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The advance of internet of things (IoT) techniques enables a variety of smart-world 
systems in energy, transportation, home, and city infrastructure, among others. To 
provide cost-effective data-oriented service, internet of things search engines (IoTSE) 
have received growing attention as a platform to support efficient data analytics. 
There are a number of challenges in designing efficient and intelligent IoTSE. In this 
chapter, the authors focus on the efficiency issue of IoTSE and design the named 
data networking (NDN)-based approach for IoTSE. To be specific, they first design 
a simple simulation environment to compare the IP-based network’s performance 
against named data networking (NDN). They then create four scenarios tailored to 
study the approach’s resilience to address network issues and scalability with the 
growing number of queries in IoTSE. They implement the four scenarios using 
ns-3 and carry out extensive performance evaluation to determine the efficacy of 
the approach concerning network resilience and scalability. They also discuss some 
remaining issues that need further research.
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different types of attacks. The attacks are categorized into two main types: spoofing 
attacks and hidden voice commands. In this chapter, how to launch and defend 
such attacks is explored. For the spoofing attack, there are four main types, such as 
replay attacks, impersonation attacks, speech synthesis attacks, and voice conversion 
attacks. Although such attacks could be accurate on the speech recognition system, 
they could be easily identified by humans. Thus, the hidden voice commands have 
attracted a lot of research interest in recent years.
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This chapter will provide a survey on cyber-physical systems security related to 
automobiles. In modern vehicles, there has been discussion on how automobiles fit 
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cyber and physical worlds and interconnected systems. With many modern vehicles 
being connected to the outside world, there are many vulnerabilities introduced. 
Modern cars contain many electronic control units and millions of lines of code, 
which, if compromised, could have fatal consequences. Interfaces to the outside 
world (e.g., in-vehicle infotainment) may be used as a vector to attack these critical 
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There are a lot of variations in generative nets, and different GANs are suitable for 
different applications. In this chapter, the authors investigated conditional generative 
adversarial networks to generate fake images, such as handwritten signatures. The 
authors demonstrated an implementation of conditional generative adversarial 
networks, which can generate fake handwritten signatures according to a condition 
vector tailored by humans.
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can be used to perform surgeries on patients over the internet in remote locations. A 
surgeon can remotely operate the robot to perform a procedure in another room or 
in a different continent. However, security technology has not yet caught up to these 
cyber-physical devices. There exist potential cybersecurity attacks on these medical 
devices that could expose a patient to danger in contrast to traditional surgery. Hence, 
the security of the system is very important. A malicious actor can gain control of 
the device and potentially threaten the life of a patient. In this chapter, the authors 
conduct a survey of potential attack vectors a malicious actor could exploit to deny 
service to the device, gain control of the device, and steal patient data. Furthermore, 
after the vulnerability analysis, the authors provide mitigation techniques to limit 
the risk of these attack vectors.
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through nonmedical human enhancement to enable human-machine “symbiosis 
with artificial intelligence.” The first published description of a complete prototype 
Neuralink system, detailed by Muskin the company’s only white paper to date, 
describes a closed-loop, invasive BCI architecture with an unprecedented magnitude 
of addressable electrodes. Invasive BCI systems require surgical implantation to 
allow for directly targeted capture and/or stimulation of neural spiking activity in 
functionally associated clusters of neurons beneath the surface of the cortex.
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Implantable medical devices (IMDs) are miniaturized computer systems used 
to monitor and treat various medical conditions. Examples of IMDs include 
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defibrillators. These devices have adopted wireless communication to help facilitate 
the care they provide for patients by allowing easier transferal of data or remote 
control of machine operations. However, with such adoption has come exposure to 
various security risks and issues that must be addressed due to the close relation of 
patient health and IMD performance. With patient lives on the line, these security 
risks pose increasingly real problems. This chapter hopes to provide an overview of 
these security risks, their proposed solutions, and the limitations on IMD systems 
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Preface

The Internet of Things, commonly abbreviated as IoT, refers to the connection of 
devices (other than typical fares such as computers and smartphones) to the Internet. 
The devices are usually interconnected sensors, actuators, and heterogeneous 
devices to collect data to offer advanced services. Like wireless sensor networks, 
IoT networks collect, store, and exchange a large amount of heterogeneous data. 
It has already shown promising outcomes in providing potentially critical services 
(e.g., safety applications, military, healthcare, manufacturing), but it raises many 
challenges related to the security and limited resources of the performed operations 
and provided services. Accordingly, research on the sensor/user data analysis and 
security of IoT is attractive to both industry and academia. Thus, this book’s central 
theme is to report novel methodologies, technologies, techniques, and security 
solutions for IoT and Cyber-physical systems.

Writing a book in the area of security and privacy stemmed from my desire 
to improve the security of current technologies that contribute to making human 
lives efficient by reducing the time and complexity of the tasks performed. A lot of 
security issues are present in emerging technologies. The task of the researchers is 
to prevent misuse of these technologies by discovering novel approaches to exploit 
these technologies and to propose efficient preventative measures. A myriad of 
scientific articles is published each year in which the researchers present their 
approach to attack the technologies and the solutions. Compared to the published 
scientific articles, a book is a more organized version from which future researchers 
and students can learn about the different types of security flaws present in state-
of-the-art technologies and shape their ideas on resolving the issues with novel 
approaches.

The book results from my years of experience working as an apprentice researcher 
when I was working as a Ph.D. student in Computer Science at the Temple University 
in Pennsylvania, USA, through becoming and working as an assistant professor and 
a researcher at the University of Louisiana at Lafayette. My main research interest 
lies in the area of security and privacy. Through my experience, I noticed that I often 
need to refer to different books as reference materials while imparting knowledge in 

xiv
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Preface

a classroom setting and the novice researchers planning to tread on the exciting path 
of scientific research. The students can learn from the novel security risks and the 
solutions to those problems. In turn, they can become more responsible users of the 
latest technologies by becoming aware of the security and privacy risks associated 
with the emerging technologies. After acquiring knowledge about the security 
flaws and the solutions, they can become interested in security research. Through 
their research works, they can contribute to the development of a world with fewer 
security issues and improve the lives of the users as a whole.

In this book, the authors discussed the basics, as well as complex security 
flaws present in different technologies. Chapter 1 discusses about the challenges 
involved in designing efficient and intelligent Internet of Things Search Engine 
(IoTSE). Chapter 2 discusses the IoT from a legal perspective. In Chapter 3, the 
authors analyzed various cell phone biometric sensors and the security risks of 
those sensors. In this chapter, the authors discussed the fingerprint and the facial 
recognition process, the hardware, and the algorithms needed for these recognition 
systems. Later the authors discussed the types of attacks that can be performed to 
spoof these recognition systems and the countermeasures. In Chapter 4, the attacks 
on voice assistant systems are discussed. The authors of this chapter first provided 
the idea of different types of attacks based on hardware non-linearity, obfuscated, 
and adversarial attacks and discussed the solutions. In Chapter 5, a brief survey of 
automotive cyber-physical systems security has been provided. The authors of this 
chapter briefly discussed the cyber-physical systems and then discussed them in the 
context of automobiles. Then they discussed the security threats in different layers 
of automotive cyber-physical systems, such as threats in sensing and communication 
layers. Chapter 6 discuss the method to spoof handwritten signatures in electronic 
check using Conditional Generative Adversarial Network (CGAN). Chapter 7 
reviewed handwritten signature spoofing with generative adversarial networks. In 
Chapter 8, a deep learning approach to protect voice-controlled devices from laser 
attacks is presented. Chapters 9 and 10 discuss the security of teleoperated surgical 
robots and attacks on brain-computer interfacing devices. These chapters will give 
a brief idea about the attacks that can be mounted on these technologies and the 
preventative measures to the attacks presented in the book. Chapter 11 discusses 
Implantable Medical Device (IMD) security. This chapter first presented the types 
of attacks that can be mounted on IMDs, and then presented pacemakers as an 
example for the case study.

In editing this book, I incorporated the ideas disseminated by different authors. 
I thank all the authors who helped me write the book, my family and colleagues for 
their continuous support through difficult times, and all of my students for assisting 
me with the research works. I look forward to making regular improvements to the 
book so that it becomes a primary source of refined knowledge of security and 

xv
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Preface

privacy. I spent a very long time calling for chapters and encouraging the authors 
to complete and revise their book chapters. Since the impact of book chapters is 
limited compared to the conference and journal papers, I have to push the authors 
to revise the chapters many times.

The readers should start from the content and choose the chapters more related 
to their work to read. The book chapters reviewed and covered many perspectives 
of the IoT and cyber-physical system related security topics.

The book will help the communities composed of educators, researchers, faculty 
members, industry practitioners, graduate students, etc. Besides, the same would be 
proved to be beneficial to the professionals working with smart devices, government 
policy-making tasks and planning, government enforcement agencies, legal and 
regulatory services, and with business enterprises to understand the practical aspects 
of next-generation IoT and Cyber-physical systems and future research directions. 
Further, it would help them secure the IoT systems in the various sectors where 
attackers’ susceptible activities are detected. The general nature of the book will 
attract a large number of enthusiastic people who are actively related to IoT and 
Cyber-physical system security research and would like to move in their direction.

xvi
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This book aims to provide specialized knowledge about the vulnerabilities and 
methods to exploit the vulnerabilities of modern devices and technologies. Each 
chapter in the book discusses how these devices and technologies can be attacked 
and controlled and the defense mechanisms to prevent such attacks. To improve the 
robustness, these technologies are continually being studied to improve security. In 
addition, this book discusses recent works on making some of the most important 
technologies secure that involve interacting with humans.

The first chapter discusses the Internet of Things Search Engines (IoTSE) as 
a platform to support efficient data analytics. Internet of Things (IoT) has been 
emerging as the next big thing in the world. It is envisioned that billions of physical 
things or objects will be outfitted with different kinds of sensors and actuators and 
connected to the Internet via heterogeneous access networks enabled by technologies 
such as embedded sensing and actuating, radio frequency identification (RFID), 
wireless sensor networks, real-time and semantic web services, etc. IoT is actually 
cyber-physical systems or a network of networks. With the huge number of things/
objects and sensors/actuators connected to the Internet, a massive and, in some 
cases, the real-time data flow will be automatically generated by connected things 
and sensors. It is essential to collect correct raw data in an efficient way, but more 
important is to analyze and mine the raw data to abstract more valuable information 
such as correlations among things and services to provide a web of things or Internet 
of services. This is where IoTSE comes into play. IoTSE is a platform to support 
efficient data analytics. There are a number of challenges in designing efficient and 
intelligent IoTSE. The first chapter focuses on the efficiency issue of IoTSE and 
designs the Named Data Networking (NDN)-based approach for IoTSE. At first, 
a simple simulation environment is designed to compare the IP-based network’s 
performance against Named Data Networking (NDN). Then four scenarios tailored to 
study the approach’s resilience are created to address network issues and scalability 
with the growing number of queries in IoTSE. These four scenarios are implemented, 
and extensive performance evaluation is carried out to determine the approach’s 
efficacy concerning network resilience and scalability.

xvii
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With the arrival of the information age, the concern about data security is gradually 
becoming more important. Even when digital technologies were not around, humans 
used to collect data manually to analyze it later and reach efficient decisions. In 
recent times, the method of collecting data has been replaced by digital media and 
smart devices. As a result, a lot of different ways are present by which data theft 
can happen. This is caused by the usage of different types of smart devices, which 
have many vulnerabilities since these devices are still being investigated to improve 
security. Chapter two discusses IoT from a legal perspective and the concern about 
personal data. IoT technology has penetrated almost all sectors of modern life, such 
as transport, smart grids, e-health, environmental monitoring, logistics, etc.

Moreover, IoT can collect pure personal data through a fitness tracker, wearable 
medical device, smart watch, smart clothing, wearable camera (Mardonova & Choi, 
2018). Hence, it has become crucial to ensure the integrity of these systems. This 
chapter discusses the protection offered by data protection law to personal data and 
the applicability of this law to personal data in the IoT environment. The concentration 
of the chapter is on the protection of personal data from a legal viewpoint and what 
IoT stakeholders could do to meet the legal requirements. To achieve this objective, 
Section 2 of the chapter provides a brief discussion of data protection development 
and its relevance to the information age. In Section 3, data protection law will be 
surveyed and analyzed to know its relevance to the IoT industry. This section is the 
most important component because it points out the applicability or inapplicability of 
data protection law to personal data flow in the IoT environment and also discusses 
the so-called data protection principles that are at the heart of data protection law. 
Part 4 focuses on the importance of compliance with data protection law in the IoT 
sphere and the consequences of overlooking such matter from the legal perspective. 
Especial attention will be paid to such consequences on data subjects and data 
controllers. Section 5 suggests solutions and makes recommendations in light of 
data protection principles. Finally, Section 6 summarizes the main points discussed 
in the chapter and provides concluding remarks.

Smart devices have been prevalent in recent times. The most common devices are 
smartphones and personal computers. Smart devices are an integral part of our day-
to-day life to facilitate the work process and maintain effective communication. These 
devices often employ different biometric sensors to secure personal information and 
prevent intruders from accessing personal data. Every individual has certain unique 
features. Often the features are a combination of elements from different sources 
such as iris, fingerprint, voice, face orientation, etc. Chapter three discusses two 
primary biometric recognition services, namely, fingerprint and facial recognition 
systems. This chapter briefly discusses these two biometric recognition systems and 
the hardware requirements to employ the recognition systems and the algorithms. 
Then the possible attack scenarios along with the countermeasures are discussed.

xviii
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One of the most common smart devices that have become an integral part of our 
daily lives is voice assistant systems. Voice assistant systems made our lives easier 
by providing us the opportunity to control information flow by giving commands 
through our voice. Voice assistant systems work by first recognizing the user. If it 
fails to recognize the valid user, then it will not process commands. But it is possible 
to attack these smart devices and make them work even though the user providing 
the command is not a valid user. As a result, a malicious user can gain control of 
the voice assistant and assume himself as the valid user and can cause harm to the 
actual user of the device. To prevent malicious users from gaining control over 
the voice assistant system and causing damage to the valid user, it is crucial to 
ensure the robustness of these systems. Chapter four first discusses voice assistant 
systems, automatic speech recognition, and audio processing mechanisms. Then 
the chapter presented three types of attacks on voice assistant systems: spoofing 
attacks, hardware non-linearity attacks, obfuscated command attacks, and adversarial 
command attacks. The chapter then discusses how to exploit these attacks to gain 
control on the voice assistant systems, and then defending mechanisms to prevent 
such attacks are presented.

In our daily life, we rely on automobiles to transport ourselves from one place 
to another efficiently. Automobiles have been around for quite a long time. In the 
early days, automobiles mainly were a medium to transport goods and humans, just 
after its inception. But with the development of digital technologies, automobile 
manufacturers have started to integrate smart devices and electronics into automobiles 
in order to make them more efficient and luxurious for travelers so that the travels 
can reduce travel fatigue and enjoy their journey at the same time by listening 
to music. Moreover, smart electronic devices are integrated into the vehicles to 
provide the user more control over the vehicle. These smart devices often enable 
the user to see crucial vehicular data such as wheel rotation, torque, vehicle speed, 
etc. The intelligent electronic devices that provide such critical vehicular data are 
also connected to the internet. Hence the name Cyber-Physical systems. With many 
modern vehicles being connected to the outside world, there are many vulnerabilities 
introduced. Modern cars contain many electronic control units and millions of lines 
of code, which, if compromised, could have fatal consequences. Interfaces to the 
outside world (e.g., in-vehicle infotainment) may be used as a vector to attack these 
critical components. The structure of this chapter is as follows. First, the definition 
of Cyber-Physical Systems will be discussed briefly. Then different components 
of automotive will be discussed and why they are considered CPSs. Finally, after 
understanding the different components of automotive CPSs, the security and threats 
of various components of modern vehicles will be discussed.

Modern economic systems cannot be imagined without banking systems. In 
earlier times, the bank process was performed using physical documents and paper 

xix
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checks. With the advent of digital technologies and smart devices, banking systems 
are digitalized so that banking and transactions can be performed electronically and 
instantly. Before the arrival of digital technologies, people used to send and withdraw 
money using paper checks. But due to the availability of modern technologies, people 
often deposit checks electronically. Deposit of electronic system uses two potential 
information written by the account holder on the check. The account holder needs 
to write down the amount of money and the unique signature that the banks will 
check when updating the system after depositing for verification (Pennacchi et al., 
2006). Every individual has a different handwritten system that can be identified 
using the character pattern and the pressure point of any handwritten materials. 
By using this concept of difference in handwritten systems, banks like Chase bank 
introduced Chase QuickDeposit. In the prospect of forgery, an adversary can spoof 
the amount written in the check or spoof the signature using the deep learning 
approach and specifically using Generative Adversarial Networks (GANs). This 
chapter discusses the threat model to spoof an electronic check using GANs. The 
chapter also discusses the implementation and limitations of the approach.

When two devices need to pair with each other, the first thing the devices do is to 
recognize the other device. In order to do this, some unique characteristics of each 
device are considered so that the device can be identified correctly. Extracting the 
unique features is known as fingerprinting. In Chapter seven, fingerprint generation 
from unique spectral characteristics of LEDs to perform device pairing is presented. 
The chapter first claims the ubiquity of LEDs; thus, the authors proposed the 
conceptual model to perform device pairing. The chapter also presented captured 
images from different LEDs, the method to preprocess the images and extract special 
radiance patterns from the images. Then Convolutional Neural Network is used to 
classify the data to perform device pairing.

Due to their effectiveness and ease of use, smart voice assistants are ubiquitous. 
With the advent of voice assistant technology, devices such as Amazon Echo, Google 
Home, Apple HomePod, and Xiaomi AI became more prominent. The need to make 
these devices more secure and safe to use comes along with the emergence of these 
devices. Because voice assistants are widely used in smartphones and IoT devices, 
attackers can attack voice-controllable systems using various sources like laser 
light (Sugawara et al. 2020), long-range attacks (Roy et al. 2018), ultrasonic waves 
(Zhang et al. 2017), solid materials (Yan et al. 2020), electromagnetic interference 
signals (Kune et al. 2013, Tu et al. 2021), etc. The chapter discusses voice reply 
attack, operating system level attack, hardware-level attack, machine learning level 
attack, etc., and then describes the use of Mel Frequency Cepstrum (MFC) to detect 
train a deep neural network model to differentiate and detect a malicious signal to 
prevent the attack.

xx
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In recent years, teleoperated robots are making their way into the conventional 
surgical room to replace and reduce the number of human surgeons. These robots 
are complex electronic systems consisting of a wide variety of sensors and are 
connected to the Internet to perform surgery remotely. The sensors and the network 
can be exploited to mount various attacks on teleoperated robots. Stealth attacks, 
replay attacks, covert attacks, DoS attacks, eavesdropping attacks, etc., are notable 
among the network-based attacks. Chapter nine presents all those network-based 
attacks, endpoint-based attacks, and sensor-based attacks on teleoperated surgical 
robots. After presenting the attacks, this chapter also presents mitigation techniques 
for each type of attack.

Brain-Computer Interface (BCI) technology is brought into existence to assist 
in treating serious neurological conditions. But researcher has a long-term goal 
with BCI, which is to enhance human capabilities by enabling human-machine 
symbiosis with artificial intelligence (Newitz et al., 2017). BCI systems consist of 
a lot of electrodes. These electrodes are used to read brain signals. The BCI device 
includes real-time temperature, accelerometer, and magnetometer sensors. These 
electrical systems can be exploited to attack the BCI system. Chapter ten discusses 
the attack model by providing insights into the attacker and the victim. The chapter 
then presented intentional EMI attacks and possible BLE stack to perform attacks 
on BCI systems.

Implantable Medical Devices (IMDs) are miniaturized computer devices that are 
implanted inside the patients. Some examples of IMDs are insulin pumps, pacemakers, 
neuro-stimulator, etc. When designing these devices, the main focus is the longevity 
of the devices because these devices are implanted by invasive surgeries. Most of 
the devices are implanted for decades in mind. IMDs automatically read the body 
parameters of the patients. Based on the received data, IMDs make some decisions 
to ensure the healthy functioning of the patient body. Since these devices play a 
direct role in the patient’s well-being, it is vital to ensure the safety and security of 
these devices because an apparently gentle breach in the security of these devices 
will cause a life or death issue for the patient. Chapter eleven discusses the security 
of IMDs in detail. The chapter first discusses what IMDs are and the limitations 
and restrictions of IMDs. Then the chapter presented the types of attacks that can be 
mounted on this type of device and discussed the proposed solutions. The chapter 
also provides insights into attack detection and reaction. Finally, the chapter offers 
a case study by considering pacemakers as one of the most common implantable 
medical devices. This chapter also explains how pacemakers work, the attack vectors 
on pacemakers, network attacks, and countermeasures in the case study.

Xiali Hei
University of Louisiana at Lafayette, USA
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ABSTRACT

The advance of internet of things (IoT) techniques enables a variety of smart-world 
systems in energy, transportation, home, and city infrastructure, among others. To 
provide cost-effective data-oriented service, internet of things search engines (IoTSE) 
have received growing attention as a platform to support efficient data analytics. 
There are a number of challenges in designing efficient and intelligent IoTSE. In 
this chapter, the authors focus on the efficiency issue of IoTSE and design the named 
data networking (NDN)-based approach for IoTSE. To be specific, they first design 
a simple simulation environment to compare the IP-based network’s performance 
against named data networking (NDN). They then create four scenarios tailored 
to study the approach’s resilience to address network issues and scalability with 
the growing number of queries in IoTSE. They implement the four scenarios using 
ns-3 and carry out extensive performance evaluation to determine the efficacy of 
the approach concerning network resilience and scalability. They also discuss some 
remaining issues that need further research.
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INTRODUCTION

The Internet of Things (IoT) is a major part of our daily lives without many of us 
realizing it. These devices have re-defined how we improve healthcare (Philip et al., 
1988), produce better energy (Xu et al., 2016), optimize industry processes (Xu et 
al., 2018; Da Xu et al., 2014), and so much more. Utilizing IoT devices has become 
more relevant and it is predicted there will be 41.6 billion devices connected and 
deployed worldwide by the year 2025 (Li et al., 2018). Not only do these devices 
enhance the connectivity of physical things/objects and cyber systems, but it also 
provides the ability for analytics and predictions to be made due to the massive 
amounts of data produced, supported by big computing and networking infrastructure, 
as well as big modeling techniques driven by artificial intelligence (Yu et al., 2017; 
Hatcher et al., 2018).

Although the amounts of data that these smart IoT devices produce can help 
assist the monitoring, control, and intelligence of IoT systems in general, it is also 
massive; thus, raising the issues of data management and sharing issues (Liang et 
al., 2018; Mohammadi et al., 2018). On the one hand, data management is a concern 
as each type of IoT system has its own defined data structure, data rate, as well as 
user and performance requirements, making it hard to manage all the data under 
one general method. On the other hand, data sharing (Cao et al., 2016; Liang et al., 
2018; Gao et al., 2018} becomes an issue due to the different standards and defined 
settings, making it incompatible for sharing data among the devices, systems, and 
organizations.

One viable solution to address these issues is to utilize IoT Search Engine (IoTSE) 
(Liang et al., 2019; Lunardi et al., 2015; Tran et al., 2019) to efficiently manage 
and share the data, providing a viable platform to enable efficient data analytics 
and service. Nonetheless, a number of challenges need to be addressed, including 
performance, intelligence, and security, etc. (Hatcher et al., 2021). In this study, we 
focus on performance-related issues. The intuition of IoTSE comes from a typical 
Internet browser; all of IoT data can be treated as Uniform Resource Locator (URL) 
links, which can be resolved and displayed for users according to their queries. With 
regard to performance challenges in IoTSE, selecting communication networking 
architecture to support diverse data transmission and sharing protocols is the focus 
of this study. The main problem that we tend to address is whether Named Data 
Networking (NDN) can be a viable solution to address the performance issues of 
IoTSE.
In this study, we make the following two key contributions.

• NDN-based Approach for IoTSE: We design an NDN-based approach for 
IoTSE, which deals with the performance issues of IoTSE. We first develop a 
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simulation environment to compare IP-based network and NDN performance, 
and then demonstrate the benefit of adopting NDN-based approach for IoTSE. 
We then design four scenarios tailored to study the resilience of NDN-based 
approach for IoTSE (e.g., dealing with prefix hijacking, congestion, and link 
failure) and the scalability to handle the growing number of queries in IoTSE.

• Extensive Evaluation: We have implemented the four scenarios mentioned 
above using ns-3, a known network simulator (Riley et al., 2010), to 
demonstrate the efficacy of our NDN-based approach with respect to packet 
successful ratio and average packet delay. Our extensive evaluation results 
confirm that NDN can maintain a resilient network infrastructure when the 
network suffers from prefix hijacking, congestion, and link failure, and is 
highly scalable to handle a growing number of queries.

The remainder of this paper is organized as follows: In Section PRELIMINARY, 
we briefly review IoTSE and NDN. In Section PERFORMANCE COMPARISON 
OF NDN AND TCP/IP, we setup a baseline environment and compare TCP/IP and 
NDN’s performance. In Section NDN-BASED SOLUTION FOR IOT SEARCH, 
we design the scenarios for assessing the efficacy of NDN-based approach for 
IoTSE. In Section PERFORMANCE EVALUATION, we present the performance 
evaluation results. We study the Literature review of state-of-the-art in Section 
RELATED WORKS. In Section DISCUSSION, we discuss some remaining issues 
for future research. Finally, we conclude the paper in Section FINAL REMARKS.

PRELIMINARIES

In the following, we provide some background about IoTSE and NDN.

IoT Search Engine (IoTSE)

Due to the massive number of IoT devices, IoTSE aims to providing data-oriented 
service for IoT systems, dealing with IoT systems’ search and management issues 
(e.g., devices and data), and others. Similar to the web-based search engine, IoTSE 
can provide the following functionalities (Liang et al., 2019: (i) Data Collection: 
The web-crawler-based scheme is one common way to crawling IoT data for IoTSE 
while crawling data is from IoT devices instead of from web servers. Some examples 
of IoTSE systems includes Shodan (Shodan Search Engine, 2021), Censys (Home 
- Censys, 2021), and (Thingful - a search engine for the Internet of Things, 2021). 
(ii) Indexing and organizing data: After crawling data, IoTSE will store the collected 
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data in its storage facility (remote or local) and catalog the data into different sub-
systems for future queries similar to the web-based search engine.

As for its searching process, IoTSE adopts a similar approach as web searching 
engine does, such as receiving a query, searching data based on query request, and 
then returning the data back to users. Generally speaking, IoTSE can support several 
typical queries. One is about searching IoT devices, which provides information 
about those discovered and connected. Another type is about searching and gathering 
information from IoT data. Examples include weather conditions, transportation 
traffic status, water usage in buildings, and others.

IoTSE brings several opportunities for a new alternative to search information 
(liang et al., 2019). Examples of opportunities include enabling efficient IoT data 
sharing and building intelligence in IoT systems. As more IoT data is generated with 
the growing number of IoT devices, big data analytics on IoT data is important (Cai 
et al., 2016; Mohammadi et al., 2018). Data analytics can gain insightful knowledge 
about IoT systems and the environment, and further improve IoT systems’ operations 
using the acquired knowledge. Nonetheless, carrying out big data analytics suffers 
from inconsistent data standard format from heterogeneous IoT devices, operation 
domains, and systems. IoTSE can address this issue by regularizing different 
standard formats of IoT data into a universal format for users, which can accelerate 
the progress of data sharing in the various IoT devices and systems. With IoTSE, 
more data can be collected from IoT devices and IoT systems, and then shared across 
different entities (users, organizations, etc.); machine learning can be synergized in 
IoT systems, leading to artificial intelligence enabled IoT systems (Yu et al., 2018). 
For example, machine learning can be used to improve IoTSE searching efficiency 
by reducing workloads via reasoning several of queries are looking for the same 
data, and others (Hatcher et al., 2021).

Inevitably, IoTSE poses several challenges as well. One issue is related to the 
naming service (Hatcher et al., 2021). Using the web-crawler-based mechanism, 
IoTSE needs to assign a URL name for each IoT device or designated data. Each 
URL will be associated with an IP address. With the growing number of IoT devices 
and massive amounts of IoT data, more IP addresses will be used. Thus, how to 
design a scalable naming service for IoT systems is a challenging issue. Another 
issue is designing a cost-effective network infrastructure that can provide efficient 
data-oriented service for IoTSE. It is worth mentioning that the IP network itself is 
based on destination-oriented routing, not data itself. Also, if packets are lost during 
transmission, only the end host can tell the issue after the time out. Then, the end-user 
can resend the request again. Also, IoTSE supports critical infrastructure systems 
such as smart grid, smart transportation, and others. Networking infrastructure 
shall provide data transmission with high efficiency, low packet latency, and high 
packet reception ratio.
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Naming Data Networking

Generally speaking, NDN is a new networking paradigm evolving the Internet’s 
host-based packet delivery model (Zhang et al., 2014). Driven by the data-oriented 
design paradigm, NDN has two types of packets called Interest and Data packets. 
For example, a consumer node puts the name of the desired data into an Interest 
packet, which is then transmitted through the network. Routers then use the name 
and forward toward the correct data producer. When the Interest packet reaches the 
node that has the desired data, the Data packet is sent back with both the name and 
the content with a signature signed by the producer’s key to secure the data to the 
sender, as shown in Fig. 1 (Zhang et al., 2014).

Based on its design, NDN has different forwarding modules than IP-based networks 
(Yi et al., 2013). The key components include: (i) Content Store – a temporary 
cache of Data packets that the router receives. (ii) Pending Interest Table (PIT) - 
records outgoing, incoming data interfaces, and Interest packets not completed. (iii) 
Forwarding Information Base (FIB) – has a name-prefix-based routing protocol and 
can have multiple output interfaces for each prefix. (iv) Forward Strategy – when 
and where to transfer the packets.

Fig. 2 (Zhang et al., 2014) shows the forwarding process within NDN. When an 
Interest packet arrives at the NDN node, it first checks whether Content Store has 
a matching entry. If an entry exists in the Content Store, the Data packet takes the 
reverse path to the source. If no entry is found, the NDN node uses the PIT to find a 
matching entry, and then forwards data to the listed downstream interfaces. Further, 

Figure 1. NDN data types
(Zhang et al., 2014)
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the PIT entry is removed and the data is cached in the Content Store. The Data 
packet takes the reverse path of the Interest. One Interest Packet results in one Data 
Packet on each link. If there is no matching PIT entry, the NDN node will forward 
the Interest packet to the data producers using the information in the FIB and the 
forwarding rule. If more than one Interest packet from various downstream nodes 
arrives with the same name, only one is forwarded upstream to the data producers, 
for the sake of efficiency (Yi et al., 2013).

Although the NDN design provides numerous benefits, there are still a few 
issues that need to be considered. For example, even though it deals with IP-based 
attacks, such as distributed denial of service (DDoS) attacks, it can still be targeted 
by interest packet flooding (Compagno et al., 2013). Another issue is with large-scale 
deployments; NDN lacks a control plane in forwarding when high concurrency data 
are coming. Finally, NDN exits as an overlay of IP, which leads to the efficiency 
concern of data forwarding, compared to IP-based packet routing/forwarding.

Figure 2. NDN forwarding plane
(Zhang et al., 2014)
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PERFORMANCE COMPARISON OF NDN AND TCP/IP

After reviewing IoTSE and NDN, we now compare TCP/IP and NDN and introduce 
a baseline experimental scenario to compare their performance.

Performance Comparison of NDN and TCP/IP

To better understand NDN and TCP/IP, we first need to determine what makes 
them similar and what makes them different. Similarities include communication 
via the same hourglass shape structure, and both perform data-gram delivery. For 
the differences, NDN no longer carries source and destination IP addresses but 
named, secured data chunks: NDN network layer has no address, but an app-defined 
namespace and NDN consumer fetches data hop by hop, not by having senders send 
packets to their destinations. Further, the app-defined namespace in NDN simplifies 
the system: infinite of namespace, not like IP4/IPV6 as there are address limitations, 
NAT and DNS are not required, and no more IP address management (no local or 
global network concept).

We set up a simulation environment to conduct a simple experiment to better 
understand network performance between NDN and TCP/IP. We consider a basic 
client-server network with two paths, as shown in Fig. 3. From the figure, we let the 
lower link be the shortest path but is under DDoS attack; thus, only a few packets 
can be forwarded from attacked node to server node.

Figure 3. Baseline experimental topology
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To complete this experiment, the following settings are used: (i) ns-3 as the 
simulation environment, (ii) Wired connection (10MB Bandwidth, 20ms delay), (iii) 
Total of 1200 TCP packets of consistent packet sizes of 1024B, and total of 1200 
NDN interest-data packets of consistent packet sizes of 1024B, (iv) Simulation time 
of 20s, and (v) Open Shortest Path First (OSPF) routing protocol.

Based on the setting, we conduct experiment with comparing how TCP/IP 
and NDN respond to the network configuration. As shown in Fig. 4, we have the 
following observations. With TCP/IP, packets are sent to the attack node, and most 
of the packets are dropped due to DDoS attack. This is as expected; due to OSPF, 
most of the data will be dropped by the attacked node. In contrast, with NDN, the 
first path that is degraded after attempting to send a few packets can be identified 
so that packets can be re-routed to the second path. In the end, more packets are 
received using NDN.

This ultimately shows that NDN can learn and adopt the current routing status 
while also doing multi-path routing. Whereas, TCP/IP does not perform well without 
any additional mechanism. The question now is whether NDN can still understand 
a dynamic network routing status and maintain a robust performance when some 
network issues occur.

Figure 4. Baseline experimental results
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NDN-BASED SOLUTION FOR IoT SEARCH

After introducing the initial performance assessment of NDN and TCP/IP, we first 
provide an overview of the NDN-based IoTSE architecture and then introduce 
several evaluation scenarios.

Architecture

Based on what we discussed about IoTSE issues in Section PRELIMINARIES and 
the benefits of NDN in Section PRELIMINARIES, we present an architecture of 
NDN-based IoTSE. IoTSE has three major components: Producers, IoTSE, and 
Users, as shown in Fig. 5. In this architecture, all the nodes are deployed with 
the NDN protocol; allowing the benefits of utilizing near cached forwarding and 
content-based design. Deployments can be publisher-subscriber to producer-user, 
depending on the user’s behavior.

We consider several different types of users in the system: (i) A subscriber is a 
user who gets updated data on a regular basis. For instance, the producer is the node 
that produces the required data, and once that data is acquired, it will be sent to the 
search engine at regular intervals. The search engine will then store the data in its 
database and forward it to the subscribers. (ii) Regular users have to query IoTSE 
for previously requested data. For example, the second group user in Fig. 5tends 
to query data that the subscriber requested before. If the content in node 3 does 
not drop out due to the time-out, Node 3 will forward data to the user via Node 6. 
Otherwise, IoTSE will respond to the request and send data. (iii) In the case of the 

Figure 5. NDN based IoT search engine architecture
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one-time query users, users want to collect a different combination of data that has 
been requested before. In this case, the user would send an Interest packet to IoTSE, 
which is then forwarded to the producer. The producer with the required data will 
respond with a Data packet via following the same path back.

IoT Search Scenarios

With the basic idea of IoTSE and its structure, we now discuss how we design 
scenarios. To meet the requirements of IoTSE, we need to design the system from 
two aspects: (i) resilience of network status: The IoTSE should be adapted to the 
network status to self-maintain performance. There are three common network 
issues that IoTSE needs to handle, including prefix hijacking, congestion, and link 
failure. (ii) transmission performance in large scale: The IoTSE should also transmit 
as much data as possible in the face of a large number of data requests. To this end, 
we use data collection of a smart grid, as an example to validate whether the IoTSE 
can handle the massive number of queries and still keep an acceptable transmission 
performance.

In the following, we design four scenarios to evaluate the efficacy of NDN-based 
IoT search. Three of these scenarios are determined to be the most common network 
related issues that IoTSE needs to deal with, including prefix hijacking, congestion, 
and link failure. The last scenario is our benchmark testing scenario designed to 
investigate the system’s scalability, i.e., network performance given a large number 
of queries in a short time.

Scenario 1: Prefix Hijacking

For scenario 1 design, we build a 3 x 3 grid, shown in Fig. 6 in order to provide 
various options for route forwarding. The grid topology offers the ability to follow 
different routes when the node is hijacked and unable to continue to forward the data.

For this scenario, Table 1 shows the settings that are used. For a quick reference 
though, the following settings are used, including the bandwidth of 1Mbps, link 
delay of 10ms, node 0 as data consumer, and node 8 as data producer. Three nodes 
are selected randomly throughout the experiment and become our hijacked nodes 
and drop all incoming packets. Ultimately, our goal is to determine whether the 
NDN network can continue forwarding the data.
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Figure 6. Prefix hijacking topology

Table 1. Prefix hijacking link table

SrcNode DstNode Bandwidth Metric Delay Queue

Node0 Node1 1Mbps 1 10ms 10

Node1 Node3 1Mbps 1 10ms 10

Node1 Node2 1Mbps 1 10ms 10

Node2 Node4 1Mbps 1 10ms 10

Node3 Node5 1Mbps 1 10ms 10

Node3 Node4 1Mbps 1 10ms 10

Node4 Node6 1Mbps 1 10ms 10

Node4 Node5 1Mbps 1 10ms 10

Node5 Node7 1Mbps 1 10ms 10

Node6 Node8 1Mbps 1 10ms 10

Node7 Node8 1Mbps 1 10ms 10
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Scenario 2: Congestion

In order to simulate that the network is congested, scenario 2 is designed to use a 
bottleneck topology, as shown in Fig.7. There are only two paths between Routers 
1, 2, and 12, shown as R1, R2 and R12 in the topology.

In order to create network congestion, the path from R1 to R2 is set with lower 
bandwidth but with a higher delay. The path that goes to all three routers R1 to 
R12 to R2 has lower latency and higher bandwidth. The experimental settings are 
shown in Table 2 for this experiment. In this table, C stands for consumer nodes 
and P stands for the producer nodes. The purpose of this scenario is to determine 
whether the NDN network can handle network congestion.

Figure 7. Congestion topology
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Scenario 3: Link Failure

Going back to the grid topology designed for scenario 1, as shown in Fig. 6, scenario 
3 is designed to select 3 links out of 12 to fail randomly. These failures are set 
anywhere from 0s to 5s. After time elapses, these links are brought back up, and 3 
other links are randomly selected to go down; this time, between 15s to 20s. Overall, 
there are 10s link failures with 6 disconnected links in the 20s run-time of testing. 
This scenario also tests under two different link failure probability of 5% and 10%, 
giving us the opportunity to see how the network can deal with the dynamic changes. 
The purpose of this scenario is to determine NDN networks reaction to link failures.

Scenario 4: Data Collection of Smart Grid in Emergency Situation

Scenario 4 also follows the same grid network topology as scenario 1. In this 
scenario, 3 nodes are configured to be the smart meters, which transmit packets to 
the receiver nodes. To test the performance of this scenario, various bandwidth and 
query rates are configured. The purpose of this scenario is to determine whether 
NDN can handle massive queries with varying network resources (e.g., bandwidths).

Note that these scenario-based experiments that are designed and tested would 
be considered a feasibility study. The feasibility study provides greater insight into 
the various configurations and potential problems in the network environment. In 
the end, by completing this feasibility study, we can determine whether this is a 
path worth going down further and expanding upon.

Table 2. Congestion link table

SrcNode DstNode Bandwidth Metric Delay Queue

c1 r1 10Mbps 1 50ms 200

c2 r1 10Mbps 1 10ms 200

c3 r1 10Mbps 1 100ms 200

c4 r1 10Mbps 1 1ms 20

r1 r2 1Mbps 1176 20ms 20

r1 r12 1Mbps 587 1ms 20

r12 r2 1Mbps 846 1ms 20

r2 p1 10Mbps 260 1ms 200

r2 p2 10Mbps 700 1ms 200

r2 p3 10Mbps 1 1ms 200

r2 p4 10Mbps 1 1ms 200
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PERFORMANCE EVALUATION

In this section, we show the performance evaluation results to validate the efficacy 
of our approach.

Methodology

We use ns-3 as the simulation platform to carry out our experiments as it is a known 
open-source network simulator. We implemented the four scenarios and tested the 
network performance of an NDN-based IoTSE by using a model called NDNsim 
(Afanasyev et al., 2012), which was developed to simulate the NDN protocol.

While experimenting with the scenarios above, we need a way to determine and 
evaluate the efficacy of utilizing NDN with IoTSE. For the first three scenarios, the 
settings are shown in

Table 1 and Table 2, which provide in the description of the scenarios. There are 
also 6 different queries used in these scenarios shown in Table 3.

In the evaluation, we define the following queries: (i) Baseline Query Set: One 
query running; uses 1st setting only in the table. (ii) Lite Query Set: Three queries 
running; uses 1st, 2nd, and 3rd settings in the table. (iii) Heavy Query Set: Five queries 
running; uses 1-5 settings in the table. (iv) Load Query Set: Increases network traffic 
by loading two sets of the 6th setting as well as running all other query settings.

In order to complete the last scenario, data collection in an emergency to support 
critical infrastructure systems, there are four different bandwidth settings: 5Mbps, 
10Mbps, 15Mbps, and 20Mbps. The phasor measurement unit (PMU) is able to 
generate about 5,000-15,000 samples per second. In order to simulate an emergency, 
a reporting rate of 7000 samples per second is set. For instance, one PMU sample 
packet is set to be 38bytes, so that the total sampling data rate of the emergency 

Table 3. Query rate table

Queries Types Payload (Byte) Query Rate (/s)

1st 1024 10

2nd 512 15

3rd 256 20

4th 128 25

5th 64 30

6th 200 50
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for this scenario ends ups being: 7000 (sample)*38bytes=2.128Mbps. Again, the 
purpose for this scenario determines how NDN handles large queries and varying 
bandwidths in emergencies.

To evaluate the performance of four defined scenarios, we consider the following 
two metrics: (i) packet successful ratio, and (ii) average packet delay. Packet successful 
ratio is determined by calculating the number of packets received compared to the 
total number of packets sent. The average packet delay is the average transmission 
time the packets take to transmit from the sender to the receiver.

Results

We now analyze and demonstrate understanding of the network performance of 
various scenarios using NDN protocol in IoTSE with respect to packet success ratio 
and average packet delay. These results will discuss the key performance indicators 
of packet success ratio and the average packet delay.

Scenario 1: Prefix Hijacking

For the first scenario, Table 4 shows the experimental results. As shown in the 
figure, we can see that a large percent of the data is received successfully at the 
different query rates, shown in the reception ratio column. Recall that the reception 
ratio means the ratio of successfully received packets from a tagged node among 
the receivers. Nonetheless, once the settings for Load 4 begins, the network starts to 
reach its capacity as the number of packets sent increases. Surprisingly, even though 
Load 5 has a less successful ratio, it still delivers more packets than Load 4. From 
this result, NDN tries to optimize the max number of delivered packets, although 
the bandwidth limitation per link is reached.

Table 4. Packet successful ratio for prefix hijacking

Received Packet Requested Packet Reception Successful 
ratio

Baseline 188 189 99.47%

Lite 848 853 99.41%

Heavy 1887 1897 99.47%

Load 1 3775 3795 99.47%

Load 2 5663 5693 99.47%

Load 3 7551 7591 99.47%

Load 4 8881 8993 98.75%

Load 5 8928 10163 87.84%
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In addition to the table, Fig. 8 shows the average packet delay during the 
experiments for the scenario tested. Here, we can see that after the Heavy Query 
Set load, the delay is increasing. This indicates that the network reaches its limits 
during the third test (Heavy Set). By the seventh test (Load 4), the same ratio is 
seen even with the large delays.

To summarize, our experimental results in scenario 1 show that NDN is a robust 
one. From these results, it appears that NDN tries to continue to forward data by 
re-routing to a different path to improve performance even when prefix hijacking 
is launched.

Scenario 2: Congestion

Throughout the congestion scenario, Fig. 9 shows the ratio of data received successfully 
based on the different query rates. As shown in the figure, we can see that when the 
density and quantity of queries increased, the ratio significantly increased as well.

Figure 8. Average packet delay for prefix hijacking
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Via the experiments on this scenario, we collect results to measure the average 
packet latency shown in Fig. 10. From the figure, we can see even as the network 
traffic increases, and the network delay is also increased. This shows that NDN 
does not reach out its limit.

Figure 9. Packet successful ratio for congestion

Figure 10. Average packet delay for congestion
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Scenario 3: Link Failure

Recall that the third scenario is with link failure. During this experiment, links are 
taken down and brought back up to determine how NDN would handle the route 
forwarding. Fig. 11 shows the packet successful ratio based on the different query 
rate at a 5% link failure probability.

In addition to the 5% link failure probability, Fig. 12 shows the results of the 
system with a 10% link failure probability. From both figures, we can see that as 
query frequency and payload size increase, it still maintains the same ratio of data 
successful receipt.

The average packet delay during this scenario is shown in Fig. 13 for the 5% 
probability link failure and in Fig. 14 for 10% probability link failure. When more 
network traffic is loaded into the network, NDN begins to reach limitations to transmit 
data. These figures indicate that with the rise of network traffic, the network delay 
is also decreased and optimized. Due to changes in available routes, a new path is 
selected to optimize network delay. This scenario again shows that NDN is a resilient 
system and continuously tries to optimize network performance.

Figure 11. Packet successful ratio for link failure with 5% probability
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Figure 12. Packet successful ratio for link failure with 10% probability

Figure 13. Average packet delay for link failure with 5% probability
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Scenario 4: Data Collection of Smart Grid in Emergency Situation

In emergencies, one can expect that the amount of network traffic can easily 
overwhelm the systems. The packet successful ratio with the varying bandwidth 
and query rates is shown in Fig. 15. From the figure, we can observe that when 
the bandwidth is at a fixed rate, the performance decreases while the queries are 
increasing. Nonetheless, when we fix the query rate, the network performance is 
improved when a larger bandwidth is given.

The average delay, with the varying bandwidth and query rates, is shown in Fig. 
16. Similarly, like the successful packet delivery ratio, this figure also shows that 
when we fix the network bandwidth, the average network delay increases when 
the query rate grows. Then, when we fix the query rate, the average network delay 
decreases given a larger network bandwidth.

Overall, these varying tests with NDN-based IoTSE together show that the NDN 
is resilient and is capable of continuously improving network performance when 
facing network issues. Also, the NDN can provide scalable networking infrastructure 
to support the increasing number of received queries.

Figure 14. Average packet delay for link failure with 10% probability
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Figure 15. Packet successful ratio for smart grid in emergency situation

Figure 16. Average packet delay for smart grid in emergency situation
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RELATED WORKS

In the following, we review research efforts that are most relevant to our study in 
this paper.

Existing research efforts on NDN have been explored to enhance supported features 
and services, improve performance and security, and support more applications. For 
example, Afanasyev et al. proposed a routing protocol to support Domain Name 
System (DNS) functionality for NDN so that NDN transmission efficiency can be 
improved (Afanasyev et al. 2012). Mastorakis et al. developed a peer-to-peer file-
sharing system by utilizing the benefit of NDN’s nearest location forward strategy 
(Mastorakis et al. 2017). Likewise, Li et al. proposed a secure sign-on protocol for 
NDN-based smart home devices (Li et al. 2019). When a new device is connected 
to the smart home, it will be verified by the designed sign-on protocol within the 
NDN network instead of outside network server verification. By doing this, the 
smart home can avoid unauthorized connection.

There are some existing efforts on leveraging NDN to support IoT systems. For 
example, Mick et al. proposed a secured routing protocol for NDN-IoT devices in 
smart cities with lightweight authentication (Mick et al. 2017). Likewise, Baccelli 
et al. built and tested a real NDN-based IoTs network, and confirmed that the NDN-
based network could achieve low energy consummation like 6LoWPAN (Baccelli 
et al. 2014).

There are some research efforts on IoTSE. For example, Hatcher et al. applied 
Long Short-Term Memory (LSTM) machine learning scheme in IoTSE to predict 
incoming query volume, leading to query efficiency (Hatcher et al. 2021). Cheng et 
al. designed an IoTSE platform based on Constrained Application Protocol (COAP) 
and conducted experiments on query optimization algorithms (Cheng et al. 2020).

DISCUSSION

We now discuss some potential future research directions for NND-based IoTSE 
concerning performance, intelligence, and security.

• Performance Issue: One direction would be to continue this line of research 
and determine whether NDN can further enhance network performance for 
IoTSE via conducting more investigation on other smart-world systems such 
as smart cities, smart manufacturing, etc. New algorithms and protocols 
need to be developed to deal with the deployment of large complex IoTSE 
systems to support smart-world systems (smart cities, etc). On the one hand, 
we shall design IoT query and data aggregation techniques to reduce the 
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overhead to the network. On the other hand, we shall find ways to embrace 
the limitations seen in some evaluations to determine whether there is a way 
to improve forwarding strategies to support real-world applications at a large 
scale. For example, to support massive number of complex queries and data 
delivery, prioritizing limited resources on NDN with the consideration of IoT 
applications’ performance requirements is an interesting issue.

• Intelligence Issue: To embed intelligence in NDN-based IoTSE, we shall 
investigate how to integrate machine learning techniques into the system such 
as managing queries, data, and network resources. We can leverage machine 
learning algorithms to constantly analyze the data provided to determine 
and learn appropriate actions while handling queries and data. For example, 
we can leverage recurrent neural networks (RNN) to predict the types and 
volume of queries and data so that NDN-based IoTSE can be schedule 
resources in an efficient manner. We shall also leverage machine learning to 
improve automation, which allows for IoT systems to self-understand issues 
and correct them with little human interaction.

• Security Issue: As NDN-based IoTSE is critical infrastructure, it can 
be compromised by cyber-attacks. The adversary can launch a variety of 
attacks against availability (e.g., flooding Interest packets), confidentiality 
(e.g., stealing and forging signature in Data packet), and integrity (e.g., 
manipulating the packet name in Interest). The adversary could compromise 
key components (gateway, nodes, and sensors, etc.). To make NDN-based 
IoTSE system secure and reliable, we shall first investigate the security risks 
of different attacks, understand their impact on the system, and then develop 
countermeasures (e.g., protection, detection, and reaction) to deal with such 
attacks.

FINAL REMARKS

In this paper, we addressed the performance issue of Internet of Things Search 
Engines (IoTSE) and proposed the NDN-based approach for IoTSE. To validate 
the feasibility of our approach, we first designed a simple simulation environment 
to compare the performance of NDN and TCP/IP. We then proposed four scenarios 
and settings developed in ns-3 to demonstrate the feasibility of NDN improving 
network performance. Our experimental results confirmed that NDN was not only 
able to adapt in a degraded network in these scenarios, but was also able to be 
scalable to handle a large number of queries. Further, we discuss future directions 
that researchers could pursue to improve upon NDN-based IoTSE.
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ABSTRACT

The internet of things (IoT) is one of successive technological waves that could have 
great impact on different aspects of modern life. It is being used in transport, smart 
grids, healthcare, environmental monitoring, logistics, as well as for processing pure 
personal data through a fitness tracker, wearable medical device, smartwatch, smart 
clothing, wearable camera, and so forth. From a legal viewpoint, processing personal 
data has to be done in accordance with rules of data protection law. This law aims 
to protect data from collection to retention. It usually applies to the processing of 
personal data that identifies or can identify a specific natural person. Strict adherence 
to this law is necessary for protecting personal data from being misused and also 
for promoting the IoT industry. This chapter discusses the applicability of the data 
protection law to IoT and the consequences of non-compliance with this law. It also 
provides recommendations on how to effectively comply with the data protection 
law in the IoT environment.

INTRODUCTION

Collecting information about surrounding environments is natural part of life of 
every living human or even animal as such information enables that human and 
animal to properly interact with the environments and their inhabitants. Accordingly, 
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collecting information about people is an old habit or practice that is extended in the 
computer era (Rowland et al., 2012), where data or information is of the essence. 
Without doubt, the Internet of Things (IoT) is one of the waves of technology that 
expand collection of data through interconnecting countless objects and enabling 
them to process information about things that they are attached to and about their 
surrounding environments. This particular technology has penetrated in almost 
all sectors of modern life such as transport, smart grids, e-health, environmental 
monitoring, logistics (River Publishers Series in Communication, 2014). Not only 
that, IoT devices and applications become part of everyday lives of ordinary people. 
Moreover, IoT is capable of collecting pure personal data through a fitness tracker, 
wearable medical device, smartwatch, smart clothing, wearable camera (Mardonova 
& Choi, 2018) and so on. In this regard, Gartner (2017) proclaimed that consumer 
applications represented 63% of IoT applications (5.2 billion units) used in 2017. 
This means that the bulk of IoT data is likely to be data related to human beings. 
Protecting personal data in the IoT environment is a major worry for many data 
protection stakeholders because the nature of IoT as ever-connected objects is not 
in line with data protection principles which, inter alia, seek to minimise the process 
of personal data and process it for specific known purposes.

The existence of countless data flowing and residing in smart objects (Singh & 
Gandhi, 2014) necessitates ensuring security and protection of this data, especially 
data related to individuals. Securing and protecting data in the technological age 
are not an easy task. On one hand, technology is susceptible to security breach 
or vulnerabilities: “weaknesses in a system or its design that allow an intruder to 
execute commands, access unauthorized data, and/or conduct denial-of-service 
attacks” (Abomhara & Køien, 2015, p. 71). These general weaknesses are expected 
to sharply increase in the IoT era as statistics showed that attacks against IoT devices 
increased by 600% from 2016 to 2017 (Symantec, 2018). On the other one, data 
of all types has economic, (Ahmed & Mohamed, 2020) social and other values. 
Accordingly, it will always be targeted by criminals and other intruders. Needless 
to say, that personal data could be used by criminals and malicious people to harm 
the data subjects (Ahmed, 2019). As a result, protection of personal data in the IoT 
environment is necessary, not only for safeguarding interests related to this data, 
but also for development of the IoT industry.

As in the real world, security in cyberspace is a challenging matter. As an 
illustration, security of data in the IoT environment requires ensuring authenticity 
(to confirm that access only given to legitimate users), authorisation (to enable IoT 
device components or applications to only access to specific resources), as well as 
confidentiality, integrity and availability (Leloglu, 2017) and these requirements 
are not easy to be achieved in ever-connected systems and devices that have limited 
“computational capabilities, memory and battery power” (Abomhara & Køien, 2015, 
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p. 65) Vulnerability of IoT devices and systems, the cause of such vulnerability and 
the challenges of IoT to privacy and data protection law have been pointed out and 
discussed by various researchers (Roman et al., 2013; Peppet, 2014; Wachter, 2018; 
Ahmed & Zulhuda, 2015). This chapter will discuss this matter in more details in 
the coming subsections.

Legally speaking, data protection law is considered as a branch of privacy and the 
digital revolution affects privacy in three dimensions namely, it Recommendation (1) 
eases the collection of data which in turn leads to accumulation of massive personal 
data, (2) flourishes the data market and (3) endangers data in that there is no sufficient 
means that can be relied on to surely protect data (DeVries, 2003). In response to 
the technological challenges, data protection law emerged as a new field of cyber 
or computer law. This law has been around for more than four decades and it aims 
to protect personal data and smooth its flow. To do so, this law came with several 
principles to be implemented in processing personal data and imposed heavy fines 
or even imprisonment on individuals or entities who contravene those principles. 
More details about data protection law in national, regional and international levels 
and about its principles will be provided in the coming sections of this chapter.

This chapter discusses the protection offered by data protection law to personal 
data and the applicability of this law to personal data in the IoT environment. The 
concentration of the chapter is on protection of personal data from a legal viewpoint 
and what IoT stakeholders could do to meet the legal requirements. To achieve 
this objective, Part 2 of the chapter provides a brief discussion of data protection 
development and its relevance to the information age. This will be done by analysing 
the efforts of regional and international organisations pertinent to data protection, as 
well as that efforts in the national level. The aim of such analysis is to fully understand 
data protection law and the global efforts thereof. This is an important preamble to 
the discussion of the relation between IoT and data protection law which is the main 
focus of this chapter. In Part 3, data protection law will be discussed and analysed 
in order to know its relevance to the IoT industry. This Part is the most important 
part of the chapter as it is going to point out the applicability or inapplicability of 
data protection law to personal data flow in the IoT environment and also discuss 
the so-called data protection principles which are at the heart of data protection 
law. The aim of this Part is to emphasise the importance of adherence to rules of 
data protection law especially in the IoT industry where IoT devices are inherently 
vulnerable to security breach and “often manufactured by traditional consumer-goods 
makers rather than computer hardware or software firms” (Peppet, 2014, p. 135). 
In this regard, explaining data protection principles in plain language could benefit 
IoT stakeholders, whom the authors of this book, “Security, Data Analytics, and 
Energy-Aware Solutions in the IoT” are targeting. Part 4 focuses on the importance 
of compliance with data protection law in the IoT sphere and consequences of 
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overlooking such matter from the legal perspective. Especial attention will be paid 
to such consequences on data subjects and data controllers. Part 5 suggests solutions 
and make recommendations in light of data protection principles. This Part aims to 
shortly explain data protection principles, point out the challenges brought by IoT to 
these principles and guide IoT stakeholders through the process of compliance with 
data protection law. Finally, Part 6 gives a summary of the main points discussed 
in the chapter and provides concluding remarks.

Methodology

The method used in this chapter is a doctrinal search method. The sources include 
primary sources of data protection law such as national legislation, regional and 
international instruments, as well as secondary sources such as books, journal articles 
and so on. The chapter also does not restrict itself to specific jurisdictions, rather it 
may include examples taken from different international and regional instruments, 
as well as from different national legislation. This is because on one hand, data 
protection principles are almost the same in all global legislation and on the other, 
the chapter aims to give a general idea about data protection law to global readers. 
This method is believed to suit the nature of IoT as global technology that promotes 
the banner of connectivity ‘anytime anywhere.

DEVELOPMENT OF DATA PROTECTION LAW

Modern technology has great impact on all aspects of people lives. In terms of data 
collection and dissemination, this technology eases aggregation of countless of data 
about things and particularly expands the traditional and usual habit of collecting 
data related to people (Rowland et al., 2012). The important of data as the engine 
or the oil of the information age necessitated looking for a mechanism that ensures 
the availability of data to authorised users and safeguards it from being misused by 
those users or being in hands of intruders. Achieving these dual purposes requires 
technical standards to ensure confidentiality, authenticity and availability of data to 
lawful users and also law to regulate the process and specifies duties and rights of all 
parties. Needless to say, that data protection law has a close relation with technology 
in that every new development of technology could have an impact on this law. Being 
one of the emerging waves of technology, IoT, which is basically understood as 
“things or objects that connect to the Internet and each other” (Greengard, 2015, p. 
15), challenges data protection law and makes its implications difficult. The nature 
of the challenges and its extent will be pointed out in the following subsections.
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In 1970s of the twentieth century, the first waves of data protection legislation were 
enacted (Poullet, 2010) with the aim of safeguarding personal data and smoothing 
its movement. For example, the first known local data protection legislation was 
‘the Hesse Data Protection Act’ of the State of Hesse in Germany in 1970, followed 
by the first national data protection law in Sweden in 1973 and thereafter other 
Scandinavian countries such Norway and Denmark enacted laws in 1978 (Burkert, 
2000). From 1980s onwards, data protection legislation began to flourish in different 
countries and regions of the world. According to the United Nations Conference on 
Trade and Development [UNCTAD] (2016), data protection legislation can now be 
found in more than 100 different countries of the world.

Like the situation in the national level, data protection also started to flourish 
in the international and regional levels from 1980s and thereafter. For example, 
the earliest and most important instruments in the international level (Privacy 
International, 2018) that played a major part in shaping data protection law are 
Recommendation of the Organisation for Economic Co-operation and Development 
[OECD] (2013) which was firstly adopted in 1980 and revised in 2013, the Council 
of Europe Convention for the Protection of Individual with regard to Automated 
Processing of Personal Data’ in (1981) and the United Nations [UN] ‘Guidelines 
for Regulation of Computerized Personal Data Files (1990). Other than these three 
important instruments, there are also other documents related to data protection 
such as the Asia-Pacific Economic Cooperation [APEC] Privacy Framework (2017), 
the African Union Convention on Cyber Security and Personal Data Protection 
(2014), the Commonwealth Model Bill on the Protection of Personal Information 
(2017) and, of course, the GDPR (2016) which is considered as “an evolution in 
data protection” (Smith, 2018).

Through the existence of data protection in the national, regional and international 
levels, the method of protecting personal data may practically differ from a place 
to another. Some countries have a “comprehensive data protection framework” and 
others protect data “through sectorial laws” (Privacy International, 2018, p. 17). The 
most obvious example of these different approaches could be seen in the approaches 
taken by the EU and the United States (US) towards data. While the EU adopts a 
one-size-fits-all approach to data, the US follows the sectoral approach. In the EU 
side, protection of personal data is considered as a fundamental right by virtue of 
Art. 8 (1) of Charter of Fundamental Rights of the European Union which states that 
“everyone has the right to the protection of personal data concerning him or her” 
and it is also protected by one of the most comprehensive regulation (GDPR). By 
contrast, US does not have one legislation applicable to all types of data. Instead, it 
“relies on a “patchwork” approach-combined with industry self-regulation” (Gady, 
2014, p. 12) and “federal and state statutes” (Weiss & Archick, 2016, p. 3).
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These different approaches could create a problem for a global technology such 
as IoT and make compliance with these different regulations a challenging task. It 
could also impede the effectiveness of those laws and regulations in dealing with 
new technology such as IoT. In countries where sectoral approaches are followed, IoT 
wearable devices, etc., that collect health information from users may not be covered 
by law applicable to medical data and connected cars that collect information from 
passengers may not be covered by law applies to transportation vehicles (Internet 
Society, 2019). As an illustration, the Malaysian PDPA (2010), which only applies 
to personal data processed in commercial transactions (s 2), may not protect personal 
data processed in non-commercial transactions. In addition to the sectoral impediment, 
Peppet (2014) who examined IoT from various aspects including privacy, asserted 
the current law of privacy (in the US) is incapable of protecting privacy in the IoT 
sphere because that law depends on anonymisation which is unlikely to properly 
suit the inherent sparsity of IoT data.

In the EU side where there is one law for all personal data, Article 29 Data 
Protection Working Party [WP29] (2013) opined that the EU law “applies in any 
case where the use of apps on smart devices involves processing personal data of 
individuals” (p. 7). In the IoT particularly, the WP29 opined that IoT manufacturers, 
social platforms, IoT device users (e.g., health-insurances) and IoT application 
developers are all qualified as data controllers (2014) under the EU data protection law.

It is clear from the above that while the discussion in countries relay on the 
sectoral approach to regulate data protection such as the US is about the ability or 
inability of the legal framework to cope with the new technology (IoT), the discussion 
in the countries applies one-size-fits-all approach such as the EU region is on the 
challenges of compliance with data protection law in the IoT environment. These 
differences and challenges should encourage all stakeholders to comply with data 
protection laws. After discussing the nature and development of data protection law, 
the next step is to point out challenges of IoT to this law. The coming subsection is 
endeavouring to achieve this task.

DATA PROTECTION AND THE IOT INDUSTRY

The previous sections tried to summarise the history of data protection law and 
highlight its importance in saving interests of parties involved in the processing of 
personal data and then the society as a whole. After coming across the above, the 
readers are expected to be longed to know whether data protection law applies to 
the IoT industry or not and also to know the so-called data protection principles. 
All these matters will be discussed here in order to demonstrate the legal concern 
about IoT. This chapter deals with IoT as a “term used to describe the numerous 
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objects and devices that are connected to the Internet and that send and receive 
data” (UNCTAD, 2016, p. 12). The effect of these connected objects on the law was 
anticipated by some to “ be a legal tsunami, the intensity and magnitude of which 
are unknown to date” (Barbry, 2012, p. 83). The first important step could be to 
demonstrate relevancy or applicability of data protection law to the IoT industry 
and this will be done in the following subsection.

Does Data Protection Law Apply to IoT?

As every law has limitations in its material and territorial scope, it is important to 
determine whether data protection law applies to data flow in the IoT environment or 
not. This can be done by overviewing the subject matter of this law and its jurisdiction 
or in other words, the material and territorial scope of this law.

The Material Scope of Data Protection Law

In term of material scope, data protection law usually deals with one type of data 
namely, data or information related to natural persons. In this regard, data related 
to organisations or other entities is outside the scope of this law. For example, 
GDPR (2016) mentions that it “lays down rules relating to the protection of natural 
persons with regard to the processing of personal data” and defines its material 
scope by stating that it “applies to the processing of personal data wholly or partly 
by automated means and to the processing other than by automated means of 
personal data which form part of a filing system or are intended to form part of a 
filing system.” Based on the above, there are two important terms that are considered 
as a key to understand the subject matter and the material scope of data protection 
law: processing and personal data.

Processing

The term processing is a term used to include almost all dealing with data such as 
collecting, recording, sending of such data. For illustration, GDPR (2016) defines 
processing as “any operation or set of operations which is performed on personal 
data or on sets of personal data.” As some noted, the term processing can include 
“almost anything that might be done to or with personal data” (Munir & Yasin, 
2010, p. 76). This means that processing data can include collecting, sending, 
storing, etc., personal data in the IoT sphere. Does IoT include personal data in the 
meaning of data protection law? Before answering this question, it is vital to know 
the exact meaning of personal data or personal information from a data protection 
law perspective. This is important because the notion of personal information in the 
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context of privacy is wider than the notion of this term in data protection law. As an 
illustration, while personal information or data in the data protection law includes 
only information that identifies or could identify a specific natural person, personal 
information in the privacy sphere could include information related to property of 
a person (a car, house, etc.,) and people related to him such his wife and children 
(Gavison, 1980).

Personal Data

The term ‘personal data’ centres around personally identifiable information (PII) or 
in other words, information or data related to an identified or identifiable person. 
To determine whether data is considered as personal data or not, a distinction has 
been made between approaches taken in the US and EU towards the matter. While 
the US follows the reductionist approach which considers data as personal or PII 
when it clearly links to a specific person, the EU follows the expansionist approach 
which defines personal data as data that identifies or can identify a specific person 
(Li, 2018; Schwartz & Solove, 2011). The expansionist approach seems to be 
followed by most legislation related to personal data, as well as by international 
instruments. For example, the OECD Recommendation (2013) defines personal data 
as “any information relating to an identified or identifiable individual.” Additionally, 
GDPR (2016) comes with a similar definition as it refers to personal data as “any 
information relating to an identified or identifiable natural person.” According to 
this, any information or data that leads or can lead to identification of a specific 
natural person can be considered as personal data under data protection law.

As technology used in various sectors such as transport, healthcare, security and 
smart home which all use “diverse and vast amounts of personal information” (Seo 
et al., 2018, p. 1), the IoT industry is surely comes under the material scope of data 
protection law. Not only that, IoT also has an effect on the notion of personal data 
in that the aggregation of countless data makes it is easy to link anonymised data 
to a specific person. According to Peppet (2014), associating anonymised data of 
IoT devices such as Fitbit with a specific user is easy because every person “has a 
unique gait… or style of walking” that could be used by those who know that data 
to link the anonymous data to the specific user or users (p. 129). Moreover, IoT 
has been counted among new waves of technology that represent “new challenges 
to data protection, particularly in the areas of the definition of ‘personal data’ and 
the management of cross-border data transfers” (UNCTAD, 2016, p. 10). From the 
perspective of material scope of data protection law, IoT device users (e.g., health-
insurances), application developers manufacturers, etc., have been considered as data 
controllers under the EU law (WP29, 2014) because they all process personal data.
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Based on the above discussion of the usual material scope of data protection law, 
IoT devices or systems that processed personal data of natural persons come under 
the scope of this law in the EU region and also elsewhere because the same criteria 
are shared by data protection laws of the world. However, the material scope is not 
enough to determine the applicability of data protection law to IoT because the 
territorial scope of this law also plays an important role in applicability of this law. 
The next paragraph is going to discuss the territorial scope of data protection law.

Territoriality of Data Protection Law

Knowing the exact territoriality or jurisdiction of data protection law is important for 
determining its relationship with a global technological industry such as IoT which is 
likely to be operated in multiple jurisdictions. Generally speaking, international law 
gives states the right to exercise their jurisdiction over their territory (including ships 
and aeroplanes) and excludes them from exercising such jurisdiction outside that 
territory (Martin, 2003). Data protection law has a close relation with technology in 
that any new advance in technology can bring new challenges to this law. Accordingly, 
the territorial scope of national data protection legislation usually includes processing 
personal data that takes place in jurisdiction of the respective country. For example, 
the territorial scope of Malaysia PDPA (2010) and the Mauritanian Personal Data 
Protection Law [PDPL] (2017) includes data processed by someone who establishes 
in these countries or uses equipment in them for purposes other than transiting such 
data through these countries. Additionally, GDPR (2016), which could be considered 
as an ideal data protection law, states that it “applies to the processing of personal data 
in the context of the activities of an establishment of a data controller or a processor 
in the Union,…” and also “to the processing of personal data of data subjects who 
are in the Union by a controller or a processor not establish in the Union” in case 
of (1) “offering goods or services” to a person in the Union or (2) “the monitoring 
of their behaviour as far as their behaviour takes place within the Union” (Art, 3). 
According to the European Data Protection Board [EDPB] (2018), the territorial 
scope of GDPR can be determined by two criteria namely, the ‘establishment’ and 
the ‘targeting’, adding that the Regulation will apply to those who process personal 
data when these criteria or one of them are met.

As can be seen, these criteria lay down by GDPR enable this Regulation to 
apply to the processing of personal data, not only by domestic entities, but also by 
foreign entities that target the EU residents. From a data protection perspective, 
this approach seems to be good as it offers protection to the inhabitants of the 
Union from outsider-threats. It could also suit the nature of IoT as a global service. 
From the IoT industry perspective, however, this could be bad news as GDPR 
protection measurements could be harder, in comparison with its counterparts in 
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other jurisdictions. For example, some researchers who compared a data breach 
fine of $ 2.2 million with the fine that could be imposed by GDPR on the same 
breach found that “if the GDPR is applied, the fine would have been $ 292 million, 
more than 100 times larger than the previous judgment” (Seo et al., p. 3). This and 
like news should persuade the IoT industry to take a proactive approach towards 
personal data protection law.

As a conclusion to this discussion, it can be said that there are two criteria that 
determine the applicability or inapplicability of data protection law to specific 
activities or sectors. They are the material and the territorial scope. applying these 
criteria to data processed in the IoT industry provides that IoT is subject to data 
protection law, at least in various jurisdictions of the world. In light of this finding, 
it is necessary to discuss data protection principles in order to properly comply with 
them in the IoT industry. Knowing these principles could be a prerequisite for IoT 
stakeholders to prepare for their implementation. Therefore, it important to talk 
about these principles and the rules established by them.

Principles of Data Protection

Data protection principles are at the heart of personal data protection law. Accordingly, 
they can be found in all national, regional and international instruments related to data 
protection. For example, the OECD Recommendation (2013) which is considered 
as the oldest regional instrument established ‘minimum standards’ to be followed 
in processing personal data. The OECD Recommendation consist of 8 principles 
namely, (1) ‘collection limitation’; (2) ‘data quality’; (3) ‘purpose specification’; 
(4) ‘use limitation’; (5) ‘security safeguards’; (6) ‘openness’; (7) ‘individual 
participation’; and (8) ‘accountability’. These principles can fully or partly be found 
in national legislation around the world. For example, similar principles can be seen 
in Data Protection Act (2018) of the United Kingdom (UK), Protection of Personal 
Information Act (2013) of South Africa, Data Protection Act (2012) of Ghana 
and Personal Data Protection Act (2012) of Singapore. Moreover, the EU GDPR 
(2016), which is considered as the latest comprehensive regional regulation in the 
data protection field, comes with the same principles. For example, it stipulated 7 
principles namely, (1) ‘lawfulness, fairness and transparency’; (2) ‘purpose limitation’; 
(3) ‘data minimisation’; (4) ‘accuracy’; (5) ‘storage limitation’; (6) ‘integrity and 
confidentiality’; and (7) ‘accountability’ (art, 5).

Regardless of the words and the numbers of the above two regional instruments 
and the domestic legislation mentioned thereof, the same principles are almost 
shared by data protection law around the world. Therefore, all IoT stakeholders are 
strongly advised to be ready to comply with these principles regardless of the current 
jurisdictions or geographical operations of those stakeholders. Such preparedness 
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will enable the IoT industry to expend worldwide and easily comply with data 
protection law therein. Though compliance with data protection principles in a 
vulnerable connected environment such as the IoT one is not an easy task, it is not 
impossible, too. IoT stakeholders should consider data protection law as necessary 
obstacles aimed to protect legitimate rights of the data subjects and at the same time 
to facilitate the free flow of data between legitimate parties.

To emphasise the importance of compliance with these principles, the next 
subsection discusses the necessity of adherence to data protection law and regulations 
in the IoT industry and the consequences of overlooking that adherence on parties 
involved in the process.

THE IMPORTANCE OF COMPLIANCE WITH 
DATA PROTECTION LAW IN IOT

As mentioned above, data protection law has an important aim to achieve, that is to 
smooth the flow of personal data and ensure its protection from collection to deletion. 
For example, GDPR (2016), which is considered as the most updated law in this 
field, states in its first Art 1 (1) that it “lays down rules relating to the protection 
of natural persons with regard to the processing of personal data and rules relating 
to the free movement of personal data.” Data protection principles serve these two 
purposes through giving clear guidelines to be followed by those who involve in the 
process. As an illustration, processing personal data assumes participation of various 
parties including two main parties namely, a data subject: the one whom personal 
data is taken and a data controller or user: the one who collects and processes the 
collected data. Data protection law gives data subjects various rights related to their 
data and imposes some responsibilities on data controllers.

In the digital era, data of all types is considered as an asset or currency (Schwart, 
2004) and thus it needs to be protected. Moreover, personal information is an aspect 
of privacy and protecting privacy is seen as protection of human integrity and dignity 
and as fundamental for the modern notion of an individual’s freedom and autonomy 
(Nowak et al., 2012). Accordingly, strict adherence to data protection law is necessary 
because non-compliance with this law does not serve interests of data subjects and 
data controllers. In the IoT era particularly, misusing personal data could negatively 
affect people in many ways including safety risks. Such scenario could happen when 
automated cars or IoT health devices are remotely controlled and reprogrammed by 
malicious hackers (The Federal Trade Commission Staff Report, 2015). Examples 
of IoT medical devices that malicious hackers could misuse to endanger safety of 
people could be the Implantable Medical Devices (IMDs) which can be defined as 
“electronic devices implanted within the body to treat a medical condition, monitor 
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the state or improve the functioning of some body part,…” (Camara et al., 2015, p. 
272). Hacking and an unauthorised manipulation of information of these devices may 
not only invade privacy of its users, but it could also threaten their safety (Camara 
et al., 2015; Abdur-Razzaq et al., 2017). As for privacy concern, researchers in this 
field point out various privacy threats associated with IoT technology including, for 
instance, expanding collection of personal data, easing finding users of the devices, 
profiling, revealing location and private life and activities (Peppet, 2014; Greengard, 
2015; Wachter, 2018; Ahmed & Zulhuda, 2019).

Compliance with data protection law is also important for the IoT industry as 
from the economical view, compliance with this law could help the IoT industry 
to win trust of consumers which is considered as “one of the important issues in 
modern business” (Li et al., 2019, p. 1). Moreover, data protection law also imposes 
heavy penalties on data controllers who contravene its rules. These penalties can be 
in the form of a fine or imprisonment or both. For example, under GDPR (2016), 
which applies to personal data linked to the EU region, a fine for non-compliance 
with data protection rules could reach twenty million EUR or “4% of the total 
worldwide annual turnover of the preceding financial years” in some cases. This 
amount is considered as administrative fees and there could be another fee imposed 
by this Regulation under the umbrella of compensation and liability (Art. 82). Some 
data protection laws such as the Malaysian PDPA (2010) punishes data users who 
contravene its rules by a fine (up to RM 300 000) or imprisonment (up to 2 years) 
or by both (s 5). In the US, the FTC (2019) warned that “manufacturers and sellers 
of connected devices should be aware that the FTC will hold them to account for 
failures that expose user data to risk of compromise.”

The above consequences should lead the IoT stakeholders to look for a way 
that enable them to strictly comply with data protection law to avoid the unwanted 
consequences and also to promote and expand the IoT industry. The coming subsection 
will be devoted to solutions and recommendations that the author of this chapter 
believes to be useful for compliance with data protection in the IoT environment.

SOLUTIONS AND RECOMMENDATIONS

From the above discussion, it becomes obvious that data protection law applies to 
the processing of personal data in the IoT sphere and therefore, the IoT industry 
is obliged to comply with all data protection rules including the principles which 
are of the essence. As the most updated law that has been described “as the gold 
standard in the protection of privacy of information” (Mark Heyink, 2018, p. 7), the 
ability to comply with GDPR could arguably be taken as a benchmark for ability 
of compliance with data protection law throughout the world. Here the chapter will 
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provide solutions and recommendations that will hopefully help the IoT industry 
to easily understand data protection principles and then implement them in the 
processing of personal data of a natural person. This will be done by providing a 
brief overview of the seven principles set by the GDPR, explaining them in light of 
some other relevant national legislation and regional instruments of the world and 
pointing out what IoT stakeholders, who process personal data of natural person, 
should do or not do to keep their fingers on the pulse. Some recorded incidents or 
practices seemed to contradict or challenge data protection principles in the IoT 
environment will also be highlighted.

First Principle: Lawfulness, Fairness and Transparency

This is an important principle that obliges those who process personal data to have 
a legitimate reason for the processing and do it in a transparent manner. The state of 
lawfulness occurs, inter alia, when the data subject gives his consent to the processing 
of his data or the processing is necessary for protecting interests of the parties or one 
of them or in compliance with law. Moreover, the concept of transparency requires, 
among others, the data controller to use a suitable means to inform the data subject 
about this identity (the identity of the data controller), his contact and the purposes of 
the collection of the personal data. The OECD Recommendation (2013) referred to 
transparency as openness and pointed out that it includes finding means to establish 
“the existence and nature of personal data, and the main purposes of their use, as 
well as the identity and usual residence of the data controller.”

To comply with this principle, IoT stakeholders should take the consent of the 
data subject, or rely on other legal grounds and also provide all required information 
to the data subject in the time and manner stipulated in data protection law that 
applies to their activities. Unfortunately, the ability of IoT devices to automatically 
interact and communicate with other connected things such as cars or surveillance 
cameras without awareness of the one who uses such devices (Kamrani et al., 
2016) is a real example of the challenges brought by IoT to this principle. In fact, 
some IoT devices such as smart TVs were found to be used as a means to secretly 
collect information of their users and send it to manufacturers (Vrabec, 2019). An 
activity such as this surely contravenes the spirit and letter of data protection law, 
specifically the principle of lawfulness, fairness and transparency. For so, a fine of 
$ 2.2 million was already imposed on a “company sold 11 million IoT TVs with a 
software program installed intentionally to track customers’ detailed viewing habits 
(Seo et al., 2018, p. 3).
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Second Principle: Purpose Limitation

Generally, this principle provides that personal data should be collected for specific, 
explicit and legitimate purposes and used only for those purposes. To comply with 
this principle, the IoT industry should have a clear policy about the purposes of 
the collection of personal data and stick to that purposes. Practically speaking, IoT 
devices such as those used for the purposes of collecting biological data (heart rate, 
blood pressure, etc.) are capable of collecting information about nearby activities and 
environment like changing indoor temperature and locations (Zhou et al., 2019). If 
the controllers of these devices do not inform the data subject about the extra data 
that could be collected by these devices, they are supposedly breaching the principle 
of Purpose Limitation because the extra data is data collected without consent or 
specifying legitimate purposes. Additionally, this collection could also violate the 
principle of Lawfulness, Fairness and Transparency.

Is there a thing that the IoT industry can do to comply with data protection 
principles in a connected environment such as in the above example? Indeed, the 
answer is yes. Data protection wants the controllers to deal honestly and fairly with 
the users of their products and informs them about the function of the devices and 
all types of information that they are capable of collecting. By doing so, the data 
controllers are deemed to comply with the law because consent of the users can be 
considered as a means to reconcile the competition between the users desire to utilise 
IoT devices and the reality that these devices could harm those users (Peppet, 2014).

Third Principle: Data Minimisation

This principle sometimes refers to as the principle of data integrity or quality 
and it requires data controllers to minimise the collection and process of personal 
data through sticking to data relevant to the intended purposes, but also accurate, 
complete and up-to-date for that purposes. To comply with the Minimisation 
Principle, the IoT industry should ensure that their devices or systems collect only 
relevant and accurate data and not go beyond that. Unfortunately, the nature of 
IoT as ever-connected devices and systems makes minimising collection of data a 
difficult job, if not impossible. It has been said that some important concepts such 
data minimisation and notice and choice will be less useful (Cerf et al., 2016) in a 
connected environment such as the IoT one. This is right and the fact that some IoT 
devices are found to be collecting information about the environment surrounding 
them (Zhou et al., 2019) is a clear example on that challenges.
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Fourth Principle: Accuracy

The Accuracy Principle is related to the nature and types of personal data in that 
this principle obliges the data controller to take reasonable steps to ensure the 
accuracy of the data and keep it up to date to enable it to be used in the purposes of 
its collection. To comply with this principle, the IoT industry has to find suitable 
tools to communicate with the users of IoT devices and systems in order to enable 
such users to update and correct their personal information. From a data protection 
perspective, communications between the data subjects and data controllers are 
necessary for the former to execute their rights and also for the latter to do their 
obligations.

Regrettably, some IoT devices do not facilitate communications between data 
subjects and data collectors because these “devices are often small, screenless and 
lacking an input mechanism such as a keyboard or touch screen” (Peppet, 2014, 
p. 140). This fact led some to argue that the principle of notice and choice which 
facilitates communications between data subjects and data collectors cannot practically 
be executed in the IoT wearable devices because in most cases the notice is absented 
from the design of those devices (Edwards, 2016). Though the argument of those 
authors is somewhat true, the author of the present chapter argues that IoT stakeholders 
can find a practical means to overcome these obstacles because IoT which aims to 
communicate everything will surely facilitate communications between its parties. 
Therefore, IoT stakeholders are advised to repair the design faults diagnosed in the 
IoT devices and have suitable tools to communicate with users of their products.

Fifth Principle: Storage Limitation

The Storage or Retention Principle talks about the necessity of deleting and destroying 
data after the purposes of its collection has been fulfilled. It is the responsibility 
of the data controllers to take reasonable steps to permanently delate and destroy 
the personal data after the fulfilment of its collection purposes. To comply with 
this principle, IoT stakeholders should take reasonable steps to delate and destroy 
that personal data unless there is another legal ground for continuing its storage. It 
is worth to mention here that data protection law and particularly, GDPR (2016), 
allows storing personal data for longer period if such data is intended to be processed 
for purposes like public interest, historical or scientific research, etc., under certain 
conditions (art., 5).
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Sixth Principle: Integrity and Confidentiality

This principle also called the security principle and it aims to secure personal data 
during its lifetime. Accordingly, it obliges the data controllers to take practical steps 
(technical, organisational measures, etc.,) to secure data, inter alia, from any misuse, 
unlawful or unauthorised processing. Compliance with this particular principle 
could be a challenging task in a connected environment such as the IoT one because 
technology is vulnerable to security breach (Abomhara & Køien, 2015) and the IoT 
is characterised as “a cyber-physical system that integrates billions of heterogeneous 
devices and smart objects” (Abdul-Qawy et al., 2015, p. 70). In this regard, it eases 
identifying, tracking and profiling individuals (Internet Society, 2019).

Regardless of these difficulties, IoT stakeholders could and should comply with 
Security Principle by implementing appropriate measures required by data protection 
law they are subject to. To do so, they need to take reasonable steps including, 
inter alia, technical, organisational, informational and physical measures (Privacy 
International, 2018) to protect data from all types of threats or misuse. Such measures 
should consider the location of the data, its nature and the harm that could be caused 
by misusing, losing, modification, etc., of the data. Based on the fact that IoT could 
include various types of data including very sensitive data, IoT stakeholders should 
consider that and provide appropriate protection thereof. As an illustration, IoT used 
in healthcare or transport, etc., should be given high measures of protection because 
malicious attack against smart healthcare or smart transport systems could endanger 
the life of patients and passengers (The FTC, 2015; Ali et al., 2016).

Seventh Principle: Accountability

This principle obliges data controllers to comply with data protection law, especially 
with data protection principles. The OECD Recommendation (2013) affirmed this 
meaning by stating that “a data controller should be accountable for complying 
with measures which give effect to the principles stated above.” The principle of 
accountability seems to implicitly or explicitly be found in all data protection law 
because all data protection laws oblige data controllers to comply with data protection 
principles otherwise they will be liable for a fine or imprisonment as the case may 
be. For the IoT industry particularly, compliance with the Accountability requires 
IoT stakeholders who process personal data “to adopt technical and organisational 
measures” that enable them to comply with data protection law and prove such 
capability (Eskens, 2016).
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CONCLUSION

The chapter purported to shed light on the concern about personal data protection 
in the IoT sphere in order to help the IoT stakeholders to properly comply with 
data protection law. To achieve this objective, Part 2 of the chapter discussed the 
development of personal data protection law in national, regional and international 
levels. It also made a distinction between different approaches taken in different 
jurisdictions toward data protection law and the effect of these approaches on a global 
industry such as the IoT. Part 3 of the chapter was devoted to data protection and the 
IoT industry in terms of applicability of this law to personal data processed in the IoT 
environment and the principles established by that law. This required the chapter to 
analyse the material and territorial scope of data protection law. Such analysis proved 
the applicability of data protection law to the processing of personal data in the IoT 
sphere. This Part also counted data protection principles and discovered similarities 
between them in all data protection of the world. After that, the discussion in Part 4 
focussed on the necessity of compliance with data protection principles to protect 
interests of both the data subjects and data controllers, as well as to promote the IoT 
industry and enable it to globally expend. Additionally, Part 5 of the chapter provided 
solutions to problems related to processing personal data in the IoT environment 
and advised IoT stakeholders by providing some recommendations that could help 
them keep their fingers on the pulse.
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KEY TERMS AND DEFINITIONS

Data: Information about human beings.
Data Controller: A natural or legal person who processes data of natural persons.
Data Protection Law: All statutes and regulations related to the processing of 

personal data.
Data Subject: A natural person whom data is processed by the data controller.
Internet of Things: A term used to describe objects/things (devices, cars, trees,) 

that can connect to a network.
IoT Stakeholders: Data controllers.
Natural Person: A human being as opposed to a legal person or entity.
Personal Data: Information that identifies or can identify a specific natural person.
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Principles of Data Protection: Common standards and rules established by 
data protection law to be followed in dealing with personal data.
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ABSTRACT

Biometric sensors are becoming more commonplace in today’s world. These biometric 
sensors are especially common in today’s smartphones. Billions of smartphones 
use these sensors for security purposes, and these are slowly but surely replacing 
traditional forms of password authentication. Biometrics are commonly used to 
unlock devices and also for purchases. In this chapter, the focus will be on the most 
common types of biometrics featured in phones along with the sensors associated 
with them. Next, an analysis of the security risk of these sensors along with common 
attacks to exploit these risks are discussed. Lastly, various ways to patch and combat 
these various risks will be discussed.

INTRODUCTION

Biometrics are common in many devices used for device security. The logic behind 
biometrics is that humans have certain features that are unique to each individual. 
These features are used to create a digital signature that is stored and is used to be 
later matched by the person the signature belongs to. These unique features include 
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fingerprints, facial features, voice, iris, and retina of the eye, keystroke, and lastly, the 
signature. Fingerprint recognition is one of the most common biometric techniques. 
Fingerprint recognition sensors can detect a person’s unique fingerprint, usually 
through touch, and create a unique signature as a form of authentication. Facial 
recognition captures an image of an individual’s facial features, and an algorithm 
creates a signature based on the geometry of those features. Voice recognition is 
used by analyzing a person’s voice, accent, tone, pace, and overall speech patterns. 
Iris recognition focuses on the colored ring-shaped portion of an individual’s eye. 
In the iris there are threadlike structures that are unique to each individual, which 
is used to create a signature. Retina scanning uses the capillaries found in the retina 
by infrared cameras to create a digital signature. Keystroke Dynamics focuses on 
the pattern in which someone types on the touch screen and keypad. And lastly, 
signature recognition uses a person’s unique signature for authentication.

Even though all the biometric techniques are discussed in this chapter, the main 
focus will be on two of the most common ones used in smartphones fingerprint 
recognition and facial recognition. First, the hardware associated with these 
sensors will be discussed. Then the various attacks of each type of sensor will be 
considered. For voice recognition, the focus will be on voice impersonation attacks. 
For fingerprint recognition, the focus will be on fingerprint fabrication. And lastly, 
for facial recognition, the focus will be on presentation vs. indirect and photo/video 
attacks, 3D mask attacks, and makeup and surgery.

Figure 1. Shows a front fingerprint sensor along with a back fingerprint sensor
(Patrick, 2017).

FINGERPRINT RECOGNITION
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Fingerprint recognition sensors are able to detect a person’s unique fingerprint 
usually through touch and creates a unique signature as a form of authentication 
based on a user’s fingerprint.

Hardware and Algorithm

There are various types of hardware ways in which fingerprints are acquired and 
various locations in which these sensors are placed. Some are placed on the back 
of a device, while others, including in-screen sensors, are usually placed in the 
front of the device at the bottom, as shown in figure 1. The type of scanners used 
are usually optical, capacitive scanners, ultrasonic scanners, and optical capacitive 
scanners. Optical scanners use an image or photo to record an image and then use an 
algorithm that uses design and shape to create a digital signature. This is the oldest 
technique for fingerprint recognition. This technique isn’t as frequently used since 
it isn’t very secure. Prosthetics and even high-quality photos can fool these sensors. 
Next are capacitive scanners, which are the most common and arguably the most 
secure. These sensors use tiny capacitors to collect information on the fingerprint. 
“As capacitors can store electrical charge, connecting them up to conductive plates on 
the surface of the scanner allows them to be used to track the details of a fingerprint. 
The charge stored in the capacitor will be changed slightly when a finger’s ridge 
is placed over the conductive plates, while an air gap will leave the charge at the 
capacitor relatively unchanged. An op-amp integrator circuit is used to track these 
changes, which can then be recorded by an analog-to-digital converter.” (See figure 
2) This information, once gathered, is stored and used for later. This is considered 
one of the most secured since it cannot be done by an image alone.

Figure 2.  
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Moreover, prosthetics have a hard time duplicating since different materials cause 
a different charge by the capacitors. These can be bypassed through hardware and 
software hacking. The following technique that is used is ultrasonic scanners. These 
consist of a transmitter and receiver. This technique works by having the user place 
a finger on the sensor, which produces the ultrasonic pulse that sends feedback to 
the sensor and some of which is absorbed. This creates a unique input that is used 
to create the signature. This technique is highly secure and commonly used for in-
screen sensors. This technique has its drawbacks, though, as some screen protectors 
can affect its ability to read the fingerprint. Lastly, optical capacitive sensors are 
also used for in-screen sensors. It only works on OLED displays and shines a light 
on your finger similar to regular optical scanners but is better able to sense if it’s a 
real finger or not.

The algorithms and software play a significant role in these sensors as well. For 
all of these sensors to work, there must be software to interpret the information 
and algorithms to create the keys. Different manufactures use different algorithms, 
and these algorithms differ in speed and accuracy. For example, some algorithms 
examine the whole finger while others examine just crucial features which can help 
increase the speed and efficiency of the algorithm. These algorithms differ because 
the basic concept is illustrated in figure 3. Moreover, there must be a way to keep these 
signatures secure. This is usually done through cryptography. In figure 4, we will 
see an example of the ARM Trust-zone system, which uses apps and cryptography 
to keep the biometrics safe.

Figure 3. Basic concept graph fingerprint recognition algorithm.
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Fingerprint Recognition Attacks

Figure 4. Cryptography for biometric signature storage.

Figure 5.  
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The most popular way to attack the fingerprint sensor is through fingerprint 
fabrication. This is done by first acquiring the fingerprint of the owner or user 
of the device. Acquiring these prints can be done relatively easily through lifting 
prints. Prints can be lifted as easily as taking the clear tape and pressing it on the 
device where the print is present. Then the fingerprint is then printed on various 
materials such as play dough, wood glue, and gelatin. Some of these materials are 
relatively inexpensive. In figure 5, there is a chart of some of the materials used 
(“Facial recognition technology explained,” 2019). These attacks effectively have 
a 70% success rate, depending on factors such as type of sensor, material, and 3d 
printing technique.

Attack Prevention

One of the best ways to stop these types of attacks is Presentation Attack Detection 
(PAD). A presentation attack is a “presentation to the biometric data capture 
subsystem to interfere with the operation of the biometric system” (“Facial recognition 
technology explained,” 2019) PAD technique usually falls into two categories 
software-based techniques and hardware-based techniques. Software techniques 
use software to gather more information on the print, while hardware adds more 
sensors to try to gain more critical information. An example of what software may 
be used to detect in the print sample would be the presence of sweat pores. Sweat 
pores are tough to replicate because of their small size, which is a good way to tell 
if the sample is legitimate. One example of what hardware is used would be the 
utilization of “different illumination techniques or capture the pulse frequencies.” 
(“Facial recognition technology explained,” 2019) These sensors can focus on certain 
things such as how blood in the finger is affected when a finger is pressed against 
the sensor. Another detection method involves a hardware and software combo that 
allows you to detect the fingerprint and detect veins in a sample. This combo device 
is known as a Multimodal Finger Capture Device. Its inner working and logic are 
shown in figure 6, while figure 7 shows the images captured. Moreover, here is a 
quote describing the illustration “As it may be observed, the camera and illumination 
boards are placed inside a closed box, which includes an open slot in the middle. 
When the finger is placed there, all ambient light is blocked, and therefore only the 
desired wavelengths are used to acquire the images. In particular, a Basler acA1300-
60gm Near-infrared (NIR) camera is used, which captures 1280×1024 px. images, 
with an Edmunds Optics 35mm C Series.” VIS-NIR Lens. This camera is used for 
both frontal visible (VIS) light images and NIR finger vein samples…” This method 
has shown great results and has shown to be an effective method for PAD.
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FACIAL RECOGNITION

Facial recognition captures an image of an individual’s facial features, and an algorithm 
creates a signature based on the geometry of those features. Similar to fingerprint 
recognition, facial scanning is being equipped more and more into smartphones. 
Like other biometrics, its popularity comes from speed and convenience for the user.

Figure 6.  

Figure 7.  
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Hardware and Algorithms

Cell phone creators and companies tend to use sensors and or software when it 
comes to facial recognition. A few kinds are the basic android, Samsung Intelligent 
Scan, Infrared assisted face unlock, and Apple Face ID and 3D scanning. The basic 
android facial recognition uses a basic 2D recognition algorithm and the front-
facing camera. This allows this method to be cheap and easy to implement. Also, it 
makes this method not very secure because a mere photo can be used to unlock your 
device. Samsung was the first company to use more advanced facial recognition in 
a smartphone. Samsung Intelligent Scan uses sensors that scan the iris of a user’s 
eye, which is hard to replicate. This is done through an infrared diode in the camera 
that can illuminate the eye, and the camera then gets detailed information about 
the iris. Infrared-assisted face recognition requires extra hardware. The additional 
hardware is that of an IR emitter and a camera that can detect the IR signal. This 
technique uses the IR camera to take a picture, but it can distinguish between a 
person’s face and a mere picture with the signal. Lastly, the Apple Face ID and 3D 
scanning does not depend on the camera but rather the sensor held near the camera 
(See Figure 8). It works by using “an infrared floodlight to illuminate your face, 
which will work regardless of your surrounding lighting conditions as it’s outside of 
the visible spectrum. A secondary 30,000-point infrared laser matrix is then beamed 
out, which reflects off the floodlight. Rather than snapping a picture of this infrared 
light, a special infrared camera detects subtle changes in the matrix point reflections 
as your face makes minute movements, which allows the camera to capture very 
accurate 3D depth data.” (Dang et al., 2020) This is considered more secure than 
the options above and the only one used for payments.

Figure 8.  
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Facial Recognition Attacks

Similar to the fingerprint sensor attacks, presentation attacks focus on the biometric 
sensor and indirect attacks that involve attacking other parts of the device, such as 
cracking the system that holds your passwords and biometric signatures. The latter 
relates more to other cryptography, so the focus of the section will mostly be the 
presentation attacks. These attacks include but are not limited to photo attacks, video 
attacks, and 3d masks (see figure 9) (Dang et al., 2020). In photo attacks, an attacker 
presents a photo of the user in front of the camera, while a video is presented in a 
video attack. Lastly, a prosthetic mask of the user is presented in the 3D mask attack.

Attack Countermeasures

There are various countermeasures for these attacks or anti-spoofing. One way 
is asking specific user commands such as smile, move the head back and forth, 
or change facial expressions. Asking real-time commands can help, especially in 
photo and mask attacks, since the attackers will have a harder time executing these 
commands. This method is known as the challenge-response method. Other prevention 
methods involve various algorithms, including specular feature projections, image 
quality assessment, and deep learning. For specular feature uses genuine projections 
from real images, 3d mask projections to spot spoofing. Image quality assessment 
compares the picture quality using various measurements and compares it to the 
original image stored. Deep learning “method is based on a multi-input architecture 

Figure 9.  
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that combines a pre-trained CNN model and the local binary patterns descriptor.” 
All these algorithms have similar implementations (See figure 10).

CONCLUSION

In conclusion, biometrics is becoming more and more commonplace. Biometrics 
are used to unlock devices and even make payments when purchasing items. This 
makes it extremely important to be able to guard against attacks. Biometric attacks 
usually fall into two categories: indirect and presentation attacks. This chapter mainly 
focused on the latter since indirect attacks are more related to cryptography since 
the attacks involve getting information already stored.

On the other hand, presentation attacks relate more to the sensors and the 
software used to interpret the information. The focus in this chapter is on fingerprint 
fabrication attacks for the fingerprint sensor, which involves 3D printing various 
prints onto different materials to imitate the print. One way to counter this is by 
having a Multimodal Finger Capture Device that can take a picture of the fingerprint 
and the veins in the finger, which is hard to duplicate with various materials. Also, 
another focus is on various facial attacks such as photo, video, and 3D mask attacks. 
Adding much more beefed-up hardware can be countered by even just asking users 
for various motion commands.

Figure 10.  
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ABSTRACT

Voice assistant systems (e.g., Siri, Alexa) have attracted wide research attention. 
However, such systems could receive voice information from malicious sources. 
Recent work has demonstrated that the voice authentication system is vulnerable to 
different types of attacks. The attacks are categorized into two main types: spoofing 
attacks and hidden voice commands. In this chapter, how to launch and defend 
such attacks is explored. For the spoofing attack, there are four main types, such as 
replay attacks, impersonation attacks, speech synthesis attacks, and voice conversion 
attacks. Although such attacks could be accurate on the speech recognition system, 
they could be easily identified by humans. Thus, the hidden voice commands have 
attracted a lot of research interest in recent years.

INTRODUCTION

Voice assistant systems (e.g., Siri, Alexa) have attracted wide research attention. 
However, such systems could receive voice information from malicious sources. 
Recent studies have demonstrated that the voice authentication system is vulnerable to 
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different types of attacks. The attacks are categorized into two main types: spoofing 
attacks and hidden voice commands. In this chapter, how to launch and defend such 
attacks is explored.

For the spoofing attack, there are four main types, including replay attacks, 
impersonation attacks, speech synthesis attacks, and voice conversion attacks. 
Although such attacks could be accurate on the speech recognition system, they 
could be easily identified by humans. Thus, hidden voice commands have attracted 
a lot of research interest in recent years (Abdullah et al., 2020).

The hidden voice commands could be categorized into hardware nonlinearity, 
obfuscated command, and adversarial command. For example, the Dolphin attack 
(Zhang et al., 2017) is based on the nonlinearity effect of the microphone. The 
nonlinearity effect (Roy et al., 2017) has been considered a type of “data pollution” 
or a security “back door.” The nonlinearity of the device could down-convert the 
ultrasonic command into signals with any frequency below 22 kHz. Then the 
ultrasonic command could be identified by the voice assistant systems. Zhang et al. 
presented an inaudible attack on the microphones of voice assistant systems (Zhang 
et al., 2017). The command is modulated to a frequency carrier higher than 20 kHz. 
Although the device could not directly record such a signal, the voice command 
would appear at a frequency lower than 20 kHz due to the nonlinearity effect. Thus, 
the command would be received by the system. The attacker then could launch the 
attack on the system. Roy et al. defended the attack using the different frequency 
distribution of the nonlinearity and normal signals (Roy et al., 2018). He et al. 
defended against such an attack by playing the ultrasonic signal in the environment 
to modulate the signal to several low frequencies (He et al., 2019). However, the 
main drawback is that they need to play the ultrasonic signal continuously. Such 
signals sometimes might harm the human body. Zhang et al. showed an interesting 
way to defend against a Dolphin attack (Zhang et al., 2021). They observed that the 
attenuation of the audible signal and the inaudible signal is different. Based on the 
different attenuations of the signals, they could identify the Dolphin attack.

The basic idea of obfuscated attack is to generate an adversarial signal like 
noise to the human ear. Still, it would be classified as a malicious command to the 
voice assistant system. For example, Cisse et al. and Alzantot et al. generated the 
perturbations by the deep neural networks. Such perturbations could be heard like 
white noise and are hard to be noticed by humans (Cisse et al., 2017 & Alzantot et al., 
2018). But they did not consider the over-the-air transmission. That means the voice 
assistant system would not recognize the perturbation after the transmission in the 
air. Due to the sound attenuation, the perturbation would significantly change, thus 
not being identified by the target. Abdullah et al. and Chen et al. and Schonherr et al. 
considered the over-air transmission by modeling and processing the perturbations 
by the channel state information. So that their perturbations, sounds like white noise, 
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could still be identified after the over the air transmission (Abdullah et al., 2019, 
Chen et al., 2020 & Schonherr et al., 2018). However, these systems need to know 
the model of the target. Recent works (Abdullah et al., 2019 & Chen et al., 2020) 
successfully launch the black-box attacks on the voice assistant systems.

Now there is not a very effective way to defend against perturbation attacks. 
Because the perturbation is at the same frequency as the normal sound. Liveness 
detection (Lee et al., 2020) may be a useful way to defend against such an attack. 
The basic idea is to identify if the sound source is a real person. Zhang et al. 2017, 
detected the user by the articulatory gesture. Another way is to extract features 
that could characterize the machine sound. The deep learning-based approaches 
(Kinnunen et al., 2017, Lavrentyeva et al., 2017 & Tom et al., 2018) are accurate 
but introduce high computational overhead. A recent work (Ahmed et al., 2020) 
defends the replay attack by employing the different frequency distribution of the 
replay signal and true signal. They extract three features to differentiate the true 
signal and machine signal and use an SVM as a classifier.

PRELIMINARY

In this section, the preliminary knowledge and necessary background of the voice 
assistant systems are presented briefly.

Voice Assistant System

A Personal Voice Assistant (PVA) records sound continuously to perform ASR 
for wake word detection. Once a wake-up word is detected, the PVA submits the 
recent audio recording to a cloud. Then the speech is analyzed, and any commands 
requested are executed, and a response might be formed and sent to the PVA to be 
played out via device speakers. Recordings are stored in the back end and can be 
used for continuous ASR algorithm improvements and other services.

Automatic Speech Recognition (ASR)

ASR is an interdisciplinary field of research incorporating linguistics, computer 
science, and electrical engineering. The goal of speech recognition is to transcribe 
speech into text automatically and then analyze the intent of the speech from 
transcribed texts. A classic ASR system simulates how humans process speech 
by transforming the analog acoustic signal to digital representations. Features are 
extracted, and machine learning methods are applied to extract phonemes (a speech 
sound) and finally compose text (Benesty et al., 2008).

 EBSCOhost - printed on 2/9/2023 9:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



64

Attacks on Voice Assistant Systems

Audio Processing

The PVA usually consists of a microphone, a pre-amplifier, a low-pass filter, and 
an ADC. The microphone is a transducer that converts the airborne acoustic signal 
to an electric signal that only reacts to sound within the spectrum from 20 Hz to 20 
kHz. The low-pass filter removes noise above 20 kHz, which is outside the audible 
sound range. The ADC converts the analog signal to digital form. The sampling 
frequency of the ADC usually is 44.1 kHz that restricts the maximum frequency of 
the analog signal to 22 kHz.

SPOOFING ATTACK

There are four different types of spoofing attacks, including replay attacks, speech 
synthesis attacks, and voice conversion attacks.

A replay attack refers to a playback of a legitimate user’s voice sample, which is 
pre-recorded by an attacker. This attack (Villalba et al., 2011, Lindberg et al., 1999, 
Leon et al., 2012 & Hautamaki et al., 2013) is powerful and easy to be executed. 
However, this type of attack requires pre-recorded voice commands. In a voice 
synthesis attack (Alegre et al., 2012 & Lindberg et al., 1999), the victim’s voice is 
generated from scratch. A voice conversion attack (Kinnunen et al., 2012 & Wu et 
al., 2013) relies on manipulating a given voice sample to match the target voice.

Although the spoofing attack could be effective on the speech recognition system, 
it would be easily noticed by a human.

HARDWARE NON-LINEARITY

This section discusses what hardware nonlinearity is and how an attacker could 
utilize the hardware nonlinearity to launch the attack and how to defend against 
such an attack.

Hardware Non-Linearity Background

The non-linearity of the hardware enables signal processing of voice commands 
transmitted in an inaudible frequency range. The inaudible voice commands could be 
transmitted to the audible frequency range. The non-linearity exists in the amplifier 
and the microphone. The effect is shown using the amplifier:
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The output function of the amplifier could be expressed as:

S AS
out in
=

1
 (1)

Where Sin is the input signal, Sout is the output signal. However this is the ideal case, 
for the input signal higher than the 22 kHz, the nonlinearity of the amplifier would 
introduce higher-order signal components:

S AS AS AS
out in in in
= + + +

1 2
2

3
3 ...  (2)

Most of the time the signal components above the second order can be discarded, 
as they are usually too weak to be detected. However, the second order of the signal 
need to be considered. Attackers could exploit the nonlinearity to demodulate the 
high-frequency attack signal to the audible band from the inaudible frequency. It is 
shown how this nonlinearity works.
Assume a frequency modulated signal Sin, which could be expressed as

S t t
in
= ( )+ ( )Cos Cosω ω

1 2
 (3)

Where ω1 and ω2 should be above 20 kHz, make sure Sin is inaudible. Consider the 
input function of the amplifier, then the output signal could be expressed as:

S A t t A t t
out
= +( )+ +( )1 1 2 2 1 2

2
Cos Cos Cos Cosω ω ω ω  (4)

Figure 1. The non-linearity effect
(Zhang et al., 2017).
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Assume A1 and A2 to be 1 as an example, the first order would be filtered out by 
the low-pass filter as shown in figure 1. Because the ω1 and ω2 are both above the 20 
kHz. However, the second order would generate complex frequency components:

Cos Cos Cos Cos Cos Cosω ω ω ω ω ω ω
1 2

2

1 2 1 2 1
1
1
2

2
1
2

2t t t t t+( ) = + + + + −( ) + + ωω
2( )t  

(5)

All these frequency components, except cos (ω1 − ω2)t will be filtered as they 
are above 20kHz. The attacker only needs to ensure that ω1 − ω2 is below 20 kHz: 
to succeed in the attack. As figure 1 shows, this frequency component would not 
be filtered out, thus could be received by the voice recognition system. That means 
the malicious command could act as input to the system.

Attacks Based on Hardware Non-Linearity

Recent works studied physical-level signal injection attacks on sensors. The attacks 
could induce malicious signals in sensors to gain malicious control over systems 
without directly changing the phenomenon being sensed (Giechaskiel et al., 2020 
& Yan et al., 2020). For instance, inaudible ultrasonic attacks can be used to inject 
signals into microphones to trick voice controllable systems (Zhang et al., 2017), 
or induce targeted signals in inertial sensors to gain real-time adversarial control 
over actuation systems and VR/AR applications (Tu et al., 2018).

Backdoor make microphones hear inaudible sounds (Roy et al., 2017). This work 
aims to transfer the inaudible sound to the microphone’s recordable sounds. At first, 
this work considers amplitude modulation to modulate attack signals onto a high-
frequency carrier signal. By doing so, the attack signal can be demodulated without 
additional software and is recovered at the microphone due to the non-linearity. 
However, in this case, the attack signal will also be audible when the speaker plays 
the modulated signal because a non-linearity signal is also applied to the speaker. 
This work applies therefore using Frequency Modulation (FM) to address this 
problem. The signal is modulated with the attack signal using FM. However, that 
means they also need another high-frequency signal. The work further discusses 
how to reduce the ringing effect; the FM signal is slightly audible due to this effect.

The Dolphin Attack (Zhang et al., 2017) uses a similar idea as in (Roy et al., 
2017). However, this work is more practical than (Roy et al., 2017). As they do 
not need to play additional sound in the air. They only need amplitude modulation 
(AM) to modulate the baseband attack commands on the ultrasound carrier signal. 
The attack message can be demodulated to the baseband and recovered just by the 
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nonlinearity feature of microphones. Also, no additional demodulating software is 
needed, so the attack could be successfully launched on the COTs device.

To ensure the recovered commands could be injected into the system, this work 
generates inaudible attack samples for both the wake word commands and general 
audio commands. Such as Amazon Echo, the activation commands can only be 
effective if it contains the wake word. They test their system on various systems. 
The result shows that both wake word detection and command recognition are all 
successful on all tested systems. Also, different systems need different parameters 
to succeed in the attack. The main limit of this work is the requirement for dedicated 
hardware. Also, the attack distance is limited (about 175cm).

Paper (Roy et al., 2018) is based on Dolphin Attack (Zhang et al., 2017) and 
aims to inject malicious commands into the voice assistant system. This work 
increases the attack range from 175cm to 750 cm and also maintains the inaudibility 
of commands. To increase the attack range, more power is required at the speaker. 
Due to the nonlinearity in speakers, attack messages using AM can be heard by the 
speaker when they are played. This is more obvious when more power is used for 
increasing the attack distance. This work addresses this by separating parts of the 
AM attack signal to multiple speakers, and each of them only plays a frequency 
segment of the original signal. By doing so, the attack message does not exist, and 
each microphone limits the energy and bandwidth. Also, to ensure the signal addition 
is still inaudible, this work applies a psychoacoustic model to ensure that sound is 
below the hearing threshold depending on frequency to maintain inaudibility.

Moreover, EMI attacks could also inject malicious signals into analog sensor 
components such as microphones, electrocardiogram (ECG) sensors (Foo Kune 
et al., 2013), and temperature sensors (Tu et al., 2019). Amplitude-modulated 
EMI attacks had been proposed against microphones and voice control systems. 
The Ghost Talk work exploited EMI signal injections on sensors and utilized the 
nonlinearity to convert modulated EMI signals to voice signals in the circuit (Foo 
Kune et al., 2013). Kasmi et al. investigated the threats of intentional EMI attacks 
on voice interfaces of smartphones (Kasmi et al., 2015)). Esteves et al. demonstrated 
EMI voice command injections on smartphones through a conducted propagation 
path (Esteves et al., 2018). It is also worth noting that Rasmussen et al. observed 
that EM emanations could induce sound signals in microphones and pointed out 
adversarial usage of this effect to invalidate security properties of acoustic-based 
distance bounding protocols in an early work (Rasmussen et al., 2009).

Additionally, the Light Commands work recently demonstrated a long-distance 
attack by injecting amplitude-modulated laser signals into MEMS microphones to 
maliciously control voice assistant systems (Sugawara et al., 2020).
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Defending the Hardware Non-Linearity Based Attack

Recently there are some works to be designed to defend the non-linearity-based 
attack on microphone sensors especially.

He et al. show a way to defend the attack. In their experiment, they assume an 
attack signal is modulated to 40 kHz. The authors introduce guard signals, placing 
signals at 22 kHz, 42 kHz, and 62 kHz to modulate the attack signal to be lying 
within 10 kHz to 20 kHz, which will be used as a reference signal to cancel the 
recovered attack command. However, their system relies on playing the ultrasound 
in the environment. The side effect of the ultrasound on the body is still questionable 
(He et al. 2019).

Zhang et al. show another way to defend the attack. Their design is based on 
the different attenuation of the audible signal and inaudible signal. The ultrasound 
would attenuate much faster than the audible signal. Thus, when the signals hit a 
microphone array, the variance of the ultrasound would be much higher than the 
audible sound. By this, they could identify if the incoming command is a true 
command or a malicious command (Zhang et al. 2021).

Zhang and Rasmussen 2020, proposed to detect EMI attacks on sensors such as 
microphones by modulating the sensor output in a way that is unpredictable to the 
adversary. In their protocol, the system selectively turns sensors on and off based 
on an encoded secret bit sequence. In this way, EMI attacks causing inconsistent or 
unexpected non-zero samples can be detected.

Tu et al. discuss a low-complexity defense method against the intentional EMI 
injection attacks on sensors such as the microphone in a voice-controlled device. 
They implement the circuit on microphones using simple common components 
in low-end sensing systems to defend against the EMI injection attacks. Their 
experimental results show that the proposed method can detect the attack with high 
accuracy. Moreover, it can correct corrupted sensor data with a relatively high error 
reduction rate, improving the reliability and usability of sensor-based systems under 
EMI attacks (Tu et al., 2021).

OBFUSCATED COMMANDS

This section discusses the Obfuscated Commands, how an attacker launches the 
Obfuscated Commands attack, and how to defend against such attacks is presented.
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Obfuscated Commands

The obfuscated command creates an audio signal that humans perceive as meaningless 
sound while the voice assistant system recognizes it as a command. The attacker 
starts with a target command that is gradually changed until a human could not 
understand it while the voice assistant system can still decode the command.

For example, the voice assistant system is to transcribe speech to the corresponding 
text. This process can be defined as:

y p y x
y

= ( )argmax |
�

�  (6)

x here is the audio input, and ỹ are all possible transcription candidates. The voice 
assistant system aims to find the most likely transcription y given the audio input x. 
Once the voice assistant system has been trained, its function is y = f(x). A human 
listening to the audio signal x also would conclude the same transcription y. This 
process can be described as y = fH(x), with fH describing the human’s processing 
capability. An adversary can modify an input signal x by adding perturbation δ, 
resulting in x’ = x+δ. The following situation arises when a system decodes x’:

y f x= ′( )  (7)

y here is the obfuscated command transcription which remains the same as the one 
decoded from pure input x. However, a human cannot perceive the same transcription 
y this time from the audio signal x’. The x’ could be like noise to humans. The audio 
input x’ is called the obfuscated command.

An attack relying on internal knowledge of the voice assistant system is referred 
to as a white box attack. If the attacker is not able to access the internal voice 
assistant workings, then the attack is classified as a black-box attack. Generally, 
attacks assuming the black box attack are more difficult to execute.

Attacks Based on Obfuscated Commands

The Cocaine Noodles’15 (Vaidya et al., 2015) may be the first work that examines 
the gap between the human auditory system and modern Speech recognition system. 
The work received its name from an interesting thing. It was posted on Reddit that 
the phrase ‘Cocaine Noodles’ is often misinterpreted by Google Now as its wake 
word ‘OK Google’.
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In this work, the researchers successfully craft speech signals recognized by the 
speech recognition system but are incomprehensible for humans. In this work, the 
acoustic features are extracted via Mel frequency cepstrum coefficient (MFCC) from 
the raw audio input and are then fed into the acoustic model. They found MFCC can 
be tuned using a variety of parameters. So, it is possible to change these parameters 
so that the speech recognition system still recognizes the crafted commands as the 
correct command. This audio signal is unintelligible for humans, but the MFCC 
produces a feature set that results in the desired command being recognized.

The crafted samples are tested on Google Now on a Samsung Galaxy S4 
smartphone by being played over the air in a large room with 50 dB background 
noise. The results show that these crafted signals can activate commands while they 
are difficult to understand.

Carlini et al. 2016, continued the work of the Cocaine Noodles’15 (Vaidya et 
al., 2015), exploring how the system can be attacked by hidden voice commands 
which are able to be interpreted by the system but unintelligible to human beings.

The work reproduces the black box attack as described in Cocaine Noodles. 
Furthermore, the work describes a white-box attack showing that by knowing the 
system’s parameters, commands that are better hidden from human ears can be crafted.

The black box attack uses a similar mechanism as the work in Cocaine Noodles 
but considers more practical settings and targets a newer Google ASR. For the 
white-box attack, with the knowledge of the target ASR, first, an attack similar to 
the black-box attack is launched by targeting specific MFCC vectors. They did not 
directly use the MFCC vectors. Instead of MFCC vectors, the attack aims at attack 
phrases and thus target phonemes, which enables the flexibility of different MFCC.

The work in (Abdullah et al., 2019) considers a much more practical scenario. They 
try to attack the system combined with multiple acoustic hardware configurations 
without knowledge of the underlying systems. To make attack samples applicable 
for different systems, their work focuses on the signal processing phase. Signal 
features that are important for the human auditory system but not critical for speech 
recognition are selected. This results in obfuscated commands that can still be 
transcribed correctly to different systems but are not understandable to humans. 
Four aspects of signal features are selected: Time Domain Inversion, Random Phase 
Generation, High-Frequency Addition, and Time Scaling.

They tested their system on various systems, showing their commands could be 
generalized to different systems. However, the evaluation misses quantifying how 
unintelligible the generated samples are.
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ADVERSARIAL COMMANDS

This section discusses Adversarial Commands, how an attacker generates the 
Adversarial Commands, and how to defend against such attacks is presented.

Adversarial Commands Background

Adversarial commands are based on the previously described obfuscated commands. 
The difference is that for an obfuscated command, the added perturbation results in 
a signal perceived by a human as noise while the system still successfully decodes 
the original command as the transcription y. In the case of the adversarial command, 
even with the added perturbation, a human still perceives the adversarial audio input 
x’ as original benign command transcription y, while a system recognizes the audio 
input x’ as the adversarial command transcription y’.

There are targeted and non-targeted adversarial commands. In the case of a 
targeted adversarial command, the attacker is interested in one specific command 
transcription T, which is carefully selected (y’ = T). In the case of a non-targeted 
adversarial command, the attacker does not care about what specific command 
would be decoded by the system. The attacker only wants to ensure that human and 
machine transcription is not the same. This may affect the performance of some 
systems which analyze how people speak.

Figure 2 is an example of the general adversarial command signal generation 
process. Adversarial commands are generated through an iterative process. In each 
iteration, the output y of the deep neural network (the acoustic model) is compared 
with the target y’ using a loss function. Then the gradient of the loss function with 
respect to the corresponding input is calculated through back-propagation. Finally, 
finding the input resulting in the local/global minimum ensures that the input is 
transcribed as the target command. In addition, the perturbation value is constrained 
by a threshold, ensuring that people cannot perceive the difference between the new 
signal and the original audio input.
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Adversarial Commands Attacks

Iter et al. show that it is possible to generate adversarial commands to fool Automatic 
Speech Recognition (ASR) systems by using methods that usually applied to image 
recognition. The attack assumes the ASR to be a white box, and targeting and non-
targeting attacks are considered. To ensure similarity between the reconstructed audio 
and the original, an approximate inverse transformation function is used. However, 
due to the missing user study, it is unclear how “hidden” the produced adversarial 
commands are (Iter et al, 2017).

Alzantot et al. introduce a method for generating one-word targeted adversarial 
examples assuming a black-box ASR. Their attack is successful with an average 
rate of 87% and 89% of the participants in the user study cannot differentiate the 
adversarial command from the original command (Alzantot et al., 2018).

Carlini et al. successfully construct white-box targeted adversarial commands 
for the DeepSpeech ASR. A small perturbation is added to the audio input, resulting 
in an audio signal that is over 99:9% similar to the input. This is the first robust, 
targeted adversarial attack study, resulting in an audio output that can be influenced 
such that theoretically, any chosen phrase can be transcribed (Carlini et al., 2018).

Yuan et al. achieve an adversarial white-box attack by creating modified songs 
that are perceived by listeners as songs but recognized by the ASR as commands. 
Their commands play in the air; thus, real-world settings are considered. For the 
evaluation, 26 randomly picked songs with 12 common commands are directly fed 
to the ASR. And Over 200 songs are generated, and all of them succeed in being 
recognized by the ASR. The distortions range from 14 to 18.6dB, which is unlikely 
to be noticed (Yuan et al., 2018).

Figure 2. Workflow of the voice assistant system.
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DEFENDING THE ATTACKS

Recently, there have been several ways to detect the hidden voice way. There are 
mainly two different ways: the deep learning-based approaches and the liveness 
detection-based approach.

A recent work (Ahmed et al., 2020) detects attacks by utilizing the different 
frequency distributions of the crafted and real signals. Different from the previous 
work, they classify the features by the SVM, which improves their efficiency. 
Moreover, it offers good performance on all the spoofing attacks and hidden voice 
commands, which shows their efficiency.

Liveness detection (Lee et al., 2020) is another way. In their work, they use the 
smart speaker as a sonar, generating the signal to detect the direction of the people. 
If the direction of the source is the same as the people, then the command would 
be treated as a true command. Otherwise, it will be dropped. However, their system 
has a quite limited working range of 2 meters.

CONCLUSION

In this chapter, several different ways to attack a voice assistant system are surveyed. 
It is found that the research interest in recent years is concentrated on hidden voice 
commands. After investigating several types of hidden voice attacks, it is found 
that although the hidden voice attacks are accurate, how to make sure that they are 
imperceptible to humans is still questionable. So how to improve the imperceptibility 
should be studied.
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ABSTRACT

This chapter will provide a survey on cyber-physical systems security related to 
automobiles. In modern vehicles, there has been discussion on how automobiles fit 
into the world of cyber-physical systems, considering their interaction with both the 
cyber and physical worlds and interconnected systems. With many modern vehicles 
being connected to the outside world, there are many vulnerabilities introduced. 
Modern cars contain many electronic control units and millions of lines of code, 
which, if compromised, could have fatal consequences. Interfaces to the outside 
world (e.g., in-vehicle infotainment) may be used as a vector to attack these critical 
components.

INTRODUCTION

This chapter will provide a survey on Cyber-Physical Systems (CPS) security related 
to automobiles. There has been discussion on how automotive fits into the world 
of Cyber-Physical Systems in modern vehicles, considering their interaction with 
both the cyber and physical worlds and interconnected systems.
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With many modern vehicles being connected to the outside world (e.g., V2X 
infrastructure), there are many vulnerabilities introduced. Modern cars contain many 
electronic control units and millions of lines of code, which, if compromised, could 
have fatal consequences. Interfaces to the outside world (e.g., in-vehicle infotainment) 
may be used as a vector to attack these critical components.

The structure of this chapter is as follows. First, the definition of Cyber-Physical 
Systems will be discussed briefly. Then different components of automotive will be 
discussed and why they are considered CPSs. Finally, after understanding the different 
components of automotive CPSs, the security and threats of various components of 
modern vehicles will be discussed.

CYBER-PHYSICAL SYSTEMS

Cyber-Physical Systems can be defined as engineered systems built from, and depend 
upon, the seamless integration of computation and physical components. CPS tightly 
integrate computing devices, actuation and control, networking infrastructure, and 
sensing of the physical world”.

In a survey of CPS, Khaitan, and McCalley classify existing work and identify 
challenges. They discuss the challenges involved in ensuring the security of cyber-
physical systems and discuss work done to detect and prevent intrusions and cyber-
attacks. They note that CPSs have various applications, such as in vehicular systems, 
medical and healthcare systems, smart homes, buildings, etc. (Khaitan et al., 2015). In 
discussing security-related aspects of cyber-physical systems, Khaitan and McCalley 
describe securing a CPS as “extremely challenging” due to how interconnected the 
various components of CPSs are. Since many components depend on each other, if 
one component fails, it may have a “cascading effect” (Khaitan et al., 2015).

Chattopadhyay and Lam describe a generic attack model for CPSs (Chattopadhyay 
et al., 2017) (Figure 1). It breaks the attacks into cyber and physical components, 
discussing possible threats for each. While this is just a generic model and does 
not cover specific CPSs, the figure is essential in broadly understanding the attack 
capabilities on CPSs.
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Automotive Cyber-Physical Systems

Before diving into the security threats posed to automotive CPSs, it is first needed 
to understand its different components. Security of automotive systems has become 
increasingly important with the evolution of automotive technology. Modern vehicles 
are now considered CPSs, “which provide enhanced displays, information, and 
entertainment and manage motion and energy consumption of the automotive” 
(Khaitan et al., 2015). Khaitan et al. mention various examples of works on automotive 
CPSs, including data fusion, public transport, design of cyber-physical vehicles, 
electric vehicle charging, and road monitoring (Khaitan et al. 2015).

One increasingly popular example of automotive CPSs is autonomous vehicles. 
There has been much work on autonomous vehicles as cyber-physical systems. 
Chattopadhyay and Lam (Chattopadhyay et al. 2017) review the security objectives 
of Autonomous Vehicles and argue that they are a “kind of Cyber-Physical System 
(CPS) for control and operations of the vehicle.”

Considering that modern automotive systems are becoming increasingly complex 
(e.g., some modern vehicles have 200M+ lines of code, 200+ electronic control 
units (Simacsek et al.)), many vulnerabilities need to be considered and safeguarded 
against.

Scalas and Giacinto (Scalas et al. 2019) list the constraints of vehicle software and 
hardware (as summarized by Studnia et al. 2013 and Pike et al. 2017), paraphrased 
here:

Figure 1. Generic CPS attack model.
Figure from (Chattopadhyay et al., 2017)
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• Hardware limitations: Car ECUs have low computing power/memory; things 
like public-key encryption are not completely possible; ECUs are exposed to 
“demanding conditions” (e.g., harsh weather, vibrations, etc..); ECUs must 
not be too heavy or physically large.

• Timing: Several ECUs operate in real-time and are “safety-critical”, meaning 
security must be prioritized for them.

• Autonomy: The vehicle should be as autonomous as possible when protection 
mechanisms are active since the driver must focus on the road.

• Life-cycle: Vehicle last much longer than consumer electronics, so the 
hardware must be durable and the software must be easily updatable.

• Supplier integration: Suppliers provide software components without source 
code to protect intellectual property, making it difficult to modify for increased 
security.

• CAN: The Controller Area Network is the “most used protocol for the in-
vehicle network” and serves as the backbone of the entire in-vehicle network. 
It is implemented with twisted pair wires. An essential aspect is the network 
topology, implemented as a bus line.

• Automotive Ethernet: Ethernet’s high bandwidth is a desirable feature for 
modern automobiles. However, the cost and weight are key limitations.

Scalas and Giacinto also describe the OBD (on-board diagnostics), which has 
a physical port that allows for “self-diagnostic capabilities” for the identification 
of failures of specific components. It is directly connected to the CAN bus, which 
presents a significant security threat.

Moreover, many autonomous vehicles communicate with the outside world via 
a V2X infrastructure. The aim of this infrastructure is primarily related to ensuring 
the safety of the driver and those around them. V2X communications may reveal 
the danger that could not be previously sensed by onboard equipment (Mueck et al., 
2018). V2X includes vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-
pedestrian communications. The V2X infrastructure presents many security concerns, 
considering that vehicles are connected to many aspects of the outside world.

AUTOMOTIVE CPS SECURITY

Threats Classification

Security threats for automotive have previously been classified using a three-layer 
hierarchical system, also known as the AutoVSCC (Autonomous Vehicular Sensing 
Communication and Control) framework described by El-Rewini et al., 2019. Figure 
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2 shows the framework containing a separate layer for sensing, communication, and 
control. They represent the three layers as follows:

At the bottom of the hierarchy is the sensing layer, which is vulnerable to spoofing and 
eavesdropping attacks on vehicle sensors, such as the inertial or radar sensors. Above 
the sensing layer is the communication layer, which encompasses both inter-vehicular 
and intra-vehicular communications and is vulnerable to eavesdropping attacks and 
the manipulation of messages between vehicles and roadside infrastructure. The 
communication layer is also susceptible to threats that propagate upward from the 
sensing layer, which is made of vehicular sensors. Threats to both the sensing and 
communication layers can affect the topmost tier, the control layer, which describes 
automated vehicular control techniques, such as vehicle speed and steering control.

Sensing Layer

In this section, the summary of the sensing layer threats, as detailed by El-Rewini 
et al. is provided. They build on their AutoVSCC classification discussed earlier 
(El-Rewini et al., 2020).

They state that the sensing layer is “comprised of vehicular sensors that measure 
the physical properties of a vehicle’s state and surroundings” and state that it is 
critical to “smooth vehicle operation.” The sensing layer contains 60-100 sensors, 
with a possibility for more in the future.

El-rewini et al. classify the sensors in the sensing layer into “environment sensors” 
and “vehicle dynamics sensors.” Vehicle dynamics sensors sense the vehicle’s 

Figure 2. Autonomous vehicular sensing-communication-control (AutoVSCC) 
framework.
Figure from El-Rewini et al,. 2019
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state, and environment sensors look at the vehicle’s physical surroundings. Vehicle 
dynamics sensors are described as passive sensors, which are receivers, and most 
environment sensors are described as active sensors, which are both emitters and 
receivers (El-Rewini et al., 2020). Figure 3 shows the environment and vehicle 
dynamics sensors in a modern vehicle.

Based on information from Wang et al., 2006, El-Rewini et al. state that the 
following security requirements must be met for defending against vehicular sensor 
exploitation: availability, authorization, confidentiality, freshness, and integrity 
(El-Rewini et al., 2020).

Sensing Layer: Vehicle Dynamics Sensors

Vehicle dynamics sensors include magnetic-based sensors, inertial sensors, and 
TPMS sensors, as shown in Figure 3.

1.  Magnetic-Based Sensors: Shoukry et al. discuss disruptive and spoofing 
attacks for Anti-lock Braking Systems, which rely on “magnetic-based wheel 
speed sensors which are exposed to an external attacker from underneath the 
body of the vehicle.” Their proposed technique places a non-intrusive, malicious 
actuator near the ABS wheel sensors to inject magnetic fields and tamper 
with sensor measurements. They explore a disruptive attack that “corrupts the 
measured wheel speed by overwhelming the original signal” and a spoofing 
attack that injects “a counter-signal such that the braking system mistakenly 
reports a specific velocity.” They demonstrate that this type of attack can cause 
the ABS controller to fail to brake (via spoofed wheel speed measurements) 
and slip off an icy road (Shoukry et al., 2013).

2.  Inertial Sensors: Inertial sensors consist of accelerometers for measuring the 
acceleration of an object they are attached to and gyroscopes for measuring the 
rotation rate with respect to a specific axis (El-Rewini et al., 2020). Spoofing 
attacks involve injecting sound waves to “deceive” inertial sensors: “Side-
swing” attacks involve the attacker changing the injected waveform’s amplitude 
to manipulate the vehicle’s heading value (Tu et al., 2018); Switching attacks 
involve alternating between injected waveforms of different frequencies to 
induce phase pacing (Tu et al., 2018). Acoustic attacks involve targeting MEMS 
gyroscopes and accelerometers and falsifying acoustic waves with the same 
frequency of the load resonant frequency of the CPS (Moller et al., 2018).

3.  TPMS Systems: Rouf et al. showed that wireless Tire Pressure Monitoring 
Systems (TPMS) were vulnerable to reverse engineering attacks. Based 
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on information found in the reverse engineering attack, they were able to 
demonstrate an eavesdropping attack to intercept TPMS packets from a range 
of up to 40 m from a passing car. They were further able to spoof a TPMS 
message to light up the low-tire pressure warning lights on a car traveling 
“highway speeds.” This was possible because TPMS system messages are not 
authenticated and the TPMS ECU doesn’t use any input validation. They also 
managed to completely disable the TPMS ECU by repeatedly turning on and 
off the warning lights through the previously described method (Rouf et al., 
2010).

Sensing Layers: Environment Sensors

Environment sensors include LiDAR, ultrasonic sensors, camera sensors, radars, 
and GPS systems, as shown in Figure 3.

Figure 3. Vehicle dynamics sensors (Blue) and environment sensors (Green) in 
autonomous and connected vehicles.
Figure from (El-Rewini et al.2020)
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1.  LiDAR Systems: Light Imaging Detection and Ranging (LiDAR) systems are 
used to generate 3D mappings of the vehicle’s surroundings and are used for 
things like adaptive cruise control and collision avoidance (El-Rewini et al., 
2020).

Replay attacks allow attackers to replay LiDAR signals and cause them to map 
objects that are not there (Stottelaar et al., 2015). Relay attacks are an extension 
of replay attacks, where attackers can relay around LiDAR signals to result in an 
incorrectly reported map location of nearby objects (Petit et al. 2015). Blinding attacks 
deny services to the vehicle by injecting a light source that has the same wavelength 
as the LiDAR’s pulses (Shin et al. 2017). Spoofing attacks spoof a LiDAR system 
to cause it to over calculate (Petit et al. 2015) or under calculate (Shin et al. 2017) 
distance to an obstacle. Jamming attacks emit light with the same frequency band 
as the scanner unit on a vehicle (Parkinson et al. 2017). Denial of service attacks 
is performed by injecting many fake objects using the jamming or spoofing attacks 
mentioned previously (Stottelaar et al., 2015).

2.  Ultrasonic sensors: Ultrasonic sensors are used to detect nearby obstacles and 
calculate their distance to a vehicle by calculating the time between transmission 
and reception of a reflected ultrasonic signal. Ultrasonic sensors are usually 
used for low-speed tasks like parking (El-Rewini et al., 2020).

Blind Spot Exploitation attacks are performed by placing a thin object in a 
reversing vehicle’s blind spot so the vehicle will collide with the object (Lim et al., 
2018). Sensor Interference attacks are performed by placing a second ultrasonic 
sensor opposite to the vehicle’s sensor to interfere with the signals received (Lim 
et al. 2018). Cloaking attacks conceal nearby objects from the ultrasonic sensor by 
placing some sound-absorbent materials around obstacles so the sensor cannot detect 
them (Lim et al. 2018 & Yan et al., 2016). Physical Tampering attacks work by 
covering the sensor’s receiver and transmitter to disable the ultrasonic sensor (Lim 
et al., 2018). Acoustic Cancellation attacks eliminate legitimate ultrasonic signals 
by transmitting an illegitimate signal with a phase that is opposite of the legitimate 
signal, causing the phase to become zero (Lee et al., 2019). Spoofing attacks use 
false signals to “falsely” perceive an object that does not exist, with three different 
types of spoofing attacks (simple, random, advanced) (Yan et al., 2016 & Xu et al., 
2018). Jamming attacks are performed by continually sending ultrasound pulses 
toward an ultrasonic sensor, causing the sensor to lose its ability to calculate the 
distance to other nearby objects (Yan et al., 2016, Xu et al., 2018 & Lee et al., 2019).
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3.  Cameras: Cameras are used in automated vehicles to identify the vehicle’s 
surroundings. They are used to identify things like traffic signs, hard-to-see 
objects in low-lighting conditions, showing nearby objects while parking, 
avoiding collisions, and verifying information from other sensors (El-Rewini 
et al., 2020).

Blinding attacks shoot a laser beam at the camera to disable it, possibly leading 
to “vehicle distortion” or emergency braking (Yan et al., 2016 & Petit et al., 2015). 
Auto-Control attacks shoot bursts of light at the camera to manipulate the auto 
controls (rather than “maxing them out” like in the blinding attack), so the image 
can’t stabilize (Petit et al., 2015).

4.  Radars: Radar sensors “emit electromagnetic signals and gauge the distance 
of nearby objects by determining the time elapsed from the moment the signal 
is sent to the moment the signal is detected by the radar’s receiver” (El-Rewini 
et al., 2020).

Jamming attacks jam the radar sensors with a signal on the same frequency band, 
causing the radar to lose its ability to detect nearby objects (Lopez et al., 2019 & 
Yan et al., 2016). Spoofing/Relay attacks involve the attacker falsifying signals and 
continually re-transmitting a previous legitimate signal (Lopez et al., 2019 & Petit 
et al., 2014).

5.  GPS Systems: Global positioning systems (GPS) are used to gather geographic 
locations. “GPS satellites send navigation messages to on-ground receivers, 
which then calculate their distance to satellites by using the message’s time of 
transmission and arrival. Receivers can determine their location by calculating 
their distance to at least four different satellites” (El-Rewini et al., 2020).

Jamming attacks jam GPS sensor signals to prevent the sensor from locating 
the vehicle. It is one of the simplest attacks as GPS jammers are cheap and easy to 
obtain (Petit et al., 2014). Spoofing attacks involve overwhelming the GPS signal to 
compromise data integrity (Narain et al. 2019) or tampering with the GPS receiver, 
so it reports false locations/times (Lopez et al., 2019 & Zhang et al., 2018). Black 
Hole attacks involve the attacker causing the loss of information that should have 
been forwarded from one vehicle to another in a VANET (Jadoon et al. 2018).
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Communication Layer

This section will summarize the communication layer threats, as detailed by El-
Rewini et al. 2019.

Vehicular communications can occur both internally and externally (El-Rewini 
et al., 2019). In-vehicle communication occurs among Electronic Control Units 
(ECUs) within a vehicle’s electronic subsystems (Eiza et al., 2017 & Carsten et al., 
2015). The main features of an in-vehicle network are shown in Figure 4:

The external vehicular communication occurs from USBs, Remote Keyless Entry 
systems, and V2X communication. Connected and autonomous vehicles are able 
to operate as nodes within self-organized vehicular ad-hoc networks (VANETs) 
(Jadoon et al. 2018). According to El-Rewini et al. 2019, VANETs are primarily 
composed of On-Board Units (OBUs) and Road-Side Units (RSUs):

OBUs are wireless transmitters installed within V2X-capable vehicles. OBU-
equipped vehicles can communicate with one another and with Road-Side Units 

Figure 4. Main domains in a modern car.
Figure from El-Rewini et al. 2019.
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(RSUs), which are stationary devices located along roads and infrastructure that 
can provide internet connectivity for OBUs and report on the state of traffic. OBU 
and RSU nodes can transmit and receive messages over the wireless network. They 
are able to enter into communication with surrounding nodes and exit from these 
communications when the nodes are no longer in range (Jadoon et al., 2018 & Lu 
et al., 2019). To protect against malicious transmissions, Trust Authorities (TAs) 
perform authenticity checks and remove malicious nodes within VANETs (Lu et al., 
2019). In this way, real-time information about vehicles and infrastructure can be 
transmitted to increase road safety and efficiency and ultimately work to support 
fully automated and driverless vehicles.

Figure 5 shows how attackers can target vehicular communication. Vehicular 
communications must meet the following security requirements: confidentiality, 
integrity, availability, non-repudiation, privacy, real-time constraints, and flexibility 
(Dak et al., 2012).

Communication Layer: Automotive Bus System Exploitation

Automotive bus systems in the in-vehicle network enable ECUs in one electronic 
subsystem to communicate with one another and with other subsystems. Fig. 6 shows 

Figure 5. Cyber vulnerabilities in a vehicular ecosystem.
Figure from El-Rewini et al., 2019
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a common architecture for the in-vehicle network, where “different subsystems are 
connected to one another and to external networks through the use of a gateway” 
(El-Rewini et al. 2019).

Communication protocols transmit messages within each subsystem and between 
different subsystems (El-Rewini et al. 2019). CAN is the most used network protocol 
and serves as the backbone of the entire in-vehicle network.

1.  CAN: CAN broadcasts packets to all nodes in the network. Each node must then 
accept or reject packets based on if the message is relevant to it (Carsten et al. 
2015 & Liu et al. 2017). Ueda et al. 2015, identify use cases for CAN attacks: 
replacing an authorized ECU program with a malicious program and using an 
unauthorized device to connect to the CAN bus. One major downside of the 
CAN frame is that it is generally unable to support Message Authentication 
Code (MAC) (El-Rewini et al. 2019).

2.  CAN Security Threats: CAN security threats include masquerading, 
eavesdropping, injection, replay, Denial of Service (DoS), and bus-off attacks.

For masquerading attacks, an attacker masquerades as a legitimate node. Liu et al. 
2017 and Choi et al. 2018, discuss two CAN vulnerabilities that allow masquerading 
attacks: CAN frames are not encrypted and can be studied by attackers to find 
system entry points. Message authentication is not supported (Liu et al. 2017 & 
Choi et al. 2018).

Figure 6. A common in-vehicle network architecture based on (Deng et al. 2017, 
Petit et al. 2015 & Henniger et al., 2009).
Figure from El-Rewini et al., 2019
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Eavesdropping attacks allow unauthorized users to gain access to vehicular 
messages. CAN’s broadcast transmissions allow attackers to gain access to the 
in-vehicle network and eavesdrop on CAN transmissions. This lets the attackers 
identify patterns in legitimate CAN frames (Liu et al. 2017).

In injection attacks, fake messages are injected into the automotive bus system. 
Some common entry points to the in-vehicle network include: OBD-II ports, 
compromised ECUs, or infotainment and telematics systems (Liu et al., 2017).

In replay attacks, an attacker re-sends valid frames over and over in order to 
impede the real-time functioning of the vehicle (Liu et al., 2017).

Bus-off attacks occur when attackers continually send bits in the identifier and 
other fields. This causes the ECU’s transmit error counter (TEC) to be incremented. 
When the TEC has a value greater than 255, the corresponding ECU has to shut 
down (Choi et al., 2018).

In terms of denial of service (DoS) attacks, Liu et al. 2017, show a DoS attack 
when an attacker sends high priority messages that block legitimate low priority 
messages. This is because the identifier segment of a CAN packet determines message 
priority. Thus attackers can easily assign their identifier segment a low value and 
gain high priority status. Carsten et al., 2015, also showed that DoS attacks could 
be used as a means to carry out control override attacks.

Communication Layer: Infotainment and Telematics Exploitation

Jaisingh et al. 2016, stated that information that is provided by infotainment systems 
could include “voice calls, text messages, emails, social networking, personal 
contacts,” and other forms of data that can be received by connecting to a mobile phone. 
Bernardini et al. 2017, discussed security and privacy in vehicular communications 
and found that some advanced infotainment systems enable mirroring, which enables 
a mobile device’s screen to be shown on a vehicle’s screen. According to Jaisingh 
et al. 2016, telematics systems complement infotainment systems by providing 
information on internal vehicular systems, which includes “fuel efficiency, engine 
failures, brake pad wear, transmission issues, oil life, climate control, biometric 
sensors, vehicle speed, acceleration, direction, braking, cornering, ignition, steering, 
seat belts, door locking, tire pressure and recently visited destinations including 
routes traveled.”

1.  Infotainment and Telematics Threats: Infotainment and telematics systems 
are susceptible to control override attacks and injection attacks.

For control override attacks, an attacker may override the vehicle operator’s 
attempts to take corrective action. In one instance, Jo et al. 2017, show security risks 
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in Android OS-based telematics systems that let drivers remotely unlock and lock 
car doors, start and stop the car engine using low-speed CAN, and access diagnostic 
information using high-speed CAN.

Injection attacks let an attacker inject illegitimate and malicious messages 
within the In-Vehicle network. Mazloom et al. 2016, show that the Mirror Link 
protocol, which links smartphones to vehicular infotainment systems, has security 
vulnerabilities that could allow an attacker to gain access to the in-vehicle network 
and inject malicious messages.

Communication Layer: Vehicular Port Exploitation

Vehicles now come equipped with ports that enable access to various data such as 
maintenance information, entertainment, and synchronizing of mobile devices and 
charging of electric cars. These ports also serve as attack points to gain access to 
the In-Vehicle Network (IVN). Hence, vulnerabilities of the On-Board Diagnostics 
port, USB port, and the electric vehicle charging port is considered for discussion.

1.  OBD-II Ports: OBD-II is an onboard computer that monitors emissions, 
mileage, speed, and other data about your car. It’s connected to the Check 
Engine light, which illuminates when the computer detects a problem. The 
OBD-II onboard computer features a 16-pin port located under the driver’s 
side dash. It allows a mechanic or anyone else to read the error code using 
a special scan tool. OBD-II ports are vulnerable to IVN access attacks and 
dongle exploitation attacks.

Carsten et al. 2015, studied OBD vulnerabilities and found that it allows access 
to the IVN and installation of malware. Valasek et al. 2014, were able to connect 
to the OBD-II port using an ECOM cable and proceeded to transmit and receive 
messages over CAN.

For dongle exploitation attacks, Eiza et al. 2017 found that dongles plugged into 
OBD-II ports can be exploited via remote control. Kovelman et al. 2017, reported a 
remote attack on the bosch drive log connector dongle, which connects to a vehicle’s 
OBDII port. A brute force attack enabled the attackers to connect to the dongle via 
Bluetooth and send malicious transmissions over the CAN, which led to the engine 
failure of the vehicle.

2.  USB Ports: Security Research Labs showed that USB peripherals could be 
exploited by attackers. They were able to reprogram USB controller chips and 
install malware, spoof network cars, and small viruses that targeted the operating 
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system. Cai et al. 2019, showed that the USB port could be used to create a 
backdoor within the BMW Next Best Thing (NBT) vehicle entertainment system.

3.  Electric Vehicle Charging Infrastructure: According to Mustafa et al. 2013, 
EV charging is susceptible to masquerading, tampering, eavesdropping, DOS 
attacks, privacy concerns, and charging thievery. Fries and Falk et al. 2012, 
discuss EV charging susceptibility to eavesdropping, man-in-the-middle, and 
tampering attacks on the payment price and the amount of energy that the meter 
believes the EV has received. They also discuss the potential for malicious 
software within the vehicle to affect a charging station or a compromised 
charging station to affect an EV.

Sun et al. 2015, show that an EV location’s privacy can be compromised when 
it is close to a charging station.

Alcaraz et al. 2017, identify security threats within the Open Charge Point 
Protocol (OCPP), which is used in communications between charging stations and 
a smart grid’s central energy management system. Sun et al. 2015, show that an 
EV location’s privacy can be compromised when it is close to a charging station.

Lee et al. 2014, show that some protocols used within EV charging are not secure. 
Attackers can take advantage of vulnerabilities within the ISO/IEC 15188 protocol 
to assume another vehicle’s identity by manipulating an identification number, 
which is stored in the EV’s internal storage. They can also manipulate message 
properties to illegally charge more than the EV requires. Other identified threats 
to ISO/IEC 15188 include manipulating meter statuses, payment types, and tariff 
table type messages. Attackers can reduce/eliminate the charging price or even shut 
off a charging station’s service.

CONCLUSION

Cyber-Physical Systems are ubiquitous in our everyday lives. Applications of CPSs 
range from health care systems to smart homes to modern vehicles (Khaitan et al., 
2015). Detailed discussions on the threats applicable to automotive Cyber-Physical 
Systems are discussed throughout the chapter. Due to their complex and interconnected 
nature, most modern vehicles are now considered CPSs.

The threats to the sensing and communication aspects of automotive cyber-
physical systems as described by El-Rewini et al. 2019 & 2020, are summarized. 
They define a three-tier framework for security threats in modern vehicles, known 
as the AutoVSCC (Autonomous Vehicular Sensing Communication and Control) 
Framework. This framework breaks down security threats into three tiers: sensing, 
communication, and control.
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It is clear that automotive Cyber-Physical Systems are susceptible to many types 
of threats, with some even having fatal consequences. Therefore, it should be the 
top priority to ensure the security of the various components of modern vehicles. 
As suggested by Scalas and Giacinto, following secure-by-design practices when 
designing vehicles is likely the best way to ensure the safety of modern vehicles 
(Scalas et al. 2019). As seen in the framework described by El-Rewini et al. 2020, 
threats are able to propagate through different components of the vehicle, which 
means attackers could even compromise crucial control components of a vehicle by 
attacking other components that were not previously thought of as security threats.

In conclusion, it is observed that there is much prior work on automotive CPS 
security, and possibly it is headed in the right direction. As vehicles become even 
more complex, more threats are bound to appear. But following more secure protocols 
for the design of vehicles may help mitigate this.
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ABSTRACT

Generative adversarial networks have been a highly focused research topic in 
computer vision, especially in image synthesis and image-to-image translation. 
There are a lot of variations in generative nets, and different GANs are suitable for 
different applications. In this chapter, the authors investigated conditional generative 
adversarial networks to generate fake images, such as handwritten signatures. The 
authors demonstrated an implementation of conditional generative adversarial 
networks, which can generate fake handwritten signatures according to a condition 
vector tailored by humans.

INTRODUCTION

With the tremendous growth of the world, banking is getting more and more available 
to the mass people. People are generally getting more and more information and 
available options to have the banking activity quickly done than is previously possible. 
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With the increasing activity of money flow, there is also a concern for forging in 
banking activity. One type of forging is check spoofing, and in this chapter, an 
approach to spoof signatures on the checks is discussed.

As the growing banking activity, people now focus on comparatively easy and 
short time spending banking activity. For the past few decades, people are mainly 
focusing on depositing money to the bank using checks. In the money deposit system, 
checks have an identification process, which is the signature of the person who 
intends to deposit the money (Graeve et al., 2007). Previously, the system only used 
in-hand or physical methods. But, with the advent of technology, many banks try to 
make their system more accessible and comfortable to the users. In the prospect of 
this, banks like Chase bank introduced a new system called Chase QuickDeposit.

Deposit of electronic system uses two potential positions to write by the account 
holder in the check. The account holder needs to write down the amount of money 
and the unique signature that the banks will check when updating the system after 
depositing for verification (Pennacchi et al., 2006). Every individual has a different 
handwritten system that can be identified using the character pattern and the pressure 
point of any handwritten materials. By using this concept of difference in handwritten 
systems, banks like Chase bank introduced Chase QuickDeposit.

In the prospect of forgery, an adversary can spoof the amount written in the 
check or spoof the signature using the deep learning approach and specifically using 
Generative Adversarial Networks (GANs).

In this chapter, implementing an adversarial neural network model to spoof 
the signatures of any individual is discussed, and the model tries to regenerate the 
signature for forging purposes.

Figure 1. A general checkbook page from a bank with rounded mark indicates the 
account holder signature.
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Related Works

Ferrer et al. 2013, proposes a novel methodology to generate static/offline signatures of 
new identities. The signature of the new synthetic identity is obtained, particularizing 
the random variables of a statistical distribution of global signature properties. The 
results mimic real signature shapes and writing style estimated properties from static 
signature databases. Shin et al. 2020, propose a technique for generating an English 
signature. They introduce a cubic Bezier curve for cursive connection and affine 
transform for customization to generate a signature. The system proposed the essential 
features that depict the signature generation using the following parameters for 
customization and decoration: scale, slant, rotation, skew, translation, the character’s 
position, circles in the signature, horizontal lines, and the underline. Melo et al. 
2018 proposed generating synthetic offline signatures by using dynamic and static 
(real) ones. The synthesis is here faced under the perspective of supervised training: 
the learning model is trained to perform the task of online-to-offline signature 
conversion. The approach is based on a deep convolutional neural network. The 
main goal is to enlarge the offline training dataset to improve the performance of the 
offline signature verification systems. Galbally et al. 2009, presented the algorithm 
to generate online signatures. The algorithm uses a parametrical model to generate 
the synthetic Discrete Fourier Transform (DFT) of the trajectory signals, which are 
then refined in the time domain and completed with a synthetic pressure function. 
Multiple samples of each signature are created so that they may produce synthetic 
databases. Quantitative and qualitative results are reported, showing that, in addition 
to presenting a very realistic appearance, the synthetically generated signatures have 
very similar characteristics to those that enable the recognition of genuine signatures.

THREAT MODEL

As the operation progress, the authors check the possibility of forging the check 
as it is observed that spoofing the checks can be done by faking the signatures. As 
previously mentioned, a check can have an account number, the amount in words, 
and a signature. In the system of QuickDeposit, a user needs to put amounts in words 
and their signature for authentication. This work aims to spoof the signature as it is 
the only authentication for the online deposit of money.

For depositing online using mobile, one needs to capture an image of the check 
and then let the system work the rest by itself. There are two possibilities of an attack 
vector here. If mobile security is compromised, then the system can be vulnerable. 
But this is not the attack scope in this work. Instead, the work focuses on spoofing 
the signature of the check using GANs. An attacker can modify the amounts in words 
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or the signature in any check. Forgery checking can be possible by manipulating 
one or more fields in the checks, as mentioned.

BACKGROUND

In this section, some essential conceptual topics are discussed, which are under the 
project’s hood. For example, Neural Networks, Generative Adversarial Networks, 
Conditional Generative Adversarial Networks, etc., are discussed.

Neural Network

In the past ten years, the best performing artificial-intelligence systems, such as the 
speech recognizers on smartphones or Google’s latest automatic translator, have 
resulted from a technique called “deep learning.”

Deep learning is a new name for an approach to artificial intelligence called 
neural networks, which have been going in and out of fashion for more than 70 
years. Neural networks were first proposed in 1944 by Warren McCullough and 
Walter Pitts.

Neural nets are a means of doing machine learning, in which a computer learns 
to perform some task by analyzing training examples. Usually, the examples have 
been hand-labeled in advance. An object recognition system, for instance, might 
be fed thousands of labeled images of cars, houses, coffee cups, and so on, and it 
would find visual patterns in the images that consistently correlate with particular 
labels. Artificial neural networks (ANNs) or connectionist systems are computing 
systems vaguely inspired by the biological neural networks that constitute animal 

Figure 2. Chase bank QuickDeposit of money using the mobile app to capture the 
image of the check
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brains. Such systems learn to perform tasks by considering examples, generally 
without being programmed with any task-specific rules.

A neural net consists of thousands or even millions of simple processing, densely 
interconnected nodes. Most of today’s neural nets are organized into layers of nodes, 
and these are ―feed-forward, meaning that data moves through them in only one 
direction. So, for example, an individual node might be connected to several nodes 
in the layer beneath it, from which it receives data, and several nodes in the layer 
above it, to which it sends data.

ANN is a set of connected neurons organized in layers:

• Input Layer: Brings the initial data into the system for further processing by 
subsequent layers of artificial neurons.

• Hidden Layer: A layer in between input layers and output layers, where 
artificial neurons take in a set of weighted inputs and produce an output 
through an activation function.

• Output Layer: The last layer of neurons that produces given outputs for the 
program.

A Multi-layer ANN (e.g., Convolutional Neural Network, Recurrent Neural 
Network, etc.) can solve more complex classification and regression tasks thanks 
to its hidden layer(s).

Figure 3. Simple artificial neural network
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In artificial neural networks, the Activation Function of a node defines the output 
of that node given an input or set of inputs. There are several types of activation 
functions.

A Sigmoid Function is a mathematical function having a characteristic, S-shaped 
curve or sigmoid curve. Often, the sigmoid function refers to the particular case of 
the logistic function, which generates a set of probability outputs between 0 and 1 
when fed with a set of inputs. For example, the sigmoid activation function is widely 
used in binary classification.

Instead of the sigmoid activation function, most recent artificial neural networks 
use Rectified Linear Units (ReLUs) for the hidden layers. A rectified linear unit has 
output 0 if the input is less than 0 and raw output otherwise. That is, if the input is 
greater than 0, the output is equal to the input.

The loss function is an integral part of artificial neural networks, which measure 
the inconsistency between predicted value (^y) and actual label (y). It is a non-
negative value, where the robustness of the model increases along with the decrease 
of the loss function value.

Forward Propagation is the process of feeding the Neural Network with a set 
of inputs to get their dot product with their weights, then feeding the latter to an 
activation function and comparing its numerical value to the actual output called 
“the ground truth.”

Back Propagation is a method used in artificial neural networks to calculate a 
gradient needed to calculate the weights to be used in the network.

Figure 4. Multi-layer artificial neural network
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Generative Adversarial Networks

Generative adversarial networks (GANs) are deep neural network architectures 
comprising two nets, pitting one against the other. GANs were introduced in a paper 
by Ian Goodfellow et al. 2014.

GANs’ potential is enormous because they can learn to mimic any distribution 
of data. That is, GANs can be taught to create worlds eerily similar to our own in 
any domain: images, music, speech, prose. They are robot artists in a sense, and 
their output is impressive – poignant even.

One neural network, called the generator, generates new data instances. The 
discriminator evaluates them for authenticity. For example, the discriminator decides 
whether each instance of data it reviews belongs to the actual training dataset or not.

The generator creates new images that it passes to the discriminator. It does so 
in the hopes that they, too, will be deemed authentic, even though they are fake. 
The goal of the generator is to generate passable hand-written digits to lie without 
being caught. The goal of the discriminator is to identify images coming from the 
generator as fake. Here are the steps a GAN takes:

• The generator takes in random numbers and returns an image.
• This generated image is fed into the discriminator alongside a stream of 

images taken from the actual dataset.

The discriminator takes in both real and fake images and returns probabilities, 
a number between 0 and 1, with 1 representing a prediction of authenticity and 0 
representing fake.

The discriminator network is a standard convolutional network that can categorize 
the images fed to it, a binomial classifier labeling images as real or fake. In a sense, 
the generator is an inverse convolutional network. While a standard convolutional 

Figure 5. GANs architecture
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classifier takes an image and down-samples it to produce a probability, the generator 
takes a vector of random noise and up-samples it to an image. The first throws 
away data through down-sampling techniques like max-pooling, and the second 
generates new data.

Both nets try to optimize a different and opposing objective function, or loss 
function, in a zero-sum game. This is essentially an actor-critic model. As the 
discriminator changes its behavior, so does the generator, and vice versa. As a result, 
their losses push against each other.

Theoretically, the adversarial modeling framework is most straightforward to 
apply when the models are both multilayer perceptions. To learn the generator’s 
distribution pg over data x, they define a prior on input noise variables pz(z), then 
represent a mapping to data space as G(z; θg), where G is a differentiable function 
represented by a multilayer perception with parameters θg. They also define a 
second multilayer perception D(x; θd) that outputs a single scalar. D(x) represents 
the probability that x came from the data rather than pg. Finally, they train D to 
maximize the probability of assigning the correct label to both training examples 
and samples from G. They simultaneously train G to minimize log(1 - D(G(z))). 
In other words, D and G play the following two-player mini-max game with value 
function V (G; D):

Conditional Generative Adversarial Networks

Generative adversarial nets can be extended to a conditional model if both the 
generator and discriminator are conditioned on some extra information y. y could 
be any auxiliary information, such as class labels or data from other modalities. 

Figure 6. The discriminator training for MNIST dataset.
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Conditioning is performed by feeding y into both the discriminator and generator 
as an additional input layer.

In the generator, the prior input noise pz(z), and y are combined in joint hidden 
representation. The adversarial training framework allows for considerable flexibility 
in how this hidden representation is composed.

In the discriminator x and y are presented as inputs and to a discriminative 
function (embodied again by a MLP in this case).

The objective function of a two-player mini-max game would be as:
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Figure 7 illustrates the structure of a simple conditional adversarial net.

In contrast with the architecture of GAN, There is an additional input layer in 
both discriminator net and generator net.

Figure 8 shows some of the generated MNIST Digit samples with CGAN. Each 
row is conditioned on one label, and each column is a different generated sample.

Figure 7. Conditional adversarial net
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IMPLEMENTATION OF HANDWRITTEN 
SIGNATURE GENERATION

First, a conditional adversarial network is trained using the collected handwritten 
signature images conditioned on their class labels, encoded as one-hot vectors.

In the generator network, a prior noise z with dimensionality 100 was drawn from 
a uniform distribution within the unit hypercube. Next, both z and y are mapped to 
hidden layers with Rectified Linear Unit (ReLu) activation with layer sizes 200 and 
1000, respectively, before both being mapped to second, combined hidden ReLu layer 
of dimensionality 1200. Then a final sigmoid unit layer is obtained as the output for 
generating the 22500-dimensional collected signature samples.

The model is trained using stochastic gradient descent with mini-batches of size 
64. Three hundred samples are drawn in 30000 iterations. And the initial learning 
rate of 0:1, which is exponentially decreased down to:000001 with a decay factor of 
1:00004. Also, momentum is used with an initial value of:5 which is increased up 
to 0:7. Then, dropout (Ortega-Garcia et al. 2003) with a probability of 0.5 is applied 
to both the generator and discriminator. And the best estimate of log-likelihood on 
the validation set is used as a stopping point.

EXPERIMENT SETUP AND RESULTS

In the implementation, a CGAN with collected signature images is trained. The 
number of train signature images is around 60 from around 20 individuals. Every 
100 iteration of training, 16 images are drawn, which are generated by Generator. 
The model is trained with train datasets around 30000 times. It takes around 1 hour 

Figure 8. Generated MNIST digits, each row conditioned on one label
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20 minutes for 30000 iterations. Some train sample signature images are given in 
Figure 9.

Conditioning is performed by feeding y (label of signature images) into the 
discriminator and generator as additional input layers.

Some other samples are provided in Figures 11 and 12.

Figure 9. Some signature images (Train data)

Figure 10. (a) Train images for a particular label “Momin”. (b) Fake signature 
generated by Our CGANs Model

 EBSCOhost - printed on 2/9/2023 9:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



109

Handwritten Signature Spoofing With Conditional Generative Adversarial Nets

LIMITATIONS OF THE APPROACH

Neural Nets work better when the training data is significant. But this work has a 
minimal number of train images. The CGANs model is trained with only 60 images. 
So it is expected that the generated fake image quality would not be so good. However, 
after the experiment, it was found that the image quality is up to the mark. So one 
of the reasons for bad image quality might be the small training data set.

Another limitation of the work is that generated fake images often lack enough 
sharpness, which is very noisy. Therefore, a deeper look into CGANs parameters and 
structure are required so that fine-tuning the model for less noisy output is possible.

In the future, more signatures need to be collected to increase the size of the 
training dataset to enhance the quality and realism of generated images. It could 

Figure 11. (a) Train images for a particular label “Sumit”. (b) Fake signature 
generated by Our CGANs Model

Figure 12. (a) Train images for a particular label “Xiali Hei”. (b) Fake signature 
generated by Our CGANs Model
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be better to use MCYT baseline corpus: a bimodal biometric database by Ortega 
Garcia, Javier, et al. 2003.

CONCLUSION

The work demonstrated a CGAN Model for generating fake handwritten signatures. 
However, it suffers from generating practical and acceptable handwritten signatures 
because of the small training data set. Furthermore, as the realism and quality of 
the generated images are not enough, further investigations are required to fine-tune 
the nets.
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ABSTRACT

Currently, the vast majority of smart devices with LEDs are on the rise. It has been 
observed that the lights emitted by each LED have unique spectral characteristics. 
Despite the fact that there are a number of methods out there to generate fingerprints, 
none seem to explore the possibility of generating fingerprints using this unique 
feature. In this chapter, the method to perform device fingerprinting using the unique 
spectrum emitted from the LED lights is discussed. The generated fingerprint is then 
used in device pairing.

INTRODUCTION

Currently, the vast majority of intelligent devices with LEDs are on the rise. However, 
it has been observed that the lights emitted by each LED have unique spectral 
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characteristics. Although there are several methods to generate fingerprints, none 
seem to explore the possibility of generating fingerprints using this unique feature 
(Tom et al., 2016; Mayrhofer et al., 2009; Bojinov et al., 2014; Han et al., 2018; 
Pan et al., 2018). This chapter discusses a new way to perform device fingerprinting 
using the unique spectrum emitted from the LED lights. The generated fingerprint 
is then used in device pairing.

BACKGROUND

What happens when two devices want to become paired? First, the devices need 
to identify each other uniquely. Second, the devices must use some method to do 
that. This method should be unique so that the device does not recognize the wrong 
device. This process is known as fingerprinting.

The fingerprint could be a vast, random number. It can be other unique 
characteristics such as the spectrum of the light emitted by LEDs, as the spectrum 
of rays emitted by LEDs is unique. So, this feature can be used to identify each LED 
individually. Once the fingerprint is generated by one device, the other device can 
verify and recognize the device generating the fingerprint. Then the device initiates 
the pairing protocol.

CONCEPTUAL MODEL

In this chapter, the method to perform the LED-based device fingerprinting is 
discussed. In LED-based device fingerprinting, the unique spectrum information 
of one LED mounted on the first device is saved inside itself. Then, when another 
device wants to connect, it takes the photo of the light of the LED of the first device, 
extracts the spectrum from the image, and sends the spectral information to the first 
device. Next, the first device compares the received spectral data with the one stored 
inside it. If the information matches, the device generates the pairing protocol, and 
the two devices become paired. This process is shown in figure 1.
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METHODOLOGY

Several methods to achieve the goal are followed. Zhu et al., 2017 discuss how they 
use the characteristics of light such as Spatial Radiance Pattern (SRP) to identify a 
light. SRP is defined as the radiance intensity distribution across a light’s body. SRP 
is some unique characteristics of light due to the inevitable manufacturing variations 
of the materials that are used to produce the light. This SRP feature is resilient to 
the camera’s viewing angle or distance and highly diverse among lights. So, this 
feature can be used to uniquely identify light and, in turn, the device the light is 
mounted on. Then the devices can generate a pairing protocol. So, to perform the 
fingerprinting, the first task is to extract the SRP of a light. Several approaches are 
followed to extract the SRP. The methods to extract the SRP are discussed in the 
experiments section.

EXPERIMENTS

The process described in (Li et al., 2018) is followed to extract the spectrum 
information of the light emitted by the LEDs. The method followed in their work 
exploits the characteristics of birefringence material. Birefringence is the optical 
property of a material having a refractive index that depends on light’s polarization 
and propagation direction. These optically anisotropic materials are said to be 
birefringent (or birefractive). The birefringence is often quantified as the maximum 
difference between refractive indices exhibited by the material. Crystals with non-
cubic crystal structures are often birefringent, as are plastics under mechanical stress. 
Some examples of birefringence materials are the plastic, thin film that is present on 

Figure 1. Conceptual model
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a Compact Disk (CD) or the transparent, adhesive tape. It is found that the spectrum 
information extracted by exploiting a birefringence material may not be accurate. 
Hence, the idea of using a birefringence material in this method is dropped, and 
employ a handheld mobile spectrum analyzer because spectrum analyzers are highly 
precise in extracting the spectrum information of light. This way, the process will 
be able to identify a specific LED more accurately. The experiment has three main 
parts. In what follows is a short description of each step involved.

Figure 2.  

Figure 3.  
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Capturing Images of the LEDs

This part discusses capturing images of the LEDs using three different smartphones 
– Google Pixel2, Samsung J2, and Samsung Core Prime. First, an app called 
OpenCamera, which allows to adjust and tweak many different camera settings not 
usually available in built-in camera app provided by mobile phone manufacturers, 
is used. Then images are taken from varying orientations and distances and ensured 
that the LED body is visible enough in the photos.

Figure 4.  

Figure 5.  
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Figure 6.  

Figure 7.  

Figure 8.  
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Preprocessing

As mobile phone cameras are not perfect, they induce noise in the images taken by 
them. Consequently, some preprocessing needs to be done before jumping on to the 
next stage. Experimentation with various filters is done, such as mean filter, median 
filter, and Gaussian filters. What is being noticed is that the Gaussian filter seemed 
to provide a relatively good result compared to the other two.

Extracting the Spatial Radiance Pattern (SRP)

Once preprocessing is done, the LED body (where SRP is visible) is extracted from 
the images. This process is essential because it reduces computational overhead. 

Figure 9.  

Figure 10.  
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Moreover, it would be impractical to work with the whole image as the only thing 
to care about is its SRP. Hence filtering out the unnecessary parts of the image 
is efficient. Open source Computer Vision library or OpenCV is utilized for this 
purpose. First, a threshold is applied to find the brightest part in the images. Then 
this threshold image is fed into the contour detection algorithm available in OpenCV. 
Finally, the SRP part from the original grayscale image is cropped out using the 
coordinates determined to BoundingRect method in OpenCV.

Figure 11. Extraction of SRP image

Figure 12. Original image (LED1)

Figure 13. Radiance image
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Classification

The last and final step is to classify the images. The goal is to investigate whether 
it is possible to identify each LED uniquely by exploiting the LED light’s visual 
feature (SRP). The SRP could be calculated directly from the pixel values in the 
images. Still, a deep learning model such as Convolutional Neural Network (Convnets 
or CNN) seemed to make more sense in this scenario. In the next section, a brief 
description of CNN is provided.

Convolutional Neural Networks (Convnets or CNNs)

CNN’s do take biological inspiration from the visual cortex. The visual cortex has 
small regions of cells that are sensitive to the specific areas of the visual field. This 
idea is expanded upon by a fascinating experiment by Hubel and Wiesel in 1962. 
They showed that some individual neuronal cells in the brain responded (or fired) 

Figure 14. Original image

Figure 15. Radiance image
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only in the presence of edges of a particular orientation. For example, some neurons 
fired when exposed to vertical edges and some when shown horizontal or diagonal 
edges. Hubel and Wiesel found out that all of these neurons are organized in a 
columnar architecture and that together, they can produce visual perception. This 
idea of specialized components inside a system having specific tasks (the neuronal 
cells in the visual cortex looking for particular characteristics) is one that machines 
use and is the basis behind CNNs.

Convolutional Neural Networks have a different architecture than regular Neural 
Networks. Regular Neural Networks transform an input by putting it through a series 
of hidden layers. Every layer is made up of a set of neurons, where each layer is fully 
connected to all neurons in the layer before. Finally, there is a last fully connected 
layer — the output layer — that represents the predictions. ConvNets are also 
used for object detection, scene recognition, human pose estimation, video caption 
generation, speech recognition, language translation, among other tasks.

CNN Architecture

ConvNets usually have three main types of layers 1) Convolutional layer, 2) Pooling 
layer, and 3) Fully Connected layer.

Convolution Layer

The convolutional layer is the core building block of a CNN. The layer’s parameters 
consist of a set of learnable filters (or kernels), which have a small receptive field 
but extend through the full depth of the input volume. During the forward pass, each 
filter is convolved across the width and height of the input volume, computing the dot 
product between the entries of the filter and the input and producing a 2-dimensional 
activation map of that filter. As a result, the network learns filters that activate when 
it detects a specific feature at some spatial position in the input.

Stacking the activation maps for all filters along the depth dimension forms the 
total output volume of the convolution layer. Every entry in the output volume can 
thus also be interpreted as an output of a neuron that looks at a small region in the 
input and shares parameters with neurons in the same activation map.

Pool Layer

Pool Layer performs a function to reduce the spatial dimensions of the input and the 
computational complexity of the model. And it also controls overfitting. It operates 
independently on every depth slice of the input. There are different functions such 
as Max pooling, average pooling, or L2-norm pooling. However, Max pooling is 
the most used type of pooling, which only takes the most critical part (the value of 
the brightest pixel) of the input volume.
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Example of a Max pooling with 2x2 filter and stride = 2. So, for each of the 
windows, max-pooling takes the max value of the 4 pixels.

The pooling layer doesn’t have parameters (the weights and biases of the neurons) 
and no zero padding, but it has two hyper-parameters: Filter (F) and Stride (S). More 
generally, having the input W1×H1×D1, the pooling layer produces a volume of 
size W2×H2×D2 where:

Figure 16. CNN architecture

Figure 17. Convolution
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W2 = (W1−F)/S+1 

H2 = (H1−F)/S+1 

D2 = D1 

A common form of Max pooling is filters of size 2x2 applied with a stride of 
2. The Pooling sizes with larger filters are too destructive, and they usually lead to 
worse performance.

Fully Connected Layer (FC)

Fully connected layers connect every neuron in one layer to every neuron in another 
layer. The last fully-connected layer uses a softmax activation function to classify the 
input image’s generated features into various classes based on the training dataset.

EXPERIMENT SETUP

A CNN model is built using a python deep learning library called Keras. Three 
different smartphones are used – Google Pixel2, Samsung J2, and Samsung Core 
Prime G2 for capturing images. Ninety-seven images are used to train the model, and 
validation is done on 42 images. In summary, the experimental setup is as follows,

Training Dataset Size: 97
Validation Dataset: 42

Figure 18. Max-pooling with 2x2 filter and stride = 2. Ref: Wikipedia
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RESULTS

The CNN model is run on an Arch Linux machine with Intel Core i7 8th Gen. CPU, 
16GB RAM, and NVIDIA GTX150 GPU. For training the model, it took around 
53 minutes. Below is the list of the parameters of the CNN model,

Number of Train Samples: 7000
Number of Validation Samples: 500
Epochs: 40
Batch Size: 10

The final accuracy after running the model is 84.09%. The figure shows that the 
loss is pretty high, and the model seemed to be overfitted. Different parameters of 
this model are tweaked, and its performance is observed.

LIMITATIONS AND FUTURE WORK

The main limitation of this approach is that the focus is only on a single feature to 
fingerprint the LEDs. For robust fingerprinting, combining more features should be 
done. Therefore, future works should include more features. In addition, the number 

Figure 19. Accuracy of CNN model
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of the dataset used in this work is not large enough. Thus, in the future, the work 
needs to be done with large-scale datasets.

CONCLUSION

LEDs are being increasingly available in commodity devices. Fingerprinting devices 
have many practical applications in numerous domains. In this work, a unique visual 
feature of LED is exploited called LED for fingerprinting devices. Convolutional 
Neural Network is used to classify images of 12 different LEDs. Although, some 
of these images look very similar with naked eyes. The CNN model can distinguish 
the images with 84% accuracy.
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ABSTRACT

The laser-based audio signal injection can be used for attacking voice controllable 
systems. An attacker can aim an amplitude-modulated light at the microphone’s 
aperture, and the signal injection acts as a remote voice-command attack on voice-
controllable systems. Attackers are using vulnerabilities to steal things that are in 
the form of physical devices or the form of virtual using making orders, withdrawal 
of money, etc. Therefore, detection of these signals is important because almost 
every device can be attacked using these amplitude-modulated laser signals. In 
this project, the authors use deep learning to detect the incoming signals as normal 
voice commands or laser-based audio signals. Mel frequency cepstral coefficients 
(MFCC) are derived from the audio signals to classify the input audio signals. If the 
audio signals are identified as laser signals, the voice command can be disabled, 
and an alert can be displayed to the victim. The maximum accuracy of the machine 
learning model was 100%, and in the real world, it’s around 95%.
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INTRODUCTION

Human interaction with devices such as Amazon Echo, Google Home, Apple 
HomePod, and Xiaomi AI became more prominent which can be helpful to users to 
control their smart home appliances, adjust the temperature, home security systems, 
online shopping, making phone calls, and many other tasks. In recent days most 
smartphones are equipped with Siri, Google Now, Cortana which provide users more 
flexible interface to control many IoT systems (Yuan Gong 2018) (Abdullah et al. 
2019). Further advancements of these devices made not only normal individuals 
interact but also disabled and elderly people purely rely on them (H.Stephenson n.d.) 
(C. Martin n.d.). Security of these devices has become more important because of 
more sensitive information available from the user like payment information, car 
device control, etc. However, development in machine learning played a crucial 
role in handling a large amount of data with less effort and helped to have a better 
user experience. Even though they rapidly developed but these devices have a 
major security problem by taking the audio samples in the nearby environment and 
process it whether intentionally or unintentionally (Maheshwari n.d.)(Ramirez, M., 
and C. 2007). Speech recognition devices mainly consist of hardware components 
that show some non-ideal characteristics. There is the possibility of other kinds of 
attacks and these things can be broadly classified further. Attackers exploit these 
non-ideal characteristics of the devices to steal sensitive information or control the 
device. Attackers can attack voice-controllable systems using various sources like 
laser light(Sugawara et al. 2020), long-range attacks (Roy et al. 2018), ultrasonic 
waves(G. Zhang et al. 2017), solid materials(Q. Yan et al. 2020), electromagnetic 
interference signals(Kune et al. 2013)(Tu, Yazhou and Tida, Vijay Srinivas and Pan, 
Zhongqi and Hei 2021), etc. In the paper(Sugawara et al. 2020), they proposed how 
to attack various voice assistant systems from far away distances using laser light 
as the source of medium. In (Giechaskiel and Rasmussen 2020) clearly explained 
how the working of various sensors are manipulated using out-of-band signal 
injections. To avoid unsolicited access to the voice assistant systems, they proposed 
various hardware or software solutions. They briefly discussed various attacks and 
recommended certain solutions by taking all cross research areas into account. Further 
in (C. Yan et al. 2020) analog sensor security is explained through analyzing the 
security properties in a meaningful way. This work makes a systematic process to 
analyze the security properties of sensors which can provide a better understanding 
of devices helps to prevent future attacks. In (Tu et al. 2018), the authors clearly 
explained how inertial sensors can malfunction through means of using out-of-
band acoustic signals. Also proposed two solutions to handle these attacks utilizing 
digital amplitude adjusting and phase pacing. In (Tu et al. 2019) temperature sensor 
measurement manipulation can be demonstrated by adversary attacks made using 

 EBSCOhost - printed on 2/9/2023 9:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



127

Deep Learning Approach for Protecting Voice-Controllable Devices

hardware used in devices like operational amplifiers, instrumental amplifiers, etc. 
Also, they showed the defense method using the prototype design of a low-cost 
anomaly detector. Modern smartphones are susceptible to various attacks which can 
be seen in (Kasmi and Lopes Esteves 2015). They took electromagnetic signals as 
a source to induce the attack by exploring the properties of electronic devices and 
proposed a notable solution using a new silent remote voice command injection 
method. In medical field applications, these kinds of attacks pose a serious threat 
which can be seen in (Rasmussen et al. 2009). Here the authors tried to solve the 
attacks using proximity-based access control technique with the help of ultrasonic 
distance bounding protocols. Electromagnetic interference attacks on sensor devices 
constitute a major threat in this physical world and the detection of these signals 
has more importance which can be observed in (Y. Zhang and Rasmussen 2020). 
They proposed a simple technique by measuring the value on the sensor when it’s 
at rest should be zero volts with the help of a little amount of extra hardware. Deep 
learning approaches showed higher efficiency towards the usage of voice-based 
assistant devices, however, attackers use the vulnerabilities in the model to perform 
unsolicited activities. In (Abdullah H, Warren K, Bindschaedler V, Papernot N n.d.) 
proposed how the attacks can be performed and proposed the future research directions 
to avoid these attacks. In (Chen Y, Zhang J, Yuan X, Zhang S, Chen K, Wang X 
n.d.) mentioned the above problems clearly by classifying them into various classes 
like out-of-band signal attack, adversarial attack, etc with various solutions. They 
provide some insights on how we align the research related to security in the Image 
Recognition System (IRS) as the base. In (Z. Xu et al. 2021) proposed an inaudible 
attack method for increased distance of 2.5m using Electromagnetic Interference 
on smart speakers with the help of non linear property of microphones. By using 
deep learning algorithms will help to protect these devices to some extent without 
having additional costs. Since voice assistant devices contains microphone and more 
sensitive information is present inside it, adding more hardware components might 
cause more problems. Instead of solving problems the added components might 
create new problems. Since many devices are already purchased it is difficult to 
change the physical characteristics of the devices more efficient deep algorithms 
are necessary. Although there are cases where attackers used white box knowledge 
of the deep learning models which can create audio samples that can be understood 
by the voice assistant devices but difficult for humans to interpret (Carlini et al. 
2016; Yuan et al. 2018). A typical block diagram of the Voice Controlled Systems 
(VCS) is shown in Figure1 how the machine learning model will make to process 
the malicious signal can be seen. In the first step, the input signal might be in the 
form of the recorded human voice or any other manipulated signals from various 
sources which can be considered as a spoofing process. The second step making 
the voice system accept the malicious command by hacking the operating system. 
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After that, the malicious analog signals are converted to a digital signal in the third 
step, and in the final step, the machine learning model will execute the adversarial 
command by deception process (Yuan Gong 2018).

There is rapid growth in voice-driven IoT devices which makes them have more 
sensitive information which can lead to theft activities like unauthorized entry to 
the home, purchases, credit card usage, etc (Alepis and Patsakis 2017; Diao et al. 
2014; Lei et al. 2018). These attacks can be broadly classified into five categories 
namely 1) basic voice replay attack 2) operating system-level attack 3) hardware-
level attack 4) machine learning level attack and 5) adversary’s knowledge from 
(Yuan Gong 2018).

• Basic Voice Replay Attack: In this type of attack, the intruder will replay the 
recorded voice to ensure the desired malicious activity is performed. This 
kind of attack can be seen in (Chen et al. 2017)(Lei et al. 2018; Petracca et al. 
2015). The major disadvantage of this attack is that it is easy to identify but 
these attacks play a crucial role in many other dangerous attacks.

• Operating System-Level Attack: In this type of attack, the intruder will use 
vulnerabilities in the operating system to make desired malicious activity 
These attacks can be seen in (Alepis and Patsakis 2017; Diao et al. 2014; 
Jang et al. 2014). These attacks are performed by changing permissions in 
malware from zero to high. These attacks are performed either by no user in 
the proximity range or by making the import an audio file to the microphone 
directly without playing it.

• Hardware Level Attack: In this type of attack, the intruder had information 
about the vulnerabilities of the hardware used. These attacks can be seen 
in (G. Zhang et al. 2017)(Kune et al. 2013; Roy et al. 2018; Sugawara et 
al. 2020; Q. Yan et al. 2020)(Tu, Yazhou and Tida, Vijay Srinivas and Pan, 
Zhongqi and Hei 2021)s. By using the different mediums with the help of 

Figure 1. General block diagram of voice controlled system. (1) spoofing (2) hacking 
(3) analog to digital conversion (4) deception
[adapted from (Yuan Gong 2018)]
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different hardware settings these attacks can be performed. These attacks 
can be usually performed using non-linear characteristics of devices using 
different modulation techniques. There are major limitations like distance 
range, the microphone should be powered, etc. which makes these attacks 
not easy. In our experiments, we majorly focused on detecting the laser light 
signal from the real audio samples since it has a large distance range in which 
users might not be able to identify.

• Machine Learning Level Attack: In this type of attack, adversarial samples 
play a crucial role for the intruder. These adversarial samples behave the 
same as the human voice, but the operation performed might be different. 
For instance, the open the garage door command might work as changing 
the temperature by speech recognition device. These attacks can be seen in 
(Carlini et al. 2016; Carlini and Wagner 2018; Cisse et al. 2017; M. Alzantot, 
B. Balaji 2018; Poellabauer 2017; Vaidya et al. 2015). The adversarial samples 
generated have been advanced over time. Initially, Mel-Frequency Cepstral 
Coefficients (MFCC) were used to generate malicious samples but later 
developed by using some advanced mathematical optimization techniques.

• Adversary’s Knowledge: In this type, based on the information of the device 
it was classified. If the intruder has domain knowledge about the experiment 
setup that it is considered a white box attack. If the intruder does not have 
any information, then it is considered a black box attack. Usually, hardware 
and operating system level attacks come under the white box group since 
the intruder has some knowledge of the system. Practical machine learning 
level attacks are usually considered under the black-box group because the 
algorithms and datasets used are unknown. Another major problem that can 
be seen in the attacks is combined using responding like normal speech but 
underlying the attack is performed which was unknown by the user (Alepis 
and Patsakis 2017).

The deep learning process has been adopted in various applications on audio 
signals (Vera-Diaz, Pizarro, and Macias-Guarasa 2018), (Lavner et al. 2018). While 
some applications such as audio recognition (speech recognition, sound detection, 
localization, and tracking) and synthesis and transformation (Purwins et al. 2019) 
are positive implementations, adversaries can find ways to impact the classification 
system to perform negatively (Kereliuk, Sturm, and Larsen 2015). In this project, 
we observe the use of deep learning in classifying the incoming audio signals from 
the microphone as either normal audio signals or is it the result of the amplitude-
modulated laser signal and analyze the performance of using various optimizers.
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LITERATURE REVIEW

Voice Processing System (VPS)

Voice processing tools that have machine learning models can be called VPS. They 
can be classified into two types Automatic Speech Recognition (ASR) and Speaker 
Identification models.

1.  ASRs: An ASR used to convert the raw audio file by humans to text. ASRs 
will complete this conversion using three steps. 1) Pre-processing, 2) signal 
processing, and 3) model inference.

2.  Speaker Identification model: Initially this model was trained on voice 
samples of the speakers from which it will identify the speaker. Based on 
voting information of the model the audio is processed to a text file.

Preprocessing

In the preprocessing, step filtering of the audio signal is made to remove any noise 
in the input signal. Some signal processing algorithms are used to extract the 
important features thereby reducing the dimensionality of the audio signal. Using 
the signal processing step feature vectors are generated. Mostly used algorithm for 
feature extraction is Mel Frequency Cepstrum Coefficient (MFCC) algorithm. This 
feature vector will become input to the model during the subsequent phases like 
training and testing.

MFCC Features of Audio Signals

Mel Frequency Cepstrum (MFC) is a short-term representation of the power 
spectrum of a sound based on a linear cosine transform of a log power spectrum on 
a nonlinear Mel scale of frequency. Mel-frequency Cepstral Coefficients (MFCC) 
are coefficients that collectively make up an MFC (M. Xu et al. 2004). The main 
advantage of using this is a better representation of sound using frequency wrapping. 
Mel-Cepstral Distortion (MCD) is used as a measure for checking the quality of the 
demodulated signal. Preferred signals are usually MCD less than 8.

MFCC features have been effective to use for machine learning models (Yang et 
al. 2020), (Logan 2000). They have been a dominant feature for speech recognition 
application and their ability to represent speech amplitude spectrum in a compact 
form has made them successful (Logan 2000). Figure 2 shows the process to extract 
MFCC features from an audio waveform.
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First, we divide the waveform into frames (usually 20ms intervals). Each frame 
goes through four major steps. Then Discrete Fourier Transform (DFT) of each frame 
is taken. The amplitude information is more important than the phase information, 
and the loudness of a signal is logarithmic. Therefore, in the next step, we retain 
the log of amplitude. The next step is smoothing the spectrum and emphasizing 
perpetual meaningful frequencies using Mel scaling. Finally, the Discrete Cosine 
Transform (DCT) is applied to decorrelate the components of Mel-spectral vectors 
to get 13 (or so) cepstral features for each frame.

Other Methods

Although MFCC is used widely for audio signal processing for machine learning 
applications there are some other processing techniques used in modern VPSes such 
as Mel-Frequency Spectral Coefficients (MFSC), Linear Predictive Coding (LPC), 
and Perceptual Linear Prediction (PLP)(Zue 1980). While some other VPSes uses 
probabilistic techniques like transfer learning. Transfer learning (L. Torrey and J. 
Shavlik n.d.) involve extracting the features from the model which was already trained 
for inference implemented in (Venugopalan et al. 2015). Some additional models are 
also proposed which are called an end to end systems using replacing intermediate 

Figure 2. Extracting MFCC features
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modules between the raw input and the model by removing pre-processing and signal 
processing steps which can be observed in (Amodei et al. 2016).

Model Inference

From signal processing steps features are selected after that these are features are 
passed to machine learning algorithms for inference. For speech recognition tasks use 
of machine learning algorithms can be observed in VPSes. Features observed from 
the trained models play a crucial role in predicting the classes belongs to different 
test samples. Earlier features are extracted base done based on the specific domain 
but due to the availability of a huge amount of data, this extraction process can be 
made automatic. Because of this automatic extraction of features has more general 
knowledge than domain-specific. Present-day deployed models extract features 
automatically which can learn required features such that it creates relevant mapping 
by applying cost function for error reduction. Because of this automatic extraction, 
they have more flexibility utilizing dividing into independent modules which can 
be used for different applications.

Feed Forward Neural Network

Feed-forward networks will satisfy the following properties:

1.  It consists of the input layer, output layer, and multiple hidden layers. Through 
the input layer which can be considered as the first layer that has fed the 
preprocessed data is given as input and from the output, the layer will get the 
outputs of the model designed. The hidden layers have no connections to the 
external world. Each layer consists of multiple neurons.

2.  Each layer is connected to the next layer through means of weights assigned 
for every connection. Here the information flows in the forward and input fed 
in the first layer.

3.  Each layer of neurons will not have any connections among them.

Loss Function

It is known as cost function which helps to evaluate the model performance by given 
weights (Janocha and Czarnecki 2016). Here we used simple error which can be 
written as below:

Error =True value – Predicted value 
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where True value is the real output label either ‘0’ or ‘1’ in our case mean whether 
the signal is the real audio signal or laser-generated signal. The predicted value is 
the output value of the neural network designed to train the model.

Activation Function

Activation functions are placed at corresponding neurons output to have a smoother 
experience of the training process. Usually, activation used here is the sigmoid 
function.

f x
x

( ) =
+ −( )
1

1 exp
 

where f(x) is the sigmoid function

Feed Forward Process

In this process, the weights of the neural networks are initialized with random weights 
and the input is sent through the input layer and the corresponding neuron calculates 
the values from which we get the output value from the output layer.

Backpropagation Process

In this process, the weights of the neural networks are updated with the loss function 
calculated from the output of the feedforward process based on the derivatives 
obtained from the backward process through every neuron in the reverse direction.

Optimizers

Optimizers play a crucial role in making the model train faster and having better 
accuracy. The selection of optimizers is important for the specific application. 
Usually, for most applications, the Adam optimizer will work with the learning rate 
of 3e-4 for better performance.

Light Commands

Amplitude modulated laser signal can act as an audio signal for a microphone 
(Sugawara et al. 2020). Laser light commands can be used from a large distance 
(up to 110 m) and do not require physical contact with the victim device. However, 
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a stable line of sight is essential. Since most of the devices are always-listening 
devices and the microphone perceives laser light signals as audio signals, they are 
prone to such attacks. The adversary can unlock victim smart devices such as phones, 
garages, door locks, shop on commercial websites, or hack vehicles.

The research (Sugawara et al. 2020) suggests many hardware and software solutions 
prevent laser-signals attacks such as the use of shields over the microphone, change 
microphone architecture, use extra authentication layers, or use multiple microphones. 
However, each of these solutions has some vulnerabilities. They either increase the 
complexity of the hardware or hamper the user experience.

METHODOLOGY

Experimental Setup

The experimental setup is represented by the model shown in figure 3. In the first 
block, the audio signals from the laptop are fed into an audio amplifier which is 
then fed to the laser current driver. The laser is mounted with holders and can be 
repositioned as desired. In the second block, a mems microphone is powered by the 

Figure 3. Experimental setup block diagram
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power supply, and the output from the microphone is fed to DAC. It is important 
to align and focus the laser to the microphone aperture for proper signal injection. 
The larger the distance between the microphone and laser, it becomes difficult to 
align the laser to the microphone aperture.

Dataset

For every Deep learning project, we need to have a dataset, model, and type of 
optimizer. In our project dataset is prepared using recording audio signals from the 
original microphone using two different inputs:

• Voice commands played on the laptop
• Amplitude modulated laser signals projected on the microphone aperture

We used a text-to-speech converter provided by https://ttsreader.com/ to generate 
different audio commands using different users shown in Table 1. Since the commands 
are short and it is difficult to extract samples for each command separately, all the 
commands were run in a single loop. First, the audio sample was run simply over 
a laptop speaker and the microphone output was recorded. Then the audio samples 
were used to drive the laser and the laser signal was used as input to the microphone. 
A single stream of audio signals was extracted as microphone outputs for each input 
signal. These audio signals were sliced into 10 seconds of equal parts to generate145 
samples for each audio sample.

Table 1. List of voice commands

List of Commands Voice Users

Call 1234567890 UK Male 
FaceTime 1 2 3 4 5 6 7 8 9 0 
Open dolphinattack.com 
Turn on airplane mode 
Open the back door 
Navigation 
Hey Siri 
Ok Google 
Hi Galaxy 
Hello Huawei 
Alexa 
What Time Is It? 
Set the Volume to Zero

UK Male 
UK Female 
UK Hazel 
US G 
US David 
US Zira
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Audio Signal Classification

The model training and testing were done on a Dell laptop (Intel i7-7th generation 2.7 
GHz, 8GB RAM, 64-bit Windows OS). For the model selection, the number of layers 
and the activation functions used are very important for determining the accuracy 
of the model. In our model, we used four fully connected layers and the first three 
layers with Rectified Linear Unit activation and with last layer sigmoid function is 
used for classifying whether the signal is a laser or not. For optimization purposes, 
we used different optimizers and found Adam optimizer as the most effective for 
training the model. The corresponding neural network is shown in figure 4.

So in this experiment first we further increase the size of the signal using 
splitting the signal further into five segments which will help the model to have 
enough information about the signal. The main reason for this process is to avoid the 
underfitting of data. After this, the MFCC coefficient for each segment is derived 
from using the popular audio machine learning library Librosa. 40% of the data 
is solely used for testing and among the 60%, 20% of data is used for validation 
purposes to avoid overfitting.

Figure 4. Experimental setup block diagram
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Results

These MFCC are used as input to our model and found that validation and test 
accuracy of the recorded signals were 100% on validation data. To further improve 
the training, we randomly selected signals and apply the same process for testing 
and found them to be an average of 80% accurate.

Table 2 shows the result for two different testing samples. The 1st case testing 
includes the samples drawn from the microphone output and therefore the accuracy 
is higher for all kinds of optimizers used. The 2nd case testing includes random 
audio samples used to test how the model would respond and therefore we can see 
accuracy has dropped.

FUTURE RESEARCH DIRECTIONS

Human interaction with devices is almost everywhere this kind of detection will be 
helpful in various real-time applications like self-driving cars. This application is 
further extended to the detection of various Electromagnetic Interference signals 
which can be helpful for the protection of sensors in physical devices. Cybersecurity 
attacks can also be minimized by replicating the same work to the time-varying 
signals like audio signals used in this project. This can be helpful for various sensitive 
industries such as nuclear power plants which can be saved from explosions from 
malicious attacks. In medical applications, also help determine the analog signals 
such as ECG signals by feed into machine learning models such that the health of 
the patient can be monitored without the need of an assistant. At money withdrawal 

Table 2. Accuracy result for different optimizers

Optimizer Used Testing Accuracy 1st Case Testing Accuracy 2nd Case

Adam 100 95

SGD 99.65 80

RMSprop 100 82

Adadelta 79.26 32

Adagrad 98.40 85

Adamax 99.65 75

Nadam 99.82 90

Ftrl 98.4 85
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stations we can assist using analyzing the audio signals which are not common can 
help identify the thieves and protect the individual lives with less effort instead of 
recording videos which consume a lot of memory.

CONCLUSION

Deep learning provides an alternative to detect malicious signals which can protect 
various types of sensors. We can use simple models to classify signals from malicious 
signals. While amplitude modulated laser signals were explored in this project, other 
attacks can also be explored for applying deep learning models for identification.
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ABSTRACT

Technology has greatly increased the availability of medical procedures in remote 
locations that are difficult to access, such as battlefields. Teleoperated surgical robots 
can be used to perform surgeries on patients over the internet in remote locations. 
A surgeon can remotely operate the robot to perform a procedure in another room 
or in a different continent. However, security technology has not yet caught up to 
these cyber-physical devices. There exist potential cybersecurity attacks on these 
medical devices that could expose a patient to danger in contrast to traditional 
surgery. Hence, the security of the system is very important. A malicious actor can 
gain control of the device and potentially threaten the life of a patient. In this chapter, 
the authors conduct a survey of potential attack vectors a malicious actor could 
exploit to deny service to the device, gain control of the device, and steal patient 
data. Furthermore, after the vulnerability analysis, the authors provide mitigation 
techniques to limit the risk of these attack vectors.
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INTRODUCTION

In recent years, Tele-operated Surgical Robots (TSRs) have become more and more 
popular for diagnosis and surgery. TSRs such as da Vinci and RAVEN I/II have 
popularized using robots for minimally invasive surgeries (Chang, Lum & Hannaford 
et al.) TSRs have been designed to perform minimally invasive surgeries in remote 
locations such as battlefields, underwater, and disaster territories over ad-hoc wireless 
and satellite networks (Tozal et al., 2011).

TSRs are categorized as real-time interactive network applications and are 
constrained with maximum delay and loss requirements while still being capable 
of service in extreme environments. Many TSRs have adopted the Interoperable 
Telesurgery Protocol (ITP) as a standard. The ITP protocol uses light-weight UDP 
to achieve the lowest possible latency for communication between the endpoint 
devices. Figure 1 shows the communications diagram for the RAVEN I. This protocol, 
however, has several disadvantages when considering the safety and privacy of the 
patient. In addition, there consists of a lack of remote software attestation of TSRs 
and are susceptible to an endpoint-based attack.

Background Information on Tele-Operated Surgical Robots

Telesurgery is an emerging technology that connects surgeons and patients remotely—
combining advances in the medical field, network communications, and robotics. 
Telesurgery can overcome the shortage of local medical experts and the general 
inaccessibility of medical care in remote locations. In addition, it could potentially 
reduce the overall cost of medical care of fielding surgical specialists in remote 
geographical areas while still providing high-quality surgical care.

The RAVEN I/II is an open-source platform for research in tele-operative robotic 
surgery. As shown in Figure 2, it is composed of a master console, a network 
communications channel, and a surgical robot. The master console provides the 
surgeon’s tool manipulators to issue commands to the surgical robot and contains a 
2D/3D display for video feedback. The commands issued by the master console are 
converted into user command packets and sent over the network communications 
channel. Next, they are translated into motor commands by the robotic control software 
and sent to the control hardware, which enables the movement of the robotic arms 
and instruments. Video feedback is then sent back towards the master console to 
allow the surgeon visual confirmation of the current state.
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Security Protocols of Tele-Operated Surgical Robots

There is a safety Programmable Logic Controller (PLC) that operates in a state machine 
that consists of four states: a) emergency stop (“E-STOP”), b) initialization (“Init”), 
c) foot pedal released (“Pedal Up”), and d) foot pedal pressed (“Pedal Down”). The 
control software state is synced with the PLC state every 1 millisecond (Alemzadeh 
et al., 2015). In the “Pedal Up” state, the brakes are engaged, and the robot does not 
move. The “Pedal Down” state is initiated when the surgeon pushes the foot pedal 
down and allows the master console to control the robot directly. The “E-STOP” 
state immediately stops the robot. The control software detects and corrects any 
unsafe motor commands. During regular operation, the software continuously sends 
a square-wave watchdog signal to the PLC. Upon detecting a motor command that 
deviates too far time-wise from the last known command or the motor command 
position deviates too far from the robotic hardware’s current position, it terminates 
sending the watchdog signal. Upon loss of the signal, the PLC immediately puts 
the system into the “E-STOP” state.

Figure 1. RAVEN I communications diagram
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Interoperable Telesurgery Protocol

Most current-generation TSRs use a communications protocol called the Interoperable 
Telesurgery Protocol to communicate between the master console and the surgical 
robot. ITP allows heterogeneous surgical consoles (masters) and manipulators 
(slaves) to communicate regardless of the individual hardware and software (King 
et al., 2010). It also allows any brand or vendor master console and surgical robot 
to be used interchangeably as long as they adhere to the communications standard. 
ITP was designed to be deployed in remote environments such as battlefields, 
underwater, or other remote geographic locations. The protocol needed to consider 
the following for reliable performance:

• Communication latency
• Jitters
• Packet delays
• Out-of-order arrivals and losses
• Device failures

ITP adopted the User Datagram Protocol (UDP) as its communications protocol 
to carry command packets from the master console to the surgical robots and carry 
the video feedback from the surgical robot to the master console due to the low 
latency a real-time medical device like TSRs requires and its ability to handle 
communication latency and packet loss.

Figure 2. Robotic telesurgery using RAVEN II surgical platform
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VULNERABILITIES

Attacks on the TSRs can be labeled in one of two categories: Network-based attacks 
and endpoint-based attacks. Network-based attacks on TSRs try to observe or intercept 
data while en route from the master console and surgical robot. The endpoint-based 
attacks happen when one of the end machines is compromised.

Table 1 shows potential attacks, examples of the attack, and if that attack is a 
threat to either security or privacy (Lera et al. 2017).

Network-Based Attacks

TSRs are designed to be usable in remote locations and potentially even perform 
transcontinental surgery. However, there is a significant tradeoff between the 
operability and availability of TSRs and their security. Many TSRs have adopted 
the Interoperable Telesurgical Protocol (ITP), which employs the lightweight UDP 
protocol. UDP-Lite is designed to serve applications in error-prone networks that a 
malicious actor could take advantage of.

Network-based attacks on TSRs can be categorized as Man in the Middle (MITM) 
attacks. They take advantage of the insecure, high loss, and high delay tolerance 
afforded by UDPLite to conduct attacks such as eavesdropping or denial of service, 
which threaten security and privacy.

To launch a MITM attack on a TSR a network observer initially eavesdrops 
on the exchange between the two endpoints. This task is trivial if an attacker can 
compromise a node along the network communications path because the UDP 

Table 1. Types of attacks

Attack Type Example

Stealth attack 2 Modification/Substitution of 
sensor reading

Replay attack 1,2 Attacker impersonating roles

Covert attack 1 Third-party apps sharing personal 
data

False-data injection 1,2 Medical robots

DoS attack 2 Robot not working at all

Remote access 1,2 Robot controlled by an attacker

Eavesdropping 1 Attacker monitoring robot-user 
messages

Type 1 indicates a privacy concern. Type 2 indicates a security concern

 EBSCOhost - printed on 2/9/2023 9:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



148

Teleoperated Surgical Robot Security

packets are not encrypted. Once enough information is gained about the status of 
the connection, further attacks can be launched:

• Stealthy attacks: There is no detection in place to verify the source of a 
packet. All network-based attacks on TSRs using ITP can be considered 
stealthy attacks. Injecting malicious packets and legitimate packets will be 
processed the same.

• Replay attack: The TSR assumes the steam of UDP packets coming from the 
host computer to itself is continuous. As such, it uses a sequence number on 
each packet to determine the order as they are received. If packets are received 
out of order, only the highest numbered packet is considered legitimate and 
processed. The replay attacks resend captured packets and should not be a 
threat to the system since they will by default be lower-numbered and thrown 
out. Although, there exists the possibility of a replay attack succeeding where 
the sequence number counter hits its maximum threshold and resets back to 
0. Where a replay attacks packets would then be considered legitimate.

• Denial of Service attack: A denial of service attack can be performed by 
sending a sequence leading packet to the TSR client that triggers the E-Stop 
mechanism. This mechanism triggers if the movement of the robotic arms is 
too great from the current packet and the most recent packet or the current 
packet commands the robot to move into a forbidden region. This attack can 
be done continuously, rendering the device inoperable.

• Remote access/Hijacking: This attack can be performed by abusing the 
information gained from the sequence number. The system accepts the 
highest-numbered packets to be processed. To gain full remote access to the 
robot, an attacker can just add an offset when injecting packets. The legitimate 
packets from the surgeon will always be lower-numbered and rejected.

• Eavesdropping: Packets sent by the host computer to the TSR are not 
encrypted, and they can be intercepted and post a great concern to privacy 
and security.

Endpoint-Based Attacks

Most of the focus for finding vulnerabilities for TSRs is in the network communications 
domain. However, there exists a potential for attacks from compromising the endpoint 
computers that pose severe consequences. Not much research has been done for 
mitigating these types of attacks because they are assumed to be secure.

There are plenty of ways an attacker can gain remote access to the robot control 
system. An attacker can exploit vulnerable services, unpatched medical devices, 
stolen credentials, or insider attacks to penetrate the hospital network. From there, 
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the attacker can move laterally across devices until the target robot control system 
is penetrated.

If the host computer is compromised, an attacker can gain full remote access to 
the RAVEN by performing the following steps (Alemzadeh et al., 2016):

1.  Attacker downloads a malicious shared library, which implements a write or 
read system call wrapper.

2.  Attacker modifies LD PRELOAD or /etc/ld.so/preload to force future Linux 
processes to link to the malicious library.

3.  The system call wrapper sniffs USB traffic sent by the TSR and forwards the 
USB packet contents to the attacker listening on a remote server.

4.  Attacker performs off-line analysis on sniffed USB data from several runs to 
find a field in the USB packet that represents the state of the robot.

5.  Based on the analysis, the attacker modifies the malicious wrapper to trigger 
an attack when the robot is in an operational (“Pedal Down”) state.

6.  Attacker downloads the modified shared library to the RAVEN system by 
repeat

7.  Attack will be triggered automatically when the RAVEN control software 
reaches the “Pedal Down” state.

8.  The control command/feedback sent over the USB channel is modified to cause 
a sudden jump of the robotic arm or cause the control software to stop.

Figure 3. Typical control structure in surgical robots
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The real danger of the endpoint attack is the software-designed safety checks 
that cause the E-Stop feature in network-based attacks don’t work here as the control 
software performs the safety checks before they are sent to the USB interface boards. 
This attack can circumvent all known safety protocols and cause total destruction 
of the machine or the patient.

Detection of an attack like this is difficult because no shared processes are 
created to run the malware, no system-wide malicious activities are performed, no 
changes are made to the control flow of the target process, and there is no anomaly 
in the syntax of robot control commands (Alemzadeh et al., 2016). Current malware 
detection methods are insufficient in detecting this kind of attack.

Sensor-Based Attacks

It is a very reasonable security concern for the researchers as there have been many 
sensors present in the telesurgical robots. Also, teleo-perated robots do not use any 
encryption mechanism to communicate between patient consoles and doctor consoles. 
So, an adversary might capture data in the intermediate path and initiate attacks 
against the system. In this section, a brief discussion about all the sensors present 
in the telesurgical robots is presented, and the respective possible vulnerabilities 
are also explored. Our goal is to establish a ground from which to start exploring 
attacks on the tele-operated systems and suggest possible countermeasures for the 
respective security concern.

• Sensors Present in the Telerobotic Machines and Their Vulnerabilities: 
Sensors can be either internal or external to the robotic manipulator. The 
former is directly mounted on the manipulator (e.g., joint position sensors, 
force sensors). The latter is separated from the manipulator (e.g., external 
camera systems) and integrated into the control system.

• Inertial Sensor: Inertial sensors are sensors based on inertia and relevant 
measuring principles. Typically known as Inertial Measurement Unit (IMU), 
an IMU sensor consists of accelerometers, gyroscopes, and sometimes also 
magnetometers.
 ◦ Vulnerabilities in Inertial Sensor: (Tu et al., 2018) demonstrated that 

by injecting acoustic signals into inertial sensors, an attacker can control 
the output of an inertial sensor. The authors described slight sample rate 
drifts could be amplified and cause deviations in the frequency of digital 
signals. Such deviations result in fluctuating sensor output.

• Strain Gauge Force Sensor: Embedded in the probe holder, measures the 
contact force between the real probe and the patient’s skin.
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 ◦ Vulnerabilities in Strain Gauge Force Sensor: A strain gauge is a 
sensor whose resistance varies with applied force; It converts force, 
pressure, tension, weight, etc., into a change in electrical resistance that 
can then be measured. When external forces are applied to a stationary 
object, stress, and strain are the result. Stress is defined as the object’s 
internal resisting forces and strain is defined as the displacement 
and deformation that occurs. Faulty wiring in the surgical machine 
and wrong impact settings make the sensor vulnerable at the time of 
measuring stress in a stationary object. This problem also can be crucial 
for telesurgical robots also.

• Force Sensor: Present at the master site or doctor site. This hands-free input 
device allows the medical expert to perform natural medical gestures as in 
conventional conditions. These sensors provide the setpoints for robot control.
 ◦ Vulnerabilities in the Force Sensor: Remote attack in the force sensor 

might occur problems in the sensing material. In the master site, there 
presents a monitor screen that shows the force pressured with the pedal 
from the foot. Force value could have tampered with the change remotely 
from the remote site. The effect is too severe as sensing material could 
cause a huge change at the time of the operation.

• 6D Localization Magnetic Sensor: Giving the attitude and position of the 
fictive probe in real time; this system also integrates an actuator that can be 
controlled to render to the expert the effort sensed by the robot end-effector 
on the patient.
 ◦ Vulnerabilities in 6D Localization Magnetic Sensor: To track the 

movement of a wireless capsule and get the 6D localization and with the 
magnetic sensor array arranged out of the human body, it is very urgent 
to have exact measurement and localization at the time of surgical 
procedures. Passive magnetic attack on localization sensor creates false 
localization and make it harder for the tele-operational procedures.

• Range Sensor: To determine the physical distance at the time of the operation.
 ◦ Vulnerabilities in Range Sensor: Transmission in a wireless network 

might be in lag for the range sensor. The communication range in the 
range sensor is limited, and a lag of response could happen for the 
faulty sensor configuration. For example, if the master side and the 
patient side have a long distance between them, then the range sensor 
could not act properly at the time of distance measurement. Also, 
operational procedures might face lag in communication for faulty 
range measurement by the range sensor.

• Torque Sensor: A torque sensor, torque transducer or torque meter is a 
device for measuring and recording the torque on a rotating system, such as 
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an engine, crankshaft, gearbox, transmission, rotor, a bicycle crank, or cap 
torque tester. Static torque is relatively easy to measure.
 ◦ Vulnerabilities in Torque Sensor: Torque sensors or torque transducers 

use strain gauges applied to a rotating shaft or axle. So, the vulnerabilities 
found in the strain gauge sensors can be applied in the torque sensors 
too.

• Vibration Sensor: The vibration sensors measure the high-frequency 
accelerations of the tool arms, and the central receiver drives the voice coil 
actuators on the master handles to let the surgeon feel these vibrations. The 
gain control knob adjusts the magnitude of the vibration feedback.
 ◦ Vulnerabilities in Vibration Sensors: The vibration sensor and 

intrusion sensor acts as same. Both the sensors could be affected by 
the change in the surface. A physical-injection attack on the vibration 
sensor could change the effect of the normal vibration and could dampen 
the effect in the normal operational procedure. Surface-aided and aerial 
vibration could also be affected by the physical attack in the process.

• Acceleration Sensor: The basic underlying working principle of an 
accelerometer is such as a dumped mass on a spring. When acceleration is 
experienced by this device, the mass gets displaced till the spring can easily 
move the mass, with the same rate equal to the acceleration it sensed.
 ◦ Vulnerabilities in Acceleration Sensors: Acceleration sensors are 

susceptible to acoustic attacks. Analog acoustic injection attacks can 
damage the digital integrity of the capacitive MEMS accelerometer. 
Spoofing such sensors with intentional acoustic interference enables 
an out-of-spec pathway for attackers to deliver chosen digital values to 
microprocessors and embedded systems that blindly trust the invalidated 
integrity of sensor outputs.

• Laser Range Finder (LRF) Sensor, (i.e., a lidar), which is installed on 
the robot to map and perform precise localization; a technique known as 
Simultaneous Localization and Mapping (SLAM).

• Distal Sensor: To obtain realistic force information, a sensor is preferably 
placed close to the instrument tip, minimizing the errors due to friction 
between the instrument and the point of incision. The sensor should be 
separated from the drive mechanism to prevent the influence of backlash and 
friction on the sensor’s performance.
 ◦ Vulnerabilities in the Distal Sensor: A distal sensor is related to 

motion feedback. The master side of the operational process has a distal 
sensor in the operation room, and it is used to measure and categorize 
the motion feedback. So, the problem may arise at the time of master to 
patient feedback if the communication has some lag and distal sensor 
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data does not deliver from the patient to the master side. Change in 
the position of the distal sensor also could affect hugely at the time 
of operational procedures. Physical access also could change with the 
distal sensor with the heating and environmental factor.

MITIGATION

Network-Based Attacks

ITP is the standard communication protocol for telesurgery developed by Washington 
BioRobotics Laboratory (BRL) at SRI International. The protocol did not consider 
security measures, and the data is transmitted in plaintext. It is widely adopted 
in telesurgery robots; thus, securing it is crucial. Most of the proposed solutions 
involve updating the ITP protocol that uses UDP to communicate to a more secure 
communication platform. Protocols such as:

• Secure and Statistically Reliable UDP (SSR-UDP): SSR-UDP is a lightweight 
protocol that provides confidentiality and reliability for the system while 
conveying the requirements of Telesurgical Robot Systems (TRSs). This 
protocol layer is built on top of UDP and is located between transport and 
application layers of the Internet Protocol Suite. Instead of using encryption, 
the protocol is using a coding scheme based on a secure key generation 
function. The function takes a pre-shared key and arbitrary length input and 
generates the message-authentication key. Also, it relies on forwarding Error 
Correction (FEC). In TRSs, the controller sends messages continuously; 
and the robot will process the messages at the application layer. However, 
SSR-UDP will accumulate ‘k’ messages encode them into ‘n’ packets. The 
receiver will collect k packets to be able to decode the whole message. The 
security achieved using SSR-UDP is the same as the AES-128 security level 
with less overhead; that also holds when compared SSR-UDP to standard 
DTLS, TLS/SSL (Tozal et al., 2013 & 2015).

• Secure ITP: Secure ITP enhanced security by introducing an independent 
framework on top of ITP. In IPT specification, two communication channels 
are defined: TCP Transmission Control Protocol (TCP) and User Datagram 
Protocol. (UDP). Transport Layer Security (TLS) and Datagram TLS (DTLS) 
are protocols suggested by NIST to secure TCP and UDP, respectively. TLS 
and DTLS to Secure ITP communication on the corresponding channels. 
Secure ITP used TLS and DTLS, but by implementing only one cipher 
Algorithm, which is AES, to encrypt the communication channel and thus 
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provide data integrity and privacy. Moreover, authentication and level of 
authorization are achieved by implementing certificates based on the X.509 
standard.

• Encryption: Iqbal et al. developed a security framework called 
(SecureSurgiNET) based on standard cryptography primitives in addition 
to a tele-surgical authority (TSA) infrastructure. The model is divided into 
three phases: pre-operative, intra-operative, and post-operative phases (Iqbal 
et al. 2019). In the first phase, a secure connection is initiated between the 
master and slave based on the X.509 and the patients’ biometric identities. 
In the intra-operative phase, TCP and UDP connections are active. The 
communication is encrypted using Advanced Encryption Standard (AES) to 
provide confidentiality and integrity of the data in both directions. During 
the last stage, all data are stored in TSA for future use. Worth mentioning 
that TSA maintains security components such as local certification authority, 
authentication server, and records of participating entities. The framework 
assures a strong security level while adhering to the TRS delay limit.

Endpoint-Based Attacks

• Dynamic model-based detection: Add in anomaly detection at the USB 
Interface level before the commands reach the physical robot to detect motor 
and robot arm positions if beyond safety limit. A study done by (Alemzadeh 
et al., 2016) showed that some types of attacks are hard to detect for several 
reasons, including having the same command syntax of legit one, the same 
control flow, and unnoticed overhead in terms of the delay and performance. 
They developed a dynamic model framework to assess the attack by simulating 
its impacts on software, not physically. The model will check every command 
dynamically before implementing it on the physical system. The simulation 
estimates the motor position, precisely the motor acceleration, the motor 
velocities, and the joint velocities. Then the system will raise an alert if the 
value exceeds a pre-defined threshold (more than 1mm per 1-2 ms). The 
simulation process and the detection should be done within one millisecond 
to avoid a lag in a real-life situation. As figure 4 shows, the framework 
consists of:

 ◦ A master console emulator imitates the tele-operation console 
functionality, responsible for sending packets to the RAVEN control 
software.

 ◦ A graphic simulator to show a 3-D movement of the robots.
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 ◦ A dynamic model of the RAVEN II physical system: to model the robot 
behavior.

 ◦ An attack injection engine: used to generate different attack scenarios.

The model succeeded at 90% in detecting malicious commands before they manifested 
in the physical system (Alemzadeh et al., 2016).

• Secure software attestation: It introduces a way to verify the integrity of 
the system software remotely. This form of verification verifies malicious 
commands are not injected by measuring latency between the endpoints. All 
attacks add latency to the system and would be found using this method. 
Three entities are involved in the protocol: a control component (the verifier), 
TRS (prover), and a smart card to be inserted into TRS; the TRS works as 
a router between the other two entities. The protocol depends heavily on 
asymmetric key encryption to perform encryption and digital signature. 
When the medical personnel inserts the smart card into TRS, an attestation 

Figure 4. (a) Simulation framework for assessment of the impact of attacks. (b) 
Dynamic-model based detection and mitigation mechanisms
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request is sent to the verifier. The verifier will use the public key of the smart 
card to send encrypted values of seed and an ounce. Then the smart card 
will retrieve the values and hand them to the TRS to perform the attestation 
function. The smart card will start its clock, which depends on the GPS. 
Then TRS sends back the function’s results to the smart card. The smart card 
will generate a digital signature to send the hash result along with the time 
duration to perform the function back to the verifier. Finally, the verifier will 
compare the value with its calculation to check the integrity of the system 
(Coble et al., 2010).

Sensor-Based Attacks

To protect MEMS inertial sensors without compromising their advantages in 
size, weight, power, and cost (SWaP-C (Kranz et al., 2017)), recent studies have 
been dedicated to using micro-level techniques for acoustic isolation. Dean et al. 
proposed using micro-fibrous metallic cloth as an acoustic damping material to 
protect MEMS gyroscopes (Dean et al., 2011). Soobramaney et al. evaluated the 
mitigation effects of micro-fibrous cloth on noise signals induced in MEMS gyros 
under acoustic interferences (Soobramaney et al., 2015). They tested 7 MEMS 
gyros and showed that by surrounding the sensor with 12 mm of the media, 65% 
reduction in the amplitude of noise signals can be easily obtained, and up to 90% 
reduction could be achieved (Soobramaney et al., 2015). Additionally, Yunker et 
al. suggested using MEMS fabricated acoustic meta-material to mitigate acoustic 

Figure 5. Smart card assisted software attestation of the TRS
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signals at frequencies close to the resonant frequency of the MEMS gyroscope 
(Yunker et al., 2013). Furthermore, Kranz et al. showed that a MEMS-fabricated 
micro-isolator could be applied within the sensor packaging, but their work mainly 
focused on isolating mechanical vibrations (Kranz et al., 2017).

• Filtering: As suggested in (Trippel et al., 2017), a low-pass filter (LPF) 
should be used to eliminate the out-of-band analog signals. According to the 
datasheets (STMicroelectronics L3GD20 datasheet), (STMicroelectronics 
LSM330 datasheet.), we find that many inertial sensors have an analog LPF in 
their circuits but are still vulnerable to acoustic attacks, which could be due to 
a cut-off frequency that is set too high. We also find that most programmable 
inertial sensors use a digital LPF for bandwidth control (STMicroelectronics 
L3G4200D datasheet.), (InvenSense MPU-6500 datasheet). However, filters 
in digital circuits will not alleviate the problem because out-of-band analog 
signals have already been aliased to in-band signals after sampling.

• Sampling: Trippel et al. proposed randomized sampling and 180◦ out-
of-phase sampling methods for inertial sensors with analog outputs and 
software-controlled ADCs (Trippel et al., 2017). These approaches were 
designed to eliminate an attacker’s ability to achieve a DC signal alias and 
limit potential adversarial control. However, adding a randomized delay to 
each sampling period or computing the average of two samples at a 180◦ 
phase delay could degrade the accuracy of inertial measurements. Minor 
errors in the measurements could accumulate in a long time and might affect 
the system’s performance.

An alternative sampling method to mitigate potential adversarial control without 
degrading the performance is using a dynamic sample rate. The frequency of the 
induced digital signal depends on both the frequency of resonant sound waves and 
the sampling frequency. With a dynamic sampling frequency, attackers may not 
induce a digital signal with a predictable frequency pattern. In this case, the ability 
of attackers will be limited, and it could be difficult for attackers to accumulate a 
large heading angle in a target direction. This might be a general mitigation method 
for ADCs subject to out-of-band signal injections.

Additionally, redundancy-based approaches could enhance the resilience of the 
system. For example, multiple sensors could still provide trustworthy information 
when one of them is under attack. It might still be possible to attack or interfere with 
several sensors simultaneously to affect the system’s functioning, but such attacks 
could be more challenging to implement.
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CONCLUSION

Teleoperated robots play an essential role in the medical field, especially in 
remote locations such as battlefields or third-world countries. ITP is the standard 
communication protocol for TRSs, which depends on UDP for fast communication. 
However, several security issues have been found in TRSs, exploits such as MITM 
and DoS. Since using standard security primitives add computation overhead and 
latency, researchers investigate different mitigation strategies to enhance security. 
Without securing TRSs, the potential benefits of the system are limited.
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ABSTRACT

Launched in 2017 to widespread publicity due to the involvement of tech magnate 
and outspoken futurist Elon Musk, Neuralink Corp. aims to develop an advanced 
brain-computer interface (BCI) platform capable of assisting in the treatment of 
serious neurological conditions with longer-term goals of approaching transhumanism 
through nonmedical human enhancement to enable human-machine “symbiosis 
with artificial intelligence.” The first published description of a complete prototype 
Neuralink system, detailed by Muskin the company’s only white paper to date, 
describes a closed-loop, invasive BCI architecture with an unprecedented magnitude 
of addressable electrodes. Invasive BCI systems require surgical implantation to 
allow for directly targeted capture and/or stimulation of neural spiking activity in 
functionally associated clusters of neurons beneath the surface of the cortex.

INTRODUCTION

Launched in 2017 to widespread publicity due to the involvement of tech magnate 
and outspoken futurist Elon Musk (Winkler et al., 2017), Neuralink Corp. aims to 
develop an advanced brain-computer interface (BCI) platform capable of assisting 
in the treatment of serious neurological conditions (Masunaga et al., 2017), with 
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longer-term goals of approaching trans-humanism through nonmedical human 
enhancement to enable human-machine “symbiosis with artificial intelligence” 
(Newitz et al., 2017).

The first published description of a complete prototype Neuralink system, 
detailed by (Musk et al., 2019) in the company’s only white paper to date, describes 
a closed-loop, invasive BCI architecture with an unprecedented magnitude of 
addressable electrodes. Invasive BCI systems require surgical implantation – (Musk 
et al., 2019) further describes an advanced surgical robotic system for insertion of 
flexible interfacing probes – to allow for directly targeted capture and/or stimulation 
of neural spiking activity in functionally associated clusters of neurons beneath the 
surface of the cortex.

Non-invasive approaches to BCI, such as electroencephalograms (EEGs), use 
external sensors placed against the skin over the cranium to capture neural activity 
patterns at a coarse and superficial granularity not considered suitable for fine 
motor control or intensive medical therapies. Closed-loop, invasive BCI systems 
are bi-directional, making direct contact with target neural populations to sense 
and, if necessary, electrically stimulate to induce neuron spiking. Stimulation in 
closed-loop systems occurs as a function of recorded neural activity and associated 
feedback logic under specified parameters.

Motivations

The prototype system unveiled by Neuralink (Musk et al., 2019) contains a significant 
quantity of electrodes in comparison to medically available invasive BCI systems 
currently approved for use in treatment. The described implant contains a series of 
individual neural processing ASICs, with each individual unit interfacing with a 
series of up to 96 implantable polymer threads, which each contain 32 independent 
electrodes. This entails a system capable of recording and stimulating thousands 
of distinct neural clusters with relatively low latency. The implant device further 
includes real-time temperature, accelerometer, and magnetometer sensors, packaged 
in a titanium enclosure with a moisture barrier coating.

While the first Neuralink system utilized a wired USB-C style connection for 
power and data transfer, media releases and official demonstrations of the technology 
at company determined milestones have illustrated a far more modern system that 
employs Bluetooth Low Energy (BLE) at the link layer and an unspecified form of 
wireless induction for power transfer through human skin – the implanted device 
is no longer physically accessible without surgery. This anticipated transition to a 
wireless architecture may not only create a series of novel vulnerabilities which must 
be addressed prior to the public release of the system but also a serious advantage in 
the capability of BCI systems to aid in the treatment of serious neurological disorders.
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Deep brain stimulation by BCI systems has been successfully used to address a 
number of such maladies, ranging in severity from epileptic disorders and Parkinson’s 
disease to more typically psychological concerns like Obsessive Compulsive Disorder 
and anorexia (Drew et al., 2019). Neural recordings from targeted cortical clusters 
using invasive BCI have further been employed as input to enable speech synthesis 
and motor control software, among other uses (Drew et al., 2019).

Reliance on stimulation or monitoring systems like these, even when only for 
transient medical treatment, can have profound psychological impacts on implant 
recipients. The level of “symbiosis” felt towards the implant and its efficacy can 
lead to intense feelings of reliance in some cases. In contrast, others have reported 
anxiety over feelings over dependency and confusion about the extent to which 
their autonomy remains intact (Drew et al., 2019), (Pugh et al., 2018). Deep brain 
stimulation, even when under conscious control through user input, breaches the 
relatively closed system that composes the brain; beyond considering factors of 
mental state and environmental triggers, electrical stimulation functions as a third 
factor that modulates the neural activity and may have far-reaching impacts due to 
the highly complex and often reciprocal structuring of the cortex. These concerns 
will likely grow more prominent in regulations of BCI systems for medical and 
non-medical use cases as the technology scales.

More practical motivations for assessing the potential vulnerabilities in the system 
proposed and under active development by Neuralink relate to consumer privacy, both 
medical and personal, as well as human safety. BCI data about neural activity over 
time has been used as input in numerous machine learning models to make inference 
about highly sensitive personal information, including emotional states, sexual 
preferences, and religious beliefs, among others (Agarwal et al., 2019). Inference 
about neurological conditions would likely be far more trivial, as the use of BCI in 
their treatment is well documented. Such information could undoubtedly be used 
with malicious intent when combined with the scale and wireless interoperability 
projected of a future Neuralink system.

A simple example of such an attack, assuming unprotected access to neural 
signatures as they are transmitted by the implant, falls under a class of so-called 
subliminal attacks and involves measuring the P-300 visually evoked wave response to 
familiar stimuli; roughly 300ms after a visual stimulus is observed, either consciously 
or subliminally depending on presentation duration, a reliably identifiable pattern of 
neural activity is generated if the subject is familiar with the targeted stimulus. This 
information has been documented to reveal highly sensitive personal details about 
the subject, such as user passwords, bank PINs, familiarity with faces, and the like 
(Marin et al., 2018). Possession of such data, when combined with application and 
link-layer vulnerabilities, may enable a range of violations to patients – the concept 
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of “targeted advertising” could take on an entirely different meaning, among other 
far more potent transgressions against consumers and patient rights.

Beyond the potential for human-level manipulation through highly targeted neural 
stimulation, made far more severe by the scale of electrodes on the Neuralink BCI 
system under development as well as by the related robotic surgical system designed 
to facilitate more accurate interfacing with neural populations, are concerns about 
the physical safety of implant recipients. Deep brain stimulation via electrodes can 
cause permanent neurological damage when abused, literally cauterizing the affected 
volume of neurons. For implant recipients who rely on the BCI system to manage 
a potentially life-threatening brain condition such as epilepsy, targeted denial or 
alteration of this service could have severe irreversible consequences. Similar attacks 
have been proposed for less severe conditions such as impulse control disorders, 
where maltreatment may aggravate rather than treat the condition underlying the 
patient’s drive to engage in inappropriate behaviors such as gambling or risky sexual 
practices – an issue of both autonomy and personal integrity (Drew et al., 2019).

Given the proposed scale of the Neuralink system, both in a breadth of access 
and variety of intended end uses, the numerous motivations which may drive the 
development of advanced methods to breach its security deserve to be considered 
with serious study. Neural information may be the most private data that a person 
can produce, and unauthorized wireless access to manipulate the brain could be 
the most severe invasion of human privacy and integrity imaginable given current 
technology.

Attack Model

The authors first consider the potential attack model, which they later use to 
characterize the attack surface of the proposed Neuralink BCI system. The model 
presented draws from both previous kinds of research in BCI security and from 
details confirmed by Neuralink through publications and media releases. Further 
assumptions about system specifications, architectural design, or protocols employed 
are made only as necessary and kept to a minimum.

Victim

The authors consider the potential target or victim to be a human implant recipient 
of the finalized Neuralink N1 Link. They assume this victim is not immobilized 
by paralysis or confinement and that the device may be used to treat a neurological 
condition. However, this does not preclude other uses enabled by the variety of 
applications expected in the public release of the system by Neuralink.
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Figure 1 illustrates a combined flow model of the capture and stimulates processes 
of closed-loop invasive BCI. The implant identified in phase 2 of this diagram 
communicates wirelessly with the victim’s smartphone, assumed to be running 
some modern release of either iOS or Android operating system.

Based on comments both by Neuralink engineers as well as details provided on 
their public website, it is assumed that the latest version of BLE (v5.2) is employed 
as the link-layer protocol. The scope of this analysis is further limited by assuming 
that all recordings and commands are communicated solely between the implant 
and peripheral smartphone controller, with no transmission of relevant data onto 
public channels like the Internet – latency requirements for processing this data in 

Figure 1. Illustration of the flow of information and commands in a closed-loop 
invasive BCI approach. Blue/clockwise direction represents the flow during the 
capture of neural activity and red/counterclockwise direction represents the process 
of actualizing targeted neural stimulation. Adapted with minor alterations from 
(Bernal et al., 2021) to reflect the Neuralink N1 system intended for use with a 
mobile smartphone control periphery.

 EBSCOhost - printed on 2/9/2023 9:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



166

Brain-Computer Interface

a useful way for most intended applications make on-peripheral processing of real-
time data an obvious choice where feasible.

Attacker

As physical contact with the victim or their personal peripheral devices cannot be 
reasonably accomplished without detection given a non-immobilized attack victim, 
a man-in-the-middle (MitM) approach is the most likely scenario to be effective for 
attacks on the communication between implant and control device. It is assumed 
that the attacker operates within reasonable wireless communication range of the 
victim and that noticeably close proximity may only be maintained for brief periods.

Attack Surface Characterization

Given the established attacker and victim models, the authors characterize the attack 
surface of the proposed Neuralink system into two major components: physical 
attacks and BLE stack attacks. For physical level attacks, the authors primarily 
consider the case of EMI – physical contact is not considered a feasible means of 
attack under our model. The BLE stack may be sub-divided into BLE and application 
layer components. The current BLE protocol divides many security responsibilities 
primarily between the BLE chip implementation and authorized control by the 
application making use of the link-layer connection.

ATTACKS

In this section, each attack vector and present known vulnerabilities that may impact 
them are described, including a non-exhaustive explication of some example attacks.

Intentional EMI

EMI, which may impact an invasive BCI system, can occur in three common forms 
(Rahimpour et al. 2021). Interference via radiation can be caused by electromagnetic 
waves transmitted from one device interacting with electronic components of a 
secondary device, generating unwanted electrical currents in the latter. Inductive 
interference can also occur when there is electromagnetic coupling between two 
devices. This same phenomenon enables wireless charging for the proposed Neuralink 
device; readers may be more familiar with the effects of inductive coupling from the 
wireless charging pads used by some modern smartphones. Variations in a nearby 
magnetic field, amplified by any coils in conductive wiring, allow for one device 
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to generate an electric current in the other without direct physical connectivity. 
Conductive forms of EMI require a direct physical connection between the 
devices. This connection may either involve only the devices having physical, and 
the conductive contactor may include an additional conductive medium – human 
tissue is a good conductor for some frequencies of this type of EMI, and this is the 
same principle that enables cardiac defibrillation as well as nonlethal electroshock 
weapons (tasers).

The EMI attack vector would be the more challenging approach to induce malicious 
impacts on victim implants. One cause for concern could be the aforementioned 
electroshock weaponry to overload the implant, though this has not been studied in 
BCI systems to date. Research specific to these types of implants, as recommended 
by (Rahimpour et al., 2021), may clarify the feasibility of such attacks given the 
complex interactions between the human body and applied currents.

Induction-based EMI has been better studied in the literature, though not primarily 
focusing on implants (either BCI or other). (Selvaraj et al., 2018) explored this possible 
attack vector in-depth and devised a theory of attack which shows how arbitrary 
inductive waveforms can be devised to induce random voltage readings in the analog 
portion of embedded systems sensor inputs and outputs. Their experimental attacks 
employed commercially available hardware and only required access to an example 
of the target device to tune the attack parameters. This method used magnetic near-
field coupling, tuned to account for the unique heightened response properties of 
the victim circuitry to particular frequencies of EMI. The demonstrated attacks were 
shown to enable false data injection and false output (command) injection.

In the experiments conducted by (Selvaraj et al., 2018), the attacker generates 
a sinusoidal EM signal to induce an AC voltage in the analog portion (sensor and 
its connection to chip) of the victim device circuitry. Due to clipping effects at the 
analog-to-digital conversion, the AC voltage is converted to DC. The authors were 
able to achieve a 50% bit-flip rate in targeted induction. Targeted attacks utilizing this 
particular vector may be difficult without advanced knowledge of the inner workings 
of the system (or sufficient access to reverse engineer its operation); blind attacks, 
either to manipulate the readings provided by implant electrodes or to cause direct 
neural stimulation by inducing a current in the implant threads, maybe a concern 
that future research should anticipate.

BLE Stack

BLE uses a different physical layer, link layer, application layer, and security 
architecture from Bluetooth (BT). Among other differences, the BLE standard 
employs frequency hopping at the physical layer, a master-servant medium access 
protocol at the link layer, and an entirely distinct security profile. BLE offers Secure 
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Connections Pairing, which operates as follows: peripheral (servant) devices advertise 
metadata in the clear; the master devices initiate a connection; both devices negotiate 
and establish a Long-Term Key (LTK) using authenticated Elliptic Curve Diffie-
Hellman; this LTK is then used to derive session keys for encrypted data transfer 
during active connections using 128-bit AES in CCM mode.

While the latest versions of the BLE protocol have included numerous techniques 
to protect the integrity and privacy of communications between master and servant 
devices, many known passive and active attacks against the standard exist in the 
literature. We describe a few such techniques below which may apply to the future 
Neuralink BCI system, beginning with passive attacks and followed by active methods.

One class of passive attacks is digital fingerprinting. As reported in (Celosia et 
al., 2019), unreported application-initiated scans of nearby BLE devices can be used 
to identify and potentially track the behavior of victim users. This allows attackers 
to circumvent the anti-tracking measures implemented by iOS and Android mobile 
platforms. iOS and Android enable applications to perform background scans of 
available BLE devices while Bluetooth connectivity is enabled. BLE advertisements 
by servant devices include (potentially randomized) addressing identifiers, plaintext 
names, manufacturer data, and optional service identification numbers, among 
other attributes. While the value corresponding to many of these fields can be 
encrypted, their headers are not. Unprotected visibility of field information, which 
may contain unique string identifiers such as owner names or device manufacturer 
details (Neuralink is a fairly trivial name for which to infer the corresponding device), 
represents a non-trivial violation of user privacy when accessed by applications 
that do not have a legitimate use for scan data, such as to initiate connections to a 
particular class of BLE peripheral.

A more helpful version of such fingerprinting attacks is to perform cross-app 
tracking. When two or more applications collect background peripheral advertisements 
simultaneously, similarity scoring to compare their results has been shown to be 
effective for identifying unique targets using completely disjointed application 
accounts (Korolova et al., 2018). The constant presence of a nearby connected BLE 
device such as the Neuralink implant may make such passive attacks more trivial to 
conduct, as both iOS and Android permit applications to query the lists of available, 
saved, and active BLE connections. For Android devices, data communicated between 
the master device and peripheral servant over BLE is accessible to all applications, 
requiring application-level security to protect sensitive information acquired by or 
sent from the application actively using the BLE connection.

Active attacks represent a more pressing threat under the BLE stack attack 
surface. In contrast, passive attacks may violate certain aspects of user privacy 
and communications confidentiality, breaching link and/or application-level 
authentication and encryption – which we should assume any application interfacing 
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with the Neuralink system will implement to the highest current standards – poses 
more severe risks to the integrity of communications as well as the privacy and 
safety of the implant recipient.

Bluestaking is an attack that may be used to force a MitM condition (Hensler et 
al., 2019). This cache poisoning attack targets the Advertising Name cache on master 
devices to induce attacker-selected address-to-name mappings before pairing. For the 
Neuralink system under consideration, this entails a significant vulnerability when a 
new master device is being established – mobile phone upgrades and replacements are 
not infrequent. The attack leverages poor handling of conflicting peripheral servant 
device advertisements in the BLE standard to manipulate cache entries stored in the 
master device. A Disputed Advertisement Condition may be defined as when two 
advertising packets contain contradictory information about what appears to be the 
same device (to the master device), and an Undisputed Advertisement Condition 
may be defined as when information is absent from one of the advertising packets 
but present in the falsified but nearly identical second packet. The master device 
assumes that additional information in the second advertisement is correct by default.

When packets from multiple sources contain conflicting address-to-name 
advertisements, the master device may accept a false device mapping. Two 
advertisements containing the same device address but differing device names can 
introduce a false name record for the actual servant device. Further, the actual servant 
device being spoofed by the attacker can be forced into a non-discoverable state by 
inducing a Disputed Advertisement Condition where the attack device advertises 
itself as non-discoverable but with identical information to the victim peripheral. 
The master device accepts the falsified non-discoverable flag and removes the target 
servant device from a list of available connections at the user level. This second 
capability of Bluestaking could allow an attacker to both insert their attack device 
as an intermediary between target master and servant and present the attack device 
to the target master as the only apparent match for a desired available pairing by 
advertising a similar name string.

Another potentially severe active attack targets the BLE pairing process. For 
interoperability, the BLE standard dictates an essential negotiation phase during 
connection establishment (pairing), which includes negotiating the strength (known 
as entropy) of the LTK to be established. As documented by (Antonioli et al., 2020), 
the BLE standard allows for entropy reduction from a default 16 bytes down to 7 
bytes, with no established authentication or encryption for the negotiations between 
master and servant devices. The highest security setting available in BLE, Mode 1 
Level 4, mandates 16-byte entropy but lacks any enforcement mechanism; similar 
attacks on BT reduce entropy down to 1 byte (256 candidate keys trivial), making 
BLE the more secure choice still. A MitM attack on the unprotected essential entropy 
negotiation phase allows the minimum value to be accepted with no alert to the victim. 
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Once both devices accept an LTK, session keys generated from this reduced entropy 
LTK are similarly low entropy. An attacker may then eavesdrop on all transmitted 
session ciphertexts to break the encryption of the LTK, which was confirmed by 
(Antonioli et al., 2020) to be computationally feasible for all BLE implementations 
tested (over 30 systems). (Antonioli et al., 2020) strongly recommends that revisions 
to the protocol establish a minimum value of 14-byte entropy for BLE, as this strength 
remains secure against known practical decryption attacks.

CONCLUSION

While our initial attack surface analysis of the invasive BCI system under development 
at Neuralink is highly theoretical and is able to draw from few confirmed specifications 
of their system, there are some takeaways that warrant consideration both by the 
engineers at Neuralink and the research community, which must inevitably conduct 
a more thorough inspection for potential risks to implant recipients.

While the possibility of intentional EMI has been considered (and shown to 
be potentially problematic for implanted devices), experimental analysis specific 
to invasive BCI should be conducted. This research focus should also assess the 
potential for misuse of the recharging periphery in induction-based EMI attacks, as 
this unknown power-transfer source may be vulnerable to manipulation.

The current BLE standard has been shown to be vulnerable to numerous active 
and passive attacks, which may severely impact implant recipient privacy and safety. 
Future research will undoubtedly uncover new security holes in the specification of 
this link layer protocol, requiring constant vigilance from manufacturers. Relying 
on the security implementation of the link layer will be insufficient, mainly when 
the application layer operates on the Android mobile OS but potentially for iOS as 
well – the Apple developer documentation is vaguer about application layer risks. 
We could not find a similar recommendation for application-layer authentication 
and encryption as recommended in the Android documentation to protect against 
unwanted data access by other applications on the device.

Given the attack vectors assessed above, the most effective recommendation for 
minimum acceptable security should be for all user applications that process data 
related to the Neuralink implant to employ robust authentication and encryption of 
all recorded device information and all communications to the implant device that 
passes through the OS. To quote (Drew et al., 2019), “brain information is probably 
the most intimate and private of all information,” and the scale and projected consumer 
market for systems like those proposed by Neuralink require that the security of these 
implants and their control periphery be considered with complete thoroughness.
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ABSTRACT

Implantable medical devices (IMDs) are miniaturized computer systems used 
to monitor and treat various medical conditions. Examples of IMDs include 
insulin pumps, artificial pacemakers, neuro-stimulators, and implantable cardiac 
defibrillators. These devices have adopted wireless communication to help facilitate 
the care they provide for patients by allowing easier transferal of data or remote 
control of machine operations. However, with such adoption has come exposure to 
various security risks and issues that must be addressed due to the close relation of 
patient health and IMD performance. With patient lives on the line, these security 
risks pose increasingly real problems. This chapter hopes to provide an overview of 
these security risks, their proposed solutions, and the limitations on IMD systems 
which make solving these issues nontrivial. Later, the chapter will analyze the security 
issues and the history of vulnerabilities in pacemakers to illustrate the theoretical 
topics by considering a specific device.

INTRODUCTION

Implantable Medical Devices (IMDs) are miniaturized computer systems used to 
monitor and treat various medical conditions. Examples of IMDs include insulin 
pumps, artificial pacemakers, neuro-stimulator, and implantable cardiac defibrillators. 
These devices have adopted wireless communication to help facilitate the care 
they provide for patients by allowing easier transferal of data or remote control of 
machine operations. However, with such adoption has come exposure to various 
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security risks and issues that must be addressed due to the close relation of patient 
health and IMD performance.

Because IMDs are implanted inside the human body, there exist several limitations 
on these devices. For example, size, battery power, computational power, and 
inadaptability are issues associated with the physical devices themselves that prove 
troublesome for implementing security measures. Along with this, there also exist 
situational limitations or limitations related to the use of these devices, which also 
cause problems for security. Such as requirements of availability and desires for 
unobtrusive operation.

It has been shown before that IMDs are incredibly vulnerable to malicious attacks 
by outside agents. Rios and Butts et al. evaluated the security protocols on pacemaker 
devices in 2017 and found over 80 thousand security vulnerabilities. Radcliffe et 
al., 2011 displayed his ability to remotely gain complete control over an audience 
member’s insulin pump during a conference. These security risks often exist because 
manufacturers are reluctant to include security measures to avoid bugs or problems 
which would slow down production or regulatory approval and ultimately beat their 
competition to the market.

In response to these attacks, a body of research has been done on methods 
with which to secure IMDs and IMD systems despite the restrictions in place. 
These solutions primarily involve controlling access to the IMD through the use 
of authentication, key generation, or key distribution, managing communication 
with an IMD, detecting unauthorized or malicious attacks, and keeping them from 
influencing the IMD.

With patient lives on the line, these security risks pose ever increasingly real 
problems. This chapter hopes to provide an overview of these security risks, their 
proposed solutions, and the limitations on IMD systems which make solving these 
issues nontrivial. Later, the chapter will analyze the security issues and the history 
of vulnerabilities in pacemakers to illustrate the theoretical topics by considering 
a specific device.

LIMITATION AND RESTRICTIONS

Because of the implantable nature of IMDs, there exist several restrictions which 
limit the ability of IMDs to perform traditional or even adequate security measures. 
Chief among these is that the devices must be small enough to be implanted in a 
human body without the body rejecting them. This size restriction is one of the 
causes of a limitation in the amount of computational power available to the device. 
Along with this size restriction, should computational power increase to the point of 
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unrestricted usage, there is also the idea of the heat produced by these computations 
causing harm to the body with which it is implanted.

Because these devices are implanted using invasive surgeries, they are designed 
with longevity in mind. The idea is to limit the number of times throughout the 
patient’s life to replace or adjust the device. This is one of the reasons that wireless 
modules have become so pervasive in IMDs recently, as they allow modification of 
parameters and collection of data without the use of invasive surgeries. However, 
one method that wireless communication cannot improve is battery life. Because 
these devices are designed with longevity in mind, they are given batteries that, with 
appropriate usage, would last a decade or more. The idea of recharging a battery 
inside an IMD comes with a series of problems and issues in and of itself, namely 
the element of the battery heating up during power conference. This restriction on 
battery life also affects computational power, as heavy computational activities can 
wear down an IMDs battery, leading to unwanted surgeries and a lower quality of life 
for the patient. The size limitations mentioned earlier also put a subsequent limitation 
on battery size and lifetime, which further affects computational availability. With 
these things in mind, it is easy to see how the usage of IMDs informs its physical 
properties, which in turn inform the limitations placed on it. These limitations are 
interconnected, with each affecting another in some way.

Additionally, with new security schemes and solutions being introduced regularly, 
backward compatibility is essential. Similar to the idea behind long battery life, 
invasive surgeries are almost universally unwanted. Because of this, new security 
mechanisms should take into consideration backward compatibility with older 
models already implanted. Though this is not a necessary limitation, should large-
scale vulnerabilities be found, such as the outdated libraries of (Rios and Butts et 
al.), patients with old IMDs would need to consider undergoing surgery to update 
their model or be at risk of attack.

Along with physical limitations imposed by usage, there are also limitations 
on IMDs due to other factors. As Zheng et al. interestingly point out, one crucial 
factor when designing security systems for IMDs is psychological acceptance of the 
proposed methodology. As we will see later, the one proposed solution for security 
measures is wearable external devices or WEDs. Because these devices must be kept 
track of and worn at all times to provide adequate security, there is a psychological 
toll taken from the patient who must carry this burden. Similarly, there should be an 
effort to limit the intrusiveness of security solutions in a patient’s life. Patients may 
be likely to forsake practical security solutions but will get in the way of everyday 
living. This is, of course, the purpose of IMDs in the first place: to make day-to-day 
life more tolerable to patients. In the same vein, security solutions should not get 
impaired by the functionality of the device. This ties in with limited computational 
power, but the primary responsibility of IMDs is to provide medical assistance to 
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patients. Any security scheme that degrades an IMDs ability to do so should not be 
considered applicable.

Lastly, there exists an additional tradeoff to consider when developing security 
solutions for IMDs. We have already discussed the tradeoff of limited resources vs. 
security, but the tradeoff of security vs. accessibility comes with this. In the event 
of an emergency, the nearest medical professional or first responders are the ones to 
treat the patient. In such a situation, any security mechanism must not deny access 
to the medical professional seeing the patient. Techniques such as key distribution 
or authorization can act as burdens in this situation and possibly lead to server 
consequences, even death. The main trouble with such a system lies in determining 
when an emergency occurs and distinguishing between a legitimate medical 
professional and a malicious attacker in both normal situations and emergencies. 
Proposed solutions that are too lenient are liable to be abused by malicious attackers, 
and too strict solutions are liable to refuse access to first responders in the event of 
an emergency.

CLASSIFICATION OF ATTACKS

Traditionally, attacks on IMDs are classified into two categories: passive attacks 
and active attacks. Passive attacks primarily include eavesdropping attacks, which 
listen in on the communication between IMDs and programmers. Considering the 
limitations discussed earlier, many IMDs do not implement any form of encryption 
when communicating with other devices, either by design or necessity. This fault 
in security, along with things such as lack of authentication or access control 
mechanisms, can lead to the attacker discovering not only who among a crowd 
has an IMD, but also potentially disclose information such as the device’s make, 
model, and the patient name, age, current condition, ID, and health records (Hei et 
al., 2013). Valuable information can be inferred using passive attacks, such as the 
device’s relationship with the patient, the device’s capacities, or the device’s settings. 
For example, it has been shown that with an oscilloscope and software radio, an 
attacker could obtain personal information using an ICD along with information 
on the ICD itself (Halperin et al., 2008). This information can potentially be used 
to calculate a plan of attack to use against the patient.

While these attacks are dangerous in their own right, their true potential lies 
when used in conjunction with active attacks. Active attacks are malicious attacks 
that modify, impersonate, or replay messages between IMDs and programmers, with 
the end goal of performing some action or set of activities that would detriment the 
patient. These attacks are much more frequent and dangerous than passive attacks, 
but passive attacks are often used as a forefront to active attacks, to get their foot in 
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the door, so to speak. Active attacks can include Man-In-The-Middle attacks, DoS 
or battery draining attacks, performing unauthorized or potentially harmful actions, 
jamming communication between the device and the programmer, holding the device 
ransom, or completely shutting off the device. Though the range of possible actions 
included under the tag of active attack is broad, all of these attacks have the potential 
to be devastating or even fatal to the patient. (Halperin et al., 2008).

CLASSIFICATION OF PROPOSED SOLUTIONS

Solutions proposed to counter attacks on IMDs are as varied as IMDs and the 
patients who trust their health. However, most of these proposed solutions share 
some commonalities, allowing them to fit into broad classifications. Most proposed 
solutions to security issues in wireless IMD systems fall into the following categories: 
Key Management, Communication Control through Proxy, Attack Detection/Reaction, 
and general Access Control/Authentication. These classifications are intentionally 
broad, as there are many different techniques presented in the literature, with many 
other methods designed around overcoming the many limitations of IMDs. You 
may notice that the first two categories could potentially fall under the umbrella of 
access control. Though potentially arbitrary, this distinction is intentional, as these 
are two of the more heavily researched areas among the proposed solutions and 
deserve to be explored independently.

COMMUNICATION CONTROL

External devices typically handle control of communication between IMDsand 
programmers. These WEDs are well known throughout wireless medical device 
security literature. These devices are the IMDGuard, IMDShield, and Cloaker. 
The IMDGuard intercepts all communication with the IMD and acts as a man in 
the middle. ECG signals are used to authenticate the IMD and IMDGuard. The 
IMDShield offers one-way confidentiality by way of jamming. The IMDShield will 
jam the IMD’s frequency to communicate, blocking all traffic to the device. The 
Shield knows the method for jamming, so it can reverse the technique to retrieve 
messages from the IMD and transfer them to a caregiver. Lastly, we have the Cloaker. 
The Cloaker is simple in that it blocks all communication to the IMD except to an 
authorized caregiver. While the cloaker is active, nothing can communicate with 
the IMD except the authorized caregiver, but simply removing the Cloaker allows 
full access in the event of an emergency.
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ATTACK DETECTION AND REACTION

The main solution proposed for detecting and responding to a malicious attack 
comes from (Hei et al., 2011) in the form of a machine learning technique that uses 
patient access models that contain various dimensions of access, such as access 
location and time, day, etc. The patient’s cell phone is used to offload storage and 
computation, preventing the use of precious resources on the IMD. When the IMD 
attempts to interface with a programmer, it will send a verification message to the 
patient’s phone. The patient’s phone will run a classification algorithm to determine 
if access is malicious or not. If the phone decides the access is normal, then the IMD 
continues with the access as planned. Should the phone determine that the access 
is abnormal or malicious, it will send a blocking command to the IMD, which will 
then go to sleep, saving power and rejecting any access attempt. Lastly, if the phone 
is unsure of the validity of the access request, it will prompt the user to intervene, 
trusting their judgment.

Another technique is presented in MedMon, which can detect adversarial attacks 
that deviate from legitimate transmissions by some measurable physical characteristic 
such as signal strength, time of arrival, or angle of arrival. Upon receiving a new 
command, MedMon will compare this new data with the records of historical data 
to decide whether there exists some anomaly. Upon detection, MedMon can either 
respond passively by alerting the patient or actively by jamming transmissions.

GENERAL ACCESS CONTROL

There exist a small section of techniques that do not fall under the categories listed 
above. They primarily deal with proximity-based solutions, but unlike the ones 
described earlier, they do not share keys. Examples include magnetic field solutions, 
such as a magnetic switch within the IMD which a powerful magnet can trigger to 
switch on the device’s wireless communication module. These techniques have some 
shortcomings. Because they can be activated by any strong magnet, not just the ones 
intended for such use, and is less secure than other options. The last example includes 
Near Field Communication, or NFC, technology. In this method, a smartphone is 
given a key at IMD insertion and cannot be regenerated. A use case for this technique 
involves an in-vivo NFC chip additionally implanted in the patient, which is used to 
communicate with the smartphone. Because NFC technology draws power from the 
reader, it requires no power from the IMD. However, in the event of a lost phone, the 
data stored on the IMD becomes irretrievable. This technique also does not qualify 
as a key sharing technique because the key is shared once and can never be shared 
again, so sharing keys is not a part of the technique’s normal operation.
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CASE STUDIES: INTRODUCTION ON PACEMAKERS

With thousands of pacemakers implanted into people a year, and millions already in 
circulation, ensuring the security of medically implanted pacemakers is paramount 
to the long-term survival and longevity of the people that rely on them. With a 
pacemaker, someone who has a debilitating heart problem can live a long and 
fulfilling life and can even be alerted to complications or issues quickly, possibly 
before they are even aware of difficulties, thanks to in-home monitoring technology. 
However, these life-saving devices create a unique problem: Their livelihood, safety, 
and even their own lives are only as secure as the measures put in place to protect 
against malicious intent. This chapter aims to analyze the different attack vectors, 
attack symptoms, known security issues, and other vulnerabilities of implanted 
pacemakers in patients.

HOW PACEMAKERS WORKS

To fully understand how a hacker could interfere with a pacemaker, one must 
understand how the pacemaker functions, communicates, and interfaces with other 
technology. The purpose of a pacemaker is to treat arrhythmia in the heart, which is 
any irregularity of the heartbeat. This is detected by the electrodes surgically placed 
in one to three of the heart’s chambers. These electrodes are where a pacemaker will 
assist the patient by sending an electric jolt into the heart’s muscular tissue, forcing a 
contraction. The electrodes are attached to a pulse generator via wires placed in the 
patient’s veins. The pulse generator creates the electric pulse by pulling on power 
from the battery within its system. The device must be replaced approximately 
every ten years, as the battery is not rechargeable internally without serious danger 
to a patient. There are non-implantable pacemakers, but they limit the patient’s 
maneuverability and freedom, often do not come with network-enabled features 
and are traditionally seen as a temporary solution.

Many of the newest models of pacemakers come packed with networking 
functions, known as “telemetry,” that can allow medical personnel to both access the 
data from the pacemaker on-demand and wirelessly reconfigure the rate of impulse 
and capabilities of the device (Halperin et al., 2008).
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ATTACK VECTORS

As shown in Figure 1 from (Halperin et al., 2008) and mentioned previously, major 
pacemaker manufacturers can now acquire data from implanted devices and relay it 
to a central repository over either a Wi-Fi signal or a dial-up connection. This data 
repository is available to medical professionals via a website utilizing SSL protocols. 
The visible connections in the diagram are our attack vectors for this communication 
system. The attack vectors are the user’s device to the network, the user’s home 
network to the data repository, the data repository to the user’s network, and the 
user’s network to the user’s device. This chapter primarily focuses on the network 
communications between the user and their surrounding network.

THE DANGER OF IMPROPER SECURITY

The most important and terrifying type of hack that a hacker can perform concerning 
Implanted Medical Devices (IMDs) like pacemakers is the attack on the user 
and the device itself. If one needs an example, they would only need to Google 
“Barnaby Jack”, a renowned gray hat hacker. At conferences in 2011 and 2012, 
Barnaby Jack was able to show that he could hack into any pacemaker with an RF 

Figure 1. Network vectors for attacks
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communication. The hack would cause the device to either withhold therapy that 
the device would deliver, which would cause extreme discomfort or pain or directly 
deliver a potentially lethal 830-volt shock to a person’s heart (Sen et al., 2020). He 
was able to accomplish this by having the devices disclose their serial and model 
numbers and alter the transmitter’s code while simultaneously extracting data that 
would identify that person and their medical healthcare provider, as often crucial 
medical information stored on these devices is not encrypted. The encryption of this 
data is usually handled by either the base station that is associated with the device 
or via a cellular device before the upload to the network. Barnaby Jack also stated in 
an interview that this type of attack could be turned into a worm-based style attack. 
This worm-based style attack can then be broadcasted to any internet-connected 
pacemaker, allowing nearly anyone with a pacemaker to become a victim of a 
large-scale cyber-attack suddenly, held hostage by the devices keeping them alive.

NETWORK TO HOSPITAL

The tradeoff between allowing emergency system access to healthcare providers 
and ensuring that the device avoids unauthorized access is a significant issue in 
pacemaker protection (Pinisetty et al., 2018). The comprehensive survey discusses 
certain tradeoffs for cyber-physical systems (CPS), such as a pacemaker (a cyber-
component) regulating the rhythmic beating of the human heart (a physical system). 
This can be referred to as an “Internet of Bodies” network. People are becoming 
increasingly reliant on IMDs such as pacemakers, insulin pumps, etc. being able to 
communicate with external devices such as smartwatches, cellular devices, and each 
other for ease of use and quick, reliable access data. (Sen et al., 2020). Cyber-security 
in IMDs is hampered by three major issues (Puat et al., 2020): Most embedded 
devices lack the memory and processing power needed to support cryptographic 
security, encryption, and access control. Doctors and patients value convenience 
and accessibility over protection. The ability to control embedded devices remotely 
is a good function, but it also renders them vulnerable. Power versus security: Most 
embedded medical devices lack the memory, processing power, or battery life needed 
to support cryptographic protection (Puat et al., 2020), encryption, or access control. 
Using HTTPS instead of HTTP (a method of encrypting web traffic to prevent 
eavesdropping) is an example. Cryptography suites (the algorithms and keys used 
to prove identity and keep transmissions secret) are designed for computers, and 
they require complex mathematical operations that are beyond the capabilities of 
small, low-cost IoT devices. Moving cryptography into dedicated hardware chips 
is an emerging solution, but this increases the cost.
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• Convenience vs. Security: Doctors and patients do not anticipate having 
to log into these medical devices regularly. The prospect of remembering 
usernames, passwords, and encryption keys are incompatible with how they 
want to use them. Likewise, no one anticipates having to log into their toaster 
or refrigerator. Fortunately, the pervasiveness of mobile phones and their use 
as interfaces to ”smart” IoT computers are altering users’ expectations. Often, 
communications between devices in the body of things happen through 
either a Radio Frequency (RF) connection or a Bluetooth Low Energy (BLE) 
connection. BLE can easily be used to connect to a smartphone or other 
external device, which then can be sent to the patient monitoring system 
in the hospital if required (Heydari et al., 2020). BLE connection’s greatest 
strength is a low-energy communication type that is easily discoverable and 
accessible. However, this is also the greatest weakness, as those with the 
knowledge on how to exploit this connection can efficiently utilize it in an 
unethical and dangerous way.

• Remote Monitoring vs. Security: When surgical implants need to be 
removed or replaced, they pose an immediate medical risk. As a result, 
remote monitoring is unquestionably a lifesaving technology for patients 
who are using these devices. Patients are no longer dependent on the low 
battery “buzz” sound, and doctors may easily upgrade the device’s software 
if it malfunctions. Regrettably, this remote control feature introduces a whole 
new level of danger. Others will upgrade the program remotely if your doctor 
can.

Cyber security Attacks (Kaschel et al., 2019) are divided into two categories. 
Attacks that aren’t focused on a particular objective but instead terminate and 
disable items are known as blind attacks. Targeted attacks aim to ruin everything 
by focusing on specific individual details. Targeted attacks are a form of intentional 
attack. If the information is not encrypted, an attacker may insert false data or steal 
it during the communication phase. In addition, the attacker may install malicious 
software on the computers.

USER TO NETWORK ATTACK

A modern pacemaker will gather information about a patient and send it over Wi-
Fi to an access point or medical equipment used during hospital visits. The data is 
sent to remote servers by the access point systems (Pinisetty et al., 2018), which 
collect information about the patient’s health when they are at home. Patients with 
mobility issues can benefit from pacemakers that can send data over the internet. 
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However, the communications protocols to send data to remote servers are very 
simple and vulnerable to hacking. As healthcare facilities increasingly rely on 
devices that communicate with each other, hospital medical record systems, and the 
internet, concerns about the vulnerability of medical devices such as pacemakers, 
ICDs, insulin pumps, defibrillators, fetal monitors, and scanners are growing. Using 
brute-force attacks and hard-coded logins, these are simple to break. Failures may 
include disclosing sensitive patient information, mishandling, inadequate supervision, 
gaining access to the equipment system, changing computer scheduled tasks, causing 
battery swings, or even delivering unwanted stimuli or disabling alarms.

The most common method of attack is to use Wi-Fi communication to avoid 
having to be close to the victim (Longras et al., 2020). With the ease with which 
backdoors can be installed in hospital networks and with medical devices linked to 
the same network, several systems can be compromised with malware, including 
the likelihood of twenty-four insulin pumps and pacemaker failures that can be 
controlled remotely.

A forced authentication attack, also known as a resource exhaustion attack, is 
a denial of service attack (DoS). IMDs that communicate wirelessly with external 
readers or monitors are vulnerable to this attack. When an external reader tries to 
bind to an IMD, the first move is for the IMD and the reader to authenticate each 
other (Longras et al., 2020). If the authentication fails, the reader’s contact with 
the IMD will be terminated. However, the authentication process necessitates IMD 
communications, which consume a significant amount of power. If an unauthorized 
reader tries to connect to an IMD multiple times, the IMD will perform multiple 
authentications, consuming a substantial amount of the necessary battery power.

Furthermore, this form of attack produces many security logs, which causes IMD 
storage to become overburdened. This type of attack can be repeated nearly infinitely 
while in range of the signal and attacks two resources of the IMD simultaneously, 
causing a pacemaker that may not need to be replaced for almost a decade to need 
to be surgically repaired and replaced in a matter of weeks. (Hei et al., 2010). 
When contact is blocked, and interference is made, this form of DoS occurs. By 
repeatedly sending true or false messages, the attacker exploits machine resources. 
This is Radio Jamming. Man-in-the-middle attack: To gain access to confidential 
health information (Longras et al., 2020), the intruder listens without interrupting 
or changing the conversation. Another scenario is for an intruder to intercept data or 
code from a medical device when radio frequencies are working and then transmit 
the altered data to the monitor or warning system. Replay Attack: The intersection 
and representation of the medical device or monitoring system, represented by a 
network attack in which real data is manipulated, are also part of this attack. Such an 
attack may be used to avoid receiving care, for example, by mucking up the order in 
which packets arrive at IMD or, even worse, by sending the same message to medical 
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equipment and the monitoring system repeatedly. Code Injection: When an intruder 
modifies the source code on a medical device, monitor, or even a potential warning 
system to perform an undefined function, such as changing the pacemaker program 
to deliver electric shocks regularly, this is known as a medical device compromise.

COUNTER MEASURES

Many of these attacks, however, have had proposed alterations and system changes 
occur as a result. Many new security ideas, such as having an application that creates 
a trusted connection jam the emitted BLE signal from the pacemaker to make the 
device more secure and less targetable from Bluetooth-based attacks. (Heydari et 
al., 2020). Security methods have been recommended that utilize a patient’s daily 
schedules and times and necessary locations for access to determine if the attempt 
to authorize should be allowed or is likely an attack (Hei et al., 2010). This would 
help reduce the number of requests the pacemaker would have to handle in an RD 
attack. The following security properties must be considered to secure patients who 
use IMDs. Authentication: Before conducting any procedure, the identities of the 
communicating parties must be verified. The lack of proper authentication in the case 
of IMDs may be used to launch an elevation of privileges attack (EoP). Authorization 
Both users’ use and management should be clearly stated and tracked. Only those 
with the appropriate privileges may perform each procedure. Reprogramming the 
IMD, for example, requires the collaboration of a doctor and a technician. Availability 
the service provided by the IMD must be accessible at all times. Because of the 
vital role that IMDs perform, their availability is a must. Active jamming can be 
used to block the radio channel, making the IMD inoperable. The intruder may also 
overload the system with network traffic, preventing access and draining the battery. 
Non-Repudiation In the access log, the system must record and validate all user 
activities. No log-in is used in current IMDs due to memory limitations. If logging 
is used, an alarm may be set off to notify the user if a malicious incident occurs. 
To hide their tracks, attackers will try to remove access logs. The device should be 
able to detect and prevent parameter manipulation and protect against tampering 
and reverse engineering. During transmission, IMD data may be intercepted and 
changed. The IMD could also allow malicious input, which could carry out attacks 
such as code injection. The lack of integrity checking allows data stored on the IMD 
memory to be altered. Confidentiality Only approved parties should have access 
to data. Since the various components of the IMDs (Tabasum et al., 2018) interact 
over the network, they are vulnerable to eavesdropping. Private patient data will be 
exposed if the data is not encrypted, putting the patients’ privacy at risk. Possession 
(or control) to avoid unauthorized control, coercion, or intervention, protect the 
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design (Tabasum et al., 2018), installation, service, and maintenance of systems 
and associated processes. Before being deployed, IMDs are subjected to extensive 
security monitoring. However, the systems must be modified to combat emerging 
security threats (Tabasum et al., 2018). The framework is protected from malicious 
updates by allowing changes in a highly restricted and validated environment.

• Anomaly Detector: If an attack is detected, the patient can be notified (for 
example, via a warning mechanism), or the system can be made unavailable by 
turning off the communications (or jamming the channel) while the medical 
functions continue to operate. The use of the wireless communication channel 
makes it difficult to avoid these types of attacks (Kaschel et al., 2019). The 
reader’s communication with the IMD begins with the IMD authenticating 
the reader. The contact is disrupted if the reader fails the authentication 
stage. Failure to authenticate may use up resources in the IMD, which can 
be abused by an opponent who, for example, tries to connect with the IMD 
repeatedly. The result would be a classic Denial-of-Service (DoS) attack, in 
which the battery level would be significantly reduced, and memory/storage 
would be impacted. Some registers are used to store security values, including 
session tokens and logs in each authentication. This type of attack is known 
as a Resource Depletion (RD) attack since it focuses on wasting the IMD’s 
resources. They are straightforward to enforce, and the effects can be very 
harmful, as sending dummy requests can reduce the battery life of the IMD 
from many years to a few weeks.

• Access Control: Unauthorized and improper use of the IMD functions 
was prevented by access control mechanisms (Kaschel et al., 2019). Before 
performing a specific action (e.g., entry, reading, reprogramming, etc.), the 
requester’s rights are assessed to determine whether or not it is allowed to 
perform that action. Permitted and prohibited operations, in particular, are 
regulated by access control policies that define who may do what, depending 
on the context in which the access request is made. Access control is 
completely compatible with other security measures such as cryptographic 
protocols to secure the communication channel. Furthermore, access control 
typically necessitates prior authentication because decisions about whether 
or not an operation is allowed are taken based on the requester’s identity, 
which must be identified beforehand.

• Cryptographic Measures: Cryptography-based security solutions (Kaschel 
et al., 2019), (Tabasum et al., 2018) are heavily reliant on cryptographic 
primitives, which fall into three categories. Hash functions and one-way 
permutations are examples of unkeyed primitives. We may differentiate 
between symmetric-key and public-key primitives in keyed cryptographic 
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tools. A hidden key is exchanged between the trusted entities in symmetric-
key primitives. Symmetric key ciphers solutions (Kaschel et al., 2019), 
(Tabasum et al., 2018) (block and stream ciphers), message authentication 
codes (MACs), pseudorandom sequences, and identification primitives are 
among the primitives in this group. Asymmetric-key primitives, on the other 
hand, include public-key ciphers and signatures. Two keys are used in this 
form of an algorithm, one of which is public, and the other must be kept 
secret. However, the main disadvantage of this approach is its high energy 
consumption.

• Biometric Access: Using biometrics to access the IMD (Tabasum et al., 
2018), (Hei et al., 2011), such as fingerprints, iris, and speech, will alleviate 
the urgent access restriction. A two-level access control system is proposed 
(Hei et al., 2011). The first level uses the patients’ fingerprints, iris color, and 
height as biometrics, and the second level uses an effective iris authentication 
scheme. Thus, in an emergency, medical personnel can access data using the 
patient’s biometrics, which does not require anything from the patient. It also 
eliminates the need for the patient to recall passwords or bring authentication 
tokens.

SECURITY WITH RUNTIME VERIFICATIONS

Pacemaker security threats are life-threatening, turning a life-saving system into 
a possible killer. Existing pacemaker monitoring solutions necessitate wireless 
contact with the device. This adds to the security risks, mainly when encryption 
and key distribution are complex. We suggest a monitoring system that does not 
rely on contact with the pacemaker or any other external device. The monitor is 
a wearable system that uses an individual’s ECG to detect events of interest. The 
cardiologist programs the system with strong pacemaker timing values. We believe 
that no wireless protocol is used to link this device to any other device, including 
the pacemaker. We adapt a timed automata runtime verification method to build 
a monitor that detects anomalous events in real-time. An alarm is heard to warn 
the patient if any anomaly is observed. Approaches to runtime verification (RV) 
(Pinisetty et al., 2018) are concerned with monitoring and verifying if a device’s run 
under inspection satisfies or violates a particular desired property. Since RV is only 
concerned with runs of the machine, which is called a black-box, it is an excellent 
match for pacemaker security. As a result, there will be no need to modify the current 
pacemaker, and no new wireless protocols or key distribution will be needed. There 
will be no extra certification costs as well. RV is a lightweight, formally based 
verification approach. One of the key focuses of formally based RV approaches is 

 EBSCOhost - printed on 2/9/2023 9:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



187

Medical Device Security

to produce RV monitors from a formal high-level specification of a collection of 
properties. The system’s execution is unaffected by RV monitors. They are used to 
check whether a system’s stored performance (offline verification) or its current 
live execution (online confirmation) meets the desired correctness property. An 
externally wearable system that continuously tracks the body’s ECG signals using 
runtime verification techniques to verify essential safety properties specified for 
heart-pacemaker operation, adding an extra layer of protection and safety.

The RV (Pinisetty et al., 2018) monitor (externally worn device) is expected to 
have more power and computational resources than the pacemaker and measure ECG 
signals. The pacemaker is supposed to stay inside the body for a long time after it is 
implanted. The doctor programs it with the assistance of a programming unit (outside 
controller) with a direct connection before being implanted. If the pacemaker has 
to be reprogrammed after implantation, it should be done wirelessly. Doctors may 
use the programming unit to communicate with the pacemaker via radio frequency 
transmission to change running parameters (timers), change operating modes, or 
retrieve stored data. The doctor will consult with the patient to determine the right 
pacemaker for them. The doctor sets the pacing mode (e.g., DDD), the threshold 
voltage value of the pacing pulse, the pacemaker’s sensitivity, and, most importantly, 
the timers such as AVI and AEI when programming. If a hacker gains access to the 
pacemaker, they can attempt to alter either of these timers.

Figure 2. Wearable devices

 EBSCOhost - printed on 2/9/2023 9:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



188

Medical Device Security

• An External Device: After the pacemaker is implanted, the patient 
receives the wearable unit (Pinisetty et al., 2018), (Tabasum et al., 2018). 
Any computing device with an ECG sensor and an accelerometer, such as a 
smartwatch, may be used as this external wearable device. The doctor also sets 
the timing values for the external wearable system. Both of the values of the 
set timers are stored in the memory of the wearable computer. It also knows 
the normal heart rate at which the pacemaker is set to pace (for example, 60–
120 BPM) and the pacing pulses’ characteristics such as voltage, current, and 
impedance. In addition, the software includes an accelerometer that tracks 
the user’s movement.

The diagram above depicts a general explanation of how external devices function. 
End-system requests (Tabasum et al., 2018) are routed via an external device rather 
than directly to the IMD. The external computer is in charge of authenticating all 
incoming requests and safeguarding the IMD against various attacks. The external 
unit can be recharged and has fewer size restrictions than the IMD. In an emergency, 
medical personnel may remove the external monitor and communicate with the 
IMD directly. However, the patient must still be near the external system, which 
is a disadvantage of this approach. This approach is also appropriate if the IMD is 
already implanted in the patient’s body and protection is needed later.

CONCLUSION

In this chapter, the description of the restrictions placed on security mechanisms 
for IMDs, including the purpose or reasons for such restrictions is discussed in 

Figure 3. External device
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detail. As well as some manner of classification for both security attacks and 
security solutions are also discussed. Attacks can be split into the categories of 
passive and active attacks. At the same time, solutions can be classified as either 
key management, communication control, attack detection and reaction, or general 
access control techniques. This chapter also addressed the security of medical device 
communications, focusing on the security of communications with other systems, 
such as the monitoring system, which is critical because it affects people’s health, 
if not their lives. As a result, it’s critical to put “security” first. Finally, a number 
of flaws in these systems and potential attack types and how to mitigate them are 
analyzed.
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Conclusion

This book discussed the security-related issues present in smart devices and the 
latest technologies. Many of the emerging technologies can be vulnerable to 
various approaches. The book discussed the security holes, the attacks that can be 
performed on these technologies, and the countermeasures to those attacks. The 
book’s first chapter discussed challenges in designing efficient Internet of Things 
Search Engines (IoTSE) and proposed the NDN-based approach for IoTSE. To 
validate the feasibility of the presented approach, a simple simulation environment 
to compare the performance of NDN and TCP/IP is designed. Then four scenarios 
and settings developed in ns-3 to demonstrate the feasibility of NDN improving 
network performance is proposed. The second chapter discussed IoT from a legal 
perspective. The chapter sheds light on the concern about personal data protection in 
the IoT sphere to help the IoT stakeholders properly comply with data protection law. 
Chapter three of the book emphasized the importance of biometric usage in smart 
devices and thus, discussed the need to keep biometric information safe. The chapter 
discussed presentation attacks since this type of attack is more appropriate to the 
sensors and the software used to interpret the information. This chapter focused on 
fingerprint fabrication attacks for the fingerprint sensor and the preventative measures 
to thwart this type of attack. Different ways to attack the voice assistant systems 
are presented in chapter four. This chapter discussed spoofing attacks, hardware 
nonlinearity-based attacks, obfuscated commands attacks, adversarial commands 
attacks, and the defending mechanisms to those attacks. Chapter five outlined the 
security issues in cyber-physical systems in the context of automobiles. It is observed 
through the survey in this chapter that studies already done on automotive CPS 
Security are headed in the right direction. With the development and advent of the 
latest cutting-edge technologies, automotive systems are supposed to become more 
complex. As a result, more threats are bound to appear for automotive CPS systems. 
Following secured protocols to design the vehicles will help mitigate this. The work 
in chapter six demonstrated the effectiveness of a CGAN model to generate fake, 
handwritten signatures. Chapter seven discusses the ubiquity of LEDs in commodity 
devices and uses this advantage to extract fingerprints and use it in device pairing. 
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Convolutional neural networks are employed to classify the images of different LEDs 
due to the high accuracy of this network. Smart voice assistant systems are the target 
for attack due to their wide adaptability in households. Chapter eight demonstrated 
a deep learning-based method to detect malicious signals intended to attack voice 
assistant systems. Although amplitude modulated laser signals were defended in 
this chapter, other attacks can also be detected by applying deep learning models for 
identification. Due to the accuracy and its capability to perform surgeries remotely, 
teleoperated robots have gradually made their way into the surgical room to replace 
and reduce the number of human surgeons. Chapter nine discusses the security issues 
present in teleoperated robots and the efforts to mitigate them to enhance security. 
Chapter ten presented the attack surface analysis of the brain-computer interface 
(BCI) system currently under development at Neuralink. The research focus should 
assess the potential for misusing the recharging periphery in induction-based EMI 
attacks, as this unknown power-transfer source may be vulnerable to manipulation. 
The current BLE standard has been shown to be vulnerable to numerous active and 
passive attacks, which may severely impact implant recipient privacy and safety. 
Given the attack vectors assessed in the chapter, the most effective recommendation 
for minimum acceptable security should be for all user applications that process data 
related to the Neuralink implant to employ robust authentication and encryption 
of all recorded device information and all communications to the implant device 
that passes through the OS. In chapter eleven, the security risks involved with 
Implantable Medical Devices (IMDs) are discussed in detail. The chapter presented 
different types of attacks that can be mounted on IMDs and the defending measures. 
Then a case study with pacemakers is presented in detail. The security risks and 
attack methods discussed in this book are intended to provide a general idea of the 
security risks associated with the technologies discussed. The attack methods and 
countermeasures will give the readers the idea to prevent the attacks and improve 
the security of personal devices.
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