
C
o
p
y
r
i
g
h
t
 
 
2
0
2
2
.
 
E
n
g
i
n
e
e
r
i
n
g
 
S
c
i
e
n
c
e
 
R
e
f
e
r
e
n
c
e
.
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d
.
 
M
a
y
 
n
o
t
 
b
e
 
r
e
p
r
o
d
u
c
e
d
 
i
n
 
a
n
y
 
f
o
r
m
 
w
i
t
h
o
u
t
 
p
e
r
m
i
s
s
i
o
n
 
f
r
o
m
 
t
h
e
 
p
u
b
l
i
s
h
e
r
,
 
e
x
c
e
p
t
 
f
a
i
r
 
u
s
e
s
 
p
e
r
m
i
t
t
e
d
 
u
n
d
e
r
 
U
.
S
.
 
o
r
 
a
p
p
l
i
c
a
b
l
e
 
c
o
p
y
r
i
g
h
t
 
l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 7:58 AM via 
AN: 3124165 ; Richard S. Segall, Gao Niu.; Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning
Account: ns335141



Biomedical and Business 
Applications Using 
Artificial Neural Networks 
and Machine Learning

Richard S. Segall
Arkansas State University, USA

Gao Niu
Bryant University, USA

A volume in the Advances in Computational 
Intelligence and Robotics (ACIR) Book Series 

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Published in the United States of America by
IGI Global
Engineering Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2022 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
   Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com. 

Names: Segall, Richard, 1949- editor. | Niu, Gao, 1987- editor.   
Title: Biomedical and business applications using artificial neural  
   networks and machine learning / Richard S. Segall and Gao Niu, editor.   
Description: Hershey, PA : Engineering Science Reference, [2022] | Includes  
   bibliographical references and index. | Summary: “This book covers  
   applications of artificial neural networks (ANN) and machine learning  
   (ML) aspects of artificial intelligence to applications to the  
   biomedical and business world including their interface to applications  
   for screening for diseases to applications to large-scale credit card  
   purchasing patterns”-- Provided by publisher.   
Identifiers: LCCN 2021035365 (print) | LCCN 2021035366 (ebook) | ISBN  
   9781799884552 (hardcover) | ISBN 9781799884569 (paperback) | ISBN  
   9781799884576 (ebook)   
Subjects: LCSH: Medicine--Research--Data processing. | Neural networks  
   (Computer science)  
Classification: LCC R853.D37 B56 2022  (print) | LCC R853.D37  (ebook) |  
   DDC 610.285--dc23  
LC record available at https://lccn.loc.gov/2021035365 
LC ebook record available at https://lccn.loc.gov/2021035366 

 
This book is published in the IGI Global book series Advances in Computational Intelligence and Robotics (ACIR) (ISSN: 
2327-0411; eISSN: 2327-042X)

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Advances in Computational 
Intelligence and Robotics 

(ACIR) Book Series

While intelligence is traditionally a term applied to humans and human cognition, technology has pro-
gressed in such a way to allow for the development of intelligent systems able to simulate many human 
traits. With this new era of simulated and artificial intelligence, much research is needed in order to 
continue to advance the field and also to evaluate the ethical and societal concerns of the existence of 
artificial life and machine learning.

The Advances in Computational Intelligence and Robotics (ACIR) Book Series encourages 
scholarly discourse on all topics pertaining to evolutionary computing, artificial life, computational 
intelligence, machine learning, and robotics. ACIR presents the latest research being conducted on di-
verse topics in intelligence technologies with the goal of advancing knowledge and applications in this 
rapidly evolving field.

Mission

Ivan Giannoccaro
University of Salento, Italy

ISSN:2327-0411 
 EISSN:2327-042X

• Computer Vision
• Agent technologies
• Machine Learning
• Fuzzy Systems
• Cognitive Informatics
• Automated Reasoning
• Pattern Recognition
• Artificial Life
• Neural Networks
• Natural Language Processing

Coverage
IGI Global is currently accepting manuscripts 

for publication within this series. To submit a pro-
posal for a volume in this series, please contact our 
Acquisition Editors at Acquisitions@igi-global.com 
or visit: http://www.igi-global.com/publish/.

The Advances in Computational Intelligence and Robotics  (ACIR) Book Series (ISSN 2327-0411) is published by IGI Global, 701 E. 
Chocolate Avenue, Hershey, PA 17033-1240, USA, www.igi-global.com. This series is composed of titles available for purchase individually; 
each title is edited to be contextually exclusive from any other title within the series. For pricing and ordering information please visit http://
www.igi-global.com/book-series/advances-computational-intelligence-robotics/73674. Postmaster: Send all address changes to above address. 
© © 2022 IGI Global. All rights, including translation in other languages reserved by the publisher. No part of this series may be reproduced 
or used in any form or by any means – graphics, electronic, or mechanical, including photocopying, recording, taping, or information and 
retrieval systems – without written permission from the publisher, except for non commercial, educational use, including classroom teaching 
purposes. The views expressed in this series are those of the authors, but not necessarily of IGI Global.

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Titles in this Series
For a list of additional titles in this series, please visit: http://www.igi-global.com/book-series/advances-computational-

intelligence-robotics/73674

Socrates Digital™ for Learning and Problem Solving
Mark Salisbury (University of St. Thomas, USA) 
Engineering Science Reference • © 2022 • 383pp • H/C (ISBN: 9781799879558) • US $215.00 

Regulatory Aspects of Artificial Intelligence on Blockchain
Pardis Moslemzadeh Tehrani (University of Malaya, Malaysia) 
Engineering Science Reference • © 2022 • 273pp • H/C (ISBN: 9781799879275) • US $245.00 

Genetic Algorithms and Applications for Stock Trading Optimization
Vivek Kapoor (Devi Ahilya University, Indore, India) and Shubhamoy Dey (Indian Institute of Management, 
Indore, India) 
Engineering Science Reference • © 2021 • 262pp • H/C (ISBN: 9781799841050) • US $225.00 

Handbook of Research on Innovations and Applications of AI, IoT, and Cognitive Technologies
Jingyuan Zhao (University of Toronto, Canada) and V. Vinoth Kumar (MVJ College of Engineering, India) 
Engineering Science Reference • © 2021 • 570pp • H/C (ISBN: 9781799868705) • US $325.00 

Decision Support Systems and Industrial IoT in Smart Grid, Factories, and Cities
Ismail Butun (Chalmers University of Technology, Sweden & Konya Food and Agriculture University, Turkey & 
Royal University of Technology, Sweden) 
Engineering Science Reference • © 2021 • 285pp • H/C (ISBN: 9781799874683) • US $245.00 

Deep Natural Language Processing and AI Applications for Industry 5.0
Poonam Tanwar (Manav Rachna International Institute of Research and Studies, India) Arti Saxena (Manav Rachna 
International Institute of Research and Studies, India) and C. Priya (Vels Institute of Science, Technology, and 
Advanced Studies, India) 
Engineering Science Reference • © 2021 • 240pp • H/C (ISBN: 9781799877288) • US $245.00 

AI Tools and Electronic Virtual Assistants for Improved Business Performance
Christian Graham (University of Maine, USA) 
Business Science Reference • © 2021 • 300pp • H/C (ISBN: 9781799838418) • US $245.00 

701 East Chocolate Avenue, Hershey, PA 17033, USA
Tel: 717-533-8845 x100 • Fax: 717-533-8661

E-Mail: cust@igi-global.com • www.igi-global.com

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use





List of Reviewers
HyacintheAboudja,Oklahoma City University, USA
DanielBerleant,University of Arkansas at Little Rock, USA
WenjingFang,Prudential Financial, USA
ZizheGao,Columbia University, USA
MichaelHowell,University of Arkansas at Little Rock, USA 
AifangLi,University of Connecticut, USA 
HaoLin,Northeastern University, USA
XiangmingLiu,University of Connecticut, USA
PhanuelMariano,Union College, USA 
SonNguyen,Bryant University, USA
AlanOlinsky,Bryant University, USA
JakeQualls,Arkansas State University, USA 
XinQi,American International Group, Inc., USA
ViswanathanRajagopalan,New York Institute of Technology School of Osteopathic Medicine, USA
DeepakRapaka,Deloitte US, USA
VidhyaSankarasubbu,Arkansas State University, USA 
JonathanStubblefield,Arkansas State University, USA 
TianyiSong,Liberty Mutual Insurance Company, USA 
JunsenTang,University of St. Thomas, USA 
YuchengTian, Tencent, USA
PeiWang, Willis Towers Watson, USA
FanWu,Purdue University, USA
JinggongZhang,Nanyang Technological University, Singapore 
YoahuaZhang,Vertex Pharmaceuticals, USA 
PengZhao,Indiana State University, USA
RongZheng,Western Illinois University, USA 

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



 

Table of Contents

 

Foreword .............................................................................................................................................. xv

Preface ................................................................................................................................................xvii

Acknowledgement ............................................................................................................................ xxiv

Section 1
Introduction

Chapter 1
Overview of Multi-Factor Prediction Using Deep Neural Networks, Machine Learning, and Their 
Open-Source Software ............................................................................................................................ 1

Richard S. Segall, Arkansas State University, USA

Section 2
Biomedical Applications

Chapter 2
Survey of Applications of Neural Networks and Machine Learning to COVID-19 Predictions .......... 30

Richard S. Segall, Arkansas State University, USA

Chapter 3
Comparing Deep Neural Networks and Gradient Boosting for Pneumonia Detection Using Chest 
X-Rays ................................................................................................................................................... 58

Son Nguyen, Bryant University, USA
Matthew Quinn, Harvard University, USA
Alan Olinsky, Bryant University, USA
John Quinn, Bryant University, USA

Chapter 4
Cardiovascular Applications of Artificial Intelligence in Research, Diagnosis, and Disease 
Management .......................................................................................................................................... 80

Viswanathan Rajagopalan, New York Institute of Technology College of Osteopathic 
Medicine at Arkansas State University, USA & Arkansas State University, USA & Center 
for No-Boundary Thinking at Arkansas State University, USA

Houwei Cao, New York Institute of Technology, USA

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



 

Chapter 5
Predictions For COVID-19 With Deep Learning Models of Long Short-Term Memory (LSTM) .... 128

Fan Wu, Purdue University, USA
Juan Shu, Purdue University, USA

Chapter 6
Protein-Protein Interactions (PPI) via Deep Neural Network (DNN) ................................................. 154

Zizhe Gao, Columbia University, USA
Hao Lin, Northeastern University, USA

Chapter 7
US Medical Expense Analysis Through Frequency and Severity Bootstrapping and Regression 
Model .................................................................................................................................................. 177

Fangjun Li, University of Connecticut, USA
Gao Niu, Bryant University, USA

Section 3
Business Applications

Chapter 8
Airbnb (Air Bed and Breakfast) Listing Analysis Through Machine Learning Techniques .............. 209

Xiang Li, Cornell University, USA
Jingxi Liao, University of Central Florida, USA
Tianchuan Gao, Columbia University, USA

Chapter 9
Automobile Fatal Accident and Insurance Claim Analysis Through Artificial Neural Network ....... 233

Xiangming Liu, University of Connecticut, USA
Gao Niu, Bryant University, USA

Chapter 10
U.S. Unemployment Rate Prediction by Economic Indices in the COVID-19 Pandemic Using 
Neural Network, Random Forest, and Generalized Linear Regression .............................................. 263

Zichen Zhao, Yale University, USA
Guanzhou Hou, Johns Hopkins University, USA

Chapter 11
Applying Machine Learning Methods for Credit Card Payment Default Prediction With Cost 
Savings ................................................................................................................................................ 285

Siddharth Vinod Jain, Liverpool John Moores University, UK
Manoj Jayabalan, Liverpool John Moores University, UK

Chapter 12
Inflation Rate Modelling Through a Hybrid Model of Seasonal Autoregressive Moving Average 
and Multilayer Perceptron Neural Network ........................................................................................ 306

Mogari Ishmael Rapoo, North-West University, South Africa

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



 

Martin Chanza, North-West University, South Africa
Gomolemo Motlhwe, North-West University, South Africa

Chapter 13
Value Analysis and Prediction Through Machine Learning Techniques for Popular Basketball 
Brands ................................................................................................................................................. 323

Jason Michaud, Bryant University, USA

Compilation of References ............................................................................................................... 346

About the Contributors .................................................................................................................... 388

Index ................................................................................................................................................... 392

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



  

Detailed Table of Contents

 

Foreword .............................................................................................................................................. xv

Preface ................................................................................................................................................xvii

Acknowledgement ............................................................................................................................ xxiv

Section 1
Introduction

Chapter 1
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This chapter first provides an overview with examples of what neural networks (NN), machine learning 
(ML), and artificial intelligence (AI) are and their applications in biomedical and business situations. The 
characteristics of 29 types of neural networks are provided including their distinctive graphical illustrations. 
A survey of current open-source software (OSS) for neural networks, neural network software available 
for free trail download for limited time use, and open-source software (OSS) for machine learning (ML) 
are provided. Characteristics of artificial intelligence (AI) technologies for machine learning available 
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used for COVID-19 diagnosis and detection. Illustrations of multi-layer convolutional neural networks 
(CNN), recurrent neural networks (RNN), and deep neural networks (DNN) are provided to show how 
these are used for COVID-19 detection and prediction. A summary of big data analytics for COVID-19 
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and some available COVID-19 open-source data sets and repositories and their characteristics for 
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done using cloud computing services offered by Google Colab Pro.
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Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders 
remain the No. 1 killer both in the United States and across the world, and innovative and transformative 
technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, 
the authors introduce different AI and machine learning (ML) tools including support vector machine 
(SVM), gradient boosting machine (GBM), and deep learning models (DL), and their applicability 
to advance CV diagnosis and disease classification, and risk prediction and patient management. The 
applications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research 
in different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart 
disease, arrhythmias, valvular abnormalities, etc.
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COVID-19, one of the most contagious diseases and urgent threats in recent times, attracts attention 
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across the globe to study the trend of infections and help predict when the pandemic will end. A 
reliable prediction will make states and citizens acknowledge possible consequences and benefits for 
the policymaker among the delicate balance of reopening and public safety. This chapter introduces a 
deep learning technique and long short-term memory (LSTM) to forecast the trend of COVID-19 in the 
United States. The dataset from the New York Times (NYT) of confirmed and deaths cases is utilized in 
the research. The results include discussion of the potential outcomes if extreme circumstances happen 
and the profound effect beyond the forecasting number.
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Zizhe Gao, Columbia University, USA
Hao Lin, Northeastern University, USA

Entering the 21st century, computer science and biological research have entered a stage of rapid 
development. With the rapid inflow of capital into the field of significant health research, a large number 
of scholars and investors have begun to focus on the impact of neural network science on biometrics, 
especially the study of biological interactions. With the rapid development of computer technology, 
scientists improve or perfect traditional experimental methods. This chapter aims to prove the reliability 
of the methodology and computing algorithms developed by Satyajit Mahapatra and Ivek Raj Gupta’s 
project team. In this chapter, three datasets take the responsibility to testify the computing algorithms, 
and they are S. cerevisiae, H. pylori, and Human-B. Anthracis. Among these three sets of data, the S. 
cerevisiae is the core subset. The result shows 87%, 87.5%, and 89% accuracy and 87%, 86%, and 87% 
precision for these three data sets, respectively.

Chapter 7
US Medical Expense Analysis Through Frequency and Severity Bootstrapping and Regression 
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Fangjun Li, University of Connecticut, USA
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For the purpose of control health expenditures, there are some papers investigating the characteristics of 
patients who may incur high expenditures. However fewer papers are found which are based on the overall 
medical conditions, so this chapter was to find a relationship among the prevalence of medical conditions, 
utilization of healthcare services, and average expenses per person. The authors used bootstrapping 
simulation for data preprocessing and then used linear regression and random forest methods to train 
several models. The metrics root mean square error (RMSE), mean absolute percent error (MAPE), 
mean absolute error (MAE) all showed that the selected linear regression model performs slightly better 
than the selected random forest regression model, and the linear model used medical conditions, type of 
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services, and their interaction terms as predictors.
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Machine learning is a broad field that contains multiple fields of discipline including mathematics, 
computer science, and data science. Some of the concepts, like deep neural networks, can be complicated 
and difficult to explain in several words. This chapter focuses on essential methods like classification 
from supervised learning, clustering, and dimensionality reduction that can be easily interpreted and 
explained in an acceptable way for beginners. In this chapter, data for Airbnb (Air Bed and Breakfast) 
listings in London are used as the source data to study the effect of each machine learning technique. By 
using the K-means clustering, principal component analysis (PCA), random forest, and other methods 
to help build classification models from the features, it is able to predict the classification results and 
provide some performance measurements to test the model.

Chapter 9
Automobile Fatal Accident and Insurance Claim Analysis Through Artificial Neural Network ....... 233

Xiangming Liu, University of Connecticut, USA
Gao Niu, Bryant University, USA

This chapter presents a thorough descriptive analysis of automobile fatal accident and insurance claims 
data. Major components of the artificial neural network (ANN) are discussed, and parameters are 
investigated and carefully selected to ensure an efficient model construction. A prediction model is 
constructed through ANN as well as generalized linear model (GLM) for model comparison purposes. 
The authors conclude that ANN performs better than GLM in predicting data for automobile fatalities 
data but does not outperform for the insurance claims data because automobile fatalities data has a more 
complex data structure than the insurance claims data.
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Artificial neural network (ANN) has been showing its superior capability of modeling and prediction. 
Neural network model is capable of incorporating high dimensional data, and the model is significantly 
complex statistically. Sometimes, the complexity is treated as a Blackbox. However, due to the model 
complexity, the model is capable of capture and modeling an extensive number of patterns, and the 
prediction power is much stronger than traditional statistical models. Random forest algorithm is a 
combination of classification and regression trees, using bootstrap to randomly train the model from a 
set of data (called training set) and test the prediction by a testing set. Random forest has high prediction 
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For popular sports brands such as Nike, Adidas, and Puma, value often depends upon the performance 
of star athletes and the success of professional leagues. These leagues and players are watched closely by 
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Foreword



Rapidtechnologicaladvanceshavegeneratedalargeexplodingvolumeofdata,leadingtodramaticgrowth
intheneedforbigdataanalyticsandautomatedmachinelearning.Thishasbroughtmuchscientificand
technologicalresearchintoanunprecedenteddata-drivenera,whereasintelligentcomputationalmethods
areessentialforbigdataanalytics.

ThebookBiomedical and Business Applications Using Artificial Neural Networks and Machine 
LearningeditedbyDr.RichardS.SegallandDr.GaoNiumeetsthechallengesintheeraofbigdata,
andistimelyforutilizingArtificialIntelligence(AI)andmachinelearningtechniquestoadvancebio-
medicalandbusinessdataanalytics.

Machine learning leverages algorithms to sift through large-scale and heterogeneous datasets to
capture intrinsicdatapatternswhichmaybeundetectableevenbywell-trainedprofessionals.These
datapatternsarevaluableformodelingcomplexrelationshipsamongdata,predictingfutureeventsand
makingdata-drivendecisions.

RecentinnovationsinmachinelearningandAItechniquesopeninimitableopportunitiesforitsap-
plicationsinvariousfields.Inthelastfewyears,breakthroughsandfastdevelopmentsindeeplearning
haveestablishedanewparadigminmachinelearningandAI.

Thisbookkeepspacewiththerapidadvancementsinmachinelearning,businessanalytics,datatools
andinfrastructure,andpracticesthatcanhelpsolvereal-worldproblems.Itisperceivablybeneficialfor
datascientists,biomedicalresearchersandindustryuserstounderstandthelateststate-of-artalgorithms
andapplythesetechniquestofacilitatebusinessmanagementandoperation,andbiomedicalresearch
andclinicalapplications.

ThebookcoversawidespectrumofmachinelearningandAIalgorithmsandopensourcesoftware
inchapter1,biomedicalapplications inchapters2-7,andbusinessapplications inchapters8-13.In
particular,chapter2andchapter6presentAIanddeep-learningmodelsforCOVID-19predictionand
diagnosis,whichisjust-in-timetotacklethecriticalchallengesposedbyCOVID-19pandemicthatcur-
rentlyhavecreatedprofoundimpactsonhumanhealthandeconomicgrowthworldwide.

Ibelieveabroadrangeofresearchers,professionalsandstudentswillfindthisbookuseful.Ihighly
recommendthisbooktothecommunitiesofmachinelearning,biomedicalresearch,dataanalyticsand
businessintelligence.

Mary Yang
University of Arkansas at Little Rock, USA
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Duringtheseuncertainandturbulenttimes,intelligenttechnologiesincludingartificialneuralnetworks
(ANN)andmachinelearning(ML)haveplayedanincredibleroleinbeingabletopredict,analyze,and
navigateunprecedentedcircumstancesacrossanumberofindustries,rangingfromhealthcaretohospitality.

Multi-factorprediction inparticularhasbeenespeciallyhelpful indealingwith themostcurrent
pressingissuessuchasCOVID-19prediction,pneumoniadetection,cardiovasculardiagnosisanddisease
management,automobileaccidentprediction,andvacationrentallistinganalysis.Todate,therehasnot
beenmuchresearchcontentreadilyavailableintheseareas,especiallycontentwrittenextensivelyfrom
auserperspective.

Thisbookisdesignedtocoverabriefandfocusedrangeofessentialtopicsinthefieldwithperspec-
tives,models,andfirst-handexperiencessharedbyprominentresearchers,discussingapplicationsof
artificialneuralnetworks(ANN)andmachinelearning(ML)forbiomedicalandbusinessapplications
andprovideslistingsofcurrentopen-sourcesoftwareforneuralnetworks,machinelearning,andartificial
intelligence.Italsopresentssummariesofcurrentlyavailableopen-sourcesoftwarethatutilizeneural
networksandmachinelearning.

Thebookisidealforprofessionals,researchers,students,andpractitionerswhowanttomorefully
understandinabriefandconciseformattherealmandtechnologiesofartificialneuralnetworks(ANN)
andmachinelearning(ML)andhowtheyhavebeenusedforpredictionofmulti-disciplinaryresearch
problemsinamultitudeofdisciplines.

Figure1showsanOverviewofthelayoutandcontentsoftheentirebookthatconsistsofSection1,
Section2,andSection3.Section1consistsofonlyonechapterasan“OverviewofMulti-FactorPredic-
tionusingDeepNeuralNetworks,MachineLearningandtheirOpen-SourceSoftware”thatservesas
anintroductiontotheentirebookofeditedchapters.

ThesubsequentchaptersofSection2asshowninFigure1pertaintobiomedicalapplicationsof
relatedtechniquesofartificialintelligenceandmachinelearningtoCOVID-10predictionanddiagno-
sis,Pneumonia,cardiovasculardisorders,andProtein-Proteininteractions(PPI),andmedicalexpense
analysisintheUnitedStates.

ThesubsequentchaptersofSection3asalsoshowninFigure1pertaintobusinessapplicationsof
neural networks, artificial intelligence and machine learning to Bed-and-Breakfast accommodation
listings,analysisofautomobilefatalaccidentandinsuranceclaims,unemploymentratepredictionby
economicindicesinCOVID-19pandemic,predictionofdefaultofcreditcardpayments,inflationrate
modeling,andvalueanalysisandpredictionofpopularbasketballbrands.
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Thisbookisfocusedonmanyacademicareasthatincludebutnotlimitedtothefollowing:Applications
ofMachineLearningMethods,ApplicationsofNeuralNetworksandMachineLearningtoCOVID-19
Predictions,ArtificialNeuralNetworks,CardiovascularApplicationsofArtificialIntelligence,Deep
LearningModels,DeepNeuralNetworks,ImageIdentificationandDamageEstimationThroughCon-
volutionalNeuralNetwork,MachineLearningMethodsComparisonforUnemploymentRatePrediction,
MachineLearningTechniques,MultilayerPerceptronNeuralNetwork,NeuralNetworks,OpenSource
Software,andProtein-Protein InteractionsviaDeepNeuralNetwork.Table1of thisPrefaceshows
whichofthe13chaptersofthisbookpertainstothesespecificapplicationsoftheseacademicareas.

Figure 1. Layout of sections of this book and chapters contained within
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Section 1: Introduction

Section1consistofonechapterforintroduction.
Chapter1,“OverviewofMulti-FactorPredictionUsingDeepNeuralNetworks,MachineLearning,

andTheirOpen-SourceSoftware,”byRichardS.SegallincludesahighlightFigure2whichborrowed
withpermissionfromtheAsimovInstituteofTheNeuralNetworkZoothatprovidesillustrationsof29
typesofNeuralNetworks,andTable1thatprovidescharacteristicsforeachoftheseNeuralNetwork
categories.OtherhighlightsofthisChapter1areindividualtablesofopen-sourcesoftwareforneural
networks,open-sourcesoftwareformachinelearning,andopen-sourceartificialintelligencetechnolo-
giesformachinelearningandneuralnetworks.

Specificreal-worldapplicationsofneuralnetworksareshowninChapter1asusedin1.)BMCa
largeinternationalsoftwarecompanywhoprovideduswithpermissionillustrationsofcognitiverout-
ingbyneuralnetworksuingchatbotandexampleofneuralnetworkof“intelligenceswarming”with
ticketrouting.2.)theuseofVisualAnalyticswithneuralnetworksandmachinelearningtopredict:
(i.)spendingofmallcustomersbycharacteristicsofage,genderandestimatedsalary,(ii.)churnmodel
forbankcustomers,(iii.)UbertrafficdelaysinIndiabasedontimeperiods,and(iv.)cancerprediction.

Table 1. Directory of chapter number for academic topics discussed within
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Section 2: Biomedical Applications

Section2consistofsixchapterson“BiomedicalApplications.”
Chapter2,“SurveyofApplicationsofNeuralNetworksandMachineLearningtoCOVID-19Predic-

tions,”byRichardS.SegallpresentsillustrationsofMulti-layerConvolutionalNeuralNetworks(CNN),
RecurrentNeuralNetworks(RNN),andDeepNeuralNetworks(DNN)toshowhowtheseareusedfor
COVID-19detectionandpredictionwithfiguresfortheflowchartsofstepsequences.

HighlightsofthisChapter2includeseveraltableslistingdatesandauthorsofrecentpublicationsin:
(i.)BigDataAnalyticsforCOVID-19,(ii.)ArtificialIntelligencetechniquesusedforCOVID-19detec-
tionandanalysis,(iii.)NeuralNetworkusedforCOVID-19detectionandanalysis,(iv.)Applicationsof
MachineLearningtoCOVID-19,and(v.)COVID-19open-sourcerepositoriesofdata.Otherhighlights
ofthisChapter2arefiguresfordatavisualizationthatwerecreatedusingRapidMiner,TensorFlowand
DeepLearningToolboxofMATLABsuchasdeathrateandrecoveryratefromtheactiveandconfirmed
casesofCOVID-19ingeographicregions.

Chapter3, “ComparingDeepNeuralNetworksandGradientBoosting forPneumoniaDetection
UsingX-Rays,”bySonNguyen,MathewQuinn,AlanOlinsky,andJohnQuinnpresentsanoverview
ofdeepneuralnetworks,gradientboosting,andtheproblemofdetectingpneumoniafromchestx-rays.
Themaindifferencebetweenthedeepneuralnetworkmodelsandthegradientboostingmodelsisthat
deepneuralnetworksaredesignedtohandleimagedatawhilegradientboostingmodelsoftenexcelat
tasksutilizingregulartabulardata.Thestudyconfirmsthesuperiorityofdeepneuralnetworkmodels.
Whileundercertainconditions,gradientboostingcouldcompetewithdeepneuralnetworks,itdoesnot
havetheflexibilitytobenefitfromtheinformationgainedbyincreasingimageresolution.

Chapter4,“CardiovascularApplicationsofArtificialIntelligenceinResearch,Diagnosis,andDisease
Management,”byViswanathanRajagopalaandHouweiCaopresentsstate-of-the-artartificialintelligence
(AI)andmachinelearning(ML)toolsthatincludessupportvectormachine(SVM),gradientboosting
machine,anddeeplearningmodels,andtheirapplicabilitytoadvancecardiovascular(CV)diagnosis
anddiseaseclassification,andriskpredictionandpatientmanagement.Theapplicationsinclude,but
not limitedto,electrocardiogram,imaging,genomicsanddrugresearchindifferentCVpathologies
suchasmyocardialinfarction(heartattack),heartfailure,congenitalheartdisease,arrhythmias,valvular
abnormalities,etc.

ThisChapter4alsopresentsatabularAppendixlistinga“SummaryofNeuralNetworkorMachine
LearningFeaturesofReferences.”

Chapter5,“PredictionsforCOVID-19WithDeepLearningModelsofLongShort-TermMemory
(LSTM),”byFanWuandJuanShuusesthemoderndeeplearningmethodLongShort-TermMemory
(LSTM)toforecastthenewcasesanddeathsanddiscussesthepotentialinfluenceofthenewDelta
variants.Theyear2020wasdefinedbythecoronaviruspandemicandundoubtedlytheworstpandemic
since1900.AsofJune2020,COVID-19hascausedmorethan181millioncasesand3.19milliondeaths
worldwide.Theillnesshasaffectednearlyeveryaspectoflife,fromworkandschool,mentalhealthand
everydaylife.Governmentsandinternationalorganizationsarefacingrigorouschallengesasthepandemic
isstillrampagingthecountriesaroundtheglobe.Measurementsofhumaninteractionwithinthevirusare
challengingtasks.Theforecastingresultscouldbenefitthegovernmentstodetermineproperoperations.

Chapter6,“Protein-ProteinInteractions(PPI)viaDeepNeuralNetworks,”byHaoLinandZizhe
GaopresentstheironlygoaltoverifytheexperimentalconclusionproposedbySatyajitMahapatraand
IvekRajGupta’sprojectteam(Mahapatraetal.,2021)thatDeepNeuronNetwork(DNN)canusethe
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DeepNeuralNetworktoextractadvanceddiscriminationfeaturesfromcommonproteindescriptions.As
theanalysisoftheDeepNeuronNetwork(DNN)methoddescribedinthischapter,itcanbeconcluded
thattheDeepNeuronNetwork(DNN)methodcanindeedimprovetheidentificationandresearchon
Protein-to-ProteinInteractions(PPI).

Chapter7,“USMedicalExpenseAnalysisthroughFrequencyandSeverityBootstrappingandRegres-
sionModel”byFangjunLiandGaoNiuanalyzesUSmedicalexpensesbymedicalconditionsandtype
ofservicesthroughfrequencyandseveritybootstrappingandregressionmodel.Thischapterstartswith
datapreprocessingwherebootstrappingmethodisusedtoconstructsimulationdatasets.Thenpredic-
tivemodels,suchaslinearregressionmodelsandrandomforestmethodaretrained.Severalmetricsto
measuregoodness-of-fitofregressionmodelsareemployedtoselectthebestperformedmodel.Under
thisscenario,linearregressionmodelandrandomforestmodelshowsequivalentpredictionaccuracy,
andlinearregressionmodelshowsaslightlybetterresultsforRootMeanSquareError(RMSE),Mean
AbsolutePercentError(MAPE)andMeanAbsoluteError(MAE).Theresultscanbeappliedtoinsur-
anceindustryandhealthservicemanagement.

Section 3: Business Applications

Section3consistsofsixchapterson“BusinessApplications.”
Chapter8,“Airbnb(AirBedandBreakfast)ListingAnalysisThroughMachineLearningTechniques,”

byXiangLi,JingxiLiaoandTianchuanGaofocusesonmachinelearningusingthedataofAirbnb(Air
Bed&Breakfast)listingsinLondon,UK.Tomakeitconciseandeasytounderstand,theauthorscon-
centrateonclassificationfromsupervisedlearning,clustering,anddimensionalityreduction.Theprocess
consistsofthreesteps.ThefirststepisdataclassificationthatutilizesK-meansclustering,hierarchical
clusteringandPrincipalComponentAnalysis(PCA)thatwereconstructedusingclassificationmodels
basedondifferentfeaturesintheAirbnb.Thesecondstepisdatapredictionthatutilizesdecisiontree
andrandomforestprocesses.Finally,theauthorsevaluatethemodelefficiencyandaccuracy.

Chapter9,“AutomobileAccidentandInsuranceClaimPredictionThroughNeuralNetworkModel-
ing,”byXiangmingLiuandGaoNiuanalyzedautomobilefatalaccidentdataandautomobileinsurance
claimsdatathroughArtificialNeuralNetwork(ANN).TheauthorsalsotestedthedatabyGeneralized
LinearModel(GLM)forcomparisonpurpose.Thischapterfirstpresentsthetwodatasetswiththeirkey
descriptiveanalysis.ThenANNandGLMmodelswereconstructedwithdetailedparametertesting,such
asactivationfunctions,validationdataset,hiddenlayers,andbatchsize.GLMvariableswereselected
basedoncorrelationanalysis,abasicmodelisconstructedforcomparisonpurposes.

Chapter10,“U.S.UnemploymentRatePredictionbyEconomicIndices inCOVID-19Pandemic
UsingNeuralNetwork,RandomForest,andGeneralizedLinearRegression,”byZichenZhaoandGuan-
zhouHoupresentstheideaofusingmachinelearningmodelsofneuralnetworkandrandomforestto
predicttheU.S.unemploymentrateduringtheCOVID-19pandemicbasedoneconomicperformance
ofmainlystockmarketindexes.Themodelprovidesinsightsofdriversforunemploymentthatpolicy
makerscouldtakeadvantageof.

Chapter11,“ApplyingMachineLearningMethodsforCreditCardPaymentDefaultPredictionWith
CostSavings,”bySiddharthVinohJainandManojJayabalanpresenttheapplicationofthevariousmachine
learningmethodssuchastimeseriesmodelsanddeeplearningmodelsexperimentedinpredictingthe
creditcardpaymentdefaultsalongwithidentificationofthesignificantfeaturesandthemosteffective
evaluationcriteria.Thisbeingananomalydetectionstudy,thedatasetsavailablearegenerallyimbalanced,
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andhenceemployingbalancingtechniquesimprovemodelperformanceconsiderably.Hyperparameter
tuningusingaten-foldcross-validationprocessfurtherbooststhepredictionpowerofthemodels.

Chapter12,“InflationRateModellingThroughaHybridModelofSeasonalAutoregressiveMov-
ingAverageandMultilayerPerceptronNeuralNetwork,”byGomolemoMotlhwe,MartinChanza,and
MogariI.Rapoo,examinestheperformanceofSeasonalAutoregressiveIntegratedMovingAverage
(SARIMA),MultilayerPerceptronNeuralNetworks(MLPNN),andhybridSARIMA-MLPNNmodel(s)
inmodellingandforecastinginflationrateusingthemonthlyConsumerPriceIndex(CPI)datafrom
2010to2019obtainedfromtheSouthAfricanReserveBank(SARB).Theforecasterrorsininflation
rateforecastingareanalyzedandcompared.ThestudyemployedRootMeanSquaredError(RMSE)
andMeanAbsoluteError(MAE)asperformancemeasures.Theresultsindicatethatsignificantim-
provementsinforecastingaccuracyareobtainedwiththehybridmodel(SARIMA-MLPNN)compared
totheSARIMAandMLPNN.TheMLPNNmodeloutperformedtheSARIMAmodel.However,the
hybridSARIMA-MLPNNmodeloutperformedboththeSARIMAandMLPNNintermsofforecasting
accuracy/accuracyperformance.

Chapter 13, “ValueAnalysis andPredictionThroughMachineLearningTechniques forPopular
BasketballBrands,”byJasonMichaudChapter13“ValueAnalysisandPredictionthroughMachine
LearningTechniquesforPopularBasketballBrands”byJasonMichauddiscusseshowforpopularsports
brandssuchasNike,Adidas,andPuma,valueoftendependsupontheperformanceofstarathletesand
thesuccessofprofessionalleagues.TheseleaguesandplayersofNBAarewatchedcloselybymany
aroundtheworld,andexposuretoabrandmayultimatelycausesomeonetobuyaproduct.

ThedatacollectedincludesbothdataontheNationalBasketballAssociation(NBA)itself,andfrequency
datafromGoogleNgramsthatareexploredinrelationtothestockpriceofthesevarioussportsbrands.

Thiscanbeexploredstatistically,andtheinterconnectednessofbrands,athletes,andthesportof
basketballarecoveredinthischapteranddonethroughbothstatisticalanalysisandmachinelearning
models.

Afterstatisticalanalysisofthedataset,machinelearningmodelsarethenbuiltwiththegoalofac-
curatelypredictingthestockpriceforNike,Adidas,andPuma.Ultimately,itwasconcludedthatthese
factorsdoinfluencethestockpriceofNike,Adidas,andPuma.Thisconclusionissupportedbythe
machinelearningmodelswherethisdiversedatasetwasutilizedtoaccuratelypredictthestockpriceof
sportsbrands.Anothergoalofthischapteristoexplorethedifferencesbetweensimplemachinelearning
modelsandcomplexmachinelearningmodels.

AllchapterswentthroughseveralinternalrevisionsbetweentheEditorsandthechapters’authors
beforebeingsentforexternalblindrefereeingprocessbyatleastthreereviewersbeforefinalacceptance.

Richard S. Segall
Arkansas State University, USA

Gao Niu
Bryant University, USA
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Chapter  1

DOI: 10.4018/978-1-7998-8455-2.ch001

ABSTRACT

This chapter first provides an overview with examples of what neural networks (NN), machine learning 
(ML), and artificial intelligence (AI) are and their applications in biomedical and business situations. 
The characteristics of 29 types of neural networks are provided including their distinctive graphical il-
lustrations. A survey of current open-source software (OSS) for neural networks, neural network software 
available for free trail download for limited time use, and open-source software (OSS) for machine learn-
ing (ML) are provided. Characteristics of artificial intelligence (AI) technologies for machine learning 
available as open source are discussed. Illustrations of applications of neural networks, machine learning, 
and artificial intelligence are presented as used in the daily operations of a large internationally-based 
software company for optimal configuration of their Helix Data Capacity system.

1. INTRODUCTION

1.1. Neural Networks (NN)

A Neural Network (NN) is a network consisting or arcs and nodes or circuit of neurons. An Artificial 
Neural Network (ANN) is composed of artificial neurons or nodes. (Wikipedia, 2021). A Neural Net-
work (NN) can be either a biological neural network, made up of real biological neurons, or an Artificial 
Neural Network, for solving Artificial Intelligence (AI) problems. (Wikipedia, 2021a).

Overview of Multi-Factor 
Prediction Using Deep 

Neural Networks, Machine 
Learning, and Their Open-

Source Software
Richard S. Segall

Arkansas State University, USA
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Figure 1 shows a basic Neural Network with an input layer, processing layer, and output layer of 
nodes. The connections of the biological neuron are modeled as weights. A positive weight reflects an 
excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a 
weight and summed. This activity is referred to as a linear combination. An activation function controls 
the amplitude of the output. For example, an acceptable range of output is usually between 0 and 1, or 
it could be −1 and 1. (Wikipedia, 2021a)

The reader is referred to previous work on computer modeling of neural networks that includes 
comparing learning rules using computer graphics in Segall (2004, 2003, 2001, 1996, 1995), in Segall 
& Zhang (2006) for applications of neural networks and genetic algorithm data mining techniques in 
bioinformatics discovery, Fish & Segall (2002) for a visual analysis of learning rule effects and variable 
importance for neural networks employed in data mining operations, and Biedenbender et al. (2011) for 
text mining using rule based and neural network based approaches. A basic overview of neural networks 
for beginners is presented by Russo (2019), SAS (2020b), Taylor (2017), and Haykin (2020).

1.2. Machine Learning (ML)

Machine learning (ML) is the study of computer algorithms that improve automatically through expe-
rience, and is a subset of artificial intelligence. Machine learning algorithms build a model based on 
sample data, known as “training data”. (Wikipedia, 2021b)

Machine learning approaches are traditionally divided into three broad categories of (1.) supervised 
learning, (2.) unsupervised learning, and (3.) reinforcement learning. Supervised learning is when the 
computer is presented with example inputs and desired outputs. Unsupervised learning is when learn-

Figure 1. Feed Forward Neural Network used for Image Classification Task with Machine Learning
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ing is on its own to find structure in its input such as discover hidden patterns in data, Reinforcement 
learning is when a computer program interacts with a dynamic environment in which it must perform a 
pre-specified goal. (Wikipedia, 2021b)

A basic overview of machine learning is presented in Henderson (2019). Other related research on 
machine learning were presented by Chouldechove and Roth (2020), David (2020), Geron (2020), G2 
(2020), Hasan (2020), Haykin (2020), Jensen (2018), Jones (2018), Kelleher et al. (2015), McForckman 
(2020), Meng et al. (2015), Ramezani (2020), Rhys (2020), SAS (2020c), and TrustRadius (2020). One 
hundred and one (101) machine learning algorithms for data science with ‘cheat sheets’ was presented 
by Piccini (2019). Open-Source machine learning tools are discussed by Algorithmia (2019) and Spring-
board India (2019), Yegulalp (2020) and well as others as discussed in Table 3 of this chapter.

1.3. Artificial Intelligence (AI)

Artificial intelligence (AI), is intelligence demonstrated by machines, unlike the natural intelligence 
displayed by humans and animals. (Wikipedia, 2021c).

Current work in Artificial Intelligence (AI) is presented by Campesato (2020) for a book on AI, ML 
and deep learning, Hasan (2020) on best AI and machine learning software and framework, McFrock-
man (2020) with AI mastery with “4 Books in 1”, SAS (2020a) of what AI is and why it matters, and 
Stone (2019) on mathematics of deep learning.

An article by Daley (2021) presented details of studies on “twenty-three examples of artificial intel-
ligence shaking up business as usual” that included examples in manufacturing robots, self-driving cars, 
disease mapping, automated financial investing, virtual travel booking agent, social media monitoring, 
inter-team chat tool, conversational marketing bot, and natural language processing (NLP) tools.

1.4 Applications of Neural Networks to Biomedical and Business Applications

Ruano and Ruano (2013) authored an article on the use of artificial neural networks (ANN) as a clas-
sifier, dynamic model, and diagnosis tool for biomedical applications that included: blood flow emboli 
classification, tissue temperature modeling, and identification of ischemic cerebral vascular accident 
areas based on computer tomography images.

Lisboa et al. (2000) authored an entire book on the real-world business applications of neural networks 
that includes the use of neural networks for analysis of travel preference data, developments in accurate 
consumer risk assessment technology, novel techniques for profiling and fraud detection in mobile com-
munications, and detecting payment card fraud with neural networks.

Vieira and Ribeiro (2018) authored a book with technical examples as an introduction to deep learning 
(DL) business applications for developers’ potential applications, challenges, and opportunities of deep 
learning from a business perspective. These applications include image recognition, segmentation and 
annotation, video processing and annotation, voice recognition, intelligent personal assistants, automated 
translation, and autonomous vehicles.

1.5 Applications of Machine Learning to Biomedical and Business Applications

Faggella (2020) presented seven applications of machine learning in pharma and medicine that includes: 
(1.) disease identification/diagnosis, (2.) personalized treatment/behavioral modification, (3.) drug dis-
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covery/manufacturing. (4.) clinical trial research, (5.) radiology and radiotherapy, (6.) smart electronic 
health records, and (7.) epidemic outbreak prediction.

Thomas (2020) presented fifteen examples of machine learning in healthcare that are revolution-
izing medicine in the categories of: (1.) Smart records, (2.) medical imaging and diagnostics, (3.) drug 
discovery and development, (4.) medical data, and (5.) treatment and diagnosis of disease. An example 
of drug discovery and development is that Pfizer uses machine learning for immune-oncology research 
about how the body’s immune system can fight cancer.

Pratt (2020) presented ten common uses for machine learning applications in business that includes: 
(1.) real-time chatbot agents. (2.) decision support systems (DSS), (3.) customer recommendation en-
gines, (4.) customer churn modeling, (5.) dynamic pricing tactics, (6.) market research and customer 
segmentation, (7.) fraud detection, (8.) image classification and image recognition, (9.) operational ef-
ficiencies, and (10.) information extraction.

A “chatbot” as listed above in Pratt (2020) as first common use is as described as Brush (2019) is 
sometime referred to as a chatterbot is programming that simulates the conversation or “chatter” of a 
human through text or voice interactions. There are several types of “chatbots” as described by Pratt 
(2020) as: (1.) scripted or quick reply chatbots, (2.) keyword recognition-based chatbots, (3.) hybrid 
chatbots, (4.) contextual chatbots, and (5.) voice-enabled chatbots.

The use of “chatbots” is presented in the next section for a real large international software company.
Castle (2017) presented six common machine learning applications for business that includes: (1.) 

customer lifetime value modeling, (2.) churn modeling, (3.) dynamic pricing, (4.) customer segmentation, 
(5.) image classification, and (6.) recommendation engines. In this list is customer churn modeling that 
can identify which customers are likely to stop engaging with your business and why. Also in this list is 
image classification that according to Castle (2017) has a wide range of business applications including 
3D construction plans based on 2D designs, social media photo tagging, and informing medical diagnoses.

2. NEURAL NETWORK (NN) MODELING

2.1 Twenty-Nine Types of Neural Networks

There are many types of Neural Networks and the below Figure 2 of Asimov Institute by Van Veen and 
Leijnen (2019) shows twenty-nine different variants from which Table 1 was constructed that provides 
characteristics of each of these. The Key in Figure 2 define the fourteen types of cells utilized that in-
cludes: Input cell, Backfed Input Cell, Noisy Input Cell, Hidden Cell, Probabilistic Hidden Cell, Spiking 
Hidden Cell, Capsule Cell, Output Cell, Match Input Output Cell, Recurrent Cell, Memory Cell, Gated 
Memory Cell, Kernel and Convolution or Pool.

This chapter also presents Table 2 of Open-Source Software (OSS) for Neural Networks (NN), and 
Table 3 of Neural Network Software available for free trail download.

This chapter then presents how Neural Network algorithms are used by a large software company 
BMC that is a privately held multinational firm operating in North America, South America, Australia, 
Europe, and Asia and has multiple offices located around the world with its international headquarters 
located in Houston, Texas, United States.

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



5

Overview of Multi-Factor Prediction
 

Figure 2. Chart of 29 Types of Neural Networks
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Table 1. Characteristics of 29 Types of Neural Networks (Derived from Van Veen, F. & Leijnen, S. (2019))

Neural Network Category from Figure 2 Characteristics

Auto Encoder (AE) Encode information automatically with network that always resemble an 
hourglass shape.

Attention Network (AN) Use an attention mechanism to combat information decay.

Boltzmann Machine (BM) Starts with random weights and learns through back-propagation with 
neurons mostly having binary activation patterns.

Capsule Network (CapsNet) Neurons are connected with multiple weights (vector) instead of just one 
weight (scalar).

Deconvolutional Network (DN) Also called Inverse Graphical Networks (IGNs) and are reversed 
convolutional neural networks.

Deep Belief Network (DBN) Effectively trainable stack-by-stack.

Deep Convolutional Inverse Graphics Network (DCIGN) Can learn to model complex transformations on images.

Deep Convolutional Network (DCN) Primarily used for image processing but can be used for other types of input 
such as audio.

Deep Feed Forward (DFF) Multi-layers of inner processing nodes.

Deep Residual Network (DRN) Very deep Feed-Forward Neural Networks with extra connections passing 
inputs from one layer to a later layer as well as next layer.

Denoising AE (DAE) Feeds input data with noise (e.g., grainy images)

Differential Neural Computers (DNC) Enhanced Neural Turing Machines with scalable memory.

Echo State Network (ESN) Random connections between neurons causing unorganized sets of layers.

Extreme Learning Machine (ELM) Start with random weights and train the weights un a single step according 
to least-squares fit.

Feed Forward (FF) Feed information from the input to output layers.

Gated Recurrent Unit (GRU) Contain an update gate.

Generative Adversarial Network (GAN) Consists of any 2 networks: one to gnat content and the other to judge 
content.

Hopfield Network (HN) Every neuron is connected t every other neuron.

Kohonen Network (KN) Utilize competitive learning to classify data without supervision.

Liquid State Machine (LSM) Uses threshold functions and each neuron is also an accumulating memory 
cell.

Long/Short Term Memory (LSTM) Contain forget gate.

Markov Chain (MC) Every state you end up in depends completely on the previous state.

Neural Turing Machine (NTM) Instead of coding a memory cell directly into a neuron, the memory is 
separated.

Perceptron (P) Consists of only one output node with its input nodes.

Radial Basis Network (RBF) Feed-Forward Neural Networks (FFNNs) with radial basis functions as 
activation functions.

Recurrent Neural Network (RNN) Feed-Forward Neural Networks (FFNNs) that have connections between 
passes.

Restricted Boltzmann Machine (RBM) Only connect every different group of neurons to every other group.

Sparse Autoencoders (SAE) Encodes information in more space.

Variational Autoencoders (VAE) Have same architecture as AE but have an approximated probability 
distribution of the input samples.
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2.2 Neural Networks as Used In Large International Software Company

A large international software company BMC uses neural network algorithms for what we call “cogni-
tive routing.” Most chatbots only transfer to the next available agent. The company uses NLP to find 
the best agent to resolve the problem the employee/customer is having. Example: If requesting a visa 
application, the request will be routed to HR.

2.2.1 Text Summarization – Understand Content

Chatbot – employee is talking to chatbot. After conversation. Chatbot not able to answer user question. 
We ask if they want a live agent. Once transfer happens, the live agent is provided a conversation sum-
mary (that occurred with chatbot) before engaging with employee. This is shown in Figure 3 below.

Figure 3. Illustration of Cognitive Routing by Neural Network using Chatbot by Large Software Company 
(Figure provided upon written permissions from BMC Software (2020)).
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2.2.2 Ticket Summarization

Another example is “intelligent swarming.” BMC uses AI to route a ticket to a group of people. As the 
group works on the incident, the AI/neural network algorithm is used to then decide who is the best 
person to work on the incident.

Whenever an employee/customer raises a ticket, a machine answers back. If the machine is unable to 
resolve the issue, the ticket is then assigned to an agent. If agent is unable to resolve, the ticket may get 
transferred to a second agent. The ticket history is summarized and prepared for this new agent. This is 
done through the use of NLP and neural networks, and is illustrated in Figure 4 below. (BMC (2020))

Figure 4. Example of Neural Network of “Intelligent Swarming” with Ticket Routing
(Figure provided upon written permissions from BMC Software (2020)).
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2.3 Open-Source Software for Neural Networks

Table 2. Open-Source Software for Neural Networks

Software Overview Important Features URL

Darknet

Written in C and 
CUDA, fast and 
easy to install and 
supports CPU and 
GPU computation.

YOLO (You Look Only Once): Real-
Time Object Detection, ImageNet 
Classification, RNN (Recurrent Neural 
Networks) to represent data that 
changes over time.

https://pjreddie.com/darknet/

DNNGraph
Deep Neural 
Network Model 
Generation.

Visualization of network structure. https://github.com/ajtulloch/dnngraph

JustNN
Trains, validates 
and queries neural 
networks.

Can import data files of text, CSV, 
binary, XLS. http://www.justnn.com/

MemBrain

Widely used 
in industrial 
manufacturing and 
technical control 
applications.

Can set neuron properties such as 
normalization settings, activation 
function, output recovery time, etc.

https://membrain-nn.de/english/download_
en.htm

Neocognitron

Specially designed 
to simulate 
hierarchical, 
multilayered 
artificial neural 
networks.

Preloaded project samples, lets user set 
input panel size as per the number of 
layers, can view output routings as well 
as optimal winner value and pattern.

https://www.softpedia.com/get/Network-Tools/
Misc-Networking-Tools/Neocognitron.shtml

Neural Designer

Cross-platform 
neural network 
software with pre-
loaded examples of 
projects in multi-
disciplines.

Intuitive interface with Task Manager, 
Neural Editor/Viewer; can export data 
as TXT, CSV, XLX files, export R 
scripts, and Python files.

https://www.neuraldesigner.com/download

Sharky Neural 
Network

Displays points 
graph and real-time 
error graph

Can select network architecture from 
pre-defined ones, and shape to display 
learning points on graph.

https://download.cnet.com/Sharky-Neural-
Network/3000-2054_4-10967073.html

Simbrain

Inputs many 
network types 
(Back- prop, 
Competitive 
network, Echo State 
Network, Feed 
Forward, etc.)

Provides many simulation types 
(Actor-Critic, Agent Trails, and 
Cortical Circuit). Can visualize network 
simulation with bar charts, tine series, 
projection plot, raster plot, etc.

http://simbrain.net/Downloads/downloads_
main.html

Spice-Neuro

Provides multi-
layer neural 
network (MLP) 
application

Can select training parameters of 
activation functions for hidden and 
output layer, splitting data, and stop 
conditions; can view learning rate in 
Training and Testing.

https://spiceneuro.wordpress.com/english/
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Continued on following page

Table 3. Neural Network Software available for Free Trail Download

Software Overview Important 
Features URL

AForge.Neuro

Provides Neural Network 
library containing sets 
of classes for creating 
different types of neural 
networks.

Calculating XOR 
functions, Multilayer 
Feed Forward, 
Kohonen Self 
Organizing Map.

http://www.aforgenet.com/framework/features/neural_networks.html 
http://www.aforgenet.com/framework/downloads.html

ConNetJS
JavaScript library for 
training Deep Neural 
Networks

Ability to specify and 
train Convolutional 
Networks that 
processes images, 
and contains an 
experimental 
reinforcement learning 
module based on Deep 
Q Learning.

https://cs.stanford.edu/people/karpathy/convnetjs/

Cuda-convnet2

New Python backend 
called cudanet for 
integration into Nervana’s 
neon framework.

Support for non-
texture kernels and 
multi-way costs, 
Python interface to 
GPU memory.

https://github.com/NervanaSystems/cuda-convnet2

DN2A

Set of highly decoupled 
JavaScript modules for 
Neural Network and AI 
Development.

Performs training by 
Step-By-Step, Step-
By-Goal, Continuous.

https://github.com/antoniodeluca/dn2a

goBrain

Includes just basic 
functions such as Feed 
Forward and Recurrent 
Neural Network

Feed Forward, Elman 
Recurrent Neural 
Network.

https://github.com/goml/gobrain

HNN (Haskell Neural 
Network)

Powerful library for Feed 
Forward Neural Networks 
written in Haskell.

Haskell is 
general-purpose, 
statically typed, 
purely functional 
programming 
language.

https://github.com/alpmestan/hnn

Keras High-level neural networks 
library written in Python.

Capable of running 
on top of either 
TensorFlow or 
Theano.

https://github.com/keras-team/keras

LambdaNet

Library written in Haskell 
that abstracts network 
creation, training, and use 
as higher order functions.

Quadratic error cost 
function. https://github.com/MrVPlusOne/LambdaNet

Neon Python-based deep 
learning library.

Swappable hardware 
backends, provides 
support for convnets, 
RNNs, LSTMs, and 
autoencoders.

https://www.predictiveanalyticstoday.com/neon/

NeuralN C++ Neural Network 
Library for Node.js.

Works with large 
datasets and multi-
threaded training 
available.

https://github.com/totemstech/neuraln

Neuroph Lightweight Java neural 
network framework.

Data normalization, 
image recognition 
support, and stock 
market prediction 
sample.

http://neuroph.sourceforge.net/
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3. EXAMPLES OF MACHINE LEARNING (ML) IN 
ARTIFICAL INTELLIGENCE (AI) SYSTEMS

The following four examples were provided to the author by BMC Corporation as illustrations of their 
applications of machine learning for obtaining their optimal configuration of their Helix Data Capacity 
system.

Example 1: Performance of Information Technology (IT) Infrastructure Resource for Business Ap-
plications and Services

Use AI/machine learning to understand how IT infrastructure resources are used (compute, storage, 
and network). In the Figure 5 screen shot below, a summary view of resource use is provided. Through 
regular analysis, the performance of the infrastructure resources support business applications and busi-
ness services is reflected. The red means there that an IT resource is about to be saturated and will soon 
impact the performance of the application. Yellow means you headed towards saturation that could affect 
performance and green means resources are in good state. The grid provides this view by individual 
applications or business service (group of applications that deliver a service.

For example, an online buying experience typically includes several applications. And the bottom 
right shows the state of all IT resources. Companies need to understand the health/usage status of the 
IT resources that run their applications to prevent application failures (like an online shopping service 
failing because it cannot support the number of transactions that are occurring. This is a common situ-
ation for special events like Black Friday, Superbowl Sunday, Insurance open enrollment, University 
enrollment, etc.) (BMC (2020))

Software Overview Important 
Features URL

NeuroSolutions For both novice and 
advanced developers.

Cluster Analysis, Sales 
Forecasting, Sports 
Predictions, Medical 
Classification

www.neurosolutions.com

RustNN Feedforward neural 
network library.

Networks trained via 
backpropagation using 
incremental training 
mode.

https://github.com/jackm321/RustNN

Stuttgart Neural 
Network Simulator 
(SNNS)

Library containing many 
standard implementations 
of neural networks.

Accessibility of all of 
the SNNS algorithmic 
functionality from R.

https://cran.r-project.org/web/packages/RSNNS/

Tflearn Deep learning library built 
on top of TensorFlow.

Easy graph 
visualization with 
details about weights, 
gradients, activations 
and more.

Tflearn.org

Table 3. Continued
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Example 2. Detecting Idle Virtual Machines (VMs) in Public Cloud Services

AI/ML used to identify virtual machines in the public cloud that you have purchased, but are not us-
ing. These are detected using ML (Machine Learning) as shown in Figure 6. Algorithms look for usage 
of these virtual machines (VMs) over a period of time, such as 3 or 6 months, depending on what the 
business wants to define. Any VMs identified as idle can be automatically shut down so the company 
does not waste money on paying for cloud resources they are not using. (BMC (2020))

Example 3: Probably Cause Analysis

Using AI/ML algorithms, data is gathered and analyzed to determine where the most like cause of 
a problem is that is causing an application to fail or run poorly. This is done by analyzing the data to 
identify changes is events that are collected. By analyzing event data and understand what is normal 
and not normal, the algorithm can determine the most likely cause of the problem as shown in Figure 
7. (BMC (2020))

Figure 5. Capacity Optimization Dashboard (Figure provided upon written permissions from BMC 
Software (2020)).
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Figure 6. Cloud Cost Dashboard in BMC Helix (Figure provided upon written permissions from BMC 
Software (2020)).

Figure 7. Probability Cause Analysis in BMC Helix (Figure provided upon written permissions from 
BMC Software (2020)).
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Example 4: Migrating Data Center Workloads to Public Cloud

Companies are moving applications and workloads from their data center to the public cloud. They 
need to make a decision about which virtual machine configuration they want to buy. Each configuration 
has a different price. There are over a million configurations to choose from.

Using AI/ML, BMC Helix Capacity Optimization makes a recommendation for what should be 
purchased. It does this by understanding the historical usage patterns of the virtual machine in the data 
center. Using this information, it then analyzes the cloud configurations and makes a recommendation 
based on capacity needed (CPU, memory, storage), performance, and cost. In the Figure 8 screen shot 
below, there is comparative data for the data center VM and the recommended Cloud VM. (BMC (2020))

Example 5: Machine Learning and Neural Network Applications Using Business Model and Medical 
Datasets

Using business and medical model datasets from Kaggle, the following images/visualizations were 
created. Tensor Flow, Machine learning and Deep learning Toolbox of MATLAB were used to construct 
Figures.

Figures 9 to 11 below were created by student Vidhya Sankarasubbu under the supervision of author 
of this chapter as faculty mentor, and who was awarded a 2021 Summer Internship Research Award for 
a research proposal for support in writing this book as funded by Arkansas Biosciences Institute (ABI) 

Figure 8. Migration Simulation using AI/ML for New Web Portal Service of BMC Helix (Figure provided 
upon written permissions from BMC Software (2020)).
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located on the campus of Arkansas State University (A-STATE) in Jonesboro. Figures 9 to 11 are shown 
upon written permission of student Vidha Sankarasubbu.

Using Kaggle datasets of customer ranges who spend more at the mall, the following clustered chart is 
predicted. This graph indicates that people with low salaries and those who are older spend less and save 
more. Despite their modest salaries, people in their younger years spend more. There are individuals that 
have a high income and a high spending score, indicating that they are frequent consumers of the mall. 
People with high incomes have a low spending score in one category. According to the predictions used 
to anticipate this data, mall authorities should target those with high income and low expenditure scores.

The Kaggle dataset of restaurants was utilized for a project in which the goal was to construct a top-n 
list of restaurants based on consumer preferences and significant attributes based on restaurant evalua-
tions. The bar graphs of this Figure 10 depict the growth in sales of a restaurant based on regardless or 
not it was a franchise.

Figure 9. Clustered Chart to predict the spending of Mall Customers using age, customer id, gender and 
estimated salary using Machine Learning Toolbox (MATLAB). [Created by student Vidha Sankarasubbu 
and used with written permission.]
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Figure 11. Prediction of Target Customers for the bank based on their age, job description and the 
campaign method using TensorFlow. [Created by student Vidha Sankarasubbu and used with written 
permission.]

Figure 10. Bar Graph showing the restaurant sales based on their franchises. [Created by student Vidha 
Sankarasubbu and used with written permission.]
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Based on their age, campaign mode (contacted by telephone/cellular and number of times contacted), 
and job roles the Kaggle dataset was utilized to estimate the intended customer reaction from campaigns. 
The retirees between the ages of 60 and 80 who had only been approached once were the most success-
ful. Students who were approached several times had the highest failure rate.

Figure 12 is based on the geographic location, age, credit score, estimated salary, the unique ID given 
to each customer, and the number of products they are assigned with such as loans, deposits, mortgages, 
and so on, the data was collected from Kaggle to predict the customers and the reason for leaving the bank 
using Machine Learning Toolbox (MATLAB). Some consumers are portrayed to have left the bank based 
on the prediction, yet they have just left a product in the bank and continue to maintain an account. Some 
people are unpredictable, such as those who have money in their accounts but are no longer customers.

The data for Figure 13 was collected from Kaggle and is based on Indian traffic and the reasons for 
Uber travel delays based on time periods. The clusters are color and pattern coded to show the differ-
ences and the travel time in seconds based on what time a customer is travelling and the reviews given 
by the driver after each ride. The Uber is delayed more mostly in the early mornings and is more on 
time in the evenings.

Figure 12. Facet Boxplot prediction of Churn Model – Customers leaving the Bank. [Created by student 
Vidha Sankarasubbu and used with written permission.]

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



18

Overview of Multi-Factor Prediction
 

Figure 14. Cancer predictions using neural networks and machine learning algorithms based on the 
fractal dimension and concavity compared with the compactness. [Created by student Vidha Sankara-
subbu and used with written permission.]

Figure 13. Cluster analysis prediction for Uber traffic and the reason for delays. [Created by student 
Vidha Sankarasubbu and used with written permission.]
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The predictions in Figure 14 show the impact of cancer in human body and the stages of cancer based 
on the intensity of the concavity and fractal dimension, and if the person is diagnosed for cancer before 
or if the symptom is new.

Table 4. Open-Source Software for Machine Learning

Software Important Features Language Algorithms

Accord.Net
Cross-platform that provides 
machine learning libraries for 
image and audio-processing.

C#
Classification 
Regression 
Clustering

Apache Mahout
Extension of Apache Hadoop 
Platform and use of the 
MapReduce paradigms.

Java, Scala Regression 
Clustering

Apache Spark MLlib

Apache Spark’s scalable 
machine learning library that 
allows users to implement 
machine learning in real time.

APIs in Java, Scala, Python, 
and R.

Classification 
Regression 
Gradient Boosting 
Decision Trees

Keras

Cross-platform, high-level Deep 
Learning API that makes it very 
simple to train and run neural 
networks

Python Neural Networks 
(Convolutional and recurrent)

KNIME (Konstanz Information 
Miner)

Can work with large data 
volume. Java Supports text mining and image 

mining through plug-ins

PyTorch

Uses Tensors and can develop 
dynamic graphs to accelerate 
your machine learning 
processes.

Python, C++, CUDA Deep Neural Networks

Scikit Learn

Built on NumPy, SciPy and 
matplotlib, and 
provides a library for Python 
programming language.

Python, Cython, C, C++

Classification 
Regression 
Clustering 
Dimensionality reduction 
Preprocessing 
Model Section

Shogun
You can use it with all sorts 
of languages including Java, 
Python, C#, R and Matlab.

C++
Regression 
Classification 
Distribution

TensorFlow
For numerical computation 
using data flow graphs. It was 
originally developed by Google.

Python, C++, CUDA
The most basics type of 
TensorFlow is a tensor that is a 
multi-dimensional array.

Weka These machine learning 
algorithms help in data mining. Java

Data preparation 
Classification 
Regression 
Clustering 
Visualization 
Association rules mining

OPEN-SOURCE SOFTWARE FOR MACHINE LEARNING
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OPEN-SOURCE ARTIFICIAL INTELLIGENGE TECHNOLOGIES 
FOR MACHINE LEARNING AND NEURAL NETWORKS

Table 5. AI Technologies for Machine Learning available as Open Source (Derived using David (2020).)

AI Technology Features Language URL

AdaNet TensorFlow-based 
framework Python https://github.com/tensorflow/adanet

Analytics Zoo
Able to scale data from 
laptop size files to large 
clusters to big data.

Python https://github.com/intel-analytics/analytics-zoo

Blocks

Constructs parametrized 
Theano operations 
called “bricks” to 
optimize neural network 
models.

Python https://github.com/mila-iqia/blocks

ConvNetJS Trains Convolutional 
Networks for images JavaScript https://github.com/karpathy/convnetjs

Datum Box
Provides pre-trained 
models for different 
tasks

Java https://github.com/datumbox/datumbox-framework

DeepDetect Machine Learning API C++ https://github.com/jolibrain/deepdetect

Dopamine
Allows fast prototyping 
of reinforcement 
learning algorithms

Python https://github.com/google/dopamine

Flair

Applies state-of-art 
Natural Language 
Processing (NLP) 
to Named Entity 
Recognition (NER) and 
part-of-speech tagging 
(PoS)

Python https://github.com/flairNLP/flair

Mljar

Can train ML 
models for binary 
classification, multi-
class classification, and 
regression.

Python https://github.com/mljar/mljar-supervised

NNI (Neural Network 
Intelligence)

Manages Automated 
Machine Learning 
(AutoML) experiments.

Python https://github.com/Microsoft/nni

Plato
Supports interactions 
through text, speech, 
and dialogue acts.

Python https://github.com/uber-research/plato-research-
dialogue-system

Streamlit Tool to build interactive 
web applications JavaScript & Python https://github.com/streamlit/streamlit

TuriCreate
ML tasks of image, 
sound, activity and text 
classification

Python https://github.com/apple/turicreate
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CONCLUSION

Multi-Factor Prediction is used for evaluation or estimates of factors of complex systems. It is also used 
in Multifactor Dimensionality Reduction (MDR) that is a statistical approach, also used in Machine 
Learning (ML) automatic approaches, for detecting and characterizing combinations of attributes or 
independent variables that interact to influence a dependent or class variable. (Wikipedia (2021e))

This chapter presents 29 types of neural networks and their characteristics and images of each of 
these. A summary of available open-source software (OSS) for neural networks is presented that in-
cludes that for Deep Neural Networks (DNN) for solving multi-layer networks for complex systems that 
is the foundation of many modern artificial intelligence applications. Deep learning is subset of neural 
networks that in turn is a subset of machine learning and artificial intelligence that in turn can be used 
with Big Data Analytics.

This chapter presented examples that were provided to the author by BMC Corporation as illustra-
tions of their applications of machine learning for obtaining their optimal configuration of their Helix 
Data Capacity system. Several examples were also presented of applications of Machine Learning and 
Neural Network using business models and medical datasets.

There are limitless applications of multi-factor predictions with Big Data Analytics using machine 
learning and the many types of neural networks, and this chapter also presents some of the available 
open-source software for the reader and all others to utilize from the public domain.
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Table 6. Open-Source Tools for Artificial Intelligence

Software Name Features URL

CNTK (Computational Network Toolkit)
Computational Network Toolkit of 
Microsoft primarily used for research in 
speech recognition.

https://www.cntk.ai

NUPIC Based om Hierarchical Temporal Memory 
(HTM) https://numenta.com

OpenCog Diverse assemblage of cognitive algorithms https://opencog.org

Opencyc Useful for rich domain modeling and game 
AIs https://www.cyc.com/opencyc
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KEY TERMS AND DEFINITIONS

Artificial Intelligence (AI): Intelligence demonstrated by machines, unlike the natural intelligence 
displayed by humans and animals, which involves consciousness and emotionality (Wikipedia, 2021c).
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Deep Neural Networks (DNN): Also referred to as “deep learning” are capable of learning high-level 
features with more complexity and abstraction than shallower neural networks (Sse et al., 2020, pp. 3, 7).

Helix Capacity Optimization: BMC Helix Capacity Optimization is a capacity optimization solution 
that aligns Information Technology (IT) resources with business service demands, optimizing resource 
usage and reducing costs (BMC, 2021).

Machine Learning (ML): A part of artificial intelligence that is the study of computer algorithms 
that improve automatically through experience. Machine learning algorithms build a model based on 
sample data, known as “training data,” in order to make predictions or decisions without being explicitly 
programmed to do so (Wikipedia, 2021b).

Multi-Factor Prediction: Used for evaluation or estimates of factors of complex systems.
Neural Networks (NN): A network or circuit of neurons, or in a modern sense, an artificial neural 

network, composed of artificial neurons or nodes (Wikipedia, 2021a).
Open-Source Software (OSS): A type of computer software in which source code is released under 

a license in which the copyright holder grants users the rights to use, study, change, and distribute the 
software to anyone and for any purpose (Wikipedia, 2021d).
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ABSTRACT

The purpose of this chapter is to illustrate how artificial intelligence (AI) technologies have been used for 
COVID-19 detection and analysis. Specifically, the use of neural networks (NN) and machine learning 
(ML) are described along with which countries are creating these techniques and how these are being 
used for COVID-19 diagnosis and detection. Illustrations of multi-layer convolutional neural networks 
(CNN), recurrent neural networks (RNN), and deep neural networks (DNN) are provided to show how 
these are used for COVID-19 detection and prediction. A summary of big data analytics for COVID-19 
and some available COVID-19 open-source data sets and repositories and their characteristics for 
research and analysis are also provided. An example is also shown for artificial intelligence (AI) and 
neural network (NN) applications using real-time COVID-19 data.

BACKGROUND OF COVID-19

Corona Virus Disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). The first case was identified in Wuhan, China, in December 
2019. It has since spread worldwide, leading to an ongoing pandemic. (Wikipedia, 2021)

European Centre for Disease Prevention and Control (ECDC) (2021) has been posting weekly open-
source COVID-19 related datasets for free download that includes data on hospital and ICI admission 
rates and current occupancy for COVID-19, and data on testing for COVID-19 by week and country.

The Office of Data Science Strategy (ODSS) of National Institute of Health (NIH) (2020) has made 
available open-access data and computational resources to address COVID-19 that includes CAS CO-
VID-19 antiviral candidate compounds dataset of nearly 50,000 chemical substances for use in applica-
tions including research, data mining, machine learning, and analytics.
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Artificial Intelligence (AI) techniques used for diagnosis of COVID-19 include AI-empowered medi-
cal image acquisition, segmentation, diagnosis and follow-up. Many investigators have used different 
image segmentation methods in COVID-19 applications (Shi et al. (2020)).

Recent extensive studies have been presented in several books with detailed COVID-19 related studies 
of applications of artificial intelligence used for creating predictive models for decision making in this 
pandemic and include those of Abdelrahman (2020), Bandyopadhyay and Dutta (2020), Hassaniem et 
al. (2020), Santosh and Joshi (2021), Zhang (2020), Al-Turjan et al. (2021), Marques et al. (2021), and 
Raza (2021). Further discussions of these extensive studies are presented in this chapter.

MACHINE LEARNING AND COVID-19

Machine learning (ML) is based on the premise that an intelligent machine should be able to learn and 
adapt from its environment based on its experiences without being explicitly programmed. The availabil-
ity of open-source data sets with COVID-19 data allows the experimentation of using machine learning 
techniques and deep neural networks for the prediction and diagnosis of COVID-19 using Computed 
Tomography (CT) scans and x-rays. CT scans show detailed images of any part of the body, including 
the bones, muscles, fat, organs and blood vessels.

Shuja et al. (2020) provided a comprehensive survey of open-source data sets that included catego-
ries of biomedical images, textual, and speech data. As COVID-19 test kits are in short supply, medical 
image-based diagnosis provides an alternative method of COVID-19 diagnosis. According to Shuja et 
al. (2020), the combination of artificial intelligence (AI) and open-source data sets practical solution for 
COVID-19 diagnosis that can be implemented in hospitals worldwide.

According to the World Health Organization (WHO) (2020) some of the leading hospitals across the 
world are utilizing artificial intelligence and machine learning algorithms to diagnose COVID-19 cases 
using Computed Tomography (CT) scans and X-ray images.

Rao and Vazuez (2020) showed that identification of COVID-19 can be quicker through artificial 
intelligence framework with use of machine learning algorithm when used with a mobile phone-based 
survey when cities and towns are under quarantine.

Bandyopadhyay and Dutta (2020) provided a validation of COVID-19 by Machine Learning approach 
using performance metrics of accuracy and Root-Mean Square-Error (RMSE) using a Recurrent Neural 
Network method.

Zoabi et al. (2021) created a model that predicted COVID-19 test results with high accuracy using 
only eight binary features: sex, age ³60 years, known contact with an infected individual, and the ap-
pearance of five initial clinical symptoms. Zoabi et al. (2021) indicate that their framework of can be 
used, among other considerations, to prioritize testing for COVID-19 when testing resources are limited.

NEURAL NETWORKS AND COVID-19

Pham (2020) presented a comprehensive study on classification of COVID-19 on computed tomography 
with pretrained convolutional neural networks (CNN). Pham (2020) found that using certain parameter 
specification and training strategy for the networks, this study found very high performance of several 
of the 16 pretrained CNNs for COVID-19 diagnosis using CT scans.
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Wang et al. (2020) used five pretrained convolutional neural networks (CNN) for COVID-19 diagnosis 
in chest x-ray images that achieved an overall accuracy of 95%.

Bassi and Attux (2020) showed that chest x-rays used together with Deep Neural Networks (DNN) 
and Layer-wise Relevance Propagation (LRP) to generate heatmaps can become a cheap and accurate 
method for COVID-19 diagnosis. Hanfi (2020) also discussed a neural network approach to, detect CO-
VID-19 through chest x-ray. The below Figure 1 was created based upon reading these and other related 
works to show a representative Deep Neural Network approach to detect COVID-19 with chest x-rays.

Wieczorek at al. (2020) created a neural network powered COVID-19 spread forecasting model with 
results in some cases reaches above 99% accuracy.

Abdulaal et al. (2020) made prognostic modeling as a point-of-admission mortality risk scoring 
system for COVID-19 using an adaptive Artificial Neural Network (ANN) for patient data in the United 
Kingdom (UK) that was predicted with 86.25% accuracy.

Irmak (2020) presented implementations of two powerful and robust convolutional neural networks 
(CNN) approaches for COVID-19 disease detection. The first is architecture is able to determine a given 
chest x-ray image of a patient contains COVID-19 with 98.92 average accuracy. The second architec-
ture presented by Irmak (2020) is able to divide a given chest x-ray image of patient into three classes: 
COVID-19, normal, and pneumonia with 98.27% accuracy and used databases of over 1,500 images for 
each of these three categories.

The below Figure 2 presents an example of a Convolutional Neural Network (CNN) that consists of 
12 layers for COVID-19 detected and was created after reading Irmak (2020).

Figure 1. Sample Deep Neural Network (DNN) framework to detect COVID-19 using chest x-rays [CO-
VID+ (presence), COVID- (absence)]
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Nicholson (2020) presented a beginner’s guide to Long-Short Term Memory Units (LSTMs) and 
Recurrent Neural Networks (RNN). Nicholson (2020) explains that Recurrent Neural Networks (RNN) 
are a type of Artificial Neural Network (ANN) designed to recognize patterns in sequences of data, such 
as numerical times series data emanating from sensors, stock markets, and government data.

Figure 2. Example of Multi-layer Convolutional Neural Network (CNN) for COVID-19 detection

Figure 3. Illustration of Recurrent Neural Network (RNN)
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According to Wikipedia (2021b), Long Short-Term Memory (LSTM) has feedback connections and can 
not only process single data points (such as images), but also entire sequences of data (such as speech or 
video). For example, LSTM is applicable to tasks such as unsegmented, connected handwriting recogni-
tion, speech recognition, and anomaly detection in network traffic or IDSs (intrusion detection systems).

Figure 3 is an illustration of Recurrent Neural Networks (RNN) that was created upon studying work 
of Nicholson (2020). Figure 3 shows the span of time where each “x” is an input example, “w” is the 
“weight” that filters inputs, “a” is the “activation” of the hidden layer (a combination of weighted input 
and the previous hidden state), and “b” is the “output of the hidden layer” after it has been transformed 
by the function “f”.

MACHINE LEARNING AND NEURAL NETWORKS 
USED TOGETHER FOR COVID-19

Wang et al. (2020) presented an efficient mixture of deep and machine learning models for COVID-19 
diagnosis in chest X-ray images using Deep Neural Networks (DNN) and Machine Learning (ML). The 
following Figure 4 was constructed upon reading work of Wang et al. (2020) that includes a Step 3 for 
Pre-trained Deep Learning Models using Deep Neural Networks (DNN) and a Step 4 that classifies the 
results of Step 3 using Machine Learning (ML) classification methods such as decision trees, random 
forest, AdaBoost, Bagging and SVM (Support Vector Method) Networks. Figure 4 below presents a 
flowchart of Deep Neural Networks (DNN) and Machine Learning (ML) for COVID-19 diagnosis.

Figure 4. Flowchart of Deep Neural Networks (DNN) and Machine Learning (ML) for COVID-19 diagnosis.
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METHODOLOGY FOR SELECTING THE BEST 
MODEL FOR COVID-19 PREDICTION

Researchers are confronted with multi-criteria decision-making to select the best model or models for 
predictions of COVID-19. Figure 5 below created by author RS Segall shows a flowchart of steps for 
selecting the best candidate model for COVID-19 prediction results using multiple metrics based on 
accuracy, specificity, sensitivity and precision based on numerical values of True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative (FN), and Room Mean Square Error (RMSE). 
The investigator needs to determine which of these Potential Metrics or other Metric is the most useful 
or suitable criteria for determining the best model for COVID-19 prediction.

Long Short-Term Memory (LSTM) used as Model 1 in Figure 5 is a type of Recurrent Neural Network 
(RNN) capable of learning order dependence in sequence prediction problems as a behavior required in 
complex problem domains like machine translation, speech recognition, and more. (Brownlee (2017))

Gated Recurrent Unit (GRU) used as Model 2 in Figure 5 is a gating mechanism in Recurrent Neural 
Networks, introduced in 2014 by Kyunghyun Cho et al. (2014). The GRU is like a long short-term memory 
with a forget gate, but has fewer parameters than LSTM, as it lacks an output gate. (Wikipedia, 2021a).

Figure 5. Flowchart of steps for selecting best candidate model for COVID-19 prediction results.
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BIG DATA ANALYTICS AND EMERGING ARTIFICIAL 
INTELLIGENCE TECHNOLOGIES FOR BATTLING COVID-19

Table 1 below shows some illustrations of Big Data Analytics for battling COVID-19. The work of 
Elghamrawy (2020) uses a Deep Learning model H2O based on Deep Learning Big Data analytics 
(DLBD-COV) for early diagnosis of COVID019 using Computer Tomography (CT) or X-ray images.

APPLICATIONS OF ARTIFICIAL INTELLIGENCE (AI) TO COVID-19

Unnithan et al. (2021) discussed use of both forecasting models and dynamic models in modeling CO-
VID-19 data in Canada, and AI-based solutions for public health surveillance for informing public health 
strategies in Australia and Canada.

Arora and Soni (2021) presented a pre-screening approach for COVID-19 testing based on Belief 
Rule-Based Expert System (BRBES)to predict the likelihood of the person to be tested for COVID-19.

Srikusan and Karunamoorthy (2021) used Anomaly Detection (AD) to detect COVID-19 like disease 
outbreaks by comparing expected or forecasted results from past data that mimics the region-specific 
seasonal infection disease patterns.

Bhapkar et al. (2021) used Rough Set theory that is used for imperfect information in the AI province 
in the context of COVID-19 to predict symptomatic cases.

Kaiser et al. (2021) discussed the use of healthcare robotics to combat COVID-19 such as support-
ing patient care at the hospital and home, disinfecting places, collecting the sample from a patient for 
screening.

Chawki (2021) discussed Smart Screening for High Body Temperature, Surveillance, monitoring 
treatment, multi-purpose AI or IoT (Internet of Things) platforms that can be used to monitor people 
that are in compulsory COVID-19 quarantine. Chawki also discussed cross-population train/test models 
so that the model can be utilized to detect COVID-19 in a different country from a model trained in 
Wuhan, China.

Table 1. Big Data Analytics for COVID-19

DATE AUTHOR(S) Big Data Contribution COUNTRY

July 24, 2020 Agbehali et al. (2020) Review of Big Data Analytics and AI Computing 
Models South Africa

March 30, 2020 Kent, J. (2020b) Google makes COVID-19 Datasets freely available 
to Researchers United States

September 21, 2020 Kent, J. (2020c) Big Data Analytics shows COVID-19 spread by 
Region. United States

December 24, 2020 Kent, J. (2020d) Intersection of Big Data Analytics, COVID-19 Top 
Focus of 2020. United States

2020 Elghamrawy (2020) H20 Deep Learning-Inspired Model on Big Data 
Analytics Egypt

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



37

Survey of Applications of Neural Networks and Machine Learning to COVID-19 Predictions
 

Arya and Devi (2021) discussed the known AI-models that were earlier trained for different systems 
as being re-trained using COVID-19 data to assist in predicting and identifying those potentially infected 
with COVID-19.

Table 2 below shows some applications of Artificial Intelligence (AI) for COVID-19 detection and 
analysis for year 2020 and Table 3 for year 2021.

Table 2. Year 2020: Artificial Intelligence techniques used for COVID-19 detection and analysis

DATE AUHTOR(S) ARTIFICAL INTELLIGENCE (AI) TECHNIQUES COUNTRY

February 21, 2020 So, D. New AI algorithm that can diagnose suspected cases in 20 
seconds with 96 percent accuracy. China

March 18, 2020 Zhao, H. AI-based deep learning image analysis system based on CT 
chest scans

Israel and United 
States

April 2, 2020 Cai, F. GSInquire, a generative synthesis based explain-ability 
method for critical factors of DarwinAI Canada

April 28, 2020 Ozturk, T. et al. DarkNet model used as a classifier if the You Only Look 
Once (YOLO) real time object detection system.

Turkey, UK, 
Singapore, Taiwan.

May 7, 2020 Leong, B. & Jordan, S.
Focus on apps directed to health care professionals that 
leverage audio-visual data, text analysis, chatbots, and 
sensors.

United States

June 2020 Lalmuanawma, S. et al.
Digital contact tracing process using Bluetooth, Global 
Positioning System (GPS), Social graph, network-based 
API, & mobile tracking data.

India 
United Kingdom 
(UK)

August 25, 2020 Abdulaah et al. Artificial Neural Networks (ANN) United Kingdom

November 10, 2020 Chen, Y. et al. AI-based imaging analysis methods including chest-
imaging techniques. China

November 2020 Bullock, J. et al. Molecular, clinical and societal applications at different 
scales: including medical imaging and risk assessment

United States, 
United Kingdom, 
Switzerland

2020 Dalip, D. AI merged with Global Positioning System (GPS)to 
prevent spread of COVID-19 India

2020 Jat, D.S. & Singh, C. Robotic drone applications Namibia and USA

2020 Gupta, D., Mahajan, A. 
& Gupta, S. AI aid in facilitating social distancing India
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APPLICATIONS OF NEURAL NETWORKS (NN) TO COVID-19

Table 4 shows some applications in year 2020 of neural networks for COVID-19 detection and analysis, 
and Table 5 for year 2021.

Table 3. Year 2021: Artificial Intelligence techniques used for COVID-19 detection and analysis

DATE AUHTOR(S) ARTIFICAL INTELLIGENCE (AI) 
TECHNIQUES COUNTRY

January 2021 Unnithan, C. et al. Blue tooth technology used in contact tracing apps, 
AI methods in predictive modeling. Australia, Canada

January 2021 Arora, T. & Soni, R. Belief Rule-Based Expert System (BRBES) India

January 2021 Srikusan, R. & 
Karaunamoorthy, M. Anomaly Detection (AD) India

January 2021 Bhapkar, H.R. et al. Rough set theory in COVID-19 to predict 
symptomatic cases.

India, Denmark, United 
Kingdom (UK)

January 2021 Kaiser, M.S. et al. Heathcare Robots Bangladesh, United 
Kingdom (UK)

January 2021 Chawki, M. Smart Screening, Surveillance, Cross-Population 
Train/Test AI-Driven models France

January 2021 Arya, M.S. & Devi, S.P. Retraining of AI models for COVID data India

January 2021 Agarwal, M. et al. 9 AI Models on cognitive systems in Next Generation 
Network (NGN).

India 
Italy

February 2021 Al-Turjman, F. Cognitive Systems in Next Generation Networks 
(NGN) Spain

February 2021 Nawaz, M.S. et al. Sequential pattern mining (SPM), sequence 
prediction models, genome analysis.

China 
United States 
Japan

March 2021 Lv, D. et al. Cascade Squeeze-Excitation and Moment Exchange 
(Cascade-SEME) framework

China 
United States 
United Kingdom

April 2021 Verde, L. & et. Speech and Voice Analysis
Italy 
Saudi Arabia 
Egypt

April 2021 Huang, S., Yang, J., Fong, S. 
& Zhao, Q.

Literature review of challenges & perspectives of AI 
diagnosis of COVID-19 China

May 2021 Tali, S.H.S. et al. Sensor and biosensor devices, including diagnostic 
imaging devices Canada

May 2021 Ahmed, S. et al.
High-Resolution Network (HRNet) for feature 
extraction embedding with the UNet for segmentation 
purposes

Japan 
Bangladesh
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Table 4. Year 2020: Neural Networks used for COVID-19 detection and analysis

DATE AUTHOR(S) NEURAL NETWORK TECHNIQUES COUNTRY

March 16, 2020 Rosebrock, A. X-ray images wih Keras, TensorFlow, and Deep 
Learning Canada

March 22, 2020 Wang, L & Wong, A.

Introduced COVID-Net, a deep convolutional 
neural network design tailored for the detection of 
COVID-19 cases from chest X-ray (CXR) images 
that is open-source and available to the general 
public.

Canada

March 30, 2020 Zhao,J. et al.
COVIDE-CT-Dataset used with deep learning 
methods which predicts COVID-19 by analyzing 
CT scans.

United States

April 2020 Khan, A.I., Shah, J.L. & 
Bhar, M.

CoroNet: A deep neural network for detection and 
diagnosis of COVID-19 from chest x-ray images India

April 24, 2020 Pal, R. et al. Long Short-Term Memory (LSTM) based neural 
network to predict the risk category of a country. Norway and India

April 27, 2020 Singh, D. et al.
Chest CT images using multi-objective differential 
evolution (MODE) based convolutional neural 
networks.

India

June 12, 2020 Mollalo, et al. Multilayer perceptron (MLP) Neural Network United States

August 15, 2020 Wieczorek et al. Recurrent Neural Network (RNN) Poland

October 9, 2020 Pham, T.D. Pretrained Convolutional Neural Networks (CNN) Saudi Arabia

October 22, 2020 Irmak, E. Convolutional Neural Networks (CNN) Turkey

December 11, 2020 Bassi & Attux Deep Convolutional Neural Networks (CNN) with 
Layer-wise Relevance Propagation (LPR) Brazil

December 13, 2020 Hanfi, S.A. 6-Layer Convolutional Neural Network (CNN)
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APPLICATIONS OF MACHINE LEARNING (ML) TO COVID-19

Table 6 presents some applications of machine learning to COVID-19 detection and analysis for year 
2020 and Table 7 for year 2021.

Table 5. Year 2021: Neural Networks used for COVID-19 detection and analysis

DATE AUTHOR(S) NEURAL NETWORK TECHNIQUES COUNTRY

2021 Marques et al. Long Short-Term Memory (LSTM) Networks Brazil and Macao

2021 Hamadneh et al. Multi-Layer Perception Neural Network (MLPNN) Saudi Arabia, Vietnam, 
Jordan

2021 Bahrami & Sadeddin

Convolutional Neural Network (CNN) identifying 
COVID-19 coughs and the MIT AI model detecting 
asymptomatic COVID-19 infections using cough 
recordings

United States

2021 Colak
Prediction of Infection and Death Ratio of COVID-19 
Virus in Turkey by Using Artificial Neural Network 
(ANN)

Turkey

2021 Kaliyar et al.
MCNNet: Generalizing Fake News Detection with a 
Multichannel Convolutional Neural Network using a 
Novel COVID-19 Dataset

India

March 2021
Alsaade, F.W., 
Al-Adhaileh, T.H. & 
Al-Adhaileh, M.H.

Developing a Recognition System for Classifying 
COVID-19 Using a Convolutional Neural Network 
Algorithm

Saudi Arabia

March 2021 Rahimzadeh, M., Attar, A., 
& Sakhaei, S.M.

A fully automated deep learning-based network for 
detecting COVID-19 from a new and large lung CT scan 
dataset

Iran

April 2021
Taresh, M.M., Zhu, N., 
Ali, T.A., Hameed, A.S. & 
Mutar, M.L.

Transfer Learning to Detect COVID-19 Automatically 
from X-Ray Images Using Convolutional Neural 
Networks (CNN)

China 
Iraq 
Malaysia

May 2021 DeGrave, A.J., Janizek, 
J.D., & Lee, S-I.

Convolutional Neural Network (CNN) for radiographic 
COVID-19 detection. United States

May 2021 Eron, G., Janizek, J.D., 
Sturmfels, P. et al.

Improving performance of deep learning models with 
axiomatic attribution priors and expected gradients. United States

May 2021 Mukherjee, H., Ghosh, S., 
Dhar, A. et al.

Deep neural network to detect COVID-19: one 
architecture for both CT scans and Chest X-rays.

India 
United States

May 2021 Narin, A., Kaya, C. & 
Pamuk, Z.

Automatic detection of coronavirus disease (COVID-19) 
using X-ray images and deep Convolutional Neural 
Networks (CNN)

Turkey

June 2021
Fouladi, S., Ebadi, M. J., 
Safaei, A. A., Bajuri, M. Y., 
& Ahmadian, A.

Convolutional Neural Network (CNN), Convolutional 
Auto-Encoder Neural Network (CAENN), and machine 
learning (ML) methods are proposed for classifying Chest 
CT Images of COVID-19.

Iran 
Malaysia

July 2021
N. N. Hamadneh, W. A. 
Khan, W. Ashraf, S. H. 
Atawneh, I. Khan et al.,

Multilayer perceptron neural network (MLPNN) is used 
in this study together with prey-predator algorithm (PPA). 
The proposed model is called the MLPNN–PPA.

Saudi Arabia
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COVID-19 OPEN-SOURCE DATA REPOSITORIES

The below Table 8 provides COVID-19 Open-Source Data Sets for Research & Analysis that includes 
authors, characteristics and country.

Table 6. Year 2020: Machine Learning (ML) techniques used for COVID-19 detection and analysis

DATE AUTHOR(S) MACHINE LEARNING (ML) TECHNIQUES COUNTRY

April 16, 2020 Gallagher, M.B.
Machine learning algorithm combines data on the 
disease’s spread with a neural network, to help predict 
when infections will slow down on each country.

United States

June 25, 2020 Lalmuanawma et al. Survey Paper of many methods India and United 
Kingdom

September 29, 2020 Li et al. eXtreme Gradient Boosting algorithm (XGBoost) United States

October 30, 2020 An et al. Least Absolute Shrinkage and Selection Operator 
(LASSO), Random Forest learning method Korea

November 17, 2020 Wang et al. Machine Learning Classification methods combined 
with Pre-trained deep learning models China

2021 Marques et al. H2O AutoML Brazil and Macao

Table 7. Year 2021: Machine Learning (ML) techniques used for COVID-19 detection and analysis

DATE AUTHOR(S) MACHINE LEARNING (ML) TECHNIQUES COUNTRY

2021 Fernandes, F.T., et al.

Trained five machine learning algorithms: (artificial neural 
networks, 
extra trees, random forests, catboost, and extreme gradient 
boosting).

Brazil

2021 Miliard, M. Gradient boosted decision trees, or XGBoost United States

January 4, 
2021 Zoabi et al. Gradient-Boosting machine model with decision-tree base-

learners. Israel

February 15, 
2021

Ackerman, D. 
MIT News Release

Used algorithms that infer causality in interacting systems to 
turn their undirected network into a causal network. United States

March 2021 Roberts, D. et al.
Review of machine learning-based models for 2020 using 
standard-of-care chest x-rays (CXR) or chest computed 
tomography (CT) images.

United Kingdom

May 2021 Halasz, G. et al.
Developed a machine learning–based score—the Piacenza 
score—for 30-day mortality prediction in patients with 
COVID-19 pneumonia.

Italy 
Switzerland

June 2021 Argyris, Y.A. et al. Multi-method approach that includes supervised classification 
algorithm for categorizing tweets.

Canada 
United States

June 2021 Peng, Y. et al.
Real-time Prediction of the Daily Incidence of COVID-19 
in 215 Countries and Territories Using Machine Learning; 
Model Development & Validation

China
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The COVID-19 data repository by Johns Hopkins University Center for Systems Science and En-
gineering (JHU CSSE) is provided to the public by GitHub and cloud service BigQuery and includes 
1TB of free Big Query processing each month that can be used to run queries on this public dataset.

Other COVID-19 open-source data sets provided in Table 8 include that of Machine Learning Re-
pository of University of California at Irvine (UCI), Open Data for Deep Learning of Pathmind, Inc., 
Allen Institute of Artificial Intelligence, Coronavirus World Data, The Office of Data Science Strategy 
(ODSS) of National Institutes of Health (NIH), The National Center for Advancing Translational Science 
(NCATS) of National Institutes of Health (NIH), and Big Queries Public Datasets Program.

Reactome is fast-tracking the annotation of Human Coronavirus infection pathways in collaboration 
with the COVID-19 Disease Map group. Reactome release 74 features the SARS-CoV-2 (COVID-19) 
infection pathway. (Reactome (2020)).

Below is Table 8 of Open-Source data sets that is available in the public domain for no charge to 
users for research and analysis.

Table 8. COVID-19 Open-Source Data Sets for Research & Analysis

DATE/NAME & URL AUTHOR(S) CHARACTERISTICS COUNTRY

March 30, 2020 Jennings & Glass COVID-19 Public Dataset Program on 
Google Cloud United States

March 30, 2020 Health IT Analytics (owned by 
Google)

Google makes COVID-19 datasets freely 
available to researchers United States

September 21, 2020 Shuja et al. A Comprehensive Survey of COVID-19 
Open Source Data Sets

Pakistan and 
Saudi Arabia

Machine Learning Repository 
https://archive.ics.uci.edu/ml/index.
php

UCI (University of California 
at Irvine)

Widely used by students, educators, and 
researchers all over the world as primary 
source of machine learning data sets.

United States

Open Data for Deep Learning 
https://wiki.pathmind.com/ Pathmind, Inc. Maintained by a model deployment 

platform called Skymind

United 
States (San 
Francisco, 
CA)

COVID-19 Open Research Dataset 
(CORD-19) 
https://www.semanticscholar.org/
cord19

Allen Institute for AI 
https://allenai.org/

Contains over 44,000 scholarly articles 
about COVID-10

United States 
(Seattle, WA)

Johns Hopkins University COVID-19 
data 
https://github.com/CSSEGISandData/
COVID-19

JHU CSSE 
(Johns Hopkins University 
Center for Systems Science 
and Engineering)

Data repository for the COVID-19 
Dashboard aggregated from many sources 
including WHO, CDC, WorldoMeters, etc.

United States

Coronavirus World Data 
https://worlddata.ai/coronavirus

World Data AI 
(https://worlddata.ai)

World’s Largest Data Platform (3.3 Billion 
Datasets)

United States 
(Houston, TX)

National Institutes of Health (NIH) 
https://datascience.nih.gov/covid-19-
open-access-resources

The Office of Data Science 
Strategy (ODSS)

Open-Access Data & Computational 
Resources to Address COVID-19 United States

National Institutes of Health (NIH) 
https://opendata.ncats.nih.gov/
covid19/index.html

National Center for Advancing 
Translational Science 
(NCATS)

Open Data for COVID-19 United States

https://console.cloud.google.com/
marketplace/product/bigquery-public-
datasets/covid19-open-data

Big Query Public Datasets 
Program

Daily time-series data related to COVID-19 
globally

United States 
& European 
Union (EU)
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Example AI and NN Applications Using Real-Time COVID -19 Data

Using COVID-19 datasets from GitHub, the following images/visualizations were created. Rapid Miner, 
Tensor Flow, and the Deep Learning Toolbox of MATLAB were used to construct the following Figures: 
Figure 6 to Figure 11. The images show some of the AI and NN applications that can be used with real-
time COVID-19 data. The data was aggregated and automated into figures that provide a full explanation 
of the death rate, recovery rate, active cases, case fatality ratio, confirmed cases, state where it is less 
and more, and time range where the cases are still much lower. The figures have been color-coded to 
make it easy to see when the cases were high and to see if there was a pattern. The figure 6 shows the 
sample of the data that was used.

Figure 6. Sample of Covid-19 Datasets used to create the visualizations shown in Figure 7 to Figure 
11 (Github)
[Created by student Vidha Sankarasubbu and used with written permission.]

Figure 7. Centroid Chart Clustered Data using Rapid Miner Studio with COVID-19 Dataset
[Created by student Vidha Sankarasubbu and used with written permission.]
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Figures 6 to 11 below were created by student Vidhya Sankarasubbu under the supervision of author 
of this chapter as faculty mentor, and who was awarded a 2021 Summer Internship Research Award for 
a research proposal for support in writing this book as funded by Arkansas Biosciences Institute (ABI) 
located on the campus of Arkansas State University (A-STATE) in Jonesboro. Figures 6 to 11 are shown 
upon written permission of student Vidha Sankarasubbu.

The clustered chart for COVID datasets is shown in Figure 7. Based on the population rate, latitude, 
and longitude, the graph depicts the number of active cases as well as the number of deaths. The graph 
also shows the number of recovered cases, as well as the case fatality ratio and incident rate.

Figure 8 depicts a portion of the whole bubble graph that explains the death rate and current cases by 
geographic region. Because the data is multivariable, a bubble graph is employed. It is used to compare 
the number of deaths and the rate of survival in active cases based on geography.

Figure 8. Sample Bubble Graph showing death rate and recovered rate from the active and confirmed 
cases of COVID-19 in each country region created using Rapid Miner
[Created by student Vidha Sankarasubbu and used with written permission.]
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A Bode plot, or graph of magnitude (in dB) vs frequency, is shown in Figure 9. This is used to 
determine the frequency of death and the rate of recovery in COVID-19 patients. This method has the 
advantage of demonstrating how circuit parts influence frequency response. In the design of frequency-
selective circuits, this is very significant.

Figure 9. The normalized magnitude and frequency graph and the time domain and amplitude for CO-
VID-19 cases in 2021 using Deeplearning Toolbox of MATLAB.
[Created by student Vidha Sankarasubbu and used with written permission.]

Figure 10. Bubble Graph showing maximum of active cases of COVID-19 in each country and their 
death rate in 2020 using Deeplearning Toolbox of MATLAB 
[Created by student Vidha Sankarasubbu and used with written permission.]
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Figure 11 shows how to use chart sorting to reorder the data set’s properties and create a line graph. 
The population and time range are arranged in this graph, which illustrates the pattern of the cases

CONCLUSION

This chapter has presented a survey of many current applications of artificial intelligence, neural networks 
and machine learning to the pandemic COVID-19 as attempts to search for solutions to this world-wide 
pandemic. It appears that the continuation of applications of these techniques will be used as valuable 
insights to COVID-19 and other diseases. Machine learning, neural networks and other artificial intel-
ligence techniques can be combined together to obtain even more powerful insights into this COVID-19 
pandemic and the international community is actively pursuing these applications.
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KEY TERMS AND DEFINITIONS

Convolutional Neural Networks (CNN): In deep learning, a convolutional neural network (CNN, 
or ConvNet) is a class of deep neural networks, most commonly applied to analyzing visual imagery.

COVID-19: Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). The first case was identified in Wuhan, China, in 
December 2019.

Deep Neural Networks: Deep learning is a class of machine learning algorithms that uses multiple 
layers to progressively extract higher-level features from the raw input.
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H2O AutoML: Learning algorithm within H2O open-source distributed machine learning platform 
that overlooks the process of finding candidate models using large datasets (Marques et al., 2021).

Keras: Keras is an open-source software library that provides a Python interface for artificial neu-
ral networks. It is a High-level Python neural network library that runs on the top layer of TensorFlow 
(Hanfi, 2020).

Long Short-Term Memory (LSTM): A type of Recurrent Neural Network (RNN) capable of learning 
order dependence in sequence prediction problems as a behavior required in complex problem domains 
like machine translation, speech recognition, and more (Brownlee, 2017).

Recurrent Neural Networks (RNN): Class of Artificial Neural Networks (ANN) also called Feed-
back Neural Networks (FNN) where connections between nodes form a directed graph along a temporal 
sequence (Wikipedia, 2020).

TensorFlow: Open-source software library originally developed by Google Brian Team for numerical 
computation using data flow graphs. TensorFlow is a free and open-source software library for machine 
learning. It can be used across a range of tasks but has a particular focus on training and inference of 
deep neural networks (Wikipedia, 2021c).
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ABSTRACT

In recent years, with the development of computational power and the explosion of data available for 
analysis, deep neural networks, particularly convolutional neural networks, have emerged as one of the 
default models for image classification, outperforming most of the classical machine learning models 
in this task. On the other hand, gradient boosting, a classical model, has been widely used for tabular 
structure data and leading data competitions, such as those from Kaggle. In this study, the authors com-
pare the performance of deep neural networks with gradient boosting models for detecting pneumonia 
using chest x-rays. The authors implement several popular architectures of deep neural networks, such 
as Resnet50, InceptionV3, Xception, and MobileNetV3, and variants of a gradient boosting model. The 
authors then evaluate these two classes of models in terms of prediction accuracy. The computation in 
this study is done using cloud computing services offered by Google Colab Pro.
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INTRODUCTION

In this chapter, the authors give an overview of deep neural networks, gradient boosting, and the problem 
of detecting pneumonia from chest x-rays. The main difference between the deep neural network models 
and the gradient boosting models is that deep neural networks are designed to handle image data while 
gradient boosting models often excel at tasks utilizing regular tabular data. Detailed structures of these 
models are provided below.

Neural Networks and Deep Learning

In parametric supervised learning, one wants to establish the relation between the input values and the 
output value by a specific function. To find this specific function (the solution), one searches in the class 
of functions identified by parameters (hence the term “parametric”) to find values for the parameters 
that minimize a predetermined objective function or loss function. For example, in linear regression, 
the least squares regression line is the solution found from a class of linear functions identified by the 
slope and intercept parameters. These values of the slope and intercept of the least squares regression 
line are those that minimize the squared loss.

A neural network represents a class of functions. The structure, or architecture, of a neural network, 
is the combination of several nodes and edges. The edges, or weights, are parameters of the functions. In 
neural networks, a linear combination of the nodes in one layer is input to a function, called an activation 
function, of a node in the next layer. The values in the first layer, or the input values, will go through 
this calculation process, followed by all the hidden layers to ultimately produce the output value in the 
output layer. Training a neural network entails finding the set of parameters or weights that minimizes 
a predetermined loss function.

It is easy to see that the linear model is also a neural network with no hidden layers. That is, a linear 
model effectively takes a linear combination of the input variables to directly produce an output value 
in a single step. However, including hidden layers increases the flexibility of the neural network, which 
can help it model more complex scenarios. In fact, it has been shown that any given continuous func-
tion can be approximated to any desired precision by a neural network with only a single hidden layer 
(Nielsen, 2016).

Deep learning models, or deep neural networks, are neural network models with multiple hidden lay-
ers (Schmidhuber, 2015). The word “deep” indicates there are many hidden layers. In the past decades, 
with the explosion in the amount of data available and the rapid development in computing hardware, 
deep neural networks have been very successful and are usually the default models for tasks in computer 
vision, such as image recognition and object detection. The initial success of deep neural networks dates 
back to 2012 when the AlexNet model (Krizhevsky et al., 2012) won the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) with a top-5 error of 15.3%, which was 10.8 percentage points lower 
than the runner up. Since then, deep neural networks have shown state-of-the-art accuracy on the Ima-
geNet competition (He et al., 2016).
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Figure 1. Architecture of a neural network. [The circles are neurons. The connections between two 
neurons are the edges, or weights, which are parameters of the neural network. The first layer is the 
input layer, the last layer is the output layer, and the layers between the input layer and output layer 
are hidden layers.]
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Gradient Boosting Models

Gradient boosting models are boosting models, which are the combinations of multiple weak models 
trained on different versions of the original data (Friedman, 2001). Weak models are very simple models 
that have a low accuracy. Examples of weak models include predicting by using the average of the target 
or using a decision tree with only one split (usually called a “stump”). The idea behind boosting models 
is to train a weak model into a strong model by having the weak learner learn from their “mistakes”. In 
gradient boosting, this idea is implemented by continuously changing the target variable in one round 
of training by the error of the previous round. The final prediction is the vote among the weak models 
from all the rounds where higher voting powers are given to those weak models that perform better.

The authors chose gradient boosting to challenge deep learning models because gradient boosting 
has been well-known as one of the best models for structured data (data that can be presented in a table). 
Gradient boosting has won multiple data competitions and is usually the top choice for machine learning 
practitioners when building predictive models. Among the data competitions that gradient boosting has 
won include the Twitter RecSys Challenge 2020 (Schifferer, 2020), the KDD Cup 2016 competition 
(Sandulescu and Chiru, 2016), the 2017 ACM RecSys challenge (Volkovs et al., 2017), and many other 
Kaggle competitions.

Figure 2. Values flow from one layer to a neuron of the next layer (say, layer 2). å represents the linear 
combination of x1,x2,x3 with the corresponding coefficients or weights w1,w2,w3. f is the activation func-
tion used at the neuron.
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Pneumonia Detection From Chest X-Rays

Pneumonia is an infection of the lungs that can cause mild to severe illness in people of all ages (Centers 
for Disease Control and Prevention, 2020). Each year, there are about 200 million cases of viral commu-
nity-acquired pneumonia, half of them being in children (Ruuskanen et al., 2011). The problem of using 
chest x-rays to study and identify pneumonia patients has been long studied in the literature and practice. 
In 2017, Rajpurkar et al. built CheXNet, a deep learning model that can identify pneumonia from chest 
x-rays at a level that exceeds practicing radiologists. Ayan et al. (2019) demonstrated the effectiveness 
of deep learning models Vgg16 and Xception in detecting pneumonia patients from their chest x-rays. 
Other work on detecting pneumonia using deep learning includes Hammoud et al. (2021), Rahman et 
al. (2020), Jaiswal et al. (2019), Stephen et al. (2019), Zech et al. (2018), Asnaoui et al. (2020), Hurt et 
al (2020), Rahimzadeh and Attar (2020), Ni et al. (2020)

In addition to pneumonia, deep learning models have also been utilized to detect other diseases, such 
as tuberculosis. For example, Stirenko et al. (2018) used deep learning models to analyze tuberculosis 
patients and Becker et al. (2018) used deep learning models to detect tuberculosis patterns in photographs 
of chest x-ray images. Other research using deep learning to analyze chest x-ray or medical image include 
Zhang et al. (2020), Litjens et al. (2017), and Mahapatra et al. (2018).

In this work, the authors do not strive to develop a competitive deep learning model to the models 
existing in the literature for detecting diseases from chest x-rays. Instead, the authors compare the per-
formances of deep learning models with gradient boosting, which is a method that is not generally used 
for this specific type of prediction. In the study, the authors implement several configurations of gradi-
ent boosting models and architectures of deep neural networks to detect pneumonia patients. These two 
classes of models are trained on a dataset that includes x-rays of pneumonia patients and healthy people. 
The authors use multiple popular architectures of neural networks, including MobileNetV3, Resnet50, 
and InceptionV3. For gradient boosting models, the authors form different variants by changing its main 
parameter, the number of iterations. All these models are run on the cloud computing service offered 
by Google Colab.

DEEP NEURAL NETWORK TECHNIQUES

In this section, two commonly used types of deep neural network layers and three techniques often used 
when training deep neural networks, which are data augmentation, optimizers, and transfer learning, are 
described. These techniques are also implemented in the authors’ experiment.

Convolutional layers

Convolutional layers are the building blocks of deep neural networks. The main idea behind using con-
volutional layers is to share a set of the same weights to connect nodes between two layers instead of 
using different weights, as in the case of traditional neural networks. This same set of weights is referred 
to as a “filter” or “kernel”. Convolutional layers reduce the number of parameters of the neural network, 
which helps avoid overfitting and also helps detect important visual features of the previous layer.
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Pooling layers

In pooling layers, neighboring values coming out of one layer will be grouped together into multiple 
sets and each set will be presented by a number. The presented number could be the maximum value 
(feature) of the set, as with max pooling layers, or the average. Pooling layers help reduce the dimensions 
of the data and do not add more parameters to the model. Since features are presented by aggregating 
information, the pooling layers help the model recognize the overall global representation of the images.

Data augmentation

Data augmentation refers to a set of techniques that increases the size or improves the quality of the 
training data or images (Shorten, 2019). Data augmentation could include multiple transformations of 
each input image to the training data. These transformations could be reflections, different rotations, or 
cropping of the original images. Data augmentation could also include artificial images that are gener-
ated from the input data (Sandfort, 2019).

Data augmentation techniques help reduce overfitting, which is an issue where the model learns the 
training data well (i.e., the training accuracy is relatively high) but fails to generalize that knowledge to 
perform well on the test data (i.e., the testing accuracy is relatively low). Overfitting often occurs when 
the training dataset is not big enough to train the large number of parameters in a deep neural network 
(the number of parameters in a neural network generally increases with how “deep” the network is).
In the experiment, the authors use the following data augmentation or transformation techniques.

• Randomly flip each image horizontally.
• Randomly rotate each image in the angle range of (-0.4π, 0.4π) radians.
• Randomly zoom out of each image by 20%.

Examples of the data augmentation that the authors used are illustrated in Figure 3.

Optimizers

To train the neural networks, one needs to find the set of weights that minimizes the preselected loss 
function. In contrast to the case of linear regression, the loss function (function of the weights) in a deep 
neural network is not a quadratic function and there exists no closed form solution for the optimization 
problem.

Gradient descent (or batch gradient descent) and its variants have been some of the most popular 
workhorse algorithms to solve for the approximated solution of minimizing the loss function in deep 
neural networks (Ruder, 2016). In gradient descent, one first initializes a set of weights for the network 
then iteratively updates the weights toward the direction of the gradient vector of the loss function. Vari-
ants of gradient descent that are mentioned frequently in the literature of deep neural networks are mini 
batch gradient descent and stochastic gradient descent. These algorithms can be considered as stochastic 
approximations of gradient descent used to quicken the convergence of gradient descent.

In mini batch gradient descent, instead of using all of the data points, or images, to construct the 
loss function and its gradient, only a batch of data points, or images, are used at one iteration to update 
the weights. The entire dataset is divided into multiple batches and these batches are iteratively used to 
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update the weights. In stochastic gradient descent, only one single data point, or image, is used to update 
the weights in an iteration. Stochastic gradient descent can be considered as a special case of mini batch 
gradient descent where the size of the batch is 1.

Gradient descent and its variants do not use the full amount of the gradient to update the weights, 
but only a fraction of it. This fraction is referred as the learning rate and it takes a value between 0 and 
1, but usually less than 0.01. Traditionally, this learning rate is pre-determined and is a constant during 
the training process. However, this is where the traditional gradient descent algorithm presents chal-
lenges. Since the learning rate does not change during the entire training process and since it applies to 
all parameters, it does not adapt to the characteristic of the data. Also, choosing the optimal learning 
rate is a challenging task and could severely affect the training time. Too small of a learning rate leads 
to slow convergence, while a too large learning rate may lead to divergence.

Optimizers refer to the set of techniques or algorithms that are extensions of stochastic algorithms 
that offer more effective ways to update the weights in training deep neural networks. Momentum (Qian, 
1999) is an algorithm allowing the weights to move faster in the relevant direction, which helps acceler-
ate the speed of convergence. Adagrad (Duchi et al., 2011) adjusts the learning rate based on parameters 
where parameters associated with frequent variables (features) will receive a larger learning rate. Some 
other popular optimizers in the literature include Adadelta (Zeiler, 2012), Adam, or Adaptive Moment 
Estimation, (Kingma and Ba, 2014), Nadam (Nesterov-accelerated Adaptive Moment Estimation) (Dozat, 
2016), AMSGrad (Reddi, 2019)

In the study, the authors implement the Adam optimizer (Kingma and Ba, 2014) for all the deep 
neural networks. Adam is considered very robust with different architectures of deep neural networks 
(Goodfellow, 2016).

Transfer learning

To train a neural network, one needs to first initialize the weights on the connections of neurons and then 
iteratively change the weights to minimize a selected loss function. Since deep neural network models 
have been famous for being data hungry (Marcus, 2018), it requires a large dataset to train one. This 
makes deep neural network models impractical when the available data are not large enough. Transfer 
learning is the bridge between “small” data and deep learning. Transfer learning refers to a set of tech-
niques that can store the knowledge acquired from learning one problem (dataset) to another problem 
(West et al., 2007). For instance, a model that can recognize different types of housecats may be useful 
to train a model to recognize different types of lions. Transfer learning can also be useful in cases where 
outdated data need to be updated (Pan and Yang, 2009).

The knowledge of a deep neural network model can be interpreted as its weights. Using transfer 
learning to train a neural network A, one can use the weights found in a trained neural network B with-
out retraining A to learn these weights. Here A and B are similar networks and the data used to train A 
are also similar to the data used to train B. Thus, A is just needed to be trained to find the “remainder” 
weights, which are usually far fewer in quantity compared to those weights borrowed from B. These 
“remainder” weights would often account for any layers in network A which are not present in network 
B. For instance, networks A and B may be nearly identical in their architectures, except that network 
A has a couple of extra hidden layers immediately before the output layer. In this case, most weights in 
network A can be transferred from network B, but the “remainder” weights that need to be trained in 
network A would include those for the extra hidden layers towards the end of the network.
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In this study, when transfer learning is used, the weights are “transferred” from the corresponding 
baseline network trained on the ImageNet dataset. Since all the deep neural network models that the au-
thors implemented are designed to classify more than two categories of images, the authors added on top 
of these models’ extra layers so that they can be used to recognize two classes of images as in this study.

DEEP NEURAL NETWORK ARCHITECTURES

A neural network is defined by its architecture, which specifies the number of layers, the types of layers, 
and the activation functions used at each neuron. The authors include in this study both the authors’ own 
architectures and those developed by well-recognized corporations, such as Microsoft and Google. Here 
the authors briefly introduce the architectures of the neural network models that the authors use for the 
comparison with gradient boosting models.

BasicNet

Since all the deep neural networks the authors implemented in this study were designed for and tested on 
certain large and well-known datasets, such as ImageNet and CIFAR-100, the authors also include in this 
study a shallower network that may be appropriate for this smaller chest x-ray dataset. For reference, the 
authors called this neural network “BasicNet”, as it follows the very basic principles of a convolutional 
neural network. For all convolutional layers, BasicNet uses the “same” padding (i.e., the layers do not 
change the sizes of their corresponding input images). All activation functions used are Rectified Linear 
Unit (ReLU) activation functions (Nair and Hilton, 2010). The probability of dropping out at the dropout 
layer is 20%. The architecture of the authors’ network is as follows.

Inception

Inception, or Google’s Inception Convolutional Neural Network, was introduced during the ImageNet 
Recognition Challenge and was developed by researchers at Google, the University of North Carolina, 
Chapel Hill, and the University of Michigan (Szegedy et al., 2015). The name “Inception” was motivated 
from the quote “’we need to go deeper” from Christopher Nolan’s film, Inception, implying that deeper 
neural networks have the potential to achieve better accuracy. To go “deeper,” the authors make extensive 
use of a kernel of the size 1x1 to reduce the computational expenses which deeper neural networks tend 
to require when being trained. The first version of Inception, which has 22 layers, has won the ILSVRC 
(ImageNet Large Scale Visual Recognition Competition) 2014. (Szegedy et al., 2015).
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Resnet

Resnet, or Residual Network, is a deep neural network developed by researchers at Microsoft (He et al., 
2016). Resnet introduced the concept of residual block to resolve the problem of gradient vanishing, 
which often happens when training very deep neural networks. Gradient vanishing occurs when the 
approximated gradient of the loss function in training becomes infinitesimally small, resulting in no 
improvement in minimizing the loss function of the network. By using residual block, Resnet can have a 
very deep structure up to 152 layers (Resnet152). Resnet is widely considered the second breakthrough 
in deep learning after AlexNet and has won first place in ILSVRC and COCO 2015 competitions in 
ImageNet Detection, ImageNet localization, Coco detection, and Coco segmentation (He et al., 2016).

MobileNet

MobileNets are small and efficient deep neural networks developed by researchers at Google (Howard 
et al., 2017) to be used in mobile and embedded applications. In order to reduce the computation to 
make an efficient model, MobileNets invented depthwise separable convolutions as a replacement to the 
standard convolutional operation. A depthwise separable convolution is a composition of a depthwise 
convolution and pointwise convolution. Counting both of these convolutional layers, MobileNets have 
28 layers. Since it was introduced, MobileNet has been updated to version 3 (MobileNetV3).

EfficientNet

Since the success of AlexNet, there have been efforts to scale up the model to achieve better performance. 
Scaling up a deep neural network could be done in three ways: adding more neurons to layers (width 

Table 1. Architecture of BasicNet. For all convolutional layers, the “same” padding is used so that the 
layers do not change the sizes of their corresponding input images. All activation functions used are 
ReLU activation functions. The probability of dropping out at the dropout layer is 20%.

Layer Filters/Kernels Number of Parameters

Input Layer (Sequential)

Rescaling

Convolutional Layer 16 filters of size 3x3 448

Max Pooling Layer

Convolutional Layer 32 filters of size 3x3 4940

Max Pooling Layer

Convolutional Layer 64 filters of size 3x3 18496

Max Pooling Layer

Dropout

Flatten

Dense 663680

Dense 258
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scaling), adding more layers to the network (depth scaling), or increasing the resolution of input images 
(resolution scaling). Tan and Le (2019) have shown that scaling a network individually along only one 
of these three dimensions could achieve higher accuracy, but the improvement will stagnate at a certain 
stage. The authors proposed a systematic way of scaling the network by scaling all three dimensions at 
the same time, called Compound Model Scaling. The authors’ proposed model, EfficientNet-B7, has 
achieved the state-of-the-art performance on multiple datasets, such as ImageNet (Deng et al., 2009) and 
CIFAR-100 (Krizhevsky and Hinton, 2009), while having a smaller structure and faster running time 
compared to the best existing neural network.

Xception

Xception, or an extreme version of Inception (Chollet, 2017), modified the Depthwise Separable Con-
volution module in the Inception model to design a deep neural network that performed better than 
InceptionV3 on the ImageNet dataset and JFT dataset (Hinton et al., 2015). In addition, Xception still 
has the same number of parameters as InceptionV3.

To implement these models, the authors use TensorFlow 2.5, which is a free open-source library de-
veloped by Google for machine learning and, in particular, deep learning. The authors also implemented 
the data preprocessing techniques that are specifically designed for each model before fitting the data to 
that model. For each model, the authors set the batch size to be 32 and the number of epochs to be 50. 
The readers can refer to the section “KEY TERMS AND DEFINITIONS” at the end of this chapter for 
brief definitions of epoch and batch size.

GRADIENT BOOSTING MODELS

To implement gradient boosting models, the authors use CatBoost, which is a free open-source library 
developed by Yandex (Prokhorenkova et al., 2017 and Dorogush et al., 2018). The implemented gradi-
ent boosting models are specified in Table 2. To transform the images into the tabular data for training 
gradient boosting models, the authors used the Python Imaging Library to convert images to matrices as 
follows. Each image of resolution D x W will be extracted to three matrices of size D x W where each 
matrix presents the color density of the images for the three colors: red, green, and blue. All the three 
matrices then be concatenated into a single row, presenting the information of the image in the table 
data. In the experiment, the authors tested two different resolution 96x96 and 160x160.
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Figure 3. Different transformations of the same chest x-ray. Data augmentation adds these transformed 
images to the training data to help reduce overfitting. The images in the figure are either rotations or 
zoomed out version of the original image.

Table 2. Variants of gradient boosting used in the study. For gradient boosting with 1000 trees (GB1000), 
the authors also implement different variants with different tree depths (Figure 7).

Model Iterations

GB100 100

GB500 500

GB1000 1000

GB2000 2000

GB5000 5000

GB10000 10000
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DATA

The authors use the Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images (Kermany 
et al., 2018). In the original data, the distribution of “Pneumonia” images and “Normal” images is un-
balanced (about 85% for Pneumonia images and 15% for Normal images). This represents a case of an 
imbalanced dataset where there is a very large percentage of the majority class with a corresponding small 
percentage of the minority class. This imbalance could lead to issues with imbalanced classification for 
the model (Chawla, 2002). For instance, if the imbalance is extremely severe (e.g., 99% majority vs. 1% 
minority) then all observations could be predicted to be the majority class with an accuracy of 99%. Thus, 
no predictions would be made for the minority class even though the overall accuracy is nearly perfect.

Two of the original principal approaches for handling imbalanced data are Random Undersampling 
(RUS) and Random Oversampling (ROS). The goal for both of these methods is to ensure that there is an 
equal balance between both types of observations. In RUS, randomly selected majority observations are 
deleted so that there are equal numbers of each class. In ROS, randomly selected minority observations 
are duplicated and included in the dataset so that the number of these observations matches the number 
of majority cases. Bonas et al. (2020) discuss these two methods on pages 123 and 124:

“RUS is one of the simpler methods under the larger umbrella that is undersampling. Essentially, 
random undersampling is accomplished by randomly selecting majority class observations and removing 
them from the dataset. This then will create a smaller, balanced subset of the original dataset which has 
the benefit of a faster run-time relative to the original data, oversampling techniques, and even some other 
undersampling techniques. One major drawback of this technique is that by removing majority observations 
entirely from the dataset some valuable information could be lost which would then negatively affect the 
predictive power of the model overall (Shelke et al., 2017). Similar to random undersampling, random 
oversampling is one of the simpler models under its respective resampling category. It is virtually the 
exact opposite of RUS where it is accomplished by randomly selecting minority class observations and 
duplicating them until there are enough observations to make the dataset balanced. This will then create 
a larger dataset than the original dataset where now the original dataset is a subset of this resampled set. 
The major benefit of ROS is that none of the original information in the dataset is lost and that there is 
minimal bias injected into the dataset because existing observations are only being duplicated versus 
new observations being synthetically created. The downside of ROS is that it takes a longer time to run 
the model due to the larger size of the resampled dataset.” (Shelke et al., 2017).

Bonas et al. (2020, page 134) concluded: “when the datasets were resampled, that the majority of 
them had their highest balanced accuracy scores around the area of random undersampling… that ran-
dom undersampling performed as well as, if not better than, random oversampling in all cases. From the 
results it could be argued that one should almost always choose to use RUS over ROS because of how 
well it performs, in terms of balanced accuracy. Additionally, one could argue to choose RUS because 
of how quickly it completes its runs, relative to the speed of ROS.”

In the experiment, the authors rebalanced the original data using RUS by eliminating randomly selected 
observations of the pneumonia cases. The distribution of the two categories in the revised training dataset 
is 50:50 (1,000 images for each image class). The authors also keep this same 50:50 distribution in the 
test dataset so that the accuracy metric is relevant to compare the overall performance of the models. A 
sample of these images is shown in Figure 4.
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RESULTS

The authors compare the two classes of models, deep neural networks, and gradient boosting, on four 
different settings based on the resolutions of 96x96 and 160x160, and whether data augmentation and 
transfer learning techniques are applied when training the neural networks. For deep neural network 
models, the authors use the Tensorflow platform and for gradient boosting models, the authors use the 

Figure 4. Sample chest x-ray images from the dataset. All the images are grouped into two classes: 
Pneumonia and Normal.
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Catboost platform. The results for the test accuracy can be seen in Table 3, Table 4, Table 5, Figure 5, 
Figure 6, and Figure 7.

The authors find that deep learning models significantly outperform gradient boosting models in term 
of accuracy overall. One of the cases when gradient boosting models score higher in accuracy is when 
BasicNet, the “shallower” convolutional neural network, is used with no data augmentation or transfer 
learning. However, when data augmentation and transfer learning are applied, BasicNet improves sub-
stantially and becomes better than all of the gradient boosting models. Similarly, MobileNetV3 scores 
lower (0.77) than the gradient boosting models at 96x96 resolution with data augmentation and transfer 
learning applied, but at 160x160 resolution, the MobileNetV3 is able to improve its accuracy (0.829) to 
outperform the gradient boosting models.

The authors also observe that almost all of the deep learning models benefit from the resolution 
increase from 96x96 to 160x160, but that this is not the case for the gradient boosting models. Gradient 
boosting largely could not improve its accuracy when training on higher resolution images. Suspecting 
that the gradient boosting models might be too simple, such that they may underfit the data, the authors 
increased the depth of the trees in the gradient boosting models to investigate their performance. How-
ever, the authors find that even with more complex gradient boosting models, their accuracy does not 
improve (Figure 7).

The results are not surprising. One of the reasons for the relatively low performance of gradient 
boosting models could be that when converting the data from the 3D structure of images to tabular data 
to train the gradient boosting models, the information indicating the positions of the variables (which 
are the pixels’ coordinates in the images) is lost. The authors know that the positions of the columns/
variables in the table do not affect the performance of the gradient boosting models. However, this is not 
true for deep neural networks, as they can natively handle the original 3D structure of the data.

Table 3. The accuracy of the models when data augmentation and transfer learning techniques are ap-
plied when training the deep learning models. The dimensions of 96 and 160 correspond to the image 
resolutions of 96x96 and 160x160, respectively.

Model Dimension=96 Dimension=160

BasicNet 0.8903 0.8397

InceptionV3 0.7827 0.8418

MobileNetV3 0.77 0.8291

Resnet50 0.8059 0.8734

EfficientNetB7 0.8629 0.8713

Xception 0.7975 0.8354

GB100 0.789 0.7764

GB500 0.7911 0.7932

GB1000 0.7975 0.7869

GB2000 0.801 0.7869

GB5000 0.7996 0.7869

GB10000 0.7932 0.7869
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In the experiment, the authors also find that transfer learning does not help to improve accuracy. 
The reason for this could be that the “knowledge” that the baseline deep learning model learned from 
the previously used data is not applicable for the task at hand. That is, the previously used data, namely 
the ImageNet dataset, is too “different” from the chest x-ray data for transferred weights to be helpful.

The model that gives the best performance in the experiment is the Xception model trained on 
160x160 resolution images with 0.922 accuracy, when not using data augmentation or transfer learning.

Table 4. The accuracy of the models when data augmentation and transfer learning techniques are ap-
plied when training the deep learning models. The dimensions of 96 and 160 correspond to the image 
resolutions of 96x96 and 160x160, respectively.

Model Dimension=96 Dimension=160

BasicNet 0.7616 0.7089

InceptionV3 0.8861 0.8987

MobileNetV3 0.8734 0.9072

Resnet50 0.8502 0.903

EfficientNetB7 0.9093 0.8713

Xception 0.8861 0.9219

GB100 0.789 0.7764

GB500 0.7911 0.7932

GB1000 0.7975 0.7869

GB2000 0.801 0.7869

GB5000 0.7996 0.7869

GB10000 0.7932 0.7869

Table 5. The accuracy of gradient boosting with 1000 trees (GB1000) when using different tree depths. 
The image resolution used is 160x160.

Tree Depth Accuracy

Depth = 6 0.7869

Depth = 8 0.789

Depth = 10 0.7848

Depth = 12 0.7806

Depth = 14 0.7764

Depth = 16 0.7764
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CONCLUSION

In this study, the authors compare the performance of deep neural network models, the default models 
for computer vision in the past ten years, to gradient boosting, one of the top performing models for 
structured/tabular data, in the task of detecting pneumonia from chest x-rays. The study confirms the 
superiority of deep neural network models. While under certain conditions, gradient boosting could 
compete with deep neural networks, it does not have the flexibility to benefit from the information gained 
by increasing image resolution. In addition, deep learning models also offer a variety of techniques and 
an abundance of hyperparameters that can be configured to work well with the available data to improve 
model performance.

Figure 5. The accuracy of the models when data augmentation and transfer learning techniques are ap-
plied when training the deep learning models. The dimensions of 96 and 160 correspond to the image 
resolutions of 96x96 and 160x160, respectively. 
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Figure 6. The accuracy of the models when data augmentation and transfer learning techniques are not 
applied when training the deep learning models. The dimensions of 96 and 160 correspond to the image 
resolutions of 96x96 and 160x160, respectively.

Figure 7. The accuracy of gradient boosting with 1000 trees (GB1000) when using different tree depths. 
The image resolution used is 160x160.
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KEY TERMS AND DEFINITIONS

Activation Functions: In neural network architecture, these are the pre-determined functions at each 
node or neuron, determining the output value of the node or neuron. These inputs to these functions are 
the linear combinations of the values at each node in the previous layer. Activation functions are often 
continuous functions. However, some activation functions are not differentiable everywhere, such as the 
Rectified Linear Units (ReLU) function, which is not differentiable at 0.

Backpropagation: Widely used in training neural networks, backpropagation is an algorithm to 
compute the gradient of the loss function of a neural network. Backpropagation computes the gradient 
of the loss function by using the chain rule. The gradient is computed one layer at a time and is iterated 
backward from the last layer.

Batch: A batch is a subset of the data. When training a neural network, the entire dataset is divided 
into batches. Batch size refers to the number of data points (or images) in a batch.

Convolutional Neural Network: A neural network where the hidden layers include layers that per-
form convolutional operations. The convolutional layers are usually followed by pooling layers and dense 
layers. At the convolutional layers, a filter (a vector or a multi-dimension tensor) will slide through the 
neurons to take the inner product with these neurons to provide values for the next layer.

Data Augmentation: Data augmentation refers to a set of techniques that increases the size or improves 
the quality of the training data or images. Data augmentation could include multiple transformations of 
each input image in the training data. These transformations could be reflections, different rotations, or 
cropping of the original images. Data augmentation could also include artificially produced images that 
are generated from the input data.

Epoch: When training a neural network, a set of data points or images are passed forward and back-
ward sequentially. One epoch is completed when all the data points are passed forward and backward 
through the neural network.

Gradient Descent: Gradient descent is an algorithm to find a local minimum of a differentiable 
function. The algorithm starts by initiating a guess and then iteratively improves that guess by moving 
in the opposite direction of the gradient of the function. The algorithm stops when the gradient is zero, 
which means the current position is at a local minimum.

Learning Rate: This concept appears in several machine learning models. In neural network models, 
the learning rate is the fraction of the gradient vector that the weight vectors descend. The learning rate 
affects the speed and convergence of the training process. In gradient boosting, the learning rate decides 
how quickly or slowly the next tree corrects the error of the current tree. A learning rate that is too small 
might lead to a long training time, while a learning rate that is too large might not lead to convergence.

Stump: A decision tree with only one split or two leaves. This is the simplest decision tree that can 
be used as a weak learner in boosting algorithms.

Transfer Learning: Transfer learning refers to a set of techniques that can store the knowledge ac-
quired from learning one problem (dataset) to another problem. For instance, a model that can recognize 
different types of housecats may be useful to train a model to recognize different types of lions. Transfer 
learning can also be useful in the case where outdated data needs to be updated (Pan, 2009).
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ABSTRACT

Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders 
remain the No. 1 killer both in the United States and across the world, and innovative and transformative 
technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, 
the authors introduce different AI and machine learning (ML) tools including support vector machine 
(SVM), gradient boosting machine (GBM), and deep learning (DL) models, and their applicability to 
advance CV diagnosis and disease classification, and risk prediction and patient management. The ap-
plications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research in 
different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart 
disease, arrhythmias, valvular abnormalities, etc.

INTRODUCTION

Cardiovascular (CV) diseases claim the greatest number of deaths both worldwide and across the United 
States (Virani et al., 2021). The CV healthcare costs are enormous despite several advancements in di-
agnostic and therapeutic products. The CV system can be negatively impacted at various clinical levels. 
These broadly include heart valve abnormalities such as stenosis (narrowing) or regurgitation (backflow), 
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myocardial infarction (heart attack), heart failure, congenital heart disease (birth defects) and arrhyth-
mias (electrical defects). Thus, novel technologies such as those offered by artificial intelligence (AI) 
has potential to enhance further progress in the field and may offer significant improvements in health 
outcomes along with reductions in costs.

As one of the fastest emerging technologies, AI plays major roles in practically every sector of our 
daily lives. For example, virtual assistants such as Alexa, Siri or Google Assistant can help customers 
perform searches, order products online, answer questions, set reminders, adjust local environment, etc. 
Many e-commerce websites improve customers’ online shopping experience with personalized recom-
mendations and more streamlined buying processes. Voice verification, facial recognition, and biometric 
systems have been widely used to enhance security and surveillance.

AI also plays an increasingly important role in healthcare. AI and Machine Learning (ML) techniques 
have been widely used to improve both patient care and administrative processing. ML and Deep Learning 
(DL) techniques have been successfully applied to diagnose, analyze, and predict the course of various 
types of diseases, and in monitoring patient health conditions as well. Natural Language Processing 
(NLP) techniques can be used to understand and classify unstructured clinical documentations and as-
sist in structuring patient and medication information. AI systems and robotics are also helping with 
day-to-day administrative and routine functions of health facilities, thus reducing physical workload of 
medical personnel, minimizing human errors and maximizing efficiency.

AI and ML techniques have been applied to improve CV research and health (Figure 1). This chapter 
is aimed to provide an overview of AI advancements in diverse areas within the CV field, however, it is 
not meant be a complete resource of all developments. For a comprehensive collection, the readers are 
suggested to explore several published review articles (Antoniades, Asselbergs, & Vardas, 2021; Ben-
jamins, Hendriks, Knuuti, Juarez-Orozco, & van der Harst, 2019; C. Krittanawong et al., 2019; Mathur, 
Srivastava, Xu, & Mehta, 2020; Quer, Arnaout, Henne, & Arnaout, 2021). AI will also be discussed in 
the context of aforesaid disorders along with imaging, basic and biomedical sciences, precision medicine, 
drug discovery and development and robotics. The Coronavirus Disease 2019 (COVID-19) pandemic 
has significantly affected the CV health as well, (Abu Mouch et al., 2021; Chung et al., 2021; Farshidfar, 
Koleini, & Ardehali, 2021; Gedefaw et al., 2021; Nishiga, Wang, Han, Lewis, & Wu, 2020; Patil, Singh, 
Henderson, & Krishnamurthy, 2021; Rosner et al., 2021; Wenger & Lewis, 2021; Yiangou, Davis, & 
Mummery, 2021), however, this chapter will not delve into the topic, as a separate chapter is dedicated 
for COVID-19 in this volume. Before we dive into the clinical and biomedical aspects, we shall first 
introduce state-of-the-art AI and ML techniques, and subsequently discuss how those techniques are 
applied and are beneficial in diverse CV applications.
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STATE-OF-THE-ART AI AND ML TOOLS

As a part of AI, ML refers to the study of computer algorithms that improve automatically through 
experience and by the use of data (Mitchell, 1997). Based on the nature of the signal and feedback avail-
able to the learning system, ML can be divided into different categories including supervised leaning, 
unsupervised learning, semi-supervised learning, reinforcement learning, etc.

Supervised Learning

Supervised learning is one of the most common methods of ML. It builds a mathematical model, i.e., a 
mapping function, that maps inputs to the desired outputs based on a set of training examples of input-
output pairs. Here, the inputs X can be considered as features and the outputs Y can be considered as 
labels. Figure 2 shows a classic example of supervised learning. Classification and regression are the 
two major tasks in supervised learning. Classification is the process of finding the mapping function 
to map the input X to the categorical output Y. A model is trained on the training dataset aiming to 
categorize the data into different classes. For example, in a study by Sengupta et al. (P. Sengupta et al., 
2016), clinical data and the imaging data have been combined together to train classifiers to discriminate 
cardiac abnormalities. On the other hand, regression is the process of finding the correlations between 
dependent and independent variables, and the task of the regression is to find the mapping function to 
map the input X to the continuous output Y. For example, in a study by Lee et al. (J. Lee et al., 2016), 
regression models have been trained to predict fractional flow reserve from coronary computed tomog-
raphy (CT) angiography images.

Figure 1. Schematic of areas where Artificial Intelligence and Machine Learning impact Cardiovascular 
sciences and medicine.
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Common supervised learning algorithms include logistic regression (Gortmaker, Hosmer, & Lem-
eshow, 2013), linear regression (Seber & Lee, 2012), naive Bayes (Zhang, 2004), decision tree (Quinlan, 
2004), random forest (Cutler, Cutler, & Stevens, 2011), support vector machine (SVM) (Boser, Guyon, 
& Vapnik, 1996), k-nearest neighbors (KNN) (Altman, 1992), artificial neural network (ANN) (Daniel, 
2013), and ensemble learning methods (Rokach, 2010).

Logistic Regression

Logistic regression, also known as maximum-entropy classification, is a linear model for classifica-
tion. It is a statistical model that uses a logistic function to model probability of a certain class or event 
such as healthy/sick. It has been successfully applied in disease prediction including prediction of CV 
diseases for decades.

Linear Regression

Linear regression is a linear approach to model relationship between the input variables and target vari-
able by fitting a linear equation to observed data. It is a regression model commonly used to predict 
continuous values. For example, it can be used to predict the CV risk assessment score (Ismail & Anil, 
2014). Figure 3 shows graphical representations of linear and logistic regression.

Figure 2. Classic example of Supervised Learning. The labeled data and labels pass on to the model 
generating prediction of test data.
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Naive Bayes

Naive Bayes are simple probabilistic classifiers based on applying Bayes’ theorem with the “naive” as-
sumption of conditional independence between every pair of features given the value of the class variable. 
Despite the over-simplified assumption, the naive Bayes classifiers have worked well in many complex 
real-world situations. They only require a small number of training data to estimate the parameters for 
classification, and can be trained extremely fast compared to other sophisticated learning methods. In 
a study by Miranda et al. (Miranda, Irwansyah, Amelga, Maribondang, & Salim, 2016), naive Bayes 
classifiers had shown very promising results in detection of CV disease risk’s level for adults.

Decision Tree

Decision tree (DT) is one of the most popular supervised learning methods which can be used to solve 
both classification and regression problems. It has been widely applied in various CV applications. It 
is a non-parametric method that aims to create a model that predicts the value of a target variable by 
learning simple decision rules inferred from the data features. DT models are easily interpreted that have 
high accuracy and stability. DTs are also non-linear models which make them great for predicting and 
solving more complex problems. As shown in Figure 4, each node in the DT represents a decision binary 
on a feature, the branches from the nodes represent the outcome of the decision, and the last nodes of 
the tree (the leaves) represent the final classification/estimation of the data.

Figure 3. Graphical representation of Linear and logistic Regression
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Random Forest

Random forests are an ensemble learning method by constructing a multitude of decision trees at train-
ing time. Figure 5 shows an example of random forest ensemble learning. Similar to DT, they can be 
used to solve both classification and regression problems. For the classification tasks, the output of the 
random forest is the class selected by most trees. For regression tasks, the output is the mean or average 
prediction of the individual trees. Random forests generally outperform decision trees as they can help 
to correct the overfitting from single decision tree. They have been proven successful in many studies 
on CV disease classification and risk prediction (Xu et al., 2017) (Caballé, Castillo-Sequera, Gomez-
Pulido, Gómez, & Polo-Luque, 2020).

Support Vector Machine

Support Vector Machines or SVMs are one of the most robust prediction methods for classification and 
regression based on statistical learning frameworks. Generally speaking, the objective of SVMs is to 
find a hyperplane in an N-dimensional space that has the maximum margin, i.e. the maximum distance 
between data points of both classes to distinctly classify the data points. Samples on the margin are 
called the support vectors. Maximizing the margin distance provides some safety margin such that a 
slight error in measurement will not cause a misclassification, and future data points can be classified 

Figure 4. Architecture of a decision tree. The root and intermediate nodes test on features and the leaves 
predict the data.
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with more confidence. SVMs can be used to solve both linear and non-linear problems and work well 
on many practical problems including the CV applications. Through non-linear transformation, SVMs 
can project nonlinear separable samples onto another higher dimensional space by using different types 
of kernel functions. Common kernel functions include linear kernel, Radial Basis Function kernel, and 
polynomial kernel. For example, Figure 6 shows decision boundary for a binary classification problem, 
with three types of kernel functions.

Figure 5. Example of Random Forest Ensemble Learning. It works by aggregating output of different 
decision trees via majority vote or averaging to generate a final prediction.

Figure 6. SVM example - Decision boundary for Different Kernels. Dash lines plot support vectors of 
the models and the solid lines plot decision boundaries of different models.
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K-Nearest Neighbors

K-nearest neighbors (k-NN) is a non-parametric classification method which can be used to solve both 
classification and regression problems. In classification, the input consists of the k closest training ex-
amples in data set and the output is classified by a plurality vote of its k neighbors. While in regression, 
the output is the average values of the k nearest neighbors. The selection of the right k is crucial for the 
success of the algorithm. For example, a small value of k indicates that noise will have a significant 
impact on the result, while a large value makes it computationally expensive. One common application 
of k-NN on CV domain is heart disease prediction (Enriko, Suryanegara, & Gunawan, 2016). Although 
k-NN is a simple and easy-to-implement non-parametric algorithm, it should be noted that it gets sig-
nificantly slower as the number of examples or predictors increase. In addition, it is also very sensitive 
to the local structure of the data.

Artificial Neural Network

Artificial neural networks (ANNs) are computing systems in accordance with biological neural networks 
from animal brains. They can be used to model different kinds of complex, nonlinear or discontinuous 
relationships. As shown in Figure 7, ANN models consist of input layer, one or more hidden layers and 
output layer. In each of the layers in ANN, there are nodes called neurons. These nodes are connected 
to each other with associated weights and thresholds and processes the data in the network through a 
sum and transfer function. Based on the depth of layers in neural network, ANN models can be further 
divided into basic neural network and DL models. Basic neural network models usually contain less than 
or equal to three hidden layers while DL models normally consist of deeper networks with more than 
three hidden layers. We will discuss various DL algorithms in detail in later sections.

Ensemble Learning

Ensemble learning methods are techniques that combine multiple learning models together to improve 
predictive performance, which usually produce more accurate solutions than any of the constituent learn-
ing algorithm alone. Figure 8 shows an example of the ensemble learning system. Ensemble models 
tend to produce better results when there is a significant diversity among the models. As a result, many 
ensemble methods tend to promote diversity among the models they combine (Kuncheva & Whitaker, 
2003). Bagging method involves having each model in the ensemble vote with equal weight and is a 
common ensemble algorithm designed to improve stability and accuracy of model performance. The 
random forest algorithm that we introduced earlier is a bagging method. Boosting is another type of en-
semble method which involves incrementally building an ensemble by training each new model instance 
to emphasize the training instances that previous models misclassified. Adaptive Boosting (AdaBoost) 
(Freund, Iyer, Schapire, & Singer, 2003), is one of the most popular boosting method. It helps to com-
bine multiple “weak classifiers” into a single “strong classifier” by putting more weight on difficult to 
classify instances and less on those already handled well. Ensemble classifiers have been successfully 
applied in neuroscience, proteomics and medical diagnosis including clinical decision support system 
for CV disease (Eom, Kim, & Zhang, 2008).
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Figure 7. A basic ANN example with a 5-perceptron input layer, a 10-perceptron hidden layer and a 
4-perceptron output layer.

Figure 8. Example of ensemble learning output and prediction by providing same data to 3 different 
models and aggregating the output to final prediction.
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Unsupervised Learning

Unlike supervised learning that tries to fit input data with output labels, unsupervised learning works 
on its own to discover inherent structure within an input dataset without target labels. The three main 
tasks of unsupervised learning are clustering, association and dimensionality reduction (Hinton & Se-
jnowski, 1999).

Clustering

Clustering analysis is a task for grouping unlabeled data based on their similarities or differences such 
that within a group the observations must be as similar as possible, while observations belonging to dif-
ferent groups must be as different as possible. Figure 9 summarizes different types of cluster algorithms. 
Among them, hierarchical clustering and k-means clustering are the two main algorithms in clustering 
analysis. The k-means clustering algorithm assigns similar data points into k groups. The number k 
needs to be fixed in advance and it represents the size of the grouping and granularity. While hierarchi-
cal clustering is generally used for an unknown number of classes and helps to determine the optimal 
number. Clustering analysis has been used in many fields, including pattern recognition, image analysis, 
bioinformatics, etc. One common application of cluster analysis in CV research is to identify underlying 
risk factors for coronary artery disease (Guo et al., 2017). Unpublished data from Rajagopalan group 
using unsupervised hierarchical clustering showed significant alterations in expression of noncoding 
RNAs from left ventricles in a model of heart failure (HF) with preserved contractile function (expanded 
later) as seen in human disease. These findings offer enormous opportunities with potential diagnostic 
and therapeutic solutions in this type of HF for which there is no clear treatment available.

Figure 9. Types of Cluster Algorithms
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Association

Association is another type of unsupervised learning method that uses different rules to find relationships 
between variables in a given dataset. It is frequently used to identify items that have an affinity or often 
appear together. Figure 10 shows downward-closure property of the association method. It can also be 
used for identifying dependent or associated events as seen in a study (Nahar, Imam, Tickle, & Chen, 
2013) in which association rules have been used to detect factors which contribute to heart disease in 
males and females respectively.

Figure 10. The downward-closure property
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Dimensionality Reduction

Dimensionality reduction is a learning technique used when the number of features in a given dataset is 
too high. It is the transformation of data from a high-dimensional space into a low-dimensional space 
while still preserving data integrity. It can be divided into linear and non-linear approaches (van der 
Maaten, Postma, & Herik, 2007). Principal Component Analysis (PCA) is one of the most common linear 
techniques for dimensionality reduction. It is an orthogonal linear transformation that transforms the data 
to a lower-dimensional space such that the variance of the data in the low-dimensional representation is 
maximized. PCA has been widely used in signal processing, neuro-informatics, and bioinformatics. On 
the other hand, auto-encoder is a type of neural network used to learn non-linear dimension reduction 
functions and efficient codings together with an inverse function. It has been used in biomedical image 
processing, e.g., to remove noise from visual data to improve picture quality and also in drug discovery 
(Zagribelnyy et al., 2019).

Deep Learning

Deep Learning, DL, based on ANN with representation learning, has emerged as a new area of AI over 
the past decade (Yoshua Bengio, Courville, & Vincent, 2013; LeCun, Bengio, & Hinton, 2015). DL 
techniques can be used to extract complex and concealed information from large number of raw data 
using multiple hidden layers, i.e., tens or hundreds, where each layer is a representation that is a high-
level abstraction of the representation from the previous layer of the neural networks. The word “deep” 

Figure 11. Dimensionality Reduction via PCA, t-SNE, UMAP, LDA (reduced original data from 784 
dimensions to 3 dimensions)
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refers to the number of layers through which the data is transformed. The greater the number of hidden 
layers is, the deeper the network is. For example, when we build DL models for face recognition, the 
input may be a matrix of pixels from raw images, the first layer may abstract the pixels and encode edges 
from the image, the second layer may compose and encode arrangements of edges, the third layer may 
encode nose and eyes, and the fourth layer may recognize that the image contains a face and match the 
face with registered users.

Common DL models include convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), deep belief networks (DBNs), deep auto-encoder, etc. They have been widely used in speech 
recognition, computer vision, natural language processing, bioinformatics, robotics, drug design, medi-
cal image analysis and more. (Deng, 2014; Schmidhuber, 2015).

Convolutional Neural Networks (CNN)

CNNs are feed-forward neural networks inspired by mammalian visual cortex that contains very small 
neuronal cells sensitive to specific areas of the visual field, i.e., some neurons respond when exposed to 
vertical edges and some when exposed to horizontal edges (Hubel & Wiesel, 1962). All these neurons 
which appear to be spatially arranged in columnar structures are able to produce visual perception. 
Accordingly, CNNs are proposed with succession layers of convolution, activation, pooling, and fully-
connected layers to obtain the final outputs. The convolution layers are the most important part of a 
CNN, which are composed of a set of filters to extract different features from input data. For instance, 
the first convolution layer extracts low-level features such as lines, edges, and corners, and higher-level 

Figure 12. Classic Example of Deep Learning Neural Networks with a 5-perceptron input layer, 4 hid-
den layers with 8-perceptron, and a 4-perceptron output layer.
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layers extract higher-level features. CNNs are now the dominant approach for various computer vision 
tasks including medical image analysis.

Recurrent Neural Networks (RNN)

Distinct from CNNs with feed-forward networks, RNNs include feedback components that permit sig-
nals from one layer to be fed back to the previous layer (Olurotimi, 1994). Moreover, RNN is a type of 
deep neural network with an internal state (memory) which can be used to store long-term information 
and process variable length sequences of inputs (Y. Bengio, Simard, & Frasconi, 1994). In addition, 
RNNs can not only process single data points (such as images), but also entire sequences of data (such 
as speech and video). It should be noted that basic RNNs may fail to model long-term dependences of 
data and suffers from gradient vanishing. To overcome these drawbacks, Long-Short-Term Memories 
(Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (Cho et al., 2014) have been proposed. 
Both these models add gates and memory cells in the hidden layer to control the amount of information 
entering the unit, the amount that will be stored and the information that will be passed to the next units. 
RNNs have been introduced to various types of CV applications in the last few years. For example, in 
a study by Choi et al. (Choi, Schuetz, Stewart, & Sun, 2016), the RNN models were applied for early 
detection of HF onset.

BRIEF, SIMPLIFIED HEART ANATOMY AND PHYSIOLOGY

Human heart begins to form and function quite early in gestational period. The heart comprises 4 cham-
bers, 2 atria (upper) and 2 ventricles (lower). The right atrium receives deoxygenated blood from all 
parts of the body and pumps out to the lungs for purification via right ventricle and pulmonary artery. 
The left atrium receives oxygenated purified blood from the lungs and delivers to left ventricle. The left 
ventricle pumps the blood out with greater force and pressure to all parts of the body via the Aorta. The 
pumping activities are the result of specialized sarcomeric protein molecules within the major heart cells 
called cardiomyocytes. The repetitive mechanical activities of alternating contractions and relaxations 

Figure 13. A Comprehensive Guide to Convolutional Neural Networks. Eight convolution filters with 
128×128 input, 8 convolution filters with 64×64 input, 16 convolution filters with 48×48 input, 16 con-
volution filters with 16×16 input followed by 2 fully connected layers with 256 and 128 units respectively.
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are the result of immediately preceding electrical activities elicited by specialized cells residing at dif-
ferent regions of heart tissues.

Before entering and leaving each heart chamber, the blood passes through specific valves. The valves 
are specialized tissue flaps (leaflets) that act as one-way outflow orifices and prevent backward flow of 
blood. While the bicuspid (mitral) valve is located between left atrium and left ventricle, the tricuspid valve 
is located between right atrium and right ventricle. Correspondingly, the aortic valve is located between 
left ventricle and aorta, and the pulmonary valve is located between right ventricle and pulmonary artery.

APPLICATIONS OF AI IN CV SPACE

AI in Electrical Heart Disease

Fetal primitive human heart begins to beat towards later part of the first month of gestational period. In 
order for the heart to pump effectively for rest of the life, it is crucial that the beats are rhythmic and of 
optimal frequency. Abnormalities in electrical activities including conduction and rhythm (arrhythmias), 
inherited or acquired, may result in life-threatening CV anomalies such as ventricular tachycardia (VT) 
or ventricular fibrillation (VF).

Rogers et al. (Rogers et al., 2021) recorded 5706 ventricular monophasic action potentials during 
steady-state pacing in 42 patients with coronary artery disease and left ventricular (LV) ejection fraction 
(contractile function) £40%. Using SVMs and CNNs, they showed c-statistics of 0.90 for sustained VT/VF 
and 0.91 for mortality. In silico modeling also revealed higher L-type calcium current or sodium-calcium 
exchanger as predominant phenotypes for VT/VF. Future studies in relation to magnetic resonance (MR) 
imaging-determined scar or in vivo optical imaging would be valuable.

Atrial fibrillation (AF) is considered to be the most common rhythm disorder sometimes present-
ing with serious complications such as stroke. The UK DISCOVER registry comprising primary care 
population of greater than 600,000 individuals was studied using an ML prediction algorithm to detect 
AF (Sekelj et al., 2021). Results of this retrospective cohort study showed negative predictive value of 

Figure 14. Recurrent Neural Networks (RNN). X is the input layer, h is the hidden layer, o is the output 
layer. W, U, and V are weighting matrices of each connection among input, hidden and output layers. 
The (t-1), (t), and (t+1) are the time steps.
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96.7% and sensitivity of 91.8% among patients aged 365 years (n = 117,965). Attia et al. (Attia, Nose-
worthy, et al., 2019) employed CNN using Keras Framework with Tensorflow backend and Python to 
detect electrocardiogram (ECG) signature of AF present during normal sinus rhythm using standard 
10-second, 12-lead ECGs. They employed a total of more than 454,000 ECGs from almost 181,000 
patients and achieved 0.9 area under the curve (AUC). These strategies can help in the development of 
rapid, inexpensive, point-of-care approaches to detect AF.

The widely marketed Apple Watch with proprietary AI features in conjunction with Apple iPhone 
was tested for its ability to detect AF. In a population of almost 420,000 participants over a median of 
117 days of monitoring, the Turakhia group (Perez et al., 2019) aimed at estimating the proportion of 
notified participants with atrial fibrillation shown on ECG patch. Results showed that 84% of notifications 
were concordant with AF. To enhance the power of smartwatch towards multiple-lead ECGs, Spacca-
rotella et al. (C. A. M. Spaccarotella et al., 2020) placed the Watch in different body locations to obtain 
9 bipolar ECG tracings that correspond to Einthoven leads I, II, III and precordial leads, V1-V6 that 
were compared with simultaneous standard 12-lead ECGs. In a small population set of 100 participants, 
the findings offer promise by demonstrating that the device was able to record multichannel ECGs in 
agreement with standard ECGs with comparable ST-segment changes. Taken together, such approaches 
may help in timely detection and potential prevention of deadly complications including those resulting 
from myocardial infarction (expanded later), particularly, in asymptomatic individuals. In a case report, 
they were also able to show ST-segment changes reflective of the rare condition, Brugada syndrome 
similar to that documented in standard ECG following Ajmaline infusion in an adult male patient (C. 
Spaccarotella, Santarpia, Curcio, & Indolfi, 2021).

AI in CV Imaging

Imaging technologies play vital role in diagnosis and prognosis of CV diseases. With the development 
of ML and DL, AI has made remarkable achievements in cardiac imaging (Leiner et al., 2019). This 
includes improvements in imaging efficiency and quality along with automation in image analyses and 
interpretations to further assist in the detection and management of CV disorders.

Image Acquisition and Reconstruction

Various AI techniques including compressed sensing and real-time image processing have been applied 
to enhance cardiac imaging methodologies such as Cardiac CT and MR imaging in the past decade 
(Graff & Sidky, 2015; Kido et al., 2016; Vasanawala et al., 2010). Recently, DL models have been in-
troduced to further improve medical image acquisition and reconstruction. One study (Yang, Sun, Li, & 
Xu, 2016) proposed a novel deep architecture, dubbed ADMM-Net, which is defined over a data flow 
graph from iterative procedures in Alternating Direction Method of Multipliers algorithm for optimiz-
ing compressed sensing-based MRI models. Their proposed models can reconstruct MR images from a 
small number of under-sampled data in k-space, and thus accelerate data acquisition in MRI. Another 
study (Qin et al., 2019) proposed an advanced convolutional recurrent neural network model which can 
reconstruct high quality cardiac MR images from highly under-sampled k-space data by jointly exploiting 
dependencies of temporal sequences as well as iterative nature of traditional optimization algorithms. 
DL techniques have also shown high potential to reduce reconstruction time and improve visual image 
quality for highly accelerated 3D or 4D data. For example, Kustner et al. proposed a novel 4D (3D+time) 
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DL-based reconstruction network, termed 4D CINENet, for prospectively under-sampled 3D Cartesian 
CINE imaging (Küstner et al., 2020). The proposed model outperforms iterative reconstructions related 
to visual image quality, contrast, and reconstruction time.

Image Registration

ML and DL techniques have been applied to improve accuracy and speed for image registration as well 
(X. Chen, Diaz-Pinto, Ravikumar, & Frangi, 2020). DL models have been used to generate learnable, 
data-driven interpretations of similarity metrics, which outperform conventional similarity metrics in 
robustness and flexibility (Fan, Cao, Xue, & Yap, 2018; Haskins et al., 2018). Moreover, they have been 
widely used in estimating the parameters of spatial transformation for registration. In a study by Rohe et al., 
a novel fully convolutional network was proposed (Rohe, Datar, Heimann, Sermesant, & Pennec, 2017). 
It consists of contracting layers to detect relevant features and a symmetric expanding path that matches 
them together to output the transformation parametrization. The proposed model was used for inter-patient 
heart registration and has shown significant improvement over the state-of-the-art optimization-based 
algorithms. Another study (Sang & Ruan, 2020) proposed a convolutional auto-encoder network with a 
novel deformation representation model to achieve spatially variant conditioning on deformation vector 
field (DVF) for 3D cardiac MRIs, which can accomplish registration with physically and physiologically 
more feasible deformation vector fields, and improve the registration network performance significantly.

Image Segmentation

Image segmentation has a long history and various ML and DL approaches have been explored (Peng 
et al., 2016; Petitjean & Dacher, 2010). DL-based models such as CNNs, are currently the new state-of-
the-art in the field (Ronneberger, Fischer, & Brox, 2015). Such DL frameworks have been successfully 
applied on segmentation of MR images involving cardiac chambers by using pixel-based classification. 
For example, a standard CNN model was used to segment short-axis cardiac MR images (Romaguera, 
Perdigón Romero, Costa Filho, & Costa, 2017). Another approach is to perform regression to produce 
smooth epicardial and endocardial contours rather than pixel classification. In a study by Du et al., a 
deep belief network based regression segmentation framework was proposed to delineate boundaries of 
bi-ventricle from cardiac MR images (Du et al., 2018).

Diagnosis and Prediction

AI has been widely used in image-based cardiac diagnosis and prediction as well (Martin-Isla et al., 
2020). ML and DL models have been trained with conventional imaging indices, radiomics features, or 
raw imaging data for diagnosis of various types of CV diseases. In a study by Larroza et al., SVM models 
were used to predict myocardial infarction based on radiomics features extracted from MRI (Larroza 
et al., 2018). Wolterink et al. used random forest models for diagnosis of various cardiomyopathies by 
using conventional MRI imaging indices (Wolterink, Leiner, Viergever, & Išgum, 2018). Another study 
(Snaauw et al., 2019) proposed end-to-end DL models based on raw MR images for cardiac diagnoses.
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AI in Heart Attack

AI and ML techniques have been successfully applied to predict risk of heart attack, also referred as 
myocardial infarction. Numerous studies have applied ML models to predict cardiac events primarily 
in patients presenting with acute coronary syndrome (ACS). For example, both basic ML models such 
as random forests and DL models have shown high accuracy in prediction of 1-year mortality after 
hospital discharge in patients with ACS (Barrett, Payrovnaziri, Bian, & He, 2019; Sherazi, Jeong, Jae, 
Bae, & Lee, 2019).

AI and ML techniques have also contributed to heart attack risk management. In a study by Mandair 
et al., a deep neural network model was trained to predict 6-month incident myocardial infarction based 
on harmonized electronic health record (EHR) data from more than 2 million individuals (Mandair, 
Tiwari, Simon, Colborn, & Rosenberg, 2020). Another study (Knott et al., 2020) applied AI techniques 
to predict heart attacks and strokes by using perfusion mapping to provide instantaneous quantification 
of myocardial perfusion based on magnetic resonance. Recently, researchers at the University of Oxford 
(Oikonomou et al., 2018), developed a new “CaRi-Heart technology”, which can identify people at high 
risk of a fatal heart attack at least 5 years before it strikes. It applies a deeper observation into coronary 
CT angiogram scans based on DL models, and identifies a new biomarker, called Fat Radiomic Profile. 
This fingerprint detects biological red flags in perivascular space lining blood vessels which supply blood 
to the heart. It can more accurately identify inflammation, scarring and changes to these blood vessels, 
which are all pointers to future heart attack. This new AI tool measuring Fat Attenuation Index Score, 
FAI-Score is now reported to have received approval from the European Union, which can be used by 
physicians across the UK and Europe.

In another study (Poplin et al., 2018), scientists from Google Research discovered a new approach to 
assess risk of CV disease. They applied DL models to extract data using retinal fundus images from the 
back of patient’s eyes, and predict their risk of suffering a major cardiac event, i.e., heart attack, with 
comparable accuracy as current leading methods based on blood test.

Another interesting multi-center cross-sectional study tried to associate facial features with increased 
risk of coronary artery disease (CAD) (Lin, li, Fu, & etc, 2020). A deep convolutional neural network 
model was successfully applied to detect CAD (at least one coronary lesion stenosis >/= 50% based on 
coronary angiography or coronary CT angiography) using facial images in diverse Chinese populations 
(5796 patients). Although specificity was not high, the algorithm yielded a sensitivity of 0.8 and an AUC 
of 0.73. It also outperformed scores typically used in assessing CAD pre-test probability, interestingly, 
the part of the face that contributed the most to the algorithm’s predictions appeared to be the cheek. 
The proposed model can be used for pre-test CAD probability assessment in outpatient clinics or CAD 
screening in community.

AI in Heart Failure

Heart Failure (HF) is the decreased ability of the heart to provide sufficient blood to all parts of the 
body. In patients with HF, the incidence of all-cause hospitalizations is 63% (Tuppin et al., 2014) and 
can account for more than a third of CV deaths. HF is responsible for 30% of avoidable hospitalizations 
(Mercier, Georgescu, & Bousquet, 2015), and remains the leading cause of hospitalization for people 
over 65 years of age (Duflos et al., 2020). The prevalence of HF continues to rise over time, with aging 
of the population and is expected to increase by 46% by 2030 (Braunwald, 2013; Virani et al., 2021). The 
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overall lifetime risks for HF range from 20% to 45% in those from 45 through 95 years of age. HF is the 
most frequent complication of MI associated with coronary artery diseases (the most common pathology 
behind adult CV disease) and also a critical prognostic factor. The chronic incidence of HF following 
MI is significantly high (Velagaleti et al., 2008). There are two broad types of HF—the well-studied HF 
with reduced ejection fraction (HFrEF) and the less well-understood HF with preserved ejection fraction 
(HFPEF). The former results in impaired ventricular systolic (contractile) function, while the latter is 
more prominently associated with impaired ventricular diastolic (relaxational) properties with systolic 
function not significantly impaired. HFpEF may be observed in about 55% of patients diagnosed with 
HF making it a major unmet need necessitating attention (Bursi et al., 2006).

Although the recent Sacubitril/Valsartan is considered as the first drug approved for HFPEF, the 
combination did not achieve primary endpoint of significantly lowering rate of total hospitalizations for 
heart failure and death from CV causes among patients with HF and an EF of 45% or higher based on 
PARAGON trial (Solomon et al., 2019). However, the current indication also serves patients who are 
sometimes referred as those with mid-range EF (Branca, Sbolli, Metra, & Fudim, 2020), but in the range 
adjacent to reduced EF. Such issues expose the complexity and the need to understand pathophysiology 
and biology of the umbrella of HFPEF, and AI offers the potential to study the patient population in a 
large-scale manner and may identify subgroups that are more suitable for available treatment options 
(Kitzman et al., 2010; Luo, Ahmad, & Shah, 2017; Pitt et al., 2014).

One study (Cole et al., 2015) concluded that reproducibility of visual grading of LV function and 
LVEF estimation of echocardiographic cine loops is dependent on image quality, however, individual 
operators could not themselves identify when poor image quality disrupts their LV function estimate. 
Nonetheless, coupled with the revolutionary point-of-care ultrasound and handheld imaging devices, AI 
may play important role in improving consistency, reproducibility, accuracy, accessibility and afford-
ability. Using a CNN trained with Keras with a Tensorflow backend, a study from Mayo clinic was able 
to detect patients with suspected EF less than or equal to 35% with ECG alone (in the absence of prior 
transthoracic echocardiogram) (Attia, Kapa, et al., 2019). The study also suggested that false positives 
may be reduced by assessing NT‐pro‐BNP (an important biomarker for HF) after the initial “positive 
screen.” Porumb et al. (Porumb, Iadanza, Massaro, & Pecchia, 2020) showed that their CNN model ac-
curately (100%) identified congestive HF on the basis of single raw ECG heartbeat. The study trained 
and tested using publicly available ECG datasets with a total of over 490,000 heartbeats. In a small 
patient population, Nirschl et al. (Nirschl et al., 2018) tested a CNN classifier to detect clinical HF from 
Hematoxylin & Eosin stained whole-slide images. The algorithm was able to show 99% sensitivity and 
94% specificity in detection of HF or severe pathology. The CNN was also reported to have outperformed 
two expert pathologists by nearly 20%.

Recently, Cerna et al. (Ulloa Cerna et al., 2021) showed that their CNN trained on raw pixel data in 
812,278 echocardiographic videos from more than 34,000 individuals provided superior predictions of 
one-year all-cause mortality. The predictions outperformed the widely used pooled cohort equations, 
the Seattle Heart Failure score, and a ML model involving 58 human-derived variables from echocar-
diograms and EHR-derived 100 clinical variables. They also showed that cardiologists assisted by the 
model, while maintaining prediction specificity, substantially improved sensitivity of one-year all-cause 
mortality predictions by 13%.
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AI in Valvular Heart Diseases

Another chronic and progressive condition in patients with CV diseases is valvular heart disease which 
presents with increasing prevalence especially in growing aging populations including in the Western 
world (J. Chen, Li, & Xiang, 2020). They may also be detected at later stages of disease development 
and needs novel approaches for earlier diagnosis and therapy.

Stenosis (narrowing or constriction) of heart valves is a relatively common and potentially fatal 
condition (Pawade, Newby, & Dweck, 2015). It is characterized by progressive fibro-calcific remodel-
ing and thickening of the valve leaflets that evolve over years to can cause severe obstruction to cardiac 
blood flow. Aortic valves are crucial for directing blood flow from LV to aorta, and calcific aortic valve 
disease is considered to be the third most common form of heart disease. Diagnosis and staging of aortic 
stenosis are based on assessment of severity of obstruction and LV systolic function by doppler echocar-
diography and presence of symptoms (Lindman et al., 2016). Chang et al. (Chang et al., 2021) aimed to 
develop a DL-based algorithm for automated quantification of aortic valve calcium from non-enhanced 
electrocardiogram-gated cardiac CT scans. Their accuracy of DL-measured valve calcium volume for 
grading was 97.0% with AUC of 0.964 in the test set. In addition, accuracy of DL-measured Agatston 
score for grading was 92.9% with AUC of 0.933 in the test set thus outperforming radiologist reader 
group. In ML, weak supervision relies on noisy heuristics to programmatically generate large-scale, 
imperfect training labels. In order to overcome barriers to use of unlabeled biomedical repositories (e.g., 
UK Biobank) for supervised ML, Ashley, Ré and Priest groups (Fries et al., 2019) developed a weakly 
supervised DL model for classification of aortic valve malformations using up to 4,000 unlabeled cardiac 
MR sequences. In the orthogonal validation study using health outcomes data, their model identified 
individuals with a 1.8-fold increase in risk of a major adverse cardiac event.

Similar to the aortic valve, AI application has also been explored for disease of mitral valve (crucial 
for directing blood flow from left atrium to LV). One study aimed to generate an ML-based algorithm 
to predict in-hospital mortality after Transcatheter Mitral Valve Repair in a total of 849 patients (Her-
nandez-Suarez et al., 2021). Using random forest and SVM approaches, the authors showed that history 
of coronary artery disease, chronic kidney disease and smoking were the three most significant predic-
tors of in-hospital mortality. Nonetheless, the study warrants additional studies with contemporary and 
more granular data to improve the model’s discriminatory performance and applicability. Another study 
presented preliminary experience of an AI-based semiautomated software for analysis of tricuspid valve 
(crucial for directing blood flow from right atrium to right ventricle) (Fatima et al., 2020). The authors 
concluded that the software offered high correlation to surgical inspection throughout the cardiac cycle 
with higher reproducibility of data analysis, and reduces interobserver variability with minimal need 
for manual intervention.

In another study of 13,639 eligible patients extracted from the Chinese Low Intensity Anticoagulant 
Therapy after Heart Valve Replacement database (all 3 valves above) from 15 centers across China, the 
authors reported that Back Propagation Neural Network model showed promise for predicting warfarin 
maintenance dose after heart valve replacement compared with multiple linear regression model (Li et 
al., 2020). The former presented a higher ideal prediction percentage in external validation group, best 
prediction accuracy in intermediate-dose subgroup, high predicted percentage in high-dose subgroup 
and poor performance in the low-dose subgroup.
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Furthermore, mobile AI-enabled stethoscopes and FDA-approved softwares used with digital stetho-
scopes in smartphones or computers are useful for automated detection of cardiac murmurs (unusual 
sounds across heart valves) including automated heart rate detection. Although they may not offer 
complete explanation for the decision provided and are more expensive than conventional stethoscopes 
(Thoenes et al., 2021), they can serve as cost-effective screening tools and reduce over-referrals to echo-
cardiography, and can be more user- and telemedicine-friendly.

AI in Birth Heart Defects

Congenital Heart Diseases (CHD) are defects in one or more structures of the heart and associated 
anatomy and are generally present from birth. These can be life-threatening with significant negative 
impact on function of the heart, especially directionality of blood flow and oxygen saturation, and are 
mainly seen in pediatric population with significant hereditary component. Diagnostic and therapeutic 
advancements have enabled newborns with CHD to survive through childhood and well into adulthood. 
In addition, some disease conditions may not manifest until later in adult life. AI tools can be used for 
diagnostic imaging (classification and segmentation), clinical outcomes prediction and also disease 
prevention (Orwat, Arvanitaki, & Diller, 2021).

Diller et al. (Diller et al., 2019) studied over 10,000 patients with adult CHD from a single institu-
tion with neural network architecture designed in R using Keras and Tensorflow. Algorithms based on 
over 44,000 medical records categorized diagnosis, disease complexity and NYHA class with all their 
accuracies above 90% in the test sample. Cardiac MR offers reliable analysis of cardiac function and 
anatomy in CHD; however, analysis can be time-consuming. To circumvent this issue, Karimi-Bidhendi 
et al. (Karimi-Bidhendi et al., 2020) developed an automated deep fully convolutional network-based 
model showing strong agreement with manual segmentation, and no significant statistical difference 
was found by two independent statistical analyses.

Chest radiography with X-rays is one of the most widely used diagnostic tools across the world for 
CV and related disorders including CHDs. However, their predictive value can be limited by subjective 
and/or qualitative nature of interpretation. In a study using deep CNN approach developed by Google 
already trained with everyday color images from ImageNet, the diagnostic concordance rate of the DL 
model was significantly high (Toba et al., 2020). Although the model was not highly sensitive for detect-
ing a high pulmonary to systemic flow ratio, the specificity was 0.95, and the AUC was 0.88.

While several genes associated with CHD have been identified and characterized so far, many more 
are yet to be discovered (Pierpont et al., 2018; Sifrim et al., 2016). Bicuspid aortic valve (aortic valve with 
only two cusps/flaps instead of three) is the most common congenital valvular heart disease (0.6%–1.0% 
of adult population), and is attributed to be the primary cause of about half of isolated severe aortic 
stenosis discussed earlier requiring aortic valve replacement. It is also frequently associated with aortic 
aneurysm and aortic dissection (LeMaire et al., 2011; Yutzey et al., 2014). The Srivastava group (The-
odoris et al., 2021) developed a K-nearest neighbors ML algorithm approach to identify small molecules 
that broadly correct gene networks dysregulated in N1 haploinsufficiency in isogenic human induced 
pluripotent stem cell-derived endothelial cells from patients with aortic valvular stenosis and calcific 
aortic valve disease relevant to bicuspid valves. Gene network correction by the most efficacious thera-
peutic candidate (XCT790) generalized to patient-derived primary aortic valve cells and was sufficient 
to prevent and treat N1-dependent aortic valve disease in vivo in a mouse model.
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AI in Basic and Biomedical CV Sciences

AI technologies have been successfully employed in the understanding of biological, developmental and 
preclinical aspects of CV sciences. Ahmad et al. (Ahmad et al., 2014) combined ML sequence features 
with chromatin immunoprecipitation data for key cardiac regulators to computationally classify cell 
type-specific cardiac enhancers of Drosophila melanogaster (fruit flies). Using these strategies, the 
authors identified heart regulatory elements on a genome-wide scale, their shared and unique sequence 
motifs, and novel cardiogenic transcription factors. They also validated computational predictions using 
in vivo experiments. In addition, they identified novel cardiac and cell type-specific regulatory motifs 
by clustering top-scoring classifier sequence features.

Stem cells have had a resurgence in CV research over the past two decades and development of plu-
ripotent stem cell-derived cardiomyocytes and engineered cardiac tissues have made significant progress. 
The potential for applications in cardiac regeneration and drug screening is enormous. In a recent study, 
Lee et al. (E. K. Lee et al., 2017) described use of supervised ML to comprehensively analyze several 
functional parameters from force readouts of human pluripotent stem cell-derived ventricular cardiac 
tissue strips electrically paced at a range of frequencies and exposed to a library of drug compounds. 
Each contraction of the myocytes was considered as an individual data point for the ML analysis. They 
developed a classification model that can not only automatically determine if a compound is cardioac-
tive, but can also predict mechanistic action of unknown cardioactive drugs.

Imaging at histological, cellular and molecular levels are becoming inevitable aspects of fundamental 
research in CV biology. Improvements in automating detection, localization and analyses of cellular 
organelles and molecules are crucial for better efficiency and quality of research. In a study by Orita et 
al., (Orita, Sawada, Matsumoto, & Ikegaya, 2020) the authors optically detected contractility of confluent 
cultured human-induced pluripotent stem-cell-derived cardiomyocytes using bright-field microscopy. 
They reported discrimination between functionally normal and abnormal contractions of the stem cell-
derived cardiomyocytes using data preprocessing, data augmentation, dimensionality reduction and SL.

Ali et al. (Ali, Nguyen, Wang, Jiang, & Sadek, 2020) developed a proof-of-principle methodology to 
detect cardiomyocyte nuclei and distinguish from nonmyocyte nuclei using a global nuclear stain (DAPI) 
along with cardiomyocyte structural protein (troponin T) immunostained images from 8 μm-thick, frozen 
sections. Ground truth nuclei labeling was accomplished by immunostaining young adult alpha myosin 
heavy chain promoter-driven transgenic mouse cardiac tissues for Cre recombinase. Using an image-
to-image DL U-net style architecture model with TensorFlow, the authors showed that the prediction 
closely matched expectations with an AUC of about 0.94. Further development of such models will also 
help in the assessment of pathological clinical samples routinely used for CV patients.

AI in CV Drug Discovery and Development

AI plays crucial roles in current drug discovery and development strategies. Many biopharmaceutical 
companies, including Bayer, Roche, and Pfizer have worked very closely with information technology 
companies from drug discovery to pharmaceutical product management (Mak & Pichika, 2018). ML 
algorithms such as random forest, naive Bayes, SVM as well as DL models including CNN, RNN, and 
autoencoder have been included in diverse sectors in CV drug discovery including drug design, chemi-
cal synthesis, polypharmacology, drug repurposing, and drug screening (Jing, Bian, Hu, Wang, & Xie, 
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2018; Patel, Shukla, Huang, Ussery, & Wang, 2020; Paul et al., 2020; Vamathevan et al., 2019; Yeung, 
Benjamins, van der Harst, & Juárez-Orozco, 2021).

In drug design, AI techniques and ML models can be used to determine drug activity, predict 3D 
structure of target protein and drug-protein interactions and improve the molecular de novo design. For 
example, studies using deep generative adversarial autoencoder or generative adversarial network with 
transcriptomic data have shown their potential to generate new or hit-like molecules (Kadurin, Nikolenko, 
Khrabrov, Aliper, & Zhavoronkov, 2017; Mendez-Lucio, Baillif, Clevert, Rouquie, & Wichard, 2020). 
In polypharmacology, DL models have been successfully applied to help the design of bio-specific and 
multi-target drug molecules. ML and DL models have been widely used in chemical synthesis studies 
as well such as predicting retrosynthesis pathways and designing synthetic routes. In drug screening, 
AI has shown advantages in prediction of toxicity, identification and classification of target cells, etc. 
(Lavecchia, 2019).

In late 2020, the Google AI offshoot, DeepMind presented a revolutionary breakthrough in the world 
of fundamental biology by developing DL algorithm to accurately predict three-dimensional structure 
of protein using physical and geometric constraints that determine how a protein folds (Callaway, 2020). 
Instead of predicting relationships between amino acids, the network predicts a target protein sequence’s 
final structure. This, AlphaFold, has huge implications and offers optimism in the ability to develop drugs 
to combat numerous pathologies including CV diseases. The methodology has recently been published 
(Jumper et al., 2021; Tunyasuvunakool, et al., 2021) as open source code, and this could open enormous 
opportunities both for industry and academia to advance various fields forward.

AI in Precision CV Medicine

Precision medicine is a relatively new approach to disease prevention and treatment, which try to optimize 
medical care provided to individual patients by considering factors such as their genetics, environment, 
and lifestyle. AI and ML play especially important roles in advancing precision medicine (Ho et al., 
2020; Subramanian et al., 2020). By integrating existing medical variables, multi-omics, lifestyle, and 
environmental data together, AI techniques have great potential to digitize future clinical trials, and 
discover novel therapies (Chayakrit Krittanawong, Johnson, Hershman, & Tang, 2018). They have been 
applied in CV medicine to explore novel genotypes and phenotypes in existing diseases, enable cost-
effectiveness, improve the quality of patient care, and reduce readmission and mortality rates (Chayakrit 
Krittanawong, Zhang, Wang, Aydar, & Kitai, 2017).

In a study by Choi et al., RNNs with gated recurrent units were used to model temporal relations 
among events in EHRs, which can improve model performance in predicting initial diagnosis of HF 
(Choi et al., 2016). Another study (Juhola, Joutsijoki, Penttinen, & Aalto-Setälä, 2018) showed that it 
was possible to separate different genetic cardiac diseases on the basis of Ca2+ transients by using basic 
ML methods including KNN, Random Forest and SVM models. AI and ML techniques are commonly 
used in high throughput differential gene expression analyses as well, which can be used to identify genes 
that are altered in patients but not in controls. For example, PCA and logistic regression models were 
used to investigate relationship between familial hypercholesterolemia mutations and high polygenic 
score, to early-onset myocardial infarction (Khera et al., 2018).

In addition, ML and DL techniques have been used to advance risk prediction and patient manage-
ment. For example, in a study by Zhao et al., different types of ML models including logistic regression, 
random forest, gradient-boosted trees, CNN, and Long-Short-Term Memories, have been applied to 
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predict 10-year CV events, by using the features extracted from longitudinal EHRs (Zhao et al., 2019). 
The prediction results show that all ML models perform significantly better than the American College 
of Cardiology and the American Heart Association pooled cohort risk equation. Another study (Bellot & 
Schaar, 2018) investigated the problem of personalizing survival estimates of patients in heterogeneous 
populations for clinical decision support. A novel probabilistic survival model which can flexibly cap-
ture individual traits through a hierarchical latent variable formulation was proposed to enable survival 
prognosis in heterogeneous populations.

AI in CV Robotics

Robotic surgeries have attracted a lot of attention recently. Many systems including the laparoscopy-based 
Da Vinci robot, the endovascular catheter platforms such as the Corpath system, and the more electro-
mechanically advanced Magellan robot, have been developed for CV surgery in the past decade. AI 
techniques can be used to enhance productivity and minimize scope of errors in robotic surgeries (Daglius 
Dias, Shah, & Zenati, 2020; Feizi, Tavakoli, Patel, & Atashzar, 2021; Jones, Reed, & Hayanga, 2020).

AI techniques can be used to improve surgical decision making by combining diverse sources of 
information including patient risk factors, anatomy and disease natural history. Rapid developments of 
computer vision, automatic control, and reinforcement learning make usage of autonomous and semi-
autonomous robotic systems more realistic, which may have great potential to reduce trauma to patients, 
improve surgical safety and shorten hospital stays (Moustris, Hirides, Deliparaschos, & Konstantinidis, 
2011). For instance, autonomous and semi-autonomous robots can provide faster and higher-accuracy 
procedures than surgeons, particularly for simple surgeries involving standard and repetitive operations 
(Shademan et al., 2016; Sousa et al., 2020). A retrospective analysis of 300 surgeries showed that inte-
gration of robotic-assisted minimally invasive direct coronary artery bypass procedures in the surgical 
landscape can be safely achieved and complication rates can quickly be reduced below those expected 
in traditional coronary artery bypass grafting (Van den Eynde et al., 2021)

Social robotics and our understanding of human-robot interactions are improving (Darling K, 2021). A 
recent study (Céspedes et al., 2021) investigating benefits of using socially assistive robots for long-term 
cardiac rehabilitation suggested that robots increase adherence and faster completion of rehabilitation 
program. The patients had more rapid improvement in their recovery heart rate, better physical activity 
performance and higher improvement in cardiovascular functioning.

Moreover, use of autonomous robots can reduce radiation exposure for clinicians performing remote 
procedures associated with use of digital subtraction angiography or for infectious exposures during 
crisis such as the COVID-19 viral pandemic.

FUTURE DIRECTIONS AND CONCLUSION

The potential of AI towards progress in CV sciences and health can be best realized by comprehensive 
integration of big data from various sources and aspects of both individual subjects and the environment. 
This could span across genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, 
physiomics, radiomics, foodomics, etc. Realistically, even algorithms well-designed for clinical applica-
tions may face executional challenges associated with availability of high-quality, annotated and structured 
data for algorithm training and validation, and of data that are representative of real-world conditions.
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In addition, some countries may have regulatory barriers in data sharing, privacy restrictions, intel-
lectual property considerations or incomplete reporting. To overcome some of these challenges including 
improving reproducibility and credibility of ML studies, standards have been developed by different 
groups (“Machine learning in translation,” 2021; Topol, 2020). These include Standard Protocol Items: 
Recommendations for Interventional Trials (SPIRIT), Consolidated Standards of Reporting Trials 
(CONSORT), Standards for Reporting of Diagnostic Accuracy Studies (STARD) guidelines, Checklist 
for Artificial Intelligence in Medical Imaging (CLAIM) best-practice guide and Proposed Requirements 
for CV Imaging-Related Machine Learning Evaluation (PRIME) (Cruz Rivera et al., 2020; Liu et al., 
2020; Mongan, Moy, & Kahn, 2020; P. P. Sengupta et al., 2020; Sounderajah et al., 2020). The Butte 
group (Norgeot et al., 2020) also developed Minimum Information about Clinical Artificial Intelligence 
Modeling (MI-CLAIM).

The future is bright for incorporation of AI in day-to-day aspects of the CV space both in healthcare 
practice and continuing research. Simplification and automation using AI protocols can allow CV experts 
to focus their energies on more pressing questions towards the universal goal of reducing mortality and 
morbidity and accelerate novel biological, diagnostic and therapeutic advancements.
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KEY TERMS AND DEFINITIONS

Arrhythmia: Arrhythmias are heart rhythm abnormalities that occur when electrical impulses that 
coordinate heartbeats are anomalous and can lead to impaired heart contraction or relaxation or both.

Artificial Intelligence: Artificial intelligence is the ability of computer systems to perform tasks 
that normally require human intelligence.

Deep Learning: A class of machine learning based on artificial neural networks that include multiple 
hidden layers to progressively extract higher level features from the raw data.

Genome: Complete set of genetic instructions needed to build and sustain an organism. This may 
include interactions of genes with one another and the environment (epigenome).

Heart Failure: Heart failure occurs when heart muscle does not pump sufficient blood to meet the 
demands of the body secondary to several conditions including heart attack, hypertension, heart valve 
disease, congenital (birth) heart defects, etc.

Machine Learning: A study of computer algorithms that can access data and use the data to learn 
by themselves.

Myocardial infarction: Sometimes referred as heart attack, myocardial infarction occurs when blood 
flow to the heart tissues is interrupted secondary to obstruction from buildup of fat and other substances 
within blood vessels called coronary arteries.
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ABSTRACT

COVID-19, one of the most contagious diseases and urgent threats in recent times, attracts attention 
across the globe to study the trend of infections and help predict when the pandemic will end. A reli-
able prediction will make states and citizens acknowledge possible consequences and benefits for the 
policymaker among the delicate balance of reopening and public safety. This chapter introduces a 
deep learning technique and long short-term memory (LSTM) to forecast the trend of COVID-19 in the 
United States. The dataset from the New York Times (NYT) of confirmed and deaths cases is utilized in 
the research. The results include discussion of the potential outcomes if extreme circumstances happen 
and the profound effect beyond the forecasting number.

INTRODUCTION

Coronavirus disease (COVID-19) is a dangerous and infectious disease caused by Severe Acute Re-
spiratory Syndrome Coronavirus-2 (SARS-CoV2) has become a pandemic that has shaken the whole 
world. Currently, in June 2020, according to the data posted by Johns Hopkins University of Baltimore, 
Maryland USA and New York Times (NYT), more than 181 million cases have been reported across 
the world, while deaths tragically climbed to 3.93 million. The United States leads the world in total 
cases at 33.6 million, and the deaths toll around 604,000. Fortunately, based on the latest data from the 
Centers of Disease Control and Prevention (CDC), nearly 131 million people are fully vaccinated, and 
66% of the total population have received at least one dose. Daily new cases plummed to a relatively low 
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number by the protection of the vaccine. However, the delta variant, also known as B.1.617.2, is still 
one of the concern viruses as it seems to be around 60% more transmissible and may cause more severe 
symptoms. Due to the delta variant, despite being fully vaccinated, breakthrough infections could occur 
and rapidly increase new cases reported in Israel and India.

The World Health Organization (WHO) warns that COVID-19 could be spread starting with one 
person, then exaggerated through contact and respiratory spay. Pandemic has always been individually 
but shared worldwide. According to the character of this virus, many countries have to close their borders 
and enforce a partial or complete lock-down which had a devastating impact on tons of industry workers. 
The sudden lock-down often creates a large wave of problems in terms of agriculture, transportation, 
especially for third-world countries and low-income communities. Overwhelmed hospitals and lack of 
oxygen made the patient unable to have enough treatment and finally lost their lives. As the pandemic 
destroyed standard lifestyle, governments urgently know whether the peak of this pandemic is passed 
away? When is the proper time to reopen? Under this circumstance, prediction of the COVID-19 new 
cases and deaths becomes crucial to help the governments and healthcare systems prepare in advance 
about what kind of policy is more appropriate for their situation and check whether the policy undertaken 
is effective or not.

Prominent computational and statistical models have been unrealistic as the dynamic transmission 
of the epidemic, highly nonlinear, long interval (several days and months), and high variance, is hard 
to describe by traditional methods. Thanks to enough good data and computational resources, machine 
learning and deep learning techniques have recently gained lots of progress, known as solving more 
complex models and acquiring relationships without providing too much prior information. Recurrent 
Neural Networks (RNN) is a powerful tool to model sequence data by its unique connection structure and 
has been widely used in recognition tasks (Robinson et al., 2002; Graves et al., 2013; Sak et al., 2014). 
Based on the Recurrent Neural Network, Long Short-Term Memory (LSTM) (Sepp et al., 1997) adds a 
feedback connection to its structure. It makes it possible to process data sequentially while keeping robust-
ness against the long-term dependency issue. LSTM is also well-known for its outstanding performance 
among handwriting recognition, speech recognition, and making predictions based on time series data.

Benefit from the high accuracy prediction behavior of deep learning. Several studies were published 
about modeling the diagnosing and spreading procedure. COVID-19 infection forecasting of all states 
in India has been investigated through the Long Short-Term Memory (LSTM) and predicted the new 
cases of the next few days (Arora et al., 2020; Chandra et al., 2020; Shahid et al., 2020; Shastri et al., 
2020). The mutation rate of COVID-19 has been modeled and forecasted using the Recurrent Neural 
Networks (RNN) based technique (Pathan et al., 2020). As the current data of confirmed cases and death 
is available to the public, we consider using the relative model on this up-to-date data and conducting 
our prediction and discussion after the fitting procedure.

This chapter will first discuss the foundational background information about Long Short-Term 
Memory (LSTM), COVID-19 data set, dropout procedure, and performance indices. Then, how to build 
a Long Short-Term Memory (LSTM) based network to predict COVID-19 new cases in Python 3.9 is 
explored and illustrated step by step. Next, how to build up a similar deep learning model to predict the 
deaths toll is showed but skips too many details. Their fitting and predicting performances are compared, 
and their advantages and limitations when working with this form of data are discussed.
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BACKGROUND

In this work, one of the deep learning techniques is well established for COVID-19 predictions. In the 
first part, the structure of Long Short-Term Memory (LSTM) is discussed, whereas, in the next phase, the 
introduction of the dropout technique is presented. The data set information and performance measures 
are also mentioned in this part. An overview will be provided to deliver the work scheme, where data is 
collected, processed, then transferred to two models and evaluated by error measures.

Long Short-Term Memory (LSTM) Network Models

Recurrent Neural Networks (RNN) are beneficial for processing sequential data by their loop structure. 
The output connects with the current input and the hidden states, and the previous information. There-
fore, Recurrent Neural Networks (RNN) could incorporate the current state and inputs to transmit a 
vital message into future states and then to the final output. However, RNN has the hurdle to train the 
long-term dependencies data.

Long Short-Term Memory (LSTM), anticipated by Hochreiter and Schmidhuber, is an extension of 
Recurrent Neural Networks (RNN) that implements a forgetting mechanism to handle long-sequence 
inputs, as it could add or removes information on the state of the cell. Long Short-Term Memory (LSTM) 
also has a chain structure as Recurrent Neural Networks (RNN), but the repeating module has a unique 
design. Instead of having a single neural network layer, more complex structures are used in Long 
Short-Term Memory (LSTM). In each vanilla Long Short-Term Memory (LSTM) unit, an input gate, 
external-input gate, forget gate, and output gate can be found. The work of the input gate and output gate 
is used to qualify the flow of input and outputs into the rest of the network. The memory mechanism is 
complied by two parts, memory cell Ct And working cell ht. Memory cells are responsible for the reten-
tion of the sequence controlled with forgetting gate ft, which is a crucial technique in Long Short-Term 
Memory (LSTM). The working memory ht is recorded as the output of each memory cell, and output 
gate ot determine which part of the former state and the current input to be remembered in the memory 
cell. The former state and current input jointly process to the nonlinear activation function. The Long 
Short-Term Memory (LSTM) network computes the mapping between the input sequence and output 
sequence. Updating by the following equations:

Forgot gate: f W h x bt f t t f� �� ��� ��� 1,  (1)

Input gate: i W h x bt i t t i� � ��� �� ( , )1  (2)

Update gate: C W h x bt c t t c� �� ���tanh( , )1  (3)

c f c i Ct t t t t� � � ��1  (4)
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Output fate: o W h x bt o t t o� � ��� �� �� 1,  (5)

ht = ot ∙ tan h(ct) (6)

Dropout

Neural Nets need a large number of parameters to get a fantastic performance on fitting specific datasets. 
Deep neural networks compromise multiple nonlinear hidden layers and much more cells so that they 
can learn very complicated relationships between inputs and outputs. However, relatively small datas-
ets can cause a severe problem—overfitting. This could impact the model to focus more on statistical 
noise in the training data, leading to a poor prediction result on the testing dataset. Generalization error 
increases due to overfitting.

To reduce this problem, one of the commonly used methods is the dropout, which Nitish Srivastava 
proposed in 2014.

Dropout is a regularization method that approximates training a large number of neural networks 
with different architectures in parallel. Better than the ensemble method, dropout is no need for multiple 
models to be fit and stored, which can be a big challenge when models turn to be complex, requiring 
days even weeks to train. For the dropout method, some layer outputs are randomly eliminated from the 
network during the training process. Dropout has a side effect: it will encourage the network to learn 
a sparse representation, and hidden units turn sparsed. It also reduces the model capacity and thins the 
network, whereas a broader network is required when using this method. For a single-layer model, the 
dropout step is more likely to filter the nodes. However, we will keep the dropout at our model for further 
studies on more layers and more complicated models.

COVID-19 Dataset

The New York Times (NYT) tracked the first coronavirus case in the United States in Washington State 
on January 21, 2020. Since then, The New York Times (NYT) has kept following all the new claims based 
on the reports from state and local health agencies. In this research, we only focus on the national level.

Therefore, we utilize the .csv file of confirmed cased, death cases of the United States. On their 
website (https://www.nytimes.com/interactive/2021/us/covid-cases.html.), the visualization of newly 
reported cases is provided, and it’s convenient for us to have the latest update of COVID-19. The data is 
preprocessed before treating them as input for our Long Short-Term Memory (LSTM) model.
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Prediction Accuracy Measurement

Initially, the Long Short-Term Memory (LSTM) models planned to be trained on the training data set, 
and the model’s prediction was validated among the testing data. To better measure the loss function 
and prediction performance of the trained model. The Mean Squared Error (MSE), Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) are all considered in our matric. Three measurements 
are calculated as the following equation:

MAE
N

y y
i

N

i� �
�
�1
1

 (7)

MSE
N

y y
i

N

i� �� �
�
�1
1

2
 (8)

RMSE
N

y y
i

N

i� �� �
�
�1
1

2
 (9)

Where, y is model predicted value, yi is the actual value.
To evaluate the model performance on the testing data, we will calculate the accuracy, precision, 

recall, and the F1-score, which are very commonly used indicators of measuring measure of the degree 

Figure 1. Coronavirus in the U.S.: Latest Map and Case Count. Picture from https://www.nytimes.com/
interactive/2021/us/covid-cases.html.
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of closeness of a measured or calculated value to actual value. We will provide this information in the 
fitting section.

Methodology Framework

The experiments are conducted using python 3.9 with commonly used open-source libraries such as 
keras (Chollet et al., 2020), Numpy (Oliphant et al., 2015), Pandas (Mckinney et al., 2010), Tensorflow 
(Abadi et al., 2016). The experimental setup is based on a local computational environment having Intel® 
Core i7@ 3.1GHz with 16 GB RAM under MacOS Big Sur Version 11.4.

Once we have the raw COVID-19 datasets, normalizing data is required before training Long Short-
Term Memory (LSTM) models. After normalizing, historical datasets of confirmed and death cases are 
given to the Long Short-Term Memory (LSTM) model for model training. The number of hidden layers, 
return sequences, epoch size, dense layers, kernel size, and optimizer are preset. All the parameters will 
modify to a proper number based on the model evaluation. Model testing is followed after training, and 
all three prediction accuracy measurements are used to select the best parameters for Long Short-Term 
Memory (LSTM). The optimizing process will stop when the MAE, MSE, and RMSE are not signifi-
cantly improved from the previous setting. The output picture will illustrate the best model prediction.

BUILDING UP LSTM PREDICTION MODEL WITH COVID-19 CONFIRMED DATA

Data Processing

First, required libraries are needed to import before importing raw COVID-19 data. In this section, we 
only focus on the prediction of the new confirmed cases in the United States, so that we will only use 
“new” color and transfer “data” to a readable formula. Then we separate the whole data set into training 
and testing tests. We use 0.85 as the split percent, which means that 85% of the whole data is used to 
train our Long Short-Term Memory (LSTM) model, while 15% of the data is used to evaluate our model 
performance. Since the data set covers from January 23, 2020, to June 8, 2021. We need to balance the 
train and test cases ratio to get a more realistic forecasting performance. Careful with df[‘new’].values, 
as we have to make it become Numpy array instead of the single vector nor a data frame. Python 3.9 
code is showed as follow:

import numpy as np
import keras
import tensorflow as tf
from keras.preprocessing.sequence import TimeseriesGenerator
import pandas as pd
np.random.seed(36)
import plotly.graph_objects as go
df = pd.read_csv\
(‘/Users/Desktop/Predictions For COVID-19 With Long Short-Term Memory/Covid-19/USA/usdata.csv’)
df[‘date’] = pd.to_datetime(df[‘date’])
df.set_axis(df[‘date’], inplace=True)
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#df.drop(columns=[‘deaths’], inplace=True
Inew_data = df[‘new’].values
new_data = new_data.reshape((-1,1))
Isplit_percent = 0.85
split = int(split_percent*len(new_data))
Inew_train = new_data[:split]
new_test = new_data[split:]
Idate_train = df[‘date’][:split]
date_test = df[‘date’][split:]
Iprint(len(new_train))
print(len(new_test))
print(date_train)
print(date_test)

Next, Long Short-Term Memory (LSTM) is very sensitive to the sequential data fluctuations and 
capturing the pattern in the time series data. We have to normalize the data set before feeding it to our 
Long Short-Term Memory (LSTM) model. We transform data into the same scale and avoid unneces-
sary bias during the training and validation process. The mathematical representation of MinMaxScaler 
is defined as:

x x x
x xi �
�
�
min

max min

 (10)

Where x is, the input training data set and xi is the output of the normalized training dataset. Python 
code as showed as following:

from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
new_train=scaler.fit_transform(new_train)
new_test=scaler.transform(new_testtest)

Data Structure Creation

A unique data structure is needed to handle a specific time window, based on which Long Short-Term 
Memory (LSTM) will predict the next value. After training the data and compare different model per-
formances, we put 12 as a lookback window. TimeseriesGenerator is used here to provide us the data in 
the specific format that is critical for our model. Batch size is also an important factor that may influence 
model performance. Therefore, we need to put a resealable number based on experimentation.

look_back = 12
from keras.preprocessing.sequence import TimeseriesGenerator
train_generator = TimeseriesGenerator(new_train, new_train, length=look_back, batch_size=20)
test_generator = TimeseriesGenerator(new_test, new_test, length=look_back, batch_size=1)
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Model Building

Fundamentally, we have come to create the Long Short-Term Memory (LSTM) model. First, we need to 
initialize the model. Then, add the 1st Long Short-Term Memory (LSTM) layer with the Dropout layer 
followed.

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
Imodel = Sequential()
I# Adding the first LSTM layer and some Dropout regularization
model.add(LSTM(unites = 52, activation=’relu’, input_shape=(look_back, 1)))
model.add(Dropout(0.20))

Note for the Long Short-Term Memory (LSTM) layer, the number of units representing the total 
number of neurons in the layer is the most critical parameter. Fifty-two neurons would allow the model 
to handle high dimensional data and be large enough to capture the different directions trends. Return_se-
quence needs to be set as True if more layer is needed. In this study, we find one layer is large enough 
to handle this data set. Dropout, a valuable tool for avoiding overfitting, results in 20% of 52 neurons 
being eliminated randomly during each iteration.
Following provide the sample code as if more layer of Long Short-Term Memory (LSTM) is needed.

# Adding a second LSTM layer and some Dropout regularization
#model.add(LSTM(units=45, return_sequences=True))
I
# Adding a third LSTM layer and some Dropout regularization
#model.add(LSTM(10, return_sequences=True))
#model.add(Dropout(0.1))
I# Adding a fourth LSTM layer and some Dropout regularization
#model.add(LSTM(units=45))
#model.add(Dropout(0.2))

Finally, add the output layer. Under this circumstance, we have created a Long Short-Term Memory 
(LSTM) model.

model.add(Dense(units=1))

Model Compiling

After successfully creating the model, we compile our model by choosing an SGD (Stochastic Gradient 
Descent) algorithm and an appropriate loss function. For the optimizer, Adam, a safe choice, is used 
in the first case. For the loss function, we deter using MAE as the mean of the absolute value of errors 
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between actual values and predictions. We will also check the MSE (Mean Square Error) and RMSE 
(Root Mean Square Error) to ensure our model is suitable for predicting the future trend.

model.compile(optimizer=’adam’, loss=’mae’)

Model Fitting

Fitting our Long Short-Term Memory (LSTM) model is the next step.

num_epochs = 2000
model.fit(train_generator, epochs=num_epochs, batch_size=12)
fitted = model.predict_generator(train_generator)

Long Short-Term Memory (LSTM) weights are updated every 12 days’ data of COVID-19 with 
the batch size set to 12. Make sure the epochs are large enough to get a relatively small loss. Different 
batches and epochs are no harm to try if the loss of the model is not converging to a fair number. The 
model generates the fitted value by predict_generator.

model.fit(train_generator, epochs=num_epochs, batch_size=12)
fitted = model.predict_generator(train_generator)

Since we have already processed the testing data, we use the same function on test_generator as we 
want to get the prediction values on the testing data set. We also need to reshape the data and visualize 
the output to review the model fitting and evaluation step.

#print(predict) 

prediction = model.predict_generator(test_generator) 

new_train = new_train.reshape((-1)) 

new_test = new_test.reshape((-1)) 

prediction = prediction.reshape((-1) 

fitted = fitted.reshape((-1)) 

#forecast = forecast.reshape((-1)) 

import plotly.graph_objects as go 

import numpy as np 

trace1 = go.Scatter( 

    x = date_train, 

    y = new_train, 

    mode = ‘lines’, 

    name = ‘Data’ 

) 

trace2 = go.Scatter( 

    x = date_train, 

    y = fitted, 

    mode = ‘lines’, 
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    name = ‘Fitted’ 

) 

trace3 = go.Scatter( 

    x = date_test, 

    y = prediction, 

    mode = ‘lines’, 

    name = ‘Prediction’ 

) 

trace4 = go.Scatter( 

    x = date_test, 

    y = new_test, 

    mode=’lines’, 

    name = ‘Ground Truth’ 

) 

layout = go.Layout( 

    title = “New Cases”, 

    xaxis = {‘title’: “Date”}, 

    yaxis = {‘title’: “Cases”} 

) 

 

fig = go.Figure(data=[trace1, trace2, trace3, trace4], layout=layout) 

fig.show()

After the iteration, we get the loss function to decrease to 12489 and keep stable on the training data. 
For the testing part, we get 0.860 of accuracy, 0.924 of precision, 0.926 of recall, and the F1-score of 0.925.

Figure 2. Fitting and evaluating results for the confirmed new cases. Blueline is the train data, while the 
red line shows the fitting value on the train data set. For the evaluation part. The purple line illustrates 
the ground truth of the actual number as the green line represents the prediction of our LSTM model.
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Data Forecasting

One of the differences between regular regression models and time series models is how we run pre-
dictions. According to linear regression or generalized linear models, we could simply take the last 12 
months as the train data and conduct the forecast step. How do we predict in Long Short-Term Memory 
(LSTM)? The magic part is that the “first prediction” needs to be added to the last 11 training data. In 
this way, a new set of 12 data points has been created, and the model could use the 12 data points to 
predict the next one. Then we try to forecast the next 60 day’s situation and visualize it as a plot. Python 
code is provided as follow:

new_data = new_data.reshape((-1))

def predict(num_prediction, model):

    prediction_list = new_data[-look_back:]

I    for _ in range(num_prediction):

        x = prediction_list[-look_back:]

        x = x.reshape((1, look_back, 1))

        out = model.predict(x)[0][0]

        prediction_list = np.append(prediction_list, out)

    prediction_list = prediction_list[look_back - 1:]

    return prediction_list

I 

def predict_dates(num_prediction):

    last_date = df[‘date’].values[-1]

    prediction_dates = pd.date_range(last_date, periods=num_prediction + 

1).tolist()

    return prediction_dates

I 

num_prediction = 60

forecast = predict(num_prediction, model)

forecast_dates = predict_dates(num_prediction)

Iimport plotly.graph_objects as go

import numpy as np

trace1 = go.Scatter(

    x = df[‘date’],

    y = new_data,

    mode = ‘lines’,

    name = ‘Data’

)

trace2 = go.Scatter(

    x = forecast_dates,

    y = forecast,

    mode = ‘lines’,

    name = ‘Forecast’)

layout = go.Layout(
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    title = “Future”,

    xaxis = {‘title’: “Date”},

    yaxis = {‘title’: “Cases”}

)

 

 

fig = go.Figure(data=[trace1, trace2], layout=layout) 

fig.show()

BUILDING UP LONG SHORT-TERM MEMORY (LSTM) 
PREDICTION MODEL WITH COVID-19 DEATHS TOLL

In this section, we use the death toll in the original COVID-19 data set. We follow a similar scheme: 
Data processing, Model building, model compiling, Model fitting, and Data forecasting. We modify the 
look back number to 7 and Long Short-Term Memory (LSTM) units to 40, which shows the number of 
deaths is highly dependent on the last seven days as the confirmed cases have a long-term dependency.

import pandas as pd 

import numpy as np 

import keras   

import tensorflow as tf 

from keras.preprocessing.sequence import TimeseriesGenerator 

import pandas as pd 

Figure 3. Forecasting result for the confirmed new cases of the next 60 days. Fluctuate, and the decreas-
ing trend is shown in our forecasting result.
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np.random.seed(24) 

 

import plotly.graph_objects as go

df = pd.read_csv\

    (‘/Users/Predictions For COVID-19 With Long Short-Term Memory /Covid-19/

USA/usdatad.csv’)

df[‘date’] = pd.to_datetime(df[‘date’])

df.set_axis(df[‘date’], inplace=True)

#df.drop(columns=[‘deaths’], inplace=True)

Inew_data = df[‘deaths’].values

new_data = new_data.reshape((-1,1))

Isplit_percent = 0.85

split = int(split_percent*len(new_data))

Inew_train = new_data[:split]

new_test = new_data[split:]

Idate_train = df[‘date’][:split]

date_test = df[‘date’][split:]

Iprint(len(new_train))

print(len(new_test))

print(date_train)

print(date_test)

 

from sklearn.preprocessing import MinMaxScaler

scaler=MinMaxScaler()

new_train=scaler.fit_transform(new_train)

new_test=scaler.transform(new_test)

look_back = 7

Itrain_generator = TimeseriesGenerator(new_train, new_train, length=look_back, 

batch_size=20)

 

test_generator = TimeseriesGenerator(new_test, new_test, length=look_back, 

batch_size=1)

Ifrom keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

Imodel = Sequential()

I# Adding the first LSTM layer and some Dropout regularization

model.add(LSTM(40, activation=’relu’, input_shape=(look_back, 1)))

model.add(Dropout(0.20))

 

 

# Adding a second LSTM layer and some Dropout regularisation 
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#model.add(LSTM(units=45, return_sequences=True))

I# Adding a third LSTM layer and some Dropout regularization

#model.add(LSTM(10, activation=’relu’))

#model.add(Dropout(0.1))

# Adding a fourth LSTM layer and some Dropout regularization

#model.add(LSTM(units=45))

#model.add(Dropout(0.2))

# Adding the output layer

 

model.add(Dense(units=1))

Imodel.compile(optimizer=’adam’, loss=’mae’)

Inum_epochs = 20000 model.fit(train_generator, epochs=num_epochs, batch_

size=24) fitted = model.predict_generator(train_generator) #print(predict) 

prediction = model.predict_generator(test_generator) new_train = new_train.

reshape((-1)) new_test = new_test.reshape((-1)) prediction = prediction.re-

shape((-1)) fitted = fitted.reshape((-1)) #forecast = forecast.reshape((-1)) 

import plotly.graph_objects as go import numpy as np trace1 = go.Scatter( x = 

date_train, y = new_train, mode = ‘lines’, name = ‘Data’ )  

trace2 = go.Scatter( 

 x = date_train, 

 y = fitted, 

 mode = ‘lines’, 

 name = ‘Fitted’ 

) trace3 = go.Scatter( x = date_test, y = prediction, mode = ‘lines’, name = 

‘Prediction’ ) trace4 = go.Scatter( x = date_test, y = new_test, mode=’lines’, 

name = ‘Ground Truth’ ) layout = go.Layout( title = “New Deaths”, xaxis = 

{‘title’: “Date”}, yaxis = {‘title’: “Deaths”} ) fig = go.Figure(data=[trace1, 

trace2, trace3, trace4], layout=layout)

fig.show()

Inew_data = new_data.reshape((-1))

def predict(num_prediction, model):

    prediction_list = new_data[-look_back:]

I    for _ in range(num_prediction): 

        x = prediction_list[-look_back:]

        x = x.reshape((1, look_back, 1))

        out = model.predict(x)[0][0]

        prediction_list = np.append(prediction_list, out)

    prediction_list = prediction_list[look_back - 1:]

    return prediction_list

Idef predict_dates(num_prediction):

 

    last_date = df[‘date’].values[-1]

    prediction_dates = pd.date_range(last_date, periods=num_prediction + 

1).tolist()
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    return prediction_dates

num_prediction = 60

forecast = predict(num_prediction, model)

forecast_dates = predict_dates(num_prediction)

Iimport plotly.graph_objects as go

import numpy as np

 

trace1 = go.Scatter( 

    x = df[‘date’], 

    y = new_data, 

    mode = ‘lines’, 

    name = ‘Data’ 

) 

trace2 = go.Scatter( 

    x = forecast_dates, 

    y = forecast, 

    mode = ‘lines’, 

    name = ‘Forecast’ 

) 

layout = go.Layout( 

    title = “Future”, 

    xaxis = {‘title’: “Date”}, 

    yaxis = {‘title’: “Deaths”} 

) 

 

fig = go.Figure(data=[trace1, trace2], layout=layout) 

fig.show()

On the training data, as the death toll is much smaller than the confirmed cases, we get the loss 
function decrease to 235.431 and get slightly fluctuate among the iterations. For the testing part, we get 
0.876 for accuracy, 0.959 for precision, 0.910 for recall, and the F1-score of 0.934.
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Figure 4. Fitting and evaluation result for the new deaths toll. Blueline is the train data, while the red 
line shows the fitting value on the train data set. For the evaluation part, the purple line illustrates the 
ground truth of the actual number as the green line represents the prediction of our LSTM model.

Figure 5. Forecasting result for the number of new deaths of the next 60 days.
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DISCUSSION

The numerical statistic analysis among the test data shows that we get high precision and recall scores 
on both confirmed and death cases. The fitting and testing plots send the same message that the Long 
Short-Term Memory (LSTM) model can offer a reliable fitting and prediction result given the limited 
data. Our method forecast the numbers of new cases and new deaths have the same trend of decreasing 
in the next future period.

The declined new cases and deaths numbers prompt everyone’s heart, and we bear enough for the 
pandemic and hope to travel through the airline, cruise. Visiting friends and experiencing a fine cuisine 
refresh our minds and make our lives more colorful. However, any premature decision may cause the 
third or fourth waves as the transmissible of this virus is striking. Figure 6 shows the prediction of new 
confirmed cases if the new delta variant dominates this area and breaks through most immune protec-
tion. Therefore, researchers and policymakers should be cautious about their recommendations and 
management decision.

To amend our model and prediction result, more data and more practical information are essential. 
When we have a broader database for training and testing, the better or more closely predicted we could 
expect from our model. As the deep learning models always need to tune a branch of parameters, a more 
extensive data set provides more freedom and a better resource for the optimization step. The spread and 
multiple variants of Covid-19, the delay of confirmed cases and death toll data collection, the effect of 
vaccines, and executive order of lock-down add a lot of uncertainties and challenges in predicting the 
next trend. The population of the county, local economic situation, and local specific culture will also 
influence the spread of the virus, thus make it so difficult to seek a reliable forecasting result. Therefore, 
we should daily update our database and include more factors as best we can.

Figure 6. Forecasting results for the number of new confirmed cases with extreme conditions if the vac-
cines cannot provide enough protection and the contiguous variants dominate this area.

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



145

Predictions For COVID-19 With Deep Learning Models of Long Short-Term Memory (LSTM)
 

On the other hand, nurses and doctors can nap from the overwhelmed condition as hospitalized 
numbers decrease. However, many people may face Mental health issues on or after this pandemic.

The World Health Organization (WHO) mentioned that mental health conditions contribute to poor 
health outcomes, premature death, human rights violations, and global and national economic loss. 
Unfortunately, nationally, about one in five adults suffers from a mental illness. People may have more 
chance of suffering from a mental illness increases when experiencing economic troublesome; the lower 
a person’s socioeconomic status, the higher their risk is for suffering from some sort of mental illness 
or even hospitalization (Hudson, et al., 2005).

Due to a lack of access to health care, individuals and families of lower-income status are less likely 
to seek out health care unless in an emergency; if they do, the care they receive is usually poor (Becker 
et al ., 2003). Kilbourne proposed that only a third of those in need receive adequate mental health 
care. Though the economy, tax return, and new infrastructure plan have raised more media and public 
attention. No significant improvement for mental health in the United States. Some people feel that 
physical fitness is more important than mental health, and therefore seek out care when the situation is 
too late to have a professional doctor intervene. However, according to WHO’s research, the only way 
to achieve the highest standard of health is to ensure a person’s mental health and well-being. What’s 
worse, many mental care facilities were forced to temporarily or permanently closed as the pandemic 
swept the whole world.

Mental health is essential for human beings, and it is a disaster when mental care is limited. The 
importance of treating mental health conditions should be widely spread, and more people need to rec-
ognize that it’s essential to have a healthy mental illness. Depression, which may lead to tragic suicide, 
has also been associated with an increased risk of coronary heart disease. Those who experienced very 
high levels of distress were 32% more likely to die of cancer (Mental Health Foundation, 2016). Even 
though the pandemic has changed everyone’s life, the federal and local governments also need to take 
responsibility for those eager for a mental health service.

CONCLUSION

Long Short-Term Memory (LSTM) is a deep learning method that could capture the relationship among 
the time-series dynamics. This chapter verifies the ability of Long Short-Term Memory (LSTM) to 
fit and predict the COVID-19 growth curve feeding enough training data. The results show that Long 
Short-Term Memory (LSTM) is a promising tool for predicting potential outbreaks by learning from big 
data. If no black swan events happen in the next sixty days, the new cases and deaths toll may plummet 
to a relatively low-level area. The governments should carefully consider their policy to avoid getting 
subjugated by the COVID-19 pandemic. In future work, it’s vital to improve our model and confirm 
the robustness of the model. Once more data is accessible and more complicated situations among the 
would, we could compare diverse models like Deep Bidirectional LSTM (Cui et al., 2018), attention 
mechanism (Vaswani et al., 2017) or consider the Bayesian method to enhance the capacity of capturing 
different features. We plan to investigate more places and other countries and hope our human beings 
can rapidly recovery from this pandemic.
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FUTURE RESEARCH DIRECTIONS

The biggest problem for training the Long Short-Term Memory (LSTM) is the computational time and 
resources. Consequently, single-layer Long Short-Term Memory (LSTM)s are often used on local personal 
computers (P.C.s), while deep Long Short-Term Memory (LSTM) models are always on the cluster with 
powerful GPUs (Graphical Processing Units) and CPUs (Central Processing Units). Once we could access 
more computational resources to build a deep and large model, Long Short-Term Memory (LSTM) could 
be trained and better fitting and forecasting performance. In addition to confirmed cases and death toll 
prediction, the hospitalization and fully vaccinated data are also worthy of analysis. Furthermore, vari-
ants of Long Short-Term Memory models, Stacked Long Short-Term Memory (LSTM), Convolutional 
Long Short-Term Memory (LSTM), and Bi-directional Long Short-Term Memory (LSTM), have various 
advantages compared with the original one. It’s no harm to reach and attempt to explore the best one. 
In general, better planning and management are often based on precise forecasting. Further studies and 
investigations are necessary and crucial for the health departments and governments.
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KEY TERMS AND DEFINITIONS

Artificial Intelligence (A.I.): Artificial intelligence is a wide-ranging branch of computer science 
concerned with building smart machines capable of performing tasks that typically require human in-
telligence. A.I. is an interdisciplinary science with multiple approaches, but advancements in machine 
learning and deep learning are creating a paradigm shift in virtually every sector of the tech industry.

Artificial Neural Network (ANN): Artificial neural network referred to as neural network, is a 
computing system made up of a number of simple, highly interconnected processing elements, which 
process information by their dynamic state response to the external inputs.

Deep Learning: Deep learning, a subset of machine learning, utilizes a hierarchical level of Artificial 
Neural Networks to carry out the process of machine learning. It mimics the working of the human brain 
in processing supervised and unsupervised data in detecting objects, recognizing speech, translating 
languages, and making decisions.

Dropout: Dropout is a method to capture the information, usually the variability, contained within 
a dataset at a lower dimension.

Long Short-Term Memory (LSTM): Long short-term memory is an artificial recurrent neural 
network (RNN) architecture used in deep learning. LSTM has feedback connections so that it’s useful 
for different handle types of time series data. LSTM unit is composed of a cell, an input gate, an output 
gate, and a forget gate.

Loss Function: Loss function is used to describe the error between the output of our algorithms and 
the given target value. In layman’s terms, the loss function expresses how far off the mark our computed 
output is (Courville, 2016).

Mental Health: Mental health includes our emotional, psychological, and social well-being. It af-
fects how we think, feel, and act. Mental health is essential at every stage of life, from childhood and 
adolescence through adulthood.

Prediction Accuracy Measure: Prediction accuracy measure is a numerical measure of the differ-
ence between actual and prediction of the trained model. Mean squared error (MSE), root mean squared 
error (RMSE) and mean absolute error (MAE) are commonly used to evaluate the performance.

Recurrent Neural Network (RNN): Recurrent neural network is a class of artificial neural networks 
(ANN) where connections between nodes form a directed graph along a temporal sequence.
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ABSTRACT

Entering the 21st century, computer science and biological research have entered a stage of rapid de-
velopment. With the rapid inflow of capital into the field of significant health research, a large number 
of scholars and investors have begun to focus on the impact of neural network science on biometrics, 
especially the study of biological interactions. With the rapid development of computer technology, sci-
entists improve or perfect traditional experimental methods. This chapter aims to prove the reliability 
of the methodology and computing algorithms developed by Satyajit Mahapatra and Ivek Raj Gupta’s 
project team. In this chapter, three datasets take the responsibility to testify the computing algorithms, 
and they are S. cerevisiae, H. pylori, and Human-B. Anthracis. Among these three sets of data, the S. 
cerevisiae is the core subset. The result shows 87%, 87.5%, and 89% accuracy and 87%, 86%, and 87% 
precision for these three data sets, respectively.

INTRODUCTION

Neural network computing, as the name suggests, is to simulate the operation mode of the computer to 
achieve the simulation of human brain neural autonomous judgment ability, adaptability, and the ability 
of multi-project integration and parallel processing. From a biological perspective, the human cerebral 
cortex contains more than 10 billion neurons connected to form a neural network. Information is col-
lected through the body’s sense of touch, taste and other sensory organs. The collected data is transmitted 
to the central nervous system and the connection points of the neural network. Then the data collected 
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will be screened, sorted out and cleaned by the nerve center system, and then transmitted to the whole 
body according to different analysis results to coordinate the functions of various organs in the body.

From a historical perspective, in the 1940s, McCulloch and Pitts discovered the work of turning logic 
devices into neurons (Palm, 1986); In the 1960s, Rosenblatt proposed the Perceptron model (Fig. 1), 
which utilizes simulated learning and recognition functions. It has several input terminals to represent 
the reception of signals from input or another perceptron. After summation of these signals, outputs or 
transmits them to other perceptrons through excitation functions. Nerve cells dendrites and axons, some 
close connection between neurons, some loose connection, and performance are high on the side of each 
connection weights on the perception of low, save the weight information is neural network acquisition 
of “knowledge”. However, due to the data dependence, use limitations and forced to end. Until recent 
years, modern high-tech approaches have provided a solid foundation for research into artificial intel-
ligence, neural networks, deep learning, and other technologies, and the consumer market’s expectation 
of intelligent devices has fueled researchers’ enthusiasm for the development of neural networks and 
other related technologies (Admin, 2021).

Compared with the traditional computing methods, the deep neural network algorithm has the ability 
to self-adaptation and self-organization (Mahapatra, Gupta, Sahu, & Panda, 2021). The traditional com-
puting methods rely on the knowledge and ability written by the programmers to the systematic program. 
Hence, it primarily depends on the early programmer to write the code, as well as the maintenance and 
update of the database. In this traditional model, the computing power and intelligence of the computer 
will be dramatically limited. They were looking at the new updated deep neuron network. The neural 
network algorithm provides machines with self-learning, self-identification and this specific ability can 
develop the computer beyond the capacity of its designer itself. Typically, the program designer sets up 
a learning method for the neural network algorithm or the content to imitate and periodically provides 
a sample standard for the computer to replicate. The other way is to let the algorithm learn on its own. 
In this case, the program designer only needs to build a learning instruction for the algorithm, and the 
algorithm will learn accordingly to the type and pattern of the imported data sets to achieve the goal of 
identifying the regularity and characteristics of the environment (Oja, 1994).

Figure 1. Neural network framework of inputs and functions to produce perceptron.
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From the perspective of actual demand, in the 21st century, with the global outbreak of COVID-19 
since late 2020, medical and health care has become the focus of exploring international research insti-
tutions. There is also a growing trend in understanding Protein-Protein Interactions (PPIs) around the 
world, such as the proteins that are the core building blocks of viruses. The PPI can provide series of 
exchanges of amino acids between protein molecules. After extracting the interactions between the mol-
ecules, the deep neuron network algorism can develop an ability to predict the future interactions in any 
given protein. That is to say, the core of a virus is a protein that interacts with each other to reproduce, 
which means that understanding these interactions could speed up efforts to defeat the virus.

BACKGROUND

In traditional biological research, biologists have explored a considerable number of experimental meth-
ods to explore the relationship between protein interactions. These methods include Tandem Affinity 
Purification (TAP), affinity chromatography, X-ray crystallography, and Nuclear Magnetic Resonance 
(NMR) (Du, Zhang, Yao, Hu, & Sun, 2017). The advantage of these experimental methods is that the 
changes in proteins can be recorded continuously during the testing process. However, their disadvantage 
is that the seep and accuracy of recording are too much dependent on human capability. The accuracy 
of recording interactions between proteins can be lower than the speed of protein interaction computed 
by the deep neuron network algorisms. It can also lead to unreliable conclusions concluded by these 
experimental methods.

In reality, scientists and researchers developed several usable methodologies based on the deep neuron 
network algorism to observe PPIs. These include, but are not limited to, DEEPPPI (Du, Zhang, Yao, 
Hu, & Sun, 2017), Convolutional Neural Network (Baruah, 2017), Domain Frequency & Association 
Score Base Classification of Protein Pairs (Garima, Navita, & Gulshan, 2012), etc. In order to improve 
the efficiency of recording protein-protein interaction relationships and improve the reliability of ex-
perimental conclusions. The researchers, led by Satyajit Mahapatra as the core member, proposed using 
Deep Neural Networks (DNN) for Protein-Protein Interactions’ prediction.

Traditionally, two models are mainly used to research PPIs, and they are Naive Bayes (NB), K-Nearest 
Neighbor (KNN).

KNN (K-Nearest Neighbor) is one of the simplest machine learning algorithms and can be used for 
classification and regression. It is a supervised learning algorithm. The idea is that if most of the K 
parameters are similar to a dataset in the eigenspace belong to a particular category. That sample also 
belongs to that category. That is to say, the method only determines the category of the models is divided 
according to the category of the closest one or several instances.

Although the KNN algorithm is used in a wide range of aspects, as a machine learning algorithm, it 
still has advantages and disadvantages. From the practical level, the KNN algorithm is simple in logic 
and mature in theory. It can be used for both classification and regression. When necessary, it can also be 
used for nonlinear variety. From the technical point of view, the KNN algorithm has no obvious training 
process. Still, at the beginning of the program, after the data set is loaded into the memory, there is no 
need for training, direct prediction, so the training time complexity is 0. Secondly, since the KNN method 
mainly depends on the surrounding limited adjacent samples, rather than the method of discriminating 
the class domain to determine the category to which it belongs, the KNN method is more suitable than 
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other methods for the sample set to be classified with a lot of crossovers or overlap of the class domain. 
Any algorithm will have shortcomings. (Zhang, 2016).

Although the KNN algorithm has been very mature, there are still shortcomings. The KNN algorithm 
needs to calculate the distance between each test point and the training set. When the training set is large, 
the amount of calculation is quite large, and the time complexity is high, especially when the number of 
features is relatively large. This means that the KNN algorithm requires a lot of memory and high space 
complexity. When the sample is unbalanced (that is, some categories have a large sample size and oth-
ers have a small sample size), the prediction accuracy for rare categories is low. In addition, the KNN 
algorithm is a lazy learning method, which leads to a slower prediction speed than logistic regression 
and other algorithms (Zhang, 2016).

Naive Bayes is a straightforward classification algorithm, and it’s called Naive Bayes classification 
because the idea is naive. The ideological basis of Naive Bayes is: for the given category to be classified, 
solve the probability of each category under the condition of the occurrence of this category. The largest 
category will be considered the category to which this category belongs (Safri, Arifudin & Muslim, 2018).

As one of the classifications of the Bayesian model, the Naive Bayesian model originated from 
classical mathematics theory, and its classification efficiency is relatively stable. Especially for small-
scale data, performance is outstanding, can be used to process multi-classification tasks, suitable for 
incremental training, significantly if the amount of data exceeds the memory, can be batch by batch to 
gradual movement. From the perspective of technical reliability, the algorithm is simple and not sensitive 
to missing data. Although the Naive Bayes model has high reliability, it still has some shortcomings. 
The naive Bayes model has the lowest error rate compared with other classification methods. But this is 
not always the case because the Naive Bayes model assumes that the attributes are independent of each 
other, and this assumption is often not valid in practice. Although the attribute correlation is small, the 
Naive Bayes performance is good. However, when the number of attributes is relatively large or the cor-
relation between features is significant, the classification effect is not good (Huang, Lu, & Ling. 2003).

Moreover, when the Naive Bayes model is needed to be used for operation, the model needs to know 
the prior probability. The prior probability depends on the hypothesis in many cases. The hypothesis 
model can have a variety of models, which leads to the poor prediction effect due to the assumption of 
the prior model. From the perspective of the accuracy of the analysis conclusion, the data determine 
the posterior probability, so there is a specific error rate in the classification decision (Huang, Lu, & 
Ling. 2003).

Deep Neural Networks (DNN) are used to efficiently and accurately learn protein behavior from 
common protein descriptions. According to paper by Mahapatra et al. (2021) on DNN, there are sev-
eral shortcomings in traditional studies on protein interaction relationships. First, traditional research 
is exceptionally dependent on the professional ability of researchers, and the lack of experience of the 
researchers on the selection of operational models will lead to significant and fetal experimental errors. 
On the other hand, the general machine learning method cannot accurately extract the available informa-
tion for all existing observation sequences, thus reducing the validity of the experimental conclusions. 
Last but not least, the neural network algorithm can enhance the autonomous screening ability of the 
selected model so as to realize the power of automatic extraction of advanced discriminant features.
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MAIN FOCUS OF THE CHAPTER

In view of these traditional shortcomings, experiment by Mahapatra et al. (2021) shows that the DNN 
can automatically learn specific sequence motif of RNA-protein; and it can reduce the influence of 
noise in the original data and learn the fundamental hidden advanced features. In addition, some Deep 
Neural Network-based methods even artificially introduce noise to reduce overfitting and enhance the 
generalization and robustness of the model (Mahapatra, Gupta, Sahu, & Panda, 2021).

In order to verify whether the DNN method proposed by Mahapatra et al. (2021) can improve the 
effectiveness of PPI researches, this paper will test the methodology behind the model and hypothesis 
proposed by Satyajit Mahapatra from the following aspects.

1.  Analyze the Deep Neuron Network (DNN) algorithm and operational logic, verify whether the 
neural network can automatically extract abstract features from protein sequence features, and verify 
whether the deep neural network can better promote the recognition of advanced fusion features 
than K-nearest neighbor and Naive Bayes.

2.  Analyze and compare whether the input of each protein as a neural unit can improve the effective-
ness of neural network learning

ISSUES AND PROBLEMS

Limitation of Studying PPIs in Vivo and Vitro

Throughout the experiment settings, many problems and issues appear and these issues include not only 
with technical issues, but also logical issues. The identification of protein-protein interactions in vivo 
requires validation in vitro (Piehler, 2005). The classic technique for detecting protein-protein interactions 
in vitro is Tandem Affinity Purification (TAP). TAP, a technique based on affinity purification of a bait 
protein, is built on immunoprecipitation and pull-down assays. A ‘bait’ protein tagged with a TAP tag 
is expressed in a target cell and then analyzed by mass spectrometry and SDS-PAGE (Puig et al., 2001). 
The main disadvantage of TAP is that an added tag will impact the binding of protein to its interacting 
partners and protein expression level. Both of them make for errors in results. In addition, TAP requires a 
well-trained technician to operate in wash step, mass spectrometry and SDS-PAGE (Rigaut et al., 1999).

The Yeast Two-Hybrid (Y2H) system is made to screen Vivo protein-protein interaction (Piehler, 
2005). This technique requires a molecular structure of transcription factor that contains DNA-Binding-
Domain (DBD) and a Transcription Activation Domain (TAD). A DBD and TAD at non-binding status 
will inactivate the transcription factor, and its function could be restored by fusing them to two interact-
ing proteins. Therefore, the protein-protein interaction can be detected by combining a ‘bait’ protein to 
a DBD and ‘prey’ proteins (potential interaction partners) to TAD. This technique was used to screen 
the protein interaction network of S. cerevisiae. (Hendrickson, 1994).

However, the Y2H systems are limited to screen protein-protein interactions in the nucleus, and plasma 
membrane proteins perform significant physiological functions in cells, which cannot be measured with 
this technique. In the most available designs, the fluorescence substrates are used to monitor the status 
of the reaction and identify the protein-protein interactions. A fluorescence substrate work efficiency 
is affected by several environmental factors, including room temperature, PH value, cellular status and 
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binding, etc. (Hendrickson, 1994). A slight change in experimental and fluorescence substrate storage 
conditions can result in an experiment fails, including a high false-positive rate by over-activated fluo-
rescence substrates. Thus, a new technique that is relevant independent and excluding the experimental 
error needs to be developed.

Limitation of Current Algorithms on Interspecies & Intraspecies PPI Prediction

In recent years, people proposed several novel computational techniques that use features extracted 
from protein sequences to predict intraspecies and interspecies PPI. An auto-covariance method extracts 
information from protein sequence and predicts PPIs in S. cerevisiae using Support Vector Machines 
(SVM) (Guo et al., 2008). People use multiscale continuous and discontinuous local feature descriptors 
using these features for PPI prediction based on the SVM algorithm (You et al., 2013). Zhu-Hongyou and 
his colleagues utilized the discrete cosine transformation, global encoding and wavelet transformations 
to distinguish features from substitution matrix representation of protein sequence (You et al., 2019). 
Moreover, this technique is improved by a fusion of these features is used as input to the weighted sparse 
classifier for PPI prediction.

A new approach is also created to predict host-pathogen interactions by conducting multiple classifiers, 
including random forest, Naive Bayes, K-Nearest Neighbor (Kösesoy, Gök, & Öz, 2019). Furthermore, 
this hybrid classifier yielded the best result in terms of accuracy, F1 score, MCC (Matthews correlation 
coefficient), AUC (Area Under Curve). A prediction of the host-pathogen interaction is made based 
on a combination of four features, such as Amino Acid Composition (AAC), Composition-Transition-
Distribution (CTD), the relative frequency of amino acid triads, and frequency difference of amino 
acid triads (Zhou et al., 2018). With this method, the fused feature vectors, a complex high dimensional 
vector, are used as machine learning input that affects the predictor’s accuracy. Lei Wang and his col-
league performed a chi-square test to filter low-grade features from the high-dimensional feature set. 
Subsequently, they employed the rotation forest classifiers for the prediction of PPI (Wang et al., 2017).

Most of the current machine learning techniques used a single type of protein sequence feature or a 
fusion of multiple components to predict the intraspecies PPI. Still, very little work has been reported 
for the prediction of interspecies PPI. A prediction of intraspecies PPI helps to understand the process 
of life, such as hormone regulation, metabolism. In addition, issues such as infective diseases, and host-
pathogen interaction, need knowledge of interspecies PPI. However, none of the mentioned predictors 
predicts both intraspecies and interspecies PPI. And a change of method between data sets can affect 
the comparison results between results. Thus, the authors aim to create a technique that can handle the 
prediction of intraspecies and interspecies PPI.

METHODOLOGY

In this section, the authors introduce a blueprint of the DNN (Figure 1). In this experiment, the protein 
sequences, represented by a letter symbol of 20 types of amino acids, are used as an original input data 
set. The process starts with feature extraction and follows bypassing feature vectors through the DNN 
architecture. The DNN architecture helps to find essential protein features that determine the interac-
tion property. Finally, the extracted salient features are passed through the classifier to estimate the PPI 
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class. Moreover, a 5-fold cross-validation method is employed for the assessment of the performance 
of the classifier.

Data Set

A suitable PPI prediction method requires a valid benchmark data set to evaluate the predictor. In this 
experiment, two intraspecies data sets and one interspecies data set are used.

The intraspecies data set includes Helicobacter pylori data set and Saccharomyces cerevisiae data 
set. Helicobacter pylori PPIs data set contains 1458 positive interactions and 1458 negative interactions. 
Saccharomyces cescerevisia data set includes 5594 positive interactions and 5594 negative interactions. 
These PPI data sets are employed in this experiment to verify the validity of the following method in 
the intraspecies PPI prediction field.

A human host with Bacillus anthracis (B. Anthracis) is used as an interspecies data set in this experi-
ment. The Human-B. anthracis PPI data set contains 3090 interacting pairs and 9500 non-interacting 
pairs. Since Human-B. anthracis PPI data set has an imbalanced number of samples of positive and 
negative classes. Therefore, a balanced data set is generated from Human-B. anthracis PPI by randomly 
choosing positive samples equal to the number of negative samples. The proportional data set is obtained 
and used for testing the feasibility of DNN on the prediction of interspecies PPI.

Feature Extraction

A Deep Neural Network requires a fixed number of inputs for training and testing. Therefore, a piece 
of global information about protein with variable length is created in the feature extraction step. This 
information is obtained based on sequence-derived physiochemical and structural features of the protein. 
The data is highly considered for the prediction of Protein-Protein Interaction.

Figure 2. Blueprint of proposed Deep Neural Network (DNN)
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These three base characteristics classify protein: Amino-Acid Characteristic (AAC), Conjoint Dimer 
(CD), Composition, Transition, And Distribution (CTD). AAC, CT, and CTD are concatenated to form 
a high dimensional feature factor for the prediction of PPI.

Amino Acid Composition (AAC)

Note. Formulas from Mahapatra, S., Gupta, V. R., Sahu, S. S., & Panda, G. (2021). Deep Neural Network 
and Extreme Gradient Boosting Based Hybrid Classifier for Improved Prediction of Protein-Protein 
Interaction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1–1. https://doi.
org/10.1109/tcbb.2021.3061300 

Amino acid composition gives the fraction of each amino acid type within a protein. An AAC output of 
protein results in a 1×20-dimensional feature factor is calculated as

P a
f a

f a
n i

i

i i

� � � � �
� �

�� 1

20
,   i=1,2,3,…,20 (1)

Where Pn(ai) is 20 amino acid features, ai are ith amino acid and f(ai) is the frequency count of ith amino 
acid.

Conjoint Triad (CT)

Amino acids can be grouped into seven different clusters based on the volume of side chains and dipoles 
(Shen (2007)). In the conjoint triad test, the amino acids belong to one collection are considered identical.

Thus, the feature obtained is a normalized frequency of occurrence of all 343 triads (7×7×7).
A protein sequence n with L amino acid can be written as:

P = a1, a2, a3, …, aL (2)

Make it in triad form:

C a a a a a a a a an L L L� � � �1 2 3 4 5 6 2 1
, , ,  (3)

If the term is a triad, Cn can be calculated as

Cn = T1, T2, …, TI (4)

where T1= a1a2a3, T2= a4a5a6, T a a aI L L L� � �2 1
 and I=1,2,…,L–2.

The conjoint dimer feature is the normalized frequency of occurrence of each triad in Cn is calculated as

CT = [f1, f2, f3, …, f343] (5)
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Where f T
LI
I�
�1

 and TI is the number of occurrences of each triad.

Concatenating the feature of protein pairs, a CD output of a protein results in a 1×686 (2×343) 
feature factor.

COMPOSITION, TRANSITION AND DISTRIBUTION (CTD)

In Composition, Transition and Distribution (CTD), a protein with variable length is normalized to 
vectors based on their physicochemical and structural properties. Amino acids can be divided into three 
classes to attribute based on properties such as hydrophobicity, van der Waals volume, and polarity. 
Each amino acid is replaced by one of indices 1,2,3 depends on its class (Dubchak, Muchnik, Holbrook, 
& Kim, 1995) (Dubchak, Muchnik, Mayor, Dralyuk, & Kim, 1999). The following Table 1 provides 
amino acid attributes.

Table 1. Amio Acid Classes and Properties [Derived from Journal article by Dubchak et al. (1995).]

ID Property Class 1 Class 2 Class 3

[x.1] Hydrophobicity RKEDQN GASTPHY CLVIMFW

[x.2] Normalized van der Waals volume GASTPD NVEQIL MHKFRYW

[x.3] Polarity LIFWCMVY PATGS HQRKNED

[x.4] Polarizability GASDT CPNVEQIL KMHFRYW

[x.5] Charge KR ANCQGHILMFPSTWYV DE

[x.6] Secondary structure EALMQKRH VIYCWFT GNPSD

[x.7] Solvent accessibility ALFCGIVW PKQEND MPSTHY

[x.8] Surface tension GQDNAHR KTSEC ILMFPWYV

[x.9] Protein-Protein Interface hotspot propensity-Bogan DHIKNPRWY EQSTGAMF CLV

[x.10] Protein-Protein Interface propensity-Ma CDFMPQRWY AGHVLNST EIK

[x.11] Protein-DNA interface propensity-Schneider GKNQRSTY ADEFHILVW CMP

[x.12] Protein-DNA interface propensity-Ahmad GHKNQRSTY ADEFIPVW CLM

[x.13] Protein-RNA interface propensity-Kim HKMRY FGILNPQSVW CDEAT

[x.14] Protein-RNA interface propensity-Ellis HGKMRSYW AFINPQT CDELV

[x.15] Protein-RNA interface propensity-Phipps HKMQRS ADEFGLNPVY CITW

[x.16] Protein-ligand binding site propensity-Khazanov CFHWY GILNMSTR AEDKPQV

[x.17] Protein-ligand valid, binding site propensity-Khazanov CFHWYM DGILNSTV AEKPQR

[x.18] Propensity for protein-ligand polar & aromatic non-
bonded interactions-Imai DEHRY CFKMNQSTW AGILPV

[x.19] Molecular Weight AGS CDEHIKLMNQPTV FRWY

[x.20] cLogP RKDNEQH PYSTGACV WMFLI

[x.21] No of hydrogen bond donor in side chain HKNQR DESTWY ACGFILMPV

[x.22] No of hydrogen bond acceptor in side chain DEHNQR KSTWY ACGFILMPV

[x.23] Solubility in water ACGKRT EFHILMNPQSVW DY

[x.24] Amino acid flexibility index EGKNQS ADHIPRTV CFLMWY

Note. From Dubchak, I., Muchnik, I., Holbrook, S. R., & Kim, S. H. (1995). Prediction of Protein Folding Class using Global Description 
of Amino Acid Sequence. Proceedings of the National Academy of Sciences, 92(19), 8700–8704. https://doi.org/10.1073/pnas.92.19.8700

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



163

Protein-Protein Interactions (PPI) via Deep Neural Network (DNN)
 

The “x” in descriptor ID in the table represents three different feature categories, respectively. Cal-
culation details for each given attribute are as follows:

Composition

It works similar to amino acid composition, but the fraction of each amino acid type is replaced by each 
encoded class in the sequence. The document gives 72 features that can be defined as

C N
Nr
r= ,   r,s=1,2,3…,20 (6)

where Nr is the number of r encoded sequence and N is the length of the sequence.

Transition

A transition is used to transform the variable length of protein to a fixed-length vector without losing 
much information. Transition descriptor gives 72 features, 3×24, that can be defined as

T
N N
Nyz

yz zy�
�

,   yz=12,13,23 (7)

Where Nyz, Nzy is the number of dipeptides encodes as yz and zy and N is the length of the sequence

Distribution

The distribution descriptor describes the distribution of each attribute in the sequence. Each attribute 
has five distribution descriptors, and they are the position per cent in the whole series, in order of the 
first residue, 25% residues, 50% residues, 75% residues, and the last residue, respectively a specified 
encoded class. Distribution descriptor gives 360 features that can be defined as
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(8)

where K0, K25, K50, K75, K100 are the indexes of each residue in such sequences.

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



164

Protein-Protein Interactions (PPI) via Deep Neural Network (DNN)
 

Figure 3. Proposed deep neural network for prediction of Protein-Protein Interaction (PPI)
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DEEP NEURAL NETWORK (DNN) CONSTRUCTION

A Deep Neural Network (DNN) is an Artificial Neural Network (ANN) built to simulate the neural 
network found in vivo brain to learn and interpret data. It is an effective tool to combine low-level 
features with an objective function to discover data rules. A Deep Neural Network consists of layers of 
interconnected neurons. The number of hidden layers and their maximum width, number of neurons of 
the hidden layer in a neural network represents its depth.

In this experiment, a Deep Neural Network (DNN) is employed to find the hidden PPI from the raw 
features of the protein sequence (Figure 3). In general, a DNN is constructed by four or more hidden 
layers. The input is fed into the first layer, and output is obtained from the last layer. A rectified linear 
unit function (ReLU) processes the weighted sum generated in the DNN of each hidden layer. ReLU is a 
simple activation function that reduces the training time by blocking negative values in the weighted sum. 
In this case, the cross-entropy function is also employed to reduces the training time as a loss function. 
An error back-propagation with a Stochastic Gradient Descent Algorithm (SGD) is used to train DNN.

The proposed DNN architecture is shown in Figure 3. It has three main components, feature extrac-
tion layer, fusion layer and prediction layer. It will output a binary value that represents whether Protein 
1 interacts with Protein 2 or not.

A grid search technique is used to obtain optimal hyper-parameters for DNN. The parameters used 
for the simulation of the deep neuron network is provided in Table 2.

Table 2. Hyperparameters used for the Deep Neural Network. [Derived from Journal article by Ma-
hapatra et al. (2021).]

Hyperparameter Name Optimal value

Learning rate 0.01

Batch size 64

Momentum rate 0.9

Weight Initialization glorot_normal

Weight regularization L2

Per-parameter adaptive learning rate method SGD

Activation ReLU

Dropout rate 0.2

Loss Function binary-crossentropy

Epochs 40

Note. From Mahapatra, S., Gupta, V. R., Sahu, S. S., & Panda, G. (2021). Deep Neural Network and Extreme Gradient Boosting 
Based Hybrid Classifier for Improved Prediction of Protein-Protein Interaction. IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, 1–1. https://doi.org/10.1109/tcbb.2021.3061300
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Input

The Deep Neural Network takes a pair of protein sequence feature vectors, 1×867 dimensional vectors. 
The feature vector of protein sequence with n length consists of 20 AAC features, 343 CT features, and 
504 CTD features.

Feature Extraction Layer

Two parallel channels consist of the feature extraction layer. Each channel has a structure of four con-
nected layers of 512-256-128-64 computing units. In the feature extraction layer, the raw features of 
protein sequences are marked by their effective representation of PPI. The output of each layer in this 
network starts with a dense layer and ends with a dropout layer. The dense layer extracts relevant input 
from the input and outputs them to the dropout layer as features. Dropout is a technique employed to 
avoid over-fitting. Some neurons, along with their connections, are assigned zero during training (Figure 
3). Here, a rectified linear unit is employed to map all negative values in output to zero.

f Dropout ReLU Dense Plx M x� � �� �� � ,   x=1,2 

where flx represents the output vector, x is protein number, M is the number of nodes in layer l.

Figure 4. Hidden layer dropped out neurons architecture
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Fusion Layer

The fusion layer concatenates the output from two parallel channels, and its output is given by F= [f1f2].

Prediction Layer

The prediction layer has a structure of three connected dense layers with an activation function ReLU, 
followed by a neuron with a sigmoid activation function. The sigmoid activation function in the single 
neuron transforms the input vector J of dimension d from the previous into an output score.

O P P J W
k

d
k k1 2 1 0

,� � � �
�� �  (9)

where Wk represents the weights corresponding to the input Jk and 𝛽0 is the bias vector.
The interaction probability between P1 and P2 is computed by the following formula:

� P P O P Pe1 2 1 2

1

1
, ,
�

� � � �  (10)

And the result is passed through the binary cross-entropy loss function given by:

l O P P O P P O PPP PP PP1 2 1 2 11 2 1 2 1 2
1 1, , log , log ,� �� � � � � �� �� � � �� � �� � � PP2� �� �  (11)

where � PP
1 2

1�  and γ PP
1 2

 are the respective class labels for interacting and non-interacting.

Note. Formulas from Mahapatra, S., Gupta, V. R., Sahu, S. S., & Panda, G. (2021). Deep Neural Network 
and Extreme Gradient Boosting Based Hybrid Classifier for Improved Prediction of Protein-Protein 
Interaction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1–1. https://doi.
org/10.1109/tcbb.2021.3061300

Performance Evaluation

The 5-fold cross-validation method is a standard for the deep neural network, and it is employed to as-
sess the classifier’s performance. In the 5-fold cross-validation method, the data set is randomly divided 
into five subsets. In this experiment, 80% of the data set is used for training, and the remaining 20% is 
used for testing. The stratified K-fold of the scikit-learn library is used to perform the splitting task. The 
mean and the standard deviation of these five experiments are final results.

The following assessments compute the accuracy and deviation to evaluate the validity and robust-
ness of a DNN prediction method, and they are defined as follows:

Accuracy TP TN
TP TN FP FN

�
�

� � �
 (12)
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Sensitivity TP
TP FN

�
�

 (13)

Specificity TN
TN FP

�
�

 (14)

Precision TP
TP FP

�
�

 (15)

MCC TP TN FP FN
TP FP TP FN TN FP TN FN

�
� � �

�� � �� � �� � �� �
 (16)

where TP is the True Positive number, it represents the number of predicted positive PPIs found in 
positive data set; TN is the True Negative number, it represents the number of predicted negative PPIs 
found in negative data set; FP is the False Positive, it represents the number of negative PPIs predicted 
as positive; and FN is the False Negative, it represents the number of positive PPIs predicted as negative.

RESULTS

Performance of PPI Prediction

The proposed predictor is applied to the extracted features of S. cerevisiae (core subset), H. pylori, 
Human-B. Anthracis data sets. Table 3 gives the 5-fold cross-validation results of these three data sets.

Table 3. Performance of DNN on S. cerevisiae (core subset), H.pylori, Human-B.Anthracis data sets

Data set Accuracy (%)
 

Sensitivity 
(%)

Specificity (%) Precision (%) MCC (%) AUC 
(%)

S. Cerevisiae
(core) 87.01±1.50 86.07±2.86 87.32±1.53 87.26±1.33 74.01±2.86 93.73

H. pylori 87.57±0.97 89.71±1.19 85.46±2.05 86.09±1.19 75.27±1.18 92.22

Human-B. 
Anthracis 89.25±0.95 91.34±1.03 87.27±1.49 87.16±1.24 74.92±2.22 94.12

Note. From Mahapatra, S., Gupta, V. R., Sahu, S. S., & Panda, G. (2021). Deep Neural Network and Extreme Gradient Boosting 
Based Hybrid Classifier for Improved Prediction of Protein-Protein Interaction. IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, 1–1. https://doi.org/10.1109/tcbb.2021.3061300
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The average prediction performance on the proposed method on S. cerevisiae(core) data set, such 
as accuracy, precision, MCC, and AUC, are 87.01%, 87.26%, 74.01%, and 93.73%, respectively. The 
method also achieved the result on H.pylori data sets, such as accuracy, precision, MCC, and AUC are 
87.57%, 86.09%, 75.27%, and 92.22%. On the interspecies data set of Human-B. Anthracis, the proposed 
method achieved an accuracy of 89.25%, a precision of 87.16%, and MCC of 74.92%, and an AUC of 
94.12%, respectively. These results indicate that DNN is indeed a successful method for PPI prediction.

Comparing With K-Nearest Neighbor and Naive Bayes

The comparison of performance between the proposed method and K-Nearest Neighbor (KNN) and 
Naive Bayes (NB) on the H.pylori data set is given in Figure 5.

Neither KNN nor NB has a high prediction performance. KNN has average prediction performance, 
such as accuracy, specificity, precision, MCC, and AUC are 71.00±1.69%, 45.85±2.66%, 63.99±1.30%, 
48.61%, and 84.57%, respectively. On the other hand, the accuracy, specificity, precision, MCC, and 
AUC obtained from NB are 60.11±4.34%, 31.81±4.36%, 88.42±8.68%, 56.95±3.72%, 25.12±6.86%, 
and 69.85%, respectively. Therefore, the proposed DNN has a better prediction result regarding accuracy, 
specificity, precision, MCC, and AUC.

The Receiver Operator Characteristic (ROC) curve is a technique used for visualizing the prediction 
performance. ROC is composed of the actual positive rate and the false positive rate from results, which 

Figure 5. Performance comparison of Deep Neural Network (DNN), K-Nearest Neighbor (KNN), and 
Naïve Bayes (NB) algorithms on H. pylori data set.
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shows the relative tradeoffs between True Positive and False Positives. In this experiment, the ROC curve 
is plotted to compare various methods on H. pylori. (Figure 6)

High-Level Featured Visualization

The general idea behind DNN is that it captures more notable features from raw input data through hid-
den layers, which improve classification performance. A technique, t-SNE, built in python scikit-learn 
library is used to project high dimensional results into a 2D coordinate graph to visualize this process. 
(Figure 7).

Figure 6. Receiver Operator Characteristic (ROC) curve comparison of DNN, NB, and KNN algorithms 
on H.pylori data set.
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Figure 7. t-SNE plots of H. pylori data set
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From Figure 7, the negative and positive PPI starts with chaos. After multiple hidden layers involved 
in training, the two classes are clear split into two clusters. In other words, DNN can extract important 
features for PPI prediction by layer-wise abstraction.

FUTURE RESEARCH DIRECTIONS

In this work, the authors aimed to improve PPI prediction and propose a method that employs the DNN 
to extract high-level discriminative features from the fused common protein descriptors. The experi-
mental results show that the DNN classifier performs better on predicting interspecies and intraspecies 
PPI compare to simple KNN and NB classifiers. However, the accuracy of work is relatively low com-
pare to current valid technique those are capable of analyzing signaling pathway and understanding the 
pathogenesis of the disease. The accuracy can be improved by utilizing different protein descriptors and 
machine learning techniques.

Recent researches show some hybrid deep learning algorithm like Residual Recurrent Convolutional 
Neural Network (RCNN), and Deep Neural Network with Extreme Gradient Boosting (DNN-XGB) 
have achieved better accuracy (Chen. M. et al. 2019) (Mahapatra. S. et al. 2021). Thus, an investigation 
of combining deep learning techniques is one of the future choices to improve the PPI prediction. In 
addition, the input protein sequence descriptor used in this experiment is complex, which can affect the 
accuracy of prediction (Zhou. X. et al. 2018). Thus, it represents that the results can be improved by 
changing the combination of protein descriptors vector in this experiment.

DISCUSSION AND CONCLUSION

Based on the experimental method proposed by Satyajit Mahapatra and Ivek Raj Gupta’s project team, 
this paper constructs a consistent framework. It uses a set of public data to simulate and analyze the 
operation model. The neural network method provides a set of perfect parameters for the experiment. 
These parameters are more accurate than those offered by the K-Nearest Neighbor method and the Naive 
Bayes method. Based on the vital information found in the simulation, it is clear that the Deep Neuron 
Network (DNN) method can provide more accurate parameters because the neural network algorithm 
can automatically learn the internal distributed feature representation from the data. Second, PPI is a 
biological phenomenon that can generate infinitely and randomly. The Deep Neuron Network (DNN) 
operating model can predict these changes in advance, which is why Deep Neuron Network (DNN) has 
proved to be an effective way to study protein representation.

In this chapter, the only goal is to verify the experimental conclusion proposed by Satyajit Mahapatra 
and Ivek Raj Gupta’s project team (Mahapatra et al., 2021) that Deep Neuron Network (DNN) can use the 
Deep Neural Network to extract advanced discrimination features from common protein descriptions. As 
the analysis of the Deep Neuron Network (DNN) method described in this chapter, it can be concluded 
that the Deep Neuron Network (DNN) method can indeed improve the identification and research on 
Protein-to-Protein Interactions (PPI). ·
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KEY TERMS AND DEFINITIONS

Amino Acid: An organic acid containing an amino group, and it is the building block of proteins. 
Mainly from proteolysis, it can also be synthesized chemically or by microbial fermentation.

Amino-Acid Composition (AAC): Amino acid composition gives the fraction of each amino acid 
type within a protein.

Conjoint Analysis: By assuming that the products have specific attributes, the actual effects are simu-
lated, and then consumers are allowed to evaluate these virtual products according to their preferences. 
In addition, these characteristics are separated from the utility of attribute level by the mathematical sta-
tistics method so that the importance of each attribute and attribute level can be quantitatively evaluated.

Deep Neural Network (DNN): A technology in the field of Machine Learning that can use statisti-
cal learning methods to extract high-level features from original sensory data and obtain an adequate 
representation of input space in a large amount of data.

Grid Search: Grid Search is about traversing every intersection in the grid to find the best combi-
nation. The dimension of the grid is the number of over arguments. If we have k super parameters, and 
each super parameter has m candidates, we have to go through km combinations.

K-Nearest Neighbor (KNN): A more mature method in theory, but also one of the simplest machine 
learning algorithms. In the feature space, if the majority of the k nearest (i.e., the closest in the feature 
space) samples in the vicinity of a sample belong to a specific category, then the sample also belongs 
to this category.

Naive Bayes (NB): NB model is a classification model based on Bayes’ theorem and independent 
assumption of characteristic conditions. It requires few estimated parameters, is not sensitive to missing 
data, and the algorithm is relatively simple. In theory, the NB model has the smallest error rate compared 
with other classification methods.

Protein-Protein Interactions (PPI): A reaction in which two or more proteins are joined together 
by physical contact. Typically, biologists use this method to find new combinations and new.

Receiver Operating Characteristic Curve (ROC): According to a series of different dichotomies 
(demarcation or determination threshold), the valid positive rate (sensitivity) is plotted on the vertical 
axis, and the false positive rate (1-specificity) is plotted on the abscissa.

Rectified Linear Unit (ReLU): In the neural network, linear rectification, as the neuron’s activation 
function, defines the nonlinear output of the neuron after the linear transformation. In other words, for 
the input vectors from the upper layer of the neural network that enters the neuron, the neuron using the 
linear rectification activation function will be output to the next layer of the neuron or as the output of 
the entire neural network (depending on the position of the existing neuron in the network structure).
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ABSTRACT

For the purpose of control health expenditures, there are some papers investigating the characteristics 
of patients who may incur high expenditures. However fewer papers are found which are based on the 
overall medical conditions, so this chapter was to find a relationship among the prevalence of medical 
conditions, utilization of healthcare services, and average expenses per person. The authors used boot-
strapping simulation for data preprocessing and then used linear regression and random forest methods to 
train several models. The metrics root mean square error (RMSE), mean absolute percent error (MAPE), 
mean absolute error (MAE) all showed that the selected linear regression model performs slightly better 
than the selected random forest regression model, and the linear model used medical conditions, type 
of services, and their interaction terms as predictors.

INTRODUCTION

Many studies showed that a few high-cost people account for the majority of health expenditures (Berk 
& Monheit, 2001-03-01) (Riley, May/Jun2007). Identifying patients who may incur high medical ex-
penditures plays an important role to reduce health expenditures, allocate resources and improve the 
healthcare system. There are multiple studies comparing the essential attributes of potential high-cost 
patients. Among the most common attributes include age, self-reported health status, functional limits, 
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etc. (Meehan, Chou, & Khasawneh, 2015). On the other hand, the consistent high-cost users (CHUs), 
defined as people with high medical costs consistently across multiple consecutive periods, can be a 
good target. It was observed that CHUs had higher prevalence of chronic and psychosocial conditions 
than point high-cost users, which may be partially explained by that those conditions need continuous 
medications (Chang, et al., 2016-09).

There are some studies aim to investigate the economic burden for patients of specific disease (Whit-
ney, Kamdar, Ng, Hurvitz, & Peterson, 2019) (Rodbard, Green, Fox, & Grandy, 2009) (Bhattacharyya, 
2011-09), but less are found to be based on overall medical conditions, so the objective of this paper is to 
find how prevalence of medical conditions and type of health services could affect the average expenses 
per person with care. We will start with data preprocessing where we will use bootstrapping method to 
construct simulation datasets. Then for the next section, we can use this dataset to train predictive models, 
such as linear regression models and random forest method. Several metrics to measure goodness of fit 
of regression models will be employed to select the best performed model. The result can be applied to 
insurance industry and health service management.

DATA DESCRIPTION AND PREPROCESSING

The original data was collected by the Medical Expenditure Panel Survey (MEPS). MEPS is a set of 
large-scale surveys on the health services and the frequency, the cost of using these services, how they 
are paid, as well as the data about health insurance in the US. Among the two major components of 
MEPS, the Household Component (HC) provides information on household-reported medical condi-
tions. The sample of families and individuals are from households that participated in the prior year’s 
National Health Interview Survey (conducted by the National Center for Health Statistics) (Agency for 
Healthcare Research and Quality, 2019).

The data we use come from the HC summary data tables conducted by the American Agency for 
Healthcare Research and Quality (AHRQ) which provides number of people with care and mean ex-
penditure per person from 2016 to 2018 (Agency for Healthcare Research and Quality, n.d.). The data 
are grouped by 53 condition categories collapsed from the household-reported conditions coded into 
ICD-10 and CCSR codes, and six event types (emergency room visits, home health events, inpatient 
stays, office-based events, outpatient events, prescription medicines).

Number of People with Care

According to the documentation of 2018 Medical Conditions File from MEPS (MEPS HC-207 2018 
Medical Conditions, 2020), each year a new panel of sample households of sample size about 15,000 
households is selected, and all data for a sampled household are reported by a single household respondent.

To get some idea of how prevalent a condition is and how frequently a type of events is used, we did 
some summation to plot the following figures. For example, the number of people had condition “hy-
pertension” is the total number of six combinations: hypertension - emergency room visits, hypertension 
- home health events, hypertension - inpatient stays, hypertension - office-based events, hypertension 
- outpatient events, hypertension - prescription medicines.
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Figure 1. TreeMap for Number of People with care by Condition

Figure 2. Number of people with care by type of event in year 2018
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Figure 1 summarizes the number of people with care of 53 conditions and the corresponding percent 
in a TreeMap. The top five conditions of high prevalence are hypertension (7.13% or 87,234), osteoar-
thritis and other non-traumatic joint disorders (6.53% or 79,932), mental disorders (6.38% or 78,115), 
hyperlipidemia (4.86% or 59,478), COPD, asthma, and other respiratory conditions (4.7% or 57,518), 
Nervous system disorders (4.68% or 57,332), Other care and screening (4.45% or 54,478) and Trauma-
related disorders (4.07% or 49,775). A detailed summary sorting from high to low can be seen in Table 1.

Through Figure 2, it is obvious that prescription medicines (48%) and office-based events (40%) 
are the most frequently six types of events, while home health events and inpatient stays are the least. 
Note that because persons can be seen for more than one condition per visit, these frequencies will not 
match the person or event-level utilization counts (MEPS HC-207 2018 Medical Conditions, 2020). For 
example, a person had one inpatient hospital stay and was treated for three different conditions, then 
the total inpatient stay would be three when actually there was only one inpatient stay for this person.

Table 1. Number of people with care by condition in year 2018

Conditions Total Conditions Total Conditions Total

Hypertension 87,234 Cancer 24,992 Glaucoma 7,165

Osteoarthritis and other 
non-traumatic joint disorders 79,932 Disorders of mouth and esophagus 24,048 Disorders of teeth and jaws 6,880

Mental disorders 78,115 Other endocrine, nutritional & 
immune disorder 23,143 Cerebrovascular disease 6,576

Hyperlipidemia 59,478 Influenza 20,583 Disorders of the upper GI 6,320

COPD, asthma, and 
other respiratory conditions 57,518 Back problems 20,333 Gallbladder, pancreatic, and liver 

disease 5,777

Nervous system disorders 57,332 Other circulatory conditions of 
arteries, veins, and lymphatics 20,203 Epilepsy and convulsions 3,613

Other care and screening 54,478 Female genital disorders, and 
contraception 17,961 Hernias 3,548

Trauma-related disorders 49,775 Otitis media and related conditions 16,369 Non-malignant neoplasm 3,126

Acute Bronchitis and URI 48,907 Systemic lupus and connective 
tissues disorders 13,467 Anemia and other deficiencies 2,807

Skin disorders 48,213 Urinary tract infections 13,073 Intestinal infection 2,379

Diabetes mellitus 43,473 Kidney Disease 12,821 Poisoning by medical and non-
medical substances 1,802

Heart disease 40,563 Headache 12,393 Hemorrhagic, coagulation, and 
disorders of White Blood cells 1,641

Infectious disease 38,389 Other bone and musculoskeletal 
disease 10,905 Complications of pregnancy/birth, 

and perinatal conditions 1,490

Symptoms 36,026 Normal pregnancy/birth, and live 
born 9,890 Non-malignant breast disease 1,312

Thyroid disease 29,145 Cataract 9,232 Congenital anomalies 1,109

Other eye disorders 28,903 Other genitourinary condition 9,060 Tonsillitis 642

Other stomach and intestinal 
disorders 27,505 Pneumonia 8,592 Complications of surgery or device 0

Allergic reactions 26,529 Male genital disorders 8,164 Overall Total 1,222,931
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Average and Total Expense

Table 2 summarizes the expenses by conditions. From total cost perspective, Office-based events (28.05%), 
Prescription medicines (27.54%) and inpatient stays (25.29%) are the main categories of total expenses. 
Office-based events and prescription medicines have low average cost but their high frequency results 
high total cost. Inpatient stays has relatively low frequency (1.05% total number of people with care) 
but high severity ($8,285 average expenses) which end up with high total expenses.

Almost all high average expenses per person are from home health events and inpatient stays as shown 
in Figure 3. Note that the points in this figure are all possible combinations of conditions and type of 
events. For example, the highest average expense 35,038 is a patient with condition “cancer” and type 
of event “inpatient stays”. Many combinations have average expense equals zero. There are several pos-
sible reasons: one is that some combinations do not have occurrence, such as condition “headache” and 
type of event “inpatient stays”; another is that the data was self-reported, which means it is possible to 
miss some record. In our following research steps, we will apply bootstrapping method and this method 
will omit those with no occurrence in the original dataset.

Table 2. Average expense by type of event in year 2018

Emergency 
room 
visits

Home health 
events

Inpatient 
stays

Office-based 
events

Outpatient 
events

Prescription 
medicines Total

Total 
Number 

of 
people 

with Care 
(Count)

50,914 12,786 22,733 492,625 63,307 580,566 1,222,931

Total 
Number 

of 
people 

with Care 
(%)

4.16% 1.05% 1.86% 40.28% 5.18% 47.47% 100.00%

Average 
Expense 1,142 8,285 18,878 966 2,533 805 1,388

Total 
Expense 

($)
58,139,817 105,936,880 429,162,594 475,988,228 160,327,119 467,345,319 1,696,899,957

Total 
Expense 

(%)
3.43% 6.24% 25.29% 28.05% 9.45% 27.54% 100.00%
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From the perspective of conditions, Table 3 and Figure 4 summarizes the average expenses and total 
expenses respectively. From Table 3 we can see that the overall average expenses is $1,388. The most 
expensive conditions are Pneumonia ($5,298), Other care and screening ($5,289), COPD, asthma, and 
other respiratory conditions ($4,185). From Figure 4, we can see Male genital disorders has the highest 
total expenses, 7.87% or $133,675,730 of the total expense weas spent on this category. Other catego-
ries such as other bone and musculoskeletal disease (7.27%), Disorders of teeth and jaws (7.23%), heart 
disease (6.82%), Other endocrine, nutritional & immune disorder (6.39%), COPD, asthma, and other 
respiratory conditions (6.16%), Normal pregnancy/birth, and live born (7.06%), Tonsillitis (5.17%), Dia-
betes mellitus (4.78%), Hernias (3.6%) and Pneumonia (3.08%) are the main categories where patients 
spend their money on.

Identifying conditions of high expense is very meaningful for but not limited to insurance policy mak-
ing. The goal of the model is to investigate the relationship between a medical condition’s characteristics, 
such as prevalence and common treatments received, and its corresponding expenses. However, because 
the random variables from summary tables are not independent and identically distributed, instead of 
doing regression directly, we use bootstrapping method to simulate a dataset of 5000 independent patients 
with specific condition, type of event and expenses, which can provide an estimate for the distribution 
of the original data.

Figure 3. Average expense by type of event with condition distribution in year 2018
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Table 3. Average expense by conditions in year 2018

Conditions Average 
Cost Conditions Average 

Cost Conditions Average 
Cost

Pneumonia $ 5,298 Diabetes mellitus $1,412 Congenital anomalies $ 544

Other care and screening $ 5,289 Glaucoma $1,405 Thyroid disease $ 541

COPD, asthma, and other 
respiratory conditions $ 4,185 Hyperlipidemia $1,399 Infectious disease $ 493

Allergic reactions $ 3,872 Nervous system disorders $1,394 Headache $ 472

Kidney Disease $ 2,994 Otitis media and related 
conditions $1,321 Female genital disorders, 

and contraception $ 444

Other endocrine, nutritional 
& immune disorder $ 2,676

Complications of 
pregnancy/birth, and 
perinatal conditions

$1,301
Osteoarthritis and other 
non-traumatic joint 
disorders

$ 429

Heart disease $ 2,665
Hemorrhagic, coagulation, 
and disorders of White 
Blood cells

$1,113
Other circulatory 
conditions of arteries, 
veins, and lymphatics

$ 414

Skin disorders $ 2,445 Disorders of the upper GI $1,088 Mental disorders $ 409

Disorders of teeth and jaws $ 2,255 Other stomach and 
intestinal disorders $ 997 Non-malignant neoplasm $ 323

Anemia and other 
deficiencies $ 2,248 Cataract $ 976 Non-malignant breast 

disease $ 301

Hernias $ 2,224 Epilepsy and convulsions $ 960
Systemic lupus and 
connective tissues 
disorders

$ 292

Cerebrovascular disease $ 2,119 Gallbladder, pancreatic, and 
liver disease $ 862 Complications of surgery 

or device $ 278

Normal pregnancy/birth, 
and live born $ 1,797 Poisoning by medical and 

non-medical substances $ 751 Hypertension $ 249

Tonsillitis $ 1,765 Disorders of mouth and 
esophagus $ 744 Symptoms $ 238

Male genital disorders $ 1,672 Influenza $ 729 Urinary tract infections $ 157

Back problems $ 1,591 Cancer $ 698 Intestinal infection $ 136

Other bone and 
musculoskeletal disease $ 1,581 Other genitourinary 

condition $ 660 Acute Bronchitis and URI $ -

Other eye disorders $ 1,468 Trauma-related disorders $ 555 Overall Average $1,388
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Bootstrapping Sampling on Number of People with Care

Bootstrapping is one of resampling methods that uses random sampling with replacement, and it assigns 
measures of accuracy (bias, variance, confidence intervals, prediction error, etc.) to sample estimates 
(Bootstrapping (statistics), 2021). We will use this method to create a set of simulated samples, mak-
ing conditions and type of event as independent variables, and average expense per person with care as 
dependent variable.

First, we convert the number of people with care of each condition and event into a probability 
percent of the total number of people with any condition and any event from year 2016 to year 2018, 
which is 3,652,509. For example, the number of people with condition “Acute Bronchitis and URI” and 
received “emergency room” service for year 2018 is 1911, and it is converted to 0.052%. This conver-
sion is repeated for each combination of condition, event and year, and all those probabilities will add 
up to 1. After that, the cumulative probability is calculated to construct intervals that help determining 
our bootstrapping sampling. To be more specific, a randomly generated number 0.00085 falls in the 
interval of [0.00075263, 0.00093415) and thus this number generate a patient with condition “back 
problems” and “emergency room visit”. As a result, generating 5000 random numbers range from 0 to 

Figure 4. Total expense by condition in year 2018
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1 can construct a sample with 5000 patients whose conditions and type of events retain the distribution 
information of the original data.

The original data from year 2016 to 2018 contains 159 rows of data, which are 53 conditions times 
3 years. By bootstrapping, we obtained a simulated sample with 5000 independent patients. And we 
constructed two tables to test whether the simulated sample correctly captures the frequencies of the 
original data. Table 5 is the list of five highest occurrence and five least occurrence conditions from the 
5000 simulated patients, and Table 6 is the list from the original data that averages over three years. The 
percent column is calculated as the occurrence of a specific condition divided by the total number of 
people with care. For example, 380 patients of hypertension were simulated in this dataset and as men-
tioned earlier the dataset’s sample size is 5000, then the percent of “hypertension” is 380/5000 = 7.6%. 
By comparing these two tables, we can see that the top five conditions of high prevalence are the same 
for simulated dataset and original data. And though the least five conditions have slight differences, the 
differences of percent between simulated and original data are relatively small and can even be smaller 
if the simulated dataset has larger sample size.

Table 4. Examples showing bootstrapping procedures

Condition Emergency room 
visits Probability Cumulative 

probability

Acute Bronchitis and URI 1,911 0.0005232 0.0005232

Allergic reactions 838 0.00022943 0.00075263

Anemia and other deficiencies 0 0 0.00075263

Back problems 663 0.00018152 0.00093415

Cancer 0 0 0.00093415

Cataract 0 0 0.00093415

Cerebrovascular disease 797 0.00021821 0.00115236

Table 5. The highest 5 and least 5 occurred conditions and their respective percent from the simulated 
dataset

Sort by percent Conditions Percent

1 Hypertension 7.60%

2 Osteoarthritis and other non-traumatic joint disorders 6.62%

3 Mental disorders 5.42%

4 Nervous system disorders 4.96%

5 Hyperlipidemia 4.80%

49 Complications of pregnancy/birth, and perinatal conditions 0.12%

50 Non-malignant breast disease 0.10%

51 Congenital anomalies 0.10%

52 Tonsillitis 0.08%

53 Complications of surgery or device 0.08%
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The more detailed tables showing distribution probabilities of each condition, each type of events, 
and cross categories can be seen in appendix. Because the simulated sample size is relatively small 
compared with the original total number of people of any category, some combinations of condition 
and event type that have low frequency are also drawn less and even never drawn in the bootstrapping 
procedure. Some combinations like “hypertension” and “office-based events”, “Osteoarthritis and other 
non-traumatic joint disorders” and “office-based events”, which have very high frequency in the original 
data, also have high percent in the simulated sampling. Comparing the grand total probabilities of each 
condition or event type also shows that the bootstrapping sample captures the original distribution and 
thus is appropriate to replace it to be the predictors in a regression model.

Bootstrapping Average Expense Per Person

After a sample of patients with various conditions and events that are generated by bootstrapping, each 
patient’s expense is generated from three years’ average expense data assuming lognormal distribution. 
Table 7 shows three sample combinations’ original average expense data from year 2016 to 2018 and 
the simulated expenses. For example, condition “hypertension” and event “home health events” have 
7879, 7487, 7100 dollars of average expense per person in year 2018, 2017, 2016 respectively. The mean 
and variance of these three years’ data are 7488.67 and 101141.56. Based on the relation between log-
normal and normal distribution, we back up the 𝜇 and 𝜎 which are the parameters for lognormal distri-
bution, and for this case 𝜇 equals 8.92 and 𝜎 equals 0.042. Then a random number range from 0 to 1 is
treated as a probability to generate a standard score z, and the simulated average expense is calculated 
as e z� �� * . In our simulated sample there are four patients with “hypertension” and “home health events”, 
and their simulated expenses are 7446, 7550, 7109, 7101, which are reasonable compared with the past 
three years’ data.

Table 6. The highest 5 and least 5 occurred conditions and their respective percent from the original data

Sort by percent Conditions Percent

1 Hypertension 7.28%

2 Osteoarthritis and other non-traumatic joint disorders 6.38%

3 Mental disorders 6.06%

4 Hyperlipidemia 4.99%

5 Nervous system disorders 4.64%

49 Poisoning by medical and non-medical substances 0.11%

50 Complications of surgery or device 0.10%

51 Congenital anomalies 0.10%

52 Tonsillitis 0.08%

53 Hemorrhagic, coagulation, and disorders of White Blood cells 0.07%
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Figure 5 and Figure 6 demonstrate the distribution of simulated average expenses grouped by medi-
cal conditions and type of services respectively. Some relationships are obvious, for example, most of 
patients have low expenses and few patients incurred high expenses. The conditions with top average 
expenses are “cancer”, “other care and screening”, “heart disease” and “cerebrovascular disease”. And 
the type of service “inpatient stays” has significantly higher expenses that even its lower quartile is higher 
than the others, while “home health” is the second.

Table 7. Examples of original record and simulated average expenses

Condition Type of event 2018 2017 2016 Simulated expenses rounded

hypertension home health events 7879 7487 7100 7446, 7550, 7109, 7101

Infectious disease Inpatient stays 25659 16817 20049 20394, 21982

Thyroid disease Office-based events 506 469 469 496, 508, 506, 494, 459, 473, 511, 497, 
499, etc.

Figure 5. Simulated average expense grouped by medical conditions
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PREDICTIVE MODELING

Two regression methods, general linear regression and random forest are used with a dataset of 5000 
patients with specific condition and type of service to predict the corresponding expense. For both re-
gression methods we trained several models and select one with best performance.

Linear Regression

Because it is possible that only one variable may be sufficient to predict the average expenses, we first 
tried the linear models with all four combinations of the two predictive variables. As shown in Table 8, 
linear model 1 (lm 1) and linear model 2 (lm 2) predict average expense by conditions or type of events 
individually; linear model 3 (lm 3) uses both of the predicting variables; linear model 4 (lm 4) uses both 
and also take account of their interaction effect.

Table 8. Description of four linear models

Models Descriptions

lm1 Average expense ~ conditions

lm2 Average expense ~ type of events

lm3 Average expense ~ conditions + type of events

lm4 Average expense ~ conditions + type of events + conditions * type of events

Figure 6. Simulated average expense grouped by type of services
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The simulated sample was divided into train set and test set with ratio 8:2. The models are trained 
with the train set and then applied to both train set and test set. The prediction values are then compared 
with the true values which are the simulated average expenses, as shown in Figure 7 that the matrix of 
comparison visualizes their prediction accuracy. If the model is a good fit, the points should be close 
to the straight line which means the predicted value equals the true value. Through the figures of each 
row, we can see that lm4 is the best fit, while lm1 and lm2 are the worst. Further observation can lead 
to the speculation that (lm1) only using conditions to predict may tend to underestimate the average 
expenses, and (lm2) only using type of events make the model insufficient of variable levels and thus 
can’t make accurate predictions.

Figure 7. Predicted value versus simulated value for train set and test set of linear models 1 to 4, re-
spectively
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To select a model among the four, we used three metrics: multiple R-squared, adjusted R-squared 
and Akaike’s Information Criteria (AIC). The R-squared, also known as coefficient of determination, is 
the proportion of the variation in dependent variable that can be explained by the independent variables. 
It is measured with two sums of squares equations, SSresidual the sum of squared residuals between observed 
values yi and fitted data fi, and SStotal the sum of squared residuals between observed values yi and mean 
of the observed data y . If a model perfectly fits the data, which means yi=fi, then SSresidual equals zero 
and R2 equals 1, so a model with R2 close to 1 is usually more preferable.

R SS
SS

y f
y y

residual

total

i i

i

2

2

2
1 1� � � �
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 (1)

However, increasing the number of predictive variables can always increase R2 so it is inappropriate 
to compare models with different number of predictive variables by R2. Adjusted R2 is more appropriate 
because it takes into account the number of variables. In RStudio the adjusted R2 is calculated as below, 
where n is the sample size and p is the number of independent variables. For example, in lm2 there are 
4000 observations in the train set (n = 4000) and 5 variables (p=5). Note that though the independent 
variable “type of events” has 6 levels, RStudio treats “emergency room visits” as a base level so the 
model has five variables (see details in appendix). If the newly added variables are not useful to predict, 
the resulted adjusted R2 becomes smaller as the number of predictors gets larger while R2 only increases 
by a small extent.

adjusted R R n
n p

 
2 2

1 1
1

1
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� �
*  (2)

Similar to adjusted R2, AIC measures model goodness while balancing the tradeoffs between the 
model goodness and the model complexity by adding a penalty term (Rachel T. Silvestrini, 2018). In 
RStudio AIC is calculated as the function below, where   is the maximum likelihood of the model, k 
equals 2 for AIC, and NPAR is the number of parameters in the model (AIC, n.d.). The penalty term 
2*npar will become larger as the model become more complex, so a model with lower AIC is preferred. 
However, the AIC value only tells the quality of a model relative to the other candidates, rather than its 
absolute quality (Akaike information criterion, n.d.), and this is the reason why we also incorporated 
metrics R2 and adjusted R2 which can provide information of how well observed outcomes are predicted 
by the model.

AIC k npar� � �2*log *  (3)
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Table 9 summarizes the metrics of four linear models. By multiple R2 we can see lm3 and lm4 have 
good fit that more than 90% of the variation can be explained by the predictive variables. After taking 
into account the complexity of models, lm4 still performs well with the highest adjusted R2 and the low-
est AIC values, even though the number of estimated parameters for lm4 is much larger than the other 
three. And thus, we can choose lm4 as a representative of linear models.

Random Forest

Random Forest is an ensemble learning method that construct many independent trees using different 
bootstrap subset samples of data, and the prediction is based on a simple majority vote (Breiman, Random 
Forests, 2001). That is to say, random forest incorporates the ideas of decision trees and bagging method. 
Bagging is abbreviation of bootstrap aggregating, a method designed to improve accuracy by training 
several models on randomly generated train sets with replacement and then predicting by plurality votes 
(for classification) or averages over the versions (for regression) (Breiman, Bagging Predictors, 1994). 
In terms of random forest, bagging is applied to trees with randomly selected samples of train set and 
also a randomly selected subset of features at each candidate split.

Assume the above ten samples are the entire dataset, the first step is to create a bootstrapped dataset. 
For example, train set 1 is consisted by patients 1, 3, 4, 9, 2, 1, 5, 8, and note that a sample can be selected 

Table 9. Comparison of four linear models based on metrics

Models Multiple R-squared Adjusted R-squared AIC

lm1 0.1417 0.1304 73,964

lm2 0.8544 0.8542 66,773

lm3 0.9011 0.8997 65,330

lm4 0.9856 0.9849 57,886

Table 10. Illustrative example of random forest procedures

patient condition Event type age gender expense

1 Other eye disorders Prescription medicines 57 M 558

2 Hyperlipidemia Prescription medicines 35 M 445

3 Hyperlipidemia Prescription medicines 52 F 388

4 Mental disorders Prescription medicines 58 F 926

5 Symptoms Home health events 49 F 8605

6 Heart disease Emergency room visits 68 M 1623

7 Infectious disease Office-based events 41 F 342

8 Heart disease Office-based events 64 M 811

9 Cataract Office-based events 78 M 1001

10 Female genital disorders… Prescription medicines 38 F 450
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more than once because of replacement, while patients 6, 7, 10 who are not selected can be the test set. 
The second step is to develop tree 1 by using train set 1 and at each node only a random subset of predic-
tive variables is considered as candidates. For example, at root node event type and age are randomly 
selected, and if event type did a better job it is chose to split the node; then for the next node condition 
and age are considered and condition is choosing to split the node; and tree 1 is developed by building 
more branches. Then by repeating these steps hundreds of times we can get a random forest. Compared 
with standard trees which tend to select important variables repeatedly, the trees in random forest are 
less correlated because each tree is forced to consider different subsets of variables. And random forest 
at most times outperforms decision trees with higher accuracy.

Two parameters of random forest algorithm in RStudio, mtry and ntree, can be adjusted to improve 
its performance. Different from standard decision trees in which each node is split by the best among 
all variables, in random forest each node is split by the best among the subset of predictors randomly 
chosen at that node (Liaw & Wiener, 2002). And mtry is the number of variables randomly sampled as 

candidates at each split, and its default is set as p  for classification or 
p
3

 for regression, where p is 

number of variables. But because our data only have two predictive variables, we tried both when mtry 
equals 1 (rf1) and when mtry equals 2 (rf2) and by comparing the two models we can choose a more 
appropriate mtry with smaller error. In other words, each node of trees in rf1 only considers one of the 
predictive variables, “conditions” or “type of events”, while rf2 considers both at each node. As shown 
in Table 11, rf2 has lower mean of squared residuals and higher percent of variability explained than 
rf1, so we chose to set mtry equal to 2.

On the other hand, ntree means the number of trees to grow and its default is 500. Note that ntree 
should not be too low so that every input row is able to get predicted at least a few times, and it should 
not be too high because it may cause overfitting problem. After setting mtry equals 2, ntree can be speci-
fied depending on Figure 8 which plots the error of random forest regression when ntree range from 
0 to 500. The plot shows that the error stabilizes after ntree reaches about 150, we choose to construct 
rf3 with mtry = 2 and ntree =400 to be conservative. As Table 11 shows rf3 has slightly higher mean 
of squared residuals and slightly lower percent of variability explained than rf2, so we chose rf2 as a 
representative model for random forest regression algorithm.

Table 11. Comparison of random forest models

Random forest models Mean of squared residuals % Var explained

rf1 392084.1 94.64

rf2 267838.6 96.34

rf3 306740.1 95.69
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MODEL COMPARISON AND SELECTION

To compare the selected linear regression model lm4 and the selected random forest rf2, three mea-
sures of prediction accuracy are used, root-mean-square error (RMSE), mean absolute percentage error 
(MAPE) and mean absolute error (MAE). We used more than one measure of accuracy because any of 
them has pros and cons.

RMSE, or the root-mean-square deviation (RMSD), is a frequently used measure of the difference 
between predicted values fi and observed values yi, with function as below where n is the number of 
observations. Compared with MSE, RMSE takes the root of MSE and brings the unit back to the same 
as dependent variable, thus it has the advantage to be interpreted directly. In general, a lower RMSE is 
better and RMSE = 0 means perfect fit of data. RMSE’s drawback is that it is sensitive to outliers that 
few large errors in the sum may produce a significant increase, and the test does not differentiate between 
underestimation and overestimation (Kambezidis, 2012). As discussed earlier in data description part, 
the dataset we use has several extreme values of high expenses so using RMSE as the only measure 
would cause some concerns.

RMSE
y f
n
i i�

� �� �2
 (4)

MAE uses the absolute value so it won’t be affected by outliers as much as RMSE but if the outliers 
contain important information MAE cannot capture it.

Figure 8. Error of rf2 when ntree is set from 0 to 500
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MAE
n

y fi i� � �
1

*  (5)

MAPE measures the accuracy of prediction as a percentage and it is usually defined as follows. 
The advantage is that it is very intuitive to interpret relative error and lower MAPE means lower error. 
MAPE is similar to MAE but normalizes MAE by true observations, so it resolved one problem that 
MAE provides little insight into the error when comparing across data of different scales (Bahl, 2019). 
But it also brings the disadvantage of MAPE that it produces infinite or undefined values for zero or 
close-to-zero actual values (Kim & Kim, 2016). Another drawback of MAPE is that it puts heavier 
penalty on negative errors than positive errors (Makridakis, 1993). For example, for the actual value 
100 and estimated value of 90, the MAPE is 0.10. For the same estimated value and actual value of 80, 
the MAPE is 0.125. As a result, if MAPE is used as an objective function, the estimator prefers smaller 
values and can be biased towards negative errors (Bahl, 2019).

MAPE
n

y f
y
i i

i

� �
�100

*  (6)

The response variable average expenses per person have a wide range from 15.257 to 32108.9, so 
we employed different metrics to avoid limitations. Here the metrics are applied to the whole dataset 
instead of test set. As shown in Table 12, the two models have similar performance and lm4 is lightly 
better with lower RMSE, lower MAPE, and lower MAE, which means lm4 has slightly better prediction 
accuracy than rf2.

Furthermore from Figure 9 we can observe that these two models have very similar prediction results. 
Compared with the figure of lm4 against observations and the figure of rf2 against observations, the 
points of lm4 against rf2 are closer to form a line. And because of the categorical property of predictive 
variables, both regression models have the problem that a group of resulted predictions is equal to one 
value even the true observation varies by large amount.

Table 12. Comparison of lm4 and rf2

RMSE MAPE MAE

Linear Regression lm4 422.0867 0.1107812 125.8517

Random Forest rf2 429.6108 0.1186094 131.8507
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CONCLUSION AND FUTURE RESEARCH

The goal of this paper is to predict the average expenses by medical conditions and type of services. To 
do this, we mainly did two phases of work – simulating samples and predictive modeling. The reason that 
we need to do sample simulation in data preprocessing is that the original summary tables retrieved from 
AHRQ cannot be directly applied to regression models. The method we used is bootstrapping because 
it makes the simulated samples retain the statistics of the original data, such as frequency, variance, 
etc. The simulated dataset contains 5000 independent patients of various conditions, type of services 
and corresponding expense and it was applied to linear regression and random forest models. The best 
performed linear regression model uses medical conditions, type of services and their interaction terms 
as predictive variables. And the best performed random forest is when the number of variables at each 
split equals 2 and the forest has 400 trees. These two models have similar prediction accuracy and three 
commonly used metrics RMSE, MAPE and MAE shows the linear model lm4 is slightly better than 
random forest rf2.

Limitation of our study is that both table of the number of people with care and table of average 
expense per person retrieved from AHRQ have been categorized into medical conditions and type of 
events, which may miss information about those couldn’t be categorized into the table. And this causes 

Figure 9. Comparison of rf2 and lm4 predicted values against the true (simulated) value
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another concern that some estimates in the summary tables are suppressed due to inadequate precision, 
and some estimates’ relative standard error is greater than 30% (Agency for Healthcare Research and 
Quality, n.d.). Another limitation is that because MEPS-HC conditions are coded into ICD-10 cods 
starting in 2016, we didn’t include data from 1996 to 2015 which was using ICD-9 and as a result the 
data we used only covers three years. Though we can use bootstrapping method to construct simulated 
sample with larger size, only using larger original data could provide new information about distribution 
or other statistic characteristics. Future studies can use a more comprehensive dataset to train models.

The results of this study may be applied to health insurance planning, health service resource man-
agement, insurance policy strategy, etc.
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KEY TERMS AND DEFINITIONS

Adjusted R-Squared: It indicates how well terms fit a curve or line but adjusts for the number of 
terms in a model.

Akaike’s Information Criteria (AIC): It is a standard to measure the goodness of statistical model 
fitting. Based on the concept of entropy, the criterion can weigh the complexity of the estimated model 
and the goodness of the model fitting data.

Bagging: Bagging is an acronym for Bootstrap Aggregating. It is an ensemble meta-algorithm that 
is commonly used to reduce variance within a noisy dataset. Several data samples are generated by ran-
dom selection with replacement, and then weak models are then trained independently to yield a more 
accurate estimate.

Bootstrapping: A resampling method used to estimate statistics on a population by sampling a dataset 
with replacement. The process resamples a single dataset to create many simulated samples.

Data Preprocessing: One important step in machine learning. Manipulating data before it is used to 
build a model for example, in order to enhance performance and more applicable to algorithms or models. 
It usually involves steps such as data cleaning, data integration, data reduction, and data transformation.

Goodness of Fit: The goodness of fit of a statistical model describes how well it fits a set of observa-
tions. Some commonly used metrics include R squared, chi-squared test, etc.

Linear Regression: Linear approach for modelling the relationship between a scalar response and 
one or more explanatory variables. The case of one explanatory variable is called simple linear regres-
sion; for more than one, the process is called multiple linear regression.

Mean Absolute Error (MAE): MAE measures the average magnitude of the errors in a set of pre-
dictions, without considering their direction.

Mean Absolute Percentage Error (MAPE): A measure of how accurate a forecast system is and 
measures this accuracy as a percentage.

Medical Conditions: The data we used are after 2016, when the household-reported conditions are 
coded into ICD-10 codes and then collapsed into the Condition categories in the tables.

MTRY: A parameter in Random Forest modeling that represents the number of variables sampled 
at each split.

Multiple R-Squared: Also known as coefficient of determination, multiple R-squared is the propor-
tion of the variation in dependent variable that can be explained by the independent variables. It provides 
a measure of how well observed outcomes are replicated by the model.

Node: A node of a decision tree represents a “test” on an attribute. A root node is at the beginning 
of a tree where the entire population are analyzed. And each leaf node represents a class label.

NTREE: A parameter in Random Forest modeling that represents the number of trees to grow.
Predictive Modeling: A commonly used statistical technique to predict future behavior. Predictive 

modeling solutions are a form of data-mining technology that works by analyzing historical and current 
data and generating a model to help predict future outcomes.
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Random Forest: An ensemble learning method for classification, regression and other tasks that 
operates by constructing a multitude of decision trees at training time. It has a wide range of applica-
tion prospects, from marketing to healthcare insurance. It can not only be used to model marketing 
simulation, to count customer origin, retention, and churn, but also to predict the risk of disease and the 
susceptibility of patients.

Root-Mean-Square Error (RMSE): A frequently used measure of the differences between values 
predicted by a model or an estimator and the values observed, and it is sensitive to outliers.

Simulated Dataset: New datasets that resemble but are not identical to the existing dataset by meth-
ods such as bootstrapping.

Split: One node can split into several branches and each branch represents the outcome of the test.
Type of Events: A home health event is defined as one month during which home health service was 

received. For prescription medicines, an event is defined as a purchase or refill.
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APPENDIX

Figure 10. Number of people with care by conditions from original data
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Figure 11. Simulated dataset distribution summary
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Figure 12. Original dataset distribution summary
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Figure 13. Linear Regression Model 1
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Figure 14. Linear Regression Model 2
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Figure 15. Linear Regression Model 3
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Figure 16. Linear Regression Model 4
(250 rows omitted here)
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Random Forest Models

Rf1 

Call: 

 randomForest(formula = simulated_avg_exp ~ ., data = data, importance = TRUE,      

mtry = 1)  

               Type of random forest: regression 

                     Number of trees: 500 

No. of variables tried at each split: 1 

          Mean of squared residuals: 392084.1 

                    % Var explained: 94.64 

Rf2 

Call: 

 randomForest(formula = simulated_avg_exp ~ ., data = data, importance = TRUE,      

mtry = 2)  

               Type of random forest: regression 

                     Number of trees: 500 

No. of variables tried at each split: 2 

          Mean of squared residuals: 267838.6 

                    % Var explained: 96.34 

Rf3 

Call: 

 randomForest(formula = simulated_avg_exp ~ ., data = trainset,      impor-

tance = TRUE, mtry = 2, ntree = 400)  

               Type of random forest: regression 

                     Number of trees: 400 

No. of variables tried at each split: 2 

          Mean of squared residuals: 306740.1 

                    % Var explained: 95.69
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ABSTRACT

Machine learning is a broad field that contains multiple fields of discipline including mathematics, com-
puter science, and data science. Some of the concepts, like deep neural networks, can be complicated 
and difficult to explain in several words. This chapter focuses on essential methods like classification 
from supervised learning, clustering, and dimensionality reduction that can be easily interpreted and 
explained in an acceptable way for beginners. In this chapter, data for Airbnb (Air Bed and Breakfast) 
listings in London are used as the source data to study the effect of each machine learning technique. By 
using the K-means clustering, principal component analysis (PCA), random forest, and other methods 
to help build classification models from the features, it is able to predict the classification results and 
provide some performance measurements to test the model.

INTRODUCTION

Nowadays, machine learning (ML) is well-known and can be used in solving different types of problems 
such as probability, convex analysis and approximation theory. It is a type of artificial intelligence (AI) 
and it mainly focuses on letting the computer learn by itself without the control from humans (Expert.ai 
Team, 2020). It may look difficult to some beginners, but the method we mentioned here is about clas-
sification from supervised learning, clustering, and dimensionality reduction which is easy to explain and 
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understand. Moreover, we want to show not only the effect of machine learning but also how close this 
technique can be applied to our daily life, so we use the dataset from Airbnb listings to do the analysis.

Airbnb which stands for Air Bed and Breakfast, a famous online marketplace for lodging, is often 
used by a large number of travelers and landlords. It provides a platform between tenants and renters 
and helps them match each other easily and conveniently. It was built in 2008 and started in San Fran-
cisco, California USA before spreading to all over the world (Bivens, 2019). Based on some statistics, 
the Airbnb covers 220 countries and regions with active listings, has nearly 500 million guests since its 
creation and was joined by 14,000 new hosts in each month of 2021 (Deane, 2021). In order to keep our 
data source comprehensive and multifarious, we select the Airbnb listing from London as a dataset which 
contains 76,619 numbers of listings information and over 8 features. Then, we use K-means clustering, 
hierarchical clustering, Principal Component Analysis, random forest to analyze the date we choose and 
we will use the decision tree to predict the data after the analysis process.

Firstly, We are going to introduce K-means clustering. K-means clustering is one of the unsupervised 
learning which is easy to explain. Cluster is a common type of data analysis and it is used to separate 
the original data to different subgroups or clusters, so the data with the same group will be very similar 
(Dabbura, 2018). Furthermore, K-mean, which is a kind of algorithm of the centroid-based and distance-
based, is used to assign different data points to different clusters through the calculation of the distance 
from the point to the cluster centroid which is randomly selected in the beginning (Sharma, 2019). After 
that, we will reselect new cluster centroids and redo the assigned process again and again, so our goal 
in the K-mean cluster is to repeat the select and assign process and find suitable clusters with minimal 
distance from each data point to the cluster centroid (Sharma, 2019).

The second method we use is hierarchical clustering which is similar to the first method that is a 
type of unsupervised learning and is to cluster data points but with different standards. In hierarchical 
clustering, we initially consider each of the data points as different clusters and then find the closest 
two clusters and merge them together (Patlolla, 2018). Hierarchical clustering is similar to the K-mean 
cluster in that those processes will run cyclically but it is different that all the data points will be in a 
single cluster. Compare K-mean clustering with hierarchical clustering, we have the assumption that if 
the dataset has a large number of variables, it is better to use K-mean clustering and if we want the result 
explicable and structured, hierarchical clustering is more suitable (Das, 2020).

Moreover, we also mention Principal Component Analysis (PCA) during analyzing the dataset. Prin-
cipal Component Analysis which is also called PCA is a method to reduce or refine the dimension of a 
dataset and the smaller dataset which we transferred from the original dataset still contains the important 
information (Jaadi, 2021). Therefore, our goal in the PCA is to make the dataset concise and effective.

The above method we have introduced is all used in the analysis process. Like we previously said, 
we will do the data prediction after the analysis process and the method we used is the decision tree. 
Nowadays, the decision tree usually appears in machine learning and it is a type of supervised machine 
learning. As its name decision tree, it is used to build a model like a tree and use the tree truck to present 
all the possible consequences in different kinds of data. Specifically, the tree is made of nodes, leaf and 
branches with respect to test, class label that is decision and conjunctions that are connected to class 
labels (Yadav, 2018).

Furthermore, the second method we used in the process of data prediction is random forest which is 
a type of supervised learning. Just like its named “forest”, it is made of many decision trees and these 
trees will be merged to get an accurate predicted result (Donges, 2019). Compare the decision tree and 
the random forest, we can get that the decision tree can be explained easily but it is hard for us to pick 
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the optimal ones and the random forest can be used in a large dataset but the training process may take 
lots of time (Trehan, 2020).

LITERATURE REVIEW

Before starting the research, we have read some literature which is relative to the dataset analysis through 
machine learning. I find out that Kalehbasti, Nikolenko and Rezaei also did a analysis on Airbnb but they 
concentrated on price prediction through the Machine Learning and Sentiment Analysis. They select the 
Airbnb dataset from New York City. The methods they used for price prediction are Ridge Regression, 
K-means Clustering with Ridge Regression, Support Vector Regression, Neural Network and Gradient 
Boosting Tree Ensemble. Moreover, they used the Sentiment analysis to evaluate feature from customer 
review to refine the predictive process. Finally, they conclude that Support Vector Regression is the best 
among those methods based on the value of R-square and Mean Squared Error. (Kalehbasti, Nikolenko, 
& Rezaei, 2021)

Moreover, I find another paper which is also about Analysis of Airbnb in machine learning. Dhillon, 
Eluri, Kaur, Chhipa, Gadupudi, Eravi and Pirouz mainly focus on price prediction of Airbnb. In order 
to make the predictive process accurately, they initially did the data cleaning and data pre-processing. 
Then used linear and Logistic regression and Random Forest to predict the price. Finally, they drew a 
conclusion that the Random Forest Method is the best among those methods base on the least value of 
RMSE. (Dhillon, et al., 2021)

Furthermore, Kim and Song used the Machine Learning to do a Prediction of Business Status. Dif-
ferent to the paper I previously mention, they used Microsoft Azure Machine Learning Studio program 
that with many algorithms such as classification and regression to predict the data. Conclusively, they 
indicated that this program is over 60% accuracy base on the experiment data and the self- employment 
are recommended to use this model to predict the business status. (Kim & Song, 2018)

DATA DESCRIPTION

The source data we obtain is from inside Airbnb (http://insideairbnb.com/)that Provide data that quantifies 
the impact of short-term rentals on housing and residential communities. The dataset we choose contains 
76,619 numbers of listings information in London that covers a wide range of features like pricing and 
review score. We select the following features:

Review scores rating: The overall review score for the property in one year.
Price number: The average listing price for this property in one year.
Accommodates: The number of guests this property can accommodate.
Bedrooms: The number of bedrooms this property has.
Maximum nights: The maximum number of nights for stay in this property.
Availability 365: The availability days for this property in one year.
Number of reviews: The number of reviews for this property in one year.
Reviews per month: The average number of reviews for this property in a month.
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We also mutate a new column ‘min_price’ by multiplying the price per night with minimum nights. 
The reason why we choose these features is that these features can be classified as several types:

1.  price
2.  reviews (score and number of reviews)
3.  features of property,

and all these types can describe most information about a listing so we can consider choosing features 
as a simple process of reducing dimensions.

Before we apply all the machine learning techniques, we first manipulate the source data and plot 
the graphs that relate to the features we selected.

Figure 1. The median value of minimum cost of every Airbnb property by neighbourhoods in London

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



213

Airbnb (Air Bed and Breakfast) Listing Analysis Through Machine Learning Techniques
 

For Figure 1, we first calculate the minimum cost of every property and set it as ‘min_price’ column 
Then we plot the bar graph with horizontal direction that shows the median value of minimum cost of 
every Airbnb property by neighborhoods in London. We can observe that Westminster, Kingston upon 
Thames and the City of London have the highest median value of minimum cost and this result makes 
sense because these neighborhoods are filled with famous landmarks so there is a positive association 
between the minimum cost for staying in an Airbnb property and the prosperity of the neighborhood.

For the Figure 2, we observe that most Airbnb properties locate in the longitude around -0.2 to 0.0, 
latitude around 51.45 to 51.55. From the size of figure that represent the minimum nights, we also 

Figure 2. London Airbnb listings location: Price per night and Minimum nights
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observe that the less price per night, the more minimum nights required by the host because from the 
plot most purple circles has a relatively large figure. For the color of the plot, we choose 0 to 150 as 
the range of the color bar because the mean price per night is 114 and 150 is a good measurement to 
distinguish a high price that is above mean and a lower price under the mean. We observe that most 
expensive (above mean) listings are located in longitudes of -0.2 to -0.1 and latitude of 51.45 to 51.50 
which is in the center of London.

From Figure 3, we observe that the majority of available days in a year for Airbnb listings in London 
falls in the range of 0 to 45 days and the second largest part is in around 330 to 350 days. We can con-
clude that there is a polarization for the distribution. Most hosts would choose to list their properties in 
a short time or fully use Airbnb properties. Not many hosts would choose to list their properties from 
200 to 250 days.

Figure 3. Histogram that shows the distribution of availability days in a year for Airbnb listing
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As a result, we have an initial view about our feature distribution, and we will then move to apply 
the machine learning technique to further explore the data.

METHODS

The first kind of machine learning method we use is unsupervised learning. When we observe a data 
only contains features and there is no associated label (outcome variable) for each observation to be clas-
sified. We can introduce unsupervised learning to classify the data by the features to a certain number 
of clusters. The first clustering method is K-means, K-means clustering aims to partition n observations 
into k clusters in which each observation belongs to the cluster with the nearest mean, the value of k is 
set by the tester. The four steps of K-means are as follows:

1.  Select initial centroids at random
2.  Assign each object to the cluster with the nearest centroid.
3.  Compute each centroid as the mean of the objects assigned to it.
4.  Repeat previous 2 steps until no change.

Here we use Euclidean distance to measure the distance to centroid, the distance between point p and 
q in a two- dimensional axis d(p, q) is as follow:

d p q d q p p q p q p q q p
i

n
i i, , ( ) ( ) ( ) ( )� � � � � � � � � � � � �

��1 1

2

2 2

2

3 3

2

1

2  (1)

A good clustering method will produce clusters with high intra-class similarity and low inter-class 
similarity. Since the number of clusters is chosen by the operator subjectively. Although we can use 
some performance measurement method like silhouette score to help us decide the cluster number, the 
clustering quality still can be largely dependent on our choice.

Another clustering method we introduce in this part is hierarchical agglomerative clustering. It uses 
distance/similarity matrix as clustering criteria. The basic idea can be described as:

1.  Starts with each data sample in a separate cluster
2.  Repeatedly joins the closest pair of clusters until there is only one cluster.
3.  The history of merging forms a binary tree or hierarchy. The specific steps are as follows:
Step 1. Place each point of V in its own cluster (singleton), creating the list of clusters L (initially, the 

leaves of T): L= V1, V2, V3, ..., Vn-1, Vn.
Step 2. Compute a merging cost function between every pair of elements in L to find the two closest 

clusters {Vi, Vj} which will be the cheapest couple to merge.
Step 3. Remove Vi and Vj from L.
Step 4. Merge Vi and Vj to create a new internal node Vij in T which will be the parent of Vi and Vj in 

the resulting tree.
Step 5. Go to Step 2 until there is only one set remaining.
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The advantages of hierarchical clustering are:

1.  Compared to K-means which need to specify the number of clusters in the first and we can only 
observe the final clustering result based on the k number of clusters we choose; hierarchical clus-
tering instead can easily navigate the result of different number of clusters by dendrogram.

2.  The principle of this method is as easy as K-means clustering which make it easy for us to do the 
clustering.

The disadvantages of hierarchical clustering are:

1.  Just like K-means, we need to make some decisions before the analysis that can significantly change 
the result. First, we need to specify which kind of linkage to calculate the distance between each 
cluster. (complete linkage, average linkage, single linkage). We also need to specify the condition 
of ending the clustering process which makes the result depend more on personal decisions.

2.  It is also hard to use some data type like categorical data since it is based on calculating distance 
between each cluster like K-means.

3.  It takes more time to finish the hierarchical clustering than K-means based on the complexity of 
the process of algorithm. As a result, hierarchical clustering can be considered as an alternative 
clustering method but there is no obvious superiority between K-means and this method so we will 
stick to K-means in this chapter.

After clustering, we can consider the classification part is completed because we make every observa-
tion in the data belong to one of the clusters we obtained from either K-means or hierarchical clustering. 
We can then consider each cluster as a class and use the class labels as supervised information. We can 
use a supervised model to perform cluster assignment for new data samples that is to predict the cluster 
labels of new data. In this particular case, we choose the decision tree algorithm as the major method 
for supervised training.

Decision tree itself is a decision support tool that uses a tree-like graph or model of decisions and 
their possible consequences, including chance event outcomes, resource costs, and utility.
There are three major steps in a decision tree:

1.  Are all the objects in set D of the same class? If FALSE, proceed to 2.
2.  Divided into subsets D1, D2… DN by some attribute of the data. Proceed to 3.
3.  For each subset Di, return to 1.

As a result, it is a tree structure, in which each internal node represents a judgment on an attribute, 
each branch represents the output of a judgment result, and finally each leaf node represents a clas-
sification result, which is essentially composed of multiple judgment nodes. An important aspect for 
decision trees is the attribute selection measure. Attribute selection measure is a heuristic for selecting 
the splitting criterion that partition data into the best possible manner. It is also known as splitting rules 
because it helps us to determine breakpoints for tuples on a given node. Most popular selection measures 
are Information Gain, Gain Ratio, and Gini Index Corresponding to ID3 (Iterative Dichotomiser 3) with 
using information gain and C4.5 (successor of ID3) with using information gain ratio and CART (Clas-
sification and Regression Tree) that was termed by Breiman (1984) with using Gini Index.
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For ID3 we have information gain, it introduces a concept: Entropy. It measures the impurity of the 
input set. In physics and mathematics, entropy is referred to as the randomness or the impurity in the 
system. In information theory, it refers to the impurity in a group of examples. Information gain computes 
the difference between entropy before split and average entropy after split of the dataset based on given 
attribute values. We can write Entropy as:

H D p x log p x
x D� � � � � � � �� �� 

 (2)

Where H(D) is the entropy of the classes in a set of observations D, p(x)log(p(x) represents the probability 
of class x in the set of observations D. From that, we can then write the formula of information gain:

IG D A H D p t H t
t A

,� � � � � � � � � �� 
 (3)

Where IG (D, A) represents the information gained when splitting a set of observations D by attribute A.
For C4.5 we have a gain ratio, it can be considered as an improvement from ID3 because information 

gain is biased for the attribute with many outcomes. It means it prefers the attribute with many distinct 
values. Gain ratio handles the issue of bias by normalizing the information gain using Split Info.
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Where 
D
D
j  acts as the weight of jth partition and v is the number of discrete values in attribute A. So, 

gain ratio can be defined as:GainRatio A
Gain A

splitInfo DA
� � � � �

� �
.

For CART we have a Gini Index. The Gini Index is calculated by subtracting the sum of the squared 
probabilities of each class from one. It favors larger partitions. We can write Gini index as:

G D p x p x
x D� � � � � � � �� ��� 1  (5)

Where D corresponds to all classes in observation D and p is the probability of class x in observation 
D. By calculating Gini index for each feature, the winner will be the first feature to split on because its 
cost is the lowest.

In this study, we select CART which refers to Gini index as the major attribute selection measure, 
the attribute with minimum Gini index is chosen as the splitting attribute. We then import the data and 
divide the variables as dependent and independent variables. Dependent variable refers to the label we 
obtained from K-means, here we use this variable to train the classifier. Independent variable refers to 
the features we have. Then we split data into Training (90%) and Testing (10%) sets so that we can have 
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enough data to train the classifier and test the performance of the classifier. The base settings of the tree 
is: class_weight=’balanced’ this mode uses the values of y to automatically adjust weights inversely 
proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)) to prevent 
classification results when we have an unbalanced class distribution from the data.Here max_depth 
specify the maximum depth of the tree. If it is None, it means that the depth of the tree is not limited 
until each leaf is pure, that is, all samples in the leaf node belong to the same category. n_samples refers 
to the number of samples we input in the classifier, n_classes refers to number of classes we want to 
divide and np.bincount is the Count number of occurrences of y value in array of non-negative integers. 
We set the max_depth =3 to have classification classes similar to the unsupervised learning. After the 
tree is trained and test, we also visualize the tree and use classification report and feature importance 
ranking to check the classification performance.

To optimize our model performance, we also introduce the idea of Grid search, In the machine learn-
ing fields, the parameters that need to be manually selected are called hyperparameters. For example, 
the number of decision trees in the random forest, the number of hidden layers and the number of nodes 
in each layer in the artificial neural network model, the size of the constant in the regular term etc. They 
all need to be specified in advance. Inappropriate selection of hyper-parameters will lead to problems 
of under-fitting or over-fitting. When selecting hyperparameters, there are two ways, one is to fine-tune 
based on experience, and the other is to select parameters of different sizes, bring them into the model, 
and select the best-performing parameters.

Grid Search can guarantee that we can find the most accurate parameters within the specified parameter 
range, but this is also the flaw of grid search. It requires traversing all possible parameter combinations, 
which is very time-consuming when we have large data sets and multiple parameters. Here we only want 
grid search to help us find the most appropriate depth and class distribution method. Grid search is a 
technique for tuning hyperparameter that may facilitate build a model and evaluate a model for every 
combination of algorithms parameter per grid. Here we also use 10-fold cross-validation to search the 
best value for that tuning hyperparameter.

In the research and application of many fields, it is usually necessary to have data containing multiple 
variables because these variables can provide sufficient variation especially in the case of clustering or 
regression since even adding one variable that is related to the subjects would definitely increase the 
clustering or regression performance. However, it is not wise to add features blindly, because of the 
following two major reasons with too many features/variables in the dataset:

1.  Some features may have correlation which will increase the complexity of the problem and this 
kind of problem refers to collinearity in the regression model and we usually need to examine the 
effect of collinearity separately.

2.  This problem refers to the calculation power and time since large number features always involve 
lots of calculation power and time from the computer and it is not cost-effective when considering 
the increased model performance compared to the calculation power and time.

On the other hand, if we analyze each feature separately, the analysis will be isolated and cannot 
fully utilize the information from the data and blindly reducing the features may result in the loss of 
important information. As a result, we introduce dimensionality reduction technique PCA. PCA is com-
monly used for dimensionality reduction by projecting each data point onto only the first few principal 
components to obtain lower-dimensional data while preserving as much of the data’s variation as pos-
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sible, the number of PCs is also decided by the tester. Specifically, it is a statistical procedure that uses 
an orthogonal transformation to convert a set of observations of possibly correlated variables (entities 
each of which takes on various numerical values) into a set of values of linearly uncorrelated variables 
called principal components.

As stated above, the idea of dimensionality reduction is to keep a certain variance of the data along 
with reduction of variables. In our practice, we always use cumulative explained variance ratio as a func-
tion of the number of components to select the ideal number of components corresponding to certain 
acceptable variance. After that, we can apply classification model like K-means to labels the data and 
then put into prediction model like random forest or decision tree to be trained and compare the predic-
tion result with the prediction result from the model without PCA so that we can have a direct view about 
the balance of model performance and model efficacy.

Our final method is the random forest model, this model is derived from the idea of ensemble learn-
ing. The idea of ensemble learning is to solve the inherent shortcomings of a single model or a certain 
set of parameter models, so as to integrate more models, learn from each other, and avoid limitations. 
Random forest is the product of the idea of   ensemble learning, which integrates many decision trees into 
a forest, and together they are used to predict the final result. There are two major types of ensemble 
learning: Bootstrap and bagging. The bootstrap method, as the name suggests, is a method that generates 
many new samples of the same size that are available from the sample itself, and generates from itself 
similar to itself, so it is called Bootstrap, that is, without using other sample data. The specific meaning 
of the Bootstrap method is as follows:

If we have a sample of size N, we hope to get m samples of size N for training. Then we can do this: 
First, randomly select a sample x1 out of N samples, then write it down, put it back, and then draw a x2, 
repeat N times to get a new sample of N, in this new sample There may be duplicates. Repeat m times 
to get m such samples. In fact, it is a random sampling problem with replacement. Each sample has the 
same probability (1/N) to be drawn.

This method is useful when the sample is relatively small. For example, our sample is small, but we 
want to set aside a part for validation. If the traditional method is used for train-validation, the sample 
will be smaller and the bias will be even greater and this is undesirable. The bootstrap method does 
not reduce the size of the training sample, but also leaves a validation set (because the training set has 
repetitions, but this repetition is random), so it has certain advantages. For bagging, this method divides 
the training set into m new training sets, and then builds a model on each new training set, which is 
independent of each other. In the final prediction, we integrate the results of the m models. Get the final 
result. The integration method is: Majority voting is used for classification problems, and the average 
value is used for regression.

Random forest is actually a special bagging method that uses decision trees as a model in bagging. 
First, use the bootstrap method to generate m training sets. Then, for each training set, construct a deci-
sion tree. When the node finds the features to split, not all the features can be found to maximize the 
index (such as information gain), But randomly extract a part of the features from the features, find the 
optimal solution among the extracted features, apply it to the node, and split. The random forest method 
has bagging, that is, the idea of integration, which is actually equivalent to sampling both samples and 
features (if the training data is regarded as a matrix, as it is common in practice, then it is a row and all 
columns are sampled), so overfitting can be avoided.
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RESULTS

From the first method we applied, that is the K-means clustering, we want to find the best cluster number 
by Sum of squared distances of samples to their closest cluster center and Silhouette score. The result 
is shown in Figure 4. For the sum of squared distances, we use elbow method which Compute K-means 
clustering algorithm for different values of k and for each k, calculate the total within-cluster sum of 
square and then plot the curve of sum of squares according to the number of clusters k. Finally, the 
location of a bend (knee) in the plot is generally considered as an indicator of the appropriate number 
of clusters from this method, we observe the first elbow when k=3, so we should choose k=3 from this 
method. For the Average Silhouette Method, the idea is the average silhouette approach measures the 
quality of a clustering. That is, it determines how well each object lies within its cluster. A high average 
silhouette width indicates a good clustering. From the result of this method, we observe that both k=3 
and k=4 refer to the highest silhouette score. Combining the result from these two methods, we choose 
k=3 to be the k we use in this case.

Next, we look at the distribution of each category and observe that there is no extreme large or small 
number of samples for the three labels. This further proves our decision of the number of k in the previ-
ous step. The result is shown in Figure 5:

Figure 4. Left: Number of Clusters versus Sum of squared distances from samples to closest clusters. 
Right: Number of Clusters versus Silhouette Score.
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Next, since we are observing a high-dimensional dataset, we need a specific visualization method 
to give us a clear view of compelling two-dimensional “maps” from data with multiple dimensions. the 
map is shown in Figure 6:

Figure 5. Cluster Index versus Number of Samples

Figure 6. sSNE_0 Versus tSNE_1
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For our second clustering, we use the hierarchical clustering, here we do not know in advance how 
many clusters we want; in fact, we end up with a tree-like visual representation of the observations, 
called a dendrogram, that allows us to view at once the clusterings obtained for each possible number 
of clusters, from 1 to n, the dendrogram is shown in Figure 7:

Here the vertical lines represent the distance between these samples and more the distance of the 
vertical lines in the dendrogram, the more the distance between these clusters. If we add a horizontal 
line located between 8-10 of y axis. The number of clusters will be the number of vertical lines which 
are being intersected by the line drawn using the threshold but from this method, we observe that most 
samples are from the middle cluster and this is quite unbalanced compared to the distribution we have 
in K-means.

Next, our focus turns to using the labels generated from the unsupervised learning. More specifi-
cally, we use the labels from the K-means clustering as the outcome variable. We first use the Decision 
tree from K-means and grid search. After splitting the data into training set and testing set, we use the 
training set to fit the tree, the tree is shown in Figure 8, then we apply the trained model into the testing 
set and observe the prediction accuracy in Table 1.

Figure 7. Dendrogram
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From the result, we observe that the precision for each label differs a lot. We have an excellent pre-
diction accuracy from label 0 but a terrible result for label 2 since it is less than 0.48 which means that 
it is close to random. Here we introduce grid search to improve the model performance and the result 
from the grid search is in Figure 9, and we find out that the best parameter max depth as 9 and use the 
parameters from the grid search to refit the decision tree and the result is in Table 2:

Figure 8. Decision tree

Table 1. Table about prediction accuracy in decision tree

Precision Recall F1-score Support

0.0 0.99 0.82 0.90 5750

1.0 0.66 0.91 0.76 1549

2.0 0.48 0.96 0.64 363

accuracy 0.85 7662

Macro avg 0.71 0.90 0.77 7662

Weighted avg 0.90 0.85 0.86 7662

Figure 9. Result from the grid search
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We can clearly see that the prediction accuracy for all three labels is close and located at a high level 
which shows a significant improvement from the decision tree without grid search.

At last, we introduce the PCA as our dimensionality reduction technique. Initially, we check the vari-
ance explained by the PC (Principal Components), the plot is shown in Figure 10.

Similarly, we also use the elbow method to choose the appropriate number of components and from 
this plot and the first elbow is located in 2 which corresponds to almost 50% variance explained, this is 
not a considerable large number so we should consider to add more component, we then consider the 
middle of the first elbow and second elbow and select 4 as our number of components. As a result, there 
are 4 PCs that are required to explain 60% of the variance in the data. After doing the PCA, we observe 
a biplot shown in Figure 11.

Table 2. Table about prediction accuracy in grid search

Precision Recall F1-score Support

0.0 0.98 0.99 0.98 1547

1.0 1.00 0.99 0.99 5752

2.0 0.93 0.99 0.96 363

accuracy 0.99 7662

Macro avg 0.97 0.99 0.98 7662

Weighted avg 0.99 0.99 0.99 7662

Figure 10. The variance explained and the cumulative variance explained by the PCs
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For our final model which is the random forest, we observe a improve performance compared to the 
decision tree, the result is shown in Table 3 and when we apply the cross validation to consider the test 
error, the performance of the model still can be considered as solid, the result is shown in Figure 12.

Figure 11. Biplot After doing the PCA (Principal Component Analysis)
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DISCUSSION

From the K-means clustering, two plots are presented in order to find out the clustering difference between 
the min-price created by us to measure the true minimum cost to live in this listing and the price per 
night. The first plot which focuses on the clustering between price per night and number of reviews, we 
observe a plot with 3 clusters. One with green color centered close to 0 and this cluster can be considered 
as all the listings that have almost no reviews. The cluster in purple color has relatively low price but 
a large number of reviews can be considered as the listings that are popular with an acceptable rate of 
charge. The last cluster represents the listings that cost higher and maybe due to their high price, their 
number of reviews are relatively low.

The second cluster plot of minimum price versus number of reviews has a similar shape but the 
number of points in yellow cluster that represent high price, low reviews listings become less and the 
whole trend become lower than before, this can be explained since many properties may have a high 
price for every night but lower requirement for minimum stay night, we think use the min-price instead 
of price per night can be more close to realistic situation since some low-cost properties may have higher 
minimum stay night. Generally, we can say that price and number of reviews have a negative association. 
The higher the price becomes, the smaller the number of reviews it will receive.

As we know, K-means clustering requires us to pre-specify the number of clusters K. This can be 
a disadvantage and Hierarchical clustering is an alternative approach which does not require that we 
commit to a particular choice of K but we noticed that we have a considerable large data set which in-
volves almost 20 dimension and thousands of observations so in this case the con of this method appears 
significantly because Hierarchical clustering is computationally demanding, fails on larger sets. In the 

Table 3. Table about prediction accuracy in random forest

Precision Recall F1-score Support

0.0 1.00 1.00 1.00 5773

1.0 0.99 1.00 0.99 1533

2.0 0.97 0.99 0.98 356

accuracy 1.00 7662

Macro avg 0.99 0.99 0.99 7662

Weighted avg 1.00 1.00 1.00 7662

Figure 12. Code for test error
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practice, the hierarchical clustering took almost twice time compared to K-means clustering and from 
the dendrogram we obtained, the clustering result is not ideal compared to K-means since the majority 
of samples belongs to one category which is opposite to the result from K-means and since we need the 
labels from clustering to do our supervised learning task, we finally choose the labels from K-means.

For supervised learning, we have the decision tree as our main method and as we mentioned in the 
method section that in the ID3 (Iterative Dichotomiser 3) algorithm, we use information gain to select 
features, and the one with larger information gain is preferred. In the C4.5 (successor of ID3) algorithm, 
the information gain ratio is used to select features to reduce the problem that the information gain is 
easy to select features with many feature values. But both ID3 (Iterative Dichotomiser 3) and C4.5 (suc-
cessor of ID3) are based on the entropy model of information theory, which involves a lot of logarithmic 
operations. Can the model be simplified without completely losing the advantages of the entropy model? 
Yes, here we introduce the CART (Classification and Regression Tree) classification tree algorithm 
which uses the Gini coefficient instead of the information gain ratio. The Gini coefficient represents 
the impurity of the model. The smaller the Gini coefficient, the lower the impurity and the better the 
characteristics. This is the opposite of information gain (ratio). After we finish the subset method from 
the decision tree, we use in this study then there are two ways of model fitting we use, one is to use grid 
search and cross-validation to find the optimal parameters of the decision tree, and to create a decision 
tree with optimal parameters, the other is the default decision tree.

In our practice, we began with default decision tree from the result of that tree, we observe that 
prediction accuracy for label as 2.0 is extremely low and this may due to the overfitting since for label 
0, the prediction accuracy is extremely high which is close to 100% so in order to prevent this situa-
tion, we should introduce the use of grid search and cross validation. Here for cross-validation we use 
the k-folding method to divide the training set into equal k parts. Then select one from 1~k each as the 
test set, and the remaining k-1 as the training set. After training, use a certain scoring rule to score the 
model, and finally take the highest of the k scores as the model’s score. So, from cross-validation, we 
can easily prevent the problem of overfitting and the problem of randomly dividing training and testing 
dataset that increase bias or variance. After that, we need to choose a suitable set of parameters for the 
model. Take a support vector machine as an example. Its parameters are gamma and C, then the two-
tuples (1,1), (0.1,1), (1,10) can be regarded as several “grids”. Then the grid search is, for the support 
vector machine model, a cross-validation evaluation is performed for each grid, and finally a set of grids 
with the highest score is obtained, then finally we have established the optimal model. From our practice 
of grid search with cross-validation, we observe a significant increase in the model performance since 
for each label, the prediction accuracy is over 90% which is much better than the default decision tree.

From the PCA, the first thing we did was to decrease the dimension. We checked the variance explained 
by the Principal Components (PCs) from the plot of the variance explained and the cumulative variance 
explained by the PCs and we observed an elbow around 2 and 6. Since we have 9 features and we want 
to maintain the balance between reducing dimensions and a good variance explained by the PCA, we 
choose 4 PCs since it can explain over 60% variance that means we cut over half dimensions and keep 
the variance explained to 60%. We observe the result mainly from the biplot. From the plot, the price 
bedroom and accommodates are fully correlated and min-price is close to them. This can be understood 
because the features of the property definitely affect the price of the property. Another direction is for 
the number of reviews and reviews per month. This is because they are all measurements for the reviews. 
Review ratings and availability in a year is quite close to them because they can be considered as poten-
tially correlated as the reviews. Maximum nights are relatively not so correlated with other features. In 
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conclusion, we can consider this PCA gives me a good result because it reduces significant dimensions 
without losing relationship between all the features.

From the random forest model, we have observed that it has a stronger prediction performance com-
pared to decision tree and even slightly stronger than the decision tree along with grid search and cross 
validation, this is mostly due to the idea of ensemble learning behind this algorithm that involves both 
bootstrap and bagging, so that we can say the following for random forest:

1.  Can be used to solve both classification and regression problems: Random Forest can handle clas-
sification and numerical features at the same time.

2.  Anti-over-fitting ability: reduce the risk of overfitting by averaging decision trees.
3.  Wrong predictions will only be made when more than half of the base classifiers have errors: 

Random Forest is very stable, even if a new data point appears in the data set, the entire algorithm 
will not be affected too much, it will only affect one decision tree, it is difficult to have an impact 
on all decision trees.

But if there is no perfect model after all, there are still some deficiencies of this model:

1.  If there is noise in the training data for some classification/regression problems, the result from 
the random forest may contain over-fitting issues.

2.  It is more complicated than the decision tree algorithm and has a higher computational cost.
3.  Due to their complexity, they require more time to train than other similar algorithms.

From all these methods of unsupervised and supervised learning we apply in this chapter, we realize 
that for data with multiple dimensions, a simple method of unsupervised and supervised learning is far 
from enough to give us an exhaustive classification or explanation of the data, instead, we suggest the 
future direction would be deep learning methods like neural network.

FUTURE RESEARCH DIRECTION

From this chapter, we mainly focus on some categorical or continuous features that are directly obtained 
from the data but we also notice that there are some variables containing long text like some detailed 
reviews for the listings. For these variables, we shall consider some techniques to transform these vari-
ables to be categorical variables. For example, we can categorize the review from the guest of the list-
ings as “positive”, “neutral”, “negative”. This transformation needs the technique of natural language 
processing (NLP) that involves using neural networks. Specifically, we can use both Recurrent neural 
networks (RNN) and convolutional neural networks (CNN). A recurrent neural network (RNN) is a class 
of artificial neural networks where connections between nodes form a directed graph along a temporal 
sequence so on the basis of RNN there are a lot of models are built and applied to different input and 
output architectures (one-to-one, one-to-many, many-to-one and so) and fields that covers both supervised 
learning and unsupervised learning and it can be directly applied to analyzing sequential data.

Another neural network we can use is the convolutional neural network (CNN) which is mainly used 
for image recognition and classification. As we know, all these methods are part of deep learning, which 
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is an artificial intelligence (AI) function that imitates the workings of the human brain in processing 
data and creating patterns for use in decision making.

Deep learning, also known as deep neural learning or deep neural network, is a subset of machine 
learning in artificial intelligence that has networks capable of learning unsupervised from data that is 
unstructured or unlabeled. Deep learning uses multiple layers to iteratively extract higher level feature 
data from raw input. These levels of abstraction generate increasingly more composite representations. 
Two advantages of deep learning are that it optimizes which features are placed within each of its fea-
tures and that it has scaled very well with data of higher complexity and dimensionality in terms of 
performance. As a result, our future direction shall use the deep learning technique to construct a more 
efficient and sensible model to better explain our classification result that can also help the researchers 
to have a better idea of the general situation of the Airbnb listing in London.

CONCLUSION

In this chapter, we have applied a few supervised and unsupervised learning algorithms to the clustering, 
classification and prediction problems exist in our dataset, we can conclude from all these methods that 
there is no perfect algorithm for every dataset and the best algorithm for each dataset is figured out by 
our understanding of the problem and also the algorithm.

From the K-means clustering, we can say that price and number of reviews have a negative association. 
The higher the price becomes, the smaller the number of reviews it will receive. if we use the minimum 
cost for the property instead of price per night, the result will be more realistic.

From the decision tree method, we can say that grid search with cross-validation is more appropriate 
in this dataset compared to default decision tree since it not only finds out the best hyperparameters for 
the tree but also prevent the bias, variance and overfitting problem in the training and testing dataset. 
We may also consider a random forest method in future study since it also improves the deficiency of 
the default decision tree.

From the PCA, we think the dimension reduction is successful since we obtain a good correlation 
between all the features, we got but adding more categorical variables can result in a better explanation 
for this data.

From the random forest model, we obtain the best classification and prediction result among all models 
we have and this is due to the characteristics of this algorithm that prevent overfitting.

The limitation of this analysis is mainly from the Not Available (NAs) in the data and for the clus-
tering and PCAs we only must drop the rows that have NAs which can result in incomplete data. Also, 
we think we should consider some categorical variables since we only use continuous variables in this 
challenge. Furthermore, the distribution of points in the cluster can be more discrete.

We have already mentioned many methods of machine learning here, but there are still many oth-
ers which are useful and meaningful to introduce such as the support vector machine and the k nearest 
neighbor. In the future, we will try our best to do more research in machine learning and an increasing 
number of methods in this area will be introduced and investigated.
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KEY TERMS AND DEFINITIONS

Classification and Regression Tree (CART): A predictive model, which explains how an outcome 
variable’s values can be predicted based on other values. A CART output is a decision tree where each 
fork is a split in a predictor variable and each end node contains a prediction for the outcome variable 
(Breiman, 1984).

Decision Tree: A method that build a tree-like models to present all the possible consequences in 
different kinds of data is used in the process of data prediction.

Hierarchical Clustering: A method separates different data points to different clusters based on 
hierarchy and merge different clusters to one.

K-Means Clustering: A kind of algorithm that separates different data points to different clusters 
based on different values.

Principal Component Analysis (PCA): A method used in data analysis is to refine the size of data 
and make the dataset effectively.
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Random Forest: A method that can be used to do the data prediction is to build many Decision Trees 
and refine those to get accurate predictive results.

Supervised Learning: A method in machine learning uses the model that has been trained to analyze 
the data.

Unsupervised Learning: A technique in machine learning that allows users to run the model without 
supervision.
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ABSTRACT

This chapter presents a thorough descriptive analysis of automobile fatal accident and insurance claims 
data. Major components of the artificial neural network (ANN) are discussed, and parameters are inves-
tigated and carefully selected to ensure an efficient model construction. A prediction model is constructed 
through ANN as well as generalized linear model (GLM) for model comparison purposes. The authors 
conclude that ANN performs better than GLM in predicting data for automobile fatalities data but does 
not outperform for the insurance claims data because automobile fatalities data has a more complex 
data structure than the insurance claims data.

INTRODUCTION

This chapter we analyzed automobile fatal accident data and automobile insurance claims data through 
Artificial Neural Network (ANN). We also tested the data by Generalized Linear Model (GLM) for 
comparison purpose. Both ANN and GLM models were constructed in Python, which is one of the most 
popular and powerful open source statistical software. (Niu, Segall, Zhao, & Wu, 2021) (Wu, Zhao, & 
Niu, 2020)

The automobile fatal accident data and automobile insurance claims data were used in this study. 
Analyzing two dataset allows us to have a thorough understanding of how fatal automobile accident 
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happened and how certain key drivers impact insurance claim. The two datasets were not merged. They 
are analyzed and modeled separately. Results and comparison discussion are included in this chapter. 
The goal is to measure how efficient ANN and GLM models these two related datasets. Fatal accident 
data has more variables and observations than the insurance claims dataset. GLM is a widely accepted 
technique in statistical analysis and predictive modeling. It is picked for comparison purposes.

We first present the two datasets with their key descriptive analysis. Then we constructed ANN and 
GLM models. ANN models were constructed with detailed parameter testing, such as activation func-
tions, validation dataset, hidden layers and batch size. GLM variables were selected based on correlation 
analysis, a basic model is constructed for comparison purposes.

GLM for automobile fatality rate predictions in R has been done before. (Niu & Olinsky, Generalized 
Linear Model for Automobile Fatality Rate Prediction in R, 2020) But this study focuses on comparison 
between ANN and GLM, also the statistically software used is Python instead R.

DATA DESCRIPTION

There were two groups of data used in this study. The first one is were extracted from the FARS (Fatal 
Accident Reporting System) collected and organized by the United States Department of Transporta-
tion. 2016 to 2019, 4 years of complete data were extracted. One is fatal accident data by person, which 
includes all relevant information by person who were involved with an accident that had at least one 
death during the year. We will call this data source 1 in the following content.

The second data used is based on one-year automobile insurance claims data from either 2004 or 
2005, downloaded from the following website: http://www.afas.mq.edu.au/research/books/glms_for_in-
surance_data. The data was used as sample for the book Generalized Linear Models for Insurance Data 
(Jong & Heller, 2008). In this chapter, the data is analyzed to provide a benchmark comparison between 
three main statistical models. We will call this data source 2 in the following content.

2016 – 2019 Fatal Accident Data by Person

From 2016 to 2019, there were total of 148,210 people dead due to automobile fatal accidents. Fatal 
accident is defined as any accident that has at least one automobile involved and at least one people are 
dead, more than 36,000 people were dead each year. Around 70% are male, 29% are female, and 1% are 
other. Other includes categories such as not reported, reported as unknown and unknown that recorded 
in the FARS database. Overalls, total number of deaths is slightly decreasing. The detail number of 
fatalities are shown in Table 1.

Table 1. 2016-2019 US Auto Accident Fatalities by Gender
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From location perspective, majority of the accidents happened in the area that has the most popula-
tion. Texas, California, Florida, Georgia and North Carolina have the top 5 total number of fatalities as 
shown in Figure 1 and Table 2.

Figure 1. 2016-2019 US Auto Accident Fatalities by Region

Table 2. 2016-2019 US States with Highest and Lowest Auto Accident Total Fatalities
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Overall, 109 people dead per million people in 2019. Table 3 presents the top 5 and bottom 5 number 
of deaths per million people. Wyoming, Mississippi, New Mexico, South Carolina and Alabama have 
the highest number of deaths per capita. District of Columbia, New York, Massachusetts, Rhode Island 
and New Jersey has the least number of fatalities per capita.

Table 3. 2016-2019 US States with Highest and Lowest Auto Accident Fatalities Per Capita

Figure 2. 2016-2019 US Auto Accident Fatalities by Month
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From a season perspective, winter has less fatalities than other seasons in the US as shown in the 
Figure 2. Start from month November, total fatalities decreases and month February has the lowest 
number death. One possible contributing factor for this pattern is sleep loss and behavioral changes 
due to Daylight Saving Time. In the spring, because of the DST change, drivers lose an hour of sleep 
which causes the significant increase in the number of automobile accidents and fatalities. (Varughese 
& Allen, 2001) The following figure also shows that 2019 has the lowest number of deaths compared 
with previous years.

Figure 3 presents the total number of deaths by hour. For the year 2016 to 2019, the pattern has been 
stable. 4am in the morning and 8am-9am morning rush hour are among the least number of fatalities. 
From the afternoon until 9pm, number of deaths increases and reaches its peak from 5pm to 9pm.

2004 or 2005 Autombile Insurance Claims Data

The insurance claim data used in this chapter is for one policy year. Insurance policies are sold continu-
ously during a year, normally they are annual policies. Policies sold in January 1st 2004, the whole policy 
is exposed to risk during the year 2004 because by December 31st 2004, the policy would expire. Poli-
cies sold in July 1st 2004, half policy is exposed to risk during the year 2004, and half policy is exposed 
to risk during the year 2005. That’s why the data used in this study is labeled 2004 or 2005. All these 
policies were issued during the year 2004, however it has risk exposure on 2004 or 2005.

Figure 3. 2016-2019 US Auto Accident Fatalities by Hour
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10 variables were studied in this chapter within the dataset. They are the following. Vehicle Value 
($0 - $350,000), Exposure (0-1), Claim Occurrence (0, 1), Vehicle Age (1 new, 2, 3, 4), Age Band of 
Policy Holder (1 youngest, 2, 3, 4, 5, 6). Claim Occurrence is the dependent variable we modeled, and 
rest of the variables were used as independent variables.

Table 4 shows the insurance claims data by car value. We can see that 47.0% of the vehicle insured has 
a car value between $10,000 to $19,999. This category also has the highest number of exposure (47.1%) 
as well as number of claims (47.1%). However, vehicle value from $30,000 to $39,000 has the highest 
claim per exposure of 0.176, which indicates that the it is the riskiest among all car value categories.

Table 5 shows the insurance claims data by vehicle age. Except new cars has a relatively lower number 
of exposure and claims, older cars are relatively uniform in terms of exposure and claims. It is worth to 
note that claim per exposure does seems to decrease as vehicles are getting older.

Table 6 shows the insurance claims data by Age Band of Policy Holder. Both youngest and oldest 
group has the lowest exposure and claims. However, youngest group has the highest claim per exposure 
and oldest group has the lowest claim per exposure. The pattern is monotone. The older the policyholder 
gets, the better the risk is.

Table 4. Insurance Claims Data by Car Value

Table 5. Insurance Claims Data by Vehicle Age Group
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ANN MODEL

Introduction of ANN

Artificial neural network (ANN), also known as neural network, is a kind of machine learning that can 
be used to learn historical patterns and make future predictions. ANN works as a simulation of our brain 
nervous system, each node in ANN represents a neuron, and one or more nodes in each layer. There isn’t 
a universal rule of how many neurons have the best model performance. However, it is worth to note that 
too few neurons in the hidden layers could result in large errors or under-fitting, and too many neurons 
in the hidden layers could result in overfitting (Ahmad, Mourshed, & Rezgui, 2017). Compared to other 
linear arithmetic models, ANN performs more complex. In an ANN, there are usually three parts, input 
layer, hidden layer and output layer, infinite possible permutations and combinations make it suitable 
for big data-based applications. Figure 4 shows a simple artificial neural network framework: there are 
four parameters in the input layer, one in output later and five nodes in the only hidden layer.

Table 6. Insurance Claims Data by Age Band of Policy Holder

Figure 4. A Simple Artificial Neural Network Framework
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Keras is one of the most powerful libraries that often used in building artificial neural network ma-
chine learning in Python (Chollet, 2017). It is easy for user to define model type by importing Sequential.

from keras.models import Sequential

Keras also provide options to improve machine learning performance by tuning such hyperparameters 
as number of hidden layers, number of nodes for each layer, activation function, early stop, batch size, 
learning rate, kernel initializer, bias initializer, etc. In this chapter, adding layers and early stop will be 
used in learning process, thus we import proper packages: Dense and Earlystopping. At the complex 
network process, the combination of parameters can be tuned to optimize ultimate network. In this 
chapter, the impact of validating data portion, number of hidden layers and size of batch on machine 
learning procedure will be detailed discussed in the next subsections.

from keras.layers import Dense 

from keras.callbacks import EarlyStopping

Building an ANN is started by defining its model type as Sequential and input layer dimensions (the 
number of variables in training data that will be used in learning process). After that, the first hidden 
layer can be added by indicating its nodes number, activation function, input layer nodes and kernel 
initializer etc.

Kernel initializer is one of the arguments that helps the model to set up the initial weights on param-
eters in each layer. There are multiple built-in initializers available. In the following neural network, we 
initialize the weights as randomly uniform distributed. After setting up the initial weights, neural network 
will adjust them to optimize loss and accuracy values through activation function.

n_cols = x.shape[1] 

model = Sequential() 

model.add(Dense(15,activation=’relu’, input_shape=(n_cols,),kernel_

initializer=’uniform’)) 

model.add(Dense(15,activation=’relu’,kernel_initializer=’uniform’)) 

model.add(Dense(1,activation=’sigmoid’,kernel_initializer=’uniform’))

After creating the architecture of the network, compiling the model is the next step. In the compile 
process, optimizer and loss function can be declared. Optimizer is the process that how the neural network 
learns from training data and optimize its way to predict. In Keras, there are multiple optimizer options. 
The classical one is SGD, stochastic gradient descent, which is used by Keras by default, it randomly 
selects samples from training data set in learning process. Adagrad is another option to be used as an 
advanced gradient descent optimizing process basing on its adjusting learning rate. In this chapter, we 
choose the adam optimizer, also called Adaptive Moment Estimation. It has advantages of efficiency 
with little usage memory, which is suitable for large data sources with many parameters. Loss function 
is another hyperparameter needs to be defined. After defining it, the model will calculate the loss be-
tween the predicted values and actual values during its learning process and try to reduce loss values by 
adjusting the model’s weights on parameters. ‘Binary cross-entropy’ is a loss function that can be used 
in predicting categorical outputs. The compile process can be built as bellow.
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model.compile(optimizer = ‘adam’, loss = ‘binary_crossentropy’, metrics = 

[‘accuracy’])

The final step in building up the model is to fit the model with the training data and validate it with 
testing data set. In this process, epochs, batch size and callbacks can be modified to improve neural 
network performance.

One epoch is defined as a procedure that the neural network learns from the whole training data. 
after completion of each epoch, model parameters will be updated and optimized. The number of epochs 
indicates how many times the neural network learns from training data. However, the more epochs do 
not mean to have better learning capability. Fewer epochs may cause underfitting and too many epochs 
may lead to overfitting, which might worsen model performance. Early-stop can help the model to stop 
training if there are no improvements in loss and accuracy and to avoid those problems that may happen. 
In the example codes, callback is defined as early stopping with patient=10, meaning that the model 
stops training at next ten epochs with no improvement on loss and accuracy.

early_stop = EarlyStopping(patience=10) 

model.fit(x_train,y_train, validation_data = (x_test, y_test), epochs=1000, 

callbacks = [early_stop])

Train on 47499 samples, validate on 20357 samples

Epoch 1/1000
47499/47499 [====] - 2s 44us/step - loss: 0.2567 - accuracy: 0.9340 - val_loss: 0.2567 - val_accuracy: 

0.9270
Epoch 2/1000
47499/47499 [====] - 2s 39us/step - loss: 0.2368 - accuracy: 0.9340 - val_loss: 0.2528 - val_accuracy: 

0.9270
Epoch 3/1000
47499/47499 [====] - 2s 39us/step - loss: 0.2344 - accuracy: 0.9340 - val_loss: 0.2525 - val_accuracy: 

0.9270
Epoch 4/1000
47499/47499 [====] - 2s 38us/step - loss: 0.2344 - accuracy: 0.9340 - val_loss: 0.2523 - val_accuracy: 

0.9270
Epoch 5/1000
47499/47499 [====] - 2s 39us/step - loss: 0.2342 - accuracy: 0.9340 - val_loss: 0.2511 - val_accuracy: 

0.9270
…
…
Epoch 1000/1000
47499/47499 [====] - 2s 36us/step - loss: 0.2342 - accuracy: 0.9340 - val_loss: 0.2511 - val_accuracy: 

0.9270
CPU times: user 2min 42s, sys: 46.4 s, total: 3min 28s
Wall time: 1min 32s
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By looking at the loss movement in learning and validating procedures, we will know how the loss 
function works in neural network and try to minimize loss values based on loss function defined in the 
model. Let’s look at two different loss curves Figure 5 and Figure 6. In Figure 5, the loss curve does not 
show decreasing trend as epochs increases. After epochs=25, loss on training and testing data sets keeps 
on a certain value without any improvement. Additionally, the overall loss values on training data are 
higher than those in testing data. This means that the loss function in this model works better in testing 
data than in training data. However, we can see a pretty good fit of neural network from the loss curves 
in Figure 6. Both curves show decreasing tendency along with epochs, without many variations. On the 
other hand, the figure provides evidence of properly used loss function in this model.

Figure 5. Loss Curves with Inappropriate Loss Function

Figure 6. Loss Curve with Appropriate Loss Function
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Overall, a sample whole process can be summarized as Figure 7 and Figure 8. Either in workflow table 
or in network graph, the number of parameters of each layer can easily be recognized. In this example, 
there are four parameters in the input layer and one outcome in the output layer. And two hidden layers 
were added into the neural network.

from keras.utils.vis_utils import plot_model 

plot_model(model, show_shapes = True, show_layer_names = True, rankdir = ‘LR’) 

from ann_visualizer.visualize import ann_viz 

from graphviz import Digraph 

ann_viz(model, title = “Artificial Neural Network”)

Figure 7. ANN Model Workflow Table

Figure 8. ANN Model Network Graph
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One drawback of the artificial neural network is there is no insights of the model learning process. 
Thus, the neural network is also called a kind of black-box model. However, we can assess its perfor-
mance by comparing its loss and accuracy on training and testing data sets. In python, a list of loss and 
accuracy values can be recapped through evaluation method.

Accuracy curves help us to know the learning and predicting capability of the model. The changes 
of accuracy on training and testing data sets can be visualized by using codes below.

In Figure 9 and Figure 10, the model performs pretty well in training and predicting process, as the 
accuracy shows increasing tendency as times of learning procedure increases. Compared with these two 
figures, the model in Figure 10 performs betters than the one in Figure 9 by looking at the gap between 
two accuracy curves. In Figure 9, the model seems to be a little underfitting, since the accuracy on 
testing are generally higher than on training data, which means the model is better in predicting than 
in training. Its opposite condition is when the testing curve lies under the training one, an indication of 
possible overfitting. A perfect example can be seen in Figure 10, two accuracy curves show a perfect 
match, meaning a good model has been built. Now, let’s look at a totally different situation in Figure 11. 
Accuracy decreases as more learning processes, indicating a such poor model has been built.

score_train = model.evaluate(x_train,y_train) 

score_test = model.evaluate(x_test,y_test)

Figure 9. Exemplary Accuracy Graph with Underfitting Issue
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Figure 10. Exemplary Accuracy Graph without Underfitting Issue

Figure 11. Exemplary Accuracy Graph for a Poorly Constructed Model
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Total number of parameters can be obtained by having a look at the model’s summary. The following 
model summary table reveals the total parameters for each layer. Let’s have a look at the output layer 
(dense_6), there are 11 parameters in total, but in Figure 8, there are 10 lines connected to the output node 
from the last hidden layer. The reason is neural network added bias values in the hidden layer, similar 
to the way that adding a constant by Linear or Generalized Linear Model. Bias values can be initialized 
by assigning bias initializer in adding layers procedure. They are adjusted during learning process to 
optimize model’s predictability. However, discussion on bias initializer is not included in this chapter.

model.summary()

Model: “sequential”

_________________________________________________________________
Layer (type) Output Shape Param #
===========================================================

======
dense_4 (Dense) (None, 15) 75
_________________________________________________________________
dense_5 (Dense) (None, 10) 160
_________________________________________________________________
dense_6 (Dense) (None, 1) 11
===========================================================

======
Total params: 246
Trainable params: 246
Non-trainable params: 0
_________________________________________________________________

In order to explore impact of hyperparameters on model’s accuracy, we keep other factors the same 
for parallel comparison, such as nodes number, epochs, activation function and Kernel initializer. And 
the following sections will discuss how percentage of training data set, hidden layers, and batch size 
affect artificial neural network’s learning process and predicting capabilities.

Model Characteristics - Activation Functions

Activation function in layers, is a function that assists neural network to learn from training data. It 
transforms values from the previous layer into the next layer, with adjusted weights on parameters and 
adjusted bias values. Activation functions do more complex non-linear work rather than linear function. 
Proper activation function used in layers will attach power and flexibility to the neural network. There 
are various types of activation functions.

Linear Activation

Linear activation is defined as the following:
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g(x) = cx (1)

X are inputs or calculated values from previous layer notes. C is a constant that could be positive 
or negative. Input value range is from negative infinite to positive infinite, the linear features made the 
activation function very easy to interpret the impact of input locally.

Step Function

Step Function is defined as the following:

g x ifx
ifx( ) ,

,�� ��
�

0 0

1 0
 (2)

Step function converts calculated value into a binary 0 or 1 data, which captures only the absolute 
direction of the previous layer output and drops off the magnitude. The benefit of this function is that 
the model will not be influenced easily by several input outliers. It has a high calculation efficiency.

Rectified Linear Unit (ReLU)

ReLU is short for Rectified Linear Unit, it is defined as the following:

g(x) = max(0, x) (3)

It is similar to step function, that drops negative input, but the functions keep the positive portion 
of the input instead of change them to 1 as what step function does. ReLU is widely chosen in order to 
produce positive outcomes. In this function, all negative values will be assigned to zero.

Logistics Sigmoid

Logistics Sigmoid often short for Sigmoid, it is defined as the following:

g x e
e

x

x� � �
�1

 (4)

Sigmoid function could take in any value from negative infinity to positive infinity, and output a 

value from 0 to 1. Exponential function has a range of (0, +¥), and 
e
e

x

x +1
 has a range of (0, 1), where 

g(x) approaches to 0 when x approaches to -¥, and g(x) approaches to 1 when x approaches to +¥. It is 
often used for probability modeling.

In the output layer, we assign Sigmoid as its activation function, often used when we expect the 
probability of results exist between zero and one, with the same logical working on logistic regression.
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Model Characteristics - Validation Dataset

The procedure of separating data set into training and testing is helpful in training and estimating model 
performance, especially when facing a large data source with complex structure. Training data set is 
used in machine learning procedure and testing data set is for estimating model’s predictive capability, 
thus different portion on these two data sets would differ model’s performance. We will discuss two dif-
ferent situations, twenty percent of testing data, which is a widely used choice, and half of testing data.

In Table 7 and Table 8, accuracy values on eighty percent of training and twenty percent of testing 
are higher than values on half of testing data. Loss values are lower in data source with twenty percent 
of validation data. Running time spent in learning process on high portion of training data is longer than 
the other, because higher portion of training data means larger data are used in learning process, model 
needs more time to learn patterns and make adjustments on parameters. Therefore, from aspects of ac-
curacy and loss, fewer testing data set produces higher accuracy and lower loss than the data set with 
higher percentage of testing. However, the larger training data set is, the longer running time is required.

Table 7. Model Validation Result on Fatal Accident Data

Table 8. Model Validation Result on Insurance Claims Data
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Model Characteristics - Hidden Layer

In this section, we’ll talk through how the hidden layers will affect neural network’s behavior. Hidden 
layers are somewhat secrets in the ‘black-box’ of the machine learning. The process of training and 
adjustments of weights on parameters cannot be seen by us. However, diverse number of hidden layers 
derive different predicting precisions. Three different conditions on hidden layers will be discussed and 
compared in the following, model with no hidden layer, 1 hidden layer and two hidden layers.

At the condition of no hidden layers, only input layer and output layer are added. Thus, the procedure 
of adding layers becomes much simpler.

model.add(Dense(1, input_shape = (n_cols,), activation = ‘sigmoid’, kernel_

initializer =’uniform’))

Auto Accident Data (Data Source 1)

Built on Data Source 1, we have 12 input nodes and 1 output node. An extra line that stands for bias is 
also added by artificial neural network automatically as demonstrated in Figure 12.

Accuracy values on training and testing data sets are exact the same, thus loss is our only consid-
eration on selecting number of hidden layers. In Figure 13, loss with two hidden layers has the lowest 
values on training and testing data sets.

Figure 12. Demonstration for Bias
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Insurance Claim Data (Data Source 2)

From Figure 14, accuracy on both training data and testing data does not appear any refinements, the 
same situation as in data source 1. Besides, loss on training and predicting are not consistent in these 
three conditions. Thus, for Data Source 2, hidden layers are not considered to be a kind of edge that 
can be added to increase model’s accuracy nor diminish loss. One of the reasons may on account of the 
relative smaller dimension of this data source, only 4 input variables and 67,856 data in it.

Figure 13. Auto Accident Data Accuracy/Loss with different hidden layers

Figure 14. Insurance Claim Data Accuracy/Loss with different hidden layers
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Fanalized Hidden Layer

Comparing with Figure 13 and Figure 14, it is apparent that the more hidden layers, the complex learning 
process on training data. However, more hidden layers not always generate better neural network. Proper 
number of hidden layers rely on the dimensions of data set and complexity of data structure. To answer 
how many hidden layers will produce best model will be complex and not so simple. If variables are 
linearly correlated, no hidden layers needed in neural network. For data sources, which having complex 
structure and non-linear relationship between parameters, adding hidden layers are helpful in model 
learning procedure. However, there is no rule of how many hidden layers should be added, just through 
trial and error. An important thing that needs to keep in mind is to avoid overfitting or underfitting for 
better model performance. In most cases, two hidden layers would be more than enough to build a well 
performed neural network. In some cases, such as the Cascade Correlation Learning Architecture in 
artificial neural network (Fahlman & Lebiere, 1990) two or more hidden layers will be added. Radial 
Basis Function (RBF) is an example of neural network with one hidden layer (Orr, 1996).

Model Characteristics - Batch Size

The batch size is the number of samples selected from training dataset. For example, when epoch=5 and 
batch_size=10 with 100 training data. The whole process of neural network train on 10 batches (100 
training data divides batch_size 10) is considered to be one epoch. And this procedure would happen 5 
times if no early stop defined ahead. Possible batch size can be any integer ranging from 1 to the total 
data number in training set, and its default value is 32.

Data Source 1

We experimented on 9 different batch sizes on data source 1, ranging from its default value to its possible 
maximum value. In order to realize the impacts of batch size on model performance, we compared in 
three aspects, loss, accuracy and running time. We add running time into consideration and comparison, 
because the influence is significant under different batch sizes. Additionally, it is an important issue 
especially when you are dealing with a huge set of data source, longer running time without superior 
model performance would be inefficient.

From Figure 15 and Figure 16, we notice an overall trend that the large batch size is, the more loss and 
lower accuracy on both training and testing datasets. However, running time has significant advantage 
when increasing batch size (Figure 17). From a comprehensive view, choosing a model that runs faster 
associate with similar loss and accuracy would be smart. In our example, we will assign batch size as 5000.
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Figure 15. Auto Accident Data Loss vs Batch Size Analysis

Figure 16. Auto Accident Data Accuracy vs Batch Size Analysis
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Data Source 2

For data source 2, we trialed on 12 different batch size, also ranging from its default value to its pos-
sible maximum value. This time, we compared loss and running time, since accuracy come to exactly 
same values on all these different conditions. Loss on train and test has tiny difference until batch size 
equals to 5000, after which shows an increasing trend as batch number increases (Figure 18), the similar 
situation as data source 1. The trend on running time tells an opposite story, running time decreasing as 
batch size comes to 5000, almost flat line after that (Figure 19). Thus, batch size equals 5000 would be 
a sharp choice in this data source.

Figure 17. Auto Accident Data Time vs Batch Size Analysis

Figure 18. Insurance Claim Data Loss vs Batch Size Analysis
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ANN Summary

Artificial neural network is power predictable model, especially for data source with large amount and 
complex structure. However, building up the learning procedure is more complicated than Generalized 
Linear Model. Multiple adjustable hyper-parameters lead to innumerable possibilities of combinations.

For train and test split rate, it would depend on the size and complexity of data source. Twenty or 
thirty percent of testing are often used in most cases, where is a good start of your trial. For a data with 
simpler structure, the portion of testing data makes little difference, since relationship patterns can eas-
ily be captured by model. On the other side, the testing portion will have significant impact on complex 
structured data. In this kind of condition, propitiate portion will produce a good model in both learning 
and predicting.

Overfitting or underfitting is one of crucial considerations of how well the model you built in pre-
dicting. Overfitting means the model learns pretty well on training data set but works poorly on valida-
tion data, it is a commonly problem when building machine learning models. For example, accuracy 
on training is 0.99, but comes to 0.45 in validation data. When it happens in your model, it seems to be 
inflexible in predicting other data sets, which means it cannot used to do prediction properly. Underfit-
ting is a opposite issue, that prediction process performs better than training procedure. By having a look 
at loss and accuracy curves, overfitting or underfitting can be diagnosed. A proper machine learning 
should has decreasing loss curve and increasing accuracy curve, and the smaller the gap between these 
two curves is the better.

Neither default value nor possible maximum value of batch size are normally considered to be a good 
choice. With its default value, time consuming is significant during learning procedure. At its maximum 

Figure 19. Insurance Claim Data Time vs Batch Size Analysis

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



255

Automobile Fatal Accident and Insurance Claim Analysis Through Artificial Neural Network
 

value, loss value comes to high as well. To find out an optimum value in a comprehensive aspect helps 
the learning process to be well performed and effective.

GENERALIZED LINEAR MODEL (GLM)

GLM is a modeling process that build relationships between variables. It relaxes the restrictive normal 
assumptions for the traditional linear regression model, which allows GLM capable of analyzing non-
normal data. (Jong & Heller, 2008)

In Python, the process of building up a Generalized Linear Model is simpler than the process in ANN. 
Noting that when your independent variables are in an array, a constant coefficient needs to be added 
manually, which is the intercept of GLM and not included by default.

There are three main parts in learning process, dependent variable, independent variables and its 
families. By using summary method, details of GLM results such as model information, estimated values 
of each dependent variables, along with their statistics. Detailed GLM model results for both automobile 
fatal accident data and insurance claims data are attached in the appendix II and appendix III.

import statsmodels.api as sm 

x_train_sm = sm.add_constant(x_train) 

model = sm.GLM(y_train, x_train_sm, family = sm.families.Binomial()).fit() 

print(model.summary())

COMPARISON AND CONCLUSION

In this chapter, artificial neural network (ANN) machine learning technique was built to predict the 
occurrence of event upon two different sources. Data sources 1 has more complex data relationship 
structure as well as data size compared with data source 2.

The framework of ANN model has been detailed introduced in section 4, codes to be used in Python 
have been provided and some of hyper-parameters’ effects on model performance are detailed explored 
as well. From experiments on different data sources and diverse combination of hyper-parameters, we 
can recognize variations of accuracy in an ANN model’s learning and predicting process. In section 4, 
impacts of three model characteristics were inspected in detail, train and test split rate, number of hidden 
layers and size of batch. Some possible actions are suggested to make improvements that could boost 
ANN predictability; 1) use proper portion of data source as validation, twenty or thirty percentage are 
normally used; 2) two hidden layers are enough in most cases, adding one hidden layer is a good start 
point of your trial; 3) batch size with default value or its maximum value will not usually bring a good 
model in consideration of accuracy loss and running time. However, there is no such a rule indicates 
best parameters, trials and adjustments are required to optimize ultimate model.

In order to investigate the edges of using artificial neural network to make predictions, we created 
Generalized Linear Model on both of data sources as well. Comparable results are summarized in Table 
9. From the point of model accuracy in Data Source 1, ANN performs much better than GLM, with 8.29 
percentage greater predicting capability. For data source 2, accuracy values are similar or close between 
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these two models. Therefore, the artificial neural network becomes a standout a model on data sets with 
larger size and complicated relationship structure. With regards to running time in learning process, 
GLM performs better because of its simpler algorithm.

Thus, ANN could leverage its edge on data sources with complex or non-linear data structures. How-
ever, in general, ANN takes longer time in training than traditional techniques like GLM.

In addition, further explorations on ANN model’s parameters could be done in many other areas 
that not included in this chapter. For example, the number of appropriate input variables, learning rate. 
Research shows that ANN has outstanding performance on larger data sets, data sources provided in 
this chapter are not large enough in real industry world. In addition, some efforts available that could be 
made to shorten its running time on CPUs (Vanhoucke, Senior, & Mao, 2011). As a black-box model, 
the artificial neural network’s performance is unpredictable and has possibility of overfitting. However, 
there are many applications of ANN in various industries. The output quality could be improved by 
reducing its limitations. Thus, as the increasing demand of ANN applications, further developments on 
ANN is invaluable.
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KEY TERMS AND DEFINITIONS

Activation Functions: Activation function assists neural network to learn from training data. It 
transforms values from the previous layer into the next layer, with adjusted weights on parameters and 
adjusted bias values.

Artificial Neural Network (ANN): A machine learning technique that can be used to learn historical 
patterns and make future predictions. It works as a simulation of our brain nervous system, each node 
in ANN represents a neuron, and one or more nodes in each layer.

Automobile Fatal Accident: One of the datasets analyzed in this chapter is from FARS (Fatality 
Analysis Reporting System), which is recorded for any accident happened in the United States that has 
at least one person dead accidentally due to automobile accident.

Automobile Insurance Claim: One of the datasets analyzed in this chapter is that captures an au-
tomobile insurance company’s claims information from 2004 to 2005.

Batch Size: The batch size is the number of samples selected from training dataset. Possible batch 
size can be any integer ranging from 1 to the total data number in training set.
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Generalized Linear Model: A modeling process that build relationships between variables. It re-
laxes the restrictive normal assumptions for the traditional linear regression model, which allows GLM 
capable of analyzing non-normal data.

Hidden Layers: Hidden layers are essential components of artificial neural network which signifi-
cantly enlarges the model’s mathematical complexity and improve its capability. It serves as ANN model 
parameter compared with other traditional statistical modeling.

Linear Activation: Linear activation function has an output range from negative infinity to positivity 
infinity with a constant coefficient to adjust the weight.

Logistic Sigmoid: Logistic sigmoid is often called sigmoid. It is a type of activation function that 
converts input value to a non-negative value. It is a commonly used activation function for hidden layers.

Model Validation: A process of model construction that used to validate the model efficiency. Com-
monly used process for validation include 50%(Training)/50%(Testing), 75%(Training)/25%(Testing), 
80%(Training)/20%(Testing), Even-Year(Training)/Odd-Year(Testing), K-Fold Cross Validation, etc.

Neurons: Neurons are key components of ANN, which is responsible processing information by 
carrying the calculated value forward from input layer to output layer. Too few neurons in each layer 
could result in large errors or under-fitting, and too many neurons could result in overfitting.

Predictive Modeling: A process that utilize historical and current data to capture patterns, then 
create models to make future predictions.

ReLU: ReLU is for rectified linear unit. It is a type of activation function that converts input value to 
a range of (0, 1) exclusively. It is a commonly used activation function for probability model output layer.

Step Function: Step function is a type of activation function that converts input value to a binary 0 
or 1 output. It has a high calculation efficiency.
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APPENDIX I

Figure 20.  
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APPENDIX II

                 Generalized Linear Model Regression Results (Data Source 1)                 

============================================================================== 

Dep. Variable:                  Death   No. Observations:               237214 

Model:                            GLM   Df Residuals:                   237201 

Model Family:                Binomial   Df Model:                           12 

Link Function:                  logit   Scale:                          1.0000 

Method:                          IRLS   Log-Likelihood:            -1.2905e+05 

Date:                Wed, 26 May 2021   Deviance:                   2.5810e+05 

Time:                        13:21:20   Pearson chi2:                 2.83e+05 

No. Iterations:                     6                                          

Covariance Type:            nonrobust                                          

============================================================================== 

                 coef    std err          z      P>|z|      [0.025      0.975] 

------------------------------------------------------------------------------ 

const          0.4855      0.025     19.756      0.000       0.437       0.534 

x1             0.1183      0.016      7.335      0.000       0.087       0.150 

x2            -3.9506      0.074    -53.670      0.000      -4.095      -3.806 

x3            -1.6579      0.026    -63.576      0.000      -1.709      -1.607 

x4             0.6281      0.076      8.266      0.000       0.479       0.777 

x5             1.5547      0.029     52.821      0.000       1.497       1.612 

x6            -2.1417      0.062    -34.569      0.000      -2.263      -2.020 

x7            -0.4621      0.021    -22.485      0.000      -0.502      -0.422 

x8            -3.2888      0.066    -49.749      0.000      -3.418      -3.159 

x9             0.6552      0.019     33.783      0.000       0.617       0.693 

x10           -1.1797      0.027    -44.334      0.000      -1.232      -1.128 

x11            4.1378      0.027    151.172      0.000       4.084       4.191 

x12            0.2409      0.011     21.571      0.000       0.219       0.263 

==============================================================================
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APPENDIX III

                 Generalized Linear Model Regression Results (Data Source 2)                

============================================================================== 

Dep. Variable:                    clm   No. Observations:                54284 

Model:                            GLM   Df Residuals:                    54279 

Model Family:                Binomial   Df Model:                            4 

Link Function:                  logit   Scale:                          1.0000 

Method:                          IRLS   Log-Likelihood:                -13049. 

Date:                Sat, 29 May 2021   Deviance:                       26098. 

Time:                        15:06:10   Pearson chi2:                 5.35e+04 

No. Iterations:                     6                                          

Covariance Type:            nonrobust                                          

============================================================================== 

                 coef    std err          z      P>|z|      [0.025      0.975] 

------------------------------------------------------------------------------ 

const          3.2493      0.089     36.468      0.000       3.075       3.424 

veh_value     -0.0333     0.016     -2.125      0.034      -0.064      -0.003 

exposure      -1.8171      0.061    -29.796      0.000      -1.937      -1.698 

veh_age        0.0390      0.019      2.057      0.040       0.002       0.076 

agecat         0.0852      0.012      7.007      0.000       0.061       0.109 

==============================================================================

x1 State

x2 Rural Urban Indicator

x3 Automobile Body Type

x4 Model Year

x5 Fire Indicator

x6 Age

x7 Sex

x8 Seat Position

x9 Restraint Type

x10 Air Bag

x11 Ejection

x12 Drinking
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ABSTRACT

Artificial neural network (ANN) has been showing its superior capability of modeling and prediction. 
Neural network model is capable of incorporating high dimensional data, and the model is significantly 
complex statistically. Sometimes, the complexity is treated as a Blackbox. However, due to the model com-
plexity, the model is capable of capture and modeling an extensive number of patterns, and the prediction 
power is much stronger than traditional statistical models. Random forest algorithm is a combination of 
classification and regression trees, using bootstrap to randomly train the model from a set of data (called 
training set) and test the prediction by a testing set. Random forest has high prediction speed, moderate 
variance, and does not require any rescaling or transformation of the dataset. This study validates the 
relationship between the U.S. unemployment rate and economic indices during the COVID-19 pandemic 
and constructs three different predictive modeling for unemployment rate by economic indices through 
neural network, random forest, and generalized linear regression model.
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INTRODUCTION

Literature review

In March of 2020, COVID-19 pandemic started to outbreak in the U.S. All industries have been affected 
dramatically due to the high transmission rate and population movement in the spring. The downgrade 
of stock market and upgrade of unemployment rate are two sensible evidence to show the serious impact 
from COVID-19. The Dow Jones Industrial Average has experienced a sharp decrease from almost 30,000 
to a point lower than 20,000 in few days. The majority of secondary industry, for examples airline, food, 
entertainment, were largely affected by the pandemic. Companies like NPC International Inc, Hertz, 
CMX Cinemas, J.C. Penney, etc. went bankrupt due to COVID-19. In the fourth quarter of 2020, U.S. 
GPD had fallen over 2 percent for the year, the unemployment rate averaged 6.7 percent according to 
U.S. department of treasury.

To explore the relationship between stock market index and the unemployment rate, this paper first 
reviews and summarizes the past studies and researches.

Unemployment rate and stock market are highly correlated because they are all direct outcomes of 
the country’s economic changes. Also, there should be a lag between the changes of stock market and 
unemployment rate (stock market changes before the movement of unemployment rate). The phenomena 
are also studied by Quantifying Macroeconomic Expectations in Stock Markets using Google Trends 
(Bock, 2018) and The Stock Market’s Reaction to Unemployment News: Why Bad News Is Usually 
Good for Stocks (Boyd et al, 2005). There is a clear positive relationship between capacity scrapping 
and unemployment rate increasing. (Arestis, Baddeley, & Sawyer, 2007)

There are many different factors that could impact unemployment rate, such as adverse demand shocks, 
when shocks reserve, unemployment may not fall to previous levels due to insufficient capital. (Arestis 
& Mariscal, 2000) Other economic data such as lagged values show significant effect on unemployment. 
(Loungani, Rush, & Tave, 1990) Study shows countries experienced the largest slowdown in capital 
accumulation per labor hour faced the highest unemployment rate in 1990s. (Gordon, 1997) The focus 
of this study is to model unemployment rate by economic indexes during COVID-19 pandemic. Thus, 
other factors such as adverse demand shocks, lagged values and capital accumulation slowdown that 
cannot be quantified with COVID-19 characteristics were not incorporated in this study.

The reason of such relationship is that, negative impact on stock market could cause lower incen-
tives of firms to invest in hiring. During the periods of high risk, stock market valuations are low and 
unemployment rises. (Kilic & Wachter, 2018) However, the relationship is not perfectly negatively 
correlated. The information spillover was found significant between the stock market and labor market, 
but insignificant in the opposite direction, and significant bi-directionally. (Sibande, Gupta, & Wohar, 
2019). Also, there is one-way causal direction from stock prices to the unemployment rate in G7 coun-
tries. There is a strong bilateral causal relationship between stock prices and unemployment for other 
advanced countries. (Pan, 2018)

In summary, unemployment rate and stock market should be highly correlated because they are all 
direct outcome of the country’s economy change. Also, there should be a lag between the changes of 
stock market and unemployment rate (stock market changes before the movement of unemployment 
rate). This thought has been confirmed after reviewing Quantifying Macroeconomic Expectations in 
Stock Markets using Google Trends (Bock, 2018) and The Stock Market’s Reaction to Unemployment 
News: Why Bad News Is Usually Good for Stocks (Boyd et al., 2005). Thus, we decided to test whether 
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U.S. unemployment rate can be predicted by economic indexes through neural network, random forest 
and generalized linear regression model. We aimed to compare the prediction power among all three 
models. Although neural network and random forest are unquestionable machine learning models to use 
for prediction, the model themselves are usually not interpretable. Thus, we designed to use generalized 
linear regression model to help us understand the coefficient of each individual variable.

Quantitative methods were used to measure the relationship between unemployment rate and stock 
prices. Study shows only anticipated unemployment rate has a strong impact on stock prices based 
on nonparametric granger causality and quantile regression-based tests. (Gonzalo & Taamouti, 2017) 
Artificial Neural Network (ANN) has been showing its superior capability of modeling and prediction. 
Neural network model is capable of incorporating a high dimensional data and the model is significantly 
complex statistically. Sometimes, the complexity is treated as Blackbox. However, due to the model 
complexity, the model is capable of capture and model an extensive amount pattern and the prediction 
power is much stronger than traditional statistical modeling. This study validates relationship between 
U.S. unemployment rate and economic indexes during the COVID-19 pandemic, constructs three dif-
ferent predictive modeling for U.S. unemployment rate by economic indexes through neural network, 
random forest and generalized linear regression model.

The methodology and the modeling approach adapted in this paper can just be used on the topic of 
relationship between COVID-19 pandemic and unemployment rate. It could also be used on different 
scenarios related to social and public health impact on economic, helping policymakers on establishing 
rules that could impede economic decay.

Random Forest

We had reviewed multiple influential literatures that used random forest model in application. To start 
our literature review regarding the Random Forests models, our paper first demonstrates the unique 
characteristics and desirable features of the Random Forests. Many distinguished researches have been 
conducted over the years and some of those researches are great enlightenment to our paper.

The Random Forests combine the features of independent values of random vector and same dis-
tribution for all trees. The errors of the Random Forests model become large as the number of sample 
increases. The ability of individual predictor places great impact on the overall prediction accuracy 
(Breiman, 2001) The Random Forests models have many desirable features which can be applied to 
many research fields. The Random Forests models is efficient in terms of computation, robust to noise, 
and offer great visualizations for its outputs (Robnik-Šikonja, 2004).

The research of the algorithm foundation of the Random Forests models focuses on the induction 
of decision trees and the construction of ensembles of randomized trees. The algorithm of the Ran-
dom Forests models is computational fast, and the ability of interpretation is comprehensive (Louppe, 
2014). Boosting and Bagging is viewed as the most accurate method for the Random Forests model, 
this method requires sample weighting and bootstrapping. Boosting and Bagging provides a computa-
tional efficiency way to exercise the Random Forests predication (Gislason, et al., 2006). There have 
been some extensive researches regarding the accuracy of the Random Forests model, one of the major 
improvements has been made by analyzing the performance of ensembles of trees. The accuracy of the 
prediction will receive significant increases under the situation that each tree in the ensemble is grown 
with parameter (Biau, 2012).
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Although the Random Forests models are well researched for many years, the model results are usu-
ally uninterpretable in magnitude since the intrinsic calculation behind the model is like a Blackbox. 
The mathematical properties behind the model receive little attention since it is difficult to analyze the 
randomization process and the highly data-dependent tree structure at the same time (Scornet et al., 2015). 
In order to fix this potential limitation, we decided to apply Generalized Linear Model (GLM) to inves-
tigate the relationship between unemployment rate and all stock market predictors in certain magnitude.

The research area of improving the prediction accuracy and performance attracts great attention 
since accuracy remains the crucial concern of any statistic model. Even when the initial prediction is 
already decent, improvements can still be achieved by some tuning process to enhance the prediction 
power. Various new approaches have been attempted by researcher to enhance the performance of the 
Random Forests models.

Adaptive nearest-neighbor methods are an emerging approach to study the Random Forests method. 
Under this assumption, researchers have been analyzing the effect of terminal node sizes on the predic-
tion accuracy of the Random Forests models (Lin & Jeon, 2006).

The dynamic integration is a distinguish method to improve the prediction performance of Random 
Forests model. The dynamic integration is based on local performance estimates and replacing the 
combination function with the dynamic integration will result in better prediction (Tsymbal et al. 2006).

The property and ability of the variables which applied to the Random Forests models have significant 
impact on the accuracy and comprehensiveness of the prediction outcomes. Thus, the method and principle 
of variable selection have determining impact on the overall outcomes of the Random Forests models.

Variable selection process remains a crucial part of the Random Forests model as the variables are the 
determining factors of the prediction. One major variable selection method requires important variables for 
interpretation, second method demands to rank the importance of explanatory variables (Genuer, 2010).

The Conditional variable importance for the Random Forests models is one of the major research 
areas. Comparing to the screening method, the Random Forest variable importance measures cover the 
impact of each variable separately and the interactions with other predictor variables. (Strobl et al., 2008)

The Random Forests models have extensive application possibility in various fields, due to its con-
venient statistical strength and unique feature, The Random Forests models have advantage in deal with 
complex modeling problem and simulate real world situations.

One innovative application of the Random Forests models is Intrusion Detection System. The current 
Intrusion Detection System are rule based and has many limitations on detect novel intrusion. However, 
the Intrusion Detection System based on the Random Forests models offer better intrusion detection by 
matching the network activities against the patterns. The Intrusion Detection System based on Random 
Forests algorithm improve the detection performance by combining the advantages of the misuse and 
anomaly detection (Zhang, Zulkernine, & Haque, 2008).

Researchers have been using the Random Forests model in the field of ecology and analyzing special 
cases regarding ecological evolvement. The advantages of using Random Forests model in the field of 
ecology including high classification accuracy, ability to model complicated situations, flexibility of 
performing various type of data (Cutler, 2007).

Another crucial aspect of the application regarding the Random Forests model is data mining. Random 
Forests model remains an efficiency method to obtain useful datasets (Verikas, 2011).

One major application of the Random Forests models is in the field of big data, Random Forests mod-
els are powerful nonparametric statistical method which allows to analyze the two-class and multi-class 
classification problems. Furthermore, scaling Random Forests to big data is one promising research area 
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that we should pay attention to Genuer et al. (2017). Random Forests models are highly data adaptive, and 
the models are particularly suited for high-dimensional genomic data analysis (Chen & Ishwaran, 2012).

Generalized Random Forests model is one valuable special case among Random Forests models. 
The Generalized Random Forests model support nonparametric statistical estimation based on Random 
Forests, this special case allows any quantity of desired variables as the solution of the equations (Athey 
et al., 2019). As we analysis the Random Forests model, there is a special case which we should pay 
close attention to: the multivariable Random Forests (Segal & Xiao, 2011).

DATA DESCRIPTION

There are six stock market indexes data and one unemployment data used for this research, and all of 
them were extracted from Federal Reserve Bank of St. Louis economic data (Federal Reserve Bank 
of St. Louis, 2020), a free accessed public data. The data included in this study is from 1/1/1986 and 
11/1/2020. Figure 1 shows all the economic indexes and US unemployment rate data that are used for 
this study, and their basic data descriptions are presented.

The NASDAQ 100 Index contains 100 of the largest domestic and international non-financial securi-
ties listed on the NASDAQ Stock Market based on market capitalization.

The NASDAQ Composite Index describes market capitalization weighted index with more than 
3000 common equities listed on the NASDAQ Stock Market. The types of securities in the index in-
clude American depositary receipts (ADRs), common stocks, real estate investment trusts (REITs), and 
tracking stocks.

The Wilshire 5000 Price Index describes the market-capitalization-weighted index of the market 
value of all the U.S. trading stocks.

Figure 1. Economic Indexes and Unemployment Rate Data Description
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The Nikkei Stock Average (Nikkei 225) is the major stock market index comprising of 225 highly 
liquid stocks of the Tokyo Stock Exchange. It is expected that US unemployment rate is mainly impacted 
by the US economy, however, globalization does play a factor in the U.S. employment since international 
trading movement. The U.S. and Japan have strong and mutually advantageous economic relationship, 
two countries together account a large portion of world domestic product. NIKKEI225 index is included 
and tested to reflect the globalization impact.

The Equity Market-related Economic Uncertainty Index is a policy related index to address economic 
policy uncertainty (Baker, Bloom, & Davis, 2015), which is related to stock price volatility, investment 
and employment.

The CBOE S&P 100 Volatility Index estimates the expected 30-day volatility of the S&P 100 stock, 
originally provided by Chicago Board Options Exchange.

The Unemployment Rate represents the number of unemployed as a percentage of the labor force. 
The labor force is defined as people, living in 1 of the 50 states or the District of Columbia, 16 years 
of age and older.

The economic indexes data listed above is not an exclusive way to measure all aspect of economic 
condition. However, it includes major economic indexes from U.S. market and a proxy of globalization. 
Relationship between the dependent variable and independent variables are the main focus of this study.

DATA CLEANING

Data cleaning requires significant amount of work. Despite the fact that neural network and random 
forest do not require any specific transformation of the data, it is meaningful and important to construct 
statistical model effectively. The dataset is extracted from data repository on a daily basis, and then they 
are combined into monthly basis to avoid observation mismatch. Two possible ways can be utilized 
when handling missing data. One is to eliminate missing data directly from the data, the other is to use 
random forest model to impute the missing values by its algorithm. As only little missing values were 
found in our data and removing them wouldn’t make affecting impact to the model results, we decided 
to remove them from the dataset. There are a limited number of data eliminated so that final data used 
are a complete matrix without any missing value. Every observation has a dependent variable and valid 
independent variables.

Economic Indexes Modification

Original economic indexes data are represented in a daily format, yet the unemployment rate is reported 
monthly. Therefore, we calculated the monthly average of all economic indexes as general performances 
in that month to make connection with the unemployment rate. Figure 2 displays a linear trend of un-
employment rate versus major economic indexes over time.
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We observe increasing trendlines for the economic indexes overtime as a result of technology de-
velopment and globalization. However, a decline of economy will generally lead to a consequence of 
unemployment. Based on our observation, most increases in unemployment rate incurred after a down-
grade of economic indexes. For example, unemployment rate had an increasing trend in the middle of 
2000 when major indexes started to decline. Also, another decrease of these economic indexes and an 
increase of unemployment rate occurred in the end of 2008 due to global financial crisis. The same pat-
tern is observed in the beginning of 2020 due to COVID-19. All economic indexes and unemployment 
rate experienced a terrible decline. With the COVID-19 Economic Relief fact passed by the government, 
families and small business owners were supported, leading to the start of U.S. economy revival. The 
observation suggests economic indexes are critical drivers or proxies for unemployment rate prediction.

Unemployment Rate Modification

Unemployment rate was collected numerically and varies by each month, unemployment rate change 
was used to fit the model. Binary data is modeled as the output layer for the artificial neural network. 
The number of 0 indicates the unemployment rate of one month has decreased compared to previous 
month, and the number of 1 indicates the unemployment rate of one month has increased or not changed 
compared to previous month. The emergence of a sequence of 1 in consecutive months indicate a grow-
ing trend of unemployment rate. The emergence of a sequence of 0 in consecutive months indicates a 
declining trend of unemployment rate.

Figure 2. Unemployment Rate vs Major Economic Indexes
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Testing and Training Separation

The data is randomly separated into two groups, one is training and another is testing for the purposes of 
validation. Multiple separations thresholds have been tested such as 20%-80%, 30%-70%, 40%-60% and 
50%-50%. The model results improve with higher training data allocation, which indicates the model is 
not completely converged. However, the model is able to reach a more than 90% accuracy which shows 
statistical relationship between unemployment rate change and major economic indexes.

MODEL DESCRIPTION

Neural Network

The follow graph shows the main categorization of Artificial Intelligence (AI) and computational statis-
tics techniques and their relationships. Search, Optimization, Machine Learning and Language Natural 
Language Processing are main applications of AI. Supervised Learning, Unsupervised learning and 
reinforcement learning are popular techniques. The model utilized in this study, neural network, is one 
of the classical supervised learning techniques. Others include classification and regression.

Figure 3. Artificial Intelligence Categorization
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The main topic of this study is to show the economic impact on unemployment rate change. The ar-
tificial neural network constructed is a well-defined supervised learning model, because the availability 
of the target metric (unemployment).

Multiple neural network models were constructed and tested. Figure 4 shows the finalized model and 
its parameters. There are six neurons each represents an economic index as input. Only one hidden layer 
was included to enhance model flexibility. Multiple layers’ settings were tested, however they showed 
suboptimal accuracy. Overfitting was the main reason for the inaccurate predictability. There is only one 
neuron for the output which is a binary data indicating unemployment rate change (1 represents there is 
an increase between two consecutive months, 0 represents there is a decrease between two consecutive 
months).

Figure 4. Final Artificial Neural Network Model
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In the hidden layers, rectified linear unit (ReLu) activation function is used. For the final layer (output), 
sigmoid activation function is selected. Other activation functions such as linear activation function, step 
function, are also tested. ReLu and Sigmoid are selected because they produce better model accuracy.

Random Forest

Random forest is a learning algorithm that uses decision trees to classify different samples in the dataset. 
It has high accuracy through cross validation and uses Out-Of-Bag (OOB) error to test the prediction rate. 
Each decision tree in random forest is trained based on two third of the training set (bootstrap sample), 
OOB error is computed as a weighted average of the prediction error on the remaining one third of the 
training set (out of bag sample). It is a common estimate when measuring the prediction error of random 
forest model or other bootstrap aggregating machine learning models.

In this data, we have six predictors from different stock markets. We used random forest to predict 
the unemployment rate change based on these predictors and identified the most important variables. 
This analysis was performed through Rstudio with the following packages: ggplot2, cowplot, dplyr, 
caret, ranger. The percentage prediction error and Mean Absolute Error (MAE) were also computed for 
random forest model.

Figure 5. Root Mean Square Deviation for OOB error
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In our models, the data was randomly split into training set and testing set with a ratio of 8:2. Then, 
we used random forest to build an initial model, and identified the number of trees that are required to 
stabilize the Root Mean Square Deviation (RMSE) for OOB error and validation error to stabilize the 
model. As figure 5 shows, the RMSE for OOB error became stable after the number of trees reached 200 
and had a lowest RMSE for OOB error when the number of trees is around 250. Since we were aimed 
to decide an ideal number of trees in random forest before any other tuning process, 250 was set as the 
number of trees for later models.

In order to find the optimal random forest model that provides the least OOB error, we performed 
a grid search looping across multiple models with different combinations of hyperparameters through 
ranger. The major hyperparameters include mtry (the number of variables to randomly sample as can-
didates at each split), node_size (minimum number of samples within the terminal node), sample_size 
(the number of samples to train on), OOB RMSE (root mean square deviation of out-of-bag error). The 
optimal random forest model, as figure 6 shows, has a RMSE of OOB error of 0.9108909 with mtry of 
3, node size of 3 and a sample size of 80%.

After confirming the hyperparameters for the optimal model, we tested the variable importance. 
Variable importance is an internal calculated value in random forest model measured by recording the 
decrease in Mean Squared Error (MSE) every time a variable is used as a node split in a tree. After a 
node split, node impurity is left as a remaining error in predictive accuracy. A variable was considered 

Figure 6. Random Forest Model Grid Search Results
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more important if it reduces this impurity. In our model, the accumulating reduction of MSE was assessed 
for each variable through all the trees. The variable with the greater accumulation of MSE reduction 
was more important.

The final step we made for random forest model was to calculate the error rate and MAE by compar-
ing the predicted values and the observed values in testing set, based on previous training process, to 
systematically check our model accuracy.

Generalized Linear Model (GLM)

Although neural network and random forest all made decent prediction on U.S. unemployment rate, lack 
of interpretable results is one of the potential limitations for both models. Ordinary Least Squares (OLS) 
linear regression model is one of the most common linear models used in statistical analysis. In order to 
investigate the relationship between single response variable and different predictors and interpret our 
results in certain magnitude, OLS linear regression became an ideal choice to apply to our data. The 
analysis was performed through Rstudio.

Figure 7. Relationship Between Unemployment Rate and Predictors

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



275

U.S. Unemployment Rate Prediction
 

When using OLS regression model, several major assumptions must be tested: 1. Linearity assumption: 
there are linear relationships between the response variable and the predictors; 2. Independence assump-
tion: the errors are independent; 3. No multicollinearity assumption: there is no correlated relationship 
among all the predictors; 4. Homoscedasticity assumption: the errors need to have equal variance; 5. 
Normality assumption: errors are normally distributed.

The assumption of linearity and multicollinearity were firstly tested before we run any model. As 
figure 7 shows, there were no non-linear relationships found between unemployment rate and all predic-
tors, though the linear relationships were not obviously strong.

The linear relationships were also presented in figure 8, the pairs plot of all variables. In this plot, some 
collinear relationships were observed between variables NASDAQ100, NSDAQCOM, WILL5000PR. 
This issued was caused because NASDAQ100 and NSDAQCOM are both indexes from the same stock 
exchange market, and WILL5000PR is a market capitalization weighted index of market value of all-
American stocks traded in the U.S. Therefore, we removed NASDAQ100 and NSDAQCOM to solve 
multicollinearity issue for our OLS regression model.

Figure 8. Predictors Multicollinearity Testing Result
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A naïve OLS model was run after validating above two assumptions, the general equation of this 
model is described as following.

UNRATE WILL PR NIKKEI VXOCLS WLEMUIND� � � � �� � � � �
0 1 2 3 4

5000 225* * * * XXD �  

𝛽0 is the intercept (the expected mean value of the response variable when all predictors are 0)
𝛽i is the coefficient for each predictor
𝜖 is the error term

Model outputs related to adjusted R-squared, p-value of each predictor and Akaike Information Cri-
terion (AIC) were reported. R-squared is a statistical measure which demonstrates the proportion of the 
variance for the response variable explained by predictors in a regression model. Adjusted R-squared is 
an adapted version R-squared which adjusted the number of predictors in the model. A higher adjusted 
R-squared usually indicates better model. P-value is the estimated probability when the alternative hy-
pothesis in our study is true (rejecting the null hypothesis). The null hypothesis for each predictor was 
assuming the coefficient to be zero (H0: 𝛽i=0 for i =1,2,3,4) at a significance level at 𝛼=0.05. A variable
was considered significant (rejecting the null hypothesis) if the p-value for that predictor is lower than 
0.05 in our study. AIC is a measure of prediction error that is usually used to compare the quality of 
statistical models. We used it in addition to adjusted R-squared to compare models. A lower AIC gener-
ally indicates a better model. Then, the residual plot and Q-Q plot were drawn for this model to test the 
rest of three assumptions related to error term.

In a linear regression model, quadratic terms of predictors and interaction terms are considered sig-
nificant on occasion. They could improve prediction power. Therefore, we included all the quadratic and 
interaction terms to the second model. Equation of the second model is described as following.

UNRATE WILL PR NIKKEI VXOCLS WLEMUIND� � � � �� � � � �
0 1 2 3 4

5000 225* * * * XXD
WILL PR NIKKEI VXOCLS WLEMUINDXD� � � �� � � �

5

2

6

2
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225 225
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𝛽0 is the intercept (the expected mean value of the response variable when all predictors are 0)
𝛽i is the coefficient for each predictor
𝜖 is the error term

However, simply adding additional terms to a linear regression model is not scientifically rigorous. 
We implemented a variable selection method used in R, stepwise regression (backward selection), to 
help us eliminate variables included in the second OLS model for the purpose of achieving the optimal 
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OLS model. There are three different stepwise regression methods, forward selection, backward selection 
and bidirectional selection. We chose backward selection since it allowed us to add all possible terms 
into the model, and then helped us find the ideal model among different combinations of those terms. 
Finally, the adjusted R-squared, p-value, AIC and coefficient of significant variables were reported for 
the optimal OLS model.

RESULTS

Neural Network

Multiple testing and training dataset separation scenarios were tested. Smaller testing size which cor-
responds to larger training size had the best accuracy level of 91.67% as presented in Figure 5. The 
efficiency of convergence is high as the accuracy improves quite fast.

The accuracy definition is a standard metrics in TensorFlow package, however, there are many other 
definitions of accuracy measure statistically that could be considered, compared and concluded. This study 
did not focus on accuracy measurement selection, model structure such as number of layers, number of 
neurons within each layer and activation function selection were the main focus of the model construc-
tion. A consistent accuracy comparison of neural network models is sufficient for model validation.

As the testing size increases, the accuracy levels drop significantly from testing size 50% of 88.52% 
to testing size 60% of 58.53% as presented in Table 1. The accuracy of the model also depends on the 
initial random weight selection, however, it does converge to a relatively stable results especially as the 
training dataset size increases.

Random Forest

The optimal random forest model after our tuning procedures used 250 tress, mtry 3, node size of 3 and 
a sample size of 80%. It had a root mean square deviation of out of bag error around 0.9108909. The 
variable importance is reported as following, where Nikkei Stock Average is the most important variable 
on predicting U.S. unemployment rate, then followed by NASDAQ 100 index, NASDAQ Composite 
index, Wilshire 5000 Price index, CBOE S&P 100 Volatility index, and Equity Market-related Economic 
Uncertainty index is the least important variable. Surprisingly, the stock market index for the Tokyo 
Stock Exchange is even more important than the U.S. domestic stock exchange index on unemployment 

Table 1. Model Output with Variant Testing/Training Size

Testing/Training Size Model Output

Loss Accuracy

20%:80% 2.6238 0.9167

50%:50% 70.2971 0.8852

60%:40% 1653.106 0.6853
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rate. In our opinion, it can be explained as COVID-19 has largely impeded international trading activi-
ties and led to a lack in demand of labor force.

In addition to the OOB error, the percent error and the MAE were also calculated for this model. 
The percent error, computed as the average of the absolute difference of the predicted value and the 
observed value divided by the observed value for each observation, is 6.73%. The accuracy rate, on the 
other hand, is 93.27%. The MAE, computed as the sum of the absolute difference of the predicted value 
and the observed value for all observations divided by the total number of observations, is 0.412. Thus, 
we can conclude the overall performance of our random forest model is relatively accurate.

Generalized Linear Model (GLM)

The naïve OLS model, simply removing two correlated terms (NASDAQ100 and NASDAQCOM), had 
a poor performance. The summary table is presented in Table 3. The adjusted R-squared was 0.1578 
and only two predictors, WILL5000PR and NIKKEI225, were found significant in this model. Also, 
the AIC is relatively high, 1543.108. Therefore, the model tuning process was surely needed to improve 
the model performance.

The second OLS model, including all quadratic and interaction terms, was run and we observed some 
improvements for the model. As Table 4 presented, the adjusted R-squared increased to 0.5146 and AIC 
slightly decreased to 1322.504. In this revised model, three terms were found significant when predicting 
U.S. unemployment rate. However, directly adding new terms to the model would improve the model 

Table 3. Naïve OLS Model Outputs

Estimate Std. Error t value p-value

(Intercept) 7.792000 0.364400 21.384000 <2.00e-16

WILL5000PR -0.000041 0.000010 -4.194000 0.000034

NIKKEI225 -0.000096 0.000013 -7.596000 0.000000

VXOCLS 0.008333 0.008924 0.934000 0.351000

WLEMUINDXD 0.001344 0.000834 1.611000 0.108000

Adjusted R-Squared 0.1578

AIC 1543.108

Table 2. Variable Importance from Random Forest

Variable Importance

NIKKEI225 NASDAQ100 NASDAQCOM WILL5000PR VXOCLS WLEMUINDXD

257.18440 164.76113 116.66998 88.01111 54.62054 32.06618
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performance but it doesn’t lead us to the optimal model, as we mentioned in the method section. Hence, 
the backward selection was applied to find the best model.

The optimal model we found through backward selection from stepwise regression slightly improved 
the performance of the second model, and more terms were reported significant. As Table 5 presented, 
the optimal OLS model had an adjusted R-squared of 0.5196 and a AIC of 1312.341. More importantly, 
eight terms were found significant from this model. There were WILL5000PR, NIKKEI225, VXOCLS, 
WLEMUINDXD, the quadratic term of WILL5000PR, the interaction term of WILL5000PR and NIK-
KEI225, the interaction term of WILL5000PR and VXOCLS, and the interaction term of NIKKEI225 
and WLEMUINDXD.

Table 4. Second OLS Model Outputs

Estimate Std. Error t value p-value

(Intercept) 7.681000 1.523000 5.044000 0.000001

WILL5000PR -0.000071 0.000060 -1.169000 0.242900

NIKKEI225 0.000139 0.000101 1.382000 0.167700

VXOCLS -0.054020 0.041740 -1.294000 0.196300

WLEMUINDXD 0.004911 0.005530 0.888000 0.375100

I(WILL5000PR^2) 0.000000 0.000000 13.028000 <2.00e-16

I(NIKKEI225^2) 0.000000 0.000000 -0.320000 0.748900

I(VXOCLS^2) -0.000188 0.000407 -0.462000 0.644300

I(WLEMUINDXD^2) -0.000001 0.000003 -0.309000 0.757300

WILL5000PR:NIKKEI225 0.000000 0.000000 -9.858000 <2.00e-16

WILL5000PR:VXOCLS 0.000006 0.000001 6.303000 0.000000

WILL5000PR:WLEMUINDXD 0.000000 0.000000 0.656000 0.512500

NIKKEI225:VXOCLS -0.000001 0.000001 -0.930000 0.352900

NIKKEI225:WLEMUINDXD 0.000000 0.000000 -2.024000 0.043700

VXOCLS:WLEMUINDXD 0.000115 0.000136 0.850000 0.396000

Adjusted R-Squared 0.5146

AIC 1322.504
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CONCLUSION

There are multiple potential issues or limitations within the data and models. The neural network model 
constructed here is extremely simplified and fundamental. However, it still includes 6 (inputs)* 8 (neurons 
in hidden layer) + 8 (neurons in hidden layer) *1 (output) = 48 + 8 = 56 weights. More sophisticated 
models, such as more hidden layer and larger number of neurons within each layer were tested. However, 
they did not show a meaningful improvement and were not selection. When models show equivalent 
result, the simpler model is preferred according to the rule of “Parsimony”. In addition to the rule of 
“Parsimony”, overfitting was another reason that the current model is selected. The random forest model 
is reliable as it doesn’t have many requirements to the dataset. It can reduce overfitting and improve 
prediction power by its intrinsic mechanism. The result of random forest, however, is not interpretable 
just like many other machine learning models. Although we applied GLM to find more interpretable 
results, potential correlation issue still existed since there should be certain relationship among U.S. 
domestic stock market indexes. Also, all GLM models assume a linear relationship between dependent 
variable and all independent variables. A nonlinear relationship could reduce the predicting power of 
GLM models, thus the results from GLM must be proceeded with cautious.

The neural network model does show difference between training/testing data separation variations, 
which indicates that the model is not completely converged. However, the model is able to reach to 
more than 90% accuracy which explains the relationship between unemployment rate change and major 
economic indexes.

The model provides a decent prediction results and accuracy. It is more appropriate to explain the 
relationship between employment rate change and major economic indexes instead of prediction. The 
model is still limited because of the small data size. The reason of small size is that unemployment rate 
is reported in a monthly basis. Even though the starting point of dataset is in the beginning of 1986, the 
size is still small. The starting weights for the model are randomly chosen, small dataset has a potentially 
higher risk to achieve converged model result. Also, there exist more economic or stock market related 
variables, which need to be explored, that could be included in the model. For example, more globaliza-

Table 5. The Optimal OLS Model Outputs

Estimate Std. Error t value p-value

(Intercept) 7.946000 0.631200 12.588000 <2.00e-16

WILL5000PR -0.000060 0.000046 -1.289000 0.198136

NIKKEI225 0.000096 0.000025 3.779000 0.000181

VXOCLS -0.070470 0.012010 -5.870000 0.000000

WLEMUINDXD 0.009822 0.002041 4.812000 0.000002

I(WILL5000PR^2) 0.000000 0.000000 15.304000 <2.00e-16

WILL5000PR:NIKKEI225 0.000000 0.000000 -13.76400 <2.00e-16

WILL5000PR:VXOCLS 0.000005 0.000001 6.482000 0.000000

NIKKEI225:WLEMUINDXD 0.000000 0.000000 -4.662000 0.000004

Adjusted R-Squared 0.5196

AIC 1312.341
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tion drivers and more policy related data. However, we must be careful about the correlation issue and 
linearity assumption in the GLM model.

For future studies, more economical dataset will be investigated. More granular data will be studied 
and incorporated. The same models could also be tested in another social economy. Furthermore, other 
techniques within machine learning framework will be researched to see whether it shows a better fit to 
model such relationship.

All three models deliver different types of messages to the social economy based on the performance 
of stock market, and they are all helpful reference to the policy maker. We can never predict when the 
pandemic will come, yet we can predict its impact to the economy. Whenever similar situation happens 
again, we will be prepared.
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KEY TERMS AND DEFINITIONS

Artificial Neural Network (ANN): One of the computational models of the machine learning meth-
odology. Artificial Neural Network simulates neurons in human brain, learns from existing patterns and 
fathom artificial intelligence problems.

Classification Tree: A machine learning algorithm that is similar as random forest. Different from 
random forest, classification tree usually handles binary decision in each tree node, and it requires less 
training.

COVID-19 Pandemic: A coronavirus disease caused by SARS-CoV-2 that emerged in December 
2019. It is a highly transmissible disease and has caused more than 30 million infections and 400,000 
deaths in the U.S. as of July 2021.

Economic Indices: Six stock market-based indexes including NASDAQ 100, NASDAQ Composite, 
Wilshire 5000 Price, Nikkei Stock Average, Equity Market-related Economic Uncertainty, CBOE S&P 
100 Volatility.

Generalized Linear Model (GLM): A widely used statistical modelling technique for data analysis 
and prediction models. It is a general concept of all linear models including linear regression, logistic 
regression, and Poisson regression. It assumes a linear relationship between the response variables and 
all predictors.

Machine Learning: An application of artificial intelligence on the basis of automatically learn and 
adapt from data. Also known as a data analysis method that utilize intrinsic self-learning system to help 
on making prediction.

Ordinary Least Squares (OLS) Model: Also known as linear regression model. OLS model is a 
commonly used statistical model under GLM family. It makes estimation about the relationship between 
predictors (independent variables) and the response variable (dependent variable), and it is able to report 
the coefficients of each predictor and overall model fit.

Predictive Modelling: A widely used statistical and mathematical methodology for data analysis. It 
predicts possible future events based on data mining process of historical data.

Random Forest: One of the computational models of machine learning. Random forest model is a 
supervised learning algorithm which uses multiple decision trees to make prediction by training a portion 
of the data. It is a well-known for its highly accurate prediction with less requirements of the dataset.

U.S. Unemployment Rate: A monthly reported rate that demonstrates unemployment change in the 
U.S. It is calculated by taking the average of daily unemployment rate for each month. Daily unemploy-
ment rate is calculated as dividing the total number of unemployed populations by the total number of 
populations, either employed or unemployed, in the labor market.
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ABSTRACT

The credit card has been one of the most successful and prevalent financial services being widely used 
across the globe. However, with the upsurge in credit card holders, banks are facing a challenge from 
equally increasing payment default cases causing substantial financial damage. This necessitates the 
importance of sound and effective credit risk management in the banking and financial services indus-
try. Machine learning models are being employed by the industry at a large scale to effectively manage 
this credit risk. This chapter presents the application of the various machine learning methods like time 
series models and deep learning models experimented in predicting the credit card payment defaults 
along with identification of the significant features and the most effective evaluation criteria. This chapter 
also discusses the challenges and future considerations in predicting credit card payment defaults. The 
importance of factoring in a cost function to associate with misclassification by the models is also given.

INTRODUCTION

Credit cards are merely plastics issued by banks and financial institutions. Credit cardholders can use these 
to make retail purchases physically in stores or digitally from the convenience of their home. Credit card 
transactions are getting more secured by the day and gradually replacing cash transactions. These credit 
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cards are part of the credit lending business that has been highly profitable for the banking and financial 
services industry. However, this surge of demand comes with the increased risk of payment defaults.

A payment default is a condition where the credit card holder does not pay back the amount owed to 
the bank within the payment due date. Payment defaulters impose a significant loss to the lenders globally 
by not paying back the owed amount and forcing banks to write off these amounts as non-recoverable 
bad debts in extreme cases. This deep worrying concern necessitated the establishment of a sound risk 
management system that can predict defaulters in advance and alert banks enabling them to take corrective 
action thereby mitigating risk. Machine learning models are being employed by the industry at a large 
scale to effectively manage this credit risk. These machine learning models can identify the significant 
features and effectively predict the payment defaults in advance.

The existing studies have identified gender, age, marriage, education, payment related variables, repay-
ment related variables, employment status, and limit balance as the most significant features that impact 
the default prediction (Choubey, 2018; Leong & Jayabalan, 2019; Neema & Soibam, 2017; Sariannidis 
et al., 2020; Sayjadah et al., 2018; Ullah et al., 2018; Xu et al., 2017; Xu et al., 2018). Leow & Crook 
(2014) derived features like relationship duration with a bank, transitions between the states of delin-
quency, average payment amount, and average repayment amount to increase the model performance. 
Further, few studies have considered macro-economic variables that could potentially impact defaults 
prediction such as bank interest rate, Consumer Price Index (CPI), Gross Domestic Product (GDP), and 
unemployment rate (Bellotti & Crook, 2013; Li et al., 2019).

Numerous researchers have shown the application of time series, machine learning, and deep learn-
ing models to increase the accuracy of default prediction and minimize loss. The time-series models 
were implemented on the data spanning across few years to capture the economic conditions. Further, 
these datasets had several features that could be further classified into static and dynamic features. The 
factors contributed to the superior performance of time-series models with accuracy close to 95% along 
with high precision and recall rates (Bellotti & Crook, 2013; Ho Ha & Krishnan, 2012; Leow & Crook, 
2014). Machine learning models are typically preferred over time-series models when datasets are not 
very huge and the period of data does not span over a longer period. Machine learning models like 
Logistic Regression (LR) have been used for simplicity of implementation and interpretation. Random 
Forest (RF), eXtreme Gradient Boosting (XGBoost), Artificial Neural Network (ANN), and Recurrent 
Neural network (RNN) were able to achieve accuracy close to 90% with an equally satisfying precision 
and recall values (Leong & Jayabalan, 2019; Mazumder, 2020; Neema & Soibam, 2017; Sariannidis et 
al., 2020; Sayjadah et al., 2018; Ullah et al., 2018; Yontar et al., 2020).

Few studies have experimented with deep learning models as well and achieved high model ac-
curacy (Chishti and Awan, 2019; Ebiaredoh-mienye et al., 2020; Hsu et al., 2019; Sun and Vasarhelyi, 
2018). These deep learning models are artificial neural networks that have more than one hidden layer 
to transform the non-linear relationships effectively. An artificial neural network is an attempt to mimic 
the functioning of a human brain. Details of these studies are elaborated in a separate subsection.

The purpose of this chapter is to discuss the application of machine learning algorithms to predict 
credit card payment defaults. As such, it helps the business in making strategic and well-informed deci-
sions thereby minimizing losses substantially. Moreover, the chapter highlights some of the common 
features, techniques, and evaluation criteria usually considered in the prediction of payment defaults. 
This chapter is meant to be useful for identifying trends in payment defaults that will allow researchers 
to focus on areas that need to be improved and new features that could be beneficial to the stakeholders. 
At the end of this Chapter, you will be able to:
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• Understand the functionality of payment default in credit cards and its implications.
• Identify the significant features that contribute to the prediction of credit card payment defaults.
• Review existing studies that employ various data mining techniques to predict payment defaults.
• Understand the latest trends associated with the prediction of credit card payment defaults.
• Appreciate the challenges faced in existing studies and the future recommendations to achieve the 

state-of-the-art.

DATA ANALYTICS IN PREDICTION OF CREDIT CARD DEFAULTS

This section presents a review of existing studies in the prediction of credit card payment defaults. 
The significance of data analytics and data mining is discussed in detail along with the contribution of 
significant features, application of time-series models, machine learning algorithms, and deep learning 
models in the prediction of credit card payment defaults. A summary of the reviews based on the mod-
els, datasets, and evaluation metrics experimented with is depicted in Table 1 in the Appendix section.

Nearly half of the net income from consumer banking of global banks like Citi and Chase is derived 
from credit cards. Needless to mention that credit card products are drivers of huge profit for most of 
the major banks and financial institutions across the globe. Banks have to manage the associated risks 
like frauds and payment defaults that are associated with this product though. These risks can potentially 
cause huge losses to the banks if not managed effectively. This is where data analytics plays an important 
role in cardholder lifecycle right from the marketing of cards to origination of new accounts, customer 
management decisions, fraud management, and collections.

A detailed review of each of these areas mentioned above will help to understand how data analyt-
ics contributes significantly to them. For example, data analytics in credit card marketing can help the 
sales team focus on a segment of customers with a specific type of credit card that is directly linked to 
credit limits, rewards, privileges, and annual fees. Platinum credit cardholders would typically have a 
higher credit limit, better rewards program, and privileges as compared to a classic credit cardholder. 
Data analytics can help identify the right category of people for targeting platinum cards and classic 
cards with fairly good accuracy based on the available data. Similarly, data analytics can also help in the 
account origination process by doing the initial screening of applications and only passing the filtered 
applications for physical verification or review by bank staff to process further. This saves a considerable 
amount of human effort and hence expense incurred by the bank. Data analytics perform fairly well in 
rejecting applications that are likely to cause loss to banks in the future, again this is possible because 
of the history of available data. The probability of human errors is also negated. Fraud management 
is another area where banks suffer huge losses. Data analytics are largely employed in both real-time 
(or near real-time) mode as well as offline mode of transactions so that bank staff can alert customers 
accordingly almost immediately. Thus, banks can mitigate this huge risk that can otherwise cause huge 
financial damage including brand reputation. Nevertheless, the focus of this chapter is to review the exist-
ing studies carried out to predict payment defaults of credit cardholders as elaborated in the next section.
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DATA MINING IN PREDICTION OF CREDIT CARD DEFAULTS

Several data mining techniques have been employed over years across industries to extract meaningful data 
and draw relevant inferences leading to more strategic and well-informed business decisions and higher 
profitability. These techniques span a wide range starting right from the traditional classical algorithms 
like Linear and Logistic regression to Decision Trees and then the ensemble algorithms like Random 
Forest, AdaBoost, XGBoost, and ANN including their respective variations. Apart from these, several 
techniques have evolved over years to cater to business needs. Several machine learning techniques have 
been studied to predict credit-card defaults with their performances evaluated using metrics like AUC, 
Accuracy, Precision, F1-score, and more (Xu et al., 2017; Islam et al., 2018; Leong and Jayabalan, 2019; 
Sariannidis et al., 2020). Below sections elaborate on the various related studies.

Significant Features Contributing to Prediction of Payment Defaults

Several techniques have been experimented with to identify the significant features that contribute to 
the prediction of credit card payment defaults. One of the studies used frequency of observations to 
identify the significant features like gender, education, age, marriage, and limit-balance (amount of 
credit given) in predicting payment defaults (Ullah et al., 2018). Pearson correlation was used to iden-
tify correlations of these significant indicators with the dependent feature payment-default, and it was 
learned that limit-balance and education were negatively correlated such that the lesser the education 
and limit-balance, the greater is the probability of payment defaults (Choubey, 2018). Age was found 
to be positively correlated since the probability of payment defaults increased with an increase in age 
(Choubey, 2018; Sariannidis et al., 2020).

Another study experimented with the Taiwan credit card default dataset and identified repayment 
status, credit limit, and payment-related features as the most significant predictors for payment defaults 
that are based on Correlation Feature Selection (CFS) (Sayjadah et al., 2018). Around 66% of the default-
ers delay in making repayment with many of them not making payments for six months consecutively. 
It was also observed during the study that the approved credit limit of such defaulters was very high 
which caused huge losses to the banks. A proposal was made to generate alerts to review the credit limit 
for reduction when repayment is not done for more than five months consecutively. Numerous studies 
identified limit-balance, age, education, sex, marriage, and repayment status as the most significant 
predictors (Leong & Jayabalan, 2019; Neema & Soibam, 2017; Xu et al., 2017).

A few studies were carried out using time-series models that experimented with huge datasets 
spanning across years and containing static variables (demographic data) as well as dynamic variables 
(transaction-based data). (Leow & Crook, 2014) devised intensity model where Cox’s hazard model with 
time-varying covariates were used. This model was a good example of identifying significant variables 
by slicing data across time-period that led to the transition into different defined states. It was observed 
that debtors having a long relationship with the bank had a lesser probability of delinquency and a higher 
probability of recovering instead, should they go into delinquency. Age and employment status were also 
significant indicators of delinquency. Applicants aged 21 and above were less likely to move into delin-
quency states and even recover back from delinquency as compared to the younger applicants. Once in 
state-2 (two months in arrears), older applicants seemed to be less likely to recover back from delinquency 
state and instead progress towards default (advance from state-2 which is two months in arrears to state 
3 which is three months in arrears and considered as default state) as compared to younger applicants 
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who showed a higher probability of recovering from state-2 (two months in arrears). Applicants with 
employment status as employed are less likely to default as compared to self-employed or unemployed 
which can be very well understood even otherwise. Also, a higher proportion of available credit drawn 
indicates a higher probability of getting into delinquency states. A higher rate of transitions between 
the states also indicated higher chances of going into delinquency states but not default. Also, they are 
less likely to make full recoveries.

A discrete-time survival model that included application variables, time-varying behavioral variables, 
and macro-economic variables was experimented by (Bellotti & Crook, 2013) where they presented a 
hazard probability graph showing payment defaults peaking at eight months from account opening and 
then gradually declining over time. Amount-paid-back or payment-status was negatively correlated 
with defaults as expected since greater ability to pay reduced the probability of defaults. The number 
of transactions had a positive correlation with defaults indicating that people doing a higher number of 
transactions showed higher chances of defaulting. From the macro-economic variables, the unemployment 
rate was observed to be positively correlated with understandable payment default. The bank interest rate 
was also positively correlated with defaults since increasing interest rates make it even more difficult 
for customers to pay back thereby increasing chances of defaults. Also, several behavioral variables 
turned out to be significant explanatory variables of defaults like account balance, repayments, number 
of transactions within each month, and credit limit.

Cox proportional hazard model was used to study the factors influencing credit card defaults in China. 
The stability of the customer’s work and family was observed to impact the probability of default. Age, 
sex, and enterprise nature were significant factors in predicting defaults. Especially people aged below 
30 show higher chances of defaulting. Males showed a higher probability of defaulting than females, 
probably because they were willing to take a higher risk of defaults comparatively. Customers employed 
in state-owned, foreign-funded, private enterprises showed less probability of default as compared to 
the ones who did not disclose their employer. From the macro-economic factors, defaults had a positive 
correlation with the consumer price index, GDP, and unemployment rate whereas defaults had a negative 
correlation with population and investments in fixed assets. Also, economic indicators like bank inter-
est rates, earnings, production index, house price index, unemployment rate, and consumer confidence 
index were considered for default prediction (Bellotti & Crook, 2013; Li et al., 2019). From the social 
capital factors, it was observed that customers who lived and worked in registered permanent residences 
showed a lower probability of default. Also, married people showed higher chances of defaulting as 
compared to unmarried probably because married people had added responsibilities of mortgages and 
raising children. Consolidating these together, features like marriage, permanent residence address, and 
transaction type were also identified as significant.

Similar studies have been done on predicting payment defaults for credits in general and not just 
specific to credit cards. This credit risk poses a huge potential loss to the banking and financial services 
industry and hence is generally managed by a separate Risk Management system. Credit scoring forms 
an integral part of this Risk Management system. Customer’s prior payment behavior, limit balance, 
total authorization amount, individual characteristics like age, education, profession, residence location, 
the limit of cash withdrawal, grace period, profession, average authorization amount that exceeds the 
credit limit, and the average number of times the customer has passed due-date along with additional 
data obtained from commercial credit agencies like unpaid bills, payment request issued by court order, 
enforcement procedures, and uncovered cheques all were significant features in predicting credit defaults 
(Mbuvha et al., 2019; Sun & Vasarhelyi, 2018).
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Time-Series Models Applied in Prediction of Payment Defaults

Numerous studies were proposed to predict credit card defaults by using time-series models. They were 
primarily involved in developing a dynamic model (survival analysis) instead of static models (like re-
gression analysis and discriminant analysis). The dynamic models accumulate time-varying variables of 
the credit cardholders to predict payment defaults. Both timing and occurrence of events can be studied 
over time. Further, survival analysis was used to identify the relationship of a customer with the bank. 
This relationship could be any relationship with the bank and not necessarily credit card only.

One study devised a hybrid model that combines a Self-Organizing Map (SOM) which is a form of 
ANN and Cox’s proportional hazard model to improve prediction accuracy (Ho Ha & Krishnan, 2012). 
The main focus of this study was to predict the probability of recovery from a delinquent state of the 
debtor which was not done earlier. A SOM was used to cluster the credit card debtors into groups with 
similar characteristics. It created a topological map from input data through a competitive learning pro-
cess using the smallest Euclidean distance between the presented pattern and the neighboring neurons. 
Figure 1 shows the framework devised in this study showing all the discussed functions. As the learning 
proceeded, each delinquent customer or a debtor within a cluster tended to have similar characteristics 
as compared to other clustered segments. In this case, five distinct segments were created according to 
delinquent pattern variables such as delinquency frequency, delinquency period, delinquency amount, 
the time interval between delinquencies, and delinquency repayment frequency. The resulting segments 
of credit card delinquents became inputs to Cox’s hazard model which belonged to the category of 
survival analysis and was responsible for analyzing repayment patterns. This Cox’s hazard model was 
chosen because it was useful when an appropriate baseline distribution could not be identified, or a 
non-parametric method was necessary.

Figure 1. Framework illustrating the prediction model using SOM and Cox’s hazard model.
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Also, one distinctive characteristic of this model was that it could manipulate imperfect data. A survival 
analysis used a likelihood function to build the model where survival implies delinquency maintenance. 
The contributions of this study are significant because: (1) Even though the majority of the studies focused 
on classifying customers between defaulter and non-defaulter customers, this study made it possible to 
analyze the delinquent customers who could be recoverable. (2) This study used a Survival analysis to 
identify influential variables on the rate of credit recovery and to predict the time of credit recovery. (3) 
This study calculated the expected profit after credit recovery by using a credit prediction model that 
presented several clues to Management to deal with delinquency risks. However, this study had some 
limitations for future improvements. (1) It needed a full year of data of all credit debtors, the absence of 
which causes models not to generalize well, and (2) This study focused on card debtors where all kinds 
of customers can be encompassed to develop a more complete credit prediction system.

Another study done by (Leow & Crook, 2014) experimented with intensity models and transition 
probabilities for credit card delinquency prediction. Semi-parametric multiplicative hazard models with 
time-varying covariates were used here to make delinquency predictions. These intensity estimations 
allowed for insights into the factors for a transition between the states. The probabilities were estimated 
for each type of transition and then further used to make delinquency. Such models have several advan-
tages over the regression models or even survival models such as: (1) Users can gain predictions of the 
probability of moving between the defined states in any future period while incorporating time-varying 
covariates, (2) additional types of predictions are available like entire transition probability matrix is 
available for each borrower instead of just the hazard probability of default for a given point of time. 
For all this to work properly, the input data has monthly observations with continuous-time and hence 
had to be converted to discrete-time through approximation. These models were not only able to predict 
the outcome but even able to predict the probability of when it would occur making it a more dynamic 
framework for predictions.

Some studies considered using application, behavioral, and macro-economic variables to improve 
the prediction of credit card payment defaults. The behavior data were categorized into online and of-
fline data and the impact of the expansion of internet online transactions on credit card defaults was 
studied for six months. Macro-economic data was taken from the National Bureau of Statistics (NBS) 
database. It was observed that the default risk rate grows slowly in the first three years of the opening 
card account, indicating good repayment habits and trustworthiness during that period. However, this 
risk grows tremendously in the third year indicating poor card management. This risk again shoots up 
when card holding lasts for 2000 to 2500 days indicating that after five years of card holding, many 
cards are canceled or changed.

The inclusion of macro-economic variables enabled them to do a stress test of prediction models 
since extreme economic conditions could be simulated and included in the model. This is potentially a 
key tool in helping financial institutions to make successful business strategies, risk management, and 
capital planning decisions. These studies confirmed that firstly, including behavioral variables improved 
the model fit in a discreet time hazard model and improved the forecast accuracy. Secondly, not all sta-
tistically significant macro-economic variables translate into improved prediction forecasts, and thirdly, 
including macro-economic variables in the model helped to improve the prediction of default rate. A 
3-month lag was considered on macroeconomic variables since the default was defined as a failure to 
make the minimum payment for three consecutive months or more. For the simulation-based stress test, 
the Monte Carlo simulation was done. Since macro-economic variables are not normally distributed, 
Box-Cox transformation was done (Bellotti & Crook, 2013; Li et al., 2019).
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Machine Learning Models Applied in Prediction of Payment Defaults

Many of the existing studies have employed popularly used algorithms and successfully experimented 
with them to predict credit card payment defaults. The algorithms like KNN, SVM, Linear regression, 
Logistic regression, Naïve Bayes, Decision Trees, and ensemble models like Random Forest, AdaBoost, 
and XGBoost were applied in these studies. The works of literature generally seem to experiment with 
the most widely used and popular machine learning algorithms. Ensemble models like decision trees, 
random forest, and XGBoost perform better than the singular models because ensemble models can 
collectively make better and more accurate decisions and hence perform better comparatively. Also, 
ensemble models are more robust because the variance of errors or bias can be reduced as compared to 
the singular model. The cross-validation process was used for hyperparameter tuning to achieve better 
prediction accuracy. The performance of models was evaluated primarily using accuracy ranging from 
80% to 95% in most of the studies with few of them using AUC ranging from 0.71 to 0.77. Additionally, 
evaluation metrics like precision, recall, specificity, and F1-score of the models were also measured. 
(Leong & Jayabalan, 2019; Mazumder, 2020; Sariannidis et al., 2020; Sayjadah et al., 2018; Ullah et 
al., 2018; Yang and Zhang, 2018; Yontar et al., 2020; Yu, 2020).

A couple of studies included cost function to account for a more specific prediction goal to evalu-
ate the models. The cost function was implemented by applying a higher cost to defaulters that were 
misclassified as non-defaulters (false negatives, also called type-2 error) and non-defaulters that were 
classified as defaulters (false positives, also called a type-1 error). Between these two misclassifications, 
false negatives are much more dangerous since defaulters go unnoticed, and hence appropriate action 
is not taken on such cases. This cost function helped maintain a healthy balance between Accuracy and 
Mathew’s Correlation Coefficient (MCC) to avoid compromising on losing potential customers (Choubey, 
2018; Neema & Soibam, 2017).

Charleonnan (2016) experimented with different machine learning methods RUSMRN and RUSBoost. 
RUSMRN is a hybrid model ensemble model based on linear and non-linear mapping that combines the 
RUS balancing technique with an ensemble of three learning models MLP, RBF, and NB classifiers. 
RUSMRN generated the best results. (Yeh & Lien, 2009) came up with the novel idea of comparing 
the probability of default prediction based on the understanding that the result of predictive accuracy of 
the estimated probability of default will be more valuable than the binary result of classification. The 
sorting smoothing method was presented as a novelty in their study to estimate the real probability of 
defaults. A simple linear regression result was formulated as Y = A + BX where response feature ‘Y’ 
= real probability of defaults and independent feature ‘X’ = predictive probability of defaults. It turned 
out that ANN was the only model that could accurately estimate the real probability of defaults as com-
pared to all the six models LR, KNN, DA, NB, Classification Trees (CT), and ANN that were studied. 
ANN performed best with an AUC of 0.54 and an R2 value of 0.9647 as compared to the other models 
that were experimented with.

A separate line of the study acknowledged the potential problem of an imbalanced dataset that could 
impact the performance of machine learning algorithms and hence emphasized correcting the data im-
balance using various techniques before implementing the models to predict credit card defaults. One 
such study done by (Luthra et al., 2019) applied balancing techniques like RUS (Random Under sam-
pling), ROS (Random Over Sampling), SMOTE (Synthetic Minority Oversampling Technique), Tomek, 
SMOTE-Tomek, ENN, and SMOTE-ENN. The balanced dataset thus created was subsequently used by 
the models like LR, DT, RF, and NB. WOE and IV were used to identify the most significant features. 
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They successfully proved that performance of models improved after balancing the dataset. They also 
mentioned extending their research further in the future by adding models like XGBoost and AdaBoost. 
Another study was carried out by (Alam et al., 2020) where correcting data imbalance was explored 
using various balancing techniques encompassing under-sampling methods like RUS, near-miss, cluster 
centroid, and over-sampling methods like ROS, SMOTE, and Adaptive Synthesis (ADASYN) before 
implementing machine learning algorithms like Gradient Boosting Decision Trees (GBDT).

A study done by (Xu et al., 2018) proposed an algorithm with hybrid model based on repeated in-
cremental pruning to produce an error reduction called Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER). A targeted specialized pre-treatment method called RELIEF was used to drop the 
redundant features and further improve the interpretability of the model. RELIEF is a feature weighted 
algorithm that assigns weights based on correlations and it drops the features that are below a certain 
threshold. SMOTE over-sampling balancing technique was also used to balance the input dataset. Finally, 
the defaults are predicted by taking advantage of the rules generated by the RIPPER algorithm. This 
SMOTE + RELIEF + RIPPER combined forms the hybrid model called SPR-RIPPER. The evaluation 
metrics used in this study were F1-score, AUC, Accuracy. SPR-RIPPER showed the best performance 
with an F1-score of 53.4 and an AUC of 0.70.

A novel idea was presented by (Islam et al., 2018) where a heuristic approach to predict defaults was 
presented. In this approach, two steps were followed. In the first step, also called as Standard Test, the 
risk probability was precomputed from all the previous transactional data (offline data) and stored in a 
database. In the second step, also called the Customer-specific test, risk probability was computed for 
the current transactions on a real-time basis (online data). Finally, overall risk probability was derived 
by combining scores from both steps. The rules used for both the steps were different. Besides this heu-
ristic approach, they also proposed a novel machine learning approach called Extremely Randomized 
Trees (ERT) and these do not resample observations when building a tree which was not applied. This 
ERT is a tree-based ensemble method used for supervised classification or regression problems where 
randomness goes beyond that of RF and hence found to perform better than RF also. However, they 
faced a big challenge here because both offline and online transactional data are not available publicly. 
To overcome this challenge, they had to decompose the Taiwan dataset into offline and online datasets 
to proceed with their experiment. The standard machine learning models like KNN, RF, NB, GBM, 
and ERT. Evaluation metrics like accuracy, precision, recall, and F-score were used to evaluate model 
performance. ERT showed the best performance with an accuracy of 95.84%, precision of 94.87%, recall 
of 85.85%, and F-score of 90.14%. As part of decomposition, five batches of online transactions were 
created in total by creating one batch for every month. They were able to improve the recall rate by almost 
10% from the first batch (month 1) to the fifth batch (month 5). Also, computation time was fast which 
means this model was able to predict near real-time and could predict defaults well in advance making 
it very cost-efficient. They plan to improve the performance of their heuristic model as compared to 
standard machine learning models in terms of all the evaluation metrics.

Deep Learning Models Applied in Prediction of Payment Defaults

Several works of literature have considered Artificial Neural Networks (ANN) in addition to the standard 
Data mining techniques. While the traditional statistical algorithms require a formal relationship between 
the features, ANNs do not require any such relationship between them and are thus better equipped to 
learn the patterns in data by capturing non-linear relationships. Hence ANNs generally tend to exhibit 
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superior performance and are capable of learning quickly as well. They are popularly called the Univer-
sal approximators. However, at the same time, they run the risk of over-fitting and their predictions are 
sometimes difficult to explain due to their “black box” nature. A typical structure of ANN has an input 
layer followed by hidden layers and finally an output layer as depicted in Figure 2. ANNs are broadly 
categorized into Shallow and Deep networks. A Shallow ANN typically has one hidden layer whereas a 
Deep ANN has more than one hidden layer where a non-linear transformation of the inputs takes place.

Deep learning models or Deep Neural Networks (DNNs) have evolved from ANNs and have more 
than one hidden layer enabling them to learn from a massive volume of complex observational data, 
recognize the underlying pattern and classify data into different categories. DNNs have been success-
fully applied to a wide range of areas from self-driving cars to playing games, from voice recognition to 
computer vision, from medical diagnosis to natural language understanding. Studies have proven that 
DNNs perform better than standard machine learning models. DNNs have much greater representational 
power than traditional ANNs that have a single hidden layer. DNNs need a sufficiently large amount of 
data to learn complex underlying patterns. They may not perform better than standard machine learning 
models or ANNs when the dataset is small or simple, but their performance increases significantly as 
the scale of data increases and is even more pronounced in the case of unstructured data analysis. Quite 
a few studies have experimented with deep learning models to predict credit card payment defaults and 
it was observed that these outperformed the other machine learning models especially when the training 
dataset is large.

Figure 2. Illustration of a simple artificial neural network structure.
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One such study was done by (Sun & Vasarhelyi, 2018) who explored the potential of deep learning 
in the prediction of the risk of credit card delinquency based on customer characteristics and spending 
patterns. This study was carried out on Brazil dataset with 6,516,045 records. Optimal hyper-parameters 
were selected based on grid search where the combination of hyper-parameters with the least valida-
tion error was selected. Grid search came up with three hidden layers, 322 neurons in the input layer, 
the number of neurons in the first, second, and third hidden layers were 175, 350, and 150 respectively. 
Default Uniform Distribution Initialization (UDI) method was used to randomly initialize the weights. 
The number of epochs was kept at ten after which the model was overfitting. A learning rate of 0.99 was 
determined. Epsilon value determined was 1 x 10-8 to ensure that model does not get trapped into local 
minima. Also, a batch size of 32 was used. Comparing the performance of all models DNN, ANN, LR, 
NB, and DT, it was observed that DNN performed best with an F1-score of 0.7064, F2 score of 0.6413, 
F0.5 of 0.7862, overall Accuracy of 99.54%, AUC of 0.955 which was closely followed by ANN and 
DT. However, the DNN model build time was huge compared to others clocking more than 8 hours. Z-
test was additionally performed to confirm that results of DNN are significantly superior to ANN also. 
Few limitations were presented for future considerations like limited data available including limited 
time-frame which is indeed a real-life challenge that, when overcome, can significantly improve DNN 
performance over all other models. Also, DNN could be explored in testing for suspicious cardholders 
thereby reducing the cost of follow-ups.

One of the studies researched the prediction of credit card defaults using the contemporary approach 
of ANN which is also known as DNN. They proved that DNN is the only one that can accurately estimate 
the real probability of defaults. The deep neural network (DNN) was initialized with three hidden layers, 
each having 28 neurons/nodes. Rectilinear function (RELU) was used as the activation function for the 
hidden layers and the final output layer’s activation function was the Sigmoid function to achieve binary 
classification into “defaults” and “non-defaults”. Stochastic Gradient Descent (SGD) algorithm was used 
for backpropagation allowing the network to learn through error correction based on the error/loss. The 
loss function used was ‘binary cross-entropy due to binary classification. Also, Accuracy was used as 
the model’s evaluation metric. The model was fit by using different trial values of epochs and batches. 
Drop-out layers were added after each hidden layer with a drop-out fraction rate of 0.5 which showed 
satisfactory results. Accuracy of 81.82% was achieved with an F-score of 89.18% (Chishti & Awan, 2019).

RNN has also been used successfully for credit card default prediction especially because these have 
proven to be useful in time-dependent applications. (Hsu et al., 2019) studied RNN using Gated Recur-
rent Unit (GRU) as feature extractor on credit card payment history to leverage on time dependencies 
embedded in these dynamic features. Time dependency is generally ignored in classical classification 
models. Input sequences are first pre-processed using GRU. These extracted dynamic features along with 
the static features are used to train an enhanced RNN model combined with Random Forest (RNN-RF) 
to predict defaults, the architecture of which is shown in Figure 3.

The advantage of RNN-RF model is that static and dynamic features can be combined to provide 
superior predictive performance. Another variation of RNN, Long Short-Term Memory (LSTM) was not 
adopted here owing to its complexity. Results of RNN-RF were compared with the classical models like 
LR, RF, SVM, and KNN. The important point to note here was that GRU and LSTM showed poor lift-
index if static features were included which implies that static and dynamic features had to be carefully 
combined for superior performance. Hence, Classical models were used to extract static features, and 
GRU was used to extract dynamic features which were later combined and fed to the hybrid RNN-RF 
model. Additionally, it was noted that the performance of RNN-RF grew steadily with an increase in 
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training data which would happen in real-life industry experience, while classical models did not show 
considerable improvement.

Another different study approach was taken up by (Ebiaredoh-Mienye et al., 2020) where the un-
supervised method was used to improve the performance of various classifiers using Stacked Sparse 
Autoencoder (SSAE). SSAE learns accurate feature representations and the learned features are used 
to train the classifiers. This study was about comparing the five classifiers with SSAE and the same 
five classifiers with raw data. The five classifiers experimented with were LR, KNN, CART, SVM, and 
LDA. Two stacked autoencoders were stacked together to ensure accurate feature representation. The 
batch normalization technique was applied to prevent overfitting and enhance performance, speed, and 
stability. It was observed that learned features significantly improve the performance of the classifiers 
and SSAE-LDA showed the best results with an accuracy of 90% and F1-score of 90% whereas without 
SSAE, LDA accuracy was 81% and F1-score was 78%.

Evaluation Criteria

The models built on annotated data should generalize well on future unseen data. A decent estimate of the 
model performance is an important characteristic that is usually computed through measuring accuracy 
to detect the future predicted behavior. The performance evaluation metrics are broadly classified into 
the threshold, probability, and ranking metrics. These metrics are scalar group method that presents the 
classifier performance in a single score value, thus making it easier to compare and contrast the results 
with other metrics. In most cases, these types of metrics are employed in three different evaluation ap-
plications (Hossin & Sulaiman, 2015).

• Generalization: In this evaluation, the metrics were used to measure the generalizability and the 
quality of the summary on the trained classifier. The common metrics utilized for this evaluation 
consist of accuracy and error.

Figure 3. Illustration of the architecture of the RNN-RF structure
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• Model Selection: The best classifier among the different trained classifiers is selected based on 
the performance of the test set.

• Discriminator: The evaluation metrics are employed to discriminate and select the optimum clas-
sifier during the validation.

To measure the performance of generalization and model selection, all the three discussed evaluation 
metrics (threshold, probability, and ranking) can be employed to ensure effectiveness. However, only 
certain types of metrics from the three categories are utilized for discriminating the classifier such as 
Receiver Operating Characteristics (ROC) curve and confusion matrix. The commonly used evaluation 
methods in payment default prediction are listed below.

• Accuracy: Measures the correct classification obtained by the classifier in percentage.
• Precision: Measures the accuracy of correct predictions out of all the predictions made by the 

classifier in percentage. It is popularly called a Hit rate.
• Recall: Measures the accuracy of correct predictions out of all the actual correct classifications in 

percentage. It is popularly called a Capture rate.
• F1-score: Harmonic mean of precision and recall values of the classifier with a value ranging 

from 0 to 1 (1 being the best).
• ROC-AUC: Measure of the area covered while plotting True Positive Rate (TPR) and False 

Positive Rate (FPR) together. The value ranges from 0 to 1 with 1 being the best.
• KS index: Helps to understand the portion of the population to target to get the highest expected 

response rate.
• Gini coefficient: Indicates a classifier’s discriminatory power by showing the effectiveness of 

discriminating between the class labels.
• Misclassification cost: Associated with incorrect classifications by the model. Lower misclas-

sification cost depicts a better-performing model.

DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS

This section presents discussions and future directions of credit card payment defaults. The various 
significant features that contribute to the prediction of these payment defaults are discussed in detail. 
Balancing techniques that were experimented with in the existing studies to enhance the prediction 
power are elaborated in this section. The inclusion of the cost factor into the model performance to give 
an edge in terms of financial considerations is also presented in this chapter. The section ends with a 
discussion on the gaps and challenges faced in existing studies and the various ways that can be adopted 
to achieve the state-of-the-art.

The limit-balance, age, education, times-payment-delayed (derived from repayment-status), and 
average-payment-amount (derived from payment-amount) seem to be the most significant predictors of 
credit card payment defaults. Limit-balance is the credit limit of the credit card holder and is negatively 
correlated with the proportion of defaults. The percentage of defaults seems to decrease substantially 
with the increase in limit-balance. This makes sense and shows that the banks and financial institutions 
are doing their part of due diligence in reducing the limit-balance of defaulters thereby minimizing 
potential loss due to payment defaults. Also, education is observed to be negatively correlated with the 
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proportion of defaults and seems to decrease with an increase in the education level (Choubey, 2018; 
Sariannidis et al., 2020). Again, this is understandable because higher education level directly relates to 
a better socio-economic standing and hence lesser defaulters.

The derived variable times-payment-delayed (derived using a count of the number of times payment 
is delayed for a given customer over 6 months period) is observed as one of the most significant predic-
tors and shows a strong positive correlation with the proportion of defaults (Leong & Jayabalan, 2019). 
The proportion of defaults increases considerably with the increase in the number of times payment is 
delayed. Another derived variable average-payment-amount (derived from payment-amount for a given 
customer over 6 months period) is observed as a significant predictor having a positive correlation with 
the proportion of defaults. It appears that the defaulters have a lower average-payment-amount as com-
pared to the non-defaulters. This is understandable because defaulters have lower billed-amount (since 
their limit-balance is lesser compared to non-defaulters) and hence the payment-amount also will be 
lower as compared to the non-defaulters.

Age is identified as another significant predictor and seems non-linearly related to the proportion of 
defaults. More specifically, it is observed that the proportion of defaults decrease from the age of the 
early 20s to the early 30s. Thereafter, a steady increase in the proportion of defaults is observed from 
the early 30s to the early 60s followed by a sharp decrease in defaults. The proportion of defaults again 
shows an increase from the early 60s to the 70s, although sample cases reduce substantially. This age is 
the weakest of the most significant predictors.

The datasets used in anomaly detection (like credit card fraud detection, credit card payment default 
prediction, and loan default prediction) are generally highly imbalanced with minority class observations 
being 20% or less of the total observations and majority class observations being 80% or more of the 
total observations. This class imbalance poses a huge challenge for machine learning models to learn the 
patterns from the training dataset since data points of the minority class are very few as compared to the 
majority class. For a dataset with 98% negative events and only 2% positive events, a poorly performing 
model also could show an accuracy of 98% in predicting negative events and this could be highly mis-
leading since models’ accuracy for positive events or anomalies would be minimal which is not desired. 
Machine learning models are designed assuming a balanced distribution of data points between the class 
labels for them to learn or train, and hence performance is substantially impacted due to imbalanced 
datasets. This is where balancing techniques like SMOTE (Synthetic Minority Oversampling Technique) 
and ADASYN (Adaptive Synthetic) are applied to balance the classes and all models are implemented 
on balanced and imbalanced datasets for comparing their performance (Alam et al., 2020; Luthra et 
al., 2019). It is observed that the models implemented on balanced datasets generalize better in testing 
datasets with better AUC value, F1-score, Gini coefficient and show lesser misclassification cost prov-
ing to be more powerful in prediction and cost-effective as compared to the models implemented on the 
imbalanced dataset. The oversampling balancing techniques balance the classes equally well, helping 
the classifier models to generalize much better and boost the predictive power in the testing dataset. The 
overfitting remains a big issue in machine learning algorithms wherein models tend to learn the data 
points instead of learning the patterns and hence do not generalize well in test datasets.

The misclassification cost is one of the important metrics while determining the most cost-effective 
prediction classifier models. The misclassification cost is formulated by assigning cost factors to the 
misclassifications measured through false-positives and false-negatives derived using the confusion 
matrix. False-Negative refers to misclassification where defaulters are misclassified as non-defaulters. 
False-Positive refers to misclassification where non-defaulters are misclassified as defaulters. Hence, 
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it makes sense to assign a higher misclassification cost factor to False-Negatives (FN) as compared to 
False-Positives (FP) because misclassifying defaulters as non-defaulters can potentially cause much 
higher losses to credit card companies as compared to misclassifying non-defaulters as defaulters.

The concept of drift is another major challenge in credit card defaults since there could be a vast 
change in the behavior pattern of payment defaulters and non-defaulters over time. For instance, the 
models that learn these patterns dated fifteen years back may not be able to relevant to predict the recent 
patterns properly that have changed over time. Hence, the researchers should consider the most recent 
data so that models remain relevant in predicting defaulters effectively with high precision. Another 
recommendation is to obtain a larger training database for models to learn more patterns of defaulters 
so that a better generalization can be achieved thereby improving model performance. Lastly, the de-
fault prediction power of machine learning models can be improved further by making more significant 
variables such as types of other active credits, payment history of other credits, and longer credit history 
for better learning.

Further works can also include enhanced variants of balancing techniques like SMOTE-ENN, 
borderline-SMOTE, SVM-SMOTE, and others to better balance the classes and enhance model perfor-
mance based on experiments done by (Alam et al., 2020; Luthra et al., 2019). Also, tuning the model 
hyperparameters by first using randomized-search to get a more relevant hyperparameter range and then 
performing grid-search on the identified hyperparameter range to determine the optimal hyperparameters 
could also enhance the model performance.

CONCLUSION

Credit card defaults are a huge concern for banking and financial services institutions and several data 
mining techniques have been experimented with in the existing studies. Data mining techniques com-
prised machine learning models, deep learning models, and time series models, all being experimented 
with to predict credit card payment defaults. Including cost-factor in these models enable the business to 
make better and well-informed strategic decisions. This being an anomaly detection study, the datasets 
available are generally imbalanced, and hence employing balancing techniques improve model perfor-
mance considerably. Hyperparameter tuning using a ten-fold cross-validation process further boosts the 
prediction power of the models. Also, evaluation metrics like AUC, precision, recall, and F1-score tend 
to be more relevant as compared to accuracy because of the anomalies. This chapter presented the most 
common issues to be dealt with whilst the organizations adopt effective methods to minimize the losses 
caused by payment defaults. Moreover, this research highlights some of the research gaps that can be 
improved upon to achieve the state-of-the-art.
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KEY TERMS AND DEFINITIONS

ADASYN (Adaptive Synthetic): An algorithm that generates synthetic data, and its greatest advan-
tages are not copying the same minority data, and generating more data for “harder to learn” examples.

Balancing Techniques: These are techniques employed to overcome the class imbalance problem in 
a given dataset that significantly impacts the performance of the machine learning model. The techniques 
either employ over-sampling or under-sampling methods to overcome the balancing problem. Some of 
the popular balancing techniques are ROS, SMOTE, and ADASYN.

Class Imbalance: When the observations or data points associated with an event is rare as compared 
to the data points or observations associated with the non-event, then the situation is called an imbalanced 
class. Typically, the data distribution percentage of data points in such cases range from 99:1 to 70:30 
between majority and minority class respectively. The data which is available for typical classification 
problems like fraud detection and default prediction have such severe class imbalance.

Credit Card: Plastic cards issued by Banks or Financial institutions with a pre-assigned credit limit 
for customers to make purchases at retail stores (also called merchants) or even online.

Cross-Validation: This is a region formed out of the Training dataset with the primary objective of 
hyperparameter tuning the machine learning models to achieve the best performance. This entire process 
of hyperparameter tuning using a cross-validation region is called a cross-validation process.

Hyperparameter: These are model parameters that can be manually configured (through expert 
judgment or empirical results) to achieve optimal performance. Every machine learning model has its 
own set of hyperparameters.

Hyperparameter Tuning: This is a process of fine-tuning the hyperparameters to achieve optimal 
model performance. This process typically involves randomized-search or grid-search methods applied 
in 5-fold or 10-fold cross-validation regions.

Misclassification Cost: Cost associated with the wrong classification of an event. In this chapter, 
the event is “payment default”. Hence, this misclassification cost is assigned to the model that wrongly 
predicts payment default as a non-default (Type-2 error which is more dangerous) and non-default as a 
payment default (Type-1 error).

Payment Default: Inability of the customer to make payment of the total due amount owed to the 
issuer by the specified due date. This applies to credit cards, housing loans, education loans, personal 
loans, or any similar product offered by banks or financial institutions.

RIPPER (Repeated Incremental Pruning to Produce Error Reduction): Algorithm introduced 
by W. Cohen in 1995, which improved upon IREP (Incremental Reduced Error Pruning Algorithm) of 
Furnkranz and Widmer in 1994 by generating rules that match or exceed the performance of decision 
trees. Having evolved from several iterations of the rule learning algorithm, the RIPPER algorithm can 
be understood in a three-step process: Grow, Prune, Optimize.

Significant Features: These are the independent or explanatory features or variables that can sig-
nificantly explain the dependent feature or variable.

SMOTE (The Synthetic Minority Over-Sampling Technique): An oversampling approach that 
creates synthetic minority class samples.
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APPENDIX

Table 1. Summary of reviews based on models, dataset, and primary evaluation metric

Models 
category Author(s), Year Dataset Number 

of features Observations Data mining 
technique

Primary 
evaluation 
metric and 

result

Regular 
machine 
learning 
models

(Ullah et al., 2018) Taiwan 25 30,000 AdaBoost Accuracy = 
88.00%

(Sariannidis et al., 2020) Taiwan 25 30,000 SVC Accuracy = 
81.65%

(Yu, 2020) Taiwan 25 30,000 Random forest Accuracy = 
82.12%

(Mazumder, 2020) Taiwan 25 30,000 Random forest Accuracy = 
90.90%

(Sayjadah et al., 2018) Taiwan 25 30,000 Random forest AUC = 0.77

(Yontar et al., 2020) Taiwan bank 24 10,713 CART Accuracy = 
86.00%

(Yang and Zhang, 2018) Taiwan 25 30,000 LightGBM AUC = 0.79

(Choubey, 2018) Taiwan 25 30,000 Random forest AUC = 0.76

(Neema and Soibam, 
2017) Taiwan 25 30,000 ANN Accuracy = 

82.30%

(Charleonnan, 2016) Taiwan 25 30,000 RUSMRN Accuracy = 
79.73%

(Yeh and Lien, 2009) Taiwan 25 30,000 ANN R2 = 0.9647

(Leong and Jayabalan, 
2019) Taiwan 25 30,000 ANN AUC = 0.75

(Xu et al., 2018) Taiwan 25 30,000 AdaBoost Accuracy = 
88.00%

(Islam et al., 2018) Taiwan 25 30,000 ERT Accuracy = 
95.84%

(Mbuvha et al., 2019) Taiwan 25 30,000 HMC – ARD AUC = 0.78

(Luthra et al., 2019) Credit 
defaults 29 Not available Random forest AUC = 0.67

(Alam et al., 2020) Taiwan 25 30,000 GBDT Accuracy = 
88.70%

Time 
series 

models

(Ho Ha and Krishnan, 
2012) Not available 17 Not available

SOM + Cox 
proportional hazard 
model

Accuracy = 
95.80%

(Leow and Crook, 2014) UK bank Not 
available 49,000 Intensity model Accuracy = 

83.00%

(Bellotti and Crook, 2013) UK bank 23 750,000 Discreet time 
survival model MAE = 0.049

(Li et al., 2019)
China 

commercial 
bank

23 60,000 Cox proportional 
hazard model Not available

Continued on following page
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Models 
category Author(s), Year Dataset Number 

of features Observations Data mining 
technique

Primary 
evaluation 
metric and 

result

Deep 
learning 
models

(Sun and Vasarhelyi, 
2018) Brazil bank 44 6,516,045 ANN AUC = 0.95

(Chishti and Awan, 2019) Taiwan 25 30,000 RUSMRN Accuracy = 
79.73%

(Hsu et al., 2019) Taiwan 25 30,000 RNN – RF AUC = 0.78

(Ebiaredoh-mienye et al., 
2020) Taiwan 25 30,000 SSAE – LDA Accuracy = 

90.00%

Table 1. Continued
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ABSTRACT

This study examines the performance of seasonal autoregressive integrated moving average (SARIMA), 
multilayer perceptron neural networks (MLPNN), and hybrid SARIMA-MLPNN model(s) in modelling 
and forecasting inflation rate using the monthly consumer price index (CPI) data from 2010 to 2019 
obtained from the South African Reserve Bank (SARB). The forecast errors in inflation rate forecasting 
are analyzed and compared. The study employed root mean squared error (RMSE) and mean absolute 
error (MAE) as performance measures. The results indicate that significant improvements in forecasting 
accuracy are obtained with the hybrid model (SARIMA-MLPNN) compared to the SARIMA and MLPNN. 
The MLPNN model outperformed the SARIMA model. However, the hybrid SARIMA-MLPNN model 
outperformed both the SARIMA and MLPNN in terms of forecasting accuracy/accuracy performance.
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INTRODUCTION

Time series predicting is indeed a very powerful and essential area of interest that has grabbed the thinking 
of academics worldwide. Time series forecasting helps in better preparation for the future. It is widely 
applied in the field of econometrics, weather forecasting, finance, and engineering. Based on historical 
values, the ultimate goal is to establish a model where future values can best be predicted (Datta, 2011). 
Time series forecasting focuses primarily on collecting and analyzing past values to create models that 
best understands the underlying characteristics of the time series data.

Many time series models have been in use for years to improve the effectiveness and the reliability 
of predictions. These time series models can either be classified as univariate or multivariate models. 
Univariate models consist of one variable and observations of that variable are recorded consecutively 
over the same spaced time intervals, whereas in contrast, multivariate time series models are applicable 
where there is more than two variables with their respective observations (Chatfield, 2000).

There are a number of commonly applied models to modelling and forecasting time series. Amongst 
a few, there is Exponential smoothing where the series is decayed into a trend and seasonal element. 
Other approaches include Multiple Linear Regression (MLR). The disadvantage of using MLR is that 
it assumes that there is a linear relationship between the predictor and the dependent variables. Both 
Support Vector Regression (SVR) and MLR are applied in modelling multivariate time series data.

The Autoregressive Integrated Moving Average (ARIMA) model or the Box-Jenkins method is one of 
the most widely used and acknowledged statistical models of time series forecasting. Furthermore, The 
Seasonal Autoregressive Integrated Moving Average (SARIMA) model, in particular, includes a seasonal 
component and is used to capture seasonal trends existing in a time series. Time series modelling and 
forecasting have often been applied in various fields of econometrics, weather forecasting, finance and 
engineering (Hyndman & Athanasopoulos, 2018). However, forecasting financial time series is more 
complex and challenging due to nonlinear trends and random walks, that is where the application of 
Artificial Neural Networks (ANNs) or simply Neural Networks (NN) came into play.

ANNs are the recent and most widely used methods to forecast and resolve challenges faced by linear 
models in forecasting more complex and nonlinear time series data. ANNs have the ability to detect 
any underlying structures in the data, making them appropriate for usage in forecasting. Without human 
interference, ANNs can automatically learn how to implement predictions on their own (Zhang, Patuwo, 
& Hu, 1998). There are several kinds of feed-forward artificial neural networks, one type includes a 
feed-forward Multilayer Perceptron Neural Networks (MLPNNs).

Cang (2011) defines Multilayer Perceptron Neural Networks (MLPNNs) as a type of the Neural 
Network that is trained to approximate any function, does not make any assumptions regarding the 
distribution/structure of the data and can model highly nonlinear and irregular data or functions. These 
types of models are built on the basis of biological neural networks. There has been a lot of development 
in research in terms of applying hybrid models in forecasting time series data. Most scholars have ap-
plied the same logic and argued that this system can improve the forecasting performance of the model.

(Areekul, Senjyu, & Yona, 2010; Ghahnavieh, 2019; Khandelwal, Adhikari, & Verma, 2015; Prayoga, 
Suhartono, & Rahayu, 2017) suggest that hybrid models can be efficient means of improving the predictive 
reliability obtained by either of the separately used models. Essentially, the hybrid approach is a mixture 
of two or several model types. These kinds of models appear to increase the reliability of predictions in 
forecasting the time series. Motivated by these researches, this study sought to compare the forecasting 
performance of SARIMA, MLPNN and a hybrid SARIMA-MLPNN in terms of modelling and forecast-
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ing inflation rate of South Africa using CPI time series data. The paper is organized as follows. Section 
2 will briefly present literature review of the hybrid model, SARIMA and MLPNN models respectively. 
Section 3 is the presentation of the methodology of the models, whereas in section 4 there is application 
of the proposed model(s) to Consumer Price Index (CPI) time series data and section 5 will be the last 
section which will cover concluding remarks of the study.

BACKGROUND

Hybrid Models and Artificial Neural Networks (ANNs)

In the recent past there has been various combinations of models which forms what we call hybrid mod-
els or hybrid systems. The sole reason for hybrid models is to use the singular or multiple features that 
each model has in order to capture all the properties or characteristics presented in a time series data. 
Hybrid models can either be used as models that are homogenous or heterogeneous. Meaning they can 
either be used as linear models (homogenous) or being linear and nonlinear models (heterogeneous).

The main aim is to build models that can be able to take care of the properties of the series. This 
being the case will then tend to improve the forecasting performance of the models because all the as-
pects of the series would have been taken care of in terms of the modelling part of the series. In terms 
of neural networks forecasting, both the theoretical and empirical evidence suggests that hybrid models 
can be effective and efficient way of improving forecasting (Makridakis, 1989; Palm & Zellner, 1992).

Researchers have attempted to create a model that combines two or more models (hybrid models) 
to account for both linear and nonlinear variation in the data. This sort of model appears to generate 
better outcomes than individual models in forecasting time series data. Guimaraes Santos and Silva 
(2014) compared the quality of wavelet–ANN hybrid and ANN models for different average streamflow 
forecasts. The wavelet-ANN models showed meaningfully improved outcomes for all the cases tested 
relative to the ANN models. The results they obtained demonstrated and evaluated the advantages of 
using wavelet transformation in standard streamflow forecasting using ANNs, though perhaps restricted 
to a single application. This hybrid approach’s excellent performance promoted the development of fresh 
studies on this topic.

Merh, Saxena, and Pardasani (2010) outlined three-layer hybrid models of the ARIMA and ANN 
to forecast the future index value and trend of the Indian stock market. The ARIMA predicted values 
in relation to the actual stock value showed to be better than those predicted by the ANNs. The results 
showed that the BSE 30 (SENSEX), BSE IT and S&P CNX Nifty ANN-ARIMA hybrid model forecast 
was better than the ARIMA-ANN hybrid, although 100 ARIMA-ANN findings were significantly better 
than the BSE ANN-ARIMA hybrid model. The hybrid model from ARIMA-ANN revealed a statement 
of overfitting. The results also showed that BSE Oil & Gas ANN and hybrid ANN-ARIMA were capable 
of managing input data set and predicting future closing prices, whereas ARIMA and ARIMA-ANN 
could not predict future values.

Faruk (2010) used ARIMA, ANN and hybrid ARIMA-ANN in his study to model and forecast 108 
water quality data for the Buyuk Menderes River. The hybrid model offered much greater precision 
over ARIMA and neural network models to predict water quality. In particular, the hybrid model results 
provided a solid modelling framework capable of capturing the non-linear nature of the complex time 
series and thus producing predictions that were more accurate.
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Arunraj and Ahrens (2015) explored the efficiency of sales data modelling and forecasting of 
SARIMA-MLR and SARIMA-QR models. Their findings showed that the models SARIMAMLR and 
SARIMA-QR provided improved over-the-counter forecasts compared to seasonal naive forecasts and 
classical approaches to SARIMA and MLPNN.

Wang, Wang, Zhang, and Guo (2012) developed a hybrid model combining Exponential Smoothing 
Model (ESM), ARIMA, and Back-Propagation Neural Network (BPNN). The generic algorithm deter-
mines the weight of the suggested hybrid model. The actual stock indices dataset was used as illustrative 
examples to demonstrate the hybrid model’s better performance. The Shenzhen Integrated Index (SZII) 
closure and the Dow Jones Industrial Average Index (DJIAI) opening were used as illustrative examples 
to evaluate the proposed hybrid model’s efficiency. Statistical findings indicated that the suggested model 
exceeded all traditional models, including BPNN, ESM, EWH, ARIMA, and RWM. A potential future 
study discussion is the development of a hybrid model for forecasting daily or even hourly information 
where a more critical problem is how to enhance computation time. For short-term investors, such a 
model is more essential. A further approach is to investigate the option of mixing other forecasting in-
struments such as Supporting Vector Regression (SVR) and Multivariate Adaptive Regression Splines 
(MARS) to further enhance the forecasting of time series.

Ali et al. (2017) applied MLPNN methodology in drought predicting. The study used monthly Stan-
dardized Precipitation Evapotranspiration Index (SPEI) time-series data for 17 weather stations in Pakistan 
and the Northern area. Based on the correlation coefficient, RMSE, and MAE, the MLPNN approach 
has the potential ability to predict drought. Relevant decision makers can take necessary precautions by 
utilizing MLPNN as part of their policymaking.

Ali et al. (2017) stated that MLPNN is part of an ANN general class structure called a neural feed-
forward network. The neural networks of feed-forward are able to approximate both continuous and 
integrable processes. The MLPNN’s network structure comprises of layered neurons. In the MLPNN 
model, all input nodes are in one layer and hidden layers are distributed in one or more hidden layers.

Seasonal Autoregressive Integrated Moving Average Model (SARIMA) 
and Autoregressive Integrated Moving Average (ARIMA) Model

Alnaa and Ahiakpor (2011) used Box Jenkin’s methodology to forecast Inflation in Ghana. Ghana Sta-
tistical Service was used to obtain monthly data for this variable from June 2000 to December 2010. 
ARIMA (6, 1, 6) was found to be the most appropriate model to forecast inflation with Root Mean Square 
Error (RMSE) of 0.115453 which suggests the effectiveness of the model. The forecasts from the model 
recommended that the ARIMA model may also be competent and capable of predicting Ghana’s infla-
tion. The selected model suggested that price increases seem to have a long memory, so precautionary 
measures to stabilize inflation should be put in place. Whenever the highest peak (spiral) of inflation 
occurs, bringing it to its steady state can take a period of 12 months.

Chinonso and Justice (2016) used monthly CPI information from January 2001 to December 2015 to 
model urban and rural inflation in Nigeria. This Consumer Price Index (CPI) is a measure of the average 
shift in the prices of consumer goods over a period of time, i.e. products and services that individuals 
purchase for daily living. Box-Jenkins ARIMA Model was used to model 180 monthly CPI figures and 
was forecast to have 29 monthly CPI figures, which effectively included two quarterly CPI information. 
The model recognized that both mean and variance were rising over time, the data being dependent and 
not distributed identically. ARIMA (0, 1, 0), and ARIMA (0, 1, 13) were chosen and showed to be right, 
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the residuals showed small auto-correlated residuals and followed a normal distribution with mean zero 
and continuous variance.

Nyoni (2018) studied ARIMA and GARCH methods in modelling and forecasting inflation in Ke-
nya. Historical time series data on inflation was collected over the period 1960-2017. After analysis, 
the resulted models were ARIMA (1, 2, 0), ARIMA (2, 2, 1), GARCH (1, 1) and AR (1) model, as they 
had the lowest AIC value and Theil’s U value. The results of the study indicate that both ARIMA (1, 2, 
0) and ARIMA (2, 2, 1) is efficient and adequate to forecast inflation in Kenya. The results further indi-
cated that inflation was expected to remain increasing. The study was intended to assist policy-makers 
in sustaining and maintaining price levels in Kenya.

Abdulrahman, Ahmed, and Abdellah (2018) applied the Box-Jenkins approach to building an ARIMA 
model to forecast Sudan’s inflation rates. They took the first and second differences to stabilize the series. 
ARIMA (1, 2, 1) was found to be the most adequate model to forecast Sudan Inflation rates as it had 
the lowest RMSE. By assessing the performance of the model it was found that there was some overlap 
between forecasted values and actual values from the year 1970 to 2016. Using forecasted values, infla-
tion appeared to rise in the future.

Nyoni and Nathaniel (2018) studied inflation rates in Nigeria for a period between 1960 and 2016. 
The study applied the procedures of ARMA, ARIMA, and GARCH models to illustrate and forecast 
inflation rates in Nigeria. The ADF test suggested that Nigeria’s inflation time series data was essentially 
stationary after the first difference, even though it was in general stationary at a significance level of 10 
percent. The analysis identified the ARMA (1, 0, 2) as the best model based on the minimum Theil’s U 
prediction evaluation statistic. Furthermore, standard tests clearly show that the presented models are 
stable and therefore efficient. Research findings showed that inflation is likely to increase to about 17 
percent per year in Nigeria by the end of 2021 and is likely to exceed that level by 2027.

Álvarez-Díaz, González-Gómez, and Otero-Giráldez (2019) compared the performance of ANN (NAR 
Neural Network), Generic Programming, and SARIMA model. The study utilized monthly international 
tourism demand in Spain. SARIMA (0, 1, 2) (1, 1, 1) version was selected as the best SARIMA model 
as it had the lowest BIC and MAPE values in the in-sample period. NAR network outperformed the 
forecasts of the rest of the models. The non-linear models generate good forecasts in comparison with 
the SARIMA model. The study recommends that new researches should examine whether combining 
forecasts can achieve better forecasting results than those given by linear models.

METHODOLOGY

In this section forecasting methods which are SARIMA, MLPNN and hybrid SARIMA-MLPNN are 
introduced. These models will be subjected to go under appropriate assessments and furthermore model 
diagnostics will be performed accordingly.

Seasonal Autoregressive Integrated Moving Average (SARIMA) Model

The time series autoregressive integrated moving average (ARIMA) model displaying frequent varia-
tions during the same month each year or during the same quarter each year are referred to as seasonal 
autoregressive integrated moving average (SARIMA) models or SARIMA models for convenience. The 
SARIMA model is commonly expressed as, where s is the seasonal period. Box-Jenkins now recom-
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mends the ARIMA(p,d,q)(P,D,Q)s model for dealing with time series incorporating seasonal fluctuations 
which can also be expressed as:
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The above formulae (1) can be summarized by the following representation:

� � � �B B B BS D
S d

S
t�� �� � � � � � �  (2)

given that Ñd=(1–B)d are non-seasonal differences, ÑD
S=(1–BS)D are seasonal differences, Φ1B

S are 
seasonal autoregressive orders, 𝜃1BS are seasonal moving average orders, 𝜑1B are non-seasonal autore-
gressive orders, 𝜃1 are non-seasonal moving average orders, and 𝜀t is the random error, 𝜀t~WN(0,𝜎2𝜀)
tha

t is, the error term is white noise (zero mean and constant variance) (Box et al., 2015). This model 
will be subjected to assessments.

Multilayer Perceptron (MLP) Neural Networks

The principle of artificial neural networks (ANN) has been used for nearly 50 years, it could only be 
known in the late 1980s that it has achieved substantial use in scientific and technical development. ANN 
is a mathematical concept with a brain-like structure that is highly connected. A neural network is a 
device that simulates how the brain performs a particular task. It resembles the brain in two ways: first, 
through a learning process, the network acquires information from its settings, and second, the strengths 
of the interneuron relationships are used to store the knowledge acquired, established by synaptic weights 
(Guresen, Kayakutlu, & Daim, 2011).

A key benefit of ANN models over other nonlinear model categories is that ANNs are generic ap-
proximates with a high degree of accuracy that can estimate a large class of functions. Their strength 
comes from the parallel data processing of information. No previous assumption of the design type is 
necessary for the model building process. Rather, the network model is strongly influenced by the features 
of the data. Neural networks can be used to analyze the data and identify trends that can be too difficult 
and complex for human beings or other analysis techniques to capture through their exceptional ability 
to infer significance from complicated or unclear data (Guresen et al., 2011).

ANNs are effective computing tools designed to model a number of nonlinear problems. Some ben-
efits include the potential to truly understand how to perform tasks based on the data set as a preparation 
and initial experience, the ANN can create its own organization or represent the data it collects during 
the learning process, ANN algorithms can be conducted in parallel, and special hardware devices can 
be designed and produced using this functionality (Yadav et al., 2014).

An ANN model often involves three layers: the very first layer is the input layer where the data is 
announced to the network, the network is performed on a digital computer simulation using a software. 
The second layer is the hidden layer of information processing. This layer is the interface between the 
layers of input and output. One of the important tasks in this layer is to determine the type of activation 
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function (g) which determines the relationship between the layer of input and output. A widespread ac-
tivation function(s) is supported by neural networks that are logistic, linear, quadratic and tanh (Khashei 
& Hajirahimi, 2018). Figure 1 displays the architecture of a Multilayer Perceptron neural network.

The related subject is the choice of a transfer function. The logistic function is often used as the hid-
den layer transfer function, that is,

g x
e x� � �

� �

1
1

 (3)

Khashei and Zahra (2019) further define the tanh function as
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and sigmoid as,
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Figure 1. MLPNN architecture (Source: Personal Collection)
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Rezaeian-Zadeh and Tabari (2012) mentioned that the most widely used transfer functions are the 
logistic sigmoid and tangent functions. They also point out that ANNs with the logistic sigmoid func-
tion are more hard to train than ANNs with the tangent function, that training with the tangent function 
is not only quicker than training with the logistic sigmoid transfer function, but also that the predictions 
obtained with the tangent networks are slightly higher than those with the logistic sigmoid transfer func-
tion and that the current study, therefore, used tangent sigmoid function. The study use the method of 
min-max method to standardize the values of the series.

The last layer is the output layer which generates the outcomes of the indicated input. Training the 
model to learn the relationship between input and output parameters is an important step in the neural 
network. Weights are established by Error Back-Propagation (EBP) algorithms in MLP, which reduce 
a quadratic cost function by a method of gradient descent. The interconnecting weights between the 
nodes are changed during the training phase based on the inputs and desired output. The feed-forward 
multilayer network is the most popular and competitive model (Godarzi et al., 2014).

MLPNN is recognized in predictive analytics functions as a widely used artificial neural network 
architecture. MLPNN modelling is inspired by the framework of a biological neuron structure capable 
of parallel processing like a human mind, but these machine learning tools’ processing elements have 
gone far from their biological inspiration. MLPNN has been used successfully by many other sciences, 
engineering, and forecasting researchers to predict the results of both linear and nonlinear systems 
without making assumptions implicit in most common statistical techniques. The biggest difficulty 
with MLPNN, however, is to choose a suitable model as there are different MLPNN model structures, 
training algorithms, activation functions, learning rate, momentum and number of periods to choose 
from (Velasco et al., 2019).

The number of input layers, hidden output layers must be specified correctly when constructing ANN 
design. Mathematical demonstration of the relationship between the inputs:

y yt t p� ��
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where α j s
'  and β

0 j s
'  are model parameters, q is the number of hidden nodes, p is the number of inputs 

nodes. For one step forecast, the following formulation is employed:

y f y y wt t t p t� �� � �� �1
, ,

,
�  (7)

Hence, the MLP model, in fact, performs a nonlinear functional mapping from the past observation 
y y yt t t p� � ��� �1 2
, ,

,
 to the future value y f y y wt t t p t� �� � �� �1

, ,
,

�  where f is the function determined 
by the neural network structure and connection weights and w is a vector of all parameters.

It must also be acknowledged that determining the number of nodes in the hidden layer, the number 
of lagged observations and the input vector dimension in the input layer are essential parts of the artifi-
cial neural architecture, however, there is no methodological rule for selecting such parameters and the 
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only way to determine the optimal number is through experimentation method of trial and error (Mehdi 
Khashei & Hajirahimi, 2019).

The Hybrid Methodology

Artificial neural network (ANN) and autoregressive integrated moving average (ARIMA) (ANN-ARIMA) 
techniques have been widely used over the past two decades to obtain higher-precision prediction in 
linear and non-linear data sets; in general, terms, to forecast financial data on various kinds of financial 
and economic conditions. A hybrid model is a model type in which two or even more models are in-
corporated Wang et al. (2012) concluded that the hybrid approach incorporating linear and non-linear 
models can be an effective prediction approach.

Assuming that a time series consists of a linear and nonlinear component can be logical and reason-
able. That is,

Yt = Lt + Nt (8)

given that Lt represent linear component of the series and Nt represent non-linear component of the series.
From the consumer price index (CPI) results, these components will be expected. Firstly, we require 

SARIMA to model the static portion of the residuals, followed by the nonlinear component. Residuals 
are critical for assessing the appropriateness of static models. When linear association frameworks exist 
in the residuals, the linear model is insufficient. Any noticeable nonlinear behavior in the residuals would 
reveal the SARIMA’s weakness. Let et represent the residual of the seasonal ARIMA model at time t, then

e y Lt t t� �   (9)

given that yt is the actual series of the SARIMA model at time t, Lt  is the forecasted value at time t.
Modelling residuals using MLP reveal nonlinear relationships. The MLP model for residuals with 

input nodes is as follows:

e f e e e et t t t k t� �� � �� � �1 2
, , ,  (10)

given that f e e et t t k� � ��� �1 2
, , ,  denotes a nonlinear feature established by the neural networks and et is 

the random error.
The joint forecast will be:

y L Nt t t
� � �� �  (11)

The study will employ both root mean squared error (RMSE) and mean absolute error (MAE) in 
comparing the forecasting performance of the models.
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given that N, yt and yt  is the total number of the series, actual series and the forecasted series of the 
data respectively.

EMPIRICAL RESULTS

Data Set

The monthly Inflation consumer price index (CPI) data was sourced from South African reserve bank 
website www.resbank.co.za. The dataset contains price indices from the year 2010/01 to 2019/07 and had 
a total of 115 observations. According to Mehdi Khashei and Hajirahimi (2019), 75% (86 observations) 
of the sample was used as a training sample and the remaining 25% (29 observations) as a test sample. 
Hence, the CPI data was partitioned according to this partition.

The plot has no clear trend. The data is not linear. There is a sudden drop in inflation (CPI) data from 
the year 2010 to mid-2011. Inflation rate reached a minimum of 3.4 in 2011/02 and 2011/03. There are 
some prevailing cyclical patterns in the data from mid-2013 to 2017 and some irregularities. There was 
also a significant decrease from 2017 to 2018.

In the analysis, unit root tests are used as a way of determining more accurately whether differencing 
is necessary. In our analysis, we use the augmented Dickey-Fuller (ADF) test to check for stationarity. 
This test may also be used to decide the appropriate order of differences. The result of the test is shown 
in table 2.

Table 1. Period of MLPNN, SARIMA, and SARIMA-MLPNN on training and testing sets

Models Series Training Testing

MLPNN 2010/01 – 2019/07 (115) 2010/01 – 2018/02 (86) 2018/03 – 2019/07 (29)

SARIMA 2010/01 – 2019/07 (115) 2010/01 – 2018/02 (85) 2018/03 – 2019/07 (29)

SARIMA-MLPNN 2010/01 – 2019/07 (115) 2010/01 – 2018/02 
(85) 2018/03 – 2019/07 (29)

Note: numbers inside the brackets indicates the total number of observations employed.
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ADF t-statistic value is -1.0887 with the corresponding p-value of 0.2786. Critical values for test 
statistics are -2.58, -4.95, and -1.62 for 1%. 5% and 10% respectively. The p-value is greater than all the 
significant levels. We, therefore, accept the null hypothesis and conclude that the series is non-stationary. 
Thereby showing that the test needs to be conducted at first difference and the results are reported in 
table 3.

Figure 2. Consumer price index time series plot from 2010/01-2019/07

Table 2. ADF test at level(s)

t-statistic Prob *

ADF Statistic -1.0887 0.2786

Test critical values 1% level -2.58

5% level -4.95

10% level -1.62
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The test statistic is given by -9.4731 and critical values for 1%, 5%, and 10% are -2.58, -1.95 and -1.62 
respectively. The probability value is given by 5.439e-16 (approximately 0.0000054). The test statistics 
are less than the critical value of 1 percent, 5 percent, and 10 percent, indicating acceptance of the null 
hypothesis. That is, the data is stationary after first difference. The p-value approaches zero.

Results

Five models of SARIMA were estimated in the study. All the models have the same orders of differenc-
ing. The ACF has a significant spike at lag 1 and 13, suggesting MA (1) and seasonal MA (1) and the 
PACF has a significant spike at lag 13, suggesting AR (1) and seasonal AR (1). The competing five 
models with their corresponding AIC values are:

Auto ARIMA function suggested model 3 ARIMA(1,1,1)(0,0,1)12 to be the best model as compared to 
the five models estimated. Furthermore, the study did residual analysis as a way of diagnostic checking 
and normal distribution of the residual was assessed. The results are shown in figure 3.

The residuals (i.e., white noise) are normally distributed. The residual plot revolves around the aver-
age of 0 and there is a constant variance. The ACF chart also reveals that the residuals are stationary as 
the plot does not contain any noticeable spikes. The Normal plot reveals the bell-shaped, indicating the 
normal distribution of residuals.

The main benefit of ANN methods over other non-linear model types is that ANNs are standard 
approximators that can estimate a large number of frameworks with a strong level of precision. Their 
strength comes from the parallel computing of information knowledge. No prior assumption of the de-

Table 4. SARIMA model estimation and selection

Models AIC BIC

ARIMA(1,1,1)(1,0,1)12 -76.67461 -62.99362

ARIMA(1,1,0)(1,0,1)12 -71.29686 -60.35206

ARIMA(1,1,1)(0,0,1)12 -77.83608 -66.89128

ARIMA(1,1,0)(0,0,1)12 -72.84557 -64.63697

ARIMA(0,1,1)(0,0,1)12 -72.09076 -63.88216

Note: Model 3 has both the smallest AIC and BIC and hence the study chose it as the best model amongst the five estimated.

Table 3. ADF test at first difference

t-statistic Prob *

ADF Statistic -9.4731 0.0000054

Test critical values 1% level -2.58

5% level -4.95

10% level -1.62
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sign type is required in the model building process. Instead, the network model is strongly influenced 
by the features of the data.

It must be acknowledged that specifying the number of nodes in the hidden layer, the number of 
lagged measurements and the input vector dimension in the input layer are essential components of the 
neural network architecture, however there is no methodological rule for selecting such parameters and 
the only way to pick the appropriate number of p and q is by experimentation or trial and error (Mehdi 
Khashei & Hajirahimi, 2019).

It should be taken into account that we used the trial and error approach to select the number of hidden 
layers as well as the number of nodes/neurons. In the analysis, the researcher chose the most appropriate 
model utilizing 20 different models. The lowest MSE value is the best MLP model. The study estimated 
20 multilayer perceptron neural networks model and the best model amongst the twenty estimated was 
found to be the model with 3 hidden layers (the 1st layer has 5 nodes, the 2nd layer has 1 node and the 
third layer has 2 nodes) has the lowest MSE value of 0.001. MSE value for this model is closer to zero, 
hence it is chosen as the best model. The most optimal MLP model has the RMSE value of 0.03144649, 
MAE is 0.01, and MASE is 0.0177921.

For hybrid SARIMA-MLPNN model this procedure is followed: the residuals obtained from the 
SARIMA model would be used to fit the MLP model. The training set contains about 86 observations 
while the testing set contains about 29 observations. The transformed would then be used to fit the MLP 
models. Since there is no methodical rule for selecting these parameters. In this section, the method of 
trial and error was also used to find the number of nodes in the hidden layer and the number of hidden 
layers. Hybrid SARIMA - MLP model (10, 5, 1) hidden nodes and 20 repetitions has the lowest MSE 
value of 0.0022. Hence, this model is chosen as the most optimal model. Therefore, since all three 
models are estimated and the optimal models are found, then the three models are compared in terms of 
forecasting performance of the CPI data series and the results are shown in table 5.

Figure 3. Residuals Diagnostics

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



319

Inflation Rate Modelling Through a Hybrid Model
 

In view of the outcomes shown in the table above, the traditional linear model of SARIMA is out-
performed by the MLPNN model and the hybrid model respectively. The hybrid model has the lowest 
RMSE value followed by MLPNN. However, MLPNN has the lowest MAE value. This demonstrates 
the fact that ANNs could be the effective technique for forecasting time series data. Looking at the MAE 
value for both MLPNN and a hybrid SARIMA-MLPNN, we observe that there is no much difference 
between them. Hence, we choose a hybrid model as an optimal model.

CONCLUSION

The study fitted SARIMA, MLPNN and a hybrid SARIMA-MLPNN model to the CPI data set using R 
software. The data showed some seasonal patterns which the Box-Jenkin’s seasonal ARIMA (SARIMA) 
model captures. The chosen SARIMA model was ARIMA(1,1,1)(0,0,1)12. The MLP model achieved its 
definitive model have 5 hidden layers - the 1st layer has 5 nodes, the 2nd layer has 10 nodes and the 3rd 
layer has 5 nodes, 4th layer has 5 nodes, and the 5th layer has 1 node with a learning rate of 0.05. And 
the hybrid prototype achieved its definite model to be one with 3 hidden layers with 0.05 learning rate.

Secondly the study compared the three models using RMSE and MAE to measure the overall per-
formance. The results showed SARIMA was outperformed by the MLPNN model and the hybrid model 
respectively. The hybrid model has the lowest RMSE value followed by MLPNN. However, MLPNN 
has the lowest MAE value. This demonstrated that ANNs could be the effective technique for forecast-
ing time series data. Looking at the MAE value for both MLPNN and a hybrid SARIMA-MLPNN, we 
observed that there was no much difference between them. Hence, we chose a hybrid model as the most 
optimal model. The results have shown that hybrid SARIMA-MLPNN was able to improve forecasting 
accuracy. The study furthermore recommends that in future research a hybrid model of RBFNN-MLP 
may also be considered when analyzing time series data and that large data set may also be considered 
as this may be of the utmost benefit to the researcher.

LIMITATIONS

The study is limited to using monthly historical time series data of consumer price index (CPI) sourced 
from South African reserve bank and covering the period of January 2010 to July 2019 on the basis 
of accessibility of data. There are numerous models that are and can be used to model consumer price 
index (CPI), however for the purpose of the current study, only three models will be used; SARIMA, 
MLPNN and SARIMA-MLPNN hybrid model. Due to limited sources on machine learning models, the 
study might use sources older than ten years.

Table 5. Comparing model(s) performance

Models RMSE MAE

SARIMA 0.1626621 0.1245401

MLPNN 0.03144649 0.01

Hybrid SARIMA-MLPNN 0.02203298 0.0115682
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KEY TERMS AND DEFINITIONS

Consumer Price Index (CPI): An index of the variation in prices for retail goods and other items.
Data Partitioning: Means the process of physically dividing data into separate data stores.
Hybrid Models: This refers to a situation where two or more models are combined together to solve 

a certain specific problem presented in a time series data.
Inflation Rate: The rate at which prices increase over time, resulting in a fall in the purchasing 

value of money.
Mean Absolute Error (MAE): A measure of average magnitude of the errors in predictions without 

giving preferences to their direction.
Performance Measures or Error Metrics: Is a type of metric used to measure the error of a fore-

casting model.
Root Mean Square Error (RMSE): Is a frequently used measure of the differences between values 

predicted by a model or an estimator and the values observed.
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ABSTRACT

For popular sports brands such as Nike, Adidas, and Puma, value often depends upon the performance 
of star athletes and the success of professional leagues. These leagues and players are watched closely 
by many around the world, and exposure to a brand may ultimately cause someone to buy a product. This 
can be explored statistically, and the interconnectedness of brands, athletes, and the sport of basketball 
are covered in this chapter. Specifically, data about the NBA and Google Ngrams data are explored in 
relation to the stock price of these various sports brands. This is done through both statistical analysis 
and machine learning models. Ultimately, it was concluded that these factors do influence the stock 
price of Nike, Adidas, and Puma. This conclusion is supported by the machine learning models where 
this diverse dataset was utilized to accurately predict the stock price of sports brands.

INTRODUCTION

In this chapter, the relationship between popular brands involved in basketball and the sport itself is ex-
plored. While the focus here is only on one sport, the principles and techniques shown in this chapter can 
be applied to others too. For example, if similar data on the National Football league and its players were 
to be collected, then a prediction of the stock price of connected brands should be achievable. Different 
varieties of data are utilized in this chapter, and the relationship to brand value is heavily analyzed. The 
data collected includes both data on the National Basketball Association itself, and frequency data from 
Google Ngrams. After statistical analysis of the dataset, machine learning models are then built with the 
goal of accurately predicting the stock price for Nike, Adidas, and Puma. Another goal of this chapter 
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is to explore the differences between simple machine learning models and complex machine learning 
models. The models of focus are linear regressions and neural networks. The comparison point between 
these models is the accuracy of the training dataset and the accuracy of the testing dataset.

BACKGROUND

Literature Review

There have been numerous studies that have covered a similar topic area to that of this chapter in the 
past, whether it be exploring the value of a sports brand or even just the popularity of Michael Jordan. 
The following studies are not used a basis of this chapter, but rather a springboard for developing the 
overall topic. Studies are grouped by topic in the below paragraphs.

Effects of Players on Brands

The first study to be examined is a thesis paper written by Paul Andrew Maddock II. This paper cov-
ers the economic impact on a brand that an NBA player can have. Regressions were calculated by this 
author, and both negative and positive impacts on a brand’s value could be seen in his results (Maddock 
II, 2018). Another study focused on a similar topic area as the previous one. It focused on the negative 
impacts an athlete has on a brand. It even mentioned that this impact can transfer over to other brands 
too (Shintaro Sato, 2018). Superstar players can also have major effects on the success of their team 
financially. This study focused on the effects that a superstar player can have on the attendance of games 
(both home and away), and ultimately concluded that the effect is real (Humphreys, 2019).

Miscellaneous Sports Brand Studies

The next study focused on the impacts of a brand’s involvement in grassroots basketball. It further ex-
plores why these brands are involved in grassroots sports and even the benefits that they reap from it 
(Keefe, 2011). Brand loyalty is another factor that ultimately decides the value of a brand. This study 
explored this through firsthand data collection, and ultimately determined that being loyal to one brand 
will affect that person’s decision to buy a pair of basketball shoes (de Silva, Madhushani, & Jayalath, 
2020). Business strategy and models can also affect the value of a brand. This paper explores just that 
and goes into detail with Nike and Adidas (Ali Mahdi, Abbas, Mazar, & George, 2015).

Michael Jordan and The Effects of Star Athletes

Another paper explores Michael Jordan’s decision to return to the NBA from minor league baseball. 
It explores the effects that decisions like this have on brands that are not directly involved which is 
significant (Lynette Knowles Mathur, 1997). The final paper to be covered explores what they coin 
as “The Jordan Effect”. This revolves around Michael Jordan’s effects on brands just by what he does 
in life. Any decision he makes can spill over to a brand, and this is something to keep in mind when 
determining value (Johnson, 1998). Another study focused on the rise and fall of prolific players. They 
ran various models on this topic and did so for multiple sports as well. While this paper did not cover 
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sports brands directly, the rise and fall of a player can have effects on a brand as evidenced by previous 
papers referenced in this section (Yupin Yang, 2011).

Data Collection Methods and Principles

For this chapter, statistical analysis was performed on athletic brands that are heavily involved in the sport 
of basketball. Data utilized includes both frequency data and financial data from a variety of sources. 
What follows is a background on the methods used to collect the data and a statistical description of 
what the data itself contains. Table 1 displays a brief summary of this data collection stage.

Year

To allow for predictive models to be ran and basic analysis be performed, a common field was needed. 
For this time sensitive data, a year field made the most sense. This field is the heart to understanding if 
certain fields interconnect with one another, whether it be through a correlational matrix or predictive 
models. It also allows for a sense of organization, as the year value can be associated with the values of 
every other field in the dataset. This field is basically the first index for the dataset.

Month

On top of a year field, a month field was also added to the dataset. This field was specifically for the 
stock prices, where the monthly values varied. The other fields stayed the same, as they contained a 
yearly value and month did not matter. Before adding this field, the dataset had only about 50 rows, 
which is very small and would not be ideal for running any predictive models. After adding a month 
field, however, the size of the dataset increased by twelvefold, and the final dataset was then created. 
Similar to the year field, the month field was treated like a secondary index in order to obtain more rows 
of data in an organized fashion.

Google Ngrams data

Six of the fields were collected from Google Ngrams. Google Ngrams data is essentially the frequency 
that a word shows up in literature for each year. The terms that data was collected on are Nike, Adidas, 
Puma, Reebok, Basketball, and Michael Jordan. Data was collected manually and entered into Excel. It 
was also collected for the time period of 1970 through 2019 at yearly increments (Google Books Ngram 
Viewer, n.d.). Figure 1 displays the graph that this data was pulled from.

Stock Price (Nike, Adidas, and Puma)

Stock price was collected for Nike, Adidas, and Puma. Reebok stock price was unavailable, as the company 
was purchased by Adidas in 2006. The stock symbols used are NKE, ADDYY, and PUM.DE. Monthly 
price was calculated by using closing price value. This data was collected from Yahoo Finance, and the 
time periods vary due to companies going public at different times. Data was pulled from the historical 
data section for each stock symbol. Nike’s stock price data is available from 1985 and on, Adidas’ data 
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is available from 2006 and on, and Puma’s data is available from 1998 and on (Yahoo Finance Histori-
cal Data, n.d.). The rows that were left null are for the time periods where no stock price was available.

NBA Finals Average Viewers and Average Ratings

NBA Finals data was collected from a Sports Media Watch article. The data collected is the average 
rating for each NBA Finals series, and the average viewer count for each series too. The raw data that 
was collected is just the viewers and ratings per game, so some manual calculation is needed to get an 
overall average. An NBA Finals series can range from 4 to 7 games depending on how many games it 
takes for one team to win the series. If they win the first four, they win the series and do not play games 
5, 6, and 7 for example. Having a different number of games for each series means that an overall aver-
age could not be calculated automatically. An average for each year had to be calculated to obtain an 
accurate yearly value. This was simply done by entering the raw data in Excel and calculating an average 
for each year. Another note on the collection of this data involves the year that it is associated with. An 
NBA season starts in one calendar year and ends in another. Most of the season happens in the second 
year, so each value is associated with that rather than the first one. For example, the 2001-2002 season 
data would fall in 2002 in the dataset. (NBA Finals Ratings History (1988-Present), n.d.).

NBA Revenue

NBA Revenue could only be found for the 2001-2002 season through the 2019-2020 season. Like the 
NBA Finals data, the revenue is associated with the second year of the season too. The data used com-
bines the reported revenue of all 32 teams in the league (National Basketball Association total league 
revenue from 2001/02 to 2019/20(in billion U.S. dollars), n.d.). This was the largest time frame that 
could be found for NBA revenue, and no credible sources went back further. This data was only available 
as yearly, so all of the rows that contain the same year just have the same revenue regardless of month.

Brand shares value

After obtaining the stock price values of each brand, another field was created to capture the total brand 
shares value for that month. For each brand’s stock, the closing price and volume of shares were mul-
tiplied. This was then summed to get the final value of all sports brands for that month. As previously 
mentioned, the data used here was from Yahoo Finance and the new value was calculated in an Excel 
workbook. The idea behind creating this field is that it gives a field for the total brand value that can be 
independent of the individual brands, and it is more of an industry wide measure.
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Interconnectedness of Fields

In Table 1 displayed above, the fields shown are connected in a variety of ways. The stock prices are 
the target variables, and these are what will be predicted in the machine learning models section of this 
chapter. The brand shares value is calculated from these stock prices, and this formula can be found in 
Table 1. Since this chapter is about the value prediction of brands involved in the sport of basketball, 
the Google Ngrams frequency data is about terms related to both basketball and brands. The remaining 
data on the NBA is connected to the target variables because this is the premier basketball league for 
the whole planet.

History of Brands and Statistical Description of Frequency Data

This section covers a brief background description of the major sports brands in this chapter, and some 
of the other fields that were collected too. The goal here is to generate an understanding of the brand’s 
involvement in the sport of basketball, and why they are so important to this chapter. Table 2 displays a 
briefer history of these brands in the sport of basketball.

Nike

Starting off with Nike, this brand has a long history with the sport of basketball. The first Nike basketball 
sneaker models, the “Bruin” and the “Blazer”, were released in 1972. It would be numerous years before 
Nike would gain popularity in the basketball world, and the brand really started to pick up popularity 
in the early 1980s. It was at this time that the Air Force One was launched and star players were being 
recruited to promote the brand. The Air Jordan brand was launched in 1985, and Michael Jordan was the 
headliner of this. Shortly after, Nike entered the college game sponsoring numerous schools who wore 

Table 1. Summary of Data Collection

Field Subcategory Description/Source

Year Time Common field that is used as an index for all others.

Month Time Secondary index included for the purpose of having more individual rows of 
stock price data.

Google Ngrams Data Frequency Data Term frequency data collected for Nike, Adidas, Puma, Reebok, Basketball, and 
Michael Jordan (Google Books Ngram Viewer, n.d.).

Stock Price Financial Data Monthly closing stock price data collected for Nike (NKE), Adidas (ADDYY), 
and Puma (PUM.DE) (Yahoo Finance Historical Data, n.d.).

NBA Finals Data Frequency Data
NBA Finals average viewers and average TV ratings are included here. An 
average was taken for each individual series, as the number of games differs 
from season to season (NBA Finals Ratings History (1988-Present), n.d.).

NBA Revenue Financial Data
Yearly revenue data collected for the NBA. This field is associated with the 
second calendar year of the season (National Basketball Association total league 
revenue from 2001/02 to 2019/20(in billion U.S. dollars), n.d.).

Brand Shares Value Financial Data
To calculate this field, the monthly closing stock price is multiplied by the 
monthly volume of shares for each brand. This is then summed up to get a total 
monthly value for all brands. å (Closing Stock Price * Volume of shares).
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the Nike Dunk at the time. Building upon the success of these early sub brands, Nike recruited even 
more players in the 1990s. This includes Dennis Rodman, Scottie Pippen, Charles Barkley, and Kevin 
Garnett to name a few players (Nike Basketball History, n.d.).

Having such a rich history in basketball, Nike is an intriguing brand to examine. Referring to Figure 
1, Nike has an increase in frequency from the mid-1980s through the late 1990s. This is right around 
the time that Nike was creating all the previously mentioned basketball sneakers and expanding their 
roster of sponsored athletes. It is no surprise that the term frequency of Nike was going up during this 
time window as the brand was gaining traction in the sports world.

Puma

Puma is a brand that has recently been endorsing more and more NBA players. One of Puma’s first 
endorsed NBA players was Isiah Thomas, who wore Puma shoes on the court during his championship 
winning 1989-1990 season (Dodson). As of 2019, some of Puma’s notable endorsed players include: 
“Skylar Diggins-Smith, Deandre Ayton, Marvin Bagley III, DeMarcus Cousins, Rudy Gay, Danny Green, 
Kevin Knox, Michael Porter Jr., Terry Rozier and Zhaire Smith.” (Dodson, 2019). This list contains many 
young players who have a chance to become stars on their respective teams, and it shows that Puma is 
trying to reenter and disrupt the basketball scene where Nike and Adidas have seen so much success.

With this increasing number of sponsorships recently, it will be interesting to examine the data on 
Puma. Results may not be showing now, but they could be in a few years. Puma had a very gradual 
increase in frequency from about 1970 to 2010 (Figure 1). They started a slow decline after that though 
between 2010 and 2018, so these players have not necessarily generated any buzz about the brand yet.

Reebok

Reebok truly entered the basketball scene in 1991. Specifically, Dee Brown of the Boston Celtics put 
their Reebok Pump shoe on the map. He won the slam dunk contest by covering his eyes with his arm, 
and this helped the already growing brand to increase in popularity even further (Weinfuss, 2019).

This event’s effects can be seen in the Google Ngrams graph where Reebok drastically increased in 
frequency between 1991 and 1996 (Figure 1). Eventually, however, Reebok started to lose popularity 
and has not regained it since. There is a big “what if” question here though. Many wonder what would 
have happened if Lebron James did not turn down a 10-million-dollar Reebok deal in the early 2000s 
(Davis, 2017). After failing to secure Lebron James, Reebok has not been able to bounce back. This 
deal would have been a boost to their financial success, and it ultimately fell through with Lebron James 
choosing Nike instead.

Adidas

The final brand included in this study is Adidas. Adidas entered the basketball picture in the late 1990s 
and has been steadily picking up players since. They had Kobe Bryant for a few years, and later signed 
Tracy McGrady, Kevin Garnett, Derrick Rose, and James Harden to name a few players (ceo4ceo, 2018). 
This goes hand in hand with a great increase in the frequency of the word Adidas since the late 1990s, 
and it has not declined since. Adidas signed many of these players early in their respective careers, and 
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a similar trend could potentially happen with Puma, who seem to be taking a very similar approach to 
that of Adidas in the 1990s.

Another interesting insight that can be seen in the Ngrams graph is the correlation between each of 
the sports brands and the word basketball (Figure 1). It seems that Reebok followed a similar path to 
that of the word basketball for almost the entire graph. Rebook’s frequency rose with that of the word 
“Basketball” and fell with it too. Adidas and Puma have very similar trends in frequency as well, but 
Adidas passed Puma in 2008 and the gap has only been getting larger since. Reebok also started to fall 
in popularity when the other two brands started to rise which is another interesting aspect in Figure 1.

Basketball

The word Basketball rose in frequency between the late 1980s and the late 1990s. It peaked from 1998 
to 2002 (Figure 1). This coincides heavily with the career of Michael Jordan, who many believe to be 
the best basketball player of all time. He was drafted in 1984 and retired for a third and final time in 
2003. It seems that the frequency of the word basketball peaked towards the end of his career and fell 
soon after he retired (Michael Jordan, n.d.).

NBA Finals Data

Ratings and viewers peaked in the NBA in the late 1990s largely due to the presence of Michael Jordan at 
the time too. He won multiple championships, and his high level of play had fans captivated everywhere. 
Since then, viewers and ratings have not been as high, and were especially low for the NBA Bubble in 
the 2019-2020 season. This bubble season is an abnormality, however, as it happened due to COVID-19 
which is not a relationship that is explored in this chapter.

Table 2. History of Major Sports Brands Summary Table

Brand Key Historical Points

Nike
Nike’s basketball presence took off in the 1970s-1980s due to new, highly successful lines of basketball sneakers. The 
pinnacle of this success was the Air Jordan brand that is centered around star player Michael Jordan (Nike Basketball 
History, n.d.). An increase in frequency during the early 1990s in Figure 1 for both Michael Jordan and Nike can be seen.

Adidas
Adidas has been steadily adding to an impressive roster of endorsed NBA players since the 1990s. Some notable names 
include Kobe Bryant, Kevin Garnett, and James Harden (ceo4ceo, 2018). These players have had some positive impact on 
the frequency of Adidas. This is evidenced by the Adidas line in Figure 1 slowly creeping upwards in recent years.

Puma

Puma has been endorsing players for many years, but it has not been until recently that they have signed a plethora of them 
(Dodson, 2019). While these players have not necessarily generated a buzz about the brand yet (see Figure 1), the Ngrams 
frequency value is not decreasing by any means. Only time will tell if these players can have an impact on the brand value of 
Puma.

Reebok

Reebok seemed to be on their way up popularity-wise in the 1990s with their star player Dee Brown of the Boston Celtics 
winning the 1991 NBA Slam Dunk Contest. He won this contest in Reebok Pumps, and the frequency of Reebok in Figure 
1 did go up for a few years (Weinfuss, 2019). Ever since the late 1990s, however, the frequency of Reebok has been going 
down and they are virtually irrelevant in professional basketball today.
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Financial Data

Below, Figure 2 displays the stock price by year for the major three brands of Nike, Adidas, and Puma. 
All three have increased especially since 2010. Nike used to be the least by value, but both this brand and 
Adidas have surpassed Puma in recent years in terms of the value per share. Nike also has a relatively 
smooth incline. This is significant, as this brand has been on the stock market the longest out of the major 
three. Adidas has a similar pattern, although it has only been public since 2006. Puma is shakier in terms 
of having a smooth line on this graph, but it does increase over time just as the other two brands do.

Figure 3 is a pie chart of the average stock price for Nike, Adidas, and Puma. The highest average 
price belongs to Adidas, which is then followed by Puma and Nike. Nike has been rising in recent years 
at an almost exponential rate however, and this low average can be attributed to the numerous years that 
Nike maintained a low price. It has only been recently that Nike stock has broken out (see Figure 2). 
Adidas having the highest average price here can be attributed to the few years that they have been on 
the stock market with a relatively high price. Adidas closed their first month on the stock market at a 
price of over 24$ which supports this. Puma’s average stock price is the same story as Nike where they 
have only broken out in the last few years and had a very low price also.

Table 3 displays a correlational matrix for all the fields in the data set. There are some interesting 
insights that can be pulled from here, especially when it comes to stock price. As expected, the term 
Michael Jordan is heavily correlated to the term basketball (.78), and the term Nike (.88). As a player, 
Michael Jordan had a very heavy influence on the popularity of the game. He also signed with Nike 
early on in his career, and the Air Jordan brand was a major success (Nike Basketball History, n.d.). 
This is also inversely correlated to Adidas stock price, but this is due to a large increase since Adidas 
went public in 2006. Michael Jordan’s term frequency has been going down since that point, as he is no 
longer an NBA player. Nike stock price is heavily correlated to both Adidas and Puma stock price, and 
also NBA revenue. If NBA revenue goes up, then it should be expected that the sports brands’ shares 
value should go up too being highly correlated. If revenue decreases, then it should be expected that 
the stock prices decrease. With many high correlational relationships that can be seen among the fields, 
machine learning models should perform very well.

Figure 1. Google Ngrams Frequency Graph
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Figure 2. Average Sports Brand Stock Price by Year

Figure 3. Average Sports Brand Stock Price Pie Chart
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MAIN FOCUS OF THE CHAPTER

Statistical Analysis of Frequency Data: Confidence Intervals and ANOVA

Confidence Intervals

For this section, calculations were performed and results were recorded prior to the expansion of the 
dataset. That is why none of the financial data, NBA data, and some of the frequency data fields are 
not included. Those fields were added later to aid in the performance of the machine learning models. 
This also means that less rows of data were used in these calculations, as the month index had not been 
added yet. For both this section and the ANOVA section, Ngrams data was used in two-year intervals 
from 1970 through 2018 for a total of 25 unique rows

Table 4 displays confidence intervals that were calculated in Excel, and there are four in total. Since 
Google Ngrams is based on an extremely large number of books, the frequency that each term shows up 
is a very low percentage. This translates to a small range for each confidence interval, and that is why 
each bound is to 10 decimal points.

Table 3. Correlational Matrix of All Data Fields

Year Month Puma Reebok Adidas Nike Michael 
Jordan Basketball

Nike 
Stock 
Price

Adidas 
Stock 
Price

Puma 
Stock 
Price

NBA 
Finals 
AVG 

Rating

NBA 
Finals 
AVG 

Viewers

NBA 
Revenue

Brand 
Shares 
Value

Year 1.00

Month 0.00 1.00

Puma 0.81 0.00 1.00

Reebok 0.49 0.00 0.68 1.00

Adidas 0.97 0.00 0.77 0.41 1.00

Nike 0.90 0.00 0.73 0.61 0.93 1.00

Michael 
Jordan 0.75 0.00 0.72 0.89 0.71 0.88 1.00

Basketball 0.24 0.00 0.48 0.88 0.22 0.51 0.78 1.00

Nike Stock 
Price 0.83 0.03 -0.11 -0.54 0.66 0.40 -0.03 -0.61 1.00

Adidas 
Stock Price 0.85 0.05 -0.79 -0.70 -0.34 -0.81 -0.83 -0.68 0.90 1.00

Puma 
Stock Price 0.79 0.04 0.01 -0.73 0.71 -0.15 -0.80 -0.68 0.76 0.85 1.00

NBA 
Finals 
AVG 
Rating

-0.64 0.00 -0.47 0.42 -0.75 -0.71 -0.09 0.13 -0.36 0.19 -0.37 1.00

NBA 
Finals 
AVG 
Viewers

-0.15 0.00 -0.45 0.14 -0.43 -0.77 0.17 -0.06 0.07 0.29 -0.18 0.97 1.00

NBA 
Revenue 0.90 0.00 -0.62 -0.81 0.41 -0.90 -0.81 -0.80 0.96 0.96 0.79 0.28 0.45 1.00

Brand 
Shares 
Value

0.87 0.04 0.08 -0.51 0.77 0.52 0.04 -0.54 0.92 0.76 0.74 -0.45 0.01 0.87 1.00
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For Puma, the level of confidence that μ falls within 0.0000240526 and 0.0000249366 is 95%. For 
Reebok, the level of confidence that μ falls within 0.0000153091 and 0.0000174369 is 95%. For Adidas, 
the level of confidence that μ falls within 0.0000148834 and 0.0000165997 is 95%. For Basketball, the 
level of confidence that μ falls within 0.0001234087 and 0.000129812 is 95%.

ANOVA

Below, six ANOVA calculations can be seen in Table 5. These cover brands vs brands and brands vs 
Basketball. Google Ngrams data was used in these calculations, and the critical value for all was 4.04. 
This value was obtained from the F distribution table at an alpha level of .05 where v2=48 and v1=1.

There was only one of these ANOVA calculations where the null hypothesis could not be rejected. 
This was for Reebok vs. Adidas, and the F value was 0.03 while the critical value was 4.04. There was 
not enough evidence here to reject that these two frequency data fields are the same. For the combina-
tions of Puma vs Reebok, Puma vs Adidas, Puma vs Basketball, Reebok vs Basketball, and Adidas vs 
Basketball, the F value was greater than the critical value. This means that the null hypothesis should 
be rejected and that these frequency combinations are not the same.

Table 4. Confidence Intervals for Original Frequency Data

Field Bounds (Lower, Upper) Conclusion

Puma 0.0000240526, 0.0000249366 95% confident that μ falls between these two bounds

Reebok 0.0000153091, 0.0000174369 95% confident that μ falls between these two bounds

Adidas 0.0000148834, 0.0000165997 95% confident that μ falls between these two bounds

Basketball 0.0001234087, 0.000129812 95% confident that μ falls between these two bounds

Table 5. ANOVA For Original Frequency Data

Combination F Value Critical Value Conclusion

Reebok vs Adidas 0.03 4.04 F<CV, null hypothesis cannot be rejected. Not enough evidence 
to reject that the frequencies of Reebok and Adidas are the same

Puma vs Reebok 7.33 4.04 F>CV, null hypothesis should be rejected. Frequencies of Puma 
and Reebok are not the same.

Puma vs Adidas 12.13 4.04 F>CV, null hypothesis should be rejected. Frequencies of Puma 
and Adidas are not the same.

Puma vs Basketball 445.71 4.04 F>CV, null hypothesis should be rejected. Frequencies of Puma 
and Basketball are not the same.

Reebok vs Basketball 157.49 4.04 F>CV, null hypothesis should be rejected. Frequencies of 
Reebok and Basketball are not the same.

Adidas vs Basketball 165.04 4.04 F>CV, null hypothesis should be rejected. Frequencies of 
Adidas and Basketball are not the same.
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Machine Learning Models

Simple Models: Linear Regression, Lasso, and Ridge Regression

Before any machine learning models could be run, correlated fields had to be identified. These fields are 
crucial in any model at predicting the value of the target variable. Highly correlated fields were kept for 
the models ran, and the leftover fields were dropped. For the Nike stock price models, the fields used 
were: ‘Year’, ‘Reebok’, ‘Adidas’, ‘Nike’, ‘Basketball’, ‘Adidas Stock Price’, ‘Puma Stock Price’, ‘NBA 
Finals AVG Rating’, ‘NBA Revenue’, and ‘Brand Shares Value’. For the Adidas stock price model, the 
fields are ‘Year’, ‘Puma’, ‘Reebok’, ‘Basketball’, ‘Nike Stock Price’, ‘Puma Stock Price’, ‘NBA Finals 
AVG Viewers’, ‘NBA Revenue’, and ‘Brand Shares Value’. Finally, for the Puma stock price model, the 
fields are ‘Year’, ‘Reebok’, ‘Adidas’, ‘Michael Jordan’, ‘Basketball’, ‘Nike Stock Price’, ‘Adidas Stock 
Price’, ‘NBA Finals AVG Rating’, ‘NBA Finals AVG Viewers’, ‘NBA Revenue’, and ‘Brand Shares 
Value’. These field lists are the same for both the simple machine learning models and the complex 
machine learning models. There are null values in many of these fields, and these were filled in using 
the overall means of each column.

To see if the value of a brand could be predicted, different machine learning models were run. With 
the smaller nature of this dataset, the most likely outcome is that the simple machine learning models 
will outperform the complex models. A more complex model may not be the best with the final dataset 
coming in at around 600 rows. Another note before the models are covered is that all had a 75/25 train/
test split.

The major simple machine learning model that was performed was a linear regression. It was imported 
from the Scikit Learn library, and default parameters were used (Linear Models, n.d.). This is because 
there were no additional attributes that made a significant impact to the model’s accuracy. A multiple 
linear regression “models the linear relationship between a single dependent continuous variable and 
more than one independent variable” (Multiple Linear Regression, n.d.). Building off this definition, 
a linear regression is machine learning because the dependent variable can be predicted through this 
method. In the case of this chapter, the dependent variable is the stock price of the target brand, and all 
of the other fields used to train the model are independent variables.

There were initially three regressions run in total. One was run for Nike stock price, one for Adidas 
stock price, and one for Puma stock price. The accuracy of each model was determined by the “.score” 
metric in Scikit Learn. Figure 4, Figure 5, and Figure 6 display single linear regressions of the stock price 
for each brand vs the other fields that were in each model. Since the formula for a multiple regression 
is universal and no parameters were changed in Python, Excel’s generated multiple regression line fit 
plots were utilized to visually display the models.

Nike

The Nike Linear Regression was the most accurate model overall. It had an accuracy score of 95% for 
both the training dataset and the testing dataset. This closeness in accuracy between the two is a posi-
tive, as it implies that the training dataset is not overfit. In terms of predicting the value of Nike stock 
price in relation to the sport of basketball and other brands, this would be the best model to use out of 
this chapter. No additional varieties of regression were run on this field, as the results were satisfactory 
from the simple linear regression and a constraint was not seen as needed on the model.
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Figure 4. Linear Regressions of Nike Stock Price
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Adidas

The Adidas Linear Regression had decent results as well. The training dataset score came in at 79%, 
and the testing dataset score came in at 81% initially. Testing accuracy should not be higher than train-
ing accuracy, although the difference here was minimal. Additional varieties of regressions were also 
run in order to try and fix this issue. After running both a Ridge regression and a Lasso regression, the 
linear regression still maintained the best simple machine learning model for Adidas stock price (Linear 
Models, n.d.). The accuracy of both new models was around 10% lower for the training and testing data. 
The gap between the training and testing data was also worse for these two regressions, with the testing 
set being no less than 4% higher than the training dataset regardless of the alpha value. By adding this 
additional alpha constraint to the model different results were seen, but they were not favorable.

Ultimately, a linear regression with a training accuracy of 80% and a testing accuracy of 80% was 
obtained for Adidas stock price. This result was achieved by slightly increasing the test dataset size from 
25% to 30%. Again, this model was not as accurate as the Nike linear regression. It is surprising, how-
ever, that this model performed so well given that the Adidas stock price only has fourteen years of data.

Figure 5. Linear Regressions of Adidas Stock Price
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Puma

The final linear regression that was run was for Puma stock price. Similar to the Adidas stock price re-
gressions, there was an issue here where the testing dataset’s score was higher than the training dataset’s 
score. The initial linear regression that was run had a training accuracy of 82% and a testing accuracy 
of 86%. Again, some additional regressions needed to be run to try and fix this issue.

Ridge and Lasso regressions were run but ultimately did not fix this issue of the training score being 
higher than the testing score. For Ridge, the best alpha constraint value was .0000000001. The accuracy 
achieved for this model was 84% for the training dataset and 87% for the testing dataset. The best Lasso 
model had an alpha value of .0000001. This model also had a training set accuracy of 84% and a testing 
accuracy of 87%. While the two new models closed the gap by 1% in accuracy, the issue of the testing 
accuracy being higher could not be resolved in terms of simple machine learning models. That being 
said, a decent accuracy was achieved with the Ridge regression and Lasso models in terms of predicting 
the value of Puma’s stock price. It is no surprise that the Puma model fell just short in terms of accuracy 
to the Nike model. This is because Puma entered the stock market before Adidas and a few years after 
Nike, so it had the second least filled in null values.

Figure 6. Linear Regressions of Puma Stock Price
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Complex Model: Neural Network

On top of simple regressions, some more complex machine learning models were also run. A neural 
network was run for Nike stock price, Adidas stock price, and Puma stock price. The specific neural 
network that was run in Python was the MLPClassifier out of Scikit Learn. (sklearn.neural_network.
MLPClassifier, n.d.). MLP stands for Multi-Layer Perceptron, and it is a supervised machine learning 
model. This model can be compared to a logistic regression, and the difference is that the MLPClassifier 
has a non-linear hidden layer between the input and output layers. These attributes make the MLPClas-
sifier able to solve both classification and regression problems (Neural network models (supervised), 
n.d.). Figure 7 below displays a conceptual multi-layer perceptron neural network model. This figure can 
be viewed as similar to the neural networks run in this chapter, as the default number of hidden layers 
(1 input, 1 output) are the same. These models were generally not as accurate as the regressions, but 
this falls in line with the simplicity of the dataset. Model results for this section can be found in Table 6.

Figure 7. MLPClassifier Conceptual Model with One Hidden Layer
(Created by author; adapted from Neural network models (supervised), n.d.)
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Complex models often take more time to run, and with that in mind a grid search was utilized for 
each model. A grid search essentially loops through a predefined list of parameters and goes through 
all possible combinations. It may take a while to run, but it is ultimately faster than manually adjusting 
parameters and is especially useful in more complex models such as neural networks that take longer on 
average to run. Parameters are simply stored in dictionary format, and the grid search returns the best 
scoring parameters which can then be passed into a machine learning model (Sharma, 2020).

The same list of parameters was passed through each model, and it covered a very large range of 
possibilities. The first parameter in the grid search was “random_state”. This parameter “Determines 
random number generation for weights and bias initialization” (sklearn.neural_network.MLPClassi-
fier, n.d.). A range from zero through nine was used for this. The next parameter in the grid search was 
“solver’. The two values in this list were “adam” and “lbfgs”. “Adam” typically works better for large 
datasets and “lbfgs” typically works better for smaller datasets (sklearn.neural_network.MLPClassifier, 
n.d.). The final parameter in the grid search is “max_iter”. This is the maximum number of iterations 
that the model goes through until the solver converges (sklearn.neural_network.MLPClassifier, n.d.). 
Many values were in this list, as a small difference in the number of iterations may lead to a significant 
difference in model accuracy. The list was “2000, 2500, 3000, 3500, 4000, 4500, 5000, 7500, 10000”. 
These parameters all together allow for a very complex model to be built and offer an intriguing com-
parison point between the simple and complex machine learning models that were run with this dataset.

Nike

The first neural network that was run was with Nike stock price as the target variable. The optimal 
parameters that were returned were the solver as “adam”, the random state as 5, and the maximum 
number of iterations as 2000. The data was also scaled before it was passed through the model using 
MinMaxScaler. This scaler adjusts the values in the dataset to be between zero and one, and scaling 
is an important step when running a neural network (sklearn.preprocessing.MinMaxScaler, n.d.). The 
training dataset accuracy was 58% and the testing dataset accuracy was 27%. It was surprising that the 
ideal solver here was “Adam”, as the dataset is not very large in size coming in at just over 600 rows. 
Even when passing the dataset through a grid search to obtain the best model, the neural network did 
not predict Nike’s stock price very well at all with a low accuracy score and a large difference between 
the training and testing dataset accuracy scores.

Adidas

The next neural network that was run was with Adidas stock price as the target variable. The same list 
of parameters was also passed through the grid search for this model as the Nike stock price model. The 
data was also scaled with MinMaxScaler again. The optimal parameters obtained from this grid search 
was the solver as “adam”, the random state as 1 and the maximum number of iterations as 100. The 
training set accuracy with these parameters was 73%, and the testing set accuracy was 71%. This is a lot 
better performing of a model than the Nike stock price neural network. The training set accuracy was 
slightly higher than the testing set, and it is also fairly accurate.
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Puma

The final neural network that was run was for Puma stock price. The optimal parameters returned by 
the grid search for this model was “adam” as the solver, a random state of 2, and a maximum number 
of iterations as 100. The training set accuracy was 58%, and the testing set accuracy was 52%. Again, it 
was a low accuracy overall, but the difference between the training dataset score and the testing dataset 
score is not bad.

One final thing to note before the models can be compared is that the stock price is not available for 
every year as previously mentioned. This may have been a factor in some models not performing as well 
as others. These null values were simply just filled in with the mean of the respective field in order to 
run the models. Due to this, it was no surprise that Nike had the most accurate model overall while also 
having the most historical stock price data.

CONCLUSION

Nike Conclusion

To conclude, major takeaways and the best performing models will be covered. For Nike stock price, 
the best model was a simple linear regression. This had an accuracy of 95% for both the training dataset 
and testing dataset, and it would be a great model for predicting the stock price in the future. Referring 
to Figure 2 and the amount of historical data on Nike, it is no surprise that it is the best performing 
machine learning model. In Figure 2, Nike has the smoothest increase in stock price out of all the sports 
brands. It essentially has been increasing since the company went public, and it makes sense that a simple 
linear regression is great at predicting the value for this reason with time being a key factor. The neural 
network not performing well for Nike also makes sense when this is taken into consideration. Having 
a mean put in place for all the years that the stock price was unavailable may have been what lead to a 
poorly performing neural network model. Another factor which may have led to this is that it is simply 
a complex model. Complex machine learning models typically work better with datasets that contain a 
high amount of variety in the data. With the mean filled in for many rows, that was not the case here.

Table 6. Most Accurate Neural Network Model for Each Brand

Brand Name Parameters Accuracy

Nike
Solver: “Adam” 
Random State: 5 
Maximum Iterations: 2000

Training: 58% 
Testing: 27%

Adidas
Solver: “Adam” 
Random State: 1 
Maximum Iterations: 100

Training: 73% 
Testing: 71%

Puma
Solver: “Adam” 
Random State: 2 
Maximum Iterations: 100

Training: 58% 
Testing: 52%
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Adidas Conclusion

The best performing machine learning model for predicting Adidas’ stock price was the simple linear 
regression, although the neural network was not far behind. The best accuracy score was 80% for both 
the training dataset and testing dataset for the regression models. The neural network was slightly behind 
the regression’s accuracy with a score of 73% for the training dataset and 71% for the testing dataset. 
The neural network again fell short to the regressions for Adidas similar to what happened with the Nike 
machine learning models. It is suspected that the size of this dataset and the number of null values that 
had to be filled in are the leading factors in these models’ shortcomings. With time, this model may 
increase in accuracy as more data is available to use in training. With Adidas stock price data only be-
ing available from 2006 and onward, it was expected that this predictive model would perform worse 
than the Nike regression. Referring to Figure 2, Adidas has increased over time almost steadily with a 
few dips in value, so this could be one of the key factors in the success of this model. Also, in Table 3 
Adidas stock price has a heavy correlation to both NBA revenue and Year. Including both of these two 
fields in the model most likely played a factor in obtaining a max accuracy of 80% too.

Puma Conclusion

For Puma, the best performing machine learning models were the Ridge and Lasso regressions. The gap 
between the training dataset accuracy score and the testing dataset score was 1% less, and that is why 
these were selected as the best two models. The accuracy score was the same for both of these regres-
sions, which is why it was not just one that was selected as the best model. The maximum accuracy score 
achieved was 84% for training and 87% for testing. It is slightly concerning that the accuracy score is 
higher for the testing dataset than the training dataset, but it is a relatively small difference. Referring 
to Table 3, it is not surprising that the model performed so well, as Puma stock price is moderately cor-
related to many different fields. In Figure 2 though, Puma has a relatively up and down pattern as it has 
increased in value over time. With this trend in mind, it is surprising that the regression performed so well. 
Another note on this same topic is the amount of data that had to be filled in before running the models. 
Puma has a limited stock price history similar to that of the other two brands, so it is surprising that the 
models performed so well with a decent sized chunk of the data being filled in with the column means.

Final Comparison Points

It can be seen through the various machine learning models conducted in this chapter that the stock 
price value of a sports brand can be predicted successfully. The Nike linear regression was especially 
successful at predicting a value for stock price. Data that is crucial to this involves NBA data, and even 
stock price data on other brands. This data can be seen to have a heavy influence on the stock price of 
a brand through both the high accuracy of the models, and the high correlation with brand shares value 
(Table 3). Fields such as these can be used in future models to predict the level of success of a sports 
brand on the stock market.

For all three brands, the simple machine learning models performed better than the complex models. 
The best simple machine learning model for Nike was over 30% more accurate for the training data and 
over 50% more accurate for the testing data than the best complex model. For Adidas, the difference was 
around 10% for both the training and testing data between the simple and complex models. For Puma, 
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the difference was between 20% and 30% between the simple and complex models too. These differ-
ences are significant and could be caused by a variety of issues. The first one would be that complex 
machine learning models typically do not work very well for datasets that are smaller in nature. The 
second potential cause is that there simply was not enough real data, as a large number of nulls had to be 
filled in for the stock price fields. With these issues in mind, the various regressions ran were successful 
and did complete the task of predicting the stock price of all three of the target sports brands accurately.
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KEY TERMS AND DEFINITIONS

Correlation: A connection or relationship that is seen between two numbers.
Google Ngrams: Tool offered by Google that contains frequency data of a term in literature.
Michael Jordan: Michael Jordan is argued by many to be the greatest basketball player of all time 

and he carries a heavy influence on anything that he is involved in.

 EBSCOhost - printed on 2/9/2023 7:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=146996807&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=146996807&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=134679643&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=134679643&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=134679643&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=116697775&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=116697775&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=116697775&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=141999667&site=ehost-live
http://bryant.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=141999667&site=ehost-live


345

Value Analysis and Prediction
 

Multi-Layer Perception (MLP): MLP is a supervised machine learning model that can be compared 
to a logistic regression. One of the main differences is that the MLPClassifier has a non-linear hidden layer 
between the input and output layers. The attributes of this model make it good for both classification and 
regression problems. (Neural network models (supervised), n.d.). See Figure 7 for a conceptual example.

National Basketball Association (NBA): The premier professional basketball league in not only the 
United States, but also in the world.

Predictive Modeling: A mathematical process that seeks to predict future events or outcomes by 
analyzing patterns that are likely to forecast future results (Carew, n.d.).

Regression: A statistical method used in finance, investing, and other disciplines that attempts to 
determine the strength and character of the relationship between one dependent variable (usually denoted 
by Y) and a series of other variables (known as independent variables) (Beers, 2021).

Scikit Learn: Open-source Python library that offers predictive models and analysis metrics.
Stock Price: The value of a company on the stock market at a specific point in time.
Total Brand Value: Total brand value references a calculation that is as follows: å (Closing Stock 

Price * Volume of shares). All individual brand values are summed to reach this number.
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