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INTRODUCTION 

The discovery of the effects of parametric optics, in particular, the 
piezooptic effect by D. Brewster in 1818 [1, 2], the magnetooptic effect by 
M. Faraday in 1845 [3], quadratic and linear electrooptic effects by Kerr 
and Pockels in 1875 and 1893, respectively [4, 5, 6] and the 
electrogyration effect by O.G. Vlokh in the second half of the XX century 
[7], took place over almost two centuries, which were associated primarily 
with significant experimental difficulties of studying these subtle 
phenomena. In addition, the absence of a symmetry-tensor apparatus of 
crystal physics had a significant effect on the long duration of this process. 
So, the equations for optical indicatrix deformation under the electrooptic 
effect for all point symmetry groups were obtained only in the 60s of the 
XX century [8, 9]. 

Despite the classical nature of the phenomena of parametric optics, 
they still remain the fundamental basis for the development of various 
optical devices. In particular, the photoelastic effect has long been used for 
non-destructive control of mechanical stresses of transparent optical 
elements, parts, and structures (including in tensor tomography), 
measurement of mechanical stress or pressure by a non-contact method, 
modulation of the state of polarization of optical radiation, and the like. In 
turn, in recent years, it has turned out that acoustooptic control of light 
radiation can be used in the capture of microparticles with an optical beam 
and manipulating them, for addressing optical beams that have various 
quantum states, in the framework of quantum cryptography and optical 
computer information processing, as well as in formation of a Bose-
Einstein condensate [10]. 

The above circumstances make the further development of piezooptic 
materials science important and relevant. However, the existing 
experimental methods for studying the piezooptic properties of crystals are 
quite imperfect and lead to significant errors, which, in turn, does not 
allow to derive the most effective geometries in certain anisotropic 
crystalline materials. 

This monograph is intended to familiarize the reader with the 2D-
polarimetric and interferometric methods developed by the authors of the 
study of the piezooptic effect under the action of inhomogeneous 
mechanical stresses which have in advance known distribution across the 
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viii 

sample (namely, diametrical compression, mechanical torsion, and four-
point bending). In addition, the monograph presents the results of 
experimental studies of the photoelastic properties of crystals, which 
provide for the determination of complete matrices of piezooptic and 
elastooptic coefficients. 
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SECTION 1 

FUNDAMENTALS OF PHOTOELASTICITY. 
ANALYSIS OF STRESS HOMOGENEITY 

IN SAMPLES IN CLASSICAL PIEZOOPTIC 
EXPERIMENTS 

1.1. Photoelasticity as a phenomenon 
of parametric optics 

In the most general case, photoelasticity is an effect of changes in the 
refractive indices of optical medium under the influence of mechanical 
strains. Today, the phenomenon of photoelasticity is widely used in many 
fields of science and technology, in particular when checking mechanical 
stresses in transparent bodies [11–13], in remote optical sensors of stresses 
[14] and accelerometers [15–17], tensor-field stress tomography [18–22], 
and polarizing optical modulators [23, 24]. Moreover, of great importance is 
utilization of the photoelastic effect in various acoustooptic devices 
(deflectors, modulators, spectral filters, etc.), which are widely used in 
many modern techniques [25–28]. In addition, the photoelastic properties of 
materials should be taken into account when developing electrooptic 
devices. Practical applications of the photoelasticity effect mentioned above 
require complete and thorough information on so-called piezooptic and 
elastooptic coefficients. 

The photoelasticity can be termed as “ancient” among various 
phenomena of parametric optics (i.e., the optics of media in external or 
internal fields). The first description of the photoelastic effect in optically 
isotropic media, amorphous solids and cubic crystals has been made by 
David Brewster at the beginning of the 19th century [1, 2]. Within the 
framework of this theory, an optical birefringence Δn induced by a 
mechanical stress  is expressed as follows: 

 
.n K                                                                                            (1.1) 
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Different terms are used to denote the K coefficient. In particular, it is 
called a Brewster constant, a relative piezooptic coefficient, a relative 
photoelastic coefficient, or a stress-optical coefficient. The latter term is 
chiefly used by manufacturers of optical glass as a standard characteristic of 
any optical material [29, 30]. 

Since the scalar equation (1.1) is valid only for optically isotropic 
materials, one has to pass to a tensor relation in a more general case of 
anisotropic material. This relation has been suggested by Pockels [6]: 

 
3 3

1 1
ij ijkl kl

k l
B  (i, j, k, l = 1…3),                                             (1.2) 

 
where Bij is the increment of dielectric impermeability tensor component 
(a so-called tensor of optical polarization constant) Bij and kl denote the 
component of mechanical stress tensor, and ijkl the tensor component of 
piezooptic coefficients, which is measured in the units of 
m2/N = Pa−1 = 1012 B (B = Brewster). 

Neglecting the phenomena associated with antisymmetricity of the 
dielectric impermeability and the mechanical stress tensors (i.e., in the 
approximation Bij = Bji and kl = lk), one can rewrite equation (1.2) in a 
matrix form (or a Voigt notation): 

 
B  ( ,  = 1…6),                                                             (1.3) 

 
where 1 = 11, 2 = 22, 3 = 33, 4 = 23, 5 = 13 and 6 = 12, 
B1 = B11, B2 = B22, B3 = B33, B4 = B23, B5 = B13 and B6 = B12, 

 = ijkl if  =1…3 and  = 2 ijkl if  = 4…6. Here and below, the 
Einstein rule is used for summation over repeating indices. 

Equations (1.2) and (1.3) are mathematical formulations of the 
piezooptic effect. If the values Bλ are expressed through mechanical 
strains, the term “elastooptic effect” is mainly used. In the matrix form, it 
can be written as 

 
B p  ( ,  = 1…6),                                                             (1.4) 

 
where p  and  are the components of elastooptic coefficients and 
mechanical strain tensors, respectively. 

It is known that the mechanical strain tensor and the mechanical stress 
tensor are coupled via the Hooke’s law: 
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  ,S                                                                                        (1.5) 
  ,C                                                                                        (1.6) 

 
where S  and C  are the components of elastic compliance and elastic 
stiffness tensors, respectively. 

Thus, the piezooptic and elastooptic coefficients are coupled through the 
S  and C  tensors: 

 
  ,
  .

p S

p C
                                                                                   (1.7) 

 
Therefore, by determining experimentally the complete matrices of two 

of the four tensors involved in the relations (1.7), one can calculate the two 
other tensors. 

The values Bλ can be expressed through a change in the refractive 
indices, using the relation Bq = (nq)-2 and differentiating it: 

 

3
2 .q q
q

B n
n

                                                                                (1.8) 

 
Here nq implies the initial refractive index and δnq the change in the 

refractive index occurring due to mechanical stresses (or strains). 
Substituting formula (1.8) into (1.3) and (1.4), one obtains the relation 

that links the δnq values with the mechanical stresses or strains: 
 

3

3

1 ,
2
1 ,
2

q q qm m qm m

q q qm m

n n K

n n p
                                                         (1.9) 

 
where Kqm denotes the photoelastic coefficient. 

It follows from the relation (1.3) that, in general, the piezooptic tensor 
(as well as the elastooptic one) can be represented by a 6 6 matrix, which 
contains 36 independent coefficients. For a convenience, this matrix is 
usually divided into four sub-matrices A, B, C and D: 
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

,qm
A B
C D

                  (1.10) 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

, ,

, .

A B

C D

                            (1.11) 

 
The sub-matrix A includes the “principal” piezooptic coefficients that 

describe the changes in the principal components of the dielectric 
impermeability tensor ( B1, B2 and B3). This corresponds to the change in 
the ellipsoid of refractive indices (or the so-called optical indicatrix) that 
occurs along the principal coordinate axes under the action of stretching or 
compressing stresses (i.e., under the action of normal components 1, 2 
and 3 of the mechanical stress tensor). The sub-matrix B contains the 
“shift” (or “shifting”) piezooptic coefficients that describe the changes in 
the optical indicatrix under the action of shear (shift) stresses (i.e., the shear 
components 4, 5 and 6 of the mechanical stress tensor). Finally, the 
“rotating” (see the sub-matrix C) and the “rotating-shifting” (the sub-matrix 
D) piezooptic coefficients describe the changes in the “rotating” 
components B4, B5 and B6 of the dielectric impermeability tensor (i.e., 
those that cause rotation of the optical indicatrix) under the action of normal 
( 1, 2 and 3) and shear ( 4, 5 and 6) components of the mechanical 
stress tensor, respectively. 

Symmetry of a material medium allows for reducing the number of 
independent components of the piezooptic and elastooptic tensors. In 
particular, the matrix (1.10) contains only twelve nonzero coefficients in 
case of an amorphous (glassy) material, of which only two coefficients are 
independent: 
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11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0

.
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

qm             (1.12) 

 
For the crystals that belong to the cubic system, the number of 

independent components of the piezooptic and elastooptic tensors increases 
to three or four, while for the hexagonal system we have from six to eight 
components. In the same way, one can obtain seven to ten independent 
components for the tetragonal system, eight to twelve for the trigonal 
system, twelve for the orthorhombic system, twenty for the monoclinic 
system, and thirty six for the triclinic one. 

1.2. Polarimetric method for measuring photoelastic 
constants 

In experimental mechanics and glass production, various polarimetric 
methods [31–36] are commonly used to investigate photoelasticity 
properties. Historically, most of these methods have used visual or 
photographic recording of image of a sample, which is obtained in polarized 
light. At the end of the twentieth century, solid-state digital video cameras 
and computer technologies has been developed and widely spread. This has 
started production of the polarimeters for determining stress-induced optical 
birefringence, which are based upon digital image processing [37–43]. 

Over the past two decades, a number of 2D polarimeters (or imaging 
polarimeters) have been built at the O. G. Vlokh Institute of Physical Optics 
(Lviv, Ukraine) for the visible and infrared spectral ranges. All of them 
represent modifications of a basic 2D polarimeter configuration (Fig. 1-1) 
[44, 45]. This scheme includes a radiation source, a polarization generator, a 
sample under analysis, an analyzer, and an electronic section. 
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Fig. 1-1. Basic configuration of 2D polarimeter:
(I) radiation source: (1) gas laser, (2) linear polarizer, (3) quarter-wave plate, (4) 
rotation device, (5) coherence scrambler, (6) beam expander, (7) spatial filter;
(II) polarization generator: (8) linear polarizer, (9) quarter-wave plate, (10) rotation 
device,
(III) sample under analysis;
(IV) analyzer: (11) linear polarizer, (12) rotation device;
(V) electronic section: (15) video camera interface, (16) computer, (17) stepper 
motor controller, (18) stepper motor, (19) zero-position sensor controller of 
analyzer.
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics.

Now let us describe in brief the main sections of this configuration.
Radiation source. The objective of this section is to create an almost 

plane monochromatic light wave with circular polarization and controlled 
intensity. It includes a gas laser (1), a radiation-intensity controller (2)–(4), 
a coherence scrambler (5) and a beam expander (6) with a pinhole spatial 
filter (7). In our scheme, a helium-neon laser emits a monochromatic 
linearly polarized light with the wavelength 632.8 nm and the power 3 mW.

A radiation-intensity controller consists of a linear polarizer, i.e. a Glan 
prism (2) and a quarter-wave plate (3). Note that the fast axis of the quarter-
wave plate makes the angle 45 deg with the transmission axis of polarizer. 
Taken together, these components form a circular polarizer, which is placed 
on a rotation device (4), which makes it possible to adjust the intensity of 
the incident light by rotating the circular polarizer around the axis of light 
beam. This rotation is controlled by a stepper motor.
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After the radiation-intensity controller, the light beam passes through a 
coherence scrambler (5). The aim of this device is eliminating undesirable 
speckle patterns in the image, which arise from the interference of coherent 
laser light diffracted at the components of optical scheme. The coherence 
scrambler represents a grounded glass disk that scatters light with a speckle 
structure. This speckle structure is changing continuously, since this disk is 
being rotated using an electric motor. As a result of averaging that occurs 
during exposure of sample, the effect of “spotting” disappears and an 
improved image arises, which is like the image obtained with incoherent 
light. 

After that, the light beam enters a beam expander (6), which is built 
according to a reciprocal Keppler telescopic system. To “clean” the beam 
from scattered and diffracted light, a spatial filter (7) (i.e., a pinhole 
diaphragm) is installed behind the first short-focus lens at the waist place. 
At the output of the beam expander, a collimated light beam with the 
diameter ~ 20 mm is obtained. 

Hence, utilization of laser radiation source in the 2D polarimeter 
provides a high degree of monochromaticity and, at the same time, the 
coherence scrambler eliminates the speckle structure of images, which 
would have been otherwise inherent for the polarimetric systems based on 
monochromatic sources. 

Finally, a high-quality collimated beam of circularly polarized light is 
obtained at the output of this section. This decreases any noises and 
increases the measurement accuracy. 

Polarization generator. The objective of this section is to create a 
predetermined polarization state of the light wave, which is given by the 
azimuth and the ellipticity, at the entrance of sample. It includes a first 
linear polarizer (a Glan prism (8)) and a compensator (a quarter-wave plate 
(9)). 

The ellipticity K of the light wave at the output of the polarization 
generator is determined by the angle  between the fast axis of the 
compensator and the transmission axis of the linear polarizer. The actual 
value of the optical phase difference of the compensator c is slightly 
different from its ideal value of 90 deg. Then the actual value of the 
ellipticity K reads as 

 
1tan( ),    asin[sin(Γ )sin(2 )],
2 cK                                         (1.13) 

 
where  is the ellipticity angle. The azimuth  of the polarization ellipse is 
determined by the angular position of the fast axis с and the c value: 
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,  tan(2 ) cos(Γ ) tan(2 ).cc c c                                          (1.14) 
 
Here c implies the azimuth correction associated with imperfections of 

the compensator. 
Since the azimuth p of the linear polarizer and the angle  between the 

transmission axis of the linear polarizer and the fast axis of the compensator 
are directly set during experiment, the parameter c becomes 

 
.c p                                                                                          (1.15) 

 
Hence, by rotating the composite elliptical polarizer consisting of the 

linear polarizer and the compensator, any prescribed azimuth  of the major 
axis of the polarization ellipse and any ellipticity K of the polarization can 
be set at the output. 

A rotary device (10) enables rotation of the compensator (9) with respect 
to the linear polarizer (8), as well as joint rotation of the two latter 
components around the optical axis of the 2D polarimeter. Note that the 
composite elliptical polarizer is rotated by a stepper motor. As a 
consequence, the section of polarization generator provides a range of all 
possible azimuths from 0 to 180 deg and the range of ellipticities from –1 to 
+1. 

Sample under test. Besides of a sample itself, this section also contains 
some additional devices. In particular, this can be a cuvette with immersion 
liquid, a device for rotating the sample or a loading device. The dimensions 
of the analyzed area of sample are determined by the diameter of collimated 
light beam at the output of the composite elliptical polarizer. In its turn, this 
diameter is given by the linear dimensions of the Glan polarization prism 
(8) and equals to ~ 20 mm. 

Analyzer. The objective of this section is to analyze the polarization 
state of the light beam at the output of the sample. It comprises a second 
linear polarizer (a Glan prism (11)) arranged at a rotation device (12), which 
is controlled by a stepper motor. The rotation device is equipped with a 
zero-position sensor connected to a computer. This is due to a need in 
setting precisely a laboratory coordinate system when determining the 
azimuth angles. 

After the light has passed through the analyzer, the image of spatial 
intensity distribution over the light beam section is formed, by means of a 
lens (13), in the plane of photosensitive matrix of a detector, a video camera 
(14). For example, it can be a camera based on a charge-coupled device. 
Then the sensitive area of the photodetector contains 795 horizontal and 596 
vertical elements. The choice of the lens mentioned above depends on the 
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size of the sample under test, the resolution of the photodetector and the 
overall dimensions of the 2D polarimeter. 

Electronic section. This section includes a video-camera interface (15), a 
computer (16), stepper-motor controllers (17), stepper motors (18) and a 
zero-position sensor controller of an analyzer (19). The interface of the 
video camera (15) provides reading the image of the intensity distribution 
line by line, digitizing it and transferring the corresponding data to the 
computer memory. According to control signals, the stepper-motor controllers 
(17) generate sequences of pulses, that are fed to windings of the stepper 
motors (18). They determine the directions of rotation of motors and the 
rotation angles 

In the 2D polarimeter presented above, the rotary stages have the 
minimum rotation step of 0.012 deg and the accuracy 0.001 deg of angular 
positioning. Finally, the computer (16) carries out the operation control of 
all the elements of the polarimeter according to a preset measurement 
algorithm, accumulates and processes the data, and presents and saves the 
experimental results. 

Original software of the 2D polarimeter forms a shell for controlling its 
work. In particular, it controls the stepper motors, reads the image from the 
video camera, presents it on the computer display, processes the overall 
image and the data for a certain image pixel, fits the data for angular 
dependences with the sine function, initialize the analyzer; “binds” the 
polarizer to the analyzer, calibrates the image shift arising from the analyzer 
rotations, implements the algorithm of polarization-optical measurements, 
and calculates the resultant Jones matrix of the optical system. Moreover, it 
enables one to control the 2D polarimeter in manual and automatic 
measurement mode. 

The basic configuration of the 2D polarimeter considered above is 
universal in the sense that it provides implementing different methods for 
measuring the parameters of optical anisotropy, depending on the 
complexity of task designated by experimenter. 

1.3. Non-uniformity of mechanical stresses in a sample 
under axial compression 

A significant negative aspect of photoelasticity studies is that the piezooptic 
coefficients  of crystals are usually measured with large errors. Quite 
often, the latter exceed tens of percents and, in some cases, become as large 
as the value of the coefficient itself (see, e.g., Refs. [46–48]). 

To understand the reasons for this disappointing situation, one has to 
analyze a typical scheme of traditional photoelastic measurements 
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performed in crystal optics. For instance, the sample to which axial 
compression is applied has usually a shape of a parallelepiped close to a 
cube [49]. Usually, a strained sample is placed into a single-beam 
polarimeter or a double-arm interferometer (e.g., Michelson or Mach–
Zender interferometers). Then the sample is irradiated by a laser beam with 
the diameter ~ 1 mm. As a rule, the mechanical strain is changed during the 
experiment in order to measure a so-called “half-wave mechanical strain”. It 
is obvious that these experimental procedures contain a number of possible 
sources of measurement errors. 

1.3.1. Experimental procedures and results 

In order to visualize better the sources of measurement errors of the 
piezooptic coefficients, we use the same basic configuration of the 2D 
polarimeter [45] (see Fig. 1-1) and the measurement technique presented in 
the work [50]. To perform the measurements, the quarter-wave plate (9) is 
oriented so that its fast axis forms the angle 45 deg with the transmission 
axis of the polarizer (8). Then the circularly polarized light is formed at the 
output of the polarization generator. This light is incident on the sample 
which is prepared in the shape of a plane-parallel plate. 

The propagation of light through the sample changes the state of light 
polarization. To determine the polarization state of the light emerged from 
the sample, the analyzer is rotated in the angular range from 0 to 180 deg 
with the step of 4.5 deg. Note that the sample image is recorded for every 
azimuthal position of the analyzer. Once the analyzer has reached the angle 
90 deg, the light beam is shut out and the background image is recorded. 
The overall time of the measuring procedure is less than 30 seconds. 

In case when the circularly polarized light enters the sample as described 
by the model of linear optical retarder, the light intensity I at the analyzer 
output is determined by the formula 

 
0 1 sinΓsin 2 ,
2
I

I a                                                      (1.16) 

 
with І0 being the intensity of light incident on the sample, а the azimuth of 
the transmission axis of polarizer,  the orientation angle of the principal 
axes of cross-section of the optical indicatrix with the plane perpendicular 
to the light beam,  = 2πΔ/λ = 2πd(Δn)/λ the optical phase difference, Δ the 
optical retardation, λ the light wavelength, d the sample thickness, and Δn 
the optical birefringence. 
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After recording and filtering of the images, the azimuthal dependences 
of the intensity I are fitted by the sine function for each pixel: 

 

1 2 3sin 2 ,I C C a C                                                             (1.17) 
 

where C1, C2 and C3 are fitting coefficients. 
By comparing formulae (1.16) and (1.17), one can write out the fitting 

coefficients as follows: 
 

0 0
1 2 3,  sin ,  .

2 2
I I

C C C                                                  (1.18) 

 
The  value is determined only by the fitting coefficients 1 and 2: 
 

2

1
sin = .C

C
                                                                                       (1.19) 

 
In its turn, the angular orientation of the intensity minimum is given by 

the orientation  of the principal axis of the optical indicatrix, which is 
equal to the coefficient 3. 

After fitting the light intensity for each pixel of the sample image behind 
the analyzer as a function of polarization azimuth, one can construct 2D 
maps of the optical anisotropy parameters for the sample. These parameters 
comprise the optical retardation  and the orientation angle  of the 
principal axis of the optical indicatrix. 

As a demonstration of accuracy of our experiments, we present in 
Fig. 1-2 the spatial distributions of optical retardation and the orientation of 
the principal axis of the optical indicatrix for “empty” polarimeter with no 
sample inserted. 
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a) b) 
Fig. 1-2. Images of distributions of optical retardation (a) and orientation of major 
principal axis of the optical indicatrix (b), as measured for the polarimeter with no 
sample inserted into optical scheme. 
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics. 

 
Of course, the optical retardation for the air and isotropic optical 

elements such as lenses and polarizers should be equal to zero. However, 
some false “background” retardation still exists. It is due to experimental 
errors caused mainly by multiple light reflections in the optical elements 
and small misalignments of the optical axes of those elements, which are 
being rotated during the experiment. Following from the results presented in 
Fig. 1-2, one can determine the apparatus-driven errors in evaluating the 
optical retardation and the orientation of optical indicatrix. These are equal 
to ±3.5 nm and ±5 deg, respectively. 

A loading device used in this experiment (see Fig. 1-3 and Ref. [50]) has 
been selected basing on the analysis [14, 15], which provides the most 
uniform distribution of stresses within the sample. 
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Fig. 1-3. Scheme of the loading device. 
Note: We use a cardboard between the sample and the top (bottom) die as and 
intermediate layer, in order to eliminate inhomogeneity of the corresponding 
surfaces and decrease the friction force between these surfaces. 
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics. 
 

The sample in the shape of cube with the dimensions 
11.45(x)×11.3(y)×11.45(z) mm3 has been prepared from a ВК7 glass 
(according to Schott classification). Its refractive index at the light 
wavelength λ = 632.8 nm is equal to n = 1.51466, while the photoelastic 
coefficient K = (n0)3(π11 – π12)/2 at the wavelength λ = 550 nm is equal to 
K = 2.76 m2/N [51]. The dispersion of the piezooptic coefficients in a 
narrow spectral region 550–632.8 nm has been neglected. 

The distributions of the optical retardation and the orientation of 
principal axis of the optical indicatrix for the glass sample with no 
mechanical stress applied are presented in Fig. 1-4. It follows from these 
results that the residual optical birefringence n is smaller than 6×10−7. 
Moreover, a comparison of the maps presented in Fig. 1-3 and Fig. 1-4 
testifies that the major part of this birefringence is false, being caused by 
specific features of both the experimental setup and the method used. In 
other terms, we deal simply with an apparatus error. In fact, the 
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birefringence as small as n  6×10−7 merely represents the accuracy for the 
birefringence achieved in the experiment. 

 

a) b) 
Fig. 1-4. Images of distributions of optical retardation (a) and orientation of 
principal axis of the optical indicatrix (b) for a glass sample with no mechanical 
stress applied. 
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics. 

 
Fig. 1-5 displays the distributions of the optical retardation and the 

orientation of principal axis of the optical indicatrix for the glass sample 
under conditions when the mechanical stress 3 = –1.93×106 N/m2 is 
applied. It is important that repeated experiments accompanied with 
realignments of sample have not led to notable difference in the 
distributions of optical parameters. However, the maximum of the optical 
retardation has become located at different points. Namely, it has been close 
to the lateral, upper or bottom edges of the sample in different experiments. 
These shifts are probably caused by some misalignments of stress-
application scheme, which lead to appearance of additional components of 
the stress tensor. 
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a) b) 
Fig. 1-5. Images of distributions of optical retardation (a) and orientation of 
principal axis of the optical indicatrix (b) for a glass sample under the mechanical 
stress 3 = –1.93×106 N/m2 applied. 
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics. 

 
The optical phase differences within the cross-section of the sample and 

the cross-section of laser beam (with the diameter 1.5 mm) propagating 
through the center of the cross-section are compared in Table 1-1. The 
relative error for the optical retardation inside the whole cross-section of the 
sample reaches the magnitude of 14%, while the relative error for the 
circular cross-section of laser beam is about 4%. In other words, the error 
for the experiments with non-expanded laser beam can be reduced at least 
by 3.5 times under condition that the mechanical stress in the spatial region 
where the laser beam propagates is known in advance. 
 
Table 1-1. Optical retardation for the whole cross-section of sample and the 

cross-section of laser beam propagating through the sample center 
Number 
of the 

experi-
ment 

Retardation for the whole cross-
section of sample 

Retardation for the cross-section 
of laser beam 

Mean 
value, nm 

Absolute 
error, nm 

Relative 
error,  

Mean 
value, nm 

Absolute 
error, nm 

Relative 
error,  

1 58.11 8.53 14.66 66.06 1.71 2.59 
2 58.50 9.12 15.58 67.99 3.18 4.67 
3 55.72 7.73 13.87 63.09 2.85 4.50 
4 55.74 9.51 17.07 61.33 2.53 4.13 
5 55.72 5.73 10.30 60.33 2.23 3.71 
6 56.58 6.84 12.09 62.44 2.78 4.46 

Mean 
value 56.72 7.91 13.94 63.54 2.55 4.01 
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1.3.2. Reconstruction of mechanical stresses. 
Mechanical model and numerical simulations 

Let us assume that the experimental conditions provide a possibility for uniform 
application of mechanical load along the z direction of sample and that the 
sample is initially optically homogeneous and isotropic. Let the optical radiation 
propagate along the y direction. Then the inhomogeneity of mechanical stresses 
inside the sample can appear only due to a friction force between upper and 
lower sample surfaces and the intermediate cardboard layers. The maximal 
friction forces dFmax are proportional to the loading stress 3, 

 
max 3 ,dF k dS                                                                                (1.20) 

 
where k = 0.22 is the friction coefficient for the case of friction between the 
glass and the paper (see Ref. [52]), and dS denotes a small element of 
square of the sample surface. 

The friction forces mentioned are directed from the lateral faces of 
sample to the central z axis (see Fig. 1-6), thus leading to appearance of 
barrel-shaped distortion of the sample under the compressive stress 3. 

In the first approximation, one can take into account the following 
boundary conditions for this type of inhomogeneously stressed sample: 

(1) 1 = 2 = 0 on the four lateral faces of sample; 
(2) 1

max = 2
max = k 3 on the upper and lower faces; 

(3) 3 = –1.93×106 N/m2 on all the faces in our experiment and 
simulations. 

 
Fig. 1-6. Barrel-shaped distortion of sample under a compressive stress 3. 
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics. 
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Let us use the approach presented in the work [53] for the superposition 
of three solutions, each of which being a solution of the problem for the 
elastic layer. The general solution of the Lame’s equation in the absence of 
volume forces can be written as a sum of three solutions for the 
displacement vectors u, v and w along the x, y and z directions, 
respectively. 

Simulations of the distribution of optical retardation have been 
performed on the basis of integral Jones matrix approach. The sample under 
analysis has been divided into 1000 (10×10×10) elementary (optically 
uniform) cells. The resulting Jones matrices Jij for each of 100 elementary 
beams (i, j = 1...10) have been obtained by multiplying the Jones matrices 
of 10 elementary cells, through which each elementary beam has passed 
along the y direction: 

 
10

1
.ij ij

n
n

J J                                                                                      (1.21) 

 
Here J  is the Jones matrix of the elementary cell: 
 

Γ /2 Γ /22 2

Γ /2 Γ /22 2

cos sin sin(Γ / 2)sin 2
.

sin(Γ / 2)sin 2 sin cos

ij ij
n n

ij ij
n n

i iij ij ij ij
n n n nij

n i iij ij ij ij
n n n n

e e i

i e e
J              (1.22) 

 
 represents the optical phase difference of the elementary cell, 

 
2 23

0 11 12 1 3 52 ,
ij

ij ijijij n
n n n n

d
n            (1.23) 

 
and  denotes the angle of orientation of quasi-principal axes of the 
optical indicatrix, 

 

5

1 3

21 atan
2

ij
ij n
n ijij

n n

.                                                             (1.24) 

 
Because the Jones vector of the elementary beam at the sample output 

reads as 
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1

3

11,  ,
2

ij
ij ij
out circ circij

E

iE
E J E E                                         (1.25) 

 
the resulting phase difference for each elementary beam is determined by 
the ratio 

 

31

3 1

arg arg .
2 2

ijij
ij

ij ij

EE

E E
                                              (1.26) 

 
Then the optical retardation Δ = Г /2π can be calculated. 
To match the calculated distribution of the optical retardation with the 

experimental one, it has been taken into account that the pressure on the 
upper face of sample has the form of half-period of the sinusoid shifted to 
the left, which corresponds to non-ideal setting of the sample: 

 
2

3 1 .0,05sin sin 0,3 1 1
48z c

x y x yN
a b a b

      (1.27) 

 
In order to account for a barrel-shaped distortion, the stress on the side 

faces satisfies the boundary conditions 
 

1 2 30, 0,

2 1 30, 0,

0, 0.2 sin sin ,

0, 0.2 sin sin .

x a x a

y b y b

z y
c b
x z
a c

                       (1.28) 

 
Fig. 1-7 shows the simulation data for the piezo-induced optical 

retardation and orientation of optical indicatrix which takes into account a 
barrel-like deformation of the sample under pressure and inaccuracy of its 
setting with respect to the axis of pressure application. 
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a) b) 
Fig. 1-7. Maps of simulated optical retardation (a) and difference of experimental 
(see Fig. 1-5а) and simulated optical retardations (b). 
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics. 

 
Fig. 1-7b indicates that the major part (91%) of the cross-section is 

correlated with the experimental results. Nonetheless, its small part (9%) 
still disagrees with the experimental data. It is probably caused by some 
warp of the top die in the upper left side of the sample, along with some 
sliding between the sample and the die. This can be accounted for while 
reducing the friction coefficient down to the value k = 0.1 (Fig. 1-8). In this 
case the experimental and simulation results have the similarity 98%. 

 

a) b) 
Fig. 1-8. Maps of simulated optical retardation (a) and difference of experimental 
(see Fig. 1-5а) and simulated optical retardations (b), as obtained after sliding 
between the sample and the die is taken into account. 
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics. 
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By analyzing the simulated mechanical-stress distribution, the following 
conclusions can be made: 

 
 loading of sample in a common manner gives rise not only to the 

component 3 of the mechanical stress tensor, but also to all the 
other components of this tensor; 

 the distribution of mechanical stress tensor components inside the 
sample is inhomogeneous; 

 the 3 component in the vicinity of geometrical center of the sample 
is one order of magnitude larger than the 1 component and two 
orders of magnitude larger than the other stress components; 

 the 3 component in the center of the sample reaches a value 26% 
higher than the stress actually loaded, while the deviation of this 
component within the sample volume amounts to 32%; 

 the deviations of the other stress components exceed hundred per 
cents and, moreover, the signs of the shift stress components are 
different in different parts of the sample. 

 
Let us assume that a non-expanded laser beam with the cross-section 

area ~ 2 mm2 propagates through the sample center parallel to the y axis. 
The optical phase difference for this light propagation direction is equal to 
65.7 deg. On the other hand, the optical phase difference for the case of 
homogeneously distributed mechanical stress ( 3 = –1.93×106 N/m2) can be 
calculated with the formula 

 
3
0 11 12 32 / .dn                                                           (1.29) 

 
It is equal to 60.1 deg. Hence, the actual value of the optical phase 

difference is smaller by 8.5% than the measured one. This means that in any 
practical piezooptic experiment, which does not take the distribution of 
mechanical stresses into account, the piezooptic coefficients determined 
experimentally differ from their actual values at least by 8.5%. 

Of course, only complete reconstruction of the stress field inside a 
sample and a consistent consideration of the stress components at each 
sample point would allow one to obtain a correct value of the piezooptic 
coefficient. In our case the latter is equal to (π11 – π12) = 1.59×10–12 m2/N. 

Summing up the results, we conclude that the greatest contribution into 
inhomogeneous distribution of mechanical stress originates from the 
imperfection of pressing surface of a poisson, the sample non-parallelism, 
and the friction between the poissons and the sample faces. At the same 
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time, the enormous errors appearing in typical piezooptic experiments are 
mainly caused by the friction forces that exist inside an intermediate contact 
layer between the upper and lower sample surfaces and the corresponding 
substrates, as well as by the misalignments of mechanical loading. The 
friction force leads to a barrel-shaped distortion of samples and the 
inevitable appearance of all components of the mechanical stress tensor, in 
spite of the fact that a uniaxial pressure has been initially applied. 

Unlike the simplest experiment with an isotropic medium discussed 
above, the distribution of mechanical stresses in the case of anisotropic 
media will be even more complicated, and the requirements for the loading 
device and the sample more strict. A possible way out of this situation is to 
use the technique described above to investigate the piezooptic effect in 
crystals. It allows for determining the degree of inhomogeneity of the 
spatial field of mechanical stresses inside the sample and increasing the 
accuracy of the piezooptic coefficients. 

It has been shown above that, instead of a uniform stress state which has 
traditionally been a priori supposed, uniaxial compressing of a 
parallelepiped-shaped sample results in a non-uniform distribution of 
mechanical stresses, with uncontrolled inhomogeneity. Therefore, it is 
almost impossible to obtain a uniform stress distribution when measuring 
piezooptic coefficients. Then it would be advisable to use such sample-
loading methods which lead to a non-uniform, though known beforehand 
mechanical stress distribution. 

1.4. Optimal geometric proportions of samples 
for piezooptic experiments 

As shown above, the mechanical stress tensor components are non-
uniformly distributed in any parallelepiped-shaped sample, even if a 
uniaxial compressing load is applied to this sample. 

The reasons why a complicated spatial distribution of the stress 
components appears lie in misalignments of sample loading and a barrel-
shaped distortion of rectangular samples. As a result, the error in 
determination of the mechanical stress tensor component 3 is about 30%. 
This error can be reduced down to ~ 14% by accurately aligning the sample 
in a pressure setup and carefully complying the condition of parallelism of 
the opposite sample surfaces. However, the barrel-shaped distortion, which 
appears due to the friction forces arising between the upper and lower 
sample surfaces and the appropriate substrates, cannot be eliminated 
completely. 
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To increase the accuracy of piezooptic experiments, we have suggested 
a number of methods for sample loading, which produce spatially 
inhomogeneous distributions of the stress components, of which coordinate 
dependences are known in advance. A diametrical compression of a disk, 
mechanical torsion of a rod and four-point bending of a bar are among these 
methods. They have turned out to be precise enough when determining the 
piezooptic coefficients. Moreover, some of them (e.g., the method of four-
point bending) enables one to determine all of the piezooptic tensor 
components. 

Nonetheless, these methods reveal a substantial practical disadvantage: 
they require a lot of samples with predetermined sizes and different 
crystallographic orientations. This necessitates growing of many (large 
enough) crystalline boules and utilizing complex procedures for manufacturing 
and precise processing the samples. 

Returning to uniaxial compressing of a parallelepiped-shaped sample, 
one may ask the following questions: 

 
 Could the loading-related errors of piezooptic experiments be 

minimized by optimizing a geometrical shape of a sample? 
 Which are those optimal geometrical parameters of the sample and, 

first of all, the ratio of its width to its length, which make the errors 
caused by mechanical stress inhomogeneity inside the sample small 
or, at least, smaller than the errors typical for the polarimetric or 
interferometric experiments themselves? 

 
One can try to solve this problem by means of simulations of the 

mechanical stress distributions in isotropic glass samples [54]. 
Let us consider a parallelepiped-shaped isotropic BK7-glass sample with 

a square cross-section (a = b) and different ratios of its width to height 
(a : c = 1:1, 1:3 and 1:5). Let the compression load be applied along the z 
axis. Assume that the loading force is uniformly distributed over the upper 
and lower surfaces and the substrates are covered by a layer of paper. Then 
the coefficient of friction between the glass and the paper is equal to 
k = 0.22 [52]. Obviously, the friction forces appearing between the upper 
and lower sample faces and the substrates covered by the paper should lead 
to a barrel-shaped distortion of the sample. 

The algorithm for solving the elastic equilibrium equation is similar to 
that used above. It has been described in detail in Refs. [50, 54]. Its 
application results in a spatial distribution of mechanical stress tensor 
components in the sample. Having obtained the distributions for all of the 
stress components, we have simulated the optical phase difference for the 
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case of light propagating along the y axis. The corresponding algorithm is 
based on dividing the sample into cells and using the Jones matrices (see the 
relations (1.21)–(1.26)). Within this algorithm, the sample has been divided 
into 10 layers, which are taken as being mechanically and optically 
homogeneous along the light propagation direction. Each of the layers has 
been divided into 10×10 cells. 

Figs. 1.9–1.14 display the main results of our simulations performed for 
the parallelepiped-shaped isotropic glass samples with the square cross-
sections (a = b) and different width-to-height ratios (a : c = 1:1, 1:3 and 
1:5). The stress tensor components have been normalized at the nominal 
compressive stress 3 = P/a2, with P being the loading force. 

 

a) 

b) 

c) 
Fig. 1-9. Distributions of mechanical stress tensor components 1 (а), 2 (b) and 3 
(c) for a parallelepiped-shaped isotropic glass sample with the dimensions a = b and 
a : c = 1:1. Left, central and right columns correspond to the cross-sections z = 0.2c, 
0.5c and 0.8c, respectively. 
Adapted with permission from Kvasnyuk, O., Vasylkiv, Y., Krupych, O., & Vlokh, R. 
(2014). Preferable geometrical parameters of samples for piezooptic experiments. 
Ukr. J. Phys. Opt., 15(4), 195–206. © O. G. Vlokh Institute of Physical Optics. 
 

For the sample of cubic shape (a : c = 1:1), the stress components 1 and 
2 change from zero on the side surfaces to a minimum in the centers of all 
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cross-sections (Figs. 1.9a–1.9b). Negative values of these components point 
to the compressive normal stresses that vary from –0.013 in the central 
plane (at z = 0.5c) to –0.085 at z = 0.2c and z = 0.8c. The component 3 
reaches its minimum, –1.12, in the center of the sample and increases to –
1.088 at z = 0.2c and z = 0.8c (Fig. 1-9c). This means that the actual value 
of the component | 3| in the center of the sample is 12% higher than that 
expected within the idealized model of uniform stress state. 

 

a) 

b) 

c) 
Fig. 1-10. Distributions of mechanical stress tensor components 4 (a), 5 (b) and 6 
(c) for a parallelepiped-shaped isotropic glass sample with the dimensions a = b and 
a : c = 1:1. Left, central and right columns correspond to the cross-sections z = 0.2c, 
0.5c and 0.8c, respectively. 
Adapted with permission from Kvasnyuk, O., Vasylkiv, Y., Krupych, O., & Vlokh, R. 
(2014). Preferable geometrical parameters of samples for piezooptic experiments. 
Ukr. J. Phys. Opt., 15(4), 195–206. © O. G. Vlokh Institute of Physical Optics. 

 
The components | 4| and | 5| exceed 0.8 in thin layers close to the side 

faces in the cross-sections z = 0.2c and z = 0.8c (see Figs. 1.10a–1.10b). 
They are equal to zero in the central plane of the sample (at z = 0.5c). On 
the other hand, the component | 6|, which must have been absent in the 
ideal model, reaches 0.1 even in the “middle” cross-section z = 0.5c, 
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although it remains equal to zero just at the center of all sections (Fig. 1-
10c). 

Given the results obtained, we should note that the appearance of 
additional nonzero stress components can lead to incorrect determination of 
the actual stress and, as a result, to an error for the piezooptic coefficients. 
In our case, the approximate estimate of the error typical for the 3 
component is 12% for the sample with a : c = 1:1. 

 

a) 

b) 

c) 
Fig. 1-11. Distributions of mechanical stress tensor components 1 (а), 2 (b) and 3 
(c) for parallelepiped-shaped isotropic glass sample with a = b and a : c = 1:3. Left, 
central and right columns correspond to the cross-sections z = 0.2c, 0.5c and 0.8c, 
respectively. 
Adapted with permission from Kvasnyuk, O., Vasylkiv, Y., Krupych, O., & Vlokh, R. 
(2014). Preferable geometrical parameters of samples for piezooptic experiments. 
Ukr. J. Phys. Opt., 15(4), 195–206. © O. G. Vlokh Institute of Physical Optics. 

 
For the sample with a : c = 1:3, the mechanical stress tensor components 

1 and 2 (Figs. 1.11a–1.11b) achieve 0.0015 in the “middle” cross-section 
(z = 0.5c) and 0.002 in the cross-sections given by z = 0.2c and z = 0.8c. In 
its turn, the component 3 varies from –1.005 to –1 at z = 0.5c and from –
1.05 to –1 when we approach the upper (z = 0.2c) and lower (z = 0.8c) faces 
of the sample (Fig. 1-11c). 
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a) 

b) 

c) 
Fig. 1-12. Distributions of mechanical stress tensor components 4 (a), 5 (b) and 6 
(c) for parallelepiped-shaped isotropic glass sample with a = b and a : c = 1:3. Left, 
central and right columns correspond to the cross-sections z = 0.2c, 0.5c and 0.8c, 
respectively. 
Adapted with permission from Kvasnyuk, O., Vasylkiv, Y., Krupych, O., & Vlokh, R. 
(2014). Preferable geometrical parameters of samples for piezooptic experiments. 
Ukr. J. Phys. Opt., 15(4), 195–206. © O. G. Vlokh Institute of Physical Optics. 
 

The components | 4| and | 5| are equal to zero in the central cross-
section (z = 0.5c), whereas in the cross-sections z = 0.2c and z = 0.8c they 
increase to ~ 0.023 when y and x approach b and a, respectively (Figs. 1-
12a–1-12b). The component | 6| remains the smallest and does not exceed 
0.01 (Fig. 1-12c). 

Hence, the component 3 is at least two orders of magnitude higher than 
the other stress tensor components. Therefore it contributes dominantly into 
the effective stress. Since the maximal value of the actual stress 3 = –1.05 
deviates from the idealized value 3 = –1, the maximal error for the 
component 3 can be estimated as 5% for the sample with a : c = 1:3. It 
should be noted that this error is reduced by an order of magnitude in the 
central part of the sample, where it is only 0.5%. The latter value does not 
exceed the error inherent in the polarization or interference optical methods. 
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a) 

b) 

c) 
Fig. 1-13. Distributions of mechanical stress tensor components 1 (а), 2 (b) and 3 
(c) for parallelepiped-shaped isotropic glass sample with a = b and a : c = 1:5. Left, 
central and right columns correspond to the cross-sections z = 0.2c, 0.5c and 0.8c, 
respectively. 
Adapted with permission from Kvasnyuk, O., Vasylkiv, Y., Krupych, O., & Vlokh, R. 
(2014). Preferable geometrical parameters of samples for piezooptic experiments. 
Ukr. J. Phys. Opt., 15(4), 195–206. © O. G. Vlokh Institute of Physical Optics. 

 
For the sample with a : c = 1:5, the stress components 1 and 2 equal to 

zero in the “middle” cross-section (z = 0.5c) and reach the value 0.003 at 
z = 0.2c and z = 0.8c (see Figs. 1.13a–1.13b). The component 3 varies from 
–1.0001 to –1 at z = 0.5c and from –1.015 to –1 at z = 0.2c and z = 0.8c 
(Fig. 1-13c). 

The components | 4| and | 5| amount to 0.008 at the side sample faces in 
the sections z = 0.2c and z = 0.8c and remain equal to zero at z = 0.5c 
(Figs. 1-14a–1-14b). However, the component | 6| reaches its maximum 
(0.006) near the upper and lower surfaces of the sample (see Fig. 1-14c). 
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a) 

b) 

c) 
Fig. 1-14. Distributions of mechanical stress tensor components 4 (a), 5 (b) and 6 
(c) for parallelepiped-shaped isotropic glass sample with a = b and a : c = 1:5. Left, 
central and right columns correspond to the cross-sections z = 0.2c, 0.5c and 0.8c, 
respectively. 
Adapted with permission from Kvasnyuk, O., Vasylkiv, Y., Krupych, O., & Vlokh, R. 
(2014). Preferable geometrical parameters of samples for piezooptic experiments. 
Ukr. J. Phys. Opt., 15(4), 195–206. © O. G. Vlokh Institute of Physical Optics. 

 
Thus, the maximum error of determination of the component 3 does not 

exceed 1.5% for the sample with a : c = 1:5. It is governed by the 
component 3 near the top and bottom surfaces of the sample. Since this 
error is an order of magnitude smaller in the central part of the sample, it 
can be neglected when determining the piezooptic coefficients. 

As the last stage of our analysis, we have simulated the changes 
occurring in the optical phase difference, which are associated with 
inhomogeneous stress distribution. The optical phase difference is 
determined as , where  and  are the total 
optical phase differences determined from the ratio (1.26) respectively for 
the cases of homogeneous (a single nonzero stress component is nonzero, 

3 = 2.4×106 N/m2) and inhomogeneous (all the stress components differ 
from zero) stress distributions. 
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For all values a : c in case of homogeneous distribution of the stresses, 
the optical phase difference is the same and equals to  = 39 deg at the 
sample thickness 10–2 m. Fig. 1-15 shows the phase difference distributions 
obtained for the samples with a : c = 1:1, 1:3 and 1:5. 

 

a) b) c) 
Fig. 1-15. Distributions of optical phase difference changes, as simulated for the 
samples with a : c equal to 1:1 (а), 1:3 (b) and 1:5 (c). 
Adapted with permission from Kvasnyuk, O., Vasylkiv, Y., Krupych, O., & Vlokh, R. 
(2014). Preferable geometrical parameters of samples for piezooptic experiments. 
Ukr. J. Phys. Opt., 15(4), 195–206. © O. G. Vlokh Institute of Physical Optics. 

 
It is worth noting that, even in case of the most inhomogeneous 

distribution of mechanical stresses (a : c = 1:1), the rotation angle of the 
optical indicatrix within the homogeneous cells located near the upper and 
lower surfaces does not exceed 2 deg and remains negligibly small in the 
central part of the sample. When the beam propagates through the center of 
the cross-section of sample, the relative errors for the optical phase 
difference are equal to 8.4, 0.4 and 0.00025% for the cases of a : c = 1:1, 
1:3 and 1:5, respectively. In the case of a : c = 1:3, the maximal error for the 
optical phase difference does not exceed 3.8% even if one takes the entire 
cross-section of the sample into account. Let us deal with the sample size 
3 3 9 mm3 and the optical beam diameter ~ 2 mm. Then the error can be 
further reduced at least down to  0.7%. Notice that this result agrees well 
with the experimental results presented in the work [55]. 

Hence, the error of experimental determination of the piezooptic 
coefficients, which is caused by the friction between the surfaces of the 
sample and the substrates, can be reduced by selecting the optimal 
geometric parameters of samples. At the same time, the optimal ratio of 
width a to height c for the isotropic samples with the square cross-section 
(a = b) amounts to 1:3. Then we arrive at a reasonable compromise between 
the accuracy of measurements and the practical requirements for the sample 
dimensions. 
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SECTION 2 

POLARIMETRIC METHOD FOR DETERMINING 
PIEZOOPTIC COEFFICIENTS USING 
CRYSTALLINE DISKS COMPRESSED 

ALONG THEIR DIAMETER 

As already noted, uniaxial compression of a parallelepiped sample results in 
a non-uniform distribution of mechanical stresses in this sample, so that the 
stress heterogeneity remains uncontrolled. A possible alternative in the 
piezooptic studies can be such loading methods that lead to non-uniform 
distributions of mechanical stresses in a sample, which are known in 
advance. In particular, this can be torsion of a rod, bending of a bar or a 
uniaxial compression of a disk along its diameter [55]. In this section, we 
analyze the abilities of the latter method used for measuring the piezooptic 
coefficients in crystals of different symmetry groups [56, 57]. 

2.1. Distribution of mechanical stresses 
in a compressed disk 

Let the origin of Cartesian laboratory coordinate system be in the centre of a 
disk, the z axis be perpendicular to the disk plane, and the y axis parallel to 
the direction of loading force P (Fig. 2-1). Then the loading force has the 
only component P = Py = P2. Since the loading of a crystalline disk along its 
diameter creates a 2D stressed state (“plane” stress), there are only three 
nonzero components of mechanical stress tensor in the disk: 1 = x, 2 = y 
and 6 = xy. They depend on the coordinates x and y as follows [55]: 
  

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 2 
 

32 

 
Fig. 2-1. Diagram of disk loading and selection of laboratory coordinate system [55]. 
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where d and R are the thickness and the radius of the disk, respectively. 

The mechanical stresses along the horizontal diameter parallel to the x 
axis (i.e., under condition y = 0) are described by the relations 
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x

                                                (2.4) 

 
while along the vertical diameter (x = 0) we have 
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                                                    (2.5) 

 
As seen from the relations (2.4) and (2.5), the component 6 is zero at 

the horizontal and vertical diameters, whereas the components 1 and 2 
differ from zero. This means that the principal axes of the mechanical stress 
tensor coincide with the axes of the laboratory system. For the other sample 
points which are outside the diameters specified above, all the three stress 
components ( 1, 2 and 6) are nonzero. 

Let us consider the distribution of mechanical stress components along 
the chords parallel to the axes x or y. For the case y = R/2 (i.e., the 
horizontal chord parallel to the x axis: see section A–A in Fig. 2-1), these 
components can be written as follows: 
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2 2
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x
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In the case x = R/2 (the vertical chord parallel to the y axis) we have 
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Unlike amorphous media, crystals manifest anisotropic physical 
properties. Then it would be convenient to choose a so-called “crystal 
physical” coordinate system. This Cartesian system is coupled with the 
symmetry elements, of which axes are oriented in a certain way with respect 
to the crystallographic coordinate system formed from the basic vectors of 
Bravais lattice. As a rule, the constitutive tensors (in particular, the tensor of 
dielectric constants, the dielectric impermeability tensor, and the 
piezoelectric, electro-optic and piezooptic tensors) are written just in the 
crystal physical coordinate system. As a consequence, it is necessary to take 
into account the mutual orientation of the crystal physical coordinate system 
of the sample and the laboratory coordinate system (see Fig. 2-1). 

As a matter of fact, when the crystalline disk is of the z-cut (i.e., the 
plane of disk is parallel to the crystallographic plane (001)) and the x and y 
axes of the crystal physical coordinate system coincide with the x and y axes 
of the laboratory coordinate system, all of the above formulae remain 
unchanged. For the crystalline disks of x-cut (100) or y-cut (010), similar 
relations can be derived for the mechanical stress tensor components, which 
differ only by the indices. 

Having the relations for the stress components m and using the 
mathematical expression for the piezooptic effect (1.3), one can calculate 
the changes in the components of optical-frequency impermeability tensor 
and so the refractive indices. On their basis, the formulae describing the 
induced optical birefringence and the rotation angle of optical indicatrix can 
be derived. These relations will be used when calculating the piezooptic 
coefficients of crystals, issuing from the experimental results derived for the 
optical birefringence and the optical indicatrix orientation angle in 
diametrically compressed crystalline disks. 

2.2. Determination of piezooptic coefficients of lithium 
niobate crystals using a diametrically compressed disk 

The procedure described above has been applied for determining piezooptic 
coefficients for a trigonal crystal of lithium niobate (LiNbO3) [58, 59]. Let 
us consider a disk made of LiNbO3 crystal, where the coordinate system of 
the optical indicatrix coincides with the laboratory coordinate system. The 
piezooptic tensor for the point symmetry group 3m, which characterizes 
LiNbO3, looks like 
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41 41 44

44 41

14 66

0 0
0 0
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.
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0 0 0 0

ij                                   (2.12) 

 

2.2.1. z-cut disk 

Taking into account formulae (2.1)–(2.3) for the mechanical stresses and the 
relationship π11 – π12 = π66 peculiar for the crystals of symmetry groups 3m, 
32 and , one can obtain the following equation for the cross-section of 
optical indicatrix by the plane z = 0 of LiNbO3 [58]: 

 
2 2

11 11 1 12 2 11 12 1 11 2

11 12 62 1.
B x B y

xy
                       (2.13) 

 
Solving this equation, one can obtain the following relations for the 

rotation angle 3 of optical indicatrix around the z axis and the optical 
birefringence n induced by mechanical compression: 

 
11 12 6 6

3
11 11 1 12 2 11 12 1 11 2 1 2

2 2t g2 ,
B B

         (2.14)

23 2
12 0 11 12 1 2 6

1 4 .
2

n n                                           (2.15) 

 
Fig. 2-2 shows the coordinate distributions of the optical indicatrix 

rotation angle and the induced birefringence obtained from the numerical 
simulations based on the relations (2.14) and (2.15) for the z-cut of LiNbO3 
crystals. Here the mechanical stresses have been determined from the 
relations (2.1)–(2.3). The following numerical values are used in the 
calculations: the applied force P = 100 N, the disk thickness d = 2 mm, the 
disk radius R = 10 mm, π11 – π12 = –0.47 B, the ordinary refractive index 
no = 2.287, the extraordinary refractive index ne = 2.203, and the 
wavelength λ = 632.8 nm [60, 61]. 
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a) b) 
Fig. 2-2. 2D maps of induced birefringence (a) and optical indicatrix rotation angle 
(b), as calculated for the crystalline LiNbO3 disk compressed along its y axis [58]. 
Adapted with permission from Vasylkiv, Y., Savaryn, V., Smaga, I., Krupych, O., 
Skab, I., & Vlokh, R. (2011). Studies of piezooptic coefficients in LiNbO3 crystals 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 12(4), 
180–190. © O. G. Vlokh Institute of Physical Optics. 

 
Let us analyze the distribution of the birefringence in the xy-plane. 

Along the diameter x = 0 (i.e., the vertical diameter parallel to the vector of 
applied force), the 6 component is zero, whereas the  and 2 components 
are equal to 

 

1 ,P
dR

                                                                                        (2.16)

2 2 2
2 2 1 .

2
P R
d RR y

                                                            (2.17) 

 
The birefringence along this diameter is given by 
 

3 3
12 0 11 12 1 2 0 11 12 2 2

1 2Δ ,
2

RP
n n n

d R y
           (2.18) 

 
whereas the optical indicatrix rotation remains zero, according to the 
relation (2.14). Note, however, that the birefringence at the origin of the 
coordinate system differs from zero: 
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Using the relation (2.18) and the nonlinear dependence of the 
birefringence n on the coordinate y obtained experimentally, one can 
determine the value π11 – π12. 

Under condition y = 0, corresponding to the horizontal diameter 
perpendicular to the mechanical force, the 6 component remains zero, 
whereas the  and 2 components are equal to 

 
2

1 22 2

2 2 1 ,
2

P Rx
d Rx R

                                                        (2.20)

3

2 22 2
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2

P R
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                                                       (2.21) 

 
In this case we have tan2  = 0, while the birefringence can be written as 
 

2 2
3 3

12 0 11 12 1 2 0 11 12 22 2

1 2Δ .
2
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n n n

d R x
            (2.22) 

 
The value π11 – π12 (and, therefore, the coefficient 66) can be 

determined from the relations (2.18) or (2.22), provided that the coordinate 
distributions of the birefringence along the diameters parallel to the x and y 
axes, are known. Besides, the coefficients 11 and 12 can be determined 
separately, using a standard interferometric technique [62]. 

2.2.2. x-cut disk 

When the LiNbO3 disk is cut perpendicular to the crystallographic x axis 
and the compressive force is applied along the z axis, the following 
components of the mechanical stress tensor are nonzero: 
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2 2
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Then the optical indicatrix equation becomes as follows: 
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One can obtain the relations that describe the birefringence increment 

and the optical indicatrix rotation, using formula (2.26). For instance, for 
the light propagating along the x axis we get 
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where  and . 

Taking into account the relations (2.23)−(2.25), (2.27) and (2.28), we 
obtain under the condition y = 0 that 
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Then the relation (2.27) for the birefringence increment takes the form 
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For the center of the disk (z = y = 0) we have 
 

3 3
11 13 31 3323 3 3 .

2 o e
P

n n n
dR

                      (2.33) 

 
Using the relation (2.32) and the dependence of birefringence increment 

on the z coordinate calculated for the LiNbO3 crystals (Fig. 2-3), one can 
determine the combination  of the piezooptic coefficients. In 
our simulations, we have taken the following piezooptic coefficients: 

11 = –0.38 B, 13 = 0.8 B, 31 = 0.5 B and 33 = 0.2 B [60]. 
 

 
Fig. 2-3. Coordinate distribution of birefringence increment calculated along the 
compression diameter (y = 0) for x-cut LiNbO3 disk: P || z, P = 100 N, d = 2 mm and 
R = 10 mm [58]. 
Adapted with permission from Vasylkiv, Y., Savaryn, V., Smaga, I., Krupych, O., 
Skab, I., & Vlokh, R. (2011). Studies of piezooptic coefficients in LiNbO3 crystals 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 12(4), 
180–190. © O. G. Vlokh Institute of Physical Optics. 

 
Subsequently, the combination of piezooptic coefficients  

can be determined using (2.33) and a known combination . 
Moreover, the coefficient 41 can be found from the formula (2.28) 
whenever the optical indicatrix rotation angle is determined in the centre of 
the disk: 

 
3

1 41
32
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n dR

                                                                 (2.34) 
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As seen from the relation (2.28), the optical indicatrix rotation ζ1 does 
not depend on the z coordinate and remains sufficiently small (for LiNbO3 
crystals we have ζ1 = 0.01 deg if 41 = –0.88 B [62]). 

For the diameter perpendicular to the mechanical force (z = 0), we 
consider the following stress tensor components: 
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Then the birefringence increment is given by 
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At y = 0, the birefringence increment in the centre of the disk reads as 
 

3 3
11 13 31 3323 3 3 .

2 o e
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                      (2.39) 

 
Using the dependence of birefringence increment on the y coordinate 

(see Fig. 2-4), one can determine the combination of piezooptic coefficients 
given by formula (2.39). 
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Fig. 2-4. Coordinate distribution of birefringence increment calculated along the 
diameter z = 0 for compressed x-cut LiNbO3 disk: P || z, P = 100 N, d = 2 mm and 
R = 10 mm [58]. 
Adapted with permission from Vasylkiv, Y., Savaryn, V., Smaga, I., Krupych, O., 
Skab, I., & Vlokh, R. (2011). Studies of piezooptic coefficients in LiNbO3 crystals 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 12(4), 
180–190. © O. G. Vlokh Institute of Physical Optics. 

 
It is worthwhile to note that the optical indicatrix rotation angle, which 

is expressed by the formula 
 

22 23 3

1 41 2 41 22 232 32
t g2 ,

R yn n P
n n dR y R

                     (2.40) 

 
depends on the y coordinate. Then this relation can serve as an additional 
tool for determining the coefficient 41. The corresponding dependence is 
displayed in Fig. 2-5. 
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a) b) 
Fig. 2-5. Coordinate distributions of optical indicatrix rotation calculated within the 
cross-section (a) and along the diameter z = 0 (b) for compressed x-cut LiNbO3 disk: 
P || z, P = 100 N, d = 2 mm and R = 10 mm [58]. 
Adapted with permission from Vasylkiv, Y., Savaryn, V., Smaga, I., Krupych, O., 
Skab, I., & Vlokh, R. (2011). Studies of piezooptic coefficients in LiNbO3 crystals 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 12(4), 
180–190. © O. G. Vlokh Institute of Physical Optics. 

2.2.3. y-cut disk 

Let us deal with the LiNbO3 disk perpendicular to the y axis and a 
compressive force be applied along the x axis. Then the stress components 
are determined by the relations 

 
2 2

3 2 22 22 2

2 1 ,
2

R x z R x zP
d Rz R x z R x

                (2.41)

3 3

1 2 22 22 2

2 1 ,
2

R x R xP
d Rz R x z R x

                (2.42)

2 2

5 2 22 22 2

2 .
R x z R x zP

d z R x z R x
                            (2.43) 
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In this case, the equation for the optical indicatrix reads as 
 

2 2
1 11 1 13 3 1 12 1 13 3

2
3 31 1 33 3 41 1 44 5 14 62 2 4 1.

B x B y

B z yz xz xy    (2.44) 
 
Then the birefringence increment takes the form 
 

3 3
11 1 13 3 31 1 33 331

1Δ ,
2 o en n n                  (2.45) 

 
and the rotation ζ2 of optical indicatrix about the y axis is given by the 
relation 

 
44 5

2
1 3 11 31 1 13 33 3

2 23 3

44 5 44 2 22 22 231 31

2tan 2

2 .
Δ Δ

B B

R x z R x zn n P
n n d z R x z R x

         (2.46) 

 
Formula (2.46) enables one to determine the coefficient 44, using the 

experimental dependences of optical indicatrix rotation on the x and z 
coordinates. The corresponding coordinate dependence of optical indicatrix 
rotation obtained by numerical simulations is shown in Fig. 2-6. Here we 
have taken the piezooptic coefficient value 44 = 2.25 B [60]. 

The birefringence increment in the direction perpendicular to the 
compression axis (x = 0) is as follows: 

 
2 2

23

3 3 2 2 3 3 2 2
31 11 13 33

22 2

( )

3
.

2

e o o e

P R z
n

d

n n R z n n R z

R z R

               (2.47) 
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Fig. 2-6. 2D map of optical indicatrix rotation calculated for the compressed y-cut 
LiNbO3 disk: P || x, P = 100 N, d = 2 mm and R = 10 mm [58]. 
Adapted with permission from Vasylkiv, Y., Savaryn, V., Smaga, I., Krupych, O., 
Skab, I., & Vlokh, R. (2011). Studies of piezooptic coefficients in LiNbO3 crystals 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 12(4), 
180–190. © O. G. Vlokh Institute of Physical Optics. 

 
Then the dependence of birefringence increment at the x axis (z = 0) is 

defined as 
 

2 2
3 3 3 3

11 31 33 1331 2 2

3Δ .
2 o e e o

P R x
n n n n n

R d R x
 (2.48) 

 
Hence, combinations of the piezooptic coefficients can be determined 

basing on the coordinate dependences of birefringence increment along the 
vertical (z = 0) and horizontal (x = 0) diameters. 

The phenomenological relations describing the induced changes in the 
birefringence and the optical indicatrix rotation for crystalline disks have 
been derived for all the principal crystalline sections of all the symmetry 
groups [57] (see Appendix A). They can be used in practice while 
calculating the piezooptic coefficients or their combinations. For this 
purpose, one has to fit experimental dependences of the optical anisotropy 
parameters along the diameters and along the chords parallel and 
perpendicular to the compression direction using the corresponding 
formulae. Then the piezooptic coefficients under interest can be obtained as 
the fitting coefficients. 
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2.2.4. Experimental procedures and results 

In order to check experimentally our method for determining the piezooptic 
coefficients, we have employed the 2D polarimeter described in detail in 
paragraph 1.2.1. Here a circularly polarized incident beam, which is not 
sensitive to orientation of the optical indicatrix, has been used for measuring 
the optical birefringence. A crystalline sample can be described by a 
standard linear-retarder model. In other words, it is characterized by the two 
parameters of optical anisotropy, the orientation angle of optical indicatrix 
and the linear birefringence. 

In the first experiment [58], we have prepared a sample of LiNbO3 made 
in the shape of disk, with the radius 7.5 mm, the thickness 3 mm, and the 
sample faces perpendicular to the crystal physical axis z. Then the yz-plane 
is parallel to one of the mirror symmetry planes. The loading force 
(P = 19.8 N) has been applied along the diameter parallel to the y axis. 

As a result, 2D distributions of the induced birefringence and the optical 
indicatrix rotation have been obtained for the compressed sample. After 
fitting the experimental distribution of the birefringence along the 
compression axis by the relation (2.18), we have calculated the piezooptic 
coefficient |π66| = |π11 – π12| = 0.20 B. This value is less than that obtained in 
the work [60] (π11 – π12 = –0.47 B) using the interferometric method and a 
traditional sample-loading scheme. For comparison, the coefficient 
π66 = π11 – π12 has also been measured with the four-point bend method 
[63, 64]. The value obtained in these experiments (–0.57±0.08 B) is almost 
three times larger than that obtained in the experiment with compressed 
disk. 

Hence, the piezooptic coefficient obtained in our compressed-disk 
experiment differs significantly from the data obtained using the other 
methods, including the data reported in Ref. [60]. To explain this 
discrepancy, we have repeated our experiments with the same configuration 
of the 2D polarimeter but a different crystalline sample. 
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The second disk-shaped LiNbO3 sample has been prepared from a plate 
with a minimal residual birefringence along the z direction. The diameter of 
the disk is equal to 13.74 mm and its thickness 2.32 mm (see Fig. 2-7). The 
loading force is applied along the y axis. 

 

 
Fig. 2-7. Pattern of a disk-shaped crystalline sample seen with a polarimeter. 
Interference fringes are caused by multiple reflections from sample surfaces and 
indicate their imperfect parallelism. 
Adapted with permission from Savaryn, V., Krupych, O., & Vlokh, R. (2014). 
Refined measurements of piezooptic coefficient π66 for the lithium niobate crystals, 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 15(1), 
30–37. © O. G. Vlokh Institute of Physical Optics. 

 
To provide circular polarization of the incident beam, the fast axis of the 

compensator has been initially set parallel to the transmission axis of the 
polarizer. The corresponding azimuth is indicated as C0. After that, the 
compensator has been rotated such that the angular position C1 = C0 –
 45 deg is achieved. 

The birefringence n12 induced by compressing the z-cut LiNbO3 disk 
along its y axis is expressed by the relation (2.15). Then the optical 
retardation Δ can be written as 

 
23 2

12 611 12 1 2Δ 4 .
2 o
d

d n n                          (2.49) 

 
For the case of diameter of “load” (x = 0), the dependence of the optical 

retardation Δ on the y coordinate is expressed through the birefringence 
n12 given by (2.18): 
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3 3
12 0 66 0 66 2 22 2

2 .
2
d RP P R

d n n n
R yd R y

            (2.50) 

Taking formula (2.22) into account, one can write the dependence of 
optical retardation Δ on the x coordinate for the alternative “perpendicular” 
diameter (y = 0) as follows: 

 
2 2 2 2

3 3
0 66 0 662 2 2 2 2 2

2 ( ) ( ) .
2 ( ) ( )
d P R R x P R R x

n n
d R x R x

                  (2.51) 

 
Hence, the coefficient 66 can be determined by fitting, with the 

functions (2.50) or (2.51), either of the experimental dependences of optical 
retardation Δ on the coordinate along the “loading” or “perpendicular” 
diameters. 

The coordinate dependences of the optical retardation and the optical 
indicatrix orientation in the sample have been obtained experimentally at 
the loading forces 0, 16.30 and 57.06 N. An example is presented in Fig. 2-
8. The both dependences agree quite well with the theoretical formulae 
(2.14) and (2.49). 

 

a) b) 
Fig. 2-8. 2D maps of optical retardation (a) and optical indicatrix rotation angle (b) 
induced in a disk-shaped LiNbO3 sample by the loading force 57.06 N 
(  = 632.8 nm). Compensator orientation is given by C1 = C0 – 45 deg. 
Adapted with permission from Savaryn, V., Krupych, O., & Vlokh, R. (2014). 
Refined measurements of piezooptic coefficient π66 for the lithium niobate crystals, 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 15(1), 
30–37. © O. G. Vlokh Institute of Physical Optics. 
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After that, the spatial distribution of the optical retardation obtained at 
the loading force 16.30 N has been subtracted from the distribution 
corresponding to the loading force 57.06 N. The resulting “difference” 
distribution of the optical retardation increment δ  is shown in Fig. 2-9. 
Using this distribution, we have obtained the coordinate dependences of the 
δ  parameter for the both cases of “loading” and “perpendicular” diameters. 

 

 
Fig. 2-9. 2D map of optical retardation increment δ  in a disk-shaped LiNbO3 
sample, as observed after changing the loading force from 16.30 to 57.06 N 
(  = 632.8 nm). Compensator orientation is given by C1 = C0 – 45 deg. 
Adapted with permission from Savaryn, V., Krupych, O., & Vlokh, R. (2014). 
Refined measurements of piezooptic coefficient π66 for the lithium niobate crystals, 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 15(1), 
30–37. © O. G. Vlokh Institute of Physical Optics. 
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Fig. 2-10a presents the experimental data and the fitting curve, from 
which the coefficient 66 = –0.571 0.012 B has been calculated. 

 

a) b) 
Fig. 2-10. Dependences of optical retardation increment δ  on the x coordinate 
(along “perpendicular” diameter) (a) and on the y coordinate (along diameter of 
“load”) (b), as calculated for a disk-shaped LiNbO3 sample after changing the 
loading force from 16.30 to 57.06 N (  = 632.8 nm). Compensator orientation is 
given by C1 = C0 – 45 deg. 
Adapted with permission from Savaryn, V., Krupych, O., & Vlokh, R. (2014). 
Refined measurements of piezooptic coefficient π66 for the lithium niobate crystals, 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 15(1), 
30–37. © O. G. Vlokh Institute of Physical Optics. 
 

The dependence of δ  on the x coordinate for the “perpendicular” 
diameter has been fitted by the function given by (2.51), with replacement 
of P and Δ by Р and δ : 

 
2 2

3
0 66 2 2 2

Δ ( )Δ .
( )

P R R x
n

R x
                                                         (2.52) 

 
The dependence δ  on the y coordinate for the “loading” diameter has 

been fitted by the dependence similar to equation (2.50): 
 

3
0 66 2 2

ΔΔ .P R
n

R y
                                                              (2.53) 

 
It can be seen from the relation (2.53) that, in the vicinity of the points 

where the loading force is applied (|y| R), the denominator approaches 
zero, which gives rise to δ singularity. The reason for its appearance can 
be found in formula (2.2). Indeed, according to (2.2), the component  
becomes infinite when x = 0 and |y| = R. This means that the relation (2.2) 
represents a limited model which cannot be applied to the spatial regions 
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close to the points where the loading force is applied. The question arises: 
for which range of y coordinate one can apply formula (2.53) such that the 
approach remained correct from the viewpoint of data fitting? 

To solve this problem practically, we have fitted the experimental data 
in the following different ranges (see Fig. 2-10b): |y| < 6.5 mm  0.95R (i.e., 
the full data range); |y| < 6.0 mm  0.88R; |y| < 5.5 mm  0.80R. 

The piezooptic coefficients 66 obtained for these data ranges amount to 
0.359 0.010, –0.480 0.010 and –0.508 0.010 B, respectively. It is evident 
that narrowing of the data range (from the overall one to the range defined 
by |y| < 0.80R) brings the 66 value closer to that obtained in the case of 
“perpendicular” diameter. Further reduction of the data range does not 
increase the 66 value, although the quality of fitting deteriorates due to 
negative influence of multiple-reflection fringes. Thus, the optimal data 
range for the case of “loading” diameter is |y| < 0.80R. The corresponding 
value of the piezooptic coefficient 66 is equal to –0.508 0.010 B. 

To increase the resulting accuracy for the piezooptic coefficient 66, we 
have repeated the procedure described above in case when the circular 
polarization of the incident beam has the opposite sign. To do this, the 
compensator has been rotated from its initial azimuthal position C1 = C0 –
 45 deg to the position C2 = C0 + 45 deg. The experimental dependences and 
the fitting results for this case are depicted in Fig. 2-11. 

 

a) b) 
Fig. 2-11. Dependences of optical retardation increment δ  on the x coordinate 
(along “perpendicular” diameter) (a) and on the y coordinate (along diameter of 
“load”) (b), as measured for a disk-shaped LiNbO3 sample after changing the 
loading force from 16.30 to 57.06 N (  = 632.8 nm). Compensator orientation is 
given by C2 = C0 + 45 deg. 
Adapted with permission from Savaryn, V., Krupych, O., & Vlokh, R. (2014). 
Refined measurements of piezooptic coefficient π66 for the lithium niobate crystals, 
using a crystalline disk compressed along its diameter. Ukr. J. Phys. Opt., 15(1), 
30–37. © O. G. Vlokh Institute of Physical Optics. 
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We obtain the piezooptic coefficient 66 equal to –0.502 0.009 B for the 
case of “perpendicular” diameter (Fig. 2-11a) and –0.450 0.008 B for the 
diameter of “load” (Fig. 2-11b). Hence, the average value and the error of 
the piezooptic coefficient 66 amount to 66  = –0.508 B and 
Δ 66 = 0.049 B, respectively. The corresponding confidence interval for the 

66 parameter is given by [–0.459 B; –0.557 B], which is consistent with 
both the data reported in the work [60] ( 66 = –0.47 B) and the data obtained 
using the four-point bending method [64] ( 66 = –0.573 0.079 B). 

These considerations explain exhaustively the inaccurate value of the 
piezooptic coefficient 66 reported in Ref. [58] for the LiNbO3 crystals. 
Namely, the reason for this error is unreasonable choice of the fitting 
interval. Instead of the correct interval [–0.8R; +0.8R] providing the correct 
results, in [58] the interval equal to the full disk diameter ([–R; +R]) has 
been chosen. This feature must be properly taken into account when 
calculating the piezooptic coefficients from the experimental dependences 
of optical retardation along the diameter of “load”. 

Summarizing, the method for measuring piezooptic coefficients, which 
is based on diametrical compression of disk-shaped samples, can be 
successfully used to study either crystalline or amorphous materials. 
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SECTION 3 

OPTICAL ANISOTROPY OF CRYSTALS 
INDUCED BY MECHANICAL TORSION 

3.1. Torsion-optical method for measuring piezooptic 
coefficients 

When measuring piezooptic coefficients, one has to solve a problem of non-
uniform distribution of mechanical stresses in a sample under study, which 
appears due to barrel-like deformations. In particular, a solution becomes 
possible whenever one forms the mechanical stresses with a predetermined 
2D configuration. The example may be a so-called four-point bending 
method [65], in which a spatial distribution of mechanical stresses is 
predetermined. This method is often used to determine the piezooptic 
coefficients. 

The above consideration is also valid when a torsion moment is applied 
to a sample. Moreover, the use of torsion allows for determining the values 
of so-called non-principal piezooptic coefficients  (λ = 1…6 and 

 = 4…6). Usually, these coefficients are not determined at all due to 
complicated geometric conditions of appropriate experiments or are simply 
recalculated in a cumbersome way from the results of indirect 
measurements [66, 67], thus leading to increasing errors. 

To explain a possibility for measuring the non-principal piezooptic 
coefficients with the torsion-optic method, we remind that twisting of rods 
with circular sections of a radius R by a moment Mz applied to the ends of 
rod around the z axis results in appearance of only shear components of the 
mechanical stress tensor [68]: 

 

4 54

2 ,zM
x y

R
                                                                  (3.1) 

 
where 4  and 5  are the Kronecker symbols. Thus, the mechanical stress 
components 4 and 5 appear when a cylindrical sample is twisted around 

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 3 
 

54 

the z axis. These components are linearly dependent on the x and y 
coordinates, respectively. They become zero at x = y = 0 (i.e., just at the 
torsion axis). 

According to ASTM (American Society for Testing and Materials) 
standards [69], one has to determine any piezooptic coefficient (even that 
for an isotropic material) with at least three different methods used during 
the phase-difference measurements, e.g. four-point bending, compression 
and stretching. On the other hand, an acoustooptic Dixon−Cohen method 
can be used, which also allows for determining the elastooptic coefficients 
[70, 71] with sufficiently high accuracy (3% in the case of principal and 
10% in the case of non-principal coefficients). However, this method cannot 
determine the signs of elastooptic coefficients. 

In this regard, it is advisable to analyze the conditions under which non-
principal piezooptic coefficients can be determined due to twisting of 
crystals and to obtain the appropriate analytical relations for the crystals of 
different point symmetry groups [72]. Such an analysis is based on the 
equation for optical indicatrix deformed by a torsion moment [73]. 

3.1.1. Isotropic media and crystals related to cubic system 

In the case of light propagation in a twisted isotropic medium (e.g., in an 
initially isotropic fiber [74]), the piezooptic matrix (1.10) contains a single 
independent coefficient 44 = 55 = 66, which describes the change in 
refractive indices due to shear stresses. All the other coefficients associated 
with the shear stresses are zero. 

Let us consider the optical indicatrix equation for an isotropic medium 
twisted around the z axis (for the isotropic media, we choose the xyz system 
as a laboratory coordinate system): 

 
0 2 0 2 0 2
11 11 11 44 23 44 13   2  2  1,B x B y B z x yz y xz           (3.2) 

 
where 44 = 11 – 12. When the light propagates along the z axis, the 
equation that describes the cross-section of the optical indicatrix by the 
plane z = 0 is given by 

 
0 2 0 2
11 11 1.B x B y                                                                                (3.3) 

 
Equation (3.3) shows that the cross-section of the optical indicatrix by 

the plane z = 0 is a circle. This indicates that the torsion moment does not 
induce the birefringence along the z direction. For the light propagation 
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along any other direction perpendicular to the torsion axis (e.g., along the y 
axis), the equation for the cross-section of optical indicatrix by the 
corresponding orthogonal plane (e.g., with the plane y = 0) is as follows: 

 
0 2 0 2
11 11 44 13 2  1.B x B z y xz                                                    (3.4) 

 
Under these conditions, the induced birefringence can be written as 
 

3 3
13 44 13 44 4

2( ) .zM
n n y n y

R
                                                    (3.5) 

 
As seen from the relation (3.5), the birefringence is linearly dependent 

on the y coordinate that corresponds to the direction of propagation of the 
light wave. However, the total birefringence along this direction should be 
zero, since the origin of the coordinate system (y = 0) is located in the 
geometric centre of the sample. This statement can be easily proved using 
the Jones matrix approach. 

To do this, we consider a sample divided into, e.g., 6000 uniform layers 
of the same thickness dm, which are perpendicular to the y axis. The 
resultant Jones matrix for this sample can be obtained by multiplying the 
Jones matrices of all elementary layers [72]: 

 
6000

1
,m

m

J J                                                                                          (3.6) 

 
where 

 

cos sin cos2 sin( / 2)sin 2
2 2

.
sin( / 2)sin 2 cos sin cos2

2 2

m m
m m m

m
m m

m m m

i i
J

i i
        (3.7) 

 

In formula (3.7), 3
44 4

22 /z
m m

M
d n y

R
 is the phase difference 

of the elementary layer m, which is induced by the torsion stress, λ denotes 
the wavelength of light wave, and m the orientation angle of optical 
indicatrix. 
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In the mathematical simulation, the following parameters have been 
used: Mz = 0.16 N×m, n = 2.0, R =3 mm, 12 2

44 5.0 10  m /N  and 
632.8 nm . Since the imaginary part of the component 11j  of the 

resultant Jones matrix is equal to 11Im  sin / 2 cos2j  at 45 deg , 
the effective induced phase difference can generally be obtained from the 
relation 112asin Imj , and the corresponding effective birefringence 
from the expression 4n R . As a result, we have obtained that both 
the resultant phase difference and the effective birefringence are zero. 

Moreover, the average value of the function 13n f y  determined by 
the relation (3.5) is also zero: 

 
13

13

3 3
13 44 13 13 44 4

13

21 1( ) 0.
2 2

y
z

y

M
n n y d n ydy

y R
            (3.8) 

 
Indeed, the optical-indicatrix rotation angle can be represented as 

45 degy  at 0y  and 45 degy  at 0y . Due to this 
circumstance, the birefringence becomes equal to zero when the light passes 
the entire sample. In other words, the piezooptic coefficient 44  cannot be 
determined in this experimental geometry. The fact that the birefringence 
does not depend on the x and z coordinates represents a drawback of this 
geometry. 

Let us consider an inclined incidence of light beam with respect to the 
torsion axis, e.g. the incidence at an angle 45 deg with respect to the y  and 
z  axes (Fig. 3-1). 

Then the impermeability tensor must be rewritten in some coordinate 
system x y z , which is rotated by the angle 45 deg around the x axis. The 
optical indicatrix equation in this coordinate system is as follows: 

 
0 2 0 2 0 2
11 11 44 23 11 44 23

44 13 44 13

( ( )) ( ( ))

2 ( ) 2 ( ) 1.

B x B x y B x z

y x z y x y
                        (3.9) 
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Fig. 3-1. Experimental geometry used to determine piezooptic coefficient 44 in 
isotropic media or crystals of cubic system [72]. 
Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36. 
Copyright Wiley-VCH GmbH. Reproduced with permission. 
 

For the case of light propagation along the y  axis, one has to consider 
the cross-section of the optical indicatrix (3.9) by the plane 0y : 

 
0 2 0 2
11 11 44 23 44 13( ( )) 2 ( ) 1.B x B x z y x z                         (3.10) 

 
Following from equation (3.10), the eigenvalues of the imprmeability 

tensor and the principal refractive indices are given respectively by the 
expressions: 

 
0 2 2

11, 33 11 44 23 44 23 13
1 1( ) ( ) 2 ( ),
2 2

B B x x y                        (3.11)

3 2 2
1 ,3 44 23 23 13

1 ( ) ( ) 2 ( ) .
4

n n n x x y                             (3.12) 

 
It follows from formula (3.12) that the induced birefringence is 

determined not only by the component 13  but also by the component 23 : 
 

3 2 2
1 3 44 23 13

1 ( ) 2 ( ).
2

n n x y                                                   (3.13) 

 
In this case we deal with the cross-sections z x  or z x  orthogonal to 

the light beam. Then the component 13  must depend on the y  and z  
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coordinates, while the component 23 must depend only on the x

coordinate. If we scan the light beam along the x axis, the equations 0z
and 13 0 can be satisfied. Hence, the relation (3.13) is reduced to

3 3
1 3 44 23 44 4

1 ( ) ,
2

zM
n n x n x

R
                                              (3.14)

In its turn, the piezooptic coefficient 44 can be determined from the 
relation (3.14):

4
1 3

44 11 12 3 .
z

n R
n M x

                                                             (3.15)

The above analysis is also valid for the crystals of cubic system, 
provided that the inequality 44 11 12– holds for the piezooptic
coefficients of the point symmetry groups 23 and m3. Besides, in the case of 
light incidence at some nonzero angle with respect to the torsion axis, an 
immersion liquid must be used in the experiment.

3.1.2. Crystals and textures of point symmetry groups , 
, , , , , , , , 

and 

The piezooptic tensor (1.10) for this type of medium contains two 
independent coefficients associated with the shear stresses. It differs by the 
inequality 44 55 66  from the tensor peculiar for the crystals of 
cubic system.

For these media, the piezooptic coefficient 44 can be determined under 
the following experimental conditions: (i) application of the torsion moment 
M with some nonzero components and (ii) direction of light propagation 
(i.e., direction of the wave vector k ) defined as ( , )xM k y)y , ( , )yM k x) , 
( , )zM k x) or ( , )zM k y)y . This is because, for all of these experimental 
geometries, the induced birefringence increment depends quadratically on 
the components of mechanical stress tensor and, as a result, on the squared 
optical path [73]. At the same time, the shear stress components change 
their signs where the principal planes of the Cartesian coordinate system 
intersect one another, i.e. in the planes that cross the torsion axis. In such a 
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case, the above-mentioned quadratic relationship would lead to the 
appearance of birefringence increment of the same sign in front and behind 
the coordinate planes. As a result, the total birefringence increment is not 
zero.

We obtain the relation which can be used for determining the effective 
birefringence (e.g., in the case ( , )zM k x) ) from the Jones matrices and the 
relations (3.6) and (3.7). In this case the induced birefringence is equal to 

2 2 3 3 2
2 2

23 442 2 2 8

2 ( )( ) o e o e z

o e

n n n n M
n x

n n R
and, therefore, the phase difference is 

determined by the relation 
2 2 3 3 2

2 2
442 2 2 8

2 ( )2 /o e o e z
m m

o e

n n n n M
d x

n n R
.

In our simulations, we have found that the effective birefringence 
increment is –73.7 10–3.7 10 (here we choose the simulation parameters the 
same as in the case of isotropic media, i.e. 2.0on and 1.99en ).

On the other hand, the average value of the function 23( )n f x

describing the coordinate dependence of the birefringence can be written as

23

23

2 2 3 3
2 2

23 44 23 232 2
23

2 2 3 3 2 2 2 3 3 2 2
2 2 2
44 442 2 2 8 2 2 2 8

1 ( )( ) ( )
4

1 ( ) ( ) 2 .
3

o e o e

o e

x
o e o e z o e o e z

o e o ex

n n n n
n x d

n n

n n n n M n n n n M x
x dx

x n n R n n R

           (3.16)

For the case x R , o en n n and –o en n n , the equation (3.16) 
reads as

26
2

23 44 2 6

2( ) .
3

zMn
n

n R
                                                               (3.17)

Thus, following from (3.17) and the data derived for the dependence of 
induced birefringence on the torsion momentum (Fig. 3-2a), one can easily 
determine the corresponding piezooptic coefficient:

3

44 233

3 ( ) .
2z

R
n n

n M
                                                           (3.18)
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a) b)
Fig. 3-2. Experimental geometries used for measuring piezooptic coefficients 44

(a) and 66 (b) in the crystals and textures that belong to the point symmetry groups 

422 , 4mm , 42m , 4 / mmm , 622 , 6mm , 6 2m , 6 / mmm , 2 , m and 
/ mm [72].

Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36.
Copyright Wiley-VCH GmbH. Reproduced with permission.

It should be noted that the induced birefringence increment obtained by 
us in the simulations ( –73.7 10–3.7 10 ) is a value that can be determined, e.g., 
with a standard Senarmont method. However, the most important 
conclusion from the above consideration is that, in the case of relatively 
simple (e.g., linear or quadratic) coordinate dependence of the 
birefringence, its value obtained by the Jones matrix method is the same as 
the value obtained by averaging the function ( )ijn f x . This allows 
one to use the average of coordinate dependence of the birefringence as a 
true value. In addition, the piezooptic coefficient 44 can be determined 
using the method described above for the isotropic media, i.e. in the 
geometry when the light propagates at some angle with respect to the z or 
y axis and a torsion moment is applied around the z axis.

Now let us consider the possible ways of determining the coefficient 
66 . For the experimental geometries ( , )xM k z) or ( , )yM k z) , the 

dependences of the birefringence on the torsion moment acquire the forms
3 3

12 66 12 66 4

2 x
o o

M
n n n z

R
or 3 3

12 66 12 66 4

2 y
o o

M
n n n z

R
, 

respectively. For instance, for the experimental geometry ( , )yM k z) , the 
total birefringence on the optical path from z to z can be defined as the 
average value of the function
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12

12

3 3
12 66 12 12 66 4

12

1 1( ) 0.
2

z
y

o o
z

M
n n z d n zdz

z R
             (3.19) 

 
As seen from the relation (3.19), the total birefringence is equal to zero. 

In other words, it is necessary to use some other experimental geometry in 
order to determine the coefficient 66 . 

In particular, inclined light incidence with respect to the torsion axis can 
be used for this purpose. Let the light propagate along the bisector of x  and 
z  axes (Fig. 3-2b). Under the action of torsion moment applied around the 
x  axis, the optical indicatrix changes under the influence of the mechanical 
stress components 12  and 13  and takes the form 

0 2 0 2 0 2
11 11 33 44 13 66 122 2 1B x B y B z xz xy . If one rewrites this 

relation in the x y z  coordinate system, which is rotated relative to the xyz  
coordinate system by an angle 45 deg around the y  axis, it takes the form: 

 
0 0 2 0 2
11 33 44 13 11

0 0 2
11 33 44 13

0 0
66 12 33 11

66 12

0.5( ) ( )

0.5( ) ( )

2 ( ) ( )

2 ( ) 1.

B B y x B y

B B y z

z z y B B x z

z x y

                                        (3.20) 

 
The cross-section of the ellipsoid (3.20) by the plane 0x  orthogonal 

to the direction of light propagation gives the following equation of the 
ellipse: 

 
0 2 0 0 2
11 11 33 44 13 66 12

1 ( ) ( ) 2 ( ) 1.
2

B y B B y z z z y         (3.21) 
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From equation (3.21), the eigenvalues of the refractive indices can be 
obtained: 

 
2 2 2 2

3 66 12
2 2 2 2 2

44 13
3

3 2 2 2 2

2 2 2 2
66 12

44 13 2 2 2 2
44 13

( )1 ,
2 2 ( )

2 21
2

( )( ) .
2 ( )

o e
o o

e o o e

o e o e

o e o e

o e

e o o e

n n z
n n n

n n n n y

n n n n
n

n n n n

n n z
y

n n n n y

                                      (3.22) 

 
Then, from the relations (3.21) and (3.22), the induced birefringence 

increment is obtained as 
 

3

2 3 44 132 2

3
2 2 2 2

3 66 12
2 2 2 22 2

44 13

3

44 42 2

3 2 2
6

3

2 2

21( ) ( )
2

2 ( )1
2 2 ( )

2

22

o e

o e

o e o e
o

e o o eo e

o e x

o e

o e
o e

o

o e

n n
n y

n n

n n n n z
n

n n n n yn n

n n M
y

Rn n

n nn n
n

n n

2
2 2
6 2 8

2 2 2 2
44 4

.
4

x

x
e o o e

M
z

R
M

n n n n y
R

                      (3.23) 
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The rotation angle of optical indicatrix is given by 
 

2 2
66 12

2 2 2 2
44 13

2 2
66 4

2 2 2 2
44 4

2 2 ( )tan 2
2 ( )

4 2
.

4

o e
x

e o o e

x
o e

x
e o o e

n n z
n n n n y

M
n n z

R
M

n n n n y
R

                                            (3.24) 

 
Formulae (3.23) and (3.24) can easily be simplified for the case of light 

propagation in the x z  plane ( 0y y ): 
 

2
3 2 2 2 2

66 2 8
3

2 3 2 22 2

2( ) 2 ,
x

o e
o e

o
e oo e

M
n n zn n Rn n

n nn n
                        (3.25)

2 2
66 4

2 2

4 2
tan 2 .

x
o e

x
e o

M
n n z

R
n n

                                                        (3.26) 

 
Then the total value of the birefringence at the light propagation from 

z  to z  is determined by the averaged function 
2

32 2 2
66 2 8

3 2
2 3 2 2 2 2

2
32 2 2

66 2 8
3 2

2 2 2 2

2 2 2 2
366

2 2 2 6 2 2

21( )

2 2
3( )

2 2
3( )

x
zo e

o e
o

e o zo e

x
o e

o e
o

e o o e

o e x o e
o

e o o e

M
n n n nRn n z dz

Z n n n n

M
n n n nR n z

n n n n

n n M n n
n

n n R n n

3

,

             (3.27) 

  

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 3 
 

64 

which is simplified to 
 

6 2 2
66

2 3 2 6

2( )
3

xn M
n

n R
                                                                     (3.28) 

 
under the conditions o en n n  and –o en n n . Using equation (3.28) 
and the data for the dependence of induced birefringence increment on the 
torsion moment, one can determine the corresponding piezooptic 
coefficient: 

 
3

66 2 33

3 ( ) .
2x

R
n n

n M
                                                          (3.29) 

 
Note that we have the equality 66 11 12  for the crystals belonging 

to the point symmetry groups 622 , 6mm , 6 2m , 6 / mmm , 2 , m , 
/ mm , whereas the last two coefficients can be determined, e.g., using the 

four-point bending method [65]. 

3.1.3. Crystals and textures of point symmetry groups , , , 
∞ and ∞  

The piezooptic tensor (1.10) for this type of media is characterized by 
the presence of four independent coefficients ( 44 45 62, , , 

66 11 12 =  ), which describe the change in the refractive indices arising 
under influence of shear stresses: 

 
11 12 13 62

12 11 13 62

31 31 33

44 45

45 44

62 62 66

0 0 2
0 0 2
0 0 0

.
0 0 0 0
0 0 0 0

0 0 0

                               (3.30) 

  

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Optical Anisotropy of Crystals Induced by Mechanical Torsion 65

The piezooptic coefficient 62 can be determined, e.g., with the 
following experimental geometries: ( )xM , k x) , ( )xM , k y)y , ( )yM , k x)
or ( )yM , k y)y [72].

Let the additional condition 0y be imposed (Fig. 3-3a). In the case of 
experimental geometry ( )xM , k x) , the induced birefringence increment 
can be written as

3 3
23 62 12 62 4( ) ( ) 2 .x

o o

M
n n z n z

R
                                           (3.31)

Then we obtain

4
23 23

62 3 3
12

( ) ( )
( ) 2o o x

n n R
n z n M z

                                                        (3.32)

for the piezooptic coefficient 62 . The relation (3.32) allows one to measure 
the coefficient 62 in the experimental geometry ( )xM , k x) .

When we have the condition 0z (Fig. 3-3b), the induced 
birefringence becomes as follows:

2 2 2 2
3 3 45 13

23 2 2

2 2 2 2 2
3 3 45

2 2 2 8

( )1( ) ( )
2

2( ) .
( )

o e
o e

o e

o e x
o e

o e

n n y
n n n

n n

n n M y
n n

n n R

                                           (3.33)

Assuming that o en n n and –o en n n , equation (3.33) is 
simplified to the form

6 2 2 2 2 2
645 13 45

23 2 8

( )( ) 2 ,
2

xn y M y
n n

n n R
                                         (3.34)

and the piezooptic coefficient 45 is given by the relation
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4
23

45 233 3
13

2 ( ) 1 ( ) .
2( ) x

n n R
n n

n y n M y
                             (3.35)

a) b)

c) d)
Fig. 3-3. Experimental geometries for measuring piezooptic coefficients 62 (a), 

45 (b), 66 (c) and 44 (d) in the crystals and textures belonging to the point 

symmetry groups 6 , 6 , 6 / m , and / m [72].
Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36.
Copyright Wiley-VCH GmbH. Reproduced with permission.

At the same time, the induced birefringence increment, which is 
determined by equation (3.34), has the value 75 10 75 10 with the same initial 
simulation parameters.
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Instead, the piezooptic coefficient 66 can be determined by examining 
the induced rotation angle of optical indicatrix z about the z axis, 
provided that the coefficient 62 is already known. In this case, one arrives 
at the result 66 622 tan 2 z in the experimental geometries ( )xM , k z)
or ( )yM , k z) (see Fig. 3-3c).

The piezooptic coefficient 44 can be determined using the 
experimental geometry ( )zM , k x) under the condition  0y (Fig. 3-3d). 
In this case, the induced birefringence increment is equal to

2 2 2 2
3 3 44 23

23 2 2

2 2 2 2 2
3 3 44

2 2 2 8

( )1( ) ( )
2

2( ) .
( )

o e
o e

o e

o e z
o e

o e

n n x
n n n

n n

n n M x
n n

n n R

                                           (3.36)

Using the approximation o en n n and –o en n n , one can rewrite 
the relation (3.36) as

6 2 2 6 2 2 2
44 23 44

23 2 8

( ) 2( ) .
2

zn x n M x
n

n n R
                                         (3.37)

Then the function (3.37) average over the optical path from x R to 
x R amounts to

6 2 2 6 2 2
244 44

23 2 8 2 6

1 2( ) ,
3

R
z z

R

n M n M
n x dx

R n R n R
                                 (3.38)

and the piezooptic coefficient 44 is determined by the relation

3

44 233

3 ( ) .
2z

R
n n

n M
                                                           (3.39)

Hence, all of the non-principal piezooptic coefficients for the hexagonal 
point symmetry groups can be determined experimentally with the torsion-
optic method.
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3.1.4. Crystals of point symmetry groups , and 

The piezooptic tensor (1.10) of the crystals belonging to the point symmetry 
groups 4 , 4 and 4 / m contains four independent piezooptic coefficients, 
which are associated with the shear stresses: 44 , 45 , 66 and 16 .

The coefficient 16 can be measured using the experimental geometry 
( )xM , k x) under the condition 0y (Fig. 3-4a). The induced 
birefringence increment is described by the relation [73]:

3
3

23 16 12 16 4( ) ( ) .
2
o x

o

n M
n z n z

R
                                             (3.40)

It follows from equation (3.40) that the piezooptic coefficient 16 can 
be determined by scanning the optical beam along the z axis and gathering 
the appropriate experimental data. The corresponding formula is as follows:

4
23 23

16 3 3
12

2 ( ) ( ) .
( )o o x

n R n
n z n M z

                                                      (3.41)

The coefficient 45 can be measured using the experimental geometry 
( )xM , k x) under the condition 0z (Fig. 3-4a). In the approximations 

o en n n and –o en n n the induced birefringence increment is 
described as

2 2 2 2
3 3 45 13

23 2 2

2 2 2 2 2 6 2 2 2
3 3 45 45

2 2 2 8 2 8

( )1( ) ( )
2

2( ) 2 .
( )

o e
o e

o e

o e x x
o e

o e

n n y
n n n

n n

n n M y n M y
n n

n n R R n

                                   (3.42)
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a) b)

c)
Fig. 3-4. Experimental geometries for measuring piezooptic coefficients 16 , 45

(a), 44 (b) and 66 (c) in the crystals belonging to the point groups of symmetry 

4 , 4 and 4 / m [72].
Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36.
Copyright Wiley-VCH GmbH. Reproduced with permission.

The relation (3.42) makes it possible to determine the piezooptic 
coefficient 45 , when we scan the optical beam along the y axis:

4
23

45 233 3
13

2 ( ) 1 ( ) .
2( ) x

n n R
n n

n y n M y
                             (3.43)

The coefficient 44 can be measured using the experimental geometry 
( )zM , k x) and scanning the optical beam along the z axis under the 
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condition  0y (Fig. 3-4b). The induced birefringence increment is equal 
to

2 2 2 2 2 2 2 2 2
3 3 3 344 23 44

23 2 2 2 2 2 8

( )1( ) ( ) 2( ) .
2 ( )

o e o e z
o e o e

o e o e

n n x n n M x
n n n n n

n n n n R
  (3.44)

By averaging the function (3.44) over the optical path from x to x , 
one obtains

2 2 2 2
3 3 244

23 2 2 2 8

2 2 2 2
3 3 244

2 2 2 8

π1( ) ( )
( )

π2 ( ) .
3 ( )

x
o e z

o e
o e x

o e z
o e

o e

n n M
n n n x dx

x n n R

n n M
n n x

n n R

                                (3.45)

In particular, under the conditions x R , o en n n and –o en n n , 
the relation (3.45) takes the form

2 2 3 3 2 26
2 2

23 44 442 2 2 6 2 6

( )2 2( ) ,
3 3

o e o e z z

o e

n n n n M Mn
n

nn n R R
                 (3.46)

and the piezooptic coefficient 44 is determined by the relation

3

44 233

3 ( ) .
2z

R
n n

n M
                                                           (3.47)

Finally, the piezooptic coefficient 66 can be determined by measuring 
the induced rotation angle of optical indicatrix z in the experimental 
geometry ( )xM , k z) or ( )yM , k z) (Fig. 3-4c), provided that the 
piezooptic coefficient 16 is already known. In this case we have 

66 16 tan 2 z .
Summarizing, one can determine all of the non-principal piezooptic 

coefficients associated with the shear stresses for the crystals of point 
symmetry groups 4 , 4 and 4 / m , using the torsion-optical method.
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3.1.5. Crystals of point symmetry groups , and 

Let us consider the crystals belonging to the point symmetry groups 32 , 
3m and 3m . Their piezooptic tensor (1.10) contains four independent 
piezooptic coefficients associated with the shear mechanical stresses: 44 , 

14 , 41 and 66 .
The coefficient 14 can be determined using the experimental geometry 

( )zM , k z) (Fig. 3-5a) and the relation

3 2 2 3 2 2
12 14 23 13 14 4( ) ( ) 2 .z

o o

M
n n x y n x y

R
                   (3.48)

a) b)

c)
Fig. 3-5. Experimental geometries for measuring piezooptic coefficients 14 (a), 

41 (b) and 44 (c) in the crystals belonging to the point symmetry groups 32 , 3m

and 3m [72].
Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36.
Copyright Wiley-VCH GmbH. Reproduced with permission.
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Then, the coefficient 14 can be determined from the xy -coordinate 
dependence of the induced birefringence on the torsion moment:

4
12 12

14 3 2 2 3 2 2
23 13

.
( ) ( ) 2o o z

n R n

n x y n M x y
                               (3.49)

The coefficient 41 can be measured in the experimental geometry 
( )yM , k y)y (Fig. 3-5b) under the condition 0x . Here the light beam is 
scanned along the z axis. The relation for the induced birefringence 
increment is given by the formula

2 2 2 2
3 3 41 12

13 2 2

2 2 2 2 2
413 3

2 2 2 8

( )( ) 2

8 .
( )

o e
o e

o e

o e y
o e

o e

n n z
n n n

n n

n n M z
n n

n n R

                                           (3.50)

Using the approximations o en n n and –o en n n , one can rewrite 
formula (3.50) as

26
2 2

13 41 2 8

8( ) .yMn
n z

n R
                                                             (3.51)

From equations (3.50) and (3.51), one can obtain the expression for 
determining the coefficient 41 :

4 2 2 4

41 13 1333 3

( ) 1( ) ( ) .
2 2 22

o e

o e y yo e

R n n R
n n n

n n M z n M zn n
           (3.52)

The piezooptic coefficient 44 can be determined in the experimental 
geometry ( )xM , k y)y , while scanning the light beam along the x axis 
under the condition  0z (Fig. 3-5c). Then the induced birefringence 
increment reads as
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2 2 2 2 2 2 2 2 2
3 3 3 344 13 44

13 2 2 2 2 2 8

1 ( )( ) ( ) 2( ) .
2 ( )

o e o e x
o e o e

o e o e

n n y n n M y
n n n n n

n n n n R
              (3.53) 

 
Averaging the function (3.53) over the optical path from y  to y , one 

obtains 
 

2 2 2 2
3 3 244

13 2 2 2 8

2 2 2 2
3 3 244

2 2 2 8

1( ) ( )
( )

2 ( ) .
3 ( )

y
o e x

o e
o e y

o e x
o e

o e

n n M
n n n y dy

y n n R

n n M
n n y

n n R

                               (3.54) 

 
Under the condition y R  and in the approximations o en n n  and 
–o en n n , the relation (3.54) takes the following form: 
 

2 2 2 26
3 3 2 2

13 44 442 2 2 6 2 6

2 2( ) ( ) .
3 3

o e x x
o e

o e

n n M Mn
n n n

nn n R R
               (3.55) 

 
Now the relation (3.55) yields the following expression for determining 

the piezooptic coefficient 44 : 
 

2 23 3

44 13 1333 3

3( ) 3( ) ( ) .
22

o e

o e x xo e

n nR R
n n n

n n M n Mn n
         (3.56) 

 
Finally, we stress that the piezooptic coefficient 66  for the crystals 

belonging to the point symmetry groups 32 , 3m  and 3m  is given by the 
equality 66 11 12 . It can be measured using the four-point bending 
method. 

3.1.6. Crystals of point symmetry groups 3 and  

The piezooptic tensor (1.10) for the crystals belonging to the point 
symmetry groups 3 and 3  has eight independent piezooptic coefficients 
associated with the shear mechanical stresses: 25 , 62 , 45 , 52 , 44 , 

41,  14  and 66 . 
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The piezooptic coefficient 25 can be determined when applying the 
experimental geometry ( )xM , k x) under additional condition 0z
(Fig. 3-6a). In this case, the relation that describes the induced birefringence 
increment is as follows:

3
3

23 25 13 254( ) ( ) .
2
o x

o

n M
n y n y

R
                                          (3.57)

a) b)

c) d)
Fig. 3-6. Experimental geometries for measuring piezooptic coefficients 25 , 62 , 

45 , 52 (a), 14 , 62 , 41 (b), 44 (c) and 66 (d) for the crystals belonging to the 

point symmetry groups 3 and 3 [72].
Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36.
Copyright Wiley-VCH GmbH. Reproduced with permission.
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It follows from (3.57) that the piezooptic coefficient 25 can be 
determined by scanning the light beam along the y axis and taking the 
corresponding experimental data. The formula is as follows:

4
23 23

25 3 3
13

2 ( ) ( ) .
( )o o x

n R n
n y n M y

                                                     (3.58)

The piezooptic coefficient 62 can be determined when applying the 
experimental geometry ( )xM , k x) under the condition 0y (Fig. 3-6a). 
The relation describing the induced birefringence increment reads as

3 3
23 62 12 624

2( ) ( ) .x
o o

M
n n z n z

R
                                       (3.59)

Formula (3.59) makes it possible to determine the piezooptic coefficient 
62 , provided that the light beam is scanned along the z axis:

4
23 23

62 3 3
12

( ) ( ) .
( ) 2o o x

n R n
n z n M z

                                                 (3.60)

The coefficients 45 and 52 can be determined using the experimental 
geometry ( )xM , k x) (Fig. 3-6a) and measuring the rotation angle of 
optical indicatrix under the action of torsion moment and under the 
additional conditions 0z and 0y , respectively. Then the relation 
describing the optical-indicatrix rotation about the x axis is as follows:

2 2
45 13 52 12

2 2 2 2
25 13 62 12

2 2
45 524

2 2 2 2
25 624

2 ( ( ) 2 ( ))tan 2
( ( ) 2 ( ))

4 ( 2 )
.2 ( 2 )

o e
x

o e o e

x
o e

x
o e o e

n n y z
n n n n y z

M
n n y z

R
M

n n n n y z
R

                        (3.61)

Since the inequality 2 2 2 2
25 13 62 12( ( ) 2 ( ))o e o en n n n y z is usually 

valid in practice, equation (3.61) takes the form
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2 2
45 13 52 12

2 2

2 2
45 52

2 2 4

2 ( ( ) 2 ( ))tan 2

4 ( 2 ) .
( )

o e
x

o e

o e x

o e

n n y z
n n

n n M y z
n n R

                                     (3.62)

Using the relation (3.62), the coefficient 45 (or 52 ) can be determined 
if the light beam is scanned along the y axis ( 0z ) (or along the z axis (

0y )). In the case of light propagation along optically anisotropic 
directions, the rotation angle of optical indicatrix is very small, since we 
have 2 2 2 2

45 13 52 122 ( ( ) 2 ( ))o e o en n y z n n .
The piezooptic coefficient 14 can be determined using the 

experimental geometry ( )yM , k y)y and applying the additional condition 
0z (Fig. 3-6b). Then the relation for the induced birefringence increment 

is given by

3 3
13 14 23 144

1( ) ( ) .
2

y
o o

M
n n x n x

R
                                          (3.63)

It follows from (3.63) that the piezooptic coefficient 14 can be 
determined by scanning the light beam along the x axis and taking the 
corresponding experimental data. The appropriate formula is as follows:

4
13 13

14 3 3
23

2 ( ) ( ) .
( )o o y

n R n
n x n M x

                                                       (3.64)

In its turn, the piezooptic coefficient 62 can be determined when 
applying the experimental geometry ( )yM , k y)y and the additional 
condition 0x (Fig. 3-6b). In this case, the relation describing the induced 
birefringence increment takes the form

3 3
13 62 12 624

2
( ) ( ) .y

o o

M
n n z n z

R
                                             (3.65)
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It follows from (3.65) that the piezooptic coefficient 62 can be 
determined by scanning the light beam along the z axis and taking the 
corresponding experimental data. The formula is as follows:

4
13 13

62 3 3
12

( ) ( ) .
( ) 2o o y

n R n
n z n M z

                                                       (3.66)

Instead, the coefficient 41 can be determined while using the 
experimental geometry ( )yM , k y)y (Fig. 3-6b) and measuring the rotation 
angle of optical indicatrix at the torsion moment yM under the additional 
condition 0x . Then the optical-indicatrix rotation about the y axis is 
given by the formula

2 22 2
4141 12

2 2 2 2 4

84 ( )tan 2 .
( )

o e yo e
y

o e o e

n n M zn n z
n n n n R

                                     (3.67)

Using (3.67) and scanning the light beam along the z axis ( 0x ), one 
can determine the coefficient 41 .

The coefficient 44 can be found, in some approximation, in the 
experimental geometries ( )xM , k y)y at 0z , ( )yM , k x) at 0z , 
( )zM , k x) at 0y or ( )zM , k y)y at 0x . In particular, when the 
condition 0x and the inequality 2 2 2 2

14 23 25 13( ( ) ( ))o e o en n n n x y
are satisfied, the induced birefringence increment in the experimental 
geometry ( )zM , k y)y (see Fig. 3-6c) is as follows:

2 2 2 2
3 3 3 44 13

13 25 13 2 2

2 2 2 2 2
3 3 3 44

254 2 2 2 8

( )1 1( ) ( ) ( )
2 2

2( ) .
( )

o e
o o e

o e

o e zz
o o e

o e

n n y
n n y n n

n n

n n M yM
n y n n

R n n R

                (3.68)

By averaging the function given by (3.68) over the optical path from 
y to y , one can obtain
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2 2 2 2
3 3 3 244

13 254 2 2 2 8

2 2 2 2
3 3 244

2 2 2 8

1 1( ) ( )
2 ( )

2 ( ) .
3 ( )

y y
z o e z

o o e
o ey y

o e z
o e

o e

M n n M
n n ydy n n y dy

y R y n n R

n n M
n n y

n n R

    (3.69)

Under the condition y R and in the approximations o en n n and 
–o en n n , the relation (3.69) takes the following form:

2 2 2 26
3 3 2 2

13 44 442 2 2 6 2 6

2 2( ) ( ) .
3 3

o e z z
o e

o e

n n M Mn
n n n

nn n R R
          (3.70)

Using the relation (3.70), one can obtain the expression needed for 
determining the piezooptic coefficient 44 :

3 2 2 3

44 13 1333 3

3( ) 3( ) ( ) .
22

o e

o e z zo e

R n n R
n n n

n n M n Mn n
             (3.71)

The piezooptic coefficient 66 is determined by measuring the induced 
rotation of optical indicatrix z and using the experimental geometries 
( )xM , k z) at 0y or ( )yM , k z) at 0x (Fig. 3-6d), if the coefficient 

62 is already known. In this case we have 66 622 tan 2 z . In addition, 
the piezooptic coefficient 66 can be determined by the relation 

66 11 12 or measured by the four-point bending method, in order to 
verify the validity of data obtained with the torsion-optic method.

3.1.7. Crystals of rhombic, monoclinic and triclinic systems

The crystals of rhombic system with the symmetries 222, mmm and mm2 
are characterized by a presence of three independent piezooptic coefficients 
associated with the shear mechanical stresses: 44 , 55 and 66 .

These piezooptic coefficients can be measured when the light propagates 
along the directions perpendicular to the torsion axis ( i jM k ). At the 
same time, the induced birefringence increment depends quadratically on 
the components of mechanical stress [73] and, therefore, on the squared 
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coordinates that correspond to the direction of beam propagation 
( 2( )i jn x2

jx j ). As shown above, in order to determine the effective value 
of the induced birefringence change, it is necessary to average the function 

( )in along the optical path from jx to jx .
In particular, the coefficient 44 can be determined using the 

experimental geometries ( , )yM k x) and ( , )zM k x) . At the same time, the 
functions of the induced birefringence increment averaged over the segment 
from x R to x R are equal respectively to

2 2 3 3 2 2 2 2 3 3 2 2
2 3 2 3 44 2 3 2 3 442

23 2 2 2 8 2 2 2 6
2 3 2 3

( ) ( )1 2( )
( ) 3 ( )

R
y y

R

n n n n M n n n n M
n x dx

R n n R n n R
         (3.72)

and

2 2 3 3 2 2 2 2 3 3 2 2
22 3 2 3 44 2 3 2 3 44

23 2 2 2 8 2 2 2 6
2 3 2 3

1 ( ) 2 ( )( ) .
( ) 3 ( )

R
z z

R

n n n n M n n n n M
n x dx

R n n R n n R
        (3.73)

The following expressions can be obtained for determining the 
piezooptic coefficient 44 from the relations (3.72) and (3.73):

2 23
2 3

44 233 3
2 3 2 3

2 23
2 3

44 233 3
2 3 2 3

3( ) ( ) ,
2( )

3( ) ( ) .
2( )

y

z

n nR
n

n n M n n

n nR
n

n n M n n

                                               (3.74)
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Similarly, the expressions for determining the piezooptic coefficients 
55 and π66 can be obtained respectively for the experimental geometries 

( , )xM k y)y and ( , )zM k y)y (with averaging performed over the segment 
from y R to y R ) and in the experimental geometries ( , )xM k z) and 
( , )yM k z) (with averaging over the segment from z R to z R ):

2 23
1 3

55 133 3
1 3 1 3

2 23
1 3

55 133 3
1 3 1 3

3( ) ( ) ,
2( )

3( ) ( ) ,
2( )

x

z

n nR
n

n n M n n

n nR
n

n n M n n

                                                 (3.75)

2 23
1 2

66 123 3
1 2 1 2

2 23
1 2

66 123 3
1 2 1 2

3( ) ( ) ,
2( )

3( ) ( ) .
2( )

x

y

n nR
n

n n M n n

n nR
n

n n M n n

                                                (3.76)

Thus, all of the non-principal piezooptic coefficients can be determined 
for the crystals of rhombic system, using the torsion-optic method.

The crystals belonging to the monoclinic system (with the point 
symmetry groups 2, m and 2 / m ) are characterized by eight independent 
piezooptic coefficients associated with the shear mechanical stresses: 44 , 

55 , 66 , 15 , 25 , 35 , 46 and 64 .
The piezooptic coefficient 64 can be measured in the experimental 

geometry ( , )zM k z) under the condition 0y . Here the optical beam is 
scanned along the x axis (Fig. 3-7a). The induced birefringence increment 
has the following form:

2 2 2 2 2 2 2 2 2
3 3 3 31 2 64 23 1 2 64

12 1 2 1 22 2 2 2 2 8
1 2 1 2

( )1( ) ( ) 2( ) .
2 ( )

zn n x n n M x
n n n n n

n n n n R
   (3.77)
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a) b)

c) d)

e) 
Fig. 3-7. Experimental geometries used for measuring piezooptic coefficients 64  
(а), 46  (b), 55  (c), 66  (d) and 44  (e) in the crystals belonging to monoclinic 
system [72]. 
Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36. 
Copyright Wiley-VCH GmbH. Reproduced with permission. 
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Another expression for determining the piezooptic coefficient 64 can 
be obtained from equation (3.77):

2 2
1 2 12

64 3 3
1 2 23 1 2

2 24
1 2 12

3 3
1 2 1 2

2( ) ( )1
( ) ( )

( ) ( ) .
2( )z

n n n
n n x n n

n n nR
n n M x n n

                                         (3.78)

The piezooptic coefficient 46 can be determined in a similar way. This 
requires the experimental geometry ( , )xM k x) , the condition 0y and 
scanning of the light beam along the z axis (Fig. 3-7b). In this case we 
have

2 2 2 2
3 3 2 3 46 12

23 2 3 2 2
2 3

2 2 2 2 2
3 3 2 3 46
2 3 2 2 2 8

2 3

( )1( ) ( )
2

π2( ) ,
( )

x

n n z
n n n

n n

n n M z
n n

n n R

                                             (3.79)

2 2
2 3 23

46 3 3
2 3 12 2 3

2 24
2 3 23

3 3
2 3 2 3

2( ) ( )1
( ) ( )

( ) ( ) .
2( )x

n n n
n n z n n

n n nR
n n M z n n

                                          (3.80)

To determine the piezooptic coefficient 55 , the experimental geometry 
( , )xM k y)y can be adopted under the condition 0z . The birefringence 
increment must be averaged over the optical path section R y R
(Fig. 3-7c). Then we obtain

2 2 2 2
3 3 21 3 55

13 1 3 2 2 2 8
1 3

2 2 2 2
3 3 1 3 55
1 3 2 2 2 6

1 3

1( ) ( )
( )

2 ( ) ,
3 ( )

R
x

R

x

n n M
n n n y dy

R n n R

n n M
n n

n n R

                            (3.81)
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2 23
1 3

55 133 3
1 3 1 3

3( ) ( ) .
2( )x

n nR
n

n n M n n
                                                 (3.82)

To determine the piezooptic coefficient 66 , the experimental geometry 
( , )xM k z) is needed, under the condition 0y satisfied. Then the 
birefringence increment has to be averaged over the optical path section 

R z R (Fig. 3-7d). The corresponding phenomenological relation is as 
follows:

2 2 2 2
3 3 21 2 66

12 2 1 2 2 2 8
2 1

2 2 2 2
3 3 1 2 66
2 1 2 2 2 6

2 1

1( ) ( )
( )

2 ( ) ,
3 ( )

R
x

R

x

n n M
n n n z dz

R n n R

n n M
n n

n n R

                                (3.83)

2 23
2 1

66 123 3
1 2 2 1

3( ) ( ) .
2( )x

n nR
n

n n M n n
                                                 (3.84)

Finally, in order to determine the piezooptic coefficient 44 , the 
experimental geometry ( , )zM k x) should be used under the condition 

0y , with averaging the birefringence increment over the optical path 
section R x R (see Fig. 3-7e). In this case we have

2 2 2 2
3 3 22 3 44

23 2 3 2 2 2 8
2 3

2 2 2 2
3 3 2 3 44
2 3 2 2 2 6

2 3

1( ) ( )
( )

2 ( ) ,
3 ( )

R
z

R

z

n n M
n n n x dx

R n n R

n n M
n n

n n R

                               (3.85)

2 23
2 3

44 233 3
2 3 2 3

3( ) ( ) .
2( )z

n nR
n

n n M n n
                                                (3.86)

Concerning the remaining three piezooptic coefficients of the 
monoclinic crystals (namely, 15 , 25 and 35 ), the torsion-optic method 
enables one to determine only their differences. For example, the piezooptic 
difference 3 3

2 25 1 15n n can be determined by measuring the torsion-
induced birefringence increment 12( )n with the experimental geometry 
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( , )zM k z) under the condition 0x . Similarly, the difference 
3 3
3 35 2 25n n can be measured using the experimental geometry 

( , )xM k x) under the condition 0z .
The same analysis can be applied to the crystals that belong to triclinic 

system. However, the piezooptic effect can also be studied using the 
interferometric method. The latter allows for measuring the increments of 
refractive indices. As a consequence, individual piezooptic coefficients for 
the monoclinic and triclinic crystals can, in principle, be determined by 
combining the experimental data obtained using the torsion-optic and 
interferometric methods.

3.2. Determination of piezooptic coefficient π14
in lithium niobate crystals

As shown above, the application of torsion loads to crystals, in combination 
with appropriate polarization measurements, can be used to determine the 
non-principal piezooptic coefficients associated with the shear mechanical 
stresses. The advantage of the torsion-optic method over the conventional 
methods that rely upon compression or stretching loads is that the 
application of a torsion moment causes only the shear components of the 
mechanical stress tensor. Therefore, this allows for determining directly and 
separately some of the coefficients. Besides, the torsion-induced 
components of the mechanical stress tensor are characterized by specific 
spatial distributions in crystals, which can be determined in advance.

An experimental verification of the torsion-optic method for measuring 
the piezooptic coefficients has been carried out, using a particular example 
of LiNbO3 crystals [72, 75]. They belong to the point symmetry group 3m .

In our studies, crystalline samples have been made in the shape of 
octahedral prisms, the side faces of which are parallel to the z axis and the 
base of which is parallel to the xy plane (Fig. 3-8).

The sizes of the samples are H ~ 13 mm along the z axis and h ~ 6 mm 
between the side faces. The yz plane is taken to be parallel to one of the 
symmetry planes. A He-Ne laser radiation with the wavelength 

632.8 nm propagates along the z axis, which is parallel to the optic 
axis.
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Fig. 3-8. Orientations of principal axes in crystal sample of LiNbO3 [72]. 
Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36. 
Copyright Wiley-VCH GmbH. Reproduced with permission. 

 
To produce the torsion stresses, a mechanical torsion moment zM  is 

applied around the z  axis to one of the prism bases, while its opposite side 
is not loaded (Fig. 3-9). 

 

 
Fig. 3-9. A scheme of application of a torsion moment: (1) arms; (2) massive holder; 
(3) movable hollow cylinder; (4) massive immovable holder; (5) sample; (6) plates 
with octahedral holes for the sample set. The arrows show directions of light 
propagation and twist [72]. 
Skab, I., Smaga, I., Savaryn, V., Vasylkiv, Yu., Vlokh, R.: Torsion method for 
measuring piezooptic coefficients. Cryst. Res. Technol. 2011. 46(1). 23–36. 
Copyright Wiley-VCH GmbH. Reproduced with permission. 
 

Studies of the optical birefringence have been carried out, using an 
imaging polarimeter [76] and a Senarmont method [77]. The torsion-
induced birefringence is calculated with the formula /n d , where 

Δ / 2  denotes the rotation angle of the light polarization plane with 
respect to its initial orientation (after the light has passed through a / 4 -
plate), Δ  is the phase difference, and d  the thickness of sample along the 
direction of light propagation. 
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Fig. 3-10 presents spatial distributions of the birefringence, which are 
induced by the torsion moment 363.77 10 N×mzM  along the x  and y  
axes and along the bisector of x  and y  axes. All the data is derived with 
the Senarmont method. 

 

a) b) 

c) 
Fig. 3-10. Distributions of birefringence induced by the torsion moment 

363.77 10 N×mzM  in LiNbO3 along the x axis (a), the y axis (b) and the 
bisector of x and y axes (c). Open circles correspond to experimental data and solid 
lines to linear fits. Scales of the corresponding components of shear stresses are also 
shown [75]. 
Adapted with permission from Vasylkiv, Yu., Savaryn, V., Smaga, I., Skab, I., 
Vlokh, R. (2010). Determination of piezooptic coefficient 14  of LiNbO3 crystals 
under torsion loading. Ukr. J. Phys. Opt., 11(3), 156–164. © O. G. Vlokh Institute of 
Physical Optics. 

 
The dependences mentioned above are linear at the distances less than 

~ 2 mm from the torsion axis. For more distant points, some deviations 
from the linear dependences are observed. They can be explained by the 
effect of sample boundaries and deviations of sample shape from cylindrical 
one. 
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Now let us consider the birefringence induced by the torsion moment 
zM . Let the light beam propagate along the z axis. Then we deal with the 

experimental geometry ( , )zM k z) . The induced birefringence is a function 
of the shear stresses 32 ( )x and 31( )y . Therefore, it depends on the x
and y coordinates. For example, the principal refractive indices and the 
induced birefringence along the x axis for the case 31 0 and in the 
plane 0y (Fig. 3-10a) are determined by the relations

3 3
1 14 32 14 4

3 3
2 14 32 0 14 4

3 3
12 14 32 14 4

1 ,
2
1 ,
2

2 ,

z
o o o o

z
o o o

z
o o

M
n n n n n x

R
M

n n n n n x
R

M
n n n x

R

                                          (3.87)

where on implies the initial refractive index of the ordinary optical wave.
The results presented in Fig. 3-10a agree perfectly with formulae (3.87). 

Hence, the piezooptic coefficient 14 can be determined using the relation

4
12 12

14 3 3
23

,
( ) 2o o z

n R n
n x n M x

                                                            (3.88)

where we have 2.28647on for the light wavelength 632.8 nm [78].
Let us take 32 0 and consider the plane 0x (Fig. 3-10b). Then the 

distribution of the induced birefringence and the piezooptic coefficient 14

along the y axis are as follows:

3 3 4
12 14 31 14

4
12 12

14 3 3
31

2 ,

.
( ) 2

o o z

o o z

n n n M y R

n R n
n y n M y

                                              (3.89)
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Let the light propagate in the plane x y  and the light beam is scanned 

along the bisector 2 2x y  of x  and y  axes. Then we have 

32 31  (Fig. 3-10c) and 
 

3 3 3
12 14 14 144 4

4 4
12 12 12

14 33 3

2 2 2 2 ,

.
22 2 2

z z
o o o

o zo o z

M M
n n n x n

R R
n R n R n

n Mn n M x

                    (3.90) 

 
The piezooptic coefficients 14  calculated using the formulae (3.88), 

(3.99), (3.90) and the experimental data are equal to 12(0.836 0.020) 10  , 
12(0.892 0.020) 10  and 12 2(0.933 0.040) 10 m /N , respectively. 

These values are close to each other, with the average being equal to 
12 2(0.887 0.028) 10 m /N . 

In other words, the above experimental results testify that the torsion-
optical method represents an accurate method for measuring the non-
principal piezooptic coefficients. In particular, the relative measurement 
error does not exceed 3.1%. 

It should also be noted that the coefficient 14  determined for the 
LiNbO3 crystals with the torsion-optic method agrees well with the data 
obtained in a number of works with the interferometric methods (e.g., 

12 2
14 0.7 10 m /N  [67, 79, 80] and 12 2

14 0.81 10 m /N  [60]). 
However, the sign of this coefficient has not been determined 
unambiguously. In addition, the relative errors of these measurements are 
significantly greater ( ~ 15% , according to Ref. [60]). In other terms, the 
accuracy of the torsion-optic method is significantly higher than that of the 
technique [60]. 

Note also that the torsion-optic method enables determining the sign of 
piezooptic coefficients. The corresponding procedures will be described in 
Subsection 3.4. 
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3.3. Determination of piezooptic coefficient π14
in α-BaB2O4 crystals

The efficiency of torsion-optic method for measuring the piezooptic
coefficients has been verified using the example of BaB2O4 crystals [78]. 
These crystals represent an efficient acoustooptic material for controlling 
powerful short-wavelength optical radiation [79]. This is why the 
knowledge of their piezooptic and elastooptic properties has a practical 
meaning.

It is known that BaB2O4 has two structural modifications, - BaB2O4

and - BaB2O4. - BaB2O4 crystals are one of the best nonlinear optical 
materials [80−84]. The torsion-optic method has been used to study the 

- BaB2O4 crystals, which belong to the point symmetry group 3m .
The piezooptic tensor for the point symmetry groups 3m and 3m (i.e., 

the groups corresponding to LiNbO3 and BaB2O4) is as follows:

11 12 13 14

12 11 13 14

31 31 33

41 41 44

44 41

14 66

0 0
0 0

0 0 0
.

0 0 0
0 0 0 0 2
0 0 0 0

                                 (3.91)

When a torsion moment is applied to -BaB2O4 and the light 
propagates along the z axis (i.e., the experimental geometry ( , )zM k z) is 
dealt with), the induced birefringence occurs in the xy -plane. The induced 
birefringence and the piezooptic coefficient 14 in the polar coordinate 
system { } ( cosx and siny ) are determined as

3
12 14 42 ,z

o

M
n n

R
                                                                      (3.92)

412
14 3 .

2 o z

n
R

n M
                                                                      (3.93)

A crystalline sample for torsion-optical studies has been made in the 
shape of octagonal prism, the side faces of which are parallel to the z axis 
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and the bases are parallel to the xy  plane. The sample sizes are equal to 
11.9 mm along the z  axis and 6.6 mm between the side faces. 

Fig. 3-11 shows spatial distributions of the rotation angle of optical 
indicatrix and the birefringence induced by the torsion moment in -
BaB2O4 crystals. 

 

a) b) 
Fig. 3-11. Distributions of rotation angle of optical indicatrix (a) and birefringence 
(b) induced by the torsion moment 0.058 N mzM  ( 632.8 nm ) in the cross-
section xy  of - BaB2O4 crystals [81]. 
Adapted with permission from Vasylkiv, Yu., Savaryn, V., Smaga, I., Skab, I., Vlokh, 
R. (2011). On determination of sign of the piezooptic coefficients using torsion 
method. Appl. Opt., 50(17), 2512–2518. © The Optical Society. 

 
As seen from Fig. 3-11a, the rotation of optical indicatrix by the 

180 deg  around the geometric centre of the cross-section xy  occurs 
whenever the angle  changes by 360 deg . In the polar coordinate system, 
the rotation angle of optical indicatrix can be written as  

 
13

23

sintan 2 tan
cosz

y
x

 or / 2.z                            (3.94) 

 
Under the condition 0y , the optical indicatrix rotation z  is equal to 

0 or 90 deg along the directions x  or x , respectively. Under the 
condition 0x  it is equal to +45 or –45 deg for the directions y  or y , 
respectively. This feature can help in determining the orientations of x  and 
y  axes [88]. 

Note that the x  axis is perpendicular to one of the mirror symmetry 
planes ( x m ) in our coordinate system. It is seen from Fig. 3-11b that the 

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Optical Anisotropy of Crystals Induced by Mechanical Torsion 
 

91 

shape of the surface describing the induced-birefringence distribution is 
close to conical one, which agrees well with the formula (3.92). 

A system of lines can be obtained by plotting the dependences of 
induced birefringence on the distance  for different polar angles  under 
constant torsion moment, 0.058 N mzM  (see Fig. 3-12). These 
dependences enable one to determine the modulus of the coefficient 14  
(Fig. 3-13). 

 

 
Fig. 3-12. Dependences of induced birefringence on the distance  from the center 
of cross-section xy in - BaB2O4, as obtained at different polar angles  and a 
constant torsion moment 0.058 N mzM  [81]. 
Adapted with permission from Vasylkiv, Yu., Savaryn, V., Smaga, I., Skab, I., Vlokh, 
R. (2011). On determination of sign of the piezooptic coefficients using torsion 
method. Appl. Opt., 50(17), 2512–2518. © The Optical Society. 

 
One can improve further the accuracy for the coefficient 14  by 

increasing the number of the above dependences. In practice, the number of 
experimental dependences can be large enough. For example, the 
coefficient 14  for - BaB2O4 crystals has been determined basing on 40 
dependences. Its value is equal to 12 2

14 (1.77 0.16) 10  m / N , with 
the relative error not exceeding 8.9%. 
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Fig. 3-13. Dependence of piezooptic coefficient 14  on the polar angle  for 

-  BaB2O4 crystals ( 632.8 nm ) [81]. 
Adapted with permission from Vasylkiv, Yu., Savaryn, V., Smaga, I., Skab, I., Vlokh, 
R. (2011). On determination of sign of the piezooptic coefficients using torsion 
method. Appl. Opt., 50(17), 2512–2518. © The Optical Society. 

 
As noted above, the torsion-optic method applied to LiNbO3 makes it 

possible to determine the piezooptic coefficients with the experimental error 
~ 3.1% ( 12 2

14 (0.887 0.028) 10 m /N  [72, 75]). If compared to the 
case of LiNbO3, the error for the piezooptic coefficient 14  obtained for the 

- BaB2O4 crystals is higher. This is caused by extra inhomogeneities and 
internal stresses associated with crystal growth. The latter phenomena 
manifest themselves in deviations of the birefringence distribution from the 
conical shape (Fig. 3-11b). 

Notice that the piezooptic coefficient 14  obtained for the - BaB2O4 
crystals is close to that found earlier for - BaB2O4 
( 12 2

14 (2.0 0.8) 10 m /N  [47]). A closeness of these piezooptic 
coefficients can be due to the fact that -  and - modifications are 
nothing but different structural phases appearing in the course of phase 
transition in the same crystalline material, BaB2O4. 

Finally, we would stress that the accuracy achieved for the piezooptic 
coefficients with our torsion-optic method is significantly higher than that 
reported in a typical work [47] where the errors are as high as 40%. 
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It is known that the total optical retardation, which is measured in most 
of the piezooptic experiments, consists of the two parts: (i) the optical 
retardation caused by the “pure” piezooptic effect, and (ii) the optical 
retardation associated with changing sample thickness along the direction of 
light propagation. The latter effect is due to the Poisson effect:

k k k k kn d n d or 0 * 2 .km km k kmn S                           (3.95)

Here kd denotes the initial sample thickness along the direction of light 
propagation (this direction is given by the index k), kn the initial 
birefringence along this direction, kd and kn are respectively the 
thickness and birefringence increments in the direction k (they are caused 
by axial mechanical loading of a sample along the direction specified by the 
index m), k stands for the optical retardation change, kmS the elastic 
compliance components, 0

km the “pure” piezooptic coefficient directly 
related to the refractive-index change, and *

km the piezooptic coefficient 
determined directly in experiment [14].

According to formula (3.95), the extra factors kmS and kn participating 
in the “elastic contribution” (i.e., the last term on the r. h. s. of this formula) 
are necessary to estimate the “pure” piezooptic coefficients. However, when 
the experimenter employs the torsion-optic method for measuring the 
piezooptic coefficients, the Poisson effect does not affect the resultant 
optical retardation. Indeed, since we have 3 0n and 34 35 0S S for the 
LiNbO3 and - BaB2O4 crystals, there is no “elastic contribution” at all.

When we apply torsion to - BaB2O4 around the z axis, the following 
five components of the mechanical strain tensor remain nonzero:

11 14 22 14 334 4

32 44 31 55 12 144 4 4

,
2 2, 0,

2 2 4, , .

z z

z z z

M M
S x S x

R R
M M M

S x S y S y
R R R

                         (3.96)

These components can lead to elastooptic coupling. This situation is 
similar to that occurring in the LiNbO3 crystals. In addition, the elastooptic 
tensors of these crystals are also the same [68]. Therefore, the experimental 
geometry ( , )zM k z) enables one to determine the linear combination of 
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elastooptic coefficients 14 44 66 142p S p S  for the - BaB2O4 crystals. It is 
described by the relation 

 
4 4

14 44 66 14 12 12 143 32 .
2 2o z o z

R R
p S p S n n

n M x n M y
                   (3.97) 

 
The above effective elastooptic coefficient can be obtained directly from 

a torsion-optic experiment or by calculating the coefficient 14  determined 
in advance. Since the corresponding elastic compliances for - BaB2O4 are 
equal to 11 2

44 (21.6±0.4) 10 m /NS  and 11 2
14 (1.8±0.2) 10 m /NS  

[82], we have the difference of elastooptic coefficients 
14 666 (0.049 0.001)p p . This value can be used for checking the 

elastooptic coefficients derived for the - BaB2O4 crystals with the other 
methods. 

3.4. Determination of signs of the piezooptic coefficients 
with torsion method (examples of LiNbO3 

and α-BaB2O4 crystals) 

It has been shown above that the torsion-optic method is an efficient and 
accurate tool for determining the absolute values of non-principal 
piezooptic coefficients. However, the signs of piezooptic coefficients also 
represent an important issue in the studies of piezooptic properties. As a 
result, below we analyze whether the signs of piezooptic coefficients can be 
determined with the torsion-optical method. Particular examples of LiNbO3 
and - BaB2O4 crystals have been chosen for this aim [81]. 

It is seen from relations (3.90) and (3.93) that the sign of the piezooptic 
coefficient 4 3

14 12 / (2 )o zn R n M  depends on the sign of induced 
birefringence 12n  and the sign of torsion moment zM . Let us try to 
determine these signs, provided that the coordinate eigensystem of optical 
indicatrix, the coordinate system of torsion moment and the components of 
shear stresses are known. 

In order to determine the sign of the induced birefringence, one has to 
carry out an additional experiment aimed at establishing orientation of the 
optical indicatrix in the laboratory coordinate system (Fig. 3-14), i.e. the 
orientations of ellipsoid semi-axes, which correspond to the smallest (Np) 
and intermediate (Nm) refractive indices. 
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Note that, in optically biaxial crystals, the semi-axis Nm corresponds to 
the direction perpendicular to the plane of optic axes, while the semi-axis Np 
belongs to this plane. The orientation of optical indicatrix can be determined 
by observing the changes occurring in the conoscopic pattern under torsion 
of a sample. 

 

 
Fig. 3-14. Optical indicatrix for optically biaxial crystals and a right-handed 
Cartesian coordinate system: OA1 and OA2 correspond to optic axes [81]. 
Adapted with permission from Vasylkiv, Yu., Savaryn, V., Smaga, I., Skab, I., Vlokh, 
R. (2011). On determination of sign of the piezooptic coefficients using torsion 
method. Appl. Opt., 50(17), 2512–2518. © The Optical Society. 
 

Let the laser beam propagate along the z  direction through a number of 
points inside the cross-section xy , which differ by their coordinates (e.g., 
the points ( ;0)cx  and ( ;0)cx  in Fig. 3-15). 

Let us select a right-handed Cartesian coordinate system, in which the 
positive birefringence xyn  are associated with a counterclockwise 
rotation about the z  axis (i.e., xy x y m pn n n N N ). The signs of the 
other principal birefringence values can be found from the general equality 

0xy yz zxn n n . Then the value zx z x g mn n n N N  is 
positive (since gN  is the largest refractive index that corresponds to the z  
direction), while the value yz y z p gn n n N N  is negative. 
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a) b) 
Fig. 3-15. Orientations of samples, torsion moments and changes in the conoscopic 
patterns observed in - BaB2O4 (a) and LiNbO3 (b): OA denote outlets of optic 
axes [81]. 
Adapted with permission from Vasylkiv, Yu., Savaryn, V., Smaga, I., Skab, I., Vlokh, 
R. (2011). On determination of sign of the piezooptic coefficients using torsion 
method. Appl. Opt., 50(17), 2512–2518. © The Optical Society. 

 
In our experiments, the torsion moment has been applied to the front 

face of a crystalline prism, while the back face remains unaffected (see 
Fig. 3-15). During the action of torsion moment, we have observed the 
conoscopic patterns. As a result, the birefringence induced in - BaB2O4 
has been found to be positive at the coordinates ( ;0)cx  and negative at the 
coordinates ( ;0)cx  (see Fig. 3-15a). The same is true for the LiNbO3 
crystals (see Fig. 3-15b). The next step is determining the sign of the shear 
stress caused by the torsion moment at the above coordinates (see Fig. 3-
15). We obtain that the shear stress components are equal to 5 0  and 

4 0  at these coordinates. The sign of the component 4  can be 
determined provided that the sign of the angle  characterizing the shear 
deformation component 4 2 tan  is known. The signs of the components 

4  and 4  are the same, since we have 4 44 4S . 
Herewith, the positive angle  must correspond to counterclockwise 

rotation from the y  axis towards the z  axis (see Fig. 3-16). When a torsion 
moment is applied to - BaB2O4, the value 4  becomes negative at the 
coordinates ( ;0)cx  and positive at the coordinates ( ;0)cx . For the LiNbO3 
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crystals, the value 4  becomes positive at the coordinates ( ;0)cx  and 
negative at the coordinates ( ;0)cx . 

 
Fig. 3-16. Schematic representation of shear deformations occurring at the points 
( ;0)cx  and ( ;0)cx  in LiNbO3 after a torsion moment is applied according to Fig. 3-
15b [81]. 
Adapted with permission from Vasylkiv, Yu., Savaryn, V., Smaga, I., Skab, I., Vlokh, 
R. (2011). On determination of sign of the piezooptic coefficients using torsion 
method. Appl. Opt., 50(17), 2512–2518. © The Optical Society. 

 
Basing on the results of our analysis, the signs of the piezooptic 

coefficients 14  for the both crystals can be determined. For example, we 
obtain the following relations for - BaB2O4: 

 
4 4

14 c 14 c3 3
4 4

( ) ( ) at ( ;0),  at ( ;0).
( ) ( )2 2o z o z

R n R n
x x

n M n M
       (3.98) 

 
Hence, we obtain 12 2

14 (1.77 0.16) 10 m /N 0 . 
For the case of LiNbO3 crystals we have 
 

4 4

14 c 14 c3 3
4 4

( ) ( ) at ( ;0),  at ( ;0),
( ) ( )2 2o z o z

R n R n
x x

n M n M
       (3.99) 

 
so that 12 2

14 (0.887 0.028) 10 m /N 0 .  Note that the signs of the 
piezooptic coefficients 14  for the - BaB2O4 and LiNbO3 crystals 
obtained from the relations (3.98) and (3.99) agree with the data reported in 
the works [47] and [67], respectively. 
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SECTION 4 

STUDY OF PIEZOOPTIC COEFFICIENTS USING 
DIGITAL LASER IMAGING INTERFEROMETRY 

AND FOUR-POINT BENDING 

As we have already noted, when measuring piezooptic coefficients, one can 
load a sample such that a non-uniform, though a priori known, distribution 
of stresses is formed. This represents a possible alternative to simple axial 
compression of samples prepared in the shape of parallelepipeds. Particular 
examples of such an approach can be diametrical compression, mechanical 
torsion and four-point bending [55]. The first two methods applied for 
measuring the piezooptic constants of optical materials have been discussed 
in Section 2 and Section 3. Below we will discuss a method for determining 
piezooptic coefficients, which is based on the four-point bending combined 
with a digital laser imaging interferometry. 

4.1. Method for determination of piezooptic coefficients 
based on four-point bending and imaging interferometry. 

Testing of the method on photoelastic characteristics 
of BK7 optical glass 

4.1.1. Four-point bending 

A canonical method of four-point bending induces a stressed-deformed state 
of “pure bending” in a bar made from some material [89]. In Fig. 4-1 we 
illustrate schematically application of a load to a sample according to this 
method. 

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 4 
 

100 

 
Fig. 4-1. Scheme of loading a sample according to the method of four-point bending, 
and selection of a laboratory Cartesian coordinate system: light propagates along the 
z direction. 
Adapted with permission from Krupych, O., Savaryn, V., Krupych, A., Klymiv, I., & 
Vlokh, R. (2013). Determination of piezo-optic coefficients of crystals by means of 
four-point bending. Appl. Opt., 52(17), 4054–4061. © The Optical Society. 
 

The mechanical stress tensor components m in the central part of the 
sample, i.e., between the upper punches in Fig. 4-1, are determined as 
follows: 

1 3
6

x
Pa

y
bh

,                                                                              (4.1) 

2 0y ,                                                                                     (4.2) 

3 0z .                                                                                     (4.3) 
 
Here P is the loading force, h and b respectively the height and the 

thickness of sample, and a the distance between the planes where the forces 
act. 

It follows from equations (4.1)–(4.3) that only one stress tensor 
component, 1, is nonzero in the central part of sample. According to 
formula (4.1), its value varies from 1 = –3Pa/bh2 on the top face (y = –h/2), 
through the state with 1 = 0 in the neutral plane (y = 0), to 1 = +3Pa/bh2 
on the bottom face (y = h/2). Such geometry implies that the upper sample 
face is compressed whereas the bottom one expanded, with equal strength 
modules. It should be noted that, according to equation (4.1), the 
dependence of the stress component 1 on the y coordinate is linear. The 
appropriate slope is determined by geometrical parameters and a force being 
applied. 

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Study of Piezooptic Coefficients using Digital Laser Imaging  
Interferometry and Four-Point Bending  

101 

To test linearity of the spatial distribution of the stress tensor component 
1 along the y coordinate, we have experimentally obtained a spatial map of 

the phase difference for a glass bar subjected to four-point bending (Fig. 4-
2). 

 

a) 

b) 

c) 
Fig. 4-2. Characterization of a glass bar subjected to four-point bending: (a) central 
part of sample in the field of view of 2D polarimeter, (b) map of optical phase 
difference , and (c) dependence of averaged phase difference  on the y coordinate. 
Averaging is performed along rows inside the area highlighted in the map by a 
dashed line. 
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As see from Fig. 4-2, the dependence of the phase difference  on the y 
coordinate is linear inside at least a middle third of the gap between the top 
points where the force is applied, which is indicated in the both figures. The 
phase difference  is proportional to the birefringence, which, in its turn, is 
linearly associated with the mechanical stresses, in accordance with the 
relation (1.1). Therefore, the component of the mechanical stress tensor 1 
depends linearly on the y coordinate at least in the interval x  [–l/6; +l/6], 
where l is the distance between the top punches. This means that, inside this 
region, the relation (4.1) is exactly valid and can be used to calculate the 
stresses in a sample subjected to four-point bending. 

4.1.2. Experimental setup and measurement procedures 

Our experimental setup [62] is based upon an interferometer built according 
to a Mach−Zender scheme and equipped with a CCD camera for recording 
interference patterns (Fig. 4-3). 

 

 
Fig. 4-3. 2D digital laser interferometer: (1) He-Ne laser; (2) circular polarizer; (3) 
right angle prism; (4) beam expander; (5) linear polarizer (Glan prism) in a 
motorized rotary stage; (6) beam-splitting prism; (7) sample under test; (8) mirror; 
(9) objective lens; (10) CCD camera; (11) computer; (12) stepper-motor controller. 
Adapted with permission from Krupych, O., Savaryn, V., Skab, I., & Vlokh, R. 
(2011). Interferometric measurements of piezooptic coefficients by means of four-
point bending method. Ukr. J. Phys. Opt., 12(3), 150–160. © O. G. Vlokh Institute of 
Physical Optics. 

 
A He-Ne laser (1) emits polarized light with the wavelength 

 = 632.8 nm, which passes through a circular polarizer (2). Rotation of this 
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polarizer around the axis of laser beam allows a smooth reduction of light 
intensity. A beam expander (4) converts the laser beam into a collimated 
beam with the diameter ~ 20 mm. A linear polarizer (5) converts the 
circular polarization of laser beam into the linear polarization. The azimuth 
of linear polarization is controlled by means of a motorized rotary stage and 
a stepper-motor controller (12). A beam-splitting prism (6) splits the input 
beam into reference and object beams, which form two arms of the 
interferometer. Here the object beam propagates through a sample under 
test (7). After being reflected by mirrors (8), the reference and object beams 
are brought together by means of a second prism (6), thus giving rise to an 
interference pattern. A lens (9) builds the sample’s image on a 
photosensitive matrix of a CCD camera (10). As a result, the image with a 
clear interference pattern is obtained in its plane. This image is digitized 
with the camera interface and transmitted to a computer (11). Special 
software allows one to control operation of the interferometer and saves a 
sequence of interference patterns for their further processing. 

The phase difference between the arms of interferometer is written as 
follows: 

 
2

mb n n ,                                                                          (4.4) 

 
where b denotes the thickness of sample along the direction of light 
transmission, and n and nm are the refractive indices of the sample and the 
surrounding medium, respectively. 

For the interferometer in air (nm ≈ 1), the phase difference increment  
induced by loading of initially isotropic sample is given by the relation 

 

1 0 0

0

2 1 1

2 1 ,

b n b n

n b b b n
                               (4.5) 

 
where b’ = b + b implies the thickness of sample in its loaded state, b the 
Poisson’s elongation (or contraction) along the z direction, n′ = n0 + n and 
n0 are the refractive indices of the sample respectively in loaded and non-
loaded states, and n is the refractive-index increment induced by 
piezooptic effect. 

Due to the action of single-axial mechanical stress, a birefringence 
appears in an optically isotropic sample. The principal axes of the optical 
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indicatrix are oriented parallel and perpendicular to the mechanical stress, 
i.e. horizontally and vertically. The following refractive-index increments 
can be obtained for these two directions of light polarization at the entrance 
of sample: 

 
3 3

1 || 1 0 11 1 2 1 0 12 1
1 1,  ,
2 2

n K n n K n          (4.6) 

 
with K|| and K  being the photoelastic constants (denoted sometimes as C1 
and C2), and 11 and 12 denoting the piezooptic coefficients. The difference 
of the coefficients K|| and K  determines the stress optical coefficient 
K = K|| – K , which is a standard characteristic of optical glasses. This 
parameter can be used to verify our technique. 

As seen from equation (4.6), the coefficients 11 and K|| can be 
determined using the horizontal polarization of incoming radiation, while 

12 and K  using the vertical polarization. 
If the sample is made of an isotropic amorphous material such as glass 

or plastic, the change in its thickness can be expressed as: 
 

3 3 1 2 1
1

b b b b
E E

,                                    (4.7) 

 
where 3 stands for the component of strain tensor,  the Poisson’s ratio, 
and E the Young’s module. 

Note that, for a general case of anisotropic materials, equation (4.7) 
should include an actual component of the strain tensor λ, instead of the 
coefficient 3. This actual component depends on the orientation of 
crystallographic coordinate system. It is determined by the tensor form of 
the Hooke’s law (1.5). Then the relation (4.7) can be rewritten to 

 
b b S b .                                                                          (4.8) 

 
Comparing formulae (4.7) and (4.8), one can see that the effective 

compliance module Seff for the isotropic media is expressed through the 
Young’s module E and the Poisson’s ratio : 

 
effS

E
.                                                                                        (4.9) 
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For the optical glass BK7, we have  = 0.206 and E = 82 GPa [90]. 
Therefore, we arrive at b/b  10–5 with the maximal experimental loading 
~ 107 Pa, which has been applied in our experiments. Thus, we have the 
inequality b  b and, therefore, the equation (4.5) becomes simpler: 

 

0
2 1n b b n ,                                                       (4.10) 

 
which corresponds to the changes in the optical path length given in the 
work [66]. Substituting (4.6) and (4.7) into equation (4.10), we obtain for an 
amorphous isotropic sample 

 
3

1 0 11 0 1 1 1

3
2 0 12 0 1 2 1

2 1 21 ,
2

2 1 21 ,
2

b n n b Q
E

b n n b Q
E

                    (4.11) 

 

where 3
0 1 0

1 1
2i i iQ K D n n

E
 denotes the effective (actual) 

photoelastic coefficient, 3
0 1 2i iK n  the photoelastic coefficient, and 

0( 1)D n E  the strain-related term. 
In case of a crystalline sample the phase difference increment  should 

be expressed with using elastic compliance tensor components S  instead 
of Young’s module E and the Poisson’s ratio . According to the relation 
(4.8), it is given by 

 
32 1 21

2
b n S n b Q ,                   (4.12) 

 
where Q K D , 3 2K n  and ( 1)D S n . 

Substituting formula (4.1) for the stress component 1 into formulae 
(4.11) and (4.12), we obtain the dependences of the increments  on the y 
coordinate 

 

1 1 2 23 3
12 12,Pa Pa

y Q y y Q y
h h

,                       (4.13) 
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3
12

ef
Pa

y Q y
h

,                                                                    (4.14) 

which are valid respectively for both isotropic and anisotropic materials. 
Equations (4.13) or (4.14) can be used to determine experimentally the 
effective photoelastic coefficient. 

Notice that an irregularity of sample thickness is typically very small, so 
that the thickness errors are about 0.1%. In addition, 2D interferometry 
allows for controlling slight displacements of sample as a whole, which can 
occur under loading, by comparing the sample images obtained before and 
after a load is applied. Due to this feature, the experimental errors caused by 
a wedge-like shape of sample can be avoided. Still, such errors are 
inevitably inherent in the method of axial compression [91], which is based 
on interferometry and uses an unexpanded laser beam and a single-element 
photodetector. 

As a part of our measurement procedures, the linear input polarization is 
set along the vertical direction. After that five interferograms for a free 
sample are recorded. Then the loading force is applied, after which five 
relevant interferograms are taken. A similar measurement cycle is 
performed for the horizontal input polarization. 

To process experimental data, special software in the C# programming 
language at the .NET platform has been developed [63]. As an example, our 
program reads a package of five graphic files containing interferograms for 
a free sample in the case of vertical input polarization. The first image of 
the series is rendered in the program window (see Fig. 4-4). 

Then a user selects a rectangular region inside the sample image, the 
data from which will be used in further calculations. To reduce the 
influence of noise on the final results, a smoothing filter can be applied. 
Next, a user clicks the button “Calculate current” to start the data processing 
for an active image or the button “Calculate all” for all of the files opened. 

At the beginning of data processing, the first row of the selected region 
is used to fit the dependence of the intensity I on the x coordinate by a 
harmonic function, with the amplitude A, the period w and the extrema’s 
offset xm: 

 
2cos mI C A x x
w

,                                                           (4.15) 

 
where C is the average intensity level. 
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Fig. 4-4. Program window with a typical interferogram: the field of view is 
5.71 6.30 mm and the image size 500 600 pixels. A selected rectangular area in the 
sample image contains smoothed data corresponding to the area under test.
Adapted with permission from Krupych, O., Savaryn, V., Krupych, A., Klymiv, I., & 
Vlokh, R. (2013). Determination of piezo-optic coefficients of crystals by means of 
four-point bending. Appl. Opt., 52(17), 4054–4061. © The Optical Society.

The results of fitting are displayed in the window shown in Fig. 4-5. A 
lower right corner of the window contains a plot corresponding to 
experimental intensities (indicated by circles) for a selected row and a solid 
line, constructed according to formula (4.15) with the parameters C, A, w
and xm obtained due to the fitting procedure. An analysis of this plot allows 
a user to ensure correctness of the fitting procedure.

Then the period w and the horizontal offset xm obtained for a single line 
are used to calculate the phase difference for a certain coordinate xc, 
(usually, the center of the selected region) using the formula

2
c mx x

w
.                                                                         (4.16)

The procedure described above is repeated for each next row, resulting 
in some resultant (y) dependence. The plots of the (y) dependences 
for each of the five interferograms, as well as the plots of the dependences 
of averaged phase difference, are given in the upper right part of the fitting-
result window (see Fig. 4-5).
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Fig. 4-5. Example of calculations of (y) dependences: a lower plot shows 
experimental data for a selected table cell (a line 209 of the file “H09_3.TIF”) and a 
fit with sinusoidal function. 
Adapted with permission from Krupych, O., Savaryn, V., Krupych, A., Klymiv, I., & 
Vlokh, R. (2013). Determination of piezo-optic coefficients of crystals by means of 
four-point bending. Appl. Opt., 52(17), 4054–4061. © The Optical Society. 

 
After acquiring the dependences 0(y) for free sample and '(y) for 

loaded sample, one can calculate their difference and obtain the dependence 
of the phase difference increment (y) = '(y) – 0(y) (see Fig. 4-6). 

 

 
Fig. 4-6. Dependence of phase-difference increment (y): circles correspond to 
experimental data and straight line to the best linear fit. 
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The analysis of formulae (4.13) and (4.14) suggests that, by fitting the 
experimental dependence (y) with the linear function (y) = Ay + B, 
the angular coefficient A can be obtained. On this basis, the coefficient Q 
can be calculated using the formula 

 
3

12
h

Q A
Pa

.                                                                                 (4.17) 

 
Then the photoelastic coefficient K is given by 
 

1K Q D Q S nv ,                                                         (4.18) 
 

where S  stands for the actual component of the elastic compliance tensor 
and nv the initial refractive index for the vertical polarization of light. 

Using the photoelastic coefficient K, one can calculate the piezooptic 
coefficient v  (with the index v denoting the vertical light polarization): 

 

3
2K

n
v

v

.                                                                                    (4.19) 

 
As a next step, the input light polarization is changed from vertical to 

horizontal and the measurement procedure described above is repeated to 
obtain the piezooptic coefficient h  (with the index h denoting the 
horizontal polarization of light). In this way, the effective piezooptic 
coefficients v  and h  can be determined for a given direction of light 
propagation through a sample. 
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4.1.3. Determination of the piezooptic coefficients for isotropic 
media with four-point bending: an example of BK7 optical glass 

We have checked our method for measuring the piezooptic coefficients, 
using a model isotropic material, a BK7 optical glass [92]. Fig. 4-7 presents 
typical interferograms obtained for the piezooptic effect in this glass. 

 

a) b) 

c) d) 
Fig. 4-7. Typical interferograms obtained for a sample of BK7 optical glass: (a) free 
sample (vertical polarization), (b) loaded sample (vertical polarization), (c) free 
sample (horizontal polarization), and (d) loaded sample (horizontal polarization). 
The field of view is 3.65×5.58 mm2, the image size 361×600 pixels, the loading 
force 80.9 N. We analyze the area selected in image (a), which contains smoothed 
data. 
Adapted with permission from Krupych, O., Savaryn, V., Skab, I., & Vlokh, R. 
(2011). Interferometric measurements of piezooptic coefficients by means of four-
point bending method. Ukr. J. Phys. Opt., 12(3), 150–160. © O. G. Vlokh Institute of 
Physical Optics. 
 

As noted above, two different piezooptic coefficients can be determined 
for a given propagation direction, depending on the polarization of light. 
For isotropic materials, the piezooptic tensor contains only two independent 
components, 11 and 12. To determine them, it is enough to test a single 
sample along a single propagation direction. 

According to the above procedure, we have obtained dependences of the 
phase difference increments 1(y) and 2(y) for the horizontal and 
vertical polarizations (Fig. 4-8). Subsequently, these dependences have been 
fitted with the linear functions, from where the slopes can be calculated. 
Then the Q1 and Q2 coefficients have been found. 
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Fig. 4-8. Dependences of phase difference increments 1(y) and 2(y) fitted with 
linear functions. The fitting results and the corresponding statistics are given in the 
legends. 
Adapted with permission from Krupych, O., Savaryn, V., Skab, I., & Vlokh, R. 
(2011). Interferometric measurements of piezooptic coefficients by means of four-
point bending method. Ukr. J. Phys. Opt., 12(3), 150–160. © O. G. Vlokh Institute of 
Physical Optics. 

 
Next, the coefficients K||, K  and K have been calculated for the two 

alternative interferometer configurations. In the first configuration, the 
interferometer has been adjusted so that about five interference fringes are 
observed in the field of view, and about eight bands observed in the second 
configuration. 

The coefficients K||, K  and K thus obtained are shown in Table 4-1, 
where the corresponding literature data are also provided for comparison. It 
is the data given by the manufacturers of optical glasses. 

 
Table 4-1. Photoelastic coefficients of the BK7 optical glass 

obtained experimentally, and the corresponding literature data 
Coefficient Configuration 1 Configuration 2 Literature data 

(  = 589 nm) 
K||, B –0.490  0.045 –0.548  0.050 –0.5 [92] 
K , B –3.302  0.063 –3.269  0.050 –3.3 [92] 
K, B 2.811  0.077 2.722  0.071 2.77 [93] 

 
One can see that, for all of experimentally measured coefficients, the 

literature data coincides with our results within the confidence intervals. In 
other words, the experimental results obtained by us are well consistent with 
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the available data, which indicates a high accuracy of our method. The 
relative error for the K coefficient does not exceed 3%, thus confirming a 
high precision of our experimental setup and the computing procedures. 

Basing on the coefficients K|| and K  given above, the following 
piezooptic coefficients have been derived: 11 = (0.282  0.026) B and 

12 = (1.899  0.036) B for the first interferometer configuration, and 
11 = (0.315  0.029) B and 12 = (1.880  0.029) B for the second 

configuration. The average piezooptic coefficients are equal to 
11  = 0.299 B and 12  = 1.890 B. The absolute error that reflects 

reproducibility of our piezooptic coefficients does not exceed  0.036 B. 
This corresponds to the best accuracy known from the literature (see 
[81, 94]).  

Unfortunately, the reference book of optical materials [92] contains only 
the elastooptic coefficients p11 = 0.12 and p12 = 0.22 for the BK7 optical 
glass. They are associated with the piezooptic coefficients via the Young’s 
module E and the Poisson’s ratio : 

 
11 12

11

12 11
12

1 2
,

1 1 2

.
1 1 2

E
p

E
p

                                                         (4.20) 

 
The coefficients p11 = 0.118  0.004 and p12 = 0.226  0.005 have been 

calculated following from the experimental values 11 and 12 and the 
formulae (4.20). It is seen that they also agree well with the literature data. 
In other words, our error levels are quite sufficient in terms of the typical 
requirements known from the reference literature. 

A simple comparison testifies that the accuracy of our method is not 
worse than that of the Dixon-Cohen method, which provides the best 
performance when determining the elastooptic coefficients [70, 71]. 
However, unlike the Dixon-Cohen method, our method reveals another 
significant advantage: it allows for determining the signs of piezooptic and 
photoelastic coefficients. This can be done when the signs of the mechanical 
stresses are known and the interferometer is calibrated properly. 

Finally, we stress that our technique can also be promising when 
determining the piezooptic coefficients of crystalline materials. 
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4.1.4. Studies for the photoelastic characteristics of borate glasses 

Using the above procedures for determining piezooptic coefficients in 
isotropic media, which are based on the four-point bending, we have also 
examined a number of samples of borate glasses LiKB4O7, Li2B6O10 
(LiB3O5) and LiCsB6O10 [95, 96]. The interferograms obtained during our 
studies for the piezooptic effect in these glasses are illustrated in Fig. 4-9–4-
11. 

The coefficients K||, K  and K have been calculated for these borate 
glasses (see Table 4-2). Note that the stress optical coefficient K for the 
borate glasses exceeds almost twice the corresponding coefficient for the 
BK7 glass. This means that the birefringence induced by the same 
mechanical stress is almost twice as large in the borate glass, when 
compared with the BK7 glass. High enough elastooptic coefficients of the 
borate glasses are also worth noting. This fact makes these materials 
promising for acoustooptics. 

 

a) b) 

c) d) 
Fig. 4-9. Interferograms obtained for a sample of LiKB4O7 borate glass: (a) free 
sample (vertical polarization), (b) loaded sample (vertical polarization), (c) free 
sample (horizontal polarization), and (d) loaded sample (horizontal polarization). 
The field of view is 3.05×3.12 mm2, the image size 270×300 pixels, and the loading 
force 57.1 N. 
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a) b) 

c) d) 
Fig. 4-10. Interferograms obtained for a sample of Li2B6O10 borate glass: (a) free 
sample (vertical polarization), (b) loaded sample (vertical polarization), (c) free 
sample (horizontal polarization), and (d) loaded sample (horizontal polarization). 
The field of view is 4.52 6.16 mm2, the image size 400 500 pixels, and the loading 
force 57.1 N. 

 

a) b) 

c) d) 
Fig. 4-11. Interferograms obtained for a sample of LiCsB6O10 borate glass: (a) free 
sample (vertical polarization), (b) loaded sample (vertical polarization), (c) free 
sample (horizontal polarization), and (d) loaded sample (horizontal polarization). 
The field of view is 3.55 4.94 mm2, the image size 313 400 pixels, and the loading 
force 57.1 N. 

 
As seen from Table 4-2, the absolute and relative errors for determining 

the coefficient K are respectively equal to 0.33 B and 4% for the LiKB4O7 
borate glass, 0.39 B and 8% for the Li2B6O10 borate glass, and 0.34 B and 
6% for the LiCsB6O10 borate glass. 
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Table 4-2. Experimental values of effective coefficients 

No. Coefficient, B Borate glass 
LiKB4O7 Li2B6O10 LiCsB6O10 

1 Q|| –3.80  0.09 –3.29  0.09 –6.25  0.14 
2 Q  –8.78  0.19 –8.15  0.17 –11.69  0.24 
3 D = S(n – 1) –2.31  0.18 –2.68  0.24 –3.57  0.14 
4 K|| –1.49  0.20 –0.61  0.26 –2.68  0.19 
5 K  –6.47  0.26 –5.47  0.30 –8.12  0.28 
6 K = K|| – K  4.98  0.33 4.86  0.39 5.44  0.34 
7 11 0.85  0.12 0.35  0.15 1.50  0.11 
8 12 3.69  0.15 3.14  0.17 4.56  0.16 
9 44 = 11 – 12 –2.84  0.19 –2.79  0.23 –3.06  0.19 

10 p11 0.250  0.013 0.184  0.016 0.286  0.010 
11 p12 0.382  0.014 0.300  0.018 0.386  0.013 

4.2. Studies for the photoelastic characteristics of trigonal 
crystals using four-point bending: an example of lithium 

niobate 

Unlike isotropic glasses, crystals reveal anisotropy, i.e. their matrices of 
piezooptic coefficients contain generally more than two independent 
components. This means that, in order to determine the complete piezooptic 
matrix for a certain crystal, it is necessary to make measurements for many 
samples oriented in different ways with respect to the principal coordinate 
system which is sometimes called a “crystallo-physical” system. It was 
shown above that only two acting coefficients can be determined for a given 
direction of light propagation However, using crystalline samples prepared 
in the shape of a bar with a cross-section close to square (b ≈ h, see Fig. 4-
1) allows that each sample can be illuminated along two mutually 
perpendicular directions. This technique increases the number of the 
coefficients which can be measured for a single sample. Thus, it reduces the 
total number of samples required. 

We have tested the above method for measuring the piezooptic 
coefficients of anisotropic media, using a trigonal crystal of lithium niobate 
(LiNbO3). It belongs to the point symmetry group 3m, the piezooptic matrix 
of which contains eight independent components: 
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11 12 13 14

12 11 13 14

31 31 33

41 41 44

44 41

14 11 12

0 0
0 0

0 0 0
.

0 0 0
0 0 0 0 2
0 0 0 0 ( )

ij                        (4.21) 

 
The analysis of this matrix shows that, in order to determine all the 

coefficients with the four-point bending technique, it is necessary to 
examine at least four different crystalline samples. To determine the five 
principal coefficients ( 11, 12, 13, 31 and 33), it is enough to examine 
only two samples [63]. In total, seven samples of LiNbO3 crystals have been 
made [64]. Their dimensions and orientations of the faces relative to the 
principal coordinate system are presented in Table 4-3. 

 
Table 4-3. Dimensions of crystalline LiNbO3 samples (in mm) and 

orientations of their faces (Miller indices) 

Sample No. 
Long axis Side axis 1 Side axis 2 

Direction Dimension
, mm Direction Dimension

, mm Direction Dimension
, mm 

1 [100] 18.1 [010] 3.16 [001] 3.03 
2 [001] 18.1 [100] 3.03 [010] 2.84 

3.1, 3.2, 3.3 [100] 18.1 [011] 2.63 [011]  3.13 

4 [011]  18.1 [100] 3.03 [011] 2.84 
5 [010] 18.1 [100] 3.03 [001] 3.14 
6 [101] 18.1 [010] 3.15 [101]  3.02 

7 [010] 18.1 [101] 3.03 [101]  2.84 
 
The effective piezooptic coefficients and the parameters for all of the 

samples under test, which correspond to different experimental geometries, 
are collected in Table 4-4, where no and ne are respectively the ordinary and 
extraordinary refractive indices. 

In general, to calculate the effective coefficient  with the relations 
(4.18) and (4.19), it is necessary to determine experimentally the Q 
parameter, know the effective component of the elastic compliance tensor 
S  (or a combination of its components) and have the refractive index n . 
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Table 4-4. Effective piezooptic coefficients of LiNbO3 crystals and 
experimental conditions under which they are determined 

Sa
m
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e 
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o.
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coefficient 
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1 

11 1 [001] S31 = S13 [100] no 

21 = 12 1 [001] S31 = S13 [010] no 

11 1 [010] S21 = S12 [100] no 

31 1 [010] S21 = S12 [001] ne 

2 

33 3 [010] S23 = S13 [001] ne 

13 3 [010] S23 = S13 [100] no 

33 3 [100] S13 [001] ne 

23 = 13 3 [100] S13 [010] no 

3 

11 1 [011] (S12 + S13 – S14)/2 [100] no 
( 12 + 31 + 2 41)/2 1 [011] (S12 + S13 – S14)/2 [011] n45* 

11 1 [011] (S12 + S13 + S14)/2 [100] no 
( 12 + 31 – 2 41)/2 1 [011] (S12 + S13 + S14)/2 [011] n45 

4 

( 11 + 13 + 31 + 33 – 
– 14– 2 41 + 2 44)/4 2, 3, 4 [011] (S11 + 2S13 + S33 – S44)/4 [011] n45 

( 12 + 13 + 14)/2 2, 3, 4 [011] (S11 + 2S13 + S33 – S44)/4 [100] no 
( 11 + 13 – 14)/2 2, 3, 4 [100] (S12 + S13 + S14)/2 [010] no 

( 31 + 33)/2 2, 3, 4 [100] (S12 + S13 + S14)/2 [001] ne 

5 

22 = 11 2 [001] S32 = S13 [010] no 

12 2 [001] S32 = S13 [100] no 

22 = 11 2 [100] S12 [010] no 

32 = 31 2 [100] S12 [001] ne 

6 

( 11 + 13 + 31 + 33 + 2 44)/4 1, 3, 5 [101] (S11 + 2S13 + S33 – S44)/4 [101] n45 
( 12 + 13)/2 1, 3, 5 [101] (S11 + 2S13 + S33 – S44)/4 [010] no 
( 11 + 13)/2 1, 3, 5 [010] (S12 + S13)/2 [100] no 
( 31 + 33)/2 1, 3, 5 [010] (S12 + S13)/2 [001] ne 

7 

22 = 11 2 [101] (S12 + S13)/2 [010] no 
( 12 + 31)/2 2 [101] (S12 + S13)/2 [101] n45 

22 = 11 2 [101] (S12 + S13)/2 [010] no 
( 12 + 31)/2 2 [101] (S12 + S13)/2 [101] n45 

*n45 = [2 (no2 + ne2)]1/2 = 2.243; no = 2.286; ne = 2.203. 
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As seen from Table 4-4, some piezooptic coefficients can be determined 

from different independent measurements. For example, the coefficient 11 
can be obtained with eight different experimental geometries, while the 
coefficients 12, 13, 31 and 33 can be found only in two different geometries. 
This provides higher reliability of the piezooptic coefficients, which is 
achieved by averaging the results of independent measurements. 

Unlike the principal piezooptic coefficients which can be obtained 
directly, non-principal piezooptic coefficients enter in complex relationships 
for the effective piezooptic coefficients, which contain combinations of 
many different coefficients. Therefore, their determination must rely upon 
oblique (non-principal) crystal sections. Moreover, it needs calculating the 
effective elastic compliances, which are expressed by complex combinations 
of individual compliance modules. Such circumstances increase the 
calculation errors for the non-principal piezooptic coefficients. 

When calculating the piezooptic coefficients basing on the coefficients 
Q, we have used the compliance modules for the LiNbO3 crystals reported 
in the work [97]. The only exception is the coefficient S14, which has been 
taken with the positive sign, according to the IRE standards [98, 99]. 

As a result of our measurements and calculations, the complete matrix 
of piezooptic coefficients for the LiNbO3 crystals has been obtained. It 
includes eight independent coefficients, the averages of which are given in 
the second column of Table 4-5. These results are compared with the 
principal piezooptic coefficients reported previously in Refs. [63, 81] and 
the results given in the work [60]. 

 
Table 4-5. Piezooptic coefficients for LiNbO3 crystals 

(our experiments and literature data) 
Piezooptic 
coefficient 

(B) 

Experiment 
[64] 

Experiment 
[63] 

Experiment 
[81] 

Literature 
[60] 

11 –0.376 0.069 –0.40 0.07 – –0.38 
12 0.197 0.039 0.224 0.009 – 0.09 
13 0.662 0.065 0.66 0.02 – 0.80 
31 0.529 0.025 0.51 0.02 – 0.50 
33 0.253 0.024 0.251 0.008 – 0.20 
14 0.875 0.071 – 0.887 0.028 –0.81 
41 –0.228 0.051 – – –0.88 
44 2.060 0.071 – – 2.25 
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As seen from Table 4-5, increasing numbers of the samples under 
analysis and the independent measurements have somewhat changed the 
data for the principal piezooptic coefficients, if compared with the data [63]. 
On the other hand, the experimental errors have even increased in some 
cases. This fact is easily understood given inevitable orientation errors that 
occur when one manufactures a larger quantity of crystalline samples. In 
spite of somewhat reduced accuracy, the use of a larger quantity of samples 
leads to higher reliability of the final results.

In most cases, our results agree fairly well with the data taken from the 
work [60]. Only the coefficients 12 and 41 differ markedly from these 
results. Besides, the coefficient 14 differs in its sign from the data [60]. At 
the same time, the sign and the absolute value of the coefficient 14 are the 
same as obtained using a crystal-rod twisting method [81]. Considering that 
the signs of the coefficients 14 and 41 depend on the sign of Cartesian 
coordinate system and the positive direction of z axis in the right-handed 
coordinate system, this result is evident. After all, the right-handed 
coordinate system has been used both in this experiment and in the work 
[81], whereas the direction of the z axis has been determined according to 
the IRE standard, i.e. with a positive piezoelectric coefficient d33 and a 
positive elastic compliance S14.

To explain deviations of our piezooptic coefficients from the 
experimental data of the other authors, it is necessary to take into account 
the effect of joint action of piezoelectric and electrooptic effects on the 
measured piezooptic coefficients. In general, the coefficient measured for a 
piezo-electric material can be written as

0
( 1 3, , 1 6)i iE E

ii

r d
i 3, , 1 6)3, ,,3, ,, ,             (4.22)

where E is the piezooptic coefficient under a constant electric field (a 

“primary” coefficient), the contribution due to a joint action of 
piezoelectric and electrooptic effects (a “secondary” coefficient); rλi the 
coefficient of linear electrooptic effect, diμ the piezoelectric coefficient, χii

the component of dielectric-susceptibility tensor, and ε0 = 8.85×10–12 F/m 
the electric constant.

All of the secondary coefficients have been calculated using the 
literature data for the electrooptic, piezoelectric and dielectric-susceptibility 
tensors [61]. When evaluating the secondary coefficients, we have found 
that they can have the same order of magnitude as the primary coefficients. 
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To eliminate the contribution of the secondary effect, the samples are 
usually short-circuited electrically. Then the electric field is zero, i.e. the 
piezooptic coefficients measured in practice are just the primary 
coefficients. 

One has to stress that the configuration of electric field induced by the 
piezoelectric effect in the samples to which the four-point bending is 
applied can differ significantly from the configuration occurring in the 
traditional scheme of uniaxial compression of parallelepiped-shaped 
samples. Then the corresponding contributions of the secondary coefficient 
to the total coefficient would also be different. 

After calculating the spatial distribution of electric field, which appears 
in the samples under four-point bending, two characteristic configurations 
of the induced electric field have been found: in the first configuration, the 
electric field is perpendicular to the acting component of the mechanical 
stress tensor, while in the second configuration it is parallel to it (Fig. 4-12). 

 

a) 

b) 
Fig. 4-12. Spatial distribution of the electric field induced by piezoelectric effect in 
the central part of LiNbO3 sample under four-point bending: (a) sample No. 1 (z-cut 
corresponds to light propagation direction) and (b) sample No. 2 (y-cut corresponds 
to light propagation direction). The length of arrows and the size of circles and 
crosses are proportional to the electric field module |E|. 
Adapted with permission from Krupych, O., Savaryn, V., & Vlokh, R. (2014). 
Precise determination of full matrix of piezo-optic coefficients with a four-point 
bending technique: the example of lithium niobate crystals. Appl. Opt., 53(10), B1–
B7. © The Optical Society. 

 
In the first case (see Fig. 4-12a), only the stress component 1 differs 

from zero in the central part of sample where there is “pure bending”, while 
the induced components of the electric field are as follows: 
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222 1
1 2 1

0 11

231 1
3 1

0 33

0,    2.84 10 ,

0.38 10 .

d
E E

d
E

                                         (4.23) 

 
Thus, the induced electric field vector Е lies in the yz plane. Note that 

the angle between the positive direction of the y axis and the vector E 
equals to 187.6 deg at 1 > 0 (i.e., at the bottom of sample) and 7.6 deg at 

1 < 0 (i.e., at the top of sample). This means that the vector E is almost 
perpendicular to the upper and lower faces of our sample, with the opposite 
signs of the electric field on these faces. 

In the second case (Fig. 4-12b), only the stress component 3 differs 
from zero and, according to the form of piezoelectric tensor, there is a 
single nonzero component of the electric field E3: 

 
233 3

1 2 3 3
0 33

0, 0, 4.67 10 .d
E E E                               (4.24) 

 
Thus, the induced electric field vector E is parallel to the z axis at 3 > 0 

(i.e., at the bottom of sample) and anti-parallel to the z axis at 3 < 0 (i.e., at 
the top of sample). In other words, the vector E is strictly parallel to the 
upper and lower faces of our sample. As a result, these faces are electrically 
neutral and the piezoelectric contribution to the piezooptic effect should not 
be observed. 

When analyzing the above two cases, it would be natural to assume that 
compensation of electrical charges induced by the piezoelectric effect 
should occur differently. Hence, the influences of the secondary effect on 
the total coefficients should also differ from each other. To test this 
assumption, the piezooptic coefficients for short-circuited and non-shorted 
samples have been measured for these two alternative cases. As a result, we 
have revealed that the difference between the measured parameters does not 
exceed the experimental error. This implies that the four-point bending 
technique enables determining the primary (i.e., initial) coefficients, at least 
in the case of LiNbO3 crystals. Unfortunately, the electrical conditions of 
samples examined by the other authors have not been reported (see, e.g., 
Ref. [60]). 

The principal sources of the errors arising when determining the 
piezooptic coefficients in crystalline materials include the following: 
shortcomings of the optical techniques applied; errors of experimental setup 
related to misalignments of the optical scheme, fluctuation of signals, and 
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electronic noises; the drawbacks of single-crystal growth (deviation from 
stoichiometry, a presence of uncontrolled impurities, residual stresses, etc.); 
shortcomings of sample preparation (misorientations of crystallographic 
axes with respect to sample faces and imperfect processing of the faces); the 
measurement errors of the elastic-compliance coefficients used when 
calculating the piezooptic coefficients; errors associated with a secondary 
piezooptic effect in piezoelectric materials; nonproper definition of 
coordinate systems for different material tensors, which are used when 
calculating the piezooptic and elastooptic coefficients. 

Unfortunately, the researchers rarely describe the above details in their 
works, which hinders more or less accurate comparison of the data. 
However, such a comparison can be made in some cases. For example, the 
error for the piezooptic coefficients averaged over all the coefficients of 
LiNbO3 is about 15%, according to the work [60]. In its turn, according to 
the data [100], the averaged error for the piezooptic coefficients exceeds 
33%, when the interference method is used for orthorhombic SrB4O7 
crystals and uniaxial compression is applied. Unfortunately, a non-
uniformity of mechanical stresses inside samples has been taken into 
account only intuitively in these works. At the same time, one can see that 
the average error for the piezooptic coefficients determined with the four-
point bending method does not exceed 12%. 

In order to assess the prospects of optical materials for acousto-optic 
applications, elastooptic coefficients p  are commonly used, instead of 
piezooptic ones. When the total matrix of piezooptic coefficients is known, 
the corresponding elastooptic coefficients can be calculated from the 
relation (1.7), provided that the complete matrix of elastic stiffnesses С  is 
also known. 

Therefore we have calculated the matrix of elastooptic coefficients, 
basing on the piezooptic coefficients measured with the method of four-
point bending. The elastic-stiffness coefficients have been taken from the 
work [97]. The experimental elastooptic coefficients obtained by us are 
shown in the Table 4-6, where they are compared with the results published 
by the other authors [101, 102]. 
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Table 4-6. Elastooptic coefficients in LiNbO3 crystals 
Elastooptic 
coefficient Experiment [64] Data of Ref. [101] Data of Ref. [102] 

p11 –0.023  0.017 –0.021  0.018 –0.026 
p12 0.076  0.014 0.060  0.019 0.090 
p13 0.147  0.019 0.172  0.029 0.133 
p31 0.157  0.007 0.141  0.017 0.179 
p33 0.141  0.013 0.118  0.020 0.071 
p14 –0.057  0.004 –0.052  0.007 –0.075 
p41 –0.051  0.011 –0.109  0.017 –0.151 
p44 0.126  0.004 0.121  0.019 0.146 

 
As seen from Table 4-6, the confidence intervals overlap for all of the 

elastooptic coefficients, except for p33 and p41. This confirms that our 
coefficients are consistent with the literature data. It should be noted that the 
errors for all of the eight coefficients obtained with the four-point bending 
technique are smaller than those obtained in the work [101]. This fact points 
to high accuracy of the method and our experimental setup. 

4.3. Studies for the photoelastic characteristics 
of tetragonal crystals (tetrahedral and pyramidal 

symmetry groups) 
The procedures described above have been used to measure the matrix of 
piezooptic coefficients for NaBi(MoO4)2 and Li2B4O7 crystals. 

4.3.1. Example of NaBi(MoO4)2 crystals 

The piezooptic tensor for the bismuth sodium molybdate NaBi(MoO4)2 
crystals (the point symmetry group 4/m) consists of ten independent 
coefficients and has the following form: 

 
11 12 13 16

12 11 13 16

31 31 33

44 45

45 44

61 61 66

0 0
0 0
0 0 0

0 0 0 0
0 0 0 0

0 0 0

ij .                               (4.25) 
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After conducting a complex analysis similar to that presented in the 
work [67], we have found all the experimental geometries necessary for 
determining the complete matrix of piezooptic coefficients for the 
NaBi(MoO4)2 crystal [103]. Basing on these results, six parallelepiped-
shaped samples have been produced. The dimensions and the orientations of 
their faces with respect to the principal coordinate system are shown in 
Table 4-7. 

 
Table 4-7. Dimensions of NaBi(MoO4)2 crystalline samples (mm) 

and orientations of their faces (Miller indices) 

Sample 
No. 

Long axis Side axis 1 Side axis 2 

Direction Dimension,
mm Direction Dimension, 

mm Direction Dimension, 
mm 

1 [100] 19.4 [010] 3.28 [001] 3.33 
2 [001] 16.4 [100] 3.24 [010] 3.18 
3 [011] 19.3 [100] 3.33 [011]  3.17 

4 [110] 19.8 [001] 3.28 [110]  3.20 

5 [210] 19.7 [001] 3.32 [120]  3.29 

6 1 1 1; ;
2 22

* 19.3 [011]  3.18 1 1 1; ;
2 22

* 3.33 

* direction cosines 
 
When the four-point bending is applied, in the middle part of the bar a 

single stress component appears, which is parallel to the long axis of the 
specimen. The examples of interferograms obtained for the NaBi(MoO4)2 
samples in their free and loaded states are shown in Fig. 4-13. 

 

a) b) 
Fig. 4-13. Interferograms obtained for the central part of NaBi(MoO4)2 sample 
No. 2: (a) free sample and (b) sample loaded using the four-point bending method. 
Light propagates along the principal direction [100] and the field of view is 
5.9×3.5 mm2. 
Adapted with permission from Krupych, O., Kushnirevych, M., Mys, O., & Vlokh, R. 
(2015). Photoelastic properties of NaBi(MoO4)2 crystals. App. Opt., 54(16), 5016–
5023. © The Optical Society. 
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Table 4-8 shows the expressions for the effective (operating) piezooptic 
coefficients Π and the elastic compliances Σ, as well as the corresponding 
parameters for all the samples and experimental geometries. The interferograms 
recorded during our experiments have been analyzed with original software, 
which makes it possible to obtain the coefficients Q (see Table 4-9). 

The elastic-compliance coefficients required for the further calculations 
have been obtained from the complete matrix of elastic stiffnesses 
according to the formula S = C−1. Then the effective elastic compliances Σ 
and the strain terms D have been calculated for all the experiments. The Σ 
and D values, as well as the experimental values of the effective coefficients 
K and Π are given in Table 4-9. 

As seen from Table 4-9, the errors for the coefficients Q are small 
enough: the absolute errors do not exceed ΔQmax = 0.213 B and the relative 
errors are less than δQmax = 1.77%. These error values confirm a correctness 
of operation and a high accuracy of our experimental and calculation 
methods. 

The errors of the strain terms D are determined mainly by the errors of 
the effective elastic compliances Σ, as follows from the relation 
D = Σ(n − 1). Hence, the relative errors of the strain terms are given by the 
expression 

 
22 1D n n .                                                        (4.26) 

 
Usually the absolute errors of the refractive indices do not exceed the 

value n = 0.001. In a particular case of NaBi(MoO4)2, the relative errors of 
the refractive indices are given by n  0.046%. In its turn, the relative 
errors of the effective elastic compliances can be much larger (see 
Ref. [104]) and reach the values in the range of 0.21%  Σ  1.29%. Then 
the second term under square root in the r. h. s. of formula (4.26) can be 
neglected, thus resulting in the approximate equality D  Σ. Hence, the 
maximal absolute and relative errors for the strain terms are equal to 

Dmax = 0.055 B and Dmax = 0.81%, respectively. 
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Table 4-8. Effective piezooptic (Π) and elastic compliance (Σ) coefficients 
and the corresponding experimental geometries 

used for NaBi(MoO4)2 crystals 

Sa
m
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e 
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Π Σ 
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s 

D
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 li
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n 

D
ire

ct
io

n 
of

 li
gh

t 
po
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n 

Re
fra

ct
iv

e 
in

de
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1 
A 11 

S21 = S12 1 [010] 
[100] no 

B 31 [001] ne 

2 

A 33 
S23 = S13 3 [010] 

[001] ne 

B 13 [100] no 

C 33 
S13 3 [100] 

[001] ne 

D 23 = 13 [010] no 

3 

A 
( 11 + 13 + 31 + 
+ 33 + 2 44)/4 

(S11 + 2S13 + 
+ S33 – S44)/4 2, 3, 4 [011]  

[011] n45* 

B ( 12 + 13 )/2 [100] no 

C ( 11 + 13 )/2 
(S12 + S13 )/2 2, 3, 4 [100] 

[010] no 

D ( 31 + 33)/2 [001] ne 

4 
A ( 11 + 12 + 66)/2 (2S11 + 2S12 – 

– S66)/4 1, 2, 6 
[110] [110] no 

B 31 [110]  [001] ne 

5 
A 

(17 11 + 8 12 + 8 66 – 
– 6 16 – 12 61)/25 

(8S11 + 17S12 + 
+ 12S16 – 
– 4S66)/25 1, 2, 6 [120]  

[210] no 

B 31 
(S11 + 2S13 + 
+ S33 – S44)/4 

[001] ne 

6 

A 
(2 11 + 12 + 

+ 13 + 2 16)/4 
(S11 + 2S12 + 
+ 4S13 +S33 – 

– S44 – 

– 2 S16)/8 

1, 2, 

3, 4, 

5, 6 
[011]  

[100] no 

B 

[ 11 + 13 + 33 + 3 31 +  
+ 2( 12 + 44) + 

+ 2 (2 45 – 16 )]/8 
[011] n45* 

* n45 = none[2/(no2 + ne2)]1/2 = 2.256, no = 2.308, and ne = 2.199. 
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Table 4-9. Experimental values of the effective coefficients 
obtained for NaBi(MoO4)2 crystals 

Sa
m

pl
e 

N
o.

 Direction Effective coefficient, B 

Stress Light 
propagation 

Light 
polarization Q D K 

1 [100] [010] 
[100] –14.487 

±0.201 
–8.191 
±0.055 

–6.296 
±0.209 

1.024 
±0.034 

[001] –11.615 
±0.169 

–7.508 
±0.051 

–4.106 
±0.177 

0.772 
±0.033 

2 

[001] [010] 
[001] –15.083 

±0.209 
–3.394 
±0.022 

–11.689 
±0.211 

2.199 
±0.040 

[100] –13.445 
±0.189 

–3.703 
±0.024 

–9.742 
±0.191 

1.585 
±0.031 

[001] [100] 
[001] –15.199 

±0.213 
–3.394 
±0.022 

–11.805 
±0.214 

2.220 
±0.040 

[010] –13.012 
±0.198 

–3.703 
±0.024 

–9.310 
±0.199 

1.514 
±0.032 

3 

[011] [011]  
[011] –15.242 

±0.212 
–5.592 
±0.043 

–9.650 
±0.217 

1.691 
±0.038 

[100] –12.313 
±0.173 

–5.845 
±0.045 

–6.468 
±0.179 

1.052 
±0.029 

[011] [100] 
[010] –13.374 

±0.192 
–5.947 
±0.030 

–7.427 
±0.194 

1.208 
±0.032 

[001] –12.824 
±0.190 

–5.451 
±0.028 

–7.373 
±0.192 

1.387 
±0.036 

4 [110] [110]  
[110] –7.478 

±0.112 
–5.738 
±0.047 

–1.740 
±0.121 

0.283 
±0.020 

[001] –7.098 
±0.117 

–5.260 
±0.043 

–1.838 
±0.124 

0.346 
±0.023 

5 [210] [120]  
[210] –5.800 

±0.094 
–2.934 
±0.021 

–2.866 
±0.097 

0.466 
±0.016 

[001] –4.726 
±0.084 

–2.690 
±0.020 

–2.036 
±0.086 

0.383 
±0.016 

6 
1 1 1; ;

2 22
* [011]  

[100] –12.480 
±0.175 

–7.254 
±0.029 

–5.227 
±0.177 

0.850 
±0.029 

[011] –15.183 
±0.206 

–6.940 
±0.028 

–8.243 
±0.208 

1.444 
±0.037 

* direction cosines 

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 4 
 

128 

Since the effective photoelastic coefficients K represent the differences 
between the aggregate photoelastic coefficients Q and the strain terms D 
(i.e., K = Q – D), the absolute errors K can be calculated with the formula 

2 2K Q D . Since the terms Q is several times larger than 

D, the K errors are only slightly larger than the corresponding values Q. 
Then the maximal absolute and relative errors for the effective photoelastic 
coefficients amount to Kmax = 0.217 B and Kmax = 6.98%, respectively. 

The effective piezooptic coefficients Π are calculated on the basis of the 
effective photoelastic coefficients K, using the relation 32П K n . 
Given this fact, the relative errors  are almost equal to the relative errors 
K, since we have K >> n. Therefore, we have max = 0.040 B and 

max = 6.98%. 
To calculate the ten independent piezooptic coefficients , we have 

used the effective piezooptic coefficients Πij obtained experimentally (see 
Table 4-9) and the formulae 

 
11 1

13 2 2

33 2 2

31 1 4 5

12 3 13

66 4 11 12

44 3 11 13 31 33

16 6 11 12 13

61 11 12 66 16 5

45 6 11 13 33 12 44 31

,
2,

2,

3,
2 ,
2 ,
4 2,

4 2 2 ,

17 8 6 25 12,

8 2 3

A

B D

A C

B B B

B

A

A

A

A

B 162 8.

   (4.27) 

 
As a result, all the piezooptic coefficients and the corresponding errors 

have been calculated (see Table 4-10). According to the relations (4.27), the 
piezooptic coefficients  are linear combinations of the effective 
piezooptic coefficients , so that the absolute errors  are slightly larger 
than the errors . The maximal absolute error for the piezooptic 
coefficients is equal to max = 0.139 B, while the corresponding maximal 
relative error can reach the value max = 23.6%. 
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Table 4-10. Piezooptic coefficients 
obtained for NaBi(MoO4)2 crystals 

11 12 13 31 33 44 66 45 16 61 
1.024 

±0.034 
0.555 

±0.063 
1.550 

±0.022 
0.500 

±0.015 
2.209 

±0.028 
0.740 

±0.080 
–1.013 
±0.081 

0.682 
±0.139 

–0.532 
±0.106 

0.440 
±0.104 

 
Having obtained the complete matrix of piezooptic coefficients , one 

can calculate the complete matrix of elastooptic coefficients p, using 
formula (1.7) and assuming that the complete matrix of elastic stiffnesses C 
is known in advance. For the crystals of point symmetry group 4/m, the 
matrix C consists of seven independent coefficients. For the NaBi(MoO4)2 
crystals, they have been measured by different researchers, using a number 
of experimental methods [104, 105]. Unfortunately, the differences among 
the coefficients presented by different authors are quite large (up to 15% for 
the coefficients С12, С13 and С33, and up to 94% for the coefficient С16). The 
errors of calculations of the elastooptic coefficients from the piezooptic 
coefficients depend significantly on the accuracy of the elastic stiffnesses. 
Although in our experiments we have determined the elastic stiffness 
coefficients from the acoustic-wave velocity measurements performed in 
the work [106], the calculations mentioned above should be based on the 
elastic stiffnesses determined with higher accuracy in the work [104], where 
a method of resonance-antiresonance in thick plates has been employed. 

As a result, the complete matrix of elastooptic coefficients has been 
calculated from the piezooptic coefficients measured with the four-point 
bending and the elastic-stiffness coefficients [104]. These elastooptic 
coefficients are shown in Table 4-11. The results obtained in the work [107] 
are also displayed for comparison. 

 
Table 4-11. Elastooptic coefficients 
obtained for NaBi(MoO4)2 crystals 

Elastooptic 
coefficient p11 p12 p13 p31 p33 p44 p66 p45 p16 p61 

Four-point 
bending 
method 

0.196 
±0.005 

0.159 
±0.007 

0.189 
±0.003 

0.154 
±0.002 

0.228 
±0.003 

0.019 
±0.002 

–0.044 
±0.004 

0.017 
±0.004 

–0.023 
±0.004 

0.035 
±0.012 

Data [107] 0.243 0.205 0.25 0.21 0.29 – – – – – 
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4.3.2. Studies for the photoelastic characteristics of tetragonal 
Li2B4O7 crystals 

Optically uniaxial and optically negative lithium tetraborate Li2B4O7 
crystals belong to the point symmetry group 4mm of tetragonal syngony. 
The space symmetry group of these crystals is I41cd, and their elementary 
cell parameters are equal to a = b = 9.479 Å and c = 10.286 Å [108, 109]. 

For the point symmetry group 4mm, the elastic compliance tensor 
includes six independent components, the piezoelectric tensor includes three 
components, and the dielectric susceptibility tensor includes two 
components. On the other hand, the piezooptic tensor of Li2B4O7 contains 
seven independent components. It has the following form in the principal 
coordinate system: 

 
11 12 13

12 11 13

31 31 33

44

44

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ij .                                      (4.28) 

 
To measure the piezooptic coefficients for the Li2B4O7 crystals, the 

technique tested earlier for the cases of optical glasses and optically uniaxial 
crystals has been used. It represents a combination of the laser imaging 
digital interferometry and the classical four-point bending method. 

By implementing a complex analysis similar to that reported in the work 
[66], we have obtained the parameters describing all the experimental 
configurations required to determine the complete matrix of piezooptic 
coefficients [110]. Basing on these results, four parallelepiped-shaped 
samples have been prepared. Their dimensions and the orientations of faces 
in the principal coordinate system are shown in Table 4-12. 
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Table 4-12. Dimensions of Li2B4O7 samples (in mm) 
and orientation of their faces (Miller indices) 

Sample No. 
Long axis Side axis 1 Side axis 2 

Direction Dimension, 
mm Direction Dimension, 

mm Direction Dimension, 
mm 

1 [001] 12.5 [100] 2.385 [010] 2.382 
2 [100] 12.6 [010] 2.387 [001] 2.389 
3 [101] 12.5 [101]  2.389 [010] 2.392 

4 [110] 12.5 [001] 2.390 [110]  2.390 
 
When the four-point bending is applied to each sample of Li2B4O7, a 

single normal component of the mechanical stress tensor appears. It is 
parallel to the longer axis of sample. 

According to the 2D digital interferometry technique, a piezooptic 
experiment for given light propagation and polarization directions allows 
one to determine a corresponding coefficient Q. Table 4-13 contains the 
expressions for the effective piezooptic and elastic-compliance coefficients, 
together with the other relevant parameters for all the samples and 
experimental geometries. 

During the experiment, interferograms have been obtained for all the 
crystalline samples in their free and loaded states. The appropriate examples 
are displayed in Fig. 4-14. These interferograms have been analyzed with 
special software [63]. Owing to interferogram processing, the effective 
aggregate photoelastic coefficients Q have been obtained (see Table 4-14). 
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Table 4-13. Effective piezooptic (Π) and elastic-compliance (Σ) coefficients 
and the corresponding parameters describing Li2B4O7 samples 

Sa
m

pl
e 

N
o.

 
Ex

pe
rim

en
ta

l g
eo

m
et

ry
 

Π Σ 

N
on

ze
ro

 st
re

ss
 

co
m

po
ne

nt
s 

D
ire

ct
io

n 
of

 li
gh

t 
pr

op
ag

at
io

n 

D
ire

ct
io

n 
of

 li
gh

t 
po

la
riz

at
io

n 

Re
fra

ct
iv

e 
in

de
x 

1 

23 = 13 S13 

3 
x  [100] 

y  [010] no 

B 33 z  [001] ne 
C 13 S23 = S13 y  [010] 

x  [100] no 
D 33 z  [001] ne 

2 

31 S21 = S12 
1 

y  [010] 
z  [001] ne 

B 11 x  [100] no 
C 21 = 12 S31 = S13 z  [001] 

y  [010] no 
D 11 x  [100] no 

3 

( 31+ 33)/2 (S12+S13)/2 
1, 3, 
 5 

y  [010] 
z  [001] ne 

B ( 11+ 13)/2 x  [100] no 
C ( 12+ 13)/2 

(S11+2S13+ 
+S33–S44)/4 5  [101]  

y  [010] no 

D ( 11+ 13+ 31+ 
+ 33+2 44)/4 5  [101] n45

* 

4 

( 11+ 12– 66)/2 (S31+S32)/2 = S13 
1, 2, 

6 

z  [001] 
6 110  no 

B ( 11+ 12+ 66)/2 6  [110] no 
C ( 31+ 32)/2 = 31 (2S11 + 2S12 – 

– S66)/4 6  [110]  
z  [001] ne 

D ( 11+ 12+ 66)/2 6  [110] no 
D ( 11+ 12+ 66)/2 6  [110] no 

* n45 = none[2/(no2 + ne2)]1/2 = 1.57954, no = 1.6088, and ne = 1.5520 [111] 
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Table 4-14. Experimental values of the effective coefficients 
 for Li2B4O7 crystals 

Sa
m

pl
e 

N
o.

 

Direction Effective coefficient, B 

Stress Light 
propagation 

Light 
polarization Q D K 

1 

[001] [100] 
[010] –11.867 

±0.178 
–3.602 
±0.014 

–8.264 
±0.179 

3.969 
±0.086 

[001] –6.549 
±0.103 

–3.266 
±0.013 

–3.283 
±0.104 

1.756 
±0.056 

[001] [010] 
[100] –11.510 

±0.170 
–3.602 
±0.014 

–7.908 
±0.170 

3.797 
±0.082 

[001] –6.097 
±0.112 

–3.266 
±0.013 

–2.830 
±0.112 

1.513 
±0.060 

2 

[100] [010] 
[001] –1.616 

±0.034 
0.679 

±0.022 
–2.295 
±0.041 

1.228 
±0.022 

[100] 1.259 
±0.029 

0.748 
±0.024 

0.511 
±0.038 

–0.245 
±0.018 

[100] [001] 
[010] –5.457 

±0.085 
–3.602 
±0.014 

–1.855 
±0.086 

0.891 
±0.042 

[100] –2.875 
±0.062 

–3.602 
±0.014 

0.728 
±0.064 

–0.350 
±0.031 

3 

[101] [010] 
[001] –3.889 

±0.064 
–1.294 
±0.012 

–2.596 
±0.066 

1.389 
±0.035 

[100] –5.506 
±0.086 

–1.427 
±0.014 

–4.079 
±0.088 

1.959 
±0.042 

[101] [ 101] 
[010] –3.552 

±0.059 
0.680 

±0.008 
–4.232 
±0.060 

2.032 
±0.029 

[101] –2.417 
±0.063 

0.647 
±0.008 

–3.065 
±0.063 

1.555 
±0.032 

4 

[110] [001] 
[ 110] –5.151 

±0.083 
–3.602 
±0.014 

–1.548 
±0.084 

0.744 
±0.040 

[110] –2.921 
±0.049 

–3.602 
±0.014 

0.682 
±0.051 

–0.327 
±0.024 

[110] [ 110] 
[001] –1.867 

±0.044 
–0.182 
±0.012 

–1.684 
±0.046 

0.901 
±0.025 

[110] 1.658 
±0.044 

–0.201 
±0.013 

1.859 
±0.046 

–0.893 
±0.022 
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a) b) 
Fig. 4-14. Interferograms obtained for the central part of sample No. 1 of Li2B4O7 
crystals: (a) free sample and (b) sample loaded using the four-point bending method. 
Light propagates along the principal direction [100] and the field of view is 
6.1×2.9 mm2. 
Adapted with permission from Krupych, O., Mys, O., Kryvyy, T., Adamiv, V., 
Burak, Ya., & Vlokh, R. (2016). Photoelastic properties of lithium tetraborate 
crystals. App. Opt., 55(36), 10457–10462. © The Optical Society. 

 
The elastic-compliance components required for the further calculations 

have been taken from the work [108]. Following from the experimental 
data, the effective elastic compliances Σ, the strain terms D and the effective 
coefficients K and П have been calculated for all the experimental 
geometries (see Table 4-14). 

The absolute errors for the effective photoelastic coefficients Q do not 
exceed Qmax = 0.178 B and the relative errors are less than Qmax = 2.65%. 
This confirms reliability and high accuracy of our experimental and 
calculation procedures. 

The errors associated with the strain terms D are caused mainly by the 
errors in the effective elastic compliances. This follows from the relation 
D = Σ(n – 1). Accordingly, the relative errors of the strain terms D are 

determined by the formula 22 1D n n . Since the 

absolute errors for the refractive indices n usually do not exceed 0.001, the 
relative error n for the Li2B4O7 crystals remains less than 0.064%. 

Unfortunately, the authors of the work [108] have not indicated the error 
for the elastic compliances Sij. This is why we have estimated the maximal 
absolute errors following from data-point scattering observed in their 
temperature dependences of the elastic compliances [108]. As a result, the 
following absolute errors are obtained: S11  0.01 B, S12  0.04 B, 

S13  0.02 B, S33  0.03 B, S44  0.01 B and S66  0.03 B. Basing on 
this data, we have concluded that the relative errors S for all the effective 
elastic compliances used in our calculations are ranged from 0.34% to 
6.67%. 

It is obvious that the relative errors for the elastic-compliance 
coefficients are much larger than those for the refractive indices. Therefore 
the second term under the square root in the relation for D can be 
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neglected, thus yielding in D  S. Under this condition, the maximal 
absolute and relative errors for the strain terms are equal to Dmax = 0.024 B 
and Dmax = 6.69%, respectively. 

Since the coefficient K is a difference of the corresponding aggregate 
coefficient and the strain term (K = Q – D), the absolute error ΔK can be 

calculated with the formula 2 2K Q D . As seen from Table 4-
14, the absolute errors ΔQ are in the most cases much larger than ΔD, given 
that the values ΔK only slightly exceed the corresponding ΔQ values. 
Therefore, the maximal absolute and relative errors for the effective 
coefficients K are equal to Kmax = 0.179 B and Kmax = 8.73%, 
respectively. The effective piezooptic coefficients can be calculated using 
the formula 32П K n . Then the relative errors δΠ are almost equal to 
the relative errors δK, i.e. we have Πmax = 0.086 B and Πmax = 8.74% 
again. 

Finally, all of the independent piezooptic coefficients πqm have been 
calculated from the effective coefficients Πij given in Table 4-14. The 
following relations have been used for this aim: 

 
11 2B 2D

12 2C

13 1A 1C

31 2A

33 1B 1D

44 3D 3A 3B

66 4B 4D 4A

2,
,

2,
,

2,

2 ,

2 .

                                                      (4.29) 

 
It is seen from formulae (4.29) that each coefficient πqm is calculated 

using the experimental Πij values obtained for a single sample. An 
alternative approach is to use sixteen effective coefficients Πij obtained 
experimentally, in order to calculate seven independent piezooptic 
coefficients πqm. As a result, an over-determined system of linear equations 
is obtained, which has been solved using a standard least-squares technique. 

Table 4-15 displays the sets of independent piezooptic coefficients 
calculated by the two methods mentioned above. The average coefficients 
and the corresponding errors are also given in Table 4-15. 

 EBSCOhost - printed on 2/14/2023 2:17 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 4 
 

136 

Table 4-15. Piezooptic coefficients determined experimentally 
for the Li2B4O7 crystals 

Piezooptic coefficient π11 π12 π13 π31 π33 π44 π66 
Set 1 (one coefficient 

derived from one 
sample) 

–0.297 
±0.018 

0.891 
±0.042 

3.884 
±0.060 

1.228 
±0.022 

1.635 
±0.041 

–0.237 
±0.085 

–1.354 
±0.044 

Set 2 (all samples, 
least-squares method) 

–0.317 
±0.018 

0.647 
±0.029 

3.872 
±0.049 

1.072 
±0.017 

1.643 
±0.038 

–0.024 
±0.071 

–1.419 
±0.039 

Average value –0.307 
±0.018 

0.769 
±0.122 

3.878 
±0.055 

1.150 
±0.078 

1.639 
±0.040 

–0.131 
±0.107 

–1.387 
±0.042 

 
Since the piezooptic coefficients πqm are linear combinations of the 

effective coefficients Πij, the absolute errors Δπ are slightly larger than ΔП. 
Namely, they reach the value max = 0.085 B for the set 1 and 

max = 0.071 B for the set 2. The relative errors for the piezooptic 
coefficients can be at the most max = 6.1% for the set 1 and max = 5.7% 
for the set 2. The only exceptions are the δπ44 values, which increase up to 
37% and 296%, due to a smallness of piezooptic coefficient π44. 

The average coefficients π12, π31 and π44 found for the sets 1 and 2 do not 
fall into the confidence intervals. In this respect we remind that the error 
equal to the standard deviation corresponds to the probability level of only 
68.3%. Higher probabilities correspond to still larger errors. For example, in 
order to provide the probability level 99.75%, the absolute error must be 
equal to three times the standard deviation. For the piezooptic coefficients 
mentioned above, the errors of the average coefficients have been calculated 
as a half difference between the appropriate coefficients taken from the two 
sets. 

The piezooptic coefficients obtained with the four-point bending 
technique differ significantly from the data obtained using a classical 
method relying on uniaxial compression of parallelepiped-shaped samples 
[82, 112]. Here we are to remind that the four-point bending method 
manifests a higher accuracy, since it employs a previously known non-
uniform distribution of mechanical stresses inside a sample and digital 
processing of experimental interferograms. 

After the complete matrix of piezooptic coefficients has become known, 
one can calculate the corresponding elastooptic coefficients. Using the 
piezooptic data obtained experimentally and the elastic stiffness coefficients 
taken from the works [112, 113], the complete matrix of elastooptic 
coefficients have been calculated from the relations (1.7) (see Table 4-16). 
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Table 4-16. Elastooptic coefficients obtained for the Li2B4O7 crystals 
Elastooptic 
coefficient p11 p12 p13 p31 p33 p44 p66 

Set 1 (one 
coefficient 

derived from 
one sample) 

0.085 
±0.003 

0.244 
±0.006 

0.232 
±0.004 

0.220 
±0.004 

0.168 
±0.003 

–0.0140 
±0.0049 

–0.064 
±0.003 

Set 2 (all 
samples, least-

squares method) 

0.081 
±0.003 

0.211 
±0.005 

0.223 
±0.003 

0.199 
±0.003 

0.158 
±0.003 

–0.0014 
±0.0041 

–0.067 
±0.002 

Average value 0.083 
±0.003 

0.227 
±0.017 

0.227 
±0.005 

0.209 
±0.011 

0.163 
±0.006 

–0.0075 
±0.0061 

–0.066 
±0.002 
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APPENDIX A 

CHANGES IN OPTICAL ANISOTROPY 
PARAMETERS IN CRYSTALLINE DISCS 

COMPRESSED ALONG DIAMETER 

Point 
sym-
metry 
group 

Disk 
cut 

Loading 
force and 
mechani-
cal stress 

tensor 
compo-
nents 

Induced birefringence and optical indicatrix rotation angle 
(equation number) 

Cubic crystals 

432, 
43m , 
m3m 

x P3, 2, 
3, 4 

1
2 23 2 2 2

23 11 12 2 3 44 4
1 4
2

n n (А1) 

44 4
1

11 12 2 3

2tan 2                             (А2) 

y P3, 1, 
3, 5 

1
2 23 2 2 2

13 11 12 1 3 44 5
1 4
2

n n (А3) 

44 5
2

11 12 1 3

2tan 2                             (А4) 

z P2, 1, 
2, 6 

1
2 23 2 2 2

12 11 12 1 2 44 6
1 4
2

n n (А5) 

44 6
3

11 12 1 2

2tan 2                             (А6) 

23, m3 

x P3, 2, 
3, 4 

1
2 2

11 21 23 2 2
23 44 4

11 12 3

1 4
2

n n      (А7) 

44 4
1

11 21 2 11 12 3

2tan 2               (А8) 

y P3, 1, 
3, 5 

1
2 2

11 21 13 2 2
13 44 5

11 12 3

1 4
2

n n      (А9) 
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Point 
sym-
metry 
group 

Disk 
cut 

Loading 
force and 
mechani-
cal stress 

tensor 
compo-
nents 

Induced birefringence and optical indicatrix rotation angle 
(equation number) 

44 5
2

11 21 1 11 12 3

2tan 2             (А10) 

z P2, 1, 
2, 6 

1
2 2

11 21 13 2 2
12 44 6

11 12 2

1 4
2

n n    (А11) 

44 6
3

11 21 1 11 12 2

2tan 2             (А12) 

Hexagonal and tetragonal crystals 

622, 
6mm, 
6 2m , 

6/mmm, 
6, 6 , 
6/m, 
422, 
4mm, 
42m , 

4/mmm, 
4, 4 , 
4/m 

x P3, 2, 
3, 4 

3
11 2 13 3

23 3
31 2 33 3

1
2

o

e

n
n

n
                (А13) 

1
2 2

44 4

11 31 22 2 2 2

13 33 3

tan 2
2 o e

e o o e

n n

n n n n
                   (А14) 

y P3, 1, 
3, 4 

3
11 1 13 3

13 3
31 1 33 3

1
2

o

e

n
n

n
                (А15) 

2
2 2

44 5

11 31 12 2 2 2

13 33 3

tan 2
2 o e

e o o e

n n

n n n n
                   (А16) 

622, 
6mm, 
6 2m , 

6/mmm z P2, 1, 
2, 6 

1
23 2 2

12 66 1 2 6
1 4
2 on n                 (А17) 

6
3

1 2

2tan 2                                           (А18) 

6, 6 , 
6/m 

1
2 2

66 1 2 62 63
12 2

62 2 1 66 6

41
2 4

on n    (А19) 
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Point 
sym-
metry 
group 

Disk 
cut 

Loading 
force and 
mechani-
cal stress 

tensor 
compo-
nents 

Induced birefringence and optical indicatrix rotation angle 
(equation number) 

62 2 1 66 6
3

66 1 2 62 6

2
tan 2

4
                  (А20) 

422, 
4mm, 
42m , 

4/mmm 

1
2 2

11 123 2 2
12 66 6

1 2

1 4
2 on n        (А21) 

66 6
3

11 12 1 2

2tan 2                           (А22) 

4, 4 , 
4/m 

1
2 2

11 12
3

1 2 16 612
2

61 1 2 66 6

( )
1 ( ) 2
2

4
on n      (А23) 

61 1 2 66 6
3

11 12 1 2 16 6

2
tan 2

( )( ) 2
            (А24) 

Trigonal crystals 
32, 3m, 

3m  
x P3, 2, 

3, 4 
3

11 2 13 3 14 4
23 3

31 2 33 3

1
2

o

e

n
n

n
   (А25) 

1
2 2

44 4 41 2

11 31 22 2 2 2

13 33 3 14 4

tan 2
2 o e

e o o e

n n

n n n n
       (А26) 

y P3, 1, 
3, 5 

3
11 1 13 3

13 3
31 1 33 3

1
2

o

e

n
n

n
                (А27) 

2 2
44 5

2
11 31 12 2 2 2

13 33 3

2tan 2 o e

e o o e

n n

n n n n

       (А28) 

z P2, 1, 
2, 6 

1
23 2 2

12 66 1 2 6
1 4
2 on n                 (А29) 
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Point 
sym-
metry 
group 

Disk 
cut 

Loading 
force and 
mechani-
cal stress 

tensor 
compo-
nents 

Induced birefringence and optical indicatrix rotation angle 
(equation number) 

6
3

1 2

2tan 2                                           (А30) 

3, 3  x P3, 2, 
3, 4 

3
11 2 13 3 14 4

23 3
31 2 33 3

1
2

o

e

n
n

n
   (А31) 

1
2 2

44 4 41 2

11 31 22 2 2 2

13 33 3 14 4

tan 2
2 o e

e o o e

n n

n n n n
       (А32) 

y P3, 1, 
3, 5 

3
11 1 13 3 25 5

13 3
31 1 33 3

1
2

o

e

n
n

n
    (А33) 

2
2 2

44 5 52 1

11 31 12 2 2 2

13 33 3 25 5

tan 2
2 o e

e o o e

n n

n n n n
       (А34) 

z P2, 1, 
2, 6 

1
2 2

66 1 2 62 63
12 2

62 2 1 66 6

41
2 4

on n    (А35) 

62 2 1 66 6
3

66 1 2 62 6

2
tan 2

4
                   (А36) 

Orthorhombic and monoclinic* crystals 
222, 
mm2, 
mmm, 
2, m, 
2/m 

x P3, 2, 
3, 4 

3
2 22 2 23 3

23 3
3 32 2 33 3

1
2

n
n

n
               (А37) 

2 2
2 3 44 4

1
22 32 22 2 2 2

3 2 2 3
23 33 3

2tan 2 n n

n n n n

      (А38) 

y P3, 1, 
3, 5 

3
1 11 1 13 3

13 3
3 31 1 33 3

1
2

n
n

n
                (А39) 
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Point 
sym-
metry 
group 

Disk 
cut 

Loading 
force and 
mechani-
cal stress 

tensor 
compo-
nents 

Induced birefringence and optical indicatrix rotation angle 
(equation number) 

2 2
1 3 55 5

2
11 31 12 2 2 2

3 1 1 3
13 33 3

2tan 2 n n

n n n n

       (А40) 

222, 
mm2, 
mmm 

z P2, 1, 
2, 6 

3
1 11 1 12 2

12 3
2 21 1 22 2

1
2

n
n

n
                (А41) 

2 2
1 2 66 6

3
11 21 12 2 2 2

2 1 1 2
12 22 2

2tan 2 n n

n n n n

       (А42) 

2, m, 
2/m 

3
1 11 1 12 2 16 6

12 3
2 21 1 22 2 26 6

1
2

n
n

n
    (А43) 

2 2
1 2 61 1 62 2 66 6

3
11 21 1

2 2 2 2
2 1 1 2 12 22 2

16 26 6

2
tan 2

n n

n n n n

    (А44) 

Triclinic crystals 
1, 1  x P3, 2, 

3, 4 
3
2 22 2 23 3 24 4

23 3
3 32 2 33 3 34 4

1
2

n
n

n
  (А45) 

42 2 43 3 44 4
1

22 32 2

23 33 32 2
2 3

24 34 4

2
tan 2

( )
1 1 ( )

( )
n n

       (А46) 

y P3, 1, 
3, 5 

3
1 11 1 13 3 15 5

13 3
3 31 1 33 3 35 5

1
2

n
n

n
    (А47) 

51 1 53 3 55 5
2

11 31 1

13 33 32 2
1 3

15 35 5

2
tan 2

1 1
n n

      (А48) 
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Point 
sym-
metry 
group

Disk
cut

Loading
force and
mechani-
cal stress

tensor
compo-
nents

Induced birefringence and optical indicatrix rotation angle
(equation number)

z P2, 1,
2, 6

3
1 11 1 12 2 16 6

12 3
2 21 1 22 2 26 6

1
2

n
n

n
    (А49)

61 1 62 2 66 6
3

11 21 1

12 22 22 2
1 2

16 26 6

2
tan 2

1 1
n n

      (А50)

* These ratios are valid only for crystals belonging to the monoclinic system 2 zz
and m z .
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