
C
o
p
y
r
i
g
h
t

2
0
2
2
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 9:57 AM via
AN: 3134113 ; Jurgen Gutsch, Damien Bowden, Ed Price.; Customizing ASP.NET Core 6.0 : Learn to Turn the Right Screws to Optimize ASP.NET Core Applications for
Better Performance
Account: ns335141

Customizing
ASP.NET Core 6.0
Second Edition

Learn to turn the right screws to optimize ASP.NET
Core applications for better performance

Jürgen Gutsch

BIRMINGHAM—MUMBAI

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing ASP.NET Core 6.0
Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Associate Group Product Manager: Pavan Ramchandani
Senior Editor: Mark Dsouza
Content Development Editor: Divya Vijayan
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Rashika Ba
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Prashant Ghare
Marketing Coordinator: Anamika Singh

First published: January 2021

Second edition: December 2021

Production reference: 2270122

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-360-4

www.packt.com

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com

To my family, friends, colleagues, and the .NET developer community,
who supported and encouraged me to do this work. To my three sons,

who gave me the power to complete it.

– Jürgen Gutsch

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Foreword
I have known Jürgen for more than 7 years and he never ceases to impress me with
his knowledge and his experience in software development and web development,
his expertise in ASP.NET Core and Azure solutions, and his consultancy and software
architecture skills. Jürgen has been involved with ASP.NET since the first releases and has
a vast amount of experience with all the .NET and .NET Core versions. His journey has
now moved on to Azure and application development in the cloud using the latest
ASP. NET Core technologies, Azure DevOps, and cloud-based solutions.

Jürgen is one of the leading community experts in the Swiss and German region and is
extremely active in this field. You will always find him present at local conferences, .NET
Core meetups, and Microsoft events, or organizing these events himself. He has been
a Microsoft MVP for Developer Technologies since 2015 and I have had the pleasure to
develop and learn from him by implementing solutions using some of the early versions
and pre-releases of ASP.NET Core or solutions such as ASP.NET Core health checks.
He is always helping the .NET community by giving them a chance to speak at meetups
and offering speakers a platform. I did my first .NET user group talk in Basel with his help
and support.

Above all, he is always there as a friend and I can always ask for support or his help in
solving problems, and he helps make the .NET community in Switzerland so strong,
helpful, and easy for others to join and improve.

Damien Bowden

Blogger on damienbod.com, Microsoft MVP for Developer Technologies, and Senior Software
Consultant.

Well known on Twitter as @damien_bod

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Personally, I believe we should always try to improve. I often ask myself three questions
after I do anything:

•	 How could I have done that faster?

•	 How could I have done that better?

•	 How do I make sure I don't have to do that again?

By asking these questions, we can always improve in everything we do. That last question
involves strategic scale, which is trickier (you usually have to improve with #1 and #2
to get to an answer for #3). For example, if you clean a coffee machine every night, you
might ask yourself, "How can I clean that faster, how can I make it even cleaner, and how
do I make sure I don't have to do that again?" You might not be able to answer that third
question for quite a while, but pretty soon, you'd be an expert, in speed and quality, at
cleaning coffee pots (possibly the best in the world). As you work to answer the third
question, you'd start by training the people around you, which means more people would
be cleaning (and you'd be doing it less). Finally, you'd likely get promoted to manager
(since you're already training everyone). Thus, you would no longer have to clean
coffee pots!

"Sounds good, Ed, but what does this have to do with code?" Great question, me! To
answer that, let's head to Grace Hopper, one of our key leaders in pioneering computer
technology…

"The most dangerous phrase in the language is, 'We've always done it
this way.'"

– Grace Hopper
As Grace implies, our greatest danger is when we stop learning and ultimately stop
improving our products and our code! As the CEO of Microsoft eloquently said:

"Always keep learning.You stop doing useful things if you don't learn."

– Satya Nadella
And if we don't learn and improve our code, then our product remains stagnant. But if we
keep learning and improving, then not only does our product get faster (which answers
question #1) and more useful (question #2), but it also makes us far more valuable to
our product and company! You might want to keep coding for the rest of your life, but if
you're providing that much value to your team, then there will be many opportunities to
train them and potentially even manage them (which means coding less often, if that's
appealing to you). At the very least, it will open many opportunities in your career!

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

In Customizing ASP.NET Core 6.0, Microsoft MVP Jürgen Gutsch brings his nearly
20 years of experience as a .NET and ASP.NET web developer to this book. Following
Grace Hopper's and Satya Nadella's pleas for us to never stop learning and improving,
Jürgen shows you how to do that to customize, improve, and optimize your ASP.NET
Core applications. He shows you how to customize various aspects of your application,
including the hosting layer (logging, app configuration, dependency injection, HTTPS
configuration with Kestrel, and hosting models), the middleware layer, the routing layer
(endpoint routing), the MVC layer (customizing and configuring identity management),
and the Web API layer (content negotiation and managing inputs)! By the time you're
done with this book, you'll have a richer understanding of .NET development and how
you can get the most out of your applications.

You'll find that each chapter begins with a high-level architecture diagram that visually
explains the chapter's architecture and which layer of the architecture the chapter is
referring to. Use these diagrams to create a strong mental picture of how the architectural
layers build on each other. Even if you understand the topic of customization in
each chapter, you should try out the code to become more familiar with the various
opportunities that you'll have to improve your application. Whether you're building
a custom logger, customizing dependency injection, or enabling customers to manage
their profiles, this book thoroughly goes through each step of app customization and
optimization. As Satya Nadella implores, here's your chance to "always keep learning."
Jump in and join Jürgen Gutsch on this learning journey.

Ed Price

Senior Program Manager of Architectural Publishing at Microsoft

Azure Architecture Center (http://aka.ms/Architecture) Co-author of six
books, including The Azure Cloud Native Architecture Mapbook and ASP.NET Core 5 for
Beginners (both from Packt)

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://aka.ms/Architecture

Contributors

About the author
Jürgen Gutsch is a .NET-addicted web developer. He has worked with .NET and ASP.NET
since the early versions in 2002. Before that, he wrote server-side web applications using
classic ASP. He is also an active part of the .NET developer community. Jürgen writes for
the dotnetpro magazine, one of the most popular German-speaking developer magazines.
He also publishes articles in English on his blog, ASP.NET Hacker, and contributes to
several open source projects. Jürgen has been a Microsoft MVP since 2015.

The best way to contact him is by using Twitter: @sharpcms.

He works as a developer, consultant, and trainer for the digital agency YOO Inc., located
in Basel, Switzerland. YOO Inc. serves national as well as international clients and
specializes in creating custom digital solutions for distinct business needs.

I want to thank my boss, my colleagues, and my employer for their support and motivation.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Toi B. Wright has been obsessed with ASP.NET for almost 20 years. She is the founder
and president of the Dallas ASP.NET User Group. She has been a Microsoft MVP in
ASP.NET for 16 years and is also an ASPInsider. She is an experienced full-stack software
developer, book author, courseware author, speaker, and community leader with over
25 years of experience. She has a B.S. in computer science and engineering from the
Massachusetts Institute of Technology (MIT) and an MBA from Carnegie Mellon
University (CMU).

You can find her on Twitter: @misstoi.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

1
Customizing Logging

Technical requirements� 2
Configuring logging� 2
Creating a custom logger� 4

Plugging in an existing third-
party logger provider� 8
Summary� 10

2
Customizing App Configuration

Technical requirements� 12
Configuring the configuration� 12
Using typed configurations� 15
Configuration using INI files� 17

Configuration providers� 18
Summary� 19
Further reading� 19

3
Customizing Dependency Injection

Technical requirements� 22
Using a different DI container� 23
Exploring the ConfigureServices
method� 23

Using a different ServiceProvider�25
Introducing Scrutor� 26
Summary� 27

Table of Contents

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

viii Table of Contents

4
Configuring and Customizing HTTPS with Kestrel

Technical requirements� 30
Introducing Kestrel� 31
Setting up Kestrel� 31

For your safety� 34

Summary� 34

5
Configuring WebHostBuilder

Technical requirements� 36
Re-examining
WebHostBuilderContext� 37

How does it work?� 40

Summary� 43
Further reading� 43

6
Using Different Hosting Models

Technical requirements� 46
Setting up WebHostBuilder� 47
Setting up Kestrel� 47
Setting up HTTP.sys� 48
Hosting on IIS� 49

Using Nginx or Apache on Linux� 51
Configuring Nginx� 53
Configuring Apache� 54

Summary� 54
Further reading� 55

7
Using IHostedService and BackgroundService

Technical requirements� 58
Introducing IHostedService� 59
Introducing BackgroundService� 62

Implementing the new Worker
Service projects� 65
Summary� 66

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents ix

8
Writing Custom Middleware

Technical requirements� 68
Introducing middleware� 69
Writing custom middleware� 71
Exploring the potential of
middleware� 74
Branching the pipeline with /map� 74
Branching the pipeline with MapWhen()� 75

Creating conditions with middleware� 76

Using middleware in ASP.NET
Core 3.0 and later� 77
Rewriting terminating middleware to
meet the current standards� 79

Summary� 81

9
Working with Endpoint Routing

Technical requirements� 84
Exploring endpoint routing� 84
Creating custom endpoints� 86

Creating a more complex
endpoint� 87
Summary� 90

10
Customizing ASP.NET Core Identity

Technical requirements� 92
Introducing ASP.NET Core
Identity� 93

Customizing IdentityUser� 97
Customizing the Identity views� 98
Summary� 105

11
Configuring Identity Management

Technical requirements� 108
Introducing IdentityManager2� 109
Setting up IdentityManager2� 109

Securing IdentityManager2� 112
Summary� 112

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

x Table of Contents

12
Content Negotiation Using a Custom OutputFormatter

Technical requirements� 114
Introducing OutputFormatter
objects� 114
Preparing a test project� 116

Testing the web API� 118
Creating custom
OutputFormatter objects� 120
Summary� 128

13
Managing Inputs with Custom ModelBinder

Technical requirements� 130
Introducing ModelBinder� 130
Preparing the test data� 131
Preparing the test project� 131
Creating PersonsCsvBinder� 133

Using ModelBinder� 135
Testing ModelBinder� 136
Summary� 138
Further reading� 138

14
Creating a Custom ActionFilter

Technical requirements� 140
Introducing ActionFilter� 140
Using ActionFilter� 144

Summary� 146
Further reading� 146

15
Working with Caches

Technical requirements� 148
Why do we need caching?� 148
HTTP-based caching� 149
Caching using
ResponseCachingMiddleware� 150
Predefining caching strategies using
cache profiles� 151

Caching specific areas using
CacheTagHelper� 152
Caching Manually� 153
Summary� 158
Further reading� 158

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents xi

16
Creating Custom TagHelper

Technical requirements� 160
Introducing TagHelper� 160
Creating custom Tag Helpers� 162

Examining a more complex scenario� 164

Summary� 170
Further reading� 171

Index
Other Books You May Enjoy

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
ASP.NET Core is the most powerful web framework provided by Microsoft and is full of
hidden features that make it even more powerful and useful.

Your application should not be made to match the framework; your framework should be
able to do what your application really needs. With this book, you will learn how to find
the hidden screws you can turn to get the most out of the framework.

Developers working with ASP.NET Core will be able to put their knowledge to work
with this practical guide to customizing ASP.NET Core. The book provides a hands-on
approach to implementation and its associated methodologies that will have you up and
running and productive in no time.

This book is a compact collection of default ASP.NET Core behaviors you might want to
change and step-by-step explanations of how to do so.

By the end of this book, you will know how to customize ASP.NET Core to get an
optimized application out of it according to your individual needs.

ASP.NET Core architecture overview
To follow the next chapters, you should be familiar with the base architecture of
ASP.NET Core and its components. This book tackles almost all of the components of
the architecture.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

xiv Preface

The following figure shows the base architecture overview of ASP.NET Core 6.0.
Let's quickly go through the components shown here from the bottom to the top layer:

At the bottom, there is the Host layer. This is the layer that bootstraps the web server
and all the stuff that is needed to start up an ASP.NET Core application, including logging,
configuration, and the service provider. This layer creates the actual request objects and
their dependencies that are used in the layers above.

The next layer above Host is the Middleware layer. This layer works with the request
object or manipulates it. This attaches the middleware to the request object. It executes the
middleware for things such as error handling, authenticating HSTS, CORS, and so on.

Above that, there is the Routing layer, which routes the request to the endpoints
depending on the route patterns defined. Endpoint routing is the new player from
ASP.NET Core 3.1 and separates routing from the UI layers above to enable routing for
different endpoints, including Blazor, gRPC, and SignalR. As a reminder: in previous
versions of ASP.NET Core, routing was part of the MVC layer, and every other UI layer
needed to implement its own routing.

The actual endpoints are provided by the fourth layer, the UI layer, which contains the
well-known UI frameworks Blazor, gRPC, SignalR, and MVC. This is where you will do
most of your work as an ASP.NET Core developer.

Lastly, above MVC, you will find WebAPI and Razor Pages.

What is covered in this book?
This book doesn't cover all the topics mentioned in the architecture overview. This book
covers most topics of the host layer because that is the layer that contains the most things
you might need to customize. This book tackles middleware and routing, as well as MVC
features and some more WebAPI topics, where you can do some magic tricks.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface xv

At the beginning of each chapter, we will indicate to which level the topic belongs.

What is not covered and why?
This book doesn't cover Razor Pages, SignalR, gRPC, and Blazor.

The reason is that gRPC and SignalR are already very specialized, and don't really need
to be customized. Blazor is a new member of the ASP.NET Core family and is not widely
used yet. Also, the author isn't familiar enough with Blazor to know all the screws to
customize it. Razor Pages is on top of the MVC framework and customizations for MVC
are also valid for Razor Pages.

Who this book is for
This book is for web developers working with ASP.NET Core, who might need to change
default behaviors to get things done. Readers should have basic knowledge of ASP. NET
Core and C#, since this book does not cover the basics of those technologies. Readers
should also have a good knowledge of Visual Studio, Visual Studio Code, or any other
code editor that supports ASP.NET Core and C#.

What this book covers
Chapter 1, Customizing Logging, teaches you how to customize the logging behavior and
how to add a custom logging provider.

Chapter 2, Customizing App Configuration, helps you understand how to use different
configuration sources and add custom configuration providers.

Chapter 3, Customizing Dependency Injection, teaches you how Dependency Injection
(DI) works and how to use a different DI container.

Chapter 4, Configuring and Customizing HTTPS with Kestrel, looks into configuring
HTTPS differently.

Chapter 5, Configuring WebHostBuilder, helps you understand how to set up configuration
on the hosting layer.

Chapter 6, Using Different Hosting Models, teaches you about different types of hosting
on different platforms.

Chapter 7, Using IHostedService and BackgroundService, makes you understand how
to execute tasks in the background.

Chapter 8, Writing Custom Middleware, deals with the HTTP context using middleware.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

xvi Preface

Chapter 9, Working with Endpoint Routing, helps you understand how to use the new
routing to provide custom endpoints.

Chapter 10, Customizing ASP.NET Core Identity, explains how to extend the application's
user properties and helps you to change the Identity UI.

Chapter 11, Configuring Identity Management, helps you to manage your users and
their roles.

Chapter 12, Content Negotiation Using a Custom OutputFormatter, teaches you how to
output different content types based on the HTTP Accept header.

Chapter 13, Managing Inputs with Custom ModelBinder, helps you create input models
with different types of content.

Chapter 14, Creating a Custom ActionFilter, covers aspect-oriented programming using
ActionFilter.

Chapter 15, Working with Caches, helps you to make your application faster.

Chapter 16, Creating Custom TagHelper, enables you to simplify the UI layer by
creating TagHelper.

To get the most out of this book
Readers should have basic knowledge of ASP.NET Core and C#, as well as Visual Studio,
Visual Studio Code, or any other code editor that supports ASP.NET Core and C#.

You should install the latest .NET 6.0 SDK on your machine. Please find the latest version
at https://dotnet.microsoft.com/download/dotnet-core/.

Feel free to use any code editor you like that supports ASP.NET Core and C#.
We recommend using Visual Studio Code (https://code.visualstudio.com/),
which is available on all platforms and is used by the author of this book.

All the projects in this book will be created using a console, Command Prompt, shell,
or PowerShell. Feel free to use whatever console you are comfortable with. The author
uses Windows Command Prompt, hosted in the cmder shell (https://cmder.
net/). We don't recommend using Visual Studio to create the projects, because the
basic configuration might change, and the web projects will start on a different port than
described in this book.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://dotnet.microsoft.com/download/dotnet-core/
https://code.visualstudio.com/
https://cmder.net/
https://cmder.net/

Preface xvii

Are you stuck with .NET Core 3.1, or .NET 5.0? If you are not able to use .NET 6.0 on
your machine for whatever reason, all the samples are also available and work with .NET
Core 3.1 and .NET 5.0. Some chapters contain comparisons to .NET 5.0 whenever there
are differences to .NET 6.0.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-
Second-Edition. If there's an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803233604_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "You can use ConfigureAppConfiguration to configure the app
configuration."

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803233604_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803233604_ColorImages.pdf

xviii Preface

A block of code is set as follows:

builder.Configuration.AddJsonFile(

 "appsettings.json",

 optional: false,

 reloadOnChange: true);

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

builder.Logging.AddConfiguration(builder.Configuration.

GetSection("Logging"));

builder.Logging.AddConsole();

builder.Logging.AddDebug();

Any command-line input or output is written as follows:

cd LoggingSample

code .

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Click on
Register in the upper left-hand corner, you will see the following page."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:customercare@packtpub.com
https://www.packtpub.com/support/errata

Preface xix

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Customizing ASP.NET Core 6.0, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:copyright@packt.com
https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1803233605

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

1
Customizing Logging

In this chapter, the first in this book about customizing ASP.NET Core, you will see how
to customize logging. The default logging only writes to the console or the debug window.
This is quite good for the majority of cases, but sometimes you need to log to a sink,
such as a file or a database. Or, perhaps you want to extend the logger with additional
information. In these cases, you need to know how to change the default logging.

In this chapter, we will be covering the following topics:

•	 Configuring logging

•	 Creating a custom logger

•	 Plugging in an existing third-party logger provider

The topics in this chapter refer to the hosting layer of the ASP.NET Core architecture:

Figure 1.1 – The ASP.NET Core architecture

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

2 Customizing Logging

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core MVC
application. To do this, open your console, shell, or Bash terminal, and change to your
working directory. Then, use the following command to create a new MVC application:

dotnet new mvc -n LoggingSample -o LoggingSample

Now, open the project in Microsoft Visual Studio by double-clicking the project file, or in
Visual Studio Code, by typing the following command in the already-open console:

cd LoggingSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter01.

Configuring logging
In previous versions of ASP.NET Core (that is, before version 2.0), logging was
configured in Startup.cs. As a reminder, since version 2.0, the Startup.cs
file has been simplified, and a lot of configurations have been moved to the default
WebHostBuilder, which is called in Program.cs. Also, logging was moved to the
default WebHostBuilder.

In ASP.NET Core 3.1 and later versions, the Program.cs file gets more generic,
and IHostBuilder will be created first. IHostBuilder is pretty useful for
bootstrapping an application without all of the ASP.NET web stuff. We'll learn a lot
more about IHostBuilder later on in this book. With this IHostBuilder, we
create IWebHostBuilder to configure ASP.NET Core. In ASP.NET Core 3.1 and later
versions, we get IWebHostBuilder with the webBuilder variable:

public class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter01

Configuring logging 3

 string[]args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

}

In ASP.NET Core 6.0, Microsoft introduced the minimal API approach that simplifies
the configuration a lot. This approach doesn't use the Startup file and adds all of the
configurations to the Program.cs file instead. Let's see what this looks like:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllersWithViews();

var app = builder.Build();

// The rest of the file isn't relevant for this chapter

In ASP.NET Core, you are able to override and customize almost everything. This
includes logging. IWebHostBuilder has a lot of extension methods that allow us
to override the default behavior of different features. To override the default settings
for logging, we need to use the ConfigureLogging method. The following
code snippet shows almost exactly the same logging as was configured inside the
ConfigureWebHostDefaults() method:

Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder

 .ConfigureLogging((hostingContext, logging) =>

 {

 logging.AddConfiguration(

 hostingContext.Configuration.GetSection(

 "Logging"));

 logging.AddConsole();

 logging.AddDebug();

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

4 Customizing Logging

 })

 .UseStartup<Startup>();

Using the minimal API approach, we don't need the ConfigureLogging method
anymore, and we can use the Logging property of WebApplicationBuilder
directly:

builder.Logging.AddConfiguration(builder.Configuration.
GetSection("Logging"));

builder.Logging.AddConsole();

builder.Logging.AddDebug();

Now that we've seen how to configure logging, let's look at building a custom logger.

Creating a custom logger
To demonstrate a custom logger, let's use a small, simple logger I created that is able
to colorize log entries with a specific log level in the console. This logger is called
ColoredConsoleLogger, and it will be created and added using LoggerProvider,
which we also need to write for ourselves. To specify the color and the log level to colorize,
we need to add a configuration class.

In the next snippets, all three parts (Logger, LoggerProvider, and
Configuration) are shown:

1.	 Let's create the configuration class of our logger in a new file called
CustomLogger.cs in the same folder as the Program.cs file. Add the following
using statement at the top of the file:

namespace LoggingSample;

We will call it ColoredConsoleLoggerConfiguration. This class contains
three properties to define – LogLevel, EventId, and Color – that can be set:

public class ColoredConsoleLoggerConfiguration

{

 public LogLevel LogLevel { get; set; } =

 LogLevel.Warning;

 public int EventId { get; set; } = 0;

 public ConsoleColor Color { get; set; } =

 ConsoleColor.Yellow;

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a custom logger 5

2.	 Next, we need a provider to retrieve the configuration and create the actual
logger instance:

public class ColoredConsoleLoggerProvider :
ILoggerProvider

{

 private readonly ColoredConsoleLoggerConfiguration

 _config;

 private readonly ConcurrentDictionary<string,

 ColoredConsoleLogger> _loggers =

 new ConcurrentDictionary<string,

 ColoredConsoleLogger>();

 public ColoredConsoleLoggerProvider

 (ColoredConsoleLoggerConfiguration config)

 {

 _config = config;

 }

 public ILogger CreateLogger(string categoryName)

 {

 return _loggers.GetOrAdd(categoryName, name =>

 new ColoredConsoleLogger(name, _config));

 }

 public void Dispose()

 {

 _loggers.Clear();

 }

}

Don't forget to add a using statement for System.Collections.
Concurrent.

3.	 The third class is the actual logger we want to use:

public class ColoredConsoleLogger : ILogger

{

 private static object _lock = new Object();

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

6 Customizing Logging

 private readonly string _name;

 private readonly ColoredConsoleLoggerConfiguration

 _config;

 public ColoredConsoleLogger(

 string name,

 ColoredConsoleLoggerConfiguration config)

 {

 _name = name;

 _config = config;

 }

 public IDisposable BeginScope<TState>(TState

 state)

 {

 return null;

 }

 public bool IsEnabled(LogLevel logLevel)

 {

 return logLevel == _config.LogLevel;

 }

 public void Log<TState>(

 LogLevel logLevel,

 EventId eventId,

 TState state,

 Exception exception,

 Func<TState, Exception, string> formatter)

 {

 if (!IsEnabled(logLevel))

 {

 return;

 }

 lock (_lock)

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a custom logger 7

 {

 if (_config.EventId == 0 ||

 _config.EventId == eventId.Id)

 {

 var color = Console.ForegroundColor;

 Console.ForegroundColor =

 _config.Color;

 Console.Write($"{logLevel} - ");

 Console.Write($"{eventId.Id} - {_name}

 - ");

 Console.Write($"{formatter(state,

 exception)}\n");

 Console.ForegroundColor = color;

 }

 }

 }

}

We now need to lock the actual console output – this is because we will encounter
some race conditions where incorrect log entries get colored with the wrong color,
as the console itself is not really thread-safe.

4.	 After this is done, we can start to plug in the new logger to the configuration in
Program.cs:

builder.Logging.ClearProviders();

var config = new ColoredConsoleLoggerConfiguration

{

 LogLevel = LogLevel.Information,

 Color = ConsoleColor.Red

};

builder.Logging.AddProvider(new

 ColoredConsoleLoggerProvider(config));

You might need to add a using statement to the LoggerSample namespace.

If you don't want to use the existing loggers, you can clear all the logger providers
added previously. Then, we call AddProvider to add a new instance of our
ColoredConsoleLoggerProvider class with the specific settings. We could also add
some more instances of the provider with different settings.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

8 Customizing Logging

This shows how you could handle the log levels in a different way. You could use this
approach to send emails regarding hard errors or to log debug messages to a different log
sink from regular informational messages, and much more.

Figure 1.2 shows the colored output of the previously created custom logger:

Figure 1.2 – A screenshot of the custom logger

In many cases, it doesn't make sense to write a custom logger, as many good third-party
loggers are already available, such as ELMAH, log4net, and NLog. In the next section, we
will see how to use NLog in ASP.NET Core.

Plugging in an existing third-party logger
provider
NLog was one of the very first available as a .NET Standard library, and it can be used
in ASP.NET Core. NLog also already provides a logger provider to easily plug into
ASP.NET Core.

You will find NLog via NuGet (https://www.nuget.org/packages/NLog.Web.
AspNetCore) and on GitHub (https://github.com/NLog/NLog.Web).
Even if NLog is not yet explicitly available for ASP.NET Core 6.0, it will still work with
version 6.0:

1.	 We need to add an NLog.Config file that defines two different sinks to log all
standard messages in a single log file and custom messages only in another file.
Since this file is too long to print, you can view it or download it directly from
GitHub: https://github.com/PacktPublishing/Customizing-
ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter01/
LoggingSample6.0/NLog.Config

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/NLog/NLog.Web
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter01/LoggingSample6.0/NLog.Config
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter01/LoggingSample6.0/NLog.Config
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter01/LoggingSample6.0/NLog.Config

Plugging in an existing third-party logger provider 9

2.	 We then need to add the NLog ASP.NET Core package from NuGet:

dotnet add package NLog.Web.AspNetCore

Important Note
Be sure that you are in the project directory before you execute the preceding
command!

3.	 Now, you only need to clear all the other providers in the ConfigureLogging
method in Program.cs and to use NLog with IWebHostBuilder using the
UseNLog() method:

Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder

 .ConfigureLogging((hostingContext,

 logging) =>

 {

 logging.ClearProviders();

 logging.SetMinimumLevel(

 LogLevel.Trace);

 })

 .UseNLog()

 .UseStartup<Startup>();

 });

Using the minimal API, it looks much simpler:
using NLog.Web;

var builder = WebApplication.CreateBuilder(args);

builder.Logging.ClearProviders();

builder.Logging.SetMinimumLevel(LogLevel.Trace);

builder.WebHost.UseNLog();

Here, you can add as many logger providers as you require.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

10 Customizing Logging

That covers using an existing third-party logger. Let's now recap what we've covered in
this chapter.

Summary
The good thing about hiding the basic configuration of an application is that it allows you
to clean up the newly scaffolded projects and to keep the actual start as simple as possible.
The developer is able to focus on the actual features. However, the more the application
grows, the more important logging becomes. The default logging configuration is easy and
it works like a charm, but in production, you need a persisted log to see errors from the
past. Therefore, you need to add a custom logging configuration or a more flexible third-
party logger, such as NLog or log4net.

You will learn more about how to configure ASP.NET Core 6.0 in the next chapter.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Customizing App

Configuration
This second chapter is about application configuration, how to use it, and how to
customize the ASP.NET configuration to employ different ways to configure your app.
Perhaps you already have an existing Extensible Markup Language (XML) configuration
or want to share a YAML Ain't Markup Language (YAML) configuration file over
different kinds of applications. Sometimes, it also makes sense to read configuration
values out of a database.

In this chapter, we will be covering the following topics:

•	 Configuring the configuration

•	 Using typed configurations

•	 Configuration using Initialization (INI) files

•	 Configuration providers

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

12 Customizing App Configuration

The topics in this chapter refer to the hosting layer of the ASP.NET Core architecture:

Figure 2.1 – ASP.NET Core architecture

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core
Model-View-Controller (MVC) application. Open your console, shell, or Bash terminal,
and change to your working directory. Use the following command to create a new MVC
application:

dotnet new mvc -n ConfigureSample -o ConfigureSample

Now, open the project in Visual Studio by double-clicking the project file or, in Visual
Studio Code (VS Code), by typing the following command in the already open console:

cd ConfigureSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter02.

Configuring the configuration
Let's start by looking at how to configure your various configuration options.

Since ASP.NET Core 2.0, the configuration is hidden in the default configuration of
WebHostBuilder and is no longer part of Startup.cs. This helps to keep the startup
clean and simple.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter02

Configuring the configuration 13

In ASP.NET Core 3.1 up to ASP.NET Core 5.0, the code looks like this:

// ASP.NET Core 3.0 and later

public class Program

{

 public static void Main(string[] args)

 {

 CreateWebHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(string[]

 args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 }

}

In ASP.NET Core 6.0, Microsoft introduced the minimal application programming
interface (API) approach that simplifies the configuration a lot. This doesn't use
Startup and adds all the configuration in the Program.cs file. Let's see how it looks
here:

Var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllersWithViews();

var app = builder.Build();

// The rest of the file isn't relevant for this chapter

Fortunately, in both versions, you are also able to override the default settings to
customize the configuration in the way you need it. In both versions, we extend
IWebHostBuilder with the ConfigureAppConfiguration() method where the
magic will happen.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

14 Customizing App Configuration

This is what the configuration looks like in ASP.NET Core 3.1 and ASP.NET Core 5.0:

Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder

 .ConfigureAppConfiguration((builderContext,

 config) =>

 {

 // configure configuration here

 })

 .UseStartup<Startup>();

 });

This is what the code looks like when using the minimal API approach. You also can use
ConfigureAppConfiguration to configure the app configuration:

builder.WebHost.ConfigureAppConfiguration((builderContext,
config) =>

{

 // configure configuration here

});

But there is a much simpler approach, by accessing the Configuration property of
the builder:

builder.Configuration.AddJsonFile(

 "appsettings.json",

 optional: false,

 reloadOnChange: true);

When you create a new ASP.NET Core project, you will already have appsettings.
json and appsettings.Development.json configured. You can, and should, use
these configuration files to configure your app; this is the preconfigured way, and most
ASP.NET Core developers will look for an appsettings.json file to configure the
application. This is absolutely fine and works pretty well.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using typed configurations 15

The following code snippet shows the encapsulated default configuration to read the
appsettings.json files:

var env = builder.Environment;

builder.Configuration.SetBasePath(env.ContentRootPath);

builder.Configuration.AddJsonFile(

 "appsettings.json",

 optional: false,

 reloadOnChange: true);

builder.Configuration.AddJsonFile(

 $"appsettings.{env.EnvironmentName}.json",

 optional: true,

 reloadOnChange: true);

builder.Configuration.AddEnvironmentVariables();

This configuration also sets the base path of the application and adds the configuration via
environment variables.

Whenever you customize the application configuration, you should add the configuration
via environment variables as a final step, using the AddEnvironmentVariables()
method. The order of the configuration matters and the configuration providers that
you add later on will override the configurations added previously. Be sure that the
environment variables always override the configurations that are set via a file. This way,
you also ensure that the configuration of your application on an Azure App Service will be
passed to the application as environment variables.

IConfigurationBuilder has a lot of extension methods to add more configurations,
such as XML or INI configuration files and in-memory configurations. You can find
additional configuration providers built by the community to read in YAML files, database
values, and a lot more. In an upcoming section, we will see how to read INI files. First, we
will look at using typed configurations.

Using typed configurations
Before trying to read INI files, it makes sense for you to see how to use typed
configurations instead of reading the configuration via IConfiguration, key by key.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

16 Customizing App Configuration

To read a typed configuration, you need to define the type to configure. I usually create
a class called AppSettings, as follows:

namespace ConfigureSample;

public class AppSettings

{

 public int Foo { get; set; }

 public string Bar { get; set; }

}

This is a simple Plain Old CLR Object (POCO) class that will only contain the
application setting values, as illustrated in the following code snippet. These classes can
then be filled with specific configuration sections inside the ConfigureServices
method in Startup.cs until ASP.NET Core 5.0:

services.Configure<AppSettings>

 (Configuration.GetSection("AppSettings"));

Using the minimal API approach, you need to configure the AppSettings class,
like this:

builder.Services.Configure<AppSettings>(

 builder.Configuration.GetSection("AppSettings"));

This way, the typed configuration also gets registered as a service in the dependency
injection (DI) container and can be used everywhere in the application. You are able to
create different configuration types for each configuration section. In most cases, one
section should be fine, but sometimes it makes sense to divide the settings into different
sections. The next snippet shows how to use the configuration in an MVC controller:

using Microsoft.Extensions.Options;

// ...

public class HomeController : Controller

{

 private readonly AppSettings _options;

 public HomeController(IOptions<AppSettings> options)

 {

 _options = options.Value;

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Configuration using INI files 17

 }

 public IActionResult Index()

 {

 ViewData["Message"] = _options.Bar;

 return View();

 }

IOptions<AppSettings> is a wrapper around our AppSettings type, and the
Value property contains the actual instance of AppSettings, including the values from
the configuration file.

To try reading the settings in, the appsettings.json file needs to have the
AppSettings section configured, otherwise the values are null or not set. Let's now add
the section to the appsettings.json file, as follows:

{

 "Logging": {

 "LogLevel": {

 "Default": "Warning"

 }

 },

 "AllowedHosts": "*",

 "AppSettings": {

 "Foo": 123,

 "Bar": "Bar"

 }

}

Next, we'll examine how INI files can be used for configuration.

Configuration using INI files
To also use INI files to configure the application, you will need to add the INI
configuration inside the ConfigureAppConfiguration() method in Program.cs,
as follows:

builder.Configuration.AddIniFile(

 "appsettings.ini",

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

18 Customizing App Configuration

 optional: false,

 reloadOnChange: true);

builder.Configuration.AddJsonFile(

 $"appsettings.{env.EnvironmentName}.ini",

 optional: true,

 reloadOnChange: true);

This code loads the INI files the same way as the JavaScript Object Notation (JSON)
configuration files. The first line is a required configuration, and the second line is an
optional configuration depending on the current runtime environment.

The INI file could look like this:

[AppSettings]

Bar="FooBar"

As you can see, this file contains a section called AppSettings and a property
called Bar.

Earlier, we said that the order of the configuration matters. If you add the two lines to
configure via INI files after the configuration via JSON files, the INI files will override the
settings from the JSON files. The Bar property gets overridden with "FooBar" and the
Foo property stays the same because it will not be overridden. Also, the values out of the
INI file will be available via the typed configuration created previously.

Every other configuration provider will work the same way. Let's now see how a
configuration provider will look.

Configuration providers
A configuration provider is an implementation of IConfigurationProvider
that is created by a configuration source, which is an implementation of
IConfigurationSource. The configuration provider then reads the data from
somewhere and provides it via Dictionary.

To add a custom or third-party configuration provider to ASP.NET Core, you will need to
call the Add method on ConfigurationBuilder and insert the configuration source.
This is just an example:

// add new configuration source

builder.Configuration.Add(new MyCustomConfigurationSource

{

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 19

 SourceConfig = //configure whatever source

 Optional = false,

 ReloadOnChange = true

});

Usually, you would create an extension method to add the configuration source more
easily, as illustrated here:

builder.Configuration.AddMyCustomSource("source", optional:
false, reloadOnChange: true);

A really detailed concrete example about how to create a custom configuration provider
has been written by Andrew Lock. You can find this in the Further reading section of
this chapter.

Summary
In most cases, you will not need to add a different configuration provider or create your
own configuration provider, but it's good to know how to change it, just in case. Also,
using a typed configuration is a nice way to read and provide the settings. In classic
ASP.NET, we used a manually created façade to read the application settings in a typed
manner. Now, this is automatically done by just providing a type. This type will be
automatically instantiated, filled, and provided, via DI.

To learn more about customizing DI in ASP.NET Core 6.0, let's have a look at the
next chapter.

Further reading
You can refer to the following source for more information:

•	 Creating a custom ConfigurationProvider in ASP.NET Core to parse YAML,
Andrew Lock: https://andrewlock.net/creating-a-custom-
iconfigurationprovider-in-asp-net-core-to-parse-yaml/

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://andrewlock.net/creating-a-custom-iconfigurationprovider-in-asp-net-core-to-parse-yaml/
https://andrewlock.net/creating-a-custom-iconfigurationprovider-in-asp-net-core-to-parse-yaml/

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Customizing
Dependency

Injection
In this third chapter, we'll take a look at ASP.NET Core dependency injection (DI) and
how to customize it to use a different DI container, if needed.

In this chapter, we will be covering the following topics:

•	 Using a different DI container

•	 Exploring the ConfigureServices method

•	 Using a different ServiceProvider

•	 Introducing Scrutor

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

22 Customizing Dependency Injection

The topics in this chapter refer to the hosting layer of the ASP.NET Core architecture:

Figure 3.1 – ASP.NET Core architecture

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core MVC
application. Open your console, shell, or Bash terminal and change to your working
directory. Use the following command to create a new MVC application:

dotnet new mvc -n DiSample -o DiSample

Now, open the project in Visual Studio by double-clicking the project file, or in Visual
Studio Code by typing the following command in the already-open console:

cd DiSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter03.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter03

Using a different DI container 23

Using a different DI container
In most projects, you don't really need to use a different DI container. The existing
DI implementation in ASP.NET Core supports the main basic features and works
both effectively and quickly. However, some other DI containers support a number of
interesting features you might want to use in your application:

•	 Create an application that supports modules as lightweight dependencies using
Ninject, for example, modules you might want to put into a specific directory and
have them be automatically registered in your application.

•	 Configure the services in a configuration file outside the application, in an XML or
JSON file instead of in C# only. This is a common feature in various DI containers,
but not yet supported in ASP.NET Core.

•	 Add services at runtime, probably because you don't want to have an immutable DI
container. This is also a common feature in some DI containers.

Let's now see how the ConfigureServices method enables you to use alternative
DI containers.

Exploring the ConfigureServices method
Let's compare the current ConfigureServices method with a previous long-term
support version to see what has changed. If you created a new ASP.NET Core project
using version 3.1 and open Startup.cs, you will find the method to configure the
services, which looks like this:

public void ConfigureServices(IServiceCollection services)

{

 services.Configure<CookiePolicyOptions>(options =>

 {

 // This lambda determines whether user

 // consent for non-essential cookies is

 // needed for a given request.

 options.CheckConsentNeeded = context => true;

 });

 services.AddControllersWithViews();

 services.AddRazorPages();

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

24 Customizing Dependency Injection

In contrast, in ASP.NET Core 6.0, there is no Startup.cs anymore, and the configuring
of the services is done in Program.cs, which looks like this:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllersWithViews();

var app = builder.Build();

// The rest of the file isn't relevant for this chapter

In both cases, the method gets IServiceCollection, which is already filled
with a bunch of services that are required by ASP.NET Core. This service was added
by the hosting services and parts of ASP.NET Core that are executed before the
ConfigureServices method was called.

Inside the method, some more services are added. First, a configuration class that contains
cookie policy options is added to ServiceCollection. After that, the AddMvc()
method adds another bunch of services required by the MVC framework. So far, we
have around 140 services registered to IServiceCollection. However, the service
collection isn't the actual DI container.

The actual DI container is wrapped in the so-called service provider, which will be
created out of the service collection. IServiceCollection has an extension method
registered to create an IServiceProvider out of the service collection, which you can
see in the following code snippet:

IServiceProvider provider = services.BuildServiceProvider()

ServiceProvider contains the immutable container that cannot be changed at
runtime. With the default ConfigureServices method, IServiceProvider is
created in the background after this method is called.

Next, we'll learn more about applying an alternative ServiceProvider as part of the
DI customization process.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using a different ServiceProvider 25

Using a different ServiceProvider
Changing to a different or custom DI container is relatively easy if the other
container already supports ASP.NET Core. Usually, the other container will use
IServiceCollection to feed its own container. The third-party DI containers move
the already-registered services to the other container by looping over the collection:

1.	 Let's start by using Autofac as a third-party container. Type the following
command into your command line to load the NuGet package:

dotnet add package Autofac.Extensions.DependencyInjection

Autofac is good for this because you are easily able to see what is happening here.
2.	 To register a custom IoC container, you need to register a different

IServiceProviderFactory. In that case, you'll want to use
AutofacServiceProviderFactory if you use Autofac.
IServiceProviderFactory will create a ServiceProvider instance. The
third-party container should provide one, if it supports ASP.NET Core.

You should place this small extension method in Program.cs to register
AutofacServiceProviderFactory with IHostBuilder:

using Autofac;

using Autofac.Extensions.DependencyInjection;

namespace DiSample;

public static class IHostBuilderExtension

{

 public static IHostBuilder

 UseAutofacServiceProviderFactory(

 this IHostBuilder hostbuilder)

 {

 hostbuilder.UseServiceProviderFactory

 <ContainerBuilder>(

 new AutofacServiceProviderFactory());

 return hostbuilder;

 }

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

26 Customizing Dependency Injection

Don't forget to add using statements to Autofac and Autofac.Extensions.
DependencyInjection.

3.	 To use this extension method, you can use AutofacServiceProvider in
Program.cs:

var builder = WebApplication.CreateBuilder(args);

builder.Host.UseAutofacServiceProviderFactory();

// Add services to the container.

builder.Services.AddControllersWithViews();

This adds the AutofacServiceProviderFactory function to IHostBuilder and
enables the Autofac IoC container. If you have this in place, you will use Autofac if
you add services to IServiceCollection using the default way.

Introducing Scrutor
You don't always need to replace the existing .NET Core DI container to get and use
some cool features. At the beginning of this chapter, I mentioned the autoregistration
of services, which can be done with other DI containers. This can also be done with a
nice NuGet package called Scrutor (https://github.com/khellang/Scrutor)
by Kristian Hellang (https://kristian.hellang.com). Scrutor extends
IServiceCollection to automatically register services with the .NET Core
DI container.

Note
Andrew Lock has published a pretty detailed blog post relating to Scrutor.
Rather than just repeating what he said, I suggest that you just go ahead and
read that post to learn more about it: Using Scrutor to automatically register
your services with the ASP.NET Core DI container, available at https://
andrewlock.net/using-scrutor-to-automatically-
register-your-services-with-the-asp-net-core-di-
container/.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/khellang/Scrutor
https://kristian.hellang.com
https://andrewlock.net/using-scrutor-to-automatically-register-your-services-with-the-asp-net-core-di-container/
https://andrewlock.net/using-scrutor-to-automatically-register-your-services-with-the-asp-net-core-di-container/
https://andrewlock.net/using-scrutor-to-automatically-register-your-services-with-the-asp-net-core-di-container/
https://andrewlock.net/using-scrutor-to-automatically-register-your-services-with-the-asp-net-core-di-container/

Summary 27

Summary
Using the approaches we have demonstrated in this chapter, you will be able to use any
.NET Standard-compatible DI container to replace the existing one. If the container of
your choice doesn't include ServiceProvider, create your own that implements
IServiceProvider and uses the DI container inside. If the container of your choice
doesn't provide a method to populate the registered services in the container, create your
own method. Loop over the registered services and add them to the other container.

Actually, the last step sounds easy but can be a hard task, because you need to translate
all the possible IServiceCollection registrations into registrations of the other
container. The complexity of that task depends on the implementation details of the other
DI container.

Anyway, you have the choice to use any DI container that is compatible with .NET
Standard. You can change a lot of the default implementations in ASP.NET Core.

This is also something you can do with the default HTTPS behavior on Windows, which
we will learn more about in the next chapter.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Configuring and

Customizing HTTPS
with Kestrel

In ASP.NET Core, HTTPS is on by default, and it is a first-class feature. On Windows, the
certificate that is needed to enable HTTPS is loaded from the Windows certificate store. If
you create a project on Linux or Mac, the certificate is loaded from a certificate file.

Even if you want to create a project to run it behind an IIS or an NGINX web server,
HTTPS is enabled. Usually, you would manage the certificate on the IIS or NGINX web
server in that case. Having HTTPS enabled here shouldn't be a problem, however, so don't
disable it in the ASP.NET Core settings.

Managing the certificate within the ASP.NET Core application directly makes sense if you
run services behind the firewall, services that are not accessible from the internet, services
such as background services for a microservice-based application, or services in a self-
hosted ASP.NET Core application.

There are also some scenarios on Windows where it makes sense to load the certificate
from a file. This could be in an application that you will run on Docker for Windows or
Linux. Personally, I like the flexible way of loading the certificate from a file.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

30 Configuring and Customizing HTTPS with Kestrel

Only two topics will be covered in this short chapter:

•	 Introducing Kestrel

•	 Setting up Kestrel

The topics in this chapter refer to the hosting layer of the ASP.NET Core architecture:

Figure 4.1 – The ASP.NET Core architecture

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core MVC
application. To do this, open your console, shell, or Bash terminal, and change to your
working directory. Then, use the following command to create a new MVC application:

dotnet new mvc -n HttpSample -o HttpSample

Now, open the project in Visual Studio by double-clicking the project file, or in Visual
Studio Code by typing the following command in the already-open console:

cd HttpSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter04.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter04

Introducing Kestrel 31

Introducing Kestrel
Kestrel is a newly implemented HTTP server that is the hosting engine of ASP.NET
Core. Every ASP.NET Core application will run on the Kestrel server. Classic ASP.NET
applications (running on .NET Framework) usually run directly on the IIS. With ASP.
NET Core, Microsoft was inspired by Node.js, which also ships an HTTP server called
libuv. In the first version of ASP.NET Core, Microsoft also used libuv, and then it added
a layer on top called Kestrel. At that time, Node.js and ASP.NET Core shared the same
HTTP server.

Since the .NET Core framework has grown and .NET sockets have been implemented
on it, Microsoft has built its own HTTP server based on .NET sockets and removed libuv,
which was a dependency they don't own and control. Now, Kestrel is a full-featured HTTP
server that runs ASP.NET Core applications.

The IIS acts as a reverse proxy that forwards the traffic to Kestrel and manages the Kestrel
process. On Linux, usually NGINX is used as a reverse proxy for Kestrel.

Setting up Kestrel
As we did in the first two chapters of this book, we need to override the default
WebHostBuilder a little bit to set up Kestrel. With ASP.NET Core 3.0 and later, it is
possible to replace the default Kestrel base configuration with a custom configuration.
This means that the Kestrel web server is configured to the host builder. Let's look at the
steps to set up:

1.	 You will be able to add and configure Kestrel manually simply by using it.
The following code shows what happens when you call the UseKestrel()
method on IwebHostBuilder. Let's now see how this fits into the
CreateWebHostBuilder method:

public class Program

{

 public static void Main(string[] args)

 {

 CreateWebHostBuilder(args).Build().Run();

 }

 public static IHostBuilder

 CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

32 Configuring and Customizing HTTPS with Kestrel

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder

 .UseKestrel(options =>

 {

 })

 .UseStartup<Startup>();

 }

}

The preceding code shows how the Program.cs looked until ASP.NET Core 5.0.
In ASP.NET Core 6.0, the new minimal API approach is used to configure your
application:

var builder = WebApplication.CreateBuilder(args);

builder.WebHost.UseKestrel(options =>

{

});

// Add services to the container.

builder.Services.AddControllersWithViews();

var app = builder.Build();

// the rest of this file is not relevant

We'll focus on the UseKestrel() method for the rest of this chapter. The
UseKestrel() method accepts an action to configure the Kestrel web server.

2.	 What we actually need to do is configure the addresses and ports that the web server
is listening on. For the HTTPS port, we also need to configure how the certificate
should be loaded:

builder.WebHost.UseKestrel(options =>

{

 options.Listen(IPAddress.Loopback, 5000);

 options.Listen(IPAddress.Loopback, 5001,

 listenOptions =>

 {

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting up Kestrel 33

 listenOptions.UseHttps("certificate.pfx",

 "topsecret");

 });

});

Don't forget to add a using statement to the System.Net namespace to resolve
the IPAddress.

In this snippet, we add the addresses and ports to listen on. The configuration
is defined as a secure endpoint configured to use HTTPS. The UseHttps()
method is overloaded multiple times in order to load certificates from the
Windows certificate store as well as from files. In this case, we will use a file called
certificate.pfx located in the project folder.

3.	 To create a certificate file to just play around with this configuration, open the
certificate store and export the development certificate created by Visual Studio. It is
located in the current user certificates under the personal certificates:

Figure 4.2 – Certificates
Right-click this entry. In the context menu, go to All Tasks and click Export. In the
Certificate Export Wizard, click Next and then click Yes, export the private key,
then click Next. Now, choose the .PFX format in the next screen and click Next.
Here, you need to set a password. This is the exact same password you will need
to use in the code, as seen in the following code example. Choose a filename and a
location to store the file, and then click Next. The last screen will show a summary.
Click Finish to save the certificate to a file.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

34 Configuring and Customizing HTTPS with Kestrel

For your safety
Use the following line only to play around with this configuration:

listenOptions.UseHttps("certificate.pfx", "topsecret");

To clarify why – the problem is the hardcoded password. Never, ever store a password
in a code file that gets pushed to any source code repository. Ensure that you load the
password from the configuration API of ASP.NET Core. Use the user secrets on your
local development machine and use environment variables on a server. On Azure, use the
application settings to store the passwords. Passwords will be hidden on the Azure portal
UI if they are marked as passwords.

Summary
This is just a small customization, but it should help if you want to share the code between
different platforms, or if you want to run your application on Docker and don't want to
worry about certificate stores, and so on.

Usually, if you run your application behind a web server such as an IIS or NGINX, you
don't need to care about certificates in your ASP.NET Core 6.0 application. However, if
you host your application inside another application, on Docker, or without an IIS or
NGINX, you will need to.

In the next chapter, we're going to talk about how to configure the hosting of ASP.NET
Core web applications.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Configuring

WebHostBuilder
When reading Chapter 4, Configuring and Customizing HTTPS with Kestrel, you might
have asked yourself a question:

How can I use user secrets to pass the password to the HTTPS configuration?

You might even be wondering whether you can fetch the configuration from within
Program.cs.

In this chapter, we're going to answer these questions through the following topic:

•	 Re-examining WebHostBuilderContext

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

36 Configuring WebHostBuilder

The topic in this chapter refers to the hosting layer of the ASP.NET Core architecture:

Figure 5.1 – The ASP.NET Core architecture

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core
application. To do this, open your console, shell, or Bash terminal, and change to your
working directory. Then, use the following command to create a new web application:

dotnet new web -n HostBuilderConfig -o HostBuilderConfig

Now open the project in Visual Studio by double-clicking the project file, or in Visual
Studio Code by typing the following command in the already-open console:

cd HostBuilderConfig

code .

Note
The simple web project template changed in .NET 6.0. In version 6.0,
Microsoft introduced minimal APIs and changed the project template to use
the minimal API approach. I'm going to show you the differences between
these templates within this chapter.

All of the code samples in this chapter can be found in the GitHub repository for this
book at https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter05.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter05

Re-examining WebHostBuilderContext 37

Re-examining WebHostBuilderContext
Remember the WebHostBuilder Kestrel configuration in the Program.cs file that we
looked at in Chapter 4, Configuring and Customizing HTTPS with Kestrel? In that chapter,
we saw that you should use user secrets to configure the certificates password, as shown in
the following code snippet:

public class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(

 string[] args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder

 .UseKestrel(options =>

 {

 options.Listen(

 IPAddress.Loopback,

 5000);

 options.Listen(

 IPAddress.Loopback,

 5001,

 listenOptions =>

 {

 listenOptions.UseHttps(

 "certificate.pfx",

 "topsecret");

 });

 })

 .UseStartup<Startup>();

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

38 Configuring WebHostBuilder

 });

 }

}

This snippet is still valid for .NET 5.0 and prior versions, and it still is valid for almost
all web projects in .NET 6.0. But it is not valid for the web project template we use in the
technical requirements section. The Program.cs file for a minimal API looks like this:

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

This means the configuration we implemented in the last chapter would look like this
within a minimal API:

using System.Net;

var builder = WebApplication.CreateBuilder(args);

builder.WebHost.UseKestrel(options =>

{

 options.Listen(IPAddress.Loopback, 5000);

 options.Listen(IPAddress.Loopback, 5001,

 listenOptions =>

 {

 listenOptions.UseHttps(

 "certificate.pfx",

 "topsecret");

 });

});

The following is valid for all project templates in .NET 6.0 and prior versions.

Usually, you are not able to fetch the configuration inside this code. You need to know that
the UseKestrel() method is overloaded, as you can see here:

.UseKestrel((host, options) =>

{

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Re-examining WebHostBuilderContext 39

 // ...

})

This first argument is a WebHostBuilderContext instance, which you can use to
access the configuration. So, let's rewrite the lambda a little bit to use this context:

builder.WebHost.UseKestrel((host, options) =>

{

 var filename = host.Configuration.GetValue(

 "AppSettings:certfilename", "");

 var password = host.Configuration.GetValue(

 "AppSettings:certpassword", "");

 options.Listen(IPAddress.Loopback, 5000);

 options.Listen(IPAddress.Loopback, 5001,

 listenOptions =>

 {

 listenOptions.UseHttps(filename, password);

 });

});

In this example, we write the keys using the colon divider, as this is the way in which you
need to read nested configurations from appsettings.json:

{

 "AppSettings": {

 "certfilename": "certificate.pfx",

 "certpassword": "topsecret"

 },

 "Logging": {

 "LogLevel": {

 "Default": "Warning"

 }

 },

 "AllowedHosts": "*"

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

40 Configuring WebHostBuilder

Important Note
This is just a sample of how to read configurations to configure Kestrel. Please
never, ever store any credentials inside the code. Use the following concepts
instead.

You are also able to read from the user secrets store where the keys are set up with the
following .NET CLI commands that you need to execute in the project folder:

dotnet user-secrets init

dotnet user-secrets set "AppSettings:certfilename"

 "certificate.pfx"

dotnet user-secrets set "AppSettings:certpassword"

 "topsecret"

This also applies to environment variables:

SET APPSETTINGS_CERTFILENAME=certificate.pfx

SET APPSETTINGS_CERTPASSWORD=topsecret

Important Note
Since the user secrets store is for local development only, you should pass
credentials via environment variables to the application in production, or
production-like applications. Also, the app settings configuration you will
make in Azure will be passed as environment variables to your application.

So, how does this all work?

How does it work?
Do you remember the days back when you needed to set app configurations in the
Startup.cs file in ASP.NET Core 1.0? They were configured in the constructor of the
StartUp class and looked similar to this if you added user secrets:

var builder = new ConfigurationBuilder()

 .SetBasePath(env.ContentRootPath)

 .AddJsonFile("appsettings.json")

 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",

 optional: true);

if (env.IsDevelopment())

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Re-examining WebHostBuilderContext 41

{

 builder.AddUserSecrets();

}

builder.AddEnvironmentVariables();

Configuration = builder.Build();

This code is now wrapped inside the CreateDefaultBuilder method (as you can see
on GitHub – refer to the Further reading section for details) and looks like this:

builder.ConfigureAppConfiguration((hostingContext, config)

 =>

{

 var env = hostingContext.HostingEnvironment;

 config

 .AddJsonFile(

 "appsettings.json",

 optional: true,

 reloadOnChange: true)

 .AddJsonFile(

 $"appsettings.{env.EnvironmentName}.json",

 optional: true,

 reloadOnChange: true);

 if (env.IsDevelopment())

 {

 var appAssembly = Assembly.Load(

 new AssemblyName(env.ApplicationName));

 if (appAssembly != null)

 {

 config.AddUserSecrets(appAssembly,

 optional: true);

 }

 }

 config.AddEnvironmentVariables();

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

42 Configuring WebHostBuilder

 if (args != null)

 {

 config.AddCommandLine(args);

 }

});

This is almost the same code, and it is one of the first things that gets executed when
building the WebHost.

This needs to be one of the first things we set up because Kestrel is configurable via the
app configuration. You can specify ports, URLs, and more by using environment variables
or appsettings.json.

You can find these lines in WebHost.cs on GitHub:

builder.UseKestrel((builderContext, options) =>

 {

 options.Configure(

 builderContext.Configuration.GetSection("Kestrel"));

})

This means that you are able to add these lines to appsettings.json to configure
Kestrel endpoints:

"Kestrel": {

 "EndPoints": {

 "Http": {

 "Url": "http://localhost:5555"

 }

 }

}

Alternatively, environment variables such as the following can be used to configure
endpoints:

SET KESTREL_ENDPOINTS_HTTP_URL=http://localhost:5555

Let's now recap everything we've covered in this chapter.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 43

Summary
Inside Program.cs, you are able to make app configurations inside the lambdas of the
configuration methods, provided you have access to the WebHostBuilderContext.
This way, you can use all the configurations you like to configure WebHostBuilder.

In the next chapter, we are going to have a look at the hosting details. You will learn about
different hosting models and how to host an ASP.NET Core application in different ways.

Further reading
The WebHost.cs file in the ASP.NET GitHub repository:
https://github.com/aspnet/MetaPackages/blob/
d417aacd7c0eff202f7860fe1e686aa5beeedad7/src/Microsoft.
AspNetCore/WebHost.cs.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/aspnet/MetaPackages/blob/d417aacd7c0eff202f7860fe1e686aa5beeedad7/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/d417aacd7c0eff202f7860fe1e686aa5beeedad7/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/d417aacd7c0eff202f7860fe1e686aa5beeedad7/src/Microsoft.AspNetCore/WebHost.cs

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Using Different
Hosting Models

In this chapter, we will talk about how to customize hosting in ASP.NET Core. We will
look into the hosting options and different kinds of hosting, and take a quick look at
hosting on IIS. This chapter is just an overview. It is possible to go into much greater detail
for each topic, but that would fill a complete book on its own!

In this chapter, we will be covering the following topics:

•	 Setting up WebHostBuilder

•	 Setting up Kestrel

•	 Setting up HTTP.sys

•	 Hosting on IIS

•	 Using Nginx or Apache on Linux

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

46 Using Different Hosting Models

The topics in this chapter refer to the hosting layer of the ASP.NET Core architecture:

Figure 6.1 – ASP.NET Core architecture

This chapter tackles the following topics of the server architecture:

Figure 6.2 – ASP.NET server architecture

Technical requirements
For this chapter, we just need to set up a small, empty web application:

dotnet new web -n ExploreHosting -o ExploreHosting

That's it. Open it with Visual Studio Code:

cd ExploreHosting

code .

Et voilà! A simple project opens in Visual Studio Code.

The code for this chapter can be found on GitHub here: https://github.com/
PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/
tree/main/Chapter06.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter06

Setting up WebHostBuilder 47

Setting up WebHostBuilder
As in the last chapter, we will focus on Program.cs in this section. WebHostBuilder
is our friend. This is where we configure and create the web host.

The following code snippet is the default configuration of every new ASP.NET Core
web project we create using File | New | Project in Visual Studio or the dotnet new
command with the .NET CLI:

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

As we already know from previous chapters, the default builder has all the necessary stuff
preconfigured. All you require in order to run an application successfully on Azure or an
on-premises IIS is configured for you.

But you are able to override almost all of these default configurations, including the
hosting configuration.

Next, let's set up Kestrel.

Setting up Kestrel
After WebHostBuilder is created, we can use various functions to configure the builder.
Here, we can see one of them, which specifies the Startup class that should be used.

Note
As discussed in Chapter 4, Configuring and Customizing HTTPS with Kestrel,
Kestrel is one possibility when it comes to hosting your application. Kestrel
is a web server built into .NET and based on .NET socket implementations.
Previously, it was built on top of libuv, which is the same web server that is
used by Node.js. Microsoft removed the dependency to libuv and created their
own web server implementation based on .NET sockets.

In the last chapter, we saw the UseKestrel method to configure the Kestrel options:

.UseKestrel((host, options) =>

{

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

48 Using Different Hosting Models

 // ...

})

This first argument is WebHostBuilderContext to access already-configured hosting
settings or the configuration itself. The second argument is an object to configure Kestrel.
This code snippet shows what we did in the last chapter to configure the socket endpoints
where the host needs to listen:

builder.WebHost.UseKestrel((host, options) =>

{

 var filename = host.Configuration.GetValue(

 "AppSettings:certfilename", "");

 var password = host.Configuration.GetValue(

 "AppSettings:certpassword", "");

 options.Listen(IPAddress.Loopback, 5000);

 options.Listen(IPAddress.Loopback, 5001,

 listenOptions =>

 {

 listenOptions.UseHttps(filename, password);

 });

});

(You might need to add a using to System.Net.)

This will override the default configuration where you are able to pass in URLs, for
example, using the applicationUrl property of launchSettings.json or an
environment variable.

Let's now look at how to set up HTTP.sys.

Setting up HTTP.sys
There is another hosting option, a different web server implementation. HTTP.sys is
a pretty mature library, deep within Windows, that can be used to host your ASP.NET
Core application:

.UseHttpSys(options =>

{

 // ...

})

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Hosting on IIS 49

HTTP.sys is different from Kestrel. It cannot be used in IIS because it is not compatible
with the ASP.NET Core module for IIS.

The main reason for using HTTP.sys instead of Kestrel is Windows authentication,
which cannot be used in Kestrel. You can also use HTTP.sys if you need to expose your
application to the internet without IIS.

Note
IIS has been running on top of HTTP.sys for years. This means that
UseHttpSys() and IIS are using the same web server implementation. To
learn more about HTTP.sys, please read the documentation, links to which
can be found in the Further reading section.

Next, let's look at using IIS for hosting.

Hosting on IIS
An ASP.NET Core application shouldn't be directly exposed to the internet, even if it's
supported for Kestrel or HTTP.sys. It would be best to have something such as a reverse
proxy in between, or at least a service that watches the hosting process. For ASP.NET
Core, IIS isn't just a reverse proxy. It also takes care of the hosting process, in case it breaks
because of an error. If that happens, IIS will restart the process. Nginx may be used as a
reverse proxy on Linux that also takes care of the hosting process.

Note
Be sure you created a new project or removed the Kestrel configuration of the
previous section. This won't work with IIS.

To host an ASP.NET Core web on IIS or Azure, you need to publish it first. Publishing
doesn't only compile the project; it also prepares the project for hosting on IIS, Azure, or a
web server on Linux, such as Nginx.

The following command will publish the project:

dotnet publish -o ..\published -r win-x64

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

50 Using Different Hosting Models

When viewed in a system browser, this should look as follows:

Figure 6.3 – A .NET published folder

This produces an output that can be mapped in IIS. It also creates a web.config to add
settings for IIS or Azure. It contains the compiled web application as a DLL.

If you publish a self-contained application, it also contains the runtime itself.
A self-contained application brings its own .NET Core runtime, but the size of the
delivery increases a lot.

And on IIS? Just create a new web and map it to the folder where you placed the
published output:

Figure 6.4 – The .NET publishing dialog

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Nginx or Apache on Linux 51

It gets a little more complicated if you need to change the security, if you have some
database connections, and so on. This could be a topic for a separate chapter on its own.

Figure 6.5 – Hello World! viewed in a browser

Figure 6.5 shows the output of the small MapGet in the Program.cs of the demo project:

app.MapGet("/", () => "Hello World!");

Next up, we'll discuss some alternatives for Linux.

Using Nginx or Apache on Linux
Publishing an ASP.NET Core application on Linux looks very similar to the way it looks
on IIS, but preparing it for the reverse proxy requires some additional steps. You will need
a web server such as Nginx or Apache as a reverse proxy that forwards the traffic to Kestrel
and the ASP.NET Core application:

1.	 First, you need to allow your app to accept two specific forwarded headers. To do
this, open Startup.cs and add the following lines to the Configure method
before the UseAuthentication middleware:

app.UseForwardedHeaders(new ForwardedHeadersOptions

{

 ForwardedHeaders = ForwardedHeaders.XForwardedFor

 | ForwardedHeaders.XForwardedProto

});

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

52 Using Different Hosting Models

2.	 You also need to trust the incoming traffic from the reverse proxy. This requires you
to add the following lines to the ConfigureServices method:

Builder.Services.Configure<ForwardedHeadersOptions>(

 options =>

{

 options.KnownProxies.Add(

 IPAddress.Parse("10.0.0.100"));

});

You might need to add a using to Microsoft.AspNetCore.
HttpOverrides.

3.	 Add the IP address of the proxy here. This is just a sample.
4.	 Then, you need to publish the application:

dotnet publish --configuration Release

5.	 Copy the build output to a folder called /var/www/yourapplication.
You should also do a quick test on Linux by calling the following command:

dotnet <yourapplication.dll>

6.	 Here, yourapplication.dll is the compiled application, including the path.
If it is all working correctly, you should be able to call your web on http://
localhost:5000/.

If it is working, the application should run as a service. This requires you to
create a service file on /etc/systemd/system/. Call the file kestrel-
yourapplication.service and place the following content in it:

[Unit]

Description=Example .NET Web API App running on Ubuntu

[Service]

WorkingDirectory=/var/www/yourapplication

ExecStart=/usr/bin/dotnet/var/www/yourapplication/
yourapplication.dll

Restart=always

Restart service after 10 seconds if the dotnet service
crashes:

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Nginx or Apache on Linux 53

RestartSec=10

KillSignal=SIGINT

SyslogIdentifier=dotnet-example

User=www-data

Environment=ASPNETCORE_ENVIRONMENT=Production

Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false

[Install]

WantedBy=multi-user.target

Ensure that the paths in lines 5 and 6 point to the folder where you placed the
build output. This file defines that your app should run as a service on the default
port. It also watches the app and restarts it in case it crashes. It also defines
environment variables that get passed in to configure your application. See Chapter
1, Customizing Logging, to learn how to configure your application using
environment variables.

Next up, we'll see how to configure Nginx.

Configuring Nginx
Now you can tell Nginx what to do using the following code:

server {

 listen 80;

 server_name example.com *.example.com;

 location / {

 proxy_pass http://localhost:5000;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection keep-alive;

 proxy_set_header Host $host;

 proxy_cache_bypass $http_upgrade;

 proxy_set_header X-Forwarded-For
 $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

54 Using Different Hosting Models

This tells Nginx to forward calls on port 80 to example.com, and subdomains of it to
http://localhost:5000, which is the default address of your application.

Configuring Apache
The Apache configuration looks pretty similar to the Nginx method, and does the same
things at the end:

<VirtualHost *:*>

 RequestHeader set "X-Forwarded-Proto

 expr=%{REQUEST_SCHEME}

</VirtualHost>

<VirtualHost *:80>

 ProxyPreserveHost On

 ProxyPass / http://127.0.0.1:5000/

 ProxyPassReverse / http://127.0.0.1:5000/

 ServerName www.example.com

 ServerAlias *.example.com

 ErrorLog ${APACHE_LOG_DIR}yourapplication-error.log

 CustomLog ${APACHE_LOG_DIR}yourapplication-access.log
 common

</VirtualHost>

That's it for Nginx and Apache. Let's now wrap up this chapter.

Summary
ASP.NET Core and the .NET CLI already contain all the tools to get them running on
various platforms and to set it up to get it ready for Azure and IIS, as well as Nginx. This is
super easy and well described in the documentation.

Currently, we have WebHostBuilder, which creates the hosting environment of the
applications. In version 3.0, we have HostBuilder, which is able to create a hosting
environment that is completely independent of any web context.

ASP.NET Core 6.0 has a feature to run tasks in the background inside the application.
To learn more about that, read the next chapter.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Further reading 55

Further reading
For more information you can refer to the following links:

•	 Kestrel documentation: https://docs.microsoft.com/en-us/aspnet/
core/fundamentals/servers/kestrel?view=aspnetcore-6.0

•	 HTTP.sys documentation: https://docs.microsoft.
com/en-us/aspnet/core/fundamentals/servers/
httpsys?view=aspnetcore-6.0

•	 ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/core/
host-and-deploy/aspnet-core-module?view=aspnetcore-6.0

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/aspnet-core-module?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/aspnet-core-module?view=aspnetcore-6.0

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Using

IHostedService and
BackgroundService

This seventh chapter isn't really about customization; it's more about a feature you can
use to create background services to run tasks asynchronously inside your application.
I use this feature to regularly fetch data from a remote service in a small ASP.NET Core
application.

We'll examine the following topics:

•	 Introducing IHostedService

•	 Introducing BackgroundService

•	 Implementing the new Worker Service projects

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

58 Using IHostedService and BackgroundService

The topics of this chapter refer to the Host layer of the ASP.NET Core architecture:

Figure 7.1 – ASP.NET Core architecture

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core
application. Open your console, shell, or Bash terminal, and change to your working
directory. Use the following command to create a new MVC application:

dotnet new mvc -n HostedServiceSample -o HostedServiceSample

Now open the project in Visual Studio by double-clicking the project file or in VS Code
by changing the folder to the project and typing the following command in the already
open console:

cd HostedServiceSample

code .

All of the code samples in this chapter can be found in the GitHub repo for this book:
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-
6.0-Second-Edition/tree/main/Chapter07.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter07

Introducing IHostedService 59

Introducing IHostedService
Hosted services have been a thing since ASP.NET Core 2.0 and can be used to run tasks
asynchronously in the background of your application. They can be used to fetch data
periodically, do some calculations in the background, or do some cleanup. You can also
use them to send preconfigured emails – or whatever you need to do in the background.

Hosted services are basically simple classes that implement the IHostedService
interface. You call them with the following code:

public class SampleHostedService : IHostedService

{

 public Task StartAsync(CancellationToken

 cancellationToken)

 {

 }

 public Task StopAsync(CancellationToken

 cancellationToken)

 {

 }

}

IHostedService needs to implement a StartAsync() method and
a StopAsync() method. The StartAsync() method is the place where you
implement the logic to execute. This method gets executed once, immediately after the
application starts. The StopAsync() method, on the other hand, gets executed just
before the application stops. This also means that to start a scheduled service, you will
need to implement it on your own. You will need to implement a loop that executes the
code regularly.

To execute a IHostedService, you will need to register it in the ASP.NET Core
dependency injection container as a singleton instance:

builder.Services.AddSingleton<IHostedService,
SampleHostedService>();

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

60 Using IHostedService and BackgroundService

The next sample shows you how hosted services work. It writes a log message to the
console on start, on stop, and every 2 seconds:

1.	 First, write the class skeleton that retrieves ILogger via
DependencyInjection:

namespace HostedServiceSample;

public class SampleHostedService : IHostedService

{

 private readonly ILogger<SampleHostedService>

 logger;

 // inject a logger

 public

 SampleHostedService(ILogger<SampleHostedService>

 logger)

 {

 this.logger = logger;

 }

 public Task StartAsync(CancellationToken

 cancellationToken)

 {

 }

 public Task StopAsync(CancellationToken

 cancellationToken)

 {

 }

}

2.	 The next step is to implement the StopAsync method. This method is used to
clean up in case you need to close connections, streams, and so on:

public Task StopAsync(CancellationToken

 cancellationToken)

{

 logger.LogInformation("Hosted service stopping");

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing IHostedService 61

 return Task.CompletedTask;

}

3.	 The actual work will be done in the StartAsync method:

public Task StartAsync(CancellationToken

 cancellationToken)

{

 logger.LogInformation("Hosted service starting");

 return Task.Factory.StartNew(async () =>

 {

 // loop until a cancelation is requested

 while

 (!cancellationToken.IsCancellationRequested)

 {

 logger.LogInformation($"Hosted service

 executing - {DateTime.Now}");

 try

 {

 // wait for 2 seconds

 await

 Task.Delay(TimeSpan.FromSeconds(2),

 cancellationToken);

 }

 catch (OperationCanceledException) { }

 }

 }, cancellationToken);

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

62 Using IHostedService and BackgroundService

4.	 To test this, start the application by calling the following command in the console:

dotnet run

Or press F5 in Visual Studio or VS Code. This results in the following console output:

Figure 7.2 – A screenshot of the dotnet run output

As you can see, the log output is written to the console every 2 seconds.

In the next section, we will look at BackgroundService.

Introducing BackgroundService
The BackgroundService class was introduced in ASP.NET Core 3.0 and is basically
an abstract class that implements the IHostedService interface. It also provides an
abstract method, called ExecuteAsync(), which returns a Task.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing BackgroundService 63

If you want to reuse the hosted service from the last section, the code will need to be
rewritten. Follow these steps to learn how:

1.	 First, write the class skeleton that retrieves ILogger via
DependencyInjection:

namespace HostedServiceSample;

public class SampleBackgroundService :

 BackgroundService

{

 private readonly ILogger<SampleHostedService>

 logger;

 // inject a logger

 public SampleBackgroundService(

 ILogger<SampleHostedService> logger)

 {

 this.logger = logger;

 }

}

2.	 The next step would be to override the StopAsync method:

public override async Task StopAsync(CancellationToken

 cancellationToken)

{

 logger.LogInformation("Background service

 stopping");

 await Task.CompletedTask;

}

3.	 In the final step, we will override the ExecuteAsync method that does all
the work:

protected override async Task

 ExecuteAsync(CancellationToken cancellationToken)

{

 logger.LogInformation("Background service

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

64 Using IHostedService and BackgroundService

 starting");

 await Task.Factory.StartNew(async () =>

 {

 while

 (!cancellationToken.IsCancellationRequested)

 {

 logger.LogInformation($"Background service

 executing - {DateTime.Now}");

 try

 {

 await

 Task.Delay(TimeSpan.FromSeconds(2),

 cancellationToken);

 }

 catch (OperationCanceledException) {}

 }

 }, cancellationToken);

}

Even the registration is new.
Additionally, in ASP.NET Core 3.0 and later, the ServiceCollection has a new
extension method to register hosted services or a background worker:

builder.Services.AddHostedService<SampleBackgroundService>();

To test this, start the application by calling the following command in the console:

dotnet run

Or press F5 in Visual Studio or VS Code. It should show almost the same output as the
SampleHostedService you created in the previous section.

Next, let's take a look at Worker Service projects.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing the new Worker Service projects 65

Implementing the new Worker Service projects
The worker services and the generic hosting in ASP.NET Core 3.0 and later make it pretty
easy to create simple service-like applications that can do some stuff without the full-
blown ASP.NET stack – and without a web server.

You can create this project with the following command:

dotnet new worker -n BackgroundServiceSample -o
BackgroundServiceSample

Basically, this creates a console application with a Program.cs and a Worker.
cs file in it. The Worker.cs file contains the Worker class that inherits from the
BackgroundService class. In ASP.NET 5.0 and earlier, the Program.cs file looks
pretty familiar to what we saw in the previous versions of ASP.NET Core but without
a WebHostBuilder:

public class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(string[]

 args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureServices((hostContext, services) =>

 {

 services.AddHostedService<Worker>();

 });

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

66 Using IHostedService and BackgroundService

In ASP.NET Core 6.0, Program.cs is pretty simplified in the same way as the minimal
APIs. It looks like this:

using BackgroundServiceSample;

IHost host = Host.CreateDefaultBuilder(args)

 .ConfigureServices(services =>

 {

 services.AddHostedService<Worker>();

 })

 .Build();

await host.RunAsync();

This creates an IHost with dependency injection enabled. This means we can use
dependency injection in any kind of .NET Core application, and not only in ASP.NET
Core applications.

Then the worker is added to the service collection.

Where is this useful? You can run this app as a Windows service or as a background
application in a Docker container, which doesn't need an HTTP endpoint.

Summary
You can now start to do some more complex things with an IHostedService and
the BackgroundService. Be careful with background services because they all run
in the same application; if you use too much CPU or memory, this could slow down
your application.

For bigger applications, I would suggest running such tasks in a separate application
that is specialized for executing background tasks: a separate Docker container,
a BackgroundWorker on Azure, Azure Functions, or something like that. However,
it should be separate from the main application in that case.

In the next chapter, we will learn about middleware, and how you can use them to
implement special logic on the request pipeline or serve specific logic on different paths.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Writing Custom

Middleware
Wow, we are already onto the eighth chapter of this book! In this chapter, we will learn
about middleware and how you can use it to customize your app a little more. We will
quickly go over the basics of middleware and then we'll explore some special things you
can do with it.

In this chapter, we'll cover the following topics:

•	 Introducing middleware

•	 Writing custom middleware

•	 Exploring the potential of middleware

•	 Using middleware on ASP.NET Core 3.0 and later

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

68 Writing Custom Middleware

The topics covered in this chapter relate to the middleware layer of the ASP.NET Core
architecture:

Figure 8.1 – The ASP.NET Core architecture

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core MVC
application. To do this, open your console, shell, or Bash terminal, and change to your
working directory. Then, use the following command to create a new MVC application:

dotnet new web -n MiddlewaresSample -o MiddlewaresSample

Now, open the project in Visual Studio by double-clicking the project file, or in Visual
Studio Code by typing the following command in the already-open console:

cd MiddlewaresSample

code .

Note
The simple web project template changed in .NET 6.0. In version 6.0,
Microsoft introduced minimal APIs and changed the project template to use
the minimal API approach. This is a simpler way to bootstrap and to get started
with a web application.

All of the code samples in this chapter can be found in the GitHub repository for this
book at https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter08.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter08

Introducing middleware 69

Introducing middleware
The majority of you probably already know what middleware is, but some of you might
not. Even if you have already been using ASP.NET Core for a while, you don't really
need to know about middleware instances in detail, as they are mostly hidden behind
nicely named extension methods such as UseMvc(), UseAuthentication(),
UseDeveloperExceptionPage(), and so on. Every time you call a Use method in
the Startup.cs file, in the Configure method, you'll implicitly use at least one – or
maybe more – middleware components.

A middleware component is a piece of code that handles the request pipeline. Imagine
the request pipeline as a huge tube where you can call something and then an echo comes
back. The middleware is responsible for the creation of this echo – it manipulates the
sound to enrich the information, handling the source sound, or handling the echo.

Middleware components are executed in the order in which they are configured. The first
middleware component configured is the first that gets executed.

In an ASP.NET Core web application, if the client requests an image or any other static
file, StaticFileMiddleware searches for that resource and returns that resource if
it finds it. If not, this middleware component does nothing except call the next one. If
there is no final piece of middleware that handles the request pipeline, the request returns
nothing. The MvcMiddleware component also checks the requested resource, tries to
map it to a configured route, executes the controller, creates a view, and returns an HTML
or web API result. If MvcMiddleware does not find a matching controller, it will return
a result anyway – in this case, it is a 404 status result. So, in any case, it returns an echo.
This is why MvcMiddleware is the last piece of middleware configured.

Figure 8.2 – A middleware workflow diagram

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

70 Writing Custom Middleware

Exception-handling middleware is usually one of the first pieces of middleware
configured, not because it is the first to be executed, but because it is the last. The first
middleware component configured is also the last one to be executed if the echo comes
back from the tube. Exception-handling middleware validates the result and displays a
possible exception in a browser in a client-friendly way. The following process describes
where a runtime error gets a 500 status:

1.	 You are able to see how the pipeline is executed if you create an empty ASP.NET
Core application, as described in the Technical requirements section.

2.	 Open Program.cs with your favorite editor. This should be pretty small compared
to a regular ASP.NET Core application. In ASP.NET Core 6.0, Microsoft introduced
the minimal API approach, which simplifies the application configuration and hides
a lot of default configuration from the developers. Microsoft is also implementing
default using statements in ASP.NET Core. Because of this, you don't see any
using statements initially. This is how Program.cs looks in ASP.NET Core 6.0:

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

Here, special lambda middleware is bound to the default route and only writes
"Hello World!" to the response stream. The response stream is the echo we
learned about previously. This special middleware stops the pipeline and returns
something like an echo. So, it is the last middleware to run.

3.	 Replace the line with the call of app.MapGet() with the following lines of code,
right before the app.Run() function:

app.Use(async (context, next) =>{

 await context.Response.WriteAsync("===");

 await next();

 await context.Response.WriteAsync("===");

});

app.Use(async (context, next) =>

{

 await context.Response.WriteAsync(">>>>>> ");

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing custom middleware 71

 await next();

 await context.Response.WriteAsync(" <<<<<<");

});

app.Run(async context =>

{

 await context.Response.WriteAsync("Hello World!");

});

These two calls of app.Use() also create two lambda middlewares, but this time,
in addition to dealing with specific requests, the middleware components are calling
their successors: each middleware component knows which middleware component
should follow it, and so calls it. The call of app.Run() replaces the call of app.
MapGet(), but it does basically the same thing, except that app.Run() directly
writes to the response stream. The lambda middlewares created with app.Use()
write to the response stream before and after the next middleware is called. Before
the next middleware is called, the actual request is handled, and after the next
middleware is called, the response (echo) is handled. This should demonstrate how
the pipeline works.

4.	 If you now run the application (using dotnet run) and open the displayed URL
in the browser, you should see a plain text result like this:

===>>>>>> Hello World! <<<<<<===

Does this make sense to you? If yes, let's move on and see how to use this concept to add
some additional functionality to the request pipeline.

Writing custom middleware
ASP.NET Core is based on middleware. All the logic that gets executed during a request
is based on middleware. So, we can use this to add custom functionality to the web. In
the following process, we want to find out the execution time of every request that goes
through the request pipeline:

1.	 We can do this by creating and starting a stopwatch before the next middleware is
called, and stop measuring the execution time after the next middleware is called,
like so:

app.Use(async (context, next) =>

{

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

72 Writing Custom Middleware

 var s = new Stopwatch();

 s.Start();

 // execute the rest of the pipeline

 await next();

 s.Stop(); //stop measuring

 var result = s.ElapsedMilliseconds;

 // write out the milliseconds needed

 await context.Response.WriteAsync($" Time needed:

 {result} milliseconds");

});

You might need to add a using statement for System.Diagnostics.

After that, we return the elapsed milliseconds to the response stream.
2.	 If you write some more middleware components, the configuration in

Program.cs gets pretty messy. This is why most middleware components are
written as separate classes. This could look like this:

using System.Diagnostics;

public class StopwatchMiddleware

{

 private readonly RequestDelegate _next;

 public StopwatchMiddleware(RequestDelegate next)

 {

 _next = next;

 }

 public async Task Invoke(HttpContext context)

 {

 var s = new Stopwatch();

 s.Start();

 // execute the rest of the pipeline

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing custom middleware 73

 await _next(context);

 s.Stop(); //stop measuring

 var result = s.ElapsedMilliseconds;

 // write out the milliseconds needed

 await context.Response.WriteAsync($" Time

 needed: {result} milliseconds");

 }

}

This way, we get the next middleware component to execute via the constructor and
the current context in the Invoke() method.

Note
The middleware is initialized at the start of the application and the constructor
runs only once during the application lifetime. On the other hand, the
Invoke() method is called once per request.

3.	 To use this middleware, there is a generic UseMiddleware() method available
that you can use:

app.UseMiddleware<StopwatchMiddleware>();

4.	 However, the more elegant way is to create an extension method that
encapsulates this call:

public static class StopwatchMiddlewareExtension

{

 public static IApplicationBuilder

 UseStopwatch(this IApplicationBuilder app)

 {

 app.UseMiddleware<StopwatchMiddleware>();

 return app;

 }

}

5.	 Now, you can simply call it like this:

app.UseStopwatch();

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

74 Writing Custom Middleware

This way, you can provide additional functionality to an ASP.NET Core application
through the request pipeline. You have the entire HttpContext available in your
middleware. With this, you can manipulate the request or even the response using
middleware.

For example, AuthenticationMiddleware tries to collect user information from the
request. If it doesn't find any, it will ask for the information by sending a specific response
back to the client. If it finds some information, it will add it to the request context and
make it available to the entire application this way.

Exploring the potential of middleware
There are many other things you can do with middleware. For example, did you know that
you can split the request pipeline into two or more pipelines? We'll look at how to do that
and several other things in this section.

Branching the pipeline with /map
The next code snippet shows how to create branches of the request pipeline based on
specific paths:

app.Map("/map1", app1 =>

{

 // some more Middleware

 app1.Run(async context =>

 {

 await context.Response.WriteAsync("Map Test 1");

 });

});

app.Map("/map2", app2 =>

{

 // some more Middleware

 app2.Run(async context =>

 {

 await context.Response.WriteAsync("Map Test 2");

 });

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the potential of middleware 75

});

// some more Middleware

The /map1 path is a specific branch that continues the request pipeline inside – this is the
same with the /map2 path. Both maps have their own middleware configurations inside.
All other unspecified paths will follow the main branch.

Branching the pipeline with MapWhen()
There is also a MapWhen() method to branch the pipeline based on a condition, instead
of a branch based on a path:

public void Configure(IApplicationBuilder app)

{

 app.MapWhen(

 context =>

 context.Request.Query.ContainsKey("branch"),

 app1 =>

 {

 // some more Middleware

 app1.Run(async context =>

 {

 await context.Response.WriteAsync(

 "MapBranch Test");

 });

 });

 // some more Middleware

 app.Run(async context =>

 {

 await context.Response.WriteAsync(

 "Hello from non-Map delegate.");

 });

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

76 Writing Custom Middleware

Next, we'll look at using middleware to create conditions.

Creating conditions with middleware
You can create conditions based on configuration values or, as shown here, based on
properties of the request context. In the previous example, a query string property was
used. You can use HTTP headers, form properties, or any other property of the request
context.

You are also able to nest the maps to create child and grandchild branches if needed.

We can use Map() or MapWhen() to provide a special API or resource based on a
specific path or a specific condition, respectively. The ASP.NET Core HealthCheck
API works like this: first, it uses MapWhen() to specify the port to use, and then, it
uses Map() to set the path for the HealthCheck API (or, it uses Map() if no port is
specified). In the end, HealthCheckMiddleware is used. The following code is just an
example to show what this looks like:

private static void UseHealthChecksCore(IApplicationBuilder

 app, PathString path, int? port, object[] args)

{

 if (port == null)

 {

 app.Map(path,

 b =>

 b.UseMiddleware<HealthCheckMiddleware>(args));

 }

 else

 {

 app.MapWhen(

 c => c.Connection.LocalPort == port,

 b0 => b0.Map(path,

 b1 =>

 b1.UseMiddleware<HealthCheckMiddleware>(args)

)

);

 };

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using middleware in ASP.NET Core 3.0 and later 77

Next, let's see how you should use terminating middleware components in newer versions
of ASP.NET Core.

Using middleware in ASP.NET Core 3.0 and
later
In ASP.NET Core 3.0 and later, there are two new kinds of middleware element, and they
are called UseRouting and UseEndpoints:

public void Configure(IApplicationBuilder app,

 IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapGet("/", async context =>

 {

 await context.Response.WriteAsync("Hello

 World!");

 });

 });

}

The first one is a middleware component that uses routing and the other one uses
endpoints. So, what exactly are we looking at?

This is the new endpoint routing. Previously, routing was part of MVC, and it only
worked with MVC, web APIs, and frameworks that are based on the MVC framework. In
ASP.NET Core 3.0 and later, however, routing is no longer in the MVC framework. Now,
MVC and the other frameworks are mapped to a specific route or endpoint. There are
different kinds of endpoint definitions available.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

78 Writing Custom Middleware

In the preceding code snippet, a GET request is mapped to the page root URL. In the next
code snippet, MVC is mapped to a route pattern, and Razor Pages are mapped to the
Razor Pages-specific file structure-based routes:

app.UseEndpoints(endpoints =>

{

 endpoints.MapControllerRoute(

 name: "default",

 pattern: "{controller=Home}/{action=Index}/{id?}");

 endpoints.MapRazorPages();

});

There is no UseMvc() method anymore, even if it still exists and works on the
IApplicationBuilder object level, to prevent the existing code from breaking. Now,
there are new methods to activate ASP.NET Core features more granularly.

These are the most commonly used new Map methods for ASP.NET Core 5.0 or later:

•	 Areas for MVC and web API: endpoints.
MapAreaControllerRoute(...);

•	 MVC and web API: endpoints.MapControllerRoute(...);

•	 Blazor server-side: endpoints.MapBlazorHub(...);

•	 SignalR: endpoints.MapHub(...);

•	 Razor Pages: endpoints.MapRazorPages(...);

•	 Health checks: endpoints.MapHealthChecks(...);

There are many more methods to define fallback endpoints, to map routes and HTTP
methods to delegates, and for middleware components.

If you want to create middleware that works on all requests, such as
StopWatchMiddleware, this will work as before on IApplicationBuilder. If you
would like to write middleware to work on a specific path or route, you will need to create
a Map method for it to map it to that route.

Important Note
It is no longer recommended to handle the route inside the middleware.
Instead, you should use the new endpoint routing. With this approach, the
middleware is a lot more generic, and it will work on multiple routes with a
single configuration.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using middleware in ASP.NET Core 3.0 and later 79

I recently wrote middleware to provide a GraphQL endpoint in an ASP.NET Core
application. However, I had to rewrite it to follow the new ASP.NET Core routing. The old
way would still have worked, but it would have handled the paths and routes separately
from the new ASP.NET Core routing. Let's look at how to deal with those situations.

Rewriting terminating middleware to meet the current
standards
If you have existing middleware that provides a different endpoint, you should change it to
use the new endpoint routing:

1.	 As an example, let's create small, dummy middleware that writes an application
status to a specific route. In this example, there is no custom route handling:

namespace MiddlewaresSample;

public class AppStatusMiddleware

{

 private readonly RequestDelegate _next;

 private readonly string _status;

 public AppStatusMiddleware(

 RequestDelegate next, string status)

 {

 _next = next;

 _status = status;

 }

 public async Task Invoke(HttpContext context)

 {

 await context.Response.WriteAsync(

 $"Hello {_status}!");

 }

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

80 Writing Custom Middleware

The first thing we need to do is write an extension method on the
IEndpointRouteBuilder object. This method has a route pattern as an
optional argument and returns an IEndpointConventionBuilder object to
enable cross-origin resource sharing (CORS), authentication, or other conditions
to the route.

2.	 Now, we should add an extension method to make it easier to use the middleware:

public static class MapAppStatusMiddlewareExtension

{

 public static IEndpointConventionBuilder

 MapAppStatus(

 this IEndpointRouteBuilder routes,

 string pattern = "/",

 string name = "World")

 {

 var pipeline = routes

 .CreateApplicationBuilder()

 .UseMiddleware<AppStatusMiddleware>(name)

 .Build();

 return routes.Map(pattern, pipeline)

 .WithDisplayName("AppStatusMiddleware");

 }

}

3.	 Once that is complete, we can use the MapAppStatus method to map it to a
specific route:

app.UseRouting();

app.UseEndpoints(endpoints =>

{

 endpoints.MapGet("/", () => "Hello World!");

 endpoints.MapAppStatus("/status", "Status");

});

4.	 We can now call the route in the browser by entering the following address:
http://localhost:5000/status.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 81

We will learn more about endpoint routing and how to customize it in Chapter 9, Working
with Endpoint Routing. For now, let's recap what we've learned about middleware.

Summary
Most of the ASP.NET Core features are based on middleware and in this chapter, you
learned how middleware works and how to create your own middleware components
to extend the ASP.NET framework. You also learned how to use the new routing to add
routes to your own custom terminating middleware components.

In the next chapter, we will have a look at the new endpoint routing in ASP.NET Core,
which allows you to create your own hosted endpoints in an easy and flexible way.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Working with

Endpoint Routing
In this chapter, we will talk about the new endpoint routing in ASP.NET Core. We will
learn what endpoint routing is, how it works, where it is used, and how you are able to
create your own routes to your own endpoints.

In this chapter, we will be covering the following topics:

•	 Exploring endpoint routing

•	 Creating custom endpoints

•	 Creating a more complex endpoint

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

84 Working with Endpoint Routing

The topics in this chapter refer to the routing layer of the ASP.NET Core architecture:

Figure 9.1 – The ASP.NET Core architecture

Technical requirements
For this series, we just need to set up a small, empty web application:

dotnet new mvc -n RoutingSample -o RoutingSample

That's it! Open the application with Visual Studio Code:

cd RoutingSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at: https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter09.

Exploring endpoint routing
To learn about endpoint routing, you need to learn what an endpoint is and what
routing is.

Endpoints are part of an app that get executed when a route maps the incoming request
to it. Let's analyze this definition in a little more detail.

A client usually requests a resource from a server. In most cases, the client is a browser.
The resource is defined by a URL, which points to a specific target. In most cases, the
target is a web page. It could also be a mobile app that requests specific data from a JSON
web API. What data the app requests is defined in the URL.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter09

Exploring endpoint routing 85

This means that the incoming request is also defined by the URL. The executing endpoint,
on the other hand, is mapped to a specific route. A route is a URL or a pattern for a URL.
ASP.NET Core developers are already familiar with such a route pattern:

app.UseRouting();

app.UseAuthorization();

app.UseEndpoints(endpoints =>

{

 endpoints.MapControllerRoute(

 name: "default",

 pattern: "{controller=Home}/{action=Index}/{id?}");

});

If the route or the route pattern matches the URL of the incoming request, the request gets
mapped to that endpoint. In this case, the request gets mapped to the MVC endpoint.

ASP.NET Core can map to the following endpoints:

•	 Controllers (for example, MVC or web APIs)

•	 Razor Pages

•	 SignalR (and Blazor Server)

•	 gRPC services

•	 Health checks

Most of the endpoints have really simple route patterns. Only the MVC and web API
endpoints use the more complex patterns. The route definitions of Razor pages are based
on the folder and file structure of the actual pages.

Before endpoints were introduced in ASP.NET Core 2.2, routing was only a thing in MVC
and web APIs. The implicit routing in Razor Pages was built-in there, and SignalR wasn't
really ready. Blazor and gRPC weren't a thing back then, and the health checks were
initially implemented as a middleware component.

Endpoint routing was introduced to separate routing from the actual endpoints. This
makes the framework much more flexible, and it means that new endpoints don't need to
implement their own kind of routing. This way, the endpoints can use the existing flexible
routing technology to get mapped to a specific route.

Next, we'll see how you can create your own custom endpoints.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

86 Working with Endpoint Routing

Creating custom endpoints
The easiest way to create an endpoint is by using the lambda-based endpoints:

app.Map("/map", async context =>

{

 await context.Response.WriteAsync("OK");

});

This maps the /map route to a simple endpoint that writes the word "OK" to the
response stream.

A Note regarding Prior .NET 6.0 Versions
Prior to .NET 6.0, you would map custom endpoints on the endpoints
object inside the lambda that gets passed to the UseEndpoints method in
the Startup.cs file. With .NET 6.0 and the new minimal API approach,
the mapping gets done on the app object in the Program.cs file.

You might need to add the Microsoft.AspNetCore.Http namespace to the using
statements.

You can also map specific HTTP methods (such as GET, POST, PUT, and DELETE) to an
endpoint. The following code shows how to map the GET and POST methods:

app.MapGet("/mapget", async context =>

{

 await context.Response.WriteAsync("Map GET");

});

app.MapPost("/mappost", async context =>

{

 await context.Response.WriteAsync("Map POST");

});

We can also map two or more HTTP methods to an endpoint:

app.MapMethods(

 "/mapmethods",

 new[] { "DELETE", "PUT" },

 async context =>

{

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a more complex endpoint 87

 await context.Response.WriteAsync("Map Methods");

});

These endpoints look like the lambda-based terminating middleware components that
we saw in Chapter 8, Writing Custom Middleware. These are middleware components that
terminate the pipeline and return a result, such as HTML-based views, JSON structured
data, or similar. Endpoint routing is a more flexible way to create an output, and it should
be used in all versions from ASP.NET Core 3.0 onward.

In Chapter 8, Writing Custom Middleware, we saw that we can branch pipelines like this:

app.Map("/map", mapped =>

{

 // some more Middlewares

});

This also creates a route, but this will only listen to URLs that start with /map. If you
would prefer to have a routing engine that handles patterns such as /map/{id:int?}
to also match /map/456 and not /map/abc, you should use the new routing, as
demonstrated earlier in this section.

Those lambda-based endpoints are useful for simple scenarios. However, because they
are defined in Program.cs, things will quickly become messy if you start to implement
more complex scenarios using this kind of lambda-based approach.

So, we should try to find a more structured way to create custom endpoints.

Creating a more complex endpoint
In this section, we will create a more complex endpoint, step by step. Let's do this by
writing a really simple health check endpoint, similar to what you might need if you
were to run your application inside a Kubernetes cluster, or just to tell others about
your health status:

1.	 Microsoft advices starting with the definition of the API to add the endpoint from
the developer's point of view. We do the same here. This means that we will add
a MapSomething method first, without an actual implementation. This will be
an extension method on the IEndpointRouteBuilder object. We are going to
call it MapMyHealthChecks:

// the new endpoint

app.MapMyHealthChecks("/myhealth");

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

88 Working with Endpoint Routing

app.MapControllerRoute(

 name: "default",

 pattern:

 "{controller=Home}/{action=Index}/{id?}");

The new endpoint should be added in the same way as the prebuilt endpoints, so as
not to confuse the developer who needs to use it.

Now that we know how the method should look, let's implement it.
2.	 Create a new static class called MapMyHealthChecksExtensions and place

an extension method inside the MapMyHealthChecks object that extends
IEndpointRouteBuilder and returns an IEndpointConventionBuilder
object. I placed it in the MapMyHealthChecksExtensions.cs file:

namespace RoutingSample;

public static class MapMyHealthChecksExtensions

{

 public static IEndpointConventionBuilder

 MapMyHealthChecks (

 this IEndpointRouteBuilder endpoints,

 string pattern = "/myhealth")

 {

 // ...

 }

}

This is just the skeleton. Let's start with the actual endpoint first before using it.
3.	 The actual endpoint will be written as a terminating middleware component – that

is, a middleware component that doesn't call the next one (see Chapter 8, Writing
Custom Middleware) and creates an output to the response stream:

namespace RoutingSample;

public class MyHealthChecksMiddleware

{

 private readonly ILogger<MyHealthChecksMiddleware>

 _logger;

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a more complex endpoint 89

 public MyHealthChecksMiddleware (

 RequestDelegate next,

 ILogger<MyHealthChecksMiddleware> logger)

 {

 _logger = logger;

 }

 public async Task Invoke(HttpContext context)

 {

 // add some checks here...

 context.Response.StatusCode = 200;

 context.Response.ContentType = "text/plain";

 await context.Response.WriteAsync("OK");

 }

}

The actual work is done in the Invoke method. Currently, this doesn't really do
more than respond with OK in plaintext and the 200 HTTP status, which is fine
if you just want to show that your application is running. Feel free to extend the
method with actual checks, such as checking for the availability of a database or
related services, for example. Then, you would need to change the HTTP status and
the output related to the result of your checks.

Let's use this terminating middleware.
4.	 Let's go back to the skeleton of the MapMyHealthChecks method. We now need

to create our own pipeline, which we map to a given route. Place the following lines
in that method:

var pipeline = endpoints

 .CreateApplicationBuilder()

 .UseMiddleware<MyHealthChecksMiddleware>()

 .Build();

return endpoints.Map(pattern, pipeline)

 .WithDisplayName("My custom health checks");

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

90 Working with Endpoint Routing

5.	 This approach allows you to add some more middleware just for this new pipeline.
The WithDisplayName extension method sets the configured display name to
the endpoint.

6.	 That's it! Press F5 in your IDE to start the application and call https://
localhost:7111/myhealth in your browser. You should see OK in
your browser:

Figure 9.2 – A screenshot of the endpoint routing output

Please note the port number might vary. You can also convert an already existing
terminating middleware component to a routed endpoint to benefit from much more
flexible routing. And that's it for this chapter!

Summary
ASP.NET Core knows many ways in which to work with a request and to provide
information to the requesting client. Endpoint routing is a way to provide resources
based on the requested URL and the requested method.

In this chapter, you learned how to use a terminating middleware component as an
endpoint that gets mapped to the new routing engine to be more flexible, matching the
routes by which you want to serve the information to the requesting client.

Every web application needs to know its users to allow or restrict access to specific areas
of the application or to specific data. In the next chapter, we show how to configure
authentication to recognize your users.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Customizing ASP.
NET Core Identity

In this tenth chapter, we are going to learn how to customize ASP.NET Core Identity.
Security is one of the most important aspects of an application. Microsoft ships ASP.NET
Core Identity as part of the ASP.NET Core framework to add authentication and user
management to ASP.NET Core applications.

In this chapter, you will learn how to customize the basic implementation of the ASP.NET
Core Identity UI and how to add custom information to IdentityUser. We'll cover the
following points:

•	 Introducing ASP.Net Core Identity

•	 Customizing IdentityUser

•	 Customizing the Identity views

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

92 Customizing ASP.NET Core Identity

The topics of this chapter relate to the MVC layer of the ASP.NET Core architecture:

Figure 10.1 – ASP.NET Core architecture

Technical requirements
To follow the exercises in this chapter, you will need to create an ASP.NET Core MVC
application. Open your console, shell, or Bash terminal and change to your working
directory. Use the following command to create a new MVC application:

dotnet new mvc -n AuthSample -o AuthSample --auth Individual

Now, open the project in Visual Studio by double-clicking the project file, or open it in
Visual Studio Code by typing the following command in the already-open console:

cd AuthSample

code .

All of the code samples for this chapter can be found in the GitHub repo for this book:
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-
6.0-Second-Edition/tree/main/Chapter10.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter10

Introducing ASP.NET Core Identity 93

Introducing ASP.NET Core Identity
An identity is basically an object that represents a user but could be a group as well.
It is an object that helps you to know your user and their rights. An identity can have
roles assigned that represent those rights. For example, a role called writer tells the
application that the identity is allowed to write something. Identities can be nested as well.
A user can be part of a group, and a group can be part of another group, and so forth.

ASP.NET Core Identity is a framework that structures this concept in .NET objects to
help you store and read the user information. The framework also provides a mechanism
to add a login form, a registration form, session handling, and so on. It also helps you to
store the credentials in an encrypted and secure way.

ASP.NET Core Identity provides multiple ways to authenticate your users:

•	 Individual: The application manages the identities on its own. It has a database
where user information is stored and manages the login, logout, registration, and so
on on its own.

•	 IndividualB2C: Manages the user data on its own, but gets it from Azure B2C.

•	 SingleOrg: The identities get managed by Azure Active Directory (AD); the login,
logout, and so on are done by Azure AD. The application just gets a ready-to-use
identity from the web server.

•	 MultiOrg: Same as the previous but enabled for multiple Azure AD organizations.

•	 Windows: This means the classical Windows authentication, which is only available
if the application is hosted with IIS. The user also gets a ready-to-use identity from
the web server.

This chapter is not about the different ways to authenticate because this topic would fill an
entire book.

Let's explore an application with individual authentication enabled.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

94 Customizing ASP.NET Core Identity

As you might remember from the technical requirements, the --auth flag is used
to create the application. It is set to Individual to create an ASP.NET Core MVC
application with individual authentication enabled. This means it comes with a database
to store the users. The --auth flag adds all the relevant code and dependencies to enable
authentication in your freshly created application.

Figure 10.2 – Layout reference for the ASP.NET Identity UI

The --auth flag creates an area called Identity that contains a _ViewStart.
cshtml file, which references the _Layout.cshtml file of the new project. The actual
login or register screens are provided in a compiled library that is referenced to this
project.

The AUTHSAMPLE contains a Data folder that contains an Entity Framework Core
DbContext, as well as a database migration to create and update the database that is used
here.

All the other parts, except Program.cs, are completely the same as in regular MVC
applications.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing ASP.NET Core Identity 95

If you created the application using the .NET CLI as shown in the technical requirements,
a SQLite database is used. If you used Visual Studio to create this application, SQL Server
is used to store the user data.

Before starting the application, call the following command in the terminal:

dotnet ef database update

This will create and update the database.

If it doesn't work, you might need to install the Entity Framework tool in the .NET CLI
first:

dotnet tool install -g dotnet-ef

Then, call the following:

dotnet watch

The application will now start up in watch mode with hot-reload enabled. It will also open
a browser window and call the application:

Figure 10.3 – AuthSample home page

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

96 Customizing ASP.NET Core Identity

As you can see, there is a menu on the upper right-hand side with the Register and Login
options for this application. A click on the Login link takes you to the following login
screen:

Figure 10.4 – Login screen

As mentioned, this view comes from a compiled Razor library that provides the necessary
view to the Identity area. We automatically get this UI from the framework.

As the last thing in this section, we should have a quick look into Program.cs, which
also differs from the files we saw in the last chapters.

In the upper section, where the services are registered, there are lines of code to register
DbContext as well as database exception pages:

var connectionString = builder.Configuration

 .GetConnectionString("DefaultConnection");

builder.Services.AddDbContext<ApplicationDbContext>(

 options => options.UseSqlite(connectionString));

builder.Services.AddDatabaseDeveloperPageExceptionFilter();

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing IdentityUser 97

builder.Services.AddDefaultIdentity<IdentityUser>(

 options => options.SignIn.RequireConfirmedAccount =

 true)

 .AddEntityFrameworkStores<ApplicationDbContext>();

There is also a registration for default identity that adds the EntityFramework store. It
is also configured to only allow confirmed accounts, which means you as a user need to
confirm your email address before you are allowed to log in.

In the lower section, where the middleware is used, we see that the authentication and
authorization is used:

app.UseAuthentication();

app.UseAuthorization();

These two middleware enable authentication and authorization. The first tries to recognize
the user by reading the authentication cookie. It also adds all the relevant information to
the Identity object.

What you might need to do is to extend the user profile by adding some more properties
to the user. Let's see how to do so in the next section.

Customizing IdentityUser
IdentityUser has the following fields: Id, Username, Password, Email, and
Phonenumber.

Since the display name might differ from the username, we should add a Name property.
Say we would like to send birthday wishes to the user; so, we would like to know their date
of birth.

To do so, a file called WebAppUser.cs is added to the Data folder that contains the
following lines:

using Microsoft.AspNetCore.Identity;

namespace AuthSample.Data;

public class WebAppUser : IdentityUser

{

 [PersonalData]

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

98 Customizing ASP.NET Core Identity

 public string? Name { get; set; }

 [PersonalData]

 public DateTime DOB { get; set; }

}

As shown here, WebAppUser derives from IdentityUser and extends it with the two
already-mentioned properties.

In Program.cs, we need to modify the service registration to use the new
WebAppUser:

builder.Services.AddDefaultIdentity<WebAppUser>

We also need to change DbContext in a way to use this WebAppUser, by changing the
base class:

public class ApplicationDbContext :

 IdentityDbContext<WebAppUser, IdentityRole, string>

You might need to add a using statement to Microsoft.AspNetCore.Identity.

That's it for the first step. We now need to update the database:

dotnet ef migrations add CustomUserData

dotnet ef database update

Once you have IdentityUser extended with the custom properties, you can start to
use this in the user profile. This needs some customization in the ASP.NET Core Identity
UI.

Customizing the Identity views
Even if the ASP.NET Core Identity views come from a compiled Razor library, you can
customize those views to add more fields or change the layout. To do so, you just need to
override the given views with custom ones in the predefined folder structure within the
area.

As mentioned, there is already an area called Identity in the project. Inside this area,
there is a Pages folder. Here, a new folder called Account needs to be created, to match
the route of the Register page.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing the Identity views 99

If this is done, place a new Razor page called Register.cshtml inside this folder and
put the following content inside just to see whether the overriding of views is working:

@page

@{

}

<h1>Hello Register Form</h1>

If you now run the app and click on Register in the upper left-hand corner, you will see
the following page:

Figure 10.5 – Register page

It is working.

Actually, you don't need to override the views on your own. There is a code generator
available to scaffold the views you'd like to override.

Install the code generator by calling this command:

dotnet tool install -g dotnet-aspnet-codegenerator

If not already done, you also need to install the following packages in your project:

dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.
Design

dotnet add package Microsoft.EntityFrameworkCore.Design

dotnet add package Microsoft.AspNetCore.Identity.
EntityFrameworkCore

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

100 Customizing ASP.NET Core Identity

dotnet add package Microsoft.AspNetCore.Identity.UI

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

dotnet add package Microsoft.EntityFrameworkCore.Tools

To learn what the code generator can do, run the following command:

dotnet aspnet-codegenerator identity -h

You can scaffold the entire Identity UI as well as specific pages. If you don't specify pages
of the default UI, all pages will be generated in your project. To see which pages you can
generate, type the following command:

dotnet aspnet-codegenerator identity -lf

The idea for the first change is to let the user fill in the name property on the registration
page.

So, let's scaffold the Register page:

dotnet aspnet-codegenerator identity -dc AuthSample.Data.
ApplicationDbContext --files "Account.Register" -sqlite

This command tells the code generator to use the already-existing
ApplicationDbContext and Sqlite. If you don't specify this, it will either create a
new DbContext or register the existing DbContext to use with SQL Server instead of
SQLite.

If all is done right, the code generator should only add the Register.cshtml page as
well as some infrastructure files:

Figure 10.6 – Files added by the code generator

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing the Identity views 101

The code generator also knows that the project is using a custom WebAppUser instead of
IdentityUser, which means WebAppUser is used in the generated code.

Now, you should change Register.cshtml to add the display name to the form.
Add the following lines right before the form elements for the email field on line 15 and
thereafter:

<div class="form-floating">

 <input asp-for="Input.Name" class="form-control"

 autocomplete="name" aria-required="true" />

 <label asp-for="Input.Name"></label>

 <span asp-validation-for="Input.Name"

 class="text-danger">

</div>

Also, Regiser.cshtml.cs need to be changed. The ImportModel class needs the
Name property:

public class InputModel

{

 [Required]

 [Display(Name = "Display name")]

 public string Name { get; set; }

In the PostAsync method, assign the Name property to the newly created user:

var user = CreateUser();

user.Name = Input.Name;

That's it.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

102 Customizing ASP.NET Core Identity

After starting the application, you will see the following registration form:

Figure 10.7 – Registration form

Try it out and you will see that it is working.

Since the user might need to update the name, we also need to change the view on the
profile page. Here, the date of birth also needs to be added:

dotnet aspnet-codegenerator identity -dc AuthSample.Data.
ApplicationDbContext --files "Account.Manage.Index" -sqlite

Open the newly created Index.cshtml.cs that is located in the /Areas/Identity/
Pages/Account/Manage/ folder and place the following properties inside the
InputModel class:

public class InputModel

{

 [Required]

 [Display(Name = "Display name")]

 public string Name { get; set; }

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Customizing the Identity views 103

 [Display(Name = "Date of birth")]

 public DateTime DOB { get; set; }

You can now use these properties in the corresponding Index.cshtml. The next
snippet needs to be placed between the validation summary and the username:

<div class="form-floating">

 <input asp-for="Input.Name" class="form-control"

 autocomplete="name" aria-required="true" />

 <label asp-for="Input.Name"></label>

 <span asp-validation-for="Input.Name"

 class="text-danger">

</div>

<div class="form-floating">

 <input asp-for="Input.DOB" class="form-control"

 type="date"/>

 <label asp-for="Input.DOB" class="form-label"></label>

</div>

This would be enough to display the fields, but there are some more changes needed
to fill the form with saved data. Within the LoadAsync method, the instantiation of
InputModel needs to be extended with the new properties:

Input = new InputModel

{

 PhoneNumber = phoneNumber,

 Name = user.Name,

 DOB = user.DOB

};

The changed values also need to get saved when the user saves the form. Place the next
snippet right before the third-from-last line of the OnPostAsync method:

user.Name = Input.Name;

user.DOB = Input.DOB;

await _userManager.UpdateAsync(user);

This sets the values of InputModel to the WebAppUser properties and saves the
changes in the database.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

104 Customizing ASP.NET Core Identity

Let's try it out by calling dotnet watch in the terminal.

The profile page will now look similar to this:

Figure 10.8 – Manage your account page

You can now change the display name and add your date of birth.

If the user provides a display name, they might show it in the upper left-hand corner after
the login.

Open the _LoginPartial.cshtml that is in the Views/Shared folder and replace
the first four lines with the following code snippet:

@using Microsoft.AspNetCore.Identity

@using AuthSample.Data

@inject SignInManager<WebAppUser> SignInManager

@inject UserManager<WebAppUser> UserManager

@{

 var user = await @UserManager.GetUserAsync(User);

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 105

This changes the generic type argument of SignInManager and UserManager from
the IdentityUser type to the WebAppUser type. Inside the code block, the current
WebAppUser is loaded via UserManager by passing the current user in.

Now, the output of the username on line 12 needs to be changed to write the display
name:

Hello @user?.Name!

When dotnet watch is still running, the application running in the browser should
already be updated. Maybe you need to log in again. You should now see the display name
in the upper right-hand corner:

Figure 10.9 – Display name

That's it.

Summary
In this chapter, you learned how to extend ASP.NET Core Identity to enhance the user
object by adding additional properties. You also learned how to enhance the Identity UI to
load, save, and update the values of the new user properties.

But how would you manage roles for the users of your application?

This is what you will learn in the next chapter, about configuring identity management.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Configuring Identity

Management
In the last chapter, we learned about how to add and customize the ASP.NET Core
Identity UI to enable users to register, log in, and manage their profiles. Unfortunately,
ASP.NET Core Identity doesn't provide identity management by default.

In this chapter, we are going to learn about how to manage ASP.NET Core Identity by
using IdentityManager2 to create users and roles for your application.

We'll cover the following sections:

•	 Introducing IdentityManager2

•	 Setting up IdentityManager2

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

108 Configuring Identity Management

The topics of this chapter relate to the MVC layer of the ASP.NET Core architecture:

Figure 11.1 – ASP.NET Core architecture

Technical requirements
To follow the examples in this chapter, you will need to create an ASP.NET Core MVC
application. Open your console, shell, or Bash terminal, and change to your working
directory. Use the following command to create a new MVC application:

dotnet new mvc -n IdentityManagementSample -o
IdentityManagementSample --auth Individual

Now, open the project in Visual Studio by double-clicking the project file, or in VS Code
by typing the following command in the already open console:

cd IdentityManagementSample

code .

All of the code samples of this chapter can be found in the GitHub repo for this book:
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-
6.0-Second-Edition/tree/main/Chapter11.

Important Note
This chapter expects you to have completed the steps in the last chapter. As an
alternative, you can reuse the project from the last chapter and might just need
to adjust the project names.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter11

Introducing IdentityManager2 109

Introducing IdentityManager2
IdentityManager is a project that was initially created and owned by Brock Allen who
also created IdentityServer together with Dominick Baier. Scott Brady (https://
www.scottbrady91.com/aspnet-identity) and his employer took over the
project, ported it to ASP.NET Core, and released it as IdentityManager2 (https://
brockallen.com/2018/07/09/identitymanager2/).

It is provided via NuGet (https://www.nuget.org/packages/
identitymanager2).

Setting up IdentityManager2
The first step is to load the package. Use the already open command line or the terminals
in VS Code or Visual Studio:

dotnet add package IdentityManager2

If the package is loaded, open Program.cs and add IdentityManager2 to the service
collection:

builder.Services.AddIdentityManager();

Change the service registration of ASP.NET Identity from the following:

builder.Services.AddDefaultIdentity<ApplicationUser>{ …

To this:

builder.Services.AddIdentity<ApplicationUser, IdentityRole>(…

This adds some more relevant services to the service collection.

Also, DefaultTokenProvider needs to be added:

builder.Services.AddIdentity<ApplicationUser, IdentityRole>(…
)

 .AddEntityFrameworkStores<ApplicationDbContext>()

 .AddDefaultTokenProviders();

That's it with the services for now.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.scottbrady91.com/aspnet-identity
https://www.scottbrady91.com/aspnet-identity
https://brockallen.com/2018/07/09/identitymanager2/
https://brockallen.com/2018/07/09/identitymanager2/
https://www.nuget.org/packages/identitymanager2
https://www.nuget.org/packages/identitymanager2

110 Configuring Identity Management

Then IdentityServer needs to be added to the pipeline. Add it after the
authentications and authorization middleware:

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

app.UseIdentityManager();

app.MapControllerRoute(

 name: "default",

 pattern: "{controller=Home}/{action=Index}/{id?}");

app.MapRazorPages();

Now we need to connect IdentityManager2 with the database connection that is already
configured with ASP.NET Identity.

This needs the following package to be installed:

dotnet add package IdentityManager2.AspNetIdentity

Now you can connect IdentityManager2 with the already existing
ApplicationDbContext that is IdentityDbContext, which handles
IdentityUsers and IdentityRoles. Don't forget to add a using to
IdentityManager2.AspNetIdentity. In the code, the already existing
ApplicationUser needs to be used:

builder.Services.AddIdentityManager()

 .AddIdentityMangerService<

AspNetCoreIdentityManagerService<ApplicationUser,

string, IdentityRole, string>>();

That's it to run IdentityManager. Type dotnet watch in Command Prompt to
start the application or press F5 in VS Code or VS. If you now call the application in the
browser, you will see the UI to manage the data:

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Setting up IdentityManager2 111

Figure 11.2 ‒ IdentityManager2

Now you can create roles and users:

1.	 Create an Admin role and a User role. After that, create a User role for yourself.
2.	 After the User role is created, go to All Users and edit the newly created user. Here,

you can change the user properties and assign both roles to them:

Figure 11.3 ‒ Editing the roles

By using IdentityManager, you get a complete tool to manage your users and roles. It also
works with custom users and custom user properties.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

112 Configuring Identity Management

Securing IdentityManager2
I'm sure you recognized that IdentityManager2 was accessible without a login. This is by
design. You need to restrict access to it.

Scott Brady described a way to use IdentityServer to do that (https://www.
scottbrady91.com/aspnet-identity/getting-started-with-
identitymanager2). We would also propose doing it that way. Setting up
IdentityServer isn't that straightforward and isn't covered in this book. Unfortunately,
it is not possible to use the default ASP.NET Core individual authentication to protect
IdentityManager2. It seems the middleware that creates the IdentityManager2 UI doesn't
support individual authentication and redirects to the ASP.NET Core Identity UI.

It would make sense to create a separate ASP.NET Core application that hosts
IdentityManager2. This way, this kind of administrative UI would be completely separated
from the publicly available application, and you would be able to use either OAuth or
Azure Active Directory authentication to protect the application.

Summary
In this chapter, you learned how to add a user interface to manage the users and roles of
your application. IdentityManager2 is the best and most complete solution to manage
your identities.

In the next chapter, you will learn how to use content negotiation to create different kinds
of outputs with only a single HTTP endpoint.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.scottbrady91.com/aspnet-identity/getting-started-with-identitymanager2
https://www.scottbrady91.com/aspnet-identity/getting-started-with-identitymanager2
https://www.scottbrady91.com/aspnet-identity/getting-started-with-identitymanager2

12
Content Negotiation

Using a Custom
OutputFormatter

In this chapter, we are going to learn about how to send your data to the client in different
formats and types. By default, the ASP.NET Core web API sends data as JSON, but there
are some more ways to distribute data.

We'll cover the following sections in this chapter:

•	 Introducing OutputFormatter objects

•	 Creating custom Outputformatter objects

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

114 Content Negotiation Using a Custom OutputFormatter

The topics in this chapter relate to the WebAPI layer of the ASP.NET Core architecture:

Figure 12.1 – The ASP.NET Core architecture

Technical requirements
To follow the examples in this chapter, you will need to create an ASP.NET Core MVC
application. To do this, open your console, shell, or Bash terminal, and change to your
working directory. Then, use the following command to create a new MVC application:

dotnet new webapi -n OutputFormatterSample -o
OutputFormatterSample

Now, open the project in Visual Studio by double-clicking the project file, or in Visual
Studio Code by typing the following command in the already-open console:

cd OutputFormatterSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter12.

Introducing OutputFormatter objects
In ASP.NET Core, OutputFormatters are classes that transform your existing data
into different formats to send it through HTTP to clients. The web API uses a default
OutputFormatters to turn objects into JSON, which is the default format to send
structured data. Other built-in formatters include an XML formatter and a plain
text formatter.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter12

Introducing OutputFormatter objects 115

With so-called content negotiation, clients are able to decide which format they want to
retrieve. The client needs to specify the content type of the format in the Accept header.
Content negotiation is implemented in ObjectResult.

By default, the web API always returns JSON, even if you accept text/XML in the header.
This is why the built-in XML formatter is not registered by default.

There are two ways to add XmlSerializerOutputFormatter to ASP.NET Core:

•	 The first is shown in the following code snippet:

builder.Services.AddControllers()

 .AddXmlSerializerFormatters();

•	 Or, alternatively, you can use the following:

builder.Services.AddControllers()

 .AddMvcOptions(options =>

 {

 options.OutputFormatters.Add(

 new XmlSerializerOutputFormatter());

 });

You might need to add the Microsoft.AspNetCore.Mvc.Formatters namespace
to the using statements.

There is also a formatter called XmlDataContractSerializerOutputFormatter
available, which uses DataContractSerializer internally and is more flexible in
its configurations.

By default, any Accept header will automatically be turned into application/json,
even if you use one of these methods. However, we can fix that.

If you want to allow the clients to accept different headers, you need to switch that
translation off:

builder.Services.AddControllers()

 .AddMvcOptions(options =>

 {

 options.RespectBrowserAcceptHeader = true;

 // false by default

 });

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

116 Content Negotiation Using a Custom OutputFormatter

Some third-party components that don't completely support ASP.NET Core 5.0 or later
won't write asynchronously to the response stream, but the default configuration since
ASP.NET Core 3.0 only allows asynchronous writing.

To enable synchronous writing access, you will need to add these lines to the
ConfigureServices method:

builder.Services.Configure<KestrelServerOptions>(options =>

{

 options.AllowSynchronousIO = true;

});

Add the Microsoft.AspNetCore.Server.Kestrel.Core namespace to the
using statements to get access to the options.

To try the formatters, let's set up a small test project.

Preparing a test project
Using the console, we will create a small ASP.NET Core web API project, using the
command shown previously in the Technical requirements section:

1.	 First, execute the following commands to add the necessary NuGet packages:

dotnet add package GenFu

dotnet add package CsvHelper

This creates a new web API project and adds two NuGet packages to it: GenFu is
an awesome library to easily create test data, and the second package, CsvHelper,
helps us to easily write CSV data.

2.	 Now, open the project in Visual Studio or in VS Code and create a new API
controller called PersonsController in the controller folder:

[Route("api/[controller]")]

[ApiController]

public class PersonsController : ControllerBase

{

}

3.	 Open PersonsController.cs and add a Get() method like this:

[HttpGet]

public ActionResult<IEnumerable<Person>> Get()

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing OutputFormatter objects 117

{

 var persons = A.ListOf<Person>(25);

 return persons;

}

You might need to add the following using statements at the beginning of the file:
using GenFu;

using Microsoft.AspNetCore.Mvc;

using OutputFormatterSample.Models;

This creates a list of 25 persons by using GenFu. The properties will automatically
be filled with realistic data. GenFu is an open source, fast, lightweight, and
extendable test data generator. It contains built-in lists of names, cities, countries,
phone numbers, and so on, and it fills the data automatically into the right
properties of a class, depending on the property names. For example, a property
called City will be filled with the name of a city, and a property called Phone,
Telephone, or Phonenumber will be filled with a well-formatted fake phone
number. You'll see the magic of GenFu and the results later on.

4.	 Now, create a Models folder, and create a new file called Person.cs with the
Person class inside:

public class Person

{

 public int Id { get; set; }

 public string? FirstName { get; set; }

 public string? LastName { get; set; }

 public int Age { get; set; }

 public string? EmailAddress { get; set; }

 public string? Address { get; set; }

 public string? City { get; set; }

 public string? Phone { get; set; }

}

5.	 Open Program.cs as well, add the XML formatters, and allow other
AcceptHeader, as described earlier:

builder.Services.AddControllers()

 .AddMvcOptions(options =>

 {

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

118 Content Negotiation Using a Custom OutputFormatter

 options.RespectBrowserAcceptHeader = true;

 // false by default

 options.OutputFormatters.Add(

 new XmlSerializerOutputFormatter());

 });

That's it for now. Now, you are able to retrieve the data from the web API.
6.	 Start the project by using the dotnet run command.

Next, we'll test the API.

Testing the web API
The best tools to test a web API are Fiddler (https://www.telerik.com/fiddler)
or Postman (https://www.postman.com/). I prefer Postman because I find it easier
to use. You can use either tool, but in these demos, we will use Postman:

1.	 In Postman, create a new request. Enter the API URL, which is https://
localhost:5001/api/persons (the port of the URL might vary), into
the address field, and then, add a header with the Accept key and the
application/json value.

2.	 After clicking Send, you will see the JSON result in the response body, as shown in
the following screenshot:

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.telerik.com/fiddler
https://www.postman.com/
https://localhost:5001/api/persons
https://localhost:5001/api/persons

Testing the web API 119

Figure 12.2 – A screenshot of JSON output in Postman
Here, you can see the autogenerated values. The GenFu object puts the data into
the person's properties, based on the property type and the property name: real
first names and real last names, as well as real cities and properly formatted
phone numbers.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

120 Content Negotiation Using a Custom OutputFormatter

3.	 Next, let's test the XML output formatter. In Postman, change the Accept header
from application/json to text/xml and click Send:

Figure 12.3 – A screenshot of XML output in Postman

We now have an XML-formatted output. Now, let's go a step further and create some
custom OutputFormatter objects.

Creating custom OutputFormatter objects
In this example, our aim is to create a VCard output to be able to import the person's
contact details directly into Microsoft Outlook or any other contact database that
supports VCards. Later in this section, we also want to create a CSV output formatter.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating custom OutputFormatter objects 121

Both are text-based output formatters, and they will derive their values from
TextOutputFormatter. Let's look at the steps to create the VCard output:

1.	 Create a new class in a new file called VcardOutputFormatter.cs.
2.	 Now, insert the following class skeleton in the new file. You will find the

implementations of the empty methods in the following code snippets. The
constructor contains the supported media types and content encodings:

public class VcardOutputFormatter : TextOutputFormatter

{

 public string? ContentType { get; }

 public VcardOutputFormatter()

 {

 SupportedMediaTypes.Add(

 MediaTypeHeaderValue.Parse("text/vcard"));

 SupportedEncodings.Add(Encoding.UTF8);

 SupportedEncodings.Add(Encoding.Unicode);

 }

 protected override bool CanWriteType(Type type)

 {

 }

 public override Task WriteResponseBodyAsync(

 OutputFormatterWriteContext context,

 Encoding selectedEncoding)

 {

 }

 private static void FormatVcard(

 StringBuilder buffer,

 Person person,

 ILogger logger)

 {

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

122 Content Negotiation Using a Custom OutputFormatter

 }

}

You might need to add the following using statements:
using Microsoft.AspNetCore.Mvc.Formatters;

using System.Text;

using Microsoft.Extensions.Logging;

using Microsoft.Net.Http.Headers;

using OutputFormatterSample.Models;

3.	 The next code snippet shows the implementation of the CanWriteType method.
It is optional to override this method, but it makes sense to restrict it to a specific
condition. In this case, the OutputFormatter can only format objects of the
Person type:

protected override bool CanWriteType(Type type)

{

 if (typeof(Person).IsAssignableFrom(type)

 || typeof(IEnumerable<Person>)

 .IsAssignableFrom(type))

 {

 return base.CanWriteType(type);

 }

 return false;

}

4.	 You need to override WriteResponseBodyAsync to convert the actual Person
objects into the output you want to have. To get the objects to convert, you need to
extract them from OutputFormatterWriteContext object that gets passed
into the method. You also get the HTTP response from this context. This is needed
to write the results and send them to the client.

5.	 Inside the method, we check whether we get one person or a list of persons and call
the not yet implemented FormatVcard method:

public override Task WriteResponseBodyAsync(

 OutputFormatterWriteContext context,

 Encoding selectedEncoding)

{

 var serviceProvider =

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating custom OutputFormatter objects 123

 context.HttpContext.RequestServices;

 var logger = serviceProvider.GetService(

 typeof(ILogger<VcardOutputFormatter>)) as

 ILogger;

 var response = context.HttpContext.Response;

 var buffer = new StringBuilder();

 if (context.Object is IEnumerable<Person>)

 {

 foreach (var person in context.Object as

 IEnumerable<Person>)

 {

 FormatVcard(buffer, person, logger);

 }

 }

 else

 {

 var person = context.Object as Person;

 FormatVcard(buffer, person, logger);

 }

 return response.WriteAsync(buffer.ToString());

}

6.	 To format the output to support standard Vcard, you need to do some manual
work:

private static void FormatVcard(

 StringBuilder buffer,

 Person person,

 ILogger logger)

{

 buffer.AppendLine("BEGIN:VCARD");

 buffer.AppendLine("VERSION:2.1");

 buffer.AppendLine(

 $"FN:{person.FirstName} {person.LastName}");

 buffer.AppendLine(

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

124 Content Negotiation Using a Custom OutputFormatter

 $"N:{person.LastName};{person.FirstName}");

 buffer.AppendLine(

 $"EMAIL:{person.EmailAddress}");

 buffer.AppendLine(

 $"TEL;TYPE=VOICE,HOME:{person.Phone}");

 buffer.AppendLine(

 $"ADR;TYPE=home:;;{person.Address};

 {person.City}");

 buffer.AppendLine($"UID:{person.Id}");

 buffer.AppendLine("END:VCARD");

 logger.LogInformation(

 $"Writing {person.FirstName}

 {person.LastName}");

}

7.	 Then, we need to register the new VcardOutputFormatter object in
Program.cs:

builder.Services.AddControllers()

 .AddMvcOptions(options =>

 {

 options.RespectBrowserAcceptHeader = true;

 // false by default

 options.OutputFormatters.Add(

 new XmlSerializerOutputFormatter());

 // register the VcardOutputFormatter

 options.OutputFormatters.Add(

 new VcardOutputFormatter());

 });

You might need to add a using statement to OutputFormatterSample.
8.	 Start the app again using dotnet run.
9.	 Now, change the Accept header to text/vcard, and let's see what happens:

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating custom OutputFormatter objects 125

Figure 12.4 – A screenshot of VCard output in Postman
We now should see all of our data in VCard format.

10.	 Now, let's do the same for a CSV output. We already added the CsvHelper library
to the project. So, go to the following URL and download CsvOutputFormatter
to put it into your project: https://github.com/PacktPublishing/
Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/
Chapter12/OutputFormatterSample6.0/CsvOutputFormatter.cs

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter12/OutputFormatterSample6.0/CsvOutputFormatter.cs
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter12/OutputFormatterSample6.0/CsvOutputFormatter.cs
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter12/OutputFormatterSample6.0/CsvOutputFormatter.cs

126 Content Negotiation Using a Custom OutputFormatter

11.	 Let's have a quick look at the WriteResponseBodyAsync method:

public override async Task WriteResponseBodyAsync(

 OutputFormatterWriteContext context,

 Encoding selectedEncoding)

{

 var response = context.HttpContext.Response;

 var csv = new CsvWriter(

 new StreamWriter(response.Body),

 CultureInfo.InvariantCulture);

 IEnumerable<Person> persons;

 if (context.Object is IEnumerable<Person>)

 {

 persons = context.Object as

 IEnumerable<Person>;

 }

 else

 {

 var person = context.Object as Person;

 persons = new List<Person> { person };

 }

 await csv.WriteRecordsAsync(persons);

}

12.	 This almost works the same way as VcardOutputFormatter. We can pass the
response stream via StreamWriter directly into CsvWriter. After that, we are
able to feed the persons or the list of persons to the writer. That's it.

13.	 We also need to register CsvOutputFormatter before we can test it:

builder.Services.AddControllers()

 .AddMvcOptions(options =>

 {

 options.RespectBrowserAcceptHeader = true;

 // false by default

 options.OutputFormatters.Add(

 new XmlSerializerOutputFormatter());

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating custom OutputFormatter objects 127

 // register the VcardOutputFormatter

 options.OutputFormatters.Add(

 new VcardOutputFormatter());

 // register the CsvOutputFormatter

 options.OutputFormatters.Add(

 new CsvOutputFormatter());

 });

14.	 In Postman, change the Accept header to text/csv and click Send again:

Figure 12.5 – A screenshot of text/CSV output in Postman

There we go – Postman was able to open all of the formats we tested.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

128 Content Negotiation Using a Custom OutputFormatter

Summary
Isn't that cool? The ability to change the format based on the Accept header is very
handy. This way, you are able to create a web API for many different clients – an API that
accepts many different formats, depending on the clients' preferences. There are still many
potential clients out there that don't use JSON and prefer XML or CSV.

The other way around would be an option to consume CSV or any other format inside the
web API. For example, let's assume your client sends you a list of people in CSV format.
How would you solve this? Parsing the string manually in the action method would
work, but it's not an easy option.

This is what ModelBinder objects can do for us. Let's see how they work in the
next chapter.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

13
Managing Inputs

with Custom
ModelBinder

In the last chapter regarding OutputFormatter, we learned about sending data out
to clients in different formats. In this chapter, we are going to do it the other way. This
chapter is about data you get in your web API from outside; for instance, what to do if
you get data in a special format, or if you get data you need to validate in a special way.
Model Binders will help you to handle this.

In this chapter, we will be covering the following topics:

•	 Introducing ModelBinder

•	 Preparing the test project

•	 Creating PersonsCsvBinder

•	 Using ModelBinder

•	 Testing ModelBinder

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

130 Managing Inputs with Custom ModelBinder

The topics in this chapter refer to the WebAPI layer of the ASP.NET Core architecture:

Figure 13.1 – ASP.NET Core architecture

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core MVC
application. Open your console, shell, or Bash terminal, and change to your working
directory. Use the following command to create a new MVC application:

dotnet new webapi -n ModelBinderSample -o ModelBinderSample

Now, open the project in Visual Studio by double-clicking the project file or, in VS Code,
by typing the following command in the already open console:

cd ModelBinderSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at: https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter13.

Introducing ModelBinder
Model Binders are responsible for binding the incoming data to specific action method
parameters. They bind the data sent with the request to the parameters. The default
binders are able to bind data that is sent via the QueryString, or sent within the request
body. Within the body, the data can be sent in URL or JSON format.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter13

Preparing the test data 131

The model binding tries to find the values in the request by parameter names. The form
values, route data, and query string values are stored as a key-value pair collection and the
binding tries to find the parameter name in the keys of the collection.

Let's demonstrate how this works with a test project.

Preparing the test data
In this section, we're going to see how to send CSV data to a web API method. We
will reuse the CSV data we created in Chapter 12, Content Negotiation Using a Custom
OutputFormatter.

This is a snippet of the test data we want to use:

Id,FirstName,LastName,Age,EmailAddress,Address,City,Phone

48,Austin,Ward,49,Jake.Timms@live.com,"8814 Gravesend Neck Road
",Daly City,(620) 260-4410

2,Sierra,Smith,15,Elizabeth.Wright@hotmail.com,"1199 Marshall
Street ",Whittier,(655) 379-4362

27,Victorina,Radcliff,40,Bryce.Sanders@rogers.ca,"2663 Sutton
Street ",Bloomington,(255) 365-0521

78,Melissa,Brandzin,39,Devin.Wright@telus.net,"7439 Knight
Court ",Tool,(645) 343-2144

89,Kathryn,Perry,87,Hailey.Jenkins@hotmail.com,"5283 Vanderbilt
Street ",Carlsbad,(747) 369-4849

You can find the full CSV test data on GitHub at: https://github.com/
PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/
blob/main/Chapter13/testdata.csv.

Preparing the test project
Let's prepare the project by following these steps:

1.	 In the already created project (refer to the Technical requirements section), we will
now create a new empty API controller with a small action inside:

namespace ModelBinderSample.Controllers

{

 [Route("[controller]")]

 [ApiController]

 public class PersonsController : ControllerBase

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter13/testdata.csv
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter13/testdata.csv
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/blob/main/Chapter13/testdata.csv

132 Managing Inputs with Custom ModelBinder

 {

 public ActionResult<object> Post(

 IEnumerable<Person> persons)

 {

 return new

 {

 ItemsRead = persons.Count(),

 Persons = persons

 };

 }

 }

}

This looks basically like any other action. It accepts a list of persons and returns an
anonymous object that contains the number of persons as well as the list of persons.
This action is pretty useless but helps us to debug ModelBinder using Postman.

2.	 We also need the Person class:

public class Person

{

 public int Id { get; set; }

 public string? FirstName { get; set; }

 public string? LastName { get; set; }

 public int Age { get; set; }

 public string? EmailAddress { get; set; }

 public string? Address { get; set; }

 public string? City { get; set; }

 public string? Phone { get; set; }

}

This will actually work fine if we want to send JSON-based data to that action.
3.	 As a last preparation step, we need to add the CsvHelper NuGet package to parse

the CSV data more easily. The .NET CLI is also useful here:

dotnet add package CsvHelper

dotnet add package System.Linq.Async

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating PersonsCsvBinder 133

Note
The System.Linq.Async package is needed to handle the
IAsyncEnumerable that gets returned by the GetRecordsAsync()
method.

Now that this is all set up, we can try it out and create PersonsCsvBinder in the next
section.

Creating PersonsCsvBinder
Let's build a binder.

To create ModelBinder, add a new class called PersonsCsvBinder, which
implements IModelBinder. In the BindModelAsync method, we get
ModelBindingContext with all the information in it that we need in order to get the
data and deserialize it. The following code snippets show a generic binder that should
work with any list of models. We have split it into sections so that you can clearly see how
each part of the binder works:

public class PersonsCsvBinder : IModelBinder

{

 public async Task BindModelAsync(

 ModelBindingContext bindingContext)

 {

 if (bindingContext == null)

 {

 return;

 }

 var modelName = bindingContext.ModelName;

 if (String.IsNullOrEmpty(modelName))

 {

 modelName = bindingContext.OriginalModelName;

 }

 if (String.IsNullOrEmpty(modelName))

 {

 return;

 }

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

134 Managing Inputs with Custom ModelBinder

As you can see from the preceding code block, first, the context is checked against null.
After that, we set a default argument name to the model, if none have already been
specified. If this is done, we are able to fetch the value by the name we set previously:

 var valueProviderResult =

 bindingContext.ValueProvider.GetValue(modelName);

 if (valueProviderResult == ValueProviderResult.None)

 {

 return;

 }

In the next part, if there's no value, we shouldn't throw an exception in this case. The
reason is that the next configured ModelBinder might be responsible. If we throw
an exception, the execution of the current request is canceled and the next configured
ModelBinder doesn't have the opportunity to be executed:

 bindingContext.ModelState.SetModelValue(

 modelName, valueProviderResult);

 var value = valueProviderResult.FirstValue;

 // Check if the argument value is null or empty

 if (String.IsNullOrEmpty(value))

 {

 return;

 }

If we have the value, we can instantiate a new StringReader that needs to be passed to
CsvReader:

 var stringReader = new StringReader(value);

 var reader = new CsvReader(

 stringReader, CultureInfo.InvariantCulture);

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using ModelBinder 135

With CsvReader, we can deserialize the CSV string value into a list of Persons. If we
have the list, we need to create a new, successful ModelBindingResult that needs to
be assigned to the Result property of ModelBindingContext:

 var asyncModel = reader.GetRecordsAsync<Person>();

 var model = await asyncModel.ToListAsync();

 bindingContext.Result =

 ModelBindingResult.Success(model);

 }

}

You might need to add the following using statements at the beginning of the file:

using Microsoft.AspNetCore.Mvc.ModelBinding;

using System.IO;

using CsvHelper

using System.Globalization;

Next, we'll put ModelBinder to work.

Using ModelBinder
The binder isn't used automatically because it isn't registered in the dependency injection
container and is not configured to be used within the MVC framework.

The easiest way to use this model binder is to use ModelBinderAttribute on the
argument of the action where the model should be bound:

[HttpPost]

public ActionResult<object> Post(

 [ModelBinder(binderType: typeof(PersonsCsvBinder))]

 IEnumerable<Person> persons)

{

 return new

 {

 ItemsRead = persons.Count(),

 Persons = persons

 };

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

136 Managing Inputs with Custom ModelBinder

Here, the type of our PersonsCsvBinder is set as binderType to that attribute.

Note
Steve Gordon wrote about a second option in his blog post, Custom
ModelBinding in ASP.NET MVC Core. He uses a ModelBinderProvider
to add the ModelBinder to the list of existing ones.

I personally prefer the explicit declaration because most custom ModelBinder will be
specific to an action or to a specific type, and it prevents hidden magic in the background.

Now, let's test out what we've built.

Testing ModelBinder
To test it, we need to create a new request in Postman:

1.	 Start the application by running dotnet run in the console or by pressing F5 in
Visual Studio or VS Code.

2.	 In Postman, we will then set the request type to POST and insert the URL
https://localhost:5001/api/persons in the address bar.

The port number might vary on your side.
3.	 Next, we need to add the CSV data to the body of the request. Select form-data

as the body type, add the persons key, and paste the following value lines in the
value field:

Id,FirstName,LastName,Age,EmailAddress,Address,City,Phone

48,Austin,Ward,49,Jake.Timms@live.com,"8814 Gravesend
Neck Road ",Daly City,(620) 260-4410

2,Sierra,Smith,15,Elizabeth.Wright@hotmail.com,"1199
Marshall Street ",Whittier,(655) 379-4362

27,Victorina,Radcliff,40,Bryce.Sanders@rogers.ca,"2663
Sutton Street ",Bloomington,(255) 365-0521

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing ModelBinder 137

4.	 After pressing Send, we get the result, as shown in Figure 13.2:

Figure 13.2 – A screenshot of CSV data in Postman

Now, the clients will be able to send CSV-based data to the server.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

138 Managing Inputs with Custom ModelBinder

Summary
This is a good way to transform the input in a way that the action needs. You could also
use ModelBinder to do some custom validation against the database or whatever you
need to do before the model gets passed to the action.

In the next chapter, we will see what you can do with ActionFilter.

Further reading
To learn more about ModelBinder, you should have a look at the following reasonably
detailed documentation:

•	 Steve Gordon, Custom ModelBinding in ASP.NET MVC Core: https://www.
stevejgordon.co.uk/html-encode-string-aspnet-core-model-
binding/

•	 Model Binding in ASP.NET Core: https://docs.microsoft.com/en-us/
aspnet/core/mvc/models/model-binding

•	 Custom Model Binding in ASP.NET Core: https://docs.microsoft.com/
en-us/aspnet/core/mvc/advanced/custom-model-binding

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

14
Creating a Custom

ActionFilter
We will keep on customizing on the controller level in this chapter. We'll have a look into
action filters and how to create your own ActionFilter class to keep your Actions
small and readable.

This chapter will cover the following topics:

•	 Introducing ActionFilter

•	 Using ActionFilter

The topics of this chapter belong to the Model-View-Controller (MVC) layer of the ASP.
NET Core architecture, depicted here:

Figure 14.1 – ASP.NET Core architecture

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

140 Creating a Custom ActionFilter

Technical requirements
To follow the exercises in this chapter, you will need to create an ASP.NET Core MVC
application. Open your console, shell, or Bash terminal and change to your working
directory. Use the following command to create a new MVC application:

dotnet new web -n ActionFilterSample -o ActionFilterSample

Now, open the project in Visual Studio by double-clicking the project file or in Visual
Studio Code (VS Code) by typing the following command in the already open console:

cd ActionFilterSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at: https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter14.

Introducing ActionFilter
Action filters are a little bit like middleware because they can manipulate the input and
the output but are executed immediately on a specific action or on all actions of
a specific controller on the MVC layer, and MiddleWare works directly on the request
object on the hosting layer. An ActionFilter class is created to execute code right
before or after an action is executed. They are introduced to execute aspects that are
not part of the actual action logic: authorization is one example of these aspects.
AuthorizeAttribute is used to allow users or groups to access specific Actions or
Controllers. AuthorizeAttribute is an ActionFilter. It checks whether the
logged-on user is authorized or not. If not, it redirects to the login page.

Note
If you apply an ActionFilter globally, it executes on all actions in your
application.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter14

Introducing ActionFilter 141

The next code sample shows the skeletons of a normal action filter and an async
ActionFilter:

using Microsoft.AspNetCore.Mvc.Filters;

namespace ActionFilterSample;

public class SampleActionFilter : IActionFilter

{

 public void OnActionExecuting(

 ActionExecutingContext context)

 {

 // do something before the action executes

 }

 public void OnActionExecuted(

 ActionExecutedContext context)

 {

 // do something after the action executes

 }

}

public class SampleAsyncActionFilter : IAsyncActionFilter

{

 public async Task OnActionExecutionAsync(

 ActionExecutingContext context,

 ActionExecutionDelegate next)

 {

 // do something before the action executes

 var resultContext = await next();

 // do something after the action executes;

 // resultContext.Result will be set

 }

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

142 Creating a Custom ActionFilter

As you can see here, there are always two methods to place code to execute before and
after the target action is executed. These action filters cannot be used as attributes. If you
want to use action filters as attributes in your Controllers, you need to derive them from
Attribute or from ActionFilterAttribute, as shown in the following code
snippet:

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.Filters;

namespace ActionFilterSample;

public class ValidateModelAttribute : ActionFilterAttribute

{

 public override void OnActionExecuting(

 ActionExecutingContext context)

 {

 if (!context.ModelState.IsValid)

 {

 context.Result = new BadRequestObjectResult(

 context.ModelState);

 }

 }

}

The preceding code snippet shows a simple ActionFilter that always returns
BadRequestObjectResult if ModelState is not valid. This may be useful within
a web application programming interface (API) as a default check on POST, PUT, and
PATCH requests. This could be extended with a lot more validation logic. We'll see how to
use it later on.

Another possible use case for an ActionFilter is logging. You don't need to log in
controller actions directly. You can do this in an action filter to keep your actions readable
with relevant code, as illustrated in the following snippet:

using Microsoft.AspNetCore.Mvc.Filters;

namespace ActionFilterSample;

public class LoggingActionFilter : IActionFilter

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing ActionFilter 143

{

 ILogger _logger;

 public LoggingActionFilter(ILoggerFactory

 loggerFactory)

 {

 _logger =

 loggerFactory.CreateLogger<LoggingActionFilter>();

 }

 public void OnActionExecuting(

 ActionExecutingContext context)

 {

 _logger.LogInformation(

 $"Action '{context.ActionDescriptor.DisplayName}'

 executing");

 }

 public void OnActionExecuted(

 ActionExecutedContext context)

 {

 _logger.LogInformation(

 $"Action '{context.ActionDescriptor.DisplayName}'

 executed");

 }

}

This logs an informational message out to the console. You can get more
information about the current action out of ActionExecutingContext or
ActionExecutedContext—for example, the arguments, the argument values, and so
on. This makes action filters pretty useful.

Let's see how action filters work in practice.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

144 Creating a Custom ActionFilter

Using ActionFilter
Action filters that are actually attributes can be registered as an attribute of an Action or a
Controller, as illustrated in the following code snippet:

[HttpPost]

[ValidateModel] // ActionFilter as attribute

public ActionResult<Person> Post([FromBody] Person model)

{

 // save the person

 return model; //just to test the action

}

Here, we use ValidateModel attribute that checks the ModelState and returns
BadRequestObjectResult in case the ModelState is invalid; we don't need to
check the ModelState in the actual Action.

To register action filters globally, you need to extend the MVC registration in the
ConfigureServices method of the Startup.cs file, as follows:

builder.Services.AddControllersWithViews()

 .AddMvcOptions(options =>

 {

 options.Filters.Add(new SampleActionFilter());

 options.Filters.Add(new SampleAsyncActionFilter());

 });

Action filters registered like this will be executed on every action. This way, you are able to
use action filters that don't derive from an attribute.

The LoggingActionFilter we created previously is a little more special. It is
dependent on an instance of ILoggerFactory, which needs to be passed into the
constructor. This won't work well as an attribute, because Attributes don't support
constructor injection (CI) via dependency injection (DI). ILoggerFactory
is registered in the ASP.NET Core DI container and needs to be injected into
LoggingActionFilter.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using ActionFilter 145

Because of this, there are some more ways to register action filters. Globally, we are able
to register them as a type that gets instantiated by the DI container, and the dependencies
can be solved by the container, as illustrated in the following code snippet:

builder.Services.AddControllersWithViews()

 .AddMvcOptions(options =>

 {

 options.Filters.Add<LoggingActionFilter>();

 })

This works well. We now have ILoggerFactory in the filter.

To support automatic resolution in Attributes, you need to use the ServiceFilter
attribute on the Controller or Action level, as illustrated here:

[ServiceFilter(typeof(LoggingActionFilter))]

public class HomeController : Controller

{

In addition to the global filter registration, ActionFilter needs to be registered in
ServiceCollection before we can use it with ServiceFilter attribute, as follows:

builder.Services.AddSingleton<LoggingActionFilter>();

To be complete, there is another way to use action filters that needs arguments passed
into the constructor. You can use the TypeFilter attribute to automatically instantiate
the filter. But using this attribute, the filter isn't instantiated by the DI container; the
arguments need to be specified as arguments of the TypeFilter attribute.

See the next snippet from the official documentation:

[TypeFilter(typeof(AddHeaderAttribute),

 Arguments = new object[] { "Author", "Juergen Gutsch

 (@sharpcms)" })]

public IActionResult Hi(string name)

{

 return Content($"Hi {name}");

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

146 Creating a Custom ActionFilter

The type of the filter and the arguments are specified with the TypeFilter attribute.

Summary
Action filters give us an easy way to keep actions clean. If we find repeating tasks inside
our Actions that are not really relevant to the actual responsibility of the Action, we
can move those tasks out to an ActionFilter, or maybe a ModelBinder or some
MiddleWare, depending on how it needs to work globally. The more relevant it is to an
Action, the more appropriate it is to use an ActionFilter.

There are more kinds of filters, all of which work in a similar fashion. To learn more about
the different kinds of filters, reading the documentation is definitely recommended.

In the next chapter, we speed up your web application by using caches.

Further reading
•	 Microsoft ASP.NET Core filters: https://docs.microsoft.com/en-us/

aspnet/core/mvc/controllers/filters

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

15
Working with

Caches
In this chapter we will have a look into cache techniques. ASP.NET Core provides multiple
ways to cache and we will learn to use and to customize them.

In this chapter, we will be covering the following topics:

•	 The need for caching

•	 HTTP-based caching

•	 Caching using ResponseCachingMiddleware

•	 Predefining caching strategies using cache profiles

•	 Caching specific areas using CacheTagHelper

•	 Caching Manually

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

148 Working with Caches

The topics in this chapter refer to the MVC layer of the ASP.NET Core architecture:

Figure 15.1 – ASP.NET Core architecture

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core MVC
application. Open your console, shell, or Bash terminal, and change to your working
directory. Use the following command to create a new MVC application:

dotnet new mvc -n CacheSample -o CacheSample

Now, open the project in Visual Studio by double-clicking the project file or, in VS Code,
by typing the following command in the already open console:

cd CacheSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter15.

Why do we need caching?
Caching speeds up performance, by storing the results in memory or in a distributed
cache like a fast Redis database, you can also store cached data in files if it makes sense.

A distributed cache is needed in case you run multiple instances of an application to scale
for availability of your application. The instances will run on multiple Docker containers,
in a Kubernetes cluster or just on more than one Azure App Services. In that case, the
instances should share a cache.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter15

HTTP-based caching 149

Most application caches are in-memory caches that store data for a short period of time.
This is good for most scenarios.

Also, browser do cache the websites or the web applications output. The browsers usually
store the entire result in files. As an ASP.NET developer you can control the browsers
cache by adding HTTP headers that specify whether the browser should cache or not and
that specify how long the cached item should be valid.

A browser cache reduces the number of requests to the server. A cache handling in your
code might reduce the number of database access or reduce the access to another time-
consuming action.

Both client-side caches and server side caches are useful to increase the performance of
your application. Let's have a detailed look at the client side cache.

HTTP-based caching
To control the browsers cache you can set a Cache-Control HTTP header. Usually, the
StaticFileMiddleware doesn't set a Cache-Control header. This means the clients
are free to cache how they prefer. If you like to limit the cache time to just one day, you
can do this by passing StaticFileOptions to the middleware:

const string cacheMaxAge = "86400";

app.UseStaticFiles(new StaticFileOptions()

{

 OnPrepareResponse = ctx =>

 {

 ctx.Context.Response.Headers.TryAdd(

 "Cache-Control",

 $"public, max-age={cacheMaxAge}");

 }

});

This sets the Cache-Control header to every static file that is requested before it gets
sent to the client. The Cache-Control is set to public, which means it can be publicly
cached on every client. The maximum age of the cache items should not be older than
86,400 seconds, which is one day.

Setting the headers to the static file is just an example. You can set the header to every
response that needs cache control. You can also disable the cache by setting the Cache-
Control header to no-cache.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

150 Working with Caches

To learn more about the Cache-Control header, see the following URL: https://
datatracker.ietf.org/doc/html/rfc7234#section-5.2

Also, the Expires header might be useful, to specify when the responded content get
invalid and should get renewed from the server. See https://datatracker.ietf.
org/doc/html/rfc7234#section-5.3

The Vary header specifies a criteria that tells the clients about cache variations. It checks
for specific headers to be available. See https://datatracker.ietf.org/doc/
html/rfc7231#section-7.1.4

This controls the clients directly via the response object.

Caching using ResponseCachingMiddleware
The ResponseCachingMiddleware caches the responses on the server side and
creates responses based on the cached responses. The middleware respects the Cache-
Control header in the same way as clients do. That means you are able to control the
middleware by setting the specific headers as described in the previews section.

To get it working you need to add the ResponseCachingMiddleware to the
Dependency Injection container:

builder.Services.AddResponseCaching();

And you should use that middleware to the pipeline after the static files and routing
got added:

app.UseResponseCaching();

If you added a CORS configuration, the UseCors method should be called before, as well.

The ResponseCachingMiddleware gets affected by specific HTTP headers. For
example, if the Authentication header is set the response doesn't get cached, same
with the Set-Cookie header. It also only caches responses that result in a 200 OK result.
Error pages and other status codes don't get cached.

You can find the full list of criteria at this URL: https://docs.
microsoft.com/en-us/aspnet/core/performance/caching/
middleware?view=aspnetcore-6.0#http-headers-used-by-response-
caching-middleware.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Caching using ResponseCachingMiddleware 151

Using the ResponseCacheAttribute on controller level, actions level or pages level
you can set the right headers to control the ResponseCachingMiddleware by using
ResponseCacheAttribute:

[ResponseCache(Duration = 86400)]

public IActionResult Index()

{

 return View();

}

This snippet sets the Cache-Control to public with max-age to one day, like the sample
in the previews section.

This attribute is pretty powerful, you can also set Vary headers in different ways, as well as
the indicator to not cache the output at all. Even a CacheProfileName can be set. We
are going to have a look at cache profiles in the next section.

These are properties you can set:

•	 Duration: Time range in seconds

•	 Location: The location where to store the cache: Client, Any, or none

•	 NoStore: Disables the cache if it is set to true

•	 VaryByHeader: A header value that varies the cache

•	 VaryByQueryKeys: An array of query key names that varies the cache

Predefining caching strategies using cache profiles
You can predefine caching strategies in a so-called cache profile to reuse them wherever
you need. The CacheProfile type has the same properties as the ResponseCache
attribute. To define cache profiles, you need to set options to the MVC services.

In Program.cs, the AddControllersWithViews method has an overload to
configure the MvcOptions. Here, you can also add cache profiles:

builder.Services.AddControllersWithViews(options =>

{

 options.CacheProfiles.TryAdd("Duration30",

 new CacheProfile

 {

 Duration = 30,

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

152 Working with Caches

 VaryByHeader = "User-Agent",

 Location = ResponseCacheLocation.Client

 });

 options.CacheProfiles.TryAdd("Duration60",

 new CacheProfile

 {

 Duration = 60,

 VaryByHeader = "User-Agent",

 Location = ResponseCacheLocation.Client

 });

});

You might need to add a using statement to Microsoft.AspNetCore.Mvc.

This snippet adds two different cache profiles, the first one with a 30 second cache and
the second one with a 60 second cache. Both profiles tell the cache to vary by the "User-
Agent" header.

To use a profile, you can use the profile name in the response caching attribute:

[ResponseCache(CacheProfileName = "Duration30")]

public IActionResult Index()

{

Instead of setting all the properties of ResponseCacheAttribute, you can just set
CacheProfileName. Let's see how to use caches the declarative way.

Caching specific areas using CacheTagHelper
You can also cache specific areas of the view. In a scenario where you are not able to cache
an entire view, you would be able to just cache a specific area by surrounding it with the
CacheTagHelper.

To test that, add the following snippet to the index.cshtml, that you can find in the
/Views/Home/ folder:

<div>

 <p>

 The current time is: @DateTime.Now.ToLongTimeString()

 </p>

</div>

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Caching Manually 153

<cache expires-sliding="@TimeSpan.FromSeconds(7)">

<div>

 <p>

 The current time is: @DateTime.Now.ToLongTimeString()

 </p>

</div>

</cache>

This snippet contains two identical p-tags that write out the current time.

The second one is wrapped in a CacheTagHelper that has a sliding expiration of 7
seconds defined.

Start the application and see what happens. Navigate to the Index page and refresh the
browser several times. You will see that only the first time will change while refreshing the
page. The second one is cached and stays the same for 7 seconds.

Figure 15.2 - Cached and uncached values

Let's look at what we should do if we need to cache more specifically

Caching Manually
Sometimes it makes sense to cache specifically inside the C# code. For example, if you
need to fetch data from an external source or database, it would save time and traffic if
you cache the results and don't access the result every time.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

154 Working with Caches

Let's try it out by using two different ways to use create and access cache items:

1.	 To try it out we will extend the HomeController a little bit. Start by injecting an
instance of the IMemoryCache to the controller and store it in a field:

using Microsoft.Extensions.Caching.Memory;

public class HomeController : Controller

{

 private readonly ILogger<HomeController> _logger;

 private readonly IMemoryCache _cache;

 public HomeController(

 ILogger<HomeController> logger,

 IMemoryCache cache

)

 {

 _logger = logger;

 _cache = cache;

 }

2.	 In the Models folder, create a file called Person.cs and place the following lines
in it:

namespace CacheSample.Models;

internal class Person

{

 public int Id { get; set; }

 public string? Firstname { get; set; }

 public string? Lastname { get; set; }

 public string? Address { get; set; }

 public string? City { get; set; }

}

3.	 Now we need to add two super complex methods that do some magic for us.
Actually, these methods just create fake data and aren't really complex:

private IEnumerable<Person>

 LoadDataFromExternalSource()

{

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Caching Manually 155

 return A.ListOf<Person>(10);

}

private IDictionary<int, string>

 LoadSuperComplexCalculatedData()

{

 return Enumerable.Range(0, 10)

 .ToDictionary(

 x => x,

 x => $"Item{Random.Shared.Next()}");

}

The first method uses GenFu that is also used in previous chapters to create a list
of Person and fill them with random but valid data. The second method creates a
Dictionary of 10 items that also contains random data. The random data make
sense to show that the data are actually cached. If the data don't change on the user
interface, the data came out of the cache.

4.	 Type the following command in the project folder to install GenFu:

dotnet add package GenFu

5.	 Add the following lines at the beginning of the index action to store the data of the
first method in the cache or to load the data out of the cache:

if (!_cache.TryGetValue<IEnumerable<Person>>(

 "ExternalSource", out var externalPersons))

{

 externalPersons = LoadDataFromExternalSource();

 _cache.Set(

 "ExternalSource",

 externalPersons,

 new MemoryCacheEntryOptions

 {

 AbsoluteExpiration =

 DateTime.Now.AddSeconds(30)

 });

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

156 Working with Caches

This will at first try to load the data out of the cache by using the
ExternalSource cache key. If the cached data doesn't exist, you need to load
them from the original source and store them in the cache using the Set method.

The other way to create and load cached data is to use the GetOrCreate method:

var calculatedValues = _cache.GetOrCreate(

 "ComplexCalculate", entry =>

{

 entry.AbsoluteExpiration = DateTime.Now.AddSeconds(30);

 return LoadSuperComplexCalculatedData();

});

It works the same way but is pretty much simpler to use. The value that needs to be cached
will be returned in the lambda expression directly while the lambda retrieves the cache
entry that can be configured.

Once the data are there you can return them to the view:

return View(new IndexViewModel

 {

 Persons = externalPersons,

 Data = calculatedValues

 });

The model that gets returned looks like this:

internal class IndexViewModel

{

 public IEnumerable<Person>? Persons { get; set; }

 public IDictionary<int, string>? Data { get; set; }

}

Add the next snippet to Index.cshtml right after CacheTagHelper to visualize the
data:

<div class="row">

 <div class="col-md-6">

 @foreach (var person in Model.Persons)

 {

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Caching Manually 157

 [@person.Id] @person.Firstname @person.Lastname

 }

 </div>

 <div class="col-md-6">

 @foreach (var data in Model.Data)

 {

 [@data.Key] @data.Value

 }

 </div>

</div>

This creates two lists in two side-by-side columns. Now run the application, call it in the
browser, and try to refresh the page. The displayed data shouldn't change even though the
data are completely random. Without the cache, the data would change on every reload:

Figure 5.3 - Changing data

That's it. The cache expires every 30 seconds as configured.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

158 Working with Caches

Summary
Caches help us to create high performance applications by reducing the calls to
resources that are less performant, such as databases, external APIs, or complex
calculations. In this chapter, you learned to use the response cache using the
ResponseCachingMiddleware and the ResponseCacheAttribute, and
the in-memory cache by using the CacheTagHelper as well as by using the
IMemoryCache manually in the C# code.

In the next chapter, you will learn how to create custom TagHelper.

Further reading
More about caching in the ASP.NET Core docs: https://docs.
microsoft.com/en-us/aspnet/core/performance/caching/
response?view=aspnetcore-6.0.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response?view=aspnetcore-6.0

16
Creating Custom

TagHelper
In this chapter, we're going to talk about Tag Helpers. The built-in TagHelper are pretty
useful and make Razor much prettier and more readable. Creating custom TagHelper
will make your life much easier.

In this chapter, we will be covering the following topics:

•	 Introducing TagHelper

•	 Creating custom TagHelper

The topics in this chapter refer to the MVC layer of the ASP.NET Core architecture:

Figure 16.1 – ASP.NET Core architecture

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

160 Creating Custom TagHelper

Technical requirements
To follow the examples in this chapter, you will need to create an ASP.NET Core MVC
application. Open your console, shell, or Bash terminal and change to your working
directory. Use the following command to create a new MVC application:

dotnet new mvc -n TagHelperSample -o TagHelperSample

Now, open the project in Visual Studio by double-clicking the project file, or in Visual
Studio Code by typing the following command in the already-open console:

cd TagHelperSample

code .

All of the code samples in this chapter can be found in the GitHub repository for this
book at: https://github.com/PacktPublishing/Customizing-ASP.
NET-Core-6.0-Second-Edition/tree/main/Chapter16.

Introducing TagHelper
With Tag Helpers, you are able to extend existing HTML tags or create new tags that
get rendered on the server side. The extensions or new tags are not visible in browsers.
TagHelper are a kind of shortcut to write easier (and less) HTML or Razor code on the
server side. TagHelper will be interpreted on the server and produce "real" HTML code
for browsers.

TagHelper are not a new thing in ASP.NET Core. They have been present since the
framework's first version. Most existing and built-in TagHelper are a replacement for
the old-fashioned HTML helpers, which still exist and work in ASP.NET Core to keep the
Razor views compatible with ASP.NET Core.

A very basic example of extending HTML tags is the built-in AnchorTagHelper:

<!-- old fashioned HtmlHelper -->

@Html.ActionLink("Home", "Index", "Home")

<!-- new TagHelper -->

<a asp-controller="Home" asp-action="Index">Home

Many HTML developers find it a bit strange to have HtmlHelper between the HTML
tags. It is hard to read and is kind of disruptive while reading the code. Perhaps not for
ASP.NET Core developers who are used to reading that kind of code, but compared to
TagHelper, it is really ugly. TagHelper feel more natural and more like HTML, even if
they are not, and even if they are getting rendered on the server.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter16
https://github.com/PacktPublishing/Customizing-ASP.NET-Core-6.0-Second-Edition/tree/main/Chapter16

Introducing TagHelper 161

Many HTML helpers can be replaced with a TagHelper.

There are also some new tags that have been built with TagHelper, tags that are not in
HTML but look like HTML. One example is EnvironmentTagHelper:

<environment include="Development">

 <link rel="stylesheet"

 href="~/lib/bootstrap/dist/css/bootstrap.css" />

 <link rel="stylesheet" href="~/css/site.css" />

</environment>

<environment exclude="Development">

 <link rel="stylesheet"

 href="https://ajax.aspnetcdn.com/ajax/bootstrap/
 3.3.7/css/bootstrap.min.css"

 asp-fallback-href=

 "~/lib/bootstrap/dist/css/bootstrap.min.css"

 asp-fallback-test-class="sr-only"

 asp-fallback-test-property="position"

 asp-fallback-test-value="absolute" />

 <link rel="stylesheet"

 href="~/css/site.min.css"

 asp-append-version="true" />

</environment>

This TagHelper renders (or doesn't render) the contents depending on the current
runtime environment. In this case, the target environment is the development mode. The
first environment tag renders the contents if the current runtime environment is set to
Development, and the second one renders the contents if it is not set to Development.
This makes it a useful helper in rendering debuggable scripts or styles in Development
mode and minified and optimized code in any other runtime environment.

Let's now see how we can create our own custom TagHelper.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

162 Creating Custom TagHelper

Creating custom Tag Helpers
To use all the custom TagHelper that we will create in this chapter, you need to refer
to the current assembly to tell the framework where to find the TagHelper. Open the
_ViewImports.cshtml file in the View/ folder and add the following line at the end
of the file:

@addTagHelper *, TagHelperSample

Here's a quick example showing how to extend an existing tag using a TagHelper:

1.	 Let's assume we need to have a tag configured in bold and colored in a specific
color:

<p strong color="red">Use this area to provide

 additional information.</p>

This looks like pretty old-fashioned HTML from the 90s, but this is just to
demonstrate a simple TagHelper.

2.	 The current method to do this task is to use a TagHelper to extend any tag that
has an attribute called strong, as shown in the following code snippet:

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace TagHelperSample.TagHelpers;

[HtmlTargetElement(Attributes = "strong")]

public class StrongTagHelper : TagHelper

{

 public string Color { get; set; }

 public override void Process(

 TagHelperContext context,

 TagHelperOutput output)

 {

 output.Attributes.RemoveAll("strong");

 output.Attributes.Add("style",

 "font-weight:bold;");

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating custom Tag Helpers 163

 if (!String.IsNullOrWhiteSpace(Color))

 {

 output.Attributes.RemoveAll("style");

 output.Attributes.Add("style",

 $"font-weight:bold;color:{Color};");

 }

 }

}

The first line tells the tag helper to work on tags with a target attribute of strong.
This TagHelper doesn't define its own tag, but it does provide an additional
attribute to specify the color.

The Process method defines how to render the HTML to the output stream. In
this case, it adds some CSS inline styles to the current tag. It also removes the target
attribute from the current tag. The color attribute won't show up.

This will appear as follows:
<p style="font-weight:bold;color:red;">Use this area
 to provide additional information.</p>

The next example shows how to define a custom tag using a TagHelper:

1.	 Let's create this class, called GreeterTagHelper:

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace TagHelperSample.TagHelpers;

public class GreeterTagHelper : TagHelper

{

 [HtmlAttributeName("name")]

 public string Name { get; set; }

 public override void Process(

 TagHelperContext context,

 TagHelperOutput output)

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

164 Creating Custom TagHelper

 {

 output.TagName = "p";

 output.Content.SetContent($"Hello {Name}");

 }

2

2.	 This TagHelper handles a greeter tag that has a property name. In the
Process method, the current tag will be changed to a p tag and the new content is
set as the current output:

<greeter name="Readers"></greeter>

The result looks like this:
<p>Hello Readers</p>

But what if you need to do something a bit more complicated? Let's explore further.

Examining a more complex scenario
The TagHelper in the last section were pretty basic, simply designed to show how
TagHelper work. The next example is a little more complex and shows a real scenario.
This TagHelper renders a table with a list of items. This is a generic TagHelper and
shows a real reason to create your own custom TagHelper. With this, you are able to
reuse an isolated piece of view code. For example, you can wrap Bootstrap components to
make them much easier to use with just one tag, instead of nesting five levels of div tags.
Alternatively, you can just simplify your Razor views:

1.	 Let's start by creating the DataGridTagHelper class. This next code snippet isn't
complete, but we will complete the DataGridTagHelper class in the following
steps:

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace TagHelperSample.TagHelpers;

public class DataGridTagHelper : TagHelper

{

 [HtmlAttributeName("Items")]

 public IEnumerable<object> Items { get; set; }

 public override void Process(

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating custom Tag Helpers 165

 TagHelperContext context,

 TagHelperOutput output)

 {

 output.TagName = "table";

 output.Attributes.Add("class", "table");

 var props = GetItemProperties();

 TableHeader(output, props);

 TableBody(output, props);

 }

}

In the Process method, we call private sub-methods that do the actual work to
make the class a little more readable.

You might need to add the following using statements at the beginning of the file:
using System.Reflection;

using System.ComponentModel;

2.	 Because this is a generic TagHelper, incoming objects need to be analyzed. The
GetItemProperties method gets the type of the property items and loads
the PropertyInfo from the type. PropertyInfo will be used to get the table
headers and the values:

private PropertyInfo[] GetItemProperties()

{

 var listType = Items.GetType();

 Type itemType;

 if (listType.IsGenericType)

 {

 itemType = listType.GetGenericArguments()

 .First();

 return itemType.GetProperties(

 BindingFlags.Public |

 BindingFlags.Instance);

 }

 return new PropertyInfo[] { };

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

166 Creating Custom TagHelper

3.	 The following code snippet shows the generation of the table headers.
The TableHeader method writes the requisite HTML tags directly to
TagHelperOutput. It also uses the list of PropertyInfo to get the property
names that will be used as table header names:

private void TableHeader(

 TagHelperOutput output,

 PropertyInfo[] props)

{

 output.Content.AppendHtml("<thead>");

 output.Content.AppendHtml("<tr>");

 foreach (var prop in props)

 {

 var name = GetPropertyName(prop);

 output.Content.AppendHtml($"<th>{name}</th>");

 }

 output.Content.AppendHtml("</tr>");

 output.Content.AppendHtml("</thead>");

}

4.	 Using property names as table header names is not always useful. This is
why the GetPropertyName method also tries to read the value from
DisplayNameAttribute, which is part of the DataAnnotation that is heavily
used in data models that are displayed in MVC user interfaces. Therefore, it makes
sense to support this attribute:

private string GetPropertyName(

 PropertyInfo property)

{

 var attribute = property

 .GetCustomAttribute<DisplayNameAttribute>();

 if (attribute != null)

 {

 return attribute.DisplayName;

 }

 return property.Name;

}

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating custom Tag Helpers 167

5.	 Also, values need to be displayed. The TableBody method does that job:

private void TableBody(

 TagHelperOutput output,

 PropertyInfo[] props)

{

 output.Content.AppendHtml("<tbody>");

 foreach (var item in Items)

 {

 output.Content.AppendHtml("<tr>");

 foreach (var prop in props)

 {

 var value = GetPropertyValue(prop, item);

 output.Content.AppendHtml(

 $"<td>{value}</td>");

 }

 output.Content.AppendHtml("</tr>");

 }

 output.Content.AppendHtml("</tbody>");

}

6.	 To get the values from the actual object, the GetPropertyValue method is used:

private object GetPropertyValue(

 PropertyInfo property,

 object instance)

{

 return property.GetValue(instance);

}

7.	 To use this TagHelper, you just need to assign a list of items to this tag:

<data-grid items="Model.Persons"></data-grid>

In this case, it is a list of people, which we get in the Persons property of our
current model.

8.	 The Person class we are using here looks like this:

using System.ComponentModel;

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

168 Creating Custom TagHelper

namespace TagHelperSample.Models;

public class Person

{

 [DisplayName("First name")]

 public string FirstName { get; set; }

 [DisplayName("Last name")]

 public string LastName { get; set; }

 public int Age { get; set; }

 [DisplayName("Email address")]

 public string EmailAddress { get; set; }

}

Not all of the properties have DisplayNameAttribute, so the fallback in the
GetPropertyName method is needed to get the actual property name instead of
the DisplayName value.

Put the Person class into a Person.cs inside the Models folder.
9.	 You also need a service to load the data into the Index action of the

HomeController. Create a Services folder and place a file called
PersonService.cs into it. Put the following snippet inside the file:

using TagHelperSample.Models;

using GenFu;

namespace TagHelperSample.Services;

public interface IService

{

 IEnumerable<Person> AllPersons();

}

internal class PersonService : IService

{

 public IEnumerable<Person> AllPersons()

 {

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating custom Tag Helpers 169

 return A.ListOf<Person>(25);

 }

}

Here, again, we use GenFu to auto-generate the list of persons. If you didn't already
install it, you need to execute the following command to load the NuGet package:

dotnet add package GenFu

If this is done you should add PersonService to ServiceCollection in the
Program.cs file:

builder.Services.AddTransient<IService, PersonService>();

And, last but not least, PersonService should be used in HomeController:
using Microsoft.AspNetCore.Mvc;

using TagHelperSample.Models;

using TagHelperSample.Services;

namespace TagHelperSample.Controllers;

public class HomeController : Controller

{

 private readonly IService _service;

 public HomeController(

 IService service)

 {

 _service = service;

 }

 public IActionResult Index()

 {

 ViewData["Message"] = "Your application
 description page.";

 var persons = _service.AllPersons();

 return View(new IndexViewModel

 {

 Persons = persons

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

170 Creating Custom TagHelper

 });

 }

10.	 This TagHelper needs some more checks and validations before you can use it in
production, but it works. It displays a list of fake data that is generated using GenFu
(see Chapter 12, Content Negotiation Using a Custom OutputFormatter, to learn
about GenFu):

Figure 16.2 – The TagHelper sample in action

Now, you are able to extend this TagHelper with a lot more features, including sorting,
filtering, and paging. Feel free to try it out in a variety of contexts.

Summary
Tag Helpers are pretty useful when it comes to reusing parts of the view and simplifying
and cleaning up your views, as in the example with DataGridTagHelper. You can also
provide a library with useful view elements. There are some more examples of pre-existing
TagHelper libraries and samples that you can try out in the Further reading section.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Further reading 171

This is the last chapter of the second edition of Customizing ASP.NET Core. We're glad you
read all the chapters. We hope you found the chapters useful and that they will help you
optimize your applications.

Further reading
•	 Damian Edwards, TagHelperPack: https://github.com/DamianEdwards/

TagHelperPack

•	 David Paquette, TagHelperSamples: https://github.com/dpaquette/
TagHelperSamples

•	 TagHelpers for Bootstrap by Teleric: https://www.red-gate.com/simple-
talk/dotnet/asp-net/asp-net-core-tag-helpers-bootstrap/

•	 TagHelpers for jQuery: https://www.jqwidgets.com/asp.net-core-
mvc-tag-helpers/

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/DamianEdwards/TagHelperPack
https://github.com/DamianEdwards/TagHelperPack
https://github.com/dpaquette/TagHelperSamples
https://github.com/dpaquette/TagHelperSamples
https://www.red-gate.com/simple-talk/dotnet/asp-net/asp-net-core-tag-helpers-bootstrap/
https://www.red-gate.com/simple-talk/dotnet/asp-net/asp-net-core-tag-helpers-bootstrap/
https://www.jqwidgets.com/asp.net-core-mvc-tag-helpers/
https://www.jqwidgets.com/asp.net-core-mvc-tag-helpers/

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

Symbols
.NET CLI commands 40
.NET Framework 31
.NET Sockets 31
.NET Standard library 8

A
ActionFilter

about 140-143
using 144, 145

Active Directory (AD) 93
AnchorTagHelper 160
Apache

configuring 54
using, on Linux 51-53

app configuration
configuring 12-15
with INI files 17, 18

application programming
interface (API) 13, 142

ASP.NET Core architecture 1
ASP.NET Core Identity

about 93-97
user authentication, ways 93

ASP.NET Core web API project
creating 116-118

B
BackgroundService 62-64

C
cache profiles 151, 152
Cache Tag Helper 152, 153
caching 148
complex endpoint

creating 87-90
configuration provider 18, 19
ConfigureServices method

exploring 23, 24
constructor injection (CI) 144
cross-origin resource sharing (CORS) 80
custom endpoints

creating 86, 87
custom logger

creating 4-8
custom middleware

writing 71-74

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

174 Index

custom OutputFormatter objects
creating 120-127

custom TagHelpers
creating 162-164

D
dependency injection (DI) 16, 144
DI containers

features 23
using 23

distributed cache 148

E
endpoint 84
endpoint routing

about 77
exploring 84, 85

EnvironmentTagHelper 161
exception-handling middleware

about 70
runtime error 70, 71

F
Fiddler

URL 118

H
HtmlHelper 160
HTTP-based caching 149
HTTP.sys

setting up 48, 49

I
IdentityManager2

about 109
securing 112
setting up 109-111

IdentityUser
customizing 97, 98

Identity views
customizing 98-105

IHostedService 59-62
IIS

using, for hosting 49-51
INI files

used, for app configuration 17, 18

J
JavaScript Object Notation (JSON) 18

K
Kestrel

about 31, 40
password security 34
setting up 31-33, 47, 48

L
libuv 31, 47
Linux

Apache, using on 51-53
Nginx, using on 51-53

logging
configuring 2-4

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 175

M
manual caching 153-157
map method

for ASP.NET Core 5.0 78
middleware

about 69
conditions, creating 76, 77
exploring 74
pipeline, branching with

/map path 74, 75
pipeline, branching with

MapWhen() method 75, 76
rewrite, terminating 79, 80
using, in ASP.NET Core 3.0 77, 78

minimal API approach 3, 86
ModelBinder

about 130
testing 136, 137
using 135, 136

N
Nginx

configuring 53, 54
using, on Linux 51-53

Ninject 23
Nlog

about 8
reference link 8

Node.js 31

O
OutputFormatter objects 114, 115

P
PersonsCsvBinder

creating 133-135
Plain Old CLR Object (POCO) 16
Postman

URL 118

R
Razor Pages 78, 85
ResponseCachingMiddleware

adding 150, 151

S
Scrutor

about 26
reference link 26

ServiceProvider
using 24-26

SQLite database 95

T
TagHelpers

about 159-161
complex scenario, examining 164-170

test data
preparing 131

test project
preparing 131, 132

third-party logger provider
plugging in 8, 9

typed configuration
using 15-17

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

176 Index

U
UseEndpoints element 77
UseRouting element 77

W
web API

testing 118-120
WebHostBuilder

setting up 47
WebHostBuilderContext

re-examining 37-42
Windows authentication 49
Worker Service projects

implementing 65, 66

X
XmlSerializerOutputFormatter

adding, to ASP.NET Core 115

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

178 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

ASP.NET Core and Vue.js

Devlin Basilan Duldulao

ISBN: 978-1-80323-279-9

•	 Discover CQRS and mediator pattern in the ASP.NET Core 5 Web API

•	 Use Serilog, MediatR, FluentValidation, and Redis in ASP.NET

•	 Explore common Vue.js packages such as Vuelidate, Vuetify, and Vuex

•	 Manage complex app states using the Vuex state management library

•	 Write integration tests in ASP.NET Core using xUnit and FluentAssertions

•	 Deploy your app to Microsoft Azure using the new GitHub Actions for continuous
integration and continuous deployment (CI/CD)

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/asp-net-core-and-vue-js/9781800206694

Other Books You May Enjoy 179

C# 10 and .NET 6 – Modern Cross-Platform Development – Sixth Edition

Mark J. Price

ISBN: 978-1-80107-736-1

•	 Build rich web experiences using Blazor, Razor Pages, the Model-View-Controller
(MVC) pattern, and other features of ASP.NET Core

•	 Build your own types with object-oriented programming

•	 Write, test, and debug functions

•	 Query and manipulate data using LINQ

•	 Integrate and update databases in your apps using Entity Framework Core,
Microsoft SQL Server, and SQLite

•	 Build and consume powerful services using the latest technologies, including gRPC
and GraphQL

•	 Build cross-platform apps using .NET MAUI and XAML

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/c-10-and-net-6-modern-cross-platform-development-sixth-edition/9781801077361

180

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Customizing ASP.NET Core 6.0, we'd love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1803233605
https://packt.link/r/1803233605

 EBSCOhost - printed on 2/9/2023 9:57 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Customizing Logging
	Technical requirements
	Configuring logging
	Creating a custom logger
	Plugging in an existing third-party logger provider
	Summary

	Chapter 2: Customizing App Configuration
	Technical requirements
	Configuring the configuration
	Using typed configurations
	Configuration using INI files
	Configuration providers
	Summary
	Further reading

	Chapter 3: Customizing Dependency Injection
	Technical requirements
	Using a different DI container
	Exploring the ConfigureServices method
	Using a different ServiceProvider
	Introducing Scrutor
	Summary

	Chapter 4: Configuring and Customizing HTTPS with Kestrel
	Technical requirements
	Introducing Kestrel
	Setting up Kestrel
	For your safety

	Summary

	Chapter 5: Configuring WebHostBuilder
	Technical requirements
	Re-examining WebHostBuilderContext
	How does it work?

	Summary
	Further reading

	Chapter 6: Using Different Hosting Models
	Technical requirements
	Setting up WebHostBuilder
	Setting up Kestrel
	Setting up HTTP.sys
	Hosting on IIS
	Using Nginx or Apache on Linux
	Configuring Nginx
	Configuring Apache

	Summary
	Further reading

	Chapter 7: Using IHostedService and BackgroundService
	Technical requirements
	Introducing IHostedService
	Introducing BackgroundService
	Implementing the new Worker Service projects
	Summary

	Chapter 8: Writing Custom Middleware
	Technical requirements
	Introducing middleware
	Writing custom middleware
	Exploring the potential of middleware
	Branching the pipeline with /map
	Branching the pipeline with MapWhen()
	Creating conditions with middleware

	Using middleware in ASP.NET Core 3.0 and later
	Rewriting terminating middleware to meet the current standards

	Summary

	Chapter 9: Working with Endpoint Routing
	Technical requirements
	Exploring endpoint routing
	Creating custom endpoints
	Creating a more complex endpoint
	Summary

	Chapter 10: Customizing ASP.NET Core Identity
	Technical requirements
	Introducing ASP.NET Core Identity
	Customizing IdentityUser
	Customizing the Identity views
	Summary

	Chapter 11: Configuring Identity Management
	Technical requirements
	Introducing IdentityManager2
	Setting up IdentityManager2
	Securing IdentityManager2
	Summary

	Chapter 12: Content Negotiation Using a Custom OutputFormatter
	Technical requirements
	Introducing OutputFormatter objects
	Preparing a test project

	Testing the web API
	Creating custom OutputFormatter objects
	Summary

	Chapter 13: Managing Inputs with Custom ModelBinder
	Technical requirements
	Introducing ModelBinder
	Preparing the test data
	Preparing the test project
	Creating PersonsCsvBinder
	Using ModelBinder
	Testing ModelBinder
	Summary
	Further reading

	Chapter 14: Creating a Custom ActionFilter
	Technical requirements
	Introducing ActionFilter
	Using ActionFilter
	Summary
	Further reading

	Chapter 15: Working with Caches
	Technical requirements
	Why do we need caching?
	HTTP-based caching
	Caching using ResponseCachingMiddleware
	Predefining caching strategies using cache profiles

	Caching specific areas using CacheTagHelper
	Caching Manually
	Summary
	Further reading

	Chapter 16: Creating Custom TagHelper
	Technical requirements
	Introducing TagHelper
	Creating custom Tag Helpers
	Examining a more complex scenario

	Summary
	Further reading

	Index
	About Packt
	Other Books You May Enjoy

