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PREFACE 
 
 
 
The notion of force has a very important meaning in physics, from very 
early one we learn how to describe the particle trajectories by solving the 

equation 

2

2

dm
dt

r F
 in the framework of Newtonian mechanics. Things 

get a lot more complicated at high speeds, in the framework of special 
relativity, where the equation of motion takes a much more complicated 

form of 

2

2

( )
1

dm
dt u

c

u F

where 

d
dt
ru

 . We dedicate the first one 
third of the book to these cases by studying different forms of the equations 
of motion as a result of the different expressions for the force F . Much 
effort is dedicated to the case of the general Lorentz force,

( )qF v B E that intervenes so often in the design of particle 
accelerators. We present a few new derivations for Thomas precession and 
Thomas Wigner rotation as well as applications to the Compton effect. As 
we will see later on in the book, the situation is even more complicated in 
the case of the fictitious forces (d’Alembert, centrifugal, Coriolis and Euler) 
that appear only in non-inertial frames (accelerated linearly, uniformly 
rotating and in accelerated rotation). It is interesting to note that the 
equations of motion in this case fall out directly from the double integration 
with respect to time of the fictitious accelerations. The second third of this 
book is dedicated to these forces. The last third deals with forces in a 
roundabout way, since in General Relativity gravitation is not a force, so, 
we solve the equations of motion by deriving the Euler-Lagrange equations 
directly from the different metrics (Schwarzschild, Reissner-Nordstrom).  

Adrian Sfarti, 2021 

Biographical Note 

Mr Sfarti received his PhD from the Polytechnic Institute of Bucharest, 
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COVARIANT TREATMENT OF COLLISIONS  
IN PARTICLE PHYSICS 

 
 
 

Synopsis 

The use of relativistic frame invariants is very well established, especially 
when it comes to the energy-momentum. In the current paper we show how 
the conservation of the energy and momentum applies to collisions of 
particles moving at relativistic speeds, like the ones encountered in nuclear 
accelerators. We derive the equations for two main types of collisions: 
elastic and inelastic. The starting point in both cases is the well known 
theorems of conservation of total energy and conservation of momentum for 
isolated systems [1-3].  The covariance, once proven, becomes a very useful 
tool due to the fact that researchers can use any inertial frame in solving the 
particle collision problems, thus greatly simplifying the solutions. 

1. Fundamental notions 

You should know by now the definition of proper time:  

21 ( / )d dt u c  where u is the coordinate speed and t is the 
coordinate time. Coordinate time is the time measured by a clock in an 
arbitrary inertial frame. Proper time is the time measured on a clock 
commoving with the observer. The coordinate velocity is defined as a 3-
vector: 

u=(dx/dt,dy/dt,dz/dt)     (1.1) 

Now, proper velocity, by contrast, is a 4-vector defined as: 

U=(dx/d ,dy/d ,dz/d , d(ct)/d )    (1.2) 

It is easy to show that: 
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2 

2

2

( )( , )
1( )

1

u c

u
u
c

U u

    (1.3) 
 
Since   can be viewed as a proper parameter of a wordline in 4 space, it 
follows that, by the way it was defined, U is the tangent to that wordline.  
 
Further, we can now define the proper acceleration: 

/d dA U      (1.4) 

We can show that: 

( ) ( )( ) ( )( ( ), )d d u d uu u u c
dt dt dt
UA u a

 (1.5) 

where a=du/dt is the coordinate acceleration 

We also know that in the proper frame of the particle (the frame commoving 
with the particle) u=0 so, in the proper frame:  

That is, the proper acceleration coincides with the coordinate acceleration 
in the proper frame of the particle. Thus, A=0, if and only if a=0. By 
contrast, U can never be equal to zero based on its definition. Based on the 
definitions of velocity, we can define the 3- and the 4-momentum 
respectively, as: 

( )u m
m

p u
P U       (1.7) 

Based on the above definitions, we can define the 3- and the 4-force as: 
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( ( ) )d d um
dt dt
d dm m
d d

p uf

P UF A
     (1.8) 

Note that the derivatives are taken with respect to different times, coordinate 
for 3-force and proper for 4-force. Sometimes we see the 3-force defined as: 

( ( ) )d d um
d d
p uf

     (1.9) 

2.  Introduction, Inelastic Collisions 

In the present chapter we demonstrate that the equations of conservation 
have a covariant form, that is, they have the same form in all inertial frames. 
This conclusion is far from obvious since it needs to be proven 
mathematically. The existent [2,3,8] literature on the subject does not prove 
the covariance but rather assumes it from the start. We move from simple 
to complex, from inelastic collisions to elastic ones. 

Consider two particles of proper masses  and traveling at speeds 
and  with respect to frame F. The particles collide and travel as one 

body at speed  after collision. The equations of conservation of momentum 
and energy in frame F are [1-3]: 

1 1 1 2 2 2( ) ( ) ( )u m u u m u u mu
            (2.1) 

2 2 2
1 1 2 2( ) ( ) ( )u m c u m c u mc

where 
( )i i iu m u

 represent the momenta before collision, 
2( )i iu m c
 

represent the energies before collision, ( )u mu  represents the momentum 

after collision and 
2( )u mc  represents the energy after collision. 

Obviously, (2.2) can be rewritten as: 
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4 

1 1 2 2( ) ( ) ( )u m u m u m
                (2.3) 

where ( )u is  a shorthand for 

2

1

1 ( )u
c  

In other words, while rest mass is not conserved, relativistic mass is. 
Expression (2.3) will come in handy later on. The question is, are the 
equations (2.1) and (2.2) frame invariant? Is the equation of conservation of 
energy and momentum frame invariant? The reason it is important to settle 
this question is that we always prefer equations that are frame-invariant [4], 
due to not only their intrinsic elegance but also due to the fact that we may 
need to switch frames in order to be able to solve the particle trajectories [4] 
easier.  Let a frame F’ be another inertial frame moving with speed V with 
respect to F. Substituting: 

2

2

'( ) ( ' ) ( )(1 )

'
'1

( ) ( ' ) ( )( ' )

i
i i

i
i

i

i i i i

u Vu u V
c

u Vu u V
c

u u u V u V             (2.4) 

into (2.1) we obtain: 

1 1 1 2 2 2( ' ) ( ' ) ( ' ) ( ' ) ( ')( ' )u m u V u m u V u u V m
    (2.5) 

that is: 

1 1 1 2 2 2

1 1 2 2

( ' ) ' ( ' ) '
( ') ' ( ( ') ( ' ) ( ' ) )

u m u u m u
u u m V u m u m u m         (2.6) 
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1 1 2 2

1 1 1 2 2 22

( ') ( ' ) ( ' )

( ( ' ) ' ( ' ) ' ( ') ' )

u m u m u m
V u m u u m u u u m
c    (2.7) 

Substituting (2.7) back into (2.6) we obtain the final result: 

2

1 1 1 2 2 22(1 )( ( ' ) ' ( ' ) ' ( ') ' ) 0V u m u u m u u u m
c     (2.8) 

In other words: 

1 1 1 2 2 2( ' ) ' ( ' ) ' ( ') 'u m u u m u u u m
         (2.9) 

So, the equation of conservation of momentum is frame invariant. 
Substituting (2.9) in (2.6) we obtain that: 

1 1 2 2( ') ( ' ) ( ' ) 0u m u m u m
    (2.10) 

i.e., the conservation of energy is frame invariant as well. The fact that both 
momentum and total energy conservation equations are frame invariant 
gives researchers the option to write the equations in whatever frame makes 
the calculations easier to perform [4]. Often the importance of covariance 
of the conservation of energy- momentum is ignored or underestimated, due 
to the fact that neither the energy nor the momentum is covariant as 
explained in [5]. The use of relativistic frame invariants is very well 
established, especially when it comes to the energy-momentum. Most 
traditional treatments use this particular invariant in order to calculate the 
“equivalent mass” of a system or, the “mass added to a system”. The 
systems under evaluations are a most general hybrid made up of both 
massive particles and photons. One question that arises is what happens for 
the case when the direction of the boost is different from the one of the 
particle trajectory. To answer this question we will study a simplified case 
when the boost is oriented along the x-axis and the particle collision is along 

the y-axis, that is: , 1,2(0, ,0)i y iuiu
. In other words, we must substitute  

,i i yu u
 with 1, 2i  in (2.1)-(2.3): 
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1, 1 1, 2, 2 2,( ) ( ) ( )y y y y y yu m u u m u u mu
      (2.11) 

obtaining the equation of momentum conservation, while the equation for 
energy conservation becomes:  

1, 1 2, 2( ) ( ) ( )y y yu m u m u m
             (2.12) 

On the other hand, (2.4) becomes: 

,
,

,
2

, ,

, ,2
,
2 2

,

, ,2

2

, 2 '2
,

2

,
, , 2 '2

,
2

'
0 '

1

' '
( ) ( ) ' ( )'

1 1

'
( )0 ' ( )

1

1( )

( ) 1

'
( )

1

i x
i x

i x

i y i y

i y i y
i x

i y

i z i z

i y

i y

i y
i y i y

i y

u V
u u V

c
u u

V Vu u Vu V V
c c
u

Vu u V
V
c

u
V u

V
c

u
u u

V u
c    (2.13) 

 

where V is the relative speed between frames F and F’. Substituting (2.13) 
into (2.11)-(2.12) we obtain a very interesting result: 
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1 1, 2 2,

2 '2 2 '2 2 '2
1, 2,

2 2 2

' ' '

1 1 1

y y y

y y y

m u m u mu

V u V u V u
c c c   (2.14) 

1 2
2 '2 2 '2 2 '2

1, 2,
2 2 21 1 1y y y

m m m
V u V u V u

c c c      (2.15) 

The equations are not as elegant as (2.11)-(2.12). There is a very profound 
lesson resulting from this very simple exercise, the covariance of the 
equations of conservation for energy-momentum is not a given, it needs to 
be established. A judicious choice of frames of reference, like in the 
beginning of the paragraph, results into one (elegant) covariant expression, 
while choosing a frame orthogonal onto the direction of collision results 
into a different-looking, not as elegant, still-covariant expression. In both 
cases the problem reduces to solving a system of non-linear equations of the 
form: 

1 1 1 2 2 2( ) ( ) ( )u m u u m u u mu
             (2.16) 

1 1 2 2( ) ( ) ( )u m u m u m
              (2.17) 

that, fortunately, has a very nice solution for both the speed of the resulting 
particle and its rest mass: 

1 1 1 2 2 2

1 1 2 2

1 1 2 2

( ) ( )
( ) ( )

( ) ( )
( )

u m u u m uu
u m u m

u m u mm
u               (2.18) 

Or, written in frame F’: 
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1 1, 2 2,

2 '2 2 '2
1, 2,

2 2

1 2
2 '2 2 '2

1, 2,
2 2

' '

1 1
'

1 1

y y

y y

y

y y

m u m u

V u V u
c cu m m

V u V u
c c     (2.19) 

A second question that often arises is: “what happens for collisions between 
particles at non-zero angles”? The answer is very simple, we only need to 
project equations (2.1),(2.3) thrice, once for each axis of coordinates: 

1 1 1, 2 2 2,( ) ( ) ( )
{ , , }

w w wu m u u m u u mu
w x y z            (2.20) 

1 1 2 2( ) ( ) ( )u m u m u m
              (2.21) 

Note that the projection formalism does not affect the 1,2( )i iu
expressions. Therefore, the proof of covariance of the equations of motion 
reduces trivially to the previous proof.  In a frame S’ boosted in the x 
direction with respect to the original frame S, the equations become: 

1 1 1, 2 2 2,( ' ) ' ( ' ) ( ') 'x x xu m u u m u u mu
        (2.22) 

1 1 2 2( ' ) ( ' ) ( ')u m u m u m
             (2.23) 

1 1, 2 2,

2 '2 2 '2 2 '2
1, 2,

22 2

1 2
2 '2 2 '2 2 '2

1, 2,
22 2

' ' '

11 1

11 1

w w w

w w w

w w w

m u m u mu
V u V u V u

cc c
m m m

V u V u V u
cc c  (2.24) 
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where { , }w y z .So, what about the four-vector formalism? It is well 
known that four-vectors provide a “shorthand” way of expressing the same 
information as three-vectors, so recasting the above equations in the four-
vector formalism does not add any information, nor does it simplify the 
proofs8. Using (2.13) we can re-write the energy-momentum four vector as: 

' 2
,

1,22 '2 2 '2 2 '2
, , ,

2 2 2

' 2

2 '2 2 '2 2 '2

2 2 2

( , ,0, )

1 1 1

( , ,0, )

1 1 1

i i yi i
i

i y i y i y

y

y y y

m umV m c
V u V u V u

c c c

mumV mc
V u V u V u

c c c

'
i

'

p

p

 (2.25) 

Armed with the above, we can write the covariant form of the energy 
conservation theorems in a much more concise form7: 

2

1
2

1

i

i

' '
i

i

p p

p p
                (2.26) 

Nevertheless, if we want to derive any measurable information, like the 
speed of the particle after collision or its mass, we need to go back to 
the three-vector formulas (2.18)-(2.19).  

3. Elastic Collisions 

Let’s consider now a more complicated case, the case of elastic collisions. 
After collision the particles have different speeds from each other: 

1 1 1 2 2 2 1 1 1 2 2 2( ) ( ) ( ) ( )u m u u m u U mU U m U
 

 (3.1) 
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1 1 2 2 1 1 2 2( ) ( ) ( ) ( )u m u m U m U m
              (3.2) 

( )i i iu m u
 represent the momenta before collision, 

2( )i iu m c
 represent the 

energies before collision, 
( )i i iU mU

 represents the momenta after 

collision and 
2( )i iU m c
 represent the energies after collision. Inserting 

(2.4) into (3.1) we obtain: 

1 1 1 2 2 2

1 1 1 2 2 2

( ' ) ( ' ) ( ' ) ( ' )
( ' ) ( ' ) ( ' ) ( ' )

u m u V u m u V
U m U V U m U V     (3.3) 

where V is the relative speed between frames F and F’. After isolating the 
terms in V: 

1 1 1 2 2 2

1 1 1 2 2 2 1 1

2 2 1 1 2 2

( ' ) ' ( ' ) '
( ' ) ' ( ' ) ' ( ( ' )
( ' ) ( ' ) ( ' ) )

u m u u m u
U mU U m U V U m
U m u m u m      (3.4) 

Inserting (2.4) into (3.2): 

1 1 2 2 1 1 2 2

1 1 1 2 2 22

1 1 1 2 2 2

( ' ) ( ' ) ( ' ) ( ' )

( ( ' ) ' ( ' ) '

( ' ) ' ( ' ) ' )

U m U m u m u m
V u m u u m u
c

U U m U U m   (3.5) 

Substitute the right hand side of (3.5) into the right hand side of (3.4): 

2

1 1 1 2 2 22

1 1 1 2 2 2

(1 )( ( ' ) ' ( ' ) '

( ' ) ' ( ' ) ' ) 0

V u m u u m u
c

U mU U m U      (3.6) 

That means that the equation of momentum conservation is frame-invariant: 
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1 1 1 2 2 2

1 1 1 2 2 2

( ' ) ' ( ' ) '
( ' ) ' ( ' ) '

u m u u m u
U mU U m U            (3.7) 

Substituting (3.7) into (3.5) we obtain that the energy conservation equation 
is frame invariant: 

1 1 2 2 1 1 2 2( ' ) ( ' ) ( ' ) ( ' )U m U m u m u m
             (3.8) 

The fact that both momentum and total energy conservation equations are 
frame invariant gives researchers the option to write the equations in 
whatever frame makes the calculations easier to perform. 
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CONSERVATION LAWS FOR PLASMA SYSTEMS 
 
 
 

Synopsis 

The use of relativistic frame invariants is very well established, especially 
when it comes to the energy-momentum. In the following paper we clarify 
the terms “conserved” vs. “frame invariant” and we explain the differences 
between the two concepts. Our paper is divided into three main sections. In 
the first section we explain the notion of frame invariance. In the second 
section we explain the energy-momentum conservation. We end up by 
giving a practical example (a hybrid plasma gas) of an open system, 
whereby energy and momentum are added from outside the system. We will 
show the interesting effects caused by adding photons to a system of 
massive particles. The new approach is extremely important in applications 
like particle accelerators where we can only work with directly measurable 
quantities, the kinetic energy KE and the momentum p. 

1. Relativistic Frame Invariance 

Frame-invariance is one of the most important properties in special 
relativity. As physicists, we try to express the laws of physics in frame 
invariant quantities in order to take advantage of the important property of 
such quantities remaining unchanged when passing from one inertial frame 
to another. It is well known that in relativity, the total energy (E) and the 
three-vector momentum (p) of a single particle are frame variant:  

2( )E u mc      (1.1) 

( )u mp u      (1.2) 

The kinetic energy: 
2 2( )KE u mc mc is also frame variant. 

By contrast, the norm of the energy-momentum four-vector ( , )E cP p  
is frame invariant: 
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2 2 2 4. ( )E c mcPP p     (1.3) 

In the present paper we will make extensive use of the frame variant 
quantities E and p as well as the frame invariant norm of the energy-
momentum. 

2. Transformation of Energy and Momentum between 
Frames 

We have already shown that neither energy, nor the momentum is frame 
invariant, therefore it becomes interesting to derive the mathematical 
transformations when passing from one inertial frame to another. In the 
general case of arbitrary orientation between the axes of S and S’ moving 
with the relative velocity v: 

( )( ' ' . )E v E p v     (2.1) 

2
1

2 2' ( )((1 ( )) '. ')vv v E
c v

vp p p v
  (2.2) 

Since the velocity v between S and S’ is constant, by differentiating (2.1)-
(2.2) we obtain: 

( )( ' ' . )dE v dE dp v     (2.3) 

2
1

2 2' ( )((1 ( )) '. ')vd d v v d dE
c v

vp p p v
 (2.4) 

Both (2.3) and (2.4) are instrumental in the computations involved in the 
next section. 

3.  The Theorems of Energy-Momentum Conservation  
for Closed Systems of Massive Particles  

Let the total energy of a system of particles with arbitrarily distributed 

velocities iv
  in a frame of reference S be: 
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2
i iE c m

     (3.1) 

2

2

1

1
i

iv
c  

The total momentum in frame S is: 

i i imp v
     (3.2) 

Let us calculate: 

2 2 4 2 2( ) ( ) ( )i i i j i j i jE c c m c mmp v v
 (3.3) 

We can always find M and V such that: 

2 2 ( )i iE c m c V M
    (3.4) 

( )i i im V Mp v V
    (3.5) 

so 
2 2 2 4( )E c M cp     (3.6) 

is clearly invariant. Obviously from (3.1),(3.2),(3.4) and (3.5) we obtain: 

i i i

i i

m
m

vV
     (3.7) 

( )
i imM
V      (3.8) 

Expression (3.8) provides the relativistic equivalent mass of the system of 
massive particles while (3.7) represents the average relativistic speed. In 
classical mechanics energy and momentum conservation are independent of 
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each other. Not so in relativity, courtesy of expression (3.6). Differentiating 
(3.6) we obtain: 

2 4EdE c d c MdMp p     (3.9) 

A closed system is defined by dM=0, or its equivalent:  

2 0EdE c dp p      (3.10) 

Theorem1: A closed system that exhibits conservation of three-momentum 
p will also exhibit conservation of energy. 

Proof: 0 0d dEp     (3.11) 

Theorem2: If energy is conserved with respect to an inertial frame S’, then 
it is conserved with respect to any other inertial frame S. 

Proof: We start with: 

 ( )( ' ' . )dE v dE dp v     (3.12) 

From (3.10) we infer that ' 0 ' 0 0d dE dEp  so 

 ' 0 0dE dE      (3.13) 

Theorem3: A closed system that exhibits conservation of energy will 
exhibit conservation of momentum. 

Proof: From theorem2 we obtain  

0 ' 0 ' 0 ' 0dE dE d dv. p p . (3.14) 

Theorem4: If momentum is conserved with respect to an inertial frame S’, 
then it is conserved with respect to any other inertial frame S. 

Proof: We start with: 

2
1

2 2' ( )((1 ( )) '. ')vd d v v d dE
c v

vp p p v
 (3.15) 
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We already know that ' 0 ' 0d dEp  so (3.15) implies 
immediately that ' 0 0d dp p . 

Theorem5: If the four-vector momentum is conserved then the total energy 
and the total three-vector momentum are also conserved: 

Proof:  

If 
0d P

     (3.16) 

then: 

0d E
and 

0d p
    (3.18) 

Consequence: since 
0d p

it follows trivially that
0d

dt
p

, that 
is:  

0f
      (3.19) 

4. Open Systems: Hybrid Plasma Gasses Composed 
 of a Mix of Massless and Massive Particles 

Imagine that we add a photon to the system of massive particles described 
in the previous paragraph. Such hybrid systems made up of photons injected 
into plasma form the object of statistical [8] or of kinematic treatments [9]. 
By contrast, we will show a relativistic-invariant based treatment, similar to 
the one shown in [7] while using the theory developed in the preceding 
paragraphs.  Obviously, since the system is not closed, the energy and 
momentum will vary due to the addition of the photon to the existent system. 
To fix the ideas, let’s assume that we add a photon of energy e and 
momentum p to a system of massive particles of total energy E and total 
three-vector momentum P. This is a common application in the study of 
plasma systems where electromagnetic energy is injected gradually. By 
using (3.3) we can derive a very interesting result. Let us calculate: 
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2 2 2 2 2

2 2 2

( ) ( ) ( ) ( )( )
( ) 2( )

E c E e c
E cP Ee c

p P p P p
Pp  (4.1) 

max PpPp
     (4.2) 

2 2
min( ) Pp=pc(E-Pc) 0Ee c Epc cPp

 (4.3) 

2 2 2 2( ) ( )( ) ( )E e c E cPP p P p   (4.4) 

The above shows that the addition of the photon results into an increase of 
the value of the expression (4.1). 

Adding a system of photons having the total energyEeand the total three-
vector momentum p  to the system of massive particles produces an 
interesting situation: 

2 2

2 2 2 2 2 2

2 2 2

( ) ( )( )
2 ( ) ( ) 2
( ) 2( )

E e c
E E e e cP c p c
E cP E e c

P p P p
P p

P p  (4.5) 

max( ) P pP p
     (4.6) 

2 2
min( ) ( ) 0E e c E e c P p c E Pc pP p

  (4.7) 

2 2 2 2( ) ( )( ) ( )E e c E cPP p P p  (4.8) 

In other words, the addition of photons to a system of particles always 
results into an increase of the expression evaluated by (4.5). Finally, from 
the above formalism we can easily compute [6] the “equivalent mass” of the 
system as a function of its directly measurable kinetic energy KE and the 
three-vector total momentum P: 
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2 2

2

( )
2 *
c KEM
KE c

P
     (4.9) 

From (4.9) it follows that when photons are injected, the system mass can 
also be expressed as a function of directly measurable quantities like the 
total kinetic energy KE and its total momentum P. The equivalent mass 
variation for such an open system as a function of the variation of the total 
kinetic energy d(KE) and the variation of total momentum dP (also as a 
scalar) is: 

2 2

2 2

( ) ( )
2

P Pc KEdM dP d KE
KE KE c   (4.10) 
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PRACTICAL AND THEORETICAL METHODS  
FOR DETERMINING THE TRAJECTORIES FOR 

PARTICLES INVOLVED IN ELASTIC COLLISIONS 
 
 
 

Synopsis 

The present chapter shows how to use the conservation of the energy-
momentum in order to determine the trajectories of two particles after they 
are subjected to an elastic collision. While the problem is studied in existent 
literature, there are severe limitations in the solutions, like the fact that the 
solution only determines the angle between the particles after the collision 
and not their exact trajectories. This is not very satisfactory when it comes 
to setting up experiments aimed at verifying the theoretical predictions.  In 
the following paper, we will show how to obtain a much more detailed fix 
of the trajectories of the particles post collision by determining their exact 
angles with respect to the trajectory of the particles before the collision. The 
new approach is extremely important in applications like particle 
accelerators where we can only work with directly measurable quantities, 
the kinetic energy KE and the momentum p.  

1.  Elastic collision of two arbitrary mass particles 

Consider two particles of rest masses 1m
 and 2m

.  In the most general case 

1 2m m
. The case 1 2m m

 is well represented in literature [1,2] and 
we will show later on how our solution reduces in the limit to the existent 
ones. It is well known that in relativity, the total energy (E) and the three-
vector momentum (p) of a system of particles involved in a collision are 
conserved [3]:  

1 2 3 4E E E E
     (1.1) 

1 2 3 4p p p p
 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Practical and Theoretical Methods for Determining the Trajectories  
for Particles Involved in Elastic Collisions 

20 

In the above, 1 2 1 2, , ,E E p p
 are the total energies / momenta of the two 

particles before the collision,  3 4 3 4, , ,E E p p
 are their total energies / 

momenta after collision.  

2

2 2 2 2
i

2

2

( ) , 1, 2,3, 4
( )

(p c) ( )
1( )

1

i i i

i i i i

i i

i

i

E v m c i
v m

E m c

v
v
c

p v

    (1.2) 

 

Fig. 1 The collision of two particles 
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Since the conservation of energy-momentum is frame invariant, we can 
choose to solve the system of equations (1.1) in any frame of reference [4,5]. 
We choose the frame commoving with particle 2 before collision, described 
by: 

2 0p
      (1.3) 

2
2 2E m c

 

To the above, we need to add the fact that rest mass, by virtue of being 
invariant, results in:  

1 3

2 4

m m
m m       (1.4) 

In the rest of the paper, we will refer to the particle associated with 1p
as 

the “bullet” and the particle associated with 2p
as the “target”. The frame 

of reference commoving with the “target” is the natural choice for the 
collisions where the “target” particle is at rest with respect to the lab. We 
have now all the information necessary to determine the angle made by the 
two particles after the collision has taken place. From: 

1 2 3 4E E E E
     (1.5) 

1 3 4p p p
 

we obtain: 

2 2 2
1 3 4 3 4
2 2 2 2

1 2 3 4 3 4 2 3 2 4

2 cos

2 2 2

p p p p p

E E E E E E E E E E  (1.6) 

where  is the angle between the two particles after the collision has taken 
place, see Fig. 1. 
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Subtracting the first equation multiplied by 
2c  from the second one, we 

obtain, after reduction of like terms and factorization the angle : 

2 2
3 2 4 2

2
3 4

2 2
3 2 4 2

2 2 2 2 2 2 2
3 1 4 2

( )( )cos

( )( )
( ) ( )

E m c E m c
p p c

E m c E m c
c E m c E m c

  
 (1.7) 

The intent of the method is to express the angle only as a function of easily 

measurable scalars, like the total energies 3 4,E E
. The above information, 

though accurate, is disappointing from the point of view of an experimental 
physicist attempting to reconcile the theoretical angle predicted by (1.7) 
with experiment. For several reasons: 

(a)  We can only determine that 1p
lies in the plane formed by 3 4,p p

 

forming a “fork” that can be rotated in any fashion around 1p
. This 

annoying effect precludes the use of cloud chambers in doing any 
measurements since there is no way of determining the true angle between 

3 4,p p
due to the projection effect [6]-[8]. 

(b) After collision, we cannot determine whether the “bullet” has the 

momentum 3p
or 4p

 nor can we determine whether the “target” has the 

momentum 4p
 or 3p

. All we know that that one particle has momentum 

3p
and the other one has momentum 4p

. In addition to the above 
shortcomings reference [1] limits itself to only treating collisions of 
particles of equal mass. In addition, it requires that the angle of the direction 

of the support of the vectors 3 4,p p
 with the vector 1p

 is known in the 
center of momentum frame, a highly unrealistic expectation for an 
experimentalist who has only lab frame information. Reference [2], while 
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attempting to deal with unequal mass of “bullet” and “target”, not only 
cannot resolve the individual angles after collision but it also makes the fatal 
error of assuming that the total energies of the two particles after collision, 
as computed in the center of momentum frame, are equal. This is obviously 

untrue, since 3 4 0p p
 does not imply 3 4E E

 unless the two 
particles have equal rest mass. Both references [1] and [2] treat the collision 
in the center of momentum frame. While this may be a good choice for 
simplifying the equations, it is a terrible choice for the experimental 
physicist since the physical measurements take place in the frame of the lab, 
so the angles of collision as predicted by the equations written in the center 
of momentum frame are different from the ones measured in the lab frame.  

2. Improvements to the existent theory 

We have already shown that the formalism describing particle collision, 
though exact, has severe practical and theoretical limitations. The 
theoretical framework can be made to yield additional information, like the 

individual angles made by 3 4,p p
with 1p

 as it can be seen in Fig.2.  

In order to get this information, we need to rewrite the momentum 

conservation in (1.5) on a component basis, by decomposing 3 4,p p
into 

components parallel and respectively perpendicular on 1p
:  

1 3 4p = p cos + p cos
    (2.1) 

3 40 = p sin p sin
    (2.2) 

where ,  are the angles made by 3 4,p p
respectively with 1p

. In this 

approach we can have 1 3 2 4,m m m m
 or 1 4 2 3,m m m m

. We do 
not know, nor do we care which way since we are not using the explicit 
expressions of momentum as a function of rest mass. Actually, rest mass 
never appears in the improved formalism.  
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Fig. 2 Respective angles of the two particles after collision 

The system produces the solutions: 

2 2 2
1 3 4

1 3
2 2 2
1 4 3

1 4

cos
2p p

cos
2p p

p p p

p p p

    (2.3) 

We can easily show that the above solutions are valid since: 
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2 2 2
1 3 4

1 3
2 2 2
1 4 3

1 4

1
2p p

1
2p p

p p p

p p p

     (2.4) 

There is also an elegant way of verifying that , as shown below: 

1 3 4

3 4 3

3 4

2 2 2 2 2
3 4

2 2
3 4 4

2 2
3 4

p = p cos + p cos 2 cos cos

p p 2 cos cos 2p sin sin

p p 2 cos( )

p p

p p p

p p
(2.5) 

Comparing (2.5) with (1.6) we obtain that . 

Since the individual angles ,  are dependent on the momenta after 

collision, 3 4,p p
 we are forced to try to detect the particles in the whole 

disc determined by the intersection of the cone made by 3 4,p p
with the 

plane (or hemisphere) past the collision point. We have seen earlier that it 
isn’t possible to figure whether the “bullet” or the “target” is associated with 

3p
due to the symmetry of the formalism described be equations (2.1)-(2.2). 

Nevertheless we can still provide some insight into the physics post the 
collision. From (2.3) we learn that: 

2 2
3 4 3 4 1

1 3 4

(p p )(( ) )cos cos
2p p p

p p p

 
 (2.6) 

In other words, the particle with the smaller deflection angle post collision 
is the particle exhibiting the larger momentum. The above description 
generalizes easily for the case when both particles are moving in the lab 
frame, as seen in Fig.3: 
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Fig. 3. Both particles in motion in the lab frame 

In this case we need to simply replace 1p
 with 1 2p p

in (2.1) 

1 2 3 4p p = p cos + p cos
   (2.7) 

3 40 = p sin p sin
    (2.8) 

The angles of the particles after collision are obtained therefore by making 
the same substitution in (2.3): 

2 2 2
1 2 3 4

1 2 3
2 2 2

1 2 4 3

1 2 4

( )cos
2( ) p

( )cos
2( ) p

p p p p
p p

p p p p
p p    (2.9) 

The simplicity of the generalization illustrates the power of the solution.  
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3.  Discussion  

For 1 2m m
we recover the well known results from literature. Indeed, 

making 1 2m m
 in (1.7) we obtain: 

3 4

3 4 3 4

2 2
3 4

3 4

( ( ) 1)( ( ) 1)cos
( ) ( ) ( ) ( )

(1 1 ( ))(1 1 ( ))
( ) ( )

v v
v v v v

v v
v v   (3.1) 

i
i

v
c  

In the low speed approximation, the above reduces (via a trivial Taylor 
expansion) to: 

2 2
3 4

3 4

3 4

1 1( ) ( ) ( ) ( )2 2cos
( ) ( ) 4

v v v v
v v   (3.2) 

We can see that at very low speeds, cos  approaches zero but it is never 
equal to the prediction of the Newtonian dynamics which is exactly zero. 

The reason for the discrepancy between the relativistic approximation (3.2) 
and Newtonian predictions is the fact that the Newtonian mechanics assume 
conservation of kinetic, rather than total energy: 

22 2
31 4

1 1 22 2 2
pp p

m m m      (3.3) 

1 3 4p p p
 

So, 
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2 2 22
3 3 4 3 44

1 2 1

2 cos
2 2 2
p p p p pp
m m m   (3.4) 

resulting into: 

4 1 2

3 2

cos
2
p m m
p m     (3.5) 

We can see that not even Newtonian dynamics predicts 2  unless

1 2m m
. 

Intuition would also let us believe that 1 2m m
implies . Is our 

intuition correct? Let’s check out the facts. The equations of conservation 
of energy and momentum are: 

1 1 3 3 4 4

1 3 4

v v v

     (3.6) 

On the other hand: 

2 2 2 2 2 2 2 2 2
1 3 4 1 1 3 3 4 4

1 3 1 3 1 3

cos
2p p 2

p p p v v v
v v  (3.7) 

From the conservation of momentum equation (3.6) we get: 

2 2 2 2 2 2
1 1 3 3 4 4 3 4 1 3

2 2 2 2 2
3 3 4 4 3 4

2 cos

2 ( 1)( 1)

v v v v v

v v c   (3.8) 

Substituting (3.8) and (3.6) in (3.7) we obtain: 

2 2
3 3 3 4

1 3 3 3 4

2( 1)( 1)cos
2 ( )    (3.9) 
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In a similar way, we get: 

2 2
4 4 3 4

1 4 4 3 4

2( 1)( 1)cos
2 ( )    (3.10) 

So, our intuition would lead us astray, . 
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RELATIVISTIC REFLECTION LAWS  
FOR ARBITRARY DIRECTION BOOSTS  

 
 
 

Synopsis 

In a previous paper [1] we have investigated the reflection of massive 
particles from moving mirrors. The adoption of the formalism based on the 
energy-momentum allowed us to derive the most general set of formulas, 
valid for both massive and, in the limit, also for massless particles (photons). 
In the present paper we are extending the formalism to the case of arbitrary 
direction boosts. 

1. Generalization for arbitrary direction of motion 
between frames  

In a previous paper [1] we have investigated the reflection of massive 
particles from moving mirrors (fig.1) in the particular case of a boost in the 
x direction. The most general case is when V  has an arbitrary direction, so 
the S’ x-axis is no longer aligned with the S x-axis. In this case we need to 
use the general Lorentz transforms, in matrix form. In this case we consider 

a boost in an arbitrary direction c
V

 resulting into the transformation 
between frames S and S’ [2]: 
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2

2

2

' ( ) ( . )
( ) ( ( ) 1)( . )[ ]

1( )
1

( )
( )

E V E c
V E V
c

V

E u mc
u m

p
pp' p

p u   (1.1) 

In (1.1) u is the velocity of the particle in frame S. From (1.1) we obtain the 

components of the momentum in frame S’ (given that
0zp

): 

'
2 2

'
2 2

'
2 2

( ( ) 1)( )
[ ]

( ( ) 1)( )
[ ]

( ( ) 1)( )
[ ]

' '. ' ( )( . )

x x y yx
x x

y x x y y
y y

x x y yz
z

V p V p VVp p E
c
V V p V p V

p p E
c

V p V p VVp E
c

p V pp p p  (1.2) 
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Fig. 1 Reflection of a massive particle off a moving mirror 

Please note that in frame S’, the momentum has a non-null component in 
the z direction but this fact does not affect the calculation of the cosines of 
the angles of incidence and reflection.  It does show an interesting effect, 
though. Unlike the particular boost described earlier in reference [1], for the 

case of the general boost (1.1) we have
'
iz izp p

 and
'
rz rzp p

. Even 
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more interestingly, 
' ' 0iz rzp p

 so the plane formed by the incident and 
reflected directions appears rotated around the normal to the mirror in S’. 
The last step is to calculate the angle: 

'

cos '
'

xp
p      

 (1.3) 

By substituting in (1.3) the following: 

0

.

x

y

x

V V
V
E pc

p       (1.4) 

we obtain: 

'

' ( )

( )
x

x x

p p p

p p p      (1.5) 

allowing us to recover the well known light aberration formula: 

coscos '
1 cos     

 (1.6) 

The above gives us the key to the derivation of the most general light 
aberration formula: 
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' 2 2

2

2

( ( ) 1)( )
[ ( ) ]

cos '
' ( )( . )

( ) 1cos [ ( ) . ]

( )(1 . )

( ) 1cos [ ( ) . ]

( )(1 . )

x x y yx
x

x

x

x

V p V p VVp V pc
p c
p V p

V VV
c p

V
p

V VV
c

V

p

p

p

k

k (1.7) 

where k represents the light wave (unit) vector. Again, a quick sanity 
check allows us to recover the simpler case described in literature by 
observing that, in the particular case of a boost in the x direction 

. cosk  and 
xV

c . Substituting in (1.7) we recover (1.6). It is 
interesting to see that from the first transform (1.3) we can derive the general 
equation of the Doppler effect: 

' ( . )

' (1 . )

hfhf hf c
c

f f

k

k     (1.8) 

Another useful consequence of the second transform (1.3) and (1.8) is the 
general transform of the light wave-vector: 

2
( 1)( . )[ ]

(1 . )

kk
k'

k    
 (1.9) 
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A different approach to solving the same problem starts with calculating the 
angle cosines: 

 

'
'

'

'
'

'

cos
'

cos
'

i
i

i

r
r

r

N v

N v

N'.v

N'.v

     (1.10) 

where  
'/ ', iNN' v
 and 

'
rv
 are the unit normal to the mirror, the velocity 

of the particle in the incident direction and the velocity of the particle in the 
reflected direction all measured in the lab frame, S’.  

If we are interested in the relationship of the angles between frames S and 
S’, we will need to employ the general Lorentz transforms [2]: 

'
2

2

'
2

2

2

.1 ( [( ( ) 1) ( )] ).( )(1 )

.1 ( [( ( ) 1) ( )] ).( )(1 )

.' ( )( ( ) 1)

i
i i

i

r
r r

r

V V
VV

c

V V
VV

c

V
V

v Vv v Vv V

v Vv v Vv V

n VN n V
(1.11) 

where  
, in v

, rv
 , V are respectively: the unit normal to the mirror, the 

velocity of the particle in the incident direction, the velocity of the particle 
in the reflected direction and the velocity between the frames, all measured 
in the mirror frame, S.  We can further consider the angles: 
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cos

cos

cos

cos

cos

i
i

i

r
r

r

i
i

r
r

r

v

v

V

vV

v V

i

n.v

n.v

n.V

v .V

v .V

     (1.12) 

From (1.11) and (1.12) we can derive the aberration formula for the general 
case: 

2 2
'

'

2

[cos ( ( ) 1)cos cos ] ( ) cos1cos cos' ( )(1 )
i i i

i
i ii

v V V V
vVN v V

c (1.13) 

2 2
'

'

2

[cos ( ( ) 1)cos cos ] ( ) cos1cos cos' ( )(1 )
r r r

r
r rr

v V V V
v VN v V

c (1.14) 

The subject is interesting not only to physicists designing concentrators for 
fascicles of massive particles and electron microscopes but also to computer 
scientists working in raytracing operating in the photon sector [3-8]. 
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THE GENERAL TRAJECTORIES  
OF ACCELERATED PARTICLES  

IN SPECIAL RELATIVITY 
 
 
 

Synopsis 

Accelerated motion in special relativity is a subject that tends to be treated 
under very restrictive conditions, the motion is considered to be “uniformly 
accelerated”, meaning the motion under constant force and the treatment is 
in one dimension only. In the present paper we treat the general case, of 
non-uniform force and we extend the treatment to all three spatial 
dimensions. The chapter is divided into three main sections: the first section 
is an overview of the existent solutions for the unidimensional trajectories, 
the second section deals with the general, three dimensional trajectories 
under constant force. The third section introduces the case of non-uniform 
force. The case of non-uniform force is further subdivided into two sub-
cases: force that is explicitly time-dependent and, the more complicated 
case of velocity-dependent (aka Lorentz) force. All cases teach us how to 
deal with increasing levels of non-linearity in the equations of motion. In 
each case we will show how to find fully symbolic (closed) solutions for the 
trajectories. The last case, of the Lorentz force, is especially interesting 
because it is a real life case, taken from the particle accelerator applications 
as in the design of velocity selectors used for particle separation. What 
makes it even more interesting is the fact that the solution uses a physics 
approach at the point where the mathematical approach hits a dead end. The 
subject is of interest for particle physicists as well for graduate students and 
teachers. 

1. Introduction – the uniformly accelerated motion in one 
dimension, the equations of hyperbolic motion 

From the very beginning, it is important to stress that special relativity is 
quite adequate for treating accelerated motions, as for instance in many 
rigorous treatments of the twin paradox [1-3]. The literature treating the case 
of uni-dimensional accelerated motion dates back to Max Born, to 1909 [4]. 
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Since then, there have been quite a few works dealing with this subject, yet 
all seem to concentrate on the same scenario [2-8]. The trajectory of the 
particle is found by integrating the equation of motion:  

     
0( ( ) )d m v

dt
F v

     (1.1) 

In one dimension 

d
dt
v

and v have the same direction and sense, so the 
equation of motion reduces to [1]: 

3

0

dv F
dt m      

 (1.2) 

Using the boundary condition 0(0)v v
 and using the shorthand 

0/F m a
we obtain: 

0 0

20 0

( )( )
( )1 ( )

at v vv t
at v v

c    
 (1.3) 

This is the general form of the expression for speed for motion under 
constant force in one dimension [1-8]. Similar treatments can be found in 

[14-17]. In the above, 0/F m a
 is the Newtonian acceleration, not the 

relativistic one. The relativistic acceleration can be obtained from (1.3): 

2 3( 1 ( ) )
c

dv aa
dt at

c     (1.4) 
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ca
 stands for “coordinate acceleration” and it is obviously time-varying. 

So, if 0/F m a
 is not the relativistic acceleration and if the relativistic 

coordinate acceleration ca
 is not frame invariant, what are we talking about 

when we talk about “uniformly accelerated motion in special relativity”? In 
order to understand that, we need to do more work in understanding the 
issues.  Assume that an observer located in the origin of an inertial frame 

 is measuring the proper time separation d between the events ( 10,
) 

and ( 20,
). An observer in a frame S moving with respect to with speed 

u  observes both a temporal and a spatial separation between the events 
according to the Lorentz transforms: 

 

( )(0 )
( )( 0)

dx u ud
dt u d     (1.5) 

The above results into: 

2 2 2 2( ) ( )dt dxc c
d d     (1.6) 

The above is the intrinsic equation of a hyperbola. We can parameterize it 
as: 

cosh

sinh

dt
d
dx c
d      (1.7) 

 is called rapidity. From (1.7) we can derive the relationship between the 
coordinate speed and rapidity: 

tanhdx dx du c
dt d dt     (1.8) 
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Let’s consider another inertial frame S’ moving with speed V with respect 
to S. The Lorentz transform between S and S’ is: 

 

 
2

' ( )( )

' ( )( )

dx V dx Vdt
Vdxdt V dt
c      (1.9) 

The above becomes, in hyperbolic notation: 

' cosh sinh

' cosh sinh

tanh

dx dx cdt
dxdt dt
c

V
c    (1.10) 

Inserting (1.7) into (1.10) we get: 

 

'cosh ' cosh( )

'sinh ' sinh( )

dt
d
dxc c
d    (1.11) 

 with the immediate consequence that: 

'       (1.12) 

Expression (1.12) shows that rapidity behaves exactly like speed in 
Newtonian physics, i.e. it is additive or subtractive, depending on the 
direction of relative motion. One more thing, from (1.12): 

 

'd d
d d        (1.13) 
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so, 

d
d is frame-invariant. We use the notation  for this invariant. The 

coordinate acceleration becomes: 

3/ sech
/c

dv dv da c
dt dt d    (1.14) 

For the particular case when the rapidity is null, i.e. 0 , i.e. v=0, i.e. a 
frame co-moving with the object that moves at speed v wrt S we obtain the 

proper acceleration, pa
. i.e. the acceleration measured by the observer co-

moving with the accelerated object: 

pa c
      (1.15) 

It is the proper acceleration that is frame-invariant, that is all inertial 

observers agree on its value. If pa
is also constant we obtain a special set of 

equations that describe “hyperbolic motion” [7,8]: 

2

( ) sinh

( ) cosh

p

p

p

p

act
a c

acx
a c

    
 (1.16) 

When we talk about “uniformly accelerated motion” we talk about the case 
of constant proper acceleration. Depending on the application, either 
expressions (1.16) or (1.3) are used [7,8,10].  

2. The general case of motion under constant force  
in three dimensions 

In three dimensions, we need to solve the more complicated equation: 
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0( ( ) )d m v
dt

v F
     (2.1) 

In this case 

2

2

1( )
1

x x y y z z

x x y y z z

F F F
v v v

v
v
c

F u u u
v u u u

    (2.2) 

and (2.1) becomes a system of non-linear differential equations: 

0

( ( ) )

, ,

u
u

Fd v v dt
m

u x y z      (2.3) 

There is no treatment of the general motion in existent literature, so we are 
trying to fill this gap. The solution is immediate: 

0

2
0

2

( / )( )
(( / ) )

1

, ,

u u
u z

u u
u x

F m t kv t
F m t k

c

u x y z    (2.4) 

The constants uk
 are obtained from the boundary conditions 0(0)u uv v

:  
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0 2 2 2

2

0 2 2 2

2

0 2 2 2

2

1

1

1

x
x

x y z

y
y

x y z

z
z

x y z

kv
k k k

c
k

v
k k k

c
kv

k k k
c     (2.5) 

The system has the solution
2 2 2

0 0 0 0 0 0 0 0 0 0( ), ( ), ( ),x x y y z z x y zk v v k v v k v v v v v v
. 

In vector form, the above can be written as: 

 

0

2
0

2

( / )( )
(( / ) )

1

z

u u
u x

x x y y z z

m tt
F m t k

c

k k k

F kv

k u u u
   (2.6) 

It is interesting to note that the motion in any of the three principal directions 
is determined not only by the force applied in that direction but also by the 
forces applied in the other two (orthogonal) directions as it can be gleaned 
from (2.4). The other interesting fact is that even in the absence of the 

“accelerating force” uF
, the resultant motion in given direction is 

accelerated if the initial speed in that direction is not zero. This effect is due 
to the “orthogonal forces”. For example, the motion in the x direction is 

accelerated even if
0xF

: 
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2
0

2

( )
(( / ) )

1

x
x z

u u
u x

kv t
F m t k

c    (2.7) 

Finally, we are the point of determining the trajectories, this is done by 
integrating the system of equations (2.6). Without losing any generality, 
let’s assume a two-dimensional case. In addition, let’s assume

x yF F F
. The system has the solution: 

2 2 2 2 2
1 2 1 2

2
1 2 1 2

2 2 2 2 2
1 2 1 2

2

2 2 2 2 2
1 2 1 2

2
1 2 1 2

2 2
1 2

( ) (0) {2 2 2 2
4

2( ) log[2 (2

2 2 22 )]}

( ) (0) {2 2 2 2
4

2( ) log[2 (2

2 2 22

cx t x a t atk atk c k k
a

k k c at k k

a t atk atk c k kc
c

cy t y a t atk atk c k k
a

k k c at k k

a t atk atk cc
2 2 2

1 2
2 )]}k k

c (2.8) 

where 0 1 0 0 2 0 0/ , ( ) , ( )x ya F m k v v k v v
. We can see that for 

0 0x yv v
the motion along the two axes is identical so the particle 

describes a straight line trajectory, the diagonal of a square. For 0 0x yv v
 

the trajectory becomes curved, due to the presence of the logarithmical term. 
Depending which initial speed is larger, the trajectory is “pulled” towards 
one axis or the other. From (2.6) we can derive the coordinate acceleration: 
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3/2

2
0 0 02 2

0 0

2
02

1 1(1 ( / ) ) ( ) / ( / )
( )

1(1 ( / ) )

z z

u u u u u
u x u x

z

u u
u x

tF t m k F m F t m k
m c c mt

F t m k
c

F F k
a

 (2.9) 

It is interesting to note that the coordinate acceleration is not collinear with 
the either the force F nor with the coordinate speed v  and that it has a 
hyperbolic dependency on both the force and the time t . If 0k  (i.e. the 
initial speed of the particle is zero) then: 

3/2

0

2
02

( )
1(1 ( / ) )

z

u
u x

mt
F t m

c

F

a

   (2.10) 

That is, the coordinate acceleration has the same direction as the force if the 
initial speeds are null.  

3. The case of motion under time-variable force in three 
dimensions 

In three dimensions, we need to solve the equation: 

0( ( ) ) ( )d m v t
dt

v F
    

 (3.1)  

where the force is now an explicit function of time. In this case 

2

2

( ) ( ) ( )

1( )
1

x x y y z z

x x y y z z

F t F t F t
v v v

v
v
c

F u u u
v u u u

   (3.2) 

The solution can be written as: 
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0
0

2
0

0
2

1/
( )

( 1/ )
1

t

tz

u u
u x

m dt
t

k m F dt

c

k F
v

  
 (3.3) 

4. The case of velocity-dependent force 

We start with a “warm-up” case [9,11], one that is easier to treat, the absence 
of electric field: a charged particle of charge q enters a spatial domain 

characterized by the magnetic induction 
BzB e

with the initial velocity

0 0x x yv v0 yv e e
. While this case is not representative of the actual, 

practical cases in particle accelerators, it is nevertheless interesting in 
setting the stage for solving the actual, general case encountered in practice. 
The Lorentz force experienced by the particle is: 

( ) ( )y xq qB v vx yF vxB e e
   (4.1) 

It can be proven that | |v =constant by observing that, on one hand the time 
derivative of total energy W is: 

2
0

dW dm c
dt dt      (4.2) 

while, on the other hand: 

0dW
dt

vF
     (4.3) 
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 so 

2

2

1( )
1

v
v
c =constant. In fact, 

2 2
0 0 0| | x yv v v0v

0 2
0
2

1( ) ( )
1

v v
v
c  

The equation of motion is given by: 

0
0

( )d m dm
dt dt

v vF
    (4.4) 

Separating by components: 

x
x 0

y
y 0

z
z 0

vF

v
F

vF

dm
dt

d
m

dt
dm
dt      (4.5) 

giving: 

x
0

y
0

z
0

v

v

v0

y

x

dqBv m
dt
d

qBv m
dt

dm
dt      (4.6) 

with the initial conditions: 0 0( , ,0)x yv v0v
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The last equation gives zv 0
. We are left with solving: 

x
0

y
0

v

v

y

x

dqBv m
dt
d

qBv m
dt      (4.7) 

Consider the parameterization: 

cos( )
sin( )

x r t
y r t      (4.8) 

sin( )

cos( )

x

y

dxv r t
dt
dyv r t
dt     (4.9) 

The above allows us to draw the very important conclusion that 
2 2| | x yv v rv

 that is the speed is constant along the circular 

trajectory, 0| | vv
.  

2

2

cos( )

sin( )

x
y

y
x

dv r t v
dt
dv

r t v
dt    (4.10) 

Substituting (4.10) into (4.7) and remembering that 0| | vv
 implies

0( ) ( )v v
: 
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0 0

0 0

( )
( )

y y

x x

qBv v m v
qBv v m v     (4.11) 

Either equation gives the pulsation:  

0 0( )
qB
v m      (4.12) 

On one hand, 
2 2| | x yv v rv

 meaning that the speed is constant 
along the circular trajectory and the radius of the circular trajectory is:  

0 0 0( )v m vr
qB      (4.13) 

We are now ready to tackle the general case, where particles are accelerated 
by both a magnetic and an electric field.  This is the case in particle 
separators where particles are accelerated linearly by the electric field and 
circularly by the magnetic one. The acceleration by the electric field is 

necessary in order to bring the particles to the relativistic speed 0v
, with 

respect to the lab. We will see that the case of the general Lorentz force 
( )qF vxB E  requires a much more complicated formalism for 

finding the particle trajectory. In order to tackle this issue we will need to 
resort to transforming the problem to a simpler one, as outlined in the next 
section.  

5. A Different Approach 

Assume an inertial frame S’ moving at speed V with respect to the frame S 
along the x axis. The Lorentz transforms between S and S’ are [9]: 
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2

' ( )( )
'
'

' ( )( )

x V x Vt
y y
z z

Vxt V t
c      (5.1) 

 

The correspondent of the 3-vectors  

(0,0, )
(0, ,0)

B
E

B
E      (5.2) 

are: 

2

' ( )( )

( )( )

V

V
c

E E VxB
VxEB' B

    (5.3) 

in the direction perpendicular to V=(V,0,0). For the direction parallel with 
V, the transformed values are: 

'E E
B' B       (5.4) 

Separating by components and using  

z

VB
VE

yVxB e
VxE e      (5.5) 

we obtain: 
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2 2

' 0
' 0
' ( )( ) ( )( )
' ( ) 0
' ( ) 0

' ( )( ) ( )( )

x x

x x

y y

z z

y y

y
z z

E E
B B
E V E VB V E VB
E V E
B V B

VE VEB V B V B
c c   (5.6) 

 

a. If 

E c
B  by choosing 

EV
B  makes 

' 0yE
reducing the problem to 

solving the system of equations: 

0
'( ') ' ' 0
'
x

y
dvv m qB v
dt     (5.7) 

0

'
( ') ' ' 0

'
y

x

dv
v m qB v

dt     (5.8) 

The initial conditions can be chosen without any loss of generality 
(x(0),y(0),(z(0))=(0,0,0). The initial conditions for velocity in frame S 

0(0, ,0)v0v
 , transform in S’ into:  
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0
0

0
2

0 0
0

0
2

0
0

0
2

2
2 2 2 20

0 02

'
1

'
( )( )(1 )

' 0
( )(1 )

' ( ) (1 ( ) )
( )

x
x

x

y
y

x

z
z

x

v Vv Vv V
c

v vv v V VV
c

vv v VV
c

v E Ev V v
V B Bc  (5.9) 

The solution of the above system is: 

' cos( ')
' sin( ')
'

x r t
y r t
z const      (5.10) 

 

0 0

'
( ' )
qB
v m      (5.11) 

0 0 0( ' ) '
'

v m vr
qB      (5.12) 

2

2 2' ' ( )( ) ( )( )z
VE E EB B V B B
c B Bc  (5.13) 

Now, we use the inverse Lorentz transforms: 
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2

( )( ' ')
'
'

'( )( ' )

x V x Vt
y y
z z

Vxt V t
c      (5.14) 

and we obtain the final equation of motion in frame S: 

2

( )( ' cos( '))

sin( ')

( )( ' cos( '))

E Ex t r t
B B

y r t
z const

E Et t r t
B Bc    (5.15) 

b. If  

E c
B  we can choose 

2BcV
E  making 

' 0zB
. The system of 

equations in S’ becomes:  

0
'( ') 0
'
xdvv m

dt      (5.16) 

3
0

'
( ') ' 0

'
ydv

v m qE
dt     (5.17) 

2 2

' ' ( )( ) ( )( )y y
B cE E V E VB V E

E  (5.18) 

The first equation produces: 0' 'x xv v
 so 

0 0 0'( ') ' ' ' ' 'xx t v t x Vt x
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The second equation becomes, after variable separation: 

22
030

2 2

' ' '
''( 1 )

y

yx

dv qE dt
mvv

c c    (5.19) 

with the solution: 

22 2
00 0

2 2 2

' ' '
'' '(1 ) 1

y

yx x

v qE t k
mvv v

c c c   (5.20) 

an algebraic equation in 
'yv

 with the solution: 

2

( ' )'
1 ( ' )

y
a bt kv

bt k     (5.21) 

2 2 2 2
0'

( )x
ca c v c V
V   

 (5.22) 

2
0

2 22

3
0 0

2 2

0

'(1 ) ' '

( )
( )

xv
qE c V qEcb

c m c m

q B cE
m c V E   (5.23) 

Integrating (5.21), we obtain: 

2
0'( ') 1 ( ' ) 'ay t bt k y

b    (5.24) 
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Now, we use the inverse Lorentz transforms: 

2

( )( ' ')
'
'

'( )( ' )

x V x Vt
y y
z z

Vxt V t
c      (5.25) 

and we obtain the final equation of motion in frame S: 

2
0 0

2 2

( ) ' ( )( )

1 ( ' ) 1 ( ( ) )

x V x V x Vt
a ay bt k b V t k
b b

z const  (5.26) 

 

This is the general solution for the case of a point charge moving in static 
uniform perpendicular E and B fields, with arbitrary initial conditions. The 
methodology described finds applications in particle accelerators, and 
particle separators [12,13]. 
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THE PARADOXICAL CASE OF FORCE-
ACCELERATION TRANSFORMATION  

IN RELATIVITY 
 
 
 

Synopsis 

During one of my recent classes, an interesting question, never heard before, 
was posed by one of the students: “How come that the relativistic 
acceleration transformation transforms zero acceleration into zero 
acceleration but transforms zero force into non-zero force?” In the current 
note I will explain this apparent paradox.  The proof is not trivial and, to my 
best knowledge, cannot be found in the literature.  

1. The Strange Case of Misleading Newtonian Intuition 

Let S and S’ be two frames in inertial motion with respect to each other with 
the velocity V aligned with the x axis. A particle of rest mass m  moves 

with arbitrary velocity 
( , , )x y zu u uu

 and arbitrary acceleration 
( , , )x y za a aa

, as measured in frame S.  The force applied on the 

particle in frame S is
( , , )x y zF F FF

. In frame S’, the acceleration 
experienced by the particle is [1-3]:  

'

3 3
2

2

2

( )(1 )

1( )
1

x
x

x

aa u VV
c

V
V
c     (1.1) 
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Throughout this paper will use the notation established by Tolman [1]. So, 

for
0xa

 it follows that 
' 0xa

. On the other hand, the force experienced 
by the particle in frame S’ is [1-3]: 

'
2 2

y z
x x y z

x x

u V u VF F F F
c u V c u V   (1.2) 

So, for
0xF

,
' 0xF

. This seems very puzzling, since our intuition 
would expect that null acceleration in one frame would result in null force 
in that frame but this is not the case for frame S’. In other words, our 

(Newtonian) intuition tells us that 
' '0 0x xa F

but this is not the 
case. In order to understand what is really going on we need to remember 

that in relativity mF a  but rather 

d
dt
pF

 where ( )u mp u . 
Therefore: 

( )x xp u mu
     (1.3) 

implies: 

2 2
3

2 2 2

( )

( )[(1 ) ]

x x

y z x y x z
x y z

dF u mu
dt

u u u u u um u a a a
c c c  (1.4) 

There are two possibilities: 

a) 
0xu

 (so the mass is stationary in S at all times) 

This means 
0xa

 and
0xp

. 
0xa

 implies 
' 0xa

 and 
0xp

implies 
0xF

.  According to (1.2) 
' 0xF

. This is explained by the 
fact that: 
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' '

'2 '2 '
3 ' ' ' ' '

2 2

( ')
'

( ')[(1 ) ( )]

x x

y z x
x y y z z

dF u mu
dt

u u um u a u a u a
c c  (1.5) 

We know that: 

'

'

'

/ ( )

/ ( )

x

y y

z z

u V

u u V

u u V      (1.6) 

We also know that 
' '0, 0y za a

. Inserting this into (1.5) provides the 

(non-trivial) reason why
' 0xF

. Of course, someone bent on arguing will 

claim that it is still possible for 
' 0xF

 provided that: 

(1.7) 

but this a particular situation, not the general case. For general 
,y zF F

: 

'
2 2

y z
x y z

u V u VF F F
c c     (1.8) 

or, expressed differently: 

'
' 3 ' ' ' '

2( ') ( )x
x y y z z

uF m u u a u a
c    (1.9) 

One could argue again that 
' 0xF

 if 
' ' ' '
y y z zu a u a

 but this is just a 
particular case, not the general one. 

y y z zF u F u
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b) 
0xu

 

In this case both 
0xF

 (by virtue of
0xp

) and 
' 0xF

 (by virtue 
of either (1.2) or (1.5)). Expressions (1.4) and (1.5) demonstrate that the 
dependency of the force component aligned with one axis (x, in our 
example) on the accelerations aligned with the transverse axes (y and z, in 
our example) is an intrinsic effect, not an artifact of the coordinate 
transformation, as expression (1.2) would lead us to believe.  

2. What About the Transverse Forces? 

Given the symmetry of the problem it is sufficient to study only the case of 
the acceleration and force in one direction, for example the y-axis. The 
transformation formulas are [1,2]: 

'
2

2 2 2 3
2 2( )(1 ) ( )(1 )

y yx
y

x x

a u Vaa u V u V cV V
c c  (2.1) 

'

2
2( )(1 )

y
y

x

F
F u VV

c     (2.2) 

In this case, we observe a similar disproof of our Newtonian intuition, 
'0 0y yF F

 does not imply that 
'0 0y ya a

. The reason is 

similar, 
'
ya

 is not only a function of ya
 but also a function of xa

. 

3. Conclusion 

Starting from an apparent paradox that illustrates a discrepancy between the 
transformation of force and acceleration in special relativity, we have 
explained the fact that there is no paradox whatsoever. In order to 
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understand what is really going on we need to remember that in relativity 

mF a  but rather 

d
dt
pF
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LORENTZ COVARIANT FORMULATION  
FOR THE LAWS OF PHYSICS –  

PARTICLE AND ELASTIC BODY DYNAMICS  
 
 
          

Synopsis 

An equation representing a law of physics is said to be Lorentz covariant if 
it can be written in terms of Lorentz covariant quantities. The key property 
of Lorentz covariant  equations is that if they hold in one inertial frame, then 
they hold in any inertial frame. This condition is a requirement according to 
the principle of relativity, that is,  all non-gravitational laws must make the 
same predictions for identical experiments taking place at the same space-
time event in two different inertial frames of reference. For example, 
covariant formulation of the laws of electromagnetism is well covered in 
literature [1-3]. Our paper is concerned with a more challenging chapter of 
physics, namely: the dynamics of charged particles subjected to the Lorentz 
force inside particle accelerators and the correct derivation of their 
equations of motion and, ultimately, of their trajectories. As we will see, the 
reason for the increased challenge is the presence of accelerated motion. 
While accelerated motion is part of standard special relativity, as reflected 
in numerous references [5-6], the covariant treatment of the laws of physics 
can be challenging, especially when it comes to dynamics [7-8]. The 
accelerated motion of particles in particle accelerators is such an example. 
We divided the presentation into three main sections: introduction for a 
simple case, the analysis of complex motion under electromagnetic Lorentz 
force in particle accelerators and we end with a covariant formulation for 
the Hooke law. 

1. One-Dimensional Case for Particle Accelerated Motion 
under Constant Force 

We will start with the case that prompted the idea of rewriting the laws of 
physics in covariant form: 
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dp F
dt  where 

2

0 2

d xF m
dt     (1.1) 

where 

dp
dt  is the variation of momentum with respect to time under the 

application of force F . In one dimension, the relativistic momentum is 

simply 0 ( )p m u u
, so: 

3
0 ( )dp dum u

dt dt      (1.2) 

where 0m
is the particle rest mass, u  is its speed with respect to same inertial 

(arbitrary) frame of reference and 
2

1( )
1 ( / )

u
u c . In another 

inertial frame of reference, S’, moving with speed V  along the common x-
axis: 

0' ( ') 'p m u u
     (1.3) 

2

'
1

u Vu uV
c      (1.4) 

2( ') ( ) ( )(1 )uVu u V
c     (1.5) 

So, it follows that: 

3
0

' ( )
'

dp dum u
dt dt      (1.6) 
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Interestingly, 

'
'

dp dp
dt dt . While p is frame variant, it turns out that for the 

one dimensional case 

dp
dt  is frame invariant. Another interesting fact is 

that in frame S Newton’s law is 

2
3

0 2( )dp d xm u
dt dt  then in frame S’ the 

law has the same form: 

2
3

0 '2

' '( ')
'

dp d um u
dt dt .  

This is an immediate consequence of the fact that: 

2

'2 '

3 3
2 2 2

' ' '
'

1 ( )
( )(1 ) 1 ( )(1 )

d x du du dt
dt dt dt dt

du
d u V dt

uV uV uVdtV V
c c c  (1.7) 

so: 

2 2
3 3

'2 2

'( ') ( )d x d xu u
dt dt     (1.8) 

We can conclude that, at relativistic speeds, Newton law 

2

0 2

dp d xm
dt dt  

must be replaced by 

2
3

0 2( )dp d xm u
dt dt  in order to be covariant. That is, 

the Newtonian expression of force 

2

0 2

d xF m
dt  needs to be replaced with 
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its relativistic counterpart 

2
3

0 2( ) d xF m u
dt . At low speeds ( ) 1u  

so the two expressions become indistinguishable but at relativistic speeds 
this is no longer the case. The above prompted Minkowski to reformulate 
Newton’s law as: 

d
d M
p F

      (1.9) 

where ( )d u dt  is called “proper time interval” and 
( )uMF F

is 

called the “Minkowski force”. So, 

d
d M
p F

is identical with

d
dt
p F

. The 
introduction of the Minkowski force gives us the idea to introduce yet a new 
construct [5]:  

( , ( . )) ( )( , ( . ))M M uF F F u F F u (1.10) 

We also introduce the 4-vector ( , )Ep p  where E is the total energy.  
The 4-vector introduced above is an extension to the 3-vector

( , , )x y zp p pp
. The 4-vectorp transforms exactly the same way [5] as

( , , , )x y z ct : 

2

2 2

( ) 1( ) [( ') ']
( )

( )( ' ( '))

V VV E
V V c

E V E

Vp p' V p

V p (1.11) 

In the following section we will show that ( )( , ( . ))uF F F u  is also a 4-
vector. In order to prove that, we will show that ( )( . )u F u  transforms like 
E  and ( )u F transforms like p . This will complete the proof that 

( )( , ( . ))uF F F u  is covariant.  
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2. The Covariance of  ( )( , ( . ))uF F F u  

In references [7-8] we have solved the problem of the complex motion of 
charged particles in the electromagnetic field of the particle accelerators by 
using the 3-vector formalism, in this paragraph we demonstrate how the 
problem is solved via the use of 4-vectors. The problem reduces to 
demonstrating the covariance of the motion law: 

d
d

p F
 

whereby ( ( ) ( ), ( ) ( ). / ) ( ( ) ( ),0)v q v q c v qF vxB vxB v vxB .  

We start by proving that 

( ( ) ( ), ( ) ( ). / ) ( ( ) ( ),0)v q v q c v qF vxB vxB v vxB  is a 4-
vector and we finish by showing the covariance of the laws of motion and 
by deriving the equations of motion. 

We start with the Lorentz transforms between the frames S and S’ moving 
at the relative speed V : 

2

' ( )( )
'
'

' ( )( )

x V x Vt
y y
z z

Vxt V t
c      (2.1) 

The correspondent of the 3-vectors  

(0,0, )
(0,0,0)

BB
E      (2.2) 

are in S’: 
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2

' ( )( ) ( )

( )( ) ( )

V V

V V
c

E E VxB VxB
VxEB ' B B

  (2.3) 

in the direction perpendicular to the velocity V=(V,0,0). For the direction 
parallel with V, the transformed values are: 

|| ||

|| ||

' 0
0

E E
B ' B      (2.4) 

( )
0 0

( )
0
0

y z y

x z x

y

x

v B v
q q v B qB v

v
v

v qB

F vxB

F

  (2.5) 

Thus, the Lorentz force in frame S’ is obtained through transforming F: 

2 2

22 2

11

2 2

1

2

/ /

11 1

( )( )'
1 1

0( )

1

yy z
x y z

xx x

x
y

x x

z
x

vv V c v V cF F F v Vv V v V
cc c

v VV F qBv V v V
c c
V Fv V
c

F

(2.6) 
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Given the above, we can demonstrate that 

( ( ) ( ), ( ) ( ) / ) ( ( ) ( ),0)v q v q c v qF vxB vxB .v vxB  is indeed 
a 4-vector. In frame S’: 

2

1

2

2

2
2

1

( )

1' ( ')( ', ' '/ ) ( ')

0
( ) ( )

(1 )

( )

0 ( ) 0

( )

y

x

x

x

x y x y

x

y

x

y

v
v V
c

v V
v V

v c v qB
c

v V v v v V
v Vc
c

v V
v

qB v

Vv
V

c

F F F .v

 (2.7) 

Thus, on a component by component basis: 

( )( ) ( ) ( ) ( ) '

'

' 0

( )( ) ( ) ( ) ( ) '

x w x xy

y y

z z

w x x wy

VV F F V F V v qBv F
c

F F

F F
V V VV F F V F V qB v v F
c c c (2.8) 
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so, indeed ( ( ) ( ),0)v qF vxB is a 4-vector. 

We are now ready to demonstrate the covariance of the motion laws. In 
frame S’: 

0 ( ')m vp' v'
     (2.9) 

0 02' ( ) ( )(1 ) ' ( ) ( ) ( )x
x x x

v Vp v V m v v V m v V
c (2.10) 

2 2

2 22

2

0 2

2

1
1' ( ) ( )

1

x x

x

dv v Vv v dv
dt c c dtv

dp cv V m
vd
c  (2.11) 

 

This is a very ugly expression, luckily we are “rescued” by the fact that, for 

the motion in an uniform B field, 
0dv

dt . Indeed, the time derivative of 
total energy W is: 

2
0

dW dm c
dt dt      (2.12) 

while, on the other hand: 

( ) 0dW q
dt

v.F v. vxB
   (2.13) 
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 so 

2

2

1( )
1

v
v
c =constant.  

Thus, the expression (2.11) reduces to a much nicer one: 

2
0

' ( ) ( )x xdp dvv V m
d dt     (2.14) 

Since 
,

'x
M x

dp F
d it follows that: 

2
0( ) ( ) ( ) ( )x

y
dvv V m v V qBv
dt   (2.15) 

That is: 

0( ) x
y

dvv m qBv
dt     (2.16) 

that is, exactly the equation of motion in frame S. 

For the y-component: 

0 02' ( ) ( )(1 ) ' ( )x
y y y

v Vp v V m v v m v
c   (2.17) 

2
0 0

' ( ( ))
( ) ( )y y ydp d v v dv
v m v m

d dt dt  due to the fact that 
( ) constantv . Thus, the equation of motion in the y direction is: 

2
0( ) ( )y

x

dv
v m v qBv

dt     (2.18) 

After further simplification, we recover the equation of motion in frame S: 
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0( ) y
x

dv
v m qBv

dt     (2.19) 

Conclusion: the equation of motion in frame S’ is identical to the equation 

of motion in frame S, the formulation 

d
d

p F
 for 

( ( ) ( ),0)v qF vxB is covariant and the equations of motion are 
exactly the same as the ones discovered in [7-8]. 

3. The Motion of Charged Particles Subjected Only  
to Electrostatic Force F=qE 

In order to examine the case of the electrostatic force we can assume that 
the electrostatic field is aligned with the x-axis without any loss of 
generality: 

( ,0,0)EE      (3.1) 

Thus, the three-force is: 

( ,0,0)qEF      (3.2) 

In frame S’, moving at speed V  with respect to S: 

'
' ( ) 0
' ( ) 0

x x

y y

z z

E E E
E V E
E V E      (3.3) 

Therefore: 

'
' 0 0

0 0

xqE qE
F

    (3.4) 
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We can prove now that 

( )( , / ) ( )( ,0,0, / )xv q q c v qE qEv cF E E.v  is a 4-vector. In 
frame S’: 

2

2

' ( ')( ', '. '/ )
1
0
0( ) ( )(1 )

(1 )

x

x

x

v c

v VqE v V
c v V

v Vc
c

F F F v

  (3.5) 

2

( )( ) ( )( ( ) ( ) / )

( ) ( ) (1 ) '

' 0

' 0

( )( ) ( )( ( ) / ( ))

( ) ( ) '

x w x

x
x

y y

z z

w x x

x
w

V VV F F V v qE v qEv c
c c

VvV v qE F
c

F F

F F
V VV F F V v qEv c qE v
c c

v VV v qE F
c (3.6) 

We are now ready to prove the covariance of the laws of motion. 

3
0 2

' ( )( ) ( ) ( ( ) ( ))x x xdp dv v v V dvv V m v v
d dt c dt (3.7) 
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Since 
( ,0,0)xvv

it follows that: 

2 2
0 2

4
0 2

' ( )( ) ( ) (1 ( ))

( ) ( ) (1 )

x x x

x x

dp dv v v Vv V m v
d dt c

dv v Vv V m
dt c  (3.8) 

Since 

' 'x
M

dp
d

F
 it follows that:  

4
02 2( ) ( )(1 ) ( ) ( ) (1 )x x xv V dv v Vv V qE v V m

c dt c (3.9) 

resulting into: 

3 3
0 0( ) ( )xdv dvqE v m v m

dt dt    (3.10) 

In frame S: 

0 ( )p m v v
     (3.11) 

4
0 0( ) ( ( ) ) ( )dp dt dp d dvv v m v v m

d d dt dt dt  (3.12) 

while the Minkowski force is: 

( )MF v qE
     (3.13) 

so, in S: 

3
0( ) dvqE v m

dt      (3.14) 
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Thus, the equation has the same exact form in both S and S’, that is, the 

motion law is Lorentz covariant, the formulation 

d
d

p F
 for 

( ( ) , ( ) / )v q v q cF E E.v  is covariant and the equations of motion 
are exactly the same as the ones discovered in [7-8].  

4.  The Motion of Charged Particles Under the General 
Lorentz Force F=q(vxB+E). The General Case of Particle 

Accelerators. 

If the conditions: 

(0,0, )
( ,0,0)

B
E

B
E      (4.1) 

or 

(0,0, )
(0, ,0)

B
E

B
E      (4.2) 

are fulfilled the case reduces at the superposition of the forces qvxB and qE, 
where E and B are orthogonal, so the general Lorentz force maintains 
covariance. This is obvious since the sum of two four vectors (qvxB and qE 
in the above case) is also a four-vector. 

For the case of the more general situation: 

(0,0, )
( , , )x y z

B
E E E

B
E

     (4.3) 

whereby E and B are no longer orthogonal we make good use of the fact 
that this particular case can be reduced to (4.1)-(4.2), so the covariance 
holds.  
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Arriving at this point we can produce an alternative proof by showing that 
the three-vector density of the Lorentz force 

( )L convf E vxB E j xB
 forms a four-vector 4( , )fLf

where: 

4

1
, 1, 2,3, 4j jk k

k
f F s j

    (4.4) 

In (4.4) 4( , ) ( , , , )x y zs j j j icconvj
 is the four-vector convection 

current density, and 

0

0

0

0

x
z y

y
z x

jk
z

y x

yx z

iEB B
c

iE
B B

cF
iEB B
c

iEiE iE
c c c    (4.5) 

is the electromagnetic field tensor. When passing from a frame S to another 
frame S’ moving with relative speed V the tensor components transform as 
follows: 

2

2

', '

( )( ' ')

( )( ' ')

( )( ' ')
( )( ' ')

x x x x

y y z

z z y

y y z

z z y

B B E E
VB V B E
c
VB V B E
c

E V E VB
E V E VB

    (4.6) 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Relativistic Forces in Special and General Relativity 77 

and the four-vector components transform as: 

2

( )( ' ' )
'
'

( )( ' ')

x x

y y

z z

x

j V j V
j j
j j

VV j
c     (4.7) 

Inserting (4.6) and (4.7) in (4.4) we obtain: 

1

2 2

3 3

4

( )( ' ' ' ' ' ' ' ')
' ' ' ' ' ' '
' ' ' ' ' ' '

( )( ' ' ( ' ' ' ' ' '))

y z z y x x x

z x x z y

x y y x z

x x

x x y z z y x

f V B j B j E E j
f B j B j E f
f B j B j E f

if E j
c

i V E j V B j B j E
c (4.8) 

On the other hand, according to (4.4), in frame S’: 

1

4

' ' ' ' ' ' '

' ' '

y z z y x

x x

f B j B j E
if E j
c    (4.9) 

Introducing the notation 4 ' ' 'x xE j
 we obtain immediately: 

1 4 12

4 1 4

( )( ' ')

( )( ' ')

VV f f
c

V Vf f     (4.10) 
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so 4( , )fLf
 is indeed a four-vector, thus, we have proven the covariance of 

the formulation 

d
d

p F
 for the most general case. The 4-vector 

formalism produces the same results as the 3-vector formalism described in 
references [7-8] with the advantage of being easier to use by requiring fewer 
steps in the derivation of the equations of motion.  

5. Covariant Formulation of Hooke’s Law 

In 1981, Gron has shown [4] that it isn’t always possible to use the 
Newtonian expressions of force in order to derive covariant formulations of 
the laws of physics in relativity. For a detailed discussion of the Gron paper, 
see Appendix A. The correct way is to introduce the concept of motion 

under stress; under the effects of the stress force 
'F
 the end of the object 

will move with the velocity 
( ,0,0)xvv

 (in the one-dimension case) as 
measured in the proper frame J’. We revert to our original convention of 
labeling the proper frame with S and the observer frame with S’ while their 
relative speed is V  (aligned with the x-axis for the one-dimension case). 
Assuming the above definition of motion under stress we introduce the four-
vector stress differently: 

( ( ) , , , ( ) )x y z x
vL v l l l v l
c    (5.1) 

In the ideal case of a one dimension problem there is no deformation in the 

directions orthogonal to x, so we can assume that 
( , ) (0,0)y zl l

. 
Therefore, in the proper frame S, the Hooke force takes the form: 

( ( ) ,0,0, ( ) )x x
vF k v l v l
c    (5.2) 

that is, there are no force components in the y and z. The equation 
dp F
d  reduces to: 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Relativistic Forces in Special and General Relativity 79 

3
0( )x

dvkl v m
dt      (5.3) 

In the observer frame S’, the Hooke force is defined as: 

'' '( ( ') ',0,0, ( ') ' )x x
vF k v l v l
c    (5.4) 

In the proper frame S the factor k is connected to the Young modulus E, the 
original cross-sectional area A0 is through which the force is applied; and 
the original length of the object, L0. 

0

0

EAk
L       (5.5) 

where the Young modulus, E  is defined as: 

0

0

fLE
A L       (5.6) 

The Young modulus is not frame invariant. Indeed, for a force applied along 

the x-axis, given that
( , ) (0,0)y zf f

: 

'
' / ( )

x x

x x

f f
L L V      (5.7) 

so,  

' ( )E V E      (5.8) 

meaning that  

' ( )k V k      (5.9) 

From (5.4) and (5.9) we obtain immediately: 
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2( ')( ' ') ( ) ( )(1 )( )x x
vVv k l v V kl
c   (5.10) 

Combining (5.10) with (3.7) we obtain immediately: 

3
0( )x

dvkl v m
dt      (5.11) 

meaning that  

' 'dp F
d , so, the formulation given by (5.1), (5.2) is 

indeed covariant. 

By comparing (5.2) with the Minkowski definition [5-6] of four-force, 

( )( , , , )x y z x
vF v f f f f
c  we obtain the corrected components of the 

four-force: 

0
0

x x

y

z

f kl
f
f       (5.12) 
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Appendix A 

In his paper, Gron starts by defining the four-strain in the proper frame J’ 
as: 

' ( ', ', ', 0) ( ' ', ' ', ' ', 0)x y zL l l l x X y Y z Z
 (A.1) 

where 
' ( 1, 2,3, 4)X

 is the equilibrium position of the front end of 
the body when the body is stress-free. The position vector 

' ( 1, 2,3, 4)x
 represents the position of the front end of the body 

relative to its back end when the body is stressed. In a frame J moving with 
the relative speed u with respect to J’, the stress is: 

( ( ) ', ', ', ( ) ' )x y z x
uL u l l l u l
c    (A.2) 

Since length measurement is defined as the process of marking both ends of 
the measured object simultaneously in the frame of the observer (J) it 
follows that: 

1( ) '
'
'

x x

y y

z z

l u l
l l
l l      (A.3) 

Substituting the above in the expression for the stress in frame J, 
L

, Gron 
obtains: 
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2 2( ( ) , , , ( ) )x y z x
uL u l l l u l
c    (A.4) 

If 
F

 is the four-force acting on a body that induces the strain 
L

 in the 
said body, then, the expression of the Hooke force is: 

F kL
      (A.5) 

At this point in his paper, Gron makes the mistake of equating 
F

 with 

( )( , , , )x y z x
uu f f f f
c . This error results into a formulation of the Hooke 

law that can be proven to be non-covariant in just a few simple computations 
by using the mechanism developed in paragraphs 1-4 above. The relative 
speed between frames, u, should not occur in the definition of the four-force, 
see for example references [5-8], the definition is a function of the particle 
speed with respect to an inertially commoving frame, not of the relative 
speed between two frames of reference (see also paragraph 1 in the current 
paper). 
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COORDINATE TIME HYPERBOLIC MOTION 
TREATMENT FOR BELL’S SPACESHIP 

EXPERIMENT  
  
 
 

Synopsis 

In Bell's “spaceship” experiment [1], two spaceships that are initially at rest 
in some common inertial reference frame, are connected by a taut string. At 
time zero in the common inertial frame, both spaceships start accelerating, 
with a constant proper acceleration a as measured by an on-board 
accelerometer. Question: when does the string break as expressed as a 
function of coordinate time? For simplicity, throughout the paper, all objects 
(string, rockets) are considered as being Born-rigid, thus neglecting the very 
minor effects on the length of the objects during the accelerated motion. We 
have provided earlier [9] a treatment expressed in terms of proper time , in 
the current chapter we will show a different approach in terms of coordinate 
time, t  .  

Analysis in using the equations of hyperbolic motion 
 as function of coordinate time 

Bell's paradox is easily understood if we start by looking at the situation in 
the instantaneously co-moving inertial rest frame (ICIRF) of the rear 
spaceship at a given instant in time. In that frame at that time the rear 
spaceship is at rest, and at the same time the front spaceship has nonzero 
velocity moving forward. Now do this for the ICIRF of any small portion 
of the string, and each spaceship is moving away from the portion in 
question. So from the standpoint of the string, each small region of the string 
must stretch and eventually break when its elastic limit is exceeded. In [9] 
we have shown a treatment expressed in terms of proper time. In the current 
paper we will show a different treatment, expressed in terms of coordinate 
time. The two treatments are different both physically and mathematically.  

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Coordinate Time Hyperbolic Motion Treatment for Bell’s  
Spaceship Experiment 

84 

 

Fig. 1. Minkowski Diagram for Bell’s Spaceship Experiment 

The two rockets A and B describe the hyperbolic trajectories (see fig.1):   

2
2

2
2

1 ( )

1 ( )

leading

trailing

c atx L
a c

c atx
a c     (1) 

Let’s consider the instantaneous co-moving frame  (an inertial frame with 
the origin attached to the trailing rocket) at an arbitrary coordinate time tA. 
The  axis makes an angle  with the x axis where: 
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2

( )tan( )
1 ( )

A

A

A

at
v t c

c at
c    (2) 

The  axis represents a line of simultaneity in frame . If we want to 
determine the distance between the two rockets at coordinate time tA as 
measured in , we have to intersect the  axis with the trajectory of the 
leading rocket, that is, we have to solve for t the system of equations:  

2
2

( )* tan( ) ( )

1 ( )

A Ax x c t t

c atx L
a c    (3) 

where: 

2
21 ( )A

A
atcx

a c     (4) 

The system reduces to a simple equation degree 2 in t that has a positive 

root 'B At t
: 

2 2
21 ( ) 1 ( )A

A

atat t La
c t c c    (5) 

with the solution: 

2
2 2 2

' 2 ( 1 ( ) ( ) ( ) )A A
B A

at atLa ct t
c c La c  (6) 

From (6) it is obvious that 'B At t
. Once we find 'Bt  we can easily find 

the coordinate (in frame S) of the leading rocket: 
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2
2'

' 1 ( )B
B

atcx L
a c     (7) 

We can now apply a Lorentz transform between the launcher frame S and 
the co-moving frame  in order to get the distance between the rockets 
calculated in frame : 

' ' '' ( ( ))( )B A B BL v t x vt
   (8) 

where: 

2( ( )) 1 ( )A
A

atv t
c     (9) 

and: 

2
2' '

' '
2

1 ( )
1 ( )

B A B
B B

A

at at tcx vt L
a c at

c  (10) 

We can show easily that the function: 

2
2' '

'
2

( ) 1 ( ) 0
1 ( )

B A B
B

A

at at tcf t
a c at

c  
 (11) 

since: 

'

2 2' '

( ) 0
1 ( ) 1 ( )

B A

B B A

t tdf a
dt at at

c c   (12) 
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for any 'B At t
. This is due to the fact that the function 

2

( )
1 ( )

tg t
at
c  is monotonically increasing. Thus, we can conclude 

that the distance between the rockets in the co-moving frame is larger than 
their distance L as measured in the launcher frame: 

2
2 2' '

'
2

1 ( ) ( 1 ( ) )
1 ( )

A B A B
B

A

at at at tcL L
c a c at

c (13) 

Since At  has been chosen arbitrarily and since 'Bt  is a function of T(t) as 
described by equation (5), we can also write the distance between the two 
rockets as a function of the coordinate time t, as measured in the co-moving 
frame , as a more general formula: 

2
2 2

2

( ) ( )'( ) 1 ( ) ( 1 ( ) )
1 ( )

at c aT t atT tL t L
c a c at

c (14) 

The distance between rockets increases with the coordinate time t so the 
string will get stretched until it breaks. 

When does the string break? 

The calculation of the time when the string breaks requires that we take into 
consideration that each infinitesimal element of the string moves at a 
different speed as viewed from frame , as we have shown in the previous 
section. So, each infinitesimal element will stretch by a different amount. 
The formalism built in the prior section will be very useful in calculating 
the amount of stretching.  
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Fig. 2. Stretch Calculation 

Consider an infinitesimal element of length dl as viewed from frame S, its 
endpoints will describe the hyperbolas: 

2
2

2
2

1

1 ( )

1 ( )

i

i

c atx
a c

c atx d
a c    (15) 

According to (6) the  axis intersects the two hyperbolas at: 

1

2
2 2 2

2

( )

( 1 ( ) ( ) ( ) )

i

i

A A A

t p
t d p

at at atcp
c c La c   (16) 
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Substituting (16) into (15) we obtain: 

2
2 21

1 ( 1 ( ) 1 ( ) )i i
i i

at atcx x d
a c c  (17) 

So, the infinitesimal element is stretched by the amount: 

2
2 2 2 21

1( 1 ( ) 1 ( ) ) ( )
2

i i
i i

at atc a t t
a c c  (18) 

Substituting (16) into (18) we obtain: 

2
2 2 2 2 2

1( ) (( ) )
2 2i i
a apt t d ap d

 (19) 

The total stretch is obtained by integrating (19): 

2 2
2

0 2

L ap Lap d
    

 (20) 

Since tA has been taken arbitrarily it means that, in general, p is a function 
of t: 

2
2 2 2

2 ( 1 ( ) ( ) ( ) )at at c atp
c c La c   (21) 

Material science teaches us that for any string of given length L, cross-
section area A and given tensile strength, there is a limit, L, beyond which 
it will break if stretched. The time of string breaking will be given by solving 
the equation (22) function of coordinate time, t: 

2 2

2
ap L L

     (22) 
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We have shown the realistic computations of the string stretching as a 
function of the coordinate time. 
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ROTATING FRAMES EXPERIMENT FOR DIRECT 
DETERMINATION OF RELATIVISTIC LENGTH 

CONTRACTION  
 
 
 

Synopsis 

The subject of length contraction appears very early in textbooks [1] as well 
as in various forms in papers dedicated to teaching relativity [2-6]. 
Unfortunately, no experiment has been possible to date due to the fact that 
the predicted effects are very small In the current paper we extend the 
treatment to the case of the arbitrary orientation between two inertial frames. 
We use the information relative to the way length contraction occurs in 
rotating frames combined with the discovery that light speed is locally 
isotropic in order to construct the special relativity theory for the Michelson-
Morley experiment executed in uniformly rotating frames and we 
demonstrate how the experiment can be viewed as an indirect proof of 
length contraction. By contrast, the immediately following section describes 
the experimental setup for a direct measurement of length contraction, a 
relativistic property that has eluded so far experimental verification. We 
show how modern technology, in combination with the theory advanced by 
our paper, make this experiment feasible.  

1. Length contraction in arbitrary-oriented inertial frames 

The vector approach allows for generalizing the length contraction formulas 
to the case when the axis of the inertial frames S and S’ in relative motion 
with the velocity v with respect to each other (see fig.1). 

2

1' ( )t
v

r r v r.v
    (1.1) 

2' ( )t t
c
r.v

      (1.2) 

where 'r  is the positional vector of an arbitrary point in S’.  
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In frame S’ we need to mark both ends of the rod simultaneously in order 
to perform the length measurement, so ' 0t .Thus: 

2t
c
r.v

      (1.3) 

2 2 2

1 1' ( ) ( )t
v v c

r r v r.v r v r.v
(1.4) 

where 'r  is a vector connecting two arbitrary points in S’. 

1

2

1'
v

r r v r.v
    (1.5) 

We can decompose r into || ||r v
and 

r v
: 

1

|| ||2

||1
|| ||

1'

( 1)

v r
v

r
v

r r r v

rvr r r
  (1.6) 

Thus: 

2
||2 2
2'
r

r r
     (1.7) 
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Fig. 1 Arbitrary frames with misaligned axes 

For an arbitrary orientation of a rod of proper length L located in the frame 

S, || cos , sinr L r L
 , so (1.7) can be rewritten as 

2cos' 1 ( )vL L
c     (1.8) 

To conclude the section, we compute the time dilation as simply: 

2' ( ) ( 0)t t t t
c
r.v

  (1.9) 

Could it be that we can derive similarly elegant formulas for the case of 
rotating frames?  
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2. Length contraction in uniformly rotating frames 

In this paragraph, we become even more ambitious by considering that the 
frame of reference S’ is rotating with a constant angular speed describing a 
circle with the origin coincident with the origin of the inertial frame S. The 
coordinate transformations between S and S’ are given in7,8.   

cos ' sin ' ' cos ' 1
sin ' cos ' ' sin '

x t t x t
R

y t t y t (2.1) 

z=z’       (2.2) 

2

'( ' )Ryt t
c      (2.3) 

where

2 2

2

1

1 R
c  

Consider a rod of length L’ situated at x’=y’=0, in frame S’. From the 
perspective of an observer in the inertial frame S we need to mark both ends 
of the rod simultaneously, so 0dt .For simplicity, the measurement is 
executed at 0t . This implies immediately that ' 0t . Thus: 

2

2

2

'cos ' 'sin ' ' 'sin '
' cos ' ' sin ' '

'sin ' ' 'cos ' '
'cos ' ' sin ' ' cos ' '

' '

dx dx t x t dt dy t
y t dt R t dt

dy dx t x t t dt
dy t y t dt R t dt

Rdt dy
c  (2.4) 

For ' ' ' 0x y t : 
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2 2

2

'
'' ' '(1 )

dx dx
R dydy dy R dt dy

c  
 (2.5) 

 

Fig. 2 Rotating frames 

For an arbitrary orientation of the rod in the rotating frame S’, 
' 'cos , ' 'sindx L dy L  , where L’ is the proper length. 

Therefore, the length contraction formula for rotating frames is: 

2sin' 1 ( )RL L
c     (2.6) 

If we consider two orthogonal rods of lengths 1 'L
 and 2 'L

 in S’ (like the 
arms of the Kennedy-Thorndike interferometer), their lengths as measured 
from S are respectively: 
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2
1 1

sin' 1 ( )RL L
c     (2.7) 

2
2 2

cos' 1 ( )RL L
c     (2.8) 

The formula for time dilation in uniformly rotating frames is: 

' 02

'( ' ) | 'y
R yt t t
c    (2.9) 

Interestingly enough, the solution to the problem retains its original 
elegance. 

3. The Michelson-Morley experiment  

Textbooks present the Michelson-Morley experiment from the perspective 
of an inertial frame. In reality, the experiment is executed in the rotating 
frame of the lab anchored to the rotating Earth, so we will use the derivation 
from the previous sections in order to derive the predictions of special 
relativity for a uniformly rotating lab. All the calculations will be done from 
the perspective of the inertial frame S. We must first answer the question of 
light isotropy in rotating frames. We start with the fact that in the inertial 
frame S, light propagates with speed c: 

2 2 2 2( ) 0dx dy dz cdt    
 (3.1) 

We will use this information in order to calculate the light speed in the 
rotating frame S’ via an approach that we have used in a prior paper [9]. For 

' ' 0x y , we start with the infinitesimal quantities: 
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2

'cos ' 'sin ' sin ' '
'sin ' 'cos ' cos ' '

'

( ' ')

dx dx t dy t R t dt
dy dx t dy t R t dt
dz dz

Rdt dt dy
c    (3.2) 

Substituting into (3.1), we obtain: 

2 2 2 2

2 2 2 2
2 2 2 2 2 2 2

2 2

2 2 2 2 2

( )

' (1 ) ' ' (1 ) '

' ' ' '

dx dy dz cdt
R Rdx dy dz c dt

c c
dx dy dz c dt (3.3) 

In other words, the light speed measured in the rotating frame S’ in a small 
vicinity of the origin is also c. This result, though not surprising, is by no 
means trivial, since it required the computations shown above. Now we 
have all the tools to attack the explanation of the Michelson-Morley 
experiment as viewed from the rotating frame of the lab. 

 
Fig. 3 The Michelson-Morley experiment in rotating frames 
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An observer at rest in the inertial frame S views the Michelson-Morley 
experiment [10] as follows: the light travels with the speed c along the rod 
of length L2 , parallel with v. Because the mirror at the end of the rod recedes 
with the speed +v in one direction of light propagation and with speed –v in 
the other direction, the observer in S views the roundtrip time as: 

22 2 2
2

2L L Lt
c v c v c    (3.4) 

The rod perpendicular on v has the length L1. In frame S, the observer sees 
(ct)2=L1

2+(vt)2 from where we obtain that the roundtrip time as seen from S 
is: 

1 1
1

2 2 'L Lt
c c     (3.5) 

According to the previous section, as seen from S, L1=L1’ and L2=L2’/  

Therefore: 

2
2

2 'Lt
c      (3.6) 

From the perspective of frame S,   

2 1
2 1

2( ' ')L Lt t
c     (3.7) 

We know that an observer in S will report the time delta of an experiment 
performed in S’ dilated by the factor . From (3.7) and L1’=L2’ we get that, 
in S’  

2 1
2 1

2( ' ')' ' 0L Lt t
c     (3.8) 

Expression (3.8) explains the null result of the Michelson-Morley 
experiment as judged from the rotating lab frame S’.  
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Fig. 4 The MichelsonMorley experiment

It is interesting to note that the above theoretical explanation can be 
construed as an indirect experimental proof for length contraction. 

4. Direct measurement of length contraction

We have seen in the previous section how the Michelson-Morley 
experiment can be viewed as an indirect proof of length contraction. Based 
on the theory developed in section 2, we construct the experimental setup 
for direct measurement of length contraction. A small, electrically charged, 
steel ball of radius of r=1mm is moving at speed v=.03c in the magnetic 
field of a particle accelerator along a circular trajectory; it is well known 
that the angular velocity is constant. The advent of the Large Hadron 
Collider (LHC) has made such speed realizable. A laser beam is aimed from 
the center of the trajectory towards a photon counter placed outside the ball 
trajectory (see fig.5). In every revolution, in the absence of any length 
contraction, the ball would interrupt the reception of the laser beam for a 
time:

vttvttvtt vv

ctt

Observerer
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2 'rt
R       (4.1) 

where r’ is the proper radius of the sphere. According to (2.6) the length 
contraction will affect the measurement by an amount: 

2 2

2 2

2 ' (1 1 ) 'r R Rt r
R c c    (4.2) 

A perfectly equivalent way of looking at the above derivation is to start 
from: 

2

'( ' )Ryt t
c      (4.3) 

The extremes of the sphere diameter pass through the point ( , ) (0, )x y R  

twice, once at 1 ' 0t
 and a second time at 

2
2 '' rt

R . Substituting into 
(4.3) we obtain: 

2 2

2 2 2 2

2 2

' 2 ' *2 '( ' ) ( )

2 ' 2 '(1 ) 1

Rdy r R rdt dt
c R c

r R r R
R c R c  (4.4) 

so, the measurement will be affected exactly by the amount predicted by 
(4.2). The time the light beam is shut off from the observer is shortened due 
to the length contraction of the “shutter”, that is, due to the relativistic 
contraction of the sphere diameter. At 0.03R c  the effects are 

2psdt and .1pst . Until recently such time intervals were not 
measurable since they would require a counter of the order of 10Thz. 
Modern advances in the semiconductor technology [11] have made counters 
of the order of 40Thz possible. Using such a high speed counter variations 
of the order of .03ps can be detected so we can use speeds as low as v=.01c 
for our experiment.  
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Fig. 5 Direct measurement of length contraction 

At such “pedestrian” speeds of v=.01c, the Abraham-Lorentz force 
2

36 o

q d
c dtrad

aF
 due to the emission of electromagnetic radiation is 

negligible by comparison to the Lorentz force. For example, in the case of 
executing the experiment at LHC, it is easy to show that at v=0.03c, q=10-2 
Coulomb and for a trajectory of a 4km radius the Lorentz-Abraham force 
evaluates to a meager 1.4*10-6N.  

The judicious choice of 0.03  ensures that there is no radiated 
electromagnetic energy to interfere with the laser beam used for 
measurement. Indeed, at such low values for  the Larmor formula for 
electrical field: 

rad 2
0

( ( ))
4

q d
c R dt

R vE R
   (4.5) 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Rotating Frames Experiment for Direct Determination of Relativistic  
Length Contraction 

102 

produces rad 0E
 for circular motion. This results into a null Poynting 

vector, radS
. Any spurious source of background radiation is blocked by a 

precisely drilled collimator placed between the laser and the photon counter. 
The other important observation is that whole experiment lasts a few 
revolutions, that is, a few microseconds, thus the diurnal variation in the 
Earth angular velocity will not affect the experiment in any form. The third 
observation is that the experiment, due to its periodic nature, produces 
naturally multiple sets of data for error analysis. This is a major advantage 
of the rotational motion versus any experiments that would employ a single 
pass linear motion. The recent combination between giant particle 
accelerators and very high frequency counters has made direct measurement 
of length contraction perfectly realizable. The repetitive nature of the 
rotational motion allows multiple passes at measurement with a perfect 
reproducibility. Control over the speed of the steel sphere allows different 
measurements of different amounts of contraction. Obviously, higher 
speeds will allow for a bigger effect to be observed. On the other hand, 
further advancements in the technology of high speed counters will allow 
the use of lower speeds, making the experiment less expensive to reproduce.  
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SPECIAL RELATIVITY EXPERIMENTS 
EXPLAINED FROM THE PERSPECTIVE  

OF THE ROTATING FRAME  
 
 
 

Synopsis 

In this chapter we present an explanation of several fundamental tests of 
special relativity from the perspective of the frame co-moving with a 
rotating observer. The solution is of great interest for real time applications 
because Earth-bound laboratories are inertial only in approximation. We 
present the derivation of the Sagnac, Michelson-Morley, Kennedy-
Thorndike and the Hammar experiments as viewed from the Earth-bound 
uniformly rotating frame or, as in the case of the Mossbauer rotor 
experiments, from the perspective of the rotating device. An entire section 
is dedicated to length/time measurement and to clock synchronization and 
another one to the Doppler effect and aberration on uniformly rotating 
platforms. The current paper brings new information in the following areas: 

- new approach for clock synchronization on a rotating platform       
- new approach for length measurement in rotating frames        
- new explanation of the Doppler effect and of the Mossbauer rotor 

experiment                                                                
- new explanation of the Kennedy Thorndike experiment  
 

The main thrust of the paper is to give a consistent explanation of various 
tests of special relativity as judged from the perspective of the rotating frame 
of the experimental setup.  In addition, we correct certain misconceptions 
relative to clock synchronization and length measurement that have 
survived a long time in the specialty literature. A special chapter is dedicated 
to the derivation of the Doppler effect and of aberration in rotating frames. 
It is shown that such derivation is far from being trivial.  

1. Introduction 

Real life applications include accelerating and rotating frames more often 
than the idealized case of inertial frames. Our daily experiments happen in 
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the laboratories attached to the rotating, continuously accelerating Earth. 
Usually, such experiments are explained from the perspective of an external, 
inertial frame because special relativity in rotating frames is viewed as more 
complicated. In the present paper, we will construct a straightforward 
explanation by applying the formalisms developed in previous work [1-7]. 

2. Light Speed in Uniformly Rotating Frames 

In an inertial frame K  the coordinates are ( , , , )T R Z  . In a frame 'K  
rotating with respect the inertial frame, the coordinates are ( , , , )t r z  . The 
angular speed of rotation between the two frames is  . The transformation 
between the frames is [8]: 

T t
R r

t
Z z       
 (2.1) 

 
Fig. 1. Rotating frames of reference 
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The line element in the inertial frame is: 

2 2 2 2 2 2 2( )dS c dT dR R d dZ   (2.2) 

The positive term represents the time displacement and the negative term 
represents the total distance displacement. The line element expressed in the 
rotating frame coordinates according to (2.1) is: 

2 2 2 2 2 2 2 2 2 2( ) 2dS c r dt dr r d dt r d dz (2.3) 

We know that light follows null geodesics, so: 

2 2 2 2 2 2 2 2 20 ( ) 2c r dt dr r d dt r d dz (2.4) 

From (2.4) we obtain the expression of light speed in the direction collinear 
to the tangent to the circle described by the origin of the rotating frame by 
making 0dr dz : 

2 2 2 2 2 2 20 ( ) 2c r dt r d dt r d   (2.5) 

or: 

2 2 2 2 2 20 ( ) 2 ( )d dc r r r
dt dt   (2.6) 

d c
dt r      (2.7) 

We are interested in the proper light speed in the rotating frame,

dr
d  , so 

we need to obtain the relationship between proper and coordinate time in 
the rotating frame. We obtain this by nulling the distance displacement in 
the rotating frame, 0dr dz d  such that there is only (proper) time 
displacement cd  (see Fig.2): 
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2 2 2 2 2 2( )c d c r dt     (2.8) 

i.e. 

2 2

21 rd dt
c      (2.9) 

Therefore: 

_ tan gent 2 2

21
proper

d d dt r cv r r
d dt d r

c  (2.10) 

The proper light speed in the radial direction is: 

_proper r
dr dr dtv
d dt d     (2.11) 

and can be calculated by making 0dz d  in (2.1): 

2 2 2 2 20 ( )c r dt dr     (2.12) 

_proper rv c
     (2.13) 

The proper light speed in z direction is: 

_proper z
dz dz dtv
d dt d     (2.14) 

and can be calculated by making 0dr d in (2.1): 

2 2 2 2 20 ( )c r dt dz     (2.15) 

_proper zv c
     (2.16) 
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Fig. 2. Light speed in the rotating frame (

2 2

2

1

1 r
c  ) 

3. New Approach in Length Measurement and Clock 
Synchronization on Uniformly Rotating Platforms 

Length measurement on a rotating platform can be somewhat challenging 
in terms of complexity of the physics involved. It needs to be stressed that 
we are interested in measuring distances between points at rest in the 
rotating frame 'K  as opposed to measuring distances between points at rest 
with respect to the inertial frame K  as attempted from frame 'K . This 
represents a massive difference from [30], section 82 where the authors are 
interested in calculating the perimeter of a circle at rest in K as being 
measured with a contracted yardstick at rest in 'K . We conduct our 
experiments in the rotating frame, therefore we are interested in length 
measurements executed in the rotating frame. In this section we present a 
general formalism for length measurement in the rotating frame 'K that 
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builds on the previous section. Consider two points: A and B situated close 
enough on the periphery of the rotating platform such that a light signal sent 
from A to B and back can be approximated with being tangent to the circle 
passing through the two points (see Fig.3). 

 
Fig. 3 Length Measurement on a rotating platform 

Then, the light speed from A to B is 

2 2

21
AB

c Rc
r

c  and the light speed 

from B to A is 

2 2

21
BA

c Rc
r

c . The transit time for the light between A 
and B and back is obtained by solving with respect to time the equation (2.4) 
with the results: 

2 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2

( ) ( )( )
| |

( ) ( )( )
| |

AB

BA

r d r d c r dr dz r d
dt

c r
r d r d c r dr dz r d

dt
c r (3.1) 
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We needed to take the absolute values in order to get positive numbers for 

the time intervals. We should also note that we chose 
| | | |AB BAdt dt

 since 
the light front originating in A “chases” point B. What we really need for 
calculating the proper distance between A and B is the proper times: 

2 2

2

2 2

2

| | 1

| | 1

AB AB

BA BA

rdt
c

rdt
c     (3.2) 

The proper distance between A and B is: 

2 2 2 3 2
2 2

2 2 2 2 2 2 2
2

2 2

2
1( )

1 1

AB AB BA BAc cdl

r c d r ddr dz
c r r rc

c c (3.3) 

On planar circle 0dz dr  so (3.3) reduces to: 

dl rd       (3.4) 

So, the observer co-moving with the rotating frame measures the perimeter 
of a circle of radius r  to be 2 r  .It is worth noticing that formulas (3.3)-
(3.4) disagree with the formulas derived at the end of chapter 89 in [30]. We 
can trace the error in [30] from the fact that the authors mix the isotropic 
light speed, c  , measured in the inertial frame with the proper time measured 
in the rotating frame, such that their formula (84.6) in [30] is equivalent to: 

2 2 2
2 2

2 2 22
AB BAc c r c ddl dr dz

c r  (3.5) 

The error in (84.6) leads to the subsequent error: 
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2 2

21

rddl
r

c      (3.6) 

Amazingly enough, this error has “survived” four editions of this otherwise 
excellent book. The length measurement in the radial direction starts simply 
by assuming  0dz d  into (3.1), therefore: 

2 2 2
| | | |AB BA

drdt dt
c r    (3.7) 

This means that there is no length contraction in the radial direction: 

2
AB BAc cdl dr

    (3.8) 

The length measurement in the z  direction starts simply by assuming  
0dr d  into (3.1), therefore: 

2 2 2
| | | |AB BA

drdt dt
c r     (3.9) 

This means that there is no length contraction in any direction orthogonal to 
the motion. In Einstein clock synchronization a light signal is bounced from 
point A to point B and back to A. The clock at point A is reset at the 
beginning of the light roundtrip.  When the light signals reaches B, the clock 
at B is reset to zero. When the light signal  reaches A again, the clock at A 
is set to half the total elapsed time, thus clocks A and B show the same exact 
time, equal to the distance between A and B divided by the isotropic light 
speed, c. The method works because in inertial frames light speed is 
isotropic, we have seen that this is not the case on a rotating platform. 
Nevertheless, the Einstein method is used routinely on the rotating Earth. 
How much error is induced by the light speed anisotropy? The error is given 
by: 

2 2
AB BA AB BA

BA
   (3.10) 
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Inserting (3.1) into (3.10) we obtain: 

2
2

21

r d
rc

c       (3.11) 

If we attempted to blindly synchronize clocks on the circumference of a 
circle through the above method, we will find that the total accumulated 

error to be equal to

2
2

2

2

1

r
rc

c . 

Looking at the issue in a different way, a 10m distance between A and B 

corresponds to
610 radd  . Since the maximum value for the tangential 

speed is  460m/sr  and 
57.29*10 rad/s  it follows from (3.11) 

that the error is of the order of 
1535*10 s  .This is a very small number but 

we can do better than that, we can make the error to be zero [10] if we have 
access to the center of rotation. By placing a mirror in the center of the 
platform and aligning its normal with the bisector of the angle AOB we can 
synchronize the clocks in A and B perfectly since the elapsed times for a 
light ray to bounce on the path AOB is equal to the time on the return path 
BOA due to the fact that light speed is equal to c along the radius of the 
circle as per (2.13). See Fig. 4  

 
Fig. 4 Perfect synchronization on a rotating platform 

The above scheme needs a slight correction: while the light travels from A 
to O, the platform and the attached mirror, rotate in the direction from A to 
B by a very small angle: 
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2 2

21A
r r
c c     (3.12) 

By the time the light has reached B, the angle between the initial position of 
A and the final position of B has opened up by: 

2 2

22 1B
r r
c c     (3.13) 

The above means the angle AOB “widens” by B so the mirror would need 

to be angled by A in the direction of rotation. Luckily, on the return path 

from B to O to A, the reverse happens, the angle BOA “narrows” by B so, 
on average, we do not have to do any correction. This is important because 
we couldn’t do the correction in first place since it is of the order of /v c  
.The method can be generalized to synchronizing any number of clocks on 
the periphery of a rotating platform. The idea is to send an electromagnetic 

signal from A to B containing a digital encoding of the time A  on clock A. 
Upon receiving the signal, clock B gets reset to:  

2
B A

r
c     (3.14) 

After that, the mirror is rotated by the appropriate angle and a signal 

encoding the current (updated) value 
'
B is sent to C and the process 

continues.  

4. The Sagnac Experiment Explained from the Perspective 
of the Rotating Platform 

The Sagnac experiment [11-13] is usually explained from the perspective 
of an inertial frame since the mathematical formalism is simpler from that 
perspective. In this section, we will use the results derived in the previous 
section in order to produce an equally straightforward explanation. Based 
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on the prior results, the observer co-moving with the rotating frame 
measures the perimeter of a circle of radius r  to be 2 r , the time 
difference between the clockwise and counterclockwise light fronts is 
calculated as: 

2

2 2
2

2 2 2 2 2

2 2

1 1 42 ( )
1

1 1

rr c r c r rcr r c
c c

 (4.1) 

The phase difference is: 

2 2 2 2

2 2 2 2
2 2

2 2

4 4

1 1

r R
r rc c

c c  
 (4.2) 

It is interesting to notice that the phase difference is frame invariant.  

5. The Michelson-Morley Experiment Explained from the 
Perspective of a Rotating Earth-Bound Frame 

We can now explain the null result of the Michelson Morley experiment 
[14-22] in the rotating frame of the lab co-rotating with the Earth. The 
elapsed time in the direction of motion is: 

2 2

2 2 2 2 2

2 2

2

1
1 1

dl dl dl
c r c r rcr r c

c c  (5.1) 

The elapsed time in the z direction is: 
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2 2

2

2 2

1z

dl dl
v rc

c     (5.2) 

So, there is no fringe shift predicted in any frame, be it rotating or inertial.  

6. New Explanation of the Kennedy-Thorndike 
Experiment as Viewed from the Perspective  

of a Rotating Earth-Bound Frame 

The Kennedy-Thorndike experiment [23] exploits the fact that the Earth 
bound laboratory has a variable speed ( )v t  due to the combined effect of 
Earth rotation around its axis and Earth revolution around the Sun. The 
laboratory speed ( )v t has contributions from the revolution of the Earth 

with respect to the Sun-centered frame,
30 /ev km s

 and Earth’s daily 

rotation dv
 so: 

0( ) sin[ ( )]cos sin[ ( )]cose y E d d d Av t v t t v t t
(6.1) 

For example, at Berkeley (latitude 37o 52’18” N), 
0.355 /dv km s

.  

8o
A  is the angle between the equatorial plane and the velocity of the 

sun. 
6o

E  is the declination between the plane of Earth’s orbit and the 

velocity of the Sun, 
2 / 1y yr

 , 
2 / d 1 sidereal day, 0t  and 

dt  are determined by the phase and start date of the measurement, 
respectively. When one adds the fact that the arms of the Kennedy-
Thorndike interferometer are unequal one obtains a difference between the 

light roundtrip time in the “longitudinal” arm of length LdL
 (arm parallel 

with the direction of motion) and the “transverse” arm (arm perpendicular 
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on the direction of motion) TdL
, as viewed from an inertial frame centered 

in the Sun: 

2

2 2 2 2

2

2 2( )1 11 ( )
1

L T

T L T
L

T T T

dL dL dLvdL
c c v c v c v vc

c (6.2) 

The difference in travelled distance by light is: 

2

2

2( )

1

L TdL dLL c T
v
c     (6.3) 

The amount of fringe shift observed between two different positions, A and 
B of the lab with respect to the Sun-centered inertial frame, is: 

2 2

2 2

2( ) 2( )

1 1

L T L T
AB

A B
A B

dL dL dL dLN
v v
c c   (6.4) 

But: 

2 2

2 21 1A B
A B proper

v v
c c    (6.5) 

meaning that: 

0ABN
      (6.6) 

in agreement with the experimental measurements. 
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Explaining the above results in the rotating frame of the lab is simple, given 
the fact that the wavelength is no longer variable: 

2 2

2 2 2 2 2

2 2

2 2

2

21 1( )
1

1 1

2( )

1

T
L T L

L T

dlt t t dl c r c r rcr r c
c c

dl dl
rc

c (6.7) 

2 2 2 2

2 2

2( ) 2( ) 0
1 1

L T L T
AB

dl dl dl dln
r r

c c   (6.8) 

7. The Doppler Effect in Rotating Frames and its 
Application to the Mossbauer Rotor Experiment 

Let’s examine the Doppler effect and light beam aberration. This is a critical 

issue in the explanation of the Mossbauer rotor experiments. Let emf
 be 

the frequency emitted by the radiation source and let obsF
be the observed 

frequency. Let be the phase of the radiation wave as measured in the 
inertial frame and let  be the phase in the rotating frame.  

( )x y
obs

K X K Y
F T

c    
 (7.1) 
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( ) ( )

( )

//( )

x y x y
em em

x y
em

yx
em

k x k y k x k y
f t f

c c
k x k y

f T
c

kkf T x y
c c : (7.2) 

cos cos sin
sin sin cos

x r X t Y t
y r X t Y t    

 (7.3) 

cos sin
(

cos sin
)

x y
em

y x

k T k T
f T X

c
k T k T

Y
c :  (7.4) 

From the wave phase invariance  it would be naive to claim: 

obs emF f
     

 (7.5) 

( cos sin ) /
( cos sin ) /

x x y

y y x

K k T k T
K k T k T    (7.6) 

Such a conclusion is incorrect because expression (7.4) depends on T  both 
explicitly and implicitly. Not all is lost if we consider just the particular case 
when the axes of the two systems of coordinates align, as in the case of the 
Mossbauer rotor experiments. This happens when   

2 , 0,1, 2,....nT n
 . With that, (7.4) becomes: 
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2( )yx
em

kkf n X Y
c c    (7.7) 

On the other hand, (7.1) becomes: 

2( )x y
obs

K X K Y
F n

c    (7.8) 

From the frame-invariance of the phase, by comparing (2.24) and (2.25) we 
obtain: 

obs emF f
     

 (7.9) 

x
x

kK
       (7.10) 

y
y

k
K

       (7.11) 

There is no aberration since the vectors 
( , )x yK K

 and 
( , )x yk k

 are 
collinear. An excellent confirmation of the relativistic Doppler effect was 
achieved by the Mössbauer rotor experiment [24]. Gamma rays are sent 
from a source in the middle of a rotating disk (see fig.5) to an absorber at 
the rim and a stationary counter is placed beyond the absorber. The 
characteristic resonance absorption frequency of the moving absorber at the 
rim should decrease due to time dilation, so the transmission of gamma rays 
through the absorber increases, which is subsequently measured by the 
stationary counter beyond the absorber. The maximal deviation from time 
dilation was 10 5. Such experiments were performed by Hay et al. [25,26], 
Champeney et al.[27,28] and by Kündig [29]. According to (7.9) the 

measured frequency is obs emF f
 .Conversely, if the positions of the 

source and the absorber are swapped, the formalism developed above 
predicts the measured frequency to be: 
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em
obs

fF
(7.12)

Fig. 5. The Mossbauer rotor experiment

The Mossbauer rotor experiments are the most precise measurements of the 
transverse Doppler effect.

8. Hammar Experiment Explained from the Perspective 
of of a Rotating Earth-Bound Frame

In the following, all calculations explaining the outcome of the Hammar 
experiment [31,32] are made from the point of view of the rotating Earth-
bound frame and all employ the theory of special relativity in rotating 

frames. The clockwise ( CWt
) and counterclockwise ( CCWt

) time of light 
propagation are (see fig.6): 
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2 2 2 2

2 2

2 2 2 2

2 2

1 1

1 1

CW BC DA

CCW AD CB

AB CDt t tc r c r
r r

c c

DC BAt t tc r c r
r r

c c  (8.1) 

In (8.1) AB, CD DC and DA are the light paths and 
, , ,BC DA AD CBt t t t

 are 
the times necessary to traverse the paths BC, DA, AD and CB respectively 
and “c” is the speed of light in vacuum.  

Obviously, the times in the arms moving perpendicular on the “aether wind” 
do not depend on the traversal sense: 

DA AD

BC CB

t t
t t
AB BA CD DC L     (8.2) 

So, the time differential between the clockwise and the counterclockwise 
paths is: 
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2 2 2 2

2 2

2 2 2 2

2 2

1 1

0

1 1

CW CCW
AB CDt t t c r c r

r r
c c

DC BA
c r c r

r r
c c  (8.3) 

 
Fig. 6   Instrument motion with shielded arm moving parallel to the “aether wind” 
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The light source as well as the screen where interference occurs between the 
two light beams is located in point “A”. Also, a half-silvered mirror is used 
as a light splitter.  

If we assumed by absurd that the light speed in the shielded arm CD  is 
'c c  then: 

2 2 2 2

2 2

2 2 2 2

2 2

2 2 '2 2

2 2 2 2 '2 2 2

'

1 1

'

1 1

2 1
( )( )

CW CCW
AB CDt t t c r c r

r r
c c

DC BA
c r c r

r r
c c

r c crL
c c r c r  (8.4) 

Experiment shows 0t  meaning that our starting assumption that the 
light speed in the shielded arm CD  is 'c c is false.  
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THE RELATIVISTIC TRAJECTORY  
OF A CHARGED PARTICLE IN THE MAGNETIC 

FIELD OF AN INFINITE LENGTH CURRENT 
CARRYING WIRE 

 
 
 

Synopsis 

We show how to produce the closed form solution for the motion of a 
charged particle in the magnetic field of an infinitely long, current-carrying 
wire in the relativistic range, thus extending the results produced recently 
[1]. 

Introduction 

Extensive treatment of the trajectories of charged particles moving at non-
relativistic speeds in a magnetic field abound in scientific literature [2-15]. 
An exhaustive relativistic treatment for the case of arbitrary stationary 
electromagnetic fields can be found in [16]. Treatments for constant 
magnetic fields are common in literature, the magnetic field of a wire is not 
constant, making the problem significantly more difficult to solve. A 
solution for the non-constant magnetic field has only been produced 
recently [1] and only for the non-relativistic regime. In the current paper we 
are providing the general, fully relativistic solution to the case of a charged 
particle in the magnetic field of an infinitely long, current-carrying wire. 
Such a field is obviously non uniform, thus making the problem somewhat 
challenging.  

The Solution 

In what follows we use the exact notation used in [1]. In the cylindrical 
coordinate system ( , , )s z  , an infinitely long wire is located on the z-axis. 
The magnetic field produced by the current of intensity I  is: 
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0

2
I
s

B
      (1) 

The Lorentz force exerted on a particle of charge q  and mass m  entering 

the magnetic field at initial velocity 0v
 and subsequently moving with the 

instantaneous velocity v  is: 

qF v B        (2) 

Because the Lorentz force is perpendicular on the particle velocity, the 

speed of the particle is constant 0v v
[16].  

On the other hand, the relativistic force exerted on the particle of mass m
moving with instantaneous velocity v  is [16]: 

02 2
0

2 2

( )
1 1

d m d dm m
dt dt dtv v

c c

v v vF

  (3) 

From (1),(2) and (3) we obtain: 

0

0 02
s L

z z
dv q I vv v
dt m s s     (4a) 

0
dv
dt                    (4b) 

0

z L
s

dv v v
dt s       (4c) 

where 
0

2L
q Iv

m  is the Larmor speed. The above equations correspond 
exactly to equations (3a-3c) from reference [1] with the right hand term 
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scaled by the constant 0  . The general case, valid at any speeds, including 
the relativistic ones, is solved by reducing the problem to one that has 
already been solved by simply scaling the Larmor speed by a constant. The 

effect is scaling variables 
,u u

 [1] by the same constant. As a 
consequence, equations (4a-4b) in [1] are unchanged. One criticism that has 
been brought against the above solution is that it ignores the radiation 
reaction. Let’s examine the criticism, the radiated energy is: 

2 3
4

2

4 ( )
3
e EE
r mc      (5) 

For a 500Mev synchrotron of 1m radius the above amounts to an energy 
drop per cycle 

410 evE for the case of an electron, a totally 
insignificant amount. If, instead of electrons we consider protons the energy 

drop through radiation is

4

12

10 ev
10

E
. So, a proton of 500Mev energy 

loses 
810 ev  per cycle. This is why, the radiation reaction has been 

ignored in the solution.  
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THE COMPTON SCATTERING EXPERIMENT – 
THE ELECTRON POINT OF VIEW 

 
 
 

Synopsis 

Arthur Compton developed a theory of the intensity of X-ray reflection from 
crystals as a means of studying the arrangement of electrons and atoms, and 
in 1918 he started a study of X-ray scattering. This led, in 1922, to his 
discovery of the increase of wavelength of X-rays due to scattering of the 
incident radiation by free electrons [1, 2]. This effect, nowadays known as 
the Compton effect, which illustrates the particle concept of electromagnetic 
radiation, was afterwards substantiated by C. T. R. Wilson who, in his cloud 
chamber, could show the presence of the tracks of the recoil electrons. The 
original Compton papers deal extensively with the physics of the scattered 
photons while there is no treatment of the physics of the recoiling electrons. 
In the current chapter we develop a comprehensive treatment of the 
“electron point of view”, i.e. we treat the dynamics of the recoiling 
electrons. We proceed by extending the treatment to a much tougher case, 
the case of inverse Compton scattering, i.e. the scattering of the electrons 
impacting photons.  We conclude with treating the Thomson scattering as a 
limit case of Compton scattering.  

1.  Electron-photon collision 

The Compton scattering is an example of elastic scattering of light by an 
electron moving at relativistic speeds, where the wavelength of the scattered 
light is different from that of the incident radiation. The energy of the X ray 
photon is much larger than the binding energy of the electron, so the electron 
can be treated as being free. Light must behave as if it consists of particles, 
if we are to explain low-intensity Compton scattering. Because the 
momentum-energy of a system must be conserved, it is not generally 
possible for the electron simply to move in the direction of the incident 
photon but rather the two particles move at (different) angles with respect 
to the trajectory of the incident photon. In Compton’s experiment a photon 
(X-ray) with frequency f collides with an electron in an atom, which is 
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treated as being at rest. A new photon emerges at angle  and frequency 
'f  while the electron recoils at an angle  after the collision (see fig.1).  

 

Fig. 1 Sketch of the Compton Setup 

It is well known that in relativity, the total energy (E) and the three-vector 
momentum (p) of a system of particles involved in a collision are conserved 
[3]. While Compton preferred to express the photon energy in terms of 
wavelengths, it turns out that the formulas will be easier to work with when 
expressed in terms of frequency. The conservation of total energy is: 

2 2
0 0 'm c hf m c hf

    (1.1) 
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where 0m
is the electron rest mass, , 'f f are the photon frequencies before 

and after collision with the electron and h is Planck’s constant.  Referring 
to fig. 1 the conservation of momentum along the axis of impact is:

0
' cos coshf hf m v

c c (1.2)

The conservation of momentum along the axis perpendicular to the axis of 
impact is:

0
'0 sin sinhf m v

c (1.3)

From (1.1) we obtain immediately:

2
0

( ')1 h f f
m c (1.4)

With the notation 'f f f (1.4) yields the speed of the electron after 
the photon impact:

2
2 2

0 0

2
0

2
2 2

0 0

( ) 2

1

( ) 2

h f h f
m c m c

v c h f
m c

h f h fv c
m c m c (1.5)

It is very tempting to try to simplify the expression for speed via a Taylor 
expansion but, from the experimental data, we know that h ff is of the 

same order as
2

0m c
as

m
, so a Taylor expansion would introduce large errors. 

Anyways, expression (1.5) is exact, so we are better served by using it as is. 
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Let’s re-write (1.2) and (1.3) as: 

0
'cos coshf hfm v

c c    (1.6) 

0
'sin sinhfm v

c     (1.7) 

Squaring (1.6) , (1.7) and adding them together, we obtain: 

2
2 2 2

0 2( ) ( ' 2 'cos )hm v f f ff
c   (1.8) 

Combining (1.4),(1.5) and (1.8) we get the frequency of the re-emitted 
photon as a function of the photon impacting the electron: 

2
0

'
1 (1 cos )

ff hf
m c     (1.9) 

or: 

2

2
0

2
0

(1 cos )

1 (1 cos )

hf
m cf hf

m c     (1.10) 

It is easy to show that (1.10) is identical with Compton’s formula: 

0

'' (1 cos )
' '

c c f f hc
f f ff m c  (1.11) 

or: 
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0

' (1 cos )h
m c (1.12)

This is all nice except that is unknown. In order to get around that, 
Compton relied on the fact that the photons are scattered in different 
directions and made measurements in all directions (see fig.2). 

Fig. 2 The Compton experimental setup at various angles of photon scattering, 
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Notice that there are two peaks, one that shows very little wavelength shift, 
due to scattering from the inner electrons that are tightly bound and cannot 
move freely and a second peak, which shows the Compton effect, due to the 
“free” electrons located on the outer energy band. 

Now that we know the speed of the electron after the collision with the 
photon, we can also try to find its trajectory.  From (1.7) and (1.9) we obtain: 

0

2 2
02

0

' sin
sin

sin

(1 (1 cos )) ( ) 2

hf
c

m v
hf

hf h f m c h f
m c  (1.13) 

2. The electron kinematics and dynamics 

As pointed out earlier, the photon deflection angle  is variable. Compton 
measured it for different photon trajectories. We can do the same analysis 
for the speed v and the deflection angle  of the electron: 

 
Table 1 The electron kinematics 

We can ask ourselves one more question: “What is the average force acting 
upon the electron?”. We can figure the average force by noticing that the 
work exerted by such force is equal to the total energy variation: 

0  / 2   
0v  2

2 2
0 0

2
2

0

2 ( )

1 ( )

hf hf
m c m c

v c hf
m c

2 2
2 0 0

2 2 2
0

2
0 0

( 22( ) 1

1 2 / ( ) 2( /

m c m chf
m c h f

v c
hf m c hf m c

sin 0

2
0 0

1sin
(1 ) 2 (hf hf

m c m c

sin 0  
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0

( )
r

F x dx dE hdf
    (2.1) 

So, over a distance 0r  measured from the collision point, the average 

force mF
 exerts a work h f . This means that: 

2 2

2
0

2
0

(1 cos )
1

1 (1 cos )
m

h f
m ch fF hfr r

m c    (2.2) 

The electron energy after the collision with the photon is: 

2 2

2
2 2 0

0 0

2
0

(1 cos )

1 (1 cos )

h f
m cE m c h f m c hf

m c  (2.3) 

0  / 2   
0mF

 
2 2

2
0

2
0

1

1
m

h f
m cF hfr

m c  

2 2

2
0

2
0

2
1

21
m

h f
m cF hfr

m c  
2

0E m c
 

2 2

2
2 0

0

2
0

1

h f
m cE m c hf

m c  

2 2

2
2 0

0

2
0

2

21

h f
m cE m c hf

m c  
 
Table 2 The electron dynamics 
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3. Inverse Compton scattering 

Inverse Compton scattering [4,5] involves the scattering of low energy 
photons to high energies by ultra-relativistic electrons so that the photons 
gain and the electrons lose energy. The equations of energy-momentum 
conservation are more complicated in this case: 

2 2
0 0( ) ( ') 'v m c hf v m c hf

   (3.1) 

0 0
'( ) cos cos ' ( ') 'cos 'hf hfv m v v m v

c c  (3.2) 

0
'sin sin ' ( ') 'sin 'hf hf v m v

c c   (3.3) 

where , 'v v are the speeds of the electron before and after collision, , '

are the angles of the electron trajectory, before and after collision,  , '  are 
the angles of the photon trajectory, before and after collision, , 'f f are the 
frequencies of the photon before and after collision, all measured in the lab 
frame. At first glance, the above set of equations is much tougher to solve.  
We can simplify them though by doing the calculations in the frame 
commoving with the electron before collision and by assuming, without any 
loss of generality that, in the lab frame, 0 : 

2 2
0 0( ') 'm c hf v m c hf

   (3.4) 

0
' cos ' ( ') 'cos 'hf hf v m v

c c    (3.5) 

0
'0 sin ' ( ') 'sin 'hf v m v

c    (3.6) 

Now, 'v is the speed of the electron after collision, , ' are the angles of 
the electron trajectory, before and after collision,  , '  are the angles of the 
photon trajectory, before and after collision, , 'f f are the frequencies of 
the photon before and after collision, all measured in the frame commoving 
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with the electron before collision. This frame moves with speed v with 
respect to the lab.  Equation (3.4) yields immediately: 

 

2 2
0 0

( ')( ') 1 1h f f h fv
m c m c    (3.7) 

Therefore: 

2
2 2

0 0

2
0

2
2 2

0 0

( ) 2
'

1

( ') ' ( ) 2

h f h f
m c m c

v c h f
m c

h f h fv v c
m c m c    (3.8) 

Equation (3.6) can now be used to predict the angle of the emerging photon 
as a function of the angle made by the electron after the collision: 

2 2
00 ( ) 2( ') 'sin 'sin ' sin '' '

h f m c h fv m v
hf hf
c (3.9) 

There are two remaining problems with (3.9): 

- The formula is dependent on the frequency 'f of the photon after 
collision (in the frame of the electron), we need the formula 
expressed in terms of the frequency f of the photon before the 
collision.  

This is accomplished by solving for 'f  the system of equations resulting 
from the momentum conservation: 
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0

0

' cos ' ( ') 'cos '

' sin ' ( ') 'sin '

hf hf v m v
c c

hf v m v
c    (3.10) 

Squaring the two equations and adding them gives the equation degree 4 in
'f : 

2
0 2 2

0 0

2 2 2
0

( ') ( ')2 cos ' ( ) 2

' ( ')( ) ( ) ( ) 2 ( ')

h f f h f fhfm
m c m c

hf hf h f f m h f f
c c c  (3.11) 

-  ', ', f are referenced to the frame of the electron before 
collision, we need the variables referenced to the frame of the lab 

We resolve this other issue by use of the relativistic aberration formulas: 

cos '
cos '

1 cos '

cos '
cos '

1 cos '

lab

lab

lab

v
c

v
c

v
c

v
c     (3.12) 

The primes signify that the variables are after collision. Finally, the photon 
frequencies before collision are connected by the well known relativistic 
Doppler formulas.  
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1

1
lab

v
cf f v
c      (3.13) 

 

While the inverse Compton scattering turned out to be much tougher than 
the standard Compton scattering, the “blueprint” presented in the previous 
section applied perfectly.  

4. Thomson scattering 

Thomson scattering [6] is a limit case of Compton scattering for
2

0hf m c
. In this case we can apply the Taylor expansion that we 

cautioned against in the section on Compton scattering. The exact formula 
(1.10) yields the approximation: 

2

2
0

(1 cos )hff
m c      (4.1) 

The exact formula (1.13) yields the very nice approximation: 

2
0

sin sinsin cos
22(1 cos )2

hf
m c h f   (4.2) 

For 0  0f and / 2 , that is, the scattered photons have 
maximum energy at a right angle with the direction of impact.  This 
conclusion confirms the approach of considering the Thomson scattering as 
a particular case of Compton scattering.  
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THE LORENTZ FORCE IN ACCELERATED 
FRAMES  

 
 
 

Synopsis 

In the current chapter we present a generalization of the transforms of the 
electromagnetic field from the frame co-moving with an accelerated particle 
into an inertial frame of reference. The solution is of great interest for real 
time applications, because earth-bound laboratories are inertial only in 
approximation. We conclude by deriving the general form of the relativistic 
Lorentz force, the relativistic Doppler effect and the relativistic aberration 
formulas for the case of accelerated motion.  

1. Introduction 

Real life applications include accelerating and rotating frames more often 
than the idealized case of inertial frames. Our daily experiments happen in 
the laboratories attached to the rotating, continuously accelerating Earth. 
Many books and papers have been dedicated to transformations between 
particular cases of rectilinear acceleration and/or rotation [1] and to the 
applications of such formulas [2-12]. In a recent pair of papers, [13-14], we 
have presented the equations of electrodynamics in an accelerated /rotating 
frame as viewed from the point of view of the inertial frame of the 
laboratory. In the current paper, we are presenting the equations of 
electrodynamics in an accelerated frame as viewed from the accelerated 
frame. There is also great interest in producing a general solution that deals 
with arbitrary orientation of acceleration in the case of rectilinear motion., 
so we produced the equations for the general case as well. The main idea of 
this paper is to generate a standard blueprint for a general solution that gives 
equivalent of the Lorentz transforms for the case of the transforms between 
an inertial frame and an accelerated frame.  
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2. Accelerated Rectilinear Motion – the Transforms  
of the Electromagnetic Field 

2.1. Transforms between the Accelerated Frame  
and the Inertial Frame 

In this section we will derive the transforms between the accelerated frame 
and the inertial frame for the electromagnetic tensor. Let S  represent an 
inertial system of coordinates and '( )S  an accelerated one. According to 
reference [1] the transformation for the particular case of accelerated motion 
along the x-axis from '( )S  into S  is: 

2

(cosh 1)
'
' 0

_
' 0
'

sinh

c g
x x g c
y y

Phy rectilinear
z z
t t c g

g c  (2.1) 

where “c” is the speed of light in vacuum, “g” is the proper acceleration,  
is the proper time and  

cosh 0 0 sinh

0 1 0 0
_

0 0 1 0
1 sinh 0 0 cosh

g gc
c c

Phy rectilinear

g g
c c c  (2.2) 

The electromagnetic potential, by virtue of being a 4-vector transforms the 
same way: 
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'

'

'_

'

x x

y y

z z

A A
A A

Phy rectilinear
A A
c c    (2.3) 

In the inertial frame, the differential Maxwell equations in vacuum, in the 
absence of electric charge, are [1]: 

2x
x

AE c
t x       (2.4) 

2y
y

A
E c

t y       (2.5) 

2z
z

AE c
t z       (2.6) 

curlB A       (2.7) 

Let’s start with (2.4): 

' '

' ' ' ' '

' ' '

' '
2

'
2 2

cosh sinh

' ' ( sinh ) cosh
' ' ' '

( sinh ) cosh
' '

( sinh cosh ) cosh
' '

( sinh
'

x x

x x x x x

x x x

A A g gc
t t c t c

A A A A Ax t g gc
t x t t t x c t c

g gc
t x c t c

A A Ag g gc
t x c c t c

c
x

'

) sinh cosh
'

g g gc
c t c c   (2.8) 
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In a similar manner: 

'

' ' ' ' '

2
' '

2

2

( sin 'cos )

sin' ' cos
' ' ' '

sin' ' 'cos
' '

sin cos sin

' '

sin cos' 'cos
' '

x

x x x x x

x x

A g g
x x c c c

g
A A A A Ax t g c
x x x t x x c t c

g
g c

x x c t c
g g g

A Ac c c
x x c t c

g g
g c c

x c t c (2.9) 

Substitute (2.8),(2.9) into (2.4): 

'
2

'

'
' '
x

x

x x

AE c
t x

E E       (2.10) 

Moving on to (2.5) 
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' ' '

' '

'

'

' '
' '

( sinh ) cosh
' '

( sinh 'cosh )
'

sinh ' cosh
' '

y y y x

y y

x

x

A A A Ax t
t t x t t t
A Ag gc
x c t c

A g g
y y c c c

g
A gc
y c y c   (2.11) 

Substitute (2.11) into (2.5): 

' ' '
2

'
' 2

' '
'

'( ) cosh sinh
' ' ' '

'( )
' '

cosh sinh
' '

y y x
y

y
y

y x
y y

A A Ag gE c c
t y c x y c

A
E c

t y

A Ag gE E c
c x y c

(2.12) 

In a similar manner we obtain from (2.6): 

''
' cosh sinh

' '
xz

z z
AAg gE E c

c x z c    (2.13) 

From (2.7) we obtain: 

''
'

' '
y yz z

x x

A AA AB B
y z y z     (2.14) 
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' ' '

'

' ''

' '
2

' '

( ) cosh
' ' '

sinh

'

sinh ( )cosh
' ' '

sinh
( )

' '

sinh
cosh

y y yx x x
z

y

y x

y

z y

A A AA A A gB
x y x y x y c

g
A c
t c

A Ag gc
y c x y c

g
Ac c

c t y
g

g cB E
c c (2.15) 

' '
'

' '
y x

z

A AB
x y      (2.16) 

Therefore: 

' 'cosh sinhy y z
g gE E B c
c c    (2.17) 

In a similar manner we obtain: 

' '
sinh

coshy y z

g
g cB B E
c c    (2.18) 

' '
'

' '
x z

y
A AB
z x      (2.19) 
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' 'cosh sinhz z y
g gE E B c
c c    (2.20) 

Putting everything together: 

'

' '

' '

'

' '

' '

cosh sinh

cosh sinh

sinh
cosh

sinh
cosh

x x

y y z

z z y

x x

y y z

z z y

E E
g gE E B c
c c

g gE E B c
c c

B B
g

g cB B E
c c

g
g cB B E
c c     (2.21) 

Notice the resemblance with the standard Lorentz transforms in [1], for 
example: 
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'

'
'

'
'

'

'
'

'
'

( )

( )

( )

( )

x x

z
y y

y
z z

x x

z
y y

y
z z

E E

HE E V
c

H
E E V

c
H H

EH H V
c

E
H H V

c      (2.22) 

2.2 Consequences 

2.2.1. Maxwell laws in accelerated frame 

' '
'' '
'

curl

t

B A
AE

      (2.23) 

The above follows immediately from (2.14), (2.15) and (2.19). 

2.2.2. The gauge invariance condition in a uniformly accelerated frame 

'' 0
'

div div
t t

A A
    (2.24) 

'' ''

'
' ' ' '

y yx xz z
A AA AA Adiv

x y z x y z
A

 (2.25) 
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'
2

2

sinh cosh
cosh

'

sinh cosh sinh

x x x

g g
A A Ag c c
x x c t c

g g gc
x c c t c   (2.26) 

2

2

sinh cosh' sinh
'

sinh cosh cosh

x x

g g
A Ag c c

t x c t c
g g gc

x c c t c       (2.27) 

' '
' '
x xA A

x t x t      (2.28) 

Equality (2.28) results into: 

'' 0
'

div div
t t

A A
    (2.29) 

Equalities (2.23) result into Maxwell’s wave equations having the same 
exact form in the accelerated frame as the equations in the inertial frames 
with the immediate consequence that light speed in vacuum in a uniformly 
accelerated frame is “c”. Indeed, (2.23) results into: 

2
2

2 '2

2
2

2 '2

1 ' ' 0

1 ' ' 0

c t

c t

E E

B B
      (2.30) 

The above means that electromagnetic waves propagate in the accelerated 
frame, in vacuum, at the same speed as they propagate in inertial frames. 
We will re-derive this interesting result in a different way, alongside several 
other interesting consequences, in the next section.  
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2.2.3. The Lorentz Force in an Accelerated Frame 

In the inertial frame, the Lorentz force has the expression: 

( )
v

(E E E v 0 0 )
B B B

(E (E v B ) (E v B ) )

x x

x y z

x x y y z z x

x y z

x x y x z y z x y z

q

q

q

F E v×B
v e

e e e
F e e e

e e e
   (2.31) 

We know that: 

'

'

'cosh 'sinh

1 sinh ' 'cosh

' cosh sinh
'

1 'sinh cosh
'

cosh sinh

sinh cosh

x

x

x

g gdx dx cdt
c c

g gdt dx dt
c c c

dx g gcdx dt c cv g dx gdt
c c dt c
g gv c
c c

v g g
c c c   (2.32) 

The formula: 

'

'

cosh sinh

sinh cosh

x

x
x

g gv c
c cv

v g g
c c c    (2.33) 
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ties the speed 
'
xv

 of the particle in the accelerated frame to its measured 

speed in the inertial frame xv
.  Using the above, we obtain: 

' '
y

'
'

'
'

' ' '

'

E -v B cosh sinh

cosh sinh
( sinh cosh )

sinh cosh

sinh cosh

x z y z

x
y

z
x

y x z

x

g gE B c
c c

g gv cE g g c cB
v g gc c c
c c c

E v B
v g g
c c c   (2.34) 

Similarly: 

' ' '

'E +v B
sinh cosh

z x y
z x y

x

E v B
v g g
c c c    (2.35) 

So, we can write: 

'

'
'

' ' ' ' ' '

'

sinh cosh

( ) ( )

sinh cosh

x x

x

y x z y z x y z

x

qE

v g g
c c c

E v B E v B
q

v g g
c c c

F F e

FF

e e

P P

     (2.36) 
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Expressions (2.36) represent the transformation of the Lorentz force 
between the inertial and the accelerated frame.  

2.2.4. Bremsstrahlung 

Bremsstrahlung is the electromagnetic radiation produced by the 
deceleration of a charged particle.  The moving particle loses kinetic 
energy, which is converted into a photon. This it is the process of producing 
the energy radiation. Bremsstrahlung has a continuous spectrum, which 
becomes more intense and whose peak intensity shifts toward higher 
frequencies as the change of the energy of the decelerated particles 
increases. The term is frequently used in the more narrow sense of radiation 
from electrons (from whatever source) slowing in matter. In astrophysics, 
bremsstrahlung refers to radiation emitted from zones of the universe 
characterized by a high concentration of plasma. The radiation in this case 
is created by charged particles that are free; i.e., not part of an ion, atom or 
molecule, both before and after the deflection (acceleration) that caused the 
emission. In any case, the total radiated power is given by [15] 

.
2 6 .

2 2

0

2

.

( ( ) )
6

1
1

qP
c

v
c

g
c       (2.37) 

In the case where velocity is parallel to acceleration (for example, linear 
motion), the formula simplifies to [15]: 

2 2 6

3
06

q gP
c       (2.38) 
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For the case of acceleration perpendicular to the velocity (as in the case of 
synchrotrons), the formula simplifies to: 

2 2 4

3
06

q gP
c       (2.39) 

In either case, we do not observe any significant X-rays radiated from the 
free electrons in the Earth atmosphere due to several factors:  

- the speed of the electrons is low (  is small, very close to unity), 
- the deceleration “g” is very small due to the absence of fields or 

matter that could affect the  free electrons 
- the electron density per unit of volume is small 
- the presence of 

3c   
 

By contrast, this is not the case in astrophysics. where we have observed 
significant emission from certain galaxies’ intra-cluster medium due to 
thermal bremsstrahlung. This radiation is in the energy range of X-rays and 
can be easily observed with space-based telescopes such as Chandra X-ray 
Observatory, XMM-Newton, ROSAT, ASCA, EXOSAT, Suzaku, RHESSI 
and future missions like IXO [16] and Astro-H [17]. The reasons for 
observing such effects are: 

-  much higher charge density  
-  much larger speeds and accelerations (due to the presence of strong 

magnetic fields) 

In addition to the changes in frequency (energy), we also observe light 
polarization effects, due to the presence of the magnetic fields mentioned 
above. 

3. Planar Wave Transformation and Speed of Light  
in a Uniformly Accelerated Frame   

In this section we apply the formalism derived in the previous paragraph in 
order to obtain the transform of a planar wave. Assume that a planar wave 
is propagating along the y’ axis in the accelerated frame '( )S . The wave 
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has the electric component 
'
xE
 and the magnetic component 

'
zB
 along the 

x’ and z’ axes, respectively. The components equations are (see fig.1): 

' ' '
0

' ' '
0

cos( ' ' ' ')

cos( ' ' ' ')
x x y x

z z y z

E t k y

B t k y

E e

B e
    (3.1) 

 

Fig. 1. The planar electromagnetic wave 

Inverting transforms (2.1) we obtain: 

2

'

' sinh cosh sinh cosh

(cosh 1)

sinh

y y
x g g a g gt t b
c c c c c c

c ga
g c
c gb
g c  (3.2) 

Substituting (3.2) into (3.1) we obtain: 
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' '
0

'

'cos[( 'cosh ) ( sinh )

' '( cosh sinh )]

x x

y

g gE E t x
c c c

g a gk y b
c c c       (3.3) 

On the other hand, in frame S, the wave equation is: 

0 cos( )x x x y z xE t k x k y k zE e
   (3.4) 

Since 
'

x xE E
 it follows that: 

'
0 0

'

'cosh

' sinh tanh

0

' '( cosh sinh )

x x

x

y y

z

E E
g
c
g gk

c c c c
k k
k

g a gb
c c c    (3.5) 

The formula 
'cosh g

c  represents the Doppler effect due to 
acceleration. We see that the pulsation decreases in time by the factor 

cosh g
c  in a frame that is uniformly accelerated in the same direction of 

the propagation of the electromagnetic wave. 

From (3.8) we obtain: 
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2 2
2 2 2 2 2 '2

2 2 tanhx y z y
gk k k k k

c c c   (3.6) 

Therefore, in frame '( )S  the wave vector is: 

''
cosh

yk k gc
c      (3.7) 

We can now calculate the phase light speed in the accelerated frame: 

' '
'pv c

k k       (3.8) 

So, the light speed in the accelerated frame equals the light speed in the 
inertial frame, c.  

We can now proceed to calculating the amplitude and the phase 
transformation between the inertial and the accelerated frame: 

' '( cosh sinh )

' tanh

' tanh

g a gb
c c c

c g
g c

c g
g c   (3.9) 

The magnetic field component transforms as: 

'
0 0 coshz z

gB B
c      (3.10) 

So, the absolute value of the Poynting vector transforms as: 

0 0 'coshx z
gS E B S
c      (3.11) 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Lorentz Force in Accelerated Frames 158 

So the electromagnetic flux in the accelerated frame decreases by with 
respect to the flux in the inertial frame.  Finally, we can calculate the 
aberration in frame S induced by the acceleration: 

2 2
cos tanhx

x y

k g
ck k

    (3.12) 

4. General Case of Uniform Acceleration in an Arbitrary 
Direction 

In a prior paper we have shown [12] that the particular transformation (2.1) 
can be generalized for the case of arbitrary direction constant acceleration 

( , , )x y zg g gg
 to: 

1

'
'

( * _ * )
'
'

x x
y y

Tr Phy rectilinear Tr N
z z
t t   (4.1) 

where: 

0 090 90
( ) * ( ) *z y yTr Rot Rot Rote e

   (4.2)  

Introducing the triplet 
( , , ) ( ,0, )xz gga b c

g g  the following expressions 
hold: 

 

0 0
0 1 0 0

0 0
0 0 0 1

y

c a

Rot
a c

     (4.3) 
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0

0 0

0 090

cos(90 ) 0 sin(90 ) 0
0 1 0 0

( )
sin(90 ) 0 cos(90 ) 0

0 0 0 1

sin 0 cos 0
0 1 0 0

cos 0 sin 0
0 0 0 1

yRot e

(4.4) 

090
( ) *y yRot Rote

aligns g with ye
. The second step is comprised by 

another rotation around the z-axis by 
090  that aligns g with xe

(fig.2): 

090

0 1 0 0
1 0 0 0

( )
0 0 1 0
0 0 0 1

zRot e

   (4.5) 
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Fig. 2 General acceleration 

1Tr  reverses all the effects of Tr . Expression (4.1) gives the solution for 
the general case, of arbitrary acceleration direction. The net effect is that the 
derivative operators become more complicated: 

' ' ' ' '
x t

t x t t t
y z

y t z t   (4.6) 

' ' ' ' '
x t

x x x t x
y z

y x z x   (4.7) 
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1

' ' ' '

' ' ' '
* _ *

' ' ' '

' ' ' '

x x x x
x y z t
y y y y
x y z t

Tr Phy rectilinear Tr
z z z z
x y z t
t t t t
x y z t (4.8) 

Using (4.8) in (4.6), (4.7) gives the general forms of the transforms (2.21) 
for the electromagnetic field tensor.  Next, we will show a very nice way of 
getting the general transforms. We start by writing (2.21) in the form: 

0 0 0

* *

* *

0 0 0

' 0 0 01 0 0 0
'' ' '0 cosh sinh 0

' '0 sinh cosh 0 ' '

0 0 0 1 0 0 0 '

x

y
z

z
y

x

x

yz
z y

y z
y z

x

E
E

B
c

EB
c
B

E
EEg g B B

c cc c
Eg g EB B

c c c c
B  (4.9) 

The elements marked with asterisks represent entities without any meaning. 
We do not care about them. Then, the matrix for the general transform is 
simply: 
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1

1 0 0 0

0 cosh sinh 0
* *

0 sinh cosh 0

0 0 0 1

g g
c cTr Tr
g g
c c

  (4.10) 
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RELATIVISTIC DYNAMICS AND 
ELECTRODYNAMICS IN UNIFORMLY 
ACCELERATED AND IN UNIFORMLY  

ROTATING FRAMES -  
THE GENERAL EXPRESSIONS FOR THE 

ELECTROMAGNETIC 4-VECTOR POTENTIAL 
 
 
 

Synopsis 

In the current chapter we present a generalization of the transforms from the 
frame co-moving with an accelerated particle, for either rectilinear or 
circular motion, into an inertial frame of reference. The solution is of great 
interest for real time applications, because earth-bound laboratories are 
inertial only in approximation, The motivation is that the real life 
applications include accelerating and rotating frames with arbitrary 
orientation more often than the idealized case of inertial frames; our daily 
experiments happen in the laboratories attached to the rotating Earth. The 
chapter is divided into two main sections, the first section deals with 
dynamics, i.e. forces, the second section deals with electromagnetism, i.e. 
electromagnetic potentials.  

1. Introduction 

Real life applications include accelerating and rotating frames more often 
than the idealized case of inertial frames. Our daily experiments happen in 
the laboratories attached to the rotating Earth. Many books and papers have 
been dedicated to transformations between particular cases of rectilinear 
acceleration and/or rotation [1] and to the applications of such formulas [2-
13], [15]. There is great interest in producing a general solution that deals 
with arbitrary orientation of acceleration in the case of rectilinear motion 
and for arbitrary direction of uniform angular velocity.  

The main idea of this chapter is to generate a standard blueprint for a general 
solution. The blueprint relies on transforming the problem geometrically in 
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the “canonical reference frame” of [1], followed by the application of the 
physical transforms derived for such “canonical” orientations [1-7] and 
ending with the application of the inverse geometrical transformation: 

_ _ _ _Geometry Transform Physics Transform Inverse Geometry Transform (1.1)  

We conclude our paper with a practical application of deriving the formula 
of the Lorentz force in a uniformly rotating frame. 

2. Dynamics in Accelerated Rectilinear Motion 

Let S  represent an inertial system of coordinates and '( )S  an 
accelerated one. Moller [1] considers a particular case where a particle 
moves with acceleration ( ,0,0)gg  aligned with the x-axis. According 
to reference [1] the transformation for the particular case from '( )S  into 
S  is: 

'
'
'
'

x x
y y
z z
ct ct

Phy_rectilinear

          (2.1) 

where: 

cosh 0 0 sinh

0 1 0 0
0 0 1 0

sinh 0 0 cosh

g g
c c

g g
c c

Phy_rectilinear

  (2.2) 
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' '
' '

' ' ' '
' '

'

' '
' '

' ' ' '
' '

'

x x
y yd d

x dt z dt z
y ct ctd

dtzdt
dtct

x x
y yd d d

dt z d dt z
ct ct

dt
dt

Phy_rectilinearPhy_rectilinear

Phy_rectilinearPhy_rectilinear

(2.3) 

Therefore: 

'

'

' '
2

'

'
2

'
'1
'

1 ( )
'

'sinh cosh ( cosh 'sinh )
1 ( )

x

y

x z

y

z

x

xv
yv d

d zv v gt
ctv c c

gv
v g g x g gcc t
c c c c c cgt

c

Phy_rectilinearPhy_rectilinear

(2.4) 

where: 
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sinh 0 0 cosh

0 0 0 0
0 0 0 0

cosh 0 0 sinh

g g
c c

d g
d c

g g
c c

Phy_rectilinear

(2.5) 

The speed measured in the inertial frame depends both on the speed and 
the position measured in the accelerated frame. If we consider the case 
of the accelerated frame commoving with the object (particle) under 
study, then: 

' 0
' 0
' 0
' '

x
y
z
ct ct       (2.6) 

and: 

'

'

' '
2

'

'
2

0
01
0

1 ( )
'

'

sinh cosh sinh
1 ( )

x

y

x z

y

z

x

v
v d

dv v gt
ctv c c

gtv
v g g gcc
c c c cgt

c

Phy_rectilinearPhy_rectilinear

(2.7) 

In the following section we generalize his derivation for the arbitrary case 
( , , )x y zg g gg

 for obtaining the general four-space coordinate 
transformations that take us from '( )S  into S . Expressed in polar 
coordinates, the acceleration has the form: 
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cos cos
sin cos
sin

arcsin

arctan

x

z

y

y

z

x

g g
g g
g g

g
g
g
g       (2.8) 

 

Fig. 1 Arbitrary direction rectilinear accelerated motion 
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The first step rotates the unit vector of accelerationg by 
090  around the 

axis the vector cross-product 

xz
y x z

gg
g g

g e e e
 such g  gets 

aligned with the y-axis (see Fig.1). For this purpose, we will introduce the 

triplet 
( , , ) ( ,0, )xz gga b c

g g . The following expressions hold [14]: 

0 0
0 1 0 0

0 0
0 0 0 1

c a

a cyRot

     (2.9) 

0 0

0 0

cos(90 ) 0 sin(90 ) 0
0 1 0 0

sin(90 ) 0 cos(90 ) 0
0 0 0 1

sin 0 cos 0
0 1 0 0

cos 0 sin 0
0 0 0 1

0y 90 -
Rot(e )

(2.10) 

0y y90 -
Rot(e ) * Rot

aligns g with ye
. The second step is comprised by 

another rotation around the z-axis by 
090  that aligns g with xe

: 
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0 1 0 0
1 0 0 0

0 0 1 0
0 0 0 1

0z -90
Rot(e )

   (2.11) 

Putting it all together: 

0 0x y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (2.12) 

The general coordinate transformation between S  and '( )S  is: 

'
'
'
'

x x
y y
z z
ct ct

A

      (2.13) 

where: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

-1Rr * Phy_rectilinear * Rr A

(2.14) 

The general velocity transformation is therefore: 
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'

'

'
2

'' '
4341 42 44

41 42 43 44
2

'
'1
''1 ( )
'

1 ( ' ' ' ' )
'1 ( )

x

y

z

x

y

z

yx z

v
v
v
c

xv
yv d

d zv gt
c ctc

vv dav da da daa a a a x y z t
c c c cd cd cd dgt

c

AA

(2.15) 

where: 

d d
d d

-1A Phy_rectilinearRr * * Rr
         (2.16) 

The inverse transform is: 

'

'

'

1
1

2

4341 42 44
41 42 43 44

2

1

1 ( )

1 ( )
1 ( )

x

y

z

x x

y y

z z

yx z

v
v
v
c

v v
v vd
v d vgt

cc ct
vv dbv db db dbb b b b x y z t

c c c cd cd cd dgt
c

AA

(2.17) 

where: 
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11 12 13 14

21 22 23 24 1 1

31 32 33 34

41 42 43 44

b b b b
b b b b
b b b b
b b b b

-1A Rr * Phy_rectilinear * Rr

(2.18) 

If we consider the case of the accelerated frame commoving with the object 
(particle) under study, then: 

' 0
' 0
' 0
' '

x
y
z
ct ct      (2.19) 

and (2.17) simplifies to: 

'

'

'

2

44'' '

41 42 43 44
2

0
0
0

'
'1 ( )

'

'1 ( )

x

y

z

x

y

z
yx z

v
v d

dv ct
v c gt
v c

dav tvv v dc a a a a
c c c gt

c

AA

 (2.20) 

The coordinate acceleration can be derived immediately as:  
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'

'0

x

y

x x z

y y

z z

v
vd

a v dt v
a v cd

dta vdt
dtc             (2.21) 

The energy-momentum transforms the same way as the 4-coordinates (2.13) 
by virtue of being a 4-vector:  

'

'

'

/ '/

x x

y y

z z

p p
p p
p p

E c E c

A

                                         (2.22) 

Therefore: 

'
'

'
'

'
'

2

'' '
4341 42 44

41 42 43 44
2

1
'1 ( )1 ' '/

'
1 ( ' ' ' ' )1

'1 ( )

x
x

y
y

z
x z

y

z
yx z

F p
F pd
FF d pgt
dE cF E c

c dtF vv dav da da daa a a a x y z tdE c c c cd cd cd dgt
c dt c

AA

(2.23) 

The inverse transform, from the inertial frame S into the accelerated frame 
S’, is: 
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1
1

'
2

'

'

4341 42 44
41 42 43 44

2

1

1 ( )1 /

1 ( )1 '
1 ( )'

x
x

y
y

z
x z

y

z
yx z

F p
F pd
FF d pgt
dE cF E c

c dt
F vv dbv db db dbb b b b x y z tdE c c c cd cd cd dgt

c dt c

AA

 (2.24) 

If we consider the case of the accelerated frame commoving with the object 
(particle) under study, then: 

' 0
' 0
' 0
' '

x
y
z
ct ct      (2.25) 

and: 

'

'

'

2
0

0
0
0

/'/

x

y

z

p
p
p

m c cE c     (2.26) 

In this case: 
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'

'

'
2

0

44

44
2

0
01
0'1 ( )

0

'1
'1 ( )

x

y
x

z
y

z

F
F d

F dF gt
F c m c
F datdE da

c dt gt
c

AA

  (2.27) 

3. Dynamics in Uniform Angular Velocity Rotation   

In this section we discuss the case of the particle moving in an arbitrary 
plane, with the normal given by the constant angular velocity ( , , )a b c  
(see Fig.2). According to Moller [1], the simpler case when is aligned 
with the z-axis produces the transformation between the rotating frame 

'( )S  attached to the particle and an inertial, non-rotating frame S
attached to the center of rotation: 

'
'
'
'

x x
y y
z z
t t

Phy_rotation

   
 (3.1) 

where: 

 

cos cos sin sin sin cos cos sin 0 sin

cos sin sin cos sin sin cos cos 0 cos

0 0 1 0

sin cos 0

u
c

u
c

u u
c c

Phy_rotation

 (3.2) 
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2

2

2

1

1 u
c

u r

      (3.3) 

The general case is treated by transforming the problem into the particular 
case treated in [1] through a transformation into the “canonical case”, 
followed by an application of the transformation from the accelerated frame 
into the inertial frame, ending with the inverse of the first transformation, 
as shown below: 

' '
' '

( )
' '
' '

x x x
y y y
z z z
t t t

-1Rr * Phy_rotation* Rr A

 (3.4) 

0 0x y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (3.5) 

0y y90 -
Rot(e ) * Rot

aligns g with ye
. The second step is comprised by 

another rotation around the x-axis by 
090  that aligns with ze

: 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0x 90
Rot(e )

    (3.6) 
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Fig. 2 Uniform rotation with arbitrary direction of angular velocity 

Expression (3.4) gives the solution for the general case, of arbitrary angular 
velocity direction.  

The general velocity transformation is: 

'

'
2

'

'' '
2 4341 42 44

41 42 43 44

'
'

1 ( )
'
'

1 ( ) ( ' ' ' ' )

x

y

x z

y

yz x z

xv
yv r d

c d zv v
ctv c

vv v dav da da dara a a a x y z t
c c c c c cd cd cd d

AA

 
(3.7) 

The general force transformation is: 
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'
'

'
'

2'
'

'' '
2 4341 42 44

41 42 43 44

1 ( )

1 ' '/
'

1 ( ) ( ' ' ' ' )1

x
x

y
y

z
x z

y

z
yx z

F p
F pr d
FF c d p
dEF E c

c dtF vv dav da da dara a a a x y z tdE c c c c cd cd cd d
c dt

AA

   (3.8) 

where: 

-1A Rr * Phy_rotation* Rr               (3.9) 

The reverse transformation is: 

1
1 2

'

'

'

2 4341 42 44
41 42 43 44

1 ( )

1 /

1 ( ) ( )1 '
'

x
x

y
y

z
x z

y

z
yx z

F p
F pr d
FF c d p
dEF E c

c dt
F vv dbv db db dbrb b b b x y z tdE c c c c cd cd cd d

c dt

AA

 (3.10) 

where: 

11 12 13 14

21 22 23 24 1 1

31 32 33 34

41 42 43 44

b b b b
b b b b
b b b b
b b b b

-1A Rr * Phy_rotation * Rr

          (3.11) 

We will use (3.10) in the next section, an application that determines the 
expression of the Lorentz force in a rotating frame.  
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4. Application-The Expression of the Lorentz Force  
in a Uniformly Rotating Frame 

Assume that we have a particle of charge q  and mass m  moving in the x-
y plane under the influence of a magnetic field B  aligned with the z axis. 
We know that in the frame of the lab, the expression of the Lorentz force 
acting on the particle is: 

cos( ) sin( ) 0
0 0

q q r t r t
B

i j k
F v B

   (4.1) 

We would like to find out the expression of the force in the frame co-rotating 
with the charged particle.  For this purpose we will resort to (3.10) 

1
1 2

'

'

'

2 4341 42 44
41 42 43 44

1 ( )

1 /

1 ( ) ( )1 '
'

x
x

y
y

z
x z

y

z
yx z

F p
F pr d
FF c d p
dEF E c

c dt
F vv dbv db db dbrb b b b x y z tdE c c c c cd cd cd d

c dt

AA

       (4.2) 

We know from [15,16] that: 

cos( )
sin( )

0

x r t
y r t
z
t t      (4.3) 

sin( )
cos( )

0

x

y

z

v r t
v r t
v      (4.4) 
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2

2

2

2

sin( )

1 ( )

cos( )

1 ( )

0

1 ( )

x

y

z

mr tp
r
c

mr tp
r
c

p
mcE

r
c      (4.5) 

sin( )
cos( )

0

x

y

z

F qBr t
F qBr t
F     (4.6) 

Substituting (4.3-4.6) into (4.2) we obtain: 

2

1
21 2

'

2'

'

41 42 44

sin( )

1 ( )

sin( ) cos( )
cos( )

1 ( )1 ( )
0

00

1 ( )

sin( ) cos( )
1 '

'

x

y

z

mr t
r
c

qBr t mr t
qBr t rr d

cc d

mcF
rF
c

F r t r tb b bdE c c
c dt

AA

2 41 42 441 ( ) ( cos( ) sin( ) )db db dbr r t r t t
c cd cd d

  (4.7) 

To the above, we need to add [16] the fact that: 
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0

0 0

( )
( )

qB
v m
v mvr
qB       (4.8) 

In (4.8) 0v
 is the initial speed of the particle at 0t  . Armed with that (4.7) 

gets the simpler form: 

'

'

'

0 0
0 0

1
1

0 0
0 0

0 42 0 41
0 0

44

1 '
'

sin( ) sin( )
( ) ( )

cos( ) cos( )
( ) ( )

0 0
0

cos sin
( ) ( )

x

y

z

F
F
F
dE

c dt
qBt qBtqBv mv
v m v m
qBt qBtdqBv mv
v m v md

mc
qBt qBtv b v b
v m v m b

c c

AA

0 41 42 44

0 0 0 0

( cos sin )
( ) ( ) ( )

mv db db dbqBt qBt qBct
qBc d v m d v m v mv d   (4.9) 

5. Electrodynamics in Uniformly Accelerated Frames and 
in Uniformly Rotating Frames – the General Expressions 

for the Electromagnetic 4-Vector Potential 

Previously [17,18] we have dealt with the case of the transformation of 
Maxwell equations for the case of uniformly accelerated frames and 
uniformly rotating frames in arbitrary directions. The formalism derived in 
this paper, section 2, allows us to get a general transformation between the 
inertial frame S and S’ and the inverse. The electromagnetic potential 
transforms the same way as the 4-coordinates (2.13) by virtue of being a 4-
vector:  
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'

'

'

'

x x

y y

z z

c c

A

                                  (5.1) 

where A   is given by (2.14) for uniformly accelerated frames and by (3.9) 
for uniformly rotating frames. 

In order to transform Maxwell equations between the frames, we need the 
partial derivatives with respect to x, y, z, t. We will show how to calculate 
two of them, as a blueprint. 

' '

' '

' ''

'

'
44

'

'

''

'

'

' '
' '

''

'
'

'

x x

y y

x z zx

y y

z z

x

y

x zx

y y

z z

t t
c c

tt t a
tc c

x
c

x x
c c

A A

A

A

A

'

'

'

11

'
'

'

x

y

zx
c

x a
x

A

(5.2) 

The inverse transforms are: 
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1 1
'

'
1

'
44

1
'

'
1

'

'' '
'

' '
'

x x

y y

x z zx

yy

zz

x

y

x zx

yy

zz

t t
c c

tt t b
tcc

x
c

x x
cc

A A

A

A

A

1

11
'

x

y

zx
c

x b
x

A

(5.3) 

By using the above generalized transforms we can transform the electric and 
magnetic vectors, thus obtaining the general transformations for the 
Maxwell equations as seen in [17,18] 
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RELATIVISTIC DYNAMICS  
AND ELECTRODYNAMICS IN UNIFORMLY 

ACCELERATED AND UNIFORMLY 
 ROTATING FRAMES - 

 THE GENERAL EXPRESSIONS FOR THE 
ELECTROMAGNETIC 4-VECTOR POTENTIAL 

 
 
 

Synopsis 

In the current chapter we present a generalization of the transforms from the 
frame co-moving with an accelerated particle, for either rectilinear or 
circular motion, into an inertial frame of reference. The solution is of great 
interest for real time applications, because earth-bound laboratories are 
inertial only in approximation, The motivation is that the real life 
applications include accelerating and rotating frames with arbitrary 
orientation more often than the idealized case of inertial frames; our daily 
experiments happen in the laboratories attached to the rotating Earth. The 
chapter is divided into two main sections, the first section deals with 
dynamics, i.e. forces and the second section deals with electromagnetism, 
i.e. electromagnetic potentials.  

1. Introduction 

Real life applications include accelerating and rotating frames more often 
than the idealized case of inertial frames. Our daily experiments happen in 
the laboratories attached to the rotating Earth. Many books and papers have 
been dedicated to transformations between particular cases of rectilinear 
acceleration and/or rotation [1] and to the applications of such formulas [2-
13], [15]. There is great interest in producing a general solution that deals 
with arbitrary orientation of acceleration in the case of rectilinear motion 
and for arbitrary direction of uniform angular velocity.  

The main idea of this paper is to generate a standard blueprint for a general 
solution. The blueprint relies on transforming the problem geometrically in 
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the “canonical reference frame” of [1], followed by the application of the 
physical transforms derived for such “canonical” orientations [1-7] and 
ending with the application of the inverse geometrical transformation: 

_ _ _ _Geometry Transform Physics Transform Inverse Geometry Transform    
(1.1)  

We conclude our paper with a practical application of deriving the formula 
of the Lorentz force in a uniformly rotating frame. 

2. Dynamics in Accelerated Rectilinear Motion 

Let S  represent an inertial system of coordinates and '( )S  an 
accelerated one. Moller [1] considers a particular case where a particle 
moves with acceleration ( ,0,0)gg  aligned with the x-axis. According 
to reference [1] the transformation for the particular case from '( )S  into 
S  is: 

'
'
'
'

x x
y y
z z
ct ct

Phy_rectilinear

    (2.1) 

where: 

cosh 0 0 sinh

0 1 0 0
0 0 1 0

sinh 0 0 cosh

g g
c c

g g
c c

Phy_rectilinear

   (2.2) 
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' '
' '

' ' ' '
' '

'

' '
' '

' ' ' '
' '

'

x x
y yd d

x dt z dt z
y ct ctd

dtzdt
dtct

x x
y yd d d

dt z d dt z
ct ct

dt
dt

Phy_rectilinearPhy_rectilinear

Phy_rectilinearPhy_rectilinear

(2.3) 

Therefore: 

'

'

' '
2

'

'
2

'
'1
'

1 ( )
'

'sinh cosh ( cosh 'sinh )
1 ( )

x

y

x z

y

z

x

xv
yv d

d zv v gt
ctv c c

gv
v g g x g gcc t
c c c c c cgt

c

Phy_rectilinearPhy_rectilinear

(2.4) 

where: 
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sinh 0 0 cosh

0 0 0 0
0 0 0 0

cosh 0 0 sinh

g g
c c

d g
d c

g g
c c

Phy_rectilinear

 (2.5) 

The speed measured in the inertial frame depends both on the speed and the 
position measured in the accelerated frame. If we consider the case of the 
accelerated frame commoving with the object (particle) under study, then: 

' 0
' 0
' 0
' '

x
y
z
ct ct      (2.6) 

and: 

'

'

' '
2

'

'
2

0
01
0

1 ( )
'

'

sinh cosh sinh
1 ( )

x

y

x z

y

z

x

v
v d

dv v gt
ctv c c

gtv
v g g gcc
c c c cgt

c

Phy_rectilinearPhy_rectilinear

(2.7) 

In the following section we generalize his derivation for the arbitrary case 
( , , )x y zg g gg

 for obtaining the general four-space coordinate 
transformations that take us from '( )S  into S . Expressed in polar 
coordinates, the acceleration has the form: 
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cos cos
sin cos
sin

arcsin

arctan

x

z

y

y

z

x

g g
g g
g g

g
g
g
g       (2.8) 

 

Fig. 1 Arbitrary direction rectilinear accelerated motion 
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The first step rotates the unit vector of accelerationg by 
090  around the 

axis the vector cross-product 

xz
y x z

gg
g g

g e e e
 such g  gets 

aligned with the y-axis (see Fig.1). For this purpose, we will introduce the 

triplet
( , , ) ( ,0, )xz gga b c

g g . The following expressions hold [14]: 

 

0 0
0 1 0 0

0 0
0 0 0 1

c a

a cyRot

     (2.9) 

0 0

0 0

cos(90 ) 0 sin(90 ) 0
0 1 0 0

sin(90 ) 0 cos(90 ) 0
0 0 0 1

sin 0 cos 0
0 1 0 0

cos 0 sin 0
0 0 0 1

0y 90 -
Rot(e )

(2.10) 

0y y90 -
Rot(e ) * Rot

aligns g with ye
. The second step is comprised by 

another rotation around the z-axis by 
090  that aligns g with xe

: 
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0 1 0 0
1 0 0 0

0 0 1 0
0 0 0 1

0z -90
Rot(e )

   (2.11) 

Putting it all together: 

0 0x y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (2.12) 

The general coordinate transformation between S  and '( )S  is: 

'
'
'
'

x x
y y
z z
ct ct

A

      (2.13) 

where: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

-1Rr * Phy_rectilinear * Rr A

(2.14) 

The general velocity transformation is therefore: 

 

'

'

'
2

'' '
4341 42 44

41 42 43 44
2

'
'1
''1 ( )
'

1 ( ' ' ' ' )
'1 ( )

x

y

x z

y

yz x z

xv
yv d

d zv v gt
c ctv c

vv v dav da da daa a a a x y z t
c c c c cd cd cd dgt

c

AA

  (2.15) 
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where: 

d d
d d

-1A Phy_rectilinearRr * * Rr
  (2.16) 

The inverse transform is: 

1
1

'
2

'

'
4341 42 44

41 42 43 44
2

1

1 ( )

1 ( )
1 ( )

x x

y y

z zx

y

yz x z

v v
v vd
v d vv gt

cc ctv
vv v dbv db db dbb b b b x y z t

c c c cd cd cd dc gt
c

AA

(2.17) 

where: 

11 12 13 14

21 22 23 24 1 1

31 32 33 34

41 42 43 44

b b b b
b b b b
b b b b
b b b b

-1A Rr * Phy_rectilinear * Rr

(2.18) 

If we consider the case of the accelerated frame commoving with the object 
(particle) under study, then: 

' 0
' 0
' 0
' '

x
y
z
ct ct      (2.19) 

and (2.17) simplifies to: 
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'

'

'

2

44'' '

41 42 43 44
2

0
0
0

'
'1 ( )

'

'1 ( )

x

y

z

x

y

z
yx z

v
v d

dv ct
v c gt
v c

dav tvv v dc a a a a
c c c gt

c

AA

(2.20) 

The coordinate acceleration can be derived immediately as:  

'

'0

x

y

x x z

y y

z z

v
vd

a v dt v
a v cd

dta vdt
dtc    (2.21) 

The energy-momentum transforms the same way as the 4-coordinates (2.13) 
by virtue of being a 4-vector:  

'

'

'

/ '/

x x

y y

z z

p p
p p
p p

E c E c

A

                                              (2.22) 

Therefore: 
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'
'

'
'

'
'

2

'' '
4341 42 44

41 42 43 44
2

1
'1 ( )1 ' '/

'
1 ( ' ' ' ' )1

'1 ( )

x
x

y
y

z
x z

y

z
yx z

F p
F pd
FF d pgt
dE cF E c

c dtF vv dav da da daa a a a x y z tdE c c c cd cd cd dgt
c dt c

AA

 (2.23) 

The inverse transform, from the inertial frame S into the accelerated frame 
S’, is: 

1
1

'
2

'

'

4341 42 44
41 42 43 44

2

1

1 ( )1 /

1 ( )1 '
1 ( )'

x
x

y
y

z
x z

y

z
yx z

F p
F pd
FF d pgt
dE cF E c

c dt
F vv dbv db db dbb b b b x y z tdE c c c cd cd cd dgt

c dt c

AA

 (2.24) 

If we consider the case of the accelerated frame commoving with the object 
(particle) under study, then: 

' 0
' 0
' 0
' '

x
y
z
ct ct               (2.25) 

and: 
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'

'

'

2
0

0
0
0

/'/

x

y

z

p
p
p

m c cE c     (2.26) 

In this case: 

'

'

'
2

0

44

44
2

0
01
0'1 ( )

0

'1
'1 ( )

x

y
x

z
y

z

F
F d

F dF gt
F c m c
F datdE da

c dt gt
c

AA

 (2.27) 

  

3. Dynamics in Uniform Angular Velocity Rotation   

In this section we discuss the case of the particle moving in an arbitrary 
plane, with the normal given by the constant angular velocity ( , , )a b c  
(see Fig.2). According to Moller [1], the simpler case when is aligned 
with the z-axis produces the transformation between the rotating frame 

'( )S  attached to the particle and an inertial, non-rotating frame S
attached to the center of rotation: 
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'
'
'
'

x x
y y
z z
t t

Phy_rotation

   (3.1) 

 

where: 

cos cos sin sin sin cos cos sin 0 sin

cos sin sin cos sin sin cos cos 0 cos

0 0 1 0

sin cos 0

u
c

u
c

u u
c c

Phy_rotation

(3.2) 

2

2

2

1

1 u
c

u r

                 (3.3) 

The general case is treated by transforming the problem into the particular 
case treated in [1] through a transformation into the “canonical case”, 
followed by an application of the transformation from the accelerated frame 
into the inertial frame, ending with the inverse of the first transformation, 
as shown below: 
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' '
' '

( )
' '
' '

x x x
y y y
z z z
t t t

-1Rr * Phy_rotation* Rr A

 (3.4) 

0 0x y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (3.5) 

0y y90 -
Rot(e ) * Rot

aligns g with ye
. The second step is comprised by 

another rotation around the x-axis by 
090  that aligns with ze

: 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0x 90
Rot(e )

    (3.6) 

 

Fig. 2 Uniform rotation with arbitrary direction of angular velocity 
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Expression (3.4) gives the solution for the general case, of arbitrary angular 
velocity direction.  

The general velocity transformation is: 

'

'
2

'

'' '
2 4341 42 44

41 42 43 44

'
'

1 ( )
'
'

1 ( ) ( ' ' ' ' )

x

y

x z

y

yz x z

xv
yv r d

c d zv v
ctv c

vv v dav da da dara a a a x y z t
c c c c c cd cd cd d

AA

(3.7) 

The general force transformation is: 

'
'

'
'

2'
'

'' '
2 4341 42 44

41 42 43 44

1 ( )

1 ' '/
'

1 ( ) ( ' ' ' ' )1

x
x

y
y

z
x z

y

z
yx z

F p
F pr d
FF c d p
dEF E c

c dtF vv dav da da dara a a a x y z tdE c c c c cd cd cd d
c dt

AA

(3.8) 

where: 

-1A Rr * Phy_rotation* Rr             (3.9) 

The reverse transformation is: 

1
1 2

'

'

'

2 4341 42 44
41 42 43 44

1 ( )

1 /

1 ( ) ( )1 '
'

x
x

y
y

z
x z

y

z
yx z

F p
F pr d
FF c d p
dEF E c

c dt
F vv dbv db db dbrb b b b x y z tdE c c c c cd cd cd d

c dt

AA

  (3.10) 

where: 
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11 12 13 14

21 22 23 24 1 1

31 32 33 34

41 42 43 44

b b b b
b b b b
b b b b
b b b b

-1A Rr * Phy_rotation * Rr

(3.11) 

We will use (3.10) in the next section, an application that determines the 
expression of the Lorentz force in a rotating frame.  

4. Application-The Expression of the Lorentz Force  
in a Uniformly Rotating Frame 

Assume that we have a particle of charge q  and mass m  moving in the x-
y plane under the influence of a magnetic field B  aligned with the z axis. 
We know that in the frame of the lab, the expression of the Lorentz force 
acting on the particle is: 

cos( ) sin( ) 0
0 0

q q r t r t
B

i j k
F v B

  (4.1) 

We would like to find out the expression of the force in the frame co-rotating 
with the charged particle.  For this purpose we will resort to (3.10) 

1
1 2

'

'

'

2 4341 42 44
41 42 43 44

1 ( )

1 /

1 ( ) ( )1 '
'

x
x

y
y

z
x z

y

z
yx z

F p
F pr d
FF c d p
dEF E c

c dt
F vv dbv db db dbrb b b b x y z tdE c c c c cd cd cd d

c dt

AA

  (4.2) 

We know from [15,16] that: 

 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Relativistic Dynamics and Electrodynamics in Uniformly Accelerated  
and Uniformly Rotating Frames 

200 

cos( )
sin( )

0

x r t
y r t
z
t t      (4.3) 

sin( )
cos( )

0

x

y

z

v r t
v r t
v      (4.4) 

2

2

2

2

sin( )

1 ( )

cos( )

1 ( )

0

1 ( )

x

y

z

mr tp
r
c

mr tp
r
c

p
mcE

r
c      (4.5) 

sin( )
cos( )

0

x

y

z

F qBr t
F qBr t
F     (4.6) 

Substituting (4.3-4.6) into (4.2) we obtain: 
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2

1
21 2

'

2'

'

41 42 44

sin( )

1 ( )

sin( ) cos( )
cos( )

1 ( )1 ( )
0

00

1 ( )

sin( ) cos( )
1 '

'

x

y

z

mr t
r
c

qBr t mr t
qBr t rr d

cc d

mcF
rF
c

F r t r tb b bdE c c
c dt

AA

2 41 42 441 ( ) ( cos( ) sin( ) )db db dbr r t r t t
c cd cd d

  (4.7) 

To the above, we need to add [16] the fact that: 

0

0 0

( )
( )

qB
v m
v mvr
qB                 (4.8) 

In (4.8) 0v
 is the initial speed of the particle at 0t  . Armed with that 

(4.7) gets the simpler form: 
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'

'

'

0 0
0 0

1
1

0 0
0 0

0 42 0 41
0 0

44

1 '
'

sin( ) sin( )
( ) ( )

cos( ) cos( )
( ) ( )

0 0
0

cos sin
( ) ( )

x

y

z

F
F
F
dE

c dt
qBt qBtqBv mv
v m v m
qBt qBtdqBv mv
v m v md

mc
qBt qBtv b v b
v m v m b

c c

AA

0 41 42 44

0 0 0 0

( cos sin )
( ) ( ) ( )

mv db db dbqBt qBt qBct
qBc d v m d v m v mv d   (4.9) 

5. Electrodynamics in Uniformly Accelerated Frames and 
in Uniformly Rotating Frames – the General Expressions 

for the Electromagnetic 4-Vector Potential 

Previously [17,18] we have dealt with the case of the transformation of 
Maxwell equations for the case of uniformly accelerated frames and 
uniformly rotating frames in arbitrary directions. The formalism derived in 
this paper, section 2, allows us to get a general transformation between the 
inertial frame S and S’ and the inverse. The electromagnetic potential 
transforms the same way as the 4-coordinates (2.13) by virtue of being a 4-
vector:  

'

'

'

'

x x

y y

z z

c c

A

          (5.1) 

where A   is given by (2.14) for uniformly accelerated frames and by (3.9) 
for uniformly rotating frames. 

In order to transform Maxwell equations between the frames, we need the 
partial derivatives with respect to x, y, z, t. We will show how to calculate 
two of them, as a blueprint. 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Relativistic Forces in Special and General Relativity 203 

' '

' '

' ''

'

'
44

'

'

''

'

'

' '
' '

''

'
'

'

x x

y y

x z zx

y y

z z

x

y

x zx

y y

z z

t t
c c

tt t a
tc c

x
c

x x
c c

A A

A

A

A

'

'

'

11

'
'

'

x

y

zx
c

x a
x

A

(5.2) 

The inverse transforms are: 

1 1
'

'
1

'
44

1
'

'
1

'

'' '
'

' '
'

x x

y y

x z zx

yy

zz

x

y

x zx

yy

zz

t t
c c

tt t b
tcc

x
c

x x
cc

A A

A

A

A

1

11
'

x

y

zx
c

x b
x

A

(5.3) 
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By using the above generalized transforms we can transform the electric and 
magnetic vectors, thus obtaining the general transformations for the 
Maxwell equations as seen in [17,18] 
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GENERALIZATION OF COORDINATE 
TRANSFORMATIONS BETWEEN  

ACCELERATED AND INERTIAL FRAMES – 
GENERAL FORMULAS  

OF THOMAS PRECESSION 
 
 
 

Synopsis 

In the current chapter we present a generalization of the transforms from the 
frame co-moving with an accelerated particle, for either rectilinear or 
circular motion, into an inertial frame of reference. The solution is of great 
interest for real time applications, because earth-bound laboratories are 
inertial only in approximation. Though prior solutions exist, they are 
restricted to the particular cases of directions of motion aligned with the 
coordinate axes. It is our intent to produce a blueprint for generalizing the 
solutions to the arbitrary directions of motion. The motivation is that the 
real life applications include accelerating and rotating frames with arbitrary 
orientation more often than the idealized case of inertial frames. Our daily 
experiments happen in the laboratories attached to the rotating Earth. We 
conclude by deriving the general form of Thomas precession as an 
immediate application of arbitrary orientation of the axis of rotation with 
respect to the measuring frame.  

1. Introduction 

Many books and papers have been dedicated to transformations between 
particular cases of rectilinear acceleration and/or rotation [1] and to the 
applications of such formulas [2-13], [15]. There is great interest in 
producing a general solution that deals with arbitrary orientation of 
acceleration in the case of rectilinear motion and for arbitrary direction of 
uniform angular velocity.  

The main idea of this paper is to generate a standard blueprint for a general 
solution. The blueprint relies on transforming the problem geometrically in 
the “canonical reference frame” of [1], followed by the application of the 
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physical transforms derived for such “canonical” orientations [1-7] and 
ending with the application of the inverse geometrical transformation: 

_ _ _ _Geometry Transform Physics Transform Inverse Geometry Transform    
(1.1)  

2. Accelerated Rectilinear Motion 

Let S  represent an inertial system of coordinates and '( )S  an 
accelerated one. Moller [1] considers a particular case where a particle 
moves with acceleration ( ,0,0)gg  aligned with the x-axis. In the 
following section we will generalize his derivation for the arbitrary case 

( , , )x y zg g gg
 for obtaining the general four-space coordinate 

transformations that take us from '( )S  into S . Expressed in polar 
coordinates, the acceleration has the form: 

cos cos
sin cos
sin

arcsin

arctan

x

z

y

y

z

x

g g
g g
g g

g
g
g
g       (2.1) 
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Fig. 1 Arbitrary direction rectilinear accelerated motion 

According to reference [1] the transformation for the particular case from 
'( )S  into S  is: 

( , , , ) ( ', ', ', ' ')x y z ct x y z c t Phy_rectilinear   (2.2) 

where: 
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cosh 0 0 sinh

0 1 0 0
0 0 1 0

sinh 0 0 cosh

g g
c c

g g
c c

Phy_rectilinear

    (2.3) 

'
'
'

' '

X x
Y y
Z z
cT c t

Phy_rectilinear

                       (2.4) 

'

'

'

'
'
'

'

x x

y y

z z

cp c p
cp c p
cp c p
E E

Phy_rectilinear

                                          (2.5) 

'

'

' '

1 1

x x

y y

z z

k k
k k

h h
k k

Phy_rectilinear

   (2.6) 
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'

'

'

cosh 0 0 sinh

0 1 0 0
'

0 0 1 0
1 1sinh 0 0 cosh

x x

y y

z z

g g
k kc c
k k
k k

g g
c c  (2.7) 

'

'

( cosh sinh ) '

( sinh cosh ) '

x x

x

g gk k
c c

g gk
c c   (2.8) 

'

'

cosh sinh

sinh cosh

x

x

x

g gk
c ck g gk
c c                                                        (2.9)

 

'

'

'

'

'

'

'

sinh cosh

'

sinh cosh

y y

y
y

x

z z

z
z

x

k k

k
k g gk

c c
k k

kk g gk
c c   (2.10) 

The first step rotates the unit vector of acceleration g by 
090  around the 

axis the vector cross-product 

xz
y x z

gg
g g

g e e e
 such g  gets 
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aligned with the y-axis (see Fig.1). For this purpose, we will introduce the 

triplet 
( , , ) ( ,0, )xz gga b c

g g . The following expressions hold [14]: 

 

0 0
0 1 0 0

0 0
0 0 0 1

c a

a cyRot

             (2.11) 

0 0

0 0

cos(90 ) 0 sin(90 ) 0
0 1 0 0

sin(90 ) 0 cos(90 ) 0
0 0 0 1

sin 0 cos 0
0 1 0 0

cos 0 sin 0
0 0 0 1

0y 90 -
Rot(e )

(2.12) 

 

0y y90 -
Rot(e ) * Rot

aligns g with ye
. The second step is comprised by 

another rotation around the z-axis by 
090  that aligns g with xe

: 
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0 1 0 0
1 0 0 0

0 0 1 0
0 0 0 1

0z -90
Rot(e )

   (2.13) 

Putting it all together: 

0 0x y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (2.14) 

According to (1.1) the general transformation between S  and '( )S  is: 

-1Rr * Phy_rectilinear * Rr    (2.15) 

-1Rr reverses all the effects of Rr . Expression (2.15) gives the solution 
for the general case, of arbitrary acceleration direction.  

3. Uniform Angular Velocity Rotation   

In this section we discuss the case of the particle moving in an arbitrary 
plane, with the normal given by the constant angular velocity ( , , )a b c  
(see Fig.2). According to Moller [1], the simpler case when is aligned 
with the z-axis produces the transformation between the rotating frame 

'( )S  attached to the particle and an inertial, non-rotating frame S
attached to the center of rotation: 

'
'
'
'

x x
y y
z z
t t

Phy_rotation

   (3.1) 

where: 
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cos cos sin sin sin cos cos sin 0 sin

cos sin sin cos sin sin cos cos 0 cos

0 0 1 0

sin cos 0

u
c

u
c

u u
c c

Phy_rotation

(3.2) 

2

2

2

1

1 u
c

u r

      (3.3) 

The general case is treated by transforming the problem into the particular 
case treated in [1] through a transformation into the “canonical case”, 
followed by an application of the transformation from the accelerated frame 
into the inertial frame, ending with the inverse of the first transformation, 
as shown below: 

'
'

( )
'
'

X x
Y y
Z z
T t

-1Rr * Phy_rotation* Rr

  (3.4) 

0 0x y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (3.5) 

0y y90 -
Rot(e ) * Rot

aligns g with ye
. The second step is comprised by 

another rotation around the x-axis by 
090  that aligns with ze

: 

 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Generalization of Coordinate Transformations between Accelerated  
and Inertial Frames – General Formulas of Thomas Precession 

214 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0x 90
Rot(e )

   (3.6) 

 

Fig. 2 Uniform rotation with arbitrary direction of angular velocity 

Expression (3.4) gives the solution for the general case, of arbitrary angular 
velocity direction.  

4. Application: The General Formulas  
for Thomas Precession 

Moller [1] provides a very good explanation of the Thomas rotation [2-7] 
by comparing: 

 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Relativistic Forces in Special and General Relativity 215 

1 0 0 0

0 0

0 0 1 0

0 0

u
c

u
c

Phy_rotation

  (4.1) 

with  

1 1 1

1 1 1

cos sin 0 sin

sin cos 0 cos

0 0 1 0

0 0

u
c

u
c

u
c

Phy_rotation

(4.2) 

where 1 2 ( 1)
 is the angle of rotation over the period of one 

revolution,

2

 . The Thomas effect is responsible for the change in the 
orientation of the particle spin [5]. 

The precession effect for the general case is therefore described by the 3x3 
spatial coordinate sub-matrix of the 4x4 matrix: 

-1Rr * Phy_rotation* Rr     (4.3) 

In other words, in order to get the general equations of the Thomas 
precession about an arbitrary axis, we will need to compare the expressions 

of 
-1Rr * Phy_rotation* Rr at 2 /  and 0 .  In order to 

evaluate the effect on the coordinates, we need to evaluate only the 3x3 
matrix responsible for transforming the spatial coordinates. Indeed: 
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0

0( )

-1 -1

-1

Rr * Phy_rotation * Rr Rr * Phy_rotation * Rr

Rr * Phy_rotation Phy_rotation * Rr (4.4) 

The net effect is therefore the effect as measured for the canonical 
orientation of the rotation axis modified by -1Rr and Rr . We notice from 

the above that the ,x y  components of the system of coordinates 1'( )S
  

are affected by the z  component, while the z  component is unchanged. In 
other words, the axes of coordinates of the inertial system S  undergo a 

more complex transformation than the rotation by 1 2 ( 1)
 and 

this is to be expected.  
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GENERALIZATION OF THE THOMAS-WIGNER 
ROTATION TO UNIFORMLY  
ACCELERATING BOOSTS  

 
 
 

Synopsis 

In the current chapter we present a generalization of the transforms from the 
frame co-moving with an accelerated particle for uniformly accelerated 
motion into an inertial frame of reference. The motivation is that the real 
life applications include accelerating and rotating frames with arbitrary 
orientations more often than the idealized case of inertial frames; our daily 
experiments happen in Earth-bound laboratories. We use the transforms in 
order to generalize the Thomas-Wigner rotation to the case of uniformly 
accelerated boosts.  

1. Introduction 

Many books and papers have been dedicated to transformations between 
particular cases of rectilinear acceleration and/or rotation [1] and to the 
applications of such formulas [2-13], [15]. There is great interest in 
producing a general solution that deals with arbitrary orientation of the 
uniform acceleration. The main idea of this paper is to generate a standard 
blueprint for a general solution. The blueprint relies on transforming the 
problem geometrically in the “canonical reference frame” of [1], followed 
by the application of the physical transforms derived for such “canonical” 
orientations [1-7] and ending with the application of the inverse geometrical 
transformation: 

_ _ _ _Geometry Transform Physics Transform Inverse Geometry Transform    
(1.1)  

We conclude our paper with a practical application of deriving the formula 
of the Thomas-Wigner rotation due to the composition of accelerated 
boosts. 
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2. Dynamics in Uniformly Accelerated Frames   

It is well known that the composition of two non-collinear Lorentz boosts 
results in a Lorentz transformation that is the composition of a boost and a 
rotation. This rotation is called Thomas–Wigner rotation. The rotation was 
discovered by Llewellyn Thomas in 1926 [19] and derived formally by 
Wigner in 1939 [20]. In this paper we extend the formalism to the case of 
two successive boosts due to two arbitrary-direction constant accelerations. 
Consider the case of a particle moving in an arbitrary plane with the normal 

given by the constant acceleration
( , , )x y zg g gg

 (see Fig.1). According 
to Moller [1], the simpler case when g is aligned with the x-axis produces 
the transformation between the accelerating frame '( )S  attached to the 
particle and an inertial frame S : 

'
'
'
'

x x
y y
z z
ct ct

Phy_rectilinear

   (2.1) 

where: 

cosh 0 0 sinh

0 1 0 0
0 0 1 0

sinh 0 0 cosh

g g
c c

g g
c c

Phy_rectilinear

 (2.2) 

In the following section, we generalize Moller’s derivation for the arbitrary 

case 
( , , )x y zg g gg

 for obtaining the general four-space coordinate 
transformations that take us from '( )S  into S . Expressed in polar 
coordinates, the acceleration has the form: 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Generalization of the Thomas-Wigner Rotation 
 to Uniformly Accelerating Boosts 

220 

cos cos
sin cos
sin

arcsin

arctan

x

z

y

y

z

x

g g
g g
g g

g
g
g
g                   (2.3) 

The general case is treated by transforming the problem into the particular 
case treated in [1] through a transformation into the “canonical case”, 
followed by an application of the transformation from the uniformly rotating 
frame into the inertial frame, ending with the inverse of the first 
transformation, as shown below: 

' '
' '

( )
' '
' '

x x x
y y y
z z z
ct ct ct

-1Rr * Phy_rectilinear * Rr A

(2.4) 

z 0 0y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (2.5) 

0y y90 -
Rot(e ) * Rot

aligns g with ye
 so the first step rotates g by 

090  around the axis the vector cross-product 

xz
y x z

gg
g g

g e e e
 such g  gets aligned with the y-axis (see Fig.1). 

For this purpose, we will introduce the pair
( , ) ( , )xz gga b

g g . The 
following expressions hold [14]: 
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0 0
0 1 0 0

0 0
0 0 0 1

b a

a byRot

     (2.6) 

 

 
Fig. 1 Uniform rotation with arbitrary direction of angular velocity 
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0 0

0 0

cos(90 ) 0 sin(90 ) 0
0 1 0 0

sin(90 ) 0 cos(90 ) 0
0 0 0 1

sin 0 cos 0
0 1 0 0

cos 0 sin 0
0 0 0 1

0y 90 -
Rot(e )

(2.7) 

The second step is another rotation around the z-axis by -
090  that aligns 

g with xe
: 

0 1 0 0
1 0 0 0

0 0 1 0
0 0 0 1

z 090
Rot(e )

   (2.8) 

Putting it all together: 

z 0 0y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (2.9) 

-1A Rr * Phy_rectilinear * Rr    (2.10) 

Let us consider a second boost given by the constant acceleration 'g . 
Expressed in polar coordinates, the acceleration has the form: 
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'

'

'

' arcsin
'

' arctan

y

z

x

g
g
g
g                   (2.11) 

We now introduce the pair

''

( ', ') ( , )
' '

xz gga b
g g . The following 

expressions hold [14]: 

'

' 0 ' 0
0 1 0 0

' 0 ' 0
0 0 0 1

y

b a

a b
Rot

     (2.12) 

sin ' 0 cos ' 0
0 1 0 0

'
cos ' 0 sin ' 0

0 0 0 1

0y 90 -
Rot (e )

     (2.13) 

' 'cosh 0 0 sinh

0 1 0 0
'

0 0 1 0
' 'sinh 0 0 cosh

g g
c c

g g
c c

Phy_rectilinear

(2.14) 

'' 'z y0 0y90 90 -
Rr = Rot(e ) * Rot (e ) * Rot

   (2.15) 

' ' ' '-1A Rr * Phy_rectilinear * Rr   (2.16) 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Generalization of the Thomas-Wigner Rotation 
 to Uniformly Accelerating Boosts 

224 

The boost in the arbitrary direction of acceleration  followed by the boost 
in the arbitrary direction of acceleration  is therefore completely described 
by the transformation matrix: 

' ' '-1 -1B A'A Rr * Phy_rectilinear * Rr * Rr * Phy_rectilinear * Rr      
(2.17) 

Formula (2.17) represents the generalization of the Thomas-Wigner rotation 
for the case of uniformly accelerated boosts. While Thomas rotation is a 
kinematic effect, the effect presented in this paper is a dynamic effect, the 
rotation is due to the changes in the direction of the acceleration. If the 
accelerations g,g'  are collinear, then: 

'Rr = Rr          (2.18) 

'-1B A'A Rr * Phy_rectilinear * Phy_rectilinear * Rr      
(2.19) 

'
( ') ( ')cosh 0 0 sinh

0 1 0 0
0 0 1 0

( ') ( ')sinh 0 0 cosh

g g g g
c c

g g g g
c c

Phy_rectilinear * Phy_rectilinear

         (2.20) 

Expression (2.20) serves as a quick sanity check for the formalism as we 
can see that the accelerations add algebraically.  
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THE RELATIVISTIC CYCLOTRON RADIATION  
IN THE CIRCULAR ROTATING FRAME  
OF THE MOVING HEAVY PARTICLE 

 
 
 

Synopsis 

In the current chapter we tackle the task of determining the formula for the 
cyclotron radiation as measured from a frame co-moving with the particle 
being accelerated. In the case of cyclotrons, as opposed to synchrotrons, the 
magnetic field is constant, resulting into spiral trajectories for light particle, 
like electrons and into circular trajectories for heavier particles, like protons, 
as we will demonstrate in the current paper. This due to the fact that the 
braking force is a very small percentage of the accelerating (Lorentz) force, 
as will be shown later in our paper. These proofs have never been attempted 
before owing to the difficulty of dealing with rotating frames. The chapter 
is divided into two main sections, the first section deals with cyclotron 
radiation measured in the inertial frame of the lab, the second section deals 
with cyclotron radiation as measured in a frame co-rotating with the particle 
along a circular path, at a uniform speed.  

1. Introduction - Bremsstrahlung 

Bremsstrahlung is the electromagnetic radiation produced by the 
deceleration of a charged particle.  The moving particle loses kinetic energy, 
which is converted into a photon, it is the process of producing the energy 
radiation [1]: 
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.
2 6 .

2 2

0

2

.

( ( ) )
6

1
1

qp
c

v
c

a
c

d va
d      (1.1) 

For the case of acceleration perpendicular to the velocity (as in the case of 
synchrotrons), the formula simplifies to: 

2 2 4

3
06

q ap
c       (1.2) 

where p  is the power measured in the frame of the lab. In the current paper 
we will make the attempt of finding the power as expressed in the frame co-
moving with the particle. 

2. Kinematics in Uniform Angular Velocity Rotation   

In this section we introduce all the fundamental notions that will help 
discussing the case of the particle moving in an arbitrary plane, with the 
normal given by the constant angular velocity ( , , )a b c , as in the case 
of a charged particle in circular motion in a synchrotron. According to 
Moller [2], the simpler case when is aligned with the z-axis produces the 
transformation between the rotating frame '( )S  attached to the particle 
and an inertial, non-rotating frame S attached to the center of rotation [2-
7], [15],[16] (see fig.1): 
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Fig. 1. Relationship between rotating and inertial frames 

'
'
'
'

x x
y y
z z
ct ct

A

     (2.1) 

where [7]: 
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1

cos cos sin sin sin cos cos sin 0 sin

cos sin sin cos sin sin cos cos 0 cos

0 0 1 0

sin cos 0

cos cos sin sin cos sin sin cos 0 sin

sin s cos cos sin

u
c

u
c

u u
c c

u
c

sin sin cos cos 0 cos

0 0 1 0

sin cos 0

u
c

u u
c c (2.2) 

2

2

2

1

1 u
c

u r

      (2.3) 

3. Bremsstrahlung in a Uniformly Rotating Frame 

Assume that we have a particle of charge q  and mass m  moving in the x-
y plane under the influence of a constant magnetic field B  aligned with the 
z axis.  The magnetic field is the only field present since the particle is to 
have a circular motion [4,8]. We know that in the frame of the lab, the 
expression of the Lorentz force acting on the particle is [8]: 
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cos( ) sin( ) 0
0 0

q q r t r t
B

i j k
F v B

  (3.1) 

We would like to find out the expression of the force in the frame co-rotating 
with the charged particle.  For this purpose we will resort to the fact [9] that 
four-force transforms like four-coordinate (2.1)  

'

'

1'

( )'( ')
( )'( ')
( )'( ')

.. ( )'( ')

xx

yy

zz

u Fu F
u Fu F
u Fu F

uu
cc

A

F uF'u'

           (3.2) 

The term 

.( )u
c

F u
 represents the power imparted by the magnetic field to 

the particle measured in the lab frame (divided by c) while the term 
.'( ')u
c

F'u'
 represents the power imparted by the magnetic field to the 

particle measured in the frame commoving with the particle (divided by c).  
Transformation (3.2) gives the general formulas for transforming four-force 
(proper force) in rotating frames.  

We know from [8] that: 

cos( )
sin( )

0

x r t
y r t
z
t t      (3.3) 
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2 2 2
0

0

sin
cos

0

( ) ( )

x

y

z

x y z

u r t
u r t
u

u u u u r u

u u         (3.4) 

sin
cos

0

x

y

z

F qBr t
F qBr t
F     (3.5) 

Substituting (3.4), (3.5) into (3.2) we obtain: 

0 0' 0

0 0' 0
1 1

' 0
2
0

0 0

( ) sin( )'( ')
( ) cos( )'( ')

0( )'( ')
.( )'/ ( )

x
x

y
y

z
z

u qBu tu Fu F
u qBu tu Fu F

u Fu F
qBuuP c u

c c

A A

F u

  (3.6) 

Therefore: 

'

'

'

0

0

0 0

'( ')
'( ')
'( ')

'/

sincos cos sin sin sin cos cos sin 0

coscos sin sin cos sin sin cos cos 0

0 0 1 0
sin cos 0

x

y

z

u F
u F
u F

P c

u tt t t t t t t t
c

u tt t t t t t t t
c

u t u t
c c

0

0

2
0

sin
cos

0

qBu t
qBu t

qBu
c

 (3.7) 
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The final formula for the power imparted by the magnetic field to the 
particle measured in the frame commoving with the particle is: 

2 2
0 0' 2 ( )P qB u u

     (3.8) 

Expression (3.7) provides us with the expression of the force acting on the 
particle as measured in the frame of the particle (the proper force). For 
example: 

2
' ' 2 0

0 0 02

2
' ' 2 0

0 0 02

'

'( ') ( ) (1 )sin sin

'( ') ( ) (1 )cos cos

0

x x

y y

z

uF u F u qBu t qBu t
c

uF u F u qBu t qBu t
c

F

:

:

:

(3.9) 

The term 
2

0 0( )u qBu
in (3.9) represents the non-fictitious component, the 

active Lorentz force while the term 

2
2 0

0 0 2( ) ( )uu qBu
c  represents the 

fictitious component, the centrifugal “force” due to the calculations being 
done in the (uniformly) rotating frame.  

We are now ready to derive the radiated power. From [4] we know that: 

0( )
qB
v m      (3.10) 

Substituting (3.4),(3.10) into (1.2) we obtain: 

2 6 2 4 4 2 22 2 4 2 2
0 0 0 0

3 2 2 3 3 2
0 0 0 0

( ) ( )
6 ( ) 6 6

q u u q u u Bq a q Bp
c u m c c m  (3.11) 

The radiated power in this case is a constant that depends on the mass of the 
particle, m , its charge, q , its initial speed of injection into the synchrotron, 
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0u
 and the magnitude of the magnetic field B . The constancy is due to the 

fact that 0r u
. The braking force due to radiation acts in direct 

opposition to the direction of motion (direction of u): 

0

0

sin

cos

0

tan

x

y

z

x

y

pf t
u
pf t

u
f
f t
f      (3.12) 

We know that: 

' 0

' 0
1

' 0

0

0
0 0

1 10
00 0

0

( )'( ')
( )'( ')
( )'( ')

.( )'/

sin( ) sin

cos( ) cos
( )

0 0
1( )

x
x

y
y

z
z

u fu f
u fu f
u fu f

up c
c

p tu t
u u
p tu t

u pu u

pu
c c

A

f u

A A

      (3.13) 

Therefore: 
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sincos cos sin sin sin cos cos sin 0

coscos sin sin cos sin sin cos cos 0
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0 0 1 0
sin cos 0
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u f
u f
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u tt t t t t t t t
c

u tt t t t t t t t
u p c

u t u t
c c

0

0

sin

cos

0
1

t
u

t
u

c (3.14) 

From (3.14) we get the radiated power measured in the frame co-moving 
with the particle: 

' 0p       (3.15) 

This should come as no surprise since the particle is not accelerating in its 
own frame of reference. We also get the braking force due to radiation: 

2
' ' 2 0

0 2
0 0

2
' ' 2 0

0 2
0 0

'

'

'

'( ') ( ) (1 )sin sin

'( ') ( ) (1 )cos cos

0

tan

x x

y y

z

x

y

up pf u f u t t
u c u

up pf u f u t t
u c u

f

f t
f

:

:

:

:

:

(3.16) 

Notice the similarity between expressions (3.16) and (3.13).  Also notice 
how the ratio between the force components in the x and y directions has 
been increased by the contribution of the gamma factor. We can see that the 
particle experiences a braking force in the frame co-moving with it. This is 
extremely important for practical reasons: despite of the absence of 
radiating power as measured in the co-moving frame, the particle is still 
being slowed down, independent of the frame of reference used for 
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calculations, thus requiring external energy to be imparted in order to 
maintain its speed [10-14].  

4. Braking force as a percentage of the Lorentz force 

The total radiated power goes as
4m , which accounts for why electrons 

lose energy due to bremsstrahlung radiation much more rapidly than heavier 
charged particles (e.g., muons, protons, alpha particles). This is the reason 
why the TeV energy electron-positron colliders cannot use circular tunnels 
(requiring constant acceleration), while a proton-proton colliders (such as 
LHC) can utilize circular tunnels (and, consequently, the acting Lorentz 
force is dependent only on the magnetic field, as explained in (3.1)). The 

electrons lose energy due to bremsstrahlung at a rate 
4 13( / ) 10p em m

times higher than protons do [10-14]. 

Another way of looking at the issue is by calculating the ratio between the 
braking force and the active (Lorentz) force. From (3.12) we know that the 
braking force is: 

4 4 2
0 0

3 2
0 0

( )
6

q u u Bpf
u c m     (4.1) 

The Lorentz force is: 

0F qBu
       (4.2) 

Therefore, their ratio is: 

3 4
0

3 2
0

( )
6
q u Bfr

F c m     (4.3) 

When comparing the ratios for the cases of an electron vs. a proton, for the 
same conditions in terms of magnetic field and initial particle injection sped 
we find out that: 
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2( )pe

p e

mr
r m      (4.4) 

The reaction force in the case of an electron is much larger (about
710 ) 

than that the one for a proton for the case of equal particle accelerating 
Lorentz forces. We could to the above calculations in the frame co-rotating 
with the particle. From (3.9) we obtain: 

2
' 2 0

0 0 2( ) (1 )uF u qBu
c

:

    (4.5) 

From (3.16) we obtain: 

'

0

pf
u

:

          (4.6) 

The interesting result is that we obtain the same exact result as the one 
calculated in the frame of the lab, the ratio of forces depends only on the 
inverse ratio of masses, as shown in (4.4). Even more interestingly, the 
braking force is the same in both frames.  
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RELATIVISTIC D’ALEMBERT FORCE IN 
UNIFORMLY ACCELERATING FRAMES  

 
 
 

Synopsis 

In this chapter we present a generalization of the transforms from the frame 
co-moving with an accelerated particle for uniformly accelerated motion 
into an inertial frame of reference. The solution is of great interest for real 
time applications because earth-bound laboratories are inertial only in 
approximation. The motivation is that the real life applications include 
accelerating and rotating frames with arbitrary orientations more often than 
the idealized case of inertial frames; our daily experiments happen in the 
laboratories attached to the rotating Earth. The chapter is divided into two 
main sections, the first section deals with the theory of the dynamics, i.e. 
forces and the second section deals with the application of the theory to the 
derivation of the relativistic d’Alembert force occurring in the accelerating 
frame. We will show that there is not only a fictitious force that emerges in 
the accelerating frame but also a fictitious d’Alembert power.  

1. Introduction 

Many books and papers have been dedicated to transformations between 
particular cases of rectilinear acceleration and/or rotation [1] and to the 
applications of such formulas [2-13], [15]. There is great interest in 
producing a general solution that deals with arbitrary orientation the 
uniform acceleration. The main idea of this chapter is to generate a standard 
blueprint for a general solution. The blueprint relies on transforming the 
problem geometrically in the “canonical reference frame” of [1], followed 
by the application of the physical transforms derived for such “canonical” 
orientations [1-7] and ending with the application of the inverse geometrical 
transformation: 

_ _ _ _Geometry Transform Physics Transform Inverse Geometry Transform    
(1.1)  

We conclude our paper with a practical application of deriving the formula 
of the d’Alembert force in a uniformly rotating frame. We will show that 
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there is not only a fictitious force that emerges in the accelerating frame but 
also a fictitious d’Alembert power. 

2. Dynamics in Uniformly Accelerated Frames   

In this section we discuss the case of the particle moving in an arbitrary 

plane with the normal given by the constant acceleration
( , , )x y zg g gg

 
(see Fig.1). According to Moller [1], the simpler case when g is aligned with 
the x-axis produces the transformation between the accelerating frame 

'( )S  attached to the particle and an inertial frame S : 

'
'
'
'

x x
y y
z z
ct ct

Phy_rectilinear

   (2.1) 

where: 

cosh 0 0 sinh

0 1 0 0
0 0 1 0

sinh 0 0 cosh

g g
c c

g g
c c

Phy_rectilinear

 (2.2) 

In the following section we generalize his derivation for the arbitrary case 
( , , )x y zg g gg

 for obtaining the general four-space coordinate 
transformations that take us from '( )S  into S . Expressed in polar 
coordinates, the acceleration has the form: 
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cos cos
sin cos
sin

arcsin

arctan

x

z

y

y

z

x

g g
g g
g g

g
g
g
g                   (2.3) 

The general case is treated by transforming the problem into the particular 
case treated in [1] through a transformation into the “canonical case”, 
followed by an application of the transformation from the uniformly rotating 
frame into the inertial frame, ending with the inverse of the first 
transformation, as shown below: 

' '
' '

( )
' '
' '

x x x
y y y
z z z
ct ct ct

-1Rr * Phy_rectilinear * Rr A

(2.4) 

z 0 0y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (2.5) 

0y y90 -
Rot(e ) * Rot

aligns g with ye
 so the first step rotates g by 

090  around the axis the vector cross-product 

xz
y x z

gg
g g

g e e e
 such g  gets aligned with the y-axis (see Fig.1). 

For this purpose, we will introduce the pair
( , ) ( , )xz gga b

g g . The 
following expressions hold [14]: 
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0 0
0 1 0 0

0 0
0 0 0 1

b a

a byRot

     (2.6) 

 

Fig.1 Uniform rotation with arbitrary direction of angular velocity 
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0 0

0 0

cos(90 ) 0 sin(90 ) 0
0 1 0 0

sin(90 ) 0 cos(90 ) 0
0 0 0 1

sin 0 cos 0
0 1 0 0

cos 0 sin 0
0 0 0 1

0y 90 -
Rot(e )

(2.7) 

The second step is another rotation around the z-axis by -
090  that aligns 

g with xe
: 

0 1 0 0
1 0 0 0

0 0 1 0
0 0 0 1

z 090
Rot(e )

   (2.8) 

Putting it all together: 

z 0 0y y90 90 -
Rr = Rot(e ) * Rot(e ) * Rot

   (2.9) 

-1A Rr * Phy_rectilinear * Rr    (2.10) 

The general proper velocity transformation is: 
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'

' 1
1

'

cosh

xx

yy

zz

v xv
v yv d
v zdv
c ctc

g
c

AA

                 (2.11) 

The energy-momentum transforms the same way as the 4-coordinates (2.13) 
by virtue of being a 4-vector:  

'

'
1

'

/'/

xx

yy

zz

pp
pp
pp

E cE c

A

                                             (2.12) 

Therefore the general force transformation is: 

'

'
1

1'

11 ' /

xx
x

yy
y

zz
z

FF p
FF pd
FF d p
dEdE E c

c dc d

AA

                  (2.13) 

We will use (2.13) in the next section, the application used for determining 
the expression of the d’Alembert force in an accelerating frame.  

3. Application-The Expression of the d’Alembert Force 
 in a Uniformly Accelerating Frame 

Assume we have a particle of mass m  moving inertial in the x’-y’ plane in 
frame S’. When the laws of dynamics are transformed from an inertial frame 
to an accelerating frame of reference, fictitious forces, such as the 
d’Alembert force appear. We would like to find out the expression of the 
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d’Alembert force exerted on the particle as measured in frame S’.  In frame 
the inertial frame S the following hold true: 

0 0

0 0

0 0

x

y

z

x v t x
y v t y
z v t z
ct ct      (3.1) 

0v v
      (3.2) 

0v
 is the initial velocity of the particle at 0t . 

2
20

2

2
20

1 ( )

1 ( )

m
v
c

mcE
v
c

0vp

      (3.3) 

0F       (3.4) 

Substituting (3.1-3.4) into (2.13) we obtain: 

'

0'
1 1

0'
0

020

( )
1 ( )1 '

x
x

y
y

z
z

F v
F vm d dv mF vd dv
dE cc

c d

0
A A v

   (3.5) 

It is interesting to see that the acceleration introduces not only a fictitious 
force but also a fictitious power, according to (3.5). 
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RELATIVISTIC FICTITIOUS FORCES  
FROM THE PERSPECTIVE 
 OF THE ACCELERATED  
ROTATING PLATFORM  

 
 
 

Synopsis 

In this chapter we present the expression of the relativistic fictitious forces 
as measured in the frame of a non-uniformly rotating platform. The solution 
is of great interest for real time applications because earth-bound 
laboratories are inertial only in approximation. The motivation is that the 
real life applications include accelerating and rotating frames more often 
than the idealized case of inertial frames; our daily experiments happen in 
the laboratories attached to the rotating Earth. The accelerations play an 
important role in centrifuges ramping up to speed. We will provide a 
straightforward method of deriving the fictitious forces arising in the 
rotating frame in their relativistic form. We are also correcting the 
expression of the Euler force in its classical (non-relativistic) form by 
correcting an error in its derivation that has persisted for centuries.  

1. Dynamics in Uniform Angular Velocity Rotation   

Consider an inertial frame K ; the coordinates are ( , , , )x y z t  . In a frame 
'K  rotating with respect the inertial frame, the coordinates are

( ', ', ', ')x y z t  . The angular speed of rotation between the two frames is 
and it is assumed to be constant. The transformation between the frames 

is [1]: 
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'
'cos ' 'sin '
'sin ' 'cos '
'

t t
x x t y t
y x t y t
z z      (1.1) 

Let’s assume that in the inertial frame K  a particle moves with the constant 
velocity v . Because 't t  we can write, by differentiating (1.1) with 
respect to the proper time : 

' 'cos ' sin sin ' cos

' 'sin ' ' cos cos ' sin

x

y

dx dx dt dy dtv t x t t y t
d d d d d
dy dx dt dy dtv t x t t y t
d d d d d (1.2) 

Since 

2

2

1 constant
1

dt
d v

c  (1.2) can be re-written as: 

' 'cos ' sin sin ' cos

' 'sin ' ' cos cos ' sin

x

y

dx dyv t x t t y t
d d
dx dyv t x t t y t
d d  (1.3) 

Differentiating (1.3) with respect to the proper time we obtain the 
expressions of the proper accelerations: 

2 2

2 2

2 2

2 2

2 2

2 2

' ' ' '0 cos sin 2 sin 2 cos

' sin ' cos
' ' ' '0 sin cos 2 cos 2 sin

' cos ' sin

d x d y dx dyt t t t
d d d d
y t x t
d x d y dx dyt t t t
d d d d
y t x t  (1.4) 
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We can now form a linear system of equations: 

2 2

2 2

2 2

2 2

2 2

2 2

' ' ' 'cos sin 2 sin 2 cos

' sin ' cos
' ' ' 'sin cos 2 cos 2 sin

' cos ' sin

d x d y dx dyt t t t
d d d d

y t x t
d x d y dx dyt t t t
d d d d

y t x t (1.5) 

The system (1.5) has the solution: 

2
2

2

2
2

2

' '2 '

' '2 '

d x dy x
d d
d y dx y
d d                      (1.6) 

We recognize immediately the relativistic Coriolis acceleration, 
' '(2 , 2 )Coriolis

dy dx
d d

a
 and the relativistic centrifugal 

acceleration, 
2 2( ', ')centifugal x ya

[2-12]. 

2. The Case of Non-Uniform Angular Speed,  
the Emergence of the Euler force  

In a previous paper [13] we concerned ourselves with the uniform angular 
speed. What happens if  varies in time? This gives rise to the so called 
Euler force. At relativistic speeds, the formula for the Euler force can be 
calculated by revisiting (1.2) in the previous section:  
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' 'cos ' sin sin

' cos ( 'cos 'sin )

' 'cos ' sin sin ' cos

( ' sin ' cos )

' 'sin ' ' cos cos

' sin

x

y

dx dt dyv t x t t
d d d
dt d dy t x t y t
d d d

dx dt dy dtt x t t y t
d d d d

dx t t y t t
d

dx dt dyv t x t t
d d d
dty
d

( 'sin 'cos )

' 'sin ' ' cos cos ' sin

( ' cos ' sin )

d dt x t y t
d d

dx dt dy dtt x t t y t
d d d d

dx t t y t t
d  (2.1) 

In order to get all three fictitious accelerations (Coriolis, centrifugal and 
Euler) we will need to differentiate (2.1) with respect to the proper time and 

to form the linear system in

2 2

2 2

' '( , )d x d y
d d . We will concentrate only on 

the Euler component: 

2 2

2 2

2

2

2 2 2

2 2 2

' ' 'cos sin ( sin ' sin ' cos

' cos ' cos ' sin ) ( ' sin ' cos )

' 'sin cos ..... ( ' cos ' sin )

d x d y dxt t t t x t x t t
d d d

dy d dt t y t y t t x t t y t t
d d d

d x d y dt t x t t y t t
d d d (2.2) 

One very interesting conclusion can be drawn from (2.2): the second 
order derivative of the angular speed, if it exists, will manifest itself in 
the Euler acceleration. Indeed: 
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2 2

2 2

2 2

2 2

' ... '

' ..... '

d x dy t
d d
d y dx t
d d      (2.3) 

We can trace the error that has persisted over 240 years to the use of the fact 
that the time derivatives of the unit vectors in the rotating frames can be 
expressed as: 

d
dt
u

      (2.4) 

But (2.4) is true only in the case of constant angular speed, it is obviously 
not true for variable angular speed. Indeed, let’s consider, for example: 

(cos , sin )t txu
     (2.5) 

Then: 

( )( sin , cos )d dt t t
dt dt

xu
   (2.6) 

In the next section we will be providing a rigorous formalism that addresses 
all the derivations of fictitious accelerations and forces and produces the 
complete, exact expressions for both the classical and the relativistic case. 

3. A More General Formalism, Matrix Based 

In this section we will present a matrix-based approach to deriving the 
compact, exact expressions for both fictitious acceleration and fictitious 
forces in the relativistic sector. We start by rewriting (1.1) as: 
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'
'

'

R
x
y

x
y

r r'

r

r
       (3.1) 

Then: 

1 Td R R R R R R R R
dt

• rr r' r ' r r ' r r '
 (3.2) 

The overdot represents differentiation with respect to the coordinate time, 
. 

It follows immediately that: 

( )T TR R Rr ' r r     (3.3) 

After some elementary algebraic manipulation, we get: 

( )
sin cos
cos sin

TR t Q
t t

Q
t t

•
r ' r r

    (3.4) 

The resulting fictitious acceleration in the rotating frame is: 

(2 ) ( ) ( )

(2 ) ( ) ( )

T T

T

R R Q t Q t Q

R Q t Q t Q

r ' r r r r r

r r r r (3.5) 

After some more manipulation, noting that   
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( )

( )

T

T

Q t R

R t Q       (3.6) 

we obtain the final expression for the classical fictitious acceleration: 

22( ) [( ) (2 ) ]Tt Q t R Qr ' v r  (3.7) 

One last step is to re-order (3.7) after the powers of  and its derivatives: 

2 22( ) [(2 ) ( )

2 ]

T T

T

R t Q Q t R

t R

r ' r v

r (3.8) 

Separating the components, we obtain: 

' 2

'

' 2

2( )

[(2 ) ( ) 2 ]

T
centrifugal

coriolis

T T
euler

R

t Q

Q t R t R

a r

a v

a r  (3.9) 

It is interesting to note that not only the Euler acceleration looks different 
but so does the Coriolis acceleration, all due to the fact that the angular 
speed is variable. A quick sanity check recovers the classical case for

constant : 

' 2

'

'

2

0

T
centrifugal

coriolis

euler

R

Q

a r

a v

a          (3.10) 

We now move to the derivations of the fictitious accelerations and forces 
for the relativistic domain. In order to do that we will replace the time 
differential with respect to coordinate time with the differential with respect 
to proper time: 
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2

2

( )

1( ) constant
1

d d dt dv
d dt d dt

v
v
c     (3.11) 

Expression (3.3) becomes: 

T T Td d dRR R R
d d d
r ' r r

    (3.12) 

Now: 

( ( ) )

( ( ) )

T

T

dQ v t R
d

dR v t Q
d      (3.13) 

Armed with the above, (3.8) becomes: 

2
2 2

2

2

( ) 2( ( ) ) [(2 ( ) )

( ) 2 ( ) ]

T

T T

d v R v t Q v t Q
d

t R v t R

r ' r v

r  (3.14) 

The overdot represents differentiation of the with respect to proper time. For
constant : 

2
2 2

2 ( ) 2 ( )Td v R v Q
d

r ' r v
     (3.15) 

The fictitious accelerations are: 
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' 2 2

'

' 2

( )

2( ( ) )

[(2 ( ) ) ( ) 2 ( ) ]

T
centrifugal

coriolis

T T
euler

v R

v t Q

v t Q t R v t R

a r

a v

a r (3.16) 

In order to calculate the relativistic fictitious force we need to start with the 
relativistic proper momentum: 

2

2
'1

m
v
c

d
d

v'p'

r'v'
      (3.17) 

The proper force is: 

2

22 2
3

2 2

2
3

2

1
' '1 ( 1 )

( ')

d d dm m
d d dv v

c c
dm v
d

p' v' r'F'

r'
  (3.18) 

From (3.18) and (3.16) we obtain: 

' 2 3 2

' 3

' 3 2

( ) ( ')

2 ( ')( ( ) )

( ')[(2 ( ) ) ( )

2 ( ) ]

T
centrifugal

coriolis

T
euler

T

m v v R

m v v t Q

m v v t Q t R

v t R

F r

F v

F

r  (3.19) 

For constant : 
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' 2 3 2

' 3

'

( ) ( ')

2 ( ') ( )

0

T
centrifugal

coriolis

euler

m v v R

m v v Q

F r

F v

F        (3.20) 
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Synopsis 

In the current chapter we present the expression of the relativistic fictitious 
forces as measured in the frame of a non-uniformly rotating frame of 
reference. The solution is of great interest for real time applications because 
earth-bound laboratories are inertial only in approximation. The motivation 
is that the real life applications include accelerating and rotating frames 
more often than the idealized case of inertial frames; our daily experiments 
happen in the laboratories attached to the rotating Earth. The accelerations 
play an important role in centrifuges ramping up to speed. We will provide 
a straightforward method of deriving the fictitious forces arising in the 
rotating frame in their relativistic form. We are also correcting the 
expression of the Euler force in its classical (non-relativistic) form by 
correcting an error in its derivation that has persisted for centuries.  

1. Dynamics of Accelerated Particles in a Variable 
Angular Velocity Rotating Frame 

Consider an inertial frame K ; the coordinates are ( , , , )x y z t . In a frame 
'K  rotating with respect the inertial frame, the coordinates are

( ', ', ', ')x y z t  . The angular speed of rotation between the two frames is 
and it is assumed to be variable. The transformation between the frames 

is [1]: 

'
'cos ' 'sin '
'sin ' 'cos '
'

t t
x x t y t
y x t y t
z z      (1.1) 
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Let’s assume that in the inertial frame K  a particle moves with the variable 
velocity v . We set to determine the fictitious accelerations and the fictitious 
forces that appear in the rotating frame 'K .               

2. Fictitious Relativistic Accelerations and Fictitious 
Relativistic Forces 

In this section we will present a matrix-based approach to deriving the 
compact, exact expressions for both fictitious acceleration and fictitious 
forces in the relativistic sector. We start by rewriting (1.1) as: 

'
'

'

R
x
y

x
y

r r'

r

r
      (2.1) 

Then: 

1 Td R R R R R R R R
dt

• rr r' r ' r r ' r r '
 (2.2) 

The overdot represents differentiation with respect to the coordinate time . 

It follows immediately that: 

( )T TR R Rr ' r r     (2.3) 

After some elementary algebraic manipulation, we get: 

( )
sin cos
cos sin

TR t Q
t t

Q
t t

•
r ' r r

    (2.4) 
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The resulting fictitious acceleration in the rotating frame is: 

(2 ) ( ) ( )

(2 ) ( ) ( )

T T

T

R R Q t Q t Q

R Q t Q t Q

r ' r r r r r

r r r r (2.5) 

We assume the most general case, v  being variable, so 0r . After some 
more manipulation, noting that   

( )

( )

T

T

Q t R

R t Q       (2.6) 

we obtain the final expression for the classical fictitious acceleration: 

22( ) [( ) (2 ) ]T TR t Q t R Qr ' r v r (2.7) 

One last step is to re-order (2.7) after the powers of  and its derivatives: 

2

2

2( )

[(2 ) ( ) 2 ]

T T

T T

R R t Q

Q t R t R

r ' r r v

r        (2.8) 

Separating the components, we obtain: 

' 2

'

' 2

'

2( )

[(2 ) ( ) 2 ]

T
centrifugal

coriolis

T T
euler

T
real

R

t Q

Q t R t R

R

a r

a v

a r

a r  (2.9) 

It is interesting to note that not only the Euler acceleration looks different 
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but so does the Coriolis acceleration, all due to the fact that the angular 
speed is variable. A quick sanity check recovers the classical case for

constant : 

' 2

'

'

'

2

0

T
centrifugal

coriolis

euler

T
real

R

Q

R

a r

a v

a

a r          (2.10) 

We now move to the derivations of the fictitious accelerations and forces 
for the relativistic domain. In order to do that we will replace the time 
differential with respect to coordinate time with the differential with respect 
to proper time: 

2

2

( )

1( ) variable
1

d d dt dv
d dt d dt

v
v
c      (2.11) 

Expression (2.3) becomes: 

T T Td d dRR R R
d d d
r ' r r

    (2.12) 

Now: 

( ( ) )

( ( ) )

T

T

dQ v t R
d

dR v t Q
d      (2.13) 
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Armed with the above, (2.8) becomes:  

2 2
2 2

2 2 ( ) 2( ( ) )

[(2 ( ) ( ) ) 2 ( ) ]

T

T

d d v R v t Q
d d

v t v Q v t R

r ' r r v

r    
 (2.14) 

The fictitious accelerations are: 

' 2 2

'

'

( )

2( ( ) )

[(2 ( ) ( ) ) 2 ( ) ]

T
centrifugal

coriolis

T
euler

v R

v t Q

v t v Q v t R

a r

a v

a r (2.15) 

There is an extra term in the expression of the Euler acceleration due to the 
fact that the particle is moving with variable velocity in the inertial frame of 
the lab: 

2 2

2 2

2 2

22 2

22 2

2 2

1

( )
1 1

1 1

1 1

v
d dv dv dvc cv v
dv d d dv v

c c

d d dc c
d d dv v

c c

v r rv

 (2.16) 

In order to calculate the relativistic fictitious force we need to start with the 
relativistic proper momentum: 
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2

2
'1

m
v
c

d
d

v'p'

r'v'
      (2.17) 

The proper force is: 

2

22 2
3

2 2

2
3

2

1
' '1 ( 1 )

( ')

d d dm m
d d dv v

c c
dm v
d

p' v' r'F'

r'
 (2.18) 

From (2.18) and (2.15) we obtain: 

' 2 3 2

' 3

' 3

( ) ( ')

2 ( ')( ( ) )

( ')[(2 ( ) ( ) )

2 ( ) ]

T
centrifugal

coriolis

euler

T

m v v R

m v v t Q

m v v t v Q

v t R

F r

F v

F

r  (2.19) 
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WAS GALILEO RIGHT? 
 
 
 

Synopsis 

An important scientific debate took place regarding falling bodies hundreds 
of years ago, and it still warrants close examination. Galileo argued that in 
a vacuum all bodies fall at the same rate relative to the earth, independent 
of their mass. As we shall see, the problem is more subtle than meets the 
eye -- even in vacuum. In principle the results of a free fall experiment 
depend on whether falling masses are sequential or concurrent, whether they 
fall side by side or diametrically opposed. In the current paper we will 
present both the classical mechanics treatment and the general relativity 
one. In the case of classical mechanics, we start from the basic equations of 
motion.  On the other hand, the determination of particle equations of 
motion in gravitational fields in general relativity is done routinely via the 
use of covariant derivatives. Since the geodesic equations based on 
covariant derivatives are derived from the Euler-Lagrange equations and 
since the Euler-Lagrange formalism is very intuitive, easy to derive with no 
mistakes, there is every reason to use them even for the most complicated 
situations and this is exactly what we do in the second part of the current 
paper.  

1. Classical treatment of radial motion-Time to collision 

In the early 17th century, Galileo [1] made the observation: “But I, 
Simplicia, who have made the test, can assure you that a cannon ball 
weighing one or two hundred pounds, or even more, will not reach the 
ground by as much as a span ahead of a musket ball weighing only half a 
pound, provided both are dropped from a height of 200 cubits.” 

Galileo argued that the slight difference in time could be ascribed to the 
resistance offered by the medium to the motion of the falling body. In air, 
feathers do fall more slowly than rocks. Galileo then made the idealization 
that in a medium devoid of resistance (a vacuum), all bodies will fall at the 
same speed. This idealization neglected the complexity of the fall of objects 
in media accessible to Galileo and was indeed a significant advance toward 
a deeper understanding of the motion of bodies. Galileo used experiments 
with an inclined plane to promote his view that heavy and light bodies fall 
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equally fast. Another Italian, Galileo’s contemporary, Torricelli, in his opus, 
De motu gravium, seeks to further demonstrate Galileo’s principle regarding 
equal velocities of free fall of weights along inclined planes of equal height. 
We ask ourselves, “were Galileo and Torricelli right?”.  As we shall see in 
the next paragraph the answer is complex: within the experimental 
precision, they were right; from the point of view of a rigorous application 
of mechanics, they were both wrong.  

In Newtonian mechanics formulation, for the case of radial motion reduces 
to solving the equation of motion: 

2

2 2

d z GMmm
dt d (1.1) 

where z  represents the radial coordinate and d is the distance between the 
centers of the attracting bodies. It is interesting to note that GR and 
Newtonian mechanics produce exactly the same equation of motion. 
Equation (1.1) gives us the tool for determining when two bodies of radiuses 

R  and 1r  and masses M and m will collide after starting from rest at 
locations (0)z D  and respectively (0) 0Z  separated by the initial 
distance D (see fig.1).  
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Fig. 1 Simple setup for radial motion in a gravitational field 

We would need to solve the system of differential equations: 

2

2 2

2

2 2

( )

( )

d z GM
dt Z z
d Z Gm
dt Z z      (1.2) 

with initial conditions:  
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0 0

(0)
(0) 0

| | 0t t

z D
Z
dZ dz
dt dt      (1.3) 

Z z R r  
 

and find out the time when 1( ) ( )z t Z t R r
 (i.e., when the two masses 

touch) by solving a transcendental equation in t. The system gets easily 
reduced to a single equation by subtracting the two equations: 

2

2 2

( ) ( )
( )

d z Z G M m
dt z Z     (1.4) 

Equation (4) has the general solution (see Appendix): 

( ) ( ( )( ( )))
( )

G M m z Zt D arctg z Z D z Z
D D z Z (1.5) 

At the time of collision, 1z Z R r
 so: 

3/2
1 11

1

( )( ( ))
( )

( )( )
R r D R rR rDt arctg

D R r DG M m (1.6) 

The time to collision does depend on the mass of the probe, so both Galileo 
and Torricelli were wrong. The reason is that, while the larger gravitating 
body attracts the smaller one, the effect is reciprocated by the smaller one. 
Thus, the time to collision is dependent on both masses. It is interesting to 
see that the effect is dependent on the sum of masses. We could not have 
demonstrated the above without solving, in a rigorous manner, the equations 
of motion. If we ask ourselves: “how big is the effect?” then (1.6) provides 

the answer, the effect is of the order of 2
m
M .  To put things in perspective, 

if we dropped a 1000kg mass on the Moon, the effect would be of the order 
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of 
217*10 .  This is why Galileo could not measure it, it is too small. But 

it is there. Let’s now study a different case, the case of two test probes 
dropped simultaneously, side by side (see fig.2): 

 

Fig. 2 Two test probes side by side, dropped simultaneously 

2
1 1 1 2

1 2 2 2 2
1 2 1 2 1

( cos )
( ) ( ) ( )

d z Gm M Gm mm
dt Z z z z r r (1.7) 
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2
2 2 2 1

2 2 2 2 2
2 2 1 2 1

( cos )
( ) ( ) ( )

d z Gm M Gm mm
dt Z z z z r r (1.7) 

2
1 2

2 2 2
1 2

( )
( ) ( )
GMm GMmd ZM

dt Z z Z z  

2 1
2 2

2 1 2 1

| |cos
( ) ( )

z z
z z r r ,   being the angle of the central 

attraction force with the z-axis. 

The initial conditions are: 

1 2

0 0

(0) (0)
(0) 0

| | 0i
t t

z z D
Z

dzdZ
dt dt     (1.8) 

The above results into a complicated system: 

2
1 2 2 1

2 2 2 2 3
1 2 1 2 1

| |
( ) ( ( ) ( ) )

d z Gm z zGM
dt Z z z z r r  (1.9) 

2
2 1 2 1

2 2 2 2 3
2 2 1 2 1

| |
( ) ( ( ) ( ) )

d z Gm z zGM
dt Z z z z r r  (1.9) 

2
1 2

2 2 2
1 2( ) ( )

Gm Gmd Z
dt Z z Z z  

While the above system may be very difficult to solve, we can still glean a 
very important physical property, the above system tells us that the two test 
probes will hit the Earth simultaneously. Indeed, subtracting the first two 
equations: 
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2
1 2 2 1 2 1

2 2 2 2 2 3
2 1 2 1 2 1

( ) ( ) | |
( ) ( ) ( ( ) ( ) )

d z z G m m z zGM GM
dt Z z Z z z z r r (1.10) 

We easily verify that 1 2( ) ( ) 0z t z t
 is a solution. Using the 

observation the above system can be solved much easier since it simplifies 
to: 

2

2 2( )
d z GM
dt Z z      (1.11) 

2
1 2

2 2

( )
( )

G m md Z
dt Z z  

Subtracting the first equation from the second one we obtain: 

2
1 2

2 2

( )( )
( )

G M m md Z z
dt Z z    (1.12) 

with the initial conditions: 

0 0

(0)
(0) 0

| | 0t t

z D
Z
dZ dz
dt dt      (1.13) 

We need to find out the time when 
( ) ( ) iZ t z t R r

 (i.e., when the two 
masses touch): 

3/2

1 2

( )( ( ))
( )

( )( )
i ii

i
i

R r D R rR rDt arctg
D R r DG M m m (1.14) 
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If the test probes have equal radiuses, their times to collisions will be equal.  

On the other hand, if the particles start simultaneously, diametrically 
opposed, the equations of motion are simpler (see situation depicted in fig. 
3): 

 

Fig. 3 Two test probes dropped simultaneously, diametrically opposed 
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2
1 1 1 2

1 2 2 2
1 2 1

( )
( ) ( )

d z Gm M Gm mm
dt Z z z z  

2
2 2 2 1

2 2 2 2
2 2 1

( )
( ) ( )

d z Gm M Gm mm
dt Z z z z   (1.15) 

2
1 2

2 2 2
1 2( ) ( )

GMm GMmd ZM
dt Z z Z z  

The initial conditions are: 

1

2

0 0

(0)
(0)
(0) 0

| | 0i
t t

z D
z D
Z

dzdZ
dt dt     (1.16) 

After some simplifications, equations (1.15) become: 

2
1 2

2 2 2
1 2 1( ) ( )

d z GmGM
dt Z z z z  

2
2 1

2 2 2
2 2 1( ) ( )

d z GmGM
dt Z z z z    (1.17) 

2
1 2

2 2 2
1 2( ) ( )

Gm Gmd Z
dt Z z Z z  

Though the equations of motion are simpler, our chances of solving system 
(1.17) are next to nil, at least symbolically. In this case we have means of 
determining which object collides first with the Earth. Nevertheless, we 
observe that by adding the three equations (1.17) we obtain an interesting 
relationship: 
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2

1 1 2 22 ( ) 0d MZ m z m z
dt    (1.18) 

Given the initial conditions, (18) results immediately into: 

 1 1 2 2 1 2( )MZ m z m z D m m
   (1.19) 

The physical interpretation of the above is that the two test probes and the 
Earth all move in such a fashion that their center of mass is stationary: 

1 1 2 2 1 2

1 2 1 2

( ) ( ) ( ) ( )
COM

MZ t m z t m z t D m mZ
M m m M m m (1.20) 

The above means that the test probes and the Earth must move towards the 
COM such that they all reach it at the same instant or the COM would move, 

which is not allowed as per (1.20). This gives us an idea: if 1 2,M m m
 

then, as per (1.20),
0COMZ

, i.e. the center of mass of the system 
coincides with the initial position of the Earth and does not move. Therefore, 
we can make ( ) 0Z t  in (1.17) such that the equations (1.17) simplify to: 

2
1 2

2 2 2
1 2 1( )

d z GmGM
dt z z z  

2
2 1

2 2 2
2 2 1( )

d z GmGM
dt z z z     (1.21) 

1 2
2 2

1 2

m m
z z  

Substituting 

2
2 1

1

mz z
m  into the first equation we obtain a form that 

we already know how to solve:  
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1 2
22

1 21
2 2

1

( )
( )

m mG M
m md z

dt z    (1.22) 

The time to collision for the first test probe is: 

3/2
1 11

1
11 2

2
1 2

( )( ( ))
( )

( )
( )

( )

R r D R rR rDt arctg
D R r Dm mG M

m m
(1.23) 

By symmetry, the time to collision for the second probe is: 

3/2
2 22

2
21 2

2
1 2

( )( ( ))
( )

( )
( )

( )

R r D R rR rDt arctg
D R r Dm mG M

m m (1.24) 

If the two test probes have identical radii, 1 2r r
 they will hit the Earth 

simultaneously if dropped simultaneously from the same height above the 
Earth, diametrically opposed. The reason for this is that, by making the 
Earth the (stationary) center of mass, the heavier test probe cannot draw the 
Earth towards itself as in the previous example. This seems to contradict our 
earlier point that the two test probes must hit the Earth simultaneously since 
the COM is stationary. The contradiction is only apparent since, when 
drawing that conclusion, we have neglected a possible difference in the radii 
of the two test probes.  

2. The GR treatment of the problem using the lagrangian 
method  

While radial motion is the easiest type of motion to describe in natural 
language, it turns out that its equations are far from trivial [3]. We will show 
how to derive the equations of motion via a very accessible approach, 
requiring only elementary calculus and lagrangian mechanics. In order to 
find the equations of motion we start with the “reduced” Schwarzschild 
metric for the particular case of absence of rotation ( 0d d ):  
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2 2 21

1 s

ds dt dr

r
r     (2.1) 

where 
2

2
s

GMr
c is the Schwarzschild radius. For example, the 

Schwarzschild radius of the Earth is 9 millimeters. From the metric we 
obtain: 

a) the lagrangian [2] 

2 2

2 2

1dt drL
ds ds     (2.2) 

b) from the lagrangian we obtain the Euler-Lagrange system of equations: 

( ) 0

( ) 0

d L L
ds tt
d L L
ds rr      (2.3) 

and, respectively: 

2 2

2 2 2 2 2
2 2 2

( ) 0

2 1( ) ( ) ( )

2( ) 2

d dt
ds ds

dt k
ds

d L L d r d dt r
ds r ds dr drr

d d d
r d r ddr dr drr r t r t

dr dr (2.4) 
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The over-dots signify derivative with respect to s . From the metric (2.1) we 
obtain: 

2 21( ) 1 ( )dt dr
ds ds     (2.5) 

Substituting (2.5) into (2.4) we obtain 

c) the equation of motion: 

2

2

1 0
2

d r d
ds dr      (2.6) 

with the solution 

/ 2 ( )sr rs Darctg r D r
D D r   (2.7) 

where (0)D r , exactly like in the classical case described in the previous 

paragraph. From (2.7) and the condition 1r R r
we obtain the time to 

collision: 

3/2
1 11

1

( )( ( ))
( )

( )
R r D R rR rD arctg

D R r DGM (2.8) 

Comparing the GR solution with the classical Newtonian solution we 
observe that the GR solution does not depend on the mass of the test probe, 

so there is a slight disagreement, of the order of 

m
M  between the classical 

and the contemporary theory.  This can be explained easily by remembering 
that, in GR, the test probes have negligible mass, so the answer in (2.8) is 
given for the case 0m . This completely reconciles the Newtonian theory 
with GR.  
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Appendix 
2

1 1
2

2 2
2 1 3 2

2 2

( ) ( ) ( ) ( )

1( ) ( ) ( ) ( )
2

d z d dz d dz dz d dt dt
dt dt dt dz dt dt dz dz dz

dt d t dt dt d t d dt
dz dz dz dz dz dz dz (A1) 

Applying the above, equation (28) becomes: 

2
2( )d dt k

dz dz z      (A2) 

With the notation 
2( )dty

dz  equation (A2) becomes: 

2

dy k
dz z       (A3) 

with the immediate solution: 

0

k ky
z z       (A4) 

where 0 (0)z z
. On the other hand,

2( )dzy
dt , so (A4) reduces to: 
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0

dz k k
dt z z      (A5) 

Finally, we are now ready to obtain the equation of motion by solving (A5) 
through variable separation: 

0

dz dt
k k
z z      (A6) 

(A6) has the immediate solution:  

0 0
0 0

( )k zt z arctg z z z
z z z   (A7) 
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THE TWO TEST PROBE CHASE  
 
 
 

Synopsis 

In the current chapter we examine the “chase” between two test probes 
dropped radially and simultaneously from two different heights. We know 
that in the case of constant gravitational acceleration their separation is 
invariant and equal to their initial separation. Is this true for the realistic case 
of variable gravitational acceleration? We will present two working 
examples, one based on Newtonian mechanics, the other using the 
machinery of general relativity. The same methodology is used in both 
cases.  

1.  Introduction-The Newtonian approach 

Assume that two test probes are dropped simultaneously, radially from the 
radial distances H and, respectively, h with H h . Since the body at a 
lower height (distance) from the center of the gravity source (mass M) 
“feels” larger gravitational acceleration and the more distant body 
accelerates at a lower rate, it is evident that the separation between the two 
bodies will increase.  The general relativistic situation for weak field 
approximation must agree with the Newtonian solution, as will be shown in 
the second half of the paper. 

The equation of motion describing the motion of each test probe is [1,2] 

2

2 2

d
d

r m
t r

m GM      (1.1) 

In (1.1) M is the mass of the attracting body. We are also considering an 
ideal case with no atmospheric friction and negligible gravitational 
attraction between the two test probes. From (1.1) we can see that the 
acceleration increases as the radial coordinate decreases. The solution of the 
equation (1.1) is: 
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0

d 2 2
d
r m m
t r r      (1.2) 

where 0 (0)r r
.  

From (1.2) we note that the speed increases as the radial distance decreases.  
We are wondering how this observation reflects on the variation with time 
of the separation between the two test probes. For the rest of the paper we 
will use the same methodology for solving this problem, We start by 
observing that the time varies with the radial coordinate according to: 

0

d 1
d 2 2

t
r m m

r r      (1.3) 

The time the test probe falling from 0r  reaches the arbitrary location at 
radial coordinate r  is: 

0
0 0

0

( arctan ( ))
2
r rt r r r r
m r r   (1.4) 

The variation of the temporal separation  with the radial coordinate is 
derived trivially from (1.4): 

d 1 1
d 2 2 2 2r m m m m

r H r h    (1.5) 

Since H h r  : 

1 1
2 2 2 2m m m m
r H r h     (1.6) 
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It follows that 

d 0
dr  so the function ( , , ) ( , ) ( , )H h r t h r T H r  is 

monotonically decreasing with respect to r . Thus when r decreases (the 
two test probes falling “down”), ( , , )H h r  will increase. Hence, the time 
separation between the two test probes increases.   

2. The GR approach 

We consider the radial fall towards a non-rotating, non-charged gravitating 
body of mass M . The space surrounding such a body is described by the 
Schwarzschild metric [3-6]. In GR, the coordinate speed for a particle 

starting at radial coordinate 0r outside the event horizon is given by a 
slightly more complicated formula (2.1) (see references [1,2]) rather than 
the one shown in (1.2): 

0

0

2

d (1 )
d 1

2

s s

s

s

s

r r
r r rr

rt r
r

GMr
c     (2.1) 

The coordinate speed is a function of the initial radial coordinate 0r , the 

current radial coordinate r and the Schwarzschild radius sr . Exactly as in 
the Newtonian case we will use the variation of coordinate time with the 
radial coordinate: 

0

0

1
d 1
d 1

s

s s s

r
rt

rr r r
r r r

    (2.2) 
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The variation of the temporal separation with the radial coordinate is 
derived from (2.2): 

11d 1 ( )
d 1

ss

s s s s s

rr
hH

rr r r r r
r r H r h    (2.3) 

Simple algebra shows that 

d 0
dr  because sr r

. Therefore when r

decreases (the two test probes falling), ( , , )H h r  increases. Hence, the 
time separation between the two test probes increases. This is totally 
expected since GR in the weak field approximation and Newtonian 
mechanics need to agree on the outcome. The agreement is no longer valid 
in the case of strong gravity since additional terms will occur in the case of 
strong gravitational fields. 

References 

1.  A. Sfarti, “Euler-Lagrange Solution for Calculating Particle Orbits 
in Gravitational Fields”, Fizika A, 19, 4, (2010) 

2.  A. Sfarti, “Application of Euler-Lagrange Method in Determination 
of the Coordinate Acceleration”, EJP, 37, 3, (2016)  

3.  Rindler, W. “Relativity-Special, General and Cosmological”, (2006) 
(Oxford Press) 

4.  R.A. Mould, “Basic Relativity”, Springer-Verlag, (2002), 
5.  D. Raine, E. Thomas, “Black Holes”, Imperial College Press, (2005), 
6.  J.B. Hartle, “Gravity: An Introduction to Einstein’s General 

Relativity”, (2003) (Addison-Wesley) 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



APPLICATION OF THE EULER LAGRANGE 
FORMALISM FOR DETERMINING  

THE EQUATION OF MOTION IN THE CASE  
OF RADIAL FALL INTO A NON-ROTATING, 

CHARGED BLACK HOLE 
 
 
 

Synopsis 

In this chapter we set to accomplish two things: determine the equation of 
motion for an uncharged test probe falling radially into a charged, non-
rotating black hole and determine the relationship between coordinate 
acceleration and coordinate speed. The chapter is concerned only what 
happens outside the event horizon, since we are using only the external 
Reissner-Nordstrom equations in the derivations. What happens inside the 
event horizon (the presence of a wormhole connecting the black hole to a 
white hole) is not the purvey of this paper.  

1. Introduction  

We will present a method based on the Lagrangian for the derivation of the 
equation of motion of an uncharged test probe falling radially into a 
charged, non-rotating black hole. In a prior paper [1] we have derived the 
solution for the case of non-rotating, non-charged black holes. In the 
following, we are extending the derivation to the case of charged black 
holes. While we could have started from the geodesic equation, the 
derivation based on the Euler-Lagrange equations is more intuitive and less 
prone to error. The Reissner-Nordstrom metric for the particular case of 
absence of rotation ( 0d d ) is [2,6-8]:  
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2 2 2

2

2

1

1 Qs

ds dt dr

rr
r r     (1.1) 

where
2

2
s

GMr
c is the Schwarzschild radius , 

2
2

4
04Q

GQr
c  where G Is 

the universal attraction constant, Q is the black hole charge , r is the radial 

coordinate,  c is the speed of light in vacuum and 0  is the vacuum electric 
permittivity.  From the metric we obtain, as shown in [1,2]: 

a) the Lagrangian 

2 2

2 2

1dt drL
ds ds     (1.2) 

The Lagrangian (2) is obtained following an idea by Rindler [3], whereby 
one replaces the parameter t  with the arc length s  along the solution curve, 
provided that that curve isn’t null. This allows replacement of the 

Lagrangian 
jij ig x xL

 with its square 
jij iL g x x
where the 

overdot represents now derivative with respect to the arc length s . Rindler 

proves that the Euler-Lagrange equations for 
jij ig x xL

are equivalent 

to those for 
jij iL g x x
[3].  

b) from the Lagrangian we obtain the Euler-Lagrange system of equations 
[1,2]: 
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0

0

d L L
ds tt

d L L
ds rr      (1.3) 

and, respectively: 

2 2

2 2 2 2 2
2 2 2

0

2 1

2 2

d dt
ds ds

dt k
ds

d L L d r d dt r
ds r ds dr drr

d d d
r d r ddr dr drr r t r t

dr dr
(1.4) 

The over-dots signify derivative with respect to s . From the metric (1.1) we 
obtain: 

2 211dt dr
ds ds     (1.5) 

Substituting (1.5) into (1.4) we obtain 

c) the equation of motion: 

2

2

1 0
2

d r d
ds dr      (1.6) 

From (1.1) we obtain: 
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2 2
2

2

dr dt
ds ds

dr k
ds     (1.7) 

In (1.7) k  can be determined by setting the condition that the coordinate (or 

proper) speed is zero when the particle is dropped from radial distance 0r
towards the mass M: 

2
0

0

0 ( )

( )

dr k r
ds

k r
    (1.8) 

Therefore proper speed is: 

2 2

0 2 2
0 0

( ) ( ) Q Qs sr rr rdr r r
ds r r r r

  (1.9) 

Finally, the equation of motion is: 

22

2 2 32 2

21 1
22 2

Qs

d
rrd r d drds

ds dr ds r rk k (1.10) 

Equation (1.10) is the equation of motion expressed in terms of the proper 

acceleration

2

2

d r
ds . A quick comparison with the results [1,2,5] for non-

charged, non-rotating black holes shows that the right hand side of the 

equation of motion changes from 
2

1
2

sr
r  to 

2

2 3

21
2

Qs rr
r r

. This 
change is perfectly intuitive if we consider that in both cases, the equation 
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of motion [1,2,5], expressed in terms of  is given by (1.6). It is interesting 
to note that the charge of the black hole contributes an acceleration that is 
inversely proportional to the cube of the radial distance and it is of opposite 
sense to the standard gravitational acceleration. This contribution exists 
even though the test probe is uncharged.  

2. Discussion 

Although charged black holes with rQ  rS are similar to the Schwarzschild 
black hole, it is known that they have two horizons: the event horizon and 
an internal Cauchy horizon. As with the Schwarzschild metric, the event 
horizons for the spacetime are located where the metric component   
diverges; that is, where: 

2

20 1 Qs rr
r r      (2.1) 

The above equation has two solutions, each corresponding to one horizon: 

2 20.5( 4 )s s Qr r r r
    (2.2) 

Black holes with 2rQ > rS are believed not to exist in nature because they 
would contain a naked singularity, in our paper we will consider only the 

physically realistic case 
2 Q sr r r

 which corresponds to: 

0 1       (2.3) 

In other words, our paper deals only with the realistic case of radial fall 
outside the external event horizon of a physically realizable charged hole, 
one that would not contain a naked singularity.  

3. The dependency between coordinate acceleration and 
coordinate speed in Reissner-Nordstrom coordinates 

In this section we determine the relationship between coordinate 
acceleration and coordinate speed. Using (1.1) and (1.3) the coordinate 
speed is: 
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2 2
2

2 3
2 2

2
0

( )( ) 1
( )

dr ds
dt dt

dr ds rr
dt dt k r (3.1) 

From (2.1) we get the coordinate acceleration: 

2

2 2

2 3
2

2

2

22

2 3
2

2

22

2 3

32

2

32 2

2

32 2
2

Qs

Qs

d r d dr ds dk
dt ds dt dt ds k

k

rr drk
k r r dsk

k

rrk
r r

  (3.2) 

Eliminating k between (3.1) and (3.2) we obtain: 

2 22

2 2 3

21 3
2

Qs rrd r dr
dt dt r r

  (3.3) 

So, the relationship between coordinate acceleration and coordinate speed 
in the case of radial motion into a charged, non-rotating black hole is: 
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2

2 3 2 2 22

2 2 2 32

2

2
3

21 1 0
2

2 1

Qs

Q Qs s

Qs

rr
r r r rr rd r dr

dt dt r r r rrr
r r

(3.4) 

A quick sanity check shows that for zero charge (
0Qr ) we recover the 

equation for the Schwarzschild case developed in [1]. An alternative 
expression for the coordinate acceleration as a function of the radial 
coordinate can be obtained from (3.1) and (3.3): 

22

2 2 3
0

23 ( )( ) 1
2 ( )

Qs rrd r rr
dt r r r

  (3.5) 

As per (2.3): 

2
0 1

Q sr r r

     
 (3.6) 

Another useful formula can be derived from (3.1): 

0

1
( )( ) 1
( )

dt
dr rr

r     (3.7) 

Formula (3.7) proves essential in determining the radial separation for two 
test probes falling into a black hole [5]. Elementary algebra shows that 
under conditions (3.6) the expression: 

0

( )1 0
( )
r
r      (3.8) 

is always positive, so the equation (3.7) has physically realizable solutions.  
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THE TWO TEST PROBE CHASE TO THE EVENT 
HORIZON OF A CHARGED, NON-ROTATING 

BLACK HOLE 
 
 
 

Synopsis 

In the current chapter we examine the “chase” between two test probes 
dropped radially and simultaneously from two different heights towards a 
charged, non-rotating black hole.  We have developed a consistent 
methodology that uses the coordinate speed in order to derive the variation 
of coordinate time with the Schwarzschild radial coordinate. This allows us 
to determine how the time differential between the two falling test probes 
varies with respect to the Schwarzschild radial coordinate. 

1. The GR approach to the problem 

Assume that two test probes are dropped simultaneously, from the radial 
distances H and, respectively, h with H h .  We consider that the fall is 
radial and that it is directed towards a non-rotating, charged gravitating body 
of mass M . The space surrounding such a body is described by the 
Reissner-Nordstrom metric [3-6]. In a prior paper [7] we have studied the 
case of radial fall towards a non-charged, non-rotating black hole. We have 
found that the distance between the two test probes increases with time. Will 
this be the case in the case of a charged black hole? In GR, the coordinate 

speed for a particle starting at radial coordinate 0r outside the event horizon 
is given by the formula [1,2]: 

0

( )( ) 1
( )

dr rr
dt r     (1.1) 

where: 
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2

21 Qs rr
r r      (1.2) 

and 
2

2
s

GMr
c is the Schwarzschild radius , 

2
2

4
04Q

GQr
c  where G Is the 

universal attraction constant, Q is the black hole charge , r is the radial 

coordinate,  c is the speed of light in vacuum and 0  is the vacuum electric 
permittivity.  We will use the variation of coordinate time with the radial 
coordinate: 

2

2
0 0

2 2 2

2 2 2
0 0

1
1

1 ( )

Qs

Qs Q Qs s

rr
r rdt

rdr r r rr r
r r r r r r   (1.3) 

The variation of the temporal separation ( , , ) ( , ) ( , )H h r T H r t h r  
with the radial coordinate is derived trivially from (1.3): 

22

22

2 2 2 2 2

2 2 2 2 2

111 ( )
1 ( ) ( )

QQ ss

Qs Q Q Q Qs s s s

rr rr
d h hH H

rdr r r r r rr r r r
r r r H r H r h r h (1.4) 

Simple algebra shows that 
0d

dr  if 
2 1 1( )s Qr r

h H . If, on the other 

hand 
2 1 1( )s Qr r

h H  then 
0d

dr .  This additional condition is 
interesting, since we have found that the temporal distance increases 
unconditionally in the case of Schwarzschild black holes [7].  
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Therefore when r decreases (the two test probes falling), and 
2 1 1( )s Qr r

h H , ( , , )H h r  increases. Hence, the time separation 
between the two test probes increases. This case is similar with the one of 
uncharged (Schwarzschild) black holes.  

When 
2 1 1( )s Qr r

h H , ( , , )H h r  decreases. Hence, the time 
separation between the two test probes decreases.  

When 
2 1 1( )s Qr r

h H , ( , , ) 0H h r . Hence, the time separation 
between the two test probes remains constant and equal to H h . The last 
two cases are dissimilar to the case of uncharged (Schwarzschild) black 
holes. 
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EULER-LAGRANGE SOLUTION 
 FOR CALCULATING PARTICLE ORBITS  

IN GRAVITATIONAL FIELDS 
 
 
 

Synopsis 

The determination of particle equations of motion in gravitational fields in 
general relativity is done routinely via the use of covariant derivatives. Since 
the geodesic equations based on covariant derivatives are derived from the 
Euler-Lagrange equations in first place and since the Euler-Lagrange 
formalism is very intuitive, easy to derive with no mistakes, there is every 
reason to use them even for the most complicated situations. In the current 
paper we will show the application of the lagrangian equations for various 
scenarios in general relativity. A special paragraph is dedicated to radial 
motion. Radial motion is given less attention in textbooks than orbital 
motion, perhaps because solving the equations of motion is more difficult 
than the case of orbital motion (definitely more difficult than circular 
orbits). 

1. Introduction: the Lagrangian method applied to radial 
motion 

The pedagogical approach permeating through the paper is straightforward: 
derive the lagrangian from the metric, derive the Euler-Lagrange equations 
from the lagrangian and solve them. In the concluding paragraphs, four 
novel applications of the lagrangian method are presented. Firstly, we show 
the application for deriving the advancement of the perihelion of not only 
Mercury but also for Venus and Earth in a novel way by combining 
perturbation theory with the lagrangian approach. Secondly, we show how 
to calculate the length of a rod while in radial motion. While the paper is 
constructed around the case of gravitational fields described by the 
Schwarzschild metric, we demonstrate how to extend the algorithms to 
other metrics, like Reissner-Nordstrom or Kerr, for example,  therefore we 
show an application in the concluding paragraph. In the cases of Reissner-
Nordstrom or Kerr metrics, the lagrangian method has a definite advantage 
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since the Christoffel symbols are much more difficult to calculate than in 
the case of the Schwarzschild metric. We chose the case of the Reissner-
Nordstrom metric because it is encountered in literature much less than the 
Schwarzschild solution and because finding the equations of motion for 
objects falling into or gravitating around a charged black hole is 
considerably more difficult than in the case of the Schwarzschild solution. 
We will show how to use the lagrangian approach in solving this problem 
and we will even solve the difficult problem of calculating the perihelion 
advancement for objects describing arbitrary orbits. We conclude by 
deriving the trajectories of light in the vicinity of a charged black hole.  
While radial motion is the easiest type of motion to describe in natural 
language, it turns out that its equations are far from trivial. In order to find 
the equations of motion we start with the Schwarzschild metric for the 
particular case of absence of rotation ( 0d d ):  

2 2 21

21 1 s

ds dt dr

rm
r r      (1) 

where
2 1GMm

c  and 
2

2
s

GMr
c is the Schwarzschild radius. For 

example, the Schwarzschild radius of the Earth is only 9 millimeters. From 
the metric we obtain: 

a) the lagrangian 

2 2

2 2

1dt drL
ds ds      (2) 
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b) from the lagrangian we obtain the Euler-Lagrange system of equations 
[1,5]: 

( ) 0

( ) 0

d L L
ds tt
d L L
ds rr      (3) 

and, respectively: 

2 2

2
2 2 2 2

2 2 2

( ) 0

2 1( ) ( ) ( )

2( ) 2 ( )

d dt
ds ds

dt k
ds

d L L d r d dt r
ds r ds dr drr

d d
r d r r ddr drr r t t

dr dr (4) 

The over-dots signify derivative with respect to s . From the metric (1) we 
obtain: 

2 21( ) 1 ( )dt dr
ds ds     (5) 

Substituting (5) into (4) we obtain 

c) the equation of motion: 

2

2

1 0
2

d r d
ds dr      (6) 
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that is, 

2

2 2

d r m
ds r      (7) 

From (7) we can see that the acceleration increases as the radial coordinate 
decreases. In order to solve (7) we will need to resort to a lemma. 

Lemma: 

2
2

2

1 ( )
2

d r d ds
ds dr dr      (8) 

Proof: 

2
1 1

2

2 2
2 1 3 2

2 2

( ) ( ) ( ) ( )

1( ) ( ) ( ) ( )
2

d r d dr d dr dr d ds ds
ds ds ds dr ds ds dr dr dr

ds d s ds ds d s d ds
dr dr dr dr dr dr dr  (9) 

Applying the lemma, equation (7) becomes: 

2
2

2( )d ds m
dr dr r                   (10) 

With the notation 
2( )dsy

dr  equation (10) becomes: 

2

2dy m
dr r                    (11) 

with the immediate solution: 

0

2 2m my
r r      (12) 
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where 0 (0)r r
. On the other hand,

2( )dry
ds  , so (12) reduces to: 

0

2 2dr m m
ds r r      (13) 

From (13) we can see that the proper speed increases as the radial distance 
decreases. Finally, we are ready to obtain the equation of motion by solving 
(13) through variable separation: 

0 0
0 0

2 ( )m rs r arctg r r r
r r r   (14) 

Unfortunately, expression (14) is a transcendental equation in r , so we 
cannot obtain r as a symbolic function of the proper time s . Yet, as we will 
see later in this paper, the information is very valuable in solving other 
classes of problems.  

2. A different approach for radial motion 

We can determine the proper and coordinate speed for radial motion with a 
slightly different approach. From (1) 

2 2 2( ) ( )dr dt
ds ds     (15) 

2dr k
ds      (16) 

2

2 2 22 2

1 2
2 2

d
d r m dr mds
ds r ds rk k  (17) 

Using (1) and (3) the coordinate speed is: 
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2 2 2

3
2 2 2

2

( ) ( )

( )

dr ds
dt dt

dr ds
dt dt k    (18) 

From (18) we get the coordinate acceleration: 

2

2 2

2 3
2

2

2

2

2
2

2

2
2

2 2 22

32
( )

2

32 2

2

32 3(2 )

d r d dr ds dk
dt ds dt dt ds k

k

m drk
k r dsk

k

m mk k
r r kk   (19) 

k can be determined by setting the condition that the coordinate (or proper) 

speed is zero when the particle is dropped from radial distance 0r towards 
the mass M: 

2
0

0
0

0 ( )

2( ) 1

dr k r
ds

mk r
r

    (20) 

or: 
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3
2 0

0 2

0

( )0 ( )

( )

rdr r
dt k

k r    (21) 

Given (21) the coordinate acceleration becomes: 

2

2 2 2 2
0

2

0

3 3 ( )(2 ) (2 )
( )

212(1 )(3 2)21

d r m m ra
dt r k r r

m
m m r

mr r
r  (22) 

If the particles is dropped from infinity (22) becomes:  

2

2 2

2 6(1 )(1 )d r m m ma
dt r r r    (22a) 

The proper speed (16) is: 

2
0

0

2 2( ) ( )dr m mk r r
ds r r  (23) 

We can see that we have re-derived expression (13) through the new 
method. 

Finally, the coordinate speed (in units of c=1) is: 

3
2

2
0

0

21( ) 21 (1 ) 1 2( ) 1

m
dr r m r

mdt k r r
r  (24) 
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3. Classical treatment of unidimensional radial motion 

The same problem, in Newtonian formulation, for the case of unidimensional 
radial motion reduces to the equation of motion: 

2

2 2

d r GMmm
dt r      (25) 

It is interesting to note that GR and Newtonian mechanics produce exactly 
the same equation of motion. Equation (25) gives us the tool for determining 

when two bodies of radiuses 1r  and 2r  and masses M and m will collide 

after starting from rest at locations 1(0)x
 and respectively 2 (0)x

 

separated by the initial distance 1 2(0) (0)D x x
. We would need to 

solve the system of differential equations: 

2
1

2 2
1 2

2
2

2 2
1 2

( )

( )

d x GM
dt x x
d x Gm
dt x x     

 (26) 

with initial conditions:  

1

2

1 2
0 0

(0)
(0) 0

| | 0t t

x D
x
dx dx
dt dt     

 (27) 

and find out the time when 1 2 1 2x x r r
 (i.e., when the two masses 

touch) by solving a transcendental equation in t. The system gets easily 
reduced to a single equation by subtracting the two equations: 
 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Relativistic Forces in Special and General Relativity 301 

2
1 2

2 2
1 2

( ) ( )
( )

d x x G M m
dt x x    (28) 

From (7), we know that equation (28) has the general solution: 

1 2
1 2 1 2

1 2

2 ( ) * ( )( ( ))
( )

x xG M mt D arctg x x D x x
D D x x (29) 

At the time of collision, 1 2 1 2x x r r
 so: 

3/2
1 2 1 21 2

1 2

( )( ( ))
( )

( )2 ( )
r r D r rr rDt arctg

D r r DG M m (30) 

Now, we can see that the transcendental equation (15) proved instrumental 
in finding the “time to collision” for the unidimensional classical problem. 

4. Generalization to arbitrary planar orbits 

In the case of arbitrary planar orbits characterized by constant  (that is,
0d ) we start with the Schwarzschild metric: 

2 2 2 21 ( )ds dt dr rd
   (31) 

The lagrangian associated with the metric (31) is: 

2 2 2
2

2 2 2

1dt dr dL r
ds ds ds    (32) 

The lagrangian (32) is the generalization for the more particular lagrangian 
(2). Likewise, the generalization for the Euler-Lagrange equations is: 
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2 2 2

2
2 2

2

12 ( ) ( ) 2

2 ( ) 2 0

d r d dt r r
ds dr dr

r r dt r
dr   (33) 

dt k
ds       (34) 

2

2

( ) 0d r
ds

r h      (35) 

From the general equation of motion (33) we can obtain interesting 
particular cases. 

a. For circular orbits, , 0r R r so: 

2 22 0dt r
dr     (36) 

meaning that: 

2 2
2

2( ) 2 ( )dt m dr
ds r ds     (37) 

3

d m
dt r       (38) 

Inserting (38) back into the metric (31) we obtain: 

2 23(1 )mds dt
r      (39) 
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with the immediate consequence: 

3

1
31

d m
ds r m

r     (40) 

Thus, we have recovered a well-known equation of the mechanics 
describing circular orbits. 

b. For radial orbits, 0d , so, the Euler-Lagrange (33) reduces to: 

2
2 2 2

2

12 ( ) ( ) 2 ( ) 0d r d d r r dt r t
ds dr dr dr (41) 

If we add to the above the fact that the metric (31) reduces to: 

2 2 21ds dt dr
    (42) 

From (41) and (42) we obtain the equation of motion: 

2

22 0mr
r      (43) 

that is, we recovered equation (7). 

c. For arbitrary planar orbits, the Euler-Lagrange equation is given by (33). 
Coupled with the general metric (31) the equation reduces to: 

2
2 ( 3 ) ( )mr r m

r     (44) 

The above is very interesting since it allows recovering the previous 

answers to both the radial and circular orbits situations. Indeed, 0  
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implies 
2

mr
r  and 0r  implies

3

1
31

d m
ds r m

r . Thus, we 
have recovered equation (40) 

5. The derivation of the advancement of Mercury 
perihelion via perturbation theory 

In this paragraph we will combine the lagrangian approach with 
perturbation theory in producing a novel solution to the advancement of the 
perihelion of not only Mercury, but also for Venus, Earth and Mars. Using 
the Euler-Lagrange equation (35) equation (44) can be simplified to: 

2 2

2 3 43m h hr m
r r r     (45) 

Using the substitution: 

1( )
( )

u
r      (46) 

with the immediate consequence: 

2
2

2 2
2 2

2 2

u du d dur r h
u d ds d

d u d d ur h h u
d ds d    (47) 

Equation (45) transforms into: 

2
2

2 2 3d u mu mu
d h     (48) 
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Equation (48) is nothing but the Kepler’s first law from Newtonian 
mechanics: 

2

2 2

d u mu
d h      (49) 

with the added relativistic perturbation of 
23mu . Now, we know the 

solution for (49) is: 

2( ) (1 cos )mu e
h     (50) 

or, expressed in terms of ( )r r : 

( )
1 cos

crr
e      (51) 

where for 1e   (51) represents the parametric equation of an ellipse in 

which case 

2

( )
2c

hr r
m  is the radial distance from the focus to the 

ellipse. Armed with the solution for classical mechanics equation (49) we 
can now attempt to solve the GR equation (48) by applying perturbation 
theory. An appropriate solution is: 

2( ) (1 cos( ))mu e
h     (52) 

In order for (52) to be a solution for (48) it must satisfy the condition: 

2 2
2 2

2 2

2

3 6(1 cos ( )) cos( )

(1 )cos( )

m me e
h h

e  (53) 

Since: 
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2

2 2

/ 2 1
/

s

c

rm m
h h m r     (54) 

it follows that (53) is satisfied if: 

2
2

2

6 1m
h      (55) 

that is,  

2 2

2 2

6 31 1m m
h h     (56) 

Rindler [1] produces a similar explanation but his derivation relies on a less 
rigorous series of multiple approximations. Thus, the solution for the GR 
equation (48) is: 

2

2 2

3( ) (1 cos((1 ) ))m mu e
h h    (57) 

2

2

( )
31 cos((1 ) )

crr
me
h    (58) 

Solution (58) agrees with the Newtonian solution for 0m , thus giving us 
a high level of confidence that it is correct. When 0 2  , 

2 2

2 2

3 60 (1 ) 2m m
h h , that is the orbit “misses” its closure [2] 

by 

2

2

6 m
h  per revolution, resulting into a precession phenomenon seen in 

figure 1: 
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Figure 1. Orbit Precession 

The precession per revolution is a direct function of 

2

2 2
s

c

rm
h r  while the 

overall observed precession per century is a function of the number of 
revolutions per century. From table 1 we can see that physics “conspires” in 
such a fashion that, for our solar system, Mercury is by far the best candidate 
for observing the precession given that it has not only the highest precession 
per revolution but also the largest number of revolutions per century. 

Planet 
cr (106km) 

Precession 
per revolution 

Revolutions 
per century 

Precession 
per century 
(arcsec) 

Mercury 55.443 0.1034 414.9378 42.9195 
Venus 108.1947 0.0530 162.6016 8.6186 
Earth 149.5568 0.03835 100 3.8335 
Mars 225.9289 0.0254 53.1915 1.3502 

 
Table 1 
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Over the centuries, the astronomers have observed that the precession of 
Mercury perihelion is actually a much larger number (5600 
arcsecond/century). Of the total 5600 arcsecond/century, 5557 can be 
accounted for by Newtonian mechanics, leaving the balance of 43 
arcsecond/century to be explained by the disparity between the Newtonian 
equation (49) and its relativistic counterpart (48). It was Einstein genius that 
explained1 the disparity between the Newtonian calculations and the 
observed values. Given the advancements in modern measuring devices, 
today we can not only account for the advancement of Mercury perihelion 
but also for the advancements for Venus and Earth [3-4]. 

6. Application to calculating the length of a rod 
 in radial fall 

Let’s assume that we are asked to find the length of a rod of proper length 
L as calculated from the perspective of a distant Schwarzschild observer. 
Now, our observer has read reference [6] and understands that there are 
several ways of operationally determining the length of an object in motion. 

So, the observer decides to drop the rod from 0r  and he decides to set a 

“trap” at location 1 0r r
. By calculating the time interval t  between the 

leading end of the rod and the trailing end of the rod passing through the 

“trap” set at 1r  and by knowing the coordinate speed at the same point, our 
observer can determine the length of the moving rod. We will assume 
throughout this chapter that the rod is Born-rigid, so it is not distorted by 
tidal forces, that is, all its points travel at the same speed. The coordinate 

speed is variable along the trajectory and, at location 1r  , according to what 
we derived in equation (13) it is: 

1

1

1

0

21
2| (1 ) 1 21

r r

m
rmv mr
r

   (59) 
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The time for the leading end of the rod to reach location 1r  is: 

0

1

r

lead
r

t dt
      (60) 

while the time for the trailing end of the rod is: 

0

1

r L

trail
r

t dt
     (61) 

Thus, the elapsed time for the rod to pass through the “speed trap” at 

location 1r  is: 

0 0 0

1 1 0

r L r r L

r r r

t dt dt dt
    (62) 

From (14) we also know that: 

0

21
2(1 ) 1 21

drdt
m
rm
mr
r

    (63) 

We are now ready to calculate the length of the rod, as it passes through : 

0

01 1 0

0

2 1 1(1 )
2 1 1(1 )

r L

r

m drl v t
r r r m

r r r  (64) 

The above represents one operational way of determining the length of the 
falling rod. Now, the astute observer, who has read Geroch’s book [6], may 
decide to apply a different operational definition in determining the rod’s 
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length, such as marking both ends of the rod at the same coordinate time. 
So, the observer decides to find out where the trailing end of the rod is when 

the leading end has reached 1r . Assume that this is at the radial location r, 
where:  

0r L

trail
r

t dt
     (65) 

In this case, the coordinate length of the rod is 1r r
 where r is the solution 

of the integral equation: 

0 0

1

trail lead
r L r

r r

t t

dt dt
     (66) 

The above equation can be further simplified in two steps. Firstly, we reduce 
it to: 

0

1 0

r Lr

r r

dt dt
     (67) 

Now, the RHS is a constant, independent of r and the LHS is a polynomial 

in r. In the second step, we notice that, for 1, 2r r m
: 

0

1 2 2(1 )
2 22 2 2(1 )

m r r m
r m m rm m m

r r r (68) 

Thus, equation (67) reduces to a simple algebraic equation in r: 

0 0 0 01 1
1 0 02 2 2 2 ( )

3 2 3 2 3 2 3 2
r r r L r Lr rr rmr mr mr m r L

m m m m (69) 
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We presented just two different modes of determining the length of a 
moving rod, the reader can decide on his/her own operational way of 
determining the length since several more ways can be found in literature6. 

7. Charged black holes 

In  (1916) Reissner [7] and in 1918 Nordström [8] derived independently 
the metric that represents the static solution to the Einstein field equations 
in empty space, which corresponds to the gravitational field of a charged, 
non-rotating, spherically symmetric body of mass M and charge Q. Finding 
the equations of motion for objects falling into or gravitating around a 
charged black hole is considerably more difficult than in the case of the 
Schwarzschild solution. We will show how to use the lagrangian approach 
in solving this problem and we will even solve the difficult problem of 
calculating the perihelion advancement for objects describing arbitrary 
orbits. The Reissner-Nordstrom metric is given by:  

2 2 2 2 21'
'

ds dt dr r d
   (70) 

where: 

2

2

2' 1 Qrm
r r      (71) 

2
2

4
04Q

GQr
c      (72) 

The Euler-Lagrange equations are: 

2 2 2' 12 ( ) ( ) 2 0
' '

d r d dt r r
ds dr dr  

dt k
ds       (73) 

2r h  
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a. For circular orbits we obtain: 

2

3 4
Qrd m

dt r r      (74) 

Inserting (74) back into the metric (70) we obtain: 

2
2 2

2

23(1 )Qrmds dt
r r     (75) 

with the immediate consequence: 

2

3 4 2

2

1

31

Q

Q

rd m
ds r r rm

r r    (76) 

Thus we obtained a very elegant result showing that circular orbits for 
charged black holes can be obtained by applying a charge-dependent 
correction to the solution for neutral black holes.  

b. For radial orbits, the Euler-Lagrange equation reduces to: 

2
2

'2

'2 ( ) 0
'

r r dt
dr     (77) 

If we add to the above the fact that the metric (70) reduces to: 

2 2 21'
'

ds dt dr
    (78) 

From (41) and (42) we obtain the equation of motion: 

2

2 3

2' 22 2 0Qrda mr r
dr r r    (79) 
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that is, we recovered equation (7) with the charge-related perturbation . 

c. For arbitrary planar orbits the equation reduces to: 

2 2
2

2 3 2

23(1 ) ( )Q Qr rm mr r
r r r r   (80) 

The computation for the advancement of the perihelion becomes more 
complicated since the starting point is now the equation: 

2 2 22 2

2 3 3 4 5

2
3Q Qr h rm h hr m

r r r r r    (81) 

Using again the substitution: 

1( )
( )

u
r and neglecting the term in 5r

we obtain:  

22
2

2 2 23 Qrd u mu mu u
d h h    (82) 

an equation very similar to (48). We can proceed by considering the 
equation: 

2

2 2

d u mu
d h      (83) 

with the perturbation 

2
2

23 Qrmu u
h .As an alternative, we can start from: 

22

2 2 2(1 )Qrd u mu
d h h     (84) 
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with the known solution: 

2

2 22

2

1( ) cos( 1 )

1

Q

Q

rmu e
h hr

h   (85) 

and apply the perturbation 
23mu . Either way, the perturbation approach 

that we developed in (52)-(56) bears fruit since the computation of the 
perihelion advancement becomes a simple algebraic exercise.  

8. Light bending by charged black holes 

Light bending can be calculated starting from the fact that the light path is 
null: 

2 2 2 210 dt dr r d
    (86) 

so: 

2 2 2 2 2dr dt r d     (87) 

To the above we add the two Euler-Lagrange equations (34)(35): 

t k       (88) 

2r h       (89) 

Combining (87) with (88)(89) we obtain immediately: 

2 2 2
2( )dr k h

ds r     (90) 

Differentiating (90) with respect to r  we obtain a simpler expression: 
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2 2

2 32 (2 )d r h dr
ds r dr     (91) 

For the case of uncharged black holes 

21 m
r  so (91), using the 

notation

1( )
( )

u
r , reduces to1: 

2
2

2 3d u u mu
d      (92) 

For the case of charged black holes 

2

2

21 Qrm
r r  and the equation 

becomes: 

2
2 2 3

2 3 2 Q
d u u mu r u
d     (93) 

The solution for (91) is the superposition of the solutions for (90) and the 
solution for: 

2
2 3

2 2 Q
d u u r u
d      (94) 

 

Figure 2. Light bending by charged black holes 
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The solution for equation (90) is [1]: 

23 cos 2sin (1 )
2 3

mCu C
   (95) 

where

1C
R  and R is the effective radius (see fig.2). The solution for 

(94) is: 

3 cos sin 3
8 32
A Au

   (96) 

 

where 
2 32 QA r C

. When , 0r u and so: 

2 3
2 9

0 2
16
Qr C

C mC
   (97) 

resulting into: 

2 29 /2 (1 )
16

Qr Rm
R     (98) 

The total deflection angle is  

2 29 /42 | | (1 )
16

Qr Rm
R    (99) 

 

Comparing (97) with the deflection by an uncharged black hole [1], we can 

conclude that the charge contributes the additional effect 

2 29 /4
16

Qr Rm
R

. 
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 A REVIEW AND A REBUTTAL 
 
 
 

Synopsis 

In this chapter we will present a rebuttal of a recent paper by Mashhoon 
published in “, IJMP D, 14,12, (2005) pp. 2025-2037. We will rebut the idea 
put forward by the author that there is such a thing as a “critical speed”  
during the fall of a test particle where the “the gravitational attraction turns 
to repulsion”. The conclusion drawn by Mashhoon is unphysical, there is 
no such thing as a gravitational repulsion. The root of the error can be 
found in the author basing his derivation on coordinate acceleration. The 
correct analysis should have used proper acceleration. We demonstrate 
that, contrary to the author’s claims, there is no such thing as gravitational 
“repulsion”. 

Analysis and disproof of Mashhoon’s conclusions  
via the Euler-Lagrange formalism 

Exactly as in [2], in order to find the equations of motion of a test particle 
moving radially in a gravitational field we start with the Schwarzschild 
metric for the particular case of absence of rotation ( 0d d ). 
Throughout this note we will use the formalism and the results developed 
in [2]. We start with the simplified metric [3]: 

2 2 21(1 )
1

s

s

rds dt drrr
r     (1) 
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where sr is the Schwarzschild radius. From the metric we obtained [2] the 
proper acceleration: 

2

2 22
srd r

ds r      (2) 

From (2) we can see that the acceleration increases monotonically as the 
radial coordinate decreases. The proper speed for a test particle dropped 
from infinity is derived2 by integrating (3): 

srdr
ds r       (3) 

From (3) we can see that the proper speed increases monotonically as well 
as the radial coordinate decreases.  This is in line with our knowledge 
derived from Newtonian mechanics. For the test particle dropped from 
infinity the coordinate acceleration is2:  

2

2 2

3(1 )(1 )
2

s s sr r rd r
dt r r r    (4) 

while the corresponding coordinate speed is: 

(1 )s sr rdr
dt r r      (5) 

At 
3 sr r

 the coordinate speed reaches a maximum: 

3

2|
3 3r rs

dr
dt      (6) 

The corresponding proper speed for 
3 sr r

 is: 

 EBSCOhost - printed on 2/13/2023 10:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



“Beyond Gravitoelectromagnetism: Critical Speed in Gravitational Motion”  
by B. Mashhoon 

320 

3

1|
3r rs

c
dr v
ds      (7) 

 

Fig. 1 Coordinate acceleration (in red) and coordinate speed (in green) 

From (4) we see that the coordinate acceleration changes sign, from positive 

to negative, at
3 sr r

. The radial coordinate 
3 sr r

 coincides with the 
point where the proper speed equals what Mashhoon calls “critical speed”

1/ 3cv . The problem with Mashhoon’s paper is that the author is 
drawing his conclusions based on the change of sign of coordinate 
acceleration instead of analyzing the behavior of proper acceleration.  The 
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coordinate acceleration and coordinate speed are not meaningful from a 
physical point of view, only the proper acceleration and proper speed are. 
Therefore, contrary to Mashhoon’s conclusions1, there is no such thing as 
“….for motion with v < vc, we have the standard attractive force of gravity 
familiar from Newtonian physics, while for v = vc, the particle experiences 
no force and for v > vc the gravitational attraction turns to repulsion” since 
there is no change of sign in the proper acceleration whatsoever.  
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