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Preface
The origins of algebra can be traced back toMuhammad benMusa al-Khwarizmi, who
worked at the court of the Caliph al-Ma’mun in Baghdad in the early 9th Century. The
word derives from the Arabic al-jabr, which refers to the process of adding the same
quantity to both sides of an equation. The work of Arabic scholars was known in Italy
by the 13th Century and a lively school of algebraists arose there. Much of their at-
tention was centered on the solution of polynomial equations. This preoccupation of
mathematicians lasted through the beginning of the 19th Century, when the possibil-
ity of solving the general equation of the fifth degree in terms of radicals was finally
disproved by Ruffini and Abel.

This early work led to the introduction of some of the main concepts of abstract
algebra: groups, rings and fields. These structures have been studied intensively over
the past two hundred years. For an interesting historical account of the origins of al-
gebra the reader may consult the book by van der Waerden [21].

Until recently algebra was very much the domain of the pure mathematician, and
its applicationswere few. But the situationhas changed, in part as a result of the rise of
information technology, where the precision and power inherent in the language and
concepts of algebra have proved to be invaluable. Today many students of computer
science and engineering, as well as physics and chemistry, take courses in abstract
algebra. The present work represents an attempt to meet the needs of both mathe-
maticians and scientists who seek to acquire a basic knowledge of algebra.

The book should be suitable for students in the final year of undergraduate or
initial years of (post)graduate studies at a university in North America or the United
Kingdom.What is expected of the reader is a knowledge of matrix algebra and at least
the level of mathematical maturity consistent with completion of three semesters of
calculus. The objective is to introduce the reader to the principal structures of abstract
algebra and to give an account of some of its more convincing applications. In partic-
ular there are sections on solution of equations by radicals, ruler and compass con-
structions, Polya counting theory, Steiner triple systems, orthogonal latin squares and
error correcting codes. A less common application is to economics: the final section in
the book shows how algebraic concepts may be used to construct abstract models of
accounting systems.

The principal change to the book from the second edition is the addition of two
new chapters. The first of these is an introduction to the representation theory of fi-
nite groups. This is a topic of interest to many working in the fields of chemistry and
physics. The second new chapter is an introduction to category theory. Categories
and functors play a unifying role throughout mathematics and often point to com-
mon features of the different branches. More recently category theory has become an
important tool in theoretical computer science, where it provides ways of formaliz-
ing data structures and programming language semantics. In addition the section on
free groups and generators and relations has been expanded to a new chapter and

https://doi.org/10.1515/9783110691160-201
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VIII | Preface

includes an introduction to free products of groups. Finally, the various applications
that were scattered throughout the second edition have been collected together in the
final chapter.

Some of the changes have had the effect of raising the level of abstraction in parts
of the book. Zorn’s Lemma (and its variants) now appears at the end of Chapter 1,
which should make plain its central role in algebra, although some readers may pre-
fer to postpone this topic until later in the reading. Nevertheless, the original aim of
making algebra accessible to as many readers as possible is maintained in this edi-
tion. Naturally, the opportunity has been taken to correct errors and obscurities in the
previous edition. The author is grateful to the readers who took the trouble to report
corrections: as usual full credit for any remaining errors belongs to the author.

There is more than enough material here for a two semester course in abstract al-
gebra. If just one semester is available, Chapters 1 through 8, Chapter 11 and perhaps
some of the applications could be covered. Chapters 1 and 2 contain topics that will be
familiar to many readers and can be covered more quickly. In addition, a good deal of
the material in Chapter 8 on vector spaces will not be new to a reader who has taken a
course in linear algebra. A word about the proofs is in order. As a rule complete proofs
are given and the reader is encouraged to read them. It should be kept in mind that
the only way to be sure that a statement is correct, or that a computer program will
always deliver the correct answer, is to prove it. The first two chapters, which contain
much elementary material, are good places for the reader to acquire and polish theo-
rem proving skills. Each section of the book is followed by a selection of problems of
varying degrees of difficulty, with hints where appropriate.

This edition of the book, like previous ones, is based on courses given by the
author over a period of years at the University of Illinois at Urbana-Champaign, the
National University of Singapore and the University of London. I am grateful to col-
leagues formuchgood advice,whichhas led to numerous improvements. The first edi-
tion of this bookwas undertakenwith the assistance and encouragement of Otto Kegel
andManfredKarbe. In preparing this third edition I havebeenaidedbyLeonardoMilla
andUteSkrambraks atWalter deGruyter: itwas the formerwho suggested thepossibil-
ity of a new edition. Finally, I thank my family for their support and encouragement,
always essential in such a project. This edition was prepared during the great pan-
demic of 2020–21, a time of tragic loss and suffering for so many. For the author the
project has been a much needed distraction at a sad time in human history.

Urbana, Illinois, Derek Robinson
December 2021
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1 Sets, Relations and Functions

The concepts introduced in this chapter are truly fundamental and they underlie al-
most every branchofmathematics.Most of thematerial is quite elementary andwill be
familiar to many readers. Nevertheless readers are encouraged to review the material
and to check notation and definitions. Because of its nature the pace of this chapter is
somewhat faster than in subsequent chapters.

1.1 Sets and subsets

By a set we will mean any well-defined collection of objects, which are called the el-
ements of the set. Some care must be exercised in using the term “set” because of
Bertrand Russell’s famous paradox, which shows that not every collection can be re-
garded as a set. Russell considered the collection C of all sets which are not elements
of themselves. If C is allowed to be a set, a contradiction arises when one inquires
whether or not C is an element of itself. Now plainly there is something suspicious
about the idea of a set being an element of itself and we shall take this as evidence
that the qualification “well-defined” needs to be taken seriously. A collection that is
not a set is called a proper class.

Setswill be denoted by capital letters and their elements by lower case letters. The
standard notation

a ∈ A

means that a is a element of the set A, or a belongs to A. The negation of a ∈ A is
denoted by a ∉ A. Sets can be defined either by writing their elements out between
braces, as in {a, b, c, d}, or alternatively by giving a formal description of the elements,
the general format being

A = {a | a has property P},

i. e., A is the set of all objects with the property P. If A is a finite set, the number of its
elements is written

|A|.

Subsets
Let A and B be sets. If every element of A is an element of B, we write

A ⊆ B

https://doi.org/10.1515/9783110691160-001
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2 | 1 Sets, Relations and Functions

and say that A is a subset of B, or that A is contained in B. If A ⊆ B and B ⊆ A, so that
A and B have exactly the same elements, then A and B are said to be equal,

A = B.

The negation of this is A ̸= B. The notation A ⊂ B is used if A ⊆ B and A ̸= B; then A is
called a proper subset of B.

Some special sets
A set with no elements at all is called an empty set. An empty set E is a subset of any
set A; for if this were false, there would be an element of E that is not in A, which is
certainly wrong. As a consequence, there is exactly one empty set: for if E and E′ are
two empty sets, then E ⊆ E′ and E′ ⊆ E, so that E = E′. The unique empty set is written

0.

Some further standard sets with reserved notations are

ℕ, ℤ, ℚ, ℝ, ℂ,

which are respectively the sets of natural numbers 0, 1, 2, . . . , integers, rational num-
bers, real numbers and complex numbers.

Set operations
Nextwe recall the familiar set operations of union, intersectionand complement. LetA
andB be sets. The union A∪B is the set of all objectswhich belong toA orB, or possibly
to both; the intersection A ∩ B consists of all objects that belong to both A and B. Thus

A ∪ B = {x | x ∈ A or x ∈ B},

while

A ∩ B = {x | x ∈ A and x ∈ B}.

It should be clear how to define the union and intersection of an arbitrary collection
of sets {Aλ | λ ∈ Λ}; these are written

⋃
λ∈ΛAλ and ⋂

λ∈ΛAλ,
respectively. The relative complement of B in A is

A − B = {x | x ∈ A and x ∉ B}.
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1.1 Sets and subsets | 3

Sometimes one has to deal only with subsets of some fixed set U, called the universal
set. If A ⊆ U, then the complement of A in U is

Ā = U − A.

We list for future reference the fundamental properties of unions, intersections
and complements: most of these should be familiar.

(1.1.1). Let A, B, C, Bλ (λ ∈ Λ) be sets. Then the following statements are valid:
(i) A ∪ B = B ∪ A and A ∩ B = B ∩ A, (commutative laws).
(ii) (A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C), (associative laws).
(iii) A∩ (B∪C) = (A∩B)∪ (A∩C) and A∪ (B∩C) = (A∪B)∩ (A∪C), (distributive laws).
(iv) A ∪ A = A = A ∩ A.
(v) A ∪ 0 = A, A ∩ 0 = 0.
(vi) A−(⋃λ∈Λ Bλ) = ⋂λ∈Λ(A−Bλ) andA−(⋂λ∈Λ Bλ) = ⋃λ∈Λ(A−Bλ), (DeMorgan’s Laws).1
The easy proofs of these results are left to the reader as an exercise.

Set products
Let A1, A2, . . . , An be sets. By an n-tuple of elements from A1, A2, . . . , An is to be under-
stood a sequence of elements a1, a2, . . . , an with ai ∈ Ai. The n-tuple is usually written
(a1, a2, . . . , an) and the set of all n-tuples is denoted by

A1 × A2 × ⋅ ⋅ ⋅ × An.

This is the set product (or cartesian product) of A1, A2, . . . , An. For example ℝ × ℝ is
the set of coordinates of points in the plane.

The following result is a basic counting tool.

(1.1.2). If A1, A2, . . . , An are finite sets, then

|A1 × A2 × ⋅ ⋅ ⋅ × An| = |A1| ⋅ |A2| ⋅ ⋅ ⋅ |An|.

Proof. In forming an n-tuple (a1, a2, . . . , an) we have |A1| choices for a1, |A2| choices
for a2, . . . , |An| choices for an. Each choice of an ai yields a different n-tuple. Therefore
the total number of n-tuples is |A1| ⋅ |A2| ⋅ ⋅ ⋅ |An|.

1 Augustus De Morgan (1806–1871).
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4 | 1 Sets, Relations and Functions

Power sets
The power set of a set A is the set of all subsets of A, including the empty set and A
itself; it is denoted by

𝒫(A).

The power set of a finite set is always a larger set, as the next result shows.

(1.1.3). If A is a finite set, then |𝒫(A)| = 2|A|.
Proof. Let A = {a1, a2, . . . , an} with distinct ai’s. Also put I = {0, 1}. Each subset B of A
is to correspond to an n-tuple (i1, i2, . . . , in) with ij ∈ I. Here the rule for forming the
n-tuple corresponding to B is this: ij = 1 if aj ∈ B and ij = 0 if aj ∉ B. Conversely, every
n-tuple (i1, i2, . . . , in) with ij ∈ I determines a subset B of A, defined by B = {aj | 1 ≤ j ≤
n, ij = 1}. It follows that the number of subsets of A equals the number of elements in
I×I× ⋅ ⋅ ⋅×I, where the number of factors is n. By (1.1.2) we obtain |𝒫(A)| = 2n = 2|A|.

For an infinite versionof the last result see (1.4.5) below.Apower set𝒫(A), together
with the operations ∪ and ∩, constitutes what is known as a Boolean2 algebra; such
algebras have become very important in logic and computer science.

Exercises (1.1).
(1) Prove as many parts of (1.1.1) as possible.
(2) Let A, B, C be sets such that A ∩ B = A ∩ C and A ∪ B = A ∪ C. Prove that B = C.
(3) If A, B, C are sets, establish the following:

(i) (A − B) − C = A − (B ∪ C).
(ii) A − (B − C) = (A − B) ∪ (A ∩ B ∩ C).

(4) Let A and B be finite sets. Prove that |𝒫(A × B)| = |𝒫(A)||B|.
(5) LetA andB be finite sets withmore than one element in each. Prove that |𝒫(A×B)|

is larger than both |𝒫(A)| and |𝒫(B)|.
(6) The disjoint union A⊕B of setsA andB is defined by the ruleA⊕B = A∪B−A∩B, so

its elements are those that belong to exactly one of A and B. Prove the following
statements:
(i) A ⊕ A = 0, A ⊕ B = B ⊕ A.
(ii) (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C).
(iii) (A ⊕ B) ∩ C = (A ∩ C) ⊕ (B ∩ C).

(7) If A and B be finite sets, prove that |𝒫(A ∪ B)| = |𝒫(A)|⋅|𝒫(B)||𝒫(A∩B)| .

2 George Boole (1815–1864).
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1.2 Relations, equivalence relations, partial orders | 5

1.2 Relations, equivalence relations, partial orders

In mathematics it is often not sufficient to deal with the individual elements of a set:
for it may be critical to understand how elements of the set are related to each other.
This leads us to formulate the concept of a relation.

LetA andB be sets. Then a relation R between A and B is a subset of the set product
A × B. The definition is clarified by use of a suggestive notation: if (a, b) ∈ R, then a
and b are said to be related by R and we write

a R b.

Themost important case is of a relation R betweenA and itself; this is called a relation
on the set A.

Example (1.2.1).
(i) Let A be a set and define R = {(a, a) | a ∈ A}. Thus a1 R a2 means that a1 = a2

and R is the relation of equality on A.
(ii) Let P be the set of all points and L the set of all lines in the plane. A relation R

from P to L is defined by: p R ℓ if the point p lies on the line ℓ.
(iii) A relation R on the set of integers ℤ is defined by: a R b if a − b is even.

The next result confirms what one might suspect, that a finite set has many relations.

(1.2.1). If A is a finite set, the number of relations on A equals 2|A|2 .
For this is the number of subsets of A × A by (1.1.2) and (1.1.3).
The concept of a relation on a set is evidently a very broad one. In practice the re-

lations of greatest interest are those which have special properties. Themost common
of these are listed next. Let R be a relation on a set A.
(i) R is reflexive if a R a for all a ∈ A.
(ii) R is symmetric if a R b always implies that b R a.
(iii) R is antisymmetric if a R b and b R a imply that a = b;
(iv) R is transitive if a R b and b R c imply that a R c.

Relations which are reflexive, symmetric and transitive are called equivalence rela-
tions; they are of fundamental importance. Relations which are reflexive, antisym-
metric and transitive are also important; they are called partial orders. Here are some
examples of relations of various types.

Example (1.2.2).
(i) Equality on a set is both an equivalence relation and a partial order.
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6 | 1 Sets, Relations and Functions

(ii) A relation R on ℤ is defined by: a R b if and only if a − b is even. This is an equiv-
alence relation, but it is not a partial order.

(iii) IfA is any set, the relationof containment⊆ is a partial order on thepower setP(A).
(iv) A relation R onℕ is defined by a R b if a divides b. Here R is a partial order onℕ.

Equivalence relations and partitions
The structure of an equivalence relation on a set will now be analyzed. The essential
conclusion will be that an equivalence relation causes the set to split up into non-
overlapping non-empty subsets.

Let E be an equivalence relation on a set A. First of all define the E-equivalence
class of an element a of A to be the subset

[a]E = {x | x ∈ A and x E a}.

By the reflexive law a ∈ [a]E, so

A = ⋃
a∈A [a]E

and A is the union of all the equivalence classes.
Next suppose that the equivalence classes [a]E and [b]E both contain an ele-

ment x. Assume that y ∈ [a]E; then y E a, a E x and x E b, by the symmetric law.
Hence y E b by two applications of the transitive law. Therefore y ∈ [b]E and we have
proved that [a]E ⊆ [b]E . By the same reasoning [b]E ⊆ [a]E, so that [a]E = [b]E . It
follows that distinct equivalence classes are disjoint, i. e., they have no elements in
common.

What has been shown so far is that the set A is the union of the E-equivalence
classes and that distinct equivalence classes are disjoint. A decomposition of A into
disjoint non-empty subsets is called a partition of A. Thus E determines a partition
of A.

Conversely, suppose that a partition of A into non-empty disjoint subsets Aλ,
(λ ∈ Λ), is given. We would like to construct an equivalence relation on A correspond-
ing to the partition. Now each element of A belongs to a unique subset Aλ; thus we
may define a E b to mean that a and b belong to the same subset Aλ. It follows imme-
diately from the definition that the relation E is an equivalence relation; what is more,
the equivalence classes are just the subsetsAλ of the original partition.We summarize
these conclusions in:

(1.2.2).
(i) If E is an equivalence relation on a set A, the E-equivalence classes form a partition

of A.
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(ii) Conversely, each partition of A determines an equivalence relation on A for which
the equivalence classes are the subsets in the partition.

Thus the concepts of equivalence relation and partition are in essence the same. For
example, in the equivalence relation (ii) above there are two equivalence classes, the
sets of even and odd integers; of course these form a partition of ℤ.

Partial orders
Suppose that R is a partial order on a set A, i. e., R is a reflexive, antisymmetric, transi-
tive relation on A. Instead of writing a R b it is customary to employ amore suggestive
symbol and write

a ⪯ b.

The pair (A,⪯) then constitutes a partially ordered set (or poset).
The effect of a partial order is to impose a hierarchy on the set A. When the set

is finite, this can be visualized by drawing a picture of the poset called a Hasse3 di-
agram. It consists of vertices and edges drawn in the plane, the vertices representing
the elements ofA. A sequence of upwardly sloping edges from a to b, as in the diagram
below, indicates that a ⪯ b. Elements a, b not connected by such a sequence of edges
do not satisfy a ⪯ b or b ⪯ a. In order to simplify the diagram as far as possible, it is
agreed that unnecessary edges are to be omitted.

∘ b

∘

∘

∘ a

A very familiar poset is the power set of a set A with the partial order ⊆, i. e. (P(A),⊆).

Example (1.2.3). Draw the Hasse diagram of the poset (𝒫(A),⊆) where A = {1, 2, 3}.

3 Helmut Hasse (1898–1979).
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8 | 1 Sets, Relations and Functions

This poset has 23 = 8 vertices, which can be visualized as the vertices of a cube
standing on one corner.

{1, 2, 3}

{2, 3} {1, 3} {1, 2}

{3} {2} {1}

0

One reason why partially ordered sets are important in algebra is that they provide a
useful representation of substructures of standard algebraic structures, for example
subsets, subgroups, subrings etc.

A partial order ⪯ on a set A is called a linear order if, given a, b ∈ A, either a ⪯ b
or b ⪯ a holds. Then (A,⪯) is called a linearly ordered set or chain. The Hasse diagram
of a chain is a single sequence of edges sloping upwards. Obvious examples of chains
are (ℤ,≤) and (ℝ,≤)where ≤ is the usual “less than or equal to”. Finally, a linear order
on A is called a well order if each non-empty subset X of A contains a least element a,
i. e., such that a ⪯ x for all elements x ∈ X. While it might seem obvious that ≤ is a well
order on the set of all positive integers, this is actually an axiom, the Well-Ordering
Law, which is discussed in Section 2.1.

Lattices
Consider a poset (A,⪯). If a, b ∈ A, an upper bound for a and b in A is an element x ∈ A
such that a ⪯ x and b ⪯ x. An upper bound ℓ is called a least upper bound (or lub) of
a and b if every upper bound x satisfies ℓ ⪯ x and ℓ ⪯ x. Similarly a lower bound and a
greatest lower bound (or glb) of a and b are defined by reversing the order of elements
around the symbol ⪯. If ℓ and g exist, the Hasse diagram of (A,⪯) will contain the
subdiagram

∘ ℓ

∘ a ∘ b

∘ g
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1.2 Relations, equivalence relations, partial orders | 9

A poset in which each pair of elements has an lub and a glb is called a lattice. For
example, (P(S),⊆) is a lattice since the lub and glb of A and B are just A ∪ B and A ∩ B
respectively.

The composite of relations
Since a relation is a subset, two relations may be combined by forming their union or
intersection. However, there is a more useful way of combining relations called com-
position: let R and S be relations between A and B and between B and C respectively.
Then the composite relation

S ∘ R

is the relation between A and C defined by: a (S ∘ R) c if and only if there exists b ∈ B
such that a R b and b S c.

For example, assume that A = ℤ, B = {a, b, c}, C = {α, β, γ}. Define relations R =
{(1, a), (2, b), (4, c)}, S = {(a, α), (b, γ), (c, β)}. Then S ∘ R = {(1, α), (2, γ), (4, β)}.

In particular one can form the composite of any two relations R and S on a set A.
Notice that the condition for a relation R to be transitive can now be expressed in the
form R ∘ R ⊆ R.

A result of fundamental importance is the associative law for composition of rela-
tions.

(1.2.3). Let R, S, T be relations between A and B, B and C, and C and D respectively.
Then T ∘ (S ∘ R) = (T ∘ S) ∘ R.

Proof. Let a ∈ A and d ∈ D. Then a (T ∘ (S ∘ R)) d means that there exists c ∈ C such
that a (S ∘ R) c and c T d, i. e., there exists b ∈ B such that a R b, b S c and c T d.
Therefore b (T ∘ S) d and a ((T ∘ S) ∘ R) d. Thus T ∘ (S ∘ R) ⊆ (T ∘ S) ∘ R, and in a similar
way (T ∘ S) ∘ R ⊆ T ∘ (S ∘ R).

Exercises (1.2).
(1) Determinewhether the binary relations R defined on the setA below are reflexive,

symmetric, antisymmetric or transitive.
(i) A = ℝ and a R bmeans a2 = b2.
(ii) A = ℝ and a R bmeans a − b ≤ 2.
(iii) A = ℤ ×ℤ and (a, b) R (c, d)means a + d = b + c.
(iv) A = ℤ and a R bmeans that b = a + 3c for some integer c.

(2) A relation ∼ onℝ− {0} is defined by a ∼ b if ab > 0. Show that ∼ is an equivalence
relation and identify the equivalence classes.

(3) Let A = {1, 2, . . . , n} where n is a positive integer. Define a ⪯ b to mean that a
divides b. Show that (A,⪯) is a poset. Draw the Hasse diagram for the case n = 12.

(4) Let (A,⪯) be a poset and let a, b ∈ A. Show that a and b have at most one lub and
at most one glb.
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10 | 1 Sets, Relations and Functions

(5) Given linearly ordered sets (Ai,⪯i), i = 1, 2, . . . , k, suggest a way to make the set
A1 × A2 × ⋅ ⋅ ⋅ × Ak into a linearly ordered set.

(6) How many equivalence relations are there on sets with 1, 2, 3 or 4 elements?
(7) Suppose that A is a set with n elements. Show that there are exactly 2n

2−n reflexive
relations on A and 2n(n+1)/2 symmetric ones.

(8) Let R be a relation on a set A. Define powers of R recursively by R1 = R and Rn+1 =
Rn ∘ R for n = 1, 2, . . . .
(i) If R is transitive, show that ⋅ ⋅ ⋅Rn ⫅ Rn−1 ⫅ ⋅ ⋅ ⋅ ⫅ R2 ⫅ R.
(ii) If in addition R is reflexive, show that R = R2 = R3 = etc.
(iii) If R is a transitive relation on a finite set with n elements, prove that Rm =

Rm+1 = ⋅ ⋅ ⋅ wherem = n2 + 1.
1.3 Functions

Amore familiar concept than a relation is a function. While functions are to be found
throughoutmathematics, they are usually first encountered in calculus as real-valued
functions of a real variable. Functions canprovide convenient descriptions of complex
objects and processes in mathematics and the information sciences.

Let A and B be (non-empty) sets. A function or mapping or map from A to B, in
symbols

α : A→ B,

is a rule which assigns to each element a of A a unique element α(a) of B, called the
image of a under α. The sets A and B are the domain and codomain of α respectively.
The image of the function α is

Im(α) = {α(a) | a ∈ A},

which is a subset of the codomain. The set of all functions from A to Bmay be written
Fun(A,B) and Fun(A) is written for Fun(A,A).

Examples of functions
(i) The functions that appear in calculus are those whose domain and codomain are
subsets ofℝ. Such a function can be visualized by drawing its graph in the usual way.

(ii) Given a function α : A→ B, we can define

Rα = {(a, α(a)) | a ∈ A} ⊆ A × B.

Thus Rα is a relation between A and B. Observe that Rα is a special kind of relation
since each a in A is related to a unique element of B, namely α(a).
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Conversely, suppose that R is a relation between A and B such that each a ∈ A is
related to a unique b ∈ B. We may define a corresponding function αR : A → B by
αR(a) = bwhere a R b. Thus functions from A to Bmay be regarded as special types of
relation between A and B.

This observation permits us to form the composite of two functions α : A→ B and
β : B→ C by forming the composite of the corresponding relations: thus β ∘ α : A→ C
is defined by

β ∘ α(a) = β(α(a)).

Frequently we will write βα for β ∘ α.

(iii) The characteristic function of a subset. Let A be a fixed set. For each subset X of A
define a function αX : A→ {0, 1} by the rule

αX(a) = {
1 if a ∈ X
0 if a ∉ X.

Then αX is called the characteristic function of the subset X. Conversely, a function
α : A→ {0, 1} is the characteristic function of the subset {a | α(a) = 1}.

(iv) The identity function on a set A is the function idA : A → A defined by idA(a) = a
for all a ∈ A.

Injectivity and surjectivity
There are two special types of function of critical importance. A function α : A → B
is called injective (or one-one) if α(a) = α(a′) always implies that a = a′, i. e., distinct
elements of A have distinct images in B under α. Next α : A → B is surjective (or onto)
if each element of B is the image under α of at least one element of A, i. e., Im(α) = B.
Finally, α : A → B is said to be bijective (or a one-one correspondence) if it is both
injective and surjective.

Here are some examples of various types of functions.
(i) α : ℝ→ ℝ where α(x) = 2x is injective but not surjective.
(ii) α : ℝ → ℝ where α(x) = x3 − 4x is surjective but not injective. Here surjectivity is

best seen by drawing the graph of y = x3 − 4x. Note that any line parallel to the
x-axis meets the curve at least once. But α is not injective since α(0) = 0 = α(2).

(iii) α : ℝ→ ℝ where α(x) = x3 is bijective.
(iv) α : ℝ→ ℝ where α(x) = x2 is neither injective nor surjective.

Inverse functions
Functions α : A → B and β : B → A are said to be mutually inverse if α ∘ β = idB and
β ∘α = idA. Also β is an inverse of α. Suppose that β′ is another inverse of α. Then, with
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12 | 1 Sets, Relations and Functions

the aid of the associative law, we have

β = idA ∘ β = (β
′ ∘ α) ∘ β = β′ ∘ (α ∘ β) = β′ ∘ idB = β′.

Therefore α has a unique inverse, if it has one at all. We will write

α−1 : B→ A

for the unique inverse of α when it exists.
It is important to be able to recognize functions which possess inverses.

(1.3.1). A function α : A→ B has an inverse if and only if it is bijective.

Proof. Assume that α−1 : B→ A exists. If α(a1) = α(a2), then, applying α−1 to each side,
we arrive at a1 = a2, which shows that α is injective. Next, to show that α is surjective,
let b ∈ B. Then b = idB(b) = α(α−1(b)) ∈ Im(α), showing that Im(α) = B and α is
surjective. Thus α is bijective.

Conversely, let α be bijective. If b ∈ B, there is precisely one element a in A such
that α(a) = b since α is bijective. Define β : B → A by β(b) = a. Then αβ(b) = α(a) = b
and αβ = idB. Also βα(a) = β(b) = a; since every a in A arises in this way, βα = idA and
β = α−1.

The next result records some useful facts about inverses.

(1.3.2). Let A, B, C be sets.
(i) If α : A→ B is bijective, then so is α−1 : B→ A and (α−1)−1 = α.
(ii) If α : A → B and β : B → C are bijective functions, then β ∘ α : A → C is bijective

and (β ∘ α)−1 = α−1 ∘ β−1.
Proof. The equations α ∘ α−1 = idB and α−1 ∘ α = idA tell us that α is the inverse of α−1.
Check directly that α−1 ∘ β−1 is the inverse of β ∘ α by using the associative law twice:
thus (β∘α)∘(α−1∘β−1) = ((β∘α)∘α−1)∘β−1 = (β∘(α∘α−1))∘β−1 = (β∘idB)∘β−1 = β∘β−1 = idC.
Similarly (α−1 ∘ β−1) ∘ (β ∘ α) = idA.
Application to automata
As an illustration of how the language of sets and functions may be used to describe
information systems, we give a brief account of automata. An automaton is a theoret-
ical device that is a basic model of a digital computer. It consists of an input tape and
an output tape together with two “heads”, which are able to read symbols on the in-
put tape and print symbols on the output tape. At any instant the system is in one of
a number of states. When the automaton reads a symbol on the input tape, it goes to
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another state and writes a symbol on the output tape.

⋅ ⋅ ⋅
input tape ? ? ∙

⋅ ⋅

⋅ ⋅

∙
output tape

?? ⋅ ⋅ ⋅

To make this precise we define an automaton A to be a 5-tuple

(I ,O, S, ν, σ)

where I andO are the respective sets of input and output symbols, S is the set of states,
ν : I × S → O is the output function and σ : I × S → S is the next state function. The
automaton operates in the following manner. If it is in state s ∈ S and input symbol
i ∈ I is read, the automaton prints the symbol ν(i, s) on the output tape and goes to
state σ(i, s). Thus the mode of operation is determined by the three sets I, O, S and the
two functions ν, σ.

Exercises (1.3).
(1) Which of the following functions are injective, surjective, bijective?

(i) α : ℝ→ ℤ where α(x) = [x], the largest integer ≤ x.
(ii) α : ℝ>0 → ℝ where α(x) = log10(x). (Here ℝ>0 = {x | x ∈ ℝ, x > 0}).
(iii) α : A × B→ B × A where α((a, b)) = (b, a).

(2) Prove that a composite of injective functions is injective and a composite of sur-
jective functions is surjective.

(3) Let α : A → B be a function between finite sets. Show that if |A| > |B|, then α
cannot be injective, and if |A| < |B|, then α cannot be surjective.

(4) Define α : ℝ→ ℝ by α(x) = x3
x2+1 . Prove that α is bijective.

(5) Give an example of two functions α, β on a setA such that α∘β = idA but β∘α ̸= idA.
(6) Let α : A → B be a injective function. Show that there is a surjective function

β : B→ A such that β ∘ α = idA.
(7) Let α : A → B be a surjective function. Show that there is an injective function

β : B→ A such that α ∘ β = idB.
(8) Describe a simplified version of an automaton with no output tape in which the

outputs are states. (This is called a state output automaton).
(9) Let α : A → B be a function. Define a relation Eα on A by the rule: a Eα a′ means

that α(a) = α(a′). Prove that Eα is an equivalence relation on A. Then show that,
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14 | 1 Sets, Relations and Functions

conversely, if E is any equivalence relation on a set A, then E = Eα for some func-
tion α with domain A.

1.4 Cardinality

If we want to compare two sets, a natural basis for comparison is the “size” of each
set. If the sets are finite, their sizes are just the numbers of elements in the sets. But
how can one measure the size of an infinite set? A reasonable point of view would be
to hold that two sets have the same size if their elements can be paired off. Certainly
two finite sets have the same number of elements precisely when their elements can
be paired. The point to observe is that this idea also applies to infinite sets, making it
possible to give a rigorous definition of the size of an infinite set, its cardinal.

LetA andBbe two sets. ThenA andB are said tobe equipollent if there is a bijection
α : A→ B: thus the elements of A and Bmay be paired off as (a, α(a)), a ∈ A. It follows
from (1.3.2) that equipollence is an equivalence relation on the class of all sets. Thus
each set A belongs to a unique equivalence class, which will be written

|A|

and called the cardinal of A. Informally we can think of |A| as the collection of all sets
with the same “size” as A. A cardinal number is the cardinal of some set.

If A is a finite set with exactly n elements, then A is equipollent to the set
{0, 1, . . . , n − 1} and |A| = |{0, 1, . . . , n − 1}|. It is reasonable to identify the finite car-
dinal |{0, 1, . . . , n − 1}| with the non-negative integer n. For then cardinal numbers
appear as infinite versions of the non-negative integers.

Let us sum up our very elementary conclusions so far.

(1.4.1).
(i) Every set A has a unique cardinal number |A|.
(ii) Two sets are equipollent if and only if they have the same cardinal.
(iii) The cardinal of a finite set may be identified with the number of its elements.

Since we plan to use cardinals to compare the sizes of sets, it makes sense to define a
“less than or equal to” relation ≤ on cardinals. Define

|A| ≤ |B|

to mean that there is an injective function α : A → B. Of course we will write |A| < |B|
if |A| ≤ |B| and |A| ̸= |B|.

It is important to verify that this definition of ≤ depends only on the cardinals |A|
and |B|, not on the choice of sets A and B. Indeed, if A′ ∈ |A| and B′ ∈ |B|, then there
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are bijections α′ : A′ → A and β′ : B → B′; by composing these with the injection
α : A→ B we obtain the injection β′ ∘ α ∘ α′ : A′ → B′. Thus |A′| ≤ |B′|.

Next we prove a famous result about inequality of cardinals.

(1.4.2) (The Cantor-Bernstein4 Theorem). If A and B are sets such that |A| ≤ |B| and
|B| ≤ |A|, then |A| = |B|.

The proof of (1.4.2) is our most challenging proof so far and some readers may
prefer to skip it. However, the basic idea behind it is not difficult to grasp.

Proof. By hypothesis there are injective functions α : A→ B and β : B→ A. These will
be used to construct a bijective function γ : A→ B, which will show that |A| = |B|.

Consider an arbitrary element a in A; either a = β(b) for some unique b ∈ B or
else a ∉ Im(β): here we use the injectivity of β. Similarly, either b = α(a′) for a unique
a′ ∈ A or else b ∉ Im(α). Continuing this process, we trace back the “ancestry” of the
element a. There are three possible outcomes:
(i) we reach an element of A − Im(β);
(ii) we reach an element of B − Im(α);
(iii) the process continues without end.

Partition the set A into three subsets corresponding to possibilities (i), (ii), (iii) and
call them AA, AB, A∞ respectively. In a similar fashion the set B is partitioned into
three disjoint subsets BA, BB, B∞; for example, if b ∈ BA, we can trace b back to an
element of A − Im(β).

Now we are in a position to define the function γ : A → B. First observe that
the restriction of α to AA is a bijection from AA to BA, the restriction of β to BB is a
bijection from BB to AB and the restriction of α to A∞ is a bijection from A∞ to B∞.
Also, if x ∈ AB, there is a unique element x′ ∈ BB such that β(x′) = x. Now define

γ(x) =
{{{
{{{
{

α(x) if x ∈ AA
α(x) if x ∈ A∞
x′ if x ∈ AB.

Then γ is the desired bijection.

(1.4.3). The relation ≤ is a partial order on cardinal numbers.

For we have proved antisymmetry in (1.4.2), while reflexivity and transitivity are
clearly true. In fact one can do better since ≤ is even a linear order. This is because of:

4 Georg Cantor (1845–1918), Felix Bernstein (1878–1956).
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(1.4.4) (The Law of Trichotomy). If A and B are sets, then exactly one of the following
must hold:

|A| < |B|, |A| = |B|, |B| < |A|.

The proof calls for the use of Zorn’s Lemma and is given as (1.5.1) below.
The next result establishes the existence of arbitrarily large cardinal numbers.

(1.4.5). If A is any set, then |A| < |𝒫(A)|.

Proof. The easy step is to show that |A| ≤ |𝒫(A)|. This is because the assignment a →
{a} sets up an injection from A to 𝒫(A).

Next assume that |A| = |𝒫(A)|, so that there is a bijection α : A→ 𝒫(A). Of course
at this point we are looking for a contradiction. The trick is to consider the subset
B = {a | a ∈ A, a ∉ α(a)} of A. Then B ∈ 𝒫(A), so B = α(a) for some a ∈ A. Now either
a ∈ B or a ∉ B. If a ∈ B, then a ∉ α(a) = B; if a ∉ B = α(a), then a ∈ B. This is our
contradiction.

Countable sets
The cardinal of the set of natural numbersℕ = {0, 1, 2, . . .} is denoted by

ℵ0.

Hereℵ is the Hebrew letter aleph. A setA is said to be countable if |A| ≤ ℵ0. Essentially
this means that the elements of A can be “labelled” by attaching to each element a
natural number as a label. An uncountable set cannot be so labelled.

We need to explain what is meant by an infinite set for the next result to be mean-
ingful. A set A will be called infinite if it has a subset that is equipollent withℕ, i. e.,
if ℵ0 ≤ |A|. An infinite cardinal is the cardinal of an infinite set.

(1.4.6). ℵ0 is the smallest infinite cardinal.

Proof. If A is an infinite set, then A has a subset B such that ℵ0 = |B|. Hence ℵ0 ≤
|A|.

It follows that if A is a countable set, either A is finite or |A| = ℵ0. As the final topic
of the section we consider the cardinals of the setsℚ and ℝ.

(1.4.7).
(i) The setℚ of rational numbers is countable.
(ii) The set ℝ of real numbers is uncountable.

Proof. (i) Each positive rational number has the form m
n where m and n are positive

integers. Arrange these rationals in a rectangular array, with m
n in themth row and nth
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1.4 Cardinality | 17

column. Of course each rational will occur infinitely often because of cancellation.
Now follow the path indicated by the arrows in the diagram below.

1
1 →

1
2

1
3 →

1
4 . . .

↙ ↗ ↙
2
1

2
2

2
3

2
4 . . .

↓ ↗ ↙ . . .
3
1

3
2

3
3

3
4 . . .

. . . . . . . .

This creates a sequence in which every positive rational number appears infinitely
often. Delete repetitions in the sequence. Insert 0 at the beginning of the sequence
and insert−r immediately after r for eachpositive rational r. Nowevery rational occurs
exactly once in the sequence. Henceℚ is countable.
(ii) It is enough to show that the set I of all real numbers r such that 0 ≤ r < 1 is
uncountable: this is because |I| ≤ |ℝ|. Assume that I is countable, so that it can be
written in the form {r1, r2, r3, . . .}. Write each ri as a decimal, say

ri = 0 ⋅ ri1ri2 ⋅ ⋅ ⋅

where 0 ≤ rij ≤ 9. We reach a contradiction by producing a number in the set I which
does not equal any ri. Define

si = {
0 if rii ̸= 0
1 if rii = 0

and let s be the decimal 0 ⋅ s1s2 ⋅ ⋅ ⋅; then certainly s ∈ I. Hence s = ri for some i, so that
si = rii; but this is impossible by the definition of si.

Exercises (1.4).
(1) A finite set cannot be equipollent to a proper subset.
(2) A set is infinite if and only if it has the same cardinal as some proper subset.
(3) If there is a surjection from a set A to a set B, then |B| ≤ |A|.
(4) Show that |ℤ| = ℵ0 and |ℤ ×ℤ| = ℵ0.
(5) Let A1, A2, . . . be countably many, countable sets. Prove that⋃i=1,2,... Ai is a count-

able set. [Hint: write Ai = {ai0, ai1, . . .} and follow the method of proof of (1.4.7)(i).]
(6) Suggest reasonable definitions of the sum and product of two cardinal numbers.

[Hint: try using the union and set product]
(7) Let S denote the set of all restricted sequences of integers a1, a2, a3, . . . , i. e., ai = 0

for all but a finite number of i. Prove that |S| = ℵ0.
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18 | 1 Sets, Relations and Functions

(8) Let A be a countably infinite set and let 𝒫f (A) denote the set of all finite subsets
of A.
(i) Prove that |𝒫f (A)| = |A|, so that 𝒫f (A) is countable.
(ii) Prove that on the other hand 𝒫(A) is uncountable.

1.5 Zorn’s Lemma and variants

Thebackground to Zorn’s Lemma lies in the kindof set theory that is beingused.5 Up to
this point we have been functioning – quite naively – in what is called Gödel–Bernays
Theory. In this the primitive, or undefined, notions are class,membership and equality.
On the basis of these concepts and the accompanying axioms, the usual elementary
properties of sets can be derived.

However, the set theory just describeddoesnot provide anadequatebasis for deal-
ing with infinite sets. For many purposes in algebra the most useful additional axiom
is what has become known as Zorn’s Lemma. Despite its name, this is an axiom that
must be assumed.

Zorn’s Lemma. Let (S,⪯) be a non-empty partially ordered set with the property that
every chain in S has an upper bound in S. Then S contains at least onemaximal element.

The terminology here calls for some explanation. Recall that a chain in the par-
tially ordered set S is a subset C which is linearly ordered by the partial order ⪯. Also
an upper bound for C is an element s of S such that c ⪯ s is valid for all c in C. Finally,
a maximal element of S is an element m such that m ⪯ s ∈ S implies that m = s. Note
that in general a partially ordered set may contain several maximal elements or none
at all.

As will be seen in the sequel, Zorn’s Lemma is a vital tool in proving such fun-
damental theorems in algebra as the existence of a basis in an infinite dimensional
vector space and the existence of algebraic closures. For the present as an illustration
of the power of Zorn’s Lemma, we will establish a result on cardinal numbers which
was stated above without proof as (1.4.3).

(1.5.1) (The Law of Trichotomy). If A and B are sets, then exactly one of the following
must hold:

|A| < |B|, |A| = |B|, |B| < |A|.

Proof. Because of the Cantor–Bernstein Theorem (1.4.2), it is enough to prove that ei-
ther |A| ≤ |B| or |B| ≤ |A| holds. Clearly A and B can be assumed non-empty.

5 Some readers may wish to defer reading the proofs in this section until later.
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Consider the set ℱ of all pairs (X, α) where X ⊆ A and α : X → B is an injective
function. A partial order ⪯ on ℱ is defined by (X, α) ⪯ (X′, α′) if X ⊆ X′ and α′|X = α. It
is obvious that ℱ is not empty. Let 𝒞 = {(Xi, αi) | i ∈ I} be a chain in ℱ . Put U = ⋃i∈I Xi
and define α : U → B by extending the αi, which are consistent functions, to U . Then
(U , α) is an upper bound for 𝒞 in ℱ .

We can now apply Zorn’s Lemma to obtain a maximal element (X, α) of ℱ . We
claim that either X = A or Im(α) = B. For suppose that both statements are false, and
let a ∈ A − X and b ∈ B − Im(α). Put Y = X ∪ {a} and define β : Y → B by β(a) = b
and β|X = α. Then β is injective since b ∉ Im(α), and clearly (α,X) ⪯ (β,Y), which is a
contradiction. Therefore, either X = A and hence |A| ≤ |B| by definition of the linear
ordering of cardinals, or else Im(α) = B. In the latter case for each b in B choose an ab
in A such that α(ab) = b: then the map sending b → ab is an injective function from B
to A. Therefore |B| ≤ |A|.

Axioms equivalent to Zorn’s Lemma
Wemention in passing three axioms that are logically equivalent to Zorn’s Lemma.
(i) The Axiom of Well-Ordering. Every non-empty set can be well-ordered.

Recall from Section 1.2 that a well order on a set is a linear order such that each
non-empty subset has a first element. Compare the Axiom of Well-Ordering with the
Well-Ordering Law in Section 2.1, which implies that ≤ is a well-order onℕ.
(ii)The Principle of Transfinite Induction. Let S be awell-ordered set andT a non-empty
subset of S. Let t ∈ S and assume that t ∈ T holds whenever it is true that x ∈ T for
every x in S such that x < t. Then T = S.

This result, which is the basis for the method of proof by transfinite induction,
should be compared with the Principal of Mathematical Induction (2.1.1).
(iii) The Axiom of Choice. Let {Si | i ∈ I} be a non-empty set whose members are non-
empty sets Si. Then there is at least one function α : I → ⋃i∈I Si such that α(i) ∈ Si for
each i ∈ I. Such functions are called choice functions.

Informally we may express this by saying that it is possible to choose an element
simultaneously from every set Si. The Axiom of Choice is perhaps the most “obvious”
of the four axioms. For a very clear proof of the equivalence of the axioms see [7].
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2 The Integers

The role of the integers is central in algebra, as it is in all parts of mathematics. One
reason for this is that the set of integersℤ, together with the standard arithmetic oper-
ations of addition andmultiplication, serves as amodel for several of the fundamental
structures of algebra, including groups and rings. In this chapter the most basic prop-
erties of the integers are developed.

2.1 Well-ordering and mathematical induction

We begin by listing the properties of the fundamental arithmetic operations on ℤ,
addition and multiplication. In the following a, b, c are arbitrary integers.
(i) a + b = b + a, ab = ba, (commutative laws);
(ii) (a + b) + c = a + (b + c), (ab)c = a(bc), (associative laws);
(iii) (a + b)c = ac + bc, (distributive law);
(iv) 0 + a = a and 1 ⋅ a = a, (existence of identities);
(v) each integer a has a negative −a with the property a + (−a) = 0;
(vi) if ab = 0, then a = 0 or b = 0.

Next we list properties of the relation ≤ on ℤ.
(vii) ≤ is a linear order on ℤ, i. e., the relation ≤ is reflexive, antisymmetric and tran-

sitive; in addition, for any pair of integers a, b either a ≤ b or b ≤ a;
(viii) if a ≤ b and c ≥ 0, then ac ≤ bc;
(ix) if a ≤ b, then −b ≤ −a.

These properties are assumed as axioms. But there is a further property of the linearly
ordered set (ℤ,≤) which is independent of the above axioms and is quite vital for the
development of the elementary theory of the integers.

The Well-Ordering Law
Let k be a fixed integer and put U = {n | n ∈ ℤ, n ≥ k}. Suppose that S is a non-empty
subset of U . Then theWell-Ordering Law (WO) asserts that S has a smallest element.
Thus ≤ is a well order on U in the sense of Section 1.2.

While this may seem a harmless assumption, it cannot be deduced from axioms
(i)–(ix) and must be adopted as an additional axiom. The importance of WO for us is
that it provides a sound basis for themethod of proof bymathematical induction. This
is embodied in

(2.1.1) (The Principle of Mathematical Induction). Let k be an integer and let U = {n |
n ∈ Z, n ≥ k}. Assume that S is a subset of U with the properties:
(i) k ∈ S;

https://doi.org/10.1515/9783110691160-002

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110691160-000


2.1 Well-ordering and mathematical induction | 21

(ii) if n ∈ S, then n + 1 ∈ S.

Then S equals U.

Proof. Once again the assertion sounds fairly obvious, but in order to prove it,wemust
use WO. To see how WO applies, assume that S ̸= U, so that S′ = U − S is not empty.
ThenWO guarantees that S′ has a smallest element, say s. Notice that k < s since k ∈ S
by hypothesis. Thus k ≤ s − 1 and s − 1 ∉ S′ because s is minimal in S′. Hence s − 1 ∈ S,
which by (ii) above implies that s ∈ S, a contradiction. Thus (2.1.1) is established.

The method of proof by induction
Suppose that k is a fixed integer and that for each integer n ≥ k there is a proposi-
tion p(n), which is either true or false. Assume that the following hold:
(i) p(k) is true;
(ii) if p(n) is true, then p(n + 1) is true.

Then we can conclude that p(n) is true for all n ≥ k.
For let S be the set of all integers n ≥ k for which p(n) is true. Then the hypothe-

ses of PMI (Principle of Mathematical Induction) apply to S. The conclusion is that S
equals {n | n ∈ ℤ, n ≥ k}, i. e., p(n) is true for all n ≥ k.

Here is a simple example of proof by mathematical induction.

Example (2.1.1). Use mathematical induction to show that 8n+1 + 92n−1 is a multiple
of 73 for all positive integers n.

Let p(n) denote the statement: 8n+1+92n−1 is a multiple of 73. Then p(1) is certainly
true since 8n+1 + 92n−1 = 73 when n = 1. Assume that p(n) is true; we have to deduce
that p(n + 1) is true. Now we may rewrite 8(n+1)+1 + 92(n+1)−1 in the form

8n+2 + 92n+1 = 8(8n+1 + 92n−1) + 92n+1 − 8 ⋅ 92n−1
= 8(8n+1 + 92n−1) + 73 ⋅ 92n−1.

Since both terms in the last expression are multiples of 73, so is 8n+2 + 92n+1. Thus
p(n + 1) is true and by PMI the statement p(n) is true for all n ≥ 1.

(2.1.2) (Alternate Form of PMI). Let k be an integer and let U = {n | n ∈ ℤ, n ≥ k}.
Assume that S is a subset of U with the properties
(i) k ∈ S;
(ii) if m ∈ S for all integers m such that k ≤ m < n, then n ∈ S.

Then S = U.
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22 | 2 The Integers

This variant of PMI follows fromWO just as the original formdoes. There are situa-
tionswhere proof by induction cannot be easily usedbut the alternate form is effective.
In such a case one has a proposition p(n) for n ≥ k such that:
(i) p(k) is true;
(ii) if p(m) is true whenever k ≤ m < n, then p(n) is true.

The conclusion is that p(n) is true for all n ≥ k.
A good example of a proposition where this type of induction proof is successful

is the Fundamental Theorem of Arithmetic – see (2.2.7).
Our approach to the integers in this section has been quite naive: we have simply

stated as axioms all the properties that we need. For a good axiomatic treatment of the
construction of the integers, including an account of the axioms of Peano, see [6].

Exercises (2.1).
(1) Use induction to establish the following summation formulas for n ≥ 1.

(i) 1 + 2 + 3 + ⋅ ⋅ ⋅ + n = 1
2n(n + 1);

(ii) 12 + 22 + 32 + ⋅ ⋅ ⋅ + n2 = 1
6n(n + 1)(2n + 1);

(iii) 13 + 23 + 33 + ⋅ ⋅ ⋅ + n3 = ( 12n(n + 1))
2.

(2) Deduce the alternate form of PMI fromWO.
(3) Prove that 2n > n3 for all integers n ≥ 10.
(4) Prove that 2n > n4 for all integers n ≥ 17.
(5) Prove by mathematical induction that 6 divides n3 − n for all integers n ≥ 0.
(6) Use the alternate form of mathematical induction to show that any n cents worth

of postage, where n ≥ 12, can bemade up by using only 4-cent and 5-cent stamps.
[Hint: first verify the statement for n ≤ 15.]

2.2 Division in the integers

In this section we establish the basic properties of the integers that relate to division,
notably the Division Algorithm, the existence of greatest common divisors and the
Fundamental Theorem of Arithmetic.

Recall that if a, b are integers, then a divides b, in symbols

a | b,

if there is an integer c such that b = ac. The following properties of division are simple
consequences of the definition, as the reader should verify.

(2.2.1).
(i) The relation of division is a partial order on the set of non-negative integers.
(ii) If a | b and a | c, then a | bx + cy for all integers x, y.
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(iii) a | 0 for all a, while 0 | a if and only if a = 0.
(iv) 1 | a for all a, while a | 1 if and only if a = ±1.

The division algorithm
The first result about the integers of real significance is the Division Algorithm; it cod-
ifies the time-honored process of dividing one integer by another to obtain a quotient
and remainder. It should be noted that the proof of the result uses WO.

(2.2.2). Let a, b be integers with b ̸= 0. Then there exist unique integers q (the quotient)
and r (the remainder) such that a = bq + r and 0 ≤ r < |b|.

Proof. Let S be the set of all non-negative integers of the form a − bq where q ∈ ℤ. In
the first place we need to observe that S is not empty. Indeed, if b > 0 and we choose
an integer q ≤ a

b , then a − bq ≥ 0; if b < 0, choose an integer q ≥ a
b , so that again

a − bq ≥ 0. Applying the Well-Ordering Law to the set S, we conclude that it has a
smallest element, say r = a − bq for some integer q. Hence a = bq + r.

Now suppose that r ≥ |b|. If b > 0, then a− b(q + 1) = r − b < r, while if b < 0, then
a− b(q − 1) = r + b < r. In each case a contradiction is reached since we have found an
integer in S which is less than r. Hence r < |b|.

Finally, we must show that q and r are unique. Suppose that a = bq′ + r′ where
q′, r′ ∈ ℤ and 0 ≤ r′ < |b|. Then bq + r = bq′ + r′ and b(q − q′) = r′ − r. Thus
|b| ⋅ |q − q′| = |r − r′|. If q ̸= q′, then |r − r′| ≥ |b|, whereas |r − r′| < |b| since 0 ≤ r,
r′ < |b|. Therefore q = q′ and it follows at once that r = r′.

When a < 0 or b < 0, care must be taken to ensure that a negative remainder is
not obtained. For example, if a = −21 and b = −4, then −21 = (−4)6 + 3, so that q = 6
and r = 3.

Greatest common divisors
Let a1, a2, . . . , an be integers. An integer c which divides every ai is called a common
divisor of a1, a2, . . . , an. Our next goal is to establish the existence of a greatest common
divisor.

(2.2.3). Let a1, a2, . . . , an be integers. Then there is a unique integer d ≥ 0 with the
properties:
(i) d is a common divisor of a1, a2, . . . , an;
(ii) every common divisor of a1, a2, . . . , an divides d;
(iii) d = a1x1 + ⋅ ⋅ ⋅ + anxn for some integers xi.
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Proof. If all of the ai are 0, we can take d = 0 since this fits the description. So assume
that at least oneai is non-zero. Then the setS of all positive integersa1x1+a2x2+⋅ ⋅ ⋅+anxn
with xi ∈ ℤ is non-empty. By WO there is a least element in S, say

d = a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn.

If an integer c divides each ai, then c | d by (2.2.1). Thus it only remains to show that
d | ai for all i.

By the Division Algorithmwe can write ai = dqi + ri where qi, ri ∈ ℤ and 0 ≤ ri < d.
Then

ri = ai − dqi = a1(−x1qi) + ⋅ ⋅ ⋅ + ai(1 − xiqi) + ⋅ ⋅ ⋅ + an(−xnqi).

If ri ̸= 0, then ri ∈ S, which contradicts the minimality of d in S. Hence ri = 0 and d | ai
for all i.

Finally, we show that d is unique. If d′ is another integer satisfying (i) and (ii),
then d | d′ and d′ | d, so that d = d′ since d, d′ ≥ 0.

The integer d of (2.2.3) is called the greatest common divisor of a1, a2, . . . , an, in
symbols

d = gcd{a1, a2, . . . , an}.

If d = 1, the integers a1, a2, . . . , an are said to be relatively prime; of course this means
that the integers have no common divisors except ±1.

The Euclidean1 Algorithm
The proof of the existence of gcd’s which has just been given is not constructive, i. e.,
it does not provide a method for calculating gcd’s. However, there is a well known
procedure called the Euclidean Algorithm which is effective in this respect.

Assume that a, b are integers with b ̸= 0. Apply the Division Algorithm to divide
a by b to get quotient q1 and remainder r1. Next if r1 ̸= 0, divide b by r1 to get quotient
q2 and remainder r2; then, if r2 ̸= 0, divide r1 by r2 to get quotient q3 and remainder r3.
And so on. ByWO there is a smallest non-zero remainder, say rn−1. Thus rn = 0 and we
1 Euclid of Alexandria (325–265 BC).
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have a system of integer equations

{{{{{{{{{{{{
{{{{{{{{{{{{
{

a = bq1 + r1,
b = r1q2 + r2,
r1 = r2q3 + r3,
...

rn−3 = rn−2qn−1 + rn−1,
rn−2 = rn−1qn + 0.

Here 0 ≤ r1 < |b|, 0 ≤ ri < ri−1 and rn−1 is the smallest non-zero remainder. With this
notation we can state:

(2.2.4) (The Euclidean Algorithm). The greatest common divisor of a and b equals the
last non-zero remainder rn−1.
Proof. Starting with the second last equation in the system above, we can solve back
for rn−1, obtaining eventually an expression of the form rn−1 = ax + by, where x, y ∈ ℤ.
This shows that any common divisor of a and bmust divide rn−1. We can also use the
system of equations above to show successively that rn−1 | rn−2, rn−1 | rn−3, . . . , etc.,
and finally rn−1 | b, rn−1 | a. It follows that rn−1 = gcd{a, b} by uniqueness of gcd’s.
Example (2.2.1). Find gcd(76, 60). We compute successively: 76 = 60 ⋅ 1 + 16, 60 =
16⋅3+12, 16 = 12⋅1+4, 12 = 4⋅3+0.Hencegcd{76, 60} = 4, the last non-zero remainder. By
reading back from the third equation we obtain the predicted expression for the gcd,
4 = 76 ⋅ 4 + 60 ⋅ (−5).

The Euclidean algorithm can also be applied to calculate gcd’s of more than two
integers by using the formula

gcd{a1, a2, . . . , am+1} = gcd{gcd{a1, a2, . . . am}, am+1}
and induction onm: see Exercise (2.2.1).

A very useful tool in working with divisibility is:

(2.2.5) (Euclid’s Lemma). Let a, b, m be integers. If m divides ab and m is relatively
prime to a, then m divides b.

Proof. By hypothesis gcd{a,m} = 1, so by (2.2.3) there are integers x, y such that 1 =
mx + ay. Multiplying by b, we obtain b = mbx + aby. Sincem divides ab, it divides the
right side of the equation. Hencem divides b.

Recall that a prime number is an integer p > 1 such that ±1 and ±p are its only
divisors. If p is a prime and a is any integer, then either gcd{a, p} = 1 or p | a. Thus
(2.2.5) has the consequence.
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(2.2.6). If a prime p divides ab where a, b ∈ ℤ, then p divides a or b.

The Fundamental Theorem of Arithmetic
It is a basic result that every integer greater than 1 can be expressed as a product of
primes. The proof of this result is a good example of proof by the alternate form of
mathematical induction.

(2.2.7). Every integer n > 1 can be expressed as a product of primes. Moreover the
expression is unique up to the order of the factors.

Proof. (i) Existence. We show that n is a product of primes, which is certainly true if
n = 2. Assume that every integer m satisfying 2 ≤ m < n is a product of primes. If n
itself is a prime, there is nothing to prove. Otherwise n = n1n2 where 1 < ni < n. Then
n1 and n2 are both products of primes, whence so is n = n1n2. The result now follows
by the alternate form of mathematical induction (2.1.2).
(ii) Uniqueness. In this part we have to show that n has a unique expression as a prod-
uct of primes. Again this is clearly correct for n = 2. Assume that if 2 ≤ m < n, then
m is uniquely expressible as a product of primes. Next suppose that n = p1p2 ⋅ ⋅ ⋅ pr =
q1q2 ⋅ ⋅ ⋅ qs where the pi and qj are primes. Then p1 | q1q2 ⋅ ⋅ ⋅ qs and by (2.2.6) the prime
p1 must divide, and hence equal, one of the qj’s; we can assume p1 = q1 by relabelling
the qj’s if necessary. Now cancel p1 to get m = p2 ⋅ ⋅ ⋅ pr = q2 ⋅ ⋅ ⋅ qs. Since m = n/p1 < n,
we deduce that p2 = q2, p3 = q3, . . . , pr = qr, and r = s, after further relabelling of
the qj’s. Hence the result is proven.

A convenient expression for an integer n > 1 is

n = pe11 p
e2
2 ⋅ ⋅ ⋅ p

ek
k

where the pi are distinct primes and ei > 0. That the pi and ei are unique up to order
follows from (2.2.7).

Finally in this sectionwewill prove the famous theoremof Euclid on the infinitude
of primes.

(2.2.8). There exist infinitely many prime numbers.

Proof. Suppose this is false and let p1, p2, . . . , pk be the list of all the primes. The trick
is to produce a prime that is not on the list. To do this put n = p1p2 ⋅ ⋅ ⋅ pk + 1. Now no pi
can divide n, otherwise pi | 1. But n is certainly divisible by at least one prime, so we
reach a contradiction.

Example (2.2.2). If p is a prime, then√p is not a rational number.

For, assume that √p is a rational and √p = m
n where m, n are integers; evidently

there is nothing to be lost in assuming that m and n are relatively prime since any
common factor can be cancelled. Squaring both sides, we obtain p = m2/n2 andm2 =
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pn2. Hence p | m2 and Euclid’s Lemma shows that p | m. Write m = pm1 for some
integerm1. Then p2m2

1 = pn
2, so pm2

1 = n
2. Thus p | n2 and p | n: but this meansm and

n are not relatively prime, a contradiction.

Exercises (2.2).
(1) Let a1, a2, . . . , an+1 be integers. Prove that

gcd{a1, a2, . . . , an+1} = gcd{gcd{a1, a2, . . . , an}, an+1}.
(2) Prove that gcd{ka1, ka2, . . . , kan} = k ⋅ gcd{a1, a2, . . . , an}where the ai and k ≥ 0 are

integers.
(3) Use the EuclideanAlgorithm to compute the following: gcd{840, 410}, gcd{24, 328,

472}. Then express each gcd as a linear combination of the relevant integers.
(4) Consider the equation ax + by = c where a, b, c are given integers.

(i) Prove that there is a solution in integers x, y if and only if d = gcd{a, b} di-
vides c.

(ii) Write d = ua + vb where u, v ∈ ℤ. Prove that the general solution of the equa-
tion is x = uc

d +
mb
d , y = vc

d −
ma
d wherem is an arbitrary integer.

(5) Find all solutions in integers of the equation 6x + 11y = 1.
(6) If p and q are distinct primes, prove that√pq is irrational.
(7) Let a1, a2, . . . , am be positive integers and write ai = p

ei1
1 pei22 ⋅ ⋅ ⋅ p

ein
n where the eij are

integers ≥ 0 and the primes pi are all different. Show that gcd{a1, a2, . . . , am} =
pf11 p

f2
2 ⋅ ⋅ ⋅ p

fn
n where fj = min{e1j, e2j, . . . , emj}.

(8) A least commonmultiple (or lcm) of integers a1, a2, . . . , am is an integer ℓ ≥ 0 such
that each ai divides ℓ and ℓ divides any integer which is divisible by every ai.
(i) Let ai = p

ei1
1 pei22 ⋅ ⋅ ⋅ p

ein
n where the eij are integers ≥ 0 and the primes pi are all

different. Prove that lcm’s exist and are unique by establishing the formula
lcm{a1, a2, . . . , am} = p

g1
1 p

g2
2 ⋅ ⋅ ⋅ p

gn
n with gj = max{e1j, e2j, . . . , emj}.

(ii) Prove that gcd{a, b} ⋅ lcm{a, b} = ab.
(9) Let r be a rational number and let a and b be relatively prime integers. If ar and

br are integers, prove that r is also an integer.
(10) Let a and b be integers with b > 0. Prove that there are integers u, v such that

a = bu + v and − b2 ≤ v <
b
2 . [Hint: start with the Division Algorithm.]

(11) Prove that gcd{4n + 5, 3n + 4} = 1 for all integers n.
(12) Prove that gcd{2n + 6, n2 + 3n + 2} = 2 or 4 for any integer n and show that both

possibilities can occur.
(13) Show that if 2n + 1 is prime, then nmust have the form 2l. (Such primes are called

Fermat2 primes.)
(14) Theonly integernwhich is expressible asa3(3a+1)andb2(b+1)3witha,b relatively

prime and positive is 2000.

2 Pierre de Fermat (1601–1665).
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2.3 Congruences

The notion of a congruence was introduced by Gauss3 in 1801, but it had long been
implicit in ancient writings concerned with the computation of dates.

Let m be a positive integer. Two integers a, b are said to be congruent modulo m,
in symbols

a ≡ b (modm),

if m divides a − b. Thus congruence modulo m is a relation on ℤ and an easy check
reveals that it is an equivalence relation. Hence the set ℤ splits up into equivalence
classes, which in this context are called congruence classes modulo m: see (1.2.2). The
unique congruence class to which an integer a belongs is written

[a] or [a]m = {a +mq | q ∈ ℤ}.

By theDivisionAlgorithmany integer a can bewritten in the form a = mq+rwhere
q, r ∈ ℤ and 0 ≤ r < m. Thus a ≡ r (mod m) and [a] = [r]. Therefore [0], [1], . . . , [m− 1]
are all the congruence classesmodulom. Furthermore, if [r] = [r′]where 0 ≤ r, r′ < m,
thenm | r − r′, which can only mean that r = r′. Thus we have proved:
(2.3.1). Letm be any positive integer. Then there are exactlym congruence classesmod-
ulo m, namely [0], [1], . . . , [m − 1].

Congruence arithmetic
We will write

ℤm

for the set of all congruences classes modulo m. Next we define operations of addi-
tion and multiplication for congruence classes, thereby introducing the possibility of
arithmetic in ℤm.

The sum and product of congruence classes modulom are defined by the rules

[a] + [b] = [a + b] and [a] ⋅ [b] = [ab].

These definitions are surely the natural ones. However, some care must be exercised
in framing definitions of this type. A congruence class can be represented by any one
of its elements: we need to ensure that the sum and product specified above depend
only on the congruence classes themselves, not on the chosen representatives.

3 Carl Friedrich Gauss (1777–1855).
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To this end, let a′ ∈ [a] and b′ ∈ [b]. It must be shown that [a + b] = [a′ + b′]
and [ab] = [a′b′]. Now a′ = a + mu and b′ = b + mv for some u, v ∈ ℤ. Therefore
a′ + b′ = (a + b) +m(u + v) and a′b′ = ab +m(av + bu +muv); from these equations it
follows that a′ + b′ ≡ a + b (mod m) and a′b′ ≡ ab (mod m). Thus [a′ + b′] = [a + b]
and [a′b′] = [ab], as required.

Now that we know the sum and product of congruence classes to be well-defined,
it is a routine task to establish the basic properties of these operations.

(2.3.2). Let m be a positive integer and let [a], [b], [c] be congruence classes modulo m.
Then
(i) [a] + [b] = [b] + [a] and [a] ⋅ [b] = [b] ⋅ [a];
(ii) ([a] + [b]) + [c] = [a] + ([b] + [c]) and ([a][b])[c] = [a]([b][c]);
(iii) ([a] + [b])[c] = [a][c] + [b][c];
(iv) [0] + [a] = [a] and [1][a] = [a];
(v) [a] + [−a] = [0].

Since all of these properties are valid in ℤ as well as ℤm – see Section 2.1 – we recog-
nize some common features of the arithmetics onℤ andℤm. This commonality can be
expressed by saying that ℤ and ℤm are examples of commutative rings with identity,
as will be explained in Chapter 6.

Fermat’s Theorem
Before proceeding to this well-known theorem, we will establish a frequently used
property of the binomial coefficients. If n and r are integers satisfying 0 ≤ r ≤ n, the
binomial coefficient (nr) is the number of ways of choosing r objects from a set of n
distinct objects. There is the well-known formula

(
n
r
) =

n!
r!(n − r)!

=
n(n − 1) ⋅ ⋅ ⋅ (n − r + 1)

r!
.

The property needed is:

(2.3.3). If p is a prime and 0 < r < p, then (pr) ≡ 0 (mod p).

Proof. Write (pr) = pm wherem is the rational number

(p − 1)(p − 2) ⋅ ⋅ ⋅ (p − r + 1)
r!

.

Notice that each prime appearing as a factor of the numerator or denominator ofm is
smaller than p. Write m = u

v where u and v are relatively prime integers. Then v(pr) =
pmv = pu and by Euclid’s Lemma v divides p. Now v ̸= p, so v = 1 and m = u ∈ ℤ.
Hence p divides (pr).

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



30 | 2 The Integers

We are now able to prove what is often called Fermat’s Little Theorem, to distin-
guish it from the well known Fermat’s Last Theorem.

(2.3.4). If p is a prime and x is any integer, then xp ≡ x (mod p).

Proof. Since (−x)p ≡ −xp (mod p),whether or notp is odd, there is no loss in assuming
that x ≥ 0. We will use induction on x to show that xp ≡ x (mod p), which certainly
holds for x = 0. Assume it is true for x. Then by the Binomial Theorem

(x + 1)p =
p
∑
r=0(pr)xr ≡ xp + 1 (mod p)

since p divides (pr) if 0 < r < p. Because x
p ≡ x (mod p), it follows that (x + 1)p ≡ x + 1

(mod p). The induction is now complete.

Solving Congruences
Just as we solve equations for unknown real numbers, we can try to solve congruences
for unknown integers. The simplest case is that of a linear congruence with a single
unknown x; this has the form ax ≡ b (mod m), where a, b,m are given integers.

(2.3.5). Let a, b, m be integers with m > 0. Then there is a solution x of the congruence
ax ≡ b (mod m) if and only if gcd{a,m} divides b.

Proof. Set d = gcd{a,m}. If x is a solution of congruence ax ≡ b (mod m), then ax =
b+mq for some q ∈ ℤ, fromwhich it follows that dmust divide b. Conversely, assume
that d | b. By (2.2.3) there are integers u, v such that d = au + mv. Multiplying this
equation by the integer b/d, we obtain b = a(ub/d) +m(vb/d). Put x = ub/d, which is
an integer; then ax ≡ b (modm) and x is a solution of the congruence.

The most important case is for b = 1.

Corollary (2.3.6). Let a, m be integers with m > 0. Then the congruence ax ≡ 1 (modm)
has a solution x if and only if a is relatively prime to m.

It is worthwhile translating the last result into the language of congruence arith-
metic. Given an integerm > 0 and a congruence class [a]modulom, there is a congru-
ence class [x] such that [a][x] = [1] if and only if a is relatively prime to m. Thus we
can tell which congruence classes modulom have “inverses”: they are the classes [x]
where 0 < x < m and x is relatively prime to m. The number of invertible congruence
classes modulom is denoted by

ϕ(m).
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This is the number of integers x such that 0 < x < m and gcd{x,m} = 1: the function ϕ
is called Euler’s4 function. Next we consider systems of linear congruences.

(2.3.7) (The Chinese Remainder Theorem). Let a1, a2, . . . , ak and m1, m2, . . . , mk be in-
tegerswithmi > 0. Assume thatgcd{mi,mj} = 1 if i ̸= j. Then there is a common solution x
of the system of congruences

{{{{{{{
{{{{{{{
{

x ≡ a1 (modm1)

x ≡ a2 (modm2)
...

x ≡ ak (modmk).

When k = 2, this striking result was discovered by the Chinese mathematician
Sun Tse, who lived sometime between the Third and Fifth centuries AD.

Proof of (2.3.7). Put m = m1m2 ⋅ ⋅ ⋅mk and m′i = m/mi. Then mi and m′i are relatively
prime, so by (2.3.6) there exists an integer ℓi such that m′iℓi ≡ 1 (mod mi). Now let
x = a1m′1ℓ1 + ⋅ ⋅ ⋅ + akm′kℓk . Then

x ≡ aim
′
iℓi ≡ ai (modmi)

sincemi | m′j if i ̸= j.
As an application of (2.3.7) a well-known formula for Euler’s function will be de-

rived.

(2.3.8).
(i) If m and n are relatively prime positive integers, then ϕ(mn) = ϕ(m)ϕ(n).
(ii) If m = pl11 p

l2
2 ⋅ ⋅ ⋅ p

lk
k with li > 0 and distinct primes pi, then

ϕ(m) =
k
∏
i=1 (plii − pli−1i ).

Proof. (i) Let Um denote the set of invertible congruence classes in ℤm. Thus |Um| =
ϕ(m). Define a map α : Umn → Um × Un by the rule α([a]mn) = ([a]m, [a]n). First of all
observe that α is well-defined. Next suppose that α([a]mn) = α([a′]mn). Then [a]m =
[a′]m and [a]n = [a′]n, equations which imply that a − a′ is divisible by m and n, and
hence bymn. Therefore [a]mn = [a′]mn and α is an injective function.

In fact α is also surjective. For, if [a]m ∈ Um and [b]n ∈ Un are given, the Chinese
Remainder Theorem assures us that there is an integer x such that x ≡ a (mod m) and

4 Leonhard Euler (1707–1783).
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x ≡ b (mod n). Hence [x]m = [a]m and [x]n = [b]n, so that α([x]mn) = ([a]m, [b]n).
Therefore α is a bijection and consequently |Umn| = |Um ×Un| = |Um| ⋅ |Un|, as required.

(ii) Suppose that p is a prime and n > 0. There are pn−1 multiples of p among the
integers 0, 1, . . . , pn − 1; therefore ϕ(pn) = pn − pn−1. Finally apply (2.3.8)(i) to obtain
the formula indicated.

We end the chapter with several examples which illustrate the utility of congruences.

Example (2.3.1). Show that an integer is divisible by 3 if andonly if the sumof its digits
is a multiple of 3.

Let n = a0a1 . . . ak be the decimal representation of an integer n. Thus n = ak +
ak−110 + ak−2102 + ⋅ ⋅ ⋅ + a010k where 0 ≤ ai < 10. The key observation is that 10 ≡
1 (mod 3), i. e., [10] = [1]. Hence [10i] = [10]i = [1]i = [1], i. e., 10i ≡ 1 (mod 3) for
all i ≥ 0. It therefore follows that n ≡ a0 + a1 + ⋅ ⋅ ⋅ + ak (mod 3). The assertion is an
immediate consequence of this congruence.

Example (2.3.2) (Days of the week). Congruences have long been used implicitly to
compute dates. As an example, let us determine what day of the week September 25
of the year 2020 was.

To keep track of the days assign the integers 0, 1, 2, . . . , 6 as labels for the days of
the week, say Sunday = 0, Monday = 1, . . . , Saturday = 6. Suppose that we reckon
from January 5, 2014, which was a Sunday. All we have to do is count the number of
days from this date to September 25, 2020. Allowing for leap years, this number is 2455.
Now 2455 ≡ 5 (mod 7) and 5 is the label for Friday. Therefore September 25, 2020 was
a Friday.

Example (2.3.3) (The Basket of Eggs Problem). What is the smallest number of eggs a
basket can contain if, when eggs are removed k at time, there is one egg left when
k = 2, 3, 4, 5 or 6 and there are no eggs left when k = 7? (This ancient problem is
mentioned in an Indian manuscript of the 7th Century).

Let x be the number of eggs in the basket. The conditions require that x ≡ 1
(mod k) for k = 2, 3, 4, 5, 6 and x ≡ 0 (mod k) for k = 7. Clearly this amounts to x
satisfying the four congruences x ≡ 1 (mod 3), x ≡ 1 (mod 4), x ≡ 1 (mod 5) and x ≡ 0
(mod 7). Furthermore these are equivalent to the congruences

x ≡ 1 (mod 60) and x ≡ 0 (mod 7).

By the Chinese Remainder Theorem there is a solution to this pair of congruences:
we have to find the smallest positive solution. Applying the method of the proof of
(2.3.7), we have m1 = 60, m2 = 7, m = 420 and thus m′1 = 7, m′2 = 60. Also ℓ1 = 43,
ℓ2 = 2. Therefore one solution is given by x = 1 ⋅ 7 ⋅ 43 + 0 ⋅ 60 ⋅ 2 = 301. If y is any
other solution, observe that y − xmust be divisible by 60 × 7 = 420. Hence the general
solution is x = 301 + 420q, q ∈ ℤ. So the smallest positive solution is 301.
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The next example is a refinement of Euclid’s Theorem on the infinity of primes –
see (2.2.8).

Example (2.3.4). Prove that there are infinitely many primes of the form 3n + 2 where
n is an integer ≥ 0.

In fact the proof is a variant of Euclid’s method. Suppose the result is false and let
the odd primes of the form 3n + 2 be p1, p2, . . . , pk . Now consider the positive integer
m = 3p1p2 ⋅ ⋅ ⋅ pk + 2. Notice that m is odd and it is not divisible by any pi. Therefore
m is a product of odd primes different from p1, . . . , pk . Hence mmust be a product of
primes of the form 3n+ 1 since every integer is of the form 3n, 3n+ 1 or 3n+ 2. It follows
that m itself must have the form 3n + 1 and thus m ≡ 1 (mod 3). On the other hand,
m ≡ 2 (mod 3), so we have reached a contradiction.

Actually this example is a special case of a famous theorem of Dirichlet:5 every
arithmetic progression an + b, where n = 0, 1, 2, . . . , and the integers a and b are
positive and relatively prime, contains infinitely many primes.

Example (2.3.5) (The RSA Cryptosystem). This is a secure system for message encryp-
tion which has been widely used for transmitting sensitive data since its invention
in 1977 by R. Rivest, A. Shamir and L. Adleman. It has the advantage of being a public
key system in which only the decyphering function is not available to the public.

Suppose that a message is to be sent fromA to B. The parameters required are two
distinct large primes p and q. Put n = pq and m = ϕ(n); therefore m = (p − 1)(q − 1)
by (2.3.8). Let a be an integer in the range 1 to m which is relatively prime to m. Then
by (2.3.6) there is a unique integer b satisfying 0 < b < m and ab ≡ 1 (mod m). The
sender A is assumed to know the integers a and n, while the receiver B knows b and n.

The message to be sent is first converted to an integer x which is not divisible by
p or q and satisfies 0 < x < n. Then A encyphers x by raising it to the power a and
then reducingmodulo n. In this form themessage is transmitted to B. On receiving the
transmitted message, B raises it to the power b and reduces modulo n. The result will
be the original message x. What is being claimed here is that xab ≡ x (mod n), since
0 < x < n. To see why this holds, first write

ab = 1 + lm = 1 + l(p − 1)(q − 1)

with l an integer. Then

xab = x1+l(p−1)(q−1) = x(xp−1)l(q−1) ≡ x (mod p)

since xp−1 ≡ 1 (mod p) by Fermat’s Theorem. Hence p divides xab − x, and in a similar
way q also divides this number. Therefore n = pq divides xab − x as claimed.

5 Johann Peter Gustav Lejeune Dirichlet (1805–1859).
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Even if n and a become public knowledge, it will be difficult to break the system
by finding b. For this would require computation of the inverse of [a] inℤm. To do this
using the Euclidean Algorithm, the result that lies behind (2.3.6), one would need to
know the primes p and q. But the problem of factorizing the integer n = pq in order to
discover the primes p and q is considered to be computationally very hard. Thus the
RSA-system remains secure until much more efficient ways of factorizing large num-
bers become available.

Exercises (2.3).
(1) Establish the properties of congruences listed in (2.3.2).
(2) In ℤ24 find the inverses of [7] and [13].
(3) Show that if n is an odd integer, n2 ≡ 1 (mod 8).
(4) Find the general solution of the congruence 6x ≡ 11 (mod 5).
(5) What day of the week will April 1, 2030 be?
(6) Find the smallest positive solution x of the system of congruences x ≡ 4 (mod 3),

x ≡ 5 (mod 7), x ≡ 6 (mod 11).
(7) Prove that there are infinitely many primes of the form 4n + 3.
(8) Prove that there are infinitely many primes of the form 6n + 5.
(9) In a certain culture the festivals of the snake, the monkey and the fish occur every

6, 5 and 11 years respectively. The next festivals occur in 3, 4 and 1 years respec-
tively. Howmany yearsmust pass before all three festivals occur in the same year?

(10)Prove that no integer of the form 4n + 3 can be written as the sum of two squares
of integers.
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3 Introduction to Groups
Groups constitute one of the most important and natural structures in algebra. They
also feature in other areas of mathematics such as geometry, topology and combina-
torics. In addition groups arise in many areas of science, typically in situations where
symmetry is important, as in atomic physics and crystallography. More general alge-
braic structures that have recently come to prominence due to the rise of information
science include semigroups and monoids. This chapter serves as an introduction to
these types of structure.

There is a continuing debate as to whether it is better to introduce groups or rings
first in an introductory course in algebra: here we take the point of view that groups
are logically the simpler objects since they involve only one binary operation, whereas
rings have two. Accordingly rings are left until Chapter 6.

Historically the first groups to be studied consisted of permutations, i. e., bijec-
tive functions on a set. Indeed for most of the 19th Century “group” was synonymous
with “group of permutations”. Since permutation groups have the great advantage
that their elements are concrete and easy to compute with, we begin with a discus-
sion of permutations.

3.1 Permutations

If X is any non-empty set, a bijective function π : X → X is called a permutation
of X. Thus by (1.3.1) π has a unique inverse function π−1 : X → X, which is also a
permutation. The set of all permutations of the set X is denoted by

Sym(X),

which stands for the symmetric group on X.
If π and σ are permutations of X, their composite π ∘ σ is also a permutation; this

is because it has an inverse, namely the permutation σ−1 ∘ π−1 by (1.3.2). In future for
the sake of simplicity we will usually write

πσ

for π ∘ σ. Of course, id = idX , the identity function on X, is a permutation.
At this juncture we pause to note some features of the set Sym(X): this set is

“closed” with respect to forming inverses and composites, by which we mean that
if π, σ ∈ Sym(X), then π−1 and π ∘ σ belong to Sym(X). In addition Sym(X) contains
the identity permutation idX , which has the property idX ∘π = π = π ∘ idX . And finally,
the associative law for permutations is valid, (π ∘ σ) ∘ τ = π ∘ (σ ∘ τ). In fact what these
properties assert is that the pair (Sym(X), ∘) is a group, as defined in Section 3.2. Thus
the permutations of a set afford a very natural example of a group.

https://doi.org/10.1515/9783110691160-003
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Permutations of finite sets
We now begin the study of permutations of a finite set with n elements,

X = {x1, x2, . . . , xn}.

Let π ∈ Sym(X). Since π is injective, π(x1), π(x2), . . . , π(xn) are all different and there-
fore constitute all n elements of the set X, but possibly in some order different from
x1, x2, . . . , xn. Thus we can think of a permutation as a rearrangement of the order x1,
x2, . . . , xn. A convenient way to denote the permutation π is

π = ( x1 x2 . . . xn
π(x1) π(x2) . . . π(xn)

)

where the second row consists of the images under π of the elements of the first row.
It should be clear to the reader that nothing essential is lost if we take X to be the set
{1, 2, . . . , n}. With this choice of X, it is usual to write

Sn

for Sym(X); this is called the symmetric group of degree n.
Computations with elements of Sn are easily performed by working directly from

the definitions. An example will illustrate this.

Example (3.1.1). Let

π = (1 2 3 4 5 6
6 1 2 5 3 4

) and σ = (1 2 3 4 5 6
6 1 4 3 2 5

)

be elements of S6. Hence

πσ = (1 2 3 4 5 6
4 6 5 2 1 3

) , σπ = (1 2 3 4 5 6
5 6 1 2 4 3

)

and

π−1 = (1 2 3 4 5 6
2 3 5 6 4 1

) .

Here πσ has been computed using the definition πσ(i) = π(σ(i)), while π−1 is readily
obtained by reading up from 1, 2, . . . , 6 in the second row of π to obtain the second row
of π−1. Notice that πσ ̸= σπ, i. e., multiplication of permutations is not commutative in
general.

A simple count establishes the number of permutations of a finite set.

(3.1.1). If X is a set with n elements, then |Sym(X)| = n!.
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Proof. Consider the number of ways of constructing the second row of a permutation

π = (x1 x2 . . . xn
y1 y2 . . . yn

) .

There are n choices for y1, but only n− 1 choices for y2 since y1 cannot be chosen again.
Nextwe cannot choose y1 or y2 again, so there are n−2 choices for y3, and so on; finally,
there is just one choice for yn. Each choice of a yi leads to a different permutation.
Therefore the number of different permutations of X is n(n − 1)(n − 2) ⋅ ⋅ ⋅ 1 = n!.

Cyclic permutations
Let π ∈ Sn, so that π is a permutation of the set {1, 2, . . . , n}. The support of π is defined
to be the set of all i such that π(i) ≠ i, in symbols

supp(π).

Let r be an integer satisfying 1 ≤ r ≤ n. Then π is called an r-cycle if supp(π) =
{i1, i2, . . . , ir}, with distinct ij, where π(i1) = i2, π(i2) = i3, . . . , π(ir−1) = ir and π(ir) = i1.
To visualize the permutation think of the integers i1, i2, . . . , ir as being arranged in this
order anticlockwise round a circle. Then π has the effect of rotating the circle in the
anticlockwise direction. Of course π fixes all the other integers: often π is written in
the form

π = (i1i2 ⋅ ⋅ ⋅ ir)(ir+1) ⋅ ⋅ ⋅ (in)

where thepresence of a 1-cycle (j)means thatπ(j) = j. Thenotationmaybe abbreviated
by omitting all 1-cycles, although if this is done, the integer nmayneed to be specified.

In particular a 2-cycle has the form (ij): it interchanges i and j and fixes all other
integers. 2-cycles are often called transpositions.

Example (3.1.2). The permutation ( 1 2 3 4 5
2 5 3 4 1 ) is the 3-cycle (125)(3)(4), that is, (125).

While

(
1 2 3 4 5 6 7 8
6 1 5 8 7 2 3 4

)

is not a cycle, it is the composite of three disjoint cycles of length > 1, namely (162) ∘
(357) ∘ (48), as one can see by following what happens to each of the integers 1, 2, . . . ,
8 when the permutation is applied. In fact this is an instance of an important gen-
eral result, that any permutation is expressible as a composite of cycles: this will be
established in (3.1.3).

It should be observed that there are r different ways to write an r-cycle since any
element of the cycle can be the initial element: indeed (i1i2 . . . ir) = (i2i3 . . . ir i1) = ⋅ ⋅ ⋅ =
(ir i1i2 ⋅ ⋅ ⋅ ir−1).
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Two permutations π, σ in Sn are said to be disjoint if their supports are disjoint,
i. e., they do not both move the same element. An important fact about disjoint per-
mutations is that they commute, in contrast to permutations in general.

(3.1.2). If π and σ are disjoint permutations in Sn, then πσ = σπ.

Proof. Let i ∈ {1, 2, . . . , n}; we show that πσ(i) = σπ(i). If i ∉ supp(π) ∪ supp(σ), then
plainly πσ(i) = i = σπ(i). Suppose that i ∈ supp(π); then i ∉ supp(σ) and σ(i) = i. Thus
πσ(i) = π(i). Also σπ(i) = π(i); for otherwise π(i) ∈ supp(σ) and so π(i) ∉ supp(π),
which leads to π(π(i)) = π(i). However, π−1 can be applied to both sides of this equa-
tion to give π(i) = i, a contradiction since i ∈ supp(π).

Powers of a permutation
Since we know how to form products of permutations by using composition, it is nat-
ural to define powers of a permutation. Let π ∈ Sn and let i be a non-negative integer.
Then the ith power πi is defined recursively by the rules:

π0 = id, πi+1 = πiπ.

The point to note here is that the rule allows us to compute successive powers of the
permutation as follows: π1 = π, π2 = ππ, π3 = π2π, etc. Powers are used in the proof
of the following fundamental theorem.

(3.1.3). Let π ∈ Sn. Then π is expressible as a product of disjoint cycles and the cycles
appearing in the product are unique.

Proof. We deal with the existence of the expression first. If π is the identity, then obvi-
ously π = (1)(2) ⋅ ⋅ ⋅ (n). Assume that π ≠ id and choose an integer i1 such that π(i1) ≠ i1.
Now the integers i1, π(i1), π2(i1), . . . belong to the finite set {1, 2, . . . , n} and so they can-
not all be different; say πr(i1) = πs(i1) where r > s ≥ 0. Applying (π−1)s to both sides
of the equation and using associativity, we find that πr−s(i1) = i1. Hence by the Well-
Ordering Law there is a least positive integerm1 such that πm1 (i1) = i1.

Next we argue that the integers i1, π(i1), π2(i1), . . . , πm1−1(i1) are all different. For
if not and πr(i1) = πs(i1) where m1 > r > s ≥ 0, then, just as above, we can argue that
πr−s(i1) = i1; on the other hand, 0 < r − s < m1, which contradicts the choice of m1.
It follows that π permutes the m1 distinct integers i1, π(i1), . . . , πm1−1(i1) in a cycle, so
that we have identified them1-cycle (i1 π(i1) . . .πm1−1(i1)) as a component of π.

If π fixes all other integers, then π = (i1 π(i1) ⋅ ⋅ ⋅πm1−1(i1)) and π is an m1-cycle.
Otherwise there exists an integer i2 ∉ {i1,π(i1), . . . ,πm1−1(i1)} such that π(i2) ̸= i2. Just as
abovewe identify a second cycle (i2 π(i2) . . .πm2−1(i2)) present in π. This is disjoint from
the first cycle. Indeed, if the cycles had a common element, they would have to coin-
cide. It should also be clear that by a finite number of applications of this procedure
we can express π as a product of disjoint cycles.
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Next we establish uniqueness. Assume that there are two expressions for π as a
product of disjoint cycles, say (i1i2 ⋅ ⋅ ⋅)(j1j2 ⋅ ⋅ ⋅) ⋅ ⋅ ⋅ and (i′1i

′
2 ⋅ ⋅ ⋅)(j

′
1j
′
2 ⋅ ⋅ ⋅) ⋅ ⋅ ⋅. By (3.1.2) dis-

joint cycles commute. Thus without loss of generality we can assume that i1 occurs in
the cycle (i′1i

′
2 ⋅ ⋅ ⋅). Since any element of a cycle can bemoved up to the initial position,

it can also be assumed that i1 = i′1. Then i2 = π(i1) = π(i
′
1) = i
′
2; similarly i3 = i′3, etc. The

other cycles are dealt with in the same manner. Therefore the two expressions for π
are identical.

Corollary (3.1.4). If n > 1, every element of Sn is expressible as a product of transposi-
tions.

Proof. Because of (3.1.3) it is sufficient to show that each cyclic permutation is a prod-
uct of transpositions. That this is true follows from the easily verified identity:

(i1i2 ⋅ ⋅ ⋅ ir−1ir) = (i1ir)(i1ir−1) ⋅ ⋅ ⋅ (i1i3)(i1i2).

Example (3.1.3). Express π = ( 1 2 3 4 5 6
3 6 5 1 4 2 ) as a product of transpositions.

First of all write π as a product of disjoint cycles, following themethod of the proof
of (3.1.3) to get π = (1354)(26). Also (1354) = (14)(15)(13), so that π = (14)(15)(13)(26).

On the other hand, not every permutation in Sn is expressible as a product of dis-
joint transpositions: the reader should explain why not.

Even and odd permutations
If π is a permutation in Sn, then π replaces the natural order of integers, 1, 2, . . . , n by
the new order π(1), π(2), . . . , π(n). Thus π may cause inversions of the natural order:
here an inversion occurs if for some i < j, we have π(i) > π(j). To clarify the definition
it is convenient to introduce a formal device.

Consider a polynomial f in indeterminates x1, x2, . . . , xn, with integer coefficients.
(Here we assume the reader is familiar with the concept of a polynomial). If π ∈ Sn,
then π determines a new polynomial πf which is obtained by permuting the variables
x1, x2, . . . , xn. Thus πf (x1, . . . , xn) = f (xπ(1), . . . , xπ(n)). For example, if f = x1 − x2 − 2x3
and π = (12)(3), then πf = x2 − x1 − 2x3.

Now consider the polynomial

f (x1, . . . , xn) =
n
∏
i,j=1
i<j

(xi − xj).

A typical factor in πf is xπ(i) − xπ(j). Now if π(i) < π(j), this is also a factor of f , while if
π(i) > π(j), then −(xπ(i) − xπ(j)) is a factor of f . Consequently πf = +f if the number of
inversions of the natural order in π is even and πf = −f if it is odd. This observation
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permits us to define the sign of the permutation π to be

sign(π) = πf
f
.

Thus sign(π) = 1 or −1 according as the number of inversions in π is even or odd. Call
π an even permutation if sign(π) = 1 and an odd permutation if sign(π) = −1.

Example (3.1.4). The even permutations in S3 are (1)(2)(3), (123) and (132), while the
odd permutations are (1)(23), (2)(13) and (3)(12).

In deciding if a permutation is even or odd a crossover diagram is a useful tool.
We illustrate this idea with an example.

Example (3.1.5). Is the permutation

π = (1 2 3 4 5 6 7
3 7 2 5 4 1 6

)

even or odd?
To construct the crossover diagram simply join equal integers in the top and bot-

tom rowsofπ andcount the intersections or “crossovers”, taking care to avoidmultiple
or unnecessary intersections. A crossover indicates the presence of an inversion of the
natural order.

1 2 3 4 5 6 7

3 7 2 5 4 1 6

There are 11 crossovers, so sign(π) = −1 and π is an odd permutation.

The next result records very significant property of transpositions.

(3.1.5). Transpositions are always odd.

Proof. Consider the crossover diagram for the transposition (ij) where i < j.

1 2 ⋅ ⋅ ⋅ i − 1 i i + 1 ⋅ ⋅ ⋅ j − 1 j j + 1 ⋅ ⋅ ⋅ n

1 2 ⋅ ⋅ ⋅ i − 1 j i + 1 ⋅ ⋅ ⋅ j − 1 i j + 1 ⋅ ⋅ ⋅ n
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An easy count reveals the presence of 1 + 2(j − i − 1) crossovers. Since this integer
is certainly odd, (ij) is an odd permutation.

The basic properties of the sign function are laid out next.

(3.1.6). Let π, σ ∈ Sn. Then the following hold:
(i) sign(πσ) = sign(π)sign(σ);
(ii) sign(π−1) = sign(π).

Proof. Let f = ∏ni<j=1(xi − xj). Since πf = sign(π)f , we have

πσf (x1, . . . , xn) = π(σf (x1, . . . , xn))
= π((sign(σ)f (x1, . . . , xn)))
= sign(σ)πf (x1, . . . , xn)
= sign(σ)sign(π)f (x1, . . . , xn).

Since (πσ)f = sign(πσ)f , it follows that sign(πσ) = sign(π)sign(σ). Finally, by (i) we
have 1 = sign(id) = sign(ππ−1) = sign(π)sign(π−1), so that sign(π−1) = 1/sign(π) =
sign(π).

Corollary (3.1.7). A permutation π in Sn is even (odd) if and only if it is a product of an
even (respectively odd) number of transpositions.

For, if π = ∏ki=1 πi with each πi a transposition, then

sign(π) =
k
∏
i=1

sign(πi) = (−1)
k

by (3.1.5) and (3.1.6).
The subset of all even permutations in Sn is denoted by

An,

which is called the alternating group of degree n. Obviously A1 = S1. For n > 1 exactly
half of the permutations in Sn are even, as the next result shows.

(3.1.8). If n > 1, there are 1
2 (n!) even permutations and

1
2 (n!) odd permutations in Sn.

Proof. Define a function α : An → Sn by the rule α(π) = π ∘ (12), observing that α(π)
is odd as π ∈ An. Also α is injective. Every odd permutation σ belongs to Im(α) since
α(π) = σwhere π = σ ∘(12) ∈ An. Thus Im(α) is precisely the set of all odd permutations
and |Im(α)| = |An|. Hence |An| =

1
2 |Sn| =

1
2 (n!).
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(3.1.9) (Cauchy’s1 Formula). If π in Sn is the product of c disjoint cycles, including
1-cycles, then

sign(π) = (−1)n−c.

Proof. Let π = σ1σ2 ⋅ ⋅ ⋅ σc where the σi are disjoint cycles and σi has length ℓi. Now σi is
expressible as a product of ℓi − 1 transpositions by the proof of (3.1.4). Hence by (3.1.6)
we have sign(σi) = (−1)ℓi−1 and thus

sign(π) =
c
∏
i=1

sign(σi) =
c
∏
i=1
(−1)ℓi−1 = (−1)n−c

since∑ci=1 ℓi = n.

Derangements
We conclude the section with a discussion of a special type of permutation. A permu-
tation of a set is called a derangement if it fixes no elements of the set, i. e., its support
is the entire set. For example, (1234)(56) is a derangement in S6. A natural question is:
how many derangements does Sn contain? To answer the question we employ a well
known combinatorial principle.

(3.1.10) (The Inclusion–Exclusion Principle). If A1, A2, . . . , Ar are finite sets, then

|A1 ∪ A2 ∪ ⋅ ⋅ ⋅ ∪ Ar | =
r
∑
i=1
|Ai| −

r
∑
i<j=1
|Ai ∩ Aj|

+
r
∑

i<j<k=1
|Ai ∩ Aj ∩ Ak | − ⋅ ⋅ ⋅ + (−1)

r−1|A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ Ar |.

Proof. We have to count the number of objects that belong to at least one Ai. Our first
estimate is ∑ri=1 |Ai|, but this double counts elements in more than one Ai, so we sub-
tract ∑ri<j=1 |Ai ∩ Aj|. But now elements belonging to three or more Ai’s have not been
counted at all, so wemust add∑ri<j<k=1 |Ai ∩Aj ∩Ak |. Now elements in four or moreAi’s
have been double counted, and so on. After a succession of r such “inclusions” and
“exclusions” we arrive at the correct formula.

It is now relatively easy to count derangements.

(3.1.11). The number of derangements in Sn is given by the formula

dn = n!(1 −
1
1!
+
1
2!
−

1
3!
+ ⋅ ⋅ ⋅ + (−1)n 1

n!
).

1 Augustin Louis Cauchy (1789–1857).
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Proof. Let Xi denote the set of all permutations in Sn which fix the integer i, (1 ≤ i ≤ n).
Then the number of derangements in Sn is

dn = n! − |X1 ∪ ⋅ ⋅ ⋅ ∪ Xn|.

Now |Xi| = (n − 1)!; also |Xi ∩ Xj| = (n − 2)!, (i < j), and |Xi ∩ Xj ∩ Xk | = (n − 3)!,
(i < j < k), etc. Therefore by the Inclusion–Exclusion Principle

dn = n! − {(
n
1
)(n − 1)! − (n

2
)(n − 2)! + (n

3
)(n − 3)!

− ⋅ ⋅ ⋅ + (−1)n−1(n
n
)(n − n)!}.

Here the reason is that there are (nr) intersections Xi1 ∩Xi2 ∩ ⋅ ⋅ ⋅∩Xir with i1 < i2 < ⋅ ⋅ ⋅ < ir .
The required formula appears after aminor simplification of the terms in the sum.

Notice that limn→∞(
dn
n! ) = e

−1 = 0.36787. . . , so roughly 36.8% of the permutations
in Sn are derangements.

Example (3.1.6) (The Hat Problem). There are n people attending a party each of
whom wears a different hat. All the hats are checked in on arrival. Afterwards each
person is given a hat at random. What is the probability that no one get the correct
hat?

A distribution of hats corresponds to a permutation of the original order. The per-
mutations that are derangements give the distributions in which everyone has the
wrong hat. So the probability asked for is dn

n! or roughly e
−1.

Exercises (3.1).
(1) Let π = ( 1 2 3 4 5 6

2 4 1 5 3 6 ) and σ = (
1 2 3 4 5 6
6 1 5 3 2 4 ). Compute π−1, πσ and πσπ−1.

(2) Determine which of the permutations in Exercise (3.1.1) are even and which are
odd.

(3) Prove that sign(πσπ−1) = sign(σ) for all π, σ ∈ Sn.
(4) Prove that if n > 1, every non-trivial element of Sn is a product of adjacent transpo-

sitions, i. e., transpositions of the form (i i+1). [Hint: it is enough to prove the state-
ment for a transposition (i j)where i < j. Now consider (j j+ 1)(i j)(j j+ 1) = (i j+ 1).]

(5) Prove that an elementπ in Sn satisfiesπ2 = id if and only ifπ is a product of disjoint
transpositions.

(6) How many elements π in Sn satisfy π2 = id? [Hint: count the permutations which
have exactly k disjoint transpositions for 2k ≤ n by first choosing 2k integers from
1, 2, . . . , n and then forming k transpositions from them.]

(7) How many permutations in Sn contain at most one 1-cycle? [Hint: count the per-
mutations with exactly one 1-cycle, then the permutations with no 1-cycles.]

(8) In the gameof Rencontre there are twoplayers A andB each ofwhomhas a regular
pack of 52 cards. The players deal their cards simultaneously. If at some point they
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both deal the same card, this is a “rencontre” and player A wins. If no rencontre
appears, player B wins. What are the probabilities of each player winning?

3.2 Semigroups, monoids and groups

Many of the structures that occur in algebra consist of a set together with a set of op-
erations that can be applied to elements of the set. To make this precise, let us define
a binary operation on a set S to be a function

α : S × S → S.

Thus for each ordered pair (a, b) with a, b in S the function α produces a unique ele-
ment α((a, b)) of S. It is better notation if we write

a ∗ b

instead of α((a, b)) and refer to the binary operation as ∗.
Of course binary operations abound: one need think no further than addition or

multiplication in sets such as ℤ,ℚ, ℝ, or composition on the set of all functions on a
given set.

The first algebraic structure of interest to us is a semigroup, which is a pair

(S, ∗)

consisting of a non-empty set S and a binary operation ∗ on S which satisfies the as-
sociative law,
(i) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ S.

If the semigroup has an identity element, i. e., an element e of S such that
(ii) a ∗ e = a = e ∗ a for all a ∈ S,

then it is called amonoid.
Finally, the monoid is called a group if each element a has an inverse, i. e., an

element a′ of S such that
(iii) a ∗ a′ = e = a′ ∗ a.

Also a semigroup (S, ∗) is said to be commutative if
(iv) a ∗ b = b ∗ a for all a, b ∈ S.

A commutative group is called an abelian2 group.

2 After Niels Henrik Abel (1802–1829).
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Thus semigroups, monoids and groups form successively narrower classes of al-
gebraic structures. The three concepts will now be illustrated by some familiar exam-
ples.

Examples of semigroups, monoids and groups
(i) The pairs (ℤ,+), (ℚ,+), (ℝ,+) are groups where + is ordinary addition, 0 is an iden-
tity element and an inverse of x is its negative −x.
(ii) Next consider (ℚ∗, ⋅), (ℝ∗, ⋅)where the dot denotes ordinarymultiplication andℚ∗

and ℝ∗ are the sets of non-zero rational numbers and real numbers respectively. Here
(ℚ∗, ⋅) and (ℝ∗, ⋅) are groups, the identity element being 1 and an inverse of x being 1

x .
On the other hand, (ℤ∗, ⋅) is only a monoid since the integer 2, for example, has no
inverse in ℤ∗ = ℤ − {0}.
(iii) (ℤm,+) is a group wherem is a positive integer and the usual addition of congru-
ence classes is used.
(iv) (ℤ∗m, ⋅) is a group where m is a positive integer: here ℤ∗m is the set of invertible
congruence classes [a]modulom, i. e., such that gcd{a,m} = 1, and multiplication of
congruence classes is used. Note that |ℤ∗m| = ϕ(m) where ϕ is Euler’s function.
(v) LetMn(ℝ)be the set of alln×nmatriceswith real entries. If theusual rule of addition
of matrices is used, (Mn(ℝ),+) is an abelian group.

On the other hand,Mn(ℝ) with matrix multiplication is only a monoid. To obtain
a group we must form

GLn(ℝ),

the subset of all invertible (or non-singular) matrices in Mn(ℝ): recall that these are
the matrices with non-zero determinant. This group is called the general linear group
of degree n over ℝ.
(vi) For an example of a semigroup that is not a monoid we need look no further than
the set of all even integers with multiplication as the group operation. Clearly there is
no identity element here.
(vii) The monoid of functions on a set. Let A be any non-empty set, and write Fun(A)
for the set of all mappings or functions α on A. Then

(Fun(A), ∘)

is a monoid where ∘ is functional composition. Indeed, this binary operation is asso-
ciative by (1.2.3) and the identity function on A is an identity element.

If we restrict attention to the bijective functions on A, i. e., to those which have
inverses, we obtain the symmetric group on A

(Sym(A), ∘),
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consisting of all the permutations of A. This example was the motivation for the defi-
nition of a group.

(viii) Monoids of words. For a different type of example consider words in an alpha-
bet X. Here X is any non-empty set and a word in X is just an n-tuple of elements of X,
written for convenience without parentheses in the form x1x2 ⋅ ⋅ ⋅ xn, n ≥ 0. The case
n = 0 is the empty word 0. Let X∗ denote the set of all words in X.

There is a natural binary operation on X, namely juxtaposition. Thus, if u =
x1 ⋅ ⋅ ⋅ xn and v = y1 ⋅ ⋅ ⋅ ym are words in X, define uv to be the word x1 ⋅ ⋅ ⋅ xny1 ⋅ ⋅ ⋅ ym. If
u = 0, then by convention uz = z = zu for all z. It is clear that this binary operation is
associative and that 0 is an identity element. Thus X∗, with the operation specified, is
a monoid: it is known as the free monoid on X.

(ix) Monoids and automata. There is a somewhat unexpected connection between
monoids and automata. Suppose that A = (I , S, ν) is a state output automaton with
input set I, state set S and next state function ν : I × S → S: see Exercise (1.3.8). Then
A determines a monoidMA in the following way.

Let i ∈ I and define θi : S → S by the rule θi(s) = ν(i, s) where s ∈ S. Now let
MA consist of the identity function and all composites of finite sequences of θi’s; thus
MA ⊆ Fun(S). Clearly (MA, ∘) is a monoid with respect to functional composition.

In fact one can go in the opposite direction as well. Let (M, ∗) be a monoid and
define an automaton AM = (M,M, ν) where the next state function ν : M × M → M
is given by the rule ν(x1, x2) = x1 ∗ x2. Thus a connection between monoids and state
output automata has been established.

Symmetry groups
As has been remarked, groups tend to arise wherever symmetry is of importance. The
size of the group can be regarded as a measure of the amount of symmetry present.
Since symmetry is at heart a geometric notion, it is not surprising that geometry pro-
vides many interesting examples of groups.

A bijective function defined on 3-dimensional space or the plane is called an isom-
etry if it preserves distances between points. Natural examples of isometries are trans-
lations, rotations and reflections. Let X be a non-empty set of points in 3-space or the
plane – we will refer to X as a geometric configuration. An isometry α which fixes the
set X, i. e., such that

X = {α(x) | x ∈ X},

is called a symmetry of X. Note that a symmetry can move the individual points of X.
It is easy to see that the symmetries of X form a group with respect to functional

composition; this is the symmetry group S(X) of X. Thus S(X) is a subset of Sym(X),
usually a proper subset.
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The symmetry group of the regular n-gon
As an illustration let us analyze the symmetries of the regular n-gon: this is a polygon
in the plane with n edges of equal length, (n ≥ 3). It is convenient to label the vertices
of the n-gon 1, 2, . . . , n, so that each symmetry is represented by a permutation of the
vertex set {1, 2, . . . , n}, i. e., by an element of Sn.

1

2 n

3
...

n − 1
...

Each symmetry arises from an axis of symmetry of the figure. Of course, in order
to obtain a group, wemust include the identity symmetry, represented by (1)(2) ⋅ ⋅ ⋅ (n).
There are n − 1 anticlockwise rotations about the line perpendicular to the plane of
the figure and through the centroid, through angles i( 2πn ), for i = 1, 2, . . . , n − 1. For
example, the rotation through 2π

n is represented by the n-cycle (1 2 3 . . . n); other rota-
tions correspond to powers of this n-cycle. Notice that the inverse of a rotation can be
thought of as a rotation through a suitable angle in the clockwise direction.

Then there are n reflections in axes of symmetry in the plane. If n is odd, such
axes join a vertex to themidpoint of the opposite edge. For example, (1)(2 n)(3 n− 1) ⋅ ⋅ ⋅
corresponds to one such reflection. However, if n is even, there are two types of reflec-
tions, in an axis joining a pair of opposite vertices and in an axis joining midpoints of
opposite edges: hence there are 1

2n +
1
2n = n reflections in this case as well.

Since all axes of symmetry of the n-gon have now been exhausted, we conclude
that the order of the symmetry group is 1 + (n − 1) + n = 2n. This group is called the
dihedral group of order 2n,

Dih(2n).

Notice that Dih(2n) is a proper subset of Sn if 2n < n!, i. e., if n ≥ 4. Thus not every
permutation of the vertices arises from a symmetry when n ≥ 4.

Simple consequences of the axioms
We end the section by noting three elementary facts that follow quickly from the ax-
ioms.

(3.2.1).
(i) (The Generalized Associative Law) Let x1, x2, . . . , xn be elements of a semigroup
(S, ∗). If an element u is constructed by combining these elements in the given order,
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using any mode of bracketing, then u = (⋅ ⋅ ⋅ ((x1 ∗ x2) ∗ x3) ∗ ⋅ ⋅ ⋅) ∗ xn, so that u is
independent of the positioning of the parentheses.

(ii) Every monoid has a unique identity element.
(iii) Every element in a group has a unique inverse.

Proof. (i) We argue by induction on n, which can be assumed to be at least 3. If u is
constructed from x1, x2, . . . , xn in that order, then u = v∗wwhere v is constructed from
x1, x2, . . . , xi and w from xi+1, . . . , xn; here 1 ≤ i ≤ n − 1. Then v = (⋅ ⋅ ⋅ (x1 ∗ x2) ∗ ⋅ ⋅ ⋅ ∗ xi)
by induction on n. If i = n − 1, then w = xn and the result follows at once. Otherwise
i + 1 < n and w = z ∗ xn where z is constructed from xi+1, . . . , xn−1. Then u = v ∗ w =
v ∗ (z ∗ xn) = (v ∗ z) ∗ xn by the associative law. The result is true for v ∗ z by induction,
so it is true for u.
(ii) Suppose that e and e′ are two identity elements in a monoid. Then e = e ∗ e′ since
e′ is an identity, and e ∗ e′ = e′ since e is an identity. Hence e = e′.
(iii) Let g be an element of a group and suppose g has two inverses x and x′; we claim
that x = x′. To see this observe that (x ∗ g) ∗ x′ = e ∗ x′ = x′, while also (x ∗ g) ∗ x′ =
x ∗ (g ∗ x′) = x ∗ e = x. Hence x = x′.

Because of (3.2.1)(i) above, we can without ambiguity omit all parentheses from an
expression formed from elements x1, x2, . . . , xn of a semigroup – an enormous gain
in simplicity. Also (ii) and (iii) show that it is unambiguous to speak of the identity
element of a monoid and the inverse of an element of a group.

Exercises (3.2).
(1) Let S be the subset ofℝ×ℝ specified belowanddefine (x, y)∗(x′, y′) = (x+x′, y+y′).

Say in each casewhether (S, ∗) is a semigroup, amonoid, a group, or noneof these,
as is most appropriate.
(i) S = {(x, y) | x + y ≥ 0};
(ii) S = {(x, y) | x + y > 0};
(iii) S = {(x, y) | |x + y| ≤ 1};
(iv) S = {(x, y) | 2x + 3y = 0}.

(2) Do the sets of even or odd permutations in Sn form a semigroup when functional
composition is used as the binary operation?

(3) Show that the set of all 2 × 2 real matrices with non-negative entries is a monoid,
but not a group, when matrix addition used.

(4) Let A be a non-empty set and define a binary operation ∗ on the power set 𝒫(A)
by S ∗ T = (S ∪ T) − (S ∩ T). Prove that (𝒫(A), ∗) is an abelian group.

(5) Define powers in a semigroup (S, ∗) by the rules x1 = x and xn+1 = xn ∗ x where
x ∈ S and n is a non-negative integer. Prove that xm ∗ xn = xm+n and (xm)n = xmn

wherem, n > 0.
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(6) Let G be a monoid such that for each x in G there is a positive integer n such that
xn = e. Prove that G is a group.

(7) Let G be the set consisting of the permutations (12)(34), (13)(24), (14)(23) and the
identity permutation (1)(2)(3)(4). Show that G is a group with exactly four ele-
ments in which each element is its own inverse. (This group is called the Klein3

4-group).
(8) Prove that the group Sn is abelian if and only if n ≤ 2.
(9) Prove that the group GLn(ℝ) is abelian if and only if n = 1.

3.3 Groups and subgroups

From this point on we will concentrate on groups: we begin by improving the nota-
tion. In the first place it is customary not to distinguish between a group (G, ∗) and
its underlying set G, provided there is no likelihood of confusion. Then there are two
standardways ofwriting the group operation. In the additive notationwewrite x+y for
x∗y; the identity is 0G or 0 and the inverse of an element x is −x. The additive notation
is most often used for abelian groups, i. e., groups (G, ∗) such that x ∗ y = y ∗ x for all
x, y ∈ G.

For non-abelian groups the multiplicative notation is generally employed, with
xy being written for x ∗ y; the identity element is 1G or 1 and the inverse of x is x−1.
The multiplicative notation will be used here unless the additive notation is clearly
preferable, as with a group such as ℤ.

Isomorphism
It is important to decide when two groups are to be regarded as essentially the same.
It is possible that two groups have very different sets of elements, but their elements
behave in a similar manner with respect to their respective group operations. This
leads us to introduce the concept of isomorphism. Let G and H be (multiplicatively
written) groups. An isomorphism from G to H is a bijective function α : G → H such
that

α(xy) = α(x)α(y)

for all x, y ∈ G. GroupsG andH are said to be isomorphic if there exists an isomorphism
from G to H, in symbols

G ≃ H .

3 Felix Klein (1849–1925).

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



50 | 3 Introduction to Groups

(3.3.1).
(i) If α : G → H is an isomorphism of groups, then so is its inverse α−1 : H → G.
(ii) Isomorphism is an equivalence relation on the class of groups.

Proof. To establish (i) all we need to do is prove that α−1(xy) = α−1(x)α−1(y). Now
α(α−1(xy)) = xy, while

α(α−1(x)α−1(y)) = α(α−1(x))α(α−1(y)) = xy.

Hence α−1(xy) = α−1(x)α−1(y) by injectivity of α.
To prove (ii) note that reflexivity is obvious, while transitivity follows from the

observation that a composite of isomorphisms is an isomorphism: of course (i) implies
the symmetric property.

The idea behind isomorphism is that, while the elements in two isomorphic
groups may be different, they have the same properties in relation to their respective
group operations. Note that isomorphic groups have the same order, where by the
order of a group G we mean the cardinality of its set of elements |G|.

The next result records some very useful techniques for working with group ele-
ments.

(3.3.2). Let x, a, b be elements of a group.
(i) If xa = b, then x = ba−1, and if ax = b, then x = a−1b.
(ii) (ab)−1 = b−1a−1.

Proof. From xa = b we obtain (xa)a−1 = ba−1 and thus x(aa−1) = ba−1. Since aa−1 = 1
and x1 = x, we get x = ba−1. The second statement in (i) is dealtwith similarly. By (3.2.1)
to establish (ii) it is enough to show that b−1a−1 is an inverse of ab. This can be checked
directly: (ab)(b−1a−1) = a(bb−1)a−1 = a1a−1 = aa−1 = 1; similarly (b−1a−1)(ab) = 1.
Consequently (ab)−1 = b−1a−1.

The group table
Suppose that (G, ∗) is a group of finite order n whose elements are ordered in some
fixed manner, let us say g1, g2, . . . , gn. The rule for combining elements in the group
can be displayed in its group table. This is the n × n rectangular array M whose (i, j)
entry is gi ∗ gj. Thus the ith row ofM is gi ∗ g1, gi ∗ g2, . . . , gi ∗ gn. From the group table
any pair of group elements can be combined. If the group is written multiplicatively,
the termmultiplication table is used.

Notice that all the elements in a row are different: for gi ∗ gj = gi ∗ gk implies that
gj = gk by (3.3.2). The same is true of the columns ofM. What this means is that each
groupelement appears exactly once in each rowandexactly once in each columnofM,
that is, the group table is a latin square. Such configurations are studied in Section 17.3
below.
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As an example, consider the group of order 4 whose elements are the identity per-
mutation 1 = (1)(2)(3)(4) and the permutations a = (12)(34), b = (13)(24), c = (14)(23).
This is the Klein 4-group, which was mentioned in Exercise(3.2.7). The multiplication
table of this group is the 4 × 4 array

1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Powers of group elements
Let x be an element of a (multiplicative) groupG and let n be an integer. The nth power
xn of x is defined recursively as follows:

x0 = 1, xn+1 = xnx, x−n = (xn)−1

where n ≥ 0. (See also Exercise (3.2.5). Of course, ifGwerewritten additively,wewould
write nx instead of xn. Fundamental for the manipulation of powers is:

(3.3.3) (The Laws of Exponents). Let x be an element of a group G and let m, n be inte-
gers. Then
(i) xmxn = xm+n = xnxm;
(ii) (xm)n = xmn.

Proof. (i) First we assume that n ≥ 0 and prove that xmxn = xm+n for allm by induction
on n. This is clear if n = 0. Assuming it true for n, we have

xmxn+1 = xmxnx = xm+nx = xm+n+1,

thus completing the induction. Now let n < 0. Then by the case just dealt with,
xm+nx−n = xm and hence xm+n = xmxn.

(ii) When n ≥ 0, use induction on n: clearly it is true when n = 0. Assuming the
statement true for n, we have (xm)n+1 = (xm)nxm = xmnxm = xm(n+1) by (i). Next
(xm)−n = ((xm)n)−1 = (xmn)−1 = x−mn, which covers the casewhere the second exponent
is negative.

Subgroups
Roughly speaking, a subgroup is a group contained within a larger group that has
consistent group operations. To make this concept precise, consider a group (G, ∗)
and a subset S of G. If the group operation ∗ is restricted to S, we obtain a function ∗′
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from S × S to G. If ∗′ is a binary operation on S, i. e., if x ∗ y ∈ S whenever x, y ∈ S, and
if (S, ∗′) is actually a group, then S is called a subgroup of G.

The first point to settle is that 1S, the identity element of (S, ∗′), equals 1G. Indeed
1S = 1S ∗′ 1S = 1S ∗ 1S, so 1S ∗ 1S = 1S ∗ 1G. By (3.3.2) it follows that 1S = 1G. Next let
x ∈ S and denote the inverse of x in (S, ∗) by x−1S . We want to be sure that x−1S = x

−1.
Now 1G = 1S = x ∗′ x−1S = x ∗ x

−1
S . Hence x ∗ x−1 = x ∗ x−1S and so x−1S = x

−1. Thus inverses
are the same in (S, ∗′) and in (G, ∗).

On the basis of these observations we are able to formulate a convenient test for a
subset of a group to be a subgroup.

(3.3.4). Let S be a subset of a group G. Then S is a subgroup of G if and only if the
following hold:
(i) 1G ∈ S;
(ii) xy ∈ S whenever x ∈ S and y ∈ S, (closure under products);
(iii) x−1 ∈ S whenever x ∈ S, (closure under inverses).

To indicate that S is a subgroup of a group G we write

S ≤ G.

If in addition S ̸= G, then S is a proper subgroup and we write S < G.

Examples of subgroups
(i) ℤ < ℚ < ℝ < ℂ. These statements follow at once via (3.3.4). For the same reason
ℚ∗ < ℝ∗ < ℂ∗.

(ii) An < Sn. Recall that An is the set of even permutations in Sn. Here the point to
note is that if π and σ are even permutations, then so are πσ and π−1 by (3.1.6): of
course the identity permutation is even. However, the odd permutations in Sn do
not form a subgroup.

(iii) Two subgroups that are present in every group G are the trivial or identity sub-
group {1G}, which is written 1 or 1G, and the improper subgroup G itself. For some
groups these are the only subgroups.

(iv) Cyclic subgroups. The interesting subgroups of a group are the proper non-trivial
ones. An easy way to produce subgroups is to take all the powers of a fixed ele-
ment. Let G be a group and choose x ∈ G. We denote the set of all powers of the
element x by

⟨x⟩.

Using (3.3.4) and the Laws of Exponents (3.3.3), we quickly verify that ⟨x⟩ is a sub-
group. It is called the cyclic subgroup generated by x. Since every subgroup of G
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which contains xmust also contain all powers of x, it follows that ⟨x⟩ is the small-
est subgroup of G containing x.

A group G is said to be cyclic if G = ⟨x⟩ for some x in G. For example, ℤ and ℤn are
cyclic groups since, allowing for the additive notation, ℤ = ⟨1⟩ and ℤn = ⟨[1]n⟩.

Next we consider intersections of subgroups.

(3.3.5). If {Sλ | λ ∈ Λ} is a non-empty set of subgroups of a group G, then⋂λ∈Λ Sλ is also
a subgroup of G.

This follows immediately from (3.3.4). Now suppose that X is a non-empty subset
of a group G. There is at least one subgroup that contains X, namely G itself. Thus we
may form the intersection of all the subgroups of G that contain X. This is a subgroup
by (3.3.5), which is denoted by

⟨X⟩.

Obviously ⟨X⟩ is the smallest subgroup of G containing X: it is called the subgroup
generated by X. Note that the cyclic subgroup ⟨x⟩ is just the subgroup generated by
the singleton set {x}. More generally a groupG is said to be finitely generated ifG = ⟨X⟩
for some finite set X.

It is natural to enquire about the form of elements of ⟨X⟩.

(3.3.6). Let X be a non-empty subset of a group G. Then ⟨X⟩ consists of all elements of G
of the form

xe11 x
e2
2 ⋅ ⋅ ⋅ x

ek
k

where xi ∈ X, ei = ±1 and k ≥ 0, (the case k = 0 being interpreted as 1G).

Proof. Let S denote the set of all elements of the specified form. It is easy to check
that S contains 1 and is closed under products and inversion, by using (3.3.2). Thus
S is a subgroup. Clearly X ⊆ S, so that ⟨X⟩ ⊆ S since ⟨X⟩ is the smallest subgroup
containing X. On the other hand, any element of the form xe11 ⋅ ⋅ ⋅ x

ek
k must belong to ⟨X⟩

since xi ∈ ⟨X⟩. Therefore S ⊆ ⟨X⟩ and ⟨X⟩ = S.

Notice that ifX is the 1-element set {x}, we recover the fact that the cyclic subgroup
⟨x⟩ consists of all powers of x.

The lattice of subgroups
Let G be a group; then set inclusion is a partial order on the set of all subgroups of G

S(G),
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which is therefore a partially ordered set. If H and K are subgroups of G, they have a
greatest lower bound in S(G), namely H ∩ K, and also a least upper bound ⟨H ∪ K⟩,
which is usually written ⟨H ,K⟩. This last is true because any subgroup containing H
and K must also contain ⟨H ,K⟩. (Notice thatH ∪K is not a subgroup). This means that
S(G) is a lattice in the sense of Section 1.2. When G is finite, S(G) can be visualized by
means of its Hasse diagram; the basic component in the diagram of subgroups of a
group is the subdiagram below

∘ ⟨H ,K⟩

H ∘ ∘ K

∘ H ∩ K

The order of a group element
Let x be an element of a group. If the subgroup ⟨x⟩ has a finite numberm of elements,
x is said to have finite order m. If on the other hand ⟨x⟩ is infinite, then x is called an
element of infinite order. We shall write

|x|

for the order of x. Some basic facts about orders of group elements are contained in
the next result.

(3.3.7). Let x be an element of a group G.
(i) If all powers of x are distinct, then x has infinite order.
(ii) Assume that two powers of x are equal. Then x has finite order m and xℓ = 1 if and

only if ℓ is divisible by m. Thus m is the smallest positive integer such that xm = 1.
Furthermore ⟨x⟩ = {1, x, . . . , xm−1}.

Proof. (i) This is clearly true.
(ii) Suppose that two powers of x are equal, say xi = xj where i > j. Then xi−j = 1
by (3.3.3). Using Well-Ordering we may choose a smallest positive integerm for which
xm = 1. Now let ℓ be any integer and write ℓ = mq + r where q, r ∈ ℤ and 0 ≤ r < m,
using the Division Algorithm. By (3.3.3) again xℓ = (xm)qxr = xr . By minimality of m
we deduce that xℓ = 1 if and only if r = 0, i. e., ℓ is divisible by m. It follows that
⟨x⟩ = {1, x, x2, . . . , xm−1}, so that x has finite orderm.
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We will now study cyclic groups with the aim of identifying them up to isomor-
phism.

(3.3.8). A cyclic group of order n is isomorphic with ℤn. An infinite cyclic group is iso-
morphic with ℤ.

Proof. LetG = ⟨x⟩ be a cyclic group. If |G| = n, thenG = {1, x, . . . , xn−1}. Define α : ℤn →
G by α([i]) = xi, which is a well-defined function because xi+nq = xi(xn)q = xi. Also

α([i] + [j]) = α([i + j]) = xi+j = xixj = α([i])α([j]),

while α is clearly bijective. Therefore, allowing for ℤn being written additively and G
multiplicatively, we conclude that α is an isomorphism andℤn ≃ G. When G is infinite
cyclic, the proof is similar, but easier, and is left to the reader.

There is a simple way to compute the order of an element of the symmetric group
Sn by using least common multiples – see Exercise (2.2.8).

(3.3.9). Let π ∈ Sn and write π = π1π2 ⋅ ⋅ ⋅πk where the πi are disjoint cycles, with πi of
length ℓi. Then the order of π equals the least common multiple of ℓ1, ℓ2, . . . , ℓk .

Proof. By (3.1.3) there is a such an expression for π. Also disjoint permutations com-
mute by (3.1.2). Hence πm = πm1 π

m
2 ⋅ ⋅ ⋅π

m
k for anym > 0. Now the πmi affect disjoint sets

of integers, so πm = 1, (i. e., πm = id), if and only if πm1 = π
m
2 = ⋅ ⋅ ⋅ = π

m
k = 1. By (3.3.7)

these conditions are equivalent tom being divisible by the orders of all the πi. Finally,
it is easy to see by forming successive powers that the order of an r-cycle is r. Therefore
|π| = lcm{ℓ1, ℓ2, . . . , ℓk}.

Example (3.3.1). What is the largest possible order of an element of S8?

Let π ∈ S8 andwrite π = π1 ⋅ ⋅ ⋅πk where the πi are disjoint cycles. If πi has length ℓi,
then ∑ki=1 ℓi = 8 and |π| = lcm{ℓ1, . . . , ℓk}. So the question is: which positive integers
ℓ1, . . . , ℓk with sum equal to 8 have the largest least common multiple? A little experi-
mentation will convince the reader that the answer is k = 2, ℓ1 = 3, ℓ2 = 5. Hence 15 is
the largest order of an element of S8. For example, the permutation (123)(45678) has
order 15.

We concludewith twomore examples, including an application to number theory.

Example (3.3.2). Let G be a finite abelian group. Prove that the product of all the el-
ements of G equals the product of all the elements of G of order 2. If there are no ele-
ments of order 2, the product is to be interpreted as 1.

The key point to notice here is that if x ∈ G, then |x| = 2 if and only if x = x−1 ̸= 1.
Since G is abelian, in the product ∏g∈G g we can group together elements of order
greater than 2 with their inverses and then cancel each pair xx−1. What is left is the
product of the elements of order 2.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



56 | 3 Introduction to Groups

Example (3.3.3) (Wilson’s4 Theorem). If p is a prime, then (p − 1)! ≡ −1 (mod p).

Apply Example (3.3.2) to ℤ∗p , the multiplicative group of non-zero congruence
classes mod p. Now the only element of order 2 in ℤ∗p is [−1]: for a

2 ≡ 1 (mod p) im-
plies that a ≡ ±1 (mod p), i. e., [a] = [1] or [−1]. It follows that [1][2] ⋅ ⋅ ⋅ [p − 1] = [−1]
and hence (p − 1)! ≡ −1 (mod p).

Exercises (3.3).
(1) In each of the following situations say whether or not the subset S is a subgroup

of the group G:
(i) G = GLn(ℝ), S = {A ∈ G | det(A) = 1}.
(ii) G = (ℝ,+), S = {x ∈ R | |x| ≤ 1}.
(iii) G = ℝ × ℝ, S = {(x, y) | 3x − 2y = 1}: here the group operation of G is addition

of pairs componentwise.
(2) LetH and K be subgroups of a group G. Prove thatH ∪K is a subgroup if and only

if H ⊆ K or K ⊆ H.
(3) Show that no group can be the union of two proper subgroups. Then exhibit a

group which is the union of three proper subgroups.
(4) Find the largest possible order of an element of S11. Howmany elements of S11 have

this order?
(5) The same question for S12.
(6) Find the orders of the elements [3] and [7] of ℤ∗11.
(7) Prove that a group of even ordermust contain an element of order 2. [Hint: assume

this is false and group the non-identity elements in pairs x, x−1.]
(8) Assume that for each pair of elements a, b of a group G there is an integer n such

that (ab)i = aibi holds for i = n, n + 1 and n + 2. Prove that G is abelian.
(9) Let S denote the set product ℤ × ℤ. Define a relation E on S by (a, b) E (a′, b′) ⇔

a − b = a′ − b′.
(i) Prove that E is an equivalence relation on S and that each E-equivalence class

contains a pair (a, b) with a, b > 0.
(ii) Define (a, b) + (a′, b′) to be (a + a′, b + b′) and show that this is a well defined

binary operation on the set P of all E-equivalence classes.
(iii) Prove that if + denotes the binary operation in (ii), then (P,+) is an abelian

group.
(iv) By finding a mapping from P to ℤ, prove that P ≃ ℤ.

(10) Let 𝒮 be a non-empty set of subgroups of a group. Then 𝒮 is said to satisfy the
ascending chain condition (acc) if there does not exist an infinite ascending chain
of subgroups G1 < G2 < ⋅ ⋅ ⋅where Gi ∈ 𝒮. Also 𝒮 is said to satisfy themaximal con-
dition (max) if each non-empty subset 𝒯 of 𝒮 has at least one maximal element,

4 John Wilson (1741–1793).
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i. e., a subgroup in 𝒯 which is not properly contained in any other subgroup in 𝒯 .
Prove that the acc and max are the same property.

(11) A group G is said to satisfy themaximal condition on subgroups (max) if the set of
all its subgroups S(G) satisfies max, or equivalently the acc. Prove that G satisfies
max if and only if every subgroup of G is finitely generated. [Hint: use the acc
form.]

(12) Prove that ℤ satisfies max, butℚ does not.
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4 Quotient groups and Homomorphisms
In this chapter we probe more deeply into the nature of the subgroups of a group and
we introduce functions between groups that relate their group operations.

4.1 Cosets and Lagrange’s Theorem

Consider a group G with a fixed subgroup H. A binary relation ∼H on G is defined by
the following rule: x ∼H y means that x = yh for some h ∈ H. It is an easy verification
that ∼H is an equivalence relation on G. Therefore by (1.2.2) the group G splits up into
disjoint equivalence classes. The equivalence class to which an element x belongs is
the subset

{xh | h ∈ H},

which is called a left coset of H in G and is written

xH .

Thus G is the disjoint union of the distinct left cosets of H. Notice that the only coset
which is a subgroup is 1H = H since no other coset contains the identity element.

Next observe that the assignment h → xh, (h ∈ H), determines a bijection from H
to xH; for xh1 = xh2 implies that h1 = h2. From this it follows that

|xH| = |H|,

so that each left coset of H has the cardinal of H.
Suppose that we label the left cosets ofH in somemanner, say as Cλ, λ ∈ Λ, and for

each λ in Λwe choose an arbitrary element tλ from Cλ. (If Λ is infinite, we are assuming
at this point the set theoretic axiom known as the axiom of choice – see Section 1.5.
Then Cλ = tλH and, since every group element belongs to some left coset ofH, we have
G = ⋃λ∈Λ tλH. Furthermore, cosets are equivalence classes and therefore are disjoint,
so each element x of G has a unique expression x = tλh, where h ∈ H, λ ∈ Λ. The set
{tλ | λ ∈ Λ} is called a left transversal to H in G. Thus we have found a unique way to
express elements of G in terms of the transversal and elements of the subgroup H.

In a similar fashion one can define right cosets ofH inG; these are the equivalence
classes of the equivalence relation H ∼, where x H ∼ y means that x = hy for some h
in H. The right coset containing x is

Hx = {hx | h ∈ H}

and right transversals are defined analogously.
The next result was the first significant theorem to be discovered in group theory.

https://doi.org/10.1515/9783110691160-004
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(4.1.1) (Lagrange’s1 Theorem). Let H be a subgroup of a finite group G. Then |H| divides
|G|.Moreover |G||H| equals the number of left cosets ofH andalso the number of right cosets
of H.

Proof. Let ℓ be the number of left cosets of H in G. Since the number of elements in
any left coset of H is |H| and distinct left cosets are disjoint, a count of the elements
of G yields |G| = ℓ ⋅ |H|; thus ℓ = |G|/|H|. For right cosets the argument is similar.

Corollary (4.1.2). The order of an element of a finite groupdivides the order of the group.

For the order of an element equals the order of the cyclic subgroup it generates.

The index of a subgroup
Even in an infinite group G the sets of left and right cosets of a subgroup H have the
same cardinal. Indeed the assignment xH → Hx−1 determines a bijection between
these sets. To see this note that Hx−1 depends only on the coset xH, not on the choice
of element x from it. For, ifwe choose xh,withh ∈ H,wewould getH(xh)−1 = Hh−1x−1 =
Hx−1.

This allows us to define the index of H in G to be simultaneously the cardinal of
the set of left cosets and the cardinal of the set of right cosets ofH; the index is written

|G : H|.

When G is finite, we have already seen that

|G : H| = |G|/|H|

by Lagrange’s Theorem.

Example (4.1.1). Let G be the symmetric group S3 and let H = ⟨(12)(3)⟩. Then |H| = 2
and |G : H| = |G|/|H| = 6/2 = 3, so we expect to find three left cosets and three right
ones. The left cosets are

H = {(1)(2)(3), (12)(3)}, (123)H = {(123), (13)(2)}, (132)H = {(132), (1)(23)}

and the right cosets are

H = {(1)(2)(3), (12)(3)}, H(123) = {(123), (1)(23)}, H(132) = {(132), (13)(2)}

Notice that the left cosets are disjoint, as are the right ones; but the left and right cosets
may intersect.

1 Joseph Louis Lagrange (1736–1813).
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The next result is useful in calculations with subgroups: it involves the concept of
the product of cardinal numbers, for which see Exercise (1.4.6).

(4.1.3). Let H and K be subgroups of a group G such that H ⊆ K. Then

|G : H| = |G : K| ⋅ |K : H|.

Proof. Let {tλ | λ ∈ Λ} be a left transversal to H in K, and let {sμ | μ ∈ M} be a left
transversal to K in G. Thus K = ⋃λ∈Λ tλH and G = ⋃μ∈M sμK. Hence

G = ⋃
λ∈Λ, μ∈M
(sμtλ)H .

We claim that the elements sμtλ belong to different left cosets of H. Indeed suppose
that sμtλH = sμ′ tλ′H; then, since tλH ⊆ K, we have sμK = sμ′K, which implies that
μ = μ′. Hence tλH = tλ′H, which shows that λ = λ′. It follows that |G : H|, which is the
cardinal of the set of left cosets of H in G, equals |M × Λ|. By definition of the product
of cardinals |M × Λ| = |M| ⋅ |Λ| = |G : K| ⋅ |K : H|.

Groups of prime order
Lagrange’s Theorem is sufficiently strong to enable us to describe all groups of prime
order. This is our first example of a classification theorem in group theory; it is also
a first indication of the importance of arithmetic properties of the group order for the
structure of a group.

(4.1.4). A group G has prime order p if and only if G ≃ ℤp.

Proof. Assume that |G| = p and let 1 ̸= x ∈ G. Then |⟨x⟩| divides |G| = p by (4.1.1).
Hence |⟨x⟩| = p = |G| and G = ⟨x⟩, a cyclic group of order p. Thus G ≃ ℤp by (3.3.8).
The converse is obvious.

Example (4.1.2). Find all groups of order less than 6.
Let G be a group such that |G| < 6. If |G| = 1, then G is a trivial group. If |G| = 2, 3

or 5, then (4.1.4) tells us that G ≃ ℤ2, ℤ3 or ℤ5 respectively. We are left with the case
where |G| = 4. If G contains an element x of order 4, then G = ⟨x⟩ and G ≃ ℤ4 by
(3.3.8). Assuming that G has no elements of order 4, we conclude from (4.1.2) that G
must consist of 1 and three elements of order 2, say a, b, c.

Now ab cannot equal 1, otherwise b = a−1 = a. Also it is clear that ab ̸= a and
ab ̸= b. Hence ab must equal c; also ba = c by the same argument. Similarly we can
prove that bc = a = cb and ca = b = ac.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 Cosets and Lagrange’s Theorem | 61

At this point the reader should recognize that G looks very like the Klein 4-group

V = {(1)(2)(3)(4), (12)(34), (13)(24), (14)(23)}.

In fact the assignments 1G → 1V , a → (12)(34), b → (13)(24), c → (14)(23) determine
an isomorphism fromG toV . Our conclusion is that up to isomorphism there are exactly
six groups with order less than 6, namely ℤ1, ℤ2, ℤ3, ℤ4, V , ℤ5.

The following application of Lagrange’s Theorem furnishes another proof of Fer-
mat’s Theorem – see (2.3.4).

Example (4.1.3). If p is a prime and n is any integer, then np ≡ n (mod p).
Apply (4.1.2) toℤ∗p , the multiplicative group of non-zero congruence classes mod-

ulo p. If [n] ̸= [0], then (4.1.2) implies that the order of [n] divides |ℤ∗p | = p − 1. Thus
[n]p−1 = [1], i. e., np−1 ≡ 1 (mod p). Multiply by n to get np ≡ n (mod p), and observe
that this also holds if [n] = [0].

According to Lagrange’s Theorem the order of a subgroup of a finite group divides
the group order. However, the natural converse of this statement is false: there need
not be a subgroup with order equal to a positive divisor of the group order. This is
demonstrated by the following example.

Example (4.1.4). The alternating group A4 has order 12, but it has no subgroups of
order 6.

Write G = A4. First note that each non-trivial element of G is either a 3-cycle or the
product of two disjoint transpositions. Also all of the latter with the identity form the
Klein 4-group V .

Suppose that H is a subgroup of G with order 6. Assume first that H ∩V = 1. Then
there are 6 × 4 = 24 distinct elements of the form hv, h ∈ H, v ∈ V ; for if h1v1 = h2v2
with hi ∈ H, vi ∈ V , then h−12 h1 = v2v−11 ∈ H ∩V = 1, so that h1 = h2 and v1 = v2. But this
is impossible, so H ∩ V ̸= 1.

Let us say H ∩ V contains π = (12)(34). Now H must also contain a 3-cycle since
there are 8 of these in G, say σ = (123) ∈ H. Hence H contains τ = σπσ−1 = (14)(23).
Thus H contains πτ = (13)(24) and it follows that V ⊆ H. Other choices of elements
leads to the same conclusion. However, |V | does not divide |H|, a final contradiction.

Subgroups of cyclic groups
Usually a group has many subgroups and it can be a difficult task to find all of them.
Thus it is of interest that the subgroups of a cyclic group are easy to describe. The first
observation is that such subgroups are themselves cyclic.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



62 | 4 Quotient groups and Homomorphisms

(4.1.5). A subgroup of a cyclic group is cyclic.

Proof. Let H be a subgroup of a cyclic group G = ⟨x⟩. If H = 1, then obviously H = ⟨1⟩;
thus we may assume that H ̸= 1, so that H contains some xm ̸= 1; since H must also
contain (xm)−1 = x−m, we may as well assume that m > 0. Now choose m to be the
smallest positive integer for which xm ∈ H; of course we have used the Well-Ordering
Law here.

Certainly it is true that ⟨xm⟩ ⊆ H. We will prove the reverse inclusion, which will
show that H = ⟨xm⟩. Let h ∈ H and write h = xi. By the Division Algorithm i = mq + r
where q, r ∈ ℤ and 0 ≤ r < m. By the Laws of Exponents (3.3.3) xi = xmqxr . Hence
xr = x−mqxi, which belongs to H since xm ∈ H and xi ∈ H. From the minimality ofm it
follows that r = 0 and i = mq. Therefore h = xi ∈ ⟨xm⟩.

The next result tells us how to construct the subgroups of a given cyclic group.

(4.1.6). Let G = ⟨x⟩ be a cyclic group.
(i) If G is infinite, each subgroup of G has the form Gi = ⟨xi⟩ where i ≥ 0. Furthermore,

the Gi are all distinct and Gi has infinite order if i > 0.
(ii) If G has finite order n, then it has exactly one subgroup of order d for each positive

divisor d of n, namely ⟨xn/d⟩.

Proof. Assume first thatG is infinite and letH be a subgroup ofG. By (4.1.5)H is cyclic,
say H = ⟨xi⟩ where i ≥ 0. Thus H = Gi. If xi had finite order m, then xim = 1, which,
since x has infinite order, can only mean that i = 0 and H = 1. Thus H is certainly
infinite cyclic if i > 0. Next Gi = Gj implies that xi ∈ ⟨xj⟩ and xj ∈ ⟨xi⟩, i. e., j | i and i | j,
so that i = j. Therefore all the Gi’s are different.

Next let G have finite order n and suppose that d is a positive divisor of n. Now
(x

n
d )d = xn = 1, so ℓ = |x

n
d |must divide d by (3.3.7). But also x

nℓ
d = 1 and hence n divides

nℓ
d , i. e., d divides ℓ. It follows that ℓ = d and thus K = ⟨x

n/d⟩ has order exactly d.
To complete the proof, suppose that H = ⟨xr⟩ is another subgroup with order d.

Then xrd = 1, so n divides rd and n
d divides r. This shows that H = ⟨x

r⟩ ≤ ⟨xn/d⟩ = K.
But |H| = |K| = d, from which it follows that H = K. Consequently there is exactly one
subgroup of order d.

Recall from Section 3.3 that the set of all subgroups of a group is a lattice andmay
be represented by a Hasse diagram. In the case of a finite cyclic group, (4.1.6) shows
that the lattice corresponds to the lattice of positive divisors of the group order.

Example (4.1.5). Display the Hasse diagram for the subgroups of a cyclic group of or-
der 12.

Let G = ⟨x⟩ have order 12. By (4.1.6) the subgroups of G correspond to the positive
divisors of 12, i. e., 1, 2, 3, 4, 6, 12; indeed, if i | 12, the subgroup ⟨x12/i⟩ has order i. It is
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now easy to draw the Hasse diagram:

∘ G = ⟨x⟩

∘ ⟨x3⟩ ∘ ⟨x2⟩

∘ ⟨x6⟩ ∘ ⟨x4⟩

∘ 1

Next comes a useful formula for order of an element in a cyclic group.

(4.1.7). Let G = ⟨x⟩ be a cyclic group with finite order n. Then the order of the element xi

is

n
gcd{i, n}

.

Proof. In the first place (xi)m = 1 if and only if n | im, i. e., nd | (
i
d )mwhere d = gcd{i, n}.

Since n
d and i

d are relatively prime, by Euclid’s Lemma this is equivalent to n
d divid-

ingm. Therefore (xi)m = 1 if and only if n
d dividesm, which shows that x

i has order n
d ,

as claimed.

Corollary (4.1.8). Let G = ⟨x⟩ be a cyclic group of finite order n. Then G = ⟨xi⟩ if and
only if gcd{i, n} = 1.

For G = ⟨x⟩ if and only if xi has order n, i. e., gcd{i, n} = 1. This means that the
number of possible generators of G equals the number of integers i satisfying 1 ≤ i < n
and gcd{i, n} = 1. This number is ϕ(n) where ϕ is the Eulerian function introduced in
Section 2.3.

Every non-trivial group has at least two subgroups, itself and the trivial subgroup:
which groups have these two subgroups andnomore? The question is easily answered
using (4.1.7) and Lagrange’s Theorem.

(4.1.9). A group G has just two subgroups if and only if G ≃ ℤp for some prime p.

Proof. Assume thatG has only the two subgroups 1 andG. Let 1 ̸= x ∈ G; then 1 ̸= ⟨x⟩ ≤
G, soG = ⟨x⟩ andG is cyclic. NowG cannot be infinite; for then it would have infinitely
many subgroups by (4.1.6). Thus G has finite order n, say. Now if n is not a prime, it
has a divisor d such that 1 < d < n; but then (4.1.6) shows that ⟨xn/d⟩ is a subgroup
of order d, which is impossible. Therefore G has prime order p and G ≃ ℤp by (4.1.4).
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Conversely, if G ≃ ℤp, then |G| = p and by Lagrange’s Theorem G has no non-trivial
proper subgroups.

Products of subgroups
If H and K are subsets of a group G, the product of H and K is defined to be the subset

HK = {hk | h ∈ H , k ∈ K}.

For example, ifH = {h} and K is a subgroup, thenHK is just the left coset hK. Products
of more than two subsets are defined in the obvious way:

H1H2 ⋅ ⋅ ⋅Hm = {h1h2 ⋅ ⋅ ⋅ hm | hi ∈ Hi}.

Even if H and K are subgroups, their product HK need not be a subgroup. For
example, in S3 let H = ⟨(12)⟩ and K = ⟨(13)⟩. Then HK = {(1)(2)(3)(4), (12), (13), (132)}.
But HK cannot be a subgroup since 4 does not divide 6, the order of S3.

The following result tells us when the product of two subgroups is a subgroup.

(4.1.10). Let H and K be subgroups of a group G. Then HK is a subgroup if and only if
HK = KH, and in this event ⟨H ,K⟩ = HK.

Proof. Assumefirst thatHK is a subgroupofG. ThenH ≤ HK andK ≤ HK, soKH ⊆ HK.
By taking the inverse of each side of this inclusion, we deduce that HK ⊆ KH. Hence
HK = KH. Moreover ⟨H ,K⟩ ⊆ HK since H ≤ HK and K ≤ HK, while HK ⊆ ⟨H ,K⟩ is
always true. Therefore ⟨H ,K⟩ = HK.

Conversely, assume that HK = KH; we will verify that HK is a subgroup by us-
ing (3.3.4). Let h1, h2 ∈ H and k1, k2 ∈ K. Then (h1k1)−1 = k−11 h−11 ∈ KH = HK. Also
(h1k1)(h2k2) = h1(k1h2)k2; now k1h2 ∈ KH = HK, so that k1h2 = h3k3 where h3 ∈ H,
k3 ∈ K. Thus (h1k1)(h2k2) = (h1h3)(k3k2) ∈ HK. Obviously 1 ∈ HK. Since we have proved
that the subset HK is closed under products and inversion, it is a subgroup.

It is customary to say that the subgroups H and K permute if HK = KH. The next
result is frequently used in calculations with subgroups.

(4.1.11) (Dedekind’s2 Modular Law). Let H, K, L be subgroups of a group and assume
that K ⊆ L. Then

(HK) ∩ L = (H ∩ L)K.

Proof. In the first place (H ∩ L)K ⊆ L since K ⊆ L; therefore (H ∩ L)K ⊆ (HK) ∩ L. To
prove the converse, let x ∈ (HK) ∩ L and write x = hk where h ∈ H, k ∈ K. Hence

2 Richard Dedekind (1831–1916).
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h = xk−1 ∈ LK = L, from which it follows that h ∈ H ∩ L and x = hk ∈ (H ∩ L)K. Thus
(HK) ∩ L ⊆ (H ∩ L)K and the result follows.

Notice that (4.1.11) is a special case of the distributive law ⟨H ,K⟩∩L = ⟨H∩L,K∩L⟩.
However, this law does not hold in general, (see Exercise (4.1.1) below).

Frequently one wants to count the elements in a product of finite subgroups,
which makes the next result useful.

(4.1.12). If H and K are finite subgroups of a group, then

|HK| = |H| ⋅ |K|
|H ∩ K|

.

Proof. Define a function α : H ×K → HK by the rule α((h, k)) = hk where h ∈ H, k ∈ K;
evidently α is surjective. Now α((h1, k1)) = α((h2, k2)) holds if and only if h1k1 = h2k2,
i. e., h−12 h1 = k2k−11 = d ∈ H ∩ K. Thus h2 = h1d

−1 and k2 = dk1. It follows that the
elements of H × K which have the same image under α as (h1, k1) are those of the form
(h1d−1, dk1) where d ∈ H ∩ K. Now compute the number of the elements of H × K by
counting their images under α and allowing for the number of elements with the same
image. This gives |H × K| = |HK| ⋅ |H ∩ K|. Of course |H × K| = |H| ⋅ |K|, so the result is
proved.

The final result of this section provides important information about the index of
the intersection of two subgroups.

(4.1.13) (Poincaré3). Let H and K be subgroups of finite index in a group G. Then H ∩ K
has finite index and

|G : H ∩ K| ≤ |G : H| ⋅ |G : K|,

with equality if |G : H| and |G : K| are relatively prime.

Proof. To each left coset x(H ∩ K) assign the pair of left cosets (xH , xK). This is a well-
defined function; for, if we were to replace x by xdwith d ∈ H ∩K, then xH = xdH and
xK = xdK. The function is also injective; for (xH , xK) = (yH , yK) implies that xH = yH
and xK = yK, i. e., y−1x ∈ H ∩K, so that x(H ∩K) = y(H ∩K). It follows that the number
of left cosets of H ∩ K in G is at most |G : H| ⋅ |G : K|.

Now assume that |G : H| and |G : K| are relatively prime. Since

|G : H ∩ K| = |G : H| ⋅ |H : H ∩ K|

by (4.1.3), we see that |G : H| divides |G : H ∩ K|, as does |G : K| for a similar reason.
But |G : H| and |G : K| are relatively prime, which means that |G : H ∩K| is divisible by
|G : H| ⋅ |G : K|. It follows that |G : H ∩ K|must equal |G : H| ⋅ |G : K|.

3 Henri Poincaré (1854–1912).
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Exercises (4.1).
(1) Show that the distributive law for subgroups ⟨H ,K⟩ ∩ L = ⟨H ∩ L,K ∩ L⟩ is false in

general.
(2) If H is a subgroup of a finite group, show that there are |H||G:H| left transversals

to H in G and the same number of right transversals.
(3) Let H be a subgroup of a group G such that G −H is finite. Prove that either H = G

or G is finite.
(4) Display the Hasse diagram for the subgroup lattices of the following groups:ℤ18,
ℤ24, V (the Klein 4-group), S3.

(5) Let G be a group with exactly three subgroups. Show that G ≃ ℤp2 where p is a
prime. [Hint: first prove that G is cyclic.]

(6) Let H and K be subgroups of a finite group G with relatively prime indexes in G.
Prove that G = HK. [Hint: use (4.1.12) and (4.1.13).]

(7) If the product of subsets is used as the binary operation, show that the set of all
non-empty subsets of a group is a monoid.

(8) LetH and K be subgroups of a finite groupwith relatively prime orders. Show that
H ∩ K = 1 and |HK| divides the order of ⟨H ,K⟩.

(9) Let G = ⟨x⟩ be an infinite cyclic group and put H = ⟨xi⟩, K = ⟨xj⟩. Prove that
H ∩ K = ⟨xℓ⟩ and ⟨H ,K⟩ = ⟨xd⟩ where ℓ = lcm{i, j} and d = gcd{i, j}.

(10) Let G be a finite group of order n and let d be the minimum number of generators
of G. Prove that n ≥ 2d, so that d ≤ [log2 n].

(11) By applying Lagrange’s Theorem to the group ℤ∗n , prove that x
ϕ(n) ≡ 1 (mod n)

where n is any positive integer and x is an integer relatively prime to n. Here ϕ is
Euler’s function (cf. (2.3.4)).

(12) LetH be a subgroupwith finite index in a finitely generated groupG. Use the argu-
ment that follows to prove thatH is also finitely generated. LetG = ⟨g1, . . . , gn⟩ and
let {t1, . . . , tm} be a left transversal to H in G with t1 = 1. Without loss assume that
each g−1i is also a generator. Write gi = tℓihi with hi ∈ H. Also write gitj = tr(i,j)hij
with hij ∈ H.
(i) Prove that gigj = gr(i,ℓj)hiℓjhj.
(ii) Let h = gi1gi2 ⋅ ⋅ ⋅ gik ∈ H. By applying (i) repeatedly to segments of h, prove that

h ∈ ⟨hi, hjℓ | i = 1, . . . , n, j, ℓ = 1, . . .m, ⟩. Conclude that H is finitely generated.
(13) (Double cosets). Let H and K be subgroups of a group G. Define a relation ∼(H ,K)

on G as follows: x ∼(H ,K) y if and only if x = hyk where h ∈ H, k ∈ K. Prove the
following.
(i) ∼(H ,K) is an equivalence relation on G and the equivalence class of x ∈ G is the
(H ,K)-double coset HxK = {hxk|h ∈ H , k ∈ K}.

(ii) If H and K are finite, then |HxK| = |H|⋅|K||H∩xKx−1| = |H|⋅|K||K∩x−1Hx| . [Hint: count the num-
ber of right cosets of H contained in HxK.]

(iii) If G is finite, the number of (H ,K)-double cosets in G equals |G|⋅|H∩xKx
−1|

|H|⋅|K| =
|G|⋅|K∩x−1Hx|
|H|⋅|K| .
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4.2 Normal subgroups and quotient groups

We focus next on a special type of subgroup called a normal subgroup. Such subgroups
are important since they can be used to construct new groups, the so-called quotient
groups. Normal subgroups are characterized in the following result.

(4.2.1). Let H be a subgroup of a group G. Then the following statements about H are
equivalent:
(i) xH = Hx for all x in G;
(ii) xhx−1 ∈ H whenever h ∈ H and x ∈ G.

Proof. First assume that (i) holds and let x ∈ G and h ∈ H. Then xh ∈ xH = Hx, so
xh = h1x for some h1 ∈ H; hence xhx−1 = h1 ∈ H, which establishes (ii).

Conversely, assume that (ii) holds. Again let x ∈ G and h ∈ H. Then xhx−1 = h1 ∈ H,
so xh = h1x ∈ Hx and therefore xH ⊆ Hx. Next x−1hx = x−1h(x−1)−1 = h2 ∈ H, which
shows that hx = xh2 ∈ xH and Hx ⊆ xH. Thus xH = Hx and (i) is valid.

A subgroupH with the equivalent properties in (4.2.1) is called a normal subgroup
of G. The notation

H ⊲ G

is used to denote the fact thatH is a normal subgroup of a groupG. Also xhx−1 is called
the conjugate of h by x. Thus H ⊲ G is valid if and only if H contains all conjugates of
its elements by elements of G.

Example (4.2.1).
(i) Obvious examples of normality are: 1⊲G and G⊲G, and it is possible that these are
the only normal subgroups present. If 1 andG are the only normal subgroups of a non-
trivial group G, then G is said to be a simple group. This is one of the great misnomers
of mathematics since simple groups can have extremely complicated structure.

(ii) An ⊲ Sn.
For, if π ∈ An and σ ∈ Sn, then by (3.1.6) we have

sign(σπσ−1) = sign(σ)sign(π)(sign(σ))−1 = (sign(σ))2 = 1,

so that σπσ−1 ∈ An.

(iii) In an abelian group G every subgroup H is normal.
This is because xhx−1 = hxx−1 = h for all h ∈ H, x ∈ G.

(iv) Recall that GLn(ℝ) is the group of all non-singular n × n real matrices. The subset
of matrices in GLn(ℝ) with determinant equal to 1 is denoted by

SLn(ℝ).
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First observe that this is a subgroup, the so-called special linear group of degree n
over ℝ; indeed, if A,B ∈ SLn(ℝ), then det(AB) = det(A)det(B) = 1 and det(A−1) =
(det(A))−1 = 1. In addition

SLn(ℝ) ⊲ GLn(ℝ):

for if A ∈ SLn(ℝ) and B ∈ GLn(ℝ),

det(BAB−1) = det(B)det(A)(det(B))−1 = det(B)1 det(B)−1 = 1.

In these computations two standard results on determinants have been used:
det(XY) = det(X)det(Y) and det(X−1) = (det(X))−1.
(v) A subgroup of S3 that is not normal is ⟨(12)(3)⟩.
(vi) The normal closure. Let X be a non-empty subset of a group G. The normal closure

⟨XG⟩

of X in G is the subgroup generated by all the conjugates gxg−1 with g ∈ G and x ∈ X.
Clearly this is the smallest normal subgroup of G which contains X.
(vii) Finally, we introduce two important normal subgroups that can be formed in any
group G. The center of G,

Z(G),

consists of all x in G such that xg = gx for every g in G. The reader should check that
Z(G) ⊲ G. Plainly a group G is abelian if and only if G = Z(G).
Next, if x, y are elements of a group G, their commutator is the element

[x, y] = xyx−1y−1.

The significance of commutators arises from the fact that [x, y] = 1 if and only if xy =
yx, i. e., x and y commute. The derived subgroup or commutator subgroup of G is the
subgroup G′ generated by all the commutators,

G′ = ⟨[x, y] | x, y ∈ G⟩.

An easy calculation reveals that z[x, y]z−1 = [zxz−1, zyz−1], which implies that G′ ⊲ G.
Clearly a group G is abelian if and only if G′ = 1.

Quotient groups
Next wewill explain how to form a new group from a normal subgroupN of a groupG.
This is called the quotient group of N in G,

G/N .
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The elements of G/N are the cosets xN = Nx, while the group operation is given by the
natural rule

(xN)(yN) = (xy)N , (x, y ∈ G).

Our first concern is to check that this binary operation onG/N is properly defined;
it should depend on the two cosets xN and yN, not on the choice of coset representa-
tives x and y. To prove this, let x1 ∈ xN and y1 ∈ yN, so that x1 = xa and y1 = yb where
a, b ∈ N . Then

x1y1 = xayb = xy(y
−1ay)b ∈ (xy)N

since y−1ay = y−1a(y−1)−1 ∈ N by normality of N . Thus (xy)N = (x1y1)N .
It is straightforward to verify that the binary operation just defined is associative.

The role of the identity in G/N is played by 1N = N, while x−1N is the inverse of xN,
as is readily checked. It follows that G/N is a group. Note that the elements of G/N are
subsets, not elements, of G, so that G/N is not a subgroup of G. If G is finite, so is G/N
with order

|G/N | = |G : N | = |G|
|N |
.

Example (4.2.2).
(i) G/1 is the set of all x1 = {x}, i. e., one-element subsets of G. Also {x}{y} = {xy}.
In fact this quotient is not really a new group since G ≃ G/1 via the isomorphism in
which x → {x}. Another trivial example of a quotient group is G/G, which is a group
of order 1, with the single element G.
(ii) Let n be a positive integer. Thenℤ/nℤ = ℤn. For, allowing for the additive notation,
the coset of the subgroup nℤ containing x is x + nℤ = {x + nq | q ∈ ℤ}, which is just
the congruence class of x modulo n.
(iii) IfG is any group, the quotient groupG/G′ is an abelian group: indeed (xG′)(yG′) =
xyG′ = (yx)(x−1y−1xy)G′ = yxG′ = (yG′)(xG′). Also, ifG/N is any other abelian quotient
group, then

(xy)N = (xN)(yN) = (yN)(xN) = (yx)N ,

which implies that [x−1, y−1] = x−1y−1xy ∈ N for all x, y ∈ N . Since every commutator
has the form [x−1, y−1], it follows that G′ ≤ N . Therefore G/G′ is the “largest” abelian
quotient group of G.
(iv) The circle group. Let r be a real number and suppose that the plane is rotated
through angle 2rπ in an anti-clockwise direction about an axis through the origin and
perpendicular to the plane. This results in a symmetry of the unit circle, whichwewill
call r′.
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NowdefineG = {r′ | r ∈ ℝ}, a subset of the symmetry group of the unit circle. Note
that r′1 ∘ r

′
2 = (r1 + r2)

′ and (r′)−1 = (−r)′. This shows that G is actually a subgroup of the
symmetry group; indeed it is the subgroup of all rotations. Our aim is to identify G as
a quotient group.

It is claimed that the assignment r + ℤ → r′ determines a function α : ℝ/ℤ → G:
first we need to make sure that the function is well-defined. To this end let n be an
integer and observe that (r + n)′ = r′ ∘ n′ = r′ since n′ is a rotation through angle
2nπ, i. e., it is the identity rotation. Clearly α is surjective; it is also injective because
r′1 = r

′
2 implies that 2r1π = 2r2π + 2nπ for some integer n, i. e., r1 = r2 + n, and hence

r1 + ℤ = r2 + ℤ. Thus α is a bijection. Finally α((r1 + ℤ) + (r2 + ℤ)) = α((r1 + r2) + ℤ),
which equals

(r1 + r2)
′ = r′1 ∘ r

′
2 = α(r1 +ℤ) ∘ α(r2 +ℤ).

Therefore, allowing for the additive and multiplicative notations for the respective
groupsℝ/ℤ andG, we conclude that α is an isomorphism from the quotient groupℝ/ℤ
to the circle group G. Hence G ≃ ℝ/ℤ.

Subgroups of quotient groups
Suppose that N is a normal subgroup of a group G; it is natural to enquire about the
subgroups of the quotient group G/N . It is to be expected that they are related to the
subgroups of G.

Assume that H is a subgroup of G/N and define a corresponding subset of G,

H̄ = {x ∈ G | xN ∈ H}.

It is easy to verify that H̄ is a subgroup of G. Also the definition of H̄ shows thatN ⊆ H̄.
Conversely, supposewe start with a subgroupK ofGwhich containsN . SinceN⊲G

implies thatN⊲K, we can form the quotient groupK/N, which is evidently a subgroup
of G/N . Notice that if N ≤ K1 ≤ G, then K/N = K1/N implies that K = K1. Thus the
assignment K → K/N determines an injective function from the set of subgroups of G
that contain N to the set of subgroups of G/N . The function is also surjective since
H̄ → H in the notation of the previous paragraph; therefore it is a bijection.

These arguments establish the following fundamental theorem.

(4.2.2) (The Correspondence Theorem). LetN be anormal subgroup of a groupG. Then
the assignment K → K/N determines a bijection from the set of subgroups of G that
contain N to the set of subgroups of G/N. Furthermore, K/N ⊲ G/N if and only if K ⊲ G.

All of this has been proven except the last statement, which follows from the ob-
servation that (xN)(kN)(xN)−1 = (xkx−1)N for k ∈ K and x ∈ G.
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Example (4.2.3). Let n be a positive integer. The subgroups of ℤn = ℤ/nℤ are of the
form K/nℤ where nℤ ≤ K ≤ ℤ. Now by (4.1.5) there is an integer m > 0 such that
K = ⟨m⟩ = mℤ, and clearly m divides n since nℤ ≤ K. Thus the Correspondence
Theorem tells us that the subgroups of ℤn correspond to the positive divisors of n, a
fact we already know from (4.1.6).

Example (4.2.4). Let N be a normal subgroup of a group G. Call N a maximal normal
subgroup of G if N ̸= G and if N < L⊲G implies that L = G. In short “maximal normal”
means “maximal proper normal”. It follows from the Correspondence Theorem that
if N is a proper normal subgroup of G, then G/N is simple if and only if there are no
normal subgroups of G lying strictly betweenN and G, i. e.,N is maximal normal in G.
Thus maximal normal subgroups lead in a natural way to simple groups.

Direct products
Consider two normal subgroups H and K of a (multiplicatively written) group G such
that H ∩ K = 1. Let h ∈ H and k ∈ K. Then [h, k] = (hkh−1)k−1 ∈ K since K ⊲ G; also
[h, k] = h(kh−1k−1) ∈ H since H ⊲ G. But H ∩ K = 1, so [h, k] = 1, i. e., hk = kh. Thus
elements of H commute with elements of K.

If in addition G = HK, then G is said to be the (internal) direct product ofH and K,
in symbols

G = H × K.

Each element ofG is uniquely expressible in the form hk, (h ∈ H, k ∈ K). For if hk = h′k′

with h′ ∈ H, k′ ∈ K, then (h′)−1h = k′k−1 ∈ H ∩ K = 1, so that h = h′ and k = k′. Notice
also the form taken by the group operation in G,

(h1k1)(h2k2) = (h1h2)(k1k2), (hi ∈ H , ki ∈ K),

since k1h2 = h2k1.
For example, consider the Klein 4-group

V = {(1)(2)(3)(4), (12)(34), (13)(24), (14)(23)} :

here V = A × B = B × C = A × C where A = ⟨(12)(34)⟩, B = ⟨(13)(24)⟩, C = ⟨(14)(23)⟩.
The direct product concept may be extended to an arbitrary set of normal sub-

groups {Gλ | λ ∈ Λ} of a group G where
(i) Gλ ∩ ⟨Gμ | μ ∈ Λ, μ ̸= λ⟩ = 1 for all λ ∈ Λ;
(ii) G = ⟨Gλ | λ ∈ Λ⟩.

By the argument in the case of two subgroups, elements from different Gλ’s commute.
Also every element of G has a unique expression of the form g1g2 ⋅ ⋅ ⋅ gm where gi ∈ Gλi
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and the λi ∈ Λ are distinct. (The reader should supply a proof). The direct product is
denoted by

G = Drλ∈ΛGλ

or, in case Λ is a finite set {λ1, λ2, . . . , λn}, by

Gλ1 × Gλ2 × ⋅ ⋅ ⋅ × Gλn .

For additivelywrittengroups the termdirect sum is usedand thenotation for direct
sums is

⨁
λ∈Λ

Gλ and Gλ1 ⊕ Gλ2 ⊕ ⋅ ⋅ ⋅ ⊕ Gλn .

External direct products
Up to now a direct product can only be formed from subgroups within a given group.
We show next how to form the direct product of groups that are not necessarily sub-
groups of the same group. For simplicity we deal in detail only with the case of a finite
set of groups {G1,G2, . . . ,Gm}, but see Exercise (4.2.13) for the infinite case.

First we form the set product

G = G1 × G2 × ⋅ ⋅ ⋅ × Gm,

consisting of all m-tuples (g1, g2, . . . , gm) with gi ∈ Gi. Next a binary operation on G is
defined by the rule

(g1, g2, . . . , gm)(g
′
1 , g
′
2, . . . , g

′
m) = (g1g

′
1 , g2g
′
2, . . . , gmg

′
m)

where gi, g′i ∈ Gi. With this operation G becomes a group, with identity element
(1G1
, 1G2
, . . . , 1Gm

) and inverses given by

(g1, g2, . . . , gm)
−1 = (g−11 , g

−1
2 , . . . , g

−1
m ).

Call G the external direct product of the Gi: it is also written

G1 × G2 × ⋅ ⋅ ⋅ × Gm.

AlthoughGi is not a subgroup ofG, there is an obvious subgroup ofGwhich is iso-
morphic with Gi. Let Ḡi consist of all elements of the form ḡi = (1G1

, 1G2
, . . . , gi, . . . , 1Gm

)
where gi ∈ Gi appears as the ith entry of ḡi. Then the assignment gi → ḡi defines
an isomorphism μi : Gi → Ḡi: the μi are called the canonical injections. Also,
if g = (g1, g2, . . . , gm) ∈ G, then g = ḡ1ḡ2 ⋅ ⋅ ⋅ ḡm, by the product rule in G. Hence
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G = Ḡ1Ḡ2 ⋅ ⋅ ⋅ Ḡm. It is easy to verify that Ḡi ⊲ G and Ḡi ∩ ⟨Ḡj | j = 1, . . . ,m, j ≠ i⟩ = 1,
which shows that G is also the internal direct product

G = Ḡ1 × Ḡ2 × ⋅ ⋅ ⋅ × Ḡm

of subgroups isomorphic with G1, G2, . . . , Gm. Thus the external direct product can be
regarded as an internal direct product.

One can also define surjective maps πi : G → Gi by sending g = (g1, g2, . . . , gn) to
its ith component gi. These are the canonical projections.

Example (4.2.5). Let C1, C2, . . . , Ck be finite cyclic groups of orders n1, n2, . . . , nk where
the ni are pairwise relatively prime. Form the external direct product

D = C1 × C2 × ⋅ ⋅ ⋅ × Ck .

Therefore |D| = n1n2 ⋅ ⋅ ⋅ nk = n, say. Now let Ci = ⟨xi⟩ and put x = (x1, x2, . . . , xm) ∈ D.
We claim that x generates D, so that D is a cyclic group of order n.

To prove this statement it is enough to show that an arbitrary element (xu11 , . . . , x
uk
k )

of D is of the form xr for some r. This amounts to proving that xri = x
ui
i for each i, so

there is a solution r of the system of linear congruences r ≡ ui (mod ni), i = 1, 2, . . . , k.
This is true by the Chinese Remainder Theorem (2.3.7) since n1, n2, . . . , nk are pairwise
relatively prime.

For example, let n be a positive integer and write n = pe11 p
e2
2 ⋅ ⋅ ⋅ p

ek
k where the pi

are distinct primes and ei > 0. Then the preceding discussion shows that
ℤpe11 ×ℤp

e2
2
× ⋅ ⋅ ⋅ ×ℤpekk

is a cyclic group of order n and hence is isomorphic with ℤn.

External direct products of infinitely many groups
Finally, we briefly explain how to form external direct products of infinite families of
groups. Let {Gλ|λ ∈ Λ} be a set of groups. Recall from Section 1.5 the notion of a choice
function f : Λ → ⋃λ∈Λ Gλ where f (λ) ∈ Gλ. Let G denote the set of all choice functions
and define a binary operation (f , g) → fg on G by fg(λ) = f (λ)g(λ) for λ ∈ Λ. It is easy
to see that this makes G into a group. Call this group the unrestricted external direct
product or cartesian product of the Gλ,

G = Crλ∈ΛGλ.

Next we define a particular choice function fx, where x ∈ Gλ, as follows: let fx(λ) = x
and fx(μ) = 1Gμ

for μ ̸= λ. It can be verified that Ḡλ = {fx | x ∈ Gλ} ⊲ G and that Gλ ≃ Ḡλ
via the assignment x → fx.

The functions μλ : Gλ → G where x → fx are the canonical injections in this
general case. In a similarway the assignment f → f (λ) sets up a surjective functionπλ :
G → Gλ; these are the canonical projections. The canonical injections and projections
are homomorphisms as defined in Section 4.3 below.
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A restricted choice function for the set {Gλ, λ ∈ Λ} is a choice function f : Λ →
⋃λ∈Λ Gλ such that f (μ) = 1Gμ

for all but a finite number of μ. Let G0 be the set of all
restricted choice functions. It is evident that G0 is a subgroup of G. The group G0 is
called the restricted external direct product of the groups Gλ:

G0 = Drλ∈ΛGλ.

It is a routine exercise to verify that G0 is the internal direct product of the sub-
groups Ḡλ. Also noteworthy is the fact thatwhen the set Λ is finite, the unrestricted and
restricted direct products coincide. Under this circumstance a choice function may be
identified with the list of its values. When these are written in an agreed order, we
recover the original definition of the direct product of finitely many subgroups.

Exercises (4.2).
(1) Identify all the normal subgroups of the groups S3, Dih(8) and A4.
(2) Let H be a subgroup of a group G with index 2. Prove that H ⊲ G. Is this true if 2 is

replaced by 3?
(3) Let H ⊲ K ≤ G and L ≤ G. Show that H ∩ L ⊲ K ∩ L. Also, if L ⊲ G, prove that

HL/L ⊲ KL/L.
(4) Let H ≤ G and N ⊲ G. Prove that HN is a subgroup of G.
(5) Assume that H ≤ K ≤ G and N ⊲ G. If H ∩ N = K ∩ N and HN = KN, prove that

H = K.
(6) Show that normality is not a transitive relation in general, i. e.,H ⊲K ⊲G does not

imply that H ⊲ G. [Suggestion: consider Dih(8).]
(7) If H, K, L are arbitrary groups, prove that

H × (K × L) ≃ H × K × L ≃ (H × K) × L.

(8) Let G = H × K where H ,K ≤ G. Prove that G/H ≃ K and G/K ≃ H.
(9) Let G = ⟨x⟩ be a cyclic group of order n. If d ≥ 0, prove that G/⟨xd⟩ is cyclic with

order gcd{n, d}.
(10)Prove that Z(Sn) = 1 if n ̸= 2.
(11) Prove that S′n ̸= Sn if n ̸= 1.
(12) Prove that the center of the group GLn(ℝ) of all n × n non-singular real matrices is

the subgroup of all scalar matrices, i. e., scalar multiples of the identity matrix.
(13) This exercise employs the notation used in the discussion of the unrestricted and

restricted direct products of a set of groups {Gλ, λ ∈ Λ}. Prove that (i) Ḡλ ⊲ G and
G0 ⊲ G; (ii) Ḡλ ≃ Gλ; (iii) G0 is the internal direct product of the subgroups Ḡλ.
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4.3 Homomorphisms

A homomorphism between two groups is a function that links the operations of the
groups. More precisely, if G and H are groups, a function α : G → H is called a homo-
morphism if

α(xy) = α(x)α(y)

for all x, y ∈ G. The reader will recognize that a bijective homomorphism is what we
have been calling an isomorphism. A homomorphism from a group to itself is termed
an endomorphism.

We list next some standard examples of homomorphisms.

Example (4.3.1).
(i) α : ℤ→ ℤn where α(x) = [x]n. Here n is a positive integer. Allowing for the additive
notation, what is claimed here is that α(x + y) = α(x) + α(y), i. e. [x + y]n = [x]n + [yn];
this is just the definition of the sum of congruence classes.

(ii) The determinant function det : GLn(ℝ)→ ℝ∗ in which A → det(A), is a homomor-
phism, the reason being the well known identity det(AB) = det(A)det(B).

(iii) The sign function sign : Sn → {±1} in which π → sign(π), is a homomorphism
since sign(πσ) = sign(π)sign(σ) by (3.1.6).

(iv) The canonical homomorphism. This example provides the first evidence of a link
between homomorphisms and normal subgroups. Let N be a normal subgroup of a
group G and define a function

α : G → G/N

by the rule α(x) = xN . Then α(xy) = α(x)α(y), i. e., (xy)N = (xN)(yN), by definition of
the group operation in G/N . Thus α is a homomorphism.

(v) For any pair of groups G, H there is always at least one homomorphism from G
toH, namely the trivial homomorphism in which x → 1H for all x inG. Another obvious
example is the identity homomorphism fromG toG, which is the identity function onG.

Next come two very basic properties that all homomorphism possess.

(4.3.1). Let α : G → H be a homomorphism of groups. Then:
(i) α(1G) = 1H ;
(ii) α(xn) = (α(x))n for all n ∈ ℤ.

Proof. Applying α to the equation 1G1G = 1G, we obtain α(1G)α(1G) = α(1G), which on
cancellation yields α(1G) = 1H .

If n > 0, an easy induction on n shows that α(xn) = (α(x))n. Next xx−1 = 1G, so that
α(x)α(x−1) = α(1G) = 1H ; from this it follows that α(x−1) = (α(x))−1. Finally, if n ≥ 0,
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we have α(x−n) = α((xn)−1) = (α(xn))−1 = ((α(x))n)−1 = (α(x))−n, which completes the
proof.

Image and kernel
Let α : G → H be a group homomorphism. The image of α is the subset Im(α) = {α(x) |
x ∈ G}. Another significant subset associated with α is the kernel, which is defined by

Ker(α) = {x ∈ G | α(x) = 1H}.

The fundamental properties of image and kernel appear in the following result.

(4.3.2). If α : G → H is a homomorphism of groups, the image Im(α) is a subgroup of H
and the kernel Ker(α) is a normal subgroup of G.

Proof. By (4.3.1) 1H ∈ Im(α). Let x, y ∈ G; then α(x)α(y) = α(xy) and (α(x))−1 = α(x−1).
These equations show that Im(α) is a subgroup of H.

Next, if x, y ∈ Ker(α), then α(xy) = α(x)α(y) = 1H1H = 1H , and α(x−1) = (α(x))−1 =
1−1H = 1H ; thus Ker(α) is a subgroup of G. Finally, we establish the critical fact that
Ker(α) is normal in G. Let x ∈ Ker(α) and g ∈ G; then

α(gxg−1) = α(g)α(x)α(g)−1 = α(g)1Hα(g)
−1 = 1H ,

so that gxg−1 ∈ Ker(α), as required.

Example (4.3.2). Let us compute the image and kernel of some of the homomor-
phisms in Example (4.3.1).
(i) det : GLn(ℝ) → ℝ∗. The kernel is SLn(ℝ), the special linear group, and the image

is ℝ∗ since each non-zero real number is the determinant of a diagonal matrix in
GLn(ℝ).

(ii) sign : Sn → {±1}. The kernel is the alternating groupAn and the image is the group
{±1}, unless n = 1.

(iii) The kernel of the canonical homomorphism fromG toG/N is, as onemight expect,
the normal subgroup N . The image is G/N .

Clearly one can tell from the image of a homomorphismwhether it is surjective. In fact
the kernel of a homomorphism shows whether or not it is injective.

(4.3.3). Let α : G → H be a group homomorphism. Then:
(i) α is surjective if and only if Im(α) = H;
(ii) α is injective if and only if Ker(α) = 1G;
(iii) α is an isomorphism if and only if Im(α) = H and Ker(α) = 1G.

Proof. Of course (i) is true by definition. As for (ii), if α is injective and x ∈ Ker(α),
then α(x) = 1H = α(1G), so that x = 1G by injectivity of α. Conversely, assume that
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Ker(α) = 1G. If α(x) = α(y), then α(xy−1) = α(x)(α(y))−1 = 1H , which means that xy−1 ∈
Ker(α) = 1G and x = y. Thus (ii) is proven, while (iii) follows at once from (i) and
(ii).

A homomorphism that is injective is sometimes called a monomorphism and one
that is surjective an epimorphism.

The Isomorphism Theorems
We come now to three fundamental results about homomorphisms and quotient
groups which are traditionally known as the Isomorphism Theorems.

(4.3.4) (First Isomorphism Theorem). If α : G → H is a homomorphism of groups, then
G/Ker(α) ≃ Im(α) via the assignment xKer(α) → α(x).

Thus the image of a homomorphism may be regarded as a quotient group: con-
versely, every quotient group is the image of the associated canonical homomorphism.
What thismeans is that up to isomorphismquotient groups and homomorphic images
are the same objects.

Proof of (4.3.4). Let K = Ker(α). We would like to define a function θ : G/K → Im(α)
by the natural rule θ(xK) = α(x), but first we need to check that this makes sense. If
k ∈ K, then α(xk) = α(x)α(k) = α(x), showing that θ(xK) depends only on the coset xK
and not on the choice of x from xK. Thus θ is a well-defined function.

Next θ((xy)K) = α(xy) = α(x)α(y) = θ(xK)θ(yK), so θ is a homomorphism. It is
obvious that Im(θ) = Im(α). Finally, θ(xK) = 1H if and only if α(x) = 1H , i. e., x ∈ K or
equivalently xK = K = 1G/K . Therefore Ker(θ) is the identity subgroup of G/K and θ is
an isomorphism from G/K to Im(α).

(4.3.5) (Second Isomorphism Theorem). Let G be a groupwith a subgroupH and a nor-
mal subgroup N. Then HN ≤ G, H ∩ N ⊲ H and HN/N ≃ H/H ∩ N.

Proof. We begin by defining a function θ : H → G/N by the rule θ(h) = hN, (h ∈ H).
It is easy to check that θ is a homomorphism. Also Im(θ) = {hN | h ∈ H} = HN/N,
which is a subgroup of G/N by (4.3.2); therefore HN ≤ G. Next h ∈ Ker(θ) if and only if
hN = N, i. e., h ∈ H ∩ N . Therefore Ker(θ) = H ∩ N and H ∩ N ⊲ H by (4.3.2). Apply the
First Isomorphism Theorem to the homomorphism θ to obtain H/H ∩ N ≃ HN/N .

(4.3.6) (Third Isomorphism Theorem). Let M and N be normal subgroups of a group G
such that N ⊆ M. Then M/N ⊲ G/N and (G/N)/(M/N) ≃ G/M.

Proof. Define θ : G/N → G/M by the rule θ(xN) = xM; the reader should verify that
θ is a well-defined homomorphism. Also Im(θ) = G/M and Ker(θ) = M/N; the result
now follows via (4.3.4).
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Thus a quotient group of a quotient group ofG is essentially a quotient group ofG,
which represents a considerable simplification. Next these theorems are illustrated by
some examples.

Example (4.3.3). Letm, n be positive integers. We apply (4.3.5) with H = mℤ and K =
nℤ Then, allowing for the additive notation, we obtain

(mℤ + nℤ)/nℤ ≃ mℤ/(mℤ ∩ nℤ).

What does this say about the integers m, n? Obviously mℤ ∩ nℤ = ℓℤ where ℓ is
the least common multiple of m and n. Next mℤ + nℤ consists of all ma + nb where
a, b ∈ ℤ. From (2.2.3) we see that this is just dℤ where d = gcd{m, n}. So the assertion
is that dℤ/nℤ ≃ mℤ/ℓℤ. Now dℤ/nℤ ≃ ℤ/( nd )ℤ via the mapping dx + nℤ → x + n

dℤ.
Similarly mℤ/ℓℤ ≃ ℤ/( ℓm )ℤ. Therefore ℤ/(

n
d )ℤ ≃ ℤ/(

ℓ
m )ℤ. Since isomorphic groups

have the same order, it follows that n
d =
ℓ
m ormn = dℓ. Hence (4.3.5) implies that

gcd{m, n} ⋅ lcm{m, n} = mn,

(see also Exercise (2.2.8)).

Example (4.3.4). Consider the determinantal homomorphism det : GLn(ℝ) → ℝ∗,
which has kernel SLn(ℝ) and image ℝ∗. Then by (4.3.4)

GLn(ℝ)/SLn(ℝ) ≃ ℝ
∗.

Automorphisms
An automorphism of a group G is an isomorphism from G to itself. Thus an automor-
phism of G is a permutation of the set of group elements which is also a homomor-
phism. The set of all automorphisms of G,

Aut(G),

is therefore a subset of the symmetric group Sym(G). The first observation to make is:

(4.3.7). If G is a group, then Aut(G) is a subgroup of Sym(G).

Proof. The identity permutation is certainly an automorphism. Also, if α ∈ Aut(G),
then α−1 ∈ Aut(G) by (3.3.1). Finally, if α, β ∈ Aut(G), then αβ is certainly a permutation
of G, while αβ(xy) = α(β(x)β(y)) = αβ(x)αβ(y), which leads to αβ ∈ Aut(G). Hence
Aut(G) is a subgroup.

In fact Aut(G) is usually quite a small subgroup of Sym(G), as will be seen in some
of the ensuing examples.
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Example (4.3.5). Let A be any additively written abelian group and define α : A → A
by α(x) = −x. Then α is an automorphism since

α(x + y) = −(x + y) = −x − y = α(x) + α(y),

while α2 = 1, so α−1 = α.
Now suppose we choose A to be ℤ and let β be any automorphism of A. Thus

β(1) = n for some integer n. Notice that β is completely determined by n since β(m) =
β(m1) = mβ(1) = mn by (4.3.1)(ii). Also β(x) = 1 for some integer x since β is surjective.
Furthermore 1 = β(x) = β(x1) = xβ(1) = xn and it follows that n = ±1. Hence there
are just two possibilities for β, namely the identity and the automorphism α of the last
paragraph which forms negatives. Therefore |Aut(ℤ)| = 2 and Aut(ℤ) ≃ ℤ2. On the
other hand, it can be shown that the group Sym(ℤ) is uncountable.

Inner automorphisms
An easy way to construct automorphisms is to use a fixed element of the group to form
conjugates. If g is an element of a group G, define a function τ(g) on G by the rule

τ(g)(x) = gxg−1, (x ∈ G).

Recall that gxg−1 is the conjugate of x by g. Since

τ(g)(xy) = g(xy)g−1 = (gxg−1)(gyg−1) = τ(g)(x) (τ(g)(y)),

we see that τ(g) is a homomorphism.Now τ(g−1) is clearly the inverse of τ(g), therefore
τ(g) is an automorphism of G: it is known as the inner automorphism induced by g.
Thus we have discovered a function

τ : G → Aut(G).

The next observation is that τ is a homomorphism, called the conjugation homo-
morphism; for

τ(gh)(x) = (gh)x(gh)−1 = g(hxh−1)g−1,

which is also the image of x under the composite τ(g)τ(h). Thus τ(gh) = τ(g)τ(h) for
all g, h ∈ G.

The image of τ is the set of all inner automorphisms of G, which is denoted by

Inn(G).

This is a subgroup of Aut(G) by (4.3.2). What can be said about Ker(τ)? It is of course a
normal subgroup of G. An element g belongs to Ker(τ) if and only if τ(g)(x) = x for all
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x in G, i. e., gxg−1 = x, or gx = xg. Therefore the kernel of τ is exactly Z(G), the center
of G, which consists of the elements of G that commute with every element of G.

These conclusions are summed up in the following important result.

(4.3.8). Let G be a group and let τ : G → Aut(G) be the conjugation homomorphism.
Then Ker(τ) = Z(G) and Im(τ) = Inn(G). Hence Inn(G) ≃ G/Z(G).

The final statement follows on applying the First Isomorphism Theorem to the
homomorphism τ.

Usually a group possesses non-inner automorphisms. For example, if A is an (ad-
ditively written) abelian group, every inner automorphism is trivial since τ(g)(x) =
g + x − g = g − g + x = x. On the other hand, the assignment x → −x determines an
automorphism of A which is not trivial unless 2x = 0 for all x in A.

(4.3.9). The relation Inn(G) ⊲ Aut(G) holds for any group G.

Proof. Let α ∈ Aut(G) and g ∈ G; we claim that ατ(g)α−1 = τ(α(g)), whichwill establish
normality. For if x ∈ G, we have

τ(α(g))(x) = α(g)x(α(g))−1 = α(g)xα(g−1),

which equals

α(gα−1(x)g−1) = α(τ(g)(α−1(x))) = (ατ(g)α−1)(x).

Therefore ατ(g)α−1 = τ(α(g)), as required.

On the basis of (4.3.9) we can form the quotient group

Out(G) = Aut(G)/Inn(G),

which is termed the outer automorphism group of G, (although its elements are not
actually automorphisms). Thus all automorphisms of G are inner precisely when
Out(G) = 1.

A groupG is said to be complete if the conjugation homomorphism τ : G → Aut(G)
is an isomorphism: this is equivalent to requiring that Z(G) = 1 and Out(G) = 1. It will
be shown in Chapter Five that the symmetric group Sn is always complete unless n = 2
or 6.

Finally, we point out that the various groups and homomorphisms introduced
above fit neatly together in a sequence of groups and homomorphisms

1→ Z(G) ι→ G τ
→ Aut(G) ν

→ Out(G)→ 1.

Here ι is the inclusionmap, τ is the conjugation homomorphism and ν is the canonical
homomorphism associated with the normal subgroup Inn(G). Of course 1 → Z(G)
and Out(G)→ 1 are trivial homomorphisms.
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The sequence above is an example of an exact sequence, whose notable feature is
that at each group in the interior of the sequence the image of the homomorphism on
the left equals the kernel of the homomorphism on the right. For example at Aut(G)
we have Im(τ) = Inn(G) = Ker(ν). Exact sequences play a prominent role in algebra,
especially in the theory of modules: for more on this see Section 9.1.

In general it is hard to determine the automorphism group of a given group. A use-
ful aid in the process of deciding which permutations of the group are actually auto-
morphisms is the following simple fact.

(4.3.10). Let G be a group, g ∈ G and α ∈ Aut(G). Then g and α(g) have the same order.

Proof. By (4.3.1) α(gm) = α(g)m. Since α is injective, it follows that α(g)m = 1 if and only
if gm = 1. Hence |g| = |α(g)|.

The automorphism group of a cyclic group
As a first example consider the automorphism group of a cyclic group G = ⟨x⟩. If G is
infinite, then G ≃ ℤ and we saw in Example (4.3.5) that Aut(G) ≃ ℤ2. Assume from
now on that G has finite orderm.

First of all notice that α is completely determined by α(x) since α(xi) = α(x)i. Also
|α(x)| = |x| = m by (4.3.10). Thus (4.1.7) shows that α(x) = xi where 1 ≤ i < m and i is
relatively prime tom. Consequently |Aut(G)| ≤ ϕ(m)whereϕ is Euler’s function, since
ϕ(m) is the number of such integers i.

Conversely, suppose that i is an integer satisfying 1 ≤ i < m and gcd{i,m} = 1. Then
the assignment g → gi, (g ∈ G), determines a homomorphism αi : G → G because
(g1g2)i = gi1g

i
2, the group G being abelian. Since |xi| = m, the element xi generates G

and so this homomorphism is surjective. But G is finite, so we may conclude that αi
is also injective and thus αi ∈ Aut(G). It follows that |Aut(G)| = ϕ(m), the number of
such i’s.

It is not hard to identify the group Aut(G). Recall that ℤ∗m is the multiplicative
group of congruence classes [a]m where a is relatively prime tom. Now there is a nat-
ural function θ : ℤ∗m → Aut(G) given by θ([i]m) = αi where αi is defined as above; θ
is well-defined since αi+ℓm = αi for all ℓ. In addition θ is a homomorphism because
αij = αiαj, and the preceding discussion shows that it is surjective and hence bijective.
We have therefore established:

(4.3.11). Let G = ⟨x⟩ be a cyclic group of order m. Thenℤ∗m ≃ Aut(G) via the assignment
[i]m → (g → gi).

In particular this establishes:

Corollary (4.3.12). The automorphism group of a cyclic group is abelian.

The next example is more challenging.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



82 | 4 Quotient groups and Homomorphisms

Example (4.3.6). Show that the order of the automorphism group of the dihedral
group Dih(2p) where p is an odd prime is p(p − 1).

Recall that Dih(2p) is the symmetry group of a regular p-gon – see Section 3.2. First
we need a good description of the elements of G = Dih(2p). If the vertices of the p-gon
are labelled 1, 2, . . . , p, then G contains the p-cycle σ = (1 2 . . . p), which corresponds
to an anticlockwise rotation through angle 2π

p . It also contains the permutation τ =
(1)(2p)(3p−1) . . . ( p+12

p+3
2 ),which represents a reflection in the line through the vertex 1

and the midpoint of the opposite edge.
The elements σr, σrτ, where r = 0, 1, . . . , p − 1, are all different and there are 2p of

them. Since |G| = 2p, we conclude that

G = {σr , σrτ | r = 0, 1, . . . , p − 1}.

Notice that (σrτ)2 = 1 and in fact σrτ is a reflection, while σr is a rotation of order 1
or p.

Next let α ∈ Aut(G). By (4.3.10) α(σ) has order p, and hence α(σ) = σr where 1 ≤
r < p; also α(τ) has order 2 and so it must equal σsτ where 0 ≤ s < p. Observe that α is
determined by its effect on σ and τ since α(σi) = α(σ)i and α(σiτ) = α(σ)iα(τ). It follows
that there are at most p(p − 1) possibilities for α and hence that |Aut(G)| ≤ p(p − 1).

To show that p(p− 1) is the order of the automorphism groupwe need to construct
some automorphisms. Now it is easy to see that Z(G) = 1; thus by (4.3.8) Inn(G) ≃
G/Z(G) ≃ G. Therefore |Inn(G)| = 2p, and since Inn(G) ≤ Aut(G), it follows from La-
grange’s Theorem that p divides |Aut(G)|.

Next for 0 < r < p we define an automorphism αr of G by the rules

αr(σ) = σ
r and αr(τ) = τ.

To verify that αr is a homomorphism one needs to check that αr(xy) = αr(x)αr(y); this
is not difficult, but it does involve some case distinctions, depending on the form of x
and y. Now αr is clearly surjective because σr generates ⟨σ⟩; thus it is an automor-
phism. Notice also that αrαs = αrs, so that [r]p → αr determines a homomorphism
from ℤ∗p to H = {αr | 1 ≤ r < p}. This mapping is surjective, while if αr = 1, then r ≡ 1
(mod p), i. e., [r]p = [1]p. Hence the assignment [r]p → αr determines an isomorphism
from ℤ∗p to H. Therefore H has order p − 1 and p − 1 divides |Aut(G)|. Consequently
p(p − 1) divides the order of Aut(G) and hence |Aut(G)| = p(p − 1).

Since |Inn(G)| = |G| = 2p, we see that

Out(G)
 =

p(p − 1)
2p
=
p − 1
2
.

Thus |Out(G)| = 1 if and only if p = 3. Since also Z(G) = 1, as a consequence Dih(2p) is
a complete group if and only if p = 3.
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Semidirect products
Suppose that G is a group with a normal subgroup N and a subgroup H such that

G = NH and N ∩ H = 1.

ThenG is said to be the (internal) semidirect product ofN andH. As a simple example,
consider the alternating group G = A4; this has a normal subgroup of order 4, namely
the Klein 4-group V , and also the subgroup H = ⟨(123)(4)⟩ of order 3. Thus V ∩ H = 1
and |VH| = |V | ⋅ |H| = 12 by (4.1.12). Hence G = VH and G is the semidirect product of V
and H.

Let us analyze the structure of a semidirect product G = NH. In the first place
each g ∈ G has a unique expression g = nh with n ∈ N and h ∈ H. For if g = n′h′ is
another such expression, (n′)−1n = h′h−1 ∈ N ∩ H = 1, which shows that n = n′ and
h = h′. Secondly, conjugation in N by an element h of H produces an automorphism
of N, say θ(h). Thus θ(h)(n) = hnh−1, (n ∈ N). Furthermore it is easily verified that
θ(h1h2) = θ(h1)θ(h2), (hi ∈ H). Therefore θ : H → Aut(N) is a homomorphism.

Let us see whether, on the basis of the preceding analysis, we can reconstruct the
semidirect product from the groups N and H and a given homomorphism θ : H →
Aut(N). This will be the external semidirect product. The underlying set of this group
is to be the set product N × H, so that

G = {(n, h) | n ∈ N , h ∈ H}.

A binary operation on G is defined by the rule

(n1, h1)(n2, h2) = (n1θ(h1)(n2), h1h2).

The motivation for this rule is the way that products are formed in an internal semidi-
rect product NH, which is (n1h1)(n2h2) = n1(h1n2h−11 )h1h2. The identity element of G is
(1N , 1H ) and the inverse of (n, h) is to be (θ(h−1)(n−1), h−1): the latter is motivated by the
fact that in an internal semidirect product NH inverses are formed according to the
rule (nh)−1 = h−1n−1 = (h−1n−1h)h−1. We omit the entirely routine verification of the
group axioms for G.

Next we look for subgroups of G which resemble the original groups N and H.
There are natural candidates,

N̄ = {(n, 1H ) | n ∈ N} and H̄ = {(1N , h) | h ∈ H}.

It is straightforward to show that these are subgroups isomorphic with N and H re-
spectively. The group operation of G shows that

(n, 1H )(1N , h) = (nθ(1H )(1N ), h) = (n, h) ∈ N̄H̄
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since θ(1H ) is the identity automorphism of N . It follows that G = N̄H̄, while it is evi-
dent that N̄ ∩ H̄ = 1.

To show that G is the semidirect product of N̄ and H̄, it is only necessary to check
normality of N̄ in G. Let n, n1 ∈ N and h ∈ H. Then by definition

(n, h)(n1, 1H )(n, h)
−1 = (n, h)(n1, 1H )(θ(h

−1)(n−1), h−1)

= (nθ(h)(n1), h)(θ(h
−1)(n−1), h−1)

= (nθ(h)(n1)θ(h)(θ(h
−1)(n−1)), 1H)

= (nθ(h)(n1)n
−1, 1H) ∈ N̄ .

In particular conjugation in N̄ by (1N , h) sends (n1, 1H ) to (θ(h)(n1), 1H ). Therefore con-
jugation in N̄ by (1N , h) induces the automorphism θ(h) in N .

In the special case where θ is chosen to be the trivial homomorphism, elements
of N̄ and H̄ commute, so that G becomes the direct product. Thus the semidirect prod-
uct is a generalization of the direct product of two groups. Semidirect products provide
an important means of constructing new groups.

Example (4.3.7). Let N = ⟨n⟩ and H = ⟨h⟩ be cyclic groups with respective orders 3
and 4. Suppose we wish to form a semidirect product G of N and H. For this purpose
choose a homomorphism θ : H → Aut(N); there is little choice here since N has only
one non-identity automorphism, namely n → n−1. Accordingly define θ(h) to be this
automorphism. The resulting group G is known as the dicyclic group of order 12. Ob-
serve that this group is not isomorphic with A4 or Dih(12) since, unlike these groups,
G has an element of order 4.

Exercises (4.3).
(1) LetH ⊲K ≤ G and let α : G → G1 be a homomorphism. Show that α(H) ⊲ α(K) ≤ G1

where α(H) = {α(h) | h ∈ H}.
(2) If G and H are groups with relatively prime orders, show that the only homomor-

phism from G to H is the trivial one.
(3) Let G be a simple group. Show that if α : G → H is a homomorphism, either α is

trivial or H has a subgroup isomorphic with G.
(4) Prove that Aut(V) ≃ S3 where V is the Klein 4-group.
(5) Prove that Aut(ℚ) ≃ ℚ∗ where ℚ∗ is the multiplicative group of non-zero ratio-

nals. [Hint: an automorphism is determined by its effect on 1.]
(6) Let G and A be groups, with A abelian and written additively. Let Hom(G,A) de-

note the set of all homomorphisms from G to A. Define a binary operation + on
Hom(G,A) by α + β(x) = α(x) + β(x), (x ∈ G). Prove that with this operation
Hom(G,A) is an abelian group. Then prove that Hom(ℤ,A) ≃ A.

(7) Let G = ⟨x⟩ have order 8. Identify all the automorphisms of G and verify that
Aut(G) ≃ V : conclude that the automorphism group of a cyclic group need not
be cyclic.
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(8) If G and H are finite groups of relatively prime orders, prove that Aut(G × H) ≃
Aut(G) × Aut(H).

(9) Use Exercise (4.3.8) to prove that ϕ(mn) = ϕ(m)ϕ(n) where ϕ is Euler’s function
and m, n are relatively prime integers. (A different proof of this fact was given in
(2.3.8).)

(10)An n × nmatrix is called a permutation matrix if each row and each column con-
tains a single 1 and all other entries are 0. If π ∈ Sn, form an n × n permutation
matrixM(π) by definingM(π)ij to be 1 if π(j) = i and 0 otherwise.
(i) Prove that the assignment π → M(π) determines an injective homomorphism

from Sn to GLn(ℝ).
(ii) Deduce that the n×n permutationmatrices form a groupwhich is isomorphic

with Sn.
(iii) How can one tell fromM(π) whether the permutation π is even or odd?

(11) Express each of the groups Dih(2n) and S4 as a semidirect product of groups with
smaller orders.

(12) Use the groups ℤ3 ⊕ ℤ3 and ℤ2 to form three non-isomorphic groups of order 18,
each with a normal subgroup of order 9.
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5 Groups Acting on Sets

Until the end of the 19th Century, a groupwas usually synonymouswith a permutation
group, so that the elements acted in a natural way on a set. While group theory has
since becomemore abstract, it remains true that groups are at their most useful when
their elements act on a set. In this chapterwedevelop the basic theory of group actions
and illustrate its utility with applications to group theory.

5.1 Group actions

Let G be a group and X a non-empty set. A left action of G on X is a function

α : G × X → X,

written for convenience α((g, x)) = g ⋅ x, with the following properties for gi ∈ G and
x ∈ X:
(i) g1 ⋅ (g2 ⋅ x) = (g1g2) ⋅ x;
(ii) 1G ⋅ x = x.

Here one should think of the group element g as operating or acting on a set element x
to produce the set element g ⋅ x.

There is a corresponding definition of a right action of G on X as a function
β : X × G → X, with β((x, g))written x ⋅ g, such that x ⋅ 1G = x and (x ⋅ g1) ⋅ g2 = x ⋅ (g1g2)
for all x ∈ X and gi ∈ G.

For example, suppose that G is a subgroup of the symmetric group Sym(X), in
which event G is called a permutation group on X. Define π ⋅ x to be π(x) where π ∈ G
and x ∈ X; this is a left action of G on X. There may of course be other ways for G to act
on X, so we are dealing here with a wide generalization of a permutation group.

Permutation representations
Let G be a group and X a non-empty set. A homomorphism

σ : G → Sym(X)

is called a permutation representation of G on X. Thus the homomorphism σ repre-
sents elements of the abstract groupG by concrete objects, namely permutations of X.
A permutation representation provides a useful way of visualizing the elements of an
abstract group.

What is the connection between group actions and permutation representations?
In fact the two concepts are essentially identical. To see why, suppose that a permuta-
tion representation σ : G → Sym(X) is given; then there is a corresponding left action

https://doi.org/10.1515/9783110691160-005
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of G on X defined by

g ⋅ x = σ(g)(x),

where g ∈ G, x ∈ X; it is easy to check that this is an action.
Conversely, if we start with a left action of G on X, say (g, x) → g ⋅ x, there is a

corresponding permutation representation σ : G → Sym(X) defined by

σ(g)(x) = g ⋅ x,

where g ∈ G, x ∈ X. Again it is an easy verification that the mapping σ is a homomor-
phism and hence is a permutation representation of G on X.

The foregoing discussion makes the following result clear.

(5.1.1). Let G be a group and X a non-empty set. Then there is a bijection from the set of
left actions of G on X to the set of permutation representations of G on X.

If σ is a permutation representation of a groupG on a setX, thenG/Ker(σ) ≃ Im(σ)
by the First Isomorphism Theorem (4.3.4). Thus G/Ker(σ) is isomorphic with a permu-
tation group on X. If Ker(σ) = 1, then G itself is isomorphic with a permutation group
onX, inwhich case the representationσ is said to be faithful. The term faithful can also
be applied to a group action by means of the associated permutation representation.

Next we will describe some natural ways in which a group can act on a set.

Action on a group by multiplication
A group G can act on its underlying set G by left multiplication, that is to say,

g ⋅ x = gx,

where g, x ∈ G; this is an action since 1G ⋅ x = 1Gx = x and

g1 ⋅ (g2 ⋅ x) = g1(g2x) = (g1g2)x = (g1g2) ⋅ x.

This action is called the left regular action of G and the corresponding permutation
representation

λ : G → Sym(G),

which is given by λ(g)(x) = gx, is called the left regular representation of G. Observe
that λ(g) = 1 if and only if gx = x for all x ∈ G, i. e., g = 1. Thus Ker(λ) = 1 and λ is a
faithful permutation representation.

It follows at once that G is isomorphic with Im(λ), which is a subgroup of Sym(G).
We have therefore proved the following result, which demonstrates in a striking fash-
ion the significance of permutation groups.
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(5.1.2) (Cayley’s1 Theorem). An arbitrary group G is isomorphic with a subgroup of
Sym(G) via the left regular representation in which g → (x → gx) where x, g ∈ G.

Action on cosets
For the next example of an action take a fixed subgroup H of a group G and let ℒ be
the set of all left cosets of H in G. A left action of G on ℒ is defined by the rule

g ⋅ (xH) = (gx)H ,

where g, x ∈ G. Again it is simple to verify that this is a left action.
Now consider the corresponding permutation representation λ : G → Sym(ℒ). By

definition g ∈ Ker(λ) if and only if gxH = xH for all x in G, i. e., x−1gx ∈ H or g ∈ xHx−1.
It follows that

Ker(λ) = ⋂
x∈G

xHx−1.

Thus we have:

(5.1.3). The kernel of the permutation representation of G on the set of left cosets of H
by left multiplication is

⋂
x∈G

xHx−1,

which is the largest normal subgroup of G contained in H.

For the final statement in (5.1.3), note that the intersection is normal in G. Also,
if N ⊲ G and N ≤ H, then N ≤ xHx−1 for all x ∈ G. The normal subgroup⋂x∈G xHx

−1 is
called the normal core of H in G.

Here is an application of the action on left cosets.

(5.1.4). Suppose that H is a subgroup of a finite group G such that |G : H| equals the
smallest prime dividing |G|. Then H ⊲ G. In particular, a subgroup of index 2 is always
normal.

Proof. Let |G : H| = p and let K be the kernel of the permutation representation of G
arising from the left action of G on the set of left cosets of H. Then K ≤ H < G and
p = |G : H| divides |G : K| by (4.1.3). Now G/K is isomorphic with a subgroup of the
symmetric group Sp, so |G : K| divides |Sp| = p! by (4.1.1). But |G : K| divides |G| and
thus cannot be divisible by a smaller prime than p. Therefore |G : K| = p = |G : H| and
H = K ⊲ G.

1 Arthur Cayley (1821–1895).
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Action by conjugation
Another naturalway inwhich a groupG can act on its underlying set is by conjugation.
Define

g ⋅ x = gxg−1,

where g, x ∈ G; by a simple check this is a left action. Again we can ask about the
kernel of the action. An element g belongs to the kernel if and only if gxg−1 = x, i. e.,
gx = xg, for all x ∈ G: this is the condition for g to belong to Z(G), the center of G. It
follows that Z(G) is the kernel of the conjugation representation.

A groupG can also act on its set of subgroups by conjugation; thus ifH ≤ G, define

g ⋅ H = gHg−1 = {ghg−1 | h ∈ H}.

In this case the kernel consists of all group elements g such that gHg−1 = H for all
H ≤ G. This normal subgroup is called the norm of G; clearly it contains the cen-
ter Z(G).

Exercises (5.1).
(1) Complete the proof of (5.1.1).
(2) Let (x, g) → x ⋅ g be a right action of a group G on a set X. Define ρ : G → Sym(X)

by ρ(g)(x) = x ⋅ g−1. Prove that ρ is a permutation representation of G on X. Why is
the inverse necessary here?

(3) Establish a bijection between the set of right actions of a group G on a set X and
the set of permutation representations of G on X.

(4) A right action of a group G on its underlying set is defined by x ⋅g = xg. Verify that
this is an action and describe the corresponding permutation representation ofG,
(it is called the right regular representation of G).

(5) Prove that a permutation representation of a simple group is either faithful or triv-
ial.

(6) The left regular representation of a finite group is surjective if and only if the group
has order 1 or 2.

(7) Define a natural right action of a groupG on the set of right cosets of a subgroupH
and then identify the kernel of the associated representation.

(8) Show that the number of isomorphism types of groups of order n is at most
(n!)[log2 n]. [Hint: a group of order n can be generated by [log2 n] elements by
Exercise (4.1.10). Now apply (5.1.2).]

5.2 Orbits and stabilizers

In this section we develop the theory of group actions, introducing the fundamental
concepts of orbit and stabilizer.
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Let G be a group and X a non-empty set, and suppose that a left action of G on X
is given. A binary relation ∼

G
on X is defined by the rule:

a ∼
G
b if and only if g ⋅ a = b

for some g ∈ G. A simple verification shows that ∼
G
is an equivalence relation on the

set X. The ∼
G
-equivalence class containing a is evidently

G ⋅ a = {g ⋅ a | g ∈ G},

which is called theG-orbit of a. ThusX is the union of the distinctG-orbits and distinct
G-orbits are disjoint: these statements follow from general facts about equivalence
relations – see (1.2.2).

If X is the only G-orbit, the action of G on X – and the corresponding permutation
representation of G – is called transitive. Thus the action of G is transitive if for each
pair of elements a, b of X, there exists a g in G such that g ⋅ a = b. For example, the
left regular representation is transitive, as is the left action of a group on the set of left
cosets of a subgroup.

Another important notion is that of a stabilizer. The stabilizer in G of an element
a ∈ X is defined to be

StG(x) = {g ∈ G | g ⋅ x = x}.

It is easy to verify that StG(a) is a subgroup of G. If StG(a) = 1 for all a ∈ X, the action
is called semiregular. An action which is both transitive and semiregular is termed
regular.

We illustrate these concepts by examining the group actions introduced in Sec-
tion 5.1.

Example (5.2.1). Let G be any group.
(i) The left regular action of G is regular. Indeed (yx−1)x = y for any x, y ∈ G, so it is

transitive, while gx = x implies that g = 1 and the action is semiregular. Regularity
now follows.

(ii) In the conjugation action of G on its underlying set the stabilizer of x consists of
all g in G such that gxg−1 = x, i. e., gx = xg. This subgroup is called the centralizer
of x in G: it is denoted by

CG(x) = {g ∈ G | gx = xg}.

(iii) In the conjugation action of G on its underlying set the G-orbit of x is {gxg−1 | g ∈
G}, i. e., the set of all conjugates of x in G. This is called the conjugacy class of x.
The number of conjugacy classes in a finite group is called the class number.
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(iv) In the action of G by conjugation on its set of subgroups, the G-orbit of H ≤ G is
just the set of all conjugates ofH inG, i. e., {gHg−1 | g ∈ G}. The stabilizer ofH inG
is an important subgroup termed the normalizer of H in G,

NG(H) = {g ∈ G | gHg
−1 = H}.

Centralizers and normalizers feature throughout group theory.
Next we will prove two basic theorems on group actions. The first one counts the

number of elements in an orbit.

(5.2.1). Let G be a group acting on a set X on the left and let x ∈ X. Then the assignment
gStG(x) → g ⋅x determines a bijection from the set of left cosets of StG(x) in G to the orbit
G ⋅ x. Hence |G ⋅ x| = |G : StG(x)|.

Proof. In the first place the assignment gStG(x) → g ⋅ x determines a well-defined
function. For if s ∈ StG(x), then gs ⋅ x = g ⋅ (s ⋅ x) = g ⋅ x. Next g1 ⋅ x = g2 ⋅ x implies
that (g−12 g1) ⋅ x = x, so g−12 g1 ∈ StG(x), i. e., g1StG(x) = g2StG(x). Hence the function is
injective, while it is obviously surjective.

Corollary (5.2.2). LetG beafinite groupacting onafinite set X. If the action is transitive,
|X| divides |G|. If the action is regular, then |X| = |G|.

Proof. If the action is transitive, X is the onlyG-orbit, so |X| = |G : StG(x)| for any x ∈ X
by (5.2.1); hence |X| divides |G|. If the action is regular, then in addition StG(x) = 1 and
thus |X| = |G|.

The corollary tells us that if G is a transitive permutation group of degree n, then
n divides |G|, while |G| = n if G is regular.

The second main theorem on actions counts the number of orbits and has many
applications. If a group G acts on a set X on the left and g ∈ G, the fixed point set of g
is defined to be

Fix(g) = {x ∈ X | g ⋅ x = x}.

(5.2.3) (The Frobenius-Burnside Theorem2). Let G be a finite group acting on a finite
set X on the left. Then the number of G-orbits in X equals

1
|G|
∑
g∈G

Fix(g)
,

i. e., the average number of fixed points of elements of G.

2 Ferdinand Georg Frobenius (1849–1917), William Burnside (1852–1927).
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Proof. Consider how often an element x of X is counted in the sum∑g∈G |Fix(g)|. This
happens once for each g in StG(x). Thus by (5.2.1) the element x contributes |StG(x)| =
|G|/|G ⋅ x| to the sum. The same is true of each element of the orbit |G ⋅ x|, so that the
total contribution of this orbit to the sum is (|G|/|G ⋅ x|) ⋅ |G ⋅ x| = |G|. It follows that
∑g∈G |Fix(g)|must equal |G| times the number of orbits, so the result is proven.

We illustrate the Frobenius-Burnside Theorem with a simple example.

Example (5.2.2). The group

G = {(1)(2)(3)(4), (12)(3)(4), (1)(2)(34), (12)(34)}

acts on the set X = {1, 2, 3, 4} in the natural way, as a permutation group. There are
two G-orbits, namely {1, 2} and {3, 4}. Count the fixed points of the elements of G by
looking for 1-cycles. Thus the four elements of the group have respective numbers of
fixed points 4, 2, 2, 0. Therefore the number of G-orbits should be

1
|G|
(∑
g∈G

Fix(g)
) =

1
4
(4 + 2 + 2 + 0) = 2,

which is the correct answer.

Example (5.2.3). Show that the average number of fixed points of elements of Sn is 1.
The symmetric group Sn acts on the set {1, 2, . . . , n} in the natural way and the ac-

tion is clearly transitive. By (5.2.3) the average number of fixed points equals the num-
ber of Sn-orbits, which is 1 by transitivity of the action.

Exercises (5.2).
(1) If g is an element of a finite group G, show that the number of conjugates of g

divides |G : ⟨g⟩|.
(2) If H is a subgroup of a finite group G, show that the number of conjugates of H

divides |G : H|.
(3) Let G = ⟨(1 2 . . . p), (1)(2 p)(3 p − 1) ⋅ ⋅ ⋅⟩ be the dihedral group Dih(2p)where p is an

odd prime. Check the validity of (5.2.3) for the groupG acting on the set {1, 2, . . . , p}
as a permutation group.

(4) Let G be a finite group acting as a finite set X. If the action is semiregular, prove
that |G| divides |X|.

(5) Prove that the class number of a finite group G is given by the formula

1
|G|
(∑
x∈G

CG(x)
).

(6) Prove that the class number of a direct product H × K equals the product of the
class numbers of H and K.
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(7) Let G be a finite group acting transitively on a finite set X where |X| > 1. Prove
that G contains at least |X| − 1 fixed-point-free elements, i. e., elements g such that
Fix(g) is empty. [Hint: assume this is false and apply (5.2.3).]

(8) Let H be a proper subgroup of a finite group G. Prove that G ≠ ⋃x∈G xHx
−1. [Hint:

consider the action of G on the set of left cosets ofH bymultiplication. The action
is transitive, so Exercise (5.2.7) is applicable.]

(9) Let X be a subset of a group G. Define the centralizer CG(X) of X in G to be the
set of elements of G that commute with every element of X. Prove that CG(X) is a
subgroup and then show that CG(CG(CG(X))) = CG(X).

(10) LetG beafinite groupwith classnumberh. Anelement is chosenat random fromG
and replaced. Then another group element is chosen. Prove that the probability
of the two elements commuting is h

|G| . What will the answer be if the first group
element is not replaced? [Hint: use Exercise (5.2.5).]

5.3 Applications to the structure of groups

The aim of this section is to demonstrate that group actions can be a highly effective
tool for investigating the structure of groups. The first result provides important arith-
metic information about the conjugacy classes of a finite group.

(5.3.1) (The Class Equation). Let G be a finite group with distinct conjugacy classes
C1,C2, . . . ,Ch. Then
(i) |Ci| = |G : CG(xi)| for any xi in Ci; thus |Ci| divides |G|.
(ii) |G| = |C1| + |C2| + ⋅ ⋅ ⋅ + |Ch|.

Here (i) follows on applying (5.2.1) to the conjugation action of G on its underlying set.
For in this action the G-orbit of x is its conjugacy class, while the stabilizer of x is the
centralizer CG(x); thus |G ⋅ x| = |G : StG(x)| = |G : CG(x)|. Finally, (ii) holds because the
Ci are disjoint.

There are other ways to express the class equation. Choose any xi ∈ Ci and put
ni = |CG(xi)|. Then |Ci| = |G|/ni. On division by |G|, the class equation becomes

1
n1
+

1
n2
+ ⋅ ⋅ ⋅ +

1
nh
= 1,

an interesting diophantine equation for the orders of the centralizers.
It is clear that a one element set {x} is a conjugacy class of G if and only if x is its

only conjugate, i. e., x belongs to the center of the group G. Now suppose we order the
conjugacy classes in such a way that |Ci| = 1 for i = 1, 2, . . . , r and |Ci| > 1 if r < i ≤ h.
With this notation the class equation takes the form:

(5.3.2). |G| = |Z(G)| + |Cr+1| + ⋅ ⋅ ⋅ + Ch|.
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A natural question is: what are the conjugacy classes of the symmetric group Sn?
First note that any two r-cycles in Sn are conjugate. For

π(i1i2 ⋅ ⋅ ⋅ ir)π
−1 = (j1j2 ⋅ ⋅ ⋅ jr)

where π is any permutation in Sn such that π(i1) = j1, π(i2) = j2, . . . , π(ir) = jr . From
this remark and (3.1.3) it follows that any two permutations which have the same cycle
type are conjugate in Sn. Here “cycle type” refers to the numbers of 1-cycles, 2-cycles,
etc. which are present in the disjoint cycle decomposition. Conversely, it is easy to see
that conjugate permutations have the same cycle type. Thuswe have the answer to our
question.

(5.3.3). The conjugacy classes of the symmetric group Sn are the sets of permutations
with the same cycle type.

It follows that the class number of Sn is the number of different cycle types, which
equals

λ(n),

the number of partitions of n, i. e., the number of ways of writing the positive integer n
as a sum of positive integers when order of summands is not significant. This is a well-
known number theoretic function which has been studied intensively.

Example (5.3.1). The symmetric group S6 has 11 conjugacy classes. For λ(6) = 11, as is
seen by enumerating the partitions of 6.

As a deeper application of our knowledge of the conjugacy classes of Sn we will
prove next:

(5.3.4). The symmetric group Sn has no non-inner automorphisms if n ̸= 6.

Proof. Since S2 has only the trivial automorphism, we can assume that n > 2
as well as n ̸= 6. First a general remark: in any group G the automorphism group
Aut(G) permutes the conjugacy classes of G. Indeed, if α ∈ Aut(G), then α(xgx−1) =
α(x)α(g)(α(x))−1, so αmaps the conjugacy class of g to that of α(g).

Now let C1 denote the conjugacy class consisting of all the 2-cycles in Sn. If π is
a 2-cycle, α(π) also has order 2 and so is a product of, say, k disjoint 2-cycles. Hence
α(C1) = Ck where Ck is the conjugacy class of all (disjoint) products of k 2-cycles. The
first step in the proof is to showby a counting argument that k = 1, i. e., αmaps 2-cycles
to 2-cycles. Assume to the contrary that k ≥ 2.

Clearly |C1| = (n2), and more generally

|Ck | = (
n
2k
)
(2k)!
(2!)kk!
.
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For, in order to form a product of k disjoint 2-cycles, first choose the 2k integers from
1, 2, . . . , n in ( n2k) ways. Then divide these 2k elements into k pairs, with order of pairs
unimportant; this can be done in (2k)!(2!)kk! ways. Forming the product, we obtain the for-
mula for |Ck |.

Since α(C1) = Ck, it must be the case that |C1| = |Ck | and hence

(
n
2
) = (

n
2k
)
(2k)!
(2!)kk!
.

After cancellation this becomes

(n − 2)(n − 3) ⋅ ⋅ ⋅ (n − 2k + 1) = 2k−1(k!).

This is impossible if k = 2, while if k = 3, it can only hold if n = 6, which is forbidden.
Therefore k > 3. Clearly n ≥ 2k, so (n − 2)(n − 3) ⋅ ⋅ ⋅ (n − 2k + 1) ≥ (2k − 2)!. This leads to
(2k − 2)! ≤ 2k−1(k!), which implies that k = 3, a contradiction.

The argument so far has established that k = 1 and α(C1) = C1. Write

α((ab)) = (b′b′′) and α((ac)) = (c′c′′).

Since (ac)(ab) = (abc), which has order 3, also α((ac)(ab)) = (c′c′′)(b′b′′) has order 3.
Therefore b′, b′′, c′, c′′ cannot all be different and we can write

α((ab)) = (a′b′) and α((ac)) = (a′c′).

Next suppose there is ad such thatα((ad)) = (b′c′)witha′ ̸= b′, c′. Then (ac)(ad)(ab) =
(abdc), an element of order 4, whereas its image (a′c′)(b′c′)(a′b′) = (a′)(b′c′) has
order 2, another contradiction.

This argument shows that for each a there is a unique a′ such that α((ab)) = (a′b′)
for all b and some b′. Therefore α determines a permutation π ∈ Sn such that π(a) = a′.
Thus α((ab)) = (a′b′) = (π(a) π(b)), which equals the conjugate π(ab)π−1 because
the latter interchanges a′ and b′ and fixes all other integers. Since Sn is generated by
2-cycles by (3.1.4), it follows that α is conjugation by π, so it is an inner automorphism.

Recall that a group G is said to be complete if the conjugation homomorphism
τ : G → Aut(G) is an isomorphism, i. e., Ker(τ) = Z(G) = 1 and Aut(G) = Inn(G) by
(4.3.8). Now Z(Sn) = 1 if n ̸= 2 – see Exercise (4.2.10). Hence we obtain:

Corollary (5.3.5). The symmetric group Sn is complete if n ̸= 2 or 6.

Of course S2 is not complete since it is abelian. It is known that the group S6 has a
non-inner automorphism, so it too is not complete.
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Finite p-groups
Ifp is a primenumber, a finite group is called ap-group if its order is a power ofp. Finite
p-groups form an important and highly complex class of groups. A first indication that
these groups have special features is provided by the following result.

(5.3.6). If G is a non-trivial finite p-group, then Z(G) ̸= 1.

Proof. Consider the class equation of G in the form

|G| = Z(G)
 + |Cr+1| + ⋅ ⋅ ⋅ + |Ch|,

– see (5.3.1) and (5.3.2). Here |Ci| divides |G| and hence is a power of p; also |Ci| > 1. If
Z(G) = 1, then it would follow that |G| ≡ 1 (mod p), which is impossible because |G|
is a power of p. Therefore Z(G) ̸= 1.

This behavior of finite p-groups stands in contrast to finite groups in general,
which can easily have trivial center.

Corollary (5.3.7). If p is a prime, every group of order p2 is abelian.

Proof. LetG be a groupof orderp2. Then |Z(G)| = porp2 by (5.3.6) and (4.1.1). If |Z(G)| =
p2, then G = Z(G) is abelian. Thus we can assume that |Z(G)| = p, so that |G/Z(G)| = p.
By (4.1.4) both G/Z(G) and Z(G) are cyclic, say G/Z(G) = ⟨aZ(G)⟩ and Z(G) = ⟨b⟩. It
follows that each element of G has the form aibj where i, j are integers. However,

(aibj)(ai
′
bj
′
) = ai+i

′
bj+j
′
= (ai

′
bj
′
)(aibj)

since b ∈ Z(G), which shows that G is abelian and Z(G) = G, a contradiction.

On the other hand, there are non-abelian groups of order 23 = 8, for example
Dih(8), so (5.3.7) does not generalize to groups of order p3.

Sylow’s3 Theorem
Group actions will now be used to give a proof of Sylow’s Theorem, which is probably
the most celebrated and frequently used result in elementary group theory.

Let G be a finite group and p a prime, and write |G| = pamwhere p does not divide
the integerm. Thus pa is the highest power of p dividing |G|. Lagrange’s Theoremguar-
antees that the order of a p-subgroup ofG is at most pa. That p-subgroups of this order
actually occur is the first part of Sylow’s Theorem. A subgroup of G with the order pa

is called a Sylow p-subgroup.

(5.3.8) (Sylow’s Theorem). Let G be a finite group and let pa denote largest power of the
prime p that divides |G|. Then the following are true.

3 Peter Ludwig Mejdell Sylow (1832–1918).
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(i) Every p-subgroup of G is contained in some subgroup of order pa: in particular, Sy-
low p-subgroups exist.

(ii) If np is the number of Sylow p-subgroups, np ≡ 1 (mod p).
(iii) Any two Sylow p-subgroups are conjugate in G.

Proof. Write |G| = pamwhere p does not divide the integerm. Three group actions will
be used during the course of the proof.

(a) Let 𝒮 be the set of all subsets of G with exactly pa elements. Then 𝒮 has s ele-
ments where

s = (p
am
pa
) =

m(pam − 1) ⋅ ⋅ ⋅ (pam − pa + 1)
1 ⋅ 2 ⋅ ⋅ ⋅ (pa − 1)

.

First we prove that p does not divide s. To this end consider the rational number pam−i
i

where 1 ≤ i < pa. If pj | i, then j < a and hence pj | pam − i. On the other hand,
if pj | pam − i, then j < a since otherwise pa | i. Therefore pj | i. It follows that the
integers pam − i and i involve the same highest power of p, which can of course be
cancelled in the fraction pam−i

i ; thus no p’s occur in this rational number. It follows
that p does not divide s, as claimed.

Now we introduce the first group action. The group G acts on the set 𝒮 via left
multiplication, i. e., g ⋅X = gX where X ⊆ G and |X| = pa. Thus 𝒮 splits up into disjoint
G-orbits. Since |𝒮| = s is not divisible by p, there must be at least one G-orbit 𝒮1 such
that |𝒮1| is not divisible by p. Choose X ∈ 𝒮1 and put P = StG(X), which is, of course,
a subgroup. Then |G : P| = |𝒮1|, from which it follows that p does not divide |G : P|.
However pa divides |G| = |G : P| ⋅ |P|, which implies that pa divides |P|.

Now fix x in X; then the number of elements gx with g ∈ P equals |P|. Also gx ∈ X;
hence |P| ≤ |X| = pa and consequently |P| = pa. Therefore P is a Sylow p-subgroup
of G and we have shown that a Sylow p-subgroup exists.

(b) Let 𝒯 denote the set of all conjugates of the Sylow p-subgroup P constructed
in (a). We argue next that |𝒯 | ≡ 1 (mod p).

The group P acts on the set 𝒯 by conjugation, i. e., g ⋅ Q = gQg−1 where g ∈ P
and Q ∈ 𝒯 ; clearly |gQg−1| = |Q| = |P| = pa. In this action {P} is a P-orbit since
gPg−1 = P if g ∈ P. Suppose that {P1} is another one element P-orbit. Then P1 ⊲ ⟨P,P1⟩;
for xP1x−1 = P1 if x ∈ P ∪ P1, so N⟨P,P1⟩(P1) = ⟨P,P1⟩. (Here N⟨P,P1⟩(P1) denotes the
normalizer of P1.) By (4.3.5) PP1 is a subgroup and its order is

|PP1| =
|P| ⋅ |P1|
|P ∩ P1|

,

which is certainly a power of p. But P ⊆ PP1 and P already has the maximum order
possible for a p-subgroup. Therefore P = PP1, so P1 ⊆ P and hence P1 = P since
|P1| = |P|.
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Consequently there is only one P-orbit of 𝒯 with a single element. Every other
P-orbit has order a power of p greater than 1. Therefore |𝒯 | ≡ 1 (mod p).

(c) Finally, let P2 be an arbitrary p-subgroup of G. We aim to show that P2 is con-
tained in some conjugate of the Sylow p-subgroup P found in (a); this will complete
the proof of Sylow’s Theorem.

Let P2 act on 𝒯 by conjugation, where as before 𝒯 is the set of all conjugates of P.
Assume that P2 is not contained in any member of 𝒯 . If {P3} is a one element P2-orbit
of 𝒯 , then, arguing as in (b), we see that P2P3 is a p-subgroup containing P3, so P3 =
P2P3 because |P3| = pa. Thus P2 ⊆ P3 ∈ 𝒯 , contrary to assumption. It follows that
there are no single element P2-orbits in 𝒯 ; this means that |𝒯 | ≡ 0 (mod p), which
contradicts the conclusion of (b).

An important special case of Sylow’s Theorem is:

(5.3.9) (Cauchy’s Theorem). If the order of a finite group G is divisible by a prime p,
then G has an element of order p.

Proof. Let P be a Sylow p-subgroup of G. Then P ̸= 1 since p divides |G|. Choose 1 ̸=
g ∈ P; then |g| divides |P|, and hence |g| = pm wherem > 0. Thus gp

m−1
has order p, as

required.

While (5.3.8) does not tell us the exact number of Sylow p-subgroups, it provides
valuable informationwhichmay be sufficient to determine howmany such subgroups
are present. Let us review what is known. Suppose P is a Sylow p-subgroup of a finite
groupG. Then, since every Sylow p-subgroup is a conjugate of P, the number of Sylow
p-subgroups of G equals the number of conjugates of P, which by (5.2.1) is

np =
G : NG(P)

,

where NG(P) is the normalizer of P in G. Hence np divides |G : P| since P ≤ NG(P). Also
of course

np ≡ 1 (mod p).

Example (5.3.2). Find the numbers of Sylow p-subgroups of the alternating group A5.
Let G = A5. We can assume that p divides |G|, so that p = 2, 3 or 5. Note that a

non-trivial element of G has one of three cycle types,

(∗∗)(∗∗)(∗), (∗ ∗ ∗)(∗)(∗), (∗ ∗ ∗ ∗ ∗)

If p = 2, then n2 |
60
4 = 15 and n2 ≡ 1 (mod 2), so n2 = 1, 3, 5 or 15. There are

5×3 = 15 elements of order 2 inG, with three of them in each Sylow 2-subgroup. Hence
n2 ≥ 5. If n2 = 15, then P = NG(P) where P is a Sylow 2-subgroup, since P ≤ NG(P) ≤ G
and |G : NG(P)| = 15 = |G : P|. But this is wrong since P is normalized by a 3-cycle –
note that the Klein 4-group is normal in A4. Consequently n2 = 5.
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Next n3 |
60
3 = 20 and n3 ≡ 1 (mod 3). Thus n3 = 1, 4 or 10. Now G has (53) × 2 = 20

elements of order 3, which shows that n3 > 4. Hence n3 = 10. Finally, n5 | 12 and n5 ≡ 1
(mod 5), so n5 = 6 since n5 = 1 would give only four elements of order 5.

The next result provides some very important information about the group A5.

(5.3.10). The alternating group A5 is simple.

Proof. Let G = A5 and suppose N is a proper non-trivial normal subgroup of G. The
possible orders of elements of G are 1, 2, 3, or 5, (note that 4-cycles are odd). If N con-
tains an element of order 3, it contains a Sylow 3-subgroup of G, and by normality
it contains all such. Hence N contains all 3-cycles. Now the easily verified equations
(ab)(ac) = (acb) and (ac)(bd) = (abc)(abd), together with the fact that every permuta-
tion in G is a product of an even number of transpositions, shows that G is generated
by 3-cycles. Therefore N = G, which is a contradiction.

Next suppose N has an element of order 5; then N contains a Sylow 5-subgroup
and hence all 5-cycles. But (12345)(12543) = (132), which gives the contradiction that
N contains a 3-cycle.

The argument thus far tells us that each element ofN has order a power of 2,which
implies that |N | is a power of 2 by Cauchy’s Theorem. Since |N | divides |G| = 60, this
order must be 2 or 4. We leave it to the reader to disprove these possibilities. This final
contradiction shows that G is a simple group.

More generally,An is simple for alln ≥ 5: this is proved in (10.1.7) below.Wewill see
in Section 12.4 that the simplicity of A5 is intimately connected with the insolvability
of polynomial equations of degree 5 by radicals.

Example (5.3.3). Find all groups of order 21.
Let G be a group of order 21. Then G contains elements a and bwith orders 7 and 3

respectively by (5.3.9). Now the order of ⟨a⟩∩⟨b⟩divides both 7 and 3, i. e., ⟨a⟩∩⟨b⟩ = 1,
and thus |⟨a⟩⟨b⟩| = |a| ⋅ |b| = 21, which means that G = ⟨a⟩⟨b⟩. Next ⟨a⟩ is a Sylow
7-subgroup of G, and n7 ≡ 1 (mod 7) and n7 | 3. Hence n7 = 1, so that ⟨a⟩ ⊲ G and
bab−1 = ai where 1 ≤ i < 7. If i = 1, then G is abelian and |ab| = 21. In this case
G = ⟨ab⟩ ≃ ℤ21.

Next assume i ̸= 1. Now b3 = 1 and bab−1 = ai, with 2 ≤ i < 7, imply that a =
b3ab−3 = ai

3
. Hence 7 | i3 − 1, which shows that i = 2 or 4. Now [2]7 = [4]−17 since

8 ≡ 1 (mod 7). Since we can replace b by b−1 if necessary, there is nothing to be lost in
assuming that i = 2.

Thus far we have discovered that G = {aubv | 0 ≤ u < 7,0 ≤ v < 3} and that the
relations a7 = 1 = b3, bab−1 = a2 hold. But is there really such a group? An example
can be found by using permutations. Put π = (1234567) and σ = (235)(476): thus ⟨π, σ⟩
is a subgroup of S7. One easily verifies that π7 = 1 = σ3 and σπσ−1 = π2. A brief
computation reveals that the assignments a → π, b → σ determine an isomorphism
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fromG to the group ⟨π, σ⟩. It follows thatup to isomorphism there are exactly twogroups
of order 21.

Example (5.3.4). Show that there are no simple groups of order 300.
Suppose that G is a simple group of order 300. Since 300 = 22 ⋅ 3 ⋅ 52, a Sylow

5-subgroup P has order 25. Now n5 ≡ 1 (mod 5) and n5 divides 300/25 = 12. Thus
n5 = 1 or 6. But n5 = 1 implies that P ⊲ G, which is impossible. Hence n5 = 6 and
|G : NG(P)| = 6. The left action of G on the set of left cosets of NG(P), – see Section 5.1
– leads to a homomorphism θ from G to S6. Also Ker(θ) = 1 since G is simple. Thus θ is
injective and G ≃ Im(θ) ≤ S6. However, |G| = 300, which does not divide |S6| = 6!, so
we have a contradiction.

Exercises (5.3).
(1) A finite p-group cannot be simple unless its order is p.
(2) Let G be a group of order pq where p and q are primes such that p ̸≡ 1 (mod q)

and q ̸≡ 1 (mod p). Prove that G is cyclic.
(3) Show that if p is a prime, a group of order p2 is isomorphic with Zp2 or Zp × Zp.
(4) Let P be a Sylow p-subgroup of a finite group G and letN ⊲G. Prove that P ∩N and

PN/N are Sylow p-subgroups of N and G/N respectively.
(5) Show that there are no simple groups of order 312.
(6) Let G be a finite simple group which has a subgroup of index n. Prove that G is

isomorphic with a subgroup of An. [Hint: let H have index n in G. Consider the
action of G on left cosets of H and the normal core of H in G.]

(7) Prove that there are no simple groups of order 1960. [Hint: assume there is one
and find n7; then apply Exercise (5.3.6).]

(8) Prove that there are no simple groups of order 616. [Hint: if there is one, prove
that for this group one must have n11 = 56 and n7 ≥ 8; then count the elements of
orders 7 and 11.]

(9) Prove that every group of order 561 is cyclic. [Hint: show that there is a cyclic nor-
mal subgroup ⟨x⟩ of order 11 × 17 = 187; then use the fact that 3 does not divide
|Aut(⟨x⟩)|.]

(10) Let G be a group of order 2mwherem is odd. Prove that G has a normal subgroup
of orderm. [Hint: let λ be the left regular representation of G. By (5.3.9) there is an
element g of order 2 in G. Now argue that λ(g)must be an odd permutation.]

(11) Find all finite groups with class number at most 2.
(12) Show that every group of order 10 is isomorphic withℤ10 or Dih(10). [Hint: follow

the method of Example (5.3.3).]
(13) Show that up to isomorphism there are exactly two groups of order 55.
(14) If H is a proper subgroup of a finite p-group G, prove that H < NG(H). [Hint: use

induction on |G| > 1, noting that H ⊲ HZ(G).]
(15) Let P be a Sylow p-subgroup of a finite group G and let H be a subgroup of G

containing NG(P). Prove thatH = NG(H). [Hint: if g ∈ NG(H), then P and gPg−1 are
conjugate in H.]
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(16) Let G be a finite group and suppose it is possible to choose one element from each
conjugacy class in such a way that all the selected elements commute. Prove that
G is abelian. [Hint: use (5.3.2).]
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6 Introduction to rings

A ring is a set equipped with two binary operations called addition andmultiplication
which are subject to a number of natural requirements. Thus, from the logical point of
view, a ring is a more complex object than a group, which is a set with a single binary
operation. Yet some of themost familiarmathematical objects are rings – for example,
the sets of integers, real polynomials, continuous functions – and for this reason some
readers may feel more comfortable with rings than with groups. One motivation for
the study of rings is to see how far properties of the ring of integers extend to rings in
general.

6.1 Elementary properties of rings

A ring is a triple

(R,+,×)

where R is a set and + and × are binary operations on R called addition and multipli-
cation such that the following properties hold: here a × b is written ab:
(i) (R,+) is an abelian group;
(ii) (R,×) is a semigroup;
(iii) the left and right distributive laws hold, i. e.,

a(b + c) = ab + ac, (a + b)c = ac + bc, (a, b, c ∈ R).

If in addition the commutative law for multiplication holds, i. e.
(iv) ab = ba for all a, b ∈ R,

then R is called a commutative ring.
If R contains an element 1R ̸= 0R such that 1Ra = a = a1R for all a ∈ R, then R

is called a ring with identity and 1R is the (clearly unique) identity element of R. Care
must be taken to distinguish between the additive identity (or zero element) 0R, which
exists in any ring R, and the multiplicative identity 1R in a ring R with identity. These
will often be written simply 0 and 1. As with groups, we usually prefer to speak of “the
ring R”, rather than the triple (R,+,×).

There are many familiar examples of rings at hand.

Example (6.1.1).
(i) ℤ,ℚ, ℝ, ℂ are commutative rings with identity where the ring operations are the

usual addition and multiplication of arithmetic.

https://doi.org/10.1515/9783110691160-006
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(ii) Let m be a positive integer. Then ℤm, the set of congruence classes modulo m,
is a commutative ring with identity where the ring operations are addition and
multiplication of congruence classes.

(iii) The set of all continuous real-valued functions defined on the interval [0, 1] is a
ring when addition and multiplication are given by f + g(x) = f (x) + g(x) and
fg(x) = f (x)g(x). This is a commutative ring in which the identity element is the
constant function 1.

(iv) Let R be any ring with identity and defineMn(R) to be the set of all n × nmatrices
with entries in R. The usual rules for adding and multiplying matrices are to be
used. By the elementary properties of matrices Mn(R) is a ring with identity. It is
not hard to see thatMn(R) is commutative if and only ifR is commutative and n = 1.

Of course the ring axioms must be verified in these examples, but this is a routine
exercise.

Rings of polynomials
Next we introduce rings of polynomials, which are one of the most fruitful sources of
rings.

First we must give a clear definition of a polynomial, not involving vague terms
like “indeterminate”. In essence a polynomial is just the list of its coefficients, ofwhich
only finitely many can be non-zero. We proceed to refine this idea. Let R be a ring with
identity. A polynomial over R is a sequence of elements ai ∈ R, one for each natural
number i,

f = (a0, a1, a2, . . .)

such that ai = 0 for all but a finite number of i; the ai are called the coefficients of f .
The zero polynomial is (0R,0R,0R, . . . ). If f = (a0, a1, . . .) is not zero, there is a largest
integer i such that ai ̸= 0; thus f = (a0, a1, . . . , ai,0,0, . . .). The integer i is called the
degree of f , in symbols

deg(f ).

It turns out to be convenient to assign to the zero polynomial the degree−∞. A polyno-
mial whose degree is less than 1, i. e., one of the form (a0,0,0, . . .), is called a constant
polynomial.

The definitions of addition andmultiplication of polynomials are just the familiar
rules from elementary algebra, but adapted to the current notation. Let f = (a0, a1, . . .)
and g = (b0, b1, . . .) be polynomials over R. Their sum and product are defined by

f + g = (a0 + b0, a1 + b1, . . . , ai + bi, . . .)
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and

fg = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . . ,
n
∑
j=0

ajbn−j, . . .).

Notice that these really are polynomials; for all but a finite number of the coefficients
are 0. Negatives are defined by −f = (−a0,−a1,−a2, . . .).

(6.1.1). If f and g are polynomials over a ring with identity, then f + g and fg are poly-
nomials. Also
(i) deg(f + g) ≤ max{deg(f ),deg(g)};
(ii) deg(fg) ≤ deg(f ) + deg(g).

This follows quickly from the definitions of sum and product. It is also quite routine
to verify that the ring axioms hold for polynomials with these binary operations. Thus
we have:

(6.1.2). If R is a ring with identity, the set of all polynomials over R forms a ring with
identity.

Of course, themultiplicative identity in the polynomial ring over R is the constant
polynomial (1R,0R,0R, . . .).

Now we would like to recover the traditional notation for polynomials, involving
an “indeterminate” t. This is accomplished as follows. Let t denote the polynomial
(0, 1,0,0, . . .); then the product rule shows that t2 = (0,0, 1,0, . . .), t3 = (0,0,0, 1,0, . . .)
etc. If we define themultiple of a polynomial by a ring element r by the rule

r(a0, a1, . . .) = (ra0, ra1, . . .),

then it follows that

(a0, a1, . . . , an,0,0, . . .) = a0 + a1t + ⋅ ⋅ ⋅ + ant
n,

which is called a polynomial in t. Thuswe can returnwith confidence to the traditional
notation for polynomials knowing that it is soundly based. The ring of polynomials in t
over R will be written

R[t].

Polynomial rings in more than one indeterminate are defined recursively by the
equation

R[t1, . . . , tn] = (R[t1, . . . , tn−1])[tn],
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where n > 1. A typical element of R[t1, . . . , tn] is a multinomial expression

∑
ℓi=0,1,...

rℓ1 ⋅⋅⋅ℓn t
ℓ1
1 ⋅ ⋅ ⋅ t

ℓn
n ,

where the ℓi are non-negative integers and rℓ1 ⋅⋅⋅ℓn ∈ R equals zero for all but a finite
number of (ℓ1, ℓ2, . . . , ℓn).

We list next some elementary and frequently used consequences of the ring ax-
ioms.

(6.1.3). Let R be ring, let a, b be elements of R and let n be an integer. Then:
(i) a0 = 0 = 0a;
(ii) a(−b) = (−a)b = −(ab);
(iii) (na)b = n(ab) = a(nb).

Proof. By the distributive law a(0 + 0) = a0 + a0. Hence a0 = a0 + a0 and so a0 = 0
after cancellation. Similarly 0a = 0. This proves (i). As for (ii) we have a(−b) + ab =
a(−b + b) = a0 = 0. Thus a(−b) = −(ab). Similarly (−a)b = −(ab). To prove (iii) as-
sume that n ≥ 0; then (na)b = n(ab) by an easy induction on n. Next (−na)b + nab =
(−na+na)b = 0b = 0, so (−na)b = −(nab). Similarly a(−nb) = −(nab), which completes
the proof.

Group rings
A group ring unites the concepts of group and ring. Let G be a group and R a ring with
identity. The group ring RG is the set of all formal finite sums r1g1 + r2g2 + ⋅ ⋅ ⋅ + rngn
where ri ∈ R and gi ∈ G. Frequently such elements are written

∑
g∈G

rgg

with the understanding that rg = 0 for all but a finite number of g. The ring operations
for RG are given by

∑
g∈G

rgg + ∑
g∈G

sgg = ∑
g∈G
(rg + sg)g

and

(∑
g∈G

rgg)(∑
g∈G

sgg) = ∑
g∈G
( ∑
x,y∈G,xy=g

rxsy)g.

Thus to form the sum one simply adds components of corresponding group elements:
to form the product think of multiplying out the sums in the product term by term and
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collecting like terms. It is straight forward to verify that RG is a ring with identity. The
zero element 0RG has all its coefficients equal to 0R, while the identity is 1RG = 1R1G,
which is usually written 1.

If the ring is a field F, then FG is also a vector space over F. Then FG is called the
group algebra of G over F. Group algebras play a critical role in the theory of group
representations, which is the topic of Chapter 14.

Units in rings
Suppose that R is a ring with identity. An element r ∈ R is called a unit if it has a
multiplicative inverse, i. e., an element s ∈ R such that rs = 1 = sr. Notice that 0 cannot
be a unit since 0s = 0 ̸= 1 for all s ∈ S by (6.1.3). Also, if r is a unit, it has a unique
inverse, written r−1: this is proved in the same way as (3.2.1)(iii).

Now suppose that r1 and r2 are twounits ofR. Then r1r2 is also aunit since (r1r2)−1 =
r−12 r−11 , as is seen by forming products with r1r2. Also of course (r−1)−1 = r, so that r−1 is
a unit. Since 1 is its own inverse, we can state:

(6.1.4). If R is a ring with identity, the set of units of R is a multiplicative group in which
the group operation is the ring multiplication.

The group of units of R is written

U(R)

or sometimes R∗. Here are some examples of groups of units.

Example (6.1.2).
(i) U(ℤ) = {±1}, a group of order 2.
(ii) U(ℚ) = ℚ − 0, the multiplicative group of non-zero rational numbers.
(iii) Ifm > 0, then U(ℤm) is the multiplicative groupℤ∗m of all congruence classes [i]m

where gcd(i,m) = 1. This is an abelian group of order ϕ(m).
(iv) U(ℝ[t]) is the group of non-zero constant polynomials. For if fg = 1, the polyno-

mials f and g must be constant.

Exercises (6.1).
(1) Which of the following are rings?

(i) The sets of even and odd integers, with the usual arithmetic operations;
(ii) the set of all differentiable functions on [0, 1]where f + g(x) = f (x) + g(x) and

fg(x) = f (x)g(x);
(iii) the set of all singular 2 × 2 real matrices, with the usual matrix operations.

(2) Let S be a non-empty set. Define two binary operations on the power set 𝒫(S) by
X + Y = (X ∪ Y) − (X ∩ Y) and X ⋅ Y = X ∩ Y . Prove that (𝒫(S),+, ⋅) is a commutative
ring with identity. Show also that X2 = X and 2X = 0𝒫(S).
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(3) A ringR is calledBoolean if r2 = r for all r ∈ R, (cf. Exercise (6.1.2)). IfR is a Boolean
ring, prove that 2r = 0 and that R is commutative.

(4) Let A be an arbitrary (additively written) abelian group. Prove that A is the under-
lying additive group of some commutative ring.

(5) Find the unit groups of the following rings:
(i) {m2n | m, n ∈ ℤ}, with the usual addition and multiplication;
(ii) Mn(ℝ) with the standard matrix operations;
(iii) the ring of continuous functions on [0, 1].

(6) Prove that the Binomial Theorem is valid in any commutative ring with identity R,
i. e., (a + b)n = ∑ni=0 (ni)a

n−ibi where a, b ∈ R and n is a non-negative integer. [Hint:
use induction on n.]

(7) Let R be a ring with identity. Suppose that a is an element of R with a unique left
inverse b, i. e., b is the unique element in R such that ba = 1. Prove that ab = 1, so
that a is a unit. [Hint: consider the element ab − 1 + b.]

(8) Let R be a ring with identity. Explain how to define a formal power series over R
of the form∑∞n=0 ant

n with an ∈ R. Then verify that these form a ring with identity
with respect to appropriate sum and product operations. (This is called the ring of
formal power series in t over R, in symbols R[[t]].)

(9) Let R be a ring with identity. Prove thatMn(R) is a commutative ring if and only if
R is commutative and n = 1.

(10) Let R be a ring with identity. The center of R is defined to be the set C(R) of r ∈ R
such that rs = sr for all s ∈ R. Prove that C(R) is commutative subring of R.

(11) Let R be a ring with identity. Prove that the center of the ringMn(ℝ) consists of all
scalar n × nmatrices.

6.2 Subrings and ideals

In Chapter 3 the concept of a subgroup of a groupwas introduced and already this has
proved to be valuable in the study of groups. We aim to pursue a similar course for
rings by introducing subrings.

Let (R,+,×) be a ring and S a subset of the underlying set R. Then S is called a
subring of R if (S,+S ,×S) is a ring where +S and ×S denote the binary operations +
and × when restricted to S. In particular S is a subgroup of the additive group (R,+).
With the aid of (3.3.4), we obtain a more useful description of a subring.

(6.2.1). Let S be a subset of a ring R. Then S is a subring of R if and only if S contains 0R
and it is closed with respect to addition, multiplication and the formation of negatives,
i. e., if a, b ∈ S, then a + b ∈ S, ab ∈ S and −a ∈ S.
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Example (6.2.1).
(i) ℤ,ℚ, ℝ are successively larger subrings of the ring of complex numbers ℂ.
(ii) The set of even integers 2ℤ is a subring of ℤ. Notice that it does not contain the

identity element, which is not a requirement for a subring.
(iii) In any ring R there are at least two subrings, the zero subring 0 = {0R} and the

improper subring R itself.
(iv) Let S = 1

2ℤ, i. e., S = {
m
2 | m ∈ ℤ}. Then S is an additive subgroup of the ring ℚ,

but it is not a subring since 1
2 ×

1
2 =

1
4 ∉ S. Thus the concept of a subring is more

special than that of an additive subgroup.

Ideals
It is reasonable to expect there to be an analogy between groups and rings in which
subgroups correspond to subrings. The question then arises: what is to correspond to
normal subgroups? This is where ideals enter the picture.

LetRbe anarbitrary ring. A left ideal ofR is an additive subgroupL such that ra ∈ L
whenever r ∈ R and a ∈ L. Similarly a right ideal of R is an additive subgroup S such
that ar ∈ Swhenever r ∈ R and a ∈ S. If I is both a left and a right ideal of R, it is called
a 2-sided ideal, or simply an ideal of R. Thus an ideal is an additive subgroup which is
closed with respect to multiplication of its elements by arbitrary ring elements on the
left and the right. Notice that left ideals and right ideals are subrings.

Example (6.2.2).
(i) Let R be a ring and let x ∈ R. Define subsets of R

Rx = {rx | r ∈ R} and xR = {xr | r ∈ R}.

Then Rx and xR are respectively a left ideal and a right ideal of R. For the first
statement Rx is a subgroup since r1x + r2x = (r1 + r2)x and −(rx) = (−r)x; also
s(rx) = (sr)x for all r ∈ R, so Rx is a left ideal. Similarly xR is a right ideal. If R is
a commutative ring, Rx = xR is an ideal. An ideal of this type is called a principal
ideal.

(ii) Every subgroup ofℤhas the form nℤwhere n ≥ 0by (4.1.5). Hence every subgroup
of ℤ is a principal ideal.

(iii) On the other hand, ℤ is a subring, but not an ideal, of ℚ since 1
2 (1) ∉ ℤ. Thus

subrings are not always ideals.
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Thus we have a hierarchy of five distinct substructures of rings:

subgroups

subrings

left ideals right ideals

ideals

(6.2.2). The intersection of a non-empty set of subrings (ideals, left ideals, right ideals)
of a ring R is a subring (respectively ideal, left ideal, right ideal) of R.

The easy proofs are left to the reader. Let R be any ring and let X be a non-empty
subset ofR. On the basis of (6.2.2) we can assert that the intersection of all the subrings
of R which contain X is a subring, clearly the smallest subring containing X. This is
called the subring generated by X and it will be denoted by

Rg⟨X⟩.

If X = {x1, x2, . . . , xn}, this subring is denoted by Rg⟨x1, x2, . . . , xn⟩. When R has an iden-
tity element, the general form of elements of Rg⟨X⟩ is not hard to determine.

(6.2.3). Let R be a ring with identity and let X be a non-empty subset of R. Then Rg⟨X⟩
consists of all elements of the form

∑
ℓ1 ,ℓ2 ,...,ℓn

mℓ1 ,ℓ2 ,...,ℓnx
ℓ1
1 ⋅ ⋅ ⋅ x

ℓn
n

where xi ∈ X, n ≥ 0, mℓ1 ,ℓ2 ,...,ℓn ∈ ℤ and the ℓi are non-negative integers.

Again the easy proof is left to the reader. A ring R is said to be finitely generated
if R = Rg⟨x1, x2, . . . , xn⟩ for some finite set of elements {x1, . . . , xn}. In a similar vein we
define the left, right or two-sided ideal generated by a non-empty subset X of a ring R
to be the intersection of all the respective types of ideals that contain X.

(6.2.4). Let R be a ring with identity and let X be a non-empty subset of R. Then the left
ideal generated by X consists of all elements of the form

n
∑
i=1

rixi

where xi ∈ X, ri ∈ R, n ≥ 0.
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There are similar statements for right and two-sided ideals. The simple proofs are
left as an exercise. The left ideal of R generated by X is denoted by

RX.

A left ideal I of a ringR is said to be finitely generated as a left ideal if it canbe generated
by finitelymany elements x1, x2, . . . , xn. If R has an identity, the left ideal I has the form
I = R{x1, x2, . . . xn} = Rx1 + Rx2 + ⋅ ⋅ ⋅ + Rxn.

If R is a commutative ring with identity, the ideal R{x1, x2, . . . , xn} is often written
(x1, x2, . . . , xn). In particular

(x)

is the principal ideal R{x}, consisting of all elements of the form rx where r ∈ R.

Maximal ideals in rings
Amaximal ideal I of a ring R is defined to be a largest proper ideal. Maximal left ideals
andmaximal right ideals are defined in a similar manner. For example, if p is a prime,
pℤ is a maximal ideal ofℤ: for |ℤ/pℤ| = p and no ideal can occur strictly between pℤ
and ℤ. Zorn’s Lemma can be used to establish the existence of maximal ideals.

(6.2.5). An arbitrary ring R with identity has at least one maximal ideal.

Proof. Let 𝒮 denote the set of all proper ideals of R. Now the zero ideal is proper since
it does not contain 1R, so 𝒮 is not empty. Of course, 𝒮 is partially ordered by inclusion.
Let 𝒞 be a chain in 𝒮 and define U to be ⋃I∈𝒞 I. It is easily seen that U is an ideal. If
U = R, then 1R belongs to some I in 𝒞, from which it follows that R = RI ⊆ I and I = R.
From this contradiction we infer that U ≠ R, so that U ∈ 𝒮. Now Zorn’s Lemma can be
applied to produce a maximal element of 𝒮, i. e., a maximal ideal of R.

On the other hand, not every ring has a maximal ideal.

Example (6.2.3). There exist non-zero commutative rings without maximal ideals.

An easy way to get an example is to take the additive abelian groupℚ and turn it
into a ring by declaring all products of elements to be 0. Then ℚ becomes a commu-
tative ring in which subgroups and ideals are the same. Butℚ cannot have a maximal
subgroup: for if S were one, ℚ/S would be a group without proper non-trivial sub-
groups and so |ℚ/S| = p, a prime. But this is impossible sinceℚ = pℚ. It follows that
this ring has no maximal ideals.

Homomorphisms of rings
It is still not apparent why ideals as defined above should be the analogs of normal
subgroups. The decisive test of the appropriateness of the definition will come when
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ring homomorphisms are defined. If we are right, the kernel of a homomorphism will
be an ideal.

It is fairly clear how one should define a homomorphism from a ring R to a ring S:
this is a function θ : R→ S which relates the ring operations in the sense that

θ(a + b) = θ(a) + θ(b) and θ(ab) = θ(a)θ(b)

for all a, b ∈ R. Thus in particular θ is a homomorphism of groups.
If in addition θ is bijective, θ is called an isomorphismof rings. If there is an isomor-

phism from ring R to ring S, then R and S are said to be isomorphic rings, in symbols

R ≃ S.

Example (6.2.4).
(i) Let m be a positive integer. The function θm : ℤ → ℤm defined by θm(x) = [x]m

is a ring homomorphism. This is a consequence of the way in which sums and
products of congruence classes were defined.

(ii) The zero homomorphism 0 : R → S sends every r ∈ R to 0S. Also the identity
isomorphism from R to R is just the identity function.

Complex numbers
For a more interesting example of a ring isomorphism, consider the set R of matrices
of the form

[
a b
−b a
] , (a, b ∈ ℝ).

These are quickly seen to form a subring of the matrix ringM2(ℝ). Now define a func-
tion θ : R→ ℂ by the rule

θ ([ a b
−b a
]) = a + ib

where i = √−1. Then θ is a ring homomorphism: for

[
a1 b1
−b1 a1

] [
a2 b2
−b2 a2

] = [
a1a2 − b1b2 a1b2 + a2b1
−a1b2 − a2b1 a1a2 − b1b2

] ,

which is mapped by θ to (a1a2 − b1b2) + i(a1b2 + a2b1), i. e., to the product
(a1 + ib1)(a2 + ib2). An easier calculation shows that θ sends

[
a1 b1
−b1 a1

] + [
a2 b2
−b2 a2

]

to (a1 + ib1) + (a2 + ib2).
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Certainly θ is surjective; it is also injective since a + ib = 0 implies that a = 0 = b.
Therefore θ is an isomorphism and we obtain the interesting fact that R ≃ ℂ. Thus
complex numbers can be represented by real 2×2 matrices. In fact this provides a way
to define complex numbers without resorting to the square root of −1.

Next we consider the nature of the kernel and image of a ring homomorphism.
The following result should be compared with (4.3.2).

(6.2.6). If θ : R→ S is a homomorphism of rings, then Ker(θ) is an ideal of R and Im(θ)
is a subring of S.

Proof. We know already from (4.3.2) that Ker(θ) and Im(θ) are subgroups. Let k ∈
Ker(θ) and r ∈ R. Then θ(kr) = θ(k)θ(r) = 0S and θ(rk) = θ(r)θ(k) = 0S since θ(k) = 0S.
Therefore Ker(θ) is an ideal of R. Furthermore θ(r1)θ(r2) = θ(r1r2), so that Im(θ) is a
subring of S.

(6.2.7). If θ : R→ S is an isomorphism of rings, then so is θ−1 : S → R.

Proof. Recall from (3.3.1) that θ−1 is an isomorphism of groups. It must still be shown
that θ−1(s1s2) = θ−1(s1)θ−1(s2), (si ∈ S). Observe that the image of each side under θ
is s1s2. Since θ is injective, it follows that θ−1(s1s2) = θ−1(s1)θ−1(s2).

Quotient rings
Since ideals appear to be the natural ring theoretic analog of normal subgroups, we
expect to define a quotient of a ring by means of an ideal. Let I be an ideal of a ring R.
Certainly I is a normal subgroup of the additive abelian group R, so we can form the
quotient group R/I. This is an additive abelian group whose elements are the cosets
of I. TomakeR/I into a ring, a rule formultiplying cosetsmust be specified: the natural
one to try is

(r1 + I)(r2 + I) = r1r2 + I , (ri ∈ R).

To prove that this is well-defined, let i1, i2 ∈ I and note that

(r1 + i1)(r2 + i2) = r1r2 + (r1i2 + i1r2 + i1i2) ∈ r1r2 + I

since I is an ideal. Thus the product is independent of the choice of coset representa-
tives r1 and r2.

A further easy check shows that the ring axioms hold; therefore R/I is a ring, the
quotient ring of I in R. Note also that the assignment r → r + I leads to a surjective ring
homomorphism from R to R/I with kernel I; this is the canonical homomorphism, (cf.
Section 4.3).

As onemight anticipate, there are isomorphism theorems for rings similar to those
for groups.
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(6.2.8) (First Isomorphism Theorem). If α : R → S is a homomorphism of rings, then
R/Ker(α) ≃ Im(α).

(6.2.9) (Second Isomorphism Theorem). If I is an ideal and S is a subring of a ring R,
then S + I is a subring of R and S ∩ I is an ideal of S. Also S + I/I ≃ S/S ∩ I.

(6.2.10) (Third Isomorphism Theorem). Let I and J be ideals of a ring R such that I ⊆ J.
Then J/I is an ideal of R/I and (R/I)/(J/I) ≃ R/J.

Fortunately we can apply the isomorphism theorems for groups – see (4.3.4),
(4.3.5), (4.3.6). The isomorphisms constructed in the proofs of these theorems still
stand, if we allow for the additive notation. Thus we have only to check that they are
homomorphisms of rings.

For example, take the case of (6.2.8). From (4.3.4) we know that the assignment
r + Ker(α) → α(r) yields a group isomorphism θ : R/Ker(α) → Im(α). Next

θ((r1 + Ker(α))(r2 + Ker(α)) = θ(r1r2 + Ker(α)) = α(r1r2) = α(r1)α(r2),

which is equal to θ(r1 + Ker(α))θ(r2 + Ker(α)). Therefore θ is an isomorphism of rings:
this proves (6.2.8). It is left to the reader to complete the proofs of the other two iso-
morphism theorems.

(6.2.11) (The Correspondence Theorem). Let I be an ideal of a ring R. Then the assign-
ment S → S/I determines a bijection from the set of subrings of R that contain I to the
set of subrings of R/I. Furthermore S/I is an ideal of R/I if and only if S is an ideal of R.

Proof. The correspondence between subgroups described in (4.2.2) applies here. It re-
mains only to verify that S is a subring or ideal if and only if S/I is. It is left to the reader
to fill in the details.

Exercises (6.2).
(1) Classify the following subsets of a ring R as an additive subgroup, subring, left or

right ideal, or ideal, as is most appropriate:
(i) {f ∈ ℝ[t] | f (a) = 0} where R = ℝ[t] and a ∈ ℝ is fixed;
(ii) the set of twice differentiable functions on [0, 1]which satisfy the differential

equation f ′′ + f ′ = 0: here R is the ring of continuous functions on [0, 1];
(iii) nℤ where R = ℤ;
(iv) 1

2ℤ where R = ℚ.
(v) the set of real n × nmatrices with zero first row where R = Mn(ℝ).

(2) Prove (6.2.2).
(3) Prove (6.2.3) and (6.2.4).
(4) Which of the following rings are finitely generated?ℤ;ℚ; ℤ[t1, t2, . . . , tn].
(5) Let R be a ring with identity. If I is a left ideal containing a unit, show that I = R.
(6) Let I and J be ideals of a ring R such that I ∩ J = 0. Prove that ab = 0 for all a ∈ I,

b ∈ J.
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(7) Let a ∈ ℝ and define θa : ℝ[t] → ℝ by θa(f ) = f (a). Prove that θa is a ring homo-
morphism. Identify Im(θa) and Ker(θa).

(8) Let α : R → S be a surjective ring homomorphism and assume that R has an
identity element and S is not the zero ring. Prove that S has an identity element.

(9) Give examples of a left ideal that is not a right ideal and a right ideal that is not a
left ideal.

(10)Give an example of an ideal of a commutative ring with identity that is not princi-
pal.

(11) What is the form of elements of the left ideal generated by a subset X in a ring R
that does not have an identity element?

(12) Prove that the subring ofℚ consisting of all m
2n is a finitely generated ring.

(13) Let R be a ring with identity. Prove that R has a maximal left ideal and a maximal
right ideal. [Use Zorn’s Lemma.]

6.3 Integral domains, division rings and fields

The purpose of this section is to introduce some special types of ring with desirable
properties. Specifically we are interested in rings having a satisfactory theory of divi-
sion. For this reason it is necessary to exclude the phenomenon in which the product
of two non-zero ring elements equals zero.

If R is a ring, a left zero divisor is a non-zero element a such that ab = 0 for some
b ̸= 0 inR. Of course b is called a right zero divisor. Clearly the presence of zero divisors
will make it difficult to construct a reasonable theory of division.

Example (6.3.1). Let n be a positive integer. The zero divisors inℤn are the congruence
classes [m] where m and n are not relatively prime and 1 < m < n. Thus ℤn has zero
divisors if and only if n is not a prime.

For, ifm and n are not relatively prime and d > 1 is a common divisor ofm and n,
then [m][ nd ] = [

m
d ][n] = [0] since [n] = [0], while [m] ̸= 0 and [

n
d ] ̸= [0]; thus [m] is a

zero divisor.
Conversely, suppose that [m] is a zero divisor and [m][ℓ] = [0] where [ℓ] ̸= [0].

Then n | mℓ; thus, if m and n are relatively prime, n | ℓ and [ℓ] = [0] by Euclid’s
Lemma. This contradiction shows thatm and n cannot be relatively prime.

Nextwe introduce an important class of ringswith no zero divisors. An integral do-
main (or more briefly a domain) is a commutative ring with identity which has no zero
divisors. For example, ℤ is a domain, while ℤn is a domain if and only if n is a prime,
by Example (6.3.1). Domains can also be characterized by a cancellation property.

(6.3.1). Let R be a commutative ring with identity. Then R is a domain if and only if the
cancellation law is valid in R, that is, ab = ac and a ̸= 0 always imply that b = c.
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Proof. If ab = ac and b ̸= c, a ̸= 0, then a(b − c) = 0, so that a is a zero divisor and R is
not a domain. Conversely, if R is not a domain and ab = 0 with a, b ̸= 0, then ab = a0,
so the cancellation law fails.

The next result shows that it is much simpler to work with polynomials if the co-
efficient ring is a domain.

(6.3.2). Let R be an integral domain and let f , g ∈ R[t]. Then

deg(fg) = deg(f ) + deg(g).

Hence fg ̸= 0 if f ̸= 0 and g ̸= 0, so that R[t] is an integral domain.

Proof. If f = 0, then fg = 0 and deg(f ) = −∞ = deg(fg); hence formally the formula
is valid in this case. Assume that f ̸= 0 and g ̸= 0, and let atm and btn be the terms of
highest degree in f and g respectively; thus a ̸= 0 and b ̸= 0. Then fg = abtm+n + terms
of lower degree, and ab ̸= 0 since R is a domain. Therefore deg(fg) = m + n = deg(f ) +
deg(g).

Recall that a unit in a ringwith identity is an elementwith amultiplicative inverse.
A ring with identity in which every non-zero element is a unit is termed a division ring.
Commutative division rings are called fields. Clearlyℚ,ℝ andℂ are examples of fields,
while ℤ is not a field. Fields are one of the most frequently used types of rings since
the ordinary operations of arithmetic can be performed in a field.

Notice that a division ring cannot have zero divisors: for if ab = 0 and a ̸= 0, then
b = a−1ab = a−10 = 0. Thus the rings without zero divisors include domains and
division rings.

The ring of quaternions
The examples of division rings given so far are commutative, i. e., they are fields. We
will now describe a famous example of a non-commutative division ring, the ring of
Hamilton’s1 quaternions. Consider the following 2 × 2 matrices over ℂ,

I = [ i 0
0 −i
] , J = [ 0 1

−1 0
] , K = [0 i

i 0
]

where i = √−1. These are known in physics as the Pauli2 spin matrices. Simple matrix
computations show that the following relations hold:

I2 = J2 = K2 = −1,

1 William Rowan Hamilton (1805–1865).
2 Wolfgang Ernst Pauli (1900–1958).
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IJ = K = −JI , JK = I = −KJ, KI = J = −IK.

Here 1 is being used to denote the identity 2 × 2 matrix, as it must be distinguished
from the quaternion matrix I.

If a, b, c, d are rational numbers, we can form the matrix

a1 + bI + cJ + dK = [ a + bi c + di
−c + di a − bi

] ,

which is called a rational quaternion. Let R be the set of all rational quaternions. Then
R is a subring of the matrix ringM2(ℂ) containing the identity: for

(a1 + bI + cJ + dK) + (a′1 + b′I + c′J + d′K)
= (a + a′)1 + (b + b′)I + (c + c′)J + (d + d′)K,

while (a1 + bI + cJ + dK)(a′1 + b′I + c′J + d′K) equals

(aa′ − bb′ − cc′ − dd′)1 + (ab′ + a′b + cd′ − c′d)I
+ (ac′ + a′c + b′d − bd′)J + (ad′ + a′d + bc′ − b′c)K,

as is seen by multiplying out and using the properties of I, J, K above.
The significant property of the ring R is that each non-zero element is a unit. For,

if 0 ̸= Q = a1 + bI + cJ + dK, then

det(Q) =


a + bi c + di
−c + di a − bi


= a2 + b2 + c2 + d2 ̸= 0,

and by elementary matrix algebra

Q−1 = 1
det(Q)
[
a − bi −c − di
c − di a + bi

] ∈ R.

This allows us to state:

(6.3.3). The ring of rational quaternions is a non-commutative division ring.

Notice that the ring of quaternions is infinite. This is no accident since, by a fa-
mous theorem of Wedderburn,3 a finite division ring is a field. This will not be proved
here; however, wewill prove the corresponding statement for domains, which ismuch
easier.

(6.3.4). A finite integral domain is a field.

3 Joseph Henry Maclagan Wedderburn (1881–1948).
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Proof. LetR be a finite domain and let 0 ̸= r ∈ R; we need to show that r has an inverse.
Consider the function α : R → R defined by α(x) = rx. Now α is injective since rx = ry
implies that x = y by (6.3.1). However, R is a finite set, so it follows that αmust also be
surjective. Therefore 1 = rx for some x ∈ R and x = r−1.

Next we consider the role of ideals in commutative ring theory. A first observation
is that the presence of proper non-zero ideals is counter-indicative for the existence of
units.

(6.3.5). Let R be a commutative ring with identity. Then the set of non-units of R is equal
to the union of all the proper ideals of R.

Proof. Suppose that r is not a unit of R; then Rx = {rx | x ∈ R} is a proper ideal
containing r since 1 ∉ Rx. Conversely, if a unit r belongs to an ideal I, then for any x
in Rwe have x = (xr−1)r ∈ I, showing that I = R. Thus a unit cannot belong to a proper
ideal.

Recalling that fields are exactly the commutative ringswith identity inwhich each
non-zero element is a unit, we deduce:

Corollary (6.3.6). A commutative ring with identity is a field if and only if it has no
proper non-zero ideals.

Prime ideals
Let R be a commutative ring with identity. Recall that amaximal ideal of R is a proper
ideal I such that the only ideals containing I are I itself and R. Thus amaximal ideal is
amaximal proper ideal. A related concept is that of a prime ideal. IfR is a commutative
ring with identity, a prime ideal of R is a proper ideal with the property: ab ∈ I implies
that a ∈ I or b ∈ I, where a, b ∈ R.

There are enlightening characterizations of prime and maximal ideals in terms of
quotient rings.

(6.3.7). Let I be a proper ideal of a commutative ring R with identity.
(i) I is a prime ideal of R if and only if R/I is an integral domain;
(ii) I is a maximal ideal of R if and only if R/I is a field.

Proof. Let a, b ∈ R; then ab ∈ I if and only if (a + I)(b + I) = I = 0R/I . Thus I is prime
precisely when R/I has no zero divisors, i. e., it is a domain, so (i) is established. By
(6.2.11) I is maximal in R if and only if R/I has no proper non-zero ideals and by (6.3.6)
this is equivalent to R/I being a field.

Since every field is a domain, there follows at once:

Corollary (6.3.8). Every maximal ideal of a commutative ring with identity is a prime
ideal.
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On the other hand, prime ideals need not be maximal. Indeed, if R is any domain,
the zero ideal is certainly prime, but it is not maximal unless R is a field. More interest-
ing examples of non-maximal prime ideals can be constructed in polynomial rings.

Example (6.3.2). Let R = ℚ[t1, t2], the ring of polynomials in t1, t2 with rational coef-
ficients. Let I = Rt1 be the subset of all polynomials over R which are multiples of t1.
Then I is a prime ideal of R, but it is not maximal.

For consider the function α : R → ℚ[t2] which carries a polynomial f (t1, t2) to
f (0, t2). This is a surjective ring homomorphism. Now if f (0, t2) = 0, then f is amultiple
of t1, which shows that the kernel of α is I. From (6.2.8) we deduce that R/I ≃ ℚ[t2].
Since ℚ[t2] is a domain, but not a field, it follows from (6.3.7) that I is a prime ideal
of R which is not maximal.

The characteristic of an integral domain
Let R be a domain and let S = ⟨1⟩, the additive subgroup of R generated by 1. Suppose
for the moment that S is finite, with order n say; we claim that nmust be a prime. For
suppose that n = n1n2 where ni ∈ ℤ and 1 < ni < n. Then 0 = n1 = (n1n2)1 = (n11)(n21)
by (6.1.3). However, R is a domain, so n11 = 0 or n21 = 0, which shows that n divides
n1 or n2, a contradiction. Therefore n is a prime.

This observation is the basis for:

(6.3.9). Let R be an integral domain and put S = ⟨1⟩. Then either S is infinite or else it
has prime order p. In the latter event pa = 0 for all a ∈ R.

To prove the final statement, simply note that pa = (p1R)a = 0a = 0.
If R is an integral domain and ⟨1R⟩ has prime order p, then R is said to have char-

acteristic p. The other possibility is that ⟨1R⟩ is infinite, in which eventR is said to have
characteristic 0. Thus the characteristic of R,

char(R),

is either 0 or a prime. For example, ℤp and ℤp[t] are domains with characteristic p,
whileℚ, ℝ and ℝ[t] all have characteristic 0.

The field of fractions of an integral domain
Suppose that F is a field andR is a subring of F containing 1F . ThenR is a domain since
there cannot be zero divisors in F. Conversely, one can ask if every domain arises in
this way as a subring of a field.Wewill answer the question positively by showing how
to construct the field of fractions of a domain. It will be helpful for the reader to keep
in mind that the procedure to be described is a generalization of the way in which the
rational numbers are constructed from the integers.
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Let R be any integral domain. First we have to decide how to define a fraction
over R. Consider the set

S = {(a, b) | a, b ∈ R, b ̸= 0}.

Here a will correspond to the numerator and b to the denominator of the fraction.
A binary relation ∼ on Swill now be introducedwhich allows for cancellation between
numerator and denominator:

(a1, b1) ∼ (a2, b2) ⇔ a1b2 = a2b1.

Of course this relation is motivated by a familiar arithmetic rule: m1
n1
= m2

n2
if and only

ifm1n2 = m2n1.
We verify that ∼ is an equivalence relation on S. Only transitivity requires a com-

ment: suppose that (a1, b1) ∼ (a2, b2) and (a2, b2) ∼ (a3, b3); then a1b2 = a2b1 and
a2b3 = a3b2. Multiply the first equation by b3 and use the second equation to derive
a1b3b2 = a2b3b1 = a3b2b1. Cancel b2 to obtain a1b3 = a3b1; thus (a1, b1) ∼ (a3, b3). Now
define a fraction over R to be a ∼-equivalence class

a
b
= [(a, b)]

where a, b ∈ R, b ̸= 0. Note that ac
bc =

a
b since (a, b) ∼ (ac, bc); thus cancellation can be

performed within a fraction.
Let F denote the set of all fractions over R: we wish to make F into a ring. To this

end define addition and multiplication in R by the rules

a
b
+
a′

b′
=
ab′ + a′b

bb′
and (a

b
)(

a′

b′
) =

aa′

bb′
.

Here we have been guided by familiar arithmetic rules for adding and multiplying
fractions. However, it is necessary to show that these operations are well-defined,
i. e., there is no dependence on the chosen representative (a, b) from the equivalence
class a

b . For example, take the case of addition. Let (a, b) ∼ (c, d) and (a′, b′) ∼ (c′, d′):
then in fact (ab′ + a′b, bb′) ∼ (cd′ + c′d, dd′) because

(ab′ + a′b)dd′ = ab′dd′ + a′bdd′ = bcb′d′ + b′c′bd = (cd′ + c′d)bb′.

The next step is to verify the ring axioms: as an example wewill check the validity
of the distributive law

(
a
b
+
c
d
)(

e
f
) = (

a
b
)(

e
f
) + (

c
d
)(

e
f
),
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leaving the reader to verify the other axioms. By definition

(
a
b
)(

e
f
) + (

c
d
)(

e
f
) =

ae
bf
+
ce
df
=
aedf + cebf

bdf 2
=
ade + bce

bdf
,

which equals

(
ad + bc
bd
)(

e
f
) = (

a
b
+
c
d
)(

e
f
),

as claimed.
Once all the axioms have been checked, we can be sure that F is a ring; note that

the zero element of F is 0F =
0R
1R
. Clearly F is commutative and it has identity element

1F =
1R
1R
. Furthermore, if a, b ̸= 0,

(
a
b
)(

b
a
) =

ab
ab
=
1R
1R
= 1F ,

so that, as expected, the inverse of a
b is

b
a . Therefore F is a field, the field of fractions of

the domain R.
In order to relate F to R we introduce the natural function

θ : R→ F

defined by θ(a) = a
1 . It is straightforward to check that θ is an injective ring homomor-

phism. Therefore R ≃ Im(θ) and of course Im(θ) is a subring of F containing 1F . Thus
the original domain R is isomorphic with a subring of the field F. Our conclusions are
summed up in the following result.

(6.3.10). Let R be an integral domain and let F denote the set of all fractions over R, with
the addition and multiplication specified above. Then F is a field and the assignment
a → a

1 determines is an injective ring homomorphism from R to F.

Example (6.3.3).
(i) When R = ℤ, the field of fractions is, up to isomorphism, the field of rational

numbersℚ. This example motivated the general construction.
(ii) Let K be any field and put R = K[t]; this is a domain by (6.3.2). The field of frac-

tions F of R is the field of rational functions in t over K; these are formal quotients
of polynomials in t over K

f
g

where f , g ∈ R, g ̸= 0. The notation K{t} is often used denote the field of rational
functions in t over K.
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Exercises (6.3).
(1) Find all zero divisors in the following rings:ℤ6, ℤ15, ℤ2[t], ℤ4[t],Mn(ℝ).
(2) Let R be a commutative ring with identity such that the degree formula deg(fg) =

deg(f ) + deg(g) is valid in R[t]. Prove that R is a domain.
(3) If R is a division ring, prove that the only left ideals and right ideals are 0 and R.
(4) Let R be a ring with identity. If R has no left or right ideals except 0 and R, prove

that R is a division ring.
(5) Let θ : D→ R be a non-zero ring homomorphism. If D is a division ring, show that

it is isomorphic with a subring of R.
(6) Let I1, I2, . . . , Ik be non-zero ideals of a domain. Prove that I1 ∩ I2 ∩ ⋅ ⋅ ⋅ ∩ Ik ̸= 0. Is

this necessarily true for an infinite set of non-zero ideals?
(7) Let I denote the principal ideal (ℤ[t])t ofℤ[t]. Prove that I is prime but not maxi-

mal.
(8) The same problem for I = (ℤ[t])(t2 − 2).
(9) Let F be a field. If a, b ∈ F and a ≠ 0, define a function θa,b : F → F by the rule

θa,b(x) = ax +b. Prove that the set of all θa,b’s is a group with respect to functional
composition.

(10) Let F be the field of fractions of a domain R and let α : R → F be the canoni-
cal injective homomorphism r → r

1 . Suppose that β : R → K is an injective ring
homomorphism from R to some other field K. Prove that there is an injective ho-
momorphism θ : F → K such that θα = β. (Thus in a sense F is the smallest field
containing an isomorphic copy of R.)

(11) Let R be a commutative ring and let 0 ̸= r ∈ R. Prove that there is an ideal I which
is maximal subject to not containing r. Then prove that I is an irreducible ideal,
i. e., it is not the intersection of two larger ideals.

(12) Deduce from Exercise (6.2.11) that every proper ideal of a commutative ring R is an
intersection of irreducible ideals.

(13) Prove that quaternions ±I, ±J, ±K generate a group of order 8 with respect to ma-
trix multiplication: this is the quaternion group, denoted by Q8. Then show that
every subgroup of Q8 is normal, although the group is not abelian.

6.4 Finiteness conditions on ideals

In this section we introduce certain finiteness properties of ideals that are possessed
by some important classes of rings.

(6.4.1). Let ℐ be a non-empty set of left ideals of a ring R. Then the following statements
about ℐ are equivalent.
(i) The set ℐ satisfies the ascending chain condition, i. e., there does not exist an infi-

nite ascending chain of left ideals I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ with Ii ∈ ℐ.
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(ii) The set ℐ satisfies the maximal condition, i. e., every non-empty subset of ℐ has a
maximal element, that is to say, an element which is not properly contained in any
other element of ℐ.

Proof. Assume that ℐ satisfies condition (i) and suppose that 𝒮 is a non-empty subset
of ℐ that does not contain amaximal element. Let I1 ∈ 𝒮; then there exists I2 ∈ 𝒮 which
is strictly larger than I1 since I1 is not maximal in ℐ. Similarly there exists I3 ∈ 𝒮 which
is strictly larger that I2, and so on. But clearly this leads to an infinite ascending chain
I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ in ℐ, a contradiction.

Conversely, assume that ℐ satisfies condition (ii). If there is an infinite ascending
chain I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ in ℐ, the maximal condition can be applied to the set {I1, I2, . . . , } to
give a maximal element. This is obviously impossible.

We remark that similar properties for subgroups of a group were introduced in
Exercise (3.3.10).

There is of course a corresponding result for right ideals. The case of greatest in-
terest to us is when ℐ is the set of all left ideals of the ring R. If this set satisfies one of
the two equivalent conditions of (6.4.1), then R is called a left noetherian4 ring. There
is a corresponding definition of a right noetherian ring. In case of a commutative ring,
the ring is simply said to be noetherian. The following result sheds some light on the
nature of the noetherian condition.

(6.4.2). Let R be a ring with identity. Then R is left noetherian if and only if every left
ideal of R is finitely generated as a left ideal of R.

Proof. First suppose that I is a left ideal of Rwhich is not finitely generated. Certainly
I ̸= 0, so there exists r1 ∈ I − 0. Then r1 ∈ Rr1 since R has an identity element. Also
Rr1 ⊂ I, since I is not finitely generated. Let r2 ∈ I−Rr1. ThenR{r1, r2} = Rr1+Rr2 ⊂ I. Let
r3 ∈ I − (Rr1 +Rr2) and note that I ̸= R{r1, r2, r3} = Rr1 +Rr2 +Rr3 ⊂ I, and so on. But this
leads to an infinite ascending chain of left ideals Rr1 ⊂ Rr1 + Rr2 ⊂ Rr1 + Rr2 + Rr3 ⊂ ⋅ ⋅ ⋅
contained in I. Hence R is not left noetherian.

Conversely, assumeR is not left noetherian, so that there exists an infinite ascend-
ing chain of left ideals I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅. Set I = ⋃i=1,2,... Ii, which is clearly a left ideal of
R. Then I cannot be generated by finitely many elements r1, r2, . . . , rk, since all the ri
would have to belong to some Ij, which leads to the contradiction Ij = Ij+1 = I.

Obvious examples of noetherian rings include the ring of integers and any field.
More interesting examples are provided by (6.4.3) below, which is one of the most cel-
ebrated results in the theory of noetherian rings.

4 Emmy Noether (1882–1935).
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(6.4.3) (Hilbert’s5 Basis Theorem). Let R be a commutative noetherian ring with iden-
tity. Then the polynomial ring R[t1, t2, . . . , tn] is also noetherian.

Proof. In the first place is enough to prove the theorem for n = 1. For assume that
this case has been dealt with and that n > 1. Now R[t1, t2, . . . , tn] = S[tn] where S =
R[t1, t2, . . . , tn−1] and S is noetherian by induction on n. Therefore the result is true by
the case n = 1. From now on we will work with the ring T = R[t].

By (6.4.2) it suffices to prove that an arbitrary ideal J of T is finitely generated as
an ideal. Suppose that J is not finitely generated; then J ̸= 0 and there is a polynomial
f1 ∈ J − 0 of smallest degree d1. Since J is not finitely generated, J ̸= J1 = (f1) and
J − J1 contains a polynomial f2 of smallest degree d2. Furthermore J ̸= J2 = (f1) + (f2)
and J − J2 contains a polynomial f3 of smallest degree d3, and so on. This gives rise to
infinite sequences of ideals J1 ⊂ J2 ⊂ ⋅ ⋅ ⋅ where Ji = (f1) + (f2) + ⋅ ⋅ ⋅ + (fi), and non-zero
polynomials f1, f2, . . . with deg(fi) = di and d1 ≤ d2 ≤ ⋅ ⋅ ⋅; moreover fi+1 ∉ Ji. Let us write
fi = aitdi+ terms of lower degree, where 0 ̸= ai ∈ R.

Set Ii = (a1) + (a2) + ⋅ ⋅ ⋅ + (ai), so that I1 ⊆ I2 ⊆ ⋅ ⋅ ⋅ is an ascending sequence of
ideals of R. This sequence must have finite length since R is noetherian, so Im = Im+1
for some integer m. Hence am+1 ∈ Im and consequently there is an expression am+1 =
r1a1 + r2a2 + ⋅ ⋅ ⋅ + rmam with ri ∈ R. Now define a new polynomial g ∈ R[t] by

g = fm+1 −
m
∑
i=1
(rifi)t

dm+1−di .
Thus g ∈ Jm+1. Observe that g ∉ Jm since fm+1 ∉ Jm. Now the highest power of t that
could occur in g is certainly tdm+1 , but by inspection we see that its coefficient is

am+1 − r1a1 − r2a2 − ⋅ ⋅ ⋅ − rmam = 0.

Therefore deg(g) < dm+1 = deg(fm+1), which is contrary to the choice of fm+1 as a poly-
nomial of smallest degree in J − Jm. This contradiction establishes the theorem.

Corollary (6.4.4). The rings ℤ[t1, t2, . . . , tn] and F[t1, t2, . . . , tn] are noetherian, where F
is any field.

Using this result we can find a large class of noetherian rings.

(6.4.5). Every finitely generated commutative ring with identity is noetherian.

Proof. Let R be the ring in question and suppose that it has generators x1, x2, . . . , xn.
By (6.2.3) every element of R has the form

∑
ℓi≥0

mℓ1 ,ℓ2 ,...,ℓnx
ℓ1
1 x
ℓ2
2 ⋅ ⋅ ⋅ x

ℓn
n

5 David Hilbert (1862–1943).
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wheremℓ1 ,ℓ2 ,...,ℓn ∈ ℤ and the (finite) sum is over all non-negative integers ℓ1, ℓ2, . . . , ℓn.
Let S = ℤ[t1, t2, . . . , tn] and define a map θ : S → R by the assignment ti → xi: thus

θ(∑
ℓi≥0

mℓ1 ,ℓ2 ,...,ℓn t
ℓ1
1 t
ℓ2
2 ⋅ ⋅ ⋅ t

ℓn
n ) = ∑

ℓi≥0
mℓ1 ,ℓ2 ,...,ℓnx

ℓ1
1 x
ℓ2
2 ⋅ ⋅ ⋅ x

ℓn
n .

Then θ is a ring homomorphism since sums and products of elements in R and in S are
formedby the same rules, and clearly θ is also surjective.HenceS/Ker(θ) ≃ Rby (6.2.8).
By (6.4.4) the ring S is noetherianand thus every quotient of S is alsonoetherian,which
establishes the result.

Exercises (6.4).
(1) Prove that every non-zero commutative noetherian ring has at least one maximal

(proper) ideal.
(2) If R is a non-zero commutative noetherian ring, prove that R has a quotient ring

which is a field.
(3) Let R be a commutative noetherian ring and I an ideal of R. Prove that R/I is also

noetherian. [Hint: use the Correspondence Theorem.]
(4) Let R be the ring of all rational numbers of the form m

2n wherem, n ∈ ℤ. Show that
R is a noetherian ring. [Hint: use (6.4.5).]

(5) Prove that the ringℤ[t1, t2, . . . ] = ⋃n=1,2,...ℤ[t1, t2, . . . , tn] of polynomials in infinitely
many indeterminates ti cannot be noetherian.

(6) Prove that if R is a commutative ring with identity which can be generated by n
elements, then R ≃ ℤ[t1, t2, . . . , tn]/(f1, f2, . . . , fk) for certain polynomials fi. Con-
clude that R is determined up to isomorphism by finitely many polynomials in
t1, t2, . . . , tn.

(7) Establish the following analogue of (6.4.1). Let ℐ be a non-empty set of left ideals
of a ring R. Then the following statements about ℐ are equivalent.
(i) The set ℐ satisfies the descending chain condition, i. e., there does not exist

an infinite descending chain of left ideals I1 ⊃ I2 ⊃ ⋅ ⋅ ⋅ with Ii ∈ ℐ.
(ii) The set ℐ satisfies the minimal condition, i. e., every non-empty subset of ℐ

has a minimal element, that is, an element which does not properly contain
any other element of ℐ.

(A ring for which the set of all left ideals satisfies the minimal condition is said to
be a left artinian6 ring.)

6 Emil Artin (1898–1962).

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



7 Division in Commutative Rings
The aim of this chapter is to construct a theory of division in rings that mirrors, as
closely as possible, the familiar theory of division in the ring of integers. To simplify
matters let us agree to restrict attention to commutative rings – in non-commutative
rings questions of left and right divisibility arise. Also, remembering from Section 6.3
the phenomenon of zero divisors, we will further restrict ourselves to integral do-
mains. In fact even this class of rings is too wide, although it provides a reasonable
target for our theory. For this reason we will introduce some well-behaved types of
domains.

7.1 Euclidean domains

Let R be a commutative ring with identity and let a, b ∈ R. Then a is said to divide b,
in symbols

a | b,

if ac = b for some c ∈ R. From the definition there quickly follow some elementary
facts about division.

(7.1.1). Let R be a commutative ring with identity and let a, b, c, x, y be elements of R.
Then:
(i) a | a and a | 0 for all a ∈ R;
(ii) 0 | a if and only if a = 0;
(iii) if a | b and b | c, then a | c, so division is a transitive relation;
(iv) if a | b and a | c, then a | bx + cy for all x, y ∈ R;
(v) if u is a unit, u | a for all a ∈ R, while a | u if and only if a is a unit.

For example, taking the case of (iv), we have b = ad and c = ae for some d, e ∈ R. Then
bx + cy = a(dx + ey), so that a divides bx + cy. The other proofs are equally simple
exercises which are left to the reader.

One situation we may encounter in a ring is a pair of elements each of which di-
vides the other: such elements are called associates.

(7.1.2). Let R be an integral domain and let a, b ∈ R. Then a | b and b | a if and only if
b = au where u is a unit of R.

Proof. Let u be a unit; then a|au. Also (au)u−1 = a, so au|a. Conversely, assume that
a | b and b | a. If a = 0, then b = 0 and the statement is certainly true, so let a ̸= 0.
Now a = bc and b = ad for some c, d ∈ R. Therefore a = bc = adc and by (6.3.1) we
obtain dc = 1, so that d is a unit.

For example, two integers a and b are associates if and only if b = ±a.

https://doi.org/10.1515/9783110691160-007
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Irreducible elements
Let R be a commutative ring with identity. An element a of R is called irreducible if it
is neither 0 nor a unit and if its only divisors are units and associates, i. e., the ele-
ments that we know must divide a. Thus irreducible elements have as few divisors as
possible.

Example (7.1.1).
(i) The irreducible elements of ℤ are the prime numbers and their negatives.
(ii) A field has no irreducible elements since every non-zero element is a unit.
(iii) If F is a field, the irreducible elements of the polynomial ring F[t] are the so-

called irreducible polynomials, i. e., the non-constant polynomials which are not
expressible as a product of polynomials of lower degree.

Almost every significant property of division in ℤ depends ultimately on the Division
Algorithm. Thus it is natural to focus on rings in which some version of this property
is valid. This motivates us to introduce a special class of domains, the so-called Eu-
clidean domains.

A domain R is called Euclidean if there is a function

δ : R − {0R}→ ℕ

with the following properties:
(i) δ(a) ≤ δ(ab) if 0 ̸= a, b ∈ R;
(ii) if a, b ∈ R and b ̸= 0, there exist q, r ∈ R such that a = bq + r and either r = 0 or

δ(r) < δ(b).

The standard example of a Euclidean domain isℤwhere δ is the absolute value func-
tion, i. e., δ(a) = |a|. Note that property (i) holds since |ab| = |a| ⋅ |b| ≥ |a| if b ̸= 0. Of
course (ii) is the usual statement of the Division Algorithm for ℤ.

New and important examples of Euclidean domains are given by the next result.

(7.1.3). If F is a field, the polynomial ring F[t] is a Euclidean domain with associated
function δ given by δ(f ) = deg(f ).

Proof. Wealreadyknow from (6.3.2) thatR = F[t] is a domain. Also, by the same result,
if f , g ̸= 0, then δ(fg) = deg(fg) = deg(f ) + deg(g) ≥ deg(f ) = δ(f ). Hence property (i) is
valid. To establish the validity of (ii), put

S = {f − gq | q ∈ R}.

If 0 ∈ S, then f = gq for some q ∈ R and we may take r to be 0. Assuming that 0 ∉ S,
note that every element of S has degree ≥ 0, so by the Well-Ordering Principle there is
an element r in S with smallest degree, say r = f − gq where q ∈ R. Thus f = gq + r.
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Suppose that deg(r) ≥ deg(g). Write g = atm + ⋅ ⋅ ⋅ and r = btn + ⋅ ⋅ ⋅ where
m = deg(g), n = deg(r), 0 ̸= a, b ∈ F and the dots represent terms of lower degree in t.
Sincem ≤ n, we can form the polynomial

s = r − (a−1btn−m)g ∈ R.

Now the term in tn cancels in s, so either s = 0or deg(s) < n. But s = f −(q+a−1btn−m)g ∈
S and hence s ̸= 0. Thus deg(s) < n, which contradicts theminimality of deg(r). There-
fore deg(r) < deg(g), as required.

A less familiar example of a Euclidean domain is the ring of Gaussian integers.
A Gaussian integer is a complex number of the form

u + iv

where u, v ∈ ℤ and of course i = √−1. It is easily seen that the Gaussian integers form
a subring of ℂ containing 1 and hence constitute a domain.

(7.1.4). The ring R of Gaussian integers is a Euclidean domain.

Proof. In this case an associated function δ : R − {0}→ ℕ is defined by the rule

δ(u + iv) = |u + iv|2 = u2 + v2.

Wemust show that δ satisfies the two requirements for a Euclidean domain. In the first
place, if 0 ̸= a, b ∈ R, then δ(ab) = |ab|2 = |a|2|b|2 ≥ |a|2 since |b| ≥ 1.

Verification of the second requirement is harder. First write ab−1 = u′ + iv′ where
u′, v′ are rational numbers. Now choose integers u and v that are as close as possible
to u′ and v′ respectively; thus |u − u′| ≤ 1

2 and |v − v
′| ≤ 1

2 . Next

a = b(u′ + iv′) = b(u + iv) + b(u′′ + iv′′)

where u′′ = u′ − u and v′′ = v′ − v. Finally, let q = u + iv and r = b(u′′ + iv′′). Then
a = bq + r; also q ∈ R and hence r = a − bq ∈ R. If r ̸= 0, then, since |u′′| ≤ 1

2 and
|v′′| ≤ 1

2 ,

δ(r) = |b|2u
′′ + iv′′

2
= |b|2(u′′2 + v′′2) ≤ |b|2( 1

4
+
1
4
) =

1
2
|b|2,

so that δ(r) < |b|2 = δ(b). Therefore δ(r) < δ(b) as required.
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Exercises (7.1).
(1) Complete the proof of (7.1.1).
(2) Identify the irreducible elements in the following rings:

(i) the ring of rational numbers with odd denominators;
(ii) ℤ[t].

(3) Let R be a commutative ring with identity. If R has no irreducible elements, show
that either R is a field or there exists an infinite strictly increasing chain of princi-
pal ideals I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ in R. Deduce that if R is noetherian, it is a field.

(4) Let R = F[[t]] be the ring of formal power series in t over a field F, (see Exer-
cise (6.1.8)). Prove that the irreducible elements ofR are those of the form tf where
f ∈ R and f (0) ̸= 0.

(5) Let f = t5 − 3t2 + t + 1 and g = t2 + t + 1 be polynomials in ℚ[t]. Find q, r ∈ ℚ[t]
such that f = gq + r and deg(r) ≤ 1.

(6) Let R be a Euclidean domain with associated function δ : R − {0}→ ℕ.
(i) Show that δ(a) ≥ δ(1) for all a ̸= 0 in R.
(ii) If a is a unit of R, prove that δ(a) = δ(1).
(iii) Conversely, show that if δ(a) = δ(1), then a is a unit of R.

(7) Prove that t3 + t + 1 is irreducible in ℤ2[t], but t3 + t2 + t + 1 is reducible.

7.2 Principal ideal domains

Let R be a commutative ring with identity. If r ∈ R, recall from Section 6.2 that the sub-
set Rr = {rx | x ∈ R} = (r) is an ideal of R containing r called a principal ideal. If every
ideal of R is principal, then R is a principal ideal ring. A domain in which every ideal is
principal is called a principal ideal domain or PID: these rings form an extremely im-
portant class of domains. For example,ℤ is a PID; for an ideal ofℤ is a cyclic subgroup
and thus has the form ℤn where n ≥ 0.

A good source of PID’s is indicated by the next result.

(7.2.1). Every Euclidean domain is a principal ideal domain.

Proof. Let R be a Euclidean domain with associated function δ : R − 0 → ℕ and let I
be an ideal of R; we need to show that I is principal. If I is the zero ideal, I = (0) and
I is principal. So we assume that I ̸= 0 and apply the Well-Ordering Law to pick an
x in I − 0 such that δ(x) is minimal. Now certainly (x) ⊆ I; the claim is that I ⊆ (x).
To substantiate this, let y ∈ I and write y = xq + r with q, r ∈ R where either r = 0
or δ(r) < δ(x). This is possible since δ is an associated function for the Euclidean
domain R. If r = 0, then y = xq ∈ (x). Otherwise δ(r) < δ(x); but this is impossible
since r = y − xq ∈ I, which contradicts the minimality of δ(x) for x ∈ I − 0. Therefore
I = (x).

The following important result is a consequence of (7.1.3) and (7.2.1).
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Corollary (7.2.2). If F is a field, then F[t] is a principal ideal domain.

Another example of a PID is the ring of Gaussian integers by (7.2.1) and (7.1.4). Our
next objective is to show that PID’s have good division properties, despite the lack of
a division algorithm.

Greatest common divisors
Let a, b be elements in a domain R. A greatest common divisor (or gcd) of a and b is a
ring element d such that the following hold:
(i) d | a and d | b;
(ii) if c | a and c | b for some c ∈ R, then c | d.

The definition here has been carried over directly from the integers – see Section 2.2.
Notice that if d and d′ are two gcd’s of a, b, then d | d′ and d′ | d, so that d

and d′ are associates. Thus by (7.1.2) d′ = duwith u a unit of R. It follows that gcd’s are
unique only up to a unit. Of course in the case of ℤ, where the units are ±1, we were
able to make gcd’s unique by insisting that they be positive. This course of action is
not possible in arbitrary domains since there is no concept of positivity.

There is no reason why gcd’s should exist in an arbitrary domain. However, the
situation is very satisfactory for PID’s.

(7.2.3). Let a and b be elements of a principal ideal domain R. Then a and b have a
greatest common divisor d which has the form d = ax + by with x, y ∈ R.

Proof. Define I = {ax + by | x, y ∈ R} and observe that I is an ideal of R. Hence I = (d)
for some d ∈ I, with d = ax + by say. If c | a and c | b, then c | ax + by = d by (7.1.1).
Also a ∈ I = (d), so d | a, and similarly d | b. Hence d is a gcd of a and b.

Elements a and b of a domain R are said to be relatively prime if 1 is a gcd of a
and b, which means that ax + by = 1 for some x, y ∈ R.

(7.2.4) (Euclid’s Lemma). Let a, b, c be elements of a principal ideal domain and as-
sume that a | bc where a and b are relatively prime. Then a | c.

Corollary (7.2.5). If R is a principal ideal domain and p | bc where p, b, c ∈ R and p is
irreducible, then p | b or p | c.

The proofs of these results are exactly the same as those given in Section 2.2 forℤ.

Maximal ideals in principal ideal domains
In a PID themaximal ideals and the prime ideals coincide and admit a nice description
in terms of irreducible elements.
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(7.2.6). Let I be a non-zero ideal of a principal ideal domain R. Then the following state-
ments about I are equivalent:
(i) I is maximal;
(ii) I is prime;
(iii) I = (p) where p is an irreducible element of R.

Proof. (i)⇒ (ii). This was proved in (6.3.8).
(ii)⇒ (iii). Assume that I is prime. Since R is a PID, we have I = (p) for some p ∈ R.

Note that p cannot be a unit since I ̸= R. Suppose that p = ab where neither a nor b is
associate to p. Then ab ∈ I and I is prime, so a ∈ I or b ∈ I, i. e., p | a or p | b. Since we
also have a | p and b | p, we obtain the contradiction that a or b is associate to p. This
shows that p is irreducible.

(iii)⇒ (i). Assume that I = (p) with p irreducible, and let I ⊆ J ⊆ R where J is an
ideal of R. Then J = (x) for some x ∈ R, and p ∈ (x), so that x | p. Hence either x is a
unit or it is associate to p, so that J = R or J = I. Therefore I is maximal as claimed.

Corollary (7.2.7). Let F be a field. Then the maximal ideals of the polynomial ring F[t]
are exactly those of the form (f ) where f is an irreducible polynomial which is monic,
(i. e., its leading coefficient is 1).

This is because F[t] is a PID by (7.2.2) and the irreducible elements of F[t] are just
the irreducible polynomials. The corollary provides us with an important method for
constructing a field from an irreducible polynomial f ∈ F[t]: indeed F[t]/(f ) is a field.
This will be exploited in Section 7.4 below.

We conclude the section by noting a property of PID’s which will be crucial when
we address the issue of unique factorization in Section 7.4.

(7.2.8). Every principal ideal domain is noetherian.

Proof. Let R be a PID. By definition every ideal of R is principal and hence can be
generated by a single element. Therefore R is noetherian by (6.4.2).

Exercises (7.2).
(1) Prove (7.2.4) and (7.2.5).
(2) Show that ℤ[t] is not a PID.
(3) Show that F[t1, t2] is not a PID for any field F.
(4) Let R be a commutative ring with identity. If R[t] is a PID, prove that Rmust be a

field.
(5) Let f = t3 + t + 1 ∈ ℤ2[t]. Show that ℤ2[t]/(f ) is finite field and find its order.
(6) Prove that the ring of rational numbers with odd denominators is a PID.
(7) Prove that F[[t]], the ring of formal power series in t over a field F, is a PID by

describing its ideals.
(8) LetR be a commutative noetherian ringwith identity. Assume thatR has the prop-

erty that each pair of elements a, bhas a greatest commondivisorwhich is a linear
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combination of a and b. Prove that R is a PID. [Hint: let I be an ideal of R. Note that
I is a finitely generated ideal and reduce to the case where it is generated by two
elements].

(9) Prove that the Chinese Remainder Theorem holds in a Euclidean domain, (see
(2.3.7)).

(10) State and prove the Euclidean algorithm for a Euclidean domain, (see (2.2.4)).

7.3 Unique factorization in integral domains

The present section is concerned with domains in which there is unique factorization
in terms of irreducible elements. Ourmodel here is the Fundamental TheoremofArith-
metic (2.2.7), which asserts that such factorizations exist in ℤ. First it is necessary to
clarify what is meant by a unique factorization.

Let R be a domain and let S denote the set of all irreducible elements in R, which
might of course be empty. Observe that “being associate to” is an equivalence relation
on S, so that S splits up into equivalence classes. Choosing one element from each
equivalence class, we form a subset C of S. (Strictly speaking this procedure involves
the Axiom of Choice – see Section 1.5.) Now observe that the set C has the following
properties:
(i) every irreducible element of R is associate to some element of C;
(ii) distinct elements of C are not associate.

A subset C with these properties is called a complete set of irreducibles for R. We have
just established the following simple fact.

(7.3.1). Every integral domain has a (possibly empty) complete set of irreducible ele-
ments.

Our interest in complete sets of irreducibles stems from the observation that if
there is to be unique factorization in terms of irreducibles, then only irreducibles from
a complete set can be used: otherwise there will be different factorizations of the type
ab = (ua)(u−1b) where a, b are irreducible and u is a unit.

An integral domainR is called aunique factorizationdomain, orUFD, if there exists
a complete set of irreducibles C for R such that each non-zero element a of R has an
expression of the form

a = up1p2 ⋅ ⋅ ⋅ pk

where u is a unit and pi ∈ C, and furthermore this expression is unique up to order of
the factors.

At present the only example of a UFD we know is ℤ, where C can be taken to be
the set of prime numbers. The next theorem provides us with more examples.
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(7.3.2). Every principal ideal domain is a unique factorization domain.

Proof. LetRbeaPIDand letC beany complete set of irreducibles forR. Itwill be shown
that there is unique factorization for elements of R in terms of units and elements
of C. This is accomplished in four steps, the first of which establishes the existence of
irreducibles when R contains a non-zero, non-unit element, i. e., R is not a field.

(i) If a is a non-zero, non-unit element of R, it is divisible by at least one irreducible
element of R.

Suppose this is false. Then a itself must be reducible, so a = a1a′1 where a1 and a
′
1

are non-units and (a) ⊆ (a1). Also (a) ̸= (a1). For otherwise a1 ∈ (a), so that a | a1, as
well as a1 | a; by (7.1.2) this implies that a′1 is a unit. Therefore (a) ⊂ (a1).

Next a1 cannot be irreducible since a1 | a. Thus a1 = a2a′2 where a2, a
′
2 are non-

units and it follows that (a1) ⊂ (a2) by the argument just given. Continuing in this
way, we recognize that the procedure cannot terminate: for otherwise an irreducible
divisor of a will appear. Hence there is an infinite strictly ascending chain of ideals
(a) ⊂ (a1) ⊂ (a2) ⊂ ⋅ ⋅ ⋅; but this is impossible since R is noetherian by (7.2.8).

(ii) If a is a non-zero, non-unit element of R, then a is a product of irreducibles.
Again suppose this is false. By (i) there is an irreduciblep1 dividinga,witha = p1a1

say. Now a1 cannot be a unit, so there is an irreducible element p2 dividing a1, with say
a1 = p2a2 and a = p1p2a2, and so on indefinitely. However, this leads to (a) ⊂ (a1) ⊂
(a2) ⊂ ⋅ ⋅ ⋅, a strictly ascending infinite chain of ideals, which again contradicts (7.2.8).

(iii) If a is a non-zero element of R, then a is the product of a unit and irreducible elements
in C.

This is clear ifa is a unit –no irreducibles areneeded.Otherwise by (ii) the element
a is a product of irreducibles, each of which is associate to an element of C. The result
now follows on replacing each irreducible factor of a by an irreducible in Cmultiplied
by a unit.

(iv) The final step in the proof establishes uniqueness. Suppose that

a = up1p2 ⋅ ⋅ ⋅ pk = vq1q2 ⋅ ⋅ ⋅ qℓ

where u, v are units of R and pi, qj ∈ C. Argue by induction on k: if k = 0, then a = u, a
unit, so ℓ = 0 and u = v. Now assume that k > 0.

Since p1 | a = vq1q2 ⋅ ⋅ ⋅ qℓ, Euclid’s Lemma shows that p1 must divide one of
q1, . . . , qℓ. By relabelling the qj’s, we may assume that p1 | q1. Thus p1 and q1 are as-
sociate members of C, which can only mean that p1 = q1. Hence, on cancelling p1, we
obtain a′ = up2 ⋅ ⋅ ⋅ pk = vq2 ⋅ ⋅ ⋅ qℓ. By the induction hypothesis k−1 = ℓ−1, so k = ℓ and,
after further relabelling, pi = qi for i = 2, 3, . . . , k, and u = v. Therefore uniqueness has
been established.

Corollary (7.3.3). If F is a field, the polynomial ring F[t] is a unique factorization do-
main.
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This is because F[t] is a PID by (7.2.2). The natural choice for a complete set of ir-
reducibles in F[t] is the set of all monic irreducible polynomials. Thus we have unique
factorization in F[t] in terms of constants andmonic irreducible polynomials. Another
example of a UFD is the ring of Gaussian integers {a+b√−1 | a, b ∈ Z}, which by (7.1.4)
is a Euclideandomain andhence aPID.However, somedomains of similar appearance
are not UFD’s.

Example (7.3.1). Let R be the subring of ℂ consisting of all a + b√−3 where a, b ∈ ℤ.
Then R is not a unique factorization domain.

First observe that ±1 are the only units of R. For, let 0 ̸= r = a + b√−3 ∈ R. Then

r−1 = 1
a2 + 3b2

(a − b√−3),

which is inR if and only if a
a2+3b2 and

b
a2+3b2 are integers. This happens onlywhen b = 0

and 1
a ∈ ℤ, i. e., r = a = ±1. It follows that no two of the elements 2, 1 + √−3, 1 − √−3

are associate.
Next we claim that 2, 1 + √−3, 1 − √−3 are irreducible elements of R. Fortunately

all three elements can be handled simultaneously. Suppose that

(a +√−3b)(c +√−3d) = 1 ±√−3 or 2

where a, b, c, d ∈ ℤ. Taking the modulus squared of both sides, we obtain
(a2 + 3b2)(c2 + 3d2) = 4 in every case. But this implies that a2 = 1 and b = 0 or
c2 = 1 and d = 0, i. e., either a +√−3b or c +√−3d is a unit.

Finally, unique factorization fails because

4 = 2 ⋅ 2 = (1 +√−3)(1 −√−3)

and 2, 1 +√−3, 1 −√−3 are non-associate irreducibles. It follows that R is not a UFD.

Two useful properties of UFD’s are recorded in the next result.

(7.3.4). Let R be a unique factorization domain. Then:
(i) gcd’s exist in R;
(ii) Euclid’s Lemma holds in R.

Proof. To prove (i) let a = upe11 p
e2
2 ⋅ ⋅ ⋅ p

ek
k and b = vpf11 p

f2
2 ⋅ ⋅ ⋅ p

fk
k where u, v are units

of R, the pi belong to a complete set of irreducibles for R, and ei, fi ≥ 0. Define d =
pg11 p

g2
2 ⋅ ⋅ ⋅ p

gk
k where gi is theminimum of ei and fi. Then d is a gcd of a and b. For clearly

d | a and d | b, and, on the other hand, if c | a and c | b, the unique factorization
property shows that cmust have the formwph11 p

h2
2 ⋅ ⋅ ⋅ p

hk
k wherew is a unit and 0 ≤ hi ≤

gi. Hence c | d. The proof of (ii) is left to the reader as an exercise.
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Although polynomial rings in more than one variable over a field are not PID’s –
see Exercise (7.2.3) – they are in fact UFD’s. It is our aim in the remainder of the section
to prove this important result.

Primitive polynomials
Let R be a UFD and let 0 ̸= f ∈ R[t]. Since gcd’s exist in R by (7.3.4), we can form the
gcd of the coefficients of f ; this is called the content of f ,

c(f ).

Keep in mind that content is unique only up to a unit of R, and equations involving
content have to be interpreted in this light. If c(f ) = 1, i. e., c(f ) is a unit, the polyno-
mial f is said to be primitive. For example 2 + 4t − 3t3 ∈ ℤ[t] is a primitive polynomial.
Next two useful results about the content of polynomials will be established.

(7.3.5). Let 0 ̸= f ∈ R[t] where R is a unique factorization domain. Then f = cf0 where
c = c(f ) and f0 ∈ R[t] is primitive.

Proof. Write f = a0+a1t+⋅ ⋅ ⋅+antn; then c(f ) = gcd{a0, a1, . . . , an} = c, say.Writeai = cbi
withbi ∈ R andput f0 = b0+b1t+⋅ ⋅ ⋅+bntn ∈ R[t]. Thus f = cf0. Ifd = gcd{b0, b1, . . . , bn},
then d | bi and so cd | cbi = ai. Since c is the gcd of the ai, it follows that cd divides c,
which shows that d is a unit and f0 is primitive.

(7.3.6). Let R be a unique factorization domain and let f , g be non-zero polynomials
over R. Then c(fg) = c(f )c(g). In particular, if f and g are primitive, then so is fg.

Proof. Consider first the special case where f and g are primitive. If fg is not primitive,
c(fg) is not a unit, so it must be divisible by an irreducible element p of R. Write f =
∑mi=0 ait

i and g = ∑nj=0 bjt
j, so that

fg =
m+n
∑
k=0

ckt
k

where ck = ∑
k
i=0 aibk−i. (Here ai = 0 if i > m and bj = 0 if j > n.) Since f is prim-

itive, p cannot divide all its coefficients and there is an integer r ≥ 0 such that p |
a0, a1, . . . , ar−1, but p ∤ ar . Similarly there is an s ≥ 0 such that p divides each of b0,
b1, . . . , bs−1, but not bs. Now consider cr+s, which can be written

(a0br+s + a1br+s−1 + ⋅ ⋅ ⋅ + ar−1bs+1) + arbs + (ar+1bs−1 + ⋅ ⋅ ⋅ + ar+sb0).

We know that p | cr+s; also p divides both the expressions in parentheses in the ex-
pression above. It follows that p | arbs. By Euclid’s Lemma for UFD’s (see (7.3.4)), it
follows that p | ar or p | bs, both of which are impossible. By this contradiction fg is
primitive.
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Now we are ready for the general case. Using (7.3.5), we write f = cf0 and g = dg0
where c = c(f ), d = c(g) and the polynomials f0, g0 are primitive in R[t]. Then fg =
cd(f0g0) and, as has just been shown, f0g0 is primitive. In consequence c(fg) = cd =
c(f )c(g).

The next result is frequently helpful in deciding whether a polynomial is irre-
ducible.

(7.3.7) (Gauss’s Lemma). Let R be a unique factorization domain and let F denote its
field of fractions. If f ∈ R[t], then f is irreducible over R if and only if it is irreducible
over F.

Proof. We can assume that R ⊆ F. Of course irreducibility over F implies irreducibility
over R. It is the converse implication that requires proof. Assume that f is irreducible
over R but reducible over F. We can assume that f is primitive on the basis of (7.3.5).
Then f = gh where g, h ∈ F[t] are non-constant. Since F is the field of fractions of R,
there exist elements a, b ̸= 0 in R such that g1 = ag ∈ R[t] and h1 = bh ∈ R[t]. Write
g1 = c(g1)g2 where g2 ∈ R[t] is primitive. Then ag = c(g1)g2, so we can divide both
sides by gcd{a, c(g1)}. On these grounds it is permissible to assume that c(g1) and a
are relatively prime, and for similar reasons the same can be assumed of c(h1) and b.

Next (ab)f = (ag)(bh) = g1h1. Taking the content of each side and using (7.3.6),
we obtain ab = c(g1)c(h1) since f is primitive. But c(g1) and a are relatively prime,
so a | c(h1), and for a similar reason b | c(g1). Therefore we have the factorization
f = (b−1g1)(a−1h1) in which both factors are polynomials over R. But this contradicts
the irreducibility of f over R, so the proof is complete.

For example, to show that a polynomial in ℤ[t] is ℚ-irreducible, it is enough to
show that it is ℤ-irreducible, usually an easier task.

Polynomial rings in several variables
Let us now use the theory of content to show that unique factorization occurs in poly-
nomial rings with more than one variable. Here one should keep in mind that such
rings are not PID’s and so are not covered by (7.3.2). The main result is:

(7.3.8). If R is a unique factorization domain, then so is the polynomial ring R[t1, . . . , tk].

Proof. In the first place we need only prove the theorem for k = 1. Indeed, if k > 1, we
have

R[t1, . . . , tk] = (R[t1, . . . , tk−1])[tk],

so that induction on kwill succeed once the case k = 1 is settled. Fromnowon consider
the ring S = R[t]. The first step in the proof is to establish:
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(i)Any non-constant polynomial f in S is expressible as a product of irreducible elements
of R and primitive irreducible polynomials over R.

The key idea in the proof is to introduce the field of fractions F ofR, and exploit the
fact that F[t] is known to be a PID and hence a UFD. First of all write f = c(f )f0 where
f0 ∈ S is primitive, using (7.3.5). Here c(f ) is either a unit or a product of irreducibles
ofR. Thuswe can assume that f is primitive. Regarding f as an element of theUFD F[t],
we write f = p1p2 ⋅ ⋅ ⋅ pm where pi ∈ F[t] is irreducible over F. Now find ai ̸= 0 in R such
that fi = aipi ∈ S. Writing c(fi) = ci, we have fi = ciqi where qi ∈ R[t] is primitive. Hence
pi = a−1i fi = a−1i ciqi and qi is F-irreducible since pi is F-irreducible. Thus qi is certainly
R-irreducible.

Combining these expressions for pi, we find that

f = (a−11 a−12 ⋅ ⋅ ⋅ a
−1
m c1c2 ⋅ ⋅ ⋅ cm)q1q2 ⋅ ⋅ ⋅ qm,

and hence (a1a2 ⋅ ⋅ ⋅ am)f = (c1c2 ⋅ ⋅ ⋅ cm)q1q2 ⋅ ⋅ ⋅ qm. Now take the content of both sides of
this equation to get a1a2 ⋅ ⋅ ⋅ am = c1c2 ⋅ ⋅ ⋅ cm up to a unit, since f and the qi are primitive.
Consequently f = uq1q2 ⋅ ⋅ ⋅ qm for some unit u of R. This is what was to be proved.

(ii) The next step is to assemble a complete set of irreducibles for S. First take a com-
plete set of irreducibles C1 for R. Then consider the set of all primitive irreducible
polynomials in S. Now being associate is an equivalence relation on this set, so we
can choose an element from each equivalence class. This yields a set of non-associate
primitive irreducible polynomials C2 with the property that every primitive irreducible
polynomial in R[t] is associate to an element of C2. Now put

C = C1 ∪ C2.

Since distinct elements of C cannot be associate, it is a complete set of irreducibles
for S. If 0 ̸= f ∈ S, it follows from step (i) that f is expressible as a product of elements
of C and a unit of R.

(iii) There remains the question of uniqueness. Suppose that

f = ua1a2 ⋅ ⋅ ⋅ akf1f2 ⋅ ⋅ ⋅ fr = vb1b2 ⋅ ⋅ ⋅ bℓ g1g2 ⋅ ⋅ ⋅ gs

where u, v are units, ak , bℓ ∈ C1 and fi, gj ∈ C2. By Gauss’s Lemma (7.3.7) the fi and gj
are F-irreducible. Since F[t] is a UFD and C2 is a complete set of irreducibles for F[t],
we conclude that r = s and fi = wigi, (after possible relabelling), where wi ∈ F. Write
wi = cid−1i where ci, di ∈ R. Then difi = cigi, which, on taking contents, yields di = ci
up to a unit. This implies that wi is a unit of R. Therefore fi and gi are associate and
thus fi = gi.

Cancelling the fi and gi, we are left with ua1a2 ⋅ ⋅ ⋅ ak = vb1b2 ⋅ ⋅ ⋅ bℓ. Since R is a UFD
with a complete set of irreducibles C1, it follows that k = ℓ, u = v and ai = bi after
further relabelling. This completes the proof.
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This theorem provides us with some important new examples of UFD’s.

Corollary (7.3.9). The following rings are unique factorization domains:

ℤ[t1, . . . , tk] and F[t1, . . . , tk]

where F is any field.

Exercises (7.3).
(1) Prove that a UFD satisfies the ascending chain condition on principal ideals, i. e.,

there does not exist an infinite strictly ascending chain of principal ideals.
(2) If R is a UFD and C is any complete set of irreducible elements for R, show that

there is unique factorization in terms of C.
(3) If C1 and C2 are two complete sets of irreducibles for a domain R, prove that |C1| =
|C2|.

(4) Show that the domain {a + b√−5 | a, b ∈ ℤ} is not a UFD. [Hint: First show that ±1
are the only units.]

(5) Prove that t3 + at + 1 ∈ ℤ[t] is reducible overℚ if and only if a = 0 or −2.
(6) Explain why the ring of rational numbers with odd denominators is a UFD and

find a complete set of irreducibles for it.
(7) The same question for the power series ring F[[t]] where F is a field.
(8) Prove that Euclid’s Lemma is valid in any UFD.

7.4 Roots of polynomials and splitting fields

Let R be a commutative ring with identity, let f = b0 + b1t + ⋅ ⋅ ⋅ + bntn ∈ R[t] and let
a ∈ R. Then the value of the polynomial f at a is defined to be

f (a) = b0 + b1a + ⋅ ⋅ ⋅ + bna
n ∈ R.

Thus we have a function θa : R[t] → R which evaluates polynomials at a, i. e., θa(f ) =
f (a). Now f + g(a) = f (a) + g(a) and (fg)(a) = f (a)g(a), because the ring elements f (a)
and g(a) are added and multiplied by the same rules as the polynomials f and g. It
follows that θa : R[t] → R is a ring homomorphism. Its kernel consists of all f ∈ R[t]
such that f (a) = 0, that is, all polynomials that have a as a root.

The following criterion for an element to be a root of a polynomial should be fa-
miliar from elementary algebra.

(7.4.1) (The Remainder Theorem). Let R be an integral domain, let f ∈ R[t] and let a ∈
R. Then a is a root of f if and only if t − a divides f in the ring R[t].

Proof. If t−adivides f , then f = (t−a)gwhere g ∈ R[t]. Then f (a) = θa(f ) = θa((t−a)g) =
θa(t − a)θa(g) = 0. Hence a is a root of f .
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Conversely, assume that f (a) = 0 and let F denote the field of fractions of R. Since
F[t] is a Euclidean domain, we can divide f by t − a to get a quotient and remainder
in F[t], say f = (t −a)q+ r where q, r ∈ F[t] and deg(r) < 1, i. e., r is constant. However,
notice that by the usual long division process q and r actually belong to R[t]. Finally,
apply the evaluation homomorphism θa to f = (t − a)q + r to obtain 0 = r since r is
constant. Therefore t − a divides f .

Corollary (7.4.2). The kernel of the evaluation homomorphism θa is the principal ideal
(t − a).

This is simply a restatement of (7.4.1).

The multiplicity of a root
Let R be a domain. Suppose that f ∈ R[t] is not constant and it has a root a in R; thus
t − a|f . There is a largest positive integer n such that (t − a)n | f , since the degree of
a divisor of f cannot exceed deg(f ). In this situation a is said to be a root of f with
multiplicity n. If n > 1, then a is called amultiple root of f .

(7.4.3). Let R be a domain and let 0 ̸= f ∈ R[t] have degree n. Then the sum of the
multiplicities of all the roots of f that lie in R is at most n.

Proof. Let a be a root of f . Then t − a divides f by (7.4.2), so that f = (t − a)g where
g ∈ R[t] has degree n − 1. By induction on n the sum of the multiplicities of the roots
of g is at most n − 1. Now a root of f either equals a or else is a root of g. Consequently
the sum of the multiplicities of the roots of f is at most 1 + (n − 1) = n.

Example (7.4.1).
(i) The polynomial t2 + 1 ∈ ℚ[t] has no roots in ℚ, which shows that the sum of the

multiplicities of the roots of a polynomial can be less than the degree.
(ii) Consider the polynomial t4 − 1 ∈ R[t] where R is the ring of rational quaternions

(see Section 6.3). Then f has 8 roots in R, namely ±1, ±I, ±J, ±K. Therefore (7.4.3)
is not valid for non-commutative rings, which is another reason to keep our rings
commutative.

Next comes another well-known theorem.

(7.4.4) (The Fundamental Theorem of Algebra). Let f be a non-zero polynomial of de-
gree n over the field of complex numbers ℂ. Then the sum of the multiplicities of the
roots of f in ℂ equals n, i. e., f is a product of n linear factors over ℂ.

The proof of this theoremwill be postponed until Chapter 12 – see (12.3.6). Despite
its name, all the known proofs of the theorem employ some analysis.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.4 Roots of polynomials and splitting fields | 139

Derivatives
Derivatives areuseful indetectingmultiple roots of polynomials. Sincewearenot deal-
ing with polynomials overℝ here, limits cannot be used. For this reason we adopt the
following formal definition of the derivative f ′ of the polynomial f ∈ R[t] where R is a
commutative ring with identity. If f = a0 + a1t + ⋅ ⋅ ⋅ + antn, then

f ′ = a1 + 2a2t + ⋅ ⋅ ⋅ + nant
n−1 ∈ R[t].

On the basis of this definition the usual rules of differentiation can be established.

(7.4.5). Let f , g ∈ R[t] and c ∈ R where R is a commutative ring with identity. Then
(i) (f + g)′ = f ′ + g′;
(ii) (cf )′ = cf ′;
(iii) (fg)′ = f ′g + fg′.

Proof. Only the statement (iii) will be proved. Write f = ∑mi=0 ait
i and g = ∑nj=0 bjt

j;
then

fg =
m+n
∑
i=0
(

i
∑
k=0

akbi−k)t
i.

The coefficient of ti−1 in (fg)′ is therefore equal to i(∑ik=0 akbi−k).
On the other hand, the coefficient of ti−1 in f ′g + fg′ is

i−1
∑
k=0
(k + 1)ak+1bi−k−1 +

i−1
∑
k=0
(i − k)akbi−k ,

which equals

iaib0 +
i−2
∑
k=0
(k + 1)ak+1bi−k−1 + ia0bi +

i−1
∑
k=1
(i − k)akbi−k .

On adjusting the summation in the second sum, this becomes

iaib0 +
i−2
∑
k=0
(k + 1)ak+1bi−k−1 +

i−2
∑
k=0
(i − k − 1)ak+1bi−k−1 + ia0bi.

On combining the two sums, this reduces to

i(a0bi +
i−2
∑
k=0

ak+1bi−k−1 + aib0) = i(
i
∑
k=0

akbi−k).

It follows that (fg)′ = f ′g + fg′.
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Corollary (7.4.6). (fm)′ = mfm−1f ′ where m is a positive integer.

This is proved by induction onm using (7.4.5). A criterion for a polynomial to have
multiple roots can now be given.

(7.4.7). Let R be a domain and let a ∈ R be a root of a polynomial f ∈ R[t]. Then a is a
multiple root if and only if t − a divides both f and f ′.

Proof. Let ℓ be the multiplicity of the root a. Then ℓ ≥ 1 and f = (t − a)ℓg where
t −a ∤ g ∈ R[t]. Hence f ′ = ℓ(t −a)ℓ−1g + (t −a)ℓg′ by (7.4.5) and (7.4.6). If a is a multiple
root of f , then ℓ ≥ 2 and f ′(a) = 0; by (7.4.1) it follows that t − a divides f ′, as well as f .

Conversely, suppose that t − a | f ′ = ℓ(t − a)ℓ−1g + (t − a)ℓg′. If ℓ = 1, then t − a
divides ℓg, which implies that t − a divides g, a contradiction. Therefore ℓ > 1 and a is
a multiple root.

Example (7.4.2). Let F be a field whose characteristic does not divide the positive in-
teger n. Then tn − 1 ∈ F[t] has no multiple roots in F.

For, with f = tn − 1, we have f ′ = ntn−1 ̸= 0 since char(F) does not divide n. Hence
tn−1 and ntn−1 are relatively prime and thus f and f ′ have no common roots. Therefore
f has no multiple roots by (7.4.7).

Splitting fields
Wewill now consider roots of polynomials over a field F. If f ∈ F[t] is not constant, we
know that f has at most deg(f ) roots in F, includingmultiplicities, by (7.4.3). However,
f need not have any roots in F, as the example t2 + 1 ∈ ℝ[t] shows. On the other hand,
t2+ 1 has two roots in the larger field ℂ.

The question to be addressed is this: can we construct a field K, larger than F in
some sense, in which f has exactly deg(f ) roots up to multiplicity, i. e., over which f
splits into a product of linear factors? A smallest such field is called a splitting field
of f . In the case of the polynomial t2 + 1 ∈ ℝ[t], the situation is quite clear; its splitting
field isℂ since t2 + 1 = (t + i)(t − i)where i = √−1. However, for a general field F we do
not have a convenient larger field like ℂ at hand. Thus splitting fields will have to be
constructed from scratch.

We begin by formulating precisely the definition of a splitting field. If F is a field,
by a subfield of F is meant a subring containing the identity element which is closed
under forming inverses of non-zero elements. Let f be a non-constant polynomial
over F. A splitting field for f over F is a field K containing an isomorphic copy F1 of F
as a subfield such that the polynomial in F1[t] corresponding to f can be expressed in
the form

a(t − c1)(t − c2) ⋅ ⋅ ⋅ (t − cn)
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whereK is a smallest field containing F1 and the elements a, c1, c2, . . . cn. There is noth-
ing to be lost in assuming that F ⊆ K since F can be replaced by the isomorphic field F1.
Thus F is a subfield of K.

Our first objective is to demonstrate that splitting fields actually exist.

(7.4.8). If f is a non-constant polynomial over a field F, then f has a splitting field over F.

Proof. We argue by induction on n = deg(f ); note that we may assume n > 1 since
otherwise F itself is a splitting field for f . Assume the result is true for all polynomials
of degree less than n. Consider first the case where f is reducible, so f = gh where
g, h in F[t] both have degree less than n. By induction hypothesis g has a splitting
field over F, say K1, which we may suppose contains F as a subfield. For the same
reason h has a splitting field over K1, say K, with K1 ⊆ K. Clearly f is a product of linear
factors over K. If f were such a product over some subfield S of K containing F, then
we would obtain first that K1 ⊆ S and then K ⊆ S. Hence K = S and K is a splitting field
of f .

Therefore we can assume f is irreducible. By (7.2.6) the ideal (f ) is maximal in F[t]
and consequently the quotient ring

K1 = F[t]/(f )

is a field. Next the assignment a → a + (f ), where a ∈ F, determines an injective ring
homomorphism from F to K1. The image is a subfield F1 of K1 and F ≃ F1. Thus wemay
regard f as a polynomial over F1.

The critical observation to make is that f has a root in K1, namely a1 = t + (f );
for f (a1) = f (t) + (f ) = (f ) = 0K1 . By (7.4.1) we have f = (t − a1)g where g ∈
K1[t], and of course deg(g) = n − 1. By induction hypothesis g has a splitting
field K containing K1. Since a1 ∈ K1 ⊆ K, we see that K is a splitting field for f :
for any subfield of K containing F and the roots of f must contain K1 since each
element of K1 has the form h + (f ) = h(a1) for some h ∈ F[t]. This completes the
proof.

Example (7.4.3). Let f = t3 − 2 ∈ ℚ[t]. The roots of f are 21/3, c21/3, c221/3 where c =
e2πi/3, a complex cube root of unity. Then f has as its splittingfield the smallest subfield
of ℂ containingℚ, 21/3 and c.

The next example shows how finite fields can be constructed from irreducible
polynomials.

Example (7.4.4). Show that f = t3 + 2t + 1 ∈ ℤ3[t] is irreducible and use it to construct
a field of order 27. Prove that this is a splitting field of f .

First of all notice that the only way a cubic polynomial can be reducible is if it has
a linear factor, i. e., it has a root in the field. But we easily verify that f has no roots in
ℤ3 = {0, 1, 2} since f (0) = f (1) = f (2) = 1. (For conciseness we have written i for the
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congruence class [i]). It follows that f is irreducible and

K = ℤ3[t]/(f )

is a field.
If g ∈ ℤ3[t], then by the Division Algorithm g = fq + r where q, r ∈ ℤ3[t] and

0 ≤ deg r < 3. Hence g + (f ) = r + (f ). This shows that every element of K has the form
a0 + a1t + a2t2 + (f ) where ai ∈ ℤ3. Thus |K| ≤ 33 = 27. On the other hand, all such
elements are distinct. Indeed, if r + (f ) = s + (f ) with r and s both of degree < 3, then
f | r − s, so that r = s. Therefore |K| = 27 and we have constructed a field of order 27.

As in the proof of (7.4.8), we see that f has the root a = t + (f ) in K. To prove that
K is actually a splitting field, note that f has two further roots in K, namely a + 1 and
a − 1. Thus f = (t − a)(t − a − 1)(t − a + 1).

Further discussion of fields is postponed until Chapter 11. However, we have seen
enough to realize that irreducible polynomials play a vital role in the theory of fields.
Thus a practical criterion for irreducibility is sure to be useful. Probably the best
known test for irreducibility is:

(7.4.9) (Eisenstein’s1 Criterion). Let R be a unique factorization domain and let f = a0+
a1t+ ⋅ ⋅ ⋅+antn be a non-constant polynomial over R. Suppose that there is an irreducible
element p of R such that p | a0, p | a1, . . . , p | an−1, but p ∤ an and p2 ∤ a0. Then f is
irreducible over R.

Proof. Assume that f is reducible and

f = (b0 + b1t + ⋅ ⋅ ⋅ + brt
r)(c0 + c1t + ⋅ ⋅ ⋅ + cst

s)

where bi, cj ∈ R, r, s < n, and r + s = n. By hypothesis p | a0 = b0c0, but p2 ∤ a0; thus
p must divide exactly one of b0 and c0, say p | b0 and p ∤ c0. Also p does not divide
an = brcs, so it cannot dividebr . Therefore there is a smallest positive integer k ≤ r such
that p ∤ bk . Now p divides each of b0, b1, . . . , bk−1, and also p | ak because k ≤ r < n.
Since ak = (b0ck + b1ck−1 + ⋅ ⋅ ⋅ + bk−1c1) + bkc0, (where ci = 0 if i > s), it follows that
p | bkc0. By Euclid’s Lemma –which by (7.3.4) is valid in a UFD – either p | bk or p | c0,
both of which are forbidden.

Eisenstein’s Criterion is often applied in conjunction with Gauss’s Lemma (7.3.7)
to give a test for irreducibility over the field of fractions of a domain.

Example (7.4.5). Prove that t5 − 9t + 3 is irreducible overℚ.
First of all f = t5 − 9t + 3 is irreducible overℤ by Eisenstein’s Criterion with p = 3.

Then Gauss’s Lemma shows that f is irreducible overℚ.

1 Ferdinand Gotthold Max Eisenstein (1823–1852).
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Example (7.4.6). Show that if p is a prime, the polynomial f = 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1 is
irreducible overℚ.

By Gauss’s Lemma it suffices to prove that f is ℤ-irreducible. Since (7.4.9) is not
immediately applicable to f , we resort to a trick. Consider the polynomial g = f (t + 1);
then

g = 1 + (t + 1) + ⋅ ⋅ ⋅ + (t + 1)p−1 = (t + 1)
p − 1
t
,

by the formula for the sum of a geometric series. On expanding (t+1)p by the Binomial
Theorem – see Exercise (6.1.6) – we arrive at the formula

g = tp−1 + ( p
p − 1
)tp−2 + ⋅ ⋅ ⋅ + (p

2
)t + (p

1
).

Now p | (pi) if 0 < i < p by (2.3.3). Therefore g is irreducible over ℤ by Eisenstein’s
Criterion. Clearly this implies that f is irreducible over ℤ. (The polynomial f is called
the cyclotomic polynomial of order p.)

Exercises (7.4).
(1) Let f ∈ F[t] have degree ≤ 3 where F is a field. Show that f is reducible over F if

and only if it has a root in F.
(2) Find the multiplicity of the root 2 of the polynomial t3 + 2t2 + t + 2 ∈ ℤ5[t].
(3) List all irreducible polynomials of degree at most 3 in ℤ2[t].
(4) Use t3 + t + 1 ∈ ℤ5[t] to construct a field of order 125.
(5) Let f = 1 + t + t2 + t3 + t4 ∈ ℚ[t].

(i) Prove that K = ℚ[t]/(f ) is a field.
(ii) Show that every element of K can be uniquely written in the form a0 + a1x +

a2x2 + a3x3 where x = t + (f ) and ai ∈ ℚ.
(iii) Prove that K is a splitting field of f . [Hint: note that x5 = 1 and check that x2,

x3, x4 are roots of f .]
(iv) Compute (1 + x2)3 and (1 + x)−1 in K.

(6) Show that t6 + 6t5 + 4t4 + 2t + 2 is irreducible overℚ.
(7) Show that t6 + 12t5 + 49t4 + 96t3 + 99t2 + 54t + 15 is irreducible overℚ. [Hint: use

a suitable change of variable.]
(8) Let F = ℤp{t1}, the field of rational functions in t1, and R = F[t] where t and t1 are

distinct indeterminates. Prove that tn− t21 t+ t1 ∈ R is irreducible over F for all n ≥ 1.
(9) Find a polynomial of degree 4 inℤ[t]whichhas√3−√2 as a root and is irreducible

overℚ.
(10) Let n be a positive integer that is not a prime. Prove that 1 + t + t2 + ⋅ ⋅ ⋅ + tn−1 is

reducible over any field.
(11) Show thatℚ[t] contains an irreducible polynomial of every degree n ≥ 1.
(12) Let R be a commutative ring with identity containing a zero divisor. Find a linear

polynomial in R[t] which has at least two roots in R, so that (7.4.3) fails for R.
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We have already encountered groups and rings, two of the most commonly used alge-
braic structures. A third structure of great importance is a vector space. Vector spaces
appear throughout mathematics and they also turn up in many applied areas, for ex-
ample, in quantum theory and coding theory.

8.1 Vector spaces and subspaces

Let F be a field. A vector space over F is an additively written abelian group V with an
action of F on V called scalar multiplication, that is, a function from F ×V to V written
(a, v) → av, (a ∈ F, v ∈ V), such that the following axioms hold for all u, v ∈ V and
a, b ∈ F.
(i) a(u + v) = au + av;
(ii) (a + b)v = av + bv;
(iii) (ab)v = a(bv);
(iv) 1Fv = v.

Notice that (iii) and (iv) assert that themultiplicative group of F acts on the setV in the
sense of Section 5.1. Elements of V are called vectors and elements of F scalars. When
there is no chance of confusion, it is usual to refer to the set V as the vector space.

First of all we record two elementary consequences of the axioms.

(8.1.1). Let v be a vector in a vector space V over a field F and let a ∈ F. Then:
(i) 0Fv = 0V and a0V = 0V ;
(ii) (−1F)v = −v.

Proof. Put a = 0F = b in vector space axiom (ii) to get 0Fv = 0Fv+0Fv. Hence 0Fv = 0V
by the cancellation law for the group (V ,+). Similarly, setting u = 0V = v in (i) yields
a0V = 0V . This establishes (i).

Using axioms (ii) and (iv) and property (i), we obtain

v + (−1F)v = 1Fv + (−1F)v = (1F + (−1F))v = 0Fv = 0V .

Therefore (−1F)v equals −v, which completes the proof.

Examples of vector spaces
Before proceeding further we review some standard sources of vector spaces.
(i) Vector spaces of matrices. Let F be a field and define

Mm,n(F)
https://doi.org/10.1515/9783110691160-008
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to be the set of all m × n matrices over F. This is already an abelian group with
respect to ordinary matrix addition. There is also a natural scalar multiplication
here: if A = [aij] ∈ Mm,n(F) and f ∈ F, then fA is the matrix which has faij as its
(i, j) entry. That the vector space axioms hold is guaranteed by elementary results
from matrix algebra.

Two special cases of interest are the vector spaces

Fm = Mm,1(F) and Fn = M1,n(F).
Thus Fm is the vector space of m-column vectors over F, while Fn is the vector space
of n-row vectors over F. The space ℝn is called Euclidean n-space. For n ≤ 3 there is a
well-known geometric interpretation of ℝn. Consider for example ℝ3. A vector in ℝ3

v = [[
[

a
b
c

]]

]

is represented by a line segment v⃗ in 3-dimensional space drawn from an arbitrary
initial point (p, q, r) to the point (p + a, q + b, r + c).

With this interpretation of vectors, the rule of addition of vectors u and v in ℝ3 is
equivalent to the well-known triangle rule for addition of line segments u⃗ and v⃗; this
is illustrated in the diagram below.

∙

∙

⃗v??

∙

u⃗+ ⃗v
??

u⃗

??

A detailed account of the geometric interpretations of euclidean 2-space and 3-space
may be found in any text on linear algebra – see for example [16].

(ii) Vector spaces of polynomials. The set F[t] of all polynomials in t over a field F is a
vector space over F with the usual addition and scalar multiplication of polyno-
mials.

(iii) Fields as vector spaces. Suppose that F is a subfield of a field K, i. e., F is a sub-
ring of K containing 1 which is closed with respect to taking inverses of non-zero
elements. We can regard K as a vector space over F, using the field operations as
vector space operations. At first sight this example may seem confusing since el-
ements of F are simultaneously vectors and scalars. However, this point of view
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will be particularly valuable whenwe come to investigate the structure of fields in
Chapter 11.

Subspaces
By analogy with subgroups of groups and subrings of rings, it is natural to introduce
the concept of a subspace of a vector space. Let V be a vector space over a field F
and let S be a subset of V . Then S is called a subspace of V if, when we restrict the
vector space operations of V to S, we obtain a vector space over F. Taking note of the
analysis of the subgroup concept in Section 3.3 – see especially (3.3.4) – we conclude
that a subspace is a subset of V containing 0V which is closed with respect to addition
and multiplication by scalars.

Obvious examples of subspaces ofV are 0 = 0V , the zero subspacewhich contains
just the zero vector, and V itself, the improper subspace. A more interesting source of
examples is given in:

Example (8.1.1). Let A be an m × nmatrix over a field F and define S to be the subset
of all X in Fn such that AX = 0. Then S is a subspace of Fn, verification of the closure
properties being very easy. The subspace S is called the null space of the matrix A.

Linear combinations of vectors
Suppose thatV is a vector space over a field F and v1, v2, . . . , vk are vectors inV . A linear
combination of these vectors has the form

a1v1 + a2v2 + ⋅ ⋅ ⋅ + akvk

where a1, a2, . . . , ak ∈ F. If X is any non-empty set of vectors in V , we will write either
F⟨X⟩ or, if we do not wish to emphasize the field, ⟨X⟩ for the set of all linear combina-
tions of vectors in the set X. It is a fundamental fact that this is always a subspace.

(8.1.2). Let X be a non-empty subset of a vector space V over a field F. Then F⟨X⟩ is the
smallest subspace of V that contains X.

Proof. In the first place it is easy to verify that F⟨X⟩ is closed with respect to addition
and scalar multiplication; of course it also contains the zero vector 0V . Therefore F⟨X⟩
is a subspace. Also it contains X since x = 1Fx ∈ F⟨X⟩ for all x ∈ X. Finally, any
subspace that contains X automatically contains every linear combination of vectors
in X, i. e., it must contain F⟨X⟩ as a subset.

The subspace ⟨X⟩ is called the subspace generated (or spanned) by X. If V = ⟨X⟩,
then X is said to generate the vector space V . If V can be generated by some finite set
of vectors, we say that V is a finitely generated vector space. What this means is that
every vector inV can be expressed as a linear combination of the vectors in some finite
set.
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Example (8.1.2). Fn is a finitely generated vector space. To see why, consider the so-
called elementary vectors in Fn,

E1 =

[[[[[[[[

[

1
0
0
...
0

]]]]]]]]

]

, E2 =

[[[[[[[[

[

0
1
0
...
0

]]]]]]]]

]

, . . . , En =

[[[[[[[[

[

0
0
...
0
1

]]]]]]]]

]

.

A general vector in Fn,

[[[[[

[

a1
a2
...
an

]]]]]

]

,

can be written as a1E1 + a2E2 + ⋅ ⋅ ⋅ + anEn. Hence Fn = ⟨E1,E2, . . . ,En⟩ and Fn is finitely
generated.

On the other hand, infinitely generated, i. e., non-finitely generated, vector spaces
are not hard to find.

Example (8.1.3). If F is an arbitrary field, the vector space F[t] is infinitely generated.
Indeed suppose that F[t] could be generated by finitely many polynomials p1,

p2, . . . , pk and let m be the maximum degree of the pi. Since the degree of a linear
combination of the pi cannot exceed m, it follows that tm+1 cannot be expressed as a
linear combination of p1, . . . , pk, a contradiction.

Exercises (8.1).
(1) Which of the following are vector spaces? The operations of addition and scalar

multiplication are the natural ones.
(i) The set of all real 2 × 2 matrices with determinant 0.
(ii) The set of all solutions y(x) of the homogeneous linear differential equation

an(x)y(n) + an−1(x)y(n−1) + ⋅ ⋅ ⋅ + a1(x)y′ + a0(x)y = 0, where the ai(x) are real-
valued functions of the real variable x.

(iii) The set of all solutions X of the matrix equation AX = B.
(2) In the following cases say whether S is a subspace of the vector space V .

(i) V = ℝ2, S = all [ a2a ], a ∈ ℝ;
(ii) V is the vector space of all real valued continuous functions defined on the

interval [0, 1] and S is the set of all infinitely differentiable functions in V .
(iii) V = F[t], S = {f ∈ V | f (a) = 0} where a is a fixed element of F.

(3) Verify that the rule for adding the vectors in ℝ3 corresponds to the usual triangle
rule for the addition of line segments.
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(4) Does [ 4 3
1 −2 ] belong to the subspace of M2(ℝ) generated by the matrices [ 3 4

1 2 ],
[ 0 2− 13 4 ], [ 0 2

0 1 ]?
(5) Let V be a vector space over a finite field. Prove that V is finitely generated if and

only if it is finite.

8.2 Linear independence, basis and dimension

A concept of critical importance in vector space theory is linear independence. For an
understanding of this topic some knowledge of systems of linear equations, and in
particular row and column operations on matrices, is essential and will be assumed.
See for example [16] for an account.

LetV be a vector space over a field F and let X be a non-empty subset ofV . Then X
is called linearly dependent if there exist distinct vectors x1, x2, . . . , xk in X and scalars
a1, a2, . . . , ak ∈ F, not all of them zero, such that

a1x1 + a2x2 + ⋅ ⋅ ⋅ + akxk = 0.

This amounts to saying that some xi can be expressed as a linear combination of the
others. For if, say, ai ̸= 0, we can solve for xi, obtaining

xi =
k
∑
j=1
j ̸=i(−a

−1
i )ajvj.

A subset which is not linearly dependent is called linearly independent. For example,
the elementary vectors E1,E2, . . . ,En form a linearly independent subset of Fn for any
field F.

Homogeneous linear systems
Tomake significant progresswith linear independence, some knowledge of systems of
linear equations is needed. Let F be a field and consider a system ofm homogeneous
linear equations over F

{{{{{{{
{{{{{{{
{

a11x1 + ⋅ ⋅ ⋅ + a1nxn = 0
a21x1 + ⋅ ⋅ ⋅ + a2nxn = 0
...

am1x1 + ⋅ ⋅ ⋅ + amnxn = 0

Here aij ∈ F and x1, x2, . . . , xn are the unknowns.
Clearly the system has the trivial solution x1 = x2 = ⋅ ⋅ ⋅ = xn = 0. The interest-

ing question is whether there are any non-trivial solutions. A detailed account of the
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theory of systems of linear equations can be found in any book on linear algebra, for
example [16].

The linear system can be written in the matrix form

AX = 0,

where A = [aij]m,n is the coefficient matrix and X is the n-column vector formed by the
unknowns x1, x2, . . . , xn. The following result is sufficient for our present purposes.

(8.2.1). The homogenous linear system AX = 0 has a non-trivial solution X if and only
if the rank of the coefficient matrix A is less than the number of unknowns.

Proof. Write A = [aij], which is an m × n matrix. We adopt the method of systematic
elimination known as Gaussian elimination. It may be assumed that a11 ̸= 0; for, if this
is not true, replace equation 1 by the first equation in which x1 appears. Since equa-
tion 1 can be multiplied by a−111 , we may also assume that a11 = 1. Then, by subtracting
multiples of equation 1 fromequations 2 throughm, the unknown x1 can be eliminated
from these equations.

Next find the first of equations 2 through m which contains an unknown with
smallest subscript > 1, say xi2 . Move this equation up to second position. Now make
the coefficient of xi2 equal to 1 and subtract multiples of equation 2 from equations 3
throughm so as to eliminate xi2 . Repeat this procedure until the remaining equations
involve no further unknowns, i. e., they are of the trivial form 0 = 0. Let us say this
happens after r steps. At this point the matrix of coefficients is in row echelon form
with r linearly independent rows. The integer r is the rank of A.

Unknowns other than x1 = xi1 , xi2 , . . . , xir can be given arbitrary values. The non-
trivial equationsmay then be used to solve back for xir , xir−1 , . . . , xi1 successively. There-
fore there is a non-trivial solution if and only if r < n; for then at least one unknown
can be given an arbitrary value.

Corollary (8.2.2). A homogeneous linear system AX = 0 of n equations in n unknowns
has a non-trivial solution if and only if det(A) = 0.

For det(A) = 0 if and only if the rank of A is less than n. This result is used to
establish the fundamental theorem on linear dependence in vector spaces.

(8.2.3). Let v1, v2, . . . , vk be vectors in a vector space V over a field F. Then any set of
k + 1 or more vectors in the subspace ⟨v1, v2, . . . , vk⟩ is linearly dependent.

Proof. Let u1, u2, . . . , uk+1 ∈ S = ⟨v1, . . . , vk⟩. It is enough to show that {u1, u2, . . . , uk+1}
is a linearly dependent set. This amounts to finding field elements a1, a2, . . . , ak+1, not
all of them zero, such that a1u1 + a2u2 + ⋅ ⋅ ⋅ + ak+1uk+1 = 0.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



150 | 8 Vector Spaces

Since ui ∈ S, there is an expression ui = d1iv1 + d2iv2 + ⋅ ⋅ ⋅ + dkivk where dji ∈ F. On
substituting for the ui, we obtain

a1u1 + a2u2 + ⋅ ⋅ ⋅ + ak+1uk+1 = k+1∑
i=1 ai( k
∑
j=1 djivj) = k

∑
j=1(k+1∑i=1 djiai)vj.

Therefore a1u1 + a2u2 + ⋅ ⋅ ⋅ + ak+1uk+1 = 0 if the ai satisfy the equations
k+1
∑
i=1 djiai = 0, j = 1, . . . , k.

But this is a system of k linear homogeneous equations in the k+1 unknowns ai, so the
rank of the coefficient matrix [dij] is at most k. By (8.2.1) there is a non-trivial solution
a1, a2, . . . , ak+1. Therefore {u1, u2, . . . , uk+1} is linearly dependent, as claimed.

Corollary (8.2.4). If a vector space V can be generated by k elements, then every subset
of V with k + 1 or more elements is linearly dependent.

Bases
A basis of a vector space V is a non-empty subset X such that:
(i) X is linearly independent;
(ii) X generates V .

These are contrasting properties in the sense that (i) means that X is not too large and
(ii) that X is not too small.

For example, the elementary vectors E1, E2, . . . , En form a basis of the vector
space Fn called the standard basis. More generally a basis of Mm,n(F) is obtained by
taking all them × nmatrices over F with a single non-zero entry which is equal to 1F .

A important property of a basis is unique expressibility.

(8.2.5). If {v1, v2, . . . , vn} is a basis of a vector space V over a field F, then every vector v
in V is uniquely expressible in the form v = a1v1 + ⋅ ⋅ ⋅ + anvn with ai ∈ F.

Proof. In the first place such expressions for v exist by definition. If v in V had two
such expressions v = ∑ni=1 aivi = ∑ni=1 bivi, we would have ∑ni=1(ai − bi)vi = 0, from
which it follows that ai = bi by linear independence of the vi.

This result shows that a basis may be used to introduce coordinates in a vector
space. Suppose that V is a vector space over field F and that ℬ = {v1, v2, . . . , vn} is a
basis of V with its elements written in a specific order, i. e., an ordered basis. Then
by (8.2.5) each v ∈ V has a unique expression v = ∑ni=1 civi with ci ∈ F. Thus v is
determined by the column vector in Fn whose entries are c1, c2, . . . , cn; this is called
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the coordinate column vector of v with respect to ℬ and is written

[v]ℬ .

Coordinate vectors provide a concrete representation of vectors in an abstract vector
space.

The existence of bases
There is nothing in the definition tomake us certain that bases exist. Our first task will
be to show that this is true for any non-zero vector space. Notice that the zero space
does not have a basis since it has no linearly independent subsets.

(8.2.6). Let V be a vector space and suppose that B0 is a linearly independent subset
of V. Then B0 is contained in some basis of V.

Proof. Define 𝒮 to be the set of all linearly independent subsets of V which contain
B0. Then 𝒮 is non-empty since it contains B0. Furthermore, inclusion is a partial order
on 𝒮, so (𝒮 ,⊆) is a partially ordered set. We wish to apply Zorn’s Lemma to 𝒮; to do so
we need to verify that every chain in 𝒮 has an upper bound.

Let 𝒞 be a chain in 𝒮. There is an obvious candidate for an upper bound, namely
the union U = ⋃X∈𝒞 X. Certainly U is linearly independent: for any relation of linear
dependence in U will involve a finite number of elements of 𝒮 and so the relation will
hold in some X ∈ 𝒞. Here it is vital that 𝒞 be linearly ordered. Also B0 ⊆ U and U ∈ 𝒮;
moreover U is an upper bound for 𝒞.

It is now possible to apply Zorn’s Lemma to obtain a maximal element in 𝒮, say B.
By definition B is linearly independent: to show that it is a basis we must prove that
it generates V . Assume this is false and let v be a vector in V that is not expressible
as a linear combination of vectors in B; then certainly v ∉ B and hence B is a proper
subset of {v}∪B = B′. By maximality of B, the set B′ does not belong to 𝒮 and hence is
linearly dependent. Therefore there is a linear relation a1u1 +a2u2 + ⋅ ⋅ ⋅+amum + cv = 0
where ui ∈ B and c, ai ∈ F, with not all the coefficients being zero. If c = 0, then
a1u1 + a2u2 + ⋅ ⋅ ⋅ + amum = 0, so that a1 = a2 = ⋅ ⋅ ⋅ = am = 0 since u1, u2, . . . , um are
linearly independent. Therefore c ̸= 0 and we can solve the equation for v, obtaining

v = (−c−1a1)u1 + (−c−1a2)v2 + ⋅ ⋅ ⋅ + (−c−1am)um,
which contradicts the choice of v. Hence B generates V .

Corollary (8.2.7). Every non-zero vector space V has a basis.

Proof. By hypothesis there is a non-zero vector v in V . Apply (8.2.6) with B0 = {v}.

Next it will be shown any two bases of a vector space have the same cardinal.

(8.2.8). Let X and Y be two bases of a vector space V over a field F. Then |X| = |Y |.
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Proof. First of all assume that X is finite. Then, since Y is linearly independent, it is
finite and |Y | ≤ |X| by (8.2.4). Similarly |X| ≤ |Y |. Thus |X| = |Y | and we can assume
that X and Y are both infinite. In this case the proof is harder.

Let 𝒫f (Y) denote the set of all finite subsets of Y . Define a function α : X → Pf (Y)
as follows. If x ∈ X and x = k1y1 + ⋅ ⋅ ⋅ + knyn with distinct yi ∈ Y and 0 ̸= ki ∈ F, define
α(x) = {k1, . . . , kn}. The function α is not injective, so we will modify it.

Let T = {y1, y2, . . . , yn} ⊆ Y , so that T ∈ 𝒫f (Y). We claim that T̄ = {x ∈ X | α(x) ∈ T}
is finite. For if not, there are infinitelymany elements ofX that are linear combinations
of y1, y2, . . . , yn, contradicting (8.2.3). Let the elements of each T̄ be linearly ordered in
some way. Next define a new function β : X → Im(α) × ℕ by the rule β(x) = (T ,m)
where α(x) = T, (so that x ∈ T̄), and x is the mth element of T̄. It is clear that β is
injective. Therefore

|X| ≤ Im(α) ×ℕ
 ≤
Pf (Y)
 ⋅ ℵ0 = |Y | ⋅ ℵ0 = |Y |.

In a similar way |Y | ≤ |X|, so by the Cantor-Bernstein Theorem (1.4.2) we arrive at
|X| = |Y |.

In the foregoing proof we used two facts about cardinals: (i) |Pf (Y)| = |Y | – cf.
Exercise (1.4.8); (ii) |Y | ⋅ ℵ0 = |Y | if Y is infinite. For the latter statement see for exam-
ple [8].

Dimension
Avector space usually hasmany bases, but by (8.2.8) all bases have the same cardinal.
This fact enables us to define the dimension of a vector space V ,

dim(V).

If V = 0, define dim(V) to be 0, and if V ̸= 0, let dim(V) be the cardinal of a basis of V .
The definition is unambiguous by (8.2.8).

By (8.2.4) a finitely generated vector space cannot have an infinite linearly inde-
pendent subset and thus must have finite dimension. In future we will refer to finite
dimensional vector spaces instead of finitely generated ones.

The dimensions of vector spaces of row or column vectors can be computed from
the ranks of matrices.

(8.2.9). Let X1, X2, . . . , Xk be vectors in Fn where F is a field. Let A = [X1,X2, . . . ,Xk] be
the n × k matrix which has the Xi as columns. Then dim(⟨X1, . . . ,Xk⟩) = r where r is the
rank of the matrix A.

Proof. We will use some elementary facts about matrices here. In the first place, S =
⟨X1, . . . ,Xk⟩ is the column space of the matrix A, and it is unaffected when column op-
erations are applied to A. By applying column operations to A, just as we did for row
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operations during Gaussian elimination in the proof of (8.2.1), we can replace A by a
matrix with the same column space S which has the so-called column echelon form
with r non-zero columns. Here r is the rank of A. Since the r columns are linearly in-
dependent, they form a basis of S (if r > 0). Hence dim(S) = r.

Next we consider the relation between the dimension of a vector space and that
of a subspace.

(8.2.10). If V is a vector space with finite dimension n and U is a subspace of V, then
dim(U) ≤ dim(V). Furthermore dim(U) = dim(V) if and only if U = V.

Proof. If U = 0, then dim(U) = 0 ≤ dim(V). Assume that U ̸= 0 and let X be a basis
of U . By (8.2.6) the subset X is contained in a basis Y of V . Hence dim(U) = |X| ≤ |Y | =
dim(V). Finally, suppose that dim(U) = dim(V), but U ̸= V . Then U ̸= 0. As before,
a basis X of U is contained in a basis Y of V . Since |X| = |Y |, it follows that X = Y .
Therefore U = V , a contradiction.

The next result can simplify the task of showing that a subset of a finite dimen-
sional vector space is a basis.

(8.2.11). Let V be a finite dimensional vector space with dimension n and let X be a
subset of V with n elements. Then the following statements about X are equivalent:
(i) X is a basis of V;
(ii) X is linearly independent;
(iii) X generates V.

Proof. Of course (i) implies (ii). Assume that (ii) holds. Then X is a basis of ⟨X⟩, the
subspace it generates; hence dim(⟨X⟩) = n = dim(V) and (8.2.10) shows that ⟨X⟩ = V .
Thus (ii) implies (iii).

Finally, assume that (iii) holds. If X is not a basis of V , it must be linearly depen-
dent, so one of its elements can bewritten as a linear combination of the others. Hence
V can be generated by fewer than n elements, which is a contradiction by (8.2.4).

Change of basis
As previously remarked, vector spaces usually have many bases and a vector is repre-
sented with respect to each basis by a coordinate column vector. A natural question
is: how are these coordinate vectors related?

Let ℬ = {v1, v2, . . . , vn} and ℬ′ = {v′1, v′2, . . . , v′n} be two ordered bases of a finite
dimensional vector space V over a field F. Then each v′i can be expressed as a linear
combination of v1, v2, . . . , vn, say

v′i = n
∑
j=1 sjivj,
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where sji ∈ F. The change of basisℬ′ → ℬ is described by the transitionmatrix S = [sij].
Observe that S is n × n and its ith column is the coordinate vector [v′i ]ℬ.

To understand how S determines the change of basis ℬ′ → ℬ, choose an arbi-
trary vector v from V and write v = ∑ni=1 c′i v′i where c′1, c′2, . . . , c′n are the entries of the
coordinate vector [v]ℬ′ . Replace v′i by ∑nj=1 sjivj to get

v =
n
∑
i=1 c′i( n
∑
j=1 sjivj) = n

∑
j=1( n
∑
i=1 sjic′i)vj.

Therefore the entries of the coordinate vector [v]ℬ are ∑ni=1 sjic′i for j = 1, 2, . . . , n. This
shows that

[v]ℬ = S[v]ℬ′ ,

i. e., left multiplication by the transition matrix S transforms coordinate vectors with
respect to ℬ′ into vectors with respect to ℬ.

Notice that the transition matrix S must be non-singular. For otherwise by stan-
dard matrix theory there would exist a non-zero X ∈ Fn such that SX = 0; however, if
u ∈ V is defined by [u]ℬ′ = X, then [u]ℬ = SX = 0, which can onlymean that u = 0 and
X = 0. From [v]ℬ = S[v]ℬ′ we deduce that S−1[v]ℬ = [v]ℬ′ . Thus S−1 is the transition
matrix for the change of basis ℬ → ℬ′. These conclusions are summed up in the next
result.

(8.2.12). Let ℬ and ℬ′ be ordered bases of an n-dimensional vector space V. Define S to
be the n × n matrix whose ith column is the coordinate vector of the ith vector of ℬ′ with
respect to ℬ. Then S is non-singular and for all v in V

[v]ℬ = S[v]ℬ′ and [v]ℬ′ = S
−1[v]ℬ .

Example (8.2.1). Let V be the vector space of all real polynomials in t with degree at
most 2. Then ℬ = {1, t, t2} is clearly a basis for V and so is ℬ′ = {1 + t, 2t, 4t2 − 2}, as it is
quickly seen that this set is linearly independent. Write the coordinate vectors of 1+ t,
2t, 4t2 − 2 with respect to ℬ as columns of the matrix

S = [[
[

1 0 −2
1 2 0
0 0 4

]]

]

.

This is the transition matrix for the change of basis ℬ′ → ℬ. The transition matrix for
ℬ → ℬ′ is

S−1 = [[
[

1 0 1
2

− 12
1
2 −

1
4

0 0 1
4

]]

]

.
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For example, to express f = a + bt + ct2 in terms of the basis ℬ′, we compute

[f ]ℬ′ = S
−1[f ]ℬ = [[

[

1 0 1
2

− 12
1
2 −

1
4

0 0 1
4

]]

]

[[

[

a
b
c

]]

]

= [[

[

a + c
2

− 12a +
1
2b −

1
4c

1
4c

]]

]

.

Thus f = (a + c
2 )(1 + t) + (−

1
2a +

1
2b −

1
4c)(2t) +

1
4c(4t

2 − 2), which is clearly correct.

Dimension of the sum and intersection of subspaces
Since a vector space V is an additively written abelian group, one can form the sum of
two subspaces U andW ; thus

U +W = {u + w | u ∈ U ,w ∈ W}.

It is easily verified that U +W is a subspace of V . Also U ∩W is a subspace. There is a
useful formula connecting the dimensions of U +W and U ∩W .

(8.2.13). If U and W are subspaces of a finite dimensional vector space V, then

dim(U +W) + dim(U ∩W) = dim(U) + dim(W).

Proof. If U = 0, then U +W = W and U ∩W = 0; in this case the formula is certainly
true. Thus we can assume that U ̸= 0 andW ̸= 0.

Choose a basis for U ∩ W , say z1, . . . , zr, if U ∩ W ̸= 0; should U ∩ W be 0, just
ignore the zi. By (8.2.6) we can extend {z1, . . . , zr} to bases of U and ofW , say

{z1, . . . , zr , ur+1, . . . , um} and {z1, . . . , zr ,wr+1, . . . ,wn}.

Now the vectors z1, z2, . . . zr , ur+1, . . . , um,wr+1, . . . ,wn surely generate U + W : for any
vector in U +W is expressible as a linear combination of them. In fact these elements
are also linearly independent, so they form a basis of U +W . To establish this claim,
assume there is a linear relation

r
∑
i=1 eizi + m

∑
j=r+1 cjuj + n

∑
k=r+1 dkwk = 0

where ei, cj, dk are scalars. Then

n
∑

k=r+1 dkwk =
r
∑
i=1(−ei)zi + m

∑
j=r+1(−cj)uj,

which belongs to U and toW and so to U ∩W . Hence∑nk=r+1 dkwk is a linear combina-
tion of the zi. But z1, . . . , zr, wr+1, . . . , wn are linearly independent, which implies that
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dk = 0 for all k. The linear relation now reduces to

r
∑
i=1 eizi + m

∑
j=r+1 cjuj = 0.

But z1, . . . , zr, ur+1, . . . , um are linearly independent. Therefore all the cj and ei equal
zero, which establishes the claim of linear independence.

Finally, dim(U + W) equals the number of the vectors z1, . . . , zr, ur+1, . . . , um,
vr+1, . . . , vn: this is, r + (m − r) + (n − r) = m + n − r, which equals dim(U) + dim(W) −
dim(U ∩W), so the required formula follows.

Direct sums of vector spaces
Since a vector space V is an additive abelian group, we can form the direct sum of
subspaces U1,U2, . . . ,Uk – see Section 4.2. This is an additive abelian group which is
written

U = U1 ⊕ U2 ⋅ ⋅ ⋅ ⊕ Uk .

Thus U = {u1 + u2 + ⋅ ⋅ ⋅ + uk | ui ∈ Ui} and Ui ∩∑j ̸=i Uj = 0. Clearly U is a subspace of V .
Note that by (8.2.13) and induction on k

dim(U1 ⊕ U2 ⊕ ⋅ ⋅ ⋅ ⊕ Uk) = dim(U1) + dim(U2) + ⋅ ⋅ ⋅ + dim(Uk).

Next if {v1, v2, . . . , vn} is a basis of V , then V = ⟨v1⟩ ⊕ ⟨v2⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨vn⟩, so that we
have established:

(8.2.14). An n-dimensional vector space is the direct sum of n 1-dimensional subspaces.

This result is also true when n = 0 if the direct sum is interpreted as 0.

Quotient spaces
Suppose that V is a vector space over a field F and U is a subspace of V . Since V is an
abelian group and U is a subgroup, the quotient

V/U = {v + U | v ∈ V}

already exists as an abelian group. Nowmake V/U into a vector space over F by defin-
ing scalar multiplication in the natural way,

a(v + U) = av + U , (a ∈ F).

This is evidently a well-defined operation. After an easy check of the axioms, we con-
clude that V/U is a vector space over F, the quotient space of U in V . The dimension
of a quotient space is easily computed.
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(8.2.15). Let U be a subspace of a finite dimensional space V. Then dim(V/U) =
dim(V) − dim(U).

Proof. If U = 0, the statement is obviously true. Assuming U ̸= 0, we choose a basis
{v1, v2, . . . , vm} ofU and extend it to a basis of V , say {v1, v2, . . . , vm, vm+1, . . . , vn}. We will
argue that {vm+1 + U , . . . , vn + U} is a basis of V/U .

Assume that ∑ni=m+1 ai(vi + U) = 0V/U = U where ai ∈ F. Then ∑
n
i=m+1 aivi ∈ U,

so this element is a linear combination of v1, . . . , vm. It follows by linear independence
that each ai = 0, which shows that {vm+1 +U , . . . , vn +U} is linearly independent. Next,
if v ∈ V , write v = ∑ni=1 aivi, with scalars ai, and observe that v + U = ∑ni=m+1 ai(vi + U)
since v1, . . . , vm ∈ U . It follows that vm+1 + U, . . . , vn + U form a basis of V/U and
dim(V/U) = n −m = dim(V) − dim(U), as required.

To conclude this section let us show that themere existence of a basis in a finite di-
mensional vector space is enough to prove two important results about abelian groups
and finite fields.

Let p be a prime. An additively written abelian group A is called an elementary
abelian p-group if pa = 0 for all a in A, i. e., each element of A has order 1 or p. For
example, the Klein 4-group is an elementary abelian 2-group. The structure of finite
elementary abelian p-groups is given by the next result.

(8.2.16). Let A be a finite abelian group. Then A is an elementary abelian p-group if and
only if A is a direct sum of copies of ℤp.

Proof. The idea behind the proof is to view A as a vector space over the fieldℤp. Here
the scalar multiplication is the natural one, namely (i + pℤ)a = ia where i ∈ ℤ, a ∈ A.
One has to verify that this operation is well-defined, which is true since (i + pm)a =
ia + mpa = ia for all a ∈ A. Since A is finite, it is a finite dimensional vector space
over ℤp. By (8.2.14) A = A1 ⊕ A2 ⊕ ⋅ ⋅ ⋅ ⊕ An where each Ai is a 1-dimensional subspace;
thus |Ai| = p andAi ≃ ℤp. Conversely, any direct sum of copies ofℤp certainly satisfies
pa = 0 for every element a and so is an elementary abelian p-group.

The second application is to prove that the number of elements in a finite field is
always a prime power. This is in marked contrast to the behavior of groups and rings,
examples of which exist with any finite order.

(8.2.17). Let F be a finite field. Then |F| is a power of a prime.

Proof. By (6.3.9) the field F has characteristic a prime p and pa = 0 for all a ∈ F. Thus,
as an additive group, F is elementary abelian p. It now follows from (8.2.16) that |F| is
a power of p.
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Exercises (8.2).
(1) Show that

X1 =
[[

[

4
2
1

]]

]

, X2 =
[[

[

−5
2
−3

]]

]

, X3 =
[[

[

1
3
0

]]

]

form a basis of ℝ3, and express the elementary vectors E1, E2, E3 in terms of X1,
X2, X3.

(2) Find a basis for the null space of the matrix

[[

[

2 3 1 1
−3 1 4 −7
1 2 1 0

]]

]

.

(3) Find the dimension of the vector spaceMm,n(F) where F is an arbitrary field.
(4) Let v1, v2, . . . , vn be vectors in a vector space V . Assume that each element of V is

uniquely expressible as a linear combination of v1, v2, . . . , vn. Prove that the vi’s
form a basis of V .

(5) Let ℬ = {E1,E2,E3} be the standard ordered basis of ℝ3 and let

ℬ′ = {{{{
{

[[

[

2
0
0

]]

]

,[[

[

−1
2
0

]]

]

,[[

[

1
1
1

]]

]

}}
}}
}

.

Show that ℬ′ is a basis of ℝ3 and find the transition matrices for the changes of
bases ℬ′ → ℬ and ℬ → ℬ′.

(6) Let V be a vector space of dimension n and let i be an integer such that 0 ≤ i ≤ n.
Prove that V has at least one subspace of dimension i.

(7) The same as Exercise (8.2.6) with “subspace” replaced by “quotient space”.
(8) Let U be a subspace of a finite dimensional vector space V . Prove that there is a

subspaceW such that V = U ⊕W .
(9) Let V be a vector space of dimension 2n and assume that U andW are subspaces

of dimensions n and n + 1 respectively. Prove that U ∩W ≠ 0.
(10) Let the vectors v1, v2, . . . , vm generate a vector space V . Prove that some subset of
{v1, v2, . . . , vm} is a basis of V .

8.3 Linear mappings

Just as there are homomorphisms of groups and rings, there are homomorphisms of
vector spaces. Traditionally these are called linearmappings or linear transformations.
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Let V andW be vector spaces over the same field F. Then a function

α : V → W

is called a linear mapping from V to W if the following rules are valid for all v1, v2 ∈ V
and a ∈ F:
(i) α(v1 + v2) = α(v1) + α(v2);
(ii) α(av1) = aα(v1).

If α is also bijective, it is called an isomorphism of vector spaces. Should there exist an
isomorphism between vector spaces V andW over a field F, then V andW are said to
be isomorphic and we write

V F≃ W or V ≃ W .

Notice that a linear mapping is automatically a homomorphism of additive groups by
(i) above, so all results established for group homomorphisms can be carried over to
linear mappings. A linear mapping α : V → V is called a linear operator on V .

Example (8.3.1). Let A be anm×nmatrix over a field F and define a function α : Fn →
Fm by the rule α(X) = AX where X ∈ Fn. Simple properties of matrices show that α is a
linear mapping.

Example (8.3.2). Let V be an n-dimensional vector space over a field F and let ℬ =
{v1, v2, . . . , vn} be an ordered basis of V . Recall that to each vector v in V there corre-
sponds a unique coordinate vector [v]ℬ with respect to ℬ.

Use this correspondence to define a function α : V → Fn by α(v) = [v]ℬ. By simple
calculations we see that [u+ v]ℬ = [u]ℬ + [v]ℬ and [av]ℬ = a[vℬ]where u, v ∈ V , a ∈ F.
Hence α is a linear mapping. Clearly [v]ℬ = 0 implies that v = 0; thus α is injective and
it is obviously surjective. The conclusion is that α is an isomorphism and V F≃ Fn.

We state this conclusion as:

(8.3.1). If V is a vector space with dimension n over a field F, then V F≃ Fn. Thus two
finite dimensional vector spaces over F are isomorphic if and only if they have the same
dimension.

Here the converse statement follows from the evident fact that isomorphic vector
spaces have the same dimension.

An importantwayof defining a linearmapping is by specifying its effect onabasis.

(8.3.2). Let {v1, . . . , vn} be a basis of a vector space V over a field F and let w1, . . . , wn
be any n vectors in another F-vector space W. Then there is a unique linear mapping
α : V → W such that α(vi) = wi for i = 1, 2, . . . , n.
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Proof. Let v ∈ V and write v = ∑ni=1 aivi where ai ∈ F. Define a function α : V → W by
the rule

α(v) =
n
∑
i=1 aiwi.

Then an easy check shows that α is a linear mapping, and of course α(vi) = wi. If α′ :
V → W is another such linear mapping, then α′(v) = ∑ni=1 aiα′(vi) = ∑ni=1 aiwi = α(v).
Hence α = α′.

Our experience with groups and rings suggests that it may be worthwhile to ex-
amine the kernel and image of a linear mapping.

(8.3.3). Let α : V → W be a linear mapping. Then Ker(α) and Im(α) are subspaces of V
and W respectively.

Proof. Since α is a group homomorphism, it follows from (4.3.2) that Ker(α) and Im(α)
are additive subgroups. We leave the reader to complete the proof by showing that
these subgroups are also closed under scalar multiplication.

Just as for groups and rings, there are isomorphism theorems for vector spaces.

(8.3.4) (First Isomorphism Theorem). If α : V → W is a linear mapping between vector
spaces over a field F, then V/Ker(α) F≃ Im(α).

(8.3.5) (Second Isomorphism Theorem). Let U and W be subspaces of a vector space
over a field F. Then (U +W)/W F≃ U/(U ∩W).

(8.3.6) (Third Isomorphism Theorem). Let U and W be subspaces of a vector space
over a field F such that U ⊆ W. Then (V/U)/(W/U) F≃ V/W.

Since the isomorphism theorems for groups are applicable, all one has to prove
here is that the functions introduced in theproofs of (4.3.4), (4.3.5) and (4.3.6) are linear
mappings, i. e., they act appropriately on scalar multiples.

For example, in (8.3.4) the function in question is θ : V/Ker(α) → Im(α) where
θ(v + Ker(α)) = α(v). Then

θ(a(v + Ker(α)) = θ(av + Ker(α)) = α(av) = aα(v) = aθ(v + Ker(α)).

It follows that θ is a linear mapping.
There is an important formula connecting the dimensions of kernel and image.

(8.3.7). If α : V → W is a linear mapping between finite dimensional vector spaces,
then dim(Ker(α)) + dim(Im(α)) = dim(V).

This follows directly from (8.3.4) and (8.2.15). There is an immediate application
to the null space of a matrix.
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Corollary (8.3.8). Let A be anm×nmatrix with rank r over a field F. Then the dimension
of the null space of A is n − r.

Proof. Let α be the linear mapping from Fn to Fm defined by α(X) = AX. Then Ker(α) is
the null space of A and it is readily seen that Im(α) is just the column space. By (8.2.9)
dim(Im(α)) = r, the rank of A, and by (8.3.7) dim(Ker(α)) = n − r.

As another application of (8.3.7)we give a different proof of the dimension formula
for sum and intersection of subspaces – see (8.2.13).

(8.3.9). If U and W are subspaces of a finite dimensional vector space, then

dim(U +W) + dim(U ∩W) = dim(U) + dim(W).

Proof. By (8.3.5) (U + W)/W ≃ U/(U ∩ W). Hence, taking dimensions and applying
(8.2.15), we find that dim(U + W) − dim(W) = dim(U) − dim(U ∩ W), and the result
follows.

Vector spaces of linear mappings
It is useful to endow sets of linear mappings with the structure of a vector space. Sup-
pose that V andW are vector spaces over the same field F. We will write

L(V ,W)

for the set of all linear mappings from V toW . Define addition and scalar multiplica-
tion in L(V ,W) by the natural rules

α + β(v) = α(v) + β(v), (a ⋅ α)(v) = a(α(v)),

where α, β ∈ L(V ,W), v ∈ V , a ∈ F. It is simple to verify that α + β and a ⋅ α are linear
mappings. The basic result about L(V ,W) is:

(8.3.10). Let V and W be vector spaces over a field F. Then:
(i) L(V ,W) is a vector space over F;
(ii) if V and W are finite dimensional, then so is L(V ,W) and in addition

dim(L(V ,W)) = dim(V) ⋅ dim(W).

Proof. We omit the routine proof of (i) and concentrate on (ii). Let {v1, . . . , vm} and
{w1, . . . ,wn} be bases of V andW respectively. By (8.3.2), for i = 1, 2, . . . , m and j = 1,
2, . . . , n, there is a unique linear mapping αij : V → W such that

αij(vk) = {
wj if k = i
0 if k ̸= i.
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Thus αij sends basis element vi to basis elementwj and all other vk ’s to 0. First we show
that the αij are linearly independent in the vector space L(V ,W).

Let aij ∈ F; then by definition of αij we have for each k

(
m
∑
i=1 n
∑
j=1 aijαij)(vk) = n

∑
j=1 m
∑
i=1 aij(αij(vk)) = n

∑
j=1 akjwj. (8.1)

Therefore ∑mi=1∑nj=1 aijαij = 0 if and only if akj = 0 for all j, k. It follows that the αij are
linearly independent.

Finally, we claim that the αij actually generate L(V ,W). To prove this let α ∈
L(V ,W) and write α(vk) = ∑

n
j=1 akjwj where akj ∈ F. Then from equation (8.1) above

we see that α = ∑mi=1∑nj=1 aijαij. Therefore the αij’s form a basis of L(V ,W) and
dim(L(V ,W)) = mn = dim(V) ⋅ dim(W).

The dual space
If V is a vector space over a field F, the vector space

V∗ = L(V , F)
is called the dual space ofV ; here F is regarded as a 1-dimensional vector space over F.
The elements ofV∗ are linearmappings fromV to F which are called linear functionals
on V .

Example (8.3.3). Let Y ∈ Fn be fixed and define α : Fn → F by the rule α(X) = YTX
where YT is the transpose of Y . Then α is a linear functional on Fn.

If V is an n-dimensional vector space over F,

dim(V∗) = dim(L(V , F)) = dim(V)
by (8.3.10). Thus V , V∗ and the double dual V∗∗ = (V∗)∗ all have the same dimension,
so these vector spaces are isomorphic by (8.3.1).

In fact there is a canonical linear mapping θ : V → V∗∗. Let v ∈ V and define
θ(v) ∈ V∗∗ by the rule

θ(v)(α) = α(v)

where α ∈ V∗. Thus θ(v) evaluates each linear functional on V at v. Regarding the
function θ, we prove:

(8.3.11). If V is a finite dimensional vector space, then θ : V → V∗∗ is an isomorphism.
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Proof. In the first place θ(v) ∈ V∗∗ for all v ∈ V : indeed, if α, β ∈ V∗,
θ(v)(α + β) = (α + β)(v) = α(v) + β(v) = θ(v)(α) + θ(v)(β).

Also θ(v)(a ⋅ α) = (a ⋅ α)(v) = a(α(v)) = a(θ(v)(α)) where a is a scalar.
Next for any α ∈ V∗ and vi ∈ V , we have

θ(v1 + v2)(α) = α(v1 + v2)
= α(v1) + α(v2)
= θ(v1)(α) + θ(v2)(α)
= (θ(v1) + θ(v2))(α),

which shows that θ(v1 + v2) = θ(v1) + θ(v2). We leave the reader to verify that θ(a ⋅ v) =
a(θ(v)) where a is a scalar and v ∈ V . Hence θ is a linear mapping from V to V∗∗.

Next suppose that θ(v) = 0. Then 0 = θ(v)(α) = α(v) for all α ∈ V∗. This can only
mean that v = 0: for if v ̸= 0, then v can be included in a basis of V . Then by (8.3.2) we
can construct a linear functional α such that α(v) = 1F and other basis elements are
mapped by α to 0. It follows that θ is injective.

Finally, dim(V) = dim(V∗) = dim(V∗∗) and also dim(V) = dim(Im(θ)) since θ is
injective. By (8.2.10) we have Im(θ) = V∗∗, so that θ∗ is an isomorphism.

Representing linear mappings by matrices
A linear mapping between finite dimensional vector spaces can be described by ma-
trixmultiplication, which provides uswith a concrete way of representing linearmap-
pings.

Let V andW be vector spaces over a field F with respective finite dimensionsm >
0 and n > 0. Choose ordered bases for V and W , say ℬ = {v1, v2, . . . , vm} and 𝒞 =
{w1,w2, . . . ,wn} respectively. Now let α ∈ L(V ,W); then

α(vi) =
n
∑
j=1 ajiwj, i = 1, 2, . . . ,m,

where aji ∈ F. This enables us to form the n ×mmatrix over F

A = [aji],

which is to represent α. Notice that the ith column of A is precisely the coordinate
column vector of α(vi) with respect to the basis 𝒞. Thus we have a function

θ : L(V ,W)→ Mn,m(F)
defined by the rule that column i of θ(α) is [α(vi)]𝒞 .
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To understand how the matrix A = θ(α) reproduces the effect of α on an arbitrary
vector v = ∑mi=1 bivi of V , we compute

α(v) =
m
∑
i=1 bi(α(vi)) = m

∑
i=1 bi( n
∑
j=1 ajiwj) =

n
∑
j=1( m
∑
i=1 ajibi)wj.

Hence the coordinate column vector of α(v)with respect to 𝒞 has entries∑mi=1 ajibi, for
j = 1, . . . , n and we have

A
[[[

[

b1
...
bm

]]]

]

= A[v]ℬ .

Thus we arrive at the basic formula

[α(v)]𝒞 = A[v]ℬ = θ(α)[v]ℬ .

Concerning the function θ we prove:

(8.3.12). If V and W are finite dimensional vector spaces over a field F, the function
θ : L(V ,W)→ Mn,m(F) is an isomorphism of vector spaces.

Proof. In the first place θ is a linear mapping. For, let α, β ∈ L(V ,W) and v ∈ V ; then
the formula above shows that

θ(α + β)[v]ℬ = [(α + β)(v)]𝒞 = [α(v) + β(v)]𝒞 = [α(v)]𝒞 + [β(v)]𝒞 ,

which equals

θ(α)[v]ℬ + θ(β)[v]ℬ = (θ(α) + θ(β))[v]ℬ .

Hence θ(α + β) = θ(α) + θ(β), and in a similar fashion it may be shown that θ(a ⋅ α) =
a(θ(α)) where a ∈ F.

Next if θ(α) = 0, then [α(v)]𝒞 = 0 for all v ∈ V , so α(v) = 0 and α = 0. Hence θ
is injective. If V andW have respective dimensions m and n, then L(V ,W) ≃ Im(θ) ⊆
Mn,m(F). But the vector spaces L(V ,W) and Mn,m(F) both have dimension mn – see
(8.3.10). Therefore Im(θ) = Mn,m(F) by (8.2.10) and θ is an isomorphism.

Example (8.3.4). Consider the dual space V∗ = L(V , F), where V is an n-dimensional
vector space over a field F. Choose an ordered basis ℬ of V and use the basis {1F} for F.
Then a linear functional α ∈ V∗ is represented by an n-row vector, i. e., by XT where
X ∈ Fn, according to the ruleα(v) = XT [v]ℬ. Thus the effect of a linear functional is pro-
ducedby leftmultiplication of coordinate vectors by a rowvector, (cf. Example (8.3.3)).
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The effect of a change of basis
Wehave seen that any linearmappingbetweenfinite dimensional vector spaces canbe
represented bymultiplication by amatrix. However, thematrix depends on the choice
of ordered bases of the vector spaces. The precise nature of this dependence will now
be investigated.

Let ℬ and 𝒞 be ordered bases of respective finite dimensional vector spaces V
andW over a field F, and let α : V → W be a linear mapping. Then α is represented by
a matrix A over F where [α(v)]𝒞 = A[v]ℬ. Now suppose now that two different ordered
bases ℬ′ and 𝒞′ are chosen for V and W respectively. Then α will be represented by
another matrix A′. The question is: how are A and A′ related?

To answer the question we introduce the transition matrices S and T for the re-
spective changes of bases ℬ → ℬ′ and 𝒞 → 𝒞′ (see (8.2.12)). Thus for any v ∈ V and
w ∈ W we have

[v]ℬ′ = S[v]ℬ and [w]𝒞′ = T[w]𝒞 .

Therefore

[α(v)]𝒞′ = T[α(v)]𝒞 = TA[v]ℬ = TAS
−1[v]ℬ′ ,

and it follows that A′ = TAS−1. We record this conclusion in:

(8.3.13). Let V and W be non-zero finite dimensional vector spaces over the same field.
Let ℬ, ℬ′ be ordered bases of V and 𝒞, 𝒞′ ordered bases of W. Suppose further that S
and T are the transition matrices for the changes of bases ℬ → ℬ′ and 𝒞 → 𝒞′ respec-
tively. If the linear mapping α : V → W is represented by matrices A and A′ with respect
to the respective pairs of bases (ℬ, 𝒞) and (ℬ′, 𝒞′), then A′ = TAS−1.

The case where α is a linear operator on V is especially important. Here V = W
and we can take ℬ = 𝒞 and ℬ′ = 𝒞′. Thus S = T and A′ = SAS−1, i. e., A and A′ are
similar matrices. Consequently, the matrices which represent a given linear operator
are all similar.

The algebra of linear operators
Let V be a vector space over a field F and suppose also that V is a ring with respect to
some product operation. Then V is said to be an F-algebra if, in addition to the vector
space and ring axioms, the following law is valid:

a(uv) = (au)v = u(av)

for all a ∈ F, u, v ∈ V . For example, the set of all n × nmatricesMn(F) is an F-algebra
with respect to the usual matrix operations.
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Now let V be any vector space over a field F; we will write

L(V)

for the vector space L(V ,V) of all linear operators onV . Our aim is tomake L(V) into an
F-algebra: it is already an F-vector space. There is a natural product operation on L(V),
namely functional composition. Indeed, if α1, α2 ∈ L(V), then α1α2 ∈ L(V) by an easy
check. We claim that with this product operation L(V) becomes an F-algebra.

The first step is to verify that L(V) is a ring. This is fairly routine; for example, if
αi ∈ L(V) and v ∈ V ,

α1(α2 + α3)(v) = α1(α2(v) + α3(v)) = α1α2(v) + α1α3(v),

which equals (α1α2 + α1α3)(v). Hence α1(α2 + α3) = α1α2 + α1α3.
Once the ring axioms have been verified,we have to check that a(α1α2) = (aα1)α2 =

α1(aα2) for a ∈ F. This is not hard to see; indeed all three mappings send v to
a(α1(α2(v))). Therefore L(V) is an F-algebra.

The group of units of L(V) consists of the invertible linear operators on V ; this is
written

GL(V).

Here “GL” stands for general linear group.
A function α : A1 → A2 between two F-algebras is called an algebra isomorphism

if it is bijective and it is both a linear mapping of vector spaces and a homomorphism
of rings.

(8.3.14). Let V be a vector space with finite dimension n over a field F. Then L(V)
and Mn(F) are isomorphic as F-algebras.

Proof. Choose an ordered basis ℬ of V and let Φ : L(V) → Mn(F) be the function
which associates to a linear operator α the n × nmatrix that represents α with respect
to ℬ. Thus [α(v)]ℬ = Φ(α)[v]ℬ for all v ∈ V . Clearly Φ is bijective, so to prove that
it is an F-algebra isomorphism we need to establish that Φ(α + β) = Φ(α) + Φ(β),
Φ(a ⋅ α) = a ⋅Φ(α) and Φ(αβ) = Φ(α)Φ(β).

For example, take the third statement. If v ∈ V , then

[αβ(v)]ℬ = Φ(α)[β(v)]ℬ = Φ(α)(Φ(β)[v]ℬ) = (Φ(α)Φ(β))[v]ℬ .

Therefore Φ(αβ) = Φ(α)Φ(β). The other statements are dealt with in a similar fashion.

Thus (8.3.14) tells us in a precise way that linear operators on an n-dimensional
vector space over F behave in very much the same manner as n × nmatrices over F.
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Corollary (8.3.15). If V is an n-dimensional vector space over a field F, then GL(V) ≃
GLn(F).

Exercises (8.3).
(1) Which of the following functions are linear mappings?

(i) α : ℝ3 → ℝ where α([x1 x2 x3]) = √x21 + x22 + x
2
3;

(ii) α : Mm,n(F)→ Mn,m(F) where α(A) = AT , the transpose of A;
(iii) α : Mn(F)→ F where α(A) = det(A).

(2) A linear mapping α : ℝ4 → ℝ3 sends [x1 x2 x3 x4]T to [x1 − x2 + x3 − x4 2x1 + x2 −
x3 x2−x3+x4]T . Find thematrix which represents αwhen the standard bases ofℝ4

and ℝ3 are used.
(3) Answer Exercise (8.3.2) when the ordered basis {[1 1 1]T , [0 1 1]T , [0 0 1]T } of ℝ3 is

used, together with the standard basis of ℝ4.
(4) Find bases for the kernel and image of the following linear mappings:

(i) α : F4 → F where αmaps a column vector to the sum of its entries;
(ii) α : ℝ[t]→ ℝ[t] where α(f ) = f ′, the derivative of f ;
(iii) α : ℝ2 → ℝ2 where α([x y]T ) = [2x + 3y 4x + 6y]T .

(5) Prove that a linear mapping α : V → W is injective if and only if α maps linearly
independent subsets of V to linearly independent subsets ofW .

(6) Prove that a linear mapping α : V → W is surjective if and only if αmaps generat-
ing subsets of V to generating subsets ofW .

(7) LetU andW be subspaces of a finite dimensional vector space V . Prove that there
is a linear operator α on V such that Ker(α) = U and Im(α) = W if and only if
dim(U) + dim(W) = dim(V).

(8) Suppose that α : V → W is a linear mapping. Explain how to define a correspond-
ing “induced” linear mapping α∗ : W∗ → V∗ of dual spaces. Then prove that
(αβ)∗ = β∗α∗.

(9) Let U α
→ V

β
→ W → 0 be an exact sequence of vector spaces and linear mappings.

(This means that Im(α) = Ker(β) and Im(β) = Ker(W → 0) = W , i. e., β is surjec-
tive). Prove that the corresponding sequence of dual spaces and induced linear

mappings 0→ W∗ β∗
→ V∗ α∗
→ U∗ is exact, i. e., β∗ is injective and Im(β∗) = Ker(α∗).

(For more general results of this kind see (9.1.25)).

8.4 Eigenvalues and eigenvectors

Let α be a linear operator on a vector spaceV over a field F. An eigenvector of α is a non-
zero vector v ofV such that α(v) = cv for some c ∈ F called an eigenvalue. For example,
if α is a rotation inℝ3, the eigenvectors of α are the non-zero vectors parallel to the axis
of rotation andall the eigenvalues are equal to 1. A large amount of informationabout a
linear operator is carried by its eigenvectors and eigenvalues. In addition the theory of
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eigenvectors and eigenvalues has many applications, for example to systems of linear
recurrence relations and linear differential equations.

Let A be an n × n matrix over a field F. Define α to be the linear operator on Fn

which sends X to AX. Then an eigenvector of α is a non-zero vector X ∈ Fn such that
AX = cX for some c ∈ F. We will also call X an eigenvector and c an eigenvalue of the
matrix A.

Conversely, suppose we start with a linear operator α on a finite dimensional vec-
tor space V over a field F. Choose an ordered basis ℬ for V , so that α is represented
by an n × n matrix A with respect to ℬ and [α(v)]ℬ = A[v]ℬ. Let v be an eigenvec-
tor for α with corresponding eigenvalue c ∈ F. Then α(v) = cv, which translates into
A[v]ℬ = c[v]ℬ. Thus [v]ℬ is an eigenvector and c is an eigenvalue of A.

These considerations show that the theory of eigenvalues and eigenvectors can be
developed for either matrices or linear operators on a finite dimensional vector space.
We will follow both approaches here, as is convenient.

Example (8.4.1). Let D denote the vector space of infinitely differentiable real valued
functions on the interval [a, b]. Consider the linear operator α on D defined by α(f ) =
f ′, the derivative of the function f . The condition for f ≠ 0 to be an eigenvector of α is
that f ′ = cf for some constant c. The general solution of this simple differential equa-
tion is f = decx where d is a constant. Thus the eigenvectors of α are the exponential
functions decx with d ̸= 0, while the eigenvalues are arbitrary real numbers c.

Example (8.4.2). A linear operator α on the vector space ℂ2 is defined by α(X) = AX
where

A = [2 −1
2 4
] .

Thus α is representedwith respect to the standard basis by thematrixA. The condition
for a vector X = [ x1x2 ] to be an eigenvector of A (or α) is that AX = cX for some scalar c.
This is equivalent to (cI2 − A)X = 0, which asserts that X is a solution of the linear
system

[
c − 2 1
−2 c − 4

] [
x1
x2
] = [

0
0
] .

By (8.2.2) this linear system has a non-trivial solution [x1, x2]T if and only if the deter-
minant of the coefficient matrix vanishes, i. e.,



c − 2 1
−2 c − 4


= 0.

On expansion this becomes c2 − 6c + 10 = 0. The roots of this quadratic equation are
c1 = 3 + i and c2 = 3 − i where i = √−1, so these are the eigenvalues of A.
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The eigenvectors for each eigenvalue are foundby solving the linear systems (c1I2−
A)X = 0 and (c2I2 − A)X = 0. For example, in the case of c1 we have to solve

{
(1 + i)x1 + x2 = 0
−2x1 + (−1 + i)x2 = 0

The general solution of this system is x1 =
d
2 (−1 + i), x2 = d where d is an arbitrary

scalar. Thus the eigenvectors of A associated with the eigenvalue c1 are the non-zero
vectors of the form

d [
−1+i
2
1
] .

Notice that these, together with the zero vector, form a 1-dimensional subspace ofℂ2.
In a similar manner the eigenvectors for the eigenvalue c2 = 3 − i are found to be the
vectors of the form

d [−(
1+i
2 )
1
]

where d ̸= 0. Again these form with the zero vector a subspace of ℂ2.

This example is an illustration of the general procedure for finding eigenvectors
and eigenvalues of a matrix.

The characteristic equation
Let A be an n × nmatrix over a field F and let X be a non-zero n-column vector over F.
The condition for X to be an eigenvector of A is AX = cX or

(cIn − A)X = 0,

where c is the corresponding eigenvalue. Thus the eigenvectors associated with c, to-
gether with the zero vector, form the null space of the matrix cIn − A. This subspace is
called the eigenspace of the eigenvalue c.

Next (cIn−A)X = 0 is a homogeneous linear system of n equations in n unknowns,
namely the entries of X. By (8.2.2) the condition for there to be a non-trivial solution
of the system is

det(cIn − A) = 0.
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Conversely, if c ∈ satisfies this equation, there is a non-zero solution of the system and
c is an eigenvalue. These considerations show that the determinant

det(tIn − A) =



t − a11 −a12 ⋅ ⋅ ⋅ −a1n
−a21 t − a22 ⋅ ⋅ ⋅ −a2n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−an1 −an2 ⋅ ⋅ ⋅ t − ann



plays a critical role. This is a polynomial of degree n in t with coefficients in F called
the characteristic polynomial of A. The equation obtained by setting the characteristic
polynomial equal to zero is the characteristic equation. The eigenvalues of A are the
roots of the characteristic polynomial that lie in the field F.

One should keep in mind that Amay well have no eigenvalues in F. For example,
the characteristic polynomial of the real matrix

[
0 1
−1 0
]

is t2 + 1, which has no real roots, so the matrix has no eigenvalues in ℝ.
In general the eigenvalues of a linear operator or amatrix lie in the splittingfield of

the characteristic polynomial – see Section 7.4. If F = ℂ, all roots of the characteristic
equation lie in ℂ by the Fundamental Theorem of Algebra – see (12.3.6). Because of
this we can be sure that a complex matrix has all its eigenvalues in ℂ.

Let us sum up our conclusions about the eigenvalues of matrices so far.

(8.4.1). Let A be an n × n matrix over a field F.
(i) The eigenvalues of A in F are precisely the roots of the characteristic polynomial

det(tIn − A) which lie in F.
(ii) The eigenvectors of A associated with the eigenvalue c are the non-zero vectors in

the null space of the matrix cIn − A.

Example (8.4.3). Find the eigenvalues of the upper triangular matrix

A =
[[[[

[

a11 a12 a13 ⋅ ⋅ ⋅ a1n
0 a22 a23 ⋅ ⋅ ⋅ a2n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅ ann

]]]]

]

.

The characteristic polynomial of A is



t − a11 −a12 −a13 ⋅ ⋅ ⋅ −a1n
0 t − a22 −a23 ⋅ ⋅ ⋅ −a2n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅ t − ann



,
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which equals (t − a11)(t − a22) ⋅ ⋅ ⋅ (t − ann). The eigenvalues of the matrix are therefore
just the diagonal entries a11, a22, . . . , ann.

Example (8.4.4). Consider the 3 × 3 matrix

A = [[
[

2 −1 −1
−1 2 −1
−1 −1 0

]]

]

.

The characteristic polynomial of A is



t − 2 1 1
1 t − 2 1
1 1 t


= t3 − 4t2 + t + 6.

By inspection one root of this cubic polynomial is −1. Dividing the polynomial by
t + 1 using long division, we obtain the quotient t2 − 5t + 6 = (t − 2)(t − 3). Hence the
characteristic polynomial factorizes completely as (t+1)(t−2)(t−3) and the eigenvalues
of A are −1, 2 and 3.

To find the corresponding eigenvectors, solve the three linear systems (−I3−A)X =
0, (2I3 − A)X = 0 and (3I3 − A)X = 0. On solving these, we find that the respective
eigenvectors are the non-zero scalar multiples of the vectors

[[

[

1
1
2

]]

]

, [[

[

1
1
−1

]]

]

, [[

[

1
−1
0

]]

]

,

so that the eigenspaces all have dimension 1.

Properties of the characteristic polynomial
Let us see what can be said about the characteristic polynomial of an arbitrary n × n
matrix A = [aij] over a field F. This is

p(t) =



t − a11 −a12 ⋅ ⋅ ⋅ −a1n
−a21 t − a22 ⋅ ⋅ ⋅ −a2n
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−an1 −an2 ⋅ ⋅ ⋅ t − ann



.

At this point recall the definition of a determinant as an alternating sum of n! terms,
each term being a product of n entries, one from each row and column. The term of
p(t) with highest degree in t arises from the product

(t − a11)(t − a22) ⋅ ⋅ ⋅ (t − ann)
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and is clearly tn. The terms of degree n − 1 are easily identified as they arise from the
same product. Thus the coefficient of tn−1 is −(a11 + a22 + ⋅ ⋅ ⋅ + ann). The sum of the
diagonal entries of A is called the trace of A,

tr(A) = a11 + a22 + ⋅ ⋅ ⋅ + ann,

so the term in p(t) of degree n − 1 is −tr(A)tn−1.
The constant term in p(t) is p(0) = det(−A) = (−1)ndet(A). Our knowledge of p(t)

so far is summarized by the formula

p(t) = tn − tr(A)tn−1 + ⋅ ⋅ ⋅ + (−1)n det(A).
The other coefficients in the characteristic polynomial are not so easy to describe,

but they are expressible in terms of subdeterminants of det(A). For example, take the
case of tn−2. A term in tn−2 arises in two ways: from the product (t − a11)(t − a22) ⋅ ⋅ ⋅ (t −
ann) or from products like −a12a21(t − a33) ⋅ ⋅ ⋅ (t − ann). So a typical contribution to the
coefficient of tn−2 is

(a11a22 − a12a21) =


a11 a12
a21 a22


.

From this one can see that the term of degree n − 2 in p(t) is tn−2 times the sum of all
the 2 × 2 sub-determinants of the form



aii aij
aji ajj



where i < j.
In general it can be shown by similar considerations that the following is true.

(8.4.2). The characteristic polynomial of the n × n matrix A is

tn +
n
∑
i=1(−1)iditn−i

where di is the sum of all the i × i subdeterminants of det(A) whose principal diagonals
are part of the principal diagonal of A.

Next let c1, c2, . . . , cn be the eigenvalues of A in the splitting field of its characteris-
tic polynomial p(t). Since p(t) is monic, we have

p(t) = (t − c1)(t − c2) ⋅ ⋅ ⋅ (t − cn).

The constant term in this product is evidently (−1)nc1c2 . . . cn, while the term in tn−1
has coefficient −(c1 + ⋅ ⋅ ⋅ + cn). On the other hand, we found these coefficients to be
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(−1)ndet(A) and −tr(A) respectively. Thus we have discovered two important relations
between the eigenvalues and the entries of A.

Corollary (8.4.3). If A is a square matrix, the product of the eigenvalues equals the de-
terminant det(A) and the sum of the eigenvalues equals tr(A), the trace of A.

Let A and B be n × n matrices over a field F. Recall that A and B are similar over
F if there is an invertible n × n matrix S over F such that B = SAS−1. The next result
indicates that similar matrices have much in common.

(8.4.4). Similar matrices have the same characteristic polynomial. Hence they have the
same eigenvalues, trace and determinant.

Proof. LetAand S ben×nmatrices over afieldwith S invertible. Then the characteristic
polynomial of the matrix SAS−1 is

det(tI − SAS−1) = det(S(tI − A)S−1) = det(S)det(tI − A)det(S)−1
= det(tI − A).

Here we have used the property of determinants: det(PQ) = det(P)det(Q). The state-
ments about trace and determinant follow from (8.4.3).

On the other hand, similar matrices need not have the same eigenvectors. Indeed
the condition for X to be an eigenvector of SAS−1 with eigenvalue c is (SAS−1)X = cX,
which is equivalent to A(S−1X) = c(S−1X). Thus X is an eigenvector of SAS−1 if and only
if S−1X is an eigenvector of A.

Diagonalizable matrices
Next we consider when a square matrix is similar to a diagonal matrix. This is an im-
portant question since diagonalmatrices havemuch simpler properties than arbitrary
matrices. For example, when a diagonal matrix is raised to the mth power, the effect
is merely to raise each element on the diagonal to the mth power, whereas there is
no simple expression for the mth power of an arbitrary matrix. Suppose we want to
compute Am where A is similar to a diagonal matrix D, with say A = SDS−1. Then
Am = (SDS−1)m = SDmS−1 after cancellation. Thus it is possible to calculate Am quite
simply if we have explicit knowledge of S and D.

Let A be a square matrix over a field F. Then A is said to be diagonalizable over F
if it is similar to a diagonal matrix D over F, that is, there is an invertible matrix S over
F such that A = SDS−1 or equivalently D = S−1AS. We also say that S diagonalizes A.

The terminology extends naturally to linear operators on a finite dimensional vec-
tor space V . A linear operator α on V is said to be diagonalizable if there is a basis
{v1, . . . , vn} such that α(vi) = civi where ci ∈ F, for i = 1, . . . , n. Thus α is represented by
the diagonal matrix diag(c1, c2, . . . , cn) with respect to this basis.
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It is an important observation that if a matrix A is diagonalizable and its eigenval-
ues are c1, . . . , cn, then A must be similar to the diagonal matrix with c1, . . . , cn on the
principal diagonal. This is true because similar matrices have the same eigenvalues
and the eigenvalues of a diagonal matrix are just the entries on the principal diago-
nal.

We aim to find a criterion for a square matrix to be diagonalizable. A key step in
the search is next.

(8.4.5). Let A be an n × n matrix over a field F and let c1, . . . , cr be distinct eigenvalues
of A with associated eigenvectors X1, . . . ,Xr . Then {X1, . . . ,Xr} is a linearly independent
subset of Fn.

Proof. Assume the theorem is false; then there is a positive integer i such that
{X1, . . . ,Xi} is linearly independent, but adjunction of the vector Xi+1 produces a lin-
early dependent set {X1, . . . ,Xi,Xi+1}. Hence there are scalars d1, . . . , di+1, not all of
them zero, such that

d1X1 + ⋅ ⋅ ⋅ + diXi + di+1Xi+1 = 0.
Premultiply both sides of this equation by A and use the equations AXj = cjXj to get

c1d1X1 + ⋅ ⋅ ⋅ + cidiXi + ci+1di+1Xi+1 = 0.
On subtracting ci+1 times the first equation from the second, we arrive at the equation

(c1 − ci+1)d1X1 + ⋅ ⋅ ⋅ + (ci − ci+1)diXi = 0.
Since X1, . . . ,Xi are linearly independent, the coefficients (cj − ci+1)dj must vanish. But
c1, . . . , ci+1 are all different, so it follows that dj = 0 for j = 1, . . . , i. Hence di+1Xi+1 = 0
and di+1 = 0, contrary to assumption, so the theorem is proved.

A criterion for diagonalizability can now be established.

(8.4.6). Let A be an n × n matrix over a field F. Then A is diagonalizable over F if and
only if A has n linearly independent eigenvectors in Fn.

Proof. First of all assume that A has n linearly independent eigenvectors in Fn, say
X1,X2, . . . ,Xn, and let the associated eigenvalues be c1, c2, . . . , cn. Define S to be the n×n
matrix whose columns are the eigenvectors; thus

S = [X1 X2 . . .Xn].

The first thing to note is that S is invertible since its columns are linearly independent.
Forming the product of A and S in partitioned form, we find that

AS = [AX1 AX2 . . .AXn] = [c1X1 c2X2 ⋅ ⋅ ⋅ cnXn],
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so that

AS = [X1 X2 . . . Xn]
[[[[

[

c1 0 0 ⋅ ⋅ ⋅ 0
0 c2 0 ⋅ ⋅ ⋅ 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ ⋅ cn

]]]]

]

= SD,

where D = diag(c1, c2, . . . , cn) is the diagonal matrix with diagonal entries c1, . . . , cn.
Therefore A = SDS−1 and A is diagonalizable.

Conversely, assume that A is diagonalizable and S−1AS = D = diag(c1, c2, . . . , cn).
Here the ci must be the eigenvalues of A. Then AS = SD, which implies that AXi =
ciXi where Xi is the ith column of S. Therefore X1,X2, . . . ,Xn are eigenvectors of A with
associated eigenvalues c1, c2, . . . , cn. Since X1,X2, . . . ,Xn are columns of the invertible
matrix S, they are linearly independent. Consequently A has n linearly independent
eigenvectors.

Corollary (8.4.7). An n×n complexmatrix with n distinct eigenvalues is diagonalizable.

This follows at once from (8.4.5) and (8.4.6). On the other hand, it is easy to find
matrices that are not diagonalizable: for example, the matrix

A = [1 1
0 1
] .

Indeed, if A were diagonalizable, it would be similar to the identity matrix I2, since
both eigenvalues of A equal to 1. But then A = SI2S−1 = I2 for some S, a contradiction.

A feature of the proof of (8.4.6) is that it provides a method for finding a matrix S
which diagonalizes A. It suffices to find a largest set of linearly independent eigenvec-
tors of A; if there are enough of them, they can be taken to form the columns of the
diagonalizing matrix S.

Example (8.4.5). Find a matrix which diagonalizes

A = [2 −1
2 4
] .

From Example (8.4.2) we know that the eigenvalues of A are 3 ± i, so A is diago-
nalizable over ℂ by (8.4.7). Also corresponding eigenvectors for A were found which
form the matrix

S = [
−1+i
2 −

1+i
2

1 1
] .
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From the preceding theory we may be sure that

S−1AS = [3 + i 0
0 3 − i

] .

Triangularizable matrices
It has been seen that not every complex square matrix is diagonalizable. Compensat-
ing for this failure is the fact such a matrix is always similar to an upper triangular
matrix, i. e., a matrix with 0’s below the principal diagonal.

Let A be a square matrix over a field F. Then A is said to be triangularizable over F
if there is an invertible matrix S over F such that A = STS−1 or equivalently S−1AS = T,
where T is upper triangular. It will also be convenient to say that S triangularizes A.
Note that the diagonal entries of the triangular matrix T will necessarily be the eigen-
values of A. This is because of Example (8.4.3) and the fact that similar matrices have
the same eigenvalues. Thus a necessary condition for A to be triangularizable over F
is that all its eigenvalues belong to F. In fact the converse is also true.

(8.4.8). A square matrix A over a field F all of whose eigenvalues lie in F is triangular-
izable over F.

Proof. We show by induction on n that A is triangularizable. If n = 1, there is nothing
to prove, so let n > 1. Assume the result is true for (n − 1) × (n − 1)matrices.

By hypothesis A has at least one eigenvalue c in F, with associated eigenvector
X say. Since X ̸= 0, it is possible to adjoin vectors to X to produce a basis of Fn, say
{X = X1,X2, . . . ,Xn}; here we have used (8.2.6). Left multiplication of the vectors of Fn

by A gives rise to linear operator α on Fn. With respect to the basis {X1, . . . ,Xn}, the
linear operator α is represented by a matrix with the special form

B1 = [
c A2
0 A1
]

where A1 and A2 are matrices over F and A1 has n − 1 rows and columns. The reason
for the special form is that α(X1) = AX1 = cX1 since X1 is an eigenvector of A with
associated eigenvalue c. The matrices A and B1 are similar since they represent the
same linear operator α. Suppose that in fact B1 = S−11 AS1 where S1 is an invertible n× n
matrix.

Observe that the eigenvalues of A1 are among those of B1 and hence A. By in-
duction on n there is an invertible matrix S2 with n − 1 rows and columns such that
B2 = S−12 A1S2 is upper triangular. Now write

S = S1 [
1 0
0 S2
] .
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This is a product of invertible matrices, so it is invertible. An easy matrix computation
shows that

S−1AS = [1 0
0 S−12 ] (S−11 AS1) [

1 0
0 S2
] = [

1 0
0 S−12 ]B1 [1 0

0 S2
] .

From this we obtain

S−1AS = [1 0
0 S−12 ] [c A2

0 A1
] [

1 0
0 S2
] = [

c A2S2
0 S−12 A1S2

] = [
c A2S2
0 B2

] = T .

The matrix T is upper triangular, so the theorem is proved.

The preceding proof provides a method for triangularizing a matrix.

Example (8.4.6). Triangularize the matrix A = [ 1 1−1 3 ] over ℂ.
The characteristic polynomial ofA is t2−4t+4, so both eigenvalues equal 2. Solving

(2I2 − A)X = 0, we find that all the eigenvectors of A are scalar multiples of X1 = [ 11 ].
Therefore by (8.4.6) the matrix A is not diagonalizable.

Let α be the linear operator on ℂ2 arising from left multiplication by A. Adjoin a
vector to X2 to X1 to get a basis ℬ2 = {X1,X2} of ℂ2: for example let X2 = [ 01 ]. Denote
by ℬ1 the standard basis of ℂ2. The change of basis ℬ2 → ℬ1 has transition matrix
S = [ 1 01 1 ], so S1 = S

−1 = [ 1 0−1 1 ] is the transition matrix of the change of basis ℬ1 →
ℬ2. Therefore by (8.3.13) the matrix that represents α with respect to the basis ℬ2 is
S1AS−11 = [ 2 1

0 2 ] = T. Hence A = S
−1
1 TS1 = STS−1 and S triangularizes A.

To conclude the chapter we show how to solve a system of linear recurrences by
using matrix diagonalization.

Example (8.4.7). In a population of rabbits and weasels it is observed that each year
the number of rabbits is equal to four times the number of rabbits less twice the num-
ber of weasels in the previous year. The number of weasels in any year equals the sum
of the numbers of rabbits and weasels in the previous year. If the initial numbers of
rabbits and weasels were 100 and 10 respectively, find the numbers of each species
after n years.

Let rn and wn denote the respective numbers of rabbits and weasels after n years.
The information given translates into the two linear recurrence relations

{
rn+1 = 4rn − 2wn

wn+1 = rn + wn

together with the initial conditions r0 = 100, w0 = 10. We have to solve this system of
linear recurrence relations for rn and wn.

To see how eigenvalues enter into the problem, write the system of recurrences in
matrix form. Put Xn = [

rn
wn ] and A = [

4 −2
1 1 ]. Then the two recurrences are equivalent to
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the single matrix equation

Xn+1 = AXn,
while the initial conditions assert that X0 = [ 10010 ]. These equations enable us to cal-
culate successive vectors Xn; for X1 = AX0, X2 = A2X0 and in general Xn = AnX0.

In principle this provides a solution to the problem. However, it involves calculat-
ing powers of the matrix A. Fortunately A is diagonalizable since it has distinct eigen-
values 2 and 3. Corresponding eigenvectors are found to be [ 11 ] and [ 21 ]; therefore the
matrix S = [ 1 21 1 ] diagonalizes A, and

S−1AS = [2 0
0 3
] = D.

It is now easy to compute powers sinceAn = (SDS−1)n = SDnS−1. ThereforeXn = AnX0 =
SDnS−1X0 and thus

Xn = [
1 2
1 1
] [

2n 0
0 3n
] [
−1 2
1 −1
] [

100
10
] ,

which leads to

Xn = [
180 ⋅ 3n − 80 ⋅ 2n

90 ⋅ 3n − 80 ⋅ 2n
] .

The solution to the problem can now be read off:

rn = 180 ⋅ 3
n − 80 ⋅ 2n and wn = 90 ⋅ 3

n − 80 ⋅ 2n.

Notice that rn and wn both increase without limit as n → ∞ since 3n is the domi-
nant term; however, limn→∞( rnwn

) = 2. The conclusion is that, while both populations
explode, in the long run there will be twice as many rabbits as weasels.

Exercises (8.4).
(1) Find the eigenvectors and eigenvalues of the following matrices:

[
1 5
3 3
] ; [[

[

1 2 −1
1 0 1
4 −4 5

]]

]

;
[[[[

[

1 0 0 0
2 2 0 0
1 0 3 0
0 1 −1 4

]]]]

]

.

(2) Prove that tr(A + B) = tr(A) + tr(B) and tr(cA) = c tr(A) where A and B are n × n
matrices and c is a scalar.

(3) If A and B are non-singular n × n matrices, show that AB and BA have the same
eigenvalues.
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(4) Suppose that A is a square matrix with real entries and real eigenvalues. Prove
that each eigenvalue of A has an associated real eigenvector.

(5) A real square matrix with distinct eigenvalues is diagonalizable over ℝ: true or
false?

(6) Let p(t) be the polynomial tn +an−1tn−1 +an−2tn−2 + ⋅ ⋅ ⋅+a0 over a field F. Show that
p(t) is the characteristic polynomial of the matrix

[[[[[[

[

0 0 ⋅ ⋅ ⋅ 0 −a0
1 0 ⋅ ⋅ ⋅ 0 −a1
0 1 ⋅ ⋅ ⋅ 0 −a2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ 1 −an−1

]]]]]]

]

.

(This is called the companion matrix of p(t)):
(7) Find matrices which diagonalize the following matrices:

(i) [1 5
3 3
] ; (ii) [[

[

1 2 −1
1 0 1
4 −4 5

]]

]

.

(8) For which values of a and b is the matrix [ 0 a
b 0 ] diagonalizable over ℂ?

(9) Prove that a complex 2 × 2 matrix is not diagonalizable if and only if it is similar
to a matrix of the form [ a b

0 a ] where b ̸= 0.
(10) LetA be a diagonalizablematrix and assume that S is amatrix which diagonalizes

A. Prove that a matrix T diagonalizes A if and only if it is of the form T = CSwhere
C is a matrix such that AC = CA.

(11) IfA is a non-singularmatrix with eigenvalues c1, . . . , cn, show that the eigenvalues
of A−1 are c−11 , . . . , c−1n .

(12) Let α be a linear operator on a complex n-dimensional vector space V . Prove that
there is a basis {v1, . . . , vn} ofV such that α(vi) is a linear combination of v1, v2, . . . , vi
for i = 1, . . . , n.

(13) Let δ : Pn(ℝ) → Pn(ℝ) be the linear operator corresponding to differentiation.
Show that all the eigenvalues of δ are zero. What are the eigenvectors?

(14) Let c1, . . . , cn be the distinct eigenvalues of a complex n×nmatrixA. Prove that the
eigenvalues of Am are cm1 , . . . , c

m
n wherem is any positive integer. [Hint: the matrix

is triangularizable by (8.4.8).]
(15) Prove that a square matrix and its transpose have the same eigenvalues.
(16) Use matrix diagonalization to solve the following system of linear recurrences:

{
xn+1 = 2xn + 10yn
yn+1 = 2xn + 3yn

with the initial conditions x0 = 0, y0 = 1.
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9 Introduction to Modules
After groups, rings and vector spaces, the most useful algebraic structures are prob-
ably modules. A module is an abelian group on which a ring acts subject to certain
natural rules. Aside from their intrinsic interest as algebraic objects, modules have
important applications to linear operators, canonical forms of matrices and represen-
tations of groups.

9.1 Elements of module theory

Let R be a ring and let M be an abelian group which is written additively. Then M is
said to be a left R-module if there is a left action of R on M, i. e., a map from R × M to
M, written (r, a) → r ⋅ a, (r ∈ R, a ∈ M), such that the following axioms are valid for all
r, s ∈ R and a, b ∈ M:
(i) r ⋅ (a + b) = r ⋅ a + r ⋅ b;
(ii) (r + s) ⋅ a = r ⋅ a + s ⋅ a;
(iii) (rs) ⋅ a = r ⋅ (s ⋅ a).

If the ring R has an identity element and if in addition
(iv) 1R ⋅ a = a,

for all a ∈ M, the module M is called unitary. It will be a tacit assumption here that
whenever a ring R has identity, an R-module is unitary.

A right R-module is defined in the analogous fashion via a right action of R onM.
Sometimes it is convenient to indicatewhether anR-moduleM is left or right bywriting

RM or MR,

respectively.
It is usually not necessary to study left and right R-modules separately since one

can pass to a module over the opposite ring

Rop

of R. This is the ring with the same underlying set and operation of addition as R, but
with the opposite multiplication, denoted by ∗ where

r ∗ s = sr, (r, s ∈ R).

It is easy to check that Rop is a ring. Of course R = Rop if R is a commutative ring. The
relation between left and right modules is made clear by the next result.

https://doi.org/10.1515/9783110691160-009
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(9.1.1). Let R be a ring and M an R-module.
(i) If M is a left R-module, it is also right Rop-module with the right action a ⋅ r = r ⋅ a.
(ii) If M is a right R-module, it is also left Rop-module with the left action r ⋅ a = a ⋅ r.

Proof. (i) The axioms for a right action have to be verified, the crucial one being

(a ⋅ r) ⋅ s = (r ⋅ a) ⋅ s = s ⋅ (r ⋅ a) = (sr) ⋅ a = (r ∗ s) ⋅ a = a ⋅ (r ∗ s) :

here ∗ denotes the ring operation in Rop. The other module axioms are easily checked.

This result allows us to concentrate on left modules.

Elementary properties
The simplest consequences of the module axioms are collected in the next result,
which, as will usually be the case, is stated for left modules.

(9.1.2). Let M be a left R-module and let a ∈ M, r ∈ R and n ∈ ℤ. Then:
(i) r ⋅ 0M = 0M;
(ii) 0R ⋅ a = 0M;
(iii) n(r ⋅ a) = (nr) ⋅ a = r ⋅ (na).

Proof. For (i) put a = 0M = b in module axiom (i): for (ii) put r = 0R = s in axiom
(ii). The proof of (iii) requires a little more effort. If n > 0, the statements are quickly
proved by induction on n. For n = 0 they follow at once from (i) and (ii).

Next consider the case n = −1. The elements (−r) ⋅ a and r ⋅ (−a) both equal −(r ⋅ a)
since (−r) ⋅a+ r ⋅a = (−r + r) ⋅a = 0R ⋅a = 0M and r ⋅ (−a)+ r ⋅a = r ⋅ (−a+a) = r ⋅0M = 0M
by (i) and (ii).

Finally, let n < 0. Then −n(r ⋅ a) = (−n)r ⋅ a = r ⋅ (−na). Take the negative of each
side and use the case n = −1 to get n(r ⋅ a) = (nr) ⋅ a = r ⋅ (na), as required.

In future we will write 0 for both 0R and 0M .

Examples of modules
Next we list some standard sources of modules.
(i) Let R be an arbitrary ring. Define a left action of R on itself by using the ring prod-

uct: thus r ⋅ s = rs, (r, s ∈ R). The ring axioms guarantee the validity of the module
axioms. In a similar way R can be made into a right R-module by using the ring
product. To distinguishwhen the ring is being regarded as a left or a rightmodule,
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we will often write

RR and RR

respectively.
(ii) Let F be a field. Then a left F-module is simply a vector space over F since the

vector space axioms are just those for an F-module.
(iii) An abelian group A is a left ℤ-module in which the action is n ⋅ a = na, n ∈ ℤ,

a ∈ A.

Conversely, if A is a ℤ-module, the module action is n ⋅ a = na. To see this set r = 1 in
(9.1.2)(iii), keeping inmind thatA is a unitarymodule. Consequently, there is only one
way to make an abelian group into a ℤ-module.

These examples show that the module concept is a broad one, encompassing
rings, abelian groups and vector spaces.

Bimodules
Let R and S be a pair of rings. An (R, S)-bimodule is an abelian group M which is si-
multaneously a left R-module and a right S-module, and in which the left and right
actions are linked by the law

(r ⋅ a) ⋅ s = r ⋅ (a ⋅ s),

where r ∈ R, s ∈ S, a ∈ M. The notation

RMS

will be used to indicate an (R, S)-bimodule. For example, a ringR is an (R,R)-bimodule
via the ring operations. Of course, if R is a commutative ring, R = Rop and there is no
difference between a left R-module, a right R-module and an (R,R)-bimodule.

Submodules
Groups have subgroups, rings have subrings and vector spaces have subspaces, so it
is to be expected that submodules will play a role in module theory.

Let M be a left R-module. An R-submodule of M is a subgroup N of M which has
the additional property

a ∈ N , r ∈ R ⇒ r ⋅ a ∈ N .

Notice that N itself is an R-module. There is a corresponding definition for right mod-
ules. Here are some standard examples of submodules.
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(i) If R is a ring, the submodules of RR are the left ideals of R, while those of RR are
the right ideals.

(ii) Every module has the zero submodule, containing only the zero element, and the
improper submodule, namely the module itself.

Submodules generated by subsets
Let R be a ring and M a left R-module. It follows from the definition of a submodule
that the intersection of a non-empty set of submodules of M is itself a submodule. Now
let X be a non-empty subset of M. There is at least one submodule of M containing
X, namelyM itself. Thus we can form the intersection of all the submodules that con-
tain X, which is a submodule called the submodule generated by X. It is evidently the
smallest submodule ofM containing X.

It is natural to ask what the elements of this submodule look like; recall that sim-
ilar questions arose for subgroups, subrings, ideals and subspaces. The answer in the
case of a ring with identity is given next.

(9.1.3). Let R be a ring with identity and M a left R-module. If X is a non-empty subset
of M, the submodule of M generated by X consists of all elements of the form

r1 ⋅ x1 + r2 ⋅ x2 + ⋅ ⋅ ⋅ + rn ⋅ xn

where ri ∈ R, xi ∈ X, n ≥ 0.

Proof. Let N denote the set of all elements of the form r1 ⋅ x1 + r2 ⋅ x2 + ⋅ ⋅ ⋅ + rn ⋅ xn with
ri ∈ R, xi ∈ X, n ≥ 0. (Note that when n = 0, the sum is to be interpreted as 0.) It
is an easy verification that N is a submodule. Now X ⊆ N since x = 1 ⋅ x ∈ N for all
x ∈ X. Hence the submodule L generated by X is contained in N . On the other hand,
N ⊆ L, since it is clear from their form that every element of N belongs to L. Therefore
L = N .

If R is a ring with identity and X is a subset of a left R-module, the notation

R ⋅ X

will be used to denote the submodule generated byX. (IfR is a field, so thatR-modules
are vector spaces, the notation used in Section 8.1 for R ⋅ X was ⟨X⟩.)

An R-module M is said to be finitely generated if it can be generated by a finite
subset X. An important special case is when X = {x}. In this situation, if R has an
identity, we write R ⋅ x for R ⋅ X; then M is called a cyclic R-module. For example, the
cyclic submodules of RR are the principal left ideals of R, i. e., those of the form Rx =
{r ⋅ x | r ∈ R}.
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Quotient modules and homomorphisms
Just as for groups, rings and vector spaces, we can form quotients of modules. Let N
be a submodule of a left R-module M. Since N is a subgroup of the abelian groupM,
the quotientM/N = {a +N | a ∈ M}, consisting of all cosets of N inM, already has the
structure of an abelian group. To makeM/N into a left R-module a left action must be
specified. The natural candidate is the rule

r ⋅ (a + N) = r ⋅ a + N , (a ∈ M, r ∈ R).

Asusualwhenanoperation is to bedefinedonaquotient structure, the questionarises
as to whether it is well defined. Let b ∈ a + N, so that b = a + c with c ∈ N . Then
r ⋅ b = r ⋅ a + r ⋅ c ∈ r ⋅ a +N since r ⋅ c ∈ N . Hence r ⋅ a +N = r ⋅ b +N and the left action
has been well defined. The task of checking the validity of the module axioms is left
to the reader. The moduleM/N is the quotient module ofM by N .

It is to be expected that there are mappings between modules called module ho-
momorphisms. Let M, N be two left modules over a ring R. An R-module homomor-
phism fromM to N is a homomorphism of abelian groups

α : M → N

which has the additional property that

α(r ⋅ a) = r ⋅ α(a) for r ∈ R, a ∈ M.

Thus the mapping α connects the module structures ofM andN . A module homomor-
phism fromM to itself is sometimes called an endomorphism ofM.

A standard example is the canonical homomorphism ν from an R-moduleM to the
quotient moduleM/N where N is a submodule ofM. This is defined by ν(a) = a + N .
We already know from group theory that ν is a group homomorphism. To show that it
is a module homomorphism simply observe that ν(r ⋅a) = r ⋅a+N = r ⋅ (a+N) = r ⋅ν(a).

(9.1.4). Let M and N be left modules over a ring R and let α : M → N be a module
homomorphism. Then Im(α) and Ker(α) are submodules of N and M respectively.

Of course group theory tells us that Im(α) and Ker(α) are subgroups ofN andM. It
is just a matter of verifying that they are submodules, another simple task that is left
to the reader.

A module homomorphism which is bijective is called a module isomorphism. If
there is a module isomorphism between two R-modulesM and N, they are said to be
R-isomorphic, in symbols

M R
≃ N .
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It is an important observation that the inverse of amodule isomorphism is also amodule
isomorphism – see Exercise (9.1.4).

The isomorphism theorems for modules
Just as in group theory there are theorems connecting module homomorphisms and
quotient modules.

(9.1.5) (First Isomorphism Theorem). Let α : M → N be an R-module homomorphism.
Then M/Ker(α) R≃ Im(α)

(9.1.6) (Second Isomorphism Theorem). Let M and N be submodules of an R-module.
Then M + N and M ∩ N are submodules and (M + N)/N R

≃ M/(M ∩ N).

(9.1.7) (Third Isomorphism Theorem). Let L, M, N be submodules of an R-module such
that L ⊆ M ⊆ N. Then M/L is a submodule of N/L and (N/L)/(M/L) R≃ N/M.

Proof. We know from (4.3.4), (4.3.5) and (4.3.6) that each of the specified maps is an
isomorphism of groups. To complete the proofs it is a question of verifying that the
relevant maps are module homomorphisms. For example, take the case of (9.1.5). Let
θ : M/Ker(α) → Im(α) be defined by θ(a + Ker(α)) = α(a), with a ∈ M. By (4.3.4)
θ is a homomorphism of groups. Check that it is a homomorphism of R-modules. By
definition θ(r ⋅ (a + Ker(α))) = θ(r ⋅ a + Ker(α)) = α(r ⋅ a) = r ⋅ α(a) = r ⋅ θ(a + Ker(α)).

In a similar way (9.1.6) and (9.1.7) can be established.

We mention, without writing down the details, that there is a module version of
the Correspondence Theorem – cf. (4.2.2). This theorem describes the submodules of
a quotient moduleM/N as having the form L/N where L is a submodule ofM contain-
ing N .

The structure of cyclic modules
Sufficient machinery has been developed to permit a description of cyclic R-modules
when R is a ring with identity.

(9.1.8). Let R be a ring with identity.
(i) If M is a cyclic left R-module, then M R

≃ RR/L where L is a left ideal of R.
(ii) Conversely, if L is a left ideal of R, then RR/L is the cyclic left R-module generated by

1R + L.

Proof. Assume that M is cyclic and M = R ⋅ a where a ∈ M. Define a function α :
RR→ M by α(r) = r ⋅ a. Check that α is an R-module homomorphism. For example, let
r1, r ∈ R; then α(r1 ⋅ r) = α(r1r) = (r1r) ⋅ a = r1 ⋅ (r ⋅ a) = r1 ⋅ α(r). Also α is surjective since
each element ofM has the form r ⋅a = α(r) for some r ∈ R. Set L = Ker(α) and note that
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L is a left ideal by (9.1.4). Hence RR/L
R
≃ Im(α) = M by (9.1.5). The converse statement

is obvious.

The kernel of the function α in the proof of (9.1.8)(i) is the set {r ∈ R | r ⋅ a = 0}:
this left ideal of R is called the annihilator of a in R and is denoted by

AnnR(a).

Since cyclic left R-modules have been seen to correspond to left ideals of the ring
R, it is to be expected thatmodule theorywill bemore complicated for ringswithmany
ideals. The simplest situation is, of course, for fields, which have no proper non-zero
ideals: in this case we are dealingwith vector spaces over a field and every cyclicmod-
ule is a 1-dimensional space isomorphic with the field itself.

Direct sums of submodules
Just as for vector spaces, there is the notion of a direct sum of submodules. LetM be a
module with a family of submodules {Mλ | λ ∈ Λ}. Suppose that

Mλ ∩ ∑
μ ̸=λ

Mμ = 0

for all λ ∈ Λ. Then theMλ generate their (internal) direct sum, which is written

⨁
λ∈Λ

Mλ.

This is a subgroup of M, as we know from Section 4.2, (where the multiplicative no-
tation was used). It is evidently also a submodule. In the case where Λ is finite and
Λ = {1, 2, . . . , n}, we write the direct sum as

M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mn.

It is also possible to form the external direct sum of a set of modules – see Sec-
tion 4.2 where external direct products of groups were defined. We will encounter
mainly the situation is where there are finitely many modules {M1,M2, . . . ,Mn}. The
external direct sum of these modules is the set product M1 × M2 × ⋅ ⋅ ⋅ × Mn where el-
ements are added componentwise and the action of the ring is on components. The
external direct sum is also denoted byM1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mn: we will sometimes write

a1 ⊕ a2 ⊕ ⋅ ⋅ ⋅ ⊕ an

for (a1, a2, . . . , an) to distinguish the direct sum from the set product. An external direct
sum is isomorphic with an internal direct sum, as was seen for groups in Section 4.2.
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External direct sums can be extended to the case where there are infinitely many
modules by using choice functions, just as for groups. Thus we obtain restricted di-
rect sums and unrestricted direct sums of modules. One can also form the associated
canonical injections and canonical projections. The definitions and results given in
Section 4.2 in the case of groups apply equally to modules, allowing for the additive
notation used for modules. It is only necessary to verify that any homomorphisms in-
volved are module homomorphisms, usually a routine task.

Simple modules
Let M be a module over a ring R. Then M is said to be a simple module if M is non-
zero and it has no proper non-zero submodules. The next result characterizes simple
modules in terms of left ideals which are maximal, i. e., maximal proper left ideals.

(9.1.9). Let R be a ring with identity. If M is a simple R-module, then M R
≃ R/L where L

is a maximal left ideal of R. Conversely, such an R/L is a simple R-module.

Proof. Let a be a non-zero element ofM. Then Ra ̸= 0 as a = 1R ⋅ a. Thus Ra = M since
M is a simple R-module. Hence M is a cyclic module and by (9.1.8) we have M R

≃ R/L
where L = AnnR(a) is the annihilator of a. That L must be a maximal left ideal of R
follows from the Correspondence Theorem for modules mentioned after (9.1.7).

If R is a ring with identity, then by (6.2.5) it has maximal left ideals and therefore
by (9.1.9) simple R-modules exist. On the other hand, it was observed in Section 6.2
that a ring without an identity element may not have anymaximal left ideals and thus
may not possess simple modules. Thus we will always assume the ring has identity in
discussions of simple modules.

Semisimple modules
A module is called semisimple if it is the direct sum of simple submodules. For exam-
ple, if F is a field, any F-module, i. e., F-vector space, is semisimple since it has a ba-
sis by (8.2.7) and simple F-modules are just 1-dimensional vector spaces. Semisimple
modules have properties which make them interesting per se; in addition they arise
naturally in ring theory and representation theory of groups.

(9.1.10). Let M be a module over a ring R with identity and assume that M is generated
by simple submodules. Then the following statements are valid.
(i) the module M is semisimple, say M =⨁i∈ISi where the Si are simple modules;
(ii) every quotient of M is semisimple;
(iii) a simple quotient of M is isomorphic with one of the simple submodules Si in (i).
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Proof. (i) Let M be generated by a set of simple submodules {Sj | j ∈ J}, where J is
non-empty. Let 0 ̸= K ⊆ J and observe that the subgroup ⟨Sk | k ∈ K⟩ is actually an
R-submodule. We will call K independent if ⟨Sk | k ∈ K⟩ is the direct sum of the Sk .
Obviously any 1-element subset of J is independent. Now the set of all independent
subsets of J is partially ordered by set inclusion. Furthermore, the union of a chain of
independent subsets is independent. Therefore by Zorn’s Lemma there is a maximal
independent subset I of J. Put N = ⟨Si | i ∈ I⟩, which is the direct sum of these Si. If
N = M, thenM is semisimple, so assume thatN ̸= M. Hence theremust exist i ∈ I such
that Si ̸⊆ N . Since Si is simple and N ∩ Si is a submodule, it follows that N ∩ Si = 0 and
N + Si = N ⊕ Si. But this implies that the set I ∪ {i} is independent, contradicting the
maximality of I.

(ii) If N is a submodule of M, then clearly M/N is a sum – although perhaps not a
direct sum – of simple submodules. However, we can apply (i) to show that M/N is
semisimple.

(iii) Let M/N be a simple quotient of M. Then Si ̸⊆ N for some i since N ̸= M. Thus
N ∩ Si = 0 and M = N + Si since N is a maximal submodule of M. Hence M = N ⊕ Si
andM/N ≃ Si.

A submodule N of a module M is said to be a direct summand of M if there is a sub-
module L such that M = N ⊕ L. It is a notable property of semisimple modules that
every submodule is a direct summand.

(9.1.11). Let N be a submodule of a semisimple moduleM over a ring with identity. Then
N is a direct summand of M and hence N is semisimple.

Proof. Clearly we may assume that N ̸= M. LetM =⨁i∈IMi where eachMi is a simple
submodule. Define 𝒮 to be the set of all subsets J of I such thatN ∩ ⟨Mj | j ∈ J⟩ = 0. No-
tice that𝒮 is not empty: for there exists i0 ∈ I such thatMi0 ̸⊆ N and henceN ∩Mi0 = 0.
Also 𝒮 is partially ordered by set inclusion and the union of a chain in 𝒮 belongs to 𝒮.
Apply Zorn’s Lemma and deduce the existence of a maximal element of 𝒮, say J. Put
L = ⟨Mj | j ∈ J⟩. Then N + L = N ⊕ L. Assume that N + L ̸= M; thus there is an i ∈ I such
thatMi ̸⊆ N + L. ThereforeMi ∩ (N + L) = 0, sinceMi is simple. Next N ∩ (Mi ⊕ L) ̸= 0
by maximality of L. Thus there exists n ̸= 0 in N such that n = m + ℓ where m ∈ Mi,
ℓ ∈ L; it follows thatm = n− ℓ ∈ Mi ∩ (N +L) = 0, a contradiction. ThereforeM = N ⊕L.
Finally, N R

≃ M/L, so N is semisimple by (9.1.10).

The next result is the converse of (9.1.11): it identifies semisimple modules as pre-
cisely those modules in which every submodule is a direct summand.

(9.1.12). Let M be a module over a ring with identity. Assume that every submodule of
M is a direct summand. Then M is semisimple.

Proof. The main step in the proof is to show that if N is a non-zero submodule of M,
thenN contains a simple submodule. Let 0 ̸= a ∈ N . Apply Zorn’s Lemma to show that
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there is a submodule L ofN which ismaximal subject to a ̸∈ L. By hypothesisM = L⊕P
for some submodule P. Intersecting with N, we obtain N = N ∩ (L ⊕ P) = L ⊕ P1 where
P1 = N ∩ P. If P1 is simple, we are done, so assume this is not the case and let Q1 be a
proper non-zero submodule of P1. Then Q1 is a direct summand ofM and hence of P1
by intersecting with P1. Hence there is an expression P1 = Q1 ⊕Q2 for some submodule
Q2 ̸= 0. Thus L is properly contained in both L⊕Q1 and L⊕Q2. Therefore bymaximality
of L we conclude that a ∈ L ⊕ Qi for i = 1, 2. However, (L ⊕ Q1) ∩ (L ⊕ Q2) = L, since
L∩P1 = 0. This yields the contradictiona ∈ L. It follows thatN has a simple submodule.

Next let S be the submodule generated by all the simple submodules ofM; then S
is semisimple by (9.1.10). By hypothesisM = S ⊕ T for some submodule T. If T ̸= 0, it
has a simple submodule T0 by the first part of the proof. But then T0 ≤ S ∩ T = 0. By
this contradiction T = 0 andM = S, soM is semisimple.

Finiteness conditions on modules
Modules are frequently studied in conjunction with finiteness restrictions on their
submodules.

(9.1.13). Let 𝒮 be a non-empty set of submodules of a module. Then the following state-
ments about 𝒮 are equivalent.
(i) The set 𝒮 satisfies the ascending chain condition, i. e., there does not exist an infi-

nite ascending chain of submodules M1 ⊂ M2 ⊂ ⋅ ⋅ ⋅ with Mi ∈ 𝒮.
(ii) The set 𝒮 satisfies themaximal condition, which asserts that every non-empty sub-

set of 𝒮 has a maximal element, i. e., an element which is not properly contained in
any other element of 𝒮.

The corresponding result for finiteness conditions on ideals in a ring was proved in
(6.4.1). Theproof of (9.1.13) is very similar. Amodule forwhich the set of all submodules
satisfies the equivalent conditions in (9.1.13) is said to be noetherian. Notice that if R is
a ring, then RR is a noetherian R-module if and only if R is a left noetherian ring – see
Section 6.4.

The next result provides some insight into the nature of the noetherian condition
for modules.

(9.1.14). Let M be a module. Then M is noetherian if and only if every submodule of M
is finitely generated.

Again there was a similar result (6.4.2) for rings and ideals: the proof of (9.1.14) is
nearly identical.

A noetherian module is always finitely generated, as (9.1.14) shows, but the con-
verse is false: finitely generatedmodules need not be noetherian – see Exercise (9.1.9).
Therefore the next result is of interest.
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(9.1.15). Let R is a left noetherian ring with identity and let M be a finitely generated
R-module. Then M is noetherian.

Proof. By hypothesis there exist elements a1, a2, . . . , ak such thatM = R ⋅ a1 + R ⋅ a2 +
⋅ ⋅ ⋅ + R ⋅ ak . Since R ⋅ a

R
≃ RR/AnnR(a) by (9.1.8) and RR is noetherian, we see that

R ⋅ a is a noetherian R-module. Thus the result is true when k = 1. Let k > 1
and argue by induction on k; then N = R ⋅ a2 + ⋅ ⋅ ⋅ + R ⋅ ak is noetherian. Next
M = R ⋅ a1 + N and M/N R

≃ R ⋅ a1/(R ⋅ a1) ∩ N by (9.1.6); this quotient is noethe-
rian since R ⋅a1 is noetherian. Finally, sinceM/N andN are both noetherian, it follows
thatM is noetherian by Exercise (9.1.10).

This result provides many examples of noetherian modules. Recall from (6.4.5)
that a finitely generated commutative ring with identity is noetherian. Therefore by
(9.1.15) a finitely generatedmodule over a finitely generated commutative ring with iden-
tity is noetherian.

Bases and free modules
The concept of a basis of a vector space extends in a natural way to modules. Let M
be a left module over a ring R with identity. A non-empty subset X of M is called an
R-basis of M if the following hold:
(i) M = R ⋅ X, i. e., X generatesM as an R-module.
(ii) X is R-linearly independent, i. e., if r1 ⋅ x1 + r2 ⋅ x2 + ⋅ ⋅ ⋅ + rk ⋅ xk = 0 with ri ∈ R and

distinct xi ∈ X, then r1 = r2 = ⋅ ⋅ ⋅ = rk = 0.

It is easy to see that these properties taken together are equivalent to every element of
the module having a unique expression as an R-linear combination of elements of X:
cf. (8.2.5).

Unlike vector spaces, a module need not have a basis. Indeed there are abelian
groups without non-trivial elements of finite order that have no bases.

Example (9.1.1). The additive groupℚ of rational numbers does not have a basis.
For suppose thatℚ has a basis X. If X contains two different elements m1

n1
, m2
n2
, then

m2n1
m1
n1
−m1n2

m2
n2
= 0,

contradicting linear independence. Therefore X has a single element, which is cer-
tainly false since Q is not cyclic.

Let R be a ring with identity and M a left R-module. If M has a basis X, then it is
called a free module on X. If R is a field, all non-zero modules are free since every non-
zero vector space has a basis, but, as has been seen, not every ℤ-module has a basis.
Free ℤ-modules are called free abelian groups.
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We will investigate the properties of free modules next. LetM be a free R-module
with a basis X. ThenM = ∑x∈X R ⋅ x and also (R ⋅ x) ∩ ∑y∈X−{x} R ⋅ y = 0 by uniqueness
of expression as a linear combination of basis elements. HenceM =⨁x∈X R ⋅ x. Next
R ⋅ x is clearly a cyclic module, so R ⋅ x ≃ RR/L where L = AnnR(x) by (9.1.8). If r ∈ L,
then 0 = r ⋅ x = 0 ⋅ x, from which it follows by uniqueness of expression that r = 0 and
L = 0. Thus R ⋅ x R

≃ RR. These conclusions are summed up in:

(9.1.16). Let R be a ring with identity and let M be a free R-module with a basis X. Then
M =⨁x∈X Mx where Mx

R
≃ RR.

The significance of free modules in module theory becomes clear from the next
result, which states that every module is isomorphic with a quotient of a free module.

(9.1.17). Let R be a ring with identity and let M be a left R-module which is generated by
a subset X = {xλ| λ ∈ Λ}. If F is a free left R-module with basis X̄ = {x̄λ| λ ∈ Λ}, there is a
surjective R-module homomorphism θ : F → M such that θ(x̄λ) = xλ for all λ ∈ Λ. Thus
M R
≃ F/Ker(θ).

Proof. If f ∈ F, there is a unique expression f = r1 ⋅ x̄λ1 + r2 ⋅ x̄λ2 + ⋅ ⋅ ⋅ + rn ⋅ x̄λn with ri ∈ R
and distinct xλi ∈ X̄. Define θ(f ) = r1 ⋅ xλ1 + r2 ⋅ xλ2 + ⋅ ⋅ ⋅ + rn ⋅ xλn . Then θ is a surjective
module homomorphism from F toM.

Next comes a useful property of free modules.

(9.1.18). Let R be a ring with identity and M a left R-module with a submodule N such
that M/N is free. Then there is a submodule F such that M = N ⊕ F and F R

≃ M/N.

Proof. Let X = {xλ + N | λ ∈ Λ} be an R-basis ofM/N and let F be the submodule ofM
generated by all the elements xλ. CertainlyM = N + F. Suppose that f ∈ N ∩ F. Then
f = r1 ⋅ xλ1 + ⋅ ⋅ ⋅ + rn ⋅ xλn where ri ∈ R and the xλi are distinct. Hence

r1 ⋅ (xλ1 + N) + ⋅ ⋅ ⋅ + rn ⋅ (xλn + N) = f + N = 0M/N .

Since X is a basis ofM/N, it follows that ri = 0 for all i and f = 0. Therefore N ∩ F = 0
andM = N ⊕ F.

Finally, we address the question of the cardinality of a basis in a free module.
Recall from (8.2.8) that any two bases of a vector space have the same cardinal, which
is termed the dimension of the space. In general it is possible for a free module to
have bases of different cardinalities. However, the situation is completely different in
the case of modules over commutative rings.

(9.1.19). Let M be a free module over a commutative ring R with identity. Then any two
bases of M have the same cardinality.
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Proof. Since R has identity, it has a maximal proper ideal S. Then K = R/S is a field by
(6.3.7) since R is commutative. Let N be the subgroup ofM generated by all elements
of the form s ⋅awhere s ∈ S, a ∈ M. Then N is a submodule and M̄ = M/N is a K-vector
space via the action (r + S) ⋅ (a +N) = r ⋅ a +N, where r ∈ R, a ∈ M: here it is necessary
to check that this action is well defined.

Next let X = {xλ | λ ∈ Λ} be a basis ofM: we will show that X̄ = {xλ +N | λ ∈ Λ} is a
K-basis of M̄. Clearly X̄ generates M̄, so it remains to establish K-linear independence.
Suppose that ∑ni=1(rλi + S) ⋅ (xλi + N) = 0M̄ where the λi are distinct and rλi ∈ R. Then
∑ni=1 rλi ⋅ xλi ∈ N . After adjusting the notation, we arrive at a relation of the form

n
∑
i=1

rλi ⋅ xλi =
n
∑
i=1

sλi ⋅ xλi

for certain sλi ∈ S. Since the xλi are linearly independent, it follows that rλi = sλi ∈ S
and rλi + S = 0K . Therefore the xλi + N are linearly independent, so they form a basis
of the K-space M̄. Hence |X| = |X̄| = dimK(M̄), which shows that all R-bases ofM have
this cardinality.

The cardinality of a basis of a free module F, when this is unique, is called the
rank of F, in symbols rank(F). A zero module is regarded as a free module of rank 0.

Homomorphism groups
Let M and N be left modules over a ring R. The set of all R-module homomorphisms
fromM to N is written

HomR(M,N).

This set can be endowed with the structure of an abelian group in which the group
operation is defined as follows. If α, β ∈ HomR(M,N), then α + β : M → N is given by
the rule

(α + β)(a) = α(a) + β(a)

where a ∈ M. It is a simple verification that α + β = β + α ∈ HomR(M,N). The identity
element is the zero mapping a → 0N and the negative of α is −α where (−α)(a) =
−(α(a)). The group axioms are quickly verified.

A homomorphism from an R-moduleM to itself is called an endomorphism ofM.
The endomorphisms of an R-moduleM form a ring in which the product operation is
functional composition, as a simple check shows. The ring of endomorphisms of an
R-moduleM is denoted by

EndR(M).
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WhenR = F is a field, HomF(V ,W) = L(V ,W), the set of F-linearmappings fromV
toW , and EndF(V) = L(V), is the set of linear operators on the F-vector spaceV . In par-
ticular HomF(V ,W) is an F-vector space. In general HomR(M,N) is not an R-module,
but it can inherit a module structure fromM or N . This shown by the next result.

(9.1.20). Let RMS and RNT be bimodules with respect to rings R, S, T as indicated. Then
HomR(M,N) is an (S,T)-bimodule in which the module actions of S and T are given by

(s ⋅ α)(a) = α(a ⋅ s) and (α ⋅ t)(a) = α(a) ⋅ t

where a ∈ M, s ∈ S, t ∈ T.

Proof. Wewill check the module axioms for the first action, leaving the second action
to the reader. Let α ∈ HomR(M,N), ai, a ∈ M, r ∈ R, s ∈ S; then (s ⋅ α)(a1 + a2) =
α((a1 + a2) ⋅ s) = α(a1 ⋅ s + a2 ⋅ s) = α(a1 ⋅ s) + α(a2 ⋅ s) = (s ⋅ α)(a1) + (s ⋅ α)(a2). Also
(s⋅α)(r ⋅a) = α((r ⋅a)⋅s) = α(r ⋅(a⋅s)) = r ⋅(α(a⋅s)) = r ⋅((s⋅α)(a)). Hence s⋅α ∈ HomR(M,N).

Next it must be proved that s ⋅ (α1 + α2) = s ⋅ α1 + s ⋅ α2, (s1 + s2) ⋅ α = s1 ⋅ α+ s2 ⋅ α and
s1 ⋅(s2 ⋅α) = (s1s2)⋅α, where s, si ∈ S, α, αi ∈ HomR(M,N). Let us take the third statement,
leaving the others to the reader. If a ∈ M, we have (s1 ⋅ (s2 ⋅ α))(a) = (s2 ⋅ α)(a ⋅ s1) =
α((a ⋅ s1) ⋅ s2) = α(a ⋅ (s1s2)) = ((s1s2) ⋅ α)(a), as required.

Finally, check the bimodule property. Let α ∈ HomR(M,N), s ∈ S, t ∈ T; then
((s ⋅ α) ⋅ t)(a) = ((s ⋅ α)(a)) ⋅ t = (α(a ⋅ s)) ⋅ t = (α ⋅ t)(a ⋅ s) = (s ⋅ (α ⋅ t))(a) for all a ∈ M.
Therefore (s ⋅ α) ⋅ t = s ⋅ (α ⋅ t).

Of course, if we just have RMS or RNT , then HomR(M,N) is merely a left S-module
or a right T-module respectively. Next comes a useful result applicable to the compu-
tation of homomorphism groups.

(9.1.21). Let R, S be ringswith identity elements and let RMS be a bimodule as indicated.
Then

HomR(R,M)
R,S
≃ M.

Proof. First of all notice that HomR(R,M) is an (R, S)-bimodule. A function Φ :
HomR(R,M) → M is defined by Φ(θ) = θ(1R). Verify that Φ is a homomorphism
of (R, S)-bimodules. Next we show that Φ is injective. Suppose that Φ(θ) = 0, so
θ(1R) = 0; then θ(r) = θ(r ⋅ 1R) = r ⋅ θ(1R) = 0 for all r ∈ R and θ = 0. Finally, Φ is
surjective. For, let a ∈ M and define θa : HomR(R,M) → M by θa(r) = r ⋅ a. Then
Φ(θa) = θa(1R) = 1R ⋅ a = a, showing that Φ is surjective and hence is an isomor-
phism.
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Schur’s Lemma
The following result is of importance in calculating HomR(M,N) when both modules
are simple; it is traditionally known as Schur’s Lemma.1

(9.1.22). Let RM and RN be simple modules over a ring R.
(i) If M and N are not isomorphic, then HomR(M,N) = 0.
(ii) If M and N are isomorphic, then HomR(M,N) ≃ EndR(M) is a division ring.

Proof. Let α : M → N be anR-homomorphism. SinceKer(α) and Im(α) are submodules
ofM andN respectively, eitherα = 0or elseKer(α) = 0and Im(α) = N, that is to say,α is
an isomorphism. Therefore HomR(M,N) = 0 ifM and N are not isomorphic. IfM and
N are isomorphic, then HomR(M,N) ≃ HomR(M,M) = EndR(M) and every non-zero
element of the latter has an inverse: thus EndR(M) is a division ring.

Induced and coinduced mappings
When a homomorphism α between modules is given, there is an induced homomor-
phism α∗ and a coinduced homomorphism α∗ between homomorphism groups, as
explained below.

(9.1.23). Let A, B, M be left modules over a ring R and let α : A → B be a module
homomorphism. Then the following are true.
(i) There is a group homomorphism α∗ : HomR(M,A)→ HomR(M,B) such that α∗(θ) =

αθ for θ ∈ HomR(M,A).
(ii) There is a group homomorphismα∗ : HomR(B,M)→ HomR(A,M) such that α∗(ϕ) =

ϕα for ϕ ∈ HomR(M,B).

Proof. Only (ii) will be proved. Letϕ ∈ HomR(B,M). Certainly α∗(ϕ) = ϕα is a function
from A toM. We check that it is an R-module homomorphism. Let a, ai ∈ A and r ∈ R.
Firstly α∗(ϕ)(a1 + a2) = ϕα(a1 + a2) = ϕ(α(a1) + α(a2)) = ϕα(a1) + ϕα(a2) = α∗(ϕ)(a1) +
α∗(ϕ)(a2). Then (α∗(ϕ))(r ⋅a) = ϕα(r ⋅a) = ϕ(r ⋅α(a)) = r ⋅ (ϕα(a)) = r ⋅ (α∗(ϕ)(a)). Hence
α∗(ϕ) ∈ HomR(B,M).

Finally, we prove that α∗ is a group homomorphism. Let ϕi ∈ HomR(B,M). Then
α∗(ϕ1 + ϕ2) = (ϕ1 + ϕ2)α = ϕ1α + ϕ2α = α∗(ϕ1) + α∗(ϕ2), as required.

The induced and coinduced homomorphisms just introduced have notable prop-
erties when applied to composites. In the next result the ∗ notation for these homo-
morphisms is used.

(9.1.24). Let A, B, C, M be left modules over a ring R and let α : A → B and β : B → C
be R-module homomorphisms. Then (i) (βα)∗ = β∗α∗ and (ii) (βα)∗ = α∗β∗.

1 Issai Schur (1875–1941).
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Proof. For example, to prove (ii) letϕ ∈ HomR(C,M). Then (βα)∗(ϕ) = ϕ(βα) = (ϕβ)α =
β∗(ϕ)α = α∗(β∗(ϕ)) = α∗β∗(ϕ) and hence (βα)∗ = α∗β∗.

Exact sequences
An exact sequence of modules over a ring R is a chain of R-modules and R-module
homomorphisms

⋅ ⋅ ⋅ → Ai−1
αi−1→ Ai

αi→ Ai+1 → ⋅ ⋅ ⋅ , (i ∈ I),

where I is a linearly ordered set, such that Im(αi−1) = Ker(αi) for all i. Here the chain
can be finite or infinite in either direction. We note some important special types of
exact sequences:

0→ A α
→ B

β
→ C and A α

→ B
β
→ C → 0.

In the first sequence exactness at A means that Ker(α) = 0, i. e., α is injective: in the
second sequence exactness at C shows that Im(β) = C, i. e., β is surjective. The combi-
nation of the two types

0→ A α
→ B

β
→ C → 0

is called a short exact sequence: in this caseA R
≃ Im(α) = Ker(β) andB/Ker(β) R≃ C. Note

that the maps 0→ A and C → 0 are necessarily zero maps.
The Hom construction has the critical property of preserving exactness of se-

quences on the left.

(9.1.25) (Left exactness of Hom). Let M be a left R-module where R is an arbitrary ring.
Then the following hold.
(i) If 0→ A α

→ B
β
→ C is an exact sequence of left R-modules, the induced sequence of

abelian groups and homomorphisms

0→ HomR(M,A)
α∗→ HomR(M,B)

β∗→ HomR(M,C)

is exact.
(ii) If A α

→ B
β
→ C → 0 is an exact sequence of left R-modules, the coinduced sequence

of abelian groups and homomorphisms

0→ HomR(C,M)
β∗
→ HomR(B,M)

α∗
→ HomR(A,M)

is exact.
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Proof. Only (i) will be proved, the proof of (ii) being similar. Firstly, α∗ is injective. For
suppose that α∗(θ) = 0, i. e., αθ = 0. Since α is injective, it follows that θ = 0 and hence
the sequence is exact at HomR(M,A).

Now for exactness at HomR(M,B), i. e., Ker(β∗) = Im(α∗). Since Im(α) = Ker(β), we
have β∗α∗ = (βα)∗ = 0∗ = 0 by (9.1.24). Hence Im(α∗) ⊆ Ker(β∗). Next let ϕ ∈ Ker(β∗),
so that we have 0 = β∗(ϕ) = βϕ. If m ∈ M, then βϕ(m) = 0, so ϕ(m) ∈ Ker(β) =
Im(α). Hence ϕ(m) = α(a) for some a ∈ A. In fact the element a is unique: for, if also
ϕ(m) = α(a′), then a = a′ by injectivity of α. This allows us to define unambiguously
a function θ : M → A by θ(m) = a where ϕ(m) = α(a). It is easy to see that θ is
an R-module homomorphism. Next (α∗(θ))(m) = αθ(m) = α(a) = ϕ(m) for all m ∈ M.
Therefore α∗(θ) = ϕ andϕ ∈ Im(α∗), so that Ker(β∗) = Im(α∗), aswas to be proved.

Exercises (9.1).
(1) Let L,M, N be submodules of an R-module such that N ⊆ M. Prove the following

statements.
(i) (L ∩M)/(L ∩ N) is R-isomorphic with a submodule ofM/N .
(ii) (L +M)/(L + N) is R-isomorphic with a quotient ofM/N .

(2) Let L,M, N be submodules of an R-module such that N ⊆ M. If L +M = L + N and
L ∩M = L ∩ N, prove thatM = N .

(3) Let X be a non-empty subset of an R-module M. If the ring R does not have an
identity element, what is the general form of an element of the submodule of M
generated by X?

(4) If α : M → N is a module isomorphism, show that α−1 : N → M is also a module
isomorphism.

(5) State and prove the Correspondence Theorem for modules.
(6) LetR be a commutative ringwith identity. Prove thatR is a field if and only if every

non-zero cyclic R-module is isomorphic with R.
(7) Let R, S be rings and let RMS be a bimodule as indicated. If R has an identity ele-

ment, prove that HomR(RR, RMS)
S
≃ M.

(8) Establish (9.1.25)(ii).
(9) Give an example of a finitely generated module that is not noetherian. [Hint: if R

is a ring with identity, then RR is a finitely generated R-module.]
(10) LetM be a module with a submodule N . If N andM/N are noetherian, prove that

M is noetherian.
(11) LetM be anR-modulewith a submoduleN such thatM R

≃ M/N . IfM is noetherian,
prove thatN = 0. [Hint: use the ascending chain form of the noetherian property.]

(12) Let u, v be elements of a principal ideal domain R such that gcd{u, v} = 1. Prove
that R/Ru ⊕ R/Rv R

≃ R/Ruv. Then extend the result to n relatively prime elements
u1, u2, . . . , un. [Hint: show that the assignment r + (uv) → (r + (u), r + (v)), r ∈ R
determines an isomorphism by using the Chinese Remainder Theorem for R.]

(13) Explain how to define the unrestricted and restricted direct sums of an infinite set
of modules by using choice functions as in Section 4.2.
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(14) An exact sequence of R-modules and homomorphisms 0 → A α
→ B

β
→ C → 0

is said to split if there is a module homomorphism γ : C → B such that βγ is the
identity map on C. Prove that in this event B = Im(α) ⊕ Im(γ) R≃ A ⊕ C.

(15) Show that an exact sequence 0 → A → B → F → 0 always splits if F is a free
module.

(16) Prove that the exact sequence 0→ ℤ→ ℚ→ ℚ/ℤ→ 0 in which all the maps are
the natural ones does not split.

(17) Establish the following analogue of (9.1.13). Let 𝒮 be a non-empty set of submod-
ules of a module. Then the following statements about 𝒮 are equivalent.
(i) The set 𝒮 satisfies the descending chain condition, i. e., there does not exist

an infinite descending chain of submodulesM1 ⊃ M2 ⊃ ⋅ ⋅ ⋅ withMi ∈ 𝒮.
(ii) The set 𝒮 satisfies theminimal condition, which asserts that every non-empty

subset of 𝒮 has a minimal element, i. e., an element which does not properly
contain any other element of 𝒮.

(If the set of all submodules satisfies these finiteness conditions, the module is
said to be artinian.)

(18) Let A, B, C be modules over a ring R. Prove that HomR(A ⊕ B,C) ≃ HomR(A,C) ⊕
HomR(B,C) and HomR(A,B ⊕ C) ≃ HomR(A,B) ⊕ HomR(A,C).

(19) Let R be a ring with identity and let F be a free R-module with a basis X. If α : X →
M is a map from X into some R-moduleM, prove that there is a unique R-module
homomorphism β : F → M such that βμ = α, where μ : X → F is the inclusion
map.

(20)Let R be a ring with identity and let F be an R-module with a set of generators X.
Assume that the property described in Exercise (9.1.19) holds for F and X. Prove
that X is a basis of F, so that F is a free module. [Hint: form a free module M on
X and then a module homomorphism from F to M; from this deduce that X is
R-linearly independent in F.]

9.2 Modules over principal ideal domains

In this section we restrict attention to modules over commutative rings. The main ob-
jective is to determine the structure of finitely generated modules over PID’s. This is
one of the central results of abstract algebra and it has applications to finitely gener-
ated abelian groups, linear operators on finite dimensional vector spaces and canon-
ical forms of matrices.

Torsion elements
Let R be a commutative ring with identity and let M be an R-module. Recall that we
need not distinguish between left and right modules. An element a of M is called an
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R-torsion element if there exists r ̸= 0 in R such that r ⋅ a = 0. Equivalently, the anni-
hilator AnnR(a) is a non-zero ideal of R. If every element ofM is a torsion element,M
is called an R-torsion module. On the other hand, if 0 is the only torsion element ofM,
the module is said to be R-torsion-free. (The terminology comes from topology.)

For example, a torsion element of a ℤ-module, i. e., an abelian group, is an ele-
ment of finite order and a torsion-free ℤ-module is an abelian group in which every
non-trivial element has infinite order.

(9.2.1). Let R be an integral domain and M an R-module. Then the torsion elements of
M form a submodule T, the torsion submodule, such that M/T is torsion-free.

Proof. Let a and b be torsion elements of M; thus there exist r, s ̸= 0 in R such that
r ⋅a = 0 = s⋅b. SinceR is an integral domain, rs ̸= 0.Now rs⋅(a±b) = s⋅(r ⋅a)±r ⋅(s⋅b) = 0,
which shows that a ± b ∈ T. Next let u ∈ R; then r ⋅ (u ⋅ a) = u ⋅ (r ⋅ a) = u ⋅ 0 = 0, so
u ⋅ a ∈ T. Hence T is a submodule.

Now suppose that a + T is a torsion element ofM/T. Then r ⋅ (a + T) = 0M/T = T
for some r ̸= 0 in R, that is, r ⋅ a ∈ T. Therefore s ⋅ (r ⋅ a) = 0 for some s ≠ 0 in R. Hence
(sr) ⋅ a = 0 and sr ̸= 0, from which it follows that a ∈ T and a + T = T = 0M/T .

p-Torsion modules
Next the concept of a torsion module will be refined. Let p denote an irreducible ele-
ment of an integral domain R: thus the only divisors of p are associates and units. An
element a of an R-moduleM is termed a p-torsion element if pi ⋅ a = 0 for some i > 0.
If every element ofM is p-torsion, thenM is called a p-torsionmodule.

(9.2.2). LetM beamodule over an integral domainRand let p be an irreducible element
of R. Then the following statements hold.
(i) The p-torsion elements form a submodule Mp of M, (called the p-torsion submod-

ule).
(ii) If R is a principal ideal domain, a non-zero element a in M is a p-torsion element if

and only if AnnR(a) = (pi) for some i > 0.

Proof. The proof of (i) is a simple exercise. As for (ii), let I = AnnR(a); then I = (s)
where s ∈ R is a non-zero, non-unit, since R is a PID. If a is a p-torsion element, pj ∈
I = (s) for some j > 0 and hence s divides pj. Since R is a UFD by (7.3.2), it follows that
s = piu where 0 < i ≤ j and u a unit of R. Therefore I = (s) = (pi). The converse is
clear.

The first really significant result about torsion modules over a PID is:

(9.2.3) (The Primary Decomposition Theorem). Let M be a torsion module over a prin-
cipal ideal domain R and let P be a complete set of irreducible elements for R. Then M
is the direct sum of the p-torsion components Mp for p ∈ P.
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Proof. Let 0 ̸= a ∈ M. Since M is a torsion module, there exists r ̸= 0 in R such that
r ⋅ a = 0. Note that r cannot be a unit ofR since otherwise a = 0.Write r = upe11 p

e2
2 ⋅ ⋅ ⋅ p

ek
k

where the pi are distinct elements of P, ei > 0 and u is a unit of R. Let ri denote the
product that remains when the factor peii is deleted from r. Then r1, r2, . . . , rk are rela-
tively prime since they have no common irreducible factors. By (7.2.3) applied repeat-
edly, there exist si ∈ R such that r1s1 + r2s2 + ⋅ ⋅ ⋅ + rksk = 1. Consequently a = 1 ⋅ a =
(r1s1) ⋅ a + (r2s2) ⋅ a + ⋅ ⋅ ⋅ + (rksk) ⋅ a. Now peii ⋅ ((risi) ⋅ a) = (sip

ei
i ri) ⋅ a = si ⋅ (r ⋅ a) = 0.

Hence (risi) ⋅ a ∈ Mpi , from which it follows that M is the sum of the submodules Mp
with p ∈ P.

To complete the proof it must be shown that the sum is direct. Suppose that b ∈
Mp ∩ ∑q∈P−{p}Mq. Then pm ⋅ b = 0 for some m > 0. Also there is an expression b =
b1 + b2 + ⋅ ⋅ ⋅ + bℓ with bi ∈ Mqi , qi ∈ P − {p} where the qi are distinct. Thus q

mi
i ⋅ bi = 0

for some mi > 0, and hence q ⋅ b = 0 where q = qm1
1 qm2

2 ⋅ ⋅ ⋅ q
mℓ
ℓ . Since none of the qi

can equal p, the elements q and pm are relatively prime and hence by (7.2.3) there exist
u, v ∈ R such that pmu + qv = 1. Therefore

b = 1 ⋅ b = (pmu + qv) ⋅ b = u ⋅ (pm ⋅ b) + v ⋅ (q ⋅ b) = 0,

and it follows thatMp ∩∑q∈π−{p}Mq = 0, so the sum is direct.

What the Primary Decomposition Theorem does is reduce the study of torsion
modules over a PID to the case of p-torsion modules.

Submodules of free modules
Before we can proceed further with the study of finitely generatedmodules over PID’s,
we need to gain a better understanding of free modules. As a first step let us consider
submodules of free modules and show these are also free. For simplicity we will dis-
cuss only free modules of finite rank, although the results are true in the infinite case
as well.

(9.2.4). Let S be a submodule of a finitely generated freemodule F over a principal ideal
domain R. Then S is a free module with rank less than or equal to the rank of F.

Proof. By hypothesis F has finite rank, say r. If S = 0, it is free with rank 0, so we can
assume that S ̸= 0 and thus r > 0. Suppose first that r = 1, so that F R

≃ R. Identifying F
with R, we see that S is an ideal of R and thus S = (s) for some s, since R is a PID. The
assignment x → xs, (x ∈ R), determines a surjective R-module homomorphism from
R to S. It is also injective because R is a domain, so it is a module isomorphism and
S R
≃ R. Thus S is a free module of rank 1.
Next assume that r > 1 and let {x1, x2, . . . , xr} be a basis of F. Define Fi to be the

submodule of F generated by x1, x2, . . . , xi, so we have the chain of submodules of F

0 = F0 ⊂ F1 ⊂ F2 ⊂ ⋅ ⋅ ⋅ ⊂ Fr = F.
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Clearly Fi is free with basis {x1, x2, . . . , xi} and rank i. Define Si = S ∩ Fi, a submodule of
F; then there is a chain of submodules 0 = S0 ⊆ S1 ⊆ S2 ⊆ ⋅ ⋅ ⋅ ⊆ Sr = S. By (9.1.6)

Si+1/Si = S ∩ Fi+1/S ∩ Fi
R
≃ ((S ∩ Fi+1) + Fi)/Fi ⊆ Fi+1/Fi.

Since Fi+1/Fi
R
≃ R, either Si = Si+1 or Si+1/Si

R
≃ R by the rank 1 case. By (9.1.18) there is a

submodule Ti+1 such that Si+1 = Si ⊕ Ti+1. From this it follows that S = T1 ⊕ T2 ⊕ ⋅ ⋅ ⋅⊕ Tr .
In addition Ti+1

R
≃ Si+1/Si and hence either Ti+1 = 0 or Ti+1

R
≃ R. Therefore S is a free

module with rank at most r.

An important consequence of the last result is:

Corollary (9.2.5). Let R be a principal ideal domain and let M be an R-module which
can be generated by n elements. If N is a submodule of M, then N can be generated by
n or fewer elements.

Proof. From (9.1.17) it follows that M R
≃ F/L where F is a free module of rank n and

L is a submodule. By the Correspondence Theorem for modules, N R
≃ S/L for some

submodule S of F containing L. By (9.2.4) S can be generated by n or fewer elements,
from which it follows that N also has this property.

We are now equipped with sufficient knowledge of free modules over PID’s to de-
termine the structure of finitely generated, torsion-free modules.

(9.2.6). Let M be a finitely generated torsion-free module over a principal ideal do-
main R. Then M is a free module.

Proof. It may be assumed that M ̸= 0. Suppose that M is generated by non-zero el-
ements a1, a2, . . . , an. If n = 1, then M = R ⋅ a1, so that M R

≃ R/AnnR(a1) by (9.1.8).
However, AnnR(a1) = 0 since a1 ̸= 0 and M is torsion-free. Hence M R

≃ R and M is a
free module of rank 1.

Let n > 1 and use induction on n. For convenience let us write a = a1. Denote by
N/(R ⋅a) the torsion-submodule ofM/(R ⋅a). By (9.2.1) the moduleM/N is torsion-free,
and clearly it can be generated by n − 1 elements. Therefore by induction hypothe-
sis M/N is free and (9.1.18) shows that there is a submodule L such that M = N ⊕ L;
moreover, L R

≃ M/N, so L is free. Thus it is enough to prove that N is a free module.
By (9.2.5) the submodule N can be finitely generated, say by b1, b2, . . . , bk . Since

bi ∈ N, there exists ri ̸= 0 in R such that ri ⋅ bi ∈ R ⋅ a. Writing r = r1r2 ⋅ ⋅ ⋅ rk ̸= 0, we
have r ⋅ bi ∈ R ⋅ a for i = 1, 2, . . . , k, which implies that r ⋅ N ⊆ R ⋅ a. But R ⋅ a R

≃ R since
AnnR(a) = 0, so r ⋅ N is free by the case n = 1. Finally, N R

≃ r ⋅ N via the map b → r ⋅ b
sinceM is torsion-free. Consequently N is a free module.
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Corollary (9.2.7). Let M be a finitely generated module over a principal ideal domain R
and let T denote the torsion submodule of M. Then M = T ⊕ F where F is a free module
of finite rank.

Proof. By (9.2.1) the quotientM/T is torsion-free and it is evidently finitely generated.
HenceM/T is free by (9.2.6). From (9.1.18) we deduce thatM = T ⊕ F where F R

≃ M/T,
so F is free.

Combining (9.2.7) with the Primary Decomposition Theorem (9.2.3), we see that
the remaining obstacle to determining the structure of finitely generatedmodules over
a PID is the case of a finitely generated p-torsion module. This is overcome in the next
major result.

(9.2.8). Let M be a finitely generated module over a principal ideal domain R. Assume
that M is a p-torsion module for some irreducible element p of R. Then M is a direct sum
of finitely many cyclic p-torsion modules.

Notice that by (9.1.8) and (9.2.2) a cyclic p-torsion R-module is isomorphic with
R/(pi) for some i > 0. Thus (9.2.8) shows that the moduleM is completely determined
by certain powers of irreducible elements of R.

The proof of (9.2.8) is one of the harder ones in this book. The reader is advised to
look out for the main ideas in the proof and try not to get bogged down in the details.

Proof of (9.2.8). We can suppose thatM ̸= 0; let it be generated by non-zero elements
b1, b2, . . . , bk . Then pei ⋅ bi = 0 where ei > 0. Let e be the largest of the ei, so that
pe ⋅ bi = 0 for all i and thus pe ⋅ M = 0. Choose e to be the smallest positive integer
with this property. Hence there exists a ∈ M such that pe−1 ⋅a ̸= 0, and thus AnnR(a) =
(pe) = AnnR(M).

The main step in the proof is to establish the following statement.

For any a ∈ M such that AnnR(a) = (p
e) = AnnR(M), the cyclic submodule R ⋅ a

is a direct summand of M.
(∗)

Let us assume the statement (∗) is false: a series of contradictionswill then ensue.
By (9.2.5) every submodule of M is finitely generated and hence M is noetherian by
(9.1.14).We claim thatM contains a submoduleM0 which ismaximal subject to having
the following properties:
(i) M̄ = M/M0 has an element ā such that AnnR(ā) = (pe) = Ann(M̄);
(ii) R ⋅ ā is not a direct summand of M̄.

Certainly there are submoduleswith these properties, for example the zero submodule
qualifies with a in place of ā. The maximal condition on submodules guarantees that
there is a maximal one. Since we are only looking for a contradiction, we can just well
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work with the module M̄: thus we will assume thatM0 = 0 andM = M̄. Consequently,
the statement (∗) is true for every proper quotient ofM, but false forM itself.

Suppose first that there exists b ∈ M −R ⋅ a such that p ⋅ b = 0. Notice that R ⋅ b is a
module over the field R/(p) since p ⋅ b = 0; thus it is a 1-dimensional vector space over
R/(p). Therefore (R⋅a) ∩ (R⋅b), being a subspace ofR⋅b, is either 0 orR⋅b. In the second
case R ⋅ b ⊆ R ⋅ a and b ∈ R ⋅ a, contrary to the choice of b. Thus (R ⋅ a) ∩ (R ⋅ b) = 0.
Next pe−1 ⋅ (a + R ⋅ b) = pe−1 ⋅ a + R ⋅ b, which cannot equal 0M/R⋅b, since otherwise
pe−1 ⋅ a ∈ (R ⋅ a) ∩ (R ⋅ b) = 0, another contradiction. Therefore pe−1 ⋅ (a + R ⋅ b) ̸= 0M/R⋅b
and AnnR(a + R ⋅ b) = (pe) = AnnR(M/R ⋅ b). This means that the moduleM/R ⋅ a and
the element a + R ⋅ a satisfy the hypotheses of (∗) above. Since M/(R ⋅ b) is a proper
quotient of M, there is a direct decomposition M/(R ⋅ b) = R ⋅ (a + R ⋅ b) ⊕ N/(R ⋅ b).
ConsequentlyM = (R ⋅ a) +N, while (R ⋅ a) ∩N ⊆ (R ⋅ a) ∩ (R ⋅ b) = 0 andM = R ⋅ a ⊕N,
contradicting the fact that (∗) is false forM.

From the discussion of the previous paragraph, we conclude that R ⋅a contains all
elements b ofM such that p⋅b = 0. Let c ∈ M−(R⋅a)be chosen such that AnnR(c) = (pk)
with kminimal. Then 1 < k ≤ e since p ⋅ c cannot equal 0. Next 0 = pk ⋅ c = pk−1 ⋅ (p ⋅ c),
and by minimality of k we have p ⋅ c ∈ R ⋅ a: now write p ⋅ c = r ⋅ a with r ∈ R. Thus
0 = pk ⋅ c = pk−1 ⋅ (p ⋅ c) = pk−1 ⋅ (r ⋅ a) = (pk−1r) ⋅ a, from which it follows that pe

divides pk−1r. Since k − 1 < e, we deduce that p divides r. Write r = pr′ with r′ ∈ R.
Then p ⋅ c = r ⋅ a = (pr′) ⋅ a and hence p ⋅ (c − r′ ⋅ a) = 0. Consequently c − r′ ⋅ a ∈ R ⋅ a
and hence c ∈ R ⋅ a. This contradiction finally establishes the truth of the statement
(∗) above.

From this point it is but a short step to finish the proof. Writing a1 for a, we have
shown thatM = R ⋅a1⊕M1 for some finitely generated submoduleM1. EitherM1 = 0, in
which eventM = R ⋅a1 andwe are done, or elseM1 ̸= 0 and the same argumentmay be
applied toM1, yieldingM1 = R⋅a2⊕M2 andM = R⋅a1⊕R⋅a2⊕M2 for a suitable elementa2
andfinitely generated submoduleM2. The argumentmaybe repeated ifM2 is non-zero,
and so on. Because the ascending chain condition is valid in the noetherian module
M, we will eventually reach a direct decompositionM = R ⋅ a1 ⊕R ⋅ a2 ⊕ ⋅ ⋅ ⋅⊕R ⋅ an, and
the theorem is proved.

The structure theorem for finitely generatedmodules over aPID cannowbe stated.

(9.2.9). Let M be a finitely generated module over a principal ideal domain R. Then M
is the direct sum of finitely many cyclic R-modules. More precisely

M = F ⊕M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk

where F is a free module of finite rank r ≥ 0 and

Mi = Mi(1) ⊕Mi(2) ⊕ ⋅ ⋅ ⋅ ⊕Mi(ℓi), i = 1, 2, . . . , k,
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where Mi(j) is the direct sum of nij isomorphic copies of R/(p
j
i), (j = 1, 2, . . . , ℓi), nij ≥ 0,

niℓi > 0 and the pi are distinct elements in a complete set of irreducible elements for R.

Proof. From (9.2.7) we have M = F ⊕ T where T is the torsion submodule of M and F
is a finitely generated torsion-free module. By (9.2.6) the submodule F is free. Next T
is finitely generated sinceM is noetherian, so by (9.2.3) T = M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk where
Mi ̸= 0 is the pi-torsion submodule ofM and the pi are distinct elements in a complete
set of irreducibles. Finally, by (9.2.8) Mi is a direct sum of cyclic pi-torsion modules
each of which is isomorphic with some R/(pji). By grouping together isomorphic cyclic
modules in the direct sum, we obtain the desired result.

While the last theorem gives a clear picture of the structure of the module M, it
leaves a natural question open, namely, what is the significance of the data r, k, pi, ℓi,
nij? ThemoduleM will usually havemany direct decompositions of the type in (9.2.9),
so the question arises as to whether different sets of data could arise from different
decompositions. In other words we are asking if r, k, pi, ℓi, nij are true invariants of the
moduleM. The answer is supplied by the result that follows.

(9.2.10). Let M be a finitely generatedmodule over a principal ideal domain R and sup-
pose that M has two direct decompositions into cyclic submodules of the type in (9.2.9),

M = F ⊕M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk = F̄ ⊕ M̄1 ⊕ M̄2 ⊕ ⋅ ⋅ ⋅ ⊕ M̄k̄ ,

with corresponding data r, k, pi, ℓi, nij and ̄r, k̄, p̄i, ̄ℓi, n̄ij. Then r = ̄r, k = k̄, pi = p̄i,
ℓi = ̄ℓi, nij = n̄ij, after possible reordering of the M̄i.

Proof. In the first place the torsion submodule ofM is evidently

T = M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk = M̄1 ⊕ M̄2 ⊕ ⋅ ⋅ ⋅ ⊕ M̄k̄ .

Hence F R
≃ M/T R

≃ F̄ and by (9.1.19) we deduce that r = ̄r. Also the pi and p̄i are the
irreducible elements with non-trivial torsion components in M. Thus k = k̄ and the
p̄i can be relabelled so that pi = p̄i. Consequently we can assume that M itself is a
p-torsion module for some irreducible element p, and that

M = M(1) ⊕M(2) ⊕ ⋅ ⋅ ⋅ ⊕M(ℓ) = M̄(1) ⊕ M̄(2) ⊕ ⋅ ⋅ ⋅ ⊕ M̄( ̄ℓ),

whereM(j) and M̄(j) are direct sums of nj and n̄j copies of R/(pj) respectively. Note that
nℓ, n̄ ̄ℓ > 0. Our task is to prove that nj = n̄j and ℓ = ̄ℓ.

We introduce the useful notationM[p] = {a ∈ M | p ⋅ a = 0}: notice thatM[p] an
R-submodule ofM, indeed it is a vector space over the field R/(p). Observe also that

pm ⋅ (R/(pj) R≃ R/(pj−m) ifm < j,

while pm ⋅ (R/(pj)) = 0 ifm ≥ j.
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A consequence of these observations is that pm ⋅M(j) = 0 ifm ≥ j and pm ⋅M(j) is
the direct sum of nj copies of R/(pj−m) ifm < j. Therefore (pm ⋅M)[p] is an R/(p)-vector
space with dimension nm+1 + nm+2 + ⋅ ⋅ ⋅ + nℓ. Of course, the same argument may be
applied to the second direct decomposition. Now clearly (pm ⋅M)[p] depends only on
themoduleM, not on any particular direct decomposition of it. Therefore, on equating
dimensions, we obtain the system of linear equations

nm+1 + nm+2 + ⋅ ⋅ ⋅ + nℓ = n̄m+1 + n̄m+2 + ⋅ ⋅ ⋅ + n̄ ̄ℓ

for m = 1, 2, . . . . Since nℓ, n̄ ̄ℓ > 0, it follows that ℓ = ̄ℓ. By solving back this linear
system from the final equation, we find that nj = n̄j, for j = 1, 2, . . . , ℓ.

Elementary divisors and invariant factors
IfM is a finitely generatedmodule over a PIDR, the invariants pji forwhichR/(p

j
i) is iso-

morphic with one of the direct summands ofM in (9.2.9) are called the elementary di-
visors ofM. The torsion submodule is determined by the elementary divisors together
with their multiplicities. The elementary divisors are invariants of the module and do
not depend on a particular direct decomposition.

Let us suppose that the elementary divisors are arranged to form a rectangular
array as shown below,

pr111 pr121 . . . pr1ℓ1
pr212 pr222 . . . pr2ℓ2
. . . . . .

prk1k prk2k . . . prkℓk

where 0 ≤ ri1 ≤ ri2 ≤ ⋅ ⋅ ⋅ ≤ riℓ, at least one element in each row and column is different
from 1, and ℓ is the maximum of ℓ1, ℓ2, . . . , ℓk . Here in order to ensure that all the rows
of the array have the same length, it may be necessary to introduce several 1’s at the
beginning of a row.

Now define

sj = p
r1j
1 p

r2j
2 ⋅ ⋅ ⋅ p

rkj
k , j = 1, 2, . . . , ℓ,

the product of the elements in column j. The ring elements s1, s2, . . . , sℓ, which cannot
be units, are called the invariant factors ofM. These are also invariants of the module
since they are expressed in terms of the elementary divisors. The invariant factors have
the noteworthy divisibility properties

s1 | s2 | ⋅ ⋅ ⋅ | sℓ

since rij ≤ rij+1.
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We remark that if u, v ∈ R are relatively prime, then R/(u) ⊕ R/(v) R≃ R/(uv), which
is Exercise (9.1.12). This observation allows us to combine all the cyclic modules asso-
ciated with entries in the jth column of the array of elementary divisors into a single
cyclic submodule R/(sj). In this way we obtain an alternative form of (9.2.9).

(9.2.11). Let M be a finitely generated module over a principal ideal domain R. Then

M R
≃ F ⊕ R/(s1) ⊕ R/(s2) ⊕ ⋅ ⋅ ⋅ ⊕ R/(sℓ)

where F is a free module of finite rank and the sj are the invariant factors of M.

Here is an example with R = ℤ to illustrate the procedure for finding the invariant
factors when the elementary divisors are known.

Example (9.2.1). Consider the finite abelian group

A = ℤ2 ⊕ℤ2 ⊕ℤ2 ⊕ℤ3 ⊕ℤ5 ⊕ℤ52 .

The elementary divisors of A are quickly identified from the direct decomposition as
2, 2, 2, 3, 5, 52. Arrange these to form an array with 1’s inserted appropriately,

2 2 2
1 1 3
1 5 52

Forming the products of the columns, we find the invariant factors to be 2, 10, 150.
Therefore A ≃ ℤ2 ⊕ℤ10 ⊕ℤ150.

Presentations of modules
LetRbeaPIDandM afinitely generatedR-module generatedbyelementsa1, a2, . . . , an.
Suppose that F is a free R-module with basis {x1, x2, . . . , xn}. Then by (9.1.17) there is a
surjective R-module homomorphism θ : F → M such that θ(xi) = ai for i = 1, . . . , n.
Thus M R

≃ F/N where N = Ker(θ). By (9.2.5) N is a finitely generated R-module, say
with generators y1, y2, . . . , ym, wherem ≤ n, and there are expressions yj = ∑

n
k=1 ujk ⋅ xk

with ujk ∈ R.
Conversely, suppose we start with a free Rmodule F with basis {x1, x2, . . . , xn} and

elements y1, y2, . . . , ym of F where yj = ∑
n
k=1 ujk ⋅ xk, ujk ∈ R. Let N = R ⋅ {y1, y2, . . . , ym}

and put M = F/N . Then M is a finitely generated R-module which may be written in
the form

M = ⟨x1, x2, . . . , xn | y1, y2, . . . , ym⟩.

This called a presentation of the R-module M: the xi are the generators and the yj are
the relatorsof thepresentation.We should thinkof the generators x1, x2, . . . , xn as being
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subject to the relations y1 = 0, y2 = 0, . . . , ym = 0. The presentation is determined by
the matrix

U = [uij]m,n ∈ Mm,n(R),

which is called the presentation matrix.
Since every finitely generatedR-modulehas apresentationwhichdetermines it up

to isomorphism, a natural question arises: given a presentation, how can one discover
the structure of the module? We will answer the question in the case of modules over
a Euclidean domain by describing a procedure which, when applied to a presentation
matrix, gives the invariant factors and hence the structure of the module determined
by the presentation.

The key observation is that there three types of matrix operation that can be ap-
plied to a presentation matrix U without changing the isomorphism type of the asso-
ciated moduleM. These are:
(I) Interchange of two rows or columns.
(II) Addition of an R-multiple of one row to another.
(III)Addition of an R-multiple of one column to another.

Clearly interchange of two rows merely changes the order of the relators and of two
columns the order of generators. Adding a multiple of row i to row j produces a new
relator which is a consequence of the relator associated with row j and which also
implies it.

Justification of the column operation (III) requires a little more thought. Suppose
we add c times column i to column j where c ∈ R. This amounts to replacing the gen-
erator xi by a new generator x′i = xi − c ⋅ xj and making the substitution in the relators,
as can be seen from the equation

uri ⋅ x
′
i + (urj + curi) ⋅ xj = uri ⋅ xi + urj ⋅ xj.

For it shows that the new matrix represents a presentation in generators x1, x2, . . . ,
x′i , . . . , xn with relations equivalent to the original ones. The important point to keep
in mind is that while these operations change the presentation, they do not change
the isomorphism type of the corresponding module.

If a matrix V is obtained from a matrix U ∈ Mm,n(R) by means of a finite sequence
of operations of types (I), (II), (III) above, then V is said to be R-equivalent to U, in
symbols

U
R
≡ V .

This is obviously an equivalence relation onmatrices. The critical result needed is the
following.
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(9.2.12). Let R be a Euclidean domain and U an m × n matrix with entries in R. Then U
is R-equivalent to an m × n diagonal matrix

V = diag(d1, d2, . . . , dk ,0, . . . ,0)

where 0 ̸= di ∈ R, k ≥ 0 and d1|d2| ⋅ ⋅ ⋅ |dk .

The point here is that the matrix V in (9.2.12) has d1, d2, . . . , dk on the principal
diagonal and zeroes elsewhere.

Proof of (9.2.12). Let δ : R − {0} → ℕ be the associated function for the Euclidean
domain R and recall that R is a PID by (7.2.1). We can assume that U ̸= 0. To initiate
the procedure move a non-zero entry b1 to the (1, 1) position by using row and column
interchanges. Suppose that b1 does not divide some entry c in row 1 or column 1: let us
say the latter. Using the division algorithm for R, write c = b1q+b2 where q, b2 ∈ R and
δ(b2) < δ(b1). Subtract q times row 1 from the row containing c, the effect of which is
to replace c by b2. Then move b2 up to the (1, 1) position.

If b2 does not divide some entry in row 1 or column 1, repeat the procedure. Contin-
uation of this process yields a sequence of elements b1, b2, . . . , in R such that δ(b1) >
δ(b2) > ⋅ ⋅ ⋅ . Since the δi are non-negative integers, the process must terminate and
when this happens, we will have a matrix R-equivalent to U with an element a1 in the
(1, 1) position which divides every entry in row 1 and column 1. By further row and
column subtractions we can clear out all the entries in row 1 and column 1 except the
(1, 1) entry to obtain a matrix of the form

[
a1 0
0 U1
]

which is R-equivalent toU; here of courseU1 is an (m− 1)× (n− 1)matrix. By induction
onm thematrixU1 isR-equivalent to amatrix diag(a2, a3, . . . , ak ,0 . . . ,0) and therefore

U
R
≡ D = diag(a1, a2, a3, . . . , ak ,0 . . . ,0).

Suppose that a1 does not divide a2. Let d = va1 + wa2 be a gcd of a1 and a2 with
v,w ∈ R. Then, using the operations of types (I), (II), (III), we obtain

[
a1 0
0 a2
]

R
≡ [

a va1 + wa2
0 a2

] = [
a1 d
0 a2
]

R
≡ [

d a1
a2 0
]

R
≡ [

d 0
0 a1a2

d
] .

Note that d divides a1a2
d . Use this routine to replace a1 by d in the diagonal matrix D.

Repeating the procedure for a3, . . . , ak, we get U
R
≡ diag(d1, ā2, . . . , āk ,0, . . . ,0) where

d1 is a gcd, and hence a linear combination, of a1, a2, a3, . . . , ak, and d1 divides each of
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ā2, . . . , āk . By induction we conclude that

U
R
≡ diag(d1, d2, . . . , dk ,0 . . . ,0)

where d2|d3| ⋅ ⋅ ⋅ |dk and d2 is anR-linear combination of ā2, ā3, . . . , āk . Hence d1|d2 since
ā2, ā3, . . . , āk are divisible by d1. This completes the proof.

The diagonal matrix V in (9.2.12) is called the Smith canonical form2 of U . Let us
apply this method to the presentation matrix U for a finitely generated module M =
F/N over a Euclidean domain R where F is a free R-module. Then U

R
≡ V where V =

diag(d1, d2, . . . , dk ,0, . . . ,0), 0 ̸= di ∈ R and d1|d2| ⋅ ⋅ ⋅ |dk . The matrix V is the Smith
canonical form of U; it gives a new presentation ofM which is much simpler in form,
having generators x′1, x

′
2, . . . , x

′
n and relators d1x

′
1, d2x
′
2, . . . , dkx

′
k . From this presentation

we read off that

M R
≃ R/(d1) ⊕ R/(d2) ⊕ ⋅ ⋅ ⋅ ⊕ R/(dk) ⊕ R ⊕ ⋅ ⋅ ⋅ ⊕ R⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

n−k
.

Thus n − k is the number of cyclic summands isomorphic with R, while the non-unit
di’s are the invariant factors.

Example (9.2.2). Let A be the abelian group with generators x, y, z and relations

3x + 4y + 3z = 0, 6x + 4y + 6z = 0, 3x + 8y + 3z = 0.

In this example R = ℤ and the presentation matrix is

U = [[
[

3 4 3
6 4 6
3 8 3

]]

]

.

Following the steps in the algorithm in (9.2.12), we find that

U
ℤ
≡ [[

[

1 0 0
0 12 0
0 0 0

]]

]

= V ,

which is the Smith canonical form of U . Hence A ≃ ℤ1 ⊕ℤ12 ⊕ℤ, i. e.,

A ≃ ℤ12 ⊕ℤ ≃ ℤ3 ⊕ℤ4 ⊕ℤ.

The single invariant factor is 12 and the elementary divisors are 3, 4.

2 Henry John Stephen Smith (1826–1883).
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Thedescription of finite abelian groups affordedby the preceding theory is precise
enough for us to make an exact count of the groups of given order.

(9.2.13). Let n > 1 be an integer and write n = pe11 p
e2
2 ⋅ ⋅ ⋅ p

ek
k where ei > 0 and the pi are

distinct primes. Then the number of isomorphism types of abelian groups of order n is

λ(e1)λ(e2) ⋅ ⋅ ⋅ λ(ek)

where λ(i) is the number of partitions of i.

Proof. First let A be an abelian group of order pe > 1 where p is a prime. By (9.2.8) the
group A is the direct sum of ℓ1 copies of ℤp, ℓ2 copies of ℤp2 , etc, where ℓi ≥ 0 and
e = ℓ1 + 2ℓ2 + 3ℓ3 + ⋅ ⋅ ⋅ . Thus we have a partition of e into ℓ1 1-subsets, ℓ2 2-subsets, etc.
Conversely, every partition of e leads to an abelian group of order pe and different par-
titions yield non-isomorphic groups since the invariant factors are different. Therefore
the number of possible isomorphism types for A is λ(e).

Now letAbe an abelian group of order n = pe11 p
e2
2 ⋅ ⋅ ⋅ p

ek
k ; thenA = Ap1⊕Ap2⊕⋅ ⋅ ⋅⊕Apk

where Ai is the pi-torsion component and |Ai| = p
ei
i . There are λ(ei) possible isomor-

phism types for Api , so the number of isomorphism types for A is λ(e1)λ(e2) ⋅ ⋅ ⋅ λ(ek).

Example (9.2.3). Find all abelian groups of order 600.
Since 600 = 23 ⋅ 3 ⋅ 52, the number of abelian groups of order 600 is λ(3)λ(1)λ(2) =

3×1×2 = 6. The isomorphism types are determined by the partitions of 3 and 2, namely
3 = 1 + 2 = 1 + 1 + 1 and 2 = 1 + 1. Hence the six isomorphism types are:

ℤ8 ⊕ℤ3 ⊕ℤ52 , ℤ8 ⊕ℤ3 ⊕ℤ5 ⊕ℤ5, ℤ2 ⊕ℤ4 ⊕ℤ3 ⊕ℤ52 ,

ℤ2 ⊕ℤ4 ⊕ℤ3 ⊕ℤ5 ⊕ℤ5, ℤ2 ⊕ℤ2 ⊕ℤ2 ⊕ℤ3 ⊕ℤ52 , ℤ2 ⊕ℤ2 ⊕ℤ2 ⊕ℤ3 ⊕ℤ5 ⊕ℤ5.

Notice that ℤ8 ⊕ℤ3 ⊕ℤ52 is the cyclic group of order 600.

Of course the task of counting the non-abelian groups of given finite order ismuch
more formidable.

Exercises (9.2).
(1) Let R be a domain with field of fractions F and R ⊆ F. Regard F as an R-module

via the field operations. Prove that F is torsion-free and F/R is a torsion module.
(2) Let R = ℤ6, the ring of congruence classes modulo 6. Find the torsion elements in

the module RR and conclude that the torsion elements in a module do not always
form a submodule.

(3) Let p1, p2, . . . be the sequence of primes and let ⟨ai⟩ be an additively written group
of order pi. Define A to be the set of all sequences (x1, x2, . . . )where xi ∈ ⟨ai⟩. Make
A into an abelian group by adding components. Thus A is the unrestricted direct
sum of the ℤpi .
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(i) Show that the torsion subgroup T consists of the sequences in which all but
a finite number of components are 0.

(ii) Prove that Ā = A/T has the property Ā = pĀ for all primes p.
(iii) Prove that⋂p pA = 0.
(iv) Deduce from (ii) and (iii) that T is not a direct summand of A.

(4) Find the elementary divisors and invariant factors of the groupℤ4 ⊕ℤ30 ⊕ℤ35.
(5) Show that there are six isomorphism types of abelian groups of order 1350.
(6) LetA be a torsion-free abelian group and defineD = ⋂n=1,2,... nA. Prove that (i)A/D

is torsion-free and (ii) D = nD for all n > 0.
(7) A finitely generated abelian group A is given by a presentation with generators x,

y, z, u and relators x − y − z − u, 3x + y − z + u, 2x + 3y − 2z + t. Find the invariant
factors and hence the structure of A.

(8) Let A be a finite abelian group and denote by νn(A) the number of elements of A
which have order exactly n.
(i) If n = pe11 p

e2
2 ⋅ ⋅ ⋅ p

ek
k with distinct primes pi, show that νn(A) = νpe11 (A)νpe22 (A) ⋅ ⋅ ⋅

νpekk (A).

(ii) Let A be a finite abelian p-group. Define A[pi] = {a ∈ A | pia = 0}. Prove that
νpe (A) = |A[pe]| − |A[pe−1]| for e ≥ 1.

(9) LetA be a finite abelian p-group. Assume thatA is the direct sumof ri cyclic groups
of order pi where i = 1, 2 . . . , ℓ. Prove that |A[pi]| = psi where si = r1 + 2r2 + ⋅ ⋅ ⋅ + (i −
1)ri−1 + i(ri + ri+1 + ⋅ ⋅ ⋅ + rℓ) for 1 ≤ i ≤ ℓ.

(10) Let A and B be finite abelian groups. If νn(A) = νn(B) for all positive integers n,
prove that A ≃ B. [Hint: use Exercises (9.2.8) and (9.2.9).]

9.3 Applications to linear operators

One of the most convincing applications of the theory of modules over a PID is to the
study of linear operators on a finite dimensional vector space. The relationship be-
tween modules and linear operators is not obvious, so some explanation is called for.

Let V be a finite dimensional vector space over a field F with n = dim(V) > 0 and
let α be a fixed linear operator on V . Set R = F[t], the ring of polynomials in t over F,
and recall that R is a PID by (7.2.2). The basic idea is to make V into an R-module by
defining

f ⋅ v = f (α)(v), (f ∈ R, v ∈ V).

The notation here is as follows: if f = a0 + a1t + ⋅ ⋅ ⋅ + amtm ∈ R, then f (α) is the lin-
ear operator a01 + a1α + ⋅ ⋅ ⋅ + amαm. (Here 1 is the identity linear operator on V .) It is
straightforward to check the validity the module axioms for the action specified.
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Next the properties of the R-module V will be investigated. Let v ∈ V ; since
dim(V) = n, the subset

{v, α(v), α2(v), . . . , αn(v)}

must be linearly dependent by (8.2.3). Hence there exist elements a0, a1, . . . , am of F,
not all equal to zero, such thata0v+a1α(v)+⋅ ⋅ ⋅+anαn(v) = 0. Put g = a0+a1t+⋅ ⋅ ⋅+antn ∈
R, noting that g ̸= 0. Then g ⋅ v = g(α)(v) = 0, so V is a torsion R-module. In fact more
is true. Let {v1, v2, . . . , vn} be a basis ofV . Then there exist gi ̸= 0 in R such that gi ⋅vi = 0
for i = 1, 2, . . . , n. Put h = g1g2 ⋅ ⋅ ⋅ gn ̸= 0; then h ⋅ vi = 0 for all i and thus h ⋅ v = 0 for all
v ∈ V , i. e., h(α) = 0. It follows that AnnR(V) ̸= 0.

Since R is a PID, AnnR(V) = (f ) for some f ∈ R and clearly we may choose the
polynomial f to be monic. Thus a polynomial g belongs to AnnR(V) if and only if f
divides g, and consequently f is the uniquemonic polynomial of smallest degree such
that f (α) = 0. These conclusions are summed up in:

(9.3.1). Let α be a linear operator on a finite dimensional vector space V over a field F.
Then there is a unique monic polynomial f in F[t] of smallest degree such that f (α) = 0.
Moreover, g(α) = 0 if and only if f divides g in F[t].

Thepolynomial f is called theminimumpolynomial ofα. Thenext step forward is to
apply the Primary Decomposition Theorem (9.2.3) to the torsion module V . According
to this result there is a direct decomposition

V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vk

where Vi ̸= 0 is the pi-torsion submodule of V and p1, p2, . . . , pk are distinct monic
irreducible elements of R = F[t]. There are only finitely many such Vi since V is finite
dimensional. The restriction of α to Vi is a linear operator αi, which has minimum
polynomial of the form peii . If g ∈ R, then g(α) = 0 if and only if g(αi) = 0, i. e., p

ei
i |g,

for all i. It follows that the minimum polynomial of α is f = pe11 p
e2
2 ⋅ ⋅ ⋅ p

ek
k . Thus we have

proved the following theorem.

(9.3.2). Let α be a linear operator on a finite dimensional vector space V over a field
F, and suppose that the minimum polynomial of α is f = pe11 p

e2
2 ⋅ ⋅ ⋅ p

ek
k where the pi are

distinct monic irreducibles in F[t] and ei > 0. Then V = V1 ⊕V2 ⊕ ⋅ ⋅ ⋅ ⊕Vk where Vi is the
pi-torsion submodule of V. Moreover, p

ei
i is the minimum polynomial of αi = α|Vi

.

The case of an algebraically closed field
Up to this point the field has been arbitrary. However, important simplifications oc-
cur for an algebraically closed field F: for then an irreducible polynomial over F has
degree 1. In particular these simplifications apply to the complex field ℂ by the Fun-
damental Theorem of Algebra – for this see (12.3.6).
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Consider the situation of (9.3.2) when F is algebraically closed and pi = t − ai with
ai ∈ F. The minimum polynomial of α is then

f = (t − a1)
e1 (t − a2)

e2 ⋅ ⋅ ⋅ (t − ak)
ek .

Let V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vk be the primary decomposition of the F[t]-module V , with
Vi the pi-torsion component. Thus αi = α|Vi

has minimum polynomial (t − ai)ei and
(αi − ai1)ei = 0. This means that αi − ai1 is a nilpotent linear operator on Vi, i. e., some
positive power of it equals to zero.

Define two new linear operators δ, ν on V by δ|Vi
= ai1, for i = 1, 2, . . . , k, and

ν = α− δ. Then νi = ν|Vi
= αi − ai1 and hence ν

ei
i = 0, which implies that νe = 0 where e

is the largest of e1, e2, . . . , ek . Thus ν is a nilpotent linear operator on V . Notice that δi,
being multiplication by ai, commutes with νi, from which it follows that δν = νδ.

The important feature of the linear operator δ is that it is diagonalizable, since δ
acts on Vi by multiplication by ai. This leads to the following result.

(9.3.3). Let V be a finite dimensional vector space over an algebraically closed field F
and let α be a linear operator on V. Then there are linear operators δ, ν on V such that
α = δ + ν and δν = νδ, where δ is diagonalizable and ν is nilpotent.

Keep in mind that (9.3.3) can be applied to an n × nmatrix A over F if we take α to
be the linear operator on Fn in which X → AX. The statement then takes the form that
A = D + N and DN = ND where D is a diagonalizable and N a nilpotent matrix.

Example (9.3.1). Let A = [ −7 27
−3 11 ]. The characteristic polynomial of A is (t − 2)2. The

minimumpolynomial is also (t−2)2, either by direct matrixmultiplication or by (9.3.5)
below. Thus k = 1 and V = V1 in the previous notation; hence D = 2I2. Put N = A −D =
[ −9 27
−3 9 ], so that A = D + N and N2 = 0; also note that DN = ND.

Rational canonical form
It is time to apply the full force of the structure theorem for modules over a PID to a
linear operator α on an n-dimensional vector space V over an arbitrary field F. Bear in
mind that V is a torsion module over R = F[t] via the ring action f ⋅ v = f (α)(v). Then
by (9.2.11)

V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vℓ

whereVi = R ⋅vi
R
≃ R/(si) andAnnR(vi) = (si). Here s1, s2, . . . , sℓ are the invariant factors,

which satisfy s1|s2| . . . |sℓ. Recall that these si can be chosen to be monic. Let αi = α|Vi
.

If g ∈ R, then g(α) = 0 if and only if g(αi) = 0, that is, g ∈ (si) for i = 1, 2 . . . , ℓ. The
divisibility property of the si implies that this happens precisely when sℓ divides g.
Consequently, the final invariant factor sℓ is the minimum polynomial of α.
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Next we will show that dimF(R/(si)) = deg(si). Write

si = t
ni + aini−1t

ni−1 + ⋅ ⋅ ⋅ + ai1t + ai0, (aij ∈ R).

If g ∈ R, then g = qsi + r where q, r ∈ R and ri = 0 or deg(ri) < deg(si) = ni. Then
g + (si) = ri + (si), so that dimF(R/(si)) ≤ ni. Suppose that 1+ (si), t + (si), . . . , tni−1 + (si)
are linearly dependent and b01 + b1t + ⋅ ⋅ ⋅ + bni−1t

ni−1 + (si) = 0R/(si) where not all the
bi ∈ F are zero. Let g = b0 + b1t + ⋅ ⋅ ⋅ + bni−1t

ni−1; thus g ̸= 0. Since g + (si) = 0R/(si),
we have g ∈ (si) and si divides g. But deg(g) < deg(si), which can only mean that
g = 0. By this contradiction 1 + (si), t + (si), . . . , tni−1 + (si) are linearly independent
and these elements form an F-basis of R/(si). Hence dim(Vi) = dim(R/(si)) = ni and
dim(V) = ∑ℓi=1 ni.

Since Vi
R
≃ R/(si) via the assignment r ⋅ vi → r + (si), the subspace Vi has the

basis {vi, α(vi), α2(vi), . . . , αni−1(vi)}. Let us identify the matrix which represents αi with
respect to this ordered basis. Now α(αj(vi)) = αj+1(vi) if 0 ≤ j < ni − 1 and

α(αni−1(vi)) = α
ni (vi) = −ai0vi − ai1α(vi) − ⋅ ⋅ ⋅ − aini−1α

ni−1(vi)

since si(αi) = 0. Therefore αi is represented by the ni × ni matrix

Ri =
[[[[[[

[

0 0 . . . 0 −ai0
1 0 . . . 0 −ai1
0 1 . . . 0 −ai2
. . . . . . .
0 0 . . . 1 −aini−1

]]]]]]

]

.

This is the companion matrix of the polynomial si – see Exercise (8.4.6). Note that si is
the minimum polynomial of αi and hence of Ri.

Now form theunionof the chosenbases of theVi to obtain a basis ofV with respect
to which α is represented by the block matrix

C =
[[[[

[

R1 0 . . . 0
0 R2 . . . 0
. . . . . .
0 0 . . . Rℓ

]]]]

]

.

This is called the rational canonical form of α.
Recall that the characteristic polynomial of α is det(tIn − C). Now

det(tIn − C) =



tIn1 − R1 0 . . . 0
0 tIn2 − R2 . . . 0
. . . . . .
0 0 . . . tInℓ − Rℓ



,
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which is equal to the product det(tIn1 − R1)det(tIn2 − R2) ⋅ ⋅ ⋅det(Inℓ − Rℓ). Also

det(tIni − Ri) =



t 0 0 . . . 0 ai0
−1 t 0 . . . 0 ai1
0 −1 t . . . 0 ai2
. . . . . . . .
0 0 0 . . . −1 t + aini



,

which by direct determinantal expansion equals ai0 + ai1t + ⋅ ⋅ ⋅ + aini−1t
ni−1 + tni = si.

Therefore det(tIn − C) = s1s2 ⋅ ⋅ ⋅ sℓ.
These conclusions are summed up in the following fundamental result.

(9.3.4) (Rational canonical form). Let α be a linear operator on a finite dimensional vec-
tor space V over an arbitrary field. Then the following statements hold.
(i) α can be represented with respect to a suitable basis of V by a matrix in rational

canonical form.
(ii) The final invariant factor of α is the minimum polynomial.
(iii) The product of the invariant factors of α equals the characteristic polynomial.

Corollary (9.3.5) (The Cayley-Hamilton Theorem). Theminimumpolynomial of a linear
operator divides the characteristic polynomial and these polynomials have the same ir-
reducible factors.

This follows directly from (9.3.4). The preceding very powerful results have been
stated for a linear operator. Of course, they apply equally to an n × n matrix A over a
field F. Thus by (9.3.4) every square matrix is similar to a matrix in rational canonical
form and also the Cayley-Hamilton Theorem is valid.

Nilpotent linear operators
Rational canonical form is particularly effective when applied to a nilpotent linear
operator α on an n-dimensional vector space V over an arbitrary field F. Since αk = 0
for some k > 0, the minimum polynomial must divide tk and thus has the form tm

where m ≤ k. The invariant factors satisfy s1|s2| ⋅ ⋅ ⋅ |sℓ = tm by (9.3.4). Hence si = tni
where n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nℓ = m. The characteristic polynomial of α equals s1s2 ⋅ ⋅ ⋅ sℓ = tn

and thus n = ∑ℓi=1 ni.
The companion matrix of si is the ni × ni matrix

Ri =
[[[[[[

[

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . .
0 0 . . . 1 0

]]]]]]

]
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and the rational canonical form of α is the block matrix formed by R1,R2, . . . ,Rℓ. This
is a triangular matrix with zeros on and above the principal diagonal, a type of matrix
called lower zero triangular. Applying this in matrix form, we deduce:

(9.3.6). A nilpotent matrix is similar to a lower zero triangular matrix.

Rational canonical form allows us to make an exact count of the similarity types
of nilpotent n × nmatrix.

(9.3.7). The number of similarity types of nilpotent n × n matrices over any field equals
λ(n) where λ is the partition function.

Proof. Let A be an n × n nilpotent matrix. Letmi denote the number of rational blocks
with exactly i 1’s on the subdiagonal. Thus mi ≥ 0 and 0 ≤ i ≤ n − 1. Then n =
∑n−1i=0 (i+ 1)mi, so that we have a partition of n. Conversely, each partition of n allows us
to assemble a nilpotentmatrix, the rational blocks coming from the subsets in the par-
tition. Moreover, different partitions give rise to non-similar matrices by uniqueness
of the invariant factors.

Example (9.3.2). Since λ(3) = 3, there are three similarity types of nilpotent 3 × 3 ma-
trices, corresponding to the partitions of 3, which are 1 + 1 + 1, 1 + 2, 3. The respective
types of matrix are

[[

[

0 0 0
0 0 0
0 0 0

]]

]

, [[

[

0 0 0
0 0 0
0 1 0

]]

]

, [[

[

0 0 0
1 0 0
0 1 0

]]

]

.

Jordan canonical form
Let α be a linear operator on an n-dimensional vector space V over a field F and let f
denote the minimum polynomial of α. Assume that f splits into linear factors over F,
which by the Cayley-Hamilton Theorem amounts to requiring all eigenvalues of α to
be in F, which will certainly be true if F is algebraically closed.

In this case there is a simpler canonical form for α called Jordan normal form.Write

f = (t − a1)
e1 (t − a2)

e2 ⋅ ⋅ ⋅ (t − ak)
ek

where ei > 0 and the ai are distinct elements of the field F. By (9.3.5) the roots of f are
the roots of the characteristic polynomial, so a1, a2, . . . , ak are the distinct eigenvalues
of α. By the Primary Decomposition Theorem V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vk where Vi is the
pi = (t − ai)-torsion submodule of V . Write ni = dim(Vi), so that n = ∑ki=1 ni. Then
αi = α|Vi

has (t − ai)ei as its minimum polynomial by (9.3.2); thus (αi − ai1ni )
ei = 0

and αi − ai1ni is a nilpotent linear operator on Vi. By the discussion of nilpotent linear
operators above, αi − ai1ni is represented with respect to a suitable basis of Vi by a
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matrix consisting of ℓij blocks of size nij with the form

[[[[[[

[

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . .
0 0 . . . 1 0

]]]]]]

]

for j = 1, 2, . . . , ei. Here ni1 ≤ ni2 ≤ ⋅ ⋅ ⋅ ≤ niei and∑
ei
j=1 ℓijnij = dim(Vi) = ni. Consequently,

αi is represented by a matrix consisting of ℓij blocks Jij of size nij with the form

Jij =
[[[[[[

[

ai 0 . . . 0 0 0
1 ai 0 0 . . . 0
0 1 ai 0 . . . 0
. . . . . . . .
0 0 . . . 0 1 ai

]]]]]]

]

.

Such matrices are called Jordan blocks and they are unique up to order since they are
determined by the elementary divisors of α. Therefore we can state:

(9.3.8) (Jordan canonical form). Let α be a linear operator on a finite dimensional vec-
tor space over a field F. Assume that the minimum polynomial of α splits into linear
factors over F. Then α can be represented with respect to a suitable basis by a matrix
with Jordan blocks on the diagonal which are unique up to order.

The matrix form of (9.3.8) asserts that an n × nmatrix A whose minimum polyno-
mial is a product of linear factors over F is similar to a matrix with Jordan blocks on
the diagonal. Therefore, in particular, A is similar to a lower triangular matrix over F,
i. e., with zeros above the diagonal – cf. (8.4.8).

Example (9.3.3). Find all similarity types of complex 3 × 3 matrices A which satisfy
the equation A(A − 2I)2 = 0.

From the information furnished the minimum polynomial f of A divides t(t − 2)2.
Hence there are five possibilities for f , which are listed below with the corresponding
Jordan canonical form J of A:

(i) f = t: in this case A = J = 0.
(ii) f = t − 2: J = 2I3.

(iii) f = (t − 2)2: J = [[
[

2 0 0
1 2 0
0 0 2

]]

]

.

(iv) f = t(t − 2): J = [[
[

0 0 0
0 2 0
0 0 2

]]

]

or [[
[

0 0 0
0 0 0
0 0 2

]]

]

.
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(v) f = t(t − 2)2: J = [[
[

0 0 0
0 2 0
0 1 2

]]

]

.

Hence there are six types of matrix up to similarity.

Computing the invariant factors
We end the chapter by describing an algorithm for calculating the invariant factors of
a linear operator or matrix: it will be stated for matrices. The basis is the method for
calculating Smith canonical form developed in (9.2.12).

(9.3.9). Let A be an n × n matrix over a field F. Then the Smith canonical form of the
matrix tI − A is diag(1, 1, . . . , 1, s1, s2, . . . , sℓ) where s1, s2, . . . , sℓ are the invariant factors
of A.

Proof. Let S denote the rational canonical form of A. Then S = XAX−1 for some non-
singular matrix X over F. It follows that S and A have the same invariant factors since
they represent the same linear operator on Fn, but with respect to different bases. Also
tI − S = X(tI − S)X−1, so by the same reasoning tI − S and tI − A have the same Smith
canonical form. Therefore we may assume that A = S, i. e., A is in rational canonical
form.

Let R1,R2, . . . ,Rℓ be the blocks in the rational canonical form of A corresponding
to the invariant factors s1|s2| . . . |sℓ. It is enough to prove that the Smith canonical form
of tI −Ri is diag(1, 1, . . . , 1, si); for then tI −Awill have diag(1, 1, . . . , 1, s1, s2, . . . , sℓ) as its
Smith canonical form. Let si = ai0 + ai1t + ⋅ ⋅ ⋅ + aini−1t

ni−1 + tni ; thus

Ri =
[[[[[[

[

0 0 . . . 0 −ai0
1 0 . . . 0 −ai1
0 1 . . . 0 −ai2
. . . . . . .
0 0 . . . 1 −aini−1

]]]]]]

]

.

Since F[t] is a Euclidean domain, we can transform the matrix

tI − Ri =
[[[[[[

[

t 0 0 . . . 0 ai0
−1 t 0 . . . 0 ai1
0 −1 t . . . 0 ai2
. . . . . . . .
0 0 . . . . −1 t + aini−1

]]]]]]

]

into Smith canonical form using the method of (9.2.12). This is readily seen to be
diag(1, 1, . . . , 1, si), as the reader should verify, at least for ni ≤ 3. (Note the absence of
zeros since V is a torsion module.) The required result now follows.
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Example (9.3.4). Consider the rational matrix

A = [[
[

0 4 1
−1 −4 2
0 0 −2

]]

]

.

Apply suitable row and column operations to put the matrix

tI − A = [[
[

t −4 −1
1 t + 4 −2
0 0 t + 2

]]

]

into Smith canonical form

[[

[

1 0 0
0 1 0
0 0 (t + 2)3

]]

]

.

Hence there is just one invariant factor s1 = (t + 2)3. The rational canonical form of A
can now be written down immediately as

[[

[

0 0 −8
1 0 −12
0 1 −6

]]

]

.

The minimum polynomial is (t + 2)3, so the Jordan canonical form is

[[

[

−2 0 0
1 −2 0
0 1 −2

]]

]

.

Exercises (9.3).
(1) Find all similarity types of 3 × 3 rational matrices A which satisfy the equation

A4 = A5.
(2) Find the invariant factors and rational canonical form of the rational matrix

[[

[

2 3 1
1 2 1
0 0 −4

]]

]

.

(3) Find the Jordan canonical form and minimum polynomial of the rational matrix

[[

[

3 1 0
−1 1 0
0 0 2

]]

]

.
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(4) LetA be an n×nmatrix overℚ and let p be a prime. Assume thatAp = I. Prove that
the number of similarity types of A is [ np−1 ] + 1. [Hint: recall from Example (7.4.6)
that the polynomial 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1 is irreducible overℚ.]

(5) Prove that a squarematrix over a field is similar to its transpose. (Youmay assume
the field contains all roots of the minimum polynomial of A).

(6) Prove that every square matrix is similar to an upper triangular matrix.
(7) Let A be a non-singular n × n matrix over an algebraically closed field F and let

J1, J2, . . . , Jk be the blocks in the Jordan canonical form of A. Prove that A has fi-
nite order if and only if each Ji has finite order and in that case the order of A is
lcm{|J1|, |J2|, . . . , |Jk |}.

(8) Let J be an n×n Jordan block over a field F with diagonal elements equal to a ̸= 0.
If n > 1, prove that J has finite order if and only if a has finite order in F∗ and
p = char(F) ̸= 0, and that in this event |J| divides |a| ⋅ pn−1.

(9) Let A be a non-singular n × n matrix over an algebraically closed field of charac-
teristic 0. Let a1, a2, . . . , an be the eigenvalues of A. Prove that A has finite order if
and only if each ai has finite order and then |A| = lcm{|a1|, |a2|, . . . , |aℓ|}.

(10) Find the Jordan canonical form of the matrix

A = [[
[

0 0 1
1 0 4
0 1 3

]]

]

over GF(7), the field of seven elements. Then use it to prove that |A| = 7.
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10 The Structure of Groups

In this chapter wewill pursue the study of groups at a deeper level. A commonmethod
of investigation in algebra is to break up a complex structure into simpler substruc-
tures. The hope is that by repeated application of this procedure one will eventually
arrive at substructures that are easy to understand. It may then be possible in some
sense to synthesize these substructures to reconstruct the original structure. While it
is rare for the procedure just described to be brought to such a perfect state of comple-
tion, the analytic-synthetic method can yield valuable information and suggest new
directions.Wewill consider instances where this procedure can be employed in group
theory.

10.1 The Jordan–Hölder Theorem

A basic concept in group theory is that of a finite series in a group G. By this is meant
a finite chain of subgroups 𝒮 = {Gi | i = 0, 1, . . . , n} leading from the identity subgroup
to G, with each term normal in its successor, that is, a chain of the form

1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gn = G.

The Gi are the terms of the series and the quotient groups Gi+1/Gi are the factors. The
length of the series is defined to be the number of non-trivial factors. Keep inmind that
Gi may not be normal in G since normality is not a transitive relation – see Exercise
(4.2.6).

A subgroup H which appears in a series in a group G is called a subnormal sub-
group; clearly this is equivalent to there being a chain of normality relations leading
from H to G,

H = H0 ⊲ H1 ⊲ ⋅ ⋅ ⋅ ⊲ Hm = G.

A partial order on the set of series in a group G is defined as follows. A series 𝒮 is
called a refinement of a series 𝒯 if every term of 𝒯 is also a term of 𝒮. If 𝒮 has at least
one term that is not a term of 𝒯 , then 𝒮 is a proper refinement of 𝒯 . It is easy to see that
the relation of being a refinement is a partial order on the set of all series in G.

Example (10.1.1). The symmetric group S4 has the series 1⊲V ⊲A4 ⊲ S4 where V is the
Klein 4-group. This is a refinement of the series 1 ⊲ A4 ⊲ S4.

Isomorphic series
Two series𝒮 and 𝒯 in a groupG are called isomorphic if there is a bijection from the set
of non-trivial factors of 𝒮 to the set of non-trivial factors of 𝒯 such that corresponding

https://doi.org/10.1515/9783110691160-010
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10.1 The Jordan–Hölder Theorem | 221

factors are isomorphic groups. Isomorphic series must have the same length, but the
isomorphic factors may occur at different points in the series.

Example (10.1.2). Inℤ6 the series 0⊲⟨[2]⟩⊲ℤ6 and 0⊲⟨[3]⟩⊲ℤ6 are isomorphic since
⟨[2]⟩ ≃ ℤ6/⟨[3]⟩ and ⟨[3]⟩ ≃ ℤ6/⟨[2]⟩.

The foundation for the theory of series in groups is the following technical result.
It can be viewed as a generalization of the Second Isomorphism Theorem.

(10.1.1) (Zassenhaus’s1 Lemma). Let A1, A2, B1, B2 be subgroups of a group such that
A1 ⊲A2 and B1 ⊲B2. Define Dij = Ai ∩Bj, (i, j = 1, 2). Then A1D21 ⊲A1D22 and B1D12 ⊲B1D22.
Furthermore

A1D22/A1D21 ≃ B1D22/B1D12.

Proof. The Hasse diagram below displays all the relevant subgroups.

A2 ∘ B2 ∘

A1D22 ∘ B1D22 ∘

A1D21 ∘ D22 ∘ B1D12 ∘

A1 ∘ D12 D21∘ B1 ∘

D12 ∘ D21 ∘

D11 ∘

From B1 ⊲ B2 we obtain D21 ⊲ D22 by intersecting with A2. Since A1 ⊲ A2, it follows
that A1D21 ⊲ A1D22 on applying the canonical homomorphism A2 → A2/A1. Similarly
B1D12 ⊲ B1D22. Now we invoke (4.3.5) with H = D22 and N = A1D21 to give HN/N ≃
H/H∩N . ButHN = A1D22 andH∩N = D22∩(A1D21) = D12D21 by (4.1.11). The conclusion is
that A1D22/A1D21 ≃ D22/D12D21. By the same argument B1D22/B1D12 ≃ D22/D12D21, from
which the result follows.

1 Hans Zassenhaus (1912–1991).
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Themain use of Zassenhaus’s Lemma is to prove a theorem about refinements: its
statement is remarkably simple.

(10.1.2) (The Schreier2 Refinement Theorem). Any two series in a group have isomor-
phic refinements.

Proof. Let 1 = H0 ⊲ H1 ⊲ ⋅ ⋅ ⋅ ⊲ Hl = G and 1 = K0 ⊲ K1 ⊲ ⋅ ⋅ ⋅ ⊲ Km = G be two series
in a group G. Define subgroups Hij = Hi(Hi+1 ∩ Kj) for 0 ≤ i ≤ l − 1, 0 ≤ j ≤ m and
Kij = Kj(Hi ∩ Kj+1) for 0 ≤ i ≤ l, 0 ≤ j ≤ m − 1. Apply (10.1.1) with A1 = Hi, A2 = Hi+1,
B1 = Kj and B2 = Kj+1; the conclusion is that Hij ⊲ Hij+1 and Kij ⊲ Ki+1j, and also that
Hij+1/Hij ≃ Ki+1j/Kij. Therefore the series {Hij | i = 0, 1, . . . , l − 1, j = 0, 1, . . .m} and
{Kij | i = 0, 1, . . . , l, j = 0, 1, . . . ,m − 1} are isomorphic refinements of {Hi | i = 0, 1, . . . , l}
and {Kj | j = 0, 1, . . . ,m} respectively.

Composition series
A series which has no proper refinements is called a composition series and its factors
are composition factors. If G is a finite group, we can start with any series, for example
1⊲G, and keep refining it until a composition series is reached. Thus every finite group
has a composition series. However, not every infinite group has a composition series,
as is shown by (10.1.6) below.

A composition series can be recognized from the nature of its factors.

(10.1.3). A series is a composition series if and only if all its factors are simple groups.

Proof. Let X/Y be a factor of a series in a group G. If X/Y is not simple, there is a
subgroupW such thatY < W < X andW⊲X; here the Correspondence Theorem (4.2.2)
has been invoked. AdjoiningW to the given series, we obtain a new series which is a
proper refinement, with the terms Y ⊲W ⊲ X replacing Y ⊲ X.

Conversely, if a series in G has a proper refinement, there must be two consecu-
tive terms Y ⊲ X of the original series with additional terms of the refined series be-
tween them. Hence there is a subgroupW in the refined series such that Y < W < X
andW ⊲ X. But thenW/Y is a proper non-trivial subgroup of X/Y , so the latter cannot
be simple. Hence the result is proved.

The main result about composition series is a celebrated theorem associated with
the names of two prominent 19th Century algebraists, Camille Jordan (1838–1922) and
Otto Hölder (1859–1937).

(10.1.4) (The Jordan–Hölder Theorem). Let 𝒮 be a composition series in a group G and
suppose that 𝒯 is any series in G. Then 𝒯 has a refinement which is isomorphic with 𝒮.

2 Otto Schreier (1901–1929).
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The most important case is when 𝒯 itself is a composition series and the conclu-
sion is that 𝒯 is isomorphic with 𝒮. Thus we obtain:

Corollary (10.1.5). Any two composition series in a group are isomorphic.

Proof of (10.1.4). By the Refinement Theorem (10.1.2) the series 𝒮 and 𝒯 have isomor-
phic refinements. But 𝒮 is a composition series, so it is isomorphic with a refinement
of 𝒯 .

Example (10.1.3). Consider the symmetric group S4. It has a series

1 ⊲ C ⊲ V ⊲ A4 ⊲ S4

where |C| = 2 and V is the Klein 4-group. Now C, V/C and S4/A4 all have order 2,
while A4/V has order 3, so all factors of the series are simple. By (10.1.3) the series is a
composition series with composition factors ℤ2, ℤ2, ℤ3, ℤ2.

The next result demonstrates that not every group has a composition series.

(10.1.6). An abelian group A has a composition series if and only if it is finite.

Proof. Only necessity is in doubt, so assume thatA has a composition series. Each fac-
tor of the series is simple and abelian, and thus has no proper non-trivial subgroups.
By (4.1.9) the factors have prime orders and therefore A is finite.

Example (10.1.4) (Composition series in ℤn). Let n be an integer greater than 1. The
group ℤn has a composition series with each factor of prime order. Since the product
of the orders of the composition factors is equal ton, the grouporder, it follows thatn is
a product of primes, which is the first part of the Fundamental Theorem of Arithmetic.
In fact we can also obtain the uniqueness part.

Suppose that n = p1p2 ⋅ ⋅ ⋅ pk is an expression for n as a product of primes. Define
Hi to be the subgroup of ℤn generated by the congruence class [pi+1pi+2 ⋅ ⋅ ⋅ pk] where
0 ≤ i < k and let Hk = ℤn. Then

0 = H0 ⊲ H1 ⊲ ⋅ ⋅ ⋅ ⊲ Hk−1 ⊲ Hk = ℤn

is a series inℤn. Now clearly |Hi| = p1p2 ⋅ ⋅ ⋅ pi and hence |Hi+1/Hi| = pi+1. Thus we have
constructed a composition series in ℤn with factors of orders p1, p2, . . . , pk .

If n = q1q2 ⋅ ⋅ ⋅ ql is another expression for n as product of primes, there is a corre-
sponding composition serieswith factors of orders q1, q2, . . . , ql. By the Jordan–Hölder
Theorem these composition series are isomorphic. Consequently, k = ℓ and the qj’s
must be the pi’s in some order. Thus we have recovered the Fundamental Theorem of
Arithmetic from the Jordan–Hölder Theorem.
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Some simple groups
The investigation so far shows that in a sense a finite group decomposes into a number
of simple groups, namely its composition factors. The only simple groupswe currently
know are the groups of prime order and the alternating group A5 – see (5.3.10). It is
definitely time to expand this list, which we do by proving:

(10.1.7). The alternating group An is simple if and only if n ̸= 1, 2 or 4.

The proof uses the following property of 3-cycles.

(10.1.8). If n ≥ 3, the alternating group An is generated by 3-cycles.

Proof. First of all note that 3-cycles are even and hence belong to An. Next each ele-
ment of An is the product of an even number of transpositions by (3.1.4). Finally, note
the equations (ac)(ab) = (abc) and (ab)(cd) = (adb)(adc), where a, b, c, d are all
different; these demonstrate that every element of An is a product of 3-cycles.

Proof of (10.1.7). In the first place A4 has a normal subgroup of order 4, so it cannot be
simple. Also A1 and A2 have order 1, so these are also excluded. However, A3 is simple
because its order is 3. Thuswe can assume that n ≥ 5 and aim to show thatAn is simple.
If this is false, there is a proper, non-trivial normal subgroupN . The proof analyzes the
possible forms of elements of N .

Assume first that N contains a 3-cycle (abc). If (a′b′c′) is another 3-cycle and π
in Sn sends a, b, c to a′, b′, c′ respectively, then π(abc)π−1 = (a′b′c′). If π is even, it
follows that (a′b′c′) ∈ N . If, on the other hand, π is odd, it can be replaced by the even
permutation π ∘ (ef ) where e, f are different from a, b, c – notice that this uses n ≥ 5.
We will still have π(abc)π−1 = (a′b′c′) since (ef )(abc)(ef ) = (abc). Consequently N
contains all 3-cycles and by (10.1.8) N = An, a contradiction. Hence N cannot contain
a 3-cycle.

Assume next thatN contains a permutation π whose disjoint cycle decomposition
involves a cycle of length at least 4, say

π = (a1a2a3a4 ⋅ ⋅ ⋅) ⋅ ⋅ ⋅

where the final dots indicate the possible presence of further disjoint cycles. Now N
also contains the conjugate of π

π′ = (a1a2a3)π(a1a2a3)
−1 = (a2a3a1a4 ⋅ ⋅ ⋅) ⋅ ⋅ ⋅ .

Therefore N contains π′π−1 = (a1a2a4): here the point to note is that the other cycles
cancel. Since this conclusion is untenable, elements in N must have disjoint cycle de-
compositions involving cycles of length atmost 3. Furthermore, such elements cannot
involve just one 3-cycle, otherwise by squaring we would obtain a 3-cycle in N .
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Assume next thatN contains a permutationwith at least two disjoint 3-cycles, say
π = (abc)(a′b′c′) ⋅ ⋅ ⋅ . Then N contains the conjugate

π′ = (a′b′c)π(a′b′c)−1 = (aba′)(cc′b′) ⋅ ⋅ ⋅ ,

and hence it contains ππ′ = (aca′bb′) ⋅ ⋅ ⋅ , which has been seen to be impossible.
Therefore each non-trivial element of N must be the product of an even number of
disjoint transpositions.

If π = (ab)(a′b′) ∈ N, then N contains π′ = (acb)π(acb)−1 = (ac)(a′b′) for any c
unaffected by π. But then N will contain ππ′ = (acb), which is false. Consequently, if
1 ̸= π ∈ N, then π = (a1b1)(a2b2)(a3b3)(a4b4) ⋅ ⋅ ⋅ , with at least four transpositions. It
follows that N also contains

π′ = (a3b2)(a2b1)π(a2b1)(a3b2) = (a1a2)(a3b1)(b2b3)(a4b4) ⋅ ⋅ ⋅

and hence N contains ππ′ = (a1b2a3)(a2b1b3), a final contradiction.

As a consequence of (10.1.8) there are infinitely many simple alternating groups.
The simplicity of An will now be used to determine the composition series of Sn.

(10.1.9). If n = 3 or n ≥ 5, then 1 ⊲ An ⊲ Sn is the unique composition series of Sn.

Proof. In thefirst place this is a composition series sinceAn and Sn/An ≃ ℤ2 are simple.
Suppose that N is a non-trivial, proper normal subgroup of Sn. We will show that N =
An, which will settle the matter. First note that N ∩ An ⊲ An, so that either N ∩ An = 1
or An ≤ N since An is simple. Now |Sn : An| = 2, so if An ≤ N, then N = An. Suppose
that N ∩ An = 1. Then NAn = Sn and |N | = |NAn/An| = |Sn/An| = 2. Thus N contains
a single non-identity element π, (necessarily an odd permutation). Since N ⊲ Sn, the
permutation π belongs to the center of Sn; however Z(Sn) = 1 by Exercise (4.2.10), so a
final contradiction is reached.

Projective linear groups
We mention in passing another infinite family of finite simple groups. Let F be any
field. It is not difficult to prove by direct matrix calculations that the center of the gen-
eral linear group GLn(F) is just the subgroup of all scalar matrices fIn where f ∈ F, (cf.
Exercise (4.2.12)). The projective general linear group of degree n over F is defined to be

PGLn(F) = GLn(F)/Z(GLn(F)).

Recall that SLn(F) is the special linear group consisting of all matrices in GLn(F) with
determinant equal to 1. The center of SLn(F) can be shown to be Z(GLn(F)) ∩ SLn(F).
Therefore by (4.3.5)

SLn(F)Z(GLn(F))/Z(GLn(F)) ≃ SLn(F)/Z(SLn(F)).
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The latter is called the projective special linear group

PSLn(F).

The projective special linear groups are usually simple, as the following result shows.

(10.1.10). Let F be a field and let n > 1. Then PSLn(F) is simple if and only if n ≥ 3 or
n = 2 and F has more than three elements.

This result can be proved by direct, if tedious, matrix calculations – see for exam-
ple [15]. If F is a finite field, its order is a prime power q by (8.2.17). Moreover, by (11.3.5)
below, there is up to isomorphism just one field of order q. If F is a field of order q, it
is better notation to write

GLn(q), PGLn(q), PSLn(q)

instead of GLn(F), PGLn(F), PSLn(F).
It is not hard to compute the orders of these groups. In the first place, |Z(GLn(F))| =

|F∗| = q − 1, where F∗ = U(F) = F − 0, and also |Z(SLn(F))| = gcd{n, q − 1}. For the last
statement we need to know that F∗ is cyclic: for a proof see (11.3.6) below. The orders
of the projective groups can now be read off. A simple count of the non-singular n × n
matrices over F reveals that

GLn(q)
 = (q

n − 1)(qn − q) ⋅ ⋅ ⋅ (qn − qn−1),

while |SLn(q)| = |GLn(q)|/(q−1). Thus we have formulas for the orders of the projective
groups.

(10.1.11).
(i) |PGLn(q)| = |GLn(q)|/(q − 1);
(ii) |PSLn(q)| = |SLn(q)|/ gcd{n, q − 1}.

For example, PSL2(5) is a simple group of order 60. In fact there is only one simple
group of this order – see Exercise (10.2.18) – so PSL2(5) must be isomorphic with A5.
But PSL2(7) of order 168 and PSL2(8) of order 504 are simple groups that are not of
alternating type.

Projective groups and projective space
We indicate briefly how the projective groups arise in geometry. Let V be an (n + 1)-
dimensional vector space over a field F and letV∗ denote the set of all non-zero vectors
in V . An equivalence relation ∼ on V∗ is introduced by the following rule: u ∼ v if and
only if u = fv for some f ̸= 0 in F. Let [v] be the equivalence class of the vector v, so
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this is just the set of non-zero multiples of v. The set

Ṽ = {[v] | v ∈ V∗}

is called n-dimensional projective space over F.
Next let α be a bijective linear operator on V . Then there is an induced mapping

α̃ : Ṽ → Ṽ defined by the rule

α̃([v]) = [α(v)].

Here α̃ is called a collineation on Ṽ . It is not hard to see that the collineations on Ṽ
form a group PGL(Ṽ) with respect to functional composition.

It is also straightforward to verify that the assignment α → α̃ gives rise to a sur-
jective group homomorphism from GL(V), the group of invertible linear operators on
V , to PGL(Ṽ), with kernel equal to the subgroup of all scalar linear operators. There-
fore PGL(Ṽ) ≃ PGLn(F), while PSLn(F) corresponds to the subgroup of collineations
arising from matrices with determinant equal to 1.

The classification of finite simple groups
The projective special linear groups form one of a number of infinite families of finite
simple groups known collectively as the simple groups of Lie type. They arise as groups
of automorphisms of simple Lie algebras. In addition to the alternating groups and the
groups of Lie type, there are 26 isolated simple groups, the so-called sporadic simple
groups. The smallest of these, theMathieu3 groupM11, has order 7920,while the largest
one, the so-calledMonster, has order

246 ⋅ 320 ⋅ 59 ⋅ 76 ⋅ 112 ⋅ 133 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ⋅ 59 ⋅ 71,

or approximately 8.08 × 1053.
It is nowwidely accepted that the alternating groups, the simple groups of Lie type

and the sporadic simple groups account for all the finite non-abelian simple groups.
While a complete proof of this result has yet to appear, it is the subject of a multi-
volume work currently in preparation. The classification of finite simple groups is a
synthesis of thework ofmanymathematicians and is by any standard one of the great-
est scientific achievements of all time.

To conclude this section, consider how far we have come in trying to understand
the structure of finite groups. If the aim is to construct all finite groups, the Jordan–
Hölder Theorem shows that two steps are necessary:
(i) find all finite simple groups;

3 Émile Léonard Mathieu (1835–1890).
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(ii) construct all possible group extensions of a given finite groupN by a finite simple
group S.

In step (ii) we have to construct all groups G with a normal subgroup M such that
M ≃ N and G/M ≃ S.

Let us accept that step (i) has been accomplished. A formal description of the ex-
tensions arising in (ii) is possible, but the general problemof decidingwhen two of the
constructed groups are isomorphic is intractable. Thus the practicality of the scheme
is questionable. However, this does not mean that the enterprize was not worthwhile
since a vast amount of knowledge about finite groups has been accumulated during
the course of the program.

Exercises (10.1).
(1) Show that isomorphic groups have the same composition factors.
(2) Find two non-isomorphic groups with the same composition factors.
(3) Show that S3 has a unique composition series, but S4 has exactly three composi-

tion series.
(4) Let G be a finite group and let N ⊲G. How are the composition factors of G related

to those of N and G/N?
(5) Suppose that G is a group generated by normal subgroups N1, N2, . . . , Nk each

of which is simple. Prove that G is the direct product of certain of the Ni. [Hint:
Choose rmaximal subject to the existence of normal subgroups Ni1 , . . . , Nir which
generate their direct product. Then show that the direct product equals G.]

(6) Let G be as in the previous exercise. If N ⊲ G, prove that N is a direct factor of G.
[Hint: write G = N1 × N2 × ⋅ ⋅ ⋅ × Ns. Choose r maximal subject to N, Ni1 , . . . , Nir
generating their direct product; then prove that this direct product equals G.]

(7) Let G be a group with a series in which each factor is either infinite cyclic or finite.
Prove that anyother series inG of this typehas the samenumber of infinite factors,
but not necessarily the same number of finite ones. [Hint: use (10.1.2).]

(8) Suppose that G is a group with a composition series. Prove that G satisfies the
ascending and descending chain conditions for subnormal subgroups, i. e., there
cannot exist an infinite ascending chainH1 < H2 < H3 < ⋅ ⋅ ⋅ or an infinite descend-
ing chain H1 > H2 > H3 > ⋅ ⋅ ⋅ where the Hi are subnormal subgroups of G. (For
more on chain conditions see Exercise (3.3.10).)

(9) Prove that a group G which satisfies both the ascending and descending chain
conditions on subnormal subgroups has a composition series. [Hint: start by
choosing a minimal non-trivial subnormal subgroup of G.]

(10) Let Dn denote the subgroup of Sn generated by all the derangements where n > 1.
Prove that Dn = Sn if n ̸= 3, but D3 = A3. Conclude that if n ̸= 3, every permutation
is a product of derangements. [Hint: first prove that Dn ⊲ Sn and that if n ≠ 3, odd
derangements exist. Deal first with the case n = 4. Then note that if n > 4, then
Dn = Sn by (10.1.9).]
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10.2 Solvable and nilpotent groups

In this sectionwewill discuss certain types of groupwhich arewide generalizations of
abelian groups, but which retain vestiges of commutativity. The basic concept is that
of a solvable group, which is defined to be a group with a series all of whose factors
are abelian. The terminology derives from the classical problem of solving algebraic
equations by radicals, which is discussed in detail in Section 12.4. The length of a
shortest series with abelian factors is called the derived length of the solvable group.
Thus abelian groups are the solvable groups with derived length at most 1. Solvable
group with derived length 2 or less are calledmetabelian.

Finite solvable groups are easily characterized in terms of their composition fac-
tors.

(10.2.1). A finite group is solvable if and only if its composition factors have prime or-
ders. In particular a simple group is solvable if and only if it has prime order.

Proof. Let G be a finite solvable group; thus G has a series 𝒮 with abelian factors. Re-
fine 𝒮 to a composition series of G. The factors of this series are simple and they are
also abelian since they are isomorphic with quotients of subgroups of abelian groups.
By (4.1.9) a simple abelian group has prime order. Hence composition factors ofG have
prime orders. The converse is an immediate consequence of the definition of solvabil-
ity.

Solvability is well-behaved with respect to the formation of subgroups, quotient
groups and extensions.

(10.2.2).
(i) If G is a solvable group, then every subgroup and every quotient group of G is solv-

able.
(ii) Let G be a group with a normal subgroup N such that N and G/N are solvable. Then

G is solvable.

Proof. (i) Let 1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gn = G be a series with abelian factors and let H be a
subgroup of G. Then

1 = G0 ∩ H ⊲ G1 ∩ H ⊲ ⋅ ⋅ ⋅ ⊲ Gn ∩ H = H

is a series in H. Let x, y ∈ Gi+1 ∩ H. Then the commutator [x, y] = xyx−1y−1 belongs
to Gi, because Gi+1/Gi is abelian, and clearly [x, y] ∈ H. Therefore [x, y] ∈ Gi ∩ H and
Gi+1 ∩ H/Gi ∩ H is abelian, which shows that H is a solvable group.

Next let N ⊲ G. Then G/N has the series

1 = G0N/N ⊲ G1N/N ⊲ ⋅ ⋅ ⋅ ⊲ GnN/N = G/N .
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Also (Gi+1N/N)/(GiN/N) ≃ Gi+1N/GiN by (4.3.6). The assignment xGi → xGiN de-
termines a well defined, surjective homomorphism from Gi+1/Gi to Gi+1N/GiN . Since
Gi+1/Gi is abelian, the group Gi+1N/GiN is abelian and hence G/N is solvable.

(ii) The easy proof is left to the reader as an exercise.

The derived chain
Recall from Section 4.2 that the derived subgroup G′ of a group G is the subgroup
generated by all the commutators in G,

G′ = ⟨[x, y] | x, y ∈ G⟩.

The derived chain G(i), i = 0, 1, 2, . . . , is defined to be the descending sequence of
subgroups formed by repeatedly taking derived subgroups: thus

G(0) = G, G(i+1) = (G(i))′.

Note that G(i) ⊲ G and G(i)/G(i+1) is an abelian group.
The important properties of the derived chain are that in a solvable group it

reaches the identity subgroup and of all series with abelian factors it has shortest
length.

(10.2.3). Let 1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gk = G be a series with abelian factors in a solvable
group G. Then G(i) ≤ Gk−i for 0 ≤ i ≤ k. In particular G(k) = 1, so that the length of the
derived chain equals the derived length of G.

Proof. The containment is certainly true when i = 0. Assume that it is true for i. Since
Gk−i/Gk−i−1 is abelian, G(i+1) = (G(i))′ ≤ (Gk−i)

′ ≤ Gk−i−1, as required. On setting i = k,
we find that G(k) = 1.

Notice the consequence: a solvable group has a normal series, i. e., one in which
every term is normal, with abelian factors: indeed the derived series is of this type.

It is sometimes possible to deduce solvability of a finite group by inspecting its
order. Some group orders for which this can be done are given in the next result.

(10.2.4). Let p, q, r be primes. Then any group whose order has the form pm, p2q2, pmq
or pqr is solvable.

Proof. First observe that in each case it is enough to show that there are no non-
abelian simple groups with the order. For once this fact has been established, by ap-
plying it to the composition factors the general case will follow. If G is a simple group
of order pm ̸= 1, then Z(G) ̸= 1 by (5.3.6) and Z(G) ⊲ G, so G = Z(G) and G is abelian.
Before proceeding further, recall that np denotes the number of Sylow p-subgroups in
a finite group.
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Next consider the case of a simple group G with order pmq. We can of course as-
sume that p ̸= q. Then by Sylow’s theorem np ≡ 1 (mod p) and np | q, so that np = q,
since np = 1 would mean that there is a normal Sylow p-subgroup.

Choose two distinct Sylow p-subgroups P1 and P2 whose intersection I = P1 ∩
P2 has largest order. First of all suppose that I = 1. Then each pair of distinct Sylow
p-subgroups intersects in 1, which makes it easy to count the number of non-trivial
elements with order a power of p; indeed this number is q(pm − 1) since there are q
Sylow p-subgroups. This leaves pmq − q(pm − 1) = q elements of order prime to p.
These elements must form a single Sylow q-subgroup, which is therefore normal in G,
contradicting the simplicity of the group G. It follows that I ̸= 1.

By Exercise (5.3.14), or (10.2.7) below, I < Ni = NPi (I) for i = 1, 2. Thus I ⊲ J =
⟨N1,N2⟩. Suppose for themoment that J is ap-group.BySylow’s Theorem J is contained
in some Sylow subgroup P3 of G. But P1 ∩ P3 ≥ P1 ∩ J > I since N1 ≤ P1 ∩ J, which
contradicts the maximality of the intersection I. Therefore J is not a p-group.

By Lagrange’s Theorem |J| divides |G| = pmq and it is not a power of p, fromwhich
it follows that qmust divide |J|. Let Q be a Sylow q-subgroup of J. By (4.1.12)

|P1Q| =
|P1| ⋅ |Q|
|P1 ∩ Q|

=
pmq
1
= |G|,

and thus G = P1Q. Now let g ∈ G and write g = ab where a ∈ P1, b ∈ Q. Note that
bIb−1 = I since I ⊲ J and Q ≤ J. Hence gIg−1 = a(bIb−1)a−1 = aIa−1 ≤ P1 < G. But this
means that ̄I = ⟨gIg−1 | g ∈ G⟩ ≤ P1 < G and also 1 ̸= ̄I ⊲ G, a final contradiction.

The remaining group orders are left as exercises with appropriate hints – see Ex-
ercises (10.2.5) and (10.2.6).

We mention two much deeper arithmetic criteria for a finite group to be solvable.
The first states that a group of order pmqn is solvable if p and q are primes. This is the
celebrated Burnside p-q Theorem. It is best proved by using group characters – see
(14.4.3).

An even more difficult result is the Odd Order Theorem, which asserts that every
group of odd order is solvable. This famous theorem is dueW. Feit4 and J. G. Thompson:
the original proof, published in 1963, was over 250 pages long. These results indicate
that finite solvable groups are relatively common.

Nilpotent groups
Nilpotent groups forman important subclass of the class of solvable groups. A groupG
is said to be nilpotent if it has a central series, by which is meant a series of normal
subgroups 1 = G0 ⊲ G1 ⊲ G2 ⊲ ⋅ ⋅ ⋅ ⊲ Gn = G such that Gi+1/Gi is contained in the center
of G/Gi for all i. The length of a shortest central series is called the nilpotent class of G.

4 Walter Feit (1930–2004).
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Abelian groups are just the nilpotent groups with class ≤ 1. Clearly every nilpotent
group is solvable, but S3 is a solvable group that is not nilpotent since its center is
trivial.

The great source of finite nilpotent groups is the class of groups of prime power
order.

(10.2.5). Let G be a group of order pm where p is a prime. Then G is nilpotent, and if
m > 1, the nilpotent class of G is at most m − 1.

Proof. Define a sequence of subgroups {Zi} by repeatedly forming centers. Thus Z0 = 1
and Zi+1/Zi = Z(G/Zi). By (5.3.6), if Zi ̸= G, then Z(G/Zi) ̸= 1 and Zi < Zi+1. Since G is
finite, there is a smallest integer n such that Zn = G, and clearly n ≤ m. Suppose that
n = m. Then |Zm−2| ≥ pm−2 and thus |G/Zm−2| ≤ pm/pm−2 = p2,whichmeans thatG/Zm−2
is abelian by (5.3.7). This yields the contradiction Zm−1 = G; therefore n ≤ m − 1.

The foregoing proof suggests a general construction, the upper central chain of
a group G. This is the ascending chain of subgroups defined by repeatedly forming
centers,

Z0(G) = 1, Zi+1(G)/Zi(G) = Z(G/Zi(G)).

Thus 1 = Z0 ≤ Z1 ≤ ⋅ ⋅ ⋅ and Zi ⊲ G. If G is finite, this chain will certainly terminate, al-
though itmay it not reachG. The significance of the upper central chain for nilpotency
is shown by the next result.

(10.2.6). Let 1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gk = G be a central series in a nilpotent group G. Then
Gi ≤ Zi(G) for 0 ≤ i ≤ k. In particular, Zk(G) = G and the length of the upper central
chain equals the nilpotent class of G.

Proof. We argue that Gi ≤ Zi(G) by induction on i, which is certainly the case for i = 0.
If it is true for i, then, since Gi+1/Gi ≤ Z(G/Gi), we have

Gi+1Zi(G)/Zi(G) ≤ Z(G/Zi(G)) = Zi+1(G)/Zi(G).

Thus Gi+1 ≤ Zi+1(G), which completes the induction. Consequently G = Gk ≤ Zk(G)
and G = Zk(G).

Example (10.2.1). Let p be a prime and let n > 1. Denote by Un(p) the group of all n× n
upper unitriangular matrices over the field ℤp, i. e., matrices which have 1’s on the
diagonal and 0’s below it. Counting the matrices of this type by enumerating possible
superdiagonals, we find that |Un(p)| = pn−1 ⋅ pn−2 ⋅ ⋅ ⋅ p ⋅ 1 = pn(n−1)/2. Therefore Un(p) is
a nilpotent group, and in fact its class is n − 1, (see Exercise (10.2.11)).
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Characterizations of finite nilpotent groups
There are several different descriptions of finite nilpotent groups, which shed light on
the nature of the property of nilpotency.

(10.2.7). Let G be a finite group. Then the following statements are equivalent:
(i) G is nilpotent;
(ii) every subgroup of G is subnormal;
(iii) every proper subgroup of G is smaller than its normalizer;
(iv) G is the direct product of its Sylow subgroups.

Proof. (i) implies (ii). Let 1 = G0 ⊲ G1 ⊲ ⋅ ⋅ ⋅ ⊲ Gn = G be a central series and let H be a
subgroup of G. Then Gi+1/Gi ≤ Z(G/Gi), soHGi/Gi ⊲HGi+1/Gi. Hence there is a chain of
subgroups H = HG0 ⊲ HG1 ⊲ ⋅ ⋅ ⋅ ⊲ HGn = G and H is subnormal in G.

(ii) implies (iii). LetH < G; thenH is subnormal in G, so there is a chainH = H0 ⊲H1 ⊲
⋅ ⋅ ⋅ ⊲ Hm = G. There is a least i > 0 such that H ̸= Hi, and then H = Hi−1 ⊲ Hi. Therefore
Hi ≤ NG(H) and NG(H) ̸= H.

(iii) implies (iv). Let P be a Sylow p-subgroup ofG. If P is not normal inG, thenNG(P) <
G, andhenceNG(P) is smaller than its normalizer. But this contradicts Exercise (5.3.15).
Therefore P⊲G and Pmust be the unique Sylow p-subgroup, whichwill be writtenGp.

Evidently Gp ⊲G and Gp ∩ ⟨Gq | q ̸= p⟩ = 1 since orders of elements from the inter-
secting subgroups are relatively prime. Clearly G is generated by its Sylow subgroups,
so G is the direct product of the Gp.

(iv) implies (i). This follows quickly from the fact that a finite p-group is nilpotent.

The unique Sylow p-subgroup Gp is called the p-component of the nilpotent
group G.

The Frattini5 subgroup
A very intriguing subgroup that can be formed in any group G is the Frattini subgroup

ϕ(G).

This is defined to be the intersectionof all themaximal subgroups ofG. Here amaximal
subgroup is a proper subgroup which is not contained in any larger proper subgroup.
If G has no maximal subgroups, as is the case if G is trivial and might happen if G
is infinite, then ϕ(G) is defined to be G. Note that ϕ(G) is normal in G. For example,
S3 has one maximal subgroup of order 3 and three of order 2: these intersect in 1, so
ϕ(S3) = 1.

5 Giovanni Frattini (1852–1925).
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There is another, very different way of describing the Frattini subgroup which
involves the notion of a non-generator. An element g of a group G is called a non-
generator if G = ⟨g,X⟩ always implies that G = ⟨X⟩ where X is a non-empty subset
of G. Thus a non-generator can be omitted from any generating set for G.

(10.2.8). If G is an arbitrary group, then ϕ(G) is the set of all non-generators of G.

Proof. Let g be a non-generator of G and assume that g is not in ϕ(G). Then there is at
least onemaximal subgroup ofGwhich does not contain g, sayM. ThusM is definitely
smaller than ⟨g,M⟩, which implies that G = ⟨g,M⟩ since M is maximal. Therefore
G = M by the non-generator property, which is impossible since maximal subgroups
are proper.

Conversely, let g ∈ ϕ(G) and suppose that G = ⟨g,X⟩, but G ̸= ⟨X⟩. Apply Zorn’s
Lemma to the set of subgroups of G that contain X, but not g; hence this set has a
maximal element, say M. Any subgroup that properly contains M must contain g by
maximality of M, and hence must equal G. This means that M is actually a maximal
subgroup of G. But then g ∈ ϕ(G) ≤ M, a contradiction. It follows that g is a non-
generator.

Nextwe establish an important result that connects the Frattini subgroup tonilpo-
tency.

(10.2.9). If G is a finite group, then ϕ(G) is nilpotent.

Proof. The proof depends on a useful trick known as the Frattini argument. Write F =
ϕ(G) and let P be a Sylow p-subgroup of F. If g ∈ G, then gPg−1 ≤ F since F ⊲ G:
also |gPg−1| = |P|. Therefore gPg−1 is a Sylow p-subgroup of F, and as such it must
be conjugate to P in F by Sylow’s Theorem. Thus gPg−1 = xPx−1 for some x in F. This
implies that x−1gP(x−1g)−1 = P, i. e., x−1g ∈ NG(P) and g ∈ FNG(P). Thus the conclusion
of the Frattini argument is that G = FNG(P). Now the non-generator property comes
into play, allowing us to omit the elements of F one at a time, until eventually we get
G = NG(P), i. e., P ⊲ G. In particular P ⊲ F, so that all the Sylow subgroups of F are
normal and F is nilpotent by (10.2.7).

The Frattini subgroup of a finite p-group
The Frattini subgroup plays an especially significant role in the theory of finite
p-groups. Suppose that G is a finite p-group. If M is a maximal subgroup of G, then,
since G is nilpotent, M is subnormal and hence is normal in G. Furthermore G/M
cannot have proper non-trivial subgroups bymaximality ofM. Thus |G/M| = p. Define
the pth power of the group G to be

Gp = ⟨gp | g ∈ G⟩.

Then GpG′ ≤ M for allM and GpG′ ≤ ϕ(G).
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On the other hand, G/GpG′ is a finite abelian group in which every pth power is
the identity, i. e., it is an elementary abelian p-group. By (8.2.16) such a group is a di-
rect product of groups of order p. This fact enables us to constructmaximal subgroups
of G/GpG′ by omitting all but one factor from the direct product. The resulting maxi-
mal subgroups of G/GpG′ clearly intersect in the identity subgroup, which shows that
ϕ(G) ≤ GpG′. We have therefore proved:

(10.2.10). If G is a finite p-group, then ϕ(G) = GpG′.

Next suppose that V = G/GpG′ has order pd; thus d is the dimension of V as a
vector space over the field ℤp. Consider an arbitrary set X of generators for G. Now
the subset {xGpG′ | x ∈ X} clearly generates V as a vector space. By Exercise (8.2.10)
there is a subset Y of X such that {yGpG′ | y ∈ Y} is a basis of V . Of course |Y | = d.
We claim that Y generates G. Certainly we have that G = ⟨Y ,GpG′⟩ = ⟨Y ,ϕ(G)⟩. The
non-generator property of ϕ(G) shows that G = ⟨Y⟩.

Summing up these conclusions, we have the following basic result on finite
p-groups.

(10.2.11). Let G be a finite p-group and let G/ϕ(G) have order pd. Then every set of gen-
erators of G has a d-element subset that generates G. In particular G can be generated
by d and no fewer elements.

Example (10.2.2). A group G is constructed as the semidirect product of a cyclic
group ⟨a⟩ of order 2n with a Klein 4-group V = ⟨x, y⟩ where n ≥ 3, xax−1 = a−1 and
yay−1 = a1+2

n−1
. Thus |G| = 2n+2. Observe that G′ = ⟨a2⟩ and thus G/G′ is elementary

abelian of order 8. Henceϕ(G) = G2G′ = ⟨a2⟩. By (10.2.11) the groupG can be generated
by 3 and no fewer elements, and in fact G = ⟨a, x, y⟩.

Exercises (10.2).
(1) LetM ⊲G and N ⊲Gwhere G is any group. IfM and N are solvable, prove thatMN

is solvable.
(2) Let M ⊲ G and N ⊲ G for any group G. If G/M and G/N are solvable, prove that

G/M ∩ N is solvable.
(3) Explain why a solvable group with a composition series is necessarily finite.
(4) Let G be a finite group with two non-trivial elements a and b such that |a|, |b|, |ab|

are relatively prime in pairs. Prove that G cannot be solvable. [Hint: putH = ⟨a, b⟩
and show that H/H′ has order 1.]

(5) Prove that if p, q, r are primes, then every group of order pqr is solvable. [Hint:
assume that G is a simple group of order pqr where p < q < r and show that
nr = pq, nq ≥ r and np ≥ q. Now count elements of elements of G to obtain a
contradiction.]

(6) Prove that if p and q are primes, then every group of order p2q2 is solvable. [Hint:
follow themethod of proof for groups of order pmq in (10.2.4). AssumeG is simple.
Deal first with the case where each pair of Sylow p-subgroups intersects in 1. Then
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choose two Sylow subgroups P1 and P2 such that I = P1 ∩ P2 has order p and note
that I ⊲ J = ⟨P1,P2⟩.]

(7) Establish the commutator identities [x, y−1] = y−1[x, y]−1y and [x, yz] =
[x, y]y[x, z]y−1.

(8) LetG be a group and let z ∈ Z2(G). Prove that the assignment x → [z, x]determines
a homomorphism from G to Z(G) whose kernel contains G′Z(G).

(9) LetG be a group such that Z1(G) < Z2(G). Use Exercise (10.2.8) to show thatG > G′.
(10) Find the upper central series of the group G = Dih(2m) where m ≥ 2. Hence com-

pute the nilpotent class of G.
(11) Let n > 1 and letG = Un(p), the groupof n×nupper unitriangularmatrices overℤp.

DefineGi to be the subgroup of all elements ofG inwhich the first i superdiagonals
consist of 0’s, where 0 ≤ i < n. Show that the Gi are terms of a central series of G.
Hence find an upper bound for the nilpotent class of G. (For a greater challenge
find the exact value of the nilpotent class).

(12) Let G be a nilpotent group with a non-trivial normal subgroup N . Prove that
N ∩ Z(G) ̸= 1.

(13) Let A be a maximal abelian normal subgroup (i. e., a largest abelian normal sub-
group) of a nilpotent group G. Prove that CG(A) = A. [Hint: assume this is false
and apply Exercise (10.2.12) to CG(A)/A ⊲ G/A.]

(14) If every abelian normal subgroup of a nilpotent group is finite, prove that the
group is finite.

(15) The lower central chain {γi(G)} of group G is defined by γ1(G) = G and γi+1(G) =
[γi(G),G]. If G is a nilpotent group, prove that the lower central sequence reaches
1 and its length equals the nilpotent class of G. (If H, K are subgroups of a group,
then [H ,K] denotes the subgroup generated by all commutators [h, k], h ∈ H,
k ∈ K.)

(16) Find the Frattini subgroup of the groups An, Sn and Dih(2p) where p is an odd
prime.

(17) Use (10.2.4) to show that a non-solvable group of order at most 100 must have
order 60. [Hint: note that by (10.2.4) the only orders requiring attention are 72, 84
and 90.]

(18) Prove thatA5 is the only non-solvable groupwith order≤ 100. [Hint: it is enough to
show that a simple group of order 60 must have a subgroup of index 5 and hence
is A5. Consider the number of Sylow 2-subgroups.]

10.3 Theorems on finite solvable groups

The final section of the chapter will take us deeper into the theory of finite solvable
groups and several famous theorems will be proved.
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Schur’s splitting and conjugacy theorem
Suppose thatN is a normal subgroup of a groupG. A subgroupX such thatG = NX and
N ∩ X = 1 is called a complement of N in G. In this case G is said to split over N and G
is the semidirect product of N and X. A splitting theorem is theorem asserting that a
group splits over a normal subgroup. One can think of such a theorem as resolving
a group into a product of potentially simpler groups. The most celebrated splitting
theorem in group theory is undoubtedly Schur’s theorem.

(10.3.1) (I. Schur). Let A be an abelian normal subgroup of a finite group G such that
|A| and |G : A| are relatively prime. Then G splits over A and all complements of A are
conjugate in G.

Proof. (i) Existence of a complement. To start the proof choose an arbitrary transversal
to A in G, say {tx | x ∈ Q = G/N} where x = Atx. Most likely this transversal will not be
a subgroup. The idea behind the proof is to transform the transversal into one which
is a subgroup. Let x, y ∈ Q: then x = Atx and y = Aty, and in addition Atxy = xy =
AtxAty = Atxty. Thus it is possible to write

txty = a(x, y)txy (10.1)

for some a(x, y) ∈ A.
The associative law (txty)tz = tx(tytz) imposes conditions on the elements a(x, y).

For, on applying the formula (10.1) for the product of two transversal elements, we
obtain

(txty)tz = a(x, y)a(xy, z)txyz ,

and similarly

tx(tytz) = txa(y, z)tyz = (txa(y, z)t
−1
x )txtyz = (txa(y, z)t

−1
x )a(x, yz)txyz .

Now conjugation of elements of A by tx induces an automorphism of A which de-
pends only on x: for, if u, v ∈ A, then (vtx)u(vtx)−1 = txut−1x since A is abelian. Let us
write xu for txut−1x . Then on equating (txty)tz and tx(tytz) and cancelling txyz, we arrive
at the equation

a(x, y)a(xy, z) = x(a(y, z))a(x, yz), (10.2)

which is valid for all x, y, z, ∈ Q. A function a : Q × Q → A that satisfies the condition
(10.2) is called a factor set or a 2-cocycle.
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Next define

bx =∏
y∈Q

a(x, y),

noting that the order of the factors in the product is immaterial since A is abelian. On
forming the product of the equations (10.2) above over all z inQwith x and y fixed, we
obtain the equation

a(x, y)m bxy =
xbybx , (10.3)

wherem = |Q| = |G : A|. Note here that the product over z of all the xa(y, z) is xby and
the product of all the a(x, yz) is bx.

Sincem is relatively prime to |A|, themapping u → um, u ∈ A, is an automorphism
of A. Thus we can write bx as anmth power, say bx = (c−1x )

m where cx ∈ A. Substituting
for bx in equation (10.3), we get (a(x, y)c−1xy )

m = ((xcycx)−1)m, fromwhich it follows that

cxy = cx(
xcy)a(x, y).

We are now ready to form the new transversal. Write sx = cxtx and observe that
the sx, (x ∈ Q), form a transversal to A. Indeed

sxsy = cxtxcyty = cx(
xcy)txty = cx(

xcy)a(x, y)txy = cxytxy = sxy .

This demonstrates that the transversal H = {sx | x ∈ Q} is a subgroup. Since G = AH
and A ∩ H = 1, it follows that H is a complement of A in G and G splits over A.

(ii) Conjugacy of complements. Let H = {sx | x ∈ Q} and H∗ = {s∗x | x ∈ Q} be two
complements of A in G. If x ∈ Q, we can write x = Asx = As∗x where sx and s

∗
x belong

to H and H∗ respectively. Thus sx and s∗x are related by an equation of the form

s∗x = d(x)sx

where d(x) ∈ A. Since Asxy = xy = AsxAsy = Asxsy, we have sxsy = sxy, and similarly
s∗x s
∗
y = s
∗
xy. In the last equation make the substitutions s∗x = d(x)sx, s

∗
y = d(y)sy, s

∗
xy =

d(xy)sxy to get d(x)sxd(y)sy = d(xy)sxy and hence

d(xy) = d(x)(xd(y)) (10.4)

for all x, y ∈ Q. Such a function d : Q→ A is called a derivation or 1-cocycle.
Put u = ∏x∈Q d(x) and take the product of all the equations (10.4) over y ∈ Qwith x

fixed. This leads tou = d(x)m(xu).Writingu = vmwith v ∈ A,weobtain vm = d(x)m(xv)m

and hence v = d(x)(xv). Thus d(x) = v(xv)−1. Since xv = sxvs−1x , we have
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s∗x = d(x)sx = v(
xv)−1sx = v(sxv

−1s−1x )sx = vsxv
−1.

Therefore H∗ = vHv−1, so H and H∗ are conjugate.

In fact (10.3.1) is true even when A is non-abelian, a result which is known as the
Schur-Zassenhaus Theorem. The proof of conjugacy of complements requires use of
the Odd Order Theorem: see for example [15].

Hall’s theorems on finite solvable groups
To illustrate the usefulness of Schur’s splitting theorem we will make a foray into the
theory of finite solvable groups by proving the following celebrated result.

(10.3.2) (P. Hall6). Let G be a finite solvable group and write |G| = mnwhere the positive
integers m, n are relatively prime. Then G has a subgroup of order m and all subgroups
of this order are conjugate.

Proof. (i) Existence.We argue by induction on |G| > 1. The group G has a non-trivial
abelian normal subgroup A, for example the smallest non-trivial term of the derived
series. Since A is the direct product of its primary components, we can assume that A
is a p-group, with |A| = pk, say. There are two cases to consider.

Suppose first that p does not divide m. Then pk | n because m and n are rela-
tively prime. Since |G/A| = m ⋅ (n/pk), the induction hypothesis may be applied to the
group G/A to show that it has a subgroup of order m, say K/A. Now |A| is relatively
prime to m = |K : A|, so (10.3.1) may be applied to K. Hence there is a complement of
A in K: this complement is a subgroup orderm, as required.

Now assume that p divides m; then pk | m since p cannot divide n. Since |G/A| =
(m/pk) ⋅ n, induction shows that G/A has a subgroup of order m/pk, say H/A. Then
|H| = |A| ⋅ |H/A| = pk(m/pk) = m, as required.

(ii) Conjugacy. LetH andH∗ be two subgroups of orderm and chooseA to be a p-group
as in (i). If p does not divide m, then A ∩ H = 1 = A ∩ H∗, and AH/A and AH∗/A are
subgroups of G/A with order m. By induction on |G| these subgroups are conjugate
and thus AH = g(AH∗)g−1 = A(gH∗g−1) for some g ∈ G. By replacing H∗ by gH∗g−1,
we can assume that AH = AH∗. But now H and H∗ are two complements of A in HA,
so (10.3.1) guarantees that they are conjugate.

Finally, assume that p divides m. Then p does not divide n = |G : H| = |G : H∗|.
Since |AH : H| is a power of p and it also divides n, we conclude that AH = H and
A ≤ H. Similarly A ≤ H∗. By inductionH/A andH∗/A are conjugate in G/A, as mustH
and H∗ be in G.

6 Philip Hall (1904–1982).
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Hall π-subgroups
Wewill now illustrate the significance of Hall’s theorem. Let π denote a non-empty set
of primes and let π′ be the complementary set of primes. A positive integer is called a
π-number if it is a product of powers of primes from the set π. A finite group is said to
be a π-group if its order is a π-number.

Let G be a finite solvable group and write |G| = mn where m is a π-number and n
is a π′-number. Then (10.3.2) tells us that G has a subgroup H of orderm and index n.
Thus H is a π-group and |G : H| is a π′-number: such a subgroup is called a Hall
π-subgroup of G. Thus (10.3.2) actually asserts that Hall π-subgroups always exist in
a finite solvable group for any set of primes π, and that any two Hall π-subgroups are
conjugate.

Hall’s theorem can be regarded as an extension of Sylow’s Theorem since if π =
{p}, a Hall π-subgroup is simply a Sylow p-subgroup. However, Sylow’s Theorem is
valid for any finite group, whereas Hall subgroups need not exist in an insolvable
group. For example, A5 has order 60 = 3 ⋅ 20, but it has no subgroups of order 20,
as the reader should verify.

This example is no coincidence since there is in fact a strong converse of Hall’s
theorem: the mere existence Hall p′-subgroups for all primes p dividing the group or-
der is enough to imply solvability of the group. Here p′ is the set of all primes different
from p. The proof of this result uses the Burnside pq-Theorem: a group of order pmqn

is solvable if p and q are primes: this is proved using character theory as (14.4.3).

(10.3.3) (P. Hall). Let G be a finite group and suppose that for every prime p dividing |G|
there is a Hall p′-subgroup. Then G is solvable.

Proof. Assume the theorem is false and let G be a counterexample of smallest order.
We look for a contradiction. Suppose that N is proper non-trivial normal subgroup of
G. IfH is a Hall p′-subgroup ofG, then by consideration of order and indexwe see that
H ∩ N and HN/N are Hall p′-subgroups of N and G/N respectively. Therefore N and
G/N are solvable by minimality of |G|, and thus G is solvable. By this contradiction G
must be a simple group.

Write |G| = pe11 p
e2
2 ⋅ ⋅ ⋅ p

ek
k where ei > 0 and the pi are distinct primes. The Burnside

pq-Theorem shows that k > 2. Let Gi be a Hall p′i -subgroup of G; thus |G : Gi| = p
ei
i . Put

H = G3 ∩ ⋅ ⋅ ⋅ ∩ Gk and observe that

|G : H| =
k
∏
i=3
|G : Gi| =

k
∏
i=3

peii

by (4.1.13), since the |G : Gi| are all relatively prime. Therefore |H| = |G|/|G : H| = pe11 p
e2
2

and H is solvable by Burnside’s Theorem.
SinceH ̸= 1, it contains aminimal normal subgroupM. By Exercise (10.3.2) below,

M is an elementary abelian p-group where p = p1 or p2: without loss of generality let
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p = p1. Now

|G : H ∩ G2| = |G : H| ⋅ |G : G2| =
k
∏
i=2

peii

by (4.1.13) once again. Thus |H ∩ G2| = p
e1
1 , i. e., H ∩ G2 is a Sylow p1-subgroup of H.

HenceM(H∩G2) is a p1-group, fromwhich it follows thatM ≤ H∩G2. Also |H∩G1| = p
e2
2

by a previous argument and therefore

(H ∩ G1)G2
 = |H ∩ G1| ⋅ |G2| = p

e2
2
|G|
pe22
= |G|.

Consequently G = (H ∩ G1)G2. Next consider the normal closure ofM in G. This is

⟨MG⟩ = ⟨M(H∩G1)G2⟩ = ⟨MG2⟩ ≤ G2 < G,

sinceM ⊲H. It follows that ⟨MG⟩ is a proper non-trivial normal subgroup of G, so G is
not simple, a contradiction.

Hall’s theorems are the starting point for a rich theory of finite solvable groups
which has been developed over the last ninety years; the standard reference for this
is [4].

Exercises (10.3).
(1) Give an example of a finite group G with an abelian normal subgroup A such that

G does not split over A.
(2) If G is a finite solvable group with a minimal (non-trivial) normal subgroup N,

prove that N is an elementary abelian p-group for some p dividing |G|. [Hint: note
that N ′ ⊲ G.]

(3) IfM is a maximal subgroup of a finite solvable groupG, prove that |G : M| is equal
to a prime power. [Hint: use induction on |G| to reduce to the case where M con-
tains no non-trivial normal subgroups of G. Let A be a minimal normal subgroup
of G. Show that G = MA andM ∩ A = 1.]

(4) For which sets of primes π does the group A5 contain a Hall π-subgroup?
(5) Let G be a finite solvable group and p a prime dividing the order of G. Prove that G

has a maximal subgroup with index equal to a power of p. [Hint: apply (10.3.2).]
(6) Let G be a finite group and π a set of primes. Let L be a solvable normal subgroup

of G and assume that H is a Hall π-subgroup of L. Prove that G = LNG(H). [Hint: if
g ∈ G, then gHg−1 is conjugate to H in L.]

(7) Let G be a finite group with a normal subgroup N . Assume that |N | and |G : N | are
relatively prime and also that N is solvable. Prove that G splits over N . [Hint: as-
sume thatN ̸= 1 and find a non-trivial abelian subgroupA ofGwhich is contained
in N . By induction on the group order the result is true for G/A.]
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(8) Let G be a finite group and let p be a prime dividing the order of G. Prove that p
divides |G : ϕ(G)|, where ϕ(G) denotes the Frattini subgroup of G. [Hint: assume
this is false, soG/ϕ(G) is a p′-group. Sinceϕ(G) is nilpotent, there existsP⊲G such
that P ≤ ϕ(G), P is a p-group and G/P a p′-group. Now apply Exercise (10.3.7).]
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11 The Theory of Fields

Field theory is one of the most attractive parts of algebra. It contains many power-
ful results on the structure of fields, for example, the Fundamental Theorem of Ga-
lois Theory, which establishes a correspondence between subfields of a field and sub-
groups of the Galois group. In addition field theory can be applied to a wide variety
of problems, some of which date from classical antiquity. Among the applications to
be described here and in subsequent chapters are: ruler and compass constructions,
solution of equations by radicals, orthogonal latin squares and Steiner systems. In
short field theory is algebra at its best – deep theorems with convincing applications
to problems which might otherwise be intractible.

11.1 Field extensions

Recall from Section 7.4 that a subfield of a field F is a subring containing the identity
element which is closedwith respect to inversion of its non-zero elements. The follow-
ing is an immediate consequence of the definition.

(11.1.1). The intersection of any set of subfields of a field is a subfield.

Suppose thatX is a (non-empty) subset of a field F. By (11.1.1) the intersection of all
the subfields of F that contain X is a subfield, which is evidently the smallest subfield
containing X. This is called the subfield of F generated by X and it is easy to describe
the form of its elements.

(11.1.2). If X is a subset of a field F, the subfield generated by X consists of all elements
of the form

f (x1, . . . , xm)g(y1, . . . , yn)
−1

where f ∈ ℤ[t1, . . . , tm], g ∈ ℤ[t1, . . . , tn], xi, yj ∈ X and g(y1, . . . , yn) ̸= 0.

To prove this, first observe that the set S of elements with the specified form is a
subfield of F containing X. Then note that any subfield of F which contains X must
also contain all the elements of S, so that S is the smallest subfield that contains X.

Prime subfields
In any field F one can form the intersection of all the subfields. This is the unique
smallest subfield of F and it is called the prime subfield of F. A field which coincides
with its prime subfield is called a prime field. It is easy to identify the prime fields.

(11.1.3). A prime field of characteristic 0 is isomorphic withℚ: a prime field of charac-
teristic a prime p is isomorphic with ℤp. Conversely,ℚ and ℤp are prime fields.

https://doi.org/10.1515/9783110691160-011
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Proof. Assume that F is a prime field and put I = ⟨1F⟩ = {n1F | n ∈ Z}. Suppose first
that F has characteristic 0, so I is infinite cyclic. Define a surjectivemapping α : ℚ→ F
by the rule α(mn ) = (m1F)(n1F)

−1, where n ̸= 0. It is easily seen that α is a well defined
ring homomorphismand its kernel is therefore an ideal ofℚ. Now0 andℚ are the only
ideals ofℚ and α(1) = 1F ̸= 0F , so Ker(α) ̸= ℚ. It follows that Ker(α) = 0 andℚ ≃ Im(α).
Since F is a prime field and Im(α) is a subfield, Im(α) = F and α is an isomorphism.
Thus F ≃ ℚ.

Now suppose that F has characteristic a prime p, so that |I| = p. In this situation
we define α : ℤ → F by α(n) = n1F . Thus α(n) = 0F if and only if n1F = 0, i. e., p
divides n. Hence Ker(α) = pℤ and Im(α) ≃ ℤ/pℤ = ℤp. It follows thatℤp is isomorphic
with a subfield of F and, since F is prime, ℤp ≃ F. It is left to the reader to check that
ℚ and ℤp are prime fields.

Field extensions
Consider two fields F and E and suppose there is an injective ring homomorphism
α : F → E. Then F is isomorphic with Im(α), which is a subfield of E: under these
circumstances we say that E is an extension of F. It is often convenient to assume that
F is actually a subfield of E. This is usually a harmless assumption since F could be
replacedby the isomorphic field Im(α). Notice that by (11.1.3) everyfield is an extension
of either ℤp orℚ, according as the characteristic is a prime p or 0.

If E is an extension of F, then E can be regarded as a vector space over F by using
the field operations. The vector space axioms are consequences of the field axioms.
This simple idea is critical since it allows us to define the degree of E over F as

(E : F) = dimF(E).

If this dimension is finite, then E is said to be a finite extension of F.

Simple extensions
Let F be a subfield and X a non-empty subset of a field E. The subfield of E generated
by F ∪ X is denoted by

F(X).

It follows readily from (11.1.2) that F(X) consists of all elements of the form
f (x1, . . . , xm)g(y1, . . . , yn)−1 where f ∈ F[t1, . . . , tm], g ∈ F[t1, . . . , tn], xi, yj ∈ X and
g(y1, . . . , yn) ̸= 0. If X = {x1, x2, . . . , xl}, write

F(x1, x2, . . . , xl)
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in place ofF{x1, x2, . . . , xl}. Themost interesting case for us iswhenX = {x}anda typical
element of F(x) has the form f (x)g(x)−1 where f , g ∈ F[t] and g(x) ̸= 0. If E = F(x) for
some x ∈ E, then E is said to be a simple extension of F.

The next result describes the structure of simple extensions.

(11.1.4). Let E = F(x) be a simple extension of a field F. Then one of the following must
hold:
(i) f (x) ̸= 0 for all 0 ̸= f ∈ F[t] and E ≃ F{t}, the field of rational functions in t over F;
(ii) f (x) = 0 for some monic irreducible polynomial f ∈ F[t] and E ≃ F[t]/(f ).

Proof. We may assume that F ⊆ E. Define a mapping θ : F[t] → E by evaluation at x,
i. e., θ(f ) = f (x). This is a ring homomorphism whose kernel is an ideal of F[t], say I.

Assume first that I = 0, i. e., f (x) = 0 implies that f = 0. Then θ can be extended
to a function α : F{t} → E by the rule α( fg ) = f (x)g(x)

−1; this function is also a ring
homomorphism. Notice that α( fg ) = 0 implies that f (x) = 0 and hence f = 0. Therefore
Ker(α) = 0 and F{t} is isomorphic with Im(α), which is a subfield of E. Now Im(α)
contains F and x since α(a) = a if a ∈ F and α(t) = x. Because E is a smallest field
containing F and x, it follows that E = Im(α) ≃ F{t}.

Now suppose that I ̸= 0. Then F[t]/I is isomorphic with a subring of the field E,
so it is a domain and hence I is a prime ideal of F[t]. Since F[t] is a PID, we can apply
(7.2.6) to get I = (f ) where f is a monic irreducible polynomial in F[t]. Thus F[t]/I is
a field which is isomorphic with Im(θ), a subfield of E containing F and x for reasons
given above. Therefore F[t]/I ≃ Im(θ) = E.

Algebraic elements
Consider a field extension E of F and let x ∈ E. There are two possible forms for the
subfield F(x), as indicated in (11.1.4). If f (x) ̸= 0whenever 0 ̸= f ∈ F[t], then F(x) ≃ F{t}
and x is said to be transcendent over F.

The other possibility is that x is a root of a monic irreducible polynomial f in F[t].
In this case F(x) ≃ F[t]/(f ) and x is said to be algebraic over F. The polynomial f is the
unique monic irreducible polynomial over F which has x as a root: for if g is another
such polynomial, then g ∈ (f ) and f | g, so f = g by irreducibility and monicity. We
call f the irreducible polynomial of x over F, in symbols

IrrF(x):

thus F(x) ≃ F[t]/(IrrF(x)).
Now let f = IrrF(x) have degree n. For any g in F[t]write g = fq+ r where q, r ∈ F[t]

and deg(r) < n, by using the Division Algorithm for F[t], (see (7.1.3)). Then g + (f ) =
r + (f ), which shows that F(x) is generated as an F-vector space by 1, x, x2, . . . , xn−1. In
fact these elements are linearly independent over F. For, if a0 +a1x + ⋅ ⋅ ⋅+an−1xn−1 = 0
with ai ∈ F, then g(x) = 0 where g = a0 + a1t + ⋅ ⋅ ⋅ + an−1tn−1, and hence f | g. But
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deg(g) ≤ n − 1, which can only mean that g = 0 and all the ai are zero. It follows
that the elements 1, x, x2, . . . , xn−1 form an F-basis of the vector space F(x) and hence
(F(x) : F) = n = deg(f ).

These conclusions are summarized in:

(11.1.5). Let E = F(x) be a simple field extension of F.
(i) If x is transcendent over F, then E ≃ F{t}.
(ii) If x is algebraic over F, then E ≃ F[t]/(IrrF(x)) and (E : F) = deg(IrrF(x)).

Example (11.1.1). Show that√3−√2 is algebraic overℚ by finding its irreducible poly-
nomial and hence the degree ofℚ(√3 −√2) overℚ.

Put a = √3 − √2. Our first move is to find a rational polynomial with a as a root.
Nowa2 = 5−2√6, so (a2−5)2 = 24 anda4−10a2+1 = 0.Hencea is a root of f = t4−10t2+1
and thus is algebraic overℚ. If we can show that f is irreducible overℚ, it will follow
that Irrℚ(a) = f and (ℚ(a) : ℚ) = 4.

By Gauss’s Lemma (7.3.7) it is enough to show that f is irreducible over ℤ. Now
clearly f has no integer roots, for ±1 are the only possibilities and neither one is a root.
Thus, if f is reducible, there must be a decomposition of the form

f = (t2 + at + b)(t2 + a1t + b1)

where a, b, a1, b1 are integers. On equating coefficients of 1, t3, t2 on both sides, we
arrive at the equations

bb1 = 1, a + a1 = 0, aa1 + b + b1 = −10.

Hence b = b1 = ±1 and a1 = −a, so that −a2 ± 2 = −10. Since this equation has no
integer solutions, f is irreducible.

Algebraic extensions
Let E be an extension of a field F. If every element of E is algebraic over F, then E is
called an algebraic extension of F. Extensions of finite degree are an important source
of algebraic extensions.

(11.1.6). An extension E of a field F with finite degree is algebraic.

Proof. Let x ∈ E. By hypothesis E has finite dimension as a vector space over F, equal
to n say; consequently the set {1, x, x2, . . . , xn} is linearly dependent and there are ele-
ments a0, a1, . . . , an of F, not all zero, such that a0+a1x+a2x2+ ⋅ ⋅ ⋅+anxn = 0. Thus x is
a root of the non-zero polynomial a0+a1t+ ⋅ ⋅ ⋅+antn and hence is algebraic over F.

The next result is useful in calculations with degrees.
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(11.1.7). Let F ⊆ K ⊆ E be successive field extensions. If K is finite over F and E is finite
over K, then E is finite over F and (E : F) = (E : K) ⋅ (K : F).

Proof. Let {x1, . . . , xm} be an F-basis ofK and {y1, . . . , yn} aK-basis of E. Then each e ∈ E
can be written as e = ∑ni=1 kiyi where ki ∈ K. Also each ki can be written ki = ∑

m
j=1 fijxj

with fij ∈ F. Therefore e = ∑
n
i=1∑

m
j=1 fijxjyi and it follows that the elements xjyi generate

the F-vector space E.
Next assume there is an F-linear relation among the xjyi, say

n
∑
i=1

m
∑
j=1

fijxjyi = 0

where fij ∈ F. Then ∑
n
i=1(∑

m
j=1 fijxj)yi = 0, so that ∑

m
j=1 fijxj = 0 for all i, since the yi are

K-linearly independent. Finally, fij = 0 for all i and j by linear independence of the xj
over F. Consequently the elements xjyi form an F-basis of E and (E : F) = nm, that is
(E : F) = (E : K) ⋅ (K : F).

Corollary (11.1.8). Let F ⊆ K ⊆ E be successive field extensions with E algebraic over K
and K algebraic over F. Then E is algebraic over F.

Proof. Let x ∈ E, so that x is algebraic over K; let its irreducible polynomial be f =
a0 + a1t + ⋅ ⋅ ⋅ + an−1tn−1 + tn where ai ∈ K. Put Ki = F(a0, a1, . . . , ai) for 0 ≤ i < n and
K−1 = F. Then ai is algebraic over F and hence over Ki−1. Since Ki = Ki−1(ai), it follows
via (11.1.5) that (Ki : Ki−1) is finite for i = 0, 1, . . . , n−1. Hence (Kn−1 : F) is finite by (11.1.7).
Also x is algebraic over Kn−1, so that (Kn−1(x) : Kn−1) is finite and therefore (Kn−1(x) : F)
is finite. It follows via (11.1.6) that x is algebraic over F.

Algebraic numbers
Next let us consider the complex fieldℂ as an extension of the rational fieldℚ. If x ∈ ℂ
is algebraic overℚ, then x is called an algebraic number: otherwise x is a transcenden-
tal number. Thus the algebraic numbers are the real and complex numbers which are
roots of non-zero rational polynomials.

(11.1.9). The algebraic numbers form a subfield of ℂ.

Proof. Let a and b be algebraic numbers. It is sufficient to show that a±b, ab and ab−1

(if b ̸= 0) are algebraic numbers. To see this note that (ℚ(a) : ℚ) is finite by (11.1.5).
Alsoℚ(a, b) = (ℚ(a))(b) is finite overℚ(a) for the same reason. Therefore (ℚ(a, b) : ℚ)
is finite by (11.1.7) and henceℚ(a, b) is algebraic overℚ by (11.1.6). The required result
now follows.

The next result shows that not every complex number is an algebraic number.

(11.1.10). There are countablymanyalgebraic numbers, but uncountablymany complex
numbers.
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Proof. Of course ℂ is uncountable by (1.4.7). To see that there are countably many al-
gebraic numbers, observe thatℚ[t] is countable since it is a countable union of count-
able sets – see Exercise (1.4.5). Also eachnon-zeropolynomial inℚ[t]hasfinitelymany
roots. It follows that there are only countably many roots of non-zero polynomials in
ℚ[t]: these are precisely the algebraic numbers.

The existence of transcendental numbers is demonstrated by (11.1.10), but with-
out giving a single example. Indeed it is a good deal harder to find specific examples.
The best known transcendental numbers are the numbers π and e. The fact that π is
transcendental underlies the impossibility of “squaring the circle” – for this see Sec-
tion 11.2. A good reference for the transcendence of π, e and many other interesting
numbers is [13].

A subfield ofℂwhich is a finite extension ofℚ is called an algebraic number field:
the elements of algebraic number fields constitute all the algebraic numbers. The the-
ory of algebraic number fields is a well developed and active area of algebra; for a
detailed account of it see [10].

Algebraic integers
Analgebraic numbera is called analgebraic integer if it is a root of amonic polynomial
with integer coefficients. The first thing to notice is that the algebraic integers in an
algebraic number field form a subring.

(11.1.11).
(i) An algebraic number a is an algebraic integer if and only if the subring generated

by a and 1 is finitely generated as an abelian group.
(ii) The algebraic integers form a subring of the field of algebraic numbers.

Proof. (i) Assume that a is an algebraic integer. Then there is a polynomial f (x) =
xn + rn−1xn−1 + ⋅ ⋅ ⋅ + r1x + r0 with integer coefficients such that f (a) = 0. Hence an ∈
⟨1, a, . . . , an−1⟩ = H. Thus an+1 ∈ ⟨a, a2, . . . , an⟩ ≤ H. One can show by induction on
k ≥ n that ak ∈ H. Therefore H is the subring generated by a and 1.

Conversely, assume that the subring generated by a and 1 is finitely generated.
Then it must equal K = ⟨1, a, . . . , an−1⟩ for some n. Hence an ∈ K, which shows that
an = r0 + r1a + ⋅ ⋅ ⋅ + rn−1an−1 for certain integers ri. Hence a is an algebraic integer,
which completes the proof of (i).

(ii) Let a1, a2 be algebraic integers. By (i) the subrings generated by a1, a2 are finitely
generated abelian groups. Therefore the ring generated by {1, a1, a2} is a finitely gen-
erated abelian group. Hence the rings generated by a1 ± a2 and a1a2 are also finitely
generated abelian. Therefore a1 ±a2 and a1a2 are algebraic integers. It follows that the
algebraic integers form a subring.
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The next result is very simple, but it will be important when we come to discuss
group characters in Section 14.3.

(11.1.12). An algebraic integer which is a rational number is an integer.

Proof. Assume that the rational number m/n is an algebraic integer where m, n are
relatively prime integers. Then m/n is a root of some monic polynomial tr + ℓr−1tr−1 +
⋅ ⋅ ⋅+ ℓ1t + ℓ0 where ℓi ∈ ℤ. Hencemr + ℓr−1mr−1n+ ⋅ ⋅ ⋅+ ℓ1mnr−1 + ℓ0nr = 0. However, this
implies that n dividesmr . Sincem and n are relatively prime, it follows that n = ±1, so
the result is proven.

Algebraically closed fields
It is a very important fact that every field F is contained in a largest algebraic extension
called the algebraic closure. The construction of such a largest extension is the kind
of task for which Zorn’s Lemma is well-suited.

Let E be a field extension of F with F ⊆ E. Then E is called an algebraic closure
of F if the following conditions hold:
(i) E is algebraic over F;
(ii) every irreducible polynomial in E[t] has degree 1.

Notice that by the second condition if K is an algebraic extension of E, then K = E,
so that E is a maximal algebraic extension of F. A field that coincides with its alge-
braic closure is called an algebraically closed field. For example, the complex field ℂ
is algebraically closed by the Fundamental Theorem of Algebra – see (12.3.6) below.

Our objective is to prove the following theorem:

(11.1.13). Every field has an algebraic closure.

Proof. Let F be an arbitrary field. The first step is to choose a set that is large enough
to accommodate the algebraic closure. What is needed is a set S with cardinal greater
than ℵ0 ⋅ |F|: for example the set 𝒫(ℕ × F) will do – see (1.4.5). In particular |F| < |S|,
so there is an injection α : F → S. Now use the map α to turn Im(α) into a field, by
defining

α(x) + α(y) = α(x + y) and α(x)α(y) = α(xy)

where x, y ∈ F, and α(0F) and α(1F) are the zero element and identity element respec-
tively. Clearly Im(α) is a field isomorphic with F. Thus, replacing F by Im(α), we may
assume that F ⊆ S.

To apply Zorn’s Lemmaweneed to introduce a suitable partially ordered set. Let𝒦
denote the set of all subsets E such that F ⊆ E ⊆ S and the field operations of F may
be extended to E in such a way that E becomes a field which is algebraic over F. Quite
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obviously F ∈ 𝒦, so that𝒦 is not empty. A partial order ⪯ on𝒦 is defined as follows: if
E1,E2 ∈ 𝒦, then E1 ⪯ E2means that E1 ⊆ E2 and the field operations of E2 are consistent
with those of E1. Thus E1 is actually a subfield of E2. It is quite easy to see that ⪯ is a
partial order on 𝒦. Thus we have our partially ordered set (𝒦,⪯).

Next the unionU of a chain 𝒞 in𝒦 is itself in𝒦. For, by the definition of the partial
order ⪯, the field operations of all members of 𝒞 are consistent, so they may be com-
bined to give the field operations of U . It follows that U ∈ 𝒦 and clearly U is an upper
bound for 𝒞 in𝒦. Zorn’s Lemmamay now be applied to yield a maximal element of𝒦,
say E.

By definition E is algebraic over F. What needs to be established is that any ir-
reducible polynomial f in E[t] has degree 1. Suppose that in fact deg(f ) > 1. Put
E′ = E[t]/(f ), which is an algebraic extension of E and hence of F by (11.1.8). If we
write E0 = {a+ (f ) | a ∈ E}, then E0 ⊆ E′ and there is an isomorphism β : E0 → E given
by β(a + (f )) = a.

It is at this point that the cardinality of the set S is important. One can show with-
out too much trouble that |E′ − E0| < |S − E|, by using the inequalities |E| ≤ ℵ0 ⋅ |F|
and |E[t]| < |S|. Accepting this fact, we choose an injective map β1 : E′ − E0 → S − E.
Combine β1 with β : E0 → E to produce an injection γ : E′ → S. Thus γ(a + (f )) = a
for a in E.

Next we use the map γ to make J = Im(γ) into a field, by defining γ(x1) + γ(x2) =
γ(x1 + x2) and γ(x1)γ(x2) = γ(x1x2). Then γ : E′ → J is an isomorphism of fields and
γ(E0) = E. Since E′ is algebraic over E0, it follows that J is algebraic over E and there-
fore J ∈ 𝒦. However, E ̸= J since E0 ̸= E′, which contradicts the maximality of E and
completes the proof.

While some details in the above proof are tricky, the essential idea is clear: build a
largest algebraic extension of F by using Zorn’s Lemma. It can be shown, although we
shall not do so here, that every field has a unique algebraic closure up to isomorphism
– see [8] for a proof.

For example, the algebraic closure of ℚ is the field of all algebraic numbers. An-
other example of interest is the algebraic closure of the Galois field GF(p), which is an
algebraically closed field of prime characteristic p.

Exercises (11.1).
(1) Give examples of infinite field extensions ofℚ and of ℤp.
(2) Let a = 2

1
p where p is a prime. Prove that (ℚ(a) : ℚ) = p and that ℚ(a) has only

two subfields.
(3) Let n be an arbitrary positive integer. Construct an algebraic number field of de-

gree n overℚ.
(4) Let a be a root of t6 − 4t + 2 ∈ ℚ[t]. Prove that (ℚ(a) : ℚ) = 6.
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(5) Let p and q be distinct primes and set F = ℚ(√p,√q). Establish each of the fol-
lowing statements.
(i) (F : ℚ) = 4;
(ii) F = ℚ(√p +√q);
(iii) the irreducible polynomial of√p +√q overℚ is t4 − 2(p + q)t2 + (p − q)2.

(6) Let K be a finite extension of a field F and let F1 be a subfield such that F ⊆ F1 ⊆ K.
Prove that F1 is finite over F and K is finite over F1.

(7) Prove that every non-constant element ofℚ{t} is transcendent overℚ.
(8) Let a = 3

1
2 − 2

1
3 . Show that (ℚ(a) : ℚ) = 6 and find Irrℚ(a).

(9) Let p be a prime and put a = e2πi/p, a complex primitive pth root of unity. Prove
that Irrℚ(a) = 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1 and (ℚ(a) : ℚ) = p − 1.

11.2 Constructions with ruler and compass

One of the most striking applications of field theory is to solve certain famous geo-
metric problems dating back to classical Greece. Each problem asks whether it is pos-
sible to construct a geometric object by using ruler and compass only. Here one has
to keep in mind that to the ancient Greeks only mathematical objects constructed by
suchmeans had any reality, since Greekmathematics was based on geometry. Wewill
describe four constructional problems and then translate them to field theory.
(i) Duplication of the cube. A cube of side one unit is given. The problem is to con-

struct a cube with double the volume using ruler and compass. This problem is
said to have arisen when the oracle at Delphi commanded the citizens of Delos to
double the size of an altar to the god Apollo which had the shape of a cube.

(ii) Squaring the circle. Here the question is whether it is possible to construct, using
ruler and compass, a square whose area equals that of a circle with radius one
unit? This is perhaps the most notorious of the ruler and compass problems. It is
really a question about the nature of the number π.

(iii) Trisection of an angle. Another notorious problem asks whether it is always pos-
sible to trisect a given angle using ruler and compass.

(iv) Construction of a regular n-gon. Here the problem is to construct by ruler and com-
pass a regular n-sided plane polygon with side equal to one unit where n ≥ 3.

These problems defied the efforts of mathematicians formore than 2000 years despite
many ingenious attempts to solve them. It was only with the rise of abstract algebra
in the 18th and 19th centuries that it was realized that all four problems had negative
solutions.
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Constructibility
Our first move must be to formulate precisely what is meant by a ruler and com-
pass construction. Let S be a set of points in the plane containing the points O(0,0)
and I(1,0); note that O and I are one unit apart. A point P in the plane is said to
be constructible from S by ruler and compass if there is a finite sequence of points
P0,P1, . . . ,Pn = P with P0 in S where Pi+1 is obtained from P0,P1, . . . ,Pi by a procedure
of one of the following types:

(i) draw a straight line joining two of the points P0, P1, . . . , Pi;
(ii) draw a circle with center one of P0, P1, . . . , Pi and radius equal to the distance

between two of these points;
(iii) then Pi+1 is to be a point of intersection of two lines, of a line and a circle or of two

circles, where the lines and circles are as described in (i) and (ii).

Finally, a real number r is said to be constructible from S if the point (r,0) is con-
structible from S. The reader will realize that these definitions are designed to ex-
press precisely our intuitive idea of a construction by ruler and compass. Each of the
four problems asks whether a certain real number is constructible from a given set of
points. For example, in the problem of duplicating a cube of side 1, take S to be the
set {O, I}: the question is whether 3√2 is constructible from S.

We begin by showing that the real numbers which are constructible from a given
set of points form a field: this explains why field theory is relevant in constructional
problems.

(11.2.1). Let S be a set of points in the plane containing O(0,0) and I(1,0) and let S∗ be
the set of all real numbers constructible from S. Then S∗ is a subfield ofℝ. Also√a ∈ S∗

whenever a ∈ S∗ and a > 0.

Proof. This is entirely elementary plane geometry. Let a, b ∈ S∗; we have first to prove
that a ± b, ab and a−1 (if a ̸= 0) belong to S∗. Keep in mind here that by hypothesis a
and b are constructible.

To constructa±b, where saya ≥ b, draw the circlewith centerA(a,0) and radiusb.
This intersects the x-axis at the points B(a−b,0) and C(a+b,0). Hence a+b and a−b
are constructible from S and thus belong to S∗.

O ∙ ∙
B(a − b,0)

∙
A(a,0)

∙
C(a + b,0)

x?

It is a little harder to construct ab. Assume that a ≤ 1 ≤ b: in other cases the argument
is similar. Let A and B be the points (a,0) and (b,0). Mark the point B′(0, b) on the
y-axis; thus |OB′| = |OB|. Draw the line IB′ and then draw AC′ parallel to IB′ with C′

on the y-axis: elementary geometry tells us how to do this. Mark C on the x-axis so that
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|OC| = |OC′|.

O
∙
A

∙
C

∙
I

∙
B

x

y

∙C′

∙B′

?

?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

??

By similar triangles |OC′|/|OB′| = |OA|/|OI|; therefore |OC| = |OC′| = |OA| ⋅ |OB′| = ab.
Hence ab is constructible and ab ∈ S∗.

Next we showhow to construct a−1: wewill assume that a > 1, the case a < 1 being
similar. Let A be the point (a,0) and mark the point I′(0, 1) on the y-axis. Draw the
line IC′ parallel to AI′ with C′ on the y-axis. Mark C on the x-axis so that |OC| = |OC′|.
Then |OC′|/|OI′| = |OI|/|OA|, so |OC| = |OC′| = a−1. Hence a−1 is constructible and so
belongs to S∗.

O
∙

∙C′

∙I′

∙
C
∙
I

∙
A

x

y

?

?

?
???

??

??
???

???
????

Finally, let a ∈ S∗ where a > 0. We have to show how to construct the point D(√a,0):
it will then follow that √a ∈ S∗. We can assume that a > 1 – otherwise replace a by
a−1. First mark the point A(a + 1,0). Let C be the mid-point of the line segment OA;
thus C is the point ( a+12 ,0) and it is clear how to construct this. Now draw the circle
with center C and radius |OC| = a+1

2 , (not shown). Then draw the perpendicular to the
x-axis through the point I(1,0) and let it meet the upper semicircle at D1. Mark D on
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the x-axis so that |OD| = |ID1|.

∙
O

∙
I
∙
D
∙
C

∙
A

∙
D1

x

y

?

?

?
?
?
?
?
?
?
??

Then

|OD|2 = |ID1|
2 = |D1C|

2 − |IC|2 = (a + 1
2
)
2
− (

a − 1
2
)
2
= a.

Hence |OD| = √a and√a is constructible.

It is now time to explain the field theoretic aspect of constructibility.

(11.2.2). Let S be a set of points in the plane containing O(0,0) and I(1,0), and denote
by F the subfield of ℝ generated by the coordinates of the points of S. Let a be any real
number. If a is constructible from S, then (F(a) : F) is equal to a power of 2.

Proof. Let P be the point (a,0). Since a is constructible from S, there is by definition a
sequenceof pointsP0,P1, . . . ,Pn = PwithP0 ∈ S,wherePi+1 is obtained fromP0,P1, . . . ,
Pi by intersecting lines and circles as explained above. Let Pi be the point (ai, bi) and
put Ei = F(a1, . . . , ai, b1, . . . , bi) and E0 = F. Then F(a) ⊆ En = E, say. If Pi+1 is the point
of intersection of two lines whose equations have coefficients in Ei, then ai+1 and bi+1
are in Ei, as can be seen by solving two linear equations, i. e., Ei = Ei+1.

If Pi+1 is a point of intersection of a line and a circle whose equations have co-
efficients in Ei, then ai+1 is a root of a quadratic equation over Ei. If Pi+1 is a point
of intersection of two circles over Ei, subtract the equations of the circles (in standard
form) to realize Pi+1 as a point of intersection of a line and a circle. Hence in either case
(Ei(ai+1) : Ei) ≤ 2. Likewise (Ei(bi+1) : Ei) ≤ 2 and therefore (Ei(ai+1)(bi+1) : Ei(ai+1)) ≤ 2.
Note that Ei+1 = Ei(ai+1)(bi+1). It follows via (11.1.7) that

(Ei+1 : Ei) = (Ei(ai+1)(bi+1) : Ei(ai+1)) ⋅ (Ei(ai+1) : Ei),

which divides 4.
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By (11.1.7) again

(E : F) =
n−1
∏
i=0
(Ei+1 : Ei).

Therefore (E : F) equals a power of 2, as does (F(a) : F), because
(E : F) = (E : F(a))(F(a) : F)).

The first two ruler and compass problems can now be resolved.

(11.2.3). It is impossible to duplicate a cube of side 1 or to square a circle of radius 1 by
ruler and compass.

Proof. Let S consist of the points O(0,0) and I(1,0). In the case of the cube, con-
structibility would imply that (ℚ( 3√2) : ℚ) is a power of 2 by (11.2.2). But (ℚ( 3√2) : ℚ) =
3 since Irrℚ(

3√2) = t3 − 2, a contradiction.
If itwerepossible to square the circle,√πwouldbe constructible from S. By (11.2.2)

this implies that (ℚ(√π) : ℚ) is a power of 2, as is (ℚ(π) : ℚ), sinceℚ(π) ⊆ ℚ(√π). But
in fact π is transcendental overℚ by a famous result of Lindemann,1 so (ℚ(π) : ℚ) is
actually infinite. Therefore it is impossible to square the circle.

With a greater effort we can determine which angles can be trisected.

(11.2.4). An angle α can be trisected by ruler and compass if and only if the polynomial
4t3 − 3t − cos α is reducible over the fieldℚ(cos α).

Proof. In this problem the angle α is given, so we can construct its cosine by drawing
a right angled triangle with angle α and hypotenuse 1. Let S consist of the points O,
I and (cos α,0). Let F = ℚ(cos α) and put θ = 1

3α. The problem is to decide if θ, or
equivalently cos θ, is constructible from S. If this is the case, (F(cos θ) : F) must be a
power of 2.

Recall the well-known trigonometric identity cos 3θ = 4 cos3 θ − 3 cos θ. Hence
4 cos3 θ − 3 cos θ − cos α = 0, so that the polynomial f = 4t3 − 3t − cos α ∈ F[t] has
cos θ as a root. Thus IrrF(cos θ) has degree at most 3. If θ is constructible, IrrF(cos α)
has degree a power of 2 and therefore f is reducible.

Conversely, suppose that f is reducible, so that cos θ is a root of a linear or
quadratic polynomial over F; thus cos θ has the form u + v√w where u, v,w ∈ F
and w ≥ 0. Let S∗ be the set of real numbers constructible from S. Since F ⊆ S∗, it fol-
lows from (11.2.1) that√w ∈ S∗. Hence cos θ = u + v√w ∈ S∗ and cos θ is constructible
from S, as required.

1 Carl Ferdinand von Lindemann (1852–1939).
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Example (11.2.1). The angle π
4 is trisectible by ruler and compass.

Since cos π
4 =

1
√2 , the polynomial f in (11.2.4) equals 4t3 − 3t − 1

√2 , which has the
root − 1

√2 in ℚ(cos(π/4)) = ℚ(√2). Hence f is reducible. Now apply (11.2.4) to get the
result.

Example (11.2.2). The angle π
3 is not trisectible by ruler and compass.

In this case cos π
3 =

1
2 and f = 4t3 − 3t − 1

2 . This polynomial is irreducible over
ℚ( 12 ) = ℚ since it has no rational roots. Hence

π
3 is not trisectible.

A complete discussion of the problem of constructing a regular n-gon calls for
some Galois theory and will be deferred until (12.3.7).

Exercises (11.2).
(1) Complete the proof that ab ∈ S∗ in (11.2.1) by dealing with the cases 1 ≤ a ≤ b,

and a ≤ b ≤ 1.
(2) Show that a cube of side a can be duplicated if and only if 2a is the cube of a

rational number.
(3) Consider the problem of doubling the surface area of a cube of side 1. Can a cube

with double the surface area be constructed by ruler and compass?
(4) Determine which of the following angles are trisectible: (i) π

2 ; (ii)
π
6 ; (ii)

π
12 .

(5) Letpbeaprimeand suppose thata = e2πi/p is constructible fromO(0,0)and I(1,0).
Show that p must have the form 22

c
+ 1 for some integer c ≥ 0, i. e., p is a Fermat

prime. (The known Fermat primes occur for 0 ≤ c ≤ 4.)

11.3 Finite fields

It was shown in (8.2.17) that the order of a finite field is always a power of a prime.More
precisely, if F is a finite field of prime characteristic p and (F : ℤp) = n, then |F| = pn.
Our main purpose in this section is to show that there are fields with arbitrary prime
power order and that fields with the same order are isomorphic.

We begin by identifying finite fields with the splitting fields of certain polynomi-
als. Let F be a field of order q = pn where p is a prime, namely the characteristic of F.
The multiplicative group U(F) has order q − 1 and Lagrange’s Theorem shows that the
order of every element of U(F) divides q − 1. This means that aq−1 = 1 for every a ̸= 0
in F, so aq − a = 0. Since the zero element also satisfies the last equation, every ele-
ment of F is a root of the polynomial tq − t ∈ ℤp[t]. But tq − t cannot have more than
q roots, so we conclude that the elements of F constitute all the roots of tq − t: thus F
is a splitting field of tq − t.

The foregoing discussion suggests that the existence of finite fields can be estab-
lished by using splitting fields, a hope that is borne out by the next result.
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(11.3.1). Let q = pn where p is a prime and n > 0. Then:
(i) a splitting field of the polynomial tq − t ∈ ℤp[t] has order q;
(ii) if F is any field of order q, then F is a splitting field of tq − t over ℤp.

Proof. We have already proved (ii), so consider the assertion (i) and write F for a split-
ting field of tq − t. Define S = {a ∈ F | aq = a}, i. e., the set of roots of tq − t in F. First
we show that S is a subfield of F. For this purpose let a, b ∈ S. Recall that p divides (pi)
if 1 ≤ i < p by (2.3.3); therefore the Binomial Theorem for the field F takes the form
(a ± b)p = ap ± bp, (see Exercise (6.1.6)). By repeatedly taking the pth power of both
sides we conclude that:

(a ± b)q = aq ± bq = a ± b,

which shows that a ± b ∈ S. Also (ab)q = aqbq = ab and (a−1)q = (aq)−1 = a−1 if a ̸= 0.
It follows that ab ∈ S and a−1 ∈ S. Therefore S is a subfield of F.

Next the roots of the polynomial tq − t are all different. For (tq − t)′ = qtq−1 − 1 = −1,
so that tq − t and its derivative (tq − t)′ are relatively prime; therefore by (7.4.7) the
polynomial tq − t has no repeated roots. It follows that |S| = q. Finally, since F is a
splitting field of tq − t, it is generated byℤp and the roots of tq − t, that is byℤp and S.
Therefore F = S and |F| = q.

Our next objective is to show that fields with the same finite order are isomorphic.
Since every finite field has been identified as a splitting field, our strategy is to prove
the general result that any two splitting fields of a given polynomial are isomorphic,
plainly a result of independent interest. In proving this we employ a useful lemma
which shows how to extend an isomorphism between two given fields to extensions
of these fields.

(11.3.2). Let E = F(x) andE∗ = F∗(x∗) be simple algebraic extensions of fields F and F∗.
Further assume there is an isomorphism α : F → F∗ such that α(IrrF(x)) = IrrF∗ (x∗).
Then there is an isomorphism θ : E → E∗ such that θ|F = α and θ(x) = x∗.

In the statement of this result α has been extended in the natural way to a ring
isomorphism α : F[t]→ F∗[t] by the rule α(∑mi=1 ait

i) = ∑mi=1 α(ai)t
i where ai ∈ F.

Proof of (11.3.2). Put f = IrrF(x) and f ∗ = IrrF∗ (x∗); then by hypothesis α(f ) = f ∗. This
fact permits us to define a mapping

θ0 : F[t]/(f )→ F∗[t]/(f ∗)

by the rule θ0(g + (f )) = α(g) + (f ∗); a simple check shows this to be a well defined
isomorphism. Next by (11.1.4) we have F(x) ≃ F[t]/(f ) and F∗(x∗) ≃ F∗[t]/(f ∗) via the
respective assignments g(x) → g + (f ) and g∗(x∗) → g∗ + (f ∗). Composition with θ0
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yields an isomorphism θ : F(x)→ F∗(x∗)where θ(g(x)) = α(g(x∗)), as indicated in the
sequence of maps

F(x)→ F[t]/(f )
θ0→ F∗[t]/(f ∗)→ F∗(x∗).

The uniqueness of splitting fields is a special case of the next result.

(11.3.3). Let α : F → F∗ be an isomorphism of fields, and let f ∈ F[t] and f ∗ = α(f ) ∈
F∗[t]. If E and E∗ are splitting fields of f and f ∗ respectively, there is an isomorphism
θ : E → E∗ such that θ|F = α.

Proof. Argue by induction on n = deg(f ). If n = 1, then E = F, E∗ = F∗ and θ = α.
Assume that n > 1. Let a be a root of f in E and put g = IrrF(a). Choose any root a∗

of g∗ = α(g) ∈ F∗[t]. Then g∗ = IrrF∗ (a∗). By (11.3.2)we canextendα to an isomorphism
θ1 : F(a)→ F∗(a∗) such that θ1|F = α and θ1(a) = a∗.

Now regard E and E∗ as splitting fields of the polynomials f /(t −a) and f ∗/(t −a∗)
over F(a) and F∗(a∗) respectively. By induction on n we can extend θ1 to an isomor-
phism θ : E → E∗; furthermore θ|F = θ1|F = α, as required.

Corollary (11.3.4). Let f be a non-constant polynomial over a field F. Then up to isomor-
phism f has a unique splitting field.

This follows from (11.3.3) on taking F = F∗ and α to be the identity map. Since any
finite field of order q is a splitting field of tq−t, wededuce from (11.3.4) the fundamental
theorem:

(11.3.5) (E. H. Moore2). Finite fields of the same order are isomorphic.

It is customary to write

GF(q)

for the essentially unique field of order q: here “GF” stands for Galois field.
It is an important property of finite fields that their multiplicative groups are

cyclic. More generally we prove:

(11.3.6). If F is any field, every finite subgroup of its multiplicative group U(F) is cyclic.
Thus if F has finite order q, then U(F) is a cyclic group of order q − 1.

Proof. Let X be a finite subgroup of U(F). Then X is a finite abelian group, so by the
Primary Decomposition Theorem (9.2.3) we can write X = P1 × P2 × ⋅ ⋅ ⋅ × Pk where Pi
is a finite pi-group and p1, p2, . . . , pk are different primes. If each Pi is cyclic, then X is
cyclic by Example (4.2.5). Therefore we may assume that X is a finite p-group with p a
prime: let |X| = pm.

2 Eliakim Hastings Moore (1862–1932).
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Choose an element y with maximum order in X, say pn. Thus n ≤ m. Now every
element x ∈ X satisfies xp

n
= 1 andmust therefore be a root of tp

n
− 1. Hence pm = |X| ≤

pn. It follows that n = m and X has order pn, which implies that X = ⟨y⟩.

This result provides anotherway to represent the elements of a field F of order q. If
U(F) = ⟨a⟩, then F = {0, 1, a, a2, . . . , aq−2} where aq−1 = 1. This representation is useful
for computational purposes.

Corollary (11.3.7). Every finite field F is a simple extension of its prime subfield.

For if U(F) = ⟨a⟩, then clearly F = ℤp(a) where p is the characteristic of F.

Example (11.3.1). Let F = GF(27) be the Galois field of order 27. Exhibit F as a simple
extension of GF(3) and find a generator of U(F).

The field F may be realized as the splitting field of the polynomial t27 − t, but it
is simpler to choose an irreducible polynomial of degree 3 over GF(3), for example
f = t3 − t + 1. For then F = (GF(3)[t])/(f ) is a field of order 33, which by (11.3.5) must
be GF(27). Put x = t + (f ). Then, because f has degree 3, each element b of F has the
unique form b = a0 + a1t + a2t2 + (f ), i. e., b = a0 + a1x + a2x2. Thus F = GF(3)(x) and
IrrGF(3)(x) = f = t3 − t + 1.

Nextwe argue thatU(F) = ⟨x⟩. Since |U(F)| = 26, it is enough to prove that |x| = 26.
Certainly |x| divides 26, so it suffices to show that x2 ̸= 1 and x13 ̸= 1. The first statement
is true because f ∤ t2 − 1. To show that x13 ̸= 1, use the relation x3 = x − 1 to compute
x12 = (x − 1)4 = x2 + 2; thus x13 = −1.

Exercises (11.3).
(1) Let F be a field of order pm where p is a prime and let K a subfield of F. Prove that
|K| = pd where d dividesm.

(2) If F is a field of order pm and d is a positive divisor of m, show that F has exactly
one subfield of order pd.

(3) Find an element of order 7 in the multiplicative group ofℤ2[t]/(t3 + t + 1) ≃ GF(8).
(4) Find elements of order 3, 5 and 15 in the multiplicative group ofℤ2[t]/(t4 + t + 1) ≃

GF(16).
(5) Prove that tp

n
− t ∈ GF(p)[t] is the product of the distinct monic irreducible poly-

nomials with degree dividing n.
(6) Let ψ(n) denote the number of monic irreducible polynomials of degree n in

GF(p)[t] where p is a fixed prime.
(i) Prove that pn = ∑d|n dψ(d) where the sum is over all positive divisors d of n.
(ii) Deduce that ψ(n) = 1

n ∑d|n μ(d)p
n/d where μ is the Möbius function,3 which is

defined as follows: μ(1) = 1, μ(n) equals (−1)r where r is the number of distinct
prime divisors of n if n is square-free, and μ(n) = 0 otherwise. (You will need

3 August Ferdinand Möbius (1790–1868).
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theMöbius Inversion Formula: if f (n) = ∑d|n g(d), then g(n) = ∑d|n μ(d)f (n/d).
For an account of the Möbius function see Section 12.2 below.

(7) Find allmonic irreducible polynomials over GF(2)with degrees 2, 3, 4 and 5, using
Exercise (11.3.6) to check your answer.
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12 Galois Theory

In this chapter the Galois group of a field extension is introduced. This will establish
the critical link between field theory and group theory in which subfields correspond
to subgroups of the Galois group. A major application is to the classical problem of
solving polynomial equations by radicals, which is an excellent illustration of the rich
rewards that can be reaped when connections are made between different mathemat-
ical theories.

12.1 Normal and separable extensions

Webegin by introducing two special types of field extension, leading up to the concept
of a Galois extension. Let E be an extension of a field F with F ⊆ E. Then E is said to be
normal over F if it is algebraic over F and if every irreducible polynomial in F[t] having
a root inE has all its roots inE; thus the polynomial is a product of linear factors overE.

Example (12.1.1). Consider the field E = ℚ(a) where a = 21/3. Then E is algebraic
over ℚ since (E : ℚ) is finite, but it is not normal over ℚ. This is because t3 − 2 has
one root a in E but not the complex roots aω, aω2 where ω = e2πi/3.

Example (12.1.2). Let E be an extension of a field F with (E : F) = 2. Then E is normal
over F.

In the first place E is algebraic over F. Suppose that x ∈ E is a root of some monic
irreducible polynomial f ∈ F[t]. Then f = IrrF(x) and deg(f ) = (F(x) : F) ≤ (E : F) = 2,
which means that deg(f ) = 1 or 2. In the first case x is the only root of f . Suppose that
deg(f ) = 2 with say f = t2 + at + b and a, b ∈ F; if x′ is another root of f in its splitting
field, then xx′ = b ∈ F, so that x′ ∈ E. Therefore E is normal over F.

That there is a close connection between normal extensions and splitting fields of
polynomials is demonstrated by the following fundamental result.

(12.1.1). Let E be a finite extension of a field F. Then E is normal over F if and only if E
is the splitting field of some polynomial in F[t].

Proof. First of all assume that E is normal over F. Since (E : F) is finite, we can write
E = F(x1, x2, . . . , xk). Let fi = IrrF(xi). Now fi has the root xi in E, so by normality of the
extension all roots of fi are in E. Put f = f1f2 ⋅ ⋅ ⋅ fk ∈ F[t]. Then f has all its roots in E
and these roots together with F generate the field E. Hence E is the splitting field of f .

The converse is harder to prove. Suppose that E is the splitting field of some f ∈
F[t], and denote the roots of f by a1, a2, . . . , ar, so that E = F(a1, a2, . . . , ar). Let g be
an irreducible polynomial over F with a root b in E. Furthermore let K be the splitting
field of g over E. Then F ⊆ E ⊆ K. Let b∗ ∈ K be another root of g. Our task is to show
that b∗ ∈ E.

https://doi.org/10.1515/9783110691160-012
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Since g = IrrF(b) = IrrF(b∗), there is an isomorphism θ0 : F(b) → F(b∗) such
that θ0(b) = b∗ and the restriction of θ0 to F is the identity map: here we have applied
(11.3.2). Put g1 = IrrF(b)(a1) and note that g1 divides f over F(b) since f (a1) = 0. Now
consider g∗1 = θ0(g1) ∈ F(b

∗)[t]. Then g∗1 divides θ0(f ) = f over F(b
∗). Hence the roots

of g∗1 are among a1, a2, . . . , ar .
Let ai1 be any root of g∗1 . By (11.3.2) once again there is an isomorphism

θ1 : F(b, a1)→ F(b∗, ai1 ) such that θ1(a1) = ai1 and (θ1)|F(b1) = θ0. Next write g2 =
IrrF(b,a1)(a2) and g∗2 = θ1(g2). The roots of g∗2 are among a1, a2, . . . , ar, by the ar-
gument used above. Let ai2 be any root of g∗2 . Now extend θ1 to an isomorphism
θ2 : F(b, a1, a2)→ F(b∗, ai1 , ai2 ) such that θ2(a2) = ai2 and (θ2)|F(b,a1) = θ1.

After r applications of this argument we will have an isomorphism

θ : F(b, a1, a2, . . . , ar)→ F(b∗, ai1 , ai2 , . . . , air )

such that θ(aj) = aij , θ(b) = b
∗ and θ|F is the identity map. But b ∈ E = F(a1, a2, . . . , ar)

by hypothesis, so b∗ = θ(b) ∈ F(ai1 , ai2 , . . . , air ) ⊆ E, as required.

Separable polynomials
Contrary to what one might think, it is possible for an irreducible polynomial to have
repeated roots. This phenomenon is called inseparability.

Example (12.1.3). Let p be a prime and let f denote the polynomial tp − x in ℤp{x}[t]:
here x and t are distinct indeterminates and ℤp{x} is the field of rational functions
in x overℤp. Then f is irreducible overℤp[x] by (7.4.9) since x is clearly an irreducible
element of ℤp[x]. Gauss’s Lemma (7.3.7) shows that f is irreducible over ℤp{x}. Let a
be a root of f in its splitting field. Then f = tp − ap = (t − a)p since (pi) ≡ 0 (mod p) if
0 < i < p. It follows that f has all its roots equal to a.

An irreducible polynomial f over a field F is said to be separable if all its roots are
different, i. e., f is a product of distinct linear factors over its splitting field. The exam-
ple above shows that tp −x is inseparable overℤp{x}, a field with prime characteristic.
The criterion which follows shows that the phenomenon of inseparability can only
occur for fields of prime characteristic.

(12.1.2). Let f be an irreducible polynomial over a field F.
(i) If char(F) = 0, then f is separable.
(ii) If char(F) = p > 0, then f is inseparable if and only if f = g(tp) for some irreducible

polynomial g over F.

Proof. There is no loss in supposing f to be monic. Assume first that char(F) = 0 and
let a be a root of f in its splitting field. If a has multiplicity greater than 1, then (7.4.7)
shows that t − a | f ′ where f ′ is the derivative of f . Thus f ′(a) = 0. Writing f = a0 +
a1t + ⋅ ⋅ ⋅ + antn, we have f ′ = a1 + 2a2t + ⋅ ⋅ ⋅ + nantn−1. But f = IrrF(a), so f divides f ′.
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Since deg(f ′) < deg(f ), this can only mean that f ′ = 0, i. e., iai = 0 for all i > 0 and
so ai = 0. Thus f is constant, which is impossible. Therefore a is not a repeated root
and f is separable.

Now assume that char(F) = p > 0 and again let a be a multiple root of f . Arguing
as before, we have iai = 0 for all i > 0. In this case all we can conclude is that ai = 0
if p does not divide i. Hence

f = a0 + apt
p + a2pt

2p + ⋅ ⋅ ⋅ + arpt
rp

where rp is the largest positive multiple of p not exceeding n. It follows that f = g(tp)
where g = a0 + apt + ⋅ ⋅ ⋅ + arptr . Notice that g is irreducible since if it were reducible,
so would f be.

Conversely, assume that f = g(tp) where g = ∑ri=0 ait
i ∈ F[t]. We claim that f

is inseparable. Let bi be a root of tp − ai in the splitting field E of the polynomial
(tp − a1)(tp − a2) ⋅ ⋅ ⋅ (tp − ar). Then ai = b

p
i and hence

f =
r
∑
i=0

ait
ip =

r
∑
i=0

bpi t
ip = (

r
∑
i=0

bit
i)

p

,

from which it follows that every root of f has multiplicity at least p. Hence f is insep-
arable.

Separable extensions
Let E be an extension of a field F. An element x of E is said to be separable over F if x
is algebraic and its multiplicity as a root of IrrF(x) is 1. If x is algebraic but insepara-
ble, the final argument of the proof of (12.1.2) shows that its irreducible polynomial is
a prime power of a polynomial, so that all its roots have multiplicity greater then 1.
Therefore x ∈ E is separable over F if and only if IrrF(x) is a separable polynomial.

If every element ofE is separable overF, thenE is called a separable extensionofF.
Finally, a fieldF is said to beperfect if every algebraic extension ofF is separable. Since
any irreducible polynomial over a field of characteristic 0 is separable, all fields of
characteristic0 are perfect. There is a simple criterion for a field of prime characteristic
to be perfect.

(12.1.3). Let F be a field of prime characteristic p. Then F is perfect if and only if F = Fp

where Fp is the subfield {ap | a ∈ F}.

Proof. In the first place Fp is a subfield of F since (a ± b)p = ap ± bp, (a−1)p = (ap)−1

and (ab)p = apbp for a, b ∈ F. Now assume that F = Fp. If f ∈ F[t] is irreducible but
inseparable, then f = g(tp) for some g ∈ F[t] by (12.1.2). Let g = ∑ri=0 ait

i; then ai = b
p
i
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for some bi ∈ F since F = Fp. Therefore

f =
r
∑
i=0

ait
pi =

r
∑
i=0

bpi t
pi = (

r
∑
i=0

bit
i)

p

,

which is impossible since f is irreducible. Thus f is separable. This shows that if E is
an algebraic extension of F, then it is separable. Hence F is a perfect field.

Conversely, assume that F ̸= Fp and choose a ∈ F − Fp. Consider the polynomial
f = tp−a. First we claim that f is irreducible over F. Suppose this is false, so that f = gh
where g and h in F[t] are monic with smaller degrees than f . Now f = tp − a = (t − b)p

where b is a root of f in its splitting field, so it follows that g = (t − b)i and h = (t − b)j

where i + j = p and 0 < i, j < p. Since gcd{i, p} = 1, we can write 1 = iu + pv for
suitable integers u, v. Therefore b = (bi)u(bp)v = (bi)uav ∈ F since bi ∈ F, and hence
a = bp ∈ Fp, a contradiction. Thus f is irreducible and by (12.1.2) it is inseparable. It
follows that F cannot be a perfect field.

(12.1.4). Every finite field is perfect.

Proof. Let F be a field of order pm with p a prime. Every element f of F satisfies the
equation tp

m
− t = 0 by (11.3.1). Hence F = Fp and F is perfect.

On the other hand, the field F = ℤp{t} is not perfect because Fp = ℤp{tp} is a
proper subfield of F.

It is desirable to have a criterion for a finite extension of a field of prime charac-
teristic to be separable.

(12.1.5). Let E be a finite extension of a field F with prime characteristic p. Then E is
separable over F if and only if E = F(Ep).

Proof. Assume that E is separable over F and let a ∈ E. Writing f = IrrF(ap)(a), we
observe that f divides tp − ap = (t − a)p. Since f is a separable polynomial, it follows
that f = t − a and thus a ∈ F(ap) ⊆ F(Ep).

Conversely, assume that E = F(Ep) and let x ∈ E; we need to prove that f = IrrF(x)
is separable over F. If this is false, then f = g(tp) for some g = ∑ki=0 ait

i ∈ F[t]. Since
0 = g(xp) = a0+a1xp+⋅ ⋅ ⋅+akxkp, the field elements 1, xp, . . . , xkp are linearly dependent
over F. On the other hand, k < kp = deg(f ) = (F(x) : F), so that 1, x, . . . , xk must be
linearly independent over F. Extend {1, x, . . . , xk} to an F-basis of E, say {y1, y2, . . . , yn},
using (8.2.6). Thus n = (E : F).

We have E = Fy1 + Fy2 + ⋅ ⋅ ⋅ + Fyn and thus Ep ⊆ Fy
p
1 + Fy

p
2 + ⋅ ⋅ ⋅ + Fy

p
n . Therefore

E = F(Ep) = Fyp1 + Fy
p
2 + ⋅ ⋅ ⋅ + Fy

p
n . It follows that y

p
1 , y

p
2 , . . . , y

p
n are F-linearly inde-

pendent since n = (E : F). This shows that 1, xp, . . . , xkp are F-linearly independent, a
contradiction.

Corollary (12.1.6). Let E = F(a1, a2, . . . , ak) be an extension of a field F such that each
ai is separable over F. Then E is separable over F.
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Proof. We may assume that char(F) = p > 0. Since ai is separable over F, we have
ai ∈ F(a

p
i ), as in the first paragraph of the preceding proof. Hence ai ∈ F(Ep) and

E = F(Ep). Therefore E is separable over F by (12.1.5).

Notice the consequence of the last result: the splitting field of a separable polyno-
mial is a separable extension.

We conclude this section by addressing a question which may already have oc-
curred to the reader: when is a finite extension E of F a simple extension, i. e., when
is E = F(x) for some x? An important result on this problem is:

(12.1.7) (The Theorem of the Primitive Element). Let E be a finite separable extension
of a field F. Then there is an element a such that E = F(a).

Proof. The proof is easy when E is finite. For then E − {0} is a cyclic group by (11.3.6),
generated by a, say. Hence E = {0, 1, a, . . . , aq−1} where q = |E|, and thus E = F(a).

Fromnow on assume E is infinite. Since (E : F) is finite, it follows that F is infinite.
Next E = F(u1, u2, . . . , un) for some ui in E. The proof proceeds by induction on n. If
n > 2, then F(u1, u2, . . . , un−1) = F(v) for some v by induction hypothesis, and hence
E = F(v, un) = F(a) for some a by the case n = 2. Therefore it is enough to deal with the
case n = 2. From now on write

E = F(u, v).

We introduce the polynomials f = IrrF(u) and g = IrrF(v); these are separable
polynomials since E is separable over F. Let the roots of f and g be u = x1, x2, . . . , xm
and v = y1, y2, . . . , yn respectively, in the splitting field of fg over F. Here all the xi are
different, as are all the yj. From this we conclude that for j ̸= 1 there is at most one
element zij in F such that

u + zijv = xi + zijyj,

namely zij = (xi − u)(v − yj)−1. Since F is infinite, it is possible to choose an element z
in F which is different from each of these finitely many zij. Then u + zv ̸= xi + zyj if
(i, j) ̸= (1, 1).

With this choice of z, put a = u + zv ∈ E. We will show that E = F(a). Since
g(v) = 0 = f (u) = f (a − zv), the element v is a common root of the polynomials g and
f (a − zt) ∈ F(a)[t]. Now these polynomials have no other common roots. For if yj were
one, then a−zyj = xi for some i, which implies that u+zv = a = xi +zyj; this is contrary
to the choice of z. It follows that t − v is the unique (monic) gcd of g and f (a − zt)
in E[t]. The gcd of these polynomials actually lies in the subring F(a)[t]: for the gcd
can be computed by using the Euclidean Algorithm, which is valid for F(a)[t] since it
depends only on the Division Algorithm. Therefore v ∈ F(a) and u = a − zv ∈ F(a).
Finally E = F(u, v) = F(a).
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Since an algebraic number field is by definition a finite extension ofℚ, we deduce:

Corollary (12.1.8). If E is an algebraic number field, then E = ℚ(a) for some a in E.

Exercises (12.1).
(1) Which of the following field extensions are normal? (i) ℚ(31/3) of ℚ; (ii) ℚ(31/3,

e2πi/3) ofℚ; (iii) ℝ ofℚ; (iv) ℂ of ℝ.
(2) Let F ⊆ K ⊆ E be field extensions with all degrees finite. If E is normal over F,

show that it is normal over K, but K need not be normal over F.
(3) Let f ∈ F[t] where char(F) = p > 0, and assume that f is monic with degree pn. If

all roots of f are equal in its splitting field, prove that f = tp
n
− a for some a ∈ F.

(4) Let E be a finite extension of a field F of characteristic p > 0 and assume that
(E : F) is not divisible by p. Prove that E is separable over F.

(5) Let F ⊆ K ⊆ E be field extensions with all degrees finite and E separable over F.
Prove that E is separable over K.

(6) Let F ⊆ K ⊆ E be field extensions with all degrees finite. If E is separable over K
and K is separable over F, show that E is separable over F.

(7) Let E be a finite separable extension of a field F. Prove that there is a finite exten-
sion K of E such that K is separable and normal over F. [Hint: use (12.1.7).]

12.2 Automorphisms of fields

Fields, like groups, possess automorphisms and these play a crucial role in field the-
ory. An automorphism of a field F is defined to be a bijective ring homomorphism
α : F → F; thus α(x+y) = α(x)+α(y) and α(xy) = α(x)α(y). The automorphisms of a field
are easily seen to form a group with respect to functional composition. If E is a field
extension of F, we interested in automorphisms of E over F, i. e., automorphisms of E
whose restriction to F is the identity function. For example, complex conjugation is
an automorphism ofℂ overℝ. The set of all automorphisms of E over F is a subgroup
of the group of automorphisms of E and is denoted by

Gal(E/F) :

this is the Galois1 group of E over F.
Suppose that E = F(a) is a simple algebraic extension of F with degree n. Then

every element of E has the form x = ∑n−1i=0 cia
i with ci ∈ F and thus α(x) = ∑n−1i=0 ciα(a)

i

where α ∈ Gal(E/F). If b is any root of the polynomial f = IrrF(a), then 0 = α(f (b)) =
f (α(b)), so that α(b) is also a root of f in E. Thus each α in Gal(E/F) gives rise to a
permutation π(α) of X, the set of distinct roots of f in E: this is given by π(α)(x) = α(x)

1 Évariste Galois (1811–1831).
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where x ∈ X. What is more, the mapping

π : Gal(E/F)→ Sym(X)

is evidently a group homomorphism; thus π is a permutation representation of
Gal(E/F) on X.

In fact π a faithful permutation representation of Gal(E/F) on X. For, if π(α) is the
identity permutation, then α(a) = a and hence α is the identity automorphism of E.
For this reason it is often useful to think of the elements of Gal(E/F) as permutations
of the set of distinct roots X.

Next let b be any element of X. Then F ⊆ F(b) ⊆ E = F(a), and also (F(b) : F) =
deg(f ) = (F(a) : F)by (11.1.4) since f = IrrF(b). It follows thatF(b) = F(a) = E by (11.1.7).
Since IrrF(a) = f = IrrF(b), we may apply (11.3.2) to produce an automorphism α of E
over F such that α(a) = b. Therefore the group Gal(E/F) acts transitively on the set X.
Finally, if α in Gal(E/F) fixes some b in X, then α must equal the identity since E =
F(b). This shows that Gal(E/F) acts regularly on X and it follows from (5.2.2) that |X| =
|Gal(E/F)|.

These conclusions are summed up in the following fundamental result.

(12.2.1). Let E = F(a) be a simple algebraic extension of a field F. Then Gal(E/F) acts
regularly on X, the set of distinct roots of IrrF(a) in E. Therefore

Gal(E/F)
 = |X| ≤ (E : F).

An extension of a field F which is finite, separable and normal is said to be Galois
over F. For such extensions we have:

Corollary (12.2.2). If E is a Galois extension of a field F with degree n, then Gal(E/F) is
isomorphic with a regular subgroup of Sn and

Gal(E/F)
 = n = (E : F).

For (12.1.7) shows that E = F(a) for some a ∈ E. Also IrrF(a) has n distinct roots
in E by normality and separability.

The Galois group of a polynomial
Suppose that f is a non-constant polynomial over a field F and let E be the splitting
field of f : recall from (11.3.4) that this field is unique up to isomorphism. Then the
Galois group of the polynomial f is

Gal(f ) = Gal(E/F).

This is always a finite group by (12.2.1). The basic properties of the Galois group are
given in the next result.
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(12.2.3). Let f be a non-constant polynomial of degree n over a field F. Then:
(i) Gal(f ) is isomorphic with a permutation group on the set of distinct roots of f ; thus
|Gal(f )| divides n!;

(ii) if all the roots of f are distinct, then f is irreducible if and only if Gal(f ) acts transi-
tively on the set of roots of f .

Proof. Let E denote the splitting field of f , so that Gal(f ) = Gal(E/F). Let α ∈ Gal(f ). If
a is a root of f in E, then f (α(a)) = α(f (a)) = 0, so that α(a) is also a root of f . If α fixes
every root of f , then α is the identity automorphism since E is generated by F and the
roots of f . Hence Gal(f ) is isomorphic with a permutation group on the set of distinct
roots of f . If there are r such roots, then r ≤ n and |Gal(f )| | r! | n!, so that |Gal(f )| | n!.

Next assume that all the roots of f are different. Let f be irreducible. If a and b are
roots of f , then IrrF(a) = f = IrrF(b), and by (11.3.2) there exists α ∈ Gal(f ) such that
α(a) = b. It follows that Gal(f ) acts transitively on the roots of f .

Conversely, suppose that Gal(f ) acts transitively on the roots of f , but f is re-
ducible; write f = g1g2 ⋅ ⋅ ⋅ gk where gi ∈ F[t] is irreducible and k ≥ 2. Let a1 and a2
be roots of g1 and g2 respectively. By transitivity there exists α ∈ Gal(f ) such that
α(a1) = a2. But 0 = α(g1(a1)) = g1(α(a1)) = g1(a2). Hence g2 = IrrF(a2) divides g1.
Therefore g22 divides f and the roots of f cannot all be different, a contradiction which
shows that f is irreducible.

Corollary (12.2.4). Let f be a separable polynomial of degree n over a field F and let E
be its splitting field. Then |Gal(f )| = (E : F) and |Gal(f )| is divisible by n.

Proof. Note that E is separable and hence Galois over F by (12.1.6). Hence |Gal(f )| =
|Gal(E/F)| = (E : F) by (12.2.2). Further f is irreducible by definition, so Gal(f ) acts
transitively on the n roots of f ; therefore n divides |Gal(f )| by (5.2.2).

Let us consider some polynomials whose Galois groups can be readily computed.

Example (12.2.1). Let f = t3 − 2 ∈ ℚ[t]. Then Gal(f ) ≃ S3.
To see this let E denote the splitting field of f ; thus E is Galois over ℚ. Then E =

ℚ(21/3, e2πi/3) and one can easily check that (E : ℚ) = 6, so that |Gal(f )| = 6. Since
Gal(f ) is isomorphic with a subgroup of S3, it follows that Gal(f ) ≃ S3.

In fact it is not difficult to write down the six elements of the group Gal(f ). Put
a = 21/3 andω = e2πi/3; thus E = ℚ(a,ω). Since E = ℚ(a)(ω) and t3−2 is the irreducible
polynomial of both a and aω overℚ(ω), there is an automorphism α of E overℚ such
that α(a) = aω, α(ω) = ω. Clearly α has order 3. Also α2(a) = aω2 and α2(ω) = ω. It is
easy to identify an automorphism β such that β(a) = a and β(ω) = ω2; indeed β is just
complex conjugation. Twomore automorphisms of order 2 are formedby composition:
γ = αβ and δ = α2β. It is quickly seen that γ maps ω to ω2 and a to aω, while δmaps ω
to ω2 and a to aω2. Thus the elements of the Galois group Gal(f ) are 1, α, α2, β, γ, δ.
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Example (12.2.2). Let p be a prime and put f = tp − 1 ∈ ℚ[t]. Then Gal(f ) ≃ U(ℤp), a
cyclic group of order p − 1.

To see this put a = e2πi/p, a primitive pth root of unity; the roots of f are 1, a, a2, . . . ,
ap−1 and its splitting field is E = ℚ(a). Now f = (t − 1)(1 + t + t2 + ⋅ ⋅ ⋅ + tp−1) and the
second factor is ℚ-irreducible by Example (7.4.6). Hence the irreducible polynomial
of a is 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1 and |Gal(f )| = (E : ℚ) = p − 1.

To show that Gal(f ) is cyclic, we construct a group isomorphism

θ : U(ℤp)→ Gal(f ).

If 1 ≤ j < p, define θ(j + pℤ) to be θj where θj(a) = aj and θj is trivial on ℚ; this is
an automorphism by (11.3.2). Obviously θj is the identity only if j = 1, so θ is injective.
Since U(ℤp) and Gal(f ) both have order p − 1, they are isomorphic.

Conjugacy in field extensions
Let E be an extension of a field F. Two elements a and b of E are said to be conjugate
over F if α(a) = b for some α ∈ Gal(E/F). In normal extensions conjugacy amounts to
the elements having the same irreducible polynomial, as the next result shows.

(12.2.5). Let E be a finite normal extension of a field F. Then two elements a and b of E
are conjugate over F if and only if they have the same irreducible polynomial.

Proof. If a and b have the same irreducible polynomial, (11.3.2) shows that there is
a field isomorphism θ : F(a) → F(b) such that θ(a) = b and θ is the identity map
on F. By (12.1.1) E is the splitting field of some polynomial over F and hence over F(a).
Consequently, (11.3.3) can be applied to extend θ to an isomorphism α : E → E such
that θ is the restriction of α to F(a). Hence α ∈ Gal(E/F) and α(a) = b, which shows
that a and b are conjugate over F.

To prove the converse, suppose that b = α(a)where a, b ∈ E and α ∈ Gal(E/F). Put
f = IrrF(a) and g = IrrF(b). Then 0 = α(f (a)) = f (α(a)) = f (b). Therefore g divides f
and it follows that f = g since f and g are monic and irreducible.

The next result is of critical importance in Galois theory: it asserts that the only
elements of a Galois extension that are fixed by every automorphism are the elements
of the base field.

(12.2.6). Let E be a Galois extension of a field F and let a ∈ E. Then α(a) = a for all
automorphisms α of E over F if and only if a ∈ F.

Proof. Assume that α(a) = a for all α ∈ Gal(E/F) and put f = IrrF(a). Since E is normal
over F, all the roots of f are in E. If b is any such root, it is conjugate to a by (12.2.5),
so there exists α in Gal(E/F) such that α(a) = b. Hence b = a and the roots of f are all
equal. But f is separable since E is separable over F. Therefore f = t − a and a belongs
to F. The converse is obvious.
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Roots of unity
Wewill postpone further development of the theory of Galois extensions until the next
section and concentrate on roots of unity. Let F be a field and n a positive integer.
A root a of the polynomial tn − 1 ∈ F[t] is called an nth root of unity over F; thus an = 1.
If am ̸= 1 for all proper divisors m of n, then a is said to be a primitive nth root of
unity. Now if char(F) = p divides n, there are no primitive nth roots of unity over F:
for then tn − 1 = (tn/p − 1)p and every nth root of unity has order at most n/p. However,
if char(F) does not divide n, primitive nth roots of unity over F always exist, as will
now be proved.

(12.2.7). Let F be a field whose characteristic does not divide the positive integer n and
let E be the splitting field of tn − 1 over F. Then:
(i) primitive nth roots of unity exist in E; furthermore these generate a cyclic subgroup

of order n.
(ii) Gal(E/F) is isomorphic with a subgroup of U(ℤn) and is therefore abelianwith order

dividing ϕ(n).

Proof. (i) Set f = tn − 1, so that f ′ = ntn−1. Since char(F) does not divide n, the polyno-
mials f and f ′ are relatively prime. It follows via (7.4.7) that f has n distinct roots in its
splitting field E, namely the nth roots of unity. Clearly these roots form a subgroup H
of U(E)with order n, and by (11.3.6) it is cyclic, say H = ⟨x⟩. Here x has order n, so it is
a primitive nth root of unity.

(ii) Let a be a primitive nth root of unity in E. Then the roots of tn − 1 are ai,
i = 0, 1, . . . , n − 1, and E = F(a). If α ∈ Gal(E/F), then α is effectively determined
by α(a) = ai(α) where 1 ≤ i(α) < n and i(α) is relatively prime to n. Furthermore, the
assignment α → i(α) + nℤ yields an injective homomorphism from the Galois group
into U(ℤn). By Lagrange’s Theorem |Gal(E/F)| divides |U(ℤn)| = ϕ(n).

Corollary (12.2.8). The number of primitive nth roots of unity over a field whose char-
acteristic does not divide n is ϕ(n), where ϕ is Euler’s function.

For, if a is a fixed primitive nth root of unity, the primitive nth roots of unity are
just the powers ai where 1 ≤ i < n and i is relatively prime to n.

Cyclotomic polynomials
Assume that F is a field whose characteristic does not divide the positive integer n
and denote the primitive nth roots of unity over F by a1, a2, . . . , aϕ(n). The cyclotomic
polynomial of order n over F is defined to be

Φn =
ϕ(n)
∏
i=1
(t − ai),
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which is amonic polynomial of degreeϕ(n). Since every nth root of unity is a primitive
dth root of unity for some divisor d of n, we have immediately that

tn − 1 =∏
d|n

Φd.

This leads to the formula

Φn =
tn − 1
∏d‖nΦd

,

where d ‖ n means that d is a proper divisor of n. By using this formula it is possible
to compute Φn recursively, i. e., if we know Φd for all proper divisors d of n, then we
can calculate Φn. The formula also shows that Φn ∈ F[t]. For Φ1 = t − 1 ∈ F[t] and if
Φd ∈ F[t] for all proper divisors d of n, then Φn ∈ F[t], as long division shows.

Example (12.2.3). Since Φ1 = t − 1,

Φ2 =
t2 − 1
t − 1
= t + 1, Φ3 =

t3 − 1
t − 1
= t2 + t + 1,

and

Φ4 =
t4 − 1
(t − 1)(t + 1)

= t2 + 1.

There is in fact an explicit formula for Φn. This involves the Möbius function μ,
which is well-known from number theory. It is defined by the rules:

μ(1) = 1, μ(p1p2 ⋅ ⋅ ⋅ pk) = (−1)
k ,

if p1, p2, . . . , pk are distinct primes, and

μ(n) = 0

if n is divisible by the square of a prime.

(12.2.9). The cyclotomic polynomial of order n over any field whose characteristic does
not divide n is given by

Φn =∏
d|n
(td − 1)μ(n/d).
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Proof. First we note an auxiliary property of the Möbius function,

∑
d|n

μ(d) = {
1 if n = 1
0 if n > 1

This is obvious if n = 1, so assume that n > 1 and write n = pe11 p
e2
2 ⋅ ⋅ ⋅ p

ek
k where the pi

are distinct primes. If d is a square-free divisor of n, then d has the form pi1pi2 ⋅ ⋅ ⋅ pir
where 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ir ≤ n, which corresponds to the term (−1)rti1 ti2 ⋅ ⋅ ⋅ tir in the
product (1 − t1)(1 − t2) ⋅ ⋅ ⋅ (1 − tn); note also that μ(d) = (−1)r . Therefore we obtain the
polynomial identity

(1 − t1)(1 − t2) ⋅ ⋅ ⋅ (1 − tn) =∑ μ(pi1pi2 ⋅ ⋅ ⋅ pir )ti1 ti2 ⋅ ⋅ ⋅ tir ,

where the sum is over all ij satisfying 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ir ≤ n. Set all ti = 1 to get
∑ μ(pi1 , pi2 , . . . pir ) = 0. Since μ(d) = 0 if d is not square-free, we can rewrite the last
equation as∑d|n μ(d) = 0.

We are now in a position to establish the formula for Φn. Define

Ψn =∏
e|n
(te − 1)μ(n/e),

so that Ψ1 = t − 1 = Φ1. Assume that Ψd = Φd for all d < n. Then by definition of Ψd,
we have

∏
d|n

Ψd =∏
d|n
∏
e|d
(te − 1)μ(d/e) =∏

f |n
(tf − 1)∑f |d|n μ(d/f ).

Next for a fixed f dividing d we have

∑
f |d|n

μ(d/f ) = ∑
d
f |

n
f

μ(d/f ),

which equals 1 or 0 according as f = n or f < n. It therefore follows that

∏
d|n

Ψd = t
n − 1 =∏

d|n
Φd.

Since Ψd = Φd if d < n, cancellation yields Ψn = Φn and the proof is complete.

Example (12.2.4). Use the formula in (12.2.9) to compute the cyclotomic polynomial
of order 12 overℚ.

The formula yields

Φ12 = (t − 1)
μ(12)(t2 − 1)μ(6)(t3 − 1)μ(4)(t4 − 1)μ(3)(t6 − 1)μ(2)(t12 − 1)μ(1),
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which reduces to

(t2 − 1)(t4 − 1)−1(t6 − 1)−1(t12 − 1) = t4 − t2 + 1,

since μ(12) = μ(4) = 0, μ(2) = μ(3) = −1 and μ(6) = μ(1) = 1.

Example (12.2.5). If p is a prime, Φp = 1 + t + t2 + ⋅ ⋅ ⋅ + tp−1.
For Φp = (t − 1)μ(p)(tp − 1)μ(1) =

tp−1
t−1 = 1 + t + t

2 + ⋅ ⋅ ⋅ + tp−1, since μ(p) = −1.

Since we are interested in computing the Galois group of a cyclotomic polynomial
over ℚ, it is important to know if Φn is irreducible. This is certainly true when n is
prime – see Example (7.4.6). The general result is:

(12.2.10). The cyclotomic polynomialΦn is irreducible overℚ for all integers n.

Proof. Assume that Φn is reducible overℚ; then Gauss’s Lemma (7.3.7) tells us that it
must be reducible over ℤ. Since Φn is monic, it follows that it is a product of monic
irreducible polynomials in ℤ[t]. Let f be one such polynomial and choose a root a of
f ; then f = Irrℚ(a). Now a is a primitive nth root of unity, so, if p is any prime not
dividing n, then ap is also a primitive nth root of unity and thus is a root of Φn. Hence
ap is a root of somemonicℚ-irreducible divisor g of Φn inℤ[t]. Of course g = Irrℚ(ap).

Suppose first that f ̸= g. Thus tn − 1 = fgh for some h ∈ ℤ[t] since f and g are
distinctℚ-irreducible divisors of tn − 1. Also g(ap) = 0 implies that f divides g(tp) and
thus g(tp) = fk where k ∈ ℤ[t]. The canonical homomorphism fromℤ toℤp induces a
homomorphism from ℤ[t] to ℤp[t]; let ̄f , ḡ, h̄, k̄, denote the images of f , g, h, k under
this homomorphism. Then ̄f k̄ = ḡ(tp) = (ḡ(t))p since xp ≡ x (mod p) for any integer x.
Now ℤp[t] is a PID and hence a UFD. Since ̄f k̄ = ḡp, the polynomials ̄f and ḡ have a
common irreducible divisor in ℤp[t]. This means that ̄f ḡh̄ ∈ ℤp[t] is divisible by the
square of this irreducible factor and hence tn − 1 ∈ ℤp[t] has a multiple root in its
splitting field. However, (tn − 1)′ = ntn−1 is relatively prime to tn − 1 in ℤp[t] since p
does not divide n. This is a contradiction by (7.4.7). It follows that f = g.

We have proved that ap is a root of f for all primes p not dividing n. It follows that
am is a root of f whenever 1 ≤ m < n and gcd{m, n} = 1. Therefore deg(f ) ≥ ϕ(n) =
deg(Φn). Since f divides Φn, we conclude that f = Φn and Φn is irreducible.

We can now compute the Galois group of a cyclotomic polynomial.

(12.2.11). If n is a positive integer, the Galois group of Φn over ℚ is isomorphic with
U(ℤn), an abelian group of order ϕ(n).

Proof. Let E denote the splitting field of Φn over ℚ and let a be a primitive nth root
of unity in E. The roots of Φn are ai where i = 1, 2, . . . , n − 1 and gcd{i, n} = 1. Hence
E = ℚ(a) and Φn is the irreducible polynomial of a by (12.2.10). Thus |Gal(E/F)| =
deg(Φn) = ϕn. If 1 ≤ i < n and i is relatively prime to n, there is an automorphism αi
of E overℚ such that αi(a) = ai, since a and ai have the same irreducible polynomial.
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Moreover, the map i + nℤ → αi is easily seen to be an injective group homomorphism
from U(ℤ) to Gal(E/F). Since both these groups have order ϕ(n), they are isomorphic.

The splitting field of Φn ∈ ℚ[t] is called a cyclotomic number field. Thus the Galois
group of a cyclotomic number field is abelian.

Exercises (12.2).
(1) Give an example of a finite simple extension E of a field F such that |Gal(E/F)| = 1,

but E ̸= F.
(2) If E = ℚ(√5), find Gal(E/F).
(3) If E = ℚ(√2,√3), find Gal(E/F).
(4) Find the Galois groups of the following polynomials in ℚ[t]: (i) t2 + 1; (ii) t3 − 4;

(iii) t3 − 2t + 4.
(5) Let f ∈ F[t] and suppose that f = f1f2 ⋅ ⋅ ⋅ fk where the fi are polynomials over

the field F. Prove that Gal(f ) is isomorphic with a subgroup of the direct product
Gal(f1) × Gal(f2) × ⋅ ⋅ ⋅ × Gal(fk).

(6) Prove that the Galois group of GF(pm) over GF(p) is a cyclic group of orderm and
it is generated by the automorphism in which a → ap.

(7) Give an example to show that Gal(Φn) need not be cyclic.
(8) Let p be a prime not dividing the positive integer n. Prove that Φn is irreducible

over GF(p) if and only if ϕ(n) is the smallest positive integer m such that pm ≡ 1
(mod n).

(9) Show that Φ5 is reducible over GF(11) and find an explicit factorization of it in
terms of irreducibles.

12.3 The Fundamental Theorem of Galois theory

Armed with the techniques of the last two sections, we can now approach the cele-
brated theorem of the title. First some terminology: let E be an extension of a field F.
By an intermediate field is meant a subfield S such that F ⊆ S ⊆ E. If H is a subgroup
of Gal(E/F), the fixed field of H

Fix(H)

is the set of elements of E which are fixed by every element of H. It is quickly verified
that Fix(H) is a subfield and F ⊆ Fix(H) ⊆ E, so that Fix(H) is an intermediate field.

(12.3.1). Let E be a Galois extension of a field F. Let S be an intermediate field and let
H be a subgroup of the Galois group G = Gal(E/F). Then:
(i) the assignments H → Fix(H) and S → Gal(E/S) are mutually inverse, inclusion

reversing bijections;
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(ii) (E : Fix(H)) = |H| and (Fix(H) : F) = |G : H|;
(iii) (E : S) = |Gal(E/S)| and (S : F) = |G : Gal(E/S)|.

Thus the theorem asserts the existence of a bijection from the set of subfields between
E and F to the set of subgroups of the Galois group G; furthermore the bijection re-
verses set inclusions. Such a bijection is called a Galois correspondence. The Funda-
mental Theoremallows us to translate a problemabout subfields into a problemabout
subgroups, which might be easier to solve.

Proof of (12.3.1). (i) In the first place Fix(Gal(E/S)) = S by (12.2.6). To show that we
have mutually inverse bijections it is necessary to prove that Gal(E/Fix(H)) = H. By
the Theorem of the Primitive Element (12.1.7) we have E = F(a) for some a in E. Define
a polynomial f in E[t] by

f = ∏
α∈H
(t − α(a)).

Note that all the roots of f are distinct: for α1(a) = α2(a), αi ∈ H, implies that α1 = α2
since E = F(a). Hence deg(f ) = |H|. Also the elements of H permute the roots of f , so
that α(f ) = f for all α ∈ H. Therefore the coefficients of f lie in K = Fix(H). In addition
f (a) = 0, so IrrK(a) divides f , and since E = K(a), it follows that

(E : K) = deg(IrrK(a)) ≤ deg(f ) = |H|.

Hence |Gal(E/K)| ≤ |H|. But clearly H ≤ Gal(E/K), so that H = Gal(E/K), as required.

(ii) Since E is Galois over Fix(H), we have (E : Fix(H)) = |Gal(E/Fix(H))| = |H| by
(12.3.1)(i). The second statement follows from

(E : Fix(H)) ⋅ (Fix(H) : F) = (E : F) = |G| = |H| ⋅ |G : H|.

(iii) The first statement is obvious. For the second statement we have (E : S) ⋅ (S : F) =
(E : F) and (E : S) = |Gal(E/S)|, while (E : F) = |G|. The result now follows.

Normal extensions and normal subgroups
If E is a Galois extension of a field F, intermediate subfields which are normal over F
surely correspond to subgroups of Gal(E/F) which are in some way special. In fact
these are exactly the normal subgroups of Gal(E/F). To prove this a simple lemma
about Galois groups of conjugate subfields is called for. If α ∈ Gal(E/F) and F ⊆ S ⊆ E,
write α(S) = {α(a) | a ∈ S}. Clearly α(S) is a subfield and F ⊆ α(S) ⊆ E: the subfield α(S)
is called a conjugate of S.

(12.3.2). Let E be an extension of a field F and let S be an intermediate field. If α ∈
Gal(E/F), then Gal(E/α(S)) = αGal(E/S)α−1.
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Proof. Let β ∈ Gal(E/F). Then β ∈ Gal(E/α(S)) if and only if β(α(a)) = α(a), i. e.,
α−1βα(a) = a, for all a ∈ S, or equivalently α−1βα ∈ Gal(E/S). Hence β ∈ Gal(E/α(S)) if
and only if β ∈ αGal(E/S)α−1.

The connection between normal extensions and normal subgroups can now be
made.

(12.3.3). Let E be a Galois extension of a field F and let S be an intermediate field. Then
the following statements about S are equivalent:
(i) S is normal over F;
(ii) α(S) = S for all α ∈ Gal(E/F);
(iii) Gal(E/S) ⊲ Gal(E/F).

Proof. (i) implies (ii). Let a ∈ S and write f = IrrF(a). Since S is normal over F and f
has a root in S, all the roots of f are in S. If α ∈ Gal(E/F), then α(a) is also a root of f
since f (α(a)) = α(f (a)) = 0. Therefore α(a) ∈ S and α(S) ⊆ S. By the same argument
α−1(S) ⊆ S, so that S ⊆ α(S) and α(S) = S.

(ii) implies (iii). Suppose that α ∈ Gal(E/F). By (12.3.2)

αGal(E/S)α−1 = Gal(E/α(S)) = Gal(E/S),

which shows that Gal(E/S) ⊲ Gal(E/F).

(iii) implies (i). Starting with Gal(E/S) ⊲ Gal(E/F), we have for any α ∈ Gal(E/F) that
Gal(E/S) = αGal(E/S)α−1 = Gal(E/α(S))by (12.3.2). Apply the function Fix toGal(E/S) =
Gal(E/α(S)) to obtain S = α(S) by the Fundamental Theorem of Galois Theory. Next let
f in F[t] be irreducible with a root a in S and suppose b is another root of f . Then b ∈ E
since E is normal over F. Because IrrF(a) = f = IrrF(b), there exists α ∈ Gal(E/F) such
that α(a) = b. Therefore b ∈ α(S) = S, fromwhich it follows that S is normal over F.

(12.3.4). If E is a Galois extension of a field F and S is an intermediate field which is
normal over F, then

Gal(S/F) ≃ Gal(E/F)/Gal(E/S).

Proof. Let α ∈ Gal(E/F); then α(S) = S by (12.3.3) and thus α|S ∈ Gal(S/F). What is
more, the restriction map α → α|S is a homomorphism from Gal(E/F) to Gal(S/F)
with kernel equal to Gal(E/S). The First Isomorphism Theorem then tells us that
Gal(E/F)/Gal(E/S) is isomorphic with a subgroup of Gal(S/F). In addition

Gal(E/F)/Gal(E/S)
 = (E : F)/(E : S) = (S : F) =

Gal(S/F)


since S is Galois over F. Therefore Gal(E/F)/Gal(E/S) ≃ Gal(S/F).
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Example (12.3.1). Let E denote the splitting field of t3 − 2 ∈ ℚ[t]. Thus E = ℚ(a,ω)
where a = 21/3 and ω = e2πi/3. By Example (12.2.1) (E : ℚ) = 6 and G = Gal(E/F) ≃ S3.

Now G has exactly six subgroups, which are displayed in the Hasse diagram be-
low.

∘ G

⟨β⟩ ∘ ∘ ⟨α⟩ ∘ ⟨γ⟩ ∘ ⟨δ⟩

∘ 1

Here α(a) = aω and α(ω) = ω; β(a) = a and β(ω) = ω2; γ(a) = aω and γ(ω) = ω2;
δ(a) = aω2 and δ(ω) = ω2. Each subgroupH corresponds to its fixed field Fix(H) under
the Galois correspondence. For example, Fix(⟨α⟩) = ℚ(ω) and Fix(⟨β⟩) = ℚ(a). The
normal subgroups of G are 1, ⟨α⟩ and G; the three corresponding normal extensions
are E,ℚ(ω) andℚ.

The six subfields of E are displayed in the Hasse diagram below.

∘ E

ℚ(a) ∘ ∘ℚ(ω) ∘ℚ(aω2) ∘ℚ(aω)

∘ℚ

Since every subgroup of an abelian group is normal, we deduce at once from (12.3.3):

Corollary (12.3.5). If E is a Galois extension of a field F and Gal(E/F) is abelian, then
every intermediate field is normal over F.

For example, by (12.2.11) the Galois group of the cyclotomic polynomial Φn ∈ ℚ[t]
is abelian. Therefore every subfield of a cyclotomic number field is normal overℚ.

As a demonstration of the power of Galois theory, let us next establish the Fun-
damental Theorem of Algebra, which was stated without proof as (7.4.4). All known
proofs of this theorem employ some analysis. Here only the Intermediate Value Theo-
rem is used: if f is a continuous function of a real variable which assumes the values
a and b, then f assumes all values between a and b. In fact this result is only required
for polynomial functions.
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(12.3.6). Let f be a non-constant polynomial overℂ. Then f is a product of linear factors
over ℂ.

Proof. First note that the polynomial f ̄f has real coefficients. Since we can replace f
by this polynomial, there is no loss in assuming that f has real coefficients. It may
also be assumed that deg(f ) > 1. Let E be the splitting field of f over ℂ. Then E is the
splitting field of (t2 + 1)f overℝ. Hence E is Galois overℝ, since the characteristic is 0.
Put G = Gal(E/ℝ). Then |G| = (E : ℝ) = (E : ℂ) ⋅ (ℂ : ℝ) = 2(E : ℂ), and G has even
order.

Let H be a Sylow 2-subgroup of G and put F = Fix(H). Then ℝ ⊆ F ⊆ E and
(F : ℝ) = |G : H| is odd. Let a ∈ F and set g = Irrℝ(a). Since deg(g) = (ℝ(a) : ℝ),
which divides (F : ℝ), we conclude that deg(g) is odd. Also g is monic, so g(x) > 0
for large positive x and g(x) < 0 for large negative x. This is our opportunity to apply
the Intermediate Value Theorem, the conclusion being that g(x) = 0 for some real
number x. But g is irreducible over ℝ, so deg(g) = 1; hence a ∈ ℝ and F = ℝ. This
implies that H = G and G is a 2-group.

Let G0 = Gal(E/ℂ) ≤ G; thus G0 is a 2-group. Now G0 = 1 implies that E = ℂ and f
is a product on linear factors overℂ. So assume that G0 ̸= 1. Hence there is a maximal
(proper) subgroupM of G0. Now G0 is nilpotent, soM ⊲G0 and |G0 : M| = 2 by (10.2.7).
Now put S = Fix(M). By (12.3.1) we have

(S : ℂ) = Gal(E/ℂ) : Gal(E/S)
 =
|G0|
|M|
= 2.

Hence any s in S − ℂ has irreducible polynomial over ℂ of degree 2, say t2 + at + b.
By the quadratic formula s = − 12 (a ± √a

2 − 4b) ∈ ℂ and it follows that S = ℂ, a final
contradiction.

Constructing regular n-gons
We return to the last of the ruler and compass problems discussed in Section 11.2. The
problem is to construct a regular n-gon of side 1 unit using ruler and compass only.We
are now in a position to resolve this by using (12.3.6).

Consider a regular n-gon with vertices A1,A2, . . . ,An and centroid C. Let θn be the
angle between lines joining the centroid C to two neighboring vertices; thus θn =

2π
n .

By elementary geometry, if d is the distance from the centroid C to a vertex, then
d sin 1

2θn =
1
2 and hence

d = 1
2 sin( 12θn)

=
1

√2(1 − cos θn)
.

It follows from the discussion of constructibility in Section 11.2 that the regular n-gon
is constructible by ruler and compass if and only if cos θn is constructible from the set
{(0,0), (1,0)}.
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The definitive result is next.

(12.3.7). A regular n-gon of side 1 can be constructed by ruler and compass if and only
if n has the form 2kp1p2 ⋅ ⋅ ⋅ pk where k ≥ 0 and the pj are distinct Fermat primes, i. e., of
the form 22

ℓj
+ 1.

Proof. Assume that the regular n-gon is constructible, so that cos θn is constructible.
Then (ℚ(cos θn) : ℚ)must be a power of 2 by (11.2.2). Put c = e2πi/n, a primitive nth root
of unity. Then cos θn =

1
2 (c + c

−1), so thatℚ(cos θn) ⊆ ℚ(c). Since c + c−1 = 2 cos θn, we
have c2 − 2c cos θn + 1 = 0. Hence (ℚ(c) : ℚ(cos θn)) = 2 and (ℚ(c) : ℚ) = 2d for some d.
Recall from (12.2.10) that Irrℚ(c) = Φn, which has degree ϕ(n). Writing n = 2kpe11 ⋅ ⋅ ⋅ p

er
r

with distinct odd primes pj and ej > 0, we have

ϕ(n) = 2k−1(pe11 − p
e1−1
1 ) ⋅ ⋅ ⋅ (p

er
r − p

er−1
r )

by (2.3.8). This must equal 2d. Hence ej = 1 and pj − 1 is a power of 2 for all j. Since 2s + 1
cannot be a prime if s is not a power of 2 (see Exercise (2.2.13)), it follows that pj is a
Fermat prime.

Conversely, assume that n has the form indicated. Since ℚ(c) is Galois over ℚ,
we have (ℚ(c) : ℚ) = ϕ(n), which is a power of 2 by the formula for ϕ(n). Hence
Gal(ℚ(c)/ℚ) is a finite abelian 2-group. Since G = Gal(ℚ(cos θ)/ℚ) is isomorphic with
a quotient of Gal(ℚ(c) : ℚ), it is also a finite abelian 2-group. Therefore all the factors
in a composition series of G have order 2 and by the Fundamental Theorem of Galois
Theory there is a chain of subfields

ℚ = F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ Fℓ = ℚ(cos θ)

such that Fj+1 is Galois over Fj and (Fj+1 : Fj) = 2.
Weargueby induction on j that every element ofFj is constructible. Let x ∈ Fj+1−Fj.

Then IrrFj (x) = t
2 + at + b where a, b ∈ Fj and thus x2 + ax + b = 0. Hence (x +

1
2a)

2 =
1
4a

2−b > 0 since x is real.Writing x′ = x+ 12a, we have x
′2 ∈ Fj. By induction hypothesis

x′2 is constructible and therefore x′ is constructible by (11.2.1). Hence x is constructible
and so is cos θ. Thus the proof is complete.

Example (12.3.2). A regular n-gon is constructible for n = 3, 4, 5, 6, but not for n = 7.
The only known Fermat primes are 3, 5, 17, 257 = 22

3
+ 1 and 65, 537 = 22

4
+ 1. Since

7 is not a Fermat prime, it is impossible to construct a regular 7-gon using ruler and
compass.
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Exercises (12.3).
(1) For each of the following polynomials over ℚ display the lattice of subgroups of

the Galois group and the corresponding lattice of subfields of the splitting field:
(i) t2 − 5; (ii) t4 − 5; (iii) (t2 + 1)(t2 + 3).

(2) Determine the normal subfields of the splitting fields in Exercise (12.3.1).
(3) Use the Fundamental Theorem of Galois Theory and Exercise (12.2.6) to prove that

GF(pm)has exactly one subfield of orderpd for eachdivisord ofm andno subfields
of other orders – see also Exercise (11.3.2).

(4) Let E = ℚ(√2,√3). Find all the subgroups of Gal(E/ℚ) and hence all subfields
of E.

(5) Find all finite fields with exactly two subfields and also those with exactly three
subfields. [Hint: see Exercise (4.1.5).]

(6) Let E be a Galois extension of a field F and let pk be the largest power of a prime p
dividing (E : F). Prove that there is an intermediate field S such that (E : S) = pk .
If Gal(E : F) is solvable, prove that there is an intermediate field T such that (T :
F) = pk . [Hint: see (5.3.8) and (10.3.2).]

(7) If E is a Galois extension of a field F and there is exactly one proper intermediate
field, what can be said about Gal(E/F)?

(8) If E is a Galois extension of F and (E : F) is the square of a prime, show that each
intermediate field is normal over F.

(9) Prove that a regular 2k-gon of side 1 is constructible if k ≥ 2.
(10)For which values of n in the range 10 to 20 can a regular n-gon of side 1 be con-

structed?
(11) Show that if a is a real number such that (ℚ(a) : ℚ) is a power of 2 and ℚ(a) is

normal over ℚ, then a is constructible from the points (0,0) and (1,0). [Hint: let
G = Gal(ℚ(a) : ℚ). Then G is a finite 2-group. Form a composition series in G and
then the corresponding chain of subfields Ei, 0 ≤ i ≤ m; use induction on i to show
that each element of Ei is constructible.]

(12) Let p be a prime and let f = tp − t − a ∈ F[t] where F = GF(p). Denote by E the
splitting field of f over F.
(i) If x is a root of f in E, show that the set of all roots of f is {x + b | b ∈ F} and

that E = F(x).
(ii) Prove that f is irreducible over F if and only if a ̸= 0.
(iii) Prove that |Gal(f )| = p unless a = 0, when Gal(f ) = 1.

12.4 Solvability of equations by radicals

One of the oldest parts of algebra is concerned with the problem of solving equations
of the form f (t) = 0 where f is a non-constant polynomial over ℚ or ℝ. The object is
to find a formula for the solutions of the equation which involves the coefficients of f ,
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square roots, cube roots, etc. The easiest cases are when deg(f ) ≤ 2; if the degree is 1,
we are solving a single linear equation. If the degree is 2, there is the familiar formula
for the solutions of a quadratic equation. For equations of degree 3 and 4 the problem
is harder, but solutions had been found by the 16th Century. Thus for deg(f ) ≤ 4 there
are explicit formulas for the roots of f (t) = 0, which in fact involve radicals of the form
k√ for k ≤ 4.

The problem of finding formulas for the solutions of equations of degree 5 and
higher is one that fascinated mathematicians for hundreds of years. An enormous
amount of ingenuity was expended in attempts to solve the general equation of the
fifth degree. It was onlywith thework of Abel, Galois andRuffini2 in the early 19th Cen-
tury that it becameclear that all such efforts hadbeen in vain. It is a fact that solvability
of a polynomial equation is inextricably linked to the solvability of the Galois group
of the polynomial. The symmetric group Sn is solvable for n < 5, but is insolvable for
n ≥ 5. This explains why early researchers were able to solve the general equation of
degree n only for n ≤ 4. Without the aid of group theory it is difficult to comprehend
the reason for this failure. Our aim here is explain why the solvability of the Galois
group governs the solvability of a polynomial equation.

Radical extensions
Let E be an extension of a field F. Then E is called a radical extension of F if there is a
chain of subfields

F = E0 ⊆ E1 ⊆ E2 ⊆ ⋅ ⋅ ⋅ ⊆ Em = E

such that Ei+1 = Ei(ai+1) where ai+1 has its irreducible polynomial over Ei of the form
tni+1 −bi where 0 ≤ i < m. It is natural to refer to ai+1 as a radical and write ai+1 = ni+1√bi,
but here one has to keep inmind that ai+1may not be uniquely determined by bi. Since

E = F( n1√b0,
n2√b1, . . . , nm√bm−1),

elements of E are expressible as polynomial functions of the radicals ni√bi.
Let f be a non-constant polynomial over F with splitting field K. Then f , or the

equation f = 0, is said to be solvable by radicals if K is contained in some radical ex-
tension of F. Thismeans that the roots of f are obtained by forming a finite sequence of
successive radicals, starting with elements of F. The definition gives a precise expres-
sion for the intuitive idea of what it means for a polynomial equation to be solvable by
radicals.

To make progress with the problem of describing the radical extensions it is nec-
essary to have a better understanding of polynomials of the form tn − a.

2 Paolo Ruffini (1765–1822).
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(12.4.1). Let F be a field and n a positive integer. Assume that F contains a primitive nth
root of unity. Then for any a in F the group Gal(tn − a) is cyclic with order dividing n.

Proof. Let z be a primitive nth root of unity in F and denote by b a root of f = tn−a in its
splitting field E. Then the roots of f are bzj, j = 0, 1, . . . , n − 1. If α ∈ Gal(f ) = Gal(E/F),
then α(b) = bzj(α) for some j(α) and α is completely determined by j(α): this is because
α|F is the identity map and E = F(b) since z ∈ F. The assignment α → j(α) + nℤ
is an injective homomorphism from Gal(f ) to ℤn: for αβ(b) = α(bzj(β)) = α(b)zj(β) =
bzj(α)+j(β) and thus j(αβ) ≡ j(α)+ j(β) (mod n). It follows that Gal(f ) is isomorphic with
a subgroup of ℤn, so it is a cyclic group with order dividing n.

We will also need the following simple result.

(12.4.2). Let E be a Galois extension of a field F and let K1 and K2 be subfields interme-
diate between F and E. If Hi = Gal(E/Ki), then Gal(E/K1 ∩ K2) = ⟨H1,H2⟩.

Proof. Clearly H1 and H2 are contained in Gal(E/K1 ∩ K2) and hence J = ⟨H1,H2⟩ ≤
Gal(E/K1∩K2). Next suppose that x ∈ E−Ki. Then there exists α ∈ Hi such that α(x) ̸= x.
Hence x ∉ Fix(J) and consequently Fix(J) ⊆ K1 ∩ K2. Taking the Galois group of E over
each side and applying (12.3.1), we obtain J ≥ Gal(E/K1 ∩ K2).

The principal theorem is now within reach.

(12.4.3). Let f be a non-constant polynomial over a field F of characteristic 0. If f is
solvable by radicals, then Gal(f ) is a solvable group.

Proof. Let E denote the splitting field of f over F. By hypothesis E ⊆ R where R is a
radical extension of F. Hence there are subfields Ri such that

F = R0 ⊆ R1 ⊆ ⋅ ⋅ ⋅ ⊆ Rm = R

where Ri+1 = Ri(ai+1) and IrrRi (ai+1) = t
ni+1 − bi with bi ∈ Ri. It follows that (Ri+1 : Ri) =

ni+1 and hence (R : F) = n1n2 ⋅ ⋅ ⋅ nm = n, say.
LetK and L be the splitting fields of the polynomial tn−1 over F andR respectively.

Note that Lmay not be normal over F. Let N be the splitting field over F of the product
of tn − 1 and all the polynomials IrrF(ai), i = 1, 2, . . . ,m. Then L ⊆ N and N is normal
over F. Clearly (N : F) is finite and N is separable since the characteristic is zero. Thus
N is Galois over F. Put Li = K(Ri), so there is the chain of subfields

K = L0 ⊆ L1 ⊆ ⋅ ⋅ ⋅ ⊆ Lm = L ⊆ N .
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The relevant subfields are displayed in the Hasse diagram below.

N ∘

Lm = L ∘

Lm−1 ∘
...

∘ Rm = R

L1 ∘ ∘
...

Rm−1 ∘ E

K = L0 ∘ ∘ R1

∘ R0 = F

Note that Li+1 is the splitting field of tni+1 − bi over Li since K contains all ni+1th roots
of unity. Thus Li+1 is normal and hence Galois, over Li. Now set G = Gal(N/F) and
Gi = Gal(N/Li); hence Gi+1 ⊲Gi by (12.3.3). Also write V = Gal(N/K) and U = Gal(N/E),
noting thatU⊲G andV⊲G sinceE andK are normal overF. Thuswehave the truncated
series of subgroups

Gal(N/L) = Gm ⊲ Gm−1 ⊲ ⋅ ⋅ ⋅ ⊲ G1 ⊲ G0 = V .

Notice that Gi/Gi+1 ≃ Gal(Li+1/Li) = Gal(tni+1 − bi), and the latter is cyclic by (12.4.1).
Since Gm ≤ U, there is a series

1 = GmU/U ⊲ Gm−1U/U ⊲ ⋅ ⋅ ⋅ ⊲ G1U/U ⊲ G0U/U = UV/U ,

and the factors of this series are cyclic since theGi/Gi+1 are cyclic. ThereforeUV/U is a
solvable group. Now from (12.4.2) we have Gal(N/K ∩ E) = UV ⊲G and K ∩ E is normal
over F. Moreover,

G/UV = Gal(N/F)/Gal(N/K ∩ E) ≃ Gal(K ∩ E/F)
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and therefore G/UV ≃ Gal(K/F)/Gal(K/K ∩ E). Since Gal(K/F) is abelian by (12.2.7), it
follows that G/UV is abelian. Therefore G/U is solvable. Finally,

Gal(E/F) ≃ Gal(N/F)/Gal(N/E) = G/U

by (12.3.4), so that Gal(f ) = Gal(E/F) is solvable, as required.

It can be shown – although we will not do so here – that the converse of (12.4.3)
is valid: see [1] or [18] for a proof. As a consequence there is the following definitive
result.

(12.4.4). Let f be a non-constant polynomial over a field of characteristic 0. Then f is
solvable by radicals if and only if Gal(f ) is a solvable group.

Let n = deg(f ). Then Gal(f ) is isomorphic with a subgroup of the symmetric
group Sn by (12.2.3). If n ≤ 4, then Sn, and hence Gal(f ), is solvable. Therefore by
(12.4.4) every polynomial with degree 4 or less is solvable by radicals.

On the other hand, when n ≥ 5, the symmetric group Sn is not solvable since An
is simple by (10.1.7). Thus we are led to suspect that not every polynomial equation of
degree 5 is solvable by radicals. Actual examples of polynomials that are not solvable
by radicals are furnished by the next result.

(12.4.5). Let f ∈ ℚ[t] be an irreducible polynomial of prime degree p and assume that f
has exactly two complex roots. Then Gal(f ) ≃ Sp and hence f is not solvable by radicals
if p ≥ 5.

Proof. Label the roots of f in its splitting field a1, a2, . . . , ap; these are all different since
f is separable. Two of these roots are complex conjugates, say ā1 = a2, while the other
roots are all real. We can think of Gal(f ) as a group of permutations of the set of roots
{a1, a2, . . . , ap} and indeed Gal(f ) acts transitively since f is irreducible. Therefore p
divides |Gal(f )| by (5.2.2), and Cauchy’s Theorem (5.3.9) shows that there is an element
of order p in Gal(f ). Hence Gal(f ) contains a p-cycle, say π = (a1ai2 . . . aip ). Replacing
π by a suitable power, we may assume that i2 = 2. Now relabel the remaining roots a3,
a4, . . . , ap, so that π = (a1a2a3 . . . ap).

Complex conjugation, i. e., σ = (a1a2), is an element of Gal(f )with order 2. Conju-
gation of σ by powers of π shows that Gal(f ) contains all the adjacent transpositions
(aiai+1), for i = 1, 2, . . . , p − 1. But any permutation is expressible as a product of adja-
cent transpositions – see Exercise (3.1.4) – and therefore Gal(f ) = Sn.

Example (12.4.1). The polynomial f = t5 − 6t + 3 ∈ ℚ[t] is not solvable by radicals.
In the first place f is irreducible over ℚ by Eisenstein’s Criterion and Gauss’s

Lemma. In addition calculus tells us that the curve f (t) = 0 crosses the t-axis exactly
three times, so there are three real roots and two complex ones. ThusGal(t5−6t+3) ≃ S5
and the result follows via (12.4.3).
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Example (12.4.2). The polynomial f = t5 + 8t3 − t2 + 12t − 2 is solvable by radicals.
Here the situation is different since f factorizes as (t2 + 2)(t3 + 6t − 1). Therefore

Gal(f ) is isomorphic with a subgroup of Gal(t2 + 2)×Gal(t3 +6t − 1) by Exercise (12.2.5).
The latter is a solvable group. Hence by (10.2.2) the group Gal(f ) is solvable and f is
solvable by radicals.

Symmetric functions
As the final topic of the chapter, we present an account of the elementary theory of
symmetric functions and explore its relationship with Galois theory. Let F be an arbi-
trary field and put E = F{x1, x2, . . . , xn}, the field of rational functions over F in distinct
indeterminates x1, x2, . . . , xn. A symmetric function in x1, x2, . . . , xn over F is an element
g ∈ E such that

g(xπ(1), xπ(2), . . . , xπ(n)) = g(x1, x2, . . . , xn)

for all π ∈ Sn. Thus g is unaffected by permutations of the indeterminates x1, x2, . . . , xn.
It is easy to verify that the symmetric functions form a subfield of E. Next consider the
polynomial

f = (t − x1)(t − x2) ⋅ ⋅ ⋅ (t − xn) ∈ E[t]

where t is another indeterminate. Then expansion shows that

f = tn − s1t
n−1 + s2t

n−2 − ⋅ ⋅ ⋅ + (−1)nsn

where s1 = ∑
n
i=1 xi, s2 = ∑

n
i<j=1 xixj, and in general

sj =
n
∑

i1<i2<⋅⋅⋅<ij=1
xi1xi2 ⋅ ⋅ ⋅ xij ,

the last sum being over all j-tuples (i1, i2, . . . , ij) such that 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ij ≤ n. It
is evident that the sj are symmetric functions: they are known as the elementary sym-
metric functions in x1, x2, . . . , xn. For example, when n = 3, there are three elementary
symmetric functions,

s1 = x1 + x2 + x3, s2 = x1x2 + x2x3 + x1x3, s3 = x1x2x3.

Put S = F(s1, s2, . . . , sn), which is a subfield of E. Then f ∈ S[t] and E is generated
by S and the roots of f , i. e., x1, x2, . . . , xn. Hence E is the splitting field of f over S. Since
all the xi are distinct, they are separable over S and (12.1.6) shows that E is separable
andhenceGalois over S. ThereforeGal(f ) = Gal(E/S)has order (E : S).Wenowproceed
to determine the Galois group of f over S.
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With the same notation the definitive result is:

(12.4.6). Gal(f ) ≃ Sn.

Proof. Since Gal(f ) permutes the roots x1, x2, . . . , xn faithfully, we may identify it with
a subgroup of Sn. Let π ∈ Sn and define απ : E → E by the rule

απ(g(x1, x2, . . . , xn)) = g(xπ(1), xπ(2), . . . , xπ(n));

then απ is evidently an automorphismofE. Since απ fixes all the elementary symmetric
functions, it fixes every element of S = F(s1, s2, . . . , sn) and therefore απ ∈ Gal(E/S) =
Gal(f ). Finally, all the απ are different, so Gal(f ) = Sn.

From this we deduce a famous theorem.

Corollary (12.4.7) (The Symmetric Function Theorem). If F is an arbitrary field and s1,
s2, . . . , sn are the elementary symmetric functions in indeterminates x1, x2, . . . , xn, then
F(s1, s2, . . . , sn) is the field of all symmetric functions in x1, x2, . . . , xn. Also the symmetric
polynomials form a subring which is generated by F and the s1, s2, . . . , sn.

Proof. Let S = F(s1, s2, . . . , sn) ⊆ E = F{x1, x2, . . . , xn}. By (12.4.6) Gal(E/S) effectively
consists of all permutations of {x1, x2, . . . , xn}. Hence Fix(Gal(E/S)) is the subfield of
all symmetric functions. But by (12.3.1) this is also equal to S. The statement about
polynomials is left as an exercise.

Generic polynomials
Let F be an arbitrary field and write K for the rational function field in indeterminates
x1, x2, . . . , xn over F. The polynomial

f = tn − x1t
n−1 + x2t

n−2 − ⋅ ⋅ ⋅ + (−1)nxn ∈ K[t]

is called a generic polynomial. The point to note here is that we can obtain from f any
monic polynomial of degree n in F[t] by replacing x1, x2, . . . , xn by suitable elements
of F. It is therefore not surprising that the Galois group of f overK is as large as it could
be.

(12.4.8). With the above notation, Gal(f ) ≃ Sn.

Proof. Let u1, u2, . . . , un be the roots of f in its splitting field E over K. Thus we have
f = (t − u1)(t − u2) ⋅ ⋅ ⋅ (t − un) and so xi = si(u1, u2, . . . , un)where si is the ith elementary
symmetric function in n indeterminates y1, y2, . . . , yn, all of which are different from
x1, x2, . . . , xn, t.

The assignment xi → si determines a ring homomorphism

ϕ0 : F{x1, x2, . . . , xn}→ F{y1, y2, . . . , yn};
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observe here that g(s1, . . . , sn) = 0 implies that g(x1, . . . , xn) = 0, as xi = si(u1, . . . , un).
So ϕ0 is actually an isomorphism from K = F{x1, x2, . . . , xn} to L = F(s1, s2, . . . , sn) ⊆
F{y1, y2, . . . , yn}. Set f ∗ = ϕ0(f ) with f as above; thus

f ∗ = tn − s1t
n−1 + s2t

n−2 − ⋅ ⋅ ⋅ + (−1)nsn = (t − y1)(t − y2) ⋅ ⋅ ⋅ (t − yn),

by definition of the elementary symmetric functions si.
By (11.3.3) we can extend ϕ0 to an isomorphism ϕ from E, the splitting field of f

over K, to the splitting field of f ∗ over L. Therefore ϕ induces a group isomorphism
from Gal(f ) to Gal(f ∗). But we know that Gal(f ∗) ≃ Sn by (12.4.6). Hence Gal(f ) ≃ Sn.

Corollary (12.4.9) (Abel, Ruffini). If F is a field of characteristic 0, the generic polyno-
mial tn − x1tn−1 + x2tn−2 − ⋅ ⋅ ⋅ + (−1)nxn is insolvable by radicals over F(x1, x2, . . . , xn) if
n ≥ 5.

Thus, as one would expect, there is no general formula for the roots of a polyno-
mial of degree n ≥ 5 in terms of its coefficients.

Exercises (12.4).
(1) Let F ⊆ K ⊆ E be field extensions with K radical over F and E radical over K. Prove

that E is radical over F.
(2) Let F ⊆ K ⊆ E be field extensions with E radical and Galois over F. Prove that E is

radical over K.
(3) Show that the polynomial t5 − 3t + 2 in ℚ[t] is solvable by radicals. [Hint: the

polynomial is reducible, so the Galois group is solvable.]
(4) If p is a prime larger than 11, show that t5−pt+p inℚ[t] is not solvable by radicals.
(5) If f ∈ F[t] is solvable by radicals and g | f in F[t], prove that g is solvable by

radicals.
(6) Let f = f1f2 where f1, f2 ∈ F[t] and F has characteristic 0. If f1 and f2 are solvable by

radicals, show that f is too. Deduce that every non-constant reducible polynomial
of degree less than 6 overℚ is solvable by radicals.

(7) Let F be a field of characteristic 0 and let f ∈ F[t] be non-constant with splitting
field E. Prove that there is a unique smallest intermediate field S such that S is
normal over F and f is solvable by radicals over S. [Hint: show first that there is a
unique maximum solvable normal subgroup in any finite group.]

(8) For each integer n ≥ 5 exhibit a polynomial of degree n overℚwhich is insolvable
by radicals.

(9) LetG be any finite group. Prove that there is a Galois extensionE of some algebraic
number field F such that Gal(E/F) ≃ G. [You may assume there is an algebraic
number fieldwhose Galois group overℚ is isomorphicwith Sn.] (Remark: the gen-
eral problem of whether every finite group is the Galois group of some algebraic
number field overℚ is still open; it is known to be true for solvable groups.)
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(10)Write each of the following symmetric polynomials as a polynomial in the elemen-
tary symmetric functions s1, s2, s3 in x1, x2, x3.
(i) x21 + x

2
2 + x

2
3;

(ii) x21x2 + x1x
2
2 + x

2
2x3 + x2x

2
3 + x

2
1x3 + x1x

2
3;

(iii) x31 + x
3
2 + x

3
3 .

12.5 Roots of Polynomials and Discriminants

In this section the concept of the discriminant of a polynomial is introduced and it is
applied it to the Galois groups of polynomials of degree ≤ 4.

The discriminant of a polynomial
Let f be a non-constant monic polynomial in t over a field F and let n = deg(f ). Let the
roots of f in its splitting field E be a1, a2, . . . , an and define

Δ =
n
∏
i<j=1
(ai − aj),

which is an element of E. Note that Δ depends on the order in which the roots are
written, so it is only determined up to sign. Also all the roots of f are distinct if and
only if Δ ̸= 0: let us assume this to be the case. Thus E is Galois over F.

If α ∈ Gal(f ) = Gal(E/F), then α permutes the roots a1, a2, . . . , an, and α(Δ) = ±Δ.
Indeed α(Δ) = Δ precisely when α produces an even permutation of the ai’s. Thus in
any event α fixes

D = Δ2.

The element D is called the discriminant of f : it is independent of the order of the
roots of f . Since D is fixed by every automorphism α and E is Galois over F, it follows
from (12.2.6) that D ∈ F. The question arises: how is D related to the coefficients of the
original polynomial f ?

(12.5.1). Let f be a non-constant polynomial over a field F. Then the discriminant D of f
is expressible as a polynomial in the coefficients of f .

Proof. It can be assumed that f is monic and that it has distinct roots a1, a2, . . . , an
since otherwise D = 0. Then f = (t − a1)(t − a2) ⋅ ⋅ ⋅ (t − an), so that

f = tn − s1t
n−1 + s2t

n−2 − ⋅ ⋅ ⋅ + (−1)nsn

where s1, s2, . . . , sn are the elementary symmetric functions of degree 1, 2, . . . , n in a1,
a2, . . . , an. Now D = ∏ni<j=1(ai − aj)

2 is a symmetric function in a1, a2, . . . , an. It follows
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from the Symmetric Function Theorem (12.4.7) thatD is expressible as a polynomial in
s1, s2, . . . , sn, i. e., in the coefficients of f .

Next we examine the discriminants of polynomials of degrees 2 and 3 over a field.

Example (12.5.1). Let f = t2 + ut + v. If the roots of f are a1 and a2, then Δ = a1 − a2 and
D = (a1 − a2)2. This can be rewritten in the form D = (a1 + a2)2 − 4a1a2. Now clearly
u = −(a1 + a2) and v = a1a2, so we arrive at the familiar formula for the discriminant
of the quadratic t2 + ut + v,

D = u2 − 4v.

Example (12.5.2). Consider a cubic polynomial f = t3+ut2+vt+w and leta1,a2,a3 be its
roots. ThenD = (a1−a2)2(a2−a3)2(a1−a3)2. Also u = −(a1+a2+a3), v = a1a2+a2a3+a1a3
and w = −a1a2a3. By a rather laborious calculation we can expand D and write it in
terms of the elements u, v, w. What emerges is the formula

D = u2v2 − 4v3 − 4u3w − 27w2 + 18uvw.

This expression can be simplified by a judicious change of variable. Put t′ = t + 1
3u, so

that t = t′ − 13u. On substituting for t in f = t
3 +ut2 + vt +w, we find that f = t′3 +pt′ +q

where p = v − 13u
2 and q = w + 2

27u
3 − 13uv. Hence no generality is lost in assuming that

f does not have a term in t2 and

f = t3 + pt + q.

Now the formula for the discriminant reduces to the more manageable expression

D = −4p3 − 27q2.

Next we relate the discriminant to the Galois group of a polynomial.

(12.5.2). Let F be a field whose characteristic is not 2 and let f be a monic polynomial
in F[t]with distinct roots a1, a2, . . . , an.WriteΔ = ∏ni<j=1(ai−aj). If G = Gal(f ) is identified
with a subgroup of Sn, then Fix(G ∩ An) = F(Δ).

Proof. LetH = G ∩An and note thatH ⊲G and |G : H| ≤ 2. If E is the splitting field of f ,
then F ⊆ F(Δ) ⊆ Fix(H) ⊆ E since elements of H, being even permutations, fix Δ. Now
E is Galois over F, so we have

(F(Δ) : F) ≤ (Fix(H) : F) = |G : H| ≤ 2.

If H = G, it follows that F = F(Δ) = Fix(H) and Δ ∈ F. The statement is therefore true
in this case.
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Now suppose that |G : H| = 2 and let α ∈ G − H. Then α(Δ) = −Δ as α is odd.
Since char(F) ̸= 2, we have Δ ̸= −Δ and hence Δ ∉ F. Therefore (F(Δ) : F) = 2 and
Fix(H) = F(Δ).

Corollary (12.5.3). With the above notation, Gal(f ) ≤ An if and only if Δ ∈ F.

These ideas will now be applied to investigate the Galois groups of polynomials
of low degree.

Polynomials of degree at most 4
Let F be a field such that char(F) ̸= 2.

(i) Consider a quadratic f = t2+ut+v ∈ F[t]. Then |Gal(f )| = 1 or 2. By (12.5.3) |Gal(f )| = 1
precisely when Δ ∈ F, i. e., √u2 − 4v ∈ F. This is the familiar condition for f to have
both its roots in F. Of course |Gal(f )| = 2 if and only if Δ ∉ F, which is the irreducible
case.

(ii) Next let f be the cubic t3 + pt + q ∈ F[t]. We saw that

Δ = √D = √−4p3 − 27q2.

If f is reducible over F, it must have a quadratic factor f1 and clearly Gal(f ) = Gal(f1),
which has order 1 or 2. Thus we can assume f is irreducible. We know from (12.2.3)
that Gal(f ) ≤ S3, and that |Gal(f )| is divisible by 3 since it acts transitively on the roots
of f . Hence Gal(f ) = A3 or S3. By (12.5.3) Gal(f ) = A3 if and only if Δ ∈ F; otherwise
Gal(f ) = S3.

(iii) Finally, let f be amonic polynomial of degree 4 in F[t]. If f is reducible and f = f1f2
with deg(fi) ≤ 3, then Gal(f ) is isomorphic with a subgroup of Gal(f1) × Gal(f2), (see
Exercise (12.2.5)). The structure of Gal(fi) is known from (i) and (ii), so assume that f is
irreducible. Then Gal(f ) ≤ S4 and 4 divides |Gal(f )|. The subgroups of S4 whose orders
are divisible by 4 areℤ4, V (the Klein 4-group), Dih(8), A4 and S4; thus Gal(f )must be
one of these. In fact all five cases can occur, but we will not prove this here.

Explicit formulas for the roots of cubic and quartic equations over ℝ were found
in the early 16th century by Scipione del Ferro (1465–1526), Gerolamo Cardano
(1501–1576), Niccolo Tartaglia (1499–1526) and Lodovico Ferrari (1522–1565). An in-
teresting account of their discoveries and of the mathematical life of the times can be
found in [21].

Exercises (12.5).
(1) Find theGalois groups of the following quadratic polynomials overℚ: (i) t2−5t+6,

(ii) t2 + 5t + 1, (iii) (t + 1)2.
(2) Find the Galois group of the following cubic polynomials overℚ: (i) t3+4t2+2t−7;

(ii) t3 − t − 1; (iii) t3 − 3t + 1; (iv) t3 + 6t2 + 11t + 5.
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(3) Let f be a cubic polynomial overℚwith discriminantD. Show that f has three real
roots if and only if D ≥ 0. Apply this to the polynomial t3 + pt + q.

(4) Let f be an irreducible quartic polynomial overℚwith exactly two real roots. Show
that Gal(f ) ≃ Dih(8) or S4.

(5) (How to solve cubic equations). Let f = t3 + pt + q ∈ ℝ[t]. The following procedure,
due essentially to Scipione del Ferro, will produce a root of f .
(i) If t = u − v is a root of f , show that (u3 − v3) + (p − 3uv)(u − v) = −q.
(ii) Find a root of the form u − v by solving the equations u3 − v3 = −q and uv = p

3
to obtain a quadratic equation for u3.

(6) The procedure of Exercise (12.5.5) yields one root x1 = u− v of f = t3 + pt + q. Show
that two further two roots of f are x2 = ωu−ω2v and x3 = ω2u−ωvwhereω = e2πi/3.
(These are known as Cardano’s formulas.) Keep in mind that every cubic equation
has at least one real root.

(7) Use the methods of the last two exercises to find the roots of the polynomial
t3 + 3t + 1.

(8) Solve the cubic equation t3 + 3t2 + 6t + 3 = 0 by first transforming it to one of the
form t′3 + pt′ + q = 0.
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13 Tensor Products
The tensor product is a very widely used construction in algebra which can be applied
tomodules, linear operators andmatrices.Wewill beginbydescribing the tensorprod-
uct of modules: here the distinction between left and right modules is essential.

13.1 Definition of the tensor product

Let R be an arbitrary ring and letMR and RN be right and left R-modules as indicated.
Denote by F the free abelian group whose basis is the set product

M × N = {(a, b) | a ∈ M, b ∈ N}.

Thus each element f of F can be uniquely written in the form f = ∑ki=1 ℓi(ai, bi) where
ℓi ∈ ℤ, ai ∈ M, bi ∈ N . Define S to be the (additive) subgroup of F generated by all
elements of the forms
(i) (a1 + a2, b) − (a1, b) − (a2, b),
(ii) (a, b1 + b2) − (a, b1) − (a, b2),
(iii (a ⋅ r, b) − (a, r ⋅ b),

where a, ai ∈ M, b, bi ∈ N and r ∈ R. Then the tensor product ofM and N is defined to
be the quotient group

M ⊗R N = F/S.

ThusM ⊗R N is an abelian group generated by all elements of the form

a ⊗ b = (a, b) + S, (a ∈ M, b ∈ N) :

here the elements a ⊗ b are called tensors.
The reasonwhy one passes to the quotient group is that in this quotient the cosets

arising from elementswith the forms (i), (ii), (iii) indicated abovewill vanish. Thus the
effect of passing to the quotient group is to enforce linearity on both arguments. This is
formalized in the next result, which is an immediate consequence of the definition of
tensors and the tensor product. It demonstrates the bilinear nature of tensor products.

(13.1.1). Let MR and RN be modules over a ring R. In the tensor product M ⊗R N the
following rules are valid:
(i) (a1 + a2) ⊗ b = a1 ⊗ b + a2 ⊗ b;
(ii) a ⊗ (b1 + b2) = a ⊗ b1 + a ⊗ b2;
(iii) (a ⋅ r) ⊗ b = a ⊗ (r ⋅ b)

where a, ai ∈ M, b, bi ∈ N, r ∈ R.

https://doi.org/10.1515/9783110691160-013
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We record two simple consequences of (13.1.1):

0M ⊗ b = 0M⊗RN = a ⊗ 0N , (a ∈ M, b ∈ N).

These follow from (i) and (ii) on setting a1 = 0M = a2 and b1 = 0N = b2, respectively. It
should be stressed that at this point the tensor product is only an abelian group: later
we will see how it can be given a module structure.

When R = ℤ, which is a very common case, it is usual to write

M ⊗ N

instead ofM⊗ℤN .

The mapping property of tensor products
We continue the previous notation with modules MR and RN over a ring R. A critical
property of the tensor productM ⊗R N is a certainmapping property; this involves the
concept of a middle linear map, which will now be explained.

Let A be an (additively written) abelian group: a mapping α : M ×N → A is said to
be R-middle linear if it has the three properties listed below for all a, ai ∈ M, b, bi ∈ N,
r ∈ R:
(i) α((a1 + a2, b)) = α((a1, b)) + α((a2, b));
(ii) α((a, b1 + b2)) = α((a, b1)) + α((a, b2));
(iii) α((a ⋅ r, b)) = α((a, r ⋅ b)).

For example, the canonical mapping ν : M × N → M ⊗ N in which ν((a, b)) = a ⊗ b is
middle linear by virtue of the properties listed in (13.1.1). The crucialmapping property
of the tensor product is as follows.

(13.1.2). Let MR and RN be modules over a ring R.
(i) Given amiddle linear map α : M ×N → Awith A an abelian group, there is a unique

group homomorphism β : M ⊗R N → A such that α = βν where ν : M × N → M ⊗R N
is the canonical middle linear map in which (a, b) → a ⊗ b.

(ii) Conversely, if T is an abelian group and ϕ : M ×N → T is a middle linear map such
that the pair (T ,ϕ) has the mapping property in (i), then T ≃ M ⊗R N.

The assertion of (13.1.2)(i) ismost easily remembered from the triangle diagrambelow:

A

M × N ν
??

α
? ?

M ⊗R N

β
? ?
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Indeed the relation α = βν expresses the commutativity of the diagram, in the sense
that if we start with an element x ∈ M × N and follow it in both directions around the
triangle, applying themaps indicated by the arrows, we end upwith the same element
of A, namely α(x) = βν(x). Commutative diagrams are widely used in algebra. For the
generalization to categories see Section 16.1.

When (i) and (ii) of (13.1.2) are combined, theydemonstrate that the tensor product
M ⊗R N, together with the canonical middle linear mapping ν, is characterized by the
mapping property. Anotherway of looking at themappingproperty is that if a function
α from M × N to an abelian group A is middle linear, then it can be “extended” to a
homomorphism fromM ⊗R N to A. It is this form of the mapping property that makes
it an indispensable tool in working with tensor products.

Proof of (13.1.2). (i) Let F be the free abelian group with basisM × N . By (9.1.17) there
is a homomorphism β′ : F → A such that β′((a, b)) = α((a, b)) for all a ∈ M, b ∈ N . By
definitionM ⊗R N = F/S where S is generated by all elements of F of the three types in
the definition of the tensor product. Now β′ maps each of the listed generators of S to
0 since α is middle linear, and hence β′(s) = 0 for all s ∈ S. This observation allows us
to define in a unique manner a function

β : M ⊗R N → A

by the rule β(f + S) = β′(f ), ( f ∈ F.) Notice that β is a homomorphism since β′ is one.
Furthermore

βν((a, b)) = β((a, b) + S) = β′((a, b)) = α((a, b))

for all a ∈ M, b ∈ N . Therefore βν = α.
The uniqueness of β remains to be established. Suppose that β̄ : M ⊗R N → A is

another homomorphism with the property β̄ν = α. Then βν = β̄ν, so that β and β̄ agree
on Im(ν), i. e., on the set of all tensors. But the tensors generateM ⊗R N, so it follows
that β = β̄, which completes the proof of (i).

(ii) By the mapping property for the pair (M ⊗R N , ν) there is a homomorphism
β : M ⊗R N → T such that ϕ = βν, and by the mapping property for (T ,ϕ) there is
a homomorphism β̄ : T → M ⊗R N such that ν = β̄ϕ. Thus we have the two commuta-
tive triangles that follow:

T M ⊗R N

M × N

ϕ
??

ν
?? M ⊗R N

β
??

M × N

ν
??

ϕ
?? T

β̄
??
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Therefore ββ̄ϕ = βν = ϕ and β̄βν = β̄ϕ = ν: these equations express the commutativity
of the two triangles below

T M ⊗R N

M × N

ϕ
? ?

ϕ
?? T

ββ̄
??

M × N

ν
??

ν
?? M ⊗R N

β̄β
??

But clearly these triangles will also commute if β̄β and ββ̄ are replaced by the appro-
priate identity maps. At this point the uniqueness clause in the mapping property is
invoked to show that β̄β and ββ̄ are identity maps onM ⊗RN and T respectively. Hence
β̄ is an isomorphism and T R≃ M ⊗R N .

Tensor products and homomorphisms
When homomorphisms between pairs of modules are given, there is an induced ho-
momorphism between the tensor products of these modules.

(13.1.3). Let there be given modules MR, M′R and RN, RN ′ over a ring R, together with
R-module homomorphisms α : M → M′ and β : N → N ′. Then there is a homomorphism
of groups α ⊗ β : M ⊗R N → M′ ⊗R N ′ such that

α ⊗ β(
k
∑
i=1
ℓi(ai ⊗ bi)) =

k
∑
i=1
ℓi(α(ai) ⊗ β(bi)),

where ai ∈ M, bi ∈ N, ℓi ∈ ℤ.

Proof. Thefirst point tonote is that one cannot simplyuse the formula in the statement
of the theorem as the definition of α ⊗ β, the reason being that there is no unique
expressibility for elements ofM ⊗R N as linear combinations of tensors. However, an
indirect approach using the mapping property succeeds.

To exploit this property we first introduce a function θ : M × N → M′ ⊗R N ′ by
defining θ((a, b)) = α(a) ⊗ β(b). Now check the middle linearity of θ, which is easy. By
the mapping property there is a group homomorphism ϕ : M ⊗R N → M′ ⊗R N ′ such
that ϕν = θ where ν : M × N → M ⊗R N is the canonical middle linear map in which
(a, b) → a ⊗ b. Thus the triangle below commutes:

M′ ⊗R N ′

M × N

θ
??

ν
?? M ⊗R N

ϕ
??
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Now define α ⊗ β to be ϕ and check that this has the required property:

ϕ(
k
∑
i=1
ℓi(ai ⊗ bi)) =

k
∑
i=1
ℓiϕ(ai ⊗ bi) =

k
∑
i=1
ℓiϕν((ai, bi)) =

k
∑
i=1
ℓiθ((ai, bi)),

which equals∑ki=1 ℓi(α(ai) ⊗ β(bi)) by definition of θ.

This use of the mapping property is typical in situations where a mapping from
a tensor product is to be defined by its effect on tensors, but the problem of non-
uniqueness of expression in terms of tensors has to be addressed.

Important special cases of (13.1.3) arisewhenα or β is an identitymap. Specifically,
given module homomorphisms α : MR → M′R and β : RN → RN ′, we can form the
induced homomorphisms

α∗ = α ⊗ idN and β∗ = idM ⊗ β.

Thus α∗ and β∗ are homomorphisms fromM ⊗R N toM′ ⊗R N andM ⊗R N toM ⊗R N ′

respectively. Moreover, α∗(a⊗b) = α(a)⊗b and β∗(a⊗b) = a⊗β(b)where a ∈ M, b ∈ N .

Tensor products as modules
As has been observed, in general a tensor product is an abelian groupwith nomodule
structure other than over ℤ. However, when the modules in a tensor product have
additional module structures, this is inherited by the tensor product.

(13.1.4). Let SMR and RNT bebimodules over ringsR, S, T as indicated. ThenM⊗RN is an
(S,T)-bimodulewith respect to the ring actions s⋅(a⊗b) = (s⋅a)⊗b and (a⊗b)⋅t = a⊗(b⋅t)
where a ∈ M, b ∈ N, s ∈ S, t ∈ T.

Proof. Fix s in S and consider the mapping α(s) : MR → MR in which α(s)(a) = s ⋅ a.
This is a homomorphism of right R-modules, as an easy check reveals. By (13.1.3) we
can form the induced homomorphism (α(s))∗ : M ⊗R N → M ⊗R N . This enables us
to define a left action of S on M ⊗R N by s ⋅ x = (α(s))∗(x) for x ∈ M ⊗R N . This is
certainly well defined, but we still need to verify the module axioms. First note that
s ⋅ (a ⊗ b) = α(s)∗ (a ⊗ b) = (α

(s)(a)) ⊗ b = (s ⋅ a) ⊗ b where a ∈ M, b ∈ N .
Turning to the module axioms, we have s ⋅ (x1 + x2) = (α(s))∗(x1 + x2) = (α(s))∗(x1) +

(α(s))∗(x2) = s⋅x1+s⋅x2, where s ∈ S and xi ∈ M⊗RN, since α(s) is a homomorphism.Next
let si ∈ S; then (s1+s2)⋅(a⊗b) = ((s1+s2)⋅a)⊗b = (s1 ⋅a+s2 ⋅a)⊗b = s1 ⋅(a⊗b)+s2 ⋅(a⊗b). This
implies that (s1 + s2) ⋅ x = s1 ⋅ x + s2 ⋅ x for all x inM ⊗R N, since the latter is generated
by the tensors a ⊗ b and (α(s))∗ is a homomorphism. As for the last module axiom,
s1 ⋅ (s2 ⋅ (a ⊗ b)) = s1 ⋅ ((s2 ⋅ a) ⊗ b) = (s1 ⋅ (s2 ⋅ a)) ⊗ b = ((s1s2) ⋅ a) ⊗ b = (s1s2) ⋅ (a ⊗ b). It
follows that s1 ⋅ (s2 ⋅ x) = (s1s2) ⋅ x for all x ∈ M ⊗R N, sinceM ⊗R N is generated by the
tensors a ⊗ b.
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The right action of T arises in a similar fashion from the map β(t) :R N →R N,
(t ∈ T), in which β(t)(b) = b ⋅ t for b ∈ N . Thus x ⋅ t is defined to be (β(t))∗(x). To
complete the proof the reader should check the module axioms and also verify the
bimodule condition, s ⋅ (x ⋅ t) = (s ⋅ x) ⋅ t for s ∈ S, t ∈ T, x ∈ M ⊗R N, noting that it is
enough to do this when x is a tensor.

We remark that there are versions of (13.1.4) applicable to the module situations
SMR, RN and MR, RNT : in these instances M ⊗R N is only either a left S-module or a
right T-module respectively.

In the case of a commutative ring there is no difference between left and right
modules, so the tensor product is always a bimodule. Indeed we have the following
obvious result.

(13.1.5). Let M and N be modules over a commutative ring R. Then M ⊗R N is an (R,R)-
bimodule. Furthermore,

r ⋅ (a ⊗ b) = (r ⋅ a) ⊗ b = a ⊗ (b ⋅ r) = (a ⊗ b) ⋅ r

where a ∈ M, b ∈ N, r ∈ R.

Exercises (13.1).
(1) Let R, S, T be rings and SMR, RNT modules. State what module structures the fol-

lowing tensor products possess and write down the module action in each case:
R ⊗R N andM ⊗R R.

(2) Let M and N be R-modules where R is a commutative ring. Prove that M ⊗R N
R≃

N ⊗R M.
(3) Let A be an abelian torsion group, i. e., each element of A has finite order. Prove

that A ⊗ℚ = 0.
(4) Let A and B be abelian torsion groups such that elements from A and B have rela-

tively prime orders. Prove that A ⊗ B = 0.
(5) Let R be a ring and letMR and RN bemodules. Prove thatM ⊗RN ≃ N ⊗Rop M. (Here

Rop is the opposite ring of R – see Section 9.1.)
(6) Let α : A → A1, β : B → B1, γ : A1 → A2, δ : B1 → B2 be module homomorphisms.

Prove that (γ ⊗ δ)(α ⊗ β) = (γα) ⊗ (δβ). [Hint: use (13.1.3).]
(7) Let A be the multiplicative group of all complex p-power roots of unity where p is

a prime. Prove that A ⊗ A = 0.
(8) Let R be a ring and M a right R-module. Also let α : A → B and β : B → C be

homomorphisms of left R-modules. Form the induced homomorphism α∗ = idM ⊗
α and similarly form β∗ and (βα)∗. Prove that (βα)∗ = β∗α∗. [Hint: use Exercise
(13.1.6).]
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13.2 Properties of tensor products

In this section we identify the fundamental properties of tensor products, which aid
in their calculation.

(13.2.1). Let R be a ring with identity and let MR and RN be modules. Then
(i) M ⊗R R

R≃ M,
(ii) R ⊗R N

R≃ N,

via the respective isomorphisms inwhicha⊗r → a⋅r and r⊗b → r⋅b, (a ∈ M, b ∈ N , r ∈ R).

Proof. First observe thatM⊗RR and R⊗RN are respectively a right R-module and a left
R-module by (13.1.4) since R is a bimodule. Only the first isomorphism will be proved.
Consider themap fromM×R toM defined by (a, r) → a ⋅r. This is clearlymiddle linear,
so by the mapping property there is a group homomorphism α : M ⊗R R → M such
that α(a ⊗ r) = a ⋅ r. In fact α is a homomorphism of right R-modules because

α((
k
∑
i=1
ℓi(ai ⊗ ri)) ⋅ r) = α(

k
∑
i=1
ℓi(ai ⊗ (rir))) =

k
∑
i=1
ℓiα(ai ⊗ (rir))

=
k
∑
i=1
ℓi(ai ⋅ (rir)) = (

k
∑
i=1
ℓi(ai ⋅ ri)) ⋅ r = (α(

k
∑
i=1
ℓi(ai ⊗ ri))) ⋅ r,

where ai ∈ M, r, ri ∈ R, ℓi ∈ ℤ.
To show that α is an isomorphismwe produce an inverse function. Define β : M →

M ⊗R R by β(a) = a ⊗ 1R. This is certainly well defined and a simple check reveals
that αβ and βα are identity functions. The reader is urged to supply the details. Hence
β = α−1.

(13.2.2) (Associativity of tensor products). Let R and S be rings and LR, RMS, SN mod-
ules as indicated. Then there is an isomorphism of groups

α : (L ⊗R M) ⊗S N → L ⊗R (M ⊗S N)

such that α((a ⊗ b) ⊗ c) = a ⊗ (b ⊗ c) where a ∈ L, b ∈ M, c ∈ N.

Proof. First note that all of these tensor products exist. Choose and fix c ∈ N; then
observe that the assignment (a, b) → a ⊗ (b ⊗ c), where a ∈ L, b ∈ M, is an R-middle
linear map from L × M to L ⊗R (M ⊗S N). By the mapping property there is a group
homomorphism βc : L ⊗R M → L ⊗R (M ⊗S N) such that βc(a ⊗ b) = a ⊗ (b ⊗ c).

Next the assignment (x, c) → βc(x) determines an S-middle linear map from
(L⊗RM)×N to L⊗R (M ⊗S N) – notice that βc1+c2 = βc1 + βc2 . Hence there is a homomor-
phism α : (L⊗RM)⊗SN → L⊗R (M⊗SN) such that α((a⊗b)⊗c) = βc(a⊗b) = a⊗(b⊗c). By
a similar argument there is a homomorphism γ : L⊗R(M⊗SN)→ (L⊗RM)⊗SN such that
γ(a⊗ (b⊗c)) = (a⊗b)⊗c. Since α and γ are inverse functions, α is an isomorphism.
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Here it should be noted that if there is additional module structure in (13.2.2), the
map αmay be a module isomorphism. Specifically, if we have QLR or SNT with rings Q
and T, then α is a isomorphism of left Q-modules or of right T-modules respectively.
For example, in the first case, if a ∈ L, b ∈ M, c ∈ N, q ∈ Q, then α(q ⋅ ((a ⊗ b) ⊗ c)) =
α(((q ⋅ a) ⊗ b) ⊗ c) = (q ⋅ a) ⊗ (b ⊗ c) = q ⋅ (a ⊗ (b ⊗ c)) = q ⋅ α((a ⊗ b) ⊗ c), which implies
that α is a Q-module homomorphism.

(13.2.3) (Distributivity of tensor products). Let R be a ring and let LR, RM, RN be mod-
ules. Then there is an isomorphism of groups

α : L ⊗R (M ⊕ N)→ (L ⊗R M) ⊕ (L ⊗R N)

such that α(a ⊗ (b ⊕ c)) = (a ⊗ b) ⊕ (a ⊗ c), where a ∈ L, b ∈ M, c ∈ N.

Here we are writing b ⊕ c for (b, c) ∈ M ⊕ N, etc, as it makes the notation more
transparent.

Proof. Let a ∈ L, b ∈ M, c ∈ N . Then the assignment (a, b ⊕ c) → (a ⊗ b) ⊕ (a ⊗ c)
determines a middle linear map from L × (M ⊕ N) to (L ⊗R M) ⊕ (L ⊗R N), so there is a
group homomorphism α : L⊗R (M ⊕N)→ (L⊗RM)⊕ (L⊗R N) such that α(a⊗ (b⊕ c)) =
(a ⊗ b) ⊕ (a ⊗ c).

Next the canonical injections ιM : M → M ⊕N and ιN : N → M ⊕N lead to induced
homomorphisms (ιM)∗ : L ⊗R M → L ⊗R (M ⊕ N) and (ιN )∗ : L ⊗R N → L ⊗R (M ⊕ N).
Combine (ιM)∗ and (ιN )∗ to produce a homomorphism β : (L ⊗R M) ⊕ (L ⊗R N) →
L ⊗R (M ⊕ N)which sends (a ⊗ b) ⊕ 0 to a ⊗ (b ⊕ 0) and 0 ⊕ (a ⊗ c) to a ⊗ (0 ⊕ c). Hence
β((a⊗b)⊕(a⊗c)) = a⊗(b⊕c). Since α and β are inversemaps, α is an isomorphism.

Once again, given the extra module structure SLR or RMT and RNT , it is easy to
verify that α is a left S- or a right T-module isomorphism respectively.

Tensor products of quotients
There is a useful technique for computing the tensor product of two quotientmodules.
Let R be a ring and let MR, RN be modules with respective submodules M0 and N0.
Define

S = ⟨a ⊗ b | a ∈ M0 or b ∈ N0⟩,

which is a subgroup ofM⊗RN . With this notationwe have the fundamental result that
follows.

(13.2.4). There is an isomorphism of groups

α : (M/M0) ⊗R (N/N0)→ (M ⊗R N)/S

such that α((a +M0) ⊗ (b + N0)) = a ⊗ b + S.
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Proof. In the first place the assignment (a + M0, b + N0) → a ⊗ b + S gives rise to a
well defined middle linear mapping from M/M0 × N/N0 to (M ⊗R N)/S, by definition
of S. Hence there is a homomorphism α : (M/M0) ⊗R (N/N0) → (M ⊗R N)/S such that
α((a +M0) ⊗ (b + N0)) = a ⊗ b + S. Next let π : M → M/M0 and σ : N → N/N0 denote
the canonical homomorphisms. Now form the homomorphism β̄ = π ⊗σ; thus β̄ sends
a⊗b to (a+M0)⊗ (b+N0). Observe that β̄maps each generator of S to 0, so that β̄|S = 0.
Therefore we can define unambiguously a mapping

β : (M ⊗R N)/S → (M/M0) ⊗R (N/N0)

by β(x + S) = β̄(x). Note that β(a ⊗ b + S) = β̄(a ⊗ b) = (a +M0) ⊗ (b +N0). Finally, α and
β are inverse maps, so α is an isomorphism.

As usual when additional module structure in M or N is present, α is a module
isomorphism. A first application of (13.2.4) is to compute tensor products in which
one factor is a cyclic module. But first recall from (9.1.8) that if R is a ring with identity,
a cyclic left R-module is isomorphic with amodule RR/I where I is a left ideal of R, and
there is a corresponding statement for cyclic right modules.

(13.2.5). Let R be a ring with identity and let I, J be left and right ideals of R respectively.
Let MR and RN be modules. Then
(i) M ⊗R (RR/I) ≃ M/(M ⋅ I);
(ii) (RR/J) ⊗R N ≃ N/(J ⋅ N).

In the statement of this resultM ⋅ I denotes the subgroup generated by all elements of
the form a ⋅ i where a ∈ M and i ∈ I, with a similar explanation for J ⋅ N .

Proof. Only (i) will be proved. Apply (13.2.4) with M0 = 0 and N0 = I. Then
M ⊗R (RR/I) ≃ (M ⊗R R)/S and it is just a matter of identifying the subgroup S =
⟨a⊗ i | a ∈ M, i ∈ I⟩. By (13.2.1) the assignment a⊗ r → a ⋅ r determines an isomorphism
α : M ⊗R RR → M. The image of S under α is generated by the elements a ⋅ i, where
a ∈ M, i ∈ I; therefore α(S) = M ⋅ I andM ⊗R (RR/I) ≃ M/(M ⋅ I).

Corollary (13.2.6). If I and J are respectively left and right ideals of a ringRwith identity,
the mapping (r1 + J) ⊗ (r2 + I) → r1r2 + (I + J) yields an isomorphism

(RR/J) ⊗R (RR/I) ≃ R/(I + J).

Moreover, if I and J are two sided ideals, the isomorphism is of (R,R)-bimodules.

Proof. From (13.2.5)(i) we have

(RR/J) ⊗R (RR/I) ≃ (R/J)/((R/J) ⋅ I) = (R/J)/(I + J/J),
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which by (9.1.7) is isomorphic with R/(I + J). Composition of the isomorphisms yields
the map stated. If I and J are two sided ideals, each module is an (R,R)-bimodule and
clearly the isomorphism is of R-modules.

For example, ifm, n are positive integers with d = gcd{m, n}, then dℤ = mℤ+nℤ =
(m) + (n) and it follows from (13.2.6) that

ℤm ⊗ℤn = ℤ/(m) ⊗ℤ/(n) ≃ ℤ/((m) + (n)) = ℤ/(d) = ℤd. (13.1)

Example (13.2.1). Let A = ℤ ⊕ ℤ3 ⊕ ℤ52 and B = ℤ ⊕ ℤ32 ⊕ ℤ52 ⊕ ℤ7. Applying the
distributive property together with (13.2.1) and the isomorphism (13.1), we obtain

A ⊗ B ≃ ℤ ⊕ℤ3 ⊕ℤ3 ⊕ℤ32 ⊕ℤ52 ⊕ℤ52 ⊕ℤ52 ⊕ℤ7.

Tensor products of free modules
A tensor product of freemodules over a commutative ringwith identity is in fact always
a free module. For simplicity of presentation we will discuss only the case where the
free modules are finitely generated.

(13.2.7). Let R be a commutative ringwith identity and letM andN be finitely generated
free R-modules with respective bases {x1, x2, . . . , xm} and {y1, y2, . . . , yn}. Then M ⊗R N is
a free R-module with basis {xi ⊗ yj | i = 1, 2, . . . ,m, j = 1, 2, . . . , n}.

Proof. We have N = R ⋅ y1 ⊕ R ⋅ y2 ⊕ ⋅ ⋅ ⋅ ⊕ R ⋅ yn and hence by the distributive law

M ⊗R N
R≃ (M ⊗R (R ⋅ y1)) ⊕ (M ⊗R (R ⋅ y2)) ⊕ ⋅ ⋅ ⋅ ⊕ (M ⊗R (R ⋅ yn)).

Now R ⋅ yj
R≃ R: for r ⋅ yj = 0 implies that r = 0, since the yj form a basis. Thus

M ⊗R (R ⋅ yj)
R≃ M ⊗R R R≃ M, and for a fixed j the image of xi ⊗ yj under the com-

posite of these isomorphisms is xi. Therefore the xi ⊗ yj, i = 1, 2, . . . ,m, are R-linearly
independent, so they form a basis ofM ⊗R (R ⋅ yj), which implies the result.

Corollary (13.2.8). Let M and N be free modules of finite rank over R, a commutative
ring with identity. Then rank(M ⊗R N) = rank(M) ⋅ rank(N).

For the of rank of a free module see (9.1.19) and its sequel. Note that for a vector
space rank equals dimension; thus if V and W are finite dimensional vector spaces
over a field F, then V ⊗F W is a finite dimensional F-space and dim(V ⊗F W) =
dim(V) ⋅ dim(W).

Tensor products of matrices
We have seen how to form the tensor product of module homomorphisms in (13.1.3).
The close connection between matrices and linear mappings suggests that there
should be a corresponding way to form tensor products of matrices.
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Let A and B be m × n and p × q matrices respectively over a field F. Then there
are corresponding linear transformations α : Fn → Fm and β : Fq → Fp defined by
equations α(X) = AX and β(Y) = BY . Let E(n)i denote the ith column of the n×n identity
matrix In. Thus {E

(n)
i | i = 1, . . . , n} is the standard basis of F

n. The linear transformation
α is represented with respect to the bases {E(n)i } and {E

(m)
j } by the matrix A. There is a

similar statement for β and B.
By definition of the linear mapping α ⊗ β : Fn ⊗F Fq → Fm ⊗F Fp,

α ⊗ β(E(n)i ⊗ E
(q)
j ) = α(E

(n)
i ) ⊗ β(E

(q)
j ),

which equals

m
∑
k=1

akiE
(m)
k ⊗

p
∑
ℓ=1

bℓjE
(p)
ℓ =

m
∑
k=1

p
∑
ℓ=1

akibℓj(E
(m)
k ⊗ E

(p)
ℓ ).

By (13.2.7) the E(n)i ⊗ E
(q)
j form a basis for Fn ⊗F Fq, as do the E(m)k ⊗ E

(p)
ℓ for

Fm ⊗F Fp. Let these bases be ordered lexicographically, i. e., by first subscript, then
second subscript. With this choice of ordered bases we can read off themp×nqmatrix
M which represents the linear mapping α ⊗ β. The rows ofM are labelled by the pairs
(k, ℓ), 1 ≤ k ≤ m, 1 ≤ ℓ ≤ p, and the columns by the pairs (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ q.
Therefore the ((k, ℓ), (i, j)) entry ofM is

akibℓj.

The foregoing discussion suggests that we define the tensor productA⊗B ofA and
B to be themp × nqmatrixM. In essence the entries of A ⊗ B are formed by taking all
possible products of an entry of A and an entry of B. Writing the matrix in block form,
we obtain the more easily remembered formula

M = A ⊗ B =
[[[[

[

a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . .

am1B am2B . . . amnB

]]]]

]

.

The tensor product of matrices is sometimes called the Kronecker product.1

Example (13.2.2). Consider the matrices

A = [a11 a12
a21 a22

] and B = [b11 b12
b21 b22

] .

1 Leopold Kronecker (1823–1891).
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The tensor product is

A ⊗ B =
[[[[

[

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

]]]]

]

.

Right exactness of tensor products
The section concludeswith a discussion of the right exactness property of tensor prod-
ucts, a fundamental result that is used constantly in advanced work. Exact sequences
of modules were defined in Section 9.1.

(13.2.9). Let MR and RN be modules over a ring R.

(i) Let A α
→ B

β
→ C → 0 be an exact sequence of left R-modules. Then there is an exact

sequence of abelian groups and induced homomorphisms

M ⊗R A
α∗→ M ⊗R B

β∗→ M ⊗R C → 0.

(ii) Let A α
→ B

β
→ C → 0 be an exact sequence of right R-modules. Then there is an

exact sequence of abelian groups and induced homomorphisms

A ⊗R N
α∗→ B ⊗R N

β∗→ C ⊗R N → 0.

Proof. Only (i) will be proved. The first step is to show that β∗ is surjective. Letm ∈ M
and c ∈ C. Since β is surjective, c = β(b) for some b ∈ B. Hence

β∗(m ⊗ b) = (idM ⊗ β)(m ⊗ b) = m ⊗ β(b) = m ⊗ c.

SinceM ⊗R C is generated by the tensorsm ⊗ c, it follows that β∗ is surjective.
It remains to prove that Im(α∗) = Ker(β∗),which is harder. In thefirst place, β∗α∗ =

(βα)∗ = 0∗ = 0 by Exercise (13.1.8), so that Im(α∗) ⊆ Ker(β∗). To establish the reverse
inclusion form the commutative triangle

C

B

β
??

ν
?? B/Ker(β)

γ
??

where ν is the canonical homomorphism and γ is the isomorphism in the First Isomor-
phism Theoremwhich sends b+Ker(β) to β(b). Commutativity of the diagram is easily
checked, so γν = β. This implies that γ∗ν∗ = (γν)∗ = β∗. Since γ is an isomorphism, so
is the induced map γ∗ and hence Ker(β∗) = Ker(ν∗).
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Consider the subgroup

S = ⟨m ⊗ k | m ∈ M, k ∈ Ker(β)⟩.

Then S = Im(α∗) since Ker(β) = Im(α). Next S ⊆ Ker(ν∗); for, if m ∈ M and k ∈ Ker(β),
we have ν∗(m ⊗ k) = m ⊗ (k + Ker(β)) = m ⊗ 0 = 0. Hence ν∗ induces a homomorphism
λ : (M ⊗R B)/S → M ⊗R (B/Ker(β)) such that λ(u + S) = ν∗(u) for u ∈ M ⊗R B. Thus
λ(m ⊗ b + S) = ν∗(m ⊗ b) = m ⊗ (b + Ker(β)). By (13.2.4) there is an isomorphism
θ : M ⊗ (B/Ker(β))→ (M ⊗R B)/S such that θ(m ⊗ (b + Ker(β))) = m ⊗ b + S. Notice that
θ and λ are mutually inverse maps, so λ = θ−1 is an isomorphism. If u ∈ Ker(ν∗), then,
since ν∗ induces λ, we have u + S ∈ Ker(λ) = 0M⊗RB/S and u ∈ S. Hence Ker(ν∗) ⊆ S and
finally Ker(β∗) = Ker(ν∗) ⊆ S = Im(α∗), so that Ker(β∗) = Im(α∗), as required.

The right exactness property of tensor products should be compared with the left
exactness ofHom inChapterNine– see (9.1.25). The “duality” between the tensor prod-
uct and Hom indicated by (13.2.9) and (9.1.25) is just the beginning of a fundamental
duality in homological algebra between homology and cohomology.

Exercises (13.2).
(1) Given a module RNS where R and S are rings and R has identity, prove that

R ⊗R N
S≃ N .

(2) Simplify (ℤ ⊕ℚ ⊕ℤ18) ⊗ (ℚ ⊕ℤ5 ⊕ℤ24) as far as possible.
(3) Showby an example that the tensor product does not have the left exactness prop-

erty, i. e., ifM is a right R-module and 0→ A α
→ B

β
→ C is an exact sequence of left

R-modules, the induced sequence 0 → M ⊗R A
α∗→ M ⊗R B

β∗→ M ⊗R C is not exact
in general. [Hint: applyℤ2 ⊗ − to the sequence 0→ ℤ→ ℚ→ ℚ/ℤ.]

(4) Let A and B be m × m and n × n matrices over a field. Prove that det(A ⊗ B) =
(det(A))n(det(B))m. Deduce that the tensor product of non-singular matrices is
non-singular. [Hint: define Ā to be the mn × mn block matrix whose (i, j) block
is aijIn and let B♯ be themn ×mn block matrix with B on the diagonal and 0 else-
where. Show that A ⊗ B = ĀB♯. Then take the determinant of both sides.]

(5) Let Q, R, S be rings and QLR, RMS, SN modules as indicated. Prove that there is an
isomorphism of left Q-modules α : (L ⊗R M) ⊗S N → L ⊗R (M ⊗S N).

(6) Let RN be a module over an arbitrary ring R. Suppose that A α
→ B

β
→ C → 0 is

an exact sequence of right R-modules. Prove that the sequence of abelian groups
and induced homomorphisms A ⊗R N

α∗→ B ⊗R N
β∗→ C ⊗R N → 0 is exact.

(7) (Adjoint associativity). Let R and S be rings and AR, RBS, CS modules.
(i) Explain why HomS(B,C) is a right R-module. (ii) Establish the isomorphism
HomS(A ⊗R B,C) ≃ HomR(A,HomS(B,C)).
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13.3 Extending the ring of operators

Suppose we have a module over a ring R: is there a way to make it into a module over
a different ring S? Of course the question is vague, but one situation in which this
is clearly possible is if a ring homomorphism ϕ : S → R is given. For, if M is a left
R-module, a left action of S onM can be defined by the rule s ⋅a = ϕ(s) ⋅a for s ∈ S and
a ∈ M. The simple task of verifying the module axioms is left to the reader.

It is a less trivial exercise to go in the opposite direction: letM be a left R-module
and let ϕ : R → S be a ring homomorphism. The question is: how can one make M
into a left S-module? At this point tensor products come to our aid. First observe that
S is a (S,R)-bimodule where the left action comes from the ring product in S and the
right action of R on S is given by s ⋅ r = sϕ(r), (s ∈ S, r ∈ R). Again verification of the
module axioms is easy. Thus we can form the tensor product S ⊗R M, which is a left
S-module by (13.1.4), and also a left R-module via ϕ.

One can ask how the new R-module S ⊗R M is related to the original moduleM. If
the ring S has an identity element, there is an obvious mapping

θ : M → S ⊗R M

given by θ(a) = 1S ⊗ a. Observe that θ(r ⋅ a) = 1S ⊗ (r ⋅ a) = (1S ⋅ r) ⊗ a = (1Sϕ(r)) ⊗ a =
(ϕ(r)1S) ⊗ a = (r ⋅ 1S) ⊗ a = r ⋅ (1S ⊗ a) = r ⋅ (θ(a)), where r ∈ R, a ∈ M. Therefore θ is a
homomorphism of left R-modules.

A case of particular interest iswhereϕ is injective, so thatR is essentially a subring
of S. In this circumstance we are extending the ring of operators on a module from
the subring R to S. The interesting question is whether θ is also injective. A detailed
investigation of the problemwould takeus too far afield, sowewill restrict ourselves to
the special, but important, case where R is a domain and ϕ is the canonical injection
from R into its field of fractions F. Thus we are trying to embed an R-module in an
F-vector space.

Tensor products and localizations
Let R be a domain with field of fractions F. Recall from Section 6.3 that each element
of F is a fraction over R with the form r1

r2
where ri ∈ R and r2 ̸= 0. Also there is an

injective ring homomorphism ϕ : R→ F in which r → r
1 : this is by (6.3.10).

Assume now thatM is a torsion-free R-module. We are interested in the mapping
ψ : M → F ⊗R M where ψ(a) = 1F ⊗ a, the aim being to prove that it is injective. Before
that can be done, a better understanding of the elements of the vector space F ⊗R M
is needed. For this purpose a “model” of F ⊗RM will be constructed. The construction
that follows should be compared with that of the field of fractions of a domain.
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We start by forming the set

S = {(a, r) | a ∈ M, 0 ̸= r ∈ R}

and then introduce a binary relation ∼ on S by

(a, r) ∼ (a′, r′) ⇔ r ⋅ a′ = r′ ⋅ a.

Themotivation here is the rule of equality of two rational numbers. By a simple check
∼ is an equivalence relation on S, but notice that for the transitive law to hold it is
essential thatM be torsion-free. The ∼-equivalence class of (a, r) will be written

a
r
.

and referred to as a fraction over R. Denote the set of all such fractions by R−1 ⋅M.
The plan is to turn R−1 ⋅M into an F-module by defining

a1
r1
+
a2
r2
=
r2 ⋅ a1 + r1 ⋅ a2

r1r2
and ( r1

r2
) ⋅

a
r
=
r1 ⋅ a
r2r
.

Since these are operations on equivalence classes, it is essential to verify that they are
well defined, i. e., there is no dependence on the choice of elements (ai, ri) from

ai
ri
or

(a, r) from a
r . This consists of routine calculations, at least some of which the reader

should perform.
Then the module axioms must be checked. For example,

(
r
r′
) ⋅ (

a1
r1
+
a2
r2
) = (

r
r′
) ⋅ (

r2 ⋅ a1 + r1 ⋅ a2
r1r2

) =
rr2 ⋅ a1 + rr1 ⋅ a2

r′r1r2
. (13.2)

Also

(
r
r′
) ⋅ (

a1
r1
) + (

r
r′
) ⋅ (

a2
r2
) =

r ⋅ a1
r′r1
+
r ⋅ a2
r′r2
=
rr′r2 ⋅ a1 + rr′r1 ⋅ a2

r′2r1r2
,

which is seen to equal the final expression in (13.2) on cancelling the common factor
r′ in the numerator and denominator.

The module R−1 ⋅ M is called the localization of M. The result that we are aiming
for is as follows.

(13.3.1). Let R be an integral domain and F its field of fractions. If M is a torsion-free
R-module, then

R−1 ⋅M F≃ F ⊗R M.
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Proof. The assignment ( r1r2 , a) →
r1 ⋅a
r2

yields a well defined R-middle linear mapping
from F ×M to R−1 ⋅M. For example, the map sends ( r1r2 , a1 + a2) − (

r1
r2
, a1) − (

r1
r2
, a2) to

r1 ⋅ (a1 + a2)
r2
−
r1 ⋅ a1
r2
−
r1 ⋅ a2
r2
= 0.

The other verifications are at a similar level of difficulty.
It follows that there is a homomorphism π : F ⊗

R
M → R−1 ⋅M such that π( r1r2 ⊗ a) =

r1 ⋅a
r2
. Now check that π is an F-module homomorphism. Let r, r′, ri ∈ R, a ∈ M; then

π( r
r′
⋅ (

r1
r2
⊗ a)) = π( rr1

r′r2
⊗ a) = rr1 ⋅ a

r′r2
=

r
r′
⋅ (

r1 ⋅ a
r2
) =

r
r′
⋅ (π( r1

r2
⊗ a)),

which is sufficient because F ⊗R M is generated by the tensors r1
r2
⊗ a.

Next define a mapping ψ : R−1 ⋅ M → F ⊗R M by ψ( ar ) =
1
r ⊗ a. To show that ψ is

well defined, suppose that (a, r) ∼ (a′, r′). Thus r ⋅ a′ = r′ ⋅ a and

1
r
⊗ a = r′

rr′
⊗ a = 1

rr′
⊗ (r′ ⋅ a) = 1

rr′
⊗ (r ⋅ a′) = r

rr′
⊗ a′ = 1

r′
⊗ a′,

as required. Also it is routine to check that ψ is a homomorphism.
Finally, π and ψ are mutually inverse maps: for πψ( ar ) = π(

1
r ⊗ a) =

1⋅a
r =

a
r , while

ψπ( r1
r2
⊗ a) = ψ( r1 ⋅ a

r2
) =

1
r2
⊗ (r1 ⋅ a) =

r1
r2
⊗ a.

This is implies that ψπ is the identity on F ⊗R M since the latter is generated by the
tensors r1

r2
⊗ a. Therefore ψ is an F-isomorphism.

Corollary (13.3.2). Let R be an integral domain and F its field of fractions. If M is a
torsion-free R-module, the assignment a → 1 ⊗ a determines an injective R-module ho-
momorphism θ : M → F ⊗R M.

Proof. Assume that θ(a) = 0 for some a ∈ M, so that 1 ⊗ a = 0. Apply the isomorphism
π in the proof of (13.3.1) to both sides of this equation to get a

1 = π(1 ⊗ a) =
0
1 , which

implies that a = 0.

This corollaryprovides some insight into thenature of torsion-free abeliangroups,
but first some terminology. A torsion-free abelian group A is said to have finite rank if
it has no infinite linearly independent subsets. In this event A must possess a finite
maximal linearly independent subset {a1, a2, . . . , ar}, for otherwise there would exist
infinite linearly independent subsets.

(13.3.3). If A is a torsion-free abelian group, then A is isomorphic with a subgroup of the
rational vector space V = ℚ ⊗ A. If A has finite rank, then V has finite dimension.
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Proof. Let θ : A → ℚ ⊗ A be the mapping in which a → 1 ⊗ a. By (13.3.2) this is an
injective homomorphism, which proves the first statement. Now assume that A has
finite rank and S = {a1, . . . , ar} is a maximal linearly independent subset of A. Then
T = θ(S) is linearly independent since θ is injective. If r1

r2
⊗ a is a typical tensor in V

with ri ∈ ℤ, a ∈ A, then r2(
r1
r2
⊗ a) = r1(1 ⊗ a) ∈ ⟨T⟩, which shows that every element of

ℚ⊗A is aℚ-linear combination of elements of T and consequently that T is aℚ-basis
for V . Hence dimℚ(V) = r is finite.

The proof also shows that all maximal linearly independent subsets of A have the
same number of elements, namely dimℚ(ℚ ⊗ A).

While (13.3.3) provides a familiar setting for torsion-free abelian groups of finite
rank in the sense that they exist inside finite dimensional rational vector spaces, this
placement does notmaterially advance the classification of the groups. In fact torsion-
free abelian groups of finite rank can have extremely complex structure, far beyond
that of finitely generated abelian groups. A standard reference for infinite abelian
groups is [5].

Exercises (13.3).
(1) Let F be a subfield of a field K and let V be an n-dimensional vector space over F.

Prove that V ⊗F K is an n-dimensional vector space over K.
(In the exercises that follow R is a domain with field of fractions F with R ⊆ F, and
M is an R-module).

(2) Prove that the module operations specified for R−1 ⋅M are well defined.
(3) Prove that every element of F ⊗R M has the form 1

r ⊗ a where r ∈ R, a ∈ M.
(4) Let T denote the torsion submodule ofM.

(i) Prove that F ⊗R T = 0.
(ii) Prove that F ⊗RM

R≃ F ⊗R (M/T). [Hint: start with the exact sequence 0→ T →
M → M/T → 0 and apply the right exactness property of tensor products.]

(5) (The flatness property of F). Let α : A → B be an injective R-module homomor-
phism. Prove that the induced map α∗ : F ⊗R A → F ⊗R B is also injective. [Hint:
by Exercise (13.3.4) A and Bmay be assumed to be torsion-free. Form the commu-
tative square with horizontal sides A α

→ B and F ⊗R A
α∗→ F ⊗R B, and vertical sides

the canonical maps A → F ⊗R A and B → F ⊗R B. The vertical maps are injective
by (13.3.2). Argue that the lower horizontal map is also injective by using Exercise
(13.3.3).]

(6) If 0→ A α
→ B

β
→ C → 0 is an exact sequence of R-modules, show that the induced

sequence 0→ F ⊗R A
α∗→ F ⊗R B

β∗→ F ⊗R C → 0 is also exact.
(7) Prove that F ⊗R F

R≃ F. [Hint: apply F ⊗R − to the exact sequence 0 → R → F →
F/R→ 0.]
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14 Representations of groups
The topic of this chapter is the representation of finite groups by a groups of linear
operators on a finite dimensional vector space. Aside from its importance within the
body of algebra, andmodule theory in particular, this is an areawhichhasmany appli-
cations to the structure of finite groups. Our aim is first to provide coverage of the basic
concepts, then to apply the theory to prove the Burnside p − q theorem. We will con-
centrate on the so called non-modular case, when the characteristic of the field does
not divide the group order. In addition the field will usually be algebraically closed
and may have characteristic 0. Thus the theory applies to the complex number field
in particular, which was the case studied when representation theory was first devel-
oped.

14.1 Representations and group rings

Let G be a group, F a field and V a non-zero finite dimensional vector space over F.
Recall that GL(V) denotes the group of all invertible, linear operators on V . A homo-
morphism

ρ : G → GL(V)

is called a (linear) representation of G over F. If Ker(ρ) = 1, so that G is isomorphic
with a subgroup of GL(V), the representation is said to be faithful. The degree of the
representation is the dimension of the vector space V .

There is an immediate connection with matrices. Assume that the representation
ρhas degree n, so the vector spaceV has an ordered basis v1, v2, . . . , vn. Recall fromSec-
tion 8.3 that a linear operator on V can be represented by an n×nmatrix over F which
depends on the choice of basis. This correspondence shows that GL(V) is isomorphic
with GLn(F), the general linear group of degree n over the field F. By composing ρwith
this isomorphism we obtain a homomorphism

ρ∗ : G → GLn(F),

the associated matrix representation of G over F. For g ∈ G let the (i, j) entry of the
matrix ρ∗(g) be written ρij(g). Then by the discussion in Section 8.3

ρ(g)(vi) =
n
∑
j=1 ρji(g)vj, for i = 1, 2, . . . , n.

Example (14.1.1). The most obvious example of a representation of a group G is the
trivial representation, in which every element of G is mapped to the identity linear
transformation. More interesting examples arise from permutation representations.

https://doi.org/10.1515/9783110691160-014
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310 | 14 Representations of groups

Let π : G → Sym(X) be a permutation representation of a group G on a finite non-
empty set X. Let V be a vector space over a field F with basis {vx | x ∈ X}. Then we
obtain a linear representation ρ : G → GL(V) of degree |X| by defining ρ(g)(vx) = vπ(x).
Note that in thematrix representation corresponding to ρ thematrices are permutation
matrices.

Representations and modules
Let G be a group and R a ring with identity. Recall from Section 6.1 that the group ring

RG

consists of all finite formal sums∑x∈G rxxwhere rx ∈ R. The ring operations are formal
addition and term by termmultiplication of such sums. When the ring is a field F, the
group ring FG is an algebra over F known as the group algebra.

There is a close connection between representations of G over a field F and FG-
modules. In the first place, if ρ : G → GL(V) is a representation of G on a vector space
V of finite dimension n > 0 over a field F, then V has the structure of a left FG-module
if we define

(∑
x∈G rxx) ⋅ v = ∑x∈G rxρ(x)(v), where v ∈ V , rx ∈ R.

It is a simple matter to check the validity of the module axioms.
Conversely, ifM is anFG-modulewithF-dimensionn > 0, there is a corresponding

representation ρ : G → GL(M) of degree n defined by ρ(x)(a) = x ⋅awhere x ∈ G, a ∈ M.
This observationmakes it clear that there is a bijection between F-representations ofG
with degree n and left FG-modules of F-dimension n, so the theories of these algebraic
objects are essentially identical. In this chapter it is tacitly assumed that all modules
are left modules.

Equivalent representations
Two F-representations ρ and σ of a group G are said to be equivalent if they arise from
isomorphic FG-modules. In particular equivalent representations have the same de-
gree.

(14.1.1). Let ρ and σ be representations of a group G over a field F arising from FG-
modules M and N. Then the following hold.
(i) ρ and σ are equivalent if and only if there is an F-isomorphism α : M → N such that

αρ(g) = σ(g)α for all g ∈ G.
(ii) If ρ and σ are equivalent, there exists A ∈ GLn(F) such that σ∗(g) = Aρ∗(g)A−1 for

all g ∈ G, where n is the degree of ρ and σ.
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Proof. (i) Assume that ρ and σ are equivalent, so there is an FG-isomorphism α : M →
N . Thus α(g ⋅ a) = g ⋅ α(a) for a ∈ M, g ∈ G. Therefore αρ(g)(a) = σ(g)(α(a)) for all
a ∈ M and hence αρ(g) = σ(g)α. The argument is reversible, so the converse statement
is true.

(ii) Assume that ρ and σ are equivalent; then for some F-isomorphism α : M → N we
have αρ(g) = σ(g)α for g ∈ G by (i). Choose bases for the modulesM andN and pass to
the associated matrix representations ρ∗ and σ∗. Let α be represented by A ∈ GLn(F)
with respect to these bases. Taking the matrix form of the equation αρ(g) = σ(g)α, we
obtain Aρ∗(g) = σ∗(g)A. Since A is non-singular, the result follows.

As a consequence equivalent representations represent the groupG by conjugate sub-
groups of GLn(F).

Irreducible representation
An F-representation of a group G is said to be irreducible if the corresponding FG-
module is a simple module, i. e., it has no proper non-zero submodules. Otherwise ρ
is reducible. Recall that by (9.1.9) a simple FG-module is isomorphic with a module of
the form FG/Lwhere L is a maximal left ideal of FG. This fact suggests that knowledge
of the ideal structure of the group algebra will be useful in studying the irreducible
representations of a group.

LetM be an FG-modulewith finite F-dimension n > 0. Recall thatM is semisimple
if there is a direct decomposition

M = M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk

where the Mi are simple submodules. The corresponding representation afforded by
M is called completely reducible. Let ρi denote the irreducible F-representation of G
afforded byMi.

In a real sense the representation ρ is determined by the irreducible components
ρi. There is basis ofM for which each representing matrix ρ∗(g) is a block matrix with
the matrices ρ∗i (g) placed on the principal diagonal. To see this just choose an F-basis
for each submoduleMi and form the union to get a basis ofM. Thematrix representing
g with respect to this basis will have the form specified. Thus it is reasonable to regard
ρ as a direct sum of the ρi and write ρ = ρ1 ⊕ ρ2 ⊕ ⋅ ⋅ ⋅ ⊕ ρk .

Maschke’s Theorem1

The most famous condition for a representation to be completely reducible is the fol-
lowing result of H. Maschke.

1 Heinrich Maschke (1853–1908).
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(14.1.2). Let G be a group of finite order and let F be a field whose characteristic does
not divide the order of G. Then every F-representation of G is completely irreducible.

Proof. LetM be an FG-module; we need to show thatM is semisimple and by (9.1.12)
it is enough to prove that any submodule N is a direct summand of M. Now N is an
F-subspace of the F-vector spaceM, so there is a subspace L such thatM = N ⊕ L: to
see this take a basis of N, extend it to a basis ofM and let L be the subspace generated
by the additional basis elements.

Now L may not be a FG-submodule, so we modify it by using an averaging tech-
nique. Let π : M → N denote the canonical projection in which n ⊕ ℓ → n, n ∈ N,
ℓ ∈ L. Here π is only an F-linear transformation, but it can be transformed into an
FG-module homomorphism. Define a function θ : M → M by

θ(a) = 1
m
∑
x∈G x−1 ⋅ π(x ⋅ a),

wherem = |G| and a ∈ M. This definition makes sense as division bym is well defined
in M: for m is indivisible by the characteristic of F. Note that θ(a) ∈ N for all a ∈ M.
Clearly θ is an F-linear transformation; we will show that it is an FG-homomorphism.
Let a ∈ M and g ∈ G; it follows from the definition that

g−1 ⋅ θ(g ⋅ a) = 1
m
g−1 ⋅ ∑

x∈G x−1 ⋅ π((xg) ⋅ a) = 1
m
∑
x∈G(xg)−1 ⋅ π((xg) ⋅ a).

In the last sum replace x by y = xg and sum over y to get

1
m
∑
y∈G y−1 ⋅ π(y ⋅ a) = θ(a).

Therefore θ(g ⋅a) = g ⋅ θ(a), which establishes the claim that θ is an FG-module homo-
morphism.

We conclude the proof by showing thatM = N ⊕ K where K = Ker(θ), which is of
course an FG-submodule. Note that π|N is the identity function by definition of π. Let
a ∈ N; thus π(x ⋅ a) = x ⋅ a, so that θ(a) = 1

m ∑x∈G a = a and θ is the identity map on N .
Let b ∈ M; then θ(b) ∈ N, so that θ2(b) = θ(θ(b)) = θ(b). Hence θ(θ(b) − b) = 0 and
θ(b) − b ∈ K. Therefore b ∈ Im(θ) + K ⊆ N + K andM = N + K. Finally, N ∩ K = 0, since
θ|N is the identity and henceM = N ⊕ K as required.

Maschke’s theoremmakes it clear that one should study the irreducible represen-
tations of a group, at least if the characteristic of the field does not divide the group
order. The key to understanding these is knowledge of the simple modules over the
group algebra. Recall from Schur’s Lemma (9.1.22) that EndFG(M) is a division ring if
M is a simple module. In fact when F is an algebraically closed field, it is even a field.
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(14.1.3). Let G be a finite group, F an algebraically closed field and M a simple FG-
module. ThenM has finite F-dimension and EndFG(M) consists of scalar multiplications
by elements of F, so that EndFG(M) ≃ F.

Proof. In the first place M has finite F-dimension since G is finite and M = (FG)a for
any 0 ̸= a ∈ M by simplicity ofM.

Let 0 ̸= α ∈ EndFG(M). Since F is algebraically closed and α is a linear operator on
the finite dimensional F-spaceM, we can be sure that α has an eigenvalue in F, say f
with associated eigenvector m ∈ M, by (8.4.1). Let N denote the set of all ℓ ∈ M such
that α(ℓ) = f ℓ and observe that N is an F-subspace containingm. If g ∈ G, a ∈ N, then
α(g ⋅ a) = g ⋅ (α(a)) = g ⋅ fa = f (g ⋅ a), which shows that g ⋅ a ∈ N . Therefore N is an FG-
submodule ofM. ButM is a simple module and N ̸= 0 since 0 ̸= m ∈ N . Consequently
N = M and thus α is multiplication inM by f .

Next we apply (14.1.3) to determine the irreducible representations of a finite
abelian group over an algebraically closed field.

(14.1.4). Let G be a finite abelian group and let F be an algebraically closed field whose
characteristic does not divide |G|. Then the irreducible F-representations of G all have
degree 1 and they correspond to the elements of Hom(G,U(F)).

Proof. Let M be a simple FG-module. Then EndFG(M) consists of F-scalar multi-
plications on M by (14.1.3). Let g ∈ G; the assignment a → g ⋅ a determines an
F-endomorphism β of M. In fact it is an FG-endomorphism: for we have β(x ⋅ a) =
g ⋅ (x ⋅ a) = (gx) ⋅ a = (xg) ⋅ a = x ⋅ (g ⋅ a) = x ⋅ β(a) for all x ∈ G, since G is
abelian. Therefore β ∈ EndFG(M) and β is a scalar multiplication. This means that
every F-subspace of M is a submodule. Since M is a simple module, it follows that
M has F-dimension 1. Thus the irreducible F-representations of G correspond to the
elements of the Hom(G,U(F)).

Exercises (14.1).
(1) Let G be a group and F a field. LetM, N be FG-modules affording representations

ρ, σ respectively. If there is an F-isomorphism α : M ≃ N such that αρ(g) = σ(g)α
for all g ∈ G, prove that ρ and σ are equivalent.

(2) Show that every permutation representation of degree > 1 is reducible.
(3) Find all the inequivalent irreducible complex representations of a cyclic group of

order 6.
(4) Let G be a finite p-group and F a finite field of prime characteristic p. Prove that

every irreducible F-representation of G has degree 1. [Hint: let M be a simple
G-module. Note that the semidirect product of M and G is a finite p-group and
hence is nilpotent. Apply Exercise (10.2.12).]

(5) Use Exercise (14.1.4) to show that Maschke’s Theorem is not valid if the character-
istic of the field divides the group order.
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(6) Let the degrees of the irreducible representations of a finite group G over an arbi-
trary field F be n1, n2, . . . . Prove that∑i ni ≤ |G|, so that there are only finitelymany
inequivalent irreducible F-representations of G. [Hint: form a series of left ideals
in FG of maximum length. The factors in the series are simple FG-modules.]

(7) Prove that a cyclic group of order n has a faithful irreducibleℚ-representation of
degree ϕ(n) where ϕ is Euler’s function. [Hint: map a generator of the group to a
root of the cyclotomic polynomial Φn.]

(8) Let G be a finite group which has a unique minimal normal subgroup N ≠ 1 and
let F be a field whose characteristic does not divide |G|. Prove that G has at least
one faithful irreducible F-representation. [Hint: assume there are no faithful ir-
reducible representations. Write FG as the direct sum of simple FG-modules Mi.
ThenN acts trivially on eachMi, andhence onFG, by leftmultiplication. Conclude
that N = 1.]

(9) Let G be a perfect group, i. e., G = G′, and let F be any field. Prove that every
F-representation of G with degree 1 is trivial.

14.2 The structure of group algebras

Complete information about the irreducible representations of a finite group is con-
tained within the group algebra. The reason for this is that the simple modules that
determine the irreducible representations arise as quotients of the groupalgebra. Thus
group algebras are the key to understanding the irreducible representations of a finite
group.

The most complete results are obtained in the case of an algebraically closed
field whose characteristic does not divide the group order. The fundamental theo-
rem that follows gives valuable information regarding the number and degrees of the
irreducible representations.

(14.2.1). Let G be a finite group and F an algebraically closed field whose characteristic
does not divide the order of G. Then:
(i) FG = I1 ⊕ I2 ⊕ ⋅ ⋅ ⋅ ⊕ Ih where Ii is an ideal of FG which is isomorphic with Mni (F), the

ring of all ni × ni matrices over F;
(ii) |G| = n21 + n

2
2 + ⋅ ⋅ ⋅ + n

2
h;

(iii) each simple FG-module is isomorphic with a minimal left ideal of some Ii and has
dimension ni. Thus the ni are the degrees of the irreducible representations.

(iv) the number h of inequivalent irreducible F-representations of G is equal to the class
number of G.

The proof of (14.2.1) is one of the longer ones in this book. In order to prove this major
result two preparatory lemmas are needed.
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First a definition. Let R and S be rings and let α : R → S be a homomorphism of
abelian groups. Then α is called an anti-homomorphism of rings if

α(r1r2) = α(r2)α(r1)

for all ri ∈ R. An anti-homomorphism is called an anti-isomorphism if it is bijective.
For example, the transpose mapping in which A → AT is an anti-isomorphism from
Mn(F) to itself because of the matrix identity (AB)T = BTAT .

The next result is quite elementary: it makes the first transition, from a ring with
identity to the ring of endomorphisms of a module.

(14.2.2). Let S be a ring with identity and define a function θ : S → EndS(SS) by θ(s) :
x → xs where s, x ∈ S. Then θ is an anti-isomorphism.

Proof. First we show that θ is an anti-homomorphism. By definition

θ(s1s2)(x) = x(s1s2) = (xs1)s2 = θ(s2)(xs1) = θ(s2)θ(s1)(x)

where x, si ∈ S. Hence θ(s1s2) = θ(s2)θ(s1). By an even simpler computation θ(s1 + s2) =
θ(s1) + θ(s2).

It remains to prove that θ is bijective. Suppose that θ(s) = 0 for some s ∈ S. Then
xs = 0 for all x ∈ S and taking x to be 1S, we deduce that s = 1Ss = 0. Hence θ is
injective. Finally, let ξ ∈ EndS(SS) and put t = ξ (1S). Then for any s ∈ S

ξ (s) = ξ (s1S) = sξ (1S) = st = θ(t)(s),

since ξ is an homomorphism of S-modules. It follows that ξ = θ(t) and θ is surjective.

Endomorphisms of direct sums
Thenextmove is to transition from the ringof endomorphismsof a semisimplemodule
to a ring of matrices. This calls for precise information about the endomorphism ring
of a direct sum of modules.

Let R be a ring with identity and letM be an R-module which has a direct decom-
position into submodules

M = M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk .

Let ξ be an R-endomorphism of M. The idea here is to represent ξ by a matrix; this
is very similar to the matrix representation of a linear operator on a vector space de-
scribed in Section 8.3.

If a ∈ Mi, define ξji(a) to be the Mj-component of ξ (a). Since ξ ∈ EndR(M), it
follows that ξji : Mi → Mj is an R-module homomorphism. Writing a = ∑ki=1 ai where
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ai ∈ Mi, we have

ξ (a) =
k
∑
i=1 ξ (ai) = k

∑
i=1 k
∑
j=1 ξji(ai) = k

∑
j=1 k
∑
i=1 ξji(ai). (14.1)

Next denote by ξ∗ the k×kmatrix whose (i, j)th entry is ξji. Define [a] to be the column
of components of a ∈ M. Then equation (14.1) above takes the matrix form

[ξ (a)] = ξ∗[a].
Thus the endomorphism ξ corresponds to left multiplication by the matrix ξ∗.

The information required in theproof of (14.2.1) is embodied in the following result
– here the notation of the foregoing discussion is maintained.

(14.2.3). The ring EndR(M) is isomorphic with the ring of k × k matrices ξ∗ with (i, j)-
entry ξji, where the matrix operations are the usual operations of matrix algebra.

To prove this it suffices to show that the assignment ξ → ξ∗ is a ring isomorphism,
which is a straightforward calculation along the lines of (8.3.12). We are now in a po-
sition to undertake the proof of the main theorem.

Proof of (14.2.1). Write R = FG. By (14.1.2) the left R-module RR is semisimple, so it is
a direct sum of finitely many simple submodules, that is to say, of minimal left ide-
als. Every simple submodule of R is isomorphic with a quotient of R and hence with
one of the simple direct summands by (9.1.10). Let S1, S2, . . . , Sh be a complete set of
non-isomorphic simple submodules of R and let Ii denote the sum of all the simple
submodules that are isomorphic with Si. Notice that

Ii ∩∑
j ̸=i Ij = 0.

For if the intersection were non-zero, it would contain a simple submodule which
would have to be isomorphic with Si and some Sj where j ̸= i. Thus

RR = I1 ⊕ I2 ⊕ ⋅ ⋅ ⋅ ⊕ Ih

and Ii is the direct sum of say ni minimal left ideals, all of them isomorphic with Si.
Next we show that each Ii is an ideal of R: certainly it is a left ideal. Let r ∈ R

and observe that the assignment ξ : x → xr determines a homomorphism ξ of (left)
R-modules. Let U be a simple submodule of Ii. Then ξ (U) is a quotient of U, so either
it is 0 or it is isomorphic with Si. Either way ξ (U) ≤ Ii and therefore ξ (Ii) ≤ Ii. Hence Ii
is a right ideal and therefore an ideal. Consequently IjIi ≤ Ij ∩ Ii = 0 for i ̸= j.

Now Ii is certainly a subring of R; we claim that it has an identity element. Write
1R = e1+e2+⋅ ⋅ ⋅+ehwith ei ∈ Ii. Suppose that some ei = 0. Then Ii = 1RIi = 0 since IjIi = 0
if i ̸= j. This is impossible, so ei ̸= 0 for all i. Next let r ∈ Ii. Then we have r = r1R = rei.
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In the same way r = eir. Thus ei is the identity element of Ii. It follows from (14.2.2)
that there is an anti-isomorphism from Ii to EndIi (Ii). Furthermore, EndR(Ii) = EndIi (Ii)
since IjIi = 0 if i ≠ j.

We still have to investigate the structure of Ei = EndR(Ii). Recall that Ii is a direct
sum of ni simple submodules, each isomorphic with Si. By (14.1.3) EndR(Si) ≃ F. Thus
(14.2.3) can be applied to show that Ei ≃ Mni (F). This means that there are mappings

Ii → Ei ≃ Mni (F)

whose composite is an anti-isomorphism Ii → Mni (F). Follow this up by applying the
transposemap A → AT to get a ring ismorphism Ii → Mni (F). This completes the proof
of (i).

To establish (ii) take the F-dimension of each side in the equation in (i), noting
that R = FG has dimension |G|, while Ii has dimension n2i since Ii ≃ Mni (F). Hence
|G| = ∑hi=1 n2i .

By (9.1.9) every simple R-module is an image of R and hence is isomorphic with a
minimal left ideal of R; the latter is contained in some Ii. Hence the ni are the degrees
of the irreducible representations. If X is a left ideal of Ii, it is automatically a left ideal
of R, since IjX ≤ Ii ∩ Ij = 0 if i ̸= j. Thus a minimal left ideal of R which is contained in
Ii is minimal in Ii.

To establish (iii) it remains to show that a minimal left ideal ofMn(F) has dimen-
sion n as an F-space. This can be proved by a short matrix calculation – see Exercise
(14.2.6).

The final step in the proof is to establish (iv), that h equals the class number of
G. Let C denote the center of the ring R, i. e., the set of all r ∈ R such that rx = xr for
all x ∈ R. Recall from Exercise (6.1.10) that C is a commutative subring of R and hence
is an F-algebra. Observe also that C coincides with the sum of the centers of the Ii.
But the center ofMni (F) is the subring of scalar matrices, which has F-dimension 1. It
follows that C has F-dimension h.

On the other hand, the center of FG can be computed directly. Let C1,C2, . . . ,Cℓ
denote the conjugacy classes of G and write si = ∑x∈Ci x. Clearly si ∈ C. Notice that the
si are linearly independent over F, so ℓ ≤ h. To complete the proof write S = Fs1 +Fs2 +
⋅ ⋅ ⋅ + Fsℓ. Let c ∈ R and write c = ∑x∈G fxx with fx ∈ F. Then for all g ∈ G

c = g(∑
x∈G fxx)g−1 = ∑x∈G fx(gxg−1) = ∑y∈G fg−1yg y,

where in the last sum y = gxg−1. Consequently fy = fg−1yg for all g, y, showing that the
function f is constant on each conjugacy class Ci. Let fi be the value of f on Ci. Then
c = ∑ℓi=1 fisi ∈ S, so the si form a basis of C. Hence C = S and the proof of (14.2.1) is
complete.
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As an illustration of the usefulness of (14.2.1) in determining irreducible represen-
tations we present an explicit example.

Example (14.2.1). Find all the irreducible complex representations of the dihedral
group of order 8.

Let G = Dih(8) and write G = ⟨x⟩ ⋉ ⟨a⟩, where a4 = x2 = 1, xax−1 = a−1 = a3. This
group has five conjugacy classes

{1}, {a, a3}, a2, {x, xa2⟩, {xa, xa3},

so we expect to find five irreducible representations.
Observe that Gab is a Klein 4-group, so G has four irreducible representations of

degree 1 by (14.1.4). We can assume that n1 = n2 = n3 = n4 = 1. Since ∑
5
i=1 n2i = 8,

it follows that n5 = 2, and there is an irreducible representation of degree 2. A little
experimentation reveals the representation to be

a → [ 0 1
−1 0
] , x → [1 0

0 −1
] .

Exercises (14.2).
(1) Find all the irreducible complex representations of S3, the symmetric group of

degree 3.
(2) The same question for the alternating group A4.
(3) Show that the number of irreducible representations of a finite group overℚ can

be less than the class number.
(4) Find the number of inequivalent irreducible complex representations of the sym-

metric group Sn.
(5) Find the degrees of the irreducible complex representations of S4.
(6) Prove that the ring R = Mn(F) is the direct sum of n minimal left ideals of

F-dimension n. (This fact was used in the proof of (14.2.1).) [Hint: let Eij denote
the n × n matrix whose (i, j) entry is 1 and other entries are 0. Put Si = ∑

n
j=1 FEji.

Show that Si is a minimal left ideal of R and R =⨁n
i=1 Si.]

(7) Let G be a non-abelian group of order p(p− 1)where p is a prime. Find the degrees
of the irreducible complex representations of G. [Hint: G has a normal subgroup
N of order p and G/N is cyclic of order p − 1; also the class number is p and there
are p − 1 representations of degree 1.]

14.3 Group characters

Associated with a representation of a finite group is a function called the character, a
concept of great significance in representation theory. Let F be a field and G a finite
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group. An FG-moduleM gives rise to a F-representation ρ : G → GL(M) ofG. By choos-
ing an F-basis forM we obtain the associated matrix representation ρ∗ : G → GLn(F).
Choice of a different basis will result in an equivalent representation σ. By (14.1.1) the
matrices ρ∗(x) and σ∗(x) are similar for each x ∈ G; therefore these matrices have the
same trace. If A is a square matrix, write tr(A) for its trace: recall that this is the sum
of the entries on the principal diagonal and is also the sum of the eigenvalues.

Define the character of ρ to be the function χ : G → F where

χ(x) = tr(ρ∗(x)), x ∈ G.

The function χ, unlike ρ, is independent of the choice of basis forM. The significance
of the character of a representation is underscored by the next result.

(14.3.1). Equivalent representations have the same character.

Proof. Let ρ and σ be equivalent representations of a finite groupG over a field F. Then
by (14.1.1) thematrices ρ∗(x) and σ∗(x) are similar for any x ∈ G, so they have the same
trace. It follows that ρ and σ have the same character.

Class functions
Let G be a finite group and F a field. Then Fun(G, F) denotes the set of all functions
from G to F. This set acquires the structure of a vector space over F if we define the
sum and scalar multiple in the obvious way:

α + β(x) = α(x) + β(x) and fα(x) = f (α(x)),

where x ∈ G, f ∈ F, α, β ∈ Fun(G, F).
A class function fromG toF is a functionwhich is constant on each conjugacy class

ofG. A simple check reveals that the class functions form a subspace of Fun(G, F): this
will be denoted by

Cl(G, F).

Our interest in class functions stems from the following observation.

(14.3.2). Group characters are class functions.

Proof. Let χ be the character of a representation ρ of a finite group G over a field F.
Then ρ∗(gxg−1) = ρ∗(g)ρ∗(x)(ρ∗(g))−1 where x, g ∈ G. Then, since similar matrices
have the same trace,

χ(gxg−1) = tr(ρ∗(g)ρ∗(x)(ρ∗(g)−1)) = tr(ρ∗(x)) = χ(x).
(14.3.3). Let G be a finite group and F a field. Then the vector spaces Fun(G, F) and
Cl(G, F) have F-dimensions equal to |G| and the class number of G respectively.
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Proof. For any x ∈ G define δx ∈ Fun(G, F) by δx(x) = 1 and δx(y) = 0 if y ̸= x.
The functions δx are linearly independent over F. For, if ∑x∈G fxδx = 0 where fx ∈ F,
then 0 = ∑x∈G fxδx(y) = fy for all y ∈ G. Also for any α ∈ Fun(G, F) we have α =
∑x∈G α(x)δx by a check of functional values. Hence {δx| x ∈ G} is a basis of Fun(G, F),
which therefore has dimension |G|.

Next let C1,C2, . . . ,Ch denote the conjugacy classes ofG, so that h is the class num-
ber. Define γi ∈ Cl(G, F), (1 ≤ i ≤ n), by mapping elements of Ci to 1F and elements in
other conjugacy classes to 0F . The γi form a basis of Cl(G, F) by an argument similar to
that used in the previous paragraph. Hence Cl(G, F) has dimension h.

The character of an irreducible representation is called an irreducible character.
The next result shows that it is the irreducible characters that matter.

(14.3.4). In any finite group each character is a sum of irreducible characters.

Proof. Let G be a finite group and F a field. Let ρ be the F-representation of G arising
from an FG-module M and denote its character by χ. Since the F-dimension of M is
finite, there is a series of FG-submodules of maximum length 0 = M0 < M1 < ⋅ ⋅ ⋅ <
Mk = M. Then by the Correspondence Theorem – see Section 9.1 – themoduleMi+1/Mi
is simple, and therefore affords an irreducible F-representation ρi of G: denote the
character of ρi by χi.

Choose an F-basis of M1, extend it to a basis of M2, then to one of M3 and so on.
This procedure yields a basis ofM which is a union of bases of theMi. For each g ∈ G
form the k × k matrix that represents the FG-endomorphism ρ(g). Our choice of basis
ensures that the matrix has the block form

ρ∗(g) = [[[[
[

A1 ∗ ⋅ ⋅ ⋅ ∗
0 A2 ∗ ⋅ ⋅ ⋅ ∗
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅ Ak

]]]]

]

,

where ρ∗i (g) = Ai. Since the trace of ρ∗(g) is the sum of the traces of the matrices Ai, it
follows that χ = χ1 + χ2 + ⋅ ⋅ ⋅ + χk . Here χi is an irreducible character, since it is derived
from the simple moduleMi+1/Mi.

Orthogonality relations
Let G be a finite group and F a field. Let ρ be an F-representation of a finite group G
arising from an FG-module M. Choose an F-basis of M and as usual write ρ∗ for the
corresponding matrix representation of G. Let

ρij(g)

denote the (i, j) entry of the matrix ρ∗(g) where g ∈ G. Thus ρij is a function from G
to F.
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The irreducible characters satisfy certain fundamental orthogonality relations,
the basis for which is given in the next result. Here δij denotes the Kronecker delta:
its value is 1 if i = j and 0 otherwise.

(14.3.5). Let G be a finite group and F a field. Let ρ, σ be two irreducible F-representa-
tions with respective degrees m, n and write ρij and σij for the (i, j) entries of the associ-
ated matrix functions with respect to fixed bases. Let 1 ≤ r, s ≤ m and 1 ≤ i, j ≤ n.
(i) If ρ and σ are inequivalent, then∑x∈G σij(x−1)ρrs(x) = 0.
(ii) If F is algebraically closed with characteristic not dividing |G|, then

∑
x∈G ρij(x−1)ρrs(x) = |G|n δisδjr .

Proof. Assume thatρandσ arise fromrespectiveFG-modulesM,N . Ifη ∈ HomF(M,N),
define η̄ : M → N by

η̄ = ∑
x∈G σ(x−1)ηρ(x).

Clearly η̄ is an F-linear mapping.
In fact η̄ is a map of FG-modules. Indeed for any g ∈ G,

σ(g)η̄ = ∑
x∈G σ(g)σ(x−1)ηρ(x) = ∑x∈G σ(gx−1)ηρ(x).

Set y = xg−1 and replace x in the sum by yg. Thus

σ(g)η̄ = ∑
y∈G σ(y−1)ηρ(yg) = ∑y∈G σ(y−1)ηρ(y)ρ(g) = η̄ρ(g). (14.2)

Keep in mind that if g ∈ G, a ∈ M, b ∈ N, then ρ(g)(a) = g ⋅ a and σ(g)(b) = g ⋅ b. On
applying the function in (14.2) to a ∈ M, we obtain the module form g ⋅ (η̄(a)) = η̄(g ⋅a)
for any g ∈ G, a ∈ M. Hence η̄ is an FG-module homomorphism.

In order to prove (i) and (ii) we make a special choice of η. Let η be the F-linear
map that sends the jth basis element ofM to the rth basis element of N and sends all
other basis elements to 0. Then the matrix representing η has its (k, ℓ) entry equal to
δjkδrℓ. The matrix form of the equation defining η̄ is

η̄is = ∑
x∈G n
∑
k=1 m
∑ℓ=1 σik(x−1)δjkδrℓρℓs(x) = ∑x∈G σij(x−1)ρrs(x). (14.3)

If ρ and σ are inequivalent, the simple modules M and N are not isomorphic, and
hence HomFG(M,N) = 0. Therefore η̄ = 0, which establishes (i).
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In the next part of the proof we assume that σ = ρ and M = N, using a single
basis for M. The function η is as defined above and η̄ = ∑x∈G ρ(x−1)ηρ(x). Since F is
algebraically closed, HomFG(M,M) = EndFG(M) consists of scalar multiplications by
(14.1.3). Therefore η̄ is multiplication by some fjr ∈ F. In the matrix representation of
η̄, we have η̄is = fjrδis. Hence by equation (14.3)

fjrδis = ∑
x∈G ρij(x−1)ρrs(x) = ∑y∈G ρrs(y−1)ρij(y) = fsiδrj,

where we have replaced x in the sum by y = x−1. Therefore we can assume that i = s
and j = r, since otherwise the sum in (ii) equals 0; thus

fjj = ∑
x∈G ρij(x−1)ρji(x) = ∑y∈G ρji(y−1)ρij(y) = fii, (14.4)

which shows that f = fii is independent of i. Form the sum of the equations (14.4) for
j = 1, 2, . . . , n to get

nf =
n
∑
j=1 ∑x∈G ρij(x−1)ρji(x) = ∑x∈G n

∑
j=1 ρij(x−1)ρji(x).

But ∑nj=1 ρij(x−1)ρji(x) is the (i, i)th entry of the matrix ρ∗(x−1)ρ∗(x) = ρ∗(1) = In, that
is, the identity n × nmatrix. Therefore nf = ∑x∈G 1 = |G|, so f = |G|/n. The result now
follows from (14.4).

On the basis of the last result we are able to establish the fundamental orthogo-
nality relations for irreducible characters.

(14.3.6). Let G be a finite group and F a field. Let χ and ψ be distinct irreducible
F-characters of G. Then the following hold.
(i) ∑x∈G χ(x−1)ψ(x) = 0.
(ii) If F is algebraically closed with characteristic not dividing |G|, then
∑x∈G χ(x−1)χ(x) = |G|.

Proof. Let ρ, σ be irreducible F-representations with respective characters χ, ψ and
degrees n,m. By (14.3.1) ρ and σ are inequivalent. As before we write ρij and σij for the
(i, j) entries of the associated matrix representations with respect to fixed bases. Thus
χ = ∑ni=1 ρii and ψ = ∑mj=1 σjj. Therefore by (14.3.5)

∑
x∈G χ(x−1)ψ(x) = ∑x∈G n

∑
i=1 m
∑
j=1 ρii(x−1)σjj(x) = n

∑
i=1 m
∑
j=1 ∑x∈G ρii(x−1)σjj(x) = 0,

which establishes (i).
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Now assume we are in the situation of (ii), so ρ = σ and χ = ψ. By (14.3.5) again

∑
x∈G χ(x−1)χ(x) = n

∑
i=1 n
∑
j=1 ∑x∈G ρii(x−1)ρjj(x) = n

∑
i=1 n
∑
j=1 |G|n δ2ij,

which equals |G|.

Inner products of characters
Let G be a finite group and F a field whose characteristic does not divide |G|. For any
α, β ∈ Fun(G, F) define

⟨α, β⟩G =
1
|G|
∑
x∈G α(x−1)β(x),

which is an element of F. Then it is easy to see that ⟨ , ⟩G is a bilinear form on the
F-space Fun(G, F). Moreover, the bilinear form is symmetric; for

⟨β, α⟩G =
1
|G|
∑
x∈G β(x−1)α(x) = 1

|G|
∑
y∈G α(y−1)β(y) = ⟨α, β⟩G,

where we have put y = x−1. (For bilinear forms see for example [16].)
Suppose that ⟨α, β⟩G = 0 for all α; then β = 0. For, if β(x) ̸= 0, we could choose α

so that α(x−1) = β(x)−1 and α(y) = 0 for y ̸= x−1; then it follows that
⟨α, β⟩G =

1
|G|
∑
y∈G α(y−1)β(y) = 1

|G|
α(x−1)β(x) = 1

|G|
̸= 0.

Therefore β = 0 and ⟨ , ⟩G is a non-degenerate bilinear form.
It follows that ⟨ , ⟩G, which may be written just ⟨ , ⟩, is an inner product on the

vector space Fun(G, F) – for an account of inner products see, for example, [16]. This
observation allows us to reinterpret the properties of irreducible characters listed in
(14.3.6).

(14.3.7). Let G be a finite group and F an algebraically closed field whose characteristic
does not divide |G|. Then the distinct irreducible F-characters of G form an orthonormal
basis of Cl(G, F), the vector space of class functions on G over F.

Proof. Let χ1, χ2, . . . , χh be the distinct irreducible characters of G. By (14.3.6) and the
definition of the inner product

⟨χi, χj⟩G =
1
|G|
∑
x∈G χi(x−1)χj(x) = 1

|G|
|G|δij = δij.

Hence {χ1, χ2, . . . , χh} an orthonormal set. Now by (14.2.1) the number of irreducible
characters equals h, the class number of G, which by (14.3.3) is the dimension of the
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F-space Cl(G, F). Therefore the χi generate Cl(G, F) and they formanorthonormal basis
of it.

The permutation character of a group is defined to be the character of the (left)
regular permutation representation. Next we apply (14.3.7) to express the permutation
character in terms of the irreducible characters.

(14.3.8). Let G be a finite group and F an algebraically closed field whose characteris-
tic does not divide |G|. Denote the distinct irreducible F-characters of G by χ1, χ2, . . . , χh
where h is the class number of G. Then the permutation character is equal to

ψ =
h
∑
j=1 ℓjχj

where ℓj is the degree of χj.

Proof. Since the χj form an F-basis for Cl(G, F), there is an expression ψ = ∑hj=1 fjχj
with fj ∈ F. Then ⟨ψ, χi⟩ = fi since ⟨χj, χi⟩G = δij. Now left multiplication on G by a non-
identity element has no fixed points. Therefore the permutation matrix representing
any x ̸= 1 in G has zeros on the principal diagonal and thus ψ(x) = 0. Hence

fi = ⟨ψ, χi⟩ =
1
|G|
∑
x∈Gψ(x−1)χi(x) = 1

|G|
ψ(1)χi(1).

Since ψ(1) = |G| and χi(1) = ℓi, it follows that fi =
1|G| |G| ⋅ ℓi = ℓi.

An important property of the degrees of the irreducible characters is that they
divide the group order when the field is algebraically closed and has characteristic 0.
In order to establish this we will need a further result. First recall that an algebraic
integer is a complex number that is a root of some monic polynomial in ℤ[t].

(14.3.9). Let G be a finite group and F an algebraically closed field of characteristic 0.
Let χ be an irreducible F-character of G of degree n. If g ∈ G has exactly ℓ conjugates,
then ℓχ(g)n is an algebraic integer.

Proof. Let C1,C2, . . . ,Ch be the conjugacy classes of G and write di = ∑x∈Ci x. It was
observed at the end of the proof of (14.2.1) that the di form an F-basis of the center C
of the ring FG. Since C is a subring, didj ∈ C for 1 ≤ i, j ≤ h. Consider the product

didj = ∑
x∈Ci ∑y∈Cj xy.

Let x ∈ Ci, y ∈ Cj; then z = xy ∈ Cr for some r and z must occur in the product didj.
If g ∈ G, then gzg−1 also occurs in didj since the latter element lies in C, the center of
FG. Define m(r)ij to be the number of pairs (x, y) such that x ∈ Ci, y ∈ Cj and xy equals
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a fixed element zr of Cr . Notice that m
(r)
ij does not depend on the choice of zr . These

considerations show that

didj =
h
∑
r=1m(r)ij dr . (14.5)

Let ρ be an irreducible representation of G with character χ. Extend the functions
ρ and χ fromG to FG in the obviousway. Now ρ arises from some simple FG-moduleM.
Let i be fixed; since di ∈ C, we have ρ(di) ∈ EndFG(M). By (14.1.3) the latter consists of
scalars: hence ρ∗(di) = fiIn where fi ∈ F. (Here as usual ρ∗ denotes the corresponding
matrix representationwith respect to somefixed basis ofM). Hence χ(di) = tr(ρ∗(di)) =
nfi. Also

χ(di) = ∑
x∈Ci χ(x) = ℓiχ(i)

where ℓi = |Ci| and χ(i) is the value of χ on the conjugacy class Ci. Hence nfi = ℓiχ(i) and
fi = ℓiχ(i)/n = ℓiχ(g)/n for all g ∈ Ci.

Next apply the function ρ to the equation (14.5) to get fifj = ∑
h
r=1m(r)ij fr, since

ρ∗(di) = fiIn. This may be rewritten as

h
∑
r=1(fiδjr −m(r)ij )fr = 0, j = 1, 2, . . . , r. (14.6)

With i fixed, letA denote the h×hmatrix whose (j, r) entry is fiδjr −m
(r)
ij . Then inmatrix

form the system of equations (14.6) becomes

A[f1f2 . . . fh]
T = 0. (14.7)

Suppose that det(A) ̸= 0, so A−1 exists. Multiply the equation (14.7) on the left by
A−1 and conclude that f1 = f2 = ⋅ ⋅ ⋅ = fh = 0. Therefore 0 = fi = ℓiχ(g)/n for all g ∈ Ci,
1 ≤ i ≤ h. Hence χ is zero on C. But this is impossible because χ(1G) = n ̸= 0 in F.

Thus we are forced to the conclusion that det(A) = 0. On expanding det(A) =
det(fiδjr−m

(r)
ij ),wefind that fi is a root of amonic polynomial overℤ. Hence fi = ℓiχ(g)/n

is an algebraic integer for g ∈ Ci and i = 1, 2, . . . , h.

It is now possible to establish the divisibility property of the character degrees.

(14.3.10). Let G be a finite group and F an algebraically closed field of characteristic 0.
Then the degrees of the irreducible F-characters of G divide the order of the group.

Proof. Let ρ be an irreducible F-representation of Gwith degree n and denote its char-
acter by χ. Setm = |G| and let Ci, i = 1, 2, . . . , h be the conjugacy classes of G. By (14.3.6)
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we have

m
n
=
1
n
∑
x∈G χ(x−1)χ(x).

Put ℓi = |Ci| andwrite Ci∗ = (Ci)−1, noting that (Ci)−1 is a conjugacy class. Changing the
summation in the last equation to one over conjugacy classes, we find that

m
n
=
1
n

h
∑
i=1 ℓiχ(i)χ(i∗) = h

∑
i=1 fiχ(i∗), (14.8)

where fi = ℓiχ(i)/n. Now fi is an algebraic integer by (14.3.9). Also χ(i∗) is a sum of eigen-
values of eigenvalues of ρ(g) for g ∈ G. The latter are roots of unity, since gm = 1 implies
that fm = 1 with f is an eigenvalue of ρ(g). Thus χ(i∗) an algebraic integer and it fol-
lows that∑hi=1 fiχ(i∗) is also an algebraic integer. Finally, a rational number which is an
algebraic integer is an integer by (11.1.12). Therefore by equation (14.8) ndividesm.

Character tables
LetG be afinite group andF an algebraically closedfieldwhose characteristic does not
divide |G|. Let the class number of G be h. Write C1,C2, . . . ,Ch for the conjugacy classes
of G and χ1, χ2, . . . , χh for the irreducible characters. The value of χi on the conjugacy
class Cj will be written

χ(j)i .
The character values can be displayed in a convenient tabular form called the

character table of G.

C1 C2 ... Ch
χ1 χ(1)1 χ(2)1 ... χ(h)1
χ2 χ(1)2 χ(2)2 ... χ(h)2
. . . ... .
χh χ(1)h χ(2)h ... χ(h)h

Usually χ1 is taken to be the trivial character and C1 the conjugacy class {1}. With this
convention, χ(i)1 = 1 for all i. Also χ(1)i = χi(1) = ni, the degree of χi, since the trace of
the ni × ni identity matrix is ni. Thus the first column of the character table displays
the degrees of the irreducible characters. The properties of the characters recorded
in (14.3.6) can be translated into orthogonality properties of the rows and columns of
the character table. These can be helpful in computing the characters of particular
groups.
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The orthogonality properties of the character table are listed in the following re-
sult. Here the χi are the distinct irreducible characters, ℓi is the degree of χi and the Ci
are the conjugacy classes, while Ci∗ = (Ci)−1.
(14.3.11). Let G be a finite group and F an algebraically closed fieldwhose characteristic
does not divide m = |G|. Then the following hold:
(i) ∑hr=1 ℓrχ(r∗)i χ(r)j = mδij, for all i, j, (orthogonality of rows);
(ii) ∑hi=1 χ(r)i χ(s∗)i =

mℓs δrs, for all r, s, (orthogonality of columns).
Proof. From (14.3.6)wehave∑x∈G χi(x−1)χj(x) = |G|δij. Forming the sumover conjugacy
classes yields

h
∑
r=1 ℓrχ(r∗)i χ(r)j = mδij (14.9)

since |Cr | = ℓr . Thus (i) is established.
Let X and Y be the h × h matrices whose (i, r) and (r, j) entries are given by Xir =

ℓrχ
(r∗)
i and Yrj = χ(r)j respectively. Then equation (14.9) may be expressed in matrix

form as XY = mIh where Ih is the identity h×hmatrix. Now det(Y) ̸= 0 since det(XY) =
det(X)det(Y) = mh; hence Y−1 exists. Therefore YX = Y(XY)Y−1 = mIh. Taking the (r, s)
entry on each side of the equation YX = mIh, we derive

h
∑
i=1 YriXis = h

∑
i=1 χ(r)i ℓsχ(s∗)i = mδrs.

Observe that ℓs divides m, so ℓ−1s exists in F. Therefore we can divide by ℓs and the
validity of (ii) follows.

The case of the complex field
The obvious field to which (14.3.11) is applicable is the complex field. It is worthwhile
recording the simpler form that the orthogonality relations take in this case. Let ρ be
a ℂ-representation of a finite group G and let f be an eigenvalue of ρ(x) where x ∈ G.
Then xm = 1 for m > 0 implies that fm = 1, so f is a complex root of unity. Therefore
f −1 = ̄f , the complex conjugate of f . Thus χ(x−1) is the complex conjugate of χ(x), which
we write as

χ(x−1) = ̄χ(x).
Now the formulas in (14.3.11) take the following form:

h
∑
r=1 ℓr ̄χ(r)i χ(r)j = mδij and

h
∑
i=1 χ(r)i ̄χ(s)i = mℓs δrs.
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Here is a simple example of a character table.

Example (14.3.1). Construct the character table of the symmetric group S3 over ℂ.
The first step is to find the conjugacy classes of the group G = S3. Write G = ⟨x, a⟩

where x2 = 1 = a3 and xax−1 = a2. The conjugacy classes are C1 = {1}, C2 = {a, a2},
C3 = {x, xa, xa2} and the class number is h = 3.

By (14.2.1) the degrees of the three irreducible representations satisfy n21 +n
2
2+n

2
3 =

|G| = 6. Thus n1 = n2 = 1, n3 = 2. Let χ1 be the trivial character and χ2 the character
arising from G → Gab → ⟨−1⟩. Hence the values of χ2 on the three conjugacy classes
are 1, 1, −1. So far the extent of our knowledge of the character table is:

C1 C2 C3
χ1 1 1 1
χ2 1 1 −1
χ3 2 s t

Orthogonality properties of columns allow us to determine s and t. Note that in this
example χi(g−1) = χi(g). From columns 1 and 2 we obtain 1+ 1+ 2s = 0 and s = −1. Also
from columns 1 and 3 there follows 1 − 1 + 2t = 0, so that t = 0. Hence the character
table of G is

C1 C2 C3
χ1 1 1 1
χ2 1 1 −1
χ3 2 −1 0

It is not hard to identify the irreducible representation whose character is χ3. A little
experimentation reveals that it is

a → [ω 0
0 ω2] , x → [0 1

1 0
] ,

where ω = e
2πi
3 , a primitive cubic root of unity. The traces of these matrices are −1 and

0 respectively since ω + ω2 = −1, which is in agreement with character table.

Exercises (14.3).
(1) Construct the character table of A4 over ℂ.
(2) The same problem for Dih(8).
(3) The same problem for the quaternion group Q8. (For this group see Exercise

(6.3.13).)
(4) Show that non-isomorphic groups can have the same character table.
(5) Show that the degree of an irreducible ℚ- character need not divide the group

order.
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(6) LetAbe the h×hmatrixwhose (i, r) entry is√ℓr/m/χ
(r)
i with the notation of (14.3.11)

and F = ℂ. Prove that A is a unitary matrix, i. e. AĀT = 1.
(7) Complete the proof of (14.3.3) by showing that the dimension of Cl(G, F) equals the

class number of G. [Hint: let the conjugacy classes be Ci, i = 1, 2, . . . , h and define
βi ∈ Cl(G, F) by βi(x) = 1 if x ∈ Ci and βi(x) = 0 if x ∉ Ci. Show that the βi form a
basis of Cl(G, F).]

(8) Let G be a finite group and F an algebraically closed field whose characteristic
does not divide |G|. If χ an F-character of G, prove that χ is irreducible if and only
if ⟨χ, χ⟩ = 1. [Hint: for necessity see (14.3.7). To prove sufficiencywrite χ = ∑hi=1miχi
where the χi are the irreducible characters andmi > 0. Compute ⟨χ, χ⟩.]

(9) Let G be a perfect group. Use (14.2.1) and (14.3.10) to show that there are integers
ri > 1 dividing |G| such that |G| − 1 = ∑

k
i=1 r2i .

14.4 The Burnside p − q Theorem
In this section our aim is to prove that every group whose order is divisible by at most
two primes p, q is solvable. This is the famous Burnside p − q theorem. It was one of
the first great successes of representation theory. Indeed for many years no proof of it
was known that did not involve group characters, although some low order cases can
be handled using only Sylow’s theorem – see (10.2.4). The theoremwill be established
via two preliminary results.

(14.4.1). Let ρ be an irreducible representation of a finite group G over the complex field
ℂ with character χ. Suppose that g is an element of G with exactly ℓ conjugates where ℓ
is relatively prime to the degree of ρ. Then either χ(g) = 0 or else ρ(g) is scalar.

Proof. First recall from (14.3.9) that if n is the degree of χ, then ℓχ(g)n is an algebraic
integer. Since ℓ andn are relatively prime, there are integers r and s such that 1 = rℓ+sn.
Write

t = χ(g)
n
=
rℓχ(g)
n
+ sχ(g).

Since χ(g) is a sum of roots of unity, t is an algebraic integer.
Let f1, f2, . . . , fn denote the eigenvalues of ρ(g); then χ(g) = ∑ni=1 fi. Since the fi are

complex roots of unity, |fi| = 1. By definition

t = 1
n

n
∑
i=1 fi,

which shows that |t| ≤ 1
n ∑

n
i=1 |fi| ≤ 1. Suppose that all the fi are equal; then ρ(g)

is scalar, as can be seen by applying Maschke’s theorem to ρ|⟨g⟩. Therefore we can
assume that this is not the case. Now it is an elementary exercise to prove that if
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z1, z2, . . . , zn are complex numbers such that |zi| = 1 for all i and |∑
n
i=1 zi| = n, then

z1 = z2 = ⋅ ⋅ ⋅ = zn. Applying this to our situation with zi = fi, we deduce that |t| < 1.
Write K for the field ℚ(f1, f2, . . . , fn) and let α ∈ Gal(K/ℚ). Now the α(fi) cannot all be
equal, so |α(t)| < 1. It follows that the element

u = ∏
α∈Gal(K/ℚ) α(t)

satisfies |u| < 1. Next α(u) = u for all α, so the Fundamental Theorem of Galois Theory
(12.3.1) guarantees that u ∈ ℚ. But u is an algebraic integer because it is the product
of algebraic integers α(t). Therefore u is an integer by (11.1.12). Since |u| < 1, it follows
that u = 0 and thus t = 0. Therefore fi = 0 for all i, and hence χ(g) = 0.

(14.4.2). Let G be a finite group which has a conjugacy class with exactly pm > 1 ele-
ments where p is a prime. Then G is not a simple group.

Proof. Assume to the contrary that G is simple: of course it cannot be abelian. By hy-
pothesis there exists an element g ∈ G with pm conjugates. Let ρ be a non-trivial irre-
ducible ℂ-representation of G and let χ be its character. Assume that χ(g) ̸= 0 and p
does not divide the degree of χ. Then by (14.4.1) the linear operator ρ(g) is scalar, so it
lies in the center of ρ(G). NowKer(ρ) ̸= G, since ρ is not the trivial representation. ButG
is simple, so Ker(ρ) = 1. Therefore ρmaps G isomorphically onto ρ(G), which implies
that g ∈ Z(G) and hence pm = 1. By this contradiction every non-trivial irreducible
character χ of G either has degree divisible by p or satisfies χ(g) = 0.

Next let σ denote the regular permutation representation of G and write ψ for its
character. By (14.3.8) there is an expression ψ = ∑hi=1 ℓiχi where ℓi is the degree of the
irreducible character χi and h is the class number ofG. Now ℓ1 = 1 and χ1(g) = 1 since χ1
is the trivial character. Consider the expression ψ(g) = ∑hi=1 ℓiχi(g). If i > 1, then either
χi(g) = 0 or else ℓi is divisible by p. Thereforeψ(g) ≡ 1 mod p. On the other hand, σ(g)
arises from left multiplication inG by g ̸= 1, so that σ(g) has no fixed points. Therefore
ψ(g) = tr(σ∗(g)) = 0 and a contradiction ensues.

We are now in a position to establish the principal result of the section.

(14.4.3) (The Burnside p − q Theorem). If p and q are primes, then any group of order
pmqn is solvable.

Proof. Assume the statement is false and let G be a counterexample of smallest order.
IfN is a proper non-trivial normal subgroup, thenN and G/N are both solvable, being
groups with smaller order thanG. But this implies thatG is solvable. ThereforeGmust
be a simple group.

Let Q be a Sylow q-subgroup of G. Certainly Q ̸= 1 since otherwise G would be a
p-group and hence solvable. Therefore Q has non-trivial center by (5.3.6). Let 1 ≠ g ∈
Z(Q); thus Q ≤ CG(g) < G. It follows that |G : CG(g)| divides |G : Q| and hence is a
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power of p: moreover this is the number of conjugates of g in G. By (14.4.2) the group
G is not simple, a final contradiction.

Exercises (14.4).
(1) Show that there are insolvable groups of each order 2ℓ3m5n where ℓ ≥ 2,m, n ≥ 1.

[Hint: A5 has order 22 ⋅ 3 ⋅ 5.]
(2) LetG be a group of order pmqr where p, q, r are distinct primes. Assume thatG has

a subgroup of order qr where q does not divide r − 1 and r does not divide q − 1.
Prove that G is solvable. [For groups of order qr see Exercise (5.3.2).]

(3) Suppose that G is a finite group with a nilpotent subgroup of prime power index.
Prove that G is a solvable group. [Hint: let G be a minimal counterexample and
argue that Gmust be a simple group. Now apply (14.4.2).]

Needless to say we have only scratched the surface of representation theory; for a
deeper account see [9] or [20].
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15.1 Free groups

When groups entered the mathematical arena towards the close of the 18th century,
they were exclusively permutation groups and were often studied in connection with
the theory of equations. A hundred years later groups arose from a different source,
geometry, and these groups were most naturally specified by listing a set of genera-
tors and a set of defining relations which the generators had to satisfy. A very simple
example is where there is a single generator x subject to one defining relation xn = 1
where n is a positive integer. Intuitively one would expect these to determine a cyclic
group of order n.

As another example, suppose that a group has two generators x and y subject to
the three relations x2 = 1 = y2 and xy = yx. Now the Klein 4-group fits this description,
with x = (12)(34) and y = (13)(24). Thus it seems reasonable that a group with these
generators and relations should be a Klein 4-group.

Of course these claims cannot be substantiated until we have explained what is
meant by a group with a given set of generators subject to a set of defining relations.
Evenwhen thegenerators are subject tonodefining relations at all, a precise definition
is lacking: this is the important case of a free group. Thus ourfirst taskmust be todefine
a free group.

Free groups
A free group is defined by a certainmapping property. Let F be a group, X a non-empty
set and σ : X → F a function. Then F, or more precisely the pair (F, σ), is said to be
free on X if, for each function α from X to a group G there is a unique homomorphism
β : F → G such that βσ = α, i. e., the triangle below commutes:

X
σ

??

α

??
F

β
?? G

First a comment on the definition. The function σ : X → F is necessarily injective. For
suppose thatσ(x1) = σ(x2)where x1 ̸= x2. LetG be any groupwith twoormore elements
and choose a function α : X → G such that α(x1) ̸= α(x2) in G. From σ(x1) = σ(x2) it
follows that βσ(x1) = βσ(x2) and hence α(x1) = α(x2), a contradiction.

This observation indicates that we can replace X by the set Im(α), which has the
same cardinality, and take X to be a subset of F with σ the inclusion map. What the
mapping property then asserts is that every mapping from the subset X to a group G
can be extended to a unique homomorphism from F to G.

https://doi.org/10.1515/9783110691160-015
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Free groups, and also free modules, which were defined in Section 9.1, are spe-
cial cases of free objects in a category: these are discussed at length in Section 16.3
below.

At first sight the definition of a free groupmay seem abstract and certainly it offers
no clue as to the nature or even the existence of free groups. Soon concrete examples
of free groups will be given. In the meantime the first order of business is to show that
free groups exist. Unlike the case of free modules, where these are easily defined as
direct sums, free groups have to be constructed from scratch.

(15.1.1). Let X be any non-empty set. Then there exist a groupF anda function σ : X → F
such that (F, σ) is free on X. Moreover, F is generated by Im(σ).

Proof. Roughly speaking, the idea of the proof is to construct F by forming “words”
in X which are combined in a formal manner by juxtaposition, while at the same time
allowing for cancellation of word segments like xx−1 or x−1x where x ∈ X.

The first step is to choose a set disjoint from X with the same cardinality. Since the
purpose of this move is to accommodate inverses of elements of X, it is appropriate to
denote the set of inverses by X−1 = {x−1 | x ∈ X}. But keep in mind that x−1 is merely a
symbol at this point and does not denote an inverse. By a word in X is meant any finite
sequence w of elements of the set X ∪ X−1, written for convenience in the form

w = xq11 x
q2
2 ⋅ ⋅ ⋅ x

qr
r ,

where qi = ±1, x1i = xi ∈ X and r ≥ 0. The case r = 0, when the sequence is empty,
is the empty word, which is written 1. Two words are said to be equal if they have the
same entries in each position, i. e., they look exactly alike.

The product of wordsw = xq11 ⋅ ⋅ ⋅ x
qr
r and v = yp11 ⋅ ⋅ ⋅ y

ps
s is formed in the obvious way

by juxtaposition, i. e.,

wv = xq11 ⋅ ⋅ ⋅ x
qr
r y

p1
1 ⋅ ⋅ ⋅ y

ps
s ,

with the convention that w1 = w = 1w. This is clearly an associative binary operation
on the set S of all words in X. The inverse of the word w is defined to be

w−1 = x−qrr ⋅ ⋅ ⋅ x
−q1
1 ,

with the convention that 1−1 = 1. Thus far S, together with the product operation, is a
semigroup with an identity element, i. e., a monoid. Next a device will be introduced
which permits the cancellation of segments of a word with the form xx−1 or x−1x. Once
this is done, instead of a monoid, we will have a group.

A relation ∼ on the set S is defined in the following way: w ∼ v means that it is
possible topass fromw to v bymeansof afinite sequence of operations of the following
types:

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



334 | 15 Presentations of groups

(i) insertion of xx−1 or x−1x as consecutive symbols in a word where x ∈ X;
(ii) deletion of any such sequence from a word.

For example, xyy−1z ∼ t−1txz where x, y, z, t ∈ X. It is easy to check that ∼ is an equiva-
lence relation on S. Let F denote the set of all equivalence classes of words [w], w ∈ S.
Our aim is to make F into a group: this will turn out to be a free group on the set X.

Ifw ∼ w′ and v ∼ v′, then it is readily seen thatwv ∼ w′v′. It is therefore meaning-
ful to define the product of the equivalence classes [w] and [v] by the rule

[w][v] = [wv].

It follows from this that [w][1] = [w] and [1][v] = [v] for all wordsw, v. Also [w][w−1] =
[1] = [w−1][w], since ww−1 and w−1w are plainly equivalent to the empty word 1. Fi-
nally, we verify the associative law:

([u][v])[w] = [uv][w] = [(uv)w] = [u(vw)] = [u][vw] = [u]([v][w]).

Consequently, F is a group in which [1] is the identity element and [w−1] is the in-
verse of [w]. Furthermore, F is generated by the subset X̄ = {[x] | x ∈ X}: for, if
w = xq11 x

q2
2 ⋅ ⋅ ⋅ x

qr
r with xi ∈ X, qi = ±1, then

[w] = [x1]
q1 [x2]

q2 ⋅ ⋅ ⋅ [xr]
qr ∈ ⟨X̄⟩.

It remains to prove that F is a free group on X. To this end define a function
σ : X → F by the rule σ(x) = [x]; thus the image of σ is X̄ = {[x] | x ∈ X} and this subset
generates F. Next let α : X → G be a map from X into some group G. To show that
(F, σ) is free on X we need to produce a unique homomorphism β : F → G such that
βσ = α. There is only one reasonable candidate here: define β by the rule

β([xq11 x
q2
2 . . . x

qr
r ]) = α(x1)

q1α(x2)
q2 ⋅ ⋅ ⋅ α(xr)

qr ,

where xi ∈ X, qi = ±1. The first thing to observe is that β is well-defined: for any other
element in the equivalence class [xq11 x

q2
2 ⋅ ⋅ ⋅ x

qr
r ] differs from xq11 x

q2
2 ⋅ ⋅ ⋅ x

qr
r only by seg-

ments of the form xx−1 or x−1x, (x ∈ X), and these will contribute to the image under β
merely α(x)α(x)−1 or α(x)−1α(x), i. e., the identity. It is a simple direct check that β is a
homomorphism. Notice also that βσ(x) = β([x]) = α(x), so that βσ = α.

Finally, we have to establish the uniqueness of β. If β′ : F → G is another homo-
morphism for which β′σ = α, then βσ = β′σ and thus β and β′ agree on Im(σ). But
Im(σ) generates the group F, so β = β′. Therefore (F, σ) is free on X.

Reduced words
Now that free groups are known to exist, it is necessary to find a convenient form for
their elements. Let F be the free group on the set X that has just been constructed.
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A word in X is called reduced if it contains no pairs of consecutive symbols xx−1 or
x−1xwith x ∈ X. The empty word is considered to be reduced. Now ifw is any word, we
can delete subsequences xx−1 and x−1x fromw until a reduced word is obtained. Thus
each equivalence class [w] contains at least one reducedword. The important point to
establish is that there is a unique reduced word in each equivalence class.

(15.1.2). Each equivalence class of words on X contains a unique reduced word.

Proof. There are likely to bemultipleways to cancel segments xx−1 or x−1x fromaword.
For this reason a direct approach to proving uniqueness would be complicated. An
indirect argument will be used which avoids this difficulty.

Let R denote the set of all reduced words in X. The idea behind the proof is to
introduce a permutation representation of the free group F on the setR. Let u ∈ X∪X−1:
then a function u′ : R→ R is determined by the following rule

u′(xq11 x
q2
2 ⋅ ⋅ ⋅ x

qr
r ) = {

uxq11 x
q2
2 ⋅ ⋅ ⋅ x

qr
r if u ̸= x−q11

xq22 ⋅ ⋅ ⋅ x
qr
r if u = x−q11 .

Here xq11 x
q2
2 ⋅ ⋅ ⋅ x

qr
r denotes a reduced word; observe that after applying the function u′

we still have a reduced word. Next u′ is a permutation of R since its inverse is the
function (u−1)′. Now let α : X → Sym(R) be defined by the assignment u → u′.

By the mapping property of the free group F there is a homomorphism β : F →
Sym(R) such that βσ = α: hence α(x) = βσ(x) = β([x]) for x ∈ X: here σ : X → F is
the function used in the construction of F, so σ(x) = [x]. Thus the diagram below is
commutative.

X
σ

??

α

??
F

β
?? Sym(R)

Now suppose that v andw are two equivalent reducedwords; wewill show that v = w.
Certainly [v] = [w], so β([v]) = β([w]). If v = xq11 x

q2
2 ⋅ ⋅ ⋅ x

qr
r , then [v] = [x

q1
1 ][x

q2
2 ] ⋅ ⋅ ⋅ [x

qr
r ]

and we have

β([v]) = β([xq11 ])β([x
q2
2 ]) ⋅ ⋅ ⋅ β([x

qr
r ]) = β([x1])

q1β([x2])
q2 ⋅ ⋅ ⋅ β([xr])

qr .

Now β([xi]) = βσ(xi) = α(xi). Therefore

β([v]) = α(x1)
q1α(x2)

q2 ⋅ ⋅ ⋅ α(xr)
qr = (x′1)

q1(x′2)
q2 ⋅ ⋅ ⋅ (x′r)

qr .

Applying the function β([v]) to the empty word 1, which is reduced, we obtain
xq11 x

q2
2 ⋅ ⋅ ⋅ x

qr
r = v since this word is reduced. Similarly β([w]) sends the empty word

to w. Therefore v = w.
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Normal form in free groups
The proof of (15.1.2) is subtle and it is well worth rereading. The importance of this
result is that it provides a unique way of representing the elements of the constructed
free group F on the set X. Each element of F has the form [w] where w is a uniquely
determined reduced word, say w = xq11 x

q2
2 ⋅ ⋅ ⋅ x

qr
r where qi = ±1, r ≥ 0. No consecutive

terms xx−1 or x−1x occur in w. Now [w] = [x1]q1 [x2]q2 ⋅ ⋅ ⋅ [xr]qr ; on combining consecu-
tive terms of this product which involve the same xi, we conclude that the element [w]
can be uniquely written in the form

[w] = [x1]
ℓ1 [x2]
ℓ2 ⋅ ⋅ ⋅ [xs]

ℓs ,

where xi ∈ X, s ≥ 0, ℓi is a non-zero integer and xi ̸= xi+1.
To simplify the notation let us agree to drop the distinction between x and [x], so

that now X ⊆ F. Then every element w of F has the unique form

w = xℓ11 x
ℓ2
2 ⋅ ⋅ ⋅ x

ℓs
s

where xi ∈ X, s ≥ 0, ℓi ̸= 0 and xi ̸= xi+1. This is called the normal form of w. For
example, if X = {x}, each element of F has the unique normal form xℓ, where ℓ ∈ ℤ.
Thus F = ⟨x⟩ is an infinite cyclic group.

In fact the existence of a normal form is characteristic of free groups in the sense
of the next result.

(15.1.3). Let X be a subset of a group G and suppose that each element g of G can be
uniquely written in the form g = xℓ11 x

ℓ2
2 ⋅ ⋅ ⋅ x

ℓs
s where xi ∈ X, s ≥ 0, ℓi ̸= 0, and xi ̸= xi+1.

Then G is free on X.

Proof. Let F be the free group of equivalence classes of words in the set X which was
constructed in (15.1.1), and let σ : X → F be the associated injection; thus σ(x) = [x].
Apply the mapping property with α : X → G the inclusion map, i. e., α(x) = x for
all x ∈ X. Hence there is a homomorphism β : F → G such that βσ = α, so Im(α) ⊆
Im(β). Since X = Im(α) generates G, it follows that Im(β) = G and β is surjective.
Finally, β is injective. For, if β([x1]ℓ1 ⋅ ⋅ ⋅ [xr]ℓr ) = 1 with r > 0, xi ̸= xi+1, ℓi ̸= 0, then
(βσ(x1))ℓ1 ⋅ ⋅ ⋅ (βσ(xr))ℓr = 1, and hence x

ℓ1
1 ⋅ ⋅ ⋅ x

ℓr
r = 1: this contradicts the uniqueness of

expression in terms of the xi. Therefore β is an isomorphism and F ≃ G, so that G is
free on X.

Up to this point we have worked with a particular free group on a set X, namely
the group constructed fromequivalence classes ofwords inX. However, all free groups
on the same set are isomorphic, a fact that allows us to deal only with free groups of
words. This follows from the next result.

(15.1.4). Let Fi be a free group on Xi, i = 1, 2, where |X1| = |X2|. Then F1 ≃ F2.
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Proof. Let σ1 : X1 → F1 and σ2 : X2 → F2 be the respective injections associated
with the free groups F1 and F2, and let α : X1 → X2 be a bijection, which exists since
|X1| = |X2|. By the mapping property there are commutative diagrams

X1
σ1

??

σ2α

??

X2
σ2

? ?

σ1α−1
??

F1 β1
?? F2 F2 β2

?? F1

in which β1 and β2 are homomorphisms. Thus β1σ1 = σ2α and β2σ2 = σ1α−1. Hence
β2β1σ1 = β2σ2α = σ1α−1α = σ1. Similarly β1β2σ2 = β1σ1α−1 = σ2αα−1 = σ2. Therefore the
diagrams below commute,

X1
σ1

??

σ1

??

X2
σ2

? ?

σ2

??
F1 β2β1

?? F1 F2 β1β2
?? F2

But the identity maps on F1 and F2 will also make these diagrams commute. Hence
β2β1 and β1β2must equal these identitymaps by the uniqueness clause in themapping
property. Therefore β1 : F1 → F2 is an isomorphism.

In fact the converse of (15.1.4) is true: if F1 ≃ F2, then |X1| = |X2|. For a hint on
how to prove this see Exercise (15.1.8). It follows that a free group is determined up to
isomorphism by the cardinality of the set on which it is free. This cardinality is called
the rank of the free group.

Examples of free groups
At this point free groups may still appear to the reader to be mysterious abstract ob-
jects, despite our success in constructing them. It is time to remedy this by exhibiting
some real life examples.

Example (15.1.1). Consider the functions α and β on the setℂ∪ {∞}which are defined
by the rules

α(x) = x + 2 and β(x) = 1
2 + 1

x
.

Here the symbol∞ is required to satisfy the formal rules 1
∞ = 0,

1
0 = ∞, 2 +∞ = ∞.

Thus α(∞) = ∞, β(0) = 0 and β(∞) = 1
2 . The first thing to notice is that α and β are

bijections since they have inverses. These are given by α−1(x) = x − 2 and β−1(x) = 1
1
x −2

.

This can be checked by computing the composites αα−1, α−1α, ββ−1, β−1β.
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Define F to be the subgroup ⟨α, β⟩ of the symmetric group on the set ℂ ∪ {∞}. We
are going to prove that F is a free group on {α, β}. To accomplish this it is enough to
show that no non-trivial reduced word in α and β can equal 1: for then each element
of F has a unique normal form and (15.1.3) can be invoked to show that F is free.

Since direct calculations with the functions α and βwould be tedious, a geometric
approach is adopted. Observe that each non-trivial power of α maps the interior of
the unit circle in the complex plane to its exterior. Also a non-trivial power of βmaps
the exterior of the unit circle to its interior with (0,0) removed: the truth of the last
statement is seen from the equation β( 1x ) =

1
x+2 . It follows from this observation that

no mapping of the form αℓ1βm1 ⋅ ⋅ ⋅ αℓrβmr can be trivial unless all the li andmi are 0.

Example (15.1.2). An even more concrete example of a free group is provided by the
matrices

A = [1 2
0 1
] and B = [1 0

2 1
] ;

for these generate a subgroup F1 of GL2(ℤ) which is free on {A,B}.
To see why this is true, first consider a matrix

U = [a b
c d
] ∈ GL2(ℂ).

Thus ad − bc ̸= 0. There is a corresponding permutation θ(U) of ℂ ∪ {∞} defined by

θ(U) : x → ax + b
cx + d
=
a + b

x

c + d
x

.

Note that θ(U)(∞) = a
c if c ̸= 0 and∞ otherwise. This is called a linear fractional trans-

formation. It is easy to verify that θ(UV) = θ(U)θ(V), so that θ : GL2(ℂ)→ Sym(ℂ∪{∞})
is a homomorphism. The linear fractional transformations form a subgroup Im(θ) of
Sym(ℂ ∪ {∞}). Now θ(A) = α and θ(B) = β. Hence, if some non-trivial reduced word
in A and Bwere to equal the identity matrix, the corresponding word in α and βwould
equal the identity permutation, which is impossible by Example (15.1.1). Therefore F1
is free on {A,B} by (15.1.3).

Next we will use normal form to obtain some structural information about free
groups.

(15.1.5). Let F be a free group on a set X. Then:
(i) each non-trivial element of F has infinite order; hence free groups are torsion-free;
(ii) if F is not infinite cyclic, i. e. |X| > 1, then Z(F) = 1.
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Proof. (i) Let 1 ̸= f ∈ F and suppose that f = xℓ11 x
ℓ2
2 ⋅ ⋅ ⋅ x

ℓs
s is the normal form. If x1 = xs,

we can replace f by the conjugate xℓss fx
−ℓs
s = x

ℓ1+ℓs
1 xℓ22 ⋅ ⋅ ⋅ x

ℓs−1
s−1 , which has the same order

as f . For this reason there is nothing to be lost in assuming that x1 ̸= xs. Let m be a
positive integer; then

fm = (xℓ11 ⋅ ⋅ ⋅ x
ℓs
s )(x
ℓ1
1 ⋅ ⋅ ⋅ x

ℓs
s ) ⋅ ⋅ ⋅ (x

ℓ1
1 ⋅ ⋅ ⋅ x

ℓs
s ),

with m factors in parentheses, which is in normal form since x1 ̸= xs. It follows that
fm ̸= 1 and f has infinite order.
(ii) Assume that 1 ̸= f ∈ Z(F) and let f = xℓ11 x

ℓ2
2 ⋅ ⋅ ⋅ x

ℓs
s be the normal form of f . If s = 1,

we can choose x ̸= x1 from X, since |X| > 1. But then xf ̸= fx; therefore s > 1. By
conjugating f as in (i), we may assume that x1 ̸= xs. Then fx1 = xℓ11 x

ℓ2
2 ⋅ ⋅ ⋅ x

ℓs
s x1 and

x1f = x
ℓ1+1
1 xℓ22 ⋅ ⋅ ⋅ x

ℓs
s are both in normal form, except that xℓ1+11 is trivial if ℓ1 = −1; but in

any event fx1 ̸= x1f and so f ∉ Z(G).

Subgroups of free groups
During the discussion of freemodules in Chapter Nine it was shown that a submodule
of a freemodule over a principal ideal domain is always free – see (9.2.4). In particular,
a subgroup of a free abelian group is free abelian. It is natural to ask if a subgroup of a
free group is necessarily a free group. An affirmative answer is given by a well known
theorem.

(15.1.6) (The Nielsen1-Schreier Theorem). Let F be a free group of rank n and let H be
a subgroup of F. Then H is a free group. Moreover, if H has finite index m in F, the rank
of H is exactly mn + 1 −m.

This theorem is much less obvious than the corresponding result for modules.
There are many different approaches to proving it. Since the algebraic proof is some-
what technical, it will not be presented here. For an account of it see [15].

Exercises (15.1).
(1) Let (F, σ) be free on a set X where σ : X → F. Prove that F = ⟨Im(σ)⟩. [Hint: use

(15.1.4) and the construction of a free group on X.]
(2) Let F be the free group on a set X. Prove that an element f of F belongs to the

derived subgroup F′ if and only if the sum of the exponents of x in the normal
form of f is 0 for every x in X.

(3) If F is a free group, prove that F/F′ is a direct product of infinite cyclic groups, i. e.,
it is a free abelian group.

(4) Let G be the subgroup of GL2(ℝ) generated by the matrices [ 1 a
0 1 ] and [ 1 0

a 1 ]where
a is real and a ≥ 2. Prove that G is a free group.

1 Jacob Nielsen 1890–1959.
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(5) (The projective property of free groups). Let there be given groups and homomor-
phisms α : F → H and β : G → H where F is a free group and β is surjective. Show
that there is a homomorphism γ : F → G such that βγ = α, i. e., the triangle below
commutes.

F
γ

??
α
??

G
β

?? H

(6) Let G be a group with a normal subgroup N such that G/N is a free group. Prove
that there is free subgroup H such that G = HN and H ∩ N = 1.

(7) Let H be a subgroup with finite index in a free group F. If 1 ̸= K ≤ F, prove that
H ∩ K ̸= 1. [Hint: let C be the normal core of H in F, i. e., the intersection of all the
conjugates of H in F. Show that F/C is finite, whence so is K/C ∩ K.]

(8) Let F1 and F2 be free groups on sets X1 and X2 respectively. If F1 ≃ F2, prove that
|X1| = |X2|. Thus a free group is determined up to isomorphism by the cardinality
of the set on which it is free. [Hint: consider Fi/F2i as a vector space over GF(2).]

(9) Let 1 ̸= f ∈ F where F is a free group. Prove that CF(f ) is cyclic. [Hint: use the
Nielsen-Schreier theorem.]

15.2 Generators and relations

In this section it is shown that free groups occupy a key position in group theory in the
sense that their quotients account for all groups. The next result should be compared
with (9.1.17), which is the corresponding result for free modules.

(15.2.1). Let G be a group and X a set of generators for G. If F is a free group on the set
X, there is a surjective homomorphism θ : F → G and hence G ≃ F/Ker(θ).

Proof. Let (F, σ) be free on X. The existence of the homomorphism θ follows on apply-
ing the mapping property of the free group F to obtain the commutative diagram

X
σ

??

ι

??
F

θ
?? G

where ι is the inclusion map. Thus x = ι(x) = θσ(x) ∈ Im(θ) for all x in X. Hence
G = Im(θ) ≃ F/Ker(θ).

We are now ready to explain what it means for a group to be given by a set of
generators and defining relations. Let X be a non-empty set and let F be the free group
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on X with X ⊆ F. Let R be a subset of F and define

N = ⟨RF⟩,

the normal closure of R in F: thus N is the subgroup generated by all conjugates in F
of elements of R – for normal closures see Section 4.2. Let

G = F/N .

Certainly the group G is generated by the elements xN where x ∈ X; also r(xN) =
r(x)N = N = 1G for all r ∈ R. Hence the relations r = 1 hold in G. Here r(xN) is the
element of G obtained from r by replacing each x by xN . Then G is called the group
with generators X and defining relations r = 1 where r ∈ R: in symbols

G = ⟨X | r = 1,∀r ∈ R⟩.

Elements of R are called defining relators and the group may also be written

G = ⟨X | R⟩.

The pair (X|R) is said to be a presentation ofG. An elementw in the normal subgroupN
is a relator; it is expressible as a product of conjugates of defining relators and their
inverses. The relatorw is said to be a consequence of the defining relators in R. Finally,
a presentation (X|R) is called finite if X and R are both finite.

Our first concern is to show that every group can be defined by a presentation.

(15.2.2). Every group has a presentation.

Proof. Let G be an arbitrary group and choose a set of generators for it; for example
X = G will do. Let F be a free group on X. Then by (15.2.1) there is a surjective homo-
morphism θ : F → G, so G ≃ F/Ker(θ). Next choose a subset R of Ker(θ)whose normal
closure in F is Ker(θ) – for example we could take R to be Ker(θ). Then G ≃ F/Ker(θ) =
G/(RF) = ⟨X | R⟩, so we have a presentation of G.

In the proof just given there are many possible choices for X and R, so a group has
manypresentations. This is one reasonwhy it canbedifficult to extract useful informa-
tion about the structure of a group from a specific presentation. However, despite the
difficulties inherent in working with presentations of groups, there is one very useful
tool available.

(15.2.3) (Von Dyck’s2 Theorem). Let G andH be groups given by presentations, G = ⟨X |
R⟩ and H = ⟨Y | S⟩. Assume that there is given a surjective map α : X → Y such that

2 Walter von Dyck (1856–1934).
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α(x1)ℓ1α(x2)ℓ2 ⋅ ⋅ ⋅ α(xk)ℓk is a relator of H, i. e., a consequence of the words in S, whenever
xℓ11 x
ℓ2
2 ⋅ ⋅ ⋅ x

ℓk
k is a defining relator ofG. Then there is a surjective homomorphismθ : G → H

such that θ|X = α.

Proof. Let F be the free group on X; then G = F/N where N is the normal closure of R
in F. By the mapping property of free groups there is a homomorphism θ0 : F → H
such that θ0|X = α. By hypothesis θ0(r) = 1 for all r ∈ R and thus θ0(a) = 1 for all a
in N = ⟨RF⟩. Hence θ0 induces a homomorphism θ : G → H such that θ(fN) = θ0(f ).
Finally, Y ⊆ Im(θ0) since α is surjective, so θ0, and hence θ, is surjective.

We will shortly see how Von Dyck’s Theorem can be used to extract structural
information about a group from a specific presentation.

Finitely presented groups
A presentation of a group is said to be finite if it contains finitely many generators and
finitely many relators. A group is called finitely presented if it has at least one finite
presentation. For example, cyclic groups are finitely presented. Likewise free groups
of finite rank are finitely presented, since the set of relators is empty. Not surprisingly
finite groups are finitely presented.

(15.2.4). Every finite group is finitely presented.

Proof. Let G = {g1, g2, . . . , gn} be a finite group of order n. Then gigj = gv(i,j) and g−1i =
gu(i) where 1 ≤ u(i), v(i, j) ≤ n. Now let Ḡ be the groupwith generators ḡ1, ḡ2, . . . , ḡn and
defining relations ḡiḡj = ḡv(i,j), ḡ−1i = ḡu(i), where i, j = 1, 2, . . . , n. This is clearly a finite
presentation of Ḡ. Apply Von Dyck’s Theorem to Ḡ and G where α is the assignment
ḡi → gi, noting that each defining relator of Ḡ is mapped to a relator of G. It follows
that there is a surjective homomorphism θ : Ḡ → G such that θ(ḡi) = gi.

Now every element ḡ of Ḡ is expressible as a product of ḡi’s and their inverses.
Moreover, repeated use of the defining relations for Ḡ shows that ḡ is equal to some ḡk;
it follows that Ḡ is finite and |Ḡ| ≤ n. But G ≃ Ḡ/Ker(θ), so |Ker(θ)| = |Ḡ|/|G| ≤ 1. Hence
Ker(θ) = 1 and G ≃ Ḡ.

The next result shows that the property of being finitely presented does not de-
pend on any particular set of generators.

(15.2.5). If a group is finitely presented, then it has a finite presentation in any finite set
of generators.

Proof. Let G = ⟨y1, . . . , ym | s1, . . . , sℓ⟩ be a finitely presented group and suppose that
{x1, . . . , xn} is some other finite set of generators for G. There are expressions for xj in
terms of the yi and for yi in terms of the xj, say yi = wi(x) and xj = vj(y). Therefore the
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following relations in the xi hold in G:

sk(w1(x), . . . ,wm(x)) = 1, xj = vj(w1(x), . . . ,wm(x)), (15.1)

where k = 1, . . . , ℓ, j = 1, . . . , n. Notice that there are finitely many such relations.
Next form the group Ḡ with a presentation in which the generators are x̄1, . . . , x̄n

and the defining relations are those in equation (15.1), but written in the x̄j instead of
the xj. Certainly Ḡ is a finitely presented group. By (15.2.3) there is a surjective homo-
morphism θ : Ḡ → G such that θ(x̄j) = xj. Define ȳi = wi(x̄); then Ḡ = ⟨ȳ1, . . . , ȳm⟩
by the relations (15.1). Since sk(ȳ) = 1, there is a homomorphism ϕ : G → Ḡ such
that ϕ(yi) = ȳi by (15.2.3) once again. Next verify that θ and ϕ are mutually inverse
functions, so that they are isomorphisms. Indeed we have

θϕ(yi) = θ(ȳi) = θ(wi(x̄)) = wi(θ(x̄)) = wi(x) = yi

for i = 1, . . . ,m. Therefore θϕ is the identity function on G since the yi generate G.
A similar argument shows that ϕθ is the identity function on Ḡ. Hence G ≃ Ḡ, so that
G has a finite presentation in the xi.

Further examples of finitely presented groups can be read off from the following
result.

(15.2.6). Let N be a normal subgroup of a group G. Assume that N and G/N are finitely
presented. Then G is finitely presented.

Proof. LetN have generators x1, x2, . . . , xm and relators r1(x), r2(x), . . . , rk(x) and letG/N
have generators y1N , y2N , . . . , ynN and relators s1(yN), s2(yN), . . . , sℓ(yN). It is clear that
the xi and yj together generate G. We need to produce finitely many defining relators
in these generators. There are for sure relations of the following types:

ri(x) = 1, sj(y) = tj(x), (i = 1, . . . , k, j = 1, . . . , ℓ), (15.2)

for certain words tj. There are also relations that express the normality of the sub-
group N . These have the form

yjxiy
−1
j = uij(x), y−1j xiyj = vij(x), (15.3)

for certain words uij, vij where i = 1, . . . ,m, j = 1, . . . , n.
The next step is to form a group Ḡ having a presentation with generators

x̄1, . . . , x̄m, ȳ1, . . . , ȳn

and the relations (15.2) and (15.3) above expressed in terms of the x̄i, ȳj. By (15.2.3)
there is a surjective homomorphism α : Ḡ → G such that α(x̄i) = xi and α(ȳj) = yj: set
K = Ker(α). By (15.2.3) again there is a homomorphism from N to N̄ = ⟨x̄1, . . . , x̄m⟩ in
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which xi → x̄i since the relators rimap to the identity of N̄; clearly this homomorphism
is the inverse of the restriction of α to N̄ . Hence K ∩ N = 1.

Next N̄ ⊲ Ḡ since the ȳjx̄iȳ−1j and ȳ−1j x̄iȳj belong to N̄ . Now α induces a surjective
homomorphism from Ḡ/N̄ to G/N . There is also a homomorphism from G/N to Ḡ/N̄ in
which yjN → ȳjN̄; clearly it is the inverse of the previous one. Hence K ≤ N and thus
K = 1. It follows that Ḡ ≃ G, so G is finitely presented.

As a consequence of the last result, a group which has a series of finite length with
cyclic factors is finitely presented. Such groups are termedpolycyclic and evidently they
are solvable. On the other hand, it is known that there exist finitely generated solvable
groups which are not finitely presented – see [15].

As has been remarked, it can be difficult to extract information about a group from
a presentation. There is a deep reason for this difficulty, namely the insolvability of the
word problem for finitely presented groups. Roughly speaking, this means that there
does not exist an algorithm which can decide if a given word in the generators of an
arbitrary finitely presented group is equal to the identity element. For a very readable
account of theword problem see [17]. One consequence of this failure is the need to ex-
ploit special features of a presentation in order to obtain structural information about
the group it presents.

To illustrate this here are some examples of groups given by a finite presentation
where the structure of the group can be determined.

Example (15.2.1). Let G = ⟨x | xn⟩ where n is a positive integer.
The free group F on {x} is generated by x: thus F ≃ ℤ and G = F/Fn ≃ ℤ/nℤ = ℤn,

a cyclic group of order n, as expected.

Example (15.2.2). Let G = ⟨x, y | xy = yx, x2 = 1 = y2⟩.
Since xy = yx, the group G is abelian; also every element of G has the form xiyj

where i, j ∈ {0, 1}, because x2 = 1 = y2; hence |G| ≤ 4. On the other hand, the Klein
4-group V is generated by the permutations a = (12)(34) and b = (13)(24), and the
relations ab = ba and a2 = 1 = b2 hold inV . Hence VonDyck’s Theorem can be applied
to yield a surjective homomorphism θ : G → V such that θ(x) = a and θ(y) = b. Thus
G/Ker(θ) ≃ V . Since |G| ≤ 4 = |V |, it follows that Ker(θ) = 1 and θ is an isomorphism.
Therefore G is a Klein 4-group.

For a greater challenge consider the following presentation.

Example (15.2.3). Let G = ⟨x, y | x2 = y3 = (xy)2 = 1⟩.
Our first move is to find an upper bound for |G|. Let H = ⟨y⟩; this is a subgroup

of order 1 or 3. Write 𝒮 = {H , xH}; we will argue that 𝒮 is the set of all left cosets of H
in G. To establish this it is sufficient to show that x𝒮 = 𝒮 = y𝒮: for then it will follow
that gS = S for all g ∈ G and thus S contains all left cosets of H. Certainly x𝒮 = 𝒮
since x2 = 1. Next xyxy = 1 and hence yx = x−1y−1 = xy2, since y−1 = y2. It follows that
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yxH = xy2H = xH and thus y𝒮 = 𝒮. Since |H| ≤ 3 and |G : H| = |𝒮| ≤ 2, we deduce that
|G| ≤ 6.

Next observe that the symmetric group S3 is generated by the permutations a =
(12)(3) and b = (123), and that a2 = b3 = (ab)2 = 1 since ab = (1)(23). By Von Dyck’s
theorem there is a surjective homomorphism θ : G → S3. Since |G| ≤ 6, it follows that
θ is an isomorphism and G ≃ S3.

The method of the last two examples can be effective when a finite group is given
by a presentation. The general procedure is to choose a subgroup for whose order one
has an upper bound, and then by coset enumeration to find an upper bound for the
index. This gives an upper bound for the order of the group. The challenge is then to
identify the group by comparing it with known groups whose order equals the upper
bound and in which the defining relations hold.

Exercises (15.2). In the following three exercises identify the groups with the given
presentations.
(1) ⟨x, y | x2 = 1 = y4, xy = yx⟩.
(2) ⟨x, y | x3 = (xy)2 = y3 = 1⟩.
(3) ⟨x, y | x2 = (xy)2 = y5 = 1⟩.
(4) Let G be a group which has a presentation with n generators and r defining rela-

tors. If r < n, prove that G is infinite. [Hint: consider the abelian group G/G′ and
use Exercise (15.1.3).]

(5) Establish the converse of Exercise (15.1.5): a groupGwhichhas theprojective prop-
erty is free. [Hint: let π : F → G be a surjective homomorphismwith F a free group.
Apply the projective property to the identity map on G and π and use (15.1.6).]

(6) Let G be a finitely generated group and let N ⊲ G. Assume that G/N is finitely pre-
sented. Prove that there is a finite subset R such that N = ⟨gRg−1 | g ∈ G. [Hint:
choose a surjective homomorphism π : F → G where F is a free group of finite
rank. Let S be the preimage of N under π and note that F/S ≃ G/N . Then apply
(15.2.5).]

(7) Complete the proof of (15.2.5) by showing that ϕθ is the identity function on Ḡ.

15.3 Free products

In this sectionwewill describe a construction called the free product of a set of groups.
Roughly speaking it is the “largest” group that can be generated by isomorphic copies
of a given set of groups.

Let {Gλ | λ ∈ Λ} be a non-empty set of groups. By a free product of the Gλ is meant
a set

{G, αλ | λ ∈ Λ}
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where G is a group and αλ : Gλ → G is a homomorphism: it is required that the follow-
ingmapping property hold. Given a set of homomorphismsϕλ : Gλ → H for each λ ∈ Λ
and some groupH, there is a unique homomorphism θ : G → H such that θαλ = ϕλ for
all λ ∈ Λ. This amounts to requiring that all the diagrams below commute.

Gλ
αλ

??

ϕλ

??
G

θ
?? H

As will be seen in Section 16.3, what this definition asserts is that a free product is a
coproduct in the category of groups.

A point to note here is that the mappings αλ : Gλ → G are necessarily injective.
To see this assume that 1 ̸= x ∈ Ker(αλ). Apply the mapping property with H = Gλ;
also let ϕλ be the identity map and ϕμ the trivial homomorphism if μ ̸= λ. By the
mapping property there exists a homomorphism θ : G → H such that θαλ = ϕλ. Hence
x = ϕλ(x) = θαλ(x) = θ(1) = 1, a contradiction.

Our first task is to show that free products actually exist.

(15.3.1). Every non-empty set of groups {Gλ | λ ∈ Λ} has a free product.

Proof. The construction is similar to that of free groups in Section 15.1. There is no loss
of generality in assuming that Gλ ∩ Gμ = 0 if λ ≠ μ: for if necessary, Gλ can always be
replaced by a suitable isomorphic copy.

Set U = ⋃λ∈Λ Gλ and form the set S of all words in U, i. e., all finite sequences

w = g1g2 . . . gr

where gi ∈ Gλi and λi ∈ Λ. The case r = 0 is the empty word, written 1. The product vw
of words v and w is defined by simple juxtaposition, v followed by w. By convention
1w = w = w1. The inverse of a word w = g1g2 . . . gr is defined to be w−1 = g−1r . . . g

−1
2 g−11 ,

with the convention that 1−1 = 1.
Next we introduce a device by means of which consecutive entries of a word that

belong to the sameGλ can be combined. An equivalence relation on the set S is defined
as follows. Let v,w ∈ S. Then v is equivalent tow if there is a finite chain of operations
leading from v to w of the following types:
(i) insertion or deletion of the identity element from one of the Gλ;
(ii) contraction, i. e., replacement of two consecutive entries belonging to the same

group Gλ by their product;
(iii) expansion, i. e., replacement of an entry belonging to a Gλ by two elements of Gλ

whose product it equals.
This is evidently an equivalence relation on S. Denote the equivalence class of w by
[w]. One readily verifies that if v is equivalent to v′ and w to w′, then vw is equivalent
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to v′w′ and w−1 is equivalent to (w′)−1. Then the set of equivalence classes

G = {[w] | w ∈ S}

becomes a group with the well defined group operations

[v][w] = [vw] and [w]−1 = [w−1].

Next let αλ : Gλ → G be the mapping in which x → [x] where x ∈ Gλ: this is readily
seen to be a homomorphism of groups.

We aim to prove that {G, αλ | λ ∈ Λ} is a free product of theGλ. To this end, let there
be given homomorphisms ϕλ : Gλ → H for λ ∈ Λ and some group H. It is necessary
to produce a unique homomorphism θ : G → H such that θαλ = ϕλ for all λ ∈ Λ. Let
w ∈ S and write w = g1g2 . . . gr with gi ∈ Gλi . Define

θ([w]) = ϕλ1 (g1)ϕλ2 (g2) ⋅ ⋅ ⋅ϕλr (gr).

First observe that θ is well defined. The reason is that application of one of the oper-
ations (i), (ii), (iii) to the word w has no effect on the element ϕλ1 (g1)ϕλ2 (g2) ⋅ ⋅ ⋅ϕλr (gr)
of H. It is then evident that θ is a homomorphism. If x ∈ Gλ, we have θαλ(x) = θ([x]) =
ϕλ(x) and hence θαλ = ϕλ.

Finally, there is the uniqueness requirement to verify. Let θ′ : G → H be another
homomorphism such that θ′αλ = ϕλ for all λ. Then θαλ = θ′αλ, so that θ and θ′ agree
on each Im(αλ). But the Im(αλ) generate G since

[g1g2 . . . gr] = [g1][g2] ⋅ ⋅ ⋅ [gr] = αλ1 (g1)αλ2 (g2) ⋅ ⋅ ⋅ αλr (gr),

where gi ∈ Gλi . Therefore θ = θ
′.

Now that free products have been shown to exist, the question of their uniqueness
arises.

(15.3.2). Suppose that {G, αλ|λ ∈ Λ} and {Ḡ, ᾱλ|λ ∈ Λ} are two free products for a set of
groups {Gλ | λ ∈ Λ}. Then G ≃ Ḡ.

The proof of this result follows the pattern established for free groups in (15.1.4).
It is in fact a special case of the uniqueness of coproducts – see (16.3.1) below.

The free product G of {Gλ, λ ∈ Λ} is usually written without specifying the associ-
ated homomorphisms, as

G = Frλ∈ΛGλ.

In the case of a finite set Λ = {λ1, λ2, . . . , λr} the free product is denoted by

G = Gλ1 ∗ Gλ2 ∗ ⋅ ⋅ ⋅ ∗ Gλr .
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Reduced words
Consider a free product G = Frλ∈ΛGλ. In order to determine the structural properties of
G, we need to find a standard form for its elements. By (15.3.2) we can assume that G
consists of equivalence classes of words in U = ⋃λ∈Λ Gλ, as described in the proof of
(15.3.1). A word is said to be reduced if none of its symbols is an identity element and
no two consecutive symbols belong to the same group Gλ. By convention the empty
word 1 is reduced.

Let w be a word in U and suppose we want to find a reduced word which is equiv-
alent to w. There is an obvious way to do this. First of all delete all entries in w which
are identity elements. By a segment of w is meant a subsequence of w with all its en-
tries in the same groupGλ andwhich is not part of a longer sequence of the same type.
Replace each segment by the product of its elements in the given order. Repetition of
these procedureswill eventually lead to a reducedwordwhich is equivalent to the orig-
inal word. It follows that every equivalence class of words contains a reduced word.
The critical step is to prove that there is a unique reduced word in each equivalence
class.

(15.3.3). Each equivalence class of words in⋃λ∈Λ Gλ contains exactly one reducedword.

Proof. Let v and w be equivalent reduced words; it must be shown that v = w. This
will be achieved by an indirect argument, as in the case of free groups. Let R denote
the set of all reduced words. An action of the free product G on R is defined as follows.

First define an action of Gλ on R. Let u ∈ Gλ; then we define a permutation u′

of R as follows. If u = 1Gλ
, then u′ is the identity; assume this is not the case. Write

v = x1x2 . . . xr with xi ∈ Gλi and define u′(x1x2 . . . xr) to be ux1x2 . . . xr or (ux1)x2 . . . xr
according as λ ̸= λ1 or λ = λ1 respectively. There is the additional stipulation that if
ux1 = 1G1

, then ux1 is to be deleted from the word. This ensures that the permuted
word is also reduced. It is easy to see that u → u′ is a homomorphism from Gλ to
Sym(R). By the mapping property of free products these homomorphisms combine to
give a homomorphism θ : G → Sym(R) such that θ([x]) = x′ where x ∈ Gλ.

Next v = x1x2 . . . xr with xi ∈ Gλi . Hence [v] = [x1][x2] ⋅ ⋅ ⋅ [xr] and θ([v]) = x
′
1x
′
2 ⋅ ⋅ ⋅ x
′
r .

It follows from the definition of x′i that θ([v]) sends the empty word 1 to v. Similarly
θ([w]) sends 1 to w. Since [v] = [w], it follows that v = w, as claimed.

Normal form in free products
Consider a free product G = Frλ∈ΛGλ. We can assume that each element of G has the
form [w] where w is a uniquely determined reduced word, say w = g1g2 . . . gr where
1 ̸= gi ∈ Gλi and λi ̸= λi+1. Let Ḡλ be the subgroup of all [x]where x ∈ Gλ. Thus [gi] ∈ Ḡλi
and each [w] ∈ G has a unique expression as a product of elements of the Ḡλ, namely

[w] = [g1][g2] ⋅ ⋅ ⋅ [gr].

This is called the normal form of w.
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The notationwill bemuch simplified if we agree to identify x ∈ Gλ with [x] ∈ Ḡλ, so
that the normal form of w becomes just w = g1g2 . . . gr . Observe that as a consequence
of the uniqueness of normal form

Gλ ∩ ⟨Gμ | μ ̸= λ, μ ∈ Λ⟩ = 1 where λ ∈ Λ.

The existence of a normal form is typical of free products in the following sense.

(15.3.4). Let G be a group which is generated by subgroups Gλ, λ ∈ Λ. Assume that each
element g of G can be uniquelywritten in the form g = g1g2 ⋅ ⋅ ⋅ gr where r ≥ 0, 1 ̸= gi ∈ Gλi ,
λi ̸= λi+1. Then G ≃ Frλ∈ΛGλ.

Proof. Let {F, αλ | λ ∈ Λ} be the free product of the Gλ as constructed in the proof of
(15.3.1). By themapping property of the free product there is a homomorphism θ : F →
Gmaking all the diagrams below commute

Gλ
αλ

??

ιλ

??
F

θ
?? G

where ιλ : Gλ → G is the inclusion map. Thus θαλ = ιλ. Now θ is surjective since
x = ιλ(x) = θαλ(x) ∈ Im(θ) for x ∈ Gλ. Therefore Im(θ) = G, as the Gλ generate G.

Suppose that 1 ̸= [f ] ∈ Ker(θ) where f = g1g2 ⋅ ⋅ ⋅ gr is a reduced word with gi ∈ Gλi ,
r > 0. Thus [f ] = [g1][g2] ⋅ ⋅ ⋅ [gr] is in normal form. Then

1 = θ([f ]) =
r
∏
i=1

θ([gi]) =
r
∏
i=1

θαλi (gi) =
r
∏
i=1

ιλi (gi) =
r
∏
i=1

gi.

This contradicts the unique expressibility in G. Hence Ker(θ) = 1 and θ is an isomor-
phism, showing that G ≃ F.

Examples of free products
(i)A free product of free groups is a free group. To see this let Fλ be a groupwhich is free
on a set Xλ for λ ∈ Λ. Assume that the sets Xλ are disjoint, which is no real restriction
since Xλ could be replaced by any set with the same cardinality. Then F is free on the
set⋃λ∈Λ Xλ, which follows on applying (15.1.3). In particular, a free product of infinite
cyclic groups is a free group.
(ii) The free product of two groups of order 2 is an infinite dihedral group. For let G =
⟨x⟩ ∗ ⟨y⟩ where x2 = 1 = y2. Set a = xy; then we have G = ⟨x, a⟩. Also xax−1 = x2yx−1 =
yx = a−1. It follows from (15.2.3) that G is a homomorphic image of the infinite dihe-
dral group Ḡ = ⟨x̄, ā | x̄2 = 1, x̄āx̄−1 = ā−1⟩. On the other hand, a, a2, a3, . . . are distinct
elements of G by uniqueness of the normal form in the free product. Therefore a has

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



350 | 15 Presentations of groups

infinite order. Hence G is the semidirect product of ⟨x⟩ and ⟨a⟩, so it is an infinite di-
hedral group.

Some elementary properties of free products are recorded in the next two results.

(15.3.5). Let G = Frλ∈ΛGλ be a free product of groups. Then the following statements are
true.
(i) Let g = g1g2 ⋅ ⋅ ⋅ gr be the normal form of g ∈ G where gi ∈ Gλi . If λ1 ̸= λr , then g has

infinite order.
(ii) If at least two of the free factors Gλ are non-trivial, then G has an element of infinite

order.
(iii) An element of finite order in G is conjugate to an element in one of the Gλ.

Proof. (i) By hypothesis r > 1. If m > 0, then gm has normal form of length mr > 0
since the initial and final entries of g belong to different free factors. Therefore gm ̸= 1
and g has infinite order.
(ii) This follows at once from (i).
(iii) Assume that g = g1g2 ⋅ ⋅ ⋅ gr is in normal form and has finite order. Suppose that g
has been chosen with r least such that no conjugate of g belongs to any Gλ. Then g1
and gr must belong to the same free factor by (i). On conjugating g by gr, we obtain
ḡ = grgg−1r = (grg1)g2 ⋅ ⋅ ⋅ gr−1, which also has finite order. After deleting a possible
identity element from ḡ we obtain an element whose normal form has length less than
r, which is a contradiction.

A consequence of the last theorem is thata free product of torsion-free groups is torsion-
free. The next result shows that commutativity of elements in a free product is quite
limited.

(15.3.6). Let G = Frλ∈ΛGλ and let 1 ̸= g ∈ Gλ. Then CG(g) ≤ Gλ.

Proof. Let x ∈ CG(g)havenormal form x = x1x2 ⋅ ⋅ ⋅ xr where xi ∈ Gλi . Assume that x ∉ Gλ
and that x has minimal length with this property: thus r > 0. If λ1 ̸= λ, then xg ̸= gx
since these elements have different normal forms. Hence λ1 = λ and in a similar way
λr = λ. Now form the conjugate x′ = xrxx−1r = (xrx1)x2 ⋅ ⋅ ⋅ xr−1. Then x

′ has normal form
of shorter length than x and x′ ∈ xrCG(g)x−1r = CG(xrgx

−1
r ). Also xrgx

−1
r ∈ Gλ. Therefore

by minimality of r we have CG(xrgx−1r ) ≤ Gλ, which implies that CG(g) ≤ Gλ.

One consequence of this result is that if a free product has at least two non-trivial
factors, then its center is trivial.
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Subgroups of free products
There is a deep theory that describes the subgroup structure of free products, culmi-
nating in what is known as the Kuroš3 subgroup theorem.

(15.3.7). Let H be a subgroup of the free product G = Frλ∈ΛGλ. Then H is a free product
of the form

H = F ∗ Frλ,dλ(H ∩ (dλGλd
−1
λ )),

where F is a free group and the free product is formed over all λ ∈ Λ and certain (H ,Gλ)-
double coset representatives dλ.

For double cosets see Exercise (4.1.13). The algebraic proof of the Kuroš subgroup
theorem is complicated and it will not be presented here – however, see [15] for an
account of it.

Free products with amalgamation
We conclude the chapter by mentioning a useful generalization of the free product.
Roughly speaking, this is the “largest” group that can be generated by a given set of
groups when certain isomorphic subgroups of the groups in the set are identified. De-
tails of the construction follow.

Let {Gλ | λ} be a non-empty set of groups and letH be a fixed group. Assume there
are given injective homomorphisms

ϕλ : H → Gλ, λ ∈ Λ.

Let F = Frλ∈ΛGλ be the free product of the Gλ and define N to be the normal closure in
F of the subset

{(ϕλ(h))
−1ϕμ(h) | λ, μ ∈ Λ, h ∈ H}.

Then the group

G = F/N

is called the free product of the groups Gλ with the amalgamated subgroup H. It is often
referred to as a generalized free product. The idea here is that the isomorphic sub-
groups ϕλ(H) are all identified in the group F/N . In general G will depend upon the
homomorphims ϕλ as well asH. In order to develop the properties of generalized free
products it is necessary to introduce a normal form for their elements. For details of

3 Aleksandr Gennadievich Kuroš, 1908–1971.
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the normal form in a free product with amalgamation see [15]. Here we will be content
to analyze one example.

Example (15.3.1). Consider the group with the finite presentation shown.

G = ⟨x, y | x2 = y2⟩.

Thefirstmove is to identifyG as a generalized free product. LetF be the free groupwith
basis {x, y}. Then G = F/N where N = ⟨(x−2y2)F⟩. Next let H = ⟨h⟩ be an infinite cyclic
group and define injective homomorphisms ϕ : H → X = ⟨x⟩ and ψ : H → Y = ⟨y⟩ by
ϕ(h) = x2 andψ(h) = y2. Then G is the free product of X and Y with the subgroups ⟨x2⟩
and ⟨y2⟩ amalgamated by means of ϕ and ψ.

Let us see what can be said about the structure ofG. Since there is no normal form
at our disposal, we will have to rely on a bare hands approach. Observe that the cyclic
subgroup Z = ⟨x2⟩ = ⟨y2⟩ is contained in the center of G; thus Z ⊲ G. Moreover, G/Z
is generated by two groups of order 2. Thus by Von Dyck’s theorem (15.2.3) the group
G/Z is a quotient of an infinite dihedral group. Consequently G is a solvable, and even
polycyclic, group. In fact Z is infinite cyclic and G/Z is infinite dihedral by an indirect
argument: this is sketched in Exercise (15.3.9).

Exercises (15.3).
(1) Prove (15.3.2).
(2) Let {F, αλ | λ ∈ Λ} be a free product of groups Gλ, λ ∈ Λ. Prove that the subgroups

Im(αλ) generate F. [Hint: this is true for the free product constructed in (15.3.1).
Apply (15.3.2) to deduce the result for F.]

(3) Let G = Frλ∈ΛGλ and H = Frλ∈ΛHλ be free products, and let ϕλ : Gλ → Hλ be
a homomorphism for each λ ∈ Λ. Prove that there is a unique homomorphism
ϕ : G → H whose restriction to Gλ is ϕλ. In addition show that Ker(ϕ) is the
normal closure in G of⋃λ∈Λ Ker(ϕλ).

(4) Prove that (Frλ∈ΛGλ)
ab ≃ Drλ∈Λ(Gλ)

ab.
(5) Let G = Frλ∈ΛGλ and let Hλ ≤ Gλ. If H = ⟨Hλ|λ ∈ Λ⟩, prove that H ≃ Frλ∈ΛHλ.
(6) Let G = Frλ∈ΛGλ and let Nλ ⊲ Gλ. Denote the normal closure of ⋃λ∈Λ Nλ in G by N .

Prove that G/N ≃ Frλ∈Λ(Gλ/Nλ).
(7) Let F = A ∗ B. If F is abelian, show that A = 1 or B = 1.
(8) Let F = A ∗ B and suppose that H is an abelian subgroup of F. Prove that either H

is cyclic or else it is conjugate to a subgroup of A or B. [Hint: use Exercise (15.3.7)
and the Kuroš subgroup theorem.]

(9) Let A = ⟨a⟩ × ⟨b⟩ be a free abelian group of rank 2 and let ⟨x⟩ be an infinite cyclic
group.Define anactionof x onAby x⋅a = a, x⋅b = b−1. LetG0 denote the semidirect
product of A and ⟨x⟩ determined by this action. Note that a and x2 both belong to
the center of G0, so that N = ⟨x−2a⟩ ⊲ G0. Define Ḡ = G0/N and write x̄ = xN,
b̄ = bN and ȳ = b̄x̄.
(i) Prove that Ḡ = ⟨x̄, ȳ⟩ and x̄2 = ȳ2.
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(ii) Use Von Dyck’s theorem to construct a surjective homomorphism from the
group G of Example (15.3.1) to Ḡ.

(iii) Deduce that Z is infinite cyclic and G/Z is an infinite dihedral group.

For a further account of groups given by presentations see [11].
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16 Introduction to category theory
Categories were introduced in the 1940’s by S. Eilenberg1 and S. Mac Lane2 in order to
elucidate relationships between algebraic topology and algebra. Since that time they
have become a standard tool in many branches of mathematics. Categories by their
nature are highly abstract structures, which is scarcely surprising given their wide ap-
plicability. The reader who is able to see beyond the abstraction will recognize many
ideas and concepts that have appeared in earlier chapters, on groups, rings and mod-
ules in particular. Thus categories emphasize common features of these topics. Re-
cently the utility of categories in theoretical computer science has been recognized as
a potent means of expressing concepts involved in programming languages and data
structures: see for example [14]. Thus there are many reasons to study category the-
ory. There is a change of emphasis in this chapter, where the concern is to explain and
elucidate concepts rather than to prove theorems.

16.1 Categories

A category 𝒞 consists of three entities:
(i) a class of objects denoted by obj(𝒞);
(ii) for each pair of objects (A,B) a set ofmorphisms, written Mor𝒞(A,B) or Mor(A,B),

which may be empty;
(iii) a law of composition of morphisms, that is, a function

Mor(A,B) ×Mor(B,C)→ Mor(A,C),

denoted by (α, β) → βα, for every triple of objects (A,B,C), where α ∈ Mor(A,B),
β ∈ Mor(B,C).

It will simplify considerations if we agree to use the arrow notation formorphisms. But
it must be emphasized thatmorphisms need not be functions nor need objects be sets.
Thus, if α ∈ Mor(A,B), we will write

α : A→ B or A α
→ B.

For these entities to form a category we require that the following properties hold:
(a) the sets Mor(A,B) are disjoint;
(b) for each object A there is an identity morphism ιA in Mor(A,A) such that αιA = α =
ιBα for α ∈ Mor(A,B);

1 Samuel Eilenberg 1913–1998.
2 Saunders Mac Lane 1909–2005.
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(c) composition of morphisms is an associative operation, that is, γ(βα) = (γβ)α for
every triple of morphisms α : A→ B, β : B→ C, γ : C → D.

Morphisms α : A → B and β : B → A are said to bemutually inverse if αβ = ιB and
βα = ιA. A morphism which has an inverse is called an isomorphism and the objects A
andB are then said to be isomorphic, in symbolsA ≃ B.While the concept of a category
may appear abstruse at this point, many familiar examples will soon follow.

Before proceeding further we point out that the objects in a category generally
form a proper class and not a set, whereas the morphisms between two objects al-
ways constitute a set. A category whose objects form a set is called a small category:
otherwise it is a large category.

As has been our custom throughout this work, we shall be fairly relaxed about
the exact set theoretic basis for category theory. To put matters on a completely sound
footing it is necessary toworkwithin a fixeduniverse: for further details of this see [12].

Examples of categories
(i) The category of sets and functions is denoted by Set. Here the objects are sets and
the morphisms are the functions between sets. Composition is just functional compo-
sition and the identity morphism for a set X is the identity function on X. The elemen-
tary properties of sets guarantee that Set a category. Set is the example of a category
that comes most immediately to mind. (Strictly speaking, we should assign a symbol
as the identity morphism of the empty set with the formal properties required in the
definition. This is sometimes referred to as the empty function.)
(ii) The categoriesMon, Gp and Rg of all monoids, groups and rings respectively. In
each case themorphismsare thehomomorphismsof the relevant type for the structure
together with functional composition.
(iii) Further natural categories are Ab, RMod,ModR, where R is a ring. These are the
categories of abelian groups, left R-modules and right R-modules. In each case the
morphisms are thehomomorphismsof the relevant type togetherwith functional com-
position.
(iv) Top. This is the category of topological spaces with the continuous functions be-
tween spaces as morphisms.

So far in all the categories mentioned the objects have been sets and the mor-
phisms functions between them, with functional composition as the law of composi-
tion. But it is not hard to find categories in which this is not the case. Here are some
examples.
(v) Let S be a fixed non-empty set. The category 𝒮 associated with S has as its objects
the elements of S, so obj(𝒮) = S, and the onlymorphisms are identitymorphisms. This
means that every non-empty set can be regarded as a category.
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(vi) Let n be a positive integer. A category n is defined to have objects {0, 1, 2, . . . , n− 1},
while its morphisms are identities and all composites of the arrows 0 → 1, 1 → 2,
. . . n − 2→ n − 1.
(vii) IfM is a fixed monoid, define a category 𝒞M to have the single objectM. The mo-
prhisms are the elements ofM, the law of composition of morphisms being the binary
operation ofM. This is an associative operation and the identitymorphism is the iden-
tity element of the monoid. Thus 𝒞M is category. In fact every single object category
arises from a monoid in this manner: see Exercise (16.2.7).

Diagrams in categories
A diagram in a category 𝒞 is a directed graph, with multiple edges and loops allowed,
in which the vertices are objects and the edges are morphisms in the category. Dia-
grams provide a convenient way to visualize morphisms and their relationships, even
in abstract categories where the objects are not sets and the morphisms are not func-
tions.

For example, let α : A→ B and β : B→ C bemorphisms in a category. Using these
morphisms and their composite βα, we construct the following triangle diagram:

B
β

??
A

α
??

βα
?? C

A diagram is said to be commutative if for paths between two fixed vertices – always
following the directions of the arrows – the composite of the morphisms along a path
is the same for all paths between the vertices. For example, the triangle diagramabove
is commutative since this merely expresses the law of composition of morphisms.

For another example consider the square of objects and morphisms:

A α ??

δ
??

B

β
??

C γ
?? D

This diagram is commutative if and only if βα = γδ. Commutative diagrams are power-
ful tools that are used throughout algebra: indeed they have already been encountered
in Chapter 13.

Subcategories
A category 𝒞 is said to be a subcategory of a category𝒟 if
(i) obj(𝒞) ⊆ obj(𝒟);
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(ii) Mor𝒞(A,B) ⊆ Mor𝒟(A,B) for all A,B ∈ obj(𝒞);
(iii) the law of composition of morphisms in 𝒞 is consistent with that in𝒟.

Examples of subcategories are easy to find: Gp is a subcategory of Set and Ab is a
subcategory of Gp.

Let 𝒞 be a subcategory of category 𝒟; then 𝒞 is said to be a full subcategory if
Mor𝒞(A,B) = Mor𝒟(A,B) for every pair of objects A, B in 𝒞, i. e., the morphism sets
are the same in each category for every pair of objects in 𝒞. For example, Ab is a full
subcategory ofGp, butGp is not a full subcategory of Set since not everymap between
groups is a homomorphism.

Exercises (16.1).
(1) Prove that the identitymorphismassociatedwith anobject in a category is unique.
(2) Prove that an isomorphism between two objects in a category has a unique in-

verse.
(3) How to represent a partially ordered set (S,⪯) by a category 𝒞. Define obj(𝒞) to

be S. Then let Mor𝒞(x, y) have a single element, say σ(x, y), if x ⪯ y: otherwise
Mor𝒞(x, y) is empty. What should the law of composition of morphisms be and
what properties should the σ(x, y) have if 𝒞 is to be a category?

(4) An object A of a category is called initial if there is a unique morphism A → C
for every object C. An object Z of a category is called terminal if there is a unique
morphismC → Z for every objectC. Prove that if an initial object or terminal object
exists in a category, then it is unique up to isomorphism.

(5) Do initial and terminal objects exist in the categorySet? If so,what are they? [Hint:
it depends on whether one allows morphisms from the empty set.]

(6) Give an example of a category with no initial or terminal objects.
(7) (Product categories). Let 𝒞 and 𝒟 be categories. The product category 𝒞 × 𝒟 has

objects (A,B) where A ∈ obj(𝒞), B ∈ obj(𝒟) and morphisms (α, β) where α, β
are morphisms in 𝒞, 𝒟 respectively. The law of composition of morphisms is
((α, β), (α′, β′)) → (α′α, β′β). Verify that 𝒞 ×𝒟 is in fact a category.

(8) An object of a category is called a zero object if it is both an initial object and a
terminal object. Prove that the zero submodule is the zero object in RMod.

16.2 Functors

A functor between two categories relates the objects and morphisms of one category
to objects and morphisms of the other, and also connects their laws of composition.
Let 𝒞 and𝒟 be categories. A covariant functor F from 𝒞 to𝒟, in symbols

F : 𝒞 → 𝒟,
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is a collection of functions (also denoted by F) of the form

F : obj(𝒞)→ obj(𝒟) and F : Mor𝒞(A,B)→ Mor𝒟(F(A), F(B))

for each pair of objects (A,B) of 𝒞. The functions are required to have the following
properties:
(i) if α ∈ Mor𝒞(A,B) and β ∈ Mor𝒞(B,C), then F(βα) = F(β)F(α).
(ii) F(ιA) = ιF(A) for all A ∈ obj(𝒞).
The property (i) in the definitionmay be expressed by saying that the functor F can be
applied to the commutative triangle

B
β

??
A

α
??

βα
?? C

to produce the new commutative triangle

F(B)
F(β)

??
F(A)

F(α) ??

F(βα) ?? F(C)

More generally, this observation allows a functor to be applied to any commutative
diagram in a category without disturbing commutativity.

Examples of functors
(i) The identity functor 1𝒞 : 𝒞 → 𝒞 fixes all objects and morphisms in a category 𝒞.
(ii) The forgetful functor from Gp to Set maps each group to its underlying set and

leaves all homomorphisms fixed. Thus the functor simply forgets about the group
operation. There are many other forgetful functors, for example from Rg to Set.

(iii) A more interesting example is the abelianizing functor. Define

Fab : Gp→ Gp

by Fab(G) = Gab = G/G′ for any group G. If α : G → H is a homomorphism of
groups, define Fab(α) : Gab → Hab by Fab(α) : xG′ → α(x)H′ for x ∈ G. Here it is
essential to observe that α(G′) ≤ H′ to ensure that Fab(α) is well defined.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



16.2 Functors | 359

Contravariant functors
There is a second type of functor which reverses the direction of the arrows when ap-
plied to morphisms. Let 𝒞 and𝒟 be categories. A contravariant functor

F : 𝒞 → 𝒟

is a collection of functions

F : obj(𝒞)→ obj(𝒟), and F : Mor𝒞(A,B)→ Mor𝒟(F(B), F(A))

for each pair of objects (A,B) of 𝒞. Thus if α : A → B is a morphism in 𝒞, then F(α) :
F(B) → F(A) is a morphism in 𝒟. These functions are required to have the following
properties:
(i) if α ∈ Mor𝒞(A,B) and β ∈ Mor𝒟(B,C), then F(βα) = F(α)F(β) in𝒟.
(ii) F(ιA) = ιF(A) for all A ∈ obj(𝒞).
As in the case of covariant functors, property (i) can be expressed by saying that the
functor F may be applied to a commutative triangle, thereby retaining commutativity,
but reversing all the arrows. Thus application of the functor F to the triangle below

B
β

??
A

α
??

βα
?? C

produces the new commutative triangle

F(B)
F(α)
??

F(A) F(C)
F(βα)??

F(β)??

We will sometimes speak of the variance of a functor, referring to whether it is covari-
ant or contravariant.

Opposite categories
A useful concept that connects the two types of functors is the opposite of a category.
Let 𝒞 be a category. The opposite of 𝒞

𝒞op
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is the category whose objects are the objects of 𝒞 andwhosemorphisms have the form
αop : B → A, where α : A → B is a morphism in 𝒞. Note the reversal in direction of the
arrow. The rule of composition of morphisms in 𝒞op is given by

αopβop = (βα)op

where α ∈ Mor𝒞(A,B), β ∈ Mor𝒞(B,C). To confirm that this the “correct” rule, consider
the commutative diagram expressing the law of composition of morphisms in 𝒞: this
is

B
β

??
A

α
??

βα
?? C

The commutative diagram in 𝒞op obtained from this by reversing all the arrows is:

B
αop

??
A C(βα)op??

βop
??

As was to be expected, its commutativity expresses the law of composition in 𝒞op. Of
course ιAop is the identitymorphism for an objectA in 𝒞op. It is straightforward to verify
that 𝒞op is a category.

Next if F : 𝒞 → 𝒟 is a functor, define a new functor

Fop : 𝒞op → 𝒟op

by Fop(A) = F(A) for A ∈ obj(𝒞) and Fop(αop) = F(α)op where α ∈ Mor𝒞(A,B).
Now suppose that F is covariant. Let us check that Fop is also covariant. Let α ∈

Mor𝒞(A,B), β ∈ Mor𝒞(B,C). Thus

Fop(αopβop) = Fop((βα)op) = (F(βα))op,

while

Fop(αop)Fop(βop) = F(α)opF(β)op = (F(β)F(α))op = (F(βα))op.

Therefore Fop(αopβop) = Fop(αop)Fop(βop) and Fop is a covariant functor.
By a similar argument, if we start with a contravariant functor F : 𝒞 → 𝒟, one

can verify that Fop : 𝒞op → 𝒟op is also contravariant – see Exercise (16.2.1). These
conclusions are summed up in
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(16.2.1). If F : 𝒞 → 𝒟 is functor, then Fop : 𝒞op → 𝒟op is a functor with the same
variance.

Contravariant functors as covariant functors
As has been seen, there are two types of functors, covariant and contravariant. How-
ever, for many purposes it is enough to deal with covariant functors. Let F : 𝒞 → 𝒟 be
a functor of either variance. Then define a new functor

F̄ : 𝒞op → 𝒟

by F̄(A) = F(A) for A ∈ obj(𝒞) and F̄(αop) = F(α) where α is a morphism in 𝒞. This is a
functor of the opposite variance, as the next result shows.

(16.2.2). If F : 𝒞 → 𝒟 is a functor, then F̄ : 𝒞op → 𝒟 is a functor of the opposite variance.

Proof. Let α : A → B and β : B → C be morphisms in 𝒞 and suppose that F is a
contravariant functor. We will show that F̄ is a covariant functor, arguing as follows.

F̄(αopβop) = F̄((βα)op) = F(βα) = F(α)F(β) = F̄(αop)F̄(βop).

In a similar manner it can be shown that if F is covariant, then F̄ is contravariant.

This result shows that in suitable circumstances it is sufficient to study covariant
functors. For, if a property has beenproved for covariant functors andF is a contravari-
ant functor, then the property holds for the covariant functor F̄. Itmay thenbepossible
to deduce that the property is valid for F.

Hom functors
Two of the most important functors in algebra are formed by using the additive group
of homomorphisms betweenmodules.More generally, take any category 𝒞 and choose
and fix an object A of 𝒞. Define a covariant functor

FA : 𝒞 → Set

in the following manner. Put FA(B) = Mor(A,B) for any B ∈ 𝒞, noting that this is a set.
Next, if β ∈ Mor(B,B′), define a function FA(β) : Mor(A,B) → Mor(A,B′) by FA(β)(α) =
βα, where α : A → B is a morphism in 𝒞. Observe that if β ∈ Mor(B,B′) and β′ ∈
Mor(B′,B′′), then

FA(β
′β)(α) = β′βα = FA(β′)(βα) = FA(β′)FA(β)(α),
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so that FA(β′β) = FA(β′)FA(β). Also it is clear that FA(ιB) is the identity morphism on
Mor(A,B). Hence FA is a covariant functor, which will be denoted by

Mor(A,−).

There is a dual contravariant functor defined by switching arguments. As before
let 𝒞 be a category with a fixed object A. Define a functor

GA : 𝒞 → Set

as follows. LetGA(B) = Mor(B,A) for anyB ∈ obj(𝒞). If β ∈ Mor(B,B′), define a function
GA(β) : Mor(B′,A)→ Mor(B,A) by GA(β)(α) = αβ where α : B′ → A is a morphism in 𝒞.
We claim that GA is a contravariant functor. Let β ∈ Mor(B,B′) and β′ ∈ Mor(B′,B′′);
then

GA(β′β)(α) = αβ′β = GA(β)(αβ′) = GA(β)GA(β′)(α).
Therefore GA(β′β) = GA(β)GA(β′). Also GA(ιB) is the identity morphism for the object
Mor(B,A). Thus GA is a contravariant functor, which is written

Mor(−,A).

The most important cases are when 𝒞 = ModR or RMod and the morphisms are
R-module homomorphisms, R being a ring. In this situation the notations used for the
functors FA and GA are

HomR(A,−) and HomR(−,A)

respectively. These are functors from RMod orModR toAb. TheHom functors are ubiq-
uitous in module theory.

It is often convenient to write

β∗ = HomR(A, β) and β∗ = HomR(β,A).

We may refer to β∗ as an induced homomorphism and β∗ as a co-induced homomor-
phism. These terminologies were already adopted in Section 9.1.

Tensor product functors
Another important source of functors is tensor products over a ringR; thesewere intro-
duced in Chapter 13. LetM be a fixed right R-module and define a functor F : RMod→
Ab by F(A) = M ⊗R A where A ∈ RMod. If α ∈ HomR(A,B), let F(α) = α∗ be the in-
duced map idM ⊗ α, as defined in Section 13.1. We check that F is a covariant functor.
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Let α ∈ HomR(A,B), β ∈ HomR(B,C); then by (13.1.3) we have

(βα)∗ = idM ⊗ βα = (idM ⊗ β)(idM ⊗ α) = β∗α∗,
Therefore F is a covariant functor.

We can form another covariant functor fromModR to Ab by placing the fixed left
moduleM on the right of the tensor product. A convenient notation for these two func-
tors is

M ⊗ R− : RMod → Ab and − ⊗RM : ModR → Ab.

Concrete categories
A general category is an abstract entity far removed from the realm of sets and func-
tions. Thus special interest attaches to categorieswhich can be represented in amean-
ingful way by sets and functions.

We startwith the concept of a faithful functor. A functorT : 𝒞 → 𝒟 is called faithful
if it is injective on morphisms, i. e., T(α1) = T(α2) implies that α1 = α2. (Actually, this
implies that T is also injective on objects: see Exercise (16.2.9).

A concrete category is definedas apair (𝒞,U)where 𝒞 is a category andU : 𝒞 → Set
is a faithful covariant functor. Thus in 𝒞 each object A has an associated set U(A) and
each morphism α : A → B has an associated function U(α) : U(A) → U(B). Note that
U(αβ) = U(α)U(β) since U is a covariant functor.

More generally still, a category 𝒞 is said to be concretizable if there exists a faithful
covariant functor U : 𝒞 → Set such that (𝒞,U) is a concrete category. Many of the
categories that we have encountered are seen to be concretizable by pairing themwith
the forgetful functor: for example, Gp and Rg are concretizable. On the other hand,
non-concretizable categories exist. In fact the category hTop of topological spaces
whose morphisms are homotopy classes of continous functions is known to be non-
concretizable.

Additive functors
A category 𝒞 is said to be pre-additive if each morphism set Mor(A,B) in 𝒞 is endowed
with a binary operation, usually written +, which makes the sets of morphisms into
abelian groups. Next suppose that 𝒞 and 𝒟 are pre-additive categories. A functor
F : 𝒞 → 𝒟 is called an additive functor if, for any pair of morphisms α, β : A → B in 𝒞,
the following rule holds:

F(α + β) = F(α) + F(β).

Among the most important additive functors are the Hom functors and the tensor
product functors.
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(16.2.3). Let R be a ring and A a left R-module. Then:
(i) HomR(A,−) is an additive covariant functor and HomR(−,A) is an additive con-

travariant functor from RMod to Ab.
(ii) A⊗R − and −⊗R A are additive covariant functors from RMod to Ab and fromModR

to Ab respectively.

Proof. Take the case of HomR(A,−). The category RMod is pre-additive since
HomR(A,B) is an abelian group, as was seen in Section 9.1. Let ϕ ∈ HomR(B,B′).
Recall that ϕ∗ = HomR(A,ϕ) was defined by ϕ∗(θ) = ϕθ. Hence

ϕ∗(α + β) = ϕ(α + β) = ϕα + ϕβ = ϕ∗(α) + ϕ∗(β).
The other cases are left to the reader as exercises.

Exact functors
In the remainder of this section only functors from RMod orModR to Ab, where R is a
ring,will be considered. Consider the effect of applying a functor to the exact sequence
of R-modules with the form

0→ A α
→ B

β
→ C. (16.1)

(For exact sequences see Section 9.1.) Let F : RMod→ Ab be a covariant functor. Then
F is called left exact if, for every exact sequence of R-modules as in equation (16.1), the
sequence arising from it on applying the functor F,

0→ F(A)
F(α)
→ F(B)

F(β)
→ F(C),

is also exact.
Similarly F is right exact if, given an exact sequence of R-modules

A α
→ B

β
→ C → 0,

the sequence

F(A)
F(α)
→ F(B)

F(β)
→ F(C)→ 0

is exact.
There are corresponding notions for a contravariant functor F : RMod→ Ab. Call

F left exact if, given the exact sequence A α
→ B

β
→ C → 0, the sequence

0→ F(C)
F(β)
→ F(B)

F(α)
→ F(A),
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is exact. On the other hand, F is said to be right exact if, given the exact sequence
0→ A α
→ B

β
→ C, the sequence

F(C)
F(β)
→ F(B)

F(α)
→ F(A)→ 0

is exact. Notice how the arrows are reversed by the contravariant functor F.
The exactness properties of the Hom and tensor product functors are described in

the next result.

(16.2.4). Let R be a ring and M an R-module. Then:
(i) HomR(M,−) is a left exact covariant functor and HomR(−,M) is a left exact con-

travariant functor.
(ii) M ⊗R − and − ⊗R M are right exact covariant functors.

These are simply re-statements of results already proven, namely (9.1.25) and (13.2.9).

Exercises (16.2).
(1) Complete the proof of (16.2.1) by showing that if F : 𝒞 → 𝒟 is a contravariant

functor, then Fop : 𝒞op → 𝒟op is contravariant.
(2) If F : RMod → Ab is an additive functor, prove that F fixes the zero module and

the zero homomorphism.
(3) Let 𝒞 and𝒟 be categories and recall that 𝒞×𝒟 is the product category (see Exercise

(16.1.7)). Define a functor F : 𝒞 × 𝒟 → 𝒞 by F((A,B)) = A and F((α, β)) = α. Verify
that F is a covariant functor.

(4) Let F : 𝒞 → 𝒟 and G : 𝒟 → ℰ be functors. Define the composite functor G ∘ F :
𝒞 → ℰ by G ∘ F(A) = G(F(A)) and G ∘ F(α) = G(F(α)) where A is an object and α a
morphism in 𝒞. Verify that with these definitions G ∘ F is in fact a functor.

(5) Let F, G be functors such that G ∘ F exists. Prove that G ∘ F is covariant if F and G
have the same variance and contravariant if they have opposite variances.

(6) Let F : 𝒞 → 𝒞′ and G : 𝒟 → 𝒟′ be functors of the same variance. Define the
product functor F × G : 𝒞 × 𝒟 → 𝒞′ × 𝒟′ by F × G((A,B)) = (F(A),G(B)) and
F ×G((α, β)) = (F(α),G(β)). Prove that F ×G is a functor with the same variance as
F and G.

(7) Let 𝒞 be a category with just one object. Prove that the morphisms of 𝒞 form a
monoidM whose binary operation is composition of morphisms. Then prove that
𝒞 is isomorphic with the monoidal category 𝒞M defined in Example (vii) of Sec-
tion 16.1.

(8) Let 𝒞 be a category with the property that Mor(A,B) = 0 for every pair of distinct
objectsA,Bof 𝒞. Prove that 𝒞 is theunionof disjoint subcategories of themonoidal
type in Exercise (16.2.7).

(9) Let F : 𝒞 → 𝒟 be a faithful functor, i. e., one that is injective on morphisms. Prove
that F is also injective on objects.
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16.3 Categorical constructions

In this section we describe some standard constructions that can be performed in cer-
tain important categories. Some of these constructs have appeared in earlier chapters
in the context of groups andmodules. All the constructs are characterized bymapping
properties of diagrams in categories. We begin with coproducts and products, which
already appeared in Chapter 9 in the guise of restricted and unrestricted direct sums
of modules.

Coproducts
Let 𝒞 be a category and {Ai | i ∈ I} a set of objects in 𝒞. A coproduct of the Ai in 𝒞
consists of an object

∐
j∈I Aj

and a set of morphisms αi : Ai → ∐j∈I Aj in 𝒞. These entities are required to have the
followingmapping property. If there are givenmorphismsϕi : Ai → X in 𝒞, then there
is a uniquemorphism θ : ∐j∈I Aj → X such that θαi = ϕi for all i ∈ I. This condition is
expressed by commutativity of the triangles

Ai
αi

??

ϕi

??
∐j∈I Aj θ

?? X

for all i ∈ I. One can think of the condition as requiring that the morphisms ϕi can be
combined to form the morphism θ.

It is not claimed that coproducts always exist in a category, but if they do exist,
they are essentially unique in the sense of the following result.

(16.3.1). Let {Ai | i ∈ I} be a set of objects in a category 𝒞. If {A, αi|i ∈ I} is a coproduct
of the Ai in 𝒞, then A is unique up to isomorphism.

Proof. Suppose that {B, βi | i ∈ I} is another coproduct of the Ai in 𝒞. Apply the map-
ping property for each coproduct to obtain morphisms θ, τ making the two triangles
below commute for each i ∈ I:

Ai
αi

??

βi

??

Ai
βi

??

αi

??
A

θ
?? B B τ

? ? A
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Hence θαi = βi and τβi = αi, which combine to yield (θτ)βi = θαi = βi and (τθ)αi =
τβi = αi. Thus we have two more commutative triangles

Ai
αi

??

αi

??

Ai
βi

??

βi

??
A

τθ
?? A B

θτ
? ? B

However, the morphisms τθ and θτ in these triangles could be replaced by identity
morphisms for A and B respectively without disturbing commutativity. Consequently,
by the uniqueness clause in the definition of the coproduct

τθ = ιA and θτ = ιB.

Hence θ and τ are mutually inverse morphisms, so they are isomorphisms. Therefore
A ≃ B.

The reader should take note of the formof the last proof, since it is used frequently
to establish the uniqueness of constructed objects in a category.

Examples
(i) In the categories of R-modules RMod, ModR the coproduct of a set of modules
{Mi | i ∈ I} is their restricted direct sum⨁i∈I Mi. The associated morphisms are
the canonical injections μi : Mi → ⨁j∈I Mj. (For direct sums of modules see Sec-
tion 9.1.)

(ii) In the categoryGp the coproduct of a set of groups {Gi| i ∈ I} is less obvious. It is in
fact the free product Fri∈IGi. The associated morphisms are the natural injections
Gi → Frj∈IGj. For free products see Section 15.3.

We will prove the statement (i). Let there be given module homomorphisms ψi : Mi →
X, i ∈ I. Define θ : ⨁i∈I Mi → X as follows. If a ∈ ⨁i∈IMi, write a = ∑i∈I μi(mi),
wheremi ∈ Mi and the μi are the canonical injections. Note that only finitely manymi
are non-zero, so the sum is actually a finite one. Now define θ(a) = ∑i∈I ψi(mi). Then
θμi(mi) = ψi(mi) since μi(mi) has only one non-zero component. Thus θμi = ψi.

If θ′ is another homomorphism such that θ′μi = ψi, then θμi = θ′μi for all i ∈ I.
This implies that θ = θ′, since the submodules Im(μi) generate⨁i∈IMi. This shows
that the direct sum is a coproduct in RMod and by (15.3.1) we can be sure that it is
unique up to isomorphism.

Products
The concept of a product is dual to that of a coproduct in the sense that it is obtained
by reversing all the arrows in the definition. Let {Ai | i ∈ I} be a set of objects in a
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category 𝒞. A product of the Ai in 𝒞 consists of an object

∏
j∈I Aj

and a set of morphisms πi : ∏j∈I Aj → Ai such that, given morphisms αi : X → Ai in
𝒞, there is a unique morphism θ : X → ∏j∈I Aj such that πiθ = αi for i ∈ I. Thus the
triangle below commutes for all i ∈ I:

Ai

∏j∈I Aj
πi

??

X
θ

? ?

αi
? ?

There is no claim that products exist in 𝒞, but, as in the case of coproducts, if they do
exist, they are unique.

(16.3.2). Let {Ai | i ∈ I} be a set of objects in a category 𝒞. If {A,πi|i ∈ I} is a product of
the Ai in 𝒞, then A is unique up to isomorphism.

The proof is entirely analogous to the proof of (16.3.1) and involves writing down
four commuting triangles. Indeed, all one need do is reverse all the arrows in the proof
of (16.3.1). Alternatively one could simply observe that a product in a category 𝒞 is a
coproduct in 𝒞op, and conversely.

Examples
(i) The product of a set of groups {Gi | i ∈ I} in the category Gp is the unrestricted

direct (or cartesian) product Cri∈IGi, together with the associated canonical pro-
jections: for this see Section 4.2.

(ii) In the categories of R-modules RMod,ModR the product of a set of modules {Mi |
i ∈ I} is their unrestricted direct sum, again with the associated canonical projec-
tions.

We describe next two further constructions that occur frequently in algebra and in
homological algebra in particular.

Pullbacks
Let β : B→ A and γ : C → A be morphisms in a category 𝒞. A pullback of the diagram

C
γ

? ?
B

β ?? A
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is a triple (X, λ, μ) consisting of an object X and morphisms λ : X → B, μ : X → in 𝒞
such that the square below commutes:

X
μ ??

λ
??

C
γ

??
B

β ?? A

Thus βλ = γμ.
In addition, the triple (X, λ, μ)must have the additional property that, if (X′, λ′, μ′)

is another such triple making the corresponding square commute, there exists a
uniquemorphism θ : X′ → X such that the following diagram commutes:

X′
μ′

??

θ

??
λ′

??

X
μ ??

λ
??

C
γ

??
B

β ?? A

Thus λθ = λ′ and μθ = μ′. One can think of the additional requirement as expressing a
kind of “minimality” of the pullback (X, λ, μ) with respect to the commutative square
property. For brevity we may also refer to X as the pullback.

Of course, one cannot expect pullbacks to exist in a general category, but when
they do exist, they are essentially unique.

(16.3.3). If (X, λ, μ) and (X′, λ′, μ′) are two pullbacks of morphisms β : B → A and
γ : C → A in a category 𝒞, then there is an isomorphism θ : X′ → X such that λ′ = λθ
and μ′ = μθ.
Proof. This follows the same general pattern as the proof of (16.3.1). There are mor-
phisms θ : X′ → X and ϕ : X → X′ making the triangles below commute, since we
have two pullbacks of β : B→ A and γ : C → A.

X′
μ′

??

θ

??
λ′

??

X
μ

??

ϕ

??
λ

??

X
μ ??

λ
? ?

C

γ
??

X′ μ′ ? ?

λ′

??

C

γ
? ?

B
β ?? A B

β ?? A
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From the commutativity of the two triangles in each diagram we obtain λθ = λ′,
μθ = μ′ and λ′ϕ = λ, μ′ϕ = μ respectively. Hence

λθϕ = λ′ϕ = λ, μθϕ = μ′ϕ = μ
and

λ′ϕθ = λθ = λ′, μ′ϕθ = μθ = μ′.
These equations show that the following diagrams commute:

X
μ

??

θϕ

??
λ

??

X′
μ′

? ?

ϕθ

??
λ′

? ?

X
μ ??

λ
??

C

γ
??

X′ μ′ ??

λ′

??

C

γ
? ?

B
β ?? A B

β ? ? A

On the other hand, it is obvious that if the identity morphisms ιX and ιX′ are substi-
tuted for θϕ and ϕθ respectively, the triangles will still commute. Therefore by the
uniqueness requirement in the definition θϕ = ιX and ϕθ = ιX′ . Thus θ and ϕ are
isomorphisms and hence θ : X′ → X is an isomorphism.

It is important to observe that pullbacks exist in the categories of modules over a
ring.

(16.3.4). Pullbacks exist in the categories RMod andModR for any ring R.

Proof. Let β : B → A and γ : C → A be homomorphisms of R-modules. Define a
submodule X of the R-module B ⊕ C by

X = {(b, c) | b ∈ B, c ∈ C, β(b) = γ(c)}.

Let λ : X → B and μ : X → C be the natural projections (b, c) → b and (b, c) → c
respectively. It is claimed that (X, λ, μ) is a pullback of β and γ. First of all for (b, c) ∈ X
we have

γμ(b, c) = γ(c) = β(b) = βλ(b, c),

so that βλ = γμ. Therefore β, γ, λ, μ form the commutative square in the next diagram.
To complete the proof we need to establish the minimality property. Suppose that

(X′, λ′, μ′) is another triple making the square commute. It must be shown that there
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is a unique homomorphism θmaking the diagram below commute.

X′
μ′

??

θ

??
λ′

??

X
μ ??

λ
??

C
γ

??
B

β ?? A

Define the map θ : X′ → X by θ(x′) = (λ′(x′), μ′(x′)) where x′ ∈ X′. Note that θ(x′) ∈ X
since βλ′(x′) = γμ′(x′). Now check that the two triangles in the diagram commute. We
have λθ(x′) = λ(λ′(x′), μ′(x′)) = λ′(x′), so that λθ = λ′ and in a similar way μθ = μ′.

The final step is to verify that θ is the only homomorphism that will make the
diagram commute. Suppose that θ̄ : X′ → X is another one. Then λθ = λθ̄ and μθ = μθ̄.
Let x′ ∈ X′; then θ(x′) and θ̄(x′) have the same components in B ⊕ C, from which it
follows that θ(x′) = θ̄(x′) and hence θ = θ̄. This completes the proof that (X, λ, μ) is a
pullback.

Pushouts
The next construction is the dual of a pullback, which means that effectively it is de-
fined by reversing all the arrows in the definition of a pullback. Let γ : A → C and
β : A→ B be morphisms in a category 𝒞. Thus we have the diagram:

A

β
? ?

γ ?? C

B

A pushout of this diagram is a triple (X, λ, μ)where X ∈ obj(𝒞) and λ : B→ X, μ : C → X
are morphisms in 𝒞 such that λβ = μγ, which is to say the square below commutes.

A
γ ??

β
? ?

C
μ

??
B

λ
?? X

In addition the following propertymust be satisfied: if (X′, λ′, μ′) is another such triple
leading to a commutative square, then there is a unique morphism θ : X → X′ such
that θλ = λ′ and θμ = μ′. In short, θ causes the two triangles in the diagram below to
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commute.

A
γ ? ?

β
? ?

C
μ

? ? μ′

??

B λ ??

λ′
??

X
θ

??
X′

This can be thought of as a minimality property of the pushout. Next we note that
pushouts are unique when they exist.

(16.3.5). If (X, λ, μ) and (X′, λ′, μ′) are two pushouts of morphisms β : A → B and
γ : A → C in a category 𝒞, then there is an isomorphism θ : X → X′ such that λ′ = θλ
and μ′ = θμ.

This is proved in a similar way to (16.3.3). Alternatively, observe that a pushout in
𝒞 is a pullback in 𝒞op and use (16.3.3). The relevant point is that the commutativity of
a diagram is unaffected by reversal of all the arrows.

The next result is dual to (16.3.4) and is important in module theory.

(16.3.6). Pushouts exist in the categories RMod andModR for any ring R.

Proof. Here is an outline of the proof. Let β : A→ B and γ : A→ C be homomorphisms
of R-modules. The pushout is defined to be a certain quotient of the module B ⊕ C. Let

S = {(β(a),−γ(a)) | a ∈ A},

which is a submodule of B ⊕ C, and set

X = (B ⊕ C)/S.

Define also λ(b) = (b,0) + S and μ(c) = (0, c) + S. It is claimed that the triple (X, λ, μ) is
a pushout of the homomorphisms β, γ. For a ∈ A we have

λβ(a) = (β(a),0) + S = (0, γ(a)) + S = μγ(a),

showing that λβ = μγ. The rest of the proof establishes the minimality property of
pushouts. This is Exercise (16.3.7).

Free objects in a category
The concept of a free entity iswidespread in algebra andhas alreadybeen encountered
in the case of free modules and free groups. Here we will explain how free objects in
a category can be defined by means of a certain mapping property.
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Tobegin let (𝒞,U)denote a concrete category: thusU : 𝒞 → Set is a faithful functor
which represents objects in 𝒞 by sets andmorphisms in 𝒞 by functions. Let X be a non-
empty set. An object F in 𝒞 is said to be free on X if there is a function μ : X → U(F)
with the following property. If A ∈ obj(𝒞) and α : X → U(A) is a function, there is a
uniquemorphism β : F → A such that U(β)μ = α, which is just to say that the triangle
below commutes:

X
μ

??

α

??
U(F)

U(β) ? ? U(A)

In many cases, but not always, the mapping property implies that the function μ is
injective: see Exercise (16.3.12) in this connection.

It has already been shown that free objects exist in the categories of R-modules
and groups – see Sections 9.1 and 15.1 respectively. It is not to be expected that free
objects will exist in an arbitrary concrete category, but, if a free object on a set exists,
then it is unique up to isomorphism.

(16.3.7). Let F and F′ be objects in a concrete category (𝒞,U) which are both free on a
(non-empty) set X. Then there is an isomorphism β in 𝒞 such that β(F) = F′; thus F ≃ F′.
Proof. This takes a form that should by now be familiar, cf. (16.3.1) and (16.3.2). Let
μ : X → U(F) and μ′ : X → U(F′) be the associated functions for F and F′. Display
the commutative triangles that express the mapping properties of F and F′ for certain
morphisms β : F → F′ and β′ : F′ → F.

X
μ

??

μ′

??

X
μ′

??

μ

??
U(F)

U(β) ? ? U(F′) U(F′)
U(β′) ? ? U(F)

Therefore U(β)μ = μ′ and U(β′)μ′ = μ. From these it follows that U(β′)U(β)μ = μ and
U(β)U(β′)μ′ = μ′, so we have two additional commutative triangles:

X
μ

??

μ

??

X
μ′

??

μ′

? ?
U(F)

U(β′)U(β) ? ? U(F) U(F′)
U(β)U(β′) ?? U(F′)

But the roles of U(β′)U(β) and U(β)U(β′) can be played here by the identity functions
on U(F) and U(F′) respectively, while preserving commutativity of the diagrams. By
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the uniqueness clause in the definition

U(β′β) = U(β′)U(β) = idU(F) = U(ιF)
and similarly U(ββ′) = U(ιF′ ). Since the functor U is faithful, it follows that β′β = ιF
and ββ′ = ιF′ . Hence β and β′ are isomorphisms and F and F′ are isomorphic.

Exercises (16.3).
(1) Prove (16.3.2), which asserts that products are unique up to isomorphism.
(2) Verify that the free product is the coproduct in the category Gp.
(3) Prove that the disjoint union is the coproduct in Set.
(4) Prove that the set product is the product in Set.
(5) Let B, C be subsets of a set A and let ι1 : B → A and ι2 : C → A be inclusion maps.

Prove that B ∩ C is the pullback of these maps in Set.
(6) Let A be a subset of sets B and C. Let ι1 : A→ B and ι2 : A→ C be inclusion maps.

Prove that B ∪ C is the pushout of these maps in Set.
(7) Complete the proof of (16.3.6) on the existence of pushouts in a module category

by establishing the minimality property.
(8) Let β : B → A and γ : C → A be module homomorphisms and let (X, λ, μ) be the

pullback of β and γ in a module category. If β is surjective or injective, prove that
μ is surjective or injective respectively.

(9) Let β : A → B and γ : A → C be module homomorphisms and let (X, λ, μ) be the
pushout of β and γ in a module category. If β is surjective or injective, prove that
μ is surjective or injective respectively.

(10) Let F and F′ be free objects on sets X and X′ in a concrete category (𝒞,U), with
respective associated functions μ and μ′. If X and X′ have equal cardinality, prove
that there is an isomorphism θ in 𝒞 such that θ(F) = F′. [Hint: by hypothesis there
is a bijective function π : X → X′. Follow the method of proof of (16.3.7), using the
functions μ′π : X → U(F′) and μπ−1 : X′ → U(F).]

(11) Establish the existence of free objects in the category Mon of monoids and
monoidal homomorphisms by arguing as follows. Let X be a non-empty set and
letW(X) denote the set of all words in X, i. e., finite formal sequences x1x2 . . . xn,
where xi ∈ X, including the empty word. This is a monoid in which the binary
operation is juxtaposition and the identity element is the empty word. Prove that
W(X) is free on the set X in the categoryMon.

(12) Let (F, μ) be free on a set X in a concrete category (𝒞,U). Assume that there exists
an object A in 𝒞 such that the set U(A) has at least two elements. Prove that the
function μ : X → U(F) is necessarily injective. [Hint: follow the method of proof
used for free groups in Section 15.1.]

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



16.4 Natural transformations | 375

16.4 Natural transformations

Two functors with the same variance can be compared by means of a collection of
morphisms called a natural transformation. In detail let F,G : 𝒞 → 𝒟 be two co-
variant functors. A natural transformation τ from F to G is a collection of morphisms
{τA | A ∈ obj(𝒞)} in𝒟 where

τA : F(A)→ G(A),

such that, if α : A→ A′ is a morphism in 𝒞, the diagram below commutes:

F(A)
F(α) ? ?

τA
??

F(A′)
τA′

??
G(A)

G(α) ?? G(A′)
that is to say, G(α)τA = τA′F(α). Here one might imagine the natural transformation
τ as “sliding” the functorial action in the top row of the square onto the bottom row,
thus relating the two functors. The notation

τ : F ∙→ G

will be used to indicate a natural transformation from F to G. If τA is an isomorphism
for every A ∈ obj(𝒞), then τ is called a natural isomorphism.

Examples
(i) Let Fab : Gp → Gp be the abelianizing functor. Thus Fab(x) = xG′ for x ∈ G, and
if α : G → H is a homomorphism, Fab(α) : xG′ → α(x)H′ – see the third example of a
functor in Section 16.2. We have the commutative square

G α ? ?

τG
??

H
τH

??
Gab

Fab(α) ?? Hab

where τG denotes the canonical homomorphism fromG toGab, which is amorphism in
Gp. Let τ = {τG | G ∈ obj(Gp)}. Thus we have a natural transformation τ : 1Gp

∙
→ Fab

from the identity functor on Gp to the abelianizing functor,
(ii) Let R be a ring with identity. Then the functor

HomR(R,−) : RMod→ RMod

is naturally isomorphic with the identity functor 1
RMod.
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To see this, recall from (9.1.21) the isomorphism

θA : HomR(R,A)→ A

defined by θA(ϕ) = ϕ(1R) for any left R-module A. Put θ = {θA | A ∈ RMod}. If
α : A → A′ is a homomorphism of left R-modules, recall that α∗ denotes the induced
mapping HomR(R, α). Then we have the commutative square:

HomR(R,A)
α∗ ??

θA
??

HomR(R,A′)
θA′

??
A α

?? A′
It is routine to check commutativity. Therefore we have a natural transformation
θ : HomR(R,−)

∙
→ 1

RMod. Indeed, since each θA is an isomorphism, θ a natural iso-
morphism.
(iii) Again let R be a ring with identity. This time consider the covariant functor R ⊗ − :
RMod → RMod. This functor is naturally isomorphic with the identity functor 1

RMod.
To establish this, first recall from (13.2.1) that there is an R-module isomorphism

θA : R ⊗R A→ A

for any left R-module A: here θA(r ⊗ a) = r ⋅ a for r ∈ R, a ∈ A. Let α : A → A′ be a
homomorphism of left R-modules. Then

α∗ = R ⊗R α : R ⊗R A→ R ⊗R A
′

is the induced homomorphism in which r ⊗ a → r ⊗ α(a) for r ∈ R, a ∈ A. Hence the
square below commutes:

R ⊗R A
α∗ ? ?

θA
??

R ⊗R A′
θA′

? ?
A α

?? A′
as the reader should verify. Set θ = {θA | A ∈ RMod}; then

θ : R ⊗R −
∙
→ 1

RMod

is a natural isomorphism.
(iv) (Dual spaces.) Another well known example of a natural transformation involves
the double dual of a vector space – for this see Section 8.3 above. Let K be a field and

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



16.4 Natural transformations | 377

V ∈ KMod, so that V is a K-vector space. Recall that F = HomK(−,K) is a contravariant
functor: write F(V) = V∗, the dual space, and F(α) = α∗. One can also form the covari-
ant functor D = F ∘ F : KMod → KMod, the so called double dual. Write D(V) = V∗∗
and D(α) = (α∗)∗ = α∗∗.

It was shown in (8.3.11) that there is an injective K-homomorphism θV : V → V∗∗
given by θV (v)(ϕ) = ϕ(v) where v ∈ V , ϕ ∈ V∗. Let α : V → V ′ be a K-linear mapping
and consider the diagram

V α ??

θV
? ?

V ′
θV′

??
V∗∗

α∗∗
?? (V ′)∗∗

This diagram commutes: for if v ∈ V and β ∈ V ′ ∗, then
θV ′(α(v))(β) = β(α(v)) = βα(v).

Also α∗∗θV (v) = (α∗)∗θV (v) = θV (v)α∗. Therefore
α∗∗θV (v)(β) = θV (v)α∗(β) = θV (v)(βα) = βα(v),

which shows that α∗∗θV = θV ′α, as required.
Finally, put θ = {θV | V ∈ KMod}. What has just been established is that

θ : 1
KMod

∙
→ D is a natural transformation from the identity functor to the double

dual functor. If we restrict to the subcategory of finite dimensional K-spaces, then by
(8.3.11) the maps θV are isomorphisms, so that θ is a natural isomorphism from 1

KMod
to the double dual functor D.

Composites of natural transformations
Just as for morphisms and functors, there is an obvious way to compose natural trans-
formations. Let 𝒞 and 𝒟 be categories with covariant functors F,G,H : 𝒞 → D. Let
σ : F ∙→ G and τ : G ∙→ H be natural transformations from F to G and G to H respec-
tively. Then the composite of τ and σ,

τ ∙ σ : F ∙→ H ,

is defined as the collection of morphisms {τAσA | A ∈ obj(𝒞)}.
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To verify that τ ∙ σ is a natural transformation, let α : A→ A′ be a morphism in 𝒞
and form the diagram

F(A)
F(α) ??

σA
??

F(A′)
σA′

??
G(A)

G(α) ??

τA
??

G(A′)
τA′

? ?
H(A)

H(α) ?? H(A)

The two small squares in the diagram commute since σ and τ are natural transforma-
tions. This implies that the square below commutes:

F(A)
F(α) ??

τAσA
??

F(A′)
τA′σA′

??
H(A)

H(α) ?? H(A′)
For

H(α)(τAσA) = τA′G(α)σA = (τA′σA′ )F(α).

Therefore τ ∙ σ : F ∙→ H is a natural transformation. It is routine to prove that compo-
sition of natural transformations is an associative operation.

Functor categories
We have seen that natural transformations can be composed in an associative man-
ner. This observation suggests the possibility of forming a new category in which the
objects are functors and themorphisms are natural transformations between functors.

Let 𝒞 and 𝒟 be categories with 𝒞 a small category: this means that obj(𝒞) is a set.
The functor category

𝒟𝒞

has as its objects the functors from 𝒞 to 𝒟. If F,G : 𝒞 → D are two such functors,
the morphisms for 𝒟𝒞 are to be the natural transformations from F to G. The law of
composition of morphisms in 𝒟𝒞 is to be the composition of natural transformations
definedabove. This is anassociative operationand the identity natural transformation
plays the role of the identity morphism. We conclude the chapter with an example of
a functor category.
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Example (16.4.1). Any non-empty set C can be made into a category 𝒞 by declaring
that obj(𝒞) = C and all morphisms are identities. Conversely, a category in which ev-
ery morphism is an identity is just a set, if we ignore the identities. Let C and D be
non-empty sets. Then a functor from 𝒞 to 𝒟 is simply a function from C to D, since all
morphisms are identities.

Next suppose that τ is a natural transformation between functors F,G : 𝒞 → 𝒟.
Since the morphisms in 𝒟 are identities, it follows that τ is just a collection of iden-
tities. Now consider the functor category 𝒟𝒞 . Its objects are the functions from C to
D, while its morphisms are natural transformations between functions. Thus, identi-
tities aside, the category 𝒟𝒞 is just the set of all functions from C to D, that is, 𝒟𝒞 =
Fun(C,D).

Exercises (16.4).
(1) By checking commutativity of the relevant diagram complete the proof that if R is

a ring with identity, then HomR(R,−)
∙
≃ 1

RMod.
(2) By checking commutativity of the relevant diagram complete the proof that if R is

a ring with identity, then R ⊗R −
∙
≃ 1

RMod.
(3) Let F,G : RMod→ Ab be additive functors. If F ∙≃ G and F is left exact, show that

G is left exact.
(4) Let H be a fixed group. Define a functor FH = H × − : Gp → Gp by FH (G) =

H × G and FH (α) : (h, g) → (h, α(g)) for h ∈ H, g ∈ G. Let θ : H → K be a
group homomorphism. Define τG : FH (G) → FK(G) by τG : (h, g) → (θ(h), g).
Let τ = {τG | G ∈ Gp}. Prove that τ : FH

∙
→ FK is a natural transformation.

(5) Prove that composition of natural transformations is an associative operation.
(6) Show that if σ and τ are natural isomorphisms that can be composed, then τ ∙ σ

is a natural isomorphism. Also prove that σ−1 is a natural isomorphism and that
(τ ∙ σ)−1 = σ−1 ∙ τ−1.

(7) Let Fd denote the category of fields and ring homomorphisms. Let K ∈ Fd. De-
fine two functors GLn and U from Fd to Gp as follows. (i) GLn : K → GLn(K)
and GLn(α) : GLn(K) → GLn(K′) where α : K → K′ is a ring homomorphism:
(ii) U : K → U(K) and U(α) : U(K) → U(K′). (Here U(K) denotes the multiplica-
tive group of K.) Define detK to be the determinant function on GLn(K): this is a
morphism in Gp. Put det = {detK | K ∈ Fd}. Now verify that the following square
commutes:

GLn(K)
GLn(α) ??

detK
??

GLn(K′)
detK′

??
U(K)

U(α) ?? U(K′)
and conclude that det : GLn

∙
→ U is a natural transformation.
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17 Applications
This chapter presents applications of algebraic concepts and techniques to various
problems that lie largely outside the domain of algebra. It will be seen that groups act-
ing on sets, finite fields and methods from linear algebra are especially useful. Some-
times it is the notational sharpness that algebra provideswhich leads to fresh insights.
Sections 17.1–17.3 contain applications to combinatorial problems, while Section 17.4 is
an introduction to error correcting codes; finally Section 17.5 uses algebraic techniques
to construct models of accounting systems.

17.1 Set labelling problems

Groupactions canoftenbeused effectively to solve certain types of labellingproblems.
As an example of such a problem, suppose wewish to color the six faces of a cube and
five colors are available. Howmany different coloring schemes are there? At first sight
one might answer 56 since each of the six faces can be colored in five different ways.
However, this answer is incorrect since by merely rotating the cube it is possible to
pass from one coloring scheme to another one. Clearly two such coloring schemes are
not really different. Thus not all of the 56 colorings schemes are distinct.

Let us pursue the idea of rotating the cube. The group of rotations of the cube
acts on the set of all possible coloring schemes. If two colorings belong to the same
rotational orbit, they should be considered identical since one arises from the other
by a suitable rotation. Thus what we really need to do is to count the number of orbits
of colorings and for this purpose the Frobenius-Burnside Theorem (5.2.3) is ideally
suited.

The problem is really about the labelling of sets. Let X and L be two non-empty
finite sets, with L referred to as the set of labels. Suppose that a label is to be assigned
to each element of the set X: such a labelling is specified by a function

α : X → L :

call such a function α a labelling of X by L. Thus the set of all labellings of X by L is

Fun(X, L).

Now suppose that G is a finite group that acts on the set X on the left. Then G can
be made to act on the set of labellings in a natural way by the rule

(g ⋅ α)(x) = α(g−1 ⋅ x),

https://doi.org/10.1515/9783110691160-017
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where g ∈ G, x ∈ X and α ∈ Fun(X, L). Notice that this is equivalent to (g ⋅α)(g ⋅x) = α(x),
i. e., the labelling g ⋅ α is to assign to the set element g ⋅ x the same label as α assigns
to x. The example of the cube should convince the reader that this is the correct action.

First we must verify that this really is an action of G on Fun(X, L). To do this let
g1, g2 ∈ G, x ∈ X and α ∈ Fun(X, L); then

(g1 ⋅ (g2 ⋅ α))(x) = (g2 ⋅ α)(g
−1
1 ⋅ x) = α(g

−1
2 ⋅ (g

−1
1 ⋅ x))

= α((g1g2)
−1 ⋅ x)

= ((g1g2) ⋅ α)(x).

Hence g1 ⋅ (g2 ⋅α) = (g1g2) ⋅α. Also 1G ⋅α(x) = α(1G ⋅x) = α(x), so that 1G ⋅α = α. Therefore
we have an action of G on Fun(X, L).

Our goal is to count the G-orbits in Fun(X, L), which is achieved in the following
fundamental result.

(17.1.1) (Polya1). Let G be a finite group acting on a finite set X, and let L be a finite set
of labels. Then the number of G-orbits of labellings of X by L is

1
|G|
(∑
g∈G
ℓm(g))

where ℓ = |L| and m(g) is the number of disjoint cycles in the permutation of X corre-
sponding to g.

Proof. By (5.2.3) the number of G-orbits of labellings is

1
|G|
(∑
g∈G

Fix(g)
)

where Fix(g) is the set of labellings fixed by g. We have to count these labellings. Now
α ∈ Fix(g) if and only if g ⋅ α(x) = α(x), i. e., α(g−1 ⋅ x) = α(x) for all x ∈ X. This
equation asserts that α is constant on the ⟨g⟩-orbit ⟨g⟩⋅x. Now the ⟨g⟩-orbits arise from
the disjoint cycles involved in the permutation of X corresponding to g. Therefore,
to construct a labelling in Fix(g) all we need to do is to assign a label to each cycle
of g. This can be done in ℓm(g) ways wherem(g) is the number of cycles; consequently
|Fix(g)| = ℓm(g) and we have our formula.

Polya’s Theorem will now be applied to solve some counting problems.

1 George Polya (1887–1985).
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Example (17.1.1). Howmany ways are there to design a necklace of 11 beads if c differ-
ent colors of beads are available?

Here it is assumed that the beads are identical apart from color. The necklace can
be visualized as a regular 11-gon with the beads as vertices, labelled 1, 2, . . . , 11. The la-
bels are the c colors andone color has tobe assigned to eachvertex. Clearly a symmetry
of the 11-gon can be applied without changing the design of the necklace. Recall from
Section 3.2 thatG, the group of symmetries of the 11-gon, is the dihedral groupDih(22).
It consists of the identity, rotations through ( 2π11 )i for i = 1, 2, . . . , 10, and reflections in
a line joining a vertex to the midpoint of the opposite edge.

For each g ∈ G count the number m(g) of ⟨g⟩-orbits in the set of vertices X =
{1, 2, . . . , 11}, so that Polya’s formula can be applied. The results of the count can be
conveniently displayed in a tabular form in the following table.

Type of element Cycle type Number of elements m

identity eleven 1-cycles 1 11
rotation through 2πi

11 , 1 ≤ i ≤ 10 one 11-cycle 10 1
reflection one 1-cycle, five 2-cycles 11 6

From the table and Polya’s formula we deduce that the number of different designs is

1
22
(c11 + 11c6 + 10c) = 1

22
c(c5 + 1)(c5 + 10).

Next we tackle the cube-coloring problem with which the section began.

Example (17.1.2). Howmany ways are there to color the faces of a cube using c differ-
ent colors?

In this problem the relevant group is the rotation group G of the cube since this
group acts on the set of colorings. In factG ≃ S4: the easiestway to see this is to observe
that each rotation permutes the four diagonals of the cube.

The labels are the c colors: let X consist of the six faces of the cube. To identify the
rotations inG, we examine the various axes of symmetry of the cube. For each rotation
record the cycle type and them-value, i. e., the number of cycles in the corresponding
permutation of X. The results are displayed in the table which follows:
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Type of element Cycle type Number of elements m

identity six 1-cycles 1 6

rotation about line through centroids of
opposite faces through
π/2 two 1-cycles, one 4-cycle 3 3
π two 1-cycles, two 2-cycles 3 4
3π
2 two 1-cycles, one 4-cycle 3 3

rotation about a diagonal through
2π
3 two 3-cycles 4 2
4π
3 two 3-cycles 4 2

rotation about line joining midpoints of
opposite edges through π

three 2-cycles 6 3

The data in the table confirm that |G| = 24, and on applying Polya’s formula, we obtain
the answer 1

24 (c
6 + 3c3 + 3c4 + 3c3 + 4c2 + 4c2 + 6c3), which factorizes as

1
24

c2(c + 1)(c3 − c2 + 4c + 8).

When c = 5, the formula yields 800, so there are 800 different ways to color the faces
of a cube using 5 colors.

It is apparent from these examples that Polya’s theorem enables one to solve com-
plex combinatorial problems which might otherwise be intractable.

Exercises (17.1).
(1) Show that there are 1

10c(c
2 + 1)(c2 + 4) ways to label the vertices of a regular pen-

tagon using c labels.
(2) The same problem for the edges of the pentagon.
(3) A baton has n bands of equal width. Show that there are 1

2 (c
n+c[

n+1
2 ])ways to color

it using c colors. (The baton can only be rotated through 180∘.)
(4) The faces of a regular tetrahedron are to be painted using c colors. Prove that there

are 1
12c

2(c2 + 11) ways to do it.
(5) A necklace has p beads of identical shape and size where p is an odd prime num-

ber. Beads of c colors available. How many necklace designs are possible?
(6) Howmany ways are there to place eight identical checkers on an 8×8 chessboard

of squares if only rotations of the board are allowed?
(7) Prove that the number of ways to design a necklace with n beads of c different

colors is

1
2n
(

n
∑
i≥1
i|n

ϕ(i)c
n
i ) +

1
4
(c[

n+1
2 ] + c[

n+2
2 ]),
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whereϕ is Euler’s function. [Hint: the groupacting isDih(2n). Record them-values
of the rotations and then the reflections; for the latter distinguish between the
cases n even and odd.]

17.2 Enumerating graphs

In this section we show how to count the number of graphs with a fixed set of vertices
by using Polya’s theorem. First a few remarks about graphs.

An (undirected) graph Γ consists of a non-empty set V of vertices and a relation E
on V which is symmetric and irreflexive, i. e., v ̸E v for all v ∈ V . If u E v, call the
2-element set {u, v} an edge of Γ. Since E is symmetric, we can identify E with the set
of all edges of Γ.

A graph can be visualized by representing the vertices by points in the plane or in
3-space and the edges by lines joining appropriate vertices. Simple examples of graphs
are:

∘ ∘

∘ ∘
∘

∘ ∘ ∘ ∘

Note that loops and multiple edges are not permitted. Graph theory has many appli-
cations outside mathematics, for example to transportation systems, telephone net-
works and electrical circuits.

Two graphs Γi = (Vi,Ei), i = 1, 2, are said to be isomorphic if there is a bijection
θ : V1 → V2 such that {u, v} ∈ E1 if and only if {θ(u), θ(v)} ∈ E2. Two graphs may appear
to be different, yet be isomorphic: for example, the graphs

a ∘ ∘ d ∘ a′

∘ d′

b ∘ ∘ c b′ ∘ ∘ c′

are isomorphic because of the bijection a → a′, b → b′, c → c′, d → d′.
The problem of interest to us here is to compute the number of non-isomorphic

graphs on a given set of n vertices. For this purpose it is enough to count isomorphism
classes of graphswith a fixed vertex setV = {1, 2, . . . , n}. The first step is to observe that
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a graph Γ = (V ,E) is determined by its edge function

αΓ : V
[2] → {0, 1}

where V [2] is the set of all sets of vertices {u, v}, with u ̸= v in V , and

αΓ({u, v}) = {
0 if (u, v) ∉ E
1 if (u, v) ∈ E.

Thus we can think of a graph as a labelling of V [2] by the set {0, 1}. The symmetric
group Sn acts on the vertex set V in the natural way and this leads to an action of Sn
on V [2] in which

π ⋅ {u, v} = {π(u),π(v)}

where π ∈ Sn. Thus Sn acts on the set of all edge functions for V , i. e., on

F = Fun(V [2], {0, 1}).

It is a consequence of the definition of an isomorphism that graphs Γ1 = (V ,E1)
and Γ2 = (V ,E2) are isomorphic if and only if there exists π ∈ Sn such that π ⋅ αΓ1 = αΓ2 ,
i. e., αΓ1 and αΓ2 belong to the same Sn-orbit of F. Thus we have to count the Sn-orbits
of F. Now (17.1.1) can be applied to this situation with G = Sn, X = V [2] and L = {0, 1}.
This allows us to derive a formula for the number of isomorphism classes of graphs
with vertex set V .

(17.2.1). The number of non-isomorphic graphs with a fixed set of n vertices is given by

g(n) = 1
n!
( ∑
π∈Sn

2m(π))

where m(π) is the number of disjoint cycles present in the permutation of V [2] induced
by π.

To use this result one must able to computem(π), the number of Sn-orbits in V [2].
While formulas for m(π) are available, we will be content to calculate these numbers
directly for small values of n.

Example (17.2.1). Show that there are exactly 11 non-isomorphic graphs with 4 ver-
tices.

We need to computem(π) for π of each cycle type in S4. Note that |V [2]| = (42) = 6.
Of course,m(1) = 6. If π is a 4-cycle, say (1234), there are two cycles in the permutation
ofV [2] produced by π, namely ({1, 2}, {2, 3}, {3, 4}, {4, 1}) and ({1, 3}, {2, 4}); thusm(π) = 2.
Also there are six 4-cycles in S4.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



386 | 17 Applications

If π is a 3-cycle, say (123)(4), there are two cycles, ({1, 2}, {2, 3}, {1, 3}) and ({1, 4},
{2, 4}, {3, 4}); thusm(π) = 2 and there are eight such 3-cycles.

If π has two 2-cycles, say π = (12)(34), there are four cycles ({1, 2}), ({3, 4}),
({1, 3}, {2, 4}), ({1, 4}, {2, 3}); hencem(π) = 4. There are three such π’s.

Finally, there are six transpositions π and it is easy to see that for each one
m(π) = 4. The formula in (17.2.1) therefore yields

g(4) = 1
4!
(26 + 6 ⋅ 22 + 8 ⋅ 22 + 3 ⋅ 24 + 6 ⋅ 24) = 11.

This result can be verified by actually enumerating the graphs.

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘

∘

∘ ∘ ∘ ∘ ∘ ∘

Notice that all these graphs are planar, i. e., they can be drawn in the plane in such a
way that no edges cross except at vertices.

Exercises (17.2).
(1) Prove that the number of isomorphism types of graphs with n vertices is at most

2n(n−1)/2.
(2) Show that there are four isomorphism types of graphs with three vertices.
(3) Show that there are 34 isomorphism types of graphs with five vertices.

17.3 Latin squares and Steiner systems

A latin square of order n is an n × n matrix with entries from a set of n symbols such
that each symbol occurs exactly once in each row and once in each column. Exam-
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ples of latin squares are easily found – for convenience we will write Latin squares as
matrices.

Example (17.3.1).
(i) The matrices

[
a b
b a
] and [[

[

a b c
b c a
c a b

]]

]

are latin squares of orders 2 and 3 respectively.
(ii) Let G = {g1, g2, . . . , gn} be a (multiplicatively written) group of order n. Then

the multiplication table of G is a latin square of order n. For, if the first row is
g1, g2, . . . , gn, the entries of the ith row are gig1, gig2, . . . , gign, which are clearly
all different. A similar argument applies to the columns. On the other hand, not
every latin square determines a group table since the associative law may fail to
hold. In fact a latin square determines a more general type of algebraic structure
called a quasigroup – for this concept see Exercises (17.3.4) and (17.3.5) below.
Latin squares frequently occur in puzzles, but they also have a serious use in the
design of statistical experiments. Here is an example to illustrate this use.

Example (17.3.2). Five types of washing powder P1, P2, P3, P4, P5 are to be tested in
five machines A, B, C, D, E over five days D1, D2, D3, D4, D5. Each washing powder is
to be used once each day and tested once on each machine. How can this be done?

The intention here is to allow for differences in the machines and in the water
supply on different days, while keeping the number of tests to aminimum. A schedule
of tests can be given in the form of a latin square of order 5 whose rows correspond to
the washing powders andwhose columns correspond to the days; the symbols are the
machines. For example, we could use the latin square

[[[[[[

[

A B C D E
B C D E A
C D E A B
D E A B C
E A B C D

]]]]]]

]

.

This would mean, for example, that washing powder P3 will be used on day D4 in
machine A. There are of course many other possible schedules.

The number of latin squares
Let L(n) denote the number of latin squares of order n which can be formed from a
given set of n symbols. It is clear that L(n)must increase rapidly with n. A rough upper
bound for L(n) can be found by counting derangements.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



388 | 17 Applications

(17.3.1). The number L(n) of latin squares of order n that can be formed from n given
symbols satisfies the inequality

L(n) ≤ (n!)n(1 − 1
1!
+
1
2!
− ⋅ ⋅ ⋅ +
(−1)n

n!
)
n−1
,

and hence L(n) = O((n!)n/en−1).

Proof. Taking the symbols to be 1, 2, . . . , n, we note that each row of a latin square of
order n corresponds to a permutation of {1, 2, . . . , n}, i. e., to an element of the symmet-
ric group Sn. Thus there are n! choices for the first row. Now rows 2 through n must
be derangements of row 1 since no column can have a repeated element. Recall from
(3.1.11) that the number of derangements of n symbols is

dn = n!(1 −
1
1!
+
1
2!
− ⋅ ⋅ ⋅ +
(−1)n

n!
).

Hence rows 2 through n of the latin square can be chosen in at most (dn)n−1 ways.
Therefore L(n) ≤ (n!)(dn)n−1 and the result follows.

It can be shown that L(n) ≥ (n!)
2n

nn2
– for details of this see [2, 6.5].

Orthogonal latin squares
Suppose that A = [aij] and B = [bij] are two latin squares of order n. Then A and B are
said to be mutually orthogonal latin squares (or MOLS) if the n2 ordered pairs (aij, bij)
are all different.

Example (17.3.3). The latin squares

[[

[

a b c
b c a
c a b

]]

]

and [[
[

α β γ
γ α β
β γ α

]]

]

are mutually orthogonal, as can be seen by listing the nine pairs of entries. On the
other hand, there are no pairs of MOLS of order 2 since these would have to be of the
form

[
a b
b a
] , [

a′ b′

b′ a′
]

and the pair (a, a′) is repeated.
One reason for the interest in mutually orthogonal latin squares is that they have

statistical applications, as can be seen from an elaboration of the washing powder
example.
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Example (17.3.4). Suppose that in Example (17.3.2) there are also five washing ma-
chine operators α, β, γ, δ, ε. Each operator is to test each powder once and to carry
out one test per day. In addition, for reasons of economy, the same combination of
machine and operator cannot be repeated for any powder and day.

What is called for here is a pair ofMOLSof order 5. A latin squarewith the schedule
of machines was given in Example (17.3.2). By a little experimentation another latin
square for the machines can be found such that the two are mutually orthogonal. The
pair of MOLS is

[[[[[[

[

A B C D E
B C D E A
C D E A B
D E A B C
E A B C D

]]]]]]

]

,

[[[[[[

[

α β γ δ ϵ
γ δ ϵ α β
ϵ α β γ δ
β γ δ ϵ α
δ ϵ α β γ

]]]]]]

]

.

In bothmatrices the rows correspond to washing powders and the columns to days: in
the second matrix the entries are the operators. Direct enumeration of the 25 pairs of
entries from the two latin squares reveals that all are different. The two latin squares
tell us the schedule of operations: thus, for example, powder P3 is to be tested on
day D4 by operator γ in machine A.

We are interested in determining the maximum number of MOLS of order n, say

f (n).

In the first place there is an easy upper bound for f (n).

(17.3.2). If n ≥ 1, then f (n) ≤ n − 1.

Proof. Assume that there exist rMOLSof ordern, namelyA1,A2, . . . ,Ar, and let the (1, 1)
entry of Ai be ai. Consider row 2 of A1. It has an a1 in the (2, i1) position for some i1 ̸= 1
since there is already an a1 in the first column. Hence there are n− 1 possibilities for i1.
Next in A2 there is an a2 in row 2, say as the (2, i2) entry where i2 ≠ 1; also i2 ̸= i1 since
the pair (a1, a2) has already occurred and cannot be repeated. Therefore there are n− 2
possibilities for i2. Continuing this line of argument until Ar is reached, we conclude
that ar is the (2, ir) entry ofAr where there are n−r possibilities for ir . Therefore n−r > 0
and r ≤ n − 1, as required.

The really interesting question is whether f (n) > 1 for n > 2; recall that f (2) = 1
since there do not exist two MOLS of order 2.

The intervention of field theory
The mere existence of finite fields of every prime power order is enough to make a
decisive advance in the construction of MOLS of prime power order.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



390 | 17 Applications

(17.3.3). Let p be a prime and m a positive integer. Then f (pm) = pm − 1.

Proof. Let F be a field of order pm, which exists by (11.3.1). For each a ̸= 0 in F define
a pm × pm matrix A(a) over F with rows and columns labelled by the elements of F,
written in some fixed order: the (u, v) entry of A(a) is to be computed from the formula

[A(a)]u,v = ua + v

where u, v ∈ F. In the first place A(a) is a latin square of order pm. For ua + v = u′a + v
implies that ua = u′a and u = u′ since 0 ̸= a ∈ F. Also ua + v = ua + v′ implies that
v = v′.

Next we show that A(a)’s are mutually orthogonal. Suppose that A(a1) and A(a2)
are not orthogonal where a1 ̸= a2: then

(ua1 + v, ua2 + v) = (u
′a1 + v

′, u′a2 + v
′)

for some u, v, u′, v′ ∈ F. Then ua1 + v = u′a1 + v′ and ua2 + v = u′a2 + v′. Subtraction of
the second equation from the first leads to u(a1 − a2) = u′(a1 − a2). Since a1 − a2 ̸= 0
and F is a field, it follows that u = u′ and hence v = v′. Thus we have constructed
pm−1 MOLS of order pm, which is themaximumnumber possible by (17.3.2). Therefore
f (pm) = pm − 1.

Example (17.3.5). Construct three MOLS of order 4.
In the first place f (4) = 3. To construct three MOLS, start with a field F of order 4,

obtained from t2 + t + 1, the unique irreducible polynomial of degree 2 in ℤ2[t]. If a is
a root of this polynomial, then F = {0, 1, a, 1 + a} where a2 = a + 1. Now form the three
MOLS A(1), A(a), A(1 + a), using the formula indicated in the proof of (17.3.3):

A(1) =
[[[[

[

0 1 a 1 + a
1 0 1 + a a
a 1 + a 0 1

1 + a a 1 0

]]]]

]

,

A(a) =
[[[[

[

0 1 a 1 + a
a 1 + a 0 1

1 + a a 1 0
1 0 1 + a a

]]]]

]

,

A(1 + a) =
[[[[

[

0 1 a 1 + a
1 + a a 1 0
1 0 1 + a a
a 1 + a 0 1

]]]]

]

.

To constructMOLSwhoseorder is not aprimepower, a direct product construction
can be used. Let A and B be latin squares of orders m and n respectively. The direct
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product A × B is defined to be themn ×mnmatrix whose entries are pairs of elements
(aij, bi′j′ ). The matrix can be visualized in the block form

[[[[[

[

(a11,B) (a12,B) . . . (a1m,B)
(a21,B) (a22,B) . . . (a2m,B)

...
...

...
...

(am1,B) (am2,B) . . . (amm,B)

]]]]]

]

where (aij,B)means that aij is paired with each entry of B in the natural matrix order.
It is easy to see that A × B is a latin square of ordermn.

Example (17.3.6). Given latin squares

A = [a b
b a
] and B = [[

[

α β γ
β γ α
γ α β

]]

]

,

we can form

A × B =

[[[[[[[[[

[

(a, α) (a, β) (a, γ) (b, α) (b, β) (b, γ)
(a, β) (a, γ) (a, α) (b, β) (b, γ) (b, α)
(a, γ) (a, α) (a, β) (b, γ) (b, α) (b, β)
(b, α) (b, β) (b, γ) (a, α) (a, β) (a, γ)
(b, β) (b, γ) (b, α) (a, β) (a, γ) (a, α)
(b, γ) (b, α) (b, β) (a, γ) (a, α) (a, β)

]]]]]]]]]

]

,

which is a latin square of order 6.

Suppose that we have MOLS A1,A2, . . . ,Ar of order m and B1, B2, . . . ,Bs of order n
where r ≤ s; then the latin squares A1 × B1,A2 × B2, . . . ,Ar × Br have order mn and
they are mutually orthogonal, as a check of the entry pairs shows. On the basis of this
observation we can state:

(17.3.4). If n = n1n2, then f (n) ≥ min{f (n1), f (n2)}.

This result can be used to give further information about the integer f (n). Let n =
pe11 p

e2
2 ⋅ ⋅ ⋅ p

ek
k be the primary decomposition of n. Then

f (n) ≥ min{peii − 1 | i = 1, 2, . . . , k}

by (17.3.3) and (17.3.4). Therefore f (n) > 1 provided that peii ̸= 2 for all i. This will be the
case if n is either odd or divisible by 4, i. e., n ̸≡ 2 (mod 4). Hence we have:

(17.3.5). If n ̸≡ 2 (mod 4), then f (n) > 1, so there exist at least two mutually orthogonal
latin squares of order n.
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In 1782 Euler conjectured that the converse is true, i. e. if n ≡ 2 (mod 4), there
cannot be a pair of n×nMOLS. As evidence for this, in 1900 Tarry2 was able to confirm
that there does not exist a pair of 6 × 6 MOLS; thus f (6) = 1. However, in the end it
turned out that Euler was wrong; for in 1959 in a remarkable work Bose,3 Shrikhande4

and Parker5 were able to prove that there is a pair of n × n MOLS for all even integers
n ̸= 2, 6.

The case n = 6 is Euler’s celebrated Problem of the Thirty Six Officers. Suppose
there are thirty six officers of six ranks and six regiments, with six of each regiment
and six of each rank. Euler asked if it is possible for the officers to march in six rows
of six, so that in each row and in each column there is exactly one officer of each rank
and one of each regiment, with no combination of rank and regiment being repeated.
He was really asking if there are two mutually orthogonal latin squares of order 6, the
symbols of the first latin square being the ranks and those of the second the regiments
of the officers. By Tarry’s result the answer is negative.

Steiner triple systems
Another striking use of finite fields is to construct certain combinatorial objects known
as Steiner6 triple systems. We begin with a brief explanation of these. A Steiner triple
system of order n is a pair (X, 𝒯 ) where X is a set with n elements, called the points,
and 𝒯 is a set of 3-element subsets ofX, called the triples, such that every pair of points
occurs in exactly one triple. Steiner triple systems belong to a wide class of combina-
torial objects called designs which are frequently used in the design of experiments.

Example (17.3.7). A Steiner triple system of order 7.
Consider the diagram consisting of an equilateral triangle with the three medians

drawn. Let X be the set of seven points consisting of the vertices, the midpoints of the
sides and the centroid, labelled A, B, C, D, E, F, G.

A ∘

D ∘ ∘ F

∘ G

B ∘ E ∘ ∘ C

2 Gaston Tarry (1843–1913).
3 Raj Chandra Bose (1901–1987).
4 Sharadchandra Shankar Shrikhande (1917–2020).
5 Ernest Tilden Parker (1926–1991).
6 Jakob Steiner (1796–1863).
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The set of triples is to be

𝒯 = {ADB,BEC,CFA,AGE,BGF,CGD,DEF}.

Here, for example, we have written ADB for the triple {A,D,B}. So the triples are the
sets of points lying on each of the six lines in the diagram, togetherwith DEF. This con-
figuration is well known as the projective plane over ℤ2 with seven points and seven
lines: for the triple DEF corresponds to the line in the projective plane with equation
x + y + z = 0 if the vertices are suitably labelled. It is clear from the diagram that each
pair of points belongs to a unique triple.

We will consider the question: for which positive integers n do there exist Steiner
triple systems of order n? It is easy to derive necessary conditions on n from the next
result.

(17.3.6). Suppose that (X, 𝒯 ) is a Steiner triple system of order n. Then:
(i) each point belongs to exactly n−1

2 triples;
(ii) the number of triples is n(n−1)

6 .

Proof. (i) Let x, y ∈ X with x fixed. The idea behind the proof is to count in two different
ways the pairs (y,T) such that y ∈ T, y ̸= x, T ∈ 𝒯 . There are n − 1 choices for y; then,
once y has been chosen, there is a unique T ∈ 𝒯 containing x and y, so the number of
such pairs is n − 1. On the other hand, let r denote the number of triples in 𝒯 to which
x belongs. Once a triple T ∈ 𝒯 containing x has been chosen, there are two choices
for y in T. Thus the number of pairs is 2r. Therefore 2r = n − 1 and r = n−1

2 .

(ii) In a similar manner count in two different ways the pairs (x,T) such that x ∈ T and
T ∈ 𝒯 . If t is the total number of triples, the number of pairs is 3t since there are three
choices for x in T. On the other hand, we may also choose x in n ways and a triple T
containing x in n−1

2 ways by (i). Therefore 3t = n(n−1)
2 and t = 1

6n(n − 1).

Taking n = 7 in (17.3.6), we see that a Steiner triple system of order 7 necessarily has
7 triples. From (17.3.6) we can deduce a necessary condition on n for a Steiner triple
system of order n to exist.

Corollary (17.3.7). If a Steiner triple system of order n exists, then n ≡ 1 or 3 (mod 6).

Proof. In the first place n−1
2 must be an integer, so n is odd. Thuswe canwrite n = 6k+ℓ

where ℓ = 1, 3 or 5. If ℓ = 5, then 1
6n(n − 1) =

1
3 (6k + 5)(3k + 2), which is not an integer.

Hence l = 1 or 3 and n ≡ 1 or 3 (mod 6).

The fundamental theorem on Steiner triple systems asserts that the converse of
(17.3.7) is true. If n ≡ 1 or 3 (mod 6), there is a Steiner triple system of order n. We will
prove a special case of this theorem to illustrate how field theory can be applied.
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(17.3.8). If q is a prime power such that q ≡ 1 (mod 6), there is a Steiner triple system
of order q.

Proof. Let F be a finite field of order q. Recall from (11.3.6) that U(F) is a cyclic group
of order q − 1. Since 6 | q − 1 by hypothesis, it follows from (4.1.6) that U(F) contains
an element z of order 6. Thus |U(F) : ⟨z⟩| = q−1

6 . Choose a transversal to ⟨z⟩ in U(F),
say {t1, t2, . . . , t q−1

6
}. Now define subsets

Ti = {0, ti, tiz}

for i = 1, 2, . . . , q−1
6 .

The points of the Steiner triple system are to be the elements of the field F, while
the set of triples is designated as

𝒯 = {a + Ti
 a ∈ F, i = 1, 2, . . . ,

q − 1
6
}.

Here a+Ti denotes the set {a+x | x ∈ Ti}.We claim that (X, 𝒯 ) is a Steiner triple system.
First we make an observation. Let Di denote the set of differences of pairs of elements
in Ti; thus

Di = {0,±ti,±tiz,±ti(1 − z)}.

Now z has order 6 and 0 = z6 − 1 = (z3 − 1)(z + 1)(z2 − z + 1), so that z2 − z + 1 = 0 and
z2 = z − 1. Hence z3 = −1, z4 = −z, z5 = 1 − z. From these equations it follows that Di is
simply the coset ti⟨z⟩ = {tizk | 0 ≤ k ≤ 5} with 0 adjoined.

To show that (X, 𝒯 ) is a Steiner triple system,weneed toprove that any twodistinct
elements x and y ofF belong to a unique triplea+Ti. Let f = x−y ∈ U(F). Now f belongs
to a unique coset ti⟨z⟩, and by the observation above f ∈ Di, so that f is expressible as
the difference between two elements in the set Ti, say f = ui − vi. Writing a = y − vi, we
have x = f + y = (y − vi) + ui ∈ a + Ti and y = (y − vi) + vi ∈ a + Ti.

Now suppose that x and y belong to another triple b + Tj, with x = b + dj and
y = b+ ej where dj, ej ∈ Tj. Then 0 ̸= f = x − y = dj − ej and hence f ∈ Dj. Thus f ∈ tj⟨z⟩,
which means that j = i. Also there is clearly only one way to write f as the difference
between two elements of Ti. Therefore di = ui and ei = vi, from which it follows that
a = y − vi = y − ci = b. The proof is now complete.

The construction just described produces Steiner triple systems of order 7, 13, 19,
25. Trivially there are Steiner triple systems of orders 1 and 3. In addition there are no
Steiner systems of orders 2, 4, 5, 6, 8, 10, 11, 12 by (17.3.7).

In Exercise (17.3.6) below it is indicated how to construct a Steiner triple system of
order 9. For a proof of the general case where n ≡ 3 (mod 6) see [2].
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Exercises (17.3).
(1) Show L(1) = 1, L(2) = 2, L(3) = 12 where L(n) is the number of Latin squares of

order n.
(2) Explain how to construct the following objects: (i) four 5 × 5 MOLS; (ii) eight 9 × 9

MOLS. [Hint: for (ii) use the field GF(9) and the polynomial f = t2 + 1 ∈ GF(3)[t].
Write the elements of GF(9) in terms of x = t + (f ).]

(3) Show that there are at least 48 MOLS of order 6125.
(4) A quasigroup is a set Q together with a binary operation (x, y) → xy such that,

given x, y ∈ Q, there is a unique u ∈ Q such that ux = y and a unique v ∈ Q such
that xv = y. Prove that the multiplication table of a finite quasigroup is a latin
square.

(5) Conversely, prove that every latin square determines a finite quasigroup.
(6) Construct a Steiner triple system of order 9 by using the following geometric pro-

cedure. Start with a 3×3 array of 9 points. Draw all horizontals, verticals and diag-
onals in the figure. Then draw four curves connecting each corner to themidpoint
of a suitable exterior side.

(7) (Kirkman’s7 schoolgirl problem) Show that it is possible for nine schoolgirls towalk
in three groups of three for four successive days in such a way that each pair of
girls walks in the same group on exactly one day.

(8) Let n be a positive integer such that n ≡ 3 (mod 6). Assuming the existence of
Steiner triple systems of order n, generalize the preceding problem by showing
that it is possible for n schoolgirls to walk in n

3 groups of three on
n−1
2 days without

two girls walking together on more than one day.
(9) Use the method of (17.3.8) to construct a Steiner triple system of order 13.
(10)Construct a Steiner triple system of order 25 by starting with the field
ℤ5[t]/(t2 − t + 1). (Note that a root of t2 − t + 1 has order 6.)

17.4 Introduction to error correcting codes

In this age of information technology enormous amounts of data are transmitted elec-
tronically over vast distances every second of every day. The data are generally in the
form of bit strings, i. e., sequences of 0’s and 1’s. Inevitably errors occur from time
to time during the process of transmission, so that the message received may differ
from the message transmitted. An error correcting code allows the detection and cor-
rection of erroneousmessages. The essential idea here is that the possible transmitted
codewords should not be too close to one another, i. e., they should not agree in too
many entries. This makes it more likely that an error can be detected and the original
message recovered. Over the past fifty years an entire mathematical theory of error-
correcting codes has evolved.

7 Thomas Penyngton Kirkman (1806–1895).
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Fundamental concepts
Let Q be a finite non-empty set with q elements; this is called the alphabet. A word w
of length n over Q is an n-tuple of elements of Q, which will be written in the form

w = (w1w2 . . .wn), wi ∈ Q.

The set of all words of length n over Q is known as n-dimensional Hamming space.8

Essentially this depends on Q only through q = |Q| and it will be denoted by

Hn(q).

This is the set of possible messages of length n: notice that |Hn(q)| = qn.
Next suppose thatQ = GF(q), the field of order a prime power q; thenHn(Q) can be

regarded as an n-dimensional vector space over Q. Words are to be added by adding
their entries and multiplied by a scalar by multiplying each entry by the scalar. The
zero word 0 is the word with every entry equal to 0. In practice Q is usually the field of
two elements, in which event Hamming n-space is the set of all strings of 0’s and 1’s
of length n.

It is important to have a measure of how far apart two words in Hamming space
are: the natural measure to use is the number of entries in which the words differ. If v
and w belong to Hn(q), the distance between v and w is defined to be

d(v,w) = {i | vi ̸= wi}
,

i. e., the number of positions where v and w have different entries. If Q is a field, the
weight of a word v is defined as its distance from the zero word,

wt(v) = d(v,0),

so wt(v) is just the number of non-zero entries of v. Clearly, d(u, v) is the number of
errors that have beenmade if the word u is transmitted and it is received wrongly as v.

The basic properties of the distance function are given in the following result.

(17.4.1). Let u, v, w ∈ Hn(q). Then:
(i) d(v,w) ≥ 0 and d(v,w) = 0 if only if v = w;
(ii) d(v,w) = d(w, v);
(iii) d(u,w) ≤ d(u, v) + d(v,w).

These properties assert that the function d : Hn(q)×Hn(q)→ ℕ is ametric onHamming
space Hn(q).

8 Richard Wesley Hamming (1915–1998).
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Proof of (17.4.1). Statements (i) and (ii) are obviously true. To prove (iii) note that u
can be changed to v by d(u, v) entry changes and v can then be changed tow by d(v,w)
changes. Thus u can be changed to w by d(u, v) + d(v,w) entry changes. Therefore
d(u,w) ≤ d(u, v) + d(v,w).

Codes
A code of length nover an alphabetQwithq elements, or briefly aq-ary code of length n,
is a subset C of Hn(Q) with at least two elements. The elements of C are called code-
words. Codewords are transmitted in actual messages.

A q-ary code C is said to be e-error detecting if c1, c2 ∈ C and d(c1, c2) ≤ e always
imply that c1 = c2. Thus the distance between distinct codewords is always greater
than e. Equivalently, a codeword cannot be transmitted and received as a different
codeword if e or fewer errors have occurred. In this sense the code C is able to detect
up to e errors.

Next a q-ary code of length n is called e-error correcting if, for every w in Hn(q),
there is at most one codeword c such that d(w, c) ≤ e. This means that if a codeword c
is received as a different word w and at most e errors have occurred, it is possible to
recover the original codeword by examining all words v inHn(q) such that d(w, v) ≤ e:
exactly one of these is a codeword and it must have been the transmitted codeword c.
Clearly a code which is e-error correcting is e-error detecting.

An important parameter of a code is the shortest distance between distinct code-
words; this is called theminimum distance of the code. The following result is basic.

(17.4.2). Let C be a code with minimum distance d. Then:
(i) C is e-error detecting if and only if d ≥ e + 1;
(ii) C is e-error correcting if and only if d ≥ 2e + 1.

Proof. (i) Suppose that d ≥ e + 1. If c1, c2 are distinct codewords, then d(c1, c2) ≥ d ≥
e + 1. Hence C is e-error detecting. To prove the converse, assume that d ≤ e. By def-
inition of d there exist c1 ̸= c2 in C such that d(c1, c2) = d ≤ e, so that C is not e-error
detecting.
(ii) Assume that C is not e-error correcting, so there is a wordw and codewords c1 ̸= c2
such that d(c1,w) ≤ e and d(w, c2) ≤ e. Then

d ≤ d(c1, c2) ≤ d(c1,w) + d(w, c2) ≤ 2e

by (17.4.1). Hence d < 2e + 1.
Conversely, assume that d < 2e + 1 and let c1 and c2 be codewords at distance d

apart. Put f = [ 12d], i. e., the greatest integer ≤
1
2d; thus f ≤

1
2d ≤ e. We claim that

d − f ≤ e. This is true when d is even since d − f = d − 1
2d =

1
2d ≤ e. If d is odd,

f = d−1
2 and d − f = d+1

2 < e + 1; therefore d − f ≤ e. Next we can pass from c1 to c2 by
changing exactly d entries. Let w be the word obtained from c1 after the first f entry
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changes. Then d(c1,w) = f ≤ e, while d(c2,w) = d − f ≤ e. Therefore C is not e-error
correcting.

Corollary (17.4.3). If a code has minimum distance d, then its maximum error detection
capacity is d − 1 and its maximum error correction capacity is [ d−12 ].

Example (17.4.1). Consider the binary code C of length 5 with the three codewords

c1 = (10010), c2 = (01100), c3 = (10101).

Clearly the minimum distance of C is 3. Hence C is 2-error detecting and 1-error cor-
recting. For example, suppose that c2 is transmitted and is received as w = (11000),
so that two entry errors have occurred. The error can be detected since w ∉ C. But C
is not 2-error correcting since if v = (11100), then d(c2, v) = 1 and d(c3, v) = 2. Thus
if v is received and up to two errors occurred, we cannot tell whether c2 or c3 was the
transmitted codeword.

Bounds for the size of a code
It is evident from (17.4.2) that for a code to have good error correcting capability it must
have largeminimum distance. But the price to be paid for this is that fewer codewords
are available. An interesting question is:what is themaximumsize of a q-ary codewith
length n and minimum distance d. We begin with a lower bound, which guarantees
the existence of a code of a certain size.

(17.4.4) (The Varshamov–Gilbert lower bound). Let n, q, d be positive integers with d ≤
n. Then there is a q-ary code of length n and minimum distance d in which the number
of codewords is at least

qn

∑d−1i=0 (ni)(q − 1)
i
.

Before embarking on the proof we introduce an important concept, the r-ball with
center w,

Br(w).

This is the set of all words inHn(q) at distance r or less fromw. Thus a code C is e-error
correcting if and only if the e-balls Be(c) with c in C are pairwise disjoint.

Proof of (17.4.4). The first step is to establish a formula for the size of an r-ball,

Br(w)
 =

r
∑
i=0
(
n
i
)(q − 1)i.
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To see this observe that in order to construct a word in Br(w), we must alter at most r
entries of w. Choose the i entries to be altered in (ni) ways and then replace each one
by a different element of the alphabetQ in (q− 1)i ways. This gives a count of (ni)(q− 1)

i

words at distance i from w; the formula now follows at once.
To start the construction choose any q-ary code C0 of length nwith minimum dis-

tance d; for example, C0 might consist of the zero word and a single word of weight d.
If the union of the Bd−1(c) with c ∈ C0 is not Hn(q), there is a word w whose distance
from every word in C0 is at least d. Let C1 = C0∪ {w}; this is a larger code than C0 which
has the same minimum distance d. Repeat the procedure for C1 and then as often as
possible. Eventually a code Cwithminimumdistance dwill be obtainedwhich cannot
be enlarged; when this occurs, we have Hn(q) = ⋃c∈C Bd−1(c). Therefore

qn = Hn(q)
 =

⋃
c∈C

Bd−1(c)

≤ |C| ⋅ Bd−1(c)



for any fixed c ∈ C. Hence |C| ≥ qn/|Bd−1(c)|, so the bound has been established.

Next we give an upper bound for the size of an e-error correcting code.

(17.4.5) (The Hamming upper bound). Let C be a q-ary code of length n which is e-error
correcting. Then

|C| ≤ qn

∑ei=0 (ni)(q − 1)
i .

Proof. Since C is e-error correcting, the e-balls Be(c) for c ∈ C are pairwise disjoint.
Hence


⋃
c∈C

Be(c)

= |C| ⋅ Be(c)

 ≤
Hn(q)
 = q

n

for any fixed c ∈ C. Therefore |C| ≤ qn/|Be(c)|, as required.

A q-ary code C of length n for which the Hamming upper bound is attained is
called a perfect code. In this case by(17.4.5)

|C| = qn

∑ei=0 (ni)(q − 1)
i ,

and clearly this happens precisely when Hn(q) is the union of the disjoint balls Be(c),
c ∈ C, i. e., every word lies at distance ≤ e from exactly one codeword. Perfect codes
are desirable since they have the largest number of codewords for the given error cor-
recting capacity; however they are also quite rare.
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Example (17.4.2) (The binary repetition code). A very simple example of a perfect
code is the binary code C of length 2e + 1 with just two codewords,

c0 = (0,0, . . . ,0) and c1 = (1, 1, . . . , 1).

Clearly C has minimum distance d = 2e+ 1 and its maximum error correcting capacity
is e by (17.4.3). A word w belongs Be(c0) if more of its entries equal 0 than 1; otherwise
w ∈ Be(c1). Thus Be(c0) ∩ Be(c1) = 0 and Be(c0) ∪ Be(c1) = H2e+1(2).

Linear codes
LetQ = GF(q), the field of q elements; of course q is now a prime power. The Hamming
space Hn(q) is the n-dimensional vector space Qn of all n-row vectors over Q. A q-ary
code C of length n is called linear if it is a subspace of Hn(q). Linear codes form an
important class of codes; they have the advantage that they can be specified by giving
a basis instead of listing all the codewords. Linear codes can also be described by
matrices, as will be seen in the sequel.

A computational advantage of linear codes is indicated by the next result.

(17.4.6). The minimum distance of a linear code equals the minimal weight of a non-
zero codeword.

Proof. Let C be a linear code. If c1, c2 ∈ C, then d(c1, c2) = wt(c1 − c2) and c1 − c2 ∈ C. It
follows that the minimum distance equals the minimum weight.

A point to keep in mind here is that to find the minimum distance of a code C
one must compute (|C|2 ) distances, whereas to find the minimum weight of C only the
distances from the zero word need be found, so that at most |C| − 1 computations are
necessary.

As with codes in general, it is desirable to have linear codes with large minimum
distance and as many codewords as possible. There is a version of the Varshamov–
Gilbert lower bound for linear codes.

(17.4.7). Let d and n be positive integers with d ≤ n and let q be a prime power. Then
there is a linear q-ary code of length n and minimum distance d in which the number of
codewords is at least

qn

∑d−1i=0 (ni)(q − 1)
i
.

Proof. We refer to the proof of (17.4.4). To start the construction choose a linear q-ary
code C0 of length n and minimum distance d; for example, the subspace generated
by a single word of weight d will suffice. If ⋃c∈C0 Bd−1(c) ̸= Hn(q), choose a word w
in Hn(q) which belongs to no Bd−1(c) with c in C0. Thus w ∉ C0. Define C1 to be the
subspace generated by C0 and w. We claim that C1 still has minimum distance d. To
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prove this it is sufficient to show thatwt(c′) ≥ d for any c′ in C1 − C0; this is because of
(17.4.6). Write c′ = c0 + aw where c0 ∈ C0 and 0 ̸= a ∈ Q. Then

wt(c′) = wt(c0 + aw) = wt(−a
−1c0 − w) = d(−a

−1c0,w) ≥ d

by choice of w, since −a−1c0 ∈ C0. Note also that dim(C0) < dim(C1).
Repeat the argument above for C1, and then as often as possible. After at most

n steps we arrive at a subspace C with minimum distance d such that ⋃c∈C Bd−1(c) =
Hn(q). It follows that |C| ⋅ |Bd−1(c)| ≥ qn for any c in C, which gives the bound.

Example (17.4.3). Let q = 2, d = 3 and n = 31. According to (17.4.7) there is a linear
binary code C of length 31 with minimum distance 3 such that

|C| ≥ 231

1 + 31 + (312 )
= 4,320,892,652.

In addition C is a subspace of H31(2), so its order is a power of 2. Hence |C| ≥ 223 =
8,388,608. In fact there is a larger linear code of this type with 226 codewords, a so-
called Hamming code – see Example (17.4.7) below.

The generator matrix and checkmatrix
Let C be a linear q-ary code of length n and let k be the dimension of C as a subspace
of Hn(q). Thus k ≤ n and |C| = qk . Choose an ordered basis {c1, c2, . . . , ck} for C and
write

G =
[[[[[

[

c1
c2
...
ck

]]]]]

]

.

This k×nmatrix overQ = GF(q) is called a generator matrix for C. If c is any codeword,
c = a1c1 + ⋅ ⋅ ⋅ + akck for suitable ai ∈ Q. Thus c = aG where a = (a1, . . . , ak) ∈ Hk(q).
Hence each codeword is uniquely expressible in the form aGwith a ∈ Hk(q). It follows
that the codeC is the row space of thematrix G, i. e., the subspace ofHn(q) generated by
all the rows of G. Notice that the rank of G is k since its rows are linearly independent.

Recall from Section 8.1 that the null space N of G consists of all n-column vec-
tors xT such that GxT = 0: here of course x ∈ Hn(q). Choose an ordered basis forN and
use the transposes of its elements to form the rows of amatrixH. This is called a check
matrix for C. Since G has rank k, we can apply (8.3.8) to obtain dim(N) = n − k, so that
H is an (n − k) × nmatrix over Q. Since the columns of HT belong to N, the null space
of G, we obtain the important equation

GHT = 0.
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Keep in mind that the matrices G andH depend on the choice of bases for C and N . At
this point the following result about matrices is relevant.

(17.4.8). Let G and H be k ×n and (n− k)×nmatrices respectively over Q = GF(q), each
having linearly independent rows. Then the following statements are equivalent:
(i) GHT = 0;
(ii) row space (G) = {x ∈ Hn(q) | xHT = 0};
(iii) row space (H) = {x ∈ Hn(q) | xGT = 0}.

Proof. Let S = {x ∈ Hn(q) | xHT = 0}; then x ∈ S if andonly if 0 = (xHT )T = HxT , i. e., xT

belongs to null space(H). This implies that S is a subspace and dim(S) = n−(n−k) = k.
Now assume that GHT = 0. If x ∈ row space(G), then x = yG for some k-row vector y.
Hence xHT = yGHT = 0 and x ∈ S. Thus row space(G) ⊆ S. But dim(row space(G)) =
k = dim(S), so that S = row space(G). Thus (i) implies (ii). It is clear that (ii) implies
(i), and thus (i) and (ii) are equivalent.

Next observe that GHT = 0 if and only if HGT = 0, by taking the transpose. Thus
the roles ofG andH are interchangeable, whichmeans that (i) and (iii) are equivalent.

Let us now return to the discussion of a linear q-ary code C of length n with gen-
erator matrix G and check matrix H. From (17.4.8) we conclude that

C = row space(G) = {w ∈ Hn(q) | wH
T = 0}.

Thus the check matrix H provides a convenient way to determine if a given word w is
a codeword. At this point we have proved half of the next result.

(17.4.9).
(i) If C is a linear q-ary codewith generatormatrix G and checkmatrix H, thenGHT = 0

and C = {w ∈ Hn(q) | wHT = 0}.
(ii) If G and H are k × n and (n − k) × n matrices respectively over GF(q) with linearly

independent rows and if GHT = 0, then C = {w ∈ Hn(q) | wHT = 0} is a linear q-ary
code of length n and dimension k with generator matrix G and check matrix H.

Proof. To prove (i) note that C = row space(G) and we showed that GHT = 0, so the
result follows at once from (17.4.8). Now for (ii): clearly C is a subspace ofHn(q), so it is
a linear q-ary code of lengthn. AlsoC is the row space ofG by (17.4.8). Hencedim(C) = k
and G is a generator matrix for C. Finally, the null space of G consists of all w in Hn(q)
such that GwT = 0, i. e.,wGT = 0; this is the row space ofH by (17.4.8). Hence G andH
are corresponding generator and check matrices for C.

On the basis of (17.4.9) we show how to construct a linear q-ary code of length n
and dimension n − ℓ with check matrix equal to a given ℓ × n matrix H over GF(q) of
rank ℓ. Define C = {x ∈ Hn(q) | xHT = 0}; this is a linear q-ary code. Pass from H
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to its reduced row echelon form H′ = [Iℓ | A] where A is an ℓ × (n − ℓ) matrix: note
that interchanges of columns, i. e., of word entries, may be necessary to achieve this.
Hence H′ = EHF for some non-singular E and permutation matrix F. Writing G′ for
[−AT | In−ℓ], we have

G′H′T = [−AT | In−ℓ] [
Iℓ
AT
] = 0.

Hence 0 = G′H′T = (G′FT )HTET , so (G′FT )HT = 0 because ET is non-singular. Put
G = G′FT ; thus GHT = 0 and by (17.4.9) we have that G is a generator matrix and H a
checkmatrix for C. Also dim(C) = rank(G) = n−ℓ. Note that if no column interchanges
are needed to go from H to H′, then F = I and G = G′.

Example (17.4.4). Consider the matrix

H = [[
[

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

]]

]

over GF(2). Here q = 2, n = 7 and ℓ = 3. The rank of H is 3, so it determines a linear
binary code C of dimension 7 − 3 = 4. Put H in reduced row echelon form,

H′ = [[
[

1 0 0 0 1 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0

]]

]

= [I3 A] .

No column interchanges were necessary here, so

G = G′ = [−AT I4] =
[[[[

[

0 1 1 1 0 0 0
1 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 1

]]]]

]

is a generator matrix for C. The rows of G form a basis for the linear code C.
A useful feature of the check matrix is that from it one can read off the minimum

distance of the code.

(17.4.10). Let H be a check matrix for a linear code C. Then the minimum distance of C
equals the largest integer m such that every set of m − 1 columns of H is linearly inde-
pendent.

Proof. Let d be the minimum distance of C and note that d is the minimum weight of
a non-zero codeword, say d = wt(c). Then cHT = 0, which implies that there exist d
linearly dependent columns of H. Hence m − 1 < d and m ≤ d. Also, by maximality
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ofm there existm linearly dependent columns ofH, sowHT = 0wherew is a non-zero
word with wt(w) ≤ m. But w ∈ C; therefore d ≤ wt(w) ≤ m and hence d = m.

Example (17.4.5). Consider the codeC in Example (17.4.4). Every pair of columns of the
checkmatrixH is linearly independent, i. e., the columns are all different. On the other
hand, columns 1, 4 and 5 are linearly dependent since their sum is zero. Therefore
m = 3 for this code and the minimum distance is 3 by (17.4.10). Consequently C is a
1-error correcting code.

Using the checkmatrix to correct errors
LetC be a linear q-ary codewith length n andminimumdistance d and letH be a check
matrix for C. Note that by (17.4.3) C is e-error correctingwhere e = [ d−12 ]. Suppose that a
codeword c is transmitted, but is received as a wordw, and that at most e errors in the
entries have been made. Here is a procedure that will correct the errors and recover
the original codeword c.

Write w = u + c where u is the error; thus wt(u) ≤ e. Now |Hn(q) : C| = qn−k where
k = dim(C). Choose a transversal to C in Hn(q), say {v1, v2, . . . , vqn−k }, by requiring that
vi be a word of shortest length in its coset vi + C. (There may be more than one choice
for vi.) For any c0 ∈ Cwehave (vi+c0)HT = viHT ,whichdepends only on i. Nowassume
thatw belongs to the coset vi+C. ThenwHT = viHT , which is called the syndrome ofw.
Writingw = vi + c1 with c1 ∈ C, we have u = w − c ∈ vi + C, so that wt(vi) ≤ wt(u) ≤ e by
choice of vi. Hence w = u + c = vi + c1 belongs to Be(c) ∩ Be(c1). But this implies that
c = c1 since C is e-error correcting. Therefore c = w − vi and the transmitted codeword
has been identified.

In summary here is the procedure to identify the transmitted codeword c. It is as-
sumed that the transversal {v1, v2, . . . , vqn−k } has been chosen as described above, with
each vi of shortest length in its coset.
(i) Suppose that w is the word received with at most e errors; first compute the syn-

drome wHT .
(ii) By comparing wHT with the syndromes viHT , find the unique i such that wHT =

viHT .
(iii) Then the transmitted codeword was c = w − vi.

Example (17.4.6). The matrix

H = [[
[

1 0 1 1 0
0 0 1 1 1
1 1 0 1 1

]]

]

determines a linear binary code C with length 5 and dimension 5 − 3 = 2; thus H is a
check matrix for C. Clearly C has minimum distance 3, so it is 1-error correcting. Also
|C| = 22 = 4 and |H5(2) : C| = 25/4 = 8. By reducing H to reduced row echelon form as

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



17.4 Introduction to error correcting codes | 405

in Example (17.4.4), we find a generator matrix for C to be

G = [0 1 1 1 0
1 0 1 0 1

] .

Thus C is generated by (01110) and (10101), so in fact C consists of (00000), (01110),
(10101) and (11011).

Next enumerate the eight cosets of C in H5(2) with C1 = C and choose a word of
minimum weight from each coset; these are shown in bold face.

C1 = {(00000), (01110), (10101), (11011)}
C2 = {(10000), (11110), (00101), (01011)}
C3 = {(01000), (00110), (11101), (10011)}
C4 = {(00100), (01010), (10001), (11111)}
C5 = {(11000), (10110), (01101), (00011)}
C6 = {(01100), (00010), (11001), (10111)}
C7 = {(10100), (11010), (00001), (01111)}
C8 = {(11100), (10010), (01001), (00111)}

The coset syndromes are computed as (000), (101), (001), (110), (100), (111), (011),
(010).

Now suppose that the wordw = (11111) is received with at most one error in its en-
tries: note thatw ∉ C, sow is not a codeword. The syndromeofw iswHT = (110), which
is the syndrome of elements in the coset C4, with coset representative v4 = (00100).
Hence the transmitted codeword was c = w − v4 = (11011).

Hamming codes
Let C be a linear q-ary code of length n and dimension k. Assume that the minimum
distance of C is at least 3, so that C is 1-error correcting. A check matrix H for C has
size ℓ× nwhere ℓ = n− k, and by (17.4.10) no column ofH can be a multiple of another
column.

Now consider the problem of constructing such a linear code which is as large
as possible for given q and ℓ > 1. Then H should have as many columns as possible,
subject to no column being a multiple of another one. Now there are qℓ − 1 non-zero
ℓ-column vectors over GF(q), but each of these is a multiple of q − 1 other columns. So
the maximum possible number of columns for H is n = qℓ−1

q−1 . Note that the columns of
the identity ℓ × ℓ matrix can be included among those of H, so that H has rank ℓ. It
follows that the matrix H determines a linear q-ary code C of length

n = q
ℓ − 1
q − 1
.
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Theminimumdistance ofH is at least 3 by construction, and in fact it is exactly 3 since
we can include among the columns of H three linearly dependent ones, (10 . . .0)T ,
(110 . . .0)T , (010 . . .0)T . Thus C is 1-error correcting: its dimension is k = n − ℓ and its
order is qn. Such a code is knownas aHamming code. It is not surprising thatHamming
codes have optimal properties, as the next result shows.

(17.4.11). Hamming codes are perfect.

Proof. Let C be a q-ary Hamming code of length n constructed from a check matrix
with ℓ rows. Then

|C| = qn−ℓ = q
n

qℓ
=

qn

1 + n(q − 1)

since n = qℓ−1
q−1 . Thus C attains the Hamming upper bound of (17.4.5), so it is a perfect

code.

Example (17.4.7). Let q = 2 and ℓ = 4. A Hamming code C of length n = 24−1
2−1 = 15 and

dimension n − ℓ = 11 can be constructed from the 4 × 15 check matrix

H =
[[[[

[

1 0 0 0 1 1 1 0 0 0 0 1 1 1 1
0 1 0 0 1 0 0 1 1 0 1 0 1 1 1
0 0 1 0 0 1 0 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 0 1 1 1 1 1 0 1

]]]]

]

.

Here |C| = 2n−ℓ = 211 = 2048. Similarly, by taking q = 2 and ℓ = 5 we can construct a
perfect linear binary code of length 31 and dimension 26.

Perfect codes
Weconcludewith an analysis of perfect codeswhichwill establish the unique position
of the Hamming codes.

(17.4.12). Let C be a perfect q-ary code where q = pa and p is a prime. Assume that C is
1-error correcting. Then:
(i) C has length qs−1

q−1 for some s ≥ 1;
(ii) if C is linear, it is a Hamming code.

Proof. (i) Let C have length n. Then |C| = qn
1+n(q−1) since C is perfect and 1-error correct-

ing. Hence 1 + n(q − 1) divides qn, so it must be a power of p, say 1 + n(q − 1) = pr . By
the Division Algorithm we can write r = sa + t where s, t ∈ ℤ and 0 ≤ t < a. Then

1 + n(q − 1) = pr = (pa)spt = qspt = (qs − 1)pt + pt .

Therefore q − 1 divides pt − 1. However, pt − 1 < pa − 1 = q − 1, which shows that pt = 1
and t = 0. Hence 1 + n(q − 1) = pas = qs and it follows that n = qs−1

q−1 .
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(ii) Now assume that C is linear. Since |C| = qn
1+n(q−1) and we have shown in (i) that

1 + n(q − 1) = qs, it follows that |C| = qn/qs = qn−s. Hence dim(C) = n − s and a check
matrixH for C has size s×n. The number of columns ofH is n = qs−1

q−1 , which is themax-
imum number possible, and no column is a multiple of another one since C is 1-error
correcting and thus has minimum distance ≥ 3. Therefore C is a Hamming code.

Almost nothing is known about perfect q-ary codes when q is not a prime power. Also
there are very few perfect linear q-ary codes which are e-error correcting with e > 1.
Apart from binary repetition codes of odd length – see Exercise (17.4.3) below – there
are just two examples, a binary code of length 23 and a ternary code of length 11. These
remarkable examples, known as the Golay codes, are of great importance in algebra:
see [22] for details.

Exercises (17.4).
(1) Give an example of a code for which the minimum distance is different from the

minimum weight of a non-zero codeword.
(2) How many words in Hn(q) have weights in the range i to i + k.
(3) Let C be the set of all q-ary words of the form (aa . . . a) of length nwhere a ∈ GF(q).

(i) Show that C is a linear q-ary code of dimension 1.
(ii) Find the minimum distance and error correcting capacity of C.
(iii) Write down a generator matrix and a check matrix for C.
(iv) Show that when q = 2, the code C is perfect if and only if n is odd.

(4) Let C be a q-ary code of length n andminimum distance d. Establish the Singleton
upper bound, i. e., |C| ≤ qn−d+1. [Hint: two codewords with the same first n − d + 1
entries are equal.]

(5) If C is a linear q-ary code of length n and dimension k, prove that the minimum
distance of C is at most n − k + 1.

(6) Let C be a linear q-ary code of length n and dimension k. Suppose that G is a gen-
erator matrix for C and that G′ = [Ik | A] is the reduced row echelon form of G.
Prove that there is a checkmatrix for C of the form [−AT | In−k]up to a permutation
of columns. [Hint: write G′ = EGF where E is non-singular and F is a permutation
matrix. Let H′ = [−AT | In−k] and prove that H = H′F is a check matrix associated
with G for the code C.]

(7) A linear binary codeC has basis {(101110), (011010), (001101)}. Find a checkmatrix
for C and use it to determine the error-correcting capacity of C.

(8) A check matrix for a linear binary code C is

[[

[

1 1 0 1 1
0 1 0 0 1
1 1 1 0 0

]]

]

.

(i) Find a basis for C.
(ii) Find the minimum distance and error correcting capacity of C.
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(iii) If a word (01111) is received and at most one entry is erroneous, use the syn-
drome method to find the transmitted codeword.

(9) (An alternative decoding procedure for small n). Let C be a linear q-ary code of
length n with error correcting capacity e. Let H be a check matrix for C. Suppose
that a wordw is received with at most e errors. Show that the following procedure
will find the transmitted codeword.
(i) Enumerate all words u in Hn(q) of weight ≤ e; these are the possible errors.
(ii) Find the syndrome uHT of each word u from (i).
(iii) Compute the syndrome wHT and compare it with each uHT : prove that there

is a unique word u in Hn(q) of with weight at most e such that uHT = wHT .
(iv) Conclude that the transmitted codeword was w − u.

(10)Use the method of Exercise (17.4.9) to find the transmitted codeword in Exercise
(17.4.8).

(11) (Dual codes). Let C be a linear q-ary code of length n and dimension k. Define
the dot product of two words v, w in Hn(q) by v ⋅ w = ∑ni=1 viwi. Then define
C⊥ = {w ∈ Hn(q) | w ⋅ c = 0,∀c ∈ C}.
(i) Show that C⊥ is a linear q-ary code of length n: this is called the dual code

of C.
(ii) LetG be a generatormatrix andH an associated checkmatrix for C. Prove that

G is a check matrix and H a generator matrix for C⊥.
(iii) Prove that dim(C⊥) = n − k and |C⊥| = qn−k .

(12) Let C be a binary Hamming code of length 7. Find a check matrix for the dual
code C⊥ and show that its minimum distance is 4.

17.5 Algebraic models for accounting systems

This final section will see a complete change of topic. The aim is to create an algebraic
structure that is able to simulate, as realistically as possible, the everyday operations
of the accounting system of a privately or publicly owned company. The first step is to
identify the essential components of such a systemand then to decidewhich algebraic
structures will be most useful.

Accounts
An accounting system comprises first and foremost a finite set of accounts. The ac-
counts of a company generally fall into three categories:
(i) Asset accounts, which represent anything owned by the company.
(ii) Liability accounts, which recordwhat is owed by the company to external entities.
(iii) Equity accounts; these accounts show the net worth of the company.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



17.5 Algebraic models for accounting systems | 409

It should be possible to assign a “value” to each account at any instant. In practice
these are most likely to be sums of money, but they might be any items that can be
bought or sold. The first step is to identify an algebraic structure which can accommo-
date the account values. The structure chosenmust be sufficient to allow the standard
accounting operations, which certainly include addition and subtraction. While mul-
tiplication has a less natural role in accounting computations, its inclusion provides
a richer mathematical environment within which to work.

What comes tomind first as a candidate for account values is probably an integral
domain: clearly zero divisors are to be avoided. However, there is a further necessary
property that account values should have, namely positivity and negativity, concepts
that do not exist in integral domains in general.

Let R be an integral domain and assume that it has a positive subset: that is a
non-empty subset P, not containing 0R, with the following properties.
(i) For each a ∈ R exactly one of the following statements holds: a ∈ P, a = 0, −a ∈ P;
(ii) if a, b ∈ P, then a + b ∈ P and ab ∈ P.

The notion of positivity allows the introduction of an order relation on R as follows:
a ≤ bmeans that either a = b or b − a ∈ P. On the basis of this definition it is straight-
forward to show that ≤ is a linear order on R. It is also easy to establish the following
facts for a, b, c ∈ R:
(iii) if a ≤ b, then a + c ≤ b + c.
(iv) if a ≤ b and 0 ≤ c, then ac ≤ bc.

An integral domain with a linear order satisfying (iii) and (iv) is called a linearly or-
dered domain. Thus a domain which has a positive subset is linearly ordered. Con-
versely, if R is a linearly ordered domain, then it has positive subsets, for example
{r ∈ R | r ̸= 0, 0 ≤ r}.

From now on it will be assumed that all account values in an accounting system
belong to some ordered integral domain R. Of course, in practice R is likely to be one
of the domains

ℤ, ℚ, ℝ.

Each non-zero account value is either positive or negative. The standard conven-
tion in accounting is that the value of anasset account shouldnormally bepositive and
the value of a liability account negative. Accounts such as an equity account will usu-
ally have a negative balance, but it might be positive if the company is losing money.
While this last conventionmight seem counterintuitive, the explanation is that the eq-
uity, i. e., net assets of the company, belongs to the shareholders, so it is owed to them
by the company.
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Balance vectors
Let the accounts of an accounting system be written in a fixed order as a1, a2, . . . , an.
At any instant each account ai has a value vi in a fixed linearly ordered domain R. The
state of the accounting system at that instant is described by the list of all account
values in order, which will be written as a column vector

v =
[[[[[

[

v1
v2
...
vn

]]]]]

]

Occasionally for typographical convenience v may be written as the transposed row
vector [v1 v2 . . . vn]T . The set of all n-column vectors over R is denoted by Rn. This is a
free R-module of rank n.

There is a critical property that the vector of account values v must have at all
times. Since the accounting system must always be in balance, the sum of all the en-
tries of v should equal zero. For this reason a vector v in Rn is called a balance vector
if

n
∑
i=1

vi = 0.

The set of all balance vectors in Rn is termed the balance space and is denoted by

Baln(R).

If n = 1, the only balance vector is zero. Thus we can assume that n > 1.
The balance space is a submodule of the free module Rn, and in fact it is also a

free R-module. To establish this, we will need to produce an R-basis. Let

e(i, j), i ̸= j,

denote then-columnvectorwhose ith entry is 1, jth entry−1 andall entries are0. This is
obviously a balance vector. The e(i, j) are called the elementary balance vectors. More
generally, a balance vector with exactly two non-zero entries is said to be a simple
balance vector.

(17.5.1). Let R be an ordered domain and let n > 1 be an integer. Then the elementary
balance vectors e(1, 2), e(2, 3), . . . , e(n − 1, n) form an R-basis of Baln(R), so that Baln(R)
is a free module of rank n − 1.
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Proof. In the first place e(1, 2), . . . , e(n − 1, n) are linearly independent over R. To see
this, let r1, . . . , rn−1 ∈ R; then

r1 e(1, 2) + r2 e(2, 3) + ⋅ ⋅ ⋅ + rn−1 e(n − 1, n) =

[[[[[[[[[[

[

r1
r2 − r1
r3 − r2

...
rn−1 − rn−2
−rn−1

]]]]]]]]]]

]

.

This column vector can only equal 0 if r1 = r2 = ⋅ ⋅ ⋅ = rn−1 = 0, which establishes the
linear independence.

It remains to prove that an arbitrary balance vector b is expressible as a linear
combination of e(1, 2), . . . , e(n − 1, n). Since b is a balance vector, it can be written in
the form

b = [b1 b2 . . . bn−1 − b1 − b2 − ⋅ ⋅ ⋅ − bn−1]
T .

Let vi = b1 + b2 + ⋅ ⋅ ⋅ + bi, where 1 ≤ i ≤ n − 1. Then by a simple computation

v1 e(1, 2) + v2 e(2, 3) + ⋅ ⋅ ⋅ + vn−1 e(n − 1, n) = b,

which completes the proof.

The type of a balance vector
Let n be a positive integer and R an ordered domain. The type of a balance vector v ∈
Baln(R),

type(v),

is defined to be the n-column vector whose ith entry is 0, + or − according as vi = 0,
vi > 0 or vi < 0 respectively. For example, if v is the balance vector [−300 400 −100 0]T

in Bal4(ℤ), the type of v is [− + − 0]T .
The zero vector has type 0, while the type of a simple balance vector contains a

single + and a single −, with other entries 0. Notice that any non-zero type must have
at least one + and at least one −.

Let s and t be types of balance vectors in Baln(R): thus the entries of the vectors
s, t are 0, + or −. A binary relation ≤ on the set of types of vectors in Baln(R) is defined
as follows: s ≤ t is to mean that si = ti or si = 0 for i = 1, 2, . . . , n. Thus s and t have
the same configuration of + and − signs except that s may have more zeros than t.
This relation is reflexive, transitive and antisymmetric, so it is a partial order on the
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set of types. It is not a linear order: for example, the types [+ − 0 ]T and [− + 0]T are
incomparable.

As usualwith partial orders, the set of types can be visualized bymeans of aHasse
diagram: the less complex types occur lower down in the diagram. At the lowest point
will be the type of the zero vector 0, while type(v) sits directly below type(w) if the
entries of type(v) and type(w) are the same except that type(v) has one more zero
entry.

A natural measure of the complexity of a balance vector is the total number of
non-zero entries. For any v in Baln(R) define the level of v to be the number of non-
zero entries, with the convention that the zero vector is at level 1. Thus the level of a
balance vector is a positive integer. Clearly, if k is any integer satisfying 1 ≤ k ≤ n, then
Baln(R) has vectors of level k. One can think of the types of balance vectors as being
classified in a hierarchy of levels. At level 1 is the zero vector, at level 2 the simple
balance vectors, and thereafter balance vectors of increasing complexity.

Next we derive formulas for the number of types at any given level: apart from
their intrinsic interest, these formulas provide insight into the distribution of balance
vector types over the various levels.

(17.5.2). Let n be an integer greater than 1.
(i) The number of types of n-balance vectors at level r is (nr)(2

r − 2), where 1 < r ≤ n.
(ii) The total number of types of n-balance vectors is 3n − 2n+1 + 2.

Proof. (i) In order to construct an n-balance type at level r one must first pick the r
“slots” in which a + or − is to be placed; this may be done in (nr)ways. Then one has to
count the number of ways of placing a + or − in each of the r chosen slots, taking care
not to have a + in every slot or a − in every slot. This can be done in 2r − 2 ways. The
remaining n − r slots get 0’s, so the type has been determined. Hence the number of
types at level r is (nr)(2

r − 2).
(ii) The total number of n-balance types is the sum of the numbers of types at levels 1
through n. Since there is just one type of level 1, this is

1 +
n
∑
r=2
(
n
r
)(2r − 2) = 1 +

n
∑
r=2
(
n
r
)2r − 2

n
∑
r=2
(
n
r
).

By the Binomial Theorem

n
∑
r=0
(
n
r
)2r = (1 + 2)n = 3n and

n
∑
r=0
(
n
r
) = (1 + 1)n = 2n.

Hence the total number of types is 1 + (3n − 1 − 2n) − 2(2n − 1 − n) = 3n − 2n+1 + 2.
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Example (17.5.1). For a system with three accounts, there are 13 types of balance vec-
tors. They are listed below in descending order of levels:

level 3 : [[
[

+
+
−

]]

]

, [[

[

−
+
+

]]

]

, [[

[

+
−
+

]]

]

, [[

[

−
−
+

]]

]

, [[

[

+
−
−

]]

]

, [[

[

−
+
−

]]

]

level 2 : [[
[

+
−
0

]]

]

, [[

[

0
+
−

]]

]

, [[

[

−
0
+

]]

]

, [[

[

−
+
0

]]

]

, [[

[

0
−
+

]]

]

, [[

[

+
0
−

]]

]

level 1 : [[
[

0
0
0

]]

]

On the basis of (17.5.2) it can be shown that the maximum number of types of
n-balance vectors occurs at level

[
2n + 2
3
],

or roughly two thirds of the way up the hierarchy of levels. For a proof of this fact see
[3, Section (3.2)].

Transactions
The next question to be addressed is how changes are made to the account values in
an accounting system. Such changes are called transactions and when one is applied,
a flow of value occurs between accounts of the system. Some account balances will
increase, others decrease and many will likely be unaffected by the transaction. After
the transaction has been applied, the system must still be in balance, which shows
that a transaction is actually a function defined on the balance space. What is more,
the effect of the transaction is to add a balance vector to the original balance vector.

After these preliminary observationswe are ready to give the formal definition. Let
v ∈ Baln(R) be a fixed balance vector over a linearly ordered domain R. A transaction
on the balance space Baln(R) is a function

τv : Baln(R)→ Baln(R),

which is defined by the rule

τv(x) = x + v, x ∈ Baln(R).

Notice that x + v is a balance vector. Thus, when the transaction τv is applied to a
balance vector x, it produces the new balance vector x′ =x+v. The vector v =x′−x is
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called the transaction vector. We may also refer to the vector v as the transaction. The
set of all transactions is denoted by

Transn(R) = {τv | v ∈ Baln(R)}.

Notice that τ0 is the identity transaction. Of course τv is called an elementary or simple
transaction according as v is an elementary or simple balance vector.

For transactions τv and τw, the composite τv ∘ τw sends x ∈ Baln(R) to x +w + v,
as does τw ∘ τv. Therefore

τv ∘ τw = τv+w = τw ∘ τv.

Also τv ∘ τ−v = τ0 and τ−v is the inverse of the transaction τv. These equations show
that Transn(R) is an abelian group with τ0 playing the role of the identity element. In
additionTransn(R)has anR-module structure givenby rτv = τrv. Thus (rτv)(x) = x+rv.
It is easy to check the validity of module axioms.

It is apparent that the modules Transn(R) and Baln(R) are very similar. In fact by
a simple calculation we have:

(17.5.3). The assignment v → τv determines an isomorphism of R-modules
τ : Baln(R)→ Transn(R).

Example (17.5.2). Here is a simple example of a transaction. A company finishes off
pieces ofmachinery that it haspurchasedand then sells them.The cost perunit is $100
and the sales price is $150. The sale of a single unit gives rise to a transaction which
involves the cash, inventory and equity accounts. Thus $150 is deposited in the cash
account and $100 is deducted from inventory. The profit of $50 goes into the equity
account, but note that this amount should be subtracted from the equity balance since
this is owed to the owners of the company. Therefore the transaction vector has cash
entry 150, inventory −100, equity −50: all other accounts have zero values since they
are not impacted by the transaction.

Abstract accounting systems
Thus far it has been shown howwe can represent the state of an accounting system by
a balance vector and a change in the state of the systemby a transaction,which in turn
may be identified with a balance vector. Now in any real life accounting system there
will be certain transactions that would be regarded as improper, for example, if they
are contrary to sound business practice or if they violate government regulations. To
exclude such undesirable operations, an accounting system should come equipped
with a list of transactions that are regarded as valid operations for the system. These
will be called allowable transactions.

Another feature of an accounting system is that, even if a transaction is allow-
able, it might still be rejected if it caused an unacceptable balance to appear in some
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account. Thus we recognize the possible need to have a list of allowable balances as
well.

The discussion suggests that a basic model of an accounting system should in-
clude three elements: (i) a set of accounts in a specified order; (ii) a set of allowable
transactions; (iii) a set of allowable balance vectors.

The formal definition follows. An abstract accounting system over an ordered do-
main R is a triple

𝒜 = (A| T| B)

where A is an ordered set of n accounts, and T and B are subsets of Baln(R) called the
sets of allowable transactions and allowable balances respectively. Here B is required
to be non-empty. If there are no limits on balances and B = Baln(R), then 𝒜 is an
unbounded system.

The accounting system as an automaton
An accounting system operates in a natural way as a state output automaton in the
sense of Section 1.3 – see Exercise (1.3.8). The state of the system is the balance vector
representing the current position and the input symbols are the transaction vectors.
Suppose that the current state is described by the balance vector b and that a transac-
tion represented by a balance vector v is applied. The automaton scans the input v. If
v is an allowable transaction, the transaction is applied to the system. The potential
new balance is b′ = b + v. The automaton reads b′. If this is an allowable balance,
it becomes the next state, i. e., the new balance vector for the system. Otherwise the
transaction is rejected, an error message is printed and the balance remains b.

In practice the allowable transactions will be of two sorts. There may be specific
allowable transactions with fixed entries, for example, rent or mortgage payments.
Then there may be entire types of transactions that are allowable: a transaction in a
retail firm which debits cash and credits inventory and profit/loss would be of this
type. It is therefore reasonable to replace the set T by two subsets

T0 and T1

and write

𝒜 = (A| T0,T1| B)

whereT0 is the list of allowable transaction types andT1 is the list of specific allowable
transactions. The identity transaction is allowable in any system since it has no effect
on balances.

Accounting systems with one account are uninteresting since the balance is al-
ways zero. Systems with two accounts are scarcely more interesting: the two accounts
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have balance vectors whose entries are negatives of each other. The simplest inter-
esting accounting system has three accounts. Such a system could represent the un-
complicated financial position of a small firm or an individual with few assets and
liabilities, with one account representing total assets, one total liabilities and a third
account specifying the net equity.

The objective in the rest of the section is to determine to what extent algebraic
concepts such as subsystem, quotient system and homomorphism can be applied to
abstract accounting systems in a way that reflects the workings of a real accounting
system.

Subaccounting Systems
As a first step the concept of a subaccounting system will be introduced. In order to
come upwith a useful definition, one needs to look at a real life accounting system. In
the case of a large firm there are likely to be subdivisions with a degree of autonomy.
Such a subdivision might have a set of accounts under its control and be able to ex-
ecute certain transactions on these accounts, although such transactions would still
need approval at the company level. The subdivision’s allowable transactions would
not affect accounts which are outside its control. Of course, allowable balances for the
unit would always have to be compatible with those for the entire system.

These observations suggest how a subaccounting system should be defined. Con-
sider a system with n accounts over an ordered domain R

𝒜 = (A| T| B),

with the usual notation and conventions. An accounting system𝒜′ = (A′| T′| B′) over
R is said to be a subaccounting system of𝒜 if the following conditions are satisfied:
(i) A′ ⊆ A;
(ii) T′ = {v|A′ | v ∈ T , sppt(v) ⊆ A′}, so that v|A′ is a balance vector;
(iii) if b ∈ B, then b|A′ is a balance vector and B′ = {b|A′ | b ∈ B}.

Here the vector v|A′ is obtained from v by omitting entries for accounts that are not
in A′. Also, sppt(v), the support of v, is the set of accounts for which v has a non-zero
entry. By (i) each account of𝒜′ is an account of𝒜. The effect of (ii) is that the allowable
transactions of𝒜′ are the restrictions to A′ of allowable transactions of𝒜 that do not
affect accounts outside A′. Finally, (iii) asserts that the allowable balance vectors of
𝒜′ are precisely the restrictions to A′ of allowable balance vectors of𝒜.

It is obvious that every accounting system is a subsystem of itself. A subsystem
of a system 𝒜 with fewer accounts than 𝒜 is called a proper subsystem of 𝒜. It is pos-
sible that an accounting system has no proper subsystems. Here is a criterion for the
existence of proper subsystems.
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(17.5.4). An accounting system𝒜 = (A| T| B) has a proper subsystem if and only if there
is a proper non-empty subset A′ of A such that b|A′ is a balance vector whenever b ∈ B.

Proof. Let A′ be a subset of A satisfying the given condition and define

T′ = {v|A′ | v ∈ T , sppt(v) ⊆ A
′} and B′ = {b|A′ | b ∈ B}.

By hypothesis B′ is non-empty and consists of balance vectors. If v ∈ T and sppt(v) ⊆
A′, it follows that v|A′ is a balance vector. Thus T′ consists of balance vectors. Define
𝒜′ = (A′| T′| B′); this is an accounting system. Moreover, 𝒜′ is a proper subsystem of
𝒜 since A′ ̸= A.

Conversely, if𝒜 has a proper subsystem, the condition on A′ is satisfied.

Quotients of Accounting Systems
Next it will be shown how to define a quotient structure on an accounting system. In
forming a quotient the balances of certain sets of accounts are combined. A practical
use for this is to model the standard accounting operation of generating a report or
summary.

Consider an accounting system 𝒜 = (A| T| B) with n accounts over an ordered
domain R. To construct a quotient of𝒜we introduce an equivalence relation E on the
set of accounts A. Thus A is partitioned by E into, say, n̄ distinct equivalence classes
[a]E where n̄ ≤ n, a ∈ A. The account set of the quotient system is to be the set of
equivalence classes

AE = {[a]E | a ∈ A}.

The setAE can be ordered by the smallest account subscript in each equivalence class.
Next we need to specify the allowable transactions and balance vectors for the

quotient system. Let v ∈ Baln(R) and define a vector v = vE in Baln(R) by the rule

vi = ∑
ajEai

vj,

the summation being over all j for which aj E ai. What this means is that the entries of
v are totaled for accounts belonging to the same E-equivalence class. Observe that

n
∑
i=1

vi =
n
∑
i=1

vi = 0,

so that v ∈ Baln(R).
From this definition we quickly derive the rules

u + v = u + v and rv = rv,
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where u, v ∈ Baln(R) and r ∈ R. Hence the assignment v → v determines a homomor-
phism of R-modules from Baln(R) to Baln(R). It is clearly surjective.

Example (17.5.3). Let A = {a1, a2, a3, a4, a5} and let E be the equivalence relation on A
with associated partition

A = {a1} ∪ {a2, a4, a5} ∪ {a3}.

The elements of AE in order are

[a1] = {a1}, [a2] = {a2, a4, a5}, [a3] = {a3}.

If we take a typical vector [v1 v2 v3 v4 − v1 − v2 − v3 − v4]T in Bal5(R), then, according to
the definition,

vE =
[[

[

v1
−v1 − v3

v3

]]

]

∈ Bal3(R).

Returning to the general situation, we are ready to formulate the definition of the
quotient of the accounting system 𝒜 = (A| T| B) determined by the equivalence rela-
tion E on A. The account set of the quotient is to be

AE = {[aij ]E | j = 1, 2, . . . , n},

that is, the set of distinctE-equivalence classes. Next define the allowable sets of trans-
actions and balances to be respectively

TE = {vE | v ∈ T} and BE = {vE | v ∈ B}.

These sets are, of course, the images of T and B under the mapping in which v → vE .
Finally, the quotient system of𝒜 by E is defined to be

𝒜/E = (AE | TE | BE).

Thus the accounts of𝒜/E are the E-equivalence classes of accounts of𝒜, while the al-
lowable transactions and balances of 𝒜/E arise from the corresponding entities of 𝒜
by application of the function v → vE, i. e., by summing vector entries in each equiv-
alence class.

Reports
An example of how a quotient system occurs in accounting practice is the creation of a
report on an accounting system. This occurs when the account set is divided up into a
number of control groups and the resulting partition yields an equivalence relation on
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the account set. This produces a quotient system that generates a report on the control
groups. The simplest case arises from the partition

A = Aa ∪ Aℓ ∪ Ae

where Aa, Aℓ, Ae are the respective sets of asset accounts, liability accounts, equity
accounts. The resulting quotient system𝒜/E has three accounts, namely total assets,
total liabilities, net equity. This quotient systemproduces themost basic type of report
on the system.

Homomorphisms of accounting systems
Next we explain the concept of a homomorphism between accounting systems. This
provides a means of relating the operations of the two systems. The challenge is to
come up with the “right” definition of a homomorphism, that is one that will accord
with practice.

Consider two accounting systems

𝒜 = (A| T| B) and 𝒜′ = (A′ T
′ B
′)

over the same ordered domain R, with account sets A = {a1, a2, . . . , an} and A′ =
{a′1, a
′
2, . . . , a

′
n′ }. To define a homomorphism from 𝒜 to 𝒜′ we start with a function

between the account sets

θ : A→ A′.

This is used to generate a function between balance modules

θ∗ : Baln(R)→ Baln′ (R),

where θ∗(v) is definedby the following rule. Ifa′i ∈ θ(𝒜) = Im(θ), then for i = 1, 2, . . . , n
′

(θ∗(v))i = ∑
θ(aj)=a′i

vj,

the sum being formed over all j for which θ(aj) = a′i . On the other hand, if a
′
i ̸∈ Im(θ),

then by definition

(θ∗(v))i = 0.

Notice that θ∗(v) is a balance vector since its components outside Im(θ) are all zero.
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Thus the function θ∗ sums all entries of v that correspond to accounts mapped by
θ to the same account in A′ and it assigns a zero entry to any account of A′ which is
not in Im(θ). It is a simple matter to deduce from the definition that

θ∗(u + v) = θ∗(u) + θ∗(v) and θ∗(rv) = rθ∗(v)

for u, v ∈ Baln(R) and r ∈ R. These equations show that θ∗ is a homomorphism of
R-modules.

Example (17.5.4). As an example take the sets A = {a1, a2, a3, a4, a5} and A′ = {a′1, a
′
2,

a′3, a
′
4} and consider the function θ : A→ A′ which is defined by the rules

θ(a1) = a
′
1, θ(a2) = a

′
3, θ(a3) = a

′
2, θ(a4) = a

′
2, θ(a5) = a

′
2.

Letv = [v1 v2 v3 v4 −v1−v2−v3−v4]T ∈ Bal5(ℤ): thenv is sent by θ∗ : Bal5(ℤ)→ Bal4(ℤ)
to

θ∗(v) = [v1 − v1 − v2 v2 0]T .

To see where this comes from, note that only θ(a1) equals a′1, so (θ
∗(v))1 = v1: similarly

θ(a2) = a′3 and (θ
∗(v))3 = v2. Next θ(a3) = θ(a4) = θ(a5) = a′2; therefore (θ

∗(v))2 =
v3+v4+(−v1−v2−v3−v4) = −v1−v2. Finally, (θ∗(v))4 = 0, since a′4 ̸∈ Im(θ) = {a

′
1, a
′
2, a
′
3}.

We return to the general situation with two accounting systems𝒜 = (A| T| B) and
𝒜′ = (A′| T′| B′), together with a function θ : A → A′. Then θ is said to determine a
homomorphism of accounting systems, (also denoted by θ),

θ : 𝒜→ 𝒜′,

provided that the following conditions are met:
(i) if v ∈ T, then θ∗(v) ∈ T′, i. e., θ∗(T) ⊆ T′;
(ii) if b ∈ B, there exists a b′ ∈ B′ such that θ∗(b)|Im(θ) = b′|Im(θ).

What thismeans is that θ∗ sends allowable transactions of𝒜 to allowable transactions
of 𝒜′ which affect only accounts in Im(θ). On the other hand, θ∗ sends an allowable
balance vector of 𝒜 to a balance vector that agrees in its Im(θ)-entries with some al-
lowable balance vector b′ of𝒜′.

Notice that the vector b′ in condition (ii) may not be unique; thus the homomor-
phism depends on the assignment b → b′, as well as the function θ. The vectors θ∗(b)
and b′ in condition (ii) may be different: indeed b′, unlike θ∗(b), could have non-zero
entries for accounts inA′ that are not in Im(θ), and θ∗(b)might not belong to B′. There
is reason to permit this phenomenon: in practice it might be unacceptable for certain
accounts in A′ − Im(θ) to have zero values. Thus it would be unreasonable to insist
that the entries for such accounts in allowable balance vectors equal 0. This feature
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of the homomorphism concept limits its utility in the general case. For the reasons
just set out, the homomorphism concept is most useful in the context of unbounded
accounting systems, where balance restrictions are not imposed. For then two homo-
morphisms can be composed in the natural way.

To see this consider two homomorphisms of unbounded accounting systems
θ : 𝒜 → 𝒜′ and ϕ : 𝒜′ → 𝒜′′. It can be shown that for the corresponding mod-
ule homomorphisms the equation (ϕθ)∗ = ϕ∗θ∗ holds. From this it follows that
ϕθ : 𝒜 → 𝒜′′ is a homomorphism. What is more, the composition is associative.
A consequence of these considerations is that unbounded accounting systems consti-
tute a category, the morphisms being the homomorphisms between systems: for a
more on this topic see Exercise (17.5.6) below.

Injective and surjective homomorphisms
There are three special types of homomorphisms that are occur in practice. Suppose
that θ : 𝒜 → 𝒜′ is a homomorphism between accounting systems 𝒜 = (A,T ,B) and
𝒜′ = (A′,T′,B′). Put n = |A| and n′ = |A′|. Let θ∗ be the induced module homomor-
phism defined above: thus (θ∗(v))i = ∑θ(aj)=a′i vj if ai ∈ Im(θ) and (θ

∗(v))i = 0 other-
wise. First of all we observe:

(17.5.5).
(i) If θ is an injective function, then θ∗ is injective.
(ii) If θ is a surjective function, then θ∗ is surjective.

Proof.
(i) Let θ be injective and suppose that θ∗(v) = 0 for somev ̸= 0. Then vi ̸= 0 for some i.

Now θ(ai) = a′j for some j and i is uniquely determined by j. Therefore (θ∗(v))j = vi
and hence θ∗(v) ̸= 0, a contradiction that shows θ∗ to be injective.

(ii) Assume that θ is surjective and let u ∈ Baln′ (ℤ). If 1 ≤ i ≤ n′, there exists j(i) ≤ n
such that θ(aj(i)) = a′i . Define v ∈ Baln(R) by vj(i) = ui and vk = 0 if k ̸= j(i) for all i.
Then

(θ∗(v))i = ∑
θ(ak)=a′i

vk = vj(i)) = ui.

Since vk = 0 if k ̸= j(i) for all i, it follows that θ∗(v) = u. Finally, v is a balance
vector since∑nk=1 vk = ∑

n′
i=1 vj(i) = ∑

n′
i=1 ui = 0. Therefore θ

∗ is surjective.

Assume that θ : 𝒜→ 𝒜′ is a homomorphism of accounting systems. Consider first the
case when the function θ : A → A′ is injective and θ : 𝒜 → 𝒜′ is called an injective
homomorphism of accounting systems. Then θ∗ is injective by (17.5.5). An allowable
transaction of 𝒜 is mapped by θ∗ to an allowable transaction of 𝒜′ with zero entries
for accounts in A′ − Im(θ). In addition, each allowable balance vector of𝒜 is mapped
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by θ∗ to the restriction to Im(θ) of some allowable balance vector of 𝒜′. This type of
homomorphism is realized when new accounts are added to an existing accounting
system or when an accounting system is inserted into a larger system.

The case when the function θ : A → A′ is surjective is also of interest. Then the
conditions in thedefinitionof ahomomorphismguarantee that θ∗(T) ⊆ T′ and θ∗(B) ⊆
B′ since Im(θ) = A′. Also θ∗ is surjective by (17.5.5). If the stronger conditions

θ∗(T) = T′ and θ∗(B) = B′,

are valid, then θ : 𝒜→ 𝒜′ is called a surjective homomorphism of accounting systems.
Finally, a homomorphism θ : 𝒜 → 𝒜′ is an isomorphism if it is both injective

and surjective. Under these circumstances θ : A → A′ is a bijection and it sets up a
one-one correspondence between the accounts, allowable transactions and allowable
balances of𝒜 and the corresponding entities of𝒜′. If there is an isomorphism from𝒜
to𝒜′, then𝒜 and𝒜′ are said to be isomorphic systems and the notation

𝒜 ≃ 𝒜′

is used. Thus in essence isomorphic accounting systems operate by the same set of
rules, although their account sets may be different. If θ : 𝒜 → 𝒜′ is an isomorphism
of accounting systems, there is an inverse, namely the isomorphism of accounting
systems which is induced from the set bijection θ−1: see Exercise (17.5.5) below.

The canonical homomorphism
A natural example of a surjective homomorphism of accounting systems arises on
forming a quotient of an accounting system. Suppose that𝒜 = (A| T| B) is an account-
ing system and E is an equivalence relation on the account set A. Then, as we have
seen, there is a corresponding quotient system

𝒜/E = (A| T| B)

where A is the set of E-equivalence classes, T = {vE | v ∈ T}, and B = {bE | b ∈ B},
Recall that vE is defined by the rule (vE)i = vi = ∑ajEai vj. There is a natural surjective
function

σE : A→ A

defined by sending each a ∈ A to its E-equivalence class; thus σE(ai) = [ai]E . From
(17.5.5) we see that σE induces a surjective R-module homomorphism

σ∗E : Baln(R)→ Baln(R)
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where n = |A| = the number of E-equivalence classes. The definition of σ∗E shows that

(σ∗E (v))i = ∑
σE(aj) = σE(ai)

vj = ∑
ajEai

vj = vi,

and therefore σ∗E (v) = vE . Consequently, σ
∗
E (T) = T and σ∗E (B) = B, equations which

show that

σE : 𝒜→ 𝒜/E

is a surjective homomorphism of accounting systems. This will be called the canonical
homomorphism from𝒜 to𝒜/E. It is easy to remember since what it does is to combine
all accounts belonging to the same E-equivalence class. This is analogous to how the
group elements in a coset are combined in a quotient group.

These conclusions are summarized in the following result.

(17.5.6). Let𝒜 = (A| T| B) be an accounting system and let E be an equivalence relation
on the account set A. Then the assignment a → [a]E determines a surjective homomor-
phism σE : 𝒜→ 𝒜/E.

The image of a homomorphism
A natural feature of a homomorphism of accounting systems θ : 𝒜→ 𝒜′ is its image

Im(θ).

This is an accounting system containedwithin𝒜′, but not necessarily as a subsystem.
The account set of the system Im(θ) is the image of the set function θ, which is also
written Im(θ) or θ(A). Let

θ0 : A→ θ(A)

be the surjective function sending ai to θ(ai). Then θ0 induces a surjective homomor-
phism of modules

θ∗0 : Baln(R)→ Baln(R)

where n = |A|, n = |θ(A)| and θ∗0 is defined by the usual rule

(θ∗0(v))i = ∑
θ(aj)=θ(ai)

vj.

Here, as before, the sum is formed over all accounts with the same θ-value as ai. Thus
θ∗0(T) and θ

∗
0(B) are subsets of Baln(R). The image of θ is defined to be the accounting
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system

Im(θ) = (θ(A) | θ∗0(T) | θ
∗
0(B)).

Suppose that v ∈ T ∪ B; thus θ∗0(v) is a typical allowable vector for the account-
ing system Im(θ). If v ∈ T, then θ∗(v) ∈ T′ differs from θ∗0(v) only through its A′ −
θ(A)-entries, all of which are zero. If b ∈ B, then by definition of a homomorphism
θ∗(b)|Im(θ) = b′|Im(θ) for some b′ ∈ B′. Again θ∗(b) ∈ B′ differs from θ∗0(b) only in its
A′ − θ(A)-entries, but these need not be zero.

One might expect Im(θ) to be a subaccounting system of 𝒜′, but this is only true
with additional conditions.

(17.5.7). Let θ : 𝒜 → 𝒜′ be a homomorphism of accounting systems arising from
θ : A → A′. Define θ0 : A → θ(A) as above. Then Im(θ) is a subaccounting system
of𝒜′ if and only if the following conditions are satisfied.
(i) If v′ ∈ T′ ∪ B′, then v′|θ(A) is a balance vector.
(ii) If v′ ∈ T′ and sppt(v′) ⊆ θ(A), then v′|θ(A) ∈ θ0

∗(T).
(iii) If b′ ∈ B′, then b′|θ(A) ∈ θ0

∗(B).

This is true because the conditions in (17.5.7) are exactly what is required for the image
to be a subsystem.

Isomorphism theorems
There is an interplay between homomorphisms and quotients inmany branches of al-
gebra, often culminating in so-called isomorphism theorems: for example for groups,
rings andmodules. Wewill record two isomorphism theorems for abstract accounting
systems.

Let 𝒜 = (A| T| B) and 𝒜′ = (A′| T′| B′) be accounting systems. A homomorphism
θ : 𝒜→ 𝒜′ is defined by a set map from A to A′, which is also denoted by θ. There is a
corresponding equivalence relation on A

Eθ

that is determined by the function θ: thus aiEθaj if and only if θ(ai) = θ(aj): for this see
Exercise (1.3.9).

With this notation we can state a theoremwhich effectively identifies the image of
a homomorphism of accounting systems with a quotient system.

(17.5.8). The assignment [a]Eθ → θ(a) determines an isomorphism of accounting sys-
tems ψ : 𝒜/Eθ → Im(θ).

Proof. Define θ0 : A→ θ(A) by θ0(ai) = θ(ai). Then

Im(θ) = (θ(A) θ
∗
0(T)
 θ
∗
0(B)).
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Consider the quotient system 𝒜/Eθ = (A| T| B) where A is the set of Eθ-equivalence
classes [ai]Eθ . A function between account sets

ψ : A→ θ(A)

is defined by ψ([ai]Eθ ) = θ(ai). The aim is to prove that ψ induces an isomorphism of
accounting systems from 𝒜/Eθ to Im(θ). The first thing to note is that θ(ai) depends
only on the equivalence class [ai]Eθ , not on ai, so that ψ is a well-defined function.
Next, if ψ([ai]Eθ ) = ψ([aj]Eθ ), then θ(ai) = θ(aj) and hence [ai]Eθ = [aj]Eθ . Therefore ψ
is injective: it is obviously surjective, so ψ is a bijection.

It remains to show that ψ induces a homomorphism of accounting systems
ψ : 𝒜/Eθ → Im(θ), for which purpose it suffices to prove that ψ∗(T) = θ∗0(T) and
ψ∗(B) = θ∗0(B). Let v ∈ T ∪ B; then by definition of the quotient system𝒜/Eθ, there ex-
ists v ∈ T∪B such that v = σ∗Eθ (v), where σEθ : 𝒜→ 𝒜 is the canonical homomorphism
in which ai → [ai]Eθ . Then we have

vi = (σ
∗
Eθ (v))i = ∑

σEθ (aj)=σEθ (ai)
vj = ∑

θ0(aj)=θ0(ai)
vj = (θ

∗
0(v))i.

In addition

(ψ∗(v))i = ∑
ψ([aj])=ψ([ai])

vj = vi

since ψ is injective. Therefore (ψ∗(v))i = (θ∗0(v))i for all i and hence

ψ∗(v) = θ∗0(v).

It follows thatψ∗(T) ⊆ θ∗0(T) andψ
∗(B) ⊆ θ∗0(B). The equationψ

∗(v) = θ∗0(v) holds for
any v ∈ T ∪ B with v = σ∗Eθ (v), so we conclude that ψ

∗(T) = θ∗0(T) and ψ
∗(B) = θ∗0(B),

which completes the proof.

Quotients of quotients
A further isomorphism theorem arises when one considers quotients of a quotient ac-
counting system. Let𝒜 = (A|T|B)be anaccounting systemand letE be an equivalence
relation on the account set A. Then𝒜/E = (A| T| B) has as its account set A, the set of
all E-equivalence classes [ai]E . Now suppose that F is an equivalence relation on A,
so that it is possible to form the quotient of the quotient system𝒜/E by F, i. e.,

(𝒜/E)/F.
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The key to understanding this more complex object is the observation that E and F
determine a new equivalence relation on A denoted by

E # F,

where by definition ai (E # F) aj ↔ [ai]E F [aj]E .
In terms of partitions, E # F arises by taking the partition of A determined by E

and forming the union of all subsets in this partition that belong to same subset in the
partition corresponding to F. This procedure leads to a partition with larger subsets
than E which determines the equivalence relation E # F. We can therefore form the
quotient system

𝒜/(E # F).

The connection with quotients of quotient systems is shown by the final theorem.
This should be compared with the Third Isomorphism Theorems for groups and rings.

(17.5.9). Let 𝒜 = (A| T| B) be an accounting system. Suppose that 𝒜/E is a quotient of
𝒜 and (𝒜/E)/F a quotient of𝒜/E. Then

(𝒜/E)/F ≃ 𝒜/(E # F).

This result is intuitively reasonable, but it will not be proved here. For a detailed
proof together with an example see [3].

The basic model of an accounting system described here can be extended to a
10-tuple by introducing further algebraic concepts. The extended model incorporates
additional features of real life systems such as authorization of transactions, control
of accounts, ability to generate reports on units of the company. For details the reader
is referred to [3].

Exercises (17.5).
(1) Let R be an integral domain. Prove that R can be linearly ordered if and only if it

has a positive subset.
(2) Prove that a linearly ordered domain has characteristic zero.
(3) Prove that every transaction on an accounting system with n accounts can be ex-

pressed as a composite of n− 1 simple transactions. [Hint: use (17.5.1) and (17.5.3).]
(4) Let 𝒜 = (A|T|B) be an accounting system over an ordered domain R. Let E be an

equivalence relation on A. Recall that v̄E is defined by (v̄E)i = ∑ajEai vj. Prove that
uE + vE = ūE + vE and rvE = rv̄E, where u and v are balance vectors over R and
r ∈ R.

(5) Let θ : 𝒜 → 𝒜′ be an isomorphism of accounting systems with account sets A =
{a1, . . . , an} and A′ = {a′1, . . . , a

′
n} respectively. Prove that there is a permutation

π ∈ Sn such that θ(ai) = a′π(i) for 1 ≤ i ≤ n. Then deduce that there is an inverse
isomorphism from𝒜′ to𝒜 induced by θ−1.

 EBSCOhost - printed on 2/10/2023 3:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



17.5 Algebraic models for accounting systems | 427

(6) Let θ : 𝒜 → 𝒜′ and ϕ : 𝒜′ → 𝒜′′ be homomorphisms of unbounded accounting
systems. (i) Prove that (ϕθ)∗ = ϕ∗θ∗. (ii) Deduce that the composite ϕθ : 𝒜→ 𝒜′′

is also a homomorphism. (iii) Conclude that the unbounded accounting systems
form a category with homomorphisms as morphisms. [Hint: to prove (i) use the
definition of θ∗ and ϕ∗ to compute ϕ∗(θ∗(v)).]
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subring 107
subset 2
subspace 146
–generated by a subset 146
– zero 146
sum of subspaces 155
surjective function 11
Sylow, Peter Ludwig Mejdell 96
Sylow subgroup 96
Sylow’s Theorem 96
symmetric
– function 285
–group 35
– relation 5
Symmetric Function Theorem 286
symmetry group 46
syndrome 404

Tarry, Gaston 392
Tartaglia, Niccolo 290
tensor 292
tensor product 292
– functor 362
–mapping property of 293
–of homomorphisms 295
–of matrices 302
–of quotients 299
– right exactness of 303
Thirty Six Officers, Problem of 392
torsion
–element 198
– submodule 198
torsion-free module 198
trace of a matrix 172
transaction 413
transcendent element 245
transcendental number 247

transfinite induction 19
transition matrix 154
transitive
– action 90
– relation 5
transposition 37
transversal
– left 58
– right 58
triangle rule 145
triangularizable matrix 176
Trichotomy, Law of 16
trisection of an angle 251
trivial
– homomorphism 75
– subgroup 52

union 2
unique factorization domain 131
unit in a ring 106
unitary module 180
unitriangular matrix 232, 236
upper bound 8
upper central chain 232

value of a polynomial 137
variance of a functor 359
Varshamov-Gilbert bound 398
vector 144
– column 145
–elementary 147
– row 145
vector space 144
–basis of 150
–dimension of 152
von Dyck, Walter 341
von Dyck’s Theorem 341
von Lindemann, Carl Ferdinand 255

Wedderburn, Joseph Henry Maclagan 116
Wedderburn’s Theorem 116
weight of a word 396
well order 8
Well-Ordering, Axiom of 19
Well-Ordering Law 20
Wilson’s Theorem 56
word,
– empty 333
– in a code 396
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– reduced 335, 348
word problem 344

Zassenhaus, Hans 221
Zassenhaus’s Lemma 221
zero
–divisor 114

–element 102
– submodule 182
– subring 108
– subspace 146
Zorn’s Lemma 18
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