTY .

For the same data system example, support vector machines (SVM) classification provides an alter-
native example of a non-parametric, non-linear inference.

Assume that ψx 2 H is the lifting function ψ:Rn ! Rd (ψ:x 2 Rn ! ~x =ψx 2 H), where n� d, the
kernel ψx yð Þ= hxjyi:O×O! R , and the observed data Oi = xi , yif g are lifted to ψOi

. Then, the SVM
prediction operator is the weighted sum of the kernel functions at ψOi

, which generalizes the notion
of inner product similarity:

hψOj β*iH =
Xn
i = 1

p*i hψOjψOiiH,

where β* is a solution to the regularized optimization problem:

min
β2H

L ~Xβ,Y
� �|fflfflfflffl{zfflfflfflffl}
fidelity

+ λ
2

βk k2H|ffl{zffl}
regularizer

0B@
1CA,

~X = ψxi

n on
i = 1

are the lifted features, L is the objective (loss) function (e.g., least-squares cost) as-

sessing the fidelity of the classifier, and the coefficients in this linear combination, p*i , are the dual

weights that are multiplied by the label corresponding to each training instance, yif g. Our oversim-
plified binary classification example aims to predict the disease state of participants, e.g., patient
vs. control. Supervised SVM classification represents one analytical strategy that outputs concrete
decision-making inference. For instance, SVM can classify new data points (testing case partici-
pants), z, that have homologous features to the training case participants, x. Explicitly, SVM classi-
fication labeling of testing data is based on computing the (binary) sign (± ) of the transformation

z! sign
Xn
j = 1

cjyjk xi , zð Þ
" #

−b

 !
,

where the pair of parameters, offset b=w.ψi − yi =
Pn

j = 1 cjyjk xj , xi
� �� �

− yi, and normal vector, w,

to the separation plane are estimated using the training data (Oi consisting of the observed fea-
tures, xi, and their corresponding labels, yi):

yi =
− 1, if wtxi +b≤ − 1

+ 1, if wtxi +b≥ 1
,
equivalent to

yi wtxi +b
� �

≥ 1.
(
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Also, note that the coefficients, cj, are learned on the training data, Oi = xi , yif g, using the Lagrang-
ian dual optimization problem, and the kernel depends on the lifting function ψ:

k

xi|{z}
training

data

, z|{z}
testing

data

0BBB@
1CCCA= hψx jψziH.

By the representer theorem [254], all predictions of SVM models, as well as other models resulting
from kernel methods, can be expressed as a linear combination of kernel evaluations, inner prod-
ucts, h · j · iH, between some training instances (the support vectors) and the testing instances.

Note that the data points (Oi = xi , yif g) only appear within the inner product, which can be calculated
in the feature space. Thus, we do not need an explicit definition of the mapping (lifting function). There-
fore, a solution, β* 2 H, to the regularized optimization problem only lives in the lower (n) dimensional
space spanned by the lifted observed features, ψxi

. The resulting predictions can be expressed as a
non-linear function of x and ψx :

h~xjβ*iH =
Xn
i = 1

p*i hψx jψxi
iH =

Xn
i = 1

p*i k xi , xð Þ,

where the kernel (k) is defined ∀x, y 2 X by k x, yð Þ= hψx jψyiH.
This prediction representation scheme avoids the problem of computing in the higher (d) dimen-

sional space H, which may actually be infinite dimensional. In practice, the process is actually reversed.
Designing a kernel is much easier than explicating the lifting ψ operator. Hence, we will directly focus
on the kernel function k x, yð Þ. Examples of commonly used SVM kernels include:

k x; yð Þ ¼

Linear; k x; yð Þ ¼ hxjyi¼ x′y
Polynomial; k x; yð Þ ¼ hxjyi þ cð Þa;a 2 Zþ; c > 0
Sigmoid; k x; yð Þ ¼ tanh haxjyi þ bð Þ

Gaussian Radial Baseð Þ;
k x; yð Þ ¼ exp �hx�yjx�yi

2σ2

� �
¼

¼ exp �kx�yk2
2σ2

� �
8<:

etc:; . . .

8>>>>>>>><>>>>>>>>:
When defining a kernel, we need to consider its geometric properties, e.g., how does the kernel re-
spond to addition. The kernel must correspond to a lifting function, ψ : x 2 Rn ! ~x =ψx =ψ xð Þ 2 H,
where H is an implicit higher dimensional feature space (Hilbert space) with dimension dimH= d, and
all choices of kernels must be positive definite and symmetric, k xi , xj

� �
= k xj , xi
� �

for any pair of sam-
pling points xj , xi. This requirement is equivalent to the existence of a lifting function ψx yð Þ= hxjyi= x′y
that generates the kernel, which can be defined on flat (Euclidean) or curved (non-Euclidean) spaces.

For linear kernels, this one-to-one correspondence between kernels, lifting functions, and inner
products, k x, yð Þ=ψx yð Þ= hxjyi, is associated with a trivial lifting, ψx =ψ xð Þ= x.

For homogeneous (c=0) and inhomogeneous (c ≠ 0) polynomial kernels, k x, yð Þ= hxjyi+ cð Þa, the
function ψ corresponds to lifting the data points to a finite dimensional space, H. For instance, if the
observable process includes three features (p= 3) and the kernel power exponent is a= 2, then
dim Hð Þ= 10. To see this, we will expand the polynomial kernel and complete the symbolic calculations:

k x, yð Þ= hψ xð Þjψ yð Þi= hxjyi+ cð Þ2 = x1y1 + x2y2 + x3y3 + cð Þ2.

To work this case explicitly, we can simplify the notation by denoting
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x = x1, x2, x3ð Þ
y = y1, y2, y3ð Þ .
�����

Let’s expand the polynomial kernel:

k x, yð Þ= hψ xð Þjψ yð Þi= hxjyi+ cð Þ2 = x1y1 + x2y2 + x3y3 + cð Þ2 =

c2 + 2c x1y1 + 2c x2y2 + 2c x3y3 + x21 y
2
1 + x22y

2
2 + x23y

2
3 +

2x1x2y1y2 + 2x1x3y1y3 + 2x2x3y2y3.

Therefore,

k x, yð Þ= hψ xð Þjψ yð Þi= ψ xð Þð Þ†|fflfflfflffl{zfflfflfflffl}
adjoint

conjugate transposeð Þ

. ψ yð Þ=

= c,
ffiffiffiffiffiffi
2 c
p

x1,
ffiffiffiffiffiffi
2 c
p

x2,
ffiffiffiffiffiffi
2 c
p

x3, x21 , x22 , x23 ,
ffiffiffiffiffiffi
2 c
p

x1x2,
ffiffiffiffiffiffi
2 c
p

x1x3,
ffiffiffiffiffiffi
2 c
p

x2x3
� �

×

cffiffiffiffiffi
2c
p

y1ffiffiffiffiffi
2c
p

y2ffiffiffiffiffi
2c
p

y3

y21
y22
y23ffiffiffiffiffi

2c
p

y1y2ffiffiffiffiffi
2c
p

y1y3ffiffiffiffiffi
2c
p

y2y3

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

,

where the lift function, ψ : x 2 Rn= 3 ! Rd = 10 � H 3 ψ xð Þ=

ψ x1, x2, x3ð Þ= c,
ffiffiffiffiffiffi
2 c
p

x1,
ffiffiffiffiffiffi
2 c
p

x2,
ffiffiffiffiffiffi
2 c
p

x3, x21 , x22 , x23 ,
ffiffiffiffiffiffi
2 c
p

x1x2,
ffiffiffiffiffiffi
2 c
p

x1x3,
ffiffiffiffiffiffi
2 c
p

x2x3
� �′ 2 R10,

and the kernel is defined in terms of the inner product, k x, yð Þ= hψ xð Þjψ yð Þi.
Non-linear kernels correspond to infinite dimensional lifting functions. For instance, the Gaussian

kernel is:

ψ:x 2 Rη ! ψ xð Þ 2 L2 Rηð Þ, i.e., square integrable linear functions, Rη dual,

where

k x, yð Þ= exp
− hx − yjx − yi

2σ2

� �
= exp

− x − yk k2
2σ2

 !
.

In practice, cross-validation may be used to estimate (or tune) the parameter σ >0 that controls the
bandwidth of the model.

Many alternative kernels may be used. For instance, the Laplacian kernel resembles a Gaussian,

but relies instead on the L1 norm: k x, yð Þ= exp − x − yk k1
σ

� �
, and variations of string and graph kernels

that measure graph similarity are based on an inner product defined on the graphs (or trees) [255].
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Finally, any linear combination of kernels, k x, yð Þ= Pm
i = 1 λiki x, yð Þ, λi ≥0, will itself be another

kernel that can be used. Note that we can use statistical internal cross-validation to estimate the ker-
nel weight components, λi, that yield an optimalmixed kernel, k x, yð Þ.

The positive definite requirements for all translation-invariant kernels k x, yð Þ= k x − yð Þon Rη is
essentially equivalent to k̂ >0, where k̂ ωð Þ is the Fourier transform of the kernel k xð Þ. As k x, yð Þ=
hψ xð Þjψ yð Þi, the lifting function, ψ, corresponding to the kernel, k x, yð Þ= k x − yð Þ, may be computed
by inverting the Fourier transform of ĥ=

ffiffiffî
k

p
. In other words, all lifting operations that correspond

to translation-invariant kernels k are defined by:

ψ : x 2 Rη ! ψx =hx 2 L2 Rηð Þ,whereh= ^̂h andhx yð Þ=h x − yð Þ.

Recall that for each function, k 2 L1 Rð Þ, up to an appropriate normalization factor, it’s Fourier trans-
form is defined by:

∀ω 2 R , k̂ ωð Þ=
ð
R

k xð Þe− i x ωdx,

and the inverse Fourier transform is

∀x 2 R , k xð Þ= ^̂k xð Þ= 1
2π

ð
R

k̂ ωð Þei x ωdω.

Both the forward and inverse Fourier transforms are linear transformations that satisfy ^̂h=h

and dh*g= ĥ× ĝ, where the convolution operator (*), defined by f *gð Þ tð Þ≡ ÐR f τð Þg t − τð Þdτ =Ð
R f t − τð Þ g τð Þdτ, is the Fourier transform of the product operator ( × ), and vise-versa.

Most of the time, we work with inference functions that are symmetric. That is, the
order of listing features does not matter in computing the inference as a function of the
total degrees of freedom (e.g., η + κ − 1), which corresponds to some maximum set of
commuting observables (features). Once such a representation is chosen, the inference
function can be derived from the specific model formulation, the computational strat-
egy, the analytical approach, and the specific state (instance) of the observed data.

For a given data science challenge, the choice of which commuting observables
to use is not unique. In fact, it is a really hard problem to identify the smallest sub-
set of the most salient features that can be reliably, reproducibly, consistently, and
efficiently used to obtain the retrodiction, prediction, or forecasting inference.

The domain of the inference function is not uniquely defined either. For in-
stance, in spacelike cross-sectional data analytics, the observables are recorded at
one fixed time point and the inference function (inference) may act only on cross-
sectional data elements. Alternatively, in timelike or kimelike analytics, the infer-
ence may act on longitudinal data, e.g., time-series analysis.

Of course, sometimes data preprocessing may be either optional, necessary, or re-
quired. In such cases, the raw or transformed data may be used in the data analytic pro-
cess to compute the inference. For instance, magnetic resonance imaging (MRI) data is
naturally recorded in the Fourier domain (frequency, k-space). However, radiographic
reading of MRI data, as well as its clinical interpretation by physicians, requires the im-
aging data to be inverted into spacetime. In this case, the forward and inverse Fourier
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transforms provide a specific relation between the corresponding observables (features)
in the time (image) domain and their corresponding counterparts in the native Fourier
(frequency) space.

5.2 Inner Product

The inner product between two inference functions, hψj ϕi≡ hψ, ϕi, measures the
level of inference overlap, result consistency, agreement or synergies between their cor-
responding inferential states. The inner product provides the foundation for a probabi-
listic interpretation of data science inference in terms of transition probabilities.

The squared modulus of an inference function, hψjψi= ψk k2, represents the
probability density that allows us to measure specific inferential outcomes for a
given set of observables. To facilitate probability interpretation, the law of total
probability requires the normalization condition, i.e., 1=

Ð
ψk k2. Let’s illustrate the

modulus in the scope of the above logistic example with real-value data X,Yð Þ
where matrix Hermitian conjugation corresponds to just the matrix transposition,
X* =XT . In this case, the square modulus of the inference function is:

ψk k2 = hψjψi= hψ X,Yð Þjψ X,Yð Þi= β̂
OLSD ���β̂OLS

E
=

= h XTX
� �− 1

XTYj XTX
� �− 1

XTYi= XTX
� �− 1

XTY
� �T

XTX
� �− 1

XTY =

=YTX XTX
� �− 1

XTX
� �− 1

XTY =YT X XTX
� �− 2

XT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
D

Y =YTDY = D
1
2

� �T
Y

���� D
1
2

� �
Y

� �
= Yk k2D.

Open Problems

(1) What would be the effect of exploring
the use of the matrix D as a constant
normalization factor

�
D

1
2
�
?

(2) More research is needed to really
define an appropriate coherence met-
ric that captures the agreement, or
overlap, between a pair of comple-
mentary inference functions or data
analytic strategies. Ideally, some in-
ference consistency measures can be
derived that are analogous to:

282 Chapter 5 Inferential Uncertainty

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Coherence= hψjϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ ψi× hϕj jϕip = hψjϕi
ψk k ϕk k .

(3) Alternatively, as the data represent random variables (vectors, or tensors) and
the specific data-analytic strategy yields the inference function, we may ex-
plore mutual information of operators, which may also be interpreted as lin-
ear or non-linear operator acting on the data:

I ψ;ϕð Þ=
X
i

X
j

hψijϕji log
hψijϕji

ψi

�� ����ϕj

��
 !

,

where the inference states ψi and ϕi are the eigenfunctions corresponding to the
eigenvalues Oi, see the eigenspectra section below.

In the most general complex-valued data, any observable dataset that can be col-
lected via simulation, prospectively designed experiments, retrospectively as secondary
data, or recorded real time should be associated with a self-adjoint linear operator.
For instance, suppose our observed dataset consists of complex-valued measurements
of κ + 1 features (O= Xif gκ

i= 1 ∪ Y
� 	

) for η cases, participants, or units:

hXj= X1,X2, . . . ,Xκð Þ=

x1, 1 � � � x1, κ

..

. . .
. ..

.

xη, 1|{z}
X1

� � � xη, κ|{z}
Xκ

26664
37775and jβi=

β1
β2
. . .

β η

0BB@
1CCA.

This observable, O, corresponds to the linear operator Ô= hXj, which acts on (linear
model-based) inference, ψ and generates predictions, e.g., fitted values Ŷ = hXjβ̂i= jX*β̂i.

Then, the expectation of the linear operator Ô can be defined by:

hÔi= hψ Yð ÞjÔjψ Yð Þi=
ð
dX ψ Yð Þð Þ* Ô ψ Yð Þ.

5.3 Eigenspectra (Eigenvalues and Eigenfunctions)

Suppose the observable O is measured multiple times (r) under identical conditions,
i.e., we observe several instances of the data under identical conditions, using the
same features and cases. Symbolically, the result will be a multi-instance dataset
O1,O2, . . . , Orf g. The expected value of the observed data, hOi, represents the as-

ymptotic limit of the average of its multiple instances lim
r!∞

1
r

Pr
i= 1

Oi

� �
. Note the synergy

with the law of large numbers [164]. All of the r different observed data instances, Oi,
represent possible outcomes of the same data-generating experiment. More impor-

tantly, the Oi datasets are actually the eigenvalues of the linear operator Ô, and the

5.3 Eigenspectra (Eigenvalues and Eigenfunctions) 283

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



corresponding inference states ψi are the eigenfunctions associated with the eigen-
values Oi. That is,

Ôψi = Oiψi.

Note that each eigenfunction, ψi represents the inference function of a state in
which the data (observed measurement) O yields the value Oi with probability 1.

The eigenfunctions may also be normalized, hψijψji= δi, j =
1, i= j
0, i ≠ j

�
. This fact can

be validated by computing the variance of O in the state ψi:

Vari Oð Þ= hÔ2i− hÔi2 = hψijÔ
2jψii− hψijÔjψii2 =

=Oi
2hψijψii− Oihψijψiið Þ2 =0.

These linear operators have real data as eigenvalues, since these values result from
specific observable scientific experiments. Real eigenvalues are associated with Her-
mitian matrices where the probability of each eigenvalue is related to the projection
of the physical state on the subspace spanned by the corresponding eigenfunction
related to that eigenvalue.

5.4 Uncertainty in 5D Spacekime

Since the 1990’s, an international team of scholars (the 5D Space-Time-Matter Con-
sortium, http://5dstm.org, accessed January 29, 2021) published a series of papers
examining the implications of a 5D world with an extra time dimension [62, 69, 147,
256–259]. One of the results of this monumental work was the conclusion that in
3+ 2ð Þ space + time dimensions, the interpretation of particle spacetime motion may
be slightly modified by an extra force to produce a correlation between the momentum
and position similar to the uncertainty relation in quantum mechanics. This induced-
matter (aka space-time-matter) theory led to a derivation of the classical 4D spacetime
Heisenberg uncertainty as a reduction of Einstein-like 5D deterministic dynamics. In
the higher-dimensional spacekime extension, the common spacetime uncertainty prin-
ciple could be understood in 5D as consequences of deterministic laws. As Paul Wesson
stated “Heisenberg was right in 4D, because Einstein was right in 5D” and “God does not
play dice in a higher-dimensional world” [260]. It’s probably useful to draw a distinction
between Hermann Weyl’s space-time-matter (Raum-Zeit-Materie) formulation [261] and
the 5D space-time-matter proposed by Wesson and colleagues [69]. In the 1920’s, Weyl
described matter as a substance composed of elementary quanta with invariable mass
and a definitive charge that are observed in specific spatial locations at certain times.

This section presents an approach for realizing the 4D Heisenberg uncertainty
as a silhouette of 5D Einstein deterministic dynamics. Let’s start by expressing the
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original Heisenberg’s uncertainty relation between the momentum and the position
using Einstein summation indexing convention:

dpμ|{z}
increment in the
4−momentum

dxμ|{z}
increment in the
4−position

⁓ h.

We can divide both sides of this equation by two increments in the proper time s,
which represents the time measured within the internal coordinate reference frame:

dpμ

ds
dxμ

ds
= Fμ uμ ⁓

h
ds2

.

In the limit, this suggests that there is a force acting parallel to the velocity, whose
inner product with velocity is non-trivial. However, this contradicts the well-known
orthogonality condition in Einstein’s 4D theory of relativity.

For completeness, let’s demonstrate the orthogonality condition in 4D spacetime.
The path of an object moving relative to a particular reference frame is defined by
four coordinate functions xμ sð Þ, where μ is a spacetime index with μ =0 for the time-
like component and μ = 1, 2, 3 for the spacelike coordinates. The zeroth component,
x0 = ct, is defined as the time coordinate multiplied by c, the speed of light, and each
coordinate function depends on the proper time, s.

The 4-velocity is the tangent 4-vector of a timelike world line, which can be de-
fined at any world line point, xμ sð Þ by:

uμ = dxμ

ds
.

More explicitly, for μ =0, the temporal component of the 4-velocity is the derivative
of the x0 position relative to proper time (s):

u0 = dx0

ds
= dx0

dt
dt
ds

= c
dt
ds

= c γ vð Þ.

Similarly for the three spatial components of the 4-velocity, indexed by μ = 1, 2, 3:

uμ = dxμ

ds
= dxμ

dt
dt
ds

= dxμ

dt
γ vð Þ= vμγ vð Þ,

where the Lorentz factor, γ vð Þ= dt
ds=

1ffiffiffiffiffiffiffiffi
1− v2

c2

q = 1ffiffiffiffiffiffiffiffi
1− β2
p , is a function of the square Eu-

clidean norm of the 3D velocity vector, v between the two inertial frames of reference

(K and K′):

v= vk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1ð Þ2 + v2ð Þ2 + v3ð Þ2

q
,
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ν μ = dxμ

dt
μ = 1, 2, 3ð Þ.

Thus, the 4-velocity is u= uμð Þ4× 1 = γ c, vð Þ = γc, γvð Þ. This is an explicit relation be-
tween a particle’s 3-velocity and its 4-velocity.

Let’s examine the relation between the 4-acceleration (aμ) and the classical
3-acceleration dv

dt

� �
:

a= aμð Þ4× 1 =
du
ds

= duμ

ds

� �
4× 1

= γ
duμ

dt

� �
= γ

d
dt

γc, γvð Þ= γ c
dγ
dt|{z}

temporal

, dγ
dt

v + γ
dv
dt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

spatial

0BB@
1CCA.

In the particle’s internal resting frame, v =0, hence,

γ= 1,
dγ
dt

= d
dt

1ffiffiffiffiffiffiffiffiffiffiffi
1− v2

c2

q
0B@

1CA= −
1

2 1− v2

c2

� �3
2

−
2v
c2

� �
dv
dt

=0,

and the 4-velocity u≡ uμð Þ4× 1 = c,0ð Þ, and the 4-acceleration a≡ aμð Þ4× 1 = 0, dvdt
� �

.
Remember that this is relative to the particle’s instantaneous resting frame.

After an infinitesimal time change, dt, the particle is no longer in this instantaneous
resting frame – it will be in a new instantaneous resting frame. Of course, the par-
ticle’s velocity in the new rest frame is still 0, but in the old rest frame, its velocity
has now changed and dv

dt is not trivial. As a result, the inner product of the 4-velocity
u≡ uμð Þ4× 1 = c,0ð Þ and the 4-acceleration a≡ aμð Þ4× 1 = 0, dvdt

� �
is:

hujai= uμaμ = c,0ð Þ · 0, dv
dt

� �
=0.

This explains the classical 4D relativity orthogonality condition that the inner prod-
uct of the 4-acceleration and the 4-velocity is trivial.

We can also derive this using first principles by explicitly computing the square
magnitude of the 4-velocity using the metric tensor g = gαβ

� �
:

uk k2 = hujui=
X3

α =0

X3
β =0

gαβu
αuβ =

X3
μ =0

gμμuμuμ

=|{z}
uμ = γ c, vð Þ

± γ vð Þð Þ2 c2 − v1
� �2 − v2

� �2 − v3
� �2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

h c, vð Þj c, vð Þi

0B@
1CA= ± c2 − v2

1− v2
c2

= ± c2.

The positive or negative sign in the equation above depends on the choice of metric
signature:

g =diag + 1, − 1, − 1, − 1ð Þ or g = diag − 1, + 1, + 1, + 1ð Þ.
Therefore, uk k2 is a constant and its derivative with respect to the proper time is
trivial:
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d uk k2
ds

= d
ds

u ·uð Þ= 2u · du
ds

=0 )

uμaμ = uμ duμ

ds
=0, aμ = gμγaγ,

and we have that the 4-acceleration vector (a) is orthogonal to 4-velocity (u).
Next, we will try to show that extending 4D spacetime to 5D spacekime suggests

the existence of an extra force. One component of this additional force is parallel to
the 4-velocity and explains the intrinsic Heisenberg uncertainty relation in the lower
4D spacetime embedding.

Campbell’s theorem [257] provides necessary conditions for an N-dimensional
Riemannian manifold to be embedded as a hypersurface leaf in a similar N + 1ð Þ-
dimensional manifold. This result suggests an interpretation of 5D spacekime as a
Ricci-flat space where the 4D Minkowski spacetime can be embedded using the ca-
nonical metric, which provides a smooth embedding extending any 4D metric space
into a 5D manifold. More details of this embedding and a historical perspective is
available in Wesson’s 2010 manuscript [262].

Let’s first investigate the properties of this embedding and the canonical metric.
Consider a D-dimensional “generating” space that we foliate by a family of D− 1ð Þ
hypersurfaces [263]. Foliation, also called slicing, represents a decomposition of a
higher-dimensional manifold, e.g., Minkowski 5D spacekime, into hypersurfaces of
lower dimension, e.g., Minkowski 4D spacetime leaves. This embedding also requires
the existence of a regular smooth scalar field with non-trivial gradient, whose level-
surfaces represent the foliation leaves or hypersurfaces. Since the scalar field is regu-
lar, the hypersurfaces are non-intersecting. Let’s assume that the manifold is globally
hyperbolic, all hypersurfaces are spacelike, and the foliation covers the whole mani-
fold. Each hypersurface is called a leaf or a slice of the foliation. Figure 5.1 shows
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Figure 5.1: Examples of manifold foliations that are relevant in the lifting of spacetime analytics to
spacekime.
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schematics of simple alternative manifold foliations, which play important roles in
the generalization of classical spacetime to spacekime analytics, see Chapter 6.

In normal coordinates, the spacekime interval (dS2) in D≡ 5 dimensions is de-
fined in terms of the metric tensor (gAB) by:

dS2 =
XD− 1

0

XD− 1

0

gABdxAdxB.

And according to the canonical 5D spacekime metric, the interval can be expressed as:

dS2 =
XD− 2

0

XD− 2

0

gαβ xμ, lð Þdxαdxβ + ϵ dl2,

where xμ is the D− 1ð Þ spacetime location and l is the extra kime dimension. When
using metric signature +, −, −, −ð Þ, the sign factor ϵ is taken to be + 1 or − 1 corre-
sponding to timelike or spacelike hypersurfaces. The 5D spacekime metric is confor-
mally related to the induced Minkowski 4D metric by:

dS2 =Ω
XD− 2

0

XD− 2

0

gαβ xμ, lð Þdxαdxβ + ϵdl2.

The warping conformal factor is the constant Ω and gαβ xμ, lð Þ is the physical metric
on the embedded hypersurface of one lower dimension (foliating leaf). For example,
using metric signature +, −, −, −ð Þ, the flat 4D Minkowski spacetime metric relative
to the coordinates xμ = ct, x, y, zð Þ is:

g =

1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 1

266664
377775.

Another example is the Schwarzschild metric, which describes the spacetime
around a heavy spherically-symmetric body, such as a planet or a black hole. Using
spherical coordinates xμ = ct, r, θ, φð Þ, we can write the Schwarzschild metric as:

g =

1− 2GM
rc2

� �
0 0 0

0 − 1− 2GM
rc2

� �− 1
0 0

0 0 − r2 0

0 0 0 − r2sin2θ

26666664

37777775,

where G is the gravitational constant, M represents the total mass-energy content of
the central object, and θ, φð Þ represent the two rotational degrees of freedom.
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In 5D space-time-matter theory, Ω= l
L

� �2
is the conformal factor, and L is a con-

stant length defined in terms of the cosmological constant Λ = − ϵ 3
L2
, where, in the

metric signature +, −, −, −ð Þ, Λ >0 for a spacelike extra coordinate and Λ <0 for a
timelike extra fifth coordinate. Thus, the canonical metric can be expressed as:

dS2 = l2

L2
XD− 2

0

XD− 2

0

gαβ xμ, lð Þdxαdxβ + ϵdl2.

In simpler terms, 5D spacekime relativity is similar to the standard 4D spacetime rela-
tivity, except for an extra quadratic factor in the second kime dimension which aug-
ments the spacetime components. This extra factor is orthogonal to spacetime and
determines the embedding of the classical Minkowski spacetime into spacekime.

This canonical metric is often used to represent the motion of particles. It sug-
gests the existence of an extra force acting on the particles that can be measured by
a foliation observer in a hypersurface leaf of one lower dimension.

Let’s derive this extra force using the canonical metric. Consider a line element
and metric in 5D given by:

dS2 =
X4
A=0

X4
B=0

gABdxAdxB,

which contains a 4D subspace counterpart:

ds2 =
X3

α =0

X3
β =0

gαβdx
αdxβ.

In general, the 5D and 4D metric tensors, gAB and gαβ are functions of all five coordi-
nates, which we label as x0 = t (time), x1, 2, 3 = x, y, z (space), and x4 = l (the extra
kime-dimension), but act on 5D and 4D objects, respectively. Normalizing the square
interval, we use measuring units that absorb the speed of light and assume unitary
mass, i.e., c= 1, m= 1.

Assuming that the extra dimension is timelike (ϵ = + 1), the 5D interval in the 5D
canonical metric is:

dS2 = l2

L2
X3
0

X3
0

gαβ xμ, lð Þdxαdxβ + dl2, (5:1)

where L is a constant length related to the 4D cosmological constant.
Then, the induced 4D spacetime interval is:

ds2 =
X3
0

X3
0

gαβ xμ, lð Þdxαdxβ.
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Hence, we can express the relation between the 5D canonical metric and the in-
duced 4D metric by:

dS2 = l2

L2
ds2 +dl2.

This implies that the 5D coordinates can be constructed by taking a 4D hypersurface
in the 5D manifold and regarding the lines normal to this hypersurface as the extra
coordinate. These lines will be geodesics curves with proper length equal to the
value of the fifth coordinate x4 = l.

This allows a continuously dense foliation of spacekime by 4D spacetime hyper-
surfaces that depend on the choice of the initial 4D hypersurface embedded in the
5D spacekime manifold.

Dividing the equation ds2 =
P3

0

P3
0 gαβ xμ, lð Þdxαdxβ by the interval ds2 will nor-

malize the 4-velocities uμ ≡ dxμ
ds :X3
0

X3
0

gαβ uα uβ ≡ gαβ uα uβ = 1.

Mind the somewhat awkward notation where s represents proper time, whereas ds2

represents the Lorentz invariant spacetime interval.
Recall from Chapter 3, Section 3.7.2 (Kime Motion Equations) the discussion of

the Newtonian equations of motion, the Lagrangian and Eulerian frames of refer-
ence equations of motion, and the most general spacekime motion equations. The
kime equations of motion in Chapter 3 generalized the Newtonian equations of mo-
tion in the Special Theory of Relativity (STR) into 5D spacekime.

We will now derive the Lagrange-framework equations of motion by maximiz-
ing the distance (integral along the geodesic path) between two points in 5D via
d
Ð
dS

� �
=0. If y is an arbitrary affine parameter along the geodesic path (change of

variables setting), this relation can be written as d
Ð
L dy

� �
=0. Using equation (5.1),

the quantity L which is commonly referred to as the Lagrangian is:

L≡
dS
dy

= l2

L2
X3
0

X3
0

gαβ
dxα

dy
dxβ

dy
+ dl

dy

� �2
" #1

2

= l2

L2
gαβ

dxα

dy
dxβ

dy
+ dl

dy

� �2
" #1

2

.

With respect to the new parameter variable y, a 5D path is described by xα = xα yð Þ,
l= l yð Þ.

In a Lagrangian framework, the momenta of 4D spacetime (α =0, 1, 2, 3) and the
extra kime-dimension (l) are:

pα =
∂L

∂ dxα
dy

� � , pl = ∂L

∂ dl
dy

� � .
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And the equations of motion in a Lagrangian framework are given as usual by:

∂L

∂xα =|{z}
Euler− Lagrange

equation

d
dy

∂L

∂
dxα

dy

� �
|fflfflfflffl{zfflfflfflffl}

pα

= dpα

dy
, (5:2)

∂L

∂l
=|{z}

Euler−Lagrange
equation

d
dy

∂L

∂
dl
dy

� �
|fflfflffl{zfflfflffl}

pl

= dpl
dy

(5:3)

Let’s define uα ≡ dxα
dy α =0, 1, 2, 3ð Þ, ul ≡ dl

dy, and θ ≡L2 = l2

L2
P3

0

P3
0 gβγuβuγ + ul

� �2
. Note

that uβ = P3
α =0 δβ

αu
α = P3

γ=0 δβ
γu

γ, uγ = P3
α =0 δγ

αu
α = P3

β =0 δγ
βu

β, ∂uβ
∂uα = δβ

α, and we can

express the momenta pα and pl as:

pα=
∂L

∂ dxα
dy

� �= ∂

∂uα θ
1
2= 1

2θ
1
2

 !
∂θ
∂uα =

1

2θ
1
2

 !
l2

L2

� � X3
β=0

X3
γ=0

gβγ
∂uβ

∂uα|{z}
δβ

α

uγ+
X3

β=0

X3
γ=0

gβγuβ ∂uγ

∂uα|{z}
δγα

0BBB@
1CCCA=

1

2θ
1
2

 !
l2

L2

� � X3
β =0

X3
γ=0

gβγδ β
αu

γ +
X3

β =0

X3
γ=0

gβγδγ
αu

β

 !
=

1

2θ
1
2

 !
l2

L2

� � X3
γ=0

X3
β =0

gβγδβ
α|fflfflfflfflffl{zfflfflfflfflffl}

gαγ

0BBB@
1CCCAuγ +

X3
β =0

X3
γ=0

gβγδγ
α|fflfflfflfflffl{zfflfflfflfflffl}

gβα

0BBB@
1CCCAuβ

0BBB@
1CCCA=

1

2θ
1
2

 !
l2

L2

� � X3
β =0

gβαu
β +
X3
γ=0

gγαuγ
 !

=|{z}
β and γ

index symmetries

1

2θ
1
2

 !
l2

L2

� �
2
X3

β =0

gβαuβ

 !
=|{z}

gβα = gαβ

1

θ
1
2

 !
l2

L2

� � X3
β =0

gαβuβ

 !
, 1≤ α ≤ 3 (5:4)

and

pl =
∂L

∂
dl
dy

� � = ∂

∂ul
θ
1
2 = 1

2θ
1
2

 !
∂θ
∂ul

= 1

2θ
1
2

 !
2ul
� �

= ul

θ
1
2
. (5:5)

Substituting the expression (5.4) for pα in the right hand side of equation (5.2) we get:
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dpα

dy
= 1

θ
1
2

 !
l2

L2

� �
d
dy

X3
β =0

gαβuβ

 !
+ 1

θ
1
2

 !
d
dy

l2

L2

� �X3
β =0

gαβuβ + d
dy

1

θ
1
2

 !
l2

L2

� �X3
β =0

gαβuβ =

1

θ
1
2

 !
l2

L2

� �
d
dy

X3
β =0

gαβu
β

 !
+ 1

θ
1
2

 !
2l
L2

dl
dy

X3
β =0

gαβu
β −

1

2θ
3
2

dθ
dy

l2

L2

� �X3
β =0

gαβu
β.

As θ ≡L2, the left hand side of equation (5.2) is:

∂L

∂xα = ∂

∂xα θ
1
2 = 1

2θ
1
2

 !
∂θ
∂xα = 1

2θ
1
2

 !
l2

L2

� �X3
β =0

X3
γ=0

∂gβγ

∂xα uβuγ.

Dividing both sides of equation (5.2) by 1

θ
1
2

� �
l2

L2

� �
yields:

d
dy

X3
β =0

gαβuβ

 !
+ 2

l
dl
dy

� �X3
β =0

gαβuβ −
1
2θ

� �
dθ
dy

X3
β =0

gαβuβ = 1
2

X3
β =0

X3
γ=0

∂gβγ

∂xα uβuγ, (5:6)

which represent the 4D spacetime equations of motion (α =0, 1, 2, 3).
We can do the same operations for the equations of motion in the extra time

dimension (l). Let’s substitute the expression (5.5) for pl in the right hand side of
equation (5.3):

dpl
dy

= 1

θ
1
2

dul

dy
+ ul

d
dy

1

θ
1
2

 !
= 1

θ
1
2

d2l
dy2

−
1

2θ
3
2

dθ
dy

dl
dy

.

Since θ ≡L2, the left hand side of equation (5.3) is:

∂L
∂l

= ∂

∂l
θ
1
2 = 1

2θ
1
2

 !
∂θ
∂l

= 1

2θ
1
2

 !
2l
L2
X3

α =0

X3
β =0

gαβu
αuβ + l2

L2
X3

α =0

X3
β =0

∂gαβ

∂l
uαuβ

 !
.

Again, dividing both sides of equation (5.3) by 1

θ
1
2
yields:

d2l
dy2

−
1
2θ

� �
dθ
dy

dl
dy

= l
L2
X3

α =0

X3
β =0

gαβu
αuβ + 1

2
l2

L2

� �X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ, (5:7)

which is the equation of motion of the extra kime dimension l.
In proper time, y= s and using gαβ = gαβ xμ, lð Þ, the first term on the left hand side

of equation (5.6) becomes:

d
ds

X3
β =0

gαβuβ

 !
=
X3

β =0

dgαβ

ds
uβ +

X3
β =0

gαβ
duβ

ds
=

X3
γ=0

X3
β =0

∂gαβ

∂xγ
dxγ

ds
uβ +

X3
β =0

∂gαβ

∂l
dl
ds

uβ +
X3

β =0
gαβ

duβ

ds
=
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X3
γ=0

X3
β =0

∂gαβ

∂xγ
uγuβ +

X3
β =0

∂gαβ

∂l
dl
ds

uβ +
X3

β =0
gαβ

duβ

ds
.

Let’s substitute this expression in equation (5.6), simplify by multiplying both sides
by gμα, and sum up over α =0, 1, 2, 3:

X3
α =0

X3
γ=0

X3
β =0

gμα ∂gαβ

∂xγ
uγuβ +

X3
α =0

X3
β =0

gμα ∂gαβ

∂l
dl
ds

uβ +
X3

α =0
gμα
X3

β =0

gαβ
duβ

ds
−

1
2θ

dθ
ds

−
2
l
dl
ds

� �X3
α =0

gμα
X3

β =0

gαβu
β = 1

2

X3
α =0

X3
γ=0

X3
β =0

gμα ∂gβγ

∂xα uβuγ.

Rearranging the terms, we obtain:

X3
α =0

gμα
X3

β =0

gαβ
duβ

ds
+
X3

α =0

X3
γ=0

X3
β =0

gμα ∂gαβ

∂xγ
−
1
2
∂gβγ

∂xα

� �
uγuβ +

X3
α =0

X3
β =0

gμα ∂gαβ

∂l
dl
ds

uβ =

1
2θ

dθ
ds

−
2
l
dl
ds

� �X3
α =0

gμα
X3

β =0

gαβuβ . (5:8)

Using symmetries due to index exchange of β and γ, we have
P3

α =0

P3
γ=0

P3
β =0

∂gαβ
∂xγ =

fβ ! γ, γ! βg=P3
α =0

P3
β =0

P3
γ=0

∂gαγ
∂xβ . Then, the second term on the left hand side

of equation (5.8),
∂gαβ
∂xγ − 1

2

∂gβγ
∂xα

� �
, becomes:

1
2
∂gαβ

∂xγ
+ 1
2
∂gαβ

∂xγ
−
1
2
∂gβγ

∂xα

� �
= 1
2

∂gαβ

∂xγ
+ ∂gαγ

∂xβ −
∂gβγ

∂xα

� �
.

Recall that the classical 4D Christoffel symbols of the second kind are defined by:

Γμ
βγ =

X3
α =0

1
2
gμα ∂gαβ

∂xγ
+ ∂gαγ

∂xβ −
∂gβγ

∂xα

� �
,∀0≤ μ, β, γ≤ 3.

Therefore, the second term on the left hand side of equation (5.8) is:

X3
γ=0

X3
β =0

"X3
α =0

gμα ∂gαβ

∂xγ
−
1
2
∂gβγ

∂xα

� �#
uγuβ =

X3
γ=0

X3
β =0

"X3
α =0

1
2
gμα ∂gαβ

∂xγ
+ ∂gαγ

∂xβ −
∂gβγ

∂xα

� �#
uγuβ =

X3
γ=0

X3
β =0

Γμ
βγu

γuβ.

From the definition of the 4-velocity, uμ = dxμ
ds and the corresponding dual operator

huμj · i= P3
β =0 gμβuβ = uμ, we can simplify the right hand side of equation (5.8):

gμαgαβuβ =
X3

α =0

gμα
X3

β =0

gαβuβ =
X3

α =0

gμαuα = uμ.
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And similarly, the first term of the left hand side of equation (5.8) is:

X3
α =0

gμα
X3

β =0

gαβ
duβ

ds
=
X3

α =0
gμα duα

ds
= duμ

ds
.

These simplifications and transformations allow us to rewrite equation (5.8) as:

duμ

ds
+
X3

β =0

X3
γ=0

Γμ
βγu

βuγ = −
X3

α =0

X3
β =0

gμα ∂gαβ

∂l
dl
ds

uβ + 1
2θ

dθ
ds

−
2
l
dl
ds

� �
uμ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fifth force: f μ

. (5:9)

This contrasts the 4D scenario, where

duμ
ds + P3

β =0

P3
γ=0

Γμ
βγ uβuγ =0.

In equation (5.7), we can substitute proper time, s, for the general geodesic path pa-

rameter, y, and employ the velocity normalization condition,
P3

0

P3
0 gαβ uαuβ = 1, to

obtain:

d2l
ds2

−
1
2θ

� �
dθ
ds

dl
ds

= l
L2

+ 1
2

l2

L2

� �X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ. (5:10)

Therefore, when using 4D proper time, s, as the parameter along the integral path,
we have

θ = l2

L2

� �
+ dl

ds

� �2

, and equation (5.10) can be written as:

d2l
ds2

−
1
2θ

� �
2l
L2

dl
ds

+ 2
dl
ds

d2l
ds2

� �
dl
ds

= l2

L2
1
l
+ 1
2

X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ

" #
,

d2l
ds2

−
1

θ
l
L2

+ d2l
ds2

� �
dl
ds

� �2

= l2

L2
1
l
+ 1
2

X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ

" #
.

Multiplying both sides by θ = l2

L2

� �
+ dl

ds

� �2
, we obtain:

d2l
ds2

l2

L2

� �
+ dl

ds

� �2
" #

−
l
L2

+
2l
ds2

� �
dl
ds

� �2

= l2

L2
l2

L2
+ dl

ds

� �2
" #

1
l
+ 1
2

X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ

" #
,

l2

L2
d2l
ds2

−
l
L2

dl
ds

� �2

= l2

L2
l2

L2
+ dl

ds

� �2
" #

1
l
+ 1
2

X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ

" #
.

And dividing both sides by l2

L2
yields:
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d2l
ds2

−
1
l

dl
ds

� �2

= l2

L2
+ dl

ds

� �2
" #

1
l
+ 1
2

X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ

" #
. (5:11)

We can now substitute θ in the second term on the right hand side of equation (5.9)
to obtain:

1
2θ

dθ
ds

−
2
l
dl
ds

� �
uμ = 1

2θ
2l
L2

dl
ds

+ 2
dl
ds

d2l
ds2

� �
−
2
l
dl
ds

� �
uμ = 1

θ
l
L2

+ d2l
ds2

� �
−
2
l

� �
dl
ds

uμ.

Using equation (5.11), we get:

d2l
ds2

− 1
l

dl
ds

� �2
θ

= 1
l
+ 1
2

X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ, divide both sides by θð Þ

d2l
ds2

+ l
L2

h i
− l

L2
+ 1

l
dl
ds

� �2h i
θ

−
1
l
= 1
2

X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ,

1
θ

l
L2

+ d2l
ds2

� �
−
2
l
= 1
2

X3
α =0

X3
β =0

∂gαβ

∂l
uαuβ.

Therefore,

1
2θ

dθ
ds

−
2
l
dl
ds

� �
uμ = 1

2
dl
ds

uμ
X3

α =0

X3
β =0

∂gαβ

∂l
uαuβ =

X3
α =0

X3
β =0

1
2
uμuα dl

ds
dxβ

ds
∂gαβ

∂l
.

Now we can derive the second-order PDE equations of motions by substituting this ex-
pression in equation (5.9). Note that the 4D components of the spacekime equations of
motion can be written explicitly in terms of the fifth force f μ measured in units of inertia
mass, i.e., assumingm= 1:

duμ

ds
+
X3
0

X3
0

Γμ
βγ uβ uγ = f μ,

f μ ≡
X3

α =0

X3
β =0

− gμα + 1
2
uμuα

� �
dl
ds

dxβ

ds
∂gαβ

∂l
. (5:12)

And the 5D component of the spacekime equation of motion (5.11) can be rewritten
as a second order differential equation:

d2l
ds2

−
2
l

dl
ds

� �2

−
l
L2

= 1
2

l2

L2
+ dl

ds

� �2
" #X3

α =0

X3
β =0

uαuβ ∂gαβ

∂l
. (5:13)

Equation (5.12) suggests that in 5D spacekime, the conventional geodesic motion is
perturbed by an extra force f μ. We can decompose this extra force into two parts
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f μ = f μ
? + f μ

k , where f μ
? is normal to the 4-velocity and f μ

k is parallel to the 4-velocity,
uμ. The normal component, f μ

?, is similar to other conventional forces and obeys the
usual orthogonality condition f μ

? uμ =0. However, the parallel component f μ
k has

no analog in 4D spacetime. In general, it has a non-trivial inner product with the
4-velocity uμ, f μ

k uμ ≠0.
Let’s demonstrate this observation by computing the inner product f μ

k uμ. From
equation (5.12), we can express the inner product of the extra force and the 4-velocity
as:

f μ
jj uμ =z}|{fμ

?uμ =0

f μuμ =
X3

α =0

X3
β =0

− gμαuμ +
1
2
uμuμuα

� �
dl
ds

dxβ

ds
∂gαβ

∂l
=

X3
α =0

X3
β =0

− uα + 1
2
uα

� �
dl
ds

dxβ

ds
∂gαβ

∂l
= −

1
2

X3
0

X3
0

∂gαβ

∂l
uαuβ

� �
dl
ds

. (5:14)

Multiplying both hand sides by uμ and using the normalization condition uμuμ = 1,
the parallel force component can be expressed as:

f μ
k = −

1
2
uμ
X3
0

X3
0

∂gαβ

∂l
uαuβ

� �
dl
ds

. (5:15)

Contextualizing in terms of Heisenberg’s uncertainty, we will now directly derive
the inner product of the fifth force and 4-velocity f μuμ without using the spacekime
equations of motion.

First, differentiate
P3

0

P3
0 gαβ xμ, lð Þuαuβ = 1 with respect to proper time, s:

X3
α =0

X3
β =0

∂gαβ

∂s
uαuβ +

X3
α =0

X3
β =0

gαβ
duα

ds
uβ +

X3
α =0

X3
β =0

gαβuα du
β

ds
=0,

X3
γ=0

X3
α =0

X3
β =0

∂gαβ

∂xγ
uγuαuβ +

X3
α =0

X3
β =0

∂gαβ

∂l
dl
ds

uαuβ + 2
X3

α =0

X3
μ =0

gαμ
duμ

ds
uα =0. (5:16)

using symmetry of interchanging the indices α and βð Þ
Again using the α and β index symmetry, we have

P3
α =0

P3
γ=0

P3
β =0

∂gαβ
∂xγ =P3

α =0

P3
β =0

P3
γ=0

∂gαγ
∂xβ . The first term on the left hand side can be rewritten as:

X3
γ=0

X3
α =0

X3
β =0

∂gαβ

∂xγ
uγuαuβ =

X3
γ=0

X3
α =0

X3
β =0

∂gαβ

∂xγ
+ ∂gαγ

∂xβ −
∂gβγ

∂xα

� �
uγuαuβ.

By definition, we have:

∂gαβ

∂xγ
+ ∂gαγ

∂xβ −
∂gβγ

∂xα

� �
= 2gαμ Γ μ

βγ.
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It follows that equation (5.16) can then be expressed as:

2
X3

α =0

X3
μ =0

gαμuα duμ

ds
+
X3

β =0

X3
γ=0

Γ μ
βγu

βuγ
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fifth force

+
X3

α =0

X3
β =0

∂gαβ

∂l
∂l
∂s

uαuβ =0.

Then, we can compute the inner product:

f μ
k uμ = f μuμ =

X3
α =0

X3
μ =0

gαμuα duμ

ds
+
X3

β =0

X3
γ=0

Γ μ
βγu

βuγ
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fifth force

= −
1
2

X3
0

X3
0

∂gαβ

∂l
uαuβ

� �
dl
ds

.

This is the same expression as equation (5.14). However, irrespective of the coordi-
nate system reference, the nature of this alternative strategy of deriving the inner
product f μ

k uμ does not involve the canonical metric and yields the general form of
the fifth force. In other words, f μ

k is a 4-vector whose spacetime transformations do
not involve the fifth coordinate and can be expressed by equation (5.14) generally
on the 4D part of 5D spacekime.

If there is no coupling between 4D spacetime and the fifth dimension (kime-
phase), the metric tensor will be independent of the extra time coordinate:

∂gαβ
∂l =0,∀α, β 2 0, 1, 2, 3f g, and f μ

k is zero.

This is called the pure-canonical metric [262], where gαβ xμ, lð Þ= gαβ xμ onlyð Þ, μ =0, 1,
2, 3, and the extra time dimension only enters in 5D through the quadratic warp fac-
tor in the extra kime coordinate attached to the 4D spacetime [262].

However, this situation assumes that the 4-velocities are normalized without
the conformal factor:

hujui=
X3
0

X3
0

gαβ uα uβ = 1.

The fact that the pure-canonical metric may coincide with the conventional geodesic
motion depends on a special choice of the coordinates where gαβ xμ, lð Þ≡ gαβ xμ onlyð Þ,
μ =0, 1, 2, 3.

In the general case, where gαβ xμ, lð Þ depends on l, the parallel force f μ
k will be

expressed via an unfactorized l-dependent tensor metric, g′αβ by applying shifting
along the extra kime axis, l! l− l0ð Þ. We can use that kime-shift to transform the
pure-canonical metric:

dS2 = l2

L2
ds2 +dl2,

5.4 Uncertainty in 5D Spacekime 297

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



ds2 =
X3
0

X3
0

gαβ xμð Þdxαdxβ,

Λ = −
3
L2

.

Note that the +, − − −, +ð Þ metric signature assumes the fifth dimension is timelike
and the cosmological constant has a negative sign. The transformed metric and its
corresponding cosmological constant (Λ) may be written as:

dS2 = l− l0ð Þ2
L2

ds2 +dl2,

ds2 =
X3
0

X3
0

gαβ xμð Þdxαdxβ,

Λ = −
3
L2

l
l− l0

� �2

.

These derivations are based on the Campbell-Wesson embedding theorem and the
details are illustrated in Appendix 5.10.

Note that the 5D cosmological constant agrees with its 4D counterpart when l0 =0,
however in the general 4D→ 5D embedding, Λ depends on the value of the fifth coordi-
nate, l. The complete details of the derivation extending the 4D solutions of Einstein‘s
equations to their corresponding 5D solutions of the Ricci-flat field equations are pro-
vided in Mashhoon and Wesson’s paper [264]. The derivation of the transformed metric
and its corresponding cosmological constant (Λ) in Appendix 5.10 represents a special
case of the Campbell 4D → 5D embedding theorem [265–268]. Campbell’s embedding
theorem implies that an analytic n-dimensional Riemannian space Vn s, tð Þ, where
n= s+ t, s is the number of spacelike and t the number of timelike dimensions, can be
locally embedded in a corresponding n+ 1ð Þ-dimensional Ricci-flat Riemannian
space Vn+ 1′ s′, t′

� �
, where s′, t′

� �
≡ s, t + 1ð Þ or s′, t′

� �
= s+ 1, tð Þ. This result suggests

that solutions to the n-dimensional Einstein field equations with arbitrary energy-
momentum tensor can be locally embedded as solutions in a higher n+ 1ð Þ-
dimensional space-kime-like Ricci-flat space [257, 266].

Then the 5D distance interval can be expressed in terms of the unfactorized met-
ric tensor:

dS2 =
X3
0

X3
0

g′αβ xμ, lð Þdxαdxβ + ϵdl2,

where

298 Chapter 5 Inferential Uncertainty

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



g′αβ xμ, lð Þ= l− l0ð Þ2
L2

gαβ xμð Þ, ϵ = ± 1|fflfflffl{zfflfflffl}
metric signature

.

Using the shifted pure-canonical metric, the normalization condition of the 4-velocities
is:

hujui=
X3
0

X3
0

g′αβ xμ, lð Þuαuβ = 1.

Then, the fifth force has the same form as equation (5.15), with the pure-canonical
metric gαβ xμ, lð Þ replaced by the shifted pure-canonical metric g′αβ xμ, lð Þ:

f μ
k = −

1
2

X3
0

X3
0

∂g′αβ

∂l
uαuβ

!
dl
ds

uμ.
 

The particle-wave duality of electrons in 4D spacetime depends on distribution theory
and involves uncertainty. Now, the lift of 4D spacetime to 5D spacekime provides a
more structured explanation by applying the null-path conditions (i.e., wave traveling
along the membrane, following lightlike geodesics, dS2 =0) dl

l− l0
≈ ds

L ) to the shifted
pure-canonical metric:

dS2 = l− l0ð Þ2
L2

ds2 + ϵdl2,where ϵ = + 1 for timelike and

ϵ = − 1 for spacelike fifth dimension.
This yields

l spacelike) l− l0ð Þ2
L2

ds2 − dl2 =0) ds= ± L
l− l0

dl) l= l0 + l*e
± s
L, (5:17)

l timelike) l− l0ð Þ2
L2

ds2 + dl2 =0) ds= ± i
L

l− l0
dl) l= l0 + l*e

± is
L . (5:18)

The path l= l sð Þ is defined by the shift constant l0, the constant amplitude of the wave
l*, and the wavelength L. For spacelike l, the path moves away from an l-hypersurface,
l= l0 + l*e

± s
L, and the motion is monotonic. For timelike l, the path oscillates around a

4D spacetime hypersurface, l= l0 + l*e
± is
L . Equation (5.17) is particlelike while equation

(5.18) is wavelike and the distinction between both reflects free monotonic motion vs.
confined oscillatory motion.

In 5D spacekime, the extra kime coordinate is timelike, which results in the pres-
ence of wave oscillations in the vacuum that have similar properties as de Broglie
waves associated with particles of mass m and Compton wavelength L= h

mc. The extra
fifth kime coordinate causes the appearance of a hypersurface at l= l0 where the energy
density of the vacuum formally diverges.

For waves traveling along the hypersurface membrane (lightlike cone), where
dS2 =0, i.e., dl

l− l0ð Þ⁓
ds
L , the scalar coupling inner product term in f μ

k is:
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X3
0

X3
0

∂g′αβ

∂l
uαuβ

 !
=
X3
0

X3
0

2 l− l0ð ÞL−2gαβ xμð Þuαuβ = 2
l− l0

X3
0

X3
0

g′αβ xμ, lð Þuαuβ = 2
l− l0

.

Therefore, using equation (5.15), the parallel component of the fifth force can be ex-
pressed as:

f μ
k = −

1
2
uμ
X3
0

X3
0

∂g′αβ xμ, lð Þ
∂l

uαuβ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2
l− l0

dl
ds|{z}

dl
ds⁓

l− l0ð Þ
L

= −
uμ

l− l0

l− l0ð Þ
L

= −
uμ

L
= −

1
L
dxμ

ds
.

Recall that duμ
ds + P3

0

P3
0

Γ μ
βγ uβ uγ = f μ ≡ f μ

k + f μ
?,

dpμ
ds = f μ

k , f
μ
? dxμ|{z}

uμ

=0, and we have,

dpμ

ds
= −

1
L
dxμ

ds
,

dpμ = −
1
L
dxμ.

Then, the inner product,

hdpjdxi=dpμ dxμ,
dxμdxμ

L
= ds2

L
.

Therefore, since the fifth force f μ is measured in unitary inertia mass (m= 1) and
unitary speed of light c= 1ð Þ near the leaf membrane hypersurface, we have

hdpjdxi=
X3

μ =0

dpμ dxμ = ± L
dl

l− l0

� �2

= ± h
m c

dl
l− l0

� �2

⁓± h.

This relation is analogous to the quantum mechanics uncertainty principle in 4D
Minkowski spacetime; however, it is derived from 5D Einstein deterministic dynam-
ics. In other words, in spacetime, Heisenberg’s uncertainty principle manifests sim-
ply because of lack of sufficient information about the second kime dimension, l. In
Minkowski 4D spacetime, the lack of kime-phase information naturally leaves one
degree of freedom in the system, which manifests as Heisenberg’s uncertainty.

This argument about a higher-dimensional deterministic formulation of the 4D
spacetime observation of the Heisenberg’s principle also supports the de Broglie–Bohm
theory [269, 270], which provides an explicit deterministic model of a system configura-
tion and its corresponding wavefunction. It suggests that in a higher-dimensional ex-
tension of the observed probabilistic spacetime, the universe may be represented by
objective deterministic principles, which add degrees of freedom, hidden variables, or
unobservable characteristics to measurements and experiences in the lower-dimensional
spacetime [271]. Bell’s theorem [84] suggests that any deterministic hidden-variable
theory, which is consistent with quantum mechanics predictions, has to be non-local.
In other words, valid hidden variable theories must be non-local, permit quantum
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entanglement, and allow particles to be directly influenced by both neighboring sur-
roundings and spatially-remote objects. This implies the existence of instantaneous,
faster than the speed of light, interactions between particles that are significantly sep-
arated in 3D space (non-local relations) [272].

5.5 Fundamental Law of Data Science Inference

Let’s try now to formulate a fundamental law of data science inference that de-
lineates the data-to-inference duality. The inference state of a data science problem
(a system/question) is described by an inference function ψ, which depends on an
observed dataset (O= X,Yf g) and a specific analytical strategy (ζ ):

data state⁓ ψ ζ Oð Þ≡ ψ ζ X,Yð Þ≡ ψ X,Yjζð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inference

.

The inference function does not directly yield a final analytical decision or suggest
a specific practical action based on the data. Yet, it encodes the entire distribution
of the decision space, i.e., it represents the problem system in a probabilistic sense.
Thus, data science can only report probabilistically the inference outcome of an ana-
lytic experiment. In principle, this likelihood can be computed from the inference func-
tion; however, sometimes, when the analytical scheme is complex, this calculation
may be complicated or even intractable. Other times, when the analytical approach per-
mits a quick, efficient, and robust solution (e.g., parametric linear models), this proba-
bility may be easily obtained.

For instance, the inference square-modulus
��ψ ζ X,Yð Þ��2dX is the probability

that a data measurement (X,Y) and a specific analytical strategy (ζ ) yield a resulting

inference (e.g., forecast) in the interval X ! X +dX. Thus,
��ψ ζ X,Yð Þ��2 represents a

probability per unit length, i.e., a probability density function. The total probability
of finding something about the data, i.e., some inference, may need to be restricted
to be unitary:

ψζ

��� ���2 = ð ψζ X,Yð Þ2
��� ���dX = 1.

Recall that any square integrable function (ψζ 2 L2) can be normalized by multiply-

ing it by an appropriate (normalization) constant, c= 1

ψζ

�� ��2. In practice, two infer-

ence functions that differ by an arbitrary factor c 2 C may in fact describe the same
data science analytical system.
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5.6 Superposition Principle

The inference superposition principle suggests that linear combinations of inference-
state vectors for a specific problem yield new inference states that are also admissible,
i.e., inference functions represent a space that is closed under linear combinations.

Open Problem

In data science, the superposition prin-
ciple may or may not be valid. This con-
cept may also relate to the notion of data
value metrics (DVMs) [273]. DVMs try
to quantify the energy of a dataset by
uniquely decomposing the inference er-
rors (e.g., discrepancies between theo-
retical population parameters and their
statistical, sample-driven, analytical strat-
egy estimates) into three independent

components [274]. For example, suppose, θ and θ̂ represent a theoretical character-
istic of interest (e.g., population mean) and its sample-based parameter estimate
(e.g., sample arithmetic average), respectively. Then, the canonical decomposition of
the inference error may be expressed as:

θ −θ̂ = A|{z}
data

quality

+ B|{z}
data

quantity

+ C|{z}
inference problem

complexity

.

If the superposition principle is valid for inference functions, it may suggest that
linear operations (addition, multiplication, differentiation, integration, etc.) act lin-
early on inference functions.

A simple 1D system provides an example that may help us better understand
how the information about a data science analytical system is encoded in the infer-
ence function. The inference function describes the outcome states of a specific
data analytic problem. Suppose the problem (system) is to use the data and classify,
or predict, patients into six (ordinal) discretized disease states labeled:

0 controlð Þ, 1 mildð Þ, 2 moderateð Þ, 3 elevatedð Þ, 4 highð Þ, 5 severeð Þ.
Let’s denote by ϵ the lattice spacing representing the distance between any two of
these ordinal state labels.
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For a specific analytical strategy (ζ ), the probabilistic interpretation of the infer-
ence function suggests that given the observed data X,Yf g, the probability of a pa-
tient to be classified (or predicted) to be in a certain clinical state 0≤ S≤ 5 is:

ψζ S,X, Yð Þ
��� ���2 × ϵ.

The multiplicative factor ϵ in the inference function is needed because the square of
the function modulus is the probability density per unit length. Hence, to find the
probability, we need to multiply it by the distance between two neighboring point
states. To simplify, we can redefine ψ ζ , S =

ffiffiffi
ϵ
p

ψζ S,X, Yð Þ, 0≤ S≤ 5, and the complete
information about this analytical inference problem (system) will be encoded in the
6D ket as a complex inference-state vector:

jψ ζ , Si= ψ0, ψ1, ψ2, ψ3, ψ4, ψ5

� �
.

Of course, there is no significance in the fact that we have chosen an example with
six inference outcome states. The same approach applies to (binary) classification
or (continuous) regression problems. Note that there is no explicit X dependence in
the ket vector, jψ ζ , Si. The values of ψ ζ , S at different cross-sectional observations,
i.e., spatial points, are the components of the state vector. As necessary, we can
also use jψζ Sð Þi to indicate the explicit inference dependence of the outcome states.

Let’s examine the inference-state vector, j2i= 0,0, 1,0,0,0ð Þ, which represents the
inference for case x2. An inferential label at x2 embodies the probability = 1 classification
inference of being a label x2, and a probability =0 for any other class label. Therefore,
j2i= 0,0, 1,0,0,0ð Þ. Moreover, any state of the form j2i= 0,0, z,0,0,0ð Þ, zj j2 = 1 indi-
cates a localized inferential solution. In this simple discrete inference system, we can
see explicitly that the state of the system is represented by a 6D vector, which is an impor-
tant concept that generalizes to higher dimensions.

The normalization condition encodes the fact that the total probability of infer-
ring the class label of a patient, somewhere between the six label states, must inte-
grate to one, i.e.,

hψjψi=
X5
i=0

ψi

�� ��2 = 1.

This illustrates the fact that jψi is a complex vector with unitary norm. In general,
the coherence between a pair of inference functions may be computed as hϕjψi=P5

i=0 ϕ*
i ψi. The discrete case of inference functions generalizes to inference func-

tions for continuous systems (e.g., regression problems).
Let’s now return to the general discussion of the superposition principle,

which may provide clues to linearly combining inference-state vectors to obtain
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new admissible inference states. If ψ1 and ψ2 are a pair of inference states, and if
any linear mixture also represents a possible inference state:

ψ x, tð Þ= c1ψ1 x, tð Þ+ c2ψ2 x, tð Þ, c1, c2 2 C ,

then, the space of possible inference states is a closed vector space. The state super-
position principle may imply that longitudinal (or even kime) evolution of an infer-
ence system may be determined by a linear equation L ψð Þ=0, where the linear
operator L satisfies these linearity conditions:

L c1ψ1 x, tð Þ+ c2ψ2 x, tð Þð Þ= c1L ψ1 x, tð Þð Þ+ c2L ψ2 x, tð Þð Þ.
There is a synergy between inference superposition and various machine learning en-
semble methods like sequential boosting, bagging, or parallel random forests. There
is a strong empirical evidence that ensemble machine learning techniques do im-
prove the inference results by combining several (typically weaker) models, learners,
or classifiers. As aggregating methods, ensemble approaches tend to produce better
predictive performance compared to single model learners.

5.7 Terminology

Table 5.1 shows some of the parallels between concepts in quantum mechanics and
their corresponding data science counterparts.
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Open Problems

There are potentially many other space-
kime concepts that still need to be ex-
tended to the field of data science.
Some of these examples are included
below:

1. Reference Frames
The 4D notion of Minkowski spacetime reference frame, K, in terms of x, y, z, tð Þ may
be extended to a spacekime k-frame of reference K* in terms of x1, x2, x3, k1, k2ð Þ.

The 5D transformation between two k-frames, K and K*, is provided by:

x1 = x

x2 = y

x3 = z

k1 = t cos φð Þ
k2 = t sin φð Þ

������������
2. Galilean Transformations
The Galilean transformations between the two inertial k-frames of reference K x1, x2,ð
x3, k1, k2Þ and K′ x′1, x′2, x′3, k′1, k′2

� �
, which are in a standard configuration (i.e., transfor-

mations without translations and/or rotations of the space axis in the hyperplane of
space and of the time axis in the hyperplane of time), are given as follows:

k′1 = k1

k′2 = k2

x′1 = x1 − v1k1 = x1 − v2k2

x′2 = x2

x′3 = x3

where:

v1 = v1, 0, 0ð Þ and v2 = v2, 0, 0ð Þ
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are the vectors of the velocities of x′ against x, defined accordingly in relation to the
two kime dimensions.

3. Lorentz Transformations
The spacekime Lorentz transformations between the two inertial k-frames of refer-
ence K x1, x2, x3, k1, k2ð Þ and K′ x′1, x′2, x′3, k′1, k′2

� �
, which are in a standard configuration

(i.e., transformations without translations and/or rotations of the space axis in the
hyperplane of space and of the kime axis in the hyperplane of kime), are given as
follows:

k1′= 1+ ζ − 1ð Þ c2

v1ð Þ2
β2

 !
k1 + ζ − 1ð Þ c2

v1v2
β2k2 −

1
v1

β2ζ x1,

k2′= ζ − 1ð Þ c2

v1v2
β2k1 + 1+ ζ − 1ð Þ c2

v2ð Þ2
β2

 !
k2 −

1
v2

β2ζ x1,

x1′= − c2β2ζ
k1
v1

+ k2
v2

� �
+ ζ x1,

x2′= x2

x3′= x3

where:

v1 = v1,0, 0ð Þ and v2 = v2,0,0ð Þ
are the vectors of the velocities of x′ against x, defined accordingly in relation to the
two kime dimensions k1, k2, β = 1ffiffiffiffiffiffiffiffiffiffi

c2
v1

+ c2
v2

q , ζ = 1ffiffiffiffiffiffiffiffi
1− β2
p .

4. Mass, Energy, Velocity, and Momentum
Assume that a particle is moving in the 5D spacekime plane, where the pair of kime
dimensions are denoted by k1; k2 and the three spatial dimensions are denoted by
x1; x2; x3. We can extend the STR concept of proper time to proper kime, k0, to reflect
the kime measured in the proper frame of reference K0, where the particle is at rest.
Note that the proper kime interval is commonly the quantity of interest, since proper
kime itself is fixed only up to an arbitrary complex constant, which specifies the ini-
tial setting of the kime clock at some point in the 2D kime space. The proper kime
interval between two kevents depends not only on the kevents themselves but also
on the planar path (kevent trajectory) connecting the pair of kevents. Hence, the
proper kime interval is a function of the kevent trajectory as a path integral over
the kime manifold.
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Since the kime manifold is 2D, the proper kime interval dk0 ¼ dk0;1; dk0;2
� �

will
be a 2D vector, where dk0;j represents the projections of the proper kime on the pair
of kime axes, 1≤ j≤ 2, and the magnitude of the kime interval is

dk0 ¼ jjdk0jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dk0;1
� �2 þ dk0;2

� �2q
≥0:

We can similarly extend the STR velocity u to spacekime. Suppose a particle is observed
in a pair of (3 + 2)D k-frames, K0 and K, in positions r0 ¼ x0;1; x0;2; x0;3; ck0;1; ck0;2

� �
and r ¼ x1; x2; x3; ck1; ck2ð Þ, respectively.

As the particle moves in spacekime, the dynamics of its new locations in Ko and
K are represented by r0 þ dr0 ¼ x0;1; x0;2; x0;3; ck0;1 þ cdk0;1; ck0;2 þ cdk0;2

� �
and

r þ dr ¼ x1 þ dx1; x2 þ dx2; x3 þ dx3; ck1 þ cdk1; ck2 þ cdk2ð Þ, respectively.
Let us consider the motion of a particle in relation to the reference frame K. The

invariant (3 + 2)-dimensional interval is given through the expression

ds2 ¼ dx1ð Þ2 þ dx2ð Þ2 þ dx3ð Þ2 � c2 dk1ð Þ2 � c2 dk2ð Þ2:

Since the particle moves in the causal region, this interval is kimelike or lightlike,
that is, ds2 ≤0 (see Chapter 3, Section 3.9.2). By analogy with STR, we have to as-
sume that the proper kime is invariant. If we consider the quotient of the two invari-
ant quantities ds2 and c, then we will obtain an invariant value having physical
dimension of time. We assume that this value is equal to the length of the vector

dk0, an invariant scalar quantity, dk0 ≡ jjdk0jj ¼
ffiffiffiffiffiffiffiffi
�ds2
p

c . Also,

ds2 ¼ �c2 dk21 þ dk22
� �

1� β2� � ¼ �c2dk20;
where β ¼ 1ffiffiffiffiffiffiffiffiffi

c2
v21
þc2
v22

q . The scalar values dk0;1; dk0;2 are projections of the proper kime dk0

along the kime axes k0;1; k0;2 in the K0 frame.
In the 5D spacekime, we have dk0 ×u ¼ dr, where dr ¼ dx1; dx2; dx3; cdk1; cdk2ð Þ;

and the generalized velocity u ¼ uθ;μ
� �

is a second-order tensor, a 2× 5 matrix, with

elements indexed by θ 2 1; 2f g; μ 2 1; 2; 3; 4; 5f g. If u·;μ ¼ u1;μ
u2;μ

� �
∀1≤ μ ≤ 5, then

hdk0ju ·;ηi ¼ dxη;∀η 2 1; 2; 3f g and hdk0ju·; σþ3ð Þi ¼ cdkσ; σ 2 1; 2f g, that is,

hdk0ju ·;ηi ¼ dk0;1
dxη

u1;η þ dk0;2
dxη

u2;η ¼ 1;

hdk0ju·; σþ3ð Þi ¼
dk0;1
cdkσ

u1; σþ3ð Þ þ
dk0;2
cdkσ

u2; σþ3ð Þ ¼ 1:

Likewise, a spacekime energy–momentum tensor (2× 5 matrix) is P ¼ m0u ¼ pθ;μ
� �

2× 5;

wherem0 ≥0 is the proper mass of the particle at rest (v1 ¼ v2 ¼ 0), u ¼ uθ;μ
� �

2× 5 is the
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generalized kime velocity, uθ;η ¼ dxη
dk0;θ

, η 2 1; 2; 3f g, and uθ; σþ3ð Þ ¼ cdkσ
dk0;θ

; σ; θ 2 1; 2f g.
Let us consider the momentum components pμ ¼ m0u·;μ, pθ;μ ¼ m0uθ;μ, θ 2 1; 2f g, and
μ 2 1; 2; 3; 4; 5f g.

Following the classical STR recipe, multiplying the momentum components
pθ; σþ3ð Þ; σ; θ 2 1; 2f g by the speed of light in vacuum, c, yields the corresponding
components of the particle energy eθ;σ. More specifically, for each σ 2 1; 2f g, the
particle energy in kime dimension kσ is a two-component vector, Eσ ¼ e1; σ

e2;σ

� �
,

where eθ;σ ¼ cm0uθ; σþ3ð Þ ¼ c2m0
dkσ
dk0;θ

; σ; θ 2 1; 2f g.
Thus, the aggregate energy in kime dimension kσ is Eσ ≡ jjEσjj ¼ c2m0

dkσ
dk0

, that is,

Eσ ¼ c2m0
dkσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dk0;1
� �2 þ dk0;2

� �2q :

Therefore, for σ 2 1; 2f g,

1

Eσð Þ2
¼ dk0;1
� �2 þ dk0;2

� �2
c2m0ð Þ2 dkσð Þ2 ¼ 1

c2m0dkσ
dk0;1

� �2 þ 1
c2m0dkσ
dk0;2

� �2 ¼ 1

e1;σ
� �2 þ 1

e2;σ
� �2 )

Eσ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

e1;σð Þ2 þ
1

e2;σð Þ2
r :

The total energy of the particle moving in spacekime is defined as the scalar

E ≡ jjEjj ¼ c2m0
dk
dk0
¼ m0c

2ffiffiffiffiffiffiffiffi
1�β2
p , where dk ≡ jjdkjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dk1ð Þ2 þ dk2ð Þ2

q
≥0. Hence,

E ≡ jjEjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ð Þ2 þ E2ð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1

e1;1ð Þ2 þ
1

e2;1ð Þ2
þ 1

1

e1;2ð Þ2 þ
1

e2;2ð Þ2

vuut :

In the case of 2D kime, the momentum of the particle, in space the direction

xη; η 2 1; 2; 3f g, has two components pη ¼ p1;η
p2;η

� �
, where pθ;η ¼ m0uθ;η; θ 2 1; 2f g:

Hence, in spatial dimension xη, the magnitude of the particle momentum is a scalar
pη ≡ jjpjjη ¼ m0

dxη
dk0

, and we have the relation:

pη ¼ m0
dxηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dk0;1
� �2 þ dk0;2

� �2q :
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So, for each spatial index, η 2 1; 2; 3f g,

1

pη
� �2 ¼ dk0;1

� �2 þ dk0;2
� �2

m2
0 dxη
� �2 ¼ 1

m0dxη
dk0;1

� �2 þ 1
m0dxη
dk0;2

� �2 ¼ 1

p1;η
� �2 þ 1

p2;η
� �2 ;

which is just

pη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1

p1;ηð Þ2 þ
1

p2;ηð Þ2

vuut :

The magnitude of the total momentum of the particle moving in the 2D kime plane
is a scalar

p≡ jjpjj ¼ m0
dx
dk0
¼ m0cβffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
q ;

where dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx1ð Þ2 þ dx2ð Þ2 þ dx3ð Þ2

q
. Thus, we have

dx1ð Þ2 þ dx2ð Þ2 þ dx3ð Þ2 ¼ c2 dk1ð Þ2 þ c2 dk2ð Þ2 � c2dk20

and

dx
dk0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx1ð Þ2 þ dx2ð Þ2 þ dx3ð Þ2

q
dk0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 dk1ð Þ2 þ c2 dk2ð Þ2 � c2dk20

dk20

s
¼ cβffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
q :

In other words,

p ¼ jjpjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

η¼1
pη
� �2s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
η¼1

1
1

p1;ηð Þ2 þ
1

p2;ηð Þ2

0B@
1CA

vuuuut :

Let us explicate the relations between the energy tensor E, its vector components
Eσ, and its scalar magnitude jjEjj, as well as the connection between the momentum
tensor p, its vector components pη, and its scalar magnitude jjpjj. The generalized
velocity in spacekime is

u ¼ ðuθ;uÞ2× 5 ¼

dx1
dk0;1

dx2
dk0;1

dx3
dk0;1

cdk1
dk0;1

cdk2
dk0;1

dx1
dk0;2

dx2
dk0;2

dx3
dk0;2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Space dimensions

cdk1
dk0;2

cdk2
dk0;2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Kimedimensions

0BBBB@
1CCCCA
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The total energy–momentum matrix in spacekime can be expressed as

P ¼ p1; p2; p3;
E1
c ;

E2
c

� �
2× 5
¼

p1;1 p1;2 p1;3
e1;1
c

e1;2
c

p2;1 p2;2 p2;3
e2;1
c

e2;2
c

 !
:

And the total energy matrix in spacekime is

E ¼ ðE1;E2Þ|fflfflfflffl{zfflfflfflffl}
Kimedimensions

¼ e1;1 e1;2

e2;1 e2;2

 !
2× 2

:

The scalar aggregate energy in kime dimension kσ is

Eσ ≡ jjEσjj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

e1;σð Þ2 þ
1

e2;σð Þ2
r ; σ 2 1; 2f g:

Thus, the magnitude of the total energy is

E ≡ jjEjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ð Þ2 þ E2ð Þ2

q
:

and the total momentum matrix in spacekime is

p ¼ p1; p2; p3ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Space dimensions

¼ p1;1 p1;2 p1;3

p2;1 p2;2 p2;3

 !
2× 3

:

The scalar momentum in space dimension xη is

pη ≡ jjpηjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1

p1;ηð Þ2 þ
1

p2;ηð Þ2

vuut ; η 2 1; 2; 3f g ;

and the magnitude of the total momentum is

p ¼ jjpjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð Þ2 þ p2ð Þ2 þ p3ð Þ2

q
:

Summarizing, this formulation of energy–momentum yields the following relations:

cdk
dk0
¼ cffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
q ¼ E

m0c
;

dx
dk0
¼ cβffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
q ¼ p

m0
;
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dx2 � c2dk2 ¼ ds2 ¼ �c2dk20:

Using these equations, we obtain the following important equality expressing the
relation between particle total energy E, total momentum p, and rest massm0:

E2 � p2c2 ¼ m2
0c

4:

In STR, the energy–momentum conservation law is derived as a consequence of the
continuous spacetime symmetry (Noether’s theorem) [275]. For example, let us con-
sider the process of a particle decay, where the energy–momentum conservation
law states that the vector sum of the energy–momentum four-vector of the decay
products should equal the corresponding energy–momentum four-vector of the
original particle. Some aspects of the problem for conservation of energy and mo-
mentum in the multidimensional time are discussed by J. Dorling [113].

One may assume that in the case of 2D kime, the energy may be represented as
a 2D vector. However, in the 5D spacekime manifold, the energy is a 2× 2 tensor and
the momentum is a 2× 3 tensor. For particle decay processes in complex time, this
leads to the following formulation of the energy–momentum conservation law.

The matrix entrywise sum of the second-order energy–momentum tensor (2× 5
matrix) of the decay products is equal to the corresponding energy–momentum ten-
sor (also a 2× 5 matrix) of the original particle. Specifically, the matrix entrywise
sum of the 2× 2 energy matrix of the decay products is equal to the 2× 2 energy ma-
trix of the original particle. And similarly, the matrix entrywise sum of the 2× 3 mo-
mentum matrix of the decay products is equal to the 2× 3 momentum matrix of the
original particle.

For example, if PH ¼ pHθ;μ

� �
2× 5

denotes the energy–momentum tensor of the orig-
inal particle (particle H) and accordingly PA ¼ pAθ;μ

� �
2× 5

,. . ., PD ¼ pDθ;μ

� �
2× 5 are the

energy–momentum tensors of the decay by-products (particles A; . . . ;D), then we will
have:

PH¼ PA þ � � � þ PD; i:e.,

pHθ;μ ¼ pAθ;μ þ � � � þ pDθ;μ ∀θ 2 1; 2f g; μ 2 1; 2; . . . ; 5f g.

More specifically, the separate energy and momentum conservation laws can be ex-
pressed as follows:

eHθ;σ ¼ eAθ;σ þ � � � þ eDθ;σ ∀θ 2 1; 2f g; σ 2 1; 2f g,

pHθ;η ¼ pAθ;η þ � � � þ pDθ;η ∀θ 2 1; 2f g; η 2 1; 2; 3f g.
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Thus, the magnitudes of the energy and momentum tensors of particle H are

EH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EHð Þ21þ EHð Þ22

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1

eA1;1þ���þeD1;1
� �2 þ 1

eA2;1þ���þeD2;1
� �2 þ 1

1

eA1;2þ���þeD1;2
� �2 þ 1

eA2;2þ���þeD2;2
� �2

vuuut ;

pH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pHð Þ21þ pHð Þ22

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

η¼1

1
1

pA1;ηþ���þpD1;η

� �2 þ 1

pA2;ηþ���þpD2;η

� �2
0BBB@

1CCCA
vuuuuuut :

Recall that for each of the particles A; . . . ;D;H, we have

EA� �2 � pA
� �2

c2 ¼ mA
0

� �2
c4

..

.

ED� �2 � pD
� �2

c2 ¼ mD
0

� �2
c4

EH� �2 � pH
� �2

c2 ¼ mH
0

� �2
c4:

Hence, as the particle H decays into sub-particle by-products, A; . . . ;D, its energy
and rest mass satisfy the following inequalities:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EHð Þ2 � pHð Þ2c2
q

≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAð Þ2 � pAð Þ2c2

q
þ · · ·|{z}

∀ sub�particles

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EDð Þ2 � pDð Þ2c2

q
:

More accurate relations, approximations, and computational bounds on the ener-
gies may be derived by expanding the energy terms further:

EH� �2 � pH
� �2

c2 ¼

1
1

eA1;1þ���þeD1;1
� �2 þ 1

eA2;1þ���þeD2;1
� �2 þ 1

1

eA1;2þ���þeD1;2
� �2 þ 1

eA2;2þ���þeD2;2
� �2�

X3
η¼1

1
1

pA1;ηþ���þpD1;η

� �2 þ 1

pA2;ηþ���þpD2;η

� �2
0BBB@

1CCCAc2 ≥
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1
1

eA1;1

� �2 þ 1

eA2;1

� �2 þ 1
1

eA1;2

� �2 þ 1

eA2;2

� �2 �
X3

η¼1

1
1

pA1;η

� �2 þ 1

pA2;η

� �2
0BBB@

1CCCAc2 þ · · ·|{z}
∀ sub�particles

þ

1
1

eD1;1

� �2 þ 1

eD2;1

� �2 þ 1
1

eD1;2

� �2 þ 1

eD2;2

� �2 �
X3

η¼1

1
1

pD1;η

� �2 þ 1

pD2;η

� �2
0BBB@

1CCCAc2 þ
X

i≠j2 A; ...; Df g
2mi

0m
j
0c

4:

Therefore, in the case of complex time, we can derive the counterpart of the classi-
cal STR rest mass inequality, stating that the rest mass of the decaying particle ex-
ceeds the aggregate sum of the sub-particle rest masses, which guarantees the
stability of the particles:

mH
0 ≥mA

0 þ � � � þmD
0 :

5.8 Spacetime IID vs. Spacekime Sampling

For all natural spacetime processes, various population characteristics like the mean,
variance, range, and quantiles can be estimated by collecting IID samples. These sam-
ples represent observed data that is traditionally used as a process proxy to obtain
sample-driven parameter estimates of specific population characteristics via standard
formulas like the sample arithmetic average, variance, range, quantiles, etc. The latter
approximate their population counterparts and form the basis for classical paramet-
ric, non-parametric, and Bayesian statistical inference.

Typically, reliable spacetime statistical inference depends on the characteristics
of the phenomenon, the distribution of the native process, and the choice of the
sample-size. By clever estimation of the (unobserved) process kime-phases, we will
demonstrate spacekime analytics that rely on a single spacetime observation, in-
stead of a large IID sample. Thus, spacekime representation facilitates effective and
reliable inference that resembles the classical spacetime analytics, but relaxes the
condition requiring samples with a large number of independent observations.

Without loss of generality, suppose we have a pair of cohorts A and B and we
obtain a series of measurements fXA, ignAi= 1 and fXB, ignBi= 1, respectively. Obviously the
relations between the cohorts could widely vary, from being samples of the same
process, to representing loosely related or completely independent processes.

There are two extreme cases of cohort pairing: (1) independent and differently
distributed cohorts (A and B) or (2) independent and identically distributed (IID) co-
horts (A, C, and D). An example of the latter case is a random split of the first cohort
(A) into complementary training (C) and testing (D) groups. This design allows us to
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compare the classical spacetime-derived population characteristics of cohort A to
their spacekime-reconstructed counterparts obtained using a single random kime-
magnitude measurement from A and kime-phase estimates derived from cohorts B, C
or D.

We can regard the Fourier representation of each dataset X as complex-valued
function X̂ = X̂ ωð Þ of the variable ω = r ei φ 2 C, representing the kime frequency
ω= ω1, ω2, ω3, . . . , ωnX

� �
, kime magnitude r = r1, r2, r3, . . . , rnX

� �
, and kime phase

φX = φ1, φ2, φ3, . . . , φnX

� �
. We will manipulate the kime magnitudes (r) and the

kime-phases (φ), reconstruct the signal in spacetime ^̂X
� �

, and compare the distribu-
tions of the original (X) and spacekime reconstructed data ^̂X

� �
. The specific space-

kime operations include replacing the original kime-magnitudes (rj) by rj′= rjo ,
1≤ j≤ nX, for some randomly chosen rjo , and swapping the X signal kime phases θj

by the phases of another dataset Y, φ′Y = φ′1, φ′2, φ′3, . . . , φ′nY Þ
�

. Spacekime analytics
based on a single spacetime observation corresponding to a unique kime-magnitude rjo ,
use prior knowledge about the kime-phases that can be estimated from another dataset
Y. In our simulation case, this prior knowledge is represented by using the kime-
phases derived from cohorts B, C, and D. Each of the three corresponding spacetime
reconstructions are obtained by the inverse Fourier transform ^̂X = IFT X̂ ω′� �� �

,
where ωj′= rj′ e iφ′

Y , 1≤ j≤ nX.
As shown in the previous chapters, the Fourier transform represents just one

example illustrating synthetic phase generation. Phase distribution priors, Laplace
transform, and empirical phase-estimation represent alternative strategies that can
be employed to derive spacekime reconstructions of temporal longitudinal data.

5.9 Bayesian Formulation of Spacekime Analytics

Spacekime analytics can be formulated in Bayesian inference terms. Suppose we
have a single spacetime observation X = xiof g⁓pðxjγÞ and γ⁓pðγjφÞ is a process pa-
rameter (could be a vector) that we are trying to estimate. The focus of spacekime
analytics is to make appropriate inference about the process X. Note that the sam-
pling distribution, pðxjγÞ, is the distribution of the observed data X conditional on
the parameter γ and the prior distribution, pðγjφÞ, is the distribution of the parame-
ter γ before the data X is observed.

Also assume that the hyperparameter (vector) φ representing the kime-phase
estimates for the process can be estimated by φ̂ = φ′. These estimates may be ob-
tained from an oracle, approximated using similar datasets, acquired as phases
from samples of analogous processes, or derived via some phase-aggregation strat-
egy. Then, the posterior distribution p γjX, φ′� �

of the parameter γ given the ob-
served data X = xiof g and the kime-phase hyperparameter vector φ of the process
parameter distribution, γ⁓pðγjφÞ, formulates spacekime inference as a Bayesian
parameter estimation problem:
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p γjX, φ′� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
posterior distribution

= p γ, X, φ′� �
p X, φ′� � = p Xjγ, φ′� �

× p γ, φ′� �
p X, φ′� � = p Xjγ, φ′� �

× p γ, φ′� �
p Xjφ′� �

× p φ′� � =

p Xjγ, φ′� �
p Xjφ′� � × p γ, φ′� �

p φ′� � = p Xjγ, φ′� �
× p γjφ′� �

p Xjφ′� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
observed evidence

∝ p Xjγ, φ′� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
likelihood

× p γjφ′� �|fflfflfflffl{zfflfflfflffl}
prior

.

In Bayesian terms, the posterior probability distribution of the unknown parameter
γ is proportional to the product of the likelihood and the prior. In probability terms,
the posterior = likelihood times prior, divided by the observed evidence, in this
case, a single spacetime data point, xio .

Spacekime analytics based on a single spacetime observation xio can be thought
of as a type of Bayesian prior or posterior predictive distribution estimation problem.
For instance,
– Posterior predictive distribution of a new data point xjo , marginalized over the

posterior (i.e., the sampling distribution p xjo jγ
� �

, weight-averaged by the poste-
rior distribution):

p xjo jxio , φ′� �
=
ð
p xjo jγ
� �

× p γjxio , φ′� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
posteriordistribution

d γ.

– Prior predictive distribution of a new data point xjo , marginalized over the prior
(i.e., the sampling distribution p xjo jγ

� �
, weight-averaged by the pure prior

distribution):

p xjo jφ′� �
=
ð
p xjo jγ
� �

× p γjφ′� �|fflfflfflffl{zfflfflfflffl}
prior distribution

d γ.

The difference between these two predictive distributions is that the posterior pre-
dictive distribution is updated by the observation X = xiof g and the hyperparameter,
φ, whereas the prior predictive distribution only relies on the values of the hyper-
parameters that appear in the prior distribution.

This framework allows formulating spacekime analytics as Bayesian predictive in-
ference where the posterior predictive distribution may be used to sample or forecast
the distribution of a prospective, yet unobserved, data point xjo . Rather than predict-
ing a specific outcome point, the posterior predictive distribution provides the holistic
distribution of all possible observable states, i.e., outcome points. Clearly, the poste-
rior predictive distribution spans the entire parameter state-space (Domain γð Þ), much
like the wavefunction represents the distribution of particle positions over the com-
plete particle state-space.
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Using maximum likelihood or maximum a posteriori estimation, we can also esti-
mate an individual parameter point-estimate, γo. In this frequentist approach, the point
estimate may be plugged into the formula for the distribution of a data point, pðxjγoÞ,
which enables drawing IID samples or individual outcome values. This approach has
the drawback that it does not account for the intrinsic uncertainty of the parameter, γ,
which may lead to an underestimation of the variance of the predictive distribution.

The following simulation example generates two random samples drawn from
mixture distributions each of nA = nB = 10,000 observations: fXA, ignAi= 1, where XA, i =
0.3Ui +0.7Vi, Ui⁓N 0, 1ð Þ and Vi⁓N 5, 3ð Þ, and fXB, ignBi= 1, where XB, i =0.4Pi + 0.6Qi,
Pi⁓N 20, 20ð Þ and Qi⁓N 100, 30ð Þ. Figure 5.2 illustrates the density plots of the pair
of processes ( XAf g and XBf g).

Clearly, the intensities of cohorts A and B are independent and follow different
mixture distributions. We’ll split the first cohort (A) into training (C) and testing (D)
subgroups, and then perform the following four steps:
– Transform all four cohorts into Fourier k-space,
– Iteratively randomly sample single observations from cohort C,
– Reconstruct three separate versions of the process in spacetime by using a single

kime-magnitude value and three alternative kime-phase estimates, each derived
separately from cohorts B, C, and D, and

Figure 5.2: Spacetime simulation. The two processes XAf g and XBf g represent bimodal mixture
distributions.
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– Compute the classical spacetime-derived population characteristics of cohort A
and compare them to their spacekime counterparts obtained using a single C
kime-magnitude paired with B, C, or D kime-phases.

Table 5.2 shows some of the summary statistics for the original process (cohort A)
and the corresponding values of their counterparts computed using the spacekime
reconstructed signals based on kime-phases of cohorts, C, and D. The estimates for
the latter three cohorts correspond to reconstructions using a single spacetime obser-
vation (i.e., single kime-magnitude) and alternative kime-phases (in this case, kime-
phases derived from cohorts B, C, and D). The results show strong agreement between
the original data and its three spacekime reconstructions, as measured by the seven
summary statistics (rows in the table). Reconstructions (C) and (D) match the original
signal better than reconstruction (B).

Additional measures quantifying the differences between these distributions (origi-
nal signal and spacekime reconstructions) include the two-sample Kolmogorov-
Smirnov (KS) test and the correlation coefficient. The value of the KS test statistic
(D) represents the maximum distance between the estimated cumulative distribu-
tion functions. Its corresponding p-value is the probability of seeing a test statistic as
high or higher than the one observed given that (under the default null hypothesis)
the two samples were drawn from the same distribution. In our case, comparing the
distributions of the original data (A) and its reconstruction using a single kime magni-
tude and the correct kime-phases (C) yields a KS statistics D=0.053875, and pvalue =
1.647× e− 10. This provides a very strong statistical evidence (mostly due to the large

Table 5.2:Mixture distribution modeling. Summary statistics for the scaled original and spacekime
reconstructed process distributions. Cohorts A and B, represent the pair of original mixture
distributions, and cohorts C and D represent the training and testing split of cohort A.

Spacetime Spacekime reconstructions (single kime-magnitude)

Summaries (A) Original (C) Phase=True (B) Phase=Diff. Process (D) Phase=Independent

Min −. −. −. −.


st Quartile −. −. −. −.

Median . −. . −.

Mean . . . .

 Quartile . . . .

Max . . . .

Skewness . . . .

Kurtosis −. −. . −.
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sample size) but a marginal practical difference between the real and reconstructed
signals (low value of the test statistics). To calibrate these practical and statistical
significance values, we can compare a pair of reconstructions using a single kime-
magnitude value and two independent kime-phase estimates (cohorts C and D),
which yields KS test statistics D=0.017375 and pvalue = 0.1786.

The correlation between the original data (A) and its reconstruction using a sin-
gle kime magnitude and the correct kime-phases (C) is ρ A,Cð Þ=0.89, Figure 5.3.
This relatively large correlation suggests that a substantial part of the A process en-
ergy can be recovered using only a single observation. In this case, to reconstruct
the signal back into spacetime and compute the corresponding correlation, we used
a single kime-magnitude (sample-size=1) and kime-phase estimates derived from
process C.

Figure 5.4 shows graphically the similarities and differences between the (scaled)
distributions of the original process (A) and three spacekime reconstructions (B,C,D)
using alternative strategies for estimating the kime-phases. Notice the bimodal shape of
the original data (A=blue) and the spacekime reconstructions (C=orange and D=green),
which are based on cohorts C and D. These bimodal shapes are indeed related to the
mixture distributions of the corresponding underlying processes. This plot also
shows that the right-modes of the reconstructions agree perfectly with the corre-
sponding right-mode in the original data. However, the imperfection of the space-
kime reconstructions of the data is evident by the positive offsets of the left-modes
of the signal reconstructions. The last reconstruction (B=red), whose distribution
has a unimodal shape, is obtained using the kime-phases of a completely different
process and hence represents a poor estimate of the original signal via a single
kime-magnitude measurement paired with kime-phases derived from process B.

Let’s demonstrate the Bayesian inference corresponding to this spacekime data an-
alytic problem using the following simulated bimodal experiment: XA =0.3U +0.7V,
where U⁓N 0, 1ð Þ and V⁓N 5, 3ð Þ. Specifically, we will illustrate the Bayesian inference
using repeated single spacetime observations from cohort A, X = xiof g, and varying
kime-phase priors obtained from cohorts B, C, or D, which represent the posterior pre-
dictive distribution. Figure 5.5 depicts relations between the empirical data distribution
(dark blue) and samples from the posterior predictive distribution, Bayesian simulated
spacekime reconstructions (light-blue). Although the derived Bayesian estimates do
not perfectly match the empirical distribution of the simulated data, there is clearly in-
formation encoding that is captured by the spacekime data reconstructions. This sig-
nal compression can be exploited by subsequent model-based or model-free data
analytic strategies for retrospective prediction, prospective forecasting, classification,
clustering, and other spacekime inference.
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Figure 5.4: Distributions of the original spacetime IID sample (A) and three corresponding
spacekime reconstructions based on a single kime-magnitude and kime-phase estimates derived
from processes B, C, and D.
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5.10 Uncertainty in Data Science

The Heisenberg uncertainty principle may have a corresponding analogue in data sci-
ence. Its oversimplified data science formulation can be expressed as follows. Observa-
tional data-driven inference cannot be simultaneously completely generic (complete
coverage) and, at the same time, reliably accurate (consistency). The quantummechan-
ical space-frequency duality, expressed via the Fourier transformation, may be replaced
in data science by the coupling of inferential scope (indicating the generalizability of
the inference) and the inferential precision (affirming the veracity and robustness of
the inference).

In essence, the data science uncertainty principle suggests that we are always in
one of two states, but never both: Either we get perfectly robust inference, but with lim-
ited analytical application scope, i.e., analytical models under strict assumptions and
using small well-managed data archives. Alternatively, at the opposite extreme, when
using big data, such as the entire population or census, without many restrictions like

Distributions Bivariate test statistic (mean & standard deviation)

Test statistic (maximum) Test statistic (interquartile range, IQR)
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Figure 5.5: Relations between the empirical data distribution (dark blue) and samples from the
posterior predictive distribution, Bayesian simulated spacekime reconstructions (light-blue).
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a priori assumptions, we may compromise the precision, timeliness, or reproducibility
of the resulting inference. At the two extremes are (1) the classical statistical inference
framework, which is narrowly applicable but generates (nearly) optimal, reproducible,
and robust inferential models for idealized situations (e.g., parametric assumptions,
linear models, small IID datasets, resulting in best linear unbiased estimators, etc.),
and (2) the modern semi-supervised machine learning approaches, which certainly
are broadly applicable and allow handling of large, complex, and multisource data-
sets with limited a priori assumptions, but may be intrinsically dynamic or unstable,
possibly trading off the result validity, reproducibility, or reliability.

Most scholars involved in statistical computing using non-trivial datasets can
attest that as the sources, heterogeneity, size, scale, and missingness in the data
increase, the complexity of the data-driven scientific inference grows exponentially
[276, 277]. This is due to many complementary factors like (1) the increased costs for
data management and preprocessing, (2) the quality of the data is usually compro-
mised with the increase of the sample-size, sampling rate, and the number of record-
ing devices, (3) for complex datasets, a priori model assumptions may be violated,
and there are challenges with the data representation, processing, and information
extraction, and (4) various estimators (functions) and estimates (parameter vectors)
may become computationally unstable, intractable, or expensive.

The impact of technological advances, IT services, and digitalization of human
experience over the past decade all provided effective mechanisms for collecting,
tracking, processing, and interpreting enormous amounts of information. The Hei-
senberg information duality in data science relates to the management of the data
(i.e., position) and derived inference (i.e., energy of the information). Specifically,
there appears to be non-commuting properties associated with most big data sci-
ence applications. We cannot perfectly represent and handle “all observed data”
and at the same time derive truly consistent, timely, and complete inference of the
holistic information contained in the entire dataset. Why is this interesting and
important?

The limit of the duality between the properties of perfectly managing and pre-
cisely interpreting the information content of a big data case-study is currently un-
known [40]. However, the tradeoffs between an ideal data representation and an
impeccable inference are clear. Let’s look at a concrete example using a hypotheti-
cal clinical decision support inference problem.

Jane Doe is a physician treating elderly patients with memory problems. Mr.
Real is a patient in Dr. Doe’s clinic who presents with cognitive symptoms of im-
paired recollection, i.e., memory formation and/or retrieval. Dr. Doe suspects the
patient may suffer from Alzheimer’s disease, a progressive neurodegenerative disor-
der. To investigate her hunch, Dr. Doe orders and inspects Mr. Real’s neuroimaging,
clinical tests, cognitive assessment, genetic phenotyping, and various biospecimen
tests. These data will allow her to confirm the diagnosis, suggest an appropriate
treatment regimen, and provide prognosis for the patient and his family. Dr. Doe
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also has access to a large data archive of asymptomatic controls and patients that
match Mr. Real’s demographic phenotype and include participants at various stages
of dementia. In an ideal world, Dr. Doe has access to a clinical decision support sys-
tem that provides the quintessential dual functionality – perfect data management
and optimal scientific inference. The automated decision support system ingests the
patient’s data and holistically compares Mr. Real’s records to the normative infor-
mation contained in the available large cohort database. Essentially, the system fa-
cilitates precision health assessment and personalized medical treatment allowing
the physician to map the patient onto a comprehensive Alzheimer’s disease atlas.
The inferential component of this automated clinical decision support system will
provide direct quantification of the likelihood that Mr. Real has Alzheimer’s, suggest
the most beneficial treatment, and predict the clinical outcome and cognitive state
of the patient in the future.

In practice, however, this ideal situation is not attainable for several reasons.
The first one is the lack of accessible large-scale, well curated, complete and repre-
sentative normative data that can be used to compute precisely the necessary statistical
models forecasting the disease progression. The second issue is a lack of general tools
that would provide optimal, reliable, and consistent scientific inference by jointly
modeling all available information (big data). The data science uncertainty princi-
ple suggests that there is a limit to how accurate and broad this automated deci-
sion support system could be, in general. Solving one of the two challenges (either
perfect big data handling or flawless analytical inference) precisely will compro-
mise the efficacy of the other.

Below we provide some background and ideas of mathematical descriptions of
the uncertainty principle in relation to data science.

5.10.1 Quantum Mechanics Formulation

Quantum physics rules allow us to convert classical physics equations into their quan-
tum mechanical counterparts. For instance, classical physics energy is converted to a
quantum partial differential operator: E 7!i�h ∂

∂t; and classical physics momentum is
mapped to another partial differential operator: px 7!− i�h ∂

∂x. The commutator alge-
bra of differential operators identifies pairs of physical observables that either can
or cannot be measured simultaneously with infinite precision. Consider the com-
mutator of the momentum and position operators:

− i�h
∂

∂x
, x

� �
ψ x, tð Þ.

The general mathematical representation of the uncertainty principle can be ex-
pressed in terms of a particular inequality:
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Dxuk k xuk k≥ �h
2

uk k2,

where the norm is defined in terms of the bra-ket inner product notation, �h
2 uk k2 =

�h
i ∂xujixu
� �

, and the non-commutation of the unbounded operators Dx = �h
i ∂x and x,

(i.e., multiplication by x).
In general, the identity operator on a Hilbert space can never be expressed as the

commutator of bounded operators [278]. Thus, the non-commutation of bounded op-
erators A= 1

i ∂x and B= ix (e.g., finite matrices) could never lead to A,B½ �= I, since the
trace of the commutator is 0. Therefore, quantization requires necessarily infinite di-
mensional unbounded operators.

In quantum mechanics, this specific non-commutation property leads to vari-
ous uncertainty principle inequalities. The algebra of operators is in general
non-commutative, which explains the common natural occurrence of the uncertainty
principle. If unknown quantities (measurable, random variables) do not obey a commu-
tative algebra, an uncertainty principle is likely in play. In classical mechanics, measur-
able quantities, like position x and momentum p, belong to a commutative algebra, as
functions on the phase space. However, in quantum mechanics the unknown quanti-
ties represent quantizations (operators) of observables, e.g., hDxj, momentum operator,
and jxi, position operator. In quantum mechanics and beyond, the uncertainty princi-
ple is a signature of non-commutativity.

5.10.2 Statistics Formulation

In a classical statistical sense, the data science uncertainty principle is realized via the
sample-size – power-analysis framework [279]. It’s well known that the key factors play-
ing roles in the inverse relation of size vs. power include sensitivity (power), sample
size, inter-individual variability, effect-size (magnitude of the response), significance
level, and the formulation of the alternative hypothesis. Power analysis demonstrates
one simple view of the pragmatics of data science uncertainty. By trading off statistical
power, sample size and resources (energy), we can get either high power or real-time
maximum efficiency, but not both. At one extreme, getting high power requires lots of
resources to manage (relatively) larger sample sizes. On the other extreme, extremely
large sample-sizes present enormous non-sampling problems and require substantial
allocations of resources. These tradeoffs directly relate to quality control, computational
complexity, resource allocation, and model limitations. Non-sampling errors are preva-
lent in large samples. These represent deviations from the true parameter estimates
that are not due to the sample selection. Non-sampling errors are difficult to quantify
and include systematic errors, random errors, coverage errors, biases in population re-
presentation, inconsistencies of observed information about all sample cases, response
errors, deliberate data adulteration, mistakes due to human and machine failures,
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consistent coding to standard classifications, errors of collection, non-random non-
response bias, inconsistent preprocessing, etc.

More formally, suppose we are performing a hypothesis test comparing the
mean of a continuous outcome variable in a single population to a known mean.
We can express the data science uncertainty principle in terms of a statistical infer-
ence framework. Let’s consider a simple parametric inference problem (hypothesis
testing) where the null is Ho : μ = μo, the research hypothesis is H1 : μ ≠ μo, and μo rep-
resents a known mean value. Under common parametric assumptions, the relation
between sample-size (η) and statistical-power (π = 1− β), i.e., sensitivity, is given
by:

η = z1− α=2 + z1− β

ES

� �2
,

where α is the level of significance; zγ is a critical value of the distribution of a spe-
cific parametric test-statistic, e.g., the standard normal distribution with a right-tail
probability γ; and ES is the effect size, e.g., ES= μ1 − μoj j

σ ; μ1 is the mean under the al-
ternative hypothesis, H1; and σ is the standard deviation of the outcome of interest.

Of course, the size-power relation will change depending on the model assump-
tions and the specific study design. In fact, closed-form analytical expressions for
the power are not always known. In general, the statistical-power of the test is a
function π = π η, θ, α, . . .ð Þ, where θ represents the parameter vector of the infer-
ence testing, η is the sample size, and there are other additional parameters that
play roles in this association.

In the above quadratic size-power relation, increasing η can certainly drive the
power (1− β) up and the false-negative rate β down, however, this is not the only
way to get that effect. Stating this in Heisenberg’s uncertainty principle terms,
β × η ≥ δ >0, where the constant δ depends on all other inferential factors.

When we increase the resolution, or work in a fine scale, we tradeoff precision
(variability) and coverage (generality). A lot of factors, such as model assumptions,
time effects, test interpretation, inference understanding, variable and parameter
inter-dependencies, and estimates variability, are all entangled in the process of ob-
taining scientific inference from raw observations (data). In high-resolution and
fine-scale, uncertainty is ubiquitous. The effects of uncertainty in large-scale statis-
tical computing are also well-documented [280].

5.10.3 Decision Science Formulation

In decision science, Heisenberg’s uncertainty principle may be formulated for any
multiple-criteria decision-making models [281] for solving problems that can be repre-
sented in the criterion space or the decision space. If different criteria are combined
by a weighted linear function, it is also possible to represent the problem in the
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weight space. The decision space corresponds to the set of possible decisions that
are allowed. The criterion space represents the specific consequences of the deci-
sions we make.

Suppose a decision model is represented as a set of criteria that rank a few alter-
natives differently according to some preference aggregation function. Decision ag-
gregating functions accumulate decision weights, whether additively, as in a linear
model, or non-additively, as in higher order models.

When evaluating, reviewing, assessing, or refining decision criteria of all possi-
ble alternatives, we can consider few or many more criteria depending on the de-
sired model complexity, even possibly considering rather unlikely events that can
only be observed in big data studies. This flexibility allows us to increase the dis-
criminative power on the criterion space, however, it comes at the expense of losing
precision on the decision side (too many alternative options). This also ties in to the
Gödel’s incompleteness theorem which argues a system that obeys arithmetic rules
can never be both complete and consistent [23].

In decision space representation, the ideal situation is to have just one criterion,
according to which we can make an action recommendation based on how the op-
tions all rank against each other. When we have many alternatives, some decisions
will be best according to some criteria and some will be best according to another,
thus making the actual decision is somewhat inhibited. In these situations, we need
to determine specific protocols weights ranking all criteria according to their impor-
tance and then aggregating the final ensemble decision. When we have a large
number of criteria, each alternative will represent the optimal decision according to
some of the criteria, but probably not all. In some models, this subjectivity of criteria
weights construction may yield erroneous decisions or equally competitive alternatives.
In essence, expanding a decision-making model with more criteria is guaranteed to in-
crease the model discriminative power, which comes with a negative consequence of
more dispersed resulting action. There appears to be a lower limit on jointly minimizing
the uncertainty attached to a decision making model and maximizing the utility to act
on the decision.

5.10.4 Information Theoretic Formulation

Mathematical representation and quantification of uncertainty and unpredictability
typically relies on estimations of two classes of functions – dispersion or entropy –
that both are computed using random observations and measure the intrinsic pro-
cess uncertainty. Information theoretic representations of the data science uncer-
tainty principle can be formulated in terms of Shannon’s information and channel
capacity limit [282, 283] or in terms of Fisher information.
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5.10.4.1 Shannon’s Information and Channel Capacity Limit
Suppose the bandwidth of a communication channel is BHz, the signal-to-noise
ratio is S

N, and Shannon’s maximum channel capacity C is C=B× log2 1+ S
N

� �
. In-

creasing the levels of a signal increases the probability of an error occurring, in
other words it reduces the reliability of the system. Let’s define the overall maximal
capacity of any communication channel by ν =Cmax. This effectively allows us to do
arithmetic on capacity, bandwidth, and transfer rates, much like fixing the speed of
light allows us to compute on the independent space and time in the joint 4D Min-
kowski spacetime manifold [284].

Thus, we can express a modified version of Shannon’s channel capacity as:

ΔC= Δ B× log2 1+ S
N

� �� �
.

Therefore, the relative variance of the mean energy, i.e., the maximal capacity vari-
ance, is:

ΔE
h

= Δν ≥ ΔC= Δ B× log2 1+ S
N

� �� �
.

Denoting by h and �h the Planck and the reduced Planck constants, respectively, we
can express the uncertainty as ΔEΔt ≥ �h

2. Thus,

h= Δ B× log2 1+ S
N

� �� �
× Δt ≥ �h,

Δ B× log2 1+ S
N

� �� �
× Δt ≥

1
2π

.

If n is the number of bits transferred via the channel with a constant bandwidth B,
we can assume n=B× Δt, then we obtain an information-theoretic representation of
the uncertainty principle: n× log2 1+ S

N

� �
≥ 1

2π.
A useful tool to quantify unpredictability in information theory is the Shannon’s en-

tropy measure, which explicates the intrinsic uncertainty of the states by mapping the
distribution of random variables, or quantum states, to real numbers. For instance, flip-
ping a fair coin, P Headð Þ= 1

2, represents a random process embedding more uncertainty
about the outcome compared to an alternative biased coin with P Headð Þ= 9

10. Comput-
ing and contrasting the entropy measures for both coins (discrete processes) yields:

H Coin 1j P Headð Þ= 1
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

higher uncertainty

≡ −
X2
i= 1

pilog2pi =
1
2
+ 1
2
= 1>0.469=

−0.9log2 0.9ð Þ− 0.1log2 0.1ð Þ≡ H Coin 2jP Headð Þ= 9
10

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

lower uncertainty

.
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Shannon’s entropy can also be used just like the deviation (or standard deviation) to
quantify distribution structure. For instance, for any f 2 L2 that is normalized toÐ
f xð Þj j2dx= Ð f̂ xð Þ

��� ���2dx= 1, i.e., f xð Þj j2 = φ xð Þ is a probability distribution function,
the entropy may represent a better measure of dispersion than the standard devia-
tion. For

FT φð Þ ωð Þ= φ̂ ωð Þ=
ð
R

φ xð Þe− 2πixωdx and IFT φ̂ð Þ xð Þ= b̂φ xð Þ= φ xð Þ=
ð
R

φ̂ ωð Þe2πixωdω,

the total entropy [285] Hx +Hω represents the aggregate sum of the spatial and spec-
tral Shannon differential entropies, which naturally extend the (discrete Shannon en-
tropy measure):

Hx =H φð Þ= −
ð

φ xð Þ log φ xð Þð Þdx spaceð Þ,

and

Hω =H φ̂ð Þ= −
ð

φ̂ ωð Þ log φ̂ ωð Þð Þdω spectralð Þ,

and satisfies the inequality,

Hx +Hω ≥ log
e
2

� �
.

The remaining part of this section is agnostic to the base of the logarithmic function
logðÞ, which easily converts between the natural-logarithm lnðÞ and a logarithm of
an arbitrary base b 2 R + n 1f g, logb xð Þ= 1

ln b ln x, ln x= 1
logbe

logbx. The Shannon en-
tropy is a special case of the more general Rényi entropy uncertainty [286] and this
total entropy lower bound is attained for normal density functions. The Rényi en-
tropy is defined by:

Hα φð Þ= 1
1− α log

Ð
φ xð Þð Þαdx.

The limit lim
α!1

Hα φð Þ|fflffl{zfflffl}
R ′enyi

= H φð Þ|ffl{zffl}
Shannon

≡ −
Ð

φ xð Þ log φ xð Þð Þdx [286] can be derived using l’Hopi-

tal’s theorem for the limit of a quotient of functions:

lim
x!b

f xð Þ
g xð Þ = lim

x!b

f ′ xð Þ
g′ xð Þ .
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In this case, α ! 1, f αð Þ= log
Ð

φ xð Þð Þαdx, and g αð Þ= 1− α, i.e., Hα φð Þ= f αð Þ
g αð Þ. The de-

rivative of the denominator is a constant, g′ αð Þ= − 1, and the derivative of f is com-
puted by the chain-rule for differentiation:

d
dα

f αð Þ= d
dα

log
ð

φ xð Þð Þαdx
� �

=

1Ð
φ xð Þð Þαdx

ð
d
dα

φ xð Þð Þαdx
� �

= 1Ð
φ xð Þð Þαdx

ð
d
dα

eα ln φ xð Þ
� �

dx
� �

=

1Ð
φ xð Þð Þαdx

ð
eα ln φ xð Þ d

dα
α ln φ xð Þð Þdx

� �
= 1Ð

φ xð Þð Þαdx

ð
eα ln φ xð Þ ln φ xð Þð Þdx

� �
=

1Ð
φ xð Þð Þαdx

ð
φ xð Þð Þα ln φ xð Þð Þdx

� �
.

Hence, the limit

lim
α!1

d
dα f αð Þ= 1ð

φ xð Þdx|fflfflfflfflffl{zfflfflfflfflffl}
1

Ð
φ xð Þ ln φ xð Þð Þdx� �

=
Ð

φ xð Þ ln φ xð Þð Þdx.

Assuming we are working with natural log, since the limit of the denominator is a
constant lim

α!1
g′ αð Þ= lim

α!1
− 1ð Þ= − 1, the Rényi entropy tends to the Shannon entropy

as α ! 1:

lim
α!1

Hα φð Þ= lim
x!b

f xð Þ
g xð Þ = lim

x!b

f ′ xð Þ
g′ xð Þ = −

ð
φ xð Þ ln φ xð Þð Þdx=H φð Þ.

For a pair of positive non-unitary numbers α, β 2 R + n 1f gj 1α + 1
β = 2

n o
, the Babenko–

Beckner inequality [285] for the Rényi entropy is:

Hα φð Þ+Hβ φ̂ð Þ≥ 1
2

log α
α − 1

+ log β
β − 1

� �
− log 2.

Taking the limit of the sum of the Rényi entropies of the (general) probability distri-
bution φ and its Fourier transform φ̂, as α, β approach 1, yields:

lim
α! 1

β! 1

Hα φð Þ+Hβ φ̂ð Þ� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hx +Hω =Hx φð Þ+Hω φð Þ

≥ lim
α!1

β!1

1
2

log α
α − 1

+ log β
β − 1

� �
− log 2

� �
= 1
2
1+ 1ð Þ− log 2= log

e
2
.

The normal probability distribution has many properties that make it unique. One
of these properties characterizes the relationship between entropy and variance.
One way to state the information-theoretic uncertainty principle is as follows: Given
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a fixed distribution variance, the normal distribution is the one that maximizes the
entropy measure, and conversely, given a fixed entropy, normal distribution yields
the minimal possible variance.

To make this entropy-variance relation more explicit for distribution functions,
suppose we are given a random variable X⁓φ xð Þ with a general real-valued proba-
bility density function φ with a finite process variance σ =Var Xð Þ. Then, the relation
between the Shannon‘s entropy and the process variance for this density is:

H φð Þ≤ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π e σ2
p

.

In this relation, the equality is achieved only for a normal distribution density,

g xð Þ≡ 1ffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2 ⁓N μ, σ2ð Þ. To derive this upper-bound of the entropy by the

variance, let’s plug in g xð Þ in the entropy definition:

H gð Þ= −
ð
g xð Þ log g xð Þð Þdx= −

ð
1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2 log

1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2

 !
dx=

−
ð

1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2 log

1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p
� �

−
x− μð Þ2
2σ2

" #
dx=

− log
1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p
� �ð

1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2 dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

+ 1
2σ2

ð
1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2 x− μð Þ2dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Var gð Þ

=

1
2
log 2π σ2� �

+ σ2

2σ2 =
1
2
log 2πeσ2� �

= log
ffiffiffiffiffiffiffiffiffiffiffiffi
2πeσ2
p� �

.

For any general distribution, φ, we can assume that both densities g, φ have equal
variances, σ; otherwise, we can set the variance of the normal distribution g equal
to the actual variance of the general distribution φ. The Kullback–Leibler diver-
gence between the two distributions is:

0≤DKL φjjgð Þ=
ð

φ xð Þ log φ xð Þ
g xð Þ

� �
dx=

ð
φ xð Þ log φ xð Þð Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

−H φð Þ

−
ð

φ xð Þ log g xð Þð Þdx=

−H φð Þ− Ð φ xð Þ log 1ffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2

 !
dx=

−H φð Þ− Ð φ xð Þ log 1ffiffiffiffiffiffiffi
2π σ2
p
� �

dx− log eð Þ Ð φ xð Þ − x− μð Þ2
2σ2

� �
dx=

−H φð Þ+ log
ffiffiffiffiffiffiffiffiffiffi
2π σ2
p� �

+ log eð Þ σ2
2σ2 = −H φð Þ+ 1

2 log 2π σ2ð Þ+ log eð Þð Þ=

−H φð Þ+ 1
2
log 2πeσ2� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

H Normalð Þ

= −H φð Þ+H gð Þ.
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Thus, for any probability distribution φ, H φð Þ≤H gð Þ and the normal distribution g
maximizes the entropy. The result of this is the following upper bound on the en-
tropy of any distribution:

H φð Þ≤ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π e σ2
p

.

Note that the normal (Gaussian) probability g⁓N μ =0, σ2ð Þ has the additional prop-
erty that its Fourier transform φ ωð Þ≡ ĝ ωð Þ≡ FT gð Þ ωð Þ⁓N μ̂ =0, σ̂2 = 1

σ2

� �
and their

squares, g2, ĝ2, are all Gaussian with correspondingly modified variances.
In the general case for an arbitrary distribution, φ, we can combine the expo-

nentiated lower bound,

log e
2

� �
≤Hx φð Þ+Hω φ̂ð Þ

with the upper bound,

Hω φ̂ð Þ+Hx φð Þ≤ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 π e σ̂2

p
+ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π e σ2
p

= log 2 π e
ffiffiffiffiffiffiffiffiffi
σ̂2σ2

p� �
.

This yields another representation of the uncertainty in terms of a product of varian-
ces that can’t be simultaneously very small:

1
4 π

≤
e H φ̂ð Þ+H φð Þ½ �

2 π e
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var φ̂ð ÞVar φð Þ

p
.

The lower bound may be just 1
2 depending on the normalization of the Fourier

transform.

5.10.4.2 Fisher Information
An alternative form of information-theoretic uncertainty can be formulated in terms
of Fisher information and Cramér–Rao lower bound of the product of two variances
[286, 287]. We saw the Fisher information earlier, in Chapter 4, when we discussed
log-likelihood based inference.

Given an observable random variable X⁓fXðxjθÞ, where θ is some unknown pa-
rameter, the Fisher information captured the amount of information about θ that is
embedded in the random process X. When the density (or mass) function fX chances
slowly (flat curve) or rapidly (peaked curve) with respect to θ, X carries little or a lot
of information, respectively, to correctly identify the parameter θ based on observed
data. Recall that the score function is the partial derivative of the log-likelihood
function with respect to the parameter θ, i.e., ∂

∂θ log fXðxjθÞ. In general, the expected
value of the score is trivial:

E
∂

∂θ
log fX xjθð Þjθ

� �
=
ð

∂

∂θ
log fX xjθð Þ

� �
fX xjθð Þdx=

5.10 Uncertainty in Data Science 337

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



ð ∂
∂θ fX xjθð Þ
fX xjθð Þ

 !
fX xjθð Þdx=

ð
∂

∂θ
fX xjθð Þdx= ∂

∂θ

ð
fX xjθð Þdx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1

=0.

Therefore, the Fisher information, I θð Þ, defined as the variance of the score is:

I θð Þ=Var ∂

∂θ
log fX xjθð Þ

� �
=E ∂

∂θ
log fX xjθð Þ

� �2

jθ

 !
=
ð

∂

∂θ
log fX xjθð Þ

� �2

fX xjθð Þdx≥0.

Random variables corresponding to low or high Fisher information indicate low or
high absolute values of the score function. When the log-likelihood function is regu-
lar and has a smooth second derivative with respect to θ, we have:

∂2

∂θ2 log fX xjθð Þ= ∂

∂θ

∂
∂θ fX xjθð Þ
fX xjθð Þ

 !
=

∂2

∂θ2
fX xjθð Þ

fX xjθð Þ −
∂
∂θ fX xjθð Þ
fX xjθð Þ

 !2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
∂
∂θ log fX xjθð Þ
� �2

=

∂2

∂θ2
fX xjθð Þ

fX xjθð Þ −
∂

∂θ
log fX xjθð Þ

� �2

,

E

∂2

∂θ2
fX xjθð Þ

fX xjθð Þ
���� θ

0@ 1A=
ð ∂2

∂θ2
fX xjθð Þ

fX xjθð Þ

0@ 1AfX xjθð Þdx= ∂
2

∂θ2

ð
fX xjθð Þdx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1

=0,

E
∂2

∂θ2 log fX xjθð Þ
� �

= −E
∂

∂θ
log fX xjθð Þ

� �2
 !

.

Thus, taking the expectations of both hand sides of the equation above yields the
Fisher information:

I θð Þ=
ð

∂

∂θ
log fX xjθð Þ

� �2

fX xjθð Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E ∂

∂θ log fX xjθð Þ
� �2jθ
� � = −

ð
∂2

∂θ2 log fX xjθð Þ
� �

fX xjθð Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∂2

∂θ2
E log fX xjθð Þjθð Þ

.

Suppose now that we have an independent sample from the process distribution,
fX xjθð Þ, and θ̂ = θ̂ Xð Þ is an unbiased estimate of the unknown population parameter θ,
i.e., E θ̂

� �
=
Ð

θ̂fX xjθð Þdx= θ. The Cramér–Rao lower bound represents a minimal
value of the variance of θ̂ expressed in terms of the Fisher information. In other
words, there is a lower bound on the product of the score function variance (data-
derived information about the unknown parameter) and the estimator variance
(precision).
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The lack of assumed bias ensures that ∀θ 2 Ω:

E θ̂ Xð Þ− θjθ
� �

=
ð

θ̂ xð Þ− θ
� �

fX xjθð Þdx=0.

Differentiating both sides yields,

0= ∂

∂θ
E θ̂ Xð Þ−θjθ
� �

= ∂

∂θ

ð
θ̂ xð Þ−θ
� �

fX xjθð Þdx=
ð

θ̂ xð Þ−θ
� � ∂

∂θ
fX xjθð Þdx−

ð
fX xjθð Þdx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1

,

Ð
θ̂ xð Þ− θ
� �

∂
∂θ fX xjθð Þdx= 1.

Let’s consider a sample of n independent identically distributed observations,
X = Xif gni= 1. Then:ð Xn

i= 1

∂

∂θ
log fXi xijθð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þ

q� �2

dx1dx2 . . .dxn =

ðXn
i= 1

∂

∂θ
log fXi xijθð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fXi xijθð Þ

q Y
j≠i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fXj xjjθ
� �q !2

dx1dx2 . . . dxn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IID, n

Ð
∂
∂θ log fX xjθð Þ
� �2

fX xjθð Þdx

+

2

Ð P
1≤ i< j≤ n

�
∂
∂θ log fXi xijθð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fX1;X2;...;Xn x1; x2; . . . ; xnjθð Þp� �
×

∂
∂θ log fXj xjjθ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fX1;X2;...;Xn x1; x2; . . . ; xnjθð Þph i�

dx1dx2 . . . dxn:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vanishes as∀i≠ j; Xi andXj are IID:ðXn

i= 1

∂

∂θ
log fXi xijθð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fXi xijθð Þ

q Y
j≠i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fXj xjjθ
� �q !2

dx1dx2 . . .dxn =

Pn
i= 1

Ð
∂
∂θ log fXi xijθð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fXi xijθð Þ

q� �2
dxi

since:

ð Y
j≠i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fXj xjjθ
� �q !2

dx1dx2 . . .dxi− 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} dxi+ 1 . . .dxn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} = 1,∀i.
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Note that for any pair of indices i≠ j,ð �
∂

∂θ
log fXi xijθð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þ

q �
×

∂

∂θ
log fXj xjjθ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þ

q �
dx1dx2 . . . dxn =

�
ð
∂

∂θ
log fXi xijθð Þ ∂

∂θ
log fXj xjjθ

� �
fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þdx1dx2 . . .dxn =ð

∂

∂θ
log fXi xijθð Þ ∂

∂θ
log fXj xjjθ

� �� � Yn
l= 1

fXl xljθð Þ dx1dx2 . . . dxn =
ð
∂

∂θ
log fXi xijθð Þ fXi xijθð Þdxi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

E ∂
∂θ log fX xjθð Þjθ
� �

=0

×
ð
∂

∂θ
log fXj xjjθ

� �Y
l≠i

fXl xljθð Þdx− i

� �
=0.

Therefore, using the Cauchy–Schwarz inequality,
Ð
f xð Þg xð Þdx

��� ���2 ≤Ð
f xð Þj j2dx

� � Ð
g xð Þj j2dx

� �
, and the fact that

fX xjθð Þ ∂
∂θ log fX xjθð Þ= fX xjθð Þ 1

fX xjθð Þ
∂
∂θ fX xjθð Þ= ∂

∂θ fX xjθð Þ,
we have:

1=
ð

θ̂ xð Þ− θ
� � ∂

∂θ
fX xjθð Þdx =

ð
θ̂ xð Þ− θ
� � ∂

∂θ
log fX xjθð Þ

� �
fX xjθð Þð Þdx =

ð
θ̂ x1, x2, . . . , xnð Þ− θ
� �

fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þ×

∂

∂θ
log fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þdx1dx2 . . . dxn =

ð
θ̂ x1,x2, ...,xnð Þ−θ
� �

fX1 ,X2 ,...,Xn x1,x2, ...,xnjθð Þ ∂
∂θ

log
Yn
i=1

fXi xijθð Þ
� �� �

dx1dx2 ...dxn

� �2

=

ð
θ̂ x1,x2, ...,xnð Þ−θ
� � Xn

i=1

∂

∂θ
logfXi xijθð Þ

� �
fX1 ,X2 ,...,Xn x1,x2, ...,xnjθð Þdx1dx2 ...dxn

� �2

≤

ð
θ̂ x1, x2, . . . , xnð Þ− θ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þ
q� �2

dx1dx2 . . .dxn

� �
×

ð Xn
i= 1

∂

∂θ
log fXi xijθð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þ

q� �2

dx1dx2 . . .dxn

 !
=
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ð
θ̂ x1, x2, . . . , xnð Þ− θ
� �� �2

fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þdx1dx2 . . .dxn
� �

×

Xn
i= 1

ð
∂

∂θ
log fXi xijθð Þ

� �2

fXi xijθð Þdxi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IID, n

Ð
∂
∂θ log fX xjθð Þ
� �2

fX xjθð Þdx

.

Hence, an alternative information-theoretic formulation of the data science uncer-
tainty principle is:ð

θ̂ x1, x2, . . . , xnð Þ− θ
� �� �2

fX1 ,X2 , ...,Xn x1, x2, . . . , xnjθð Þdx1dx2 . . .dxn ×
ð

∂

∂θ
log fX xjθð Þ

� �2

fX xjθð Þdx≥ 1
n
.

In other words,ð
θ̂ xð Þ− θ
� �� �2

fX xjθð Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Variance of the estimate θ̂

×
ð

∂

∂θ
log fX xjθð Þ

� �2

fX xjθð Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Variance of the score,
Fisher Information, I θð Þ

≥
1
n
.

For the more general case with possible estimator bias, the Cramér–Rao lower
bound can be similarly derived in terms of the bias expectation, E θ̂ Xð Þ− θjθ

� �
=

E θ̂ Xð Þjθ
� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ψ θð Þ

− θ:

ð
θ̂ xð Þ− θ
� �� �2

fX xjθð Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Variance of the estimate θ̂

×
ð

∂

∂θ
log fX xjθð Þ

� �2

fX xjθð Þdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Variance of the score,

fFisher Information, I θð Þ

≥
ψ′ θð Þ� �2

n
=

1
n

∂

∂θ
ψ θð Þ

� �2

>0.

The Cramér–Rao inequality effectively states that for a given sample size, the observed
data can’t yield parameter estimates that have simultaneously low score function vari-
ance (amount of information about the unknown parameter contained in the observ-
ables) and low estimator variance (precision). A decrease in one of these variances
drives the other proportionately higher. That is, for a given sample size, we cannot
guarantee that the estimator is arbitrary precise while also extracting a lot of reliable
information about the parameter of interest. This delicate balance between precision
and information is reminiscent of Gödel’s completeness and consistency theorem [23]
and the Heisenberg’s uncertainty principle.
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5.10.4.3 Normal Model Estimation Example
To illustrate the information-theoretic uncertainty principle, suppose we are modeling
a normal distribution process using a sample of n random observations xkf gnk = 1⁓
N μ, σ2ð Þ. To estimate the unknown parameter vector θ = μ, σ2ð Þ, we will use the unbi-
ased estimator vector

θ̂ = μ̂ = 1
n

Xn
k = 1

xk, σ̂2 = 1
n− 1

Xn
k = 1

xk − μ̂ð Þ2
� �′

.

Recall that for any distribution, the following parameter vector

τ̂ = μ̂ = 1
n

Pn
k = 1

xk, σ̂2 = 1
n− 1

Pn
k = 1

xk − μ̂ð Þ2, μ̂3 = 1
n

Pn
k = 1

xk − μ̂ð Þ3
� �′

represents an unbiased estimate for the vector of the first three moments, mean,
variance, and third-moment, i.e., the skewness scaled by a factor σ̂3:

τ = μ =E Xð Þ, σ2 =E X − μð Þ2, μ3 =E X − μð Þ3
� �

.

A necessary and sufficient condition for the mutual independence of the sample mean
and sample variance is that the underlying distribution is normal [288]. The fact that
the sample mean and sample variance are always uncorrelated Cov μ̂, σ̂2

� �
=0

� �
,

is true for any symmetric distribution (μ3 =0). This is because

E xk − μð Þ xl − μð Þ2
� �

= E xk − μð Þ|fflfflfflfflffl{zfflfflfflfflffl}
0

×E xl − μð Þ2
� �

=0,∀k≠l independenceð Þ,

Cov μ̂, σ̂2
� �

=E μ̂ × σ̂2
� �

−E μ̂ð Þ×E σ̂2
� �

=E μ̂ − μ + μð Þ× σ̂2
� �

− μE σ̂2
� �

=E μ̂ − μð Þσ̂2
� �

=

E
1
n

Xn
k = 1

xk − μð Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

μ̂ − μð Þ

1
n− 1

Xn
k = 1

xk − μð Þ2 − 1
n

Xn
k = 1

xk − μð Þ
� �2

" # !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

σ̂2

0BBB@
1CCCA=

1
n n− 1ð ÞE

Xn
k = 1

xk − μð Þ
� � Xn

l= 1

xl − μð Þ2
� �

−
1
n

Xn
k = 1

xk − μð Þ
� � Xn

k = 1

xk − μð Þ
� �2

 !
=

1
n n− 1ð Þ E

Xn
l= 1

xl − μð Þ3
� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

nμ3

−
1
n
E

Xn
k = 1

xk − μð Þ
� � Xn

k = 1
xk − μð Þ

� �2
 !2664

3775=
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1
n n− 1ð Þ nμ3 −

1
n
E

Xn
k = 1

xk − μð Þ
� � Xn

k = 1

xk − μð Þ2 +
Xn
k, l= 1

l≠k

xk − μð Þ xl − μð Þ

0BBBBBBB@

1CCCCCCCA

0BBBBBBB@

1CCCCCCCA

266666664

377777775=

1
n n− 1ð Þ

"
nμ3 −E

1
n

Xn
k = 1

xk − μð Þ3
� �#

= 1
n n− 1ð Þ nμ3 − μ3

� �
= n− 1ð Þμ3

n n− 1ð Þ = μ3

n
.

Even though all symmetric distributions (μ3 ≡0) have uncorrelated sample mean
and variance, i.e., Cov μ̂, σ̂2

� �
=0, the normal distribution is special since it is the

only one that guarantees that the sample mean and variance are also mutually inde-
pendent (a much stronger condition than being uncorrelated).

In our example, the density of the normal distribution model is

fXðxjθÞ= 1ffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2 and given the observations xkf gnk = 1, the likelihood of the

parameter vector θ is:

lðθjx1, x2, . . . , xnÞ=
Qn
k = 1

1ffiffiffiffiffiffiffi
2π σ2
p e

− x− μð Þ2
2σ2 = 1ffiffiffiffiffiffiffi

2π σ2
p� �n e−

Pn
k= 1

xk − μð Þ2
2σ2 .

The log likelihood, ll, and it’s first and second order partial derivatives evaluated

with respect to the parameter vector θ = μ|{z}
θ1

, σ2|{z}
θ2

 !′
are:

llðθjx1, x2, . . . , xnÞ= −
n
2
log 2π σ2� �

−
Xn
k = 1

xk − μð Þ2
2σ2 ,

∂

∂θ1
ll θð Þ=

Xn
k = 1

2 xk − μð Þ
2σ2 =

Xn
k = 1

xk − μð Þ
σ2 ,

∂

∂θ2
ll θð Þ= −

n
2

2π
2π σ2 +

Xn
k = 1

xk − μð Þ2
2σ4 = −

n
2σ2 +

Xn
k = 1

xk − μð Þ2
2σ4 ,

∂2

∂θ2∂θ1
ll θð Þ≡ ∂2

∂θ1∂θ2
ll θð Þ= −

Xn
k = 1

xk − μ
σ4 ,

∂2

∂θ2
1

ll θð Þ= −
Xn
k = 1

1
σ2 = −

n
σ2 ,

∂2

∂θ2
2

ll θð Þ= n
2σ4 −

Xn
k = 1

xk − μð Þ2
σ2ð Þ3 = n

2σ4 −
Xn
k = 1

xk − μð Þ2
σ6 .
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As we are trying to estimate the parameter vector θ̂ = θ1, θ2ð Þ′= μ̂, σ̂2
� �

′, the Fisher
information will be a symmetric 2× 2 matrix that captures the relative slope of the
log-likelihood function with respect to each of the 2 parameters:

I θð Þ= Ii, j θð Þ� �
=Eθ j∇θ log fXih∇θ log fX jð Þ=Eθ ∇θ log fXð Þ ∇θ log fXð Þ′� �

=

Eθ
∂
∂θ1

log fX ∂
∂θ1

log fX
� �

Eθ
∂
∂θ1

log fX ∂
∂θ2

log fX
� �

Eθ
∂
∂θ2

log fX ∂
∂θ1

log fX
� �

Eθ
∂
∂θ2

log fX ∂
∂θ2

log fX
� �

264
375,

where:

∇θg θð Þ= ∂

∂θ1
g, ∂

∂θ2
g

� �′
,

Ii, j θð Þ=Eθ
∂

∂θi
log fX xjθð Þ ∂

∂θj
log fX xjθð Þ

� �
=

ð
∂

∂θi
log fX xjθð Þ

� �
∂

∂θj
log fX xjθð Þ

� �
fX xjθð Þ dx,∀1≤ i, j≤ 2.

Following the previous discussion,

Eθ
∂

∂θi
log fX xjθð Þ

� �
=
ð

∂

∂θi
log fX xjθð Þ

� �
fX xjθð Þdx=

ð ∂
∂θi

fX xjθð Þ
fX xjθð Þ

 !
fX xjθð Þdx= ∂

∂θi

ð
fX xjθð Þdx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1

=0.

Similarly,

Eθ

∂2

∂θi∂θj
fX xjθð Þ

fX xjθð Þ

0@ 1A=
ð ∂2

∂θi∂θj
fX xjθð Þ

fX xjθð Þ

0@ 1AfX xjθð Þdx=
ð

∂2

∂θi∂θj
fX xjθð Þ dx=

∂2

∂θi∂θj

ð
fX xjθð Þdx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1

=0.

Thus, Ii, j θð Þ=Covθ
∂
∂θi

log fX xjθð Þ, ∂
∂θj

log fX xjθð Þ
� �

= Eθ ∇θ log fXð Þ ∇θ log fXð Þ′� �� �
i, j. To

show that the Fisher information matrix is a semi-positive definite covariance ma-

trix, let’s set ξ i ≡ ∂
∂θi

log fX xjθð Þ. Then, ∀v= v1, v2ð Þ 2 R 2 we have:
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0≤Var
X
i

viξ i

� �
=E

X
i

viξ i ξ i −E ξ ið Þð Þ
� �2

=
X
i, j

E vivj ξ i −E ξ ið Þð Þ ξ i −E ξ ið Þð Þ� �
=

X
i, j

viE ξ i −E ξ ið Þð Þ ξ i −E ξ ið Þð Þvj
� �

=
X
i, j

vi Cov ξ i, ξ j

� �
vj =

X
i, j

viIi, j θð Þvj = ν′ I θð Þ|{z}
2× 2

ν.

Under regularity conditions, the second order derivatives exist and integration and
differentiation can be swapped as the support of the integrand does not depend the
parameter we have:

∂2

∂θi∂θj
log fX xjθð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ll

=
∂2

∂θi∂θj
fX xjθð Þ

fX xjθð Þ −
∂
∂θi

fX xjθð Þ
fX xjθð Þ ×

∂
∂θj

fX xjθð Þ
fX xjθð Þ ,

−Eθ
∂2

∂θi∂θj
log fX xjθð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ll

0@ 1A=Eθ
∂

∂θi
log fX xjθð Þ ∂

∂θj
log fX xjθð Þ

� �
≡ Ii, j θð Þ.

Returning to our problem, we are trying to estimate the 2-parameter vector θ = θ1, θ2ð Þ′.
The Fisher information matrix is:

I θð Þ=
Eθ

∂
∂θ1

log fX ∂
∂θ1

log fX
� �

Eθ
∂
∂θ1

log fX ∂
∂θ2

log fX
� �

Eθ
∂
∂θ2

log fX ∂
∂θ1

log fX
� �

Eθ
∂
∂θ2

log fX ∂
∂θ2

log fX
� �

264
375

=
I1, 1 I1, 2

I2, 1 I2, 2

" #
.

The four components of the Fisher information matrix, I θð Þ2× 2, track the aggregate
amount of information about the parameter vector, θ = θ1, θ2ð Þ′≡ μ, σ2ð Þ′, that is cap-
tured by the random process in terms of the observed data xkf gnk = 1.

I1, 1 = −Eθ1 , θ1
∂2

∂θ2
1

ll θð Þ
 !

= −Eθ1 , θ1
∂

∂μ

Xn
k = 1

xk − μð Þ
σ2

� �
= n

σ2

I2, 2 = −Eθ2 , θ2
∂2

∂θ2
2

ll θð Þ
 !

= −Eθ2 , θ2
∂

∂θ2

Xn
k = 1

−
1
2σ2 +

xk − μð Þ2
2ðσ2Þ2

 !
=

−Eσ2 , σ2
n
2σ4 −

Xn
k = 1

xk − μð Þ2
ðσ2Þ3

 !
= −

n
2σ4 + n

σ2

ðσ2Þ3 = n
2σ4

I1, 2 = I2, 1 = −Eσ2 , μ
∂2

∂θ2∂θ1
ll θð Þ

� �
=Eσ2 , μ

Xn
k = 1

xk − μ
σ4

� �
= 1

σ4 Eσ2 , μ

Xn
k = 1

xk − μð Þ
� �

=0.
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Therefore, the Fisher information matrix and its inverse are

I θð Þ= I1, 1I1, 2

I2, 1I2, 2

" #
= −

Eθ1 , θ2
∂2

∂θ21
ll θð Þ

� �
Eθ1 , θ2

∂2

∂θ1∂θ2
ll θð Þ

� �
Eθ2 , θ1

∂2

∂θ2∂θ1
ll θð Þ

� �
Eθ2 , θ2

∂2

∂θ22
ll θð Þ

� �
26664

37775=
n

σ2 0

0 n
2σ4

" #
,

I − 1 θð Þ=
n

σ2 0

0 n
2σ4

" #− 1

=
σ2
n 0

0 2σ4
n

24 35.
As the estimator vector

θ̂ = θ̂ x1, x2, . . . , xnð Þ= θ̂1, θ̂2

� �′
= μ̂ = 1

n

Pn
k = 1

xk, σ̂2 = 1
n− 1

Pn
k = 1

xk − μ̂ð Þ2
� �′

is unbiased,

β′ðθÞ= ∂
∂θ1

Eθ θ̂
� �

|fflfflffl{zfflfflffl}
θ1

θ2

 !
=

μ
σ2

 ! , ∂
∂θ2

Eθ θ̂
� �

|fflfflffl{zfflfflffl}
θ1

θ2

 !
=

μ
σ2

 !

0BBBBBBBBB@

1CCCCCCCCCA
=

∂
∂μ μ ∂

∂σ2 μ
∂
∂μ σ2 ∂

∂σ2 σ2

 !
=

1 0

0 1

 !
= I2× 2.

Therefore, the information-theoretic form of the uncertainty principle manifests as

semi-positive-definiteness of a quadratic form Covθ θ̂
� �

≥ I − 1 θð Þ, i.e.,

Covθ θ̂ x1, x2, . . . , xnð Þ
� �

≥ β′ θð Þ I − 1 θð Þ β θð Þ= 1 0
0 1

� �
I − 1 θð Þ 1 0

0 1

� �
= I − 1 θð Þ.

Recall that for any distribution Cov μ̂, σ̂2
� �

= μ3
n and for symmetric distributions μ3 =0,

i.e., the covariance of the sample mean and sample variance is trivial. Also, since

μ̂⁓N μ, σ2
n

� �
and n− 1ð Þσ̂2

σ2 ⁓χ2
n− 1|ffl{zffl}
df

≡ Γ α = n− 1
2|fflfflfflfflffl{zfflfflfflfflffl}

scale

, β = 2|ffl{zffl}
shape

0B@
1CA, the variance of the parameter

estimate vector is:

Var θ̂
� �

=
Var μ̂ð Þ
Var σ̂2
� �0@ 1A=

σ2
n

2σ4
n− 1

0@ 1A.

This follows from:

Var μ̂ð Þ= σ2

n
,

346 Chapter 5 Inferential Uncertainty

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Var
n− 1ð Þσ̂2

σ2 ⁓χ2
n− 1

 !
=Var Γ α = n− 1

2
, β = 2

� �� �
= αβ2 = 2 n− 1ð Þ,

Var σ̂2
� �

=Var S2
� �

= 2 n− 1ð Þ σ4

n− 1ð Þ2 =
2σ4

n− 1
.

Covθ θ̂
� �

=
Cov μ̂, μ̂ð Þ Cov μ̂, σ̂2

� �
Cov μ̂, σ̂2
� �

Cov σ̂2, σ̂2
� �

264
375=

Var μ̂ð Þ μ3
n

μ3
n Var σ̂2

� �
24 35=

σ2
n 0

0 2σ4
n�1

24 35≥ I − 1 θð Þ≡

σ2
n 0

0 2σ4
n�1

24 35.
Finally, the representation of the uncertainty principle in terms of a semi-positive-
definite quadratic form becomes:

M ≡Covθ θ̂
� �

− I − 1 θð Þ>0,

M =
σ2
n 0

0 2σ4
n�1

24 35−
σ2
n 0

0 2σ4
n�1

24 35=
0 0

0 2σ4
nðn�1Þ

" #
>0,

ν′ M|{z}
2× 2

v>0, ∀ν 2 Rn0f g× Rn0f g.

In other words, for non-trivial processes, there is a lower limit to simultaneously re-
ducing the variability of the estimate vector at the same time as we reduce the vari-
ance of the score matrix.

5.10.4.4 Single-tone Example
Another demonstration of the information-theoretic uncertainly principle in the field
of data science is based on a complex-valued single-tone process [289, 290]:

YðtjθÞ=m t, θð Þ≡Aei ωt + φð Þ2 C ,

where the parameter vector θ = θ1, θ2, θ3ð Þ= A, φ, ωð Þ specifies the signal amplitude,
phase, and frequency. This is a special case of a more general multi-frequency tone
process YðtjθÞ=m t, θð Þ≡ PL

l= 1 Ale
i ωlt + φlð Þ that superimposes a number of single-

tones into a more nuanced pattern.
Suppose we record a sequence of random observations from this process, Ytf gn− 1

t =0,
and model the complex-valued process using additive Gaussian noise,
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Yt =mt θð Þ+ ϵt , ϵt ⁓N 0, Σ= σ2I2× 2
� �

.

Assume that the process expectation is Eθ Ytð Þ=mt θð Þ= μ θð Þ
ν θð Þ

� �
2 C, the (real and

imaginary) process variance σ2 is known, and we are aiming to estimate the time (t)
invariant parameter vector θ = θ1, θ2, θ3ð Þ= A, φ, ωð Þ consisting of the process ampli-
tude (A), phase angle (φ), and angular frequency (ω).

Solutions to this single-tone estimation problem have various applications in
power systems, communication-system carrier-recovery, object localization using radar
and sonar systems, estimation of prenatal heart rates, to name a few [291, 292].

Suppose the estimation of the exponential single tone complex-valued model is
based on n discrete time IID observations:

Yt = Aei ω t ·T + t0ð Þ+ φð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
True signal

+ ϵt|{z}
Noise

,∀0≤ t ≤ n− 1,

where the amplitude A>0, the phase − π ≤ φ < π, and the frequency 0< ω < π are all
non-random model parameters. Assume the data sampling rate is 1

T (recording 1 ob-
servation in time T) and the initial (starting) time point, t0, can be specified. The
real and imaginary parts of the signal noise (error) ϵt, which potentially corrupts
the original signal, are modeled as independent zero-mean Gaussian processes with
variance σ2. Given the parameter vector, θ = θ1, θ2, θ3ð Þ= A, φ, ωð Þ, the probability
distribution of this process may be expressed in terms of the real, Re Ytð Þ, and imagi-
nary, Im Ytð Þ, parts of the observations:

f Y0, . . . ,Yn− 1jθð Þ=
Yn− 1
t =0

1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− ϵ′t ϵt
2σ2 =

Yn−1
t=0

1ffiffiffiffiffiffiffiffiffiffi
2π σ2
p e

− 1
2σ2

Re Ytð Þ−Re Aei ω t ·T+ t0ð Þ+φð Þ� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

μt

0B@
1CA

2

+ Im Ytð Þ− Im Aei ω t ·T+ t0ð Þ+φð Þ� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vt

0B@
1CA

20B@
1CA
.

We can estimate the parameter vector θ̂ = Â, φ̂, ω̂
� �

in terms of the process distribu-
tion of Y, fY = fYðYjθÞ. For a multivariate normal distribution, Y⁓N m, Σð Þ, with a
mean vector is m=m θð Þ and a variance-covariance matrix Σ independent of θ, the
elements of the 3× 3 Fisher information are expressed as Ii, j = ∂m′

∂θi
Σ− 1 ∂m

∂θj
.

As Y is complex-valued, the n samples yield 2n observations (independent real
and imaginary parts) and the density of the multivariate normal distribution is:

f ðyjm, ΣÞ= 2πð Þ− n Σj j|{z}
det Σ

− n
2 e− 1

2 y−mð Þ′Σ− 1 y−mð Þ,
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with a corresponding log-likelihood function:

l m, Σjxð Þ= − n log 2πð Þ− n
2
log Σj j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

independent of θ

− 1
2 x−mð Þ′Σ− 1 x−mð Þ∝ − 1

2 x−mð Þ′Σ− 1 x−mð Þ.

Ii, j =E
∂l
∂θi

� �′ ∂l
∂θj

" #
=E

∂l
∂ x−mð Þ|fflfflfflfflffl{zfflfflfflfflffl}

quadratic form

derivative

∂ x−mð Þ
∂θi

0BBBBBBBBBB@

1CCCCCCCCCCA

′

∂l
∂ x−mð Þ

∂ x−mð Þ
∂θj

2666666666664

3777777777775
=

E x−mð Þ′Σ− 1 ∂m
∂θi

� �′
x−mð Þ′Σ− 1 ∂m

∂θj

� �
= ∂m′

∂θi
Σ− 1� �′E x−mð Þ x−mð Þ′� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Σ

Σ− 1 ∂m
∂θj

=

∂m′

∂θi
Σ− 1ΣΣ− 1 ∂m

∂θj
= ∂m′

∂θi
Σ− 1 ∂m

∂θj
.

In our 2nð Þ-variate case, Y⁓N m= μ θð Þ
v θð Þ

� �
, σ2I2× 2

� �
:

Ii, j =
∂

∂θi

μ
v

 !0
Σ− 1 ∂

∂θj

μ
v

 !
= 1

σ2

Xn− 1

t =0

∂μt

∂θi

∂μt

∂θj
+ ∂vt
∂θi

∂vt
∂θj

� �
.

Let’s denote by n0 = t0
T the number of missing initial observations prior to the start

of data acquisition, and also denote the sum of the indices and the sum of the
squared indices by:

P =
Xn− 1

l=0

l= n n− 1ð Þ
2

andQ=
Xn− 1

j=0

j2 = n n− 1ð Þ 2n− 1ð Þ
6

.

Then, we can explicate the term I3, 3 in the 3× 3 Fisher information matrix:

I3, 3 =
1

σ2

Xn− 1

t =0

∂ A cos ω t ·T + t0ð Þ+ φð Þð Þ
∂ω

× ∂ A cos ω t ·T + t0ð Þ+ φð Þð Þ
∂ω

+
�
∂ A sin ω t ·T + t0ð Þ+ φð Þð Þ

∂ω
× ∂ A sin ω t ·T + t0ð Þ+ φð Þð Þ

∂ω

�
=

1
σ2

Xn− 1

t =0

−A t ·T + t0ð Þ sin ω t ·T + t0ð Þ+ φð Þð Þ2 + −A t ·T + t0ð Þ cos ω t ·T + t0ð Þ+ φð Þð Þ2
h i

=

1
σ2

Xn− 1

t =0

A t ·T + t0ð Þð Þ2 = 1
σ2

Xn− 1

t =0

A t ·T + n0Tð Þð Þ2 =
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1
σ2

Xn− 1

t =0

A t ·T + n0Tð Þð Þ2 = A2T2

σ2 n20n+ 2n0P+Q
� �

.

Similarly, we can explicate the other 5 terms in the symmetric Fisher information
matrix of the parameter vector θ = A, φ, ωð Þ:

I θð Þ= Ii, j θð Þ� �
= 1

σ2

n 0 0

0 A2n A2T n0n+ Pð Þ
0 A2T n0n+ Pð Þ A2T2 n20n+ 2n0P +Q

� �
264

375.
We can invert the Fisher information matrix provided we have:

A2n ·A2T2 n20n+ 2n0P +Q
� �

− A2T n0n+Pð Þ� �2≠0, nQ− P2≠0, n2
n2 − 1
12

≠0.

The corresponding inverse of the Fisher information matrix is:

I θð Þ− 1 = σ2

1
n 0 0

0
n20n+ 2n0P +Q

A2 nQ− P2ð Þ
non+ P

A2T P2 − nQð Þ
0 non+P

A2T P2 − nQð Þ
n

A2T2 nQ− P2ð Þ

266664
377775= σ2

1
n 0 0

0
12 n20n+ 2n0P+Qð Þ

A2n2 n2 − 1ð Þ − 12 non+Pð Þ
A2Tn2 n2 − 1ð Þ

0 − 12 non+ Pð Þ
A2Tn2 n2 − 1ð Þ

12n
A2T2n n2 − 1ð Þ

266664
377775.

Recall that the Cramér–Rao lower bound (CRLB) is a lower limit on the variance of
unbiased estimators and the Fisher Information measures the amount of informa-
tion that an observable random variable X carries about an unknown parameter θ
associated with the distribution that models the process X [287, 293, 294].

Observe that in our case:
1. The Cramér–Rao lower bound (CRLB) for the magnitude (θ1 =A), i.e., I1, 1, is in-

dependent of the other variables, whereas the CRLBs for the phase (φ), i.e., I2, 2,
and the frequency (ω), i.e., I3, 3, are dependent on the magnitude (A).

2. When the sampling starting point is too late (t0 is large), the reliability of the
inference for the phase θ2 = φð Þmay be compromised. This problem can be recti-
fied by increasing the subsequent sample size n. This ties to the well-known law
of large numbers [164, 295].

3. The correlation between phase and frequency estimation may be disentangled
only when non+P =0. This choice also minimizes the CRLB for the phase (φ),
as ∂

∂no
I θð Þ− 1
h i

2, 2
=0, non+P =0.

Thus far, we derived the Fisher information of the parameter vector θ = A, φ, ωð Þ.
Next, we can examine the variance of the parameter estimate θ̂ = Â, φ̂, ω̂

� �
for the

observed process (Y) and the corresponding theoretical single-tone model (m):

Yt =A ei ωt ·T + φð Þ + ϵt, t = n0, n0 + 1, . . . , n0 + n− 1ð Þ,
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mt =A ei ωt ·T + φð Þ,

Yt = 1+ ϵt

mt|{z}
gt

0BB@
1CCAmt ,

where, gt ≡
ϵt
mt

=Re ϵt
mt

� �
+ i Im ϵt

mt

� �
is intrinsically complex and ϵt⁓N 0, σ2I2× 2ð Þ. As

ϵt is invariant under orthogonal transformation, the rotation factor e− i ωt ·T + φð Þ will
not affect its distribution and Im ϵt

mt

� �
⁓N 0, σ2

A2

� �
. That is,

Var Im
ϵt

mt

� �� �
= 1
A2 σ2 = 1

SNR
,

1+ ϵt

mt
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+Re

ϵt

mt

� �� �2

+ Im
ϵt

mt

� �2
s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

magnitude

× e

i arctan
Im ϵt

mt

� �
1+Re ϵt

mt

� �
0@ 1A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
phase .

Let’s consider high signal-to-noise ratio (SNR), i.e., 1 Re gtð Þ≡Re ϵt
mt

� �
and 1

Im gtð Þ. Then,

1+ ϵt
mt

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+Re

ϵt

mt

� �� �2

+ Im
ϵt

mt

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
’1

vuuut × e

i arctan
Im

ϵt
mt

� �
1+Re

ϵt
mt

� �
0@ 1A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
’e

i arctan Im
ϵt
mt

� �
’e

i Im
ϵt
mt

� � ’ e
i Im ϵt

mt

� �
.

The phase uncertainty (error) is an additive Gaussian noise:

Yt =Ae

i

ωt ·T + φ + Im
ϵt

mt

� �
|fflfflfflfflffl{zfflfflfflfflffl}
additive phase

uncertainty

0BB@
1CCA
, t = n0, n0 + 1, . . . , n0 + n− 1ð Þ.

We can compute the Least Squares unbiased estimate of the reduced parameter vec-
tor θ2, θ3ð Þ= φ, ωð Þ:

E|{z}
least squares

error

=
Xn0 + n− 1ð Þ

t = n0

ωt ·T + φ + Im
ϵt

mt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ϕ t½ �

− ω̂t ·T − φ̂

0BB@
1CCA

2

.

Setting to zero the partial derivatives with respect to φ̂ and ω̂, we obtain:
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0= ∂E
∂φ̂

= 2
Xn0 + n− 1ð Þ

t = n0

ϕ t½ �− ω̂t ·T − φ̂ð Þ ,
Xn0 + n− 1ð Þ

t = n0

ϕ t½ �= ω̂ n0n+ Pð Þ ·T + nφ̂,

0= ∂E
∂ω̂

= 2
Xn0 + n− 1ð Þ

t = n0

ϕ t½ �− ω̂t ·T − φ̂ð Þt ·T ,

Xn0 + n− 1ð Þ

t = n0

tTϕ t½ �= ω̂T2
Xn0 + n− 1ð Þ

t = n0

t2 + φ̂T
Xn0 + n− 1ð Þ

t = n0

t = ω̂T2
Xn− 1

t =0
n0 + tð Þ2 + φ̂T

Xn− 1
t =0

n0 + tð Þ=

ω̂T2 n02n+ 2n0P +Q
� �

+ φ̂T n0n+Pð Þ.

Summarizing these estimations in a more concise matrix form,

n T n0n+Pð Þ
T n0n+Pð Þ T2 n02n+ 2n0P +Qð Þ

" #
φ̂

ω̂

" #
=

Pn0 + n− 1

t = n0

ϕ t½ �
Pn0 + n− 1

t = n0
tTϕ t½ �

2664
3775.

The matrix on the left can be inverted by observing that,

n T n0n+ Pð Þ
T n0n+Pð Þ T2 n02n+ 2n0P +Qð Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

reducedð Þ original Fisher information matrix

× T2 n02n+ 2n0P+Qð Þ −T n0n+Pð Þ
−T n0n+Pð Þ n

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inverse matrix up to a constantð Þ

=

T2 nQ−P2� � 1 0

0 1

" #
= n2T2 n

2 − 1
12

1 0

0 1

" #
.

Therefore,

A2n A2T n0n+Pð Þ
A2T n0n+ Pð Þ A2T2 n02n+ 2n0P +Qð Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

original Fisher information submatrix

− 1

=

1
A2
T2 n02n+ 2n0P +Qð Þ 1

T2 nQ−P2ð Þ
1
A2

−T n0n+Pð Þð Þ 1
T2 nQ−P2ð Þ

1
A2

−T n0n+Pð Þð Þ 1
T2 nQ− P2ð Þ

1
A2
n 1
T2 nQ− P2ð Þ

24 35
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inverted submatrix

.

The reduced parameter estimate for θ2, θ3ð Þ= φ, ωð Þ becomes:

φ̂
ω̂

" #
= 1
T2 nQ−P2ð Þ

T2 n02n+ 2n0P+Qð Þ −T n0n+Pð Þ
−T n0n+Pð Þ n

" # Pn0 + n− 1

t = n0
ϕ t½ �

Pn0 + n− 1

t = n0

tTϕ t½ �

2664
3775,
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and the frequency and phase parameter estimates become:

φ̂ = 1
T2 nQ− P2ð Þ − T n0n+ Pð Þ

Xn0 + n− 1ð Þ

t = n0

tT ωtT + φ + Im gtð Þð Þ+
"

T2 n02n+ 2n0P +Q
� � Xn0 + n− 1ð Þ

t = n0

ωtT + φ + Im gtð Þ
#
,

ω̂ = 1
T2 nQ−P2ð Þ ×

n
Xn0 + n− 1ð Þ

t = n0

tT ωtT + φ + Im gtð Þð Þ−T n0n+ Pð Þ
Xn0 + n− 1ð Þ

t = n0
ωtT + φ + Im gtð Þð Þ

 !
.

To compute the variability of the frequency and phase estimates, we first look at
their dispersions:

φ̂�E φ̂½ �¼ 1
T2 nQ�P2ð Þ �T n0nþPð Þ

Xn0þ n�1ð Þ

t¼n0
tTIm gtð Þ

 

þT2 n02nþ2n0PþQ
� � Xn0þ n�1ð Þ

t¼n0
Im gtð Þ

!
;

ω̂�E ω̂½ � ¼ 1
T2 nQ�P2ð Þ nT

Xn0þ n�1ð Þ

t¼n0
tTIm gtð Þ�T n0nþPð Þ

 Xn0þ n�1ð Þ

t¼n0
Im gtð Þ

!
.

Let’s examine some of the expectations that play roles in the estimation of the vari-
ance-covariance matrix:

E Im gtð Þð Þ Im glð Þð Þ½ � ¼ 1
A2 σ2δt;l ¼ 1

SNR
δt;l;

E
Xn0 + n− 1ð Þ

t = n0

t Im gtð Þ
 !2
24 35= 1

SNR

Xn0 + n− 1ð Þ

t = n0

t 2 = 1
SNR

n02n+ 2n0P +Q
� �

,

E
Xn0 + n− 1ð Þ

t = n0

Im gtð Þ
 !2
24 35=

Xn0 + n− 1ð Þ

t = n0

Xn0 + n− 1ð Þ

l= n0

E Im gtð Þð Þ Im glð Þð Þ½ �= n
SNR

,

E
Xn0 + n− 1ð Þ

t = n0

t Im gtð Þ
 ! Xn0 + n− 1ð Þ

t = n0

Im gtð Þ
 !" #

= 1
SNR

Xn0 + n− 1ð Þ

t = n0

t = 1
SNR

n0n+Pð Þ.

Therefore, the three elements of the variance-covariance matrix corresponding to the
frequency and phase estimates are:
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Cov φ̂, φ̂½ �=E φ̂ −E φ̂½ �ð Þ φ̂ −E φ̂½ �ð Þ½ �=

1
T2 nQ− P2ð Þ
� �2 1

SNR
×

T4 n0n+Pð Þ2 n02n+2n0P+Q
� �

+nT4 n02n+2n0P+Q
� �2−2T4 n02n+2n0P+Q

� �
n0n+Pð Þ2

� �
=

1
T2 nQ−P2ð Þ
� �2 1

SNR
T4 n02n+ 2n0P +Q
� �

nQ−P2� �� �
=

1
T2 nQ− P2ð Þ

1
SNR

T2 n02n+ 2n0P +Q
� �

.

Cov ω̂, ω̂½ �=E ω̂ −E ω̂½ �ð Þ ω̂ −E ω̂½ �ð Þ½ �=

1
T2 nQ− P2ð Þ
� �2

n2T2 1
SNR

Xn0 + n− 1ð Þ

t = n0

t2
" #

+T2 n0n+Pð Þ2n 1
SNR

−
1

SNR
2nT2 n0n+Pð Þ2

 !
=

1
T2 nQ−P2ð Þ
� �2 1

SNR
n02n+ 2n0P +Q
� �

n2T2 −T2 n0n+Pð Þ2n
� �

=

1
T2 nQ−P2ð Þ
� �2 1

SNR
nT2 nQ− P2� �

= 1
T2 nQ−P2ð Þ

1
SNR

n.

Cov φ̂, ω̂½ �=E φ̂ −E φ̂½ �ð Þ ω̂ −E ω̂½ �ð Þ½ �=

1
T2 nQ− P2ð Þ
� �2 1

SNR
×

− nT3 n0n+Pð Þ n02n+ 2n0P +Q
� �

+ nT3 n0n+Pð Þ n02n+ 2n0P +Q
� �

+
�

T3 n0n+Pð Þ3 − nT3 n0n+Pð Þ n02n+ 2n0P +Q
� ��=

1
T2 nQ− P2ð Þ
� �2 1

SNR
T3 n0n+Pð Þ n0n+Pð Þ2 − n n02n+ 2n0P +Q

� �� �
=

−
1

T2 nQ−P2ð Þ
1

SNR
T n0n+Pð Þ.

And the phase-frequency covariance matrix is:

Cov
φ̂

ω̂

" #
= 1
T2 nQ−P2ð Þ

σ2

A2|{z}
1

SNR

T2 n20n+ 2n0P +Q
� �

− T n0n+Pð Þ
−T n0n+ Pð Þ n

" #
=
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σ2

T2 n20n+ 2n0P+Qð Þ
T2 nQ−P2ð ÞA2 − T n0n+ Pð Þ

T2 nQ−P2ð ÞA2

− T n0n+ Pð Þ
T2 nQ−P2ð ÞA2

n
A2T2 nQ−P2ð Þ

2664
3775= σ2

n20n+ 2n0P +Qð Þ
nQ− P2ð ÞA2 − n0n+Pð Þ

T nQ−P2ð ÞA2

− n0n+ Pð Þ
T nQ−P2ð ÞA2

n
A2T2 nQ−P2ð Þ

2664
3775.

Earlier we computed the Fisher information matrix and its inverse:

I θð Þ= Ii, j θð Þ� �
= 1

σ2

n 0 0

0 A2n A2T n0n+ Pð Þ
0 A2T n0n+Pð Þ A2T2 n02n+ 2n0P +Qð Þ

264
375,

I θð Þ− 1 = σ2

1
n 0 0

0
n20n+ 2n0P +Q

A2 nQ−P2ð Þ − non+ P
A2T P2 − nQð Þ

0 − non+P
A2T P2 − nQð Þ

n
A2T2 nQ− P2ð Þ

266664
377775.

Therefore, the difference matrix of the reduced parameter variance matrix of the phase
and frequency and the reduced inverse Fisher information matrix corresponding to the
phase frequency is trivial:

Cov
φ̂

ω̂

" #
− I

φ̂
ω̂

" # !− 1

=
0 0

0 0

" #
.

This implies that for efficient estimates [296], which attain the CRLB, there is no residual
uncertainty. However, for non-efficient estimates, the difference matrix may be strictly

positive-definite, Cov
φ̂

ω̂

� �
− I

φ̂
ω̂

� �� �− 1

>0, implying some residual uncertainty in the

estimator. Recall that the matrix notation A≥B denotes semi-positive definiteness of the

corresponding difference matrix A−B≥0, i.e., u′ A−Bð Þu= hujuiA−B ≥0,∀u 2 R3n 0f g.
In the previous example of the normal distribution, the difference matrix

Cov
φ̂

ω̂

� �
− I

φ̂
ω̂

� �� �− 1

>0 is always positive definite. However, this single-tone

example with high signal-to-noise ratio illustrates a case where the least square
estimate yields a “trivial” difference matrix

Cov
φ̂

ω̂

" #
− I

φ̂
ω̂

" # !− 1

=02× 2.

The high signal-to-noise ratio assumption is essential as we are able to shift the ad-
ditive Gaussian frequency noise onto an additive phase noise. Without this assumption,
the matrix on the left hand size, which represents the difference of the covariance
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matrix of the phase and frequency estimator and its corresponding inverse Fisher infor-
mation matrix, won’t be strictly positive definite.

A governing principle in quantifying the uncertainty for unbiased estima-
tors in data science utilizes the positive definiteness of the matrix difference be-
tween the parameter covariance matrix and inverse Fisher information matrix,

i.e., u′ Var θ̂
� �

− I θ̂
� �− 1

� �
u≥0,∀u. This single-tone parameter estimation prob-

lem has many natural applications and illustrates an example of resolving the
uncertainty principle in data science problems where efficient estimates exist.

Additional modern generalizations of entropic uncertainty relations in finite-
and infinite-dimensional spaces, wave-particle quantum duality, communication
security, and cryptography applications are presented in [297].

5.10.5 Data Science Formulation

Let’s start by examining L2 Rð Þ uncertainty. By Schwartz-Paley-Wiener theorem [298], it
is impossible for f 2 L2 and f̂ to both decrease extremely rapidly. If both have rapidly
decreasing tails: f xð Þj j≤C 1+ xj jð Þne−aπx2 and f̂ ωð Þ

��� ���≤C 1+ ωj jð Þne−bπ ω2
, for some con-

stant C, polynomial power n, and a, b 2 R , then f =0 (when ab> 1); f xð Þ= Pk xð Þe−aπx2

and f̂ ωð Þ= P̂k ωð Þ* 1ffiffi
a
p e− ω2

4πa

� �
, where deg Pkð Þ≤ n (when ab= 1); or f̂ =0 (when ab< 1)

[299]. Effectively, this suggests that a function and its Fourier transform can’t be
simultaneously localized in their respective space and frequency domains.

Another way to formulate the data science uncertainty principle builds on the in-
formation-theoretic approach. As the data size increases, n!∞, we must have low
signal energy, S

N ! 0. And vice-versa, for high energy signals, if S
N > ϵ >0, then we

must have n<Nϵ. Less formally, this direct statement translates into an uncertainty
principle dictating a limit on the joint generality and scope of inference against the
precision and robustness of big data analytics.

Similar to the thermodynamic limitation, the uncertainty principle in data sci-
ence suggests a duality between data size and information energy. In other words,
there is a limitation on the increase of the information value (energy) of the data
and the complexity and size of the data.

Many big data science applications represent complex data as graphs. Related
to the information-theoretic formulation above, a graph-theoretic explication of the
uncertainty principle can also be obtained based on the graph Fourier transform
[300]. Big data graph representation also facilitates a direct relation between uncer-
tainty principle for performance of signal recovery, sampling rate, and sample loca-
tion [301].

Data science research is very broad, deep, and transdisciplinary. Two specific is-
sues that commonly arise in many big data applications involve access to valuable
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datasets and data representation as computable objects. For instance, most of the
health data cannot be readily shared because they contain personal, protected, or
sensitive information. Findable, accessible, interoperable, and reusable (FAIR) data-
sharing and open-science principles clearly demonstrate the potential of big data to
expand our knowledge and rapidly translate science into practice [38, 302]. The main
problem is that there are no mechanisms in place to enable sharing of, and collab-
oration with, big data without risking inappropriate use of sensitive information.
Methods like ϵ-differential privacy [303], DataSifter statistical obfuscation, and ho-
momorphic encryption [304] enable the desensitization of large, complex and het-
erogeneous data archives by statistically obfuscating the data, yet preserving their
joint distribution. Such techniques allow physicians from different clinics, or data
governors, to share their data and enable the construction of normative databases
needed by Dr. Doe, and others, to use for diagnosis, treatment, and prognosis for
patients like Mr. Real.

There are also some early approaches addressing the big data challenge of
modeling, interrogating and scientific inference. For instance, tensor mining [305]
and Compressive Big Data Analytics (CBDA) [15, 128] allow the modeling and infer-
ence based on large, heterogeneous, incomplete, multiscale and multi-source data-
sets. Such techniques can form the basis for building an automated clinical decision
support system that clinicians, like Dr. Doe, can utilize to obtain data-driven evi-
dence-based actionable knowledge necessary to identify the clinical state, suggest
medical treatment, and communicate longitudinal forecasting for her patients.

This discussion leads to two conclusions. First, albeit the exact interplays of
data quality, size, complexity, and energy may be widely varying across studies and
applications, there are also some specific data science limitations. For big data that
heavily depend on the specific representation and meta-data interpretation, these
limitations relate to inferential generalizability, scope, precision, and reliability.-
Second, the scientific, computational, and engineering communities need to join
forces in laying the mathematical foundations for representation, inference, and in-
terpretation of big datasets. This will provide a framework to track more precisely
limits on the data science uncertainty principle within the scope of each specific
data representation scheme.
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Appendix

1 Probabilistic Bra-Ket Notation and Data Science Synergies with Quantum

Mechanics

The classical quantum mechanics parallels between measurable quantities and op-
erators translate in data science to data and meta-data specifications (measurables)
and inference (operators). For instance, given a dataset Xη × κ⁓%, descriptors such as
data size η and feature size κ remain unaffected when they are transformed to (infer-
ence) operators, as these are generally known, however the data distribution % often
is unknown and requires data-driven estimation:

η ! η̂
κ ! κ̂
%! %̂

.

������� (1)

There may be multiple strategies to translate operator (b) quantization in physics to
data science linear-model inference operators ( · j ·h i) that ensure consistent, reli-
able, and model-based prospective state-prediction:

E! i�h ∂
∂t quantummechanicsð Þ

pη, κ ! h · j · i data science inferenceð Þ .
����� (2)

Data science forecasting is the process of estimating a function f Xð Þ that predicts
the typical output value Y corresponding to specific input X. Model-based inference
is the dual problem of inductively learning the relationship between the observed
covariates X and the outcome Y that explicates the relation between combinations
of X and particular changes of Y. In other words, model inference aims to under-
stand the (model-based) underlying mechanistic association, e.g., physical, biologi-
cal, social, environmental, between X and Y.

The conditional expectation of Y given X, defined by f Xð Þ=EðYjXÞ, can be inter-
preted in two complementary ways. First, as a deterministic function of X, reflecting
a large sample size (big data with significant number of observed X,Yð Þ pairs) from
their joint distribution, and averaging the output Y values that are coupled with
their corresponding X value, i.e.,

E YjX = xð Þ=
ð
Ω
yp yjxð Þdy.

Alternatively, the conditional expectation may be interpreted as a scalar random
variable representing a realization obtained by sampling X from its marginal distri-
bution and plugging this value into the deterministic function E YjX = xð Þ.

Using linear models to represent relations between independent variables
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hX′j= X1, X2, . . . , Xκð Þ′=
x1, 1 � � � x1, κgX1

..

. . .
. ..

.

xη, 1 � � � xη, κgXη

2664
3775

and a dependent variable jYi=
y1
y2
..
.

yη

0BBB@
1CCCA implies the following explicit relations:

jYi= hX′jβi+ ϵ ≡ X′
� �′β + ϵ =Xβ + ϵ, i.e., yi =

Pκ

j= 1
xi, jβj =Xiβ + ϵi,∀1≤ i≤ η

jϵi=

ϵ1

ϵ2

..

.

ϵ η

0BBBBB@

1CCCCCA⁓D μ, Σð Þ.

���������������
This model represents a linear function of the parameter vector (β), not the observed
predictors X.

2 Univariate Random Variables (Processes)

We will present the core definitions first in the context of a single variable. Later, we
will generalize these to multi-feature random vectors and multivariate processes.

To estimate the conditional expectation of Y given X, f Xð Þ=EðYjXÞ, we need to
estimate the parameter vector (effect size), β. This can be accomplished by least
squares estimation of the model fit (fidelity term), or by optimizing an additive ob-
jective function involving fidelity and regularization terms:

L βð Þ= jjjYi− X′jβ
� �jj2 = Xη

i= 1

yi −
Xκ

j= 1
xi, jβj

 !2

.

The Jacobian of the objective function L .ð Þ is defined by:

hJj= ∂

∂β1
, ∂

∂β2
, . . . , ∂

∂β κ

� �
.

For a symmetric matrix, A, and an objective function L vð Þ= hvj Avi≡ ν′Av, the Jaco-

bian of L is JjLh i= ∂L
∂β = 2′A′= 2 Avð Þ′. Here L βð Þ= kjYi− hX′jβik2 = Y −Xβk k2, which is

minimized when 0= JjLh i= ∂L
∂β = − 2X′ Y −Xβð Þ= − 2 Xj Y −Xβð Þh i.

Therefore, 0= XjY −Xβh i implying 0= XjYh i− XjXβh i and XjYh i= XjXβh i, i.e., X′Y =
X′Xβ. The least squares solution is
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β̂ = X′X
� �− 1

X′Y

i.e.,

β̂OLS = XjXh i− 1 XjYh i.

β̂OLS represents the least squares estimates, or effects, for the linear model jYi= hβjXi+ ϵ.

3 Conditional Probability

For a pair of events, A, B � Ω, their probabilities of being observed are hAj and hBj.
To define the conditional probability in bra-ket notation, observed (given) evidence
will be denoted by jBi and represent the probability of the evidence. Conditional
probability is defined by:

hAj|{z}
event

Bj i|{z}
evidence

= AjBh i≡P AjBð Þ= P ABð Þ
P Bð Þ .

Note the following traditional properties:

1= AjBh i , ∅ 
 B � A
0= AjBh i , P ABð Þ=0, andB∩A=∅) 0= AjBh i=0

AjBh i= hAj ≡ AjΩh i , B andA aremutually independent, P ABð Þ=P Að ÞP Bð Þ
AjBh i= hAj , BjAh i= hBj

hA∪B = hAj j+ hBj , B andA are disjoint,B∩A=∅
hA∪B = hAj j+ hBj− hA∩Bj
hAc = 1− hAj j,whereAc ≡ΩnA
AjBh i= BjAh i hAjhBj ,Bayesian rule

∀ω 2 Ω, elementary events, ωijωj
� �

= δi, j =
1, i= j
0, i≠ j

orthonormalityð Þ
�

��������������������
The unitary operator is defined by:

Î ≡
X
i

ωii hωij j,

which preserves the conditional probability for any pairs of (composite) events
A, B � Ω:

AĵIjB
D E

=
X

ω2Ω
hAjωi hωjBi=
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¼
X

ω2A
ωjBh i ¼|{z}

P ωjBð Þ¼P ω ∩Bð Þ
P Bð Þ

X
ω2A∩B

hωjBi ¼|{z}
A∪Bh j= Ah jþ Bh j� A∩Bh j

AjBh i:

The last equality is due to hA∪B = hAj j+ hB − hA∩Bj j, since
hA∩BjBi= hAjBi+ hBjBi− hA∪BjBi= hAjBi+ 1− 1= hAjBi.

Also, the trivial event and evidence for the entire sample space, Ω, are as expected:

Ωi= Î
�� ��Ωi= P

i
jωii hωijΩi|fflfflffl{zfflfflffl}

1

=
P
i
jωii,

hΩ = hΩj ĵI =
X
i

Ωjωih i|fflfflffl{zfflfflffl}
1

hωij=
X
i

hωij.

These properties ensure the probability measure normalization requirement:

1= hΩj=
X
i

hΩjωii hωij=
X
i

hΩ ωij i
X
j

ωjjΩ
� �!

=
 

=
X
i, j
hΩ ωij i ωjjΩ

� �
= ΩjΩh i= Ω Î

�� ��ΩD E
= 1.

The duality of the classical physics bra and ket operators on Hilbert spaces simply
means that they are Hermitian conjugates of one another. This duality is also true
for any kevent, a subset of the sample space, A � Ω.

jAi= ÎjAi=
X
i

ωii hωij jAi=
X
i

jωiiA ωij i ωijΩh i
hAjΩi =

X
ω2A

jωi|{z}
base
events

× ωjΩh i
hAjΩi|fflffl{zfflffl}

conditional

.

Thus, jAi explicitly identifies what atomic outcomes are part of the composite event
A as well as the conditional probability of each base-event under evidence A.

Plugging the entire sample space in the above, we get the expected identity:

hΩjAi=
X

ω2A
hΩjωi|fflffl{zfflffl}

1

ωjΩh i
hAjΩi =

X
ω2A

ωjΩh i
hAjΩi =

1
hAjΩi

X
ω2A

ωjΩh i= hAjΩihAjΩi = 1.

Similarly, we can expand the bra component for the composite event A:

hA = hAj ĵI =
X
i

hA ωii hωij j=
X

ω2A
hAjωi|fflffl{zfflffl}

1

hωj=
X

ω2A
hωj.

Thus, jAi, identifies both its base-events as well as their conditional probabilities
under the evidence A, whereas hAj only explicates its atomic constituents (base
events).
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4 Evolution: Time-Varying Processes, Probability, and Data

Sometimes, the probability distribution function may be time-dependent (TD), e.g.,
Markov chain transition probabilities, m ω, tð Þ. In these situations,

jAti= ÎjAti=
X
i

jωii hωijAti=
X

ω2A
m ω, tð Þjωi.

However, hAj represents the set of all possible outcomes at all times:

hAt = hAtj ĵI =
X
i

hAt ωii hωij j=
X

ω2A
hAtjωi|fflfflffl{zfflfflffl}

1

hωj=
X

ω2A
hωj= hAj.

Hence, the energy of the composite event, At, is:

hAtjAti=
X

ω2A
m ω, tð Þhωjωi=

X
ω2A

m ω, tð Þ.

The time-dependent sample space Ωt represents a cross-section of the entire sample
space Ω. Whereas Ωt contains all possible outcomes observed at a fixed time= t, the
whole sample space, Ω, contains all possible outcomes over the entire time range.

In particular, given the time-dependent process mass/distribution function,m ω, tð Þ,
hΩjΩti=

P
ω2Ω m ω, tð Þ= 1. We can see this by the transformation mapping ket-to-ket

and bra-to-bra:

Bra: hΩ = hΩj ĵI =
X
i

hΩjωii|fflfflffl{zfflfflffl}
1

hωij=
X
i

hωij= 1, 1, 1, . . . , 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Ωj j= η

24 35,

Bra: hΩtj=
X

ω2Ω
m ω, tð Þ|fflfflffl{zfflfflffl}

time−dependent
mass

hωj

0BB@
1CCA= m ω1, tð Þ,m ω2, tð Þ,m ω3, tð Þ, . . . ,m ω η, t

� �� �
,

Ket: Ωtj i= IjΩti=
X
i

ωij i ωijΩth i=
X

ω2Ω
m ω, tð Þjωi=

m ω1, tð Þ
m ω2, tð Þ

..

.

m ω η, t
� �

0BBBBB@

1CCCCCA.

This establishes the normalization over the entire sample space, Ω:

hΩjΩti= hΩ Î
�� ��Ωti=

X
ω2Ω
hω m ω, tð Þj jωi=

X
ω2Ω

m ω, tð Þ= 1.

However, the time-dependent inner product is not necessarily normalized, and often
may be less than 1:
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hΩtjΩti= hΩt Î
�� ��Ωti=

X
ω2Ω
hω m ω, tð Þð Þ2�� ��ωi=

X
ω2Ω

m ω, tð Þð Þ2 ≤ 1.

We will come back to time-varying stochastic processes later.

Open Problem

Extend the concepts of time-based evolu-
tion, time-varying processes, and probabil-
ity to the 2D kime manifold.

5 Preservation of Energy and Total Probability

The preservation of energy of an event B, i.e., law of total probability, is stated in
terms of a partition, Bif g of the sample space, Ω= _∪Bi:

hBj=
X
i

B Bij ihBij.h

Thus, we can expand the Bayesian formula:

AjBh i= BjAh i hAjhBj = BjAh i hAjP
i B Bij ihBij.h

6 Expectation and Variance

Random variables on a sample space Ω represent the observable quantities. An in-
stantiation of the random variable X corresponds to observing its value as a static
number x. In effect, X can be considered as an operator, X̂, acting on the bras and
kets by:

hxjX̂ = hxjx and X̂jxi= xjxi.

Appendix 363

 EBSCOhost - printed on 2/9/2023 7:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Note that for each random variable, X, the bras and the kets of its possible values
form a base of Ω. In other words, the hxj and jxi represent the atomic outcomes of
the sample space, in terms of the random variable X. This is because:

hx1jx2i= δx1 , x2 and 1= hΩj=
X

x2Ω hΩ xihxj j=
X

x2Ω xi hxj j= 1.

The (marginal) expectation of X is defined by:

hXi= hΩ Xj jΩi=
X
x2Ω
hΩ Xj jxihxjΩi=

X
x2Ω
hΩ xj jxihxjΩi=

X
x2Ω
hΩjxi|fflffl{zfflffl}

1

xhxjΩi=

=
X
x2Ω

xhxjΩi=
X
x2Ω

x m xð Þ|ffl{zffl}
X distribution

=E Xð Þ= �X.

Also, for each continuous function f ðÞ, the expectation of f ðÞ is:

hf Xð Þi=E f xð Þð Þ= hΩ f Xð Þj jΩi=
X
x2Ω

f xð Þm xð Þ.

The variance of X is defined as the expectation of the square deviance operator
( X − hXið Þ2):

h X − hXið Þ2i= hΩ X − hXið Þ2�� ��Ωi=
X
x2Ω
hΩjX2 − 2XhXi+ hXi2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

X − hXið Þ2expanded

xihxj jΩi=

=
X
x2Ω
hΩjX2jxihxjΩi− 2

X
x2Ω
hΩj2XhXi xihxj jΩi+ hXi2

X
x2Ω
hΩjxi|fflffl{zfflffl}

1

hxjΩi=

= hX2i− 2hXi
X
x2Ω
hΩ Xj jxihxjΩi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

hXi

+ hXi2 = hX2i− 2hXi2 + hXi2 = hX2i− hXi2 =

=
X
x2Ω

x2 m xð Þ|ffl{zffl}
X distribution

−
X
x2Ω

x m xð Þ|ffl{zffl}
X distribution

0@ 1A2

=EðX2Þ−E Xð Þð Þ2 =V Xð Þ= σ2.

Using the above definition for conditional probability, we can define conditional ex-
pectation for the random variable X given any event A � Ω:

hXjAi=
X
x2Ω

x hX = xjAi|fflfflfflfflffl{zfflfflfflfflffl}
conditional

probability distribution

Clearly, hXjAi= hΩ Xj jAi:
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hXjAi≡
X
x2Ω

xhX = xjAi=
X
x2Ω
hΩjxi|fflffl{zfflffl}

1

xhxjAi=

X
x2Ω
hΩjxjxi hxjAi=

X
x2Ω
hΩjXjxi hxjAi= hΩ Xj jAi.

Suppose we have a random variable X and a finite partition of the sample space,
Ω= _∪Bj, where Bi ∩Bj =∅,∀i≠ j. The following equation connects (marginal) expec-
tation and conditional expectation:

hXi|{z}
marginal

expectation

=
X
x2Ω

xhxjΩi=
X
x2Ω

x
X
j

hxjBjihBjjΩi=
X
j

X
x

xhxjBjihBjjΩi=

X
j

Ω Xj jBj
� �

BjjΩ
� �

=
X
j

XjBj
� �|fflfflffl{zfflfflffl}

conditional
expectations

hBjj.

7 Multiple Features, Random Vectors, Independent Random Variables

Many real experiments and most observable processes involve vectors of random
observables. We can use the same notation as in the previous section, where κ fea-
tures, Xif gκ

i= 1 are used to model, predict, explain, forecast, or quantify an indepen-
dent outcome variable Y.

hXj= X1,X2, . . . ,Xκð Þ=

x1, 1 � � � x1, κ

..

. . .
. ..

.

xη, 1|{z}
X1

� � � xη, κ|{z}
Xκ

26664
37775 and jYi=

y1
y2
..
.

yη

0BBB@
1CCCA.

For each feature, Xi, let’s denote the atomic base-events ri for the outcome space,
i.e., ri 2 Ωi. When the features Xi are statistically independent, i.e., hXijXji= hXij,
∀i≠ j, then:

jr1, r2, . . . , rκi=
Yκ

i= 1

jrii.

Recall that the features Xif gκ
i= 1 are mutually independent if and only if for any

κ-tuple in the state space, r1, r2, . . . , rκð Þ 2 Ω1 ×Ω2 × . . . ×Ωκ =Ω, the joint probabil-
ity function factors out as a product of marginal probabilities:
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P X1 = r1, X2 = r2, . . . , Xκ = rκð Þ=
Yκ

i= 1

P Xi = rið Þ.

In general, whether or not the features are independent,

P X1 = r1, X2 = r2, . . . , Xκ = rκð Þ=
P X1 = r1jX− 1ð ÞP X2 = r2jX− 1, 2ð Þ

� � � � �P Xκ − 1 = rκ − 1jXκð ÞP Xκ = rκð Þ.

In the very special case of mutual independence, the conditional probabilities equal
their marginal counterparts, by independence, and therefore:

P X1 = r1, X2 = r2, . . . , Xκ = rκð Þ=

P X1 = r1ð ÞP X2 = r2ð Þ � � � P Xκ − 1 = rκ − 1ð ÞP Xκ = rκð Þ=
Yκ

i= 1

P Xi = rið Þ.

Let’s formulate these properties for observables in terms of the bra-ket notation.

Xi j r1, r2, . . . , rκi= ri j r1, r2, . . . , rκi
hr1, r2, . . . , rκ j Xi = hr1, r2, . . . , rκ j ri

���� .

Therefore, for all additive (linear) and multiplicative (power-product) combinations
of the features we have the following two general rules:X

i

cifi Xið Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
linear combination

* +
= Ω

P
i
cifi Xið Þ

���� ����Ω� �
=|{z}

linear
operators

P
i
cifi Xih ið Þ

Y
i

Xpi
i|fflfflffl{zfflfflffl}

power combination

* +
= Ω

Q
i
Xpi
i

���� ����Ω� �
=|{z}

independence

Q
i

Xih ipi
.

The above equations rely on the expectation property that Xih i≡ Ω Xij jΩh i= Ωi Xij jΩih i.

8 Time-Varying Stochastic Processes

A stochastic process X tð Þ, t 2 T, is a time-dependent observable and we can define
the bra-ket operators as follows:

X tð ÞjX tð Þ= xii≡X tð Þjt, xii= xijt, xii.
As we indicated earlier, the time-dependent sample space Ωt represents a snapshot
(cross-section in time) of the entire sample space Ω. Whereas Ωt contains all possi-
ble outcomes observed at time= t, the total sample space, Ω, contains all possible
outcomes over the entire time range.

The following identities are clear by the definitions:
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Ωt � Ω,

hΩjΩti= 1,

Ωjt, xi= 1,

ht, x Ω ≡ hxj jΩt .

For any time-dependent (TD) observable X tð Þ, the corresponding TD identity opera-
tor, Î tð Þ, probability mass/distribution function, m t, xð Þ, and expectation, Et X tð Þð Þ,
can be expressed as:

TD identity operator: Î tð Þ=
X
i

t, xiiht, xij j,

TDmass: m t, xið Þ= ht, xi Ω= hxij jΩt ,

TD expectation: Et X tð Þð Þ= hΩ X tð Þj jΩi=
X
i

hΩ X tð Þj jt, xiihxijΩt =
X
i

m t, xið Þ xi.

The time parameter reflects the transition probability, or time-increment, which is
defined in the time-incremental direction. Inserting the identity operator, Î tð Þ, se-
lects the appropriate time. For instance, at time t, the observed measurement, X tð Þ,
picks up its value from Ωt, not Ω or Ωt + 1. That is:

Xt =Xt Î tð Þ= Î tð ÞXt .

Therefore,

X tð Þ Ωi=Xt Î tð Þ�� ��Ωi=Xt

X
i

jt, xiiht, xijΩi=Xt

X
i

jt, xiihxijΩti=

Xt Î tð ÞjΩti=Xt jΩti.

And

hΩ X tð ÞjΩi= hΩj jXt Î tð Þ Ωi= hΩj jXt jΩti.

This shift of time dependence from the observable is related to the shift from the
algebraic Heisenberg uncertainty principle (where operators change in time while
the basis of the Hilbert space remains fixed) to the analytical Schrӧdinger equation
(where operators remain fixed while the Schrödinger equation changes with time).

9 Bracket Notation: Probabilistic Inference vs. Wavefunctions

Table 5.3 outlines the synergies between the notation and interpretation of probabi-
listic inference-based (left) vs. physics-based (right) Dirac bracket notation.
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Table 5.3: Parallels between quantum mechanics and data inference concepts and notations.

Concepts Inference-based Physics-based

Space Sample space Ω, associated with a random
feature vector X

H, Minkowski spacetime,
Hilbert space

Bra hAj: an observable event in Ω
hΩj: state bra

hψAj: row vector in H
hψ tð Þj: state bra

Ket jBi: an evidence set in Ω
jΩti: state ket

jψBi: column vector in H
jψ tð Þi= hψ tð Þj†: state ket
(conjugate pairs)

Bracket hAjBi≡PðAjBÞ: inner product bracket
(conditional probability)

hψAjψBi= hψA,ψBi: bracket (inner
product)

Bracket
transposition

Bayes formula
AjBh i= BjAh i hAjhBj

ψAjψB

� �
= ψBjψA

� �*
Bases Mutually disjoint sets associated with the

random variable X:
ωi ∩ ωj = δi, jωi and Ω=

P
i
ωi

Eigenvectors of a Hermitian
Operator H :
Ĥ ψii= Ei ψii

����
Ortho-normality hωijωji= δi, j ψijψj

D E
= δi, j

Unitary operator Î≡
P
i
ωiihωij j Î ≡

P
i
ψiihψi

�� ��
State
normalization

hΩjΩti=
P
i
mi tð Þ= 1 ψ tð Þjψ tð Þh i= P

i
ci tð Þj j2

Observable X ωij i= xi ωij i Ĥ ψi

�� �
= Ei ψi

�� �
Expectation hXi= Ω Xj jΩh i= P

x2Ω
xhxjΩi= P

x2Ω
x m xð Þ|ffl{zffl}
X prob=mass

hHi= ψ tð Þ Ĥ�� ��ψ tð Þ
D E

= =
P
i

ci tð Þj j2Ei

Special relations
1= hAjBi , ; 
 B � A

0= hAjBi , B∩A= ;
hAjBi= hAj≡ hAjΩi ,
B and A aremutually independent,P ABð Þ=P Að ÞP Bð Þ
hAjBi= hAj , hBjAi= hBj
hA∪B = hAj j+Bj ,
B and A are disjoint,B∩A= ;
hA∪B = hAj j+Bj− hA∩Bj
hAc = 1− hAj j,where Ac =ΩnA

hAjBi= hBjAi hAjhBj ,Bayesian rule

∀ω 2 Ω, elementary events, hωijωji= δi, j =
1, i = j

0, i≠j
orthonormalityð Þ

�
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10 Derivation of the Transformed Metric and the Corresponding Cosmological

Constant (Λ)

Below, we derive the transformed metric and the corresponding cosmological constant
(Λ) for the 5D Ricci-flat spacekime equations extending the corresponding 4D Einstein
spacetime equations in vacuum, see Section 5.4 (Uncertainty in 5D Spacekime).

Assume unitary speed of light c and gravitational constant G, and denote with

lower-case Greek letters α, β, γ, μ 2 0|{z}
time

, 1, 2, 3|ffl{zffl}
space

( )
and upper-case Latin letters A,B 2

0|{z}
time

zffl}|ffl{t

, 1, 2, 3|ffl{zffl}
space

, 4|{z}
time

zffl}|ffl{l( )
the spacetime coordinate references in 4D spacetime and

5D spacekime, respectively.

The 4D and 5D proper time intervals are defined in terms of the corresponding
metric tensors:

ds2 = gαβ dxαdxβ =
X3

α =0

X3
β =0

gαβ dxαdxβ,

dS2 = gAB dxAdxB =
X4
A=0

X4
B=0

gAB dxAdxB.

By isolating the x4 ≡ l part of the 5D interval and using the given implicit restrictions
in the field equations, we can derive a special case of the Campbell-Wesson embed-
ding theorem, which explicates how the fifth dimension constrains the 4D space-
time dynamics.

The derivations below are based on this definition of the rank-2 Ricci tensor of
the first kind [306]:

Rμν ≡Rνμ|fflfflfflfflffl{zfflfflfflfflffl}
index symmetry

=
X3

λ =0

∂Γλ
μλ

∂xυ −
∂Γλ

μυ

∂xλ +
X3

β =0
Γβ

μλΓ
λ
υβ − Γβ

μυΓ
λ
βλ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R
λ
μνλ

0BBBBBB@

1CCCCCCA .

which contracts the third index (last contravariant index) of the rank-4 Riemannian
tensor of the second kind, Rλ

μν λ. By raising the first index of the Ricci tensor of the
first kind, we obtain the Ricci tensor of the second kind, Rλ

μ, which naturally leads to
defining the Ricci scalar, R, as a curvature invariant resulting from contracting the
indices of the Ricci tensor of the second kind:
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Rλ
μ ≡ gλβRβμ =

X3
β =0

gλβRβμ
� �

, R≡Rμ
μ =
X3

β =0

X3
μ =0

gμβRβμ
� �

.

The Riemannian tensor characterizes the properties of spaces and surfaces in gen-
eral and in non-Euclidean geometries [307]:

Rγ
μνλ = ∂νΓ

γ
μλ − ∂λΓγμν + Γδ

μλΓ
γ
δν − Γδ

μνΓ
γ
δλ,

Γμ
βγ =

X3
α =0

1
2
gμα ∂gαβ

∂xγ
+ ∂gαγ

∂xβ −
∂gβγ

∂xα

� �
Christoffel symbolsð Þ.

Note that by lowering the contravariant index, we can transform the Riemann ten-
sor of the first kind to the Riemann tensor of the second kind and vice-versa (by rais-
ing the covariant index):

Rγμνλ = gγδRδ
μνλ,

Rδ
μνλ = gδγRγμνλ.

By index symmetry and antisymmetry properties:

Rγμνλ =Rνλ γμ = −Rμγνλ = −Rγμ λν.

In spacetime, the 4D Einstein field equations of general relativity are written as

Gαβ + Λgαβ = 8 π Tαβ,

where the Einstein tensor Gαβ =Rαβ −R
gαβ
2 is expressed in terms of the Ricci tensor,

Rαβ ≡R4D
αβ . Also, for the specific metric signature, the 4D Ricci scalar is calculated in

terms of the embedding R= ± 12
l2
= 4Λ, the cosmological constant Λ = ± 3

l2
, and Tαβ is

the energy-momentum tensor, which contains the material sources and in vacuum
may be considered negligible [256, 261]. Note that Λ = ± 3

L2
on the spacetime leaf hy-

persurface l= L, where the de Sitter solution of general relativity with Λ <0 is topo-

logically equivalent to a closed hypersphere of radius L= 3
Λj j

� �1
2 corresponding to 4D

spacetime.

Hence, the field equations in Einstein space can be explicated as:

Rαβ −R
gαβ

2
+Λgαβ =0) Multiply by the inversemetric gαβg )

�
P

α
P

β Rαβg
αβ =R

Rαβg
αβ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

scalar curvature; R

−R:
1
2

gαβgαβ
� �

+ Λ · gαβg
αβ|fflffl{zfflffl}P

α δα
α = 4

0@ 1A = 0 )

−R+ 4Λ=0) Plug backf g )
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Rαβ − 2Λgαβ +Λgαβ =Rαβ −Λgαβ =0, ∀α, β 2 0, 1, 2, 3f g.

In the 5D spacekime Ricci-flat space, RAB ≡R5D
AB =0, ∀A<B 2 0, 1, 2, 3, 4f g. The field

equations provide a canonical description of the gravitational, electromagnetic and
scalar interactions in classical physics.

Campbell’s theorem suggests that the Ricci-flat space equations naturally re-
duce to the Einstein space equations, however, we need to use a specific 5D metric
to explicate the 5D spacekime physics.

Without loss of generality, we use the constraints on the five available coordi-
nate degrees of freedom to nullify the electromagnetic potentials, i.e., g4α =0 and fix
the scalar potential, i.e., g44 = ϵ = ± 1, relative to the metric signature + , − − − , ϵð Þ.
By replacing l with t, these restrictions make the coordinate system analogous to
the synchronous general relativity framework where l-lines are congruent to geode-
sic normals to the 4D spacetime and x4 ≡ l.

The Ricci flat space 5D spacekime metric dS2 =ds2 + ϵdl2, where the spacetime
interval ds2 depends on xγ and x4 ≡ l. It’s useful to factorize the 4D component of the
5D metric by l2 to synergize with previous reports and compare with other models of
general relativity where the spatial 3D component is modulated by an analogous
temporal factor of t2.

Let’s introduce a pair of cases using alternative variable transformations to ex-
plicate the spacekime interval (line element) dS2 =ds2 + ϵdl2 when x4 ≡ l is either
spacelike (case 1) or timelike (case 2). In either metric signature, the transformed
interval is dS2 = l

L

� �2
ds2 + ϵdl2.

Case 1: The fifth dimension (x4 ≡ l) is spacelike, i.e., g44 = ϵ = − 1 and the metric signa-
ture is + , − − − , −ð Þ. We can apply a hyperbolic coordinate transformation:

s! l sinh
s
L

� �
, l! l cosh

s
L

� �
,

ds! sinh s
L

� �� �
dl+ l cosh s

L

� �� �
ds
L ,

dl! cosh
s
L

� �� �
dl+ l sinh

s
L

� �� �ds
L
,

where L is a constant length introduced for consistency of physical dimensions. For
spacelike fifth dimension, ϵ = − 1 and

dS2 =ds2 −dl2 =

sinh
s
L

� �� �
dl+ l cosh

s
L

� �� � ds
L

� �2

− cosh
s
L

� �� �
dl+ l sinh

s
L

� �� � ds
L

� �2

=|{z}
cosh2φ − sinh2φ = 1
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l
L

� �2

ds2 −dl2 = l
L

� �2

ds2 + ϵdl2.

Case 2: The fifth dimension (x4 ≡ l) is timelike, i.e., g44 = ϵ = + 1 and the metric sig-
nature is + , − − − , +ð Þ. We can apply a polar coordinate transformation:

s! l sin
s
L

� �
, l! l cos

s
L

� �
,

ds! sin
s
L

� �� �
dl+ l cos

s
L

� �� � ds
L
,

dl! cos
s
L

� �� �
dl+ l − sin

s
L

� �� �ds
L
.

Then,

dS2 =ds2 +dl2 =

sin
s
L

� �� �
dl+ l cos

s
L

� �� � ds
L

� �2

+ cos
s
L

� �� �
dl− l sin

s
L

� �� � ds
L

� �2

=|{z}
cos2φ + sin2φ = 1

l
L

� �2

ds2 +dl2 = l
L

� �2

ds2 + ϵdl2.

Therefore, in either metric signature:

dS2 = l
L

� �2

gαβ xγ, lð Þdxαdxβ + ϵdl2 ≡
X3

α =0

X3
β =0

l
L

� �2

gαβ xγ, lð Þdxαdxβ + ϵ dl2.

Before we formulate the 5D Ricci tensor, let’s define the Christoffel symbols of the
second kind, Γα

μβ, in terms of the metric gαβ xγ, lð Þ. These symbols represent the Levi-
Civita connection coefficients [308] on the 5D Ricci flat manifold. The Christoffel
scalar coefficients form a pseudo-tensor that allows computing distances and facili-
tates differentiation of tangent vector fields as functions on the manifold. Denote
the operators ∂μ ≡∇μ,∀0≤ μ ≤ 4, to represent the 4D covariant derivatives of a vector
field defined in a neighborhood of a point P, where the derivative at P is computed
along the direction of a specified manifold tangent vector. Then, the six 5D Christof-
fel symbols (left) and their 4D counterparts (right) [144, 309] are:
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ΓCAC =
1
2

X4
C=0

X4
L=0

gCL ∂AgCL +∂CgLA −∂LgACð Þ� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{5D spacekime

≡ 1
2g

CL ∂AgCL +∂CgLA −∂LgACð Þ
ΓCAB = 1

2g
CM ∂AgBM +∂BgMA −∂MgABð Þ

ΓKAC = 1
2g

KJ ∂AgCJ +∂CgJA −∂JgACð Þ
ΓCBK = 1

2g
CN ∂BgKN +∂KgNB −∂NgBKð Þ

ΓKAB = 1
2g

KM ∂AgBM +∂BgMA −∂MgABð Þ
ΓCKC = 1

2g
CL ∂KgCL +∂CgLK −∂LgKCð Þ

Γλ
μλ =

1
2

X3
λ =0

X3
k=0

gλk ∂μgλk +∂λgkμ −∂kgμλ
� �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{4D spacetime

≡ 1
2g

λk ∂μgλk +∂λgkμ −∂kgμλ
� �

Γλ
μυ = 1

2g
λt ∂μgυt +∂υgtμ −∂tgμυ
� �

Γβ
μλ = 1

2g
βl ∂μgλl +∂λglμ −∂lgμλ
� �

Γλ
υβ = 1

2g
λz ∂υgβz +∂βgzυ −∂zgυβ
� �

Γβ
μυ = 1

2g
βt ∂μgυt +∂υgtμ −∂tgμυ
� �

Γλ
βλ = 1

2g
λk ∂βgλk +∂λgkβ −∂kgβλ
� �

�������������������������

�������������������������
The 5D→ 4D index correspondence maps include:

A! μ,4f g,B! ν,4f g,C! λ,4f g,J! l,4f g,K! β,4f g,L! k,4f g,M! t,4f g,N! z,4f g.
The notation convention uses uppercase Latin letters to denote 5-tuples

0|{z}
time

zffl}|ffl{t

, 1, 2, 3|ffl{zffl}
space

, 4|{z}
timelike

spacelike

zfflfflfflfflffl}|fflfflfflfflffl{t

8>>>><>>>>:

9>>>>=>>>>; , and correspondingly lowercase Greek/Latin

letters α, β, γ, μ, ν to denote 4-tuples 0|{z}
time

, 1, 2, 3|ffl{zffl}
space

( )

Our strategy is to first examine the Ricci tensor R5D
μν sequentially with the corre-

sponding metric:

R5D
4μ

z}|{
R5D

μν =R4D
μν

zfflfflfflfflffl}|fflfflfflfflffl{Part 3ð Þ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0≤ μ, ν ≤ 3

Part 2ð Þ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0≤ μ ≤ 3

R5D
44

z}|{
R5D

μ4

z}|{Part 2ð Þ

|fflffl{zfflffl}
0≤ μ ≤ 3

Part 1ð Þ

0BBBBBBBB@

1CCCCCCCCA
,

gαβ xγ, lð Þ|fflfflfflfflffl{zfflfflfflfflffl}
0≤ α, β ≤ 3

0

0 ϵ

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

corresponding

metric tensor

.

Next, we can explicate the field equations corresponding to the spacekime metric
by expressing the 5D Ricci tensor R5D

AB

� �
:

R5D
AB =

X4
C=0

∂ΓCAC
∂xB

−
∂ΓCAB
∂xC

+
X4
K =0

ΓKACΓ
C
BK − ΓKABΓ

C
KC

� �� �
≡
∂ΓCAC
∂xB

−
∂ΓCAB
∂xC

+ ΓKACΓ
C
BK − ΓKABΓ

C
KC,
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0≤A≤B≤ 4
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{15 pairs

.

We will fragment these 15 Ricci tensor elements into three complementary parts:
(1) R5D

44, corresponding to one wave equation for a scalar field;

(2) R5D
μ4, representing a set of 4= 4

1

� �
conservation equations; and

(3) R5D
μν , another set of 10=

4
1

� �
+ 4

2

� �
Einstein equations:

R5D
μν =R4D

μν =
X4

λ =0

∂Γλ
μλ

∂xυ −
∂Γλ

μυ

∂xλ +
X4

β =0

Γβ
μλΓ

λ
υβ − Γβ

μυΓ
λ
βλ

� � !
≡
∂Γλ

μλ

∂xυ|ffl{zffl}
U

−
∂Γλ

μυ

∂xλ|ffl{zffl}
V

+ Γβ
μλΓ

λ
υβ|fflffl{zfflffl}

W

− Γβ
μυΓ

λ
βλ|fflffl{zfflffl}

Z

,

0≤ ν ≤ μ ≤ 3
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{10 pairs

.

To solve the 5D spacekime field equations in the Ricci flat space, R5D
AB =0, we can

separate the general metric tensor using gαβ xγ, lð Þ≡ χ xγ, lð Þg*αβ xγð Þ. Let’s examine sep-
arately each of the three types of equations and their 15 corresponding Ricci flat ten-
sor elements, R5D

AB.

Part 1: Let’s first examine R5D
44, corresponding to a wave equation for a scalar field,

where A=B= 4. By the separability condition, gαβ xγ, lð Þ≡ χ xγ, lð Þ g*αβ xγð Þ, gk4 =0, g4k =
0,∀0≤ k ≤ 3, g44 = ϵ, and we have:

ΓCAC = ΓC4C =
Γ4A4 =0

C = λ, 4f g
� �

= Γλ
4λ = 1

2 g
λk ∂4gλk + ∂λgk4 − ∂kg4λð Þ= 1

2 g
λk ∂

∂l gλk
� �)

U = ∂ΓCAC
∂xB

= ∂

∂l
1
2
gλk ∂

∂l
gλk

� �� �
, 0≤ λ, k ≤ 3,

Γ4A4 =
1
2
g4L ∂Ag4L + ∂4gLA − ∂LgA4ð Þ= 1

2
g44∂4g4A =0,

A,B= 4) ΓCAB = Γ444 =0
� 	

= Γλ
44 =

1
2
gλt ∂4g4t + ∂4gt4 − ∂tg44ð Þ=0) V = ∂ΓCAB

∂xC
=0.

Also,

ΓKAC = ΓK4C =
ΓK44 =0

Γ44C = Γ4C4|fflfflfflfflffl{zfflfflfflfflffl}
torsionless

=0

8><>:
9>=>;= Γβ

4λ =
1
2
gβl ∂4gλl + ∂λgl4 − ∂lg4λð Þ= 1

2
gβl∂4gλl =

1
2
gβl ∂

∂l
gλl,

ΓCBK = ΓC4K = Γλ
4β =

1
2
gλz ∂4gβz + ∂βgz4 − ∂zg4β
� �

= 1
2
gλz ∂

∂l
gβz

� �
,
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W ≡ ΓKACΓ
C
BK = Γβ

4λΓ
λ
4β =

1
2
gβl ∂

∂l
gλl

� �
1
2
gλz ∂

∂l
gβz

� �
,

A,B= 4) ΓKAB = ΓK44 = Γβ
44 =

1
2
gβt ∂4g4t + ∂4gt4 − ∂tg44ð Þ=0) Z ≡ ΓKABΓ

C
KC =0.

Thus,

R5D
44 =U +W = ∂ΓCAC

∂xB
+ ΓKACΓ

C
BK =

∂

∂l
1
2
gλk ∂

∂l
gλk

� �� �
+ 1
2
gβl ∂

∂l
gλl

1
2
gλz ∂

∂l
gβz

� �
.

Using the metric separability, gαβ xγ, lð Þ≡ χ xγ, lð Þ g*αβ xγð Þ, the warp factor l2

L2
, and

χ′= ∂
∂l χ xγ, lð Þ we have:

R5D
44 =

∂

∂l
1
2
L2

l2
1

χ
g λkð Þ* ∂

∂l
l2

L2
χg*λk

� �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{U

+ 1
2
L2

l2
1

χ
g βlð Þ* ∂

∂l
l2

L2
χg*λl

� �
1
2
L2

l2
1

χ
g λzð Þ* ∂

∂l
l2

L2
χg*βz

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{W

=

4
2
∂

∂l
1
l2
1

χ
∂

∂l
l2χ

� �� �
+ 4
4
1
l4

1
χ2

∂

∂l
l2χ

� �
∂

∂l
l2χ

� �
= 2

∂

∂l
1
l2
1

χ
2lχ + 1

χ
χ′

� �
+ 1
l4

1
χ2 2lχ + l2χ′
� �2 =

2
∂

∂l
2
l
+ 1

χ
χ′

� �
+ 1
l4

1
χ2 2lχ + l2χ′
� �2 = −

4
l2
+ 2

∂

∂l
χ′

χ

� �
+ 4
l2
+ 2

χ′
lχ

+ χ′
χ

� �2

.

Hence, this 5D Ricci flat space equation R5D
44 =0 has a special kind of solution:

R5D
44 = 2

∂
χ′

χ

� �
∂l

+ 4
χ′
lχ

+ χ′
χ

� �2

=0) χ xγ, lð Þ|fflfflffl{zfflfflffl}
quadratic

warpfactor

= 1−
lo xγð Þ
zfflffl}|fflffl{length

l

0BB@
1CCA× k xγð Þ|ffl{zffl}

function of
integration

.

The general solution to this second-order non-linear ordinary differential equation,

2 ∂
∂l

χ′
χ

� �
+ 4 χ′

lχ + χ′
χ

� �2
=0, may be expressed in terms of a function of integration k xγð Þ≡

f2 xγð Þ
f21 xγð Þ, where f1 and f2 are arbitrary functions independent of l, and the negative recipro-

cal function lo xγð Þ= − 1
f1 xγð Þ:

χ ≡ χ xγ, lð Þ= f2 xγð Þ× e− 2 log l− log f1 xγð Þ l+ 1ð Þð Þ = f2 xγð Þ 1
l2

� �
l f1 xγð Þ+ 1ð Þ2 =

f2 xγð Þ f1 xγð Þ+ 1
l

� �2

= f2 xγð Þ
f 21 xγð Þ|fflffl{zfflffl}
k xγð Þ

1+ 1
f1 xγð Þ

zfflffl}|fflffl{− lo xγð Þ

1
l

0BB@
1CCA

2

= k xγð Þ 1−
lo xγð Þ

l

� �2

.
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Part 2: Next, we examine the solutions to the four conservation equations:

R5D
μ4 =0, ∀0≤ μ ≤ 3, B= 4.

Recall the difference between the partial derivative χ′= ∂
∂l χ xγ, lð Þ with respect to the

univariate fifth timelike dimension, and the 4D covariant derivatives of different
vector fields, e.g., ∇μ χ and ∇μgλk, along the direction of a specified manifold tangent
vector, xμ. Then we have:

∂

∂l
∇μ χ

χ

� �
= ∂

∂l
∇μ χ
� � 1

χ

� �
− χ′

1
χ2 ∇μ χð Þ,

R5D
μB =

X4
C =0

∂ΓCμC
∂xB

−
∂ΓCμB
∂xC

+
X4
K =0

ΓKμCΓ
C
BK − ΓKμBΓ

C
KC

� � !
≡

∂ΓCμC
∂xB|ffl{zffl}
U

−
∂ΓCμB
∂xC|ffl{zffl}
V

+ ΓKμCΓ
C
BK|fflfflffl{zfflfflffl}

W

− ΓKμBΓ
C
KC|fflfflffl{zfflfflffl}

Z

,

U =
∂ΓCμC
∂xB

=
∂ΓCμC
∂x4

=
∂ΓCμC
∂l

= ∂

∂l
1
2
gCL ∂μgCL + ∂CgLμ − ∂LgμC|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

0

0@ 1A0@ 1A= ∂

∂l
1
2
gCL ∂μgCL
� �� �

=

∂

∂l
1
2
gλk ∂μgλk

� �
= 1
2
∂

∂l

X3
λ =0

X3
k =0

∇μ χ
� �

g*λk + ∇μg*λk
� �

χ
� �

χ − 1g λkð Þ*
� �

=

1
2

X3
λ =0

X3
k =0

∂

∂l
∇μ χ
� �

χ − 1g*λkg
λkð Þ*

� �� �
+ 1
2
∂

∂l

X3
λ =0

X3
k =0

∇μg*λk
� �

g λkð Þ*|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
independent of l

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{0

= 2
∂

∂l
∇μ χ′

χ

 !
,

V =
∂ΓCμB
∂xC

=
∂ΓCμ4
∂xC

=
∂Γ4μ4
∂x4

=0

( )
=
∂Γλ

μ4

∂xλ = ∂

∂xλ
1
2
gλt∂4gtμ

� �
= ∂

∂xλ χ′
1
2χ

δ λ
μ +

1
l|{z}

μ≠4

δλ
μ

zfflfflffl}|fflfflffl{00B@
1CA=

∂

∂xμ χ′
1
2χ

� �
= 1
2

∇μ χ′
� � 1

χ
− χ′

1
χ2 ∇μ χð Þ

� �
= ∂

2∂l
∇μ χ

χ

� �
.

To verify that for υ = 4 we have W − Z ≡ ΓKμCΓ
C
BK − ΓKμBΓ

C
KC =0, we expand the products

of Christoffel coefficients and utilize summation index contraction:

ΓCBK = ΓC4K =
1
2
gCN ∂4gKN + ∂KgNB − ∂NgBK|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

 !
= 1
2
gCN ∂4gKNð Þ )

W = ΓKμCΓ
C
BK =

1
2
gCN ∂4gKNð Þ 1

2
gKJ ∂μgCJ + ∂CgJμ − ∂JgμC|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{0

C and J index symmetry

0@ 1A=

1
2
gCN ∂4gKNð Þ 1

2
gKJ ∂μgCJ
� �

= 1
2
gλz ∂4gβz
� � 1

2
gβl ∂μgλl
� �

.
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ΓKμB =
1
2
gKM ∂μg4M + ∂4gMμ − ∂Mgμ4

� �
= 1
2
gKM ∂4gMμ

� �
,

ΓCKC =
1
2
gCL ∂KgCL + ∂CgLK − ∂LgKCð Þ= 1

2
gCL ∂KgCLð Þ )

Z = ΓKμBΓ
C
KC =

1
2
gKM ∂4gMμ

� � 1
2
gCL ∂KgCLð Þ= g44 = g44 = ϵ

g4μ =0

( )
= 1
2
gβt ∂4gtμ
� � 1

2
gλk∂βgλk.

Using the metric separability, gαβ xγ, lð Þ≡ χ xγ, lð Þ|fflfflffl{zfflfflffl}
quadratic warp

factor

× g*αβ xγð Þ|fflfflffl{zfflfflffl}
pure− canonical

metric

, we show that
W −Z =0:

W −Z = ΓKμCΓ
C
BK − ΓKμBΓ

C
KC =

1
2
gλz ∂4gβz
� � 1

2
gβl ∂μgλl
� �

−
1
2
gβt ∂4gtμ
� � 1

2
gλk∂βgλk =

1
4

gλz ∂4gβz
� �

gβl ∂μgλl
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

− gβt ∂4gtμ
� �

gλk∂βgλk|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

0B@
1CA.

By demonstrating that the terms A and B are identical we infer thatW −Z =0:

A= gλz ∂4gβz
� �

gβl ∂μgλl
� �

= L2

l2
1

χ
g λzð Þ* ∂4

l2

L2
χ

� �
g*βz

L2

l2
1

χ
g βlð Þ* ∂μ

l2

L2
χg*λl

� �
=

1
l4

1
χ2 g

λlð Þ* ∂4l2χ
� �

∂μl2χg*λl
� �

,

B= gβt ∂4gtμ
� �

gλk∂βgλk =
L2

l2
1

χ
g βtð Þ* ∂4

l2

L2
χ

� �
g*tμ

L2

l2
1

χ
g λkð Þ* ∂β

l2

L2
χg*λk

� �
=

since g βtð Þ*g*tμ = δ β
μ

n o
1
l4

1
χ2 g

λkð Þ* ∂4l2χ
� �

δβ
μ ∂βl

2χg*λk
� �

= 1
l4

1
χ2 g

λkð Þ* ∂4l2χ
� �

∂μl2χg*λk
� �

≡A.

Therefore, the set of four conservation laws represent second order differential
equations:

0=R5D
μ4 =U −V + W − Z|fflffl{zfflffl}

0

= 2
∂

∂l
∇μ χ

χ

� �
−
1
2
∂

∂l
∇μ χ

χ

� �
= 3
2
∂

∂l
∇μ χ

χ

� �
) ∂

∂l
∇μ χ

χ

� �
=0.

The general solutions of R5D
μ4 =0 are a special type, namely lo xγð Þ= constant, of the

solutions to the previous wave equation solution of R5D
44 =0 (part 1):

χ xγ, lð Þ= 1−
lo xγð Þ

l

� �2

k xγð Þ=
k xγð Þ, lo xγð Þ≡0, l≠0

1− lo
l

� �2
k xγð Þ, l= lo xγð Þ≠0

.
(
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Part 3: Finally, using the above expressions, we can solve the ten Einstein equa-
tions:

0=R5D
μν =

X4
λ =0

∂Γλ
μλ

∂xυ −
∂Γλ

μυ

∂xλ +
X4

β =0
Γβ

μλΓ
λ
υβ −Γ

β
μυΓ

λ
βλ

� � !
≡

∂Γλ
μλ

∂xυ|ffl{zffl}
U

−
∂Γλ

μυ

∂xλ|ffl{zffl}
V

+ Γβ
μλΓ

λ
υβ|fflffl{zfflffl}

W

− Γβ
μυΓ

λ
βλ|fflffl{zfflffl}

Z

,

0≤ ν ≤ μ ≤ 3.

R5D
μν =

X4
C=0

∂ΓCμC
∂xν −

∂ΓCμν

∂xC
+
X4
K =0

ΓKμCΓ
C
νK − ΓKμνΓ

C
KC

� � !
=

C! λ, 4f g
K ! β, 4f g

( )
=

P3
λ =0

∂Γλ
μλ

∂xυ −
∂Γλ

μυ

∂xλ +
X3

β =0

Γβ
μλΓ

λ
υβ − Γβ

μυΓ
λ
βλ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R4Dμν

+ Γ4μλΓ
λ
υ4 − Γ4μυΓ

λ
4λ

� �
0BBBB@

1CCCCA
+

∂Γ4μ4
∂xυ −

∂Γ4μυ
∂x4

+
P4

β =0
Γβ

μ4Γ
4
υβ − Γβ

μυΓ
4
β4

� �� �
≡

R4D
μν +

∂Γ4μ4
∂xυ|{z}
V1 = 0

−
∂Γ4μυ

∂x4|{z}
V2

+ Γ4μλΓ
λ
υ4|fflffl{zfflffl}

V3

+ Γβ
μ4Γ

4
υβ|fflfflffl{zfflfflffl}

V4

+ Γ4μ4Γ
4
υ4|fflfflffl{zfflfflffl}

V5 =0

− Γ4μυΓ
λ
4λ|fflffl{zfflffl}

V6

− Γβ
μυΓ

4
β4|fflfflffl{zfflfflffl}

V7 =0

− Γ4μυΓ
4
44|fflfflffl{zfflfflffl}

V8 =0

.

Note that g4k =0,∀0≤ k ≤ 3 and Γ4μ4 =0,∀0≤ μ ≤ 3, hence:

Γ4μ4 = 1
2 g

4k ∂μg4k + ∂4gkμ − ∂kgμ4
� �

= 1
2 g

44∂4g4μ =0)
V1 =V5 =V7 =V8 =0.

Let’s examine the remaining four terms starting with V2:

V2 =
∂Γ4μυ

∂x4
= ∂

∂l
1
2
g4t ∂μgυt + ∂υgtμ − ∂tgμυ
� �� �

= ∂

∂l
1
2
g44 ∂μgυ4 + ∂υg4μ − ∂4gμυ
� �� �

=

∂

∂l
1
2

ϵ − ∂4gμυ
� �� �

= −
1
2

ϵ
∂

∂l
∂

∂l
l2

L2
χ

� �� �
g*μυ = −

1
2

ϵ
∂2

∂lð Þ2
l2

L2
χ

� �
χ − 1gμυ|fflfflffl{zfflfflffl}

g*μυ

.

Similar calculations simplify the term V3:

Γ4μλ =
1
2
g4l ∂μgλl + ∂λglμ − ∂lgμλ
� �

=

1
2
g44 ∂μgλ4 + ∂λg4μ − ∂4gμλ
� �

= −
1
2

ϵ∂4gμλ,

Γλ
υ4 =

1
2
gλz ∂υg4z + ∂4gzυ − ∂zgυ4ð Þ= 1

2
gλz∂4gzυ,
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V3 = −
1
2

ϵ∂4gμλ
1
2
gλz∂4gzυ =|fflfflffl{zfflfflffl}

since

g*μλg
λzð Þ*g*zυ = g*μυ

−
1
2

ϵ∂4
l2

L2
χg*μλ

1
2
L2

l2
χ − 1gðλzÞ*∂4

l2

L2
χg*zν = −

1
4

1
L2l2

ϵ
∂

∂l
l2χ
� �� �2

χ − 1 g*μυ|{z}
x− 1gμυ

=

−
1
4

1
L2l2

ϵ
∂

∂l
l2χ
� �� �2

χ − 2gμν.

Next we evaluate is the term V4:

Γβ
μ4 =

1
2
gβt ∂μg4t + ∂4gtμ − ∂tgμ4
� �

= 1
2
gβt∂4gtμ,

Γ4υβ =
1
2
g4z ∂υgβz + ∂βgzυ − ∂zgυβ
� �

= 1
2
g4z ∂υgβ4 + ∂βg4υ − ∂4gυβ
� �

= −
1
2

ϵ∂4gυβ,

V4 = −
1
4

ϵgβt∂4gtμ∂4gυβ = −
1
4

1
l2L2

ϵ
∂

∂l
l2χ
� �� �2

χ − 1gμυ.

The last term is V6:

Γ4μυ =
1
2
g4t ∂μgυt + ∂υgtμ − ∂tgμυ
� �

= 1
2

ϵ ∂μgυ4 + ∂υg4μ − ∂4gμυ
� �

= −
1
2

ϵ∂4gμυ,

Γλ
4λ =

1
2
gλk ∂4gλk + ∂λgk4 − ∂kg4λð Þ= 1

2
gλk ∂4gλkð Þ =|{z}

since

0≤ λ ≤ 3

2
1
l2

∂4 l2χ
� �� �

,

V6 = Γ4μυΓ
λ
4λ = −

1
l2L2

ϵ
∂

∂l
l2χ
� �� �2

χ − 2gμυ.

Plugging all eight terms back into the 10 Einstein’s equations and simplifying yields:

0=R5D
μν =R4D

μν + 1
2

ϵ
∂2

∂lð Þ2
l2

L2
χ

� �
χ − 1gμυ|fflfflffl{zfflfflffl}

g*μυ

+ 1
2

1
l2L2

ϵ
∂

∂l
l2χ
� �� �2

χ − 2gμυ =

R4D
μν + 1

2
ϵ
1
L2

2χ + 4lχ′+ l2χ′′
� �

χ − 1gμυ|fflfflffl{zfflfflffl}
g*μυ

+ 1
2

1
l2L2

4l2χ2 + 4l3χ χ′+ l4 χ′
� �2� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2lχ + l2χ′ð Þ2

χ − 2gμυ =

R4D
μν + ϵ

l2

2L2
χ′′

χ
+ 4l
L2

χ′
χ
+ l2

2L2
χ′

χ

� �2

+ 3
L2

 !
gμν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sμν

.
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Before we finalize the solutions of these differential equations, let’s examine the fol-
lowing three fractions:

χ′′
χ

=
6l20
l4

− 4l0
l3

1− lo
l

� �2 ) l2

2L2
χ′′

χ
=

3l20
L2l2

− 2l0
L2l

1− lo
l

� �2 ,
4l
L2

χ′
χ =

8l0
lL2

−
8l20
l2L2

1− lo
l

� �2 ,
l2

2L2
χ′

χ

� �2

= l2

2L2
4

l20
l4

1− lo
l

� �2 = 2
l20
L2l2

1− lo
l

� �2 .
These relations allow us to simplify the term Sμν:

Sμν = ϵ
l2

2L2
χ′′

χ
+ 4l
L2

χ′
χ
+ l2

2L2
χ′

χ

� �2

+ 3
L2

 !
gμν =

ϵ
1

1− lo
l

� �2 3l20
L2l2

−
2l0
L2l

+ 8l0
lL2

−
8l20
l2L2

+ 2
l20
L2l2

+ 3
L2

1−
lo
l

� �2
 !

gμν = ϵ
1

1− lo
l

� �2 3
L2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

− Λ

gμν.

Therefore, the solutions of the Einstein equations in terms of the 5D Ricci tensor

R5D
μν =R4D

μν + Sμν =0 correspond directly to the 4D spacetime components of the Ricci ten-

sor Λ gμν ≡R4D
μν = − Sμν = − ϵ 3

L2
l

l− lo

� �2
gμν. Thus, Λ= − ϵ 3

L2
l

l− lo

� �2
, where ϵ = − 1 (space-

like) or ϵ = + 1 (timelike) fifth dimension.

Since the 4D Ricci tensor is invariant under a constant conformal transforma-

tion of the spacetime metric, R4D
μν remains unchanged and the field equations in Ein-

stein space are indeed Rαβ ≡R4D
αβ =Λgαβ, ∀α, β 2 0, 1, 2, 3f g and in the 5D spacekime

Ricci-flat space as RAB =R5D
AB =0, ∀A<B 2 0, 1, 2, 3, 4f g.

For each 4D solution �gμν of these equations and the cosmological constant 3
L2
, there

is a corresponding 5D solution of the Ricci-flat field equations RAB =0 with an interval

dS2 = l− lo
L

� �2

�gαβ xγð Þdxαdxβ −dl2 ≡
l− lo
L

� �2X3
α =0

X3
β =0

�gαβ xγð Þdxαdxβ
� �

−dl2,

where the 4D spacetime metric gμν = l− lo
L

� �2
�gμν xγð Þ has a cosmological constant

Λ = 3
L2

l
l− lo

� �2
.
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This derivation of the 5D solutions of the Einstein equations using the Camp-
bell-Wesson embedding theorem utilizes the following definitions of the 5D and 4D
Ricci tensors:

R4D
μν =

X3
λ =0

∂Γλ
μλ

∂xυ −
∂Γλ

μυ

∂xλ +
X3

β =0

Γβ
μλΓ

λ
υβ − Γβ

μυΓ
λ
βλ

� � !
, 0≤ ν ≤ μ ≤ 3,

R5D
AB =

X4
C=0

∂ΓCAC
∂xB

−
∂ΓCAB
∂xC

+
X4
K =0

ΓKACΓ
C
BK − ΓKABΓ

C
KC

� �� �
, 0≤A≤B≤ 4.

This convention is used by Wolfgang Rindler [306] and others to express the Ricci
tensor by contracting the third index of Riemannian tensor Rλ

μν λ. Other alternative
formulations of the Ricci tensor [62, 147, 257, 309] include an extra factor of − 1 and
contract on the second index Rλ

μ λν:

R4D
μν =

X3
λ =0

−
∂Γλ

μλ

∂xυ +
∂Γλ

μυ

∂xλ −
X3

β =0

Γβ
μλΓ

λ
υβ − Γβ

μυΓ
λ
βλ

� � !
.

R5D
AB =

X4
C=0

−
∂ΓCAC
∂xB

+ ∂ΓCAB
∂xC

−
X4
K =0

ΓKACΓ
C
BK − ΓKABΓ

C
KC

� �� �
.

In this scenario, the sign of Sμν in Part 3 derivation is flipped, Sμν = ϵ 3
L2

l
l− lo

� �2
gμν

and Λ= ϵ 3
L2

l
l− lo

� �2
, where ϵ = + 1 for timelike 5th dimension corresponds to Λ >0,

and conversely, ϵ = − 1 for spacelike 5th dimension results in Λ <0.
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Chapter 6
Applications

In this chapter, we will illustrate several examples of utilizing complex time, spacekime
representation, and data science techniques described earlier for interpreting the con-
tent, analyzing the information, and graphically visualizing digital datasets. For brevity,
we will only show a few instances of the many different types of time-to-kime trans-
formations and alternative strategies to transform longitudinal data from spacetime
to spacekime. In general, transforming longitudinal signals to kime functions may be
accomplished by many different methods. A purely data-driven strategy relies on
phase aggregation, a process that pools repeated measurements, possibly of other
similar processes, to estimate the missing kime phases. Alternative computational-
model based approaches rely on symmetric distribution priors, which employ theoret-
ical distribution models to represent the probability densities of the phases. Analytic
duality techniques represent a third class of methods based on analytic bijective map-
pings transforming functions of time into corresponding kime-functionals, e.g., using
the Laplace transform.

Let us start by drawing parallels between classical statistical inference approaches,
based on independent and identically distributed (IID) samples, and spacekime-driven
analytics that rely on observing lightlike and kimelike kevents at a fixed longitudinal
order and varying kime orientations.

There is a key difference between spacekime data analytics and spacetime data
modeling and inference. This contrast is based on the fact that in spacetime, statistical
results are obtained by aggregating repeated datasets (random samples) or measuring
identical replicate cohorts under controlled equivalent conditions. In particular, popu-
lation characteristics (like the mean and variance) can be estimated in spacetime by
collecting IID samples and then aggregating the observations (via standard formulas
like arithmetic average and sample variance) to approximate the population character-
istics of interest. In spacekime, reliable inference may be obtained based on a sin-
gle observation, if the perfect kime-phase distribution is known. Unfortunately,
the phase angles are generally not observable, however, they can be estimated,
inferred, or approximated.

Similar to classical spacetime inference where population characteristics are
generally unknown, kime-phases may generally not be available to support reliable
spacekime analytics. Recall the last example in Chapter 1, which involved space-
kime estimation of the consumer sentiment index. In spacekime, the analogue of
the spacetime statistical inference process corresponds to generating a sample of
observable kevents for a fixed kevent longitudinal order (ro) with randomly dis-
persed kime-phases (varying θj’s). As the kevents’ order is observed, even if their
phases may not be, we can estimate the kime directions. Consider the analogy with
Fourier transformation (FT) of observed spacetime signals into k-space where their

https://doi.org/10.1515/9783110697827-006
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phases are synthetically generated. The aggregation of the approximate phases will
parallel the formulas used for estimating population characteristics in spacetime.
To clarify this point, let us consider the spacekime counterpart of arithmetic averag-
ing used to estimate the population mean parameter in spacetime inference:

μ|{z}
population
parameter

⁓|{z}
μ =E �xð Þ

�x|{z}
point

estimate

= 1
n

Xn
j= 1

xj|{z}
IIDs|fflfflfflfflfflffl{zfflfflfflfflfflffl}

arithmetic averaging
aggregatorð Þ

.

The corresponding spacekime analogue will be the kime geometric mean, which ef-
fectively averages complex numbers in polar coordinates. As the polar radius is
fixed, we are only estimating the center of the phase orientations, not the point of
gravitational balance of the kime values provided by arithmetic averaging. Let us
denote the kime components of the observed kevents as kj = roe

iθj . Of course, the
kime phases (θj) are not known, however, we can synthetically estimate them by
using the FT. We will employ these kime-phase estimates ðK : k! k̂Þ to obtain an
aggregate estimate (θ̂) of the unobserved population kime phase (θ), which facilitate
spacekime analytics using the kime reconstruction:

k̂ = roeiθ̂.

One example of kime-estimation involves the application of an aggregator operator
to the native kime-phases. A very natural instance of such an aggregator is based on
the geometric mean of the kime-phases, kj

� 	n
j= 1, which can be expressed as:

k̂=
ffiffiffiffiffiffiffiffiffiffiffiYn
j= 1

kj
n

s
|fflfflfflffl{zfflfflfflffl}
geometric

mean

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
j= 1

roe
iθjn

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rno
Yn
j= 1

eiθjn

s
= ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
i
Pn

j= 1 θj

� �
n

r
= roe

i

1
n

Xn

j= 1 θj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
arithmetic

mean

0BB@
1CCA

= roeiθ̂.

Finally, the resulting spacekime analytics will be based on the spacetime-reconstructed
data using the inverse Fourier transform (IFT) of the k-space corrected kime-phases. In
other words, the ultimate model-based inference, model-free prediction, or cluster la-
beling will be conducted on the IFT-synthesized data ( ^̂f ):

^̂f = IFTðK ð f̂ ÞÞ,
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where the original data, f , is transformed into k-space, f̂ = FT fð Þ, and acted on by the
kime-estimation operator, K , which transforms the synthetically generated Fourier
transform kime-phases, k, into aggregate kime approximations, k̂. Note that during
the spacekime analytics, the specific mathematical model or statistical inference un-
derpinning the analysis may either utilize the entire spacekime complex data, or col-
lapse the kime-phases and only use the modified kime magnitudes.

Figure 6.1 shows simulations demonstrating the three general scenarios when esti-
mating the kime-phase using sample data. In each case, a sample of n= 1,000 kime-
phases is randomly drawn from von Mises circular distribution, subject to different
mean parameters controlling the centrality, and concentration parameters that govern
the dispersion of the phases. The first scenario, black color, corresponds to kime-
phases that are predominantly positive. In this situation, the kime-phase aggregator
will yield a positive (non-trivial) phase estimate. The result of this, as expected, will
manifest differences in the spacekime and spacetime data-analytical results. The green
color shows kime estimates corresponding to a trivial phase (nil phase), which is a very
special case where directly analyzing the data in spacetime would be equivalent to the
corresponding spacekime analytics following the spacekime transformation and kime
estimation. Finally, the red color corresponds to kime estimates that are predominantly

Figure 6.1: A simulation illustrating the (angular/circular) phase distributions of three alternative
processes. The graph depicts (1) the raw kime-phases as points along S1 presented as color-coded
point scatters, and (2) the kernel-density estimations of the kime-phase distributions, presented as
smooth circular density curves in the kime direction space. The three colors, green, black, and red,
correspond to three alternative mean kime-phases, 0, π

5 , − π
3, respectively. Typically, alternative

phase probability distribution models conform to specific sample characteristics, e.g., sample
statistics, and directly relate to the unknown population kime-phases we are trying to estimate.
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negative. Just like in the black sample simulation, these non-trivial (negative) kime-
phase aggregators are expected to yield spacekime analytical results that are distinct
from their spacetime counterparts.

Next, we will explore several specific examples illustrating the effects of spacekime
transformation on the corresponding data-driven inference and predictive analytics.

6.1 Image Processing

By separability, the multidimensional FT (e.g., of functions defined on 4D Minkowski
spacetime) is just a composition of several FTs, one for each of the dimensions. For
instance, in 4D spacetime x, tð Þ= x, y, z, tð Þ, n= 4, the FT of a (continuous) function
f x, tð Þ :R4 ! C can be decomposed into four transforms, one for each of the four co-
ordinate directions. Although the sign in the exponential term may be chosen either
way, traditionally the sign convention represents a wave with angular frequency ω
that propagates in the wavenumber direction k (spatial frequency):

Analysisð Þ FT fð Þ= f̂ k, ωð Þ= 1

2πð Þn2
ð
f x, tð Þei ωt −kxð Þdtd3x =

=
separabilityð Þ

1

2πð Þn2
ð ð

f x, tð Þei ωt −kxð Þd3x
� �

dt,

Synthesisð Þ IFT f̂
� �

= ^̂f x, tð Þ= 1

2πð Þn2
ð
f̂ k, ωð Þe− i ωt −kxð Þdωd3k.

The forward (analysis) and IFT (synthesis) formulas are separable, which allows the
decomposition of the transformations of higher-dimensional functions g xð Þ :Rn ! C

into n 1D FTs. This allows us to decrease the number of computations. For instance,
expressing the 2D FT g xð Þ :R 2 ! C in terms of a series of two 1D transforms.

The discrete Fourier transform (DFT) is the Fourier transform sampled on a dis-
crete lattice. Therefore, it only includes a set of samples, which is large enough to
fully describe the spatial domain image, rather than containing all frequencies of
the original signal. The number of frequencies included corresponds to the number
of samples (e.g., pixels, voxels) in the spatial domain of the signal. For 2D images,
the signal representation in the spatial and Fourier domains are arrays of the same
sizes. Suppose we have an M ×N square image, f m, nð Þ : m, nð Þ 2 M ×Nf g ! R is a
discretely sampled and periodic image. Then, the 2D forward (analysis) and inverse
(synthesis) DFTs are given by:

Analysisð Þ DFT fð Þ= f̂ k, lð Þ= 1ffiffiffiffiffiffiffiffi
MN
p

XM − 1

m=0

XN − 1

n=0

f m, nð Þe− i 2π k
Mm+ l

Nnð Þ,
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Synthesisð Þ IDFT�f̂�= ^̂f m, nð Þ= 1ffiffiffiffiffiffiffiffi
MN
p

XM − 1

m=0

XN − 1

n=0

f̂ k, lð Þei 2π k
Nm+ l

Nnð Þ.

The computational complexity of the discrete Fourier transform (DFT) of a 1D function
is O(N2). The use of the fast Fourier transform (FFT), which assumes that the dimen-
sions are powers of 2, i.e., N = 2d, reduces that complexity to O N logNð Þ.

Let us demonstrate the FT of 2D images,

f̂ k, lð Þ= Real k, lð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Re k, lð Þ

+ i Imaginary k, lð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Im k, lð Þ

.

The magnitudes of the Fourier coefficients are computed by:

Magnitude=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Real2 + Imaginary2

p
.

That is, the magnitude (amplitude) can be represented in terms of the real and imag-
inary components of the complex-valued FT.

The discrete FFT method, fft(), generates only meaningful frequency up to half the
sampling frequency. The DFT values include both positive and negative frequencies.
Although, as sampling a signal in discrete time intervals causes aliasing problems, fft()
yields all frequencies up to the sampling frequency. For instance, sampling a 50 Hz
sine wave and 950 Hz sine wave with 1,000 Hz will generate identical results, as the FT
cannot distinguish between the two frequencies. Hence, the sampling frequency must
always be at least twice as high as the expected signal frequency. For each actual fre-
quency in the signal, the FT will give two peaks (one at the “actual” frequency and one
at sampling frequency minus “actual” frequency). This will make the second half of the
magnitude vector a mirror image of the first half.

As long as the sampling frequency is at least twice as high as the expected sig-
nal frequency, all meaningful information will be contained in the first half of the
magnitude vector. However, a peak in the low-frequency range might appear when
high “noise” frequency is present in the signal (or image). At this point, the vector
of extracted magnitudes is only indexed by the frequencies but has no associated
frequencies. To calculate the corresponding frequencies, the FT simply takes (or
generates) the index vector (1, 2, 3, . . . , length magnitude vectorð Þ) and divides it by
the length of the data block (in seconds).

In 1D, the phases would represent a vector of the same length as the magnitude
vector with phase values of each frequency in − π, + π½ Þ. Phase shifts correspond to
translations in space (e.g., x-axis) for a given wave component that are measured in
angles (radians). For instance, shifting this wave f xð Þ=0.5 sin 3wtð Þ+0.25 sin 10wtð Þ
by π

2 would produce the following Fourier series:

f tð Þ=0.5 sin 3wt + π
2

� �
+0.25 sin 10wt + π

2

� �
.
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In 2D, the Fourier transform (FT/IFT) for images is defined by:

f̂ u, νð Þ= F u, νð Þ=
ð∞
−∞

ð∞
−∞

f x, yð Þe− i 2π ux+ νyð Þdxdy,

f x, yð Þ= ^̂f x, yð Þ= F̂ x, yð Þ=
ð∞
−∞

ð∞
−∞

F u, νð Þei 2π ux+ νyð Þdudν,

where u and ν are the spatial frequencies, F u, νð Þ= FR u, νð Þ|fflfflfflffl{zfflfflfflffl}
Real

+ i FI u, νð Þ|fflfflffl{zfflfflffl}
Imaginary

is a complex

number for each pair of arguments, themagnitude spectrum is

jF u, νð Þj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
R u, νð Þ+ F2

I u, νð Þ
q

,

and the phase angle (direction) spectrum is

Phase= arctan
FI u, νð Þ
FR u, νð Þ
� �

.

The Euler formula allows us to express a complex exponential:

e− i 2π ux+ νyð Þ = cos 2π ux+ νyð Þð Þ− i sin 2π ux+ νyð Þð Þ

using the real and imaginary (complex) sinusoidal terms in the 2D plane. The ex-
trema of its real part, cos 2π ux+ νyð Þð Þ, occur at 2π ux+ νyð Þ= nπ. Using vector nota-
tion, the extrema are attained at:

2π ux+ νyð Þ= 2π hUjXi= nπ,

where the extrema points U = ðu, νÞT and X = ðx, yÞT represent sets of equally spaced
parallel lines with a normal U and wavelength

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + ν2
p .

Let us define the index shifting paradigm associated with the discrete FT, which
is simply used for convenience and better visualization. It has no other relevance to
the actual calculation of the FT and its inverse, IFT. When applying the forward or
reverse generalized discrete FT, it is possible to shift the transform sampling in time
and frequency domain by some real offset values, a, b. Symbolically,

f̂ kð Þ=
XN − 1

n=0

f nð Þe− 2πi
N k +bð Þ n+að Þ, k =0, . . . ,N − 1.

As the TCIU package (https://github.com/SOCR/TCIU, accessed January 29, 2021) is
developed using R, we will present some of the technical details using R syntax
where indices start with 1, not 0, as in some other languages.
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In the TCIU R package, the function fftshift() is useful for visualizing the FT in
k-space with the zero-frequency component in the middle of the spectrum, rather
than in the corner. Its inverse counterpart, ifftshift(), is needed to rearrange the indices
appropriately after the IFT is employed, so that the image is correctly reconstructed in
spacetime. The FT only computes half of the frequency spectrum corresponding to the
non-negative frequencies (positive and zero if the length (f) is odd) in order to save com-
putation time. To preserve the dimensions of the output, f̂ = FT fð Þ, the second half of
the frequency spectrum (the complex conjugate of the first half) is just added at the
end of this vector.

Earlier in Chapter 3, we showed the effects of the 2D FT on simple binary images
(squares, circles), see Figure 3.3. Let us now examine the effects of the phases on the
image synthesis in spacetime. Figure 6.2 depicts the effects of synthesizing, or recon-
structing, a pair of 2D alphabet images using alternative phase estimates. This experi-
ment shows that both the kime-order (magnitudes) and kime-direction (phase angles)
are critical for correctly interpreting, modeling, and analyzing 2D images. In row one of
this figure, the second and third columns represent the image reconstructions of the
Cyrillic (30-character Bulgarian) alphabet and the Latin (26-character English) alpha-
bet, respectively. Different rows in this figure illustrate alternative kime-phase estimates
used in the spacetime image synthesis.

In practical data analytics, solely using time, i.e., accounting only for kime-
magnitude but ignoring kime-phase, corresponds to interpreting, visualizing, and
analyzing datasets corresponding to the flat priors for kime phases, as shown in the
last row in Figure 6.2. Clearly, a substantial component of the data energy may be
wasted by discarding the kime-directions. Imagine performing statistical inference
(e.g., optical character recognition) on a series of such images representing text
from one or several languages. Certain parts of the images, e.g., letter “O,” may be
well preserved in the time-only reconstructions; however, the recognition of more
complex characters would be inhibited by suppressing the kime-phase information.

6.2 fMRI Data

The next spacekime demonstration involves longitudinal functional magnetic reso-
nance imaging (fMRI) data. We show spacekime data analytics using real 4D fMRI

data with dimension sizes
�

64|{z}
x

× 64|{z}
y

× 21|{z}
z

× 180|{z}
t

�
. For simplicity of the pre-

sentation, analysis, and visualization, we will focus on a longitudinal time series
over a 2D spatial domain, rather than the entire 4D fMRI hypervolume. In other
words, we’ll (artificially) reduce the native 3D spatial domain (x = x, y, zð Þ 2 R3) to 2D
(x = x, yð Þ 2 R 2 
 R3) by focusing only on one mid-axial (transverse) slice through the
brain (z = 11). This reduction of 3D to 2D spatial dimension does not reduce the
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generality of the experiment and provides a more intuitive way to illustrate the effects
of spacekime analytics under alternative phase-estimation strategies.

Figure 6.3 shows a superposition of three time points (1≤ t1 < t2 < t3 ≤ 180) of the
same 2D spatial domain, where the image intensities at location x, yð Þ are shown as
vertical heights of the surface reconstructions. Brighter colors correspond to larger
image intensities and higher surface elevations (altitudes). The surface at the mid-
dle time point (t2) is intentionally shown opaque, whereas the first and last surfaces

Kime-
direction

2D Images
Cyrillic (Bulgarian) Alphabet Latin (English) Alphabet

Correct Phase
Synthesis

Perfect
Reconstruction

Swapped
Phase

Synthesis

Approximate 
Reconstruction

Magnitude=Cyrillic
Phase=English

Magnitude=English
Phase=Cyrillic

Nil-Phase
Synthesis

Uniform Prior
Reconstruction

Magnitude=Cyrillic
Phase=0

Magnitude=English
Phase=0

Figure 6.2: Effects of kime-direction estimation on the reconstruction of 2D images representing
the 30-character Bulgarian (Cyrillic) and 26-character English (Latin) alphabets.
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(t1 < t3) are rendered semitransparent to see through the fMRI intensities at the mid-
dle time point.

Suppose the 2D fMRI time series is represented analytically by:

f x, tð Þ= f x, y, tð Þ :R 2 ×R + ! R

and computationally as a third-order tensor, or a 3D array, f x, y, t½ �. Then, each of the

following are also 3D arrays: the complex-valued f̂ = FT fð Þ, and the real-valued magni-

tude of the FT f̂
��� ���= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Re
�
f̂
��2

+
�
Im
�
f̂
��2r ! 

and phase angle, θ = arctan

 
Im
�
f̂
�

Re
�
f̂
� !.

We will focus on the function f̂ = f̂ f1, f2, f3½ � where the 3rd wavenumber corre-
sponds to the temporal frequency. Specifically, we will consider the magnitude of its
3rd dimension as time= f3j j and we will pretend its phase is unknown, e.g., θ3 =0.

Thus, inverting the FT of the modified function êf , where θ3 =0, will yield an esti-

mate ê̂f of kime for the original 2D fMRI time series.
As time is observable, the kime magnitude is measurable, however, the kime-

phase angles are not. They can be either estimated from other similar data, provided
by an oracle, modeled using some prior distribution, or fixed according to some ex-
perimental conditions. For simplicity, we’ll consider two specific instances:

Figure 6.3: 3D rendering of three time cross-sections of the fMRI series over the reduced 2D
spatial domain.
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– Case 1: When the time-dimension phases are indeed the actual FT phases. Although
in general, the phases are unknown, in our fMRI simulation example, they are actu-
ally computed from the original spacetime fMRI time series via the FT, and

– Case 2: When the time-dimension phases are provided by the investigator, e.g.,
trivial (nil) phases or phases derived from other similar datasets.

Figure 6.4 shows the extracted time-course of one voxel location x= 25, y= 25, z = 12ð Þ
along with a pair of kernel-based smooth reconstructions of the fMRI series at that loca-
tion. This example is interesting, as in fMRI data, the signal-to-noise ratio (SNR) is re-
ally low. Depending on the voxel spatial location and the specific functional stimulus
applied at a particular time, less than 0.08% of the observed signal variability may ac-
tually be due to the underlying brain physiologic hemodynamic response (HDR) to the
stimulus at the particular location. The remaining part of the signal is just random
noise, Rician or Rayleigh noise mixed with some bio-stochasticity. Figure 6.4 shows
the raw signal and a couple of smoothed versions of the fMRI time course at one voxel
location x= 25, y= 25, z = 12ð Þ. Smoothing effectively corresponds to denoising, which
in turn tends to increase the SNR and results in more clear visual patterns, reproducible
models, and tractable analytics.

Figure 6.5 depicts the inverse FT reconstruction (synthesis) using the fMRI real-
magnitude and nil-phase estimates. The low correlation ðρ =0.16) between the two
time series (original fMRI series and nil phase reconstructed signal) indicates poor
approximation of the original data by the synthesized time series.

Let us now try the oracle approach of kime-phase reconstruction. We can em-
ploy the phases of another neighboring voxel with highly correlated ðρ =0.79) inten-
sities to reconstruct the fMRI time course at the location 25, 25, 12ð Þ, see Figure 6.6.
Note that the correlation between the original and the synthesized signal is now
much higher (ρ =0.88).

These experiments demonstrate that time series representation and analysis
work well in spacekime. However, in various situations where one may or may not
be able to observe or estimate the kime-direction (phase angle), the results may
vary widely based on how reasonable the synthesis of information is without ex-
plicit knowledge of the phase measures. As an observable, the time (kime-order) is
measurable; however, the phase angle (kime-direction) needs to be either estimated
from other similar data, provided by an oracle, or fixed according to some experi-
mental conditions or prior knowledge.

We can demonstrate the manifold foliation we discussed in Chapter 5 in terms
of fMRI kime-series. In 4D spacetime, classical time series are represented as real-
valued functions defined over the positive real time domain R

+ð Þ. In the 5D space-
kime manifold, such time series curves extend to kime-series that are represented
geometrically as kimesurfaces. Figure 6.7 illustrates an example of one such kime-
surface extension of a standard time series anchored at one fixed spatial location.
On the https://www.spacekime.org/ website, there are 3D animations that provide
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additional visual cues to the relation between kime-series (kimesurfaces) and their
lower-dimensional kime-foliations time series (time curves). At any given kime, i.e.,
specifying the kime-magnitude (t) and the kime-phase (φ), the value of the kimesur-
face (height) represents the intensity of the kimesurface, which is coded in rainbow
color on Figure 6.7. A parametric kime grid is superimposed on the surface of the
kime-series to show the kime-magnitude (time) and kime-direction (phase). Various
kime-phase aggregating operators that can be employed to transform traditional time
series curves to kimesurfaces. The latter can then be modeled, interpreted, and used
to forecast the kime-longitudinal behavior (kime-course) of the fMRI signal using ad-
vanced spacekime analytical techniques. For a given kime-series surface, all of its cor-
responding time series curves are embedded in concrete kime-foliations, i.e., all time
series at x, y, zð Þ 2 R3 are projections of the kimesurface at the same spatial location
onto leaves of the kime-foliation planes. Having an appropriate kime-phase model (or
estimate) allows us to interpret and analyze a single kimesurface instead of analyzing a
large number of (repeated) time series representing the same process (e.g., fMRI signal
at specific voxel for a known stimulus under controlled, event-related, experimental
conditions).

Recall that in Chapter 4, we discussed tensor-based linear modeling as a generaliza-
tion of classical linear modeling (Chapter 4, Section 4.6). There we also presented
alternative strategies for representing longitudinal time series as kimesurfaces and
showed differences between the ON (stimulus) and OFF (rest) conditions of this event-
related fMRI study (Chapter 4, Section 4.7). For instance, in Figure 4.4, we showed
reconstructions of the real spacetime fMRI time series as kimesurfaces. This spacekime
representation allows us to statistically analyze the kimesurface differences between
different experimental conditions (e.g., on–off stimuli in this fMRI study).

Top view of an fMRI kime-surface. Side view of an fMRI kime-surfacealong 
with the corresponding classical fMRI

time-series as kime-foliation projections.

Figure 6.7: fMRI kime-series at a single spatial voxel location. The rainbow color represents the
fMRI kime intensities. Examples of 1D time series are shown as projections (red and blue curves)
of the kimesurface onto the lower-dimensional kime-foliation leaves.
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Let us apply spacekime tensor-based linear modeling, see Chapter 4, Section 4.6,
to expand this fMRI data analytics example and derive 3D voxel-based and region-of-
interest based statistical maps associated with this finger-tapping somatosensory motor
task. There are many alternative spacekime analytics approaches that can be em-
ployed to determine the brain regions activated during different experimental condi-
tions. Below, we will demonstrate one specific three-tier analytical strategy. The fMRI
data can first be spatially co-registered or aligned with the brain atlas using a number
of linear and non-linear spatial normalization techniques [311–314]. Then, the prepro-
cessing continues by using the Laboratory of Neuro Imaging (LONI) probabilistic
brain atlas [315] to partition the entire brain anatomical space into 56 regions of inter-
est (ROIs). For each voxel location in the brain, the probabilistic atlas assigns likeli-
hoods of the voxel to be inside of any of the 56 ROIs. This effectively tessellates the
spatial domain (3D lattice) into complementary regions. Each voxel location in the
domain is tagged with a label representing the most likely ROI it is part of along
with a corresponding probability value. Our preprocessing protocol relies on using
an affine registration to spatially normalize all time points of 3D fMRI volumes into the
probabilistic brain atlas space and superimpose the 56 brain ROI labels onto the func-
tional signal at each time point. In general, this can be done for both real- and complex-
valued fMRI data.

The first tier of analysis aims to identify any of the ROIs that may be potentially
activated by the rest (off) versus activation (on) stimulus tasks. This process pinpoints
only the most important brain regions that can subsequently be interrogated voxel-by
-voxel to further localize the statistical significance maps reflecting the brain-location
association with the event-related (finger-tapping) fMRI task. Although many alterna-
tive models can be used for this tier-one analysis, in this experiment, we used a
measure called temporal contrast-to-noise ratio (CNR) [316], which represents the
quotient of a contrast μi,ON −OFF

� �
and a corresponding noise estimate σi,ON −OFFð Þ

over time. The contrast numerator represents the average signal‐change or task‐
related variability. The noise denominator captures the non‐task‐related variabil-
ity over time. For a fixed ROI, the CNR statistic is computed by:

Yi,ON −OFF =Yi,ON −Yi,OFF , μi,ON −OFF|fflfflfflfflfflffl{zfflfflfflfflfflffl}
contrast

= 1
n

X
time

Yi,ON −OFFð Þ,

σi,ON −OFF|fflfflfflfflfflffl{zfflfflfflfflfflffl}
noise

= 1
n− 1

X
time

Yi,ON −OFF − μi,ON −OFF
� �2� �1

2
,CNRi =

μi,ON −OFF

σi,ON −OFF
,

where Yi,ON and Yi,OFF are the fMRI intensities over the ROI voxels i corresponding
to the ON and OFF stimulus conditions, respectively, and n is the number of ON–OFF
pairs in a time series.
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By the central limit theorem (CLT), parametric statistical tests can be used to quan-
tify the ROI-wide stimulus-related brain activation. In our case, we will use a t-test to
assess the statistical significance in each of the 56 ROIs independently. The test statis-
tics can be computed using the observed CNR vector CNR1,CNR2, � � � , CNRNð ÞT , where
N is the number of voxels in the ROI. To control the type 1 error rate, we corrected for
multiple testing by Bonferroni adjusting the resulting ROI p-values (α =0.000892).

The second tier in the analysis employs tensor-on-tensor linear regression [230]
only over the ROIs identified in the first step. The resulting statistical maps will isolate
specific voxel locations within the “active regions” that are most significantly associ-
ated with the stimuli. Let us explicate the corresponding dimensions of all tensor com-
ponents and the complete tensor linear model. Using the probabilistic brain brain
atlas, the tensor linear regression models are estimated either globally, jointly on all 56
ROIs, or separately on individual ROIs and then aggregating the results into one ROI-
conditional model. Once we estimate the effect-size tensor elements, B= βð Þ, we can
compute the corresponding p-values of the effects (e.g., on–off stimulus) by either
parametric t-tests or by running non-parametric tests (e.g., Wilcoxon test). Adjustments
for multiple testing across all voxels within each ROI may be necessary to control the
false positive rate.

As shown in Chapter 4, tensor-based linear modeling requires a structured re-
presentation of space and time encapsulating each (irregularly shaped) ROI with
the smallest bounding box. This facilitates the tensor arithmetic by matricizing the
fMRI signal where the tensor elements are equal to the actual fMRI values inside
each ROI or zero outside the ROI boundary. We will denote the general dimensions
of the smallest bounding box for each ROI by a×b× c. Then, for a given ROI, we can
implement a tensor linear model using the metricized fMRI tensors:

Y = hX,Bi|fflffl{zfflffl}
tensor product

+ E .

The dimensions of the tensor Y are 160× a×b× c, where the tensor elements repre-
sent the response variable Y½t, x, y, z], i.e., fMRI intensity. For fMRI magnitude (real-
valued signal), the design tensor X dimensions are:

160|{z}
time

× 4|{z}
effects

× 1|{z}
R

.

The X tensor dimensions are 160× 4× 1 and include elements corresponding to the

on–off stimulus, i.e., finger-tapping task indicator
+ 1 Onð Þ
− 1 Offð Þ
� �

, adjusting for the HDR

function to create the expected BOLD signal x1. In addition, the design tensor in-
cludes polynomial drift terms of order one (linear, x2) and two (quadratic, x3):
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X t|{z}
160

, intercept = 1, x1 =BOLDsignal, x2 = lineartrend, x3 = quadratictrend
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4

, 1|{z}
1

24 35.
By fitting the tensor linear model, we can estimate the corresponding effect-size co-
efficient tensor B̂, whose dimensions are 4× 1× a×b× c, make tensor-model-driven
predictions using Ŷ = hX, B̂i of dimensions 160× a×b× c, and the compute the resid-
ual tensor Ê =Y − hX, B̂i|fflffl{zfflffl}

Ŷ

, whose dimensions are also 160× a×b× c.

Again, parametric or non-parametric statistical tests can be used to make inference
using the estimated BOLD signal effects B̂ x1, 1, a, b, c½ � at spatial location v= a, b, cð Þ
within each ROI. These effects correspond to p-values, p a, b, c½ �, quantifying the signifi-
cance of the linear relation. In this case, we ran t-tests on the estimated coefficients B̂ in
each ROI and our results demonstrate significant effects (smaller corresponding p-values)
in the motor area, which is expected by the finger-tapping task. For each ROI, we calculate
the p-values based on the estimated tensor coefficients of the effect of BOLDsignal and
combine these using the spatial information into a global effect-size tensor across all brain
spatial locations. In this finger-tapping experimental, the smallest p-values localize the
strongest paradigm-specific brain activation brain areas.

The last third tier of the analysis involves a post-hoc process. This is necessary
for avoiding false positive findings and for exposing only the major brain activation
sites associated with the finger-tapping stimulus. Again, there are many alternative
approaches to accomplish these post-hoc processes. We will reduce the number of
potential false positive voxel locations by correcting for multiple testing using false
discovery rate [317, 318]. Then, will apply a spatial clustering filter to remove
smaller in size clusters of voxels, which may reflect sporadic effects or low SNR
ratio. The effect of these post-processing adjustments on the final statistical maps
is twofold. It tempers erratic noise and uncovers only a few major brain areas that
have the strongest association with the underlying event related stimulus task.

The strength of the statistical significance is determined in terms of quantifying
the effect-size tensor, i.e., computing the p-values corresponding to the on–off stimu-
lus. The corresponding practical importance of the effect can be visualized in terms of
the size and the overall intensity of the resulting brain activation blocks within the
specific ROIs. Figure 6.8 depicts 2D projections and 3D renderings visualizing the
results of each of the three sequential steps in the complete tensor-based statisti-
cal analysis protocol.

The results on Figure 6.8 show a couple of important points regarding the
three-tier tensor-based analytical protocol. First is the dichotomy between ROI-based
and voxel-by-voxel statistical inference. The former relies on aggregate statistics cov-
ering all voxels within each ROI. Voxel-by-voxel inference analyzes the fMRI data
time course independently for each voxel location. Second, there is a progressive re-
duction of the number of activation regions, complemented by an emphasis on larger
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Tier 3 (left)
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Figure 6.8: Results of the three-tier statistical analysis protocol that starts with registering the
fMRI data into a canonical brain atlas space, parcellating the signal into 56 ROIs, determining the
regional significance of each ROI, identifying voxel-based statistics using tensor linear models,
and post-hoc processing to control the false positive error rate and ensure that large to moderate
clusters of significant voxels are identified within the important ROIs.
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activation clusters of significant voxels. In this finger-tapping event-related stimulus
task, we see strong evidence of observing activation in the somatosensory cortex
(motor area), which provides validation of the entire tensor-based statistical analysis
of fMRI brain activation.

6.3 Exogenous Feature Time Series Analysis

The next application uses the UCI ML Air Quality Dataset to demonstrate the effect of
kime-direction on the analysis of the longitudinal data (https://archive.ics.uci.edu/ml/
datasets/Air+quality, accessed January 29, 2021). This Air Quality dataset consists of
9, 358 hourly averaged responses from an array of 5 sensors embedded in an Air Quality
Chemical Multisensor Device. These measurements were obtained in a significantly pol-
luted area during a one-year period (March 2004 to February 2005). The features in-
clude concentrations for carbon monoxide (CO), non-methane hydrocarbons (a variety
of chemically different organic compounds, e.g., benzene, ethanol, formaldehyde, cy-
clohexane, acetone), benzene, total nitrogen oxides (NOx), and nitrogen dioxide (NO2).

The UCI ML Air Quality Dataset features include:
– Date (DD/MM/YYYY).
– Time (HH.MM.SS).
– True hourly averaged concentration CO in mg/m3 (reference analyzer).
– PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO targeted).
– True hourly averaged overall non-metanic hydrocarbons concentration in

μg/m3 (reference analyzer).
– True hourly averaged benzene concentration in μg/m3 (reference analyzer).
– PT08.S2 (Titania) hourly averaged sensor response (nominally NMHC targeted).
– True hourly averaged NOx concentration in ppb (reference analyzer).
– PT08.S3 (tungsten oxide) hourly averaged sensor response (nominally

NOx targeted).
– True hourly averaged NO2 concentration in μg/m3 (reference analyzer).
– PT08.S4 (tungsten oxide) hourly averaged sensor response (nominally NO2 targeted).
– PT08.S5 (indium oxide) hourly averaged sensor response (nominally O3 targeted).
– Temperature in °C.
– Relative humidity (%).
– AH absolute humidity.

We will start by exploring the harmonics (frequency–space decomposition) of the
time course of carbon monoxide (CO) concentration, Figure 6.9. This figure shows
the superimpositions of the first 3 harmonics (top row), the mixture of the first 12
harmonics (middle row), and the breakdown of the first 14 harmonics (bottom row)
of the CO time series.
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Figure 6.9: Harmonics of CO concentration. The vertical axes in each panel represent CO concentration
and the horizontal axes represent time. The top, middle, and bottom rows show the aggregate of the
first 3 and 12 harmonics, and the breakdown of the individual harmonics of order 1 through 14.
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As the FT and IFT are linear functionals, addition, averaging, and multiplica-
tion by constants are preserved by the forward and IFT. Therefore, if we have a
number of phase estimates in k-space, we can aggregate these (e.g., by averaging
them) and use the resulting ensemble phase to synthesize the data in spacekime. If
the composite phases are indeed representative of the process kime orientation,
then the reconstructed spacekime inference is expected to be valid even if we use a
single sample. This way, spacekime inference provides a dual analogy to the CLT
[206]. The CLT guarantees the convergence of sample averages to their correspond-
ing population mean counterparts; the spacekime inference ensures that having a
large number of phases of the process yields stable, reliable, and reproducible infer-
ence. However, in spacekime, ensembling of the known phases may not be as trivial
as taking their arithmetic average.

In this air pollution case study, we will deeply explore this analytic duality by
performing a traditional exogenous ARIMAX modeling [319] of CO concentration
(outcome: PT08.S1.CO.) based on several covariates, e.g., the following predictors
NMHC.GT, C6H6.GT, PT08.S2.NMHC, NOx.GT, PT08.S3.NOx, NO2.GT, PT08.S4.NO2,
PT08.S5.O3, T, RH, and AH.

The data are interpreted as nine epochs of the same process. We will estimate three
complementary ARIMAX models using only epoch 1 data. Each model will utilize alter-
native phase estimation strategy – true, nil, or average phase angles. Table 6.1 includes
the results of the model fitting under the three experimental conditions with the corre-
sponding estimates of model quality. Note that the model Akaike Information Criterion
[320] (AIC) measure of the nil-phase reconstruction is smaller than the model computed
using the average-phase synthesis; suggesting the nil-phase model may be better. At
first glance, this observation may be counterintuitive. However, deeper investigation
uncovers that the lower AIC of the nil-phase signal reconstruction simply suggests that
this model captures more of the nil-phase signal energy. In other words, better AIC
does not necessarily indicate that the nil-phase estimated ARIMA (2,0,1) model
represents the right energy (information content) of the real CO concentration level. In-
deed, it is clear that overall, the parameters obtained using the average-phase ARIMA
(2,0,3) model are much closer to their real-signal counterparts. For instance, the esti-
mates of the exogenous feature effects (xreg’s) obtained via the average-phase
ARIMA(2,0,3) model are closer to their true-model counterparts computed via the
ARIMA(1,1,4) model. This suggests that any subsequent data analytic inference
based on different phase-estimates will affect the final interpretation of the resulting
model-based forecasting of CO concentration.

Figure 6.10 provides a complementary graphical evidence of the impact of kime-
direction estimation on the time series forecasting. Notice the improvement of predic-
tion accuracy of the ARIMA model based on the average-phase reconstruction, relative
to the no phase-angle (nil) model. These results clearly show improvements of the data
analytics using better estimates of the kime-phases. In addition to the visual appeal of
phase averaging, we see quantitative evidence (improved correlations between models
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Table 6.1: Comparison of the ARIMAX models derived on three different signal reconstructions
based on alternative kime-phase estimates.

Phase estimates

Nil Average True = original

Model estimate ARIMA(,,) ARIMA(,,) ARIMA(,,)

AIC , , ,

ar . . .

ar −. . .

ma −. . −.

ma . −. .

ma . . .

ma . . −.

intercept . . .

xreg −. . .

xreg . . .

xreg −. −. .

xreg . . .

xreg . −. −.

xreg . . −.

xreg . . .

xreg . . .

xreg −. −. .

xreg . . .

xreg −. −. −.

ARIMAX (p,d,q)
p = order (# of time lags) of the autoregressive (AR) part
d = differencing (# of past values subtractions)
q = order of moving average (MA) part
“.” denotes trivial effect estimates
Highlighted rows indicate better parameter estimates derived using the average-phase signal
reconstruction, ARIMA(2,0,3) model, relative to the baseline nil-phase estimated model, ARIMA(2,0,1).
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based on true and average phase estimates) of better forecasting when the kime direc-
tions can be well estimated.

An alternative data analytic approach involves using the FT applied to the com-
plete 2D data matrix (rows = time, columns = features), inverting it back in spacetime,
and investigating the effect of the time series analysis with and without using the cor-
rect phases. Knowing the true phases or ability to better estimate them would be ex-
pected to yield better analytical results (e.g., lower bias, reduced dispersion).
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Figure 6.10: Forward in time prediction of the CO concentration using alternative phase estimates.
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We will demonstrate this approach by examining the effects of the phase angles on
the inference obtained via regularized linear modeling using least absolute shrinkage
and selection operator (LASSO) penalty [10, 238]. Again, we will focus on modeling the
CO concentration:

CO.GT⁓PT08.S1.CO+NMHC.GT +C6H6.GT + PT08.S2.NMHC+NOx.GT +PT08.S3.NOx
+ NO2.GT + PT08.S4.NO2+PT08.S5.O3+T +RH +AH.

Figure 6.11 shows some of the graphical outputs for the nil-phase and true-phase
LASSO models. Note the substantial model improvement using the correctly recon-
structed signal based on the correct kime-angle directions. In addition to attaining
lower mean square error, fewer regression coefficients are needed to model the data
and their magnitudes are reduced.

These experiments clearly illustrate the benefits of accurate phase estimation on the
final CO concentration analytic inference.

Synthesis Approach (phase estimation strategy)
Nil-Phase Correct (True) Phase

Number of 
Nonzero 
(Active) 
LASSO

Coefficients

LASSO Mean 
Square Error 
CV Error of 

Model 
Coefficients

LASSO
Regression 

Model 
Coefficients 

Figure 6.11: Results of alternative phase estimation strategies on the resulting data analytic
inference derived using regularized linear modeling of CO concentration with LASSO penalty.
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6.4 Structured Big Data Analytics Case Study

Next, we will look at another interesting example of a large structured tabular data-
set. The goal remains the same – examine the effects of indexing complex data only
using kime-order (time) and comparing the data representations as well as the sub-
sequent data analytics. In this case study, we will use the UK Biobank (UKBB) data
archive (https://www.ukbiobank.ac.uk, accessed January 29, 2021) [321].

A previous investigation [57] based on 7,614 variables including clinical informa-
tion, phenotypic features, and neuroimaging data of 9,914 UKBB subjects, reported
the 20 most salient derived imaging biomarkers associated with mental health condi-
tions (e.g., depression, anxiety). By jointly representing and modeling the significant
clinical and demographic variables along with the derived salient neuroimaging
features, the researchers predicted the presence and progression of depression and
other mental health disorders in the cohort of UKBB participating volunteers. We will
explore the effects of kime-direction on the findings based on the same data and simi-
lar analytical methods. To streamline the demonstration, enable efficient calculations,
and facilitate direct interpretation, we will transform the data into a tight comput-
able object of dimensions 9, 914× 107 (participants × features) that can be processed,
interpreted and visualized more intuitively. An interactive demonstration of this
tensor data showing linear and non-linear dimensionality reduction is available
online (https://socr.umich.edu/HTML5/SOCR_TensorBoard_UKBB, accessed January
29, 2021).

The UKBB archive contains incomplete records. We employed multiple imputa-
tion by chained equations [322] to obtain complete instances of the data and avoid
issues with missing observations. Other preprocessing steps were necessary prior to
the main data analytics. As the derived neuroimaging data elements include mor-
phometry measures of vastly different units, e.g., linear, quadratic, and fractal dimen-
sions [323], we normalized these data elements to make the neuroimaging features
unitless. The UKBB archive was split into 11 time epochs where the modeling and in-
ference is based on epoch 1, whereas the other epochs were used to estimate the
kime-directions. Again, many alternative kime-direction aggregator functions can be
employed. In this demonstration, we used phase averaging aggregation to estimate
the unknown phase-angles.

To assess the quality of the analytical inference, we will focus on predicting a spe-
cific clinical phenotype – Ever depressed for a whole week 1, “X4598.2.0.” A number of
model-based and model-free methods can be used for supervised and unsupervised,
retrodictive and predictive strategies for binary, categorical, or continuous regression,
clustering and classification. We will demonstrate a decision-tree classification
approach for forecasting the binary clinical depression phenotype.

Figures 6.12, 6.13, and 6.14 show the results of the data analytics for the three
alternative kime-phase reconstruction schemes corresponding to the true phases,
multi-epoch phase average, and trivial (nil) phases. Note the graphical representation
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(topology, depth structure, and complexity) of the corresponding decision trees, as
well as the quantitative measures capturing the classification accuracy, reliability,
and predictive power of each of the corresponding models.

One would expect to see the pruning-based observed simplification of the deci-
sion-tree graphs to be tightly coupled with a corresponding decrease of the forecast-
ing reliability (e.g., quantitative metrics such as the Kappa measure). Comparing the
results across the three alternative kime-phase reconstruction strategies, we also see
the effects of the a priori knowledge about the kime-direction on the final statistical
inference.

Finally, Figure 6.15 shows a summary comparing all analytical results from the
three complementary Big Data spacekime reconstruction approaches. The horizon-
tal and vertical axes in this figure show the feature indexing (x-axis) and the feature
average across all 9,914 participants (y-axis). Note the substantial discrepancy be-
tween the original data (green) and the reconstructions using no-prior nil-phase
kime estimates (red). There is better agreement between the true (original, green) sig-
nal and the spacekime reconstruction using phase-aggregation (in this case using
phase averaging across epochs, blue). This provides strong indirect evidence of the
importance of correctly estimating the kime-phases.

In this study, we have the benefit of hindsight, as a prior study [57] had already
identified the most salient derived neuroimaging and clinical biomarkers (k = 107).
The earlier findings include physician-derived clinical outcomes and the computed
phenotypes using unsupervised machine learning methods. Therefore, this application
shows a simplified demonstration only using the previously selected salient features.
In general, a feature-selection preprocessing step may be necessary, or alternatively,
different specific data analytic processes may also jointly conduct inference and feature
selection. Our purpose in this instance was to examine the effects of the kime-phase
estimation on the scientific inference, rather than complete de novo predictive data an-
alytics on the original high-dimensional UKBB data archive.

6.5 Spacekime Analytics of Financial Market and Economics Data

It is known that there are a lot of social and economic phenomena which cannot
be predicted long-term with enough accuracy; whether empirically or theoreti-
cally. Examples of such processes include forecasting stock markets, economic
cycles, inflation dynamics, unemployment, etc. Various mathematical models
treating essential aspects of these phenomena have been developed but there are
no deterministic theories that allow timely, accurate, and reliable predictions.
Unfortunately, contemporary economic theories cannot go beyond detailed explana-
tions of specific past or present states of various observed micro- and macro-economic
systems.
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Correct True-Phase Synthesis   |      Raw Decision Tree Classification

Shades of blue and green colors indicate the distribution of the blend (mixture) of the two clinical
depression phenotypes within each node. The numerical values within each node identify the 

predominant class label and the number of cases of each phenotype that are classified within the node.
Corresponding Pruned Decision Tree Classification

Correct True- Phase Synthesis Pruned Decision Tree Classification
Raw Decision Tree

## Confusion Matrix and Statistics
##           Reference
## Prediction   0   1
##          0 362  60
##          1  79 399
##                                           
##                Accuracy : 0.8456          
##             95% CI : (0.82, 0.87)
##     No Information Rate : 0.51            
##     P-Value [Acc > NIR] : <2e-16                  
##                   Kappa : 0.6907
##  Mcnemar's Test P-Value : 0.1268                    
##             Sensitivity : 0.8209          
##             Specificity : 0.8693          
##          Pos Pred Value : 0.8578          
##          Neg Pred Value : 0.8347          
##              Prevalence : 0.4900          
##          Detection Rate : 0.4022          
##    Detection Prevalence : 0.4689          
##       Balanced Accuracy : 0.8451     

Pruned Decision Tree
## Confusion Matrix and Statistics
##           Reference
## Prediction   0 1
##          0 388 127
##          1  53 332
##                               
##                Accuracy : 0.8
##              95% CI : (0.77, 0.83)
##     No Information Rate : 0.51
##     P-Value [Acc > NIR] : < 2.2e-
16       
##                   Kappa : 0.6012
##  Mcnemar's Test P-Value : 5.295e-
08       
##             Sensitivity : 0.8798
##             Specificity : 0.7233
##          Pos Pred Value : 0.7534
##          Neg Pred Value : 0.8623
##              Prevalence : 0.4900
##          Detection Rate : 0.4311
##    Detection Prevalence : 0.5722
##       Balanced Accuracy : 0.8016

Figure 6.12: (True kime-phase reconstruction): Results of using decision-tree classification on
epoch 1 data to predict depression using the correct (true) kime-phase reconstruction.
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Murray Gell-Mann [324] defines the concept of “effective complexity,” with re-
gard to a given rational being that observes it and builds a schema, as the “length
of the compressed description of the regularities of this entity, identified in the
schema”. The effective complexity of Maxwell’s equations is equal to zero insofar as
the length of the scheme used to represent them is practically trivial. The same ap-
plies to other physical equations. As Murray Gell-Mann [324] remarks, Maxwell’s
equations describe in just a few lines the behavior of electromagnetism in the entire
universe. From this point of view, they provide an amazingly powerful, canonical,
and analytical modeling scheme.

Unlike physical phenomena, in general, economic phenomena do not obey certain
symmetries. As Focardi and Fabozzi [325] noted, the field of economics does not study
immutable laws of nature. Rather this discipline examines human artefacts that are
subject to emotion and change due to human decision-making. Therefore, economic

Epoch-average Phases |      Raw Decision Tree Classification

Shades of blue and green colors indicate the distribution of the blend (mixture) of the two clinical
depression phenotypes within each node. The numerical values within each node identify the 

predominant class label and the number of cases of each phenotype that are classified within the node.

Figure 6.13: (Epoch-average phases): Results of using decision-tree (binary) classification on
epoch 1 data to predict depression using synthesis based on an aggregate (average) kime-phases
of the 11 epochs.
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models based on hard metrics and static laws can only be moderately accurate. For
this reason, in economic theory, there are no concise schemes describing the entire di-
versity of phenomena as it is possible in physics. According to Gell-Mann, the effective
complexity of economic systems may be greater than the apparent effective complexity
of various physical systems. In addition, economic systems tend to be self-reflecting,
i.e., the knowledge accumulated on the system perturbs the very system itself. To some
extent, this is true in quantum physics, as well, where the act of making an observation
affects the particle system itself, see the earlier discussions of Heisenberg’s uncertainty
principle. However, unlike in physics, in economics, there is no repeatability of
experiments, and experimentation for certain phenomena may be impractical or
even impossible. This fact creates quite a few limitations, both on the direction of

Raw Decision Tree
## Confusion Matrix and Statistics
##           Reference
## Prediction   0   1
##          0 354  85
##          1  87 374
##                                           
##                Accuracy : 0.8089          
##             95% CI : (0.78, 0.83)
##     No Information Rate : 0.51            
##     P-Value [Acc > NIR] : <2e-16          
##                   Kappa : 0.6176
##  Mcnemar's Test P-Value : 0.9392                   
##             Sensitivity : 0.8027          
##             Specificity : 0.8148          
##          Pos Pred Value : 0.8064          
##          Neg Pred Value : 0.8113          
##              Prevalence : 0.4900          
##          Detection Rate : 0.3933          
##    Detection Prevalence : 0.4878          
##       Balanced Accuracy : 0.8088

Pruned Decision Tree
## Confusion Matrix and Statistics
## Reference
## Prediction   0   1
## 0 190 130
## 1 251 329

## Accuracy : 0.5767
## 95% CI : (0.54, 0.61)
## No Information Rate : 0.51
## P-Value [Acc > NIR] : 3.501e-05
## Kappa : 0.1484
## Mcnemar's Test P-Value : 7.857e-10
## Sensitivity : 0.4308 
## Specificity : 0.7168 
## Pos Pred Value : 0.5938
## Neg Pred Value : 0.5672
## Prevalence : 0.4900 
## Detection Rate : 0.2111
## Detection Prevalence : 0.3556
## Balanced Accuracy : 0.5738

Average-Phase Reconstruction  |   Corresponding Pruned Decision Tree Classification

Figure 6.13 (continued)
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empirical research and on the development of theoretical foundations. Aside from
economics, in most modern scientific disciplines, the development of elaborate theo-
retical models is based on much broader understandings of factual experimental evi-
dence and deeper representation of the underlying theoretical principles [326].

Frequently, economic systems represent elaborate processes with a large number
of unknowns and multiplex multivariate relationships. Most often, it is hard to isolate
and investigate meaningfully smaller simplified subsystems that lead to comprehensive
generalizations. The entire complex system, along with all its interactions, has to be in-
vestigated as a holistic economic challenge. The intuitive idea that in economics every-
thing interacts with everything else is not entirely groundless. Across time, different
schools of economics have regarded alternative factors as major, minor, or irrelevant,
leading to inconsistent and sometimes contradictory conclusions. Some of the economic
models purport to express the way in which the entire economic system functions by
means of a few highly generalized (aggregate) variables. However, such oversimplified
models are generally of little value as substitutes for deeper theoretical explorations.

A great number of the principles derived in economics may not be universal or
generally applicable in many situations. Some assumptions underlying various eco-
nomic theories are intrinsically qualitative and appear to be either too vague or not

Nil-Phase reconstruction    |        Raw Decision Tree Classification

Shades of blue and green colors indicate the distribution of the blend (mixture) of the two clinical
depression phenotypes within each node. The numerical values within each node identify the 

predominant class label and the number of cases of each phenotype that are classified within the node.

Figure 6.14: (Nil-phase forecasting): Results of using decision-tree classification on epoch 1 data
to predict depression using synthesis based on nil kime-phase estimates.
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generalizable. What are the consequences of this situation in economics? Unlike in
physics and mathematics, in economics an axiomatic system has not yet been formu-
lated. Most of the mathematical and econometric models used in this field are not suf-
ficiently effective, make substantial assumptions, or add little to our knowledge of the
underlying mechanics of the economic phenomena. Such models typically involve

Nil-Phase Reconstruction |       Corresponding Pruned Decision Tree Classification

Raw Decision Tree
## Confusion Matrix and Statistics
##           Reference
## Prediction   0   1
##          0 341  86
##          1 100 373
##                                           
##                Accuracy : 0.7933          
##             95% CI : (0.77, 0.82)
##     No Information Rate : 0.51            
##     P-Value [Acc > NIR] : <2e-16          
##                   Kappa : 0.5862
##  Mcnemar's Test P-Value : 0.3405          
##             Sensitivity : 0.7732          
##             Specificity : 0.8126          
##          Pos Pred Value : 0.7986          
##          Neg Pred Value : 0.7886          
##              Prevalence : 0.4900          
##          Detection Rate : 0.3789          
##    Detection Prevalence : 0.4744          
##       Balanced Accuracy : 0.7929     

Pruned Decision Tree
## Confusion Matrix and Statistics
##    Reference
## Prediction   0   1
##    0 190 130
##  1 251 329

## Accuracy : 0.5767
## 95% CI : (0.54, 0.61)
## No Information Rate : 0.51
## P-Value [Acc > NIR] : 3.501e-05
##  Kappa : 0.1484
## Mcnemar's Test P-Value : 7.86e-10
## Sensitivity : 0.4308
## Specificity : 0.7168
## Pos Pred Value : 0.5938
## Neg Pred Value : 0.5672
## Prevalence : 0.4900
## Detection Rate : 0.2111
## Detection Prevalence : 0.3556
## Balanced Accuracy : 0.5738

Figure 6.14 (continued)
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pure theoretical probability and statistics laws, rather than relying on fundamental
economic principles.

Mathematical models cannot always be expected to generate reliable predic-
tions for future events under all possible conditions. They mostly reflect a priori ex-
plicit quantitative relationships encoded in the models. The predictive capabilities
of the economic theories are restricted to abstract characteristics or to the most gen-
eral schemes of the spontaneously changing system. The positive contributions of
mathematical methods to the determination of the specific quantitative properties
of various economic systems may be quite limited.

As Leontief [326] remarks, indirect statistical conclusions, however methodologi-
cally refined, may not be sufficient to study the quantitative relationships underlying
a modern economy. Direct empirical research appears to be the most reliable ap-
proach to profound understanding of (1) the functional characteristics of modern
economy, (2) the quantitative descriptions of the structural properties of the eco-
nomic system, and (3) the development and application of new suitable mathemati-
cal structures.

Below, we will work with a large economic dataset and discuss examples of the
challenges, algorithms, processes, and tools necessary to manage, aggregate, and
interpret such data. In data science, time discordance frequently manifests as sam-
pling incongruency, heterogeneous scales, and intricate dependencies. Specifically,
we will apply the concept of 2D complex-time (kime) to an economic case-study to
illustrate how the kime-order (time) and kime-direction (phase) affect the advanced
predictive analytics and the resulting scientific inference.

This case study examines the financial and economic market conditions of the
core 31 countries part of the European Union (EU). The 2000–2017 data includes
quarterly measures for a large number of indicators, for each country separately, as
well as for the entire EU block. The data were retrieved in 2018 from the Luxem-
bourg-based Statistical Office of the European Union, EuroStat (https://ec.europa.
eu/eurostat/home, accessed January 29, 2021), and then preprocessed, harmonized,
and aggregated locally. The archive includes multivariate and longitudinal features
(economic indicators) that will be used in supervised classification, prediction, and
unsupervised clustering.

6.5.1 Longitudinal Modeling

Let us start by applying (exogenous features) AR integrated moving average (ARI-
MAX) models to predict specific univariate outcomes. Figure 6.16 shows the tra-
jectories of a number of econometrics for the EU countries across time in a common 3D
canonical space (country, by feature, by time). There were a number of complica-
tions associated with this data archive including incompleteness, different sam-
pling rates, longitudinal dependencies, highly correlated time-courses of various
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econometric indicators, etc. This 3D scene is also available as an interactive 3D
visualization scheme on the textbook website (https://tciu.predictive.space, ac-
cessed January 29, 2021). Additionally, the R code generating this plot is provided
with the supplementary materials.

A typical spacetime analytics involving ARIMAX modeling of this longitudinal
econometric data is shown in Figure 6.17. In this case, we chose to model the out-
come variable gross domestic product (GDP) at market prices, which represents a
major indicator for a nation’s economic situation. The GDP reflects the total value of
all goods and services produced, less the value of goods and services used for inter-
mediate consumption in their production. Expressing GDP in purchasing power
standards (PPS) eliminates differences in price levels between the 31 EU countries.
GDP-PPS is calculated on a per head basis to allow direct comparison of economies
that may be significantly different in their absolute sizes. As GDP-PPS represents
current prices, in euro per capita, its volume facilitates cross-country comparisons
rather than for temporal longitudinal tracking within a country. GDP-PPS eliminates
the differences in price levels between countries allowing meaningful volume com-
parisons of gross GDP between the EU countries. Per country GDP-PPS is expressed
relative to the overall European Union (EU31 GDP = 100). This means that countries
with GDP-PPS indices above or below 100 have per head GDP over or under the EU
average, respectively.

Figure 6.17 includes several alternative strategies to forecast Belgium GDP using
all available data over the model training range (2000–2014) and alternative predictors
(Xreg) over the validation (testing phase). The Belgium GDP Training Data (2000–2014)
is shown in black; the GDP model-fit (ARIMAX 4,0, 2ð Þ) forecasting (2015–2017) using
Belgium’s own economic indicators (Xreg) is shown in blue and green; the Belgium
GDP (2015–2017) predictions using the same ARIMAXmodel along with the 131 prospec-
tive covariates for a different EU country (Bulgaria) is shown in purple; a modified Bel-
gium GDP prediction using an offset of the Belgium trained model with prospective
Bulgarian covariates (2015–2017) is shown in orange; and the actually reported Bel-
gium GDP-PPS is in red.

The resulting ARIMAX 4,0, 2ð Þ GDP longitudinal model clearly indicates some
expected findings. For instance, both unemployment and labor costs are inversely
proportional to the GDP-PPS. In other words, increasing employment (decreasing
unemployment) and improving productivity (lowering labor costs) drive up GDP.
The rank order of the top 10 indicators driving up the (relative) GDP-PPS along with
their effect sizes are listed below:
1) Unemployment, females, from 15 to 64 years, from 18 to 23 months:

effect = −1.52,
2) ar2, effect = −1.182,
3) Labor cost other than wages and salaries, effect = −0.84,
4) Unemployment, females, from 15 to 64 years, from 12 to 17 months,

effect = −0.70,
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5) ar4, effect = −0.64,
6) sar2, effect = −0.63,
7) Unemployment, females, from 15 to 64 years, from 3 to 5 months, effect = −0.53,
8) Labor cost for LCI (compensation of employees + taxes – subsidies), effect = −0.29,
9) Unemployment, females, from 15 to 64 years, 48 months or over, effect = −0.28,
10) Unemployment, males, from 15 to 64 years, from 3 to 5 months, effect = −0.26.

The training-range estimated full ARIMAX model, ARIMAX 4,0, 2,0, 20,0,0ð Þ, includes
the following seven parameters: (non-seasonal) AR and MA, (seasonal) AR and MA, the
period, and the number of non-seasonal and seasonal differences.

Let us now examine the alternative spacekime analytics of this EU economics
forecasting problem. As we did earlier in Chapter 1, we can verify the three character-
istics of the kime-phases for the Belgium economic indicators: (1) the angular phase
distributions for all features are different, (2) all phases are in the range − π, + π½ Þ,
and (3) the distributions are zero mean and symmetric, Figure 6.18, which we saw
the theoretical evidence for in Chapter 5.

The results of the spacekime analytics forecasting Belgium GDP-PPS using ARI-
MAX longitudinal models are shown on Figure 6.19. These results show the prospec-
tive prediction of Belgium’s GDP, relative to the average EU indicator, by fitting the
exogenous variables ARIMAX models on spacekime transformed data. In addition to
the exact spacetime model, we saw earlier, ARIMA(4,0,2), and the subsequently offi-
cially reported Belgium GDP (red), there are three alternative ARIMA models derived
based on different kime-phase aggregators – nil-phase reconstruction ARIMA
(2,0,1), swap-phase reconstruction where the phases of covariate features are
randomly swapped ARIMA(0,0,2), and random phase reconstructions where for
each feature, we randomly draw phases from the corresponding feature phase
distributions ARIMA(4,0,2). And Table 6.2 shows some of the quantitative model
comparison metrics.

One interesting finding is that for all models, the strong negative correlations
between relative GDP growth and covariates like unemployment and labor costs are
always clearly identifiable.

In this experiment, we used correlation to compare the observed prospective lon-
gitudinal GDP-PPS for Belgium against four alternative time series reconstructions
(classical spacetime time series modeling, nil-phase, swapped phase, and random
phase estimation strategies). These correlations represent the associations between
ARIMA model predictions and the observed Belgium GDP over the testing data range.
Note that the resulting ARIMA models vary between the four alternative strategies.
While all model forecasts of the time series over the follow-up 24-month period are in
the right range, the actual correlations between the predicted and the observed GDP-
PPS values are rather weak, ρ pred, obsð Þj j≤0.15. The key covariate features, and
their effect-sizes, also vary across the four different models. This may be explained by
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Figure 6.18: Kime phase distributions for the Belgium economic indicators exhibit the following
three properties – varying angular phase distributions across features, phases are in the range
− π : + π½ Þ, and zero-mean and symmetric distributions.
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the heterogeneity of the effects on the response, as well as low signal-to-noise ratio of
Belgium’s temporal GDP-PPS data.

6.5.2 Regularized Linear Modeling

We can also attempt generalized linear modeling (GLM) using LASSO regularization
[10, 238]. To simplify the situation, we will transform the longitudinal data features
into a cross-sectional data object by fitting ARIMA models for each indicator vari-
able separately. The resulting computable data object represents a tensor with 31
rows, one for each of the 31 EU countries, and 379 features. The features include 378
derived ARIMA model parameters representing a signature vector of size 9 for each
of the 42 economic indicators that are commonly observed for all 31 countries. The
last (379th) feature is an overall (OA) country ranking [327] (see https://wiki.socr.
umich.edu/index.php/SOCR_Data_2008_World_CountriesRankings, accessed Janu-
ary 29, 2021). For each pair country, economic indicatorð Þ, the signature vector of
length 9 encoding the ARIMA-model longitudinal characteristics contains:
(1) average time series value (retrospective),
(2) average ARIMA 3-year forecast (prospective),
(3) non-seasonal AR,
(4) non-seasonal MA,
(5) seasonal AR,
(6) seasonal MA,
(7) period,
(8) non-seasonal difference,
(9) seasonal differences.

Of course, this signature vector of capturing the longitudinal characteristics of each
economic indicator for each country is not unique, and there are many other alter-
native mechanisms to model the data. The observed 42 common EU country indica-
tors include:
(1) “Active population by sex, age and educational attainment level, Females, From

15 to 64 years, All ISCED 2011 levels”
(2) “Active population by sex, age and educational attainment level, Females, From

15 to 64 years, Less than primary, primary and lower secondary education (levels
0–2)”

(3) “Active population by sex, age and educational attainment level, Females, From
15 to 64 years, Tertiary education (levels 5–8)”

(4) “Active population by sex, age and educational attainment level, Females, From
15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels
3 and 4)”
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(5) “Active population by sex, age and educational attainment level, Males, From 15
to 64 years, All ISCED 2011 levels”

(6) “Active population by sex, age and educational attainment level, Males, From 15
to 64 years, Less than primary, primary and lower secondary education (levels
0–2)”

(7) “Active population by sex, age and educational attainment level, Males, From 15
to 64 years, Tertiary education (levels 5–8)”

(8) “Active population by sex, age and educational attainment level, Males, From 15
to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3
and 4)”

(9) “Active population by sex, age and educational attainment level, Total, From 15
to 64 years, All ISCED 2011 levels”

(10) “Active population by sex, age and educational attainment level, Total, From 15
to 64 years, Less than primary, primary and lower secondary education (levels
0–2)”

(11) “Active population by sex, age and educational attainment level, Total, From 15
to 64 years, Tertiary education (levels 5–8)”

(12) “Active population by sex, age and educational attainment level, Total, From 15
to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3
and 4)”

(13) “All ISCED 2011 levels”
(14) “All ISCED 2011 levels, Females”
(15) “All ISCED 2011 levels, Males”
(16) “Capital transfers, payable”
(17) “Capital transfers, receivable”
(18) “Compensation of employees, payable”
(19) “Current taxes on income, wealth, etc., receivable”
(20)“Employment by sex, age and educational attainment level, Females, From 15 to

64 years, All ISCED 2011 levels”
(21) “Employment by sex, age and educational attainment level, Females, From 15 to

64 years, Less than primary, primary and lower secondary education (levels 0–2)”
(22) “Other current transfers, payable”
(23) “Other current transfers, receivable”
(24)“Property income, payable”
(25) “Property income, receivable”
(26) “Savings, gross”
(27) “Subsidies, payable”
(28)“Taxes on production and imports, receivable”
(29) “Total general government expenditure”
(30)“Total general government revenue”
(31) “Unemployment, Females, From 15–64 years, Total”
(32) “Unemployment, Males, From 15–64 years”
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(33) “Unemployment, Males, From 15–64 years, from 1 to 2 months”
(34)“Unemployment, Males, From 15–64 years, from 3 to 5 months”
(35) “Unemployment, Males, From 15–64 years, from 6 to 11 months”
(36)“Unemployment, Total, From 15–64 years, From 1 to 2 months”
(37) “Unemployment, Total, From 15–64 years, From 12 to 17 months”
(38)“Unemployment, Total, From 15–64 years, From 3 to 5 months”
(39)“Unemployment, Total, From 15–64 years, From 6 to 11 months”
(40)“Unemployment, Total, From 15–64 years, Less than 1 month”
(41) “Unemployment by sex, age, duration. Duration NA not started”
(42)“VAT, receivable”.

We will fit regularized linear models using LASSO penalty and use tenfold internal
statistical cross-validation. In the first (supervised) model-based prediction approach,
we will forecast the outcome overall country ranking (OA) based on the 378 features,
42(indicators) * 9(ARIMA signature vector). In the second (unsupervised) model-free
analytical strategy, we will compute derived cluster labels that will be explicated in
terms of the specific country economic indicators.

Using only limited data (378 time series derivatives), Figure 6.20 summarizes the
classical spacetime inference and the various spacekime analytics employing alterna-
tive phase-aggregators. Notice the similarities and differences between the classical
spacetime inference (GLM with LASSO regularization) and the spacekime analytics
(nil-phase and swapped-phase kime direction aggregators, again using similar GLM
with LASSO regularization models). All three models capture the OA country ranking
trend and clearly discriminate between the top-30 rank and other (non-top-30) coun-
tries. However, for approximately the same model complexity, the spacekime GLM
model applied to the IFT-synthesized data, which was derived via swapped-phase re-
construction, achieved the highest correlation between observed and predicted OA
country ranking (correlation = 0.86). This can be compared to the spacetime GLM
model (correlation = 0.84) and the nil-phase reconstructed data (correlation = 0.64).
The binary top-30 and non-top-30 labels are derived from a worldwide country rank-
ing. These binary labels are not used in any of the quantitative analytics. They are
just used to label and visually discriminate between the “best countries” (top-30,
world ranking) and the rest of the European countries.

In this example, to forecast the OA country ranking, we utilized relatively weak
information (9-parameter signature vectors derived from fitting autoregressive mod-
els for the 42 economic indicators common for all 31 EU countries). Would this
change if we strengthened the data energy (increase the given information signal)
by adding country meta-data augmenting the available derived longitudinal model
signature vectors for the 42 economic indicators? We would like to explore if the
spacetime and spacekime analytics change significantly if we increase the energy,
i.e., information content, in the dataset.
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9   Feature_35_ArimaVec_4 = -0.93
10   Feature_25_ArimaVec_4 = -0.85

Data analytics based only on the 378 time-series derivatives
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Figure 6.20: Prediction of the overall country ranking using traditional regularized linear modeling
and comparing the results to spacekime-transformed analytics utilizing alternative phase
aggregators. The graphs illustrate the association between the country observed Overall ranking
(horizontal axis) and its forecasted ranking (vertical axis). The countries are split in two
dichotomous classes – top-30 ranking (best overall scores) and others. The results of this model-
based inference are best validated by comparing the correlations between observed and predicted
overall country ranking and via the categorical color coding of the countries as top-30 rank and
other.
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Figure 6.21 shows the results of applying the same three analytical strategies
to the expanded dataset consisting of 386 predictors and the single outcome
(OA country ranking). To be more specific, we enhanced the data by augmenting
the initial 378 ARIMA-derived features with eight additional country meta-data
elements:
(1) Income group: low: GNI per capita < $3,946; middle: $3,946 < GNI per capita <

$12,195; high: GNI per capita > $12,196
(2) Population group: small: population < 20 million; medium: 20 million < popula-

tion < 50 million; large: population > 50 million
(3) Economic dynamism: Index of Productive growth in dollars (based on GDP/cap-

ita at PPP, average of GDP/capita growth rate over last 10 years, GDP/capita

Spacekime analytics
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reconstruction

Features Effect-Sizes
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Figure 6.20 (continued)
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growth rate over next 10 years, economic dynamism: manufacturing percent of
GDP, services percent of GDP percent (100 = best, 0 = worst).

(4) Education/literacy rate (percent of population able to read and write at a speci-
fied age)

(5) Health index: the average number of years a person lives in full health, taking into
account years lived in less than full health

(6) QOL: quality of life: population percent living on < $2/day
(7) Political environment: freedom house rating of political participation (qualitative

assessment of voter participation/turn-out for national elections, citizens’ engage-
ment with politics)

(8) Religiosity of the country as a percent (%) of the population.

Clearly, when using these merged and harmonized data consisting of 386 predict-
ing covariates, one would expect to obtain much better forecasting results. Note

Swapped-
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Figure 6.20 (continued)
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the marked tightening of the paired observed and predicted OA country rankings
around the forecasting linear model line (see points on the graph, Figure 6.21).
This is true for all three models, but the improvement is most noticeable for the space-
time GLM analytics. This experiment suggests that for strong-signals, adding space-
kime manipulations may not be necessary, or beneficial. However, for weaker signals,
as in the previous example, Figure 6.20, spacekime transformation may improve the
model quality and enhance the resulting inference. Note that in this supervised
model-based machine learning strategy, the performance of all three methods is
enhanced by adding additional information to strengthen the SNR ratio in the data.
However, the increases in the observed-to-predicted country ranking correlations are
not uniform. The three alternative strategies – spacetime, spacekime-nil-phase, and
spacekime-swapped-phase reconstructions – exhibit different rates of improvement, in
terms of the increased correlation coefficient between the predicted and actual OA
country ranking for each of the three strategies, respectively:

ρ=0.84 !|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
increase due to adding

8meta−data elements

ρ′=0.98
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{spacetimeGLM

ρ =0.64 !|fflfflffl{zfflfflffl}
increase

ρ′=0.65
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{spacekime−nil−phaseGLM

.

ρ =0.86 !|fflfflffl{zfflfflffl}
increase

ρ′=0.9
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{spacekime− swapped−phaseGLM

The experimental results shown in Figures 6.20 and 6.21 suggest that spacekime
analytics may be practically useful and sometimes enhance the quality of the
forecasting results for weak signal data. For high-energy data, phase-aggregation
may be less impactful; however, this is just one experiment utilizing a pair of
oversimplified zeroth-order phase aggregators. Deeper studies of the theoretical
properties of various kime-phase aggregators need to be conducted to determine
the expected performance of spacekime analytics, in general.

Figure 6.22 provides a comprehensive graphical summary of the performance
of the different methods for supervised prediction of the EU country overall ranking.
Note the reported correlations between the predicted overall country ranking and
the actual reported ranking:
– predLASSO_spacetime LASSO Predicted (386): cor predLASSO,Yð Þ=0.98,
– predLASSO_lim LASSO Predicted (378): cor predLASSO lim,Yð Þ=0.84,
– predLASSO_nil (spacekime) LASSO Predicted: cor predLASSO kime,Yð Þ=0.66,
– predLASSO_swapped (spacekime) LASSO Predicted: cor predLASSO kime swapped,ð

YÞ=0.90.
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Figure 6.21: Prediction of the overall country ranking based on the augmented dataset. Again, we
employ the same traditional regularized linear modeling to predict country ranking and compare
the results to their spacekime-transformed analytics counterparts. The graphs illustrate the
association between the country observed Overall ranking (horizontal axis) and its forecasted
ranking (vertical axis). The countries are split into dichotomous classes – top-30 ranking (best
overall country scores) and others. This model-based inference directly relates to the correlation
between observed and predicted overall country ranking. The color coding of the countries shows
the top-30 rank versus other status and provides additional context of the modeling and results.
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6.5.3 Laplace Transform of GDP Time Series to Kimesurfaces

We can examine some country-specific differences in the gross domestic product at
market price. Figure 6.23 illustrates the Laplace-transformed market-price GDP
time series represented as kimesurfaces for 30 EU countries. Note that the common
upward trajectory of GDP growth through the EU zone manifests as global kimesur-
face shape similarities, which exhibit fine local detail differences unique to each
country. Topological data analysis, manifold distance metrics, or other methods

Spacekime analytics

Nil-Phase 
IFT 
reconstruction

Features Effect-Sizes

2   Feature_12_ArimaVec_8 = -10.38
3   Feature_11_ArimaVec_4 =    8.45
4   Feature_12_ArimaVec_4 =   -5.38
5   Feature_30_ArimaVec_4 =    3.30
6   Feature_39_ArimaVec_5 =   -2.09
7   Feature_26_ArimaVec_6 =    2.07
8   Feature_34_ArimaVec_5 =   -0.97
9   Feature_6_ArimaVec_6   =   -0.50

LASSO_kim$lambda. min = 0.78

Correlation (obs, pred) = 0.65

0 10 20 30 40 50
Observed Overall Country Ranking (1 is 'best')

10

15

25

20

30

35

Sp
ac

ek
im

e 
LA

SS
O

 P
re

di
ct

ed
, u

si
ng

 N
il-

Ph
as

es

Figure 6.21 (continued)
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may be applied to the corresponding kimesurfaces to quantify their statistical vari-
ability and derive inference about multiple feature associations and between-country
differences. Clearly, a more holistic multivariate analysis will utilize the kimesurface
representations of all available economic metrics. For simplicity, in this example, we
illustrate the derivation of just one feature, GDP, however, all economic markers can
be similarly encoded in spacekime.

Figure 6.24 depicts the spacetime inverse Laplace transform reconstructions of the
GDP time series from the corresponding kimesurfaces for a set of four EU countries.
The close relations between the original and the reconstructed time series indicate that
the kimesurface representations encode at least as much information as the original
time series. In general, the geometry and topology of manifolds, such as kimesurfaces,
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Figure 6.21 (continued)
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are much richer than the collective sum of their corresponding lower dimensional
foliation leaves, such as time series. Hence, it is reasonable to expect that in cer-
tain situations, compared to classical spacetime inference, spacekime analytics
may yield more reliable results, increased precision, reduced bias, or improved
prediction forecasts.

6.5.4 Dimensionality Reduction

Next, we will explore some 2D and 3D linear (e.g., principal component analysis,
PCA) and non-linear (e.g., t-distributed stochastic neighbor embedding, t-SNE) projec-
tions of the spacetime and spacekime-transformed data. Using swapped-phase esti-
mation, the spacekime dimensionality reduction yields very stable and reproducible
simplifications of the high-dimensional data (386 features). Figure 6.25 and 6.26
show the spacetime and spacekime t-SNE manifold projections, respectively.

The last two figures illustrate that machine learning and dimensionality re-
duction methods can be employed to analyze spacekime transformed data and ob-
tain clustering or classification results that correspond with specific phenotypic

Figure 6.22: Summary of the performance of several alternative analytical strategies to forecast the
overall country ranking based on the ARIMA signature vectors for the 42 common EU economic
indicators and the additional meta-data elements. The horizontal axis shows the alphabetical order
of the EU countries, and the vertical axis depicts the observed and predicted overall country
ranking using LASSO-based spacetime and spacekime analytics with alternative kime-phase
estimators. The size and color of the bubbles reflect the country-ranking prediction according to
the specific analytical strategy. Black color is used for the actual country-ranking.
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population cohorts, in this case, top-30 versus not-top-30 overall country ranking.
These experiments suggest that there is strong signal captured in the spacekime
transformed data that can be exploited further by quantitative artificial intelli-
gence methods.

The readers are encouraged to download the raw spacetime data, the spacekime
transformed data, and the binary top-30 / not-top-30 country labels from the book
website (https://SpaceKime.org, accessed January 29, 2021) and to try these hands-
on visualization and analytical methods.

6.5.5 Unsupervised Clustering

In this section, we will examine the variable importance by feature selection and
identify derived computed country phenotypes (clusters) based on the available in-
formation. Figure 6.27 shows traditional spacetime analytics using the complete
data (left) and the reduced feature set (right). These results illustrate the accuracy

Figure 6.23: This 5×6 grid shows the GDP kimesurfaces corresponding to the GDP time series of
30 EU countries. The kimesurfaces’ shapes and intensities (heights) reflect the value of the
kimesurface magnitude and their colors correspond to the canonical kimesurface phases. Country-
specific economic differences are reflected in the shape variations of the corresponding
kimesurfaces.
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of supervised binary classification (top-30 country vs. not-top-30 country). We em-
ploy supervised methods like decision-tree bagging, random forest, decision-tree
adaboost, GLM, and SVM with gamma cost function. In addition, we tested an un-
supervised hierarchical clustering method that naturally groups countries with
similar phenotypes and separates others that have district traits.

Figure 6.28 shows the spacekime analytics based on swapped kime-phase recon-
structions that correspond to the analogous spacetime results depicted in Figure 6.27.
Clearly the accuracy of the spacekime analytics to predict the binary country ranking
(top-30 vs. not-top-30) has slightly decreased. The same level of forecasting accuracy
improvement can be expected by assuming the data is initially acquired in the k-space,
instead of spacetime, with no knowledge of the phases (trivial, entangled, or swapped
phases), and we compare the analytics in the Fourier domain obtained with or without
the correct kime-phases.

All demonstrations shown in this chapter illustrate that estimating the kime phases
by Fourier domain estimation, by phase-modeling, or via phase aggregation or ensem-
bling, may improve the derived inference and enhance the predictive data analytic pro-
cess. This approach assumes that either we have a very large number of samples that

Figure 6.24: Spacetime reconstructions of the GDP time series of Belgium, Bulgaria, France, and
the Netherlands using their corresponding spacekime kimesurface representations. For each
country, the reconstructed time series is superimposed on the original GDP time-course.
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effectively span the range of kime-directions, an a priori phase model is used, or the
kime-phase space sampling is uniform. If these assumptions are violated, other phase
aggregation, or phase ensembling, methods (e.g., weighted mean, non-parametric
measures of centrality, or Bayesian strategies) may need to be utilized to ensure
the reliability of the final analytical inference.

Figure 6.25: 2D t-SNE projection of the raw 386-dimensional spacetime data showing the
clustering of the not-top-30 countries in the middle mixed with some of the top-30 countries like
Czech Republic, Croatia, and Slovenia. The curved arcs connect the corresponding point-based
projection representations and their magnified counterparts where country names replace the
points corresponding to each country. This magnification is added to illustrate the compact
central clustering of most of the not-top-30 EU countries in the sample of 31.
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Figure 6.26: 2D t-SNE projection of the spacekime-transformed 386-dimensional data showing the
clustering of the not-top-30 countries in the middle with two notable exceptions – Latvia, which is
coupled with Sweden (on the top-left), and Ireland, which is paired with Iceland (on the top-right).
Curved arcs connect the corresponding point-based projection representations and their magnified
counterparts where country-names replace the points corresponding to each country. These
magnifications are added to illustrate the compact central clustering of most of the not-top-30 EU
countries in the sample of 31.
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Complete set of features (p=386)  (ARIMA derivatives only) 
Reduced set of features (p=378) 

  
Spacetime (Left: 386 features; Right 378 features): Comparison of alternative machine learning 

forecasting results. Accuracy is shown on the y-axis, and the x-axis represents the selected number of 
features (rank-ordered according to a cross-validated LASSO regularized feature selection). 

  
Spacetime hierarchical clustering (5 clusters). Each cluster is rendered in a different color. 

Figure 6.27: Spacetime analytics using the complete and reduced feature sets illustrating the
accuracy of (1) supervised classification using decision-tree bagging, random forest, decision-tree
adaboost, GLM, and SVM gamma cost function, and (2) unsupervised hierarchical clustering.
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Complete set of features (p=386) (ARIMA derivatives only)
Reduced set of features (p=378)

Spacekime (Left: 386 features; Right 378 features): Comparison of alternative machine learning
forecasting results. Accuracy is shown on the y-axis, and the x-axis represents the number of features 

used (rank-ordered according to a cross-validated LASSO regularized feature selection).

Spacekime hierarchical clustering (5 clusters). Again, each cluster is rendered in a different color.

Figure 6.28: Spacekime analytics using the complete (left) and reduced feature sets (right)
illustrating the accuracy of (1) supervised classification using decision-tree bagging, random
forest, decision-tree adaboost, GLM, and SVM gamma cost function, and (2) unsupervised
hierarchical clustering.
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7 Summary

Observational data comes in many sizes, forms, shapes, and dimensions. A non-
exhaustive list of common data types includes digital and analogue waveforms, (hyper)
images, voice, text, optical and video recordings, surveys and experiments, instrument
and device outputs, and spatial and longitudinal information. The field of data science
provides a new pillar of scientific discovery that is fundamentally focused on re-
presentation and management of vast amounts of multiplex information along
with its mining, analysis, and compression into actionable knowledge. The first
component, information representation, reflects the need to efficiently preprocess,
harmonize, aggregate, structurize, and represent the observed compound meas-
urements as cohesive computable data objects. In general, any solutions to this
monumental task are neither unique, nor universal, canonical, lossless, or neces-
sarily optimal. However, under certain conditions, various approaches may yield
tractable solutions for the information representation task. Often, ad hoc protocols
need to be designed to fit each specific case study. The second aspect of data sci-
ence, AI analytics and knowledge extraction, could involve a number of alternative
strategies including supervised learning, regression, classification, unsupervised
clustering, dimensionality reduction, retrospective or prospective forecasting, and
general artificial intelligence decision-making.

No data science analytic strategy or computational technique could ever be
both universal and optimal. A method’s universality and optimality refer respectively
to the technique’s applicability to any observational dataset and its analytic utility
for extraction of maximum valuable knowledge. At the extremes of the universality-
optimality balance scale are trivial-analytical strategies that may not be particularly
useful, for instance, assigning a fixed outcome of a desired result-type for all possible
input states. Such methods are certainly universally applicable for all data states,
however, their utility will be minimal, i.e., these methods would rarely yield optimal
decision-making results. On the other extreme, a simple linear model represents a
perfect (optimal) solution for a very narrow scope of problems satisfying all appropri-
ate (parametric) assumptions, e.g., presence of an underlying linear association, joint
multivariate normality, lack of multi-collinearity or auto-correlation, and homosce-
dasticity [328]. The most powerful data science techniques attempt to expand the
breadth of applicability simultaneously to increasing the utility of the findings. Such
balanced approaches scale up the scope of the applications and maximize the knowl-
edge gain of the corresponding inferential results.

In this book, we focus on a specific data representation expanding the longitudinal
dimension of time and lifting the classical 4D universal spacetime to a 5D spacekime
manifold. The rationale for this extension is multifold. The spacekime representation
allows us to resolve some of the problems of time, generalize the mathematical
equations describing the natural laws of physics, and show that the corresponding
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analytical expressions (e.g., equation solutions) agree with their standard 4D counter-
parts. In addition, we demonstrate that spacekime data representation, reconstruc-
tion, modeling, and analytics could potentially expose supplemental information that
may enhance traditional spacetime observation-based scientific inference, improve
data-driven predictions, and refine evidence-based decision-making processes.

The authors attempted to make this monograph as self-contained as possible,
however, some readers may find that various sections require additional mathematical,
statistical, and computational background. As spacekime analytics blends techniques
from multiple domains, e.g., physics, mathematics, statistics, data science, computing,
and artificial intelligence, it may be occasionally necessary to reference the inline cita-
tions and explore outside resources. The book content is organized using one specific
linear order where chapters, and sections within chapters, transition from motivation
to applications. This organization starts with foundations of mathematical physics and
progressively builds the definition of complex time (kime), extensions of classical laws
of physics, transformations of longitudinal time-series into complex-valued kimesur-
face, spacekime analytics, inferential uncertainty in spacekime, and finally demon-
strates some applications.

As data science is tremendously transdisciplinary, there is no unique, linear, or
optimal strategy to cover all concepts in the book. Depending on their background,
expertise, or interests, instructors, readers, and learners may opt to cover the material
in a different order utilizing the extensive indexing, glossary, and citation references.
Some students and trainees reported that starting with the applications in the last
chapter may provide motivation, additional justification, and contextualization for
subsequently covering the previous more technical chapters. Open-problems and sup-
plementary appendices included throughout may facilitate deeper investigations and
community contributions.

From a data science perspective, some of the most interesting spacekime analytic
ideas reflected in this treatise relate to four broad topics. The first two cover a Bayes-
ian formulation of spacekime inference and the duality between classical large-size
random sampling and small-size spacekime data acquisition using kime-phase prior
distributions. The other two ideas address the intriguing conceptualization of data
scientific uncertainty and the tensor-based linear modeling of complex-valued kime-
surfaces. The spacekime representation of data offers significant research opportuni-
ties. Examples of these include design and validation of novel statistical models and
computational algorithms using kimesurfaces for risk estimation, probabilistic model-
ing, projection forecasting, parametric and non-parametric inference, and supervised
and unsupervised artificial intelligence.

The broader spacekime domain of mathematical-physics reaches far beyond
data science. It bridges between deep theoretical principles, experimental science,
astrophysics, and philosophy. In the early twentieth century, to account for the
joint universal curvature and gravitational ripples, physicists extended the Newto-
nian notion of an absolute and static Euclidean space. This extension coupled with
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a unidirectional past-to-present-to-future time dimension led to formulation of the
canonical Minkowski spacetime and development of the theory of relativity. Yet, it’s
still unsettling that something as humanly-intuitive and predictable as time can
also feel so perplexing. For instance, the unidirectional arrow of time is not explicit
in the fundamental equations describing observed physical phenomena. The psy-
chological concept of “present” remains elusive as real observations are not really
instantaneous. Human interpretations of “now” actually reflect the past, not “pres-
ent”, as the brain takes over 80 milliseconds to interpret the ambient environment.
Lastly, deeper investigations into the neuropsychological interpretation of time are
bound to be subjective, change with age, and possibly vary according to the differ-
ent time directions (kime-phases).

The observable universe is full of repetitive notions, stochastic processes, and
quantifiable events. Examples of these include orbital rotations of interstellar bodies,
radioactive decay distributions, and measurable particle properties, e.g., energy, mo-
mentum, spin, and position. These naturally lead to the human interpretation of the
unidirectional arrow of time as a longitudinal progression of event ordering. However,
time is not intrinsic in some of the fundamental equations describing mathematically
the laws of physics. Another important driver of the enigmatic positive-direction of
time is related to the global cooling and accelerated expansion of the universe. This
ties directly to the second law of thermodynamics, which dictates that closed systems
naturally evolve from order to disorder, e.g., think of the natural process of diffusion.
In more specific terms, the universe is transitioning from an extremely low entropy
(highly ordered state) to a more natural high entropy (extremely chaotic and disor-
dered state). In the middle of these two extremes there exists a small window where
various life-forms and cautious-thought are possible. However, these very special
states of matter, and mind, can thrive in particular periods where the entropy is toler-
ant of life’s reorganization of matter. It’s natural to think of life as feeding on negative
entropy. Life tends to organize matter, artificially lowering (locally and temporarily)
the entropy of its ambient system. The current understanding of the role of dark mat-
ter as a relentless force, invariant of spatial distances and time intervals, is to pull
space apart and in the process, increase its entropy. However, it’s also possible that
dark matter may eventually turn into a contracting force. For instance, if spacekime is
a curved and compact manifold, the initial diffusion of matter and dispersion of en-
ergy eventually may lead to a corresponding compactification of spacekime, e.g., via
Big Pop, and possibly repeated recurrences of cyclical universal expansions (bangs)
and contractions (pops).

In the classical Newtonian description of the universe, it is inconceivable that
two different alternative future outcomes are simultaneously observed under the
same initial conditions. In 1814, this deterministic view of classical physics led the
polymath Pierre Simon Laplace to hypothesize the existence of a divine calculator
(demon) that yields perfect estimates of particle position and velocity, which effec-
tively reduces the universal past, present, and future to a static longitudinal model.
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However, contemporary experiments and the development of the modern theory of
quantum mechanics shattered this deterministic model of the universe and sug-
gested that there may be many alternative (probabilistically defined) futures for
each fixed present state of a system. For example, radioactivity is defined proba-
bilistically in terms of exponential decay and half-life, not as binary outcomes such
as present or not-present states. Similarly, quantum mechanical descriptions of the
position, momenta, spin, and energy of particles dictate that prior to the act of mak-
ing an observation, all states of the system exist synchronously and simultaneously,
albeit with potentially different loading likelihoods.

In 1957, Hugh Everett postulated that all the possible futures are actualized. In
other words, all possible states are observed, perhaps in different kime directions,
and hence a single observer cannot really detect and acknowledge simultaneously
all states as they take place in alternate universes [329]. This became the theoretical
foundation of the “many worlds” (multiverse) interpretation of quantum mechanics.
From a statistical perspective, we can only observe discrete random samples or detect
finite instances of a stochastic process. It’s not possible to instantaneously observe
the entire probability distribution or measure the entire wavefunction representing
the complete state-space. By definition, samples and observations are intrinsically
discrete measurements, limited simulations, finite experimental results, or countable
interactions arising from known models, unknown distributions, or partially under-
stood state-spaces.

The purpose of this book is to lay down some of the spacekime mathematical
foundations that lead to designing novel analytical techniques. While many chal-
lenges remain to be worked out and numerous open-mathematical problems are yet
to be solved, the early evidence suggests that computational, probabilistic, or ana-
lytical extensions of spacetime to spacekime provide mechanisms to advance data
science and evidence-based scientific inference. Applications of spacekime analyti-
cal methods include parameter estimation, model-based statistical inference, and
model-free artificial intelligence. For instance, spacekime representations may pro-
vide mechanisms for replacing classical random sampling (IID statistical drawing
strategies) with alternative data acquisition schemes. Spacekime measurement pro-
grams may involve acquiring only a few observations that can be paired with a se-
ries of approximate kime-directions (phase estimates) to enable reliable spacekime
reconstructions giving rise to robust scientific inference. We also presented a Bayes-
ian formulation of spacekime analytics that facilitates the calculation of posterior
predictive probability distributions given specific kime-phase priors. Some of the ex-
amples in the book illustrate the synergies between classical model-based statistical
inference and model-free machine learning forecasting and their corresponding space-
kime counterparts derived by using appropriate phase aggregators, probability priors,
or Laplace transformations.

When explaining difficulties in understanding the world and the theory of quan-
tum mechanics, Richard Feynman reflected “you know how it always is, every new
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idea, it takes a generation or two until it becomes obvious that there’s no real problem”
[87]. In that sense, it may take some time and significant community effort to com-
plete the spacekime representation, determine the optimal kime-phase aggregators,
and develop the most accurate and highly reliable spacekime analytical techniques.
This monograph contains a number of open problems and conjectures that may need
to be investigated further by the entire scientific community. The ultimate impact of
the spacekime representation of the universe has yet to be fully understood. In sup-
port of open-science, the authors are maintaining a supplementary website (https://
SpaceKime.org, accessed January 23, 2021) that contains additional materials, soft-
ware code, case studies, and protocols used to analyze the presented data and gener-
ate all figures, tables, and findings reported in the book.

Illustrations of model-based and model-free spacekime analytic techniques
applied to economic forecasting, identification of functional brain activation, and
high-dimensional biomedical population census phenotyping are shown throughout
different sections and chapters. Specific case study examples include unsupervised
clustering using the Michigan Consumer Sentiment Index (MCSI), model-based infer-
ence using functional magnetic resonance imaging (fMRI) data, and model-free infer-
ence using the UK Biobank data archive.

The steady increase of the volume and complexity of observed and recorded digi-
tal information drives the urgent need to develop novel data analytical strategies.
Spacekime analytics represents one new data-analytic approach, which provides a
mechanism to understand compound phenomena that are observed as multiplex lon-
gitudinal processes and computationally tracked by multivariate proxy measures.
Some of the materials in this book may resonate with philosophers, futurists, astro-
physicists, space industry technicians, biomedical researchers, health practitioners,
and the general public. However, the primary audience may include transdisciplinary
researchers, academic scholars, graduate students, postdoctoral fellows, artificial in-
telligence and machine learning engineers, biostatisticians, and data analysts.
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